
A. Gelbukh (Ed.): CICLing 2014, Part I, LNCS 8403, pp. 237–249, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Extended CFG Formalism for Grammar Checker
and Parser Development

Daiga Deksne, Inguna Skadiņa, and Raivis Skadiņš

Tilde, Riga, Latvia
{daiga.deksne,inguna.skadina,raivis.skadins}@tilde.lv

Abstract. This paper reports on the implementation of grammar checkers and
parsers for highly inflected and under-resourced languages. As classical context
free grammar (CFG) formalism performs poorly on languages with a rich
morphological feature system, we have extended the CFG formalism by adding
syntactic roles, lexical constraints, and constraints on morpho-syntactic
feature values. The formalism also allows to assign morpho-syntactic feature
values to phrases and to specify optional constituents. The paper also describes
how we are implementing the grammar checker by using two sets of rules –
rules describing correct sentences and rules describing grammar errors. The
same engine with a different rule set can be used for the different purposes – to
parse the text or to find the grammar errors. The paper also describes the
implementation of Latvian and Lithuanian parsers and grammar checkers and
the quality measurement methods used for the quality assessment.

Keywords: parsing, grammar checking, inflected languages.

1 Introduction

Proofing tools have been in development for a rather long time. Tools for checking
spelling are available for many languages in different word processing applications as
well as other natural language applications. However, a more complicated task for
computers is grammar checking. Due to the high ambiguity of languages, grammar
checking tools are available for a rather small number of languages. Moreover, even
grammar checking tools for the English language only allow for the correction of
certain types of errors.

The problem becomes even more complicated when it concerns highly inflected
languages that have a rather free word order. Only a few grammar checkers have been
developed for such languages (e.g., there are several grammar checkers for the Russian
language).

In this paper, we present a framework for grammar checking that is derived from a
context-free grammar (CFG) formalism. A classical CFG performs poorly on inflected
languages, e.g., large numbers of non-terminals are necessary for representation of
morpho-syntactic features, as well as parser output usually consists of many parse
trees. Thus different syntactic formalisms derived from CFG (e.g., Generalized Phrase

238 D. Deksne, I. Skadiņa, and R. Skadiņš

Structure Grammar introduces mechanism for feature passing [10], Definite Clause
Grammar expresses grammar as clauses of first-order predicate logic [19]) have been
developed. In addition many syntactic formalisms that adopt phrase structure are pro-
posed: for instance, Head-Driven Phrase Structure Grammar adopts the basic phrase
structure syntax through unification of feature structures [20], Lexical Functional
Grammar use constituent structure together with feature structure for syntax represen-
tation [14], Augmented transition network formalism [4] realizes unification through
recursive transition network.

In this paper we propose to extend CFG by adding morpho-syntactic features and
syntactic roles, and by introducing two operators - constraint checking operator and
assignment operator. Additionally, rules for grammar checking are divided into two
sets – one rule set for parsing and recognizing correct patterns and another rule set for
error detection and correction. Our grammar checking system allows to correct 23
types of errors, including syntactic errors, style errors, and capitalization errors. For
inflected languages, the most important groups of errors are word agreement errors
and errors that are related to punctuation in specific constructions.

The developed framework is used to implement grammar checkers for two lan-
guages of the Baltic language group - Latvian and Lithuanian. The evaluation results
for these languages are presented and discussed in this paper. In addition, we also
demonstrate how the developed framework can be used for grammar checking of
other inflected languages, e.g., the Slavic language group.

2 Related Work

The grammar checking problem has been actual since the 1970s, when language tech-
nologies obtained their intelligence. The first grammar checkers checked punctuation
and style inconsistencies. In the early 80s, grammar checkers were released for per-
sonal computers, and, soon afterwards, grammar checkers that could detect writing
errors beyond simple style errors were developed. Among grammar checkers we
would like to mention the grammar checker in Word97 for English [11], the rule-
based system for Dutch [27], ReGra for Brazilian Portuguese [16], first grammar
checker for Latvian [7], grammar checkers for Swedish [1], [8], [22], German [23],
and Arabic [24].

Different approaches have been used for grammar checking; the most popular be-
ing rule-based (e.g., constraint grammar, context-free grammar), statistical [2], [13],
[25], and hybrid [8], [9], [28].

The rule-based approach usually uses manually created rules that can be easily
modified, added, or removed. Such rules are linguistically motivated. However, it is
not easy to maintain larger systems. One popular approach is Constraint Grammar
(CG) formalism, which was originally designed by Fred Karlsson [15] for grammar-
based parsing. However, CG parser can be used not only to tag a sentence with sur-
face syntactic functions, but also to mark possible grammar errors. It has been used
for the detection of syntactic errors in Swedish [1], [5] and Norwegian [12].

 Extended CFG Formalism for Grammar Checker and Parser Development 239

LanguageTool grammar checker1 [17] is a rule-based open source grammar check-
ing system that is a plug-in for OpenOffice.org. Currently, it supports 29 languages.
However, support significantly varies from language to language.

Despite a long history of development of grammar checkers, there is a lot of space
for improvements where it concerns language coverage and algorithms as it is demon-
strated for English [18].

3 Extended Context-Free Grammar Formalism

Extended context-free grammar formalism is derived from CFG. Similar to CFG, our
formalism contains a description of phrase structure. However, it usually also has a
rule body consisting of constraints, lexical restrictions, and value assignment/
inheritance statements.

3.1 Structure of the Rules

Context-free grammar, formalized independently by Chomsky [6] and Backus [3], is
defined as a 4-tuple (P, N, T, S) with the following components:

─ P is a set of grammar rules or productions (i.e., items of the form X → a, where X
is a non-terminal symbol, and a is a string of terminal and non-terminal symbols)

─ N is the set of non-terminal symbols (i.e., grammatical or phrasal categories)
─ T is the set of terminal symbols (i.e., words of the language)
─ S is a designated start symbol, normally interpreted as representing a full sentence

Classical CFG is powerful and efficient for describing sentence structures of ana-
lytic languages that convey grammatical relationships without the use of inflectional
morphemes. However, it is not so efficient in describing the sentence structure of
synthetic languages that use inflectional morphemes and have a quite free word order.
It is especially difficult to describe agreement (or disagreement) between words or
phrases. Therefore, we have introduced morpho-syntactic properties to CFG, have
allowed non-terminals to inherit these properties from their constituents, and have
used these properties to restrict rules.

We use terminals and non-terminals in the same way as CFG does. However, on
the right side of the production rule, syntactic roles are added to each constituent as
shown in (1) for noun phrase NP:

 NP -> attr:NP main:N (1)

In each rule, the syntactic role main is mandatory for the head constituent, and
other possible roles include subj, obj, mod, etc.

The body of the rule usually contains some constraints and some assignments. The
constraints are used to restrict the application area for the rule and to avoid over-
generation. They are realized through morpho-syntactic properties of terminals and

1 https://www.languagetool.org/

240 D. Deksne, I. Skadiņa, and R. Skadiņš

non-terminals. The set of properties and property values is language specific. For
Latvian and Lithuanian, we use 26 properties, such as, number, case, gender, etc.
Table 1 provides a summary of comparison and assignment operators.

Table 1. Comparison and assignment operators

Operation Sample Explanation
Strict comparison
with a constant

attr:P.Case==dative The case of the
pronoun (P) must be
dative

Comparison with
a constant when
the property’s
value is defined

attr:P.Case===dative If the case of the
pronoun is defined, it
must be dative

Comparison with
a constant for
inequality

main:VP.Person!=III The person of the verb
phrase (VP) must not
be 3rd

Strict comparison
of property values
for two right side
constituents

mod:P.Case==main:NP.Cas
e

The case values of
pronoun (P) and noun
phrase (NP) must be
equal

Comparison of
property values
for two right side
constituents when
their values are
defined

mod:P.Case===main:NP.Ca
se

The case values of
pronoun (P) and noun
phrase (NP) must be
equal, if the case
values are defined

Comparison for
inequality of two
right side con-
stituents

mod:P.Case!=main:NP.Cas
e

The case values of
pronoun (P) and noun
phrase (NP) must be
different

Assignment of
constant

NP.Person=III The 3rd person is as-
signed to the left side
noun phrase

Inheritance/ as-
signment of prop-
erty values of
right side con-
stituents

NP.Case=main:NP.Case The case of the right
side noun phrase is
assigned to the left-
side noun phrase

Two functions are introduced that allow to check agreement between constituents

with a single statement. Function Agree(item1, item2, property-1, property-2, …,
property-n) allows to check whether values of property-1, …, property-n are equal
for constituents item1, item2. For instance, (2) checks the agreement of noun (N) and
adjective (A) in case, number, and gender.

 Agree(attr:A, main:N, Case, Number, Gender) (2)

 Extended CFG Formalism for Grammar Checker and Parser Development 241

Similarly, the Disagree(item1, item2, property-1, property-2, …, property-n) func-
tion checks whether at least one of the properties property-1, property-2, …, proper-
ty-n differs between item1 and item2. This is especially useful for grammar checking.
For instance, in the case of error in a noun phrase, there could be a disagreement be-
tween noun and adjective in gender, case, or number (3).

 Disagree(attr:A, main:N, Gender, Number, Case) (3)

With a LEX statement the terminal symbol lexical values – base forms – can be
specified. The number of words in a LEX statement must be equal to the number of
right side constituents in the rule. The ‘*’ symbol is used to allow any value for the
constituent. There can be several LEX statements in a rule, as shown in Fig. 1, where
the adverbial phrase (ADVP) consists of two adverbs (R), and the first adverb could
only be either pavisam (‘entirely’) or īpaši (‘especially’).

ADVP -> ad:R main:R
 LEX pavisam *
 LEX paši *paši *

Fig. 1. Sample of rule with lexical constraints

3.2 Rule Specifics for Grammar Checking

For grammar checking, we also introduce error rules. In error rules, the left side non-
terminal is in the form ‘ERROR-id‘. All rules that describe the same type of error
have the same id. Error rules do not contain value assignment operators which assign
values to the left side non-terminal; they contain only constraint expressions (Fig. 2).

ERROR-1 -> attr:A main:N
 Disagree(attr:A,main:N, Case, Number, Gender)

Fig. 2. Sample of error rule describing disagreement between noun N and adjective A in case,
number, or gender

The error description is followed by correction suggestion part of the rule. It starts
with the label “GRAMCHECK” and is followed by the markup operator that tags an
error in the phrase. Operator MarkAll tags the whole phrase, while operator
Mark(some right side constituent[+other right side constituent]*) tags the part of the
phrase represented by the right side constituent(s). Property assignment statements
allow for the changing of the properties of the right side items and are used for gene-
rating suggestions.

Finally, the statement SUGGEST is used to form correct output (concatenated
with ‘+’). An example of the grammar checking rule is shown in Fig. 3.

The error rules may contain phrases that are created with parsing rules (e.g., noun
phrase, adjective phrase, etc.), and there usually are some agreement or disagreement
statements (between properties of several phrases that are correct within themselves)
in the body of the error rule.

242 D. Deksne, I. Skadiņa, and R. Skadiņš

ERROR-1 -> attr:AP main:NP
 Disagree(attr:AP,main:NP, Case, Number, Gender)
GRAMMCHECK MarkAll
 attr:AP.Case=main:NP.Case
 attr:AP.Number=main:NP.Number
 attr:AP.Gender=main:NP.Gender
SUGGEST(attr:AP+main:NP)

Fig. 3. Grammar checking rule that corrects disagreement between noun phrase (NP) and
adjective phrase (AP) in case, number, or gender

Error rules are often coupled with rules describing correct grammar, i.e., there is a
correct grammar rule with the same right side constituents as some error rule, and
only the constraint operators differ (see Fig. 3 and Fig. 4).

NP -> attr:CAP main:NP
 Agree(attr:CAP, main:NP, Case, Number, Gender)

Fig. 4. Parsing rule that contains the same constituents as the error rule in Fig. 3, but differs in
constraints

If all comparison operators in the error rule are true, it does not guarantee that this
error will be in a final parse tree. For the error rule to succeed, the phrase it covers
must be bigger than the phrase for which the parsing rule works. In Fig. 5, the error
rule is applied for the three subsequent words, while the parsing rule covers the phrase
with five words which include the shorter phrase. Thus, there is no error.

Fig. 5. Parsing example of a grammatically incorrect phrase ‘man iesniegumu jāsūta ministrijai’
(‘I application must send to the ministry’) on the left and a parse tree for a correct phrase ‘man
daļa iesniegumu jāsūta ministrijai’ (‘I part of applications must send to the ministry’) contain-
ing three subsequent words from the left side phrase

 Extended CFG Formalism for Grammar Checker and Parser Development 243

4 Parsing with the Extended CFG Rules

We use the Cocke-Younger-Kasami (CYK) algorithm [26] for parsing. It allows par-
tial parsing which is important for ungrammatical sentences. This algorithm requires
grammar in the Chomsky Normal Form. During compilation, our rule compiler ex-
pands the rules with optional parts, inserts the unary rules, and transforms the rules
into binary form.

Our parser generates parse trees in two formats – either constituency parse trees or
dependency parse trees. Every constituency parse tree can be converted to a depen-
dency parse tree by traversing the parse tree from the root node to the child with a
syntactic role “main” first and moving it to the parent position. See Fig. 6, for an ex-
ample of constituency and dependency trees for the same sentence.

Fig. 6. Constituency (on the left) and dependency (on the right) parse trees for the sentence
‘Skirtumas yra labai mažas.’ (‘The difference is very small.’)

5 Evaluation

We have developed several sets of rules for parsing and for grammar checking that
are used in different combinations. Correct syntax rules are used to determine the
syntactic structure of the sentence. Correct syntax rules, together with error rules, are
used to find syntactic errors in a text. Another error rule set is used to find errors in
subsequent words in an incorrect text.

Table 2. Rule set statistics

Rule type Latvian Lithuanian
Correct syntax rules 580 179
Error rules which depend on phrases de-
scribed by correct syntax rules

263 72

Error rules which contain only terminal
symbols

239 560

Total 1082 811

244 D. Deksne, I. Skadiņa, and R. Skadiņš

We use several data sets to evaluate the quality of the grammar checkers.
The Latvian Balanced corpus contains 9,358 sentences. Sentences are taken from

different types of texts – news, travel information, student papers, legal texts, blogs,
e-mails, non-edited marketing materials, project drafts, etc. They represent the diver-
sity of texts that the potential grammar checker user might check.

The Lithuanian Balanced corpus contains 10,000 sentences that are split in two
similar parts – each part contains 5,000 sentences. The content is similar to the Lat-
vian balanced corpus.

The Corpus of Latvian Student papers contains texts from student essays and
abstracts of scientific papers. Intentionally, low quality texts with many grammatical
errors are included in this corpus. This corpus is split in two similar parts (develop-
ment and test) – each part contains 5,157 sentences.

The grammar checker can find a wide variety of errors. All errors that can be
flagged by our grammar checking system are divided into 23 groups. This division is
based on the theory of language syntax, theoretical literature about common error
types in language, and analysis of real texts from different domains.

Simple punctuation errors include errors related to incorrect usage of whitespace
characters and punctuation marks for general, language-independent cases (e.g., num-
ber of brackets). They are located using search with regular expressions.

Capitalization errors are related to incorrect usage of upper/lower case letters in
named entities.

Style errors include different errors for cases where some words are misused,
overused, used ungrammatically, or the word sequence is borrowed directly from
another language. If the style error rule describes the misusage of individual words,
lexical statements must be added to the error rule. If the style error rule describes a
phrase with ungrammatically ordered sub-phrases, a set of correct grammar rules
together with error rules must be used as in the case of syntax errors.

Syntax errors are related to different agreement errors, punctuation errors in sub-
clauses, wrong mood for a verb, word or sentence part sequence errors, errors in ad-
dress, punctuation errors in grouping, comma errors (between equal parts of sentence,
in insertions, etc.), and other syntax errors. To locate the syntax errors, full parsing of
the sentence must be done. A set of correct grammar rules is applied together with the
rules describing the errors.

At first, we manually annotated the above mentioned evaluation corpora to create a
Gold Standard. During evaluation, the Gold Standard was updated with previously
unknown cases and incorrect error detection samples from the output of the grammar
checker.

The record in the Gold Standard has four TAB separated fields: sentence number
in corpus, error type or symbol ‘0’ for a correct sentence, correctness tag (‘COR’ -
correct or ‘INCOR’- incorrect) and suggested correction (Fig. 7).

1 ERROR-1 COR ‘Vakar susitikau su geru draugu.‘
2 0

Fig. 7. Records in the Gold Standard added by annotator. The first sentence has error of type
ERROR-1 and suggestion for error correction, the second sentence is correct.

 Extended CFG Formalism for Grammar Checker and Parser Development 245

For negative samples, i.e., if there is no error of type x in the sentence, the ‘!’ sym-
bol appears before the error type, and a phrase for which there should not be this error
appears after the INCOR mark.

Fig. 8 shows sentences from the Gold Standard which were previously annotated,
and afterwards the information was updated. For the first sentence, the grammar
checker detects ERROR-1, but generates the wrong corrections. In the second sen-
tence, the grammar checker incorrectly detects ERROR-1.

1 ERROR-1 INCOR ‘Vakar susitikau su geru draugai.’
2 !ERROR-1 INCOR ‘aš skai iau’iau’

Fig. 8. Records appended to the Gold Standard after running grammar checker

In order to evaluate the quality of the grammar checker in general and for certain
error types specifically, we calculate recall, precision, and f-measure [21]. Evaluation
results are summarized in Table 3.

Table 3. Evaluation results for all error types and for the two most common error types

Corpus Error type Precision Recall F-measure
Lithuanian
Balanced

all error types 0.898 0.412 0.564
vocabulary errors 0.956 0.535 0.686
incorrect usage of cases 0.734 0.259 0.383

Latvian
Balanced

all error types 0.780 0.455 0.575
punctuation in sub-clauses 0.757 0.643 0.695
punctuation in participle
clauses

0.617 0.671 0.643

Latvian
Student
papers (dev)

All error types 0.652 0.231 0.341
punctuation in sub-clauses 0.706 0.586 0.641
punctuation in participle
clauses

0.656 0.560 0.604

Latvian Stu-
dent papers
(test)

all error types 0.753 0.203 0.320
punctuation in sub-clauses 0.773 0.588 0.668
punctuation in participle
clauses

0.766 0.685 0.723

We also performed a human evaluation of the grammar checker on 150 sentences

(divided into five files containing 30 sentences each) from the Corpus of Latvian stu-
dent papers. Five human annotators were involved; each file was evaluated by two
annotators.

The evaluation was done in two steps – without help from the grammar checker
and with help from the grammar checker. At first annotators were asked to find and
correct grammar errors in a file. The next day, the files with the same sentences where
given to human annotators for correction, but this time files also contained informa-
tion about how the grammar checker would correct these sentences.

246 D. Deksne, I. Skadiņa, and R. Skadiņš

Table 4. Human evaluation results

Situation Cases
%

Hypothesis

First step - annotators agree 62.50 Annotators often disagree. The sen-
tences are not simple, and annotators
have different language skills.

Second step - annotators agree 85.83 Agreement is higher, and the gram-
mar checker helps.

Second step – annotator corrects
the previously unnoticed error, if
the grammar checker suggests it

51.43 The grammar checker helps, but
annotators do not blindly accept all
suggestions made by the grammar
checker.

Second step – annotator does not
correct the previously corrected
error, if the grammar checker
does not suggest it

70.97 Annotators do not read sentences as
carefully as before, and they rely on
the grammar checker.

First step - sentences which
annotator corrects

37.04

Second step - sentences which
annotator corrects

27.78

Sentences which grammar
checker corrects

27.33

The errors which the human annotators did not notice before, but fixed after seeing

the grammar checker's suggestions are: date formatting errors, punctuation errors in
participle clauses and sub-clauses, wrong forms of similarly written words, and writ-
ing style errors.

Although our main task was to evaluate the grammar checkers, we also did an ini-
tial evaluation of the Lithuanian parser. For evaluation, we created a Gold Standard
containing 115 correct dependency parse trees. As the syntactic rules that have been
developed so far do not cover all of the syntactic constructions used in the Lithuanian
language, we included sentences in the Gold Standard from news texts which do not
have a very complex structure, but still represent the main syntactic constructions of
the Lithuanian language. We compared dependency trees from the Gold Standard
with dependency trees generated by the parser. As it is hard to compare two depen-
dency trees, we first converted them into triplets: <parent>:<parent start position in
sentence>, < syntactic role>, <child>:<child start position in sentence> (see Fig. 9).

yra:10 subj Skirtumas:0
yra:10 comp mažas:20
mažas:20 mod labai:14

Fig. 9. Triplets for the sentence ‘Skirtumas yra labai mažas’ (‘The difference is very small’)

 Extended CFG Formalism for Grammar Checker and Parser Development 247

The quality of the parser is calculated by measuring the precision and the recall of
triplets. For the initial Gold Standard, we obtained precision - 0.935 and recall -
0.922.

6 Conclusion and Future Work

In this paper, we introduced extended CFG formalism for grammar checking of in-
flected languages, allowing powerful grammar checkers to be built for a practical
application. The proposed grammar checking formalism has been implemented and
tested for Latvian and Lithuanian. The obtained precision and recall numbers (preci-
sion over 0.78 and recall over 0.41) allow us to conclude that it can be used in com-
mercial applications.

Our investigations also show that it can also be used for grammar checking of other
inflectional languages. We have investigated its possible application to the Polish
language. The Polish language belongs to the West-Slavonic group of the Indo-
European family of languages. The main verbal morpho-syntactic features (tense,
person, aspect, mode, and voice) and nominal features (case, number, and gender) as
well as the syntactic structure of the sentence (main parts - subject and predicate;
secondary parts - attribute, adverbial modifier, and complement) are similar to the
Baltic language group. Our proposed formalism allows the describing of such struc-
tures. Similar error types that are common for the Baltic languages are also common
in Polish and other Slavic languages: agreement between words, wrong noun case
usage, punctuation errors in subclauses, errors in negation, subject and predicate
agreement errors, etc.

Our proposed formalism can also be used for named entity recognition and infor-
mation extraction, and it can be incorporated into hybrid machine translation systems.

The next steps are to add the possibility to specify the weights or probabilities of
the rules in the formalism and to implement the CYK algorithm for parsing weighted
CFG grammar.

Acknowledgements. The research leading to these results has received funding from
the research project “Information and Communication Technology Competence
Center” of EU Structural funds, contract nr. L-KC-11-0003 signed between ICT
Competence Centre and Investment and Development Agency of Latvia, Research
No. 2.8 ”Research of automatic methods for text structural analysis”.

References

1. Arppe, A.: Developing a grammar checker for Swedish. In: 12th Nordic Conference in
Computational Linguistics (Nodalida 1999), pp. 13–27. Trondheim (2000)

2. Atwell, E.S.: How to detect grammatical errors in a text without parsing it. In: 3rd
Conference of the European Chapter of the Association for Computational Linguistics,
pp. 38–45. Association for Computational Linguistics, Copenhagen (1987)

3. Backus, J.W.: The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM Conference. In: International Conference on Information
Processing, pp. 125–132. UNESCO (1959)

248 D. Deksne, I. Skadiņa, and R. Skadiņš

4. Bates, M.: The theory and practice of augmented transition networks. In: Bolc, L. (ed.)
Natural Language Communication with Computers. LNCS, vol. 63, pp. 191–254.
Springer, Heidelberg (1978)

5. Birn, J.: Detecting grammar errors with Lingsoft’s Swedish grammar checker. In: 12th
Nordic Conference in Computational Linguistics (Nodalida 1999), pp. 28–40. Trondheim
(2000)

6. Chomsky, N.: Syntactic structures. Mouton, The Hague (1957)
7. Deksne, D., Skadiņš, R.: CFG Based Grammar Checker for Latvian. In: 18th Nordic

Conference in Computational Linguistics (NODALIDA 2011), pp. 275–278. Riga (2011)
8. Domeij, R., Knutsson, O., Carlberger, J., Kann, V.: Granska: An efficient hybrid system

for Swedish grammar checking. In: 12th Nordic Conference in Computational Linguistics
(Nodalida 1999), pp. 49–56. Trondheim (2000)

9. Ehsan, N., Faili, H.: Grammatical and context-sensitive error correction using a statistical
machine translation framework. Software: Practice and Experience 43(2), 187–206 (2013)

10. Gazdar, G.: Generalized Phrase Structure Grammar. Harvard University Press (1985)
11. Heidorn, G.E.: Intelligent writing assistance. In: Dale, R., Moisl, H., Somers, H. (eds.)

Handbook of Natural Language Processing, ch. 8, pp. 181–207. Marcel Dekker, New York
(2000)

12. Hagen, K., Johannessen, J. B., Lane, P.: Some problems related to the development of a
grammar checker. Paper presented at NODALIDA 2001, the 2001 Nordic Conference in
Computational Linguistics, May 21–22, 2001 (2001)

13. Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., Isahara, H.: Automatic error detection in
the Japanese learners English spoken data. In: 41st Annual Meeting of the Association for
Computational Linguistics (ACL 2003), Sapporo, pp. 145–148 (2003)

14. Kaplan, R.M., Bresnan, J.: Lexical-Functional Grammar: A formal system for grammatical
representation. In: Bresnan, J. (ed.) The Mental Representation of Grammatical Relations,
pp. 173–281. The MIT Press, Cambridge (1982)

15. Karlsson, F.: Constraint Grammar as a framework for parsing running text. In: 13th Inter-
national Conference on Computational Linguistics (COLING 1990), Helsinki, vol. 3, pp.
168–173 (1990)

16. Martins, R.T., Hasegawa, R., Das Gracas VolpeNunes, M., Montilha, G., De Oliveira,
O.N.: Linguistic issues in the development of ReGra: A grammar checker for Brazilian
Portuguese. Natural Language Engineering 4(4), 287–307 (1998)

17. Naber, D.: A rule-based style and grammar checker. Master’s thesis, University of
Bielefeld (2003)

18. Ng, H.T., Wu, S.M., Wu, Y., Hadiwinoto, C., Tetreault, J.: The CoNLL-2013 Shared Task
on Grammatical Error Correction. In: 17th Conference on Computational Natural
Language Learning (CoNLL 2013), pp. 1–12. Association for Computational Linguistics
(2013)

19. Pereira, F., Warren, D.: Definite clause grammars for language analysis–A survey of the
formalism and a comparison with augmented transition networks. In: Artificial Intelligence,
vol. 13(3), pp. 231–278. (1980)

20. Pollard, C., Sag, I.A.: Head-driven phrase structure grammar. University of Chicago Press,
Chicago (1994)

21. Van Rijsbergen, C.J.: Evaluation. In: Information Retrieval, 2nd edn. Butterworth, Newton
(1979)

22. Sågvall-Hein, A.: A Chart-Based Framework for Grammar Checking. In: 11th Nordic
Conference in Computational Linguistics (Nodalida 1998), pp. 68–80 (1998)

 Extended CFG Formalism for Grammar Checker and Parser Development 249

23. Schmidt-Wigger, A.: Grammar and Style Checking in German. In: 2nd International
Workshop on Controlled Language Applications (CLAW 1998). Language Technologies
Institute, Carnegie Mellon University, Pittsburgh (1998)

24. Shaalan, K.: Arabic Gramcheck: A Grammar Checker for Arabic. Software: Practice and
Experience 35(7), 643–665 (2005)

25. Sjöbergh, J., Knutsson, O.: Faking errors to avoid making errors: Very weakly supervised
learning for error detection in writing. In: Recent Advances in Natural Language
Processing IV (RANLP 2005), Borovets, pp. 506–512 (2004)

26. Younger, D.: Recognition and parsing of context-free languages in time n3. Information
and Control 10(2), 189–208 (1967)

27. Vosse, T.: The Word Connection. Grammar-Based Spelling Error Correction in Dutch.
Neslia Paniculata, Enschede (1994)

28. Xing, J., Wang, L., Wong, D.F., Chao, S., Zeng, X.: UM-Checker: A Hybrid System for
English Grammatical Error Correction. In: 17th Conference on Computational Natural
Language Learning (CoNLL-2013), vol. 34 (2013)

	Extended CFG Formalism for Grammar Checker and Parser Development
	1 Introduction
	2 Related Work
	3 Extended Context-Free Grammar Formalism
	3.1 Structure of the Rules
	3.2 Rule Specifics for Grammar Checking

	4 Parsing with the Extended CFG Rules
	5 Evaluation
	6 Conclusion and Future Work
	References

