Analyzing the Next Generation Airborne
Collision Avoidance System

Christian von Essen’* and Dimitra Giannakopoulou?*

! Verimag, Grenoble, France
christian.vonessen@imag.fr
2 NASA Ames Research Center
Moffett Field, CA, USA
dimitra.giannakopoulou@nasa.gov

Abstract. The next generation airborne collision avoidance system,
ACAS X, departs from the traditional deterministic model on which
the current system, TCAS, is based. To increase robustness, ACAS X
relies on probabilistic models to represent the various sources of uncer-
tainty. The work reported in this paper identifies verification challenges
for ACAS X, and studies the applicability of probabilistic verification and
synthesis techniques in addressing these challenges. Due to shortcom-
ings of off-the-shelf probabilistic analysis tools, we developed a frame-
work that is designed to handle systems with similar characteristics as
ACAS X. We describe the application of our framework to ACAS X, and
the results and recommendations that our analysis produced.

Keywords: Markov decision processes, probabilistic verification, prob-
abilistic synthesis, aircraft collision avoidance.

1 Introduction

The current onboard collision avoidance standard, TCAS [7], has been successful
in preventing mid-air collisions. However, its deterministic logic limits robust-
ness in the presence of unanticipated pilot responses, as exposed by the collision
of two aircraft in 2002 over ﬁberlingen, Germany [4]. To increase robustness,
Lincoln Laboratory has been developing a new system, ACAS X, which uses
probabilistic models to represent uncertainty. Simulation studies with recorded
radar data have confirmed that this novel approach leads to a significant im-
provement in safety and operational performance. The Federal Aviation Admin-
istration (FAA) has formed a team of organizations to mature the system, aiming
to make ACAS X the next international standard for collision avoidance.

The adoption of a completely new algorithmic approach to a safety-critical
system naturally poses a significant challenge for verification and certification.

* The first author performed this work while employed by SGT Inc. as an intern at the
NASA Ames Research Center. This work was funded under the System-wide Safety
Analysis Technologies Project of the Aviation Safety Program, NASA ARMD.

E. Abrahédm and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 620-635, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Analyzing the Next Generation Airborne Collision Avoidance System 621

Our goal in this work is to study the applicability of formal probabilistic verifi-
cation and synthesis techniques, which go beyond simulation studies [8,5]. Our
study was driven by tasks defined in collaboration with the ACAS X team to be
complementary to their verification efforts. During the course of our work, we
identified shortcomings of existing tools, which lead us to develop a framework
customized for ACAS X (or similar systems). In our framework, models are ex-
pressed in a traditional programming language for increased expressiveness, and
verification and synthesis algorithms are designed for scalability and efficiency.

The contributions of this work can be summarized as follows: 1) Develop-
ment of a faithful model for synthesis of the ACAS X controller, based on the
Lincoln Laboratory publications [6]; 2) Development of customized verification
and synthesis algorithms for efficient handling of ACAS X (and like) systems;
3) Identification of design and verification challenges for ACAS X as related to
probabilistic verification and synthesis; 4) Results obtained from the application
of our framework to ACAS X and recommendations for the ACAS X effort.

The results of our work will serve as input for the certification of ACAS X.
Due to access restrictions, we analyze a previous version of the system [6], but
are currently working with the ACAS X team to extend our work to the current
version. We believe that ACAS X presents researchers in probabilistic verification
and synthesis with a unique opportunity to focus on a relevant, safety-critical
case study. For this reason, we are preparing a public release of our models and
framework, to encourage other members of the community to build on our work.

The remainder of this paper is organized as follows. Section 2 describes the
ACAS X system as designed and deployed by the ACAS X team. In addition
to these techniques, our work implements and applies formal verification and
synthesis approaches, described in Sections 3 and 4. We discuss implementation
details in Section 5, with Section 6 concluding the paper.

2 The ACAS X System

Model Description. Similarly to the current standard TCAS, ACAS X [6] uses
several sources to estimate the current state of the plane on which it is deployed,
and the planes in its vicinity. If it detects the possibility of an imminent collision
(less than 40 seconds away), it produces vertical maneuver advisories (to climb
or descend) in order to avoid the collision. Both TCAS and ACAS X operate at
a frequency of one state update and advisory per second.

The ACAS X model consists of two airplanes on collision course. Loss of
Horizontal Separation, from now on denoted as LHS, describes the situation where
two airplanes are in the exact same location when their height difference is
ignored. A Near Mid-Air Collision (NMAC) occurs when the two airplanes are
within 100 ft of each other when LHS occurs. We refer to the plane equipped with
ACAS X as our plane (often referred to as ownship in the literature), and the
other plane as intruder (similarly to [6]).

The model has 5 parameters: (1) h € [-1000,1000] ft, the height difference
between the two planes, (2) dho,dh; € [—2500,2500] ft / min, our and the in-
truder’s climbing rates (3) adv the advisory produced by ACAS X one second

622 C. von Essen and D. Giannakopoulou

ago (4) ps the pilot state. Pilot state and advisories can take the following values
— note that the pilot can either follow the advisory (i.e., ps = adv) or perform
random maneuvers (i.e., ps = COC), since studies have shown that pilots may
not react immediately or at all to an advisory:

— COC stands for “clear of conflict” — the pilot is free to choose how to control
the plane.

— CLI1500 / DES1500 stand for “climb / descend with 1500 ft / min”, respec-
tively; they advise the pilot to change the climbing rate with }19 until reach-
ing a climbing rate of 1500 ft / min / —1500 ft / min, respectively.

— Advisories SCLI1500 / SDES1500 and SCLI2500 / SDES2500 are similar but
employ an acceleration of ég. Moreover, SCLI2500 / SDES2500 target a final
climbing rate of 2500 ft / min / —2500 ft / min, respectively.

In describing the dynamics of the system, we use X ~ P to denote that X
is sampled according to probability distribution P. Moreover, N (u, o) denotes a
normal distribution with mean p and standard deviation o. Lastly, we denote by
{p1:e1,p2: ea,...} the distribution in which e, has probability p;. Given a state
(dho,dhi, h,adv,ps) and an advisory a, the dynamics of the system are given
by the following equations, which together describe a continuous probability
distribution d.(dh{, dh’, ', adv’,ps’ | dho,dh1,h,adv,ps,a), where the primed
versions of variables (e.g., dh{) characterize the next state. In these equations,
function f returns the appropriate acceleration in ft /s? if the desired climbing
rate has not been reached yet, and 0 otherwise.

adv’ = a; dh} ~ dh1 +60N(0,3); h' =h+ ((dho + dh})/2 — (dhi + dh})/2)/60
{1:a} if @ = COCVa = ps

ps' ~ ¢ {4 :a,}:COC} if a€ {CLI1500,DES1500} A a # ps
{i:a,2:coc} ifae€ {SCLI* SDES*} Aa # ps

60N (0, 3) if ps’ = coc

dhy ~ dh
0 ot {{1 : f(dho,ps’)} otherwise

Model Discretization. Similarly to [6], we generate an ACAS X controller
by analyzing a Markov Decision Process (MDP) obtained through discretiza-
tion of the above model. In our implementation, the number of discrete values
that replace each continuous parameter is configurable by a resolution vector
(Fdhes Tdhys Th), Where rapg, ran,, 7n define the number of points below and above
0 used to discretise dhg, dhq, h, respectively. Formally, the set of discretization
points is defined as Dy, ry, rn = {—2500, 2500 + 2500/74n, - - -, 2500} x
{=2500, —2500 + 2500/74p,, - - ., 2500} x {—1000,—1000 + 1000/7p, ..., 1000}.
The resolution of the controller defined in [6] is (10, 10, 10).

The following two techniques are then employed in [6] to calculate the tran-
sition distribution over Dy, ry, .- Instead of sampling from the continuous
normal distribution (N (0, 3), N (0, 3)) for equations dhj and dh/, we sample from
the distribution {} : (0,0), § : (0,—0), 3 : (0,0), 4 : (5,0), § : (—0,0)}, where

Analyzing the Next Generation Airborne Collision Avoidance System 623

o = 3+/3. This is called sigma point sampling. After having modified the equa-
tions with sigma point sampling, we obtain a discrete probability distribution
8 (dhf, dhy, h,adv',ps’ | dho,dh1, h,adv, ps, a).

Secondly, linear interpolation matches the points of ¢’ to the discretization
points in Dy, vy - Let Aap, be the distance between two discretization
points of the climbing rate of our plane, and let Agp, and Ay be defined analo-
gously. We define function ¢ to capture how “close” a point (dhg, dhq,h) is to a
discretization point (dh(,dh}, h’') immediately surrounding it as

\dho —dhy| - |dhy—dby|. . |h =]
- 1- 1- :
Adhg Agn, I Ap)

and 0 for all other points. Based on these, we define the transition relation as

§(s?|s,a) =3, 8(s"| s,a) (s, s%).

Controller Generation. In order to generate a controller, each ACAS X ad-
visory receives a cost/reward, where costs are rewards with negative values.
Reward COC is associated with switching from any alerting state to COC; Alert
is a cost associated with switching from COC to either CLI1500 or DES1500;
Reversal is a cost associated with switching from any climbing to any descend-
ing advisory, or vice versa; Strengthening is a cost associated with switching
from any climb/descent advisory with goal 1500 ft / min to SCLI2500,/SDES2500,
respectively; NMAC is a cost associated with the occurrence of an NMAC.

We henceforth refer to the costs/rewards as “weights”, thus describing the
fact that they capture the relative importance of different quality criteria of the
controller. Let ¢(s,a) be the sum of costs and rewards ACAS X receives for
selecting advisory a in state s (for example, if a in state s activates an alert,
then c(s,a) = Alert). Moreover let Ejy s q)[c(s")] describe the expected value
of some function « under the probability distribution over the successor states s’
of s when selecting action a. We then calculate a table equivalent to the family of
functions Ty (s, a) := c(s,a) +Es(sr|s,a) Mingre a(sry Tt—1(s",a’)], 1 <t < 40, where
A(s) stands for the set of advisories admissible in s. Further, Ty(s,a) = NMAC if s
models an NMAC, and 0 otherwise. Essentially, for each state and each advisory
the table stores the expected accumulated cost.

t((dho, dhy, h), (dhy, dhy, B')) = (1

Controller Deployment. The generated controller is deployed as look-up ta-
ble T}(s,a) described previously. Linear interpolation is used to determine the
advisory for a state s in the continuous world at time ¢ until loss of horizontal

separation by: arg min,c 4(s) Zs’eDrd, - (s,)Ty (s', a).
g "dhyTh

Figure 1(a) illustrates a part of the interpolated strategy generated according
to [6]. In the figures, note that LHS occurs at time 0, located on the left hand side
of the plots, so time in the plots flows from right to left. Thorough examination
of such plots is part of the validation of ACAS X but goes beyond the scope of
this paper. Our framework can easily generate such plots, though.

We would like to point out two features of the generated controller. Firstly, if
the airplanes start out on the same height, then the controller waits for a long
time until giving an advisory, as witnessed by the black space between the two
“tails” on the right. This is because it is very unlikely that the two planes will

624 C. von Essen and D. Giannakopoulou

1500 T T T T T T T T 2 1500 T T T T T T T T 2
1000 1000

500 500

height difference
°
T
-
height difference
°
T

-500 -

-1000 - -1000 -

1500 L L L L L L L L 0 1500 L L L L L L L L 0
-5 0 5 10 15 20 25 30 35 40 -5 0 5 10 15 20 25 30 35 40

time time

(a) Resolution (10, 10, 10) (b) Resolution (20, 20, 20)

Fig.1. Two controllers generated with the same weight in different resolutions. x-
axis shows time until LHS, y-axis height difference. Parameters dho and dhi are zero
throughout, and adv = ps = €0C. Color indicates selected advisory: black (0) for €OC,
red (1) for CLI1500, yellow (2) for DES1500.

remain on the same height for a long time (due to their random movement),
and it is therefore better to wait until the intruder either starts climbing and
or descending and go in the opposite direction. Secondly, notice the “mouth”
shape close to time 0 and around height difference 0. In this collision situation,
ACAS X is not giving any advisory, although one would intuitively expect that
some advisory would be more informative to the pilot than COC, which may be
misleading. This is an artifact of the costs used for synthesis, and we describe a
technique that identifies situations like these in Section 3.

3 Verification

To complement the ACAS X work that primarily uses simulation, we apply for-
mal analysis techniques to evaluate the ACAS X controller. Simulation-based
techniques are studied and discussed in Section 4, where we explore the design-
space of controllers and compare different generated controllers among them-
selves. In this section, we evaluate the ACAS X controller 1) in terms of the
quality criteria used for its generation, and 2) through model checking of PCTL
[3] properties, which are ideal for probabilistic models such as ACAS X’s. For
evaluation, we use models discretized at different resolutions, and could even use
different model characteristics and parameters (although we do not do the latter
in the experiments presented here).

The type of analysis that we perform provides a value v(s) for each state of
the discretized model. To easily compare results of analyses with each other and
with simulations, we define a probability distribution I(s) over the states of the
model as follows (similarly to [6]). The only states we consider are those at 40
seconds from LHS, and in which ps = adv = COC. Over those states, we first
define a continuous distribution over (dhg,dh1,h) € R? by sampling dho and
dhy uniformly from [—1000, 1000] ft / min, denoted as dho ~ U(—1000, 1000) and
dhy ~ U(—1000,1000). To make a collision likely, and therefore to provoke the
controller into action, h is sampled from 40((dhy — dho)/60) + N (0, 25).

Analyzing the Next Generation Airborne Collision Avoidance System 625

To define an analogous distribution of Dy, r,, .., We assign probability
masses to all three parameters so as to soak up the probability of the space
around them. That is, the probability of picking sample point dhg is defined
as: P(dh() — Ath/Q < Hyg < dhg + Adho/2)> with Hg ~ U(*lOOO, 1000) Note
that Agp,, Aan, and Ay, are defined as in Section 2. We define the discretized
probability of dh; analogously. The discretized probability of h is defined as:
P(h — Ah/Q <H<h+ A}L/Q), where H ~ 40((dh1 — dho)/60) + N(0,25), i.e.,
the probability distribution of h depends on dhy and dh;. We then use I to
calculate the expected value E;q [v(s)].

3.1 Influence of Resolution on Controller Evaluation

Our first step in evaluating the ACAS X controller involves calculating its per-
formance in evaluation models of different resolutions for the two climbing rates
and the height difference: (10, 10, 20),..., (10,10, 50), (20, 20, 10) ... (50, 50, 10)
and (20, 20, 20)...(50,50,50).

For each of these resolutions, Fig-
ure 2 presents the evolution of the
probability of seeing an NMAC ver-
sus the resolution. The three lines
represent the three groups of in-
creasing resolutions. Line “Height” o * *
represents resolutions (10, 10, n), while S
line “Climbing Rate” represents the R
resolutions (n,n,10) and line “All”
represents the resolutions (n, n, n), for Fig.2. P(NMAC) of baseline controller in
n e {10’ 20, 30, 40, 50} various resolutions

These plots indicate that the probability of NMAC drops as we increase resolu-
tion. This in turn indicates (though does not guarantee) that a coarse resolution
provides a conservative estimate for the quality criteria of the controller. Lines
“Height” and “Climbing Rate” indicate that increasing the resolution of the
height difference has a stronger influence on the quality of the analysis than the
resolution of the climbing rate. This observation is reinforced by comparing lines
“Height” and “All”. The difference between these two lines is small, despite the
fact that an n-fold increase in resolution of the climbing rate leads to an n?-fold
increase in state space.

" Height ——
Climbing Rate 1
All —¥—

P(NMAC)

3.2 PCTL Model Checking

The PCTL model checking engine that we have developed enables users to: (1)
vary the resolution of the model to get more precise results, and (2) analyse non-
trivial properties expressed in the PCTL formal property language. In contrast
to simulation, PCTL model checking allows an exhaustive search of the state
space and can thus uncover scenarios that simulations might easily miss. This is
important given the low probability of some of the properties we want to check.
Property 1: Near Mid-Air Collision. Studies the probability of a near

626

values

3000

2000 [

1000

-1000

-3000
0

C. von Essen and D. Giannakopoulou

NMAC Example
T T T

SDES2500

J/ DES1500

-2000 [

coc

" dh,

5

L L L
10 15 20 25
time to LHS

L
30

35

40

values

3000

2000 [

1000

-1000 [
-2000 [

-3000
0

Split Advisory Example
T T T

SDES2500

DESIS00 | CLI1500
NJeoc ! /

coc

10 15 20 25
time to LHS

Fig. 3. Trace plots for properties 1 and 3. x-axis displays time to LHS, y-axis displays
values of (dho, dh1, h). The color of line h depicts the advisory, tagged above the line.

mid-air collision, formally P_[FNMAC]. During analysis, we observed that the
most likely cases of this undesirable scenario stem from late reactions from
the pilot. We therefore decided to instead concentrate on NMACs that occur
despite immediate reactions to advisories by the pilot. We formulate this as
P_-(FNMAC | Gadv = ps), i.e., what is the probability of reaching an NMAC
state although the pilot always reacts immediately.

The highest probability over all initial states that we encounter with the
conditional probability formula is 2.30 - 1078, as opposed to 6.92-10~* with the
original formula. This confirms that the vast majority of NMACs happen because
the pilot does not react fast enough or at all. To understand the NMACs that
occur despite the fact that the pilot reacts to advisories, we analyzed some traces
that are most likely to fulfill P_,(F NMAC | Gadv = ps). Figure 3 depicts such a
scenario: initially, our airplane is 1000ft below the intruder and we are climbing
with 2500 ft / min. The intruder, on the other hand, starts out with a climbing
rate of —250ft / min. Until 22 seconds to LHS, the two airplanes maintain their
course, and therefore the height difference shrinks. If both planes were to continue
to maintain their course, then our plane would be well above the intruder at time
0 to LHS, so ACAS X does not alert.

At this point, climbing rate of the intruder starts increasing, and the verti-
cal distance becomes —150 ft. The height difference levels off as a result of the
intruder’s increase in climbing rate from now on. ACAS X signals the DES1500
advisory seven seconds later, and SDES2500 one second after that. As a result,
our airplane starts descending steeply until it reaches —2500 ft / min. At the point
of the first alarm, the vertical distance is 50 ft, i.e., our plane is slightly above
the intruder. Unfortunately, the climbing rate of the intruder starts decreasing
at exactly the same point and from that point on, the two climbing rates are
not different enough to carry our plane outside of the danger zone and we end
up with a vertical distance of 100 ft, and hence an NMAC.

Traces like these capture exactly the type of unforeseen behaviour that led to
the Uberlingen accident [4], and probabilistic model checking can detect cases
like these easily. We consider it encouraging that the most likely case of colli-
sion requires relatively complex behaviour of the intruder (first increasing the
climbing rate, then decreasing it, at exactly the right point in time).

Analyzing the Next Generation Airborne Collision Avoidance System 627

Property 2: No advisory despite collision. Studies the probability of issu-
ing no advisory although a future NMAC is likely, formally P_-[F(P-;[X COC] A
P<o.1[FNMAC])]. This formula was motivated by our previous observation
of Figure 1(a) in Section 2, accord- 1500 1

ing to which there is an area where
ACAS X issues no advisory although
an NMAC is imminent. Figure 4
shows the probability of the formula

1000

500

height difference
°
T

for all states in which dhg = dh1 = 500 -]
0ft/min and adv = ps = COC. This 1000 |- 1B >
probability is 1 until about 12 seconds B 0
away if the height difference between e R

the planes is less than a 100 ft. Model
checking the formula, however, reveals
that among all initial states, the high-
est probability is 0.3%, so getting into
such a situation is improbable.
Property 3: Split Advisory. Studies the probability of issuing an alert, switch-
ing it off, and then switching an alert on again (a split advisory), formally
P_»[F(=COC AP;[XCOC] A Pso[F —~c0C])]. Even though during controller gen-
eration ACAS X penalizes reversals, these costs only reflect immediate changes
in controller advisories. Split advisories are also undesirable, but are harder to
capture during controller generation. The PCTL property described above can
however be used to study how likely such situations are. Analysis of the model
checking results revealed that a main cause for such situations is the pilot not
following the advisory. We therefore refined the property similarly to Property
1, by checking cases where split advisories occur under the condition that the
pilot always reacts immediately to advisories.

Figure 3 depicts a split advisory scenario under the refined property. Initially
(at 40 seconds to LHS), our plane is 830 ft above the intruder and descending with
2500 ft / min, while the intruder is in level flight. The vertical distance is therefore
decreasing. Around 19 seconds into the scenario, the intruder starts descending,
and soon after, ACAS X advises CLI1500 and maintains this advisory for 2
seconds, before switching it off again. Accordingly, the rate of descent of our
plane gradually reduces to 1500 ft / min. The advisory is then switched off, as
the intruder stops descending, effectively moving out of the way of our plane.
ACAS X switches to COC but, a second later, gives advisories DES1500, followed
by SDES2500, as the intruder’s rate of descent increases again.

Let us further analyze this generated scenario. The first climb advisory aimed
at avoiding a collision that would be likely if our plane continued to descend at
the same rate. It could not force the pilot to increase the rate of descend further,
since 2500 ft / min already is the maximum. Therefore, climbing was the only
possibility. Then the intruder stopped descending, which reduced the probability
of colliding with our current climbing rate. This may have caused ACAS X to
shut the advisory off. Shortly before ACAS X switched the advisory back on, the

Fig. 4. Probability of fulfilling property 2.
Plot parameters as in Figure 1(a); color de-
picts probability

628 C. von Essen and D. Giannakopoulou

. N 05 T T T T
~ N Controllers +
I = N + Target X
O~ _ \L 052 F First Point % |
T <
N 0.54
Q
NI £ +
IR m— L
_Alerts ~ R g 056 4%,4
\Y
NN -0.58 - N
\ N
@ . 0.6 -
\ .
N
S -0.62 - - - -
— P (NMAC) R -0.0007 -0.0006 -0.0005 -0.0004 -0.0003 -0.0002
-P(NMAC)
(a) Simplified Pareto curve (b) Points generated for two objectives

Fig. 5. Fictional and actual Pareto fronts

difference in climbing rates was 1000 ft / min, and the height difference was -30
ft. Since we were about 15 seconds away from LHS, this amounted to a decreased
vertical distance of about 260 ft. ACAS X decided to increase the vertical distance
by increasing the rate of descent.

It would be interesting to study whether the cost function of ACAS X may
encourage such cases of split advisories. Given that (Alert + COC < Reversal),
it is possible that ACAS X decided to gain a small reward for selecting COC after
the first advisory, and additionally avoid the cost of a reversal that would be
incurred if the advisory was switched directly from a climb to a descend.

4 ACAS X Design Challenges

The generation of the ACAS X controller depends on two major design issues
that have so far been unexplored: the selection of weights, and the discretization
resolution. As reported in [6], the weights were selected based on an intuition of
the relative importance of the different quality criteria. In this section, we study
more systematic techniques for selecting controller weights, and investigate how
discretization resolution influences the generated controller.

4.1 Generating Controller Weights

Our goal is to systematically explore deterministic controllers whose perfor-
mances exceed requirements on NMAC, Alert, etc., provided by domain or certi-
fication experts. We refer to these requirements as “targeted performance”, or
simply “target”. Central to achieving this goal is an existing result, which states
that the performance of all controllers that can be generated by weights form a
convex Pareto front [2]. The Pareto front is n-dimensional, where n is the number
of costs/rewards. The performances of all possible controllers (even controllers
using randomization and memory) lie on the inside of the Pareto front.

For example, Figure 5(a) illustrates a two-dimensional Pareto front. The per-
formance of all deterministic controllers (green dots in the plot), lie on the ver-
tices of the Pareto front. The targeted performance is depicted as a black dot
in Figure 5(a). The box with a lower left corner at this target and extending to

Analyzing the Next Generation Airborne Collision Avoidance System 629

infinity in all dimensions, defines the section of the Pareto front in which we are
interested. To find this section, we modified an algorithm presented in [9].

While the details of the approach are beyond the scope of this paper, the idea
can be summarized as follows. Initially, the optimal controller for each dimension
is generated, i.e., the controller with the lowest P(NMAC), the controller with the
lowest expected number of Alerts (i.e., zero), etc. We add the performance of
these controllers to the approximation of the Pareto front. These points, illus-
trated as the two green dots on the axes in Figure 5(a), reflect the performance
of the corresponding controller in terms of the selected quality attributes.

We then keep adding points to the Pareto front in the following way. We
calculate the convex hull of the points generated so far. This hull defines a set of
n-dimensional faces (lines, in our picture), that connect the points. Further, the
hull defines a lower bound for new points (the Pareto front is convex, so missing
points must lie on or above the hull). In the picture, the lines connecting the
green dots form the hull. The generated points also define an upper bound on
the space of controller performances, illustrated by the dashed lines in the figure.
The direction (normal) of the dashed line (separating hyperplane) is given by
the weights we used to generate the point. If there are any more points we can
generate, then these points exist between the hull and the upper bound.

Since we want to find new points in the box defined by the target, we pick
new weights so as to refine the face (by lowering the upper bound or breaking
up the face) above which there is a point that 1) lies inside the upper bound
2) lies above the target 3) is maximally far away from the face (as defined by
the Euclidean distance). We continue until we either prove that the target lies
outside the upper point (which means that no controller fulfilling the minimal
requirement exists) or until we have found enough points above the target.

Figure 5(b) presents a subset of the points generated by this approach on
Alert and NMAC exclusively. The target point and the box it defines are plotted in
black, and the points generated are plotted in red. The algorithm first generated
8 points outside the box. The first point generated within the target box (the
9th overall) is depicted in blue. We generated 10 more points after we found it.
We note that all subsequent 10 points that are generated also lie within the box.
The same effect has been observed for three dimensions. We conclude that this
algorithm is good at approximating the interesting part of the Pareto front (that
inside the box) once it finds the first point that meets the target specifications.

We have checked this algorithm against various targets, and it always either
finds a controller meeting the requirement, or proves that no such controller
exists. Note that finding a controller in the box is an NP-complete problem (easy
adaptation of proof from [1]). In the worst case, the algorithm has to generate all
points of the Pareto front of the model, of which there are exponentially many.
However, as the next section shows, little more than 100 points suffice to find a
controller meeting the requirement for various resolutions.

We believe that this technique can be very helpful as the controller model
ACAS X evolves. Each evolution (be it a change in discretization or a
change in parameters), necessitates tuning weights anew (as witnessed by the

630 C. von Essen and D. Giannakopoulou

first experiment in the next section). Our approach allows to semi-automatically
select these weights by presenting domain experts with the trade-offs. They can
then select a controller they deem sufficient, or select an area for further refine-
ment.

4.2 Discretization Resolution

To study the effects of discretization resolution on the quality of the obtained
controller, we designed a number of experiments described in this section. We will
from now on refer to the controller presented in [6] as the “baseline” controller.

Experiment 1. This experiment aims to analyze the performance of controllers
generated at resolutions (20, 20, 20), (30, 30, 30), (40, 40, 40) and (50, 50, 50), us-
ing the weights of the baseline controller. Our expectation was that a higher
resolution would lead to a better performance, at least in terms of P(NMAC). How-
ever, the experiments showed that the controllers we generate by this method
do not necessarily perform better in all the quality attributes. Instead, higher
resolution controllers have a significantly higher P(NMAC) and significantly fewer
alerts than the baseline controller in the same resolutions.

The reason becomes clear when we consider the controller plots in Figure 1(a)
and Figure 1(b). The area in which an alert is signalled by the controller is sig-
nificantly smaller in Figure 1(b) when compared to Figure 1(a). To understand
the reason for this effect, we analyzed the controllers using the techniques from
Section 3. It turns out that controllers in higher resolutions indeed perform better
in the sense of having a higher expected reward than the baseline controller. Intu-
itively, the controllers use the additional information they receive from a higher res-
olution to improve the score they receive. To this end, the controllers improve their
score by reducing the expected number of alerts, at the cost of a higher P(NMAC).

This experiment made it clear to us that weights may balance out the quality
attributes of a controller differently, when different resolutions are considered. As
a consequence, we believe that it is more meaningful to systematically explore
the design space of controllers based on specific target quality attributes, as
presented in Section 4.1. One could then compute weights based on these target
values, and within the resolution where the generation will occur.

Experiment 2. Given the first experiment, we decided to study whether it is
possible to generate controllers that are better than the baseline controller in all
quality attributes, in higher resolutions. To generate a controller that performs
better than the baseline controller in a given resolution R = (rp, Tdny, r'dh,), We
first evaluate the performance of the baseline controller in resolution R. The result
is a vector v = (NMAC,Alert,Strengthening, Reversal, NMAC), which summa-
rizes the performance of the baseline controller when model checked in resolution
R (see Section 3 for more details). We then use the technique described above to
approximate the Pareto front above v. From the generated controllers that meet
the specification, we then pick the one with the lowest P(NMAC).

Figure 6(a) illustrates the obtained results. The bars show, for resolution fac-
tor n the performance of the baseline controller when checked against resolutions

Analyzing the Next Generation Airborne Collision Avoidance System 631

(n,n,10) (Climbing Rate), (10,10,n) (Height) and (n,n,n) (All) respectively. It
can be seen that we were almost unable to decrease P(NMAC) using the climbing
rate alone. The relative performance of these controllers is consistently around
99.5%. When we increase the resolution of the height, then we get a relative per-
formance of about 85%. Finally, when increasing the resolution of both we see a
relative performance of about 83%. As witnessed in Section 3, the discretization
of height seems to have the biggest influence on controller quality. Interestingly,
the relative performance does not improve as we increase the resolution.

0.0025 0.0004 T T T T T T T
All - Original Controller mmmmm Height ——
All - Finer Controller 0.00035 |- Climbing Rate |

Height - Original Controller mmmmm
0.002 |- Height - Finer Controller
Climbing Rate - Original Controller 0.0003 -
Climbing Rate - Finer Controller
0.00025

0.0002 |-

P(NMAC)
P(NMAC)

0.00015

0.0001 |

I B &
10 20 30 40 50 60 10 15 20 25 30 35 40 45 50
Resolution resolution

(a) Controller quality vs resolution (b) Controller quality checked in
(50,50,100)

Fig. 6. Plots for Experiment 3

To further judge the quality of the generated controllers, we checked them
against resolution (50,50, 100) and present the results in Figure 6(b). On the x-
axis, we have the controller resolution, while on the y-axis we have the probability
of a Near Mid-Air Collision. As before, “Height” stands for the controllers of
resolution (10,10, n), “Climbing Rate” for the controllers of resolution (n,n, 10)
and “All” for the controllers of resolution (n,n,n). This experiment confirms
that increasing the resolution of the height difference between the two planes
has the most impact up to and including (10, 10, 30), after which we notice no
further improvement. In contrast to this, we notice further improvements in
category “All”. Our experiments indicate that the best ratio of resolution for
the three parameters is (n,n,3 - n).

Experiment 3. Let vg(c) denote the quality vector of a controller ¢ in resolu-
tion R (i.e., the vector of P(NMAC), P(Alert), etc). We organized this experiment
to study if Veq, ca, R1, Ro : vg, (¢1) > vR,(c2) AR > Ry = wg,(c1) > vR,(c2)
holds. To this end, we compared the performance of the controller we gener-
ated in resolution (20, 20, 20) to the baseline controller in resolutions (20, 20, 20)
and (50,50,100), and present the results in the following table. Note that the
higher resolution controller performs better than the baseline in all dimensions
in resolution (20,20, 20); specifically, it is very close to the target performance
in everything but NMAC, where it is notably better.

This attests to the efficacy of our Pareto front algorithm. When comparing
this to the analysis results in resolution (50, 50, 100), we observe that while the
higher resolution controller and the baseline controller are still very close in all

632 C. von Essen and D. Giannakopoulou

NMAC Alert Strengthening Reversal COC

(10,10, 10) in (20,20,20) —4.850 - 10~* -0.6310 -0.083 -0.019 0.629
(20,20, 20) in (20,20,20) —4.186 - 10~* -0.6306 -0.081 -0.019 0.631
(10,10, 10) in (50,50, 100) —2.897 - 10~* -0.6245 -0.078 -0.020 0.622
(20,20,20) in (50,50, 100) —2.313 - 10~* -0.6308 -0.078 -0.019 0.630

characteristics except NMAC, the higher resolution controller is no longer strictly
better in all dimensions. For example, it uses slightly more alerts and slightly
more reversals. This is offset by the fact that the P(NMAC) of the higher resolution
controller is still significantly better than that of the baseline controller. To
summarize, the general tendencies of the relation of controllers when checked in
higher resolutions are the same, but the exact relations are not preserved.

4.3 Bayesian Model Checking

In this section, we evaluate the generated controllers using simulation (where
discretization is not required), and compare the results with model checking. To
this aim, we implemented a parallel Bayesian model checking engine [10], which
simulates the system based on the dynamic equations of Section 2. We used the
same initial distribution as [6], described in Section 3. In [6], the authors also
report on the use of a Bayesian network instead of the dynamic equations.

This approach allows us to run simulations, and state “given the traces ob-
served, the probability that property ¢ holds lies in interval [a, b] with confidence
c. The level of confidence and the size of the interval are configurable. In the
following, we use this framework to estimate the probability that an NMAC
happens when using the baseline controller, and compare the results to Ex-
periment 2. Our analysis reports that the probability of NMAC lies in range
[2.48-107%,2.58 - 10~%] with probability 95%. We needed to generate 38,796,000
samples to get this level of confidence for the given interval size.

We additionally applied this simulation technique to controllers of resolution
(10,10,10),...,(10,10,50) generated previously. The following table presents
the probability of seeing an NMAC for each of them.

Resolution 10 20 30 40 50
P(NMAC) - 10* [2.51, 2.61] [2.17, 2.27] [2.08, 2.18] [2.12, 2.22] [2.27, 2.37]

We conclude that the trend follows that depicted in Figure 6(a): improvements
in performance are significant until we reach resolution (10,10,30), at which
point they taper off. We were unable to perform this analysis on controllers with
resolution larger than (20,20, 20) because we could not fit the whole table into
memory at once. For (20, 20, 20), though, we receive P(NMAC) € [2.06-107%,2.16-
1074, i.e., a number very close to that of the controller generated for (10, 10, 30).

5 Implementation

We originally used existing probabilistic model checking tools for ACAS X but
encountered several limitations. First, we could not express the linear interpola-
tion needed in the controller evaluation. Second, we not only require capabilities

Analyzing the Next Generation Airborne Collision Avoidance System 633

for the specification of a model, but also for loading generated controllers for
subsequent verification. Last but not least, for our mupliple experiments involv-
ing increasing resolution, the state spaces we generate grow prohibitively large,
and there is a considerable slow-down that could benefit from parallelization,
which is unavailable in current releases of existing tools.

More specifically, the size of the controller has 40 - ((2rgn, + 1) - (2rgn, +1) -
(2rp + 1) - 13) states in resolution (rgngy,Tdn,,7h). So, for example, the model
from [6] has 4,815,720 states overall. A controller with resolution (50, 50, 50)
has 535,756,520 states. We wrote a simplified version of the model in [6] for
PRISM [8] (without linear interpolation, but with sigma point sampling). While
PRISM succeeded in loading the model as a BDD model, analyzing it was not
possible (we aborted conversion to the hybrid representation after 10 min).

These problems motivated us to create our own framework that takes advan-
tage of two key insights into the ACAS X model. Firstly, if we want to calculate
the values of any property in this model at time ¢, then we only need to keep
the value of time ¢ — 1 in memory. This alone leads to a reduction of memory
consumption to 2.5%. Secondly, since we need to calculate value iteration steps
only a relatively small number of times for each state, it is possible to avoid
storing the transition matrix in memory and generate the values on-demand.

In addition, we parallelized value iteration, and the speed-up obtained in ex-
periments using up to 12 cores was almost linear (1.94 for 2 cores, 3.37 for 4
cores, 4.67 for 6 cores, 6.47 for 8 cores, 7.54 for 10 cores, 8.93 for 12 cores). Paral-
lelization proved essential for our experiments involving increasing discretization
resolution; generating the Pareto fronts for all cases took about 2 days, as op-
posed to more than a month.

6 Conclusions and Future Work

ACAS X is a safety-critical system that the FAA plans on introducing as the
new standard for collision avoidance. The system that will be deployed is the
look-up table that is generated by the techniques described in [6]. It is therefore
reasonable that a large number of the verification efforts would focus on the
verification of the generated controller in operation. However, we believe that it
is meaningful to take advantage of the existence of models for additional formal
analysis both of the controller itself, and of the design choices.

Our experiments related to the effects of resolution on controller generation
were particularly interesting. For example, we observed that height discretization
is more effective that climbing rate alone, when exploring the space of controllers
better than a particular target. We therefore recommend increasing height reso-
lution first, when there is an upper bound in controller size that does not allow
for uniform discretization of all variables. In the future, we intend to carry out
more experiments in this domain in order to give more precise recommendations.

Some of the results that we obtained were also unexpected: the fact that a
higher resolution may balance the weights of quality attributes differently and
therefore result in a drop in performance of NMAC; or the fact that the relative
performance of two controllers may change when moving to higher resolutions.

634 C. von Essen and D. Giannakopoulou

This cautions us, in exploring the space of controllers, to ultimately evaluate their
relative performance in simulation. However, the Pareto-front-based techniques
for controller generation provide a systematic way of generating and comparing
controllers that can complement designer intuition.

PCTL model checking also proves valuable in studying properties of generated
controllers. However, more useful than the model checking itself, is the capability
to visualize its results and generate traces that help with understanding of the
model checking results. We therefore found that latter aspect of our tools most
helpful, together with a simulator that we built, which allows to interactively
explore generated controllers. In the future, we plan to connect the simulator to
the model checker, to allow replay of the generated traces.

The techniques and tools that we developed are general, and the customization
for memory savings is applicable to problems that have a similar nature; for
example, it could be used in the domain of car collision avoidance systems,
which is important as we move towards self-driving cars. Our work on analysis
of ACAS X will continue beyond this paper. Our plans for future work include the
modeling of a reasonably adversarial pilot for the intruder plane, and alternative
representations of the look-up table for verification and deployment. Moreover,
we plan to study a version of ACAS X that is targeted to unmanned vehicles, as
well as experiment with the evaluation of generated controllers in the context of
hybrid verification tools, which the ACAS X team has expertise in.

Acknowledgement. We thank Guillaume Brat, and members of the ACAS X
team Ryan Gardner, Mykel Kochenderfer and Yanni Kouskoulas, for valuable
discussions and feedback.

References

1. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473-484.
Springer, Heidelberg (2007)

2. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 317-332. Springer, Heidelberg (2012)

3. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 102-111 (1994)

4. Johnson, C.: Final report: review of the BFU Uberlingen accident report. Con-
tract C/1.369/HQ/SS/04 to Eurocontrol (2004), http://www.dcs.gla.ac.uk/~
johnson/Eurocontrol/Ueberlingen/Ueberlingen Final Report.PDF

5. Katoen, J.-P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2) (2011)

6. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Robust airborne collision avoid-
ance through dynamic programming. Project Report ATC-371, Massachusetts In-
stitute of Technology, Lincoln Laboratory (2011)

http://www.dcs.gla.ac.uk/~{}johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
http://www.dcs.gla.ac.uk/~{}johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF

10.

Analyzing the Next Generation Airborne Collision Avoidance System 635

Kuchar, J., Drumm, A.C.: The traffic alert and collision avoidance system. Lincoln
Laboratory Journal 16(2), 277 (2007)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011)

Rennen, G., van Dam, E.R., den Hertog, D.: Enhancement of sandwich algorithms
for approximating higher-dimensional convex Pareto sets. INFORMS Journal on
Computing 23(4), 493-517 (2011)

Zuliani, P.; Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. Formal Methods in System De-
sign 43(2), 338-367 (2013)

	Analyzing the Next Generation Airborne
Collision Avoidance System

	1 Introduction
	2 TheACASXSystem
	3 Verification
	3.1 Influence of Resolution on Controller Evaluation
	3.2 PCTL Model Checking

	4 ACAS X Design Challenges
	4.1 Generating Controller Weights
	4.2 Discretization Resolution
	4.3 Bayesian Model Checking

	5 Implementation
	6 Conclusions and Future Work
	References

