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Abstract. The fundamentals of probabilistic model checking for Marko-
vian models and temporal properties have been studied extensively in
the past 20 years. Research on methods for computing conditional prob-
abilities for temporal properties under temporal conditions is, however,
comparably rare. For computing conditional probabilities or expected
values under ω-regular conditions in Markov chains, we introduce a new
transformation of Markov chains that incorporates the effect of the con-
dition into the model. For Markov decision processes, we show that the
task to compute maximal reachability probabilities under reachability
conditions is solvable in polynomial time, while it was conjectured to be
computationally hard. Using adaptions of known automata-based meth-
ods, our algorithm can be generalized for computing the maximal condi-
tional probabilities for ω-regular events under ω-regular conditions. The
feasibility of our algorithms is studied in two benchmark examples.

1 Introduction

Probabilistic model checking has become a prominent technique for the quanti-
tative analysis of systems with stochastic phenomena. Tools like PRISM [20] or
MRMC [18] provide powerful probabilistic model checking engines for Markovian
models and temporal logics such as probabilistic computation tree logic (PCTL)
for discrete models and its continuous-time counterpart CSL (continuous stochas-
tic logic) or linear temporal logic (LTL) as formalism to specify complex path
properties. The core task for the quantitative analysis is to compute the prob-
ability of some temporal path property or the expected value of some random
variable. For finite-state Markovian model with discrete probabilities, this task
is solvable by a combination of graph algorithms, matrix-vector operations and
methods for solving linear equation systems or linear programming techniques
[25,9,15,7]. Although probabilistic model checking is a very active research topic
and many researchers have suggested sophisticated methods e.g. to tackle the
state explosion problem or to provide algorithms for the analysis of infinite-state
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stochastic models or probabilistic games, there are important classes of prop-
erties that are not directly supported by existing probabilistic model checkers.
Among these are conditional probabilities that are well-known in probability the-
ory and statistics, but have been neglected by the probabilistic model checking
community. Exceptions are [1,2] where PCTL has been extended by a condi-
tional probability operator and recent approaches for discrete and continuous-
time Markov chains and patterns of path properties with multiple time- and
cost-bounds [13,17].

The usefulness of conditional probabilities for anonymization protocols has
been illustrated in [1,2]. Let us provide here some more intuitive examples that
motivate the study of conditional probabilities. For systems with unreliable com-
ponents one might ask for the conditional probability to complete a task success-
fully within a given deadline, under the condition that no failure will occur
that prevents the completion of the task. If multiple tasks θ1, . . . , θk have to be
completed, assertions on the conditional probability or the conditional costs to
complete task θi, under the condition that some other task θj will be completed
successfully might give important insights on how to schedule the tasks without
violating some service-level agreements. For another example, the conditional
expected energy requirements for completing a task, under the condition that a
certain utility value can be guaranteed, can provide useful insights for the design
of power management algorithms. Conditional probabilities can also be useful
for assume-guarantee-style reasoning. In these cases, assumptions on the stimuli
of the environment can be formalized by a path property ψ and one might then
reason about the quantitative system behavior using the conditional probability
measure under the condition that ψ holds.

Given a purely stochastic system model M (e.g. a Markov chain), the analysis
under conditional probability measures can be carried out using standard meth-
ods for unconditional probabilities, as we can simply rely on the mathematical
definition of the conditional probability for ϕ (called here the objective) under
condition ψ:

PrMs
(
ϕ |ψ )

=
PrMs (ϕ ∧ ψ)

PrMs (ψ)

where s is a state in M with PrMs (ψ) > 0. If both the objective ϕ and the
condition ψ are ω-regular path properties, e.g. specified by LTL formulas or
some ω-automaton, then ϕ ∧ ψ is again ω-regular, and the above quotient is
computable with standard techniques. This approach has been taken by Andrés
and van Rossum [1,2] for the case of discrete Markov chains and PCTL path
formulas, where ϕ∧ψ is not a PCTL formula, but a ω-regular property of some
simple type if nested state formulas are viewed as atoms. Recently, an automata-
based approach has been developed for continuous-time Markov chains and CSL
path formulas built by cascades of the until-operator with time- and cost-bounds
[13]. This approach has been adapted in [17] for discrete-time Markov chains and
PCTL-like path formulas with multiple bounded until-operators.

For models that support both the representation of nondeterministic and prob-
abilistic behaviors, such as Markov decision processes (MDPs), reasoning about
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(conditional) probabilities requires the resolution of the nondeterministic choices
by means of schedulers. Typically, one is interested in guarantees that can be
given even for worst-case scenarios. That is, we are interested in the maximal
(or minimal) conditional probability for the objective ϕ under condition ψ when
ranging over all schedulers. Unfortunately, there is no straightforward reduction
to unconditional maximal (or minimal) probabilities, simply because extrema
of quotients cannot be computed by the quotient of the extremal values of the
numerator and the denominator. [1,2] present a model checking algorithm for
MDP and PCTL extended by a conditional probability operator. The essential
features are algorithms for computing the maximal or minimal conditional prob-
abilities for the case where both the objective and the condition are given as
PCTL path formulas. These algorithms rely on transformations of the given
MDP into an acyclic one and the fact that for PCTL objectives and conditions
optimal schedulers that are composed by two memoryless schedulers (so-called
semi history-independent schedulers) exist. The rough idea is to consider all
semi history-independent schedulers and compute the conditional probabilities
for them directly. This method suffers from the combinatorial blow-up and leads
to an exponential-time algorithm. [1,2] also present reduction and bounding
heuristics to omit some semi history-independent schedulers, but these cannot
avoid the exponential worst-case time complexity. We are not aware of an imple-
mentation of these methods.

Contribution. The theoretical main contribution is twofold. First, for discrete
Markov chains we present an alternative approach that relies on a transformation
where we switch from the original Markov chain M to a modified Markov chain
Mψ such that the conditional probabilities in M agree with the (unconditional)
probabilities in Mψ for all measurable path properties ϕ. That is, Mψ only de-
pends on the condition ψ, but not on the objective ϕ. Second, for MDPs we
provide a polynomial-time algorithm for computing maximal conditional prob-
abilities when both the objective ϕ and the condition ψ are reachability prop-
erties. (This task was suspected to be computationally hard in [2].) Moreover,
we show that adaptions of known automata-based approaches are applicable to
extend this method for ω-regular objectives and conditions. In both cases, the
time complexity of our methods is roughly the same as for computing (extremal)
unconditional probabilities for properties of the form ϕ ∧ ψ.

Outline. Section 2 summarizes the relevant concepts of Markov chains and
MDPs. The theoretical foundations of our approach will be presented for Markov
chains in Sections 3 for MDPs in Section 4. Section 5 reports on experimental
results. Section 6 contains some concluding remarks. Omitted proofs and other
additional material can be found in the technical report [6].

2 Preliminaries

We briefly summarize our notations used for Markov chains and Markov decision
processes. Further details can be found in textbooks on probability theory and
Markovian models, see e.g. [24,19,16].
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Markov Chains. A Markov chain is a pair M = (S, P ) where S is a countable
set of states and p : s × s → [0, 1] a function, called the transition probability
function, such that

∑
s′∈S P (s, s′) = 1 for each state s. Paths in M are finite or

infinite sequences s0 s1 s2 . . . of states built by transitions, i.e., P (si−1, si) > 0
for all i ≥ 1. If π = s0 s1 . . . sn is a finite path then first(π) = s0 denotes the
first state of π, and last(π) = sn the last state of π. The notation first(π) will
be used also for infinite paths. We refer to the value

Pr(π) =
∏

1≤i≤n

P (si−1, si)

as the probability for π. The cylinder set Cyl(π) is the set of all infinite paths ς
where π is a prefix of ς . We write FPaths(s) for the set of all finite paths π with
first(π) = s. Similarly, Paths(s) stands for the set of infinite paths starting in s.

Given a state s, the probability space induced by M and s is defined using
classical measure-theoretic concepts. The underlying sigma-algebra is generated
by the cylinder sets of finite paths. This sigma-algebra does not depend on
s. We refer to the elements of this sigma-algebra as (measurable) path events.
The probability measure PrMs is defined on the basis of standard measure ex-
tension theorems that yield the existence of a probability measure PrMs with
PrMs

(
Cyl(π)

)
= Pr(π) for all π ∈ FPaths(s), while the cylinder sets of paths π

with first(π) �= s have measure 0 under PrMs .

Markov Decision Processes (MDPs). MDPs can be seen as a generaliza-
tion of Markov chains where the operational behavior in a state s consists of
a nondeterministic selection of an enabled action α, followed by a probabilis-
tic choice of the successor state, given s and α. Formally, an MDP is a tuple
M = (S,Act , P ) where S is a finite set of states, Act a finite set of actions and
P : S ×Act × S → [0, 1] a function such that for all states s ∈ S and α ∈ Act:

∑

s′∈S

P (s, α, s′) ∈ {0, 1}

We write Act(s) for the set of actions that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S. For technical reasons, we require that Act(s) �= ∅ for all states
s. State s is said to be probabilistic if Act(s) = {α} is a singleton, in which case
we also write P (s, s′) rather than P (s, α, s′). A trap state is a probabilistic state
s with P (s, s) = 1. Paths are finite or infinite sequences s0 s1 s2 . . . of states such
that for all i ≥ 1 there exists an action αi with P (si−1, αi, si) > 0. (For our
purposes, the actions are irrelevant in paths.) Several notations that have been
introduced for Markov chains can now be adapted for Markov decision processes,
such as first(π), FPaths(s), Paths(s).

Reasoning about probabilities for path properties in MDPs requires the selec-
tion of an initial state and the resolution of the nondeterministic choices between
the possible transitions. The latter is formalized via schedulers, often also called
policies or adversaries, which take as input a finite path and select an action to be
executed. For the purposes of this paper, it suffices to consider deterministic, pos-
sibly history-dependent schedulers, i.e., partial functions S : FPaths → Act such
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that S(π) ∈ Act
(
last(π)

)
for all finite paths π. Given a scheduler S, an S-path

is any path that might arise when the nondeterministic choices in M are resolved
usingS. Thus, π = s0 s1 . . . sn is anS-path iff P

(
sk−1,S(s0 s1 . . . sk−1), sk

)
> 0

for all 1 ≤ k ≤ n. In this case, S[π] denotes the scheduler “S after π” given
by S[π](t0 t1 . . . tk) = S(s0 s1 . . . sn t1 . . . tk) if sn = t0. The behavior of S[π]
for paths not starting in sn is irrelevant. The probability of π under S is the
product of the probabilities of its transitions:

PrS(π) =
n−1∏

i=0

P
(
sk−1,S(s0 s1 . . . sk−1), sk

)

Infinite S-paths are defined accordingly.
For a pointed MDP (M, sinit), i.e. an MDP as before with some distinguished

initial state sinit ∈ S, the behavior of (M, sinit) underS is purely probabilistic and
can be formalized by an infinite tree-like Markov chain MS

s where the states are
the finite S-paths starting in s. The probability measure PrSM,s for measurable

sets of the infinite paths in the Markov chain MS
s , can be transferred to infinite

S-paths in M starting in s. Thus, if Φ is a path event then PrSM,s(Φ) denotes
its probability under scheduler S for starting state s. For a worst-case analysis
of a system modeled by an MDP M, one ranges over all initial states and all
schedulers (i.e., all possible resolutions of the nondeterminism) and considers the
maximal or minimal probabilities for Φ. If Φ represents a desired path property,
then Prmin

M,s(Φ) = infS PrSM,s(Φ) is the probability for Φ in M that can be
guaranteed even for the worst-case scenarios. Similarly, if Φ stands for a bad
(undesired) path event, then Prmax

M,s(Φ) = supS PrSM,s(Φ) is the least upper bound
that can be guaranteed for the likelihood of Φ in M.

Temporal-Logic Notations, Path Properties. Throughout the paper, we
suppose that the reader is familiar with ω-automata and temporal logics. See e.g.
[8,14,5]. We often use LTL- and CTL-like notations and identify LTL-formulas
with the set of infinite words over the alphabet 2AP that are models for the
formulas, where AP denotes the underlying set of atomic propositions. For the
Markov chain or MDP M under consideration we suppose then that they are
extended by a labeling function L : S → 2AP, with the intuitive meaning that
precisely the atomic propositions in L(s) hold for state s. At several places, we
will use temporal state and path formulas where single states or sets of states
in M are used as atomic propositions with the obvious meaning. Similarly, if
M arises by some product construction, (sets of) local states will be treated as
atomic propositions. For the interpretation of LTL- or CTL-like formulas in M,
the probability annotations (as well as the action labels in case of an MDP) are
ignored and M is viewed as an ordinary Kripke structure.

By a path property we mean any language consisting of infinite words over
2AP. Having in mind temporal logical specifications, we use the logical operators
∨, ∧, ¬ for union, intersection and complementation of path properties. A path
property Φ is said to be measurable if the set of infinite paths π in M satisfying
Φ is a path event, i.e., an element of the induced sigma-algebra. Indeed, all
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ω-regular path properties are measurable [25]. We abuse notations and identify
measurable path properties and the induced path event. Thus,

PrSM,s(ϕ) = PrSM,s

({
π ∈ Paths(s) : π |= ϕ

})

denotes the probability for ϕ under scheduler S and starting state s.

Assumptions. For the methods proposed in the following sections, we suppose
that the state space of the given Markov chain and the MDP is finite and that
all transition probabilities are rational.

3 Conditional Probabilities in Markov Chains

In what follows, let M = (S, P ) be a finite Markov chain as in Section 2 and ψ
an ω-regular condition. We present a transformation M � Mψ such that the
conditional probabilities PrMs (ϕ |ψ ) agree with the (unconditional) probabilities
PrMψ

sψ (ϕ ) for all ω-regular objectives ϕ. Here, s is a state inM with PrMs (ψ) > 0
and sψ the “corresponding” state in Mψ. We first treat the case where ψ is a
reachability condition and then explain a generalization for ω-regular conditions.

Reachability Condition. Let G ⊆ S be a set of goal states and ψ = ♦G.
Intuitively, the Markov chain Mψ arises from M by a monitoring technique that
runs in parallel to M and operates in two modes. In the initial mode “before
or at G”, briefly called before mode, the attempt is to reach G by avoiding all
states s with s �|= ∃♦G. The transition probabilities for the states in before mode
are modified accordingly. As soon as G has been reached, Mψ switches to the
normal mode where Mψ behaves as M. In what follows, we write sbef and snor

for the copies of state s in the before and normal mode, respectively. For V ⊆ S,
let V bef =

{
sbef : s ∈ V, s |= ∃♦G}

the set of V -states where PrMs (♦G) is positive

and V nor =
{
snor : s ∈ V

}
. The Markov chain Mψ = (Sψ, Pψ) is defined as

follows. The state space of Mψ is Sψ = Sbef ∪Snor . For s ∈ S \G and v ∈ S with
s |= ∃♦G and v |= ∃♦G:

Pψ(s
bef , vbef ) = P (s, v) · Pr

M
v (♦G)

PrMs (♦G)

For s ∈ G, we define Pψ(s
bef , vnor) = P (s, v), modeling the switch from before

to normal mode. For the states in normal mode, the transition probabilities are
given by Pψ(s

nor , vnor) = P (s, v). In all other cases, Pψ(·) = 0. For the labeling
with atomic propositions, we suppose that each state s in M and its copies sbef

and snor in Mψ satisfy the same atomic propositions.
By applying standard arguments for finite Markov chains we obtain that

Pr
Mψ

sbef
(♦Gbef ) = 1 for all states s in M with s |= ∃♦G. (This is a simple conse-

quence of the fact that all states in Sbef can reach Gbef .) Thus, up to the switch
from G to Gbef , the condition ♦G (which we impose for M) holds almost surely
for Mψ. For each path property ϕ, there is a one-to-one correspondence between
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the infinite paths π in M with π |= ϕ ∧ ♦G and the infinite paths πψ in Mψ

with πψ |= ϕ. More precisely, each path πψ in Mψ induces a path πψ|M in M by
dropping the mode annotations. Vice versa, each path π in M can be augmented
with mode annotations to obtain a path πψ in Mψ with πψ|M = π, provided that
π either contains some G-state or consists of states s with s |= ∃♦G. This yields
a one-to-one correspondence between the cylinder sets in Mψ and the cylinder
sets spanned by finite paths of M that never enter some state s with s �|= ∃♦G
without having visited G before.

Theorem 1 (Soundness of the transformation). If Φ is a path event for
M (i.e., a measurable set of infinite paths) then Φ|M =

{
πψ : π ∈ Φ, π |=

♦G ∨�∃♦G}
is measurable in Mψ. Moreover, for each s of M with s |= ∃♦G:

PrMs
(
Φ |♦G )

= Pr
Mψ

sbef

(
Φ|M

)

Hence, PrMs
(
ϕ |♦G )

= Pr
Mψ

sbef

(
ϕ
)
for all measurable path properties ϕ.

Thus, once Mψ has been constructed, conditional probabilities for arbitrary
path properties in M can be computed by standard methods for computing
unconditional probabilities in Mψ, with the same asymptotic costs. (The size of
Mψ is linear in the size of M.) Mψ can be constructed in time polynomial in
the size of M as the costs are dominated by the computation of the reachability
probabilities PrMs (♦G). Mψ can also be used to reason about the conditional
expected value of a random function f on infinite paths in M, as we have:

EM( f |♦G )
= EMψ

(
fψ |♦(Gbef ∪Gnor)

)

where fψ(π
′) = f

(
π′∣∣

M
)
and EN (·) denotes the expected-value operator in N .

An important instance is expected accumulated rewards to reach a certain set
of states. See [6].

ωωω-regular conditions. Suppose now that the condition ψ is given by a deter-
ministic ω-automaton A with, e.g., Rabin or Streett acceptance. To construct a
Markov chain that incorporates the probabilities in M under the condition ψ, we
rely on the standard techniques for the quantitative analysis of Markov chains
against automata-specifications [26,5]. The details are straightforward, we just
give a brief outline. First, we build the standard product M⊗A of M and A,
which is again a Markov chain. Let G be the union of the bottom strongly con-
nected components C of N = M⊗A that meet the acceptance condition of A.
Then, the probability PrMs (ψ) equals PrN〈s,qs〉(♦G), where 〈s, qs〉 is the state in
M⊗A that “corresponds” to s. We then apply the transformation for N � Nψ

as explained above and obtain that for all measurable path properties ϕ:

PrMs
(
ϕ |ψ )

= PrN〈s,qs〉
(
ϕ |♦G )

= Pr
Nψ

〈s,qs〉(ϕ)

for all states s in M where PrMs (ψ) is positive. This shows that the task to com-
pute conditional probabilities for ω-regular conditions is solvable by algorithms
for computing (unconditional) probabilities for ω-regular path properties.
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4 Conditional Probabilities in Markov Decision Processes

We now consider the task to compute maximal conditional probabilities in MDPs.
We start with the “core problem” where the objective and the condition are
reachability properties. The general case of ω-regular objectives and conditions
will be treated in Section 4.2.

4.1 Conditional Reachability Probabilities in MDPs

Let (M, sinit) be a pointed MDP where M = (S,Act , P ) and let F , G ⊆ S such
that sinit |= ∃♦G, in which case Prmax

M,sinit (♦G) > 0. The task is to compute

max
S

PrSM,sinit

(
♦F |♦G) = max

S

PrSM,sinit

(
♦F ∧ ♦G

)

PrSM,sinit

(
♦G

)

where S ranges over all schedulers for M such that PrSM,sinit (♦G) > 0. By the
results of [1,2], there exists a scheduler S maximizing the conditional probability
for ♦F , given ♦G. (This justifies the use of max rather than sup.)

Only for simplicity, we assume that F ∩G = ∅. Thus, there are just two cases
for the event ♦F ∧ ♦G: “either F before G, or G before F”. We also suppose
sinit /∈ F ∪G and that all states s ∈ S are accessible from sinit .

Step 1: Normal form Transformation

We first present a transformation M � M′ such that the maximal conditional
probability for “♦F , given ♦G” agrees with the maximal conditional probabil-
ity for “♦F ′, given ♦G′” in M′ where F ′ and G′ consist of trap states. This
can be seen as some kind of normal form for maximal conditional reachability
probabilities and relies on the following observation.

Lemma 1 (Scheduler improvement). For each scheduler S there is a sched-
uler T such that for all states s with PrSM,s(♦G) > 0:

(1) PrSM,s

(
♦F |♦G) ≤ PrTM,s

(
♦F |♦G)

(2) Pr
T[π]
M,t(♦G) = Prmax

M,t(♦G) for all t ∈ F and π ∈ Πs...t

(3) Pr
T[π]
M,u(♦F ) = Prmax

M,u(♦F ) for all u ∈ G and finite paths π ∈ Πs...u

where Πs...u denotes the set consisting of all finite paths s0 s1 . . . sn in M with
s0 = s, sn = u and {s0, s1, . . . , sn−1} ∩ (F ∪G) = ∅.

Recall that S[π] denotes the scheduler “S after π”. The idea is that T behaves
as S as long as neither F nor G has been reached. As soon as a G-state (resp. F -
state) has been entered, T mimics some scheduler that maximizes the probability
to reach F (resp. G). This scheduler satisfies (2) and (3) by construction. Item
(1) follows after some calculations (see [6]).
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As a consequence of Lemma 1, for studying the maximal conditional proba-
bility for ♦F given ♦G, it suffices to consider schedulers T satisfying conditions
(2) and (3). Let M′ be the MDP that behaves as M as long as no state in F or
G has been visited. After visiting an F -state t, M′ moves probabilistically to a
fresh goal state with probability Prmax

M,t(♦G) or to a fail state with the remaining
probability. Similarly, after visiting a G-state u, M′ moves probabilistically to
the goal state or to a new state stop. Formally, M′ = (S′,Act , P ′) where the
state space of M′ is S′ = S ∪ T and

T =
{
goal , stop, fail

}
.

The transition probabilities in M′ for the states in S\(F ∪G) agree with those in
M, i.e., P ′(s, α, s′) = P (s, α, s′) for all s ∈ S \ (F ∪G), s′ ∈ S and α ∈ Act . The
states t ∈ F and u ∈ G are probabilistic in M′ with the transition probabilities:

P ′(t, goal ) = Prmax
M,t(♦G)

P ′(t, fail ) = 1− Prmax
M,t(♦G)

P ′(u, goal) = Prmax
M,u(♦F )

P ′(u, stop) = 1− Prmax
M,u(♦F )

The three fresh states goal , fail and stop are trap states. Then, by Lemma 1:

Corollary 1 (Soundness of the normal form transformation). For all
states s in M with s |= ∃♦G:

Prmax
M,s

(
♦F |♦G)

= Prmax
M′,s

(
♦goal

∣
∣♦(goal ∨ stop)

)

Optional simplification of M′. Let W be the set of states w in M′ such that
for some scheduler S, the goal-state is reachable from w via some S-path, while
the trap state stop will not be reached along S-paths from w. Then, all states
in W can be made probabilistic with successors goal and fail and efficiently
computable transition probabilities. This transformation of M′ might yield a
reduction of the reachable states, while preserving the maximal conditional prob-
abilities for ♦goal , given ♦(goal ∨ stop). For details, see [6].

Step 2: Reduction to Ordinary Maximal Reachability Probabilities

We now apply a further transformation M′ � Mϕ|ψ such that the maximal
conditional probability for ϕ = ♦goal , given ψ = ♦(goal ∨ stop), in M′ agrees
with the maximal (unconditional) probability for ♦goal in Mϕ|ψ.

Let us first sketch the ratio of this transformation. Infinite paths in M′ that
violate the condition ψ do not “contribute” to the conditional probability for
♦goal . The idea is now to “redistribute” their probabilities to all the paths sat-
isfying the condition ψ. Speaking roughly, we aim to mimic a stochastic process
that generates a sequence π0, π1, π2 . . . of sample paths in M′ starting in sinit

until a path πi is obtained where the condition ψ holds. To formalize this “redis-
tribution procedure” by switching from M′ to some new MDP Mϕ|ψ we need
some restart mechanism to discard generated prefixes of paths πj violating ψ by
returning to the initial state sinit , from which the next sample run πj+1 will be
generated. Note that by discarding paths that do not satisfy ψ, the proportion of
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the paths satisfying ϕ ∧ ψ and the paths satisfying ψ is not affected and almost
surely a path satisfying ψ will be generated. Thus, the conditional probability
for ϕ ∧ ψ given ψ under some scheduler of the original MDP agrees with the
(unconditional) probability for ϕ under the corresponding scheduler of the new
MDP Mϕ|ψ.

The restart policy is obvious for finite paths that enter the trap state fail .
Instead of staying in fail , we simply restart the computation by returning to the
initial state sinit . The second possibility to violate ψ are paths that never enter
one of the three trap states in T . To treat such paths we rely on well-known
results for finite-state MDPs stating that for all schedulers S almost all S-paths
eventually enter an end component (i.e., a strongly connected sub-MDP), stay
there forever and visit all its states infinitely often [11,12]. The idea is that we
equip all states s that belong to some end component without any T -state with
the restart-option, i.e., we add the nondeterministic alternative to return to the
initial state sinit . To enforce that such end components will be left eventually
by taking the restart-transition, one might impose strong fairness conditions for
the schedulers in Mϕ|ψ. Such fairness assumptions are, however, irrelevant for
maximal reachability conditions [3,4].

Let B be the set of (bad) states v such that there exists a scheduler S that
never visits one of the three trap states goal , stop or fail when starting in v:

v ∈ B iff

{
there exists a scheduler S

such that PrSM′,v
(
♦T

)
= 0

The MDP Mϕ|ψ = (S′,Act ∪ {τ}, Pϕ|ψ) has the same state space as the normal
form MDP M′. Its action set extends the action set of M′ by a fresh action
symbol τ for the restart-transitions. For the states s ∈ S′ \ B with s �= fail ,
the new MDP Mϕ|ψ behaves as M′, i.e., Pϕ|ψ(s, α, s

′) = P ′(s, α, s′) for all
s ∈ S′ \ (B ∪ {fail}), α ∈ Act and s′ ∈ S′. The fresh action τ is not enabled in
the states s ∈ S′\(B∪{fail}). For the fail-state, Mϕ|ψ returns to the initial state,
i.e., Pϕ|ψ(fail , τ, sinit) = 1 and Pϕ|ψ(fail , τ, s

′) = 0 for all states s′ ∈ S′ \ {sinit}.
No other action than τ is enabled in fail . For the states v ∈ B, Mϕ|ψ decides
nondeterministically to behave as M or to return to the initial state sinit . That is,
if v ∈ B, α ∈ Act , s′ ∈ S′ then Pϕ|ψ(v, α, s

′) = P ′(v, α, s′) and Pϕ|ψ(v, τ, sinit) = 1.
In all remaining cases, we have Pϕ|ψ(v, τ, ·) = 0.

Paths in M′ that satisfy �B or that end up in fail , do not “contribute” to the
conditional probability for ♦goal , given ♦(goal ∨ stop). Instead the probability
for the infinite paths π with π ∈ �B or π |= ♦fail in M′ are “distributed” to
the probabilities for ♦goal and ♦stop when switching to conditional probabilities.
This is mimicked by the restart-transitions to sinit in Mϕ|ψ.

Theorem 2 (Soundness of step 2). For the initial state s = sinit , we have:

Prmax
M′,s

(
♦goal

∣
∣♦(goal ∨ stop)

)
= Prmax

Mϕ|ψ,s

(
♦goal

)

Algorithm and Complexity. As an immediate consequence of Theorem 2,
the task to compute maximal conditional reachability probabilities in MDPs is
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reducible to the task to compute maximal ordinary (unconditional) reachability
probabilities, which is solvable using linear programming techniques [24,7]. The
size of the constructed MDP is linear in the size of M′, which again is linear
in the size of M. The construction of M′ and Mϕ|ψ is straightforward. For M′

we need to compute ordinary maximal reachability probabilities in M. Using
standard algorithms for the qualitative fragment of PCTL, the set B of bad
states is computable by a graph analysis in polynomial time (see e.g. [5]). Thus,
maximal conditional probabilities for reachability objectives and conditions can
be computed in time polynomial in the size of M.

4.2 Conditional Probabilities in MDPs for Other Events

Using standard automata-based techniques, our method can be generalized to
deal with ω-regular properties for both the objective and the condition.

ωωω-regular objectives under reachability conditions. Using a standard
automata-based approach, the suggested technique is also applicable to com-
pute maximal conditional probabilities Prmax

M,s

(
ϕ
∣
∣♦G

)
. Here, we deal with a

deterministic ω-automaton A for ϕ and then compute the maximal conditional
probabilities Prmax

N ,〈s,qs〉
(
♦F

∣
∣♦G

)
in the product-MDP N = M⊗A where F is

the union of all end components in M⊗A satisfying the acceptance condition
of A. Here, 〈s, qs〉 denotes the state in M⊗A that “corresponds” to s.

(co-)safety conditions. If ψ is regular co-safety condition then we can use a
representation of ψ by a deterministic finite automaton (DFA) B, switch from
M to the product-MDP M ⊗ B with the reachability condition stating that
some final state of B should be visited. With slight modifications, an analogous
technique is applicable for regular safety conditions, in which case we use a DFA
for the bad prefixes of ψ. See [6].This approach is also applicable for MDPs with
positive state rewards and if ψ is a reward-bounded reachability condition ♦≤ra.

ωωω-regular conditions. If the condition ψ and the objective ϕ are ω-regular
then the task to compute Prmax

M,s

(
ϕ |ψ )

is reducible to the task of computing
maximal conditional probabilities for reachability objectives and some strong
fairness condition ψ′. The idea is to simply use deterministic Streett automata
A and B for ϕ and ψ and then to switch from M to the product-MDP M⊗A⊗B.
The condition ψ can then be replaced by B’s acceptance condition. The goal set
F of the objective ♦F arises by the union of all end components in M⊗A⊗B
where the acceptance conditions of both A and B hold.

It remains to explain how to compute Prmax
M,s

(
ϕ |ψ )

where ϕ = ♦F is a
reachability objective and ψ is a strong fairness (i.e., Streett) condition, say:

ψ =
∧

1≤i≤k

(�♦Ri → �♦Gi)

We can rely on very similar ideas as for reachability conditions (see Section
4.1). The construction of a normal form MDP M′ (step 1) is roughly the same
except that we deal only with two fresh trap states: goal and fail . The restart
mechanism in step 2 can be realized by switching from M′ to a new MDP Mϕ|ψ
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that is defined in the same way as in Section 4.1, except that restart-transitions
are only added to those states v where v ∈ Ri for some i ∈ {1, . . . , k}, and v
is contained in some end component that does not contain goal and does not
contain any Gi-state. For further details we refer to the extended version [6]).

5 PRISM Implementation and Experiments

We have implemented most of the algorithms proposed in this paper in the pop-
ular model checker Prism [21], extending the functionality of version 4.1. Our
implementation is based on the “explicit” engine of Prism, i.e., the analysis is
carried out using an explicit representation of the reachable states and transi-
tions. We have extended the explicit engine to handle LTL path properties for
Markov chains using deterministic Rabin automata and Prism’s infrastructure.

For Markov chains, we implemented the presented transformation M � Mψ

where ψ and ϕ are given as LTL formulas. The presented method for reachability
conditions ψ = ♦G has been adapted in our implementation for the more general
case of constrained reachability conditions ψ = H UG. Our implementation also
supports a special treatment of conditions ψ consisting of a single step-bounded
modality ♦≤n, U≤n or �≤n. Besides the computation of conditional probabilities,
our implementation also provides the option to compute conditional expected
rewards under (constrained) reachability or ω-regular conditions. We used the
three types of expected rewards supported by Prism: the expected accumulated
reward until a target set F is reached or within the next n ∈ N steps, and
the expected instantaneous reward obtained in the n-th step. For MDPs, our
current implementation only supports the computation of maximal conditional
probabilities for reachability objectives and reachability conditions based on the
algorithm presented in Section 4.1.

Experiments with Markov Chains. To evaluate our transformation-based
approach for Markov chains we carried out a series of experiments with the
Markov chain model for the bounded retransmissions protocol presented in [10].
The model specifications are from the Prism benchmark suite [22] (see
http://www.prismmodelchecker.org/casestudies/brp.php). A sender has to
transmit N fragments of a file using a simple protocol over lossy channels, where
the probability of losing a message is 0.01, while the probability of losing an ac-
knowledgment is 0.02. A parameter M specifies the maximum number of retries
for each fragment. We applied our method to compute:

(B1) PrMs
(
♦ “second retry for fragment”

∣
∣�¬“finish with error”

)

(B2) PrMs
(
♦ “finish with success”

∣
∣♦ “2 fragments transmitted”

)

(B3) PrMs
(
�¬“retry” ∣∣♦ “finish with success” ∧ �“retries ≤ 2”

)

All calculations for this paper were carried out on a computer with 2 Intel E5-
2680 8-core CPUs at 2.70 GHz with 384Gb of RAM. Table 1 lists results for the
calculation of the conditional probabilities (B1)–(B3), with N = 128 fragments
andM = 10 retries. We report the number of states and the time for building the

http://www.prismmodelchecker.org/casestudies/brp.php
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Table 1. Statistics for the computation of (B1), (B2), (B3) for N = 128, M = 10

model M PrMs (ϕ |ψ ) via transformation via quotient
states build st. Mψ M�Mψ calc in Mψ total time total time

(B1) 18,701 0.5 s 17,805 19.2 s 5.5 s 24.7 s 58.7 s
(B2) 18,701 0.5 s 18,679 1.7 s 17.0 s 18.7 s 39.2 s
(B3) 18,701 0.5 s 3,976 10.5 s 1.2 s 11.7 s 14.9 s

model and statistics for the calculation of PrMs (ϕ
∣
∣ψ ) with the method presented

in Section 3 and via the quotient of PrMs (ϕ ∧ ψ) and PrMs (ψ ). In addition to
the total time for the calculation, for our method we list as well the size of
the transformed model Mψ, the time spent in the transformation phase and
the time spent to calculate the probabilities of ϕ in Mψ. In these experiments,
our transformation method outperforms the quotient approach by separating
the treatment of ψ and ϕ. As expected, the particular condition significantly
influences the size of Mψ and the time spent for the calculation in Mψ. We
plan to allow caching of Mψ if the task is to treat multiple objectives under the
same condition ψ. We have carried out experiments for conditional rewards with
similar scalability results as well, see [6].

Experiments with MDPs. We report on experimental studies with our im-
plementation of the calculation of Prmax

M,s

(
♦F |♦G )

for the initial state s =
sinit of the parameterized MDP presented in [23]; see also [22], http://www.

prismmodelchecker.org/casestudies/wlan.php. It models a two-way hand-
shake mechanism of the IEEE 802.11 (WLAN) medium access control scheme
with two senders S1 and S2 that compete for the medium. As messages get
corrupted when both senders send at the same time (called a collision), a prob-
abilistic back-off mechanism is employed. The model deals with the case where
a single message from S1 and S2 should be successfully sent. We consider here:

(W1) Prmax
M,s

(
♦ “c2 collisions”

∣
∣♦ “c1 collisions”

)

(W2) Prmax
M,s

(
♦“deadline t expired without success of S1”

∣
∣♦ “c collisions”

)

The parameterN specifies the maximal number of back-offs that each sender per-
forms. The atomic propositions “c collisions” are supported by a global counter
variable in the model that counts the collisions (up to the maximal interesting
value for the property). For (W2), the deadline t is encoded in the model by a
global variable counting down until the deadline is expired.

Calculating (W1). Table 2 lists results for the calculation of (W1) with c2 = 4
and c1 = 2. We report the number of states and the time for building the
model. The states in the transformed MDP Mϕ|ψ consist of the states in the
original MDP M plus the three trap states introduced in the transformation.
We list the time for the transformation M � Mϕ|ψ and for the computation
in Mϕ|ψ separately. For comparison, we list as well the time for calculating
the unconditional probabilities Prmax

M (ϕ ) and Prmax
M (ψ ) for all states in the

http://www.prismmodelchecker.org/casestudies/wlan.php
http://www.prismmodelchecker.org/casestudies/wlan.php
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Table 2. Statistics for the calculation of (W1) with c1 = 2 and c2 = 4

model M Prmax
M,s(ϕ

∣
∣ψ) Prmax

M (ϕ) Prmax
M (ψ)

N states build M�Mϕ|ψ calc in Mϕ|ψ total time total total

3 118,280 2.3 s 1.6 s 3.2 s 4.8 s 1.1 s 0.4 s
4 345,120 5.5 s 3.2 s 9.0 s 12.3 s 1.6 s 1.3 s
5 1,295,338 21.0 s 12.6 s 33.8 s 46.5 s 3.9 s 4.9 s
6 5,007,668 99.4 s 38.8 s 126.0 s 164.9 s 12.7 s 18.7 s

Table 3. Statistics for the calculation of (W2) with N = 3

model M Prmax
M,s(ϕ|ψ) Prmax

M (ϕ) Prmax
M (ψ)

t c states build M�Mϕ|ψ calc in Mϕ|ψ total time total total

50 1 539,888 10.0 s 6.4 s 0.4 s 6.8 s 6.0 s 0.1 s
50 2 539,900 9.5 s 7.1 s 4.6 s 11.7 s 6.0 s 0.6 s

100 1 4,769,199 95.1 s 194.6 s 2.4 s 197.1 s 192.0 s 0.5 s
100 2 4,769,235 93.3 s 199.8 s 85.5 s 285.5 s 184.4 s 10.4 s

model, which account for a large part of the transformation. As can be seen, our
approach scales reasonably well.

Calculating (W2). Table 3 lists selected results and statistics for (W2) with
N = 3, deadline t ∈ {50, 100} and number of collisions in the condition c ∈ {1, 2}.
Again, the time for the transformation is dominated by the computations of
Prmax

M (ϕ) and Prmax
M (ψ). However, in contrast to (W1), the time for the com-

putation in Mϕ|ψ is significantly lower. The complexity in practice thus varies
significantly with the particularities of the model and the condition.

6 Conclusion

We presented new methods for the computation of (maximal) conditional prob-
abilities via reductions to the computation of ordinary (maximal) probabilities
in discrete Markov chains and MDPs. These methods rely on transformations of
the model to encode the effect of conditional probabilities. For MDPs we concen-
trated on the computation of maximal conditional probabilities. Our techniques
are, however, also applicable for reasoning about minimal conditional probabil-
ities as: Prmin

M,s

(
ϕ |ψ )

= 1 − Prmax
M,s

(¬ϕ |ψ )
. By our results, the complexity of

the problem that asks whether the (maximal) conditional probabilities meets a
given probability bound is not harder than the corresponding question for uncon-
ditional probabilities. This is reflected in our experiments. In our experiments
with Markov chains, our new method outperforms the näıve approach. In future
work, we will extend our implementations for MDPs that currently only supports
reachability objectives and conditions and study methods for the computation
of maximal or minimal expected conditional accumulated rewards.
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