
Variations on Safety

Orna Kupferman

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
orna@cs.huji.ac.il

Abstract. Of special interest in formal verification are safety properties, which
assert that the system always stays within some allowed region, in which nothing
“bad” happens. Equivalently, a property is a safety property if every violation of
it occurs after a finite execution of the system. Thus, a computation violates the
property if it has a “bad prefix”, all whose extensions violate the property. The
theoretical properties of safety properties as well as their practical advantages
with respect to general properties have been widely studied. The paper surveys
several extensions and variations of safety. We start with bounded and checkable
properties – fragments of safety properties that enable an even simpler reasoning.
We proceed to a reactive setting, where safety properties require the system to
stay in a region of states that is both allowed and from which the environment
cannot force it out. Finally, we describe a probability-based approach for defining
different levels of safety.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable veri-
fication methods. In formal verification, we verify that a system meets a desired property
by checking that a mathematical model of the system meets a formal specification that
describes the property. Of special interest are properties asserting that the observed be-
havior of the system always stays within some allowed region, in which nothing “bad”
happens. For example, we may want to assert that every message sent is acknowledged
in the next cycle. Such properties of systems are called safety properties. Intuitively, a
property ψ is a safety property if every violation of ψ occurs after a finite execution of
the system. In our example, if in a computation of the system a message is sent with-
out being acknowledged in the next cycle, this occurs after some finite execution of the
system. Also, once this violation occurs, there is no way to “fix” the computation.

In order to formally define what safety properties are, we refer to computations of a
nonterminating system as infinite words over an alphabet Σ. Consider a language L of
infinite words over Σ. A finite word x over Σ is a bad prefix for L iff for all infinite
words y over Σ, the concatenation x ·y of x and y is not in L. Thus, a bad prefix for L is
a finite word that cannot be extended to an infinite word in L. A language L is a safety
language if every word not in L has a finite bad prefix. For example, if Σ = {0, 1},
then L = {0ω, 1ω} is a safety language. Indeed, every word not in L contains either the
sequence 01 or the sequence 10, and a prefix that ends in one of these sequences cannot
be extended to a word in L. 1.

1 The definition of safety we consider here is given in [1,2], it coincides with the definition of
limit closure defined in [12], and is different from the definition in [26], which also refers to
the property being closed under stuttering.

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 1–14, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 O. Kupferman

The interest in safety started with the quest for natural classes of specifications. The
theoretical aspects of safety have been extensively studied [2,28,29,33]. With the grow-
ing success and use of formal verification, safety has turned out to be interesting also
from a practical point of view [14,20,23]. Indeed, the ability to reason about finite pre-
fixes significantly simplifies both enumerative and symbolic algorithms. In the first,
safety circumvents the need to reason about complex ω-regular acceptance conditions.
For example, methods for temporal synthesis, program repair, or parametric reasoning
are much simpler for safety properties [18,32]. In the second, it circumvents the need
to reason about cycles, which is significant in both BDD-based and SAT-based meth-
ods [5,6]. In addition to a rich literature on safety, researchers have studied additional
classes, such as liveness and co-safety properties [2,28].

The paper surveys several extensions and variations of safety. We start with bounded
and checkable properties – fragments of safety properties that enable an even simpler
reasoning. We proceed to a reactive setting, where safety properties require the system
to stay in a region of states that is both allowed and from which the environment cannot
force it out. Finally, we describe a probability-based approach for defining different
levels of safety. The survey is based on the papers [24], with Moshe Y. Vardi, [21],
with Yoad Lustig and Moshe Y. Vardi, [25], with Sigal Weiner, and [10], with Shoham
Ben-David.

2 Preliminaries

Safety and Co-Safety Languages. Given an alphabet Σ, a word over Σ is a (possibly
infinite) sequence w = σ0 · σ1 · · · of letters in Σ. Consider a language L ⊆ Σω of
infinite words. A finite word x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we have
x · y �∈ L. Thus, a bad prefix is a finite word that cannot be extended to an infinite
word in L. Note that if x is a bad prefix, then all the finite extensions of x are also bad
prefixes. A languageL is a safety language iff every infinite word w �∈ L has a finite bad
prefix. For a safety language L, we denote by bad-pref (L) the set of all bad prefixes for
L.

For a language L ⊆ Σω, we use comp(L) to denote the complement of L; i.e.,
comp(L) = Σω \L. A language L ⊆ Σω is a co-safety language iff comp(L) is a safety
language. (The term used in [28] is guarantee language.) Equivalently,L is co-safety iff
every infinite word w ∈ L has a good prefix x ∈ Σ∗: for all y ∈ Σω, we have x ·y ∈ L.
For a co-safety language L, we denote by good-pref (L) the set of good prefixes for L.
Note that for a safety language L, we have that good-pref (comp(L)) = bad-pref (L).

Word Automata. A nondeterministic Büchi word automaton (NBW, for short) is A =
〈Σ,Q, δ,Q0, F 〉, where Σ is the input alphabet, Q is a finite set of states, δ : Q×Σ →
2Q is a transition function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
accepting states. If |Q0| = 1 and δ is such that for every q ∈ Q and σ ∈ Σ, we have
that |δ(q, σ)| ≤ 1, then A is a deterministic Büchi word automaton (DBW, for short).

Given an input word w = σ0 ·σ1 · · · in Σω, a run of A on w is a sequence r0, r1, . . .
of states in Q such that r0 ∈ Q0 and for every i ≥ 0, we have ri+1 ∈ δ(ri, σi). For
a run r, let inf (r) denote the set of states that r visits infinitely often. That is,

Variations on Safety 3

inf (r) = {q ∈ Q : ri = q for infinitely many i ≥ 0}. As Q is finite, it is guaran-
teed that inf (r) �= ∅. The run r is accepting iff inf (r) ∩ F �= ∅. That is, iff there exists
a state in F that r visits infinitely often. A run that is not accepting is rejecting. When
α = Q, we say that A is a looping automaton. We use NLW and DLW to denote non-
deterministic and deterministic lopping automata. An NBW A accepts an input word w
iff there exists an accepting run of A on w. The language of an NBW A, denoted L(A),
is the set of words that A accepts. We assume that a given NBW A has no empty states,
except maybe the initial state (that is, at least one word is accepted from each state –
otherwise we can remove the state).

Linear Temporal Logic. The logic LTL is a linear temporal logic. Formulas of LTL are
constructed from a set AP of atomic propositions using the usual Boolean operators
and the temporal operators G (“always”), F (“eventually”), X (“next time”), and U
(“until”). Formulas of LTL describe computations of systems over AP . For example,
the LTL formula G(req → Fack) describes computations in which every position in
which req holds is eventually followed by a position in which ack holds. Thus, each
LTL formulaψ corresponds to a language, denoted ||ψ||, of words in (2AP)ω that satisfy
it. For the detailed syntax and semantics of LTL, see [30]. The model-checking problem
for LTL is to determine, given an LTL formula ψ and a system M , whether all the
computations of M satisfy ψ.

General methods for LTL model checking are based on translation of LTL formulas
to nondeterministic Büchi word automata. By [36], given an LTL formula ψ, one can
construct an NBW Aψ over the alphabet 2AP that accepts exactly all the computations
that satisfy ψ. The size of Aψ is, in the worst case, exponential in the length of ψ.

Given a system M and an LTL formula ψ, model checking of M with respect to ψ is
reduced to checking the emptiness of the product of M and A¬ψ [36]. This check can
be performed on-the-fly and symbolically [7,35], and the complexity of model checking
that follows is PSPACE, with a matching lower bound [34].

It is shown in [2,33,22] that when ψ is a safety formula, we can assume that all the
states in Aψ are accepting. Indeed, Aψ accepts exactly all words all of whose prefixes
have at least one extension accepted by Aψ , which is what we get if we define all
the states of Aψ to be accepting. Thus, safety properties can be recognized by NLWs.
Since every NLW can be determined to an equivalent DLW by applying the subset
construction, all safety formulas can be translated to DLWs.

3 Interesting Fragments

In this section we discuss two interesting fragments of safety properties: clopen (a.k.a.
bounded) properties, which are useful in bounded model checking, and checkable prop-
erties, which are useful in real-time monitoring.

3.1 Clopen Properties

Bounded model checking methodologies check the correctness of a system with respect
to a given specification by examining computations of a bounded length. Results from

4 O. Kupferman

set-theoretic topology imply that sets in Σω that are both open and closed (clopen sets)
are bounded: membership in a clopen set can be determined by examining a bounded
number of letters in Σ.

In [24] we studied safety properties from a topological point of view. We showed
that clopen sets correspond to properties that are both safety and co-safety, and show
that when clopen specifications are given by automata or LTL formulas, we can point
to a bound and translate the specification to bounded formalisms such as bounded LTL
and cycle-free automata.

Topology. Consider a set X and a distance function d : X × X → IR between the
elements of X . For an element x ∈ X and γ ≥ 0, let K(x, γ) be the set of elements
x′ such that d(x, x′) ≤ γ. Consider a set S ⊆ X . An element x ∈ S is called an
interior element of S if there is γ > 0 such that K(x, γ) ⊆ S. The set S is open if all
the elements in S are interior. A set S is closed if X \ S is open. So, a set S is open
if every element in S has a nonempty “neighborhood” contained in S, and a set S is
closed if every element not in S has a nonempty neighborhood whose intersection with
S is empty. A set that is both open and close is called a clopen set.

A Cantor space consists of X = Dω, for some finite set D, and d defined by
d(w,w′) = 1

2n , where n is the first position where w and w′ differ. Thus, elements
of X can be viewed as infinite words over D and two words are close to each other if
they have a long common prefix. If w = w′, then d(w,w′) = 0. It is known that clopen
sets in Cantor space are bounded, where a set S is bounded if it is of the form W ·Dω

for some finite set W ⊆ D∗. Hence, clopen sets in our Cantor space correspond exactly
to bounded properties: each clopen language L ⊆ Σω has a bound k ≥ 0 such that
membership in L can be determined by the prefixes of length k of words in Σω.

It is not hard to see that a language L ⊆ Σω is co-safety iff L is an open set in our
Cantor space [27,17]. To see this, consider a word w in a co-safety language L, and let
x be a good prefix of w. All the words w′ with d(w,w′) ≤ 1

2|x| have x as their prefix,
so they all belong to L. For the second direction, consider a word w in an open set L,
and let γ > 0 be such that K(w, γ) ⊆ L. The prefix of w of length �log 1

γ
 is a good
prefix for L. It follows that the clopen sets in Σω are exactly these properties that are
both safety and co-safety!

Bounding Clopen Properties. Our goal in this section is to identify a bound for a
clopen property given by an automaton. Consider a clopen language L ⊆ Σω. For
a finite word x ∈ Σ∗, we say that x is undetermined with respect to L if there are
y ∈ Σω and z ∈ Σω such that x · y ∈ L and x · z �∈ L. As shown in [24], every word in
Σω has only finitely many prefixes that are undetermined with respect to L. It follows
that L is bounded: there are only finitely many words in Σ∗ that are undetermined with
respect to L. For an integer k, we say that L is bounded by k if all the words x ∈ Σ∗

such that |x| ≥ k are determined with respect to L. Moreover, since L is bounded, then
a minimal DLW that recognizes L must be cycle free. Indeed, otherwise we can pump
a cycle to infinitely many undetermined prefixes. Let diameter (L) be the diameter of
the minimal DLW for L.

Lemma 1. A clopen ω-regular language L ⊆ Σω is bounded by diameter (L).

Variations on Safety 5

Proof: Let A be the minimal deterministic looping automaton for L. Consider a word
x ∈ Σ∗ with |x| ≥ diameter (L). Since A is cycle free, its run on x either reaches
an accepting sink, in which case x is a good prefix, or it does not reach an accepting
sink, in which case, by the definition of diameter (A), we cannot extend x to a word
accepted by A, thus x is a bad prefix.

For a language L, the in index of L, denoted inindex (L), is the minimal num-
ber of states that an NBW recognizing L has. Similarly, the out index of L, denoted
outindex (L), is the minimal number of states that an NBW recognizing comp(L) has.

Lemma 2. A clopen ω-regular language L ⊆ Σω is bounded by inindex (L) ·
outindex (L).

Proof: Assume by way of contradiction that there is a word x ∈ Σ∗ such that |x| ≥
inindex (L) · outindex (L) and x is undetermined with respect to L. Thus, there are
suffixes y and z such that x · y ∈ L and x · z �∈ L. Let A1 and A2 be nondeterminis-
tic looping automata such that L(A1) = L, L(A2) = comp(L), and A1 and A2 have
inindex (L) and outindex (L) states, respectively. Consider two accepting runs r1 and
r2 of A1 and A2 on x ·y and x · z, respectively. Since |x| ≥ inindex (L) ·outindex (L),
there are two prefixes x[1, . . . , i] and x[1, . . . , j] of x such that i < j and both runs re-
peat their state after these two prefixes; i.e., r1(i) = r1(j) and r2(i) = r2(j). Consider
the word x′ = x[1, . . . , i] ·x[i+1, . . . , j]ω. Since A1 is a looping automaton, the run r1
induces an accepting run r′1 of A1 on x′. Formally, for all l ≤ i we have r′1(l) = r1(l)
and for all l > i, we have r′1(l) = r1(i + ((l − i)mod(j − i))). Similarly, the run r2
induces an accepting run of A2 on x′. It follows that x′ is accepted by both A1 and A2,
contradicting the fact that L(A2) = comp(L(A1)).

3.2 Checkable Properties

For an integer k ≥ 1, a language L ⊆ Σω is k-checkable if there is a language R ⊆
Σk (of “allowed subwords”) such that a word w belongs to L iff all the subwords
of w of length k belong to R. A property is locally checkable if its language is k-
checkable for some k. Locally checkable properties, which are a special case of safety
properties, are common in the specification of systems. In particular, one can often
bound an eventuality constraint in a property by a fixed time frame, which results in a
checkable property.

The practical importance of locally checkable properties lies in the low memory
demand for their run-time verification. Indeed, k-checkable properties can be verified
with a bounded memory – one that has access only to the last k-computation cycles.
Run-time verification of a property amounts to executing a monitor together with the
system allowing the detection of errors in run time [20,3,9]. Run-time monitors for
checkable specifications have low memory demand. Furthermore, in the case of general
ω-regular properties, when several properties are checked, we need a monitor for each
property, and since the properties are independent of each other, so are the state spaces
of the monitors. Thus, the memory demand (as well as the resources needed to maintain
the memory) grow linearly with the number of properties monitored. Such a memory

6 O. Kupferman

demand is a real problem in practice. In contrast, as shown in [21], a monitor for a k-
checkable property needs only a record of the last k computation cycles. Furthermore,
even if a large number of k-checkable properties are monitored, the monitors can share
their memory, resulting in memory demand of |Σ|k, which is independant of the number
of properties monitored.

As in the case of clopen properties, our goal is to identify a bound for a checkable
property given by an automaton. We first need some notations. For a word w ∈ Σω and
k ≥ 0, we denote by sub(w, k) the set of finite subwords of w of length k, formally,
sub(w, k) = {y ∈ Σ∗ : |y| = k and there exist x ∈ Σ∗ and z ∈ Σω such that w =
xyz}. A language L ⊆ Σω is k-checkable if there exists a finite language R ⊆ Σk

such that w ∈ L iff all the k-long subwords of w are in R. That is, L = {w ∈
Σω : sub(w, k) ⊆ R}. A language L ⊆ Σω is k-co-checkable if there exists a fi-
nite language R ⊆ Σk such that w ∈ L iff there exists a k-long subword of w that is
in R. That is, L = {w ∈ Σω : sub(w, k) ∩ R �= ∅}. A language is checkable (co-
checkable) if it is k-checkable (k-co-checkable, respectively) for some k. We refer to k
as the width of L. It is easy to to see that all checkable languages are safety, and sim-
ilarly for co-checkable and co-safety. In particular, L is a checkable language induced
by R iff comp(L) is co-checkable and induced by comp(L).

In order to demonstrate the the subtlety of the width question, consider the following
example.

Example 1. Let Σ = {0, 1, 2}. The DBW A below recognizes the language L of all the
words that contain 10, 120 or 220 as subwords. Note that L is the 3-co-checkable lan-
guage L co-induced by R = {010, 110, 210, 100, 101, 102, 120, 220}. Indeed, a word
w is in L iff sub(w, 3) ∩R �= ∅.

qac

0

0

0
0,1,2

1,2

1,2
2

1q0

q2

q1

At first sight, it seems that the same considerations applied in Lemma 1 can be used
in order to prove that the width of a checkable language is bounded by the diameter
of the smallest DBW recognizing the language. Indeed, it appears that in an accepting
run, the traversal through the minimal good prefix should not contain a cycle. This
impression, however, is misleading, as demonstrated in the DBW A from Example 1,
where a traversal through the subword 120 contains a cycle, and similarly for 010. The
diameter of the DBW A is 3, so it does not constitute a counterexample to the conjecture
that the diameter bounds the width, but the problem remains open in [21], and the
tightest bound proven there depends on the size of A and not only on its diameter, and
is even not linear. Intuitively, it follows form an upper-bound on the size of a DBW that
recognizes minimal bad prefixes of L. Formally, we have the following.

Variations on Safety 7

Theorem 1. If a checkable (or co-checkable) language L is recognized by a DBW with
n states, then the width of L is bounded by O(n2).

As noted above, the bound in Theorem 1 is not tight and the best known lower bound
is only the diameter of a DBW for L. For the nondeterministic setting the bound is
tighter:

Theorem 2. If a checkable language L is recognized by an NBW with n states, then
the width of L is bounded by 2O(n). Also, There exist an NBW A with O(n) states such
that L(A) is k-checkable but not (k − 1)-checkable, for k = (n+ 1)2n + 2 .

4 Safety in a Reactive Setting

Recall that safety is defined with respect to languages over an alphabet Σ. Typically,
Σ = 2AP , where AP is the set of the system’s atomic propositions. Thus, the definition
and studies of safety treat all the atomic propositions as equal and do not distinguish
between input and output signals. As such, they are suited for closed systems – ones
that do not maintain an interaction with their environment. In open (also called reactive)
systems [19,31], the system interacts with the environment, and a correct system should
satisfy the specification with respect to all environments. A good way to think about
the open setting is to consider the situation as a game between the system and the
environment. The interaction between the players in this game generates a computation,
and the goal of the system is that only computations that satisfy the specification will
be generated.

Technically, one has to partition the set AP of atomic propositions to a set I of input
signals, which the environment controls, and a set O of output signals, which the system
controls. An open system is then an I/O-transducer – a deterministic automaton over
the alphabet 2I in which each state is labeled by an output in 2O. Given a sequence
of assignments to the input signals (each assignment is a letter in 2I), the run of the
transducer on it induces a sequence of assignments to the output signals (that is, letters
in 2O). Together these sequences form a computation, and the transducer realizes a
specification ψ if all its computations satisfy ψ [31].

The transition from the closed to the open setting modifies the questions we typically
ask about systems. Most notably, the synthesis challenge, of generating a system that
satisfies the specification, corresponds to the satisfiability problem in the closed setting
and to the realizability problem in the open setting. As another example, the equiva-
lence problem between LTL specifications is different in the closed and open settings
[16]. That is, two specifications may not be equivalent when compared with respect
to arbitrary systems on I ∪ O, but be open equivalent; that is, equivalent when com-
pared with respect to I/O-transducers. To see this, note for example that a satisfiable
yet non-realizable specification is equivalent to false in the open but not in the closed
setting.

As mentioned above, the classical definition of safety does not distinguish between
input and output signals. The definition can still be applied to open systems, as a special
case of closed systems with Σ = 2I∪O. In [11], Ehlers and Finkbeiner introduced reac-
tive safety – a definition of safety for the setting of open systems. Essentially, reactive

8 O. Kupferman

safety properties require the system to stay in a region of states that is both allowed and
from which the environment cannot force it out. The definition in [11] is by means of
sets of trees with directions in 2I and labels in 2O. The use of trees naturally locate
reactive safety between linear and branching safety. In [25], we suggested an equivalent
yet differently presented definition, which explicitly use realizability, and study the the-
oretical aspects of receive safety and other reactive fragments of specifications. In this
section, we review the definition and results from [25].

4.1 Definitions

We model open systems by transducers. Let I and O be finite sets of input and output
signals, respectively. Given x = i0 · i1 · i2 · · · ∈ (2I)ω and y = o0 · o1 · o2 · · · ∈ (2O)ω,
we denote their composition by x⊕ y = (i0, o0) · (i1, o1) · (i2, o2) · · · ∈ (2I∪O)ω. An
I/O-transducer is a tuple T = 〈I, O, S, s0, η, L〉, where S is a set of states, s0 ∈ S is
an initial state, η : S × 2I → S is a transition function, and L : S → 2O is a labeling
function. The run of T on a (finite or infinite) input sequence x = i0 · i1 · i2 · · · , with
ij ∈ 2I , is the sequence s0, s1, s2, . . . of states such that sj+1 = η(sj , ij+1) for all
j ≥ 0. The computation of T on x is then x⊕ y, for y = L(s0) ·L(s1) ·L(s2) · · · Note
that T is responsive and deterministic (that is, it suggests exactly one successor state for
each input letter), and thus T has a single run, generating a single computation, on each
input sequence. We extend η to finite words over 2I in the expected way. In particular,
η(s0, x), for x ∈ (2I)∗ is the |x|-th state in the run on x. A transducer T induces a
strategy f : (2I)∗ → 2O such that for all x ∈ (2I)∗, we have that f(x) = L(η(s0, x)).
Given an LTL formula ψ over I ∪O, we say that ψ is I/O-realizable if there is a finite-
state I/O-transducer T such that all the computations of T satisfy ψ [31]. We then say
that T realizes ψ. When it is clear from the context, we refer to I/O-realizability as
realizability, or talk about realizability of languages over the alphabet 2I∪O.

Since the realizability problem corresponds to deciding a game between the system
and the environment, and the game is determined [15], realizability is determined too,
in the sense that either there is an I/O-transducer that realizes ψ (that is, the system
wins) or there is an O/I-transducer that realizes ¬ψ (that is, the environment wins).
Note that in an O/I-transducer the system and the environment “switch roles” and the
system is the one that provides the inputs to the transducer. A technical detail is that
in order for the setting of O/I-realizability to be dual to the one in I/O-realizability
we need, in addition to switching the roles and negating the specification, to switch
the player that moves first and consider transducers in which the environment initiates
the interaction and moves first. Since we are not going to delve into constructions, we
ignore this point, which is easy to handle.

Let I and O be sets of input and output signals, respectively. Consider a language
L ⊆ (2I∪O)ω. For a finite word u ∈ (2I∪O)∗, let Lu = {s : u · s ∈ L} be the set of all
infinite words s such that u · s ∈ L. Thus, if L describes a set of allowed computations,
then Lu describes the set of allowed suffixes of computations starting with u.

We say that a finite word u ∈ (2I∪O)∗ is a system bad prefix for L iff Lu is not
realizable. Thus, a system bad prefix is a finite word u such that after traversing u,
the system does not have a strategy to ensure that the interaction with the environment
would generate a computation in L. We use sbp(L) to denote the set of system bad

Variations on Safety 9

prefixes for L. Note that by determinacy of games, whenever Lu is not realizable by the
system, then its complement is realizable by the environment. Thus, once a bad prefix
has been generated, the environment has a strategy to ensure that the entire generated
behavior is not in L.

A language L ⊆ (2I∪O)
ω

is a reactive safety language if every word not in L has
a system bad prefix. Below are two examples, demonstrating that a reactive safety lan-
guage need not be safe. Note that the other direction does hold: Let L be a safe language.
Consider a word w /∈ L and a bad prefix u ∈ (2I∪O)∗ of w. Since u is a bad prefix, the
set Lu is empty, and is therefore unrealizable, so u is also a system bad prefix. Thus,
every word not in L has a system bad prefix, implying that L is reactively safe.

Example 2. Let I = {fix}, O = {err}, ψ = G(err → Ffix), and L = ‖ψ‖. Note
that ψ is realizable using the system strategy “never err”. Also, L is clearly not safe, as
every prefix can be extended to one that satisfies ψ. On the other hand, L is reactively
safe. Indeed, every word not in L must have a prefix u that ends with {err}. Since
Lu = ‖Ffix‖, which is not realizable, we have that u is a system bad prefix and L is
reactively safe.

Example 3. Let I = {fix}, O = {err}, ψ = G¬err ∨ FGfix , and L = ‖ψ‖. Note
that ψ is realizable using the system strategy “never err”. Also, L is clearly not safe.
We show L is reactively safe. Consider a word w /∈ L. Since w does not satisfy G¬err ,
there must be a prefix u of w such that u contains a position satisfying err . Since
words with prefix u do not satisfy G¬err , we have that Lu = ‖FGfix‖, which is not
realizable. Thus, u is a system bad prefix and L is reactively safe.

4.2 Properties of Reactive Safety

In the closed settings, the set bad-pref (L) is closed under finite extensions for all lan-
guages L ⊆ Σω. That is, for every finite word u ∈ bad-pref (L) and finite extension
v ∈ Σ∗, we have that u · v ∈ bad-pref (L). This is not the case in the reactive setting:

Theorem 3. System bad prefixes are not closed under finite extension.

Proof: Let I = {fix}, O = {err}, and ψ = G(err → Xfix) ∧ FG¬err . Thus, ψ
states that every error the system makes is fixed by the environment in the following
step, and that there is a finite number of errors. Let L = ‖ψ‖. Clearly, ψ is realizable, as
the strategy “never err” is a winning strategy for the system. Also, L is reactively safe,
as a word w /∈ L must have a prefix u that ends in a position satisfying err , and u is
a system bad prefix. We show that sbp(L) is not closed under finite extensions. To see
this, consider the word w = ({err , fix} · {fix})ω. That is, the system makes an error on
every odd position, and the environment always fixes errors. Since there are infinitely
many errors in w, it does not satisfy ψ. The prefix u = {err , fix} of w is a system bad
prefix. Indeed, an environment strategy that starts with ¬fix is a winning strategy. On
the other hand, u’s extension v = {err , fix} · {fix} is not a system bad prefix. Indeed,
Lv is realizable using the winning system strategy “never err”.

10 O. Kupferman

Recall that reasoning about safety properties is easier than reasoning about general
properties. In particular, rather than working with automata on infinite words, one can
model check safety properties using automata (on finite words) for bad prefixes. The
question is whether and how we can take advantage of reactive safety when the specifi-
cation is not safe (but is reactively safe). In [11], the authors answered this question to
the positive and described a transition from reactively safe to safe formulas. The trans-
lation is by means of nodes in the tree in which a violation starts. The translation from
[25] we are going to describe here uses realizability explicitly, which we find simpler.

For a language L ⊆ (2I∪O)ω, we define close(L) = L∩{w : w has no system bad
prefix for L}. Equivalently, close(L) = L \ {w : w has a system bad prefix for L}.
Intuitively, we obtain close(L) by defining all the finite extensions of sbp(L) as bad
prefixes. It is thus easy to see that sbp(L) ⊆ bad-pref (close(L)).

As an example, consider again the specification ψ = G(err → Xfix) ∧ FG¬err ,
with I = {fix}, O = {err}. An infinite word contains a system bad prefix for ψ iff it
has a position that satisfies err . Accordingly, close(ψ) = G¬err . As another example,
let us add to O the signal ack , and let ψ = G(err → X (fix ∧ Fack)), with I = {fix},
O = {err , ack}. Again, ψ is reactively safe and an infinite word contains a system bad
prefix for ψ iff it has a position that satisfies err . Accordingly, close(ψ) = G¬err .

Our definition of close(L) is sound, in the following sense:

Theorem 4. A language L ⊆ (2I∪O)ω is reactively safe iff close(L) is safe.

While L and close(L) are not equivalent, they are open equivalent [16]. Formally,
we have the following.

Theorem 5. For every language L ⊆ (2I∪O)ω and I/O-transducer T , we have that
T realizes L iff T realizes close(L).

It is shown in [11] that given an LTL formulaψ, it is possible to construct a determin-
istic looping word automaton for close(ψ) with doubly-exponential number of states.
In fact, as suggested in [23], it is then possible to generate also a deterministic automa-
ton for the bad prefixes of close(ψ). Note that when L is not realizable, we have that
ε ∈ sbp(L), implying that close(L) = ∅. It follows that we cannot expect to construct
small automata for close(L), even nondeterministic ones, as the realizability problem
for LTL can be reduced to easy questions about them.

Theorem 5 implies that a reactive safety language L is open equivalent to a safe
language, namely close(L). Conversely, open equivalence to a safe language implies
reactive safety. This follows from the fact that if L and L′ are open-equivalent lan-
guages, then a prefix x is a minimal system bad prefix in L iff x is a minimal system
bad prefix in L′. We can thus conclude with the following.

Theorem 6. A languageL is reactively safe iff L is open equivalent to a safe language.

In the setting of open systems, dualization of specifications is more involved, as one
has not only to complement the language but to also dualizes the roles of the system
and the environment. Accordingly, we actually have four fragments of languages that
are induced by dualization of the reactive safety definition. We define them by means
of bad and good prefixes.

Consider a language L ⊆ (2I∪O)ω and a prefix u ∈ (2I∪O)∗. We say that:

Variations on Safety 11

– u is a system bad prefix if Lu is not I/O-realizable.
– u is a system good prefix if Lu is I/O-realizable.
– u is an environment bad prefix if Lu is not O/I-realizable.
– u is an environment good prefix if Lu is O/I-realizable.

Now, a language L ⊆ (2I∪O)ω is a system (environment) safety language if every
word not in L has a system (environment, respectively) bad prefix. The language L is
a system (environment) co-safety language if every word in L has a system (environ-
ment, respectively) good prefix. System safety and environment co-safety dualize each
other: For every language L ⊆ (2I∪O)ω, we have that L is system safe iff comp(L) is
environment co-safe.

Since each language Lu is either I/O-realizable or not I/O-realizable, and the same
for O/I-realizability, all finite words are determined, in the following sense.

Theorem 7. Consider a language L ⊆ (2I∪O)ω . All finite words in (2I∪O)∗ are deter-
mined with respect to L. That is, every prefix is either system good or system bad, and
either environment good or environment bad, with respect to L.

Note that while every prefix is determined, a word may have both system bad and
system good prefixes, and similarly for the environment, which is not the case in the
setting of closed systems. For example, recall the language L = ‖G(err → Xfix) ∧
FG¬err‖, for I = {fix} and O = {err}. As noted above, the word ({err, fix} ·
{fix})ω has both a system bad prefix {err, fix}, and a system good prefix {err, fix}·
{fix}.

In Section 3.1 we showed that in the closed setting, the intersection of safe and co-
safe properties induces the fragment of bounded properties. It is shown in [25] that
boundedness in the open setting is more involved, as a computation may have both
infinitely many good and infinitely many bad prefixes. It is still possible, however, to
define reactive bounded properties and use their appealing practical advantages.

5 A Spectrum between Safety and Co-safety

Safety is a binary notion. A property may or may not satisfy the definition of safety.
In this section we describe a probability-based approach for defining different levels
of safety. The origin of the definition is a study of vacuity in model checking [4,23].
Vacuity detection is a method for finding errors in the model-checking process when
the specification is found to hold in the model. Most vacuity algorithms are based on
checking the effect of applying mutations on the specification. It has been recognized
that vacuity results differ in their significance. While in many cases vacuity results
are valued as highly informative, there are also cases in which the results are viewed as
meaningless by users. In [10], we suggested a method for an automatic ranking of vacu-
ity results according to their level of importance. Our method is based on the probability
of the mutated specification to hold in a random computation. For example, two natural
mutations of the specification G(req → F ready) are G(¬req), obtained by mutating
the subformula ready to false, and GF ready , obtained by mutating the subformula
req to true. It is agreed that vacuity information about satisfying the first mutation is

12 O. Kupferman

more alarming than information about satisfying the second. The framework in [10] for-
mally explains this, as the probability of G(¬req) to hold in a random computation is 0,
whereas the probability of GF ready is 1. In this section we suggest to use probability
also for defining levels of safety.

5.1 The Probabilistic Setting

Given a set S of elements, a probability distribution on S is a function μ : S → [0, 1]
such that Σs∈S μ(s) = 1. Consider an alphabet Σ. A random word over Σ is a word in
which for all indices i, the i-th letter is drown uniformly at random. In particular, when
Σ = 2AP , then a random computation π is such that for each atomic proposition q and
for each position in π, the probability of q to hold in the position is 1

2 . An equivalent
definition of this probabilistic model is by means of the probabilistic labeled structure
UΣ , which generates computations in a uniform distribution. Formally, UΣ is a clique
with |Σ| states in which a state σ ∈ Σ is labeled σ, is initial with probability 1

|Σ| , and

the probability to move from a state σ to a state σ′ is 1
|Σ| .

We define the probability of a language L ⊆ Σω, denoted Pr(L), as the probability
of the event {π : π is a path in UΣ that is labeled by a word in L}. Accordingly, for
an LTL formula ϕ, we define Pr(ϕ) as the probability of the event {π : π is a path in
U2AP that satisfies ϕ}. For example, the probabilities of Xp,Gp, and Fp are 1

2 , 0, and
1, respectively. Using UΣ we can reduce the problem of finding Pr(ϕ) to ϕ’s model
checking. Results on probabilistic LTL model checking [8] then imply that the problem
of finding the probability of LTL formulas is PSPACE-complete.

First-order logic respects a 0/1-law: the probability of a formula to be satisfied in
a random model is either 0 or 1 [13]. It is easy to see that a 0/1-law does not hold
for LTL. For example, for an atomic proposition p, we have that Pr(p) = 1

2 . Back to
our safety story, it is not hard to see that Pr(Gξ), for a formula ξ with Pr(ξ) �= 1,
is 0. Dually, Pr(Fξ), for a formula ξ with Pr(ξ) �= 0 is 1. Can we relate this to the
fact that Gp is a safety property whereas Fp is a co-safety property? Or perhaps it
has to do with Fp being a liveness property?2 This is not clear, as, for example, the
probability of clopen formulas depends on finitely many events and can vary between
0 to 1. As another example, consider the two possible semantics of the Until temporal
operator. For the standard, strong, Until, which is not a safe, we have Pr(pUq) = 2

3 . By
changing the semantics of the Until to a weak one, we get the safety formula pWq, with
pWq = pUq∨Gp. Still, Pr(pWq) = Pr(pUq). Thus, the standard probabilistic setting
does not suggest a clear relation between probability and different levels of safety.

We argue that we can still use the probabilistic approach in order to measure safety.
The definition of Pr(ϕ) in [10] assumes that the probability of an atomic proposition to
hold in each position is 1

2 . This corresponds to computations in an infinite-state system
and is the standard approach taken in studies of 0/1-laws. Alternatively, one can also
study the probability of formulas to hold in computations of finite-state systems. For-
mally, for an integer l ≥ 1, let Prl(ϕ) denote the probability that ϕ holds in a random
cycle of length l. Here too, the probability of each atomic proposition to hold in a state is
1
2 , yet we have only l states to fix an assignment to. So, for example, while Pr(Gp) = 0,

2 A language L is a liveness language if L = Σ∗ · L [1].

Variations on Safety 13

we have that Pr1(Gp) = 1
2 , Pr2(Gp) = 1

4 , and in general Prj(Gp) = 1
2j . Indeed, an

l-cycle satisfies Gp iff all its states satisfy p.
There are several interesting issues in the finite-state approach. First, it may seem

obvious that the bigger l is, the closer Prl(ϕ) gets to Pr(ϕ). This is, however, not so
simple. For example, issues like cycles in ϕ can cause Prl(ϕ) to be non-monotonic.
For example, when ϕ requires p to hold in exactly all even positions, then Pr1(ϕ) =
0, P r2(ϕ) =

1
4 , P r3(ϕ) = 0, P r4(ϕ) =

1
16 , and so on.

Assume now that we have cleaned the cycle-based issue (for example by restricting
attention to formulas without Xs, or by restricting attention to cycles of “the right”
length). Can we characterize safety properties by means of the asymptotic behavior of
Prl(ϕ)? Can we define different levels of safety according to the rate the probability
decreases or increases? For example, clearly Prl(Gp) tends to 0 as l increases, whereas
Prl(Fp) tends to 1. Also, now, for a given l, we have that Prl(pWq) > Prl(pUq). In
addition, for a clopen property ϕ, we have that Prl(ϕ) stablizes once l is bigger than
the bound of ϕ. Still, the picture is not clean. For example, FGp is a liveness formula,
but Prl(FGp) decreases as l increases. Finding a characterization of properties that is
based on the analysis of Prl is an interesting question, and our initial research suggests
a connection between the level of safety of ϕ and the behavior of Prl(ϕ).

References

1. Alpern, B., Schneider, F.B.: Defining liveness. IPL 21, 181–185 (1985)
2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2,

117–126 (1987)
3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Stef-

fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg
(2004)

4. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL formu-
las. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290. Springer, Heidelberg
(1997)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

6. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component anal-
ysis in n log n symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

7. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms for
the verification of temporal properties. FMSD 1, 275–288 (1992)

8. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42,
857–907 (1995)

9. d’Amorim, M., Roşu, G.: Efficient monitoring of omega-languages. In: Etessami, K., Raja-
mani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg (2005)

10. Ben-David, S., Kupferman, O.: A framework for ranking vacuity results. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 148–162. Springer, Heidelberg (2013)

11. Ehlers, R., Finkbeiner, B.: Reactive safety. In: Proc. 2nd GANDALF. Electronic Proceedings
in TCS, vol. 54, pp. 178–191 (2011)

12. Emerson, E.A.: Alternative semantics for temporal logics. TCS 26, 121–130 (1983)
13. Fagin, R.: Probabilities in finite models. Journal of Symb. Logic 41(1), 50–58 (1976)

14 O. Kupferman

14. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)

15. Gale, D., Stewart, F.M.: Infinite games of perfect information. Ann. Math. Studies 28,
245–266 (1953)

16. Greimel, K., Bloem, R., Jobstmann, B., Vardi, M.: Open implication. In: Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 361–372. Springer, Heidelberg (2008)

17. Gumm, H.P.: Another glance at the Alpern-Schneider characterization of safety and liveness
in concurrent executions. IPL 47, 291–294 (1993)

18. Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of reactive programs. In:
ICECCS, pp. 3–12 (2012)

19. Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and Models of
Concurrent Systems, NATO ASI, vol. F-13, pp. 477–498. Springer (1985)

20. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)

21. Kupferman, O., Lustig, Y., Vardi, M.Y.: On locally checkable properties. In: Hermann, M.,
Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 302–316. Springer, Heidel-
berg (2006)

22. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs, N., Peled,
D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg (1999)

23. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. FMSD 19(3), 291–314
(2001)

24. Kupferman, O., Vardi, M.Y.: On bounded specifications. In: Nieuwenhuis, R., Voronkov, A.
(eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer, Heidelberg (2001)

25. Kupferman, O., Weiner, S.: Environment-friendly safety. In: Biere, A., Nahir, A., Vos, T.
(eds.) HVC 2012. LNCS, vol. 7857, pp. 227–242. Springer, Heidelberg (2013)

26. Lamport, L.: Logical foundation. In: Alford, M.W., Hommel, G., Schneider, F.B., Ansart,
J.P., Lamport, L., Mullery, G.P., Zhou, T.H. (eds.) Distributed Systems. LNCS, vol. 190,
pp. 19–30. Springer, Heidelberg (1985)

27. Manna, Z., Pnueli, A.: he anchored version of the temporal framework. In: de Bakker, J.W.,
de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency. LNCS, vol. 354, pp. 201–284. Springer, Heidelberg
(1989)

28. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer (1992)

29. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Safety.
Springer (1995)

30. Pnueli, A.: The temporal semantics of concurrent programs. TCS 13, 45–60 (1981)
31. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–

190 (1989)
32. Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification. In: Emerson,

E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 328–343. Springer, Heidelberg
(2000)

33. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6,
495–511 (1994)

34. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic. Journal of
the ACM 32, 733–749 (1985)

35. Touati, H.J., Brayton, R.K., Kurshan, R.: Testing language containment for ω-automata using
BDD’s. I & C 118(1), 101–109 (1995)

36. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I & C 115(1), 1–37 (1994)

	Variations on Safety
	1 Introduction
	2 Preliminaries
	3 Interesting Fragments
	3.1 Clopen Properties
	3.2 Checkable Properties

	4 Safety in a Reactive Setting
	4.1 Definitions
	4.2 Properties of Reactive Safety

	5 A Spectrum between Safety and Co-safety
	5.1 The Probabilistic Setting

	References

