Chapter 6

Sparse Representation for Image
Super-Resolution

Xian-Hua Han and Yen-Wei Chen

Abstract. This chapter concentrates the problem of recovery a high-resolution (HR)
image from a single low-resolution input image. Recent research proposed to deal
with the image super-resolution problem with sparse coding, which is based on
the well reconstruction of any local image patch by a sparse linear combination of
an appropriately chosen over-complete dictionary. Therein the chosen LR (Low-
resolution) and HR (High-resolution) dictionaries have to be exactly corresponding
for well reconstructing the local image patterns. However, the conventional sparse
coding based image super-resolution usually achieves a global dictionary D=[Dy;
D, ] by jointly training the concatenated LR and HR local image patches, and then
reconstruct the LR and HR image as a linear combination of the separated D; and
Dy,. This strategy only can achieve the global minimum reconstructing error of LR
and HR local patches, and usually cannot obtain the exactly corresponding LR and
HR dictionaries. In addition, the accurate coefficients for reconstructing the HR
image patch using HR dictionary Dy, are also unable to be estimated using only
the LR input and the LR dictionary D;. Therefore, this paper proposes to firstly
learn the HR dictionary D;, from the features of the training HR local patches,
and then propagates the HR dictionary to the LR one, called as HR2LR dictionary
propagation, by mathematical proving and statistical analysis. The effectiveness of
the proposed HR2LR dictionary propagation in sparse coding for super-resolution
is demonstrated by comparison with the conventional super-resolution approaches
such as sparse coding and interpolation.

1 Introduction

Sparse signal representation[1-8] has been proven to be a greatly powerful algo-
rithm for coding, representing, and compressing high-dimensional signals. It is well
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known that the important properties of signals such as audio and images have nat-
urally sparse representations with respect to fixed basis (i.e., Fourier, Wavelet), or
concatenations of such basis. However, the Fourier, Wavelet basis etc. are mathe-
matically fixed, and universal to any signal, and then cannot be adaptive to the pro-
cessed signal. Therefore, researches on adaptively learning basis from the processed
signals are actively taken on since 1990’s. The most popular strategies for achiev-
ing adaptive basis to represent data mainly include Principle Component Analysis
(PCA)[9-10], Independent Component Analysis (ICA)[11-14] and so on. PCA is a
mathematical procedure that learns an orthogonal transformation from the proposed
signal to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. ICA [14-17]
is a method to find a linear nonorthogonal coordinate system in any multivariate
data. The directions of the axes in this ICA coordinate system are determined by not
only the second but also higher order statistics of the original data, unlike the prin-
ciple component analysis (PCA), which considers only the second order statistics
and can only deal with the variables that have Gaussian distributions. In computer
vision, it is more preferable to extract the source signals produced by independent
causes or obtained from different sensors; such signals are easily solved using ICA.
These two classical adaptive base-learning strategies (PCA and ICA based) usually
only produce non-overcomplete (the number of basis equals or is less than the di-
mension of the processed signal) basis, and then require to use all the learned basis
for well representing the observed signal. In the other hand, understand processes in
retina and primary visual cortex (V1) of human being [18] has been elucidated that
early visual processes compress input into a more efficient form by activating only
a few receptive fields in millions, which in mathematical theory can transfer this
mechanism into sparse coding by learning an over-complete basis and only using a
few of basis (sparsity) to represent the observed signal.

Thanks to the success of sparse coding strategy on representing, compressing
high-dimensional signal, it is widely applied to pattern recognition, computer vi-
sion, image representation and so on, and has been proven its powerful advantage
over conventional adaptive basis learning approaches such as PCA and ICA. Given
only unlabeled input data in sparse coding, it learns basis functions that capture
higher-level features in the data. When sparse coding is applied for natural image
representation, the learned basis resemble the receptive fields of neurons in the vi-
sual cortex [1, 2]; in addition, sparse coding can also produce localized basis when
applied to other natural stimuli such as speech and video [3, 4]. Different to the con-
ventional unsupervised learning techniques such as PCA, sparse coding can learn
overcomplete basis sets, in which the number of basis is larger than the dimensional-
ity of the feature space. In order to learn the adaptive basis functions and achieve the
sparse coefficients from the observed data, we use the popular strategy: the K-SVD
algorithm [6, 19], a generalized algorithm from the K-Means clustering process.
K-SVD is an iterative method that alternates between sparse coefficient calculation
(sparse coding) of the observed signal based on the current dictionary, and a process
of updating the dictionary atoms to better represent the data. The update of the dic-
tionary columns is combined with an update of the sparse representations, thereby



6 Sparse Representation for Image Super-Resolution 125

accelerating convergence. Furthermore, the K-SVD algorithm is flexible and can
work with any pursuit method (e.g., basis pursuit, matching pursuit) for achieving
adaptive basis and sparse coefficients. In this chapter, we use K-SVD and orthogo-
nal matching pursuit (OMP) [20-23]- a smart improved version of matching pursuit
[24-27] for dictionary updating and sparse coefficient calculation, and then apply
the sparse representation for image super-resolution.

Super-Resolution (SR) is to generate a high resolution image from one or more
low resolution input images. The super-resolution techniques are recently becom-
ing a hot research topic due to many demanding applications such as biometric
identification [27-28], medical imaging [29-30], remote sensing [31-32], etc.. There
are mainly two types of super-resolution frameworks: the multiple-image super-
resolution, which has several available low-resolution images with sub-pixel trans-
lation and rotation; and the single-image super-resolution, which has only one LR
image. In this chapter, we focus on image super-resolution for a single image using
the learning-based method, which can recover the lost information in LR images
by exploring the co-occurrence prior between lots of available existing LR and HR
image patches. The basic idea of learning-based super-resolution is to deduce the
lost information by learning from training samples, which comprise HR and LR
image pairs. In [33], Freeman et al. proposed an example-based super-resolution
method to infer the HR images by the corresponding relationship of the prepared
training HR and LR images pair, whose LR one is most similar to the input LR one.
Stephenson extended this approach to predict the HR image from the LR one us-
ing Markov Random Field (MRF) solved by belief propagation [34]. However, the
above methods typically require a huge amount of HR and LR training patch pair
as prepared database, which makes ineffectiveness and un-efficiency for generating
a HR image from the LR one. In [35], Locally Linear Embedding (LLE) [36] as a
famous manifold learning was adopted to reconstruct the HR image patch as a linear
combination of the training HR ones by mapping the local geometry of the LR space
to the HR one, assuming similarity between two manifolds in the HR and LR patch
spaces. With this strategy, more patch patterns can be represented using a moder-
ate amount of training database, but usually results in blurring effect using the linear
combination of the nearest K raw neighborhood patches due to the large variation of
raw image patches. Then, Yang etc. [37-38] proposed to learn a structural dictionary
using sparse coding, which can well reconstruct any image patch as a linear com-
bination of several similar structural atoms in the learned dictionary. However, the
conventional sparse coding based image super-resolution usually achieves a global
dictionary D=[D;; D;,] by jointly training the concatenated LR and HR local im-
age patches, and then reconstruct the LR and HR image as a linear combination
of the separated D; and Dy,. This strategy only can achieve the global minimum
reconstructing error of LR and HR local patches, and usually cannot obtain the ex-
actly corresponding LR and HR dictionaries. In addition, the accurate coefficients
for reconstructing the HR image patch using HR dictionary Dy, are also unable to be
estimated using only the LR input and the LR dictionary D;. Therefore, this chap-
ter proposes to firstly learn the HR dictionary Dy, from the features of the training
HR local patches, and then propagates the HR dictionary to the LR one, called as
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HR2LR dictionary propagation, by mathematical proving and statistical analysis.
The effectiveness of the proposed HR2LR dictionary propagation in sparse coding
for super-resolution is demonstrated by comparison with the conventional super-
resolution approaches such as sparse coding and LLE. Furthermore, we validate
that the proposed algorithm is robust to noisy for generating the HR image from a
noisy LR image.

The remaining parts of this chapter are organized as follows. We introduce the
basic sparse coding for image representation in Sec. 2, and give a detail descriptors
of the SC-based image super-resolution in Sec. 3. Sec. 4 describes the used LR and
HR features for learning procedure, and explores the relationship between the used
LR and HR features. The proposed HR2LR dictionary propagation strategy in sparse
coding is given in Sec. 5, and experimental results are shown in Sec. 6. Finally, we
conclude and summarize in Sec. 7.

2 Sparse Coding

In statistical analysis of image representation, recent works [39-40] show that any
image local patch can be represented by a sparse linear combination of the atoms in
an over-complete dictionary. Assuming D € R"*¥ be an over-complete dictionary
of K prototype atoms by statistical learning from some reshaped image patches,
a reshaped vector x from one image patch can be written as x = Dayg, where
ap € RE is a vector with very few (< K ) nonzero entries.

Problem Formulation: Suppose that there are N data samples {y; € R" : i =
1,2,---, N} of dimension n, and the collection of these N samples forms an n-by-
N data matrix Y = (y1,y2, - ,yn) with each column as one sample vector. The
goal is to construct a representative dictionary for Y in the form of an n-by-K ma-
trix D = (dy,ds, - -+ ,dg), which consists of K (usually X' <« N and K > n) key
features {d; € R" : i =1,2,--- , K} extracted from Y. In the dictionary context,
d; is also called an atom that represents one prototype feature for well-representing
any input data. This dictionary D needs to be trained from Y, and should be capable
to sparsely represent all the samples in Y. In other words, we want to find a dic-
tionary D and corresponding coefficient matrix A = (a1, a9, -+, ay) € REXN
such that y; = Day; and ||o;]jo < K foralli = 1,2,---, N. This can be intuitively
formulated as the following minimization problem:

win [y — Deslly st [aillo < T (1)

where 7' is the predefined threshold which controls the sparseness of the represen-
tation and || e || denotes the [y norm which counts the number of non-zero element
in the vector. The equation can also alternately be formulated as:

n

gﬁ{g;”aiHo st. |yi—Daill2 <e 2
-
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where € > 0 is the predefined tolerance of representation error. The solution (D, X))
of Eq. 3 yields a dictionary D which extracts the representative features {d; € R" :
i=1,2,---, K} from samples in Y and a coefficient matrix A with each column
a; representing the similarity between the sample y; and the dictionary atoms in D.

Since the optimization problem in Eq. 2 is NP-hard in general, recent results sug-
gest that several algorithms are able to be used for well approximating the solutions
of Eq. 3 [39-40]. In this chapter, we use the recently developed K-SVD algorithm
, which has proved to be very robust to solve Eq. 2, by iterating exact K times of
Singular Value Decomposition (SVD). With an initial dictionary, K-SVD algorithm
solves Eq. 2 by alternating the following two steps: the minimization with respect
to A with the fixed D, and atoms updating in D using the current A. The formu-
late of the first step is same to Eq. 2 with the fixed D, called the “’sparse coding”,
which can be approximated by the orthogonal matching pursuit (OMP) [41]. in the
following subsection, we will introduce how to calculate sparse coefficient using
OMP strategy with initially selected dictionary, and update the dictionary D using
K-SVD with the calculated sparse coefficients in the previous step.

2.1 Orthogonal Matching Pursuit

OMP is an extended orthogonal version of matching pursuit (MP), which is a type
of numerical technique which involves finding the “’best matching” projections of
multidimensional data onto an over-complete dictionary D. The OMP algorithm at-
tempts to achieve the projected coefficients of the selected best basis vectors (atoms)
iteratively to minimize the representation error, where the main difference from MP
is that after every step, all the coefficients extracted so far are updated, by computing
the orthogonal projection of the signal onto the set of selected atoms. Let y denotes
an observed signal, and D denotes the fixed dictionary, the OMP algorithm attempts
to find the sparse code vector « in four steps:

Step 1. Initialize the residual ro = y, and initialize the selected dictionary D’ =
¢ and the corresponding coefficients ag(D’) = ¢. Let iteration counter ¢ = 1, and
the dictionary candidate D(D;) = D, from which one best basis (atom) is needed
to be selected in following.

Step 2. Project the residual vector r; to the dictionary candidate D;, and find the
atom with the maximum projection value:

d < max D;r; (3)
Delete d from the dictionary candidate D;, and add it to the selected dictionary

D’ =[D’,d].
Step 3. Update the coefficients o; <= D}?y using the following equation:

a;(D) = min [ly — Djay (4)

Step 4. Update the residual r; = y — D, ;.
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The stop rule for OMP algorithm can be tuned to solve for either of the problem
defined in Eq. 1, which iterates the step 2~4 T times and Eq. 2, which would quit
the iteration when ||r;||3 < e.

2.2 K-SVD Algorithm

As introduced in the above section, the sparse representation problem can be for-
mulated by either Eq. 1 or Eq. 2. Let’s assume the sparse representation problem
formulated as Eq. 1, and the goal is to train the adaptive dictionary D € R™K
and the corresponding sparse coefficients a € RX*N from the observed dataset
Y € R™N where n is the dimension of the observed signal, IV is the sample num-
ber, and K is the number of atoms or the dimension of the output sparse vector with
K >> n. We introduce the K-SVD algorithm for extracting the adaptive dictio-
nary D, which is flexible and works in conjunction with any pursuit algorithm. The
K-SVD algorithm is simply designed to be a truly direct generalization of the K-
means. When forced to work with one atom per signal, it can train a dictionary for
the gain-shape VQ. When forced to have a unit coefficient for this atom, it exactly
reproduces the K-means algorithm. We start our discussion with a description of the
K-means, and then derive the K-SVD algorithm as its direct extension.

A. K-means algorithm for vector quantization

K-means is to produce a codebook including codewords (representatives), which
is used to represent a wide family of observed vectors (signals) by nearest neigh-
bor assignment [42-48]. It can lead to efficient compression or description of those
observed signals as clusters in surrounding the chosen codewords. Generally, K-
means can be implemented based on the expectation maximization procedure, and
intuitively it can be extended to the fuzzy assignment using similarity between an
input signal and the codeword or normalized similarity by the covariance matrix
per each cluster, where that the signal are modeled as a mixture of Gaussians [49].
Let’s introduce the general K-means algorithm for learning the codebook matrix
(dictionary) D with the codeword being in the columns from a set of observation
signal Y. In k-means, a signal y; is represented as its closest codeword (under /-
norm distance), and then its coded vector «; include only one non-zero element
with value 1, and all others zeros. Therefore, the objective function is to minimize
the within-cluster sum of squares (WCSS):

N
argmoinz lly: — ;D
i=1
K &)
s.t.||evillpo = 1,20@ =1, foralli

j=1
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Table 1 K-means algorithm

Goal: Find the best possible codebook to represent the observed signals Y = {y;} ¥,

using nearest neighbor
argming 3,7, [lyi — D]
st =1, Zle aij =1, foralli
Initialization: initially the codebook D(®) ¢ R™*¥ by randomly selecting K samples.

Set iteration number t=1, and repeat until convergence
Sparse coding step: Assign the observed sample to one of K codewords, and K cluster set can be achieved

-1 -1 -1
(Cgt )7Cg )7”' 70% ))
where the sample y; index 7 in k cluster C,(:'_l) should satisfies the following condition:

Ci Y = (i | Ve | yi = di o<l yi = di |12}
Codebook update step: Update the k' column d}, in the codebook by calculating the mean vector

in k" cluster:

) _ 1
d;” = |Ckl Zieck Yi
sett =t+1

where a = [a1, a9, -+, an] is the set of code vectors for the observed signal
set Y. The cardinality constraint ||c;||;0 = 1 means there will be only one non-zero
element in each code vector y;, which corresponds to the most sparsity representa-
tion for the observed signal. The summation constraint Zf{zl o;; = 1 imposes the
coding weight for y; is 1.

The K-means algorithm is generally implemented in an iterative strategy for de-
signing the optimal codebook for vector quantization [39]. In each iteration there
are two steps: one for assigning the observed signal to the codewords which can be
called as sparse coding step, and one for updating the codebook by calculating the
mean vector in each cluster, which can be considered as dictionary update. Table. 1
gives a more detailed description of these steps. The sparse coding step assumes a
known codebook D*~1) and computes the coded coefficient ai that minimizes the
representation error of Eq. (5). Similarly, the dictionary update step seeks an update
of D by minimizing Eq. (5) with a fixed o as known.

B. K-SVD: a generalized version of K-means

As introduced in the above, K-means algorithm quantize an observed signal to
a codeword by vector quantization (VQ), which means that only one codeword is
selected for representing the observed signal. The VQ strategy would results in a
lot of representation error especially for the samples in the boundary areas of clus-
ters. The sparse representation problem can be viewed as a generalization of the VQ
problem (Eq. (5)), in which each observed signal is represented by a linear combina-
tion of codewords, called dictionary elements (atoms) in sparse coding (SC). Then,
the coded coefficients vector is now allowed more than one nonzero entry, and these
can have arbitrary values. In SC, the cost function can be relaxed as Eq. (1) or Eq.
(2) mentioned in the Sec. 2.
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K-SVD is proposed to combine an approximation pursuit method to solve the
minimization problem of Eq. (1). First, with a initialized fixed dictionary D, a best
sparse coefficient matrix is solved using a pursuit method by minimizing Eq. (1),
called sparse coding step. With the calculated coefficient in sparse coding step, the
second step is performed to search for a better dictionary. This step updates one col-
umn at a time, fixing all columns D except one, dy,, which attempt to find the new
column dj, and the new values for its coefficients that best reduce the mean square
error (MSE). The process of updating only one column of at a time can lead to a
straightforward solution based on the singular value decomposition (SVD), and al-
lowing a change in the coefficient values while updating the dictionary columns ac-
celerates convergence, since the subsequent column updates will be based on more
relevant coefficients. Next we will give the detail description of K-SVD algorithm
for dictionary update. Assuming we have already extract the sparse coefficients in
an iteration step with an fixed dictionary in the preview step, let’s update only one
column dy, in the dictionary and the coefficients that correspond to it: the k*" row in
«, denoted as a’f% (not the ky;, column vector o in o). Then the objective function
can be rewritten as:

K
IY —Da? =Y = diagl?
i—1
=Y — Zdia% —diak|? 6)
itk
= ||Ex — drag|®

The above equation separates the error term into two parts: error when the atom
dy is not taken into account, and the error reduction due to its induction for repre-
sentation. This also decompose the matrix multiplication D« to the sum of K rank-1
matrices, among which K — 1 terms are assumed fixed, and the k" one if left for
updating. Then the problem of minimizing the total error thus boils down to finding
a rank-1 matrix which best approximates the error matrix E. Estimation of such a
matrix could simply be done by performing a singular value decomposition on Ey,
and using the largest singular value and its corresponding vector for this task. How-
ever, such a step will lead to an update of the coefficients: the row vector a’f% being
very likely to be filled, which would not be sparse any more. An intuitive remedy of
this problem is to form the matrix Ej, as the reconstruction error resembles, denoted
as B, of the observed signals which use the k! atom of the dictionary for re-
construction, since the reconstruction errors of the other samples do not any change
due to deleting the atom dg. Therefore, in order to achieve the updated atom dy,
and the sparse coefficient, SVD decomposition of E ;. can be directly conducted,
where Eigenvector of the largest Eigenvalue is used for updating the k' atom dj,
with only updating the coefficients which used the k*" atom so far. To implement,
we first identify all the observed signals that use the k" atom of the dictionary for
reconstruction. Then the total error term of Eq. 6 can be split into two terms, where
one term is the resulted error of representation of those signals due to the dj atom
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Table 2 K-SVD algorithm

Goal: Find the best dictionary to represent the observed signals Y = {y;},
as a linear sparse combination by solving
argming 327, [lyi — ciD||
s.t.|aillo < T, foralli
Initialization: initially the dictionary D(¥) € R™** with [ normalized column.

Set iteration number t=1. Repeat until convergence.
Sparse coding step: Using any pursuit method (such the OMP algorithm ) to calculate the sparse vector a;

for each sample y;, by solving the following Equation with the fixed dictionary D
argming, 32,7, [ly: — aiD|

S~t~H(1iHﬂ < To, i=1,2,---,N
Dictionary update step: For each atom (each column) in Dictionary D~ update it by,
- Obtaining the index set idz <= all non-zero indices of a’,‘.iz

or the sample indices that use the k' atom
- Calculating the reconstruction error E . of the sample with indices idz that use the k*" atom,

when remove the k*" atom
By =Y — i diak — deal

- Doing SVD decomposition on E- 1, update the k" atom dy, using the eigenvector with the largest Eigenvalue.
E.. =UAVT

- updating the coefficient vector a/f, using the first column of V multiplied with A(1,1).

sett=t+1

being removed, and the other is the un-varied reconstruction error of the observed
signals which do not use the k' atom for reconstruction. The reconstruction error
can be written as:

K
IY —Da® = |Y - ) diagl?
i=1

|E_k + Eqp — droy|

(N

where E_}, is the unchanged reconstruction error due to the deleting of the k'
atom, E_;, is the reconstruction error matrix with zero-vector for the observed sig-
nal without using the k' atom but some reconstruction residual for the ones with
using the £*" atom for representation. Let’s firstly remove the zero-vector from the
error matrix E j, and decompose it using SVD for achieving the Eigenvector of the
largest eigenvalue to update the k" atom, and the corresponding vector to update
the observed signals using the £*" atom. For all atoms, the procedure is iterated &
times for updating each atom. Therefore, this procedure for dictionary updating is
called "’K-SVD’ to parallel the name K-means. While K-means applies computa-
tions of means to update the codebook, K-SVD obtains the updated dictionary by
SVD computations, each determining one column. A detail description of the algo-
rithm is given in Table. 2. Fig. 1 shows some 2-dimensional 8#8 DCT basis, and the
learned K-SVD basis from some observed natural image patches.
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(b)

Fig. 1 Basis functions. (a) DCT basis; (b) the learned basis with K-SVD from the 8§*8 natural
image patches.

3 Sparse Coding Based Super-Resolution

The single-image super-resolution is to recover a high-resolution (HR) image X
from a observed low-resolution image Y, which is a blurred and downsampled ver-
sion of the HR one X:

Y =LHX (8)

where H represents a blurring (smooth) filter, and L is the sown-sampling operator.
The degradation model of the imaging procedure is shown in Fig. 2. In the learning-
based super-resolution, the lost information in any test LR image can be recovered
by learning using the corresponding relationship of the raw patches in the available
LR and HR images. With same philosophy, given any LR image patch y well re-
constructed by a sparse linear combination of an over-complete LR dictionary Dy,
the HR corresponding image patch y can also be approximated by the liner combi-
nation of corresponding HR dictionary D;, with the same sparse coefficients as the
following:

y = Djay, x =~ Dpag (&)

where g is a vector with very few (< K) nonzero entries. In the conventional
super-resolution using sparse coding, the image local patches are firstly recon-
structed by the sparse linear combination of the pre-learned dictionary, and then re-
move the artifacts in the recovered global HR images formed from the local patches
based on reconstruction constraints. Next, we will mainly introduce sparse repre-
sentation of image local patches for super-resolution.
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Image degradation process

Warping (F)
Bluring () [N ;

Decimation (D)

.

L Super-resolution process .
High quality image (X) Low quality image (Y)

Fig. 2 The degradation model of imaging procedure

Similar to the conventional learning-based super-resolution framework which is
shown in Fig. 2, the sparse coding based one also tries to infer the high-resolution
patch from each low-resolution image patch of the input. In the sparse representa-
tion of the image local patches, there are two dictionaries Dy, and D;, which are
trained to have the similar sparse representations for each high-resolution and low-
resolution image patch pair. Given any input low-resolution patch y, we can find a
sparse representation with respect to D;. The estimation of the corresponding high-
resolution patch x can also be reconstructed by the sparse combination of these
same coefficients but replacing D; with Dy,.

For sparse coding based super-resolution, the corresponding LR and HR dictio-
naries need to be learned from the training LR and HR image patches Y and X,
respectively. [37] modifies Eq. 3 as the following optimization formulation:

n
i , 4. ||Fy; — FDyoy|?2 <
pifin 4 2 lloille st [Py = FDias]l; < ex

(10)
||PX¢ — PDhaiH% S 1S5}

where I is a linear feature extraction operator, which is to provide a perceptually
meaningful constraint on how closely the coefficients o approximates the input
patch x;. In [38], The 1-order derivative operator are used for F. Sec. 3 will ex-
plore the choice of F' in our proposed HR2LR dictionary propagation. The P is
the operator for subtracting mean intensity of all pixels from the HR image patch.
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Upsample g
~ N

Down-sample

T

LR Image {4 )

o

HR Image

Fig. 4 The LR and HR feature extraction procedure

The constrained optimization (6) can be similarly reformulated as a jointly learning
procedure for D; and Dy, [38]:

n
min Y " [laiflo st [|§i - Daf3 < e (11)
DA i1

where D = [FD;; 3PDy,] and ¥ = [Fy;; BPx;]. The parameter /3 controls the
tradeoff between reconstructing the LR and HR patches. With any input LR image
patch x;, the sparse coefficient iy can be achieved with the learned LR dictionary
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D, and then, the corresponding HR patch can be estimated with the same coeffi-
cients oy and the learned HR dictionary D;,. However, The above jointly learning
procedure for D; and Dy, usually cannot achieve the accurate corresponding LR and
HR dictionaries, and the sparse coefficients are also approximated estimation with
only the available input LR feature F'y;. Therefore, the following section investi-
gates the corresponding LR and HR features for image patch representation, which
invokes the proposed HR2LR dictionary propagation for achieving the accurate cor-
responding LR and HR dictionaries.

4 Analysis of the Represented Features for Local Image Patches

In Eq. 5, some features are needed to be extracted for image representation. The
conventional sparse coding based super-resolution algorithm [37] uses the first or-
der derivative as F' in Eq. 5 for LR image representation, and the subtracted pixel
intensity from the mean of the HR patch as P. It is obvious that the used features
for LR and HR image patch have no accurate correspondence even after some pre-
normalization for removing scale variance [37]. As mentioned in Sec. 2, the low-
resolution image Y is a blurred and down-sampled version of the high-resolution
image X:Y = SHX with the blurring filter H and the down-sampling operator S.
The most intuitive method for achieve the same size version of X from Y is to use
up-sampling interpolation operator U: X = UY. Based on the interpolated version
X of Y, the lost information of the high-resolution X can be considered as X — X,
which is the used feature for the training HR image, and at the same time, also is the
estimated lost information of any LR input for achieving the HR one. The feature
extraction, as linear operator P, for the HR image can be formulated as:

PX=X-X=X_-UY=X-USHX (12)

In order to obtain the corresponding features of the LR image to those of the
HR one, we impose the blurring and down-sampling operatoron Y: Z = SHY,
which is same on X to produce Y, and then extract the LR feature by subtracting
the interpolated version Y = UZ from the LR image Y. Then the operator F for
extracting feature from the LR image can be formulated as:

FY=Y -Y=Y -UZ=Y -USHY (13)

The feature extraction procedures for the LR and HR image are shown in Fig.
3. From Eq. 7 and 8, it is obvious that the feature extractions for the LR and HR
images follow the same process, prospecting corresponding relation between F'Y
and PX. In addition, with Y = S H X being the blurred and down-sampled version
of the X, the transformation from PX and F'Y can be formulated as:

FY=Y-USHY =SHX —-USH(SHX)

= SH{X — USHX} = SH{PX} (9
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Fig. 5 The statistical analysis of the LR and HR images
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(a) Example atoms of the HR dictionary;
(b)Corresponding example atoms of the propagated LR dictionary from the HR one

(Factor=2);
I
(b)Corresponding example atoms of the propagated LR dictionary from the HR one

(Factor=4);

Fig. 6 Example atoms of the LR and HR dictionaries
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Fig. 7 The used example images for PSNR calculation

Therefore, the LR feature F'Y is also a blurred and down-sampled version from
the HR feature PX. This means that the un-downsampled version of the LR features
can be approximated by some suitable blurring version of the HR feature. If the HR
feature is blurred by some suitable low-pass filter, the smoothed version should have
high similarity with the un-downsampled version H{PX}, which can be obtained
by up-sampling the LR feature F'Y using interpolation. Next, we investigate the
similarity with PSNR (peak signal-to-noise ratio) between the interpolation version
Y of the LR images Y and the blurred version HX of the HR images X with
low-pass filter.

We use the Gaussian kernel as the low-pass filter H with different standard devi-
ation o = [0.7,0.8,- -+, 1.5], and utilize bilinear as the interpolation operator. The
used 9 example images are shown in Fig. 4, and the PSNR values between between



140 X.-H. Han and Y.-W. Chen

the interpolation version of the LR images and the blurred version of the HR image
with different o are shown in Fig. 5. It can be seen that the PSNR values of all im-
ages are larger than 40 with the largest one: more than 47 with about 1 or 1.1 o value
for expanding factor 2 (Fig. 5(a)), which means enough similarity and be difficult
for distinguish from subjective assessment; larger than 37 with the largest one: more
than 43 with about 2.1 or 2.3 ¢ value for expanding factor 4 (Fig. 5(b)). Based the
statistical analysis, we will introduce the proposed HR2LR dictionary propagation
approach of sparse coding for super-resolution.

5 HR2LR Dictionary Propagation of SC

SC based image super-resolution requires two corresponding dictionaries D; and
D, to be pre-learned for reconstructing the LR and HR image patches using the
sparse combination of their atoms. A given feature of a HR image patch x; is re-
constructed as a sparse combination of atoms taken from the HR dictionary Dy, as
follows:

K
xi~ Y oD, stlallo < L (15)
j=1

where L is a positive integer, meaning that the non-zero numbers of «; are less
than L. As analyzed in Section 3, the LR feature is a down-sampled version of the
corresponding HR feature, formulated as

K K
Yy = SHXZ ~ SHZO(Z]D?L = ZO‘Z][SHD%]
j=1 j=1
S-t-HaiHO < L

(16)

From Eq. 11, we conclude that the accurate corresponding LR dictionary can be
propagated by the mathematical transformation if the HR dictionary is available.
Because the corresponding HR and LR training images are available, we can first
learn the HR dictionary Dy, using SC strategy as follows:

n
gli%ZHaiHO st. |xi—Dpayll2 <e (17)
=1

With the HR dictionary Dj, obtained, the LR dictionary can then be simply prop-
agated using D; = SHDy,. In real applications, because of the boundary effects in
small image patches, the blurred version D,, of the HR dictionary Dy, which cor-
responds to the interpolated up-sampled version of the LR image, is used to obtain
the sparse coefficient of any LR image input y; as follows:

min ||allo st ||y — Dlat||§ <e

_ (18)
Uy — UDjay||3 = Uy — Dpoy|3 < e
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where U is the up-sampling operator, and Dy, is the blurred version of Dy, which in
turn is the approximation of the up-sampling of D;. With the obtained o, value for
sparse reconstruction of the LR input y,, the HR estimation can be reconstructed
with the same «a; but by replacing D; with D,. Figure 6 shows a learned HR dictio-
nary and the corresponding propagated LR dictionary for the magnification factors
2 and 4.

(@

Fig. 8 Comparison of HR images of a zebra, reconstructed by different methods (magnifica-
tion factor=2) with (a) the original HR image. Recovered images were obtained by (b) our
proposed method, (c) the conventional SC-based method, (d) the NE-based method, and (e)
the bicubic interpolation-based method.
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Fig. 9 Comparison of HR images of the zebra (magnification factor=4) reconstructed by dif-
ferent methods. (a) The Original HR zebra image and the HR recovered by (b) our proposed
method (RMSE: 14.84), (c) the conventional SC-based method (RMSE: 15.40), and (d) the
bicubic interpolation-based method (RMSE: 16.46).
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Fig. 10 Other examples of HR images (magnification factor=2 recovered by (a) our proposed
method, (b) the conventional SC-based method and (c) the bicubic interpolation method

Table 3 Comparison of the RMSE and PSNR for the zebra images in Fig. 8 recovered using
different SR methods

Evaluated measures RMSE PSNR

Our method 11.21 27.14

Conventional SC 11.71 26.76

NE-based method  15.13 23.97

Interpolation 13.58 25.47
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Fig. 11 The compared PSNRs of 14 test samples

6 Experiments

In our experiments, we magnified the LR input image by a factor of 2 or 4. We
first interpolated the LR input to the same size. In the interpolated LR image and
the corresponding HR image, we always use patches of size 12 x 12, with adjacent
patches overlapping by 3 pixels. The features were then extracted as shown in Fig.
4. For color images, we only applied the SR strategy to the illuminance component,
and the interpolated color components were used for reconstructing the HR final
color image. To propagate the HR dictionary to the LR one, we used a Gaussian
filter with a standard deviation o = 1.0 for magnification factor 2, and o = 2.0 for
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(a) (b)

(© @

Fig. 12 The recovered HR images with other state-the-art methods. (a) our method, (b)
Freedman’s method [?], (¢c) Genuine Fractals (a state-of-the-art commercial product), (d)
Glasner’s method [?].
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magnification factor 4, as shown in Fig. 6. Fig. 8 shows the HR images of the ze-
bra recovered by our proposed strategy, the conventional SC-based [37], NE-based
[35] and interpolation-based methods for magnification factor 2. Figure 9 shows
a section of the HR images of the zebra (magnification factor 4) reconstructed by
our proposed algorithm and by the conventional SC-based and interpolation-based
methods. Figures 4 and 5 demonstrate that the proposed HR2LR dictionary propa-
gation method in SC can yield much clearer HR images than yielded by the conven-
tional SC-based, NE-based, and interpolation-based methods. We also evaluate the
quantitative quality of the recovered HR images in Figs. 4 using root mean square
error (RMSE) and the peak signal-to-noise ratio (PSNR) in Table 3. Figure 10 com-
pares the reconstructed HR images derived from other LR inputs using our proposed
strategy, the conventional SC-based and bicubic-interpolation-based methods. Here
again, our proposed approach yields great clarity. In addition, in Fig. 11, we show
the compared PSNR of the recovered HR images for other 14 test samples, which
obviously validate most test images by our method can achieve better PSNR than the
conventional SC-based method except for a similar PSNR for one sample. In order
to validate effectiveness of the proposed strategy compared with other the state-of-
the-art method [50-51], we also use the recovered HR images with expand factor 3
in Fig. 12. It is obvious that the recovered HR image is much better than the ones
by Glasner’s method [50], and has similar performance visually but sharper in some
detail regions compared with Freedman’s work [51].

7 Conclusions

This chapter introduces the sparse signal representation, and a popular implementa-
tion: K-SVD algorithm combining orthogonal matching pursuit (OMP) for learning
the adaptive dictionary and achieving the sparse coefficients. OMP is an extended or-
thogonal version of matching pursuit (MP), which is a type of numerical technique
which involves finding the “best matching” projections of multidimensional data
onto an over-complete dictionary D, and can be combined into the K-SVD strategy
for achieving sparse representation and the best adaptive dictionary. K-SVD is pop-
ularly used for solving the optimization problem in sparse coding. The procedure of
K-SVD mainly include two steps: first, with a initialized fixed dictionary D, a best
sparse coefficient matrix is solved using a pursuit method, called sparse coding step.
With the calculated coefficient in sparse coding step is achieved, the second step is
performed to search for a better dictionary. This step updates one column at a time,
fixing all columns D in except one, dj, which attempt to find the new column dj
and the new values for its coefficients that best reduce the MSE.

Next, we apply the sparse representation for learning-based image super-resolution
for recovering the high-resolution image from only single LR one. Based on the cou-
ple dictionary learning for super-resolution, we proposed a HR2LR dictionary propa-
gation algorithm in SC for image super-resolution. Conventional SC-based image SR
usually yields a global dictionary D=[D;; D] by jointly training the concatenated
LR and HR local image patches and then reconstructing the LR and HR images as
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sparse combinations of atoms taken from D; and Dy,. This strategy can only achieve
the global minimum reconstruction error of LR and HR local patches, and cannot
usually obtain exactly corresponding LR and HR dictionaries. In addition, accurate-
coefficients for reconstructing the HR image patch using D}, cannot be estimated us-
ing only the LR input and the D;. This chapter proposes an algorithm called HR2LR
dictionary propagation that involves learning the HR dictionary Dy, from the features
of the HR training local patches and then propagating the HR dictionary to the LR
one by mathematical proofs and statistical analysis. The experimental results for im-
age SR demonstrate that the proposed HR2LR dictionary propagation yields much
clearer HR images than those obtained using conventional SR approaches such as
those based on SC, NE and bicubic interpolation.
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DCT Discrete Cosine Transform

HR High-Resolution

ICA Independent Component Analysis
K-SVD K-Singular Value Decomposition
LEE Locally Linear Embedding

LR Low-Resolution

MP  Matching Pursuit

MSE Mean Square Error

MRF Markov Random Field

NE Neighborhood Embedding

OMP Orthogonal Matching Pursuit
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PCA Principle Component Analysis
PSNR Peak Signal-to-Noise Ratio
RMSE Root Mean Square Error

SC  Sparse Coding

PSNR Super-Resolution

RMSE Singular Value Decomposition
VQ Vector Quantization

WCSSR Within Cluster Sum of Squares
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