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Foreword

The book is devoted to the contemporary methods for pattern recognition, based on
the use of the lower-dimensional feature subspace. The actuality of this scientific
area is indisputable and is defined by the impetuous development of the information
theories and the huge amounts of visual data, which have to be processed and an-
alyzed. The large challenge for the pattern recognition systems is the necessity of
efficient processing of multidimensional signals and images, obtained from various
sources, such as (for example), the EEG and ECG devices, traffic surveillance sys-
tems, systems for video control, admission systems, remote control systems, medi-
cal systems for image diagnostics, and systems for content-based retrieval in large
image databases. The book comprises 8 chapters, which present various new ap-
proaches aimed at solving some important problems in the theory of the pattern
recognition, related to the feature space reduction, and also many interesting appli-
cations in the pattern recognition area. Each chapter is a small monograph, which
represents the research of the authors in the corresponding area.

In the first chapter are presented and investigated new approaches, based on the
Active Shape Model (ASM) for face recognition. Here is also proposed the so-called
Point Distribution Model, used for the description of a set of landmarks, which
characterize the form of the recognized face. By using the landmarks alignment and
the Principal Component Analysis (PCA), is developed the multi-resolution gray-
level face profile, used for the image search. The presented modeling results prove
the improvement achieved, when compared to the classical ASM.

The second chapter is focused on one new approach for features space reduc-
tion through the conditional Statistical Shape Model (SSM), used in the medical
image analysis. In the chapter are given the advantages and the disadvantages of
this model, and are discussed its basic varieties: the non-conditional (NC-SSM),
the conventional conditional (C-SSM), and the relaxed conditional Statistical Shape
Model (RC-SSM). Here is also given a comparison among various SSM models,
used for the segmentation of computer tomography images. The obtained exper-
imental results for the evaluation of the shape of the segmented areas show, that
the models RC-SSM and RC-SSM-E (RC-SSM with integrated conditional features
error model) surpass C-SSM and NC-SSM.
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In the third chapter is offered feature extraction technique based on the method
for Independent Component Analysis (ICA), aimed at the classification of High-
resolution Remote Sensing Multispectral (MS) Images. The transform of the color
components R, G, B of the investigated 3-channel MS images into the corresponding
3 independent components IC1, IC2, and IC3 results in the obtaining of nonover-
lapping distributions in the ICA features space. The evaluation of the classification
results for the objects detected in the MS images through the K-means algorithm
shows higher accuracy for the ICA features space, compared to that, based on the
PCA.

In the fourth chapter is presented the so-called Generative learning method,
through which, on the basis of a small number of real images of traffic signs, ob-
tained from TV cameras, are generated many artificial images of these signs, which
have various degradations in respect to the originals. For the signs recognition is
used the subspace method. The presented framework is applicable for any traffic
sign by combining it with conventional traffic sign detection methods. The use of
the presented results is aimed at the driver support systems.

In the fifth chapter are presented two novel subspace analysis methods for face
recognition and image clustering tasks. One is a nonlinear subspace method ob-
tained by using an algebraic approach, and the other is a probabilistic subspace
analysis method derived from the topic model. The experiments on face recognition
and image clustering show that the proposed subspace analysis methods are resistant
in respect of faces variations, such as noise, pose, and lighting.

The sixth chapter is devoted to the problem for the restoration of the high-
resolution image from a single low-resolution input image, by using the sparse
signal representation, based on the combined K-SVD algorithm and the Orthogo-
nal Matching Pursuit (OMP) for learning the adaptive dictionary and achieving the
sparse coefficients. The OMP is an extended orthogonal version of matching pursuit,
which is a type of numerical technique which involves finding the ”best matching”
projections of multidimensional data onto an over-complete dictionary, and can be
combined into the K-SVD strategy for achieving sparse representation and the best
adaptive dictionary. The effectiveness of the proposed new dictionary propagation in
sparse coding for super-resolution is demonstrated by comparison with the conven-
tional super-resolution approaches such as sparse coding and bicubic interpolation.

The seventh chapter is a short tutorial on the sampling and recovery of continu
ously-defined sparse signals and its application to image feature extraction. To sam-
ple a signal at low frequency compared with its Nyquist frequency, the signal is
characterized using how frequently unknown parameters appear in its parametric
expression, instead of the classical frequency approach. The new frequency of the
parameter appearance is defined as the rate of innovation. In the chapter are analyzed
some example signals of this kind: a sequence of Diracs and piecewise polynomials,
and is also given the application of the proposed algorithm for object edge detection.

In the eighth chapter is developed the approach for human face representation
through so-called „tensorfaces“. Here is proposed the tensor-based subspace learn-
ing method (TSL) for synthesizing human multi-pose facial images from a single
two-dimensional (2D) image. The facial pose synthesis is applied to generate much
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required information for several applications, such as public security, facial cosme-
tology, etc. In the proposed TSL method, 2D multi-pose images in the database are
previously organized into a tensor form and a tensor decomposition technique is
applied to build the projection subspaces. The experimental results show the effec-
tiveness of proposed method for facial pose synthesis.

Each chapter comprises a theoretical part, followed by experimental results and
comparison with other similar techniques. The authors are researchers from different
universities and R&D centers in Japan, China, and USA. The book will be very
useful for university and PhD students, researchers and software developers, who
work in the area of the digital processing, analysis and recognition of signals and
images.

Prof. D. Sc. PhD. Roumen Kountchev
Technical University of Sofia

Bulgaria



Preface

With the fast development of internet and computer technologies, the amount of
available data is now rapidly increasing in our daily life. How to extract core in-
formation or useful features is an important issue. Subspace methods are widely
used for dimension reduction and feature extraction in pattern recognition. They
transform high dimensional data to a lower dimensional space (subspace), that fo-
cuses on the relevant information only. A lot of methods have been proposed for
data transformation, such as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) and so on. PCA is a linear transform that projects the
data into a new coordinate system (subspace) with bases where the data varies the
most, while ICA finds a linear representation of non-Gaussian data so that the com-
ponents are statistically independent, or as independent as possible. Kernel PCA
and Kernel ICA are modifications of the original PCA and ICA, facilitating nonlin-
ear transformations. A lot of other nonlinear subspace methods are also proposed in
the literature, such as ISOMAP, Locally Linear Embedding (LLE) and so on. Re-
cently, sparse coding and sparse sampling are hot topics in pattern recognition and
signal processing. For multidimensional data such as medical volumes, multi-view
facial images, tensor based subspace learning methods are also proposed, which are
based on a multi-linear algebra framework.

This book focuses on major trends and new techniques in subspace methods and
their applications in pattern recognition. There are eight chapters written by experts
in this book. The area of interest of the chapters covers a broad spectrum of subspace
learning methods with application to pattern recognition in intelligent environment.

Chapter 1 focuses on principal component analysis (PCA) and its application to
construct an active shape model of facial images. The variations of facial shape and
texture can be represented by a few leading edge modes. Through this model, image
interpretation can be formulated as a fitting problem.

Chapter 2 introduces a conditional statistical shape model, which is a valuable
subspace method in medical image analysis. During training of the model, the re-
lationship between the shape of the object of interest and a set of conditional fea-
tures is established. Subsequently, while analyzing an unseen image, a measured
condition is matched with this conditional distribution and then a subspace of the
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training data is marked as relevant and used for the desired reconstruction of the
object shape.

Chapter 3 focuses on independent component analysis (ICA) and its application
to classification of high-resolution remote sensing images. ICA tries to find a linear
representation of non-Gaussian data so that the components are statistically inde-
pendent, or as independent as possible. The three independent components are in
opponent-color model by which the responses of R, G and B cones are combined in
opponent fashions. This is consistent with the principle of many color systems.

Chapter 4 presents a training method for subspace construction from artificially
generated images for traffic sign recognition, which is one of the important tasks for
driver support systems. Conventional approaches used camera-captured images as
training data, which required exhaustive collection of captured samples. The gen-
erative learning method, instead, allows to obtain these training images based on a
small set of actual images.

Chapter 5 presents local structure preserving methods based on subspace anal-
ysis. Two novel subspace methods are proposed for face recognition and image
clustering tasks. The first is named Supervised Kernel Locality Preserving Projec-
tions (SKLPP) for face recognition tasks, in which geometric relations are preserved
according to prior class-label information and complex nonlinear variations of real
face images are represented by nonlinear kernel mapping. The second is a novel
probabilistic topic model for image clustering task, named Dual Local Consistency
Probabilistic Latent Semantic Analysis (DLC-PLSA). The proposed DLC-PLSA
model can learn an effective and robust mid-level representation in the latent se-
mantic space for image analysis.

Chapter 6 introduces the sparse signal representation, and a popular imple-
mentation: KSVD algorithm combining orthogonal matching pursuit (OMP) for
learning the adaptive dictionary and achieving the sparse coefficients. The sparse
representation is used for learning-based image super-resolution for recovering the
high-resolution image from only single low-resolution one. Based on the couple
dictionary learning for super-resolution, we proposed a HR2LR (high-resolution
to low-resolution) dictionary propagation algorithm in sparse coding for image
super-resolution.

Chapter 7 presents a technique for efficient sampling and recovery of continuously-
defined sparse signals that is known as sparse sampling. To sample a signal at low fre-
quency compared with its Nyquist frequency, the signal was characterized using how
frequently the unknown parameters appear in its parametric expression, instead of
the classical frequency. The new frequency of the parameter appearance was defined
as the rate of innovation. The chapter focused on two typical examples of signals with
finite rate of innovation: the sequence of Diracs and piecewise polynomials.

Chapter 8 presents a tensor-based subspace learning method (TSL) for synthe-
sizing human multi-pose facial images from a single two-dimensional image. In the
proposed TSL method, two-dimensional multi-pose images in the database are pre-
viously organized into a tensor form and a tensor decomposition technique is applied
to build projection subspaces. In synthesis processing, the input two-dimensional
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image is first projected into its corresponding projection subspace to get an identity
vector and then the identity vector is used to generate other novel pose images.

Although the above chapters do not make a complete coverage of the subspace
learning methods for pattern recognition, it provides a flavor of the important issues
and the benefits of applying subspace learning methods to pattern recognition.

We are grateful to the authors and reviewers for their contribution. We would like
to thank the editors of the Springer for hosting this book and for their advice during
the editorial process of the book.

January 2014 Yen-Wei Chen, Ritsumeikan University, Japan
Lakhmi Jain, University of Canberra, Australia
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Chapter 1 

Active Shape Model and Its Application  
to Face Alignment 

Huchuan Lu and Fan Yang 

Abstract. Active Shape Model (ASM) is a model-based method, which makes use 
of a prior model of what is expected in the image, and typically attempts to find the 
best match position between the model and the data in a new image. It has been 
successfully applied to many problems and we apply ASM to the face recognition. 
We represent all shapes with a set of landmarks to form a Point Distribution Model 
(PDM) respectively. After landmarks alignment and Principal Component 
Analysis, we construct gray-level profile for each landmark in all multi-resolution 
versions of a training image. In search procedure, we give the model’s position an 
initial estimate. We adopt a lot of improvements to the classical ASM, such as 
increasing the width of search profile to reduce the effect of noise, grouping 
landmarks to avoid mouth shape distort in the search procedure and altering the 
direction of search profile. 

1 Introduction 

The ultimate aim of machine vision is to make machines understand and respond to 
what they see, in typical such as applications in medical image interpretation, face 
recognition, and many other aspects. Practical applications need to be typically 
characterized by the ability to deal with complex and variable structures and images 
which contain noise and possibly incomplete evidence. Most extraordinary 
applications also include the challenges in image structure recovery and 
interpretation by automated systems. Therefore, it is necessary to develop models 
which can describe and label the expected structure of the image.  

                                                           
Huchuan Lu · Fan Yang 
School of Electronic and Information Engineering, Dalian University of Technology, China 

Fan Yang 
Department of Computer Science, University of Maryland, College Park, USA 
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Model-based methods offer effective solutions to the difficulties above. First of 
all, a prior knowledge of the problem is used to resolve the difficulties caused by 
structural complexity. Then we apply knowledge of the expected shapes of 
structures, their spatial relationships, and their grey-level appearance to interpret the 
desired images.  

To achieve this purpose, our task focuses on generating sufficiently complete 
models that produce authentic images of target objects. For instance, we need a face 
model capable of generating conformed images of any individual with changes in 
expressions or postures. Through this model, image interpretation can be 
formulated as a fitting problem: given a new image, the target object can be located 
by adjusting several parameters, which deform the model into a plausible object that 
closely approximates the object of interest in the unseen image. 

In actual applications, we usually need to deal with objects that possess a large 
variability in shape and appearance. This leads to the idea of deformable models, 
which maintain the essential characteristics of the class of objects and can be 
deformed to fit a range of examples. Such models have to possess two main 
characteristics.  

First, they should be general, which means that they should be capable of 
generating any plausible example of the class they represent. Second, and crucially, 
they should be target-oriented. They are only allowed to generate suitable shape. 
We obtain specific models of variable objects by knowledge of the way they vary. 

Model-based methods make use of a prior model with what is expected in the 
image, and typically attempt to find the best match position between the model and 
the data in a new image. One can measure whether the target is actually present after 
matching the model. 

This approach is a “top-down” strategy, and differs significantly from the 
“bottom-up” or “data-driven” methods. In the latter they examine the image data at 
a low level, looking for local structures such as edges or regions, which are 
assembled into groups in an attempt to identify objects of interest. Without a global 
model of the object of interest, this approach is difficult to realize and inclined to 
failure. Thus, a wide variety of model-based approaches have been proposed. For 
instance, a statistical approach is explored, in which a model is built by analyzing 
the statistical characteristics of a set of manually annotated images. It is possible to 
distinguish plausible variations from those that are not. One can interpret a new 
image by finding the best matching position of the model to the image data.  

The advantages of such a method are those [1]: 

1. It is widely applicable. The same algorithm can be applied to many different 
problems, only to collect different training images. 

2. Prior knowledge can be captured in the annotation procedure of the training 
images. 

3. The model not only gives a compact representation of allowable variation, but 
also is specific enough to avoid unacceptable shapes generated. 

4. The algorithm need make few prior assumptions about the objects being 
modeled, other than what it learns from the training set. For instance, there are no 
boundary smoothness parameters to be set. 
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Human faces can vary widely in size, shape and appearance due to changes in 
expression, perspective, and illumination. It makes it difficult to automatically 
identify and segment structures we are interested in. Thus, to interpret images of 
faces, a suitable model of appearance of faces is necessary. 

Then a model [2] will be introduced next, which requires a user to be able to label 
points called landmarks on each image of a training set. For instance, when building 
a model of the appearance of an eye in a face image, good landmarks would be the 
corners of the eye, as these would be easy to identify and mark in each image. 
Unfortunately, some things such as cells or simple organisms which exhibit large 
changes in shape are so amorphous that the model cannot be applied well, which is 
the limitations of this model. 

2 Statistical Shape Models 

The model described above is a statistical model, which is used to represent objects 
in images. We adopt a statistical approach. The face shape represented by 
annotating a set of feature points to define correspondence across the set varies 
across a range of images. Commonly the points are in two or three dimensions. 
Shape is usually defined as the position of points which is invariant under some 
transformation. In two or three dimensions, alignment of training shapes 
(translation, rotation and scaling) is usually considered. 

Our aim is to derive models which not only allow us to analyze new shapes, but 
also to synthesize shapes similar to those in a training set, which typically comes from 
manual annotation of a set of training images, though automatic or semi-automatic 
landmarking systems are being developed. By analyzing the variations in shape over 
the training set, a model is built to generalize this variation. The patterns of intensities 
are then analyzed to learn the ways in which the texture can vary. The final model is 
one capable of capturing and generalizing the statistical characteristics of training 
images, but it is also specific enough to generate face-like shape.  

How to build a shape model under a similarity transformation in an arbitrary 
d-dimensional space will be discussed below. Most illustrations will be given for 
two dimensional shapes under the similarity transformation with parameters of 
scaling, rotation and translation. 

However, it is not necessary that the dimensions are always in space. They can 
also be time or intensity in an image [1]. For instance 

1. 3D Shapes can either be composed of points in 3D space, or points in 2D with 
a time dimension. 

2. 2D Shapes can either be composed of points in 2D space, or one space and one 
time dimension. 

3. 1D Shapes can either be composed of points along a line, or intensity values 
sampled at particular positions in an image. 

There are numerous other possibilities. In each case a corresponding 
transformation must be defined. 
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2.1 Point Distribution Model 

As mentioned above, our aim is to build a model describing shapes and variations of 
an object. To make the model capable of capturing typical shape and typical 
variability, we collect a large amount of images of the object, which should cover 
all the types of variation we wish the model to represent. For instance, if we are only 
interested in frontal faces, we should include only frontal faces in the model. If, 
however, we want to model faces with different perspectives, the images we collect 
should contain people faces with a wide range of pose angles. Figure 1 shows some 
images of the training set. After choosing enough interesting images, we get a set of 
images, and name it training set. 
 

 

 

 

Fig. 1 Some images from the training set 

Labeling the Training Set 
To model a shape, we should represent it with a set of landmark points or 
landmarks. Good choices for landmarks are points which can be consistently 
located from one image to another. Each object must be annotated with landmarks 
defining the key facial features. Each landmark represents a particular part of the 
object or its boundary, and thus has a certain distribution in the image space. The 
procedure is called labeling the training set. It is important but in practice it may be 
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           Input face        Landmarks  Landmarks(connected)   Labeled face 

Fig. 2 Example of 103 landmarks defining facial features 

very time consuming, and semi-automatic or automatic method is being developed 
to aid the annotation. After this, we get a model called Point Distribution Model 
(PDM). Figure 2 shows a set of 103 landmarks used to labeling frontal faces. 

Some examples of shape obtained from the training set are illustrated in Figure 3. 

 

 

Fig. 3 PDM samples from the training images 

However, a significant issue should be paid attention before starting to place 
points on the images. We should decide on the number of landmark points that 
adequately represent the shape. The number of the landmarks depends on the 
complexity of shapes and the desired detail level. Adequate landmarks can show the 
overall shape and details that we need. The same number of landmarks should be 
placed on each image of the whole training set. Exact correspondence in the 
sequence of labeling a shape in one image and in another is also important. The 
location of the landmark point should be located as accurately as possible, since 
these locations will govern the resulting point variations and the intended PDM. If 
the labeling is incorrect, with a particular landmarks placed at different sites, the 
algorithm will result in failure in capturing the shape variability reliably. 
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It is important to choose the suitable locality to make landmark points represent 
the key features. Generally, there are three types of landmarks [3] as follow: 

1. Application-dependent landmarks, such as the center of an eye. 
2. Application-independent landmarks, such as the highest point of an object in a 

certain orientation. 
3. Landmarks interpolated from the above two type. 

The decisions on the number of landmarks and choices in the locality of them are 
both significant, and they could have a great impact on building model later. 
Supposing we have labeled each of the N images in the training set with n 
landmarks. Now we get a landmark set to represent the shape. For the ith image, we 

denote the jth landmark coordinate point by ( ,ij ijx y ). And the 2n element vector 

describing the n point of the ith image can be written as 

[ ]0 0 1 1 1 1, , , ,..., ,
T

i i i i i in inX x y x y x y− −=  (1) 

where1 i N≤ ≤ . As a result, we generate N such representative vectors from N 

training images. Before carrying out statistical analysis on those vectors, we should 

ensure that the shapes represented are in the same coordinate frame. 

Aligning the Training Set 
As mentioned above, in order to study the statistical characteristics of the 
coordinates of the landmark points, it is important that the shapes represented 
should be in a common coordinate frame. To achieve this, all the shapes must be 
aligned to each other to remove variation that could affect the statistical analysis 
result. The aligning can be done by scaling, rotating and translating the shapes of 
the training set to meet the requirement. The aim of alignment is to minimize a 
weighted sum of squares of distances between equivalent landmarks on different 
images. In other words, we wish to make points as close to the corresponding ones 
as possible. 

Procrustes analysis is the most popular method to align shapes into the same 
coordinate. The spirit of the algorithm is a weighted least-squares approach. By 
using this, the pose parameters needed to align one vector to another can be 
obtained. Given two vectors iX  and kX , we need to align iX  and kX , so we 

need to find the scaling value s , the rotation angle θ , and the value of translation 
in both dimensions ( ,x yt t ). 

A weighted diagonal matrix W is used to give points that are more stable over the 
set more significance. Stable point is defined as having less movements respect to 
other points in a shape. 

To calculate such weights we first calculate the distances between every pair of 
points in all the shapes. Then we calculate the variance of the distance between 
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every pair of points over all the shapes. Then for a specific point, the sum of the 
variances of the distances from this point to all others, would measure the instability 
of the point, we thus take the weight to be the inverse of this summation. 

Mathematically, let iklR  be the distance between the landmark points k and l in the 

ith shape. By denoting the variance of the distance between the landmark points k 
and l by 

klRV , we get the weight for the kth landmark 

11

0

n

k
l

klRw V
−−

=

 =  
 
  (2) 

where 0 1k n≤ ≤ −  and n is the number of landmark points. And the weighting 
matrix will then be the following diagonal matrix. 

1 1 2 2 1 1( , , , ,..., , )n nW diag w w w w w w− −=  (3) 

The following algorithm is an easy handling iterative approach to align the set of 
N shapes to each other [3]. 

1. Align each shape to one of the shapes, for instance, the first one or the mean 
shape. 

2. Calculate the mean shape from the aligned shape. 
3. Normalize the pose of the current mean shape. 
4. Realign the each shape with the normalized mean. 
5. If converged, stop the process, or else go to step 2 and repeat. 

When the shapes are not changing more than a pre-defined threshold after 
iteration, we can claim that the convergence is reached. 

The meaning of the normalization [4] is 

1. Scale the shape so that the distance between two points becomes a certain 
constant. 

2. Rotate the shape so that the line joining two pre-specified landmarks is 
directed in a certain direction. 

3. Translate the shape so that it becomes centered at a certain coordinate.  

Normalization is carried out in order to make sure the algorithm converges. 
Without this the mean shape may translate to expand or shrink indefinitely. 
Different approaches to alignment can produce different distributions of the aligned 
shapes, so we can choose other methods to satisfy various requirements. 

Figure 4 shows shapes before alignment and after alignment. We pick up three of 
the alignment results and carry out a comparison. In the figure, the green line and 
the blue line respectively represent shapes before and after alignment. We can see 
that the position of face shapes are more concentrated, so all the shapes are closer to 
each other.  
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Fig. 4 Examples of face shapes before and after alignment 

Statistical Model of Variation 
After alignment, N sets of vector iX  representing the images of training set now 

contain the new coordinate. These vectors form a distribution from which we can 
generate new examples similar to the original ones. Also, we can determine clearly 
whether a new shape produced by the model during search procedure is allowable 
or acceptable. 

We aim to build a parameterized model, which can generate new shapes with the 
formula ( )X M b= , where b is a vector of parameters of the model. If we can find  
the distribution of b, we can control to produce new shapes similar to those in the 
training set.  

Each vector is in a 2n-dimensional space. The N vectors representing the N 
aligned shapes will then map to a “cloud” of N landmarks in the same 
2n-dimensional space. Also, these N landmarks are contained within a region of this 
2n-dimentional space. This region is called the Allowable Shape Domain (ASD) 
[3], where every landmark in this region gives a shape that is similar to the other 
ones. We can use the Euclidean distance between two landmarks representing two 
shapes in the 2n-dimentional as a measure of similarity. 

However, a problem still exists. If the vector consists of too many elements, the 
computation complexity could increase significantly. It can be unacceptable in 
some particular situation. On the other hand, the majority of variations are 
determined by a few elements of the vector X . To deal with this, we can reduce the 
dimensionality of the data from 2n-D to a lower space. An effective approach is 
applying Principal Component Analysis (PCA) to the data. By doing this, we 
generate a new set called principal component. Each of that is a linear combination 
of the original variables. All the principal components are orthogonal to each other. 
The whole principal components form an orthogonal basis for the space of data. 
PCA allows us to use a model with fewer than 2n parameters instead of original 
data. So it reduces the computation complexity and more practical. The following is 
the detailed procedure. 
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1. X  represents the mean value of vector iX , and the derivation of each shape 

from the mean can be denoted by idX . Then we have 

1

1 N

i
i

X X
N =

=     (4) 

and 

i idX X X= −   (5) 

2. Calculate the 2 2n n× covariance matrix of the data, and write it as 

1

1
( )( )

1

N
T

i i
i

S X X X X
N =

= − −
−    (6) 

3. Calculate the eigenvectors and corresponding eigenvalues of S . 

  

 

Principal Component 1 

 

Principal Component 2 

 

Principal Component 3 

Fig. 5 The effect of the first three principal components (negative to positive) 



10 H. Lu and F. Yang 

 

The largest eigenvalue corresponding to the eigenvector derived from the 
covariance matrix describes the most significant shape variation within the training 
data set. The variance explained by each eigenvector is equal to the corresponding 
eigenvalue. And from the covariance matrix, we can see that the eigenvalues are in 
descending order, namely 1i iλ λ +≥ , thus the first eigenvalue is the largest one. 

Actually, most variation can be explained by a small number of the eigenvalue, i.e., 
t ( 2t n< ). It means that the 2n-D space can be approximated by a t-D space. That is 
dimension reduction. 

Figure 5 illustrates the effect of the first three principal components on the face 
shape changing. We can see that those principal components determine the most 
variations of face shapes. Thus, it is reasonable that only a few principal 
components are used for shape modeling. 

To obtain the suitable number of the eigenvalues, t, there is a simple approach for 
most of the practical applications. That is accumulating all the eigenvalues from the 
first one. When the sum of the first t eigenvalues explains a sufficient proportion of 
the total variance of the original data, the number t is found. Expressed 
mathematically 

1

t

i v T
i

f Vλ
=

≥  (7) 

where TV  is the total variance, T iV λ= . f defines the proportion of the total 

variance that we need. It usually ranges from 90% to 99%. 
Then we can approximate an example in the training set using the mean shape 

plus a weighted sum of the first t principal component like this 

X X Pb≈ +  (8) 

where ( )1 2, ,... tP p p p=  is the first t eigenvector matrix, and ( )1 2, ,... tb b b b=  is the 

weights vector. Transform the equation into the following form 

( )1
ib P X X−= −  (9) 

where b is derived from the eigenvalues. By changing the elements of b , we 

can vary the shape.  
But arbitrary b  could result in an unallowable shape. To avoid the problem, we 

can impose constrains on b . By giving limits, we can control the changing of shape 
in order to generate plausible shapes. Since the variance of b of the training set has a 
relationship with the eigenvalue λ . The typical limits are 

3 3i i ibλ λ− ≤ ≤  (10) 
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where iλ  is the eigenvalue corresponding to the ith eigenvector. A series of 

experiments has proved that the Gaussian assumption is a good approximation to 
the face shape distribution, provided the training set contains only modest 
viewpoint variation, as large viewpoint variation may introduce nonlinear changes 
into the shape so that the model can’t be applied well. 

2.2 Modeling Local Structure 

It is not enough to obtain only the statistical characteristics of the position of 
landmarks. In order to find desired movement and make a good estimation of model 
position during the image search and classification procedure, besides shape 
information, a model containing gray-level information of the images in the training 
set [1, 7, 8] should also be established. The core idea of the gray-level information 
modeling method is to collect pixels around each landmark and try to put the pixels’ 
gray information in a compact form so we can use it for image search. Generally, 
the region around the landmark can be considered, but for simplicity, we only use 
the points along the line passing through the landmark and perpendicular to the line 
connecting the landmark and its neighbors, as Figure 6 shows. 
 

 

Fig. 6 Sample along the line normal to the boundary 

  

Fig. 7 Samples of gray-level profile 
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For each landmark, we can sample k pixels on either side of the landmark along a 
profile (as Figure 7 shows). Then we obtain a gray-level profile of 2k+1 (include the 
landmark itself) length. We describe it by a vector g. To reduce the effect of global 
intensity changes, we do not use the actual vector g but use the normalized 
derivative instead. It reflects the change of gray-level along the profile. 

The gray-level profile of the jth landmark in the ith image is a vector of 2k+1 
element 

0 1 2 (2 1), ,..., ,
T

ij ij ij ij k ij kg g g g g + =    (11) 

And its differential form is of 2k length 

1 0 2 1 (2 1) 2, ,...,
T

ij ij ij ij ij ij k ij kdg g g g g g g+ = − − −   (12) 

The normalized form is 

2 1

0

ij
ij k

ijm
m

dg
y

dg
−

=

=


 
(13) 

Then the mean of the normalized derivative profiles of each landmark in the 

whole training set can be calculated, and for the jth landmark 

1

1 N

j ij
i

y y
N =

=   (14) 

The covariance matrix of the normalized derivative is given by 

1

1
( )( )

N
T

ij j ij j
i

jyC y y y y
N =

= − −  (15) 

The process above is carried out until all landmarks in the training images have 
their own normalized derivative profiles. We assume they have multivariate 
Gaussian distribution and calculate their mean jy  and covariance matrix 

jyC . 

Until now, we have built statistical models of the gray-level profile for all the 
landmarks in the training images. In the image searching step, we will use the 
profile for better search. 
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2.3 Multi-resolution Active Shape Model 

There exists a problem that how can we optimize the accuracy and the complexity 
of the algorithm. On one hand, we wish to choose as many pixels as possible to 
obtain enough gray information in order to fit the model well onto the new image. 
On the other hand, the length of the profile should not be too long; otherwise it may 
result in significant increasing of the computation complexity, which cannot be 
tolerant in practical applications. And if the search profile is long but the target 
point is close to the current position of the landmark then it will be more probable to 
move to a far away point and miss the target. 

Based on the analysis above, the algorithm is implemented in a multi-resolution 
approach [9], which is involved in searching firstly in a coarse image for remote 
points with large jumps and refining the location in a series of finer resolution 
images by limiting the jump to only close points. 

 

Fig. 8 Image pyramid 

The structure of multi-resolution images is like a pyramid, so we call it image 
pyramid. At the base of the pyramid it is the original image and the level is the 
lowest (level 0). The image in the higher level is formed by subsampling the former 
image then we obtain a lower resolution version of the image with half number of 
the pixels along each dimension. Subsequent levels are obtained by further 
subsampling (as Figure 8 shows) until each training image has its own pyramid. 

 

Fig. 9 Gaussian filter 



14 H. Lu and F. Yang 

 

The procedure of getting image pyramid is as follows [9, 10]. 

1. Smooth the original image with a Gaussian filter, which is linearly 
decomposed into two 1-5-8-5-1 convolutions as Figure 9 shows. The reason of 
using Gaussian filter is that jagged edge will be produced in the sub-image if we 
directly sample the original image without a filter, and it will go against the 
gray-level modeling of landmarks. 

2. Sub-sample the image every other pixel in each dimension. Then we get a new 
image of level 1, which is 1/4 of the original image. 

3. From level 1, repeat step 1 and step 2 to obtain the higher level of the pyramid. 
4. Until we have got the highest level pre-defined for all the training images, 

terminate the process. 

 

         Level 0            Level 1          Level 2             Level 3 

Fig. 10 An example of multi-resolution image 

 

      Level 0              Level 1              Level 2               Level 3 

Fig. 11 Multi-resolution gray-level profile 

The final result is shown in Figure 10. In this procedure we generate a 4-level 
pyramid. Level 0 is the original image, while higher level is the coarser image with 
low resolution. Such images with different resolution versions compose an image 
pyramid. 

During the training, we build statistical models of gray-level along profile 
through each landmark, at each level of the image pyramid. We usually use the 
same length in the gray profile, regardless of level. Since the pixels at level L are 
1 2L  times the size of those of the original image. During search we need only to 
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search n pixels either side of the current landmark in each level. Thus, at coarse 
level this will allow large movement and convergence can established quickly, 
whereas at finer resolution the amounts of the movement could be small. We can 
see that from Figure 11. 

During the search, we start our searching from the top level of the pyramid. In 
each image, the initial search position of the model is the search output of its upper 
level, until the lowest level is reached. We mainly consider when to stop searching 
at a level and move to the next level. We record the number of times that the best 
found pixel along a search profile is within the central 50% of the profile [7]. A 
convergence criterion is that a sufficient number of landmarks are reached. A 
constraint on iteration number can also be added to prevent the search getting stuck 
on one level.  

By applying the multi-resolution method on training images, we have improved 
the efficiency and robustness of the previous algorithm. 

3 Image Search Using Active Shape Model 

Till now, we have established a model with multi-resolution training images and 
gray-level information around the landmarks in each level of the image pyramid. 
Now, based on the model, we will locate a new example of the object in an image. 
The idea is: first giving the model an initial position through some prior knowledge; 
second, we examine landmarks and their neighbors along gray-level profile to find 
better location of landmarks; third, we update the pose and shape parameters with 
suitable constraints and move the model to the new location and produce a plausible 
shape. The fact that the shapes are modeled so that they can only vary in a 
controllable way by constraining the weights of the principal components explains 
why such model is named Active Shape model or ASM. 

We assume that an instance of an object is described as the mean shape obtained 
from the training set plus a weighted sum of the t principal components, with the 
possibility of this sum being scaled, rotated and translated. 

3.1 Initial Estimate  

For an unknown image, if we wish to find out a specific matching object, the first 
step is to give the model an initial position, which is obtained by prior knowledge 
and should not be too far away from the target object, as initial estimate of ASM. 
We can express the estimate iX  of the shape as a scaled, rotated and translated 

version of a shape lX . 

[ ]( , )i i i l iX M s X tθ= +  (16) 
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Where is , iθ and it  is respectively scale, rotation and translation parameters. 

, , , ,..., ,
T

i xi yi xi yi xi yit t t t t t t =   with a length of 2n. lX  can also be expressed as 

l lX X dX= + , with l ldX Pb= . lX  is mean shape of the model. 

( , )i i i l iX M s X Pb tθ  = + +   (17) 

3.2 Compute the Movements of Landmarks 

Putting iX  onto the image which we will search for the object, we can examine the 

gray-level information of the landmarks along the normal of the shape boundary for 
the strongest image edge, whose magnitude proportional to the strength of the edge. 
So we can find a new position of landmarks to make the model closer to the target 
object. 

 

Fig. 12 Search along the profile to find the best fit 

Denote the search profile of landmark j by jS , which is a vector generated by 

sampling m pixels either side of the current point, so its length is 2m+1. Obviously, 
we should make sure that m>k so the search profile can cover the model profile 
completely. For instance, m is 15 and k is 5. Put symbolically 

0 1 2 (2 1), ,..., ,
T

j j j j m j mS s s s s + =    (18) 

And the differential form of jS  is 

1 0 2 1 (2 1) 2, ,...,
T

j j j j j j m j mdS s s s s s s+ = − − −   (19) 
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The normalized form of jdS  is 

2 1

0

si m

jk
k

dS
y

dS
−

=

=


 
(20) 

The degree of similarity of the target object,
is

y , to the model jy  is given by 

( ) ( ( ) ) ( ( ) )T
j jf d h d y h d y= − −  (21) 

where ( )h d  is the sub-profile centered at the dth pixel of siy . jy  is mean value 

of gray-level information. Given a d, if ( )h d  is the most similar to jy , then the dth 

pixel is where the position that landmark j should be moved toward. ( )f d  is 
linearly related to the log of the probability to which ( )h d  observes, and 

( )h d shares the same probability distribution with jy . Minimizing ( )f d  is 

equivalent to maximizing the probability of ( )h d . 
Using the algorithm above, the best fit position for the landmark j can be found. 

For the shape iX , this process should be repeated to find a suggested new position 

for each landmark, so we get a position offset idX . Thus, we finally obtain an 

“ideal” shape '
i i iX X dX= + . 

Generally, '
iX  obtained through gray-level profile search is closer to the shape 

of the target object. Then we can adjust the pose parameters, namely scale, rotation 
and translation, to move the initial estimate as close as possible to the target object.  

But usually we do not update the iX  to '
iX  directly, because '

iX  maybe doesn’t 

satisfy the shape constraints and generate an unallowable shape.  
With this problem into consideration, the shape parameter b should also be 

updated to make iX  as close as possible to '
iX . Meanwhile, constraints should be 

imposed on b to ensure that '
iX  is a plausible shape. 

'(1 ), ,( , )i i i l i i
ds d dtX M s X Pb t Xθθ + = + + ⎯⎯⎯⎯⎯→   

or 

(1 ), ,( , )i i i l i i i
ds d dtX M s X Pb t X dXθθ + = + + ⎯⎯⎯⎯⎯→ +   

We can get the additional scale1 ds+ , rotation dθ  and translation ( ,x ydt dt ). But 

they just belong to the similarity transformation which won’t change the shape. 
There will remain residual adjustments which can only be satisfied by deforming 
the shape lX . 
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Compute ldb  by solving the following equation 

( (1 ), ) ( )i i l l i i iM s ds d X P b db t dt X dXθ θ  + + + + + + = +   (22) 

Let ( , )i i i l iX M s X Pb tθ  = + +  , we get 

( (1 ), ) ( ) ( , ) ( )i i l l i i l iM s ds d X P b db M s X Pb t dtθ θ θ   + + + + = + − +     (23) 

and since  

[ ] [ ]1 1( , ) ... ( , ) ...M s M sθ θ− −= −   (24) 

We obtain  

1(( (1 )) , ( )) ( , )T
l i i i i ldb P M s ds d M s X Pb dX dtθ θ θ−   = + − + + + −    (25) 

where ldb  is the parameter controlling the shape change. It determines to which 

degree that iX  is close to '
iX  with parameters , ,s tθ . 

Now, we have enough information to form a new shape estimate using the 
parameters above.  

(1) '( (1 ), )i i i l iX M s ds d X Pdb t dtθ θ  = + + + + +   (26) 

Then we start this procedure from (1)
iX  to produce (2)

iX , until there is no 

significant change of the shape. Parameters then can be updated, and we can also 
add weights to them 

xi xi t xt t w dt→ +  

yi yi t yt t w dt→ +  

(1 )i i ss s w ds→ +  

i i w dθθ θ θ→ +  

'
l l bb b W db→ +  

where tw , sw , wθ  are scalar, and bW  is a diagonal of weights. These 

weights are used to speed up the convergence and give the stable points more 
importance. It is important that constraints should always be imposed on b during 
the search in order to produce an allowable shape. 
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The procedure of searching for a target object in a new image can be summarized 
as follows 

1. Let [ ]( , )i i i l iX M s X tθ= +  be the initial estimate of the model in the new 

image, where l lX X Pb= + , and P contains the first t principal component. 

2. Use the gray-level profile of landmarks to search for the suggested movements 
of landmarks. By doing this, we can get a position offset idX  for each landmarks 

of the model. Then move the initial shape to a new plausible position i iX dX+ . 

3. Calculate the additional pose parameters , ,s tθ . 
4. Calculate the additional shape parameter dbl and notice that a suitable 

constraint should imposed on b to avoid unallowable shapes appear. 
5. Update the pose and shape parameters on iX  to obtain a new shape (1)

iX  

close to the target. Then use (1)
iX  as the estimate, repeat from step 2. 

6. Stop the iteration until no significant change is found. 

3.3 Example of Search 

This section will illustrate an example of image search using ASM algorithm. Given 
an image, we place the model near the human face. A coarse-fine search is carried out 
using the image pyramid. As we already have a 4-level pyramid, the search starts 
from level 4 of the pyramid, obtaining the approximate position of the model with 
large movements. When the pre-defined iteration number reached, the search moves 
to the lower level, aiming to find more subtle adjustment, until it reaches to level 0. 
The final convergence gives a good result. The procedure is shown in Figure 13. 

 
              Initial                  In search                Converged 

Fig. 13 Example of image search 

3.4 Application and Problems 

The basic idea of Active Shape Model is collecting the interesting images to form a 
training set, labeling landmarks, and obtaining the shape and gray information. For 
efficient and fast search, an image pyramid should also be generated. In the training 
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procedure, we represent the shape with weighted principal components, using PCA 
algorithm to reduce dimension of landmark set. In addition, we obtain a series of 
images with different resolution versions in the training set.  

When given a new image, we can use the model to search for the desired object. 
During the search, we use gray-level information to obtain the suggested 
movements of the model, also impose constraints on shape parameter b to generate 
allowable shapes and fit the model to the target object well.  

ASM is a geometry statistical model [13]. It analyzes a lot of shape information to 
obtain the corresponding mathematical model by statistical method. The model can 
cover contour subspace and texture subspace of training images, also has a strong 
discriminative power on the non-training objects. These characteristics make ASM 
has generality and specificity. Generality means that the model can cover various 
conditions. As to human face modeling, it means that the face model must consist of 
plenty of information on different people, different expressions and different poses. 
While pertinence means that in specific conditions, the model should only take the 
current object into consideration, and can distinguish illegal information from the 
current object. The reason that ASM outperforms other deformable model is that it 
only produces reasonable shape as the final segmentation result. 

 

                         Initial                 Converged 

Fig. 14 ASM failure (Model is too far away from the target.) 

 
                     Initial              Converged 

Fig. 15 ASM failure (Model is too small.) 
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However, the classical ASM is a local search technique [8]. It only uses 
relatively sparse local information around the landmarks. And it assumes that the 
information at each landmark is independence, which is not often the case. It 
usually suffers from the local minima problem during the search, which should be 
solved by advanced improvements. Figure 14 and Figure 15 demonstrates the ASM 
failing. In Figure 14, since the initial position of the model is too far away from the 
target object, and in Figure 15, the model is too small for the target face, ASM 
search has failed to locate the correct position of the target face. 

4 Improvements on Classical Active Shape Model 

Owing to the existing disadvantages of classical ASM, much related work has been 
done to improve it, which has achieved remarkable results. 

4.1 Constraint on b 

As mentioned above, the shape parameter b should be constrained in a suitable 
range to ensure an acceptable shape to be generated. Typically, the range of b is 
between 3 iλ−  and 3 iλ , where iλ  is the eigen value of the covariance matrix 

corresponding to the ith principal component. In practical applications, it may be not 
suitable, and results in shape distortion. In an image pyramid, because of 
subsampling, each dimension of the image on the Lth level is 1 2L of the original 

one. x and y coordinate of landmarks are also 1 2L . Therefore, all elements of the 
covariance matrix become 1 4L comparing to those in the original image. When 
applying PCA now, we obtain the eigen value with 1 4L  times of that on the level 
0. If we retain the constraint as 3 iλ± , that leads to an excessive broad limit. 

Therefore, a distort shape will be generated finally. 
To solve the problem, we must modify the range limit on b. In the lower level, 

the restriction should be relaxed, whereas it should be narrower in the higher level. 
Shown mathematically, in the level L, the constraint should be  

3 3
4 4

i i
iL L

b
λ λ

− ≤ ≤  (27) 

where iλ  is the eigenvalue of the covariance matrix of the ith principal 

component. According to the actual conditions, constraint could be stricter in order 
to get better search result over the higher level. 

Images in the high level are blurred due to subsampling. Thus, the main task of 
search in the high level is to determine the approximate position of model, while the 
specific deformation should be obtained by searching in the lower image.  



22 H. Lu and F. Yang 

 

4.2 Width of Search Profile 

In classical algorithm, search profile is only along a single line when searching for 
the suggested movements of landmarks. It could be affected largely by noises, 
which leads to inaccurate search result. To improve the anti-noise performance of 
the model, an improvement [14] is shown as follows. 

In Figure 16, 0p  is the current landmark, 1p  and 2p  are the nearest pixels on 

the boundary of 0p . Denote the search profile of 0p , 1p  and 2p  by '
0g , '

1g  and 
'
2g , where '

0g , '
1g  and '

2g  is acquired by the same method above. The following 

formula can be used for computing the search profile of 0p  . 

' ' '
0 1 0 20.25 0.5 0.25g g g g= + +  (28) 

 

Fig. 16 Search profile with width modification 

Then we use this 0g  as current gray-level search profile of landmark 0p  

instead of the former profile.  
By expanding the width of search profile, the effect of noises can be reduced in 

some degree. Thus, it can be used to improve the robustness of classical ASM. 

4.3 Landmarks Grouping 

In Active Shape Model, a new face shape can be linearly represented with a mean 
shape and some principal component shapes. In equation, it is X X Pb= +


. With 

the same Training set, mean shape X  and principal component P is constant. 
During searching, a new shape is constrained as a face shape by limiting the range 
of b. Most of the time, 3 3bλ λ≤− ≤ , where λ is the eigenvalue result of the 
principal component analysis.  
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Fig. 17 Mouth shape distort 

Some experiments have been done on observing each principal component’s 
effect on face shape’s variation. The result shows that some of the organic shape 
variation isn’t decided by a single principal component. For instance, the variety of 
mouth shape is primarily decided by the some certain components. In this situation, 
although range of b can be limited narrower, unexpected shape with distort mouth 
shape like Figure 17 will still appear in search procedure. This will lead to an 
inaccurate searching result. 

 

Fig. 18 Mouth shape landmarks 

To avoid this problem, a landmark grouping method is proposed [14]. Landmark 
points of the mouth shape in the face alignment system are shown as the example in 
Figure 18. 

There are 24 landmark points in total, from Number 60 to Number 83, which can 
be separated into 5 groups. These groups are:  

Group 1: [61, 73, 83, 71]. 
Group 2: [62, 74, 82, 70]. 
Group 3: [63, 75, 81, 69]. 
Group 4: [64, 76, 80, 68]. 
Group 5: [65, 77, 79, 67]. 

The following segment will explained with Group 1. In Group 1, the 61th 
landmark point is considered as Group_From, while the 71th landmark point as 
Group_To. In a proper shape, the right vertical order of these 4 landmark points is: 
61--73--83--71. Once the order is wrong, the shape of the mouth is distorted. So 
retaining the order of the group is necessary for getting a more accurate search 
result.  

In order to make sure that all landmark points in a group are located along a line, 
the normalized gray derivate will be calculated using the following method: 

1. For Group_From and Group_To in the group, the computation of normalized 
gray derivate is similar to a traditional one. 
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2. For the others like 73th and 83th in Group 1, landmark point will be vertically 
mapped on the line connecting Group_From and Group_To first. Then the 
normalized derivate will be calculated around the mapped point. (Figure 19) 

The mapping procedure is illuminated in Figure 16. Denote the group point 
as _1N , the mapped point of _1N on line formed by point G_From and G_To 

as _1'N , the slop of the line formed by G_From and G_To as 1s . The coordinate 

of _1N and G_From are 1 1( , )x y and 2 2( , )x y , the coordinate of _1'N  is ' '
1 1( , )x y , 

'
1

1

1
s

s

−= , Then we can get: 

'
' 1 1 1 2 2 1

'
1 1

( )
( )

s x s x y y
x

s s
× − × + −=

−
 (29) 

' '
1 1 1( )y y x x s= + − ×  (30) 

 

Fig. 19 Special group profile search 

Desired movement for a group should obey the following Rule: 

1. After calculating the desired movement, new coordinate for each landmark 
point will be got. In Group 1, they are: 61 61( , )x y , 73 73( , )x y , 83 83( , )x y , 71 71( , )x y . 

2. If 63 73 83 71( )y y y y≤ ≤ ≤ , then location of the landmark points in group 1 will 

be updated with the new coordinate. Otherwise, distort of mouth has appeared and 
update will not be done for landmark points in this group. That means all the 
landmark points in this group will stay at the old position. 

Figure 20 shows the search result with a better mouth shape using the group 
method. 

 

Fig. 20 Search result using landmarks grouping 
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4.4 Direction of Search Profile 

In the search iteration procedure of classical ASM, search profile is obtained by 
searching along a line passing through the landmark in question and perpendicular 
to the boundary formed by the landmark and its neighbors [4]. But for some of the 
landmark points in a face shape, the strongest profile doesn’t along the normal 
direction. Instead, it exists in some other directions. So using the search profile with 
same length is not appropriate. Owing to this, a more suitable search profile 
direction for each landmark point is used. We make a difference between 
inhomogeneous landmarks, by setting more suitable search direction according to 
the area where the landmark lies. So the search procedure will be more accurate and 
quicker. 

For most landmarks, the normal line passing through the point in the face contour 
contains the most abundant information and distinguishing characteristics. Whereas 
the traditional ASM sets the search profile’s direction along the line formed by the 
landmarks and one of its neighbors for convenience. But that should be modified. 
Instead, we use the normal of the line connecting the two nearest landmarks, which 
are located on both sides of current landmark respectively, and the normal line 
passes through the landmark. This improved search direction [14] can make the 
local gray-level profile of landmarks on the boundary more reasonable. 

Take the eyeball shape in a face for example. In traditional ASM the search 
profile’s direction of 29th landmark point is along the line perpendicular to the 
boundary formed by landmark point Number 28 and number 29 (shown with yellow 
line in Figure 21). In the improved algorithm, we set the search profile’s direction of 
number 29 along the line formed by 29th and 26th landmark points (shown with blue 
line in Figure 21), because the profile information along this line seems to be more 
abundant than the previous one. 

 

Fig. 21 Improvement on search direction 

4.5 Skin-Color Model  

In classical ASM, the local gray-level information around the landmarks is used for 
modeling. We also use it in calculating the suggested movements of landmarks 
during image search. Despite this, there is still a problem that should be considered. 

Human faces are usually affected by hair, ornament, race and light conditions. 
Such effect makes that the gray distribution in the same position may vary 
significantly, which leads to that some landmarks lose their significance. For 
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instance, the brightness of women’s hair is no obvious difference from the 
brightness of face areas; illumination can vary the intensity of faces largely. These 
conditions can greatly affect the modeling and applying ASM.  

Skin color is one of the features on human faces. Skin colors cluster in a small 
region in a color space [15]. Also their study shows that human skin colors differ 
more in intensity than in colors. At the same time, different skin color has a same 
2D Gaussian distribution model ( )2,G Mean Cov . 

In order to improve the performance of ASM based on gray-level information, 
we can use a skin color likelihood transformation method to make the profile focus 
more on the skin color. ASM using skin color likelihood transformation method is 
called Skin-ASM. 

The transformation method is composed of 3 steps: (1) color space translation; 
(2) likelihood calculation; (3) likelihood to gray image projection. 

Most color face images use a RGB representation; However, RGB is not 
necessarily the best color representation for characterizing skin-color [16]. Because 
tricolor not only represents color, but also represents intensity which may vary 
largely due to surrounding environments and other reasons. So we first translate 
RGB into a new color space that separate colors from intensity. In our model, we 
choose the YCrCb color space as the skin color representation space. Space 
translation formula is showed below: 

Y=0.299R+0.587G+0.114B 

Cb=0.169R+0.331G+0.500B 

Cr=0.500R+0.419G+0.081B 

Then we obtain new images in the YCrCb color space. 
The distribution of skin colors can be considered as a 2D Gaussian model 

2( , )G Mean Cov  [15]. So, we can calculate the likelihood value P between the pixel’s 
color value X and the mean skin color using equation: 

1( ( ) ( ))TX X C X XP e α −− − −=  (31) 

where ( , )T
r bX C C= is the color value of the pixel. ( , )T

r bX C C= is the mean 

matrix of skin color’s 2D Gaussian model. ( )( )TC E X X X X = − −  
 is the 

Covariance matrix of 2D Gaussian model. α  is a constant value between [0, 1]. 
The calculated result above is a probability value between [0, 1]. However, it 

cannot be displayed in grayscale. In step 3, we will project it into the value between 
[0, 255] as the gray level using the following equation. 

max

255ij
ij

P
g

P
= ∗  (32) 
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where max maxP  is the maximum likelihood value of all the pixels in an image. 

We choose several representative images and get their skin color likelihood 
transformation results as Figure 22 shows. The gray distribution of human faces 
becomes more concentrated, also has less relationship with race and illumination. 
Comparing with original gray level image, the skin likelihood image has more 
abundant contour information, especially in eyes and mouth. Therefore, it is more 
reliable for ASM modeling.  

 

   

   
            (a) color image    (b) gray image  (c) skin likely image 

Fig. 22 Comparisons of color image, gray image and skin likely image 

5 Related Work 

Besides the improvements we discussed above, other research [17-19] is devoted to 
improve the performance of classical ASM. Van Ginneken et al. [20] proposed a 
non-linear gray-level appearance model to improve ASM, which is called Active 
Shape Model with optimal features (OF-ASM). It uses a non-linear kNN-classifier 
instead of sampling along the normal to the object boundary. For each landmark a 
square grid of N×N points is defined with n grid an odd integer and the landmark 
point at the center of the grid with weight imposed on each neighbor point. Features 
are extracted by taking the first few moments of the local distribution of image 
intensities around each location, selected by using the training image and sequential 
feature forward and backward selection. In the search procedure, using a suitable 
measurement, the optimal feature set is fed into a kNN classifier to determine the 
probability that the pixel is inside or outside the target object. It outperforms 
traditional ASM but is computationally expensive. Based on OF-ASM, Ordas et al. 
[21] proposed an extension to the non-linear appearance approach, incorporating a 
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reduced set of differential invariant features as local image descriptors. The new 
method is Active Shape Models with invariant optimal features (IOF-ASM). It is 
invariant to Euclidean transformations given that only Cartesian differential 
Euclidean invariants are chosen as local image descriptors. These improvements are 
used in medical image segmentation. 

Yan et al. [22] proposed a Texture-Constrained Active Shape Model (TC-ASM). 
It inherits the local appearance model in ASM for the robustness of varying lighting 
combined with global texture, which acts as a constraint over shape and provides an 
optimization criterion for determining the shape parameters. In order to formula the 
correlations between shape and texture, texture is mapped onto the shape space 
linearly by a projection matrix pre-computed by SVD. In each step of optimization, 
a better shape is found under Bayesian framework.  

Wang et al. [23] introduced an improved ASM used for generic face alignment in 
the case that new faces are not in the training set, which includes three 
improvements. First, random forest classifiers are trained to recognize local 
appearance around each landmark instead of gray-level and add weight matrix 
derived form the outputs of random forest classifiers to the optimization. Second, 
shape vectors are restricted to the vector space spanned by the training database. 
Third, data augment algorithm is used. The authors claimed that the improvements 
can achieve good performance. 

Romdhani et al. [24] proposed a multi-view nonlinear ASM using Kernel PCA. 
It utilizes 2D view-dependant constraint without explicit reference to 3D structures. 
Such a model captures all possible 2D shape variations in a training set and 
performs a nonlinear transformation of the model during matching. For nonlinear 
transformation, Kernel PCA based on SVM is used. The improved model can deal 
with large pose variations and nonlinear shape space.  

Hamarneh and Gustavsson [25] extend 2D Active Shape Models to 2D+time by 
presenting a method for modeling and segmenting spatio-temporal shapes 
(ST-shapes). The modeling part consists of constructing a statistical model of 
ST-shape parameters and describes the principal modes of variation of the ST-shape 
in addition to constraints on the allowed variations. Segmentation results on both 
synthetic and real data are presented in their paper. 

Seshadri, K et al [26] proposed an improved method for locating facial 
landmarks in images containing frontal faces using a modified active shape model, 
which includes the use of an optimal number of facial landmark points, better 
profiling methods during the fitting stage and the development of a more suitable 
optimization metric to determine the best location of the landmarks compared to the 
simplistic minimum Mahalanobis distance criteria used to date.  

Pengfei Xiong et al [27] propose a new algorithm for shape initialization and 3D 
pose alignment in Active Shape Model, instead of initializing with average shape in 
previous works, they build a scatter data interpolation model from key points to 
obtain the initial shape, which ensures shape initialized around face organs. These 
key points are chosen from organs of face shape and located with a strong classifier 
firstly. Then they are utilized to build a Radial Basis Function (RBF) model to 
deform the average shape as initial shape. 
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In [28], inspired by physics, the boundary moment invariants are employed to 
resolve the difficulty that during the process of shape fitting, distortions and 
displacements often occur when the target is not clear or with defects, and there is a 
lack of effective amendment strategies in ASM. Moment invariants have been 
introduced into ASM for the first time for distortion detection and shape 
amendment. 

Shanhui Sun et al [29] presented a new fully automated approach for 
segmentation of lungs with such high-density pathologies. Their method consists of 
two main processing steps. First, a novel robust active shape model (RASM) 
matching method is utilized to roughly segment the outline of the lungs. Second, an 
optimal surface finding approach is utilized to further adapt the initial segmentation 
result to the lung. 

Lee, Yong-Hwan et al [30] addressed issues related to face detection and 
implements an efficient extraction algorithm for facial landmarks suitable for use 
on mobile devices. The original ASM was modified to enhance its performance 
firstly improving the initialization model using the center of the eyes by utilizing a 
feature ma of RGB color information, secondly building a modified model 
definition and fitting more landmarks than the classical ASM, and also extending 
and building a 2-D profile model for detecting faces in input images. 

Other researchers apply ASM to 3D objects [31], for outlier detection [32], facial 
feature tracking [33], and MR image segmentation [34]. Zhao et al. [35] use a 3D 
Partitioned Active Shape Model (PASM) to deal with small training set. They use 
curve alignment to fit models during deformations. Each training sample and 
deformed model is represented as a curve. ASM is even used in road network 
structure recognition [36]. 

6 Conclusions 

In this chapter, we introduced ASM as a data match technique and its application to 
face recognition. We collect training images and represent all shapes with a set of 
landmarks, to form a Point Distribution Model (PDM) respectively. After 
landmarks alignment and Principal Component Analysis, we construct gray-level 
profile for each landmark in all multi-resolution versions of a training image. In 
search procedure, we give the model’s position an initial estimate. Then it can 
compute the suggested movements through an iteration approach using the 
gray-level profile. When convergence is established, we get a final matching result. 
We adopt a lot of improvements to the classical ASM, such as increasing the width 
of search profile to reduce the effect of noise, grouping landmarks to avoid mouth 
shape distort in the search procedure and altering the direction of search profile. 
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Chapter 2 

Condition Relaxation in Conditional Statistical 
Shape Models 

Elco Oost, Sho Tomoshige, and Akinobu Shimizu1 

Abstract. A conditional statistical shape model is a valuable subspace method in 
medical image analysis. During training of the model, the relationship between the 
shape of the object of interest and a set of conditional features is established. 
Subsequently, while analyzing an unseen image, a measured condition is matched 
with this conditional distribution and then a subspace of the training data is marked 
as relevant and used for the desired reconstruction of the object shape. This 
approach can work properly only in the case when the conditional term is reliable. 
Unfortunately, the reliability of the conditional term is not always sufficiently high 
and in such situation, instead of being beneficial, the conditional term is hampering 
the statistical shape model. This chapter describes the advantages and disadvantages 
of conditional statistical shape models and discusses how relaxation of the 
conditional term can help to deal with possible unreliability of the conditional term. 
The requirements for the construction of a properly functioning relaxed conditional 
shape model are defined and the optimal design is tested against various alternative 
(relaxed) conditional shape models, showing the superiority of the optimally 
designed relaxed conditional shape model. 

1 Introduction 

One of the main objectives in medical image processing is to develop tools for 
automated image interpretation, either fully automatic or otherwise with minimal 
user interaction. In the past years a multitude of diagnostic tools, such as Computer 
Aided Diagnosis (CAD) and Computer Aided Surgery (CAS) have been developed, 
all with the same aims: reducing the workload of the clinician, speeding up the 
diagnosis and standardizing the diagnosis. In modern clinical practice where 
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state-of-the-art high-resolution medical imaging devices produce increasingly large 
data sets, achieving these three goals is essential. 

The backbone of automated image interpretation tools is the incorporation of a 
priori knowledge on how a medical doctor would interpret the image. By supplying 
numerous examples, the diagnostic tool should be able to mimic the interpretation 
of a medical doctor, and for that purpose, statistical models have been developed. A 
major contribution has been made by Cootes et al., with the development of the 
Active Shape Model (ASM) (Cootes et al. 1995). An ASM is a Point Distribution 
Model (PDM) based approach that is trained on a large data set of manually drawn 
shapes of an object. It models the shape of an object in terms of the average object 
shape and a series of orthogonal shape variations, obtained by eigenvector 
decomposition. During segmentation of the object in an unseen image, the 
delineated object shape is iteratively updated using the underlying image 
information and subsequently constrained by the statistical shape model (SSM), to 
guarantee that the final outcome is a realistic shape. In this process, the definition of 
a realistic shape is defined by the medical doctor(s) who supplied the manually 
drawn training shape examples. Active Shape Models can be applied either to 2D, 
such as for example shown by (van Ginneken et al. 2002), 2D+time (Hamarneh and 
Gustavsson 2004), or to 3D, such as for example presented by (van Assen et al. 
2003).Furthermore, the introduction of the Active Appearance Model (Cootes et al. 
1998) has extended the modeling concept to also incorporate the texture of the 
object, as seen in the image. A comprehensive overview of PDM based modeling in 
the field of medical image processing is provided by (Heimann and Meinzer 2009). 

A different approach to mimic the image interpretation of a medical doctor is 
level set based modeling, introduced by (Leventon et al. 2000). Instead of manual 
delineations it is trained on labeled data sets, in which the labels denote the object of 
interest. level set based models produce a slightly less accurate shape 
representation, but they have a major advantage that they do not require point 
correspondence between the training shapes. (Cremers et al. 2007) elaborately 
discussed the usage of level set based modeling. 

Regarding the previously defined objectives of automated image interpretation, 
(Oost et al. 2009) have shown in a clinical validation study on left ventricular 
angiography, that automated image analysis algorithms are capable of reducing the 
workload of a medical doctor. Instead of a full delineation of the object of interest, 
only occasional editing of the automatically generated shape is needed. 
Consequently, the average analysis time required per case can be significantly 
reduced. Besides these two practical improvements, automatic image interpretation 
can also lead to improvements in diagnostic accuracy. (Oost et al. 2009) have 
shown that automated segmentation accuracy is between inter-observer and 
intra-observer variability, hence creating a reliable standardization of the diagnosis. 
This standardization can be further strengthened by training the statistical model on 
manual delineations of multiple medical doctors. 

Despite the promising results that have been obtained with the various modeling 
approaches, there are a number of drawbacks and limitations in statistical modeling. 
One of them is the overfitting to the training data. Particularly when the number of 
training samples is limited, the segmentation result will remain close to the model’s 
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average shape representation, leading to suboptimal object delineation. Another 
drawback is that the statistical models generally assume a single Gaussian 
distribution of the training data, while in practice the data is best represented by 
multiple Gaussian kernels. For example, when modeling the texture of the 
myocardium in delayed enhanced MRI scans, myocardial regions are either dark, 
representing healthy tissue, or bright, representing infarcted tissue. Although a 
‘half-bright’ representation of local tissue is physically impossible, combining 
healthy tissue training samples and infarcted tissue training samples in a single 
Gaussian model representation will allow ‘half-bright’ as a valid texture 
representation. 

Most statistical (shape or texture) models are constructed from the training data 
that is available in daily clinical practice. Hence, it involves a large partition of 
healthy ‘normals’, plus a series of smaller groups of various pathological cases. 
Because the various pathological sub-sets are generally too small to create 
individual statistical models per pathology, all training data is combined in one 
statistical model, with the erroneous assumption that the data fits a single Gaussian 
distribution. Consequently, the relatively large sub-set of healthy normals will 
result in a bias towards the average model representation, while the single Gaussian 
assumption allows unnatural representations that average between normal and 
pathology. The overall segmentation therefore becomes sub-optimal: the global 
result is somewhat acceptable, but local detail is lacking. 

One approach to improve segmentation results is by finding the optimal balance 
between healthy and pathological training samples. In a cardiac MRI segmentation 
study, (Angelie et al. 2007) have shown for example that optimal segmentation 
results are obtained when the training data set is consisted of 80% healthy data 
samples and 20% pathological samples. A more common segmentation 
improvement approach is a postprocessing of the model generated segmentation. 
The globally acceptable model segmentation result is refined, using information 
from the underlying image. In a 2D application (x-ray left ventricle angiography) 
(Oost et al. 2006) have shown that a refinement of the model based delineation, by 
using dynamic programming, results in a higher segmentation accuracy. The 
combination of an Active Appearance Model with dynamic programming 
outperformed these two approaches, when applied individually. 

Recognizing that the segmentation result obtained from a statistical model might 
not always be the optimal shape delineation, statistical models have recently been 
employed differently. Using a statistical shape model, for an unseen image, the 
optimal model-based shape representation of the object of interest is constructed. 
Subsequently this estimated shape is used as a regulating term in the optimization of 
the energy function of a graph cut segmentation (Boykov and Funka-Lea 2006). 
Using this approach, successful segmentation was obtained in single-shape graph 
cut segmentation by (Shimizu et al. 2010) and in multi-shape segmentation by 
(Nakagomi et al. 2013). 

Alternatively, conditional statistical models (de Bruijne et al. 2007) can increase 
the segmentation performance by focusing on the relevant shape subspace in which 
the segmentation result should be searched for. By using a priori information as a 
condition, a conditional SSM imposes an additional restriction on the shape 
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subspace that is constructed by a conventional SSM. Hence, the model will focus on 
only part of the distribution, and this subset of the data might be expressed by fewer 
Gaussians, or even by a single Gaussian. This way, the conditional statistical model 
can be an effective approach to solve the limitations of standard statistical models, 
as described above. In practice, when, for example from a set of shape and/or image 
features, it can be derived in which sub-group (healthy, pathology A, pathology B, 
etcetera) the unseen image fits best, the segmentation process can focus on the 
subspace that corresponds to this sub-group of the data. 

The remainder of this chapter will further focus on conditional statistical shape 
models, and how they can be employed to improve segmentation results. Firstly, in 
Section 2 the formulation of a general conditional statistical shape model is 
described, followed by the benefits (Section 3) and limitations (Section 4) that arise 
when the underlying features are not fully reliable. In Sections 5 and 6 level set 
based conditional SSMs and relaxation of the conditional term are discussed. 
Subsequently, in Sections 7 and 8, two approaches are presented to relax the 
influence of the conditions: A relaxed conditional statistical shape model, based on 
the selection formula (Lord and Novick 1968), and a relaxed conditional statistical 
shape model with integrated conditional error estimation. The performance of these 
algorithms will be presented for automatic liver segmentation in non-contrast 
abdominal CT images in Section 9. 

2 Conditional Statistical Shape Models 

The general formulation of a conditional statistical shape model (SSM) is given by: 

 (1) 

 (2) 

in which b is a set of shape parameters (Cootes et al. 1995), μb is the average 
parametric shape representation, Σbb is the covariance matrix for the parameterized 
training shape data samples, μx is the average set of conditional features, Σxx is the 
covariance matrix for the conditional data matrix X, Σxb and Σbx are mutual 
covariance matrices, x0 is the measured set of conditional features for the unseen 
image and μb|x0

 and Σbb|x0
 are respectively the conditional average (shape) and the 

conditional covariance matrix, given the condition x0.  
Similar to a non-conditional model, the conditional SSM has an average 

representation of the training data (1) and a covariance matrix (2), describing the 
variation within the training samples. For the training of a conditional SSM, a set of 
training shape samples and a set of conditional features are required. The 
parameterized training shape samples are combined in matrix b: all individual 
training shapes (represented either as a set of landmark points, or as a signed 
distance map of the object) are placed in column vectors and Principle Component 
Analysis (PCA) is applied on these vectors to create an SSM. Projection of the 
individual training shapes onto the SSM leads to the (N-1) by N sized principle 
component score matrix b, with N denoting the number of training samples. Note 

( )xxxbxbxb x μμμ −ΣΣ+= −
0

1
| 0

xbxxbxbbxbb ΣΣΣ−Σ=Σ −1
| 0
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that generally PCA is applied for model construction, but that other approaches, 
such as Independent Component Analysis (ICA) (Üzümcü et al. 2003) or manifold 
learning (Pless and Souvenir 2009) can also be used. 

The definition of the conditional features can, for example, be the landmark 
points of an adjacent object, or features derived from the underlying image in which 
the object of interest is embedded. Any feature can be selected, as long as the 
feature acquisition is performed identically for all individual training samples. All 
conditional features are accumulated in the conditional data matrix X, whose 
dimensionality is F by N, with F signifying the number of selected features. The 
third and final input for the conditional SSM is a set of conditional features, 
extracted from a new, unseen image and/or shape. These features should correspond 
to the features that are stored in matrix X, and are defined as the condition x0. 
Summarizing the behavior of (1) and (2), the conditional average μb|x0 is calculated 

from the average training shape μb, the average set of conditional features μx, 
(derived from matrix X), the condition x0 (obtained from the unseen sample), the 
covariance matrix of X (denoted by Σxx) and the mutual covariance matrix of X and 
b (denoted by Σbx). The conditional covariance matrix Σbb|x0

 of (2) is calculated from 

the covariance matrices for X (Σxx) and b (Σbb), and the mutual covariance matrices 
Σxb and Σbx. Subsequent eigenvalue decomposition of Σbb|x0 leads to construction of 
the conditional SSM. 

3 The Benefit of Conditional SSMs 

The benefit of conditional statistical shape models is shown in various applications. 
(de Bruijne et al. 2007) compare a non-conditional SSM and a conventional 
conditional SSM when applied to vertebra fracture quantification. For a fractured 
vertebra, the reconstructed (un-fractured) shape is estimated. Comparison of the 
fractured vertebra shape and the reconstructed shape results in a measure of the 
severity of the fracture. Because a non-conditional SSM cannot use knowledge on 
neighboring vertebrae to predict the reconstructed shape, the average vertebra shape 
is used to represent the reconstructed shape. In their experiments, using a large data 
set of 282 lateral lumbar spine radiographs, (de Bruijne et al. 2007) show that the 
reconstructed shape produced by the conditional SSM, based on the shape of 
neighboring vertebrae, is more accurate than using the average vertebra shape for 
the quantification of vertebra fracture severity. 

(Syrkina et al. 2011) apply their multivariate-Gaussian distribution based 
conditional SSM to the prediction of the proximal tibia shape, based on knowledge 
of the shape of the distal femur. Using a data set of 184 left leg tibia and femur pairs 
(125 for training and 59 for evaluation), they show that solely based on the shape of 
the distal femur, the proximal tibia shape can be estimated with a reconstruction 
error of only a few millimeters. Because this application requires a strong 
relationship between the shape of the predictor and the shape of the unseen part, 
PDM based modeling (with the landmarks of a neighboring object as the predictor) 
is probably more useful than level set based modeling (with image derived 
conditional features). 
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(Baka et al. 2010) show that their approach for dense shape reconstruction from a 
sparse point cloud results in a proper reconstruction of the unknown landmarks. 
Experiments on a MRI data set of 114 combined left and right cardiac ventricle 
shapes, show that their proposed method outperforms a conventional conditional 
SSM. 

All these three papers describe PDM based conditional models, in which the 
conditional term is simply the set of landmark points of a neighboring object. As a 
consequence, the relationship between the predictor and the unseen part is strong. A 
more challenging test for conditional SSMs is when the model is level set based and 
the conditional features are image derived. In such a setup, the relationship between 
the conditional term and the desired shape is weak. 

4 Reliability of the Conditional Term 

The main concept of the conditional SSM is that the addition of conditional data 
will improve the segmentation performance of the model. More a priori knowledge 
leads to better shape description. This assumption is true when the condition is 
reliable. (de Bruijne et al. 2007) for example show the power of the conditional 
SSM in predicting the reconstructed (unfractured) shape for a fractured vertebra, 
based on the shape information of neighboring vertebrae. However, when the 
reliability of the condition is not particularly high, the conditional SSM will not be 
superior to a standard, non-conditional SSM. An unreliable condition might even 
mislead the model and deteriorate segmentation results. 

In some applications, the reliability of the conditional features can be expected to 
be high. In (de Bruijne et al. 2007) for example, it can be expected that shapes of 
neighboring vertebrae are strongly correlated. The PDM based conditional 
modeling of a vertebra, based on the shape of neighboring vertebrae, can therefore 
be judged as having a reliable conditional term. Also the shape of the distal femur is 
a reliable condition, when estimating the shape of the proximal tibia, because 
human anatomy dictates that the head of the tibia should fit the base of the femur in 
order to have a properly functioning joint. 

Less reliable are image extracted conditional features, as used for example in the 
level set based conditional SSM as proposed by (Tomoshige et al. 2012). As they 
are derived either directly from the underlying image or from the outcome of 
low-level image processing algorithms, there is no a priori knowledge involved. 
Thus, the reliability of the conditional features is expected to be low. 

The remainder of this chapter will concentrate on the construction and 
application of level-set based conditional statistical shape models, with a strong 
focus on how to deal with the unreliability of the condition. Central topic will be the 
relaxation of the condition such that the additional conditional knowledge that is 
inputted into the model is beneficial instead of detrimental. 
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5 Level Set Based Conditional SSMs 

The difficulty of 3D PDM based shape modeling lies in obtaining point 
correspondence among the training samples. In level set based SSMs point 
correspondence is not an issue. Hence, it is relatively easy to implement a 
segmentation pipeline in which the object of interest is roughly delineated by a 
(conditional) level set based SSM, after which the resultant shape is used as the 
shape prior for a graph cut segmentation. This approach will be elaborated on in the 
following paragraphs. 

Graph cuts, introduced by (Boykov and Funka-Lea 2006), have become a 
popular segmentation tool over the last decade. Also in the field of medical image 
processing, several successful graph cut based segmentation algorithms have been 
published (Freedman and Zhang, 2005; Shimizu et al., 2010; Linguraru et al., 2012; 
Nakagomi et al., 2013). To reproduce a natural shape of the object of interest, the 
graph cut segmentation requires a shape prior that will be used as a regulating term 
while optimizing the energy function of the graph cut segmentation. The final 
delineation should not differ too much from the initial shape prior. Using a level set 
based SSM segmentation result as the shape prior will guarantee that the final object 
delineation has a natural shape. To further improve the shape prior, estimated 
features of the target object can be used as conditional data in a conditional SSM. 
(Tomoshige et al. 2012) for example start with a Maximum A Posteriori (MAP) 
segmentation of the object of interest and derive a set of conditional features from 
the roughly segmented MAP volume. Features can be the total object volume, the 
area of the projected object in the axial, sagittal or coronal plane, the nth percentile 
point of the x-, y-, or z-coordinate, and so on. Based on these features, the 
conditional SSM creates an intermediate delineation, which is offered to the graph 
cut algorithm in order to create a final, accurate object segmentation. 

6 Relaxation of the Conditional Term 

The performance of the graph cut segmentation strongly depends on the quality of 
the shape prior estimation by the conditional SSM, which in turn is dependent on 
the quality of the estimated conditional features. Because the features are extracted 
without a priori knowledge, it is difficult to improve this part of the segmentation 
pipeline. It is close to impossible to make the error of any (feature extraction) 
process zero, in particular for the segmentation of organs with an atypical shape. 
Improvements can however be obtained in how the conditional SSM processes the 
conditional features. Instead of using a fixed conditional term as input for the 
conditional SSM, the conditional term must be relaxed, such that the condition 
gives direction towards the optimal shape prior, instead of providing a rigid shape 
constraint. In the ideal situation, the influence of the condition should be 
parametrically positioned on a linear trajectory in the shape parameter subspace, 
connecting a conventional conditional SSM (with a fixed constraint) and a 
non-conditional SSM. By creating a seamless transition between these two 
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extremities, the degree of relaxation of the conditional term can be chosen 
according to the reliability of the conditional features. Constructing the domain of 
the relaxed conditional SSM, as depicted in figure 1, requires the calculation of the 
conditional average as well as the calculation of the conditional covariance matrix. 
Only when both can be calculated, a seamless and natural transition between the 
conventional conditional SSM and the non-conditional SSM can be realized. 
 

 

Fig. 1 The desired relaxed conditional SSM bridges seamlessly between the non-conditional 
SSM and the conventional conditional SSM 

 
In literature, several approaches for the relaxation of the conditional term have 

been proposed. A prominent contribution is the work by (de Bruijne et al. 2007) in 
which the shape of a vertebra is estimated using a conditional statistical shape 
model that uses the shape information of neighboring vertebrae as conditional term. 
To avoid matrix singularity, a regulating term ρI is added to (1) and (2), resulting in: 

 (3) 

 (4) 

with I denoting the identity matrix and ρ signifying a value between zero and 
infinity, taking usually a small value. This technique, introduced by (Hoerl and 
Kennard 1970), is known as ridge regression and incidentally supports the desired 
seamless transition between the non-conditional SSM and conventional conditional 
SSM. If ρ is zero, (3) and (4) are identical to (1) and (2), signifying the conventional 
conditional SSM. If ρ approaches infinity, the influence of the conditional term is 
reduced to zero, resulting in the non-conditional SSM. One drawback of ridge 
regression is that, because the regulating term ρI is a constant absolute value, added 
to all conditional variations that are contained in Σxx, the weak shape variations in 
Σbb are disproportionally strongly affected by the regulating term. This implies that, 
the closer the model tends to be towards a non-conditional SSM, the more marginal 

( ) ( )xxxbxbxb xI μρμμ −+ΣΣ+= −
0

1
| 0

( ) xbxxbxbbxbb I Σ+ΣΣ−Σ=Σ − 1
| 0
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the effect of the conditional term on the weak shape variations becomes. In other 
words, when the model is close to position 2 in figure 1, the (relaxed) conditional 
term will effectively only influence the strongest shape variations. 

Other PDM based conditional SSMs have been proposed for example by 
(Syrkina et al. 2011) and (Baka et al. 2010). In essence similar to the conditional 
SSM by (de Bruijne et al. 2007), (Syrkina et al. 2011) select a subset of the 
landmark points of the object (or objects) of interest and use this subset as the 
conditional term to predict the shape representation of the set of remaining 
(‘unseen’) landmark points. The conditional shape of the set of remaining points is 
calculated from the joint Gaussian distribution of the predictors and the unseen 
points. During training the number of shape variation modes for both the predictor 
shape model and the unseen part shape model is optimized such that the average 
prediction error is minimized. This implies that when the relationship between 
predictor and unseen part is low, a large portion of the statistical shape information 
is rejected from the model and only the larger eigenmodes are retained. Although 
the optimization of shape modes can be seen as a form of relaxation, a true 
relaxation of the condition is not integrated in the approach by (Syrkina et al. 2011). 

(Baka et al. 2010) also divide the shape vector into two parts: an unknown part 
and a constrained part that has only limited freedom to deform. The constrained 
points then are used as the conditional term to predict the position of the unknown 
landmarks, while the uncertainty of the condition is incorporated into the 
conditional model. In this approach the conditional covariance matrix is defined, 
but the conditional average is not calculated. Consequently, the desired seamless 
transition between the non-conditional SSM and the conventional conditional SSM 
cannot be achieved. 

7 Employing the Selection Formula for Relaxation 

(Tomoshige et al. 2012) propose a relaxed conditional SSM that does allow this 
seamless transition and design it such that the drawbacks of the ridge regression 
approach are overcome. Furthermore, since their approach is a level set based 
conditional SSM, and the conditional features are derived from a MAP 
segmentation of the underlying image, the reliability of the conditions is not too 
high. Consequently, their objective is to create a relaxed conditional SSM with a set 
of reliability parameters, to easily optimize the performance of the model. 

Using the selection formula from (Lord and Novick 1968), only a limited range 
of the conditional features can be selected, softening the influence of the conditions 
on the shape estimation. Starting with the regular set of covariance matrices for the 
conditional SSM 

 (5) 

and defining Vxx as a limited range of the conditional data of Σxx, the set of 
covariance matrices can be rewritten as: 









ΣΣ
ΣΣ

bbbx

xbxx
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(6) 

 

 

Fig. 2 By employing the selection formula, a sub-space of the data is used to construct the 
conditional SSM. The left hand side of this figure represents the distribution for a 
non-conditional SSM, the right hand side shows the selection of a limited range of the data by 
employing the selection formula 

Figure 2 illustrates the concept of the selection formula. By selecting a range of 
the conditional data around a measured set of conditional features x0, such that the 
new covariance matrix for the conditional features becomes Vxx, the covariance 
matrix for the shape data also changes. Instead of Σbb, the new conditional 
covariance matrix of b (given the condition x0) becomes: 

 (7) 

which corresponds with the bottom right element of (6). Comparing (7) with the 
regular equation (2) for the conditional covariance matrix, it can be observed that 

the term  is replaced by . Analogue substitution 

of  by  in (1), results in the equation for the 

selection formula based relaxed conditional average: 

 (8) 

To allow the seamless transition between the non-conditional SSM and the 
conventional conditional SSM, the reliability parameters {γ1, γ2, …, γF} are 
introduced, with 0 ≦ γi ≦ 1 and F denoting the number of conditional features. The 
set of reliability parameters are used to define Vxx as a limited range of Σxx according 
to (9) and (10). 
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 (9) 

 
(10) 

Substitution of (9) and (10) into (7) and (8) results in the equations for the 
conditional average and the conditional covariance matrix of the relaxed 
conditional SSM: 

 
(11) 

(12) 

Let’s, for simplicity, assume that all reliability parameters γi are equal, meaning γ1 
= γ2 = … = γF = γ. When substituting γ = 0 into (11) and (12), the term 

 results in , 

which is zero, and hence (11) and (12) resemble the non-conditional SSM 
representation. With the substitution of the other extremity, γ = 1, into (11) and (12), 
the term  results in  and 

consequently (11) and (12) become identical to (1) and (2) respectively, signifying 
the conventional conditional SSM. Hence, with the introduction of the reliability 
parameters, it is possible to bridge between the conventional conditional SSM and 
the non-conditional SSM. Because the parameters γi can take any value between 0 
and 1, the transition between these two models becomes continuous and seamless. 
Depending on the reliability of the conditional features the relaxed model behaves 
either more like a conditional SSM or like a non-conditional SSM. For small values 
of γi (assuming an unreliable condition), the range around the measured condition x0 
becomes large, and the model tends more toward a non-conditional SSM. For large 
values of γi (assuming a reliable condition), the range around the measured 
condition x0 becomes small, and the model tends more toward a conventional 
conditional SSM. 

Because in this approach the manipulations of Σxx are based on multiplication 
instead of addition (as is the case for ridge regression), the weak shape variations in 
Σbb are not disproportionally strongly affected by large values of the regulating term 
γi. Furthermore, the domain of the regulating term (between 0 and 1) is more 
practical and elegant than the domain of the ridge parameter (between 0 and 
infinity). 
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Although the mathematical design of this relaxed conditional SSM is solid, there is 
one flaw in terms of practicality: How to optimize the parameters γi? Ideally, 
extensive tuning of all combinations of reliability parameter values should be 
executed to obtain the best performing relaxed conditional SSM. However, because 
of the huge time requirement for such an optimization, a rudimentary optimization is 
performed in (Tomoshige et al. 2012), using the simplification γ1 = γ2 = … = γF = γ. 

8 Automatic Estimation of the Reliability of the Conditional 
Features 

To eliminate this practical flaw, (Tomoshige et al. 2013) propose yet another 
relaxed conditional SSM, in which (during the model training phase) the 
relationship between the measured condition and the true condition is modeled. 
This way, they attempt to incorporate a priori knowledge of the reliability of the 
measured conditional features into the framework of the relaxed conditional SSM. 
To construct this so called conditional features error model, two sets of binary 
labeled volumes are required: the manually drawn labels of the object of interest 
and the calculated MAP result. For every training sample, from both these two 
binary volumes a set of corresponding conditional features are extracted. Identical 
to the conditional SSMs described above, the true label based conditional features 
are combined in the conditional data matrix X. The conditional features derived 
from the MAP estimations of the training data are stored in matrix M. Using these 
two matrices, a conventional conditional model is constructed, with equations for 
the conditional average and the conditional covariance matrix as follows: 

( )
0

1
| 0x x x xm mm mxμ μ μ−= +Σ Σ −  (13) 

0

1
|xx x xx xm mm mxV −= Σ −Σ Σ Σ  (14) 

with μx denoting the average set of true features, μm signifying the average set of 
MAP estimated features, Σxx and Σmm respectively representing the covariance 
matrices for X and M and Σxm and Σmx denoting the mutual covariance matrices. 
Note that this conditional model is a feature model and not a shape model. Figure 3 
visualizes how the conditional features error model is employed to estimate the 
reliability of the set of measured conditional features. Starting from the extracted a 
set of conditional features x0 from an unseen image, the conditional feature model 
calculates the expected representation of the conditional term μx|x0

 and the variance 

Vxx|x0
 around μx|x0

.  

Contrary to (Tomoshige et al. 2012), in which the relaxation of the condition is 
regulated by the reliability parameters Γ, relaxation of the conditional term by using 
the conditional features error model is model-driven, using a priori knowledge, and 
does not require any parameter tuning. 
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Fig. 3 Using the distribution describing the relationship between estimated condition m and 
true condition x, a measured condition x0 results in an expected condition μx|x0

 and 
accompanying covariance matrix Vxx|x0

 (Reproduced from Tomoshige et al. 2013) 

 

Fig. 4 Schematic overview of the construction of the relaxed conditional SSM with 
integrated conditional features error model. Note that the flow for the shape statistics is 
denoted by the long-dashed lines, the construction of the distribution describing the 
relationship between estimated condition m and true condition x is plotted with the dotted 
lines, and the input from the unseen test image is depicted by the dashed lines. (Reproduced 
from Tomoshige et al. 2013) 
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The construction and integration of the conditional features error model into the 
conditional SSM framework is depicted by figure 4. Integration of the conditional 
features error model into the framework of conditional shape modeling is 
straightforward. In the equation for the conventional conditional average (1), x0 is 
replaced by μx|x0

, resulting in: 

 (15) 

The formulation of the conditional covariance matrix of the relaxed conditional 

SSM is derived from (7), in which Vxx is replaced by the calculated covariance 

matrix of the conditional features error model Vxx|x0
, as calculated by (14): 

 (16) 

Now let’s investigate the behavior of the conditional features error model and 
how it influences the conditional SSM. In case of, during training of the conditional 
features error model, a perfect correspondence between the true labels and the 
labels derived from the MAP estimation, all covariance matrices would be identical, 
and furthermore the both averages would be identical. Or in equations: Σxx =Σmm = 
Σxm = Σmx, and μx = μm. Following (13) and (14), this would lead to μx|x0

 = x0 and 

Vxx|x0
 = 0. Consequently, using these settings, (15) and (16) will become identical to 

(1) and (2), representing the conventional conditional SSM with a fixed condition. 
In other words, the extracted conditional features are completely reliable and 
therefore the usage of a fixed constraint is the most logical approach. The other 
extremity is the situation where the true labels and the MAP based labels are 
completely uncorrelated. Mathematically, this is denoted by Σxm = Σmx = 0. (13) and 
(14) then become μx|x0

 = μx and Vxx|x0
 = Σxx respectively. Substitution into (15) and 

(16) results in μb|x0
 = μb and Vbb|x0

 = Σbb. Hence, the relaxed conditional SSM will 

behave like a non-conditional SSM. In practice, the reliability of the conditional 
term, and thereby the actual degree of relaxation, is automatically determined by the 
trained relationship between the true labels and the MAP based labels. 

Summarizing, the method proposed in (Tomoshige et al. 2013) contains every 
element that a conditional statistical shape model should possess: 

 integration of conditional data to improve the performance of the statistical 
shape model, 

 relaxation of the conditional term, in case the reliability of the conditional 
term is not 100%, 

 a framework in which the relaxed conditional SSM is defined as a 
seamless transition between the non-conditional SSM and the 
conventional conditional SSM, 

 an automatic, knowledge based estimation of the reliability of the 
conditional term 
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9 Performance Comparison of Various Conditional SSMs 

Following the experiments of (Tomoshige et al. 2012, 2013), five different level set 
based SSMs are compared: a non-conditional SSM (NC-SSM), a conventional 
conditional SSM (C-SSM), a ridge regression based conditional SSM (RC-SSM-R) 
(de Bruijne et al. 2007), a relaxed conditional SSM (RC-SSM) (Tomoshige et al. 
2012) and a relaxed conditional SSM with integrated conditional features error 
model (RC-SSM-E) (Tomoshige et al. 2013). 

For all (level set based) conditional SSMs there is one risk during construction of 
the model. If there are multi-colinearities between the conditional features, Σxx will 
become singular. To ensure matrix non-singularity, the training data set size should 
be substantially larger than the number of conditional features. Furthermore, it is 
advisory to select a set of conditional features such that the mutual correlation 
between features does not exceed a certain limit. (Tomoshige et al. 2013) ensure 
that the mutual correlation between features is below 0.95. 

The comparison of the conditional models is based on a segmentation pipeline 
for non-contrast abdominal CT volumes. Liver segmentation from abdominal CT 
volumes is one of the most popular and challenging segmentation problems in 
medical image analysis. A multitude of liver segmentation papers has been 
published, such as (Soler et al. 2001), (Kainmuller et al. 2007), (Okada et al. 2007), 
(Ruskό et al. 2009) and (Heimann et al. 2009), among which the fully automatic 
method by (Kainmuller et al. 2007) shows the best performance. The vast majority 
of liver segmentation literature is based on contrast-enhanced CT volumes, which 
provides a relatively clear appearance of the liver. However, due to radiation dose 
issues, in many clinical situations only non-contrast imaging is available. Liver 
segmentation in such images is still challenging, especially when the liver has large 
pathological lesions or when the liver has an atypical shape, which is difficult to be 
accounted for by the SSM. The comparison of the different conditional SSMs, 
reported in this section, is based on a non-contrast abdominal CT data set. 

The segmentation pipeline starts with a MAP estimation on the unseen image. 
Subsequently, conditional features x0 are extracted from the resultant MAP volume to 
serve as conditional term in the conditional SSM. Furthermore the MAP result is 
projected onto the ((relaxed) conditional) SSM. Using Powell’s method (Press et al. 
2007), with the Jaccard Index (J.I.) as overlap measure and the model representation 
as the objective function, the model’s shape parameters are optimized to best fit the 
MAP estimation. To dodge local optima, this optimization is performed in three steps, 
first using approximately 30% of the shape variation, then using approximately 60% 
of the shape variation and finally using approximately 90% of the shape variation. 
Finally, the optimized shape representation is used as the shape prior for a graph cut 
segmentation. Figure 5 presents an overview of the segmentation pipeline. Details on 
parameters and settings used in the graph cut segmentation are elaborately described 
in (Tomoshige et al. 2013) and (Shimizu et al. 2010). Note that the dashed ellipsoids 
in figure 5 clearly show the error propagation in this segmentation process: 
Inaccuracies in the estimation of the shape prior are propagated to the subsequent 
graph cut segmentation, leading to an unsatisfactory segmentation result. The need 
for an optimal shape estimation is apparent. 
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Fig. 5 Schematic overview of the entire segmentation pipeline, including MAP estimation, 
shape prior estimation and graph cut segmentation 

Figure 6 shows the results for shape estimation and subsequent graph cut 
segmentation, when comparing the RC-SSM with the NC-SSM, the C-SSM and the 
RC-SSM-R. Note that the framework for the construction of the RC-SSM, allows to 
construct the NC-SSM by setting all γi to 0, and similarly allows to construct the 
C-SSM by setting all γi to 1. The results in figure 6 represent 20 difficult to segment 
abdominal CT volumes, taken from a test set of in total 48 cases. Training is 
performed on another set of 48 cases and a third set of 48 cases is used to optimize 
the graph cut parameters, the ridge regression parameter and the reliability 
parameters Γ. 

A first striking result is the difference between the NC-SSM and the C-SSM. 
Mainly in terms of shape estimation, but also in terms of subsequent graph cut 
segmentation, the NC-SSM appears to provide much better results than the C-SSM. 
This is exactly the justification for relaxation of the conditional features: Due to the 
low reliability of the conditional features, and the hard constraint that is imposed by the 
C-SSM, the features deteriorate the model and effectively do more harm than good. 

With the necessity of relaxation of the conditional term being established, the 
next step is to investigate the performance of the various relaxed conditional SSMs, 
by comparing the RC-SSM and the RC-SSM-R. As mentioned above, during the 
training phase both the ridge regression parameter and the reliability parameters are 
optimized, with the restriction for the RC-SSM that γ1 = γ2 = … = γF = γ. In that 
respect the two approaches are treated identically in the experiments: one optimized 
parameter manipulates all conditional features. The ridge regression parameter ρ is 
optimized in the range ρ = {0.01; 0.1; 1; 10; 100; 1000; 10000}, with ρ = 1000 being 
the optimal value. Similarly, the relaxation parameter γ is optimized in the range γ = 
{0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0}, with γ = 0.5 being the optimal 
value. As figure 6 indicates, the RC-SSM-R does not outperform the standard 
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NC-SSM. It does appear to perform better than the C-SSM, which is corroborating 
the finding that relaxation of conditional features is essential. The RC-SSM does 
outperform the NC-SSM, as well as C-SSM and the RC-SSM-R. Both in terms of 
shape estimation and in terms of subsequent graph cut segmentation, the RC-SSM 
shows statistically significant improved performance, with p<0.05 when compared 
to the RC-SSM-R and the NC-SSM and with p<0.01 when compared to the C-SSM. 

 

Fig. 6 Experimental results for four different (conditional) statistical shape models, with on 
the left hand side the shape estimation performance and on the right hand side the subsequent 
graph cut segmentation results (Reproduced from Tomoshige et al. 2012) 

 

Fig. 7 Example results (shape estimation) showing the performance of four different 
(conditional) SSMs (Reproduced from Tomoshige et al. 2012) 
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Fig. 8 Example results (graph cut segmentation) showing the performance of four different 
(conditional) SSMs (Reproduced from Tomoshige et al. 2012) 

A typical example of a segmented case is displayed in figures 7 and 8, showing 
the shape estimation and the subsequent graph cut segmentation respectively. 
During shape estimation, especially the lobes of the liver are better delineated by 
the RC-SSM, resulting also in optimal graph cut segmentation. 

For completeness, it should be mentioned that the experiments on the 28 
remaining easy to segment cases also show statistically significant performance 
improvement in terms of shape estimation. In terms of graph cut segmentation, only 
the improved performance with respect to the NC-SSM was not statistically 
significant. 

In (Tomoshige et al. 2013) a further evaluation of the various conditional SSMs 
is performed, including the RC-SSM-E, but excluding the RC-SSM-R, which did 
not prove to be the optimal approach for relaxation of the conditional term. Using 
the same data set as in (Tomoshige et al. 2012), now 24 cases are used for parameter 
optimization for the graph cut segmentation and optimization of the reliability 
parameters γ. The latter is now optimized at γ = 0.9. The remaining 120 cases were 
divided in two groups of 60 cases which were mutually evaluated through cross 
validation. 

Regarding shape estimation, for these 120 cases, the two relaxed conditional 
models, RC-SSM and RC-SSM-E, do outperform the C-SSM and the NC-SSM, but 
do not statistically differ in their mutual performance. Nonetheless, the results for 
subsequent graph cut segmentation show a statistically significant difference in 
performance for the RC-SSM-E, outperforming the RC-SSM. It is suggested by the 
authors that the former approach outperforms the latter approach when estimating 
the shape of difficult to segment areas of the liver, such as the tip of the liver lobes. 
Although not expressed as a significant difference in the Jaccard Index for the shape 
estimation by both methods, the superior shape estimation from the RC-SSM-E is a 
better shape prior for the graph cut, resulting in a statistically significant final 
segmentation result. Average differences in Jaccard Index, although statistically 
significant, however remain low. 

In a second experiment, only 23 difficult to segment cases are examined. To 
distinguish between easy to segment and difficult to segment cases, the difference 
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between the true conditional features and the measured conditional features is 
analyzed. For these 23 difficult to segment cases, the RC-SSM-E outperforms the 
RC-SSM (as well as the C-SSM and the NC-SSM), both in shape estimation and in 
subsequent graph cut segmentation. All mutual differences between the two relaxed 
conditional models prove statistically significant, and are of considerable 
magnitude, with a difference of 0.012 for the shape estimation, and 0.026 for the 
graph cut segmentation. The most probable explanation for the significant 
difference in performance is that the Γ parameters are rudimentary optimized during 
the training phase. This means that the degree of relaxation that is used by the 
RC-SSM is determined during training and will remain the same, regardless of the 
representation of the unseen image during the testing phase. On the contrary, the 
RC-SSM-E tries to assess the global representation of the unseen image and uses 
the extracted information to determine the degree of relaxation of the conditional 
features. Thus, the degree of relaxation is determined during testing phase, instead 
of during the training phase. This way the RC-SSM-E has much more flexibility in 
deciding the degree of relaxation of the conditional features for the individual case. 
This is especially useful for difficult to segment images, as is illustrated by the 
results for the 23 difficult to segment cases. 

 
Fig. 9 Example results showing the performance of the NC-SSM, the C-SSM, the RC-SSM 
and the RC-SSM-E. Left from the dashed line, the shape estimation results are shown, on the 
right the subsequent graph cut segmentation results are shown. The performance of the 
RC-SSM-E is superior, both in local border delineation and in global segmentation 
performance, as expressed by the Jaccard Index. (Reproduced from Tomoshige et al. 2013) 

Figure 9 presents an example result (shape estimation and graph cut 
segmentation), visualizing the benefit of the RC-SSM-E. It is clearly visible that, 
for the shape estimation, the local border delineation error at the extremities of the 
liver lobes is least when the RC-SSM-E is used. This superior shape estimate 
subsequently results in a superior graph cut segmentation. Note that for this case the 
C-SSM shows the worst performance. Apparently the reliability of the conditional 
term is low, with the consequence that applying the conditional term as a hard 
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Fig. 10 Example results showing the performance of the NC-SSM, the C-SSM, the RC-SSM 
and the RC-SSM-E. Left from the dashed line, the shape estimation results are shown, on the 
right the subsequent graph cut segmentation results are shown. Both visual inspection and 
quantitative evaluation using the Jaccard Index, demonstrate the superior shape estimation 
and subsequent graph cut segmentation for the RC-SSM-E. Note that this example liver 
displays an atypical shape. (Reproduced from Tomoshige et al. 2013) 

constraint is more harmful than beneficial. Results for a second example, a liver 
with an atypical shape, are shown in figure 10. Similar to figure 9, the RC-SSM-E 
provides the best shape estimation, with an obviously superior local border 
delineation of the liver lobes’ extremities. Again this improved shape estimation 
results in an superior graph cut segmentation compared to the other three methods. 
Surprisingly, in this example the RC-SSM shows the worst performance. Probably, 
for this atypical shape, it is better to determine the degree of relaxation of the 
conditional features during the testing phase (RC-SSM-E) than during the training 
phase (RC-SSM). 

10 Conclusions 

Due to large variations in training data samples, convergence to a correct 
model-based shape representation for an unseen image is not always 
straightforward. A sub-space approach, focusing on a limited range of the training 
data to model the unseen shape, can solve such convergence issues, resulting in a 
more robust and more accurate delineation of the object of interest. One sub-space 
modeling approach that is growing in popularity, is the conditional statistical shape 
model. Given a measured condition x0, the conditional SSM identifies a sub-space 
of the model training data that corresponds to this condition, and a more dedicated 
shape delineation can be obtained. However, the performance of the conditional 
SSM depends strongly on the reliability of the condition x0. If the reliability of the 
condition is high, the conventional conditional SSM will perform properly. On the 
contrary, if the condition is completely unreliable, it is better to use a 
non-conditional SSM instead, because the condition will rather mislead the 
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conditional SSM instead of directing it toward the desired segmentation. It can be 
concluded that relaxation of the conditional term is essential for proper shape 
estimation, especially when the reliability of the conditional term is low. The ideal 
definition of a relaxed conditional SSM is when it bridges between the 
non-conditional SSM and the hard constrained conventional conditional SSM, 
allowing a seamless transition between the two extremities. A comparison study of 
two of such bridging conditional SSMs shows that the RC-SSM is superior to the 
ridge regression based RC-SSM-R, both in mathematical formulation as well as in 
performance. However, both these two models are outperformed by the relaxed 
conditional SSM with integrated conditional features error model (RC-SSM-E). 
Because the latter model determines the degree of relaxation for the conditional 
term during the segmentation of the unseen image, instead of during the model 
training phase, it is much more flexible to find the optimal sub-space of data, best 
representing the object of interest in the unseen image. Performing an evaluation in 
non-contrast abdominal CT images, this approach proves particularly beneficial for 
difficult to segment images, showing a considerable and statistically significant 
improvement in terms of shape estimation and subsequent graph cut segmentation. 

As defined earlier in this chapter, the optimal conditional SSM should: 

 integrate conditional data to improve the performance of the statistical 
shape model, 

 relax the conditional term, in case the reliability of the conditional term is 
not 100%, 

 define the relaxed conditional SSM as a seamless transition between the 
non-conditional SSM and the conventional conditional SSM, 

 contain an automatic, knowledge based estimation of the reliability of the 
conditional term. 

Future Direction of Conditional Shape Models. With this list of requirements for 
the construction of conditional SSMs, the modeling and delineation of single organs 
appears to be properly addressed. Future challenges remain in the simultaneous 
modeling and delineation of multiple organs. By introducing conditional SSMs for 
adjacent organs, for example, the full abdomen can be modeled, while mutually 
employing conditional features (both shape and appearance) of neighboring organs 
as the conditional term to delineate the organ of interest. 
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Chapter 3

Independent Component Analysis and Its
Application to Classification of High-resolution
Remote Sensing Images

Xiang-Yan Zeng and Yen-Wei Chen

Abstract. Independent component analysis (ICA) finds a linear representation of
non-Gaussian data so that the components are statistically independent, or as in-
dependent as possible. It has been successfully applied to many problems, such as
blind source separation. We apply ICA to high-resolution remote sensing images
to obtain an efficient representation of color information. The three independent
components are in opponent-color model by which the responses of R, G and B
cones are combined in opponent fashions. This is consistent with the principle of
many color systems. The interesting point is that there is no summation component
that responds to the luminance channel in other transformations such as principal
component analysis (PCA). The spectral independent components are then used for
classification of high-resolution remote sensing images. The classification map of
the independent components exhibits somewhat spatial consistency, which indicates
that reduction of spectral correlation may lead to increase of spatial correlation.

1 Introduction

A critical problem in the signal processing area is finding a suitable representation
of data, by means of a suitable transformation. It is important for subsequent process
of data, whether it be pattern recognition or other tasks, that the data is represented
in a way that facilitate the process. In this area, many statistical analysis techniques
have been developed, such as principal component analysis (PCA) and independent
component analysis (ICA). Historically, PCA was developed before ICA and have
been widely used for the same type of problems, such as blind source separation
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and feature extraction. The main difference between ICA and PCA is that ICA de-
composes a set of observations into a set of non-gaussian and independent source
signals, whereas PCA decomposes a set of observations into a set of uncorrelated
signals. This distinction has the consequences of far-reaching capabilities of ICA
methods relative to PCA methods.

ICA was first introduced in early 1980’s in the context of artificial neural net-
works[13]. In mid-1990’s, some highly successful algorithms were developed with
impressive results and applications in signal processing and pattern recognition[2,
7, 14]. ICA uses a model that the input data or observations are linear mixtures
of unknown latent variables (sources) [8, 15, 16]. The mixing coefficients are un-
known. The only assumption is that the sources (with at most one exception) are
non-Gaussian and they are independent of each other. To recover the sources, ICA
rotates the input space so that the output are as statistically independent as possible.
The typical application of ICA is blind source separation. Another category of suc-
cessful applications is feature extraction, which is motivated by the results in neural
sciences that suggest the principle of redundancy reduction explain some aspects of
the early processing of sensory data in the brain. In this chapter, we introduce ICA
and its application to feature extraction of remote sensing images .

Satellite images have been the subject of extensive research in a broad range of
applications, such as planning and management of public transportation systems and
environment investigation. Remote sensing images come in different types, includ-
ing visible, hyperspectral and others; they differ from each other in the number and
the wavelength range of band measurements in each pixel. Visible data consists of
pixels composed of three color values of red, green, and blue. Hyperspectral images
include up to hundreds of bands of data collected over narrow bandwidths of the
electromagnetic spectrum. The spatial resolution of hyperspectral images can vary
from a few to tens of meters, which means a pixel may contain different ground
materials and the spectrum measured by a sensor is a composite or mixed spec-
trum[22,25]. Assuming each material’s contribution to the mixed spectrum is pro-
portional to its area within the pixel, a linear mixture model is suitable for describing
the composite spectra. ICA has been successfully applied to hyperspectral data for
demixing the spectra and finding the abundance fraction of the materials within each
pixel. Several reports have covered unsupervised classification of hyperspectral im-
ages by ICA [5, 10, 24, 27 ]. In the meantime, however, the application of ICA to
Red-Green-Blue (RGB) color images typically available in high-resolution remote
sensing has received much less attention.

Color information has long been used for classification of remote sensing images
[11,19]. Finding efficient color representation is important for classification. There
are many transformations that convert an RGB color space into a new color space
[26], but these are general transformations independent of actual images. A more
reasonable way is to find the color encoding information by analyzing the target
images. Over the last few decades, substantial research has been done on the ap-
plication of statistical methods to color information analysis. Buchsbaum et al. has
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conducted a systematic analysis of the role of opponent type processing in color
vision and noticed that efficient information transmission is achieved by a transfor-
mation of the three color mechanisms into an achromatic and two opponent chro-
matic channels[4]. Ruderman et al. analyzed hyperspectral images of natural scenes
and had similar findings [20]. Given data represented in a logarithmic response
space, an orthogonal decorrelation produced three principal axes, one correspond-
ing to changes in radiance and the other two representing blue-yellow and red-green
chromatic-opponent mechanisms. Ruderman et al. also pointed out that the chro-
matic mechanisms are not uniquely defined and depend on experimental data. The
basic idea behind these color analysis approaches coincides with Barlow’s theory
that the goal of vision information processing is to reduce redundancy between in-
put signals [1].

In this chapter, we use ICA to analyze color encoding information of high-
resolution remote sensing images, namely IKONOS multispectral images. The im-
age has three bands but in many cases contains more than three material categories.
Therefor, the independent components cannot directly represent the classes. To per-
form classification, we use the k-means algorithm to cluster the independent com-
ponents of RGB data. Typical methods of classification of remote sensing imagery
include pixel-based and region-based. Pixel-based classification results commonly
exhibit “salt and pepper”appearance. Region-based methods have been proposed to
overcome this problem and achieve better spatial consistency. In these approaches,
region splitting and region growth are implemented by a homogeneity criterion
[17,21]. We here use a simple technique to achieve spatial consistency. A penalty
term is added to the clustering algorithm to incorporate the spatial consistency
into the classification. The incorporation of spatial consistency tends to produce
smoother classification maps.

This chapter is organized as follows. Section 2 introduces the background of ICA,
including the data model and two algorithms. Section 3 presents the application
of ICA to classification of remote sensing images. Section 4 concludes with brief
remarks.

2 Background of Independent Component Analysis

2.1 Linear Transformation of Multivariate Data

In signal processing, pattern recognition and other related areas, it is important to
transform data from one space to another space so that its essential structure be-
comes more accessible. Linear transformations are simple and sufficient in most
cases.

Let us assume that the data consists of a number of variables x1,x2, . . . ,xm that
are observed. Further we denote the number of observations by P. We can then de-
note the data by xi(t) where i = 1,2, . . . ,m and t = 1,2, . . . ,P. We transform the data
from an m-dimensional space to an n-dimensional space, and denote the transformed
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data by y j(t), j = 1,2, . . . ,n. For a linear transformation, each component of the
transformed data is a weighted combination of the observed variables:

yi(t) =
m

∑
j=1

wi jx j(t), i = 1,2, . . . ,n (1)

where wi j is the weight of the jth variable in the ith component. The equation can
be written as a matrix multiplication:⎛⎜⎜⎜⎝

y1(t)
y2(t)

...
yn(t)

⎞⎟⎟⎟⎠= W

⎛⎜⎜⎜⎝
x1(t)
x2(t)

...
xm(t)

⎞⎟⎟⎟⎠ (2)

The n×m matrix W defines a linear transformation. it is desirable for the linear
transformation to produce a set of components that correspond to some physical
causes otherwise hidden in the original data variables. Therefore, one could deter-
mine the matrix W by the expected statistical properties of the transformed compo-
nents yi, such as being uncorrelated or independent.

2.2 Blind Source Separation

To better understand why we need linear transformation, or why we are not satisfied
with the observed data, let us look at the same problem from a different viewpoint.
Blind source separation (BSS) is a good example to illustrate the necessity of an
appropriate transformation. BSS is the separation of a set of source signals from a
set of mixed signals, without information about the source signals and the mixing
process.

A typical example of BSS is cocktail party problem, where a number of peo-
ple are talking simultaneously in a room, and one is trying to follow the speech
of individual speakers. The same number of microphones are placed in various lo-
cations to record the signals, which turn out to be different mixtures of the same
sources (speakers’ conversations). The BSS problem is to recover the conversations
from the recorded mixed signals. The unknown mixing process is a linear operation
and depends on the microphone locations. To simplify the problem, we assume the
number of mixtures is the same as the number of sources and hereafter hold this
assumption in the discussions.

The process of mixing n source signals s1(t),s2(t), . . . ,sn(t) can be represented
by a linear equation:

xi(t) = ai1s1(t)+ ai2s2(t)+ . . .+ ainsn(t), i = 1,2, . . . ,n (3)

where ai1,ai2, . . . ,ain are mixing coefficients and xi(t) is the ith recorded signal. In
this set of linear equations, the sources and the mixing coefficients are unknown.
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Fig. 1 The observed signals that are mixtures of the underlying source signals s1(t), s2(t),
and s3(t)

An example is given as follows. The three sources are synthetic signals⎛⎝ s1(t)
s2(t)
s3(t)

⎞⎠=

⎛⎝ sin(0.1t)cos(0.2t)
random()

sin(2t)+ cos(3t)

⎞⎠
where random() is a noise source with a uniform distribution. The source signals
are mixed by a unknown 3× 3 matrix and the mixtures are shown in Fig. 1. The
observed signals appear to be pure noise and make it difficult to perform further
operations such as pattern recognition . Although the structured source signals are
barely detectable, they are hidden in the observed signals and can be fully or par-
tially recovered.

The BSS problem is to recover the structured source signals from the observed
signals, which is in general highly underdetermined due to the limited information
about the mixing matrix. To narrow down the possible solutions, it is essential to
make assumptions or impose constraints on the source signals. Example approaches
are principal and independent component analysis, where one seeks source sig-
nals that are minimally correlated or maximally independent in a probabilistic or
information-theoretic sense.
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2.3 Independent Components Analysis

2.3.1 Data Model

ICA is a computational method for solving the BSS problem. It is based on the as-
sumption that the source signals are mutually independent. The following assump-
tions are typically made: (1) the source signals are statistically independent or nearly
independent; (2) at most one signal has a Gaussian distribution. The ICA data model
is shown in Fig. 2 and defined as follows.

sn(t) �

s2(t) �
s1(t) �

�

�

� Mixing
process

A

� xn(t)

� x2(t)

� x1(t)

�

�

�

�

�
�

�

�

� Unmixing
process

W

� yn(t)

� y2(t)

� y1(t)

�

�

�

Fig. 2 The mixing and unmixing processes in independent component analysis

Assume that there exist unknown source signals si(t), i = 1,2, . . . ,n, which have
zero mean and are mutually independent. The sources are mixed by an unknown
n× n matrix, and the mixing process can be described by a matrix multiplication:

x = As (4)

where s=( s1(t), s2(t), . . . , sn(t) )T is the source, and x=( x1(t), x2(t), . . . , xn(t) )T

is the observation, and A = ( a1, a2, . . . , an ) is the mixing matrix. T stands for the
transpose of a matrix. The column vectors ai are called basis functions.

The above equation can be rewritten to describe two different types of applica-
tions. For the BSS problem, each observation is represented as a linear combination
of the n sources

xi(t) =
n

∑
j=1

ai js j(t), i = 1,2, . . . ,n (5)

where ai j is the weight of the jth source in the ith observation. In the meantime, the
feature extraction problem in many cases focuses on finding the basis functions that
encode the statistical characteristics of data. The equation is rewritten so that x can
be represented in terms of a linear superposition of basis functions:

x(t) = a1 × s1(t)+ ...+ aN × sN(t) (6)
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The goal of unmixing is to obtain a set of variables that are statistically as inde-
pendent as possible. Therefore, the linear analysis process is to find a matrix W to
separate the mixed signals in x

y = Wx (7)

where y = (y1(t),y2(t), . . . ,yn(t))T is an estimate of s in the sense that each compo-
nent of y resembles a component of s, possibly permuted and rescaled. The rows of
the matrix W are called ICA filters and are used for linear transformation of data.

2.3.2 Why ICA?

Many techniques can find uncorrelated sources for the blind source separation prob-
lem. For instance, PCA is a widely used technique in data analysis. It is a linear
transformation that removes the correlation among the elements of a random vector
and concentrates the variances in a few components. An example is shown in Fig. 3,
which demonstrates two-dimensional correlated data with coordinates x1 and x2 . It
can be seen that x1 and x2 are related, which here means that if we know x1 we can
make a reasonable predication of x2 and vice versa. If we rotate the axes by π/4,
we get a new space with coordinates of e1 and e2 in which data are uncorrelated.
Another property of this rotation is that the variance of the transformed data is max-
imized along the e1 axis. The matrix that decorrelates the components is constructed
in a way that its columns are the eigenvectors of the covariance matrix of the data.

However, producing uncorrelated components may be not enough for applica-
tions like blind source separation. Let us illustrate this with an example using two
independent variables. Fig.4 shows the sources, the mixtures, and the components
recovered by PCA and ICA. The data are plotted using one variable as the x-axis
coordinate and another one as the y-axis coordinate. The two independent sources
have a uniform distribution with a range of [-1,1]. The data is uniformly distributed
in a square due to the independence of the sources. The two sources are linearly
mixed. PCA rotates the plane but cannot recover the independent sources. ICA re-
covers the sources with a different scale. This example suggests that blind source
separation require more than decorrelation. In addition, it is fair to say that ICA may
recover some information that PCA cannot in the case of feature extraction.

2.4 ICA Algorithms

A large number of ICA algorithms have been proposed from different perspectives.
In this section, we introduce two algorithms that are used in a wide range of appli-
cations and also in our study of remotely sensed image data.

2.4.1 Whitening the Data

The first step in many ICA algorithms is to whiten (or sphere) the data [3]. The
observed data x̂ is sphered by first subtracting the mean mx

x̃ = x̂−mx (8)
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x1

x2

dx2

dx1

e1
e2

de1

de2

Fig. 3 Two correlated data components are decorrelated by PCA

(a) (b)

(c) (d)

Fig. 4 PCA and ICA in blind source separation. (a) two independent sources , (b) two mix-
tures, (c) sources recovered by PCA, (d)sources recovered by ICA.
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and then multiplying by a whitening matrix

x = W0x̃ (9)

so that its components xi are mutually uncorrelated and all have unit variance, i.e.
the covariance matrix of x is an identity matrix.

E[xxT ] = I (10)

There are many solutions for the whitening matrix. One is the ZCA-whitening
defined by

Wz =
(
E
[
x̃x̃T ])− 1

2 (11)

The whitening matrix Wz is symmetrical, which gives the name zero-phase compo-
nent analysis(ZCA). The rows of wz are not orthogonal. Another common whiten-
ing solution is PCA, which in the meantime can reduce dimensions if necessary.
The PCA solution comes from the eigenvalue decomposition of the data covariance
matrix

EDE−1 = E
[
x̃x̃T ] (12)

where D is the diagonal matrix of eigenvalues, and E is the orthogonal matrix of
eigenvectors of the covariance matrix. The PCA whitening matrix is given by

WP = D− 1
2 ET (13)

The rows of WP are orthogonal, because WPWT
P =D−1 is a scale matrix. Whitening

is a standard preprocessing step for the ICA algorithms discussed below.

2.4.2 ICA by Information Maximization

Bell & Sejnowski have proposed a neural learning algorithm for ICA[2]. The ap-
proach is to maximize the mutual information between input and output by a
stochastic gradient ascent learning rule. The motivation behind this approach is
that the neural network that maximizes information trasnfer can also reduce redun-
dancy among the output units. Consider a neural network with an input vector x =
( x1, x2, . . . , xn )T , a weight matrix w, and an output vector y = ( y1, y2, . . . , yn )T .
The goal here is to find the weight matrix w that can maximally transfer information
from input to output, which means to maximize the mutual information between in-
put and output:

I(y;x) = H(y)−H(y|x) (14)

where H(y) is the entropy of the outputs, H(y|x) is the conditional entropy and does
not depend on the matrix w. The partial derivative of the mutual information with
respect to w is

∂
∂w

I(y; x) =
∂

∂w
H(y) (15)
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Therefore, one can maximize the mutual information by maximizing the joint en-
tropy of the outputs alone.

Before we obtain the learning rule for the matrix w, we first consider the case of
one input x and one output y. The entropy is given by

H(y) =−E[ln( fy(y)] =−
∫ ∞

−∞
fy(y)ln fy(y)dy (16)

where E is the expected value operator, and fy(y) is the probability density function
(pdf) of the output.

When the transforming function of the neural network is monotonically increas-
ing or decreasing (ie. has a unique inverse), the pdf fy(y) can be written as a function
of the pdf of the input fx(x):

fy(y) =
fx(x)

|∂y/∂x| (17)

where the bars denote absolute values. Substituting fy(y) into the entropy yields:

H(y) = E

[
ln

∣∣∣∣∂y
∂x

∣∣∣∣]−E[ln fx(x)] (18)

the second term on the right side doesn’t depend on w. Therefore, w that maximizes
H(y) can be obtained by a stochastic gradient ascent learning rule:

�w ∝
∂H
∂w

=
∂

∂w

(
ln

∣∣∣∣∂y
∂x

∣∣∣∣)=

(
∂y
∂x

)−1 ∂
∂w

(
∂y
∂x

)
(19)

In the case of a sigmoid transfer function:

y = g(x) =
1

1+ e−wx (20)

The partial derivatives evaulate as follows:

∂y
∂x

= wy(1− y) (21)

∂
∂w

(
∂y
∂x

)
= y(1− y)(1+wx(1− 2y)) (22)

Therefore, the stochastic gradient ascent rule becomes:

�w ∝
1
w
+ x(1− 2y) (23)
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The above derivations can be extended to a neural network with an input vector
x and an output vector y. The pdf of a single variable is replaced by a joint pdf of a
random vector. The joint pdf of the output is:

fy(y) =
fx(x)
|J| (24)

where |J| is the absolve value of the Jacobian of the transformation, and fy(y) is
a simplified notation for the join pdf fy1,y2,...,yn(y1,y2, . . . ,yn). The Jacobian is the
determinant of the matrix of partial derivatives

J = det

∣∣∣∣∣∣∣∣
∂y1
∂x1

· · · ∂y1
∂xn

...
...

∂yn
∂x1

· · · ∂yn
∂xn

∣∣∣∣∣∣∣∣ (25)

For a sigmod neural network, the resulting learning rule for w is similar in the form:

Δw ∝ [wT ]−1 +(I− 2y)xT (26)

where I is an n× n identity matrix. A natural gradient is utilized to improve the
convergence properties of the gradient ascent learning:

Δw ∝
∂H(w)

∂w
wT w =

(
I+ f (y)yT )w (27)

where y = wx, and f (y) = 1− 2/(1+ e−y) is calculated for each component of y.

2.4.3 ICA by Maximization of Non-gaussianity

FastICA is an efficient ICA algorithm invented by Aapo Hyvarinen [14]. The algo-
rithm is based on a fixed point iteration scheme maximizing non-gaussianity as a
measure of statistical independence.

The natural objective of ICA is to minimize the mutual information among the
output signals. Consider a simple case of two outputs y1 and y2, the mutual infor-
mation is given by

I(y1;y2) = H(y1)−H(y1|y2) = H(y1)+H(y2)−H(y1,y2) (28)

where H denotes the entropy. To minimize the mutual information, one can max-
imize the joint entropy or minimize the summation of the marginal entropies. The
information maximization algorithm coincides with the first consideration. Mini-
mizing the marginal entropies leads the ICA mode to non-gaussianity, because the
gaussian distribution has maximum entropy among all real-valued distributions with
specified mean and standard deviation.
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The classical measure of non-gaussianity is the absolute value of kurtosis. For a
random variable y, the kurtosis is defined by

kurt(y) = E[y4]− 3(E[y2])2 (29)

If y is a gaussian variable, its kurtosis is zero. Sub-gaussian varaibles have negative
kurtosis and a flat pdf. Super-gaussian variables have positive kurtosis and a“spiky”
pdf with heavy tails.

To illustrate in a simple example how independent components could be found
by kurtosis minimization or maximization, let us look at one output y = wT x. ICA
attempts to produce outputs that are as non-gaussian as possible, which means to
minimize or maximize the kurtosis

kurt(wT x) = E[(wT x)4]− 3(E[(wT x)2])2 (30)

The maximization or minimization of kurtosis is meaningful only if the norm of w
is bounded, let us assume ‖w‖ = 1. This can be easily done by dividing w by its
norm. The gradient of the absolute value of kurtosis can be computed as

∂ |kurt(wT x)|
∂w

= 4sign(kurt(wT x))(E[x(wT x)3]− 3w‖w‖2) (31)

which suggests
w ∝ E[x(wT x)3]− 3w‖w‖2 (32)

The convengence of gradient descent or ascent algorithms can be slow and highly
depends on the choice of the learning rate. The fixed point algorithms are alternatives
with faster and more reliable convergence. A fixed point algorithm updates w by

w ← E[x(wT x)3]− 3w (33)

where ‖w‖ is omitted because the norm is 1.
Measuring Non-gaussianity by kurtosis generates a simple ICA algorithm. How-

ever, kurtosis has its drawback of being sensitive to outlier data. This becomes a
problem in practice when the value has to be estimated from sample data. Erroneous
or irrelevant observations may severely affect the kurtosis calculation in some cases.
Negentropy is an alternative for measuring non-gaussianity. For a random variable
y , the negentropy is defined as

J(y) = H(ygaussian)−H(y) (34)

where ygaussian is a gaussian random variable of the same mean and variance as y.
Due to the fact that the gaussian distribution has maximum entropy, negentropy is
always nonnegative, and it is zero if and only if s is a gaussian variable. Negentropy
has reliable statistical performance, but the calculation is difficult. We can approxi-
mate negentropy using higher-order cumulants:

J(y)≈ 1
12

(E[y3])2 +
1
48

(kurt(y))2 (35)
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When the random variable y has an approximately symmetric distribution, the right
side is equivalent to the square of kurtosis. Maximization of this approximation is
equivalent to maximization of the absolute value of kurtosis. This approximation
suffers from the same problems that kurtosis has. Therefore, more general non-
quadratic functions are used to replace the polynomial functions y3 and y4 in the
high-order cumulant approximation. A new approximation is obtained as

J(y) ∝ (E[G(y)]−E[G(v)])2 (36)

where G is a nonquadratic function and v is a gaussian variable of zero mean and
unit variance. A fixed point algorithm that maximizes the negentropy approximation
is developed, which iteratively generates new w

w ← E[xg(wT x)]−E[g′(wT x)]w (37)

where the function g is the derivative of the function G. The performance of the
algorithm depends on the choice of the function G, or rather the function g. The
following two functions have proved useful:

g1(y) = tanh(a1y) (38)

g2(y) = ye(−y2/2) (39)

where 1 ≤ a1 ≤ 2 is a constant. It is noticed that maximization of negentropy could
lead to the same algorithm as maximization of the absolute value of kurtosis if we
use the function

g3(y) = y3 (40)

Therefore, eq. (37) is a general algorithm for maximizing non-gaussianity.
The iterative fixed point algorithm for obtaining one independent component con-

stitutes of the following steps:

1. Take a random initial vector w(0) of norm 1. Let k=1.
2. Let w(k)← E[xg(wT (k− 1)x)]−E[g′(wT (k− 1)x)]w(k− 1)
3. Let w(k) = w(k)/‖w(k)‖.
4. if |wT (k)w(k− 1)| is not close enough to 1, let k = k+ 1, go back to step 2.

The convergence of this algorithm means the dot product of the old and new w is
close to one when the two vectors are almost the same.

The above algorithm is called “one-unit” algorithm, because it only estimate one
independent component. To estimate n independent components, we can run the al-
gorithm n times using different initial vectors. But this is not a reliable way to obtain
distinct independent components. To ensure that a different independent component
is estimated in each run, we need to add a constraint that the vectors wi corre-
sponding to the independent components are orthogonal. Assume the independent
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components are sequentially estimated one by one, when we estimate the p-th vector
wp, we add a orthogonalization operation in step 3 before the normalization:

wp ← wp −
p−1

∑
i=1

(wT
p wi)wi (41)

3 ICA for Remote Sensing Study

3.1 ICA for Hyperspectral Remote Sensing

ICA has been successfully applied to remote sensing image classification in the past
decade. Much of the work has been done with the hyperspectral image data, which
have high spectral resolution but relatively low spatial resolution. An example of
this is when the pixel size is comparable or larger than the natural size of ground
object units. In these cases, pixels in the hyperspectral image are “mixed” pixels,
because the area in a pixel may contain different materials and objects. The mix-
ing process is described by a linear mixture model. Let n be the number of spectral
bands, and x be the spectrum vector of a pixel. The element xi is the reflectance
in the ith wavelength band. Assume there are m types of ground materials, and
the reflectance of a pixel is a linear mixture of all the different materials in that
pixel. Let μμμ i = ( μi1,μi2, . . . ,μin )T denote the ith material spectral signature (re-
ferred to as an endmember in the linear mixture model [22]), and the unit vector
f = ( f1, f2, . . . , fm )T denote the proportions of each ground category in the pixel.
The spectrum vector of a pixel is given by

x = f1μμμ1 + f2μμμ2 + . . .+ fmμμμm = Mf (42)

m

∑
i=1

fi = 1 (43)

where M = ( μμμ1,μμμ2, . . . ,μμμm ) is an n×m matrix containing the spectral signatures
as the columns. In the presence of noise, the spectrum vector of a pixel becomes

x = Mf+ e (44)

where e is a noise vector. The spectrum unmixing analysis is to estimate the propor-
tion vector f for each pixel, which also leads to the image classification results. The
classification task here is not to seek a single map of material categories, but a series
of images, each giving a map of the concentration of a different ground material
across the scene.

The linear mixture model fits the ICA data model in eq.(6), where f corresponds
to the source s, μμμ i corresponds to the basis function ai. As a special case of this
model, when the resolution is high and/or the pixel size is small, the vector f is
sparse and there is only one dominant class for each pixel. In this case, a single
class map is sufficient for representing the classification result.



3 ICA and Its Application to Classification of High-resolution Remote Sensing 71

One problem we need to address is that the number of ground material categories
is not, in most cases, same as the number of bands. The hyperspectral image data
provides sufficient spectral resolution so that there are more bands than ground cat-
egories (n > m). A dimension reduction technique, such as PCA, is generally used
in these cases. There are very few reports about how to use the linear mixture model
when n < m.

3.2 ICA for High-resolution Remote Sensing

In this study, we explore the application of ICA to classification of IKONOS high-
resolution satellite images with three bands of red, green, and blue. In many in-
stances a remotely sensed scene may include more than three ground categories,
which means applying ICA in the same way as the above unmixing analysis is diffi-
cult. In the meantime, the pixels in the image are less “mixed” due to the high spatial
resolution; image classification that assigns each pixel to a single category yields a
fair estimate of the ground truth. In the following, we use ICA to transform the data
into independent components and classify the transformed data using the k-means
method.

3.2.1 Independent Components of RGB Remote Sensing Images

The three band IKONOS images can be assigned respectively to the R, G, B col-
ors for display. In this way, the image is represented in a RGB color space. There
are other color spaces that are suitable for specific purposes. For example, YIQ is
the color space used by the NTSC color TV system. Color space conversion is the
translation of the representation of a color from one basis to another; the goal is
to make the translated image suitable for data processing or graphical display. The

image1 image2

Fig. 5 RGB remotely sensed images Copyright(C) Japan Space Imaging Corporation
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conversion in many cases is implemented by a linear transformation. For instance,
the following formula approximate the conversion from a RGB color space to YIQ:⎡⎣Y

I
Q

⎤⎦=

⎡⎣ 0.299 0.587 0.114
0.5957 −0.2746 −0.3213
0.2114 −0.5226 0.3111

⎤⎦⎡⎣ R
G
B

⎤⎦
There are many transformations that convert an RGB color space into a new color

space, but these are general transformations independent of the actual images. There
has been a growing interest in the application of statistical methods for color data
analysis. ICA has been used to reveal the structure of color information in natural
images[18,23]. Tailor et al. applied ICA to color images of natural scenes. The re-
sulting ICA filters are either luminance or color filters. The color filters resemble
either blue-yellow or red-green double-opponent receptive fields.

We here applied ICA to high-resolution remote sensing images. In our experi-
ment, the training data set consisted of 10000 samples, with 5000 samples randomly
selected from each of the images shown in Fig. 5. The two images were taken under
similar conditions containing similar ground objects. As an example, The three band
images of image1 are shown in Fig. 6, which exhibit strong correlations between the
three bands. The histograms of the three bands are shown in Fig. 7, which also have
a similar range and shape.

A sample pixel had 3 values of R, G, B. We focused on the color information
and didn’t use any spatial information. However, the later classification results sug-
gested that the independent components include some spatial relationship informa-
tion, because the neighboring pixels were more consistently classified than in the
RGB space.

The fastICA algorithm was applied to the RGB sample data, and the resulting
transformation matrix is

WICA =

⎡⎣−0.0767 0.1325 −0.0564
0.0359 0.0079 −0.041
0.0106 −0.0075 −0.0225

⎤⎦

(red) (green) (blue)

Fig. 6 The three band images of image1
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Fig. 7 The histograms of image1. From top to bottom the three histograms represent the
distributions of red, green, and blue bands.

The spectral independent components of an RGB pixel are given by:⎡⎣ IC1

IC2

IC3

⎤⎦=

⎡⎣−0.0767 0.1325 −0.0564
0.0359 0.0079 −0.041
0.0106 −0.0075 −0.0225

⎤⎦⎡⎣ R
G
B

⎤⎦
The coordinates of the ICA transformation indicate an approximate opponent-

color model by which R, G, and B are combined into opponent color components.
IC1 is referred to as the violet-green channel, and IC2 is referred to as the yellow-
blue channel. The interesting point is that there is no summation component that
usually appears in many transformations, such as the PCA transformation. It should
be noted that the transformation matrix is not unique and depend on the data. How-
ever, the presence of three chrominance channels without luminance is consistent.

The independent components of image1 and their histograms are shown in Fig. 8,
and Fig. 9. Unlike the RGB histograms that have the similar distribution and overlap
each other, the independent component histograms are much less overlapped and
are concentrated in different ranges. The first component is mainly distributed in the
range of [70,120], the second component is in [120, 150], and the third one is in
[140,210].

We also applied the information maximization ICA algorithm and principal
component analysis to the same training data set. The information maximization



74 X.-Y. Zeng and Y.-W. Chen

(IC1) (IC2) (IC3)

Fig. 8 The three independent component (IC) images of image1

Fig. 9 The histograms of the three independent components of image1. From top to bottom
the three histograms represent the distributions of IC1, IC2, and IC3.

algorithm produced a similar transformation matrix without any summation compo-
nents. However, principal component analysis gave a slightly different matrix:

WPCA =

⎡⎣ 0.6136 0.5871 0.5280
0.6384 0.02451 −0.7693
0.4645 −0.8091 0.3598

⎤⎦
where the first coordinate is a summation component. This came as no surprise
because the first principal component corresponds to a line that passes through the
multidimensional mean and minimizes the sum of squares of the distances of the
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points from the line. In many applications, the first principal component resembles
a gaussian or a mean of the original data.

3.3 Classification of High-resolution Remote Sensing Images

3.3.1 Pixel Classification by Spectral Information

We first compared the RGB data and the independent components for classifying
pixels of the two IKONOS images. The K-means algorithm was used for clustering
spectral features. K-means is an unsupervised clustering method and has proven to
be an effective technique for many applications [12,6,9]. It uses centroids to repre-
sent clusters by optimizing the squared error function. Given a set of observations
(x1,x2, . . . ,xn) where each observation is a real vector, K-means clustering aims to
partition the n observations into K clusters S = {S1,S2, . . . ,SK} so as to minimize
the within-cluster sum of squared Euclidean distance:

K

∑
i=1

∑
x j∈Si

dist(x j,mi) =
K

∑
i=1

∑
x j∈Si

‖x j −mi‖2 (45)

where mi is the centroid of Si.
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Fig. 10 The classification map of the remote sensing image1 by (a)RGB, and (b)ICA

The predetermined number of object classes was 6 for image1 and 5 for image2.
Fig.10 and Fig.11 show the classification results, where different gray scale levels
represent different classes. Although these results may be preliminary because we
used an unsupervised clustering algorithm and only spectral information, we here
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(a) (b)

Fig. 11 The classification map of the remote sensing image2 by (a)RGB, and (b)ICA

focused on the efficient representation of color information. Note that road and grass
pixels in both images were better classified by independent components. For in-
stance, in Fig. 10, the marked area includes dirt and green plants, which was mostly
classified by ICA and misclassified as one class by RGB. An interesting observation
is that the independent components exhibits some spatial consistency, because the
classification map of the independent components is much more smoother than that
of the RGB. In Fig. 11, the marked area of a ground cover category has a very accu-
rate map in the classification of independent components, whereas the same area has
a noisy map in the RGB classification. We conclude cautiously that the reduction of
spectral correlation may have the effect of increasing spatial correlation.

3.3.2 Classification by Spectral Information and Spatial Consistency

Pixel-based classification does not include spatial information and classification
maps tend to be noisy. Region-based methods are proposed to overcome this prob-
lem and achieve better spatial consistency. We here add a penalty term on the dis-
tance of a pixel and a cluster center in the K-means algorithm,

distx j ,mi = ‖x j −mi‖+α/neighbor(xj, i) (46)

where neighbor(x j, i) is the function to compute how many neighboring pixels of x j

belong to the ith class, and 0 < α < 1 is a parameter. The second term on the right
side of the equation introduces spatial consistency. The class of a pixel is determined
not only by the Euclidean distance between the pixel and the centroids but also by



3 ICA and Its Application to Classification of High-resolution Remote Sensing 77

concrete grass

Fig. 12 The map of the concrete class and the green plant class of image1 classified by the
RGB data and spatial consistency

concrete grass

Fig. 13 The map of the concrete class and the green plant class of image1 classified by the
principal components and spatial consistency

the neighboring pixel’s classes. This aims to remove isolated noises and produce
smoother classification maps.

The new clustering algorithm was applied to the RGB images, the principal com-
ponents, and the independent components. The two main classes in these images
are concrete objects and green plants that are important in agriculture and trans-
portation applications. The two classes in image1 are shown in Fig.12, Fig. 13 and
Fig.14, where the target object is shown in white color. These maps, in particular the
RGB classification maps, are smoother than the classification maps obtained from
the spectral information without spatial consistency.
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concrete grass

Fig. 14 The map of the concrete class and the green plant class of image1 classified by the
independent components and spatial consistency

Table 1 Classification accuracy of the road class

false negative rate (%) false positive rate (%)

image1 image2 Image1 Image2

RGB 25.3 43.7 42.5 67.6

PCs 47.3 6.1 21.9 28.5

ICs 7.3 4.6 3.5 21.7

To compare the results quantitatively, we manually select random samples from
the concrete class and analyze their classifications. The “ground truth” was approx-
imately determined by human observation. The classification performance is mea-
sured by two criteria of false negative rate δp and false positive rate δn defined by:

δp = Np/C (47)

and
δn = Nn/C (48)

where Np is the number of pixels that have color similar to roads but are not classi-
fied into the road class, Nn is the number of pixels that have different color but are
misclassified into the road class, and C is the number of road pixels in the ground
truth. Table 1 summarized the classification results of the road class in the two test
images. Note that generally independent components yield the best results in terms
of positive and negative false rate. Although the image2 has shadows in the road
area, its classification by the principal components or the independent components
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has a low false negative rate, which means the majority of the road pixels are cor-
rectly classified.

4 Conclusions

In this chapter, we introduced ICA as a feature extraction technique and its ap-
plication to classification of high-resolution remote sensing images. Linear trans-
formation is normally used in signal processing and pattern recognition to acquire
meaningful features from observed data. There are many statistical methods for fea-
ture extraction, including PCA and ICA. ICA uses higher-order statistics and have
had superior results in many applications. For instance, ICA has been widely ap-
plied to hyperspectral remote sensing images for spectral unmixing, where ICA ba-
sis functions represent the spectral signatures of ground materials and independent
components indicate the proportions of different material categories in mixed pix-
els. High-resolution remote sensing images have much fewer spectral bands, which
means using ICA for spectral unmixing analysis is impractical. We used ICA to
learn an efficient color representation of RGB remote sensing images. The obtained
independent components were the opponent combination of R, G, and B, and had
nonoverlapping distributions. The k-means clustering algorithm was used to classify
the independent components. The classification map of the independent components
was much smoother than that of the RGB data, which suggested that reduction of
spectral correlation may lead to increase of spatial correlation. This is an interesting
finding about the encoding of spectral and spatial information of images and worth
further study.
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List of Acronyms

BSS Blind Source Separation
IC Independent Component
ICA Independent Component Analysis
PCA Principal Component Analysis
RGB Red-Green-Blue
ZCA Zero-phase Component Analysis



Chapter 4

Subspace Construction from Artificially
Generated Images for Traffic Sign Recognition

Hiroyuki Ishida, Ichiro Ide, and Hiroshi Murase

Abstract. Recognition technologies using digital cameras have gained considerable
interest in recent years. However, even with the improvements of digital cameras,
the quality of captured images often can be insufficient for the recognition in many
practical cases. In order to recognize low-quality images, similarly degraded images
should be used for training classifiers. This chapter presents a training method for
the subspace method. It is named “Generative learning method,” since the training
images are generated artificially from an original image. Conventional approaches
used camera-captured images as training data, which required exhaustive collection
of captured samples. The generative learning method, instead, allows to obtain these
training images based on a small set of actual images. Since the training images need
to be generated on the basis of actual degradation characteristics, the estimation step
of the degradation characteristics is introduced. This framework is applied to traffic
sign recognition that is one of the important tasks for driver support systems.

1 Introduction to the Generative Learning

High-resolution digital cameras have come into widespread use in recent years.
Recognition technologies using such digital equipments are especially of practical
concern. However, objects in distant places still tend to be captured in low-resolution
and blurred, which has a serious effect on the recognition performance.

The generative learning method [1] is developed to solve the problem of degrada-
tion. It was originally proposed for the recognition of hand-written characters [2, 3].

Hiroyuki Ishida
Toyota Central R&D Labs. Inc., 41-1, Yokomichi, Nagakute, Aichi, Japan
e-mail: h-ishida@mosk.tytlabs.co.jp

Ichiro Ide · Hiroshi Murase
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
e-mail: {murase,ide}@is.nagoya-u.ac.jp

Y.-W. Chen and L.C. Jain (eds.), Subspace Methods for Pattern Recognition 83
in Intelligent Environment, Studies in Computational Intelligence 552,
DOI: 10.1007/978-3-642-54851-2_4, c© Springer-Verlag Berlin Heidelberg 2014

h-ishida@mosk.tytlabs.co.jp
{murase,ide}@is.nagoya-u.ac.jp


84 H. Ishida, I. Ide, and H. Murase

It generates artificially degraded samples, and allows to make classifiers trained
by them. Traditionally, training images ought to be collected from actual images
taken in the real world. Such a collection-based approach may be the most straight-
forward approach to obtain a set of training samples. In many practical cases, how-
ever, camera-based collection of a sufficient number of training images in various
conditions is unrealistic. Let us consider collecting the training images for many
categories. In the character recognition task [4], for instance, the number of cate-
gories tends to be large, and at the same time, printed text may even contain various
types of fonts. This diversity of characters makes the collection difficult. Moreover,
various conditions that cause respective distortions in captured images should be
taken into account.

In contrast, the generative learning method eliminates the necessity of capturing
an exhaustive collection of training images. All the training images are generated ar-
tificially from a smaller number of original images. However, if such artificial gener-
ation is performed regardless to realistic models, this method might not be sufficient
as a “training” method; it is important to simulate the actual degradation systems.
Thus, models are initially defined as corresponding to the actual degradation factors.
The generative learning method consists of two main parts: (1) estimation of actual
degradation systems and (2) generation of training images based on the estimated
degradation models. Details of each part are described below.

1.1 Modeling of Degradation Characteristics

Degradation characteristics need to be modelled before working on the generation
of training data. They can be optical blur, motion blur, segmentation errors, and so
on. For each of these models, parameters to control the degree of degradations are
defined. Let p be a vector containing parameters from all the models, a training im-
age is generated from the original image using it, and then a set of training images
is obtained by applying a set of different parameter vectors. These parameters are
applicable to all categories, therefore training images for all categories can be ob-
tained. Fig. 1 illustrates an example of the degradation model, where the parameter
σ controls the standard deviation of the Gaussian blur function.

1.2 Estimation of Degradation Characteristics

Once the degradation model is defined, it becomes possible to generate a wide va-
riety of training images. However, it is the parameters that actually determine the
properties of the generated samples. This is why parameter estimation is necessary
for the reproduction of actual degradation characteristics. In the example of the blur
model in Fig. 1, it is important to estimate the value of σ in general cases.
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Fig. 1 The Gaussian blur model. The level of blurring is controlled by a parameter σ .

Fig. 2 A traffic sign symbol extracted from an actual image taken by a digital video camera

If the blur function cannot be assumed to be a Gaussian, then σ should be re-
placed by a point spread function (PSF) [5]. This PSF is used when the degradation
characteristic of a camera is unknown.
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2 Generative Learning for Traffic Sign Recognition

The traffic sign recognition is one of the important tasks for supporting drivers.
The subspace method [6] is used for the classification of traffic sign symbols. To
construct subspaces, the abovementioned generative learning method is employed
to generate various training images of traffic signs. Collection of all training im-
ages under various conditions is especially difficult for the traffic sign recognition,
therefore the generative learning method is useful. This training step includes an
estimation step of parameters.

Technologies for supporting drivers with in-vehicle cameras have gained con-
siderable industrial interests in recent years. Many studies have been conducted on
pedestrian detection, traffic signal recognition, road marking recognition, and road
environment understanding [7, 8]. Traffic sign recognition is another important task.
If such a recognition system comes into practice, it could support drivers by inform-
ing them of the current speed limit, for instance. Also, it could be applicable for
periodically updating a road map database [9] used for navigation systems. Two
main issues in the traffic sign recognition are detection and classification. Various
attempts have been carried out on the detection of traffic signs: edge detection mask
[10], hierarchical template [11], shape information [12], and color information [13].
There are methods proposed specifically for circular sign detection [14, 15]. Works
[16] and [17] present methods for shape classification. The category classification of
extracted signs also is an important task. Some studies have been conducted on the
category classification of extracted signs. In [18], results from high-quality images
are preferentially used for avoiding degradations. A method for speed sign classifi-
cation [19] copes with the rotation of traffic sign symbols. It is also important to fo-
cus on the various degradations appearing in camera-captured images. This Chapter
focuses on the classification of variously degraded traffic sign symbols, and intro-
duces a method [20] for constructing classifiers. First of all, generation models are
introduced in Section 2.1. They are defined as corresponding to actual degradation
factors. In Section 2.2, the strategies for generating training images are described,
together with the estimation step of generation parameters.

2.1 Generation Models of Traffic Signs

Training images are generated from an original image by three degradation models:
rotation, blurring, and segmentation error. These models are defined with generation
parameters, as shown in Fig. 3. The parameters are listed in Table 1. Given an origi-
nal CG image P0 of a traffic sign symbol, a degraded image P3 is generated from P0

as described below:

1. Rotation
This model simulates the rotation of traffic signs. Assume that the original traffic
sign plate exists in plane z = 0, and its center is at point (0,0,0). Rotation angle
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Fig. 3 Proposed generation model

Table 1 Parameters for the generation models

θx Rotation angle around the x-axis
θy Rotation angle around the y-axis
θz Rotation angle around the z-axis
γ Gauss parameter of focus blur

Δx Horizontal gap
Δy Vertical gap
w Width of the segmentation area
h Height of the segmentation area
d Segmented image size

parameters are denoted by θx, θy, and θz. The rotation matrices around each axis
are denoted by Rx,Ry, and Rz. The operation of rotating the traffic sign plate is
represented as

P1(x,y) = P0(x
′,y′). (1)

Values x′ and y′ are determined by⎡⎣ x′
y′
z′

⎤⎦=
(
Rz(θz)Ry(θy)Rx(θx)

)−1

⎡⎣ x
y
0

⎤⎦ , (2)
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where

Rx(θx) =

⎡⎣ 1 0 0
0 cosθx −sinθx

0 sinθx cosθx

⎤⎦ (3)

Ry(θy) =

⎡⎣ cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy

⎤⎦ (4)

Rz(θz) =

⎡⎣ cosθz −sinθz 0
sinθz cosθz 0

0 0 1

⎤⎦ . (5)

2. Blurring
This model is used to simulate focus blur. For simplicity, the blurring function is
assumed to be a Gaussian function. The level of blurring is controlled by a single
Gaussian parameter γ . This blurring operation is represented using convolution
(∗) as

P2(x,y) = P1(x,y)∗
[

1
2πγ2 exp

(
−x2 + y2

2γ2

)]
. (6)

3. Segmentation error
This model is used to simulate incorrectly segmented symbol images. Horizon-
tal and vertical gap parameters (Δx,Δy), segmented area parameters (w,h), and
segmented image size d are introduced. Resolution transformation is performed
together in this model. P3 is obtained by

P3(i, j) =
1∣∣D(i, j)

∣∣ ∑
x,y∈D(i, j)

P2(x,y), (7)

where D(i, j) is a set of pixels projected on pixel P3(i, j), and |D(i, j)| is the number
of pixels in D(i, j) It is represented as

D(i, j) =

{
(x,y)

∣∣∣∣ i
d + 1

w ≤ x−Δx <
i+ 1
d + 1

w,

j
d+ 1

h ≤ y−Δy <
j+ 1
d + 1

h

}
. (8)

The size of the generated image P3 is d (0 < i, j ≤ d).

2.2 Training by Generative Learning

From the viewpoint of constructing training sets, images with various levels of
degradation should be obtained. Specifically, a range of the degradation levels
should be adequately determined. This is especially needed for the application
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using an in-vehicle camera because the image degradation tends to be serious due
to camera movement.

This method estimates the parameter range from captured images, since it can
be considered that the estimated parameter range is suited to recognize traffic signs
captured in similar conditions. To represent the parameter range, a multi-variational
normal distribution is used for approximation. It provides a simple and general
framework, in which the parameter range can be controlled by mean and variance.
Once they are obtained, the degradation characteristics in the generation step of the
training images can be reproduced. This is possible for any category of traffic sign
symbols because the degradation models are applicable universally to them. Recall
that capturing the training images of all categories is extremely difficult for traffic
sign recognition. The major advantage of the generative learning method is that the
training images of all categories can be obtained completely by the generation.

This method consists of two steps. The first is the parameter estimation step in-
troduced in 2.2.1. The second is the generation step introduced in 2.2.2.

2.2.1 Parameter Estimation Step

The distribution of generation parameters is estimated from actual images. Before
that, however, parameters need to be estimated for each image.1

As introduced in Section 1.1, a parameter vector p consisting of the generation
parameters is defined as

p = (θx,θy,θz,γ,Δx,Δy,w,h). (9)

Using this vector, degraded traffic sign images are generated from an original image.
Fig. 4 illustrates this estimation step. Let T be one of the captured images for param-
eter estimation and Q be an image generated from the original image “speed limit
30 km/h” using p. A parameter vector p̂, which maximizes the similarity between
Q and T , should be found and regarded as the optimal representation of the degra-
dation characteristics of T . The similarity between these two images is given by an
inner product 〈q, t〉, where vectors q and t consist of the pixel values of images Q
and T , respectively.2 The maximization of this similarity is achieved by the Genetic
Algorithm (GA) [22]. Fig. 5 illustrates the operations of crossover and mutation in
GA. A detailed description of the GA-based parameter estimation algorithm is given
in Table 3. Table 2 lists parameters which are used in the algorithm of GA. Fig. 6
shows an example of a captured image t and images simulated by GA.

1 These images should be captured by the same camera as that used in the recognition step.
It is also required to exclude the images which look obviously unsuitable for the parameter
estimation. If the degradation characteristics of the images are dissimilar to the general
ones, the performance of the generative learning method will not be satisfactory.

2 Each vector is normalized such that the mean of its elements is 0 and the norm is 1,
namely, 〈q,q〉= 〈t, t〉= 1.
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Fig. 4 Parameter estimation step

hwyΔxΔγ
xθ yθ zθ

hwyΔxΔγ
xθ yθ zθ

h

wyΔ

xΔγ

xθ yθ zθ

wyΔxθ yθ zθ

γ xΔ h

hwyΔxΔγ
xθ yθ zθ

hwyΔxΔγ
xθ yθ zθ

��������� �	
�
��

���

cP mP

���
����

���
����

�

���
����

Fig. 5 Operations used in Genetic Algorithm

The parameter distribution is estimated from multiple parameter vectors p̂ com-
puted from the captured images. The mean vector μ and covariance matrix Σ are
then obtained from the multiple vectors p̂ by

μ = E [p̂], (10)

Σ = E
[
(p̂− μ)(p̂− μ)�

]
. (11)
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Table 2 Parameters for the Genetic Algorithm

Nc Population size
G Number of generations
Pc Crossover rate
Pm Mutation rate

Table 3 Parameter estimation algorithm based on Genetic Algorithm [22]

Algorithm
// Cp: Parents set
// Cc: Children set
// t: Normalized captured image T
// q: Normalized generated image Q

1 initialize set Cp and its Nc chromosomes pi
2 do
3 for all pi ∈Cp

4 generate qi from the original image of t with pi
5 calculate fitness si = 〈qi, t〉
6 next
7 do
8 select chromosomes pa, pb by roulette selection
9 reproduce pa → p′a, pb → p′b

/* Crossover */
10 if Rand[0,1) < Pc then cross p′a with p′b
11 add p′a, p′b to Cc

12 until |Cp|= |Cc|
13 for each chromosome pi of Cc

/* Mutation */
14 if Rand[0,1) < Pm then
15 randomly initialize one of the elements of pi
16 next
17 copy Cc →Cp

18 empty Cc

19 until generation reaches G
20 p̂ := pi with the largest fitness si
21 return p̂

Note that size parameter d does not appear in Eqs. (9)–(11) because d can be
obtained directly from each captured image itself. While the other parameters of p
are estimated by the algorithm in Table 3, the value of d is set equal to the size of the
captured image. Also for the sake of simplicity, it is assumed that d is independent
of the other parameters; μ and Σ are computed regardless to d.
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Captured image t

Image of the first generation.
(similarity 0.742)

Image of the 100th generation.
(similarity 0.919)

Fig. 6 Images generated to reproduce a captured image as similar as possible

Fig. 7 Generation of training dataset

2.2.2 Generation of Training Images

Once the parameter distribution is estimated, a parameter vector g, which follows the
estimated distribution (μ ,Σ ), is reproduced by the following parameter-producing
function:

g = Σ 1/2r+ μ, (12)

where r denotes a vector composed of standard normal random numbers3 [23] and
Σ1/2 denotes the Cholesky decomposition [24] of Σ . Fig. 7 illustrates this generation
step. Various parameter vectors are produced, and correspondingly, various training
images of all categories are generated. Some examples of the generated training
images are shown in Fig. 8.

3 Generator of standard normal random numbers and the Cholesky decomposition are avail-
able in MIST libraries [25].
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6×6 10×10 14×14 18×18
θx [

◦] θy [
◦] θz [

◦] γ Δx [cm] Δy [cm] w [cm] h [cm]

−5.25 −4.25 −6.38 3.4 1.29 0.45 34.3 41.4

6×6 10×10 14×14 18×18
θx [

◦] θy [
◦] θz [

◦] γ Δx [cm] Δy [cm] w [cm] h [cm]

−2.00 4.31 −2.25 17.3 2.10 0.91 35.7 38.4

6×6 10×10 14×14 18×18
θx [

◦] θy [
◦] θz [

◦] γ Δx [cm] Δy [cm] w [cm] h [cm]

−0.88 −4.00 1.19 9.4 −0.28 2.38 36.2 38.6

6×6 10×10 14×14 18×18
θx [

◦] θy [
◦] θz [

◦] γ Δx [cm] Δy [cm] w [cm] h [cm]

−1.94 4.63 −6.44 9.1 1.01 2.31 39.3 41.8

Fig. 8 Examples of generated images for “speed limit 20 km/h” in various resolutions [pix-
els]
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3 Recognition by the Subspace Method

The subspace method [6] is used in the recognition step. The process of constructing
a subspace is described in 3.1, followed by a description of the recognition step
using multiple-frame integration in 3.2. A simple algorithm to extract circular traffic
signs is outlined in 3.3.

3.1 Construction of a Subspace

A subspace is constructed from various training images for each category and also
for each size.

Let P be a set of N different parameter vectors pn (n = 1,2, · · · ,N), where N
is the number of training images used for constructing a subspace of a category.
N training images are generated from parameter vectors pn ∈ P . For each d × d

training image x(c)pn,d
of category c, a vector x(c)pn,d

is constructed from pixel values

of the image as described below. First, an image x(c)pn,d
is converted to a vector x̃(c)pn,d

such that the mean of its elements becomes 0 by

x̃(c)pn,d
=
[

x(c)pn,d
(0,0)− x̄(c)pn,d

· · · x(c)pn,d
(d − 1,0)− x̄(c)pn,d

· · · x(c)pn,d
(0,d − 1)− x̄(c)pn,d

· · · x(c)pn,d
(d− 1,d− 1)− x̄(c)pn,d

]�
,

(13)
where the mean x̄(c)pn,d

is calculated by

x̄(c)pn,d
=

1
d2

d−1

∑
x=0

d−1

∑
y=0

x(c)pn,d
(x,y).

Secondly, this vector is normalized to x(c)pn,d
whose norm is 1 by

x(c)pn,d
=

x̃(c)pn,d∥∥∥x̃(c)pn,d

∥∥∥ . (14)

Next, a matrix X (c)
d whose size is d2 ×N is constructed from N normalized vectors

x(c)pn,d
by

X (c)
d =

[
x(c)p1,d

· · · x(c)pN ,d

]
. (15)

An auto-correlation matrix Q(c)
d whose size is d2 × d2 is computed by

Q(c)
d = X (c)

d

(
X (c)

d

)�
. (16)
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Fig. 9 Top three eigenvectors (Speed limit 20 km/h, size 16×16 pixels)

Eigenvectors are derived from Q(c)
d , of which e(c){l,d} (l = 1, · · · ,L) with the largest

L (L < N) eigenvalues are used for recognition. Fig. 9 shows examples of the eigen-
vectors. The reason why the subspaces are constructed for each size d is that size
normalization can have an undesirable effect on the matching process. If the im-
age size is changed, the influence of pixel interpolation on very small images is not
negligible.

3.2 Multiple Frame Integration

An input image is classified to a category c that maximizes the similarity. In the
subspace method, the similarity is given by the sum of the squared inner product
between the given image and the eigenvectors. Yanadume et al. demonstrated that
integrating similarities from multiple frames improves recognition accuracy [21].
Given M image frames of the same target, let zm be the m-th input image (m =
1, · · · ,M) converted in vector form; the recognition result is obtained by

ĉ = argmax
c

M

∑
m=1

L

∑
l=1

(
e(c)

�
{l,d̄m}zm

)2
, (17)

where d̄m represents the size of the segmented image zm. In order to distinguish it
from the generation parameter d, the size of the captured images is denoted by d̄m.

3.3 Circular Sign Detection

HSV color space [26] is useful for the extraction of symbol regions in circular signs,
since H and S are nearly uniform in respect to changes of illumination. A discrimi-
nant function for finding the red circumference is defined as

red(x,y) =

⎧⎪⎪⎨⎪⎪⎩ 1

⎛⎝−π/9 < H(x,y)< π/9
and 0.2 < S(x,y)≤ 1

and 30 ≤V (x,y)≤ 255

⎞⎠
0 otherwise

. (18)
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Fig. 10 Extraction parameters defined for a circular sign

Circular signs is detected by matching a doughnut-shaped structure shown in Fig.
10 with segmentation parameters. Here (x0,y0) is the center point, R1 is the symbol
area, R2 is the red circumferential area, and r1 and r2 are the radii of R1 and R2,
respectively. They are represented as

R1 =
{
(x,y)

∣∣∣ √(x− x0)2 +(y− y0)2 < r1

}
(19)

and

R2 =
{
(x,y)

∣∣∣ r1 <
√
(x− x0)2 +(y− y0)2 < r2

}
. (20)

The extracted region is the smallest square that includes the entire symbol area.
Using Eqs. (18), (19), and (20), segmentation parameters (x0,y0) and segmented
image size d̄ are obtained by{

x0,y0,
d̄
2

}
= arg max

{x,y,r1}

[
∑

(x,y)∈R2

red(x,y)

π(r2
2 − r2

1)
− ∑

(x,y)∈R1

red(x,y)

πr2
1

]
. (21)

This segmentation algorithm is applied to the input video stream. Searching only
neighborhoods of (x0,y0) obtained from previous frames is effective for the reduc-
tion of computational complexity and false recognition.

4 Experiment

An experiment was performed using video streams captured by an in-vehicle camera
(Table 4) during one run on a sunny morning. Using the detection algorithm in
3.3, the symbol images were cropped from 1,073 images in the video stream. The
number of categories contained in this test data was five (No. 2, 4, 5, 12, and 20),
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Table 4 Specifications of the in-vehicle camera

Product model Sony DCR-PC105
Resolution 720×480pixels
Frame rate 30 fps
Focus length 3.7 mm

No.1 No.2 No.3 No.4 No.5

No.6 No.7 No.8 No.9 No.10

No.11 No.12 No.13 No.14 No.15

No.16 No.17 No.18 No.19 No.20

Fig. 11 Traffic sign categories

where Fig. 11 illustrates twenty circular traffic signs used in Japan. These symbol
images were divided into five data sets (sets A–E) by their category as shown in
Table 5. In this experiment, a variant of 5-fold cross validation was used; each data
set was chosen once for the parameter estimation, and the remaining four sets were
used for testing. It was to ascertain whether parameters estimated from a single
category were valid for constructing classifiers of other categories 4. Fig. 12 shows
the size distribution of the segmented images, and Fig. 13 shows examples of the
images.

In the training step, the parameter distribution was estimated using the algorithm
in Table 3 with Nc = 100, G = 100, Pc = 0.7, and Pm = 0.01. Instead of Eq. (12),
training images were generated by a parameter producing function in which Σ1/2

4 In the actual application, we would want to train parameters from a limited number of
samples.
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Table 5 Number of symbol images in each data set

Set Category Number of symbol images
A No. 2 174
B No. 4 356
C No. 5 214
D No. 12 214
E No. 20 115

Fig. 12 Distribution of traffic sign size

was weighted on as
g = kΣ 1/2r+ μ, (22)

where k is considered as a factor that controls the parameter range by weighting
on the estimated Σ 1/2. The number of the generated training images was N = 200.
Recognition rates in six cases (k = 0,1/4,1/2,1,2,4) were compared. In the case
of k = 0, however, only a single training image (g = μ) was obtained from Eq. (22).
Hence in this case, the input images were classified by

ĉ = argmax
c

M

∑
m=1

(
x(c)

d̄m

�
zm

)
(23)

with a single training image x(c)
d̄m

. In the other cases, recognition results were ob-
tained by Eq. (17). The case of k = 1 was identical to the presented generative
learning method, since Eq. (22) equals Eq. (12). In the recognition step, ten succes-
sive frames were integrated (M = 10), and ten eigenvectors were used (L = 10).



4 Subspace Construction from Artificially Generated Images 99

Set A Set B Set C Set D Set E

Fig. 13 Examples of test images

Table 6 Average recognition [%] rates from single frame (M = 1) and multiple frame inte-
gration (M = 10)

Weight k 0 1/4 1/2 1 2 4
Single frame 48.0 81.7 83.4 84.3 82.7 82.4
Multiple frames 57.4 89.2 91.7 92.9 91.4 91.2

4.1 Results

Recognition rates are presented in Fig. 14, where the horizontal axis in the graph
represents the maximum symbol size d̄max within the integrated M frames. As shown
in the results, the recognition rates have strong relationships with the image sizes.
The generative learning method exhibited high recognition rates; the recognition
rate of relatively large symbols (d̄max ≥ 20) was 100%. For small symbols (d̄max <
10), it was 84.4%. In Table 6, overall recognition rates are presented together with
rates from single frame recognition (M = 1). Compared with the case of k = 0, in
which an average pattern was learned, the other cases improved drastically in terms
of recognition rates. Although the cases where k = 1/4,1/2,2, and 4 also exhibited
high recognition rates, the case of k = 1 was the most effective. Fig. 15 presents
some examples of the recognition results where k = 1. Even small symbols were
recognized if the generative learning method was combined with multiple frame
integration.
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Fig. 14 Recognition results according to the maximum size of traffic sign symbol images in
multiple frames

4.2 Discussion

The case using the estimated distribution (k = 1) was the most appropriate for rec-
ognizing traffic signs captured in similar conditions. This result indicates that the
GA-based parameter estimation successfully worked.

Since most of the available traffic sign images are small as presented in Fig. 12,
robustness to low-resolution images is important for real-world applications. Nev-
ertheless, the recognition rate was not high enough when the image size was very
small (d̄max < 10). One reason is that small signs are especially sensitive to the
degradation factors. It implies the dependency of parameters, which are listed in Eq.
(9), on size parameter d. For the sake of simplicity, the current method assumes the
independence of d from the other parameters. A better representation for parameter
distribution should be discussed in future works.

Table 7 shows the recognition rates of the generative learning method (k = 1)
for each data set. A sufficient performance should be obtained also from the case
where different sets were used for estimation and testing. Non-diagonal elements in
Table 7 show the results of such cases. However, sets A and C were not recognized
with high accuracy, compared with the case where the same set was used both for
estimation and testing (see Table 7 column-by-column). This is partly due to the
distribution of traffic sign size in Fig. 12; set A was composed mostly of large im-
ages, and set C was composed mostly of small images. Moreover, the recognition
rates were lower when sets D and E were used for parameter estimation (see Table
7 row-by-row). One explanation is that the parameter distribution was not satisfac-
torily estimated because of structural simplicity of the original traffic sign symbols.
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Fig. 15 Video stream demonstrating the recognition results. Traffic signs shown at the bottom
of the images are the extracted symbol, the result of single-frame recognition (M = 1), and the
result of multiple-frame recognition (M = 10), from left to right. Whereas the single-frame
recognition sometimes gave incorrect results, the multiple-frame recognition gave the correct
result at higher rates.
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Table 7 Recognition rates of the generative learning method (k = 1) for each training and
test set

Recognition rates for test data [%]
Single frame Multiple frames

Training data Set A Set B Set C Set D Set E Average Average
Set A 97.1 68.0 68.2 98.6 100 82.3 93.5
Set B 97.7 78.4 72.0 100 100 86.9 95.8
Set C 93.7 82.6 82.7 100 100 89.7 98.5
Set D 91.4 83.1 65.4 98.6 100 85.8 91.5
Set E 89.1 76.4 56.1 98.1 100 81.3 90.0

Table 8 Edge density measured from original traffic sign symbol images of 56×56 pixels

Set A B C D E
Category No. 2 No. 4 No. 5 No. 12 No. 20
Edge density 0.064 0.061 0.065 0.046 0.055

Table 8 shows the complexities calculated for the traffic sign symbols, where the
complexity is defined by edge density as introduced in [27]. Altogether, parame-
ters should preferably be estimated from images of various sizes using structurally
complex symbols.

5 Summary

In this chapter, a method for recognizing traffic sign symbols was introduced. Degra-
dation parameters were defined in order to generate variously degraded training im-
ages. Based on the generated models, degradation characteristics were estimated
from a small number of captured images. The estimated characteristics were trained
via the generated images.

The presented framework is applicable for any traffic sign by combining it with
conventional traffic sign detection methods [10]–[19]. In future works, the effec-
tiveness under various weather conditions and at various times of day should be
evaluated. Application to the recognition of other on-road objects and pedestrians
will be interesting.
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Chapter 5

Local Structure Preserving Based Subspace
Analysis Methods and Applications

Jian Cheng and Hanqing Lu

Abstract. Subspace analysis is an effective approach for image representation. Lo-
cal structure preserving has been widely adopted to learn subspace which reflects the
intrinsic attributes of samples. In this chapter, inspired by the idea of local structure
preserving, we propose two novel subspace methods for face recognition and image
clustering tasks. The first is named Supervised Kernel Locality Preserving Projec-
tions (SKLPP) for face recognition task, in which geometric relations are preserved
according to prior class-label information and complex nonlinear variations of real
face images are represented by nonlinear kernel mapping. The second is a novel
probabilistic topic model for image clustering task, named Dual Local Consistency
Probabilistic Latent Semantic Analysis (DLC-PLSA), The proposed DLC-PLSA
model can learn an effective and robust mid-level representation in the latent seman-
tic space for image analysis. As our model considers both the local image structure
and local word consistency simultaneously when estimating the probabilistic topic
distributions, the image representations can have more powerful description ability
in the learned latent semantic space. The extensive experiments on face recogni-
tion and image clustering show that the proposed subspace analysis methods are
promising.

1 Introduction

As one of the most critical stages in pattern recognition tasks, feature extraction and
representation has attracted much effort in the last decades. Many feature descriptors
have been introduced, such as color, texture, shape, SIFT, LBP [1,2]. As a result, the
dimensionality of feature space increases to the scale of hundreds even thousands,
namely the curse of dimensionality. To address the curse of dimensionality, subspace
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analysis method is utilized to seek a much lower dimensional feature space with
approximative description capability to the original feature space.

There are many subspace analysis algorithms in literature. Principal Component
Analysis (PCA) is a popular subspace analysis method which assuming an image
can be decomposed as a linear combination of basis images [3,4]. The basic idea
of PCA is to maximally retain variance of samples in learned subspace. In view-
point of statistics, PCA only satisfies the second-order statistical information inde-
pendent, but high-order statistical dependencies still exist and cannot be properly
separated. Independent Component Analysis (ICA) aims to seek for a set of basis
images to make the image coordinates high-order statistically independent in this
basis besides the second-order statistical independence used in PCA [5,6]. In this
sense, PCA is a special case of ICA with Gaussian prior, and ICA can be consid-
ered as a generalization of PCA to non-gaussian scenario . There are many other
algorithms, such as Linear Discriminant Analysis (LDA), also named Fisher’s lin-
ear discriminant, which maximizes the variance of between-class while minimizing
the variance of within-class [7]. These subspace analysis algorithms can be catego-
rized by different criteria, such as linear or nonlinear, global or local. Most of the
above-mentioned subspace methods can be solved in algebraic approach, e.g. ma-
trix factorization. Another hot feature representation approach is probabilistic topic
models, such as probability Latent Semantic Analysis (pLSA) [8], Latent Dirichlet
Allocation (LDA) [9]. In contrast to algebraic method, these probability topic model
methods can be solved in probability approach.

Recent studies show that there may exist a compact subspace (i.e. manifold) em-
bedding in the original feature space for certain object or scene images, which can
reflect the intrinsic distribution of object or scene images [10,11,12]. The represen-
tative manifold learning algorithms include Multidimensional scaling (MDS) [13],
Locally Linear Embedding (LLE) [10], Isomap [11], Laplacian Eigenmap [12], Hes-
sian LLE [14], etc. The most prominent characteristic of these manifold learning
algorithms is the capability of preserving the structure information among samples
when map the samples into the compact subspace. Among them, the structure pre-
serving can be grouped into local structure preserving and global structure preserv-
ing. MDS and Isomap preserve the global structure in Euclidean space and geodesic
space, respectively. In contrast, LLE and Laplacian Eigenmap are local structure
preserving approaches. In this chapter, we focus on local structure preserving ap-
proach and present two new subspace analysis methods. One is nonlinear subspace
method from algebraic approach, the other is probabilistic subspace analysis method
derived from topic model. The extensive experiments on face recognition and image
clustering show that the proposed subspace analysis methods are promising.

The rest of this chapter is organized as follows: section 2 will introduce a repre-
sentative local structure preserving method LPP. Section 3 will apply local structure
preserving to face recognition. The applications in image clustering will be pre-
sented in section 4. Finally, section 5 is conclusions.
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2 Local Structure Preserving

Subspace analysis is an effective approach for feature representation. Specially
learning a compact manifold (subspace) that can preserve local structure of im-
age distribution has attracted a great deal of attention in the past few years. There
are three popular manifold learning methods, i.e., Locally Linear Embedding (LLE)
[10], Isomap [11], Laplacian Eigenmap [12], but these methods are not suitable for
pattern recognition problems, because they cannot give an explicit subspace map-
ping for a new test sample. In order to overcome this drawback, He et al proposed a
method, named Locality Preserving Projections (LPP) [15,16], to approximate the
eigenfunctions of the Laplace Beltrami operator on the manifold, and new sample
can be easily mapped to the learned low-dimensional feature subspace.

Locality Preserving Projections (LPP) is a linear approximation of Laplacian
Eigenmap. It seeks a transformation P to project high-dimensional input data
X = [x1,x2, · · · ,xn] into a low-dimensional subspace Y in which the local structure
of the input data can be preserved. The linear transformation can be obtained by
minimizing an objective function as follows [15]:

min
P

n

∑
i, j=1

||yi − y j||2S(i, j) (1)

where yi = PT xi, the weight matrix S (called heat kernel) is constructed through the
nearest-neighbor graph. If xi is among the l nearest neighbors of x j or x j is among
the l nearest neighbors of xi, then

S(i, j) = e−
||xi−x j ||2

t (2)

where parameter t is a suitable constant. Otherwise, S(i, j) = 0 . Alternatively, the
weight matrix can be simply set as: S(i, j) = 1 when xi and x j are the nearest neigh-
bors, otherwise S(i, j) = 0 . The minimization problem can be converted to solve a
generalized eigenvalue problem as follows:

XLXT P = λ XDXT P (3)

where D is a diagonal matrix with the i-th diagonal element Dii = ∑ j S(i, j) , and
L = D−S.

3 Local Structure Preserving for Face Recognition

Although LPP has achieved significant success in face recognition [16], it often
fails to deliver good performance when face images are subject to complex nonlin-
ear changes due to large pose, expression or illumination variations, for it is a linear
method in nature. In this chapter, a novel subspace analysis method named Super-
vised Kernel Locality Preserving Projections (SKLPP) is proposed for face recog-
nition[17]. Firstly, we use nonlinear kernel mapping to map the data into an implicit
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feature space F, which is successfully used in Support Vector Machine (SVM)[18].
Then we seek a linear transformation that can preserve within-class geometric struc-
tures in F. Thus, we can gain a nonlinear subspace that can approximate the intrinsic
geometric structure of the face manifold. Though He, et al mentioned that LPP could
be generalized into a reproducing kernel Hilbert space through a nonlinear mapping,
it was not further discussed [15]. Moreover, LPP seeks to preserve local structure
defined by the nearest neighbors. So it fails to preserve within-class local structure,
which is very important for object recognition, because the nearest neighbors may
belong to different classes due to influence of complex variations, such as lighting,
expression and pose.

3.1 Supervised Kernel Locality Preserving Projections

LPP is a linear method in nature, and it is inadequate to represent the nonlinear
face space. Moreover, LPP seeks to preserve local structure defined by the nearest
neighbors. It often fails to preserve within-class local structure, which is very impor-
tant for object recognition, because the nearest neighbors may belong to different
classes due to influence of complex variations, such as lighting, expression, and
pose. In this chapter, we propose a novel subspace method for face recognition, i.e.,
SKLPP. First, the nonlinear kernel mapping is used to map the data into an implicit
feature space F, which is successfully used in Support Vector Machine (SVM), and
then a linear transformation is performed to preserve within-class geometric struc-
tures in F. Thus, we can gain a nonlinear subspace that can approximate the intrinsic
geometric structure of the face manifold.

Assuming a set of face images X = [x1,x2, · · · ,xn], xi is a N-dimensional face
image. Firstly, we use a nonlinear function φ to map the data into a high-dimensional
feature space F : φ(X) = [φ(x1),φ(x2), · · · ,φ(xn)] . Then in feature space F, we seek
a projecting transformation Pφ that can preserve the within-class geometric structure
of the data φ(X) by minimizing the sum of the weighted distance of samples. The
minimization problem can be expressed as:

min
Pφ

n

∑
i, j=1

||Zi −Zj||2S(i, j) (4)

where Zi = PT
φ φ(xi) is the projection of φ(xi) onto Pφ , and the weight S(i, j) repre-

sents the relations of xi and x j. The objective function (4) can be simplified as:

n

∑
i, j=1

||Zi−Z j||2S(i, j) =
n

∑
i, j=1

||PT
φ φ(xi)−PT

φ φ(x j)||2S(i, j) = 2PT
φ φ(X)(D−S)φ(X)T Pφ

(5)

where D is a diagonal matrix with i-th element Dii = ∑ j S(i, j). Because the linear
transformation Pφ should lie in the span of {φ(x1),φ(x2), · · · ,φ(xn)}, there exists a
coefficient vector α = [α1,α2, · · · ,αn]

T such that
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Pφ =
n

∑
i=1

αiφ(xi) = φ(X)α (6)

Substituting (6) into (5), we can obtain:

n

∑
i, j=1

||Zi −Zj||2S(i, j) = 2αT K(D−S)Kα (7)

where the matrix K(i, j) = φ(xi) ·φ(x j) is a positive definite and symmetric matrix.
According to the kernel trick, the dot produce of two vectors in F is calculated by
a kernel function k(x,y) = φ(x) · φ(y) without knowing the nonlinear mapping φ
explicitly.

Thus, this minimization problem can be converted to a generalized eigenvalue
problem with a constraint condition αT KDKα = 1 . The eigenvectors corresponding
to the smallest eigenvalues are the solution:

K(D−S)Kα = λ KDKα (8)

Up to now, the weight matrix S is still unknown. In [15,16], the weight matrix
S is just defined by the nearest-neighbor relations. Here, with prior class label in-
formation, we define the S using a supervised approach. In fact, each entry of the
weight matrix S can be regarded as the similarity metric of a pair of samples. The
dot product between two samples is in a sense a similarity measure. So we define
the weight matrix S as follows:

S(i, j) =

{
φ(xi) ·φ(x j), ifxi and x jbelong to the same class
0, otherwise

(9)

It means that the within-class geometric information is emphasized, and we set
the similarity between two samples to zero, if they belong to different classes. From
(9), we find that the matrix S and K are unified into a consistent dot product form
except that the matrix S has a strong constraint.

3.2 Experimental Results on Face Recognition

To verify the proposed method, SKLPP is applied to face recognition compared
with LPP, PCA, LDA, KPCA[19], and KLDA[20]. The experiments are performed
on two publicly available databases: Yale [3] and ORL [21]. The Yale database
contains 165 grayscale face images from 15 persons. All face images are cropped
into 80× 90 . Both expression and lighting variations exist in the Yale database.
The ORL database contains 40 persons, and each person has 10 different grayscale
face images that include variations in pose and scale. The size of face images is
92× 112. The gray values of all images are rescaled to [0,1] and the norm of each
image vector is normalized to 1. Figure 1 provides some samples from the Yale
database and ORL database.
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Table 1 Comparisons on Yale and ORL databases

Method Dims accuracy(Yale) Dims accuracy(ORL)
PCA 90 76.36 40 98.00
LPP 60 85.45 100 92.75
LDA 14 96.96 39 94.75

KPCA 100 76.96 30 97.25
KLDA 14 98.78 39 98.50
SKLPP 40 99.39 20 98.75

Fig. 1 The first row is sample of the Yale database, the second row is sample of the ORL
database

It is well known that the kernel selection is still an open problem till now. In our
experiments, we empirically adopts polynomial kernel as kernel function:

k(x,y) = φ(x) ·φ(y) = (α(x · y))d (10)

The parameters of the polynomial kernel are empirically set as: a = 0.1, d = 2.
All experiments were conducted using the Leave-One-Out strategy. For simplicity,
the nearest-neighbor classifier based on the Cosine distance metric is used.

d(zi,z j) = 1− zT
i · z j

||zi|| · ||z j|| (11)

The compared recognition rates are shown in Table 1. SKLPP achieves the best
recognition rate 99.39% with 40 dimensions while LPP only gets 85.45% with 60
dimensions on the YALE database. On the ORL database, SKLPP achieves 98.75%
with 20 dimensions while LPP gets 92.75% with 100 dimensions. Because the maxi-
mum dimensions of LDA and KLDA are no more than c (c is the number of classes),
the best recognition rates of LDA and KLDA are obtained with 14 dimensions on
YALE and 39 dimensions on ORL, respectively. Experimental results suggest that
SKLPP also outperforms the other methods. It demonstrates that the performance is
significantly improved because SKLPP preserves the local structure information in
kernel feature space.
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4 Local Structure Preserving for Image Clustering

Image representation is one of the most fundamental components for image clus-
tering and classification tasks. A large variety of features have been proposed to
characterize the content of images [23,24]. However, these low-level features can-
not correctly represent the semantic content of images in many situations due to
the so-called “semantic gap”. Therefore, mid-level features are exploited by many
researchers to bridge the gap. In recent years, the latent topic models, such as
probabilistic Latent Semantic Analysis (pLSA)[8], and Latent Dirichlet Allocation
(LDA)[9], have been proposed to address this problem. The above-mentioned topic
models can discover hidden topics in the latent semantic space based on a bag-of-
words representation for the images, which can connect the low-level features and
high-level semantic content. Due to the success of topic models, they have been
widely adopted in many applications such as image clustering, classification, and
retrieval [24,25,26].

However, most applications treat the topic model as a black box and each image
or word is treated independently in topic modeling. There are still few efforts paid
to explore how these hidden topics distribute and what correlations exist among
them. Therefore, the topic distributions estimated by the traditional models may
not be accurate enough in some cases. According to recent research[10,11,12] ,
data from images or texts are often found to lie on a low-rank non-linear manifold
embedded in the high-dimensional space of the original data. Therefore, exploiting
the intrinsic structure concealed in the data can help discover more accurate latent
topics[27,28]. Moreover, the words frequently co-occured in one image or text often
have similar meanings and should be related to similar latent topics with a high
probability. Thus, the word co-occurring information is also very essential to reveal
the hidden semantics in the data.

To address the above issues, in this chapter, we present a novel probabilistic
topic model, named Dual Local Consistency Probabilistic Latent Semantic Analysis
(DLC-PLSA)[29], to model the latent topics with sparse neighborhood preserving
embedding and local word consistency. Compared with the traditional models, our
model has the following characteristics: (1) �1-graph is constructed to model the
sparse neighborhood structure of images and embedded into topic modeling. (2)
the word co-occurring information is first incorporated into topic models to help
discover more accurate latent topics. In this way, the topic model can estimate
the probabilistic topic distributions and simultaneously consider the image neigh-
borhood structure as well as the local word consistency in a uniform formulation.
Therefore, our model is less sensitive to noise and has more discriminative power in
the latent semantic space.

4.1 pLSA with Local Structure Preserving

In most of the traditional topic models, the images (or visual words) are treated indi-
vidually and there are few efforts to explore the intrinsic structure existed among
them. However, such local structure preserving is very important and helpful in
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discovering more accurate latent topics. In this section, we present a novel topic
model, named Dual Local Consistency Probabilistic Latent Semantic Analysis (DLC-
PLSA). Different from the traditional topic models, our model considers the sparse
image neighborhood structure and local word consistency simultaneously when esti-
mating the latent topic distributions. Therefore, it can preserve more structure seman-
tic information in the latent semantic space. Next, we will introduce how to embed
the local structure of images and words into topic discovering in this subsection.

4.1.1 Sparse Neighborhood Consistency

In this part, we present a novel manifold learning approach based on traditional
NPE method [30]. Our method is motivated by the limitations of classical graph
construction methods on robustness to data noise and data-adaptiveness, and recent
advances in sparse coding [31,32,33]. With sparse representation, each sample can
be reconstructed by the sparse linear superposition of the training data. The sparse
reconstruction coefficients, used to deduce the weights of the �1-graph, are derived
by solving an �1 optimization problem on sparse representation. Recent work in
[34] has shown the �1-graph is superior to the classical graphs in various machine
learning tasks such as image clustering and subspace learning.

Suppose we have an underdetermined system of linear equations: x = Dα , where
x ∈ Rm is the vector to be approximated, α ∈ Rn is the vector for unknown recon-
struction coefficients, and D ∈ Rm×n is the overcomplete dictionary with n bases.
Generally, a sparse solution is more robust and is able to facilitate the consequent
identification of the test sample x. We seek the sparse solution to x = Dα by solving
the following optimization problem:

min
α

||α||1, s.t. x = Dα (12)

This problem can be solved in polynomial time by standard linear programming
method. In practice, there may exist noises on certain elements of x, and a natural
way to recover these elements and provide a robust estimation of α is to formulate

x = Dα + ζ =
[

D I
][α

ζ

]
(13)

where ζ ∈ Rm is the noise term. Then by setting B =
[

D I
] ∈ Rm×(m+n) and α ′ =[

α
ζ

]
, we can solve the following �1-norm minimization problem with respect to

both reconstruction coefficients and data noises:

min
α ′ ‖α ′‖1, s.t. x = Bα ′ (14)

An �1-graph summarizes the overall behavior of the whole dataset in sparse rep-
resentation. The construction process is stated as follows.

1) Inputs: The image set denoted as the matrix X = [x1,x2, . . . ,xN ], where xi ∈ RM
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2) Robust sparse representation: For each image xi in the dataset, its robust sparse
representation is achieved by solving the �1-norm optimization problem

min
α i

‖α i‖1, s.t. xi = Biα i (15)

where Bi = [x1, . . .xi−1,xi+1 . . . ,xN , I] ∈ RM×(M+N−1) and α i ∈ RM+N−1

3) Graph weight setting: Denote the G = {X ,W} as the �1-graph with the image
set X as graph vertices and W as the graph weight matrix. We set Wi j = α i

j if
i > j, and Wi j = α i

j−1 if i < j.

After the �1-graph is constructed, the neighborhood structure of the image dataset
as well as the graph weights is derived simultaneously in a parameter-free manner.
Then, similar to NPE, sparse neighborhood preserving embedding aims to preserve
the neighborhood structure of the dataset in the latent topic space by minimizing

R1 =
K

∑
k=1

R1k =
K

∑
k=1

N

∑
i=1

(P(zk|xi)−
N

∑
j=1

Wi jP(zk|x j))
2 (16)

An intuitive explanation of minimizing R1 is that if the image xi can be recon-
structed by its neighbors in the feature space, the intrinsic structure should also be
preserved in the latent topic space.

4.1.2 Local Word Consistency

Besides the image-level local structure, the word consistency is usually ignored and
each word is treated individually in the existing topic models. However, the local
word consistency is also very important for topic modeling. For example, it is a
natural and intuitive assumption that frequently co-occurring words should share
similar topics in the latent space. In this part, we will introduce how to maintain the
local word consistency in our topic model.

We first compute the co-occurrence information Ci j between word wi and word
wj as follows:

Ci j =
fi j√

fi ∗
√

f j
(17)

where fi j is the number of images in which both word wi and word wj appeared and
fi is the number of images in which word wi appeared.

After we get the co-occurrence matrix C, we maintain the local word consistency
in the latent topic space by minimizing

R2 =
K

∑
k=1

R2k =
K

∑
k=1

M

∑
i, j=1

(P(wi|zk)−P(w j|zk))
2Ci j (18)

An intuitive explanation of minimizing R2 is that if the word wi often co-occurred
with wj, their conditional distributions related to the latent topic zk should also be
similar in the latent topic space.
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4.1.3 The Regularized Model

In order to consider the local image and word structure simultaneously, we add R1

and R2 as regularized terms to the log-likelihood of PLSA model. Then we get our
new latent topic model which aims to maximize the regularized log-likelihood as
follows:

L = l −λ1R1 −λ2R2 = l −λ1

K

∑
k=1

R1k −λ2

K

∑
k=1

R2k (19)

where n(xi,wj) specifies the number of times the word wj occurred in image xi, and
λ1,2 are the regularized parameters. When λ1 = λ2 = 0, our model degenerates to
the traditional pLSA model. When λ1 = 0, our model only considers the local word
consistency. When λ2 = 0, only the sparse neighborhood structure is preserved.

4.2 Model Fitting

When a probabilistic model involves unobserved latent variables, the EM algorithm
is generally used for the maximum likelihood estimation of the model. EM alter-
nates two steps: (i) an expectation (E) step where posterior probabilities are com-
puted for the latent variables, based on the current estimates of the parameters, (ii) a
maximization (M) step, where parameters are updated based on maximizing the so-
called expected complete data log-likelihood which depends on the posterior prob-
abilities computed in the E-step.

As there are regularization terms in the log-likelihood of our model, the tradi-
tional EM algorithm cannot be applied directly. Here we use the generalized EM
algorithm [35] for parameter estimation. The main difference between generalized
EM and traditional EM is that generalized EM algorithm finds parameters that “im-
prove” the expected value of the log-likelihood function rather than “maximizing”
it.

Let φ = {P(wj|zk)} and θ = {P(zk|xi)} denote the parameters in our model.
E-step:
Our model adopts the same generative scheme as that of pLSA. Thus, we have

the same E-step as that of pLSA. The posterior probabilities for latent variables are
P(zk|xi,wj), which can be computed as follows:

P(zk|xi,w j) =
P(w j|zk)P(zk|xi)

∑K
l=1 P(w j|zl)P(zl |xi)

(20)

M-step:
The relevant part of the expected complete log-likelihood for our model is

Q(φ ,θ ) = Q1(φ ,θ )−λ1R1(θ )−λ2R2(φ)

=
N

∑
i=1

M

∑
j=1

n(xi,wj) log
K

∑
k=1

P(wj|zk)P(zk|xi)
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−λ1

K

∑
k=1

N

∑
i=1

(P(zk|xi)−
N

∑
j=1

Wi jP(zk|x j))
2

−λ2

K

∑
k=1

M

∑
i, j=1

(P(wi|zk)−P(wj|zk))
2Ci j

In the M-step, we improve the expected value of the log-likelihood function
Q(φ ,θ ). We have parameter values {φr,θr} and try to find {φr+1,θr+1} which sat-
isfy Q(φr+1,θr+1)≥ Q(φr,θr) in each step.

We first find {φ (1)
r+1,θ

(1)
r+1} which maximizes Q1(φ ,θ ) instead of the whole

Q(φ ,θ ). This can be done by the following equations which are the M-step re-
estimation of pLSA:

P(w j|zk) =
∑N

i=1 n(xi,w j)P(zk|xi,w j)

∑N
i=1 ∑M

m=1 n(xi,wm)P(zk|xi,wm)
(21)

P(zk|xi) =
∑M

j=1 n(xi,w j)P(zk|xi,w j)

∑M
j=1 n(xi,w j)

(22)

Clearly, Q(φ (1)
r+1,θ

(1)
r+1)≥ Q(φr,θr) does not necessarily hold. We then try to start

from {φ (1)
r+1,θ

(1)
r+1} and decrease R1 and R2, which can be done through Newton-

Raphson method [38]. Note that R1 only involves parameters P(zk|xi) while R2 only
involves parameters P(wj|zk), we can update φr+1 and θr+1 respectively.

Given a function f (x) and the initial value x(t), the Newton-Raphson updating
formula to decrease (or increase) f (x) is as follows:

x(t+1) = x(t)− γ
f ′(x(t))
f ′′(x(t))

(23)

where 0 ≤ γ ≤ 1 is the step parameter. Since we have R1k ≥ 0,R2k ≥ 0, the Newton-

Raphson method will decrease R1k and R2k in each updating step. With φ (1)
r+1 and put

R1k into the Newton-Raphson updating formula in Eqn. (25), we can get the closed

form solution for φ (2)
r+1,φ

(3)
r+1, . . . ,φ

(m)
r+1, where

P(zk|xi)
(t+1)
r+1 = (1− γ1)P(zk|xi)

(t)
r+1 + γ1

N

∑
j=1

Wi jP(zk|x j)
(t)
r+1 (24)

Similarly, we can also get the updating equation for θr+1 as follows:

P(wi|zk)
(t+1)
r+1 = (1− γ2)P(wi|zk)

(t)
r+1 + γ2

∑M
j=1 Ci jP(w j|zk)

(t)
r+1

∑M
j=1 Ci j

(25)

Every iteration of Eqn. (24) and (25) will make the topic distribution smoother. We

continue the iteration of Eqn. (24) and (25) until Q(φ (t+1)
r+1 ,θ (t+1)

r+1 )≤ Q(φ (t)
r+1,θ

(t)
r+1).

Then we test whether Q(φ (t)
r+1,θ

(t)
r+1) ≥ Q(φr,θr). If not, we reject the values of

{φ (t)
r+1,θ

(t)
r+1}, and return the {φr,θr} as the result of the M-step, and continue with

the next E-step. The E-step and M-step are iteratively performed until the probability
values are stable.
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4.3 Experimental Results on Image Clustering

In this section, we evaluate the performance of our model by comparing it with the
state-of-the-art methods on image clustering task. Clustering is one of the most cru-
cial techniques to organize the data samples. The latent topics discovered by the
topic modeling approaches can be regarded as clusters. By representing the images
in the latent space, topic models can assign each image to the most probable la-
tent topic according to the estimated conditional probability distributions P(zk|xi).
Our experiments are conducted on two publicly available datasets: the Binary Al-
phadigits 1, and the Caltech-101 dataset [36]. The weighting parameters λ1 and
λ2 are tuned with cross validation from intervals [1,100] and [1000,1500] respec-
tively. The values of the Newton step parameter γ1 and γ2 are both set to 0.1 in our
experiment.
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Fig. 2 Clustering results on (a) the Binary Alphadigits, and (b) the Caltech-101 dataset

The Binary Alphadigits contains binary 20x16 digits of ‘0’ through ‘9’ and cap-
ital ‘A’ through ‘Z’ where there are 39 examples of each class. Thus we have 1404
images from 36 classes in total with each image represented by a 320-dimensional
binary pixel vector. The topic models are applied to the images by representing each
binary pixel as a word and each image as a document to generate K clusters. The
Caltech-101 dataset involves 9144 images from 101 object categories and a back-
ground category. A unique label has been assigned to each image in the datasets
to indicate which category it belongs to, which serves as the ground truth for per-
formance evaluation. SIFT [2] features are extracted and a 1000-D bag-of-words
representation is generated for Caltech-101 dataset. Then all the models are per-
formed on the bag-of-words to generate K clusters. The clustering accuracy (AC) is
used to measure the clustering performance [37].

We evaluated the proposed DLC-PLSA model and compared it with the fol-
lowing algorithms: K-means clustering algorithm (K-means), Probabilistic Latent
Semantic Analysis (pLSA) [8], Latent Dirichlet Allocation (LDA) [9], Laplacian
Probabilistic Latent Semantic Indexing (LapPLSI) [27].

1http://www.cs.nyu.edu/˜roweis/data.html

http://www.cs.nyu.edu/~roweis/data.html
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Fig. 3 Visualization view of image distribution in the latent topic space learned by different
topic models. (a)The DLC-PLSA model. (b) The LapPLSI model. (c)The LDA model. (d)The
PLSA model. (digit characters ‘A’ - ‘C’ in the Binary Alphadigits dataset, ‘A’: blue, ‘B’:
green, ‘C’: red).

Table 2 The influence of different regularized terms on the clustering accuracy of the Binary
Alphadigits

Topic number 2 4 6 8
λ1 �= 0,λ2 = 0 0.926 0.722 0.648 0.528
λ1 = 0,λ2 �= 0 0.915 0.751 0.669 0.510
λ1 �= 0,λ2 �= 0 0.935 0.780 0.673 0.544

Table 3 The influence of different regularized terms on the clustering accuracy of the
Caltech-101 dataset

Topic number 2 4 6 8
λ1 �= 0,λ2 = 0 0.850 0.617 0.601 0.553
λ1 = 0,λ2 �= 0 0.844 0.626 0.613 0.559
λ1 �= 0,λ2 �= 0 0.850 0.644 0.623 0.562

In order to make the experiments statistically meaningful, we conducted the eval-
uations with the cluster numbers ranging from two to ten. For each given cluster
number k, k different categories were randomly selected from the datasets and pro-
vided to the clustering algorithms. Five test runs were conducted for each k, and
the final performance scores were obtained by averaging the sores over the five test
runs.
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Figure 2 shows the clustering performance of all the algorithms on the Binary Al-
phadigits and the Caltech-101 dataset, respectively. We can see that the topic models
achieve better performance than the traditional K-means clustering method on the
whole. But the pLSA and LDA model show lower performance than LapPLSI and
DLC-PLSA because they do not consider any local discriminant structure when dis-
covering the latent topics. Although the LapPLSI model considers the proximity
between image pairs, it is not robust enough and sometimes even gets worse re-
sults than pLSA and LDA. The reason is that a K-NN graph is simply constructed
to model the image structure, which is very sensitive to noise, and the local word
consistency is also ignored. Therefore, it cannot reach full discriminant power. Our
DLC-PLSA model, which constructs the �1-graph to model the neighborhood struc-
ture of images and incorporates the local word consistency into the model at the
same time, can perform consistently better than other models.

Table 4 The impact of noisy images on clustering accuracy (digit characters ‘A’, ‘B’, ‘C’) of
different models

DLC-PLSA LapPLSI LDA PLSA
Without removing the noisy images 0.8718 0.6667 0.7949 0.7179

Removing the noisy images 0.8803 0.8034 0.8291 0.8205

In order to evaluate the performance of different regularized terms, we also com-
pare the results of our model with different regularized terms by setting the reg-
ularization parameter λ1=0 or λ2=0 respectively on different topic numbers. The
comparison results are shown in Table 2-4, from which we can see that the model
with both the regularized terms always perform as well as or outperform the better
one with only one regularized term. Moreover, the model with only the word reg-
ularized term also performs very consistently and sometimes get better results than
the image regularized term, which proves that the local word consistency is also
very important in topic modeling.

The visualization comparison of image distribution (digit characters ‘A’ - ‘C’ in
the Binary Alphadigits dataset) in the latent topic space is shown in Figure 3. The
comparison results show that the embedded representations of DLC-PLSA, which
models the hidden topics with sparse neighborhood and local word consistency, have
the best separability. Although LapPLSI considers the proximity of image pairs in
topic modeling, it cannot separate characters ‘A’ and ‘B’ very well. We analyzed
the reason and found that three ‘noisy’ images of character ‘B’ were very easily
considered as neighbors by most images of character ‘A’ when constructing the K-
NN graph, which affects the whole local structure significantly. In order to further
show the impact of the noisy images on the performance of different models, we
conduct an experiment by manually removing some noisy images in these three
classes and the comparison clustering results are given in Table 4. We can see that
the performance of LapPLSI is affected greatly by the noisy images, because it
models the image structure on the K-NN graph. After removing the noisy images,
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its performance has a big improvement. In contrast, our model constructs �1-graph to
model the neighborhood structure of images and it can perform very consistently in
both cases, which indicates that our model is more robust to noise and can discover
more accurate latent topics.

5 Conclusions

Subspace analysis is an efficient and effective approach for compact feature repre-
sentation. In this chapter, inspired by the idea of local structure preserving, we pro-
pose two local structure preserving based subspace analysis methods, SKLPP and
DLC-PLSA. The two methods are utilized to face recognition and image clustering,
respectively. The experimental results show that the two methods are promising to
handle some common variations, such as noise, pose, lighting.
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Chapter 6

Sparse Representation for Image
Super-Resolution

Xian-Hua Han and Yen-Wei Chen

Abstract. This chapter concentrates the problem of recovery a high-resolution (HR)
image from a single low-resolution input image. Recent research proposed to deal
with the image super-resolution problem with sparse coding, which is based on
the well reconstruction of any local image patch by a sparse linear combination of
an appropriately chosen over-complete dictionary. Therein the chosen LR (Low-
resolution) and HR (High-resolution) dictionaries have to be exactly corresponding
for well reconstructing the local image patterns. However, the conventional sparse
coding based image super-resolution usually achieves a global dictionary D=[Dl;
Dh] by jointly training the concatenated LR and HR local image patches, and then
reconstruct the LR and HR image as a linear combination of the separated Dl and
Dh. This strategy only can achieve the global minimum reconstructing error of LR
and HR local patches, and usually cannot obtain the exactly corresponding LR and
HR dictionaries. In addition, the accurate coefficients for reconstructing the HR
image patch using HR dictionary Dh are also unable to be estimated using only
the LR input and the LR dictionary Dl. Therefore, this paper proposes to firstly
learn the HR dictionary Dh from the features of the training HR local patches,
and then propagates the HR dictionary to the LR one, called as HR2LR dictionary
propagation, by mathematical proving and statistical analysis. The effectiveness of
the proposed HR2LR dictionary propagation in sparse coding for super-resolution
is demonstrated by comparison with the conventional super-resolution approaches
such as sparse coding and interpolation.

1 Introduction

Sparse signal representation[1-8] has been proven to be a greatly powerful algo-
rithm for coding, representing, and compressing high-dimensional signals. It is well
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known that the important properties of signals such as audio and images have nat-
urally sparse representations with respect to fixed basis (i.e., Fourier, Wavelet), or
concatenations of such basis. However, the Fourier, Wavelet basis etc. are mathe-
matically fixed, and universal to any signal, and then cannot be adaptive to the pro-
cessed signal. Therefore, researches on adaptively learning basis from the processed
signals are actively taken on since 1990’s. The most popular strategies for achiev-
ing adaptive basis to represent data mainly include Principle Component Analysis
(PCA)[9-10], Independent Component Analysis (ICA)[11-14] and so on. PCA is a
mathematical procedure that learns an orthogonal transformation from the proposed
signal to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. ICA [14-17]
is a method to find a linear nonorthogonal coordinate system in any multivariate
data. The directions of the axes in this ICA coordinate system are determined by not
only the second but also higher order statistics of the original data, unlike the prin-
ciple component analysis (PCA), which considers only the second order statistics
and can only deal with the variables that have Gaussian distributions. In computer
vision, it is more preferable to extract the source signals produced by independent
causes or obtained from different sensors; such signals are easily solved using ICA.
These two classical adaptive base-learning strategies (PCA and ICA based) usually
only produce non-overcomplete (the number of basis equals or is less than the di-
mension of the processed signal) basis, and then require to use all the learned basis
for well representing the observed signal. In the other hand, understand processes in
retina and primary visual cortex (V1) of human being [18] has been elucidated that
early visual processes compress input into a more efficient form by activating only
a few receptive fields in millions, which in mathematical theory can transfer this
mechanism into sparse coding by learning an over-complete basis and only using a
few of basis (sparsity) to represent the observed signal.

Thanks to the success of sparse coding strategy on representing, compressing
high-dimensional signal, it is widely applied to pattern recognition, computer vi-
sion, image representation and so on, and has been proven its powerful advantage
over conventional adaptive basis learning approaches such as PCA and ICA. Given
only unlabeled input data in sparse coding, it learns basis functions that capture
higher-level features in the data. When sparse coding is applied for natural image
representation, the learned basis resemble the receptive fields of neurons in the vi-
sual cortex [1, 2]; in addition, sparse coding can also produce localized basis when
applied to other natural stimuli such as speech and video [3, 4]. Different to the con-
ventional unsupervised learning techniques such as PCA, sparse coding can learn
overcomplete basis sets, in which the number of basis is larger than the dimensional-
ity of the feature space. In order to learn the adaptive basis functions and achieve the
sparse coefficients from the observed data, we use the popular strategy: the K-SVD
algorithm [6, 19], a generalized algorithm from the K-Means clustering process.
K-SVD is an iterative method that alternates between sparse coefficient calculation
(sparse coding) of the observed signal based on the current dictionary, and a process
of updating the dictionary atoms to better represent the data. The update of the dic-
tionary columns is combined with an update of the sparse representations, thereby
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accelerating convergence. Furthermore, the K-SVD algorithm is flexible and can
work with any pursuit method (e.g., basis pursuit, matching pursuit) for achieving
adaptive basis and sparse coefficients. In this chapter, we use K-SVD and orthogo-
nal matching pursuit (OMP) [20-23]- a smart improved version of matching pursuit
[24-27] for dictionary updating and sparse coefficient calculation, and then apply
the sparse representation for image super-resolution.

Super-Resolution (SR) is to generate a high resolution image from one or more
low resolution input images. The super-resolution techniques are recently becom-
ing a hot research topic due to many demanding applications such as biometric
identification [27-28], medical imaging [29-30], remote sensing [31-32], etc.. There
are mainly two types of super-resolution frameworks: the multiple-image super-
resolution, which has several available low-resolution images with sub-pixel trans-
lation and rotation; and the single-image super-resolution, which has only one LR
image. In this chapter, we focus on image super-resolution for a single image using
the learning-based method, which can recover the lost information in LR images
by exploring the co-occurrence prior between lots of available existing LR and HR
image patches. The basic idea of learning-based super-resolution is to deduce the
lost information by learning from training samples, which comprise HR and LR
image pairs. In [33], Freeman et al. proposed an example-based super-resolution
method to infer the HR images by the corresponding relationship of the prepared
training HR and LR images pair, whose LR one is most similar to the input LR one.
Stephenson extended this approach to predict the HR image from the LR one us-
ing Markov Random Field (MRF) solved by belief propagation [34]. However, the
above methods typically require a huge amount of HR and LR training patch pair
as prepared database, which makes ineffectiveness and un-efficiency for generating
a HR image from the LR one. In [35], Locally Linear Embedding (LLE) [36] as a
famous manifold learning was adopted to reconstruct the HR image patch as a linear
combination of the training HR ones by mapping the local geometry of the LR space
to the HR one, assuming similarity between two manifolds in the HR and LR patch
spaces. With this strategy, more patch patterns can be represented using a moder-
ate amount of training database, but usually results in blurring effect using the linear
combination of the nearest K raw neighborhood patches due to the large variation of
raw image patches. Then, Yang etc. [37-38] proposed to learn a structural dictionary
using sparse coding, which can well reconstruct any image patch as a linear com-
bination of several similar structural atoms in the learned dictionary. However, the
conventional sparse coding based image super-resolution usually achieves a global
dictionary D=[Dl; Dh] by jointly training the concatenated LR and HR local im-
age patches, and then reconstruct the LR and HR image as a linear combination
of the separated Dl and Dh. This strategy only can achieve the global minimum
reconstructing error of LR and HR local patches, and usually cannot obtain the ex-
actly corresponding LR and HR dictionaries. In addition, the accurate coefficients
for reconstructing the HR image patch using HR dictionary Dh are also unable to be
estimated using only the LR input and the LR dictionary Dl. Therefore, this chap-
ter proposes to firstly learn the HR dictionary Dh from the features of the training
HR local patches, and then propagates the HR dictionary to the LR one, called as
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HR2LR dictionary propagation, by mathematical proving and statistical analysis.
The effectiveness of the proposed HR2LR dictionary propagation in sparse coding
for super-resolution is demonstrated by comparison with the conventional super-
resolution approaches such as sparse coding and LLE. Furthermore, we validate
that the proposed algorithm is robust to noisy for generating the HR image from a
noisy LR image.

The remaining parts of this chapter are organized as follows. We introduce the
basic sparse coding for image representation in Sec. 2, and give a detail descriptors
of the SC-based image super-resolution in Sec. 3. Sec. 4 describes the used LR and
HR features for learning procedure, and explores the relationship between the used
LR and HR features. The proposed HR2LR dictionary propagation strategy in sparse
coding is given in Sec. 5, and experimental results are shown in Sec. 6. Finally, we
conclude and summarize in Sec. 7.

2 Sparse Coding

In statistical analysis of image representation, recent works [39-40] show that any
image local patch can be represented by a sparse linear combination of the atoms in
an over-complete dictionary. Assuming D ∈ �n×K be an over-complete dictionary
of K prototype atoms by statistical learning from some reshaped image patches,
a reshaped vector x from one image patch can be written as x = Dα0, where
α0 ∈ �K is a vector with very few (� K) nonzero entries.

Problem Formulation: Suppose that there are N data samples {yi ∈ �n : i =
1, 2, · · · , N} of dimension n, and the collection of these N samples forms an n-by-
N data matrix Y = (y1,y2, · · · ,yN ) with each column as one sample vector. The
goal is to construct a representative dictionary for Y in the form of an n-by-K ma-
trix D = (d1,d2, · · · ,dK), which consists of K (usually K � N and K > n) key
features {di ∈ �n : i = 1, 2, · · · ,K} extracted from Y. In the dictionary context,
di is also called an atom that represents one prototype feature for well-representing
any input data. This dictionary D needs to be trained from Y, and should be capable
to sparsely represent all the samples in Y. In other words, we want to find a dic-
tionary D and corresponding coefficient matrix A = (α1, α2, · · · , αN ) ∈ �K×N

such that yi = Dαi and ‖αi‖0 � K for all i = 1, 2, · · · , N . This can be intuitively
formulated as the following minimization problem:

min
D,A

‖yi −Dαi‖2 s.t. ‖αi‖0 < T (1)

where T is the predefined threshold which controls the sparseness of the represen-
tation and ‖ • ‖0 denotes the l0 norm which counts the number of non-zero element
in the vector. The equation can also alternately be formulated as:

min
D,A

n∑
i=1

‖αi‖0 s.t. ‖yi −Dαi‖2 ≤ ε (2)
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where ε > 0 is the predefined tolerance of representation error. The solution (D,X)
of Eq. 3 yields a dictionary D which extracts the representative features {di ∈ �n :
i = 1, 2, · · · ,K} from samples in Y and a coefficient matrix A with each column
αi representing the similarity between the sample yi and the dictionary atoms in D.

Since the optimization problem in Eq. 2 is NP-hard in general, recent results sug-
gest that several algorithms are able to be used for well approximating the solutions
of Eq. 3 [39-40]. In this chapter, we use the recently developed K-SVD algorithm
, which has proved to be very robust to solve Eq. 2, by iterating exact K times of
Singular Value Decomposition (SVD). With an initial dictionary, K-SVD algorithm
solves Eq. 2 by alternating the following two steps: the minimization with respect
to A with the fixed D, and atoms updating in D using the current A. The formu-
late of the first step is same to Eq. 2 with the fixed D, called the ”sparse coding”,
which can be approximated by the orthogonal matching pursuit (OMP) [41]. in the
following subsection, we will introduce how to calculate sparse coefficient using
OMP strategy with initially selected dictionary, and update the dictionary D using
K-SVD with the calculated sparse coefficients in the previous step.

2.1 Orthogonal Matching Pursuit

OMP is an extended orthogonal version of matching pursuit (MP), which is a type
of numerical technique which involves finding the ”best matching” projections of
multidimensional data onto an over-complete dictionary D. The OMP algorithm at-
tempts to achieve the projected coefficients of the selected best basis vectors (atoms)
iteratively to minimize the representation error, where the main difference from MP
is that after every step, all the coefficients extracted so far are updated, by computing
the orthogonal projection of the signal onto the set of selected atoms. Let y denotes
an observed signal, and D denotes the fixed dictionary, the OMP algorithm attempts
to find the sparse code vector α in four steps:

Step 1. Initialize the residual r0 = y, and initialize the selected dictionary D′ =
φ and the corresponding coefficients α0(D

′) = φ. Let iteration counter i = 1, and
the dictionary candidate D0(Di) = D, from which one best basis (atom) is needed
to be selected in following.

Step 2. Project the residual vector ri to the dictionary candidate Di, and find the
atom with the maximum projection value:

d ⇐ max
k

Diri (3)

Delete d from the dictionary candidate Di, and add it to the selected dictionary
D′ = [D′, d].

Step 3. Update the coefficients αi ⇐ D†
iy using the following equation:

αi(D
′) = min

αi

‖y−Diαi‖2 (4)

Step 4. Update the residual ri = y −Diαi.
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The stop rule for OMP algorithm can be tuned to solve for either of the problem
defined in Eq. 1, which iterates the step 2∼4 T times and Eq. 2, which would quit
the iteration when ‖ri‖22 < ε.

2.2 K-SVD Algorithm

As introduced in the above section, the sparse representation problem can be for-
mulated by either Eq. 1 or Eq. 2. Let’s assume the sparse representation problem
formulated as Eq. 1, and the goal is to train the adaptive dictionary D ∈ Rn∗K

and the corresponding sparse coefficients α ∈ RK∗N from the observed dataset
Y ∈ Rn∗N , where n is the dimension of the observed signal, N is the sample num-
ber, and K is the number of atoms or the dimension of the output sparse vector with
K >> n. We introduce the K-SVD algorithm for extracting the adaptive dictio-
nary D, which is flexible and works in conjunction with any pursuit algorithm. The
K-SVD algorithm is simply designed to be a truly direct generalization of the K-
means. When forced to work with one atom per signal, it can train a dictionary for
the gain-shape VQ. When forced to have a unit coefficient for this atom, it exactly
reproduces the K-means algorithm. We start our discussion with a description of the
K-means, and then derive the K-SVD algorithm as its direct extension.

A. K-means algorithm for vector quantization

K-means is to produce a codebook including codewords (representatives), which
is used to represent a wide family of observed vectors (signals) by nearest neigh-
bor assignment [42-48]. It can lead to efficient compression or description of those
observed signals as clusters in surrounding the chosen codewords. Generally, K-
means can be implemented based on the expectation maximization procedure, and
intuitively it can be extended to the fuzzy assignment using similarity between an
input signal and the codeword or normalized similarity by the covariance matrix
per each cluster, where that the signal are modeled as a mixture of Gaussians [49].
Let’s introduce the general K-means algorithm for learning the codebook matrix
(dictionary) D with the codeword being in the columns from a set of observation
signal Y. In k-means, a signal yi is represented as its closest codeword (under l2-
norm distance), and then its coded vector αi include only one non-zero element
with value 1, and all others zeros. Therefore, the objective function is to minimize
the within-cluster sum of squares (WCSS):

argmin
α

N∑
i=1

‖yi − αiD‖

s.t.‖αi‖l0 = 1,
K∑
j=1

αij = 1, for all i

(5)
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Table 1 K-means algorithm

Goal: Find the best possible codebook to represent the observed signals Y = {yi}Ni=1

using nearest neighbor
argminα

∑N
i=1 ‖yi − αiD‖

s.t.‖αi‖l0 = 1,
∑K

j=1 αij = 1, for all i

Initialization: initially the codebook D(0) ∈ Rn×K by randomly selecting K samples.

Set iteration number t=1, and repeat until convergence
Sparse coding step: Assign the observed sample to one of K codewords, and K cluster set can be achieved

(C
(t−1)
1 ,C

(t−1)
2 , · · · ,C(t−1)

K )

where the sample yi index i in k cluster C(t−1)
k should satisfies the following condition:

C
(t−1)
k = {i | ∀l �=k ‖ yi − dk ‖2<‖ yi − dl ‖2}

Codebook update step: Update the kth column dk in the codebook by calculating the mean vector

in kth cluster:
d
(t)
k = 1

|Ck|
∑

i∈Ck
yi

set t = t+ 1

where α = [α1, α2, · · · , αN ] is the set of code vectors for the observed signal
set Y. The cardinality constraint ‖αi‖l0 = 1 means there will be only one non-zero
element in each code vector yi, which corresponds to the most sparsity representa-
tion for the observed signal. The summation constraint

∑K
j=1 αij = 1 imposes the

coding weight for yi is 1.
The K-means algorithm is generally implemented in an iterative strategy for de-

signing the optimal codebook for vector quantization [39]. In each iteration there
are two steps: one for assigning the observed signal to the codewords which can be
called as sparse coding step, and one for updating the codebook by calculating the
mean vector in each cluster, which can be considered as dictionary update. Table. 1
gives a more detailed description of these steps. The sparse coding step assumes a
known codebook D(t−1) and computes the coded coefficient αi that minimizes the
representation error of Eq. (5). Similarly, the dictionary update step seeks an update
of D by minimizing Eq. (5) with a fixed αi as known.

B. K-SVD: a generalized version of K-means

As introduced in the above, K-means algorithm quantize an observed signal to
a codeword by vector quantization (VQ), which means that only one codeword is
selected for representing the observed signal. The VQ strategy would results in a
lot of representation error especially for the samples in the boundary areas of clus-
ters. The sparse representation problem can be viewed as a generalization of the VQ
problem (Eq. (5)), in which each observed signal is represented by a linear combina-
tion of codewords, called dictionary elements (atoms) in sparse coding (SC). Then,
the coded coefficients vector is now allowed more than one nonzero entry, and these
can have arbitrary values. In SC, the cost function can be relaxed as Eq. (1) or Eq.
(2) mentioned in the Sec. 2.
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K-SVD is proposed to combine an approximation pursuit method to solve the
minimization problem of Eq. (1). First, with a initialized fixed dictionary D, a best
sparse coefficient matrix is solved using a pursuit method by minimizing Eq. (1),
called sparse coding step. With the calculated coefficient in sparse coding step, the
second step is performed to search for a better dictionary. This step updates one col-
umn at a time, fixing all columns D except one, dk, which attempt to find the new
column dk and the new values for its coefficients that best reduce the mean square
error (MSE). The process of updating only one column of at a time can lead to a
straightforward solution based on the singular value decomposition (SVD), and al-
lowing a change in the coefficient values while updating the dictionary columns ac-
celerates convergence, since the subsequent column updates will be based on more
relevant coefficients. Next we will give the detail description of K-SVD algorithm
for dictionary update. Assuming we have already extract the sparse coefficients in
an iteration step with an fixed dictionary in the preview step, let’s update only one
column dk in the dictionary and the coefficients that correspond to it: the kth row in
α, denoted as αk

R (not the kth column vector αk in α). Then the objective function
can be rewritten as:

‖Y −Dα‖2 = ‖Y −
K∑
i=1

diα
i
R‖2

= ‖Y −
∑
i�=k

diα
i
R − dkα

k
R‖2

= ‖Ek − dkα
k
R‖2

(6)

The above equation separates the error term into two parts: error when the atom
dk is not taken into account, and the error reduction due to its induction for repre-
sentation. This also decompose the matrix multiplicationDα to the sum ofK rank-1
matrices, among which K − 1 terms are assumed fixed, and the kth one if left for
updating. Then the problem of minimizing the total error thus boils down to finding
a rank-1 matrix which best approximates the error matrix Ek. Estimation of such a
matrix could simply be done by performing a singular value decomposition on Ek

and using the largest singular value and its corresponding vector for this task. How-
ever, such a step will lead to an update of the coefficients: the row vector αk

R being
very likely to be filled, which would not be sparse any more. An intuitive remedy of
this problem is to form the matrix Ek as the reconstruction error resembles, denoted
as E+k, of the observed signals which use the kth atom of the dictionary for re-
construction, since the reconstruction errors of the other samples do not any change
due to deleting the atom dk. Therefore, in order to achieve the updated atom dk

and the sparse coefficient, SVD decomposition of E+k can be directly conducted,
where Eigenvector of the largest Eigenvalue is used for updating the kth atom dk

with only updating the coefficients which used the kth atom so far. To implement,
we first identify all the observed signals that use the kth atom of the dictionary for
reconstruction. Then the total error term of Eq. 6 can be split into two terms, where
one term is the resulted error of representation of those signals due to the dk atom
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Table 2 K-SVD algorithm

Goal: Find the best dictionary to represent the observed signals Y = {yi}Ni=1

as a linear sparse combination by solving
argminα

∑N
i=1 ‖yi − αiD‖

s.t.‖αi‖0 < T, for all i

Initialization: initially the dictionary D(0) ∈ Rn×K with l2 normalized column.

Set iteration number t=1. Repeat until convergence.
Sparse coding step: Using any pursuit method (such the OMP algorithm ) to calculate the sparse vector αi

for each sample yi, by solving the following Equation with the fixed dictionary D

argminαi

∑N
i=1 ‖yi − αiD‖

s.t.‖αi‖0 < T0, i = 1, 2, · · · , N
Dictionary update step: For each atom (each column) in Dictionary D(t−1), update it by,

· Obtaining the index set idx ⇐= all non-zero indices of αk
R

or the sample indices that use the kth atom
· Calculating the reconstruction error E+k of the sample with indices idx that use the kth atom,

when remove the kth atom
E+k = Y+k −∑

i∈idx diα
i
R − dkα

k
R

· Doing SVD decomposition on E+k, update the kth atom dk using the eigenvector with the largest Eigenvalue.

E+k = U�VT

· updating the coefficient vector αk
R using the first column of V multiplied with �(1, 1).

set t = t+ 1

being removed, and the other is the un-varied reconstruction error of the observed
signals which do not use the kth atom for reconstruction. The reconstruction error
can be written as:

‖Y −Dα‖2 = ‖Y −
K∑
i=1

diα
i
R‖2

= ‖E−k +E+k − dkα
k
R‖2

(7)

where E−k is the unchanged reconstruction error due to the deleting of the kth

atom, E+k is the reconstruction error matrix with zero-vector for the observed sig-
nal without using the kth atom but some reconstruction residual for the ones with
using the kth atom for representation. Let’s firstly remove the zero-vector from the
error matrix E+k, and decompose it using SVD for achieving the Eigenvector of the
largest eigenvalue to update the kth atom, and the corresponding vector to update
the observed signals using the kth atom. For all atoms, the procedure is iterated K
times for updating each atom. Therefore, this procedure for dictionary updating is
called ’K-SVD’ to parallel the name K-means. While K-means applies computa-
tions of means to update the codebook, K-SVD obtains the updated dictionary by
SVD computations, each determining one column. A detail description of the algo-
rithm is given in Table. 2. Fig. 1 shows some 2-dimensional 8*8 DCT basis, and the
learned K-SVD basis from some observed natural image patches.
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(a) (b)

Fig. 1 Basis functions. (a) DCT basis; (b) the learned basis with K-SVD from the 8*8 natural
image patches.

3 Sparse Coding Based Super-Resolution

The single-image super-resolution is to recover a high-resolution (HR) image X
from a observed low-resolution image Y, which is a blurred and downsampled ver-
sion of the HR one X:

Y = LHX (8)

where H represents a blurring (smooth) filter, and L is the sown-sampling operator.
The degradation model of the imaging procedure is shown in Fig. 2. In the learning-
based super-resolution, the lost information in any test LR image can be recovered
by learning using the corresponding relationship of the raw patches in the available
LR and HR images. With same philosophy, given any LR image patch y well re-
constructed by a sparse linear combination of an over-complete LR dictionary Dl,
the HR corresponding image patch y can also be approximated by the liner combi-
nation of corresponding HR dictionary Dh with the same sparse coefficients as the
following:

y = Dlα0, x ≈ Dhα0 (9)

where α0 is a vector with very few (� K) nonzero entries. In the conventional
super-resolution using sparse coding, the image local patches are firstly recon-
structed by the sparse linear combination of the pre-learned dictionary, and then re-
move the artifacts in the recovered global HR images formed from the local patches
based on reconstruction constraints. Next, we will mainly introduce sparse repre-
sentation of image local patches for super-resolution.
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Fig. 2 The degradation model of imaging procedure

Similar to the conventional learning-based super-resolution framework which is
shown in Fig. 2, the sparse coding based one also tries to infer the high-resolution
patch from each low-resolution image patch of the input. In the sparse representa-
tion of the image local patches, there are two dictionaries Dh and Dl, which are
trained to have the similar sparse representations for each high-resolution and low-
resolution image patch pair. Given any input low-resolution patch y, we can find a
sparse representation with respect to Dl. The estimation of the corresponding high-
resolution patch x can also be reconstructed by the sparse combination of these
same coefficients but replacing Dl with Dh.

For sparse coding based super-resolution, the corresponding LR and HR dictio-
naries need to be learned from the training LR and HR image patches Y and X,
respectively. [37] modifies Eq. 3 as the following optimization formulation:

min
Dl,Dh,A

n∑
i=1

‖αi‖0 s.t. ‖Fyi − FDlαi‖22 ≤ ε1

‖Pxi − PDhαi‖22 ≤ ε2

(10)

where F is a linear feature extraction operator, which is to provide a perceptually
meaningful constraint on how closely the coefficients α approximates the input
patch xl. In [38], The 1-order derivative operator are used for F . Sec. 3 will ex-
plore the choice of F in our proposed HR2LR dictionary propagation. The P is
the operator for subtracting mean intensity of all pixels from the HR image patch.



134 X.-H. Han and Y.-W. Chen

Fig. 3 The framework of learning-based Super-Resulution
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Fig. 4 The LR and HR feature extraction procedure

The constrained optimization (6) can be similarly reformulated as a jointly learning
procedure for Dl and Dh [38]:

min
D̄,A

n∑
i=1

‖αi‖0 s.t. ‖ȳi − D̄αi‖22 ≤ ε (11)

where D̄ = [FDl;βPDh] and ȳ = [Fyi;βPxi]. The parameter β controls the
tradeoff between reconstructing the LR and HR patches. With any input LR image
patch xt, the sparse coefficient αt can be achieved with the learned LR dictionary
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Dl, and then, the corresponding HR patch can be estimated with the same coeffi-
cients αt and the learned HR dictionary Dh. However, The above jointly learning
procedure for Dl and Dh usually cannot achieve the accurate corresponding LR and
HR dictionaries, and the sparse coefficients are also approximated estimation with
only the available input LR feature Fyt. Therefore, the following section investi-
gates the corresponding LR and HR features for image patch representation, which
invokes the proposed HR2LR dictionary propagation for achieving the accurate cor-
responding LR and HR dictionaries.

4 Analysis of the Represented Features for Local Image Patches

In Eq. 5, some features are needed to be extracted for image representation. The
conventional sparse coding based super-resolution algorithm [37] uses the first or-
der derivative as F in Eq. 5 for LR image representation, and the subtracted pixel
intensity from the mean of the HR patch as P . It is obvious that the used features
for LR and HR image patch have no accurate correspondence even after some pre-
normalization for removing scale variance [37]. As mentioned in Sec. 2, the low-
resolution image Y is a blurred and down-sampled version of the high-resolution
image X: Y = SHX with the blurring filter H and the down-sampling operator S.
The most intuitive method for achieve the same size version of X from Y is to use
up-sampling interpolation operator U : X̄ = UY. Based on the interpolated version
X̄ of Y, the lost information of the high-resolution X can be considered as X− X̄,
which is the used feature for the training HR image, and at the same time, also is the
estimated lost information of any LR input for achieving the HR one. The feature
extraction, as linear operator P , for the HR image can be formulated as:

PX = X− X̄ = X− UY = X− USHX (12)

In order to obtain the corresponding features of the LR image to those of the
HR one, we impose the blurring and down-sampling operator on Y: Z = SHY,
which is same on X to produce Y, and then extract the LR feature by subtracting
the interpolated version Ȳ = UZ from the LR image Y. Then the operator F for
extracting feature from the LR image can be formulated as:

FY = Y − Ȳ = Y − UZ = Y − USHY (13)

The feature extraction procedures for the LR and HR image are shown in Fig.
3. From Eq. 7 and 8, it is obvious that the feature extractions for the LR and HR
images follow the same process, prospecting corresponding relation between FY
and PX. In addition, with Y = SHX being the blurred and down-sampled version
of the X, the transformation from PX and FY can be formulated as:

FY = Y − USHY = SHX− USH(SHX)

= SH{X− USHX} = SH{PX} (14)
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(a)The PSNR values between the interpolation versions of the LR images and the blurred
versions of the HR images with different σ (Factor=2).

(b)The PSNR values between the interpolation versions of the LR images and the blurred
versions of the HR images with different σ (Factor=4).

Fig. 5 The statistical analysis of the LR and HR images
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(a) Example atoms of the HR dictionary;

(b)Corresponding example atoms of the propagated LR dictionary from the HR one
(Factor=2);

(b)Corresponding example atoms of the propagated LR dictionary from the HR one
(Factor=4);

Fig. 6 Example atoms of the LR and HR dictionaries
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Fig. 7 The used example images for PSNR calculation

Therefore, the LR feature FY is also a blurred and down-sampled version from
the HR featurePX. This means that the un-downsampled version of the LR features
can be approximated by some suitable blurring version of the HR feature. If the HR
feature is blurred by some suitable low-pass filter, the smoothed version should have
high similarity with the un-downsampled version H{PX}, which can be obtained
by up-sampling the LR feature FY using interpolation. Next, we investigate the
similarity with PSNR (peak signal-to-noise ratio) between the interpolation version
Ȳ of the LR images Y and the blurred version HX of the HR images X with
low-pass filter.

We use the Gaussian kernel as the low-pass filter H with different standard devi-
ation σ = [0.7, 0.8, · · · , 1.5], and utilize bilinear as the interpolation operator. The
used 9 example images are shown in Fig. 4, and the PSNR values between between
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the interpolation version of the LR images and the blurred version of the HR image
with different σ are shown in Fig. 5. It can be seen that the PSNR values of all im-
ages are larger than 40 with the largest one: more than 47 with about 1 or 1.1 σ value
for expanding factor 2 (Fig. 5(a)), which means enough similarity and be difficult
for distinguish from subjective assessment; larger than 37 with the largest one: more
than 43 with about 2.1 or 2.3 σ value for expanding factor 4 (Fig. 5(b)). Based the
statistical analysis, we will introduce the proposed HR2LR dictionary propagation
approach of sparse coding for super-resolution.

5 HR2LR Dictionary Propagation of SC

SC based image super-resolution requires two corresponding dictionaries Dl and
Dh to be pre-learned for reconstructing the LR and HR image patches using the
sparse combination of their atoms. A given feature of a HR image patch xi is re-
constructed as a sparse combination of atoms taken from the HR dictionary Dh as
follows:

xi ≈
K∑
j=1

αijD
j
h, s.t.‖αi‖0 ≤ L (15)

where L is a positive integer, meaning that the non-zero numbers of αi are less
than L. As analyzed in Section 3, the LR feature is a down-sampled version of the
corresponding HR feature, formulated as

yi = SHxi ≈ SH

K∑
j=1

αijD
j
h =

K∑
j=1

αij [SHDj
h]

s.t.‖αi‖0 ≤ L

(16)

From Eq. 11, we conclude that the accurate corresponding LR dictionary can be
propagated by the mathematical transformation if the HR dictionary is available.
Because the corresponding HR and LR training images are available, we can first
learn the HR dictionary Dh using SC strategy as follows:

min
Dh,A

n∑
i=1

‖αi‖0 s.t. ‖xi −Dhαi‖2 ≤ ε (17)

With the HR dictionary Dh obtained, the LR dictionary can then be simply prop-
agated using Dl = SHDh. In real applications, because of the boundary effects in
small image patches, the blurred version D̄h of the HR dictionary Dh, which cor-
responds to the interpolated up-sampled version of the LR image, is used to obtain
the sparse coefficient of any LR image input yt as follows:

min ‖αt‖0 s.t. ‖yt −Dlαt‖22 ≤ ε

‖Uyt − UDlαt‖22 ≈ ‖Uyt − D̄hαt‖22 ≤ ε
(18)
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where U is the up-sampling operator, and D̄h is the blurred version of Dh, which in
turn is the approximation of the up-sampling of Dl. With the obtained αt value for
sparse reconstruction of the LR input yt, the HR estimation can be reconstructed
with the same αt but by replacing Dl with Dh. Figure 6 shows a learned HR dictio-
nary and the corresponding propagated LR dictionary for the magnification factors
2 and 4.

Fig. 8 Comparison of HR images of a zebra, reconstructed by different methods (magnifica-
tion factor=2) with (a) the original HR image. Recovered images were obtained by (b) our
proposed method, (c) the conventional SC-based method, (d) the NE-based method, and (e)
the bicubic interpolation-based method.
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Fig. 9 Comparison of HR images of the zebra (magnification factor=4) reconstructed by dif-
ferent methods. (a) The Original HR zebra image and the HR recovered by (b) our proposed
method (RMSE: 14.84), (c) the conventional SC-based method (RMSE: 15.40), and (d) the
bicubic interpolation-based method (RMSE: 16.46).
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(a)

(b)

(c)

Fig. 10 Other examples of HR images (magnification factor=2 recovered by (a) our proposed
method, (b) the conventional SC-based method and (c) the bicubic interpolation method

Table 3 Comparison of the RMSE and PSNR for the zebra images in Fig. 8 recovered using
different SR methods

Evaluated measures RMSE PSNR
Our method 11.21 27.14
Conventional SC 11.71 26.76
NE-based method 15.13 23.97
Interpolation 13.58 25.47
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Fig. 11 The compared PSNRs of 14 test samples

6 Experiments

In our experiments, we magnified the LR input image by a factor of 2 or 4. We
first interpolated the LR input to the same size. In the interpolated LR image and
the corresponding HR image, we always use patches of size 12 × 12, with adjacent
patches overlapping by 3 pixels. The features were then extracted as shown in Fig.
4. For color images, we only applied the SR strategy to the illuminance component,
and the interpolated color components were used for reconstructing the HR final
color image. To propagate the HR dictionary to the LR one, we used a Gaussian
filter with a standard deviation σ = 1.0 for magnification factor 2, and σ = 2.0 for
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Fig. 12 The recovered HR images with other state-the-art methods. (a) our method, (b)
Freedman’s method [?], (c) Genuine Fractals (a state-of-the-art commercial product), (d)
Glasner’s method [?].
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magnification factor 4, as shown in Fig. 6. Fig. 8 shows the HR images of the ze-
bra recovered by our proposed strategy, the conventional SC-based [37], NE-based
[35] and interpolation-based methods for magnification factor 2. Figure 9 shows
a section of the HR images of the zebra (magnification factor 4) reconstructed by
our proposed algorithm and by the conventional SC-based and interpolation-based
methods. Figures 4 and 5 demonstrate that the proposed HR2LR dictionary propa-
gation method in SC can yield much clearer HR images than yielded by the conven-
tional SC-based, NE-based, and interpolation-based methods. We also evaluate the
quantitative quality of the recovered HR images in Figs. 4 using root mean square
error (RMSE) and the peak signal-to-noise ratio (PSNR) in Table 3. Figure 10 com-
pares the reconstructed HR images derived from other LR inputs using our proposed
strategy, the conventional SC-based and bicubic-interpolation-based methods. Here
again, our proposed approach yields great clarity. In addition, in Fig. 11, we show
the compared PSNR of the recovered HR images for other 14 test samples, which
obviously validate most test images by our method can achieve better PSNR than the
conventional SC-based method except for a similar PSNR for one sample. In order
to validate effectiveness of the proposed strategy compared with other the state-of-
the-art method [50-51], we also use the recovered HR images with expand factor 3
in Fig. 12. It is obvious that the recovered HR image is much better than the ones
by Glasner’s method [50], and has similar performance visually but sharper in some
detail regions compared with Freedman’s work [51].

7 Conclusions

This chapter introduces the sparse signal representation, and a popular implementa-
tion: K-SVD algorithm combining orthogonal matching pursuit (OMP) for learning
the adaptive dictionary and achieving the sparse coefficients. OMP is an extended or-
thogonal version of matching pursuit (MP), which is a type of numerical technique
which involves finding the ”best matching” projections of multidimensional data
onto an over-complete dictionary D, and can be combined into the K-SVD strategy
for achieving sparse representation and the best adaptive dictionary. K-SVD is pop-
ularly used for solving the optimization problem in sparse coding. The procedure of
K-SVD mainly include two steps: first, with a initialized fixed dictionary D, a best
sparse coefficient matrix is solved using a pursuit method, called sparse coding step.
With the calculated coefficient in sparse coding step is achieved, the second step is
performed to search for a better dictionary. This step updates one column at a time,
fixing all columns D in except one, dk, which attempt to find the new column dk

and the new values for its coefficients that best reduce the MSE.
Next, we apply the sparse representation for learning-based image super-resolution

for recovering the high-resolution image from only single LR one. Based on the cou-
ple dictionary learning for super-resolution, we proposed a HR2LR dictionary propa-
gation algorithm in SC for image super-resolution. Conventional SC-based image SR
usually yields a global dictionary D=[Dl; Dh] by jointly training the concatenated
LR and HR local image patches and then reconstructing the LR and HR images as
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sparse combinations of atoms taken from Dl and Dh. This strategy can only achieve
the global minimum reconstruction error of LR and HR local patches, and cannot
usually obtain exactly corresponding LR and HR dictionaries. In addition, accurate-
coefficients for reconstructing the HR image patch using Dh cannot be estimated us-
ing only the LR input and the Dl. This chapter proposes an algorithm called HR2LR
dictionary propagation that involves learning the HR dictionaryDh from the features
of the HR training local patches and then propagating the HR dictionary to the LR
one by mathematical proofs and statistical analysis. The experimental results for im-
age SR demonstrate that the proposed HR2LR dictionary propagation yields much
clearer HR images than those obtained using conventional SR approaches such as
those based on SC, NE and bicubic interpolation.
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Chapter 7

Sampling and Recovery of Continuously-Defined
Sparse Signals and Its Applications

Akira Hirabayashi

Abstract. The common guideline for sampling continuously-defined signals has
been provided by the Nyquist frequency for long. Recently it was clarified that even
though signals in radar, echo, and sonar are wide-band with high Nyquist frequency,
they can be sampled at extremely low frequency compared with the Nyquist fre-
quency by taking the fact into account that such signals are sparse linear combi-
nations of time-delayed versions of a transmitted (known) pulse. Such sampling
scheme can also be applied to signals defined by piecewise polynomials or expo-
nentials, in spite that they are not band-limited. In this article, we introduce a class
of signals called signals with finite rate of innovation that covers not only the band-
limited signals but also aforementioned non band-limited signals, and review sam-
pling and reconstruction schemes for those signals in noiseless and noisy scenarios.
This is followed by the more stable approach based on maximum likelihood estima-
tion, which is connected to the so-called structured low-rank estimation. We further
briefly introduce an application of these techniques to image feature extraction.

1 Introduction

Recently the low-cost of large storage devices has caused us to pay less attention
to the size of the files we make. Yet, we have to pay attention to the size of the file
when we wish to send or receive them. For example, let us consider a remote mon-
itoring of EEG or ECG signals. To detect unexpected singular signals of epilepsy
or arrhythmia, we need continuous monitoring of the signals for more than twenty
four hours. Since the bandwidth of these signals is at least 100Hz, the Nyquist inter-
val, which is the inverse of double of the bandwidth, amounts to 1/(2*100)=0.005
second. If we record 256 samples every second (∼ 0.004 second apart) from sixty
four channels of the EEG signals for twenty four hours, then the total amount of
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•  Standard compression approach

•  Sparse sampling approach

Fig. 1 Standard compression vs. sparse sampling

the data becomes approximately 2.8 giga bytes, which is equivalent to the data size
of four compact discs. To send this amount of data from a patient to a server might
be a considerable load to communication facility. Compression reduces the amount
of data, but an encoder is necessary besides sampler. The equipment on the patient
side should be as compact as possible. In sparse sampling techniques, a signal is
measured at an interval much wider than the Nyquist one and the measurements
are directly send to a receiver. Then, the original signal is recovered from the mea-
surements at almost same quality as is in the standard compression approach. Fig. 1
illustrates the comparison of these two approaches.

There are two streams of sparse sampling. One is the so-called compressed sens-
ing, which is a theory for discrete vectors [1]. On the other hand, if target signals are
essentially continuous, and the Nyquist frequencies for these signals are very high,
we wish to sample them as widely as possible and recover them at reasonable qual-
ity. A theory that enables to do so is that for signals with finite rate of innovation [2].
Typical example of the signal comes in radar, echo, and sonar. In these techniques,
a pulse is transmitted to objects and time delays are estimated from reflected sig-
nals. Since the transmitted pulse is wide-band, the standard approach for time-delay
estimation requires samples at the Nyquist frequency, which is very high. Since the
waveform of the transmitted pulse is known, however, unknown parameters in the
reflected signal are only time-delays and attenuation coefficients. It is redundant to
sample the reflected signal at its Nyquist frequency only for the estimation of these
parameters. If possible, we wish to sample the signals at a frequency which is close
to the rate of the unknown parameters appearance. Then, the numbers of unknown
parameters and balanced with that of conditions (measurements), and we can com-
pute the parameters from the measurements. The rate of the unknown parameters
appearance is the rate of innovation.

In this article, we define the class of signals with finite rate of innovation as a
natural extension of band-limited signals, and review standard sampling and re-
construction schemes for those signals in noiseless and noisy scenarios. This is
followed by the more stable approach based on maximum likelihood estimation.
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In particular, we focus on two types of signals with finite rate of innovation: the
stream of Diracs and piecewise polynomials. Further, we briefly introduce an appli-
cation of these techniques to image feature extraction.

2 Signals with Finite Rate of Innovation as an Extension of
Band-Limited Signals

As is well-known, if a signal s(t) has a Fourier transform

ŝ(ω) =

∫ ∞

−∞
s(t)e−iωt dt,

and if its support satisfies a condition that

ŝ(ω) = 0 (|ω | ≥ ωc), (1)

then the signal can be completely reconstructed from measurements acquired by an
interval T less than π/ωc by

s(t) =
ωcT

π

∞

∑
k=−∞

f (kT )sinc

{
ωc(t − kT )

π

}
, (2)

[3],[4]1, where

sinc(t) =

{
sin(πt)/(πt) (t � 0),
1 (t = 0).

The condition (1) is called band-limitation of lowpass type. The interval π/ωc is
nothing but the Nyquist interval, which is mostly an only guideline for sampling
analog signals. If ωc is small, the Nyquist interval takes a moderate value. If ωc

is large, however, the Nyquist interval gets a small value, which causes various
problems including huge amount of data, computational cost, and data acquisition
time, or hardware cost to implement it. To avoid these problems, we wish to sample
the signal at a wide interval even if ωc is very large.

To this end, signal treatment was revisited and a new class of signals was defined.
Let us start with the generalization of (2), which means that the signal is expressed
by a linear combination of the shifted version of ωcT

π sinc(ωct
π ). The shift amount in

(2) is kT while the coefficient is the sample value f (kT ). This can be generalized
as follows: a signal is expressed by a linear combination of shifted versions of a
known waveform ϕ(t), but the shifted amount tk and coefficients ck are unknown.
Without loss of generality, we suppose that tk < tl if k < l. Then, the signal s(t) is
represented by

s(t) =
∞

∑
k=−∞

ckϕ(t − tk). (3)

1 The contribution by Someya to the sampling theory is summarized in [5].
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More generally, consider a signal represented by linear combination of arbitrary
shifts of R known functions ϕr(t) (r = 0, . . . ,R−1), but the shift amounts tk and the
coefficients ck,r are unknown. Then, the signal s(t) is represented by

s(t) =
∞

∑
k=−∞

R−1

∑
r=0

ck,rϕr(t − tk). (4)

The total number of tk in period [ta, tb] and ck,r with the identical k is denoted by
Cs(ta, tb). Then, we define a rate of innovation ρ as

ρ = lim
τ→∞

1
τ

Cs(−τ/2,τ/2). (5)

Definition 1. [2] A signal with a finite rate of innovation is a signal whose paramet-
ric representation is given in (4) and with a finite ρ , as defined in (5).

We can also define a local rate of innovation with respect to a moving (yet fixed)
window size τ , as

ρτ(t) =
1
τ

Cs(t − τ/2, t + τ/2) (6)

In this case, one is often interested in its maximum:

ρmax(τ) = max
t∈IR

ρτ(t)

If a signal has a period τ , the local rate of innovation ρτ(t) is useful because it does
not depend on t and gets a constant ρ . This article also discusses periodic signals
s(t), defined by

s(t) = ∑
k′∈Z

s0(t − k′τ), (7)

where s0(t) is the signal in the interval [0,τ), given as

s0(t) =
K−1

∑
k=0

R−1

∑
r=0

ck,rϕr(t − tk). (8)

In this case, we enforce the condition that 0 ≤ t0 < · · ·< tK−1 < τ .
The sequence of Diracs is s(t) in (7) and (8) with R = 1 and ϕ0(t) = δ (t). This is

typically sparse, because its value is mostly zero except at positions tk. Further, this
ideal pulse sequence produces the general pulse sequence by convolving with ϕ(t)�
δ (t). One generalization of the sequence of Diracs is the sequence of derivative of
Diracs. This is s(t) with ϕr(t) = δ (r)(t), where the derivative of the Dirac is defined
by ∫ ∞

−∞
δ (r)(t)φ(t)dt = (−1)rφ (r)(0),

with φ(t) an arbitrary function that has derivatives of any order and tends to zero
more rapidly than any power of t, as |t| tends to infinity [6]. This signal is mapped
from piecewise polynomials by R+ 1th derivatives.
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3 Sampling and Recovery of the Sequence of Diracs

Let us focus on the sampling and recovery of the sequence of Diracs. This signal is
at the heart of the theory for signals with finite rate of innovation, because sequences
of general pulses can be expressed by convolution with the sequence of Diracs and
the general pulses. We quickly review how the signal is recovered from compressive
measurements in noiseless and noisy cases. Since we discuss the periodic case, the
Fourier coefficients of the sequence of Diracs are well-defined and given by

d̂p =
1
τ

∫ τ

0
s(t)e−i2pπt/τ dt =

1
τ

K−1

∑
k=0

ckup
k , (9)

where uk = e−i2πtk/τ .

3.1 Noiseless Case

Direct sampling s(t) of the sequence of Diracs yields mostly zero measurements,
which are useless. Instead, we sample it after filtering by ψ(t) at t = nT . This can
be expressed by the inner product as

dn = 〈s,ψn〉=
∫ ∞

−∞
s(t)ψ(t − nT)dt, (10)

where n = 0 ∼ N −1 and T = τ/N. Strictly speaking, this sample is called a gener-
alized sample or measurement, which is distinguished from s(tn) called an ideal
sample [7, 8]. There are various types of sampling kernels ψ(t). For example,
ψ(t) = Bsinc(Bt) is an ideal lowpass filter. In this case, for perfect reconstruction,
we suppose that

B ≥ ρ =
2K
τ
. (11)

Other kernels of compact support, such as B-spline [9] and E-spline [10], are also
used [11]. The kernel called sum-of-sincs is also of compact support with degrees
of freedom for designing its waveform [12]. In this article, we use ψ(t) = Bsinc(Bt)
for periodic signals in Sections 3 and 4, while spline kernels are exploited in the
image processing scenario in Section 5.

We wish to obtain 2K unknown parameters of {tk}K−1
k=0 and {ck}K−1

k=0 from the
measurements {dn}N−1

n=0 . In a noiseless case, this problem is solved elegantly by the
so-called annihilating filter method (a.k.a. Prony’s method) [2], as follows. Let P
be an integer which does not exceed Bτ/2: P = �Bτ/2�. Then, from the Poisson
summation formula for the sinc function

B
∞

∑
k′=−∞

sinc{B(t + k′τ)}= 1
τ

P

∑
p=−P

e−i2pπt/τ ,
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it holds that

dn =
P

∑
p=−P

d̂pei2pnπ/N.

This equation implies that the Fourier coefficients d̂p are exactly related to the mea-
surements dn acquired with the sinc kernel by the inverse discrete Fourier transform.
Hence, if we assume that

N ≥ 2P+ 1, (12)

we can obtain d̂p from dn by the discrete Fourier transform (DFT), as

d̂p =
1
N

N−1

∑
n=0

dne−i2pnπ/N. (13)

Its vector form is
d̂ = Fd, (14)

where d and d̂ are N and 2P+1 dimensional vectors whose n and p elements are dn

and d̂p−P, respectively, and F is an accordingly defined DFT matrix.
The sequence {d̂p}P

p=−P in (9) is annihilated by a filter [a0,a1, . . . ,aK ] whose z
transform is

A(z) =
K

∑
k=0

akz−k = a0

K−1

∏
k=0

(1− ukz−1),

as
a0d̂p + a1d̂p−1 + . . .+ aKd̂p−K = 0 (p = K −P, . . . ,P). (15)

Simultaneously solving these equations provides the filter coefficients ak. Con-
cretely, let T be a (2P−K+ 1)× (K+ 1) matrix given by

T =

⎛⎜⎜⎜⎜⎜⎝
d̂K−P d̂K−P−1 . . . d̂−P

d̂K−P+1 d̂K−P . . . d̂−P+1
...

...
. . .

......
...

. . .
...

d̂P d̂P−1 . . . d̂P−K

⎞⎟⎟⎟⎟⎟⎠ . (16)

Then, the vector a = [a0,a1, . . . ,aK ]
T is a solution to the equation

T a = 0. (17)

To solve this, we note that the definition of P implies P ≤ Bτ/2 < P+ 1 and (11)
stands for K ≤ Bτ/2. Therefore, it holds that

P ≥ K. (18)
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Hence, the matrix T is square when P = K and vertically longer rectangular when
P > K. The number of columns implies that the rank of T can be K + 1, but the
number of tk enforces that rank(T ) = K. Hence, in the singular value decomposition
(SVD) USV of T , there is one singular value of zero and its corresponding col-
umn vector of V gives the filter a. It is also important to note that T has a Toeplitz
structure, which plays an essential role in the noisy scenario with rank(T ) = K.

Once tk are fixed, (9) reduces to linear equations in terms of ck. That is, let a
Vandermonde matrix be

Ut =

⎛⎜⎜⎜⎜⎜⎝
u−P

0 u−P
1 . . . u−P

K−1
u−P+1

0 u−P+1
1 . . . u−P+1

K−1
...

...
. . .

......
...

. . .
...

uP
0 uP

1 . . . uP
K−1

⎞⎟⎟⎟⎟⎟⎠ .

By solving the equation
Utc = d̂, (19)

we finally obtain the coefficients c = [c0, . . . ,cK−1]
T/τ , which is unique because tk

are distinct each other. We can summarize the above discussion as follows:

Theorem 1. [2] If the sampling kernel ψ(t) = Bsinc(Bt) satisfies the condition (11)
and N is greater than 2P+1, then the measurements {dn}N−1

n=0 obtained by (10) is a
sufficient characterization of a τ-periodic sequence of Diracs.

From (12) and (18), it holds that

N ≥ 2K + 1,

which implies that s(t) can be perfectly reconstructed from 2K + 1 measurements
per period. This is one more than the number of unknown parameters 2K. This is
because we need to know 2K Fourier coefficients d̂p, which we do not have direct
access. Instead, we have to compute them from the measurements dn using (13).
Because of conjugate symmetry of the Fourier series, we need an odd number of
the coefficients to express real values. As a result, we need an odd number of mea-
surements to invert it. It is not novel to obtain tk and ck from d̂p of the form of
(9). Mathematically same problems can be found in spectral estimation and direc-
tion of arrival (DoA) estimation. Conventional methods for these problems, such as
MUSIC [13], ESPRIT [14], and Matrix Pencil [15], exploit redundant number of
measurements. On the other hand, we used the annihilating filter approach to clarify
the minimum number of measurements for perfect reconstruction. As the great con-
tributions of [2], it was shown that d̂p can be exactly computed from dn by DFT and
that the unknown parameters are determined using the annihilating filter method as
well as those conventional methods in the spectral or DoA estimations.
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3.2 Cadzow Denoising

Let yn be a noisy measurements, as yn = dn + en. Its vector form is

y = d+ e. (20)

We assume that the probability density function of p(e) is known. Let us denote the
DFT of y by ŷ = (ŷ−P, ŷ−P+1, . . . , ŷP)

T = Fy. Generally, there does not exist a that
annihilates (17), in which d̂p is replaced by ŷp. A simple remedy to this situation is
to use a that minimizes the squared norm of the residue Ta. Its solution is provided
by the singular value decomposition USV∗ of T as well as in the noiseless case:
the column vector of V corresponding to the smallest singular value gives the filter
coefficients. Note that, because of the noise, the smallest singular value does not
yield zero. This method is called the least square (LS) method.

To improve the quality of the LS method, the so-called Cadzow denoising [16] is
usually used [17]. This algorithm exploits the two facts mentioned above: one is that
the rank of T should be K and the other is that T has a Toeplitz structure. In general,
T can be rectangular (P > K), but it has been empirically shown that the algorithm
works the best when T is chosen to be square (P = K) [17]. The algorithm proceeds
as follows:

1. Compute the DFT ŷp of yn.
2. Set a square matrix Y as

Y =

⎛⎜⎜⎜⎝
ŷ0 ŷ−1 . . . ŷ−P

ŷ1 ŷ0 . . . ŷ−P+1
...

...
. . .

...
ŷP ŷP−1 . . . ŷ0

⎞⎟⎟⎟⎠ .

3. Repeat the following procedure until a termination condition is met,

a. Compute the SVD of Y =USV ∗, where U , S, and V are P+1 square matrices.
b. Compute Y ′ =US′V ∗ using S′, in which P−K+1 smallest singular values of

S are replaced by zero. Now, Y ′ does not have the Toeplitz structure anymore.
c. To recover the structure, compute averages along diagonal parallel elements

and replace all of the elements by the corresponding average. For example, if
P = 2, do

Y ′ =

⎛⎝ y′0,0 y′0,1 y′0,2
y′1,0 y′1,1 y′1,2
y′2,0 y′2,1 y′2,2

⎞⎠ ⇒ Y :=

⎛⎝ ŷ′0 ŷ′−1 y′0,2
ŷ′1 ŷ′0 ŷ′−1

y′2,0 ŷ′1 ŷ′0

⎞⎠ ,

where ŷ′1, ŷ′0 and ŷ′−1 are given as

ŷ′1 =
y′1,0 + y′2,1

2
, ŷ′0 =

y′0,0 + y′1,1 + y′2,2
3

, ŷ′−1 =
y′0,1 + y′1,2

2
.
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The termination condition can be that the ratio of the Kth singular value to the
K+1th one is greater than a threshold, but normally ten or twenty times of repetition
provides a Toeplitz matrix with rank of K. This type of problem, in which a matrix
is approximated by another one with a structure and low-rank, is called Structured
Low-Rank Approximation (SLRA) and a hot topic in a signal/image processing and
optimization [18]. In the end, we should note that, even though the set of all Toeplitz
matrices is convex, that of rank of K is not. Hence, any optimality and convergence
are not guaranteed in this algorithm.

3.3 Maximum Likelihood Estimation

To resolve the difficulties mentioned in the previous section, we can exploit the
formalism of maximum likelihood estimation. Equations (14) and (19) yield

d = F−1Utc. (21)

Then, we can define the log-likelihood function as L(t,c) = log p(y − F−1Utc),
where t = [t0 t1 · · · tK−1]

T. Assume that p(e) is the Gaussian distribution with zero
mean and covariance matrix σ2I, where σ is a known positive real and I is the
identity matrix. Then, the log-likelihood function reads

L(t,c) =−‖y−F−1Utc‖2

2σ2 −N log(
√

2πσ). (22)

This implies that the maximization of the log-likelihood function is equivalent to the
minimization of the norm ‖y−F−1Utc‖2. Further on, F is unitary up to constant.
Hence, this minimization is equivalent to that of

fo(t,c) = ‖ŷ−Utc‖2. (23)

Finally, the maximum likelihood estimation amounts to estimating the vector Utc,
which is the closest to ŷ in the least-squares sense, in Fourier domain.

Equation (23) is quadratic with respect to c, when t is fixed. Therefore, the op-
timal c for a fixed t is obtained analytically as c = U†

t ŷ, where (·)† stands for the
Moore-Penrose generalized inverse of the bounded operator [19]. Hence, the mini-
mizer of fo(t,c) is found by searching t that minimizes

f (t) = fo(t,U
†
t ŷ) = ‖ŷ−UtU

†
t ŷ‖2,

and then by computing c =U†
t ŷ.

The criterion f (t) is non-convex and it is very difficult to find the global min-
imum solution. We thus exploit the so-called particle swarm optimization (PSO)
algorithm [20]. The particles model the parameter t to be optimized. For each par-
ticle j = 1, ...,J, we first initialize the position t j and its velocity ṫ j with uniformly
distributed random vectors in the domain. We use the particle’s and swarm’s best

known positions b(p)
j and b(s), which are initialized by b j and the best among the
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Fig. 2 Mean square errors (MSE) of estimated parameters for t and c with respect to the
SNR. The number of measurements is 11. The red, blue and black lines show the results by
the proposed method, by LS with and without Cadzow denoising, respectively.

initial positions, respectively. Until a termination criterion is met, the particle’s ve-
locity ṫ j and position t j are updated by

ṫ j ← wṫ j + c1r1(b
(p)
j − t j)+ c2r2(b(s)− t j),

t j ← t j + ṫ j,

respectively, where c1 and c2 are pre-defined constants near 1 and r1, r2 are uniform

random variables within 0 and 1. If f (t j) < f (b(p)
j ), then b(p)

j is updated by t j. If

f (b(p)
j ) < f (b(s)), then b(s) is replaced by b(p)

j . Finally, b(s) gives the best found
solution. Because of its global and random nature, PSO is more robust than gradient
approaches, against getting trapped in local minima. The drawback is a relatively
high computational cost.
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In simulations, the parameters are set as τ = 1, bp = 1, K = 2 and N = 11. The
unknown parameters are t = (t0, t1) = (0.42,0.52), and c = (c0,c1) = (1.00,1.00).
For PSO, we used J = 150 particles and (w,c1,c2) = (0.4,0,9,0.4), (0.9,0.4,0.4)
and (0.4,0.4,0.9) for 75, 45 and 30 particles, respectively. Thousand of noise vector
e were generated from the Gaussian distribution in which σ was determined so that
SNR2 becomes 0, 5, . . ., 25[dB]. For each experiment, we computed estimates t̂ and
ĉ of t and c, for 1,000 different noise realizations. Accordingly, the mean square
errors MSE(t) and MSE(c) were defined as the average over the 1,000 trials of
‖t̂− t‖2 and ‖ĉ− c‖2, respectively. The results are shown in Fig. 2, where the red,
blue and black lines show the results by the proposed method, by the LS methods
with and without Cadzow denoising, respectively. We can see that the proposed
method outperforms the conventional methods for every value of SNR except for
0dB of MSE(c), in which case three approaches mostly give the same result because
of large noise level.

4 Sampling and Recovery of Signals of Piecewise Polynomials

Piecewise polynomial is a powerful tool for signal and image processing. Its special
case is the polynomial spline, which is a standard tool for interpolation. A τ-Periodic
piecewise polynomial with K jointing points is defined as follows. For every k =
0, . . . ,K − 2, let us define the function ϕk(t) as

ϕk(t) =

{
vk(t) (tk < t < tk+1),

0 (otherwise),

and the function ϕK−1(t) as

ϕK−1(t) =

⎧⎨⎩
vK−1(t + τ) (0 ≤ t < t0),

vK−1(t) (tK−1 < t < τ),
0 (otherwise),

where vk(t) = ∑R
r=0 αk,rtr. Then, a τ-periodic piecewise polynomial s(t) of degree

R is defined by s(t) in (7) with

s0(t) =
K−1

∑
k=0

ϕk(t).

The piecewise polynomials are signals with finite rate of innovation, because s(t)
has K degrees of freedom from the positions tk and (R+ 1)K from the coefficients
αk,r per period. This implies that the rate of innovation is ρ = K(R+ 2)/τ .

The measurements of piecewise polynomials acquired with the sinc kernel can
be expressed by the parameters tk and αk,r as follows. Let us introduce matrices D,
Vt , and Ṽt as

2 The SNR is defined by 10log10
‖d‖2

σ2N
.
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Fig. 3 MSE [dB] of the estimated parameters for t and α of a piecewise polynomial with
respect to the number N of measurements. The legends are the same as in Fig. 2.

D =

⎛⎜⎜⎝
0(

τ
i2π

diag

(
1
−P

,
1

−P+ 1
, . . . ,

1
P

))R+1

1

0

⎞⎟⎟⎠ ,

Vt =

⎛⎜⎜⎜⎝
u−P

0 · · · (−P)Ru−P
K−1

u−P+1
0 · · · (−P+ 1)Ru−P+1

K−1
...

. . .
...

uP
0 · · · (P)RuP

K−1

⎞⎟⎟⎟⎠ , Ṽt =

(
Vt 0
0T 1

)
,
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Fig. 4 A simulation example with K = 4 and R= 2. The black line shows the target signal and
the red circles and black dots are measurements with and without 20dB noise. The red and
blue lines are reconstructed signals by the proposed method and LS with Cadzow denoising,
respectively.

with 0 indicating the zero vector. Note that the R+ 1th derivative of the piecewise
polynomial in the sense of distribution is a sequence of derivatives of Diracs [2]:

s0(t) =
K−1

∑
k=0

R−1

∑
r=0

ck,rδ (r)(t − tk),

where δ (r)(t) is the r th derivative of the Dirac. This relation gives a meaning to the
matrix D as the mapping from the Fourier coefficients of the sequence of derivatives
of Diracs to those of the piecewise polynomial. Further, we introduce a matrix Wt

which maps αk,r to the coefficients ck,r of the sequence of derivatives of Diracs.
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For instance when R = 1 and K = 2, Wt is given as

Wt =

⎛⎜⎜⎜⎜⎝
0 0 1 −1
1 −1 t0 −(t0 + τ)
0 0 −1 1
−1 1 −t1 t1

t1−t0
τ

t0+τ−t1
τ

t2
1−t2

0
2τ

(t0+τ)2−t2
1

2τ

⎞⎟⎟⎟⎟⎠ .

We refer to [21] for further details on the matrix Wt . Then, it holds that [21]

d = F−1DṼtWtα,

where α = (α0,0 · · · αK−1,R)
T. That is, the noiseless measurements of the piecewise

polynomial are expressed by using the locations tk and the coefficients αk,r . Because
of this expression, the log-likelihood function is defined similarly as in (22) and its
maximization is equivalent to the minimization of ‖y−Φtα‖2. We find the mini-
mizer of this term by searching t that minimizes ‖y−ΦtΦ†

t y‖2, and then calculating
α = Φ†

t ŷ. The search of the minimizer was again conducted by PSO.
The performance of the proposed method was evaluated by simulations. The tar-

get signal is a τ = 1-periodic piecewise polynomial of degree R = 1 with K = 2 dis-
continuities. The unknown parameters are t = (0.20,0.65) and α = (α0,0,α0,1,α1,0,
α1,1) = (−1.00,−3.00,2.00,4.00). We reconstructed the signal from 7, 9, . . ., 15
measurements with 20dB noise. The estimation errors MSE(t) and MSE(α) were
obtained by averaging ‖t̂− t‖2 and ‖α̂ −α‖2 over 1,000 noise realizations, respec-
tively. The results are shown in Fig. 3, with same legends as in Fig. 2. We can see
that the proposed method outperforms the conventional methods in all cases.

A simulation example with K = 4, R = 2, and N = 25 is shown in Fig. 4. We
can see that the proposed method gives much better results than the classical ap-
proach. We should note that N = 25 is the minimum for the classical approach
while the proposed method can reconstruct the signal from fewer samples. It took
19.12s for the proposed method to reconstruct the signal, while LS with Cadzow
denoising required 0.06s only. It should be noted that Matlab is far from optimal
for the implementation of algorithms like PSO, whose potential for parallelization
is not exploited at all.

5 Application to Image Feature Extraction

Straight line-edge is one of the most important image feature used in many appli-
cations including registration or vehicle navigation. The standard method to extract
straight lines is the Hough transform and its extensions [22, 23]. Such techniques,
however, have limitations including the fact that many parameters need to be ad-
justed or the fact that they require high computational costs. Further, the Hough
transform uses center position of a detected pixel as location of the line. Since this
is not true generally, preciseness of the method degrades as the resolution of image
decreases. This difficulty was reduced by using more precise acquisition model [24],
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[25], [21]. Since step line edge can be expressed by three parameters of orientation,
offset, and amplitude, it can be regarded as a signal with finite rate of innovation.
Hence, the techniques developed there can be exploited here as well.

By using orientation θ , offset γ , and amplitude λ , as defined in Fig. 5, a step
line-edge can be expressed as

f (x,y) = λ u(−xsinθ + ycosθ + γ sinθ ), (24)

where u(t) is the unit step function whose value is 1 if t ≥ 0 and 0 if t < 0. This
continuously-defined step line-edge is sampled by the integer-shifted version of a
sampling kernel ψ(x)ψ(y) as

g[m,n] = 〈 f (x,y),ψ(x−m)ψ(y− n)〉+ ε[m,n],

where ε[m,n] is additive noise. The sampling kernel ψ(t) is modeled by the trigono-
metric E-spline of the first order (P = 1) [10], which is given by

βα(t) =

⎧⎨⎩
sin ω0(t + 1)/ω0 (−1 ≤ t < 0),

−sinω0(t − 1)/ω0 (0 ≤ t < 1),
0 (t ≤−1, t > 1).

When ω0 tends to zero, the trigonometric E-spline converges to the B-spline of the
first order.

The algorithm proceeds as follows. First, edge pixels are detected by a conven-
tional method like Canny operator. Then, for each pixel detected as an edge, the
surrounding pixel area is extracted, and the three parameters are computed from the
pixels in the area. To suppress extraction errors, similar edges are merged, while
other edges are discarded. Within these steps, we mainly discuss the second one.
Therefore, the indices m and n are assigned in a local manner: the focused detected
pixel is set to m = n = 0. The local area size is chosen as 8× 8 pixels since those
affected by the focused edge are mostly within this area. This is because the sam-
pling kernel is modeled by the E-spline of the first order (its support width is two).
Hence, the indices m and n are from -3 to 4 (see Fig. 5).

To retrieve the parameters θ , γ , and λ from the pixel values g[m,n], we first
compute a horizontal differentiated sample dH [m,n] which is given by g[m+1,n]−
g[m,n]. We then compute product-sum of dH [m,n] and coefficients C

(αp)
m :

τ(H)
n,p =

3

∑
m=−3

C
(αp)
m dH [m,n]. (25)

The coefficients C
(αp)
m are determined so that they satisfy

∞

∑
m=−∞

C
(αp)
m (βα2 ∗ψ)(t −m) = eαpt (26)
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Fig. 5 Description parameters for a step line-edge. The xy coordinates are local ones whose
origin is the center of the pixel detected as an edge. The grid shows sampled pixels.

for p = 0,1,2, where βαp(t) is defined by

βαp(t) =

{
eαpt (−0.5 ≤ t < 0.5),
0 (t <−0.5, t ≥ 0.5),

(27)

with α2 = 0. The coefficients can be computed by

C
(αp)
m = emαp/

{
P′

∑
k=−P′

ekαp(βα2 ∗ψ)(−k)

}
, (28)

where P′ is the maximum integer not exceeding (P+ 2)/2. Note that the convolved
sampling kernel (βα2 ∗ψ)(t) can produce eαpt for p = 0,1,2.

To show a closed form of τ(H)
n,p , let us define

μ (H)
n,p (θ ,γ) =−sgn(sinθ )eαp(γ+ n

tanθ − 1
2 )Ψ
( αp

tanθ

)
,

where sgn(t) is the function whose value is 1 if t > 0, 0 if t = 0, and −1 if t < 0 and
Ψ(s) =

∫ ∞
−∞ ψ(t)estdt. Assume that dH [m,n] is equal to zero for |m| ≥ 4. Then, as

shown in [25], it holds for p = 0,1,2 that

τ(H)
n,p = λ μ (H)

n,p (θ ,γ). (29)
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This equation yields closed formulas for tanθ , γ , and λ [25]. as

λ =
|τ(H)

0,2 |
Ψ(0)

, tanθ =
ω0

∠(τ(H)
1,0 /τ(H)

0,0 )
,

γ =
1

ω0
∠

⎛⎝ τ(H)
0,0 sgn(τ(H)

0,2 )

λΨ(α0/ tanθ )

⎞⎠+
1
2
, (30)

where ∠(z) is the phase angle of complex number z. If model mismatch is not too

severe, then τ(H)
n,p can be computed by (25) and the closed formulas can provide

good estimates for λ , θ , and γ . However, if model mismatch cannot be ignored, it
is getting hard for the formulas to work precisely. To overcome this limitation, we
search for θ , γ , and λ by which the right-hand side in (29) best approximates the
left-hand side for all n =−1,0,1 and p = 0,1,2.

As well as the horizontal one, we can do the same processing vertically. That is,
let us compute differentiated samples vertically as dV [m,n] = g[m,n+ 1]− g[m,n].

Then, the product-sum of dV [m,n] and coefficients C
(αp)
n is computed by

τ(V )
m,p =

∞

∑
n=−∞

C
(αp)
n dV [m,n] (31)

and τ(V )
m,p has the following closed form:

τ(V )
m,p = λ μ (V )

m,p(θ ,γ), (32)

where
μ (V )

m,p(θ ,γ) = sgn(cosθ )eαp{−(γ−m) tanθ− 1
2 }Ψ (αp tanθ ) .

Let us define eighteen dimensional vectors τ and μ(θ ,γ) as

τ = (τ(H)
−1,0,τ

(H)
−1,1,τ

(H)
−1,2,τ

(H)
0,0 , . . .τ(V )

1,1 ,τ
(V )
1,2 )

T ,

μ(θ ,γ) = (μ (H)
−1,0(θ ,γ),μ

(H)
−1,1(θ ,γ),μ

(H)
−1,2(θ ,γ),

μ (H)
0,0 (θ ,γ), . . . ,μ (V )

1,1 (θ ,γ),μ
(V )
1,2 (θ ,γ))

T .

Then, the differences between the left and right hand sides in (29) and (32) can be
simultaneously evaluated by

Jo(θ ,γ,λ ) = ‖λ μ(θ ,γ)− τ‖2.

For fixed θ and γ , the optimal λ is obviously given by

λopt(θ ,γ) =
〈

τ,
μ(θ ,γ)

‖μ(θ ,γ)‖2

〉
.
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Fig. 6 Edge extraction results by the proposed algorithm: (a) original image, (b) Canny edge
detection results, (c) results by the proposed method, (d) results by the Hough transform.

Hence, θ , γ , and λ which minimize Jo are given by θ and γ which minimize

J(θ ,γ) = Jo(θ ,γ,λopt(θ ,γ)), (33)

and then λopt(θ ,γ) with the resultant values.
We applied the proposed method to the real image obtained by a Nikon D50 SLR

camera. Its point spread function (PSF) is simply approximated by the trigonometric
E-spline of the first order with ω0 = π/8 without any calibration. Fig. 6 (a) shows
the original image, Fig. 6 (b) shows the Canny edge detection results. Figs. 6 (c) and
(d) show the extracted edges for the small area in the box indicated in Fig. (a) by the
proposed method and the Hough transform, respectively. Even though it is difficult
to evaluate these results quantitatively, we can see that the Hough transform extracts
many wrong straight line edges along the curve on the right while the proposed
method does more precise results and less wrong ones. We also note that the Hough
transform could not extract the top left straight line edge because the area shown
in Fig. (d) was not sufficient. Even though the PSF for the camera is unknown,
the proposed method showed the good performance. This means that the proposed
approach is robust against the PSF model mismatch. The computational time for the
simulation by the proposed method was 0.7[s] which can be accelerated by more
dexterous initial values.
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6 Conclusion

We provided a short tutorial on the theory for signals with finite rate of innovation and
its application to image feature extraction. To sample a signal at low frequency com-
pared with its Nyquist frequency, the signal was characterized using how frequently
unknown parameters appear in its parametric expression, instead of the classical fre-
quency. The new frequency of the parameter appearance was defined as the rate of
innovation. We focused on the two typical examples of signals with finite rate of in-
novation: the sequence of Diracs and piecewise polynomials. Measurements of both
signals were acquired with an appropriate sampling kernel and recovered stably us-
ing a maximum likelihood estimation with the so-called particle swarm optimization
(PSO). Using the similar technique, we showed that step line-edges can be extracted
very precisely. Interesting applications, which we could not mention here, include
compressive sensing of the EEG signals [26], vehicular signals [27], and more.
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Chapter 8

Tensor-Based Subspace Learning for Multi-pose
Face Synthesis

Xu Qiao	, Takanori Igarashi, and Yen-Wei Chen

Abstract. Facial pose synthesis is applied to generate much required information for
several applications, such as public security, facial cosmetology, etc. How to synthe-
size facial pose images from one image accurately without spatial information is still
a challenging problem. In this chapter we propose a tensor-based subspace learning
method (TSL) for synthesizing human multi-pose facial images from a single two-
dimensional image. In the proposed TSL method, two-dimensional multi-pose im-
ages in the database are previously organized into a tensor form and a tensor decom-
position technique is applied to build projection subspaces. In synthesis processing,
the input two-dimensional image is first projected into its corresponding projection
subspace to get an identity vector and then the identity vector is used to generate other
novel pose images. Our technique is applied on KAO-Ritsumeikan Multi-angle View,
Illumination and Cosmetic Facial Database(MaVIC) and experimental results show
the effectiveness of our proposed method for facial pose synthesis.

1 Introduction

Real data of natural and social sciences is often very high-dimensional. However, the
underlying structure can be characterized by a small number of parameters. Reduc-
ing the dimensionality of such data is beneficial for visualizing the intrinsic structure

Xu Qiao
School of Control Science and Engineering, Shandong University, Jinan, China
e-mail: qiaoxu@sdu.edu.cn

Takanori Igarashi
Beauty Cosmetic Research Lab, Kao Corporation, Tokyo, Japan
e-mail: igarashi.takanori@kao.co.jp

Yen-Wei Chen
College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
e-mail: chen@is.ritsumei.ac.jp
	 This work was mainly contributed in Ritsumeikan University when he studied for his PhD

Degree.

Y.-W. Chen and L.C. Jain (eds.), Subspace Methods for Pattern Recognition 171
in Intelligent Environment, Studies in Computational Intelligence 552,
DOI: 10.1007/978-3-642-54851-2_8, c© Springer-Verlag Berlin Heidelberg 2014

qiaoxu@sdu.edu.cn
igarashi.takanori@kao.co.jp
chen@is.ritsumei.ac.jp


172 X. Qiao, T. Igarashi, and Y.-W. Chen

and it is also an import pre-processing step in many statistical pattern classification
problems, such as face recognition and image retrieval.

Recently, multilinear algebra was applied for analyzing the multifactor structure
of image ensembles. Vasilesu and Terzopoulos have proposed a novel face repre-
sentation algorithm called tensorface [1, 2]. Tensorface represents the set of face
images by a multi-dimensional tensor and extends traditional PCA to tensor-based
subspace learning with tensor decompositions. In this way, the multiple factors re-
lated to expression, illumination and pose can be separated from different dimen-
sions of tensor. These multiple factors can be used for recognition and synthesis.
Following we use tensor-based subspace learning for facial pose synthesis.

When we obtain a person’s profile facial image, can we generate this person’s
frontal facial image or other poses? The method to solve this kind of problem is
properly called ”facial pose synthesis” [3]. The essential idea of image synthesizing
is extracting information from exist images and generating an accurate and detailed
facial model. It has been an active topic in computer vision, computer graphics and
related fields.

Facial pose synthesis has a number of useful applications, such as for social se-
curity and cosmetology. In social security, the facial image synthesis method can be
applied to assist law enforcement. Sometimes, due to the limits of circumstances,
the police take suspect photos with some feature parts, such as half of the face, invis-
ible. It is difficult for the police to recognize the suspect without having front facial
information. Facial pose synthesis techniques will help the police generate a frontal
facial portrait and other poses. It can also be applied into the field of cosmetology
for skin appearance[32]. If one human nature facial image is obtained, the person’s
cosmetic facial images under some conditions (such as mutative illuminations, mu-
tative view-angles) will be generated by using synthesis methods.

Synthesis methods can mainly be classified into three categories: anatomy based
methods, geometry based methods, and learning methods. Their advantages and
limitations are analyzed and discussed following:

Anatomy based methods build face models by estimating the dynamic facial
muscle contractions from a sequence of human face images [5]. It needs a lot of
pre-processing, such as registration of corresponding muscle points and setting con-
straints of muscle contraction to every sample. Although this method is of high
accuracy, it is difficult for practical applications.

Geometry based methods recover shapes from information such as shading,
stereo, motion, texture, etc. For example, the shape from shading method (SFS)
deals with the recovery from a gradual variation of shading in an image [6, 7]. The
SFS method needs to compute the surface orientation map, such as a normal direc-
tion or gradient field from image intensity and then reconstruct the surface depth
map from the orientation map. Since the SFS is highly dependant on the gradual
variation of shading in the image, it is an ill-posed problem and difficult to find a
unique solution without additional constraints.

Learning based methods find the related objects between pose subspaces by
training samples. It is shown that linear transformations can be learned exactly from
a basis set of two-dimensional prototypical views for linear object classes in [8].
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Locally linear Embedding (LLE) is used to learn common hidden structures shared
among different pose images to find parameters which control the pose variation
[9]. A model for pose synthesis is built for a special person by training this per-
son’s images using LLE method. But this model can not be applied for other per-
sons. A morphable three-dimensional face model (MF) has been proposed by Blanz
and Vetter [10, 11]. They first built a three-dimensional face model by training a
large dataset of three-dimensional face scans, which are obtained by laser scans. In
the synthesis process, an input two-dimensional image is first used to estimate its
three-dimensional model parameters by model fitting. The other novel pose images
are obtained by projecting the three-dimensional model to two-dimensional planes.
This method needs good initial values for model fitting in order to avoid the lo-
cal minimum. It also suffers time-consuming problems for three-dimensional data
collection and model fitting processing.

To overcome these shortcomings, we propose a tensor-based subspace learning
method (TSL) for facial pose synthesis. We organize two-dimensional multi-pose
images as a tensor form and apply tensor decomposition to build a projection sub-
space. In the synthesis process, the input two-dimensional image is projected into
the corresponding projection subspace to get an identity vector. The identity vector
is then used to generate other novel pose images. This is motivated by the fact that
Vasilescu and Terzopoulos have noticed that the tensor decomposition method is
an efficient tool for feature detection, which plays an important role in the synthesis
learning method [1, 2]. The method based on tensor decomposition has also been ap-
plied to synthesize facial expressions [12], in which the authors only need a frontal
facial pose and do not consider the differences in the same person’s facial contour
in different poses. Compared with the morphable three-dimensional face model, our
proposed method constructs a statistical model by training two-dimensional multi-
pose images instead of three-dimensional scans and doesn’t need any model fitting
processing. So it is easier to implement and can be used for on-line processing.
Experimental results on Kao-Ritsumeikan Multi-angle View, Illumination and Cos-
metic Facial Database(MaVIC) [13] show our proposed method is effective for fa-
cial pose synthesis.

2 Tensor and Multilinear Algebra Foundations

2.1 Definitions and Preliminaries

2.1.1 Tensor Definitions

Scalers are denoted by italic-shape letters, i.e. (a,b, ...) or (A,B, ...). Bold lower case
letters, i.e. (a,b, ...), are used to represent vectors. Matrices are denoted by bold
upper case letters, i.e. (A,B, ...); and higher-order tensors (more than third order
tensor) are denoted by calligraphic upper case letters, i.e. (A ,B, ...).

A tensor is a multidimensional array. The order of a tensor in the number of
dimensions, as known as ways or modes. An N-th order tensor A is defined as a
multi-array with N indices, where A ∈ R

I1×I2×...×IN and R is the real manifold.
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Elements of the tensor A are denoted as ai1...in...iN , where 1 � in � In. The space of
the N-th order tensor is comprised by the N mode subspaces. From the perspective
of A , scalars, vectors and matrices can be seen as zeroth-order, first order and
second order tensors, respectively.

The ith entry of a vector a is denoted by ai, element (i, j) of a matrix A is denoted
by ai j, and element (i, j,k) of a 3rd-order tensor X is denoted by xi jk. Indices
typically range from 1 to their capital version, e.g., i = 1, ..., I. The nth element in a
sequence is denoted by a superscript in parentheses, e.g., An denotes the nth matrix
in a sequence.

Subarrays are formed when a subset of the indices is fixed. For matrices, these
are the rows and columns. A colon is used to indicate all elements of a mode. Thus,
the jth column of A is denoted by a: j, and the ith row of A is denoted by ai:.

Fibers are the higher-order analogue of matrix rows and columns. A fiber is de-
fined by fixed every index but one. A matrix column is a mode-1 fiber and a matrix
row is a mode-2 fiber. 3rd-order tensors have column, row, and tube fibers, denoted
as x: jk, xi:k, and xi j:, respectively. Fibers of a 3rd-order tensors are shown in Fig. 1.

Fig. 1 Fibers of a 3rd-order tensor

Slices are two-dimensional sections of a tensor, defined by fixing all but two
indices. Fig. 2 shows the horizontal, lateral, and frontal slides of a 3rd-order tensor
X , denoted by Xi::, X: j:, and X::k, respectively.

2.1.2 Tensor Norm and Rank

The norm of a tensor X ∈R
I1×I2×...×IN is the square root of the sum of the squares

of all its elements, i.e.,

‖X ‖=
√√√√ I1

∑
i1=1

I2

∑
i2=1

· · ·
IN

∑
iN=1

x2
i1i2···iN . (1)

This is analogous to the matrix Frobenius norm, which is denoted ‖ A ‖ for a
matrix A.
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Fig. 2 Slices of a 3rd-order tensor

The inner product of two same-sized tensors X ,Y ∈ R
I1×I2×...×IN is the sum of

the products of their entries, i.e.,

<X ,Y >=
I1

∑
i1=1

I2

∑
i2=1

· · ·
IN

∑
iN=1

xi1i2···iN yi1i2···iN . (2)

It follows immediately that <X ,X >=‖X ‖2.
A Nth-order tensor X ∈R

I1×I2×...×IN is rank one if it can be written as the outer
product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N). (3)

The symbol”◦” represents the vector outer product. This means that each element of

the tensor is the product of the corresponding vector elements: xi1i2···iN = a(1)i1
a(2)i2

· · ·
a(N)

iN
, for all 1 ≤ in ≤ IN .

Fig. 3 illustrates X = a◦b◦ c, a third-order rank-one tensor.

2.1.3 Symmetry and Diagonal Tensors

A tensor is called cubical if every mode is the same size, i.e., X ∈ R
I×I×I×...×I .

A cubical tensor is called supersymmetric if its elements remain constant under any
permutation of the indices. For instance, a 3th-orderX ∈R

I×I×I is supersymmetric
if xi jk = xik j = x jik = x jki = xki j = xk ji, for all i, j,k = 1, · · ·, I.

Tensor can be partial symmetric in two or more modes as well. For example, a
3rd-orderX ∈R

I×I×k is symmetric in modes one and two if all its frontal slices are
symmetric, i.e., Xk = XT

k , for all k = 1, · · ·,K.
A tensor X ∈ R

I1×I2×...×IN is diagonal if xi1i2···iN �= 0 only if i1 = i2 = · · ·= iN .
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Fig. 3 Rank-one 3rd-order tensor, X = a◦b ◦c

2.1.4 Matricization of Tensors

Matricization, also known as unfolding or flattening, is the process of reordering the
elements of an Nth-order array into a matrix. For example. a 2×3×4 tensor can be
arranged as a 6× 4 matrix or a 3× 8 matrix, and so on. A more general treatment
of matricization can be found in [20]. The mode-n matricization of a tensor X ∈
R

I1×I2×...×IN is denoted by and arranges the mode-n fibers to be the columns of the
resulting matrix. Tensor elements (i1, i2, · · ·, iN) maps to matrix element(in, j), where

j = 1+
N

∑
k=1,k �=n

(ik − 1)Jk,with Jk =
k−1

∏
m=1,m�=n

Im. (4)

Fig. 4 illustrates a example of matricization for a 3rd-order tensor.

2.1.5 Tensor Multiplication: The n-Mode Product

Tensor can be multiplied together, though obviously the notation and symbols for
this are much more complex than for matrices. Here we consider only the tensor
n-mode product, i.e., multiplying a tensor by a matrix (or a vector) in mode n.

The n-mode (matrix) product of a tensor X ∈ R
I1×I2×...×IN with a matrix U ∈

R
J×In is denoted by X ×n U and is of size I1 × I2 × ...× In−1 × J × In+1...× IN .

Elementwise, we have

(X ×n U)i1···in−1 jin+1···iN = ∑IN
in=1 xi1i2···iN u jin .

Each mode-n fiber is multiplied by the matrix U. The idea can also be expressed
in terms of unfolder tensors:

Y =X ×n U ⇔ Yn = UXn.
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I1

I2

I3

I1

I2 I2 I2

I3

A(1)

Mode-1 Matrix

I1

I2

I3

I2

I3 I3 I3

I1

A(2)

Mode-2 Matrix

I1

I2

I3

I3

I1 I1 I1

I2

A(3)

Mode-3 Matrix

Fig. 4 Matricization of a 3rd-order tensor

A few facts regarding n-mode matrix products are in order. For distinct modes in a
series of multiplications, the order of the multiplication is irrelevant, i.e.,

X ×m A×n B =X ×n B×m A,m �= n.

If the modes are the same, then

X ×n A×n B =X ×n (BA),m = n.

The n-mode (vector) product of a tensor X ∈R
I1×I2×...×IN with a vector v ∈ R

In

is denoted by X ×n v. The result is of order N − 1, i.e., the size is I1 × I2 × ...×
In−1 × In+1...× IN. Elementwise,

(X ×n v)i1···in−1in+1···iN = ∑IN
in=1 xi1i2···iN vin .

The idea is to compute the inner product of each mode-n fiber with the vector.

2.1.6 Matrix Product

We briefly introduce some important matrix products.
The Kronecker product of matrices A∈R

I×J and B ∈R
K×L is denoted by A

⊗
B.

The result is a matrix of size (IK)× (JL) and defined by

A
⊗

B =

⎛⎜⎜⎜⎝
a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

⎞⎟⎟⎟⎠
Also it can be written as the form of multiplication of column vectors:

A
⊗

B = (a1
⊗

b1 a1
⊗

b2 a1
⊗

b3 · · · aJ
⊗

bL−1 aJ
⊗

bL).
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The Khatri-Rao product is the ”matching columnwise” Kronecker product. Given
matrices A ∈ R

I×K and B ∈ R
J×K , their Kratri-Rao product is denoted by A

⊙
B.

The result is a matrix of size (IJ)×K defined by

A
⊙

B = (a1
⊗

b1 a2
⊗

b2 · · · aK
⊗

bK).

If a and b are vectors, then the Khatri-Rao and Kronecker products are identical,
i.e., A

⊙
B = a

⊗
b.

The Hadamard product is the elementwise matrix product. Given matrices A and
B, both of size I× J, their Hadamard product is denoted by A∗B. The result is also
of size I× J and defined by

A∗B =

⎛⎜⎜⎜⎝
a11b11 a12b12 · · · a1JbIJ

a21b21 a22b22 · · · a2JbIJ
...

...
. . .

...
aI1bI1 aI2bI2 · · · aIJbIJ

⎞⎟⎟⎟⎠ .

2.2 Tensor Decomposition

In linear algebra, Singular Value Decomposition (SVD) is an important factoriza-
tion of a rectangular real and complex matrix, with several applications in signal
processing and statistics. SVD computes the low-rank approximation of a set of
one-dimensional vectors. This can be generalized to a two dimensional Singular
Value Decomposition (2DSVD) to do low-rank approximation of a set of matrices
such as a set of images. Higher Order Singular Value Decomposition (HOSVD) is
a generalization of SVD for high dimensional tensor [16]. In the case of a three-
dimensional tensor executing HOSVD in two dimensions gives the same result as
2DSVD.

N-dimensional principal component analysis(ND-PCA) [17] is based on HOSVD
and the high-dimensional data is treated as a high-order tensor. This method is
not only applied in data compression but also applied in multi-facial recogni-
tion(tensorface method,[1, 2]). In our previous work[18], we proposed a framework
called generalized N-dimensional principal component analysis (GND-PCA) based
on HOSVD and applied it to statistical appearance modeling of medical volume
images. As the facial images with multiple modes can be considered as a high-
dimensional tensor, we also applied it to statistical appearance modeling for facial
images with multiple modes including different people, different viewpoint and dif-
ferent illumination[19]. Recently, tensor-based active appearance model has also
proposed for multiple modes facial image modeling [23]. We propose a tensor-based
subspace learning method (TSL) for novel facial pose synthesis.

2.2.1 Tucker Decomposition

The Tucker decomposition was first introduced by Tucker in 1963 [27] and refined
in subsequent articles by Levin [21] and Tucker [33, 14]. The Tucker decomposition
goes by several names, such as three-mode factor analysis(3MFA/Tucker3) [14],
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N-mode PCA [28], higher-order singular value decomposition (HOSVD) [43], and
N-mode SVD [1].

The Tucker decomposition is a form of higher-order PCA. It decomposes a tensor
into a core tensor multiplied by a matrix along each mode. Thus, in the 3rd-order
case where X ∈R

I×J×K , we have

X ≈ G ×1 A×2 B×3 C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqrap ◦bq ◦ cr = �G ;A,B,C�. (5)

Here, A ∈ R
I×P, B ∈ R

J×Q, and C ∈ R
K×R are the factor matrices (which are usu-

ally orthogonal) and can be thought of as the principal components in each mode.
The tensor G ∈ R

P×Q×R is called the core tensor and its entries show the level of
interaction between the different components.

Elementwise, the Tucker decomposition is

xi jk ≈ ∑P
p=1 ∑Q

q=1 ∑R
r=1 gpqraipb jqckr, f or i = 1, · · · , I, j = 1, · · · ,J, k = 1, · · · ,K.

Here P, Q, and R are the number of components in the factor matrices A, B, and C,
respectively. If P, Q, R are smaller than I, J, K, the core tensor G can be thought of
as a compressed version of X . The Tucker decomposition is illustrated in Fig. 5.

Fig. 5 Tucker decomposition of a 3rd-order tensor

The metricized forms of Eq. 5 are

X(1) = AG(1)(BC)T , X(2) = BG(2)(CA)T , X(3) = CG(3)(AB)T .

Let X be an Nth-order tensor of size I1 × I2 × ·· ·× IN. Then the n-rank of X ,
denoted rankn(X ), is the column rank of X(n). In other words, the n-rank is the
dimension of the vector spanned by the mode-n fibers. If we let R = rankn(X ) for
n = 1,2, · · · ,N, then we can say that X is a rank-(R1,R2, · · · ,RN) tensor. Trivially,
Rn ≤ In for all n = 1, · · · ,N.
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2.2.2 CANDECOMP/PARAFAC Decomposition

Another important tensor decomposition is CANDECOMP/PARAFAC decomposi-
tion, which is shorthanded as CP decomposition. In 1927, Hitchcock [22, 24] pro-
posed the idea of polyadic form of a tensor. The concept finally became popular after
the introduction in 1970 to the psychometrics community, in the form of CANDE-
COMP (canonical decomposition) by Carroll and Chang [34] and PARAFAC (par-
allel factors) by Harshman [35].

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a 3rd-order tensor X ∈ R

I×J×K , we wish to write it as

X ≈
R

∑
r=1

ar ◦br ◦ cr, (6)

Where R is a positive integer and ar ∈R
I , br ∈R

J , cr ∈ R
K for r = 1,2, · · · ,R.

Elementwise, Eq. 6 is written as

xi jk ≈ ∑R
r=1 airb jrckr, f or i = 1, · · · , I, j = 1, · · · ,J, k = 1, · · · ,K.

This is illustrated in Fig 6.

Fig. 6 CP decomposition of a 3rd-order tensor

The factor matrices refer to the combination of the vectors from the rank-one
components, i.e., A = [a1 a2 · · · a1] and likewise for B and C. Using these defini-
tions, Eq. 6 may be written in matricized form:

X(1) = A(B�C)T , X(2) = B(C�A)T , X(3) = C(B�A)T .

Recall that � denotes the Khatri-Rao product.
In fact, CP can be viewed as a special case of Tucker where the core tensor is

superdiagonal and P = Q = R in Eq. 5.

2.2.3 Other Decompositions

There are a number of other tensor decompositions related to Tucker and CP. Most
of these decompositions which originated in the psychometrics have only recently
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become more widely known in other fields such as chemometrics and social net-
work analysis. The introduction of these decompositions is not included in depth in
this chapter.

3 Tensor-Based Subspace Learning Algorithm

In this section, TSL method is introduced step by step. Here suppose we have I
training persons and J types of pose. Each 2D image is unfolded into a vector. The
ith person’s jth pose image vector is noted as pi j , 1 ≤ i ≤ I, 1 ≤ j ≤ J. Since the
images’ size is M×N, pi j is a MN - dimensional vector.

3.1 Image Representation

Both shape and texture (intensity) provide useful information for characterizing fa-
cial appearance. While dealing with two-dimensional images directly, variations of
shape and texture interfere with each other [29, 30]. We need to separate shape in-
formation and texture information.

L physical landmarks were extracted as shape points manually, e.g., the tip of
noses, the eye corner and less prominent points on the check. Each facial shape
vector is represented by its landmarks’ coordinates (x,y) as

si j = (x1,y1,x2,y2, · · · ,xL,yL),1 ≤ i ≤ I,1 ≤ j ≤ J. (7)

In order to represent the texture information, we need to normalize the facial
shape previously. In our research, each facial shape is normalized to a mean shape
of samples based on labeled landmarks. The normalized image of pi j is represented
by a texture vector p̂i j which is used to construct texture subspace.

All si j is organized into a shape tensor S with the size of I × J× 2L. All P̂IJ are
arrayed into a texture tensor T with the size of I× J× (M ·N).

3.2 Tensor Subspace Building

This step is to build a texture projection space and a shape projection space which
can be considered as a filter to convert the input 2D facial image (both texture and
shape) into an identify texture vector and an identify shape vector.

By performing tensor decomposition on S and T , we have

S = CS ×1 Uperson s ×2 Upose s ×3 Uparameter , (8)

T = CT ×1 Uperson ×2 Upose ×3 Upixel . (9)

The illustration of tensor decomposition is shown in Fig. 7. Here CS and CT

are core tensors for shape and texture respectively. Uperson s , Upose s and Uparameter



182 X. Qiao, T. Igarashi, and Y.-W. Chen

Fig. 7 Tensor decomposition on shape (texture) tensor

represent the person shape subspace, pose shape subspace, shape landmark point
subspace of shape tensor respectively. Similarly, Uperson, Upose and Upixel represent
the person texture subspace, pose texture subspace and texture subspace of texture
tensor respectively. These matrices are all orthogonal. Each row vector in each sub-
space represents a specific vector in this mode. For example, in the person subspace
of texture tensor, Uperson = (uT

p 1, · · · ,uT
p i, · · · ,uT

p I) , uT
p i represents the identity

vector of the ith person for texture. Similarly, Uperson s = (uT
ps 1, · · · ,uT

ps i, · · · ,uT
ps I)

, uT
ps i represents the identity vector ith of the person for shape. The dimension of

identity vectors depends on the number of training samples.
We can build the project subspaces like Eq. 10 and Eq. 11:

S = (CS ×2 Upose s ×3 Uparameter)×1 Uperson s

= AShape×1 Uperson s, (10)

T = (CT ×2 Upose×3 Upixel)×1 Uperson

= ATexture ×1 Uperson. (11)

AShape is an I× J×2L tensor for shape projection and ATexture is an I × J× (M ·
N) tensor for texture projection. The illustration of project subspace building for
shape is shown in Fig. 8. AShape is expressed as an orderly array of matrices on pose
direction as in the following equation:

AShape
def
= [AShape

pose1 ,A
Shape
pose2 , · · · ,AShape

poseJ ]. (12)

Here AShape
pose j is a I × 2L matrix and is jth slice of AShape along the direction of

pose. Each AShape
pose j can be considered as the jth projection subspace for the pose and



8 Tensor-Based Subspace Learning for Multi-pose Face Synthesis 183

Fig. 8 Projection subspace building for shape

each shape vector is calculated by

si j = (AShape
pose j )

T ups i (13)

with ups i being the coefficients of the ith person for shape.
Similarly, ATexture

pose j is jth pose matrix of ATexture with the size of I × (M ·N) on
texture:

ATexture
def
= [ATexture

pose1 ,ATexture
pose2 , · · · ,ATexture

poseJ ]. (14)

For each morphed image vector

p̂i j = (ATexture
pose j )T up i (15)

with up i being the coefficients of the ith person for texture.

3.3 Synthesis Procedure

In this step, we use a 2D pose image as an input test image. An overall illustration
of this step is shown in Fig. 9.

sT,k and p̂T,k represent the shape information and the shape normalized texture
information of a single input test image pT,k, k ∈ [1,J].

From Eq. 15, the texture identity vector of the testing image is calculated by

upT = (ATexture
posek )−T p̂T,k (16)

Then we project upT into another matrix on the pose direction to get the synthesis
texture image vector with

p̂T, j ≈ (ATexture
pose j )T upT ,1 ≤ j ≤ J, j �= k. (17)
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Fig. 9 Novel pose image construction. (a) Identity vector calculation. (b) Construction of a
novel pose image.

Similarly, by Eq. 13, we can get the shape identity vector of the testing image by

upsT = (AShape
posek )

−T sT,k (18)

sT, j ≈ (AShape
pose j )

T upsT ,1 ≤ j ≤ J, j �= k. (19)

Finally, we apply a reverse-morphable procedure to get the jth pose image of
testing person with the benefits of p̂T, j and sT, j calculated above.

Since just given 2D images of facial poses instead of 3D scans, we don’t know
the spatial information and can not build the linear corresponding between the dif-
ferent poses of a person directly. The assumption of our method is that we consider
the facial images among different persons are as much similar as possible and one
pose image of a person can be represented as a linear combination of other per-
sons’images of same pose type. With the benefit of subspace learning methods,
the image can be represented as a linear combination of bases. For different pose,
there exists a set of bases. By arranging the facial pose images orderly, we can get
the bases for different pose by with the different pose images of one person have
the ”common” parameters, which we note as the identity vector. Synthesis in our
method is like a generalization processing: when the object for synthesizing is much
more similar like one training samples, the synthesis results will be much better. In
order to increasing the synthesis results, we can apply the training samples as many
as possible.
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4 Experiments and Results

4.1 Data

In our experiments, we mainly deal with the image ensembles, which are formalized
with our constructed database, multi-angle view, illumination and cosmetic facial
image database (MaVIC). MaVIC is the only one and useful database for appear-
ance studies. We chose 532 images of 76 persons in MaVIC2 with 7 poses (0◦,
±15◦, ±30◦, ±45◦) under a fixed illumination. We used 72 persons for training and
left the other 4 for testing. The size of each image is 110 by 100 pixels. We man-
ually located 103 landmark points on all of the available images for morphing and
removed the background, including variable components (accessories, facial hairs
and so on). The processing example is illustrated in Fig. 10.

The samples’ eyes are covered by black bars in order to protect the personal
privacy.

Fig. 10 (a) Extraction of landmarks. (b) Procedure of removing background.

4.2 Image Deformation

With the help of landmarks, we morphed each image using a piece-wise affine trans-
form [31]. Each pose image is normalized to a mean shape of the corresponding
poses. Some normalized examples are shown in Fig. 11.

4.3 Data Compression

The 2D shape-normalized image is unfolded into a vector with the dimension of
11000. As the dimension of the vectors is too huge to compute the tensor decom-
position, we first reduce the dimension using principal component analysis method.
Fig. 12 shows cumulative cover rate. The reconstructed images using 1000, 1500,
2000, 3000 and 4000 components are shown in Fig. 13, respectively. It can be seen
that details in face appearance of original images can be reconstructed clearly using
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Fig. 11 Examples of shape normalization. (a) Original shape images. (b) Shape normalized
images.

4000 components for reconstruction. We chose the top leading 4000 components
to represent the texture vector. As shown in Fig. 12, the top leading 4000 compo-
nents can keep more than 99.8% information. Then, the size of texture tensor T is
72× 7× 4000. We also form the shape tensor with the size of S is 72× 7× 206 as
we use 103 (x,y)-coordinate landmarks.



8 Tensor-Based Subspace Learning for Multi-pose Face Synthesis 187

Fig. 12 Cover rate of eigenvalues while increasing number of choosing basis for reconstruc-
tion.

Fig. 13 Example of reconstruction results. (a) Original images. (b) Reconstruction results
using 1000 basis. (c) 1500 basis. (d) 2000 basis. (e) 3000 basis. (f) 4000 basis. Red circles
mark tiny features of the sample.

4.4 Synthesis Result and Evaluation

In this section, we show the synthesis results using TSL method. Fig. 14 and Fig. 15
show synthesis results of two testing samples using the TSL method. In both figures,
it shows synthesis images of a pose type in each row. (b) ∼(h) exhibits the synthesis
results by inputting a single image of a different pose.

In order to estimate the quality of synthesized results, we used the normalized
correlation (NC) as a measurement. NC of two image data, the original pOri and the
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Fig. 14 Synthesis images of one test sample. (a) Original images of test sample. Synthesized
images by inputting a single image of (b) −45◦ pose. (c) −30◦ pose. (d) −15◦ pose. (e) 0◦
pose. (f) 15◦ pose. (g) 30◦ pose image. (h) 45◦ pose.

synthesized pRec, is defined as

NC
def
=

〈pOri,pRec〉√〈pOri,pOri〉 ·
√〈pRec,pRec〉

. (20)

〈 , 〉 is represented for an inner product calculation of two vectors. The more
similar the two images are, the larger the value of NC is. We only calculated the NC
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Fig. 15 Synthesis images of another test sample. (a) Original images of test sample. Synthe-
sized images by inputting a single image of (b) −45◦ pose. (c) −30◦ pose. (d) −15◦ pose. (e)
0◦ pose. (f) 15◦ pose. (g) 30◦ pose image. (h) 45◦ pose.

for synthesized shape and synthesized normalized texture image in order to ignore
the error caused by shape normalization.

Table. 1 shows the averaged NC of shape synthesizing. From Table. 1, it can be
seen that the values of NC for shape synthesizing are larger than 0.9999 and that
means the shape is nearly perfectly synthesized even with larger pose difference. So
we focus our discussion on the quality of texture synthesizing.
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Table 1 Averaged normalized correlation of shape for all the test samples

Table 2 Averaged normalized correlation of texture for all the test samples

Pose difference between the input image and synthesis image is noted as PD. For
example, for both synthesized pose 0◦ from a 30◦ input image and synthesized pose
−15◦ from a −45◦ input image, PD is 30◦.

Table. 2 shows the averaged NC of texture synthesizing. It can be seen that the
synthesizing accuracy for the same pose (PD= 0) is larger than 0.9600 which can be
considered as generalized accuracy and it may be proved by increasing the number
of training samples. The synthesizing accuracy (NC value) is decreased as increas-
ing PD. The dependence of synthesizing accuracy of texture on pose difference is
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Fig. 16 NC trend of texture as PD increasing

Fig. 17 Examples of synthesized results and corresponding differential images and normal-
ized correlation

shown in Fig. 16. It is demonstrated in Fig. 16 that the average values of NC of
texture are more than 0.9077 when 0 � PD � 30◦ and the average value of NC is
0.8556 when PD = 90◦.
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In order to discuss our experiment results qualitatively, we use Fig. 17 to show
examples of synthesized results corresponding to different values of NC. The differ-
ential image, which is constructed by the absolute differential pixel values between
the synthesized image and corresponding original image, is used as a reference im-
age. Large difference in some edge regions of face is shown in the differential im-
ages for two reasons: one is that our synthesized result is generated independently
with the original ones and another is that there exists small angle errors when orig-
inal image is obtained. In the first row of Fig. 17, it shows synthesized result as
PD is 90◦(synthesize −45◦ pose image from 45◦) and corresponding NC is 0.8698.
Comparing with the original images, the synthesized result captures the most of per-
sons’ personal characteristics even there exists some divergence. In the second row
of Fig. 17, it shows synthesized result as PD is 45◦(synthesize −45◦ pose image
from 0◦) and corresponding NC is 0.9576. Compared the two differential images
in Fig. 17, we can find that the skin appearance also can reconstructed better by
applying our method for PD = 45◦ than for PD = 90◦.

5 Conclusion

Towards the problem of facial pose synthesis, this chapter presents our proposed
method, tensor-based subspace learning (TSL) algorithm, for synthesizing the hu-
man multi-pose facial images. TSL has mainly two advantages. One is that multi-
pose facial images are synthesized accurately only by inputting a single two-
dimensional image. Another is that our method is decomposing data tensors to build
learning subspaces instead of calculating the spatial information of head. This alter-
nation leads the synthesis processing to avoid local minima solutions. It is easier to
implement than previous methods and experimental results show that our method is
effective for facial pose synthesis.

In the future, TSL is expected to establish a model of pose synthesis not only
for a special illumination conditions but also for different illuminations or different
cosmetic appearances [32].
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