
Saddek Bensalem Yassine Lakhneck
Axel Legay (Eds.)

From Programs
to Systems
The Systems Perspective in Computing

Fe
st

sc
hr

ift
LN

CS
 8

41
5

ETAPS Workshop, FPS 2014, in Honor of Joseph Sifakis
Grenoble, France, April 6, 2014
Proceedings

 123

Lecture Notes in Computer Science 8415
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

This copy belongs to 'VANC03'

Saddek Bensalem Yassine Lakhneck
Axel Legay (Eds.)

From Programs
to Systems
The Systems Perspective in Computing

ETAPS Workshop, FPS 2014
in Honor of Joseph Sifakis
Grenoble, France, April 6, 2014
Proceedings

13

This copy belongs to 'VANC03'

Volume Editors

Saddek Bensalem
University Joseph Fourier, Verimag Laboratory
Verimag Centre Équation
2, avenue de Vignate, 38610 Gières, France
E-mail: saddek.bensalem@imag.fr

Yassine Lakhneck
University Joseph Fourier, Verimag Laboratory
Verimag Centre Équation
2, avenue de Vignate, 38610 Gières, France
E-mail: yassine.lakhneck@imag.fr

Axel Legay
Inria, Campus Universitaire de Beaulieu
35042 Rennes Cedex, France
E-mail: axel.legay@inria.fr

Cover illustration: Gerhard Illig, PLAKKADIVEN: Apan
Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
(//creativecommons.org/licenses/by-sa/3.0/deed.en) license.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54847-5 e-ISBN 978-3-642-54848-2
DOI 10.1007/978-3-642-54848-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933961

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This copy belongs to 'VANC03'

Joseph Sifakis

This copy belongs to 'VANC03'

Preface

This group of papers represents the proceedings of the “From Programs
to Systems – The Systems Perspective in Computing” workshop (FPS 2014).
The workshop was held in honor of Professor Joseph Sifakis in the framework
of the 16th European Joint Conferences on Theory and Practice of Software in
Grenoble, April 6th, 2014.

The workshop provided a forum for researchers and practitioners from academia
and industry to share their work, exchange ideas, and discuss the future direc-
tions on a systems perspective in computing. Over the past decades, the focus
of computing has been continuously shifting from programs to systems. Pro-
grams can be represented as relations independent from the physical resources
needed for their execution. Their behavior is often terminating, deterministic
and platform-independent. On the contrary, systems are interactive. They con-
tinuously interact with an external environment. Their behavior is driven by
stimuli from the environment, which, in turn, is affected by their outputs.

Systems are inherently complex and hard to design owing to unpredictable
and subtle interactions with their environment, emergent behaviors, and oc-
casional catastrophic cascading failures, rather than to complex data and al-
gorithms. Compared to function software, their complexity is exacerbated by
additional factors such as concurrent execution, uncertainty resulting from in-
teraction with unpredictable environments, heterogeneity of interaction between
hardware and software, and nonrobustness (small variations in a certain part of
the system can have large effects on overall system behavior).

Theory of computation is, by its very nature, of little help for studying sys-
tems. Even if we perfectly understand the properties of a program and the prop-
erties of a hardware target platform, we have no theory to predict the behavior
of the program running on the platform.

FPS addresses the two following issues:
Extending programing theory to systems

(i)To what extent can formal techniques for software development be adapted/
extended to system development?

– Program correctness vs. system correctness;
– Adapting SW engineering techniques to systems engineering;
– Software modeling vs. system modeling;
– How software verification techniques can be adapted to deal with quantita-

tive properties?

(ii) Foundations for system design

– Missing results (theory, methods and tools) enabling rigorous system design;
– Building faithful system models;

This copy belongs to 'VANC03'

VIII Preface

– Adaptive resources management – Mixed criticality systems;
– Design space exploration;
– Automated implementation techniques for distributed or many-core

platforms.

Joseph Sifakis is a professor and the director of the Rigorous System Design Lab-
oratory at EPFL. His work is characterized by an unusual recurrent pattern: the
problem is first studied from an abstract, foundational point of view, which leads
to methods and techniques for its solution, which, in turn, leads to an effective
implementation that is successfully used in multiple industrial applications.

Joseph Sifakis studied Electrical Engineering at the National Technical Uni-
versity in Greece. As a student he was inclined to be more concerned with theory
than with practice. He came to Grenoble in 1970 for graduate studies in Physics.
An encounter was decisive for his career: he met Professor Jean Kuntzmann,
who was the Director of the Institute of Informatics and Applied Mathematics
(IMAG). Joseph Sifakis interest in Computing grew and he decided to quit his
studies in Physics and start undergraduate studies at IMAG. He did his Engi-
neering thesis under supervision of Professor Jean Kuntzmann on Modelling the
timed behavior of circuits. After his Engineering thesis, he became interested in
the theory of concurrency.

From 1974 to 1977 Joseph Sifakis studied Petri nets and other models for con-
current systems. He obtained original and fundamental results on the structural
properties of Petri nets as well as on the performance evaluation of timed Petri
nets. These results are extensively used today for scheduling data-flow systems.

From 1977 to 1982 he switched his attention to program semantics and ver-
ification. Dijkstras papers and books had a deep influence on his work as well
as discussions with Michel Sintzoff who was working at that time on program
verification. They drew him the idea of fixpoint characterization for temporal
modalities, and once again his work yielded original results on the algorithmic
verification of concurrent systems based on a fixpoint characterization of the
modalities of a branching time temporal logic. These results laid down the foun-
dations of model checking. His student Jean-Pierre Queille developed the first
model checker in 1982. Joseph Sifakis met Ed Clarke and Allen Emerson at CMU
in November 1982 and they realized that they had been working independently
on the same problem.

In the autumn of 1983, Joseph Sifakis met Amir Pnueli at a workshop on
the Analysis of Concurrent Systems, organized in Cambridge. This was the be-
ginning of a continuous interaction and collaboration for more than 25 years.
Joseph Sifakis and Amir Pnueli setup several European projects in collabora-
tion with Willem-Paul de Roever, on system modeling and verification. They
jointly organized with Ed Clarke, the Workshop on the Verification of Finite
State Systems in Grenoble in 1989. This workshop is considered as the first edi-
tion of the CAV Conference. Amir Pnueli frequently visited Verimag for over ten
years and Verimag researchers greatly benefited from his wisdom and support.

In the period 1988-2000 Joseph Sifakis extended his work to deal with model-
ing and verification of real-time systems and hybrid systems. This included: the

This copy belongs to 'VANC03'

Preface IX

study of hybrid systems and their verification techniques; the development and
implementation of the KRONOS model checker, in collaboration with T. Hen-
zinger, the first symbolic model checker for timed automata; the development
and implementation of an efficient symbolic synthesis algorithm for timed sys-
tems, in collaboration with O. Maler and A. Pnueli; the study of compositional
modeling techniques for real-time scheduling by using priorities. In January 1993,
Joseph Sifakis founded the Verimag laboratory, a joint-venture between IMAG
and Verilog SA. This has been an exciting and fruitful experience. Verimag has
transferred the Lustre language designed by Paul Caspi and Nicolas Halbwachs,
to the SCADE synchronous programing environment. SCADE is being used by
Airbus to develop safety critical systems and has become a de facto standard
for aeronautics. SCADE has been qualified as a development tool by the FAA,
EASA, and Transport Canada under DO-178B up to Level A. It is currently been
commercialized by Esterel Technologies. Verimag has also transferred functional
testing and verification techniques to the ObjectGeode tool for modeling real-
time distributed applications. This tool has been commercialized by Telelogic
purchased by IBM in 2008.

Since 1997, Verimag has been a public research laboratory, associated with
CNRS and the University of Grenoble. It plays a prominent role in embedded
systems by producing cutting-edge research and leading research initiatives and
projects in Europe. As the director of Verimag, Joseph Sifakis has sought a
balance between basic and applied research. He has used resources from indus-
trial contracts and collaborative projects to develop new research activities and
strengthen the potential in basic research. For him, participation in industrial
projects has been a source of inspiration. It allows the definition of new research
directions that are scientifically challenging and technically relevant. The virtu-
ous cycle of interaction between research and applications has been the key to
Verimag success.

In the late 90s, Joseph Sifakis research interests progressively shifted from
verification and formal methods to system design. He was convinced that for-
mal verification was hitting a wall and only incremental improvements in the
state-of-the-art could be expected. He stepped down from the Steering Commit-
tee of CAV and started a new research program on embedded systems design.
Interactions with colleagues such as Hermann Kopetz, Lothar Thiele, Thomas
Henzinger, Alberto Sangiovanni Vincentelli and Edward Lee, contributed to elab-
orating a system perspective for Computing. He worked actively for setting up
the Emsoft Conference and for organizing the Embedded Systems community
in Europe through the Artist Coordination Measure followed by the Artist2 and
ArtistDesign European Networks of Excellence.

During this later period Joseph Sifakis has also played a leading role in the
development and implementation of the BIP component framework for rigorous
system design. The implementation consists of a language and a set of tools
including source-to-source transformers, a compiler and the D-Finder tool for
compositional verification. BIP is unique for its expressiveness. It can describe
mixed hardware/software systems. It uses a small and powerful set of primitives

This copy belongs to 'VANC03'

X Preface

encompassing a general concept of system architecture. BIP was successfully
used in several industrial projects, in particular for the componentization of
legacy software and the automatic generation of implementations for many-core
platforms.

Joseph Sifakis is an active and visionary researcher in the area of system
design. He believes that endowing design with scientific foundations is at least of
equal importance as the quest for scientific truth in natural sciences. As one of
his close collaborators, I have constantly benefited from his advice and guidance.
I wish Joseph a long and productive career as a researcher and intellectual.

DISTINCTIONS AND HONORS

Turing Award 2007
Silver Medal of CNRS, 2001
Leonardo da Vinci Medal 2012
Grand Officer of the National Order of Merit, France, 2008
Commander of the Legion of Honnour, France, 2011
Award of the Greek Parliament for Commonwealth and Democracy, 2010
Commander of the Order of the Phoenix, Greece 2013
Award of the Town of Grenoble, 2008
Member of the French Academy of Sciences, 2010
Member of Academia Europea, 2008
Member of the French Academy of Engineering, 2008
Doctor Honoris Causa: EPFL, University of Athens,

International Hellenic University
Honorary Professor: University of Patras

April 2014 Saddek Bensalem
Yassine Lakhnech

Axel Legay

This copy belongs to 'VANC03'

Table of Contents

Model-Driven Information Flow Security for Component-Based
Systems . 1

Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and
Marius Bozga

Context-Bounded Analysis of TSO Systems . 21
Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato

A Model of Dynamic Systems . 39
Manfred Broy

From Hierarchical BIP to Petri Calculus . 54
Roberto Bruni, Hernán Melgratti, and Ugo Montanari

Programming and Verifying Component Ensembles 69
Rocco De Nicola, Alberto Lluch Lafuente, Michele Loreti,
Andrea Morichetta, Rosario Pugliese, Valerio Senni, and
Francesco Tiezzi

Parametric and Quantitative Extensions of Modal Transition
Systems . 84

Uli Fahrenberg, Kim Guldstrand Larsen, Axel Legay, and
Louis-Marie Traonouez

Specification Theories for Probabilistic and Real-Time Systems 98
Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez

Compositional Branching-Time Measurements . 118
Radu Grosu, Doron Peled, C.R. Ramakrishnan, Scott A. Smolka,
Scott D. Stoller, and Junxing Yang

Steps towards Scenario-Based Programming with a Natural Language
Interface . 129

Michal Gordon and David Harel

Assembly Theories for Communication-Safe Component Systems 145
Rolf Hennicker, Alexander Knapp, and Martin Wirsing

Constructive Collisions . 161
Edward A. Lee

This copy belongs to 'VANC03'

XII Table of Contents

The Unmet Challenge of Timed Systems . 177
Oded Maler

Let’s Get Physical: Computer Science Meets Systems 193
Pierluigi Nuzzo and Alberto Sangiovanni-Vincentelli

What Can be Computed in a Distributed System? 209
Michel Raynal

Toward a System Design Science . 225
Joseph Sifakis

OpenMETA: A Model- and Component-Based Design Tool Chain
for Cyber-Physical Systems . 235

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and
Ethan Jackson

Feedback in Synchronous Relational Interfaces . 249
Stavros Tripakis and Chris Shaver

Reasoning about Network Topologies in Space . 267
Lenore D. Zuck and Kenneth L. McMillan

Author Index . 279

This copy belongs to 'VANC03'

Model-Driven Information Flow Security

for Component-Based Systems�

Najah Ben Said1, Takoua Abdellatif2, Saddek Bensalem1, and Marius Bozga1

1 UJF-Grenoble 1/CNRS, VERIMAG UMR 5104, Grenoble, 38041, France
2 Sousse University, ESSTHS, Hammam Sousse, Tunisia

Abstract. This paper proposes a formal framework for studying infor-
mation flow security in component-based systems. The security policy
is defined and verified from the early steps of the system design. Two
kinds of non-interference properties are formally introduced and for both
of them, sufficient conditions that ensures and simplifies the automated
verification are proposed. The verification is compositional, first locally,
by checking the behavior of every atomic component and then globally,
by checking the inter-components communication and coordination. The
potential benefits are illustrated on a concrete case study about con-
structing secure heterogeneous distributed systems.

Keywords: component-based systems, information flow security, non-
interference, unwinding conditions, automated verification.

1 Introduction

The amount and complexity of nowadays conceived systems and software knows
a continuous increase. Information protection and secure information flow be-
tween these systems is paramount and represent a great design challenge. Model
driven security (MDS) [BDL06] is an innovative approach that tend to solve
system-level security issues by providing an advanced modeling process repre-
senting security requirements at a high level of abstraction. Indeed, MDS guaran-
tees separation of concerns between functional and security requirements, from
early phases of the system development till final implementation.

Information flow security can be ensured using various mechanisms. Amongst
the first approaches considered, ones find access control policies [SSM98,Kuh98],
that allow protecting data confidentiality by limiting access to data to be read
or modified only by authorized users. Unfortunately, these mechanisms have
been proven incomplete and limited since only by preventing the direct access
to data, indirect (implicit) information flows are still possible given rise to the
so called covert channels [SQSL05]. As an alternative, non-interference has been
studied as a global property to characterize and to develop techniques ensuring

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
ICT-318772 (D-MILS).

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 1–20, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

2 N. Ben Said et al.

information flow security. Initially defined by Goguen and Meseguer [GM82],
non-interference ensures that the system’s secret information does not affect its
public behavior.

In this work, we adapt the MDS approach to develop a component-based
framework, named secBIP, that guarantees automated verification and imple-
mentation of secure information flow systems with respect to specific definition
of non-interference. In general, component-based frameworks allow the construc-
tion of complex systems by composition of atomic components with communi-
cation and coordination operators. That is, systems are obtained from unitary
atomic components that can be independently deployed and composed with
other components. Component-based frameworks are usually well adopted for
managing key issues for functional design including heterogeneity of components,
distribution aspects, performance issues, etc. Nonetheless, the use of component-
based frameworks is also beneficial for establishing information flow security.
Particularly, the explicit system architecture allows tracking easily intra and
inter-components information flow.

The secBIP framework is built as an extension of the BIP [BBS06,BBB+11]
framework encompassing information flow security. secBIP allows to create sys-
tems that are secure by construction if certain local conditions hold for composed
components. The secBIP extension includes specific annotations for classifica-
tion of both data and interactions. Thanks to the explicit use of composition
operators in BIP, the information flow is easily tracked within models and secu-
rity requirements can be established in a compositional manner, first locally, by
checking the behavior of atomic components and then globally, by checking the
communication and coordination inter-components.

Information flow security has been traditionally studied separately for langua-
ge-based models [SS01,SV98] (see also the survey [SM03]) and trace-based mod-
els [McC88,McL94,ZL97,Man00]. While the former mostly focus on verification
of data-flow security properties in programming languages, the latter is treat-
ing security in event-based systems. In secBIP, we achieve a useful combination
between both aspects, data-flow and event-flow security, in a single semantics
model. We introduce and distinguish two types of non-interference, respectively
event non-interference and data non-interference. For events, non-interference
states that the observation of public events should not allow to deduce any in-
formation about the occurrence of secret events. For data, it states that there is
no leakage of secret data into public ones.

The paper is structured as follows. Section 2 recalls the main concepts of
the component-based framework adopted in this work. In section 3, we formally
introduce the security extension and we provide the two associated definitions
of non-interference, respectively for data flows and event flows. Next, in section
4 we formally establish non-interference based on unwinding relations and we
provide sufficient conditions that facilitate its automatic verification. In section
5, we provide a use-case as illustrative example. Section 6 discusses the related
work and section 7 concludes and presents some lines for future work. All the
proofs of technical results are given in the appendix.

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 3

2 Component-Based Design

The secBIP framework is built as an extension of the BIP framework introduced
in [BBS06]. BIP stands for Behavior, Interaction and Priority, that is, the three
layers used for the definition of components and their composition in this frame-
work. BIP allows the construction of complex, hierarchically structured models
from atomic components characterized by their behavior and their interfaces.
Such components are transition systems enriched with data. Transitions are
used to move from a source to a destination location. Each time a transition
is taken, component data (variables) may be assigned new values, computed
by user-defined functions (in C). Atomic components are composed by layered
application of interactions and priorities. Interactions express synchronization
constraints and do the transfer of data between the interacting components.
Priorities are used to filter amongst possible interactions and to steer system
evolution so as to meet performance requirements e.g., to express scheduling
policies.

In this section, we briefly recall the key concepts of BIP which are further
relevant for dealing with information flow security. In particular, we give a for-
mal definition of atomic components and their composition through multiparty
interactions. Priorities are not considered in this work.

2.1 Atomic Components

Definition 1 (atomic component). An atomic component B is a tuple (L,
X, P , T) where L is a set of locations, X is a set of variables, P is a set of ports
and T ⊆ L × P × L is a set of port labelled transitions. For every port p ∈ P ,
we denote by Xp the subset of variables exported and available for interaction
through p. For every transition τ ∈ T , we denote by gτ its guard, that is, a
boolean expression defined on X and by fτ its update function, that is, a parallel
assignment {x := exτ}x∈X to variables of X.

p1

p1

[0 < x]
y := f(x)

p2

l1

l2

p2

Fig. 1. Atomic Component in BIP

Figure 1 provides an example of an atomic
component. It contains two control locations
l1 and l2 and two ports p1 and p2. The tran-
sition labeled with p1 can take place only if
the guard (0 < x) is true. When the transi-
tion takes place, the variable y is recalculated
as some function of x.

Let D be the data domain of variables.
Given a set of variables Y , we call valuation
on Y any function y : Y → D mapping vari-
ables to data. We denote by Y the set of all
valuations defined on Y .

Definition 2 (atomic component semantics). The semantics of an atomic
component B = (L,X, P, T) is defined as the labelled transition system lts(B) =

This copy belongs to 'VANC03'

4 N. Ben Said et al.

(QB, ΣB,−→
B

) where the set of states QB = L×X, the set of labels is ΣB = P×X

and the set of labelled transitions −→
B

is defined by the rule:

Atom
τ = �

p−→ �′ ∈ T x′′
p ∈ Xp gτ (x) x′ = fτ (x[Xp ← x′′

p])

(�,x)
p(x′′

p)−−−→
B

(�′,x′)

That is, (�′,x′) is a successor of (�,x) labelled by p(x′′
p) iff (1) τ = �

p−→ �′

is a transition of T , (2) the guard gτ holds on the current valuation x, (3) x′′
p

is a valuation of exported variables Xp and (4) x′ = fτ (x[Xp ← x′′
p]) meaning

that, the new valuation x′ is obtained by applying fτ on x previously modified
according to x′′

p . Whenever a p-labelled successor exist in a state, we say that p
is enabled in that state.

2.2 Composite Components

Composite components are obtained by composing an existing set of atomic
components {Bi = (Li, Xi, Pi, Ti)}i=1,n trough specific composition operators.
We consider that atomic components have pairwise disjoint sets of states, ports,
and variables i.e., for any two i �= j from {1..n}, we have Li∩Lj = ∅, Pi∩Pj = ∅,
and Xi ∩Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the ports, L =

⋃n
i=1 Li

the set of all locations, and X =
⋃n

i=1Xi the set of all variables.

Definition 3 (interaction). An interaction a between atomic components is
a triple (Pa, Ga, Fa), where Pa ⊆ P is a set of ports, Ga is a guard, and Fa is
an update function. By definition, Pa uses at most one port of every component,
that is, |Pi∩Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we simply denote Pa = {pi}i∈I ,
where I ⊆ {1..n} contains the indices of the components involved in a and for
all i ∈ I, pi ∈ Pi. Ga and Fa are both defined on the variables exported by the
ports in Pa (i.e.,

⋃
p∈Pa

Xp).

Definition 4 (composite component). A composite component C = γ(B1,
. . . , Bn) is obtained by applying a set of interactions γ to a set of atomic com-
ponents B1, . . . Bn.

Figure 2 presents a classical Producer-Buffer-Consumer example modeled in
BIP. It consists of three atomic components, namely Producer, Buffer and Con-
sumer. The Buffer is a shared memory placeholder, which is accessible by both
the Producer and the Consumer. It holds into the local variable x the number of
items available. The Buffer interacts with the Producer (res. Consumer) on the
put (resp. get) interaction. On the put interaction, an item is added to the Buffer
and x is incremented. On the get interaction, the Consumer removes an item
from the Buffer, if at least one exists (the guard [x ≥ 1]), and x is decremented.
Finally, the transitions labeled produce and consume do not require synchroniza-
tion - they are executed alone (on singleton port interactions) by the respective
components.

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 5

Producer Buffer Consumer

p
u
t

p
u
t

g
e
t

g
e
t

γ : {{put, put}, {get, get}, {produce}, {consume}}

produce consume

produce consume

l2

put

l1
l4

l5

get

x = 0

l3

get
[x ≥ 1]
x = x − 1

x = x + 1
put

Fig. 2. BIP model of the Producer-Buffer-Consumer example

Definition 5 (composite component semantics). Let C = γ(B1, . . . , Bn)
be a composite component. Let Bi = (Li, Xi, Pi, Ti) and lts(Bi) = (Qi, Σi,−−→

Bi

)

their semantics, for all i = 1, n. The semantics of C is the labelled transition
system lts(C) = (QC , ΣC ,−→

C
) where the set of states QC = ⊗n

i=1Qi, the set of

labels ΣC = γ and the set of labelled transitions −→
C

is defined by the rule:

Comp

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({xpi}i∈I) {x′′
pi
}i∈I = Fa({xpi}i∈I)

∀i ∈ I. (�i,xi)
pi(x

′′
pi

)
−−−−→

Bi

(�′i,x
′
i) ∀i �∈ I. (�i,xi) = (�′i,x

′
i)

((�1,x1), . . . , (�n,xn))
a−→
C

((�′1,x
′
1), . . . , (�

′
n,x

′
n))

For each i ∈ I, xpi above denotes the valuation xi restricted to variables of Xpi .

The rule expresses that a composite component C = γ(B1, . . . , Bn) can ex-
ecute an interaction a ∈ γ enabled in state ((�1,x1), . . . , (�n,xn)), iff (1) for
each pi ∈ Pa, the corresponding atomic component Bi can execute a transition
labelled by pi, and (2) the guard Ga of the interaction holds on the current
valuation of variables exported on ports participating in a. Execution of inter-
action a triggers first the update function Fa which modifies variables exported
by ports pi ∈ Pa. The new values obtained, encoded in the valuation x′′

pi
, are

then used by the components’ transitions. The states of components that do not
participate in the interaction remain unchanged.

Any finite sequences of interactions w = a1...ak ∈ γ∗ executable by the com-
posite component starting at some given initial state q0 is named a trace. The
set of all traces w from state q0 is denoted by traces(C, q0).

3 Information Flow Security

We explore information flow policies [DD77,BLP76,GM82] with focus on the non-
interference property. In order to track information we adopt the classification
technique and we define a classification policy where we annotate the information
by assigning security levels to different parts of secBIP model (data variables,

This copy belongs to 'VANC03'

6 N. Ben Said et al.

ports and interactions). The policy describes how information can flow from one
classification with respect to the other.

As an example, we can classify public information as a Low (L) security level
and secret (confidential) information as High (H) security level. Intuitively High
security level is more restrictive than Low security level and we denote it by
L ⊆ H . In general, security levels are elements of a security domain, defined as
follows:

Definition 6 (security domain). A security domain is a lattice of the form
〈S,⊆,∪,∩〉 where:

– S is a finite set of security levels.
– ⊆ is a partial order ”can flow to” on S that indicates that information can

flow from one security level to an equal or a more restrictive one.
– ∪ is a ”join” operator for any two levels in S and that represents the upper

bound of them.
– ∩ is a ”meet” operator for any two levels in S and that represents the lower

bound of them.

H

M2

L

M1

Fig. 3. Example of security domain

As an example, consider the set S =
{L,M1,M2, H} of security levels that are
governed by the ”can flow to” relation L ⊆
M1, L ⊆M2, M1 ⊆ H and M2 ⊆ H . M1 and
M2 are incomparable and we note M1 � M2

andM1 �M2. This security domain is graph-
ically illustrated in Figure 3.

Let C = γ(B1, . . . Bn) be a composite com-
ponent, fixed. Let X (resp. P) be the set of
all variables (resp. ports) defined in all atomic
components (Bi)i=1,n.

Let 〈S,⊆,∪,∩〉 be a security domain,
fixed.

Definition 7 (security assignment). A security assignment for component
C is a mapping σ : X ∪ P ∪ γ → S that associates security levels to variables,
ports and interactions such that, moreover, the security levels of ports matches
the security levels of interactions, that is, for all a ∈ γ and for all p ∈ P it holds
σ(p) = σ(a).

In atomic components, the security levels considered for ports and variables
allow to track intra-component information flows and control the intermediate
computation steps. Moreover, inter-components communication, that is, inter-
actions with data exchange, are tracked by the security levels assigned to inter-
actions.

In order to formally introduce the two notions of non-interference for secBIP
models we need few additional notations, as follows. Let σ be a security assign-
ment for C, fixed.

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 7

For a security level s ∈ S, we define γ ↓σs the restriction of γ to interactions
with security level at most s that is formally, γ ↓σs= {a ∈ γ | σ(a) ⊆ s}.

For a security level s ∈ S, we define w|σs the projection of a trace w ∈ γ∗
to interactions with security level lower or equal to s. Formally, the projection
is recursively defined on traces as ε|σs = ε, (aw)|σs = a(w|σs) if σ(a) ⊆ s and
(aw)|σs = w|σs if σ(a) �⊆ s. The projection operator |σs is naturally lifted to sets
of traces W by taking W |σs = {w|σs | w ∈ W}.

For a security level s ∈ S, we define the equivalence ≈σ
s on states of C. Two

states q1, q2 are equivalent, denoted by q1 ≈σ
s q2 iff (1) they coincide on variables

having security levels at most s and (2) they coincide on control locations having
outgoing transitions labeled with ports with security level at most s.

We are now ready to define the two notions of non-interference.

Definition 8 (event non-interference). The security assignment σ ensures
event non-interference of γ(B1, . . . , Bn) at security level s iff,

∀q0 ∈ Q0
C : traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs)(B1, . . . , Bn), q0)

Event non-interference ensures isolation/security at interaction level. The def-
inition excludes the possibility to gain any relevant information about the oc-
currences of interactions (events) with strictly greater (or incomparable) levels
than s, from the exclusive observation of occurrences of interactions with levels
lower or equal to s. That is, an external observer is not able to distinguish be-
tween the case where such higher interactions are not observable on execution
traces and the case these interactions have been actually statically removed from
the composition. This definition is very close to Rushby’s [Rus92] definition for
transitive non-interference. But, let us remark that event non-interference is not
concerned about the protection of data.

L

L

H

H

L

comp3

comp2comp1

l1

l2

l3
l5

b2

c1

a2

c2

b2

d2

a1

b1

a2

l6

l7
d3

b3
b3

b1

c1

a1

d2

c2
d3

l4

Fig. 4. Example for event non-interference

Example 1. Figure 4 presents a simple illustrative example for event non-
interference. The model consists of three atomic components compi,i=1,2,3. Dif-
ferent security levels have been assigned to ports and interactions: comp1 is a low
security component, comp2 is a high security component, and comp3 is mixed se-
curity component. The security levels are represented by dashed squares related
to interactions, internal ports and variables. As a convention, we apply high (H)

This copy belongs to 'VANC03'

8 N. Ben Said et al.

level for secret data and interactions and low(L) level for public ones. The set
of traces is represented by the automaton in Figure 5 (a). The set of projected
execution traces at security level L is represented by the automaton depicted in
Figure 5 (b). This set is equal to the set of traces obtained by restricted com-
position, that is, using interaction with security level at most L and depicted in
Figure 5 (c). Therefore, this example satisfies the event non-interference condi-
tion at level L.

a1a2

b1c2

a1a2

d2d3

b2b3

l3l4l7

l1l4l6

(a)

l1l4l7

l3l4l6 l2l5l7

l2l5l6

a1a2

b1c2

a1a2

l3l4l7

l1l4l6

(b)

l1l4l7

l3l4l6 l2l5l7

l2l5l6
τc1

c1 c1

c1

b1c2b1c2
d2d3

τ

τ

(c)

a1a2

b1c2

l1l4l6

l3l4l6

l2l5l6

c1

Fig. 5. Sets of traces represented as automata

Definition 9 (data non-interference). The security assignment σ ensures
data non-interference of C = γ(B1, . . . , Bn) at security level s iff,

∀q1, q2 ∈ Q0
C : q1 ≈σ

s q2 ⇒
∀w1 ∈ traces(C, q1), w2 ∈ traces(C, q2) : w1|σs = w2|σs ⇒

∀q′1, q′2 ∈ QC : q1
w1−−→
C
q′1 ∧ q2

w2−−→
C
q′2 ⇒ q′1 ≈σ

s q
′
2

Data non-interference provides isolation/security at data level. The definition
ensures that, all states reached from initially indistinguishable states at secu-
rity level s, by execution of arbitrary but identical traces whenever projected at
level s, are also indistinguishable at level s. That means that observation of all
variables and interactions with level s or lower excludes any gain of relevant in-
formation about variables at higher (or incomparable) level than s. Compared to
event non-interference, data non-interference is a stronger property that consid-
ers the system’s global states (local states and valuation of variables) and focus
on their equivalence along identical execution traces (at some security level).

Example 2. Figure 6 presents an extension with data variables of the previous
example from Figure 4. We consider the following two traces w1 = 〈a1a2,b2b3,
c2b1, d2d3, c1, a2a1〉 and w2 = 〈a1a2, b2b3, c2b1, c1, a2a1〉 that start from the initial

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 9

state ((l1, u = 0, v = 0), (l4, x = 0, y = 0), (l6, z = 0, w = 0)). Although the
projected traces at level L are equal, that is, w1|σL = w2|σL = 〈a1a2, c2b1, c1, a1a2〉,
the reached states by w1 and w2 are different, respectively ((l2, u = 4, v =
2), (l5, x = 3, y = 2), (l6, z = 1, w = 1)) and ((l2, u = 4, v = 2), (l5, x = 2, y =
2), (l7, z = 1, w = 0)) and moreover non-equivalent at low level L. Hence, this
example is not data non-interferent at level L.

L

L

H

H

w: low
z: highL

u: low
v: high

y=y+1

u=0
v=0

[y>0]

x: low
y: high

u=u+2

x=x+1

y=0
x=0

v=v+1

y=y+x
v=2v w=w+1x=x+1

comp1
comp3

comp2

z=x

z=0
w=0

l1

l2

l3

l4

l5

b2

a2 b2a1

b1

c2
c1

d2

c1

c2

a1

b3

d3
b1

d2

d3 b3a2
l6

l7

Fig. 6. Example for data non-interference

Definition 10 (secure component). A security assignment σ is secure for a
component γ(B1, . . . , Bn) iff it ensures both event and data non-interference, at
all security levels s ∈ S.

4 Automated Verification of Non-interference

We propose hereafter an automated verification technique of non-interference for
secBIP models based on the so-called unwinding conditions. These conditions
were first introduced by Goguen and Meseguer for the verification of transitive
non-interference for deterministic systems [GM82]. In general, the unwinding
approach reduces the verification of information flow security to the existence
of certain unwinding relation. This relation is usually an equivalence relation on
system states that respects some additional properties on atomic execution steps,
which are shown sufficient to imply non-interference. In the case of secBIP, the
additional properties are formulated in terms of individual interactions/events
and therefore easier to handle.

Let C = γ(B1, . . . , Bn) be a composite component and let σ be a security
assignment for C.

Definition 11 (unwinding relation). An equivalence ∼s on states of C is
called an unwinding relation for σ at security level s iff the two following condi-
tions hold:

1. local consistency
∀q, q′ ∈ QC : ∀a ∈ γ : q

a−→
C
q′ ⇒ σ(a) ⊆ s ∨ q ∼s q

′

This copy belongs to 'VANC03'

10 N. Ben Said et al.

2. output and step consistency
∀q1, q2, q′1 ∈ QC : ∀a ∈ γ :

q1 ∼s q2 ∧ q1 a−→
C
q′1 ∧ σ(a) ⊆ s⇒

∃q′2 ∈ QC : q2
a−→
C
q′2∧

∀q′2 ∈ QC : q2
a−→
C
q′2 ⇒ q′1 ∼s q

′
2

The existence of unwinding relations is tightly related to non-interference.
The following two theorems formalize this relation for the two types of non-
interference defined. Let C be a composite component and σ a security assign-
ment.

Theorem 1 (event non-interference). If an unwinding relation ∼s exists
for the security assignment σ at security level s, then σ ensures event non-
interference of C at level s.

Theorem 2 (data non-interference). If the equivalence relation ≈σ
s is also

an unwinding relation for the security assignment σ at security level s, then σ
ensures data non-interference of C at level s.

The two theorems above are used to derive a practical verification method
of non-interference using unwinding. We provide hereafter sufficient syntac-
tic conditions ensuring that indeed the unwinding relations ∼s and ≈s exist
on the system states. These conditions aim to effectively reduce the verifica-
tion of non-interference to the checking on local constraints on both transitions
(intra-component conditions) and interactions (inter-component conditions). Es-
pecially, they give an direct way to automate the verification.

Definition 12 (security conditions). Let C = γ(B1, . . . , Bn) be a compos-
ite component and let σ be a security assignment. We say that C satisfies the
security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally
consistent, that is:

• for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = �1
p1−→ �2, τ2 = �2

p2−→ �3 ⇒
�1 �= �2 ⇒ σ(p1) ⊆ σ(p2)

• for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = �1
p1−→ �2, τ2 = �1

p2−→ �3 ⇒
�1 �= �2 ⇒ σ(p1) ⊆ σ(p2)

(ii) all assignments x := e occurring in transitions within atomic components
and interactions are sequential consistent, in the classical sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x)

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 11

(iii) variables are consistently used and assigned in transitions and interactions,
that is,

∀τ ∈ ∪n
i=1Ti ∀x, y ∈ X : x ∈ def(fτ), y ∈ use(gτ) ⇒
σ(y) ⊆ σ(pτ) ⊆ σ(x)

∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒
σ(y) ⊆ σ(a) ⊆ σ(x)

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = �1
p−→ �2, τ2 = �1

p−→ �3 ⇒
(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [AL12] for
excluding causal and conflicting places for Petri net transitions having different
security levels. Similar conditions have been considered in [FG01,FGF09] and
lead to more specific definitions of non-interferences and bisimulations on an-
notated Petri nets. The second condition (ii) represents the classical condition
needed to avoid information leakage in sequential assignments. The third condi-
tion (iii) tackles covert channels issues. Indeed, (iii) enforces the security levels
of the data flows which have to be consistent with security levels of the ports or
interactions (e.g., no low level data has to be updated on a high level port or
interaction). Such that, observations of public data would not reveal any secret
information. Finally, conditions (iv) enforces deterministic behavior on atomic
components.

The relation between the syntactic security conditions and the unwinding
relations is precisely captured by the following theorem.

Theorem 3 (unwinding theorem). Whenever the security conditions hold,
the equivalence relation ≈σ

s is an unwinding relation for the security assignment
σ, at all security level s.

The following result is the immediate consequence of theorems 1, 2 and 3.

Corollary 1. Whenever the security conditions hold, the security assignment σ
is secure for the component C.

5 Case Study: Web Service Reservation System

We illustrate the secBIP framework to handle information flow security issues
for a classical example, the web service reservation system proposed in [HV06]. A
businessman, living in France, plans to go to Berlin for a private and secret mis-
sion. To organize his travel, he uses an intelligent web service who contacts two
travel agencies: The first agency, AgencyA, arranges flights in Europe and the
second agency, AgencyB, arranges flights exclusively to Germany. The reserva-
tion service obtains in return specific flight information and their corresponding
prices and chooses the flight that is more convenient for him.

This copy belongs to 'VANC03'

12 N. Ben Said et al.

In this example, there are two types of interference that can occur, (1) data-
interference since learning the flight price may reveal the flight destination and
(2) event interference, since observing the interaction with AgencyB can reveal
the destination as well. Thus, to keep the mission private, the flight prices and
interactions with AgencyB have to be kept confidential.

nca,nco,price,id : High

refused

pay_request treat

id
nca,nco,price

approved

payPayment
L

L L LL H H H H H H

H

from,to,dates,L,L[i] : Low
,id,nca,nco,price : High

H L L H H

new_pay_request

refused

yes

pay

fly_list select_fly pay_request approved pay

delv_ticket

L price

no

nca,nco,price
id

ca
nc

el

pay_requestrefusedapproved

search

from,to

dates
dates

dests

cancel

treat

pay approved refused pay_request

delv_ticket

Travel_A

search delv_ticketselect_fly

ca
nc

el
tr

ea
t

treat fly_list accept

select_fly

delv_ticket

search

Travel_B

cancel

fly_list accept

select_flyacceptfly_listsearch

Reservation
new_pay_request dests dates no yes

L,L[i] : Low

l1 l2 l4l3

ti

l9

l12

l14

l10 l11

accept
l13

ti

l4 l5 l6 l7 l8
ti

l3

l2

l1

l3l2l1 l5

l6

l4

l7

ti

ti
ti : High

Fig. 7. Model of Reservation Web Service in secBIP

The modeling of the system using secBIP involves two main distinct steps:
first, functional requirements modeling reflecting the system behavior, and sec-
ond, security annotations enforcing the desired security policy. The model of the
system has four components denoted: Travel A and Travel B who are instances
from the same component and correspond respectively to AgencyA and Agen-
cyB, and components Reservation and Payment. To avoid Figure 7 cluttering,
we did not represent the interactions with Travel A component. Search parame-
ters are supplied by a user through the Reservation component ports dests and
dates to which we associate respectively variables (from, to) and dates. Next,
through search interaction,Reservation component contacts Travel B component
to search for available flights and obtains in return a list L of specific flights with
their corresponding prices. Thereafter, Reservation component selects a ticket ti
from the list L and requests the Payment component to perform the payment.

All the search parameters from, to, dates, as well as the flights list L are set
to low since users are not identified while sending these queries. Other sensitive
data like the selected flight ti, the price variable p and the payment parameters
(identity id, credit card variable cna and code number cno) are set to high.
Internal ports dests and dates as well as search, fly list, accept interactions are set
to low since these interactions (events) do not reveal any information about the

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 13

client private trip. However, the select f ly interaction must be set to high since
the observation of the selection event from AgencyB allow to deduce deduce the
client destination. In the case of a selected flight from AgencyA, the select f ly
interaction could be set to low since, in this case, the destination could not be
deduced just from the event occurrence.

We recall that any system can be proven non-interferent iff it satisfies the
syntactic security conditions from Definition 12. Indeed, these conditions hold
for the system model depicted in Figure 7. In particular, it can be easily checked
that all assignments occurring in transitions within atomic component as well
as within interactions are sequential consistent. For example, at the select f ly
interaction we assign a low level security item from the flight list L to a high
security level variable ti, formally ti = L[i]. Besides, the security levels assign-
ments to ports exclude inconsistencies due to causal and conflicting transitions,
in all atomic components.

6 Related Work

Non-interference properties have been already studied using different model-
based approaches. Recently, [SS12] adapted an MDS method for handling in-
formation flow security using UML sequence diagrams. Additionally, Petri-nets
have been extensively used for system modeling and information flow security
verifications tools such as InDico [AWD11] have been developed. A component-
based model has been proposed in [ASRL11] and used to study implementation
issues of secure information flows. Our presented work on secBIP is however
different and original in several respects.

First, secBIP is a formal framework. Unlike UML, system’s runtime behavior
is always meaningfully defined and can be formally analyzed. Moreover, secBIP
provides a system construction methodology for complex systems. Indeed, big
systems are functionally decomposed into multiple sub-components communi-
cating through well-defined interactions. Such a structural decomposition of the
system is usually not available on Petri-nets models.

Second, secBIP handles both event and data-flow non-interference, in a single
semantic model. To the best of our knowledge, these properties have never been
jointly considered for component-basedmodels. Nevertheless, the need to consider
together event and data flow non-interference has been recently identified in the
existing literature. The bottom line is that preserving the safety of data flow in a
system does not necessarily preserve safe observability on system’s public behavior
(i.e., secret/private executions may have an observable impact on system public
events). The issue has been recently considered in [AL12], for data leaks and infor-
mation leaks in business processes based on system’s data-flows and work-flows.
Also, [BBMP08] showed that formal verification of the system’s event behavior
is not sufficient to guarantee specific data properties. Furthermore, [FRS05] at-
tempted to fill the gap between respectively language-based and process calculus-
based information security and make an explicit distinction between preventing
the data leakage through the execution of programs and preventing secret events
from being revealed in inter-process communications.

This copy belongs to 'VANC03'

14 N. Ben Said et al.

Third, compared to security-typed programming languages [jif,ZZNM02] and
operating systems [KYB+07,ZBWM08,EKV+05] enforcing information flow con-
trol, secBIP is a component-based modeling approach where non-interference is
established at a more abstract level. Thus, secBIP can be apriori implemented
using different programming languages and is independent from a specific oper-
ating system and execution platform.

Finally, it is worth mentioning that a lot of classical approaches fall short
to handle information flow security [Zda04] for real systems. For secBIP we
privilege a very pragmatic approach and provide simple (syntactic) sufficient
conditions allowing to automate the verification of non-interference. These con-
ditions allow to eliminate a significant amount of security leakages, especially
covert channels, independently from system language or the execution platform.
However, these conditions can be very restrictive in some cases and a system
designer may be interested to relax the non-interference properties.

7 Conclusion and Future Work

We present a MDS framework to secure component-based systems. We for-
mally define two types of non-interference, respectively event and data non-
interference. We provide a set of sufficient syntactic conditions which simplify
verification of non-interference. These conditions are extensions of security typed
language rules applied to our model. The use of our framework has been demon-
strated to secure a web service application.

This work is currently being extended in two directions. First, we are in-
vestigating additional security conditions allowing to relax the non-interference
property and control where downgrading can occur. Second, we are working to-
wards the implementation of a complete design flow for secure systems based on
secBIP. As a first step, we shall implement the verification method presented for
annotated secBIP models. Then, use these models for generation of secure imple-
mentations, that is, executable code where the security properties are enforced
by construction, at the generation time.

References

AL12. Accorsi, R., Lehmann, A.: Automatic information flow analysis of business
process models. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012.
LNCS, vol. 7481, pp. 172–187. Springer, Heidelberg (2012)

ASRL11. Abdellatif, T., Sfaxi, L., Robbana, R., Lakhnech, Y.: Automating infor-
mation flow control in component-based distributed systems. In: 14th In-
ternational ACM Sigsoft Symposium on Component Based Software En-
gineering (CBSE 2011), pp. 73–82. ACM (2011)

AWD11. Accorsi, R., Wonnemann, C., Dochow, S.: Swat: A security workflow anal-
ysis toolkit for reliably secure process-aware information systems. In: Sixth
International Conference on Availability, Reliability and Security, ARES
2011, pp. 692–697. IEEE (2011)

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 15

BBB+11. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H.,
Sifakis, J.: Rigorous component-based design using the BIP framework.
IEEE Software, Special Edition – Software Components beyond Program-
ming – from Routines to Services 28(3), 41–48 (2011)

BBMP08. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data Flow-Based
Validation of Web Services Compositions: Perspectives and Examples. In:
de Lemos, R., Di Giandomenico, F., Gacek, C., Muccini, H., Vieira, M.
(eds.) Architecting Dependable Systems V. LNCS, vol. 5135, pp. 298–325.
Springer, Heidelberg (2008)

BBS06. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Sys-
tems in BIP. In: Fourth IEEE International Conference on Software En-
gineering and Formal Methods (SEFM 2006), pp. 3–12. IEEE Computer
Society Press (2006)

BDL06. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from uml
models to access control infrastructures. ACM Transactions on Software
Engineering and Methodology 15, 39–91 (2006)

BLP76. Bell, E.D., La Padula, J.L.: Secure computer system: Unified exposition
and Multics interpretation (1976)

DD77. Denning, D.E., Denning, P.J.: Certification of programs for secure infor-
mation flow. Communications of the ACM, 504–513 (1977)

EKV+05. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D.,
Kohler, E., Mazières, D., Kaashoek, F., Morris, R.: Labels and Event Pro-
cesses in the Asbestos Operating System. SIGOPS Operating Systems Re-
view 39(5), 17–30 (2005)

FG01. Focardi, R., Gorrieri, R.: Classification of Security Properties (Part I: In-
formation Flow). In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS,
vol. 2171, pp. 331–396. Springer, Heidelberg (2001)

FGF09. Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: Structural
non-interference at work. In: Degano, P., Guttman, J., Martinelli, F. (eds.)
FAST 2008. LNCS, vol. 5491, pp. 210–225. Springer, Heidelberg (2009)

FRS05. Focardi, R., Rossi, S., Sabelfeld, A.: Bridging language-based and process
calculi security. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp.
299–315. Springer, Heidelberg (2005)

GM82. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE
Symposium on Security and Privacy, pp. 11–20 (1982)

HV06. Hutter, D., Volkamer, M.: Information flow control to secure dynamic web
service composition. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke,
P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 196–210. Springer, Heidelberg
(2006)

jif. http://www.cs.cornell.edu/jif/

Kuh98. Richard Kuhn, D.: Role Based Access Control on MLS Systems without
Kernel Changes. In: ACM Workshop on Role Based Access Control (RBAC
1998), pp. 25–32. ACM (1998)

KYB+07. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Frans Kaashoek, M., Kohler,
E., Morris, R.: Information Flow Control for Standard OS Abstractions.
SIGOPS Operating Systems Review 41(6), 321–334 (2007)

Man00. Mantel, H.: Possibilistic Definitions of Security - An Assembly Kit. In: 13th
IEEE Workshop on Computer Security Foundations (CSFW 2000), p. 185.
IEEE Computer Society (2000)

This copy belongs to 'VANC03'

http://www.cs.cornell.edu/jif/

16 N. Ben Said et al.

McC88. McCullough, D.: Noninterference and the composability of security prop-
erties. In: Security and Privacy (SP 1988), pp. 177–186. IEEE Computer
Society (1988)

McL94. McLean, J.: A general theory of composition for trace sets closed under
selective interleaving functions. In: Security and Privacy (SP 1994), p. 79.
IEEE Computer Society (1994)

Rus92. Rushby, J.: Noninterference, transitivity, and channel-control security poli-
cies. Technical Report CSL-92-2, SRI International (1992)

SM03. Sabelfeld, A., Myers, A.C.: Language-based information-flow security.
IEEE Journal on Selected Areas in Communications 21(1) (2003)

SQSL05. Shen, J., Qing, S., Shen, Q., Li, L.: Covert channel identification founded
on information flow analysis. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung,
Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI),
vol. 3802, pp. 381–387. Springer, Heidelberg (2005)

SS01. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequen-
tial programs. Higher Order Symbolic Computation 14(1), 59–91 (2001)

SS12. Seehusen, F., Stølen, K.: A Method for Model-driven Information Flow
Security. In: Dependability and Computer Engineering: Concepts for
Software-Intensive Systems, pp. 199–229. IGI Global (2012)

SSM98. Sandhu, R., Ravi, S., Munawer, Q.: How to do discretionary access control
using roles. In: ACM Workshop on Role-Based Access Control (RBAC
1998), pp. 47–54. ACM (1998)

SV98. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imper-
ative language. In: Symposium on Principles of Programming Languages
(POPL 1998), pp. 355–364. ACM (1998)

ZBWM08. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing distributed sys-
tems with information flow control. In: 5th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2008), pp. 293–308.
USENIX Association (2008)

Zda04. Zdancewic, S.: Challenges for information-flow security. In: Programming
Language Interference and Dependence, PLID 2004 (2004)

ZL97. Zakinthinos, A., Lee, E.S.: A general theory of security properties. In: Se-
curity and Privacy (SP 1997), pp. 94–102. IEEE Computer Society (1997)

ZZNM02. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program par-
titioning. ACM Transactions on Computer Systems 20(3), 283–328 (2002)

Appendix

Proof of Theorem 1

Proof. We shall prove traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs)(B1, . . . ,
Bn), q0) by double inclusion. ”⊇” inclusion: Independently of the unwinding re-
lation, by using elementary set properties it holds that traces((γ ↓σs)(B1, . . . ,
Bn), q0) = traces((γ ↓σs)(B1, . . . , Bn), q0)|σs ⊆ traces(γ(B1, . . . , Bn), q0)|σs .
”⊆” inclusion: This direction is an immediate consequence of the following
Lemma 1. It states that for every trace w in traces(γ(B1, . . . , Bn), q0) its pro-
jection w|σs is also a valid trace in traces(γ(B1, . . . , Bn), q0). But, this also
means that w|σs is a valid trace in traces((γ ↓σs)(B1, . . . , Bn), q0) which proves
the result.

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 17

Lemma 1. In the conditions of Theorem 1, for every trace w in traces(γ(B1,

. . . , Bn), q0), for every state q such that q0
w−→
C
q, the projected trace w|σs is also

a valid trace in traces(γ(B1, . . . , Bn), q0) and moreover, for every state q′ such

that q0
w|σs−−→
C

q′ it holds q ∼s q
′.

Proof. The lemma is proved by induction on the length of the trace w. For the
empty trace w = ε verification is trivial: ∼s holds for the initial state q0 ∼s q0
and ε = ε|σs . By induction hypothesis, let assume the property holds for traces
of length n. We shall prove the property for traces of length n+ 1. Let w′ = wa
be an arbitrary trace of length n+ 1, let w be its prefix (trace) of length n and

let a be the last interaction. Consider states q, q1 such that q0
w−→
C
q

a−→
C
q1. By

the induction hypothesis we know that w|σs is a valid trace and for all states q′

such that q0
w|σs−−→
C

q′ it holds q ∼s q
′. We distinguish two cases, depending on the

security level of a:

∼s

q0 q q1
w a

q′
w|σs

∼s

a q′1

σ(a) ⊆ s

q0 q q1
w a

q′
w|σs

σ(a) � s

∼s

Fig. 8. Proof illustration for Lemma 1

– σ(a) � s: In this case, w′|σs = w|σs hence, w′|σs is a valid trace as well,
reaching the same states q′. Moreover, since a is invisible for s, the unwinding
condition (1) ensures that q ∼s q1. By transitivity, this implies that q1 ∼s q

′,
which proves the result.

– σ(a) ⊆ s: In this case, w′|σs = w|σs a. From the unwinding condition (2), since
q ∼s q

′ and a is visible and enabled in q then, a must also be enabled in q′.
Therefore, w|σs can be extended with a from state q′ to some q′1 hence, w′|σs
is indeed a valid trace. Moreover, since q ∼s q

′ the unwinding condition (2)
ensures also that q1 ∼s q

′
1, which proves the result.

Proof of Theorem 2

Proof. Let us consider two equivalent states q1 ≈σ
s q2.

The first condition for data non-interference requires that, for any trace w1 from
q1 there exists a trace w2 from q2 having the same projection at level s, that is,
w1|σs = w2|σs .

We shall prove a slightly stronger property, namely, the trace w2 can be chosen
such that, the successors q′1 and q′2 of respectively q1 by w1 and q2 by w2 are
moreover equivalent, that is, q′1 ≈σ

s q
′
2. The proof is by induction on the length of

This copy belongs to 'VANC03'

18 N. Ben Said et al.

the trace w1. The base case: for the empty trace w1 = ε we take equally w2 = ε
we immediately have q′1 = q1 ≈σ

s q2 = q′2. The induction step: we assume, by
induction hypothesis that the property holds for all traces w1 such that |w1| ≤ n
and we shall prove it for all traces w′

1 such that |w′
1| = n + 1. Let a be the

last interaction executed in w′
1, that is, w

′
1 = w1a with |w1| = n. Let q′′1 be the

state reached from q1 by w1. From the induction hypothesis, there exists a trace
w2 that leads q2 into q′′2 such that w1|σs = w2|σs and moreover q′′1 ≈σ

s q
′′
2 . We

distinguish two cases, depending on the security level of a:

– σ(a) �⊆ s: since ≈σ
s is unwinding and q′′1

a−→
C
q′1 it follows that q′′1 ≈σ

s q
′
1. In

this case, we take w′
2 = w2 and q′2 = q′′2 which ensures both w′

1|σs = w1|σs =
w2|σs = w′

2|σs and q′1 ≈σ
s q

′′
1 ≈ q′′2 = q′2.

– σ(a) ⊆ s: since ≈σ
s is unwinding and q′′1 ≈σ

s q
′′
2 and q′′1

a−→
C
q′1 there must

exists q′2 such that q′′2
a−→
C
q′2 and moreover, for any such choice q′1 ≈σ

s q
′
2.

Hence, in this case, the trace w′
2 = w2a executed from q2 and leading to q′2

satisfies our property, namely w′
1|σs = w1|σs a = w2|σs a = w′

2|σs and q′1 ≈σ
s q

′
2.

The second condition for data non-interference requires that, for any traces
w1 and w2 with equal projection on security level s, that is w1|σs = w2|σs , any
successor states q′1 and q

′
2 of respectively q1 by w1 and q2 by w2 are also equivalent

at level s. This property is proved also by induction on |w1|+ |w2|, that is, on the
sum of the lengths of traces w1, w2. The base case: for empty traces w1 = w2 = ε
we have that q′1 = q1 and q′2 = q2 and hence trivially q′1 ≈σ

s q
′
2. The induction

step: we assume, by induction hypothesis that the property holds for any traces
w1, w2 such that |w1|+ |w2| ≤ n and we shall prove it for all traces w′

1, w
′
2 such

that |w′
1| + |w′

2| = n + 1. We distinguish two cases, depending on the security
levels of the last interactions occurring in w′

1 and w′
2.

w1

w2q1

q1
a1q′′1

q′′2

q′1
≈σ

s
≈σ

s≈σ
s

w1

w2q1

q1

a2

a1q′′1

q′′2

q′1

q′′2

≈σ
s ≈σ

s ≈σ
s

Fig. 9. Proof illustration for Theorem 2

– at least one of the last interactions in w′
1 or w′

2 has a security level not lower
or equal to s. W.l.o.g, consider that indeed w′

1 = w1a1 and σ(a1) �⊆ s. This
situation is depicted in Figure 9, (left).

Let q′′1 be the state reached from q1 after w1. Since w
′
1|σs = w′

2|σs and
σ(a1) �⊆ s it follows that w1|σs = w′

1|σs = w′
2|σs . The induction hypothesis

holds then for w1 and w′
2 because |w1| + |w′

2| = n − 1 and hence we have
that q′′1 ≈σ

s q
′
2. Moreover, q′1 is a successor of q′′1 by interaction a1. Since the

security level of a1 is not lower or equal to s, and ≈σ
s is an unwinding relation

at level s, it follows from the local consistency condition that q′′1 ≈σ
s q1. Then,

by transitivity of ≈σ
s we obtain that q′1 ≈σ

s q
′
2.

This copy belongs to 'VANC03'

Model-Driven Information Flow Security for Component-Based Systems 19

– the last interactions of both traces w′
1 and w′

2 have security level lower or
equal to s. That is, consider w′

1 = w1a1 and w′
2 = w2a2 with σ(a1) ⊆ s,

σ(a2) ⊆ s. This situation is depicted in Figure 9, (right).
Let q′′1 and q′′2 be the states reached respectively from q1 by w1 and from

q2 by w2. Since σ(a1) ⊆ s,σ(a2) ⊆ s we have w′
1|σs = w1|σs a1, w′

2|σs = w2|σs a2.
From the hypothesis, w′

1|σs = w′
2|σs , it follows that both a1 = a2 and w1|σs =

w2|σs . Therefore, the induction hypothesis can be applied for traces w1, w2

because |w1|+ |w2| = n− 2 and hence, we obtain q′′1 ≈σ
s q

′′
2 . But now, q

′
1 and

q′2 are immediate successors of two equivalent states q′′1 and q′′2 by executing
some interaction a = a1 = a2, having security level lower or equal to s. Since,
≈σ

s is an unwinding relation at level s, it follows from the step consistency
condition that successors states q′1 and q

′
2 are also equivalent at level s, hence,

q′1 ≈σ
s q

′
2.

Proof of Theorem 3

Proof. Let s be an arbitrary fixed security level. We shall prove that ≈σ
s satisfies

the local, output and step consistency, as required by Definition 11.
local consistency: Let q, q′ ∈ QC be two states such that q

a−→
C
q′. We must

show that if σ(a) �⊆ s then q ≈σ
s q

′.
All variables xmodified by a itself and by the transitions participating in a are

such that σ(a) ⊆ σ(x) (security conditions, (iii)). Then, since σ(a) �⊆ s, it also
follows that all variables modified have security level greater or incomparable to
s. Conversely, it follows that all variables with security levels lower or equal to
s are not modified by a, hence they have the same values in q in q′.

Regarding control locations, we proceed by contradiction. Let consider that
some component Bi is respectively at �i in q and at �′i in q

′ and moreover, either
at �i or �

′
i there exists transitions with ports having security levels lower or equal

s. Since the location of Bi has changed, it means that it has participated in the

interaction a using some transition τi = �i
pi−→ �′i. Let consider the two situations:

– there exists transitions with security level lower or equal to s at �′i. Let

τ ′i = �′i
p′
i−→ �′′i such a transition. This situation contradicts the security

conditions (i), as τ ′i is causally dependent on τi and has a different, yet not
increased security level i.e., σ(pi) = σ(a) �⊆ s and σ(p′i) ⊆ s.

– there exists transitions with security level lower or equal to s at �i. Let

τ ′i = �i
p′
i−→ �′′i such a transition. This situation contradicts again the security

conditions (i): as τi and τ
′
i are now conflicting it must be σ(pi) ⊆ σ(p′i) which

contradicts that σ(pi) = σ(a) �⊆ s and σ(p′i) ⊆ s.

Henceforth, as the two situations lead to contradiction we conclude that, either
�i = �

′
i, or otherwise, neither in �i or �

′
i there exists transitions with ports having

security level lower or equal to s. This conclude the proof of q ≈σ
s q

′

output and step consistency: Let q1, q2 be two equivalent states q1 ≈σ
s q2.

Let a be an interaction with security level lower or equal to s enabled in q1. We
show that the same interaction is enabled in q2. All components participating in

This copy belongs to 'VANC03'

20 N. Ben Said et al.

a use transitions with ports with the same level as a, hence at most s. Therefore,
these components are at control locations where there are outgoing transitions
with level at most s. Then, these components are precisely in the same locations
in q2 since q1 ≈σ

s q2.
Moreover, all the guards of the interacting transitions as well as the guard

of the interaction use variables with security level lower or equal to σ(a) and
consequently, lower or equal to s (security conditions, (iii)). But again, q1 ≈σ

s q2
implies that all variables with levels lower or equal to s have equal values in
q1 and q2. Hence, the guards used in a have the same evaluation in q1 or q2.
Together with equality on control locations, established earlier, this implies that
a is enabled in q2.

Let now consider two arbitrary states q′1, q
′
2 reached by a from respectively

q1 and q2. We must show that q′1 ≈σ
s q

′
2. First, as σ(a) ⊆ s, it follows that, as

explained before, enabledness of a depends exclusively on identical parts of q1
and q2. Moreover, due to security conditions (iv) it follows also that the execution
of a synchronizes exactly the same set of transitions when executed either from
q1 or from q2. Hence, in the successor states q′1 and q′2 all interacting atomic
components have moved towards the same locations. The equality condition on
the control locations is therefore satisfied. Furthermore, using security conditions
(ii) it holds that all variables modified by transitions involved in a, if they have
security values lower or equal to s, they will be assigned the same values. That
is, the assigned expression use only variables with a lower security level, and
hence identical on q1 and q2. This ensures equality of variables with security
level lower or equal to s in q′1 and q′2, which conclude the proof.

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems

Mohamed Faouzi Atig1, Ahmed Bouajjani2, and Gennaro Parlato3

1 Uppsala University, Sweden
2 LIAFA, Université Paris Diderot & Institut Universitaire de France, France

3 School of Electronics and Computer Science, University of Southampton, UK

Abstract. We address the state reachability problem in concurrent pro-
grams running over the TSO weak memory model. This problem has been
shown to be decidable with non-primitive recursive complexity in the
case of finite-state threads. For recursive threads this problem is unde-
cidable. The aim of this paper is to provide under-approximate analyses
for TSO systems that are decidable and have better (elementary) com-
plexity. We propose three bounding concepts for TSO behaviors that are
inspired from the concept of bounding the number of context switches
introduced by Qadeer and Rehof for the sequentially consistent (SC)
model. We investigate the decidability and the complexity of the state
reachability problems under these three bounding concepts for TSO, and
provide reduction of these problems to known reachability problems of
concurrent systems under the SC semantics.

1 Introduction

Sequential consistency is the standard interleaving model for shared memory
concurrent programs, where computations of a concurrent programs are inter-
leaved sequences of actions of the different threads, performed in the same or-
der as they appear in the program. However, for performance reasons, modern
multi-processors do not preserve in general the program order, that is, they may
actually reorder actions executed by a same thread. This leads to so-called weak
or relaxed memory models. One of such models is TSO (Total Store Order),
which is adopted for instance in x86 machines [36]. In TSO, write operations
can be delayed and overtaken by read operations. This corresponds to the use of
FIFO store buffers, one per processor, where write operations wait until they are
committed in the main memory. Writes are therefore not visible immediately,
which may lead to undesirable behaviors since older values than expected may
be read along program computations.

Actually, for data-race free programs it can be shown that weak memory
models such as TSO induce the same semantics as SC, that is, all possible com-
putations under TSO are also possible under SC [35,4,5,9,18,31,21]. However,
data-race-freedom cannot be ensured in all situations. This is for instance the
case for low level lock-free programs used in many concurrency libraries and
other performance-critical system services. The design of such algorithms, which
must be aware of the underlying memory model, is in general extremely difficult

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 21–38, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

22 M.F. Atig, A. Bouajjani, and G. Parlato

due to the unintuitive and hard to predict effects of the weak memory mod-
els. Therefore, it is important to develop automatic verification techniques for
programs running on such memory models.

In this paper, we focus on the TSO model and we address the state reach-
ability problem, i.e., whether a state of the program (composed by the control
locations of the threads and the memory state) is reachable from an initial state.
This problem is of course relevant for checking (violations of) safety properties.
To reason about programs running over TSO, we adopt an operational model
based on parallel automata with unbounded FIFO queues representing the store
buffers. The automata model the threads running on each of the processors.
These automata are finite-state when programs do not have recursive procedure
calls. For the case of recursive programs, threads are modeled using pushdown
automata (automata with unbounded stacks). Note that our models have un-
bounded stacks and unbounded queues. In fact, although these structures are
necessarily finite in actual machines, we may not assume any fixed bound on
their size, so a finite-state model would not be sufficient to reason about the
correctness of a general algorithm for all possible values of these bounds.

Even for finite-state processor threads, the decidability of the state reachabil-
ity problem under TSO is not trivial due to the unboundedness of the queues.
However, it has been shown that this problem is actually decidable, but unfortu-
nately with very high complexity [11]. Indeed, the complexity of state reachabil-
ity jumps from PSPACE for SC to non-primitive recursive for TSO. As for the
case of recursive programs, it is easy to prove that the problem is undecidable
as for SC. Therefore, it is important to investigate conditions under which the
complexity of this problem becomes elementary, and for which decidability can
be obtained even in the case of recursive programs. The approach we adopt in
this paper for this purpose is based on the idea of bounding the number of con-
text switches that has been used for the analysis of shared memory concurrent
programs under SC [34].

An important issue is to define a suitable notion of context in the case of
TSO systems that offers a good trade-off between coverage, decidability and
complexity. The direct transposition of the definition for SC to this case consists
in considering that a context is a computation segment where only one processor
thread is active. This processor-centric definition does not restrict the behavior
of the memory manager which can execute at any time write operations taken
from any store buffer. A memory-centric definition, that is the dual of the pre-
vious one, considers that in a context only one store buffer is used for memory
updates, without restricting the behaviors of the processor threads. Finally, a
combination of the two previous definitions leads to a notion of context where
only one processor thread is active, and only its store buffer can be used for
memory updates. Notice that the three definitions above coincide with the one
for SC when all write operations are immediately executed (i.e., the store buffers
are of size 0).

We study the decidability and complexity of the analyses corresponding to
these three definitions, named pc-CBA, mc-CBA, and pmc-CBA, for processor,

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 23

memory, processor-memory centric context-bounded analysis, respectively. In
terms of behavior coverage, pc-CBA and mc-CBA are incomparable, and both
of them subsume clearly pmc-CBA.

Actually, pmc-CBA coincides with the analysis that we have introduced and
studied in [13]. Interestingly, this analysis can be reduced linearly to the context-
bounded analysis for SC, and therefore both analysis have the same decidabil-
ity and complexity characteristics. In addition to the fact that this analysis is
decidable and has an elementary complexity (as opposed to the general TSO
reachability analysis which is non-primitive recursive as mentioned above), a
nice feature of this reduction is that the resulting analysis does not need explicit
representation for the contents of the queues. It is possible to show that the
content of the queue can be simulated in this case by adding a linear number
of additional copies of the global variables. Also, our result allows to use for
analyzing programs under TSO all the techniques and tools developed for SC
context-bounded analysis, especially those based on code to code translations to
sequential programs [28,26].

Then, the main contributions of this paper concern the decidability and com-
plexity of the other two more powerful analyses pc-CBA and mc-CBA. First,
we prove that in the case of finite-state processor threads, the pc-CBA is de-
cidable with an elementary complexity. The complexity upper bound we have
is polynomial in the size of the state space of the program (product of the
thread automata and the memory state) and doubly exponential in the number
of contexts. The proof is based on a reduction to the reachability problem of
bounded-reverse-phase multiply pushdown automata (brp-MPDA). These mod-
els are multi-stack automata where all computations have a bounded number
computation segments called reverse-phases, and within each of these segments
only one stack can be used in a non-restricted way, while all the others can only
be used for pop operations [32]. The name of reverse-phase is by opposition to
the name of phase, used in a preceding work introducing bounded-phase multiply
pushdown automata (bp-MPDA) [24], where again only one stack is unrestricted
while the others can only be used for push operations. The decidability of the
reachability problem in bp-MPDA and brp-MPDA has been established in [24]
and [32], respectively.

The reduction from TSO systems to brp-MPDA is far from being trivial. The
difficulty is, for each context, in order to simulate with a stack the FIFO queue
representing the store buffer of the active threads. A naive way to do it would
use an unbounded number of reverse-phases (for stack rotations). We show, and
this is the tricky part of the proof, that this is actually possible with only one
stack rotation for each context, due to the particular semantics of the store
buffers. For the case of recursive threads, we prove that however, the pc-CBA is
surprisingly undecidable. Furthermore, we prove that the mc-CBA has the same
decidability and complexity characteristics as the pc-CBA. The decidability is
in this case obtained by a reduction to the bp-MPDA mentioned above, and the
undecidability is established following the same lines as in the previous case.

This copy belongs to 'VANC03'

24 M.F. Atig, A. Bouajjani, and G. Parlato

Related work: Context-bounded analysis has been introduced in [34] as an
under-approximate analysis for bug detection in multithreaded programs. It
has been subsequently widely studied and extended in several works, e.g., in
[28,25,26,14,16]. All these works consider the SC semantics. Our work extends
this kind of analysis to programs running over weak memory models.

The decidability and the complexity of the state reachability problem for
TSO (without restriction on the behaviors) and for other weak memory models
(such as PSO) have been established in [11,12]. We are not aware of other work
investigating the decidability and complexity results of the state reachability
problem for weak memory models.

Testing and bounded model checking algorithms have been proposed for TSO
in [19,20,7]. These methods cannot cover sets of behaviors for arbitrary sizes of
the store buffers. Algorithmic methods based on abstractions or on bounding
the size of store buffers are proposed in [23,6,2,1,3]. In [30], a regular model
checking-based approach, using finite-state automata for representing sets of
store buffer contents is proposed. The analysis delivers the precise set of reachable
configurations when it terminates, but termination is not guaranteed in general.

Checking (trace-)robustness against TSO, i.e., whether all traces of a given
program running over TSO are also traces of computations over SC, has been
addressed in [33,8,17,15]. This problem has been shown to be decidable in [17]
and to be polynomially reducible to state reachability for SC in [15]. Trace-
robustness and (safety-)correctness for SC imply correctness for TSO, but the
converse in not true.

2 Concurrent Pushdown Systems

In this section we define concurrent pushdown systems (Cpds) with two seman-
tics: Sequential Consistency (Sc) and Total-Store-Order (Tso). Moreover, we
define a behaviour-language reachability problem for them.

2.1 Memory Model

A (shared) memory model is a tuple M = (Var , D, η0, T), where Var is a finite
set of variable names, D is a finite domain of all variables in Var , η0 : Var → D
is an initial valuation, and T is a finite set of thread names. The set of memory
operations Mop is defined as the smallest set containing the following: nop (no-
operation), r(x, d) (read), w(x, d) (write), arw(x, d, d′) (atomic read-write), for
every x ∈ Var and d, d′ ∈ D.

We define the action function actM : Mop → {nop, read ,write, atomicRW }
that maps each memory operation in its type. The size of a memory model M ,
denoted |M |, is |Mop |+ |D|+ |Var |.

Below, we give the Sc and Tso semantics for a memory model.

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 25

Sequential Consistency (Sc): An Sc-configuration of a memory model M
consists of a valuation map η : Var → D. A configuration η is initial if η = η0.
Given two Sc-configurations η and η′ of M , there is an Sc-transition from η to

η′ on an operation op ∈Mop performed by thread t, denoted η
op−−−−→

Sc,M,t
η′, if one

of the following holds:

[nop] op = nop, and η = η′;
[read] op = r(x, d), η(x) = d, and η = η′;
[write] op = w(x, d), η′(x) = d, and η′(y) = η(y) for every y ∈ (Var \ {x});
[atomic-read-write] op = arw(x, d, d′), and η

r(x,d)−−−−→
Sc,M,t

η
w(x,d′)−−−−→
Sc,M,t

η′.

Total Store Order (Tso): In Tso, each thread t ∈ T is equipped with a FIFO
queue σt to store write operations performed by t. When t writes value d into
variable x, the pair (x, d) is enqueued into σt. Write operations stored in queues
will affect the content of the shared variables only later in time: a pair (x, d)
is non-deterministically dequeued from one of the queues and only at that time
d is written into x, hence visible to all the other threads. Conversely, when t
reads from x, the value that t recovers is the last value that t has written into x,
provided that this operation is still pending in σt; otherwise, the returned value
for x is that stored in the memory.

Formally, a Tso-configuration of M is a tuple CM = 〈η, {σt}t∈T 〉, where
η : Var → D is a valuation map, and σt ∈ (Var ×D)∗ for every t ∈ T . CM is
initial if η = η0 and σt = ε for every t ∈ T (where ε denotes the empty word).

Let C = 〈η, {σt}t∈T 〉 and C′ = 〈η′, {σ′t}t∈T 〉 be two Tso-configurations ofM .
There is a Tso-transition from C to C′ on op ∈ (Mop ∪ {mem}) performed by

thread t, denoted C
op−−−−−→

Tso,M,t
C′, if one of the following holds:

[nop] op = nop, η′ = η, and σ′h = σh for every h ∈ T ;
[read] op = r(x, d), C′ = C, and either σt = π1.(x, d).π2 for some π1 ∈ (Σ \

({x} ×D))∗, or σt ∈ (Σ \ ({x} ×D))∗ and η(x) = d;
[write] op = w(x, d), η′ = η, σ′t = (x, d).σt, and σ

′
h = σh for every h ∈ (T \{t});

[atomic-read-write] op = arw(x, d, d′), σ′t = σt = ε, η(x) = d, η′(x) = d′,
η′(y) = η(y) for every y ∈ (Var \ {x}), and σ′h = σh for every h ∈ T ;

[memory] op = mem, σt = σ′t.(x, d), η
′(x) = d, η′(y) = η(y) for every y ∈

(Var \ {x}), and σ′h = σh for every h ∈ (T \ {t}).

2.2 Concurrent Pushdown Systems

We start with pushdown systems which are meant to model a recursive thread.

Pushdown Systems: A pushdown system (pds) is a tuple A = (Q, q0, Γ,Δ)
where Q is a finite set of control states, q0 ∈ Q is the initial state, Γ is a
finite stack alphabet, and Δ = Δint ∪Δpush ∪Δpop is the set of A moves, with
Δint ⊆ Q×Q, Δpush ⊆ Q×Q× Γ , and Δpop ⊆ Q× Γ ×Q.

This copy belongs to 'VANC03'

26 M.F. Atig, A. Bouajjani, and G. Parlato

A configuration of a pds A is a pair in Q×Γ ∗. A configuration 〈q, γ〉 is initial
if q = q0 and γ = ε. There is a transition from 〈q, γ〉 to a configuration 〈q′, γ′〉
on δ ∈ Δ, denoted 〈q, γ〉 δ−→

A
〈q′, γ′〉, if one of the following holds:

[internal move] δ = (q, q′) ∈ Δint and γ′ = γ;
[push move] δ = (q, q′, a) ∈ Δpush and γ′ = a.γ;
[pop move] δ = (q, a, q′) ∈ Δpop and γ = a.γ′.

We define an action map actA : Δ → {int , push, pop} where actA(δ) = a iff
δ ∈ Δa. The size of a pds A = (Q, q0, Γ,Δ), denoted |A|, is |Q|+ |Δ|.

A pds A is a finite state system (fss) if actA(δ) = int , for every δ ∈ Δ.

Concurrent Pushdown Systems: A concurrent pushdown system (Cpds) is
composed by a finite number of pds–one per thread–which communicate through
a memory model M according to the Sc or the Tso semantics.

Syntax. A Cpds over a finite set of thread names T and memory model
M = (Var , D, η0, T) is a set of tuples A = {(Qt, q

0
t , Γt, Δ

M
t)}t∈T , where

At = (Qt, q
0
t , Γt, Δt) is a pds (called the thread t of A), and ΔM

t ⊆ (Δt ×Mop).
The size of a Cpds A with memory M is |M | ·

∏
t∈T |At|.

A Cpds A over T is a concurrent finite state system (Cfss) if for every t ∈ T ,
thread At of A is a fss.

Semantics. For Mem ∈ {Sc,Tso}, a Mem-configuration of A is a pair C =
〈{Ct}t∈T , CM 〉, where Ct is an At configuration and CM is a Mem-configuration
of M . Further, C is initial if for every t ∈ T , Ct is the initial configuration of
At, and CM is the initial Mem-configuration of M .

Define ActT = {int , push, pop} and ActM = {nop, read ,write, atomicRW }.
Let Act = (ActT ×ActM ×T)∪ ({(nop,mem)}×T). There is a Mem-transition
from C = 〈{Ct}t∈T , CM 〉 to C′ = 〈{C′

t)}t∈T , C
′
M 〉 on an action (a, b, t) ∈ Act ,

denoted C
(a,b,t)−−−−→
Mem,A

C′, if Ch = C′
h for every h ∈ (T \ {t}), CM

op−−−−−−→
Mem,M,t

C′
M , and

one of the following holds:

[thread & memory transition] (δ, op) ∈ ΔM
t with a = actAt(δ) and b =

actM (op), and Ct
δ−−→
At

C′
t;

[memory transition only] a = nop, b = op = mem, and Ct = C
′
t.

2.3 Reachability Problem

A Mem-run of A is a sequence π = C0
(a1,b1,t1)−−−−−−→
Mem,A

C1
(a2,b2,t2)−−−−−−→
Mem,A

. . .
(an,bn,tn)−−−−−−→
Mem,A

Cn

for some n ∈ N, where C0 is the initial Mem-configuration of A. We define the
behaviour of π as the sequence beh(π) = (a1, b1, t1)(a2, b2, t2) . . . (an, bn, tn). For
a behaviour language B ⊆ Act∗, a Mem-configuration C of A is B-reachable if
there exists a Mem-run π of A such that C = Cn and beh(π) ∈ B. We say that
C is reachable in A if C is (Act∗)-reachable in A.

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 27

Reachability problems for Cpds. Given a Cpds A, a Mem-configuration C of A
with Mem ∈ {Sc,Tso}, and a behaviour language B ⊆ Act∗, the reachability
problem asks whether C is B-reachable in A.

It is well know that the reachability problem is undecidable for Sc-
configurations with behaviour language Act∗, as 2 stacks suffice to simulate
Turing machines. Furthermore, since Cpds with Tso semantics can simulate
Cpds with Sc semantics, the reachability problem is also undecidable for Tso-
configurations (and behaviour language Act∗). However, if we restrict to Cfss,
the reachability problem is non-primitive recursive [11].

In the rest of the paper we consider several behaviour languages B in which
we study the decidability and complexity of the reachability problem.

3 Processor-Centric Context-Bounded Analysis

In this section we consider processor-centric context-bounded analysis (pc-CBA)
for Cpds with Tso semantics. A pc-context of a Cpds A is a contiguous part
of an A run where only transitions from one thread and the memory are al-
lowed. We study both the decidability and the complexity of the reachability
problem for Cpds and Cfss under the Tso semantics up to a given number of
pc-contexts. We show that the problem is undecidable for Cpds, and decidable
with elementary complexity for Cfss.

Formally, let A be aCpds over a set of thread names T and shared-memoryM ,
and let k be a positive integer. For t ∈ T we define Lt as the pc-context behaviour
language ((ActT×ActM×{t})∪({(nop,mem})×T))∗ for thread t. A k pc-context
behaviour language over T , denoted Lk

T , is the set of all words w ∈ Act∗ which
can be factorized as w1w2 . . . wk, where for every i ∈ [k], wi ∈ Lti , for some
thread ti ∈ T . Given a Tso-configuration C of A, the k pc-context reachability
problem is the problem of deciding whether C is Lk

T -reachable in A.
In the rest of the section we prove the following 2 theorems.

Theorem 1. For any k ∈ N with k ≥ 5, the k pc-context reachability problem
for Cpds under Tso is undecidable.

Theorem 2. For any k ∈ N, the k pc-context reachability problem for a Cfss
A under Tso is solvable in double exponential time in the size of A and k.

3.1 Proof of Theorem 1

The undecidability results is given by a reduction from the emptiness problem of
the intersection of two context-free languages [22]: for any two pda A1 and A2,
we define a Cpds A that can reaches under Tso a special control state within 5
pc-contexts iff there is a word accepted by both A1 and A2.

A pushdown automaton (pda) over a finite alphabet Σ is a tuple D =
(Q, q0, Γ,ΔΣ , F), where ΔΣ ⊆ Δ × Σ, E = (Q, q0, Γ,Δ) is a pds, and
F ⊆ Q. A word w = a1a2 . . . an ∈ Σ∗ is accepted by B iff there is a sequence

C0
δ1−→
E
C1

δ2−→
E
. . . Cn−1

δn−→
E
Cn such that C0 is the initial configuration of E,

This copy belongs to 'VANC03'

28 M.F. Atig, A. Bouajjani, and G. Parlato

(δi, ai) ∈ ΔΣ for every i ∈ [n], and Cn = 〈qf , γ〉 for some qf ∈ F and γ ∈ Γ ∗.
Define L(B) to be the set of all words in Σ∗ accepted by B.

Let A1 and A2 be two pda over Σ. For simplicity’s sake, we assume that
ε /∈ L(A1) ∪ L(A2) and that in any word w ∈ L(A1) ∪ L(A2) there are no two
consecutive identical symbols. We define the Cpds A with memory model M
and four threads T = {t1, t2, t3, t4} having the property that a configuration in
which all threads are in the special control state, say @, is reachable iff there is a
word w ∈ L(A1)∩L(A2);M = (Var , Σ∪{$}, η0, T) with Var = {x1, x2, x3, x4},
and η0(xi) = $ for every i ∈ [4].

Below we give a concise description of each thread ti. We assume that all
threads (1) never read or write $ into a variable, and (2) never read consecutively
the same symbol from the same variable.

– The description of t1 is split in two stages. In the first stage, t1 non deter-
ministically generates a word w1 = a1a2 . . . an ∈ Σ+, one symbol at a time.
Each symbol is also pushed into t1’s stack and simultaneously written into
x1. After the first stage, t1 has wR

1 stored in its own stack.
– Thread t2, reading symbols from x1, simulates the pda A1. Every symbol

read from x1 is also written into variable x2. Nondeterministically, t1 stops
the simulation whenever A1 reaches a final state and enters the special con-
trol state @. Let w2 be the word composed by the sequence of symbols read
by t2 from x1. Note that, w2 is a sub-word of w1 (w2 ⊆ w1).

– Thread t3 acts the same as t2 except that it simulates A2 and reads from
variable x2 and writes into x3. Let w3 be the word read by t3 from x2. It is
easy to see that w3 ⊆ w2.

– Thread t4 reads a word w4 from x3 and rewrites wR
4 into x4 using its stack,

and finally enters the control state @. Again, w4 ⊆ w3.
– In the second stage, t1 checks whether it can read wR

1 from x4, where w
R
1 is

the content of its stack. If this is the case, t1 enters the control state @.

From above, it is easy to see that when all threads are in the state @ the
following property holds: w4 ⊆ w3 ⊆ w2 ⊆ w1 and w1 = w4; which is true iff
w1 = w2 = w3 = w4. Furthermore, w2 = w3 is also accepted by both A1 and A2.
Thus, L(A1) ∩ L(A2) �= ∅ iff A reaches in 5 pc-contexts a configuration where
all threads are in the control state @, and this concludes the proof.

3.2 Proof of Theorem 2

The proof is given by a reduction to the reachability problem for Cpds under
Sc semantics constrained to the bounded-reverse-phase behaviour language. A
bounded-reverse-phase language is defined as follows. For a thread t ∈ T , define
Lt = ((ActT×ActM×{t})∪(ActT \{push}×ActM×T))∗. A word in Lt describes
Cpds sub-runs in which only thread t is allowed to take all its transitions, while
the other threads are forbidden to use push transitions. For h ∈ N, a h-reverse-
phase word w is such that w ∈ Act∗ and can be factorized as w1w2 . . . wh, where
for every i ∈ [h], wi ∈ Lti for some ti ∈ T . A h-reverse-phase behaviour language

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 29

is the set of all k-reverse-phase words. For any given h ∈ N, the k-reverse-phase
reachability problem for Sc is decidable in double exponential time as shown
below.

Theorem 3. For any k ∈ N, the k-reverse-phase reachability problem for a
Cpds A under SC is solvable in double-exponential time in k and |A|, where |A|
is the size of A.

Proof. The upper-bound can be shown by a straightforward reduction to the
emptiness problem of k-reverse-phase multi-pushdown automata (introduced in
[32]) where there is a shared control-state between all the stacks. The latter
problem is known to be solvable in double-exponential time in k and exponential
time in the size of the model [32,27]. Then there is a trivial reduction from the
k-reverse-phase reachability problem for a Cpds A under SC to the emptiness
problem of a k-reverse-phase multi-pushdown automaton B by converting A into
an automaton without variables and process states (this can be done by encoding
the variable valuation and process states in the shared state ofB). This will result
in an exponential blow-up and so the k-reverse-phase reachability problem for
A can be solved in double-exponential-time in k and |A| (since the size of B is
exponential in A). ��

The reduction is as follows. Let T be the set of thread names of A. We define
a Cpds D that non-deterministically simulates A along any bounded pc-context
using the Sc semantics. More specifically, D simulates consecutively each pc-
context of A using 2-reverse-phases. Below we only describe the simulation of a
single pc-context.

Invariant. At the beginning and the end of the simulation of each pc-context of
A, D encodes the configuration of A as follows. D has all threads of A, where
for every thread t ∈ T , t encodes the configuration of the thread with the same
name in A along with its FIFO queue. More specifically, the control state of t
in A is stored in the control state of t in D, and since t does not use its stack
at all–as A is a Cfss–the stack of t in D is used to store the FIFO queue σt
in A with the head pair on the top of the stack. Moreover, the valuation of
the shared variables in A is encoded in the shared variables of D. The shared
variables of D also include an auxiliary variable used to keep track on whether
the automaton is in a pc-context simulation phase. During the simulation of a
pc-context an auxiliary thread s /∈ T is used. We guarantee that the stack of s
is empty whenever D is not in a simulation phase.

Below we describe the 3 steps for the simulation of a pc-context. During the
description we also convey a correctness showing that the invariant above holds
after the simulation of a pc-context, provided it holds at the very beginning of
that pc-context simulation.

Pre-simulation. D non-deterministically selects a thread t ∈ T that is allowed
to progress in the pc-context under simulation. Then, it reverses the content of
the stack of t into the stack of s. Note that, the last pair written in the queue
of t (in A) is now on the top of the stack of s.

This copy belongs to 'VANC03'

30 M.F. Atig, A. Bouajjani, and G. Parlato

As D copies the stack content, it also computes two pieces of information that
are stored in the control state of s.

The first piece of information consists in collecting for each shared variable
x ∈ Var the value corresponding to the last write pair for x, if any, that still
resides in the queue. We compute this information to avoid inspecting the stack
of s to simulate read operations from t.

The second piece of information η is used to simulate memory operation con-
cerning thread t again to avoid accessing the stack of s. It consists in a sequence
of write pairs whose length is bounded by the number of variables of Var . This se-
quence is defined by the map lastseq . For σ = (x1, d1) . . . (xn, dn) ∈ (Var ×D)∗,
lastseq(σ) is the subsequence of σ in which we remove all pairs (xj , dj) such
that xj = xi and j < i. For example, for σ = (y, 5)(z, 2)(y, 4)(x, 2)(z, 3)(x, 1),
lastseq(σ) = (y, 4)(z, 3)(x, 1). η is defined as follows. The queue content γR of t
in A, where γ is the stack content of t in D at the beginning of the simulation,
can be split in two subsequences γ1γ2, where γ2 is the portion of the queue that
is dequeued by means of memory operations of t by the end of the simulation of
the current pc-context. This partition is not known at the beginning of the sim-
ulation, and is non-deterministically guessed by D. We define η as the sequence
lastseq(γ2). Again, s uses η to simulate the memory operation from t without
using the stack of s. The idea is that only the elements in η are relevant for the
simulation as the remaining write pairs will be overwritten by pairs in η by the
end of the simulation hence non visible to the other threads.

Since we do not remove elements from the queue (stack of s) during the
simulation, we eliminate them only at the end of the simulation when we copy
the queue content from the stack of s to that of t. Thus, when the content of
the stack of t is reversed into the stack of s at the beginning of the simulation,
D non-deterministically guesses the intermediate point between γ1 and γ2 and
inserts in the stack a separation symbol $ to remember which part must be
discarded. As a remark, it may happen that all pairs in the queue may be used
to update the memory in the current pc-round and thus no $ is inserted in this
phase. If this is the case, we need to update the sequence η to keep it consistent
as we simulate write operations.

Simulation. After the pre-simulation step, D non-deterministically simulates a
sequence of A transitions that may include moves from t and memory transitions
of all threads.

A write operation performed by t in A is simulated by pushing the correspond-
ing write pair (x, d) onto the stack of s . Simultaniously, s updates its control to
keep track of the last written value for x. Finally, if $ has not been pushed in
the stack yet this pair is also used to update the sequence η by concatenating
(x, d) to η and then removing any other existing pair in η for x. After than, s
may non-deterministically decide to push $ onto the stack of s.

A read transition performed by t in A, say on variable x, is simulated by using
the last written value for x stored in the control of s, if any, otherwise the value
of x in the shared-memory is used. Note that, when we read a value for which
we keep track of its value in the control state of s, it may be the case that such

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 31

a write pair has already been used to update the shared-memory and we should
use this value instead. However, if this is the case these two values coincide as
the shared memory cannot be overwritten by any other thread as they are idle
in the current pc-context.

A memory transition from the queue of t′, for t′ ∈ T \ {t}, is simulated by
popping the pair from the stack of t′, which contains the head pair of the queue
of t′, and then by updating the shared-memory accordingly.

To simulate memory transitions from t’s queue, we use the sequence η, stored
in the control state of s . We remove the leftmost pair from η and update the
shared-memory according to it. It is easy to see, that some write pairs are not
simulated at all, in particular we do not simulate all write operations that are not
captured by η. However, in terms of correctness this is not an issue as all these
values will be overwritten in the shared memory by the end of the simulation of
the current pc-context by some pair in η.

Restoring the encoding of the reached A configuration. The simulation of the pc-
context can non-deterministically end, provided that the sequence η is empty.
We restore the configuration of t by copying back the control state of s into t
and the content of the stack of s into the stack of t up to the symbol $ (while
discarding the remaining stack content of s).

2 Phase for each pc-context. From the above description it is easy to see that
the number of reverse-phases needed to simulate one pc-context are 2: one is
required in the first macro step to copy the stack content from t to s, in the
second macro step we only pushes on s ’s stack and hence do not need any extra
reverse-phase, and the last step consumes another reverse-phase for the copy of
s’s stack into the one of t.

4 Memory-Centric Context-Bounded Analysis

In this section, we consider memory-centric context-bounded analysis (mc-CBA)
for Cpds and Cfss under Tso semantics. A mc-context of a Cpds A is a contigu-
ous part of an A run where only memory transitions concerning the queue of one
thread can be performed and no restriction are posed on the actions of all the
threads. We study both the decidability and the complexity of the reachability
problem for Cpds and Cfss under the Tso semantics up to a given number of
mc-contexts. We show that the problem is undecidable for Cpds, and decidable
with elementary complexity for Cfss.

Formally, let A be a Cpds over a set of thread names T and shared-memory
M , and let k be a positive integer. For t ∈ T , we define Lt as the mc-context
behaviour language ((ActT ×ActM × {T })∪ ({(nop,mem})× {t}))∗ for thread
t. A k mc-context behaviour language over T , denoted Lk

T , is the set of all
words w ∈ Act∗ which can be factorized as w1w2 . . . wk, where for every i ∈ [k],
wi ∈ Lti , for some thread ti ∈ T . Given a Tso-configuration C of A, the k mc-
context reachability problem is the problem of deciding whether C is Lk

T -reachable
in A.

This copy belongs to 'VANC03'

32 M.F. Atig, A. Bouajjani, and G. Parlato

In the rest of the section we prove the following 2 theorems.

Theorem 4. For any k ∈ N with k ≥ 5, the k mc-context reachability problem
for Cpds under Tso is undecidable.

Theorem 5. For any k ∈ N, the k mc-context reachability problem for a Cfss
A under Tso is solvable in double exponential time in the size of A and k.

4.1 Proof of Theorem 4

We exploit the construction given in the proof of Theorem 1 to prove the unde-
cidability of the problem.

We show that the Cpds constructed to decide the intersection of the languages
accepted by the pushdown automata A1 and A2 has also a 5 mc-context run to
witness the existence of a common word accepted by both A1 and A2, if any.
Thread t1 runs first, until it finishes its first context. Then, synchronously, we
interleave the memory transitions on t1’s queue with the transitions of thread
t2 so that it reads the entire words w from x1 and writes it into its queue on
the variable x2. The same is done for thread t2 and t3, and then for t3 and t4.
Finally actions by t1 are synchronised with the memory transitions from t4’s
queue. It is direct to see that such a schedule leads to a 5 mc-context run, and
this concludes the proof.

4.2 Proof of Theorem 5

The proof is given by a reduction to the reachability problem for Cpds under
SC semantics constrained to the bounded-phase behaviour language. A phase
captures the dual notion of a reverse-phase, as it represents a contiguous segment
of any run in which only one thread can use its stack with no restrictions,
instead all the other threads can only push in their own stack. Formally, a
bounded-phase language is defined as follows: For a thread t ∈ T , define L′

t =
((ActT × ActM × {t}) ∪ (ActT \ {pop} × ActM × T))∗. A word in L′

t describes
Cpds sub-runs in which only thread t is allowed to take all its transitions, while
the other threads are forbidden to use pop transitions. For h ∈ N, a h-phase
word w is such that w ∈ Act∗ and can be factorized as w1w2 . . . wh, where for
every i ∈ [h], wi ∈ L′

ti for some ti ∈ T . A h-phase behaviour language is the
set of all k-phase words. For any given h ∈ N, the k-phase reachability problem
for Sc is decidable in double exponential time as for the case of k-reverse-phase
reachability problem for Sc (see Theorem 3).

Theorem 6. For any k ∈ N, the k-phase reachability problem for a Cpds A
under SC is solvable in time double-exponential time in k and |A|, where |A| is
the size of A.

Proof. The upper-bound can be shown by a straightforward reduction to the
emptiness problem of k-phase multi-pushdown automata (introduced in [24])
where there is a shared control-state between all the stacks. The latter problem

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 33

is known to be solvable in double-exponential time in k and exponential time
in the size of the model [24,32,10]. Then there is a trivial reduction from the
k-phase reachability problem for a Cpds A under SC to the emptiness problem
of a k-phase multi-pushdown automaton B by converting A into an automaton
without variables and process states (this can be done by encoding the variable
valuation and process states in the shared state of B). This will result in an
exponential blow-up and so the k-phase reachability problem for A can be solved
in double-exponential-time in k and |A| (since the size of B is exponential in A).

Before giving the reduction to the bounded-phase reachability problem for
Cpds under Sc semantics, we show that any mc-phase can be rewritten such
that: (1) In the first part of the run, only one thread t ∈ T is allowed to perform
actions and no memory transitions are not allowed for all the threads, (2) and in
the second part, only memory transitions concerning the queue of t are allowed
and no restrictions are posed on the actions of all threads except the thread t
(which is not allowed to perform any action). Formally, for t ∈ T we define Bt

as a restricted mc-context behaviour language
(
(ActT ×ActM ×{t})∗ · ((ActT ×

ActM×(T \{t}))∪({(nop,mem})×{t}))∗
)
for thread t. A k restricted mc-context

behaviour language over T , denoted Bk
T , is the set of all words w ∈ Act∗ which

can be factorized as w1w2 . . . wk, where for every i ∈ [k], wi ∈ Lti , for some
thread ti ∈ T . Given a Tso-configuration C of A, the k restricted mc-context
reachability problem is the problem of deciding whether C is Bk

T -reachable in A.
Let us assume that in a mc-context, we are only performing memory transi-

tions concerning the queue of one process t ∈ T . Then it is easy to see that the
execution of t can never be affected by anyone else (since they don’t update the
memory). Other threads might effect t’s execution if they were able to change
the configuration of the shared-memory. However, this is not the case as only
memory transitions can occur from t’s queue. Instead, memory transitions from
t do change the state of the shared-memory, but as we now argue, it cannot devi-
ate the course of t’s execution. Recall that the behaviour of t depends on: (1) the
value of a variable in the memory if there is no pending write for this variable in
the queue of t, and (2) the last write operations that are still reside in the queue
of t. This means that performing (or not) memory transitions from the queue
of t will not affect the behaviour of t. This implies that any mc-context can be
reordered such that in we execute first the sequence of actions of the process t
and then we execute the sequence of memory transitions and actions of all the
other threads. This leads to the fact that the k mc-context reachability problem
for a Tso-configuration C of A can be reduced to the k restricted mc-context
reachability problem for C (which stated by the following lemma):

Lemma 1. Given a Tso-configuration C of A, C is Bk
T -reachable in A iff C is

Lk
T -reachable in A.

Next, we show that it is possible to reduce the k restricted mc-context reach-
ability problem for a Cfss under Tso to the k-phase reachability problem for
a Cpds under Sc. The reduction we propose is similar in spirit to the one for
the processor-centric case (see Proof of Theorem 2), and here we only sketch the

This copy belongs to 'VANC03'

34 M.F. Atig, A. Bouajjani, and G. Parlato

differences. We define a Cpds D that simulates every restricted mc-context of
A with 3 phases. The set of thread names of B is T ∪ {s}, where s �∈ T is an
auxiliary thread which is employed for the simulation. The invariant we main-
tain is the following: when the simulation starts and ends thread s is in an idle
state meaning that it is in a special control state, say @, and its stack is empty.
Furthermore, every other B threads t ∈ T encodes in its configuration the one
of t in A: in its control state it is encoded the control state of t in A and the
finite sequence last(σt) where σt is the content of t’s queue in A, and in stores
in its stack σt with the head write pair placed on top of the stack.

The simulation goes as follows. Initially s guesses the thread t from which
memory transitions can be executed. The content of t’s stack is transferred into
s’s stack, where now the tail of t’s queue is stored on the top of s’s stack. Also
the control state of t as well as last(σt) is copied into the control state of s.

Now, we first simulate the moves of t and only after the moves of the remaining
threads along with the memory transitions concerning t’s queue (in order to
respect the definition of restricted mc-context). The simulation of t is as follows.
For write operations we update last(σt) as described in Section 3.2, and push the
produced pair on the stack of s. Read operations, instead, will consult last(σt)
to get the value of the read variable, if any, otherwise it recovers the value from
the memory.

In the second stage of the simulation we restore back into t’s stack the content
of s’s stack as well as the control state. The sequence last will not be copied
as it will change after memory operations will be performed. Such sequence is
reconstructed at the end of the simulation.

We now simulate all the other threads and memory updates in arbitrary order.
Memory transitions are simulated as expected by popping pairs from t’s stack
and updating the memory accordingly. Transitions of other threads, say t̂ are
simulated straightforwardly by using last(σt̂) and the shared memory in a similar
as we have done for t.

Non deterministically the simulation ends and the invariant is reestablished
by computing last(σt). For such a purpose we need to inspect entirely t’s stack.
Thus we copy it back and forth to the s’s stack by paying one more phase.
Finally s enters into the special control state @ and the simulation ends.

By using the same argument as in Section 3.2 we can show that the above
construction of B allows to reduce in polytime the k restricted mc-context reach-
ability problem for Cfss under Tso to the 3k-phase reachability problem for
Cpdsunder Sc. Thus, from Lemma 1 and Theorem 6 we can state the main
result of the section.

Theorem 7. For any positive integer k, the k mc-context reachability problem
for a Cfss A under Tso is solvable in double exponential time in |A| and k.

5 Process-Memory Centric Context-Bounded Analysis

In this section, we consider process-memory centric context-bounded analysis
(pmc-CBA) for Cpds with Tso semantics. A context, in this case called pmc-
context, of a CPDS A is a contiguous part of an A computation where only one

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 35

processor thread is active, and only its store buffer can be used for memory
updates. We consider here the reachability problem for Cpds up to a bounded
number of pmc-contexts. We recall that the pmc-CBA forCpds (resp.Tso-Cfss)
with Tso semantics is reducible to the standard context-bounded analysis for
Cpds (resp. Cfss) with Sc semantics which is known to be decidable [34].

Next, we formally define the bounded pmc-reachability problem for Tso-
Cpdss. Let A be a CPDS over thread names T and shared-memory model M ,
and let k be a positive integer. The pmc-context language Lt of a thread t ∈ T
is the set

(
((ActT ×ActM) ∪ {(nop,mem)})× {t}

)∗
. A k pmc-context behavior

language over T , denoted Lk
T , is the set of all words w ∈ Act∗A which can be

factorized as w1w2 · · ·wk, where for every i ∈ [k], wi ∈ Lti , for some thread
ti ∈ T .

Given a Mem ∈ {Sc,Tso} and Mem-configuration C of A, the k pmc-context
reachability problem is the problem of deciding whether C is Lk

T -reachable in A.

Theorem 8 ([13]). For any k ∈ N, the k pmc-context reachability problem for
Cpds (resp. Cfss) under Tso is reducible to the k- pmc-context reachability
problem for Cpds (resp. Cfss) under Sc semantics.

Moreover, we have:

Theorem 9. For any k ∈ N, the k- pmc-context reachability problem for Cpds
(resp. Cfss) under Sc semantics is solvable in nondeterministic exponential
time in k and |A|, where |A| is the size of A.

Proof. The upper-bound can be shown by a straightforward reduction to the
reachability problem of k-context multi-pushdown systems (introduced in [34])
where there is a shared control-state between all the stacks. The latter problem
is known to be solvable in non-deterministic polynomial time in k and the size
of the system [29]. It is easy to see that there is a trivial reduction from the
k-pmc-context reachability problem for a Cpds A under SC to k-context multi-
pushdown system B by encoding all the process states and the valuation of the
memory into one single state. This will result in an exponential blow-up and so
the k-pmc-context reachability problem for A can be solved in nondeterministic
exponential-time in k and |A| (since the size of B is exponential in A).

As an immediate corollary of Theorem 8 and Theorem 9, we obtain:

Theorem 10. For any k ∈ N, the k pmc-context reachability problem for Cpds
(resp. Cfss) A under Tso is decidable and can be solved in nondeterministic
exponential-time in k and |A|.

6 Conclusion

We have considered three different notions of context-bounded analysis for TSO
computations, depending on whether a processor, or a memory, or a processor
and memory centric view is adopted. We have shown that each of these three

This copy belongs to 'VANC03'

36 M.F. Atig, A. Bouajjani, and G. Parlato

notions allows to cut-off drastically the complexity of checking state reachability
w.r.t. the unrestricted case, although of course the analysis is under-approximate.
The work we present in this paper allows to improve our understanding of the
trade-offs between expressiveness, decidability, and complexity of checking state
reachability under TSO semantics.

While pmc-CBA was already introduced in our previous work [13], this work
introduces two other natural and more general concepts of pc-CBA and pm-CBA
for which the complexity of the TSO state reachability problem is still elemen-
tary. In terms of coverage, pc-CBA and mc-CBA are incomparable while both of
them are strictly more general than pmc-CBA. Indeed, these two analyses allow
to capture with a given bound on the pc/mc context switches sets of behaviors
that would need an unbounded number of pmc context switches. However, this
increase in power comes with a price. First, while pcm-CBA is decidable even
for recursive programs (pushdown threads), both pc-CBA and mc-CBA are un-
decidable in this case. For programs without recursive procedures, pmc-CBA is
in NEXPTIME while both pc-CBA and mc-CBA are in 2EXPTIME.

An interesting question left for future work is whether the analyses presented
here for TSO can be extended to other weak memory models.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic
fence insertion in integer programs via predicate abstraction. In: Miné, A., Schmidt,
D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012)

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Memorax,
a precise and sound tool for automatic fence insertion under TSO. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 530–536. Springer,
Heidelberg (2013)

4. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

5. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
Definitions, implementation, and programming. Distributed Computing 9(1), 37–
49 (1995)

6. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

7. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

8. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011)

9. Aspinall, D., Ševč́ık, J.: Formalising java’s data race free guarantee. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 22–37. Springer,
Heidelberg (2007)

This copy belongs to 'VANC03'

Context-Bounded Analysis of TSO Systems 37

10. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

11. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification prob-
lem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL,
pp. 7–18. ACM (2010)

12. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012)

13. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

14. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 107–123. Springer, Heidelberg (2009)

15. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

16. Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011)

17. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

18. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: Shao,
Z., Pierce, B.C. (eds.) POPL, pp. 392–403. ACM (2009)

19. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

20. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: ISSTA, pp. 122–132. ACM (2011)

21. Friedman, R.: Consistency Conditions for Distributed Shared Memories. Phd. the-
sis, Technion: Israel Institute of Technology (1994)

22. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation - international edition, 2nd edn. Addison-Wesley (2003)

23. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for re-
laxed memory models. In: PLDI, pp. 187–198. ACM (2011)

24. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

25. La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using a
fixed-point calculus. In: PLDI, pp. 211–222. ACM (2009)

26. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)

27. La Torre, S., Napoli, M., Parlato, G.: On the complement of multi-stack visibly
pushdown languages. Technical report (2014)

28. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37–51.
Springer, Heidelberg (2008)

This copy belongs to 'VANC03'

38 M.F. Atig, A. Bouajjani, and G. Parlato

29. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

30. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: van de Pol, J., Weber, M. (eds.) SPIN 2010.
LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010)

31. Luchango, V.: Memory Consistency Models for High Performance Distributed
Computing. Phd. thesis, Massachusetts Institute of Technology (2001)

32. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T.,
Sagiv, M. (eds.) POPL, pp. 283–294. ACM (2011)

33. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

34. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

35. Saraswat, V.A., Jagadeesan, R., Michael, M.M., von Praun, C.: A theory of memory
models. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) PPOPP, pp. 161–172. ACM
(2007)

36. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-tso: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

This copy belongs to 'VANC03'

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 39–53, 2014.
© Springer-Verlag Berlin Heidelberg 2014

A Model of Dynamic Systems

Manfred Broy

Institut für Informatik, Technische Universität München
80290 München Germany
broy@in.tum.de

http://wwwbroy.informatik.tu-muenchen.de

Abstract. We introduce a model describing discrete dynamic distributed sys-
tems. These are systems where their set of connections to the systems in their
context captured by their syntactic interfaces as well as the set of their subsys-
tems, and their set of internal connections in their architectures between their
subsystems change dynamically over time. To provide such a model we gene-
ralize the static system model of Focus (cf. [8]) in terms of their system inter-
faces and their interface behavior, their system architectures, and their system
models in terms of state machines to model dynamic systems. We deal with
concepts of causality, composition, abstraction, and system specification for
dynamic systems. We analyze properties of dynamic systems and discuss how
well the model captures general notions of system dynamics. Finally, we intro-
duce the concept of system classes and their instantiation, which introduces an
additional concept of dynamicity.

Keywords: Dynamic Systems, Mobility, Instantiation

1 Introduction: Dynamic Systems

FOCUS (see [8]) is an approach to system modeling where the interfaces of systems
and their behaviors are described in terms of streams of interactions exchanged via
their input and output channels. Architectures of systems are modeled by sets of sub-
systems with their interface behavior and their mutual connections by channels. Im-
plementations of systems are described in terms of state machines. FOCUS follows the
idea of distributed concurrent data flow.

Systems operate in a timeframe described by a sequence of time intervals called
time slots. A time slot behavior of a system is given by a syntactic interface consisting
of a set of input channels I and a set of output channels O and a mapping that maps
valuations of the input channels to sets of valuations of the output channels. A syntac-
tic interface is defined by a set of input channels and a set of output channels together
with their types. In FOCUS this syntactic interface does not change over time. This
notion of a syntactic interface is static in FOCUS.

Behaviors of systems then are mappings that associate with every time interval,
where time intervals are represented by the natural numbers, a time slot behavior. In a
behavior we deal with a set of channels. This is the set of all channels that occur in

This copy belongs to 'VANC03'

40 M. Broy

one time slot behavior. These sets of channels can be infinite, in principle. We as-
sume, however, that in dynamic systems in each time slot the set of channels is finite.
For simplicity we do not allow channels occurring both as input and output channels
for one component.

An input channel is called static for a system if the channel occurs in that system as
an input channel in every time slot. In analogy, an output channel is called static, if it
occurs as an output channel in every time slot.

Composition is defined in FOCUS by composition of the interface behaviors in the
time slots where we require that whenever in a composition there is a feedback loop,
then the output channel in that time slot is strongly causal. Otherwise composition
with feedback could not be properly defined. A simple way to achieve that is to re-
quire that output channels are always strongly causal or that feedback does only occur
for strongly causal output channels.

In FOCUS, system interfaces are static in the sense that the sets of input and output
channels are invariant over the lifetime of a system. Therefore the syntactic interface
in FOCUS is static.

In FOCUS besides the notion of an interface, state machine, and architectures are
worked out as elements of system models. Both refer to interfaces and both are static
in the sense that they support static interfaces. As a consequence, interfaces of archi-
tectures are static and thus the architectures are static in the sense that they only sup-
port static architectures where the connections between their subsystems do not
change over the lifetime of the systems.

In the following we introduce a new, simple, but powerful model for dynamic sys-
tems, which are systems where their number of channels (the syntactic interface), and
their connections between the subsystems are not necessarily static but may change
over time. Basically, we do that by assigning a possibly modified syntactic interface
to systems for every time slot of the system.

Causality and strong causality of behaviors is defined as usual.
In the following we introduce such a model for dynamic systems. We first intro-

duce the basics for modeling interactive systems such as streams and histories. Then
we introduce the concept of a dynamic interface behavior and finally the idea of dy-
namics for specifications, state machines, and architectures as well as classes of sys-
tems introducing the concept of instantiation.

2 The Dynamic System Model

In this section we introduce the dynamic system model.

2.1 System Propaedeutic

Our approach uses a specific notion of discrete system with the following characteris-
tics and principles.

• A discrete system has a well-defined boundary (its “scope”) that determines its
interface.

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 41

− Everything outside the system boundary is called the system’s environment.
Those parts of the environment that are relevant for the system are called the
system’s context. Actors in the context that interact with the system such as
users, neighbored systems, or sensor and actuators connected to the physical
environment are called its operational context.

− By a system’s interface it is indicated by which steps the system interacts with
its operational context. The syntactic interface defines the set of actions that
can be performed in interaction with a system over its boundary. In our case,
syntactic interfaces are defined by the set of input and output channels together
with their types. The input channels and the types determine the input actions
for a system while the output channels and their types determine the output ac-
tions for a system.

− We distinguish between syntactic interface, also called static interface, which
describes the set of input and output actions, which can take place over the
system boundary, and the interface behavior (also called dynamical interface),
which describes the system’s functionality in terms of the input and output ac-
tions; the interface behavior is captured by the causal relationship between
streams of actions captured in input and output histories. This way we define a
logical behavior as well as a probabilistic behavior for systems.

− The logical interface behavior of systems is described by logical expressions,
called interface assertions, by state machines, or it can be further decomposed
into architectures.

• A system has an internal structure and some internal behavior (“glass box view”).
This structure is described by

− its state space with state transitions and/or

− its decomposition in sub-systems forming its architecture in case the system is
decomposed into a number of subsystems, which interact and also provide the
interaction with the system’s operational context. The state machine and the
architecture associated with a system are called its state view and its structural
or architectural view, respectively.

• Complementary, the behaviors of systems can be described by sets of traces,
which are sets of scenarios of input and output behavior of systems. We distin-
guish between finite and infinite scenarios.

• Moreover, systems operate in real time. In our case we use discrete time, which
seems, in particular, adequate for discrete systems.

• Systems interact with their operational context and sub-systems operate concur-
rently within the system’s architectures.

This gives a highly abstract and at the same time quite comprehensive model of sys-
tems. This model is formalized in the following by one specific modeling theory.

This system propaedeutic leads to following notions of a dynamic system

This copy belongs to 'VANC03'

42 M. Broy

• dynamic interface behavior: the syntactic interface changes over time
• dynamic architecture: the syntactic interface changes over time
• dynamic state space and state transition

In the following we introduce a very compact model that addresses all three aspects of
dynamicity.

2.2 Interface Behavior Model

The key concepts for modeling system behavior are streams and communication
channels to represent interaction and connections.

Channels and Histories. For the alternative model for dynamic systems we use the
following sets

M universe of all data elements such as messages or values of state attributes,

TYPE the set of (data) types (each type T in TYPE is a subset of M),

C the set of typed channels.

The type of the channels in the channel set C is determined by a channel type assign-
ment:

 type: C → TYPE

By [type(c)] we denote the set of elements associated with type(c). We assume that
the types of channels are static, which means they do not change over the lifetime of a
channel.

An interaction pattern for the set C of typed channels is given by a partial func-
tion

 p: C → M*

where Dom(p) ⊆ C denotes the set of channels c for which p(c) is defined; further-
more we assume p(c) ∈ [type(c)*]. An interaction pattern represents the sequences of
messages exchanged over the channel set Dom(C) within a time slot.

The set of interaction patterns is denoted by C→ which is defined by the equation

 C→ = {p: C → M*: p partial }

We say that the channel c is active in pattern p if c ∈ Dom(p).
Note the subtle difference between the case where p(c) = , which represents the

situation where channel c is active but no messages are transmitted, and c ∉ Dom(p),
which represents the case where channel c is not active and thus there is no specified
communication via channel c in that time slot. Then c is actually at that time slot con-
sidered not being present as a channel.

A dynamic channel valuation (also called a dynamic history) for a set C of chan-
nels is given by a function:

 x: IN\{0} → C→

It specifies for each time slot an interaction pattern. We denote the set of all dynamic
valuations of the channels in C by

 C

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 43

We say that channel c is present (or active) in the history x ⊆ C at time t if c ∈
Dom(x.t). For x ∈ C we write x.t.c with time t ∈ IN\{0} and channel c ∈ C to de-
note the sequence (x(t))(c) transmitted on channel c in history x in the time slot t pro-
vided c ∈ Dom(x.t); furthermore we write x(c) for the partial mapping IN\{0} →
[type(c)*] where (x(c))(t) is equal to (x(t))(c).

Given the dynamic history x ∈ C we denote for given time slot t ∈ IN by x↓t the
restriction of the history x to the time slots {1, …, t}:

 x↓t : {1, …, t} → C→

where

 (x↓t).(k) = x(k) ⇐ 1 ≤ k ≤ t

x↓t is also called the finite “partial” history of history x till time slot t. A history x ∈
C is called static if for all times t, t’ ∈ IN\{0} Dom(x(t)) = Dom(x(t’)). A history x ∈
C is called dynamically finite if Dom(x(t)) is finite for all t ∈ IN\{0}.

Merging Histories. The parallel composition of dynamic channel histories is speci-
fied as follows. Given two sets X, Y of channels with consistent types and two dy-
namic histories x ∈ X, y ∈ Y we define the set of dynamic histories x⊕y ⊆ (X ∪
Y) composed from histories x and y by the equation

 x⊕y = {z ∈ (X ∪ Y): ∀ t ∈ IN\{0}: Dom(z.t) = Dom(x.t) ∪ Dom(y.t)

 ∧ ∀ c ∈ (X ∪ Y): c ∈ Dom(z.t) ⇒
 (z.t.c = x.t.c ∧ c ∉ Dom(y.t))
 ∨ (z.t.c = y.t.c ∧ c ∉ Dom(x.t))

 ∨ (z.t.c ∈ merge(x.t.c, y.t.c) ∧
 c ∈ Dom(x.t) ∩ Dom(y.t)))}

The set-valued function merge yields the set of all interleavings of two finite se-
quences. It is easily specified as follows:

 merge(s1, s2) = {s ∈ M*: ∃ e ∈ {1, 2}*: proj(s, e, 1) = s1 ∧ proj(s, e, 2) = s2 }

where

 proj : M* × IN* × IN → M*

is specified by the following equations:

proj(‹m›ˆs, ‹k›ˆe, k) = ‹m›ˆproj(s, e, k),
proj(‹m›ˆs, ‹k›ˆe, k') = proj(s, e, k) ⇐ k ≠ k'
proj(‹›, s, k) = proj(s, ‹›, k) = ‹›

As a result x⊕y denotes the history in which or each channel c ∈ (X ∪ Y) the se-
quence x⊕y.t.c is the result of merging the sequences x.t.c and y.t.c provided both are
defined, otherwise it is equal to x.t.c or to y.t.c depending on which of these is defined
and undefined if both are undefined. For C' ⊆ C and x ∈ C we denote by x|C' the

This copy belongs to 'VANC03'

44 M. Broy

restriction of history x to channels in C’ which is the history z ∈ C where z.t.c =
x.t.c for c ∈ C’ and t ∈ IN\{0} holds.

Interface Behavior. Given two sets I and O of typed channels, we denote the syntac-
tic interface of a dynamic system by (IO). A nondeterministic (or under-specified)
component behavior (let I and O be sets of typed channels) is represented by the func-
tion

 F: I → ℘(O)

This function models the behavior of a dynamic component. At every time t’ ∈ IN\{0}
for given input history x the set Dom(x(t)) denotes the set of channels active at time t
as input channels and for y ∈ F(x) Dom(y(t)) denotes the channels active at time t as
output channels.

Given input history x ∈ I in each time slot t a sub-interface (I’O’) with I’ ⊆ I
and O’ ⊆ O of channels is active. It is specified by the sets

 I’ = Dom(x.t)

 O’ = Dom((y) where y ∈ F(x).(t)

(I’O’) is called the active syntactic interface at time slot t for input x and output y. If
for all t and all input histories that are static the syntactic interfaces are identical we
call the system static.

Definition. Causal Interface Behavior
For a mapping

 F: I → ℘(O)

we define the set

 dom(F) = {x: F(x) ≠ ∅}

called the domain of F. F is called total, if dom(F) = I, otherwise F is called partial.

The mapping F is called causal, if (for all t ∈ IN and all input histories x, z ∈ I):

 x, z ∈ dom(F) ∧ x↓t = z↓t {y↓t: y ∈ F(x)} = {y↓t: y ∈ F(z)}

F is called strongly causal, if (for all t ∈ IN and all input histories x, z ∈ I):

 x, z ∈ dom(F) ∧ x↓t = z↓t {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

Causality (for an extended discussion see [8]) indicates a consistent time flow be-
tween input and output histories in the following sense: in a causal mapping input
messages received at time t may influence future output only after time t; this output
is given by messages communicated via output channels at times ≥ t (in the case of
strong causality at times > t, which indicates that there is a delay of at least one time
step before input has any effect on output).

Definition. I/O-Behavior
A causal mapping F: I → ℘(O) is called a dynamic I/O-behavior. By DIF[IO]
we denote the set of all (total and partial) dynamic interface behaviors called I/O-
behaviors with syntactic interface (IO) and by DIF the set of all I/O-behaviors. ❑

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 45

Interface behaviors model system functionality. For systems we assume that their
interface behavior is total. Behaviors F may be deterministic (in this case, the set F(x)
of output histories has at most one element for each input history x) or nondeterminis-
tic (which allows us to model under-specification). For simplicity we assume
throughout the paper that the sets of input and output channels of components are
disjoint.

Hiding Channels. Given F ∈ [IO] we hide a channel c ∈ I∪O leading to a system
with Interface behavior F\c ∈ [I’O’] where I’ = I\{c} and O’ = O\{c} where for x’ ∈
I’ we define the behavior of F\c by

 (F\c)(x’) = F(x)|O’ where x ∈ I is defined as follows

 x.t.c = for all t ∈ IN and x(c’) = x’(c’) for c’ ∈ I’

Hiding means that we close the channel c to the outside world. F’ cannot receive
input on c nor produce output on c.

2.3 Composition of Dynamic Systems

In this section we describe the composition of systems in terms of their interface be-
havior. We show how to calculate the interface behavior of a composed system from
the interface behaviors of its components.

The composition of two systems

F1: I1
 → ℘(O1

) and F2: I2
 → ℘(O2

)

yields an I/O-behavior (F1⊗F2) with syntactic interface (IO) where O = O1∪O2 and I

= (I1∪I2)\(O1∪O2) that are strongly causal is specified by the following formula:

(F1⊗F2).x = {y|(O1∪O2): ∃ y1, y2: y = x⊕y1⊕y2 ∧ y1 ∈ F1(y|I1) ∧ y2 ∈ F2(y|I2)}

where x ∈ ((I1∪I2)\(O1∪O2))
, y ∈ (O1∪O2∪I1∪I2)

. (F1⊗F2) is strongly causal

again.
The composition of systems is commutative:

 F1 ⊗ F2 = F2 ⊗ F1

as well as associative:

 (F1⊗F2)⊗F3 = F1⊗(F2⊗F3)

The proof of these equations is straightforward.
This way we get a model for dynamic systems, which is more general than the static

FOCUS model. It is concise and surprisingly better adapted to describing the dynamics
of systems. The model is a direct extension of the FOCUS model of static systems.

2.4 Dynamic State Machines by State Transition Functions

A state space over a given space set V of typed attributes is a set of mappings

 σ: V → D

This copy belongs to 'VANC03'

46 M. Broy

where D is the universe of all data and for all attributes v ∈ V the value σ(v) is of the
type associated with attribute v. A dynamic state space over a set V of typed attributes
is the set of partial mappings

 σ : V → D

where for all attributes in Dom(σ) the value σ(v) is of the type associated with
attribute v.

Given V we denote by Σ(V) the dynamic state space over V.
State machines with input and output describe system implementations in terms of

states and state transitions. A state machine is defined by a state space and a state
transition function.

Definition. Dynamic State Machine with Syntactic Interface (IO)
Given a set V of typed attributes, a state machine (Δ, Λ) with input and output accord-
ing to the syntactic interface (IO) consists of a set Λ ⊆ Σ(V) of initial states as well
as of a nondeterministic state transition function

 Δ: (Σ(V) × I→) → ℘(Σ(V) × O→)

For each state σ ∈ Σ(V) and each valuation a ∈ I→ of the input channels in I by se-
quences of input messages every pair (σ', b) ∈ Δ(σ, a) defines a successor state σ' and
a valuation b ∈ O→ of the output channels consisting of the sequences produced by
the state transition in one time slot. In every step of the dynamic state machine the
structure of the state space and the sets of active input and output channels may
change – more precisely the set of active attributes, the set of active input, and the set
of active output channels may change.

(Δ, Λ) is a Mealy machine with possibly infinite state space. If in every transition
(σ', b) ∈ Δ(σ, a) the output b depends on the state σ only but never on the current
input a, we speak of a Moore machine.

2.5 Dynamic Architectures

In this section, we describe how to form dynamic architectures by composing dynam-
ic sub-systems, called the dynamic components of the architecture. Architectures are
concepts to structure systems. Architectures contain precise descriptions for systems
in terms of their sub-systems and how the composition of their sub-systems takes
place. In other words, architectures are described by the sets of systems in their set of
components together with mappings from input channels to output channels that de-
scribe internal communication. Architectures form a data flow network.

In the following we assume that each system used in an architecture as a compo-
nent is identified by a unique identifier k. Let K be the set of identifiers for the com-
ponents of an architecture.

Definition. Interpreted Architecture
An interpreted architecture (K, ξ, ψ) for set K of component names associates a syn-
tactic dynamic interface ξ(k) = (IkOk) with every component identifier k ∈ K and
dynamic interface behavior ψ(k) ∈ IF[IkOk], with every component identifier k ∈ K.

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 47

An architecture can be specified by a syntactic architecture and an interface speci-
fication for each of its components.

The interface behavior of an architecture A = (K, ξ, ψ) is given by a mapping

 FA : I → ℘(O)

where (here all channels in I and O can be used both as internal channels and as ex-
ternal channels)

 I = ∪ {Ik : k ∈ K} O = ∪ {Ok : k ∈ K}

and the interface behavior FA of A can be calculated from the interface behaviors of
the components:

 FA = ⊗ ψ(k)

In this construction we do not hide “internal” channels, which are channels that lead
inside the architecture from one sub-system to another one. This means that we can
observe in behavior FA(x) the communication on internal channels at the system inter-
face since internal channels are also output channels. Of course, we may also intro-
duce more abstract concepts of composition hiding internal channels.

Given an input history x for an architecture we get a static architecture in every
time slot. It is defined by a directed graph with the set K of components as its nodes.
A channel c defines a connection at time slot t from component k to component k’ if

 c ∈ Dom((y|Ok).t)

and

 c ∈ Dom((ψ(k)(y|Ik’)).t)

where

 y = FA(x)

This way we characterize temporary connections. Given input x ∈ I

 and output y ∈

O

, where t is the set of all channels, let Outt(k) be the set of all channels that are ac-
tive and lead from component k at time t and Int(k) be the set of all channels that are
active and lead to component k at time t.

By construction a channel is, in general, a multi-connector. At each time slot it
connects a set of components that have this channel as input channel with a set of
components that have this channel as output channel. As defined components cannot
have a channel both as input and output channel.

As a result a channel has in each step a number of active participants

• senders, that issue output to the channels but do not read input from the channel
• receivers, that consume messages as input from the channel

There are several ways the concept of a channel can be used. In a restricted appli-
cation of the concept of a channel, a channel connects at each time exactly two sub-
systems, one sender and one receiver.

This copy belongs to 'VANC03'

48 M. Broy

Given an input history x ∈ Ι→ for the architecture and some output we denote for t
∈ IN by Out t·(k) the set of active channels in [(x⊕y)|IK](t); these are the channels
active in the architecture at time t. A component k ∈ K is said to have a past at time t
(otherwise it is called unborn at time t) if

 (∃ t’ ∈ IN : t’ ≤ t ∧ ∃ c: c ∈ Outt(k) ∪ Int(k))

A component k ∈ K is said to have a future at time t (otherwise it is called dead at
time t) if

 (∃ t’ ∈ IN : t ≤ t’ ∧ ∃ c: c ∈ Outt(k) ∪ Int·(k))

A component k ∈ K is called present at time t if it has a past and a future (otherwise it
is called inactive at time t), i.e. if

 (∃ t’ ∈ IN : t’ ≤ t ∧ ∃ c: c ∈ Outt(k) ∪ Int·(k))

 ∧ (∃ t’ ∈ IN : t ≤ t’ ∧ ∃ c: c ∈ Outt(k) ∪ Int(k))

In other words, component k is involved in communications before and after time slot
t.

In each time slot an architecture forms a directed graph, which we call its data flow
graph. It consists of all components that are present and all their temporarily active
channels. Note that in the graph we may find components that are not connected to
any channel. They still may compute (in terms of internal state transitions) and may
only later get connected to other components. This graph may change over time. This
way a dynamic architecture is modeled. If all components are static, the architecture is
static.

2.6 System Interface Behavior: Specification by Interface Assertions

The interface behavior of a system can be specified in a descriptive logical style using
interface assertions.

Definition. Interface Assertion
Given a syntactic interface (IO) with a set I of typed input channels and a set O of
typed output channels, an interface assertion is a logical formula with channel iden-
tifiers in I and O as free logical variables denoting streams of the respective types.

We specify the behavior FS for a system with name S with syntactic interface (IO)
and an interface assertion P by a specification scheme:

 S

 in I
 out O
 P

P is called interface assertion.

The scheme specifies the set of all strongly causal interface behaviors FS of the
system with name S which fulfill the formula

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 49

 ∀ x ∈ I, y ∈ O: y ∈ FS(x) ⇒ P(x, y)

where P(x, y) results from P by replacing all channels c occurring in assertion P by
streams x(c) or y(c), respectively.

It is more convenient to replace x(c) or y(c) simply by the channel identifier c,
where we use the convention that for channels c that are both input and output chan-
nels we use c’ for y(c) to distinguish x(c) from y(c).

Note that causality properties are implicitly assumed for each specification this
way. If an interface behavior Fs that fulfills the interface assertion does not exist then
the specification is called inconsistent.

In FOCUS interface assertions are formulas in predicate logic where channels de-
note streams. Since both channels and sub-systems may be inactive at certain time
slots, we need special notations expressing that fact in interface assertions.

The interface assertions for dynamic systems may become more sophisticated due
to the fact, that channels may be active or not. We specify a proposition

 c@t

that yields true if channel c is active at time slot t. If we write c.t = … with a defined
expression at the right hand side, this allows us to conclude c@t.

In addition, we allow communicating channels as messages (as in π–calculus, see
[28]).

A typical example of a simple specification with type C = {c1, c2, c3} reads as fol-
lows (by c#s we donate the number of occurrences of c in sequence s)

S
in cha: C, x: Nat
out c1: Nat, c2: Nat, c3: Nat
∀ t ∈ IN:
∀ c ∈ C:
 even(c#(cha↓t)) ⇔ c@(t+1)
 c@t+1 c.t+1 = x.t

This is an example of a component with three dynamic output channels that for-

ward the input from channel x provided they are active. They get activated by sending
their channel id on channel cha and deactivated by sending it once more.

3 Discussion

What we obtain by the introduced concepts is a model that models dynamic systems,
however, for the price that syntactic interfaces are no longer static. In each time slot a
dynamic system may feature a different syntactic interface.

In FOCUS generally composition of two specifications with interface assertions Q1
and Q2 is simply given by the formula

 Q1 ∧ Q2

This copy belongs to 'VANC03'

50 M. Broy

due to the requirement that in Focus their sets of output channels are disjoint. As long
as this holds in every time slot, the same formula can be applied for dynamic systems.

Otherwise – and in our case, where we share output channels, a more sophisticated
formula for composition is needed, where we have to distinguish between the output
of Q1 and Q2 on shared channels and their merge. Let c be such a shared channel. We
get the interface assertion in the case c is the only shared channel by the assertion
(assume that channels c1 and c2 are not free in Q1 or Q2)

 ∃ c1, c2: (∃ c: Q1 ∧ c1 = c) ∧ (∃ c: Q2 ∧ c2 = c) ∧ c = c1⊕c2

which is equivalent to

 ∃ c1, c2: Q1[c1/c] ∧ Q2[c2/ c] ∧ c = c1⊕c2

The generalization to a set of shared output channels is straightforward.

4 Parameterized Interfaces and Systems

Following the idea of [8] to consider indexed sets of channels and systems, which are
called sheaves. By then we generalize the concept of channel and system identifier to
families (“sheaves”) by introducing indexes. This is an idea following concepts of
object orientation where we replace object identifiers by index values and objects by
system interface behavior.

Let K be an arbitrary set of index values (a simple choice would be K ⊆ IN);
then an indexed channel is a channel name c of the type

 c: [K] Data

where Data is the channel type and K is a set of indices.
Actually then the indexed channel c describes a set of channels {c[k]: k ∈ K}.

Such an indexed channel may be part of a signature. The same way we introduce
indexed system names

 F: [K] [IO]

Then by F we get a set of systems

 {F[k]: k ∈ K}

with interfaces [I[k]O[k]] for F[k] where each channel in I or O carries the same
index k we may see F[K] as a family of systems with a family of input channels.

By this we can describe large networks with a huge number of components and
channels and with many instances of the some behavior.

Based on the concept of indexed components we can go a further step into “object
orientation” in the sense that we allow for component creation and instantiation. To
do so we introduce a creator component for a parameterized set F: [k] [IO] of com-
ponents (where we assume that K is an infinite set of component identifiers). The
instantiation component has two channels, an input channel on which requests are
received and an output channel on which identifiers are send which then also are at-
tributed to the created instance identifiers. If it receives a message to create a new
component it creates one and returns its identifier on its output channel.

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 51

A way to avoid the problem of making sure that individual identifiers are received
consistently in return to creation messages is to assume universal output channels for
every component for creating new instances and individual input channels for receiv-
ing the identifiers of created instances. This leads to networks where every sub-
system has an identifier and a number of standard channels indexed by that identifier.

5 Related Work and Alternative Models

Of course, the mathematical models we have introduced are not the only way to con-
struct models and theories for dynamic mobile systems. Much work has been carried
out towards the investigation of such models and theories. Only some of that is to be
mentioned briefly in the following and related to our model.

Pioneering work goes back to Robin Milner in his work on the π-calculus (see
[27], [28]) introducing a process algebra for the dynamics of channel connections. π-
calculus captures the dynamics of systems by operational semantics in terms of rules
that manipulate "process terms" representing systems. In the π-calculus channels can
be passed as messages (which can be done in our model, too) and then used as chan-
nels by the respective receiver. This idea is captured by the rules of the structured
operational semantics of π-calculus that are quite intuitive. However, the rules of π-
calculus do not provide a denotational model but only operational models for dynamic
systems. A denotational understanding, however, is essential for the constructions of
techniques for the specification of dynamic systems.

Besides theoretical approaches to models of mobility and dynamics these ideas are
widely used in practice in object-oriented programming languages, however, their
time, distribution, communication are not explicitly addressed. In our model we easily
capture object orientation by considering each object as a component (see [6] and [18,
19]). There are a number of approaches to give more specific treatments of the dy-
namics of object orientation (see [1], [21], [30]). Besides this, there is a lot of practic-
al work in the area of object-oriented concepts to program dynamic systems (see also
design patterns).

Another topic aims at concepts to formalize mobility and the idea of scopes and
residences. This is modeled by scopes of bindings and information access in the am-
bient calculus (see [11]). The ambient calculus covers a special aspect of dynamic
systems that is most relevant for distributed data basis and information systems. Such
ideas could be added to our model by channel hiding.

Let us shortly discuss ambient calculus. What do we model by the ambient calcu-
lus? The ambient calculus introduces the following conceptual categories and terms to
denote them:

• process,
• capability,
• ambient: an ambient n [P] is a named process P with name n.

A process can be composed to form composed processing units describing systems
called ambients. Ambients include the following notions

This copy belongs to 'VANC03'

52 M. Broy

• scope: location or space in which an identifier is valid. This is achieved by re-
striction (like Δ x.P),

• parallel composition: composition of ambients,
• replication: simple form of iteration or recursion on processes,
• location: named location or scope in which a process (composed or not) executes.

What can a process do when executing capabilities? It may carry out activities such
as:

• entering ambient scopes, leaving ambient scopes and opening scopes. Note: giv-
en an ambient

 n[P]

if in P a sub-process executes the capability "in m" (by which P becomes P') then
n[P'] moves into the scope of ambient m[Q] (which results in an ambient inside
which processes Q and n[P’] are running in parallel),

• exiting: exiting is inverse to entering,
• opening: when in the process P⏐m:[Q] a sub-process executes in P the capability

open m by which P becomes P' then the name m and its scope disappears and the
original process becomes P'⏐Q.

Finally an ambient can communicate. This is done by a synchronous input and output
action. This is expressed by the rewrite rule:

 (x).P⏐‹M› → P[M/x]
Note that both names and capabilities may occur as input and output. Note, moreover,
that the naming of processes is essential in ambient calculus. The semantic of ambient
calculus is given in an operational style.

The ambient calculus is one, in fact, very sophisticated model of dynamic systems.
It captures certain aspects of dynamics quite explicitly and leaves others implicit. It is
a more operational model of dynamics than our approach since its semantics is cap-
tured by rules of structured operational semantics. It considers additional aspects such
as scopes, locality (and thus also the idea of mobility) and restricted access to local
data that is not considered in our presented work.

6 Summary and Outlook

We have introduced a denotational model for dynamic systems. In contrast to π-
calculus and ambient calculus, which are based on operational models, our emphasis
is on a denotational modular model and the notion of interface that can be used as a
basis for modeling, specification, and verification.

Future work for the presented approach is needed in the following directions

• Introduction of more pragmatic description and modeling concepts in terms of
diagrams and tables

• Application of the concepts to representative application examples

This copy belongs to 'VANC03'

 A Model of Dynamic Systems 53

• Generalization to models and concepts that are typical for dynamic systems
such as interoperability and connectivity

Dynamic systems are typical for a large class of application systems we find today.
Therefore their adequate modeling becomes more and more important. Denotational
models provide here a major contribution.

Acknowledgements. I am grateful for stimulating discussions with Ingolf Krüger.

References

1. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: Towards a Theory of Actor Computa-
tion. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 565–579. Springer,
Heidelberg (1992)

2. Broy, M.: Towards a Mathematical Concept of a Component and its Use. First Compo-
nents’ User Conference, Munich (1996); Revised version in: Software - Concepts and
Tools 18, 137–148 (1997)

3. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement. Springer (2001)

4. Cardelli, L.: A Language with Distributed Scope. ACM Trans. Comput. Syst. 8(1), 27–59
(January); ALso appeared in POPL 1995

5. Grosu, R., Stølen, K.: A Model for Mobile Point-to-Point Data Flow Networks without
Channel Sharing. In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp.
505–519. Springer, Heidelberg (1996)

6. Grosu, R., Stølen, K.: A Denotational Model for Mobile Many-to-Many Data Flow Net-
works. Technical Report TUM-I9622, Technische Universität München (1996)

7. Haridi, S., van Roy, P., Smolka, G.: An Overview of the Design of Distributed Oz. In: The
2nd International Symposium on Parallel Symbolic Computation (PASCO 1997). ACM,
New York (1997)

8. Milner, R.: The polyadic π-calculus: A tutorial. Technical Report ECS-LFCS-91-180,
University of Edinburgh (1991)

9. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Part i + ii. Information
and Computation 100(1), 1–40, 41–77 (1992)

10. van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., Scheidhauer, R.: Mobile Objects
in Distributed Oz. ACM Toplas 19(5), 805–852 (1997)

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus�

Roberto Bruni1, Hernán Melgratti2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Departamento de Computación, FCEyN,

Universidad de Buenos Aires - CONICET, Argentina

Abstract. We focus on Hierarchical BIP, an extension of Joseph Sifakis
et al’s BIP component framework, to provide a semantics-preserving,
compositional encoding in the Petri calculus, a recently proposed algebra
of stateless connectors and one-position buffers.

1 Introduction

In recent years Joseph Sifakis has successfully pursued a research strand focussed
on a component framework called BIP [2], that has also been implemented in a
language and a tool-set. BIP is a component framework for constructing systems
by superposing three layers of modelling:

1) Behaviour, the lowest level, representing the sequential computation of
individual components as automata whose arcs are labelled by sets of ports.
The sets of ports of any two different components are disjoint, i.e., each port is
uniquely assigned to a component.

2) Interaction, the second level, defining the allowed interactions between com-
ponents. An interaction is just a set of ports typically of different components.

3) Priority, the top layer, assigning priorities to interactions to enforce schedul-
ing policies, typically with the aim of reducing the size of the state space.

In the absence of priorities, the interaction layer of BIP admits the algebraic
presentation given in [3] and comparisons with other models have been shown
in [7,1,11], see [8] for an overview. In particular, an equivalent version of BIP
systems is presented in [7] in terms of a compositional encoding in Petri nets
with boundaries [11].

Here we investigate hierarchically structured BIP systems and show that pre-
vious correspondence results on ordinay BIP can be extended to deal with Hier-
archical BIP (HBIP) as defined in [10]. HBIP systems are possibly formed by the
combination of other HBIP systems, each seen as an ordinary component whose
ports are its interactions. We exploit the Petri calculus, a calculus of stateful
connectors introduced in [11], to encode in a compositional way HBIP systems
while flattening them. Notably the encoding of components and of interactions
can be given separately in the Petri calculus and then assembled by ordinary
Petri calculus composition.

� Research supported by European FET-IST-257414 Integrated Project ASCENS,
Progetto MIUR PRIN CINA Prot. 2010LHT4KM, ANPCyT Project BID-PICT-
2008-00319.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 54–68, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 55

Structure of the paper. In § 2 we recall the main background on BIP and on the
Petri calculus to keep the paper self-contained. In § 3 we define Hierarchical BIP
and in § 4 we present the main result of the paper, namely the compositional
encoding from HBI(P) to the Petri calculus. In § 5 we give some concluding
remarks and discuss alternative approaches to HBIP. A toy running example of
a client-server system is used to illustrate the main notions and constructions.

2 Background

2.1 The BIP Component Framework

This section reports on the formal definition of BIP as presented in [4]. Since we
disregard priorities, we call BI(P) the framework presented here.

Definition 1 (Interaction). Given a set of ports P , an interaction over P is
a non-empty subset a ⊆ P .

We write an interaction {p1, p2, . . . , pn} as p1p2 . . . pn and a ↓Pi for the pro-
jection of an interaction a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi= a ∩ Pi.
Projection extends to sets of interactions in the following way γ ↓P= {a ↓P | a ∈
γ ∧ a ↓P �= ∅}.

Definition 2 (Component). A component B = (Q,P,→) is a transition sys-
tem where Q is a set of states, P is a set of ports, and →⊆ Q × 2P × Q is the
set of labelled transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. An interaction

a is enabled in q, denoted q
a−→, iff there exists q′ s.t. q

a−→ q′. By abusing the

notation, we will also write q
∅−→ q for any q.

Definition 3 (BI(P) system). A BI(P) system B = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}ni=1 of components Bi = (Qi, Pi,→i) such that
their sets of ports are pairwise disjoint, i.e., Pi∩Pj = ∅ for i �= j parameterized
by a set γ ⊆ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

The semantics of a BIP system γ(B1, . . . , Bn) is given by the transition system
(Q,P,→γ), with Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q× 2P ×Q is the least set

of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi−−−→ q′i

(q1, . . . , qn)
a−→γ (q′1, . . . , q

′
n)

Example 1. Consider the BI(P) system shown in Fig. 1, which contains a compo-
nent Server that sequentially interacts with a component Client. The Server

accepts a request from the Client thanks to the interaction {acpt, req}. Then,
the server can successfully answer the request by returning a value to the client
(interaction {ret, resp}) or can fail the request by rising an error signal, which
is handled by the client (interaction {err, hdle}). �

This copy belongs to 'VANC03'

56 R. Bruni, H. Melgratti, and U. Montanari

{{acpt, req}, {ret, resp}, {err, hdle}}

•
acpt

•ret •
err

�������	

acpt

��DS
�������	

ret

��

err

��

CS

•
req

•
resp

•hdle

�������	

req

��DC
�������	

resp

��

hdle

��

CC

Fig. 1. A simple client/server BI(P) system

R ::= © | ©· | I | X | Δ | Δ| ⊥ | � | ∧ | ∨ | ↓ | ↑ | R ⊗R | R;R

Fig. 2. Petri calculus grammar

2.2 Petri Calculus

The Petri calculus [11] enriches the algebra of stateless connectors from [5] with
one-place buffers along [1,11,6].

Terms of the Petri Calculus are defined by the grammar in Fig. 2. It consists
of the following constants plus parallel and sequential composition: the empty
place©, the full place©· , the identity wire I, the twist (also swap, or symmetry)
X, the duplicator (also sync) Δ and its dual

Δ

, the mutex (also choice) ∧ and
its dual ∨, the hiding (also bang) ⊥ and its dual �, the inaction ↓ and its dual
↑. The diagrammatical representation of terms is shown in Fig. 3. For n ∈ N, we

write n to denote the finite ordinal n
def
= {0, 1, . . . , n− 1}.

Any term has a unique associated sort (also called type) (k, l) with k, l ∈ N,
that fixes the size k of the left (input) interface and the size l of the right (output)
interface of P . The type of constants are as follows:©,©· , and I have type (1, 1),
X : (2, 2), Δ and ∧ have type (1, 2) and their duals

Δ

and ∨ have type (2, 1),
⊥ and ↓ have type (1, 0) and their duals � and ↑ have type (0, 1). The sort
inference rules for composed processes are in Fig. 4.

The operational semantics is defined by the rules in Fig. 5, where x, y ∈ {0, 1}.
The labels α, β, ρ, σ of transitions are binary strings, all transitions are sort-
preserving, and if R

α−→
β
R′ with R,R′ : (n,m), then #α = n and #β = m.

Notably, bisimilarity induced by such a transition system is a congruence.
Due to space limitation we omit details here and refer the interested reader

to [9].

Compound Terms. For the translation presented in § 4, we shall need addi-
tional families of compound terms, indexed by n ∈ N+ and k ∈ N (duals are
omitted):

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 57

© : 1 → 1 ◦
������ ◦ ©· : 1 → 1 ◦
������• ◦ X : 2 → 2
◦

���
���

� ◦

◦
������� ◦

Δ : 1 → 2

◦
◦

�������
����

���

◦

Δ

: 2 → 1

◦
����

���

◦
◦

�������
��� : 1 → 0 ◦ �

Λ : 1 → 2

◦
◦

�������
����

���+

◦
V : 2 → 1

◦
����

���

◦+

◦
�������

↑↑↑ : 1 → 0 ◦ •

⊥⊥⊥ : 0 → 1
� ◦ ↓↓↓ : 0 → 1 • ◦ I : 1 → 1 ◦ ◦

Fig. 3. Graphical representation of terms

R : (k, l) R′ : (m,n)

R⊗R′ : (k +m, l + n)

R : (k, n) R′ : (n, l)

R;R′ : (k, l)

Fig. 4. Sort inference rules

In : (n, n) ���n : (0, n) ↑↑↑ n : (0, n) Xn : (n+ 1, n+ 1)

Δn : (n, 2n) Λn : (n, 2n) Δk
n : (n, k ∗ n) Λk

n : (n, k ∗ n) dn : (0, 2n)

Intuitively, In, ���n and ↑↑↑ n correspond to n parallel copies of I, ��� and ↑↑↑ ,
respectively. Connector Δn (and its dual

Δ
n) is similar to Δ but duplicates n

wires in the other interface, while Δk
n (and its dual

Δ

n) replicates k-times the
n wires of the other interface. Connector dn (and its dual en) stands for the
synchronisation of n pairs of wires. We now give the definitions:

In =
⊗

n I X1 = X Xn+1 = (Xn ⊗ I); (In ⊗ X)

↑↑↑ n =
⊗

n ↑↑↑ Δ1 = Δ Δn+1 = (Δ⊗Δn); (I⊗ Xn ⊗ In)

���n =
⊗

n��� Λ1 = Λ Λn+1 = (Λ⊗ Λn); (I⊗ Xn ⊗ In)

dn = ���n;Δn Δ0
n = ���n Δk+1

n = Δn; (Δ
k
n ⊗ In)

Λ0
n = ↑↑↑ n Λk+1

n = Λn; (Λ
k
n ⊗ In)

The behaviour of compound terms is characterised by the next proposition.

Proposition 1 (from [6]). For n > 0,

1. Xn
α−→
β
t iff t = Xn, α = h0 . . . hn and β = h1 . . . hnh0.

2. Δn
α−→
β
t iff t = Δn, #α = n, #β = 2n and αi = βi = βn+i for all i < n.

3.

Δ

n
α−→
β
t iff t =

Δ

n, #α = 2n, #β = n and αi = αn+i = βi for all i < n.

4. Λn
α−→
β
t iff t = Λn, #α = n, #β = 2n, αi = βi + βn+i for all i < n.

5. Vn
α−→
β
t iff t = Vn, #α = 2n, #β = n, βi = αi + αn+i for all i < n.

This copy belongs to 'VANC03'

58 R. Bruni, H. Melgratti, and U. Montanari

(TkI)
© 1−→

0 ©•
(TkO1)

©• 0−→
1 ©

(Id)
I

1−→
1 I

(Tw)
X

ab−−→
ba X

(⊥⊥⊥)
⊥⊥⊥ 1−→⊥⊥⊥

()
��� −→

1 ���
(Δ)

Δ
1−→
11 Δ

(

Δ

)Δ11−−→
1

Δ

(Λa)
Λ

1−−→
(1−a)a

Λ
(Va)

V
(1−a)a−−−−→

1 V

C : (k, l) a basic connector
(Refl)

C
0k−−→
0l

C

P
α−→
γ Q R

γ−→
β S

(Cut)
P ; R

α−→
β Q ; S

P
α−→
β Q R

γ−→
Δ S

(Ten)
P ⊗R

αγ−−→
βΔ Q⊗ S

Fig. 5. Operational semantics for the Petri Calculus

6. Λn
l

α−→
β
t iff t = Λn

l , #α = l, #β = nl and αi = Σj<nβjl+i for all i < l.

7. Vn
l

α−→
β
t iff t = Vn

l , #α = nl, #β = l and βi = Σj<nαjl+i for all i < l.

8. Δn
l

α−→
β
t iff t = Δn

l , #α = l, #β = nl and βlj+i = αi for all i < l ,j < n.

9.

Δn
l

α−→
β
t iff t =

Δn
l , #α = nl, #β = l and βi = αlj+i for all i < l and j < n.

10. dn
α−→
β
t iff t = dn, #α = 0, #β = 2n and βi = βn+i for all i < n and j < n.

Relational Forms The encoding proposed in § 4 uses two classes of terms
of the Petri calculus, called the left and right relational forms, that represent
functions as Petri calculus terms [11].

For any h ∈ N, there is a bijection � � : 2h → {0, 1}h with

�U�i def
=

{1 if i ∈ U
0 otherwise

For Θ a set of Petri calculus terms, let TΘ denote the set of terms generated
by the following grammar:

TΘ ::= θ ∈ Θ | I | TΘ ⊗ TΘ | TΘ ; TΘ.

We shall use tΘ to range over terms of TΘ.

Definition 4. A term t : (k, l) is in right relational form when it is in

T{⊥⊥⊥} ; T{Δ} ; T{X} ; T{V} ; T{↑↑↑ }.

Dually, t is said to be in left relational form when it is in

T{↓↓↓ } ; T{Λ} ; T{X} ; T{ Δ} ; T{			}.

The following result spells out the significance of the relational forms.

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 59

•
log

�������	 log��
L

Fig. 6. Component Logging

{ {{acpt, req}}, {{ret, resp}}, {{err, hdle}, log} }

{ {acpt, req}, {ret, resp}, {err, hdle} }

•
acpt

•ret •
err

�������	

acpt

��DS
�������	

ret

��

err

��

CS

•
req

•
resp

•hdle

�������	

req

��DC
�������	

resp

��

hdle

��

CC

•
log

�������	 log��
L

Fig. 7. A simple BI(P) system

Lemma 1 (From [11]). For each function f : k → 2l there exists a term ρf :
(k, l) in right relational form, the dynamics of which are characterised by the
following:

ρf
α−→
β ρf ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u �= v ⇒ f(u) ∩ f(v) = ∅, α = �U�

and β = �f(U)�

The symmetric result holds for functions f : k → 2l and terms t : (l, k) in
left relational form. That is, there exists λf : (l, k) in left relational form with
semantics

λf
α−→
β λf ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u �= v ⇒ f(u) ∩ f(v) = ∅, β = �U�

and α = �f(U)�

3 Hierarchical BIP Systems

In this section we address the hierarchical composition of BI(P) systems, i.e.,
BI(P) systems can be taken as components of larger systems.

Example 2. Consider the scenario introduced in Example 1, which should be
extended with a logging functionality in order to record all error responses sent
by the component Server. Assume we already have the simple component for
logging depicted in Fig. 6. In this case, we would like to consider the system in

This copy belongs to 'VANC03'

60 R. Bruni, H. Melgratti, and U. Montanari

Fig. 1 as a single component to define a new BI(P) system, as the one shown
in Fig. 7. We remark that the interface (i.e., the set of ports) exposed by the
client/server subsystem is just its set of interactions. This ensures that the com-
posed system does not change the behaviour of the underlying subsystems. �

Next definition formally introduces the notion of hierarchical composition of
systems

Definition 5 (HBI(P) system). A Hierarchical BI(P) system (HBI(P)) is
either

− a BI(P) component B = (Q,P,→) with interface ι(B) = P ; or
− a composite system B = γ(B1, . . . , Bn) with interface ι(B) = γ where
{B1, . . . , Bn} is a set of hierarchical BI(P) systems with pairwise disjoint
interfaces, i.e., ι(Bi) ∩ ι(Bj) = ∅ for i �= j, and γ is a set of interactions
over n

i=1ι(Bi).

The semantics of HBI(P) systems is defined analogously to that of BI(P)
systems as the synchronous execution of the transitions of its constituent com-
ponents matching one defined interaction. We start by defining the state space
QB of a HBI(P) system B as follows:

− QB = Q if B = (Q,P,→)
− QB = QB1 × . . .× QBn if B = γ(B1, . . . , Bn).

Then, the semantics of a composite HBI(P) system B is given by the transition
system (QB, ι(B),→) where →⊆ QB × ι(B) ×QB is the least set of transitions
satisfying the following inference rules

a ∈ ι(B) ∀i ∈ 1..n : qi
a↓ι(Bi)−−−−→ q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

4 HBI(P) Systems as Petri Calculus Terms

This section gives an encoding of HBI(P) systems into the Petri calculus. Note
that, differently from BI(P), the Petri calculus uses consecutive natural numbers
to designate ports over interfaces. In order to establish a correspondence between
HBI(P) systems and Petri calculus terms, we will map names into natural num-
bers, i.e., given a finite set S with k = #S, we use wS to denote an injective
function wS : S → k that orders the elements of S. By abusing the notation, we
write wS to also denote its expected extension wS : 2S → 2k.

4.1 Encoding of Basic Components

We first address the encoding of basic components (Definition 2) as Petri calculus
terms. The encoding of components follows along the lines of the encoding of

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 61

◦
���

���
� ◦

+

◦

�������

			
			

		

◦

 ◦
(a) ρtarget→

◦ ◦

◦
◦ ◦

������
����

��+

◦
(b) λsource→

◦ ◦

◦ ◦

◦ ◦
(c) ρlbl→

Fig. 8. Petri calculus terms for relational forms

Petri nets proposed in [9], although it is simpler due to the fact that components
are just sequential systems.

Given a component B = (Q,P,→) with s transitions (i.e., #→= s), we rely
on the functions wQ, wP and w→ that respectively order the elements in Q, P
and→. In addition, we will use the following three functions source→, target→,
lbl→, which map a labelled transition belonging to → into its source, target and
labels, when considering the sets of names just as ordinals.

source→ : s→ #Q s.t. source→(w→(q
a−→ q′)) = wQ(q)

target→ : s→ #Q s.t. target→(w→(q
a−→ q′)) = wQ(q

′)

lbl→ : s→ 2#P s.t. lbl→(w→(q
a−→ q′)) = wP (a)

Thanks to Lemma 1, we know that the relational forms λsource→ , ρtarget→ and
ρlbl→ exist and their behaviours are in tight correspondence with the associated
functions.

Example 3. Consider the component Server in Fig. 1 and assume the following
ordering functions

wQ(DS) = 0 wP (acpt) = 0 w→(DS
acpt−−−→ CS) = 0

wQ(CS) = 1 wP (ret) = 1 w→(CS
ret−−→ DS) = 1

wP (err) = 2 w→(CS
err−−→ DS) = 2

Then, the relational forms associated to the above functions are defined as
follows and depicted in Fig. 8.
ρtarget→ = (X⊗ I) ; (I⊗ X) ; (V ⊗ I) λsource→ = (I⊗ Λ) ρlbl→ = I3 �

Definition 6. Let B = (Q,P,→) be a component. The Petri Calculus term
corresponding to the behaviour of B in state q ∈ Q is [[B]] : 0 → #P , which is
defined as follows

TBq

def
= ds ; (Is ⊗ (ρtarget→ ; Q{q} ; λsource→)) ;

Δ

s; ρlbl→

where

QQ′
def
=

⊗
i<#Q

qi where qi
def
=

{
©• if i ∈ wQ(Q

′)

© otherwise

This copy belongs to 'VANC03'

62 R. Bruni, H. Melgratti, and U. Montanari

���
���

���
���

��

�

���������

��
��

��
��

��
� ◦

��
��

��
��

��
��

��
�

�

����������

��
��

��
��

��
�� ◦

��
��

��
��

��
��

��
�

+

������•

���������������

�

������������

��
��

��
��

�� ◦
�������������

���������������

������

�������
���

���
� +

�������������

��������������

d3

������ ��
I3⊗ρtarget→

��� ��
I3⊗QDS

��� ��
I3⊗λsource→

��� �� Δ

3

��� ��
ρlbl→

���

Fig. 9. Encoding of the BI(P) component Server

Example 4. Consider the component Server introduced in Example 1. Figure 9
shows the term TBDS

corresponding to the encoding of the component Server

for the initial state DS and the ordering functions given in Example 3. �

The following results formalise the relation between the behaviour of com-
ponents and their encodings. The first lemma is auxiliary and characterises the
behavior of terms of the form QQ′

Lemma 2. QQ′
�Z�−−−→�W� R iff R = QQ′′ ,W ⊆ Q′, Z∩Q′ = ∅ and Q′′ = (Q′\W)∪

Z.

Proof. Examination of either rules (⊥⊥⊥1) and (1), together with the rule (Cut)

(when p = 0) or rules (TkI) and (TkO), together with the rule (Ten) (when p > 0).�

Next result ensures that the transitions of a component are in one-to-one
correspondence with the moves of the corresponding Petri calculus term.

Theorem 1. Let B = (Q,P,→) a basic component. Then,

(i) if q
a−→ q′ then TBq −−−−−→�wP (a)�

TBq′ .

(ii) if TBq −→
β
R then there exists q′ s.t. q

a−→ q′, R = TBq′ and β = �wP (a)�.

Proof. 1) By Lemma 2, Qq
�wQ(q′)�−−−−−−→
�wQ(q)�

Qq′ . Then, by Lemma 1 and rule (Cut)

after noting that source→(w→(q
a−→ q′)) = wQ(q) and target→(w→(q

a−→ q′)) =
wQ(q

′), we have

(ρtarget→ ; Q{q} ; λsource→))
�w→(q

a−→q′)�−−−−−−−−−→
�w→(q

a−→q′)�
(ρtarget→ ; Q{q} ; λsource→))

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 63

and subsequently by Proposition 1 and rules (Cut) and (Ten)

ds ; (Is ⊗ (ρtarget→ ; Q{q} ; λsource→)) ;

Δ

s
�w→(q

a−→q′)�−−−−−−−−−→

ds ; (Is ⊗ (ρtarget→ ; Q{q} ; λsource→)) ;

Δ

s

The proof is completed by noting that lbl→(w→(q
a−→ q′)) = wP (a) and using

Lemma 1 and rule (Cut) to conclude

TBq −−−−−→�wP (a)�
TBq′

2) If TBq −→
β
R, then by rule (Cut) ρlbl→

α−→
β
ρlbl→ ,

Δ

s; ρlbl→
αα−−→
β

Δ

s; ρlbl→ and

(Is ⊗ (ρtarget→ ; Q{q} ; λsource→))
αα−−→
αα

(Is ⊗R)

Hence,
(ρtarget→ ; Q{q} ; λsource→)

α−→
α
R

The only non trivial transition implies Q{q}
�Q′�−−−→
�q�

Q′
Q. By Lemma 1 and wQ(q) =

source→(w→(q
a−→ q′)), we conclude

λsource→
�wQ(q)�−−−−−→

α
λsource→

with α = �w→(q
a−→ q′)�. By reasoning analogously, on ρtarget→ , we have that

ρtarget→
α−−−−−−→

�wQ(q′)�
ρtarget→

Hence, R = (ρtarget→ ; Q{q′} ; λsource→). The proof is completed by using

Lemma 1 to conclude that ρlbl→
α−−−−−→

�wP (a)�
ρlbl→ . �

Example 5. It can be easily checked that the term TBDS
introduced in Example 4

has the following transitions:
TBDS

−−→
000

TBDS
TBDS

−−→
100

TBCS
TBCS

−−→
010

TBDS
TBCS

−−→
001

TBCS

that correspond to the transitions

DS
∅−→ DS DS

acpt−−−→ CS CS
ret−−→ DS CS

err−−→ DS �

4.2 Encoding of Interactions

We now focus on the encoding of an interaction as a stateless connector. For
α ∈ {0, 1}h a binary string of length h > 0, we let Rα : (h, 1) denote the process
inductively defined by:

R0 =↓;� R1 = I Rxα = (Rx ⊗Rα);

Δ

Intuitively, the term Rα synchronizes the ports associated to the positions of α
that are set to 1.

This copy belongs to 'VANC03'

64 R. Bruni, H. Melgratti, and U. Montanari

Lemma 3. The process Rα is stateless for any α, i.e., whenever Rα β−→
β′
R′ then

R′ = Rα.

Proof. The thesis follows simply by noting that Rα is composed out of stateless
connectors, i.e., the encoding does not exploit the constants ©,©· . �

Lemma 4. Rα β−→
β′
R′ iff

1. β = 0#α and β′ = 0; or
2. β = α and β′ = 1.

Proof. The thesis follows by induction on the length of α. �

Definition 7. Let γ be a finite set of interactions over a finite set of ports I,
j = #I and k = #γ. After fixing wI and wγ , the encoding for the set γ is

[[γ]]I = Λk
j ; �γ�I ;Δk; (Ik ⊗ (Vk

1 ;⊥))

where

�{a}�I = R�wI(a)�

�{a} ∪ γ′�I = R�wI(a)� ⊗ �γ′�I when a is the minimum in {a} ∪ γ′ w.r.t. wγ

Example 6. Consider the set γ = {{acpt, req}, {ret, resp}, {err, hdle}} de-
fined over I = {acpt, ret, err, req, resp, hdle} with the ordering functions de-
fined as follows:

wγ({acpt, req}) = 0 wγ({ret, resp}) = 1 wγ({err, hdle}) = 2

wI(acpt) = 0 wI(ret) = 1 wI(err) = 2

wI(req) = 3 wI(resp) = 4 wI(hdle) = 5

Figure 6 shows the subterm Λ3
6; �γ�I (we use a compact representation in which

a chain of several identical connectors like Λ or

Δ

are collapsed in a unique node).
Note that �γ�I = R�wI({acpt,req})�⊗R�wI({ret,resp})�⊗R�wI({err,hdle})� stands for
the parallel evaluation of the three interactions in γ. The term Λ3

6 ensures that
conflicting interactions (i.e., the ones sharing a common action) are performed
in mutual exclusion. We remark that the term Λ3

6; �γ�I still would allow for the
concurrent execution of non-conflicting interactions (e.g., involving different sets
of components). Since the semantics of BI(P) is purely sequential, we need to
forbid the concurrent execution of disjoint interactions. This is ensured in the
complete encoding by the subterm Δ3; (I3 ⊗ (V3

1;⊥)). �

The following results characterise the behaviour of [[γ]]I and are instrumental
to the proof of our main result (Theorem 2).

Lemma 5. Let γ be a synchronization set over I with #I = j and #γ = k, and
wI and wγ the functions sorting the elements of I and γ.Then

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 65

��
��

��
��

• �

���
���

��
• �

����
���

◦

���

�		
• �

�������
• �

��������

R�wI ({acpt,req})�

◦

�����������������

��
��

��
��

��
��

��
��

��
��

��
��

��
+ • �

��
��

��
��

��
��

�

◦

�������������������

��
��

��
��

��
��

��
��

��
��

��
��

+

◦

!!!!!!!!!!!!!!!!!!!!!

""
""

""
""

""
""

""
""

""
""

""
+ • �

���
���

�

◦

######################

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

$
+ • � ◦

���

�		

◦

������������������������

%%
%%

%%
%%

%%
%%

%%
%%

%%
%%

+

�������

◦

��������������������������

&&
&&

&&
&&

&&
&&

&&
&&

&&
+ • �

''''''''''

R�wI ({ret,resp})�

• �

((
((

((
((

• �

)))
)))

)

• � ◦

���

�		
• �

++++++
,,,,,,,

R�wI ({err,hdle})�

Λ36

��� ��� ��� ���
�γ�I

Fig. 10. Graphical representation of Λ3
6; �γ�I

1. �γ�I : (j ∗ k, k).
2. �γ�I is stateless for any γ, i.e., whenever �γ�I

α−→
β
R then R = �γ�I .

3. �γ�I
α−→
β
R iff ∀0 ≤ h ≤ k − 1 either

− βh = 0 and ∀j ∗ h ≤ i ≤ j ∗ (h+ 1)− 1 : αi = 0, or
− βh = 1, and ∃a ∈ γ s.t. wγ(a) = h and αj∗h..j∗(h+1)−1 = �wI(a)�.

Proof. (1) Follows by induction on #γ. (2) Follows by noting that �γ�I is com-
posed out of stateless connectors, i.e., the encoding does not exploit the constants
©,©· . (3) By induction on h and using Lemma 4. �

Lemma 6. Let γ be a synchronization set over I with #I = j and #γ = k, and
wI and wγ the functions sorting the elements of I and γ.Then

1. [[γ]]I : (j, k).

2. [[γ]]I is stateless for any γ, i.e., whenever [[γ]]I
α−→
β
R then R = [[γ]]I .

3. [[γ]]I
α−→
β
R iff ∃a ⊆ γ s.t. #a ≤ 1, α = �wI(a)� and β = �wγ(a)�.

Proof. (1) Follows from the fact that: Λk
#I : (j, j ∗ k) ; �γ�I : (j ∗ k, k) by

Lemma 5(1); Δk : (k, 2k); and (Ik⊗ (Vk
1 ;⊥)) : (2k, k). (2) Follows by noting that

This copy belongs to 'VANC03'

66 R. Bruni, H. Melgratti, and U. Montanari

�γ�I is composed out of stateless connectors, i.e., the encoding does not exploit
the constants ©,©· . (3) By Proposition 1(5),

Vk
1

α′
−→
β

Vk
1

with #α′ = k, #β = 1 and β =
∑

j<k α
′
j . Therefore,

∑
j<k α

′
j ≤ 1. By the

semantics of ⊥ and ;, we have

Vk
1 ;⊥

α′
−→ Vk

1 ;⊥

By using Proposition 1(2) and the inference rules for ; and ⊗

Δk; (Ik ⊗ (Vk
1 ;⊥))

α′
−→
α′

Δk; (Ik ⊗ (Vk
1 ;⊥))

The proof is completed by using Lemma 6(3), Proposition 1(6) and the semantics
of ;. �

4.3 Encoding of HBI(P) Systems

The encoding of HBI(P) systems is defined by a suitable combination of the
encoding of basic components and interactions.

Definition 8. Let B be a HBI(P) system with initial q ∈ QB. The corresponding
Petri Calculus term is inductively defined as follows.

[[B]]q =

⎧⎨
⎩
TBq ifB = (Q,P,→)
([[B1]]q1 ⊗ . . .⊗ [[Bn]]qn); [[γ]]I ifB = γ(B1, . . . , Bn), q = (q1, . . . , qn),

I = ∪n
i=1ι(Bi), and wI s.t. ∀a : wI(a) = wι(Bi)(a) +

∑i−1
j=1 #ι(Bj)

Theorem 2 (Correspondence). Let B be a HBI(P) system with initial state

q. Then q
a−→ q′ if and only if [[B]]q −−−−−−−→�wι(B)(a)�

[[B]]q′ .

Proof. By induction on the structure of the system B. Base case (B = (Q,P,→))
follows by Theorem 1. Inductive step follows by applying inductive hypothesis
on [[B1]]q1 , . . . , [[Bn]]qn . Then, the proof is completed by using Lemma 6. �

5 Conclusion

This paper studies the hierarchical composition of BI(P) systems and its rela-
tion with the Petri calculus. For convenience of presentation we have chosen the
particular variant of BI(P) consisting of the basic interaction model and purely
sequential execution. Nevertheless, the results presented in this paper can be
extended or adapted to handle several variants proposed in the literature. The
remaining of this section is devoted to the discussion of some alternative pre-
sentations for HBI(P) and their relation with the encodings proposed in this
paper.

This copy belongs to 'VANC03'

From Hierarchical BIP to Petri Calculus 67

Concurrent executions. The work in [10] proposes a notion of hierarchical compo-
sition of BI(P) systems that allows for the concurrent execution of interactions,
i.e., a set of conflict-free interactions (i.e., interactions that are pairwise disjoint)
can be fired concurrently if enabled. We could encode such behaviour simply by
defining [[γ]]I as follows.

[[γ]]I = Λk
#I ; �γ�I

This definition simplifies Definition 7 by removing the subtermΔk; (Ik⊗(Vk
1 ;⊥)).

As already mentioned in § 4.2, the subterm (Vk
1 ;⊥) ensures the execution of a

unique interaction at a time. The results presented in the previous sections could
also be formulated for this variant with minor adjustments.

For the sake of uniformity, the proposal in [10] also considers concurrent ba-
sic components instead of just sequential components as originally proposed in
BIP. Concurrent basic components could be modelled as C/E or P/T nets with
boundaries, which can be encoded as Petri calculus terms as shown in [9].

Triggers. In order to represent different modes of synchronisation, the BIP model
has been extended with a sorting discipline for ports in [3]. Typing associates
synchronization types (trigger or synchron) to ports or connectors. The main
difference is that an interaction {p1, . . . , pn} actually represents a set of inter-
actions, i.e., all nonempty subset of {p1, . . . , pn} that contains some trigger;
otherwise (if all of the ports are synchrons), the only possible interaction is the
maximal one. Then, an interaction set γ contains either standard interactions
(i.e., without triggers), denoted as before by a, and connectors (i.e., interactions
containing at least a trigger), denoted by c. Let c be a connector, we write γc for
the set of all standard denoted interactions (i.e., all subsets of c that contains a
trigger). By assuming a set of interactions, we extend Definition 7 with the rules
for encoding connectors

�{c}�I = Λk
j ; �γc�I ; Vk

1

with j = #I and k = #γc (rule for �{c} ∪ γ′�I is analogous).
By using Lemma 5 and the semantics of Λk

j and Vk
j , it is easy to conclude that

the only non trivial transitions of �{c}�I are �{c}�I α−→
1

�{c}�I with α = �wI(a)�
and a ∈ γc. This characterization is analogous to the one for standard transitions
in Lemma 4. This suffices to show that the correspondence results smoothly
extend to the semantics of triggers.

Hiding. Hiding is an usual operator when composing systems hierarchically,
because it enables components to compute internally. We can incorporate hiding
to the definition of a HBI(P) system by adding the following item to Def. 5:

− a composed system B = νaB1 with interface ι(B) = ι(B1) � {a} where B1

is a hierarchical BI(P) system and a ∈ ι(B1).

The semantics of B = νaB1 is given by extending the definition of the space
state of a HBI(P) system with the equation

This copy belongs to 'VANC03'

68 R. Bruni, H. Melgratti, and U. Montanari

− QB = {νaq|q ∈ QB1} if B = νaB1

and the following two inference rules

q
a−→ q′

νaq
∅−→ νaq′

a �= b q
b−→ q′

νaq
b−→ νaq′

The encoding of HBI(P) system with hiding can be simply handled as follows

[[νaB]]νaq = [[B]]q ; H�wι(B)({a})�

where Hα for α ∈ {0, 1}h is the the process inductively defined by:

H0 = I H1 = ⊥⊥⊥ Hxα = (Hx ⊗Hα)

We remark that the term Hα replicates on the right interface only the ports of
the left interface that are in the positions of α and that are set to 0, while the
others are kept hidden. Consequently, H�wι(B)({a})� hides the port associated to
a. The extension of the correspondence results to HBI(P) systems with hiding
is straightforward.

References

1. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55.
Springer, Heidelberg (2009)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2006), pp. 3–12. IEEE Computer Society (2006)

3. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

4. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

5. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1-2), 98–120 (2006)

6. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
312–326. Springer, Heidelberg (2011)

7. Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp.
19–38. Springer, Heidelberg (2012)

8. Bruni, R., Melgratti, H., Montanari, U.: A survey on basic connectors and buffers.
In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 49–68. Springer, Heidelberg (2012)

9. Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for
C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3) (2013)

10. Graf, S., Quinton, S.: Contracts for BIP: Hierarchical interaction models for compo-
sitional verification. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574,
pp. 1–18. Springer, Heidelberg (2007)

11. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg
(2010)

This copy belongs to 'VANC03'

Programming and Verifying
Component Ensembles �

Rocco De Nicola1, Alberto Lluch Lafuente1, Michele Loreti2,
Andrea Morichetta1, Rosario Pugliese1, Valerio Senni1, and Francesco Tiezzi1

1 IMT Institute for Advanced Studies Lucca, Italy
2 Università degli Studi di Firenze, Italy

Abstract. A simplified version of the kernel language SCEL, that we
call SCELight, is introduced as a formalism for programming and
verifying properties of so-called cyber-physical systems consisting of
software-intensive ensembles of components, featuring complex intercom-
munications and interactions with humans and other systems. In order
to validate the amenability of the language for verification purposes, we
provide a translation of SCELight specifications into Promela. We test the
feasibility of the approach by formally specifying an application scenario,
consisting of a collection of components offering a variety of services meet-
ing different quality levels, and by using SPIN to verify that some desired
behaviors are guaranteed.

Keywords: Cyber Physical Systems, Component-based Systems, For-
mal Methods, Process Calculi, Verification, Model Checking.

1 Introduction

Nowadays much attention is devoted to software-intensive cyber-physical sys-
tems. These are systems possibly made of massive numbers of components, fea-
turing complex intercommunications and interactions with humans and other
systems and operating in open and unpredictable environments thus needing to
dynamically adapt to new requirements, technologies and contextual conditions.
Such classes of systems include the so-called ensembles [1] and systems of sys-
tems [2], mainly characterized by the idea of assembling or aggregating groups of
autonomous components, which may be independently controlled and managed,
and whose interaction may be cooperative or competitive.

The design and the analysis that these classes of systems meet the expec-
tations of their users pose big challenges to language designers and software
engineers. The problem for language designers is to provide the right set of pro-
gramming abstractions together with the formal machinery that permits guaran-
teeing that the expected behavior is exhibited. To deal with the above mentioned
challenges, in [3] we have introduced the kernel language SCEL that permits gov-
erning the complexity of such systems by providing flexible abstractions, by
� Research supported by the European projects IP 257414 ASCENS and STReP

600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 69–83, 2014.
© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

70 R. De Nicola et al.

enabling transparent monitoring of the involved entities and by supporting the
implementation of self-* mechanisms such as self-adaptation. The key concepts
of the language are those of Behaviors, Knowledge, Aggregations and Policies
that have proved fruitful in modelling autonomic systems from different applica-
tion domains such as, e.g., collective robotic systems [3,4], service provision and
cloud-computing [5,6,7], and cooperative e-vehicles [8].

One of the distinguishing features of SCEL is the use of flexible, group-oriented,
communication primitives that allows one to implicitly select the set of compo-
nents to communicate with, by evaluating a given predicate P used as the target.
When a communication action has predicate P as a target, it will involve all com-
ponents that satisfy P . For example, if a system contains elements that export
attributes such as serviceProvided and QoS and one would like to program a com-
ponent willing to interact with all the components that provide a service s and
offer a QoS above q, (s)he can use the predicate serviceProvided = s ∧ QoS > q
to select the component’s partners.

Contribution. This paper presents a first step towards using SCEL and the SPIN
model checker [9] for guaranteeing systems properties. For ease of presentation
we introduce a simple variant of SCEL that we call SCELight. We provide a
translation of SCELight specifications into Promela, that is the input language
of SPIN, and show how to exploit it to verify ensemble-based scenarios with
SPIN. We test feasibility of the approach by considering an application scenario,
borrowed from [5], consisting of a collection of components offering a variety of
services meeting different quality levels.

Structure of the paper. The rest of the paper is organized as follows. In the next
section, we introduce our application scenario that will be used also to describe
the language constructs. In Section 3 we introduce syntax and informal seman-
tics of SCELight, while in Section 4 we describe our translation and its intricacies
demanded by the significantly different nature of SCELight and Promela. In Sec-
tion 5 we show how SPIN can be used to check and verify properties of SCELight
specifications, by relying on the translation into Promela of the SCELight spec-
ification of the scenario presented in Section 3. Finally, Section 6 concludes by
also touching upon directions for future work.

2 A Service Provision Scenario

We consider an application scenario, borrowed from [5], consisting of a collection
of components offering a variety of services. Each component manages and elab-
orates service requests with different requirements, roughly summarized by the
following three service quality levels: gold, silver and base. These requirements
are defined via a combination of predicates on the hardware configuration and
the runtime state of the provider components. For example, the runtime state
can give a measure of the number of service requests currently handled locally.
Notice that the hardware measure is static while the load estimate is dynamically
updated whenever a component receives or completes a service request.

This copy belongs to 'VANC03'

Programming and Verifying Component Ensembles 71

SILVER

SILVER

GOLD

GOLD

BASE

BASE

SILVER ENSEMBLE

CLIENT

qry(factorial)@SILVER

SILVER

factorial

factorial

factorial

storage

Fig. 1. Group-oriented communication in the service provision scenario

The quality of service, hence, implicitly defines three ensembles, which group
together service provider components according to the quality requirements they
are able to provide. Clearly, since the quality of service depends on the compo-
nent state, ensembles are dynamic and components do not need to explicitly
migrate from one ensemble to the other: their change of state will implicitly en-
tail their membership to ensembles. The requirements characterizing the three
ensembles of service providers are:

– Gold: components must have a high level of hardware configuration, i.e. a
hardware level greater or equal to 7;

– Silver : components must provide a hardware configuration with a level that
is at least 4 and, whenever a component provides a hardware level over 7, the
computational load must be less than 40%; this latter condition guarantees
that gold components can handle requests at silver level only when their
computational load is under 40%;

– Base: components can have any hardware level, however if they are also gold
or silver components then their computational load must be under 20% or
40%, respectively.

We remark that components dynamically and transparently leave or enter an
ensemble when their computational load changes. For instance, a gold component
leaves a silver ensemble when its computational load becomes higher than 40%.

Let us now consider a client component willing to submit a request for service
factorial, which remotely computes the factorial of a natural number. Let us
further assume that the client is interested in having the service from a silver-
quality provider, to ensure the result to be provided within a reasonable amount
of time (i.e., on a quite fast, light-loaded server). Before submitting its request,
this component interacts with the ensemble of silver components searching a
provider of the factorial service. This search is done by taking advantage of the
group-oriented communication (Figure 1), which allows the client to dynamically

This copy belongs to 'VANC03'

72 R. De Nicola et al.

identify a component that exposes the service factorial at the wanted silver
service level. If more than one provider component meets these requirements,
one of them will be non-deterministically selected. Then, the client posts the
actual request to the selected component and waits for the result.

Notice that the application scenario discussed above exploits different forms
of communication. First, the invoking client uses group-oriented communication
to identify the component that is able to handle specific service request. Then,
point-to-point communication is used for client-server interaction.

3 The SCELight Language

Knowledge
K

Processes

P

I Interface

Fig. 2. A SCELight component

SCEL (Software Component Ensemble
Language) [3] is a language for program-
ming service computing systems in terms
of service components aggregated accord-
ing to their knowledge and behavioural
policies. To enhance flexibility with re-
spect to different application domains,
SCEL is parametric with respect to the
language for expressing policies, the pred-
icate regulating component interactions,
and the notion of knowledge.

For ease of presentation we consider in this work an instantiation of SCEL
named SCELight, where no policy language is provided, the interaction predicate
interprets the composition of component’s processes as a standard interleaving,
and knowledge repositories are implemented as multiple distributed tuple-spaces
à la Klaim [10]. Moreover, SCELight does not include other sophisticated features
of SCEL such as higher-order communication and dynamic creation of new names
and components. Last, SCELight includes a specific primitive for atomically up-
dating attribute values, and replaces the non-deterministic choice of SCEL by an
ordinary conditional choice. These two standard control flow constructs, that are
part of the syntax of Promela, simplify the specification task and can be easily
realized in SCEL.

The basic ingredient of SCELight is the notion of (service) component I[K, P],
graphically depicted in Figure 2, that consists of:

1. An interface I publishing and making available structural and behavioural
information about the component itself in the form of attributes, i.e. names
acting as references to information stored the component’s repository.

2. A knowledge repository K managing both application and awareness data,
together with specific handling mechanisms. It stores also the information
associated to the interface.

3. A process P that can execute local computations, coordinate interaction with
the knowledge repository or perform adaptation and reconfiguration.

This copy belongs to 'VANC03'

Programming and Verifying Component Ensembles 73

Table 1. SCELight syntax

Definitions: Systems:

D ::= ∅
∣
∣ A(f̄) � P

∣
∣ D1, D2 S ::= I[K, P]

∣
∣ S1 ‖ S2

Knowledge: Items: Templates:

K ::= ∅
∣
∣ 〈t〉

∣
∣ K1 ‖ K2 t ::= e

∣
∣ t1, t2 T ::= v

∣
∣ x

∣
∣ ? x

∣
∣ T1, T2

Processes: Targets:

P ::= nil
∣
∣ a.P

∣
∣ if (e) then P1 else P2

∣
∣ P1 | P2

∣
∣ A(ū) c ::= n

∣
∣ P

Actions: Names:

a ::= get(T)@c
∣
∣ qry(T)@c

∣
∣ put(t)@c

∣
∣ attr := e n ::= i

∣
∣ x

A SCELight specification is a pair 〈D, S〉 grouping together a set of pro-
cess definitions D and a system S. The syntax of definitions and systems is
presented in Table 1. A (recursive) process definition has the form A(f̄) � P ,
with A, f̄ and P denoting a process identifier, a list of formal parameters, and a
process, respectively. We will use ū to denote a list of actual parameters. Defini-
tions can be dynamically activated by processes running in system components.
We assume that each process identifier has a single definition. Systems aggregate
components through the composition operator _ ‖ _ .

Knowledge. A Knowledge repository K is a tuple-space, i.e. a (possibly empty)
multiset of stored tuples 〈t〉, composed by the operator _ ‖ _ . Tuples are knowl-
edge items consisting of sequences of values. Such values can result from the
evaluation of some given expression e. We assume that expressions may contain
attribute names attr, values v (i.e., component identifiers i, strings and inte-
gers), and variables x, together with the corresponding standard operators. To
pick a tuple out from a tuple-space by means of a given template T (i.e., a
sequence of values and variables), the pattern-matching mechanism is used: a
tuple matches a template if they have the same number of elements and corre-
sponding elements have matching values or variables; variables match any value
of the same type (? x is used to bind variables to values) and two values match
only if they are identical. If more than one tuple match a given template, one of
them is arbitrarily chosen.

Processes and Actions. Processes are the active computational units. Each pro-
cess is built up from the inert process nil via action prefixing (a.P), conditional
choice (if (e) then P1 else P2), parallel composition (P1 | P2), and parametrized
process invocation (A(ū)). Processes can perform four different kinds of actions.
Actions get(T)@c, qry(T)@c and put(t)@c are used to manage shared knowl-
edge repositories by withdrawing/retrieving/adding information items from/to
the knowledge repository identified by c. These actions exploit templates T to se-
lect knowledge items t from the repositories. They are implemented by invoking

This copy belongs to 'VANC03'

74 R. De Nicola et al.

the handling operations provided by the knowledge repository. Action attr := e
atomically assigns the value of e to attr and, differently from the other actions,
it is not indexed with an address because it always acts locally. Actions get and
qry are blocking and, thus, may cause the process executing them to wait for the
wanted element if it is not (yet) available in the knowledge repository. The two
actions differ for the fact that get removes the retrieved item from the target
repository while qry leaves the repository unchanged. Actions put and := are
instead immediately executed.

Different entities may be used as the target c of an action, namely a compo-
nent name n (in case of point-to-point communication) or a predicate P (in case
of group-oriented communication). In fact, in an action using a predicate P to
indicate the target, the predicate acts as a ‘guard’ specifying all components
that may be affected by the execution of the action, i.e. a component must sat-
isfy P to be the target of the action. Thus, the set of components satisfying a
given predicate used as the target of a communication action can be considered
as the ensemble with which the process performing the action intends to inter-
act. A predicate is a boolean-valued expression obtained by applying standard
operators to the results returned by the evaluation of relations between com-
ponents’ attributes and expressions. Notably, an attribute name occurring in a
predicate refers to an attribute within the interface of the object components
(i.e., components that are target of the communication action).

The service provision scenario in SCELight. The application scenario introduced
in Section 2 can be formalized in SCELight as the following specification

〈D, Ic1 [Kc1 , Pc1] ‖ . . . ‖ Icn [Kcn , Pcn] ‖ Ip1 [Kp1 , Ap1] ‖ . . . ‖ Ipm [Kpm , Apm]〉

consisting of a composition of n clients Ich [Kch , Pch] and m providers
Ipj [Kpj , Apj]. The latter ones are dynamically organised in ensembles accord-
ing to requirements expressed in terms of suitable attributes exposed in the
components’ interfaces. In particular, we assume that attributes named hw and
load are provided by each component. The former can take an integer value
from 0 to 10 that gives an indication of the capacity of the hardware configu-
ration of the component, while the latter can take an integer value from 0 to
100 that estimates the actual computational load of the component. The values
of such attributes can be dynamically changed through actions hw := e1 and
load := e2. Each service component also stores in its knowledge repository a col-
lection of items indicating the available services, together with their component
identifier. For example, the provider pj offering the factorial service stores in
its local repository the item 〈“service”, “factorial”, ipj 〉. Note that including the
identifier in the tuple publishing the service is fundamental as the group-oriented
communication primitives are completely anonymous, i.e. the actual objects of
a group-oriented communication action are not known to the subject.

This copy belongs to 'VANC03'

Programming and Verifying Component Ensembles 75

The three ensembles of gold, silver and base service providers are characterized
by the following predicates:

Pg � (hw ≥ 7)
Ps � (4 ≤ hw < 7) ∨ (Pg ∧ load < 40)
Pb � (hw < 4) ∨ (Ps ∧ load < 40) ∨(Pg ∧ load < 20)

Each client component ch runs the process Pch , that takes care of the inter-
action with the factorial service and is of the form

qry(“service”, “factorial”, ?x)@Pk.
put(“invoke”, “factorial”, v, ich)@x.
get(“result”, “factorial”, ?y)@ich . P ′

ch

for some service level k in {b, s, g} and some argument v for the factorial function
the client would like the server to execute.

In words, such process first searches, via a qry action, among the components
belonging to the ensemble identified by predicate Pk, an item matching the
template (“service”, “factorial”, ?x). In this way, by taking advantage of group-
oriented communication, the client is able to dynamically identify a component x
that provides the factorial service at the desired service level k. Then, via a put
action, the process invokes the selected service, in a point-to-point fashion, by
providing the actual parameter v of the request. After issuing the invocation,
the process waits for the result (recall that action get is blocking). Whenever
the result of the service invocation is made available, the process can withdraw
it from the local repository and continue as process P ′

ch .

Each server ipj runs the process Apj defined in D as:

Apj � get(“invoke”, “factorial”, ?x, ?y)@ipj .
load := load + 20.
(Apj | Q(x, y))

The process is triggered by a client request. Whenever this happens, the compu-
tational load is updated; we assume that each service instance uses 20% of the
sever’s capacity. Then, the factorial service becomes again ready to serve other
client requests, and the process Q, which actually computes the result of the
invoked service for the current request, is executed. We assume that, before its
termination, process Q updates the value of attribute load, and puts the result
of the computation in the repository of the client.

4 Translating SCELight into Promela

In this section we introduce the translation of SCELight specifications into
Promela in order to verify ensemble-based scenarios with the model checker SPIN.
The translation is formally defined by a family of functions �·�.

This copy belongs to 'VANC03'

76 R. De Nicola et al.

�〈D, S〉� = /* The type of the interface as a struct of attributes */
typedef interface{

int attr_1;
. . .
int attr_w;

}

/* A component-indexed array of interfaces */
interface I[cNum(S)];

/* Component-indexed array of knowledge repositories */
chan K[cNum(S)] = [capacity] of { int, . . . , int

︸ ︷︷ ︸

max(S,D)

}

int initialized = 0;

/* process definitions */
�D�max(S,D),cNum(S)−1

/* Component specifications */
�S�max(S,D),cNum(S)−1

Fig. 3. Translation of SCELight specifications

Specifications. Given a SCELight specification 〈D, S〉, function �·� in Figure 3
returns a Promela specification containing the declaration of the necessary data
structures for representing interfaces, knowledge, components and processes. Data
structures representing interfaces and knowledge repositories are declared with a
global scope; in this way, attributes and knowledge items can be directly accessed
by Promela processes.

Interfaces. The translation declares a structured type interface as a collection
of (integer) variables, one for each attribute; we assume that all components ex-
pose the same set of attributes {attr1, . . . , attrw}. All interfaces are then recorded
in the array I, whose size is computed by function cNum(S), which returns the
number of components in S.

Repositories. All knowledge repositories are grouped together in the array K.
Each repository is implemented as a channel of tuples of length max(S, D), which
corresponds to the maximum length of items used in the definitions D and system
S. To simplify message management in Promela, all tuples have the same length
and are composed only of integer values. To fulfil this assumption, messages
representing shorter items are completed by using dummy values (see Figure 8),
while string values are converted into integers in a pre-processing phase. The
dimension of repositories is set by means of the parameter capacity (its value
depends on the application domain).

Initialization and Process -Definitions. The translation also initializes a counter
(initialized) used to implement a barrier that guarantees that all processes

This copy belongs to 'VANC03'

Programming and Verifying Component Ensembles 77

�D1, D2�
m,� = �D1�

m,� �D2�
m,� �S1 ‖ S2�

m,� = �S1�
m,� �S2�

m,�

�A(f̄) � P �m,� = proctype A(f̄) { run A_0(f̄) } �P �
m,�,i,f̄∪var(P)
A_0

�Ii[Ki, Pi]�m,� = active proctype c_i {
atomic {

/* Attribute initialization */
I[i].attr_1 = Ii.attr1; . . . I[i].attr_w = Ii.attrw;

/* Knowledge repository initialization */
∀ t ∈ Ki : K[i]!�t�;

/* Increment initialization counter */
initialized++;

}
/* Start when all components are initialized */
initialized == � + 1 -> run c_i_0(0̄)

}
�Pi�

m,�,i,var(Pi)
c_i_0

Fig. 4. Translation of definitions and system components

start their execution when all initializations of interface attributes and knowl-
edge repositories is terminated. Finally, an auxiliary function �·�m,� is used to
individually translate the process definitions and the system components. This
function is parameterized by the maximum length of items m and the highest
component index (ranged from 0 to cNum(S)−1) necessary to properly translate
SCELight processes in D and S.

Process Definitions. The translation of process definitions and system compo-
nents is reported in Figure 4. A definition A(f̄) � P is rendered as a declaration
of a Promela process (via the proctype construct) with the same name and pa-
rameters A(f̄), and followed by the translation of P . As clarified later, the latter
is another process declaration that will be activated by the run operator within
the body of the process declaration A.

Components. The translation of a component Ii[Ki, Pi] corresponds again to a
process declaration, with name c_i, that initializes the data structures modelling
the component attributes and its knowledge repositories with values in Ii and Ki.
Notably, differently from all other process definitions, component translations are
automatically instantiated in the initial system state (by means of the keyword
active). Since the repository is modelled as a channel K[i], the insertion of (the
translation of) an item is performed by means of a send operation (!). When
all initializations are completed, the execution of the translation of Pi, defined
immediately after c_i, is triggered. Such translation is defined as a function
�·�m,�,i,x̄

p parameterized, besides by m and �, also by the process index i, the set
x̄ of variables used in the SCELight process (identified by functions var(·) and

This copy belongs to 'VANC03'

78 R. De Nicola et al.

�nil�m,�,i,x̄
p = proctype p(x̄) { }

�a.P �m,�,i,x̄
p = proctype p(x̄) { �a�m,�; run p0 }

�P �m,�,i,x̄
p0

�if (e) then P1 else P2�
m,�,i,x̄
p = proctype p(x̄) {

if
:: atomic{ e -> run pt }
:: atomic{ else -> run pf }

fi
}
�P1�

m,�,i,x̄
pt

�P2�
m,�,i,x̄
pf

�P1 | P2�
m,�,i,x̄
p = proctype p(x̄) { atomic { run pl; run pr } }

�P1�
m,�,i,x̄
pl

�P2�
m,�,i,x̄
pr

�A(ū)�m,�,i,x̄
p = proctype p(x̄) { run A(ū) }

Fig. 5. Translation of processes

passed as parameters from a process to another) and the name p to be used
for the process declaration to generate unique process names. To guarantee the
uniqueness of process declaration names, for each component i the names of its
declarations are prefixed by c_i_0 and are built by adding a character for each
translated construct: 0 for action prefix, t or f for conditional choice (depending
on the branch), l or r for parallel composition (depending on the side).

Processes. The translation of processes is reported in Figure 5. Each SCELight
process is naturally translated into a Promela process declaration. The base cases
are the translations of the empty process nil and call A(ū), which consist of an
empty declaration and a declaration containing only a run statement (see the
translation of definitions in Figure 4), respectively. In case an action prefixing
a.P , the process declaration contains the translation of a, which models the
action execution, while the translation of the continuation P is outside the dec-
laration and is activated only after the termination of the action execution. The
translation of the other constructs, namely conditional choice and parallel com-
position, is similar and straightforwardly relies on the Promela constructs for
selection (if . . . fi) and for the parallel execution of processes (via multiple run
statements). Both cases use an atomic block: in case of conditional choice, it
just aims at reducing the complexity of the verification model (by restricting
the amount of interleaving), while in case of parallel execution this ensures the
simultaneous activation of the parallel processes.

Actions. Translation �·�m,�,i of actions is defined in Figure 6. It is worth notic-
ing that in most cases atomic blocks are used to guarantee atomic execution

This copy belongs to 'VANC03'

Programming and Verifying Component Ensembles 79

�get(T)@n�m,�,i = atomic{ K[n]???�T �m }

�get(T)@P�m,�,i = if
:: atomic {P |0 && K[0]??[�T �m] -> K[0]???�T �m }
...
:: atomic {P |� && K[�]??[�T �m] -> K[�]???�T �m }

fi

�qry(T)@n�m,�,i = atomic{ K[n]???<�T �m> }

�qry(T)@P�m,�,i = if
:: atomic {P |0 && K[0]??[�T �m] -> K[0]???<�T �m> }
...
:: atomic {P |� && K[�]??[�T �m] -> K[�]???<�T �m> }

fi

�put(t)@n�m,�,i = K[eval(n)]!�t�;

�put(t)@P�m,�,i = atomic{
int j=0;
do

:: j == � -> break
:: P |j -> K[j]!�t�; j++
:: else -> j++

od
}

�attr := e�m,�,i = I[i].attr = e;

Fig. 6. Translation of actions

of the actions. We also recall that the FIFO receive operations of Promela on
asynchronous channels are q?m (remove the first message from channel q if it
matches m and update the variables in m accordingly); q?<m> (test if the first
message on channel q matches m and update the variables in m accordingly); and
q?[m] (test if the first message on channel q matches m without side-effects on
the variables of m). In addition, Promela provides three so-called random receive
variants of the previous ones (denoted with ?? in place of ?), which remove/test
the oldest tuple matching the pattern instead of the first one.

i = len(q);
do

:: q??m -> break
:: i>0 -> q??m; q!m; i--

od

Fig. 7. Abbreviation q???m

A point-to-point action get(T)@n is basi-
cally modeled as a (pattern-matching-based)
receive operation (???) on the channel
K[eval(n)] corresponding to the knowledge
repository of the component identified by n.
Note that q???m is not the primitive Promela
operation q??m but an abbreviation defined in
Figure 7. The receive operation q??m does en-
code the semantics we need since it removes the

This copy belongs to 'VANC03'

80 R. De Nicola et al.

�T �m = �T �, _, . . . , _
︸ ︷︷ ︸

m−|T |

�v� = v �x� = eval(x) �? x� = x; �T1, T2� = �T1�, �T2�

�e� = e �t1, t2� = �t1�, �t2�

Fig. 8. Translation of templates and items

oldest tuple in the channel among those matching the template m and not any
of them as required by the semantics of get. The abbreviation q???m ensures a
non-deterministic removal by non-deterministically choosing between (i) remov-
ing the oldest matched item and (ii) looping after reinserting the oldest matched
item in the queue so that it becomes the newest such item. The latter can be
attempted as many times as the size of q to ensure termination and it guarantees
that all possible messages matching m will be considered.

A group-oriented action get(T)@P is translated as a non-deterministic choice
among a set of input actions on each repository. In particular, for each repository
i there is a branch guarded by P |i && K[i]??[�T �m] which will ensure the
transition to fire only if the target predicate holds for component i and i has a
matching item in its repository. If that is the case the item is indeed removed
using again the non-deterministic input operation in K[i]???�T �m.

Actions qry(T)@n and qry(T)@P are translated in the same way, except for
the use of the non-consuming variant (???< . . . >) of the receive operation, while
a point-to-point put action is simply translated as a send operation (!) on the
appropriate channel, while the group-oriented one consists of a loop that sends
the tuple to the repositories of all components satisfying the target predicate.
The selection statement permits ignoring the components that do not satisfy
the predicate (in fact, the put action is non-blocking).

Action attr := e is straightforwardly translated as an assignment of expression
e to the attribute attr exposed in the interface of the proper component (the
latter is identified by the parameter i of the translation function).

Templates and Items. Function �·�m (Figure 8) returns a template of length m by
concatenating the translation of the template given as argument with a sequence
of so-called hidden variables (denoted by “_”). The translation functions �T � and
�t� are straightforward. Filling the tuple with dummy values is not needed in
the translation of items; this is automatically done by SPIN. It is worth to recall
as well that function eval(·), instead, is used for evaluating variables and
protecting them from assignments in the matching mechanism.

5 Verification

We illustrate in this section some examples of how SPIN can be used to check
and verify properties of SCELight specifications, by resorting to the translation
of the SCELight specification of the scenario presented in Section 3.

This copy belongs to 'VANC03'

Programming and Verifying Component Ensembles 81

Checking Deadlock Absence. One first property one would like to check is ab-
sence of deadlocks. Obviously not every instance of our scenario is deadlock free.
Indeed, if the instance contains clients requiring a service that is not offered by
any server or that cannot be served at the required quality level, deadlocks may
arise since SCEL input operations have blocking semantics. Notably, the system
can have valid terminal states as well, since clients gracefully terminate after
successfully receiving the results from servers.

Below, we report an example result of invoking SPIN for checking deadlock
absence in an instance of our scenario with 3 servers with different hardware
configurations and 5 clients invoking the services offered by the servers:

State-vector 1828 byte, depth reached 81, errors: 0
3849511 states, stored

The result is positive (no errors) and SPIN explores a few millions of states.

Checking Server Overload. Another typical use of SPIN that is very convenient
for our purposes is to look for interesting executions by characterizing them by
means of an LTL formula and asking SPIN for a counterexample. For example,
in our scenario, to obtain system runs overloading the server si we can specify a
formula � Isi .load ≤ 100, which states that server si will never be overloaded.

Indeed, if we check the above invariant in an instance of our scenario with one
gold server and 6 clients requiring a gold service, SPIN returns a counterexample

pan:1: assertion violated !(!((I[0].load<=100))) (at depth 145)
pan: wrote client-server-scenario.pml.trail

which consists of an execution of the system, i.e. a trail (stored in the file
client-server-scenario.pml.trail), in which the server accepts and exe-
cutes the six requests concurrently, which causes its load to be 6 × 20% = 120%.
One may think that if the clients request a base service, it would not be possible
to overload the server, as the gold server will accept to serve only a few base
requests concurrently. Actually, this is not true. The reason is that even if a gold
server will belong to the base ensemble only if its load is below 20%, it may be
identified as a target by several concurrent clients before actually accepting any
service request (and hence updating its load). Indeed, SPIN provides a coun-
terexample also for the above property for a configuration with gold server and
6 clients sending base requests. Of course, the problem raised by this verification
result can be easily fixed by changing the servers specification in order to check
the load value before accepting additonal requests.

Checking Responsiveness. Finally, we show an example of a typical liveness prop-
erty expressing the fact that clients are guaranteed responsiveness: whenever a
client invokes the factorial service, it will eventually get a result. This can be for-
malized with the usual LTL formulae of the form �(request → ♦response). SPIN
provides positive answers for all possible instances of our scenario, since once a
client finds an appropriate server for the required service, the server cannot avoid
providing the service.

This copy belongs to 'VANC03'

82 R. De Nicola et al.

6 Concluding Remarks

We have presented a formal approach to the specification and verification of
ensemble-based systems, by providing a translation of SCELight specifications
into Promela, the specification language of the SPIN model checker. SCELight
is a dialect of the SCEL specification language specifically devised in the EU
project Ascens [11] for modelling autonomic, ensemble-based, systems. We have
illustrated our approach by verifying a few properties of a service provision sce-
nario. The presented approach enriches the toolset support for SCEL-based engi-
neering of ensemble systems, which currently includes statistical model checking
in MiScel [12], the Maude-based SCEL interpreter, and run-time testing with
jRESP [13], the Java-based run-time environment for SCEL.

As future work, we plan to continue our programme to verify ensemble-based
systems by pursuing different lines of research. The proposed approach will be
enhanced by optimizing the generated Promela code to enable a more efficient
verification, e.g. by reducing the number of process declarations and invocations,
which is actually only required to deal with parallel composition and recursion.
Moreover, to foster the practical application of the approach, the SCELight to
Promela translation will be implemented in a standard programming language,
like Java, by resorting to supporting framework specifically devised for this pur-
pose like Xtext [14]. From a more theoretical perspective, we intend to formally
prove that the presented encoding is sound and complete with respect to the
operational semantics of SCEL and Promela.

We also plan to extend the work by considering the SCEL constructs not
included in SCELight. The main challenge will be to treat the dynamic creation
of new names and components for which SPIN does not offer any (efficient)
verification support. Some techniques have been proposed to deal with dynamic
aspects of software in SPIN (see e.g. [15,16]), but they are not included in the
official SPIN distribution. To deal with dynamicity, we plan to investigate the
use of other verification tools that provide a better support to these features.
We plan also to consider the possibility of using the operational semantics of
SCEL as a starting point to generate systems descriptions that can be provided
as input to the BIP toolset. The challenge here is understanding if the dynamic
part of full SCEL specifications can be “constrained” to provide a full model to
be analyzed in BIP and if Dy-BIP [17], the extension of BIP [18] to deal with
dynamic architectures, will do a better service.

Finally, another promising line of research that we intend to explore concerns
the extension of Promela and BIP, with primitives for group-oriented communi-
cation. In fact, on the one hand, the suitability of SCEL to model ensemble-based
systems points out the benefits of such form of communication in this application
domain. On the other hand, avoiding specification translations would improve
efficiency of the verification and, hence, its effectiveness.

References
1. Project InterLink (2007), http://interlink.ics.forth.gr

This copy belongs to 'VANC03'

http://interlink.ics.forth.gr

Programming and Verifying Component Ensembles 83

2. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.Z.,
McDermid, J.A., Paige, R.F.: Large-scale complex IT systems. Commun.
ACM 55(7), 71–77 (2012)

3. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to au-
tonomic systems programming: the SCEL Language. ACM Transactions on Au-
tonomous and Adaptive Systems (to appear, 2014), available as Technical Report
from http://eprints.imtlucca.it/2117/

4. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising Adaptation Patterns for Autonomic Ensembles. In: Proc. of the 10th
International Symposium on Formal Aspects of Component Software (FACS 2013).
LNCS, Springer, Heidelberg (2014)

5. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A Language-Based Approach
to Autonomic Computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012),
http://rap.dsi.unifi.it/scel/

6. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming and
Policing Autonomic Computing Systems. In: Proc. of the 10th IEEE International
Conference on Autonomic and Trusted Computing (ATC 2013). IEEE Computer
Society (2014)

7. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J.,
Bures, T.: The Autonomic Cloud: A vision of voluntary, peer-2-peer cloud computing.
In: Proc. of the 2013 IEEE Seventh International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW 2013). IEEE Computer Society (2014)

8. Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Mon-
reale, G., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli, F.:
A Life Cycle for the Development of Autonomic Systems: The e-mobility showcase.
In: Proc. of the 2013 IEEE Seventh International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW 2013). IEEE Computer Society (2014)

9. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

10. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

11. ASCENS: Autonomic service-component ensembles, http://www.ascens-ist.eu/
12. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) Service Com-

ponent Ensembles in Rewriting Logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software: A Festschrift Symposium in Honor of Kokichi
Futatsugi, SAS 2014 (to appear, April 2014)

13. jRESP, http://code.google.com/p/jresp/
14. Xtext, http://www.eclipse.org/Xtext/
15. Demartini, C., Iosif, R., Sisto, R.: dSPIN: A Dynamic Extension of SPIN. In: Dams,

D., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 261–
276. Springer, Heidelberg (1999)

16. Iosif, R.: Symmetry reductions for model checking of concurrent dynamic software.
STTT 6(4), 302–319 (2004)

17. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling Dynamic Architectures Using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

18. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE Soft-
ware 28(3), 41–48 (2011)

This copy belongs to 'VANC03'

http://eprints.imtlucca.it/2117/
http://rap.dsi.unifi.it/scel/
http://www.ascens-ist.eu/
http://code.google.com/p/jresp/
http://www.eclipse.org/Xtext/

Parametric and Quantitative Extensions
of Modal Transition Systems

Uli Fahrenberg1, Kim Guldstrand Larsen2,
Axel Legay1, and Louis-Marie Traonouez1

1 Inria/IRISA, Rennes, France
2 Aalborg University, Aalborg, Denmark

Abstract. Modal transition systems provide a behavioral and composi-
tional specification formalism for reactive systems. We survey two exten-
sions of modal transition systems: parametric modal transition systems
for specifications with parameters, and weighted modal transition sys-
tems for quantitative specifications.

1 Introduction

Modal transition systems [21,23] provide a behavioral and compositional specifi-
cation formalism for reactive systems. They grew out of the notion of relativized
bisimulation [20], which allows for simple specifications of components by allow-
ing the notion of bisimulation to take into account the restricted use that a given
component may have in its context.

A modal transition system is essentially a (labeled) transition system, but
with two types of transitions: so-called may-transitions which any implementa-
tion may (or may not) have, and must -transitions which any implementation is
required to have. In fact, ordinary labeled transition systems (or implementa-
tions) are modal transition systems where the set of may- and must-transitions
coincide. Modal transition systems come equipped with a bisimulation-like no-
tion of (modal) refinement, reflecting that the more must-transitions and the
fewer may-transitions a modal specification has the more refined and closer to a
final implementation it is.

Example 1. Consider the modal transition system shown in Fig. 1 which models
the requirements of a simple email system in which emails are first received and
then delivered; must- and may-transitions are represented by solid and dashed
arrows, respectively. Before delivering the email, the system may check or pro-
cess the email, e.g. for encryption or decryption, filtering of spam emails, or
generating automatic answers using an auto-reply feature. Any implementation
of this email system specification must be able to receive and deliver email, and
it may also be able to check arriving email before delivering it. No other behavior
is allowed. Such a valid implementation is given in Fig. 2.

The theory of modal transition systems (MTS), or modal specifications as
they were called in the paper [21] in the proceedings of the first CAV conference

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 84–97, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 85

receive

deliver

check

deliver

Fig. 1. Modal transition system modeling a simple email system, with an optional
behavior: Once an email is received, it may be checked, e.g. be scanned for containing
viruses, or automatically decrypted, before it is delivered to the receiver

receive

deliver

check

check

deliver

deliver

Fig. 2. An implementation of the simple email system in Fig. 1 in which we explicitly
model two distinct types of email pre-processing

organized by Joseph Sifakis in Grenoble,1 was aiming at providing a behavioral
compositional specification formalism for reactive systems. At the time of the
introduction of MTS, there were two predominant approaches to specifications
formalisms and verification methods for reactive and concurrent systems: logi-
cal approaches where a specification is a set of properties of implementations
(labeled transition systems), and graphical approaches promoted by the various
process algebras, where implementations and specifications are systems of the
same kind – namely labeled transition systems, and verification amounts to com-
pare such systems with respect to a given behavioral preorder, e.g. bisimilarity.

In search for a complete specification theory, the following properties have
been considered desirable (the first three were listed in the early paper [6]):

expressiveness: the specification formalism should be powerful enough to ex-
press all properties of a given implementation. In other words it should be
possible to completely specify any labeled transition system, up to bisimula-
tion.

modularity: implementations are often made out of several components, and
it should be possible to infer satisfaction of an overall specification solely on
the basis of sub-specification of the sub-components.

refinement: one should have the ability to deal with partial specifications, re-
quiring more and more properties about a system, up to its complete speci-
fication.

1 In fact, the first CAV conference was not called CAV, but had the rather lengthy
title “Automatic Verification Methods for Finite State Systems.”

This copy belongs to 'VANC03'

86 U. Fahrenberg et al.

logical composition: specification should be composable with respect to usual
logical operators such as conjunction and (possibly) disjunction.

quotienting: given an overall specification S of a composite systems as well
as a sub-specification T of a sub-component, the existence of a quotient
specification S\T will describe the sufficient and necessary condition of the
remaining components in order that S is satisfied by the total systems.

Applying these criteria to the logical and graphical (i.e. bisimulation) frame-
work, as was done in [6], we see that the logical and graphical frameworks offer
complementary advantages: on the graphical side, expressiveness is trivial since
a process i a specification of itself. Modularity is usually guaranteed by the fact
that bisimulations are compatible with (most) process constructors. On the log-
ical side, expressiveness is achieved if we allow possibly infinite sets of formulae
as logical specifications, or admit recursively specified properties. The point of
modularity has proved more difficult with early attempts of Sifakis and Graf [15]
and Holmstrøm [17] providing sound and highly usable proof systems for specifi-
cations mixing logical and behavioral constructs (as well as fix-point constructs)
but lacking accompanying completeness results. Much later the work of Mardare
and Policriti [25] provided a first matching completeness result.

In the rest of this paper, we survey two extensions of modal transition systems.
The first extension, parametric modal transition systems, is concerned with sys-
tems whose behaviors depend on parameters [4]. The second extension, weighted
modal transition systems [1, 2] permits to reason on systems whose behaviors
depend on quantities. Another paper in this volume [11] will be concerned with
other extensions of modal transition systems which are more closely related to
applications.

2 Parametric Modal Transition Systems

It is well admitted (see e.g. [27]) that MTS and their extensions like disjunc-
tive MTS (DMTS) [24], 1-selecting MTS (1MTS) [13] and transition systems
with obligations (OTS) [5] provide strong support for a specification formalism
allowing for step-wise refinement process. Moreover, the MTS formalisms have
applications in other contexts, which include verification of product lines [16,22],
interface theories [27,28] and modal abstractions in program analysis [14,18,26].

Unfortunately, all of these formalisms lack the capability to express some intu-
itive specification requirements like exclusive, conditional and persistent choices.
In [4] the expressive power of MTS and its variants has been extended consider-
ably so it can model model arbitrary Boolean conditions on transitions and also
allows to instantiate persistent transitions. The model, called parametric modal
transition systems (PMTS), is equipped with a finite set of parameters that are
fixed prior to the instantiation of the transitions in the specification. The gener-
alized notion of modal refinement is designed to handle the parametric extension
and it specializes to the well-studied modal refinements on all the subclasses of
our model like MTS, disjunctive MTS and MTS with obligations.

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 87

green

red

yellow

yellowRed

go

stop

readygo

ready sto
p

(a) MTS specification S1

go

stop

readygo

ready sto
p

(b) DMTS specification S2

(c) Implementation I1

go

stop

readygo

ready sto
p

(d) Implementation I2

sto
p go

re
ad
y

stop

go

(e) Implementation I3

go

stop

readygo

ready sto
p

Obligation function:
Φ(green) = (stop, red)⊕ (ready, yellow)
Φ(red) = (go, green)⊕ (ready , yellowRed)

(f) Specification S3

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red)⊕ (ready, yellow))

∧(reqYfromG ⇔ (ready, yellow))
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

(g) PMTS specification S4

Fig. 3. Specifications and implementations of a traffic light controller

2.1 Motivation

We shall now discuss these limitations on an example as a motivation for the
introduction of parametric MTS formalism with general Boolean conditions in
specification requirements.

Consider a simple specification of a traffic light controller that can be at any
moment in one of the four predefined states: red , green , yellow or yellowRed .
The requirements of the specification are: when green is on the traffic light may
either change to red or yellow and if it turned yellow it must go to red afterward;
when red is on it may either turn to green or yellowRed , and if it turns yellowRed
(as it is the case in some countries) it must go to green afterwords.

This copy belongs to 'VANC03'

88 U. Fahrenberg et al.

Fig. 3a shows an obvious MTS specification of the proposed specification. The
transitions in the standard MTS formalism are either of type may (optional tran-
sitions depicted as dashed lines) or must (required transitions depicted as solid
lines). In Fig. 3c, Fig. 3d and Fig. 3e we present three different implementations
of the MTS specification where there are no more optional transitions. The im-
plementation I1 does not implement any may transition as it is a valid possibility
to satisfy the specification S1. Of course, in our concrete example, this means
that the light is constantly green and it is clearly an undesirable behavior that
cannot be, however, easily avoided. The second implementation I2 on the other
hand implements all may transitions, again a legal implementation in the MTS
methodology but not a desirable implementation of a traffic light as the next
action is not always deterministically given. Finally, the implementation I3 of
S1 illustrates the third problem with the MTS specifications, namely that the
choices made in each turn are not persistent and the implementation alternates
between entering yellow or not. None of these problems can be avoided when
using the MTS formalism.

A more expressive formalism of disjunctive modal transition systems (DMTS)
can overcome some of the above mentioned problems. A possible DMTS speci-
fication S2 is depicted in Fig. 3b. Here the ready and stop transitions, as well
as ready and go ones, are disjunctive, meaning that it is still optional which
one is implemented but at least one of them must be present. Now the system
I1 in Fig. 3c is not a valid implementation of S2 any more. Nevertheless, the
undesirable implementations I2 and I3 are still possible and the modeling power
of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [5], we
can model the traffic light using specification as a transition system with arbi-
trary2 obligation formulae. These formulae are Boolean propositions over the
outgoing transitions from each state, whose satisfying assignments yield the al-
lowed combinations of outgoing transitions. A possible specification called S3 is
given in Fig. 3f and it uses the operation of exclusive-or. We will follow an agree-
ment that whenever the obligation function for some node is not listed in the
system description then it is implicitly understood as requiring all the available
outgoing transitions to be present. Due to the use of exclusive-or in the obliga-
tion function, the transition systems I1 and I2 are not valid implementation any
more. Nevertheless, the implementation I3 in Fig. 3e cannot be avoided in this
formalism either.

Finally, the problem with the alternating implementation I3 is that we can-
not enforce in any of the above mentioned formalisms a uniform (persistent)
implementation of the same transitions in all its states. In order to overcome
this problem, we propose the so-called parametric MTS where we can, more-
over, choose persistently whether the transition to yellow is present or not via
the use of parameters. The PMTS specification with two parameters reqYfromR
and reqYfromG is shown in Fig. 3g. Fixing a priori the (Boolean) values of the

2 In the transition systems with obligations only positive Boolean formulae are allowed.

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 89

parameters makes the choices permanent in the whole implementation, hence we
eliminate also the last problematic implementation I3.

2.2 Definition

We shall now formally capture the intuition behind parametric MTS introduced
above. First, we recall the standard propositional logic.

A Boolean formula over a setX of atomic propositions is given by the following
abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X . The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a truth assignment, i.e. a set of variables with value
true, then the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ⊕ ψ = (ϕ ∧
¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ = ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ =
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.

Definition 1. A parametric MTS (PMTS) over an action alphabet Σ is a tuple
(S, T, P, Φ) where S is a set of states, T ⊆ S×Σ×S is a transition relation, P is
a finite set of parameters, and Φ : S → B((Σ×S)∪P) is an obligation function
over the atomic propositions containing outgoing transitions and parameters. We
implicitly assume that whenever (a, t) ∈ Φ(s) then (s, a, t) ∈ T . By T (s) =
{(a, t) | (s, a, t) ∈ T } we denote the set of all outgoing transitions of s.

PMTS has been provided a refinement notion that generalizes the well-studied
refinement notions on its subclasses including that of MTS. In the definition, the
parameters are fixed first (persistence) followed by all valid choices modulo the
fixed parameters that now behave as constants.

First we set the following notation. Let (S, T, P, Φ) be a PMTS and ν ⊆ P be a
truth assignment. For s ∈ S, we denote by Tranν(s) = {E ⊆ T (s) | E∪ν |= Φ(s)}
the set of all admissible sets of transitions from s under the fixed truth values
of the parameters.

We can now define the notion of modal refinement between PMTS.

Definition 2. Let (S1, T1, P1, Φ1) and (S2, T2, P2, Φ2) be two PMTS. A binary
relation R ⊆ S1×S2 is a modal refinement if for each μ ⊆ P1 there exists ν ⊆ P2

such that for every (s, t) ∈ R holds

∀M ∈ Tranμ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if there exists a modal
refinement R such that (s, t) ∈ R.

This copy belongs to 'VANC03'

90 U. Fahrenberg et al.

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYfromG ⇔ (ready , yellow))
Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYfromR ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqY ⇔ (ready , yellow))
Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqY ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

≤m

≤m

≤m

Fig. 4. Example of modal refinement

Example 2. Consider the rightmost PMTS in Fig. 4. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can be
refined by the system in the middle of the figure having only one parameter reqY .
This single parameter simply binds the two original parameters to the same value.
The PMTS in the middle can be further refined into the implementations where
either yellow is always used in both cases, or never at all. Notice that there are in
principle infinitely many implementations of the system in the middle, however,
they are all bisimilar to either of the two implementations depicted in the left of
Fig. 4.

[4] provides an extensive study of the complexity of refinement checking
between parametric modal transitions with classification depending on the com-
plexity of obligations as well as the presence or absence of parameters. For each
combination the complexity class of the polynomial hierarchy for which modal
refinement is complete is provided. In short, the complexities ranges from P-
complete to Πp

4 -complete (thus in PSPACE).

3 Quantitative Modal Transition Systems

Motivated by applications to embedded, real-time and hybrid systems, the modal
transition system framework has been extended in order to reason about quan-
titative aspects [3, 19]. With these applications in mind, it is necessary not only
to be able to specify quantitative aspects of systems, but also to formalize suc-
cessive refinement of quantities. To illustrate this extension, consider again the
modal transition system of Fig. 1, but this time with quantities, see Fig. 5: Ev-
ery transition label is extended by integer intervals modeling upper and lower
bounds on time required for performing the corresponding actions. For instance,
the reception of a new email (action receive) must take between one and three
time units, the checking of the email (action check) is allowed to take up to five
time units.

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 91

receive, [1, 3]

deliver, [1, 4]

check, [0, 5]

deliver, [1, 2]

Fig. 5. Specification of a simple email system, similar to Fig. 1, but extended by integer
intervals modeling time units for performing the corresponding actions

In this quantitative setting, there is a problem with using a Boolean notion
of refinement as is done in the preceding section: If one only can decide whether
or not an implementation refines a specification, then the quantitative aspects
get lost in the refinement process. As an example, consider the email system
implementations in Fig. 6. Implementation (a) does not refine the specification,
as there is an error in the discrete structure of actions: after receiving an email,
the system can check it indefinitely without ever delivering it. Also implemen-
tations (b) and (c) do not refine the specification: (b) takes too long to receive
email, (c) does not deliver email fast enough after checking it. Implementation (d)
on the other hand is a perfect refinement of the specification.

Intuitively however, implementations (b) and (c) conform much better to the
specification than implementation (a) in Fig. 6: there are no discrepancies in the
discrete structure, only the weights are off by 1. Additionally, the quantitative
error in implementation (c) occurs later than the one in (b). Hence one may
want to say that implementation (d) is in perfect refinement of the specification,
(c) is slightly off, (b) is a bit more problematic, whereas implementation (a) is
completely unacceptable. A Boolean notion of refinement does not allow to make
such distinctions between different negative answers.

To sum up, a Boolean notion of refinement is too fragile for quantitative
formalisms. Minor and major modifications in the implementation cannot be
distinguished, as both of them may reverse the Boolean answer. As observed
e.g. in [9], this view is obsolete; engineers need quantitative notions on how
modified implementations differ. The introduction of such a quantitative notion
of refinement, and its consequences for the specification theory, are the subject
of this section, which is based on the papers [1, 2].

Depending on the precise application of our quantitative formalism, there are
a few choices which one has to make. One such choice is the precise definition of
quantitative refinement, as the way quantitative discrepancies between specifica-
tions is measured e.g. depends on whether differences accumulate over time or
the interest more lies in the maximal individual differences. Another choice is how
to combine quantities during structural composition: when modeling e.g. energy
consumption, they should be added; when modeling timing constraints, some
form of conjunction should be used.

To facilitate quantitative reasoning on specifications and implementations, we
introduce a real-valued distance between specifications such that perfect refine-
ment corresponds to distance 0, small quantitative discrepancies give rise to

This copy belongs to 'VANC03'

92 U. Fahrenberg et al.

receive, 2

deliver, 3

check, 1

(a)

receive, 4

deliver, 3

(b)

receive, 3

deliver, 3

check, 1

deliver, 3

(c)

receive, 2

deliver, 3

(d)

Fig. 6. Four implementations of the simple email system in Fig. 5

small distances, and differences in the discrete control structure correspond to
distance ∞. For the examples in Figs. 5 and 6, we will deduce the following chain
of decreasing distances:

∞ = d(I1, S) > d(I2, S) > d(I3, S) > d(I4, S) = 0

3.1 Weighted Modal Transition Systems

Let Σ be a set of labels with a preorder# ⊆ Σ×Σ, and denote by Σ∞ = Σ∗∪Σω

the set of finite and infinite traces over Σ. len(σ), for σ ∈ Σ∞, denotes the length
(finite or infinite) of a trace σ. Let ε ∈ Σ∞ denote the empty trace, and for a ∈ Σ,
σ ∈ Σ∞, denote by a.σ their concatenation.

A weighted modal transition system (WMTS) is a tuple S = (S, s0, ��	,−→)
consisting of a set S of states, an initial state s0 ∈ S, and must- and may-
transitions −→, ��	 ⊆ S ×Σ × S for which it holds that for all s a−→ s′ there is
s

b��	 s′ with a # b.
Intuitively, a may-transition s

b��	 t specifies that an implementation I of S
is permitted to have a corresponding transition i a−→ j, for any a # b, whereas a
must-transition s b−→ t postulates that I is required to implement at least one
corresponding transition i a−→ j for some a # b. We will make this precise below.

An WMTS S = (S, s0, ��	,−→) is an implementation if −→ = ��	. Hence in
an implementation, all optional behavior has been resolved.

Definition 3. A modal refinement of WMTS S1 = (S1, s
0
1, ��	1,−→1), S2 =

(S2, s
0
2, ��	2,−→2) is a relation R ⊆ S1 × S2 such that for any (s1, s2) ∈ R,

– whenever s1
a1��	1 t1, then also s2

a2��	2 t2 for some a1 # a2 and (t1, t2) ∈ R,
– whenever s2

a2−→2 t2, then also s1
a1−→1 t1 for some a1 # a2 and (t1, t2) ∈ R.

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 93

Thus any behavior which is permitted in S1 is also permitted in S2, and any
behavior required in S2 is also required in S1. We write S1 ≤m S2 if there is a
modal refinement R ⊆ S1 × S2 with (s01, s

0
2) ∈ R.

The implementation semantics of a WMTS S is the set ��S = {I ≤m S |
I implementation}, and we write S1 ≤t S1 if �S1� ⊆ �S2�, saying that S1
thoroughly refines S2. It follows by transitivity of ≤m that S1 ≤m S2 implies
S1 ≤t S2, hence modal refinement is a syntactic over-approximation of thorough
refinement.

3.2 Distances

Recall that a hemimetric on a set X is a function d : X × X → �≥0 ∪ {∞}
which satisfies d(x, x) = 0 and d(x, y)+d(y, z) ≥ d(x, z) (the triangle inequality)
for all x, y, z ∈ X . Note that our hemimetrics are extended in that they can take
the value ∞.

We will need to generalize hemimetrics to codomains other than �≥0 ∪ {∞}.
For a partially ordered monoid (�,#,⊕, �), an �-hemimetric on X is a function
d : X ×X → � which satisfies d(x, x) = � and d(x, y)⊕ d(y, z) $ d(x, z) for all
x, y, z ∈ X .

Definition 4. A trace distance is a hemimetric td : Σ∞ × Σ∞ → �≥0 ∪ {∞}
for which td(a, b) = 0 for all a, b ∈ Σ with a # b and td(σ, τ) = ∞ whenever
len(σ) �= len(τ).

For any set M , let �M = (�≥0 ∪ {∞})M the set of functions from M to
the extended non-negative real line. Then �M is a complete lattice with partial
order # ⊆ �M × �M given by α # β if and only if α(x) ≤ β(x) for all x ∈ M ,
and with an addition ⊕ given by (α⊕β)(x) = α(x)+β(x). The bottom element
of �M is also the zero of ⊕ and given by ⊥(x) = 0, and the top element is
�(x) =∞.

Definition 5. A recursive specification of a trace distance td consists of

– a set M with a lattice homomorphism eval : �M → �≥0 ∪ {∞},
– an �M -hemimetric td�M : Σ∞×Σ∞ → �M which satisfies td = eval◦td�M

and td�M (a, b) = ⊥ for all a, b ∈ Σ with a # b, and
– a function F : Σ ×Σ × �M → �M .

F must be monotone in the third coordinate and satisfy, for all a, b ∈ Σ and
σ, τ ∈ Σ∞, that td�M (a.σ, b.τ) = F (a, b, td�M (σ, τ)).

Note that the definition implies that for all a, b ∈ Σ, td�M (a, b) =
td�M (a.ε, b.ε) = F (a, b, td�M (ε, ε)) = F (a, b,⊥). Hence also F (a, a,⊥) =
td�M (a, a) = ⊥ for all a ∈ Σ.

We have shown in [2, 10, 12] that all commonly used trace distances obey a
recursive characterization as above. The point-wise distance from [8], for exam-
ple, has � = �≥0 ∪ {∞}, eval = id and d�Mm (a.σ, b.τ) = max(d(a, b), d�Mm (σ, τ)),

This copy belongs to 'VANC03'

94 U. Fahrenberg et al.

where d : Σ ×Σ → �≥0 ∪ {∞} is a hemimetric on labels. The limit-average dis-
tance used in e.g. [7] has � = (�≥0 ∪ {∞})�, the complete lattice of functions
�→ �≥0 ∪ {∞}, eval(α) = lim infj∈� α(j) and d�Mm (a.σ, b.τ)(j) = 1

j+1d(a, b) +
j

j+1d
�M
m (σ, τ).

For the rest of this section, we fix a recursively specified trace distance. A
WMTS (S, s0, ��	,−→) is deterministic if it holds for all s ∈ S, s

a1��	 s1, s
a2��	 s2

for which there is a ∈ Σ with td�M (a, a1) �= � and td�M (a, a2) �= � that a1 = a2
and s1 = s2.

Definition 6. The lifted modal refinement distance d�Mm : S1×S2 → � between
the states of WMTS S1 = (S1, s

0
1, ��	1,−→1), S2 = (S2, s

0
2, ��	2,−→2) is defined

to be the least fixed point to the equations

d�Mm (s1, s2) = max

⎧⎪⎨
⎪⎩

sup
s1

a1���1t1
inf

s2
a2���2t2

F (a1, a2, d
�M
m (t1, t2)),

sup
s2

a2−→2t2

inf
s1

a1−→1t1

F (a1, a2, d
�M
m (t1, t2)).

We let d�Mm (S1,S2) = d�Mm (s01, s
0
2). The modal refinement distance is dm =

eval ◦ d�Mm , and we write S1 ≤ε
m S2, for ε ∈ �≥0 ∪ {∞}, if d�Mm (S1,S2) ≤ ε.

Proposition 1. The modal refinement distance is a well-defined hemimetric,
and S1 ≤m S2 implies S1 ≤0

m S2.

The thorough refinement distance between WMTS S1, S2 is

dt(S1,S2) = sup
I1∈�S1�

inf
I2∈�S2�

dm(I1, I2),

and we write S1 ≤ε
t S2, for ε ∈ �≥0 ∪ {∞}, if dt(S1,S2) ≤ ε. As for the modal

distance, dt is a hemimetric, and S1 ≤t S2 implies S1 ≤0
t S2.

Theorem 1. For all WMTS S1, S2, dt(S1,S2) ≤ dm(S1,S2). If S2 is determin-
istic, then dt(S1,S2) = dm(S1,S2).

3.3 Conjunction

Let � : Σ × Σ ↪→ Σ be a commutative partial label conjunction operator for
which it holds, for all b1, b2 ∈ Σ, that there is a ∈ Σ for which both td�M (a, b1) �=
� and td�M (a, b2) �= � iff there exists c ∈ Σ for which both b1 � c and b2 � c are
defined. This is to relate determinism (left-hand side of the above) to a similar
property for label conjunction which is needed in the proof of Theorem 2.

Additionally, we assume that � is greatest lower bound on labels, i.e.

– for all a, b ∈ Σ with a� b defined, a� b # a and a� b # b;
– for all a, b, c ∈ Σ with a # b and a # c, b� c is defined and a # b� c.

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 95

In the definition below, we denote by ρB(S) the pruning of a WMTS S =
(S, s0, ��	,−→) with respect to the states in a (“bad”) subset B ⊆ S, which
is obtained as follows: Define a must-predecessor operator pre : 2S → 2S by
pre(S′) = {s ∈ S | ∃a ∈ Σ, s′ ∈ S′ : s

a−→ s′} and let pre∗ be the reflexive,
transitive closure of pre. Then ρB(S) is defined if s0 /∈ pre∗(B), and in that case,
ρB(S) = (Sρ, s

0, ��	ρ,−→ρ) with Sρ = S \ pre∗(B), ��	ρ = ��	∩ (Sρ ×Σ × Sρ),
and −→ρ = −→∩ (Sρ ×Σ × Sρ).

Definition 7. The conjunction of two WMTS S1 = (S1, s
0
1, ��	1,−→1), S2 =

(S2, s
0
2, ��	2,−→2) is the WMTS S1 ∧ S2 = ρB(S1 × S2, (s01, s02), ��	,−→) given

as follows (if it exists):

s1
a1−→1 t1 s2

a2��	2 t2 a1 � a2 defined

(s1, s2)
a1�a2−→ (t1, t2)

s1
a1��	1 t1 s2

a2−→2 t2 a1 � a2 defined

(s1, s2)
a1�a2−→ (t1, t2)

s1
a1��	1 t1 s2

a2��	2 t2 a1 � a2 defined

(s1, s2)
a1�a2��	 (t1, t2)

s1
a1−→1 t1 ∀s2 a2��	2 t2 : a1 � a2 undef.

(s1, s2) ∈ B

s2
a2−→2 t2 ∀s1 a1��	1 t1 : a1 � a2 undef.

(s1, s2) ∈ B

Note that conjunction of WMTS may give inconsistent states which need to
be pruned away after. As seen in the last two SOS rules above, this is the case
when one WMTS specifies a must-transition which the other WMTS cannot syn-
chronize with. Here, the demand on implementations of the conjunction would
be that they simultaneously must and cannot have a transition, which of course
is unsatisfiable.

Theorem 2. Let S1, S2, S3 be WMTS.

– If S1 ∧ S2 is defined, then S1 ∧ S2 ≤m S1 and S1 ∧ S2 ≤m S2.
– If S1 ≤m S2, S1 ≤m S3, and S2 or S3 is deterministic, then S2∧S3 is defined

and S1 ≤m S2 ∧ S2.

3.4 Structural Composition

Let � : Σ ×Σ ↪→ Σ be a commutative partial label composition operator which
specifies which labels can synchronize. Again we need to relate determinism to an
analogous property for label composition, hence we require that it holds, for all
b1, b2 ∈ Σ, that there is a ∈ Σ for which both d(a, b1) �= �� and d(a, b2) �= ��
iff there exists c ∈ Σ for which both b1 � c and b2 � c are defined.

Additionally, we assume that there exists a function P : � × � → � which
allows us to infer bounds on distances on synchronized labels. We assume that P
is monotone in both coordinates, has P (⊥�,⊥�) = ⊥�, P (α,��) = P (��, α) =
�� for all α ∈ �, and that

F (a1 � a2, b1 � b2, P (α1, α2)) #� P (F (a1, b1, α1), F (a2, b2, α2)) (1)

for all a1, b1, a2, b2 ∈ Σ and α1, α2 ∈ � for which a1 � a2 and b1 � b2 are defined.
Hence d(a1 � a2, b1 � b2) # P (d(a1, b1), d(a2, b2)) for all such a1, b1, a2, b2 ∈ Σ.

This copy belongs to 'VANC03'

96 U. Fahrenberg et al.

Intuitively, P gives a uniform bound on label composition: distances between
composed labels can be bounded above using P and the individual labels’ dis-
tances, and (1) ensures that this bound holds recursively.

Definition 8. The structural composition of two WMTS S1 = (S1,s
0
1,��	1,−→1),

S2 = (S2, s
0
2, ��	2,−→2) is the WMTS S1‖S2 = (S1 × S2, (s10, s20), ��	,−→) with

transitions defined as follows:

s1
a1��	1 t1 s2

a2��	2 t2 a1 � a2 def.

(s1, s2)
a1�a2��	 (t1, t2)

s1
a1−→1 t1 s2

a2−→2 t2 a1 � a2 def.

(s1, s2)
a1�a2−→ (t1, t2)

The next theorem shows that structural composition supports quantitative
independent implementability: the distance between structural compositions can
bounded above using P and the distances between the individual components.

Theorem 3. For all WMTS S1, T1, S2, T2 with dm(S1‖S2, T1‖T2) �= ��, we
have dm(S1‖S2, T1‖T2) #� P (dm(S1, T1), dm(S2, T2)).

Acknowledgment. This survey paper presents research which we have con-
ducted with a number of coauthors; in alphabetical order, these are Sebastian
S. Bauer, Nikola Beneš, Line Juhl, Jan Křetínský, Mikael H. Møller, Jiří Srba,
and Claus Thrane. We acknowledge their cooperation in this work; any errors
in this presentation are, however, our own.

References

1. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.: Quanti-
tative refinement for weighted modal transition systems. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg (2011)

2. Bauer, S.S., Fahrenberg, U., Legay, A., Thrane, C.: General quantitative spec-
ification theories with modalities. In: Hirsch, E.A., Karhumäki, J., Lepistö, A.,
Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 18–30. Springer, Heidelberg
(2012)

3. Bauer, S.S., Juhl, L., Larsen, K.G., Legay, A., Srba, J.: Extending modal tran-
sition systems with structured labels. Mathematical Structures in Computer Sci-
ence 22(4), 581–617 (2012)

4. Beneš, N., Křetínský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 275–289. Springer, Heidelberg (2011)

5. Beneš, N., Křetínský, J.: Process algebra for modal transition systemses. In:
MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2010)

6. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In: Arnold, A.
(ed.) CAAP 1990. LNCS, vol. 431, pp. 57–71. Springer, Heidelberg (1990)

7. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Com-
put. Sci. 413(1), 21–35 (2012)

8. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170
(2005)

This copy belongs to 'VANC03'

Parametric and Quantitative Extensions of Modal Transition Systems 97

9. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE
Trans. Software Eng. 35(2), 258–273 (2009)

10. Fahrenberg, U., Legay, A., Thrane, C.: The quantitative linear-time–branching-
time spectrum. In: FSTTCS. LIPIcs, vol. 13, pp. 103–114. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2011)

11. Fahrenberg, U., Legay, A., Traonouez, L.-M.: Specification theories for probabilistic
and real-time systems. In: Bensalem, S., Lakhnech, Y., Legay, A. (eds.) FPS 2014
(Sifakis Festschrift). LNCS, vol. 8415, pp. 98–117. Springer, Heidelberg (2014)

12. Fahrenberg, U., Thrane, C.R., Larsen, K.G.: Distances for weighted transition sys-
tems: Games and properties. In: QAPL. Electr. Proc. Theor. Comput. Sci., vol. 57,
pp. 134–147 (2011)

13. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. Logic Alg. Program. 77(1-2), 20–39 (2008)

14. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

15. Graf, S., Sifakis, J.: A logic for the description of non-deterministic programs and
their properties. Inf. Control 68(1-3), 254–270 (1986)

16. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008)

17. Holmström, S.: A refinement calculus for specifications in Hennessy-Milner logic
with recursion. Formal Asp. Comput. 1(3), 242–272 (1989)

18. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001)

19. Juhl, L., Larsen, K.G., Srba, J.: Modal transition systems with weight intervals. J.
Log. Algebr. Program. 81(4), 408–421 (2012)

20. Larsen, K.G.: A context dependent equivalence between processes. Theor. Comput.
Sci. 49, 184–215 (1987)

21. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

22. Larsen, K.G., Nyman, U., Wąsowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

23. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
Computer Society (1988)

24. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, pp. 108–117. IEEE Computer Society (1990)

25. Mardare, R., Policriti, A.: A complete axiomatic system for a process-based spatial
logic. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp.
491–502. Springer, Heidelberg (2008)

26. Nanz, S., Nielson, F., Riis Nielson, H.: Modal abstractions of concurrent be-
haviour. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 159–173.
Springer, Heidelberg (2008)

27. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD, pp. 119–127. IEEE (2009)

28. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: FSE, pp. 43–52.
ACM (2004)

This copy belongs to 'VANC03'

Specification Theories
for Probabilistic and Real-Time Systems

Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez

Inria/IRISA, Rennes, France

Abstract. We survey extensions of modal transition systems to speci-
fication theories for probabilistic and timed systems.

1 Introduction

Many modern systems are big and complex assemblies of numerous components
called implementations. The implementations are often designed by independent
teams, working under a common agreement on what the specification of each
implementation should be.

Over the past, one has agreed that any good specification theory should be
equipped with a satisfaction relation (to decide whether an implementation sat-
isfies a specification), a consistency check (to decide whether the specification
admits an implementation), a refinement (to compare specifications in terms of
inclusion of sets of implementations), logical composition (to compute the in-
tersection of sets of implementations), and structural composition (to combine
specifications).

The design of “good” specification theories has been the subject of intensive
study, most of them for the case where implementations are represented by
transition systems. In this paper, we survey two seminal works on extending
specification theories to both probabilistic and timed systems.

Specification Theory for Probabilistic Systems. We consider implemen-
tations represented by probabilistic automata (PA). Probabilistic automata
constitute a mathematical framework for the description and analysis of non-
deterministic probabilistic systems. They have been developed by Segala [30]
to model and analyze asynchronous, concurrent systems with discrete proba-
bilistic choice in a formal and precise way. PA are akin to Markov decision
processes (MDP). A detailed comparison with models such as MDP, as well
as generative and reactive probabilistic transition systems is given in [29]. PA
are recognized as an adequate formalism for randomized distributed algorithms
and fault tolerant systems. They are used as semantic model for formalisms
such as probabilistic process algebra [28] and a probabilistic variant of Harel’s
statecharts [20]. An input-output version of PA is the basis of PIOA and vari-
ants thereof [4,7]. PA have been enriched with notions such as weak and strong
(bi)simulations [30], decision algorithms for these notions [6] and a statistical
testing theory [8].

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 98–117, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 99

In [14], we have introduced abstract probabilistic automata (APA) as a specifi-
cation theory for PA. APA aims at model reduction by collapsing sets of concrete
states to abstract states, e.g. by partitioning the concrete state space. This pa-
per presents a three-valued abstraction of PA. The main design principle of our
model is to abstract sets of distributions by constraint functions. This generalizes
earlier work on interval-based abstraction of probabilistic systems [19,21,22]. To
abstract from action transitions, we introduce may- and must -modalities in the
spirit of modal transition systems [24, 26]. If all states in a partition p have a
must-transition on action a to some state in partition p′, the abstraction yields a
must-transition between p and p′. If some of the p-states have no such transition
while others do, it gives rise to a may-transition between p and p′. In this paper
we will summarize main results on APA. We will also show how the model can
be used as a specification theory for PA.

Specification Theory for Timed Systems. In [9,10], we represent both spec-
ifications and implementations by timed input/output transition systems [23],
i.e. timed transitions systems whose sets of discrete transitions are split into
Input and Output transitions. In contrast to [11] and [23], we distinguish be-
tween implementations and specifications by adding conditions on the models.
This is done by assuming that the former have fixed timing behavior and they
can always advance either by producing an output or delaying. In this paper,
we summarize the specification theory for timed systems of [9,10]. We also show
how a game-based methodology can be used to decide whether a specification is
consistent, i.e. whether it has at least one implementation. The latter reduces
to deciding existence of a strategy that despite the behavior of the environment
will avoid states that cannot possibly satisfy the implementation requirements.
Finally, we show that the approach extends to a robust theory for timed systems.

2 Abstract Probabilistic Automata

For any finite set S, Dist(S) denotes the set of all discrete probability distribu-
tions over S (i.e. all mappings μ : S → [0, 1] with

∑
s∈S μ(s) = 1). C(S) denotes

a set of probability constraints together with a mapping Sat : C(S)→ 2Dist(S).

2.1 Abstract Probabilistic Automata

A probabilistic automaton (PA) [30] is a tuple (S,A, L,AP, V, s0), where S is
a finite set of states with the initial state s0 ∈ S, A is a finite set of actions,
L : S×A×Dist(S)→ {⊥,�} is a transition relation, AP is a finite set of atomic
propositions and V : S → 2AP is a state-labeling function.

PA were introduced in [30] as a model suitable for systems which encompass
both non-deterministic and stochastic behavior. Hence they generalize both LTS
(non-determinism) and Markov chains (stochasticity). The notation L : S×A×
Dist(S) → {⊥,�} instead of L ⊆ S × A × Dist(S) is traditional and will be
convenient below. The left part of Fig. 1 shows an example of a PA.

This copy belongs to 'VANC03'

100 U. Fahrenberg, A. Legay, and L.-M. Traonouez

{n} {o}

{l}

s3

s1

s4

0.3

a�

s2 {m}

0.2

0.5

P

s′3s′2 s′4 s′5

x3
x2

x4

x5

s′1 {{l}, {m}}N

a?

{{n}} {{n}, {o}}{{m}} {{o}}

ϕx ≡ (x2+x3 ≥ 0.7) ∧ (x4+x5 ≥ 0.2)∧
(x2+x3+x4+x5 = 1)

Fig. 1. Example PA P (left) and APA N with P |= N (right)

As specifications of PA we use abstract probabilistic automata [14]. These
can be seen as a common generalization of modal transition systems [16] and
constraint Markov chains [3].

Definition 1. An abstract probabilistic automaton (APA) [14] is a tuple
(S,A, L,AP, V, s0), where S is a finite set of states, s0 ∈ S is the initial state,
A is a finite set of actions, and AP is a finite set of atomic propositions. L :
S×A×C(S)→ {⊥, ?,�} is a three-valued distribution-constraint function, and
V : S → 22

AP

maps each state in S to a set of admissible labelings.

It is natural to think that distribution constraints should be intervals on tran-
sition probabilities as e.g. in interval Markov chains [19]. However, we will later
see that natural constructions on APA such as conjunction or structural com-
position make it necessary to allow other, more expressive types of constraints.

The following notation will be convenient later: for s, t ∈ S and a ∈ A, let
succs,a(t) = {s′ ∈ S | V (s′) = V (t), ∃ϕ ∈ C(S), μ ∈ Sat(ϕ) : L(s, a, ϕ) �=
⊥, μ(s′) > 0} be the set of potential a-successors of s that have V (t) as their
valuation. Remark that when N is deterministic, we have |succs,a(v)| ≤ 1 for all
s, t, a.

An APA is deterministic if (1) there is at most one outgoing transition for
each action in all states and (2) two states with overlapping atomic propositions
can never be reached with the same transition. An APA is in single valuation
normal form (SVNF) if the valuation function V assigns at most one valuation
to all states, i.e. ∀s ∈ S, |V (s)| ≤ 1. From [14], we know that every APA can be
turned into an APA in SVNF with the same set of implementations, and that
this construction preserves determinism.

Note that every PA is an APA in SVNF where all constraints represent a
single distribution. As a consequence, all the definitions we present for APA in
the following can be directly extended to PA.

Let S and S′ be non-empty sets and μ ∈ Dist(S), μ′ ∈ Dist(S′). We say that
μ is simulated by μ′ with respect to a relation R ⊆ S× S′ and a correspondence
function δ : S → (S′ → [0, 1]) if

1. for all s ∈ S with μ(s) > 0, δ(s) is a distribution on S′,
2. for all s′ ∈ S′,

∑
s∈S μ(s) · δ(s)(s′) = μ′(s′), and

3. whenever δ(s)(s′) > 0, then (s, s′) ∈ R.

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 101

We write μ
δ
R μ

′ if μ is simulated by μ′ w.r.t. R and δ, μ
R μ
′ if there exists

δ with μ
δ
R μ

′, and μ
δ μ′ for μ
δ
S×S′ μ′.

For ϕ ∈ C(S), ϕ′ ∈ C(S′) and R ⊆ S × S′, we write ϕ
R ϕ
′ if ∀μ ∈ Sat(ϕ) :

∃μ′ ∈ Sat(ϕ′) : μ
R μ
′.

Definition 2. Let N1 = (S1, A, L1, AP, V1, s
1
0) and N2 = (S2, A, L2, AP, V2, s

2
0)

be APA. A relation R ⊆ S1×S2 is a (weak) modal refinement if, for all (s1, s2) ∈
R, we have V1(s1) ⊆ V2(s2) and

1. ∀a ∈ A, ∀ϕ2 ∈ C(S2), if L2(s2, a, ϕ2) = �, then ∃ϕ1 ∈ C(S1) such that
L1(s1, a, ϕ1) = � and ϕ1
R ϕ2,

2. ∀a ∈ A, ∀ϕ1 ∈ C(S1), if L1(s1, a, ϕ1) �= ⊥, then ∃ϕ2 ∈ C(S2) such that
L2(s2, a, ϕ2) �= ⊥ and ϕ1
R ϕ2.

We say that N1 refines N2 and write N1 ≤m N2, if there is a modal refinement
relation R ⊆ S1 × S2 with (s10, s

2
0) ∈ R.

2.2 Conjunction

Definition 3. Let N = (S,A, L,AP, V, s0), N ′ = (S′, A, L′, AP, V ′, s′0) be de-
terministic APA which share actions and propositions. The conjunction of N
and N ′ is the APA N ∧ N ′ = (S × S′, A, L̃, AP, Ṽ , (s0, s

′
0)), with Ṽ ((s, s′)) =

V (s) ∩ V ′(s′) and L̃ defined as follows, for all a ∈ A and (s, s′) ∈ S × S′:

– If there exists ϕ ∈ C(S) such that L(s, a, ϕ) = � and for all ϕ′ ∈ C(S′), we
have L′(s′, a, ϕ′) = ⊥, or if there exists ϕ′ ∈ C(S′) such that L′(s′, a, ϕ′) = �
and for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥, then L̃((s, s′), a, false) = �.

– Else, if either for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥ or for all ϕ′ ∈ C(S′),
we have L′(s′, a, ϕ′) = ⊥, then for all ϕ̃ ∈ C(S × S′), L̃((s, s′), a, ϕ̃) = ⊥.

– Otherwise, for all ϕ ∈ C(S) and ϕ′ ∈ C(S′) such that L(s, a, ϕ) �= ⊥
and L′(s′, a, ϕ′) �= ⊥, define L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) � L′(s′, a, ϕ′) with
ϕ̃ the constraint in C(S × S′) such that μ̃ ∈ Sat(ϕ̃) iff the distribution
t →

∑
t′∈S′ μ̃((t, t′)) ∈ Sat(ϕ), and the distribution t′ →

∑
t∈S μ̃((t, t

′)) ∈
Sat(ϕ′).

– Finally, for all other ϕ̃′ ∈ C(S × S′), let L̃((s, s′), a, ϕ̃′) = ⊥.

Observe that the conjunction of two deterministic APA is again deterministic.
By the following theorem, conjunction is indeed the greatest lower bound.

Theorem 1. Let N1, N2, N3 be deterministic APA. We have N1 ∧ N2 ≤m N1

and N1∧N2 ≤m N2, and if N3 ≤m N1 and N3 ≤m N2, then also N3 ≤m N1∧N2.

We finish this section with an example in which the conjunction of two APA
with interval constraints is not an APA with interval constraints; hence inter-
val constraints are not closed under conjunction. For the two APA N , N ′ in
Fig. 2, which employ only interval constraints, the conjunction N ∧ N ′ creates
a constraint 0.4 ≤ z22 + z32 ≤ 0.8 which is not an interval.

This copy belongs to 'VANC03'

102 U. Fahrenberg, A. Legay, and L.-M. Traonouez

s2

s3

s4

s1

e, x
2,
�

e, x
4 ,�

e, x3,�

{{a}}
{{d}}

{{c}}

{{b}}
s2

s′3

s′1

e, y2
,�

e, y
3 ,�

{{a}}
{{d}}

{{b}, {c}}

ϕx : 0 ≤ x2 ≤ 1
2
∧ 0.2 ≤ x3 ≤ 0.7 ∧ 0 ≤ x4 ≤ 1

2

ϕy : 0.4 ≤ y2 ≤ 0.8 ∧ 0 ≤ y3 ≤ 1

s2, s
′
2

s3, s
′
2

s4, s
′
3

s1s
′
1

e, z2
2,
�

e, z43 ,�

e, z32,�

{{a}}
{{d}}

{{c}}

{{b}}

ϕz : 0 ≤ z22 ≤ 0.5 ∧ 0.2 ≤ z32 ≤ 0.7 ∧ 0 ≤ z43 ≤ 0.5 ∧ 0.4 ≤ z22 + z32 ≤ 0.8

Fig. 2. Two APA with interval constraints (top) and their conjunction (bottom)

2.3 Structural Composition

Definition 4. Let N = (S,A, L,AP, V, s0), N ′ = (S′, A, L′, AP ′, V ′, s′0) be APA
with AP ∩ AP ′ = ∅. The structural composition of N and N ′ is N‖N ′ = (S ×
S′, A, L̃, AP∪AP ′, Ṽ , (s0, s

′
0)), with Ṽ ((s, s′)) = {B∪B′ | B ∈ V (s), B′ ∈ V ′(s′)}

and L̃ defined as follows, for all (s, s′) ∈ S × S′ and a ∈ A:

– For all ϕ ∈ C(S), ϕ′ ∈ C(S′) for which L(s, a, ϕ) �= ⊥ and L′(s′, a, ϕ′) �=
⊥, let ϕ̃ ∈ C(S × S′) be a constraint for which μ̃ ∈ Sat(ϕ̃) iff ∃μ ∈
Sat(ϕ), μ′ ∈ Sat(ϕ′) : ∀t ∈ S, t′ ∈ S′ : μ̃(t, t′) = μ(t)μ(t′). Now if L(s, a, ϕ) =
L′(s′, a, ϕ′) = �, let L̃((s, s′), a, ϕ̃) = �, otherwise let L̃((s, s′), a, ϕ̃) = ?.

– If L(s, a, ϕ) = ⊥ for all ϕ ∈ C(S) or L′(s′, a, ϕ′) = ⊥ for all ϕ′ ∈ C(S′), let
L̃((s, s′), α, ϕ̃) = ⊥ for all ϕ̃ ∈ C(S × S′).

By the next theorem, structural composition respects refinement (or, in other
words, refinement is a pre-congruence with respect to ‖). This entails indepen-
dent implementability: any composition of implementations of N1 and N2 is
automatically an implementation of N1‖N2.

Theorem 2. For all APA N1, N ′
1, N2, N ′

2, N1 ≤m N
′
1 and N2 ≤m N

′
2 imply

N1‖N2 ≤m N
′
1‖N ′

2.

It can be shown that structural composition of APA with interval constraints
may yield APA with polynomial constraints, e.g. of the form k1 ≤ x1x2+x2x3 ≤

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 103

k2. APA with polynomial constraints are, however, closed under both structural
composition and conjunction. The tool APAC [15] implements most of APA
operations, for APA with polynomial constraints, and uses the Z3 solver [12] for
algorithms on polynomial constraints.

2.4 Over-Approximating Difference

We now turn to computing differences of APA. For APAN1,N2, we are interested
in computing an APA representation of their implementation difference �N1� \
�N1�. This is based on work presented in [13].

Let N1 = (S1, A, L1, AP, V1, {s10}), N2 = (S2, A, L2, AP, V2, {s20}) be deter-
ministic APA in SVNF. Because N1 and N2 are deterministic, we know that
the difference �N1� \ �N2� is non-empty iff N1 �≤m N2. So let us assume that
N1 �≤m N2, and let R be a maximal refinement relation between N1 and N2.
Since N1 �≤m N2, we know that (s10, s

2
0) �∈ R. Given (s1, s2) ∈ S1 × S2, we can

distinguish between the following cases:

1. (s1, s2) ∈ R,
2. V1(s1) �= V2(s2), or
3. (s1, s2) �∈ R and V1(s1) = V2(s2), and

(a) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) = � and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e,�
e

(b) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) = ? and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e, ?
e

(c) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) ≥ ? and ∃ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) =
?, ∃μ ∈ Sat(ϕ1) such that ∀μ′ ∈ Sat(ϕ2) : μ �
R μ

′,
ϕ2

s2

ϕ1

s1

�=

e, {?,�}
e, ?

(d) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = � and ∀ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ⊥,

ϕ2

s2s1

e
e,�

(e) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = � and ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ?,

ϕ2

s2

ϕ1

s1

e, ?
e,�

This copy belongs to 'VANC03'

104 U. Fahrenberg, A. Legay, and L.-M. Traonouez

Table 1. Definition of the transition function L in N1 \∗ N2

e ∈ N1, N2 N1 \∗ N2 Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,�
e

ϕ⊥1

e,�

(s1, s2, e) For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

⊥
1) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)

ϕ2

s2s1

e
e,� e

(s1, s2, e) For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �=
⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ). For all
other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) =
⊥.

Be(s1, s2)

ϕ2

s2

ϕ1

s1

e, ?
e,�

ϕB12

e, ?

(s1, s2, e)
For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

?. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bc(s1, s2)

ϕ2

s2

ϕ1

s1

�=

e, {?,�}
e, ?

(s1, s2, e)

ϕB12

e,�

ϕ⊥1

e, {?,�}

For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �=
⊥ (including e and ϕ1), let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bf (s1, s2)

s2s1

ϕ1 ϕ2�=

e,�
e,�

(f) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = �, ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = � and
∃μ ∈ Sat(ϕ1) such that ∀μ′ ∈ Sat(ϕ2) : μ �
R μ

′.

s2s1

ϕ1 ϕ2�=

e,�
e,�

Remark that due to determinism and SVNF, cases 1, 2 and 3 cannot happen
at the same time. Moreover, although the cases in 3 can happen simultaneously,
they cannot be triggered by the same action. We define the following sets.

Given a pair of states (s1, s2), let Ba(s1, s2) be the set of actions in A such that
case 3.a above holds. If there is no such action, then Ba(s1, s2) = ∅. Similarly, we
define Bb(s1, s2), Bc(s1, s2), Bd(s1, s2), Be(s1, s2) and Bf (s1, s2) to be the sets of
actions such that case 3.b, c, d, e and 3.f holds, respectively. Given a set X ⊆
{a, b, c, d, e, f}, let BX(s1, s2) = ∪x∈XBx(s1, s2). In addition, let B(s1, s2) =
B{a,b,c,d,e,f}(s1, s2).

Definition 5. Let N1 = (S1, A, L1, AP, V1, {s10}), N2 = (S2, A, L2, AP, V2, {s20})
be deterministic APA in SVNF. If N1 ≤m N2, then N1 \∗ N2 is undefined;
if V1(s10) �= V2(s

2
0), we let N1 \∗ N2 = N1. Otherwise, define N1 \∗ N2 =

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 105

(S,A, L,AP, V, S0), where S = S1× (S2∪{⊥})× (A∪{ε}), V (s1, s2, a) = V (s1),
and S0 = {(s10, s20, f) | f ∈ B(s10, s20)}. L is defined as follows:

– If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1)
such that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e), a, ϕ⊥) = L1(s1, a, ϕ), with ϕ⊥

defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.
– Else, we have (s1, s2) in case 3 and B(s1, s2) �= ∅ by construction. The

definition of L is given in Table 1, with the constraints ϕ⊥ and ϕB
12 defined

below.

For ϕ ∈ C(S1), ϕ⊥ ∈ C(S) is defined as follows: μ ∈ Sat(ϕ⊥) iff ∀s1 ∈ S1,
∀s2 �= ⊥, ∀b �= ε, μ(s1, s2, b) = 0 and the distribution s1 (→ μ(s1,⊥, ε) ∈ Sat(ϕ).

For a state (s1, s2, e) ∈ S with s2 �= ⊥, e �= ε and two constraints ϕ1 ∈ C(S1),
ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) �= ⊥ and L2(s2, e, ϕ2) �= ⊥, the constraint
ϕB
12 ∈ C(S) is defined as follows: μ ∈ Sat(ϕB

12) iff

1. for all (s′1, s′2, c) ∈ S with μ(s′1, s′2, c) > 0, c ∈ B(s′1, s′2) ∪ {ε} and either
succs2,e(s′1) = ∅ and s′2 = ⊥, or s′2 = succs2,e(s′1),

2. the distribution s′1 (→
∑

c∈A∪{ε},s′2∈S2∪{⊥} μ(s
′
1, s

′
2, c) ∈ Sat(ϕ1), and

3. either (a) there exists (s′1,⊥, c) such that μ(s′1,⊥, c) > 0, or (b) the distribu-
tion s′2 (→

∑
c∈A∪{ε},s′1∈S1

μ(s′1, s
′
2, c) /∈ Sat(ϕ2), or (c) there exists s′1 ∈ S1,

s′2 ∈ S2 and c �= ε such that μ(s′1, s′2, c) > 0.

Informally, distributions in ϕB
12 must (1) follow the corresponding execution

in N1 and N2 if possible, (2) satisfy ϕ1 and (3) either (a) reach a state in N1 that
cannot be matched in N2 or (b) break the constraint ϕ2, or (c) report breaking
the relation to at least one successor state.

The following theorem shows that the ∗-difference over-approximates the real
difference.

Theorem 3. For all deterministic APA N1 and N2 in SVNF such that N1 �≤m
N2, we have �N1� \ �N2� ⊆ �N1 \∗ N2�.

2.5 Under-Approximating Differences

Instead of the over-approximating difference N1 \∗ N2, we can also compute
under-approximating differences. Intuitively, this is done by unfolding the APA
N1, N2 up to some level K and then compute the difference of unfoldings:

Definition 6. Let N1 = (S1, A, L1, AP, V1, {s10}), N2 = (S2, A, L2, AP, V2, {s20})
be deterministic APA in SVNF and K ∈ �. If N1 ≤m N2, then N1 \K N2 is un-
defined; if V1(s10) �= V2(s20), we let N1 \KN2 = N1. Otherwise, define N1\KN2 =
(S,A, L,AP, V, SK

0), where S = S1 × (S2 ∪ {⊥}) × (A ∪ {ε}) × {1, . . . ,K},
V (s1, s2, a, k) = V (s1), and SK

0 = {(s10, s20, f,K) | f ∈ B(s10, s20)}. L is defined
as follows:

– If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1)
such that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e, k), a, ϕ⊥) = L1(s1, a, ϕ), with ϕ⊥

defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

This copy belongs to 'VANC03'

106 U. Fahrenberg, A. Legay, and L.-M. Traonouez

Table 2. Definition of the transition function L in N1 \K N2

e ∈ N1, N2 N1 \K N2 Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,�
e

ϕ⊥1

e,�

(s1, s2, e, k) For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ

⊥
1) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)

ϕ2

s2s1

e
e,� e

(s1, s2, e, k) For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �=
⊥, let L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). For all
other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) =
⊥.

Be(s1, s2)

ϕ2

s2

ϕ1

s1

e, ?
e,�

ϕB,k
12

e, ?

(s1, s2, e, k)
For all a �= e ∈ A and ϕ ∈
C(S1) such that L1(s1, a, ϕ) �= ⊥, let
L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). In addi-
tion, let L((s1, s2, e, k), e, ϕ

B,k
12) = ?. For all other

b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

Bc(s1, s2)

ϕ2

s2

ϕ1

s1

�=

e, {?,�}
e, ?

(s1, s2, e, k)

ϕB,k
12

e,�

ϕ⊥1

e, {?,�}

For all a ∈ A and ϕ ∈ C(S1) such that
L1(s1, a, ϕ) �= ⊥ (including e and ϕ1), let
L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). In addition, let
L((s1, s2, e, k), e, ϕ

B,k
12) = �. For all other b ∈ A and

ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.
Bf (s1, s2)

s2s1

ϕ1 ϕ2�=

e,�
e,�

– Else we have (s1, s2) in case 3 and B(s1, s2) �= ∅ by construction. The def-
inition of L is given in Table 2, with the constraints ϕ⊥ and ϕB,k

12 defined
below.

For ϕ ∈ C(S1), ϕ⊥ ∈ C(S) is defined as follows: μ ∈ Sat(ϕ⊥) iff ∀s1 ∈
S1, ∀s2 �= ⊥, ∀b �= ε, ∀k �= 1, μ(s1, s2, b, k) = 0 and the distribution s1 (→
μ(s1,⊥, ε, 1) ∈ Sat(ϕ).

For a state (s1, s2, e, k) ∈ S with s2 �= ⊥, e �= ε and two constraints ϕ1 ∈
C(S1) and ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) �= ⊥ and L2(s2, e, ϕ2) �= ⊥, the
constraint ϕB,k

12 ∈ C(S) is defined as follows: μ ∈ Sat(ϕB,k
12) iff

1. for all (s′1, s′2, c, k′) ∈ S, if μ(s′1, s′2, c, k′) > 0, then c ∈ B(s′1, s′2) ∪ {ε} and
either succs2,e(s′1) = ∅, s′2 = ⊥ and k′ = 1, or s′2 = succs2,e(s′1),

2. the distribution s′1 (→
∑

c∈A∪{ε},s′2∈S2∪{⊥},k′≥1 μ(s
′
1, s

′
2, c, k

′) ∈ Sat(ϕ1), and
3. either (a) there exists (s′1,⊥, c, 1) such that μ(s′1,⊥, c, 1) > 0, or (b) the

distribution s′2 (→
∑

c∈A∪{ε},s′1∈S1,k′≥1 μ(s
′
1, s

′
2, c, k

′) /∈ Sat(ϕ2), or (c) k �= 1

and there exists s′1 ∈ S1, s′2 ∈ S2, c �= ε and k′ < k such that μ(s′1, s′2,
c, k′) > 0.

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 107

Theorem 4. For all deterministic APA N1, N2 in SVNF such that N1 �≤m N2,

1. for all K ∈ �, we have N1 \K N2 ≤m N1 \K+1 N2,
2. for all K ∈ �, �N1 \K N2� ⊆ �N1� \ �N2�, and
3. for all PA P ∈ �N1� \ �N2�, there exists K ∈ � such that P ∈ �N1 \K N2�.

Note that item 3 implies that for all PA P ∈ �N1� \ �N2�, there is a finite
specification capturing �N1�\�N2� “up to” P . Hence lim−→�N1\KN2� = �N1�\�N2�,
the direct limit.

2.6 Distances

In order to better assess how close the differences N1 \∗ N2 and N1 \K N2 ap-
proximate the real difference �N1� \ �N2�, we define distances on APA. These
distances are based on work in [2, 17, 18]; see also [16].

Let λ ∈ � with 0 < λ < 1 be a discounting factor.

Definition 7. The modal refinement distance between the states of APA N1 =
(S1, A, L1, AP, V1, S

1
0), N2 = (S2, A, L2, AP, V2, S

2
0) is defined to be the least fixed

point to the equations

dm(s1, s2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if V1(s1) �⊆ V2(s2),

max

⎧⎪⎨
⎪⎩

sup
a,ϕ1:L1(s1,a,ϕ1) �=⊥

inf
ϕ2:L2(s2,a,ϕ2) �=⊥

D(ϕ1, ϕ2)

sup
a,ϕ2:L2(s2,a,ϕ2)=	

inf
ϕ1:L1(s1,a,ϕ1)=	

D(ϕ1, ϕ2)

⎫⎪⎬
⎪⎭ otherwise,

where

D(ϕ1, ϕ2) = sup
μ1∈Sat(ϕ1)

inf
μ2∈Sat(ϕ2)

inf
δ:μ1�δμ2

∑
(s1,s2)∈S1×S2

λμ1(s1)δ(s1, s2)dm(s1, s2).

We let dm(N1, N2) = maxs01∈S0
1
mins02∈S0

2
dm(s

0
1, s

0
2).

Note that sup ∅ = 1. The through refinement distance is

dt(N1, N2) = sup
P1∈�N1�

inf
P2∈�N2�

dm(P1, P2).

We need to extend this to general sets of PA; for S1, S2 sets of PA, we let
dt(S1,S2) = supP1∈S1

infP2∈S2 dm(P1, P2). The next proposition shows that our
distances behave as expected, cf. [16].

Proposition 1. For all APA N1, N2, dt(N1, N2) ≤ dm(N1, N2), and N1 ≤m N2

implies dm(N1, N2) = 0.

Theorem 5. Let N1, N2 be deterministic APA in SVNF such that N1 �≤m N2.

1. The sequence (N1 \K N2)K∈� converges in the distance dm, and
lim

K→∞
dm(N1 \∗ N2, N1 \K N2) = 0.

This copy belongs to 'VANC03'

108 U. Fahrenberg, A. Legay, and L.-M. Traonouez

2. The sequence (�N1 \K N2�)K∈� converges in the distance dt, and
lim

K→∞
dt(�N1� \ �N2�, �N1 \K N2�) = 0.

3. The distance dt(�N1 \∗ N2�, �N1� \ �N2�) = 0.

Note that item 3 follows directly from items 1 and 2. It implies that even
though N1 \∗ N2 is an over-approximation of the real difference, the two are
infinitesimally close in the distance dt. Similarly, the under-approximating dif-
ferences N1 \K N2 come arbitrarily close to the real difference for sufficiently
large K.

3 Real-Time Specifications

In this section we consider that Σ = Σi Σo is a finite set of actions partitioned
into inputs Σi and outputs Σo. We first define basic models for timed systems,
namely TIOTS and TIOA.

A timed I/O transition system (TIOTS) is a tuple (S, s0, Σ,−→), where S is
an infinite set of states, s0 ∈ S is the initial state, and −→ : S×(Σ∪�≥0)×S is a
transition relation. We assume that any TIOTS satisfies the following conditions:

1. Time determinism: ∀s, s′, s′′ ∈ S.∀d ∈ �≥0, if s d−→ s′ and s d−→ s′′,
then s′ = s′′.

2. Time reflexivity: ∀s ∈ S. s 0−→ s.
3. Time additivity: ∀s, s′′ ∈ S.∀d, d′ ∈ �≥0, s

d+d′
−→ s′′ iff ∃s′ ∈ S. s d−→ s′

and s′ d′
−→ s′′.

We now consider a finite set C of real-time clocks. A clock valuation u over C
is a mapping C (→ �≥0. Let d ∈ �≥0, we denote u + d the valuation such that
∀x ∈ C. (u+ d)(x) = u(x)+ d. Let λ ⊆ C, we denote u[λ] the valuation agreeing
with u on clocks in C \ λ, and assigning 0 on clocks in λ. Let B(C) denote all
clock constraints ϕ generated by the grammar ϕ ::= x ≺ k | x − y ≺ k | ϕ ∧ ϕ,
where k ∈ �, x, y ∈C and ≺∈ {<,≤, >,≥}. By U(C) ⊂ B(C), we denote the
set of constraints restricted to upper bounds and without clock differences. We
write u |= ϕ if u satisfies ϕ. Let Z ⊆ �C

≥0, we write Z |= ϕ if ∀u ∈ Z. u |= ϕ and
we denote �ϕ� = {u ∈ �C

≥0 | u |= ϕ}.
A timed I/O automaton is a tuple A = (L, l0, C, E,Σ, I), where L is a finite

set of locations, l0 ∈ L is the initial location, C is a finite set of real valued clocks,
E ⊆ L×Σ×B(C)× 2C ×L is a set of edges, I : L (→ U(C) assigns an invariant
to each location.

The semantics of a TIOA is a TIOTS 〈〈A〉〉 = (L×�C
≥0, (l

0,0), Σ,−→), where
0 is the valuation mapping all clocks to zero, and −→ is the largest transition
relation generated by the following rules:

(l, a, ϕ, λ, l′) ∈ E u |= ϕ u′ = u[λ]

(l, u)
a−→ (l′, u′)

d ∈ �≥0 u+ d |= I(l)

(l, u)
d−→ (l, u+ d)

Examples of TIOA are shown on Fig. 3. Edges with input actions are drawn
with continuous lines, while edges with output actions are drawn with dashed
lines.

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 109

3.1 Timed Specifications

A timed specification theory is introduced in [9, 10] using TIOA and TIOTS.
Specifications and implementations models are defined with TIOA with addi-
tional requirements for their TIOTS semantics.

Definition 8. A specification S is a TIOA whose semantics 〈〈S〉〉 satisfies the
following conditions:

1. Action determinism: ∀s, s′, s′′ ∈ S.∀a ∈ Σ∪�≥0, if s a−→ s′ and s a−→ s′′,
then s′ = s′′.

2. Input-enabledness: ∀s ∈ S.∀i? ∈ Σi. ∃s′ ∈ S. s i?−→ s′.

An implementation I is a specification whose semantics 〈〈I〉〉 satisfies the addi-
tional conditions:

3. Output urgency: ∀s, s′, s′′ ∈ S, if ∃o! ∈ Σo. s
o!−→ s′ and ∃d ∈

�≥0. s
d−→ s′′, then d = 0.

4. Independent progress: ∀s ∈ S, either ∀d ∈ �≥0.∃s′ ∈ S. s d−→ s′, or ∃d ∈
�≥0.∃o! ∈ Σo.∃s′, s′′ ∈ S. s d−→ s′ and s′ o!−→ s′′.

An alternating timed simulation between two TIOTS P1 = (S1, s
0
1, Σ,−→1)

and P2 = (S2, s
0
2, Σ,−→2) is a relation R ⊆ S1 × S2 such that ∀(s1, s2) ∈ R,

1. if s1
a−→1 t1 for some a ∈ Σo ∪�≥0, then s2

a−→2 t2 and (t1, t2) ∈ R.
2. if s2

a−→2 t2 for some a ∈ Σi, then s1
a−→1 t1 and (t1, t2) ∈ R.

We write P1 ≤ P2 if there exits an alternating simulation R ⊆ S1 × S2 with
(s01, s

0
2) ∈ R. For two specifications S1 and S2, we say that S1 refines S2, written

S1 ≤ S2, iff 〈〈S1〉〉 ≤ 〈〈S2〉〉.
An implementation I satisfies a specification S, denoted I |= S, iff 〈〈I〉〉 ≤

〈〈S〉〉. A specification S is consistent iff there exists an implementation I such
that I |= S. We write �S� = {I | I is an implementation and I |= S} the set
of all implementations of a specification.

It is shown in [10] that timed specifications also define timed games between
two players: an input player that represents the environment and plays with
input actions, and an output player that represents the component and plays
with output actions. This timed game semantics is used to solve various decision
problems, for instance consistency and refinement checking.

Consider the timed specification M of a coffee machine in Fig. 3a, and the
implementation MI in Fig. 3b. We can check that this implementation satisfies
the specification using a refinement game. The game proceeds as a turn-based
game with two players: a spoiler starts by playing delays or output actions from
the implementation, or input actions from the specification; then a replicator
tries to copy the action on the other model. The spoiler wins whenever the
replicator cannot mimic one of its move. Otherwise the replicator wins. For
instance a strategy for the spoiler could start by delaying MI by 10 time units.
Then the strategy of the replicator is two delay M by 10 time units. On the

This copy belongs to 'VANC03'

110 U. Fahrenberg, A. Legay, and L.-M. Traonouez

tea!

coin?

tea!

cof! coin?

Idle

Serving

y=0y>=4

y<=6

y>=2

(a) Specification M

coin?

tea!

y=0
cof!

coin?

Idle

y<=5

Serving

y=0

y>=5

y<=10

y>=10

(b) Implementation MI

tea!

coin?

tea!

coin?

cof! coin?

Idle

y<=0

Serving

Blocked

y=0y>=4

y=0

y<=6

y>=2

(c) Partially inconsistent
specification

Fig. 3. Specification and implementation of a coffee machine with TIOA

second move the spoiler plays action coin? on M and reaches location Serving.
The replicator does the same on MI. On the third move the spoiler delays MI
by 5 time units. This is allowed by the specification, so the replicator still has
a winning strategy. Then the spoiler is forced to play action coff! on MI, due to
the invariant in location Serving, and replicator does the same on M. The game
has then returned to the initial state.

In this game a winning strategy for the replicator is necessarily infinite, as he
will have to play as long as the spoiler is playing actions. However there exists
symbolic techniques and algorithms for timed games [5] that restrict the game
to memoryless state-based strategies on a finite number of symbolic states.

Similarly, consistency is solved using a safety game. The verifier controls the
output actions of the specification, while the spoiler controls the input. The spoiler
objectives is to reach an inconsistent state, that does not satisfy the independent
progress condition (i.e. the verifier has no delay or output actions). Contrary to
the refinement game, the game is concurrent: both players choose a couple de-
lay and action at the same time, then the move that is performed is the one with
the smaller delay. Consider for instance another specification of a coffee machine
shown in Fig. 3c. The location Blocked is inconsistent, but the verifier can still
play a strategy to avoid it (for instance by never playing action tea!). Therefore
this specification is also consistent, and indeed one can check that the MI also sat-
isfies this specification.

3.2 Robust Timed Specifications

We now introduce some perturbations in the timing constants of the models
and check whether “good” properties are still satisfied. This is known as the
robustness problem. Let ϕ ∈ B(C) be a guard over clocks C and let Δ ∈ �≥0.
The enlarged guard +ϕ,Δ is constructed according to the following rules:

– Any term x ≺ k of ϕ with ≺∈{<,≤} is replaced by x ≺ k+Δ
– Any term x - k of ϕ with -∈{>,≥} is replaced by x - k−Δ

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 111

Similarly, the restricted guard .ϕ/Δ is constructed with the following rules:

– Any term x ≺ k of ϕ with ≺∈{<,≤} is replaced by x ≺ k−Δ
– Any term x - k of ϕ with -∈{>,≥} is replaced by x - k+Δ.

We lift the perturbation to implementations models. Given a jitter Δ, the
perturbation means a Δ-enlargement of invariants and output edge guards, and
on contrary a Δ-restriction of input edge guards:

Definition 9. Let I = (L, l0, C, E,Σ, I) be an implementation and Δ ∈ �≥0,
the Δ-perturbation of I is the TIOA IΔ = (L ∪ lu, l0, C, EΔ, Σ, IΔ), where

1. Every edge (l, o!, ϕ, λ, l′) ∈ E is replaced by (l, o!, +ϕ,Δ, λ, l′) ∈ EΔ.
2. Every edge (l, i?, ϕ, λ, l′) ∈ E is replaced by (l, i?, .ϕ/Δ, λ, l′) ∈ EΔ.
3. ∀l ∈ L. IΔ(l) = +I(l),Δ.
4. ∀l ∈ L. ∀i? ∈ Σi there exists an edge (l, i?, ϕu, ∅, lu) ∈ EΔ with

ϕu = ¬
(∨

(l,i?,ϕ,λ,l′)∈E

.ϕ/Δ
)
.

lu is a universal location such that, ∀a ∈ Σ.∃(lu, a,�, ∅, lu) ∈ E, where � is the
clock constraints such that ��� = �C

≥0.

An implementation I robustly satisfies a specification S for a given delay
Δ ∈ �≥0, denoted I |=Δ S, if IΔ ≤ S. A specification S is Δ-robust consistent
iff there exists an implementation I such that I |=Δ S. We write �S�Δ = {I |
I is an implementation and I |=Δ S} the set of all Δ-robust implementations
a specification.

Refinement game is used to check robust satisfaction. Consider again the
specification M and the implementation MI from 3. The Δ-perturbation of MI
is presented on Fig.4. For Δ = 1, we can check that MI1 ≤ M. For Δ = 2 the
spoiler has the following winning strategy: he plays coin? on M, then delays by
7 time units on MI2. This cannot be mimicked by the replicator since he cannot
delays more than 6 time units on the specification M. Indeed we can show then
Δ = 1 is the maximum value such that MI robustly satisfies M.

To solve robust consistency, the technique from [25] transforms the consistency
game into a robust game. Then, the same game algorithms can be applied on this
robust game. This transformation is illustrated in Fig.5. On the left, consider
the specification of Fig.5a, of which we want to check the robust consistency for
Δ = 1. We transform the TIOA by splitting output edges, as shown on the right
in Fig. 5b. In this game in location Serving, if the verifier plays its move at time
y = 5, he must wait 1 time unit in location Serving_a and then reach location
Serving_b at y = 6. Here the spoiler has a strategy to reach the location Bad
and wins. Therefore the winning strategy for the verifier is to move to Serving_a
at y = 4, then wait 1 time unit, and reach Serving_b at y = 5, where the
spoiler is forced to return to location Idle. For Δ = 2 this strategy fails, since
location Serving_b is only reached after y ≥ 6. This shows that the specification
is 1-robust consistent.

This copy belongs to 'VANC03'

112 U. Fahrenberg, A. Legay, and L.-M. Traonouez

coin?

tea!

y=0
cof!

coin?

Idle

y<=5+Δ

Serving

y=0

y>=5-Δ

y<=10+Δ

y>=10-Δ

Fig. 4. Δ-perturbation of an implementation

(a) Specification (b) Robust consistency game

Fig. 5. Robust consistency game transformation for a timed specification

3.3 Conjunction

Definition 10. The conjunction of two timed specifications S1 = (L1, l
0
1, C1, E1,

Σ, I1), S2 = (L2, l
0
2, C2, E2, Σ, I2) is the TIOA S1∧S2 = (L, l0, C, E,Σ, I) where

L = L1 × L2, l0 = (l01, l
0
2), C = C1 C2, I((l1, l2)) = I1(l1) ∧ I2(l2), and the set

of edges is defined according to the following rule:

((l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l′2)) ∈ E iff
(l1, a, ϕ1, λ1, l

′
1) ∈ E1 and (l2, a, ϕ2, λ2, l

′
2) ∈ E2

Theorem 6. For any timed specification S1, S2, and T over the same alphabet:

1. S1 ∧ S2 ≤ S2 and S1 ∧ S2 ≤ S1
2. (T ≤ S1) and (T ≤ S2) implies T ≤ (S1 ∧ S2)
3. �S1 ∧ S2� = �S1� ∩ �S2�
4. �(S1 ∧ S2) ∧ T � = �S1 ∧ (S2 ∧ T)�

It turns out that this operator is robust, in the sense of precisely characterizing
also the intersection of the sets of robust implementations. So not only conjunc-
tion is the greatest lower bound with respect to implementation semantics, but
also with respect to the robust implementation semantics. More precisely:

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 113

Theorem 7. For any timed specifications S1 and S2 over the same alphabet and
Δ ∈ �≥0, �S1 ∧ S2�Δ = �S1�Δ ∩ �S2�Δ.

3.4 Structural Composition

Two specifications S1, S2 can be composed iff Σo
1 ∩Σo

2 = ∅. Structural composi-
tion is obtained in by a product, where the inputs of one specification synchronize
with the outputs of the other:

Definition 11. The structural composition of two composable timed specifi-
cations S1 = (L1, l

0
1, C1, E1, Σ1, I1), S2 = (L2, l

0
2, C2, E2, Σ2, I2) is the TIOA

S1 ‖ S2 = (L, l0, C, E,Σ, I), where L = L1 × L2, l0 = (l01, l
0
2), C = C1 C2,

Σ = Σo ∪Σi with Σo = Σo
1 Σo

2 and Σi = (Σi
1 \Σo

2) ∪ (Σi
2 \Σo

1), I((l1, l2)) =
I1(l1) ∧ I2(l2), and for all l1, l′1 ∈ L1, l2, l′2 ∈ L2, the set of edges is defined
according to the following rules:

1. ∀a ∈ Σ1 \Σ2, ((l1, l2), a, ϕ1, λ1, (l
′
1, l2)) ∈ E iff (l1, a, ϕ1, λ1, l

′
1) ∈ E1.

2. ∀a ∈ Σ2 \Σ1, ((l1, l2), a, ϕ2, λ2, (l1, l
′
2)) ∈ E iff (l2, a, ϕ2, λ2, l

′
2) ∈ E2.

3. ∀a ∈ Σ1 ∩Σ2, ((l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l′2)) ∈ E
iff (l1, a, ϕ1, λ1, l

′
1) ∈ E1 and (l2, a, ϕ2, λ2, l

′
2) ∈ E2.

Theorem 8. For all specifications S1, S2 and T such that S1 ≤ S2 and S1 is
composable with T , we have that S2 is composable with T and S1 ‖ T ≤ S2 ‖ T .

Theorem 8 allows the independent implementability scenario: for any consis-
tent specification S1 and S2, such that S1 is composable with S2, S1 ‖ S2 is
consistent. Moreover, if I1 is an implementation that satisfies S1 and I2 is an
implementation that satisfies S2, then I1 ‖ I2 SatS1 ‖ S2.

Finally, Theorem 9 show that this independent implementability can be ex-
tended to robust implementability:

Theorem 9. For any Δ-robust consistent specification S2 and S2 such that S1
is composable with S2, let I1 be a Δ-robust implementation of S1 and I2 be a
Δ-robust implementation of S2, then I2 ‖ I2 SatΔ S1 ‖ S2.

3.5 Parametric Robustness Evaluation

Robustness problems, like robust consistency and robust satisfaction, can be
solved with traditional timed games algorithms for a given value of the per-
turbation Δ. When considering Δ as a parameter we want to determine the
maximum value of the perturbation such that these problems are satisfied.

Let (AΔ,W) be a parametric timed game, whereA is a TIOA parametrized by
Δ and W is a safety objective. We define Δmax = Sup{Δ | (AΔ,W) has a win-
ning strategy}. Computing Δmax would in general require to solve a parametric
timed game, which is undecidable [1]. Therefore, considering that the problems
are monotonic, we have propose in [25] a technique to estimate the maximum
value of Δ with a given precision parameter. This procedure is described in
Algorithm 1.

This copy belongs to 'VANC03'

114 U. Fahrenberg, A. Legay, and L.-M. Traonouez

Algorithm 1: Evaluation of the maximum robustness
Input: (AΔ,W): parametric robust timed game,

Δinit : initial maximum value,
ε: precision

Output: Δgood such that Δmax −Δgood ≤ ε
1 begin
2 Δgood ← 0
3 Δbad ← Δinit

4 while Δbad −Δgood > ε do
5 (Δgood ,Δbad) ← RefineValues((AΔ,W),Δgood ,Δbad)
6 end
7 return Δgood

8 end

The algorithm assumes that the game (A0, Bad) is won, and on contrary that
(AΔinit , Bad) is lost. At the heart of the algorithm the procedure RefineValues
solves the game (AΔ, Bad) for a value Δ ∈ [Δgood, Δbad] and updates the vari-
ables Δgood and Δbad according to the result.

Different algorithms can be used to implement RefineValues. In [25] we have
compared a basic binary search approach, with a counter strategy refinement
approach. In this latter we analyze the winning strategies for the spoiler in
order to determine the maximum value of Δ that invalidates these strategies. In
practice, this technique implemented in the tool PyEcdar [27], allows Algorithm 1
to converge faster.

Δgood Δbad

0 6
0 3
0 1.5

0.75 1.5
0.75 1.125

We show in the table on the right how to run Al-
gorithm 1 with binary search to check the robust con-
sistency of the specification from Fig. 5a. First, we
consider the robust game automaton on Fig. 5b. Δinit

is set to 6, which is the maximum constant in the
model, and ε = 0.5. In the first iteration the algo-
rithm considers Δ = 3 and solves the game, which is
lost. Therefore it updates the value of Δbad to 3. On the third iteration, for
Δ = 0.75 the game is won. In that case Δgood is updated to 0.75. The algorithm
stops when 1.125− 0.75 ≤ ε.

Finally, in Table 3 we present the results of an experiment performed on
an example of timed specifications that model the administration of a university
(with the coffee machine specificationM , presented in Fig. 3a, an administration
specification A, a researcher specification R, and the structural compositions
of these specifications). The results compare the performances of Algorithm 1
when checking robust consistency using either a binary search approach (BS) or
a counter strategy refinement approach (CS).

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 115

Table 3. Comparing methods to check robust consistency of timed specifications

Δinit = 8 Δinit = 6 Δinit = 8 Δinit = 6

Game size ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

Model loc. edges CR BS CR BS CR BS CR BS
M 9 21 119ms 314ms 119ms 262ms 119ms 438ms 119ms 437ms
R 11 27 188ms 303ms 188ms 299ms 188ms 419ms 188ms 523ms
A 9 22 133ms 316ms 133ms 287ms 133ms 441ms 133ms 483ms

M ‖ A 41 158 10.1s 10.1s 10.1s 9.6s 10.4s 17.5s 10.4s 17.6s
R ‖ A 48 201 14.1s 12.1s 12.5s 11s 14.1s 19.6s 12.5s 19.4s
M ‖ R 44 152 10s 15.5s 9.81s 15.8s 10.3s 22.9s 9.78s 29.2s

M ‖ R ‖ A 180 803 54.4s 56.3s 54.6s 112s 55s 58.8s 55.7s 216s

Acknowledgment. This survey paper presents research which we have con-
ducted with a number of coauthors; in alphabetical order, these are Alexandre
David, Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Ulrik Nyman,
Mikkel L. Pedersen, Falak Sher, and Andrzej Wąsowski. We acknowledge their
cooperation in this work; any errors in this presentation are, however, our own.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601 (1993)

2. Bauer, S.S., Fahrenberg, U., Legay, A., Thrane, C.: General quantitative spec-
ification theories with modalities. In: Hirsch, E.A., Karhumäki, J., Lepistö, A.,
Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 18–30. Springer, Heidelberg
(2012)

3. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski,
A.: Compositional design methodology with constraint Markov chains. In: QEST,
pp. 123–132. IEEE Computer Society (2010)

4. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Analyzing security protocols using time-bounded task-PIOAs. Discrete
Event Dynamic Systems 18(1), 111–159 (2008)

5. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

6. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim,
L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 371–385. Springer, Heidelberg (2002)

7. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched PIOA: Paral-
lel composition via distributed scheduling. Theor. Comput. Sci. 365(1-2), 83–108
(2006)

8. Cheung, L., Stoelinga, M., Vaandrager, F.W.: A testing scenario for probabilistic
processes. J. ACM 54(6) (2007)

9. David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L.-M., Wą-
sowski, A.: Real-time specifications. Int. J. Softw. Tools Techn. Transfer (2013),
http://dx.doi.org/10.1007/s10009-013-0286-x

This copy belongs to 'VANC03'

http://dx.doi.org/10.1007/s10009-013-0286-x

116 U. Fahrenberg, A. Legay, and L.-M. Traonouez

10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC, pp. 91–
100. ACM (2010)

11. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.
Springer, Heidelberg (2002)

12. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. Delahaye, B., Fahrenberg, U., Larsen, K.G., Legay, A.: Refinement and difference
for probabilistic automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 22–38. Springer, Heidelberg (2013)

14. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
Wąsowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

15. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: APAC: A
tool for reasoning about abstract probabilistic automata. In: QEST, pp. 151–152.
IEEE Computer Society (2011)

16. Fahrenberg, U., Larsen, K.G., Legay, A., Traonouez, L.-M.: Parametric and quan-
titative extensions of modal transition systems. In: Bensalem, S., Lakhnech, Y.,
Legay, A. (eds.) FPS 2014 (Sifakis Festschrift). LNCS, vol. 8415, pp. 84–97.
Springer, Heidelberg (2014)

17. Fahrenberg, U., Legay, A., Thrane, C.: The quantitative linear-time–branching-
time spectrum. In: FSTTCS. LIPIcs, vol. 13, pp. 103–114. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2011)

18. Fahrenberg, U., Thrane, C.R., Larsen, K.G.: Distances for weighted transition sys-
tems: Games and properties. In: QAPL. Electr. Proc. Theor. Comput. Sci., vol. 57,
pp. 134–147 (2011)

19. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

20. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A probabilistic extension of UML state-
charts. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469,
pp. 355–374. Springer, Heidelberg (2002)

21. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE (1991)

22. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

23. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: A
mathematical framework for modeling and analyzing real-time systems. In: RTSS,
pp. 166–177. Society Press (2003)

24. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

25. Larsen, K.G., Legay, A., Traonouez, L.-M., Wąsowski, A.: Robust synthesis for
real-time systems. Theor. Comput. Sci. 515, 96–122 (2014)

26. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
Computer Society (1988)

This copy belongs to 'VANC03'

Specification Theories for Probabilistic and Real-Time Systems 117

27. Legay, A., Traonouez, L.-M.: PyEcdar: Towards open source implementation for
timed systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 460–463. Springer, Heidelberg (2013)

28. Parma, A., Segala, R.: Axiomatization of trace semantics for stochastic nondeter-
ministic processes. In: QEST, pp. 294–303. IEEE (2004)

29. Segala, R.: Probability and nondeterminism in operational models of concurrency.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78.
Springer, Heidelberg (2006)

30. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes.
NJC 2(2), 250–273 (1995)

This copy belongs to 'VANC03'

Compositional Branching-Time Measurements

Radu Grosu1, Doron Peled2, C.R. Ramakrishnan3, Scott A. Smolka3,
Scott D. Stoller3, and Junxing Yang3

1 Vienna University of Technology
2 Bar Ilan University

3 Stony Brook University

Abstract. Formal methods are used to increase the reliability of software
and hardware systems. Methods such as model checking, verification and
testing are used to search for design and coding errors, integrated in the
process of system design. Beyond checking whether a system satisfies a
particular specification, we may want to measure some of its quantita-
tive properties. Earlier works on system measurements suggest extend-
ing model checking techniques to measure quantitative artifacts, based on
weights associated with the transitions of a transition system. Other works
allow counting while performing model checking or runtime verification.
This paper presents a simple and efficient compositional measuring frame-
work based on quantitative state testers. The framework allows combining
multiple measures, such as distance and power consumption, using a vari-
ety of functions, such as min, max, and average. This supports calculation
of interesting compound measures that quantitatively characterize a sys-
tem’s behavior.

1 Introduction

Model checking techniques [6,12] are successfully integrated into the software
and hardware development process. More than 30 years of research has pro-
duced multiple techniques. Some of them are quite impressive in the size of
systems that they can handle and in verification speed. A recent trend is to look
at quantitative properties, for example, providing measures on how robustly a
property is satisfied in probabilistic automata [9] or weighted automata [1,5].
Another approach is to ask for, in addition to the qualitative indication of the
satisfaction of a property, a measurement, which is usually based on the accu-
mulated time required to satisfy parts of the specification [2,8]. These measures
can be used for optimizing various parameters of the system.

We are motivated to provide a framework for measuring branching properties
of a system. This has received so far little attention, whereas linear properties
have been intensively studied. We aim to develop an efficient compositional mea-
suring framework that extends the idea of testers [10,11] to allow quantitative
operations. These extended testers are applied to the states of the measured
structure and conceptually communicate with each other through flow of infor-
mation between adjacent states. We generically refer to nodes in the given graph

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 118–128, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

Compositional Branching-Time Measurements 119

structure as “states”, although the nodes may represent states in a state space,
locations in a geographical space, etc.

This approach generalizes CTL specification, and in fact we show how to en-
code model checking of CTL in this way. This framework inherits its efficiency
from the CTL logic. Nevertheless, instead of writing a CTL formula annotated
with some measurement parameters, we provide a combination of recursive ob-
servers (functions) that work together to provide the desired measurement. The
value associated with each state of the structure by the tester is dependent on
the values at adjacent, i.e., successor and predecessor, states, henceforth called
the neighbors. For example, the property EXp holds in a state if either p holds
there, or there is a successor state where EXp holds.

In order to allow various measurements of a structure, we permit the observ-
ing functions, which combine values to produce outputs, to be over non-Boolean
domains. We can describe the computation associated with this framework as a
synchronized update of values associated with each state, where the new value
is dependent on the previous values associated with that state and its neighbors.
This allows a simple implementation, where in each step, each state applies the
observing function to the previous values associated with its neighbors. On the
one hand, this may not provide the most efficient implementation and should
be optimized. On the other hand, it suggests a way of parallelizing the measure-
ments.

This kind of measuring can be viewed as extending the runtime verification
idea in [11] from checking whether a finite sequence can be extended to satisfy
an LTL formula to measuring an entire structure. Our approach is not limited
to CTL-like Boolean properties but can use different domains, including com-
binations of domains. Section 3 presents an example that uses two measures:
the amount of battery power consumed when a robot traverses a path, and the
shortest distance from the robot to a towing station. Our framework provides a
more flexible measuring tool than most quantitative extensions of logic, which
deal with one fixed measure, most often the average, minimum, or maximum
accumulated length along paths.

When extending the framework from Boolean to more general domains, it
becomes challenging to ensure that the measurement calculation terminates.
Indeed, in general, applying functions recursively may not terminate, and termi-
nation itself can be undecidable. For this reason, we require that a well founded
ordering is used, and successive values of a state in a measured structure must
decrease in this ordering.

Our view of measurement is local, from the point of view of a state in the
measured structure. To demonstrate the difference from a global view, consider
CTL model checking, where a monotonicity argument can be applied on the
(increasing or decreasing, respectively) size of the states while calculating the
(least or greatest, respectively) fixed-points. Instead, our measurement needs to
decrease locally, on the values calculated on the states. As the calculated values
may not contain the information needed to show progress toward termination,
we add another component: a counter that counts down from the size of the state

This copy belongs to 'VANC03'

120 R. Grosu et al.

space (the number of states) or its diameter (the length of the longest simple
path). This is a generalization of the bounds used in bounded model checking [3].

Our formalism presents a combination of observing functions, applied syn-
chronously to the states of the measured structure, and guarded by a local
well-foundedness argument to ensure termination. This can be viewed as a de-
notational approach, defining the measurement, but is also very close to the
operational approach, defining the kind of computation needed at each state of
the structure, for a finite number of steps. Therefore, we also suggest develop-
ing logics that allow more abstract and denotational representations of desired
measurements, and translating (compiling) the logics into the testers used in our
framework. We illustrate this approach in the example in Section 3, by presenting
some CTL-like formulas extended to express various measurements.

The closest work to this paper, as far as we know, is [4]. There, an integer-
based measurement of a state space is sought, and calculated using quantitative
bound automata, with decision procedures based on dynamic programming. Our
approach, based on testers, is more of a specification formalism, allowing us to
directly describe the measure of a structure by the combination of functions
(whose type can be Boolean, integer, or any other finitely representable type)
and flow of information between states and their neighbors. Both approaches
realize the need to bound the computation, where this is done in [4] by providing
a bound on the number of iterations, and in our framework by requiring values
to decrease in a well-founded ordering.

The remainder of the paper is organized as follows. Section 2 presents our
framework, including our extended concept of testers, and shows how to express
CTL model checking in our framework. Section 3 presents an example based on
a mobile robot that illustrates the expressiveness of our framework.

2 Measuring Structures

Our computation model is based on a collection of synchronous processes that
communicate via shared variables. Each process has input, output, and state
variables, which may take values from arbitrary domains, including Boolean,
Integers, Reals, and Cartesian products. In each step of the computation, each
process updates its output and state variables based on a transition relation that
relates the values of its output and next-state variables to the values of its input
and current state variables. Transitions may in general be nondeterministic,
although the examples in this paper focus on deterministic processes for the
purpose of measurement.

The topology of this process network is specified by mapping output variables
of a process to input variables of other processes. Additionally, each process is
associated with a function that maps the current value of its state variables to a
value from a well-founded domain. This value is required to decrease whenever
the tester’s state changes, guaranteeing termination.

This copy belongs to 'VANC03'

Compositional Branching-Time Measurements 121

Testers

An atomic tester T is a process having the following components:

– T 〈i〉 is a finite set of input variables;
– T 〈o〉 is a finite set of output variables;
– T 〈state〉 is a finite set of state variables (with specific initial values);

– T 〈ρ〉 is a transition function, mapping values of T 〈i〉 ∪ T 〈state〉 to values of
T 〈state〉 ∪ T 〈o〉; and

– T 〈w〉, a function mapping values of T 〈state〉 to values in a well-founded
order (W,0).

Note that we represent testers as structures with named components, and we
use the notation T 〈c〉 to select component c of tester T . A tester is stateless if
it has no state variables.

The above definition of testers differs from the original notion in [10] in sev-
eral ways. First, our testers are primarily intended for measuring properties of
finite structures, and are not equipped with justice or compassion predicates.
Second, our testers have explicit input and output variables, while those in [10]
operate over streams of boolean values and have input and output defined im-
plicitly. Third, and perhaps most importantly, the variables in our testers are
not restricted to be boolean; in fact, tester variables can range over any do-
main including structured ones. Finally, each tester is equipped with a function
T 〈w〉 used to ensure termination. Semantically, we require that, in every tran-
sition of a tester, either the valuation of its state variables remains unchanged,
or the valuation changes from v to v′ and T 〈w〉(v′) 0 T 〈w〉(v). This ensures
termination.

A tester circuit, C, is a collection of interconnected atomic testers. More pre-
cisely, C = 〈T , I, O,S〉, where T is a set of atomic testers, I ⊆ ∪T∈T T 〈i〉 and
O ⊆ ∪T∈T T 〈o〉 are the sets of inputs and outputs, respectively, of the circuit,
and S ⊆ ((

⋃
T∈T T 〈o〉)×(

⋃
T∈T T 〈i〉)) specifies the connections between testers,

by associating input variables with output variables. For convenience, we assume
that input and output variables have globally unique names.

The computation in a tester circuit starts with all testers in initial states.
The initial output of all testers is a special value “⊥”. Each tester evolves syn-
chronously, reading its inputs, and evaluating the transition function, thereby
computing its next state and outputs.

CTL Model Checking with Testers

We now illustrate the use of testers, treating the model checking of CTL formulas
as an instance of measurement of a given Kripke structure. In the following, we
assume a standard definition of a Kripke structure K over a finite set of states S
and atomic propositions P , given by 〈S,→, σ〉, where →⊆ S × S is a transition
relation, and σ is a function mapping states in S to sets of propositions. Given
a Kripke structure K, let n(K) denote the number of states in K, and let d(K)

This copy belongs to 'VANC03'

122 R. Grosu et al.

denote the diameter of K, i.e., the length of the longest cycle-free path in its
transition graph. A state t is a successor of a states s if s→ t.

We consider CTL formulas over a set of propositions P specified using the
following syntax:

ϕ ::= P | ¬ϕ | (ϕ ∧ ϕ) | EXϕ | E(ϕUϕ) | A(ϕUϕ)

Additional operators of CTL can be defined in terms of these, e.g., true =
¬(p∧¬p) for some proposition p, EFϕ = E(true U ϕ), AGϕ = ¬EF (true U ¬ϕ),
and AXϕ = ¬EX¬ϕ.

We now describe the construction of a tester circuit for checking whether a
given Kripke structure is a model for a given CTL formula ϕ. Recall that the
outputs of all testers are initially set to an undefined value ⊥. We extend the
standard Boolean operators in a symmetric way as follows: true ∨ ⊥ = true,
true ∧ ⊥ = ⊥, false ∨ ⊥ = ⊥, false ∧ ⊥ = false, and ¬⊥ = ⊥.

For each formula ϕ and state s ∈ S, we construct a circuit Cϕ,s based on the
structure of ϕ, as defined below. Each circuit Cϕ,s has a single output variable
and is designed so that the final value of the output variable is true iff ϕ holds at
state s. For CTL model checking, the circuits have no inputs, so for brevity, we
omit the specification of input variables for circuits in the following construction.
We express each transition relation as a set of equations (one for each state
variable and output variable) in which unprimed variables represent the values
of variables in the current state, and primed variables represent the values of
variables in the next state. For brevity, we also omit the mapping to well-founded
orders; standard arguments can be used to show termination of this calculation.

case: ϕ is a proposition p: Let Tp,s be a stateless tester such that Tp,s〈i〉 =
{}, Tp,s〈o〉 = {o}, and Tp,s〈ρ〉 = {o′ = (p ∈ σ(s))}. Then Cϕ,s =
〈{Tp,s}, {o}, ∅〉.

case: ϕ is a negated formula ¬ϕ1: Let Tϕ,s be a stateless tester such that
Tϕ,s〈i〉 = {i}, Tϕ,s〈o〉 = {o}, and Tϕ,s〈ρ〉 = {o′ = ¬i}.
Let Cϕ1,s = 〈T1, {o1},S1〉. Then Cϕ,s = 〈{Tϕ,s} ∪ T1, {o},S ∪ {(o1, i)}〉.

case: ϕ is a conjunction ϕ1 ∧ ϕ2: Let Tϕ,s be a stateless tester such that
Tϕ,s〈i〉 = {i1, i2}, Tϕ,s〈o〉 = {o}, and Tϕ,s〈ρ〉 = {o′ = i1 ∧ i2}. Let
Cϕ1,s = 〈T1, {o1},S1〉 and Cϕ2,s = 〈T2, {o2},S2〉. Then Cϕ,s = 〈{Tϕ,s} ∪
T1 ∪ T2, {o},S ∪ {(o1, i1), (o2, i2)}〉.

case: ϕ is an exists-next formula EXϕ1: Let state s have n successors. Let
Tϕ,s be stateless tester with n inputs, namely, r1, . . . rn, and one out-
put o such that o′ =

∨
i ri. Formally, Tϕ,s〈i〉 = {r1, . . . , rn}, Tϕ,s〈o〉 =

{o}, and Tϕ,s〈ρ〉 = {o′ =
∨

i ri}.
Let the successors of s be t1, t2, . . . , tn. Let Cϕ1,tj = 〈Tj , oj ,Sj〉 for each

successor tj .
Then Cϕ,s = 〈{Tϕ,s} ∪

⋃
j=1..n Tj , {o},S ∪

⋃
j=1..n{(oj , rj)}〉.

case: ϕ is an exists-until formula E(ϕ1Uϕ2): Let state s have n successors.
Let Tϕ,s be a tester with 2 + n inputs, namely, i1, i2, r1, . . . rn, one output
o, and one state variable x initialized to d(K), the diameter of the Kripke

This copy belongs to 'VANC03'

Compositional Branching-Time Measurements 123

structure. The tester is such that at each step after i1 and i2 get non-⊥ values,
x is decremented, and the output o′ is computed as i2 ∨ (i1 ∧ (

∨
j=1..n rj)).

If x reaches 0 and the output is ⊥, then it is set to false . Formally,
Tϕ,s〈i〉 = {i1, i2, r1, . . . , rn}
Tϕ,s〈o〉 = o

Tϕ,s〈state〉 = {x = d(K)}

Tϕ,s〈ρ〉 =

⎧⎪⎪⎨
⎪⎪⎩
x′ =

{
if i1 = ⊥ ∨ i2 = ⊥ then x
else if x > 0 then x− 1 else 0

o′ = if x = 0 ∧ v = ⊥ then false else v
where v = i2 ∨ (i1 ∧ (

∨
j=1..n rj))

⎫⎪⎪⎬
⎪⎪⎭

Let Cϕ1,s = 〈T1, {o1},S1〉 and Cϕ2,s = 〈T2, {o2},S2〉. Let s have n successors,

namely t1, t2, . . . , tn. Let Cϕ,tj = 〈T̂j , {ôj}, Ŝj〉 for each successor tj . Let

T = T1 ∪ T2 ∪
⋃

j=1..n T̂j and S = S1 ∪ S2 ∪
⋃

j=1..n Ŝj .
Then Cϕ,s = 〈T ∪ {Tϕ,s}, {o},S ∪ {(o1, i1), (o2, i2)} ∪

⋃
j=1..n{(ôj , rj)}〉.

case: ϕ is an always-until formula A(ϕ1Uϕ2): This is similar to the exists-
until case above, except that it performs a conjunction (instead of a disjunc-
tion) over the results ri from successor states. Let state s have n successors.
Let Tϕ,s be a tester with 2 + n inputs, namely, i1, i2, r1, . . . rn, one output
o, and one state variable x initialized to d(K), the diameter of the Kripke
structure. Let

Tϕ,s〈i〉 = {i1, i2, r1, . . . , rn}
Tϕ,s〈o〉 = o

Tϕ,s〈state〉 = {x = d(K)}

Tϕ,s〈ρ〉 =

⎧⎪⎪⎨
⎪⎪⎩
x′ =

{
if i1 = ⊥ ∨ i2 = ⊥ then x
else if x > 0 then x− 1 else 0

o′ = if x = 0 ∧ v = ⊥ then false else v
where v = i2 ∨ (i1 ∧ (

∧
j=1..n rj))

⎫⎪⎪⎬
⎪⎪⎭

Let Cϕ1,s = 〈T1, {o1},S1〉 and Cϕ2,s = 〈T2, {o2},S2〉. Let s have n successors,

namely t1, t2, . . . , tn. Let Cϕ,tj = 〈T̂j , ôj , Ŝj〉 for each successor tj . Let T =

T1 ∪ T2 ∪
⋃

j=1..n T̂j and S = S1 ∪ S2 ∪
⋃

j=1..n Ŝj .
Then Cϕ,s = 〈T ∪ {Tϕ,s}, {o},S ∪ {(o1, i1), (o2, i2)} ∪

⋃
j=1..n{(ôj , rj)}〉.

3 Example

We illustrate the use of testers by measuring the weighted branching structure
of an autonomous robot with respect to a desired CTL property. The movement
of the robot within its environment is expressed with the finite, weighted Kripke
structure K =(S, s1,→, σ, c, d) shown in Figure 1(a). State s1 is marked by σ as
initial, and states s5 and s6 are marked by σ as towing. Each transition →ij of
K is annotated with two weights. The first weight, cij , is the energy consumed
(as a percentage of a fully charged battery) along →ij , i.e., when moving from
state si to state sj . The second weight, dij , is the distance traveled (in meters)
along →ij .

We would like to check and measure the following property ϕ: Whenever the
robot reaches a state where its overall battery consumption bc > 80, there is a

This copy belongs to 'VANC03'

124 R. Grosu et al.

(a) EF(4) AGEF(2)

EF(1)

(b) EF(3)

EF(2) EF(5)1 2 5

643

10,30

11,30

10,30

10,35

5,30

5,30

10,30

Fig. 1. (a) Weighted Kripke structure associated with the movement of a robot. On
each edge, the first weight represents the energy consumed on that edge, and the second
weight represents the distance traveled on that edge. (b) Communication structure of
the tester EF (2). This tester receives horizontal messages from the testers EF (5)
and EF (3), sends horizontal messages to the testers EF (1) and EF (4), and vertical
messages to the tester AGEF (2).

towing state within a distance td < 100. Let ts be an atomic proposition that is
true in towing states. Then, ϕ can be written in a CTL-like logic as:

ϕ
.
= AGbc> 80 EFtd< 100 ts

Although ϕ seems to capture our intuition, we encounter difficulties as soon
as we seek to measure it, due to the inherent nondeterminism in CTL formulas.
In fact, we are not interested in any towing distance td< 100 from a state, but
in its minimal towing distance. Hence, the property we would like to measure
can be more precisely stated as: Whenever the robot reaches a state where its
overall battery consumption bc> 80, there is a minimal towing distance td< 100.

Testers

In order to capture, and more importantly, to properly measure such properties
in all their generality, we associate with each temporal operator, and each state of
the weighted Kripke structure K, a tester. These testers communicate in a data-
flow fashion both horizontally, with the testers of the same kind, and vertically,
with the testers corresponding to the enclosing operator.

For example, the communication structure of the EF tester associated with
state s2 is shown in Figure 1(b). This tester receives messages from the EF
testers associated with its successor states s3 and s5 in K, and sends messages
to the EF testers associated with its predecessor states s1 and s4 in K. It also
sends messages to the tester AGEF of its enclosing formula at state s2.

As the example indicates, the communication structure of a tester is com-
pletely defined by the structure K, the formula ϕ we intend to measure, and
the state s with which the tester is associated. A tester accumulates (folds) path
information in K starting at (or ending in) s and passes it to the other testers.
In order to do this, the tester requires the following information: (1) a proce-
dure for folding information along a single path, (2) a procedure for folding the
information from multiple paths, and (3) a termination condition.

A natural way to provide such information is through a complete, idempo-
tent dioid structure D=(+,×, 0, 1), where + is an additive, commutative and

This copy belongs to 'VANC03'

Compositional Branching-Time Measurements 125

idempotent monoid, with neutral element 0, and × is a multiplicative monoid,
with neutral element 1. In this setting, (1) is taken care of by multiplication,
(2) is taken care of by the addition, and (3) is taken care of by the completeness
of the dioid. In some cases, however, one would like to fold information using
other operations, such as averaging. In such situations, an explicit termination
condition, which we refer to as a “stopping criterion”, has to be provided, as the
completeness of the dioid does not suffice. Stopping criteria can also be used to
speed up the computation.

For AF and AG formulas, an operator folding the information computed in
all their satisfying states must also be provided. To make the above discussion
more precise, let us define the testers associated with ϕ.

The EF Tester

Consider first the EF tester associated with the subformula EFtd < 100 ts at state
s4. In this state, we have two paths that satisfy the constraint td< 100: the path
p1 = s4s6 with associated towing distance td1 =30, and the path p2 = s4s2s5 with
associated towing distance td2 =65.

The towing distances td1 and td2 are computed by folding the weights along
the paths p1 and p2, respectively, in an additive fashion. Moreover, since we are
only interested in the shortest path, we fold the information among different
paths by taking their minimum. Hence, the idempotent dioid structure we are
interested in is D=(min,+,∞, 0). The stopping criterion, ψ

.
=(td≥ 100) is not

necessary for convergence, but it speeds up the computation, and helps compute
the measure for the entire CTL formula ϕ. The atomic proposition we are passing
to the EF tester as a parameter is simply p

.
= ts.

Given the above considerations, the general specification of an EFD
ψ p (s,K)

tester can be given once and for all as below. We assume that the communication
structure is automatically compiled in EF from K and ϕ. For readibility of the
tester, we instantiate p, ψ and D in its definition.

EF
(min,+,∞,0)
td≥ 100 ts (s,K)

{
init: td = (σ(s)= ts) ? 0 : ∞
stop: td ≥ 100
transition:

td = mint∈(s→t) (td, receiveEF(t)+ dst))
sendEF(t)t∈(t→s) = td

sendAGEF(s) = (td ≥ 100) ? (b = F, td = td) : (b = T, td = td);
}

Note that this section uses a more concise and less formal notation for testers,
including a send-receive notation for communication. For example, sendEF(t) =

td denotes sending the value of td to the tester for the EF formula at state t,
and receiveEF(t) denotes the value received from the EF tester at state t. This
notation can be translated straightforwardly into the more formal notation in
Section 2. We also use tuples with named fields as communication messages.

This copy belongs to 'VANC03'

126 R. Grosu et al.

The AG Tester

The tester associated with the AGbc > 80 property can be defined independently
of the rest of the subformulas in ϕ. The purpose of this tester is to compute the
battery consumption in a forward fashion, starting from the initial state.

We would like to stop the computation of the battery consumption at a given
state s, as soon as we arrive (for the first time) at s with bc> 80. Moreover, if
we arrive at s along two different paths with values bc1 and bc2, we would like
to consider only the maximum of bc1 and bc2. Hence, the dioid structure we are
interested in has the form D=(max,+,−∞, 0). The termination condition in
this case is ψ

.
=(bc> 80).

The intuition is as follows. In structure K of Figure 1(a), there is no simple
path ending in a state with bc> 80. However, looping sufficiently many times
within the cycle s2s3s4s2 increases the battery consumption until we arrive at
s3 with bc=81, and thereafter in s4, s2, and s6 with bc equal to 86, 91 and 96,
respectively. Hence, we can define (once and for all) the AG tester as below.
Again, for readability, we instantiate the parameters ψ and D.

AG
(max,+,−∞,0)
bc> 80 (s,K)

{
init: bc = (σ(s) = init) ? 0 : −∞
stop: bc > 80
transition:

if (bc ≤ 80) then
bc = maxt∈(t→s) (bc, receiveEF(t)+ cts))

sendAG(t)t∈(s→t) = bc

sendAGEF(s) = bc> 80 ? (b = T, bc = bc) : (b = F, bc = bc)
}

The AGEF Tester

The AGEF tester at state s collects the information from its AGEF peers, and
from the AG and the EF testers at state s. Then, in conjunction with its AGEF
peers, it checks and measures the top-level formula ϕ.

For each state where if bc> 80 holds then it is also the case that td< 100
holds (which is the formal requirement in ϕ), we would like for our example
that AGEF (s) first compute the linear combination lc=0.6×bc+ 0.4× td. We
would then like it to back propagate this information so that the initial state
will contain the average of all such linear combinations.

The main problem in the back propagation is the cycle s2s3s4s2: simply send-
ing lc to the AGEF testers of all its predecessor states would result in double
counting. Assuming the existence of a linear order on the states, with the initial
state as minimal, we therefore send the lc information to only a single predeces-
sor, the one which is minimal in the state ordering.

To ensure termination as well as proper property checking and measuring,
each AGEF tester sends a tuple (bb, ns, lcSum, done). The value bb is true when
the state satisfies ¬(bc> 80)∨ (td< 100), and all of its greater AGEF successors
do. The value lcSum is the sum of the lc value of the currentAGEF state and the

This copy belongs to 'VANC03'

Compositional Branching-Time Measurements 127

lc values of its greater successors. The value of ns is the number of states whose
lc values are summed in lcSum. The value of done is true when all the greater
AGEF successors are done; this value is also used as the stopping condition of
the AGEF tester. Note that the average of the lc values can always be computed
as lcSum/ns; for brevity, this calculation is omitted from the pseudocode for the
AGEF tester.

The structure D = (avg, lin(0.6, 0.4), 0) contains the commutative monoid
for avg, and the linear-combination operator (with its associated weights). One
therefore needs in addition a state ordering, and the termination condition done.
Given all these considerations, the specification of the AGEF tester is as follows:

AGEF
(avg,lin(0.6,0.4),0)
done (s,K)

{
init:

bb = (receiveAG(s).b ⇒ receiveEF(s).b)
lcSum = bb ? lin(0.6,0.4)(receiveAG(s).bc, receiveEF(s).td): 0

ns = 1

done = F

stop: done

transition:
alreadyDone = done

done = ∧t∈(s→t)∧(t>s)(receiveAGEF(t).done)
if (done ∧ ¬alreadyDone) then

sb = ∧t∈(s→t)∧(t>s)(receiveAGEF(t).bb)
bb = bb∧ sb

ns = ns + sumt∈(s→t)∧(t>s)(receiveAGEF(t).ns)
lcSum = lcSum + sumt∈(s→t)∧(t>s)(receiveAGEF(t).lcSum)

predecessor = mint∈(t→s)∧(t<s)(t)
sendAGEF(predecessor) = (bb = bb, ns = ns, lcSum = lcSum, done = done)

}

To simplify the pseudo-code, we assume that the receives from the AG and EF
testers in the init section block the AGEF tester until the computations of
the AG and EF testers have terminated, because we want the AGEF tester to
compute with the final values from those testers. This implicit synchronization
can be implemented explicitly using additional variables.

This tester has the property that the formula ϕ is true, provided that the
AGEF tester of state s1 is done and its Boolean value bb is true. In that case,
the desired average is lcSum/ns.

Implementation and Results

We implemented the robot example in MATLAB to gain experience with the
behavior and performance of these testers. We used centralized data structures
for initial-prototyping purposes. As future work, we plan to develop a distributed
implementation.

In Table 1, we present the results obtained from the testers. One can easily
check that all boolean and real values are correctly computed and propagated
to a tester’s neighbors. The final result is the tuple (T, 6, 337.0) computed by

This copy belongs to 'VANC03'

128 R. Grosu et al.

the AGEF tester for the initial state s1. These values convey the fact that the
property does hold for the weighted Kripke structure K of Figure 1(a) and yields
the desired average as 337.0/6 = 56.17.

Table 1. Results obtained from the testers for the robot example

EF Testers AG Testers AGEF Testers
b td b bc bb ns lcSum

s1 T 65 F 0 T 6 337.0

s2 T 35 T 91 T 2 117.2

s3 T 60 T 81 T 3 193.8

s4 T 30 T 86 T 2 121.2

s5 T 0 T 81 T 1 48.6

s6 T 0 T 96 T 1 57.6

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s Decidable about Weighted Au-
tomata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011)

2. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model
Checking. Advances in Computers, vol. 58. Academic Press (2003)

4. Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.:
Verifying Quantitative Properties Using Bound Functions. In: Borrione, D., Paul,
W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 50–64. Springer, Heidelberg (2005)

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and Closure Properties
for Quantitative Languages. Logical Methods in Computer Science 6(3) (2010)

6. Clarke, E.M., Allen Emerson, E.: Design and Synthesis of Synchronization Skele-
tons Using Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs
1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Allen Emerson, E., Clarke, E.M.: Characterizing Correctness Properties of Parallel
Programs Using Fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

8. Faymonville, P., Finkbeiner, B., Peled, D.: Monitoring Parametric Temporal Logic.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 357–375.
Springer, Heidelberg (2014)

9. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

10. Kesten, Y., Pnueli, A., Raviv, L.-O.: Algorithmic Verification of Linear Temporal
Logic Specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998)

11. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
573–586. Springer, Heidelberg (2006)

12. Queille, J.-P., Sifakis, J.: Iterative Methods for the Analysis of Petri Nets. In:
Selected Papers from the First and the Second European Workshop on Application
and Theory of Petri Nets. LNCS, vol. 51, pp. 161–167. Springer (1981)

This copy belongs to 'VANC03'

Steps towards Scenario-Based Programming

with a Natural Language Interface

Michal Gordon and David Harel

Weizmann Institute of Science, Rehovot Israel

Abstract. Programming, i.e., the act of creating a runnable artifact
applicable to multiple inputs/tasks, is an art that requires substantial
knowledge of programming languages and development techniques. As
the use of software is becoming far more prevalent in all aspects of life,
programming has changed and the need to program has become relevant
to a much broader community. In the interest of broadening the pool of
potential programmers, we believe that a natural language interface to
an intuitive programming language may have a major role to play. In
this paper, we discuss recent work on carrying out scenario-based pro-
gramming directly in a controlled natural language, and sketch possible
future directions.

1 Introduction

Imagine a future home, with a slew of smart home devices installed, such that
the various parts of the controlling software can communicate. Now imagine the
owners have a new idea about the desired behavior of the system, something
that none of the vendors had considered, and which is therefore not a new
configuration. They would like the shades to be lowered, whenever the TV is
turned on and the light outside is too bright. However, if the kids are home, they
do not want to dim the living room. Will they have to contact the professional
designers of their smart home, or the vendors? We hope not. In fact, we would
like to believe that in the future more people will be able to program, or enhance
existing programs by adding requirements, on their own. In fact, throughout
the paper, when we refer to the “programmer”, we mean the person (or team
of people) who creates a program, not necessarily a professional programmer in
the usual sense of the word, perhaps more like a system’s engineer.

The art of programming is already available to a broad community, with
the open architecture of mobile phone applications, languages and toolkits that
let children program games, robots and more [27,37], and methods that allow
programming by demonstration and end-user programming [7]. Here we discuss
an approach, whereby, the computer is able to derive an executable program
directly from the human’s language, or something very close thereto.

Computerized understanding of natural language is an extremely complicated
and broad problem, and has been studied widely (see, e.g., [41,38,7]). It is a cen-
tral facet of intelligence, and its difficulty is thus closely related to tackling the

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 129–144, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

130 M. Gordon and D. Harel

Turing test. We do not attempt to solve this problem, nor is it the focus of our
discussion. Rather, we concentrate on programming in controlled natural lan-
guage (PiCNL). Subsets of natural language have been used to allow intuitive
yet formal interfaces for various tasks. They are often called simplified or con-
trolled language [1,7]. We review these in Section 2.1. Our main question here
is whether we can use controlled language to ‘explain’ to the computer what
we want our system to do under all possible circumstances (very much like the
way we would have explained it to a person), and cause it to generate a fully
executable program.

The reader may claim that we can already talk to computers: For example, we
can ask our smart-phone, to call a particular friend, schedule dinner and make a
two-person reservation in our favorite restaurant. These activities, however, are
not programming. Such natural language interactions are often called command
and control [38,12], and can be carried out using voice or natural text interfaces.

In Section 2 we discuss the quest for programming in natural language, con-
trolled natural language and various interfaces that we distinguish from program-
ming. In Section 3 we review several efforts at programming in natural language.
Finally, in Section 4 we discuss in some detail a relatively new scenario-based
programming paradigm, called behavioral programming [22], and show how we
use natural language to program reactive systems, and how it can be enriched
with GUI-based play-in [21].

2 The Quest for Programming in Natural Language

The concept of programming in controlled natural language, i.e., PiCNL, has
been suggested in the past, however it has not become prevalent as a program-
ming method. In this section we discuss controlled natural language, we define
programming in natural language, and distinguish PiCNL from various natu-
ral language interfaces. We review how PiCNL has developed over the years,
including the obstacles encountered and proposed solutions.

The simplest form of using natural language with a computer is dictation.
The text can be entered to the computer by typing or by speech, and all the
computer does is the parsing into words and sentences. There is no requirement
that the text be analyzed or understood in any way. Thus, if typing is used, this
task is trivial. If the text is spoken we get into the realm of speech recognition,
which we will not discuss here. For our purposes in this paper, entering the text
can be done either way, depending on the preference of the user.

2.1 Using Controlled Natural Language

Controlled natural language (CNL) is created by restricting the grammar of a
natural language to reduce ambiguity and complexity. It can be made more
formal than unrestricted NL, well-structured and better amenable to semantics,
since due to its restrictions, relevant constructs can be semantically annotated.
CNLs enjoy some of the advantages of natural language; they are easy to use and

This copy belongs to 'VANC03'

Steps towards Scenario-Based Programming with a NL Interface 131

understand, have a quick learning curve, and are close to the application domain.
They also avoid much of the ambiguity and vagueness of natural language, and
thus also enjoy some of the advantages of formal languages. However, their use
is mostly in the technical arena. You probably wouldn’t want to try to write
“controlled poetry”....

Controlled languages can be learned, and then easily written, with the aid of
appropriate editors and parsers. Due to their relative simplicity, they support
automation of tasks, and are used in automatic translation, formal document
writing, reasoning, robot-controllers, specifications, and ontologies [1,11,29].

Simplified English, as controlled English was originally called, was developed
for the aerospace industry’s maintenance manuals. It was also referred to as plain
language or in its trademarked version as simplified technical English (STE) [1].
The idea was to restrict the lengths of sentences and paragraphs, avoid slang
and jargon, use active voice, etc. The STE dictionary includes approved words
that can be used only according to their specific meaning. For example, the verb
close can be used in the sense of “close a door” but not as the adjective, “stand
close to the landing gear”. An alternative word is often suggested — here it was
near, as in “stand near the landing gear”.

2.2 Programming vs. Command and Control

A more advanced form of using natural language with a computer involves the
variety of operations that employ familiar natural language for controlling or
manipulating systems. These activities fall under the general term of command
& control, or natural language interactions ; see, e.g., [38].

Natural language is used for search, for personal assistance, and in general as
an interface for commanding other applications [25,38]. A user can say to her
smart-phone “call Martin Jones”. The word “call” will be recognized semanti-
cally, the contacts will be searched for the person in question, and if successful,
the command will be performed, i.e., the call will be placed. Command & control
systems can retrieve answers that may be given in natural language, or some-
times in more appropriate forms. For example, a user can ask a mobile phone
“how far am I from the Fairview Green restaurant?”, and the answer may be
given as “1.7 miles”. Smarter applications can take into account the moving
speed of the mobile phone and provide a more relevant answer, like “a fifteen
minute walk” or “a three minute drive”.

Natural language has been used as a conversational user interface to describe
and manipulate visualizations of data [39]. Thus, in a specific setting the user
can ask (taken verbatim from [39]): “What is the correlation between the depth
and water’s temperature”, and receive a graph plotting the two. He/she can then
add a command “please color by pH”, and obtain a color code layered atop the
graph. This kind of interface is more advanced and permits complex connections
between various commands.

Although the interfaces we described so far are quite elaborate, none of them
is considered programming. In programming, the directions/recipes are to be
applicable in the future to many inputs, most often to infinitely many of them.

This copy belongs to 'VANC03'

132 M. Gordon and D. Harel

Thus, one may say that a central characteristic of a program (as opposed to a
command & control system) is its being reusable when different inputs arrive
from the environment.

The difference is similar to that between giving one-time directions for some-
one to do something, and teaching that person a skill to use when applicable.
For example, showing a child how to wash some specific dishes is different from
explaining when and how you decide whether to do the dishes, and how to do
so in general. In the latter case, the child will know how to handle a sink full
of dishes, an empty sink, or a sink with a single dish. Untreated cases, such as
a blocked sink, would require additional directions, or an extension of the “pro-
gram”. Similarly, command & control is telling the car radio to turn on and to
tune to channel Z-100. A program is when I tell the car radio that whenever
I turn on the radio and switch to Z-100, if the channel is airing conversation,
rather than music for more than one full minute, switch to another channel.

Although programming has to do with multiple runs of the same program,
this is not the same as creating recurrent behavior. Anyone can easily set a
recurrent event in an electronic calendar, like a family dinner every Saturday
night. Indeed, advance interfaces, such as Google Calendar’s Quick Add feature,
permit setting such recurrent scheduling in natural language. Entering “Family
dinner every Saturday” will set the recurring event, with a weekly reminder.
However, this is not programming, as it does not depend on varying inputs.

In programming there are multiple different inputs to the same general set of
commands and instructions, and the program can deal with all of them, even
those that have not been considered explicitly by the programmer. Programming
is not something that can be achieved merely by using different menus, or by
configuring the system. An example is “whenever it rains, and my calendar shows
a soccer game the same day, cancel the event and notify all participants”. It is
not only the addition of the notification action that makes this programming,
but the constant monitoring of rain as an external event. This is a lot more than
a command. It is a program rule; a kind of program snippet. And this raises the
harder question of how to deal with multiple program snippets, which constitute
a full program. For example, how to manage several of these program-rules that
interact, and perhaps even contradict one another? We discuss this further in
Section 4.

2.3 Programming in Natural Language

Natural language has been used in software engineering for tasks that are highly
related to programming. For example, some database queries can be specified by
natural language and may be considered a type of programming [42]. Viewing
and displaying data can be done with natural language, e.g., with the Articulate
system [39]. Natural language has also been used in computer aided software
engineering (CASE) tools, to help the process of modeling or creating software
engineering artifacts. For example, in [13], natural language is used to help create
better use cases for system development, and other papers produce other UML
documents, etc.

This copy belongs to 'VANC03'

Steps towards Scenario-Based Programming with a NL Interface 133

Methods, that use statistical NLP, combine learning techniques with NLP to
analyze natural language and automatically create partial code. For example,
transforming English specifications of input file format (with additional infor-
mation from sample input files) to automatically generate C++ code for input
parsers [30], or analyzing API documents to infer API library specifications [43].

As to full programming in natural language, Dijkstra claimed in 1978 [10]:

“In order to make machines significantly easier to use, it has been proposed
(to try) to design machines that we could instruct in our native tongues. This
would, admittedly, make the machines much more complicated, but, it was
argued, by letting the machine carry a larger share of the burden, life would
become easier for us. It sounds sensible provided you blame the obligation to
use a formal symbolism as the source of your difficulties. But is the argument
valid? I doubt. [...] Instead of regarding the obligation to use formal symbols
as a burden, we should regard the convenience of using them as a privilege:
thanks to them, schoolchildren can learn to do what in earlier days only genius
could achieve.”

In our opinion, programming with controlled natural language, should be also
viewed as a privilege. Those willing to express their system requirements in a
CNL and disambiguate their input to the computer when it is not clear enough,
can gain the benefits of instantly executable programs.

A 2004 study by Liu and Lieberman [31] discussed how natural language de-
scriptions could be used to make human-machine communications more natural.
Those authors state that “several developments might now make programming
in natural language feasible”.

Sloppy programming [7] initially used unstructured text, yet later found that
the unstructured approach caused too many false interpretations. Sloppy pro-
gramming uses a specific grammar, based on an existing set of scripts, to allow
the user to enter something simple and natural. The essence of sloppy program-
ming is to interpret and make sense of the ’sloppy’ input. Controlled natural
language is similar, in that it is simple and natural enough, yet it restricts the
grammar, and requires the user to learn the restrictions from examples and by
feedback.

Chickenfoot and CoScripter [7] allow users to write web-customization scripts
using simplified Java script commands. They use a domain specific vocabulary
to allow performing various programming tasks in the web domain. End-user
programming and scenario-based programming are similar in that they aim to
create a more natural means of authoring behavioral fragments.

In [34], the authors show how some of the more subtle aspects of procedural
programming — steps and loops — can be handled effectively, and express their
believe that advances in natural language processing can contribute to the task
of natural language programming, for descriptive and procedural programming
paradigms.

Indeed, one large community that can benefit from PiCNL are children, too
young to acquire formal education of programming. Several advances in natural
interfaces to programming for children have been made, most notably with lan-
guages like Scratch [37], which enable children to formally describe their system

This copy belongs to 'VANC03'

134 M. Gordon and D. Harel

requirements via visual blocks that help them overcome syntax problems. Scratch
is available in multiple languages, and allows children the feel of programming
naturally. Although, not precisely PiCNL, Scratch allows formal programming
with blocks containing natural English text.

In [10], Dijkstra also remarks that

“there is a sharp decline in people’s mastery of their own language [...], and
many people are no longer able to use their own native tongues effectively.”

He says that this “New Illiteracy”

“should discourage those believers in natural language programming that lack
the technical insight needed to predict its failure.”

Despite Dijkstra’s gloomy statements, we feel that the time is ripe for major
efforts to program in natural language.1 Dijkstra’s pessimism can be overcome by
a careful choice of the limited CNL to be used, and the appropriate programming
paradigm into which it will be translated. PiCNL will be suitable only for those
willing to master CNL, disambiguate problems, and understand how faults may
occur. In Section 4, we shall discuss how such a paradigm can reduce some of
the technicalities that make natural language programming difficult.

3 Approaches to Programming in Natural Language

Several research efforts have led to languages that can create executable code
from a CNL. Each one defines its own CNL style and translates the CNL into
a different notation, each with its own merits and areas of applicability. We
describe some of these, focusing not on methods that support computing, but
rather on those that create executable artifacts.

In [6], use-case templates, written a CNL, are translated into process algebra
(in the CSP notation). This method was implemented in a Microsoft WordTM

plug-in that checks adherence of use-case specifications to a CNL grammar and
translates them into process algebra. It then allows carrying out system property
verification. This technique supports user-view use-cases, which can be used to
specify user operation and expected system responses, and component-view use-
cases, with one component that invokes an action and another that provides
the service. After automatic translation to the CSP notation, a model checker
is used to check refinement between user and component views.

The CNL in [6] is used to write imperative sentences, which describe actor
actions, and affirmative sentences, which describe system characteristics. Re-
quirements are written in tabular form, in numbered steps. For the user-view
use-case, each step includes a user action, a system state, and the system’s re-
sponse. The CNL reflects the selected domain. Besides automatically generating
formal models, the use of the CNL in [6] prevents the introduction of ambigu-
ous formatted sentences in the use-case specification, thus helping to increase
document quality.

1 The second-listed author’s work on visual languages has given him an earlier reason
to believe that Dijkstra’s pessimism need not always be taken too seriously.

This copy belongs to 'VANC03'

Steps towards Scenario-Based Programming with a NL Interface 135

Attempto controlled english (ACE) [11] is an example of a CNL that was
designed to serve as a knowledge representation language, and its output is fully
executable. ACE accepts a sequence of anaphorically interrelated sentences. This
means that references to objects mentioned in previous sentences are acceptable,
creating a coherent text of linked sentences. These can include coordination,
subordination, quantification and negation. One can describe something that
is the case — a fact, an event, a state. The interpretation of the sentences is
deterministic, and a paraphrase reflects the interpretation to the programmer.

The lexicon can be modified by the programmer for domain specific content.
Questions can be written in CNL and are translated into Prolog queries, which
are then answered by logical inference. The knowledge can be executed for sim-
ulation or prototyping. Execution involves adding statements that would start
the simulation, e.g., “customer1 is a customer”, “card1 is a card”, etc.

ACE is used in a variety of applications: as an NL interface in database query
languages and robot controllers, in planning medical reports, for the semantic
web (translation to and from web-languages) for protein ontologies, and as a
reasoner that performs deductions [29].

Two-level-grammar (TLG) [5], is an object-oriented requirements specifica-
tion language with a natural language style. It is sufficiently formal to allow
automatic transformations into UML class diagrams and into object-oriented
code, such as Java. The methods are described in natural language as a se-
quence of behaviors, allowing services and functions to be referred to and called
upon. This formalism allows one to describe object-oriented behavior naturally,
and each function definition is composed of logical rules executed in the order
they are given.

TLG is natural-language-like in style, but is sufficiently formal to be auto-
matically translated into object-oriented formal specifications.

In spoken Java [3], programmers can describe their Java program orally in
natural language. The method was developed for programmers who suffer from
repetitive strain injuries, and therefore the natural language is very similar to
Java and programming knowledge is a prerequisite.

The efforts in references [5,11], are general. However, domain specific appli-
cations also exist; e.g., for robot controllers. In [28] linear temporal logic mis-
sion planning toolkit (LTLMoP) is used for writing specifications in structured
English. The language is used to specify safety and liveness properties. The
implementation is through a grammar that translates into LTL.

The MOOIDE system [7], based on the Metaphor system tests the idea of
describing behavior with stories in the domain of a virtual reality storytelling
game. The game itself is a reactive system. The interface in MOOIDE takes
the form of a dialog in natural language about a growing set of terms that
are added to the world, and it uses common sense semantics. The MOOIDE
system, although domain specific, has many elements similar to the scenario-
based programming approach that we describe in the next section.

This copy belongs to 'VANC03'

136 M. Gordon and D. Harel

4 Behavioral Programming in Controlled Natural
Language

Behavioral programming (BP) is a recently proposed programming paradigm in
which system behavior is described in scenarios, similar to the way people natu-
rally specify behavior [22]. This naturalness appears to be a crucial component of
the quest for liberating programming [19]. We have developed a natural language
input interface for BP [14], in which scenarios are described with CNL and are
transformed automatically into a BP formalism called live sequence charts (LSC)
[9]. These, in turn can be executed, using play-out [20], planning algorithms or
synthesis [32].

We focus on two of the main concepts underlying behavioral programming,
namely, inter-object programming and unification.

In the inter-object approach a behavior is usually described as a “story” that
considers the operations that occur between objects, rather than focusing on
the operations within objects, as is the case in the intra-object style of object-
oriented programming. Although in both cases each object has unique operations
and properties, in intra-object behavior the programming process focuses on the
objects, whereas in inter-object programming, the focus is on the interaction
between the objects. Shifting the focus to the between-objects behavior, allows
for a far more natural and “liberated” style of programming. See [19,21].

Here are examples of inter-object specifications: “If the alarm of a watch is
set, then whenever the current time reaches the alarm time, the beeper turns
on”. “Whenever the beeper is on, it beeps every two seconds”.

These scenarios may be easy to describe and follow, but they cannot be ex-
ecuted together as a single system, unless the idea of unification is introduced.
Unification means that events of the same type between the same objects, rep-
resent the same event. Since in the specifier’s mind the operation of sending a
text message (which is also an event) is the same in both scenarios, in order to
execute what the programmer meant, these two events should be unified.

4.1 Live Sequence Charts

Live sequence charts, constitute a visual formalism for specifying multi-modal
scenarios. An LSC can assert mandatory behavior (termed “hot”), possible be-
havior (termed “cold”), as well as forbidden behaviors and their combinations.
The LSC language [9,21] extends message sequence charts (MSC) [26] (termed
sequence diagrams in UML [40]). In an LSC, objects are represented by vertical
lines, called lifelines, and messages between objects are represented by horizon-
tal arrows between objects. Time advances along the vertical axis and messages
entail an obvious partial ordering.

A cold monitored event (dashed blue arrows) is monitored, and if it occurs
the next event in the partial order should be monitored or executed. A hot
executed event (solid red arrows) means that the system should perform the
event eventually. The LSC language also includes conditions, assertions, loops,

This copy belongs to 'VANC03'

Steps towards Scenario-Based Programming with a NL Interface 137

switch cases, time, symbolic instances, and several additional constructs. Figure
1 shows a typical LSC.

A set of LSCs can be executed using the play-out mechanism [21], which mon-
itors at all times what must be done, what may be done and what is forbidden,
and proceeds accordingly. This results in a full execution of the LSC specification
using a näıve strategy, considering the current state and progressing by choosing
arbitrarily from all possible next events to be triggered.

Since different fragmented scenarios are combined into a single functional
executable system, there is a risk of contradictory requirements that can produce
violations during execution.

Contradictions can subtly, arise from multiple scenarios. Finding an execution
order that makes it possible to execute without violations requires considering
future states when choosing an event. Techniques that use model-checking, plan-
ning and synthesis, have been developed, to look ahead and choose an execution
order in a smarter fashion [18,32]. Synthesis can often be used to verify that the
specification is valid or to exhibit inconsistencies [33].

4.2 Natural Language Play-in

In [14], we describe a natural language interface to the LSC formalism, named
NL-play-in. The programmer can write in a controlled English, using terms, e.g.,
nouns, verbs, adjectives, that are relevant to the system being described, and
reusing them in further requirements to allow unification during execution. The
terms used become part of a growing system model that includes the system’s
objects, and their methods and properties.

The interface consists of a context-free grammar (CFG) bottom-up parser and
a dialog system that help the programmer create both a system model and a
set of LSC scenarios. The resulting system is fully executable. The controlled
natural language accepts declarative requirement sentences. The parser includes
semantic information for creating the LSCs, adding loops and conditions, and
specifying which events should be monitored and which should be executed. The
grammar is general: it analyzes all terms with the help of the WordNet dictionary
[35], in order to determine whether a word is a noun, a verb, or an adjective and
whether it is meant as an object, a method or a persistent property.

When a sentence is analyzed, terms that are not completely understood by
the system are disambiguated using a quick-fix interface to the programmer.
The word in question is marked with a squiggly line, and hovering over it with
the mouse provides the programmer with additional information, and a list of
possible solutions. Disambiguation includes resolving grammar problems and
semantic issues.

Grammar problems include incomplete sentences, sentences without a verb, or
sentences that are not part of the grammar. Semantic problems include phrases
that can be either a target object or a parameter for a method. Semantic prob-
lems are more prevalent at early stages. As the requirements accumulate, and
the programmer resolves problems, the information becomes part of the model
and is used to resolve further ambiguities automatically.

This copy belongs to 'VANC03'

138 M. Gordon and D. Harel

The process of developing a system and its requirements is intermixed. Some-
times the programmer knows what the system should do, and only then considers
what the system model will be, while often it is the other way around. The pro-
cess continues throughout development, adding requirements and extending the
model. Our method supports both development directions: creating the model
as it becomes necessary when adding requirements, or adding the requirements
for an existing model.

In one development direction, when a requirement is parsed, non-existing
model parts, e.g., objects, classes, methods, and properties, are verified with the
programmer as necessary, and the model is augmented with new model parts.
Any addition of model parts is explicit, to verify that new parts are introduced
only when they cannot be unified with existing parts. We call this process model
disambiguation. Only after the model is complete, a new LSC is created that
captures the requirement. Viewing the LSC allows the programmer to verify
that the requirement was parsed correctly. Finally, the system created can be
executed at any stage with the existing model and the LSCs.

In the other development direction, when a system model exists, it is possible
for the programmer to specify requirements, and any references to the model
parts are immediately understood, and require no additional user interaction.
Many times the model is actually a non-behaving graphical user interface (GUI)
of the final system. In this case, the model will be created automatically from
the GUI objects.

When objects and methods are created automatically, they can be later re-
placed by graphical entities, or augmented with low-level code. For example, a
button object may have a method click that is referenced in a scenario. The
same click can later be implemented, to show and accept clicks from the user.

For a thorough guide we refer the reader to [14], in which an example of a wrist-
watch is described (also available in http://www.weizmann.ac.il/mediawiki/

playgo/index.php/Wristwatch_Example).
The following CNL demonstrates the style of programming with NL-play-in:

When the time value changes, if the time value equals the alarm value
and the alarm state is enabled, the beeper turns on.
When the beeper state changes to on, as long as the beeper state is on and
two seconds elapse, the beeper beeps, the display mode may not change.
When the user clicks any button, the beeper turns to off.

The fully executable diagrams that result automatically from these NL re-
quirements are shown in Figures 1, 3 and 2.

It is possible to extend the model disambiguation to suggest connections be-
tween different terms according to word similarity or synonyms. For example, if
“opening the radio”, and “unlocking the radio”, both appear, the parser can sug-
gest to the programmer to make the connection between the methods, causing
unification between these terms during execution.

This copy belongs to 'VANC03'

http://www.weizmann.ac.il/mediawiki/playgo/index.php/Wristwatch_Example
http://www.weizmann.ac.il/mediawiki/playgo/index.php/Wristwatch_Example

Steps towards Scenario-Based Programming with a NL Interface 139

Fig. 1. A simple LSC created for the sentence “when the time value changes, if the
time value equals the alarm value and the alarm state is enabled, the beeper turns on”

Fig. 2. The LSC created for the requirement “When the user clicks any button, the
beeper turns to off”

This copy belongs to 'VANC03'

140 M. Gordon and D. Harel

Fig. 3. The LSC created for the requirement “When the beeper state changes to on,
as long as the beeper state is on and two seconds elapse, the beeper beeps, the display
mode may not change.”

4.3 Show and Tell

In [15] we describe an extension of the NL-play-in interface for LSCs, which com-
bines it with the play-in method [17], by interweaving CNL and user interaction.
In play-in, the programmer specifies scenarios by playing-them-in directly from

This copy belongs to 'VANC03'

Steps towards Scenario-Based Programming with a NL Interface 141

a graphical user interface (GUI) of the system being developed, similar to pro-
gramming by demonstration [8]. Show & tell means that the programmer can
combine writing in natural language with actual showing. Some parts of a sce-
nario, for example, the when-then, or the if, are easier to write than to show,
while other parts, like the click of a button, are easier to show. Show & tell
also helps avoid typos and the necessity to specify the names or the operations
with their exact terms.

While play-in is similar to programming by demonstration [8], show & tell
is similar to the put-that-there method [4], and other multi-modal user inter-
faces, see http://www.wisdom.weizmann.ac.il/~michalk/Projects/SaT/ for
a demo. Experiments we have carried out [16] show that when the interface is
a mouse and keyboard, show & tell combinations may not be more convenient
for people who type quickly. Our experiments also expose the learnability of the
NL-play-in approach.

4.4 Limitations and Future Work

NL-play-in meant for the high-level programming of reactive systems — dy-
namic systems that respond to events, depending on their current state [23].
The method, as part of the BP paradigm, supports incremental development
of systems by continuously adding requirements. NL-play-in can help bridge
the gap between the requirement engineering process and the development of
the final system, and allow a shorter life cycle. NL-play-in is suitable for inter-
weaving fragmented requirements, including negative requirements, and can be
combined with other programming styles, e.g., statecharts [2]. The systems we
have already created include a wristwatch, a chess game, a baby monitor, and
parts of an ATM machine.

The programmer’s identity can range from the professional to the end-user,
and the vocabulary and level-of-detail can change according to the programmer’s
needs. When programming the behavior of a robot, pertaining to where it heads,
what it sees, or what directions it receives, the terms will be different from the
case of programming at the level of the robot moving body parts.

For modifying existing systems, e.g., augmenting existing behavior with addi-
tional requirements or forbidden behaviors, the programmer should be familiar
with the details of the model. However, even if the model is less known, show &
tell can help the programmer refer directly to relevant objects and terms.

The natural language interface can be improved substantially, with, e.g., ref-
erence resolutions, verbal shortcuts and the use of synonyms, all of which can
make the writing more friendly, as is the case with ACE [11] or MOOIDE [7].

Another challenge in using natural language for programming is its assimila-
tion. For non-programmers this requires developing teaching methods. The BPJ
library [22] lets expert programmers use BP concepts in their own programming
environment, supporting a gradual transition from procedural programming to
BP and later to natural language programming.

When broader groups of people will program, software engineering activities
will probably broaden too, and will require better visualization and navigation

This copy belongs to 'VANC03'

http://www.wisdom.weizmann.ac.il/~michalk/Projects/SaT/

142 M. Gordon and D. Harel

methods; some research on these approaches in the content of LSCs has already
started [24], and this work can be adopted to the NL interface too.

Another consideration is requirement coverage. The one responsibility of the
programmer is to enter the requirements. However, since requirements need to
cover multiple possibilities and many system states, he may require help in con-
sidering all possibilities. Such support could include supplying many views that
will help him understand the system. For example, complex systems may benefit
from requirements analysis by other formats than natural language, e.g. tabular
visualization, that will help the programmer see the bigger picture and uncover
gaps in the specification. Precise documentation in software engineering [36] be-
comes extremely relevant when programming in natural language because in a
way the documentation becomes the final program.

It is not only the understanding of how to program, but also the need to
program that is still elusive. What will new programmers want to program? Prior
to the introduction of smartphones, few people thought of creating their own
applications. However, at present there is an astonishing variety of applications,
and their number is growing rapidly. We hypothesize that as technology comes
to play a much larger role in people’s lives, the need to program or re-program
such systems will increase dramatically. This, in fact, constitutes a major part
of the motivation for PiCNL.

Acknowledgments. The research was supported in part by the John von Neu-
mann Minerva Center for the Development of Reactive Systems at the Weiz-
mann Institute of Science, and by an Advanced Research Grant to DH from
the European Research Council (ERC) under the European Community’s FP7
Programme.

References

1. AECMA Official Site, http://www.asd-ste100.org
2. Barak, D., Harel, D., Marelly, R.: InterPlay: Horizontal Scale-Up and Transition

to Design in Scenario-Based Programming. IEEE Trans. Soft. Eng. 32(7), 467–485
(2006)

3. Begel, A., Graham, S.: Spoken programs. In: Proc. IEEE Symp. on Visual Lan-
guages and Human-Centric Computing (VL/HCC 2005), pp. 99–106 (2005)

4. Bolt, R.A.: “Put-that-there”: Voice and Gesture at the Graphics Interface. SIG-
GRAPH Comput. Graph. 14(3), 262–270 (1980)

5. Bryant, B.R., Lee, B.-S.: Two-Level Grammar as an Object-Oriented Require-
ments Specification Language. In: Proc. 35th Annual Hawaii Int. Conf. on System
Sciences, HICSS 2002, pp. 280–289 (2002)

6. Cabral, G., Sampaio, A.: Formal Specification Generation from Requirement Doc-
uments. Electron. Notes Theor. Comput. Sci. 195, 171–188 (2008)

7. Cypher, A., Dontcheva, M., Lau, T., Nichols, J.: No Code Required: Giving Users
Tools to Transform the Web. Morgan Kaufmann Publishers Inc. (2010)

This copy belongs to 'VANC03'

http://www.asd-ste100.org

Steps towards Scenario-Based Programming with a NL Interface 143

8. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A. (eds.): Watch What I Do: Programming by Demonstration.
MIT Press (1993)

9. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001)

10. Dijkstra, E.W.: On the Foolishness of “Natural Language Programming”. In: Ger-
hart, S.L., et al. (eds.) Program Construction. LNCS, vol. 69, pp. 51–53. Springer,
Heidelberg (1979)

11. Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). In: Proc. 1st Int.
Workshop on Controlled Language Applications, pp. 124–136 (1996)

12. Geller, T.: Talking to Machines. Commun. ACM 55(4), 14–16 (2012)
13. Giganto, R.T.: A Three-Level Algorithm for Generating Use Case Specifications.

In: Proc. Software Innovation and Engineering New Zealand Workshop, SIENZ
2007 (2007)

14. Gordon, M., Harel, D.: Generating executable scenarios from natural language. In:
Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 456–467. Springer, Heidel-
berg (2009)

15. Gordon, M., Harel, D.: Show-and-Tell Play-In: Combining Natural Language with
User Interaction for Specifying Behavior. In: Proc. IADIS Interfaces and Human
Computer Interaction (IHCI 2011), pp. 360–364 (2011)

16. Gordon, M., Harel, D.: Evaluating a Natural Language Interface for Behavioral
Programming. In: Proc. IEEE Symp. on Visual Languages and Human-Centric
Computing (VL/HCC 2012), pp. 17–20 (2012)

17. Harel, D.: From Play-In Scenarios To Code: An Achievable Dream. Com-
puter 34(1), 53–60 (2001)

18. Harel, D.: Playing with Verification, Planning and Aspects: Unusual Methods for
Running Scenario-Based Programs. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 3–4. Springer, Heidelberg (2006)

19. Harel, D.: Can Programming be Liberated, Period? Computer 41(1), 28–37 (2008)
20. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-Out of Behavioral

Requirements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 378–398. Springer, Heidelberg (2002)

21. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer (2003) (See also paper in Software and System
Modeling 2(2), 82–107 (2003))

22. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

23. Harel, D., Pnueli, A.: On the Development of Reactive Systems. In: Logics and
Models of Concurrent Systems, pp. 477–498. Springer, New York (1985)

24. Harel, D., Segall, I.: Visualizing Inter-Dependencies between Scenarios. In: Proc.
4th ACM Symp. on Software Visualization (SoftVis 2008), pp. 145–153 (2008)

25. Hearst, M.A.: “Natural” Search User Interfaces. Commun. ACM 54(11), 60–67
(2011)

26. ITU: International Telecommunication Union. Recommendation Z.120: Message
Sequence Chart (MSC). Technical report (1996)

27. Kim, S.-H., Jeon, J.W.: Programming LEGO Mindstorms NXT with Visual Pro-
gramming. In: Proc. Int. Conf. on Control, Automation and Systems, ICCAS 2007,
pp. 2468–2472 (2007)

28. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating Structured English to
Robot Controllers. Advanced Robotics Special Issue on Selected Papers From IROS
2007 22(12), 1343–1359 (2008)

This copy belongs to 'VANC03'

144 M. Gordon and D. Harel

29. Kuhn, T., Fuchs, N.E. (eds.): CNL 2012. LNCS, vol. 7427. Springer, Heidelberg
(2012)

30. Lei, T., Long, F., Barzilay, R., Rinard, M.: From Natural Language Specifications
to Program Input Parsers. In: Proc. Annual Meeting Assoc. for Computational
Linguistics, ACL 2013 (2013)

31. Liu, H., Lieberman, H.: Toward a Programmatic Semantics of Natural Lan-
guage. In: Proc. IEEE Symp. on Visual Languages and Human-Centric Computing
(VL/HCC 2004), pp. 281–282 (2004)

32. Maoz, S., Harel, D., Kleinbort, A.: A Compiler for Multimodal Scenarios: Trans-
forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol. 20(4), 18 (2011)

33. Maoz, S., Sa’ar, Y.: Two-Way Traceability and Conflict Debugging for AspectLTL
Programs. In: Leavens, G.T., Chiba, S., Tanter, É. (eds.) Transactions on AOSD
X. LNCS, vol. 7800, pp. 39–72. Springer, Heidelberg (2013)

34. Mihalcea, R., Liu, H., Lieberman, H.: NLP (Natural Language Processing) for NLP
(Natural Language Programming). In: Gelbukh, A. (ed.) CICLing 2006. LNCS,
vol. 3878, pp. 319–330. Springer, Heidelberg (2006)

35. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to
WordNet: An On-line Lexical Database (1993), http://wordnet.princeton.edu/

36. Parnas, D.L.: Precise Documentation: The key to Better Software. In: The Future
of Software Engineering, pp. 125–148. Springer (2011)

37. Resnick, M., et al.: Scratch: Programming for All. Comm. of the ACM 52(11),
60–67 (2009)

38. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley Longman (1986)

39. Sun, Y., Leigh, J., Johnson, A., Lee, S.: Articulate: A Semi-automated Model for
Translating Natural Language Queries into Meaningful Visualizations. In: Taylor,
R., Boulanger, P., Krüger, A., Olivier, P. (eds.) SG 2010. LNCS, vol. 6133, pp.
184–195. Springer, Heidelberg (2010)

40. UML. Unified Modeling Language Superstructure, v2.1.1. Technical Report
formal/2007-02-03, Object Management Group (2007)

41. Winograd, T.: Understanding Natural Language. Cognitive Psychology 3(1), 1–191
(1972)

42. Wong, Y.W., Mooney, R.J.: Learning Synchronous Grammars for Semantic Parsing
with Lambda Calculus. In: Proc. 45th Annual Meeting of the Assoc. for Compu-
tational Linguistics, ACL 2007 (2007)

43. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring Resource Specifications from Nat-
ural Language API Documentation. In: Proc. IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE 2009), pp. 307–318 (2009)

This copy belongs to 'VANC03'

http://wordnet.princeton.edu/

Assembly Theories
for Communication-Safe Component Systems�

Rolf Hennicker1, Alexander Knapp2, and Martin Wirsing1

1 Ludwig-Maximilians-Universität München
{hennicke,wirsing}@pst.ifi.lmu.de

2 Universität Augsburg
knapp@informatik.uni-augsburg.de

Dedicated to Joseph Sifakis

Abstract. We propose an abstract notion of an assembly theory that formal-
izes rudimentary requirements for systems of interacting components. Among
these are a composition operator for assemblies, a communication-safety pred-
icate to express the absence of communication errors, a refinement relation for
assemblies, and a packing operation to encapsulate assemblies into components
thus allowing hierarchical system constructions. We establish laws that must be
satisfied by any concrete assembly theory in order to support compositionality
of communication-safety, of encapsulation and of refinement. Moreover, refine-
ment must behave well w.r.t. communication-safety and encapsulation. As a con-
crete instance we investigate a modal assembly theory using modal I/O-interfaces
(MIOs) for modeling observable component behaviors and MIOs with possible
error states (indicating communication errors) for modeling assembly behaviors.
We show that all rules of an assembly theory are satisfied by modal assemblies,
in particular the compositionality requirements hold.

1 Introduction

In his recent article [20], Joseph Sifakis advocates “rigorous system design” to build
systems of guaranteed quality. The abstract principles of component-based design and
correctness-by-construction are two main ingredients of his approach. He writes that
“components are essential for enhanced productivity and correctness through reuse and
architectures” and aims at “theory and rules for building complex designs . . . by com-
posing properties of simpler designs.” As a concrete instance of these principles Joseph
and his research group at Verimag have developed the BIP component framework (see,
e.g., [3,20]). BIP allows the modeling of composite, hierarchically structured systems
from atomic components characterized by their behavior and their interface.

Several other approaches have been proposed for specifying structural as well as
behavioral aspects of components and their interfaces; an overview of a collection of

� This work has been partially sponsored by the European Union under the FP7-project AS-
CENS, 257414.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 145–160, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

146 R. Hennicker, A. Knapp, and M. Wirsing

component frameworks, that have been applied to a common component modeling ex-
ample, is given in [19]. The specification of networks of components with arbitrarily
(finitely) many members and their interactions is supported by BIP [3,13] as well as by
other formalisms for modeling distributed component systems, like CFSMs [7], team
automata [8], component-interaction automata [9], or modal assemblies [15].

Abstract principles for the construction of component-based concurrent systems have
been investigated and formalized as so-called interface theories by de Alfaro and Hen-
zinger [11,12]. As in Joseph’s approach, compositionality requirements are at the heart
of these formalisms expressing, e.g., the principles of incremental design and inde-
pendent implementability at an abstract level. Interfaces for complex components are
constructed from simpler ones by interface composition. The result of an interface com-
position yields again an interface which intuitively describes the visible (black-box) be-
havior of a composite component. However, in spite of their importance for distributed
component systems, there is no abstract formalization of the interaction behavior of
component networks with arbitrarily (finitely) many members.

In this work we investigate networks of interacting components in the spirit of
Joseph’s correctness-by-construction approach and de Alfaro’s and Henzinger’s inter-
face theories: we develop novel compositional principles for the safe interaction of net-
works and formalize them by the abstract notion of assembly theory; moreover, we
present so-called modal assemblies as a concrete instance of an assembly theory.

An assembly theory formalizes basic requirements for systems of interacting
components. In particular, an assembly theory comprises a composition operator for
assemblies, a communication-safety predicate for expressing the absence of commu-
nication errors, a refinement relation for assemblies, and a packing operation for en-
capsulating assemblies into components thus allowing hierarchical system construc-
tions. Any assembly theory must satisfy compositionality and compatibility laws for
communication-safety, encapsulation and refinement.

We instantiate our framework by a novel concrete assembly theory which uses an
extension of MIOs (modal I/O-transition systems; see [17]) to model interface and as-
sembly behaviors. Modal assemblies have already been considered in [15], but the new
approach is a significant enhancement. We consider now assembly composition, a new
definition of assembly behaviors which explicitly takes into account communication-
errors and a new, much more flexible refinement notion for modal assemblies. As a
consequence, we get novel results for compositionality of the communication-safety
property and for assembly refinement. Moreover, [15] does not define a rigorous, ab-
stract meta-theory for assemblies but provides only some first ideas in that direction.

Outline of the paper. In Sect. 2 we develop the general concepts and laws of an assem-
bly theory. Sect. 3 summarizes the basic notions of modal I/O-transition systems needed
in Sect. 4 to build a modal assembly theory as an instance of our abstract framework.
Finally, in Sect. 5, we finish with some concluding remarks.

Personal Note. The third author has known Joseph for several years and collaborates
with him and his Verimag research group since 2010. Initial ideas for the cooperation
started in 2008 at a workshop of the EC Coordinated Action INTERLINK. Joseph gave
a keynote speech on Rigorous System Design while MW was coordinating a Working

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 147

Group on software-intensive systems and was giving a talk about Ensemble Engineer-
ing. Two years later both (together with Ugo Montanari, Rocco De Nicola, and others)
teamed up for planning a joint EU project on the systematic construction of autonomous
systems. The project proposal was successful: the FP7 Integrated Project ASCENS [2]
on “Autonomic Service-Component Ensembles” is coordinated by MW; Joseph and his
group are responsible for the work package on “Correctness of Service Components
and Service Component Ensembles”. Design techniques ensuring correctness-by-con-
struction play a main role in ASCENS; current results comprise an extension of BIP for
modeling dynamic architectures [6] and a novel implementation of the D-Finder tool
for compositional deadlock detection in concurrent systems [5].

Working with Joseph is an excellent experience; we admire his deep insights and
technical precision, and are looking forward to many further inspiring exchanges.

2 Assembly Theories

We develop a general framework that is intended to capture and formalize rudimentary
properties that we believe should be satisfied by any concrete framework for distributed
component systems to form a reasonable assembly theory. For this purpose we will
consider some abstract domains, operators, relations and laws that altogether form a
meta-theory for assemblies. Our starting assumption is that an assembly consists of a
finite set of components which can interact. Since components are encapsulated units,
we represent them by interface specifications (shortly called interfaces). Therefore we
consider an assembly as a (non-empty) finite set of interface specifications which fit
syntactically together according to some composability criterion.1 In the following we
are interested to collect a number of general properties that must be satisfied by a con-
crete framework to form an assembly theory.

As a basis we assume given a class F of interface specifications together with a
reflexive and transitive interface refinement relation � ⊆ F × F. For two interfaces
F and G , F � G means that F is a refinement of the interface specification G . We
denote by ℘fin(F) the class of the finite subsets of F. In general, not all elements of
℘fin(F) form assemblies. Usually there are some syntactic composability conditions
required for the members of an assembly. Hence, any assembly theory must first define
a particular class A ⊆ ℘fin(F) whose elements form valid interface assemblies. We
require that any assembly must have at least one element, that any interface induces a
(singleton) assembly and that non-empty subsets of assemblies are assemblies as well.
These conditions are stated in the first item of Def. 1. In order to combine assemblies
to larger ones we require a partial assembly composition operator � which is defined,
if and only if, the union of two assemblies is an admissible assembly again. We require
that an assembly theory must offer a packing operation pack : A → F, which allows
us to encapsulate an assembly into a component interface by hiding the internals of the
assembly. Thus hierarchical assemblies can be constructed by using packed assemblies
as their components. To address behavioral compatibility of the interacting members of
an assembly, we introduce a communication-safety predicate cs ⊆ A on assemblies.

1 To be as abstract as possible, we deliberately take this simplified view not considering other
ingredients like ports, connectors etc.

This copy belongs to 'VANC03'

148 R. Hennicker, A. Knapp, and M. Wirsing

Similarly to interfaces, an assembly theory must also offer a reflexive and transitive
refinement relation for assemblies, denoted by # ⊆ A×A.

Some crucial properties relating composition, encapsulation, communication-safety,
and refinement are required for any concrete assembly theory. The properties (A1), (A2)
and (A3) specify in their (a) part straightforward rules for singleton assemblies.
Their (b) and (c) parts state compositionality requirements: (A1)(c) states that
communication-safe assemblies can be packed piecewise if the two components ob-
tained from packing A and B are communication-safe. At the end the still visible
boundary of the single packed assemblies must be hidden by applying another pack.

(A2)(b) deals with compositionality of communication-safety. If two commu-
nication-safe assemblies A and B are combinable, then for the result to be
communication-safe it suffices to check that the two components obtained from pack-
ing A and B are communication-safe. Hence, once A and B are locally “fine”, it
only remains to consider the interactions on the boundary between A and B . This im-
portant property supports also efficient communication-safety checking, since in con-
crete applications it is often possible to consider minimized versions of pack (A) and
pack (B). (A3)(b) and (c) formulate a compositionality requirement for refinement of
communication-safe assemblies. In part (b) local refinements are given and the other
assumptions are the same as for (A1)(c) and (A2)(b). (A4) is straightforward requiring
that encapsulation of communication-safe assemblies, which are in refinement relation,
leads to interfaces which are also in refinement relation. Another important property is
expressed by (A5) guaranteeing that refinements of communication-safe assemblies are
communication-safe.

Definition 1 (Assembly theory). An assembly theory (A,�, pack , cs ,#) over (F,�)
is given by

– a class A ⊆ ℘fin(F) of assemblies, such that
1. ∅ /∈ A,
2. for all F ∈ F, {F} ∈ A, and
3. A is closed under the formation of non-empty subsets,

i.e., if A ∈ A and ∅ �= B ⊆ A, then B ∈ A;
– a partial assembly composition operator� : A×A⇀ A defined by A�B = A∪B

if A ∪ B ∈ A, undefined otherwise;2

– an encapsulation operation pack : A → F,
– a communication-safety predicate cs ⊆ A (we will write cs (A) for A ∈ cs), and
– a reflexive and transitive assembly refinement relation # ⊆ A×A,

such that for all F ,G ∈ F and A,B ,A1,A2,B1,B2 ∈ A the following holds:

A1. Compositionality of encapsulation:
(a) pack ({F}) = F .
(b) If A� B is defined, then {pack (A)}� {pack (B)} is defined.

2 � is commutative in the sense that for all A,B ∈ A, if A � B is defined then B � A is
defined and A � B = B � A. � is also associative in the sense that for all A,B ,C ∈ A,
if A � B and (A � B) � C are defined, then B � C and A � (B � C) are defined and
(A� B)� C = A� (B � C). This follows from the subset-closedness condition.

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 149

(c) If A� B is defined, and if cs (A), cs (B) and cs ({pack (A)} � {pack (B)}),
then pack (A� B) = pack ({pack (A)}� {pack (B)}).

A2. Compositionality of communication-safety:
(a) cs ({F}).
(b) If A� B is defined, and if cs (A), cs (B) and cs ({pack (A)} � {pack (B)}),

then cs (A� B).
A3. Compositionality of refinement:

(a) If F � G , then {F} # {G}.
(b) If B1 � B2 is defined, and if Ai # Bi for i ∈ {1, 2}, then A1 � A2 is defined.
(c) If B1�B2 is defined, and if cs (B1), cs (B2), cs ({pack (B1)}� {pack (B2)}),

and if Ai # Bi for i ∈ {1, 2}, then A1 � A2 # B1 � B2.
A4. Preservation of refinement by encapsulation:

If A # B and cs (B), then pack (A) � pack (B).
A5. Preservation of communication-safety by refinement:

If A # B and cs (B), then cs (A).

From the laws of an assembly theory it follows that communication-safe assem-
blies can be constructed in an incremental manner, i.e. by enlarging the assembly by
one interface at a time, each time checking that the packed assembly up to now is
communication-safe with the additional interface.

Incremental design: Let A ∈ A be an assembly and let F ∈ F such that A∪ {F} ∈ A.
If cs (A) and cs ({pack (A),F}), then cs (A ∪ {F}).

Similarly, the following law of independent implementability is also a consequence
of the properties of an assembly theory.

Independent implementability: Let A,B ∈ A such that A # B and let F ,G ∈ F such
that F � G and B ∪ {G} ∈ A. If cs (B) and cs ({pack (B),G}), then A ∪ {F} #
B ∪ {G}.

The idea to consider assemblies as sets of components, automata, or interfaces is
present in many approaches in the literature; see e.g. CFSMs [7], the BIP frame-
work [3,13], team automata [8], component-interaction automata [9], and modal as-
semblies [15]. So it is an interesting question to what extent the concepts and laws from
above appear in the different frameworks. In [7] communication protocols are stud-
ied based on collections of communicating finite state machines. Communication is
asynchronous via queues and the focus there is particularly on communication prop-
erties, like specified reception (and how to check this), which could be used as a
communication-safety predicate in our sense. In the BIP framework systems of com-
ponents are considered together with particular interaction models, which are not (yet)
incorporated into our notion of an assembly. BIP provides, as required for an assembly
theory, a composition operator, it deals with certain properties of systems, like interac-
tion safety, and focuses on compositionality results much in the spirit of an assembly
theory. Compositionality results are also studied in [8] for systems of reactive transition
systems (playing the role of interfaces). Our notion of an assembly could be instantiated
by the concept of a composable system, and communication-safety by the notion of a
compatible system. Different synchronization strategies are applicable and interpreted

This copy belongs to 'VANC03'

150 R. Hennicker, A. Knapp, and M. Wirsing

via team automata. For the case of the synchronous product, [8] shows, in Cor. 9, a
compositionality result, which is very similar to property (A2) required for assembly
theories. In [9] systems of composable component-interaction automata are used as as-
semblies. [9] focuses merely on substitutability of components which is very much re-
lated to our principle of independent implementability. Communication-safety is not an
issue there. In [15] both communication-safety and refinement are studied using modal
I/O-transition systems (MIOs) as interfaces and systems of connectable MIOs as assem-
blies. We have defined there an ad hoc refinement relation for assemblies requiring that
the interfaces of abstract and concrete assemblies must be related by pairwise interface
refinements. This refinement relation is, however, far too restrictive and we will propose
a more flexible one in Sect. 4.3. We will see that the new assembly refinement relation
needs a reconsideration of the behavior model for assemblies indicating communication
errors such that the property (A5) for preservation of communication-safety is satisfied.

3 Modal I/O-Transition Systems and Weak Modal Refinement

We give a short introduction to modal I/O-transition systems (MIOs) and their refine-
ment. MIOs will be used hereafter as a basic framework to build a modal assembly the-
ory. Modal transition systems (MTS) have been introduced in [18] and later extended
by Input/Output alphabets in [17]. As a verification tool we use the MIO-workbench
presented first in [4]. We have chosen MIOs as our basic formalism since they allow
us to distinguish between transitions which are optional (may) or mandatory (must) and
thus support very well loose specifications and refinements. Like any labeled transi-
tion system also MIOs model actions by labels on the transitions. We distinguish four
kinds of actions and hence labels: input labels, output labels, communication labels and
the internal action τ . In contrast to Larsen et al. [17], internal actions are not explic-
itly named here but represented by the invisible action τ and communication labels are
added in our approach to model synchronous communication.

Each MIO is based on an I/O-labeling L = (IL,OL,TL) consisting of pairwise
disjoint sets of input labels IL, output labels OL, and communication labels TL, such
that τ /∈ IL ∪ OL ∪ TL. We write

⋃
L for the set IL ∪ OL ∪ TL of all labels of L.

The I/O-labeling of a MIO will be pictorially shown on its frame. For easier readability,
input labels will be suffixed with “?” and output labels with “!” on the transitions.

A modal I/O-transition system M = (LM , SM , s0,M , M , M) consists of an I/O-
labeling LM = (IM ,OM ,TM), a set of states SM , an initial state s0,M ∈ SM , a may-
transition relation M ⊆ SM × (

⋃
LM ∪ {τ}) × SM , and a must-transition relation

M ⊆ M , i.e. any must-transition is also a may-transition. A MIO M is called an
implementation if all transitions are must-transitions, i.e. M = M . The set of the
reachable states from the initial state s0,M of M w.r.t. may-transitions is denoted by

R(M). For l ∈
⋃
LM ∪ {τ}, we write s l

M s ′ for (s , l , s ′) ∈ M and s l
M s ′ for

(s , l , s ′) ∈ M . Since M ⊆ M , s l
M s ′ implies s l

M s ′.
We consider two operators on MIOs, synchronous composition and hiding of com-

munication labels.

Synchronous composition. Two MIOs M , N with labelings LM = (IM ,OM ,TM) and
LN =(IN ,ON ,TN) resp. are composable, if their labels overlap only on complementary

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 151

types, i.e.
⋃
LM ∩

⋃
LN = (IM ∩ ON) ∪ (IN ∩ OM). Hence, whenever a label is

shared, then it is either an input label of the first MIO and an output label of the second or
conversely.The synchronous composition of two composable MIOsM andN is denoted
by M ⊗sy N and defined as the usual product of automata such that transitions with
shared actions are performed (only) simultaneously. After composition the shared labels
become communication labels. A synchronization transition in M ⊗sy N is a must-
transition only if both of the single synchronizing transitions are must-transitions.

Composability and synchronous composition are straightforwardly extended to finite
sets of MIOs: A non-empty finite set A = {M1, . . . ,Mn} of MIOs is composable, if the
single MIOs Mi are pairwise composable. Then labels of each Mi can only be shared
with at most one other MIO Mj (j �= i). Since the synchronous composition is commu-
tative and associative (up to a bijection between states) the synchronous composition of
A can be inductively defined by

⊗sy
A = M1 ⊗sy . . . ⊗sy Mn .

Hiding. Hiding is used to build abstractions of labeled transition systems. Usually, hid-
ing is obtained by considering a specified set of previously visible actions as invisible.
In the case of MIOs we use a simple, uniform hiding operator which makes communi-
cation (obtained by previous compositions) invisible.

Formally, the hiding of communication labels of an I/O-labeling L = (IL,OL,TL)
is given by Lξ = (IL,OL, ∅) and the hiding of communications labels of a MIO M ,
denoted by M ξ, is defined by moving all communication labels on the transitions of M
to τ .

Weak modal refinement. The basic idea of modal refinement is that required (must)
transitions of an abstract specification must also occur in the concrete specification.
Conversely, allowed (may) transitions of the concrete specification must be allowed
by the abstract specification, but can be omitted in the concrete one. We will use the
weak form of modal refinement introduced by Hüttel and Larsen in [16] which supports
observational abstraction, i.e., internal transitions can be dropped and inserted as long
as the modalities and the simulation relation are preserved. Their definition assumes
distinguished sets of external and internal actions; here, external actions are given by
the input, output and communication labels of MIOs and the internal actions are given
by the single label τ . Since communication labels are considered to be visible, they
must be respected in the same way as input/output labels. This is important when we
consider assembly refinement which should respect communications.

For denoting sequences of transitions that abstract from silent transitions, we use the
following notation. Let M be a MIO with I/O-labeling LM = (IM ,OM ,TM).

1. We write s τ̂
M s ′ if there is a (possibly empty) sequence of may-transitions from

s to s ′ all labeled by τ , and likewise for must-transitions. For l ∈
⋃
LM , we write

s
̂l

M s ′ for s τ̂
M r l

M t τ̂
M s ′, and likewise for must-transitions.

2. To express that a sequence of transitions is obtained by an arbitrary order of single

transitions involving only labels of a given set X ⊆
⋃
LM or τ , we write s

̂X
M s ′

for s
̂l1

M · · · ̂ln
M s ′ with n ≥ 0 and l1, . . . , ln ∈ X .

This copy belongs to 'VANC03'

152 R. Hennicker, A. Knapp, and M. Wirsing

Let M and N be MIOs with the same I/O-labeling. A relation R ⊆ SM × SN is a
weak modal refinement relation between M and N if for all (sM , sN) ∈ R and for all
l ∈

⋃
LM =

⋃
LN the following holds:

R1. sN
l
N s ′N ⇒ ∃s ′M ∈ SM . sM

̂l
M s ′M ∧ (s ′M , s

′
N) ∈ R.

R2. sN
τ
A s ′N ⇒ ∃s ′M ∈ SM . sM

τ̂
M s ′M ∧ (s ′M , s

′
N) ∈ R.

R3. sM
l
M s ′M ⇒ ∃s ′N ∈ SN . sN

̂l
N s ′N ∧ (s ′M , s

′
N) ∈ R.

R4. sM
τ

M s ′M ⇒ ∃s ′N ∈ SN . sN
τ̂

N s ′N ∧ (s ′M , s
′
N) ∈ R.

Recall that any must-transition is also a may-transition. Hence, by (R3) and (R4),
must-transitions in M must be allowed by corresponding may-transitions in N .

M is a weak modal refinement of N , written M ≤∗
m N , if there exists a weak

modal refinement relation R between M and N such that (s0,M , s0,N) ∈ R. If all
transitions of M and N are must-transitions, weak modal refinement coincides with
weak bisimulation. Obviously, weak modal refinement is reflexive and transitive. Two
MIOs M and N are equivalent, written M ≈∗

m N , if M ≤∗
m N and N ≤∗

m M , i.e. M
co-simulates N .

Weak modal refinement is preserved by synchronous composition and by the hiding
operator. The first statement extends the compositionality result of [16] to the case of
products with visible communication labels. The second statement follows from the
fact that any weak modal refinement relation witnessing M ≤∗

m N is also a weak
modal refinement relation witnessing M ξ ≤∗

m N ξ.

Proposition 1 (Preservation of weak modal refinement).
1. For i = 1, 2, let Mi ,Ni be MIOs such that Mi ≤∗

m Ni and let M1 and M2 (and
hence N1 and N2) be composable. Then M1 ⊗sy M2 ≤∗

m N1 ⊗sy N2.
2. Let M ,N be MIOs such that M ≤∗

m N . Then M ξ ≤∗
m N ξ.

4 A Modal Assembly Theory

4.1 Modal Interfaces and Modal Assemblies

A modal interface F is given by a modal I/O-transition system (MIO), whose I/O-
labeling LF = (IF ,OF , ∅) does not show communication labels. The labeling restric-
tion to the empty set of communication labels reflects the blackbox characteristics of
modal interfaces abstracting from communication. The class of all modal interfaces is
denoted by Fm. The notion of weak modal refinement (see Sect. 3) is directly appli-
cable to define refinement for modal interfaces. A modal interface F refines a modal
interface G , written F �m G , if F ≤∗

m G .3

We will now build a modal assembly theory over (Fm,�m). Only those (finite) sets
of modal interfaces are allowed to form a modal assembly, whose members are pairwise
composable; see Sect. 3.

3 The notation distinguishes between �m and ≤∗
m (Sect. 3), since �m is only applicable if the

labelings do not show communication labels.

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 153

Definition 2 (Modal assemblies). The class Am ⊆ ℘fin(Fm) of modal assemblies
consists of all non-empty, composable (and hence finite) subsets A ⊆ Fm.

This satisfies the requirements of Def. 1, since (1) ∅ /∈ Am, (2) {F} ∈ Am for
all F ∈ Fm, and (3) Am is closed under non-empty subsets. The composition of two
modal assemblies A and B is denoted by A �m B . Hence A �m B = A ∪ B if
A ∪ B ∈ Am and undefined otherwise. Fig. 1 show the pictorial representation of a
modal assembly consisting of three pairwise composable interfaces F1, F2, and F3.

�interface� F1

x! z?

�interface� F2

y! x?

�interface� F3

y? z!

�assembly� A

x

yz

Fig. 1. A communication-safe modal assembly

4.2 Communication-Safety and Encapsulation of Modal Assemblies

In this work we define a communication-safety notion which is equivalent to the one
in [15]. We will, however, use a different technical definition based on the explicit in-
troduction of MIOs with error states. With this new definition we can generalize weak
modal refinement to take into account errors states, which will lead to a new and pow-
erful refinement notion for modal assemblies such that communication-safety is pre-
served. Our notion of communication-safe assembly is inspired by the notion of weak
modal compatibility in [4]. This compatibility notion, as well as the compatibility no-
tions in [10,12] and [17], rely on the assumption that outputs are autonomous and must
be accepted by a communication partner while inputs are subject to external choice
and need not to be served. Hence the discrimination of inputs and outputs is essential.
Strong modal compatibility is based on the idea that whenever one component wants to
send an output it finds the communication partner in a state, in which it must take the
corresponding input immediately. Weak modal compatibility is more liberal, since it is
sufficient if the communication partner must accept the message possibly after perform-
ing first some silent must-transitions. But in practice this compatibility requirement is
still too strong. Therefore we generalize weak compatibility further and allow the com-
munication partner to take the input only after performing silent must-transitions and/or
mandatory communications with other components of the assembly and/or outputs on
must-transitions which are directed outside of the assembly. This works well because,
assuming communication-safe developments, these (open) outputs are again guaranteed
to be taken, possibly after a delay, when an assembly is further extended.

For the technical definition of communication-safety we will first introduce a formal
definition of the behavior of a modal assembly, which will be represented by a MIO

This copy belongs to 'VANC03'

154 R. Hennicker, A. Knapp, and M. Wirsing

extended by explicit error states in the case that communication errors occur during ex-
ecution of the assembly. Let A = {M1, . . . ,Mn} be a composable set of MIOs and let
Mj ∈ A. Then the rest A \ {Mj } plays the role of the environment for Mj . We must
ensure that in any reachable state of the product

⊗sy A, whenever Mj wants to send an
output l , then Envj =

⊗sy
A \ {Mj} must be able to take l as an input possibly after

some autonomous must-transitions which do not concern the communication with Mj .
These autonomous transitions can be silent must-transitions of Envj or must-commu-
nication transitions of Envj obtained from communication inside A \ {Mj }, but also
must-outputs of Envj are admitted which are not shared with the inputs of Mj . If such
a sequence of autonomous actions cannot be performed by Envj there is a communi-
cation error.

Definition 3 (Communication errors). Let A = {M1, . . . ,Mn} be a composable set
of MIOs (with n ≥ 1). If n = 1 there is no communication error. Otherwise, for each
1 ≤ j ≤ n , let Envj =

⊗sy
A \ {Mj}. The communication errors E (A) are given

by the set of pairs ((s1, . . . , sn), l) such that (s1, . . . , sn) ∈ R(
⊗sy A) and there is

1 ≤ j ≤ n with l ∈ OMj ∩ IEnvj , a state s ′j ∈ SMj with sj
l
Mj

s ′j but there are no
transitions

(s1, . . . , sj−1, sj+1, . . . , sn)
̂Xj

Envj
· l

Envj
(s ′1, . . . , s

′
j−1, s

′
j+1, . . . , s

′
n)

with Xj = TEnvj ∪ (OEnvj \ IFj).
4

Note that only communication errors occurring in the reachable part of the syn-
chronous product of A are considered.

Definition 4 (MIOs with error states). A MIO with error states (EMIO) is a pair
(M ,E) consisting of a MIO M and a set of error states E ⊆ SM .

The error composition of MIOs is obtained by taking their synchronous product en-
riched by error states (if there are any) which are then reached by the un-accepted
communication labels l . The idea is similar to the consent operator introduced in [1] to
compose languages by indicating communication errors in traces.

Definition 5 (Error-composition of MIOs). Let A = {M1, . . . ,Mn} be a compos-
able set of MIOs and let P =

⊗sy
A. The error-composition of A is given by the EMIO⊗err

A = ((LP , SP ∪ E (A), s0,P , , P), E (A))

with may-transition relation = P ∪ {(p, l , (p, l)) | (p, l) ∈ E (A)} .

The behavior of a modal assembly is given by the error composition of the modal
interfaces of the assembly. It may also be considered as the semantics of the assem-
bly. If no communication-error state appears in the assembly behavior, the assembly is
communication-safe.

4 Recall that TEnvj are the communication labels of Envj and (OEnvj \ IMj) the output labels
of Envj unshared with the input labels of Mj , i.e., not used for communication between Envj

and Mj . The silent must-transitions of Envj are anyway subsumed in the notation
̂Xj

Envj
; see

Sect. 3.

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 155

Definition 6 (Behavior of a modal assembly and communication-safety). Let A =
{F1, . . . ,Fn} ∈ Am be a modal assembly. The behavior of A is given by beh(A) =⊗err

A. A is communication safe, written as csm(A), if E (A) = ∅.

As an example, consider the assembly A in Fig. 1 and its (reachable) behavior shown
in Fig. 2. The assembly is communication-safe since there is no error state. In fact all
interfaces will be able to send their messages, possibly after a delay. For instance, F1

can send x to F2 after F2 has communicated the message y to F3.

y x z

x y z

Fig. 2. Behavior of the assembly A in Fig. 1

Consider now a slight variation of the assembly in Fig. 1 such that the order of the
input y? and output z! in F3 is reversed. Let us call this assembly A′; see Fig. 3. The
EMIO representing the (reachable) behavior of A′ is shown in Fig. 4; it contains three
error states. These are induced by the cyclic wait of the single interfaces in A′. Hence
the assembly A′ is not communication-safe. This example shows also that one cannot
deduce from pairwise communication-safety of the interfaces of an assembly that the
whole assembly is communication-safe. Indeed all pairs of interfaces in A′ would form
a communication-safe assembly.

�interface� F1

x! z?

�interface� F2

y! x?

�interface� F′
3

z! y?

�assembly� A’

x

yz

Fig. 3. Communication-safety does not follow from pairwise communication-safety

x y z

x y z

Fig. 4. Behavior of the assembly A′

The encapsulation of a modal assembly A by means of the modal pack operator is
simply defined by hiding communication labels (see Sect. 3) in the behavior of A and
forgetting the explicit discrimination of error states.

This copy belongs to 'VANC03'

156 R. Hennicker, A. Knapp, and M. Wirsing

y! x z?z y

x

(a) Behavior of assembly Ā

y! τ z?z y

x

(b) Modal interface packm(Ā)

y τ z

y z

(c) Behavior of assembly C̄

Fig. 5. Modal behaviors for assembly A in Fig. 1

Definition 7 (Encapsulation of modal assemblies). The modal pack operator packm :
Am → Fm is defined by packm(A) = M ξ with (M ,E) = beh(A).

We have to verify that the required properties (A1) and (A2) of an assembly
theory are satisfied. First, we check (A1): (a) packm({F}) = F holds by defini-
tion. (b) Let A and B be modal assemblies such that A �m B is defined; then
{packm(A), packm(B)} ∈ Am since the MIOs underlying beh(A) and beh(B)
are composable and since hiding preserves composability. (c) Now let additionally
csm(A), csm(B), and csm({packm(A), packm(B)}) hold. Let (MA,EA) = beh(A),
(MB ,EB) = beh(B), (MAB ,EAB) = beh({MAξ,MBξ}), and (MA∪B ,EA∪B) =
beh(A ∪ B); then ∅ = EA = EB = EA∪B = EAB and MA =

⊗sy
A, MB =

⊗sy
B ,

MA∪B =
⊗sy

(A ∪ B) = MA ⊗sy MB , and MAB = MAξ ⊗sy MBξ by the re-
quired communication-safety of A, B , and {packm(A), packm(B)}, and the resulting
communication-safety of A �m B using (A2)(b). Thus

packm(A �m B) = MA∪Bξ = MABξ = packm({packm(A)} �m {packm(B)}) .

We now check (A2): (a) csm({F}) is obvious since no communication errors
arise from a single modal interface. (b) Let A and B be modal assemblies such that
A �m B is defined; then {packm(A), packm(B)} ∈ Am follows from (A1)(b).
Now let additionally csm(A), csm(B), and csm({packm(A), packm(B)}) hold. Then
csm(A �m B) holds, since any communication error in A �m B would show up either
in A or in B or at the boundary of A and B which would be captured by a communica-
tion error of {packm(A), packm(B)}.

Let us demonstrate how the principle of incremental design (see Sect. 2) works for
the example assembly in Fig. 1. We start with the assembly Ā = {F1,F2}. The behavior
of this assembly is shown in Fig. 5(a). Obviously, Ā is communication-safe. We now
want to add the interface F3 to Ā. First, we pack the assembly Ā which yields the
modal interface packm(Ā) shown in Fig. 5(b). Then we consider the assembly C̄ =
{packm(Ā),F3} whose behavior is shown in Fig. 5(c). Obviously C̄ is communication-
safe and therefore, by the law of incremental design, the assembly A = {F1,F2,F3}
is also communication-safe. The incremental communication-safety check would, in
general, be much more efficient if we would minimize packed assemblies w.r.t. silent
transitions.

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 157

Consider once more the assembly A′ in Fig. 3 and assume that we want to construct
it in an incremental way. Then we could start again with the assembly Ā = {F1,F2}
which is communication-safe. But now, for adding the interface F′

3, we have to con-
sider the assembly C̄′ = {packm(Ā),F′

3} and to check communication-safety. The
behavior of C̄′ is shown in Fig. 6; it has two error states. Hence, the incremental design
step would not succeed and anyway, as we know from before, the assembly A′ is not
communication-safe.

y z

y z

Fig. 6. Behavior of assembly C̄′

Conversely, we can not deduce from the communication-safety of an assembly
A �m B that (i) {packm(A), packm(B)} is communication-safe and we can also not
deduce that (ii) the sub-assemblies A, B are communication-safe. Hence the converse
direction of (A2)(b) does not hold. A counter-example for (i) is shown in Fig. 7(a).
We can observe that the assembly Q is communication-safe; its (reachable) behavior,
see Fig. 7(b), contains no error states. If we pack the sub-assembly {G,H} we obtain
the modal interface shown in Fig. 7(c). But the assembly {F, packm({G,H})} is not
communication-safe. The reason is that packm({G,H}) has an output b! in its initial
state, but the interface F can never accept this particular output as an input. It can only
perform an a communication with packm({G,H}) and then accept “another” b! output
of packm({G,H}) issued in another state.

�interface� G

b!

�interface� F

a! b?

�interface� H

a?

�assembly� Q

b a

(a) Modal assembly Q

a b

a b

(b) Behavior of assembly Q

b! a?

a? b!

a b

(c) Modal interface packm({G,H})
Fig. 7. Counter-example for (i)

A counter-example for (ii) is shown in Fig. 8. The whole assembly R is commu-
nication-safe, but the sub-assembly {G,F′} is not. The reason is that G has an output
b! in its initial state, but F′ has an open input a? before it can accept b? which is not
allowed. (Inputs are not subject to internal choice and we cannot be sure that an envi-
ronment will serve this input.)

This copy belongs to 'VANC03'

158 R. Hennicker, A. Knapp, and M. Wirsing

�interface� G

b!

�interface� F′

a? b?

�interface� H′

a!

�assembly� R

b a

Fig. 8. Counter-example for (ii)

4.3 Refinement of Modal Assemblies

For the refinement of modal assemblies we compare their behaviors. Since assembly
behaviors are MIOs with error states, we first extend the weak modal refinement notion
for MIOs (defined in Sect. 3) to EMIOs, such that error states are respected by the
refinement relation.

Definition 8 (Refinement of MIOs with error states). Let (MA,EA) and (MB ,EB)
be two EMIOs. (MA,EA) is a weak modal refinement of (MB ,EB), if MA ≤∗

m MB is
a weak modal MIO refinement witnessed by a refinement relation R ⊆ ((SMA \ EA)×
(SMB \ EB)) ∪ (EA × EB) with (s0,MA , s0,MB) ∈ R.

Definition 9 (Refinement of modal assemblies). A modal assembly A refines a modal
assembly B , written as A #m B , if beh(A) is a weak modal refinement of beh(B).

To get a modal assembly theory it remains to check that the conditions (A3), (A4)
and (A5) of an assembly theory are satisfied. We will provide a short proof for each.

(A3): (a) That F �m G implies {F} #m {G} is obvious. (b) Now let B1 �m

B2 be defined and let Ai #m Bi for i ∈ {1, 2}. Then A1 �m A2 is defined,
since Ai and Bi have the same I/O-labeling for i ∈ {1, 2}. (c) Let csm(B1),
csm(B2), and csm({packm(B1), pack

m(B2)}) hold additionally; then csm(B1 �m

B2) by (A2)(b). Let (MAi ,EAi) = beh(Ai) and (MBi ,EBi) = beh(Bi) for i ∈ {1, 2},
(MA1∪A2 ,EA1∪A2) = beh(A1 ∪ A2), and (MB1∪B2 ,EB1∪B2) = beh(B1 ∪ B2).
By the communication-safety of B1 �m B2, EB1∪B2 = ∅ and hence MB1∪B2 =⊗sy

(B1 ∪ B2) =
⊗sy

MB1 ⊗sy
⊗sy

MB2 . From the assumptions Ai #m Bi , we ob-
tain from (A5), to be proved momentarily, that csm(A1) and csm(A2). Hence, MAi =⊗sy

Ai and EAi = ∅ for i ∈ {1, 2}. By Prop. 1(1), we have
⊗sy

A1 ⊗sy
⊗sy

A2 ≤∗
m⊗sy

B1 ⊗sy
⊗sy

B2. It remains to ensure, that EA1∪A2 = ∅, i.e., MA1∪A2 =⊗sy A1 ⊗sy
⊗sy A2. But if (p, l) ∈ E (A1 ∪A2), then p ∈ R(

⊗sy A1 ⊗sy
⊗sy A2)

and there would be an output may-transition labeled l in one of the interfaces in A1∪A2,
say in an interface of A1. Then either l ∈ O⊗

sy A1
or l ∈ T⊗

sy A1
. By A1 ≤∗

m B1,
such a transition also would have to be available in B1. If l ∈ O⊗sy A1

, then the out-
put would be accepted using a series of must-transitions in B2 which do not affect B1,
since csm({packm(B1), pack

m(B2)}); this series of must-transitions would also have
to be present in A2 (up to must-τ ’s), as A2 ≤∗

m B2, and hence (p, l) /∈ E (A1 ∪ A2).
If l ∈ T⊗

sy A1
, then the l would be accepted using a series of must-transitions in A1

with possible outputs to A2, since csm(A1), and this series would be present also in B1

by A1 ≤∗
m B1. Again, these outputs are eventually accepted by B2 by must-transitions,

and thus by A2; hence (p, l) /∈ E (A1 ∪ A2).

This copy belongs to 'VANC03'

Assembly Theories for Communication-Safe Component Systems 159

(A4): Let A #m B and let csm(B) hold. Let (MA,EA) = beh(A) and (MB ,EB) =
beh(B). Then csm(B) implies EB = ∅, and thus, by (A5), EA = ∅ since A #m B .
MA ≤∗

m MB implies MAξ ≤∗
m MBξ by Prop. 1(2), i.e., packm(A) �m packm(B).

(A5): Let A #m B and let csm(B) hold. Let (MA,EA) = beh(A) =
⊗err A and

(MB ,EB) = beh(B) =
⊗err

B . If an error state in EA would be reachable in MA,
then A #m B would imply that some error state in EB is also reachable in MB since
error states must be related to error states by a bisimulation. Thus csm(A) holds.

5 Conclusions

Our study is motivated by an extension of the abstract concepts of interface theories and
interface languages, introduced by de Alfaro and Henzinger, to take into account inter-
face assemblies. As a concrete formalism we have chosen modal I/O-transition systems
which we have adapted to take into account not only blackbox interface behaviors but
also assembly behaviors with distinguished (synchronous) communication actions. We
have shown that the compositionality and compatibility requirements of an assembly
theory are satisfied by modal assemblies.

In future work we are interested to study more instantiations of assembly theories, in
particular assemblies which rely on asynchronous and multi-cast communication, and
dynamic assemblies which may dynamically change the number of components and
their connections. A concrete assembly theory using asynchronous communication via
channel places can already easily be derived from the results for modal I/O-Petri nets
in [14]. In this approach communication-safety is expressed by the property of a “nec-
essarily consuming” Petri net. This property is compositional, decidable and preserved
by refinement. We also plan to extend the MIO-workbench [4] to check not only MIOs
but also modal assemblies and their communication-safety.

References

1. Adámek, J., Plasil, F.: Component composition errors and update atomicity: Static analysis.
J. Softw. Maint. 17(5), 363–377 (2005)

2. ASCENS project, http://www.ascens-ist.eu
3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:

Proc. 4th IEEE Int. Conf. Software Engineering and Formal Methods (SEFM 2006), pp.
3–12. IEEE (2006)

4. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-
ment, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

5. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: D-Finder 2: To-
wards efficient correctness of incremental design. In: Bobaru, M., Havelund, K., Holzmann,
G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 453–458. Springer, Heidelberg (2011)

6. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using Dy-BIP.
In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp.
1–16. Springer, Heidelberg (2012)

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

This copy belongs to 'VANC03'

160 R. Hennicker, A. Knapp, and M. Wirsing

8. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor. Comput.
Sci. 484, 1–15 (2013)

9. Cerná, I., Vareková, P., Zimmerova, B.: Component substitutability via equivalencies of
component-interaction automata. Electr. Notes Theor. Comput. Sci. 182, 39–55 (2007)

10. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. 9th ACM SIGSOFT Ann. Symp.
Foundations of Software Engineering (FSE 2001), pp. 109–120 (2001)

11. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidel-
berg (2001)

12. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer, J., Harel, D.,
Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems. NATO Science
Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104. Springer (2005)

13. Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Pro-
gram. 55(1-3), 161–183 (2005)

14. Haddad, S., Hennicker, R., Møller, M.H.: Specification of asynchronous component sys-
tems with Modal I/O-Petri nets. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS,
vol. 8358. Springer (to appear, 2014)

15. Hennicker, R., Knapp, A.: Modal interface theories for communication-safe component as-
semblies. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 135–153.
Springer, Heidelberg (2011)

16. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In: Meyer,
A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 163–180. Springer,
Heidelberg (1989)

17. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and product line
theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidel-
berg (2007)

18. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. 3rd Ann. IEEE Symp. Logic in
Computer Science (LICS 1988), pp. 203–210. IEEE (1988)

19. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Component Model-
ing Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

20. Sifakis, J.: Rigorous system design. Foundations and Trends in Electronic Design Automa-
tion 6(4), 293–362 (2013)

This copy belongs to 'VANC03'

Constructive Collisions�

Edward A. Lee

EECS Department, UC Berkeley, Berkeley, CA, USA
eal@eecs.berkeley.edu

Abstract. This paper studies the semantics of models for discrete physical phe-
nomena such as rigid body collisions. The paper combines generalized functions
(specifically the Dirac delta function), superdense time, modal models, and
constructive semantics to get a rich, flexible, efficient, and rigorous approach to
modeling such systems. It shows that many physical scenarios that have been
problematic for modeling techniques manifest as nonconstructive models, and that
constructive versions of some of the models properly reflect uncertainty in the be-
havior of the physical systems that plausibly arise from the principles of quantum
mechanics. The paper argues that these modeling difficulties are not reasonably
solved by more detailed continuous models of the underlying physical phenom-
ena. Such more detailed models simply shift the uncertainty to other aspects of
the model. Since such detailed models come with a high computational cost, there
is little justification in using them unless the goal of modeling is specifically to
understand these more detailed physical processes. An implementation of these
methods in the Ptolemy II modeling and simulation environment is described.

1 The Problem

Many physical phenomena are naturally modeled as being discrete rather than con-
tinuous. Modeling and simulating combinations of discrete and continuous dynamics,
however, are challenging. Collisions of rigid objects and friction between moving ob-
jects are classic examples. Diodes and switches in electrical circuits present similar
problems. All known solutions have significant limitations.

The difficulties stem from a number of sources. First, discontinuities make signals
non-differentiable, which complicates simulation and analysis. Second, discrete phe-
nomena can cause chattering around the discontinuity, where the solution repeatedly
bounces across a discrete boundary. Third, discrete models more easily lead to Zeno
conditions than continuous models, where an infinite number of events occur in a finite
time. Finally, and perhaps most importantly, physical phenomena that are most natu-
rally modeled as discrete are among the most poorly behaved and least understood.
They frequently exhibit intrinsic nondeterminism and chaotic behaviors.

� This work was supported in part by the iCyPhy Research Center (Industrial Cyber-Physical
Systems, supported by IBM and United Technologies), and the Center for Hybrid and Em-
bedded Software Systems (CHESS) at UC Berkeley (supported by the National Science Foun-
dation, NSF awards #0720882 (CSR-EHS: PRET), #1035672 (CPS: Medium: Ptides), and
#0931843 (ActionWebs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and the
following companies: Bosch, National Instruments, and Toyota).

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 161–176, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

162 E.A. Lee

These sources of difficulty are worth separating. For example, it is not appropriate to
condemn a model because it fails to deterministically model an intrinsically nondeter-
ministic physical phenomenon. Nor is it fair to condemn a model for exhibiting Zeno
behavior if the Zeno condition manifests outside the regime of parameters for which the
model is suited.

Stewart [25] gives an excellent overview of approaches that have been used towards
solving these problems for collisions and friction between macroscopic physical ob-
jects. In this regime, a solution that admits discrete behaviors can use generalized func-
tions, most commonly the Dirac delta function, Lebesgue integration, measure theory,
and differential inclusions. Stewarts argues for embracing discrete behaviors in models,
and shows that a well-known paradox in the study of rigid body known as the Painlevé
paradox can be resolved by admitting impulsive forces into the model.

A different (and more common) approach is to dispense with discrete models and in-
sist on detailed modeling of the continuous dynamics. Collisions between rigid objects,
for example, involve localized plastic deformation, viscous damping in the material,
and acoustic wave propagation. Much experimental and theoretical work has been done
to refine models of such phenomena, leading to considerable insight into the underlying
physical phenomena. We contend, however, that such detailed modeling rarely helps in
developing insight about macroscopic system behavior. So when the goal is, for exam-
ple, to design robotic machinery, it is better to use simpler, more abstract models.

State-of-the-art design and simulation tools, however, do not support simpler models
with discrete behaviors well. Modelica [26], for example, is a widely used language
with well-supported libraries of models for a large variety of physical systems. Otter,
et al. in [23] state that “at the moment, it is not possible to implement the solution
with impulses ... in a generic way in Modelica.” They offer continuous approximations
as an alternative, categorizing three approaches for collisions: impulsive, spring-damper
ignoring contact area, and spring-damper including contact area. They describe a library
in Modelica that uses the latter two approaches.

Continuous models may indeed more accurately represent the physics, but they come
at the price of greatly increased simulation cost and, perhaps more importantly, greatly
increased modeling detail. The increased simulation cost is a consequence of the
stiffness of the resulting differential equations. The increased modeling detail requires
designers to specify much more detail about materials and systems than may be rea-
sonable, particularly at early stages of design. Moreover, such detailed models may just
shift the uncertainty from the modeling approximations to the determination of parame-
ters. Is a robot designer able to characterize acoustic propagation in steel for a particular
shape of robot arm in a particular range of temperatures and as the product ages? Prob-
ably not. So a detailed simulation model based on continuous physical processes may
not be any more trustworthy than a much less detailed model.

In contrast, models that are created for the purpose of providing computer anima-
tions, like those described in Erleben et al. [9], are closer to what we need for under-
standing system dynamics. Computer animation has the very practical driving force that
it must exhibit some behavior in reasonable time, so simulation efficiency is important.

The goal of this paper is improve the trustworthiness of less detailed, more abstract
models. The approach is to put the semantics of the models on a solid foundation. If

This copy belongs to 'VANC03'

Constructive Collisions 163

the meaning of a model is absolutely clear, it is much easier to tell whether the model
is faithful to the physical system it is modeling, and it is much easier to draw trusted
conclusions from executions of the model.

To provide a solid foundation for abstract models, this paper embraces discrete phe-
nomena modeled using generalized functions, and uses an extended model of time known
as superdense time to cleanly mix discrete and continuous dynamics. In addition, the
technique in this paper supports modal models, where a multiplicity of distinct abstract
models, each with a well-defined regime of applicability, are combined to model the
same system (as in hybrid systems [20,1]). Finally, the modeling framework is given a
constructive fixed-point semantics [5], like that in synchronous-reactive languages [3].
We conjecture that nonconstructive models are suspect on physical grounds, and show
that a number of well-known problematic scenarios with modeling discrete physical phe-
nomena result in nonconstructive models. The techniques in this paper have been im-
plemented as a Ptolemy II simulation tool [24], and the models displayed in this paper
are all available online at http://ptolemy.org/constructive/models.

This paper is a shortened version of a technical report [13] that includes many more
examples and more detailed analysis.

2 Time

Time is central to our approach to modeling. We require a model of time that combines
a time continuum, over which physical dynamics can evolve, and discrete events, mod-
eling abrupt changes in state of the system. In this section, we review the superdense
model of time, the notion of discreteness, and the notion of piecewise continuity, which
is essential for our models to work well with practical ordinary differential equation
(ODE) solvers.

2.1 Superdense Time

We use a model of time known as superdense time [20,17]. A superdense time value
is a pair (t,n), called a time stamp, where t is the model time and n is an index (also
called a microstep). The model time represents the time at which some event occurs,
and the microstep represents the sequencing of events that occur at the same model
time. Two time stamps (t,n1) and (t,n2) can be interpreted as being simultaneous (in
a weak sense) even if n1 �= n2. Strong simultaneity requires the time stamps to be equal
(both in model time and microstep).

To understand the role of the microstep, consider Newton’s cradle, a toy with five
steel balls suspended by strings. If you lift the first ball and release it, it strikes the
second ball, which does not move. Instead, the fifth ball reacts by rising. Consider the
momentum p of the second ball as a function of time. The second ball does not move, so
its momentum must be everywhere zero. But the momentum of the first ball is somehow
transferred to the fifth ball, passing through the second ball. So the momentum cannot
be always zero.

This copy belongs to 'VANC03'

http://ptolemy.org/constructive/models

164 E.A. Lee

Let R represent the real numbers. Let p : R→ R be a function that represents the
momentum of this second ball, and let τ be the time of the collision. Then

p(t) =

{
P if t = τ
0 otherwise

(1)

for some constant P and for all t ∈ R. Before and after the instant of time τ , the mo-
mentum of the ball is zero, but at time τ , it is not zero. Momentum is proportional to
velocity, so

p(t) = Mv(t),

where M is the mass of the ball. Hence, combining with (1),

v(t) =

{
P/M if t = τ
0 otherwise.

(2)

The position of a mass is the integral of its velocity,

x(t) = x(0)+
∫ t

0
v(τ)dτ,

where x(0) is the initial position. The integral of the function given by (2) is zero at all
t, so the ball does not move, despite having a non-zero momentum at an instant.

The above physical model mostly works to describes the physics, but it has two flaws.
First, it violates the basic physical principle of conservation of momentum. At the time
of the collision, all three middle balls will simultaneously have non-zero momentum,
so seemingly, aggregate momentum has magically increased.

Second, the model cannot be directly converted into a discrete representation (see
Section 2.3 below). A discrete representation of a signal is a sequence of values that are
ordered in time. Any such representation of the momentum in (1) or velocity in (2) is
ambiguous. If the sequence does not include the value at the time of the collision, then
the representation does not capture the fact that momentum is transferred through the
ball. If the representation does include the value at the time of the collision, then the
representation is indistinguishable from a representation of a signal that has a non-zero
momentum over some interval of time, and therefore models a ball that does move. In
such a discrete representation, there is no semantic distinction between an instantaneous
event and a rapidly varying continuous event.

Superdense time solves both problems. Specifically, the momentum of the second
ball can be unambiguously represented by a sequence of samples where p(τ,0) = 0,
p(τ,1) = P, and p(τ,2) = 0, where τ is the time of the collision. The third ball has
non-zero momentum only at superdense time (τ,2). At the time of the collision, each
ball first has zero momentum, then non-zero, then zero again, all in an instant. The event
of having non-zero momentum is weakly simultaneous for all three middle balls, but
not strongly simultaneous. Momentum is conserved, and the model is unambiguously
discrete.

One could argue that the physical system is not actually discrete. Even well-made
steel balls will compress, so the collision is actually a continuous process, not a dis-
crete event. This may be true, but when building models, we do not want the modeling

This copy belongs to 'VANC03'

Constructive Collisions 165

formalism to force us to construct models that are more detailed than is appropriate.
Such a model of Newton’s cradle would be far more sophisticated, and the resulting
non-linear dynamics would be far more difficult to analyze. The fidelity of the model
may improve, but at a steep price in understandability and analyzability. Moreover, if
the properties of the material and the dynamics of the collision are not well understood,
the fidelity of the model may actually degrade as more detail is added.

The Newton’s cradle example shows that physical processes that include instanta-
neous events are better modeled using functions of the form p : R×N→ R, where N
represents the natural numbers, rather than the more conventional p : R→R. The latter
is adequate for continuous processes, but not for discrete events. At any time t ∈R, the
signal p has a sequence of values, ordered by their microsteps. This signal cannot be
misinterpreted as a rapidly varying continuous signal.

Superdense time is ordered lexicographically (like a dictionary), which means that
(t1,n1) < (t2,n2) if either t1 < t2, or t1 = t2 and n1 < n2. Time stamps are a particular
realization of tags in the tagged-signal model of [14].

2.2 Piecewise Continuity

So that we can leverage standard, well-understood numerical integration methods, we
require signals to be piecewise-continuous in a specific technical sense. Consider a real-
valued superdense-time signal x : R×N→ R. At each real-time t ∈ R, we require that
x(t,n) settle to a final value and stay there. Specifically, we require that for all t ∈ R,
there exist an m ∈ N such that

∀n> m, x(t,n) = x(t,m). (3)

A violation of this constraint is called a chattering Zeno condition. Such conditions
would prevent an execution from progressing beyond real time t, assuming the execu-
tion is constrained to produce all values in chronological order.

Assuming x has no chattering Zeno condition, then there is a least value of m satis-
fying (3). We call this value of m the final microstep and x(t,m) the final value of x at
t. We call x(t,0) the initial value at time t. If m = 0, then x has only one value at time t.

Define the initial value function xi : R→ R by

∀ t ∈R, xi(t) = x(t,0).

Define the final value function x f : R→ R by

∀ t ∈ R, x f (t) = x(t,mt),

where mt is the final microstep at time t. Note that xi and x f are conventional continuous-
time functions. A piecewise continuous signal is defined to be a function x of the form
x : R×N→R with no chattering Zeno conditions that satisfies three requirements:

1. the initial value function xi is continuous on the left at all t ∈ R;
2. the final value function x f is continuous on the right at all t ∈ R; and
3. x has only one value at all t ∈ R\D, where D is a discrete subset of R.

This copy belongs to 'VANC03'

166 E.A. Lee

The last requirement is a subtle one that deserves further discussion. First, the notation
R\D refers to a set that contains all elements of the set R except those in the set D. D
is constrained to be a discrete set, as defined below. Intuitively, D is a set of time values
that can be counted in temporal order. It is easy to see that if D = /0 (the empty set), then
xi = x f , and both xi and x f are continuous functions. Otherwise each of these functions
is piecewise continuous.

Such piecewise-continuous signals coexist nicely with standard ODE solvers. At the
time of a discontinuity or discrete event, the final value signal provides the initial bound-
ary condition for the solver. The solver then works with an ordinary continuous signal
until the time of the next discontinuity or discrete event, and the solver provides the
initial value of the signal at the time of that next event.

2.3 Discreteness

A set D is a discrete set if it is a totally ordered set (for any two elements d1 and
d2, either d1 ≤ d2 or d1 > d2), and there exists a one-to-one function f : D → N that is
order preserving. Order preserving simply means that for all d1,d2 ∈D where d1 ≤ d2,
we have that f (d1) ≤ f (d2). The existence of such a one-to-one function ensures that
we can arrange the elements of D in temporal order. Notice that D is a countable set,
but not all countable sets are discrete. For example, the set Q of rational numbers is
countable but not discrete. There is no such one-to-one function.

A discrete-event signal is a function defined on a lower subset1 of superdense time
to some value set, where the signal is non-absent only at a discrete subset of times. I.e., a
discrete-event signal is absent almost everywhere, and the superdense times at which it
is not absent form a discrete set. An event in a discrete-event signal is a time-value pair
((t,n),v), where (t,n) is a superdense time and v is a non-absent value. A discrete-event
signal has a first event, a second event, etc., i.e. an ordered countable set of events.

The concept of piecewise continuity can be extended to discrete-event signals. Specif-
ically, let ε represent the absence of an event. Then a discrete-event signal is a partial
function

x : R×N→{ε}∪U,

where U is some value set, where x(t,n) = ε for all (t,n) ∈ (R×N) \D, where D is
a discrete set. That is, the signal is absent almost everywhere, and is present only at a
discrete subset of superdense times. A piecewise-continuous discrete-event signal is
defined as a discrete-event signal whose initial value and final value functions always
yield absent,

∀t ∈ R, xi(t) = ε, x f (t) = ε.

Such signals can coexist easily with numerical ODE solvers, since the signals seen by
the solver, which are initial and final value signals, are simply absent. The solver ignores
them.

The above definitions are used in [12]. Benveniste et al. in [4] define “discrete” dif-
ferently to mean that “each instant has unique previous and next instants.” This is a
much weaker definition than ours here. We prefer our definition, because every event

1 A lower set L is a subset of an ordered set S such that for all x ∈ L and for all y< x, y ∈ L.

This copy belongs to 'VANC03'

Constructive Collisions 167

in a discrete-event signal has a finite number of predecessor events in the signal. This
property is essential to being able to compute the events in a signal.

We define a continuous-time signal to be a signal whose value is not absent at any
superdense time. Clearly, a continuous-time signal is not a discrete-event signal. But
we can have signals that are neither continuous-time signals nor discrete-event signals.
A signal that is not a discrete-event signal will need to either be represented symboli-
cally or numerically approximated in any computation. Standard ODE solvers produce
estimated samples of continuous-time signals. The time spacing between samples is
determined by the step-size control of the solver. The samples themselves are defined
on a discrete subset of superdense time.

2.4 An Alternative Model of Time

Note that an alternative model of time that can accomplish the same objectives as su-
perdense time is studied in [4,22]. Their construction is based on nonstandard analysis
[19], which, similarly to superdense time, has an infinite number of points at every real
time point. These points are represented as convergent sequences, and a total order is
induced over these sequences by means of a measure-theoretic construction. It has the
property that every non-standard time has an immediate predecessor and an immediate
successor, which the authors say provides an operational semantics. However, while an
operational semantics does require the notion of a discrete step of computation, it also
requires that the number of steps preceding any given step be finite. That is not auto-
matically provided by the nonstandard semantics, and when it is provided, the solutions
seem to be isomorphic with our much simpler superdense time construction. Hence,
it does not appear to this author that anything is gained by going to a more complex
mathematical formulation.

3 Constructive Fixed-Point Semantics

The next essential element in our rigorous modeling framework is the constructive
fixed-point semantics [5], which defines the meaning of a model as a composition
of components. The semantics we choose for hybrid systems is that of [18], which is
implemented in Ptolemy II [6].

A model is assumed to be a graph of actors, as shown in Figure 1. An execution of
the model (a simulation) will choose a discrete subset D ⊂ R×N of superdense time
values at which to evaluate the model. The elements of D will be selected in order by a
solver, beginning at some start time, say (0,0). At each (t,m) ∈ D, the solver will find
a value for each of the signals in the model, using a constructive procedure described
below. For example, at the start time (0,0), the solver will find the values x(0,0),y(0,0),
and z(0,0) in Figure 1.

After finding the values of all signals at a time (t,m) ∈ D, the solver will choose
the next time (t ′,m′) at which to evaluate the model. To do this, it must first ensure
that it has found the final value of each signal. If it has not, then it will increment
only the microstep, so (t ′,m′) = (t,m+ 1). If it has found the final value of all signals,
then it will consult an event queue, which contains a record of future discrete events,

This copy belongs to 'VANC03'

168 E.A. Lee

Fig. 1. A composition of actors with a constructive fixed-point semantics

and a numerical ODE solver, which determines a step size Δ that achieves a desired
numerical accuracy. It then chooses the lesser of (t +Δ ,0) and (tn,m), where (tn,m) is
the superdense time of the earliest event in the event queue.

Each superdense time in D is called a tick. The set D of ticks is discrete. The ticks
can thus indexed by the natural numbers, so that

D = {τ0,τ1, · · · ,τi, · · · },

where i< j ∈ N implies that τi < τ j.
At each (t,m) ∈ D, the solver needs to find the value of each signal. To support this,

each actor provides a function from its input values to its output values. In brief, each
function is required to be monotonic on a flat partial order and pointwise extensions
of this order. In such partial orders, every chain is finite, and hence every monotonic
function is continuous. The well-known Kleene fixed-point theorem [8] then provides
a guarantee that a least fixed point exists and is unique, and provides a terminating
procedure for finding that fixed point. For a more tutorial exposition, consult [13].

4 Collisions

We now consider the first of the families of discrete physical phenomena, collisions
between rigid objects. Consider two objects with masses m1 and m2 colliding on a one-
dimensional frictionless surface. We would like to treat the collision as an instantaneous
event and are interested in determining the velocity after a collision. Newton’s laws of
motion imply that total momentum is conserved. If the velocities of the masses before

This copy belongs to 'VANC03'

Constructive Collisions 169

Fig. 2. Two balls on a frictionless surface

the collision are v1 and v2, and after the collision are v′1 and v′2, then conservation of
momentum requires that

m1v′1 +m2v′2 = m1v1 +m2v2. (4)

For notational simplicity, we leave off the dependence on time of the velocities, for now.
Consider first perfectly elastic collisions, where no kinetic energy is lost. Conservation
of kinetic energy requires that

m1(v′1)
2

2
+

m2(v′2)
2

2
=

m1(v1)
2

2
+

m2(v2)
2

2
. (5)

We have two equations and two unknowns, v′1 and v′2. Because of the quadratic, there
are two solutions to these equations. The trivial solution represents the absence of a
collision, where v′1 = v1 and v′2 = v2. The second solution is

v′1 =
v1(m1−m2)+ 2m2v2

m1 +m2
(6)

v′2 =
v2(m2−m1)+ 2m1v1

m1 +m2
. (7)

Note that if m1 = m2, then the two masses simply exchange velocities.
In practice, most collisions of macroscopic physical objects lose kinetic energy. A

common way to model this is to use an empirical quantity called the coefficient of
restitution, denoted e and defined to be the relative speed after a collision divided by
the relative speed before the collision. Using such a coefficient, the velocities after the
collision are given by [2]

v′1 =
em2(v2− v1)+m1v1 +m2v2

m1 +m2
(8)

v′2 =
em1(v1− v2)+m1v1 +m2v2

m1 +m2
. (9)

The coefficient of restitution is determined experimentally for a particular pair of ma-
terials and must lie in the range 0 ≤ e ≤ 1. Note that if e = 1, this reduces to elastic
collision as given in (6) and (7). If e = 0, then momentum is still conserved, but the loss
of kinetic energy is maximized. In this case, the resulting speeds of the two objects are
identical. They collide and then travel together, not bouncing at all.

Note that if m1 = m2, then these equations reduce to

v′1 = (v1(1− e)+ v2(1+ e))/2 (10)

v′2 = (v2(1− e)+ v1(1+ e))/2. (11)

This copy belongs to 'VANC03'

170 E.A. Lee

Another useful special case is where one of the masses is fixed (it cannot be moved),
so the other will bounce off it. This follows from (8) and (9) if we let v2 = 0 and
determine the limit as m2 → ∞. In this case, we find

v′1 =−ev1 . (12)

4.1 Dirac Delta Functions

Stewart [25] points out that many of the difficulties in modeling collisions are a conse-
quence of overly restricting the mathematical domains that are used. Impulsive forces,
for example, can be naturally modeled using the Dirac delta function, a function
δ : R→ R+ given by

∀ t ∈ R, t �= 0, δ (t) = 0, and∫ ∞

−∞
δ (τ)dτ = 1.

That is, the signal value is zero everywhere except at t = 0, but its integral is unity.
At t = 0, therefore, its value cannot be finite. Any finite value would yield an integral
of zero. This is indicated by R+ in the form of the function, δ : R→ R+, where R+

represents the extended reals, which includes infinity. Dirac delta functions are widely
used in modeling continuous-time systems (see [16], for example), so it is important to
be able to include them in simulations.

The Ptolemy II Integrator actor, used in Figure 3, directly supports Dirac delta func-
tions. Specifically, the actor accepts a discrete-event signal at the input port labeled
“impulse,” and it interprets the real time of each event that arrives at that port as the
time offset of the Dirac delta function and the value of the event as the weight of the
Dirac delta function.

There are two reasons for providing a distinct input port for Dirac delta inputs vs.
ordinary continuous-time inputs. First, the value of a Dirac impulse at the time it oc-
curs is not a real number, so we would need some extended data type to include such
weighted non-real values. But more importantly, at a superdense time (t,m), the output
of the Integrator does not depend on the value of the input at the “derivative” input
port, but it does depend on the value of the input at the “impulse” port! There is direct
feedthrough from the impulse input to the output. The Integrator actor is both strict
and nonstrict, depending on which input is being considered.

This causality distinction is essential to the soundness of our modeling approach. In
fact, we will show below that many problematic modeling problems with discrete phys-
ical phenomena manifest as nonconstructive models. For example, any direct feedback
from the output of the Integrator to the impulse input will result in a causality loop,
and hence a nonconstructive model. Glockner [11] also advocates separately treating
ordinary continuous-time signals and impulsive signals, whose models “split into the
atomic and the Lebesgue part.”

4.2 Modeling Collisions as Impulses

Figure 3 shows a Ptolemy II composite actor that models Newton’s equations of motion,
F = ma. The model has three parameter, the mass m of the ball, and the initial position

This copy belongs to 'VANC03'

Constructive Collisions 171

Fig. 3. A Ptolemy II model of a ball

x0 and velocity v0. The model uses Newton’s second law to output the velocity v and
position x as a function of time. There are two inputs, a real-valued force F and an
impulsive force Fi. Fi is required to be a piecewise-continuous discrete-event signal,
and its value represents the weight of a Dirac delta function.

A model that composes two instances of the ball model from Figure 3 is shown in
Figure 4. The figure also shows a plot of the positions of two balls of diameter 1.0,
where the left ball has an initial velocity of 1.0, and the right ball is standing still. Af-
ter the collision, the situation is reversed. At the superdense time of the collision, the
LevelCrossingDetector actor outputs an event, which enables execution of the Calcu-
lateImpulsiveForce composite actor. That actor is an instance of a subclass of En-
abledComposite, which executes the inside model only when the enable port at the
bottom has a present input with value true. The CalculateImpulsiveForce actor samples
the current velocities of the balls and calculates the impulsive force that will change the
velocities to those given by equations (8) and (9). The impulsive forces are then routed
through a pair of MicrostepDelay actors, which apply the forces in the next microstep.
Without these MicrostepDelay actors, we would have a causality loop, because the Cal-
culateImpulsiveForce actor observes the velocities of the balls, and an impulsive force
directly affects the velocities.

A collision occurs when the position of the right edge of the left ball coincides with
the left edge of the right ball, and when the velocity of the left ball is greater than the
velocity of the right ball. If ball 1 is on the left and ball 2 on the right, and the diameter
of the left ball is d, then the collision occurs when

(x1 + d ≥ x2)∧ (v1 > v2).

However, this statement is fundamentally problematic. A collision occurs at the instant
when the above predicate becomes true. First, there may be no such precise instant
(suppose the balls are initially touching and we start applying a force to the left ball).
Second, computational numerical methods have to approximate the continuums of time
and position. In practice, to model such a collision as a discrete event, we need an error
tolerance. Lower error tolerance will translate directly into increased computational
cost.

This copy belongs to 'VANC03'

172 E.A. Lee

left
right

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Positions of Balls

time

po
si
tio

n

Fig. 4. A Ptolemy II model of two balls that collide

Fig. 5. Three balls on a frictionless surface

In Figure 4, the collision is detected by an actor labeled LevelCrossingDetector,
which detects zero crossings of the distance between the two balls. This actor collabo-
rates with the solver to adjust the step size of the numerical ODE solution so that the
zero crossing is pinpointed with precision specified by a parameter.

Detecting collisions as zero crossings of the distance function, however, raises an-
other difficulty. Specifically, if two balls are initially touching, the distance starts at
zero. If a collision occurs, it does not cross zero. We consider this problem next.

4.3 Simultaneous Collisions

Consider the scenario shown in Figure 5, which is analogous to Newton’s cradle. Two
balls are initially touching, with zero distance between them, and a third ball approaches
them from the left. At the instant of the collision, the left ball will transfer its momentum
to the middle ball (assuming it has the same mass), which will then instantly transfer
its momentum to the right ball. These two transfers occur at successive superdense time
microsteps, so that the total momentum in the system is constant over time.

This copy belongs to 'VANC03'

Constructive Collisions 173

left
middle

right

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Positions of Balls

time

po
si
tio

n

left
middle

right

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

Positions of Balls

time

po
si
tio

n

(a)

(b)

left

right

middle

middle

right

left

Fig. 6. (a) Second collision is not detected. (b) Second collision is detected.

Fig. 7. A Ptolemy II model of a collision detector

The zero-crossing detection strategy in Figure 4, however, will not work for this
scenario. It will fail to detect the second collision, because the distance between the
middle and the right balls does not cross zero. It is initially zero, and a model like that
in Figure 4 will show the left ball passing through the right ball, as shown in Figure 6(a).
This difficulty is corrected by using a more sophisticated collision detection shown in
Figure 7, which yields the plot in Figure 6(b). This correctly emulates Newton’s cradle.

5 Discussion

Many more examples are considered in the extended version of this paper [13].
In that paper, a third scenario for the ball collisions is considered, where two balls

This copy belongs to 'VANC03'

174 E.A. Lee

simultaneously collide with a stationary ball from opposite sides. This scenario is funda-
mentally problematic, and the Newtonian model of collisions given above has difficulty
with it. A naive model superimposes the impulsive forces from the two simultaneous
collisions, which cancel each other out in the middle ball. The result is a model where
upon colliding, all three balls instantly stop. All the energy in the system is instantly
lost.

One possible solution is to replace Newton’s model with the Poisson hypothesis,
which postulates that a collision consists of two distinct phases, a compression phase
and a restitution phase. It is possible to construct a model where the two collisions
have simultaneous compression phases, storing their kinetic energy as potential energy,
and then, one superdense time index later, simultaneously release the potential energy as
kinetic energy. Such a model would seem to solve the problem, but actually, it doesn’t.
There are many ways to assign kinetic energy such that both energy and momentum are
conserved. In fact, such a solution simply masks a more fundamental physical problem.

An alternative solution is consider the two simultaneous collisions as being arbitrar-
ily interleaved. That is, one occurs first, then the other. If the balls have the same mass,
then it does not matter which one occurs first, and the model yields reasonable behavior.
The outside balls bounce back with equal speed. However, if the balls have different
masses, then the behavior depends on the order in which the collisions are handled,
even though no time elapses between collisions.

In light of the Heisenberg uncertainty principle, these difficulties should not be sur-
prising. The Heisenberg uncertainty principle states that we cannot simultaneously
know the position and momentum of an object to arbitrary precision. But the reac-
tion to these collisions depends on knowing position and momentum precisely. A direct
expression of such simultaneous collisions results in a nonconstructive model. To get
a constructive model, we have to insert microstep delays and tolerate nondeterminism.
Nature, it seems, resolves nonconstructiveness with uncertainty. Chatterjee and Ruina
suggest that indeed, a reasonable and practical approach to simulating such systems is
to nondeterministically choose an ordering [7].

Note that doing more detailed modeling of the collisions does not solve the problem.
It just shifts the uncertainty to other parts of the model. Unlike the two-ball collision,
there are multiple solutions that conserve energy and momentum. We conjecture that
defensible detailed models could yield the same (or more) variabilities in behaviors.

The extended paper [13] also studies Zeno conditions, using the classical bouncing-
ball example. It shows that any finite precision model results in the ball eventually
“tunnels” through the surface on which it is supposed to be bouncing. Again, it might
seem odd to invoke quantum mechanics when considering macro phenomena such as
collisions of balls. But the impulsive model we are using has infinite precision, and in
physics, it is at high precisions where quantum mechanical effects become important.
The solution is to avoid using models outside the their regime of applicability. Specifi-
cally, the idealized bouncing ball model with impulsive collisions becomes inappropri-
ate when the extent of the bounce is comparable to the numerical precision of modeling
tool. This is analogous to the situation in physics, where in different regimes, one might
use classical Newtonian mechanics, quantum physics, or relativity, and failing to use
the right models will yield misleading results.

This copy belongs to 'VANC03'

Constructive Collisions 175

The solution is to use modal models [10,15]. Such models give a multiple distinct
models of the dynamics, and provide a state machine that transitions between these
models. When the operating conditions exit the regime of applicability of a model of
the dynamics, the state machine switches to a different model. Modal models provide
an operational semantics for hybrid systems [17] that leverages superdense time.

The extended paper [13] also studies physical models of friction, which also exhibits
discrete changes in behavior, combinations of friction and collisions, and electrical cir-
cuits with discrete behaviors, as in [21]. It shows that the same principles apply.

6 Conclusion

Constructive semantics gives a natural way to separate problems that can be solved
with confidence from those that cannot. When, for example, the order of nearly in-
stantaneous collisions is important, a constructive semantics forces us to either choose
an order or explicitly choose nondeterminism. Building useful constructive models of
combined continuous and discrete behaviors is facilitated by a superdense model of
time, an explicit use of impulses (generalized functions), and modal models.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138(1), 3–34 (1995)

2. Beer Jr., F., Johnston, E.R.: Vector equations for Engineers: Dynamics, 6th edn. McGraw
Hill (1996)

3. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time systems. Pro-
ceedings of the IEEE 79(9), 1270–1282 (1991)

4. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: The fundamentals of hybrid systems
modelers. Journal of Computer and System Sciences 78(3), 877–910 (2012)

5. Berry, G.: The Constructive Semantics of Pure Esterel. Draft version, 3rd edn. (2003)
6. Cardoso, J., Lee, E.A., Liu, J., Zheng, H.: Continuous-time models. In: Ptolemaeus, C. (ed.)

System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, Berkeley (2014)
7. Chatterjee, A., Ruina, A.: A new algebraic rigid body collision law based on impulse space

considerations. Journal of Applied Mechanics 65(4), 939–951 (1998)
8. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge Univer-

sity Press (2002)
9. Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics-Based Animation. Charles

River Media, Inc., Hingham (2005)
10. Feng, T.H., Lee, E.A., Liu, X., Tripakis, S., Zheng, H., Zhou, Y.: Modal models. In: Ptole-

maeus, C. (ed.) System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org,
Berkeley (2014)

11. Glockner, C.: Scalar force potentials in rigid multibody systems. In: Pfeiffer, F., Glockner, C.
(eds.) Multibody Dynamics with Unilateral Contacts. CISM Courses and Lectures, vol. 421.
Springer, Vienna (2000)

12. Lee, E.A.: Modeling concurrent real-time processes using discrete events. Annals of Soft-
ware Engineering 7, 25–45 (1999)

This copy belongs to 'VANC03'

176 E.A. Lee

13. Lee, E.A.: Constructive models of discrete and continuous physical phenomena. Technical
report, EECS Department, UC Berkeley (February 2014)

14. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Trans. on Computer-Aided Design of Circuits and Systems 17(12), 1217–1229 (1998)

15. Lee, E.A., Tripakis, S.: Modal models in Ptolemy. In: 3rd Int. Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools (EOOLT), Oslo, Norway, vol. 47, pp. 11–
21. Linköping University Electronic Press, Linköping University (2010)

16. Lee, E.A., Varaiya, P.: Structure and Interpretation of Signals and Systems, 2.0 edn. Lee-
Varaiya.org (2011)

17. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: Morari, M., Thiele, L.
(eds.) HSCC 2005. LNCS, vol. 3414, pp. 25–53. Springer, Heidelberg (2005)

18. Lee, E.A., Zheng, H.: Leveraging synchronous language principles for heterogeneous mod-
eling and design of embedded systems. In: EMSOFT, Salzburg, Austria. ACM (2007)

19. Lindstrøm, T.: An invitation to nonstandard analysis. In: Cutland, N. (ed.) Nonstandard Anal-
ysis and Its Applications, pp. 1–105. Cambridge University Press (1988)

20. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Huizing, C., de Bakker,
J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 447–484.
Springer, Heidelberg (1992)

21. Mosterman, P.J., Biswas, G.: A theory of discontinuities in physical system models. Journal
of the Franklin Institute 335(3), 401–439 (1998)

22. Mosterman, P.J., Simko, G., Zande, J.: A hyperdense semantic domain for discontinuous
behavior in physical system models. In: Multi-Paradigm Modeling, MPM (2013)

23. Otter, M., Elmqvist, H., López, J.D.: Collision handling for the Modelica multibody library.
In: Modelica Conference, Hamburg, Germany, pp. 45–53 (2005)

24. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, Berkeley (2014)

25. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Review 42(1), 3–39
(2000)

26. Tiller, M.M.: Introduction to Physical Modeling with Modelica. Kluwer Academic Publish-
ers (2001)

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems

Oded Maler

CNRS-VERIMAG, University of Grenoble
2, av. de Vignate, 38610 Gieres, France

Oded.Maler@imag.fr

Dedicated to Joseph Sifakis.

Abstract. Timed systems constitute a class of dynamical systems that live in an
extremely useful level of abstraction. The paper stresses their importance in mod-
eling without necessarily endorsing the orthodox approach for reasoning about
them which is practiced in the theoretical and applied branches of formal verifi-
cation.

1 Introduction

This paper is about timed systems, a formal model that combines discrete transitions
and metric time. Joseph has been involved in studying such systems during several
periods of his career including work on timed Petri nets, timed process algebra and,
more effectively, in the context of algorithmic formal verification where he (together
with students and collaborators) played an important role in the evolution of timed au-
tomata modeling and verification [18,30,15,12,5,27]. More recently, as a promoter of
a compositional approach to embedded systems design [8,7], I guess he could observe
how real-time and performance tend to pop-up and demonstrate yet another difference
between a nice theory and practical reality. Performance is a non-compositional phe-
nomenon per se because it involves sharing of limited resources and the performance
of a single process in isolation typically degrades when it has to share resources with
others.

Since I spent significant parts of my academic life working on timed systems at
Joseph’s VERIMAG, I find it appropriate to use this opportunity to reflect aloud on
this topic, free from the usual ceremony of theorems, tools and case-studies found in
standard publications. A large part of this paper will be situated on the abstract and meta
level, but I will start by formulating a concrete motivating1 problem more related to the
expected audience.

Consider an application program such as a video decoder to be executed on a new
mobile multi-core platform. The application is structured as a task graph, a collection of
tasks,2 partially-ordered according to precedence, and annotated by execution times and
data transfer rates. We assume that these durations, as well as the arrival rates of new

1 The term “motivating” is used in a very liberal and wide sense, covering psychological, soci-
ological and metabolic aspects of scientific activity.

2 Modules, components, actors, filters, functional blocks, stream transducers...

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 177–192, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

178 O. Maler

jobs to execute, admit some bounded uncertainty which can be due to different factors
ranging from variability in the type of image frames and the workload of the platform,
down to the possibility that the software and/or hardware are still in the design stage.
Executing the program on the architecture, in addition to the usual compilation chain,
involves other orchestration decisions for which we use the collective term deployment:
how to map tasks to processors, how to schedule them, how to allocate buffers and
communication channels and how to transfer data among processors. All these ques-
tions involve non-trivial combinatorial problems and bad choices can have far reaching
effects on performance to the point of making the difference between the feasible and
the infeasible. Forcing application programmers to occupy themselves with these issues
is like returning to the stone age of computing, undoing the impressive progress made
over the years by isolating programmers from more and more low-level implementation
details. Hence it is urgent to provide computer-aided support for multi-core deployment.
Timed systems provide, in principle, the conceptual and mathematical foundations for
evaluating, comparing and optimizing such deployment decisions.

The message of this paper can be summarized as follows. Models of timed systems
are extremely important as they represent a level of abstraction which is used, explicitly
or implicitly, in almost any domain of engineering and everyday life. In particular, timed
models have a significant potential contribution to performance analysis and optimiza-
tion for all sorts of systems. Unfortunately, sociological and cultural factors, both in
academia and industry, as well as genuine complexity problems, prevent this potential
from being fully realized.

The rest of the paper is organized as follows. Section 2 presents the timed level of
abstraction and demonstrates how it can be used in modeling. Timed automata are in-
troduced in Section 3 along with their non-scalable orthodox analysis in the tradition of
formal verification and various attempts to make it scale up. Section 4 recounts some
recent encounters with practice and provides retrospective reflections on timed and un-
timed verification without a decisive punch line. Anecdotes and strong opinions, not
always well-founded, are interleaved in the text and should not be taken too seriously
and certainly not offensively.

2 The Timed Level of Abstraction

It is a common knowledge that phenomena can be modeled at different levels of abstrac-
tion or granularity. Lower levels are more detailed, zoomed at more elementary entities
and are supposed to be closer to deep reality.3 I will start by discussing abstractions
based on aggregation which are more common in Physics and its Applied Mathemat-
ics (and also in macro Economics) and then move to other types of abstractions, more
relevant to our concerns.

The prime example of aggregation-type abstraction is found in Statistical Physics
where the underlying detailed micro model consists of a huge number of particles whose
respective momenta are aggregated and abstracted into coarse-grained macro entities
such as temperature. The derivation of the macro model from the micro-level rules

3 This is at least what reductionists (physicists, molecular biologists and even humble program-
mers) want us to believe.

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 179

often exists only in principle. My favorite example4 is the module of elasticity which
indicates the resistance of a beam to different loads and serves for reasoning about
building stability. This characterization is inferred from macro level experiments on
beams made of various materials and is not derived from a detailed model of zillions of
interacting molecules.

When models are more detailed, you have to deal with more state variables and
this raises two main problems. In the interface between the real world and the model
you face the problem of observation/measurement: you need to keep track of many
particles in order to identify the system dynamics and also to measure initial conditions
if you want to use the model to predict the future. Even if this scientific model building
and measurement problems are somehow miraculously solved and you have a model,
you still have a problem in the virtual world of ideas and numbers because it takes
much more effort to do computations with the model. This difficulty applies both to
the (increasingly more rare) cases where you can apply analytic/symbolic methods, as
well as to the modern way to reason about complex systems, namely, simulation. This
computational difficulty applies even more to algorithmic verification, also known as
model-checking, which is essentially a kind of extended muscular form of simulation,
augmented sometimes with a more expressive temporal language for evaluating and
classifying behaviors [22].

Another type of abstraction, perhaps more familiar to people from our close domains,
is model reduction which eliminates some variables and simplifies the dynamics but re-
mains within the same order of magnitude in terms of the number of variables. Such
reductions are common in the treatment of models of continuous dynamical systems
defined by ordinary differential equations (ODE) in Control and related engineering
disciplines but also in discrete models where some variables are hidden. The formal
relationship between the original and reduced models is based on the projection of the
behaviors of both systems on common observable variables. For ODE models, the re-
duced system should produce behaviors (trajectories) which are close to the detailed one
in some metric. In the Computer Science tradition, projecting away variables renders
the system non-deterministic in a set-theoretic sense, first introduced in [26].5 Hence
the abstract system may have several behaviors emanating from the same initial state
and the relation between the two levels is typically a conservative approximation: the
set of behaviors of the abstract model is a superset of those of the concrete system.

In the compilation of high-level programs into machine code the relation between
different levels is based on a combination of variable hiding and a change in the time
scale. A program instruction which is considered atomic at high-level corresponds to
a more detailed sequence of primitive instructions involving addressing and registers
which are hidden from the high-level models. Proceeding downward, each of the ma-
chine code instructions is refined into a collection micro-code hardware transactions
and so on. Going upwards, pieces of program code are grouped into procedures that
can be used, in their turn, as atomic instructions. It is worth noting that software and

4 Dedicated to my father, Ephraim Maler, a construction engineer.
5 The adaptation to continuous and hybrid systems is elaborated in [23] where such systems

are referred to as under-determined to avoid the term non-deterministic which is already over-
loaded with connotations.

This copy belongs to 'VANC03'

180 O. Maler

digital hardware are remarkably exceptional in the sense of having a formal equivalence
between so many levels. This is due to the aphysical (and sequential) nature of compu-
tational models, the underlying hardware infra-structure and the fact that we deal here
with man-made artifacts rather than mother nature.

Finally there is a class of abstractions which transform a systems defined over real-
valued numerical variables into a discrete-event system where ranges of continuous
variables are quantized into abstract states. Two of the concrete examples given below
in order to introduce the idea of timed systems are based on such a quantization while
the third is taken from the software domain.

Example 1: Transistors and Gates. At a lower-level a logical gate, say inverter, is an
electrical circuit composed of transistors whose voltage at the output port responds to
the voltage in its input. Its behavior is a signal, a trajectory of a continuous dynamical
system which has two stable states around voltages v0 and v1. At the abstract Boolean
level we say that when the input goes down, the gate becomes excited and takes an
observable transition from 0 to 1 as shown in Fig. 1-(a).

Example 2: Coming to Grenoble. Suppose you come to Grenoble from your home-
town by airplane via Lyon airport. A low-level description can be given in terms of the
trajectory of your center of mass on the spatial Earth coordinates. At a higher level you
can describe it verbally as a sequence of events: fly to Lyon then wait for the bus that
will take you to Grenoble, see Fig. 1-(b).

Example 3: Software. At a lower level we have piece of code, an algorithm that trans-
forms some input to some output using instructions that run on some hardware platform.
At a higher level of description we say that we process an image frame, e.g. decode or
filter it (Fig. 1-(c)).

From the more abstract discrete point of view, in all these cases you have some kind
of a (concrete, physical) process that you do not care too much about its intermediate
states.The important thing is that at the end of the process you will be in Grenoble, the
gate will switch properly from 0 to 1 according to Boole-Shannon rules and the image
will be decoded. This is the essence of functional reasoning. But you cannot get rid
completely of the underlying Physics.6 In order to determine the clock rate that your
computer can use, you need to know how long it takes to switch from 0 to 1.7 To watch
some stupid video on your smart phone you do care about the execution time of your
decoding algorithm. To come on time to a conference you need to know the duration
of the flight. The purely discrete automaton model does not distinguish between flying
from Paris and flying from San Francisco: the flight is modeled simply as an abstract
sequence of transitions: take-off→ fly → land.

The timed level of abstraction offers a compromise between these two extremes,
the fully continuous and the purely discrete. To understand what is going on, let us
look closer at the nature of the discrete models and their relationships with the
underlying continuous process. Such models observe the continuous variables through

6 The term “physics” is used here in a very loose sense as denoting all those quantitative things
that preceded the abstract computer.

7 In the development of digital circuits there is a phase called timing closure where these con-
siderations, neglected in preceding design stages, are considered.

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 181

DiscreteContinuous

t

v0

v1

0 1
i ↓ /o ↑

i ↓ o ↑
0 0′ 1

(a)

Home

Lyon

Grenoble Time

Home Lyon

Bus

Grenoble

Flight

(b)

for i=1 to 1024 do
...
...
something
...
...

end

process an image

(c)

Fig. 1. Three examples of systems viewed in two adjacent levels of abstraction. (a) Logical gate.
Left: a reaction of an inverter to a change in its input voltage; Right: The discrete model where
from a stable state 0, the gate becomes excited (state 0′) when its input goes down and then
stabilizes into a new state 1. In some modeling styles the intermediate unstable state is ignored
and the changes in input and output are part of the same transition. (b) Coming to Grenoble.
Left: a simplified evolution of the distance from Grenoble during flight, waiting at the airport
and taking the bus. Right: the trip viewed as a discrete sequence of steps. (c) A program and its
abstract description.

This copy belongs to 'VANC03'

182 O. Maler

an abstraction/quanization: rather than recording the exact liquid level in your glass, it
classifies the states into a finite number of categories, say, empty, full and in-between.
Likewise, the dynamics of the water level can be classified as filling, emptying or static,
which can be viewed as quantizing the derivative. Discrete events indicate changes in
states which correspond to threshold crossings of continuous variables as well as changes
in the dynamics such as opening and closing valves. Timed systems augment the expres-
sive power of the discrete model with a metric temporal distance between events or the
duration of staying in states. As mathematical objects, timed behaviors are represented
in two fundamental forms that correspond to the two types of timed monoids described
in [4]:

– The first representation is based on time-event sequences where a behavior is viewed
as an alternation of durations and instantaneous events. This is essentially equiva-
lent to the timed traces used in [3] in which the events are embedded in the real-time
axis and represented as sequences of time-stamped events. Such representations are
produced in numerous domains including all sorts of event monitoring systems as
well as numerical simulators for differential equations.

– The second representation is based on discrete-valued signals which are functions
from real time to finite domains. Boolean signals are heavily used in the design of
digital circuits. Similar mathematical objects are used in all planning and schedul-
ing domains where they are called Gantt charts or time-tables.

Fig. 2 depicts timed descriptions of the trip to Grenoble in these two forms. Using such
a representation we can distinguish short flights from long, fast gates from slow and
efficient algorithms from less efficient ones.

Take−off Land Take bus Grenoble

Airplane

Lyon

Bus

Take−off Land Take bus Grenoble

Airplane

Lyon

Bus

Fig. 2. The trip viewed as at a timed level of abstraction: as a sequence of events embedded in
the real time axis (up) or as signals over discrete domains (down). At this level of abstraction one
can tell the difference between a short flight (left) and a longer one (right).

This gives rise to a new class of dynamical systems which, unfortunately, is a bit
hard to digest. Recall that continuous behaviors are trajectories in a continuous state-
space of dynamical systems specified using differential equations and that models based
on automata are the dynamical systems that produce discrete behaviors, sequences of
states and events. Likewise timed automata and similar timed models generate timed
behaviors. These are the dynamical systems of the timed level of abstraction.

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 183

The basic atomic component of the timed world is the process that takes some time to
conclude after having started. Such a process is modeled by the simple timed automaton
depicted in Fig. 3-(a). It consists of an idle state p in which nothing happens and from
which a start transition takes it to active state p while resetting clock x to zero. Clock
x is a restricted type of state variable which progresses in the speed of time (ẋ = 1) so
as to measure the time elapsed since an activity has started. The influence of x on the
dynamics is via its participation in the precondition (the transition guard φ) for taking
the end transition to final state p. The conditionφ can be deterministic, x = d, indicating
that process duration is assumed to be precisely known. It can be non-deterministic, x ∈
[a, b], meaning that the duration can be anywhere within the interval. The degenerate
case where the condition is always true, that is, x ∈ [0,∞), is equivalent to an untimed
model. The condition can also be made probabilistic, assuming some distribution on the
duration, resulting in an expressively rich kind of a continuous-time stochastic process
[24].

To my mind, the most important contribution of the theory of automata to humankind
is in the notion of parallel composition (or products of automata). Such notions exist
of course also for interacting continuous dynamical systems but only in automata you
can visualize a global system and see the effect of interaction. When you compose two
automata, you obtain a global automaton whose states are of the form s = (s1, s2), ele-
ments of the Cartesian product of the individual state-spaces. Transitions available from
s are either independent transitions taken from s1 or s2 or transitions of one automaton
which are conditioned on the state of the other. Fig. 3-(b) shows how parallel composi-
tion can realize sequential composition: the start transition of the automaton of process
q is conditioned the by the automaton for process p being in its final state. Sequential
composition represents precedence relations between tasks where p ≺ q indicates that
q cannot start before p has terminated. This is how you express statements like, you can
take the bus after you land, a gate switching triggers a change in the next gate or you
can start processing the image only after having decoded it.

More generally, parallel composition can express processes that run concurrently,
sometimes progressing independently and sometimes synchronizing. In timed models,
independent progress is not as independent because Time is viewed as a shared variable
that all processes interact with. The automaton of Fig. 3-(c) shows a fragment of the
composition of automata for two timed processes. In state s we observe the fundamen-
tal phenomenon in timing analysis: two or more active processes running in parallel.8

The winner in this race, a term used in continuous-time stochastic processes, is the one
which takes its end transition first. The identity of the winner depends on the delay
bounds [a1, b1] and [a2, b2] as well as the timing of the preceding transitions. Typically,
timing constraints, due to sharing of the time variable, restrict the range of behaviors
which would be otherwise possible in the untimed transition graph. Analyzing the pos-
sible behaviors of such concurrent timed processes is at the heart of almost anything we
do when we hurry up to catch a bus or wait for our partner to come. The following list
illustrates the universality of questions related to possible behaviors (paths) of networks
of timed automata.

8 For this reason I find papers that deal with timed automata with a single clock to be of a purely
theoretical interest.

This copy belongs to 'VANC03'

184 O. Maler

x := 0
φ(x)
end

start

p p p

(a)

x1 := 0
φ1(x1)
end

start

p p p

p

end
start

pq pq end
start

pqpq

q x2 := 0
φ2(x2)
end

start

qq

pqx1 := 0
φ1(x1)

x2 := 0

φ2(x2)

(b)

....

...
.

x1 ∈ [a1, b1]

s

x1 := 0

x2 := 0

end

x2 ∈ [a2, b2]

end

x2 ∈ [a2, b2]

x1 ∈ [a1, b1]

(c)

Fig. 3. Processes that take time: (a) The basic timed component; (b) Sequential composition; (c)
Parallel composition. State s admits a race between two processes.

– Will there be a glitch in the circuit?
– Will he finish his boring talk by the coffee break?
– Will the meal be ready exactly when the guests arrive?
– Will my student finish the thesis before I run out of money?
– Will the image be processed before the arrival of the next one?
– Will the server answer the query before the attention span of the client expires?

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 185

I hope you are convinced by now that timed systems are important for modeling
and you can use them to formulate all kinds of interesting questions in an extremely
important level of abstraction. It is the level of abstraction that people use implicitly
in scheduling, timing analysis, planning - you name it. It should be noted that timed
automata (and other forms of timed transition systems such as timed Petri nets) are
not unique in addressing this level of abstraction. For example, the work on Operations
Research that involves scheduling deals with this level but it often jumps directly to a
constrained optimization problem without passing through a dynamic model. Another
example would be Queuing Theory which uses continuous-time stochastic processes
that generate (distributions over) timed behaviors, but there, at least for a point of view
of an innocent outsider, it seems that the heavy mathematical technology associated
with probabilities over the reals dominates this work at the expense of the semantic
view.9 A dynamical system view of timed systems has been developed in the study of
discrete-event system in Control [14] and also in the context of Max Plus algebra [6]
but in the latter, due to linearity, the expressive power is rather limited.

The questions that remains is how can these timed models be used to provide an-
swers to those interesting questions. To answer this particular question, let us have a
retrospective look at formal verification, our home discipline.

3 Verification and Analysis of Timed Systems

A large part of verification is concerned with showing that components in a network
of automata interact properly with each other. The term “properly” means that some
sequences of events are considered acceptable while others violate the requirements.
Violation means either that bad things happen, for example, two processes write simul-
taneously on a shared resource or an airplane crashes. Technically, such safety prop-
erties are violated by reaching an undesired part of the state-space. The other types of
properties are called liveness properties and are violated when some good things do
not happen, for example a client is starved to death without getting what he or she
has requested.10 The models used to verify such properties are discrete and often ab-
stract away from data and focus on control/synchronization. The systems in question
are open and under-determined and this means that a model will have many executions,
some correct and some incorrect. Verification is a kind of exhaustive simulation which
explores all the paths in a huge automaton.

Extending verification to timed systems means that, in addition to the under deter-
mination associated with external discrete actions, there is also a dense temporal non-
determinism concerning timing as we do not know execution times, propagation delays,
inter-arrival times and process durations with precision but model them typically using
bounded intervals. Following the pessimistic safety-critical spirit of verification, we

9 I used to be a more zealous supporter of the semantic-dynamic approach [1] but like any other
approach including those just mentioned, it has its advantages and shortcomings. Sometimes
a semantically-correct “formal” approach stops at definitions and hardly computes anything.

10 It is worth noting that for timed requirements, that is, when an upper-bound to an acceptable
delay is specified, all properties can be viewed as safety properties [19].

This copy belongs to 'VANC03'

186 O. Maler

attempt to reason universally about this uncertainty space, compute all possible behav-
iors under all choices of duration values and check the correctness of each of them.
Without formal verification techniques this would amount to a non-countable number
of simulations.

From the verification point of view we have a-priori a system with an infinite (and
non-countable) state-space as the clocks are real-valued and the states of the timed au-
tomaton are of the form (s, x) with s being an automaton state and x a vector of clock
valuations. Looking closer we can observe that clock valuations range practically over
a bounded subset of Rn (clock values that go beyond the largest constant in the timing
constraints are not interesting) and the restricted use of clocks in transition guards in-
duces a finite-quotient property. More precisely, there is an equivalence relation∼ over
the set X of clock valuations such that x ∼ x′ implies that the same sequences of tran-
sitions are possible from (s, x) and (s, x′). The relation is of finite index and hence a
timed automaton is equivalent to a finite-state automaton with states of the from (s,R)
where R is an equivalence class of ∼, also known as a region, and transitions corre-
spond either to the passage of time from one region to another or to discrete transitions.
This region graph was introduced in the seminal paper of Alur and Dill [3] which put
timed automata on the map, and was used to prove decidability of the basic verification
problem. Beyond this theoretical use, the region automaton is completely impractical
and is not used by any living verification tool. The region equivalence is unnecessarily
fine and makes distinctions between clock valuations that differ only by durations of
time steps, but still admit the same sequences of transitions.

The other approach which uses a coarser equivalence has several origins [18,28,29]
and in its contemporary form it computes a finite-state automaton, the reachability
graph also known as the simulation graph, on the fly in a manner similar to the al-
gorithmic analysis of hybrid systems described in [2]. The symbolic states are of the
form (s, Z) where Z is a set of clock valuations belonging to a restricted type of poly-
hedra called zones, definable by conjunctions of inequalities of the form c1 ≤ xi ≤ c2
or c1 ≤ xi−xj ≤ c2. Such difference constraints are fundamental to all sorts of timing
and scheduling problems and they admit an efficient representation using difference-
bound matrices (DBMs) invented by Bellman and proposed in the verification context
in [17]. The regions of the region graph are the smallest zones possible.

To avoid large n-tuples let me illustrate zone-based reachability computation on the
2-clock automaton of Fig. 4, giving priority to clarity over precision. It starts at state q1
with x = (0, 0). Then the time elapse operator is used to compute all states reachable by
letting time pass where the staying condition (invariant) x ≤ 3 restricts the clock values
with which it is possible to stay in q1. Then this set is intersected with the transition
guard x ≥ 1 to yield the clock values with which the transition to q2 is possible. The
transition resets clock x1 and hence the possible starting points at q2 are (0, y) where
y ∈ [1, 3]. Then the time elapse operator is applied at q2 and so on and so forth. The
process is guaranteed to terminate and compute all state reachable by any choice of
delay values. It has however an annoying non-intuitive feature that it shares also with
verification of hybrid systems and which makes it hard to explain to potential clients of
this technology. Unlike simulation of differential equations (and simulation in general)
there is no simple relationship between the steps of the algorithm and the flow of time.

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 187

For example, after the first transition we are in q2 with a set of initial clock valuations
1 ≤ y ≤ 3 such that each of them has been reached at a different absolute time t = y,
and this becomes more complicated for automata having several transitions outgoing
from the same state.

init guard reset guard resettime time

q1 q2 q3

y ≥ 2x ≥ 1

x ≤ 3 y ≤ 6

0

3

6

y

x

q1

x = y = 0

q1
x = y

0 ≤ x ≤ 3

q1
x = y

1 ≤ x ≤ 3 1 ≤ y ≤ 3

q2

x = 0

q2

1 ≤ y ≤ 6
1 ≤ y − x ≤ 3 1 ≤ y − x ≤ 3

q2

2 ≤ y ≤ 6

q3
y = 0

0 ≤ x ≤ 5

Fig. 4. First steps in computating a reachability graph

It is worth giving here two small lessons in the methodology and history of science.
The first is about the mathematician’s obsession with being the first to prove a theorem.
The finite quotient property of timed systems was described in [11] in the context of
timed Petri nets, six years before the conference version of [3], and it already involved
zones. This went mostly unnoticed and only the later exposure of the verification com-
munity, which was already working on real-time models [20], to these ideas created the
impact. So it is not only the “result” that counts but also the language that you use, the
attitude and capabilities of the community to which you present your work, the right
timing and more. The story told in [16] about the discovery of planets is relevant.

The second lesson is about complexity: the size of the region graph can be exponen-
tial in the number of clocks while that of the reachability graph is potentially double-
exponential, but in reality the latter is almost always smaller. So proving complexity
bounds on this or that problem can sometimes be no more than a sterile exercise.

Verification algorithms have been implemented and improved in a series of theses
and tools. At VERIMAG, under the guidance of Joseph, this lead to the tools Kronos,
Open-Kronos and IF with contributions of Sergio Yovine, Alfredo Olivero, Conrado
Daws, Stavros Tripakis and Marius Bozga. The most celebrated and actively maintained
tool these days is tool UPPAAL, started by Wang Yi, Paul Pettersen, and Kim Larsen
as a collaboration between Uppsala and Aalborg and continued under the ongoing en-
thusiastic leadership of Kim with major contributions by G. Behrman and A. David.
Despite enormous investments and some impressive achievements, I think it is fair to
say that this approach rarely scales up beyond toy problems (and is also PSPACE-hard).
Being convinced in the importance of timed systems for modeling and analysis I also
spent around ten years of my life (and also those of students and collaborators) in trying
to scale up and fight the clock explosion. Below is a short description of these attempts.

This copy belongs to 'VANC03'

188 O. Maler

Numerical Decision Diagrams (NDD). One of the main problems in the verification
of timed automata is the lack of a unified symbolic representation both for the dis-
crete state-space and the clock-space. The representation is enumerative in the former
and hence not suited for handling systems consisting of many components. NDDs give
such a unified symbolic representation for discretized clocks encoded in binary. The
technique worked well on one example but it had the deficiency of losing the metric
structure of numbers via the binary encoding (known as bit blasting in the satisfiabil-
ity jargon). Nevertheless it helped dispel some naive beliefs in the universal power of
BDDs and clarify an important issue: dense time is not the main issue in timed automata
but rather the symbolic representation of sets of clock valuations by inequalities.

Timed Polyhedra. Another canonical representation for unions of zones was obtained
as an extension of a canonical representation for orthogonal polyhedra. This was nice
theoretically but at the end did not work because of lack of efficient representation of
sets of permutations.

Heuristic Search for Scheduling. In scheduling under certainty (durations are known)
you have a synthesis rather than verification problem and an optimal solution corre-
sponds to the shortest path (in terms of duration) in a timed automaton. If you do not
insist on optimality you need not be exhaustive. Moreover, under certain general con-
ditions that apply, for example, to job-shop scheduling, there is a finite and discrete set
of paths to consider and you need not handle zones. This does not solve the general
verification problem, but similar ideas have been tried under the title of guided search,
with the goal of finding bad behaviors quickly.

Bounded Model-Checking with SMT Solvers. Bounded model-checking for timed
automata, that is, the existence of a run with a bounded number of transitions, can be
expressed by a formula in the logic of difference constraints. It turned out that even
very strong solvers developed for this logic did not help in verifying timed automata
and they even had a poorer performance than standard zone-based reachability.

Interleaving Reduction. One problem that adds to the high cost of zone-based reach-
ability is that commuting paths do not really commute because the zone constraints
remember the past history. Having shown that the union of zones reached by all in-
terleavings of the same set of local transitions is convex, we developed a breadth-first
reachability algorithm that merges such zones and for some period we held the olympic
record in verifying Fisher’s protocol.

Compositional Timing Analysis. This last heroic effort [10,9] was based on a divide-
and-conquer methodology applied to Boolean circuits with bi-bounded delays with each
gate modeled as a timed automaton according the principles explained in [25]. The
automata for a sub-circuit were analyzed and then abstracted by hiding internal clocks
and transition resulting in a small-size over-approximation which was plugged to the
rest of the circuit. This technique could analyze a wave pipelining scheme for 3 waves
of input to a non-trivial circuit of 36 gates, still a far cry from the needs of circuit timing
analysis.

So was all this a waste of time? Before giving a hopefully negative answer let
me reflect a bit on the state of science. Ideally one would like to apply noble first

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 189

class science and mathematics to solve real problems. For example, Formal Language
Theory and Compilation, Information Theory and Telecommunication, Number The-
ory and Cryptography. We accept good mathematics for its own sake as well as tech-
nological innovations produced by people who do not formulate themselves in a clean
mathematical way. However, we should be careful not to commit the double sin of do-
ing mediocre mathematics over marginal questions under the pretext of hypothetical
applications, but this seems to be unavoidable in the current state of affairs and the
structure of scientific communities (and industry). Of course, these defects are more
easily detected on others than on oneself.

4 Strange Encounters with Reality

In the sequel I report some impressions from participating in an industrial-academic
project where we promised to progress toward solving the multi-core deployment prob-
lem mentioned in the introduction. The self-confidence was based partly on our ac-
quaintance with timed automata, scheduling and SMT solvers. Most of the observations
are known to many people but each person discovers the facts of life in his own path,
pace and order.

Between Theoreticians and (real) Practitioners. The theoretician has the liberty to
choose the problems and ignore aspects which are outside the scope of his interest
and his capabilities. The real11 practitioner does not have this choice, his deadlines are
not self-imposed and his time is measured. The theoretician solves general problems:
verification applies, in principle, to all automata, all temporal logic formulae, etc. The
practitioner solves one problem at a time. Consequently the real-life scope of a theo-
retical solution is any number of problems in [0,∞). It is zero if the compromise with
reality was too aggressive, and infinity if it was a clever one. As a theoretician I can
observe that [0,∞) and 1 are not comparable.

Correctness and Performance. I hold the view that correctness is a special (Boolean)
case of a performance measure, which is a way to associate cost/utility with individual
system behaviors and with the system as a whole. We can measure elapsed time, as-
sociate costs with states and transitions and accumulate them along runs. We need not
necessarily Booleanize them via inequalities such as deadline conditions - we can re-
main quantitative. We should provide real numbers (and vectors of real numbers when
we have multiple evaluation criteria) as answers. Many people will agree on that and
performance evaluation is a major issue in the embedded world and elsewhere.

Who Needs Universal Quantification? Due to safety-criticality or cost-criticality
(hardware errors) verification always aspired to cover all possible points in the uncer-
tainty space, in other words, a pessimistic worst-case attitude. This is, at the same time,
too much and too little for most systems (soft real-time, best effort, mixed criticality). It
is too much because if the worst-case is rare we can live with it, as we do throughout our
daily life where major catastrophes are never fully excluded. This is too little because
we really want to know what will typically happen, not only what is possible in prin-
ciple. The solution in the context of timing performance is not new: replace duration

11 The distinction between real and less real is due to Paul Caspi [13].

This copy belongs to 'VANC03'

190 O. Maler

bounds which are without measure, that is, non-deterministic in the CS sense without
probabilities, with probability distributions. This corresponds to the difference between
Minkowski sum and convolution as shown in Fig. 5. In the set-theoretic tradition, when
two tasks, both with an uncertain duration in [a, b] each, are executed sequentially, the
total duration can be anywhere in [2a, 2b]. Probabilistically, assuming a uniform distri-
bution of the durations over [a, b], a duration of a+ b is more likely than 2a or 2b.

=

=⊕

∗

Fig. 5. From set-theoretic to probabilistic non-determinism. When two processes of duration [a, b]
execute one after the other, the total duration can be anywhere in their Minkowski sum [2a, 2b].
When the durations are assumed to be uniformly distributed, the total duration is distributed
according to the convolution which still non-zero in [2a, 2b] but its density is larger around the
center and smaller in the tails.

The Late Discovery of Monte-Carlo Simulation. But what can you really do with
such duration-probabilistic automata? Probabilizing the timing uncertainty does not al-
leviate the scalability problem - on the contrary, computing probabilities over sets is
typically much harder than computing the sets themselves and this is what makes prob-
abilistic verification so difficult and essentially theoretical. One direction to think about
which has not been explored to the best of my knowledge is to employ fat first search,
exploring only reachable sets of high probability. The other solution is simply to run
Monte-Carlo simulations, sample the uncertainty space and collect statistics. Then we
can call it statistical model checking to hide the fact that after 20 years we resort finally
to what practitioners have always been doing. Kurt Vonnegut had an amazing observa-
tion on these matters in Cat’s Cradle:

“Beware of the man who works hard to learn something, learns it, and finds
himself no wiser than before... He is full of murderous resentment of people
who are ignorant without having come by their ignorance the hard way.”

If we replace exhaustive verification by Monte Carlo simulation what was the worth
of the exhaustive formal verification episode? One answer is that there are still sys-
tems which are critical and require exhaustive coverage. A second answer is that every
domain can always benefit from a fresh look by researchers from a different culture.

The other answer is that abstract and semantically-correct modeling, if not abused,
does have advantages and can help system builders that do not possess these capabilities
(rather than impress them with your knowledge of Greek letters). System builders use
concrete formalisms such as C and Verilog to build their systems and this coding is un-
avoidable if you want the system to be constructed. Abstract models such as those used
in verification or performance analysis are, first of all, considered by them as an extra
burden. By the way, I cannot blame them: I don’t want anyone to tell me how to hack

This copy belongs to 'VANC03'

The Unmet Challenge of Timed Systems 191

my LATEX code or use UML to structure my research. Secondly, many of them may have
difficulties in building abstract models that do not correspond to something concretely
executable. Consequently they use their designs as models for simulation: the software
or the hardware models itself. When both of those already exist, this is the most effi-
cient way to evaluate the performance (and check functional correctness). But in stages
of design-space exploration when the hardware architecture or configuration is not re-
alized, the software is run on a hardware simulator at some granularity, for example a
cycle accurate simulator, and this is extremely slow. To explore different deployments
it is much more efficient to use a discrete event simulator, where computations and data
transfers are modeled as timed processes that take some time and immobilize some re-
source during that time. Of course you need to fill in the numbers (profiling, estimation,
past experience) but recall that you need not be precise and deterministic.

Following these principles, the Design-Space Explorer prototype tool has been de-
veloped by J.-F. Kempf with help from M. Bozga and O. Lebeltel [21]. It has four com-
ponents: 1) Application description: task-graphs annotated with execution times and
data transfer rates; 2) Input generators: models of task arrivals (periodic, jitter, delayed
periodic, bounded variability); 3) Architecture description: processors and their speeds,
memories, busses and 4) Deployment: mapping and scheduling policies. From these de-
scriptions timed automaton models are built which represent all the possible behaviors
under all timing uncertainties. Then the system is analyzed using formal verification
(when feasible and useful) and mostly via statistical simulation. It has been applied to
compare different deployment policies for a video algorithm on a simplified model of
an experimental multi-core platform developed by ST Microelectronics. Time will tell
whether such modeling and analysis techniques will find their way to the design flow
of dedicated multi-cores architectures and their software.

To wrap up, let me repeat once more that I consider timed automata to be one of the
best inventions since the cut-and-paste. They also served as a launch pad for the study
of hybrid systems. Despite the fact that they are n-tuples they can be useful, not only for
the paper industry or the tool-paper industry, but to real applications. This requires more
blood, sweat and tears, less theorem hunting and less bibliometry-guided research.

Acknowledgment. I would like to thank Eugene Asarin, Marius Bozga, Eric Fanchon
Thomas Ferrère, Charles Rockland and P.S. Thiagarajan for commenting on various
versions of this manuscript. This work was partially supported by the French project
EQINOCS (ANR-11-BS02-004).

References

1. Abdeddaı̈m, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoretical Com-
puter Science 354(2), 272–300 (2006)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138(1), 3–34 (1995)

3. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)

This copy belongs to 'VANC03'

192 O. Maler

5. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In:
Proc. IFAC Symposium on System Structure and Control, pp. 469–474 (1998)

6. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and linearity. Wiley,
New York (1992)

7. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis, J.: Rigor-
ous component-based system design using the BIP framework. IEEE Software 28(3), 41–48
(2011)

8. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:
SEFM, pp. 3–12 (2006)

9. Ben Salah, R.: On Timing Analysis of Large Systems. PhD thesis, INP Grenoble (2007)
10. Ben-Salah, R., Bozga, M., Maler, O.: Compositional timing analysis. In: EMSOFT (2009)
11. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri nets. In:

Proceedings IFIP (1983)
12. Bozga, M., Graf, S., Mounier, L.: IF-2.0: A validation environment for component-based

real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
343–348. Springer, Heidelberg (2002)

13. Caspi, P.: Réflexions sur la recherche appliquée (2004), Unpublished manuscript available at
http://perso.numericable.fr/bgrardca/TEXTES/recherche.pdf

14. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer (2008)
15. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R., Sontag,

E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg
(1996)

16. de Saint-Exupéry, A.: Le petit prince. Gallimard (1943)
17. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis,

J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)
18. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time

systems. Information and Computation 111(2), 193–244 (1994)
19. Henzinger, T.A.: Sooner is safer than later. Information Processing Letters 43(3), 135–141

(1992)
20. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: Huizing, C., de Bakker,

J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 226–251.
Springer, Heidelberg (1992)

21. Kempf, J.-F.: On Computer-Aided Design-Space Exploration for Multi-Cores. PhD thesis,
University of Grenoble (October 2012)

22. Maler, O.: Amir Pnueli and the dawn of hybrid systems. In: HSCC, pp. 293–295 (2010)
23. Maler, O.: On under-determined dynamical systems. In: EMSOFT, pp. 89–96 (2011)
24. Maler, O., Larsen, K., Krogh, B.: On zone-based analysis of duration probabilistic automata.

In: INFINITY, pp. 33–46 (2010)
25. Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed automata. In:

Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 189–205. Springer,
Heidelberg (1995)

26. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Re-
search and Development 3(2), 114–125 (1959)

27. Sifakis, J., Yovine, S.: Compositional specification of timed systems. In: Puech, C., Reischuk,
R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 347–359. Springer, Heidelberg (1996)

28. Tripakis, S., Courcoubetis, C.: Extending Promela and Spin for real time
29. Yovine, S.: Methods and tools for the symbolic verification of real-time systems. PhD thesis,

INP, Grenoble (1993) (in French)
30. Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2), 123–133 (1997)

This copy belongs to 'VANC03'

http://perso.numericable.fr/bgrardca/TEXTES/recherche.pdf

Let’s Get Physical:

Computer Science Meets Systems

Pierluigi Nuzzo and Alberto Sangiovanni-Vincentelli

University of California at Berkeley, Berkeley CA 94720, USA
{nuzzo,alberto}@eecs.berkeley.edu

Abstract. In cyber-physical systems (CPS) computing, networking and
control (typically regarded as the “cyber” part of the system) are tightly
intertwined with mechanical, electrical, thermal, chemical or biological
processes (the “physical” part). The increasing sophistication and het-
erogeneity of these systems requires radical changes in the way sense-
and-control platforms are designed to regulate them. In this paper, we
highlight some of the design challenges due to the complexity and het-
erogeneity of CPS. We argue that such challenges can be addressed by
leveraging concepts that have been instrumental in fostering electronic
design automation while dealing with complexity in VLSI system design.
Based on these concepts, we introduce a design methodology whereby
platform-based design is combined with assume-guarantee contracts to
formalize the design process and enable realization of CPS architectures
and control software in a hierarchical and compositional manner. We
demonstrate our approach on a prototype design of an aircraft electric
power system.

Keywords: Cyber-physical systems, embedded systems, VLSI systems,
electronic design automation, platform-based design, contract-based de-
sign, assume-guarantee contracts, aircraft electric power system.

1 Emerging Information Technology Trends

The emerging information technology scenario features a large number of new
applications which go beyond the traditional “compute” or “communicate” func-
tions. The majority of these applications build on distributed sense and control
systems destined to run on highly heterogeneous platforms, combining large,
high-performance compute clusters (the infrastructure core or “cloud”) with
broad classes of mobiles, in turn surrounded by even larger swarms of micro-
scopic sensors [16]. Such cyber-physical systems (CPS) [19,8,6] are characterized
by the tight integration of computation with mechanical, electrical, and chemi-
cal processes: networks monitor and control the physical processes, usually with
feedback loops where physics affects computation and vice versa.

CPS have the potential to radically influence how we deal with a broad range
of crucial problems facing our society today, from national security and safety, to
energy management, efficient transportation, and affordable health care. How-
ever, CPS complexity and heterogeneity, originating from combining what in

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 193–208, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

194 P. Nuzzo and A. Sangiovanni-Vincentelli

the past have been separate worlds, tend to substantially increase system design
and verification challenges. The cost of being late to market or of product mal-
functioning is staggering as witnessed by the recent recalls and delivery delays
that system industries had to bear. Toyota’s infamous recall of approximately
9 million vehicles due to the sticky accelerator problem, Boeing’s Airbus delay
bringing an approximate toll of $6.6 billion are examples of devastating effects
that design problems may cause. If this is the present situation, the problem
of designing planetary-scale swarm systems appears insurmountable unless bold
steps are taken to advance significantly the science of design.

While in traditional embedded system design the physical system is regarded
as a given, the emphasis of CPS design is instead on managing dynamics,
time, and concurrency by orchestrating networked, distributed computational
resources together with the physical systems. Functionality in CPS is provided
by an ensemble of sensing, actuation, connectivity, computation, storage and
energy. Therefore, CPS design entails the convergence of several sub-disciplines,
ranging from computer science, which mostly deal with computational aspects
and carefully abstracts the physical world, to automatic control, electrical and
mechanical engineering, which directly deals with the physical quantities in-
volved in the design process. The inability to rigorously model the interactions
among heterogeneous components and between the “physical” and the “cyber”
sides is a serious obstacle to the efficient realization of CPS. Moreover, a severe
limitation in common design practice is the lack of formal specifications. Require-
ments are written in languages that are not suitable for mathematical analysis
and verification. Assessing system correctness is then left for simulation and,
later in the design process, prototyping. Thus, the traditional heuristic design
process based on informal requirement capture and designers’ experience can
lead to implementations that are inefficient and sometimes do not even satisfy
the requirements, yielding long re-design cycles, cost overruns and unacceptable
delays.

In this paper, we highlight the main design challenges for the realization of
embedded systems caused by the complexity and heterogeneity of CPS. Rest-
ing on the successful achievements of electronic design automation (EDA) in
taming design complexity of VLSI systems [15], we argue that such challenges
can only be addressed by employing structured and formal design methodologies
that seamlessly and coherently combine the various dimensions of the multi-scale
design space and provide the appropriate abstractions. We then introduce and
demonstrate a CPS design methodology by combining the platform-based design
[17] and contract-based design [16] paradigms.

2 Cyber-Physical System Design Challenges

In this section we highlight the main CPS design challenges, based on the elab-
orations in [6] and [16]. In particular, we categorize them in terms of modeling,
integration and specification challenges.

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 195

2.1 Modeling Challenges

Model-based design (MBD) [20,18] is today generally accepted as a key enabler
for the design and integration of complex systems. However, CPS tend to stress
all existing modeling languages and frameworks. While in computer science logic
is emphasized rather than dynamics, and processes follow a sequential seman-
tics, physical processes are generally represented using continuous-time dynam-
ical models, expressed as differential equations, which are acausal, concurrent
models. Therefore, most of the modeling challenges stem by the difficulty in
accurately capturing the interactions between these two worlds.

Challenge 1—Modeling Timing and Concurrency. A first set of technical chal-
lenges in analysis and design of real-time embedded software stems from the
need to bridge its inherently sequential semantics with the intrinsically con-
current physical world. All the general-purpose computation and networking
abstractions are built on the premise that execution time is just an issue of
performance, not correctness. Therefore, timing of programs is not repeatable,
except at very coarse granularity, and programmers have hard time to specify
timing behaviors within the current programming abstractions. Moreover, con-
currency is often poorly modelled. Concurrent software is today dominated by
threads, performing sequential computations with shared memory. Incomprehen-
sible interactions between threads can be the sources of many problems, ranging
from deadlock and scheduling anomalies, to timing variability, nondeterminism,
buffer overruns, and system crashes. Finally, modeling distributed systems adds
to the complexity of CPS modeling by introducing issues such as disparities in
measurements of time, network delays, imperfect communication, consistency of
views of system state, and distributed consensus [6].

Challenge 2—Modeling Interactions of Functionality and Implementation. To
evaluate a CPS model, it is necessary to model the dynamics of software and
networks. In fact, computation and communication do take time. However, pure
functional models implicitly assume that data are computed and transmitted
in zero time, so that the dynamics of the software and networks have no effect
on system behavior. It is then essential to provide a mechanism to capture the
interactions of functionality and implementation. Implementation is largely or-
thogonal to functionality and should therefore not be an integral part of a model
of functionality. Instead, it should be possible to conjoin a functional model with
an implementation model. The latter allows for design space exploration, while
the former supports the design of control strategies. The conjoined models enable
evaluation of interactions across these domains.

2.2 Integration Challenges

CPS integrate diverse subsystems, by often composing pieces that have been
pre-designed or designed independently by different groups or companies. This
is done routinely, for example, in the avionics and automotive sectors, albeit in a

This copy belongs to 'VANC03'

196 P. Nuzzo and A. Sangiovanni-Vincentelli

heuristic and ad hoc way. Yet, integrating component models to develop holistic
views of the system becomes very challenging, as summarized below.

Challenge 3—Keeping Model Components Consistent. Inconsistency may arise
when a simpler (more abstract) model evolves into a more complex (refined) one,
where a single component in the simple model becomes multiple components in
the complex one. Moreover, non-functional aspects such as performance, timing,
power or safety analysis are typically addressed in dedicated tools using specific
models, which are often evolved independently of the functional ones (captur-
ing the component dynamics), thus also increasing the risk of inconsistency. In
a modeling environment, a mechanism for maintaining model consistency al-
lows components to be copied and reused in various parts of the model while
guaranteeing that, if later a change in one instance of the component becomes
necessary, the same change is applied to all other instances that were used in
the design. Additionally, such a mechanism is instrumental in maintaining con-
sistency between the results of specialized analysis and synthesis tools using
different representations of the same component.

Challenge 4—Preventing Misconnected Model Components. The bigger a model
becomes, the harder it is to check for correctness of connections between compo-
nents. Typically model components are highly interconnected and the possibility
of errors increases. Errors may be due to different units between a transmitting
and a receiving port (unit errors), different interpretation of the exchanged data
(semantic errors), or just reversed connections among ports (transposition er-
rors). Since none of these errors would be detected by a type system, specific
measures should be enabled to automatically check for them [6].

Challenge 5—Improving Scalability and Accuracy of Model Analysis Techniques.
Conventional verification and validation techniques do not scale to highly com-
plex or adaptable systems (i.e., those with large or infinite numbers of possible
states or configurations). Simulation techniques may also be affected by model-
ing artifacts, such as solver-dependent, nondeterminate, or Zeno behaviors [6]. In
fact, CPS may be modeled as hybrid systems integrating solvers that numerically
approximate the solutions to differential equations with discrete models, such as
state machines, dataflow models, synchronous-reactive models, or discrete event
models. Then, when a threshold must be detected, the behavior defined by a
model may depend on the selected step size, which is dynamically adjusted by
the numerical solver to increment time.

2.3 Specification Challenges

Depending on application domains, up to 50% of all errors result from imprecise,
incomplete, or inconsistent and thus unfeasible requirements. The overall system
product specification is somewhat of an art today, since to verify its completeness
and its correctness there is little that it can be used to compare with.

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 197

Challenge 6—Capturing System Requirements. Among the many approaches
taken in industry for getting requirements right, some of them are meant for ini-
tial system requirements, mostly relying on ISO 26262 compliant approaches. To
cope with the inherently unstructured problem of (in)completeness of require-
ments, industry has set up domain- and application-class specific methodologies.
As particular examples, we mention learning processes, such as the one employed
by Airbus to incorporate the knowledge base of external hazards from flight inci-
dents, and the Code of Practice proposed by the Prevent Project, using guiding
questions to assess the completeness of requirements in the concept phase of the
development of advanced driver assistance systems. Use-case analysis methods
as advocated for UML based development processes follow the same objective. A
common theme of these approaches is the intent to systematically identify those
aspects of the environment of the system under development whose observability
is necessary and sufficient to achieve the system requirements. However, the most
efficient way of assessing completeness of a set of requirements is by executing it,
which is only possible if semi-formal or formal specification languages are used,
where the particular shape of such formalizations is domain dependent.

Challenge 7—Managing Requirements. Design specifications tend to move from
one company (or one division) to the next in non-executable and often unsta-
ble and imprecise forms, thus yielding misinterpretations and consequent de-
sign errors. In addition, errors are often caught only at the final integration
step as the specifications were incomplete and imprecise; further, nonfunctional
specifications (e.g., timing, power consumption, size) are difficult to trace. It is
common practice to structure system level requirements into several “chapters”,
“aspects”, or “viewpoints”, quite often developed by different teams using differ-
ent skills, frameworks, and tools. Without a clean approach to handle multiple
viewpoints, the common practice today is to discard some of the viewpoints in a
first stage, e.g., by considering only functions and safety. Designs are then devel-
oped based on these only viewpoints. Other viewpoints are subsequently taken
into account (e.g., timing, energy), thus resulting in late and costly modifications
and re-designs.

3 Coping with Complexity in VLSI Design: Lessons
Learned

Over the past decades, a major driver for silicon microelectronics research has
been Moore’s law, which conjectures the continued shrinkage of critical chip di-
mensions (see Fig. 1 (a)). Microelectronic progress became so predictable that
the Semiconductor Industry Association (SIA) developed a road-map to help
defining critical steps and sustaining progress; the material science and material
processing research community has successfully met the challenges, maintain-
ing a steady stream of results supporting continued scaling of CMOS devices
to smaller dimensions. By taking full advantage of the availability of billion-
transistor chips, increasingly higher performance Systems-on-Chip (SoC) are

This copy belongs to 'VANC03'

198 P. Nuzzo and A. Sangiovanni-Vincentelli

CMOS Bipolar, NMOS ?

100nm

Fe
at

ur
e

siz
e

PentiumPro
PentiumIII

Intel8080

Intel386

Pentium

1000nm

10nm

1nm
1970 1980 1990 2001 2010 2020 2030 2040 2050

Intel486

IA-64

(a) (b)

Fig. 1. (a) Reduction of minimum feature size with time in VLSI systems and (b)
Levels of abstraction in VLSI design (Figure from [15])

being fabricated today, thus enabling new architectural approaches to informa-
tion processing and communication. The appearance of new nano-scale devices
is expected to revolutionize the way information is processed on chip, and per-
haps more significantly, have a major impact on emerging applications at the
intersection of the biological, information and micro-electro-mechanical worlds.

3.1 Dealing with Moore’s Law

Dealing with steady increase in complexity over the decades has been made possi-
ble only because of the continuous increase of productivity brought by electronic
design automation.

By looking back at the history of design methods, we can infer how the changes
in design productivity have always been associated with a rise in the level of ab-
straction of design capture. As can be seen in Fig. 1 (b), in 1971, the highest
level of abstraction for digital integrated circuits was the schematic of a tran-
sistor; ten years later, it became the digital gate; by 1990, the use of hardware
description languages (HDL) was pervasive, and design capture was done at the
register transfer level (RTL). Dealing with blocks of much coarser granularity
than in the past has become essential in order to cope with the productivity
increase the industry is asked to provide. The recent emphasis on SoC, bringing
system-level issues into chip design, is a witness to this trend.

One of these issues relates to the concept of system decomposition and inte-
gration out of pre-designed intellectual property (IP) blocks. Although top-down
decomposition has been customarily adopted by the semiconductor industry for
years, it presents some limitations as a designer or a group of designers has to fully
comprehend the entire system and to partition appropriately its various parts, a
difficult task given the enormous complexity of today’s systems. As mentioned in
Section 2.2, an alternative is to develop systems by composing pre-designed pieces,
whereby preserving compositionality is essential: the building blocks should be de-
signed so that their properties are maintained when connected together to allow
reuse without the need for expensive verification steps.

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 199

Decomposition and abstraction have been two basic approaches traditionally
used to manage design complexity. However, complexity has been also man-
aged by “construction”, i.e. by “artificially” constraining the space to regular, or
modular design styles that can ease design verification (e.g. by enforcing regular
layout and synchronous design), and by structured methodologies, which start
high in the abstraction layers and define a number of refinement steps that go
from the initial description to the final implementation.

The design problems faced in SoC design are very similar to the ones discussed
in Section 2, the main difference between them being the importance given to
time-to-market and to the customer appeal of the products versus safety and
hard-time constraints. Several languages and design tools have been proposed
over the years to enable checking system level properties or explore alternative
architectural solutions for the same set of requirements. Among others, we recall
generic modeling frameworks, such as Matlab/Simulink1 or Ptolemy II2, hard-
ware description languages, such as Verilog3 or VHDL4, transaction-level model-
ing tools, such as SystemC5, together with their respective analog-mixed-signal
extensions6, modeling languages for architecture modeling, such as SysML7 and
AADL8. Some of these tools focus on simulation while others are geared towards
performance modeling, analysis and verification. However, the design technol-
ogy challenge is to address the entire system design process and not to consider
only point solutions of methodology, tools, and models that ease part of the
design. This calls for new modeling approaches that can mix different physical
systems, control logic, and implementation architectures. In doing so, existing
approaches, models, and tools should be subsumed and not eliminated in order
to be smoothly incorporated in current design flows. A design platform should
then be developed to host the new techniques and to integrate a set of today’s
poorly interconnected tools.

3.2 System Design Methodology

The considerations above motivate the view that a unified methodology and
framework could be used across several different industrial domains. Among the
lines of attack developed by research institutions and industry to cope with the
exponential complexity growth, a design paradigm of particular interest to the
development of embedded systems is the V-model, a widely accepted scheme in
the defense and transportation domains.

1 http://www.mathworks.com/products/simulink
2 http://ptolemy.eecs.berkeley.edu
3 http://www.verilog.com/
4 http://www.vhdl.org
5 http://www.accellera.org/downloads/standards/systemc
6 http://www.eda.org/verilog-ams/

http://www.eda.org/vhdl-ams/

http://www.accellera.org/downloads/standards/systemc/ams
7 http://www.omg.org/spec/SysML
8 http://www.aadl.info/aadl/currentsite

This copy belongs to 'VANC03'

200 P. Nuzzo and A. Sangiovanni-Vincentelli

Safety Assesm
ent Process

e.g. M
aintainability Assessm

ent Process

Softw
are

M
echanical

D
igital H

ardw
are

Electrical

e.g. C
ost Assessm

ent Process

Development of Technology
oriented Architecture

Development of
Logical Architecture

Subsystem
Integration

Development
of ECU

Architecture

Development of
Functional Architecture

Analysis of Product
Level Reqiuirements

Integration
Product

Integration
System

C
er

tif
ic

at
io

n

Fig. 2. The V-Model

The V-model was originally developed for defense applications by the German
DoD.9 It structures the product development processes into a design and an in-
tegration phase along variations of the V diagram shown in Fig. 2. Specifically,
following product level requirement analysis, subsequent steps would first evolve
a functional architecture supporting product level requirements. Sub-functions
are then re-grouped taking into account re-use and product line requirements
into a logical architecture, whose modules can be developed independently, e.g.,
by different subsystem suppliers. The realization of such modules often involves
mechatronic design. The top-level of the technology-oriented architecture would
then show the mechatronic architecture of the module, defining interfaces be-
tween the different domains of mechanical, hydraulic, electrical, and electronic
system design. Subsequent phases would then unfold the detailed design for each
of these domains, such as the design of the electronic subsystem involving among
others the design of electronic control units (ECU). These design phases are par-
alleled by integration phases along the right-hand part of the V, such as integrat-
ing basic and application software on the ECU hardware to actually construct
the electronic control unit, integrating the complete electronic subsystems, inte-
grating the mechatronic subsystem to build the module, and integrating multiple
modules to build the complete product. An integral part of V-based development
processes are testing activities, where at each integration level test-suites devel-
oped during the design phases are used to verify compliance of the integrated
entity to their specification. Since system integration and validation may often be
performed too late in the design flow, there is limited ability to predict, early in
the design process, the consequences of a design decision on system performance
and the cost of radical departures from known designs. Therefore, design-space
exploration is rarely performed adequately, yielding suboptimal designs where
the architecture selection phase does not consider extensibility, re-usability, and
fault tolerance to the extent that is needed to reduce cost, failure rates, and
time-to-market.

9 http://www.v-model-xt.de

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 201

Fig. 3. Platform-based design and the role of contracts

Platform-based design (PBD) was introduced in the late 1980s to capture
a design process that could encompass horizontal and vertical decompositions,
and multiple viewpoints and in doing so, support the supply chain as well as
multi-layer optimization [17].

Platform-based design addresses already many of the challenges outlined in
Section 2. Its concepts have been applied to a variety of very different domains:
from automotive, to System-on-Chip, from analog circuit design, to building
automation, to synthetic biology. By limiting the design space to the platform
library, it allows efficient design exploration and optimization, aiming to correct-
by-construction solutions (Challenge 5). Moreover, the meet-in-the-middle ap-
proach, where functional models are combined with non-functional models, and
successive top-down refinements of high-level specifications across design lay-
ers are mapped onto bottom-up abstractions and characterizations of potential
implementations, allows effectively coupling system functionality and architec-
ture (Challenge 1, 2 and 5), as represented in Fig. 3. However, to successfully
deploy such a methodology, we need rigorous mechanisms for (i) determining
valid compositions of compatible components so that when the design space is
explored, only legal compositions are taken into consideration; (ii) guaranteeing
that a component at a higher level of abstraction is an accurate representation
of a lower level component (or aggregation of components); (iii) checking that an
architecture platform is indeed a correct refinement of a specification platform,
and (iv) formalizing top-level system requirements. In the following section, we
show how such goals can be achieved by combining platform-based design with
the concept of contracts.

4 Platform-Based Design with Contracts

The notion of contracts originates in the context of assume-guarantee reasoning.
Informally, a contract is a pair C = (A,G) of properties, assumptions and guar-
antees, respectively representing the assumptions on the environment and the

This copy belongs to 'VANC03'

202 P. Nuzzo and A. Sangiovanni-Vincentelli

promises of the system under these assumptions. The essence of contracts is a
compositional approach, where design and verification complexity is reduced by
decomposing system-level tasks into more manageable subproblems at the com-
ponent level, under a set of assumptions. System properties can then be inferred
or proved based on component properties.

Compositional reasoning has been known for a long time, but it has mostly
been used as a verification mean for the design of software. Rigorous contract
theories have then been developed over the years, including assume-guarantee
(A/G) contracts [4] and interface theories [1]. However, their concrete adoption
in CPS design is still at its infancy. Examples of application of A/G contracts
have only been recently demonstrated in the automotive [5] and consumer elec-
tronics [12] domains. The use of A/G contracts for control design in combination
with PBD has been advocated in [16], while in [13,11], a PBD methodology is
first introduced that uses contracts to integrate heterogeneous modeling and
analysis frameworks for synthesis and optimization of CPS architectures and
control protocols. The design flow is demonstrated on a real-life example of in-
dustrial interest, namely the design of system topology and supervisory control
for aircraft electric power systems (EPS).

4.1 Contracts

We summarize the main concepts behind our methodology by presenting a sim-
ple generic contract model centered around the notion of platform component. A
platform component M can be seen as an abstraction representing an element of
a design, characterized by a set of attributes, including: variables (input, output
and internal), configuration parameters, and ports (input, output and bidirec-
tional); a behavioral model, uniquely determining the values of the output and
internal variables given the values of the input variables and configuration pa-
rameters, and a set of non-functional models, i.e. maps that allow computing
non-functional attributes of a component, corresponding to particular valua-
tions of its input variables and configuration parameters. Components can be
connected together by sharing certain ports under constraints on the values of
certain variables. In what follows, we use variables to denote both component
variables and ports. A component may be associated with both implementations
and contracts. An implementation M is an instantiation of a component M for a
given set of configuration parameters. In the following, we also use M to denote
the set of behaviors of an implementation, which assign a history of “values” to
ports. Behaviors are generic and abstract. For instance, they could be continuous
functions that result from solving differential equations, or sequences of values
or events recognized by an automata model.

A contract C for a component M is a pair of assertions (A,G), called the
assumptions and the guarantees, each representing a specific set of behaviors
over the component variables [4]. An implementation M satisfies an assertion
B whenever M and B are defined over the same set of variables and all the
behaviors of M satisfy the assertion, i.e. when M ⊆ B. An implementation of
a component satisfies a contract whenever it satisfies its guarantee, subject to

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 203

the assumption. Formally,M ∩A ⊆ G, whereM and C have the same variables.
We denote such a satisfaction relation by writing M |= C. An implementation
E is a legal environment for C, i.e. E |=E C, whenever E ⊆ A. Two contracts
C and C′ with identical variables, identical assumptions, and such that G′ ∪
¬A = G ∪ ¬A, where ¬A is the complement of A, possess identical sets of
environments and implementations. Such two contracts are then equivalent. In
particular, any contract C = (A,G) is equivalent to a contract in saturated
form (A,G′), obtained by taking G′ = G ∪ ¬A. Therefore, in what follows, we
assume that all contracts are in saturated form. A contract is consistent when
the set of implementations satisfying it is not empty, i.e. it is feasible to develop
implementations for it. For contracts in saturated form, this amounts to verify
that G �= ∅. Let M be any implementation, i.e. M |= C, then C is compatible, if
there exists a legal environment E for M , i.e. if and only if A �= ∅. The intent
is that a component satisfying contract C can only be used in the context of a
compatible environment.

Contracts associated to different components can be combined according to
different rules. Similar to parallel composition of components, parallel composi-
tion (⊗) of contracts can be used to construct composite contracts out of simpler
ones. Let M1 and M2 two components that are composable to obtain M1 ×M2

and satisfy, respectively, contracts C1 and C2. Then, M1 ×M2 is a valid compo-
sition if M1 and M2 are compatible. This can be checked by first computing the
contract composition C12 = C1 ⊗ C2 and then checking whether C12 is compati-
ble. To compose multiple views of the same component that need to be satisfied
simultaneously, the conjunction (∧) of contracts can also be defined so that if
M |= C1∧C2, thenM |= C1 andM |= C2. Contract conjunction can be computed
by defining a preorder on contracts, which formalizes a notion of refinement. We
say that C refines C′, written C 1 C′ if and only if A ⊇ A′ and G ⊆ G′. Re-
finement amounts to relaxing assumptions and reinforcing guarantees, therefore
strengthening the contract. Clearly, if M |= C and C 1 C′, then M |= C′. On the
other hand, if E |=E C′, then E |=E C. Mathematical expressions for computing
contract composition and conjunction can be found in [4].

Horizontal and Vertical Contracts. Since compatibility is assessed among com-
ponents at the same abstraction layer, the first category of contracts presented
above can be denoted as horizontal contracts. On the other hand, vertical con-
tracts can also be used to verify whether the system obtained by composing the
library elements according to the horizontal contracts satisfies the requirements
posed at the higher level of abstraction. If these sets of contracts are satisfied,
the mapping mechanism of PBD can be used to produce design refinements that
are correct by construction. Vertical contracts are tightly linked to the notions
of mapping of an application onto an implementation platform [12]. However,
compositional techniques that check correct refinement on each subsystem in-
dependently are not effective, in general, since the specification architecture at
level l+1 may be defined in an independent way, and does not generally match
the implementation architecture at level l. Let S = ⊗i∈ISi and A = ⊗j∈JAj

be the two contracts describing the specification and implementation platforms,

This copy belongs to 'VANC03'

204 P. Nuzzo and A. Sangiovanni-Vincentelli

Fig. 4. Single-line diagram of an aircraft electric power system (Figure from [13])

respectively. Therefore, verification of vertical contracts can be performed
through mapping of the application to the implementation platform as follows.
In this example, the specification and implementation contracts are composition-
ally defined out of I and J components, which may not directly match. Then,
the mapping of the specification over the implementation can be modelled by
the composition S ⊗ A, and checking vertical contracts becomes equivalent to
checking that S ⊗A refines S, which can be performed compositionally.

4.2 A Contract-Based Design Flow for CPS

We now show how the challenges discussed in Section 2 can effectively be ad-
dressed by a platform-based design methodology using contracts. As an example,
we consider the embedded control design problem in [13]. Fig. 4 shows a sample
structure of an aircraft EPS in the form of a single-line diagram, a simplified no-
tation for three-phase power systems. Generators deliver power to the loads via
buses. Essential loads cannot be unpowered for more than a predefined period
tmax, i.e. a typical specification would require that the failure probability for
an essential load (i.e., the probability of being unpowered for longer than tmax)
be smaller than 10−9 per flight hour. Contactors are electromechanical switches
that are opened or closed to determine the power flow from sources to loads.
The goal is to design the system topology (e.g. number and interconnection of
components) and the controller to accommodate all changes in system condi-
tions or failures, and reroute power by appropriately actuating the contactors,
so that essential buses are adequately powered.

In our design flow, pictorially represented in Fig. 5, platform component design
and characterization is completely orthogonalized from system specification and
algorithm design.

Platform Library Generation. In the bottom-up phase of the design process, a
library of components (and contracts) is generated to model (or specify) both

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 205

Fig. 5. Contract-based CPS design flow and its demonstration to an aircraft electrical
power system [13]

the plant architecture (e.g. the power system topology in Fig. 5) and the con-
troller. Components can be hierarchically organized to represent the system at
different levels of abstraction, e.g. steady-state (static), discrete-event (DE), and
hybrid levels. At each level of abstraction, components are also capable of ex-
posing multiple, complementary views, associated with different design concerns
(e.g. safety, performance, reliability) and with models that can be expressed
via different formalisms (e.g. graphs, linear temporal logic, differential equations
in Fig. 5), and analyzed by different tools. Such models include non-functional
(performance) metrics, such as timing, energy and cost. Contracts allow checking
consistency among models as the library evolves, which addresses Challenge 3.

Requirement Formalization. In the top-down phase of the design process, top-
level system requirements are formalized as contracts. Responsibilities of achiev-
ing requirements are split into those to be established by the system (guarantees)
and those characterizing admissible environments (assumptions). As an example,
controller requirements can be expressed as a contract CC = (AC , GC), where
AC encodes the allowable behaviors of the environment (physical plant) and GC

encodes the top-level system requirements. To define CC , formal specification
languages can be used, e.g. linear temporal logic (LTL) [14] and signal temporal
logic (STL) [9] in Fig. 5, to allow reasoning about temporal aspects of systems at
different levels of abstraction. Using contracts resting on logic-based formalisms
comes with the advantage that “spurious” unwanted behaviors can be excluded

This copy belongs to 'VANC03'

206 P. Nuzzo and A. Sangiovanni-Vincentelli

by “throwing in” additional contracts, or strengthening assumptions, or by con-
sidering additional cases for guarantees, thus addressing Challenge 6. A second
advantage rests in the capability of checking for consistency by providing effec-
tive tests, whether a set of contracts is realizable, or whether, in contrast, facets
of these are inherently conflicting, and thus no implementation is feasible, which
addresses Challenge 7. By reflecting the model library, the particular shape of
requirement formalizations is also viewpoint and domain dependent. To address
Challenge 1, such system-level models should still come with a rigorous tempo-
ral semantics that allows specifying the interaction between the control program
and the physical dynamics so as to model timing and concurrency at a higher
abstraction level in a way that is largely independent of underlying hardware
details. For instance, LTL allows reasoning about the temporal behaviors of sys-
tems characterized by Boolean, discrete-time signals or sequences of events (DE
abstraction). On the other hand, STL deals with dense-time real signals and
hybrid dynamical models that mix the discrete dynamics of the controller with
the continuous dynamics of the plant (hybrid abstraction).

Mapping Functions to Implementations. By leveraging models expressed in dif-
ferent formalisms, the design is cast as a set of problems mapping functions over
implementations. The mapping problem is a synthesis problem that can be solved
by either leveraging pre-existing synthesis tools, or by casting an optimization
problem that uses information from both the system and the component levels
to evaluate global tradeoffs among components.

In the example of Fig. 5, contract CT is first used together with steady-state
models of the plant components and a template of the EPS topology (repre-
sented as a graph) to synthesize a final topology that minimize component cost
subject to connectivity, power flow and reliability constraints, all expressed as
mixed integer-linear constraints. CC,LTL is then used together with DE models
of the plant components (also described by LTL formulas) and the EPS topol-
ogy, to synthesize a reactive control protocol in the form of one (or more) state
machines. Reactive synthesis tools [10,7] can be used to generate control logic
from LTL A/G contracts. The resulting controller will then satisfy CC,LTL by
construction. Satisfaction of CC,STL is then assessed on a hybrid model, includ-
ing both the controller and an acausal, equation-based representation of the
plant, by monitoring simulation traces while optimizing a set of system parame-
ters. Contracts are captured as optimization constraints. The resulting optimal
controller configuration is returned as the final design.

Horizontal contracts allow checking or enforcing compatibility and correct
connections among components, thus addressing Challenge 4. Vertical contracts
allow checking or enforcing correct abstraction and refinement relations, thus
maintaining consistency among platform instances, models and requirements at
different abstraction levels (Challenge 4 and 7). Moreover, in control design,
vertical contracts define relations between the properties of the controller and
the ones of its execution platform, which helps address Challenge 2. Typically,
the controller defines requirements in terms of several aspects that include the
timing behavior of the control tasks and of the communication between tasks,

This copy belongs to 'VANC03'

Let’s Get Physical: Computer Science Meets Systems 207

their jitter, the accuracy and resolution of the computation, and, more generally,
requirements on power and resource consumption. These requirements are taken
as assumptions by the controller, which in turn provides guarantees in terms of
the amount of requested computation, activation times and data dependencies.

The association of functionality to architectural services to evaluate the char-
acteristics (such as latency, throughput, power, and energy) of a particular im-
plementation by simulation (Challenge 2) can be supported by frameworks such
as Metropolis [2,3], which is founded on design representation mechanisms that
can be shared across different models of computation and different layers of
abstraction. A typical design scenario would then entail a front-end orchestra-
tor routine responsible for coordinating a set of back-end specialized synthesis
and optimization frameworks, each dealing with a different representation of
the platform, and consistently processing their results. To maintain such consis-
tency and improve on the scalability of the specific synthesis and optimization
algorithms (Challenge 5), such an orchestrator should maximally leverage the
modularity offered by contracts, by directly working on their representations to
perform compatibility, consistency and refinement checks on system portions of
manageable size and complexity.

5 Conclusions

Dealing with the heterogeneity and complexity of cyber-physical systems requires
innovations in design technologies and tools. In this paper, we have advocated
the need for a design and integration platform that can operate at different levels
of abstraction, orchestrate hardware and software, digital and analog, cyber and
physical subsystem design, as well as facilitate the integration of IP blocks and
tools. Then, we have introduced a platform-based design methodology enriched
with contracts and demonstrated its potential to provide the foundations for
such a framework.

Acknowledgments. This work was supported in part by IBM and United Tech-
nologies Corporation (UTC) via the iCyPhy consortium and by the TerraSwarm
Research Center, one of six centers supported by the STARnet phase of the Fo-
cus Center Research Program (FCRP), a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. Symp. Foundations
of Software Engineering, pp. 109–120. ACM Press (2001)

2. Balarin, F., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.L.,
Watanabe, Y.: Metropolis: an integrated electronic system design environment.
Computer 36(4), 45–52 (2003)

This copy belongs to 'VANC03'

208 P. Nuzzo and A. Sangiovanni-Vincentelli

3. Balarin, F., Davare, A., D’Angelo, M., Densmore, D., Meyerowitz, T., Passerone,
R., Pinto, A., Sangiovanni-Vincentelli, A., Simalatsar, A., Watanabe, Y., Yang, G.,
Zhu, Q.: Platform-based design and frameworks: Metropolis and metro ii. In:
Nicolescu, G., Mosterman, P.J. (eds.) Model-Based Design for Embedded Systems,
ch. 10, p. 259. CRC Press, Taylor and Francis Group, Boca Raton, London (2009)

4. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., et al.: Contracts for System Design. Rapport de recherche RR-8147, INRIA
(November 2012)

6. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.: Modeling cyber-physical systems.
Proc. IEEE 100(1), 13–28 (2012)

7. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, vol. 2, pp. 995–1072 (1990)

8. Lee, E.A.: Cyber physical systems: Design challenges. In: Proc. IEEE Int. Sym-
posium on Object Oriented Real-Time Distributed Computing, pp. 363–369 (May
2008)

9. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004)

10. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems:
Specification, vol. 1. Springer (1992)

11. Nuzzo, P., Finn, J.B., Iannopollo, A., Sangiovanni-Vincentelli, A.L.: Contract-
based design of control protocols for safety-critical cyber-physical systems. In: Proc.
Design, Automation and Test in Europe (March 2014)

12. Nuzzo, P., Sangiovanni-Vincentelli, A., Sun, X., Puggelli, A.: Methodology for the
design of analog integrated interfaces using contracts. IEEE Sensors J. 12(12),
3329–3345 (2012)

13. Nuzzo, P., Xu, H., Ozay, N., Finn, J., Sangiovanni-Vincentelli, A., Murray, R.,
Donze, A., Seshia, S.: A contract-based methodology for aircraft electric power
system design. IEEE Access 2, 1–25 (2014)

14. Pnueli, A.: The temporal logic of programs. In: Symp. Foundations of Computer
Science, vol. 31, pp. 46–57 (November 1977)

15. Sangiovanni-Vincentelli, A.: Corsi e ricorsi: The EDA story. IEEE Solid State Cir-
cuits Magazine 2(3), 6–26 (2010)

16. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems. European Journal of Con-
trol 18(3), 217–238 (2012)

17. Sangiovanni-Vincentelli, A.: Quo vadis, SLD? reasoning about the trends and chal-
lenges of system level design. Proceedings of the IEEE 95(3), 467–506 (2007)

18. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003)

19. Sztipanovits, J.: Composition of cyber-physical systems. In: Proc. IEEE Int. Conf.
and Workshops on Engineering of Computer-Based Systems, pp. 3–6 (March 2007)

20. Sztipanovits, J., Karsai, G.: Model-integrated computing. IEEE Computer 30(4),
110–112 (1997)

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System?

Michel Raynal

Institut Universitaire de France
& IRISA, Université de Rennes, France

& Department of Computing, Polytechnic University, Hong Kong
raynal@irisa.fr

Abstract. Not only the world is distributed, but more and more applications are
distributed. Hence, a fundamental question is the following one: What can be
computed in a distributed system? The answer to this question depends on the
environment in which evolves the considered distributed system, i.e., on the as-
sumptions the system relies on. This environment is very often left implicit and
nearly always not formulated in terms of precise underlying requirements. In the
extreme case where the environment is such that there is no synchrony assump-
tion and the computing entities may commit failures, many problems become
impossible to solve (in these cases, a network of Turing machines where some
machines may crash, is less powerful than a single reliable Turing machine).
Given a distributed computing problem, it is consequently important to know
the weakest assumptions (lower bounds) that give the limits beyond which the
considered distributed problem cannot be solved. This paper is a short introduc-
tion to this kind of issues. It first presents a few of elements related to distributed
computability, and then briefly addresses distributed complexity issues. The style
of the paper is voluntarily informal.

Keywords: Agreement, Asynchronous system, Atomicity, Concurrency, Consen-
sus, Crash failure, Distributed complexity, Distributed computability, Distributed
computing, Environment, Fault-tolerance, Impossibility, Indulgence, Message
adversary, Message-passing system, Progress condition, Read/write system, Syn-
chronous system, Universal construction, Wait-freedom.

1 Definitions

Distributed Computing. Distributed computing was born in the late seventies when re-
searchers and engineers started to take into account the intrinsic characteristic of phys-
ically distributed systems [39]. Distributed computing arises when one has to solve a
problem involving physically distributed entities (called processes, processors, agents,
actors, sensors, peers, etc.), such that each entity (a) has only a partial knowledge of the
many input parameters of the problem to be solved, and (b) has to compute local outputs
which may depend on some non-local input parameters. It follows that the computing
entities have necessarily to exchange information and cooperate [52].

Distributed System. A (static) distributed system is made up of n sequential deter-
ministic processes, denoted p1, . . . , pn. These processes communicate and synchronize

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 209–224, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

210 M. Raynal

through a communication medium, which is either a network that allows the processes
to send and receive messages, or a set of atomic read/write registers (atomic registers
could be replaced by “weaker” safe or regular registers, but as shown in [40] –where
these registers are defined– safe, regular and atomic registers have the same computa-
tional power).

Deterministic means here that the behavior of a process is entirely determined from
its initial state, the algorithm it executes, and –according to the communication medium–
the sequence of values read from atomic registers or the sequence of received messages
(hence, obtaining different sequences of values or receiving messages in a different or-
der can produce different behaviors).

Asynchronous Read/Write or Message-Passing System. In an asynchronous (also
called time-free) read/write system, the processes are asynchronous in the sense that,
for each of them, there is no assumption on its speed (except that it is positive).

If the communication is by message-passing, the network also is asynchronous,
namely, the transfer duration of any message is finite but arbitrary.

Synchronous Message-Passing System. Differently, the main feature of a synchronous
system lies in the existence of an upper bound on message transfer delays. Moreover,
(a) this bound is known by the processes, and (b) it is assumed that processing dura-
tions are negligible with respect to message transfer delays; consequently processing
are assumed to have zero duration.

This type of synchrony is abstracted by the notion of round-based computation. The
processes proceed in rounds during which each process first sends messages, then, re-
ceive messages, and executes local computation. The fundamental assumption which
characterizes a synchronous message-passing system is that a message sent during a
round is received by its destination process during the very same round.

Process Crash Failure. The most common failure studied in distributed computing
is the process crash failure. Such a failure occurs when a process halts unexpectedly.
Before crashing it executes correctly its algorithm, and after having crashed, it never
recovers.

Let t be the maximal number of processes that may crash; t is a model parame-
ter and the model is called t-resilient model. The asynchronous distributed computing
(read/write or message-passing) model in which all processes, except one, may crash is
called wait-free model. Hence, wait-free model is synonym of (n− 1)-resilient model.

The Notion of Environment and Non-determinism. The environment of a distributed
system is the set of failures and (a)synchrony patterns in which the system may evolve.
Hence, a system does not master its environment but suffers it.

As processes are deterministic, the only non-determinism a distributed system has to
cope with is the non-determinism created by its environment.

Complexity vs. Computability Issues. Computability and complexity are the two
lenses that allows us to understand and master computing. The following table presents

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 211

the main issues encountered in distributed computing, when considering these two
lenses.

Synchronous Asynchronous
Failure-free complexity complexity
Failure-prone complexity computability

The rest of this paper illustrates and develops this table. It first addresses computabil-
ity issues in asynchronous crash-prone distributed systems and presents several ways
that have been proposed to circumvent these impossibilities. It then addresses the case
of crash-prone synchronous systems, and finally the case of crash-free systems.

2 Are Asynchronous Crash-Prone Distributed Systems Universal?

On the Notion of a Universal Construction. In sequential computing, computability is
understood through the Church-Turing’s thesis (namely, anything that can be computed,
can be computed by a Turing machine). Moreover, when considering the notion of a
universal algorithm encountered in sequential computing, such an algorithm “has the
ability to act like any algorithm whatsoever. It accepts as inputs the description of any
algorithm A and any legal input X, and simply runs, or simulates, A on X. [...] In a
sense, a computer [...] is very much like a universal algorithm.” [25].

Hence, the question: Is it possible to design a universal algorithm/machine on top
of an asynchronous crash-prone distributed system? As we are about to see, it happens
that, due the environment (asynchrony and process failures) of a distributed system,
and the fact that it cannot control it, distributed computability has a different flavor than
computability in sequential computing. Moreover, this is independent of the fact that
the communication is by read/write registers or message-passing.

Due to its very nature, distributed computing requires cooperation among the pro-
cesses. Intuitively, the computability issues come from the fact that, due to the net ef-
fect of asynchrony and failures, a process can be unable to know if another process
has crashed or is only slow (or equivalently if the channel connecting these processes is
slow). Moreover, this is true whatever the individual power of each process. To cite [30],
“It follows that the limits of computability reflect the difficulty of making decisions in
the face of ambiguity, and have little to do with the inherent computational power of
individual participants”.

A Universality Notion for Distributed Computing. A concurrent object is an object
that can be accessed by several processes. Let us consider a concurrent object Z defined
by a sequential specification on a set of total operations. An operation is total is, when
executed alone, it always returns a result. A specification is sequential, if all the correct
behaviors of the object can be described by sequences of operations.

The notion of universality we are interested in concerns the possibility to implement
any concurrent object such as Z , despite asynchrony and crashes. If it exists, such an
implementation, which takes the sequential specification of Z as input and builds a
corresponding concurrent object, is called a universal construction. This is depicted in
Fig. 1.

This copy belongs to 'VANC03'

212 M. Raynal

Sequential specification

of an object Z of object Z

Wait-free implementation
Universal construction

Fig. 1. From a sequential specification to a wait-free implementation

In some cases the object Z encapsulates a service which can be abstracted as a
state machine. A replication-based universal construction of such an object Z is usually
called a state machine replication algorithm [39]. Let us remark that the object Z could
also be a Turing machine.

On the Liveness Property Associated with the Constructed Object. Several liveness
properties can be associated with the constructed object Z . We consider here wait-
freedom [27]. The term “wait-freedom” has here a meaning different from the one used
in “wait-free model”. More precisely, it is here a progress condition for the operations
of the constructed objects Z , namely, it states that a universal construction satisfies the
“wait-freedom progress condition” if the invocation of an operation on Z by a process
can fail to terminate only if the invoking process crashes while executing the operation.
We say then (by a slight abuse of language) that the implementation is wait-free. This
means that the operation has to terminate even if all the processes, except the invok-
ing process, crash. Let us observe that a wait-free implementation prevents the use of
locks (a process that would crash after acquiring a lock could block the system, thereby
preventing wait-freedom).

Wait-freedom is the strongest possible progress condition that can be associated
with a universal construction (object implementation) in the wait-free model. Other
progress conditions suited to the wait-free model are obstruction-freedom [29] and non-
blocking [33]. (See chapter 5 of [51] for a guided tour on progress conditions.)

The Consensus Object. A consensus object is a one-shot concurrent object defined by
a sequential specification, that provides the processes with a single operation denoted
propose(v) where v is an input parameter (called “proposed value”). “One-shot” means
that, given a consensus object, a process invokes at most once the operation propose().
If it terminates, the operation returns a result (called “decided” value). This object can
be defined by the three following properties.

– Validity. If a process decides a value, this value has been proposed by a process.
– Agreement. No two processes decide different values.
– Termination. An invocation of propose() by a process that does not crash terminates.

Consensus-Based Universal Construction Several universal constructions based on
atomic registers and consensus objects have been proposed, e.g., [27] (see also chap-
ter 14 of [51]). In that sense, and as depicted in Figure 2, consensus is a universal object
to design wait-free universal constructions, i.e., wait-free implementations of any con-
current object defined by a sequential specification. This is depicted in Fig. 2, which
completes Fig. 1.

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 213

Wait-free implementation

Universal construction

Sequential specification

of an object Z

Atomic read/write registers

Consensus objects of object Z

Fig. 2. Universal construction from atomic registers and consensus objects

In a universal construction, consensus objects are used by the processes to build
a single total order on the operation invocations applied to the constructed object Z .
This is the method used to ensure that the internal representation of Z remains always
consistent, and is consequently seen the same way by all processes.

A Fundamental Result. One of the most important of the theoretical results of dis-
tributed computing is the celebrated FLP result (named after its authors Fischer, Lynch,
and Paterson) [17]), which states that no binary consensus object (a process can only
propose v ∈ {0, 1}) can be built in an asynchronous message-passing system whose
environment states that (even only) one process may crash.

To prove this impossibility result, the authors have introduced the notion of valence
associated with a global state (also called configuration). Considering binary consensus,
a global state is 0-valent (1-valent) if only 0 (1) can be decided from this global state;
0-valent and 1-valent states are univalent states. Otherwise, “the dice are not yet cast”,
and any of 0 or 1 can be still decided. This is due to the uncontrolled and unpredictable
behavior of the environment (i.e., asynchrony and failure pattern of the considered ex-
ecution). A decision step of a construction is one that carries the construction from
a bivalent state to a univalent state. The impossibility proof shows that (a) among all
possible initial states, there is a bivalent state, and (2) among all possible executions
in all possible environments, there is at least one execution that makes the construc-
tion always progress from a bivalent state to another bivalent state. It is easy to see
that, the impossibility to implement a consensus object is related to the impossibility to
break non-determinism (i.e., the impossibility to ensure that, in any execution, there is
eventually a transition from a bivalent state to a univalent state).

This message-passing result has then been extended to asynchronous systems in
which processes communicate only by reading and writing atomic registers instead of
sending and receiving messages [27,42].

Sequential vs Distributed Computing: A Computability Point of View. It follows
from the previous impossibility results that a network of Turing machines, that progress
asynchronously and where at most one may crash (which are two reasonable assump-
tions) connected by a message-passing facility, or a read/write shared memory, is com-
putationally less powerful than a single reliable Turing machine. As announced in the
first section, this shows that the nature of distributed computability issues is different
from the nature of Turing’s computability issues, namely, it is not related to the compu-
tational power of the individual participants.

The Notion of a Consensus Number of an Object. The notion of consensus number
of a concurrent object has been introduced by M. Herlihy [27]. The consensus number

This copy belongs to 'VANC03'

214 M. Raynal

of an object X is the largest integer n for which consensus can be be wait-free imple-
mented in a read/write system of n processes enriched with any number of objects X .
If there is no largest n, the consensus number is said to be infinite.

It is shown in [27] that the consensus numbers define an infinite hierarchy (hence
the name Herlihy’s hierarchy, or consensus hierarchy) where we have at levels 1, 2 and
+∞:

– Consensus number 1: read/write atomic registers, ...
– Consensus number 2: test&set, swap, fetch&add, stack, queue, ...
– Consensus number +∞: compare&swap, LL/SC, mem-to-mem swap, ...

Universal Objects in the Read/Write Wait-Free System Model. An object is univer-
sal in the asynchronous read/write wait-free n-process system model, if it allows for
the design of a wait-free universal construction in this system model (i.e., an algorithm
implementing any concurrent object defined by a sequential specification). It is shown
in [27] that any object with consensus number n is universal in a system of n (or less)
processes.

From Asynchronous Read/Write Systems to Asynchronous Message-Passing
Systems. The previous presentation was focused on asynchronous crash-prone systems
in which the processes communicate by reading and writing a shared memory. Hence,
the following question: are the impossibility results the same when the processes com-
municate by sending and receiving messages through a fully connected communication
network? This question translates immediately into the following one: While it is easy
to simulate the asynchronous wait-free message-passing system model on top of the
asynchronous wait-free read/write system model, is the simulation in the other direc-
tion possible?

Let us remind that t is a model parameter denoting the maximal number of processes
that may crash in an execution. It is shown in [3] that it is not possible to simulate
the asynchronous wait-free read/write model on top of the wait-free message-passing
model when t ≥ n/2. This is called the ABD impossibility (named after its authors
Attiya, Bar-Noy, Dolev).

The intuition that explains the ABD impossibility can be captured by what is called
an indistinguishability argument, which relies on the fact that, when t ≥ n/2, half
or more processes may crash in a run. More precisely, as any number of processes
may crash, it is possible to construct an execution in which the system “partitions” in
two set of processes such that, while there is no crash, the messages between the two
partitions take – in both directions– an arbitrarily long time, making the processes in
each partition believe that the processes in the other partition have crashed. The system
can then progress as two disconnected subsystems.

What is called in some papers [9,20] the “CAP theorem” (where CAP is a shortcut for
“Consistency, Availability, Partition-tolerance”) can be seen as an impossibility variant
combining the ABD and the FLP impossibilities. This theorem, proved in [20], states
that, when designing distributed services, it is impossible to design an algorithm that
simultaneously ensures the three previous properties.

Playing with Progress Conditions and Consensus Objects. The progress condition
called obstruction-freedom [29] is weaker than wait-freedom. It states that a process

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 215

that invokes an operation on an object is guaranteed to terminate its invocation only
when it executes alone for a “long enough period”.

The following asymmetric progress condition has been introduced in [35]. An object
satisfies (y, x)-liveness if it can be accessed by a subset of y ≤ n processes only, and
wait-freedom is guaranteed for x ≤ y processes while obstruction-freedom is guaran-
teed for the remaining y − x processes. Notice that, (n, n)-liveness is wait-freedom
while (n, 0)-liveness is obstruction-freedom. Among other results, it is shown in [35]
that it is impossible to build a (n, 1)-live consensus object from read/write atomic reg-
isters and (n− 1, n− 1)-live consensus objects. Formulated differently, this states that
wait-free consensus objects for (n−1) processes are not computationally strong enough
to implement a consensus object for n processes that ensures wait-freedom for only one
process (be this process statically or dynamically defined) and the very weak obstruc-
tion freedom progress condition for the other processes. Moreover, the paper also shows
that (n, x)-live consensus object with x < n has consensus number x+1, which thereby
establishes a hierarchy for (n, x)-liveness.

3 How to Circumvent Consensus Impossibility

As seen previously, one way to overcome consensus impossibility in a “pure” read/write
asynchronous system composed of n processes consists in enriching the system with an
object whose consensus number is equal to, or greater than, n. As simulating read/write
registers on top of an asynchronous system requires t < n/2, this approach does not
work for message-passing systems where t ≥ n/2. Let us also notice that there is no
notion of objects with a consensus number in message-passing.

As we are about to see, another approach (which works for both asynchronous
read/write systems and asynchronous message-passing systems) consists in enriching
the system with an oracle that provides processes with –possibly unreliable– informa-
tion on failures. This is the failure detector approach.

A third approach consists in restricting the set of possible input vectors (an input
vector is a vector –unknown to the processes– whose i-th entry contains the value pro-
posed by process pi). Hence, instead of enriching the system, this approach considers
only a predefined subset of input vectors.

Another type of oracle that can be added to asynchronous systems to circumvent
impossibility results, consists in allowing processes to use random numbers.

The Notion of an Unreliable Failure Detector. Failures detectors have been intro-
duced in [12]. From an operational point of view, a failure detector can be seen as a
set of n modules, each attached to a process. Failure detectors are divided into classes,
according to the particular type of information they give on failures. Different prob-
lems (impossible to solve in asynchronous crash-prone systems) may require different
classes of failure detectors. Two dimensions can be associated with failure detectors.

– The software engineering dimension of failure detectors. As any type of computer
science object (e.g., stack or lock), a failure detector class is defined by a set of
abstract properties, i.e., independently of the way these properties are implemented.

This copy belongs to 'VANC03'

216 M. Raynal

Hence, the design and the proof of an algorithm that uses a failure detector are based
only on its properties. The implementation of a failure detector is an independent
activity. The fact a failure detector can be implemented depends on additional be-
havioral properties that th environment has to satisfy.

– The ranking dimension of failure detectors. The failure detector approach makes
possible the investigation and the statement of the weakest information on failures
that allows a given problem to be solved [36]. This permits to rank the difficulty
of distributed computing problems, according to the weakest failure detector they
need to be solved. If C1 and C2 are the weakest failure detector classes to solve
the problems Pb1 and Pb2, respectively, and if C1 is “strictly stronger” than C2
(i.e., gives more information on failures than C2), then we say that Pb1 is “strictly
stronger” than Pb2. (The “strictly stronger” notion on failure detectors is a partial
order, and consequently some problems cannot be compared with the help of the
weakest failure detectors that allow them to be solved).

The Weakest Failure Detector to Solve Consensus in the Wait-Free Read/Write
Model. The weakest failure detector class to solve consensus in the wait-free read/write
model is denoted Ω. It has been introduced and proved to be minimal in [13]. Ω pro-
vides each process pi with a read-only local variable denoted leaderi that always con-
tains a process identity, and satisfies the following property: there is an unknown but
finite time τ after which the variable leaderi of all the non-faulty processes contain the
same identity, which is the identity of a non-faulty process.

It is important to notice that (a) there is no way for a process to know if time τ has
occurred, and (b) before time τ occurs, there is an anarchy period during which the
leader variables can have arbitrary values (e.g., some processes are their own leaders,
while the leaders of the others are crashed processes).

Several algorithms implementing Ω, each assuming specific behavioral properties
of the underlying system are described in Chapter 6 of [49]. So far, the best algorithm
implementing Ω is the one described in [16]. (“Best” means here “with the weakest
behavioral assumptions known so far”.)

The Notion of an Indulgent Distributed Algorithm. This notion has been introduced
in [21], and then investigated for consensus algorithms in [24], and formally character-
ized in [23]. It is on distributed algorithms that rest on failure detectors.

More precisely, a distributed algorithm is indulgent with respect to the failure de-
tector FD it uses to solve a problem Pb if it always guarantees the safety property
defining Pb (i.e., whatever the correct/incorrect behavior of FD), and satisfies the live-
ness property associated with Pb at least when FD behaves correctly. Hence, when
the implementation of FD does not satisfies its specification, the algorithm may not
terminate, but if it terminates its results are correct.

It is shown in [21] that all the failure detectors defined by an eventual property (“there
is a finite time after which ...”) are such that the algorithms that use them are indulgent.
Ω is such a failure detector. In addition to its theoretical interest, indulgence is very
important in practice. This follows from the observation that environments are usually
made up of long “stable” periods followed by shorter “unstable” periods. These periods
are such that the implementation of an “eventual” failure detector always satisfies its

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 217

specification during stable periods, while it does not during unstable periods. Hence,
the liveness property of an indulgent algorithm is ensured during the “long enough”
stable periods.

The Weakest Failure Detector to Simulate Read/Write on Top of Message-Passing.
We have seen that it is possible to simulate an asynchronous crash-prone read/write
system on top of an asynchronous crash-prone message-passing system only if t <
n/2 (let us remind that t denotes the maximal number of processes that may crash in
the considered model). As we have seen, intuitively this means that the system cannot
partition.

The weakest failure detector to simulate read/write on top of message-passing what-
ever the value of t, has been introduced in [14]. Denoted Σ, and called quorum failure
detector, it provides each process pi with a read-only local variable quorumi , which
is a set containing process identities, and is such that (a) the values of any two quo-
rums, each taken at any time, always intersect, and (b) the quorum of any non-faulty
process eventually contains only non-faulty processes. The intersection property (a) is
a perpetual property, while property (b) is an eventual property.

A simple proof of the minimality of Σ to implement a register on top of an asyn-
chronous message-passing system prone to any number of process crashes can be found
in [8]. A generalization of Σ to hybrid communication systems can be found in [34].
“Hybrid” means here that (a) all processes can communicate by sending and receiving
messages, and (b) the processes are statically partitioned into clusters and inside each
cluster the processes can communicate through read/write registers.

The Weakest Failure Detector to Solve Consensus in the Crash-Prone Message-
Passing Model. The weakest failure detector class to solve consensus in the wait free
(i.e., when t = n− 1) asynchronous message-passing model is the pair (Σ,Ω) [14].

If the system model is such that t < n/2, the weakest failure detector class to solve
consensus in a message-passing model is Ω [13]. As an exercise, the reader can design
a distributed algorithm that builds an atomic register in an asynchronous crash-prone
message-passing system model where t < n/2 (solutions in [8,14,49]).

Other Weakest Failure Detectors. It is shown in [36] that every distributed computing
problem, which can be solved with a failure detector, has a weakest failure detector.

As a simple example, it shown in [26] that the weakest failure detector to solve
the interactive consistency problem [47] is the perfect failure detector defined in [12].
As another example, [15] exhibits the minimum information about failures for solving
non-local tasks. (Roughly speaking, “tasks” in distributed computing corresponds to
“functions” in sequential computing. “Local” means here that each process can compute
its output from its input only.) The weakest failure detector to boost the obstruction-
freedom progress condition to wait-freedom is described in [22].

Restricting the Set of Input Vectors for the Consensus Problem. A totally different
approach to solve consensus in a read/write system in which up to t < n processes
may commit crashes has been proposed in [44]. This approach, called condition-based

This copy belongs to 'VANC03'

218 M. Raynal

approach, is related to error-detecting codes [19]. Intuitively an input vector “encodes”
a decided value, and the aim of a distributed condition-based consensus algorithm is to
“decode” it.

From a more operational point of view, it consists in favoring one of proposed values,
while ensuring that this value can be selected by all the processes that decide. To that
end, the “favored” value has to appear enough times in the input vector. As a simple
example, a condition (set of allowed input vectors) can favor the greatest value present
in a vector. To this end, the greatest value in each input vector has to appear at least
t+ 1 times.

Interestingly, the condition-based approach allows to establish a meeting point be-
tween computability in crash-prone asynchronous read/write systems and complexity
in crash-prone synchronous message-passing systems [45]. Namely, considering sys-
tems in which up to t processes may crash, the weakest condition that allows consensus
to be solved in an asynchronous read/write system is also the weakest condition that
allows consensus to be solved optimally (with respect to the number of rounds) in a
synchronous message-passing system.

Breaking Non-determinism with Random Numbers. Let us finally notice that ran-
dom numbers have been used to solve binary consensus [7]. (There are then algorithms
to go from binary consensus to multivalued consensus, both in asynchronous read/write
systems [51] and asynchronous message-passing systems [49].) Randomization is used
to break the non-determinism which makes the problem impossible to solve without
additional computational power.

The termination property of consensus has to be slightly modified to take into ac-
count randomization. The corresponding algorithms are round-based, and the termina-
tion property becomes: the probability that a non-faulty process has decided by round r
tends to 1 when r tends to +∞.

4 Examples of Objects That Can Be Wait-Free Implemented in
the Read/Write Wait-Free Model

This section presents two non-trivial objects which can be implemented in the asyn-
chronous read/write wait-free system model (i.e., in which any number of processes
may crash). It follows from the previous section that the synchronization and coop-
eration needed to wait-free implement these objects is relatively weak as it does not
require underlying consensus objects. The reader interested in a more global view on
objects which can be implemented in read/write systems prone to process crashes can
consult [32,51,57].

The Snapshot Object. Snapshot objects have been introduced in [1]. A snapshot object
is an array of registers A[1..n], where A[i] can be written only by pi. It provides the
processes with two operations. The first is a write that allows a process pi to write (only)
in A[i]. The second operation, denoted snapshot(), can be invoked by any process. It
returns the value of the whole array. Moreover, both operations are atomic, which means
that they appear as if they were executed instantaneously at some point of the time line,
each between its start event and its end event [33,40].

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 219

A snapshot object can be wait-free implemented in the asynchronous read/write sys-
tem model where any number of processes may crash (see for example [1,6,43,51]).
Hence, it adds no computational power. Its interest lies in the abstraction level (pro-
gramming comfort) it provides to programmers.

From a complexity point of view, the cost of an implementation of a snapshot object
is measured by the number of accesses to basic read/write atomic registers [5]. While
the cost of a write into its entry of the array A by a process is 1, the best algorithm
designed so far to implement the operation snapshot() is O(n log2 n). It is still an open
problem to know which is the lower bound associated with the implementation of such
an object.

The Renaming Object. This object is a one-shot object which has been introduced
in [4], in the context of message-passing systems in which a majority of processes are
assumed not to crash. It has then received a lot of attention in the context of read/write
wait-free systems (i.e., in systems where any number of processes may crash) [6,11,51].

It is assumed that each process pi has a name idi taken from a large name space,
whose size is N ; the subscript i is then called the index of pi. Initially a process knows
only n and its initial identity idi. The aim of a renaming object is to allow the pro-
cesses to obtain new names in a smaller new name space, whose size M is much
smaller than N . More precisely, an M -renaming object has a single operation denoted
new name(id) where the input parameter is the identity of the invoking process. An
invocation of new name() returns a new name to the invoking process. More precisely,
anM -renaming object is defined by the following properties.

– Validity. A new name is an integer in the set [1..M].
– Agreement. No two processes obtain the same new name.
– Index independence. ∀ i, j, if a process whose index is i obtains the new name v,

that process could have obtained the very same new name v if its index had been j.
– Termination. If a process invokes new name() and does not crash, it eventually

obtains a new name.

The index independence property states that, for any process, the new name obtained
by that process is independent of its index. This means that, from an operational point
of view, the indexes define only an underlying communication infrastructure, i.e., an
addressing mechanism that can be used only to access entries of shared arrays. Indexes
cannot be used to compute new names. This property prevents a process pi from choos-
ing i as its new name without any communication.

If only a (non-predetermined) arbitrary subset of processes invoke new name(), the
renaming object is size-adaptive. In that case, we haveM = f(p) where p is the number
of processes which invokes the object operation. On the contrary, if all the processes are
assumed to invoke new name(), the renaming object is not size-adaptive. In that case,
M = f(n).

The lower bound on the size of the new name space isM = 2p− 1 for size-adaptive
renaming. For renaming objects which are not size-adaptive, we have the following.
The bound is M = 2n− 1 [31], except for an infinity number of values of n for which
it is only known that M ≤ 2n − 2 [10] (this infinite set of values of n includes the
values that are not the power of a prime number).

This copy belongs to 'VANC03'

220 M. Raynal

5 On the Complexity Side: A Glance at Synchronous Systems

5.1 The Case of Crash-Prone Synchronous Systems

Synchronous distributed systems do not suffer the same kind of impossibility results as
the ones encountered in asynchronous systems. (As a simple example, these systems
are computationally strong enough to build a perfect failure detector [12].)

The nature of the impossibility results encountered in these systems is similar to the
nature of the impossibility results encountered in sequential computing. To illustrate it,
let us consider the consensus problem and three types of process failures: crash, send
or receive omission, and Byzantine failure.

A process commits a send (receive) omission failure if it “forgets” to send (receive)
messages. A process commits a general omission failure if it forgets to send or receive
messages. A process commits a Byzantine failure if its behavior does not respect the
algorithm it is supposed to execute. Moreover, for the consensus problem to be mean-
ingful in presence of Byzantine failures, its validity and agreement properties have to
be restricted as follows. Validity: If all the processes which are not faulty propose the
same value, no other value can be decided. Agreement: two non-faulty processes cannot
decide different values.

The following upper bounds on the model parameter t are attached to the consensus
problem in presence of process failures.

Process failure model Upper bound on t
crash failure t < n
send omission failure t < n
general omission failure t < n/2
Byzantine failure t < n/3

In all cases, the lower bound on the number of rounds that the processes have to
execute is t+ 1.

5.2 The Case of Crash-Free Synchronous Systems with a Message Adversary

The Notion of a Message Adversary. This notion has been introduced in [55,56] under
the name mobile fault. A message adversary is a daemon which, at every round, is
allowed to suppress messages. Of course, at any round, no process knows in advance
which are the links on which messages are suppressed during this round.

If the adversary cannot suppress messages, we have a reliable synchronous system.
If, at every round, it suppresses all messages, only local tasks can be computed (and
the system is no longer a distributed system). Hence, it is important to characterize an
adversary by a property defining its “worst behavior” during each round.

It has been shown in [2] that when the message adversary is constrained by a property
denoted TOUR (four tournament), the corresponding synchronous message-passing sys-
tem model and the asynchronous crash-prone read/write system model have the same
computational power for distributed tasks. The adversary TOUR is such that, in each
round, and for each pair of processes (pi, pj), the adversary is allowed to suppress the

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 221

message sent by pi to pj or the message sent by pj to pi, but not both. More general re-
sults connecting synchrony weakened by message adversaries vs asynchrony restricted
by failure detectors have been recently established in [53]. An adversary related to mes-
sage broadcast was introduced in [37].

More generally, the aim of message adversaries is to consider message losses as a
normal behavior and not as a faulty behavior from the underlying communication en-
vironment. This is strongly related to dynamic systems where processes are allowed to
move from a location to another location, thereby naturally modifying their neighboring
connections (e.g., [54]).

5.3 A Glance at Crash-Free Synchronous Systems with an Arbitrary Network

Crash-Free Synchronous Systems with an Unknown Network. This section dis-
cusses briefly synchronous systems in which the communication graph is connected
but is not a clique. Moreover, initially a process knows only its neighbors. It is easy to
see that if the number of rounds that the processes are allowed to execute is equal to the
network diameter, each process can learn all the inputs and then compute its result.

The Notion of Locality in Synchronous Systems. This notion has been introduced
in [41], and the associated LOCAL model has been investigated in [48]. The local-
ity notion has first been used to study complexity issues of distributed algorithms on
graphs, and has then addressed more general decision problems.

In a local algorithm, a process is restricted to collect data from other processes which
are at distance at most x (i.e., in at most x rounds), where x is smaller than the network
diameter.

The main question is then: given a distributed graph problem, is it possible to solve it
with a local algorithm? This question is fundamental from a scalability point of view. As
a simple example, the optimal vertex coloring problem is not local, while verifying if an
arbitrary vertex coloring is such that no two neighbor vertices have the same color can
be solved in one round. The interested reader will find in [18,38,41,46,48] complexity
results related to locality (associated with problems such as vertex coloring, minimum
independent set, minimum vertex cover, etc.).

6 Conclusion

The aim of this paper was to be a short introduction to decidability issues in distributed
computing. For more information the reader can consult the following books, some
parts of which address distributed computability issues.

– [6,43] are on distributed algorithms in both read/write and send/receive systems
where processes can commit failures.

– [51] is on algorithms in asynchronous shared memory systems where processes can
commit crash failures. It focuses on the construction of reliable concurrent objects
in the presence of process crashes.

– [57] is on synchronization in shared memory systems and associated complexity
bounds.

– [32] is on the design of concurrent objects in shared memory systems.

This copy belongs to 'VANC03'

222 M. Raynal

– [49] is on asynchronous message-passing systems where processes are prone to
crash failures. It presents communication and agreement abstractions for fault-
tolerant asynchronous distributed systems. Failure detectors are used to circumvent
impossibility results encountered in pure asynchronous systems.

– [50] is on synchronous message-passing systems, where the processes are prone to
crash failures, omission failures, or Byzantine failures. It focuses on the follow-
ing distributed agreement problems: consensus, interactive consistency, and non-
blocking atomic commit.

– [52] is on elementary distributed computing for failure-free asynchronous message-
passing systems.

– [48] is mainly on the LOCAL (synchronous) model and associated complexity
issues.

– [28] is an introduction to distributed computing based on combinatorial topology.

Acknowledgments. The author wants to thank his colleagues Carole Delporte, Hugues
Fauconnier, Eli Gafni, Damien Imbs, Achour Mostéfaoui, Sergio Rajsbaum, Julien
Stainer, and Gadi Taubenfeld for stimulating discussions on the nature, the power, and
the limits of distributed computing. He wants also to thank François Taı̈ani for con-
structive comments.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared
memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar, S., Shya-
masundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–239. Springer,
Heidelberg (2013)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing systems.
Journal of the ACM 42(1), 121–132 (1995)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous
environment. Journal of the ACM 37(3), 524–548 (1990)

5. Attiya, H., Ellen, F., Fatourou, P.: The complexity of updating snapshot objects. Journal of
Parallel and Distributed Computing 71(12), 1570–1577 (2010)

6. Attiya, H., Welch, J.L.: Distributed computing: fundamentals, simulations and advanced top-
ics, 2nd edn., 414 pages. Wiley-Interscience (2004) ISBN 0-471-45324-2

7. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement protocol.
In: Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC 1983), pp.
27–30. ACM Press (1983)

8. Bonnet, F., Raynal, M.: A simple proof of the necessity of the failure detector Σ to imple-
ment an atomic register in asynchronous message-passing systems. Information Processing
Letters 110(4), 153–157 (2010)

9. Brewer, E.A.: Pushing the CAP: strategies for consistency and availability. IEEE Com-
puter 45(2), 23–29 (2012)

10. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: The upper
bound. Journal of the ACM 59(1), Article 3, 49 pages (2012)

11. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared memory systems:
an introduction. Elsevier Computer Science Review 5, 229–251 (2011)

This copy belongs to 'VANC03'

What Can be Computed in a Distributed System? 223

12. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

13. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
Journal of the ACM 43(4), 685–722 (1996)

14. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Tight failure detection bounds on atomic
object implementations. Journal of the ACM 57(4), Article 22 (2010)

15. Delporte-Gallet, C., Fauconnier, H., Toueg, S.: The minimum information about failures for
solving non-local tasks in message-passing systems. Distributed Computing 24, 255–269
(2011)

16. Fernández, A., Jiménez, E., Raynal, M., Trédan, G.: A timing assumption and two t-resilient
protocols for implementing an eventual leader service in asynchronous shared-memory sys-
tems. Algorithmica 56(4), 550–576 (2010)

17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

18. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed
computing. Journal of the ACM 60(5), Article 35, 16 pages (2013)

19. Friedman, R., Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Asynchronous agreement and its
relation with error-correcting codes. IEEE Transactions on Computers 56(7), 865–875 (2007)

20. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

21. Guerraoui, R.: Indulgent algorithms. In: Proc. 19th ACM Symposium on Principles of Dis-
tributed Computing (PODC 2000), pp. 289–298. ACM Press (2000)

22. Guerraoui, G., Kapalka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. Distributed Computing 20(6), 415–433 (2008)

23. Guerraoui, R., Lynch, N.A.: A general characterization of indulgence. ACM Transactions on
Autonomous and Adaptive Systems 3(4), Article 20 (2008)

24. Guerraoui, R., Raynal, M.: The information structure of indulgent consensus. IEEE Transac-
tions on Computers 53(4), 453–466 (2004)

25. Harel, D., Feldman, Y.: Algorithmics, the spirit of computing, 572 pages. Springer (2012)
26. Hélary, J.-M., Hurfin, M., Mostéfaoui, A., Raynal, M., Tronel, F.: Computing global func-

tions in asynchronous distributed systems with perfect failure detectors. IEEE Transactions
on Parallel and Distributed Systems 11(9), 897–909 (2000)

27. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 13(1), 124–149 (1991)

28. Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed computing through combinatorial topol-
ogy, 336 pages. Morgan Kaufmann/Elsevier (2014) ISBN 9780124045781

29. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended
queues as an example. In: Proc. 23rd Int’l IEEE Conference on Distributed Computing Sys-
tems (ICDCS 2003), pp. 522–529. IEEE Press (2003)

30. Herlihy, M.P., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing shared
memory models. Theoretical Computer Science 509, 3–24 (2013)

31. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. Journal
of the ACM 46(6), 858–923 (1999)

32. Herlihy, M.P., Shavit, N.: The art of multiprocessor programming, 508 pages. Morgan Kauf-
mann (2008) ISBN 978-0-12-370591-4

33. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

34. Imbs, D., Raynal, M.: The weakest failure detector to implement a register in asynchronous
systems with hybrid communication. Theoretical Computer Science 512, 130–142 (2013)

This copy belongs to 'VANC03'

224 M. Raynal

35. Imbs, D., Raynal, M., Taubenfeld, G.: On asymmetric progress conditions. In: Proc. 29th
ACM Symposium on Principles of Distributed Computing (PODC 2010), pp. 55–64. ACM
Press (2010)

36. Jayanti, P., Toueg, S.: Every problem has a weakest failure detector. In: Proc. 27th ACM
Symposium on Principles of Distributed Computing (PODC 2008), pp. 75–84. ACM Press
(2008)

37. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: Proc.
42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 513–522. ACM Press
(2010)

38. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd
ACM Symposium on Principles of Distributed Computing (PODC 2004), pp. 300–309. ACM
Press (2004)

39. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

40. Lamport, L.: On inter-process communications, Part I: Basic formalism. Distributed Com-
puting 1(2), 77–85 (1986)

41. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1),
193–201 (1992)

42. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4, 163–183 (1987)

43. Lynch, N.A.: Distributed algorithms, 872 pages. Morgan Kaufmann (1996)
44. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on input vectors for consensus solv-

ability in asynchronous distributed systems. Journal of the ACM 50(6), 922–954 (2003)
45. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Synchronous condition-based consensus. Dis-

tributed Computing 18(5), 325–343 (2006)
46. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. 25th ACM Symposium

on Theory of Computing (STOC 1993), pp. 184–193. ACM Press (1993)
47. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal

of the ACM 27, 228–234 (1980)
48. Peleg, D.: Distributed computing, a locally sensitive approach. SIAM Monographs on Dis-

crete Mathematics and Applications, 343 pages (2000) ISBN 0-89871-464-8
49. Raynal, M.: Communication and agreement abstractions for fault-tolerant asynchronous dis-

tributed systems, 251 pages. Morgan & Claypool Pub. (2010) ISBN 978-1-60845-293-4
50. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems, 165 pages.

Morgan & Claypool Publishers (2010) ISBN 978-1-60845-525-6
51. Raynal, M.: Concurrent programming: algorithms, principles, and foundations, 530 pages.

Springer (2013) ISBN 978-3-642-32026-2
52. Raynal, M.: Distributed algorithms for message-passing systems, 515 pages. Springer, ISBN:

978-3-642-38122-5
53. Raynal, M., Stainer, J.: Round-based synchrony weakened by message adversaries vs asyn-

chrony enriched with failure detectors. In: Proc. 33rd ACM Symposium on Principles of
Distributed Computing (PODC 2013), pp. 166–175. ACM Press (2013)

54. Raynal, M., Stainer, J., Cao, J., Wu, W.: A simple broadcast algorithm for recurrent dynamic
systems. In: Proc. 28th IEEE Int’l Conference on Advanced Information Networking and
Applications (AINA 2014), 8 pages. IEEE Press (2014)

55. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.) STACS 1989.
LNCS, vol. 349, pp. 304–316. Springer, Heidelberg (1989)

56. Santoro, N., Widmayer, P.: Agreement in synchronous networks with ubiquitous faults. The-
oretical Computer Science 384(2-3), 232–249 (2007)

57. Taubenfeld, G.: Synchronization algorithms and concurrent programming, 423 pages. Pear-
son Education/Prentice Hall (2006) ISBN 0-131-97259-6

This copy belongs to 'VANC03'

Toward a System Design Science

Joseph Sifakis

RiSD Laboratory, EPFL, Lausanne, Switzerland
joseph.sifakis@epfl.ch

1 About Design

Design is a universal concept. It links the immaterial world of concepts to the
physical world. It is an essential area of human experience, expertise, and knowl-
edge, which deals with our ability to mold our environment to satisfy material
and spiritual needs.

Design has two different connotations. One is simply a plan or a pattern for
assembling objects constituting a given artifact. The other is the creative process
for devising plans or patterns and carrying them out to produce an artifact. For
this paper we focus on the second interpretation. We are ultimately interested
in putting design on a more scientific basis. Toward this end, we focus here on
articulating a new structure for the design process, which we believe will support
this goal.

We consider that design is the process that leads to an artifact meeting given
requirements. The requirements include functional requirements describing the
functionality provided by the artifact and extra-functional requirements dealing
with the way in which resources are used for implementation and throughout
the artifact’s lifecycle.

Designers deal with two often antagonistic demands: 1) productivity, mean-
ing cost-effectiveness; 2) correctness, meaning compliance to requirements. In
pursuit of these demands, the design process moves through three stages. The
first, requirements specification, describes the artifact’s expected behavior and
any applicable techno-economic constraints. The second, proceduralization, gen-
erates an executable description for realizing the anticipated behavior by exe-
cuting sequences of elementary functions. The third, materialization, produces
an artifact by following the procedure using the available physical resources. De-
sign is an essential component of any engineering activity. By its nature, it is a
“problem-solving process”.

As a rule, requirements are declarative. They are usually expressed in natural
languages. For some application areas, they can be formalized by using logics.
When requirements are expressed by logical specifications, they can be treated as
axioms; proofs that the artifact meets them can start from there. Proceduraliza-
tion can be considered as a synthesis problem: procedures are executable models
meeting the specifications. Unfortunately, model synthesis from logical require-
ments often runs into serious technical limitations such as non-computability or
intrinsically high complexity.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 225–234, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

226 J. Sifakis

Fig. 1. Design is a universal concept applicable from cooking to computing systems

What happens when requirements are uncertain? To deal with uncertainty,
engineers developed empirical approaches including requirements capture, incre-
mental prototyping, incremental testing, etc. Some of these are done with solid
science protocols focused on experimental design, data analysis, and hypothesis
testing. Others are much less formal and involve many rules of thumb based on
engineering experience. A design science would clarify the role of such empiri-
cal methods, and it would also address the issue of designing against uncertain
requirements.

Design formalization raises a multitude of deep theoretical problems related to
the conceptualization of needs in a given area and their effective transformation
into correct artifacts. So far, it has attracted little attention from theoreticians.
One reason is the predilection of the academic world for simple and elegant
theories. Another reason is that design is by nature multi-disciplinary. Its for-
malization requires consistent integration of heterogeneous models supporting
different levels of abstraction including logics, algorithms, programs, physical
system models, risk models, statements about user practices and statements
about esthetics.

Despite the challenges, providing systematic and well-founded design tech-
niques is of paramount importance for two reasons. The first is that we need
to construct artifacts of guaranteed quality and performance based on scientific
evidence. This is the case for airplanes, cars, critical resource management sys-
tems as well as for critical computing and communication infrastructure. The
second reason is the need to master as much as possible through automation the
complexity and development costs of increasingly sophisticated artifacts. This
need can be illustrated by numerous manufacturing setbacks experienced by the
aircraft industry e.g. the A380 delivery delay or recent safety concerns with
Boeing’s Dreamliner.

Ideas for “scientizing” design emerged in the beginning of the 60’s [1, 2].
There exists today an abundant literature on design science e.g. [3] and on design
science and computing, in particular [4–7]. In this paper, we present our view
about design science and propose a vision determining its scope and perimeter.

This copy belongs to 'VANC03'

Toward a System Design Science 227

2 Bringing Science to Design

Science is a disciplined and systematic method for building, organizing and using
knowledge about the world. We consider that scientific investigation intimately
combines two interdependent processes. The first process is descriptive and in-
tended to develop theory connecting some observed reality through abstractions
to the world of concepts and mathematics. The second process is prescriptive and
consists in applying a theory in order to assess its explicability and predictability
as well as to invent things that do not yet exist. Interaction and cross-fertilization
between these two processes is key to the progress of scientific knowledge. Today,
more than ever, the two processes are involved in an accelerating virtuous cycle
for the advancement of scientific knowledge.

The starting point in the scientific investigation cycle need not be observation.
The theory of relativity was motivated by a series of thought experiments rather
than direct observation. The development of computing as a scientific discipline
started from prior knowledge about computation based on mathematics and
logic.

We consider that design science studies design as a process for developing
artifacts meeting given requirements for trust, function, safety, reliability, es-
thetics, cost containment, etc. Our definition significantly differs from others in
the literature because it emphasizes the modeling-prediction cycle to support
the application of technical means to aid the design processes. Design science is
also concerned with deriving from the applied knowledge of the natural sciences
appropriate information in a form suitable for the designer’s use.

Inherent technical difficulties and limitations aggravate these problems.
Nonetheless, we believe that their analysis and formalization in a flow leading
from requirements to their materialization, can bring interesting insights about
the very nature of artifact creation. For many aspects of design it will be im-
possible to achieve full automation. The main benefit from a scientific approach
to design is rigor. Design can be sketched out as an iterative process consist-
ing of steps supported by a methodology. While guaranteeing the correctness of
designs may be an unattainable goal, a guarantee of accountability is realistic;
accountability means that at each design step it should be possible to know
which requirements hold, which ones do not hold and why.

3 Principles and Problems

We proposed a characterization of design science as a formal process encom-
passing the three stages of requirements expression, proceduralization and ma-
terialization. Each stage corresponds to a main type of problem to be solved by
designers. Next, we discuss four principles that should drive the definition of a
design process.

3.1 Four Driving Principles

Separation of Concerns. Design consistently integrates a sequence of three
stages: requirements specification, proceduralization and materialization.

This copy belongs to 'VANC03'

228 J. Sifakis

– Requirements express, usually in some declarative language, why we build
an artifact. They express intention and needs motivating the design.

– Proceduralization consists in discoveringwhat functionality should be ensured
by the designed artifact to meet functional requirements; then it provides a
procedure for composing atomic components, each component providing some
elementary function or service.

– Materialization defines how function components can be implemented by
using physical components. Implementation choices are driven by extra-
functional requirements which are mainly trade-offs between cost and
performance.

This three-stage decomposition is essential from a methodological point of
view. It allows complexity to be tamed as it clearly separates concerns (why,
what, how) by separately addressing three difficult problems. Furthermore, the
distinction between proceduralization and materialization allows artifacts to
be built providing the same functionality under different techno-economic con-
straints. This makes possible the development of families of artifacts with iden-
tical functional features and different performance and cost characteristics.

Each stage of a design process may be further decomposed into steps. At each
step, the designed artifact is described at a certain level of abstraction by using
an adequate modeling language. Each step progressively reduces abstraction by
replacing conceptual constructs and primitives by more concrete ones. The final
model is a blueprint for building the physical implementation.

Separation of concerns should be supported by an adequate design method-
ology. A design methodology identifies designer activities that can be supported
by state-of-the-art tools to automate tedious and error-prone tasks. It also pre-
cisely determines where human intervention and ingenuity are needed to resolve
design choices through requirements analysis and confrontation with experimen-
tal results. Identifying adequate design parameters and channeling the designers
creativity are essential in this enterprise. The interaction between designer and
supporting tools may involve iterations to eliminate design errors and determine
optimized solutions.

Semantic Coherency. Designers use a variety of languages for the description
of the behavior of the designed artifact at different abstraction levels. These
include declarative languages for expressing requirements, and procedural lan-
guages for modeling, simulation, and performance analysis. Designers use, above
all, domain-specific languages for example, for buildings, mechanical systems,
electric systems, control-based systems, hardware description languages, and
web-based systems.

Frequently, these languages only have informal semantics, which make it dif-
ficult not only to verify that the requirements capture their intended meanings,
but also to reconcile different models that are brought together in a design pro-
cess. This may be a source of design errors. To achieve semantic coherency, and
minimize those errors, all these languages must be rooted in a common semantic
model. The choice of the semantic model depends on the type of designed artifact
for example, geometric model, differential equations, or abstract machines.

This copy belongs to 'VANC03'

Toward a System Design Science 229

Semantic coherency enforcement may be completely transparent for the de-
signer. It can be handled by translation tools such as compilers, interpreters,
and model transformers.

A common semantic model is essential for rigor of design. It characterizes cor-
rectness through a semantic equivalence relation between artifact descriptions
in the different languages that appear in each design stage. An essential require-
ment for a common semantic model is that it directly encompasses primitives
and constructs of the hosted languages to avoid combinatorial explosion of the
translation [8].

Component-Based Construction. Building larger structures from smaller
components enhances productivity and correctness, and is essential in any de-
sign process. Components hide behavioral details behind interfaces that highlight
their interactions with their environment. They can be assembled into composite
components by partially composing their interfaces. Their semantics are defined
by stating the rules of the composite component in terms of the behaviors of
its constituent components. Component composition can use a large variety of
mechanisms expressing how the behaviors of the composed components are re-
stricted through mutual interaction.

Designers need a unified composition paradigm for describing and analyzing
coordination between components in terms of tangible, well-founded, and well-
organized concepts.

Correctness-by-Construction. Correctness means that a designed artifact
meets its requirements specifications. Many designers consider it an ideal to estab-
lish correctness by checking that a design, once completed,meets its specifications.
This ideal is usually impossible because automatic verification entails intractable
computations. The size of state space to be examined by a verification method
explodes exponentially with the number of components in the artifact. The best
we can do is limit automatic verification to small or medium size models and to
specific properties. Some researchers have investigated compositional verification
techniques, which aim to decompose a global requirement for a composite artifact
into sets of requirements for its constituent components. So far, compositional ver-
ification approaches have failed to make any significant breakthrough [9].

An alternative approach is to establish correctness-by-construction incremen-
tally, as you go along the design process, through the combined application of
three principles: property enforcement, property composability, and property
preservation.

Property enforcement: Property enforcement is very common in engineering.
Engineers extensively use principles for building complex artifacts from com-
ponents so as to meet given properties. These principles can be embodied in
patterns for buildings design or for software design, in communication protocols,
in distributed algorithms, in hardware or system architectures. They are solu-
tions to particular problems. For example, a communication protocol ensures
reliable message transmission despite packet losses. A token-ring algorithm en-
sures mutual exclusion in a distributed system. Client-server architectures ensure
atomicity of transactions and fault-tolerance. All these component coordination

This copy belongs to 'VANC03'

230 J. Sifakis

mechanisms can be reused provided they are adequately formalized. They allow
correctness almost for free.

Notice that property enforcement enables designers to ensure that compo-
sitions of components meet a specific global requirement. In contrast to com-
positional verification, it does not require breaking up the global requirement
into sub-requirements to be met by components. For example, we do not have
general compositionality theory for deadlock-freedom preservation. Nonetheless,
specific protocols or architectures may be used to build deadlock-free systems
from deadlock-free components.

Property composability: A key issue in this approach is maintaining coherence
while combining multiple existing solutions to specific problems. For example,
a database programmer might apply several instances of a lock algorithm, but
their multiple application may contain a deadlock. How does the designer know
that the combination of correct solutions might be unsafe?

Another illustration of this problem comes from fault-tolerant computing.
Fault-tolerant systems combine multiple methods for protection against invalid
actions, including: 1) triple modular redundancy mechanisms ensuring continu-
ous operation in case of single component failure; 2) hardware checks to validate
that programs use data only in their defined regions of memory; 3) default to
least privilege (least sharing) to enforce file protection; 4) checkpoints that per-
mit backing up to, and restarting from, a prior valid system state in case of
a failure. If we combine all these methods, how can we be sure there are no
unwanted interactions that make the system prone to new faults?

Guaranteeing non-interaction of features is essential for correct-by-
construction design. Violations of this principle invariably cause trouble. For ex-
ample, features of telecommunication systems frequently interact, causing user
confusion and misuse. Interference among web services and among features in
aspect programming are additional examples.

Property preservation: When a requirement holds for an artifact description at
some design step, it is essential that it remains valid at all subsequent steps. This
allows establishing correctness incrementally. Each new modeling step must not
invalidate correctness of previous steps. Artifact models are progressively built
by first ensuring validity of each functional requirement and then models are re-
fined to satisfy additional extra-functional requirements. Model refinement can
be characterized as a preorder relation between models. It can be implemented
through a set of model transformation rules. The demand for property preser-
vation means that these rules preserve the semantic equivalence of models.

3.2 Three Basic Problems

The three stages of the design process correspond to three types of basic prob-
lems. Their solution is aggravated by many factors including undecidability,
overwhelming algorithmic complexity, conceptual ambiguity, and physical un-
certainty. The objective is not to tackle these problems in their full generality
but rather to identify avenues for their partial solution in specific application
contexts by supporting the designer’s ingenuity with automation.

This copy belongs to 'VANC03'

Toward a System Design Science 231

Formalizing Requirements. Many design processes begin with an expres-
sion in a rigorous language that declares the needs to be met by an artifact
and the associated techno-economic constraints. Several difficulties obstruct full
formalization of requirements. Requirements are by their nature declarative;
thus logic is, in principle, an adequate framework for their expression. However,
requirements are initially expressed in natural languages, which usually allow
ambiguities. Ambiguities inhibit translation into a formal language, limiting the
designer’s ability to be systematic and rigorous. In addition, many requirements
are meant to describe the behavior of the artifact in context of its environment
including its potential users. Formalization of an artifact’s environment is no
easy task it must be done at the right abstraction level, accounting for all the
relevant behavioral properties. Today we lack theoretical approaches for tackling
this problem.

The concept of correctness conjoins two types of requirements: 1) trustwor-
thiness requirements ensuring that nothing bad could happen; 2) optimization
requirements for performance, cost-effectiveness, and tradeoffs between them.
Trustworthiness characterizes qualitative correctness. It means that the arti-
fact can be trusted, and that it will behave as expected. It accounts for non-
vulnerability to hazards such as: 1) design errors; 2) physical failures and defects;
3) interaction with potential users including erroneous use and threats; and 4)
interaction with the physical environment including disturbances and unpre-
dictable events.

Optimization requirements deal with the optimization of functions subject
to constraints involving resources used for implementing and using the artifact.
They deal with: 1) requirements on performance metrics such as throughput
and response time, which characterize how well the artifact does with respect to
user-defined criteria; 2) cost-effectiveness, which characterizes how well resources
are used with respect economic criteria; 3) tradeoffs between performance and
cost-effectiveness.

Trustworthiness and optimization requirements can be difficult to reconcile.
As a rule, improving trustworthiness causes wasted resources. Conversely, re-
source optimization may jeopardize trustworthiness. Designers try to balance
trustworthiness and optimization.

There is a limit to how far we can push a formal logic approach to require-
ments. The biggest problem is that users themselves often cannot articulate
their deep concerns about trust and performance. How can we formalize what
the customer cannot say? For example, with computer security, how can we be
exhaustive and precise about threats from unseen or unsuspected adversaries?
Here there is a real possibility that empirical approaches can help. We can build
prototypes of systems and ask users to try them out and tell us about good
points and problems. By systematically iterating between prototypes and cus-
tomer assessments, we can converge on a set of requirements that earn their
trust. The big challenge is to develop sound scientific methods for this process
and reconcile the experimental results with the mathematical models.

This copy belongs to 'VANC03'

232 J. Sifakis

Proceduralization. Proceduralization is a synthesis problem: find a proce-
dure that builds functionality meeting given requirements from a set of pre-
defined atomic components of known functional characteristics. Unfortunately,
most non-trivial instances of this problem are computationally intractable for
example, program synthesis from logical specifications.

A pragmatic approach for tackling this problem is to strive to bridge the gap
between declarative and procedural languages by working in two directions.

One direction is to raise the abstraction of languages to get them as close as
possible to the declarative style. This would simplify reasoning and relegate pro-
cedure generation to tools. Many approaches for enhanced abstraction propos-
ing logical, constraint-based, and functional description languages already exist.
They are equipped with interpreters or compilers that allow automatic synthesis
of procedural descriptions.

The other direction is to develop adequate domain-specific languages allow-
ing ease of description as well as enhanced safety and productivity. Examples
include Matlab/Simulink, HTML, Logo, SQL, BPEL and hardware description
languages.

Materialization. Materialization consists in exploring cost-performance trade-
offs among all the possible physical implementations of the desired functionality.
It involves extensive empirical evaluation and hypotheses testing to determine
designs better fitting cost-performance requirements. The exploration can be
performed on an adequate model obtained from the procedural description by
assigning to its elements models of functionally equivalent physical components.
In addition to their functionality, this transformation should take into account
physical characteristics, such as execution times, latency, and power consump-
tion. The obtained model should faithfully describe the dynamic behavior of the
artifact, including both the provided functionality and its global physical prop-
erties. A key issue to consider when building such models is their predictability
that is the degree to which their quantitative properties can be asserted. For
example, the materials laid down in layers during a 3-D print may not satisfy
the continuity assumptions of a mathematical model; experimental validation
of stress-bearing properties of those materials is essential. Building predictable
models raises deep theoretical problems [10] and requires a marriage of formal
methods and scientific validation methods.

Design space exploration techniques are intended to determine an optimal
assignment of physical components that fits the user-defined cost-performance
requirements. Currently, they are mostly ad hoc and consist in evaluating the
impact of design parameters on the requirements. The challenge for designs sci-
ence is to make the formal and experimental sides of design mutually compatible
and reinforcing.

Design space exploration allows estimating combinations of parameters that
better fit the requirements. The main challenge is the complexity of exploring
the design space. State-of-the-art techniques for overcoming complexity combine
symbolic representation of the design space and theoretical results for accelerat-
ing the exploration process [11].

This copy belongs to 'VANC03'

Toward a System Design Science 233

4 Toward a Design Science

Even though forty years have passed since the first seminal ideas about design
science, very little progress has been made toward defining its technical goals and
clarifying its scope and limits. It is time to develop technical work contributing
to the advancement of our knowledge about design as a universal paradigm
amenable to both scientific analysis and rigorous practice. In this essay we have
argued that design is a rigorous process involving the successive solution of three
types of problems. We proposed principles and associated scientific challenges
for putting design into practice.

We believe that achieving this goal is not only a matter of writing down
a theory of design, it will require hard work with semantic models, empirical
methods for dealing with uncertainty in requirements, flexibility for dealing with
changing environments, testing, automated materialization, and the maturing of
correct-by-construction principles. This vision is both intellectually challenging
and culturally enlightening. It is at least of equal importance as the quest for
scientific discovery in natural sciences.

Endowing design with scientific foundations is a huge intellectual challenge
that would meet an urgent demand for cost-effectively building complex, trust-
worthy artifacts. Failure in this endeavor, would seriously limit our capability to
master the techno-structure and its further development intended to address ur-
gent global challenges for optimal resource management and enhanced services.
It would also mean that designing is a definitely a-scientific activity [12] driven
by predominant subjective factors that make for ineffectual rational treatment.

Meeting this challenge would significantly enhance our capability to build
trustworthy artifacts, and would confirm that design is definitely a scientific
activity.

Acknowledgments. Peter Denning and Richard Snodgrass contributed to sig-
nificantly improving the paper through constructive comments and criticism.

References

1. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
2. Alexander, C.: Notes on the synthesis of form. Harvard University Press, Cam-

bridge (1964); Autres tirages: 1968, 1971
3. Cross, N.: Designerly ways of knowing: Design discipline versus design science.

Design Issues 17(3), 49–55 (2001)
4. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Q. 28(1), 75–105 (2004)
5. Winter, R., Zhao, J.L., Aier, S. (eds.): DESRIST 2010. LNCS, vol. 6105. Springer,

Heidelberg (2010)
6. Peffers, K., Rothenberger, M., Kuechler, B. (eds.): DESRIST 2012. LNCS,

vol. 7286. Springer, Heidelberg (2012)
7. Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. Com-

puter 40(10), 32–40 (2007)

This copy belongs to 'VANC03'

234 J. Sifakis

8. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

9. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.
Methodol. 17(2), 7:1–7:52 (2008)

10. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Syst. 28(2-3),
157–177 (2004)

11. Mohanty, S., Prasanna, V.K., Neema, S., Davis, J.: Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular sim-
ulation. In: Proceedings of the Joint Conference on Languages, Compilers and
Tools for Embedded Systems: Software and Compilers for Embedded Systems,
LCTES/SCOPES 2002, pp. 18–27. ACM, New York (2002)

12. Grant, D.: Design methodology and design methods. Design Methods and Theo-
ries 13(1) (1979)

This copy belongs to 'VANC03'

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 235–248, 2014.
© Springer-Verlag Berlin Heidelberg 2014

OpenMETA: A Model- and Component-Based Design
Tool Chain for Cyber-Physical Systems

Janos Sztipanovits1, Ted Bapty1, Sandeep Neema1,
Larry Howard1, and Ethan Jackson2

1 Institute for Software Integrated Systems (ISIS), Vanderbilt University
1025 16th Ave S, Suite 102, Nashville, TN 37212, USA

2 Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{sztipaj,sandeep,bapty,howardlp}@isis.vanderbilt.edu,
ejackson@microsoft.com

Abstract. Model- and component-based design have yielded dramatic increase
in design productivity in several narrowly focused homogeneous domains, such
as signal processing, control and aspects of electronic design. However, signifi-
cant impact on the design and manufacturing of complex cyber-physical sys-
tems (CPS) such as vehicles has not yet been achieved. This paper describes
challenges of and solution approaches to building a comprehensive design tool
suite for complex CPS. The primary driver for the OpenMETA tool chain was
to push the boundaries of the “correct-by-construction” principle to decrease
significantly the costly design-build-test-redesign cycles in design flows. In the
discussions we will focus on the impact of heterogeneity in modeling CPS. This
challenge is compounded by the need for rapidly evolving the design flow by
changing/updating the selection of modeling languages, analysis and verifica-
tion tools and synthesis methods. Based on our experience with the develop-
ment of OpenMETA and with the evaluation of its performance in a complex
CPS design challenge we argue that the current vertically integrated, discipline-
specific tool chains for CPS design need to be complemented with horizontal
integration layers that support model integration, tool integration and design
process integration. This paper will examine the OpenMETA technical ap-
proach to construct the new integration layers, provides and overview of the
technical framework we established for their implementation and summarize
our experience with their application.

Keywords: Model-Based Design, Component-Based Design, Cyber Physical
Systems, Design Automation, Model-Integrated Computing, Domain-Specific
Modeling Language, Model Integration Language.

1 Introduction

Model- and component-based design have been recognized as key technologies for
radically changing productivity of CPS design [1]. Model-based design uses formal and
sufficiently complete models of physical and computational processes, their environ-
ment and their interactions. These models are mathematically and physically accurate
for verifying and testing the behavior of the designed system against established

This copy belongs to 'VANC03'

236 J. Sztipanovits et al.

requirements. The main promise of model-based design is a significant decrease or eli-
mination of costly design-build-test-redesign iterations. The ultimate goal of model-
based design is “correct-by-construction”, where properties of the synthesized models of
the designed system predict the properties of the implemented/manufactured system
with sufficient accuracy.

Component-based design constructs systems from reusable components. A component
is the superposition of two models: a behavior model and an interaction model [2]. In a
model-based design flow, models of components are used for constructing valid system
models. The promise of component-based design is the potentially massive productivity
increase due to the reuse of design knowledge captured by the component models.

While model- and component-based design methods and tools have demonstrated
significant success in several engineering domains, such as VLSI design, electronics
design and specific segments of software design [6], success has been elusive for
CPS. Among the reasons are the following technical barriers.

1. Heterogeneity of CPS models. Heterogeneity in CPS design has several dimen-
sions such as physical phenomena, levels of abstraction used in modeling
physical and computational structures and processes, and engineering disciplines
involved in CPS design.

2. Heterogeneity of design tools. Tool chains that are used in traditional CPS design
flows are discipline oriented, vertically integrated and cover “islands” in the
overall design space. Integration across the tool suites is hard and usually not
supported.

3. Life-cycle heterogeneity. A unique aspect of CPS design is the significant impact of
manufacturing on system performance. In fact, design of the physical part of the sys-
tem needs to be integrated with the design of manufacturing processes that will
make those. Manufacturability constraints and properties of the system “as manufac-
tured” require tradeoffs with the design even in the early conceptual design phase.

Separation of concerns is a widely used strategy to deal with heterogeneity in the
design process. Its goal is to decrease design complexity by decomposing the overall
design problem according to physical phenomena (electrical, mechanical, thermal,
structural, etc…), level of abstraction (static, lumped parameter dynamics, distributed
parameter dynamics, etc…) or engineering discipline (performance, systems engi-
neering, software engineering, manufacturing, etc…). Consequences of this design
strategy are quite significant both in terms of weakening the opportunity for correct-
by-construction design, as well as performing cross-domain optimizations in CPS
design flows. The chief reason is that discipline oriented design flows usually miss
modeling interactions/interdependences among the various design views. The ap-
proach would work if the design concerns were orthogonal, but in tightly coupled
CPS this is not the case. The price of the simplification is decreased predictability of
properties of the implemented CPS and costly re-design cycles.

In 2010, the Defense Advanced Research Project Agency (DARPA) initiated the
Adaptive Vehicle Make (AVM) program1 to construct a fully integrated model- and

1 http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_
 Vehicle_Make__(AVM).aspx

This copy belongs to 'VANC03'

 OpenMETA: A Model- and Component-Based Design Tool Chain 237

component-based design flow for the “make” process of complex cyber-physical
systems (CPS) [1]. The resulting integrated tool suite, OpenMETA, provides a manu-
facturing-aware design flow, which covers both cyber and physical design aspects. In
order to test and demonstrate the capabilities of the new design flow and the inte-
grated tool suite in a real-life system, the AVM program also includes the Fast,
Adaptable, Next-Generation Ground Vehicle (FANG) design challenge sequence2.
While the target system for the AVM program is ground vehicle, the created infra-
structure for model- and component-based design is generic and targets radical
changes in the overall “make” process of large CPS systems. Through our work in
leading the research on the open-source design tool suite, OpenMETA, the open-
source model exchange and web-based collaborative design environment, Vehicle-
Forge, and the curation effort for the FANG component model library, we had the
opportunity to gain experience with the challenges of using model- and component-
based design methods in large-scale CPS.

In this paper we focus on the impact of heterogeneity on the OpenMETA tool ar-
chitecture. We argue that the primary barriers to apply model- and component-based
design flows for CPS are the lack of the following three integration frameworks:

1. Model Integration Framework. Model integration is required for expressing inte-
ractions across modeling domains - creating the need for multi-modeling. Semantic
heterogeneity of domain specific modeling languages (DSMLs) used in different
modeling views and the fact that DSMLs in CPS subdomains evolve more or less
independently, further add to the modeling language and model integration challenge.
The overall semantic complexity of CPS modeling domains and the differences
among CPS product categories make the development and standardization of some
form of unified CPS multi-modeling languages impractical. Instead, a different solu-
tion is needed that enables the semantically sound integration of modeling domains.

2. Tool Integration Framework. End-to-end tooling for complex CPS product lines
such as automotive and aerospace systems is too heterogeneous and extends to too
many technical areas for a single tool vendors to fully cover. In addition, significant
part of the companies’ design flow is supported by in-house tools that are proprietary
and capture high value design IP. Integration of end-to-end tool chains for highly
automated execution of design flows is such a complex task that successful examples
are hard to find – even after massive investment by OEMs. Change demands robust
tool integration frameworks that go well beyond the semantically weak and necessari-
ly fragile ad-hoc connection among tools.

3. Execution Integration Platform. The dominant approach in current tool suites is
desktop integration using platforms such as Microsoft’s Visual Studio3, or Eclipse4.
However, overall complexity and heterogeneity of CPS tool chains increasingly de-
mand the use of software as a service (SaaS) models, web-based tool integration

2 http://www.darpa.mil/Our_Work/TTO/Programs/AVM/
 AVM_Design_Com petitions_(FANG).aspx
3 http://www.visualstudio.com/
4 http://www.eclipse.org/

This copy belongs to 'VANC03'

238 J. Sztipanovits et al.

platforms, high performance cloud-based back-ends for model repositories and web-
based distributed collaboration services.

The rest of the paper has the following structure. First, we provide an overview of
the three layers and their relationships. Next, we analyze the challenges and lessons
learned in the design and implementation of the Model Integration Framework and
show the significance of Model Integration Languages in CPS design flows. Finally
we discuss application experience and summarize the ongoing research efforts.

2 OpenMETA Integration Layers

Achieving the goal of “correct-by-construction” design requires that models and anal-
ysis methods in the design phase predict with the required accuracy the behavior of
the designed system. Our approach to improve the predictability of design has been
the explicit modeling of multi-physics, multi-abstraction and multi-fidelity interac-
tions and providing methods for composing heterogeneous component models.

The OpenMETA design flow is implemented as a multi-model composi-
tion/synthesis process that incrementally shapes and refines the design space using
formal, manipulable models [3][19]. The model composition and refinement process
is intertwined with testing and analysis steps to validate and verify requirements and
to guide the design process toward the least complex, therefore the least risky and
least expensive solutions. The design flow follows a progressive refinement strategy,
starting with early design-space exploration covering very large design spaces using
abstract, lower fidelity models and progressing toward increasingly complex, higher
fidelity models and focusing on rapidly decreasing number of candidate designs.

Fig. 1. Figure 1: OpenMETA integration frameworks

1/13/2014

Master Interpreter

Components Designs
Design
Spaces

Test
Benches

Parametric
Explorations

PET/PCC
Generator

Modelica
CAD
CFD
FEA

Blast
Ballistics

Formal
Verif.

. . .

.py files.mo
.cmd

.xml

.cmd
.xml
.cmd

.mo
.json
.cmd

. . .

Execution Integration
Platform

Job Manager
(client application)

Local VehicleForge Jenkins

Project Analyzer – Dashboard
(offline or online; runs in a web browser)

Remote

used used used used

File system and/or on VehicleForge .mat
.json

.stp
.asm
.xml

.json

.stp
.asm
.xml

.json

.xml
.json

. . .
.csv

.json

Dymola

Open
Modelica

Creo
OpenFO

AM
Nastran

SwRI
tools

QR
HybridSa

l
. . . OpenMDAO

Perform
analysis

Tool Integration Framework

Component
Generator

Design
Generator

.ACM files .ADM files

Model Integration Framework
Modeling &

Model- Synthesis

Results storage

Visualization
of results

This copy belongs to 'VANC03'

 OpenMETA: A Model- and Component-Based Design Tool Chain 239

The META design flow proceeds in the following main phases:

1. Combinatorial design space exploration using static finite domain constraints and
architecture evaluation.

2. Behavioral design space exploration by progressively deepening from qualitative
discrete behaviors to precisely formulated relational abstractions and to quantita-
tive multi-physics, lumped parameter hybrid dynamic models using both deter-
ministic and probabilistic approaches.

3. Geometric/Structural Design Space Exploration coupled with physics-based non-
linear finite element analysis of thermal, mechanical and mobility properties.

4. Cyber design space exploration (both HW and SW) integrated with system
dynamics.

As discussed before, automation of the design flow leads to complex integration
challenges that we decomposed into three integration layers shown in Figure 1. Ele-
ments of the framework reflect primarily the FANG drive-train challenge, but the
basic structure of the integration architecture remains the same for the hull design
challenge as well, with larger emphasis on 3-D/CAD tools and a range of finite ele-
ment analysis for verifying blast protection and hydrodynamic requirements.

In the following sections we describe each integration framework with more em-
phasis on model integration.

3 Model Integration Framework – Semantic Integration

The modeling and model-synthesis functions of the OpenMETA design flow is built
on the introduction of the following model types:

1. AVM Component Models (ACM) with standard, composable interfaces
2. Design Models (DM) that describe component architectures and related

constraints
3. Design Space Models (DSM) that define structural and architectural variabilities
4. Test Bench Models (TBM) representing environment inputs, composed system

models connected to a range of testing and verification tools for key performance
parameters, and

5. Parametric Exploration Models (PEM) for specifying regions in the design space
to be used for optimization and models for complex analysis flows producing re-
sults such as Probabilistic Certification of Correctness (PCC).

In META, as well as in all other approaches to model-based design, modeling lan-
guages and their underlying semantics play a fundamental role in achieving composi-
tionality. Heterogeneity of the multi-physics, multi-abstraction and multi-fidelity
design space, and the need for rapidly evolving/updating design flows require the use
of a rich set of modeling languages usually influenced/determined by existing and
emerging model-based design, verification and simulation technologies and tools.
Consequently, the language suite and the related infrastructure cannot be static; it will
continuously evolve. To address both heterogeneity and evolvability simultaneously,

This copy belongs to 'VANC03'

240 J. Sztipanovits et al.

we departed from the most frequently used approach to address heterogeneity: the
development or adoption of a very broad and necessarily hugely complex language
standard designed for covering all relevant views of a multi-physics and cyber
domains. Instead, we placed emphasis on the development of a model integration
language – CyPhyML – with constructs limited to modeling the interactions among
different modeling views (see Figure 2).

3.1 Model Integration Language and Semantic Interfaces

CyPhyML targets multi-modeling – it advances multi-modeling from a mere “ensem-
ble” of models to a formally and precisely integrated, mathematically sound suite of
models. Integration of the modeling language suite by CyPhyML is minimal in a
sense that only those abstractions that are imported from the individual languages to
CyPhyML are those required those for modeling cross-domain interactions. Since the
suite of engineering tools is changing and the modeling languages of the individual
tools (such e.g. Modelica) evolve independently from the model integration frame-
work, CyPhyML is constructed as a light-weight, evolvable, composable integration
language that is frequently updated and morphed. While these DSMLs may be indivi-
dually quite complex (Modelica, Simulink, SystemC, etc.) ChyPhyML is relatively
simple and easily evolvable. This “semantic interface” between CyPhyML and the
domain specific modeling languages (DSML) (Figure 2) is formally defined, evolved
as needed, and verified for essential properties (such as well-formedness and consis-
tency) using the methods and tools of formal metamodeling [4][7]. By design, Cy-
PhyML is moving in the opposite direction to unified system design languages, such
as SySML or AADL. Its goal is specificity as opposed to generality, and heavy
weight standardization is replaced by layered language architecture and specification
of explicit semantics.

Fig. 2. Model Integration Framework

CyPhy
MetaModels

SL/SF Int.
MetaModel

CAD Integration
MetaModel

CAD Integration
MetaModel

Semantic
Interface

Domain Specific Tools and Frameworks

Pro-E Dymola

Integration
MetaModels

CyPhy
SL/SF

CyPhy
 SEER

CyPhy
 CAD

Semantic
Backplane

A
V
M

O
P
E
N
M
E

T
A

Model Integration Language - CyPhyML
Hierarchical Ported Models /Interconnects
Structured Design Spaces
Model Composition Operators

Structural
Semantics

Transformation
Semantics

Behavioral
Semantics

This copy belongs to 'VANC03'

 OpenMETA: A Model- and Component-Based Design Tool Chain 241

3.2 Semantic Backplane of Open META

The “cost” of introducing a dynamic model integration language is that a mathemati-
cally precise formal semantics for model integration had to be developed. The
OpenMETA Semantic Backplane [4][22][23] is at the center of our semantic integra-
tion concept. The key idea is to define the structural [5] and behavioral semantics [8]
of the CyPhy model integration language using formal metamodeling, and use a tool
supported formal framework for updating the CyPhy metamodels and verifying its
overall consistency and completeness as the modeling languages are evolving. The
selected tool for formal metamodeling is FORMULA5 from Microsoft Research [10].
FORMULA’s algebraic data types (ADTs) and constraint logic programming (CLP)
based semantics is rich enough for defining mathematically modeling domains, trans-
formations across domains, as well as constraints over domains and transformations.
In the followings we provide a brief summary of the basic elements of the mathemati-
cal framework used in the Semantic Backplane.

Structural semantics of modeling languages represents the domain of well-formed
models [5]. Domains are modeled as a term algebra whose function symbols charac-
terize the key sets and relations through uninterpreted functions. A syntactic instance
of some structural semantics is a finite set of terms over its term algebra TΥ(Σ), where
Σ is an infinite alphabet of constants, Υ is a finite set of n-ary function symbols (sig-
nature) standing for uninterpreted functions, and the algebra is inductively defined as
the set of all terms that can be constructed from Σ and Υ. A syntactic instance of some
structural semantics is a finite set of terms over its term algebra TΥ(Σ).The set of all
syntactic instances is then the power set of its term algebra: P(TΥ(Σ)).

To avoid the many unintended instances of the syntax of a modeling language,
FORMULA enriches term algebra semantics with types by reconstructing Σ as the
union of smaller alphabets and alphabets are ordered by set inclusion. Structural se-
mantics often contain complex conformance rules; these rules cannot be captured by
simple-type systems. One common solution to this problem is to provide an addition-
al constraint language for expressing syntactic rules such as the Object Constraint
Language (OCL). Unlike other approaches, FORMULA choose Constraint Logic
Programming (CLP) to represent syntactic constraints because it can extend term
algebra semantics while supporting declarative rules and unlike purely algebraic spe-
cifications it provides a clear execution semantics for logic programs making it poss-
ible to specify model transformations in the same framework. FORMULA supports a
class of logic programs with the following properties: (1) expressions may contain
uninterpreted function symbols, (2) the semantics for negation is negation as finite
failure, (3) all logic programs must be stratified and (4) supports fixpoint logic over
theories [13][14].

Expressiveness of the formal framework discussed up to this point is sufficient for
formalizing structural semantics, but does not support yet the specification of beha-
vioral semantics. Since multi-physical modeling of systems requires modeling lan-
guages for continuous (DAE, PDE), discrete and hybrid dynamics, semantics need
to be defined both denotationally and operationally [4]. Fortunately, the key to

5 http://research.microsoft.com/formula

This copy belongs to 'VANC03'

242 J. Sztipanovits et al.

formalization in both cases is the development of precise specification of model trans-
formations. In addition, formal modeling of model transformation are fundamental in
all design automation frameworks, because they are used pervasively in integrating
tool chains. In the OpenMETA Semantic Backplane, model transformations are en-
coded as logic programs where data types distinguish the inputs and outputs of the
transformation [10]. For example:

Filter = out.MetaNode(x) :- in.MetaNode(x).

The constructor in.MetaNode() stands for primitives at the input of the transforma-
tion. Similarly, out.MetaNode() stands for primitives on the output of the transforma-
tion. A transformation is executed by providing an interpretation for the input
primitives, and then computing the output primitives according to the CLP semantics.
Specifying model transformations in the same CLP framework has fundamental ad-
vantages in allowing reasoning over the fully integrated representation of the input
and output domains (e.g. proving that selected invariants will hold before and after the
transformation).

While ADTs and CLP are sufficient for defining complex modeling domains and
transformations, consistency checking and constructive modeling (model finding)
[10] require the generation of automatic proofs from formal specifications by solving
CLP satisability problems. Satisfiability is different from checking satisfaction of
goals that be solved by simply running a logic program. It is to determine if a CLP
program can be extended by a finite set of facts so that a goal is satisfied [9][16]. It
requires searching through (infinitely) many possible extensions, which we achieve
by efficient forward symbolic execution. FORMULA achieves this by efficient for-
ward symbolic execution of logic program into the state-of-the-art satisfiability mod-
ulo theories (SMT) solver Z3 [15]. As a result, specifications can include variables
ranging over infinite domains and rich data types (partial models). The method is
constructive; it returns extensions of the CLP program witnessing goal satisfaction.
An interesting application of this capability is design-space exploration [12].

The Model Integration Framework of OpenMETA (Figure 1) currently includes a
large suite of modeling languages and tools for multi-physics, multi-abstraction and
multi-fidelity modeling such as OpenModelica, Dymola, Bond Graphs, Simu-
link/Stateflow, STEP, ESMOL and many others. The CyPhyML model integration
language provides the integration across this heterogeneous modeling space and the
FORMULA - based Semantic Backplane provides the semantic integration for all
OpenMETA composition tools.

4 Tool Integration Framework

The OpenMETA Tool Integration Framework (see Figure 1) comprises a network of
model transformations that compose models for individual tools (e.g. Modelica mod-
els from ChyPhyML design models and component models) and integrate model-
based design flows. Model-transformations are used in the following roles:

This copy belongs to 'VANC03'

 OpenMETA: A Model- and Component-Based Design Tool Chain 243

1. Packaging. Models are translated into a different syntactic form without chang-
ing their semantics. For example, AVM Component Models and AVM Design
Models are translated into standard Design Data Packages (Figure 1, .ACM and
.ADM files) for consumption by a variety of design analysis, manufacturability
analysis and repository tools.

2. Composition. Model- and component-based technologies are based on composing
different design artifacts (such as DAE-s for representing lumped parameter dy-
namics as Modelica equations [23], input models for verification tools [25], CAD
models of component assemblies [19], design space models [25], and many oth-
ers) from appropriate models of components and component architectures.

3. Virtual prototyping. Several test and verification methods (such as Probabilistic
Certificate of Correctness – PCC) require test benches that embed a virtual proto-
type of the designed system executing a mission scenario in some environment
(as defined in the requirement documents). We found distributed, multi-model
simulation platforms the most scalable solution for these tests. We selected the
High Level Architecture (HLA) as the distributed simulation platform and inte-
grated FMI Co-Simulation components with HLA [26].

4. Analysis flow. Parametric explorations of designs (PET), such as analyzing ef-
fects of structural parameters (e.g. length of vehicle) on vehicle performance, or
deriving PCC for performance properties frequently require complex analysis
flows that include a number of intermediate stages. Automating design space ex-
plorations require that Python files controlling the execution of these flows on the
Multidisciplinary Design Analysis and Optimization (OpenMDAO6) platform
(that we currently use in OpenMETA) are autogenerated from the test bench and
parametric exploration models (Figure 1).

Continuous evolution of the OpenMETA design flow makes it essential that the
modeling tool suite for ChyPhyML is metaprogramable [4][17][20][18] and all model
transformations used in the Composition Framework are formally specified as part of
the Semantic Backplane. We believe that the lack of these capabilities are significant
contributors to the failure of numerous large-scale model and tool integration efforts,
due to the fact that semantic errors are all but impossible to detect without formal
models.

Advantages of the Semantic Backplane and the logic-based formal framework is
particularly important in the specification of composition semantics for mixed, multi-
physical and computation modeling. For physical interactions, we chose acausal,
power flow oriented modeling (e.g. Modelica, Simscape or Bond Graph modeling
languages). In this approach, safe modeling of multi-physics interactions require rich
typing for expressing and enforcing connectivity constraints. Beyond these static
constraints, the semantics of acausal physical interconnections are expressed using
algebraic constraints over the effort and flow variables [3]. This leads to a formal
composition semantics that is simply the merging of the DAE equations representing
component behaviors with the interconnection constraints [4]. Since our logic-based
formal framework is expressive enough for describing typing and variables ranging

6 http://openmdao.org/

This copy belongs to 'VANC03'

244 J. Sztipanovits et al.

over infinite domains and r
notationally is quite straight

5 Execution Integ

The OpenMETA model an
creating and executing com
nents. Our Analysis and E
cloud-deployed services suc
engine, collaboration mecha
tion and data analytics. Ou
program is essentially a gat
which are collocated. A cen
access to these resources wi
lution. An essential aspe
model. It allows the low-c
larger companies) to reposi
high cost of acquiring and m

Fig. 3. V

Two key aspects of sust
source elasticity and servic
tion. This is a fundament
dynamism of demand for v
haps more vital aspect, is
their use by services and ser

rich data types), description of composition semantics
tforward in FORMULA.

ration Platform

nd tool integration technology needs an infrastructure
mplex analysis flows including heterogeneous tool com
Execution Framework (Figure 1) includes a wide range
ch as component model repositories, ontology driven sea
anisms, and cloud-deployed tools for design space explo
ur VehicleForge platform developed for DARPA’s AV
teway to shared resources and integrated services, not al
ntral aim was to provide users secure and centrally mana
ithout the responsibility to individually respond to their e
ct of VehicleForge is its “software-as-a-service” deliv
ost access of end users (individuals, research groups,
itories, analytic services and design tools, without the v

maintaining desktop engineering tools.

VehicleForge Execution Integration Platform

tainability are addressed by this platform. The first is
e staging to address scalability and system-wide optimi

tal cloud computing rationale, which is predicated on
various forms of infrastructure over time. The second, p
managing the evolution of data, data representations,
rvice integrations over time.

de-

for
mpo-
e of
arch
ora-
VM
ll of
aged
evo-
very
and

very

 re-
iza-
the

per-
and

This copy belongs to 'VANC03'

 OpenMETA: A Model- and Component-Based Design Tool Chain 245

6 Lessons Learned

The first release of the OpenMETA tool suite capable of model-based compositional
design, design-space exploration, multi-physics analysis and virtual performance
testing was used during the FANG Mobility/Drivetrain Challenge from January15 to
April 15, 2013. During this competitive design event, over 1000 competitors orga-
nized into over 250 teams worked to design the drivetrain, suspension, propulsion
elements and associated subsystems for FANG. The FANG component of the AVM
program is currently building the winning design using the capabilities of the AVM
program foundry, iFAB. Our team is currently expanding the OpenMETA tool suite
with modeling and analysis capabilities required for hull design with strong focus on
blast protection, structure, and fluid dynamics. This is preparation for the upcoming
hull design challenge in February 2014.

Our work in the AVM program yields to two different kinds of results. First, we
have created an end-to-end integrated tool suite, OpenMETA, that is now slated for
transitioning to both the industry and the academic research communities. To ease
transitioning and enable continued community-based development of OpenMETA,
most of the tools integrated into the tool suite are open source with liberal BSD or
MIT licensing. The second result is the insight we gained regarding promising direc-
tions and open problems in model- and component-based design. Below we list three
essential points we have identified.

1. Horizontal integration layers. CPS companies face immense pressures to deliver
safe and complex systems at low cost. End-to-end tooling for CPS industries is
too heterogeneous and spans too many technical areas for any single tool vendor
to fully support. In addition, CPS companies must develop, maintain and inte-
grate in-house, proprietary tools to remain competitive. Consequently, integration
of models and modeling languages in design flows, integration of tools into tool
chains capable for the highly automated execution of design processes have
emerged as a major challenge. Ad-hoc integration of models, tools and automated
analysis threads is fragile, intractable, error prone and extremely costly. An es-
sential insight of OpenMETA is that horizontal integration layers are fundamen-
tally important in end-to-end CPS design flows. Their complexity requires the
establishment of integration frameworks that provide the foundations and reusa-
ble, high-complexity components for rapid integration and evolution of CPS de-
sign tool chains.

2. Component model repositories. Component models capture reusable design
knowledge, therefore model repositories play crucial role in improving design
productivity. AVM components contain a suite of modeling views and their inte-
ractions: static properties, structural, behavioral, geometric, cyber on multiple le-
vels of fidelity. Selected abstractions of these modeling views are exposed via the
components’ semantic interfaces for composition. Building reusable, composable
model libraries requires deep domain understanding and semantic rigor. Open re-
search topics include hard problems such as formal relationship among modeling
abstractions, establishing multiple fidelity levels, and understanding methods for
representing and managing uncertainties.

This copy belongs to 'VANC03'

246 J. Sztipanovits et al.

3. Goal-driven model composition. In real-life CPS, model composition methods
frequently lead to extremely large models. For example, composition of lumped
parameter physical dynamics easily produces models including tens of thousands
of equations with algebraic loops and non-linearities. A common problem is that
simulation and verification tools do not scale to this complexity. The most prom-
ising research direction we identified is goal directed composition, that composes
models according to the system property under study.

Acknowledgements. Authors are grateful for the advice and directions they received
from Prof. Joseph Sifakis and Prof. Alberto Sangiovanni-Vincentelli, members of the
Senior Strategy Group of the program. The OpenMETA and VehicleForge projects
involve a large group at ISIS/Vanderbilt. Authors recognize the exceptional contribu-
tions of Zsolt Lattman, Adam Nagel, Jason Scott to OpenMETA. This research is
supported by the Defense Advanced Research Project Agency (DARPA) under award
HR0011-12-C-0008 and the National Science Foundation under award # CNS-
1035655.

References

1. Eremenko, P.: Philosophical Underpinnings of Adaptive Vehicle Make. DARPA-BAA-12-
15. Appendix 1 (December 5, 2011)

2. Gossler, G., Sifakis, J.: Composition for component-based modeling. Science of Computer
Programming - Formal Methods for Components and Objects Pragmatic Aspects and Ap-
plications 55(1-3), 161–183 (2005)

3. Lattmann, Z., Nagel, A., Scott, J., Smyth, K., van Buskirk, C., Porter, J., Neema, S., Bapty,
T., Sztipanovits, J.: Towards Automated Evaluation of Vehicle Dynamics in System-Level
Design. In: Proceedings of the ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2012,
Chicago, IL, August 12-15 (2012)

4. Simko, G., Levendovszky, T., Neema, S., Jackson, E., Bapty, T., Porter, J., Sztipanovits,
J.: Foundation for Model Integration: Semantic Backplane. In: Proceedings of the ASME
2012 International Design Engineering Technical Conferences & Computers and Informa-
tion in Engineering Conference, IDETC/CIE 2012, Chicago, IL, August 12-15 (2012);
Sztipanovits J., Karsai G.: Model-Integrated Computing. IEEE Computer 30, 110–112
(1997)

5. Jackson, E., Sztipanovits, J.: Formalizing the Structural Semantics of Domain-Specific
Modeling Languages. Journal of Software and Systems Modeling, 451–478 (September
2009)

6. Sangiovanni-Vincentelli, A.: Quo Vadis, SLD? Reasoning about the Trends and Chal-
lenges of System Level Design. Proc. of the IEEE 95(3), 467–506 (2007)

7. Jackson, E., Porter, J., Sztipanovits, J.: Semantics of Domain Specific Modeling Languag-
es. In: Mosterman, P., Nicolescu, G. (eds.) Model-Based Design of Heterogeneous Em-
bedded Systems, November 24, pp. 437–486. CRC Press (2009)

8. Chen, K., Sztipanovits, J., Neema, S.: Compositional Specification of Behavioral Seman-
tics. In: Lauwereins, R., Madsen, J. (eds.) Design, Automation, and Test in Europe: The
Most Influential Papers of 10 Years DATE. Springer (2008)

This copy belongs to 'VANC03'

 OpenMETA: A Model- and Component-Based Design Tool Chain 247

9. Jackson, E.K., Sztipanovits, J.: Constructive Techniques for Meta- and Model-Level Rea-
soning. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 405–419. Springer, Heidelberg (2007)

10. Jackson, E.K., Tiham, Balasubramanian, D.: Reasoning about Metamodeling with Formal
Specifications and Automatic Proofs. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 653–667. Springer, Heidelberg (2011)

11. Sangiovanni-Vincentelli, A., Shukla, S., Sztipanovits, J., Yang, G.: Metamodeling: An
Emerging representation Paradigm for System-Level Design. IEEE Design and Test of
Computers (May/June 2009)

12. Jackson, E., Simko, G., Sztipanovits, J.: Diversely Enumerating System-Level Architec-
tures. In: Proceedings of EMSOFT 2013, Embedded Systems Week, Montreal, CA, Sep-
tember 29-October 4 (2013)

13. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of
logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

14. Jackson, E.K., Schulte, W.: Model Generation for Horn Logic with Stratified Negation. In:
Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS,
vol. 5048, pp. 1–20. Springer, Heidelberg (2008)

15. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

16. Jackson, E.K., Sztipanovits, J.: Constructive Techniques for Meta- and Model-Level Rea-
soning. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 405–419. Springer, Heidelberg (2007)

17. Karsai, G., Maroti, M., Ledeczi, A., Gray, J., Sztipanovits, J.: Composition and cloning in
modeling and meta-modeling. IEEE Transactions on Control Systems Technology 12(2),
263–278 (2004)

18. Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. IEEE Computer 34(11), 44–51 (2001)

19. Wrenn, R., Nagel, A., Owens, R., Yao, D., Neema, H., Shi, F., Smyth, K., van Buskirk, C.,
Porter, J., Bapty, T., Neema, S., Sztipanovits, J., Ceisel, J., Mavris, D.: Towards Auto-
mated Exploration and Assembly of Vehicle Design Models. In: Proceedings of the ASME
2012 International Design Engineering Technical Conferences & Computers and Informa-
tion in Engineering Conference, IDETC/CIE 2012, Chicago, IL, August 12-15 (2012)

20. Karsai, G., Ledeczi, A., Neema, S., Sztipanovits, J.: The model integrated computing tool
suite: Metaprogrammable tools for embedded control system design. In: Proceedings of
the IEEE Joint Conference CCA, ISIC and CACSD, Munich, Germany (2006)

21. Sztipanovits, J.: Cyber Physical Systems: Convergence of Physical and Information
Sciences. In: Information Technology, pp. 257–265. Oldenbourg Wissenschaftsverlag
GmbH (June 2012)

22. Simko, G., Levendovszky, T., Maroti, M., Sztipanovits, J.: Towards a Theory for Cyber-
Physical Systems Modeling. In: Proc. 3rd Workshop on Design, Modeling and Evaluation
of Cyber Physical Systems (CyPhy 2013), Philadelphia, USA, April 08-11, pp. 1–6 (2013)

23. Simko, G., Lindecker, D., Levendovszky, T., Neema, S., Sztipanovits, J.: Specification of
Cyber-Physical Components with Formal Semantics – Integration and Composition. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 471–487. Springer, Heidelberg (2013)

This copy belongs to 'VANC03'

248 J. Sztipanovits et al.

24. Eyisi, E., Zhang, Z., Koutsoukos, X., Porter, J., Karsai, G., Sztipanovits, J.: Model-Based
Design and Integration of Cyber-Physical Systems: An Adaptive Cruise Control Case Stu-
dies. Journal of Control Science and Engineering, Special Issue on Embedded Model-
Based Control 2013, Article ID 678016, 15 pages (2013)

25. Fritzson, P., Lattmann, Z., Pop, A., de Kleer, J., Janssen, B., Neema, S., Bapty, T., Kout-
soukos, X., Klenk, M., Bobrow, D., Saha, B., Kurtoglu, T.: Verification and Design Explo-
ration through Meta Tool Integration with OpenModelica. In: 10th International Modelica
Conference 2014, Lund, Sweden, March 10-12 (2014)

26. Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty, T., Bat-
teh, J., Tummescheit, H.: Model-Based Integration Platform for FMI Co-Simulation and
Heterogeneous Simulations of Cyber-Physical Systems. In: 10th International Modelica
Conference 2014, Lund, Sweden, March 10-12 (2014)

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces�

Stavros Tripakis1,2 and Chris Shaver1

1 University of California, Berkeley, USA
2 Aalto University, Finland

Abstract. Synchronous relational interfaces is an interface theory which
allows to specify the I/O interface of a component with input require-
ments and relational input-output guarantees. The theory allows to check
interface compatibility during composition and to compute a composite
interface from the atomic ones. It provides a refinement operator which
allows to check whether a component can safely replace another one. This
paper discusses the options and challenges in defining feedback compo-
sition in the context of this theory.

1 Introduction

Compositionality is not simply a desirable property in system design, but a
“must” for building large and complex systems from smaller and simpler com-
ponents. In his long career, Joseph Sifakis has pursued numerous research topics
around compositionality, including, but not limited to [13,15,11,3,14,4,1,5].

The work presented in this paper is also on the general subject of composi-
tionality. Our work approaches the subject following the framework of so-called
interface theories [8,7]. In interface theories, components are captured by ab-
stract models generically called interfaces. Such a theory also provides one or
more interface composition operators, each allowing to obtain an interface for a
composite component (i.e., a network of connected subcomponents) from the in-
terfaces of the subcomponents. Finally, an interface theory provides a refinement
relation between interfaces, which typically comes with two key theorems:

– Preservation of properties of interest by refinement: if interface I satisfies a
given property φ (say, a safety property expressed in temporal logic), and
interface I ′ refines I, then I ′ also satisfies φ.

– Preservation of refinement by composition: if I ′1 refines I1, I
′
2 refines I2, and

2 is a composition operator, then I ′1 2 I ′2 refines I1 2 I2.

Together the above theorems enable an incremental design methodology, which,
for instance, allows to reduce the problem of checking substitutability (when can

� This work was partially supported by the the Academy of Finland and by the NSF via
projects COSMOI: Compositional System Modeling with Interfaces and ExCAPE:
Expeditions in Computer Augmented Program Engineering. This work was also par-
tially supported by IBM and United Technologies Corporation (UTC) via the iCyPhy
consortium, and by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 249–266, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

250 S. Tripakis and C. Shaver

a component with interface I ′ replace a component with interface I?) to that of
checking whether I ′ refines I. Indeed, if I is used in a certain composition I2C,
and I ′ refines I, then I ′ can replace I to obtain the new composition I ′2C. By
preservation of refinement by composition, I ′2C refines I 2C. By preservation
of properties by refinement, if I2C satisfies a given φ, then so does I ′2C. This
means that, provided the existing system I 2 C is known to be correct (i.e., to
satisfy φ), the new system I ′ 2 C need not be re-verified from scratch. We only
need to check whether I ′ refines I to ensure substitutability.

A number of interface theories have been proposed over the years, starting
from the original interface automata (IA) theory proposed in [7]. In this paper
we consider the theory of synchronous relational interfaces proposed in [16].
Whereas interface automata use an asynchronous model of concurrency based
on interleaving and input-output label synchronization, synchronous relational
interfaces use synchronous composition similar to finite state machines of type
Moore or Mealy.

In addition, compared to interface automata, synchronous relational inter-
faces offer a more compact and symbolic specification formalism. For instance,
consider a component which receives as input an integer, adds one to it, and
outputs it. This component could be modeled using the synchronous relational
interface ({x}, {y}, y = x+1). Here, x and y are the input and output variables,
respectively, and y = x+ 1 is a formula capturing the input-output relation (or
contract). The same component could be captured as an interface automaton,
but this would most likely require an infinite number of states, transitions, and
labels, to capture the infinite domain of possible input/output values.1

The theory of synchronous relational interfaces provides three composition
operators: composition in series (connecting an output of one component to an
input of another), in parallel (placing the two components next to each other
without any connections), and in feedback (connecting one of the outputs of
a component to one of its inputs). These are standard composition schemes
found in synchronous systems such as, for instance, digital circuits. This work is
concerned specifically with feedback composition. The work of [16] allows only a
restricted form of feedback composition. This paper recalls the reasons why this
is so, discusses why it would be desirable to extend the theory to allow a less
restrictive version of feedback, and examines the challenges in doing so.

2 Background: Synchronous Relational Interfaces

For the purposes of this paper, it suffices to restrict ourselves to the simplest
form of synchronous relational interfaces, namely, stateless interfaces, where the
input/output contract is the same during the dynamic behavior of the com-
ponent, i.e., at every synchronous cycle. Stateful interfaces are also considered

1 We can imagine an interface automaton with transitions of the form
i0?−→ o1!−→,

i1?−→ o2!−→,
etc., where in? is the input action corresponding to reading input x = n, and ok! is
the output action corresponding to writing output y = k.

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 251

in [16], where the contract may change from one cycle to the next. We only
consider stateless interfaces in the sequel.

A (stateless synchronous relational) interface is a triple

I = (X,Y, φ)

where X is a finite set of input variables, Y is a finite set of output variables,
X ∩ Y = ∅ (input and output variables are disjoint), and φ (the contract) is a
relation between values of input and output variables, typically represented as a
logical formula on the set of variables X∪Y . We assume a universe U of possible
values for all variables. V (X) denotes the set of assignments (or valuations) over
a set of variables X , that is, the set of all functions of the form a : X → U .
Semantically, a formula φ on X ∪ Y denotes the set of assignments over X ∪ Y
which satisfy φ.

Assuming Y = {y1, y2, ..., yn}, we define

in(φ) := ∃Y : φ := ∃y1 : ∃y2 : · · · ∃yn : φ.

That is, in(φ) is syntactically a formula only on input variablesX , characterizing
the set of legal input assignments. For example, if φ is x �= 0 ∧ y ≥ x, and x is
an input and y an output, then in(φ) ≡ x �= 0, meaning that x = 0 is illegal.
φ, and in turn I, are called input-complete when in(φ) ≡ true, i.e., when all

input assignments are legal for I.
φ, and in turn I, are called deterministic when for every legal input assign-

ment, i.e., for every function aX : X → U satisfying in(φ), there is a unique
output assignment aY : Y → U , such that the pair (aX , aY) satisfies φ.

Parallel Composition. Parallel composition of relational interfaces can be
defined by taking the conjunction of their corresponding contracts. Let Ii =
(Xi, Yi, φi), for i = 1, 2, where all sets X1, X2, Y1, Y2 are pair-wise disjoint. Then

I1||I2 := (X1 ∪X2, Y1 ∪ Y2, φ1 ∧ φ2)

Note that in(φ1 ∧ φ2) ≡ ∃Y1, Y2 : φ1 ∧ φ2 ≡ ∃Y1 : (φ1 ∧ ∃Y2 : φ2) ≡ (∃Y2 :
φ2) ∧ (∃Y1 : φ1) ≡ in(φ1) ∧ in(φ2).

Serial Composition. For reasons thoroughly explained in [16], and not re-
peated here, serial composition of relational interfaces is defined using the princi-
ple of “demonic” non-determinism. In the simple case, where I1 = ({x}, {y}, φ1)
and I2 = ({y}, {z}, φ2), the serial composition of I1 and I2, denoted I1 I2,
and consisting of connecting the output y of I1 to the input y of I2, is defined
as follows:

I1 I2 :=
(
{x}, {y, z}, φ1 ∧ φ2 ∧

(
∀y : φ1 → in(φ2)

))
Note that if I2 is input-complete, then

(
∀y : φ1 → in(φ2)

)
≡ true and the

contract of I1 I2 becomes φ1 ∧ φ2. The same is true when I1 is deterministic.

This copy belongs to 'VANC03'

252 S. Tripakis and C. Shaver

When the contract of I1 I2 is equivalent to false (i.e., unsatisfiable), we
say that I1 I2 is invalid and that I1 and I2 are incompatible. Otherwise, we
say that I1 I2 is valid and that I1 and I2 are compatible.

Example 1. Let I1 = ({x}, {y}, x ≤ y) and I2 = ({y}, {z}, y �= 0). Then

I1 I2 = ({x}, {y, z}, x ≤ y ∧ y �= 0 ∧ x > 0)

where it is worth noting the additional input assumption x > 0 obtained thanks
to the term ∀y : x ≤ y → y �= 0. ��

Refinement. Refinement between relational interfaces is defined as follows. Let
Ii = (X,Y, φi), for i = 1, 2. Then, I2 refines I1, written I2 # I1, iff

in(φ1)→ in(φ2) and
(
in(φ1) ∧ φ2

)
→ φ1

are both valid formulas, i.e., equivalent to true.
It is shown in [16] that refinement preserves compatibility, that is, if I1 I2

is valid, and I ′1 # I1 and I ′2 # I2, then I ′1 I ′2 is also valid.

Feedback. Suppose we want to connect an output y ∈ Y of a relational interface
I = (X,Y, φ) to one of its inputs x ∈ X . In the framework of [16], this is allowed
only when I is so-called Moore with respect to x. For stateless interfaces, Moore
with respect to x means that φ does not refer to x. In that case, connecting y
to x results in a new interface where x is an output equal to y:

feedbacky�x(I) := (X − {x}, Y ∪ {x}, φ ∧ x = y).

The Problem: General Feedback Does Not Preserve Refinement. The
reason why feedback is restricted to Moore interfaces is illustrated in the fol-
lowing example, borrowed from [9] and also discussed as Example 9.11 in [16].

Example 2. Let I = ({x, z}, {y}, true) and I ′ = ({x, z}, {y}, x �= y). Then I ′ #
I. Suppose that we want to feed the output of I back to its first input, that
is, we want to connect y to x. The straightforward way to define the resulting
feedback composition is by adding the constraint x = y to the contract of I. This
constraint represents the fact that, once x and y are connected (imagine a wire
connection between the two) their values become equal. Adding this constraint,
that is, taking the conjunction of x = y with the contract of I, which is true,
we obtain the new interface If = ({z}, {x, y}, x = y). In If , x is now an output,
since it has been connected to y. Moreover, the new contract is x = y.

Let us try to do the same with I ′, that is, connect its output y to its input
x. Doing so, we obtain the new interface I ′f = ({z}, {x, y}, x �= y ∧ x = y).
Since the formula x �= y ∧ x = y is unsatisfiable, I ′f is equivalent to the interface
({z}, {x, y}, false).

The problem now is that I ′f # If does not hold. This shows that the straight-
forward way of defining feedback results in refinement not being preserved by
feedback (I ′ refines I, but I ′f does not refine If). ��

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 253

3 Generalizing Feedback

In this section, we first discuss why a more general form of feedback would be
desirable, and then the challenges that need to be overcome in order to achieve
this more general form of feedback.

3.1 Why Generalize the Definition of Feedback?

One might say that Example 2 is too artificial to be of value, and that forbidding
feedback for non-Moore interfaces makes sense. Consider, however, the following
example:

Example 3. Take the parallel composition of two interfaces with contracts yi =
xi, where xi is an input and yi is an output, for i = 1, 2. The resulting interface
has contract y1 = x1 ∧ y2 = x2. This product interface is not Moore in neither
x1 nor x2. Thus, we cannot form the feedback composition by connecting, say,
y2 to x1. One might expect, however, that this feedback connection is the same
as connecting the two original interfaces in series. ��

What Example 3 illustrates is that the restriction to Moore interfaces results
in serial composition not being equivalent to parallel composition followed by
feedback. Can we relax the restrictions so as to obtain a definition of feedback
which allows to express serial composition as parallel composition followed by
feedback? We examine the challenges in achieving this goal next.

3.2 Challenge: Monolithic Order

Example 3 suggests that the definition of parallel composition is too monolithic,
in the sense that it loses dependency information between inputs and outputs.
This seems to be a fundamental problem, as illustrated with an even simpler
example:

Example 4. Consider interfaces I1 = ({}, {y}, true) and I2 = ({x, z}, {}, true).
I1 has only an output y and I2 has two inputs x, z. Clearly, the serial composition
I1 y�x I2 formed by connecting y to x 2 is valid, since I2 is input-complete.

Now let’s try to form the same composition by first taking the parallel com-
position of I1 and I2, followed by feedback. The parallel composition of I1 and
I2 is I1||I2 = ({x, z}, {y}, true). This is exactly interface I which we saw in
Example 2. If we forbid connecting I in feedback, as suggested above, then I1
connected in series with I2 would not be equivalent with I1||I2 connected in
feedback, since the latter connection would be forbidden. ��

The problem here seems to be the following. When we form the composition
in series of I1 and I2, we interpret it as a game where I1 plays first, choosing
the output y, and I2 plays second, accepting y as input x. Therefore, y is chosen
first, and then assigned to x. (The point where z is chosen is irrelevant here.)

2 This composition is defined after renaming x to y in I2.

This copy belongs to 'VANC03'

254 S. Tripakis and C. Shaver

On the other hand, in a “monolithic” interface such as I, the interpretation
of the game is different. First, the environment chooses the input x, and only
afterwards does I reply with the output y. By forming the parallel composition
of I1 and I2, we forced the order x→ y. Adding the feedback creates the opposite
order y → x, that is, a cycle. This is not the case with composition in series,
which only has y → x.

One might try to fix this by enriching the definition of interface to contain also
dependency information between input and output variables. In our example,
this means that there would be two versions of the interface ({x, z}, {y}, true).
One version where the output y depends on x (this would be I), and another
version where y does not depend on x (this would be I1||I2).

But when we attempt to add such I/O dependency information, we run into
new problems. This is explained next:

3.3 Interfaces with I/O Dependency Information

General Partial Orders on I/O Variables. Let us first try an approach
where an interface is extended with a general partial orderD on input and output
variables. That is, an interface then becomes a quadruple I = (X,Y, φ,D) where
X,Y, φ are the inputs, outputs and contract as previously, and D is a partial
order onX∪Y . The idea is thatD represents dependencies between the variables,
and also the order in which they are evaluated, as well as the possible ways for
playing the game between the component and its environment. For example,
if x is input and y is output, then dependency x → y means that, first the
environment chooses x and then the component chooses y. y → x means that
first the component chooses y and then the environment chooses x. If x, y are
unrelated then they can be evaluated in any order.

This seems to solve the problems identified in §3.2, as it allows to distinguish
I (which has the dependency x→ y) from I1||I2 (which has no dependency).

But consider another example:

Example 5. LetA = ({x}, {y}, x = 0→ y = 0, {x→ y}) and B = ({z, u}, {}, z =
u, {}). Suppose we wish to connect A and B in series, by connecting y to z. Is
the connection valid? It should be, because the environment has two possible
strategies for setting the free inputs x, u:

– either set x = u = 0, in which case A is forced to set y = 0, thus z = 0, thus
u = z and the input assumptions of B are satisfied;

– or set x to an arbitrary value, wait to observe output y of A, then set u = y,
so that again u = z is satisfied.

It seems that these two strategies cannot be represented with just a single con-
tract φ and a single dependency relation D. Suppose they could. Then D would
be x→ y → z: notice that u is independent, since it could be given either at the
same time as x, or after observing y.

Now, what would φ be? If u is given at the same time as x, then x = 1, u = 0
is not a possible assignment. On the other hand, if x is first set to 1, and then

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 255

y is set to 0, which means that also z = 0, then u must be set to 0. So, with
the second strategy, x = 1, u = 0 is a valid assignment, whereas with the first
strategy, it is not. ��

This example appears to suggest that we need sets of pairs (φ,D), instead of
just one pair, to represent the sets of possible strategies that may result during
composition, even if the original interfaces had only a single strategy each. This
option of using sets of pairs (φ,D) appears too complex, and we do not pursue
it further here.

Restricted DAGs: Moore Outputs, Inputs, Non-moore Outputs. To
simplify in order to avoid problems such as the one above, we may decide to
restrict the I/O dependencies to a simpler form: I = (X,Y, φ, d) where d ⊆ Y×X .
d gives for each output the set of inputs it depends on. Those outputs that depend
on no inputs are called Moore outputs. The game is played in 3 rounds: first the
component chooses Moore outputs; then the environment chooses all inputs;
then the component chooses non-Moore outputs.

This solves the problem of Example 5 because the second strategy, where the
environment initially sets only x and then waits to observe y before setting u
would be forbidden: both x, y should be set at the same time, since there is only
one round to set all free inputs.

The problem with this approach is that feedback is non-commutative, as the
following example illustrates.

Example 6. Let I = ({x1, x2, x3}, {y1, y2}, x2 �= y2∨x1 = y1, {(y1, x3), (y2, x3)}).
In this example, both y1, y2 are non-Moore: x3 is a “dummy” input that serves
no other purpose except for providing dependencies for y1, y2 so that they are not
Moore. The contract can also be read as x2 = y2 → x1 = y1. Then, connecting y1
to x1 results in interface feedbacky1�x1

(I) with contract x1 = y1. Following this,
we can connect y2 to x2 to obtain the interface feedbacky2�x2

(feedbacky1�x1
(I))

with contract x1 = y1 ∧ x2 = y2. One would expect that if we do the same
connections in the opposite order, i.e., first y2 x2 and then y1 x1, we should
get the same result. But the contract of feedbacky2�x2

(I) is false. Indeed, the
following game is played here: first the environment chooses x1, x3 (there are no
Moore outputs so their round is skipped); then the component chooses y1, y2;
finally x2 is set to y2. The environment loses this game, since no matter what it
picks for x1, the component can always pick y1 �= x1 and violate the contract of
I, because of the feedback x2 = y2. ��

Extracting Dependencies from Contracts. Note that there is an additional,
mostly orthogonal complexity to the approach of extending interfaces with vari-
able dependency information, and this has to do with where this information
comes from. The simple approach is to expect the user to provide such infor-
mation for atomic interfaces, and then compute it automatically for composite
interfaces. This does not avoid the problems illustrated by the examples above.

This copy belongs to 'VANC03'

256 S. Tripakis and C. Shaver

Another approach is to try to extract dependencies automatically from the
contract itself. For instance, if the contract is y = x+1, where x is the input and
y is the output, then we could extract the dependency x → y, i.e., y depends
on x. This interpretation assumes that, first, the input x is given, and then the
component computes the output y as x+ 1. It is unclear, however, whether this
interpretation is correct. An alternative interpretation is the following: first, an
output y is chosen non-deterministically; then, the input x must be given, such
that x = y − 1. Although the first interpretation may appear more natural,
there is no reason why the second one should be considered invalid. This is more
obvious in an interface with a slightly different contract, say, contract true.
Here, as mentioned above, we should be able to distinguish the case where first
the environment provides the input x and then the component replies with the
output y, from the opposite case, where the component provides y first, and then
expects x.

The problem of extracting variable dependencies from formulas is itself in-
teresting, although it by itself does not resolve the issues raised by Examples 5
and 6. Let us briefly discuss the problem of extracting variable dependencies
from formulas. Consider a formula φ on a set of variables V . We may assume no
knowledge of “directionality” (input vs. output) for any of these variables, and
seek to define a symmetric notion of dependency (see Table 1).

Table 1. Dependency examples

φ dependency
x = y x, y dependent
x �= y x, y dependent

x = 0 ∧ y = 0 x, y independent
0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 x, y independent
x = y ∧ y = z ∧ z = 0 x, y independent

x = y ∧ y = z x, y dependent
x = y1 ∧ x2 = y x, y independent
x < z ∧ z < y x, y dependent
z < x ∧ z < y x, y independent ?

One idea is to define depen-
dency based on the principle of
“geometric orthogonality”. Con-
sider a φ over just two variables,
say, x, y. Intuitively, x, y are in-
dependent in φ, if φ is a “rect-
angle”, that is, if φ is equivalent
to (∃x : φ) ∧ (∃y : φ). For exam-
ple, in both x = y and x �= y,
x and y are dependent, whereas
in x = 0 ∧ y = 0, they are in-
dependent, and so are they in
0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1.

Let us try to generalize this
idea to formulas with n ≥ 2 variables. Let φ(y, x1, x2) be over a set of vari-
ables y ∪ {x1, x2}. We can attempt the definition:

indep(φ, x1, x2) := φ ≡
(
(∃x1 : φ) ∧ (∃x2 : φ)

)
Unfortunately this doesn’t seem to work for the formula x = y ∧ y = z. In this
case, we find that any pair of variables are independent according to the above
definition. For instance, ∃x : x = y ∧ y = z is y = z, and ∃y : x = y ∧ y = z
is x = z. This seems in contradiction with the fact that x, y are dependent in
x = y, which is a weaker constraint than x = y ∧ y = z.

To capture the principle of geometric orthogonality, we may use the principle
of factorization. Namely, if φ is over a set of variables X , we should be able to

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 257

find a partition of X into disjoint sets X1, ..., Xn, and formulas φ1, ..., φn, where
φi is overXi, such that φ is equivalent to

∧n
i=1 φi. Then, for given variables x and

y, they are independent if they do not belong in the same set Xi in the partition.
This is an interesting problem, although beyond the scope of this paper.

Non-preservation of Dependencies by Refinement. One fundamental
problem with the conceptual requirements of feedback and refinement with re-
gards to independence is the issue that an interface that has independent vari-
ables can have refinements in which the variables are dependent. Concretely,
consider the case of the interface with the predicate

φ(x̄, ȳ) = true

This can always be written as a conjuction of functions on the individual vari-
ables, in particular because each component is similarly true.

φ(x̄, ȳ) = φ1x ∧ φ2x ∧ . . . φ1y ∧ φ2y ∧ . . . where φk∗ = true

This would suggest that the interface is equivalent to a parallel composition of a
series of ambivalent source and sink actors; they can be composed serially, etc...
However, as in the above examples, clearly there are refinements of the original
function that can introduce dependencies. If

φ′(x̄, ȳ) = xk �= yj

refines φ, as it is shown to in the above example, the interface with independent
variables that seems to be decomposable into parallel parts (that can be com-
posed serially), can be refined into an interface that does not have any admissible
definition for feedback.

Intuitively, there is a general sense behind this. Consider that one alteration
to an interface to refine it is to take an input for which there are multiple
satisfying outputs to choose from, non-determinism, and reduce the number of
options it permits, all the way down to a unique option. If an input and output
variable are independent, the choice of input has no effect on the choice of output.
Consequently, if there are multiple possible outputs, for any given input, making
the output depend on the input in a way that still permits a satisfiable choice
legitimately refines the behavior even though it is no longer independent. That
is, independence is not preserved by refinement.

3.4 Lifting to Powersets

Another idea is to treat contracts not as relations, but as functions. Feedback
can be naturally defined on functions using fixpoint theory, so this appears to
be a promising approach. Unfortunately, it is not as easy as it may appear to be
at first.

To transform relations to functions, we can lift their domain and codomain
to powersets. Specifically, let φ be a contract over I/O variable sets X and Y .

This copy belongs to 'VANC03'

258 S. Tripakis and C. Shaver

Then φ is semantically a relation φ ⊆ V (X) × V (Y), where V (X) denotes the
set of valuations over X . φ defines a function

φ̃ : 2V (X) → 2V (Y)

where, for Vx ⊆ V (X), φ̃(Vx) is defined as follows:

φ̃(Vx) := {aY ∈ V (Y) | ∃aX ∈ VX : (aX , aY) ∈ φ}.

φ̃ is monotonic with respect to set inclusion, so it appears as if fixpoint theory
can be readily applied. However, an element of V (X) is an assignment over the
entire set of input variables X , and an output of the function φ̃ is an assignment
over the entire set of output variables Y . As a result, it is unclear how to define
feedback directly on φ̃. For example, we may have X = {x1, x2} and Y = {y}.
In this case, the output of φ̃ does not match its input, since there are two input
variables, and only one output variable. But even when the number of input and
output variables is the same, it is unclear how to define feedback of individual
variables. For example, we may have X = {x1, x2} and Y = {y1, y2}, and we
may want to connect y1 to x2. It is not clear how to express this connection as
a fixpoint operation on φ̃.

We can attempt to define a feedback connection like the one above using
projection and product functions, in addition to the φ̃ function. For instance,
a projection function could be used to extract an assignment over just y1 from
an assignment over {y1, y2}. This may solve the typing problems and allow to
define a fixpoint that type checks. However, the above functions (including φ̃,
projection, and product) have the property that they return the empty set when
given the empty set as input. As a result, the empty set would be a valid fixpoint
of any composition of such functions. Moreover, the empty set would be the least
fixpoint with respect to set inclusion, therefore the preferred solution chosen in
typical fixpoint semantics approaches. Unfortunately, the empty set is not the
value that one would expect as in particular it does not allow to capture serial
composition.

3.5 Separating Input Assumptions

In the relational interface framework of [16], input assumptions and output guar-
antees are combined into a single contract φ. One idea is to separate them.
Following this idea, an interface would be a quadruple

I = (X,Y, φ, ψ)

where X is a finite set of input variables, Y is a finite set of output variables (as
usual, we assume that X ∩ Y = ∅), φ is a relation/predicate on X , and ψ is a
relation/predicate on X ∪ Y . φ captures the requirements on inputs only, while
ψ is aimed at capturing guarantees on the outputs, with relation to inputs.

Ideally, we would like to have no redundancy between φ and ψ, for example,
ψ should not impose more restrictions on the inputs than what φ imposes, as

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 259

for example in the case φ := x > 0, ψ := x > 1∧ y > x. One way to achieve this
which appears “canonical” is to attempt to enforce that ψ be total (i.e., input-
complete), that is, to enforce in(ψ) ≡ true. As we shall see below, however, this
requirement is not always compatible with our other desiderata.

Let us see first how the definitions of refinement and composition could be
adapted to this setting.

Refinement. Refinement can be defined as follows. Let Ii = (X,Y, φi, ψi), for
i = 1, 2. Then, I2 refines I1, written I2 # I1, iff

φ1 → φ2 and (φ1 ∧ ψ2)→ ψ1

are both valid formulas, i.e., equivalent to true.
With contract pairs, the refinement order gives a lattice, with top being the

pair of contracts (false, true) and bottom being the pair (true, false).

Parallel Composition. Parallel composition of interfaces with contract pairs
can be defined as usual, by taking the conjunction of their corresponding con-
tracts. Let Ii = (Xi, Yi, φi, ψi), for i = 1, 2, where all sets X1, X2, Y1, Y2 are
pair-wise disjoint. Then

I1||I2 := (X1 ∪X2, Y1 ∪ Y2, φ1 ∧ φ2, ψ1 ∧ ψ2).

Note that φ1 ∧ φ2 is over X1 ∪X2, and ψ1 ∧ ψ2 is over X1 ∪X2 ∪ Y1 ∪ Y2.
Also note that

in(ψ1 ∧ ψ2) ≡ ∃Y1, Y2 : ψ1 ∧ ψ2 ≡ ∃Y1 : (ψ1 ∧ ∃Y2 : ψ2)
≡ (∃Y2 : ψ2) ∧ (∃Y1 : ψ1) ≡ in(ψ1) ∧ in(ψ2)

Thus, if in(ψ1) ≡ in(ψ2) ≡ true, we also have in(ψ1 ∧ψ2) ≡ true, which means
that parallel composition preserves our desiderata of no redundancy between φ
and ψ.

Feedback. Feedback can be defined as follows. Let I = (X,Y, φ, ψ) and let
x ∈ X and y ∈ Y . Then connecting output y to input x yields the new interface

feedbacky�x(I) := (X − {x}, Y ∪ {x}, φ′, ψ′)

where
φ′ := ∃x :

(
φ ∧

(
∀Y, x : (ψ ∧ x = y)→ φ

))
and

ψ′ := ψ ∧ x = y.

We can immediately see that ψ′ is indeed a predicate over Y ∪ {x}.
∀Y, x : (ψ∧x = y)→ φ is a predicate over X−{x}. Therefore, φ′ is equivalent

to
(∃x : φ) ∧

(
∀Y, x : (ψ ∧ x = y)→ φ

)
.

This copy belongs to 'VANC03'

260 S. Tripakis and C. Shaver

and, since both conjuncts above are predicates overX−{x}, we can now see that
φ′ is a predicate over X−{x}. The idea behind the definition of φ′ is to capture
the notion of demonic non-determinism, as in the definition of serial composition,
by strengthening the original input requirements φ with the additional term
∀Y, x : (ψ ∧ x = y)→ φ.

Does this definition of feedback allow to reduce serial composition to paral-
lel composition followed by feedback? This indeed appears to work on simple
examples.

Example 7. Consider the interfaces defined in Example 1, I1 = ({x}, {y}, x ≤ y),
I2 = ({y}, {z}, y �= 0), and their serial composition

I1 I2 = ({x}, {y, z}, x ≤ y ∧ y �= 0 ∧ x > 0).

Transforming I1 and I2 into interfaces with pairs of contracts, we get I ′1 =
({x}, {y}, true, x ≤ y) and I ′2 = ({y′}, {z}, y′ �= 0, true), where we have also
renamed y to y′ in I ′2. We can now form the parallel composition of I ′1 and I ′2:

I ′1||I ′2 = ({x, y′}, {y, z}, y′ �= 0, x ≤ y)

and then connect y to y′ in feedback, to obtain:

feedbacky�y′(I1||I2) = ({x}, {y, y′, z}, φ′, x ≤ y ∧ y = y′)

where

φ′ := (∃y′ : y′ �= 0) ∧ (∀y, y′, z : x ≤ y ∧ y = y′ → y′ �= 0)

which is equivalent to x > 0. Therefore, after eliminating y′ which is equal to y
in feedbacky�y′(I1||I2), the latter simplifies to

feedbacky�y′(I1||I2) = ({x}, {y, z}, x > 0, x ≤ y)

which, as it can be seen, is the same as I1 I2, except that the single contract
is replaced by a contract pair. ��

The above definition of feedback also appears to resolve the problem of non-
preservation of refinement described in Example 2:

Example 8. Let I = ({x, z}, {y}, true, true) and I ′ = ({x, z}, {y}, true, x �=
y). Then I ′ # I. Also, feedback y�x(I) = ({z}, {y, x}, true, x = y) and
feedbacky�x(I

′) = ({z}, {y, x}, true, false). As it can be seen, feedback y�x(I
′) #

feedbacky�x(I). ��

Note that, as Example 8 demonstrates, the canonical form requirement for
interfaces with contract pairs, namely that in(ψ) must be true, is not generally
preserved by feedback composition.

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 261

Summary. As it can be seen, interfaces with pairs of contracts seem to resolve
several issues that exist in interfaces with single contracts. On the other hand,
the interpretation of interfaces with contract pairs is unclear, and some new
problems are introduced. First, regarding interpretation, it is unclear what the
meaning of interfaces such as (false, true) and (true, false) is, and what the
difference between the two is. The standard interpretation is that in (false, true)
all inputs are illegal, and that in (true, false) all inputs are legal, but no output
is produced. We find these interpretations unsatisfactory. What is the meaning of
a “legal” input if no output can be produced? And why distinguish the contract
(false, true) from, say, (false, y ≥ 0)? After all, both accept no inputs, therefore,
they cannot be used in any useful composition. In addition, interfaces with at
least one contract being false do not seem to have valid implementations (say,
by deterministic state machines).

Perhaps the most important problem with pairs of contracts is the fact that
refinement does not preserve the “well-formedness” property that none of the two
contracts be false, and therefore does not preserve implementability as discussed
above. For instance, (true, false) refines every pair of contracts. This means that
we could start from an implementable (well-formed) specification and reach a
non-implementable one by successive refinements. This is clearly undesirable.

4 Refinement-Preserving Feedback

In this section a definition of feedback composition, derived from a set of desider-
ata, will be proposed for general relational interfaces. Given the interface

I := ({ū, v̄}, {x̄, ȳ}, φ)

where the barred variables indicate sequences of individual variables, and specif-
ically, x̄ is of the same length as ū, feedback composition will be defined

feedback x̄�ū(I) := ({v̄}, {x̄, ȳ}, φ∗)

eliminating the set of inputs ū from the signature of the interface. The definition
of the new relation φ∗ is what will be determined here from the desiderata. For
brevity the interface will be expressed in terms of its relation, such as φ here
for I. Sometimes the variables will be given with the relation with the input
and output variables separated by a semicolon, as in φ(ū, v̄; x̄, ȳ). Also, unless
otherwise noted, all interfaces will have this same general signature, and the
asterisk, as in φ∗ will indicate the feedback composition feedback x̄�ū(I) (and its
constituting relation).

For a relational interface characterized by a total function, the concept of a
feedback connection between an output and an input can be defined straightfor-
wardly by a fixed-point relation. Specifically, given a functional interface

f(ū, v̄; x̄, ȳ)

This copy belongs to 'VANC03'

262 S. Tripakis and C. Shaver

feedback composition can be defined as

f∗(v̄; x̄, ȳ)↔ f(x̄, v̄; x̄, ȳ) (1)

meaning that, for given input v̄, x̄ is an output of the feedback interface f∗ iff x̄
is a fixed-point of f .3 A general definition for feedback over all relations therefore
can be constrained to at least reduce to this one in the case of the relation being
a graph of a total function; that is both input complete and deterministic. The
formula 1 will then be the first desideratum.

A second qualification desirable for a feedback definition is that it preserves
refinement relations in the same manner as serial and parallel composition. Given
two interfaces φ and ψ with the same signature

ψ # φ→ ψ∗ # φ∗ (2)

In other words, feedback composition is monotonic under the refinement order.
This qualification is consistent with the first vacuously, since functional inter-
faces are minimal in the refinement order. The formula 2 will be the second
desideratum.

A third qualification should then be given to determine the possible values
taken on by the feedback edges of a feedback composition. The obvious possibility
is to make the set of values some subset of the fixed-points of the relation between
the connected output and input variables. In formal terms

φ∗(v̄; x̄, ȳ)→ φ(x̄, v̄; x̄, ȳ) (3)

Here, the difference between the case for functional relations and general re-
lations is that the feedback values for the former are exactly the fixed-points,
whereas the latter could reject certain fixed points. Outside of fixed points, an-
other possible choice for feedback values might be values that have some finite
orbit through the relation. However, these points would have to be included in
desideratum 1 for total functional relations, hence for consistency with this first
qualification, this expanded set will not be considered. The formula 3 will be the
third desideratum.

Using these three desiderata, building off of the third 3, a definition for feed-
back composition can be postulated. This definition will be of the form

φ∗(v̄; x̄, ȳ) := φ(x̄, v̄; x̄, ȳ) ∧ additional constraints (4)

where the additional constraints remove certain fixed-points. Clearly, based on
1, these constraints must reduce to true in the case of total functional relations.
These constraints will be deduced in the following by considering particular cases
of relations.
3 Note that 1 says that all fixed-points of f must be solutions of the feedback f∗.
This is different from the semantics of deterministic synchronous formalisms such as
Esterel [2] or synchronous block diagrams [10], where feedback is defined by choosing
from the set of fixed-points a unique representative, namely the least fixed-point. The
least fixed-point solution relies on f being defined on an ordered set structure such
as a complete partial order. We make no such assumption here.

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 263

4.1 Partiality

Consider first the case of the free inputs v̄ in the formula being fixed to a par-
ticular value a, and the remaining relation

φ(ū, a; x̄, ȳ)

being partial and deterministic with respect to the input ū. Then, suppose the
following relation is defined:

ψ(ū, a; x̄, ȳ) := φ(ū, a; x̄, ȳ) ∨
[(
¬∃z̄, w̄ : φ(ū, a; z̄, w̄)

)
∧ ū = x̄ ∧ ȳ = b

]
where b is some arbitrary chosen constant tuple of the same length as ȳ. It can
be verified that ψ # φ, intuitively, because ψ simply gives output values for
inputs not in the domain of φ, thus refining it. Moreover, by the definition of
ψ and the assumption that φ is deterministic, ψ returns a unique value for all
input values. Thus, ψ is a total function. By desideratum 1, it follows that

ψ∗(a; x̄, ȳ)↔ ψ(x̄, a; x̄, ȳ).

Using the above definition, along with 3, we obtain

φ∗(a; x̄, ȳ)→ ψ∗(a; x̄, ȳ).

The only way the above and 2 can both be true is if

φ∗(a; x̄, ȳ) := false.

What can be concluded from this is that feedback composition over a relation
that is partial with respect to the feedback input must exclude all fixed points.
This can be accomplished by conjoining the following constraint to the definition
for feedback composition

∀ū : ∃x̄, ȳ : φ(ū, v̄; x̄, ȳ).

4.2 Nondeterminism

Consider first the case of the free inputs v̄ in the formula being fixed to a par-
ticular value a, and the remaining relation

φ(ū, a; x̄, ȳ)

being total or complete with respect to the input ū, but also being nondeter-
ministic. Let

φ̂(ū, v̄) := {(x̄, ȳ) |φ(ū, v̄; x̄, ȳ)}

denote the set of output values for an interface corresponding to the given input
values.

This copy belongs to 'VANC03'

264 S. Tripakis and C. Shaver

Since φ is total, every refinement ψ will be total as well. More, it follows from
the definition of refinement that

ψ̂(ū, v̄) ⊆ φ̂(ū, v̄).

Suppose then that a particular relation ψ is defined such that ψ̂(ū, v̄) is a sin-

gleton for every set of input values. Moreover, if φ̂(ū, v̄) contains more than one
choice for the value of x̄, the feedback output, let the choice of singleton value
be the one where x̄ �= ū; this is always possible if such a choice exists.

The above construction for ψ gives a refinement of φ for the above given rea-
sons. This construction is also total functional, since a unique value was chosen
for every input. By desideratum 1, the feedback values for x̄ in ψ∗ are exactly
the fixed point solutions for x̄ in ψ. However, if there are no such fixed point
solutions for ψ, and consequently no feedback values for ψ∗, by desideratum 2,
φ∗ can have no feedback values for x̄; that is, φ∗ would have to be false. On the
other hand, by the definition of refinement, for any set of inputs to a relation, if
the set of outputs is unique, it must be unique in every refinement for the same
inputs, thus the fixed point solutions that are also unique outputs for their corre-
sponding inputs are preserved by refinement. The construction for ψ removes all
of the other fixed point solutions from φ, arising from nondeterministic inputs.

What can be concluded from this is that the feedback composition, to be
consistent with the desiderata, must be false unless there is at least one fixed
point solution that is a unique output value for its corresponding input. This
constraint can be formulated as the following term

∃z̄ : φ(z̄, v̄; z̄, ȳ) ∧ (∀w̄ : φ(w̄, v̄; w̄, ȳ)→ w̄ = z̄) (5)

which can be conjoined with the feedback composition definition. A simpler
term to conjoin would be one that constrains the feedback values to only be
deterministic ones; ones that are the unique outputs for their corresponding
input values. This term would be

∀z̄ : φ(z̄, v̄; z̄, ȳ)→ x̄ = z̄. (6)

From the perspective of the desiderata, this latter definition would make an
unnecessary restriction, but nevertheless it would simplify the definition for
feedback composition considerably. The decision to use the former or the lat-
ter would hinge on the presence of additional desiderata, perhaps regarding the
preservation of feedback values by refinement; clearly, it is necessary that at least
one feedback value should be preserved for others to exist, and the important
question should be whether or not they all should be.

4.3 General Feedback Composition

Combining the above considerations and assembling the corresponding con-
straints, the following two definitions may be postulated for feedback compo-
sition on relational interfaces:

This copy belongs to 'VANC03'

Feedback in Synchronous Relational Interfaces 265

φ∗(v̄; x̄, ȳ) := φ(x̄, v̄; x̄, ȳ) (7)

∧ [∀ū : ∃x̄, ȳ : φ(ū, v̄; x̄, ȳ)]
∧ [∃z̄ : φ(z̄, v̄; z̄, ȳ) ∧ (∀w̄ : φ(w̄, v̄; w̄, ȳ)→ w̄ = z̄)]

φ∗(v̄; x̄, ȳ) := φ(x̄, v̄; x̄, ȳ) (8)

∧ [∀ū : ∃x̄, ȳ : φ(ū, v̄; x̄, ȳ)]
∧ [∀z̄ : φ(z̄, v̄; z̄, ȳ)→ x̄ = z̄]

The full ramifications of these definitions of feedback warrant much further inves-
tigation. The property that the two definitions reduce to only the first term, the
fixed-point relation, in the case of total functional relations means that at least,
for the subclass of total functional relations (or simply functions), this defini-
tion is consistent with the usual notion of feedback in deterministic synchronous
models of computation.

As an example, the above definitions both applied to the one input, one output
true interface result in the one output false interface, consistent with the earlier
example demonstrating that this must be the case. Suppose, instead, that a
relation were defined

φ(x; y) := x = 5→ y = 5

which is similar to true, except on the input x := 5, which must be mapped
deterministically to y := 5. Then, under the two definitions of feedback, the
corresponding compositions would be

φ∗(·; y) := true

and
φ∗(·; y) := y = 5

In both cases, the relation x �= y is not a refinement. Indeed, every refinement
of both must at least include 5 as a feedback output value.

5 Conclusions

The definition of feedback composition in the context of synchronous relational
interfaces has been investigated. Challenges were described in Section 3, and a
systematic derivation of novel alternatives was proposed in Section 4. Future
work includes a more thorough study of these new alternatives in the context
of the full theory presented in [16], as well as in the context of recent work
on error-completion [17]. In addition, it would be interesting to examine how
the difficulties in defining feedback in synchronous interfaces are related to the
problem of compositionality of relational semantics of non-deterministic dataflow
networks and the so-called Brock-Ackerman anomaly [6,12].

This copy belongs to 'VANC03'

266 S. Tripakis and C. Shaver

References

1. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

2. Berry, G.: The foundations of Esterel, pp. 425–454. MIT Press (2000)
3. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in bip.

In: EMSOFT 2007, pp. 11–20. ACM (2007)
4. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-

tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

5. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for
automated distributed implementation of component-based models. Distributed
Computing 25(5), 383–409 (2012)

6. Brock, J.D., Ackerman, W.B.: Scenarios: A model of non-determinate computation.
In: Dı́az, J., Ramos, I. (eds.) Formalization of Programming Concepts. LNCS,
vol. 107, pp. 252–259. Springer, Heidelberg (1981)

7. de Alfaro, L., Henzinger, T.: Interface automata. In: Foundations of Software En-
gineering (FSE). ACM Press (2001)

8. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165.
Springer, Heidelberg (2001)

9. Doyen, L., Henzinger, T., Jobstmann, B., Petrov, T.: Interface theories with com-
ponent reuse. In: EMSOFT 2008, pp. 79–88 (2008)

10. Edwards, S., Lee, E.: The semantics and execution of a synchronous block-diagram
language. Science of Computer Programming 48, 21–42 (2003)

11. Gössler, G., Sifakis, J.: Composition for component-based modeling. Science of
Computer Programming 55(1), 161–183 (2005)

12. Jonsson, B.: A fully abstract trace model for dataflow and asynchronous networks.
Distributed Computing 7(4), 197–212 (1994)

13. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property
preserving abstractions for the verification of concurrent systems. Formal Methods
in System Design 6(1), 11–44 (1995)

14. Poulhiès, M., Pulou, J., Rippert, C., Sifakis, J.: A methodology and supporting
tools for the development of component-based embedded systems. In: Kordon, F.,
Sokolsky, O. (eds.) Monterey Workshop 2006. LNCS, vol. 4888, pp. 75–96. Springer,
Heidelberg (2007)

15. Sifakis, J., Yovine, S.: Compositional specification of timed systems. In: Puech,
C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 345–359. Springer,
Heidelberg (1996)

16. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM TOPLAS 33(4) (July 2011)

17. Tripakis, S., Stergiou, C., Broy, M., Lee, E.A.: Error-Completion in Interface The-
ories. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976,
pp. 358–375. Springer, Heidelberg (2013)

This copy belongs to 'VANC03'

Reasoning about Network Topologies in Space

Lenore D. Zuck1 and Kenneth L. McMillan2

1 University of Illinois at Chicago, USA
lenore@cs.uic.edu

2 MSR Redmond, WA, USA
kenmcmil@microsoft.com

Abstract. “Traditional” satellite systems consist of special-purpose monolithic
satellites. Future ones aim to comprise of a small number of inexpensive general-
purpose spacecraft that communicate with one another to carry out missions, with
a certification requirement. Such certification would guarantee the security and
correctness of all mission software.

In this work we focus on proving correctness of a proposed protocol for aggre-
gation of the data of member nodes in such a system. The modeling and verifica-
tion of such a system is complicated by a number of factors, including real-time
constraints and the unusual topology of the network, which does not fit well-
studied cases such as clique, star and ring topologies.

We show how to use decomposition and abstraction to isolate the topology-
dependent reasoning in the the proof into a simple lemma. This allows us to use
finite-state model checking techniques to perform this reasoning, and to quickly
assess classes of network topologies. The assumptions we made in abstracting the
model (the premises of our lemma) can in principle be verified locally, without
concern for the network topology.

This case study can be seen as an instance of a general proof strategy: separate
the complicating aspects of the proof of a complex system so that each can be
handled by an appropriate tool.

1 Introduction

“Traditional” satellite systems consist of special-purpose monolithic satellites. Future
ones aim to comprise of a small number of inexpensive general-purpose spacecrafts
that communicate with one another to carry out missions. The success of this futuristic
satellite architecture is predicated on the reliability, fault tolerance, security, and time-
liness properties of the software facilitating computation and communication within a
cluster. The inability to handle transient faults, failure to maintain data confidentiality
or integrity, or excessive propagation delays would immediately nullify the cost and
flexibility benefits that these proposed systems have over more traditional monolithic
architectures. Because of the potential sensitivity of data in the system, correctness is a
major concern and software need to be certified.

Such certification implies verification. Here we focus on one of the tasks that such
systems will routinely perform: aggregation of the data of member nodes a system by
a designated “root” node. We use one of the protocols that has been proposed to ac-
complish this data aggregation. Our approach is an instance of a more general strategy:

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 267–277, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

This copy belongs to 'VANC03'

268 L.D. Zuck and K.L. McMillan

separate the complicating aspects of the proof of a complex system so that each can han-
dled by an appropriate tool. In this case, the aspect we wish to isolate is the topology of
the network.

The challenges to verifying such protocols include the size of the system, the number
of possibly topologies, the presence of faults, the real time constraints imposed by the
communication protocol, etc. We show that many of these issues can be abstracted away
so that we may focus on the topology-related reason in a very simple model. Other
aspects may then be dealt with locally, without the complication of reasoning about
parameterized networks. Correctness can be proven by model checking techniques to
system of a reasonable size (in the tens of nodes). This is on the scale of what can be
expected in a real deployment.

The protocol at hand supports sense/compute/store/forward missions, in which
physical phenomena are detected by nodes with sensory capabilities, post-processed or
aggregated by nodes with computational capabilities, and forwarded to nodes with ded-
icated storage or downlinks to ground stations. It facilitates secure, reliable, in-network
aggregation over a logical topology of communicating nodes. The correct aggregation
of values from sensors to a “root” node in a cluster is an abstraction of the larger goal of
communication protocols that share data and use the cluster to provide fault tolerance
and savings in the constrained resources.

Our main conclusion that even for a rather complex system, the topology-related
reasoning is simple and can be accomplished with automated techniques. Although we
do not prove correctness for arbitrary-size networks, we can provide a guarantee that is
sufficient for a real deployment of a system of fixed size.

A Specific Protocol and Its Expected Properties

We choose to focus on the Secure Ride Sharing protocol (SRS) of Lee and Mossé [6,9]
that builds on the Ride Sharing protocol of [7], augmenting it with (additively homo-
morphic) encryption [3] to guarantee its security properties, which we assume are cor-
rect, and fixing some minor bugs. The assumption of correct cryptography allows us
to focus on the communication, rather than the computational, aspects of the protocol.
Our description of the protocol derives from [6].

SRS is a TDMA-based protocol that uses the redundancy present in the satellite
cluster in order to provide for fault tolerance. TDMA (time division multiple access)
is a communication mechanism that guarantee collision-free transmission of data by
scheduling each satellite to transmit during its own prescribed time slots. This allows
for savings in energy since there is no need for collision detection/retransmission, and
individual satellites are free to power off their radios during periods in which they are
not expected to transmit or receive. The deterministic nature of TDMA can also help fa-
cilitate protocols requiring real-time response. We assume for simplicity of description
that satellites have omnidirectional antennas and that the connectivity of these satellites
can be extracted from the cluster at the time of cluster formation. This omnidirection-
ality provides a multicast medium, which is inherently redundant and fault tolerant,
without having to carry out extra transmissions.

The protocol should guarantee that the root node correctly aggregates the values sent
by the other nodes (that could be acting as sensors or as computing agents) even in

This copy belongs to 'VANC03'

Reasoning about Network Topologies in Space 269

the face of link failures. Moreover, no value should be received by the root more than
once, and no node should be able to obtain the (secret) value contributed by any other
node. The protocol should further be efficient in terms of memory, time, power, and
communication cost, as well as fault tolerant to link failures.

At first glance the verification of this protocol seems well beyond state-of-the art
verification lore. It allows for an arbitrary number of nodes to communicate over a net-
work whose topology is determined at cluster formation time. The number of nodes
is in the tens. Considering all allowable topologies of such a network rules out many,
if not all, approaches to such verification (none of the “parameterized verification” ap-
proaches can handle properties that depend in non-trivial network topology constraints).
Moreover, the number of nodes is not static—nodes leave and join clusters—and, con-
sequently, the topologies are not fixed. In addition, there are real-time constraints on the
protocol, adding to the modeling and verification complexity.

We will show, however, that the topology-dependent reasoning required to prove cor-
rect data aggregation is actually quite simple, provided we abstract away other aspects
of the protocol such as real time and operations on data. This makes it possible to carry
out this reasoning in an automated way exploiting the technique of Bounded Model
Checking [2]. In this way, we can provide a correctness guarantee that is sufficient for
satellite clusters of realistic size.

2 The Secure RideSharing Protocol (SRS)

The Secure RideSharing protocol (SRS) [9] is the secure successor of the RideSharing
fault-tolerant in-network aggregation protocol originally proposed in [7]. This protocol
provides a secure, fault-tolerant, and energy-efficient means of aggregating values de-
tected by nodes within a hierarchical network topology. It further enables networks to
reap the bandwidth and power-consumption benefits of in-network aggregation proto-
cols without exposing the confidential data to outside observers or compromised nodes
within the network itself.

Algorithm 1 describes in pseudo code the functionality of a single node in the net-
work, and Algorithm 2 is the pseudo code for the root.

Just like its predecessor, SRS exploits the inherent redundancy of shared wireless
medium to detect and correct communication errors. Nodes are organized in a track
graph [5] as shown in Fig. 1, where the aggregation path forms a DAG with multiple
paths through the track graph rather than a simple spanning tree. In Fig. 1, a directed
edge from a child C to a parent P1 indicates that P1 and C are within range of each
other and that P1 is able to hear C’s messages. Edges are primary, backup, or side;
primary and backup edges are between adjacent tracks, and side edges are within the
same track. Each sensor node has one primary edge (leading to its primary parent) and
several backup edges. The primary edges form a spanning tree and are used to propagate
data as long as no communication errors occur.

Every sensor node transmits its (encrypted) value according to a predefined TDMA
(Time Division Multiple Access) schedule. With the use of omnidirectional antennas,
and the assumption that a child has at least one non-failing parent link, we can guar-
antee that one or more receive each message. Hence, if the primary link fails, one of

This copy belongs to 'VANC03'

270 L.D. Zuck and K.L. McMillan

Algorithm 1. Aggregation algorithm run by sensors within the network
input : PC , BC , SP , v
A := 0;
P := 0̄;
L.r := 0̄;
L.e := 0̄;
if v NOT NULL then // Aggregate own value

A := A + v + gID(kID) mod M ;
P [ID] := 1;

end
L := rcvL(SP);
foreach Child C in PC ∪ BC do

if rcv(Ac,Pc) from Child C then
if C ∈ PC OR (C ∈ BC AND L[C].e = 1 AND L[C].r = 0) then // Aggregate received

A := A + AC mod M ;
P := P OR Pc ;

end
end
else // Propagate the error signal

L[C].e := 1;
end

end
Transmit(A,P ,L);

Algorithm 2. Final aggregation and decryption algorithm used by the root
input : PC
output: FinalA
A := 0;
P := 0̄;
K := 0;
FinalA := 0;
foreach Child C in PC do

if rcv(Ac,Pc) from Child C then
A := A + AC mod M ;
P := P OR Pc ;

end
end
foreach bit set to ’1’ in P do

K := K + gi(ki) mod M ;
end
FinalA := A − K mod M ;

Fig. 1. Track Topology

the backup parents can aggregate the child’s value (justifying the name “ridesharing”).
Obviously, every value should be aggregated at most once, and the backup parents need
to coordinate to ensure that this is the case.

This copy belongs to 'VANC03'

Reasoning about Network Topologies in Space 271

Assume that node n has a primary parent p and backup ordered parents b1, . . . , bk.
Each parent maintains an L-vector with 2 bits corresponding to n, L.e[n] and L.r[n].
When p receives a message from n, it sets L.r[n]. If an error occurs in the primary
edge, p sets L.e[n]. Every parent attaches its L-vector to each message it sends. The
first (in order above) backup parents bi to receive an L-vector from p with L.e[n] = 1,
aggregates this value and informs its neighbors that it had done so (by sending them its
own L vector with L.r[n] set).

As an example, Fig. 1 shows a node C in track T3 with two parents, P1 and P2, in
track T2, where P1 is primary and P2 backup. Assuming no error, both P1 and P2 re-
ceive C’s value, but only P1 aggregates it. Now, assume a link error only in the primary
edge. P2 will receive the bit vector of P1 over the side edge P1 ↔ P2, detect that C is
missing, and correct the error by aggregatingC’s value into its own.

Each node also maintains a Partaking-Vector (P vector) that is used to keep track
of which nodes successfully contributed their values in the final aggregate. Each node
i is responsible for aggregating its own (encrypted) value into its local aggregate and
setting P [i] vector to ‘1’. The node then piggybacks both the L and the P vectors on the
encrypted aggregate and sends them to all its parents. The aggregation of the P vectors
is a bitwise OR operation of all the P vectors.

3 Modeling and Verification

We now consider the problem of modeling and formally verifying the protocol. The
property of the protocol we would like to prove is a simple safety property. That is,
upon termination of a TDMA cycle, assuming some upper bound on the number of link
failures, the root node contains the the aggregated data from all nodes (and moreover
each value is aggregated exactly once).

3.1 Modeling and Verification Approach

There are several challenges inherent in the modeling and verification. Our protocol is
a real-time, parameterized system. That is, it consists of an arbitrary number of similar
processes, and each must meet a real-time deadline for the system to carry out its func-
tion (that is, it must transmit its data to all of its parents before the end of its TDMA
slot). Moreover, the protocol processes non-finite data, using cryptographic primitives.
All three of these aspects present challenges for modeling and verification.

In addition, the correctness of the protcol depends on the interconnection topology.
This topology is unique to the protocol and does not fit any well-studied class (for
example, ring, star or clique).

Given these difficulties, one of two approaches has been taken in the past. The first
is to give up on generic verification of the protocol and to verify only fixed finite con-
figurations [6]. In this approach, random legal topologies were generated and verified at
an abstract level using the timed finite-state model checker UPPAAL [1]. This is unsat-
isfactory in that we may not know the exact topology in advance. The other approach
is to verify the protocol generically using a manually generated inductive invariant as
in [9]. This manual process may solve the problem, but presents the difficult problem of

This copy belongs to 'VANC03'

272 L.D. Zuck and K.L. McMillan

finding the invariant and performing the invariant checking using an automated theorem
prover.

Here, we consider a third alternative, and perform some simple experiments to
provide evidence for its feasibility. That is, we use abstraction and decomposition tech-
niques to separate concerns in the verification process. When reasoning about the proto-
col as a whole, we can make assumptions to be discharged locally. For example, we can
simply assume that each process meets its real-time deadline. This allows us to treat the
protocol as an untimed synchronous system. The real-time proof obligation can be dis-
charged locally by considering a single process. Thus we have decoupled the questions
of topology and parametricity from the real-time aspect of the problem.

Further, at the protocol level we can abstract away the precise operations of aggre-
gation and ecryption. We need only be concerned with the P vector that determines
the subset of node data values that have been aggregated and the L vector that deter-
mines which values still need to be aggregated. The actual data correctness is again an
assumption that can be discharged locally.

Having made these assumptions, we are left with an abstract model consisting of a
network of nodes whoses edges meet a topology constraint. Since there are no real-time
constraints, we can model time in the TDMA cycle by an integer counter.

At this point, we make one further assumption to allow us to perform the safety ver-
ification automatically: we assume the number of nodes is bounded by a fixed constant
N . This assumption has two effects. It makes the model finite-state, and it makes the
safety property a bounded safety property. That is, because the number of steps in a
TDMA cycle is now bounded by N , it is sufficient to prove that the safety condition
holds for only a bounded number steps. The result is that for any fixed N , we can
check safety of the abstract model using bounded model checking (BMC) reducing the
verification problme to a Boolean satisfiability (SAT) problem.

In a typical networking verification problem, this solution might be considered inad-
equate, as no boundN can be determined in advance. However, in the satellite domain,
we might reasonably put a moderate upper bound on the number of nodes in the network
(given the cost of launching satellites).

This approach provides some considerable advantages. We can verify the protocol
quickly for arbitrary topologies meeting our topology constraint. Moreover, we can ex-
periment with different topology classes and transmission error assumptions simply by
changing the constraints on the model. Of course, we must ultimately verify our mod-
eling assumptions (that is, that nodes aggregate data correctly and in a timely manner).
However, we can do this without concern for the size or topology of the network.

3.2 The Abstract Model

We used Cadence SMV to specify and verify the abstract model. The model has three
fixed parameters: the number of nodes NODES, the number of parents of each node
PARENTS and the number of tracks TRACKS. The model has three immutable variables
describing the the network topology:

1. An array track that assigns a track number to each node,
2. An array parent that gives the set of parents of each node.
3. An array side that gives the side channel connection of each node.

This copy belongs to 'VANC03'

Reasoning about Network Topologies in Space 273

The state components of the abstract model are:

1. The TDMA frame counter slot,
2. A non-deterministic array fail indicating the set of links that fail at the current

time,
3. An array P giving the P vector of each node.
4. An array L giving the L vector of each node.

To simplify the model, the nodes are indexed by their TDMA slots. That is, we assume
that every node has exactly one slot in the TDMA schedule. The node of highest index is
the root node. We wish to prove that each node’s data is aggregated along one and only
one path to the root. Using a standard decomposition trick, we choose a representive
node and prove the property for this node only. This allows us to reduce the partaking
vector to a single bit. The model computes a boolean array aggregate the indicates
which nodes are aggregating the representative’s data in the current TDMA slot. This
array is used to update the P vectors.

Further, to simplify the protocol description, we will encode the L vector with a
single bit that is true if the representative’s data has already been aggregated by some
parent (thus further aggregation should be inhibited). Further refinement of the model
would be needed to compute this information using the actual L vector.

The resulting Cadence SMV model is shown in Figure 2. The linear temporal logic
properties we wish to prove of this model are (translated into more familiar logical
notation):

G (slot = ROOT ⇒ P[ROOT])
G ¬ ∧i∈NODE (aggregate[i] ∧ P[i])

The first of these says that the representative’s data must reach the root, while the second
says it must never be aggregated twice in the same location.

Of course, this property will not be true if we do not make some assumptions about
the network topology, the TDMA schedule and the occurrence of link failures. In the
protocol design the network is a layered DAG in which each layer is connected by side
channels. The side channel connections are defined by:

side[i] := (i < NODES-1 & track[i+1] = track[i]) ? i+1 : 0;

That is, we assume a side channel from each node to the next scheduled node in its
track. Further, we require that all parents of a node in track t must be in track t+ 1:

∧i=0...NODES−2 ∧j∈Parent (parent[i][j] �= 0⇒ track[parent[i][j]] = track[i] + 1)

(note we use zero as a null value in the parent vector). We require that the TDMA
schedule respect the track order:

∧i=0...NODES−2(track[i+ 1] ≥ track[i])

Finally, we assume that each node succeeds in transmitting to at least one parent:

G ∨i∈Parent (parent[slot][i] �= 0 ∧ ¬fail[i])

With these assumptions on the network, we can prove the required safety property.

This copy belongs to 'VANC03'

274 L.D. Zuck and K.L. McMillan

typedef Node 0..(NODES-1);
typedef Parent 0..(PARENTS-1);

module main(){

/* Model of the network topology */
parent : array Node of array Parent of Node;
track : array Node of Track;
side : array Node of Node;

next(parent) := parent;
next(track) := track;

/* Model of the partaking vectors */
P : array Node of boolean;
representative : Node;
forall(i in Node)
init(P[i]) := i = representative;

/* Model of the L vectors */
L : array Node of boolean;
forall(i in Node)
init(L[i]) := 0;

/* The slot counter counts up to NODES-1 */
slot : Node;
init(slot) := 0;
next(slot) := (slot < NODES - 1) ? slot + 1 : slot;

/* This models non-deterministic link failures */
fail : array Parent of boolean;

/* The update function for the P vectors */
aggregate : array Node of boolean;
forall(j in Node)
aggregate[j] :=

|[P[slot] & !fail[i] & parent[slot][i] = j : i in Parent]
& !L[slot] & j!=0 & slot != NODES-1;

next(P) := P | aggregate;

/* The update function for the L vectors */
if(L[slot] | P[slot])
next(L[side[slot]]) := 1;

}

Fig. 2. Abstract network model in Cadence SMV language

This copy belongs to 'VANC03'

Reasoning about Network Topologies in Space 275

3.3 Verification Performance

With the given topology constraint, for fixed values of the parameters, Cadence SMV
can verify our safety specification using bounded model checking and a SAT solver.
Bounded verification is complete in this case because the property being checked is a
bounded-time property.

Figure 3 shows the run time of the solver as we increase the parameterNODES from 4
to 20 with TRACKS = 4. One line shows the case PARENTS = 3, while the other shows
PARENTS = 4. We observe that the run time is inceasing exponentially with the num-
ber of nodes. However, because of the simplicity of the abstract model, we can handle a
network of at least 20 nodes in moderate time. Provided the actual deployed network is
of less than this size, no further guarantee is needed. Failing this, we would have to ap-
ply parameterized methods or some additional reduction to the abstract model. Because
the abstract model is fairly simple, it is possible that an inductive invariant proving it
could be derived with an acceptable level of effort.

0

200

400

600

800

1000

1200

0 5 10 15 20 25

Ru
n

tim
e

(s
)

Number of nodes (NODES)

PARENTS=3 PARENTS=4

Fig. 3. Verification performance

We have made the assumption that each node has one slot in the TDMA cycle. This
assumption is easily removed, however. We can, for example, interleave arbitrary nodes
into the schedule without violating safety. This adds one further fixed parameter to the
model: the length of the TDMA schedule. Since this parameter determines the BMC
depth, we cannot verify arbitrarily large values of this parameter. However, due to en-
ergy considerations, the number of TDMA slots will not in practice be significantly
greater than the number of nodes.

3.4 Refinement Verification

Having verified an abstract model of the protocol, we can proceed to verify increasingly
detailed models of the protocol using refinement techniques, as in [4]. We can refine
the model, for example, by adding introducing the actual data aggregation operations,

This copy belongs to 'VANC03'

276 L.D. Zuck and K.L. McMillan

by adding details of message transmisison, and so on. In verifying these refinements,
however, we need not consider the topology of the network. Thus, by abstracting the
model, we have effectively isolated the topology-dependent reasoning.

4 Conclusion

Much of the existing research on automated verification of networks of processes has
focused on symmetric connection topologies, such as ring, star and clique topologies.
When faced with a network whose correctness depends on a more specific topology, we
may find these methods inapplicable. In this paper, we have considered such a case: a
proposed protocol for aggregation of data in networks of earth-orbiting satellites. For
reasons of physical distribution, the network has an unusual shape: a layered DAG with
added ring connections.

While we have not performed a full formal verification of this protocol in any detail,
we observed that the topology-dependent reasoning in its proof can be isolated into a
simple lemma that can be discharged by finite-state methods for networks of realistic
size. In effect, we succeeded in enumerating all allowable network topologies up to a
size bound in proving this simple property. The lemma we proved should make it pos-
sible to carry on the verification process without further reasoning about parameterized
networks of processes.

With this approach we can prove a property of correct aggregation under assumptions
about transmission failures. However, we do not obtain any quantitative information
about reliability. This suggests a challenge problem: to prove probabilistic bounds on
correct aggregation for all allowable topologies. This is a bounded probabilistic model
checking problem (but not a statistical model checking problem because of the quanti-
fier over topologies). In principle tools such as PRISM [8] can handle such problems,
but in practice this might present a considerable challenge.

Our case study provides and example a general proof strategy: separate the com-
plicating aspects of the proof of a complex system so that each can be handled by an
appropriate tool. We have seen that this approach can allow us to apply model checking
techniques to networks of processes whose correctness depends on network topology.

Acknolwedgements. We thank Adam Lee and Daniel Mossè for introducing us to the
protocol and for explaining to us some of its finer details. This research was supported
in part by DARPA contract NNA11AB36C.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

3. Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably secure ag-
gregation of encrypted data in wireless sensor networks, pp. 1–36

This copy belongs to 'VANC03'

Reasoning about Network Topologies in Space 277

4. Eirı́ksson, Á.T.: The formal design of 1M-gate ASICs. Form. Methods Syst. Des. 16(1), 7–22
(2000)

5. Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two
and three dimensions. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265,
pp. 328–342. Springer, Heidelberg (2002)

6. Feo-Arenis, S., Iskander, M.K., Lee, A.J., Mossé, D., Zuck, L.D.: Verifying protocols for f6.
Inernal document, available upon request (November 2012)

7. Gobriel, S., Khattab, S., Mossé, D., Brustoloni, J., Melhem, R.: Ridesharing: Fault tolerant
aggregation in sensor networks using corrective actions. In: The 3rd Annual IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), pp. 595–604 (2006)

8. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking with
prism: a hybrid approach. STTT 6(2), 128–142 (2004)

9. Lee, A.J., Iskander, M.K., Mossé, D.: Confidentiality-preserving and fault-tolerant in-network
aggregation for collaborative wsns. In: Proceedings of the 8th IEEE International Conference
on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom
(October 2012)

This copy belongs to 'VANC03'

Author Index

Abdellatif, Takoua 1
Atig, Mohamed Faouzi 21

Bapty, Ted 235
Ben Said, Najah 1
Bensalem, Saddek 1
Bouajjani, Ahmed 21
Bozga, Marius 1
Broy, Manfred 39
Bruni, Roberto 54

De Nicola, Rocco 69

Fahrenberg, Uli 84, 98

Gordon, Michal 129
Grosu, Radu 118
Guldstrand Larsen, Kim 84

Harel, David 129
Hennicker, Rolf 145
Howard, Larry 235

Jackson, Ethan 235

Knapp, Alexander 145

Lee, Edward A. 161
Legay, Axel 84, 98
Lluch Lafuente, Alberto 69
Loreti, Michele 69

Maler, Oded 177
McMillan, Kenneth L. 267

Melgratti, Hernán 54
Montanari, Ugo 54
Morichetta, Andrea 69

Neema, Sandeep 235
Nuzzo, Pierluigi 193

Parlato, Gennaro 21
Peled, Doron 118
Pugliese, Rosario 69

Ramakrishnan, C.R. 118
Raynal, Michel 209

Sangiovanni-Vincentelli, Alberto 193
Senni, Valerio 69
Shaver, Chris 249
Sifakis, Joseph 225
Smolka, Scott A. 118
Stoller, Scott D. 118
Sztipanovits, Janos 235

Tiezzi, Francesco 69
Traonouez, Louis-Marie 84, 98
Tripakis, Stavros 249

Wirsing, Martin 145

Yang, Junxing 118

Zuck, Lenore D. 267

This copy belongs to 'VANC03'

	Preface
	Table of Contents
	Author Index

	Model-Driven Information Flow Security for Component-Based Systems
	1 Introduction
	2 Component-Based Design
	2.1 Atomic Components
	2.2 Composite Components

	3 Information Flow Security
	4 Automated Verification of Non-interference
	5 Case Study: Web Service Reservation System
	6 Related Work
	7 Conclusion and Future Work
	References
	Appendix

	Context-Bounded Analysis of TSO Systems
	1 Introduction
	2 Concurrent Pushdown Systems
	2.1 Memory Model
	2.2 Concurrent Pushdown Systems
	2.3 Reachability Problem

	3 Processor-Centric Context-Bounded Analysis
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Memory-Centric Context-Bounded Analysis
	4.1 Proof of Theorem 4
	4.2 Proof of Theorem 5

	5 Process-Memory Centric Context-Bounded Analysis
	6 Conclusion
	References

	A Model of Dynamic Systems
	1 Introduction: Dynamic Systems
	2 The Dynamic System Model
	2.1 System Propaedeutic
	2.2 Interface Behavior Model
	2.3 Composition of Dynamic Systems
	2.4 Dynamic State Machines by State Transition Functions
	2.5 Dynamic Architectures
	2.6 System Interface Behavior: Specification by Interface Assertions

	3 Discussion
	4 Parameterized Interfaces and Systems
	5 Related Work and Alternative Models
	6 Summary and Outlook
	References

	From Hierarchical BIP to Petri Calculus
	1 Introduction
	2 Background
	2.1 The BIP Component Framework
	2.2 Petri Calculus

	3 Hierarchical BIP Systems
	4 HBI(P) Systems as Petri Calculus Terms
	4.1 Encoding of Basic Components
	4.2 Encoding of Interactions
	4.3 Encoding of HBI(P) Systems

	5 Conclusion
	References

	Programming and Verifying Component Ensembles
	1 Introduction
	2 A Service Provision Scenario
	3 TheSCELight Language
	4 Translating
	5 Verification
	6 Concluding Remarks
	References

	Parametric and Quantitative Extensions of Modal Transition Systems
	1 Introduction
	2 Parametric Modal Transition Systems
	2.1 Motivation
	2.2 Definition

	3 Quantitative Modal Transition Systems
	3.1 Weighted Modal Transition Systems
	3.2 Distances
	3.3 Conjunction
	3.4 Structural Composition

	References

	Specification Theories for Probabilistic and Real-Time Systems
	1 Introduction
	2 Abstract Probabilistic Automata
	2.1 Abstract Probabilistic Automata
	2.2 Conjunction
	2.3 Structural Composition
	2.4 Over-Approximating Difference
	2.5 Under-Approximating Differences
	2.6 Distances

	3 Real-Time Specifications
	3.1 Timed Specifications
	3.2 Robust Timed Specifications
	3.3 Conjunction
	3.4 Structural Composition
	3.5 Parametric Robustness Evaluation

	References

	Compositional Branching-Time Measurements
	1 Introduction
	2 Measuring Structures
	3 Example
	References

	Steps towards Scenario-Based Programmingwith a Natural Language Interface
	1 Introduction
	2 The Quest for Programming in Natural Language
	2.1 Using Controlled Natural Language
	2.2 Programming vs. Command and Control
	2.3 Programming in Natural Language

	3 Approaches to Programming in Natural Language
	4 Behavioral Programming in Controlled Natural Language
	4.1 Live Sequence Charts
	4.2 Natural Language Play-in
	4.3 Show and Tell
	4.4 Limitations and Future Work

	References

	Assembly Theoriesfor Communication-Safe Component Systems
	1 Introduction
	2 Assembly Theories
	3 Modal I/O-Transition Systems and Weak Modal Refinement
	4 A Modal Assembly Theory
	4.1 Modal Interfaces and Modal Assemblies
	4.2 Communication-Safety and Encapsulation of Modal Assemblies
	4.3 Refinement of Modal Assemblies

	5 Conclusions
	References

	Constructive Collisions
	1 TheProblem
	2 Time
	2.1 Superdense Time
	2.2 Piecewise Continuity
	2.3 Discreteness
	2.4 An Alternative Model of Time

	3 Constructive Fixed-Point Semantics
	4 Collisions
	4.1 Dirac Delta Functions
	4.2 Modeling Collisions as Impulses
	4.3 Simultaneous Collisions

	5 Discussion
	6 Conclusion
	References

	The Unmet Challenge of Timed Systems
	1 Introduction
	2 The Timed Level of Abstraction
	3 Verification and Analysis of Timed Systems
	4 Strange Encounters with Reality
	References

	Let’s Get Physical:Computer Science Meets Systems
	1 Emerging Information Technology Trends
	2 Cyber-Physical System Design Challenges
	2.1 Modeling Challenges
	2.2 Integration Challenges
	2.3 Specification Challenges

	3 Coping with Complexity in VLSI Design: Lessons Learned
	3.1 Dealing with Moore’s Law
	3.2 System Design Methodology

	4 Platform-Based Design with Contracts
	4.1 Contracts
	4.2 A Contract-Based Design Flow for CPS

	5 Conclusions
	References

	What Can be Computed in a Distributed System?
	1 Definitions
	2 Are Asynchronous Crash-Prone Distributed Systems Universal?
	3 How to Circumvent Consensus Impossibility
	4 Examples of Objects That Can Be Wait-Free Implemented inthe Read/WriteWait-Free Model
	5 On the Complexity Side: A Glance at Synchronous Systems
	5.1 The Case of Crash-Prone Synchronous Systems
	5.2 The Case of Crash-Free Synchronous Systems with a Message Adversary
	5.3 A Glance at Crash-Free Synchronous Systems with an Arbitrary Network

	6 Conclusion
	References

	Toward a System Design Science
	1 AboutDesign
	2 Bringing Science to Design
	3 Principles and Problems
	3.1 Four Driving Principles
	3.2 Three Basic Problems

	4 Toward a Design Science
	References

	OpenMETA: A Model- and Component-Based DesignTool Chain for Cyber-Physical Systems
	1 Introduction
	2 OpenMETA Integration Layers
	3 Model Integration Framework – Semantic Integration
	3.1 Model Integration Language and Semantic Interfaces
	3.2 Semantic Backplane of Open META

	4 Tool Integration Framework
	5 Execution Integration Platform
	6 Lessons Learned
	References

	Feedback in Synchronous Relational Interfaces
	1 Introduction
	2 Background: Synchronous Relational Interfaces
	3 Generalizing Feedback
	3.1 Why Generalize the Definition of Feedback?
	3.2 Challenge: Monolithic Order
	3.3 Interfaces with I/O Dependency Information
	3.4 Lifting to Powersets
	3.5 Separating Input Assumptions

	4 Refinement-Preserving Feedback
	4.1 Partiality
	4.2 Nondeterminism
	4.3 General Feedback Composition

	5 Conclusions
	References

	Reasoning about Network Topologies in Space
	1 Introduction
	2 The Secure RideSharing Protocol (SRS)
	3 Modeling and Verification
	3.1 Modeling and Verification Approach
	3.2 The AbstractModel
	3.3 Verification Performance
	3.4 Refinement Verification

	4 Conclusion
	References

	Author Index

