
Targeted Update – Aggressive Memory

Abstraction Beyond Common Sense
and Its Application on Static Numeric Analysis

Zhoulai Fu�

IMDEA Software

Abstract. Summarizing techniques are widely used in the reasoning
of unbounded data structures. These techniques prohibit strong update
unless certain restricted safety conditions are satisfied. We find that by
setting and enforcing the analysis boundaries to a limited scope of pro-
gram identifiers, called targets in this paper, more cases of strong update
can be shown sound, not with regard to the entire heap, but with regard
to the targets. We have implemented the analysis for inferring numeric
properties in Java programs. The experimental results show a tangible
precision enhancement compared with classical approaches while pre-
serving a high scalability.

Keywords: abstract interpretation, points-to analysis, abstract numeric
domain, abstract semantics, strong update.

1 Introduction

Static analysis of heap-manipulating programs has receivedmuch attention due to
its fundamental role supporting a growing list of other analyses (Blanchet et al.,
2003b; Chen et al., 2003; Fink et al., 2008). Summarizing techniques, where the
heap is partitioned into finite groups,can manipulate unbounded data structures
through summarized dimensions (Gopan et al., 2004). These techniques have
many possible uses in heap analyses, such as points-to analysis (Emami et al.,
1994) and TVLA (Lev-Ami and Sagiv, 2000), and also have been investigated as a
basis underpinning the extension of classic numeric abstract domains to pointer-
aware programs (Fu, 2013). Most of these analyses follow the strong/weak update
paradigm (Chase et al., 1990) to model the effects of assignments on summarized
dimensions. A strong update overwrites the data that may be accessed with a new
value, whereas a weak update adds a new value to the summarized dimensions and
preserves their old values. Strong update is desired whenever safe as it provides
better precision.

Applying strong update to a summarized dimension requires that it repre-
sent a single run-time memory. This requirement poses a difficulty for applying

� In addition to research facilities granted by IMDEA Software, this work has also
received financial support from AX – L’Association des Anciens Élèves et Diplômés
de l’École polytechnique at 5, rue Descartes 75005 Paris.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 534–553, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Targeted Update 535

strong update as it is usually hard to know the element number represented by
a summarized dimension. Efforts have been made to use sophisticated heap dis-
ambiguation techniques (Sagiv et al., 1999). While such approaches indeed help
to find out more strong update circumstances, many of the proposed algorithms,
such as focus and blur operations in shape analysis, are often hard to implement
or come with a considerable complexity overhead.

The paper presents a new memory abstraction that makes strong update
possible for summarized dimensions even if they do not necessarily represent
a singleton. The approach is called targeted update. It extends the traditional
notion of soundness in heap analysis by focusing the abstract semantics on a
selected set of program identifiers, called targets.

Our major finding can be summarized as follows: By focusing on the tar-
gets, we are able to perform an aggressive analysis even if the traditional safety
condition for strong update fails.

A motivating example. Consider the assignment y.f = 7. Assume that the
memory state before the assignment is informally represented in Fig. 1.

δ1 δ2

x.f y.f

[0, 5] [0, 9]

Fig. 1. Memory state be-
fore statement y.f = 7

The two access paths x.f and y.f are of integer type.
The two gray clouds denoted by δ1 and δ2 represent
two disjoint summarized dimensions. They initially
store numeric values in the range of [0, 5] and [0, 9]
respectively. An edge from an access path to a cloud
indicates a may-access relation.

The memory state does not tell which summa-
rized dimension (δ1 or δ2) should be updated. In
addition, more than one concrete memory cell may
be associated with δ1 or δ2. Thus, traditional anal-
ysis of y.f = 7 performs weak update on δ1 and
δ2. The abstract state after the assignment becomes
δ1 ∈ [0, 7]∧ δ2 ∈ [0, 9], following which we infer x.f ∈ [0, 7]∧ y.f ∈ [0, 9]. We call
this approach common sense strong/weak update paradigm.

Now we present the targeted update approach. In this approach, a set of access
paths needs to be selected before the analysis. The selected set is called target
set. Here, if we set {y.f} as target set, we are able to apply strong update on both
δ1 and δ2. This is because making wrong assertions on the concrete memories of
δ1 or δ2 that are not pointed to by y.f does not contravene the soundness with
regard to the targets : The two clouds are at most pointed to by x.f and y.f , yet
x.f is not a target. The described approach is called targeted update. Applying
targeted update with target set {y.f} allows for precise analysis of y.f , but the
value of the non-target x.f is not tracked. The obtained δ1 = 7 ∧ δ2 = 7 only
infers y.f = 7. There is no information concerning x.f .

It can be seen that depending on specific analysis requirement, the target set
{y.f}may not be appropriate. Imagine that we want to verify this post-condition
of the statement y.f = 7

x.f ∈ [0, 7] ∧ y.f ∈ [0, 7] (1)

536 Z. Fu

This property cannot be verified by the strong/weak update paradigm, neither
by the targeted update using {y.f} as the target set. To use targeted update with
the target set T = {x.f, y.f} solves the problem. The summarized dimension δ1
is now pointed to by both targets, and δ2 by one target. Targeted update weakly
updates δ1 because updating δ1 has an effect on both x.f and y.f that are
targets. It strongly updates δ2 because it is a region that can only be “observed”
from y.f : For the concrete memories represented by δ2 that are not pointed to
by y.f , nothing is wrong to associate whatever values with δ2; for the concrete
memories represented by δ2 that are truly pointed to by y.f , the values associated
with δ2 due to targeted update are correct. Finally, targeted update obtains
δ1 ∈ [0, 7] ∧ δ2 = 7, from which we infer (1).

In summary, targeted update has only responsibilities for its targets, namely,
the objects pointed to by these targets, and it has no obligation to be sound
with regard to the entire heap as in the common sense approach. As illustrated
by the example, targeted update has two major characteristics: 1) More strong
update cases on summarized dimensions can be discovered by targeted update.
2) Picking up right target set is a trade-off problem since targeted update can
be very precise for targets, but it does not track non-targets.

This paper makes the following key contributions:

– We introduce the concept of targets and formalize the soundness notion with
regard to targets (Sect. 3). The crucial insight lies in the fundamental differ-
ence of this notion of soundness with that in the common sense strong/weak
paradigm.

– We derive an aggressive abstract semantics (Sect. 4 and 5) from the notion of
targets. This is made possible due to a simple condition we have discovered
that allows targeted update to be safely applied. We have formalized and
proved the soundness of targeted update.

– Important design choices are discussed in Sect. 6. The implemented analyzer
was tested on the SPECjvm98 benchmark suite, composed of 10 real-world
Java programs.

2 Preliminaries

This section gives a brief review of some basic concepts from static program
analysis that are used in this paper. A companion report of this paper is pro-
vided 1 with more details, including the notions of abstract interpretation, the
semantics of points-to graph, the resolution of an access path, etc.

General Notations. For a given set U , the notation U⊥ represents the disjoint
union U ∪ {⊥}. Given a mapping m ∈ A → B⊥, we express the fact that m is
undefined in a point x by m(x) = ⊥. We write post [m] ∈ ℘(A) → ℘(B) for the
mapping λA1.{b | ∃a ∈ A1 : m(a) = b}.
1 http://hal.inria.fr/hal-00921702/en

http://hal.inria.fr/hal-00921702/en

Targeted Update 537

Syntactical Notations. The primary data types include scalar numbers in I,
where I can be integers, rationals or reals, and pointers (or references) in Ref .
The primary syntactical entities include the universe of local variables and fields.
They are denoted byVar and Fld respectively. An access path (Landi and Ryder,
1992) is either a variable or a variable followed by a sequence of fields. The
universe of access paths is denoted by Path. We subscript Varτ , Fld τ , Pathτ

and their elements with τ ∈ {n, p} to indicate their types as scalar number or
reference. We use Impn to refer to the basic statements involving only numeric
variables and use the meta-variables sn to range over these statements. Similarly,
we let Impp be the statements that use only pointer variables and let sp range
over these statements. Below we show the main syntactical categories and the
meta-variables used in the paper.

k ∈ I scalar numbers
r ∈ Ref concrete references
xτ , yτ ∈ Var τ numeric/pointer variables
fτ , gτ ∈ Fldτ numeric/pointer fields
uτ ,vτ ∈ Pathτ numeric/pointer access paths
sn ∈ Impn xn = k | xn = yn | xn = yn � zn | xn �� yn
sp ∈ Impp xp = new | xp = null | xp = yp.fp | xp = yp | xp.fp = yp

where � ∈ {+,−, ∗, /}, and �� is an arithmetic comparison operator.

Analysis of Impn. We express a numeric property by a conjunction of arith-
metic formulae such as {x+y ≤ 1, x ≤ 0}. The universe of the numeric properties
is denoted by Num�. As usual, an environment maps variables to their values. We
consider numeric environments Num � Varn → I⊥. The relationship between
an environment and a property can be formalized by the relation of valuation.
We say that n ∈ Num is a valuation of n� ∈ Num�, denoted by

n |= n� (2)

if n� becomes a tautology after each of its free variables is replaced by its corre-
sponded value in n. For example, if n = {x → 7, y → 7}, and n� = {x+ y < 15}
then we have n |= n�. For each statement sn of Impn, the concrete semantics is

given by a standard rule of state transition
Num−→ (sn) ∈ Num → Num. We write

� and � for the join and widening operator.
In this paper, we assume that a sound abstract semantics of sn of signature

[|·|]�n ∈ Impn → (Num� → Num�) is available to us. The abstract semantics

is assumed to be sound with regard to the concrete
Num−→ : For any n, n� and

sn ∈ Impn, n |= n� ⇒Num−→ (sn)(n) |= [|sn|]�n (n�).

Analysis of Impp. A concrete state in Impp is thought of as a graph-like struc-
ture representing the environment and heap. The universe of the concrete states
is denoted by Pter . We write p to range over them.

538 Z. Fu

p ∈ Pter � (Varp → Ref ⊥)× ((Ref × Fldp) → Ref ⊥) (3)

Points-to analysis is a dataflow analysis for detecting pointer relations. The
essential process is to partition Ref into a finite set H and then to summarize
the run-time pointer relations via elements of H and program variables. The
elements of H are called allocation sites or abstract references. The process can
be interfaced with a function � called naming scheme.

� ∈ Ref → H (4)

In this paper, we consider a standard naming scheme that names heap objects
after the control points where the objects are allocated. We assume that the
naming scheme is flow-independent. That is to say, the analysis of two control
branches uses the same naming scheme. Note that this is the case for points-to
analysis but not for shape-analysis.

Definition 1 (Interface of traditional points-to analyzer)

(Impp,Pter ,
Pter−→,Pter �, γp, [|·|]�p)

The universe of the concrete states is denoted by Pter, and the concrete tran-

sition rule is denoted by
Pter−→∈ Impp → (Pter → Pter). The universe of the

abstract states is denoted by Pter �. We write p� to range over them.

p� ∈ Pter � � (Varp → ℘(H))× ((H × Fldp) → ℘(H)) (5)

Each abstract state is called a points-to graph. The concretization function
γp : Pter � → ℘(Pter) specifies the semantics of points-to graph. The abstract

semantics [|·|]�p is assumed to be sound with regard to the concrete
Pter−→: For any

p, p� and sp ∈ Impp, p |= p� ⇒Pter−→ (sp)(p) ∈ γp ◦ [|sp|]�p (p�).

3 Summarizing Technique with Targets

In this section, we introduce the concept of targets and how summarizing tech-
nique with targets differs from classic summarizing technique.

The Analyzed Language. This paper focuses on how to deal with language
Impnp. The statements in Impnp include these in Impn and Impp, and statements
in the forms of yp.fn = xn and xn = yp.fn. We write snp to range over Impnp.

snp ::= sn | sp | yp.fn = xn | xn = yp.fn (6)

We call yp.fn = xn or yp.fn = k a write access and xn = yp.fn a read access.

Targeted Update 539

A Non-standard Concrete Semantics. A concrete state in Impnp is an en-
vironment mapping variables to values and a mapping from fields of references
to values. By grouping the numeric and pointer parts, we formalize the universe
of the concrete states as

State =

Num[Varn∪(Ref×Fldn)]
︷ ︸︸ ︷

(Varn → I⊥)× ((Ref × Fldn) → I⊥) (7)

× (Varp → Ref ⊥)× ((Ref × Fldp) → Ref ⊥)
︸ ︷︷ ︸

Pter

(8)

Thus, a state is a pair (n, p) where n can be regarded as a concrete state of Impn
over Varn ∪ (Ref × Fldn), and p as a concrete state of Impp. In the companion

report, we express the concrete semantics of Impnp, denoted by −→�, via
Num−→

and
Pter−→.

Example 1 Consider the following program:

1 L i s t tmp = null , hd ;
2 int idx ;
3 for (idx = 0 ; idx < 3 ; idx++){
4 hd = new L i s t () ; // a l l o c a t i o n s i t e h

5 hd . val = idx ;
6 hd . next = tmp ;
7 tmp = hd ;
8 }

The integers 0, 1 and 2 are stored iteratively on the heap. The head of the list is
pointed to by the variable hd. The concrete state at the end of the program can
be specified as (n, p). We write r0, r1 and r2 for the concrete memories allocated
at allocation site h.

n = {(r0, val) → 0, (r1, val) → 1, (r2, val) → 2, idx → 3}
p = {hd → r2, tmp → r2, (r2, next) → r1, (r1, next) → r0} (9)

Common Sense Summarizing Technique. A naming scheme � ∈ Ref → H
is assumed for the analysis of Impnp. In this context, the idea of summarizing
technique is to use the names computed by the naming scheme to create sum-
marized dimensions that represent the numeric values stored on the heap.

Below we show an abstraction of the concrete state (9).

(n�, p�) =
(
δh,val ∈ [0, 2], idx = 3, hd �� h next

��)
(10)

In this abstraction, the naming scheme maps the concrete r0, r1 and r2 to an
abstract reference h ∈ H . We can perform pointer analysis based on the naming
scheme and, on the other hand, summarize numeric information on the val field
of r0, r1 and r2 by a summarized dimension related to h and val, denoted by
δh,val. The summarized dimension in this context is an element H × Fldn.

540 Z. Fu

In the following, we denote H ×Fldn by Δ, and use δ to range over the pairs
in Δ. We also write δh,fn to indicate the summarized dimension corresponding
to the allocation site h and the field fn.

Definition 2 An abstract state is defined to be a pair (n�, p�) of

NumP� � Num�[Varn ∪Δ]× Pter � (11)

where Num�[Varn∪Δ] is similar to Num�, but defined over Varn∪Δ, and Pter �

is the universe of points-to graphs (Sect. 2).

The summarizing process can be formalized through the extended naming
scheme on Ref × Fldn → H × Fldn, defined as λ(r, fn).(�(r), fn). By abuse of
notation, we still write � for the extended naming scheme. For example, the
naming scheme used in (10) satisfies �(ri, f) = δh,f for i = 0, 1 and 2. In (10),
δh,val → [0, 2] asserts that its concrete state (n, p) must satisfy

∀(r, val) ∈ �−1(δh,val) : n(r, val) ∈ [0, 2] (12)

This is common sense — a summarized dimension represents a set of concrete
locations, and the fact over the summarized dimension translates to all the heap
locations represented by the summarized dimension. Although it seems natural
to require (12), we find that this kind of “contract” between the abstract and
concrete states can be in some circumstances, too strong to be useful.

Assume that we have an extra statement hd.val = 0 after l. 8. Imagine that
we only want to ensure that hd.val becomes 0 after the statement. We cannot up-
date δh,val to 0 because that would mean all (r, val) ∈ �−1(δh,val) store the value
0, which is clearly unsound. To make a more precise analysis in this situation,
we need to relax the condition (12) so that a fact over a summarized dimension
does not always translate to all their represented concrete heap locations.

This is where targeted update comes in. It allows a subset S ⊆ �−1(δh,val)
in (12) to be specified so that the abstract semantics only needs to guarantee
n(r, val) ∈ [0, 2] for (r, val) belonging to the specified subset S.

Targets. In the context of Impnp, a target set, or targets, is a set of access paths
holding numeric values on the heap. These access paths should not be local
variables, and may not occur in the analyzed program syntax.

We use two operations on targets: Let t be an access path of a target set,
p ∈ Pter , d ∈ Ref × Fldn. Then d = p(t) reads as t resolves to or points to d
under p. If p has an arc from variable x to r, then p(x.fn) = (r, fn); δ ∈ p�(t)
reads as t resolves to or points to δ under p�. For example, in Fig. 1, we have
p�(x.f) = {δ1} and p�(y.f) = {δ1, δ2}. See the companion report for their formal
definitions.

Below we write p ∈ γp(p
�) to denote that p is abstracted by p�; we write

n |= [ins]n� to denote that n is a valuation (the symbol |= is introduced in
Sect. 2) of n� with its variables substituted following ins . For example, let ins =
{δ1 → d1, δ2 → d2} and n� = {δ1 + δ2 > 0, δ > 10}. Then we have [ins]n� =
{d1 + d2 > 0, d2 > 10}.

Targeted Update 541

If a target set is selected and the soundness is enforced with regard to the
targets, the abstract state (n�, p�) represents all concrete states (n, p) as long
as p is abstracted by p� and n can be abstracted by whatever n�′ that is n�

with its summarizing dimensions δ1, . . . , δm instantiated with some d1, . . . , dm
satisfying: For 1 ≤ i ≤ m, �(di) = δi and di can be reached by targets, i.e.,
∃t ∈ T : di = p(t).

Definition 3 Let T be the target set. The concretization of a state (n�, p�) ∈
NumP� is defined as

γ〈T 〉(n�, p�) � {(n, p) | p ∈ γp(p
�), ∀ins ∈ Insp〈T 〉 : n |= [ins](n�)} (13)

with Insp〈T 〉 � {ins ∈ Δ → D | ∀(δ, d) ∈ ins : �(d) = δ ∧ d ∈ post [p](T)}.
Read it as, an element (n, p) is in the concretization γ〈T 〉(n�, p�), if p is in the

concretization of p�, and n is in the concretization of [ins]n� where ins is called
an instantiation mapping summarized dimensions to concrete d ∈ D that are
pointed to by the targets T .

Below, we present the abstract semantics of statements in Impnp, called tar-
geted update.

4 Targeted Update — The Case of Write Access
yp.fn = xn

Algorithm. Targeted update uses two operators: The local strong update op-
erator [|δ = xn|]S assigns xn to δ, regarding xn and δ as scalar variables. For
example, if it is interval domain on which targeted update is built, we have

[|δ = xn|]S ({δ ∈ [1, 2], xn ∈ [3, 4]}) = {δ ∈ [3, 4], xn ∈ [3, 4]} (14)

Another operator [|δ = xn|]W is called local weak update operator. It assigns xn

to δ and then joins the result with its original state, for example,

[|δ = xn|]W ({δ ∈ [1, 2], xn ∈ [3, 4]}) = {δ ∈ [1, 4], xn ∈ [3, 4]} (15)

It is clear that both operators can be computed from traditional numeric
domains.

The input of targeted update is an abstract state (n�, p�) ∈ NumP� and a
pre-selected target set T . We do not care about how this set is selected for
now. Targeted update first computes the summarized dimensions to which yp.fn
resolves, namely p�(yp.fn). Each summarized dimension δ is then treated one by
one.2 If the following condition holds:

δ is pointed to by no target in T \{yp.fn} (TU)

2 Dealing with δ in different orders could have an influence on precision, but this point
is not studied in the paper.

542 Z. Fu

then local strong update will be performed on δ; otherwise, local weak update
has to be performed on δ. The above condition is referred to as (TU) condition
subsequently. This algorithm for the abstract semantics is presented in Algo. 1.

Algorithm 1. Targeted update for yp.fn = xn

Input: Abstract state (n�, p�), targets T
Output: The abstract state after targeted update [|yp.fn = xn|]�〈T〉 (n

�, p�)

1 n�′ ← n�

2 for δ ∈ p�(yp.fn) do
3 if there exists no t ∈ T\{yp.fn} satisfying δ ∈ p�(t) then

4 n�′ ← [|δ = xn|]S (n�′)
5 else

6 n�′ ← [|δ = xn|]W (n�′)
7 end if

8 end for

9 return n�′, p�

Remark 1 Automatically finding targets adapted to specific problem require-
ments is a problem in itself. In our implementation, we use the numeric access
paths (excluding scalar variables) that appear syntactically in the program as
targets.

Comparison with Strong/Weak Update. Below, we present a case study. It
shows how targeted update works and in which way it differs from the common
sense strong/weak update paradigm.

Example 2 Assume that a program has three numeric access paths: t, yp.fn and
s, and there are three summarized dimensions: δ1, δ2 and δ3. Assume that the
access paths resolve to summarized dimensions as depicted:

t

�����
����

����
����

�� yp.fn

�������
���

����
���

�
s

�������
���

��

δ1 δ2 δ3

(16)

namely, p�(t) = {δ3}, p�(yp.fn) = {δ1, δ2, δ3}, p�(s) = {δ2, δ3}. We shall compare
targeted update and strong/weak update paradigm of yp.fn = xn.

The concrete semantics of yp.fn = xn is known: It modifies one element of
d ∈ �−1(δ1) ∪ �−1(δ2) ∪ �−1(δ3). It is clear that the information from (16)
does not help to identify the one among δ1, δ2, and δ3 that will be modified
by the statement. In addition, this specific δ may have more than one con-
crete represented element. Thus, the traditional approach performs weak update
which amounts to a conservative join of [|δ1 = xn|]W (n�), [|δ2 = xn|]W (n�) and

[|δ3 = xn|]W (n�). Formally, the weak update is defined as

Targeted Update 543

[|yp.fn = xn|]� (n�, p�) �
(
�δ∈p�(yp.fn) [|δ = xn|]W (n�)

)
, p� (17)

Now, let us consider targeted update. Assume that all three access paths are
targets, T = {t, yp.fn, s}. Because only δ1 satisfies (TU) condition, targeted
update abstracts yp.fn = xn as a composition of local weak update of δ2 and

δ3, and local strong update of δ1, namely, [|δ3 = xn|]W ◦ [|δ2 = xn|]W ◦ [|δ1 = xn|]S .
Formally, we define targeted update as follows.

Definition 4 Let T be a set of targets, (n�, p�) ∈ NumP�. Define the targeted
update for yp.fn = xn:

[|yp.fn = xn|]�〈T 〉 (n
�, p�) � [|δ1 = xn|]η(δ1) ◦ · · · ◦ [|δM = xn|]η(δM) n�, p� (18)

with {δ1, . . . , δM} = p�(yp.fn),

η � λδ : p�(yp.fn).

{
S if {t ∈ T | t �= yp.fn ∧ δ ∈ p�(t)} = ∅
W otherwise

(19)

Correctness. The correctness of the abstract semantics can be formalized as
follows.

Theorem 1 Let T be a target set. For any abstract state (n�, p�) of NumP� and
any (n, p) ∈ γ〈T 〉(n�, p�). We have

−→�(yp.fn = xn)(n, p) ∈ γ〈T 〉 ◦ [|yp.fn = xn|]�〈T 〉 (n
�, p�) (20)

We need a lemma for the proof. If the (TU) condition holds, the summarized
dimension δ specified in the condition is pointed to by at most one target. Obser-
vationally, δ is a singleton representing only one object, although δ may represent
more than one object that is not necessarily pointed to by targets.

This intuition is formalized as the lemma below. We write tu(T, p�, yp.fn, δ)
as a shortcut for (TU), namely � ∃t ∈ T \{yp.fn} : δ ∈ p�(yp.fn). The proof of
the lemma needs a property as stated of points-to graph: For any concrete p and
abstract p� such that p ∈ γp(p

�), if access path u resolves to d ∈ Ref × Fldn,
i.e. p(u) = d, then we have �(d) ∈ p�(u). This property ensures, for example, if
p(x) = r in the concrete, then p�(x) has to contain �(r).

Lemma 1 Assume that tu(T, p�, yp.fn, δ) holds. Then, for any p ∈ γp(p
�) and

ins ∈ Insp〈T 〉, we have ins(δ) = p(yp.fn).

Proof (Proof of Lem. 1) Because ins ∈ Insp〈T 〉, we have ins(δ) must be pointed
to by targets in T .

544 Z. Fu

ins(δ) ∈ {p(t) | t ∈ T, t �= yp.fn} ∪ {p(yp.fn)} (21)

Condition (TU) combined with the semantics of points-to graph tells that the
first part of (21) has to be empty. Otherwise, we have some t ∈ T \{yp.fn}
pointing to δ, which contradicts tu(T, p�, yp.fn, δ). By consequence, we have
ins(δ) = p(yp.fn). ��

This lemma plays a crucial role in proving the correctness of the abstract
semantics. We give a proof sketch in the companion report.

5 Targeted Update — The Case of Read Access
xn = yp.fn, sn and sp

We have developed an abstract semantics for the write access statement using
the soundness notion with regard to targets. This section presents our abstract
semantics for other types of statements in Impnp.

Case for xn = yp.fn. Assume that yp.fn only resolves to δ. It is tempting, but

wrong, to abstract statement as in traditional numeric analysis, i.e., [|xn = δ|]�n.
Consider a = x.f; b = y.f; if (a < b){...}. Assume that p�(x.f) =
p�(y.f) = {δ}. If the abstract semantics relates a (resp. b) with δ after a = x.f
(resp. b = y.f), the analysis will wrongly argue that the following if branch
can never be reached. The above reasoning is wrong because we should not, in
general, correlate a summarized dimension with a scalar variable.

Gopan et al. have pointed out that to assign a summarized dimension δ to
a non-summarized dimension xn takes three steps: First, extend δ to a fresh
dimension δ′ (using the operator expand�δ,δ′ that copies dimensions. Then, re-

late xn with δ′ using traditional abstract semantics for assignment [|xn = δ′|]�n.
Finally, the newly introduced dimension δ′ has to be dropped (using the opera-

tor drop�δ′ that removes dimensions). See (Gopan et al., 2004) for the details of

drop�δ′ and expand�δ,δ′ .
In summary, Gopan’s operator copies the values of the summarized dimension

to the scalar variable but keeps them uncorrelated. The following operator is used
to assign a summarized dimension δ to a scalar variable xn.

G(xn, δ) � λn�. drop�δ′ ◦ [|xn = δ′|]�n ◦ expand�δ,δ′ n� (22)

For example, the propertyG(xn = δ){δ > 1} = {xn > 1, δ > 1} after applying
x = δ. We see that scalar variable xn and summarized dimension δ cannot be
related, even if the underlined numeric domain is relational.

Remark 2 The lack of correlation between δ and xn reveals another source of
imprecision of the classic soundness notion, besides its weak update semantics.

Targeted Update 545

Sharper analysis can be obtained thanks to the notion of targets. In Lem. 1, we
have shown an important consequence of (TU), that is, the underlined summa-
rized dimension δ represents a single concrete object among the objects pointed
to by the targets. This lemma allows us to deal with δ satisfying (TU) as a
scalar variable.

Consider the read access xn = yp.fn. Let (n
�, p�) be the input abstract state,

T be the targets. If yp.fn �∈ T , we have to unconstrain xn. If yp.fn ∈ T and
p�(yp.fn) = {δ1, . . . , δM}, targeted update joins the effects of assigning δi to xn

for 1 ≤ i ≤ M . For each δi, if (TU) satisfies, the effect of assigning δi to xn is

the same as [|xn = δi|]�n (n�), as if δi is a scalar variable; if (TU) fails, the best
we can do is to copy the possible values of δi into xn, which amounts to using
Gopan’s operator (22). This is summarized in Algo. 2. That is,

[|xn = yp.fn|]�〈T 〉 (n
�, p�) �

{
[|xn =?|]�n n�, p� yp.fn �∈ T⊔

δ∈p�(yp.fn)
[|xn = δ|]η(δ) n�, p� yp.fn ∈ T

(23)

where the operator [|xn =?|]�n unconstrains xn, η is the shortcut defined in (19),
and

[|xn = δ|]S � [|xn = δ|]�n , [|xn = δ|]W � G(xn, δ) (24)

Algorithm 2. Targeted update for xn = yp.fn

Input: Abstract state (n�, p�), targets T
Output: The abstract state after targeted update [|xn = yp.fn|]�〈T〉 (n

�, p�)

1 if yp.fn �∈ T then

2 return [|xn =?|]�n (n�), p�

3 n�′ ← ⊥
4 for δ ∈ p�(yp.fn) do
5 if there exists no t ∈ T\{yp.fn} satisfying δ ∈ p�(t) then

6 n�′ ← n�′ 	 [|xn = δ|]�n (n�′)
7 else

8 n�′ ← n�′ 	G(xn, δ)
9 end if

10 end for

11 return n�′, p�

Case for sn. If sn is an assignment in Impn, it can be treated in the same

way as in traditional numeric analysis using its abstract transfer function [|·|]�n
(Sect. 2). In this paper, the transfer function for updating (n�, p�) with sn is
defined as:

[|sn|]�〈T 〉 (n
�, p�) � ([|sn|]�n n�, p�) (25)

546 Z. Fu

Case for sp. Targeted update tracks the heap objects pointed to by the targets.
An important thing to note is that sp may cause changes to what objects the
access paths are pointing—necessitating changes to the numeric portion of the
abstract state. Subsequently, we write sp in the form of ‘l=r’.

Given a target set T and an abstract state (n�, p�) ∈ NumP�. Taking an

arbitrary (n, p) ∈ γ〈T 〉(n�, p�), we want to find n�′ so that (n,
Pter−→ (sp)p) is in

the concretization of (n�′, [|sp|]�p (p�)). The hypothesis (n, p) ∈ γ〈T 〉(n�, p�) states
that n |= [ins]n� for any ins ∈ Insp〈T 〉; for the sake of soundness, the updated
n�′ has to satisfy n |= [ins]n�′ for any ins ∈ Ins Pter−→(sp)p

〈T 〉. Following Def. 3, it

suffices to unconstrain all summarized dimensions of n�′ in the form of �(d) with

d ∈ post [
Pter−→ (sp)p](T)\post [p](T). Let M � post [

Pter−→ (sp)p](T)∩post [p](T). We
can show that M ⊇ {p(t) | t ∈ T, t does not have l as prefix}. This is because
for any p(t) such that t ∈ T and t does not have l as prefix, p(t) ∈ post [p](T)

immediately implies p(t) ∈ post [
Pter−→ (sp)](T).

In conclusion, a conservative way to model sp is to unconstrain targets that
do not necessarily point to where they previously pointed. Thus, we unconstrain
all p�(t) such that t ∈ T and t has l as prefix. For example, in x = new; we
unconstrain δ if it is pointed to by the target x.val. The transfer function for sp
is modeled as:

[|sp|]�〈T 〉 (n
�, p�) �

⊔
δ∈uncons〈T〉(sp,p�)

[|δ =?|]�n n�, [|sp|]�p p� (26)

Here, uncons〈T 〉(sp, p�) � {δ | sp = ‘l=r’, ∃t ∈ T : t has l as prefix ∧ δ ∈ p�(t)}.

6 A Discussion of Some Important Design Choices

Targets. Our implementation uses the numeric access paths excluding variables
that appear syntactically in the program as targets. Without prior knowledge of
specific program properties to be verified, this design choice seems to give a trade-
off between expressiveness and precision. Although this target set may appear
large, our experiments (Sect. 8) show that targeted update using this target set
still provides a significant precision enhancement while covering common cases
where program properties to be expressed only use program syntax.

Join and Widening. The design of the join operator is usually a difficult step
for developing abstract domains. We have assumed (Sect. 2) that the naming
scheme should be flow independent. Thanks to the naming scheme hypothe-
sis, our join operator seems to be delightfully uncomplicated: We just compute
the join (or widening) component-wise. Then, if a concrete state (n, p) is in

γ〈T 〉(n
�
1, p

�
1) or in γ〈T 〉(n

�
2, p

�
2), it is also in the concretization of (n�1 �n�2, p

�
1 ∪p�2).

The case for widening is similar.

Targeted Update 547

(n�1, p
�
1) �� (n�2, p

�
2) = (n�1 � n�2, p

�
1 ∪ p�2) (27)

(n�1, p
�
1)�� (n�2, p

�
2) = (n�1 � n�2, p

�
1 ∪ p�2) (28)

Constraint System with a Flow-Insensitive Points-to Analysis. As in
the implementation of (Fu, 2014), we use a flow-insensitive points-to analysis
to simplify the states propagation. The analysis is done in a pre-analysis phase
and does not participate with the propagation of numeric lattices. The obtained
flow-insensitive points-to graph is then used at each control point as a superset
of the flow-sensitive points-to graph.

Using flow-insensitive variant does not cause any soundness issue. This is
because the soundness of our analysis is based on the soundness of its component
numeric domains and pointer analysis. Using the single flow-insensitive points-
to graph for all program control points can be modeled as an analysis that is
initialized with an over-approximation of the least fixpoint of a flow-sensitive
analysis that propagates in the style of skip.

Let F �(s) � λn�.fst ◦ [|s|]�〈T 〉 (n
�, p�fi), where p�fi is the flow-insensitive points-

to graph, and fst is the operator that extracts the first element from a pair
of components. We use the following the constraint system that operates on
numeric lattice n� only (rather than on (n�, p�) pair):

n�[l] � F �(s)(n�[l′]) (29)

where we write n�[l] (resp. n�[l′]) for the numeric component of NumP� at control
point l (resp. l′), l′ is the control point of statement s, and (l′, l) is an arc in the
program control flow.

Intra-procedural Numeric Analysis. While the points-to graph is computed
by an interprocedural pointer analysis, the static numeric anlaysis is intentionally
left intra-procedural.

Existing numeric domains, in particular the relational ones, are generally sen-
sitive to the size of the program and number of variables. The objective of
scalability is hard to achieve if the problem solving has to iterate through all the
program call-graph. To take variables in all the procedures as a whole necessarily
incurs a high complexity for the numeric part in our analysis. To give an idea of
this complexity, our experiments on the abstract domains in PPL show that oc-
tagonal analysis can hardly run on several hundreds of variables, and polyhedral
analysis can quickly time out with more than 30 variables; on the other hand,
a real-world Java program, with all its procedures put in together, could easily
reach tens of thousands of variables to be analyzed.

A known workaround exists. The pre-analysis of variable packing technique
allows ASTREE (Blanchet et al., 2003a) to successfully scale up to large sized
C programs. We regard intra-procedural numeric analysis as a lightweight al-
ternative to variable packing: Variables are related only if they are in the same
procedure. In this way, we do not need to invent strategies to pack variables.

548 Z. Fu

7 An Example

We discuss a Java program with interesting operations on a single linked list.
Fig. 2 presents the program. Here, our goal is to show how targeted update
works in practice and to prove two properties that are challenging for a human.
The analysis results from our implemented analyzer are shown in the companion
report.

1 L i s t hd , node ; int idx ;
2 hd = new L i s t () ; // a l l o c a t i o n s i t e h1

3 hd . val = 0 ;
4 hd . next = null ;
5 for (idx = - 17 ; idx < 42 ; idx++){
6 node = new L i s t () ; // a l l o c a t i o n s i t e h2

7 node . val = idx ;
8 node . next = hd . next ;
9 hd . next = node ;

10 hd . val = hd . val + 1 ;
11 }
12 return ;

Fig. 2. A Java program

Example 3 Observe that there are two allocation sites h1 and h2 in the program,
with the head of the list stored in h1 and the body of the list stored in h2. The
head node has a special meaning. It is used to indicate of length of the list. From
l. 1 to l. 4, the program creates an empty list with a single head node. From
l. 5 to l. 11, a list of integers is iteratively stored on the list. Within the loop,
the head node is updated (l. 10) to track list length whenever a new list cell is
created.

Targeted update, instantiated with polyhedral analysis, is able to infer the
following properties:

– Prop1: At the loop entry (l. 5), hd.val ∈ [0, 60] ∧ hd.val − idx = 17.
– Prop2: From l. 5 to l. 10, hd.val − node.val = 17.
– Prop3: At the exit of the loop (l. 12), hd.val = 60.

Targeted update works as follows: First, it pre-analyzes the program with
flow-insensitive points-to analysis.

hd

�����
����

node
��

h1
��
h2

next

		

(30)

Targeted Update 549

All numeric access paths appeared in program syntax that are not variables are
taken as targets: T = {hd.val, node.val}. By computing {δ | ∃t ∈ T, δ ∈ p�fi(t)},
targeted update obtains two summarized dimensions δh1,val and δh2,val. The
initial abstract state is set to {δh1,val → �, δh2,val → �, idx → �}. Then,
we apply transfer functions of targeted update and solve the constraint system
(29). For example, the statements at l. 3 and l. 7 are treated as write access
yp.fn = xn. The statement at l .10 is transformed by SOOT into three short
ones: tmp1 = hd.val, tmp2 = tmp1 + 1 and hd.val = tmp2. They are treated
as read access, sn and write access statements, respectively. Finally, targeted
update obtains (1) at l. 5: δh1.val ∈ [0, 60]∧ δh1,val− idx = 17, (2) at l. 5 to l. 10:
δh1.val−δh2.val = 17 and (3) At l. 12: δh1.val = 60. From these, we deduce Prop1,
Prop2 and Prop3 respectively (based on the concretization function defined in
Def. 3).

These properties are interesting and useful. Prop1 tells a non-trivial loop in-
variant involving access paths and scalar variables. Prop2 is particularly difficult
to infer: hd.val and node.val have an invariant difference 17 because this is the
case at the loop entry; in addition, node.val increments by one (because it is
correlated with the idx at l. 7) at each iteration, and hd.val increments by one
as well (l. 10). Prop3 gives a precise value stored in the head node, indicating
that the list length is tracked as 60, precisely.

Remark 3 Targeted update is able to infer these relations because the summa-
rized dimensions δh1,val and δh2,val lose their original sense: They can be cor-
related with scalar variables and strongly updated because (TU) condition is
satisfied there. In addition, since targeted update is built on traditional numeric
domains, we can take the best from these, such as the very precise polyhedral
abstraction and the widening/narrowing techniques (Cousot and Cousot, 1992)
used in this example.

8 Experiments

The implemented targeted update is built on the static numeric analyzer NumP
developed in (Fu, 2014). Our implementation of targeted update is called T-NumP.
The analyzed language of T-NumP is Jimple (Vallée-Rai et al., 1999). The com-
piler framework SOOT is used as the analysis front-end. It offers a range of
pointer analyses as well, including the points-to analysis and the side-effect
analysis (to approximate the effects of invocation). The default flow-insensitive
points-to analysis used in SOOT is denoted by Pter subsequently. For the pur-
pose of comparison, we have implemented a traditional static numeric analyzer
for Java by wrapping abstract domains in PPL. The implemented analyzer is
called Num.

Assessment. To demonstrate the effectiveness of our technique, we evaluate it
on the SPECjvm98 benchmark suite. The experiments were performed on a 3.06
GHz Intel Core 2 Duo with 4 GB of DDR3 RAM laptop with JDK 1.6.

550 Z. Fu

We tested all the 10 benchmarks in SPECjvm98. The corresponding results
are given in Tab. 1 and 2. The characteristics of the benchmarks are presented
by the number of the analyzed Jimple statements (col. 2, STATEMENT), the
number of write access statements in the form of yp.fn = xn or yp.fn = k (col. 3,
WA), and the number of read access statements in the form of xn = yp.fn (col. 4,
RA). Experimental results are shown in Tab. 1 where we use the interval domain
Int64 Box of PPL.

Table 1. Evaluation of targeted update on the benchmark suite SPECjvm98: Interval
+ Spark

Benchmark Characteristics Precision Time Metrics
BENCHMARK STATEMENT WA RA TU PRCS SCALAR T NUM T PTER T TNUMP Q TU Q PRCS Q SCALAR Q T

200 check 2307 25 48 19 18 6 00m12s 02m36s 03m13s 76% 72% 13% 115%

201 compress 2724 96 142 89 55 9 00m07s 02m39s 03m34s 93% 57% 6% 129%

202 jess 12834 232 646 212 102 2 00m16s 02m43s 05m02s 91% 44% 0% 169%

205 raytrace 5465 53 64 52 24 0 00m05s 02m35s 03m35s 98% 45% 0% 134%

209 db 2770 32 65 31 19 0 00m04s 02m41s 03m47s 97% 59% 0% 138%

213 javac 25973 342 1362 312 143 25 00m12s 04m15s 10m12s 91% 42% 2% 229%

222 mpegaudio 14604 138 247 124 62 6 00m18s 02m50s 04m15s 90% 45% 2% 136%

227 mtrt 5466 53 64 52 24 0 00m06s 02m40s 03m42s 98% 45% 0% 134%

228 jack 12221 462 414 436 102 7 00m31s 02m45s 06m03s 94% 22% 2% 185%

999 checkit 3038 38 53 29 19 0 00m05s 02m38s 03m44s 76% 50% 0% 137%

Mean 90% 48% 3% 151%

Three parameters TU, PRCS, and SCALAR (col. 5-7) are measured to esti-
mate the precision gain. The parameter TU counts the number of write access
statements before which condition (TU) is satisfied. We record PRCS for the
number of the write access statements after which the obtained invariants are
strictly more precise than Num. Improvement on scalar variables is assessed by
the number of read-access statements after which the obtained numeric invariant
by T-NumP is strictly more precise than Num in terms of scalar variables (sum-
marized dimensions are unconstrained for this comparison). The execution time
is measured for Num, Pter, and T-NumP (col. 8-10). The parameters T Num and
T Pter are the times spent by Num and Pter when they analyze individually.
The parameter T TNUMP records the time of our analysis.

The last four columns compute the metrics for assessment. The metrics Q TU
� TU/WA and Q PRCS � PRCS/WA (col. 11-12) are the ratios of TU and
PRCS to the number of write access statements. The metrics Q SCALAR �
SCALAR/RA (col. 13) is defined with regard to read-access statements. The
metric Q T � T TNUMP/(T Num+T Pter) (col. 14) records the ratio of the
time spent by our analysis to the total time of its component analyses.

The size of the analyzed Jimple statements ranges from 2307 (200 check)
to 25973 (213 javac).3 We observe that T Pter is always much larger than
T Num. This is because the points-to analysis is interprocedural while the nu-
meric analysis is run procedures by procedures. Our analysis relies on the pointer
analysis and is thus bottlenecked by it in terms of efficiency. Still, the time spent

3 The Jimple statements are generally less than in the source program, because SOOT
typically analyzes a subset of its call-graph nodes.

Targeted Update 551

for the benchmark takes several minutes, with an average Q T = 151%. The
average precision metrics is calculated on the last row of Tab. 1. Q TU = 90%,
Q PRCS = 48% show a clear precision enhancement of our approach over tra-
ditional approaches.

Please mind the gap between TU and PRCS in Tab. 1 (and between Q TU nd
Q PRCS as well). Besides the non-monotonicity of widening operators
(Cortesi and Zanioli, 2011), we observe that the practical reason causing this
disparity is that targeted update, in the context of non-relational analysis (as
the interval analysis above), is helpless in dealing with write-access statements
in the form of yp.fn = xn as long as no information on xn has been gathered.

This point can be remedied by relational analysis. Tab. 2 shows our experi-
mental results with octagonal analysis and the same points-to analysis as above.
Since the condition (TU) can not be influenced by numeric analysis, we obtain
the same Q TU as in Tab. 1. The parameters Q PRCS and Q SCALAR can
be greatly improved due to the relational analysis, with similar time overhead
Q TU as in Tab. 1.

Table 2. Evaluation of targeted update on the benchmark suite SPECjvm98: Octag-
onal + Spark

Benchmark Characteristics Precision Time Metrics
BENCHMARK STATEMENT WA RA TU PRCS SCALAR T NUM T PTER T TNUMP Q TU Q PRCS Q SCALAR Q T

200 check 2307 25 48 19 19 6 00m13s 02m44s 03m48s 76% 76% 13% 129%

201 compress 2724 96 142 89 93 70 00m09s 03m18s 05m16s 93% 97% 49% 153%

202 jess 12834 232 646 212 215 52 00m36s 02m46s 06m38s 91% 93% 8% 197%

205 raytrace 5465 53 64 52 52 8 00m10s 02m38s 03m52s 98% 98% 13% 138%

209 db 2770 32 65 31 31 13 00m08s 02m42s 03m51s 97% 97% 20% 136%

213 javac 25973 342 1362 312 244 156 02m35s 05m31s 14m28s 91% 71% 11% 179%

222 mpegaudio 14604 138 247 124 117 36 00m39s 02m45s 06m44s 90% 85% 15% 198%

227 mtrt 5466 53 64 52 52 8 00m21s 02m37s 03m58s 98% 98% 13% 134%

228 jack 12221 462 414 436 410 168 00m34s 02m43s 08m06s 94% 89% 41% 247%

999 checkit 3038 38 53 29 28 6 00m09s 02m52s 04m46s 76% 74% 11% 158%

Mean 90% 88% 19% 167%

The experimental results show that targeted update discovers significantly
more program properties in summarized dimensions and scalar variables as
well, at a cost comparable to that of running the numeric and pointer analysis
separately.

9 Related Work

This research continues the work in (Fu, 2014) that addresses the general issue
of lifting numeric domains to heap-manipulating programs.

Memory abstraction using strong and weak updates (Chase et al., 1990;
Wilson and Lam, 1995) is common sense. Efforts have been made to enable
safe application of strong update. Sagiv et al. used the focus operation (that
isolates individual elements of the summarized dimensions) of shape analy-
sis (Sagiv et al., 1999) to apply strong update. Fink et al. (Fink et al., 2008)

552 Z. Fu

used a uniqueness analysis based on must-alias and liveness information to fa-
cilitate the verification of whether a summarized node represents more than one
concrete reference.

The recency abstraction (Balakrishnan and Reps, 2006) is a simple and ele-
gant technique that enables strong update by distinguishing the objects recently
allocated from those created earlier. This approach allows strong update to be
applied whenever a write access immediately follows an allocation, which is usu-
ally the case for initialization. Although the objective of recency abstraction is
similar to targeted update, it uses a different abstraction that is not comparable
to ours.

The issue of strong/weak update has been mostly studied for array structures.
Cousot et al. (Cousot et al., 2010) proposed an efficient solution based on the
ordering of array indexes. It may be not easy to generalize their method to the
analysis of the pointer access. Fluid update (Dillig et al., 2010) is much closer
to our approach. It is an abstract semantics that provides a sharp analysis for
the array structure. The authors used bracket constraints to refine points-to
information on arrays, which was shown to be effective to disambiguate array
indexes. This approach was also extended in (Dillig et al., 2011) to deal with
containers and other non-array structures.

10 Conclusion

Targeted update introduces a novel dimension in program analysis for tuning
precision and efficiency. We have derived the abstract semantics from the con-
cept of targets. This approach is validated on the benchmark suite SPECjvm98.
The experimental results show a tangible precision enhancement compared with
classical approaches while preserving a high scalability.

Acknowledgments. The author wishes to thank Laurent Mauborgne for his
thoughtful feedback.

References

Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

Blanchet, B., Cousot, P., Cousot, R.: A static analyzer for large safety-critical software.
In: PLDI, pp. 196–207 (2003a)

Blanchet, B., Cousot, P., Cousot, R., et al.: A static analyzer for large safety-critical
software. In: PLDI, pp. 196–207 (2003b)

Chase, D.R., Wegman, M.N., Zadeck, F.K.: Analysis of pointers and structures (with
retrospective). In: Best of PLDI, pp. 343–359 (1990)

Chen, P.S., Hung, M.Y., Hwang, Y.S.: et al. Compiler support for speculative multi-
threading architecture with probabilistic points-to analysis. In: PPoPP, pp. 25–36
(2003)

Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract interpretation.
Computer Languages, Systems & Structures 37(1), 24–42 (2011)

Targeted Update 553

Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing ap-
proaches to Abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP
1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

Cousot, P., Cousot, R., Mauborgne, L.: A scalable segmented decision tree abstract
domain. In: Manna, Z., Peled, D.A. (eds.) Pnueli Fetschrift. LNCS, vol. 6200,
pp. 72–95. Springer, Heidelberg (2010)

Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In:
POPL, pp. 187–200 (2011)

Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to anal-
ysis in the presence of function pointers. In: PLDI, pp. 242–256 (1994)

Fink, S.J., Yahav, E., Dor, N., et al.: Effective typestate verification in the presence of
aliasing. ACM Trans. Softw. Eng. Methodol. 17(2) (2008)

Fu, Z.: Static Analysis of Numerical Properties in the Presence of Pointers. PhD thesis,
Université de Rennes 1 – INRIA, Rennes, France (2013)

Fu, Z.: Modularly combining numeric abstract domains with points-to analysis, and a
scalable static numeric analyzer for java. In: McMillan, K.L., Rival, X. (eds.) VMCAI
2014. LNCS, vol. 8318, pp. 282–301. Springer, Heidelberg (2014)

Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with summa-
rized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 512–529. Springer, Heidelberg (2004)

Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural pointer
aliasing. In: PLDI, pp. 235–248 (1992)

Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: SAS
2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In:
POPL, pp. 105–118 (1999)

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a
Java bytecode optimization framework. In: CASCON, p. 13 (1999)

Wilson, R.P., Lam, M.S.: Efficient Context-Sensitive Pointer Analysis for C Programs.
In: PLDI, pp. 1–12 (1995)

	Targeted Update – Aggressive Memory
Abstraction Beyond Common Sense
and Its Application on Static Numeric Analysis

	1 Introduction
	2 Preliminaries
	3 Summarizing Technique with Targets
	4 Targeted Update — The Case of Write Access yp.fn = xn
	5 Targeted Update — The Case of Read Access xn = yp.fn, sn and sp
	6 A Discussion of Some Important Design Choices
	7 An Example
	8 Experiments
	9 Related Work
	10 Conclusion
	References

