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Abstract. The traditional method for proving program termination
consists in inferring a ranking function. In many cases (i.e. programs
with unbounded non-determinism), a single ranking function over natu-
ral numbers is not sufficient. Hence, we propose a new abstract domain
to automatically infer ranking functions over ordinals.

We extend an existing domain for piecewise-defined natural-valued
ranking functions to polynomials in ω, where the polynomial coefficients
are natural-valued functions of the program variables. The abstract do-
main is parametric in the choice of the maximum degree of the polyno-
mial, and the types of functions used as polynomial coefficients.

We have implemented a prototype static analyzer for a while-language
by instantiating our domain using affine functions as polynomial coeffi-
cients. We successfully analyzed small but intricate examples that are
out of the reach of existing methods.

To our knowledge this is the first abstract domain able to reason about
ordinals. Handling ordinals leads to a powerful approach for proving ter-
mination of imperative programs, which in particular subsumes existing
techniques based on lexicographic ranking functions.

1 Introduction

The traditional method for proving program termination [12] consists in inferring
ranking functions, namely mappings from program states to elements of a well-
ordered set (e.g. ordinals) whose value decreases during program execution.

Intuitively, we can define a partial ranking function from the states of a pro-
gram to ordinal numbers in an incremental way: we start from the program final
states, where the function has value 0 (and is undefined elsewhere); then, we
add states to the domain of the function, retracing the program backwards and
counting the maximum number of performed program steps as value of the func-
tion. In [10], this intuition is formalized into a most precise ranking function that
can be expressed in fixpoint form by abstract interpretation [8] of the program
maximal trace semantics.
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However, the most precise ranking function is not computable. In [22], we
present a decidable abstraction for imperative programs by means of piecewise-
defined ranking functions over natural numbers. These functions are attached
to the program control points and represent an upper bound on the number
of program execution steps remaining before termination. Nonetheless, in many
cases (i.e. programs with unbounded non-determinism), natural-valued ranking
functions are not powerful enough. For this reason, we propose a new abstract
domain to automatically infer ranking functions over ordinals.

We extend the abstract domain of piecewise-defined natural-valued ranking
functions to piecewise-defined ordinal-valued ranking functions represented as
polynomials in ω, where the polynomial coefficients are natural-valued functions
of the program variables. The domain automatically infers such ordinal-valued
functions through backward invariance analysis. To handle disjunctions arising
from tests and loops, the analysis automatically partitions the space of values
for the program variables into abstract program states, inducing a piecewise
definition of the functions. Moreover, the domain naturally infers sufficient pre-
conditions for program termination. The analysis is sound: all program execu-
tions respecting these sufficient preconditions are indeed terminating, while an
execution that does not respect these conditions might not terminate.

The abstract domain is parametric in the choices of the state abstraction
used for partitioning (in particular, we can abstract the program states using
any convex abstract domain such as intervals [7], octagons [19], polyhedra [11],
. . . ), the maximum degree of the polynomials, and the type of functions used as
polynomial coefficients of ωk (e.g. affine, quadratic, cubic, exponential, . . . ). We
have implemented an instance of the abstract domain based on interval partitions
and affine functions. We successfully analyzed small but intricate examples out
of the reach of existing methods.

To our knowledge this is the first abstract domain able to reason about ordi-
nals. We show that handling ordinals leads to a powerful approach for proving
program termination of imperative programs which, in particular, subsumes ex-
isting techniques based on lexicographic functions.

Motivating Example. In order to motivate the need for ordinal numbers, let us
consider the well-known program in Figure 1. At each loop iteration, either it
decrements the value of x2 or it decrements the value of x1 and resets the value
of x2, until one of the variables becomes less than or equal to zero. The pro-
gram presents unbounded non-determinism: there is a non-deterministic choice
between the branches of the if statement at program point 2, and the value of the
variable x2 is chosen non-deterministically at program point 4 in the first branch
of the if statement. The program terminates whatever the initial values for x1

and x2 are, and whatever the non-deterministic choices taken during execution.
In the graph of Figure 2, each node represents a state of the program (the

nodes with a double outline are final states) and each edge represents a loop it-
eration. We define a ranking function for the program following the intuition
described above: we start from the final states, where we assign value 0 to
the function; then, we follow the edges backwards, and for each state that we



414 C. Urban and A. Miné

int : x1, x2

while 1( x1 ≥ 0 ∧ x2 ≥ 0 ) do

if 2( ? ) then
3x1 := x1 − 1
4x2 := ?

else
5x2 := x2 − 1

od6

Fig. 1. Motivating example. The symbol ? stands for a non-deterministic choice.

encounter we define the value of the ranking function as the maximum of all
values of the function plus 1 for all successors of the state. Hence, we need a
transfinite value whenever we encounter a state that leads through unbounded
non-determinism to program executions of arbitrary length. In this example, in
particular, we need ordinal numbers for all states where x1 > 1 and x2 > 0.

In Section 5 we will detail the analysis of the program by means of our abstract
domain of ordinal-valued ranking functions.

It is also possible to prove the termination of the program using a lexicographic
ranking function (x1, x2). Indeed, a lexicographic tuple (fn, . . . , f1, f0) of natural
numbers is an isomorphic representation of the ordinal ωn · fn + · · ·+ω · f1 + f0
[18]. However, reasoning directly with lexicographic ranking functions, poses
the additional difficulty of finding an appropriate lexicographic order. Existing
methods [1,3,5, etc.] use heuristics to explore the space of possible orders, which
grows very large with the number of program variables. Instead, the interesting
aspect of ordinal-valued ranking functions is that the coefficients fn, . . . , f1, f0
(and thus their order) are automatically inferred by the analysis. We refer to
Section 7 for further discussion on the comparison between lexicographic and
ordinal-valued ranking functions.

Our Contribution. In summary, in this paper we propose a parameterized ab-
stract domain for proving termination of imperative programs by abstract inter-
pretation. We introduce the abstract domain of ordinal-valued ranking functions,
which we subsequently lift to piecewise-defined ranking functions. We also de-
scribe the implementation of an instance of the abstract domain based on affine
functions, and we provide experimental evidence of its expressivity.

Outline of the Paper. Section 2 gives a brief overview of the theory of ordinals and
ordinal arithmetic. In Section 3 we recall our concrete semantics, and in Section 4
we introduce the abstract domain of ordinal-valued ranking functions, which
we extend to piecewise-defined ranking functions in Section 5. We describe the
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Fig. 2. Transitions between states at control point 1 for the program in Figure 1. There
is an edge from any node where x1 has value k > 0 (and x2 > 0) to all nodes where
x1 has value k − 1 (and x2 has any value). In every node we indicate the maximum
number of loop iterations needed to reach a final state.

implementation of our prototype static analyzer and we experimentally evaluate
our approach in Section 6. Section 7 discusses relatedwork and Section 8 concludes.

2 Ordinals

A relation < is well-founded if every <-decreasing sequence is finite. A well-
ordered set is a pair 〈X,≤〉 where ≤ is a well-ordering, i.e. a total order whose
corresponding strict order < is a well-founded relation over X . Two well-ordered
sets 〈X,≤X〉 and 〈Y,≤Y 〉 are order-isomorphic if there is a bijection f : X → Y
such that, for all x1, x2 ∈ X , x1 ≤X x2 if and only if f(x1) ≤Y f(x2). Two
order-isomorphic well-ordered sets are said to have the same order type.

An ordinal number is defined as the order type of a well-ordered set. In the
following, we will use lower case Greek letters to denote ordinals. In particular,
a well-ordered set 〈X,≤〉 with order type α is order-isomorphic to the set {x ∈
X | x < α} of all ordinals strictly less than the ordinal α itself. In fact, this
property permits the representation of each ordinal as the set of all ordinals that
precede it: the smallest ordinal is ∅, denoted as 0. The successor of an ordinal α
is defined as α∪{α} and is denoted as α+1. Thus, the first successor ordinal is
{0}, denoted as 1. The next is {0, 1}, denoted as 2. Continuing in this manner, we
obtain all natural numbers (i.e. all finite ordinals). A limit ordinal is an ordinal
number which is neither zero nor a successor ordinal. The set of all natural
numbers, denoted as ω, is the first limit ordinal (and the first transfinite ordinal).

In the following we will use 〈O,≤〉 to denote the well-ordered set of ordinals.
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Ordinal Arithmetic. We recall the definition and some properties of addition,
multiplication and exponentiation on ordinals [15].

Addition. Ordinal addition can be defined by transfinite induction:

α+ 0 = α (zero case)

α+ (β + 1) = (α + β) + 1 (successor case)

α+ β =
⋃

γ<β

(α + γ) (limit case)

Note that addition is associative, i.e. (α + β) + γ = α + (β + γ), but not
commutative, e.g. 1 + ω = ω 	= ω + 1.

Multiplication. Ordinal multiplication can also be defined inductively:

α ··· 0 = 0 (zero case)

α ··· (β + 1) = (α ··· β) + α (successor case)

α ··· β =
⋃

γ<β

(α ··· γ) (limit case)

Multiplication is associative, i.e. (α×β)×γ = α×(β×γ), and left distributive,
i.e. α × (β + γ) = (α × β) + (α × γ). However, commutativity does not hold,
e.g. 2× ω = ω 	= ω × 2, and neither does right distributivity, e.g. (ω + 1)× ω =
ω × ω 	= ω × ω + ω.

Exponentiation. We define ordinal exponentiation again by transfinite induction:

α0 = 1 (zero case)

αβ+1 = (αβ) · α (successor case)

αβ =
⋃

γ<β

(αγ) (limit case)

Cantor Normal Form. Using ordinal arithmetic, we can build all ordinal
numbers up to ε0 (i.e. the smallest ordinal such that ε0 = ωε0):

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, ω · 2 + 2, . . . , ω2, . . . , ω3, . . . , ωω, . . .

In the following, we will use the representation of ordinals based on Cantor
Normal Form [15], i.e. every ordinal α > 0 can be uniquely written as

ωβ1 · n1 + · · ·+ ωβk · nk

where k is a natural number, the coefficients n1, . . . , nk are positive integers and
the exponents β1 > β2 > · · · > βk ≥ 0 are ordinal numbers. Throughout the rest
of the paper we will consider ordinal numbers only up to ωω.
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3 Termination Semantics

We consider a programming language that allows non-deterministic assignments
and non-deterministic tests. The operational semantics of a program is described
by a transition system 〈Σ, τ〉, where Σ is the set of program states and τ ⊆ Σ×Σ
is the program transition relation. Let βτ � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 	∈ τ} denote
the set of final states. The maximal trace semantics [6] generated by a transition
system is the set of all infinite traces over the states in Σ and all finite traces
that end with a state in βτ .

The traditional method for proving program termination [12] consists in infer-
ring ranking functions, namely mappings from program states to elements of a
well-ordered set (e.g. ordinals) whose value decreases during program execution.

Intuitively, we have seen that we can define a ranking function from the states
of a program to ordinal numbers in an incremental way: starting from the pro-
gram final states and retracing the program backwards while counting the max-
imum number of performed program steps as value of the function. In Section 1,
we have justified the need for ordinal numbers in case of programs with un-
bounded non-determinism. In [10], Patrick Cousot and Radhia Cousot formalize
this intuition and prove the existence of a most precise ranking function that can
be expressed in fixpoint form by abstract interpretation of the program trace se-
mantics. This partial function1 v ∈ Σ ⇀ O extracts the well-founded part of
the transition relation τ : starting from the final states in βτ and mapping each
program state in Σ definitely leading to a final state (i.e. a program state such
that all the traces to which it belongs end up at a final state in βτ ) to an ordinal
in O representing an upper bound on the number of program execution steps
remaining to termination. It is defined as the least fixpoint of the operator φ
starting from the totally undefined function ∅̇:

v � lfp�∅̇ φ

φ(v) � λs.

⎧
⎪⎨

⎪⎩

0 if s ∈ βτ

sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} if s ∈ p̃re(dom(v))

undefined otherwise

where v1 � v2 � dom(v1) ⊆ dom(v2) ∧ ∀x ∈ dom(v1) : v1(x) ≤ v2(x) and
p̃re(X) � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}. Therefore v is a partial
function the domain dom(v) of which is the set of states definitely leading to pro-
gram termination: any trace starting in a state s ∈ dom(v) must terminate in at
most v(s) execution steps, while at least one trace starting in a state s 	∈ dom(v)
does not terminate. Note that whenever v(s) ≥ ω, the programs still terminates,
but the number of program execution steps before termination is unbounded.

The ranking function v constitutes a programsemanticswhich is sound and com-
plete toproveprogramtermination (see [10]).However, it is usuallynot computable.
In the following, we will present a decidable abstraction of v. The abstraction uses

1 A ⇀ B is the set of partial maps from a set A to a set B.
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the following approximation order (see [9] for further discussion on approximation
and computational orders of an abstract domain):

v1 � v2 � dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x).

It computes an over-approximation of the value of the function v but it
under-approximates its domain of definition dom(v). In this way, the abstrac-
tion provides sufficient preconditions for program termination: if the abstraction
is defined on a program state, then all program execution traces branching from
that state are definitely terminating.

4 Ordinal-Valued Ranking Functions

We derive an approximate program semantics by abstract interpretation [8].
First, we introduce the abstract domain of ordinal-valued ranking functions O,
which abstracts ranking functions in Σ ⇀ O by abstract ranking functions o# ∈
O# attached to program control points. Then, in the next section, we employ
state partitioning to lift this abstraction to piecewise-defined ranking functions.

Let X be a finite set of program variables. We split the program state space
Σ into program control points L and environments S � X → Z, which map
each program variable to an integer value. No approximation is made on L. On
the other hand, each program control point l ∈ L is associated with an element
o# ∈ O# of the abstract domain O. Specifically, o# represents an abstraction
of the function o ∈ S ⇀ O defined on the environments related to the program
control point l:

〈S ⇀ O,�〉 γO←− 〈O#,�O〉.

Natural-Valued Functions. We assume we are given an abstraction 〈S#,�S〉
of environments: 〈P(S),⊆〉 γS←− 〈S#,�S〉 (i.e. any abstract domain such as inter-
vals [7], octagons [19], polyhedra [11], . . . ), and an abstraction 〈S# × F#,�F〉
of 〈S ⇀ O,�〉 by means of natural-valued functions of the program variables:

〈S ⇀ O,�〉 γF←− 〈S# ×F#,�F〉.

More specifically, the abstraction 〈S# × F#,�F〉 encodes a partial function
v ∈ S ⇀ O by a pair of an abstract state s# ∈ S# and a natural-valued
function (e.g. an affine function) of the program variables f# ∈ F# [22]. We can
now use the abstractions S# and F# to build the abstract domain O.

Ordinal-Valued Functions. The elements of the abstract domain O belong
to O# � S# × P# where

P# � {⊥P} ∪ {p# | p# =
∑

i

ωi · f#
i , f#

i ∈ F#} ∪ {�P}
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is the set of ordinal-valued ranking functions of the program variables (in addi-
tion to the function ⊥P representing potential non-termination, and the function
�P representing the lack of enough information to conclude). More specifically,
an abstract function o# ∈ O# is a pair of an abstract state s# ∈ S# and a
polynomial in ω (i.e. an ordinal number in Cantor Normal Form) p#:

p# � ωk · f#
k + · · ·+ ω2 · f#

2 + ω · f#
1 + f#

0 k > 0

where the coefficients f#
0 , f#

1 , . . . , f#
k belong to F#. In the following, with abuse

of notation, we use a map s# �→ p# to denote the pair of s# ∈ S# and p# ∈ P#.
The abstract domain O is parameterized by the choices of the state abstraction

〈S#,�S〉, the maximum degree k of the polynomial, and the type (e.g. affine,
quadratic, cubic, exponential, . . . ) of functions used as polynomial coefficients

f#
0 , f#

1 , f#
2 , . . . , f#

n .

Concretization Function. The concretization function γO ∈ O# → (S ⇀ O)
depends on γS, which maps an abstract state s# ∈ S# to the corresponding set
of program environments, and on γF, which maps a relation v# ∈ S# × F# to
the corresponding partial function v ∈ S ⇀ O:

γO(s
# �→ ⊥P) = ∅̇

γO(s
# �→ p#) = λs ∈ γS(s

#). p#(s)

where p#(s) =
∑

i≤k

ωi · γF(s# �→ f#
i )(s)

γO(s
# �→ �P) = ∅̇

where ∅̇ denotes the totally undefined function. Note that the concretization
function γO forgets about all program states that are potentially non-terminating
(⊥P) and all program states for which there is not enough information (�P). This
agrees with our goal to under-approximate the domain of definition of the most
precise ranking function (cf. Section 3).

Order. To compare two abstract functions, we define the abstract approximation
order �O as the abstract counterpart of the approximation order �:

(s#1 �→ p#1 ) �O (s#2 �→ p#2 ) � s#2 �S s#1 ∧ p#1 �P p#2

where p#1 �P p#2 � ∀s ∈ γS(s
#
2 ) : p

#
1 (s) ≤ p#2 (s).

In order for an abstract function o#1 to be smaller than an abstract function

o#2 , we require the domain of o#2 to be included in the domain of o#1 (s#2 �S s#1 )

and, for all states in the domain of o#2 , we require o#1 to have smaller (or equal)

value than o#2 (p#1 �P p#2 ). The relative precision between abstract functions is
preserved by the concretization function γO:

(s#1 �→ p#1 ) �O (s#2 �→ p#2 ) ⇒ γO(s
#
1 �→ p#1 ) � γO(s

#
2 �→ p#2 )
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Join. The join operator �O, given two abstract functions o#1 � s#1 �→ p#1 and

o#2 � s#2 �→ p#2 , determines the function o# � s# �→ p#, defined on their

common domain s# � s#1 �S s
#
2 with value p# � p#1 �P p#2 .

Specifically, the unification p#1 �P p
#
2 of two polynomials p#1 and p#2 is done in

ascending powers of ω, joining the coefficients of similar terms (i.e. terms with

the same power of ω). The join of two coefficients f#
1 and f#

2 is provided by

f# � f#
1 �F f#

2 and is defined as a natural-valued function (of the same type

of f#
1 and f#

2 ) greater than f#
1 and f#

2 (on the domain s#). Whenever such
function does not exist, we force f# to equal 0 and we carry 1 to the unification
of terms with next higher degree (unless we have already reached the maximum
degree for the polynomial, in which case we abandon to �P).

Example 1. Let X = {x1, x2} and let 〈S# × F#,�F〉 be an abstraction of
〈S ⇀ O,�〉 that uses intervals [7] as state abstraction and affine functions as
abstract functions f# ∈ F# [22]. We consider the join of the abstract functions:

o#1 � s#1 �→ p#1 � [−∞,+∞] �→ ω · x1 + x2

o#2 � s#2 �→ p#2 � [−∞,+∞] �→ ω · (x1 − 1)− x2

Their common domain is trivially s# � [−∞,+∞]. The unification of the two

polynomials p#1 and p#2 starts from joining the functions f#
01

� x2 and f#
02

� −x2.

However, there does not exist a natural-valued affine function f#
0 greater than

f#
01

and f#
02

for all possible values of x2 (since s# � [−∞,+∞]). We force f#
0 to

equal 0 and we carry 1 to the unification of f#
11

� x1 and f#
12

� x1 − 1 which

becomes f#
1 = x1 + 1 (i.e. x1 after the unification, and x1 + 1 after carrying).

The result of the join is o# � [−∞,+∞] �→ ω · (x1 + 1). ��
Intuitively, whenever natural-valued functions are not sufficient, we naturally

resort to ordinal numbers. Let us consider the join ωk · f# of two terms ωk · f#
1

and ωk · f#
2 . Forcing f# to equal 0 and carrying 1 to the terms with next higher

degree is exactly the same as considering f# equal to ω (and applying the limit
case of ordinal multiplication): ωk · f# = ωk · ω = ωk+1 · 1 + ωk · 0 = ωk+1.

Widening. The widening operator �O summarizes two abstract functions o#1 �
s#1 �→ p#1 and o#2 � s#2 �→ p#2 into a single one o# � s# �→ p#, where

s# � s#1 �S s
#
2 and p# � p#1 �P p

#
2 (unless the two abstract functions are already

defined on the same abstract state — i.e. s#1 =S s#2 — and p#1 �P p#2 , in which
case p# � �P to ensure convergence). Note that �O differs from the join �O in

that it widens the abstract state s# to the union of s#1 and s#2 . Indeed, the join is
an upper-bound with respect to the approximation order �, while the widening
is an upper-bound with respect to the computational order � (cf. Section 3).

Assignments. In order to handle assignments, the abstract domain is equipped
with an operation to substitute an arithmetic expression for a variable within a
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function f# ∈ F#. Given an abstract function o# � s# �→ p#, an assignment is
carried out independently on the abstract state s# and on the polynomial p#. In
particular, an assignment on p# is performed in ascending powers of ω, possibly
carrying 1 to the term with next higher degree, and is preceded by the addition
of 1 to the polynomial constant (to take into account that one more program
step is needed before termination). The need for carrying might occur in case of
non-deterministic assignments: it is necessary to take into account all possible
outcomes of the assignment, possibly using ω as approximation.

Example 2. Let X = {x1, x2}. We consider the result of the non-deterministic
assignment x1 := ? to the polynomial p# � ω · x1 + x2. First, we add 1 to the
function f#

0 � x2 to count the assignment as an additional step needed before
termination. Then, we perform the assignment on the terms of the polynomial:
the function f#

0 remains unchanged (since the assignment involves only the vari-

able x1), whereas the coefficient f#
1 � x1 of ω is reset to 0 and carries 1 to the

term with next higher degree ω2. In fact, the assignment x1 := ? allows x1 (and

consequently f#
1 ) to take any value, but there does not exist a natural-valued

function that properly abstracts all possible outcomes of the assignment. The
resulting polynomial is p̄# � ω2 · 1 + ω · 0 + x2 + 1 = ω2 + x2 + 1. ��

Tests. Test statements only affect the abstract states s# ∈ S# (and are managed
by the state abstraction) and leave unchanged the polynomials p# ∈ P#.

5 Piecewise-Defined Ranking Functions

In the following, we will briefly recall the abstract domain of piecewise-defined
ranking functions [22]. Then, we describe our extension of this domain using the
ordinal-valued ranking functions we presented in Section 4.

5.1 Piecewise-Defined Natural-Valued Ranking Functions

In [22], a decidable abstraction of the most precise ranking function v ∈ Σ ⇀ O

(cf. Section 3) is provided by the abstract domain V(F(S)), where V is a functor
abstract domain parameterized by S, an abstract domain for states, and F, an
abstract domain based on natural-valued functions of the program variables.

The elements of the abstract domain belong to V# � P(S# × F#), where
S# is the set of abstract program states (e.g. intervals [7]) and F# is the set of
natural-valued functions of the program variables (e.g. affine functions). More
specifically, an element v# ∈ V# has the form:

v# �

⎧
⎪⎪⎨

⎪⎪⎩

s#1 �→ f#
1

...

s#k �→ f#
k
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where the abstract states s#1 , . . . , s
#
k induce a partition of the space of environ-

ments S � X → Z, and f#
1 , . . . , f#

k are ranking functions.
The binary operators of the abstract domain rely on a partition unification al-

gorithm that, given two piecewise-defined ranking functions v#1 and v#2 , modifies
the partitions on which they are defined into a common refined partition of the
space of program environments. For example, in case of partitions determined
by intervals with constant bounds, the unification simply introduces new bounds
consequently splitting intervals in both partitions. Then, the binary operators
are applied piecewise. The approximation order �V and the computational order
�V return the conjunction of the piecewise comparisons. The piecewise join �V

computes the piecewise-defined natural-valued ranking function greater than v#1
and v#2 . The piecewise widening �V summarizes adjacent pieces of a function
joining them into a single one. In this way, it prevents the number of pieces of
an abstract function from growing indefinitely. It also prevents the indefinite
growth of the value of an abstract function going to � on the partitions where
the value of the ranking function has increased between iterations.

The unary operators for assignments and tests are also applied piecewise. In
particular, assignments are carried out independently on each abstract state
and each ranking function. Then, the resulting covering induced by the over-
approximated abstract states is refined (joining overlapping pieces) to obtain
once again a partition.

The operators of the abstract domain are combined together to compute an
abstract ranking function for a program, through backward invariance analysis.
The starting point is the constant function equal to 0 at the program final
control point. The ranking function is then propagated backwards towards the
program initial control point taking assignments and tests into account with join
and widening around loops. As a consequence of the soundness of all abstract
operators (see [22]), we can establish the soundness of the analysis for proving
program termination: the program states, for which the analysis finds a ranking
function, are states from which the program indeed terminates.

However, since the abstract domain V is limited to ranking functions over
natural numbers, all program traces with unbounded non-determinism are disre-
garded by the abstraction. As a result, the abstract domain is not able to prove
the termination of programs as the one in Figure 1. In the following, we describe
how we extend this abstract domain to ranking functions over ordinal numbers.

5.2 Piecewise-Defined Ordinal-Valued Ranking Functions

We propose the abstract domain V(O(F(S))) obtained by extending V(F(S)) with
the domain of ordinal-valued ranking functions O presented in Section 4.

An element v# ∈ V# of the abstract domain has now the form:

v# �

⎧
⎪⎪⎨

⎪⎪⎩

s#1 �→ p#1
...

s#k �→ p#k
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where the abstract states s#1 , . . . , s
#
k ∈ S# induce a partition of the space of

environments S and p#1 , . . . , p
#
k are ranking functions represented as polynomials

ωk · f#
k + · · ·+ω2 · f#

2 +ω · f#
1 + f#

0 whose coefficients f#
0 , f#

1 , f#
2 , . . . , f#

n ∈ F#

are natural-valued functions of the program variables.
The partition unification algorithm of V(O(F(S))) works exactly in the same

way as that of V(F(S)), while the piecewise operators of the domain now use
the operators of O (which in turn exploit the operators of F for the polynomial
coefficients) instead of using directly those of F. The soundness of all abstract
operators of V(O(F(S))) follows by the soundness of all abstract operators of
V(F(S)), and by the soundness of all abstract operators of O with respect to or-
dinal arithmetic. Therefore, the abstract domain V(O(F(S))) is suitable to prove
program termination and is more powerful than V(F(S)) because it overcomes
the limitations of natural-valued ranking functions. Indeed, V(O(F(S))) is able
to prove the termination of the non-deterministic program in Figure 1.

Motivating Example (continued). Due to space constraints, we describe in some
detail only a few interesting iterations of the (backward) analysis of the program
in Figure 1. We invite the interested reader to refer to our prototype implemen-
tation [21] for a more complete and detailed program analysis.

The starting point is the constant function f6(x1, x2) = 0 at the program final
control point 6. We use a widening delay of 3 iterations. At the fourth iteration,
the ranking function at the loop control point 1 is:

f4
1 (x1, x2) =

⎧
⎪⎨

⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

⊥ otherwise

In the second case, the function 3x2 + 2 comes out as a result of the widening
between adjacent pieces with consecutive values for x2 (i.e. between the pieces
(x1 = 1 ∧ x2 = 1) �→ 5 and (x1 = 1 ∧ x2 = 2) �→ 8).

Ordinal numbers appear for the first time at program control point 4 due to
the non-deterministic assignment to x2:

f4
4 (x1, x2) =

⎧
⎪⎨

⎪⎩

2 x1 ≤ 0

ω x1 = 1

⊥ otherwise

In the first case, the value of the function is simply increased (to count one more
program step before termination) but (since x2 can now have any value) its
domain is modified forgetting all constraints on x2 (i.e. x2 ≤ 0). In the second
case, 3x2 + 2 is increased to 3x2 + 3 (to count one more program step) which
then becomes ω (due to approximation of the non-deterministic assignment).
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At the seventh iteration, at control point 1, we obtain the ranking function:

f7
1 (x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 3x2 + 9 x1 = 2

⊥ otherwise

as a result of the widening between the preceding iterate f6
1 :

f6
1 (x1, x2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 12 x1 = 2 ∧ x2 = 1

ω + 15 x1 = 2 ∧ x2 = 2

⊥ otherwise

and the ranking function f6′
1 , obtained from f6

1 after one loop iteration:

f6′
1 (x1, x2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 12 x1 = 2 ∧ x2 = 1

ω + 15 x1 = 2 ∧ x2 = 2

ω + 18 x1 = 2 ∧ 3 ≤ x2

⊥ otherwise

In particular, widening occurs between the pieces where x1 = 2. It is performed
in ascending powers of ω: from the constants 12, 15 and 18 (all corresponding to
consecutive values for x2), it infers the affine function 3x2 +9 (by classic join of
affine functions); then, since for all pieces the coefficient of ω is equal to 1, the
inferred coefficient of ω is again 1. Thus, the result of the widening for x1 = 2 is
ω + 3x2 + 9.

Finally, at the eleventh iteration, we reach a fixpoint f11
1 :

f11
1 (x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 3x2 + 9 x1 = 2

ω · (x1 − 1) + 7x1 + 3x2 − 5 otherwise

Note that the second and third expressions are particular cases (for x1 = 1 and
x1 = 2 respectively) of the last expression and are explicitly listed only due to
the amount of widening delay we used. The function f(x1, x2) = ω · (x1 − 1) +
7x1+3x2−5 constitutes a ranking function2 for the program loop, while the first
case represents immediate program exit (without even entering the loop). ��
2 The reason why we obtain a different ranking function with respect to Figure 2 is
because we count the number of program execution steps whereas, for convenience
of presentation, in Figure 2 we count the number of loop iterations.
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6 Implementation

We have incorporated the implementation of our abstract domain for ordinal-
valued ranking functions O into our prototype static analyzer [21] based on
piecewise-defined ranking functions.

The prototype accepts programs written in a small non-deterministic while-
language. It is written in OCaml and, at the time of writing, the available abstrac-
tion for program states S is based on intervals [7] and the available abstraction
for natural-valued functions F is based on affine functions represented as convex
polyhedra [11]. The operators for the intervals and convex polyhedra abstract
domains are provided by the Apron library [14]. The extension to ordinal-valued
ranking functions is optional, but when activated it requires to choose a maxi-
mum degree for the abstract polynomials. It is also possible to tune the precision
of the analysis by adjusting the widening delay.

The analysis proceeds by structural induction on the program syntax, iterating
loops until an abstract fixpoint is reached. In case of nested loops, a fixpoint on
the inner loop is computed for each iteration of the outer loop.

6.1 Examples

To illustrate the expressiveness of our domain, we consider two more examples,
besides the one shown in Section 5.

Example 3. Let us consider the program in Figure 3 which is an involved varia-
tion of the one in Figure 1. The variables x1 and x2 can have any initial integer
value, and the program behaves differently depending on whether x1 is positive
or negative. In case x1 is positive, the program behaves exactly as in Figure 1.
In case x1 is negative, the program either increments the value of x1 or it decre-
ments the value of x2 and resets x1 to any value (possibly positive). The loop
exits when x1 is equal to zero or x2 is less than zero.

Note that there does not exist a lexicographic ranking function for the loop.
In fact, the variables x1 and x2 can be alternatively reset to any value at each
loop iteration: the value of x2 is reset at the program control point 5 (in the first
branch of the first if statement, i.e. if x1 > 0) while the value of x1 is reset at the
control point 10 (in the second branch of the first if statement, i.e. if x1 < 0).

Nonetheless, the program always terminates, regardless of the initial values for
x1 and x2, and regardless of the non-deterministic choices taken during execution.
Let us consider the graph in Figure 5. Whenever x2 is reset to any value, we
move towards the final states decreasing the value of x1, and whenever x1 is
reset to any value, we move towards the final states decreasing the value of x2.
Moreover, whenever x1 is reset to a positive value, its value will only decrease
until it reaches zero (or x2 is reset to a value less than zero).

Our prototype is able to prove the program termination in about 10 seconds
(with a widening delay of 3 iterations). We automatically infer the following
piecewise-defined ranking function:
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int : x1, x2

while 1( x1 �= 0 ∧ x2 ≥ 0 ) do

if 2( x1 > 0 ) then

if 3( ? ) then
4x1 := x1 − 1
5x2 := ?

else
6x2 := x2 − 1

else

if 7( ? ) then
8x1 := x1 + 1

else
9x2 := x2 − 1
10x1 := ?

od11

Fig. 3. Program with no lexicographic
ranking function

int : x1, x2

1x1 := N

while 2( x1 ≥ 0 ) do
3x2 := N

while 4( x2 ≥ 0 ) do
5x2 := x2 − 1

od
6x1 := x1 − 1

od7

Fig. 4. Program with non-linear com-
putational complexity

f(x1, x2) =

⎧
⎪⎨

⎪⎩

ω2 + ω · (x2 − 1)− 4x1 + 9x2 − 2 x1 < 0 ∧ x2 > 0

1 x1 = 0 ∨ x2 ≤ 0

ω · (x1 − 1) + 9x1 + 4x2 − 7 x1 > 0 ∧ x2 > 0

In Figure 5, we justify the need for ω2. Indeed, from any state where x1 < 0
and x2 = k2 > 0, whenever x1 is reset at program control point 10, it is possible
to jump to any state where x2 = k2 − 1. In particular, for example from the
state where x1 = −1 and x2 = 2, it is possible to jump through unbounded
non-determinism to states with value of the most precise ranking function equal
to an arbitrary ordinal number between ω and ω2, which requires ω2 as upper
bound of the maximum number of loop iterations needed to reach a final state.

Finally, note the expressions identified as coefficients of ω: where x1 < 0, the
coefficient of ω is an expression in x2 (since x2 guides the progress towards the fi-
nal states), and where x1 > 0, the coefficient of ω is an expression in x1 (because
x1 now rules the progress towards termination). The expressions are automati-
cally inferred by the analysis without requiring assistance from the user. ��
Example 4. Let us consider the program in Figure 4. Since the program has
quadratic time complexity, we cannot prove its termination limiting ourselves to
piecewise-defined natural-valued affine ranking functions.
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x1 ≤ 0
x2 ≤ 0

0

x1 ≤ 0
x2 = 1

0

x1 ≤ 0
x2 = 2

0
. . .

x1 ≤ 0
x2 = n

0
. . .

x1 = 1
x2 ≤ 0

0

x1 = 1
x2 = 1

1

x1 = 1
x2 = 2

2
. . .

x1 = 1
x2 = n

n
. . .

x1 = −1
x2 ≤ 0

0

x1 = −1
x2 = 1

1

x1 = −1
x2 = 2

ω2
. . .

x1 = −1
x2 = n

ω2 + ω · (n− 1)
. . .

x1 = 2
x2 ≤ 0

0

x1 = 2
x2 = 1

ω

x1 = 2
x2 = 2

ω + 1
. . .

x1 = 2
x2 = n

ω + n− 1
. . .

x1 = −2
x2 ≤ 0

0

x1 = −2
x2 = 1

2

x1 = −2
x2 = 2

ω2 + 1
. . .

x1 = −2
x2 = n

ω2 + ω · (n− 1) + 1
. . .

. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .

x1 = n
x2 ≤ 0

0

x1 = n
x2 = 1

ω · (n− 1)

x1 = n
x2 = 2

ω · (n− 1) + 1
. . .

x1 = n
x2 = n

ω · (n− 1) + n− 1
. . .

x1 = −n
x2 ≤ 0

0

x1 = −n
x2 = 1

n

x1 = −n
x2 = 2

ω2 + n− 1
. . .

x1 = −n
x2 = n

ω2 + ω · (n− 1) + n− 1
. . .

. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .

Fig. 5. Transitions between states at control point 1 for the program in Figure 3. There
is an edge from any node where x1 has value k1 > 0 (and x2 > 0) to all nodes where
x1 has value k1 − 1 (and x2 has any value); there is also an edge from any node where
x2 has value k2 > 0 (and x1 < 0) to all nodes where x2 has value k2 − 1 (and x1 has
any value). In every node we indicate the maximum number of loop iterations needed
to reach a final state: the highlighted nodes require an ordinal greater than ω2.
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Program Ranking Function

[1, Figure 1]
f(x, y) = 57x + 3y + 28

Time: < 3 s (Widening Delay: 2)

[4, Figure 1]
f(x, y) = 7y + 3x− 5

Time: < 1 s (Widening Delay: 2)

[5, Figure 7a]
f(x, y, d) = ω · (y − 1) + 4x+ 9y − 7

Time: < 60 s (Widening Delay: 3)

[5, Figure 7b]
f(x, y, z) = ω2 · (y − 1) + ω · (y + z − 2) + 3x+ 13y + 8z − 18

Time: < 240 s (Widening Delay: 3)

[5, Figure 8a]
f(x) =

⎧
⎪⎨

⎪⎩

−3x+ 1 x < 0

1 x = 0

3x+ 1 x > 0

Time: < 1 s (Widening Delay: 2)

[23, MirrorIntervSim]
f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 x ≤ −6

⊥ −5 ≤ x ≤ −1

1 x = 0

6 x = 1

5x+ 1 2 ≤ x ≤ 30

⊥ 31 ≤ x ≤ 35

4 x ≥ 36

Time: < 1 s (Widening Delay: 2)

Fig. 6. Some of the benchmarks used in experiments

However, with the extension to ordinal-numbers, our prototype analyzes the
program in about 2 seconds (with a widening delay of 2 iterations). The inferred
ranking function is f(x1, x2) = ω+2, where ω constitutes an upper-bound on the
number of program execution steps spent inside the while loop (i.e. it testifies
that the number of execution step spent inside the while loop is finite), and
the constant 2 takes into account the initialization step x1 := N and the test
x1 < 0 that enforces loop exit. This ordinal-valued ranking function represents
a rough approximation of the program computational complexity, but allows
nonetheless to prove its termination without requiring to handle ranking function
more complex than affine functions. ��

6.2 Experiments

We have evaluated our prototype implementation against a set of benchmarks
collected from publications in the area [1,4,5,23, etc.] or inspired from real code.
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We analyzed 38 examples: 25 terminating loops and 13 conditionally terminating
loops. Among them, nine are “simple loops” (i.e. loops with only variable up-
dates in the loop body) and seven are nested loops. We successfully proved (con-
ditional) termination for all simple loops but one, and for four out of the seven
nested loops. Only two nested loops required the extension to ordinal numbers
(to cope with a non-linear computational complexity). 13 of the 38 benchmarks
are non-deterministic programs. We proved termination for ten of them, using
ordinal numbers in five cases. In the other five cases, piecewise-defined natural-
valued ranking functions were sufficient (even when the programs were presented
in the literature as requiring a lexicographic ranking function). In summary, our
prototype was able to automatically solve 30 of the 38 benchmarks we consid-
ered. Failure in the eight missing cases is due to the non-relational nature of
partitioning with intervals and, in particular, is not related to the use of ordi-
nal numbers. Almost all examples were analyzed in less than 60 seconds (only
one example took aroud 240 seconds), with maximum polynomial degree of two
and maximum widening delay of seven iterations. In Figure 6 are depicted some
representatives of the benchmarks, together with our results.

7 Related Work

In the recent past, a large body of work has been devoted to proving program
termination of imperative programs. To the best of our knowledge, in this setting,
the inference of ordinal-valued ranking functions is unique to our work.

Aside from the use of ordinal numbers, the approach presented in this paper is
mostly related to [1]: both techniques handle programs with arbitrary structure
and infer ranking functions (that also provide information on the program com-
putational complexity in terms of executions steps) attached to program control
points. The technique proposed in [1] uses invariants (pre)computed for each
program control point to infer lexicographic ranking functions (also attached to
program points). On the other hand, with our approach, we infer ordinal-valued
ranking functions directly as invariants attached to program control points. In [1],
the problem of finding an appropriate lexicographic order is handled by a greedy
algorithm, whereas dealing with ordinal numbers relieves us from the burden
of finding lexicographic orders (cf. Section 1). In contrast, ordinal-valued rank-
ing functions parameterized by functions with limited expressivity (e.g. affine
functions) might produce a rough approximation of the program computational
complexity (cf. Example 4). We plan to study these issues further and support
non-linear functions as part of our future work.

In order to avoid lexicographic ranking functions, many other approaches rely
on the transition invariants method introduced in [20]. The advantage of this
method is that it only requires to find a set of ranking functions, without lexi-
cographic ordering between them. However, the main drawback of the method
is the cost of explicitly checking the validity of the termination argument. On
the other hand, our approach also avoids explicit lexicographic orders, but in
addition it does not suffer from this disadvantage because the validity of the
termination argument is automatically enforced at each loop iteration.
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In a different context, a large amount of research followed the introduction of
size-change termination (SCT) [17]. The SCT approach consists in collecting a
set of size-change graphs (representing function calls) and combining them into
multipaths (representing program executions) in such a way that at least one
variable is guaranteed to decrease. Compared to SCT, our approach avoids the
exploration of the combinatorial space of multipaths with the explicit manipu-
lation of ordinal numbers. In [16,2], algorithms are provided to derive explicit
ranking functions from size-change graphs, but these ranking functions have a
shape quite different from ours which makes it difficult for us to compare their ex-
pressiveness. For example, the derived ranking functions use lexicographic orders
on variables while our polynomial coefficients are arbitrary linear combinations
of variables. In general, an in-depth comparison between such fairly different
methods is an open research topic (e.g. see [13] for the comparison of the tran-
sition invariants and the size-change termination methods).

Finally, we have seen that there exist programs (e.g., the program in Fig-
ure 3) for which there does not exist a lexicographic ranking function. In [5]
the authors discuss the problem and propose some heuristics to circumvent it.
Interestingly these heuristics rediscover exactly the need for piecewise-defined
ranking functions, even if implicitly and in a roundabout way.

8 Conclusion

In this paper, we proposed a parameterized abstract domain for proving termi-
nation of imperative programs. The domain automatically infers sufficient condi-
tions for program termination, and synthesizes piecewise-defined ordinal-valued
ranking functions through backward invariance analysis.

We also described the implementation of an instance of the abstract domain
based on affine functions, and we have provided experimental evidence of its
expressivity. In particular, we have seen that inferring ranking functions over
ordinals removes the burden of finding lexicographic orders (cf. Section 1 and
Section 5), and overcomes the limitations of affine functions in case of programs
with non-linear computational complexity (cf. Example 4). Finally, we have seen
(cf. Example 3) that piecewise-defined ordinal-valued ranking functions are cru-
cial where lexicographic ranking functions are not powerful enough.

It remains for future work to support non-linear functions (e.g. quadratic, cu-
bic, exponential, . . . ) and relational abstract domains (e.g. octagons [19], poly-
hedra [11], . . . ) for better state partitioning.
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