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Abstract. We build on the series of work by Dal Lago and coauthors and identify
proof nets (of linear logic) as higher-order quantum circuits. By accommodating
quantum measurement using additive slices, we obtain a comprehensive frame-
work for programming and interpreting quantum computation. Specifically, we
introduce a quantum lambda calculus MLLqm and define its geometry of interac-
tion (GoI) semantics—in the style of token machines—via the translation of terms
into proof nets. Its soundness, i.e. invariance under reduction of proof nets, is es-
tablished. The calculus MLLqm attains a pleasant balance between expressivity
(it is higher-order and accommodates all quantum operations) and concreteness
of models (given as token machines, i.e. in the form of automata).

1 Introduction

Quantum Programming Languages. Quantum computation and quantum communica-
tion have been attracting growing attention. The former achieves real breakthrough in
computational power—at least for some classes of problems, such as the integer fac-
torization problem (Shor’s algorithm) and search problems. While it is often disputed
if quantum computation is physically realizable, quantum communication is close to
actual deployment in real-world applications. By exploiting the nonlocal character of
quantum phenomena (notably quantum entanglement), quantum cryptography proto-
cols accomplish perfect security that do not rely on any computational assumptions
(like Diffie-Hellman).

Compared to the algorithmic aspects, the theory of quantum programming is rel-
atively new. For example, quantum algorithms are most often expressed in quantum
circuits that lack structuring means like recursion or higher-order functions. Conse-
quently we have seen some proposals for quantum programming languages including
QCL [19], quantum lambda calculi [21, 23] and most recently Quipper [10]: QCL is
imperative and the others are functional.

Our interests are in a quantum lambda calculus as a prototype of functional quan-
tum programming languages. The functional style comes with several advantages. For
one, a type system based on resource-sensitive linear logic [6] can force no-cloning of
quantum states via type safety [23]. Moreover, various techniques for classical func-
tional programming can often be “transferred” to the quantum setting, since they are
formulated in an abstract mathematical language and hence are generic. For example,
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in [11, 16, 21] various semantical techniques in the classical setting—such as linear-
nonlinear adjunctions, categorical geometry of interaction, and presheaf completion—
are applied to quantum calculi, exploiting the categorical genericity of these techniques.

From Quantum Circuits to Proof Nets. The current work relies on another rich body of
techniques that are developed in the linear logic community. Specifically we follow the
line of [3, 4] where, roughly speaking,

proof nets are thought of as extended quantum circuits.

Proof nets as devised in [6] are a graphical presentation of linear lambda terms (i.e.
linear logic proofs) whose principal concern is reduction of terms (i.e. cut-elimination).
Proof nets are “extended quantum circuits” in the following sense: (some) wires in
proof nets can be naturally identified with those in quantum circuits; and at the same
time higher-order computation is naturally accommodated using a linear type system
(A�B ≡ A⊥`B). This view is hence a quantum version of the one in [22]. See §3.5
for further discussion.

Once a quantum lambda term is presented as a proof net, the geometry of interaction
(GoI) interpretation [7]—especially its concrete presentation as token machines [14]—
gives a concrete and operational interpretation of the term as a state transition system.
This is a main advantage of the current “proof net and GoI” approach compared to the
categorical one taken in [11, 16]: in the latter models tend to be abstract and huge.

A main disadvantage, however, is that it is harder to interpret extra features in a cal-
culus. Such desired features include recursion and accommodation of duplicable clas-
sical data by the ! modality; these are all present e.g. in [11]. In fact, in the preceding
work [3, 4] of the current approach, even measurements are excluded from the calculi.
Hence important (and basic) examples like quantum teleportation cannot be expressed
in their calculi.

Contributions. In the current work we present a comprehensive framework for pro-
gramming and interpreting higher-order quantum computation based on a linear lambda
calculus, proof nets and GoI interpretation. More specifically:

• We introduceMLLqm, a linear lambda calculus with quantum primitives (including
measurement, unlike [3, 4]).

• We define a notion of proof net, into which terms of MLLqm are translated. For
accommodating measurements we follow the idea of (additive) slices (see e.g. [8]).
We also define the reduction of proof nets and prove that it is strongly normalizing.

• We define token machine semantics of MLLqm proof nets and prove that it is sound,
i.e., is invariant under reduction of proof nets. Here we have multiple tokens in a
token machine (this is as in [4]); the slices are suitably handled following the token
machine semantics in [13] for additives.

Our framework attains a balance between expressivity and concreteness of models that
we find pleasant. On the one hand, the calculus MLLqm is reasonably expressive: it
does include all the quantum operations (preparation, unitary transformation, and most
importantly, measurement) and is capable of expressing examples like quantum tele-
portation, which is not possible in the earlier work [3, 4] of the same proof net ap-
proach. Moreover, our framework can naturally express higher-order procedures that
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are essential e.g. in formalizing quantum pseudo-telepathy games in quantum game
theory. The latter are attracting attention as a useful presentation of quantum nonlo-
cality (see e.g. [9]). On the other hand, while the languages in [11, 16, 21] are much
more expressive—they include duplicable classical data (by the ! modality) and/or
recursion—their models given in [11,16] rely on abstract categorical constructions and
it is not trivial to describe them in concrete terms. In contrast, our token machine se-
mantics for MLLqm is given explicitly by a transition system.

The current work shares the same interest as [2], in the sense that both aim at pictorial
formalisms for operational structures in quantum computation. We follow the linear
logic tradition; an advantage is explicit correspondence with a term calculus. In contrast,
[2] employs string diagrams for monoidal categories (more specifically compact closed
categories with biproducts). The two approaches are not unrelated: there is a body of
literature studying monoidal categories as models of linear logic. See [17] for a survey.

Organization of the Paper. After introducing the calculus MLLqm in §2, in §3 we define
MLLqm proof nets and translate terms into proof nets. As usual, proof nets are defined
to be proof structures satisfying a certain correctness criterion. We also define reduction
(i.e. cut-elimination) of proof nets. In §4 we give GoI semantics to MLLqm proof nets,
in the form of token machines. Our main result is soundness of the GoI semantics, i.e.
that it is invariant under reduction of proof nets. Quantum teleportation will exemplify
these constructions.

Most of the proofs are deferred to the extended version [24]. Familiarity to linear
logic techniques like proof nets and token machine semantics is helpful in reading this
paper. Our favorite reference is [20].

2 Syntax of Quantum Lambda Calculus MLLqm

We introduce a typed calculus MLLqm. It is a term calculus based on linear logic—
specifically multiplicative linear logic (MLL) that has connectives ⊗, ` and (·)⊥. It is
further augmented with quantum primitives that are rich enough to express any quan-
tum operation. The latter notion is roughly for “what we can do to quantum states” and
can be represented as a combination of preparation, unitary transformation and mea-
surement. See [18, Chap. 8] for more details. The name MLLqm stands for “MLL for
quantum computation with measurements.”

Definition 2.1 (Types of MLLqm). Types of MLLqm are defined by the following BNF:
A,B ::= qbit | qbit⊥ |A⊗B |A`B .

The syntactic equality shall be denoted by ≡. As is customary in linear logic, we
syntactically identify types according to the following rules: (A⊗B)⊥ ≡ A⊥ ` B⊥,

(A`B)
⊥ ≡ A⊥ ⊗B⊥, and (A⊥)

⊥ ≡ A. We write A � B for A⊥ `B and A⊗n for
(· · · (A⊗A)⊗A) · · · )⊗A (here ⊗ occurs n− 1 times).

Definition 2.2 (Terms of MLLqm). Terms of MLLqm are defined by:
M,N,L ::= x |λxA.M |MN | 〈M,N〉 |λ〈xA, yB〉.M

| new|ϕ〉 |U | if measM thenN elseL .
Here x is an element of a fixed countable set Var of variables. new|ϕ〉 is a constant for
each normalized vector |ϕ〉 in C

2 and designates preparation of a qubit. U is a constant
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for each 2n-dimension unitary matrix, where n ∈ N. Measurements meas occur only
in conditionals. Note that in variable binders λxA and λ〈xA, yB〉, variables x, y come
with explicit type labels. This is to ensure Lem. 2.5.

Remark 2.3. The constructor if measM thenN elseL is intended for “classical con-
trol”: operationally, the qubit represented by M is actually measured before going on
to evaluate N or L.

This is not to be confused with “quantum control.” In quantum circuits, it is well-
known that any measurement can be postponed to the end of a circuit (the principle
of deferred measurement, [18, §4.4]). This is possible by use of controlled operations
like CNOT [18, §4.3]. We shall stick to classical control because, in the current higher-
order setting, it is not clear how to simulate classical control by quantum control, or
how to systematically construct quantum controlled operations.

Definition 2.4 (Typing rules of MLLqm). Typing rules of MLLqm are shown below. A
context Γ in a type judgment is a set {x1 : A1, . . . , xn : An} of variables and their
types. We write its domain {x1, . . . , xn} as |Γ |. The juxtaposition Γ,Δ of contexts
denotes their union and we assume |Γ | ∩ |Δ| = ∅.

x : A � x : A
ax

Γ, x : A � M : B

Γ � λxA.M : A � B
�I1

Γ, x : A, y : B � M : C

Γ � λ〈xA, yB〉.M : A⊗B � C
�I2

Γ � M : A � B Δ � N : A
Γ,Δ � MN : B

�E
Γ � M : A Δ � N : B
Γ,Δ � 〈M,N〉 : A⊗B

⊗I

� new|ϕ〉 : qbit
new � U : qbit⊗n � qbit⊗n

Un

Γ � M : qbit Δ � N : A Δ � L : A

Γ,Δ � if measM thenN elseL : A
meas

The rule �I2 replaces the usual ⊗E rule that is problematic in the current linear
setting. The following will enable inductive translation of terms into proof nets.

Lemma 2.5. A derivable type judgment Γ 	 M : A has a unique derivation. 
�

3 MLL Proof Nets with Quantum Nodes

In this section we introduce the notion of proof nets tailored for the calculus MLLqm. It
is based on MLL proof nets [6] (see also [20]) and has additional nodes that correspond
to quantum primitives (preparation, unitary transformation and measurement). Among
them, (conditionals based on) measurements are the most challenging to model; we
follow the idea of additive slices that are successfully utilized e.g. in [15].

As usual, we start with the notion of proof structures as graphs consisting of certain
nodes. Then proof nets are defined to be those proof structures which comply with a
correctness criterion (like Danos & Regnier’s in [5]). We define translation of MLLqm
terms into proof structures, which we prove to be proof nets. Moreover, we define re-
duction of proof structures, which we think of as one operational semantics of MLLqm
terms. It is shown that proof nets are reduced to proof nets, and that reduction of proof
nets is strongly normalizing (SN). Note that recursion is not in MLLqm.
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3.1 MLLqm Proof Structures

an if node

In addition to the usual nodes in MLL proof nets, we introduce three
kinds of nodes for quantum computation: new (preparation of a single
qubit), U (unitary transformations/gates), and if (conditionals accord-
ing to measurement of a qubit). An if node is as shown on the right. It
is like a box in standard proof nets.

An if node will appear in a proof structure in the form where the two dashed boxes on
its top are filled with “internal” proof structures. Such a combination of an if node and
two (internal) proof structures shall be called a meas node. Overall, in MLLqm proof
structures we allow the following seven kinds of nodes (Fig. 1).

reg: Q0 reg: Q1

a meas node (= an if node & two proof structures)

Fig. 1. Nodes of MLLqm proof structures

Note that nodes and proof structures are defined by mutual induction: in a proof
structure there is a meas node, in whose dashed boxes there are other internal proof
structures, and so on. We will make this precise in Def. 3.1. In Fig. 1, a unitary gate
node for a 2n-dimension unitary matrix U has n-many qbit edges and n-many qbit⊥

edges. Γ denotes a finite sequence of types. In a meas node, the qbit⊥-typed edge
sticking out to the down-left is called a query edge.

As usual, incoming edges of a node are called premises and outgoing edges are called
conclusions. A proof structure is roughly a graph that consists of nodes in Fig. 1, and

reg: 1 reg: 1

reg: reg: 1
√
3

2
|03〉+ 1

2
|13〉

reg: 
1√
2
|0102〉+ 1√

2
|1112〉

Fig. 2. An example of proof structure
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is augmented with a quantum state called a quantum register, whose functionality we
shall explain by an example.

See Fig. 2. The outermost proof structure (we say it is of level 0) has two new nodes,
a cut node, a ⊗ node and a meas node. Its quantum register is a state of a 2-qubit sys-
tem; each qubit corresponds to a certain new node and the correspondence is designated
by indices. Therefore our intention is that each proof structure has a quantum register
whose size is the number of new nodes, and that the proof structure explicitly carries the
content of the quantum register. Such pairing of computational structure (proof struc-
tures here) and quantum registers is inspired by the operational semantics of [21], where
a term of a calculus and a quantum state together form a quantum closure.

Definition 3.1 (MLLqm proof structure). Let S be a directed finite graph consisting of
nodes in Fig. 1; Q be a quantum register of length n ∈ N (that is, a normalized vector in
C2n ); k be the number of new nodes in S; and l be a bijection {the new nodes in S} ∼=→
{1, 2, . . . , k}. A triple (S, Q, l) satisfying

– each edge in S is well-typed;
– no incoming edge in S is dangling; and
– n = k

is called a proof structure. The types on the dangling outgoing edges in S are called the
conclusions of S.

Let (S0, Q0, l0) and (S1, Q1, l1) be proof structures with the same conclusions,
say Γ . We call a triple

(
if node, (S0, Q0, l0), (S1, Q1, l1)

)
a meas node and regard

it as a node with conclusions qbit⊥, Γ . Each of the proof structures (S0, Q0, l0) and
(S1, Q1, l1) is called a branch of the meas node.

The outermost proof structure is said to be of level 0 and the branches of a meas
node of level n are said to be of level n+ 1.

We emphasize again that the above definitions of proof structures and meas nodes are
mutually inductive. We allow meas nodes nested only finitely many times. The bijec-
tion l in a proof structure (S, Q, l) gives indices to new nodes and designates corre-
spondences between new nodes and qubits in a quantum register Q.

For example, in Fig. 2 the unitary gate nodes U and V belong to level 2. The quantum
state that corresponds to the node new3 is in the level-1 register. Note that it is invisible
from level 0.

Finally we define slices for MLLqm proof structures, like usual additive slices. We
will employ this notion later in §4.

Definition 3.2 (Slicing and slices). Let N = (S, Q, l) be an MLLqm proof structure.
A slicing is a function b : {all if nodes in S (of any level)} → {0, 1}. Abusing notation,
a slice b(N ) is a graph obtained by deleting the unselected branch of each if node
according to the slicing b, i.e. if b(v) = 0 delete the branch on the right and if b(v) = 1
delete the branch on the left for each if node v. Note that a slice is not a proof structure.

3.2 Reduction of MLLqm Proof Structures
We now introduce reduction rules for MLLqm proof structures. Following the Curry-
Howard intuition that normalization of a proof is computation, a reduction step is
thought of as a step in quantum computation.
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Definition 3.3 (Reduction rules of MLLqm proof structures). Reduction rules are
shown in Fig. 3. The first two are standard in MLL proof nets; the latter three are new.
In the unitary gate rule, the unitary matrix Uj1,...,jm acts on j1, . . . , jm-th qubits in
the same way as U does, and leaves other qubits unchanged. The last two rules occur
probabilistically, where the resulting quantum registers |ϕ′

0〉, |ϕ′
1〉 and probabilities∑

j |αj |2,
∑

j |βj |2 defined in the obvious way. Explicitly:
|ϕ0〉 =

∑
j αj

(
|ψ0

j 〉 ⊗ |0〉 ⊗ |χ0
j 〉
)
, |ϕ′

0〉 =
∑

j

αj√∑
k |αk|2

(
|ψ0

j 〉 ⊗ |χ0
j 〉
)
,

|ϕ1〉 =
∑

j βj

(
|ψ1

j 〉 ⊗ |1〉 ⊗ |χ1
j 〉
)
, |ϕ′

1〉 =
∑

j

βj√∑
k |βk|2

(
|ψ1

j 〉 ⊗ |χ1
j 〉
)
,

(1)

where |ψb
j〉 of length m − 1 and m is the index of the new node that is measured. The

other rules occur with probability 1. In meas rules, the indexing function l is suitably
updated too.

ax

reg: Q reg: Q

⊗-`
reg: Q reg: Q

unitary gate

reg: Q reg: Uj1, … jmQ

meas0

reg: |φ0  + |φ1

reg: P0 reg: P1 ∑
j

|αj |2

reg: |φ0’  P0

meas1

reg: |φ0  + |φ1

reg: P0 reg: P1 ∑
j

|βj |2

reg: |φ1’  P1

Fig. 3. Reduction rules of MLLqm proof structures

3.3 MLLqm Proof Nets and the Correctness Criterion

Our view of MLLqm proof structures is that they are “extended quantum circuits” that
allow formalization of higher-order quantum computation.
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reg: 1As usual with proof structures, however, Def. 3.1 does not ex-
clude proof structures that carries no computational contents—to put
it technically, those which have cut nodes that cannot be eliminated.
This is mainly due to vicious “feedback loops,” as seen in the proof
structure on the right. We exclude such feedback loops by imposing a correctness crite-
rion that is similar to Danos and Regnier’s “connected and acyclic” one [5]. Then proof
nets are proof structures that comply with the correctness criterion.

In the current quantum setting the challenge is to devise a graph-theoretic correctness
condition for unitary gate nodes. We follow the idea in [4].

Definition 3.4 (Correctness graphs with quantum nodes). Let N = (S, Q, l) be a
proof structure. A correctness graph of N is an undirected graph obtained by applying
the following operations to S.

– Ignore directions of all edges.
– For each ` node, choose one of the two premises and disconnect the other.
– For each unitary gate node, choose an arbitrary bijective correspondence between

the sets of qbit⊥ edges and qbit edges. Remove the node and connect each corre-
spondent pair of edges.

– For each meas node, ignore its branches.

reg: |01
Here is an example. The correctness
graphs for the proof structure on the
right are the four undirected graphs be-
low. There are two choices for the `
node and two for the unitary gate node.

Definition 3.5 (MLLqm proof nets). A correctness graph is said to satisfy the correct-
ness criterion if it is acyclic and connected.

A proof structure N is called a proof net if each of its correctness graphs satisfies
the correctness criterion and every branch in it is a proof net.

Lemma 3.6. If a proof net N reduces to another proof structure N ′ (according to the
rules in Def. 3.3), then N ′ is also a proof net. 
�

3.4 Translation of MLLqm Terms into Proof Nets

We assign a proof structure �Γ 	 M : A� to each derivable type judgment Γ 	 M : A.
This turns out to satisfy the correctness criterion. Lem. 2.5 allows for the definition of
�Γ 	 M : A� by induction on derivation.

Definition 3.7 (Translation of terms into proof nets). For each derivable type judg-
ment Γ 	 M : A, a proof structure �Γ 	 M : A� is defined inductively as in Fig. 4–5.
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�x : A � x : A� �Γ � λxA.M : A � B� �� new|ϕ〉 : qbit�

reg: 1

reg: QΓ, x:A  M:B

reg: |φ

�Γ � MN : B�

reg: QΔ  M:A B      QΘ  N:A

where Γ = Δ,Θ and the derivation is

....
Δ � M : A � B

....
Θ � N : A

Γ � MN : B
�E

�Γ � 〈M,N〉 : A⊗B�

reg: QΔ  M:A      QΘ  N:B

where Γ = Δ,Θ and the derivation is

....
Δ � M : A

....
Θ � N : B

Γ � 〈M,N〉 : A⊗B
⊗I

�Γ � λ〈xA, yB〉.M : A⊗B � C� �� U : qbit⊗n � qbit⊗n�

reg: QΓ, x:A, y:B  M:C reg: 1

Fig. 4. Proof net translation of MLLqm terms—part I
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�Γ � if measM thenN elseL : A�

reg: QΘ  N:A reg: QΘ  L:A

reg: QΔ  M:qbit where Γ = Δ,Θ and the derivation is

....
Δ � M : qbit

....
Θ � N : A

....
Θ � L : A

Γ � if measM thenN elseL : A

Fig. 5. Proof net translation of MLLqm terms—part II

Here we let �Γ 	 M : A� = (SΓ�M :A, QΓ�M :A, lΓ�M :A); and Γ denotes a sequence
A1, A2, . . . , An of types. In each case, the types Aj in the context Γ of Γ 	 M : A

appear as their dual Aj
⊥ in the conclusions of SΓ�M :A.

The indexing l between new nodes and quantum registers are merged in the obvious
way, in the cases of �Γ 	 〈M,N〉 : A⊗B� and �Γ 	 MN : B�.

Lemma 3.8. For any derivable type judgment Γ 	 M : A, the proof structure
�Γ 	 M : A� is a proof net. 
�

Hence, regarding MLLqm proof structures as a rewriting system for quantum com-
putation, it is sufficient to consider solely proof nets. This rewriting system exhibits the
following pleasant properties (Thm. 3.9–3.10).

Theorem 3.9 (Termination of reduction). The reduction of MLLqm proof nets is ter-
minating. 
�

Regarding reduction of proof nets as cut elimination, it is natural to expect all the
cut nodes to disappear after reduction terminates. This is unfortunately not the case
and we have the following restricted result (Thm. 3.10). The condition in Thm. 3.10
corresponds to the condition that a term of MLLqm is closed, i.e. has no free variable.
Intuitively, it states that a proof net “executes all computation steps” if the whole input
is given.

Theorem 3.10 (Strong normalization). Let N = (S, Q, l) be an MLLqm proof net. If
no type containing qbit⊥ occurs in the conclusions of S, then every maximal sequence
of reductions from N reaches a proof net that contains no cut nodes, no unitary gate
nodes, or no if nodes. 
�

Remark 3.11. For MLL proof nets, one of the purposes to introduce correctness cri-
teria in [5, 6] is to characterize those proof structures which arise from some proof in
sequent calculus. Therefore the converse of Lem. 3.8—so-called sequentialization—is
also proved in [6]. It allows (re)construction of sequent calculus proofs from proof nets.

However, sequentialization fails for MLLqm. Consider the following reduction; the
original proof net is the translation of the term CNOT〈new|0〉, new|0〉〉.
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−→∗

After two ⊗-` reductions we do not yet get rid of the CNOT node; it is easily seen that
there is no MLLqm term that gives rise to the resulting proof net.

This is a phenomenon that reflects the nonlocal character of MLLqm; and ultimately
the nonlocality of quantum entanglement is to blame.

Sequentialization fails in general. Those proof nets which are sequentializable in-
clude: the net �Γ 	 M : A� (trivially); and the normal form of the net �Γ 	 M : A� for
a closed term M . The latter is because Thm. 3.10 says that in that case the normal form
is merely an MLL proof net with new nodes.

reg: 1 reg: 1

reg: 1 reg: 1

reg: (α|01〉+ β|11〉)⊗
(

1√
2
|0203〉+ 1√

2
|1213〉

)

Fig. 6. Quantum teleportation (after some reductions irrelevant to the quantum part)

3.5 Examples and Discussion

As syntax sugar we write 〈x1, x2, x3〉 ≡ 〈x1, 〈x2, x3〉〉 and λ〈xA1
1 , xA2

2 , xA3
3 〉.M ≡

λ〈xA1
1 , yA2⊗A3〉.((λ〈xA2

2 , xA3
3 〉.M)y), where y is a fresh variable. Let

B :≡ λ〈xqbit, yqbit, zqbit〉.
(
(λ〈vqbit, wqbit〉.〈H v, w, z〉)(CNOT〈x, y〉)

)
,

C :≡ λ〈sqbit, tqbit, uqbit〉.(if meas s thenZ else I)
(
(if meas t thenX else I)u

)
, and

β00 :≡ CNOT 〈Hnew|0〉, new|0〉〉
where H is the Hadamard gate, CNOT is the controlled
not gate, I is the identity matrix, and Z and X are the Pauli
matrices. The term β00 denotes one of the Bell state; and
the terms B and C represent the quantum circuits on the
right, respectively. Quantum teleportation of one qubit α|0〉+β|1〉 (where α, β ∈ C) is
then described as a MLLqm term T :≡

(
λxqbit.C(B〈x, β00〉)

)
newα|0〉+β|1〉 .

The term T is closed and has the type qbit. Its proof net translation �	 T : qbit�,
after some reductions that are irrelevant to the quantum part, is shown in Fig. 6.
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It is not hard to notice the similarity between the proof net in Fig. 6 and the presen-
tation by a quantum circuit. In general, when we translate a first-order MLLqm term the
resulting proof net looks quite much like a quantum circuit. Notice that the term T is
indeed first-order.

It is when higher-order functions are involved that our linear logic based approach
shows its real advantage. For example, the proof net in the figure below receives a
transformation E of a qubit into a qubit as an input; and feeds E with either H |ϕ〉 or
|ψ〉, according to the outcome of the measurement of |χ〉. (It is straightforward to write
down an MLLqm term that gives rise to this proof net. Explicitly, the term is:
if meas new|χ〉 then (λf

qbit�qbit.f (Hnew|φ〉)) else (λf
qbit�qbit.f new|ψ〉).) This is a

“quantum circuit with a hole,” so to speak; our current MLLqm framework can express,
execute and reason about such procedures in a structural manner.

4 Token Machine Semantics for MLLqm Proof Nets

In this section we go on to introduce token machine semantics for MLLqm proof nets
and prove its soundness, that is, the semantics is invariant under reduction of proof nets.

qbit⊥

qbit⊗ qbit⊥ qbit`
(qbit � qbit) � qbit

reg: |ϕ〉 reg: |ψ〉

qbit⊥
cut

new

qbit

reg: |χ〉

⊗

(qbit � qbit) � qbit

new

qbit
ax

qbit⊥

qbit⊗ qbit⊥
qbit`

(qbit � qbit) � qbit

⊗
new

qbit
axH

cut
qbitqbit⊥

if

Token machines are one presentation of Girard’s geometry of interaction [7]. Un-
like the original presentation by C∗-algebras, token machines as devised in [14] are
(concrete) automata and carry a strong operational flavor. For more details see [20].

TheMLLqm token machines are different from the usual MLL ones in that it employs
multiple tokens. Intuitively one token corresponds to one qubit; and they are required
to synchronize when they go beyond a unitary gate node. This is one way how quan-
tum entanglement (hence nonlocality) can be taken care of in token machine semantics.
Use of multiple tokens is already in [4] where the style is called wave-style token ma-
chine. Multiple tokens inevitably results in nondeterminism in small-step behaviors of
machines (which token moves first?). We prove confluence of small-step behaviors, and
also uniqueness of big-step behaviors as its consequence. This is like in [4].

In the current work we go beyond [4] and interpret measurements too. For that pur-
pose we rely on the ideas developed in linear logic towards accommodating additive
connectives: namely (additive) slicing of proof nets, and weights in token machines.
See e.g. [8, 13].
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4.1 Tokens

We start with usual definitions. We follow [13] most closely. The presentation in [20] is
essentially the same.

Definition 4.1 (Context). A context is defined by the following BNF:
C ::= [ ] |C ⊗A |A⊗ C |C `A |A` C ,

where A is a type of MLLqm. Note that every context has exactly one hole [ ]. The type
obtained by substituting a type A for the hole in a context C is denoted by C[A]. A
context C is called a context for A if the type A is obtained by substituting some type B
for the hole [ ], i.e. A ≡ C[B]. The negation C⊥ of a context C is defined in a natural
way, e.g. (qbit⊗ [ ])

⊥
:= qbit⊥ ` [ ].

Definition 4.2 (Token). Given a proof net N = (S, Q, l), a token is a 4-tuple
(A,C,D, ζ) where

– A is an edge of S (we abuse notations and identify an edge and the type occurrence
A assigned to it; no confusion is likely),

– C is a context for A,
– D is a direction, that is an element of {⇑,⇓}, and
– ζ ∈ N.

Intuitively, a token is a particle moving around the given proof net. The type oc-
currence A of a token indicates on which edge the token is. The context C designates
which base type in A the token is concerned about. An example is A ≡ qbit⊥ ` qbit
and C ≡ [ ] ` qbit; token machine semantics is defined in such a way that a token’s
context determines which edge to take when the token hits a fork, namely a ` node.
The direction D of a token specifies whether it is going up or down along the edge.

Finally, the natural number ζ is a feature that is not in usual MLL proof nets: it
records to which qubit of a quantum register the token corresponds. When a token is
deployed the initial value of ζ is 0, meaning that the token does not yet know which
qubit it corresponds to. When it hits a new node newj , its index j is recorded in ζ.

4.2 The Token Machine TN

Our goal is to construct a transition system (called a token machine) TN for a given
MLLqm proof net N . As an example, one state of the token machine is depicted below.

qbit⊥

qbit⊥ ` qbit

reg: 1 reg: 1

if

new3

qbit

⊗
ax

qbit
qbit⊥

qbit⊗ qbit⊥
cut

X

qbit⊥ qbit`
qbit⊥ ` qbit

I

qbit⊥ qbit`
qbit⊥ ` qbit

qbit⊥

cut

qbit⊥ ` qbit

reg: 1 reg: 1

if
qbit

⊗
ax

qbit⊥

qbit⊗ qbit⊥
cut

Z

qbit⊥ qbit`
qbit⊥ ` qbit

I

qbit⊥ qbit`
qbit⊥ ` qbit

cut

CNOT

qbit⊥

qbit⊥

qbit

qbit

cut

new1

cut

new2

qbit

cut

qbit

H

reg: |ϕ1〉 ⊗ ( 1√
2
|0203〉+ 1√

2
|1213〉)

qbit

qbit⊥

A state of TN is roughly the data that specifies the tokens in the proof net N (how many
of them, their locations, their contexts, etc.).
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In the current setting of MLLqm a state carries much more data, in fact. For example
it has a slicing, which is depicted by hatching the unselected branches in the above
figure. It may feel strange that the selection of branches are specified even before the
relevant qubits are measured: a probability—that is also carried by a state of a token
machine (p = 1/2 in the above figure)—represents the likelihood of the slicing actually
taken. The formal definition is as follows.

Definition 4.3 (State). Given a proof net N = (S, QN , l), a state of the token machine
TN is a 5-tuple (Q, p, b, Tpr, Tms) where

– Q is a quantum register,
– p is a probability, i.e. a real number satisfying 0 ≤ p ≤ 1,
– b is a slicing,
– Tpr is a finite set of tokens (called principal tokens),
– Tms is another finite set of tokens (called measurement tokens).

A quantum register Q of a state is related to QN (that of the proof net) but not neces-
sarily the same—this will be clarified by definitions below of the transition relation and
the initial states of TN .

We go on to define the transition structure →N of TN (Def. 4.4). We note that tran-
sitions →N form a binary relation between states—without any labels or probabilities
assigned to transitions. Hence TN is simply a Kripke frame. We shall refer to the tran-
sitions →N in TN also as the small-step semantics of TN .

The rules in Def. 4.4 are fairly complicated so their intuitions are stated first. The
rules mainly describe how token(s) “move around the net.” Almost every rule moves
only one token. An exception is the U-Apply rule: it makes tokens “synchronized” and
moves them at once. The if-Meas rule deletes one measurement token. The U-Apply and
if-Meas rules also act on the quantum register and the probability of a state, reflecting
the quantum effects of the corresponding operations. A slicing b is left untouched by
transitions.

Definition 4.4 (Transition →N of the token machine TN ). The transition relation
→N between states of the token machine TN is defined by the rules as in Fig. 7–8. Each
rule except the U-Apply and if-Meas rules is divided into two rules, one for principal
tokens and the other for measurement tokens.

For each rule, we informally depict the intended movement of token(s) too.
Hatching over a branch means the branch is not selected by the slicing.

Lemma 4.5 (One-step confluence). Let N = (S, Q, l) be an MLLqm proof net. The
transition relation →N of its token machine TN is one-step confluent. That is, if both
s →N s1 and s →N s2 hold, then either s1 = s2 or there exists a state s′ such that
s1 →N s′ and s2 →N s′. 
�

4.3 Big-Step Semantics of TN

We identify the “computational content” of a proof net N to be the big-step semantics
of the token machine TN that is defined below. The big-step semantics is intuitively
the correspondence between an initial state s ∈ IN and a final state s′ ∈ FN , such
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ax ax
AA⊥

� A,C,⇑, ζ AA⊥
�A⊥, C⊥,⇓, ζ

→N
ax

(
Q, p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊥, C⊥,⇓, ζ)} ∪ Tpr, Tms

)

(
Q, p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊥, C⊥,⇓, ζ)} ∪ Tms

)

cut

cut

AA⊥
�

A,C,⇓, ζ �
A⊥, C⊥,⇑, ζ

→N
cut

AA⊥

(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊥, C⊥,⇑, ζ)} ∪ Tpr, Tms

)

(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊥, C⊥,⇑, ζ)} ∪ Tms

)

⊗-UpLeft A, C, ⇑, ζ⊗A B

A⊗B � A⊗B, C ⊗B, ⇑, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(A⊗B,C ⊗B,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(A⊗B,C ⊗B,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)

⊗-UpRight B, C, ⇑, ζ⊗A B

A⊗B � A⊗B, A⊗ C, ⇑, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(A⊗B,A⊗ C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(B,C,⇑, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(A⊗B,A⊗C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(B,C,⇑, ζ)} ∪ Tms

)

⊗-DownLeft A, C, ⇓, ζ ⊗A B

A⊗B � A⊗B, C ⊗B, ⇓, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊗B,C ⊗B,⇓, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊗B,C ⊗B,⇓, ζ)} ∪ Tms

)

⊗-DownRight B, C, ⇓, ζ ⊗A B

A⊗B � A⊗B, A⊗ C, ⇓, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(B,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊗B,A⊗ C,⇓, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(B,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊗B,A⊗C,⇓, ζ)} ∪ Tms

)

`-UpLeft (pictures for the ` rules are similar to the ⊗ rules)
(
Q, p, b, {(A`B,C `B,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(A`B,C `B,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)

`-UpRight
(
Q, p, b, {(A`B,A` C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(B,C,⇑, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(A`B,A`C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(B,C,⇑, ζ)} ∪ Tms

)

`-DownLeft(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A`B,C `B,⇓, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A`B,C `B,⇓, ζ)} ∪ Tms

)

`-DownRight
(
Q, p, b, {(B,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A`B,A` C,⇓, ζ)} ∪ Tpr, Tms

)
(
Q, p, b, Tpr, {(B,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A`B,A`C,⇓, ζ)} ∪ Tms

)

Fig. 7. Transition rules for TN —part I
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new

�

newk

qbit qbit, [ ], ⇑, 0 �

newk

qbit qbit, [ ], ⇓, k
→N

(
Q,p, b, {(qbit, [ ],⇑, 0)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(qbit, [ ],⇓, k)} ∪ Tpr, Tms

)
(
Q,p, b, Tpr, {(qbit, [ ],⇑, 0)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(qbit, [ ],⇓, k)} ∪ Tms

)

where v is the new node and k = l(v).

U-Through U

qbit⊥1 qbit⊥nqbit⊥k qbit1 qbitnqbitk

�qbitk, [ ], ⇑, ζ �
→N

U

qbit⊥1 qbit⊥nqbit⊥k qbit1 qbitnqbitk

qbit⊥k , [ ], ⇓, ζ
(
Q,p, b, {(qbitk, [ ],⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(qbitk⊥, [ ],⇓, ζ)} ∪ Tpr, Tms

)
(
Q,p, b, Tpr, {(qbitk, [ ],⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(qbitk⊥, [ ],⇓, ζ)} ∪ Tms

)

U-Apply U

qbit⊥1 qbit⊥n qbit1 qbitn

�qbit⊥1 , [ ], ⇑, ζ1 � qbit⊥n , [ ], ⇑, ζn

state: Q state: Uζ1,...,ζnQ

→N

U

qbit⊥1 qbit⊥n qbit1 qbitn

� �qbit1, [ ], ⇓, ζ1
qbitn, [ ], ⇓, ζn

(
Q,p, b, {(qbitρ(1)⊥, [ ],⇑, ζρ(1)), . . . , (qbitρ(m)

⊥, [ ],⇑, ζρ(m))} ∪ Tpr,

{(qbitρ(m+1)
⊥, [ ],⇑, ζρ(m+1)), . . . , (qbitρ(n)

⊥, [ ],⇑, ζρ(n))} ∪ Tms

)

→N
(
Uζ1,...,ζnQ, p, b, {(qbitρ(1), [ ],⇓, ζρ(1)), . . . , (qbitρ(m), [ ],⇓, ζρ(m))} ∪ Tpr,

{(qbitρ(m+1), [ ],⇓, ζρ(m+1)), . . . , (qbitρ(n), [ ],⇓, ζρ(n))} ∪ Tms

)

where 0 ≤ m ≤ n and ρ is an appropriate permutation.

if-Meas state: |ϕ0〉+|ϕ1〉 state: |ϕ′
j〉

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

�qbit, [ ], ⇑, n

→N

(
|ϕ0〉+ |ϕ1〉, p, b, Tpr, {(qbit⊥, [ ],⇑, ζ)} ∪ T ′

ms

)
→N

(
|ϕ′

0〉, p
∑

j |αj |2, b, Tpr, T
′
ms

)

when b(v) = 0 where v is the if node.(
|ϕ0〉+ |ϕ1〉, p, b, Tpr, {(qbit⊥, [ ],⇑, ζ)} ∪ T ′

ms

)
→N

(
|ϕ′

1〉, p
∑

j |βj |2, b, Tpr, T
′
ms

)

when b(v) = 1 where v is the if node.

if-In

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A

→N

if

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

� A, C, ⇑, ζ

A0, C, ⇑, ζ �

(
Q,p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(Aj , C,⇑, ζ)} ∪ Tpr, Tms

)
(
Q,p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(Aj , C,⇑, ζ)} ∪ Tms

)

when b(v) = j where v is the if node.

if-Out

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A

→N
�

if

A0, C, ⇓, ζ

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

� A, C, ⇓, ζ

(
Q,p, b, {(Aj , C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
(
Q,p, b, Tpr, {(Aj , C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)

Fig. 8. Transition rules for TN —part II



Measurements in Proof Nets as Higher-Order Quantum Circuits 387

that s reaches s′ via a succession of →N . By confluence of →N (Lem. 4.5) such s′ is
shown to be unique if it exists (Prop. 4.12); hence the big-step semantics is given as
a partial function IN ⇀ FN . Later in §4.4 we will show soundness, that is, the big-
step semantics is invariant under the reduction of proof nets (as defined in §3), modulo
certain “quantum effects.”

We start with singling out some states of TN as initial and final.

Notation 4.6 (Qv
b ). Let N = (S, QN , l) be an MLLqm proof net, b be a slicing of N ,

and v be an if node in S. By Qv
b we denote the quantum register associated with the

branch designated by b.

Hence Qv
b is a quantum register inside a dashed box attached to the if node v.

Definition 4.7 (Initial states). Let N = (S, QN , l) be an MLLqm proof net. A state
s = (Q, p, b, Tpr, Tms) of TN is said to be initial if:

– Q = QN ⊗
(
⊗

v∈V

Qv
b

)
where V is the set of all if nodes in the slice b(N ) (of any

level; recall Def. 3.2).
– A token (A,C,D, ζ) belongs to Tpr if and only if

• A is a conclusion edge of level 0 (recall that we denote an edge by its type
occurrence);

• C[qbit] ≡ A; D =⇑; and ζ = 0.
– A token (A,C,D, ζ) belongs to Tms if and only if

• A ≡ qbit⊥, a query edge (one sticking left-down from an if node) in a branch
remaining in the slice b(N );

• C ≡ [ ]; D =⇓; and ζ = 0.
The set of initial states is denoted by IN .

In an initial state, every principal token is at one of the conclusion edges (of level 0),
waiting to go up. Measurement tokens are at query edges of any level (but only those
which are in the slice b(N )). The quantum register Q keeps track not only of the level-0
register QN but also of “internal” registers (again which are in the slice b(N )).

Definition 4.8 (Final states). Let N = (S, QN , l) be an MLLqm proof net. A state
s = (Q, p, b, Tpr, Tms) of TN is said to be final if:

– each principal token (A,C,D, ζ) ∈ Tpr satisfies
• A is a conclusion edge;
• C[qbit] = A; and D =⇓.

– Tms = ∅.

Therefore in a final state, all the principal tokens are back at conclusion edges, and all
the measurement tokens are gone. Recall that the if-Meas transition in Def. 4.4 deletes
a measurement token.

Definition 4.9 (Token machine). The token machine for an MLLqm proof net N is
the 4-tuple TN = (SN , IN , FN ,→N ) where SN is the set of states (Def. 4.3), IN and
FN are the sets of initial and final states (Def. 4.7–4.8), and →N⊆ SN × SN is the
(small-step) transition relation (Def. 4.4).

In what follows, the transitive closure of →N is denoted by →+
N .
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Definition 4.10 (Big-step semantics). Let N be an MLLqm proof net. The big-step
semantics of the token machine TN , denoted by �N �, is the partial function �N � :

IN ⇀ FN defined by �N �(s) :=

{
s′ ∈ FN if s →+

N s′;

⊥ otherwise.

Prop. 4.12 below exhibits the legitimacy of this definition (as a partial function). It is
not total but partial in general: partiality arises when the conclusion contains a qbit⊥.
For the proof nets translated from closed MLLqm terms, it is always total (Cor. 4.16).

Lemma 4.11 (Termination of transition). Let N = (S, Q, l) be an MLLqm proof net.
There is no infinite sequence of small-step transitions →N in TN . 
�

Proposition 4.12 (Unique final state). Let N = (S, Q, l) be an MLLqm proof net. If
s →+

N s0 and s →+
N s1 with s0, s1 ∈ FN , then s0 = s1. 
�

4.4 Soundness of the Token Machine Semantics

Soundness of the big-step semantics—that it is invariant under the reduction of proof
nets—holds only modulo certain quantum effects. The latter are formalized as follows,
as suitable transformations of token machine states.

Definition 4.13 (U). Let N = (S, QN , l) be an MLLqm proof net. Assume that there
is a unitary gate node U in N for which the unitary gate reduction rule in Fig. 3 can be
applied, resulting in the proof net N ′. In this case, we define a function U : SN → SN ′

by U(Q, p, b, Tpr, Tms) := (Uj1,...,jmQ, p, b, Tpr, Tms).

Definition 4.14 (meas). Let N = (S, QN , l) be an MLLqm proof net. Assume that
there is an if node v in N to which the meas0 and meas1 rules in Fig. 3 are applicable,
resulting in nets N0 and N1, respectively.

First we define functions measv|0〉 : IN → IN0 and measv|1〉 : IN → IN1 , by
measv|0〉

(
|ϕ0〉+|ϕ1〉, p, b, Tpr,

{
(qbit⊥, [ ],⇓, ζ)

}
∪ Tms

)
:=

(
|ϕ′

0〉, p
∑

j |αj |2, b0, Tpr, Tms

)
,

measv|1〉
(
|ϕ0〉+|ϕ1〉, p, b, Tpr,

{
(qbit⊥, [ ],⇓, ζ)

}
∪ Tms

)
:=

(
|ϕ′

1〉, p
∑

j |βj |2, b1, Tpr, Tms

)
,

where bj is defined by bj(u) := b(u) on every if node u in the proof net Nj (j ∈
{0, 1}). Here the token (qbit⊥, [ ],⇓, ζ) in the definition is on the query edge of v, and
|ϕ0〉, |ϕ′

0〉, |ϕ1〉, |ϕ′
1〉 are registers as in (1) in §3.2.

Finally we define a function measv : IN → IN0 + IN1 by (+ denotes disjoint union)

measv(s) :=

{
measv|0〉(s) if b(v) = 0,

measv|1〉(s) if b(v) = 1,
where s = (|ϕ〉, p, b, Tpr, Tms).

Intuitively, the function measv “deletes” the if node v together with relevant entries
in the slicing b. A quantum register and a probability are updated too, in an obvious
manner.

Using these state transformations our main result is stated as follows.

Theorem 4.15 (Soundness). Let N 
→ N ′ be a reduction of MLLqm proof nets. Then,

1. �N � = �N ′� if the reduction is by the ax-cut or the ⊗-` rule.
2. �N � = �N ′� ◦ U if the reduction is by the unitary gate rule, where U is the corre-

sponding unitary matrix.
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3. �N � � (�N0� + �N1�) ◦measv if the reduction is by one of the meas rules. In this
case there must be another reduction possible due to the other meas rule, and we
denote the resulting two proof nets by N0 and N1 (N ′ is one of these). The function
�N0� + �N1� means case-distinction (recall the type IN → IN0 + IN1 of measv).
Here the equivalence � is a natural identification of final states of TN , TN0 and

TN1 . That is, F � G
def.⇐⇒ ∀x.F (x) ∼ G(x) and

s ∼ s′
def.⇐⇒ s = s′ disregarding slicings.

Pictorially, the statements 2. and 3. say the following diagrams commute:

IN
U ��

�N � �� FN IN
measv ��

�N � �� FN
∼��

IN ′
�N ′� �� FN ′ IN0 + IN1

�N0�+�N1� �� FN0 + FN1 . 
�

Thm. 4.15 together with Thm. 3.10 yield the following corollary (Cor. 4.16). This
corollary implies that the computation of a closed term ends with a result.

Corollary 4.16. Let N be a proof net with no qbit⊥ in its conclusions. Then the big-
step semantics �N � is total. 
�

4.5 Example

As a concrete example we briefly look at the token machine for the proof net for quan-
tum teleportation (Fig. 6); we shall demonstrate that the qubit α|01〉 + β|11〉 (“stored”
in the node new1) is transmitted correctly.

The initial states of our interests are the following four:(
Q, 1, bij,

{
(qbit, [ ],⇑, 0)

}
,
{
(qbitx

⊥, [ ],⇓, 0), (qbitz⊥, [ ],⇓, 0)
})

,

where Q is the quantum register (α|01〉+β|11〉)⊗
(

1√
2
|0203〉+ 1√

2
|1213〉

)
and i, j ∈

{0, 1}. Each initial state (with a different slicing bij) corresponds to possible outcomes
of the two measurements. Note that each has the probability 1.

It is straightforward to see that each of the four initial states is led to the final state(
α|0〉 + β|1〉, 1/4, bij, {(qbit, [ ],⇓, 3)}, ∅

)
, with the qubit α|0〉 + β|1〉 assigned to the

node new3. The probabilities (1/4 each) add up to 1 with the four initial states to-
gether, a fact which witnesses that the original qubit is successfully transmitted with the
probability 1.

5 Conclusions and Future Work

We introduced the notion of MLLqm proof net. It is the first one that accommodates
measurements as proof structures, and has suitable features for expressing higher-order
computation thus going beyond quantum circuits.

The GoI semantics with measurements in this paper is also the first one, which was
mentioned in [4] as one of future work. The ideas of using a form of “weakening”
to capture measurements (qubits are deleted) and that states of a token machine carry
probabilities are new and clean, while the overall structure of the machine follows the
usual notion of slice used in linear logic.
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As future work, one direction is to accommodate duplicable data, namely the bit
type. Although linear logic has a standard tool—the ! modality—to handle such data,
there are subtle problems coming from the no-cloning property, nonlocality, etc. An-
other is to accommodate recursion. We expect to be able to adapt the techniques
developed in [14] and [12].
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