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Abstract. Secure multiparty computation (MPC) permits a collection
of parties to compute a collaborative result without any of the parties
or compute servers gaining any knowledge about the inputs provided by
other parties, except what can be determined from the output of the
computation. In the form of MPC known as linear (or additive) sharing,
computation proceeds on data that appears entirely random. Operations
such as addition or logical-XOR can be performed purely locally, but op-
erations such as multiplication or logical-AND require a network commu-
nication between the parties. Consequently, the computational overhead
of MPC is large, and the cost is still measured in orders of magnitude
slowdown with respect to computing in the clear. However, efficiency im-
provements over the last few years have shifted the potential applicability
of MPC from just micro benchmarks to user-level applications.

To assess how close MPC is to real world use we implement and as-
sess two very different MPC-based applications—secure email filtering
and secure teleconference VoIP. Because the computation cost model is
very different from traditional machines, the implementations required a
significantly different set of algorithmic and compiler techniques. We de-
scribe a collection of the techniques we found to be important, including
SAT-based circuit optimization and an optimized table lookup primitive.

1 Introduction

It is scarcely possible to read the news without seeing yet another reason to
be able to perform computation on encrypted data. The cryptography commu-
nity has long known that some kinds of computations on encrypted data are
possible—at least in principle. This was notably demonstrated by Yao’s seminal
work on secure multiparty computation [Y86], and most radically by Gentry’s
work on fully homomorphic encryption (FHE) [G09]. While FHE is very new
and still far from practical, there has been significant effort in the last few years
to make MPC usable in practice.

MPC computations permit a collection of parties to compute a collaborative
result, without any of the parties gaining any knowledge about the inputs pro-
vided by other parties (other than what is derivable from the final result of the
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computation). In recent years, the variant of MPC called linear shared computa-
tion has been producing significant performancewins [BLW08, LAD12, DKL+13].

When we say “performance wins”, we should put it in context: on test cases
such as securely decrypting AES-encrypted text, we have been seeing linear
sharing achieving execution times of around 3–30ms per 128-bit block, which
corresponds to a slowdown of around four to five orders of magnitude compared
with computation in the clear. Significant though this slowdown is, it compares
well with Yao and especially with FHE, whose current slowdowns appear to be
respectively around six and nine orders of magnitude in our experience.

There are two fundamental reasons why secure computation proceeds more
slowly than computation in the clear. First, all secure computations have to
be performed generically across all possible input and internal values (other-
wise information is revealed), though there are neat algorithms which can some-
times amortize this somewhat across multiple accesses. Second, the multi-party
schemes (both Yao and linear sharing) require significant network communica-
tion, typically growing linearly with the size of the function being evaluated.

MPC protocols can be targeted to different security models, but the perfor-
mance cost in establishing and maintaining the security for particular models
can vary significantly. The simplest security model used for secure computation
is honest but curious [G04], where the separate parties are assumed to follow the
protocol honestly, but may at the same time attempt to learn secrets by looking
at internal values of the computation, including any communications. This secu-
rity model is appropriate for settings such as preventing information leakage by
individuals with administrator access, or after a cyber snooping break-in. There
are also fairly generic techniques for augmenting honest-but-curious protocols to
provide more stringent security guarantees (such as against malicious adversaries
who intend to subvert the computation), so the honest-but-curious protocol may
be seen as a significant first step towards constructing more secure versions.

1.1 Contributions of This Paper

In this paper, we address the challenge of scaling secure computation to a level
required by applications. We implement two: a mail filter, which matches en-
crypted email texts against regular expressions, and VoIP teleconference calling,
which merges and clips multiple audio streams in real-time.

To implement these, we used the ShareMonad, a Haskell-embedded domain-
specific language for programming secure multiparty computations, with a linear-
sharing backend [LAD12]. The ShareMonad view considers the secure multiparty
computational substrate as an MPC-machine—an abstract machine with highly
non-standard interface and performance properties. The implementation comes
with a variety of ad-hoc techniques for minimizing expensive operations, either
by reducing the overhead of individual operations (through exploiting opportu-
nities for SIMD-like parallelization), or by hiding residual latencies involved in
network-based operations. To scale to the size and performance required by
our target applications, we further developed the backend optimizations. In
particular:
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– We developed and implemented many compile-time optimizations, including
SAT-based reasoning to replace (expensive) AND-operations with (cheap)
XOR-operations, and balancing and packing of global operations to minimize
the number and size of network communications.

– We also created a new version of the table lookup primitive, introduced in
[LAD12]. This performs secret lookup of an n-bit index in a public table
using log(n) global operations (as before), but where each global operation
now communicates no more than 21+n/2 individual bits. We also optimize the
local computations involved in the table-lookup with some pre-computation
on the table. Together, these make a huge difference in both computation and
network performance. In effect, the compiler uses the table lookup protocol as
a mechanism for building custom wide-word instructions that are generated
based on the program.

2 Background

The secure computation scheme we use is simple linear (arithmetic) sharing
across three peer machines acting as the compute servers. For the protocols we
discuss, the three machines run the same code as each other, and communicate
(and hence synchronize) between themselves in a cyclic pattern, as shown in
Figure 1. Some more complex protocols require less uniform computation and
communication patterns, but we won’t need them here.

Fig. 1. Machine Configuration

The diagram shows the links protected with SSL. The critical point is that
the links are protected by some mechanism, otherwise a network snooper could
access the three random shares of a value and so reconstruct the original. For
performance and thread-safe reasons, we use a homegrown commsec package
instead of OpenSSL, that is 3× faster on small messages.

In an arithmetic sharing scheme, private (secret) values never exist concretely
but instead are represented by three separate shared values, each of which lives
on one of the peer servers. A value is shared between the machines in a form
that is dependent on its type. Fixed-width integer types (e.g Int16, Int32, etc)
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are shared arithmetically. Thus, a true value x in Int16 will be shared as three
randomly drawn values xA, xB , xC such that x = xA + xB + xC (mod 216). The
shares are produced originally by generating xA and xB randomly from a uniform
distribution, and then defining xC = x− xA − xB . Despite xC being computed,
each one of the three numbers exhibit the properties of being fully random, and
knowledge of any two of the numbers provides absolutely zero knowledge about
the original private value1. Subsequently, the computational protocols maintain
the share property through the calculations that are performed.

Sharing is lifted to structured types as follows: tuples of private values are
shared component-wise, and fixed-length sequences of values (i.e. lists or arrays)
are shared element-wise. Thus, a private value of a sequence [x, y, z] will be
shared as three (equal length) sequences of randomly drawn values [xA, yA, zA],
[xB , yB, zB], [xC , yC , zC ] such that x = xA + xB + xC , and so on. Sequences of
bits are a special case of more general sequences. They need to be handled in
an efficient way (else the overhead can kill many algorithmic improvements), so
we treat fixed-width bit-vectors (represented as unsigned integers in the Share-
Monad library) as if they were sequences of individual bits (i.e. elements of Int1,
where multiplication is just boolean AND, and addition is XOR). Thus, a pri-
vate value x in Word8 (a bit-vector of length 8) will be shared as three randomly
drawn values xA, xB , xC such that x = xA ⊕ xB ⊕ xC (where ⊕ is bitwise xor).

To add together two private numbers which are represented by shares, we
can simply add together the component shares and we are done. To multiply
two private numbers, we have to compute nine partial products of their shares
(Fig. 2).

Fig. 2. Computing the Partial Products

Each machine already has the values it needs to enable it to compute one of
the entries on the diagonal. If each machine also communicates its shares of x
and y to its neighbor (according to the pattern in Fig. 1), then every partial
product in the matrix can be computed by somebody. All three machines are

1 Even if given two of the values, xA and xC say, every possible value for x has equal
probability, depending entirely on the value of xB.
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operating loosely in lockstep, so all are executing the same instruction at around
the same time. On receiving the neighbor’s value, each machine computes three
partial products, XORs them together, and now has a share of the full product.

We need an additional refinement. If we performed multiple multiplications
in a sequence, we could easily end up rotating particular share values to all
three servers. This would then reveal enough information to reconstruct a pri-
vate value, and so violate security. To avoid this, we take an extra step and
re-randomize the shares before communication. Because of this, each use of mul-
tiply communicates re-randomized shares, and so no information accumulates.
Cryptographically, this makes the multiply operation universally composable,
that is, we can use it repeatedly without fear of violating security. As the addi-
tion operation requires no communication, it automatically has this property.

3 Applications

We selected two target applications: a secure mail filter, and secure VoIP tele-
conference calling. They exhibit a significant divergence in application charac-
teristics. The mail server is a batch process that evaluates regular expressions,
and the VoIP system is a soft real-time system using simple audio algorithms.
We describe each of the applications, including their set-up, and then turn to
consider how to scale the secure computation components in each.

3.1 Secure Mail Filter

In the secure mail filter architecture in Fig. 3, the sender S writes an email
in Thunderbird. We created a plug-in that encrypts the email, and sends an
encrypted email package to a stock mail server.

Fig. 3. Architecture of the Secure Mail Filter

We also created a “milter” plug-in for the mail server using the standard
mail filter interface. The mail server automatically passes the encrypted email
package to the plug-in, which is just a coordinator component that forwards the
package to each of three cooperating share servers and awaits their responses.
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As we shall see in a moment, the share servers each open the encrypted package
(to the extent that they are able), extract random shares of the encrypted email,
and together engage in a cooperative secure computation to analyze encrypted
e-mail. When they have done their work, they return a random share of their
boolean response to the plug-in, who XORs them together to obtain the mail
filter response. If the answer is in the affirmative, the mail server forwards the
message packet on to the recipient R. Otherwise, the mail server informs S of
the rejection.

Communicating with the Share Servers. The sender S constructs an en-
crypted packet of data such that each of the recipients can extract exactly what
they need, and no more than they should. In particular, neither the mail server
nor the plug-in filter coordinating component should be allowed to know the
content of the email. The three share servers A,B and C should each be able
to obtain a random share of the original email, and the ultimate receiver of
the email, R, should be able to read the whole thing—assuming the message is
permitted through the email filter.

To accomplish all this, S uses a stream cipher encryption algorithm, Enc,
such as AES in counter mode, together with a public-key system, Pub, such as
RSA. S randomly generates three share-keys kA, kB and kC , for the three share
servers, and then computes a pseudo-random stream kA = EnckA(0) (the stream
of zeroes encrypted using the stream cipher), and similarly computes pseudo-
random streams kB and kC . Using these streams as one-time pads, S creates a
cipher text of the email message CT = m⊕ kA ⊕ kB ⊕ kC .

S now constructs and sends a package containing CT , together with targeted
encryptions of the keys, namely PubR(kA, kB, kC), PubA(kA), PubB(kB), and
PubC(kC), where PubA( ) is encryption using A’s public key, and likewise for
B, C, and R.

On receipt of the package, each of the servers A,B and C obtains the respec-
tive keys kA, kB and kC (using their private keys), and now each can locally
compute a copy of their designated pseudo-random stream: A computes kA and
B and C likewise. Using these streams, each of A, B, and C can construct a share
of the original email message m: share mA = kA ⊕ CT , share mB = kB ⊕ CT ,
and share mC = kC ⊕ CT . The XOR (⊕) of these three is the original message
m as all the pseudo-random streams will cancel out.

Note than none of the servers are able to reconstruct m itself. In contrast,
should the message pass the filter and be sent on, the recipient R will be able to
reconstructm, because it has been sent the keys that generate the three one-time
pads.

The Secure Computation. The decision as to whether to send the email to
the recipient or not is to be based on the result of evaluating a regular expression.
For example, a filter for rejecting emails containing paragraphs with particular
security markings might start to look something like this:

.*(((TOP|)SECRET)|TS|S)--SI--NO(CON|CONTRACTOR|FORN|FOREIGN).*
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Each of the three share servers will know the regular expressions being used, but
such details may be kept private from everyone else if desired.

There are many ways to evaluate regular expressions in plain text. For the
secure setting we chose an algorithm based on non-deterministic finite automata
(NFA), as opposed to selecting on the DFA algorithms. As every step of the
algorithm has to operate over the whole of the state anyway (so as not to reveal
which states are active), it makes sense to have many of those states active
during computation2.

For concreteness we used an efficient NFA algorithm that has been beautifully
described in Haskell [FHW10]. The clarity of the description made it particularly
easy to re-express the algorithm in our Haskell-based share language. We do not
need to describe the algorithm in detail here. Suffice it to say that the algorithm
uses a tree representation of the regular expression to represent the state, with
each node of the tree flagged (or not) if the corresponding position in the regular
expression is a match for the portion of the string consumed so far.

Fig. 4 shows an example for the regular expression (xy)*x after consuming
just the input "x".

Fig. 4. Match-Annotated Regular Expression

For each new input character, the algorithm computes how to update the set of
matched flags. That is, the matching function updates the flag-states on receipt
of each new input character to produce a new flag-state for the computation on
any remaining input characters. The flag corresponding to the top of the tree
indicates whether the input so far has matched the entire regular expression.

3.2 Application 2: Secure VoIP Teleconference

For the second application we selected a client-server VoIP teleconference ap-
plication that performs audio mixing of encrypted audio streams in real time.

2 It would be interesting future work to explore the alternative choice: select a DFA
algorithm, expand the NFA state set into a corresponding DFA state set (which can
be significantly larger), and then use locality of the active state to gain amortized
complexity improvements in the resulting secure computation.
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As Fig. 5 shows, the architecture we used for the VoIP application is very similar
to the mail filter application. This allowed us to re-use parts of the infrastruc-
ture even though the characteristics of the underlying computation were very
different.

Fig. 5. Architecture of the Secure VoIP Teleconference

The client is a slightly modified open-source iOS-based implementation of the
popular Mumble application[Mum], running on iPhone 5s, iPad Mini, and iPad
Touch devices. The server is a modified open-source Linux-based implementation
of the uMurmur VoIP server application, together with three share servers to
perform the encrypted merges.

As with the mail filter setup, we communicate to the share servers by nego-
tiating temporary keys, but with two differences. First, we negotiate temporary
keys just once at the start of the audio stream and use the same keys throughout.
Second, each client will generate a pair of keys for each server, one for the audio
stream sent to the server, the other for the stream being received.

Each client samples audio into a 16kHz PCM data stream of 16-bit fixed point
values. These are encoded by logarithmic compression to 8-bit uLAW samples.
To tolerate processing and transmission latencies, the clients collect samples into
1440-sample packets, each packet containing 90ms of audio.

To transmit the audio, each client encrypts each audio packet by XORing the
data with the XOR of the three pseudo-random streams, as with the mail filter.
Similarly, the share servers each receive the data and extract their individual
share of the audio packet by XORing it with their individual pseudo-random
stream.

In each 90ms epoch, the share servers will compute multiple result streams—
one for each client—by merging all the streams except for the client’s own input
audio stream. This saves us having to do echo-cancellation, but means the com-
putation has to be repeated n times (for n clients). For each-8 bit packet of
compressed audio, the computation is as shown in Fig. 6.

For each encrypted compressed sample in the packet, the share servers have to
(1) decompress the sample to reform a 16 bit PCM sample, (2) add the decom-
pressed value to the corresponding values in the packets from the other clients,
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Fig. 6. Data Processing of Audio Packets

making sure that overflow or underflow are handled by graceful clipping, and (3)
recompress the resulting 16-bit output audio sample into 8-bits for sending to
the client. All of this has to be done cooperatively as the samples are encrypted
throughout.

This process is repeated for each client packet received during the epoch.
Thus for four clients, each share server has to perform 23,040 secure add-and-
clip computations3 every 90ms!

At the end of each 90ms epoch, the three share servers all XOR the result with
the output key for each client, and send each result to the respective client. On
receipt, each uMurmur client performs a matching decryption, and the samples
in the resulting decrypted audio packet are uLAW decoded into 16 bit PCM
format and inserted into a queue for audio playback.

4 Scaling the Secure Computation

Now that we have the structure of the applications, we turn our attention to
ensuring the secure computation can scale to provide sufficient performance.
Our notion of “sufficient” is not rigorous here; it is intended to reflect whether
the results are even in the vicinity of being practical or not.

4.1 Secure Mail Filter

As with many EDSLs, the ShareMonad can produce many different kinds of in-
terpretations of its “programs”. One of the interpretations is an abstract repre-
sentation of the arithmetic and/or logical “circuit” described in the ShareMonad
program. In effect, it represents a partial evaluation of the program, leaving be-
hind only the portion that needs to be executed securely.

As we noted earlier, in a step-by-step algorithm like regular expression
matching—where each step consumes another input character—the circuit takes
two kinds of input: the state of the computation from previous steps, and the
new character being consumed. In turn it delivers a value representing the state

3 23,040 = 1440 samples × 4 input packets × 4 distinct audio result streams.
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after this character has been considered. The updated state is used as the input
state for the next character (Fig. 7). We also have shown extracting a boolean
representing whether the whole regular expression has been matched.

Fig. 7. Two Steps of the Recognizer

This is a raw circuit representing a single step of the recognizer. There is much
we can do with the circuit to optimize it for execution. We group these in two
phases: Simplification and Scheduling.

Simplification. The most expensive operation is AND (i.e. boolean “multi-
ply”), so we apply many transformations to remove as many of these as possible.
A representative set of simplifying transformations is shown in Table 1.

Table 1. Simplification Transformations

Precondition Before After

Idempotence a ∧ a a
Factorization (a ∧ b)⊕ (a ∧ c) a ∧ (b⊕ c)
Constants c �= d (x = c) ∧ (x = d) F
Assoc. and commut. a ∧ (b ∧ a)) a ∧ b
Redundancy a ⇒ b a ∧ b a
Eliminate AND a ∨ b a ∧ b ¬(a⊕ b)

Most of the transformations are straightforward to implement. The last two
deserve special mention, specifically because of the preconditions. These have to
be proven to hold before the transformation is valid. We use the DepQBF solver
[LB10] to verify whether the precondition holds, and only perform the transfor-
mation accordingly. Fig. 8 shows a small example of the kinds of improvements
we get using these transformations.

In this case, the three ANDS we had before optimizations were reduced to one,
the four state variables were also reduced down to one, and significantly, whereas
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Fig. 8. Example of the Effects of Simplification

the original circuit would have required three rounds of communication, the
optimized circuit only requires one. Obviously this is a very simplistic example,
but the same kinds of result show up on much larger examples.

Unfortunately, the use of the logic solver is fairly time consuming (during
compile time). To keep it manageable, we iterate it in the context of state-
functions like the regular expression recognizer. That is, we optimize the circuit
for one character; we then combine that circuit with itself to get a circuit for two
characters (like in Fig. 7), which we then simplify and optimize. We then repeat
the composition to get a circuit for four characters, then eight, and so on.

When do we stop going around this Simplify-Compose cycle? When we reach
a point of diminishing returns. Fig 9 shows the effect of running this cycle over
the recognizer circuit we get for a regular expression of the form:

.*(((TOP|)SECRET)|TS|S)--(ROCKYBEACH|STINGRAY).*

.*(((TOP|)SECRET)|TS|S)--SI--NO(CON|CONTRACTOR|FORN|FOREIGN).*

.*(((TOP|)SECRET)|TS|S|R|RESTRICTED)--(AE1|DS1|MT1|ST1)--LIMDIS.*

.*ac*cb.*

As the table shows, by the time we have composed two copies of the recognizer
circuit the state is as small as it ever will be, but other measures are still im-
proving. Through to the point where we have eight copies composed together,
all the measures are still increasing by less than a factor of two, even though the
input size is doubling. This starts to change in the transition from 8 to 16. At
16 copies of the recognizer, we have more than doubled the number of gates (be-
cause our heuristics are timing out on some of the larger circuits), and even the
most crucial measure—the number of communication rounds—almost doubles
too. Thus we can see that there is not much to choose between 8 or 16 copies of
the recognizer, though we choose to use the 16 circuit because of the importance
of minimizing the number of communication rounds. Multiple communication
rounds causes the computation to stutter, introducing significant overheads.
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unoptimized optimized

input ands xors state comms ands xors state comms

1 203 0 358 10 149 15 119 4
2 388 0 358 12 277 27 117 5
4 756 0 358 14 493 53 117 6
8 1492 0 358 19 949 104 117 9
16 2964 0 358 33 1,950 212 117 17

Fig. 9. Optimization across Multiple Input Characters

Notably, our simplify-compose cycle has been very effective: have reduced the
number of communications from 10 per character (unoptimized) to scarcely more
than 1 per character.

Scheduling. It seems natural to perform each AND computation as early as
its inputs become available. However, as Fig. 10 shows by graphing number of
bits against communication round, this can lead to unbalanced communication
patterns.

Fig. 10. Effect of Early vs. Late Scheduling

The graph shows an early spike in the number of bits being communicated
(as many gates can be evaluated), with a long later tail in which very few bits
are communicated. If we were just doing one computation this wouldn’t matter
as the number of bits is small, but we plan to do thousands of these together. In
order to maximize flexibility in packing many copies of an execution together,
we would like these communications to be as evenly balanced as possible. It
turns out that the equally simple (but counter-intuitive) approach of scheduling
each AND computation as late as possible produces less extreme peaks in the
balance of communications, so we adopt this by default. It may be worth putting
in additional effort to balance the communications more evenly still, but we have
not done this.
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Once we have scheduled the communications, we gather all the bits and pack
them into 32 or 64 bit words in order to perform all the XOR and communication
operations at the word level.

4.2 Secure VoIP Teleconference

When we turn our attention to the VoIP teleconference application, it turns
out that the circuit characteristics are so different from the regular-expression
circuits that we had to take a completely different tack.

Our first implementation was a direct implementation of the algorithm, where
we decompressed the compressed audio samples to 16-bit values, added and
clipped, and then recompressed. Unfortunately the result was running at about
12 seconds of computations for each 90ms audio sample!

The problem was in the combination of addition and clipping. Addition of
16-bit values can be done very efficiently so long as the values are stored as inte-
gers modulo 216 (or larger). However, clipping required comparison operations.
These are expensive unless the value is stored as a sequence of separate bits (i.e.
not an arithmetic encoding). Whichever encoding is chosen, at least one of the
operations is expensive.

We needed a different approach. We were able to take advantage of one sig-
nificant characteristic of the computation: there are not many bits of input. The
whole decompress-add-clip-recompress function on two streams takes 16 bits of
input and delivers 8 bits of output. This is a classic opportunity for the oblivious
lookup table we introduced previously [LAD12] (though we would have to work
to make it scale well to 16 bits of input). The lookup table works as follows: we
compute all possible values of the function in the clear, store them in the table,
and perform shared access to the table at run time. The shared access works
from randomized shares of the index value and delivers randomized shares of
the table entry. In this case the whole secure computation reduces to oblivious
table lookup.

Lookup Tables. Table lookup (i.e. simple array indexing) becomes tricky when
no individual server actually knows what index to look up. Instead, each share
server has a random share of the index value (i.e. a random value which if XORed
with the random values from the other share servers would represent the real
value). The servers have to do a cooperative computation to be able to obtain
random shares of the the content of the table at the appropriate location.

Note that the lookup algorithm has to act on all the entries of the table oth-
erwise a server must have had some information as to what the index value
was. Consequently, we should look to express the lookup protocol as some com-
putation across the whole table. In fact, the form is very simple if we have a
cooperative demux protocol that maps a binary representation of a value into a
linear, unary representation.

In plaintext, a demux function would map a binary representation of a value
into a unary representation. For example, a 4-bit demux would take a 4-bit value
and produce a 16-bit value (i.e. 24-bits) in which exactly one bit was set to 1,
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the other bits all being 0. So, for example, with the convention that the demux
bits are numbered from left to right:

demux 0000 = 1000000000000000

demux 1000 = 0000000010000000

demux 1111 = 0000000000000001

and so on.
Still in the plaintext version, the table lookup is now just a kind of “inner

product” between the result of the demux function and the table itself (see
Figure 11), where the multiply operation is bit-masking. The result of the demux
is used to mask the corresponding table entry (i.e. return the entry or 0), and
the results across the whole table are XORed together. Only one bit resulting
from demux will be set, and this bit will select exactly the single row of the table
corresponding to the original index.

Fig. 11. Inner Product with Demux

We now simulate the plaintext algorithm with a randomized share version.
The shared demux computation would map a share of a 4-bit value, to a share
of a 16-bit value. That is, if x = xA ⊕ xB ⊕ xC , if d = demux(x), and if dA,
dB, and dC are the result of running the demux protocol on the xi’s, then
d = dA ⊕ dB ⊕ dC . For example, if we compute the demux of 0x8, again going
from 4-bits to 16-bits, then (subject to randomness) the di might be as follows:

d_A = 1011001011101011

d_B = 0011010011001101

d_C = 1000011010100110

^

Notice that only the indicated 9th position (representing the value 8) has odd
parity across all three shares; every other position has even parity.

Correctness of indexing is easy to establish. Each di is a randomized share of
the true demux d. That is, for each bit position j in the demux shares, dA(j)⊕
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dB(j) ⊕ dC(j) = d(j). Thus all these XORs will be 0 except for the single
bit position corresponding to the original index, which will have value 1. The
mask operation of the “inner product” function (written here as M) distributes
across ⊕, so that M(dA(j) ⊕ dB(j) ⊕ dC(j), e) = M(dA(j), e) ⊕M(dB(j), e) ⊕
M(dC(j), e). This means that we can compute the inner product operations
locally on each share machine. Demux is the only part that needs to be computed
cooperatively.

Demux. In plaintext, demux can be expressed as a divide and conquer algo-
rithm, satisfying the equation demux(bs++cs) = demux(bs)#demux(cs), where
++ is sequence concatenation, and # is cartesian product on sequences of bits.

For example, if demux "10" is given by "0010" and demux "01" is given by
"0100", then demux "1001" is given by "0000 0000 1000 0000", which is the
linearization of the product table between the two.

In our previous work, we had expressed the cartesian product as a parallel
multiply by expanding each of the smaller demuxes into structures the same size
as the result [LAD12]. The advantage was that we could just use the generic
multiply protocol. The downside was that the amount of communication is pro-
portional to the size of the final demux. This was fine for small tables (we were
previously only doing lookup tables with 256 elements), but now our tables are
starting to become large (with 65536 elements), and the communication band-
width dominates.

We note that bit-level cartesian product (#) distributes over XOR (⊕) just
like AND (&) does, so the multiplication table is identical to the table for AND.
We replicate the implementation of shared multiply—but using cartesian prod-
uct on bits sequences—to produce a direct implementation of shared cartesian
product. This means that our communications grow much slower than before. In
fact, for a table with 2n entries, we require log(n) communications, communicat-
ing O(2n/2) bits. In this case, where n is 16, we have 4 rounds of communication,
and around 700 bits per server being communicated.

The cartesian product # operation is specified recursively using the divide
and conquer pattern above. We find it valuable to leave the final expression
unexpanded. That is, if pi and qi are the randomized shares of the demuxes
of the upper and lower 8 bits of the original 16-bit index, then the shares of
the outermost call of # returns the value (pA#qB)⊕ (pB#qB)⊕ (pB#qA), and
correspondingly for the other shares. Instead of computing the final # we create
an abstract representation of the computation, or rather of (pA#qB)⊕(pB#(qB⊕
qA)). We can use this unexpanded definition of # to act as a pair of 2-dimensional
indices into the table, as indicated in Fig. 12. This unexpanded definition of #
reduces the size of the demux value used in the “inner product”: we now demux
two 256-bit values directly, instead of constructing one large 65535-bit value.

In exchange for the not having to construct the 64k value explicitly, we must
perform twice as many local XORs as we have to compute the “inner product”
of the table twice. As before, we use the indices to mask out table entries and
XOR the remainder. This calculation over the table requires 2× 64k operations,
which can still be expensive even though they are purely local. We have a further
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Fig. 12. Two Dimensional Demux

optimization whereby we chunk the table in four rows at a time, and precompute
the selective XORs of these rows. This expands the table by a factor of 4, but
cuts the table computation time in half.

5 Assessment

Our goal was to test whether we were able to scale secure computation to
the levels required by applications. This is a fuzzy standard, but we can still
do qualitative assessments against it. We assess architecture, algorithmics, and
performance.

The architecture and infrastructure aspects of secure computation were able
to be integrated well. In both applications, despite having many different timing
and structure characteristics, we were able to adapt the application server to
interact with a secure computation engine in order to perform the core operations
securely. The bandwidth and latency requirements between the client(s) and the
server were scarcely altered.

Regarding algorithmics, the mail filter application was surprisingly easy. We
had to apply careful thought to find a version of the algorithm that would suit
the oblivious computation world, but once selected, the conversion to use secure
flags rather than plaintext flags was straightforward. This would not have been
the case if the algorithm used the flags to determine where to branch, but for us
it did not.

The VoIP application was tougher. Our first transcription of the algorithm
into the secure computation world was so slow that we initially despaired of ever
getting it to be relevant. However, the fact that it operates on small data items
turned out to be crucial. Once we thought to express the core of the algorithm
as a table lookup, the expression of the algorithm became trivial, though we still
had to work hard to get performance.

As for performance, we have to conclude that we are only just reaching the
point of usability. In the mail filter case, we are able to send a 1 page email,
analyze it with the regular expression described earlier, and obtain a response
in 30-60 seconds. We believe that there are a number of improvements we could
still apply (including increasing the use of parallel processing) that could reduce
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this by up to another order of magnitude perhaps, at which point it is indeed
starting to become practically relevant.

For the VoIP teleconference application, we conducted experiments both in
Oregon and Virginia, hosting our servers in the Amazon EC2 cloud instance
geographically closest to each experiment. In the first experiment, we conducted
audio teleconferences with up to four clients, using spoken voice as the audio con-
tent. Audio was reliably understandable by all participating speakers, though we
noted the presence of audible clicks and other artifacts. In the second experiment,
we streamed recorded music into an iPad Mini client via the device microphone,
and an audience of approximately 60 listened to the output audio stream on a
second client, an iPhone 5s. Except for occasional distortion corresponding to
spikes in network latency, audience members noted that audio quality was good,
approximating what might be expected of broadcast radio.

6 Related Work

The classic “real world” example of secure computation is a Danish beet auc-
tion in 2008 [BCD+08]. There, 1200 Danish farmers submitted randomized bids
to three servers that were run by distinct agencies. Each of the agencies was
considered well motivated to follow the multi-party protocols honestly, and the
confidentially built into the MPC protocols provided sufficient reassurance to
the famers, 78% of whom agreed that, “it is important that my bids are kept
confidential.”

Our table lookup has many aspects in common with private information re-
trieval (PIR) algorithms [CGKS95], except that we are working with peer ma-
chines rather than a client querying a distributed database. The O(

√
n) growth

in communication bandwidth we see (where n here is the size of the table, not
of the index), is directly comparable to that of PIRs. It will be interesting to see
whether the peer case can be conveniently generalized to more servers as with
PIRs.

The Sharemind system [BLW08] is built on the same principles as the system
described here. It too has three servers, and performs arithmetic sharing. In some
dimensions, the Sharemind system is more fully engineered than our ShareMonad
EDSL, in that it comprises a stand alone input language SecreC (i.e. much of
C, along with annotations for secrecy), a compiler, a low-level virtual machine
interpreter, and theorem proving support for privacy proofs. On the other hand,
the fact that we built an EDSL on Haskell means that we are able to bypass
most of those components and inherit them from the host language directly.

The SPDZ system [DKL+13] uses a similar computation model, except that
it works with precomputed multiplication triples. This provides two advantages:
it allows the online computation phase to work with any number of parties, and
it provides for covert security (a cheating party is extremely likely to be caught).

The relative performances of Sharemind, SPDZ and our ShareMonad are hard
to determine with accuracy, but there is some evidence they are all within factor
of two of each other, which in this world means roughly comparable (given that
we are all still discovering order of magnitude improvements!).
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7 Conclusion

In all existing manifestations of computation on private values, multiplication
(both arithmetic and boolean) is exceedingly expensive compared with every
other operation. In arithmetic sharing (the setting of this paper) the expense
comes from the network communications and coordination required. In Yao gar-
bling, the expense arises because conjunctions are represented by encrypted gate
tables that have to be created, communicated and evaluated. In fully homomor-
phic encryption, the expense comes from multiplications dramatically increasing
the noise within the crypto value. These force the programmer to trade off be-
tween using larger security parameters or requiring more frequent noise reset
operations, which entail evaluating a homomorphic encrypted instance of the
decrypt operation.

When optimizing computations in MPC or FHE computational models,
we need to approach multiplications with the same mindset we use for disk
accesses—how do we minimize them, block them together, and hide the laten-
cies they incur? Some of these performance-improving techniques can be im-
plemented within the secure computation technique itself—for example, all the
MPC and FHE approaches are moving to produce SIMD versions of the basic
multiply operation (e.g. [SF11])—but that only goes so far. The rest of the opti-
mizations have to come from programming and/or compilation techniques that
are designed to optimize for this strange execution model.

This paper continues to explore the kind of algorithmic rethinking and com-
piler transformation that are required, but much more is needed before secure
computation is fully practical.
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