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Abstract. Using a new domain-theoretic characterisation we show that
Berry’s constructive semantics is a conservative approximation of the
recently proposed sequentially constructive (SC) model of computation.
We prove that every Berry-constructive program is deterministic and
deadlock-free under sequentially admissible scheduling. This gives, for
the first time, a natural interpretation of Berry-constructiveness for
shared-memory, multi-threaded programming in terms of synchronous
cycle-based scheduling, where previous results were cast in terms of syn-
chronous circuits. This opens the door to a direct mapping of Esterel’s
signal mechanism into boolean variables that can be set and reset under
the programmer’s control within a tick. We illustrate the practical use-
fulness of this mapping by discussing how signal reincarnation is handled
efficiently by this transformation, which is of linear complexity in pro-
gram size, in contrast to earlier techniques that had quadratic overhead.
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1 Introduction

If traditional main-stream programming was largely single-threaded and sequen-
tial, the new multi-core processing age raises the incentives for concurrent pro-
gramming. However, multi-threaded, shared memory programming is notoriously
difficult because of data races (write-write, read-write conflicts) which jeopar-
dise the functional correctness and predictability of program behaviour. The
main-stream answer to avoid the non-determinism are elementary synchronisa-
tion primitives, such as monitors, semaphores and locks. Stemming from the
early days of concurrent programming, these general-purpose operators are safe
in the hands of an expert, at least for systems of limited complexity, but not
necessarily in the hands of the novice or for complex systems [1,2].

An approach which does not rely on synchronisation through low-level prim-
itives is the synchronous model of computation (SMoC). SMoC is a disciplined
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scheduling regime based on logical clocks and signals as the key synchronisation
mechanisms. To ensure determinism and bounded response, it enforces a strict
cycle-based communication pattern between concurrent threads, which abstracts
the principle of deterministic input-output Mealy machines.

A synchronous computation, consisting of a system and an environment, is
generally described by an ordered sequence of reaction instants, each one occur-
ring at a global clock tick acting as a synchronisation barrier. In a synchronous
program, these ticks are derived from explicit clocks, as in Lustre [3] or Sig-
nal [4], or from statements such as Esterel’s [5] pause, which establish precisely
identifiable global configurations of the system in question. What happens, then,
between two ticks, i. e., within a macro-step, is a change from one system con-
figuration to the next. This change results from the combined execution of the
system’s individual statements ormicro-steps. The environment perceives macro-
steps as atomic (instantaneous) computations. The environment’s observations
and interactions can only occur at globally consistent configurations delimited
by the clock tick. This modelling is known as the Synchrony Hypothesis.

This abstraction has led to the family of synchronous languages [6], which have
been used successfully in particular in safety-critical embedded systems, such as
avionics applications. The synchrony abstraction naturally leads to a fixed-point
semantics,where all variables that are computed as part of a reaction have a unique
value throughout the reaction. In data-flow oriented synchronous languages, such
as Lustre, this means that for each variable there must be a unique defining
equation, leading to a declarative programming style. In imperative, control-flow
oriented languages, such as Esterel, SyncCharts [7] or Quartz [8], the synchrony
abstractionmeans that a signalmust not bemodified after it has been read (“write-
before-read”). This protocol leads to the notion of constructiveness, also referred to
as causality; a program is considered constructive if and only if this “write-before-
read” protocol is neither too stringent, to avoid deadlocks, nor too lax, to avoid non-
determinism.Programs that are not constructivemust be rejected at compile time.
This compile-time reasoning, which eliminates deadlock and non-determinism is
one of the strengths of synchronous programming.

The synchrony abstraction has proven to be useful in practice, and its sound
mathematical basis allows formal reasoning and verification. The SMoC construc-
tion principles—used so far mainly in synchronous languages—can be naturally
generalised and be mapped to familiar, sequential programming concepts as used
in C or Java. This not only allows a fresh look at existing synchronous languages,
includingmore efficient compilation strategies, but also leads to natural extensions
that allow a familiar, sequential programming style. In this vein, we recently intro-
duced the notion of sequential constructiveness (SC) to integrate SMoCwithmain-
stream sequential languages such as Java or C [9,10]. The idea is to reconstruct
signals and their synchronisation properties in terms of variables and scheduling
constraints on variable accesses. SC leaves more control to the programmer than
traditional SMoC. It exploits the fact that the program-prescribed sequencing of
statements can typically be implemented reliably by the compiler on the run-time
system. This assumption is not usually made in traditional SMoC. The SMoC
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advantage is that it offers more robustness with respect to the admissible run-time
models regarding reordering of statements, while SC is more permissive and more
flexible to use in the context of sequential programming.

Contributions. In this paper, we investigate the formal relationship between SC
and SMoC which has been discussed only informally before. Our results offer
an interpretation of SC as a clocked scheduling protocol which, within a single
clock tick, supports arbitrary sequences of concurrent init-update-read accesses
on shared variables. This reduces the number of required clock cycles compared
to SMoC which does not permit such repetitions.

– We introduce the class ofΔ0 or stronglyBerry-constructive programs formulti-
threaded shared memory programs in which one concurrent init-update-read
cycle is permitted and initialisations are under the programmer’s control. This
generalisesBerry-constructiveness for Esterel whichwe identify as a relaxation
Δ1 in which all initialisations are implicit.

– We presentΔ0 andΔ1 in the form of fixed point analyses in abstract domains
of signal statuses. Concretely, Δ1 is equivalent to ternary analysis, which is
known to be related to delay-insensitive Boolean circuits, while Δ0 refines
this naturally in a 10-valued lattice domain of approximation intervals I(D).
This brings a novel characterisation of Berry’s must-cannot analysis that
suggests extensions to other data types.

– We show that both Δ0 and Δ1 are properly included in SC, referred to as
Δ∗, which permits arbitrarily many repetitions of concurrent init-update-
read cycles. This proves formally that SC is indeed a conservative extension
of Esterel thus solving an open problem [9].

– Finally, to illustrate the usefulness of SC (beyond Δ1) we show by example
how two initialisations during one tick implement efficiently some forms of
signal reincarnation, known in SMoC as the “schizophrenia” problem. Earlier
work suggests that code transformations for separating signal incarnations re-
quire at least quadratic-size code duplication [11,12,13]. This is a consequence
of working at the Δ0,1 level. We show that in Δ∗, a code transformation that
separates signal incarnations can be implemented in linear size.

Overview. Sec. 2 provides the technical setup for our results. We start with a brief
discussion on how synchronous signals can be represented using variables in shared
memorymulti-threading.We illustrate the SCmodel of synchronous computation
and its role for the proper sequencing of signal initialisation (Sec. 2.1). This is fol-
lowed by the definition of a kernel language for pure boolean programs of single syn-
chronous instants (Sec. 2.2), the formal definition of its operational semantics and
the notion of sequential constructiveness, called Δ∗-constructiveness (Sec. 2.3).
Sec. 3 contains our main results, where we introduce the Δ0 and Δ1 levels of ab-
straction for SC for approximatingΔ∗-constructiveness. We study their relation-
ship and connectΔ1withBerry’s notion of constructiveness introduced forEsterel.
Finally, Sec. 4 discusses relatedwork, Sec. 5 sums up the paper and provides an out-
look. Further material on the theory outlined in this paper, such as detailed proofs
and expository examples can be found in [14].
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2 Model and Δ∗ Constructiveness of Boolean SC

Synchronous computations relate to classical automata in the sense that macro-
steps correspond to automata transitions and clock ticks separate automata
states at which system and environment can synchronize and communicate with
each other. At this level of modelling, where a macro-step appears as an atomic
interaction, the SMoC can be analysed by means of well-known FSM techniques.
However, synchronous programming languages generate Mealy automata whose
outputs depend instantaneously on the inputs. Thus, multiple accesses to the
same object cannot necessarily be sequentially separated by the ticks of the
macro-level clock. Here, the coordination of variable accesses raises problems of
causality, initialisation, reincarnation and schizophrenia within macro steps.

2.1 Grounding Synchronous Signals in Sequential Variables

Before a formal treatment of the subject matter in later sections, we will set
the stage by comparing signals, a key SMoC concept to achieve deterministic
concurrency, with variables, familiar from sequential languages as C and Java.
We here use a C-like language, called SCL [9], which extends C by synchronous
primitives, such as pause to delineate ticks as in Esterel.

A signal is per default absent in each tick, unless it is emitted, in which case
it becomes present in the current tick. Fig. 1a shows schizo-strl, an example of
how signals are used in Esterel, taken from [13]. In the initial tick, the present S
statement emits O if S is present; however, as S has not been emitted yet, O is not
emitted. The pause statement then terminates the current tick. In the next tick,
the emit S makes S present, however, the local scope of S is left immediately
afterwards. When, after looping around, the scope of S is re-entered, a fresh
instance of S is in place that has not been emitted yet, so the test for the
presence of S fails again.

Signals that may become absent and present in the same tick, such as S in
schizo-strl, are called schizophrenic. Schizophrenic signals bring a risk for non-
determinism, for example, when synthesizing hardware, as signal wires must have
a stable voltage. Thus a number of strategies have been proposed to eliminate
schizophrenia by code transformations [11,12,13]. These transformations essen-
tially duplicate loop bodies when they contain local signal scopes that might be
left and re-entered in the same tick, as illustrated in schizo-cured-strl in Fig. 1b.
This approach “cures” the schizophrenia problem, but could lead to an expo-
nential code increase (each loop nesting level can double the code size, and the
nesting level can be linear in the size of the program). This can be improved by
distinguishing surface and depth [11] of a (compound) statement S, where S in
this case is the body of the loop. The surface is the part that can be executed
in the same tick when entering S, and the depth is the part of S that can be
executed in subsequent ticks. The schizo-cured2-strl version in Fig. 1c illustrates
this approach which, however, can still lead to a quadratic code size increase in
the worst case (the recursive code expansion due to loops can only happen in
the depth copy of the loop body, not anymore in the surface copy).
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1 module schizo−strl
2 output O;
3

4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

(a) The original Esterel
version [13]. The output
signal O is communicated
to the environment at each
tick. The local signal S is
not observable from the
outside.

1 module schizo−cured−strl
2 output O;
3

4 loop
5 signal S in
6 present S then
7 emit O
8 end;
9 pause;

10 emit S;
11 end;
12 signal S’ in
13 present S’ then
14 emit O
15 end;
16 pause;
17 emit S’;
18 end;
19 end loop

(b) Esterel version with
schizophrenia cured by du-
plicating the loop body
(exponential complexity).
Just for clarity, we re-
named the second copy of
S to S’.

1 module schizo−cured2−strl
2 output O;
3

4 loop
5 % Surface
6 signal S in
7 present S then
8 emit O
9 end;

10 end;
11

12 % Depth
13 signal S’ in
14 pause;
15 emit S’;
16 end;
17 end loop

(c) Esterel version with
schizophrenia cured by
splitting the loop body
into surface and depth
(quadratic complexity).

1 schizo−seq−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S;
6

7 // Surf init
8 S = false ;
9 O = S;

10 pause;
11 // Depth init
12 S = false ;
13 // Emit
14 S = true;
15 }
16 }

(d) An SCL version, still
sequential, with boolean
flags O and S. S is
explicitly initialised to
false (“absent”) when
entering its scope (“sur-
face initialisation”) and
at the subsequent tick
(“depth initialisation”).

1 schizo−conc−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S, Term;
6

7 Term = false;
8 fork
9 O = S;

10 pause;
11 S = true; // Emit
12 Term = true;
13 par
14 while (true) {
15 S = false ; // Init
16 if ( Term)
17 break;
18 pause;
19 }
20 join ;
21 }
22 }

(e) SCL version with ini-
tialisations of S in a sepa-
rate thread concurrent to
the scope of S.

1 schizo−conc−cured−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S, Term;
6

7 S = false ; // Surf init
8 Term = false;
9 fork

10 O = S;
11 pause;
12 S = true; // Emit
13 Term = true;
14 par
15 do {
16 pause;
17 S = false ; // Depth init
18 } while (! Term);
19 join ;
20 }
21 }

(f) SCL version with separate
surface and depth initialisa-
tions of S to cure schizophrenia
(linear complexity).

Fig. 1. The schizo example illustrating the correspondence between Esterel signals and
boolean, sequentially controlled variables
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The schizophrenia issue that arises at the signal-based view (as in Esterel)
can be elegantly handled by the variable-based approach (as in SCL). The sig-
nals used in schizo-strl can be replaced by boolean variables that are explicitly
set to false (absent) before they are possibly updated to true (present). The
schizo-seq-scl code in Fig. 1d shows a functionally equivalent version of schizo-
strl that replaces signals O and S by boolean variables of the same name. False
is interpreted as signal absence and true as signal presence.

To fully emulate signals, we need to allow concurrent writes, but must make
sure that initialising writes (S = false) precede non-initialising, or updating writes
(S = true). With such an init-update-read protocol [10,9], for concurrent (not se-
quential!) variable accesses in place, we can emulate signals even in a concurrent
setting, as is illustrated in the schizo-conc-scl code in Fig. 1e. This is still equiva-
lent to the non-concurrent schizo-seq-scl, but uses concurrency for separating the
initialisation of S from the original code. The point of this example is two-fold:
1) it illustrates how to handle signals in a concurrent setting, and 2) it presents a
way to initialise signals in a way that scales up well to signal scopes that contain
an arbitrary number of tick boundaries (pause statements) that would otherwise
each require an explicit initialisation of every signal at every pause statement.
In schizo-conc-scl, the back-and-forth scheduling between the concurrent threads
that puts everything in the right order is induced by the aforementioned init-
update-read protocol. With the advantage of having direct access to the signal
initialisation we can cure schizophrenia of signals efficiently by just duplicating
the reincarnated initialisation statement, again into surface and depth initiali-
sation. This results in the schizo-conc-cured-scl code in Fig. 1f which only incurs
a linear cost in code expansion over the original Esterel.

2.2 Language and Terminology

For our further elaborations, we need a language that focuses on the micro-steps.
Programs in this language, called combinational programs or cprogs for short,
contain the necessary control structures for capturing multiple variable accesses
as they occur inside macro-steps, and abstract syntactic and control particu-
larities of existing synchronous languages not directly related to our analysis.
This not only provides generality but also avoids over-complicating our formal
treatment. A cprog is pure in the sense that it manipulates Boolean variables
from a finite set V carrying values in B = {0, 1}. The values 0 and 1 emulate
the synchronous signal statuses, respectively, of absent (initialised) and present
(updated) through appropriate scheduling constraints. The syntax of cprogs is
given by the BNF

P := ε | ¡s | !s | s ? P : P | P ||P | P ; P.

Intuitively, the empty statement ε is a cprog that terminates instantaneously. The
reset ¡s (“unemit s”, initialise) and set !s (“emit s”, update) constructs modify
the value of s ∈ V to 0 or 1, respectively. The conditional control s ? P : Q has
the usual interpretation: depending on the value 1 or 0 of the guard variable s
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either P or Q is executed. Parallel composition P ||Q forks P and Q, so both are
executed concurrently. This composition terminates (joins) when both threads
terminate. When just one of the two threads in P ||Q terminates, the computation
continues from the statements of the other thread until it terminates, too. In
the sequential composition P ; Q the statements of P are first executed until P
terminates. Then the control is transferred to Q which determines the behaviour
of the composition thereafter. A more elaborate language handling loops and
sequential pausing is treated in [14].

2.3 SC Operational Semantics and Δ∗-Constructiveness

An executing cprog, called a process, is a triple T = 〈T.id, T.prog, T.next〉. The
identifier T.id locates the process in the sequential-concurrent control flow with
respect to other processes. As described in [14] a preorder T1.id ≺ T2.id expresses
that T2 has been instantiated sequentially after T1. If T1.id �� T2.id and T2.id ��
T1.id, where � is the reflexive closure of ≺, then both processes are concurrent.
The current-program T.prog is the expression that defines the next action of T .
The next-control T.next is a list of future program fragments that are converted
into actions sequentially after T.prog has terminated.

A configuration (Σ, ρ) consists of the global memory ρ storing the current
value ρ(x) ∈ B for each variable x ∈ V , and the process pool Σ, which is a
finite set of processes with distinct identifiers. We call T ∈ Σ active if T.id is
�-maximal in Σ, otherwise T is waiting. In a given configuration (Σ, ρ) every
active process T ∈ Σ can be selected to execute its action, thereby producing a
micro-step T : (Σ, ρ) →μs (Σ′, ρ′). Since the resulting configuration (Σ′, ρ′) is
uniquely determined by the process T , we may write (Σ′, ρ′) = T (Σ, ρ).

In a micro-sequence the scheduler runs through a succession (Σi+1, ρi+1) =
Ti+1(Σi, ρi), 0 ≤ i < k, of micro-steps obtained from the interleaving of process
executions. We let�μs be the reflexive and transitive closure of→μs. That is, we
write R : (Σ0, ρ0) �μs (Σk, ρk) to express that there exists a micro-sequenceR =
T1, T2, . . . , Tk, not necessarily maximal, from configuration (Σ0, ρ0) to (Σk, ρk).
A (synchronous) instant, abbreviated R : (Σ0, ρ0) =⇒μs (Σk, ρk), is a maximal
micro-sequence R that reaches a final quiescent configuration in which all the
processes have terminated, i. e., in which Σk = ∅.

Let us explain the operational semantics of SC by way of an example, for for-
mal definitions see [14]. Consider the second tick of program schizo-conc-cured-scl
(Fig. 1f), which starts immediately after the pauses in lines L11 and L17, concur-
rently. As a cprog this is expressed by P0 := (L11 ||L17) ; L7 where L7 stands for
the code executed from line L7 after completion of the join wrapping around the
while loop. The sub-expressions are L11 = !s ; !term, L17 = ¡s ; term ? ε : L16.
We start in the configuration (Σ0, ρ0) where ρ0 gives value 0 to every variable
and the process pool consists of a single process Σ = {T0} with T0 = 〈0, P0, [ ]〉.
Since T0 is active it can induce the micro-step (Σ0, ρ0) →μs (Σ1, ρ0) where Σ1 =
{T1} with T1 = 〈0, L11 ||L17, [L7]〉. Notice how this action has split up the se-
quential cprog P0 into the current-program L11 ||L17 and the next-control [L7].
Executing T1, we obtain (Σ1, ρ0) →μs (Σ2, ρ0), where Σ2 = {T20, T21, T22} has
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forked the parent T20 = 〈0, ε, [L7]〉 and the two children T21 = 〈0.l.0, L11, [ ]〉
and T22 = 〈0.r.0, L17, [ ]〉. Since 0 � 0.l.0 and 0 � 0.r.0 but 0.l.0 �� 0.r.0 and
0.r.0 �� 0.l.0 the two children are are concurrent with each other and active
in Σ2, whereas the parent T20 is waiting. The parent plays the role of a join
in the sense that it cannot execute until T21 and T22 terminate. The top-level
operators of both T21.prog = L11 and T22.prog = L17 are sequential composi-
tions. Executing these does not change the memory, so both processes are con-
fluent with each other. Any scheduling order results in the same configuration
(Σ2, ρ0) �μs (Σ4, ρ0) with Σ4 = {T20, T31, T32}, where T31 = 〈0.l.0, !s, [!term]〉
and T32 = 〈0.r.0, ¡s, [term ? ε : L16]〉 are active. In (Σ4, ρ0) we have conflicting
concurrent writes as T31.prog sets the variable s and T32.prog resets it. Now
the scheduling order matters. The “init-update-read” protocol resolves the non-
determinism, as the initialisation of T32 is always performed first and only then
the update by T31. So, (Σ4, ρ0) �μs (Σ6, ρ11) results from scheduling T32 fol-
lowed by T31, where the memory is ρ11(s) = 1 and the process pool Σ6 =
{T20, T41, T42}, with T41 = 〈0.l.1, !term, [ ]〉 and T42 = 〈0.r.1, term ? ε : L16, [ ]〉.
In configuration (Σ6, ρ11) there is a race between the reading of term by T42

and the writing to term by T41. Again, the “init-update-read” protocol fixes the
choice. It forces the run-time system to schedule first the set operation !term
of T41, whereupon this child terminates and disappears from the process pool.
Then, the conditional test T42 is scheduled which selects its ‘then’-branch ε
and then terminates, too. Therefore, we reach the configuration (Σ9, ρ21) with
Σ9 = {T20} with memory ρ21(s) = ρ21(term) = 1. This brings back the parent
T20 = 〈0, ε, [L7]〉 as the only active process so that the next configuration is
(Σ10, ρ21) with Σ10 = {〈1, L7, [ ]〉}. At this point we have come around the while
loop and continue to execute program schizo-conc-cured-scl (Fig. 1f) from line
L7 expressed by the cprog L7 := ¡s ; (¡term ; o = s ; L11 ||L16), where o = s is
an abbreviation for s ? !o : ¡o. This generates a determinate final configuration
(Σ21, ρ0) with Σ21 = ∅ considering that for the current macro-step the pauses
L11 and L16 behave like ε, i.e., they terminate instantaneously.

Roughly, a cprog P is Δ∗-constructive if the “init-update-read” scheduling
does not deadlock and all such admissible executions of P produce the same
final memory. The following Defs. 1 and 2 make this formal.

Definition 1 (Confluence and Init-Update-Read Precedence)
Let R : (Σ0, ρ0) �μs (Σk, ρk) be a micro-sequence and R = T1, T2, . . . , Tk. Pick
any two processes Ti1 and Ti2 and let j = min(i1, i2)− 1:

– Ti1 and Ti2 are confluent in R if there is no micro-sequence (Σj , ρj) �μs

(Σ′, ρ′) such that (i) Ti1 , Ti2 ∈ Σ′ are both active and (ii) Ti1(Ti2(Σ
′, ρ′)) �=

Ti2(Ti1(Σ
′, ρ′)).

– Ti1 precedes Ti2 if Ti1 and Ti2 are concurrent and either: (i) Ti1 performs
a reset ¡s or set !s on a variable s that is read (tested) by Ti2 , or (ii) Ti1

performs a reset ¡s on a variable s on which Ti2 performs a set !s.



Grounding Synchronous Deterministic Concurrency 237

Definition 2 (Δ∗-Admissibility and Δ∗-Constructiveness)

– A micro-sequence R = T1, T2, . . . , Tn is Δ∗-admissible or SC-admissible, if
whenever Ti1 precedes Ti2 , then i1 < i2 or both Ti1 , Ti2 are confluent in R.

– A cprog P is Δ∗-constructive, or SC-constructive, if for all configurations
(Σ0, ρ0) with Σ0 = {〈0, P, []〉} we have: (i) there exists a Δ∗-admissible syn-
chronous instant (Σ0, ρ0) =⇒μs (∅, ρk) and (ii) every Δ∗-admissible syn-
chronous instant leads to the same final configuration (∅, ρk).

A cprog that is not Δ∗-constructive is P1 := (x ? !y : !y) ‖ (y ? !x : !x).
From initial ρ0(x) = ρ0(y) = 0 all schedules force a concurrent, non-confluent,
write !y or !x sequentially after a read x? or y?. Hence, the protocol deadlocks.
Another not Δ∗-constructive program is P2 := (x ? ε : !y) ‖ (y ? ε : !x), which
does not deadlock but has two Δ∗-admissible schedules with different results.

3 Δ0/1-Constructiveness: An Abstraction for Δ∗-Analysis

In earlier work [10] we have presented a simple static cycle criterion for the
analysis of SC-constructiveness, called ASC-schedulability. Since the ASC test
is purely static it cannot deal with data dependencies. This unnecessarily re-
jects programs as non-constructive even when the causality cycles are not ex-
ecutable in the run-time control flow. We now introduce an approximation to
Δ∗-constructiveness which does account for data dependencies. It can deal with
the difference of a variable retaining its original initial value from the initial
memory (pristine), being initialised to 0 and then either remaining 0 (signal ab-
sence) or being set to 1 (signal presence). This includes monotonic value changes
from 0 to 1 but is restricted to a single “init-update-read” cycle within a logical
tick rather than arbitrarily many as would be permitted by Δ∗-constructiveness.

3.1 Abstract Value Domain I(D) and Environments

Our constructiveness analysis takes place in an abstract domain of informa-
tion values which describe the sequential and concurrent interaction of signals.
Instead of distinguishing just two signal statuses “absent” and “present” as
in the traditional SMoC, we consider the sequential behaviour of a variable
(during each instant) as taking place in a linearly ordered 4-valued domain
D = {⊥ ≤ 0 ≤ 1 ≤ �}. The linear ordering ≤ captures a trajectory through
a single instance of the init-update protocol. Every declared variable starts off
initially in status ⊥ (pristine). It can later be reset (initialised) to 0 and then,
possibly, set (updated) to 1. On the other hand, changes from status 1 back to 0
are not permitted. Any attempt to reset a variable sequentially after it has been
set results in the value �, denoting a model crash. The status � for a variable x
indicates that more than one init-update cycle is necessary to analyse the final
response of x. If this is intended, then an analysis for Δ≥2 may resolve the case.
Clearly, ≤ induces a lattice structure over D with minimum ⊥, maximum � and
the join (max) and meet (min) operations obtained in the obvious fashion.
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In the analysis we operate on predictions of variable values. Possible statuses
of variables are approximated by closed intervals I(D) = {[a, b] | a, b ∈ D, a ≤ b}
over D. An interval [a, b] ∈ I(D) in this 10-valued domain corresponds to the set
set([a, b]) = {x | a ≤ x ≤ b} ⊆ D which, if a < b, denotes uncertain information,
i. e., a potential non-deterministic response. Such a general interval represents
an approximation to the final (stable) state of a variable from its two ends,
the lower bound a and the upper bound b. An interval [a, b] associated with a
variable x ∈ V can thus be read as follows: “the execution ensures that x has at
least status a, yet it cannot be excluded that some statements might be executed
which could increase the status of x up to b”. In this vein, the intervals [a, a]
correspond to decided, or crisp, statuses which are naturally identified with the
values a, i. e., D ⊂ I(D). A variable s ∈ V with status γ ∈ I(D) is denoted by sγ .

(w,u)

(¹, )

Kleene‘s ternary domain (Esterel)

crisp
values extension for

initialisation
and crash

[ , ]

[1, 1]

[0, 0]

[>,>]

[ , 0]
[ , 1]

I(D)

[ ,>]

[0,>]
[0, 1]

[1,>]

Fig. 2. Interval domain I(D) of signal variable statuses

On the constructive value domain I(D) we can define two natural orderings:
The point-wise ordering [a1, b1] � [a2, b2] iff a1 ≤ a2 and b1 ≤ b2 and the (in-
verse) inclusion ordering [a1, b1] � [a2, b2] iff set([a2, b2]) ⊆ set([a1, b1]) endow
I(D) with a full lattice structure for � and a lower semi-lattice structure for �.
The point-wise lattice 〈I(D),�〉 has minimum element [⊥,⊥], the minimum for
the inclusion semi-lattice 〈I(D),�〉 is [⊥,�].

The element [�,�] is a maximal element for both orderings but it is the
maximum only for �. For � all singleton intervals [a, a] are maximal. Join ∨ and
meet ∧ for the�-lattice are obtained in the point-wise manner: [a1, b1]∨[a2, b2] :=
[max(a1, a2),max(b1, b2)] and [a1, b1]∧ [a2, b2] := [min(a1, a2),min(b1, b2)]. In the
inclusion �-lattice the meet � is [a1, b1] � [a2, b2] := [min(a1, a2),max(b1, b2)].
The semi-lattice 〈I(D),�〉 does not possess joins, but it is consistent complete,
i. e., whenever in a nonempty subset ∅ �= X ⊆ I(D) any two elements x1, x2 ∈ X
have an upper bound y ∈ I(D), x1 � y and x2 � y, then there exists the least
upper bound �X = �{y | ∀x ∈ X. x � y}. This will give us least fixed points.

Fig. 2 illustrates the two-dimensional lattice structure of I(D). The vertical
direction (upwards) corresponds to � and captures the sequential dimension of
the statuses. The horizontal direction (right-to-left) is the inclusion ordering �
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and expresses the degree of precision of the approximation. The most precise
status description is given by the crisp values on the left side, which are �-
maximal and make up the embedded domain D. The least precise information
value is the interval [⊥,�] on the right.

Observe that the well-known ternary domain for the fixed-point analysis of
Pure Esterel [15] or constructive Boolean circuits [16] is captured, as indicated
in Fig. 2, by the inner part with values [0, 0] (“absent”), [1, 1] (“present”) and
[0, 1] (“undefined”). In ternary analysis all signal variables are implicitly assumed
initialised, hence no need for ⊥. Moreover, since there is no reset operator and
thus programs cannot fail the monotonic single-change requirement, there is no
need for �. This ternary fragment of I(D) corresponds to three-valued Kleene
logic with ∨ disjunction and ∧ logical conjunction. Fig. 2 visualises clearly how
the 10-valued domain I(D) offers an extended playground to represent the logic
of explicit initialisation.

The statuses of variables are kept in environments E : V → I(D) mapping
each variable x ∈ V to an interval E(x) ∈ I(D). The orderings and (semi-)lattice
operations are lifted to environments by stipulating E1 � E2 iff E1(x) � E2(x)
for � ∈ {�,�} and (E1 � E2)(x) = E1(x) � E2(x) for � ∈ {∨,∧,�} and all
x ∈ V . If E(x) = [a, b] then we will also write x[a,b] ∈ E and further xγ ∈ E
when E(x) = [γ, γ].

It is natural to identify the values [a, b] ∈ I(D) with constant environments
such that [a, b](x) = [a, b] for all x ∈ V . An environment E is called decided,
or crisp, if E(x) ∈ D; ternary if E(x) ∈ {0, 1, [0, 1]}; and crash-free if E(x) � 1
for all variables x ∈ V . Every environment can be separated into its lower
projection low (E) := {x[a,�] | x[a,b] ∈ E} and upper projection upp(E) :=
{x[⊥,b] | x[a,b] ∈ E} so that E = �{X | low (E) � X and upp(E) � X}. We use
the set-like notation {〈xγ1

1 , xγ2

2 , . . . , xγn
n 〉} for finite environments that explicitly

set the status γi for the listed variables xi and implicitly define the status ⊥ for
all other variables z ∈ V \{x1, x2, . . . , xn}. Then, {〈 〉} = ⊥ is the neutral element
for ∨.

3.2 Δ0 and Δ1-Constructiveness

The classes ofΔ0 andΔ1 constructiveness over-approximateΔ∗ for pure SC pro-
grams by performing an abstract program simulation in I(D). The denotational
semantics of a cprog P is given by a function 〈〈P 〉〉SC , called Extended Berry Re-
sponse Function that determines constructive (non-speculative) information on
the instantaneous response of P to an external stimulus consisting of a sequential
environment S and a concurrent environment C. The sequential context S can
be thought of as an initialisation under which P is activated. It represents knowl-
edge about the value of variables sequentially before P is started. In contrast,
the parallel environment C contains the external stimulus which is concurrent
with P . The lower bound low 〈〈P 〉〉SC of the response tells us what P must write
to the variables and the upper bound upp 〈〈P 〉〉SC is the level that the variables
may reach upon execution of P . The function 〈〈P 〉〉SC is defined by recursion on
the structure of the cprog P as seen in Fig. 3.
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〈〈ε〉〉SC := S

〈〈¡s〉〉SC :=

⎧
⎪⎨

⎪⎩

S ∨ {〈s�〉} if 1 � S(s)

S ∨ {〈s0〉} if S(s) � 0

S ∨ {〈s[0,�]〉} otherwise

〈〈!s〉〉SC := S ∨ {〈s1〉}

〈〈P ||Q〉〉SC := 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC

〈〈s ? P : Q〉〉SC :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈〈P 〉〉SC if s1 ∈ C

〈〈Q〉〉SC if s0 ∈ C

S ∨ upp〈〈P 〉〉SC∨upp〈〈Q〉〉SC
otherwise

〈〈P ; Q〉〉SC :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈〈Q〉〉〈〈P 〉〉SC
C

if cmpl 〈P,C〉={0}
〈〈P 〉〉SC ∨ upp

(
〈〈Q〉〉〈〈P 〉〉SC

C

)

otherwise

Fig. 3. Abstract analysis for cprogs

The definition of 〈〈P ; Q〉〉SC involves computing a set of completion codes
cmpl 〈P,C〉. For cprogs we only need one code 0 for “instantaneous” termina-
tion. Informally, cmpl 〈P,C〉 = {0} iff P is guaranteed to execute to completion
without getting blocked by a conditional test s ? P ′ : Q′ where guard s does
not evaluate to a crisp value 0 or 1 in C. The precise definition can be found
in [14].

– The empty cprog 〈〈ε〉〉SC just passes out its sequential stimulus S.
– The result of resetting a variable 〈〈¡s〉〉SC depends on whether the sequential

stimulus S already contains a status 1 for s or not. If 1 � S(s), then the
sequential status of s is one of the intervals S(s) ∈ {1, [1,�],�}. This in-
dicates that s must have been set sequentially before the execution of the
reset ¡s. Hence, we must crash s since a change from 1 to 0 falls outside of
the 〈〈 〉〉 model. All other variables x �= s retain their status from S. This is
what (S ∨{〈s�〉})(s) = � achieves. If S(s) � 0 then the sequential status of s
is one of S(s) ∈ {⊥, [0,⊥], 0}. This says that s cannot have been set before
and so we can execute the reset by returning (S ∨ {〈s0〉})(s) = 0. Finally, the
remaining cases are S(s) = [a, b], where a < 1 and b ≥ 1. These statuses
say that s may have been set before. So, the execution of ¡s may crash the
model, whence the result S ∨ {〈s[0,�]〉} forces the status of s to be [0,�].

– Setting a variable 〈〈!s〉〉SC updates the sequential environment S with the
status s1 for variable s if S(s) � 1 and preserves the crash if S(s) = �.

– The response of a parallel 〈〈P ||Q〉〉SC is obtained by letting each of the child
threads P , Q react to the S and C environments, independently, and then
combine their responses using ∨.

– The result of a branching test s ? P : Q can only be predicted if and
when the value of s has been firmly established as a crisp 0 or 1 under
all possible SC-admissible schedules. The decision value for s is taken from
the concurrent environment C. Accordingly, if s1 ∈ C then 〈〈s ? P : Q〉〉SC
behaves like 〈〈P 〉〉SC and if s0 ∈ C the result of the evaluation is 〈〈Q〉〉SC . As
long as the value of s is still undecided, i. e., if s0 �∈ C and s1 �∈ C, we cannot
know if branch P or Q will be executed. However, at least the write accesses
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already recorded in the sequential environment S must become effective.
This gives the condition low 〈〈s ? P : Q〉〉SC = low (S) for the lower bound.
A write access may be produced by s ? P : Q if it may be generated by
S or by one of the branches P or Q. This implies upp 〈〈s ? P : Q〉〉SC =
upp(S)∨upp 〈〈P 〉〉SC ∨upp 〈〈Q〉〉SC for the upper bound. Both can be expressed
by the single equation 〈〈s ? P : Q〉〉SC = S ∨ upp 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉SC .

– If 0 ∈ cmpl 〈P,C〉 then the overall response 〈〈P ; Q〉〉SC is that of Q reacting
to the concurrent stimulus C using the response 〈〈P 〉〉SC as the sequential
stimulus. If 0 �∈ cmpl 〈P,C〉 this means that some conditional test on the
execution path in P cannot be decided in C. Thus, it is not known yet if P
will terminate and Q will be executed. Therefore, we can only say a variable
must be written by P ; Q, if it must be written by P . This leads to low 〈〈P ;
Q〉〉SC = low 〈〈P 〉〉SC . As regards upper bounds, a variable may be written if
it may be written by Q with the response of P as its sequential stimulus:

upp 〈〈P ; Q〉〉SC = upp 〈〈Q〉〉〈〈P 〉〉SC
C . One can show that both lower and upper

bound equations can be combined into 〈〈P ; Q〉〉SC = 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉SC
C .

While 〈〈P 〉〉SC describes the instantaneous behaviour of P in a compositional
fashion, the constructive response of P running by itself is obtained by the least
fixed point

μC.〈〈P 〉〉SC =
⊔

i≥0

Ci, (1)

where C0 := [⊥,�] and Ci+1 := 〈〈P 〉〉SCi
. The fixed point (1) lets P communi-

cate with itself by treating P as its own concurrent context. The fixed point
exists, because the completion set cmpl 〈P, S〉 and the functional 〈〈P 〉〉SC are well-
behaved. In particular, 〈〈P 〉〉SC is monotonic in both S, C with respect to � and
it is monotonic and inflationary in S for �. For a detailed exposition of the
technical background the reader is referred to [14].

Definition 3. A cprog P is Δ0-constructive, or strongly Berry-constructive, iff
∀x ∈ V . (μC.〈〈P 〉〉⊥C )(x) ∈ {⊥, 0, 1}. A cprog P is Δ1-constructive, or Berry-
constructive, iff ∀x ∈ V . (μC. 〈〈P 〉〉0C )(x) ∈ {0, 1}.

As stated in Def. 3, a cprog isΔ0-constructive if its 〈〈 〉〉 fixed point is crisp and
associates with every variable a unique reaction status ⊥ (pristine, unchanged),
0 (initialised by reset and not updated) or 1 (updated by set and never re-
initialised later). The crisp status � is excluded because it indicates that the
variable is re-initialised by P after having been updated. This is not tracked by
Δ0 and requires Δ∗ analysis capabilities. The difference between the two forms
of Berry-constructiveness Δ0 and Δ1 is whether we run the simulation with the
sequential stimulus ⊥ or 0, respectively. Because of its default initialisation, Δ1

is less restrictive and therefore contains more programs than Δ0. However, if the
initialisation is added then both notions coincide.
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Theorem 1 (Relationship between Δ0, Δ1 and Δ∗)

1. Every Δ0-constructive cprog is both Δ1-constructive and Δ∗-constructive
with the same final response.

2. Let P init = Init ; P or P init = Init ‖ P , where Init is the cprog which resets
every variable. If P is Δ1-constructive, then P init is Δ0-constructive and the
Δ1-response of P is identical to the Δ0-response of P init .

By Thm. 1 every Δ0-constructive cprog is also Δ∗-constructive. On the other
hand, there are Δ∗-constructive cprogs which are not Δ0-constructive. The rea-
son is essentially that (i) Δ0 requires constructive initialisation of every signal
variable, where Δ∗ permits implicit initialisation through memory and (ii) that
Δ0 requires a monotonic status change, where Δ∗ permits re-initialisation. A
simple example for (i) is P3 = x ? !x : !x. For every initial memory ρ0, P3 admits
exactly one (Δ∗-admissible) schedule, ending up with memory ρk(x) = 1, whence
P3 is Δ∗-constructive. However, P3 is not Δ0-constructive since μC.〈〈P3〉〉⊥C =
{〈x[⊥,1]〉}. An example for (ii) is P4 = !x ; ¡x which is Δ∗-constructive for the
same reason, but not Δ0-constructive since it forces a reset of x sequentially
after a set. In the fixed point we get a crash μC.〈〈P4〉〉⊥C = {〈x�〉}. Note, neither
P3 nor P4 is Δ1-constructive, viz. μC.〈〈P3〉〉0C = {〈x[0,1]〉} and μC.〈〈P4〉〉0C = {〈x�〉}.

The benefit of (i) and (ii) is thatΔ0 provides stronger constructiveness guaran-
tees making it more robust under scheduling non-determinism. It does not depend
on initial memory and proper isolation of successive “init-update-read” phases. In
fact, the restriction (ii) of Δ0 to monotonic status changes (from 0 → 1 but not
1 → 0) is the definitive feature of signals in traditional SMoC as exemplified by
the constructive semantics [15] of the Esterel language [5] or of Quartz [8]. On the
other hand, in these languages constraint (i) does not exist because initialisation is
not done by the programbut the run-time system. Specifically, Esterel’s semantics
assumes that all signals are reset to 0 by default, at the beginning of every instant.

OurΔ0 semantics is more general, in the sense that it verifies proper initialisa-
tion as part of the constructiveness analysis. It holds the programmer responsible
for proper initialisation, not the compiler or the run-time system. However, one
can emulate initialisation directly by running the fixed point over 〈〈 〉〉 in the
sequential environment S = 0 instead of S = ⊥ which is what Δ1 does. For
instance, P5 = x ? !y : !y is Δ1-constructive with μC.〈〈P5〉〉0C = {〈x0, y1〉} but not
Δ0-constructive since μC.〈〈P5〉〉⊥C = {〈y[⊥,1]〉}.

The following Prop. 1 shows that Δ1 precisely coincides with Berry’s notion
of constructiveness for Pure Esterel [15] whose semantics is given in terms of a
set must (P,C) ⊆ V of signals that must be emitted by P under C and a set
cannot (P,C) ⊆ V which cannot be emitted by P in environment C.

Proposition 1 (Semantics of Pure Esterel). For reset-free cprog P and
ternary environment C, s ∈ must(P,C) iff s1 ∈ 〈〈P 〉〉0C and s ∈ cannot(P,C) iff
s0 ∈ 〈〈P 〉〉0C . It follows that a reset-free cprog P is constructive in Berry’s sense
iff it is Δ1-constructive and the response coincides in both semantics.

Let P be a Δ1-constructive cprog and Init ; P the instrumented version of
P where Init resets every variable. In refinement of Thm. 1(2) one can show
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that μC. 〈〈P 〉〉0C = μC. 〈〈Init ; P 〉〉⊥C = μC. 〈〈Init ; P ∗〉〉⊥C , where P ∗ is P with
all occurrences of a reset ¡x substituted by ε. This implies that Init ; P ∗ is Δ0-
constructive, whence by Thm. 1(1) Init ; P ∗ is Δ∗-constructive with the same
response. Together with Prop. 1 this proves the conjecture [9] that sequentially
constructive cprogs conservatively extend Esterel. Also, we can extract from
every Δ0-constructive cprog P an equivalent constructive Esterel program P ∗.

4 Related Work

In terms of programming languages, the work presented here is at the inter-
face between synchronous concurrent languages and C-like sequential languages,
and is strongly influenced by both worlds. Edwards [17] and Potop-Butucaru
et al. [18] provide good overviews of compilation challenges and approaches for
concurrent languages, including synchronous languages. They discuss efficient
mappings from Esterel to C, thus their work is related to ours in the sense
that we present a means to express Esterel-style signal behaviour and deter-
ministic concurrency directly with variables in a C-like language. However, a
key difference is that we do not “compile away” the concurrency as part of our
signal-to-variable mapping, but fully preserve the original, concurrent semantics
with shared variables.

Coming from the other, C-like side, there have been several proposals that
extend C or Java with synchronous concurrency constructs. Reactive C [19] is
an extension of C that employs the concepts of ticks and preemptions, but does
not provide true concurrency. FairThreads [20] are an extension introducing con-
currency via native threads. Precision Timed C (PRET-C) [21] and Synchronous
C [22] provide macros for defining synchronous concurrent threads. Synchronous
C also permits dynamic thread scheduling, and thus would be a suitable im-
plementation target for the analyses discussed here. SHIM [23], another C-like
language, provides concurrent Kahn process networks with CCS-like rendezvous
communication [24] and exception handling. SHIM has also been inspired by syn-
chronous languages, but it does not use the synchronous programming model,
instead relying on communication channels for synchronisation. None of these
language proposals claims and proves to embed and conservatively extend the
concept of Esterel-style constructiveness into shared variables as we do here. As
far as these language proposals include signals, they come as “closed packages”
that do not, for example, allow to separate initialisations from updates.

As traditional sequential, single-core execution platforms are being replaced
by multi-core/processing architectures, determinism is no longer a trade secret
of synchronous programming but has become an important issue in shared mem-
ory concurrent programming. Powerful techniques have recently been developed
to verify program determinism statically. For Java with structured parallelism,
the tool DICE by Vechev et al. [25] performs static analysis to check that con-
current tasks do not interfere on shared array accesses. Leung et al. [26] present
a test amplification technique based on a combination of instrumented test exe-
cution and static data-flow analysis to verify that the memory accesses of cyclic,
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barrier-synchronised, CUDA C++ threads do not overlap during a clock cycle
(barrier interval). For polyhedral X10 programs with finish/async parallelism
and affine loops over array-based data structures, Yuki et al. [27] describe an
exact algorithm for static race detection that ensures deterministic execution.

These recently published analyses [25,26,27] are targeted at data-intensive,
array/pointer/based code building on powerful arithmetical models and deci-
sion procedures for memory separation. Yet, they address determinism in more
limited models of communication. SMoC constructiveness concerns the determin-
ism and reactivity of “control-parallel” rather than “data-parallel” synchronous
programs and permits instantaneous communication between threads during a
single tick. The challenge is to deal with feedbacks and reaction to absence,
as in circuit design, which is difficult. The causality of SMoC memory accesses
cannot necessarily be captured in terms of regular affine arithmetics as done
in the polyhedral model of [25,27] or reduced to a “small core of configuration
inputs” as in [26]. Further, analyses such as [25,26,27] verify race-freedom for
maximally strong data conflicts: Within the barrier no write must ever compete
with a concurrent read or another conflicting write. Soundness of the analy-
sis is straightforward under such full isolation. Full thread isolation is fine for
Moore-style communication but does not hold in SMoCs whose hallmark is the
Mealy model. Threads do in fact share variables during a clock phase and multi-
emissions are permitted. Analysing SMoC determinism, therefore, is tricky and
argueing soundness of the constructivity analysis in SMoCs (e.g., our Thm. 1) is
non-trivial. This is particularly true if reaction to absence is permitted, as in our
work, which introduces non-monotonic system behaviour on which the standard
(naive) fixed-point techniques fail.

For functional programming languages, traditionally abstracting from the im-
purity of low-level scheduling, determinism on concurrent platforms also has
become an issue. For instance, Kuper et al. [28] extend the IVar/LVar approach
in Haskell to provide deterministic shared data-structures permitting multiple
concurrent reads and writes. This extension, dubbed LVish, adds asynchronous
event handlers and explicit value freezing to implement negative data queries.
Since the negative information is transient, run-time exceptions are possible due
to the race between freezing and writing. However, all error-free executions pro-
duce the same result which is called quasi-determinism. Because of the instanta-
neous communication and the negative information carried by the value status
of shared data, the quasi-deterministic model of [28] is similar in spirit to our
approach. However, there are at least two differences: First, our programming
model deals with first-order imperative programs on boolean data, while [28]
considers higher-order λ-functions on more general “atomistic” data structures.
Second, our Δ0,1,∗ constructivity includes reactivity, which is a liveness prop-
erty, whereas [28] only address the safety property of non-interference. Our two-
dimensional lattice I(D) seems richer than the lifted domain Freeze(D) of [28]
which only distinguishes between the “unfrozen” statuses [⊥,�], [0,�], [1,�],
[�,�] (lower information) and the “frozen” statuses [⊥,⊥], [0, 0], [1, 1] (crisp
information). There do not seem to be genuine upper bound approximations
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expressible in Freeze(D). It will be interesting to study the exact relationship
between the two models.

Coming back to SMoCs, there is already a large body of related work inves-
tigating different notions of constructiveness, in the literature also referred to
as causality. Causal Esterel programs on pure signals satisfy a strong schedul-
ing invariant: they can be translated into constructive circuits which are delay-
insensitive [29] under the non-inertial delay model, which can be fully decided
using ternary Kleene algebra [16]. This makes Malik’s work on causality analysis
of cyclic circuits [30] applicable to the constructiveness analysis of combinational
Esterel programs. This has been extended by Shiple et al. [31] to state-based sys-
tems, as induced by Esterel’s pause operator, thus handling sequential programs
as well. The algebraic transformations proposed by Schneider et al. [32] increase
the class of programs considered constructive by permitting different levels of
partial evaluation. However, none of these approaches separates initialisations
and updates or permits sequential writes within a tick as we do here. Recently,
Mandel et al.’s clock domains [33] and Gemünde’s clock refinement [34] provide
sequences of micro-level computations within an outer clock tick. This also in-
creases sequential expressiveness albeit in an upside-down fashion compared to
our approach. Our work on SC aims to reconstruct the scope of a synchronous
instant on top of the primitive notion of sequential composition. In the clock
refinement approach clocks are the only sequencing mechanism, so micro-level
sequencing is implemented in terms of lower-level clocks.

An acknowledged strength of synchronous languages is their formal founda-
tion [6], which facilitates formal verification, timing analyses, and inclusion results
of the type presented here. Our algebraic approach based on I(D) generalises the
“must-cannot” analysis for constructiveness [15] and the ternary analysis for syn-
chronous control flow [35] and circuits [30,31]. The extension lies in the ability
to deal with non-initialisation (⊥) and re-initialisation (�) in sequential control
flow, which the analyses [15,35,30,31] cannot handle. Due to the two-sided nature
of intervals our semantics permits the modelling of instantaneous reaction to ab-
sence, a definitive feature of Esterel-style synchrony for control-flow languages. In
contrast, the balance equations (see, e.g., [36]) or the clock calculus (see, e.g., [3])
of synchronous reactive data flow do not handle reaction to absence. These analy-
ses are concerned with inter-tick causality (i.e., in which ticks a signal is present)
rather than intra-tick causality (i.e., presence or absence in a given tick) which we
focus on here. Reflected into I(D), Lustre clocks collapse the signal status (within
a tick) to either ⊥ (value not initialised or computed) or [0,�] (value computed).
However, since each program abstracts to a continuous function on I(D)-valued
environments our model fits naturally into the Kahn-style fixed-points semantics
and scheduling analysis for synchronous block diagrams [37,38].

5 Conclusion and Outlook

On the theoretical side, we have identified an abstract value domain I(D) with
special topological features. First, it has an interval structure in which lower and
upper bounds are indispensable when dealing with the non-monotonic nature
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causality analysis (cf. [39]). The generality of this domain makes it possible to
handle co-/contra-variant fixed point computations by means of approximations
in the intervals much in the style of Berry’s must and cannot constructiveness
analysis. Second, this domain has two complementary dimensions � and � which
makes it sensitive not only to the concurrent but also the sequential interaction
of a synchronous object. This is in contrast to Esterel, Quartz or ternary sim-
ulation where all micro-steps are considered concurrent. With this at hand, we
have given a new functional interpretation 〈〈 〉〉 to Berry’s behavioural seman-
tics of Esterel and have proven that SC (Δ∗) is indeed a conservative extension
of Esterel. In view of Prop. 1 we propose to consider the Extended Berry Re-
sponse Function 〈〈 〉〉 as the analogue of Berry’s ternary constructive semantics
in the SC setting. It matches Berry’s semantics on initialised programs (Δ1) and
additionally verifies constructive initialisation on general programs (Δ0).

It should not be difficult to generalise the linear data structure D to capture
signal protocols that span more than only one “init-update-read” cycle in order
to define similar analyses for Δ2, Δ3 and so on. Here we introduce the essential
ideas for Δ0/Δ1 only, anticipating generalisations to richer sequential data types
in follow-up work.

On the practical side, we have shown how to emulate signals with variables,
even in a concurrent setting. Furthermore, we can do so with constant code
size increase per signal, i. e., with overall code size increase that is at worst
linear in the size of the program. Like in the sequential case, the transformation
still properly handles schizophrenia. Thus, for schizophrenic signals, this is a
clear improvement over existing techniques for eliminating schizophrenia at the
Esterel level. Note that here we focus on handling schizophrenia for signals.
This does not address reincarnation in general, i. e., the repeated execution of
statements within a tick; this still must be addressed separately by one of the
existing techniques [11,12,13].

More fundamentally, emulating signals by plain, standard variables closes a
conceptual gap between programming and implementation. The statements of the
variable-based program can be mapped directly to the run-time behaviour of a
software implementation, or alternatively to the gate-and-wire structure of a hard-
ware implementation. There are no implicit mechanisms, such as default absence,
that a programmer has no control over and that must be delegated to a synthe-
sis tool. Every synchronous language ultimately depends on sequential variable
accesses somewhere downstream in the compilation path. For uniformity, there-
fore, it is expedient to build on notions of constructiveness which are sensitive to
micro-step sequential behaviour such as Δ0, Δ1, ..., Δ∗, at the outset.
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