Local Reasoning for the POSIX File System

Philippa Gardner, Gian Ntzik, and Adam Wright

Imperial College London
{p.gardner,gian.ntzik08,adam.wright07}@imperial.ac.uk

Abstract. We provide a program logic for specifying a core subset of
the sequential POSIX file system, and for reasoning abstractly about
client programs working with the file system.

Keywords: file systems, POSIX, local reasoning, separation logic.

1 Introduction

Local reasoning, in the style of separation logic, was introduced to reason about
programs that manipulate the RAM memory model. Local reasoning has strong
modular properties, which means that it scales. Many forms of abstract local rea-
soning have been introduced to specify structured data libraries: e.g. abstract
predicates for linked lists [20], concurrent abstract predicates for abstract con-
current sets [7, 24, 23], and context logic for complex structured data such as the
DOM [13]. Despite these advances, there are many other properties of real-world
libraries that naturally resonate with this local-reasoning approach but have yet
to be studied.

We study abstract local reasoning for the POSIX file system [2]. POSIX has an
English specification which naturally describes commands which globally follow
directory paths to locally update files or directories'. There has been much
work on traditional reasoning techniques for specifying POSIX, such as the well-
known Z specification [18]. However, the global path constraints associated with
this work are substantial. Our aim is to use local reasoning to minimise the
global path constraints. POSIX is an interesting test case for abstract local
reasoning. It has enough emphasis on local update to suggest that the advantages
of local reasoning might apply. However, the complexity of the data combined
with concurrency, global paths and local update means that the application of
local reasoning to this example is not straightforward.

Current work on abstract local reasoning cannot specify POSIX. For exam-
ple, context logic works well for reasoning about sequential update of complex
data, such as the W3C DOM library for XML update [13, 5, 22]. However, it
has no mechanism for reasoning about global paths, it does not extend simply to
concurrency, and it does not integrate well with ideas from separation logic. Con-
current abstract predicates [7, 24, 23] work well for reasoning abstractly about

1 Both files and directories are called ‘files’ in POSIX. We use the term ‘entries’ to
denote either directories or files.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 169-188, 2014.
© Springer-Verlag Berlin Heidelberg 2014

170 P. Gardner, G. Ntzik, and A. Wright

simple concurrent data structures. However, they do not extend to complex data
structures since the implementation details leak into the abstraction [12].

We introduce structural separation logic (SSL) for reasoning abstractly about
complex structured data. SSL provides more fine-grained reasoning than context
logic, leading to straightforward reasoning about disjoint concurrency and a nat-
ural integration with separation logic. Here, we demonstrate SSL by reasoning
about POSIX. In [25, 12], we provide the general theory which relies substan-
tially on ideas from the views framework [6]%. SSL combines fine-grained local
reasoning about e.g. directory fragments with global path constraints about the
overall structured data. The global path constraints limit the use of the frame
rule in our sequential setting, and specify stability requirements of the envi-
ronment in the concurrent setting. We illustrate our ideas using absolute linear
paths, called paths in this paper. In future, it will be very interesting to study
general paths (with the backwards .. and symbolic links) as part of our abstract
local reasoning agenda, since they walk right across the directory structure.

In this paper, we use SSL to reason about the sequential POSIX file system,
demonstrating that our axioms correspond to the English description given in
the POSIX standard. We identify a core subset of POSIX, which is both faithful
to the standard and a natural subset with which to introduce our reasoning. We
model various structures of the file-system state as standard heaps: file heaps
mapping file identifiers (inodes) to bytes; and file-descriptor heaps mapping file
descriptors to input/output related data. Separation logic can reason about these
heap structures. We require SSL to reason about the directory structure, which
we regard as a tree-shaped hierarchy®. SSL naturally integrates with separation
logic, enabling us to reason about directories and the standard heap within the
same logic. We demonstrate this integrated reasoning by verifying natural safety
properties of a client software installer. Although we concentrate on sequential
POSIX in this paper, our results immediately extend to POSIX with disjoint
concurrency. In future, we will explore POSIX with shared-memory concurrency.

Related Work. There has been substantial work on formal specifications of
file systems [15, 18, 9, 4], leading to a verification challenge by Joshi and Holz-
mann [17, 10]. It is not feasible to give a comprehensive account of this work
in the space available; such an account will be in Ntzik’s thesis [19]. Here, we
concentrate on demonstrating the advantages of local directory tree reasoning
compared with first-order global tree reasoning and reasoning about heap struc-
tures with paths as addresses.

A natural question is whether we might use first-order reasoning as in [8],
rather than local reasoning in the style of separation logic. For our program-
logic application, first-order reasoning leads to scalability problems. Consider
one case of a first-order specification of the rename (p/a, p’/b) command:

2 Previous work on segment logic [14] was too complicated, because we needed views.

3 1In general, files and directories can be hard linked more than once. Most implemen-
tations only allow files to be linked more than once. This is a sensible choice as,
for example, cycles generated by directory hard links are not detected by recursive
traversal programs. We therefore regard POSIX as a tree-shaped hierarchy.

Local Reasoning for the POSIX File System 171

{resolve(p,d[t +a[t']] Aresolve(p',d'[t" A —exists(b)]) A ~3p". p’ = pla/p" }
rename(p/a, p’/b)
{resolve(p,d[t]) nresolve(p',d'[t" + b[t']]) A -3p". p = p/a/p" }

In the precondition, the assertion resolve(p,d[t + a[t']]) states that path p re-
solves to the directory d containing the subdirectory a and list ¢ of unknown
entries. The assertion resolve(p’,d'[t" A —exists(b)]) states that path p resolves
to directory d’ with no b entry. Finally, the assertion —3p". p’ = p/a/p” is a path
constraint, stating that path p’ cannot be a descendant of p/a which would be an
error case in POSIX. In the postcondition, the assertions state that the directory
a has gone from d, and a new directory b has been created under directory d’
with the contents of the old a.

Now consider program rename(p/a, p’/b) ; rename(p’’/c, p’’’/d). In
this case, we need path constraints in the precondition stating the following
properties: path p’ is not a descendant of path p/a; p"’ is not a descendant of
p"/c; and, in addition, p”/c is not a descendant of p/a since directory a has been
removed. These syntactic path checks mushroom as more rename commands
are added. Hence, this style of reasoning does not scale. Those familiar with
separation logic might recognise that this example is analogous to Reynolds’
original list example for justifying separation logic [21].

A completely different approach, used in much of the work on the formal
specification of file systems in Z [18] and other methods [15], is to treat paths

as heap addresses. Define the set of heaps as PATHS B Byrrs U P(FNAMES),
mapping paths to byte sequences in the file case or sets of names in the directory
case. This approach requires significant global constraints: for example, in the
specification of rename (p/a, p/a’) not only we would replace p/a with p/a’ in
the heap, but also every descendant p/a/p’ with p/a’/p" in order to preserve path
consistency.

weanf 1]

Fig. 1. The left-hand diagram represents a complete directory; the right, the same
directory instrumented with abstract addresses

2 Example Specifications

We focus on the sequential POSIX file system in this paper, in particular study-
ing a core fragment of 16 commands. Although this fragment is small, it includes
most of the primitive commands that manipulate the structure and perform

172 P. Gardner, G. Ntzik, and A. Wright

input-output (IO) and a large proportion of the file system commands can be
implemented using them.

First consider the English description of the rmdir command®:

[r := rmdir(path)]| Remove the directory identified by path and set r to 0.

The directory must be empty.

Intuitively, this command traverses the global structure, using the global path
path to identify the location of the update. It then performs local update, re-
moving the empty directory whilst leaving the rest of the file system unchanged.

We capture this combination of global traversal and local update using struc-
tural separation logic. Consider figure 1. The left-hand side illustrates part of a
standard structured heap, consisting of a heap cell with address F whose struc-
tured value is a complete directory tree. The right-hand side illustrates part of
an abstract heap, consisting of the heap cell F whose value is now an incom-
plete directory tree with body address x, and an abstract heap cell with abstract
address x whose value is a pair consisting of a path promise ‘T/opt’ and, in this
case, a complete subdirectory. The path promise provides the stability condition
that body address = must be at the end of ‘T/opt’. This promise to = allows us to
reason locally about the abstract heap cell x whilst retaining the knowledge of
its location in the global structure. Notice that the two heaps illustrated in figure
1 describe the same state, in that they differ only in the instrumentation added
by abstract addresses. We move from the left-hand to the right-hand view of the
state using abstract allocation which creates a new abstract heap cell containing
the subdirectory; the converse is abstract deallocation.

With structured separation logic (SSL), we can reason about such abstract
heap cells. For example, the assertion subdir (aapr, A[@]) describes the ownership
of the abstract heap cell with address given by logical variable v and value given
by the path promise P and empty subdirectory A[@]. Using this assertion, we
are able to provide an axiomatic specification of the rmdir command:

{ expr(path, P/A) A var(x,-) » € * subdir (car, A[2])}
r:=rmdir(path)
{var(x,0) » € » subdir (aar, @)}

In the precondition, the assertion for the abstract heap cell at a describes the
subdirectory resource necessary for the command to succeed, plus the stable
information that the subdirectory is to be found under global path P. In addi-
tion, the precondition contains assertions about path expressions and variables.
The expression assertion expr(path, P/A) is a pure assertion which states that
expression path has logical expression P/A as its value. This logical expres-
sion describes an arbitrary path P followed by the directory or file name A.
The variable assertion var(r,—) states that the program variable r has some

4 This description only presents the case when the operation succeeds. When the
command fails, for example if path does not identify an existing file or directory,
the result is to assign -1 to r and set the global variable errno to ENOENT. We give
the full error specifications in our technical report [11]. In this paper we discuss such
cases only when required by an example.

Local Reasoning for the POSIX File System 173

arbitrary value, and &£ describes the extra variable resource necessary for path
to be evaluated. This follows the standard variables-as-resource approach [3]
The postcondition states that variable r now has value 0, whilst the abstract
heap cell a is empty with the path promise P. Notice that we do not remove
the abstract heap cell a. If the axiom destroyed this cell, the associated o body
address (which must exist in some data in the frame) would have no matching cell
address. This would break the stability of the system, where a cell address always
matches with a body address at the appropriate path promise. The additional
variable resource predicate £ is unchanged between the pre and postconditions.
The specification of rmdir is small in that the precondition intuitively de-
scribes local ownership of the minimum resource needed to safely run the com-
mand: the variables r and those needed to evaluate path given by &; and the
abstract cell address a with the subdirectory being updated. It also describes
the global information that only (incomplete) directories satisfying path promise
P associated with « can be framed on. To illustrate this, consider the complete
directory dir(F, T[C+D[A[2]]]), the path P = T/D/A and the proof derivation:

{ezpr(path T/D/A) Avar(x,-) » € « dir(F,T[C + D[A)}

// abstract allocation

{ expr(path, T/D/A) A var(x,-) « € » Jov. (dir(F, T[C+D[a]]) * subdir (aat/v, A[2])) }
// existential elimination and frame rule and apply the axiom
{ expr(path, T/D/A) A var(x,-) * € * subdir (cat/p, A[2]) }

r := rmdir(path)

{war(x,0) x € » subdir (aat/p,) }

// existential, frame rule reapplication

{war(x,0) x € » 3. (dir(F, T[C + D[a]]) * subdir (aar/p,2)) }

// abstract deallocation

{var(r,0) » € « dir(F,7[C + D[2]]) }

The initial precondition contains the assertion dir(F, T[C+D[A[2]]]) describ-
ing a complete directory tree at the file-system root T, with arbitrary contents
captured by the logical variable C and a directory named D that contains the
empty directory A. This precondition does not match the precondition of rmdir,
and so we take the following steps. First, we abstractly allocate a new abstract
heap cell containing the A directory, existentially quantifying the abstract ad-
dress « to ensure that the address is fresh. Then, we apply the standard Hoare
logic existential elimination to set aside the existential binding of «, and use the
frame rule to set aside the resource that rmdir does not need. We are now in
a position to match rmdir’s precondition, where T/D is P. After applying the
axiom we can reintroduce the resource and binding set aside with frame and
existential elimination, and abstractly deallocate the cell with address a.

Now consider the unlink command and its English specification:

[r := unlink(path)] Remove the link to the file identified by path.

Using SSL, we can formalise the English specification in a similar fashion, with
the following small axiom:
{ ezpr(path, P/A) A var(x,-) » € * subdir (aap, A : 1)}
r:=unlink(path)
{var(x,0) » € » subdir (aar,)}

174 P. Gardner, G. Ntzik, and A. Wright

In the precondition, subdir(aep, A :1) states that a file named A is found at
abstract cell address « at the end of path P. The file data is not included in
the precondition, but can be found at file inode I. When the last link to a file
is removed, the file will no longer be accessible by any path, and we assume
garbage collection will remove any associated file data.

Finally, consider the stat command, which returns meta-data about the file
or directory identified by the path argument. In this paper, we take that meta-
data to be just the file type, D for directory and F for file. There is one axiom
for each file type; the directory case is:

{ expr(path,P/A) A var(t,-) » € * subdir (aar, A[B]) }
t:=stat(path)
{ var(t,D) * € subdir (aar, A[5]) }
Notice that the specification uses body address 8 in A[fS] to specify that the
content of A is not changed by the command. It does not need more detailed
knowledge of the contents of A since the command does not require this knowl-
edge to determine that the entry is a directory.

The commands discussed so far are enough to implement the POSIX com-
mand r := remove(path). According to its POSIX description, this command
removes the file or empty directory identified by the path argument. In figure 2
we implement remove and derive its specification. Notice that the derived specifi-
cation exactly matches the English description obtained from POSIX. Following
the same process, we can use the core fragment of this paper to “discover” formal
specifications of many more complex commands of POSIX.

{ expr(path, P/A) A var(x, =) x € subdir (cap, (A:1v A[g])) }

r := remove(path) £ local t {
t := stat(path);

{3T. expr(path, P/A) Avar(x, =) * var(t, T) € x subdir (aap, (A: IAT =F) v (A[g] AT =D)) }
if t = F
{ expr(path, P/A) Avar(r,—) * € x subdir (car, A : 1) }
r := unlink(path);
{war(r,0) * £ x subdir (aar,) }
else if t =D
{ expr(path, P/A) A var(x, —) * € *x subdir (var, A[B]) }
r := rmdir(path);
{war(r,0) * € x subdir (aar, @) }
else r := -1;
{var(r,0) x var(t, =) » € » subdir (car, @) }
}

{ var(r,0) * subdir (aar,) }
Fig. 2. An implementation of remove and the derived specification
3 File System Specification

We provide an axiomatic specification of our sequential POSIX commands using

SSL.

Local Reasoning for the POSIX File System 175

3.1 Abstract Program State

An abstract program state comprises: an abstract file-system heap, which repre-
sents the directory tree and associated files, as might intuitively reside on a hard
disk; a process heap, which represents the computer memory during execution;
and a variable store, which represents the values of program variables.

File-System Heaps. Abstract file-system heaps are abstract heaps whose cells
contain partial directories. Directories are defined using a set of inodes INODES,
ranged over by ¢, k, -+, and a set of file names FNAMES, ranged over by A, B, -,
for naming directories and files. Both sets are defined as in POSIX. Our partial
directories are instrumented by body addresses (context holes), drawn from the
countably infinite set of abstract addresses ABSADDRS, ranged over by x,y, z, -,
with (FNAMES U {F} U INODES) N ABSADDRS = @ where F is the distinguished
address of the root directory.

Definition 1 (Directories). The set of unrooted directories, UDIRS, is:
udi:=g@ | a:t| alud] | ud+ud | z

where & is the empty list of entries, a:¢ is a file link associating file name
a € FNAMES with inode ¢ € INODES, a[ud] is a directory named a containing
unrooted abstract directory ud, + is directory composition and x € ABSADDRS
s a body address. The directories have sibling-unique names, body addresses are
unique, and + is commutative and associative with identity @.

There is a distinguished T ¢ FNAMES representing the root directory of the
file-system tree. The set of rooted directories, RDIRS, is defined as RDIRS =
{T[ud] | ud € UDIRS}. The set of directories, d € DIRS, is defined by DIRS =
UDirs U RDIRS. FEach directory entry has a type DETYPES = {F,D}, where F
denotes a hard link to a file and D a directory.

Each body address can be replaced by entries via context application.

Definition 2 (Context application). The addresses function, addrs : DIRS —
P(ABSADDRS) describes the set of body addresses in a directory. Context ap-
plication is the function o: ABSADDRS — (DIRs - UDIRS) — DIRs defined by:

di[udz/z] 2z eaddrs(di) A addrs(di) naddrs(uds) € {z}

undefined otherwise

dy oy uds ={

where di[uds/x] is the substitution of uds for x in di. The function is defined
only if the result is in DIRS.

Many POSIX commands refer to entries in the file system tree by absolute
linear paths through the directory tree. General paths (with .. and symbolic links)
are complex but we should be able to handle general paths using a combination
of promises and obligations discussed in the conclusions: the abstract address x
will have the promise that the part of the path in the context is stable, and the
obligation to keep the part of the path in the context stable.

Definition 3 (Paths and Resolution). The set of relative paths, RELPATHS,
1s defined by:

176 P. Gardner, G. Ntzik, and A. Wright

rpu=e€lalrp/rp
where a € FNAMES and the path composition | is associative with identity €. The
set of absolute paths is ABPATHS = {T} U {T/rp | rp € RELPATHS}. The set of
abstract paths is ABSPATHS = {p/x | p € ABPATHS, x € ABSADDRS}. The set of
paths, p € PATHS, is PATHS £ RELPATHS U ABPATHS U ABSPATHS.
The path resolution function resolve : PATHS x DIRS — DIRS is defined by:

resolve(a,d+a:t) =a:t resolve(a/rp,d1 + a[dz2]) = resolve(rp,d2) if rp#e
resolve(a, d1 + a[dz2]) = a[d2] resolve(T,T[d]) = T[d]
resolve(z,x + d) =z resolve(T/rp, T[d]) = resolve(rp,d) ifrp#e

In all other cases, the result is undefined.

A file-system heap is the union of three finite partial functions: from distin-
guished address F to the root directory which might be partial; from abstract ad-
dresses to absolute paths (expressing where the corresponding body address lies)
and directories; and from inodes to byte sequences representing file contents. We
construct file-system heaps in two phases: first, we define pre-file-system heaps;
then, we define well-formedness conditions to give the full definition.

Definition 4 (Pre-file-system Heap). Let BYTES be the set of finite byte
sequences. A pre-file-system heap, pfs € PREFS, is a function in the set

({F} = {€} x RDIRrS) U (ABSADDRS T ABPatHS x Dirs) U (INODES i BYTES)

Let inodes(d) denote the set of all inodes occurring in directory d. A pre-file-
system-heap, pfs, is complete if: dom(pfs) N ABSADDRS = &; pfs(F) = (¢,rd);
addrs(rd) = @; and inodes(rd) ¢ dom(pfs)®.

Pre-file-system heaps may use abstract addresses incorrectly. For example,
two separate partial directories at different addresses may contain the same
body address, or the path promises may not correctly identify the location of
the directory. We define a collapse relation, with which we give a well-formedness
condition that ensures addresses are used correctly. The collapse relation intu-
itively states that we can connect a cell address to the matching body address
with context application, if the paths match, as illustrated in figure 3.

p# p/q l p¥
y

Fig. 3. Collapse relation

® Complete pre-file-system-heaps are thus simple DAGs, with sharing occurring only
at the leaves in the sense that two separate file names can point to the same inode.

Local Reasoning for the POSIX File System 177

Definition 5 (Collapse Relation). The one-step collapse relation, | € PREFSx
PREFS, relates pfs, | pfsy if and only if there is some address addr € ABSADDRS U
{F} and uniquey € ABSADDRS such that:

1. pfs(addr) = (p,d) and pfs,(y) = (py.dy);
2. yeaddrs(d);

3. there is some q € PATHS such that p, = p/q;
4. resolve(q,d) = y;

5. pfsy = pfsi[addr = (p,d oy dy)]/y6-
Let |* be the reflexive, transitive closure of |.

Using collapse, we can detect all pre-file-system heaps that use invalid ad-
dressing. Given pfs, the correct use of abstract addressing falls into three cases:

1. pfsis complete, and is thus trivially uses abstract addresses correctly.

2. pfs uses abstract addresses, but is related via collapse to a complete abstract
file system. In this case, the complete system it is related to must be unique
(see [25] for details).

3. pfs uses abstract addresses, but is not immediately related to a complete
file system. However, at least one other pre-abstract file system pfs’ can be
found such that the union of the two does collapse to a complete file system
(as in case 2). In this case, pfs is a partial file-system heap, missing some
data, but still using abstract addressing in a consistent way.

With the collapse relation, we can now define file-system heaps.

Definition 6 (File-system Heaps). The set of file-system heaps, F'S ranged
by fs, is defined as:
FS = {pfs e PREFS 3pfs, pfs” € PREFS. pfsu pfs Vv pfs" A pfs’ is complete }

Process Heaps. The process heap represents the contents of the heap during
program execution. It contains structures used for controlling access to files and
directories: open file descriptions and directory streams. An open file description
is a record holding information that controls file accesses: the inode and current
offset of an open file. It is used to support the commands read, write, lseek
and close. The heap addresses of open file descriptions, in POSIX terminology
called file descriptors, are given by the set OFADDRS and ranged by f,g,....

A directory stream is an abstract data structure that captures the set of the
entries in a given directory and supports the opendir, readdir and closedir
commands. For example, when opendir(p) is used, a fresh directory stream
address from the set DSADDRS is allocated and mapped to a directory stream,
which provides a snapshot of the entry names in the directory given by path
p. Here, we deviate from POSIX. The readdir command returns the names
of entries contained within a directory. POSIX allows a high degree of non-
determinism when using readdir on a directory whilst modifying its contents:
one may see some changes; all changes; or none. Specifying the full behaviour is
possible, but complex. To aid comprehension, we chose a snapshot semantics.

5 That is, pfs, is equal to the function obtained from pfs, by removing y from the
domain, mapping addr to (p,d oy dy), and leaving the other mappings the same.

178 P. Gardner, G. Ntzik, and A. Wright

Definition 7 (Process Heaps). A process heap, denoted ph € PH, is a partial
function in the set (DSADDRS i P(FNaMES)) u(OFADDRS i (INnoDES x N))

Variable Stores. Variables are assigned values through a wariable store, o :
VARS — VALUES, with the set of variable stores denoted Y. Variables are dy-
namically typed, with values drawn from the set:

Z v {true,false} w RELPATHS w ABPATHS ¥ BYTES & INODES

VALUES = © OFADDRS w DSADDRS w DETYPES

Definition 8 (Abstract Program States). Given the sets of file-system heaps
F'S, process heaps PH and variable stores X, the set of abstract program states,
as € ASTATES, is defined as: ASTATES = FS x PH x X,

3.2 Programming Language

We define a standard imperative sequential WHILE language with calls to POSIX
commands. Program expressions are used as the rvalue of assignments and as
parameters to control-flow commands. They consist of the standard literals,
variable lookup, arithmetic and boolean operations, and path concatenation
Expr/Expr. Expression evaluation [[-]], : EXPR — X — VALUES is mostly stan-
dard”. Our core POSIX commands can be classified into structural commands
that manipulate the file system structure, primitive IO commands that read and
write the contents of files, and state commands for querying the type of files.

Definition 9 (Core Fragment & Programming Language). The core
POSIX fragment consists of structural commands Cgy. € COMMgy-, 10 com-
mands C;o € COMMo, and state commands Cgiqr € COMMgtat:

r := mkdir(path)| r := rmdir(path)|r := link(existing, new)

Csir :::| r := unlink(path)|r := rename(old, new)
dir := opendir(path)| fn := readdir(dir) | closedir(dir)
C | £fa := open(path, flags)| buffer := read(fd, size)
T 7| size := write(fd, buffer)
| offset’ := lseek(fd, offset, whence) | close(£fd)

Cstat = t := stat(path)
The commands, C e COMM, of the programming language are:

Cuo VAT S Expr | local var in C | if Expr then C else C
" | while Expr do C | skip | C; C | Cs¢r | Cro | Cstat

In POSIX, the commands are specified as C function interfaces. Here, we adapt
them to a simple imperative programming style for simplicity. Details relating
to the semantics of C are thus abstracted. We have formally specified all the
commands of this fragment using SSL in [11]. Here, we present specifications for
those commands that are used in our examples.

" Concatenation: [[Expr/Expr']], 2 [Expr]lo/[Expr']]s iff [Expr']]o ¢ ABPATHS.

Local Reasoning for the POSIX File System 179

3.3 Assertions

We describe assertions for reasoning about POSIX programs.® Analogous to
programs using variables and expressions, assertions use logical variables and
expressions. Logical variables are mapped to values by a logical environment,
e € LENV, extending program values with directories, paths, abstract addresses,
and sets of these values. Logical expressions, denoted by E, E’, are defined and
evaluated similarly to program expressions, disallowing program variables. We
denote logical variables with block capitals A, B, XY, ..., except for abstract
address variables denoted «, 3,

Cell Assertions Directory Assertions ¢
Directory Tree dir(F, ¢) Empty Entry %]
Subdirectory subdir (a@E, @) File Type Entry E:I
File file(1, E) Directory Type Entry E[¢]
File Descriptor fd(X,1, F) File System Root T[]
Directory Stream ds(X, E) Logical Expression FE
Heap ptr(E, E) Entry List o+
Variable var(var, F) Context Application ¢ o ¢
Expression expr(Expr, E) Path Resolution QF

Fig. 4. Assertion language

Assertions, P,Q € ASRTS, are constructed from: the standard first-order logic
connectives and quantifiers; the separating conjunction of separation logic, P+ (@,
and its unit, emp; and the cell assertions of figure 4 which describe file-system
heaps, process heaps and variable stores. Key is the subdirectory assertion,
subdir (a@E, ¢), which combines local information ¢ about the partial directory
at «, and global information about the environment using path promise E. It
states that, at abstract cell address given by «, there is a partial subdirectory
satisfying directory assertion ¢ (to be explained) which can be rejoined with the
main directory using body address a which must be at the end of path expression
E. The splitting and joining of partial directories gives rise to novel allocation
and deallocation axioms, discussed in Section 3.4.

The file assertion, file(I, E'), describes the file with inode address given by
the logical variable I and contents given by the byte sequence described by logi-
cal expression E. The next three cell assertions describe elements of the process
heap and are directly lifted from definition 7. The final two describe the contents
of the variable store. The assertion var(var, E), describes program variable var
with its value given by the logical expression E. Our core program commands ac-
cept parameters given by program expressions. The pure assertion expr(Expr, E')
states that the program expression Expr evaluates to the value of the logical ex-
pression E. The evaluation requires that we own all the variables used in the
expression. Since in an arbitrary expression the variables are unknown, we will

8 We have been asked whether ramified separation logic for reasoning about dags might
be worth exploring [16]. It uses the sepish connective to say that there is possibly
some shared dag structure, but where it is not determined. Here, the dag structure
is fully determined at the leaves, so ramified separation logic is not appropriate.

180 P. Gardner, G. Ntzik, and A. Wright

typically use this assertion in conjunction with an exact assertion £, leading
to assertions of the form expr(Expr, E) A £, where £ captures all the variable
resource required to evaluate Expr.

Directory assertions, ¢,1 € DIRASRTS, are constructed from the standard
first-order connectives and quantifiers, and the directory assertions of figure 4
describing the structure of directories, context application and path resolution.
Most have been directly lifted from the structure of directories (definition 1).
Context application, ¢ o, ¥, taken from context logic, describes a directory
tree that can be separated into an partial directory satisfying ¢, with abstract
body address « bound in the assertion, and a partial directory satisfying 1. The
assertion @QFE describes directories in which the path given by E resolves.

Definition 10 (Derived Assertions). The standard first-order logic asser-
tions are derived from = and false. Additionally, we define the following:

O¢ £ true oy ¢ S = true + ¢
complete = -Ja. O top complete = =3a. $ a
entry(A) = A[true] v 3L (A:1) top(¢) = ¢ A top complete

can create(A) £ (-~ dentry(A)) A top complete
names(S) £ VA. (A eS < dentry(A)) A top complete

The assertion &¢ is read “somewhere ¢”, and describes directories containing
some directory satisfying ¢. The assertion ¢ is similar, restricted to siblings.
The assertion complete describes directories that do not contain any abstract
body addresses and thus no subdirectory is missing; top complete is similar, but
restricted to siblings. The assertion top(¢) states that the directory entries satisfy
¢, and that no sibling entries have been split away. The assertion can create(A)
states that an entry named A can be safely created at the current sibling level
(used for commands that create new entries such as mkdir). Finally, names(S)
states that every name in the set S is present as an entry.

3.4 Program Logic

We describe our program logic for reasoning about our core fragment of se-
quential POSIX, comprising standard rules from separation logic, axioms for
specifying the POSIX commands (Figure 5), and abstract allocation and deallo-
cation axioms 11. The abstract allocation and deallocation axioms are similar to
normal heap allocation and deallocation axioms, but instead of introducing and
deleting fresh heap cells, they introduce and delete abstract heap cells in order to
split and recombine partial directories. They are essential for our local reasoning
about directories, and are only possible due to the recent technological advances
of the views framework [6]. For uniformity, we give these as axioms over the id
command, which has no operational effect. It is a technical device to enable the
small axioms in Figure 5 to be used whenever required.

Definition 11 (Abstract allocation and deallocation axioms). The az-
ioms for abstract allocation and abstract deallocation are, respectively:

{subdir(a@P, ((Zn AQQ/pB) o P2)}

id
{3v. (subdir (aar, (p1 A @QQ/B) op) » subdir (yar/q,¢2))}

Local Reasoning for the POSIX File System 181

{37. (subdir (aap, (¢1 A@Q/B) op v) * subdir (yar/Q, ¢2))}
id
{subdir(a@P, (1 AQQ[B) o P2)}

The first axiom is abstract allocation. The precondition states that there is a
partial directory at cell o with path promise P. This partial directory can be
viewed as an application of two separate parts: the context directory described
by ¢1 which contains a relative path @ ending in body address 3, applied via
B to the subdirectory described by ¢2. The postcondition states that directory
really can be separated into its two subparts: the subdirectory satisfying ¢ is
“allocated” into its own abstract heap cell v whose corresponding body address
is at absolute path P/Q; and the context directory at a satisfying ¢; with
replacing 8. Abstract deallocation is the converse: if we know that -y is at the end
of path Q in a directory that is itself at the end of path P, it is safe to combine
the two using context application.

We justify the abstract allocation and deallocation axioms by referring to the
collapse relation in Definition 5. Abstract allocation is the assertion equivalent
of “expanding” by one step, in that the result introduces one additional abstract
address, but still collapses to the same complete heap. Deallocation is the equiva-
lent of a single collapse step, and will still result in the same complete file system.
Therefore, whilst abstract (de)allocation changes the abstract addressing in use
by a file system, it does not change the underlying file system.

Figure 5 provides the axioms for specifying the commands used in our soft-
ware installer example, plus the axioms for rename as it is the most challenging
command. The complete set of axioms is given in [11]. Each axiom must be stable
with respect to both abstract addresses and path promises. Axioms cannot intro-
duce or remove abstract addresses, and must not invalidate any path promises
that have been issued. Commands that alter paths (for example, rename) ensure
this later point by requiring that the subdirectories described by the precondi-
tions contain no abstract body addresses. Commands such as rename and stat
have multiple axioms, each covering a different behaviour specified in POSIX
depending on the precondition state”.

Consider the mkdir (path) command. According to its POSIX description, it
creates a new empty directory identified by path. An existing entry with the same
name must not already exist. In our precondition, path evaluates to a path of
the form P/B/A. The subdirectory assertion subdir (aapr, B[C A can create(A)])
states that the subdirectory B must be at abstract address « found at the end
of path P with contents C where the predicate can create(A) (definition 10)
states that it is safe to create a new entry A. In the postcondition, the assertion
subdir (caP, B[C + A[@]]) states that the empty directory A has indeed been
created. Note that in the case we create a new directory directly under the root,
in the path expression P will be an empty path and B will be T.

Now consider link(existing, new), which creates a new hard link with
path new to the file identified by the path existing. Its first axiom is similar
to that of mkdir. In the precondition, it has two subdirectory assertions, one

9 . . .
The preconditions in such cases are mutually exclusive.

182 P. Gardner, G. Ntzik, and A. Wright

expr(path, P/B/A) A var(z, =) €
{ * subdir (aar, B[C A can create(A)]) }
r := mkdir(path) expr(old, P/D/A) A expr(new, P/D/B)
{ var(zr,0) « € » subdir (aar, B[C + A[@]]) }

A var(r, =) x €
. C+A:I)
* subdzr(a@P, D[(])
{ expr(path, P/A) A var(r, -) } . A can create(B)
* € % Subdir(a@p’A[@]) r := rename(old, new)
r := rmdir(path) { var(r,0) x €
{war(x,0) * € x subdir (aar, @) }

* subdir (car, D[C + B : I]) }
{ expr(existing, P/A) A expr(new, P'/D/B)

expr(old, P/A) A expr(new, P'/D/B)
A var(r, =) x € * subdir (aa@r, A : T)
* subdir (Bar’,D[C A can create(B)])

A var(r, —) x € * subdir (a@pr, A : T)
* subdir(Bar’,D[C A can create(B)])
r := link(existing, new) r o= rename(ol§, nef,z)
var(r,0) x € * subdir (aapr, A : 1) { ”fr(rég) * 5(* f“]gf[lgﬁalégl’i]@) }
 subdir (Bar’,D[C +B:1]) subdir (Bar’, 1)
echr(ex';st/in)g, P/D/(A) - { empr(old,/\P/)fr)(;\ ez)p:(;ew, P/A) }
A expr(new, P/D/B) A var(r, —) * ;)~
* subdir (c@r, D[(C+ A : 1) A can create(B)]) * subdir (aer, ((j /:\Lgntry()A))
r := link(existing, new) T := renamelold, new
{ var(zr,0) « € x subdir (avar, D[C+ A : I+ B:1I]) } {'U(W(r’ 0) * € x subdir (aar, C) }
h, P/A) Avar(t, =) x €
expr(path, P/A) A var(r, —) { expr(pat : ’) }
{ *x &€ x subdir (aar, A : T) * i“bdwiat@(l’, é}[f])
r := unlink(path) := sta Pa
{war(x,0) * £ x subdir (aar, @) } {var(e, D) « € » subdir (aar, A[B]) }
h, P/A) A var(t,)
expr(old, P/A) A expr(new, P'/D/B) { expr(pat / :
{ Avar(r, =) * € » subdir (aar, A[C A complete]) * g; ?gb:igi?i:h?)
* subdir (Bar’, D[C’ A can create(B)]) { var(z,F) *.g . subdrz)'r(oz@l’ A:D)}
r rename (0ld, new) ’ [
var(r,0) « € * subdir (aar, &)
* subdir(Bar’, D[C’ + B[C]])

expr(path, P/D) A var(dir,-) » €
* subdir (a@r, D[top(C)])
dir := opendir(path)
expr(old, P/D/A) A expr(new, P/D/B) T mrfzdir H)p* -
A var(r, =)« € ’
’
. subdir(a@p, D [(C +A [C A complete])])

* subdir (aapr, D[C A names(A)]) }
A can create(B)
r o=

rename (0ld, new)

* ds(H, A)
{war(r,0) x £ x subdir (aar, D[C + B[C']]) }

{ var(dir, H) * var(fn, -)

* ds(H,A) AA = {} }
fn := readdir(dir)
expr(old, P/A) A expr(new, P'/B) var(fn, B) » var(dir, H)
A var(r, =) x € {
* subdir (aar, A[C A complete])

* ds(H, (A~N{ B}))/\BEA}
* subdir (Bar’, B[&])

var(dir, H) * var(fn, -)
rename (0ld, new)
{ var(r,0) « € * subdir (aar, &)

* ds(H, {}) }
fn :=
* subdir(Bar’, B[C]) }

readdir(dir)
var(dir, H) « var(fn, €)
{rreratn ™
expr(old, P/A) A expr(new, P'/B)
A var(zr,-) * € » subdir (aapr, A : 1) { war(air, H) ds(H, A) }
* subdir(ﬁ@l”, B: I') closedir(dir)
r := rename(old, new) {Uar(dir, H) }
var(r,0) « € * subdir (aar, &)
{ * subdir(Bar’,B: 1) }

Fig. 5. Axioms for some POSIX commands

Local Reasoning for the POSIX File System 183

for each path. The assertion subdir («aap, A : T) states that the existing path
P/A identifies a file link named A to the file with inode address I. The assertion
subdir (Bar’,D[C A can create(B)]) states, as in mkdir, that an entry with the
name we want to create does not already exist. In the postcondition, the asser-
tion subdir (Bar’, D[C + B : I]) states that this new entry has been created with
another file link to the same file. Note that, in this first axiom, the update takes
place between two different directories; in the second, they take place within the
same directory.

The rename (0ld,new) command moves and/or renames the entry identified
by the path old to that identified by new. Consider the first axiom where
old is a directory and new does not exist. In the precondition, the assertion
subdir (capr, A[C A complete]) states that the subdirectory A must be complete
and the assertion subdir(ﬁ@P’, D [C' A can create(B)]) states that it is possible
to create the new directory B under D. The only path constraints are that the
global paths P and P’ must exist in the underlying global directory, thus restrict-
ing the application of the frame rule. In contrast to the first-order rename axiom
discussed in related work, we do not require any additional path constraints to
ensure that P’ is not a descendant of P/A. It comes automatically from the
separating conjunction.

Finally, the dir:=opendir (path) command allocates a new directory stream
for the directory identified by path and assigns its address to dir. In the precon-
dition, the assertion top(C) (definition 10) states that the entries of the identified
subdirectory D are complete at the top level. In the postcondition, the assertion
subdir (caP, D[C A names(A)]) declares the set A of all the entries of the direc-
tory D, and uses it in the assertion ds(H, A) to describe the allocated directory
stream at H. Elements of the directory stream are obtained via the readdir com-
mand, for which we have two cases: one when the directory stream is not empty;
and one where it is. Note that readdir non-deterministically selects which en-
try name to return and remove from the A set. This mirrors the fact the order
of directory entries is implementation defined in POSIX. The closedir(dir)
command simply deallocates the directory stream given by dir.

Sequential Soundness. We believe it is enough to justify our axiomatic specifi-
cation by comparing it with the POSIX English standard, since the descriptions
are naturally close. However, this is perhaps a controversial point. In [11], we give
a standard soundness result for sequential programs (no external processes modi-
fying the file system), providing an operational semantics and proving soundness
in the style of the views framework [6].

4 Software Installer

We now demonstrate our reasoning by considering a software installer. New
software is typically provided as a bundle, either downloaded onto the users file
system or provided on some media containing a file system. The goal is to place
the bundle’s contents correctly in the users’ file system which may involve other
tasks such as removing any previous installations and dealing with incompatible

184 P. Gardner, G. Ntzik, and A. Wright

user files. Installers are a common class of client programs that perform complex
manipulation of file system structure.

Here, we develop an installer for the fictional software “Widget v2”. It super-
sedes “Widget v1”, but is incompatible with any v1 user configuration files. Wid-
get v2 consists of a program executable, ‘widgProg’ and a data file, ‘widgData’.
Following common conventions [1], we place the files in ‘T/opt/widget/’ and cre-
ate a link from ‘T/usr/binjwidget’ to ‘T/opt/widget/widgProg’. An example
situation the installer may encounter is that in figure 1, where v1 exists and the
user ‘adw07’ has a configuration file.

Even though our installer is fictional, it follows a common workflow found in
real practice. In our example, this workflow translates to the following steps:

(1) Test if entries already exist at the locations we wish to place Widget v2 files.
If they exist, we expect ‘T/usr/bin/widget’ to be a file and ‘T/opt/widget’ to
be a directory. If this is the case, we remove them. If it is not, the installer
aborts without modifying the system to avoid damaging other components.

(2) Check for v1 configuration files in home directories, and remove them where
they exist as they are assumed to be incompatible.

(3) Copy Widget v2 files to the target location on the file system.

(®» Make a link to the Widget v2 executable, so the user can run it.

Before implementing the installer we need to consider errors. So far, our spec-
ifications describe only when commands succeed. However, commands can also
fail with an error result. Our installer relies on the stat command returning an
error when a path does not exist. We consider error specifications for the entire
subset in [11]. Here, we discuss only the ENOENT error for stat, triggered when
a path does not resolve to a file or directory. To describe a file system in which
a path cannot resolve, we define the following;:

ENOENT(P)2P = ev(3P', A, B,P". P=P'/A/B/P". subdir (caP’, A[can create(B)]))

This predicate states that the path P has a prefix which can be resolved, but a
suffix which cannot. All paths which do not resolve will satisfy this specification
and with it, we can give the following error axiom for stat:

{ expr(path, P) A var(t,—) » var(errno,—) « £ * S A ENOENT(P) }
t := stat(path)
{var(t, -1) » var(errno, ENOENT) * £ * S}

In the precondition we use the predicate on the value of path to assert that we
are in the error case. Note that we capture the state satisfying the predicate in
the logical variable S. In the postcondition, this state is preserved and the global
variable errno is assigned the error value, for which we use the same name as
the predicate for convenience.

To remove an existing Widget installation (point (2)) we need to be able to
remove non-empty directories, but rmdir only removes empty directories. We
can implement a program rmdirRec that recursively removes all the directories
entries before removing the directory itself. The specification is:

{ expr(path,P/A) A var(r,-) x € » subdir (aap, A[complete]) }

r := rmdirRec(path)
{var(x,0) * £ » subdir (aar,) }

Local Reasoning for the POSIX File System 185

Finally, to copy files (point (4)), we can implement the program fileCopy

with the following specification:
{ expr(source, P/A) A expr(target, P'/D) A var(x,-) x € }
* subdir (aap, A : T) » subdir (fapr’,D[C A can create(A)]) * file(1,SD)
r := fileCopy(source, target)
{ ar'. var(r,0) x € x subdir (avapr, A : I) x subdir (Bar’,D[C+ A :1']) }
* file(1,SD) * file(I',SD)

We have implemented both rmdirRec and fileCopy and derived their specifi-
cations in [11].

The installation of a simple, two file program is a surprisingly complex task.
We therefore specify our intuitions about good behaviour and prove that our
installer matches them. First, we develop abstractions to assist us in the speci-
fications. We use the following predicates to assert that entries may or may not
exist within a given directory resource:

out(C,A) = top(C) A -~ & entry(A) n(C,A) £ C+entry(A)
infile(C,A)=C+31. A:1
The first predicate describes directory entries C in which an entry named A does
not exist, whereas the second describes entries C in which it does. infile(C, A)
is more specific and describes directory entries C with an A file entry.

We build a precondition for our installer out of several sub-assertions with
the help of the above predicates. In these, the assertion +xcg ¢ is the iterated
version of +, interpreted as ¢ +--- + ¢p where each ¢; has X bound to a distinct
member of E.

srepre = subdir (0aiL, widgProg : J + widgData : K) « file(J, PrROG) * file(K, DAT)
homepre = subdir (a@T, home [+(N,C)eH N [infile(C, .weonf) v out(C, .wconf)]])
binpre £ subdir (yat/usr, bin [in(B, widget) v out(B, widget)])
subdir (Bar,opt [top(T) + (@ v widget[T A complete]])

13

optpre

Each of these describes the states that parts of the file system may be in for
the installer to run safely. The directory entries and file data that make up the
Widget v2 installation sources are described by srcpr. We require them to be
in a location given by the variable i1. homep, captures all the home directories
of the system, along with the fact that some of them will contain a v1 ‘.wcon f’
configuration file. The binp.. resource captures the UNIX executables directory,
that may contain a ‘widget’ entry. Finally, optp,e describes the target installation
directory, which may already contain a previous installation, which we require
to be complete, as it will be deleted.

We combine these descriptions into a precondition, where we also snapshot
the initial state in the logical variable W, to show that nothing changes in the
event of an error.

P; £ var(il,IL) * var(z,—) » var(errno, —) A W A 87Cpre * homepre * Dinpre * 0ptpre

If the installer errors, we expect the file system to be unchanged. If it succeeds,
we expect Widget vl to be installed successfully. There should be no other
outcome. We describe a successful installation with the following sub-assertions:

186 P. Gardner, G. Ntzik, and A. Wright

{r}
r := installWidgetV2 =
local t1, t2, hDir, user {
{war(t1,-) » var(t2,-) » var(errno, —) x binpre * optpre }

// Check for preexisting files (point (). The installer expects T/usr/bin/widget
// to be a file and T/opt/widget to be a directory, if they exist.
tl := stat(‘T/usr/bin/widget’); t2 := stat(‘T/opt/widget’);
var(tl, TI)A(T1=FvDvV-1) x var(t2, T2) A (T2=FvDv -1)
* var(errno, E) A ((T1=-1vT2=-1) = E = ENOENT) * binpye * 0ptpre
if t1 =D Vv t2 =F
// There are preexisting entries, but not of a previous installation.
// The installer ends here without any modificationms.
r = -1;
else
// Either previous entries do not exist, or they are of a previous installation.
{war(x,-) » var(t1,F) v var(t1, -1) x var(t2, D) v var(t2, —1) * binpre * optpre }
if t1 = F
// Remove previous installation executable.
r := unlink(‘T/usr/bin/widget’);
if t2 =D

// Remove previous installation directory. We apply the rmdirRec specification.
{war(t2,D) * var(r, =) » subdir (Bat, opt[T + widget[T., A complete]]) }
r := rmdirRec(‘T/opt/widget’);
{ var(t2, D) * var(r,0) * subdir (Bat,opt[T]) }
{ var(r,0) x var(t1, F) v var(tl, -1) x var(t2,D) v var(t2, -1) }
* subdir (y@t/usr, bin[B]) * subdir (BaT, opt[T])
// Remove any stale Widget configuration files (point (2))
{var(hdir, -) x var(user, -) x subdir (aar, home [+(1\,C)eHN [infile(C, .weconf) vout(C, .wconf)]]) }
hDir := opendir(‘T/home’);

user := readdir(hDir);
3JHD, U, Us. var(hDir, HD) » var(user, U) » ds(Hp, Us)
* subdir(aat, home [+ cyen N [out(C, .weonf) + N e Us = (@ v 3. .weconf: 1) AN ¢ Us= g |])

while user #e¢
// We iterate over every user’s home directory and delete the file.
// If the file does not exist, then unlink returns -1 as in stat.
r := unlink(‘T/home’/user/‘.wconf’); user := readdir(hDir);

closedir (hDir);

// In the end, there are no Widget V1 configuration files.

{ subdir (a@r, home [+(N,C)eﬁ N[CA can create(.wconf)]]) }

// Now we create the new installation, copy the new Widget files
// and link the executable (Points (3) and (@)

var(r, —) x var(il, IL) x subdir (6@, v2Dirpre) * subdir (a@t, homepost)
{ * subdir (yaT/usr, bin[B]) x subdir (Bat,opt[T]) * file(J, PrROG) * file(K, DAT) }
mkdir(‘T/opt/widget’);
:= fileCopy(il/‘widgProg’, ‘T/opt/widget’);
fileCopy(il/‘widgData’, ‘T/opt/widget’);
link(‘T/opt/widget/widgProg’, ‘T/usr/bin/widget’); r := 0

H R KRR
[

3J’, K. var(zr,0) x var(il, IL) x srcpre * homepost
* subdir (Bat,opt [T + widget [widgProg : J' + widgData : K']])
* subdir (yaT/usr, bin[B + widget : J']) file(J’, PROG) * file(K’, DAT)

}

3R, J, K. var(il,IL) x var(r, R) * var(errno, =) A (R = -1 = W)
AR =0= (srcpre * homepost * 0ptpost (', K') * binpost (K') * v2Filespost (1, K'))

{a@)

Fig. 6. Widget v2 software installer

Local Reasoning for the POSIX File System 187

v2F1lespost (J,K) = file(J,PROG) * file(K, DAT)
homeposy = subdir(aar, home [+(N,c)eH N[C A can create(.wconf)]])
binpost (J) = subdir (yat/usr, bin[B + widget : J])
optpost (J, K) = subdir(Bat,opt[T + widget[widgProg : J + widgDat : K]])

The postcondition is built from these sub-assertions.

0, = IR, J, K. var(il,1L) * var(zr,R) » var(errno,-) A (R=-1= W)
""AR=0=> (8TCPre * homeposy * 0ptpost (J', K') * binpost (J') xv2Filespost (J', K'))

Note that if the installer fails, the return variable r has value -1 and the state of
the file system is the same as in the precondition, captured by the logical variable
W. Otherwise, r is 0 and the state changes according to the sub-assertions that
we have defined.

Our installer implementation, along with a proof that it meets its specification,
{P,}installWidgetV2{Q;}, is given in figure 6. Throughout the proof we make
implicit use of the frame rule to temporarily discard irrelevant state, and at the
points of axiom application we implicitly use abstract allocation/deallocation.

5 Conclusions and Future Work

The POSIX file system provides an interesting challenge for local reasoning: com-
plex abstract data update with global absolute paths for identifying the place
to do local update. We give a natural axiomatic specification of the sequential
POSIX file system using SSL; the general theory is in [25, 12]. We verify safety
properties for a client software installer, demonstrating integrated reasoning for
the file system and the heap. Our POSIX reasoning provides an illustrative exam-
ple of reasoning about global access and local update; other natural applications
include identifying the ith element of a list [25] and querying the DOM.

The promises in our POSIX reasoning are naturally stable. Wright has also
explored the combination of promises and obligations: promises on abstract heap
cells give information about what can be relied upon by the environment; obliga-
tions gives information about what data fragments must guarantee; sometimes
both are needed for stability. In this paper, the only obligations are that the
abstract cell and body addresses must be preserved. In general, understanding
obligations is hard. A natural test example would be to extend the core POSIX
fragment presented here with non-linear paths (.. and symbollic links), where the
paths can move back and forth over the structure. We also believe obligations
will be useful for file-access permissions and shared-memory concurrency.

Acknowledgements. We acknowledge funding from an EPSRC DTA (Ntzik,
Wright) and EPSRC programme grant EP/H008373/1 (Gardner, Ntzik and
Wright). We also thank Pedro da Rocha Pinto, Ramana Kumar, Azalea Raad,
Tom Ridge and Mark Wheelhouse for many interesting discussions.

188

P. Gardner, G. Ntzik, and A. Wright

References

[10]

[11]

Filesystem Hierarchy Standard Group. Filesystem hierarchy standard
POSIX.1-2008, IEEE 1003.1-2008, The Open Group Base Specifications Issue 7
Variables as resource in separation logic. Electronic Notes in Theoretical Computer
Science 155, 247-276 (2006)

Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: Verifying a File System Imple-
mentation. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 373-390. Springer, Heidelberg (2004)

Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. SIGPLAN
Not. (2005)

Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL (2013)
Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504-528. Springer, Heidelberg (2010)

Fisher, K., Foster, N., Walker, D., Zhu, K.Q.: Forest: a language and toolkit for
programming with filestores. In: ICFP (2011)

Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/Eves: an experiment in the
verified software repository. In: IEEE International Conference on Engineering of
Complex Computer Systems (2007)

Freitas, L., Woodcock, J., Butterfield, A.: POSIX and the verification grand chal-
lenge: A roadmap. In: ICECCS (2008)

Gardner, P., Ntzik, G., Wright, A.: Local Reasoning for the POSIX File System.
Technical report, Imperial College London (2014),
http://www.doc.ic.ac.uk/~gn408/POSIXFS/

Gardner, P., Raad, A., Wheelhouse, M., Wright, A.: Abstract Local Reasoning for
Concurrent Libraries. In preparation (2014)

Gardner, P., Smith, G., Wheelhouse, M., Zarfaty, U.: Local Hoare reasoning about
DOM. In: PODS (2008)

Gardner, P., Wheelhouse, M.: Small specifications for tree update,
http://www.doc.ic.ac.uk/~pg/papers/move.pdf

Hesselink, W.H., Lali, M.: Formalizing a hierarchical file system. In: REFINE
(2009)

Hobor, A., Villard, J.: The ramifications of sharing in data structures. In: POPL
(2013)

Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Form.
Asp. Comput. (2007)

Morgan, C., Sufrin, B.: Specification of the UNIX Filing System. IEEE Transac-
tions on Software Engineering (1984)

Ntzik, G.: Local Reasoning about File Systems. PhD thesis (expected, 2014)
Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL (2005)
Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

Smith, G.: Local Reasoning about Web Programs. PhD thesis (2011)

Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149-168. Springer, Heidelberg (2014)
Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP (2013)

Wright, A.: Structural Separation Logic. PhD thesis, Imperial College London
(2013)

http://www.doc.ic.ac.uk/~gn408/POSIXFS/
http://www.doc.ic.ac.uk/~pg/papers/move.pdf

	Local Reasoning for the POSIX File System
	1 Introduction
	2 Example Specifications
	3 File System Specification
	3.1 Abstract Program State
	3.2 Programming Language
	3.3 Assertions
	3.4 Program Logic

	4 Software Installer
	5 Conclusions and Future Work
	References

