
Zhong Shao (Ed.)

 123

23rd European Symposium on Programming, ESOP 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5–13, 2014, Proceedings

Programming
Languages
and SystemsLN

CS
 8

41
0

AR
Co

SS

Lecture Notes in Computer Science 8410
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Zhong Shao (Ed.)

Programming
Languages
and Systems

23rd European Symposium on Programming, ESOP 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5-13, 2014
Proceedings

13

Volume Editor

Zhong Shao
Yale University
New Haven, CT, USA
E-mail: zhong.shao@yale.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54832-1 e-ISBN 978-3-642-54833-8
DOI 10.1007/978-3-642-54833-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934144

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2014 was the 17th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998, and this year consisted of six constituting conferences
(CC, ESOP, FASE, FoSSaCS, TACAS, and POST) including eight invited speak-
ers and two tutorial speakers. Before and after the main conference, numerous
satellite workshops took place and attracted many researchers from all over the
globe.

ETAPS is a confederation of several conferences, each with its own Program
Committee (PC) and its own Steering Committee (if any). The conferences cover
various aspects of software systems, ranging from theoretical foundations to pro-
gramming language developments, compiler advancements, analysis tools, formal
approaches to software engineering, and security. Organizing these conferences
in a coherent, highly synchronized conference program, enables the participation
in an exciting event, having the possibility to meet many researchers working
in different directions in the field, and to easily attend the talks of different
conferences.

The six main conferences together received 606 submissions this year, 155 of
which were accepted (including 12 tool demonstration papers), yielding an over-
all acceptance rate of 25.6%. I thank all authors for their interest in ETAPS, all
reviewers for the peer reviewing process, the PC members for their involvement,
and in particular the PC co-chairs for running this entire intensive process. Last
but not least, my congratulations to all authors of the accepted papers!

ETAPS 2014 was greatly enriched by the invited talks of Geoffrey Smith
(Florida International University, USA) and John Launchbury (Galois, USA),
both unifying speakers, and the conference-specific invited speakers (CC) Benôıt
Dupont de Dinechin (Kalray, France), (ESOP) Maurice Herlihy (Brown
University, USA), (FASE) Christel Baier (Technical University of Dresden, Ger-
many), (FoSSaCS) Petr Jančar (Technical University of Ostrava, Czech Repub-
lic), (POST) David Mazières (Stanford University, USA), and finally (TACAS)
Orna Kupferman (Hebrew University Jerusalem, Israel). Invited tutorials were
provided by Bernd Finkbeiner (Saarland University, Germany) and Andy Gor-
don (Microsoft Research, Cambridge, UK). My sincere thanks to all these speak-
ers for their great contributions.

For the first time in its history, ETAPS returned to a city where it had been
organized before: Grenoble, France. ETAPS 2014 was organized by the Univer-
sité Joseph Fourier in cooperation with the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and
EASST (European Association of Software Science and Technology). It had

VI Foreword

support from the following sponsors: CNRS, Inria, Grenoble INP, PERSYVAL-
Lab and Université Joseph Fourier, and Springer-Verlag.

The organization team comprised:

General Chair: Saddek Bensalem
Conferences Chair: Alain Girault and Yassine Lakhnech
Workshops Chair: Axel Legay
Publicity Chair: Yliès Falcone
Treasurer: Nicolas Halbwachs
Webmaster: Marius Bozga

The overall planning for ETAPS is the responsibility of the Steering Commit-
tee (SC). The ETAPS SC consists of an executive board (EB) and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board comprises Gilles Barthe (satellite
events, Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (chair,
Aachen and Twente), Gerald Lüttgen (treasurer, Bamberg), and Tarmo Uustalu
(publicity, Tallinn). Other current SC members are: Mart́ın Abadi (Santa Cruz
and Mountain View), Erika Ábráham (Aachen), Roberto Amadio (Paris), Chris-
tel Baier (Dresden), Saddek Bensalem (Grenoble), Giuseppe Castagna (Paris),
Albert Cohen (Paris), Alexander Egyed (Linz), Riccardo Focardi (Venice), Björn
Franke (Edinburgh), Stefania Gnesi (Pisa), Klaus Havelund (Pasadena), Reiko
Heckel (Leicester), Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kre-
mer (Nancy), Pasquale Malacaria (London), Tiziana Margaria (Potsdam), Fabio
Martinelli (Pisa), Andrew Myers (Boston), Anca Muscholl (Bordeaux), Catuscia
Palamidessi (Palaiseau), Andrew Pitts (Cambridge), Arend Rensink (Twente),
Don Sanella (Edinburgh), Vladimiro Sassone (Southampton), Ina Schäfer (Braun-
schweig), Zhong Shao (New Haven), Gabriele Taentzer (Marburg), Cesare Tinelli
(Iowa), Jan Vitek (West Lafayette), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work in making the
17th ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. Finally, many thanks
to Saddek Bensalem and his local organization team for all their efforts enabling
ETAPS to return to the French Alps in Grenoble!

January 2014 Joost-Pieter Katoen

Preface

This volume contains the proceedings of the 23rd European Symposium on Pro-
gramming (ESOP 2014). The conference took place in Grenoble, France, during
April 8–10, 2014, as part of the European Joint Conferences on Theory and
Practice of Software (ETAPS).

ESOP is an annual conference devoted to the art and science of programming.
The conference solicits contributions on fundamental issues concerning the spec-
ification, analysis, and implementation of systems and programming languages.

The 2014 conference attracted 138 abstracts and 109 full submissions. For
each submission, we solicited at least three reviews from the ProgramCommittee
members and external reviewers. After an intensive electronic meeting over two
weeks, the Program Committee accepted 27 papers for presentation.

In addition, this volume also contains two invited papers, “Composable Trans-
actional Objects: A Position Paper” by Maurice Herlihy and Eric Koskinen, and
“Application-Scale Secure Multiparty Computation” by John Launchbury, Dave
Archer, Thomas Dubuisson, and Eric Mertens. Maurice Herlihy presented his pa-
per as the ESOP invited talk and John Launchbury presented his paper as one
of the two ETAPS-wide invited talks in Grenoble.

I would like thank my fellow Program Committee members for their hard
work on selecting a high quality and stimulating program of contributed papers.
I also wish to thank the numerous external reviewers, without whom running
such a large conference would be impossible. Finally, together with my colleagues
on the Program Committee, I want to thank the authors of all submissions for
entrusting us with their work and the authors of the accepted papers for their
diligent work in preparing their final versions and their conference presentations.

I acknowledge the use of the EasyChair conference system and the support
of the ETAPS 2014 General Chair, Saddek Bensalem, and the ETAPS Steering
Committee and its Chair, Joost-Pieter Katoen, with regard to all the adminis-
trative work.

January 2014 Zhong Shao

Conference Organization

Program Chair

Zhong Shao Yale University, USA

Program Committee

Zena Ariola University of Oregon, USA
Gavin Bierman Microsoft Research, UK
Viviana Bono University of Turin, Italy
Luis Caires Universidade Nova de Lisboa, Portugal
Avik Chaudhuri Facebook, USA
Koen Claessen Chalmers University of Technology, Sweden
Isil Dillig University of Texas, Austin, USA
Roberto Giacobazzi University of Verona, Italy
Alexey Gotsman IMDEA Software Institute, Spain
Martin Hofmann LMU Munich, Germany
Zhenjiang Hu National Institute of Informatics, Japan
Joxan Jaffar National University of Singapore, Singapore
Neel Krishnaswami University of Birmingham, UK
Paul-André Melliès CNRS and Université Paris Diderot, France
Todd Millstein University of California, Los Angeles, USA
Tobias Nipkow TU Munich, Germany
David Pichardie ENS Cachan, France
Francois Pottier INRIA Rocquencourt, France
Tom Schrijvers Ghent University, Belgium
David Van Horn University of Maryland, USA
Martin Vechev ETH Zurich, Switzerland
Philip Wadler University of Edinburgh, UK
Nobuko Yoshida Imperial College London, UK
Steve Zdancewic University of Pennsylvania, USA

Additional Reviewers

Andreas Abel
Aws Albarghouthi
Jade Alglave
Davide Ancona
Thibaut Balabonski

Giovanni Bernardi
Jean-Philippe Bernardy
Yves Bertot
Frédéric Besson
Laura Bocchi

Edwin Brady
Marco Carbone
Giuseppe Castagna
Bor-Yuh Evan Chang
Arthur Charguéraud

X Conference Organization

Wei Chen
James Cheney
Chiachun Lin
Wei-Ngan Chin
Adam Chlipala
Horation Cirstea
Pierre Clairambault
David Cock
Pierre-Louis Curien
Ugo Dal Lago
Olivier Danvy
Gwenaël Delaval
Delphine Demange
M. Dezani-Ciancaglini
Pietro Di Gianantonio
Alessandra Di Pierro
Thomas Dillig
Thomas Dinsdale-Young
Paul Downen
Gregory Duck
Anton Ekblad
Kento Emoto
Sebastian Erdweg
Nikita Frolov
Carsten Fuhs
Marco Gaboardi
Marc Geilen
Samir Genaim
Giorgio Ghelli
Dan Ghica
Elena Giachino
Georges Gonthier
Denis Gopan
Andrew Gordon
Philipp Haller
Makoto Hamana
Ichiro Hasuo
Willem Heijltjes
Fritz Henglein
Atsushi Igarashi
Kazuhiro Inaba
Jun Inoue
Bart Jacobs

Barry Jay
Alan Jeffrey
Jacob Johannsen
Steffen Jost
Ohad Kammar
Andrew Kennedy
Steven Keuchel
M. Kirkedal Thomsen
Naoki Kobayashi
Nicolas Koh
Igor Konnov
Laura Kovacs
Arun Lakhotia
Ivan Lanese
Xavier Leroy
Sam Lindley
Francesco Logozzo
Carlos Lombardi
Gregory Malecha
Louis Mandel
Isabella Mastroeni
Kazutaka Matsuda
Damiano Mazza
Massimo Merro
Jan Midtgaard
Fabrizio Montesi
Garrett Morris
Markus Müller-Olm
Keisuke Nakano
Carlos Olarte
Bruno Oliveira
Hugo Pacheco
Luca Padovani
Michele Pagani
Long Pang
Matthew Parkinson
Mathias Peron
Gustavo Petri
Andreas Podelski
Andrei Popescu
Louis-Noel Pouchet
Marc Pouzet
Matthias Puech

Jorge Pérez
Willard Rafnsson
Robert Rand
Francesco Ranzato
Julian Rathke
António Ravara
Didier Remy
Dan Rosen
Claudio Russo
Andrey Rybalchenko
Andrew Santosa
Gabriel Scherer
Dave Schmidt
Alan Schmitt
Klaus Schneider
Aleksy Schubert
Ulrich Schöpp
Peter Sestoft
Vilhelm Sjöberg
Christian Skalka
Nick Smallbone
Marcelo Sousa
Matthieu Sozeau
Manu Sridharan
Stephen Strickland
Josef Svenningsson
Bernardo Toninho
Hugo Torres Vieira
Aaron Turon
Nikos Tzevelekos
Christian Urban
Benôıt Valiron
Daniele Varacca
Panagiotis Vekris
Björn Victor
Dimitrios Vytiniotis
Guido Wachsmuth
Meng Wang
Stephanie Weirich
Eran Yahav
Roland Yap
Jooyong Yi
Florian Zuleger

Table of Contents

Invited Talks

Composable Transactional Objects: A Position Paper 1
Maurice Herlihy and Eric Koskinen

Application-Scale Secure Multiparty Computation 8
John Launchbury, Dave Archer, Thomas DuBuisson, and
Eric Mertens

Type Systems

An Array-Oriented Language with Static Rank Polymorphism 27
Justin Slepak, Olin Shivers, and Panagiotis Manolios

Gradual Typing for Annotated Type Systems . 47
Peter Thiemann and Luminous Fennell

Staged Composition Synthesis . 67
Boris Düdder, Moritz Martens, and Jakob Rehof

Overlapping and Order-Independent Patterns: Definitional Equality for
All . 87

Jesper Cockx, Frank Piessens, and Dominique Devriese

Verified Compilation

Verified Compilation for Shared-Memory C . 107
Lennart Beringer, Gordon Stewart, Robert Dockins, and
Andrew W. Appel

Verifying an Open Compiler Using Multi-language Semantics 128
James T. Perconti and Amal Ahmed

Program Verification I

Impredicative Concurrent Abstract Predicates . 149
Kasper Svendsen and Lars Birkedal

Local Reasoning for the POSIX File System . 169
Philippa Gardner, Gian Ntzik, and Adam Wright

A Coq Formalization of the Relational Data Model 189
Véronique Benzaken, Évelyne Contejean, and Stefania Dumbrava

XII Table of Contents

Semantics

On Probabilistic Applicative Bisimulation and Call-by-Value
λ-Calculi . 209

Raphaëlle Crubillé and Ugo Dal Lago

Grounding Synchronous Deterministic Concurrency in Sequential
Programming . 229

Joaqúın Aguado, Michael Mendler, Reinhard von Hanxleden, and
Insa Fuhrmann

The Duality of Construction . 249
Paul Downen and Zena M. Ariola

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 270
Casper Bach Poulsen and Peter D. Mosses

Concurrency

Communicating State Transition Systems for Fine-Grained Concurrent
Resources . 290

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and
Germán Andrés Delbianco

Checking Linearizability of Encapsulated Extended Operations 311
Oren Zomer, Guy Golan-Gueta, G. Ramalingam, and Mooly Sagiv

Linear Types

Bounded Linear Types in a Resource Semiring . 331
Dan R. Ghica and Alex I. Smith

A Core Quantitative Coeffect Calculus . 351
Alöıs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic

Measurements in Proof Nets as Higher-Order Quantum Circuits 371
Akira Yoshimizu, Ichiro Hasuo, Claudia Faggian, and Ugo Dal Lago

Program Verification II

Automatic Termination Verification for Higher-Order Functional
Programs . 392

Takuya Kuwahara, Tachio Terauchi, Hiroshi Unno, and
Naoki Kobayashi

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 412
Caterina Urban and Antoine Miné

Table of Contents XIII

Model and Proof Generation for Heap-Manipulating Programs 432
Martin Brain, Cristina David, Daniel Kroening, and
Peter Schrammel

REAP: Reporting Errors Using Alternative Paths . 453
João Matos, João Garcia, and Paolo Romano

Network and Process Calculi

The Network as a Language Construct . 473
Tony Garnock-Jones, Sam Tobin-Hochstadt, and Matthias Felleisen

Resolving Non-determinism in Choreographies . 493
Laura Bocchi, Hernán Melgratti, and Emilio Tuosto

Program Analysis

A Correspondence between Two Approaches to Interprocedural
Analysis in the Presence of Join . 513

Ravi Mangal, Mayur Naik, and Hongseok Yang

Targeted Update – Aggressive Memory Abstraction Beyond Common
Sense and Its Application on Static Numeric Analysis 534

Zhoulai Fu

Affine Parallelization of Loops with Run-Time Dependent Bounds from
Binaries . 554

Aparna Kotha, Kapil Anand, Timothy Creech, Khaled ElWazeer,
Matthew Smithson, and Rajeev Barua

Author Index . 575

Composable Transactional Objects:

A Position Paper

Maurice Herlihy1 and Eric Koskinen2

1 Brown University, Providence, RI, USA
2 New York University, New York, NY, USA

Abstract. Memory transactions provide programmers with a conve-
nient abstraction for concurrent programs: a keyword (such as atomic)
designating a region of code that appears, from the perspective of con-
current threads, to execute atomically. Unfortunately, existing implemen-
tations in the form of software transactional memory (STM) are often
ineffective due to their monolithic nature: every single read or write ac-
cess is automatically tracked and recorded.

In this statement, we advocate a transactional model of programming
without a heavyweight software transactional memory, and describe some
related, open research challenges. We suggest that a model based on per-
sistent data structures could permit a variety of transactional algorithms
to coexist in a library of composable transactional objects. Applications
are constructed by snapping these objects together to form atomic trans-
actions, in much the same way that today’s Java programmers compose
their applications from libraries such as java.util.concurrent.

We report preliminary results developing this library in ScalaSTM,
and discuss the challenges ahead.

Keywords: Composable transactional objects, transactional memory,
persistent, multicore.

1 Introduction

Existing transactional memory systems (hardware [3,11,12], software [9,18,6], or
hybrid [5,16]) detect conflicts at a read-write level: each transaction keeps track
of a read set, the locations it read, and a write set, the locations it wrote. Two
transactions are deemed to conflict if one’s write set intersects the other’s read
or write set. The TM run-time typically intercepts all memory accesses, tracks
each transaction’s read and write sets, and delays or restarts transactions that
encounter conflicts.

There is an increasing realization that tracking read-write conflicts is ineffi-
cient, because each and every memory access must be monitored for conflict and
recorded for potential roll-back, and ineffective, because false conflicts frequently
arise when read and write sets inadvertently intersect in a harmless way. For ex-
ample, consider an object that generates unique identifiers. Logically, there is
no reason that concurrent identifier requests should conflict. If the generator is

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 1–7, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 M. Herlihy and E. Koskinen

implemented in a natural way as a counter, however, then today’s STM systems
will unnecessarily detect a conflict. Perhaps as a result, performance remains a
barrier to widespread use of today’s STMs.

In this position paper, we propose an alternative research direction, based
on libraries of composable transactional objects, which we are currently building
using ScalaSTM [1]. Our goal here is to outline a research vision, calling attention
to open problems and new directions.

In this alternate direction, the unity of our library is not ensured by a mono-
lithic STM but instead defined at a higher level: persistent objects [7]. Informally,
this property ensures that one can reconstruct (some or all) earlier versions of the
object even after it has been modified. The notion of persistent objects allows us
to combine diverse transactional algorithms into composable objects that “snap
together” to form atomic transactions. Our prior work on transactional boosting
[10], is an example of how one might implement a composable transactional ob-
ject, replacing bit-level read-write conflicts with a high-level notion of conflicts
between non-commutative methods of abstract data types.

2 Overview

We advocate a move away from the pervasive notion that transactional synchro-
nization must be done on the basis of read-write conflicts. Synchronization based
entirely on read-write conflicts has three drawbacks: (i) it can limit concurrency
through false conflicts, (ii) it can burden performance by instrumenting too many
memory accesses, and (iii) it can hamper recovery by requiring bit-wise copying
of large amounts of data.

Nonetheless, a library of transactional objects is only useful if the objects can
be combined together. In this section we describe a new route toward a library
of composable transactional objects via the notion of persistent objects. Let’s
begin with an example object.

Example Transactional Object. Consider the object in Fig. 1 that imple-
ments transactions via boosting [10]. This figure (see the original paper [10] for
a more systematic explanation) shows part of the (Scala) code for a highly-
concurrent transactional key-value map that provides put() and get() methods.
The base object is the ConcurrentSkipListMap class from the java.util .concurrent
library. For transactional synchronization, the key insight is that method calls
for distinct keys commute, so concurrent transactions that operate on distinct
keys can proceed in parallel, even if their underlying read and write sets conflict.
In this code, transactional isolation is provided by our AbstractLock class, which
associates each key value (via an internal hash table) with an abstract lock.
Abstract locks are strict two-phase locks: each method call acquires the lock
associated with its key (Line 6), to be released when the transaction commits
or aborts (Line 7). If the transaction eventually aborts, the run time system is
requested to restore the previous binding if there was one (Line 10), or to remove
the new binding if there wasn’t (Line 12). Finally, the new binding is placed in
the map (Line 14).

Composable Transactional Objects: A Position Paper 3

1 import java. util . concurrent .ConcurrentSkipListMap
2 class BoostedSkipList [Key,Value] {
3 private val abstractLock = new AbstractLock()
4 private val map = new ConcurrentSkipListMap[Key, Value]()
5 def put(key: Key, value : Value, t = Transaction. current): Unit = {
6 abstractLock lock key
7 Transaction .onExit (() => abstractLock unlock key)
8 if (map containsKey key) {
9 var oldValue = map.get(key)

10 Transaction .onAbort(() => map.put(key, oldValue))
11 } else {
12 Transaction .onAbort(() => map remove key)
13 }
14 map.put(key, value)
15 }
16 ...
17 }

Fig. 1. A boosted Concurrent Skip List

We have “boosted” a highly complex and highly optimized skip-list map im-
plementation, written by someone else, from being thread-safe to transaction-
safe, without rewriting a line of its code. Because the base ConcurrentSkipListMap
class provides its own thread-level synchronization, it is safe for concurrent
threads to make put() calls concurrently at Line 14. Moreover, there is no need
for an underlying STM to intercept and track each low-level read and write ac-
cess, nor to block or roll back transactions whose read and write sets overlap.
Here, transaction recovery is implemented by logging and replaying inverse oper-
ations, potentially a much more compact and efficient means of recovery than the
usual STM technique of manipulating large, bit-level before and after images.
Deadlocks are detected and resolved using the Dreadlocks deadlock detection
algorithm [14] developed for this purpose. Finally, this boosted implementation
satisfies opacity [8], a correctness condition that ensures that all transactions,
even those doomed to abort, observe a consistent memory state.

3 Persistent Data Structures

Boosting marks an escape from the monolithic approach present in today’s
STMs. While there is a substantial performance improvement, we have lost the
uniformity of a monolithic STM. It is natural to wonder: how can such trans-
actional objects interoperate with other objects that, themselves, may utilize
(possibly different) transactional algorithms?

We argue that we can elevate the common conceptual framework that unifies
diverse transactional algorithms. A boosted object can coexist with a trans-
actional object built, for example, in a speculative manner (as discussed next).

4 M. Herlihy and E. Koskinen

And so on. This is what Java programmers, who today combine myriad lock/lock-
free java.util.concurrent objects, would expect of a library of transactional objects.
We argue that this can be done with objects that are persistent:

Definition 1 (Persistent Object [7]). A mutable data object is persistent if
one can reconstruct earlier versions even after the object has been modified. It is
said to be partially persistent if only some versions can be reconstructed, and it
is confluently persistent if new versions created by concurrent activities can be
merged in a meaningful way.

Informally, persistent objects allow us to scroll backwards and forwards through
time, giving us a great deal of flexibility at run-time to serialize concurrent object
operations. Of course a completely persistent object is impractical. So this leads
us to research questions such as: Which earlier versions must persist? For how
long must they persist?

Let’s look at an example. Here is how one can make a boosted object be
persistent. If the object retains the undo logs of committed transactions, then
any earlier version can be reconstructed by cloning the base object, and replaying
the undo log back to the desired version.

Our use of persistent objects as a basis for both transactional synchronization
and semantics is an attempt to combine the well-known benefits of functional
programming with the unavoidable need for high-level mutable state, much in
the spirit of our earlier work on transactional Haskell [9].

4 Optimism

In boosting, transactions apply method calls directly to the base object, relying
on an operation-based undo log to roll back failed transactions. In this way, syn-
chronization in boosting is pessimistic, because transactions check for conflicts
before calling a method. An alternative is optimistic (or speculative) synchro-
nization, where transactions check for conflicts only at the end. (Checking for
conflicts is often called validation.) Many STM systems (for example, TL2 [6])
operate this way: updates to shared memory are deferred until commit. Opti-
mistic synchronization can reduce costs if conflicts are sufficiently rare.

Here is another scenario where deferred updates might be attractive. In a non-
uniform memory access (NUMA) architecture, threads can access local memory
quickly, and remote memory more slowly. In such a situation, each thread might
operate on its own local copy of the base object. When it commits after vali-
dation, it propagates its changes (in the form of an operation-based redo log)
to the other threads. The Barrelfish [2] operating system is organized around a
similar philosophy.

Optimistic synchronization involves objects that are confluently persistent [7]:
new object versions can be created by concurrent activities as long as those
versions can be merged in a meaningful way. Usually, operations can be merged
as long as they commute, but weaker properties, involving left- and right-movers,
can also be used [15].

Composable Transactional Objects: A Position Paper 5

This move toward composable transactional objects enables us to incorporate
other transactional features such as checkpoints and nested transactions. We can
even model dependent transactions [17], where one transaction releases its results
to another before committing, and the second transaction’s commit depends on
the first’s.

5 Preliminary Results and the Road Ahead

We have embodied our ideas in library of composable transactional objects, im-
plemented in ScalaSTM. Our implementation replaces the existing heavyweight
run-time that mediates all transactional memory interactions with a much less
obtrusive structure. Our system provides only the following services:

– onCommit() registers a closure to be called when a top-level transaction
commits. Closures are called in first-in-first-out order, useful for redo logs.

– onAbort() registers a closure to be called when a transaction (nested or top-
level) aborts. Closures are called in last-in-first-out order, useful for undo
logs.

– onExit() registers a closure to be called when a top-level transaction com-
mits or aborts, useful for releasing abstract locks, certain kinds of I/O, and
memory management.

– onValidate() registers a Boolean-valued closure to be called before a top-level
transaction commits or aborts. A transaction commits only if all such return
values are true. This service is useful for speculative synchronization.

Versioning. At the implementation level, object versions are indexed by trans-
action identifiers. At all times, there is a unique system-wide identifier for the
latest committed transaction, which indexes the latest committed state for each
object. Operations of composable transactional objects take a transaction iden-
tifier as a default argument, with the currently executing transaction as the
default. Objects are confluently persistent in the sense that they can permit con-
current method calls to the committed version, provided the object implementa-
tion is capable of merging them, based on commutativity or other type-specific
properties. When a thread commits a transaction, it installs that transaction as
the latest committed transaction, when it aborts, it discards that transaction
and the versions it indexes do not become accessible to the other threads. A
long read-only transaction is one that executes under a committed transaction,
running against a set of object versions “frozen” at that time. (Not all objects
will provide access to older versions.)

Challenges. Our next step is to finish a comprehensive implementation of
composable transactional objects with a wide range of transactional algorithms.
There are then some open research challenges, including:

1. Investigating trade-offs between granularity and performance in data struc-
ture design, and port benchmarks such as STAMP [4] to ScalaSTM.

6 M. Herlihy and E. Koskinen

2. Investigating how special support can be added to aid long-running (in par-
ticular, read-only) transactions.

3. Exploring other novel control structures, such as the retry construct for con-
ditional transactional synchronization, and the orElse construct for compos-
ing conditional synchronization (as introduced in Transactional Haskell [9]).
Elsewhere [13], we described how boosting can be extended to support these
and other useful control structures, but a more general approach to com-
posable transactional objects will require rethinking and extending these
mechanisms.

4. Exploiting hardware transactions, of the kind recently provided by Intel
Haswell [12] and soon to be provided by the IBM Power architecture [3].

5. Developing accessible verification techniques to ensuring the correctness of
these objects which we believe will be used widely.

References

1. ScalaSTM, http://nbronson.github.io/scala-stm/
2. Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe,

T., Schüpbach, A., Singhania, A.: The multikernel: a new os architecture for scal-
able multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP 2009, pp. 29–44. ACM, New York (2009)

3. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust ar-
chitectural support for transactional memory in the power architecture. In: Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA 2013, pp. 225–236. ACM, New York (2013)

4. Cao Minh, C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper,
J., Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system
with strong isolation guarantees. In: Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA 2007 (June 2007)

5. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hy-
brid transactional memory. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XII), pp. 336–346. ACM Press, New York (2006)

6. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

7. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, PPoPP 2008, pp. 175–184. ACM, New York (2008)

9. Harris, T., Marlow, S., Peyton-Jones, S.L., Herlihy, M.: Composable memory trans-
actions. Commun. ACM 51(8), 91–100 (2008)

10. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2008,
pp. 207–216. ACM, New York (2008)

11. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, ISCA 1993, pp. 289–300. ACM Press (1993)

http://nbronson.github.io/scala-stm/

Composable Transactional Objects: A Position Paper 7

12. Intel Corporation. Transactional Synchronization in Haswell (September 8, 2012),
http://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell/ (retrieved from)
13. Koskinen, E., Herlihy, M.: Checkpoints and continuations instead of nested trans-

actions. In: Proceedings of the Twentieth Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA 2008, pp. 160–168. ACM, New York (2008)

14. Koskinen, E., Herlihy, M.: Dreadlocks: efficient deadlock detection. In: Proceedings
of the Twentieth Annual Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2008, pp. 297–303. ACM, New York (2008)

15. Koskinen, E., Parkinson, M., Herlihy, M.: Coarse-grained transactions. In: Pro-
ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, pp. 19–30. ACM, New York (2010)

16. Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Swift, M.M.,
Wood, D.A.: Supporting nested transactional memory in logtm. In: Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XII), pp. 359–370. ACM Press, New
York (2006)

17. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transac-
tions in an stm. In: PPOPP, pp. 163–172 (2009)

18. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2006, pp. 187–197. ACM, New York
(2006)

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

Application-Scale Secure Multiparty

Computation

John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens

Galois, Inc�

Abstract. Secure multiparty computation (MPC) permits a collection
of parties to compute a collaborative result without any of the parties
or compute servers gaining any knowledge about the inputs provided by
other parties, except what can be determined from the output of the
computation. In the form of MPC known as linear (or additive) sharing,
computation proceeds on data that appears entirely random. Operations
such as addition or logical-XOR can be performed purely locally, but op-
erations such as multiplication or logical-AND require a network commu-
nication between the parties. Consequently, the computational overhead
of MPC is large, and the cost is still measured in orders of magnitude
slowdown with respect to computing in the clear. However, efficiency im-
provements over the last few years have shifted the potential applicability
of MPC from just micro benchmarks to user-level applications.

To assess how close MPC is to real world use we implement and as-
sess two very different MPC-based applications—secure email filtering
and secure teleconference VoIP. Because the computation cost model is
very different from traditional machines, the implementations required a
significantly different set of algorithmic and compiler techniques. We de-
scribe a collection of the techniques we found to be important, including
SAT-based circuit optimization and an optimized table lookup primitive.

1 Introduction

It is scarcely possible to read the news without seeing yet another reason to
be able to perform computation on encrypted data. The cryptography commu-
nity has long known that some kinds of computations on encrypted data are
possible—at least in principle. This was notably demonstrated by Yao’s seminal
work on secure multiparty computation [Y86], and most radically by Gentry’s
work on fully homomorphic encryption (FHE) [G09]. While FHE is very new
and still far from practical, there has been significant effort in the last few years
to make MPC usable in practice.

MPC computations permit a collection of parties to compute a collaborative
result, without any of the parties gaining any knowledge about the inputs pro-
vided by other parties (other than what is derivable from the final result of the

� This material is based upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-C-0333. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 8–26, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Application-Scale Secure Multiparty Computation 9

computation). In recent years, the variant of MPC called linear shared computa-
tion has been producing significant performancewins [BLW08, LAD12, DKL+13].

When we say “performance wins”, we should put it in context: on test cases
such as securely decrypting AES-encrypted text, we have been seeing linear
sharing achieving execution times of around 3–30ms per 128-bit block, which
corresponds to a slowdown of around four to five orders of magnitude compared
with computation in the clear. Significant though this slowdown is, it compares
well with Yao and especially with FHE, whose current slowdowns appear to be
respectively around six and nine orders of magnitude in our experience.

There are two fundamental reasons why secure computation proceeds more
slowly than computation in the clear. First, all secure computations have to
be performed generically across all possible input and internal values (other-
wise information is revealed), though there are neat algorithms which can some-
times amortize this somewhat across multiple accesses. Second, the multi-party
schemes (both Yao and linear sharing) require significant network communica-
tion, typically growing linearly with the size of the function being evaluated.

MPC protocols can be targeted to different security models, but the perfor-
mance cost in establishing and maintaining the security for particular models
can vary significantly. The simplest security model used for secure computation
is honest but curious [G04], where the separate parties are assumed to follow the
protocol honestly, but may at the same time attempt to learn secrets by looking
at internal values of the computation, including any communications. This secu-
rity model is appropriate for settings such as preventing information leakage by
individuals with administrator access, or after a cyber snooping break-in. There
are also fairly generic techniques for augmenting honest-but-curious protocols to
provide more stringent security guarantees (such as against malicious adversaries
who intend to subvert the computation), so the honest-but-curious protocol may
be seen as a significant first step towards constructing more secure versions.

1.1 Contributions of This Paper

In this paper, we address the challenge of scaling secure computation to a level
required by applications. We implement two: a mail filter, which matches en-
crypted email texts against regular expressions, and VoIP teleconference calling,
which merges and clips multiple audio streams in real-time.

To implement these, we used the ShareMonad, a Haskell-embedded domain-
specific language for programming secure multiparty computations, with a linear-
sharing backend [LAD12]. The ShareMonad view considers the secure multiparty
computational substrate as an MPC-machine—an abstract machine with highly
non-standard interface and performance properties. The implementation comes
with a variety of ad-hoc techniques for minimizing expensive operations, either
by reducing the overhead of individual operations (through exploiting opportu-
nities for SIMD-like parallelization), or by hiding residual latencies involved in
network-based operations. To scale to the size and performance required by
our target applications, we further developed the backend optimizations. In
particular:

10 J. Launchbury et al.

– We developed and implemented many compile-time optimizations, including
SAT-based reasoning to replace (expensive) AND-operations with (cheap)
XOR-operations, and balancing and packing of global operations to minimize
the number and size of network communications.

– We also created a new version of the table lookup primitive, introduced in
[LAD12]. This performs secret lookup of an n-bit index in a public table
using log(n) global operations (as before), but where each global operation
now communicates no more than 21+n/2 individual bits. We also optimize the
local computations involved in the table-lookup with some pre-computation
on the table. Together, these make a huge difference in both computation and
network performance. In effect, the compiler uses the table lookup protocol as
a mechanism for building custom wide-word instructions that are generated
based on the program.

2 Background

The secure computation scheme we use is simple linear (arithmetic) sharing
across three peer machines acting as the compute servers. For the protocols we
discuss, the three machines run the same code as each other, and communicate
(and hence synchronize) between themselves in a cyclic pattern, as shown in
Figure 1. Some more complex protocols require less uniform computation and
communication patterns, but we won’t need them here.

Fig. 1. Machine Configuration

The diagram shows the links protected with SSL. The critical point is that
the links are protected by some mechanism, otherwise a network snooper could
access the three random shares of a value and so reconstruct the original. For
performance and thread-safe reasons, we use a homegrown commsec package
instead of OpenSSL, that is 3× faster on small messages.

In an arithmetic sharing scheme, private (secret) values never exist concretely
but instead are represented by three separate shared values, each of which lives
on one of the peer servers. A value is shared between the machines in a form
that is dependent on its type. Fixed-width integer types (e.g Int16, Int32, etc)

Application-Scale Secure Multiparty Computation 11

are shared arithmetically. Thus, a true value x in Int16 will be shared as three
randomly drawn values xA, xB , xC such that x = xA+ xB + xC (mod 216). The
shares are produced originally by generating xA and xB randomly from a uniform
distribution, and then defining xC = x− xA − xB . Despite xC being computed,
each one of the three numbers exhibit the properties of being fully random, and
knowledge of any two of the numbers provides absolutely zero knowledge about
the original private value1. Subsequently, the computational protocols maintain
the share property through the calculations that are performed.

Sharing is lifted to structured types as follows: tuples of private values are
shared component-wise, and fixed-length sequences of values (i.e. lists or arrays)
are shared element-wise. Thus, a private value of a sequence [x, y, z] will be
shared as three (equal length) sequences of randomly drawn values [xA, yA, zA],
[xB , yB, zB], [xC , yC , zC] such that x = xA + xB + xC , and so on. Sequences of
bits are a special case of more general sequences. They need to be handled in
an efficient way (else the overhead can kill many algorithmic improvements), so
we treat fixed-width bit-vectors (represented as unsigned integers in the Share-
Monad library) as if they were sequences of individual bits (i.e. elements of Int1,
where multiplication is just boolean AND, and addition is XOR). Thus, a pri-
vate value x in Word8 (a bit-vector of length 8) will be shared as three randomly
drawn values xA, xB , xC such that x = xA ⊕ xB ⊕ xC (where ⊕ is bitwise xor).

To add together two private numbers which are represented by shares, we
can simply add together the component shares and we are done. To multiply
two private numbers, we have to compute nine partial products of their shares
(Fig. 2).

Fig. 2. Computing the Partial Products

Each machine already has the values it needs to enable it to compute one of
the entries on the diagonal. If each machine also communicates its shares of x
and y to its neighbor (according to the pattern in Fig. 1), then every partial
product in the matrix can be computed by somebody. All three machines are

1 Even if given two of the values, xA and xC say, every possible value for x has equal
probability, depending entirely on the value of xB.

12 J. Launchbury et al.

operating loosely in lockstep, so all are executing the same instruction at around
the same time. On receiving the neighbor’s value, each machine computes three
partial products, XORs them together, and now has a share of the full product.

We need an additional refinement. If we performed multiple multiplications
in a sequence, we could easily end up rotating particular share values to all
three servers. This would then reveal enough information to reconstruct a pri-
vate value, and so violate security. To avoid this, we take an extra step and
re-randomize the shares before communication. Because of this, each use of mul-
tiply communicates re-randomized shares, and so no information accumulates.
Cryptographically, this makes the multiply operation universally composable,
that is, we can use it repeatedly without fear of violating security. As the addi-
tion operation requires no communication, it automatically has this property.

3 Applications

We selected two target applications: a secure mail filter, and secure VoIP tele-
conference calling. They exhibit a significant divergence in application charac-
teristics. The mail server is a batch process that evaluates regular expressions,
and the VoIP system is a soft real-time system using simple audio algorithms.
We describe each of the applications, including their set-up, and then turn to
consider how to scale the secure computation components in each.

3.1 Secure Mail Filter

In the secure mail filter architecture in Fig. 3, the sender S writes an email
in Thunderbird. We created a plug-in that encrypts the email, and sends an
encrypted email package to a stock mail server.

Fig. 3. Architecture of the Secure Mail Filter

We also created a “milter” plug-in for the mail server using the standard
mail filter interface. The mail server automatically passes the encrypted email
package to the plug-in, which is just a coordinator component that forwards the
package to each of three cooperating share servers and awaits their responses.

Application-Scale Secure Multiparty Computation 13

As we shall see in a moment, the share servers each open the encrypted package
(to the extent that they are able), extract random shares of the encrypted email,
and together engage in a cooperative secure computation to analyze encrypted
e-mail. When they have done their work, they return a random share of their
boolean response to the plug-in, who XORs them together to obtain the mail
filter response. If the answer is in the affirmative, the mail server forwards the
message packet on to the recipient R. Otherwise, the mail server informs S of
the rejection.

Communicating with the Share Servers. The sender S constructs an en-
crypted packet of data such that each of the recipients can extract exactly what
they need, and no more than they should. In particular, neither the mail server
nor the plug-in filter coordinating component should be allowed to know the
content of the email. The three share servers A,B and C should each be able
to obtain a random share of the original email, and the ultimate receiver of
the email, R, should be able to read the whole thing—assuming the message is
permitted through the email filter.

To accomplish all this, S uses a stream cipher encryption algorithm, Enc,
such as AES in counter mode, together with a public-key system, Pub, such as
RSA. S randomly generates three share-keys kA, kB and kC , for the three share
servers, and then computes a pseudo-random stream kA = EnckA(0) (the stream
of zeroes encrypted using the stream cipher), and similarly computes pseudo-
random streams kB and kC . Using these streams as one-time pads, S creates a
cipher text of the email message CT = m⊕ kA ⊕ kB ⊕ kC .

S now constructs and sends a package containing CT , together with targeted
encryptions of the keys, namely PubR(kA, kB, kC), PubA(kA), PubB(kB), and
PubC(kC), where PubA() is encryption using A’s public key, and likewise for
B, C, and R.

On receipt of the package, each of the servers A,B and C obtains the respec-
tive keys kA, kB and kC (using their private keys), and now each can locally
compute a copy of their designated pseudo-random stream: A computes kA and
B and C likewise. Using these streams, each of A, B, and C can construct a share
of the original email message m: share mA = kA ⊕ CT , share mB = kB ⊕ CT ,
and share mC = kC ⊕ CT . The XOR (⊕) of these three is the original message
m as all the pseudo-random streams will cancel out.

Note than none of the servers are able to reconstruct m itself. In contrast,
should the message pass the filter and be sent on, the recipient R will be able to
reconstructm, because it has been sent the keys that generate the three one-time
pads.

The Secure Computation. The decision as to whether to send the email to
the recipient or not is to be based on the result of evaluating a regular expression.
For example, a filter for rejecting emails containing paragraphs with particular
security markings might start to look something like this:

.*(((TOP|)SECRET)|TS|S)--SI--NO(CON|CONTRACTOR|FORN|FOREIGN).*

14 J. Launchbury et al.

Each of the three share servers will know the regular expressions being used, but
such details may be kept private from everyone else if desired.

There are many ways to evaluate regular expressions in plain text. For the
secure setting we chose an algorithm based on non-deterministic finite automata
(NFA), as opposed to selecting on the DFA algorithms. As every step of the
algorithm has to operate over the whole of the state anyway (so as not to reveal
which states are active), it makes sense to have many of those states active
during computation2.

For concreteness we used an efficient NFA algorithm that has been beautifully
described in Haskell [FHW10]. The clarity of the description made it particularly
easy to re-express the algorithm in our Haskell-based share language. We do not
need to describe the algorithm in detail here. Suffice it to say that the algorithm
uses a tree representation of the regular expression to represent the state, with
each node of the tree flagged (or not) if the corresponding position in the regular
expression is a match for the portion of the string consumed so far.

Fig. 4 shows an example for the regular expression (xy)*x after consuming
just the input "x".

Fig. 4. Match-Annotated Regular Expression

For each new input character, the algorithm computes how to update the set of
matched flags. That is, the matching function updates the flag-states on receipt
of each new input character to produce a new flag-state for the computation on
any remaining input characters. The flag corresponding to the top of the tree
indicates whether the input so far has matched the entire regular expression.

3.2 Application 2: Secure VoIP Teleconference

For the second application we selected a client-server VoIP teleconference ap-
plication that performs audio mixing of encrypted audio streams in real time.

2 It would be interesting future work to explore the alternative choice: select a DFA
algorithm, expand the NFA state set into a corresponding DFA state set (which can
be significantly larger), and then use locality of the active state to gain amortized
complexity improvements in the resulting secure computation.

Application-Scale Secure Multiparty Computation 15

As Fig. 5 shows, the architecture we used for the VoIP application is very similar
to the mail filter application. This allowed us to re-use parts of the infrastruc-
ture even though the characteristics of the underlying computation were very
different.

Fig. 5. Architecture of the Secure VoIP Teleconference

The client is a slightly modified open-source iOS-based implementation of the
popular Mumble application[Mum], running on iPhone 5s, iPad Mini, and iPad
Touch devices. The server is a modified open-source Linux-based implementation
of the uMurmur VoIP server application, together with three share servers to
perform the encrypted merges.

As with the mail filter setup, we communicate to the share servers by nego-
tiating temporary keys, but with two differences. First, we negotiate temporary
keys just once at the start of the audio stream and use the same keys throughout.
Second, each client will generate a pair of keys for each server, one for the audio
stream sent to the server, the other for the stream being received.

Each client samples audio into a 16kHz PCM data stream of 16-bit fixed point
values. These are encoded by logarithmic compression to 8-bit uLAW samples.
To tolerate processing and transmission latencies, the clients collect samples into
1440-sample packets, each packet containing 90ms of audio.

To transmit the audio, each client encrypts each audio packet by XORing the
data with the XOR of the three pseudo-random streams, as with the mail filter.
Similarly, the share servers each receive the data and extract their individual
share of the audio packet by XORing it with their individual pseudo-random
stream.

In each 90ms epoch, the share servers will compute multiple result streams—
one for each client—by merging all the streams except for the client’s own input
audio stream. This saves us having to do echo-cancellation, but means the com-
putation has to be repeated n times (for n clients). For each-8 bit packet of
compressed audio, the computation is as shown in Fig. 6.

For each encrypted compressed sample in the packet, the share servers have to
(1) decompress the sample to reform a 16 bit PCM sample, (2) add the decom-
pressed value to the corresponding values in the packets from the other clients,

16 J. Launchbury et al.

Fig. 6. Data Processing of Audio Packets

making sure that overflow or underflow are handled by graceful clipping, and (3)
recompress the resulting 16-bit output audio sample into 8-bits for sending to
the client. All of this has to be done cooperatively as the samples are encrypted
throughout.

This process is repeated for each client packet received during the epoch.
Thus for four clients, each share server has to perform 23,040 secure add-and-
clip computations3 every 90ms!

At the end of each 90ms epoch, the three share servers all XOR the result with
the output key for each client, and send each result to the respective client. On
receipt, each uMurmur client performs a matching decryption, and the samples
in the resulting decrypted audio packet are uLAW decoded into 16 bit PCM
format and inserted into a queue for audio playback.

4 Scaling the Secure Computation

Now that we have the structure of the applications, we turn our attention to
ensuring the secure computation can scale to provide sufficient performance.
Our notion of “sufficient” is not rigorous here; it is intended to reflect whether
the results are even in the vicinity of being practical or not.

4.1 Secure Mail Filter

As with many EDSLs, the ShareMonad can produce many different kinds of in-
terpretations of its “programs”. One of the interpretations is an abstract repre-
sentation of the arithmetic and/or logical “circuit” described in the ShareMonad
program. In effect, it represents a partial evaluation of the program, leaving be-
hind only the portion that needs to be executed securely.

As we noted earlier, in a step-by-step algorithm like regular expression
matching—where each step consumes another input character—the circuit takes
two kinds of input: the state of the computation from previous steps, and the
new character being consumed. In turn it delivers a value representing the state

3 23,040 = 1440 samples × 4 input packets × 4 distinct audio result streams.

Application-Scale Secure Multiparty Computation 17

after this character has been considered. The updated state is used as the input
state for the next character (Fig. 7). We also have shown extracting a boolean
representing whether the whole regular expression has been matched.

Fig. 7. Two Steps of the Recognizer

This is a raw circuit representing a single step of the recognizer. There is much
we can do with the circuit to optimize it for execution. We group these in two
phases: Simplification and Scheduling.

Simplification. The most expensive operation is AND (i.e. boolean “multi-
ply”), so we apply many transformations to remove as many of these as possible.
A representative set of simplifying transformations is shown in Table 1.

Table 1. Simplification Transformations

Precondition Before After

Idempotence a ∧ a a
Factorization (a ∧ b)⊕ (a ∧ c) a ∧ (b⊕ c)
Constants c �= d (x = c) ∧ (x = d) F
Assoc. and commut. a ∧ (b ∧ a)) a ∧ b
Redundancy a⇒ b a ∧ b a
Eliminate AND a ∨ b a ∧ b ¬(a⊕ b)

Most of the transformations are straightforward to implement. The last two
deserve special mention, specifically because of the preconditions. These have to
be proven to hold before the transformation is valid. We use the DepQBF solver
[LB10] to verify whether the precondition holds, and only perform the transfor-
mation accordingly. Fig. 8 shows a small example of the kinds of improvements
we get using these transformations.

In this case, the three ANDS we had before optimizations were reduced to one,
the four state variables were also reduced down to one, and significantly, whereas

18 J. Launchbury et al.

Fig. 8. Example of the Effects of Simplification

the original circuit would have required three rounds of communication, the
optimized circuit only requires one. Obviously this is a very simplistic example,
but the same kinds of result show up on much larger examples.

Unfortunately, the use of the logic solver is fairly time consuming (during
compile time). To keep it manageable, we iterate it in the context of state-
functions like the regular expression recognizer. That is, we optimize the circuit
for one character; we then combine that circuit with itself to get a circuit for two
characters (like in Fig. 7), which we then simplify and optimize. We then repeat
the composition to get a circuit for four characters, then eight, and so on.

When do we stop going around this Simplify-Compose cycle? When we reach
a point of diminishing returns. Fig 9 shows the effect of running this cycle over
the recognizer circuit we get for a regular expression of the form:

.*(((TOP|)SECRET)|TS|S)--(ROCKYBEACH|STINGRAY).*

.*(((TOP|)SECRET)|TS|S)--SI--NO(CON|CONTRACTOR|FORN|FOREIGN).*

.*(((TOP|)SECRET)|TS|S|R|RESTRICTED)--(AE1|DS1|MT1|ST1)--LIMDIS.*

.*ac*cb.*

As the table shows, by the time we have composed two copies of the recognizer
circuit the state is as small as it ever will be, but other measures are still im-
proving. Through to the point where we have eight copies composed together,
all the measures are still increasing by less than a factor of two, even though the
input size is doubling. This starts to change in the transition from 8 to 16. At
16 copies of the recognizer, we have more than doubled the number of gates (be-
cause our heuristics are timing out on some of the larger circuits), and even the
most crucial measure—the number of communication rounds—almost doubles
too. Thus we can see that there is not much to choose between 8 or 16 copies of
the recognizer, though we choose to use the 16 circuit because of the importance
of minimizing the number of communication rounds. Multiple communication
rounds causes the computation to stutter, introducing significant overheads.

Application-Scale Secure Multiparty Computation 19

unoptimized optimized

input ands xors state comms ands xors state comms

1 203 0 358 10 149 15 119 4
2 388 0 358 12 277 27 117 5
4 756 0 358 14 493 53 117 6
8 1492 0 358 19 949 104 117 9
16 2964 0 358 33 1,950 212 117 17

Fig. 9. Optimization across Multiple Input Characters

Notably, our simplify-compose cycle has been very effective: have reduced the
number of communications from 10 per character (unoptimized) to scarcely more
than 1 per character.

Scheduling. It seems natural to perform each AND computation as early as
its inputs become available. However, as Fig. 10 shows by graphing number of
bits against communication round, this can lead to unbalanced communication
patterns.

Fig. 10. Effect of Early vs. Late Scheduling

The graph shows an early spike in the number of bits being communicated
(as many gates can be evaluated), with a long later tail in which very few bits
are communicated. If we were just doing one computation this wouldn’t matter
as the number of bits is small, but we plan to do thousands of these together. In
order to maximize flexibility in packing many copies of an execution together,
we would like these communications to be as evenly balanced as possible. It
turns out that the equally simple (but counter-intuitive) approach of scheduling
each AND computation as late as possible produces less extreme peaks in the
balance of communications, so we adopt this by default. It may be worth putting
in additional effort to balance the communications more evenly still, but we have
not done this.

20 J. Launchbury et al.

Once we have scheduled the communications, we gather all the bits and pack
them into 32 or 64 bit words in order to perform all the XOR and communication
operations at the word level.

4.2 Secure VoIP Teleconference

When we turn our attention to the VoIP teleconference application, it turns
out that the circuit characteristics are so different from the regular-expression
circuits that we had to take a completely different tack.

Our first implementation was a direct implementation of the algorithm, where
we decompressed the compressed audio samples to 16-bit values, added and
clipped, and then recompressed. Unfortunately the result was running at about
12 seconds of computations for each 90ms audio sample!

The problem was in the combination of addition and clipping. Addition of
16-bit values can be done very efficiently so long as the values are stored as inte-
gers modulo 216 (or larger). However, clipping required comparison operations.
These are expensive unless the value is stored as a sequence of separate bits (i.e.
not an arithmetic encoding). Whichever encoding is chosen, at least one of the
operations is expensive.

We needed a different approach. We were able to take advantage of one sig-
nificant characteristic of the computation: there are not many bits of input. The
whole decompress-add-clip-recompress function on two streams takes 16 bits of
input and delivers 8 bits of output. This is a classic opportunity for the oblivious
lookup table we introduced previously [LAD12] (though we would have to work
to make it scale well to 16 bits of input). The lookup table works as follows: we
compute all possible values of the function in the clear, store them in the table,
and perform shared access to the table at run time. The shared access works
from randomized shares of the index value and delivers randomized shares of
the table entry. In this case the whole secure computation reduces to oblivious
table lookup.

Lookup Tables. Table lookup (i.e. simple array indexing) becomes tricky when
no individual server actually knows what index to look up. Instead, each share
server has a random share of the index value (i.e. a random value which if XORed
with the random values from the other share servers would represent the real
value). The servers have to do a cooperative computation to be able to obtain
random shares of the the content of the table at the appropriate location.

Note that the lookup algorithm has to act on all the entries of the table oth-
erwise a server must have had some information as to what the index value
was. Consequently, we should look to express the lookup protocol as some com-
putation across the whole table. In fact, the form is very simple if we have a
cooperative demux protocol that maps a binary representation of a value into a
linear, unary representation.

In plaintext, a demux function would map a binary representation of a value
into a unary representation. For example, a 4-bit demux would take a 4-bit value
and produce a 16-bit value (i.e. 24-bits) in which exactly one bit was set to 1,

Application-Scale Secure Multiparty Computation 21

the other bits all being 0. So, for example, with the convention that the demux
bits are numbered from left to right:

demux 0000 = 1000000000000000

demux 1000 = 0000000010000000

demux 1111 = 0000000000000001

and so on.
Still in the plaintext version, the table lookup is now just a kind of “inner

product” between the result of the demux function and the table itself (see
Figure 11), where the multiply operation is bit-masking. The result of the demux
is used to mask the corresponding table entry (i.e. return the entry or 0), and
the results across the whole table are XORed together. Only one bit resulting
from demux will be set, and this bit will select exactly the single row of the table
corresponding to the original index.

Fig. 11. Inner Product with Demux

We now simulate the plaintext algorithm with a randomized share version.
The shared demux computation would map a share of a 4-bit value, to a share
of a 16-bit value. That is, if x = xA ⊕ xB ⊕ xC , if d = demux(x), and if dA,
dB, and dC are the result of running the demux protocol on the xi’s, then
d = dA ⊕ dB ⊕ dC . For example, if we compute the demux of 0x8, again going
from 4-bits to 16-bits, then (subject to randomness) the di might be as follows:

d_A = 1011001011101011

d_B = 0011010011001101

d_C = 1000011010100110

^

Notice that only the indicated 9th position (representing the value 8) has odd
parity across all three shares; every other position has even parity.

Correctness of indexing is easy to establish. Each di is a randomized share of
the true demux d. That is, for each bit position j in the demux shares, dA(j)⊕

22 J. Launchbury et al.

dB(j) ⊕ dC(j) = d(j). Thus all these XORs will be 0 except for the single
bit position corresponding to the original index, which will have value 1. The
mask operation of the “inner product” function (written here as M) distributes
across ⊕, so that M(dA(j) ⊕ dB(j) ⊕ dC(j), e) = M(dA(j), e) ⊕M(dB(j), e) ⊕
M(dC(j), e). This means that we can compute the inner product operations
locally on each share machine. Demux is the only part that needs to be computed
cooperatively.

Demux. In plaintext, demux can be expressed as a divide and conquer algo-
rithm, satisfying the equation demux(bs++cs) = demux(bs)#demux(cs), where
++ is sequence concatenation, and # is cartesian product on sequences of bits.

For example, if demux "10" is given by "0010" and demux "01" is given by
"0100", then demux "1001" is given by "0000 0000 1000 0000", which is the
linearization of the product table between the two.

In our previous work, we had expressed the cartesian product as a parallel
multiply by expanding each of the smaller demuxes into structures the same size
as the result [LAD12]. The advantage was that we could just use the generic
multiply protocol. The downside was that the amount of communication is pro-
portional to the size of the final demux. This was fine for small tables (we were
previously only doing lookup tables with 256 elements), but now our tables are
starting to become large (with 65536 elements), and the communication band-
width dominates.

We note that bit-level cartesian product (#) distributes over XOR (⊕) just
like AND (&) does, so the multiplication table is identical to the table for AND.
We replicate the implementation of shared multiply—but using cartesian prod-
uct on bits sequences—to produce a direct implementation of shared cartesian
product. This means that our communications grow much slower than before. In
fact, for a table with 2n entries, we require log(n) communications, communicat-
ing O(2n/2) bits. In this case, where n is 16, we have 4 rounds of communication,
and around 700 bits per server being communicated.

The cartesian product # operation is specified recursively using the divide
and conquer pattern above. We find it valuable to leave the final expression
unexpanded. That is, if pi and qi are the randomized shares of the demuxes
of the upper and lower 8 bits of the original 16-bit index, then the shares of
the outermost call of # returns the value (pA#qB)⊕ (pB#qB)⊕ (pB#qA), and
correspondingly for the other shares. Instead of computing the final # we create
an abstract representation of the computation, or rather of (pA#qB)⊕(pB#(qB⊕
qA)). We can use this unexpanded definition of # to act as a pair of 2-dimensional
indices into the table, as indicated in Fig. 12. This unexpanded definition of #
reduces the size of the demux value used in the “inner product”: we now demux
two 256-bit values directly, instead of constructing one large 65535-bit value.

In exchange for the not having to construct the 64k value explicitly, we must
perform twice as many local XORs as we have to compute the “inner product”
of the table twice. As before, we use the indices to mask out table entries and
XOR the remainder. This calculation over the table requires 2× 64k operations,
which can still be expensive even though they are purely local. We have a further

Application-Scale Secure Multiparty Computation 23

Fig. 12. Two Dimensional Demux

optimization whereby we chunk the table in four rows at a time, and precompute
the selective XORs of these rows. This expands the table by a factor of 4, but
cuts the table computation time in half.

5 Assessment

Our goal was to test whether we were able to scale secure computation to
the levels required by applications. This is a fuzzy standard, but we can still
do qualitative assessments against it. We assess architecture, algorithmics, and
performance.

The architecture and infrastructure aspects of secure computation were able
to be integrated well. In both applications, despite having many different timing
and structure characteristics, we were able to adapt the application server to
interact with a secure computation engine in order to perform the core operations
securely. The bandwidth and latency requirements between the client(s) and the
server were scarcely altered.

Regarding algorithmics, the mail filter application was surprisingly easy. We
had to apply careful thought to find a version of the algorithm that would suit
the oblivious computation world, but once selected, the conversion to use secure
flags rather than plaintext flags was straightforward. This would not have been
the case if the algorithm used the flags to determine where to branch, but for us
it did not.

The VoIP application was tougher. Our first transcription of the algorithm
into the secure computation world was so slow that we initially despaired of ever
getting it to be relevant. However, the fact that it operates on small data items
turned out to be crucial. Once we thought to express the core of the algorithm
as a table lookup, the expression of the algorithm became trivial, though we still
had to work hard to get performance.

As for performance, we have to conclude that we are only just reaching the
point of usability. In the mail filter case, we are able to send a 1 page email,
analyze it with the regular expression described earlier, and obtain a response
in 30-60 seconds. We believe that there are a number of improvements we could
still apply (including increasing the use of parallel processing) that could reduce

24 J. Launchbury et al.

this by up to another order of magnitude perhaps, at which point it is indeed
starting to become practically relevant.

For the VoIP teleconference application, we conducted experiments both in
Oregon and Virginia, hosting our servers in the Amazon EC2 cloud instance
geographically closest to each experiment. In the first experiment, we conducted
audio teleconferences with up to four clients, using spoken voice as the audio con-
tent. Audio was reliably understandable by all participating speakers, though we
noted the presence of audible clicks and other artifacts. In the second experiment,
we streamed recorded music into an iPad Mini client via the device microphone,
and an audience of approximately 60 listened to the output audio stream on a
second client, an iPhone 5s. Except for occasional distortion corresponding to
spikes in network latency, audience members noted that audio quality was good,
approximating what might be expected of broadcast radio.

6 Related Work

The classic “real world” example of secure computation is a Danish beet auc-
tion in 2008 [BCD+08]. There, 1200 Danish farmers submitted randomized bids
to three servers that were run by distinct agencies. Each of the agencies was
considered well motivated to follow the multi-party protocols honestly, and the
confidentially built into the MPC protocols provided sufficient reassurance to
the famers, 78% of whom agreed that, “it is important that my bids are kept
confidential.”

Our table lookup has many aspects in common with private information re-
trieval (PIR) algorithms [CGKS95], except that we are working with peer ma-
chines rather than a client querying a distributed database. The O(

√
n) growth

in communication bandwidth we see (where n here is the size of the table, not
of the index), is directly comparable to that of PIRs. It will be interesting to see
whether the peer case can be conveniently generalized to more servers as with
PIRs.

The Sharemind system [BLW08] is built on the same principles as the system
described here. It too has three servers, and performs arithmetic sharing. In some
dimensions, the Sharemind system is more fully engineered than our ShareMonad
EDSL, in that it comprises a stand alone input language SecreC (i.e. much of
C, along with annotations for secrecy), a compiler, a low-level virtual machine
interpreter, and theorem proving support for privacy proofs. On the other hand,
the fact that we built an EDSL on Haskell means that we are able to bypass
most of those components and inherit them from the host language directly.

The SPDZ system [DKL+13] uses a similar computation model, except that
it works with precomputed multiplication triples. This provides two advantages:
it allows the online computation phase to work with any number of parties, and
it provides for covert security (a cheating party is extremely likely to be caught).

The relative performances of Sharemind, SPDZ and our ShareMonad are hard
to determine with accuracy, but there is some evidence they are all within factor
of two of each other, which in this world means roughly comparable (given that
we are all still discovering order of magnitude improvements!).

Application-Scale Secure Multiparty Computation 25

7 Conclusion

In all existing manifestations of computation on private values, multiplication
(both arithmetic and boolean) is exceedingly expensive compared with every
other operation. In arithmetic sharing (the setting of this paper) the expense
comes from the network communications and coordination required. In Yao gar-
bling, the expense arises because conjunctions are represented by encrypted gate
tables that have to be created, communicated and evaluated. In fully homomor-
phic encryption, the expense comes from multiplications dramatically increasing
the noise within the crypto value. These force the programmer to trade off be-
tween using larger security parameters or requiring more frequent noise reset
operations, which entail evaluating a homomorphic encrypted instance of the
decrypt operation.

When optimizing computations in MPC or FHE computational models,
we need to approach multiplications with the same mindset we use for disk
accesses—how do we minimize them, block them together, and hide the laten-
cies they incur? Some of these performance-improving techniques can be im-
plemented within the secure computation technique itself—for example, all the
MPC and FHE approaches are moving to produce SIMD versions of the basic
multiply operation (e.g. [SF11])—but that only goes so far. The rest of the opti-
mizations have to come from programming and/or compilation techniques that
are designed to optimize for this strange execution model.

This paper continues to explore the kind of algorithmic rethinking and com-
piler transformation that are required, but much more is needed before secure
computation is fully practical.

References

[BLW08] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for
fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

[BCD+08] Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen,
T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J.,
Schwartzbach, M., Toft, T.: Secure Multiparty Computation Goes Live.
In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343.
Springer, Heidelberg (2009)

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information
Retrieval. In: Proc. of IEEE Conference on the Foundations of Computer
Science (FOCS) (1995)

[DKL+13] Damgaard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.:
Practical Covertly Secure MPC for Dishonest Majority or: Breaking the
SPDZ Limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)

[G09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM
Symposium on Theory of Computing (STOC 2009) (2009)

[G04] Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2.
Cambridge University Press (2004)

26 J. Launchbury et al.

[LAD12] Launchbury, J., Adams-Moran, A., Diatchki, I.: Efficient Lookup-Table
Protocol in Secure Multiparty Computation. In: Proc. International Con-
ference on Functional Programming (ICFP) (2012)

[LB10] Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver.
JSAT 7, 2–3 (2010)

[Mum] http://mumble.sourceforge.net

[SF11] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011)
Manuscript at, http://eprint.iacr.org/2011/133

[Y86] Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the
27th IEEE Symposium on Foundations of Computer Science (1986)

[FHW10] Fischer, S., Huch, F., Wilke, T.: A Play on Regular Expressions: Functional
Pearl. In: Proceedings of the International Conference on Functional Pro-
gramming, ICFP 2010 (2010)

http://mumble.sourceforge.net
http://eprint.iacr.org/2011/133

An Array-Oriented Language with Static Rank

Polymorphism

Justin Slepak, Olin Shivers, and Panagiotis Manolios

Northeastern University
{jrslepak,shivers,pete}@ccs.neu.edu

Abstract. The array-computational model pioneered by Iverson’s lan-
guages APL and J offers a simple and expressive solution to the “von
Neumann bottleneck.” It includes a form of rank, or dimensional, poly-
morphism, which renders much of a program’s control structure im-
plicit by lifting base operators to higher-dimensional array structures.
We present the first formal semantics for this model, along with the first
static type system that captures the full power of the core language.

The formal dynamic semantics of our core language, Remora, illu-
minates several of the murkier corners of the model. This allows us to
resolve some of the model’s ad hoc elements in more general, regular
ways. Among these, we can generalise the model from SIMD to MIMD
computations, by extending the semantics to permit functions to be lifted
to higher-dimensional arrays in the same way as their arguments.

Our static semantics, a dependent type system of carefully restricted
power, is capable of describing array computations whose dimensions
cannot be determined statically. The type-checking problem is decidable
and the type system is accompanied by the usual soundness theorems.
Our type system’s principal contribution is that it serves to extract the
implicit control structure that provides so much of the language’s expres-
sive power, making this structure explicitly apparent at compile time.

1 The Promise of Rank Polymorphism

Behind every interesting programming language is an interesting model of com-
putation. For example, the lambda calculus, the relational calculus, and finite-
state automata are the computational models that, respectively, make Scheme,
SQL and regular expressions interesting programming languages. Iverson’s lan-
guage APL [7], and its successor J [10], are interesting for this very reason. That
is, they provide a notational interface to an interesting model of computation:
loop-free, recursion-free array processing, a model that is becoming increasingly
relevant as we move into an era of parallel computation.

APL and J’s array-computation model is important for several reasons. First,
the model provides a solution to Backus’s “von Neumann bottleneck” [1]. In-
stead of using iteration or recursion, all operations are automatically aggregate
operations. This lifting is the fundamental control flow mechanism. The iteration
space associated with array processing is reified as the shape of the arrays being

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 27–46, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

28 J. Slepak, O. Shivers, and P. Manolios

processed. Though the paradigm is not without implementation challenges of its
own, it at least holds out the promise of eliminating the heroic measures required
by modern compilers (e.g., the construction of program-dependency graphs and
their difficult associated decision procedures [20]) to extract parallelism through
the serialised program’s obfuscatory encoding.

Second, operator lifting provides a form of polymorphism based on operands’
rank, or dimensionality. An operation defined for arguments of one rank is auto-
matically defined for arguments of any higher rank. They are thus parameterized
over the ranks of their inputs. The operator for scalar addition is also used for
adding a vector to a matrix, a scalar to a three-dimensional array, and so forth.

Third, despite its great expressive power, the core computation model is sub-
Turing. Lifting operations to work on aggregate structures means the control
structure is embedded in the data structure. With a finite data structure rep-
resenting the program’s control structure, all iteration is bounded. Thus APL’s
computational model has the potential to occupy a “sweet spot” in language de-
sign: increased analytic power without surrendering significant expressiveness.

1.1 Addressing the Model’s Shortcomings

Iverson received a Turing award for the design of APL, and the language is
often cited as an example of beautiful design [4]. Yet the language—and its
accompanying model of computation—has received little study from the formal-
semantics research community. Iverson worked almost entirely isolated from the
rest of the programming-language research community, even adopting his own
private nomenclature for his sui generis language mechanisms. Iverson never
developed a formal semantics, or a static type system for his language designs.
The beautiful, crystalline structure of the core language accreted non-general
ad hoc additions. For example, APL’s reduction operator is able to correctly
handle empty vectors when the function being folded across the vector is a
built-in primitive such as addition or min: base cases are provided for these
functions. Programmers who wish to reduce empty vectors with programmer-
defined functions, however, are out of luck.

We address many of the shortcomings of the model and its associated language.
First, we define a core language that expresses the essence of the rank-polymorphic
array-processing model, along with a formal semantics for the language. Besides
eliminating ambiguity and pinning down the corner cases, developing the formal
semantics enabled us to replace some of APL and J’s ad hoc machinery with regu-
lar, general mechanisms. Our treatment of higher-order functions, for example, is
much more general; this, in turn, allows us to extend the basic array-lifting model
to permit arrays of functions (that is, in the function position of a function appli-
cation) as well as arrays of arguments. This effectively generalises the language’s
computational model from SIMD to MIMD.

With the essence of the array-computational model captured by our untyped
core language and its dynamic semantics, we then develop Remora, a language
whose static type system makes the rank polymorphism of a program term
explicit. Our type system is a significant result for four reasons:

An Array-Oriented Language with Static Rank Polymorphism 29

Soundness. We provide a safety theorem connecting the well-typed term judge-
ment to the dynamic semantics of the language. Our type system guarantees
that a well-typed term will never become stuck due to the shape or rank of an
array argument failing to meet the requirements of its operator.

Expressiveness. It permits typing a term that produces an array whose shape
is itself a computed value. Our type system is based on Xi’s Dependent ML[18]
and tuned to the specific needs of Remora’s rank polymorphism.

Decidability. Despite its expressive power, the dependent elements of Remora’s
type system are constrained to make the type-checking problem decidable.

Control structure. It exposes the iteration space. Recall that the point of Iver-
son’s rank polymorphism is to permit programmers to write programs using
element operators that are automatically lifted to operate across the iteration
space of the aggregate computation. This means that Remora’s static types make
the implicit, unwritten iteration structure of a Remora term explicit. In short,
our static semantics provides the key “hook” by which compilers can reason
about the structure of the computation.

We have implemented the semantics we present using PLT Redex [6]. Our hope
(for future work) is that we can exploit this type information to compile programs
written in the rank-polymorphic array computation model efficiently: either by
translating the reified iteration-space axes of an array back to a serialised, nested-
loop computation, or by parallelising the program.

Note that Remora is not intended as a language comfortable for human pro-
grammers to write array computations. It is, rather, an explicitly typed, “essen-
tial” core language on which such a language could be based.

2 Background: Array-Oriented Programming

2.1 Iverson’s Model

The essence of Iverson’s array-oriented programming model, which appeared
in APL [7] and was later expanded in its successor J [10], is treating all data
as regular, i.e., hyperrectangular, arrays. The individual scalar elements of an
array, such as numbers or booleans, are referred to as atoms. Every r-dimensional
array has a shape, which is a vector of length r giving the dimensions of the
hyperrectangle in which its atoms are laid out. The value r is called the array’s
rank : for example, a matrix has rank 2, a vector has rank 1, and a scalar is taken
to have rank 0. An array can be represented using only its shape and its atoms.

The notation we will use for arrays looks like [2, 3, 5]3, meaning a 3-vector
whose atoms are 2, 3, and 5. A rank 0 array will be written [12]•, with • de-
noting an empty shape vector. We write [9, 8, 7, 6, 5, 4]2,3 for a 2 × 3 matrix,
[2, 4, 6, 8, 1, 3, 5, 7]2,2,2 for a 2 × 2 × 2 array, and so on. For readability, it is
sometimes convenient to write arrays in a matrix-like layout:[

9 8 7
6 5 4

]
2,3

30 J. Slepak, O. Shivers, and P. Manolios

An array may also be written with unevaluated expressions:[
(− 10 1) (− 10 2) (− 10 3)

]
3

Rank Polymorphism and Frame/Cell Decomposition. An array can be
viewed at several different ranks. A 4 × 3 numeric matrix can be viewed as a
4× 3 frame of scalar cells, a 4-element frame of 3-vector cells, or a scalar frame
whose single cell is a 4× 3 matrix. More generally, a rank-r array can be viewed
r + 1 different ways: from a rank r frame containing rank 0 cells to a rank 0
frame containing a single rank r cell.

Every function has an expected rank for each of its arguments. The expected
rank can be a natural number n, indicating that the argument should be viewed
as containing rank n cells contained in a frame of unspecified rank. Simple arith-
metic functions such as + and log expect arguments with rank 0, i.e., scalars.
Applying a function expecting a rank n input to an array of higher rank n′ ap-
plies the function to the array’s n-cells, collecting the multiple outputs into the
remaining n′ − n dimensional frame. A function can also have expected rank of
∞; such functions consume an entire array of arbitrarily high rank, so they are
never lifted. For example, length extracts the first element of an array’s shape
vector—how long the array is. The programmer may write a function with neg-
ative argument rank −n. Lifting then breaks arguments into a rank n frame
around cells of unspecified rank (the “−n-cells”), and then the function’s body
processes each cell. A function with −1 argument rank which finds its argument’s
length effectively extracts the second dimension instead of the first.

∗ [1, 2, 3]3 [10]• �→ ∗ [1, 2, 3]3 [10, 10, 10]3 �→ [(∗ 1 10), (∗ 2 10), (∗ 3 10)]3

+ [10, 20, 30]3

⎡⎣1 2
3 4
5 6

⎤⎦
3,2

�→ +

⎡⎣10 10
20 20
30 30

⎤⎦
3,2

⎡⎣1 2
3 4
5 6

⎤⎦
3,2

�→

⎡⎣ (+ 10 1) (+ 10 2)
(+ 20 3) (+ 20 4)
(+ 30 5) (+ 30 6)

⎤⎦
3,2

Fig. 1. Automatic expansion of array arguments

To lift a function of multiple arguments, the frames must be brought into
agreement by duplicating the cells of the smaller-framed argument (the new ele-
ments are underlined in Figure 1). After this duplication, all arguments’ frames
are the same; this permits the cell-wise function application. The way argument
arrays are expanded to the same frame means that function application is only
valid if one argument’s frame is a prefix of the other argument’s frame. This is
the prefix agreement rule introduced by J.

Manipulating the Iteration Space. Under this implicit lifting, the iteration
space is the argument frame rather than a sequence of loop indices. The pro-
grammer is not required to consider the shape of the array as would be necessary

An Array-Oriented Language with Static Rank Polymorphism 31

when operating on a nested vector with nested calls to map. A function writ-
ten to alter an RGB pixel can be used as-is to make the same transformation
on every pixel in an image or video. If the transformation is the same for all
three color channels, it can simply be written as a scalar function. Generalizing
the lifting to multiple arguments, an interpolation function can be used on a
matrix of “low” and “high” points with a vector of estimated points. J also in-
cludes several second-order operators for manipulating the iteration space. For
example, reduce collapses the −1-cells of an array to a single −1-cell using a
specified binary operator, such as using * to transform [2, 4, 5]3 into 2 ∗ 4 ∗ 5.
The prefix and suffix operators apply a function to the successive prefixes or
suffixes of an array, viewing the array as a list of cells with unspecified rank. The
results are then put together as cells in a list. A sum function could be applied by
prefix to [2, 4, 5]3 to compute the running sum, [2, 6, 11]3. Some operations such
as convolution make use of a sliding window iteration pattern, using a window

operator which applies a given function over a sliding window of a given shape
and assembles the results in a frame corresponding to possible window positions.

The programmer can use the rerank operator to change the argument rank
of a function. The vector-matrix sum example in Figure 1 effectively treats the
vector as a column by duplicating its 0-cells. If + is reranked to expect a vector
argument, the 1-cell (i.e., the entire vector) is duplicated, so it is used as a row
vector. This reorientation technique generalizes to higher-ranked arrays.

By reranking append, the programmer can stitch together arrays by sequenc-
ing them on a chosen axis. For example, applying append to two matrices will
place the vectors (i.e., rows) of one matrix after those of the other. This requires
that they have the same number of columns. It produces a matrix with as many
rows as the two arguments combined. If append is reranked to 1, then it acts on
corresponding pairs of vectors, so the two matrices are required to have the same
number of rows. Each scalar in a row corresponds to one column in the matrix.
Thus the number of columns in the resulting matrix is the sum of the numbers
of columns in the argument matrices. Reranking also allows the programmer to
reduce along any chosen axis. The argument is split into cells of the chosen
rank, each cell is reduced along its major axis, and the results are reassembled
in the wrapper function’s frame.

Boxes. Wrapping an array in a box makes it appear scalar, even if it contains
a non-scalar array. This makes it possible to safely produce and consume non-
regular arrays. Boxes are handled explicitly—a common pattern in J code for
operating on boxed data is to compose box, the desired operator, and unbox.

2.2 Related Work

Originally, APL implicitly lifted scalar functions to aggregate functions via point-
wise application, either on a scalar and an aggregate or on two aggregates of the
same shape. APL was later enriched with attribution of rank to functions, mean-
ing the rank a function expects its arguments to have. This led to the “frame of
cells” view of an array and gave a sensible way to lift functions defined only for

32 J. Slepak, O. Shivers, and P. Manolios

aggregates to operate on aggregates of even higher rank. J uses the more general
lifting rule, prefix agreement, which allows the aggregate lifting to handle ar-
rays of non-identical shape. J retains APL’s distinction between data, first-order
functions, and second-order functions. Implicit aggregate lifting is still limited
to first-order functions.

The design of J still handles many situations through specially-chosen default
behavior. For example, 0 and the space character are designated as “fill” elements
and used to pad shape-mismatched cells resulting from an application so that
they can all be assembled into the same frame. An unfortunate consequence is
that applying the composition of two functions may have a different result from
applying one function and then the other.

Thatte [16] described automatic lifting based on using coercion to insert map,
transpose, etc. where needed, but this system is limited to lifting scalar oper-
ations. It cannot, for example, automatically construct vector-matrix addition.

Ragan-Kelley et al. present Halide [14], a language for graphics processing. In
Halide, the computation to do at each pixel is written separately from the strat-
egy for ordering and parallelizing the pixels’ instances of that computation. This
is a similar idea to Single Assignment C’s WITH-loops [15]. Halide is, however,
designed specifically for image processing pipelines rather than general numeric
programming, which limits its lifting to the pixel-to-image case.

Xi’s Dependent ML [18] addressed the intractability of static type checking
in dependently-typed languages by limiting type indices to a separate, simpler
language. This technique makes it possible to check type equivalence without
having to check equivalence of program terms, which themselves may include
indexed types which must be checked for equivalence, and so on. An index erasure
pass converts a well-typed Dependent ML program into an ML program with
the same behavior. By adding singleton types for numbers, bounds checking for
array accesses can be done by the type system instead of at run time [19].

Like Remora, Trojahner and Grelck’s Qube [17] uses a type system based on
Dependent ML to statically verify structural constraints in array computation.
However, Remora and Qube differ significantly in both their dynamic and static
semantics. Qube, strictly speaking, does not address the “von Neumann” bottle-
neck: programmers still specify their programs down at the scalar-computation
level, using expressions that explicitly index elements from arrays. The structure
of the loop is also specific to the function being lifted and the array arguments to
which it is being applied, whereas Remora’s implicit lifting frees the programmer
from having to specify this detail.

Qube’s type system, then, is a device for guaranteeing dynamic safety, but
does not support the implicit lifting that gives APL its noted elegance and
concision. Qube’s heavy use of explicit array indexing necessitates the use of
singleton and range types, which in turn restrict the programmer’s ability to
write code that depends on user input.

Blelloch et al. created NESL [2,3], which focuses on explicit mapping over
nested one-dimensional arrays. Arrays need not be rectangular—they can be
jagged. It is possible, for example, to have a 2-array whose elements are a 4-array

An Array-Oriented Language with Static Rank Polymorphism 33

and a 5-array. Instead of näıvely breaking a parallel map into a task for each
sub-array, the NESL compiler uses a vectorization transformation to treat nested
arrays as flat vectors. This makes it possible to split the aggregate operation
at places other than sub-array boundaries, removing the load imbalance that
had previously been associated with mapping over jagged arrays. Data Paral-
lel Haskell [5] has adopted this vectorization technique. Haskell’s existing list
comprehensions are extended into parallel array comprehensions [13]. NESL and
DPH are still based on explicit looping which does not uniformly handle arrays
of varying rank as APL/J and Remora do.

More recent work by Keller et al. [11] shows how to use Haskell’s type sys-
tem to handle operations involving regular arrays in a shape-polymorphic way.
Instances of the typeclass of Shapes provide functions for extracting the rank
and size of an array of that shape as well as for indexing into the array. Func-
tions on arrays can be parameterized over the shape type and can effectively
place lower bounds on the ranks of arrays they accept. This system prevents
errors caused by underranked arguments but not those caused by mismatch in
individual dimensions and does not support the full prefix agreement rule.

Jay and Cockett [9] separated the shape of a data structure from its type. For
operations whose result shape is dependent only on argument shape, it is possible
to evaluate the shape portion of a program separately from the data portion.
Jay puts this to work in FISh [8], where arrays have both shape and element
type. Evaluating only the shapes of a program ensures that shape-related errors
cannot happen at run time, but requiring operators to determine their output
shapes only from their argument shapes is unworkably restrictive. For example,
it disallows critical functions such as iota, reshape, and readvec.

3 An Untyped Array Language

In J, functions are not first-class, and automatic lifting is restricted to first-order
functions. Lifting a function-producing function would allow the application to
produce an array of result functions. For example, in Figure 2, we apply a higher-
order function, curry-add, to two vectors. The result of the first application is
a vector of functions, which we then apply to a vector of numbers. In order to
do this, we must extend the lifting rule.

Function application itself can be thought of as an operation with expected
ranks—that is, in a function-application expression, both function and argument
can be arrays, as shown in the second half of Figure 2. Application requires a rank
0 array of functions and requires the arguments to have ranks expected by those
functions. All functions in the array must agree as to their argument ranks.
[(curry-add 1), (curry-add 2)]2 is a 2-vector of functions which both expect
rank 0 arguments. This gives 2 as the frame for both the function and argument
arrays. Now that the function and argument arrays have the same frame, each
function in the array is applied to corresponding cells in the argument arrays.
We then have [((curry-add 1) 20), ((curry-add 2) 30)]2.

The generalized lifting rule provides a way to express a kind of MIMD
computation not expressible in APL: the program can dynamically construct

34 J. Slepak, O. Shivers, and P. Manolios

(
[curry-add]•

[
1
2

]
2

)[
20
30

]
2

�→
[
(curry-add 1)
(curry-add 2)

]
2

[
20
30

]
2

�→
[
((curry-add 1) 20)
((curry-add 2) 30)

]
2

[
sum

length

]
2

⎡⎣89
6

⎤⎦
3

�→
[

sum

length

]
2

[
8 9 6
8 9 6

]
2,3

�→
[

(sum [8 9 6]3)
(length [8 9 6]3)

]
2

Fig. 2. Lifting the implicit apply

and apply an array of distinct functions. In computing a vector mean, we
require both the sum and the length. We can apply [sum, length]2 to a
vector, [8, 9, 6]3. The functions consume vectors, so there is only one argu-
ment cell. Duplicating this cell transforms the argument vector into a matrix,
[8, 9, 6, 8, 9, 6]2,3. Pointwise application then produces a vector of applications,
[(sum [8, 9, 6]3), (length [8, 9, 6]3)]2.

3.1 Syntax

Figure 3 presents the syntax and semantic domains for our untyped array lan-
guage. We use t . . . to denote a possibly empty sequence, t1 through tk. Thus
t t′ . . . represents a guaranteed-nonempty sequence. We may also use f(t) . . . to
represent f(t1) through f(tk). Expressions include arrays, variables, application
forms, and a let-like form for extracting the contents of a box. An array is either
a sequence of elements tagged with a sequence of naturals representing its shape
or a box containing any expression. Array elements are a broader syntactic class
than expressions, including base values (noted as b) and functions. Arrays are
allowed to syntactically contain sub-arrays; nested arrays are reduced to non-
nested arrays during evaluation. λ-abstractions can only be applied to arrays,
so variables can only represent arrays. A function is either a primitive operator
(noted as π) or a λ-abstraction.

e ::= α | x | (e e . . .) | (unbox (x = e) e) (exressions)

α ::= [l . . .]n ... | (box e) (arrays)

l ::= b | f | e (array elements)

b base values

f ::= π | (λ [(x ρ) . . .] e) (functions)

π primitive operators

ρ ::= z | ∞ (argument ranks)

z ∈ Z n,m ∈ N (numbers)

v ::= b | f | [b . . .]n ... | [f . . .]n ... | (box v) | [(box v) . . .]m,n ... (value forms)

E ::= � | (v . . . E e . . .) | [v . . . E l . . .]n ... | (box E) (evaluation contexts)

| (unbox (x = E) e)

Fig. 3. Syntax, value domain and evaluation contexts of the untyped array language

An Array-Oriented Language with Static Rank Polymorphism 35

The value forms are arrays with all elements fully evaluated. This allows them
to contain base values or functions but not application forms or variables. A box
is a value as long as it has a value for its contents. An array of box values is also
a value as long as the array is not itself a scalar (i.e., its shape vector must be
nonempty). A scalar array containing a box reduces to the box itself.

The built-in operators include conventional scalar operations, such as +, sqrt,
AND, etc. These all expect their arguments to have rank 0. The common list
operations—head, tail, init, last, and append—have argument rank ∞ so
that they can be used to build and destructure arrays of any rank (by reranking
at finite argument rank). The operations for manipulating the iteration space
described earlier (prefix, reduce, etc.) have argument rank ∞ for both the
function and data arrays they consume, and they can be reranked to any natural
or negative rank.

3.2 Semantics

Figure 4 gives the operational semantics, and figure 5 defines metafunctions used
by the semantics.

The β rule (analogous to β-reduction in the call-by-value λ-calculus) requires
that the function’s argument ranks match the ranks of the arrays being passed
to it. Similarly, the δ rule applies a scalar containing a built-in operator to
arguments which have the operator’s expected argument ranks.

The nat , lift , and map rules form the steps involved in lifting function appli-
cation for function and argument arrays of higher rank. The nat rule is used in
cases where some functions in an application form have infinite or negative argu-
ment rank. Primitives are tagged with the appropriate natural argument ranks
so that subsequent uses of Argrank �·� on this occurrence of the primitive will
recognize it as having the natural rank it takes on for this particular application.

The lift rule expands the function and argument arrays into the application
frame by repeating their cells. In cases where function and argument arrays’
frames are not all prefixes of a single frame, we have a shape mismatch—function
application cannot proceed, so evaluation is stuck (this would raise a “length
error” in J).

After an application has been naturalized and lifted, the map rule converts
function application in which the function and argument arrays are all over-
ranked by the same amount to an array of function applications. In the resulting
array, each application will have a scalar in function position, and all arguments
will have that function’s expected rank. We apply Cells to each argument array
to produce a list of lists of cells. Transposing the nested list produces a nested
list where the first entry contains all of the arguments’ first cells, the second
entry contains all of the arguments’ second cells, and so on. Each of these lists
is used as the arguments for the corresponding cell (i.e., single function) of the
function array. The reduction step produces an array of application forms whose
shape is the frame of the original application form.

After the application forms generated by map reduction have been evaluated,
we have an array of arrays. The collapse rules transform a nested array into a

36 J. Slepak, O. Shivers, and P. Manolios

non-nested array. If the inner arrays’ shapes differ, we have a shape mismatch,
and evaluation is stuck (this would induce J’s “filling” behavior mentioned in 2.2,
potentially causing unexpected results). For collapse1, the resulting array con-
tains the concatenated atoms of the inner arrays. Its shape results from prepend-
ing the shape of the outer array onto the shape of the inner arrays. In the case
of a scalar array containing a box, collapse2 reduces to just the box.

Once a box’s contents are evaluated, the unbox rule substitutes that value
into another expression. A function with an unbox form in its body can be used
to post-process another operation’s result cells to make sure their shapes match.

The Empty-Frame Dilemma. We require separate rules, lift0 and map0 , for
cases where an application form’s principal frame shape contains one or more
zeroes. Such a frame contains no cells, so the lifted function is not applied at
all. With no cells to generate, the result is an empty array, but there is no clear
way to choose the shape of the result array. That is, both a 2× 0× 7× 24 array
and a 2 × 0 × 365 array are empty arrays—they both have no elements. But
they are not at all the same array. If we are lifting a function across a 2 × 0
frame of argument cells, how can we determine the shape of the result cells? The
resulting array’s shape must at least start with the principal frame. The rest
of the shape is left to a nondeterministic choice, but a language may choose to
make a stronger guarantee about how m . . . will be chosen.

For example, in J, when a function is lifted to apply over an empty frame,
it is probed (at run time) by applying it to a cell whose atoms are all 0 or
the space character ’ ’ to determine the result cell shape (the cell itself is then
discarded). Unfortunately, this is not safe with an effectful function or one whose
result shapes are input-dependent, and it relies on having a bounded number of
data types. It is one of J’s more awkward corner cases, one that we will be able
to resolve cleanly by means of the type system developed in the next section.

Another option is to always consider the resulting cell shape to be scalar unless
some concrete cells are available to show otherwise. Lifted functions are often
functions on scalars, and this allows scalar operations to behave as expected on
empty arrays. The reduction rules could also be changed to make applying in an
empty frame a dynamic error.

3.3 Sample Code

We present here several examples of code in our untyped language. As noted
earlier, it is intended as a core, not surface, language.

A well-known case of manipulating the iteration space is sum:

(λ [(xs 1)] ([reduce]• [+]• ([append]• [0]1 xs)))

We can take advantage of automatic lifting for a simple dotprod operator:

(λ [(xs 1) (ys 1)] ([sum]• ([∗]• xs ys)))

An Array-Oriented Language with Static Rank Polymorphism 37

Applying term abstraction:(
[(λ [(x n) . . .] e)]• v . . .

)
�→β e [(x ← v) . . .]

where nj = Rank �vj�, for each j

Applying primitive operator:(
[π]• v . . .

)
�→δ δ(π, v . . .)

where 〈n . . . 〉 = Argrank �π�
nj = Rank �vj�, for each j

Rewriting with natural argument ranks:
([f . . .]n ... v . . .)
�→nat ([f ′ . . .]n ... v . . .)

where Argrank �fj� /∈ Nk for some j
f ′ = Naturalize �f , v . . . �

Pointwise application:
([f . . .]n ... v . . .)
�→map

[
([f]• α . . .) . . .

]
n ...

where f . . . is a nonempty sequence
〈n . . . 〉 = Argrank �fj�, for each j
0 < k = Rank �vj�− nj , for each j

((α . . .) . . .) = (Cellsn �v� . . .)�

Empty frame:
([f . . .]n ... v . . .)
�→lift0 []n′ ...m ...

where 〈ρ . . . 〉 = Argrank �fj�, for each j
ρj ∈ N for each j
0 ∈ n ′ . . . = Max �n . . . ,

Frameρ �v� , . . . �
Rank �vj�− ρj not same for all j
m . . . chosen nondeterministically

Empty function:
([]n ... v . . .)
�→map0 []n ... m ...

where m . . . chosen nondeterministically

Converting nested to non-nested:
[α . . .]n ...

�→collapse1 [Atoms �α� . . .]n ... Shape�α�

where no α contains a var or app form
no α is a box
all α have the same shape

Converting scalar of boxes to box:
[box v]• �→collapse2 box v

Extracting the contents of a box:
(unbox x=(box v) e) �→unbox e[x ← v]

Duplicating cells:
([f . . .]n ... v . . .)
�→lift

(
Dup0,n′ ...

�
[f . . .]n ...

�
Dupρ,n′ ...m′ ... �v� . . .

)
where 〈ρ . . . 〉 = Argrank �fj�, for each j

ρj ∈ N for each j
0 /∈ n ′ . . . = Max �n . . . ,Frameρ �v� . . . �
the ρj-cells of vj have shape m ′ . . .
Rank �vj�− ρj is not the same for all j

Fig. 4. Small-step operational semantics for an untyped array language

We can convolve a signal with a filter by using dotprod with the reverse of
one argument in a sliding window over the other:

(λ[(filter 1) (signal 1)]
([window]• ([length]• filter)

[(λ [(seg 1)] ([dotprod]• seg ([reverse]• filter)))]• signal))

38 J. Slepak, O. Shivers, and P. Manolios

Rank : Val ⇀ N
Rank

�
[l . . .]n ...

�
= length(n . . .)

Argrank : Fun → Rank∗

Argrank �(λ [(x ρ) . . .] e)� = ρ . . .

Naturalize : Fun × Val∗ ⇀ Fun
Naturalize �(λ [(x ρ) . . .] e), v . . . �
= (λ [(x n) . . .] e)

where ni = ρi if ρi ∈ N
ni = Rank �vi� + ρi if −ρi ∈ N
ni = Rank �vi� if ρi =∞

Frame : Rank × Val ⇀ N∗

Frameρ

�
[l . . .]m ... n ...

�
= (m . . .)

where length(n . . .) = ρ

Max : N∗∗ ⇀ N∗

Max �(n . . .)� = n . . .
Max �(n0 . . .), (n1 . . .) . . . , (nm . . .)�
= (n0 . . .)

if Max �(n1 . . .) . . . , (nm . . .)� � (n0 . . .)
= Max �(n1 . . .) . . . , (nm . . .)�

if (n0 . . .) � (n1 . . .)

Dup : Rank × N∗ × Val → Val
Dupρ, n ... m ... �[l . . .]d ... �
= [(l ′ . . .)k . . .]n ... m ...

where length(m . . .) = ρ
k =

∏ρ
j=1 nj

((l ′ . . .) . . .) = Cellsρ �[l . . .]d ... �

Cells : N× Val ⇀ Val∗

Cellsn
�
[l1 . . . lm lm+1 . . . l2m . . . lp−m+1 . . . lp]c ... d ...

�
= [l1 . . . lm]d ... [lm+1 . . . l2m]d [lp−m+1 . . . lp]d ... ,

where length(d . . .) = n∏n
i=1(di) = m

Fig. 5. Metafunctions used in array semantics

Iverson included many composition forms and operators. However, λ allows
the programmer or library implementor to define them. A simple compose op-
erator for two unary functions can be defined as:

(λ [(f 0)(g 0)] [(λ [(x∞)] (f (g x)))]•)

J’s fork form applies two functions (referred to as “tines”) to the same input
and then applies a third function to their results:

(λ [(f 0)(g 0)(h 0)] ([(λ [(x∞)] (f (g x) (h x)))]•)

A simple use of fork is computing the arithmetic mean:

(λ [(xs 1)] (([fork]• [/]• [sum]• [length]•) xs)

The fork divides the sum of its input by its length. The outer λ modifies the
argument rank of the resulting function, so the function produced by fork is
only applied to lists.

J also uses a hook form (based on the S combinator) for applying a binary
function to an argument and a transformed version of that same argument.

(λ [(f 0)(g 0)] ([(λ[(x∞)] (f x (g x)))]•)

An Array-Oriented Language with Static Rank Polymorphism 39

Without a general recursion operator, iota can be used as a limited form of the
classical unfold, allowing primitive recursion. Using iota to write factorial:

(λ [(n 0)]
(unbox (xs = ([iota]• [n]1))

([reduce]• [∗]• ([+]• [1]• (append [0]1 xs)))))

First, the input scalar is wrapped in a singleton vector and passed to iota to
produce a boxed vector containing [0, . . . , n− 1]. If n = 0, this vector is empty,
and later operations would have an empty frame, so we append 0. We then add
1 to get a vector containing [1, 1, . . . , n]. Reducing by ∗ gives n!.

We can use iota to evaluate a polynomial at a particular point, which uses
arguments of differing rank:

(λ [(coeffs 1) (x 0)]
(unbox (i = ([iota]• ([length]• coeffs)))

([reduce]• [+]• ([∗]• coeffs([ˆ]• x i)))))

We can also construct an iteration space with reshape, which is convenient
if we only need a single atom duplicated many times. The following repeat

operator uses compose iterated over a vector containing a single duplicated atom
to produce a function which applies that atom a given number of times.

(λ [(f∞) (n 0)]
(unbox (fs = ([reshape]• [n]1 f))

([reduce]• [compose]• ([append]• [id]• fs))))

Bounded looping with repeat can be used for finding the transitive closure
of an adjacency matrix. This example uses two additional functions which can
be defined in terms of λ. The dup function transforms a binary function into a
unary one which duplicates its argument and passes two copies to the underlying
binary function. We also use compose’, a variation on the compose function
defined above which produces a binary function, passing two arguments of ranks
1 and ∞ to its second input function and the result to its first input function.

(λ [(adj 2)]
((repeat (hook or (dup ([compose’]•

[(λ [(xs∞)] (reduce or true xs))]•
[(λ [(x 1) (y∞)] (and x y))]•)))

(lg (length adj))) adj))

The function constructed by compose’ applies and to each row of its first ar-
gument (this treats it as a column) and its entire second argument. The result
is a rank 3 array whose matrices are combined using or to produce a matrix
analogous to the matrix product of the original two arguments. Wrapping this
function with dup creates a unary function which transforms a matrix into its
“boolean product” with itself. The hook of or and this adjacency matrix trans-
formation is a function which updates an adjacency matrix to allow paths twice
as long. Finally, this process is repeated (lg (length adj)) = log2(|V |) times.

40 J. Slepak, O. Shivers, and P. Manolios

4 Types for Array-Oriented Programming

In order to eliminate shape-mismatch errors, our type system must be capable
of tracking arrays’ shapes. Dependent typing has been used in the past to im-
plement lists whose types specify their lengths via a natural number index. This
generalizes to an array type which is indexed by a list of natural numbers to spec-
ify its shape. If types can contain arbitrary term expressions, checking whether
two types are equivalent can require checking whether two terms are equivalent.
In order to keep type checking tractable, we use the technique of defining a
separate language of type indices, demonstrated by Xi et al. in Dependent ML
[18]. Separating the term and index languages eliminates the mutual dependence
between type checking and evaluation. An index language should be powerful
enough to express the desired type properties, but also simple enough that check-
ing index equivalence is tractable. In Dependent ML’s case, index equivalence is
checked via integer linear programming. The constraint domain associated with
our index language also includes lists of natural numbers; this combination of
theories is still decidable [12].

4.1 Syntax

Figure 6 gives the syntax for Remora. It includes several new expression and ele-
ment forms. They are introduction and elimination forms for universal types (Tλ
and T-APP), dependent products (Iλ and I-APP), and dependent sums (PACK and
UNPACK). Dependent sums effectively replace boxes from the untyped language.
A type or index abstraction or application form can be used as an element, and it
is a valid expressions as long as its underlying element is also a valid expression.
Multiple type or index abstraction forms in an array can each be given separate
type or index arguments to produce functions of the same type. Remora’s arrays
can have a type annotation rather than just a shape annotation. This ensures
that a concrete type can be determined for an empty array. For non-empty ar-
rays (those of the form [l l ′ . . .]), a shape annotation is sufficient, and the type
can be reconstructed by inspecting the array elements. It is assumed that similar
type annotations for all expression forms will be generated in type checking, but
these are not included in the regular program syntax.

Types include base types such as Num or Bool (noted as B) and arrays of
a given shape and element type (noted as Aιτ). An index can be a Nat (n.b.,
different from Num), a Shape (noted as (S ι . . .)), or the sum of two indices.

4.2 Static Semantics

The typing, kinding, and sorting rules are given in Figures 7 and 8. Types are
ascribed to elements (which can themselves be arrays). Rules for base types are
straightforward, but an example rule for numbers is given in Figure 7.

The kind judgment is simply a well-formedness check—all well-formed types
are of a single kind. K-Array accepts an array type as well-formed if its under-
lying type is well formed and its index is a Shape. K-Univ binds type variables,

An Array-Oriented Language with Static Rank Polymorphism 41

e ::= α | x | (e e′ . . .) | (Tλ [x . . .] e) | (T-APP e τ . . .) (exressions)

| (Iλ [(x γ) . . .] e) | (I-APP e ι . . .) | (PACK ι . . . e)τ | (UNPACK (〈x . . . |y〉 = e) e′)
α ::= [l . . .]τ | [l l ′ . . .]ι (arrays)

l ::= b | f | e | (Tλ [x . . .] l) | (T-APP l τ . . .) | (Iλ [(x γ) . . .] l) (array elements)

| (I-APP l ι . . .)

f ::= π | (λ [(x τ) . . .] e) (functions)

τ, σ ::= B | x | Aιτ | (τ . . . → σ) | (∀ [x . . .] τ) | (Π [(x γ) . . .] τ) (types)

| (Σ [(x γ) . . .] τ)

ι, κ ::= n | x | (S ι . . .) | (+ ι κ) (indices)

γ ::= Nat | Shape (index sorts)

z ∈ Z (numbers)

n,m ∈ N

v ::= [b . . .]τ | [f . . .]τ | b | f | (Tλ [x . . .] l) | (Iλ [(x γ) . . .] l) (value forms)

| (PACK ι . . . v) | [(PACK ι . . . v) . . .]A(S m n ...)τ

E ::= � | (v . . . E e . . .) | [v . . . E l . . .]τ | (T-APP E τ . . .) (evaluation contexts)

| (I-APP E ι . . .) | (PACK ι . . . E)τ | (UNPACK (〈x . . . |y〉 = E) e)

Γ ::= · | Γ, (x : τ) (type environments)

Δ ::= · | Δ, x (kind environments)

Θ ::= · | Θ, (x :: γ) (sort environments)

Fig. 6. Syntax for Remora

and K-DProd and K-DSum bind index variables at specific sorts. A variable
introduced in a universal type is only allowed to stand for a non-array type. This
is necessary in order to express polymorphic input types like “any scalar,” A(S)t

(with t bound by some ∀). Otherwise, A(S)t could describe any array type.
S-Shape requires that a shape be built from Nats. Constructing an index

with + requires that the summands be Nats, and the result will also be a Nat.
T-App must identify the frame associated with an application form, which

requires identifying the frames associated with the individual terms in the ap-
plication form. Recall that for a map reduction, the frames of every term in
the application must be the same, and for a lift reduction, there must be one
frame which is prefixed by every other frame. Once every term’s frame has been
determined, the next step is to find the largest frame, with the order given by
x � y iff x is a prefix of y. This will be the frame into which the results of the
lifted function will be assembled. If the set of frames has no maximum, then the
function application term is ill-typed.

The type equivalence relation ∼= is a congruence based on relating nested array
types and non-nested array types. An array of type A(S m ...)(A(S n ...)τ) is equiv-
alent to an array of type A(S m ...n ...)τ . This is the transformation which will be
made by a collapse step at run time and suggests that the fully-collapsed ver-
sion of a type is its canonical form. The reverse is analogous to breaking an array

42 J. Slepak, O. Shivers, and P. Manolios

Γ ;Δ;Θ � l : τ

Γ ;Δ;Θ � num : Num
(T-Num)

(x : τ) ∈ Γ

Γ ;Δ;Θ � x : τ
(T-Var)

τ ∼= σ Γ ;Δ;Θ � l : τ

Γ ;Δ;Θ � l : σ
(T-Equiv)

Γ ;Δ;Θ � lj : τ for each lj ∈ l . . .

Product �n . . . � = Length �elt . . . �

Γ ;Δ;Θ � [l . . .]A(S n ...)τ : A(S n ...)τ
(T-Array)

Γ, (x : τ) . . . ;Δ;Θ � e : σ

Γ ;Δ;Θ � (λ [(x τ) . . .] e) :

(τ . . . → σ)

(T-Abst)

Γ ;Δ;Θ � e : Aι (σ . . . → τ)

Γ ;Δ;Θ � e′j : Aκjσj for each j

ι′ = Max �ι, κ . . . �

Γ ;Δ;Θ � (e e′ . . .
)
: Aι′τ

(T-App)

Γ ;Δ, x . . . ;Θ � e : τ

Γ ;Δ;Θ � (Tλ [x . . .] e) :

(∀ [x . . .] τ)

(T-TAbst)

Γ ;Δ;Θ � l : (∀ [x . . .]σ)

Δ;Θ � τj for each j

no τj is an array type

Γ ;Δ;Θ � (T-APP l τ . . .) :

σ[(x ←t τ) . . .]

(T-TApp)

Γ ;Δ;Θ, (x :: γ) . . . � e : τ

Γ ;Δ;Θ � (Iλ [(x) . . .] e) :

(Π [(x γ) . . .] τ)

(T-IAbst)

Γ ;Δ;Θ � e : (Π [(x γ) . . .] τ)

Γ ;Δ;Θ � ιj :: γj for each j

Γ ;Δ;Θ � (I-APP e ι . . .) :

τ [(x ←i ι) . . .]

(T-IApp)

Γ ;Δ;Θ � e : τ [(x ← ι) . . .]

Γ ;Δ;Θ � ιj :: γj for each j

Γ ;Δ;Θ � (PACK ι . . . e) : (Σ [(x γ) . . .] τ)
(T-Pack)

Γ ;Δ;Θ � e : (Σ [(x γ) . . .]σ)

Γ, y : σ;Δ;Θ, (x :: γ) . . . � e′ : τ
Δ;Θ � τ

Γ ;Δ;Θ � (UNPACK (〈x . . . |y〉 = e) e′
)
: τ

(T-Unpack)

Fig. 7. Type judgment for Remora

into its cells. This type equivalence allows us to express restrictions on a part of
a function argument’s shape. For example, append has type:

∀[t] Π [(m Nat)(n Nat)(d Shape)](
A(S m) (Ad t)

) (
A(S n) (Ad t)

)
→
(
A(S (+ m n)) (Ad t)

)
In the untyped language, append has argument rank ∞, but it still requires its
arguments to have the same shape except for their first dimensions. Any two

An Array-Oriented Language with Static Rank Polymorphism 43

Δ;Θ � τ

Δ;Θ � B
(K-Base)

x ∈ Δ

Δ;Θ � x
(K-Var)

Δ;Θ � τ

Θ � ι :: Shape

Δ;Θ � Aιτ
(K-Array)

Δ;Θ � τj for each j Δ;Θ � σ

Δ;Θ � (τ . . . → σ)
(K-Fun)

Δ;Θ, (x :: γ) . . . � τ

Δ;Θ � (Π [(x γ) . . .] τ)
(K-DProd)

Δ;Θ, (x :: γ) . . . � τ

Δ;Θ � (Σ [(x γ) . . .] τ)
(K-DSum)

Δ, x . . . ;Θ � τ

Δ;Θ � (∀ [x . . .] τ)
(K-Univ)

Θ � ι :: γ

n ∈ N

Θ � n :: Nat
(S-Nat)

(x :: γ) ∈ Θ

Θ � x :: γ
(S-Var)

Θ � ιj :: Nat for each j

Θ � (S ι . . .) :: Shape
(S-Shape)

Θ � ι :: Nat Θ � κ :: Nat

Θ � (+ ι κ) :: Nat
(S-Plus)

Fig. 8. Kind and index sort judgments for Remora

array types which have the same atom type and whose shapes differ only in the
first dimension can be described using append’s argument types.

4.3 Dynamic Semantics

The reduction relation is given in Figure 9. It assumes every expression has been
annotated with its type (most of these type annotations can be generated me-
chanically). This run time type information is needed to determine the correct
output cell shape for a function application with an empty frame, so type annota-
tions are kept up to date during reduction (they subsume the untyped language’s
shape tags). We use x[(y ←e z) . . .], x[(y ←t z) . . .], and x[(y ←i z) . . .] for sub-
stitution of term, type, and index variables respectively. The untyped language’s
box and nonscalar array of boxes value forms are replaced with analogous sum
and nonscalar array of sums. We replace the evaluation contexts for box and
unbox with analogous contexts for PACK and UNPACK.

Remora’s β, δ, and collapse rules are essentially unchanged from the untyped
language, so they are not repeated. The implicit lifting is now type-directed,
instead of rank-directed. Types include enough information to determine the
correct cell shape for any application form, solving the empty-frame dilemma
from 3.2 and eliminating the nondeterminism.

Tβ and Iβ substitute types and indices for the appropriate type and index
variables. This substitution must be applied to both the body of the type or index
abstraction as well as to its type annotation. Explicit type and index application

44 J. Slepak, O. Shivers, and P. Manolios

Pointwise application:(
[f . . .]

A(S nf ...)(A(S na ...)τ ...→τ ′)
v
A(S nf ... na ...)τ . . .

)A(S nf ... nc ...)τ
′

�→map

[(
[f]A(S)(A(S na ...)τ ...→τ ′) αA(S na ...)τ . . .

)τ ′
. . .

]A(S nf ...)τ
′

where ρ = length
(
nf . . .

)
> 0

((α . . .) . . .) = ((Cellsρ �v�) . . .)�

Duplicating cells:(
[f . . .]A(S m ...)(A(S n ...)τ ...→τ ′) v

A(S m′ ...)τ . . .
)σ

�→lift

(
Dup(A(S n ...)τ ...→τ ′),ι

�
[f . . .]

�
DupA(S m′ ...)τ,ι

�v � . . .
)σ

where (m . . .), (m′ . . .) . . . not all equal
ι = Max �(m . . .), (m′ . . .) . . . �

Applying a type abstraction:(
T-APP (Tλ [x . . .] eτ)(∀[x ...]τ) σ . . .

)τ [(x ←t σ) ...] �→Tβ eτ [(x ←t σ) . . .]

Applying an index abstraction:(
I-APP (Iλ [(x γ) . . .] eτ)(Π[(x γ) ...]τ) ι . . .

)τ [(x ←i ι) ...] �→Iβ eτ [(x ←i ι) . . .]

Projecting from a dependent sum:(
UNPACK

(
〈x . . . |y〉 = (PACK ι . . . vτ)τ

′)
eσ
)σ �→proj eσ [(x ←i ι) . . . (y ←e v)]

Fig. 9. Small-step operational semantics for Remora

effectively replace naturalize steps from the untyped language. Finally, project
substitutes a dependent sum’s witnesses and contents in the body expression.

The sample programs given in section 3.3 are straightforward to express in
Remora. The translation involves adding type and index abstractions and appli-
cations and replacing rank annotations with type annotations.

4.4 Type Soundness

We expect a type system which ascribes shapes to arrays to only ascribe shapes
that the arrays will actually have once computed.

Theorem 1 (Type soundness). If � l : τ , then one of:

– There is some v such that l �→∗ v

– l diverges

– There exist some E, π, v . . . such that l �→∗ E[((π v . . .))], where � π :
(σ . . . → σ′), and � vi : σi for each i

That is, a well-typed program completes, diverges, or produces an error due to
partial primitive operations, such as division by zero.

An Array-Oriented Language with Static Rank Polymorphism 45

5 Future Work

The transition from a core semantics modeled in PLT Redex to a complete
programming system requires a more flexible surface language and a compiler.
In moving from the untyped core language to Remora, the added code is mostly
type and index applications. Type inference would be necessary in order to make
a surface language based on Remora practical. An interesting challenge in this
setting is that the different type and index arguments can produce different
behavior (e.g., reducing an entire matrix versus reducing its 1-cells).

An implementation of Remora could use type information to inform decisions
about how to parallelize aggregate operations. With a cost model for analyzing
when different cells in an application frame are likely to take significantly differ-
ent amounts of time, a compiler could choose between statically breaking up a
task and leaving the allocation to a work-stealing run-time system.

Stream-like computation is often convenient for tasks such as signal process-
ing, and it could be expressed by generalizing array types to allow an unbounded
dimension. Implicit lifting still has a sensible meaning, as do foldl, scan, and
window. This would allow us to extend Iverson’s rank-polymorphic control mech-
anism to Turing-equivalent programs requiring while-loop computation (for ex-
ample, iterating a numeric solver to a given tolerance).

6 Conclusion

We have given a formal reduction semantics for Iverson’s rank polymorphism
which addresses several shortcomings of the model. Remora generalizes auto-
matic operator lifting to include first-class functions and MIMD computation.
Embedding the core ideas of APL and J in a setting based on λ-calculus com-
bines the expressive power of both models. Our type system rules out errors due
to mismatching argument shapes and still gives the programmer enough freedom
to write code whose result shape cannot be determined until run time.

References

1. Backus, J.: Can programming be liberated from the von Neumann style?: a func-
tional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)

2. Blelloch, G.: NESL: A nested data-parallel language (version 3.1). Tech. rep. (1995)
3. Blelloch, G., Chatterjee, S., Hardwick, J.C., Sipelstein, J., Zagha, M.: Implementa-

tion of a portable nested data-parallel language. Journal of Parallel and Distributed
Computing 21, 102–111 (1994)

4. Brooks, F.P.: The Design of Design: Essays from a Computer Scientist. Addison-
Wesley (2010)

5. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:
Data parallel haskell: a status report. In: DAMP 2007: Workshop on Declarative
Aspects of Multicore Programming, ACM Press (2007)

6. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex,
1st edn. MIT Press (2009)

46 J. Slepak, O. Shivers, and P. Manolios

7. Iverson, K.E.: A programming language. John Wiley & Sons, Inc., New York (1962)
8. Jay, C.B.: The fish language definition. Tech. rep. (1998)
9. Jay, C.B., Cockett, J.: Shapely types and shape polymorphism. In: Sannella, D.

(ed.) ESOP 1994. LNCS, vol. 788, pp. 302–316. Springer, Heidelberg (1994)
10. Jsoftware, Inc.: Jsoftware: High-performance development platform,

http://www.jsoftware.com/

11. Keller, G., Chakravarty, M.M., Leshchinskiy, R., Peyton Jones, S., Lippmeier, B.:
Regular, shape-polymorphic, parallel arrays in haskell. In: Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2010,
pp. 261–272. ACM, New York (2010)

12. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

13. Peyton Jones, S., Leshchinskiy, R., Keller, G., Chakravarty, M.M.: Harnessing the
multicores: Nested data parallelism in haskell. In: FSTTCS, vol. 2, pp. 383–414
(2008)

14. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F.:
Decoupling algorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31(4), 32:1–32:12 (2012)

15. Scholz, S.B.: Single assignment c: efficient support for high-level array operations
in a functional setting. J. Funct. Program. 13(6), 1005–1059 (2003)

16. Thatte, S.: A type system for implicit scaling. Sci. Comput. Program. 17(1-3),
217–245 (1991), http://dx.doi.org/10.1016/0167-6423(91)90040-5

17. Trojahner, K., Grelck, C.: Dependently typed array programs don’t go wrong.
Journal of Logic and Algebraic Programming 78(7), 643–664 (2009)

18. Xi, H.: Dependent types in practical programming. Ph.D. thesis, Pittsburgh, PA,
USA (1998) aAI9918624

19. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, PLDI 1998, pp. 249–257. ACM, New York (1998)

20. Zima, H., Chapman, B.: Supercompilers for Parallel and Vector Computers. ACM
Press (1990)

http://www.jsoftware.com/
http://dx.doi.org/10.1016/0167-6423(91)90040-5

Gradual Typing for Annotated Type Systems

Peter Thiemann and Luminous Fennell

University of Freiburg, Germany
{fennell,thiemann}@informatik.uni-freiburg.de

Abstract. Annotated type systems include additional information in
types to make them more expressive and to gather intensional informa-
tion about programs. Gradual types enable a seamless transition between
statically and dynamically checked properties of values. Gradual anno-
tation typing applies the ideas of gradual typing to the annotation part
of a type system.

We present a generic approach to transform a type system with
annotated base types into a system which gradualizes the information
contained in the annotations. We prove generic type safety for the grad-
ualized extensions and similar generic versions of the blame theorem for
a calculus with run-time annotations. We relate this calculus to a more
efficient calculus which elides run-time annotations in the statically an-
notated parts. We further introduce and prove correct a syntactic trans-
formation that eliminates run-time annotation tests by enlarging the
statically annotated parts.

1 Introduction

Refinement type systems have been proposed by a number of researchers to
sharpen the guarantees of existing type systems. Examples are Freeman and
Pfennings’s system to distinguish empty and non-empty lists by type [8], Pessaux
and Leroy’s exception analysis [21], Jackson’s dependency analysis [14], Chin and
coworkers’ type qualification framework [3], and many others.

In each case, the type language is extended with annotations that either ab-
stract semantic properties of values beyond the capabilities of the underlying
type language or they express properties that are not locally checkable. An ex-
ample of the latter kind are type systems for dimension analysis [15,23] that
formalize a notion of parametricity that cannot be checked on single values [16].
Haskell DSLs that employ phantom types provide further examples [18].

Annotated type and effect systems [20,29] play an important role in program
analysis where the annotations serve to express intensional information about
data. Example uses are race detection and locking [7,1] and, prominently, infor-
mation flow analysis [10] (using just one example of many). Languages like Java
include annotation frameworks that are often used dynamically. An instance
of such a framework could be promoted to gradual checking using a suitable
extension of our approach. Similar ideas have been pursued in the past [30,4].

Gradual typing [27,25] is concerned with controlling the boundary between
static and dynamic typing. A gradual type system provides cast operations that

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 47–66, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

48 P. Thiemann and L. Fennell

reveal sufficient static type information to improve the efficiency of otherwise
dynamically typed programs.

Recent work has considered a number of variations on gradual typing that
are not directly related to dynamic typing. For example, Disney and Flanagan
[5] as well as Fennell and Thiemann [6] consider gradual information flow, Wolff
and coworkers consider gradual typestate [33], and Sergey and Clarke proposed
gradual ownership types [24], which are further discussed in the related work.

This proliferation of gradual systems begs the question if there is a common
structure underlying all these gradual systems. In this work, we give a partial an-
swer by outlining a generic approach to “gradualize” existing annotated
type systems that support annotations on base types. Our proposed
method is geared towards functional programming, therefore it cannot be ex-
pected to handle the gradualized object-oriented systems [33,24] (for example,
gradual typestate requires dealing with linearity, which we did not consider).

Scope and limitations: Our approach applies to all properties that can be
expressed by additional tokens on base-type values at run time: dimensions,
phantom types, security labels, sanitization, representation restrictions (e.g., se-
rializable), and so on. Extensional properties (e.g., refinements) that may be
expressed with a predicate as in a subset type {x ∈ B | Φ(x)} are also express-
ible in our framework by taking a set of predicates as annotations. However,
run-time tokens are not needed for establishing a gradual system with subset
types because the predicates may just be checked during run time. In excep-
tional cases, checking a predicate at run time may be too expensive, in which
case our approach could be used to handle a run-time token that asserts Φ.

Contributions. We claim that the essence of gradualization for an annotated
type system consists of (a) specifying a calculus with run-time annotations and
checking, (b) introducing cast operations to stage annotation checking, and
(c) eliminating the statically checked annotations. We substantiate this claim
in the context of a statically-typed call-by-value lambda calculus, where only
base types carry annotations. For this calculus, we prove type soundness and a
blame theorem (roughly: only casts at the dynamic→static boundary can fail).

We discuss two approaches to simplify run-time annotations.One of them yields
an efficient run-time model where statically checked annotations are erased.

We propose a compile-time transformation to eliminate run-time checks and
prove its correctness.

Overview. After some motivating examples (Section 2), we specify a generic
base-type annotated type systems and prove generic type safety and blame
theorems (Section 3). Subsections 3.5 and 3.6 discuss alternative treatments
of annotations including erasure. Section 4 introduces and proves correct the
transformation rules to decrease the amount of dynamic checking. We wrap up
with a discussion of related work (Section 5) and a conclusion.

Gradual Typing for Annotated Type Systems 49

2 Gradual Refinement Typing at Work

We demonstrate how gradual typing can remedy problems with overly conserva-
tive type-checking in two scenarios: a type system with dimension analysis and
a type system that distinguishes encrypted and plaintext data.

2.1 Dimensions

Type systems with dimensions guard the programmer from mixing up measure-
ments of different dimensions that are represented with a common numeric type
[15]. For illustration we consider an ML-like language with simple types where
numbers carry a dimension annotation. The following function, calculating an
estimated time to arrival, is well-typed in this language.

fun eta (dist : float[m]) (vel:float[m/s]) : float[s] =

dist / vel

The annotated type float[u] represents an integer of dimension u where u ranges
over the free abelian group generated by the SI base dimensions: m, s, kg, and so
on. The neutral element is written as 1. The next example does not type check,
because the typing of - requires the same dimension for both arguments.

fun eta_broken (dist : float[m]) (vel : float[m/s]) =

dist - vel

Each gain in safety costs flexibility. Thus, all published dimension type sys-
tems support dimension polymorphism. However, there are examples where poly-
morphism is not sufficient as in the definition of the power function on meters.1

fun pow_m (x : float[m]) (y : int [1]) =

i f y == 0 then 1[S(1)] e l s e x * pow_m x (y - 1)

This definition does not type-check in a system based on simple types. Poly-
morphism does not help, either, because the dimension of the result depends on
the parameter y as in float[my]. Nevertheless, pow_m is useful to define generic
operations on geometric objects, like the n-dimensional volume and the n − 1-
dimensional surface of an n-dimensional hypercube given its base length c:

fun nVolume (n : int [1]) (c : float[m]) =

pow_m c n

fun nSurface (n : int [1]) (c : float[m]) =

(2 * n) * nVolume (n-1) c

A gradual annotation for such functions avoids the complexity of dependent
types and preserves some guarantees about the annotation. In our system, the
function pow_m could be modified to have type

pow_mg : float[m] → int [1] → float[?]

1 The annotation S(1) indicates a statically checked dimensionless number.

50 P. Thiemann and L. Fennell

The ? annotation marks the annotation of the result type as dynamic and indi-
cates that the run-time system needs to check the consistent use of the dynamic
dimension of the value. The programmer has to insert casts of the form e : t � t′,
where t is the type of e and t′ is the destination type. Casts only switch type
annotations from static to dynamic or vice versa. Here is the implementation of
pow_m in the gradual system:

1 fun pow_mg (x : float[m]) (y : int [1]) =

2 i f y == 0 then 1[D(1)]

3 e l s e (x : float[m] � float [?]) * pow_mg x (y - 1)

The cast x : float[m] � float[?] in line 3 converts x of type float[m] to desti-
nation type float[?] with a dynamic dimension initialized by the dimensionless
1[D(1)]. At run time, values of dynamic dimension are marked with a D, as il-
lustrated in line 2. The dynamically annotated result can be reintegrated into
statically verified code by casting the dynamic annotation to a static one:

fun volume3d : float[m3] =

(nVolume 3 2[m]) : float[?] � float[m3]

While it is possible to write type incorrect programs that cannot be sensibly
executed, the run-time system rejects illegal casts. For example, the expression
(nVolume 3 2[m]) : float[?] � float[m2] evaluates to 8[D(m3)] : float[?] �
float[m2]. As the computed dimension D(m3) is incompatible to the expected
dimension m2, the cast fails and stops a computation with a potentially flawed
result.

2.2 Tracking Encrypted Data

Custom type annotations are also useful to track certain operations on data
throughout the program. As an example, consider the following program frag-
ment that operates on encrypted as well as plaintext data.

1 va l prog (encrypt : int → int)

2 (decrypt : int → int)

3 (inc : int → int)

4 (sendPublic : int → unit)

5 (displayLocal : int → unit)

6 (v : int) : unit =

7 displayLocal (decrypt v)

8 l e t v’ = inc (decrypt v) i n
9 sendPublic (encrypt v’)

10 l e t v’’ = ... i n
11 sendPublic v’’

It is parameterized by the operations for encryption, decryption, and increment
and also receives a value. It is crucial that the operations are not applied arbi-
trarily: only encrypted data should be sent over the public channel (lines 9 and
11), incrementation only yields a sensible result on plaintext data (line 8), and
only encrypted values should be decrypted to avoid gibberish (line 7).

Gradual Typing for Annotated Type Systems 51

If such a program grows sufficiently complex, these restrictions should be
checked in a principled way. A lightweight way of doing so is to add suitable
annotations to the type language and have them statically checked as much as
possible. The types in the signature of prog could be enhanced with annotations
indicating whether a number is encrypted (•) or in plaintext (◦).
va l prog (encrypt : int◦ → int•)

(decrypt : int• → int◦)
(inc : int◦ → int◦)
(sendPublic : int• → unit)

(displayLocal : int◦ → unit)

(v : int•) : unit = ...

A programmer can easily program against such an annotated signature. However,
there might be legacy code that might not fit the more restrictive annotated
typing discipline, even if it performs correctly dynamically. For example, the
following procedure uses a boolean flag in order to distinguish encrypted data
from plaintext:

fun prog ’ (is_encrypted : bool)

encrypt decrypt inc sendPublic displayLocal v =

l e t v’ = i f is_encrypted

then encrypt (inc (decrypt v))

e l s e inc v

i f is_encrypted then sendPublic v’ e l s e displayLocal v’

Most type systems ignore conditional control flow and therefore would reject
prog’. But, as in Section 2.1, it is possible to use the gradual typing approach
for programs that are written in such a “dynamic style” by inserting suitable
casts:

va l prog_safe : (int◦ → int•) → (int• → int◦) →
(int◦ → int◦) →
(int• → unit) → (int◦ → unit) →
int• → unit =

(prog ’ true) : ((int? → int?) → (int? → int?) → ...)

� ((int◦ → int•) → (int• → int◦) → ...)

The last line casts the legacy program prog’ to the type of prog_safe. All in-
terface functions passed to prog’ are assumed to accept and return dynamic
numbers of type int?. To work correctly, the program prog’ has to be recom-
piled with the gradual type on the left. The gradual annotated type system
accepts prog_safe and the run-time system checks the correct use of the encryp-
tion operations dynamically. The underlying unannotated type system still rules
out type errors on arithmetic operations, like calling prog’ with a string as last
argument.

3 The Generic Calculus with Base Type Annotations

The generic calculus λBA relies on a base type annotation algebra A with the
same signature Σ = (⊕, . . .) as the primitive operations on base types.

52 P. Thiemann and L. Fennell

t ::= B[a] | t→ t
e ::= b[a] | e⊕ e | x | λx.e | e e

v ::= b[a] | λx.e
E ::= [] | E ⊕ e | v ⊕ E | E e | v E

Fig. 1. Syntax: types, expressions, values, evaluation contexts

Thus, A = (A,⊕A, . . .) where A is the carrier set and each (⊕A) : A×A ↪→ A is
a partial function on A. Partiality is needed, e.g., for dimension analysis where
addition is only sensible for arguments with the same dimension.

3.1 Static Annotated Typing

Figure 1 defines the syntax of λBA. A type t, is either a base type B annotated
with an annotation a ∈ A, a function type, or any other standard type. In
the term language e, base type values b carry a corresponding annotation. The
remaining term constructors are as usual. Values v and evaluation contexts E
are defined in the standard way.

Lambda expressions are interpreted as call-by-value functions, hence they
reduce with the βv reduction rule where e[x �→ v] denotes the capture-avoiding
substitution of v for x in e.

BA-S-BetaV

(λx.e) v −→ e[x �→ v]

The evaluation of primitive operations is governed by another Σ algebra
(B,⊕B, . . .) where, again, (⊕B) : B × B ↪→ B is a partial function. The dy-
namics for ⊕ check if the annotations of the arguments are combinable with ⊕A
and execute the operation using its interpretation ⊕B on base-type values. We
write b1 ⊕B b2 =: b as a shorthand for (b1, b2) ∈ dom(⊕B) and b1 ⊕B b2 = b.

BA-S-Op

b1 ⊕B b2 =: b a1 ⊕A a2 =: a

b1[a1]⊕ b2[a2] −→ b[a]

This rule may fail for two reasons, either the annotations are incompatible
(a1, a2) /∈ dom(⊕A) or the operation is not defined on the particular argument
values, i.e., (b1, b2) /∈ dom(⊕B). The example of dimension analysis demonstrates
that the two conditions are independent. In the computation 3[m]/0[m], the di-
vision of the dimensions is defined, but 3/0 is undefined.

The corresponding typing rule checks the annotations and the rule for con-
stants just matches the annotations.

BA-T-Const

Γ � b[a] : B[a]

BA-T-Op

Γ � e1 : B[a1] Γ � e2 : B[a2] a1 ⊕A a2 =: a

Γ � e1 ⊕ e2 : B[a]

Type soundness of the annotated type system implies that well-typed operations
make the run-time check on annotations in rule BA-S-Op obsolete. Consequently
the run-time annotations on well-typed programs could be erased. The erasure
of statically verified annotations is further discussed in Section 3.6.

Gradual Typing for Annotated Type Systems 53

3.2 Gradual Annotated Typing

Our execution model from Subsection 3.1 equips all base-type values with run-
time value annotations. For gradualization, we transition to a calculus λBA

G where
value annotations are categorized as either static or dynamic and the operations
on them are lifted from the original annotation algebra. Subsections 3.5 and 3.6
discuss the drawbacks of alternative approaches and demonstrate how the effi-
ciency of annotation handling at run time can be improved.

Before we continue, it is important to realize that gradual annotation typing
is different to gradual typing or dynamic typing. In dynamic typing, primitive
operations, like addition, have a fixed low-level type, say, int->int->int. To
execute these operations requires dynamic arguments to be unwrapped and re-
sults to be wrapped in a dynamic container. For that reason, gradual typing [27]
starts with a type system that exposes these low-level types and introduces casts
to revert to type dynamic if the low-level types do not match.

In annotated gradual typing, we take the low-level typing of operations for
granted: an addition on integers may certainly be executed, but it may be for-
bidden because of non-matching dimension annotations, say. In particular, it is
not desirable to even define a translation that introduces casts because the same
addition operation may be used polymorphically with arguments of different
(but matching) dimensionality.

Gradualization requires two different extensions of the annotation algebra,
one for type annotations and one for value annotations. Type annotations in the
gradual system, ta, are drawn from A? = (A?,⊕, . . .) where A? = A ∪ {?} and
an operation is lifted from A by insisting that any ? argument makes the result
?, or that all arguments are in A, in which case the operation works as before.

? ⊕A? = ?
⊕A? ? = ?

a1 ⊕A? a2 = a a1, a2 ∈ A, (a1 ⊕A a2) =: a

Apart from drawing type annotations from this extended algebra, the type lan-
guage is unchanged.

The refined algebra A+ = (A+,⊕, . . .) stages the value annotations using
A+ = D(A) +S(A), the disjoint union of two copies of A tagged with D and S,
where D annotations are only checked dynamically and S annotations are (also)
checked statically. The operations are lifted to A+ by insisting that results are
static unless any dynamic argument is present. In any case, they apply the
underlying operation from A.

D(a1)⊕A+ V (a2) = D(a) (a1 ⊕A a2) =: a
V (a1) ⊕A+ D(a2) = D(a) (a1 ⊕A a2) =: a
S(a1) ⊕A+ S(a2) = S(a) (a1 ⊕A a2) =: a

Here and in the following, the meta variables V, V1, V2, . . . range over D and S
and meta variables va, va1, . . . range over annotations of the shape V (a).

The term language is extended by type (annotation) casts.

e ::= · · · | e : t �p t

54 P. Thiemann and L. Fennell

BA-SG-Op

b1 ⊕ b2 =: b va1 ⊕A+ va2 =: va

b1[va1]⊕ b2[va2] −→ b[va]

BA-SG-Cast-Base

V1(a) ≺ ta1 V2(a) ≺ ta2

(b[V1(a)] : B[ta1] �p B[ta2]) −→ b[V2(a)]

BA-SG-Cast-Fun

v : (t1 → t2) �p (t′1 → t′2) −→ λx.(v(x : t′1 �p t1)) : t2 �p t′2

Fig. 2. Dynamics of the gradual annotation calculus

They modify the annotations but leave the shape of types intact. The blame
label p on the cast indicates the source of the potential error. Blame labels
come with an involutory operation · that flips the polarity of the blame between
positive p = p and negative p. When a cast error arises during execution, the
blame’s polarity indicates whether it is the cast expression that violates the
typing assertions of the cast (positive blame) or the context (negative blame).

Figure 2 contains the dynamics of the calculus. Base type operations are
unsurprising (BA-SG-Op). They just switch to the new algebras. For functions,
βv reduction is kept unchanged (BA-S-BetaV). It remains to consider casts.

The base type cast BA-SG-Cast-Base checks the annotation and converts
between their S and D shapes while keeping the underlying annotation a. The
relation ≺ expresses compatibility of a value annotation with a type annotation.
Any dynamic value annotation is compatible with the type annotation ? and a
static value annotation of the form S(a) is compatible with a.

D(a) ≺ ? S(a) ≺ a

Type casts at non-base types are treated by decomposing the cast into its
constituent casts and distributing them according to the type constructor, ex-
emplified with casting of values of function type BA-SG-Cast-Fun. Due to the
contravariance of the function type, the polarity of the blame on the function
argument flips but the polarity on the function result remains the same.

With respect to λBA, the typing rule for operations changes and the rule
for casts gets added. Even the rule for operations just switches the handling of
the annotations to the algebra A?. The rule for constants needs to be slightly
adjusted to require the compatibility of annotations.

BA-TG-Op

Γ �G e1 : B[a1] Γ �G e2 : B[a2] (a1 ⊕A? a2) =: a

Γ �G e1 ⊕ e2 : B[a]

BA-TG-Const

V (a) ≺ ta

Γ � b[V (a)] : ta

The typing rule for casts enforces that casts are only executed for compatible
annotated types as indicated by a compatibility relation.

BA-TG-Cast

Γ �G e : t1 t1 ∼ t2

Γ �G (e : t1 �p t2) : t2

Gradual Typing for Annotated Type Systems 55

B[?] ∼ B[ta] B[ta] ∼ B[?] B[ta] ∼ B[ta]
t1 ∼ t′1 t2 ∼ t′2
t1 → t2 ∼ t′1 → t′2

Fig. 3. Compatibility

The compatibility relation ∼ (Figure 3) ensures that two types have the same
underlying structure and that direct casts between statically annotated types
are ruled out. This relation is reflexive and symmetric, but not transitive. For a
transitive compatibility, B[a] ∼ B[?] and B[?] ∼ B[a′] would imply B[a] ∼ B[a′]
if a �= a′. Using the annotation algebra for dimensions, such a cast could try
to convert metres to seconds (and would always fail). Intransitive compatibility
makes it harder to write obviously faulty code by only allowing casts between
static and dynamic annotations. Furthermore, if B[a] ∼ B[a′] for a �= a′, then
the BA-SG-Cast-Base rule would fail on a static cast that should be disallowed
by the type system. Also, the formulation of the technical results in Section 3.3
would get more complicated (particularly Definition 1).

3.3 Results

We have established type soundness for the gradual calculus. The most interest-
ing part of the result is the progress lemma because it comes with a characteri-
zation of the possibly failing terms, the dynamically stuck terms.

Definition 1. A term e is dynamically stuck if

1. e = E[b[D(a)] : B[?] �p B[a′]] where a �= a′,
2. e = E[b1[V1(a1)] ⊕ b2[V2(a2)]] where (a1, a2) /∈ dom(⊕A) and Vi = D for

some i ∈ {1, 2},
3. e = E[b1[V1(a1)] ⊕ b2[V2(a2)]] where (a1, a2) ∈ dom(⊕A) but (b1, b2) /∈

dom(⊕B).

The core reason for being dynamically stuck is either a failing cast of a dynam-
ically annotated value to a statically annotated one, where the provided anno-
tation is not the expected one, or a failing attempt at a dynamically checked
operation. For the failing cast, we also say that it raises blame p according to the
blame label attached to the cast. A third case arises when ⊕B is partial, but its
occurrence depends on the abstraction implemented by the annotation algebra.
It is thus independent of gradual typing.

Lemma 1 (Progress). If · �G e : t then either e is a value or (∃e′) e −→ e′ or
e is a dynamically stuck term.

Lemma 2 (Preservation).
If · �G e : t and e −→ e′, then · �G e′ : t.

56 P. Thiemann and L. Fennell

B[ta] <:◦ B[ta] B[ta] <:+ B[ta]

B[a] <:◦ B[?] B[a] <:+ B[?] B[ta1] <:− B[ta2]

t′2 <:◦ t′1 t1 <:◦ t2

t′1 → t1 <:◦ t′2 → t2

t′2 <:+ t′1 t1 <:− t2

t′1 → t1 <:− t′2 → t2

t′2 <:− t′1 t1 <:+ t2

t′1 → t1 <:+ t′2 → t2

Fig. 4. Cast-related subtyping relations

Following Wadler and Findler’s Blame Calculus [32], the subsequent develop-
ment works towards a blame theorem for λBA

G . The blame theorem is a sharp-
ening of progress which further examines the nature of the casts [31,32]. It gives
sufficient conditions on casts to ensure that all blame falls on the dynamically
checked parts of the program.

Casts are classified according to a number of subtyping relations which are
not meant to be used for subsumption: plain subtyping, positive subtyping, and
negative subtyping. Figure 4 defines them for gradual annotated typing.

Plain subtyping classifies casts that perform safe conversions and thus never
cause a run-time error: A cast from t to t′ is safe if t <:◦ t′. Intuitively, casts are
safe if they are trivial, or inject statically checked expressions into dynamic code.
In the latter case, the dynamic code has the complete freedom and responsibility
to use the statically typed results adequately. Examples of such safe injections
are e : B[a] �p B[?], or e : B[a] → B[a] �p B[a] → B[?]. Trying to inject a
dynamic value into static code (e.g. e : B[?] �p B[a]) could result in a run-
time error, which is unsafe. Plain subtyping on base-types allows the identity
conversion and a conversion from a static annotation to a dynamic one. Blame
subtyping for function types is contravariant in the parameter type. A cast like
e : B[?] → B[a] �p B[a] → B[a] is considered safe because it relies on the
function’s original type which already claims full responsibility for the parameter.

As in Wadler and Findler’s work, plain subtyping may be factored into positive
subtyping <:+ and negative subtyping <:−. If positive (negative) subtyping
t1 <:+(−) t2 holds then a cast from t1 to t2 with label p does not result in
a run-time error that raises blame p (p). Positive subtyping is analogous to
plain subtyping on base types but relaxes the restriction on function parameters
to negative subtyping. Negative subtyping only restricts type annotations for
function parameters (via positive subtyping), as only function casts may invert
blame labels.

Lemma 3. The relations <:+, <:−, and <:◦ are reflexive and transitive.

Further, plain subtyping is the intersection of positive and negative subtyping.

Lemma 4. <:◦ = <:+ ∩ <:−.

Gradual Typing for Annotated Type Systems 57

x sf p
e1 sf p e2 sf p

e1 e2 sf p

e sf p

λx.e sf p
b[va] sf p

e1 sf p e2 sf p

e1 ⊕ e2 sf p

e sf p q /∈ {p, p}
e : t1 �q t2 sf p

e sf p t1 <:+ t2

e : t1 �p t2 sf p

e sf p t1 <:− t2

e : t1 �p t2 sf p

Fig. 5. Safety with respect to p

The next step towards showing a blame theorem consists of defining a set
of expressions that is safe for a certain blame label p. The judgment e sf p
in Figure 5 characterizes this set. It guarantees that all cast operations in e
that involve the label p (or p) use types that are related by positive (negative)
subtyping. Fortunately, safety is an invariant under reduction.

Lemma 5. If e sf p and e −→ e′, then e′ sf p.

The blame theorem states that an irreducible term, which is safe for p, cannot be
stuck on a cast labeled p. An irreducible term, which is safe for p and p, cannot
be stuck on a cast labeled p or p.

Lemma 6. If e sf p and ¬(∃e′) e −→ e′, then e cannot have the form E[b[D(a)] :
B[?] �p B[a′]], where a �= a′.

Theorem 1 (Blame). If e sf p and e sf p and ¬(∃e′) e −→ e′, then e cannot
have the form E[b[D(a)] : B[?] �p B[a′]] or E[b[D(a)] : B[?] �p B[a′]], where
a �= a′.

3.4 Subtyping

A reflexive and transitive conversion relation � on the annotation algebra for
base types induces a subtyping relation on the corresponding annotated type
system. The required subsumption rule is standard.

a1 � a2

B[a1] <: B[a2]

t′1 <: t1 t2 <: t′2
t1 → t2 <: t′1 → t′2

Γ � e : t t <: t′

Γ � e : t′

In the presence of conversion, the static annotation on a value need no longer
be equal to the static annotation on its type. Hence, the type-level operation
⊕A? and the value-level operation ⊕A may yield different results because they
are applied to different arguments, albeit related by �. This observation leads to
the requirement that ⊕A must be monotonic with respect to �. In particular, if
a1 � a′1, a2 � a′2, and a′1⊕A a′2 =: a′, then a1⊕A a2 =: a and a � a′. Otherwise,
reduction may get stuck on a well-typed term and type preservation may fail.

To see that, consider bi[ai] : B[a′i] where ai � a′i (i = 1, 2). If a′1 ⊕A a′2 =: a′,
then the term b1[a1] ⊕ b2[a2] : B[a′] is well-typed. However, the reduction of ⊕
gets stuck unless a1 ⊕A a2 =: a holds and type preservation fails unless a � a′.

58 P. Thiemann and L. Fennell

For the gradual system, the subtyping relation needs to be extended to ? anno-
tations. They are not convertible with any other annotation so that annotations
cannot become dynamic (and vice versa) without an explicit cast.

B[?] <:G B[?]

In particular, having B[a] �<:G B[?] prevents the unintentional introduction of
dynamic values. The remaining cases are as in the static system.

Nothing else needs to change, except that the compatibility relation between
value annotations and type annotations that is used in the static checking of
casts (Figure 2) has to reflect the possible conversion.

a � a′

S(a) ≺ a′

In the presence of subtyping, one might contemplate to slacken the compat-
ibility relation ∼ and admit the cast between annotations that are related by
subtyping. That is, the axiom B[ta] ∼ B[ta] would be refined to B[ta] ∼ B[ta′] if
ta � ta′ or ta′ � ta. However, this refined axiom introduces the danger that casts
that do not involve ? may raise blame at run time: Each downcast involves a run-
time check. The blame theorem can be refined to distinguish safe upcasts and
unsafe downcasts by including the conversion relation in the blame subtyping of
static base-types: B[a] <:◦ B[a′] and B[a] <:+ B[a′] whenever a � a′.

3.5 Alternative Modeling

A notion of gradual typing could also be introduced without an extended algebra,
just with the plain annotation algebraA for value annotations. The compatibility
relation between value annotations and type annotations would relate any value
annotation to ? and otherwise be the equality on plain annotations:

a ≺′ ? a ≺′ a

With this change, the cast operation (as in BA-SG-Cast-Base) would never mod-
ify any annotation. The dynamics of operations would correspond to BA-S-Op.
The definition of dynamically stuck terms (Definition 1) would change as follows.

Definition 2. A term e is stuck if

1. e = E[b[a] : B[?] �p B[a′]] where a �= a′,
2. e = E[b1[a1]⊕ b2[a2]] where (a1, a2) /∈ dom(⊕A),
3. e = E[b1[a1]⊕ b2[a2]] where (a1, a2) ∈ dom(⊕A) but (b1, b2) /∈ dom(⊕B).
Comparing Definitions 1 and 2 shows that the plain annotation algebra weakens
the progress result. While cases 1 and 3 yield the same information as cases 1
and 3 in Definition 1, case 2 has become ambiguous: In case 2 of Definition 1
it is clear that the annotation mismatch is caused by an attempt to apply ⊕ in
a dynamically typed fragment. With Definition 2 the annotation mismatch can
no longer be located; it might be in a statically typed part of the program.

We conclude that the simplified approach is weaker than the A+-approach
presented in Section 3.2 because it yields a less informative progress result that
only makes an ambiguous statement about a key part of the type system.

Gradual Typing for Annotated Type Systems 59

3.6 Annotation Erasure

Using the A+-approach, we may define an erasure translation that avoids the
passing of annotations at run time in the statically checked parts of a program.
In the target calculus of this translation, the cast operations amount to adding or
removing run-time annotations. The syntax of this calculus extends the syntax
for base type refinements with unannotated base-type values:

e ::= b | . . . v ::= b | . . .

The erasure translation | · | only acts on annotated base-type values and extends
homomorphically to the remaining syntactic constructs:

|b[S(a)]| = b |b[D(a)]| = b[a]

Besides rule BA-S-Op, there is an additional computation rule for unannotated
base-type values:

BA-S-Op

b1 ⊕B b2 =: b a1 ⊕A a2 =: a

b1[a1]⊕ b2[a2] −→′ b[a]

BA-SG-Op’

b1 ⊕B b2 =: b

b1 ⊕ b2 −→′ b

Reduction of base type casts is best presented as three separate rules.

BA-SG-Cast-Trivial

(v : B[ta] �p B[ta]) −→′ v
BA-SG-Cast-ToDyn

(b : B[a] �p B[?]) −→′ b[a]

BA-SG-Cast-FromDyn

(b[a] : B[?] �p B[a]) −→′ b

Trivial casts are discarded. A cast from a static type into a dynamic one adds the
annotation of the static type as a run-time annotation. A cast from dynamic to
static strips off the run-time annotation, provided it matches that of the static
destination type.

Progress for this calculus needs yet another notion of stuck terms.

Definition 3. A term e is stuck if

1. e = E[b[a] : B[?] �p B[a′]] where a �= a′,
2. e = E[b1[a1]⊕ b2[a2]] where (a1, a2) /∈ dom(⊕A),
3. e = E[b1 ⊕ b2] where (b1, b2) /∈ dom(⊕B).
This definition is again unsatisfactory. The first and second cases correspond to
Definition 1. However, in the third case, computations with unannotated base-
type values never check their annotation. Hence, the condition imposed by the
static typing rule for primitive operations does not correspond to a run-time
restriction, which trivializes preservation and progress.

We conclude that this calculus is also unsuitable to prove a strong progress
result and we see that as a further indication in favor of the A+-approach.

However, it is possible to relate the A+-approach with the erasure approach,
which amounts to an efficient implementation. For typed expressions, the eval-
uation relations −→ and −→′ simulate each other in lockstep.

60 P. Thiemann and L. Fennell

Lemma 7. Let e be a closed expression.

1. If e −→ e′, then |e| −→′ |e′|.
2. If · �G e : t and |e| −→′ e′′, then e −→ e′ and e′′ = |e′|.

As an example that typing is essential for item 2 in the lemma, consider the
expression 1[S(m)] + 1[S(kg)] in the calculus for dimensions. It is not typeable
and it is stuck at rule BA-SG-Op. However, its erasure |1[S(m)]+1[S(kg)]| = 1+1
reduces to 2 using −→′.

4 Eliminating Run-Time Checks

A gradually typed program with manually inserted casts can be improved by a
type-preserving transformation, e =⇒ e′, that increases the amount of statically
handled annotations and decreases the number of dynamic checks without elimi-
nating potential annotation mismatches. Thus, the transformed program should
be equivalent to the original one, but with less dynamic annotation handling.

To express the results of the transformation concisely, we introduce a new kind
of term e ::= �p� | . . . where �p� is an exception package that carries blame label
p. An exception package is generated by failing cast expressions, it is propagated
upwards through evaluation contexts, and it has any type.

a �= a′

b[D(a)] : B[?] �p B[a′] −→ �p�
e −→ �p�

E[e] −→ �p� Γ �G �p� : t

4.1 Transformation Rules

In a typed term, any cast may be executed on a base type constant b. The result
e′ is either the same value b with a different annotation or an exception �p�.
Exceptions may be promoted across evaluation contexts.

BA-TR-Const

b[va] : B[ta] �p B[ta′] −→ e′

b[va] : B[ta] �p B[ta′] =⇒ e′

BA-TR-Blame

E[�p�] =⇒ �p�

If a cast is applied to a dynamic operation ⊕, then the annotations of the
arguments can be determined from the annotation of the result if ⊕A is locally
injective. Only in this case, the cast can be propagated to the arguments.

BA-TR-Op

⊕−1
A (a) = {(a1, a2)}

e1 ⊕ e2 : B[?] �p B[a] =⇒ (e1 : B[?] �p B[a1])⊕ (e2 : B[?] �p B[a2])

The blame annotation gets propagated to the arguments to preserve the error
messages. A typical example where this rule is applicable is an addition expres-
sion in the system for dimensions, where the annotations of both arguments are
equal to the annotation of the result.

Gradual Typing for Annotated Type Systems 61

If a cast is applied to a lambda expression, then the expression can be trans-
formed analogously to the dynamics for the cast (rule BA-SG-Cast-Fun). How-
ever, the cast on the result is pushed inside to the body of the lambda to be able
to continue the transformation.

BA-TR-Fun

(λx.e) : (t1 → t2) �p (t′1 → t′2) =⇒ λx.(λx.(e : t2 �p t′2))(x : t′1 �p t1)

Any cast applied to a function application may be pushed towards the func-
tion, which might enable rule BA-TR-Fun.

BA-TR-App

e2 : t2

(e1 e2) : t �p t′ =⇒ (e1 : t2 → t �p t2 → t′) e2

The interplay between BA-TR-App and BA-TR-Fun may generate identity
casts, which may safely be omitted.

BA-TR-Id

e : t �p t =⇒ e

It also makes sense to consider transforming casts nested in elimination posi-
tions. If both operands of an operation are (positive) casts to dynamic, then these
casts can be merged and propagated to the result. The blame labels need not be
preserved because a positive cast on a base type never fails. The transformation
arbitrarily chooses the left operand’s blame label.

BA-TR-Op-Elim

a1 ⊕A a2 =: a

(e1 : B[a1] �p1 B[?])⊕ (e2 : B[a2] �p2 B[?]) =⇒ e1 ⊕ e2 : B[a] �p1 B[?]

We may also state rules for lifting casts out of function bodies and out of
function applications. However, the overall approach of our transformation is
to start at the root of a term and to push casts as far inside as possible. This
approach does not require such lifting rules. Applying our rules exhaustively in
a top-down manner results in a term where each casts is either applied to a
variable, to an application of a primitive operation, or to another cast. However,
we stress that each transformation step is correct in any context.

To further optimize the resulting term additionally requires an approach for
merging two casts into one. A few special cases of this merge can be stated
easily. However, a satisfactory treatment of cast composition requires a different
representation of casts and a careful consideration of blame propagation. There
are at least two alternatives for this representation, either threesomes [28] or
coercions [11], but their introduction is not in scope of this paper.

4.2 Contextual Equivalence and Bisimulation

To prove the correctness of the transformation rules, we establish that they
are contextual equivalences in λBA

G . Two expressions e1 and e2 are contextually
equivalent if they behave the same in every context [19].

62 P. Thiemann and L. Fennell

Now, for all contexts C, if

1. there exists v such that C[e1] −→∗ v and C[e2] −→∗ v, or
2. there exists p such that C[e1] −→∗ �p� and C[e2] −→∗ �p�, or
3. C[e1] ⇑ iff C[e2] ⇑2

then e1 and e2 are contextually equivalent, written e1 � e2.
As contextual equivalence is hard to prove directly, we prove it via bisimula-

tion. To this end, we define a notion of observations α ::= @v | b[a] | �p� for λBA
G

programs. An observation on a function type is the application of a value @v.
On a base type, we may observe the annotated base-type value b[a]. On a failing
computation, we observe the blame label raised �p�. This observation is possible
at any type.

Based on this notion of observations, we define a labeled transition sys-
tem. Basic values are emitted as observations and their transition yields a non-
terminating expression 0 with an empty derivation tree. Blame exceptions are
treated in the same way. At function type, a transition is only possible on a func-
tion which is applied to a value of suitable type. This treatment is an adaptation
of the call-by-value variation of Gordon’s applicative bisimulation theory [9].

LT-Base

b[a]
b[a]�=⇒ 0

LT-Blame

�p� �p��=⇒ 0

LT-App

· �G v : t′ → t
· �G v′ : t

v
@v′�=⇒ v v′

LT-Comp

e −→ e′

e′
α�=⇒ e′′

e
α�=⇒ e′′

This definition of the labeled transition relation is adequate because an ex-
pression can make a transition if and only if it either terminates in a value or in
a blame exception.

Lemma 8. e
α�=⇒ e′ iff either there exists v such that e −→∗ v or there exists p

such that e −→∗ �p�.
From the labeled transition system, we define bisimilarity as usual. For a

relation S ⊆ Exp× Exp, define two functions:

[S] :={(e1, e2) | (∃α, e′1) e1
α�=⇒ e′1 ⇒ (∃e′2) e2

α�=⇒ e′2, e
′
1Se′2}

〈S〉:=[S] ∩ [Sop]op

Here, Sop = {(e2, e1) | (e1, e2) ∈ S} is the opposite relation to S. Both functions
are easily checked to be monotone, so we can take their greatest fixpoint ∼ =
νS.〈S〉, which is the bisimilarity relation for the calculus λBA

G .

Lemma 9.

1. ∼ is an equivalence relation.
2. Evaluation steps are bisimilar: −→ ⊆ ∼.
2 e ⇑ if for each e′ such that e −→∗ e′ there exists e′′ such that e′ −→ e′′.

Gradual Typing for Annotated Type Systems 63

Using Gordon’s adaptation [9] of Howe’s method [12], it can be shown that
bisimilarity is a congruence and that it coincides with contextual equivalence.

The soundness of the transformation rules is proven by strong coinduction. As
a corollary, we obtain that each transformation rule is a contextual equivalence
in λBA

G .

5 Related Work

Disney and Flanagan [5] have applied gradual typing to a type system for in-
formation flow. They have proved type safety, noninterference, and a blame
theorem. Their approach is tailored to the particular system. They do not sys-
tematically transform the annotation strategy of an existing system, but define
notions like positive and negative subtyping directly on the existing annotations.

Gradual typing has made an impact on object-oriented language design, so
the following related work comes from that area. As our method is mainly geared
towards functional programming, it is not directly applicable. In addition, each
of the related work items addresses a very specific point for gradualization that
is deeply intertwined with the rest of the language design considered.

Typestate is a refinement of an (imperative object) type that changes as a
program progresses. There are distinguished operations that change the types-
tate and the typestate governs which operations are available. Gradual typestate
by Wolff and coworkers [33] addresses the problem that a program with type-
state requires extensive type annotations to indicate the typestate transitions
(e.g., on function arguments) and to manage sharing: if a function obtains two
aliases to a typestate object, then applying different operations to them may lead
to unsoundness. The gradual version of the system allows to replace typestate-
related annotations by Dyn and performs the corresponding state and permission
checks at run time. The authors prove type soundness and define a semantics by
translating to a lower level calculus. The construction of the gradual extension
is closely tied to the particulars of the system, in particular with the handling
of aliasing. The aliasing aspect is not considered in our work.

The goal of gradual ownership types by Sergey and Clarke [24], also from the
realm of object-oriented programming, is to enable a smooth migration from
systems without control of ownership to static control of ownership. They apply
the ideas of gradual typing to express heap properties instead of properties of
values or (single) objects. One motivation is in avoiding the excessive annotation
overhead that comes with other ownership type systems. In the construction of
the system, the particular dynamic enforcement mechanism is an ad-hoc design.
In this system, assignments have to be checked in order to prevent unwanted
paths in the object graph.

Ina and Igarashi have considered gradual typing for generics [13]. Their system
extends gradual typing to an object-oriented language with bounded subtyping.
As such it discusses an extension to parameterized types, not to annotated. Thus,
the required dynamic checks are tests on the run-time type of an object, not for
additional properties.

64 P. Thiemann and L. Fennell

Tobin-Hochstadt and Felleisen [31] were the first to investigate the boundaries
of static and dynamic checking with a blame theorem. Wadler and Findler’s
subsequent analysis of blame [32] has been a major source of inspiration. We
managed to transfer their results to a wide range of annotated type systems.
Hybrid type checking [17] is a system based on dependent types and base-type
refinements, which are described by arbitrary predicates. Dynamic checks (casts)
serve to manifest refinements in types where they can be exploited in static
checking. Here, the dynamically annotated type is essentially one where the
predicate is true. Subtyping needs to be checked with a theorem prover. In
contrast, our approach is geared toward refining types with additional properties
that are not just predicates on the values of a base type.

The transformation of programs with coercions has been considered by Hen-
glein [11]. Different to the discussion in our paper, his calculus employs coercion
expressions that are built from primitive coercions on base types using functo-
rial operations. Furthermore, he develops an equational theory of coercions and
of expressions with coercions. His theory is not directly linked with contextual
equivalence.

A coercion calculus with blame has been investigated by Siek, Garcia, and
Taha [26]. They consider design alternatives for higher-order casts, where they
also analyze the problem of merging two casts at run time. One of their options
is to fail early, when casts are composed. In a program transformation as we con-
sider it in Section 4, such a behavior would yield false positives when processing
dead code.

Siek and Wadler [28] discuss a variation of the blame calculus where arbitrar-
ily long compositions of casts are compressed into a single, equivalent threesome
cast. They also show the equivalence of threesomes and a normalizing coercion
calculus. A mechanism like that should be integrated in our simplifying transfor-
mation. We leave it to future work because it would require a reworking of the
annotated cast mechanism, either in terms of coercions or in terms of threesomes.

Rastogi and coworkers [22] develop an algorithm for type inference in Action-
Script that also aims to eliminate run-time checks, similar to our transformation.
Their approach is not based on program transformation. Instead, their algorithm
replaces the dynamic type with type variables and globally computes and solves
set constraints that overapproximate the flows of types to contexts. The algo-
rithm preserves run-time errors with respect to the original untyped program
but sacrifices blame guarantees for improved precision. In contrast, our transfor-
mation preserves errors and blame as each transformation preserves contextual
equivalence.

6 Conclusion

We show that annotated type systems, where the annotation is restricted to
base types, can be gradualized by applying a simple procedure. The core of our
approach is the definition of a generic gradual annotated type system based on
an annotation algebra. We demonstrate its applicability by instantiating it to

Gradual Typing for Annotated Type Systems 65

several examples. The technical results (type soundness and blame theorems) for
the generic gradual systems have generic reusable proofs that can be instantiated
to each annotation algebra.

Specific semantic properties still require extra work: the generic results hold,
even if the dynamic manipulation of the annotations is total nonsense. For exam-
ple, a sound gradual security type system requires that the handling of dynamic
annotations guarantees noninterference, but the specifics are not prescribed by
our framework.

Our type system can be extended in several directions. Annotations may be
added to each type constructor: this extension is necessary for an information
flow analysis that can guarantee noninterference. The calculus may be extended
with annotation polymorphism, which diminishes the need for the dynamic han-
dling of annotations. Also the whole system may be based on a calculus with
ML-style polymorphism.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection
for Java. ACM TOPLAS 28(2), 207–255 (2006)

2. Castagna, G. (ed.): ESOP 2009. LNCS, vol. 5502. Springer, Heidelberg (2009)
3. Chin, B., Markstrum, S., Adsul, B.: Inference of user-defined type qualifiers and

qualifier rules. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 264–278.
Springer, Heidelberg (2006)

4. Darwin, I.F.: Annabot: A static verifier for java annotation usage. Adv. Software
Engineering (2010)

5. Disney, T., Flanagan, C.: Gradual information flow typing. In: STOP 2011 (2011)
6. Fennell, L., Thiemann, P.: Gradual security typing with references. In: Cortier, V.,

Datta, A. (eds.) CSF, pp. 224–239. IEEE (2013)
7. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: Proceedings

of the 2000 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 219–232. ACM Press (June 2000); 35(5) of SIGPLAN
Notices

8. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proc. PLDI 1991, pp.
268–277. ACM (June 1991)

9. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoretical
Computer Science 228(1-2), 5–47 (1999)

10. Heintze, N., Riecke, J.G.: The SLam calculus: Programming with security and
integrity. In: Cardelli, L. (ed.) Proc. 25th ACM Symp. POPL, pp. 365–377. ACM
Press (January 1998)

11. Henglein, F.: Dynamic typing: Syntax and proof theory. Science of Computer Pro-
gramming 22, 197–230 (1994)

12. Howe, D.: Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation 124(2), 103–112 (1996)

13. Ina, L., Igarashi, A.: Gradual typing for generics. In: Lopes, C.V., Fisher, K. (eds.)
OOPSLA, pp. 609–624. ACM (2011)

14. Jackson, D.: Aspect: Detecting bugs with abstract dependences. ACM Trans.
Softw. Eng. Methodol. 4(2), 109–145 (1995)

66 P. Thiemann and L. Fennell

15. Kennedy, A.: Dimension types. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788,
pp. 348–362. Springer, Heidelberg (1994)

16. Kennedy, A.J.: Relational parametricity and units of measure. In: Jones, N. (ed.)
Proc. 1997 ACM Symp. POPL, pp. 442–455. ACM (January 1997)

17. Knowles, K.L., Flanagan, C.: Hybrid type checking. ACM Trans. Program. Lang.
Syst. 32(2) (2010)

18. Leijen, D., Meijer, E.: Domain-specific embedded compilers. In: 2nd Conference on
Domain-Specific Languages. USENIX (October 1999),
http://usenix.org/events/dsl99/index.html

19. Morris Jr., J.H.: Lambda Calculus Models of Programming Languages. PhD thesis.
MIT Press (December 1968)

20. Nielson, F.: Annotated type and effect systems. Computing Surveys 28(2), 344–345
(1996)

21. Pessaux, F., Leroy, X.: Type-based analysis of uncaught exceptions. In: Aiken, A.
(ed.) Proc. 26th ACM Symp. POPL, pp. 276–290. ACM Press (January 1999)

22. Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type inference.
In: Proc. 39th ACM Symp. POPL, pp. 481–494. ACM Press (January 2012)

23. Rittri, M.: Dimension inference under polymorphic recursion. In: Peyton Jones, S.
(ed.) Proc. FPCA 1995, pp. 147–159. ACM (June 1995)

24. Sergey, I., Clarke, D.: Gradual ownership types. In: Seidl, H. (ed.) ESOP 2012.
LNCS, vol. 7211, pp. 579–599. Springer, Heidelberg (2012)

25. Siek, J.G., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

26. Siek, J.G., Garcia, R., Taha, W.: Exploring the design space of higher-order casts.
In: Castagna [2], pp. 17–31

27. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop (September 2006)

28. Siek, J.G., Wadler, P.: Threesomes, with and without blame. In: Palsberg, J. (ed.)
Proc. 37th ACM Symp. POPL, pp. 365–376. ACM Press (January 2010)

29. Solberg, K.L.: Annotated Type Systems for Program Analysis. PhD thesis, Odense
University, Denmark. Also technical report DAIMI PB-498, Comp. Sci. Dept.
Aarhus University (July 1995)

30. Tang, D., Plsek, A., Vitek, J.: Static checking of safety critical Java annotations. In:
Kalibera, T., Vitek, J. (eds.) JTRES. ACM International Conference Proceeding
Series, pp. 148–154. ACM (August 2010)

31. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to pro-
grams. In: Dynamic Languages Symposium, DLS 2006, pp. 964–974. ACM (2006)

32. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna [2],
pp. 1–16

33. Wolff, R., Garcia, R., Tanter, É., Aldrich, J.: Gradual typestate. In: Mezini, M.
(ed.) ECOOP 2011. LNCS, vol. 6813, pp. 459–483. Springer, Heidelberg (2011)

http://usenix.org/events/dsl99/index.html

Staged Composition Synthesis

Boris Düdder, Moritz Martens, and Jakob Rehof

Technical University of Dortmund, Faculty of Computer Science

Abstract. A framework for composition synthesis is provided in which
metalanguage combinators are supported and the execution of synthe-
sized programs can be staged into composition-time code generation
(stage 1) and run-time execution (stage 2). By extending composition
synthesis to encompass both object language (L1) and metalanguage
(L2) combinators, composition synthesis becomes a powerful and flexible
framework for the generation of L1-program compositions. A system of
modal intersection types is introduced into a combinatory composition
language to control the distinction between L1- and L2-combinators at
the type level, thereby exposing the language distinction to composition
synthesis. We provide a theory of correctness of the framework which
ensures that generated compositions of component implementations are
well typed and that their execution can be staged such that all metalan-
guage combinators can be computed away completely at stage 1, leaving
only well typed L1-code for execution at stage 2. Our framework has
been implemented, and we report on experiments.

1 Introduction

Composition synthesis [1–5] is based on the idea of using inhabitation in combi-
natory logic [6] with intersection types [7] as a foundation for computing com-
positions from a repository of components. We can regard a combinatory type
judgement Γ � e : τ as modeling the fact that combinatory expression e can be
obtained by composition from a repository Γ of components which are exposed
as combinator symbols and whose interfaces are exposed as combinator types
enriched with intersection types that specify semantic properties of components.
The decision problem of inhabitation, often indicated as Γ � ? : τ , is the ques-
tion whether a combinatory expression e exists such that Γ � e : τ (such an
expression e is called an inhabitant of τ). An algorithm (or semi-algorithm) for
solving the inhabitation problem searches for inhabitants and can be used to
synthesize them. Under the propositions-as-types correspondence, inhabitation
is the question of provability in a Hilbert-style presentation of a propositional
logic, where Γ represents a propositional theory, τ represents a proposition to
be proved, and e is a proof.

Following [8, 9], a level of semantic types is introduced to specify component
interfaces and synthesis goals so as to direct synthesis by means of semantic con-
cepts. Semantic types are not necessarily checked against component implemen-
tations (this is regarded as an orthogonal issue). In the combinatory approach

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 67–86, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

68 B. Düdder, M. Martens, and J. Rehof

of [1–5] semantic types are represented by intersection types [7]. In addition
to being inherently component-oriented, it is a possible advantage of the type-
based approach of composition synthesis that types can be naturally associated
with code at the API-level. We think of intersection types as hosting a two-
level type system, consisting of native types and semantic types. Native types
are types of the implementation language, whereas semantic types are abstract,
application-dependent conceptual structures, drawn, e.g., from a taxonomy of
semantic concepts. For example, in the specification

X : ((real× real) ∩ Cart → (real× real) ∩ Pol) ∩ Isom

native types (real, real × real, . . .) are enriched with semantic types (in the
example, Cart ,Pol , Isom) by means of intersections. Semantic types express in-
tended properties of the component (combinator) X — e.g., that it is an isome-
try transforming Cartesian to polar coordinates. We can think of semantic types
as organized in any system of finite-dimensional feature spaces (e.g., Cart ,Pol
are features of coordinates, Isom is a feature of functions) whose elements can
be mapped onto the native API using intersections, at any level of the type
structure.

In this paper we develop a framework for staged composition synthesis (SCS)
in which compositional metalanguage components, implemented in a distinct lan-
guage suitable for metaprogramming, can be introduced into composition syn-
thesis. The introduction of metalanguage combinators adds power and flexibility
to composition synthesis in several respects, including the ability to define spe-
cial purpose composition operators, higher-order functional abstraction, native
language code template substitution and code-generating operators.

In more detail, we assume here that we have a (possibly low-level) compo-
nent implementation language L1 in which we can execute programs at runtime,
referred to as the native language. Following the ideas summarized in [4], compo-
nents written in L1 can be exposed for composition synthesis through a combi-
natory environment C in which named components are exposed as semantically
typed combinator symbols (X : φ), where X is the name of the component
and φ◦ is the native type of the component in the language L1 (the map ()

◦

erases semantic type information). So we assume for each (X : φ) ∈ C that we
have a native implementation program TX with �L1 TX : φ◦, where �L1 formal-
izes the type system of L1, and where the implementation TX is associated with
the typed combinator symbol (X : φ). Composition of L1-components from the
environment C can be formalized in a corresponding combinatory logic, C1. We
take a simple monomorphic imperative first-order language as our exemplary
native language L1.

In our SCS framework we want to enhance our ability to compute compo-
sitions of L1-programs by introducing templates of L1-program fragments and
expressions into which we can substitute other L1-program expressions to build
complex L1-programs from simpler ones. To realize this idea in full, we need a
possibly different language, L2, referred to as the compositional metalanguage,
which is suited for the metaprogramming tasks involved in computing over L1-
templates. Since a central task here is to perform substitutions into L1-templates

Staged Composition Synthesis 69

we take the λ-calculus as our exemplary L2-language. In order to formalize this
situation, we introduce type variables (type templates) and special program ex-
pression template variables u into L1 to serve as substitutable placeholders for
L1-expressions inside other L1-expressions. Moreover, we introduce a type sys-
tem �L2 for the metalanguage L2. Now, if we could compose both L1-programs
and L2-programs that compose L1-programs, we could achieve more flexible and
powerful forms of composition, since we can implement special code-generating
L1-composition operators in L2, depending on situation and purpose. This sit-
uation is formalized by introducing a combinatory logic, C2, in which composi-
tions of L2-programs are computed. In this combinatory logic C2, implemented
L2-components are exposed in combinatory environments D analogously to the
way L1-components are exposed in environments C in C1. We now have two
implementation languages, L1 and L2, exposed for combinatory composition
through associated combinatory logics, C1 and C2. In this system, we need a
phase distinction between composition time computations in L2 and runtime
computations in L1: we first (stage 1) perform composition time computations
in the metalanguage L2 which produce L1-programs to be executed at runtime
(stage 2). Since our focus is entirely on the generation of L1-compositions, we
shall focus on L2-computations here.

Main Technical Contributions. Since composition synthesis is entirely type-
directed, we need to expose the language- and phase distinction between L1 and
L2 to synthesis at the type level. We solve this problem by exploiting the ideas of
staged computation introduced by Davies and Pfenning [10], using modal types
of the form �τ to describe “code of type τ”. In our setting, such a type can
appear in an L2-program manipulating L1-code to describe L1-code with L1-
type τ . The type system ensures that L2-computations over L1-code is sound,
i.e., that L2-implementations of type �τ can be computed away completely at
composition time in L2 leaving a well typed L1-program (of type τ) as a result.

Our main technical innovation is the design and theory of semantic types at
the combinatory logic level (C1 and C2), which are based on a novel system of
modal intersection types. Such types can be superimposed onto implementation
language types (L1 and L2) to express semantic properties of components to
control composition. The basic challenge here is to achieve a design which allows
such highly expressive semantic types to coexist with a guarantee of implemen-
tation type correctness (cf. Thm. 1), i.e., that synthesized compositions remain
well typed in the implementation languages under semantic type erasure, even
though compositions are constructed in a much more expressive type system of
intersection types.

Our framework has been implemented in an extension of the (CL)S (Com-
binatory Logic Synthesizer) tool, and we report on the results of experiments
using the tool for SCS.

Organization of the Paper. The remainder of this paper is organized as
follows. In Sec. 2 we introduce the native language L1 and the metalanguage
L2 (some definitions are placed in App.(s) A and B at the end of the paper).

70 B. Düdder, M. Martens, and J. Rehof

Semantic types are defined in Sec. 3, and the combinatory logics C1 and C2 are
defined in Sec. 4. In Sec. 5 we consider a simple example to illustrate SCS. In
Sec. 6 we develop the theory of implementation type correctness, and Sec. 7 is
devoted to the inhabitation algorithm underlying our extension of (CL)S, and
experiments with the tool are discussed in Sec. 8. Related work is discussed in
Sec. 9, and Sec. 10 concludes the paper.

2 Implementation Languages

We introduce an exemplary native language L1 and a compositional metalan-
guage L2, referred to collectively as implementation languages. In distinction
to the framework of Davies and Pfenning [10] we have two distinct languages,
which are highly independent of each other (regarding both operational seman-
tics and type systems). Moreover, we only wish to distinguish exactly two stages
of computation, runtime computation in the native language and composition
time computation in the metalanguage (in [10] arbitrary levels of stages exist
within a single language, and our framework can also be thus generalized). Our
goal is a framework in which the native language is largely substitutable – native
programs are regarded as “black boxes” that are exposed as expressions box T
to the language L2 with L2-types of the form �τ (where τ is an L1-type), but
other than that the theory of L2 is agnostic of the nature of programs T and
types τ of L1.

For concreteness, we fix a simply typed first-order core language as an ex-
emplary native implementation language L1 shown in Fig. 5, App. A, but (as
mentioned) L1 can be exchanged easily. The only requirements on the design
of L1 are that L1 should be typed, it should contain functions and function ap-
plication, the language should satisfy preservation of types under appropriate
term substitution (see substitution Lem. 1, App. A, for L1), and that well typed
L1-programs can be executed at a later runtime stage (with which we are not
further concerned, here). The native language consists of template expressions T
containing template variables ranged over by u. Other native expressions or tem-
plates can be substituted for template variables. The type structure consists of
a set T0 of value types ranged over by t0, reference types t1 and the set of native
template types T1, ranged over by τ in which value types can be substituted for
type variables ranged over by α, β, γ, . . . ∈ V (cf. App. A). We do not specify an
operational semantics for L1, since it is altogether standard, and we are mainly
concerned with computations in the metalanguage which we will consider next.

The compositional metalanguage L2 is a standard λ-calculus with simple types
extended with modal types as introduced by Davies and Pfenning [10] to distin-
guish computational stages at the type level. In our setting, we can intuitively
understand an L2-type �τ (τ ∈ T1) as meaning “L1-code with L1-type τ”. The
set T2 denotes metalanguage types, ranged over by σ. The modal type construc-
tor � is a special covariant constructor.

T2 � σ ::= �τ | σ → σ′

Staged Composition Synthesis 71

Compositional metalanguage terms are terms M of the λ�→
e -calculus [10]:

M ::= box T | letbox u : τ = M1 in M2 | x | λx : σ.M | (M1M2)

Compositional metalanguage expressions are typed by the system L2 shown in
Fig. 1. Judgements are of the form Δ;Γ �L2 M : σ, where Δ contains L1-bindings
(u : τ) of native template variables to L1-types, and Γ is the standard λ-calculus
type environment of bindings (x : σ) of λ-variables to L2-types.

The rule (�I) together with the environment Δ provide the interface between
L1 and L2. According to this rule, native templates T that are well typed with
native template types in L1 can be injected into L2 by being placed in the scope
of the box-operator. Importantly, the rule requires that we only inject native
expressions T with no free native program variables (but possibly with free
template variables) into L2. As shown in [10], this discipline ensures that we can
soundly substitute native expressions into native templates in L2-computations.
The dual rule (�E) discharges assumptions in Δ using the letbox construct. As
detailed in App. B, this construct performs substitution of native templates into
native template variables under L2-computation.

Δ; (Γ, x : σ) �L2 x : σ
(var)

Δ; (Γ, x : σ) �L2 M : σ′

Δ;Γ �L2 λx : σ.M : σ → σ′ (→I)
Δ;Γ �L2 M1 : σ → σ′ Δ;Γ �L2 M2 : σ

Δ;Γ �L2 (M1M2) : σ′ (→E)

Δ; ∅ �L1 T : τ

Δ;Γ �L2 box T : �τ
(�I)

Δ;Γ �L2 M1 : �τ (Δ,u : τ);Γ �L2 M2 : σ

Δ;Γ �L2 letbox u : τ = M1 in M2 : σ
(�E)

Fig. 1. Metalanguage L2

The operational semantics of L2 are summarized in App. B. As a consequence
of theorems in [10] (subject reduction, Thm. 4, and eliminability, Thm. 5, see
App. B), typability in system L2 implies that reducing, in L2, an expression of
type �τ to normal form results in a well typed native L1-program in the scope
of a box-constructor. In sum, it is guaranteed for a well typed closed L2-term
of type �τ that composition-time reduction to normal form in L2 computes all
L2-term occurrences away and leaves only a well typed boxed L1-program as a
result. That L1-term can then be executed at the next stage (run-time).

3 Semantic Types

We introduce a level of semantic types, which are special structures of modal
intersection types, to be used in the combinatory logics C1 and C2 (Sec. 4).

72 B. Düdder, M. Martens, and J. Rehof

The sets Si of semantic types of level i (i = 1, 2) are ranged over by t and s,
respectively. Type variables of level 1 are ranged over by a ∈ VS1 , and type
variables of level 2 are ranged over by b ∈ VS2 . We assume that V, VS1 and VS2

are disjoint sets. We assume sets of semantic type constants D1 and D2, with D1

and D2 disjoint from each other and from the constants of L1.
The set S1 contains a copy1 of T1 built from distinct sets of variables VS1

and constants D1 and closed under intersection. The set S2 is built analogously,
as a copy of T2 over distinct variables in VS2 and constants in D2:

S1 � t ::= a | d1 | t→ t′ | t ∩ t′ S2 � s ::= b | d2 | s→ s′ | s ∩ s′ |�t

The set of semantic L1-types S1 is ranged over by φ, and the set of semantic
L2-types S2 is ranged over by ψ:

S1 � φ ::= τ |φ∩t|t∩φ|φ → φ′ |φ∩φ′ S2 � ψ ::= σ|ψ∩s|s∩ψ|�φ|ψ → ψ′|ψ∩ψ′

We follow the convention that → is right-associative and that ∩ binds stronger
than→. Type expressions are implicitly considered as equivalence classes modulo
commutativity, associativity and idempotency of ∩. We let ϑ, �, υ range over
S1 ∪ S2 ∪ S1 ∪ S2. Notice that T1 and T2 are disjoint, S1 and S2 are disjoint,
and Ti ⊆ Si. An atom is a type variable or a type constant, and we let A range
over atoms.

The semantic type structure allows for maximal freedom in combining seman-
tic types with “underlying” (see Def. 3, Sec. 6) implementation types and allows
us to treat the semantic types as a distinct kind from implementation types. The
type structures T0 and Si are treated as different kinds in the following defini-
tion of type substitution, which ensures that the sets Ti, Si, and Si (i = 1, 2)
are closed under substitutions.

Definition 1. A type substitution is a map S : V∪VS1 ∪VS2 → T0 ∪S1 ∪S2

satisfying the following conditions: ∀α ∈ V. S(α) ∈ T0, ∀a ∈ VS1 . S(a) ∈ S1,
and ∀b ∈ VS2 . S(b) ∈ S2.

The following definition is standard for intersection types [7]. We tacitly assume
that the sets D1 and D2 can be equipped with partial orders ≤Di in which case
axioms di ≤Di d′i ⇒ di ≤ d′i are added to the axiomatization of subtyping.

Definition 2. Subtyping ≤ is the least preorder (reflexive and transitive rela-
tion) on S1 ∪ S2 ∪S1 ∪S2, satisfying the following conditions:

ϑ ∩ � ≤ ϑ, ϑ ∩ υ ≤ υ, (ϑ→ �) ∩ (ϑ→ υ) ≤ ϑ→ � ∩ υ,
ϑ ≤ ϑ′ ∧ � ≤ �′ ⇒ ϑ′ → � ≤ ϑ→ �′, ϑ ≤ ϑ′ ∧ � ≤ �′ ⇒ ϑ ∩ � ≤ ϑ′ ∩ �′,

(�ϑ) ∩ (��) ≤ �(ϑ ∩ �), ϑ ≤ �⇒ �ϑ ≤ ��.

We say that ϑ and � are equal, written ϑ = �, if ϑ ≤ � and � ≤ ϑ. We write
ϑ ≡ �, if ϑ and � are syntactically identical.

1 Function types of S1 and S1 below are not restricted to be first order, since our
system is developed for the general case. If L1 happens to be restricted to a first-
order system, as in our example case, our semantic type framework is more general.

Staged Composition Synthesis 73

The following distributivity properties follow from the axioms of subtyping:

(ϑ→ �) ∩ (ϑ→ υ) = ϑ→ � ∩ υ, (ϑ→ �) ∩ (ϑ′ → �′) ≤ (ϑ ∩ ϑ′)→ (� ∩ �′),
(�ϑ) ∩ (��) = �(ϑ ∩ �).

4 Combinatory Logic and Composition Synthesis

We introduce combinatory logics C1 and C2 in which components implemented
in L1 and L2 can be exposed as combinator symbols. The combinatory rules
of C1 are standard for combinatory logic with intersection types [11], and the
rules of C2 are extended (in rule (�I)) according to the modal extension of
L2. Combinatory C1-terms are defined by e ::= X | (e1e2). Environments C
are finite sets of bindings of the form (X : φ) with φ ∈ S1. The combinatory
logic C1 is defined by the rules of Fig. 2. Combinatory C2-terms are defined by
E ::= F | (E1E2) | box e. Environments D are finite sets of bindings of the form
(F : ψ) with ψ ∈ S2. The combinatory logic C2 is defined by the rules of Fig. 3.
Note carefully, that the rules (≤) for C1 (resp. C2) are restricted to types in S1
(resp. S2) as shown by use of the metavariable φ (resp. ψ). This restriction is
necessary for Thm. 1 to go through.

C , X : φ �C1 X : S(φ)
(var)

C �C1 e1 : φ→ φ′ C �C1 e2 : φ

C �C1 (e1e2) : φ′ (→E)

C �C1 e : φ C �C1 e : φ′

C �C1 e : φ ∩ φ′ (∩I) C �C1 e : φ φ ≤ φ′

C �C1 e : φ′ (≤)

Fig. 2. Combinatory logic C1

C ; (D , F : ψ) �C2 F : S(ψ)
(var)

C ;D �C2 E1 : ψ → ψ′ C ;D �C2 E2 : ψ

C ;D �C2 (E1E2) : ψ′ (→E)
C ;D �C2 E : ψ C ;D �C2 E : ψ′

C ;D �C2 E : ψ ∩ ψ′ (∩I)

C ;D �C2 E : ψ ψ ≤ ψ′

C ;D �C2 E : ψ′ (≤) C �C1 e : φ

C ;D �C2 box e : �φ
(�I)

Fig. 3. Combinatory logic C2

In composition synthesis (see [4] for a general introduction), we are concerned
with the relativized inhabitation problem: Given C , D and ψ, does there exist a
combinatory term E such that C ;D �C2 E : ψ? We use the notation C ;D �C2? : ψ

74 B. Düdder, M. Martens, and J. Rehof

to specify the problem. The inhabitation relation in combinatory logic can be
used as a foundation for component-oriented synthesis, since an inhabitation
algorithm can be employed to compute program terms E (inhabitants) by com-
binatory composition. Here we think of C and D as component repositories and
ψ as a synthesis goal specification.

It should be noted that the expressive power of the inhabitation relation is
enormous: it is undecidable even in simple types. The reason is that the relation
is not confined to a fixed base but is relativized to arbitrary environments C ,
D ([4] contains a survey of the relevant results). We can indeed consider the
inhabitation relation as an operational semantics for a Turing-complete abstract
logic programming language [12] at the level of interface types, as suggested
in [4]. Or, we can restrict the relation to ensure that search for inhabitants
always terminates. We consider algorithmic aspects of the relation in Sec. 7.

We emphasize again that our design of semantic types must be understood in
conjunction with the theory of implementation type correctness given by Thm. 1
(Sec. 6), which guarantees preservation of typability of compositions in the im-
plementation languages under semantic type erasure (Def. 3). The semantic type
structure in Sec. 3 is a restricted yet very general structure still allowing Thm. 1
to go through. The fundamental challenge here is to ensure that implementation
language typability is guaranteed even though compositions are constructed in a
much more expressive intersection type theory. Freely combining semantic types
with implementation types under intersection and subtyping will not work — as
a simple example, one would derive {X : bool∩(d→ d′), Y : int∩d} � (XY) : d′

(where d, d′ are semantic type constants in S1 and bool, int are L1-types) which
does not type check when semantic types are erased. Our system prevents such
problems by ensuring that semantic types have sufficient support (see Def. 4)
in the implementation language (in the example above, using rule ≤ to derive
X : d → d′ is not allowed even though bool ∩ (d → d′) ≤ d → d′, since d → d′

is not a member of S1).

5 Example

We introduce a simple example adapted from [4] and extended with our modal
types to illustrate a few basic features of the formal system. For ease of reading,
we write S1-types in blue font (as in Cel) and S2-types in red font (as in Conv).
Programs and combinators in L1 are written in green typewriter font. Whenever
convenient we use the shorthand notation τ̃ to denote an S1-type consisting of the
L1-type τ intersected with an associated semantic type variable aτ from S1, so,
for example, α̃ denotes the type α∩ aα. L1-types are written in black typewriter
font, for example, R which denotes the type of reals.

Let C contain the combinators (we freely extend the L1-type language by
type constructors — below, (·, ·) is a pair-constructor whereas D((·, ·), ·, ·) is a

Staged Composition Synthesis 75

constructor for a data-structure):

O : TrObj
Tr : TrObj→ D((R, R) ∩ Cart , R ∩Gpst , R ∩ Cel)
tmp : D((R, R), R, R ∩ a)→ R ∩ a ∩ms

The environment C could be part of a semantic repository of components to
track (Tr) an object (O) by giving the Cartesian coordinates (Cart) of the tracked
object (TrObj) at a given point in time (Gpst) and its temperature (Cel). There
is also a function tmp which projects the temperature. Its result type has the
semantic component ms which is intended to indicate that the datum (in this
case, a real number) represents a measurement. Let D contain the combinators

• : �(β̃ → γ̃)→ �(α̃→ β̃)→ �(α̃→ γ̃)
cl2fh : (�(R ∩ Cel)→ �(R ∩ Fh))∩Conv
♦ : �(α̃ ∩ms)→ (�α̃→ �β̃)∩Conv → �(β̃ ∩ms)

with the following bindings to implementations in L2:

• � λG : �(β → γ).λF : �(α→ β).
letbox f : α→ β = F in

letbox g : β → γ = G in box (fn y : α => (g (f y)))

cl2fh � λz : �R.
letbox u : R = z in

box let x : R = u in x ∗ (9 div 5) + 32

♦ � λz : �α.λF : �α→ �β.(F z)

The semantic S2-type Conv of the combinator cl2fh expresses the idea that the
corresponding function acts as a unit conversion. The type of the combinator ♦
uses this type and the S1-type ms to express the idea that a conversion can be
applied to a measurement to produce something which is still a measurement.

Suppose we ask for a function composable from the component repositories C
and D which measures the temperature of an object in Celsius. We can formalize
this query as the inhabitation problem C ;D �C2? : �(TrObj→ (R ∩ Cel ∩ms))
which has the solution (box tmp)•(box Tr) : �(TrObj→ (R∩Cel∩ms)) where we
write • in infix notation. Performing the L2-reduction (box tmp) • (box Tr) �−→∗

box (fn y : TrObj => (tmp (Tr y))) we see that L1-code implementing such a
function is produced.

If we ask for C ;D �C2? : �(R ∩ Fh ∩ms), the solution is, again writing ♦ in
infix notation, (box (tmp (Tr O))) ♦ cl2fh with the L2-reduction

(box (tmp (Tr O)))♦cl2fh �→∗ box let x : R = tmp (Tr O) in x∗(9 div 5) + 32

If we add c2f : (R ∩ Cel ∩ ms) → (R ∩ Fh ∩ ms) to C , we get the additional
solution, box (c2f (tmp (Tr O))), for the same inhabitation goal. If we further add
the modal apply combinator mapply : �(α̃→ β̃)→ �α̃→ �β̃ with definition

mapply � λF : �(α→ β).λz : �α.
letbox f : α→ β = F in

letbox u : α = z in box (f u)

76 B. Düdder, M. Martens, and J. Rehof

to D we also get mapply (box c2f) (mapply ((box tmp) • (box Tr))(box O)) re-
ducing in L2 to the L1-program box (c2f ((fn y : TrObj => (tmp (Tr y))) O)).
These examples illustrate that the inhabitation relation determines the possible
placements of the box-constructor, in each case determining a specific “division
of labor” between L1 and L2. Furthermore, higher-order abstraction in L2 adds
considerable power to composition and generation of first-order L1-code.

All examples have been automated by an inhabitation algorithm in our com-
binatory logic synthesis framework (CL)S as discussed in Sec.(s) 7 and 8.

6 Implementation Type Correctness

Correctness of our framework is based on a conservative extension theorem
(Thm. 1) showing that combinatory compositions performed over restricted (sup-
ported or grounded, Def. 4) environments can be transformed into well typed
L1-expressions. The proof of Thm. 1 depends on a series of technical lemmas
which can be found in [13]. Here, we only present the necessary definitions and
the theorem. We explain how it constitutes a theory of implementation type cor-
rectness for SCS. The following notion relates semantic types to implementation
types.

Definition 3 (Erasure). For type expressions ϑ ∈ Si we define the erasure of
ϑ, written ϑ◦, (i = 1, 2), as follows.

ϑ◦ ≡ ϑ, when ϑ ∈ T1 ∪ T2

(ϑ ∩ u)◦ ≡ ϑ◦ when u ∈ S1 ∪S2

(u ∩ ϑ)
◦ ≡ ϑ◦ when u ∈ S1 ∪S2

(ϑ→ �)
◦ ≡ ϑ◦ → �◦

(ϑ ∩ �)
◦ ≡ ϑ◦ ∩ �◦

(�ϑ)
◦ ≡ �ϑ◦

For combinatory environments C ,D we lift ()◦ by pointwise application to the
types in the environment, C ◦ = {(X : φ◦) | (X : φ) ∈ C } and similarly for D◦.

It can be shown that ϑ1 = ϑ2 implies ϑ1
◦ = ϑ2

◦, hence the operation ()
◦
is a

well defined function on equivalence classes with respect to =. The function ()
◦

erases semantic types in S1 ∪S2 from semantic L1- and L2-types in S1 ∪ S2.
We introduce combinatory expressions over combinator symbols of C1 and

C2, subscripted with types from T1 and T2, respectively, as follows.

f ::= Xτ | (f1f2) g ::= Fσ | (g1g2) | box f

For a C1-environment C in which all bindings are of the form (X :
⋂
j∈J τj)

(intersections of types in T1) and a C2-environment D in which all bindings
are of the form (F :

⋂
j∈J σj) (intersections of types in T2) we define the T1-

environment C+ and the T2-environment D+ by

C+ = {(Xτj : τj) | j ∈ J, (X :
⋂
j∈J τj) ∈ C }

D+ = {(Fσj : σj) | j ∈ J, (F :
⋂
j∈J σj) ∈ D}

Staged Composition Synthesis 77

We can consider such environments C+ and D+ as L1-environments, resp. L2-
environments, by considering (possibly through a mapping, which we shall leave
implicit) the symbols Xτ (resp. Fσ) as L1-variables (resp. L2-variables).

We define an erasure function ()− mapping these expressions back to combi-
nator expressions of C1, respectively C2:

X−
τ ≡ X F−

σ ≡ F
(f1f2)

− ≡ (f−1 f−2) (g1g2)
− ≡ (g−1 g−2)

(box f)− ≡ box f−

The following definition is central for Thm. 1. The concepts of supported and
grounded types capture relations between semantic types and their “underlying”
(under erasure) implementation language types.

Definition 4 (Supported, grounded). For ϑ ∈ Si (i = 1, 2) we say that ϑ is
supported if ϑ =

⋂
j∈J ϑj with ϑj ∈ Ti for j ∈ J . We say that ϑ is grounded if

ϑ◦ ∈ Ti. An environment C or D is said to be supported (grounded) if all types
appearing in the environment are supported (grounded).

We say that a derivation in C1 or C2 is monomorphic, if all applications of
rule (var) use the identity substitution (combinatory logics restricted to such
derivations are finite combinatory logics, in the sense of [1]). For a derivation
tree D in C1 or C2, let SD(X) (resp. SD(F)) be the set of substitutions S such
that S is applied in an application in D of rule (var) of the form C ′, X : φ �C1

X : S(φ) (resp. C ; (D ′, F : ψ) �C2 F : S(ψ)). We let CD, resp. DD, denote the
exponentiated environments defined as follows:

CD = {(X :
⋂
S∈SD(X) S(φ) | (X : φ) ∈ C }

DD = {(F :
⋂
S∈SD(F) S(ψ) | (F : ψ) ∈ D}

We write C �D
C1

e : φ whenever C �C1 e : φ is derivable by derivation D, and
similarly for C ;D �D

C2
E : ψ. It can be shown that exponentiation preserves

supportedness of environments. We write ()◦D = (()◦)D and ()◦D+ = ((()◦)D)+.
We can now state the conservative extension theorem.

Theorem 1 (Conservative extension).

1. Suppose that C ◦ and D◦ are supported and that φ and ψ are grounded. Then
(a) If C �DC1 e : φ then ∅;C ◦D+ �L1 f : φ◦ for some f with f− ≡ e.
(b) If C ;D �D

C2
E : ψ then ∅;C ◦D+,D◦D+ �L2 g : ψ◦ for some g with g− ≡ E.

2. Suppose that C ,D , φ, and ψ are grounded. Then
(a) If C �DC1 e : φ with D monomorphic then ∅;C ◦ �L1 e : φ◦.
(b) If C ;D �D

C2
E : ψ with D monomorphic then ∅;C ◦,D◦ �L2 E : ψ◦.

We use the theorem to show that inhabitants obtained by composition in C1
and C2 from environments whose erasure represent well typed programs in L1
and L2 can be translated back to well typed expressions of L1 and L2 by type
instantiations.

78 B. Düdder, M. Martens, and J. Rehof

Assume that we have sets of combinator symbols X and F , and assume that
X ∈ X and F ∈ F are associated with implementations TX and MF in L1 and
L2, respectively, such that

∅; ∅ �L1 TX : τX for X ∈ X ∅; ∅ �L2 MF : σF for F ∈ F

and exposed in combinatory environments as

C = {(X : φX) | X ∈ X} D = {(F : ψF) | F ∈ F}

with (φX)
◦
= τX and (ψF)

◦
= σF . Then C and D are grounded, hence C ◦

and D◦ are supported and C ◦D+ and D◦D+ are grounded.
Suppose now that C �DC1 e : φ with φ grounded. It follows from Thm. 1 that

we have ∅;C ◦D+ �L1 f : φ◦ for some f with f− ≡ e. Since all combinators in
C ◦D+ have the form (XS(τX) : S(τX)) with (X : φX) ∈ C and (φX)

◦ ≡ τX , it
follows by Lem. 1, App. A that we have ∅; ∅ �L1 f ′ : φ◦ where

f ′ ≡ f [XS(τX) := S(TX)]

Similarly, if C ;D �C2 E : ψ with ψ grounded, we have ∅;C ◦D+,D◦D+ �L2 g : φ◦

with bindings in D◦D+ all of the form (FS(σF) : S(σF)) with (F : ψF) ∈ D and
(ψF)

◦ ≡ σF . Hence, by Lem. 2, App. B we have ∅; ∅ �L2 g′ : ψ◦ where

g′ ≡ g[XS(τX) := S(TX)][FS(σF) := S(MF)]

7 Inhabitation

We provide a theoretical semi-decision procedure for solving the relativized in-
habitation problems for C1 and C2, which is a decision procedure for bounded
variants of the inhabitation problem. The procedure underlies the optimized im-
plementation in the (CL)S system discussed in Sec. 8. To explain the procedure
we need a few definitions.

Definition 5. A path π is a type of the form π ::= A |�π | ϑ→ π. A type ϑ is
called organized, if it is an intersection of paths, i.e., ϑ ≡

⋂
i∈I πi. The length

of a path ϑ1 → · · · → ϑn → � (where � is not a function type) is defined to be n.
We let ‖ϑ‖ denote the maximal length of a path in ϑ (assuming ϑ is organized).
For a type ϑ ≡ ϑ1 → · · · → ϑn → � we let arg i(ϑ) ≡ ϑi for 1 ≤ i ≤ n, and we
let tgtn(ϑ) ≡ �. Finally, Pm(ϑ) denotes the set of paths of length at least m in ϑ
(assuming ϑ is organized).

It is easy to see that any type ϑ is equal to a polynomially sized organized type [2],
and, whenever convenient, we shall tacitly assume that types are organized. Fig-
ure 4 is a semi-decision procedure for the inhabitation problem C ;D �C2? : ψ.
It adapts the results of [2] to modal intersection types, and its correctness fol-
lows from the path lemmas presented in [13]. We use the notation of [2] where
choose and or denote nondeterministic choice and forall denotes univer-
sal branching of an alternating Turing-machine (ATM) [14]. By restriction to

Staged Composition Synthesis 79

Input : C ,D , ϑ
1 loop :
2 if (ϑ ∈ S1)then
3 choose (X : φ) ∈ C
4 choose S ⊆fin V→ T0 ∪S1 ∪S2

5 φ′ :=
⋂
{S(φ) | S ∈ S}

6 choose m ∈ {0, . . . , ‖φ′‖};
7 choose P ⊆ Pm(φ′);
8 if (

⋂
π∈P tgtm(π) ≤ ϑ) then

9 if (m = 0) then accept;
10 else

11 forall(i = 1 . . .m)
12 ϑ :=

⋂
π∈P arg i(π);

13 goto loop;
14 else

15 if (ϑ = �φ) then
16 goto case1 or goto case2
17 else goto case2
18 case1 :
19 ϑ := φ;goto loop
20 case2 :
21 choose (F : ψ) ∈ D ;
22 choose S ⊆fin V→ T0 ∪S1 ∪S2

23 ψ′ :=
⋂
{S(ψ) | S ∈ S}

24 choose m ∈ {0, . . . , ‖ψ′‖};
25 choose P ⊆ Pm(ψ′);
26 if (

⋂
π∈P tgtm(π) ≤ ϑ) then

27 if (m = 0) then accept;
28 else

29 forall(i = 1 . . .m)
30 ϑ :=

⋂
π∈P arg i(π);

31 goto loop;

Fig. 4. ATM semi-decision procedure for C ;D �C2? : ϑ

monomorphic derivations [1] or by bounding the size of substitutions to depth k
in derivations [2] the semi-decision procedure shown in Fig. 4 becomes a decision
procedure (cf. Thm. 2).

The restriction to grounded types in Thm. 1 does not limit the theoretical
expressive power of the inhabitation relation:

Theorem 2 (Complexity). Inhabitation in C1 and C2 is (k + 2)-Exptime-
complete with bound k (as in [2]) and Exptime-complete in the monomorphic
case (as in [1]).

The proof of the theorem can be found in [13] which also contains comments
explaining why the restriction has no theoretical impact on expressiveness (which
may seem surprising).

80 B. Düdder, M. Martens, and J. Rehof

8 Experiments with (CL)S

We implemented the presented framework in the context of the (CL)S tool2 [3, 4],
using F# and C#. The inhabitation algorithm is configured for the bound k = 0
[2], limiting type instantiations to atomic types or intersections of such. We im-
plemented an optimized version of the ATM in Fig. 4 and an L2-interpreter. We
used them to solve suitable inhabitation problems and to generate L1-programs
from resulting inhabitants. We provide a first experimental evaluation of our im-
plementation by discussing three examples. The experiments were conducted on
a computer with 8 GB main memory, Intel Core i5 (2.66 GHz), and Windows 8,
using the .NET-Framework 4.0. For reasons of space we cannot provide all de-
tails, here.3 In particular, it is not possible to present the L2-implementations
of all D-combinators or the generated L1-code, confining discussion to a few in-
teresting combinators. Note that we extend the type language of L1 with type
constructors of arbitrary arity that do not distribute over ∩.

We first extend the L1-repository C introduced in Sec. 5 to the tracking-
scenario discussed in [4, Fig. 8], allowing to project a tracked object to its co-
ordinates, for example. Furthermore, we add the following L2-combinators with
associated implementations to D :4

avgFun : �(TrObj→ R ∩ a ∩ms)→ �[TrObj]→ �(R ∩ a ∩ Avg ∩ms)

dist : �((R, R) ∩ Cart)→ �((R, R) ∩Cart)→ �(R ∩ dist)

Here, avgFun uses code of a function that extracts a measured real value (with se-
mantic property a) from a tracked object and code of an array of such objects to
produce code of a real that is an average. Similarly, dist calculates distances be-
tween two coordinates. Using (CL)S, we solved various inhabitation questions for
this scenario. For example, dist(box cdn(pos(TrV(O))), box cdn(pos(TrV(O))))
solves C ;D �C2? : �(R∩dist) and has L1-code of type real describing a distance
between objects. All synthesis-requests of this form were answered in ≤250ms.

Second, we consider C2 and D2 for synthesizing sorting routines for arrays of
objects with a given order relation. Assume C2 only contains an L1-combinator
lessThan : ((R, R)→ bool)∩ incTO deciding the standard total order ≤R on R,
where incTO is a semantic type stating that ≤R is an increasing total order.
The repository D2 contains the combinators with associated implementations:

S :
(
�((α̃, α̃)→ bool)→ �([α̃]→ [α̃])

)
∩
(
�a→ �(→ a ∩ Sorted)

)
swap :

(
�((α̃, β̃)→ γ)→ �((β̃, α̃)→ γ)

)
∩
(
�a→ �Rev(a)

)
Φ :

(
�((α̃, α̃)→ bool)→ �((α̃, α̃)→ bool)

)
∩(

�Rev(incTO)→ �decTO
)
∩
(
�Rev(decTO)→ �incTO

)
The combinator S contains an L1-template for bubble sort. Its first type com-
ponent states that, given L1-code of a binary relation, S produces L1-code of

2 http://www-seal.cs.tu-dortmund.de/seal/cls_en.shtml
3 We refer to [13] for a comprehensive discussion of the examples and generated code.
4 [ϑ] is a unary type constructor representing an array of objects of type ϑ.

http://www-seal.cs.tu-dortmund.de/seal/cls_en.shtml

Staged Composition Synthesis 81

a function mapping an array into an array. The semantic (second) component
expresses that S returns code of a function that sorts an array without any dis-
tinguishing properties (we introduce as a top element for semantic types for
this purpose) according to the semantic property of the relation. Thus, if the
relation happens to be a decreasing total order (i.e., a gets instantiated with
decTO), then S returns code of a function that sorts a typed array in decreasing
order. The combinator swap is the modal version of the λ-calculus combinator
that swaps the arguments of a function with a semantic property expressing that
it reverses the order of arguments (Rev). The type of the combinator Φ (a purely
logical combinator whose implementation is the identity function) expresses the
idea that the reversal of an increasing total order is decreasing, and vice versa.
The inhabitation question C2;D2 �C2? : �([R]→ [R]∩decTO ∩Sorted) produces
the following inhabitant: S(Φ(swap(box lessThan))). Its �−→∗-reduction results
in a corresponding L1-sorting routine. The subterm Φ(swap(box lessThan)) cre-
ates an L1-function of the form fn (x, y) : (R, R) => lessThan(y, x). Seman-
tically, this function reverses an increasing order into a decreasing order. It is
passed to the implementation of S as an argument. Asking the inhabitation
question above in (CL)S and carrying out the �−→∗-reduction produced a bubble
sort-based implementation of a corresponding sorting routine (24 lines of L1-
code) within 150ms. Changing the inhabitation question by replacing decTO by
incTO , the algorithm produces a sorting routine in increasing order. In [13] we
extended the repositories in various ways, e.g., we synthesized a sorting routine
for topologically sorting nodes of a directed acyclic graph.

Our last example combines the previous two scenarios and highlights the
power of our framework for exploiting compositional design and higher order
abstraction in synthesizing a non-trivial L1-program. Our goal is to synthesize
code of a function which, when given an array of tracked objects, first calcu-
lates the average temperature of the tracked objects. This requires the synthesis
of the function (box tmp) • (box Tr) of Sec. 5. This function is then passed to
a higher order L2-combinator that uses it to produce code which, when given
an array of tracked objects, calculates their average temperature. The average
temperature is then used to produce a function that filters out all objects from
the array whose temperature is below average. The remaining array is sorted
in decreasing order (with regard to temperature).5 We assume that D3 con-
tains the combinator filterAndSort which will be the top-level combinator for
the inhabitant realizing the desired function.6 Amongst others filterAndSort
requires an argument whose type is given by the following combinator:

largerThanAvg : �([α̃]→ β̃ ∩ Cel ∩Avg)→ �(((β̃, β̃)→ bool) ∩ decTO)→
�[α̃]→ �(α̃→ β̃ ∩ Cel)→ �(α̃→ bool)

This combinator requires code which calculates an average temperature of an
array of objects of type α, code of a decreasing total order, code of an array

5 For example, if the tracked objects are reefer containers it is necessary to take action
on those containers first that are the furthest above average.

6 A complete discussion of this example can be found in [13].

82 B. Düdder, M. Martens, and J. Rehof

of objects of type α, and code of a function that returns the temperature of
an object of type α. It calculates the average temperature of the objects in the
array by using the function provided as a first argument. Then it uses the total
order and the temperature-function to compare the temperature of an object
to the average temperature, returning true if it is larger than the average. The
question C3;D3 �C2? : �([TrObj]→ [TrObj] ∩ decTO ∩ Sorted) resulted in:

filterAndSort((box tmp) • (box TrV),

Φ(swap(box lessThan)),avgFun, largerThanAvg, F)

As can be seen, largerThanAvg is an argument for filterAndSort. There is an
interesting interaction between these two combinators. The L2-implementation
of filterAndSort uses its other arguments to compute code with types of the ar-
guments required by largerThanAvg. The L2-implementation of filterAndSort
binds this code to names then passed to largerThanAvg. Thus, largerThanAvg
indirectly uses functionality created by higher-order applications occurring in
filterAndSort even though largerThanAvg exists outside filterAndSort.
This is possible because filterAndSort takes largerThanAvg as argument and
can thus provide it with bindings. The time required for synthesis and �−→∗-
reduction was approximately 9s and resulted in 61 lines of L1-code.

We conclude the discussion of (CL)S by mentioning an important principle for
optimization of the inhabitation algorithm. Line 5 of the ATM (Fig. 4) indicates
that the complexity arises from the construction of all possible type substi-
tutions. Thus, one possible heuristic for optimization is to reduce the number
of substitutions that actually have to be constructed. Using the fact that in-
habitants must be well typed in L1 (cf. Thm. 1) the number of relevant type
substitutions can be drastically decreased. This principle was used to optimize
the inhabitation algorithm of (CL)S and showed major impact on runtime. The
above initial experiments with SCS are encouraging, but further experiments,
optimization heuristics, and engineering are needed.

9 Related Work

The idea of a staged approach to component-oriented synthesis does not appear
to have been considered before. Our development of SCS would not, however,
have been possible without the benefit of the modal analysis by Davies and
Pfenning [10] of staged computation and their calculus λ�→

e . Not only can we
transfer results from λ�→

e to ensure semantic correctness (eliminability), but,
interestingly, it turns out that modal types constitute a perfect instrument for
exposing both the language- and phase distinction of staged computation to
synthesis in combinatory logic.

Composition synthesis based on combinatory logic [6] with intersection types
[7] was introduced and developed in [1–5]. The (CL)S-tool has been under de-
velopment since 2011 and has been applied in several application scenarios, in-
cluding generation of GUI and of control programs for LegoNXT robots [3].

Staged Composition Synthesis 83

Several optimizations have been implemented in the tool, including optimiza-
tions based on DFS-look-ahead strategies with subtype matching [5].

Composition synthesis is in deep accord with recent movements, in technically
quite different branches of synthesis, towards component-orientation, where syn-
thesis is considered relative to a given library of components (rather than con-
struction from scratch) [15]. Our approach can be broadly compared in spirit
(rather than in technology) to synthesis of loop free programs [16]. The combi-
natory approach is fundamentally different, at a technical level, from such ap-
proaches that are based on either temporal logic, automata theory, or traditional
program logics.

Our approach is related to adaptation synthesis via proof counting [8, 9],
where semantic types are combined with proof search in a specialized proof
system. In particular, we follow [8, 9] in using semantic specifications at the
interface level. The idea of adaptation synthesis [8] is related to our notion of
composition synthesis, however our logic is different, our design of semantic types
with intersection types is novel, and the algorithmic methods are different (in [8]
the specification language used is a typed predicate logic). Semantic intersection
types can be compared to refinement types [17], but semantic types do not
need to stand in a refinement relation to implementation types (as can be seen
from our examples, this is important). Still, refinement types are a great source
of inspiration for how semantic types can be used in specifications in many
interesting situations.

10 Conclusion

We have introduced a framework for SCS based on modal intersection type sys-
tems and inhabitation in combinatory logic, and we have provided a theory of
its correctness. The framework has been implemented in a prototype extension
of the (CL)S system and has been used in experiments with SCS. Further work
includes optimizations of the algorithm, in particular by exploiting the conser-
vative extension property, more experimentation, and applications.

Acknowledgement. We thank our reviewers for very helpful reviews.

A Native Language L1

The native template language L1 is simultaneously defined and typed by the
system shown in Fig. 5 below. It is a simply typed first order imperative core
language with local references, extended with template variables u. The type
structure consists of a set T0 of value types ranged over by t0, reference types t1
and the set of native template types T1, ranged over by τ . Value types are type
variables ranged over by α, β, γ, . . . drawn from the set V, or type constants b
including ∗ (unit type), bool, int and real.

T0 � t0 ::= α | b T0 � t1 ::= ref t0 T1 � τ ::= t0 | t0 → t0

84 B. Düdder, M. Martens, and J. Rehof

Native program variables, disjoint from template variables u, are ranged over
by x, and t ranges over all types (of the kind t0, t1, or τ). Judgements have
the form Δ;Σ �L1 T : t, where the environment Δ contains bindings (u : τ) of
template variables, and the environment Σ contains bindings (x : t) of program
variables. Native expressions are template expressions T such that ∅;Σ �L1 T : t
for some Σ and t. That is, native expressions do not contain any free template
variables. Native programs are template expressions T such that ∅; ∅ �L1 T : τ for
some τ . That is, native programs are closed expressions with no free variables
and with types in T1. We assume in rule (cnst) further program constants ct
including the constant ref for creating references.7

Δ; (Σ, x : t) �L1 x : t
(var)

Δ;Σ �L1 ct : t
(cnst)

(Δ,u : τ);Σ �L1 u : τ
(mvar)

Δ;Σ �L1 skip : ∗ (skip)

Δ;Σ �L1 x : ref t0
Δ;Σ �L1 !x : t0

(rd)

Δ;Σ �L1 T : t0
Δ;Σ �L1 x : ref t0

Δ;Σ �L1 x := T : ∗ (wr)

Δ;Σ �L1 T : bool
Δ;Σ �L1 T1 : t0 Δ;Σ �L1 T2 : t0

Δ;Σ �L1 if T then T1 else T2 : t0
(if)

Δ;Σ �L1 T : bool
Δ;Σ �L1 T1 : ∗

Δ;Σ �L1 while T do T1 : ∗ (wh)

Δ;Σ �L1 T1 : ∗
Δ;Σ �L1 T2 : t0

Δ;Σ �L1 T1;T2 : t0
(seq)

Δ;Σ �L1 T1 : t Δ; (Σ, x : t) �L1 T2 : t0
Δ;Σ �L1 let x : t = T1 in T2 : t0

(let)

Δ; (Σ, x : t0) �L1 T : t′0
Δ;Σ �L1 fn x : t0 => T : t0 → t′0

(fn)
Δ;Σ �L1 T1 : t0 → t′0 Δ;Σ �L1 T2 : t0

Δ;Σ �L1 (T1 T2) : t′0
(→E)

Fig. 5. Native template language L1

The following lemma can be proven as in [10] by induction on a derivation of
the typing judgement. Notice the restriction to an empty environment Σ in the
first assumption of the second property (see [10]).

Lemma 1 (Substitution).

1. If Δ;Σ �L1 T : t and Δ; (Σ, x : t) �L1 T ′ : t′ then Δ;Σ �L1 T ′[x := T] : t′.
2. If Δ; ∅ �L1 T : τ and (Δ,u : τ);Σ �L1 T ′ : t then Δ;Σ �L1 T ′[u := T] : t.
3. Let S : V→ T0. If Δ;Σ �L1 T : τ then S(Δ);S(Σ) �L1 S(T) : S(τ).

7 Reference types ref t0 cannot escape local scopes by the type rules of L1, which
simplifies our theory of intersection types (Sec. 3) which are unsound in the presence
of unrestricted references [18]. The restriction can be lifted in several ways [18–20],
but for brevity we shall not do so here.

Staged Composition Synthesis 85

B Operational Semantics of L2

The language and type system of L2 is identical to the calculus λ�→
e introduced

by Davies and Pfenning in [10], only our level L1 is decoupled from L2 in that
it is distinguished as a different language with a type system and semantics of
its own, and we use only a fully boxed fragment of the type language in which
L2-types σ are generated from boxed types of L1 (of the form �τ).8

The operational semantics of L2 is exactly the reduction relation �−→ (and
its reflexive transitive closure �−→∗) defined for λ�→

e in [10]. Computation is
generated by β-reduction and the letbox-reduction rule (called �β in [10]):

letbox u = box T in M �−→M [u := T]

together with congruences with respect to all contexts except for the context
box T . The reduction of letbox-expressions substitute template expressions box T
into template variables u in L2-expressions M . This rule allows L2-programs to
perform code substitution into L1-code. However, a boxed expression can itself
be the result of L2-computations, as captured in the congruence rule

M1 �−→M ′
1

letbox u = M1 in M2 �−→ letbox u = M ′
1 in M2

as can the L2-expression into which substitution is performed:

M2 �−→M ′
2

letbox u = M1 in M2 �−→ letbox u = M1 in M ′
2

Because the relation �−→ is not a congruence with respect to box-expressions
(reduction does not “go under” box) it is possible to semantically decouple L1-
expressions under the box-operator from the language level L2 (the contents of
such boxed expressions are treated as black boxes). We refer the reader to [10]
for full details of the semantics.

The type system imposes a strict phase distinction, in that metalanguage
terms and only such can be reduced under �−→ in L2, and, by subject reduction,
expressions cannot “go wrong” under reduction (for example, by applying a
boxed term, or by unboxing an unboxed term). Subterm occurrences in the
scope of a box-constructor are, in the parlance of [10], persistent, in that they
cannot be executed under metalanguage (L2) reduction. Term occurrences other
than persistent term occurrences are called eliminable [10]. It is shown in [10]
(subject reduction, Thm. 4, and eliminability, Thm. 5) that one has:

1. If Δ;Γ �L2 M : σ and M �−→∗ M ′ then Δ;Γ �L2 M ′ : σ
2. If ∅; ∅ �L2 M : �τ and M �−→∗ M ′ and M ′ is irreducible, then M ′ contains

no eliminable term occurrences.

Lemma 2 (Substitution [10]).

1. If Δ; ∅ �L2 M : σ and Δ; (Γ, x : σ) �L1 M ′ : σ′ then Δ;Γ �L2 M ′[x := M] : σ′

2. Let S : V→ T0. If Δ;Γ �L2 M : σ then S(Δ);S(Γ) �L2 S(M) : S(σ).

8 This restriction is not essential, but it simplifies our presentation.

86 B. Düdder, M. Martens, and J. Rehof

References

1. Rehof, J., Urzyczyn, P.: Finite Combinatory Logic with Intersection Types. In: Ong,
L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 169–183. Springer, Heidelberg (2011)

2. Düdder, B., Martens, M., Rehof, J., Urzyczyn, P.: Bounded Combinatory Logic.
In: Proceedings of CSL 2012, Schloss Dagstuhl. LIPIcs, vol. 16, pp. 243–258 (2012)

3. Düdder, B., Garbe, O., Martens, M., Rehof, J., Urzyczyn, P.: Using Inhabitation
in Bounded Combinatory Logic with Intersection Types for GUI Synthesis. In:
Proceedings of ITRS 2012 (2012)

4. Rehof, J.: Towards Combinatory Logic Synthesis. In: 1st International Workshop
on Behavioural Types, BEAT 2013. ACM (January 22, 2013)

5. Düdder, B., Martens, M., Rehof, J.: Intersection Type Matching with Subtyp-
ing. In: Hasegawa, M. (ed.) TLCA 2013. LNCS, vol. 7941, pp. 125–139. Springer,
Heidelberg (2013)

6. Hindley, J.R., Seldin, J.P.: Lambda-calculus and Combinators, an Introduction.
Cambridge University Press (2008)

7. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A Filter LambdaModel and the
Completeness of Type Assignment. Journal of Symbolic Logic 48(4), 931–940 (1983)

8. Haack, C., Howard, B., Stoughton, A., Wells, J.B.: Fully Automatic Adaptation of
Software Components Based on Semantic Specifications. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 83–98. Springer, Heidelberg
(2002)

9. Wells, J.B., Yakobowski, B.: Graph-Based Proof Counting and Enumeration with
Applications for Program Fragment Synthesis. In: Etalle, S. (ed.) LOPSTR 2004.
LNCS, vol. 3573, pp. 262–277. Springer, Heidelberg (2005)

10. Davies, R., Pfenning, F.: A Modal Analysis of Staged Computation. Journal of the
ACM 48(3), 555–604 (2001)

11. Dezani-Ciancaglini, M., Hindley, R.: Intersection Types for Combinatory Logic.
Theoretical Computer Science 100(2), 303–324 (1992)

12. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform Proofs as a Founda-
tion for Logic Programming. Ann. Pure Appl. Logic 51(1-2), 125–157 (1991)

13. Düdder, B., Martens, M., Rehof, J.: A Theory of Staged Composition Synthesis
(Extended Version). Technical Report 843, Faculty of Computer Science, TU Dort-
mund (2013), http://www-seal.cs.tu-dortmund.de/seal/downloads/research/
cls/TR843-SCS.pdf

14. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28(1), 114–133 (1981)

15. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

16. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of Loop-free Programs.
In: Proceedings of PLDI 2011, pp. 62–73. ACM (2011)

17. Freeman, T., Pfenning, F.: Refinement Types for ML. In: Proceedings of PLDI
1991, pp. 268–277. ACM (1991)

18. Davies, R., Pfenning, F.: Intersection Types and Computational Effects. In: ICFP,
pp. 198–208 (2000)

19. Dezani-Ciancaglini, M., Giannini, P., Della Rocca, S.R.: Intersection, Universally
Quantified, and Reference Types. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 209–224. Springer, Heidelberg (2009)

20. Dezani-Ciangaglini, M., Ronchi Della Rocca, S.: Intersection and Reference Types.
Essays dedicated to Henk Barendregt on the occasion of his 60’th birthday,
pp. 77–86 (2007)

http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR843-SCS.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR843-SCS.pdf

Overlapping and Order-Independent Patterns
Definitional Equality for All

Jesper Cockx, Frank Piessens, and Dominique Devriese

DistriNet, KU Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. Dependent pattern matching is a safe and efficient way to
write programs and proofs in dependently typed languages. Current lan-
guages with dependent pattern matching treat overlapping patterns on
a first-match basis, hence the order of the patterns can matter. Perhaps
surprisingly, this order-dependence can even occur when the patterns do
not overlap. To fix this confusing behavior, we developed a new seman-
tics of pattern matching which treats all clauses as definitional equalities,
even when the patterns overlap. A confluence check guarantees correct-
ness in the presence of overlapping patterns. Our new semantics has two
advantages. Firstly, it removes the order-dependence and thus makes the
meaning of definitions clearer. Secondly, it allows the extension of exist-
ing definitions with new (consistent) evaluation rules. Unfortunately it
also makes pattern matching harder to understand theoretically, but we
give a theorem that helps to bridge this gap. An experimental implemen-
tation in Agda shows that our approach is feasible in practice too.

Keywords: Type theory, dependent pattern matching, overlapping pat-
terns, confluence, Agda.

1 Introduction

Pattern matching is a mechanism to write programs by case distinction and
recursion. Definitions by pattern matching are given by a set of equalities called
clauses, for example:

plus : Nat→ Nat→ Nat

plus zero n = n
plus (suc m) n = suc (plus m n)

(1)

If the patterns of the clauses of a definition overlap, it is customary to choose
the first clause that gives a match. This is the first-match semantics of pattern
matching. For example, in the following definition the last clause cannot hold as
a definitional equality but holds only when the first two clauses don’t match:

equal : Nat→ Nat → Bool

equal zero zero = true

equal (suc m) (suc n) = equal m n
equal m n = false

(2)

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 87–106, 2014.
© Springer-Verlag Berlin Heidelberg 2014

88 J. Cockx, F. Piessens, and D. Devriese

In a language with dependent types, pattern matching allows us to write
not just programs, but also proofs. For example, the following is a proof that
plus m zero ≡ m for all m : Nat:1

lemma : (m : Nat)→ plus m zero ≡ m
lemma zero = refl

lemma (suc m) = cong suc (lemma m)
(3)

If we are not careful, it is very well possible to give incorrect proofs by pattern
matching. For example, a case analysis might be incomplete, or a recursive proof
might become infinitely large when we expand it. This leads to an inconsistent
logic. Hence certain restrictions are put on definitions by pattern matching to
ensure totality [Coq92]. These restrictions allow us to translate definitions by
pattern matching to type theory with only the theoretically simpler eliminators
plus the K axiom [GMM06]. This ensures that definitions by pattern matching
are correct with respect to the core theory, but also limits the expressiveness of
the language.

In order to guarantee completeness, it is required that patterns must form a
covering, i.e. arise as the patterns at the leaves of a case tree. An example of a
case tree for a function half : Nat→ Nat is given in Fig. 1. This case tree shows
that the patterns zero, suc zero, and suc (suc k) together form a covering,
ensuring completeness of functions that use these patterns.

half : Nat → Nat

half zero = zero

half (suc zero) = zero

half (suc (suc n)) = suc (half n)

n

⎧⎨⎩
zero �→ zero

(suc m)

{
suc zero �→ zero

suc (suc k) �→ suc (half k)

Fig. 1. Case trees such as the one on the right are used to check completeness. In each
internal node, one variable is chosen and replaced by all possible constructors of its
type applied to fresh variables.

Some languages with dependent pattern matching (such as Agda [Nor07])
allow more general pattern sets, but translate them to a covering internally. In
this translation, overlapping patterns are treated on a first-match basis, hence
the result of the translation depends on the order of the clauses.

Perhaps surprisingly, this order-dependence occurs even when the patterns do
not overlap. For example, if we define disjunction on booleans as in [Ab12]:

or : Bool→ Bool → Bool

or false false = false

or true false = true

or x true = true

(4)

1 The identity type a ≡ b expresses equality of two terms a, b : A. Here refl is a proof
that m ≡ m and cong f p is a proof that f x ≡ f y if p is a proof that x ≡ y.

Overlapping and Order-Independent Patterns 89

then it does not satisfy the definitional equality2 or x true = true, while this
is the case if the last clause is given first instead, leading to unexpected results
for an inexperienced user. This is a sign of bad abstraction.

The goal of this paper is to make dependent pattern matching more amenable
to equational reasoning. We do this by interpreting each clause directly as a
definitional equality, even when the patterns overlap. In particular, our interpre-
tation does not depend on the order of the patterns. This also allows us to give
definitions with overlapping patterns, which can be used to extend a function
with extra evaluation rules. For example, we allow the following definition:

plus : Nat→ Nat → Nat

plus zero y = y
plus (suc x) y = suc (plus x y)
plus x zero = x
plus x (suc y) = suc (plus x y)

(5)

While all the examples in this introduction only use simple types, our approach is
general enough to cope with inaccessible patterns, which are specific to dependent
pattern matching. Section 6 includes two examples of dependent functions with
overlapping patterns.

By making all clauses hold as definitional equalities, definitions by pattern
matching feel more like mathematical definitions, rather than sequential program
instructions. However, we lose the ability to translate pattern matching to the
use of eliminators, making it more complex to understand theoretically.

Contributions

– We present an extended form of dependent pattern matching that allows
patterns that do not necessarily form a covering (e.g. they might overlap),
while treating all clauses as definitional equalities.

– We give a generalized criterion for completeness of overlapping patterns.
– We describe a simple criterion that can be used to check the confluence of

definitions with overlapping patterns.
– We verify the feasibility of our approach by extending the Agda language,

and give some simple examples that show how overlapping patterns can be
used to add extra computation rules to existing functions.

– We formulate and prove a theoretical result that gives for every definition of
a function f with overlapping patterns another definition of a function f ′ of
which the patterns form a covering such that f ′ is extensionally equal to f .

Outlook. In Sect. 2, we give our notations and conventions for this paper. In
Sect. 3, we describe the three problems with dependent pattern matching in
current languages that we try to solve. In Sect. 4, we give a general description
of our extended form of dependent pattern matching. In Sect. 5, we describe
how the correctness of these extended definitions by pattern matching can be
2 Two terms are called definitionally equal if they have the same normal form.

90 J. Cockx, F. Piessens, and D. Devriese

checked. In Sect. 6, we give some examples of how our extended form of pattern
matching can be used. In Sect. 7, we give a theoretical result that says that each
definition that uses our extension is extensionally equal to a classical one.

2 Conventions and Terminology

Type Theory. As our version of type theory, we use Luo’s Unified Theory of
Dependent Types (UTT) with dependent products, inductive families, and uni-
verses [Luo94]. We omit the meta-level logical framework and the impredicative
universe of propositions because they are not needed for our current work. The
formal rules of the version of UTT we use are summarized in Fig. 2.

(Ctx-empty)
ε valid

Γ � A : Seti x /∈ FV (Γ)
(Ctx-ext)

Γ (x : A) valid
Γ valid x : A ∈ Γ

(Var)
Γ � x : A

Γ � t : A1 Γ � A1 = A2 : Seti (=Ty)
Γ � t : A2

Γ valid (List-empty)
Γ � ε : ε

Γ � t̄ : Δ Γ � t : A[Δ �→ t̄]
(List-ext)

Γ � t̄ t : Δ(x : A)
+ equality rule

Γ valid (Set)
Γ � Seti : Seti+1

Γ � A : Seti Γ (x : A) � B : Setj
(Π)

Γ � (x : A)→ B : Setmax(i,j)

+ equality rule

Γ (x : A) � t : B
(λ)

Γ � λ(x : A). t : (x : A)→ B
+ equality rule

Γ (x : A) � B : Seti Γ � f : (x : A)→ B Γ � t : A
(App)

Γ � f t : B[x �→ t]
+ equality rule

Γ (x : A) � t : B Γ � s : A
(β)

(λ(x : A). t) s = t[x �→ s] : B[x �→ s]

Γ � f : (x : A)→ B x /∈ FV (f)
(η)

λ(x : A). f x = f : (x : A)→ B

+ reflexivity, symmetry, and transitivity rules for =

Fig. 2. The core formal rules of UTT, including dependent function types (x : A)→ B,
an infinite hierarchy of universes Set0, Set1, Set2, . . ., and βη-equality

Contexts and Substitutions. We use Greek capitals Γ,Δ, . . . for contexts,
capitals T, U, . . . for types, and small letters t, u, . . . for terms. A list of terms
is indicated by a bar above the letter: t̄. Contexts double as the type of such a
list of terms, so we can write for example t̄ : Γ where Γ = (m : Nat)(p : m ≡
zero) and t̄ = zero refl. The simultaneous substitution of the terms t̄ for the
variables in the context Γ is written as [Γ �→ t̄]. We denote substitutions by small
greek letters σ, τ, . . . The identity substitution is written as [], and the forward
composition of two substitutions σ and τ is written as σ; τ .

Overlapping and Order-Independent Patterns 91

Inductive Families. Inductive families are (dependent) types inductively de-
fined by a number of constructors, for example Nat is defined by the constructors
zero : Nat and suc : Nat → Nat. Inductive families can also have parameters
and indices, for example Vec A n is an inductive family with one parameter
A : Set, one index n : Nat, and two constructors nil : Vec A zero and
cons : (n : Nat) → A → Vec A n → Vec A (suc n). A formal treatment of
inductive families can be found in [Dyb94]. For our purposes, it suffices to know
that inductive families are introduced by the rules given in Fig. 3.

Γ valid (Data)
Γ � D : ΨΔ→ Setl

Γ valid (Cons)
Γ � ck : ΨΦk → D ı̄k

Fig. 3. Introduction rules for an inductive family D with parameters Ψ , indices Δ, and
constructors ck : Φk → D ı̄k for k = 1, . . . , n

Definitional and Propositional Equality. In (intensional) type theory, there
are two distinct notions of equality. On the one hand, two terms s and t are
definitionally equal (or convertible) if Γ � s = t : T . On the other hand, two
terms s and t are propositionally equal if we can prove their equality, i.e. if we
can give a term of type s ≡T t. Propositional equality was introduced by Martin-
Löf [ML84]. In UTT, it can be defined as an inductive family with two parameters
A : Seti and a : A, one index b : A, and one constructor refl : a ≡A a.

When working with type theory in dependently typed languages such as Agda
or Coq, it is more convenient to work with definitional equalities rather than
propositional ones. This is because (in intensional type theory) definitional equal-
ity can be checked automatically, while propositional equality has to be proven
and applied manually. When working with terms with free variables however,
not all propositionally equal terms are definitionally equal, so the propositional
equality is often necessary.

Definitions by Pattern Matching. A definition by pattern matching of a
function f consists of a number of equalities called clauses, which are of the
form f p̄ = t where p̄ is a list of patterns and t is a term called the right-hand
side. A pattern is a term or a list of terms that is built from only (fully applied)
constructors and variables, which we call the pattern variables. In dependent
pattern matching, patterns can also contain inaccessible patterns, which can
occur when there is only one type-correct term possible in a given position. As
in [Nor07], we mark inaccessible patterns as !t". For example, let Square n be
an inductive family with one index n : Nat and one constructor sq : (m : Nat)→
Square m2. Then !m2" (sq m) is a pattern of type (n : Nat)(p : Square n). Any
other pattern !t" (sq m) would be ill-typed, so the use of an inaccessible pattern
is justified.

92 J. Cockx, F. Piessens, and D. Devriese

We see patterns as a distinct syntactic class rather than a special kind of
terms. We can convert a pattern p to a term by taking the underlying term #p$
defined as follows:

#x$ = x #c p1 . . . pn$ = c #p1$. . . #pn$ #!t"$ = t (6)

A term t matches a pattern p if there exists a substitution σ such that #p$σ = t.
A pattern p̄ : Δ is called linear if each pattern variable occurs exactly once in

an accessible position in p̄. It is called respectful [GMM06] if for each list of terms
ā : Δ that matches all the accessible parts of p̄, we have that ā matches all the
inaccessible parts of p̄ as well. Patterns are required to be linear and respectful in
order to have decidable pattern matching in the presence of inaccessible patterns.

Formally, we write Γ |Φ � p̄ : Δ pattern to express that, in the context Γ , p̄
is a pattern of type Δ with pattern variables from the context Φ. A definition
by pattern matching of a function f : Δ → T in a context Γ then consists of
a set of clauses of the form f p̄ = t where Γ |Φ � p̄ : Δ pattern is linear and
respectful and ΓΦ(f : Δ → T) � t : T [Δ �→ #p̄$]. In order to ensure correctness,
definitions by pattern matching are required to have three additional properties:

Completeness. For each closed list of terms s̄ : Δ, there must be a pattern p̄
such that s̄ matches p̄. This is required in order to have canonicity, i.e. that
any closed normal form of an inductive family is constructor-headed.

Termination. There can be no s̄ : Δ such that there is an infinite sequence of
evaluation steps f s̄ −→ t1 −→ t2 −→ . . . where f occurs in each of the ti.
This is required in order to have strong normalization.

Confluence. If f s̄ −→∗ t1 and f s̄ −→∗ t2, there should exist a term t such
that t1 −→∗ t and t2 −→∗ t. This is required in order to have the Church-
Rosser property.

If these three requirements are satisfied, we can add f to the theory by the rules
given in Fig. 4.

Γ valid (Func)
Γ � f : Φ→ T

Γ � s̄ = �p̄k�σ : Φ
(Clause)

Γ � f s̄ = tkσ : T [Φ �→ s̄]

Fig. 4. Rules for a function f : Φ→ T defined by the clauses f p̄k = tk for k = 1, . . . , n

Respectfulness can be checked step by step by context splitting (see Sect. 2.1
of [Nor07]), completeness is checked by constructing a case tree, and termination
can be achieved by requiring that definitions are structurally recursive. Conflu-
ence is a non-issue as long as first-match semantics are used, because then only
one clause is ever applicable at the same time. When we drop the first-match
semantics, the checks for respectfulness and termination stay valid, but those for
completeness and confluence need to be updated. We will do this in Sect. 5.

Overlapping and Order-Independent Patterns 93

Case Trees. Definitions by pattern matching can be represented by a case tree.
A case tree tells us how the patterns of a definition are built by introducing
constructors step by step. Each leaf node of a splitting tree corresponds to a
clause of the definition. For example, consider the function parity (7) given by
Achim Jung on the Agda mailing list3. It can be represented by the case tree
given in Fig. 5.

m n

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
zero n

⎧⎨⎩
zero zero �→ true

zero (suc n)

{
zero (suc zero) �→ false

zero (suc (suc n)) �→ parity zero n

(suc m) n

⎧⎨⎩ (suc m) zero

{
(suc zero) zero �→ false

(suc (suc m)) zero �→ parity m zero

(suc m) (suc n) �→ parity m n

Fig. 5. This case tree corresponds precisely to the definition of parity (7)

parity : Nat→ Nat → Bool

parity zero zero = true

parity zero (suc zero) = false

parity zero (suc (suc n)) = parity zero n
parity (suc zero) zero = false

parity (suc (suc m)) zero = parity m zero

parity (suc m) (suc n) = parity m n

(7)

Using case trees has a number of advantages. Firstly, the patterns at the
leaves of a case tree always form a covering, hence they are complete. Secondly,
they give an efficient method to evaluate functions defined by pattern matching.
Thirdly, each internal node in a case tree corresponds exactly to the application
of an eliminator for an inductive family, so they are a useful intermediate step
in the translation of dependent pattern matching to pure type theory (without
pattern matching) as done in [GMM06].

In section 2.2 of [Nor07], it is described how a case tree can be constructed
from a given (complete) set of clauses. When dealing with overlapping patterns,
the algorithm chooses whatever pattern comes first. In other words, the resulting
case tree follows the first-match semantics of pattern matching.

Termination Checking. In order to guarantee termination, functions are re-
quired to be structurally recursive. This means that the arguments of recursive
calls should be structurally smaller than the pattern on the left-hand side. The
structural order ≺ is defined in Fig. 6. For functions with multiple arguments,
the function should be structurally recursive on one of its arguments, i.e. there
should be some k such that sk ≺ #pk$ for each clause f p̄ = t and each recursive
call f s̄ in t.
3 https://lists.chalmers.se/pipermail/agda/2012/004397.html, last visited on

15 January 2014.

https://lists.chalmers.se/pipermail/agda/2012/004397.html

94 J. Cockx, F. Piessens, and D. Devriese

ti ≺ c t1 . . . tn

f ≺ t

f s ≺ t
r ≺ s s ≺ t

r ≺ t

Fig. 6. The structural order ≺ can be used to check termination [GMM06]. The most
important property of the structural order is that it is well-founded, because this guar-
antees that structurally recursive functions are indeed terminating.

We lack the space to do justice to the large amount of research on termina-
tion checking. For some more sophisticated approaches, see for example size-
change termination [LJB01], type-based termination [Bla04], and almost-full
relations [VCW12].

3 Problem Statement

When deciding which definitions by pattern matching are allowed, there is a
conflict between theory and practice. From a theoretical perspective, we want to
be able to write definitions by pattern matching in function of eliminators as in
[GMM06], because this guarantees correctness of the definitions. From a practical
perspective, we want to be able to write overlapping definitions that follow the
first-match semantics, because this reduces the number of clauses required in
some cases. In an attempt to reconcile these two goals, [Nor07] allows patterns
to overlap but translates definitions to a case tree internally using the first-match
semantics. However, the representation of function definitions as case trees and
the translation to a case tree specifically introduce a number of new problems
which we describe in this section.

Clauses Are Split Too Much. When constructing a case tree from a set of
clauses, the constructed case tree is not always the one the user intended. An
example of this behavior was given by the definition of or (4) in the introduction.
As another example, when we translate the definition (7) to a case tree using the
algorithm from [Nor07], we won’t get the case tree in Fig. 5 but rather the one
given in Fig. 7. Note that in this case tree, the constructors are introduced in a
different order. The result is that the single clause parity (suc m) (suc n) =
parity m n has been split in the following two clauses:

parity (suc zero) (suc n) = parity zero n
parity (suc (suc m)) (suc n) = parity (suc m) n

This means that a term of the form parity (suc m) (suc n), where m and n are
free variables, won’t evaluate to parity m n, even though it should according to
the input clauses. This impedes equational reasoning and can be very confusing
to the unsuspecting user. If the last clause was placed first instead, then the
correct covering would have been reconstructed. So although the patterns of
this definition form a covering, their order nevertheless influences the result!

Overlapping and Order-Independent Patterns 95

m n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zero n

⎧⎨⎩
zero zero �→ true

zero (suc n)

{
zero (suc zero) �→ false

zero (suc (suc n)) �→ parity zero n

(suc m) n

⎧⎪⎪⎨⎪⎪⎩
(suc zero) n

{
(suc zero) zero �→ false

(suc zero) (suc n) �→ parity zero n

(suc (suc m)) n

{
(suc (suc m)) zero �→ parity m zero

(suc (suc m)) (suc n) �→ parity (suc m) n

Fig. 7. In contrast to the case tree in Fig. 5, this case tree of the parity function does
not include the definitional equality parity (suc m) (suc n) = parity m n

Not All Complete Pattern Sets Form a Covering. The second problem
is that not all complete pattern sets form a covering, hence they cannot be
represented precisely by a case tree. Consider for example the following definition
of majority due to Gérard Berry:

majority : Bool→ Bool→ Bool → Bool

majority true true true = true

majority x false true = x
majority true y false = y
majority false true z = z
majority false false false = false

(8)

It is clear that the patterns of this definition are complete and do not overlap, yet
there is no case tree representing exactly this definition. Instead, it is translated
to the case tree given in Fig. 8. We can see that in the case tree, the clause

x y z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

true y z

⎧⎪⎪⎨⎪⎪⎩
true true z

{
true true true �→ true

true true false �→ true

true false z

{
true false true �→ true

true false false �→ false

false y z

⎧⎨⎩
false true z �→ z

false false z

{
false false true �→ false

false false false �→ false

Fig. 8. Case tree constructed from the definition of majority (8). It does not include
the definitional equality majority x false true = x.

majority x false true = x has been split into the following two clauses:

majority true false true = true

majority false false true = false
(9)

So we have lost the definitional equality majority x false true = x. Note
that no case tree corresponds precisely to the definition (8), so this problem is
inherent to the representation of definitions by case trees.

96 J. Cockx, F. Piessens, and D. Devriese

Overlapping Patterns Can Be Useful. It would sometimes be useful to
define a function with overlapping clauses that are all interpreted as definitional
equalities, for example definition (5) of plus. Currently, such definitions are not
allowed because the last two clauses are ‘unreachable’. Yet in order to evaluate
plus m zero or plus m (suc n) where m is not in constructor form, we need
the last two clauses. For example, with definition (5) of plus, it is easy to define
the function plus-comm that proves the commutativity of plus:

plus-comm : (m : Nat)→ (n : Nat)→ plus m n ≡ plus n m
plus-comm zero n = refl

plus-comm (suc m) n = cong suc (plus-comm m n)
(10)

In contrast, to give this proof for the standard definition of plus, the Agda stan-
dard library first needs a lemma to prove that plus m (suc n) ≡ suc (plus m n),
and then the proof itself still takes approximately eight lines. So the overlapping
patterns of plus allow us to give shorter and more straightforward proofs than
before. Note that no case tree can contain overlapping patterns, so again this
restriction is inherent to the representation by case trees.

4 Allowing More General Pattern Sets

To fix these problems, we extend pattern matching in order to allow more gen-
eral pattern sets than just coverings. In particular, we allow the patterns in a
definition to overlap. Instead of following the first-match semantics, these def-
initions follow ‘any-match semantics’, i.e. any clause can be used to evaluate
the function at any time. In practice, this means that evaluation of a function
application doesn’t block when pattern matching gets stuck on a free variable.
Instead, evaluation continues with the next clause. This gives us ‘what-you-see-is-
what-you-get’ pattern matching where all clauses hold as definitional equalities.

By extending pattern matching in this way, we solve all three above problems.
All clauses are treated as definitional equalities, so their order doesn’t matter.
We don’t need patterns to form a covering, so there is no need to split clauses.
Overlapping patterns are allowed, so there is no need to discard them. However,
our approach also has some drawbacks:

– First of all, we lose the first-match semantics. This doesn’t restrict the func-
tions we can define, but it requires us to write longer definitions in some cases.
This problem is unavoidable if we want clauses to be order-independent.

– We also lose the ability to translate definitions to pure type theory with
eliminators. To guarantee correctness (completeness, termination, and con-
fluence), we thus need to reason about the definitions directly.

– Finally, we lose the ability to represent functions by case trees, hence the
ability to evaluate them efficiently. It is however possible to extend case
trees with catchall subtrees that allow us to represent these more general
definitions by case trees. See the first author’s master thesis [Coc13] for a
full description.

Overlapping and Order-Independent Patterns 97

5 Checking Definitions with Overlapping Patterns

The standard technique for checking termination doesn’t depend on the fact
that the patterns form a covering, but those for completeness and confluence
do. In this section, we describe how to check completeness and confluence in the
presence of overlapping patterns.

Completeness. To check whether a set of (overlapping) patterns is complete,
we just try to build a case tree for it using the coverage algorithm from section
2.2 of [Nor07]. Because this algorithm can only split patterns or discard them,
we know that it preserves completeness. Hence if the construction of a case tree
succeeds, we know that the patterns we started from are complete. More formally,
we have the following (equivalent) criterion for completeness:

Proposition 1. Let Δ be a valid context and P be a set of lists of patterns of
the same type Δ. If there exists a covering O such that for each q̄ ∈ O, there
exists a p̄ ∈ P such that p̄ ⊇ q̄4, then P is complete.

Proof. Since the covering O is complete, each closed list of terms t̄ : Δ matches a
q̄ ∈ O, i.e. there exists a substitution τ such that t̄ = #q̄$τ . By assumption, there
exists a p̄ such that p̄ ⊇ q̄, i.e. there exists a substitution σ such that #p̄$σ = #q̄$.
Then we have t̄ = #p̄$στ . This holds for any t̄ : Δ, hence the set of patterns P is
complete. &'

The fact that we can reuse the existing coverage algorithm means we don’t
have to change our intuition about when a function definition is complete. It
also means we can re-use existing code for coverage checking.

Confluence. To ensure the confluence of a definition with overlapping patterns,
we want that whenever a term matches the patterns of two clauses, then they
also give the same result for that term. In order to check whether two patterns
overlap, we will use unification. A unifier of two terms a and b is a substitution
σ such that aσ = bσ. A most general unifier of a and b is a unifier σ such that
for each other unifier σ′, there exists a substitution τ such that σ′ = σ; τ . The
question whether unifiers exist is called the unification problem. In general, this
is an undecidable problem. There exist unification algorithms (see for example
[McB00]) but they can give up in case the problem is too hard. We say that the
algorithm succeeds positively if it finds a most general unifier, that it succeeds
negatively if it concludes there exist no unifiers, and that it fails otherwise.

We make the following observation: let p̄1 and p̄2 be two patterns that have
a most general unifier σ and let p̄ = p̄1σ = p̄2σ. Then a term t̄ matches p̄ if
and only if it matches both p̄1 and p̄2. Also, if there is no unifier of p̄1 and p̄2,
then there is no term t̄ that matches both p̄1 and p̄2. So if we require that the
unification of each pair of patterns (with all pattern variables as the flexible
4 We write p̄ ⊇ q̄ (q̄ is a specialization of p̄) if there exists a substitution σ on the

pattern variables of p̄ such that �q̄� = �p̄�σ.

98 J. Cockx, F. Piessens, and D. Devriese

variables) succeeds (either positively or negatively) then we are able to check
whether two patterns overlap. This is the idea behind the following proposition.

Proposition 2. Let f : Δ → T be defined by a set of clauses which are struc-
turally recursive on the k’th argument. Assume that for each pair of clauses
f p̄1 = t1 and f p̄2 = t2 we have that unification of p̄1 and p̄2 succeeds (either
positively or negatively). Moreover, assume that if it succeeds positively with re-
sult σ, then t1σ and t2σ have the same normal form. Then the definition of f is
confluent.

Proof. Let ū : Δ be a normal form, we prove that f ū has a unique normal
form by structural induction on the k’th component uk. So suppose that this
is true for all normal forms v̄ : Δ with vk ≺ uk, and suppose f ū −→ s1 and
f ū −→ s2. Then there exist clauses f p̄1 = t1, f p̄2 = t2 and substitutions
τ1, τ2 such that #p̄1$τ1 = ū = #p̄2$τ2, t1τ1 = s1 and t2τ2 = s2. In particular we
have that τ = τ1; τ2 is a unifier of p̄1 and p̄2, so unification of p̄1 and p̄2 cannot
succeed negatively. Unification of p̄1 and p̄2 cannot fail by assumption, hence it
must succeed positively with result the most general unifier σ and moreover there
must exist a normal form t such that t1σ −→∗ t and t2σ −→∗ t. Because σ is a
most general unifier of p̄1 and p̄2, there exists a substitution τ ′ such that τ = σ; τ ′.
This implies s1 = t1τ = (t1σ)τ

′ −→∗ tτ ′ and s2 = t2τ = (t2σ)τ
′ −→∗ tτ ′. By

the induction hypothesis, all recursive calls to f in t1τ and t2τ have a unique
normal form, hence the (shared) normal form tτ ′ of t1τ and t2τ is unique. We
can conclude that the definition of f is confluent. &'

Note that in order to check confluence of a recursive function, we need to know
that the definition has already passed the termination checker. This is because
we need to evaluate the function in question in order to check confluence.

It can happen that the unification of two patterns fails while checking conflu-
ence. However, unification of patterns consisting of only constructors and vari-
ables always succeeds (either positively or negatively). So this problem can only
occur if an inaccessible pattern overlaps with a constructor pattern or another
inaccessible pattern.

6 Implementation and Examples

Our extended form of pattern matching, as well as the confluence checker, have
been implemented as an experimental modification to the Agda compiler. The
implementation allows choosing between the standard semantics and ours for
each definition separately by the use of a new keyword overlapping. We do
not give the details of the implementation here, but instead give some examples
of definitions with overlapping patterns. In particular, we add extra evaluation
rules to some standard definitions. This can make it easier to prove propositions
that mention these functions, as in the proof of plus-comm (10). We also give
an example where our confluence check fails unexpectedly.

Overlapping and Order-Independent Patterns 99

Concatenation of Vectors. Here is a definition of the concatenation concat

on vectors that uses overlapping patterns:

concat : (m : Nat) (n : Nat) (v : Vec A m) (w : Vec A n)→ Vec A (plus m n)
concat !zero" n nil w = w
concat m !zero" v nil = v
concat !suc m" n (cons m a v) w = cons m a (concat m n v w)

(11)
Note that for the first clause to be of correct type, we need that plus zero n = n;
while for the second clause we need that plus m zero = m. So this definition of
concat relies upon the fact that the definition of plus has overlapping clauses.

Transitivity of the Propositional Equality. The definition of the proposi-
tional equality ≡A as an inductive family only provides reflexivity of the relation.
In order to prove that ≡A is symmetric and transitive, we have to give a proof
ourselves. For example, here is a proof of transitivity:

trans : (x : A) (y : A) (z : A) (p : x ≡ y) (q : y ≡ z)→ x ≡ z
trans !y" !y" z refl q = q
trans x !y" !y" p refl = p

(12)

We again use overlapping patterns in order to increase the number of evaluation
rules. This ensures that both proofs of the form trans refl p and trans p refl

are automatically simplified to p, saving us from proving them ourselves. This
also shows that the confluence checker works in the presence of inaccessible
patterns.

A Counterexample: Multiplication. Here is another function on natural
numbers, multiplication:

mult : Nat→ Nat → Nat

mult zero y = zero

mult (suc x) y = plus (mult x y) y
mult x zero = zero

mult x (suc y) = plus x (mult x y)

(13)

Let us focus on the confluence of the second and the fourth clause. After unifi-
cation of the patterns, the right-hand sides become respectively:

plus (mult x (suc y)) (suc y) −→∗ suc (plus (plus x (mult x y)) y)

plus (suc x) (mult (suc x) y) −→∗ suc (plus x (plus (mult x y) y))

We see that the right-hand sides do not have the same normal form, but are
only equal up to associativity of plus. Hence this definition does not satisfy our
criterion for confluence (Proposition 2). It is however possible to prove that the
right-hand sides are propositionally equal. But to obtain confluence, we need

100 J. Cockx, F. Piessens, and D. Devriese

them to have the same normal form, i.e. they must be definitionally equal. To
solve this problem, we would have to introduce a new evaluation rule of the form

plus (plus x y) z −→ plus x (plus y z)

Such rules are currently not allowed in type theory, and it is not clear how to
add them in a sound way. Hence we refrain from allowing definitions such as (13)
in the current work.

7 Link with Non-overlapping Definitions

We have shown that overlapping function definitions can be useful, but we also
have to worry about soundness. For definitions by pattern matching whose pat-
terns form a covering, this is done by translating the definition to repeated
application of eliminators [GMM06]. If the patterns of a definition do not form
a covering however, there is no hope to proceed in this way.

In this section, we prove that each new function definition we introduce is
equivalent to an old one. In order to formulate the proposition, we first have
to define what we mean by ‘equivalent’. It is not realistic to ask that they are
definitionally or propositionally equal, because both are intensional equalities:
they care about how functions are defined, not just about their values. To solve
this problem, we assume the functional extensionality axiom, which expresses
that two functions are equal when they have equal values for equal inputs. This
is achieved by adding for each pair of functions f1, f2 : (x : A) → B x the
following constant:

Ext : ((x : A)→ f1 x ≡ f2 x)→ f1 ≡ f2 (14)

This constant was introduced by [Hof95]. Now we can state our main theorem:

Theorem 3. Assume the functional extensionality axiom (14). If a function
Γ � f : Δ → T is defined by a set of clauses that satisfy the criteria for
completeness (see Proposition 1), termination (i.e. the definition is structurally
recursive), and confluence (see Proposition 2); then we can define a function
Γ � f ′ : Δ → T whose patterns form a covering such that Γ � eqf : f ≡ f ′

where eqf only contains functions whose patterns form a covering as well.

The equality proof eqf given by this theorem is internal to the language, rather
than meta-theoretical. In principle, this could cause problems because we don’t
prove consistency of the extended language. However, note the following:

– Functions with overlapping patterns cannot occur inside the equality proof.
So possible inconsistencies arising from non-confluent definitions do not in-
validate the theorem.

– The function f is not required to be terminating, but only structurally re-
cursive, which is easily checked and requires no further proof. It would be
better to be independent of the specific termination criterion, but this would
introduce a circularity in the proof.

Overlapping and Order-Independent Patterns 101

– While we need reductions in order to typecheck a function and hence to check
its completeness, a function can never occur in its own type. Hence we do
not need to know the definition is confluent in order to check completeness.

In order to prove this theorem, we use the heterogeneous equality a ∼=A,B b
introduced by McBride [McB00]. It allows the expression of equality between
terms of different types, but still only allows a proof if the types are equal.
Heterogeneous equality can be defined as an inductive family with two param-
eters A : Seti and a : A, two indices B : Seti and b : B, and one constructor
refl : a ∼=A,A a. In contrast to [McB00], this definition uses the standard elim-
ination principle (which McBride calls eqIndElim). We will work with the het-
erogeneous equality by means of pattern matching, this is equivalent with using
eqIndElim together with the K axiom [GMM06]. We will use the following fact
about the heterogeneous equality:

– For any type A and terms x, y : A, we have:

hom-to-het : x ≡ y → x ∼= y (15)
het-to-hom : x ∼= y → x ≡ y (16)

Assuming extensionality, we additionally have the following facts:

– For all f1 : (x : A1)→ B1 x and f2 : (x : A2)→ B2 x, we have:

λ-cong : (A1
∼= A2)→

((x1 : A1)(x2 : A2)→ x1
∼= x2 → f1 x1

∼= f2 x2)→
f1 ∼= f2

(17)

– For all t1 : A1, t2 : A2, f1 : (x : A1)→ B1 and f2 : (x : A2)→ B2, we have:

ap-cong : ((x1 : A1)(x2 : A2)→ x1
∼= x2 → B1 x1

∼= B2 x2)→
f1 ∼= f2 → t1 ∼= t2 → f1 t1 ∼= f2 t2

(18)

– For all B1 : A1 → Seti and B2 : A1 → Seti we have:

Π-cong : (A1
∼= A2)→

((x1 : A1)(x2 : A2)→ x1
∼= x2 → B1 x1

∼= B2 x2)→
((x1 : A1)→ B1 x1) ∼= ((x2 : A2)→ B2 x2)

(19)

The last three facts are used mainly as a tool to ‘push’ our (heterogeneous)
propositional equalities through all syntactic constructs. For a machine-checked
proof of these facts in Agda, please refer to the extended version of this paper
on the first author’s website.

Proof (of Theorem 3). We start by giving the definition of the function f ′. Let
P be the set of patterns in the definition of f . Because the clauses of f satisfy
the criterion for completeness (Proposition 1), there exists a covering O such
that for each q̄ ∈ O, there exists a p̄ ∈ P such that p̄ ⊇ q̄. In other words, for all
q̄ ∈ O there exists a clause f p̄ = t of f and a substitution σ such that p̄σ = q̄.

102 J. Cockx, F. Piessens, and D. Devriese

This means we have ΓΨ(f : Δ→ T) � t : T [Δ �→ #p̄$] where Ψ is the context of
pattern variables of p̄. Let t′ be the term t where all occurrences of f have been
replaced by f ′. The function f ′ is defined by the clauses f ′ q̄ = t′σ for all q̄ ∈ O.
We check that this is a valid definition:

– Let Φ be the context of pattern variables of q̄. We have ΓΦ(f ′ : Δ → T) �
t′σ : T [Δ �→ #q̄$] by α-renaming and the fact that p̄σ = q̄, so the clauses of
f ′ are valid.

– The set of patterns O is a covering, hence the patterns are complete.
– The arguments of all recursive calls f s̄ in the right-hand side of a clause

f p̄ = t satisfy s̄ ≺ #p̄$. Note that if s ≺ t, then also sσ ≺ tσ for any
substitution σ (by induction on the definition of ≺). This gives us that s̄σ ≺
#p̄$σ = #q̄$. This implies that the definition of f ′ is structurally recursive,
hence it is terminating.

– The patterns in O do not overlap, hence the definition of f ′ is confluent.

Now we define ẽqf such that Γ � ẽqf : f ∼= f ′. By extensionality (14) it is
sufficient to give a term Γ � ẽqf(Δ) : Δ → f Δ ∼= f ′ Δ. In order to do this, we
use pattern matching with the same pattern set O used in the definition of f ′.
Let Γ |Φ � q̄ : Δ pattern be one of these patterns, the return type of ẽqf(Δ) for
that pattern becomes f #q̄$ ∼= f ′ #q̄$.

On the one hand, by definition of O there exists a clause f p̄ = t of f and a
substitution σ such that p̄σ = q̄. This implies that Γ � f #q̄$ = tσ : T [Δ �→ #q̄$].
On the other hand, there is a clause f ′ q̄ = t′σ of f ′, hence Γ � f ′ #q̄$ =
t′σ : T [Δ �→ #q̄$]. So we are left to give a term of type tσ ∼= t′σ in the context
Γ̃ = ΓΦ(ẽqf(Δ) : Δ→ f Δ ∼= f ′ Δ).

Note that the bound variables in t and t′ with the same name do not necessar-
ily have the same type, because occurrences of f in the types have been replaced
by f ′. In order to avoid confusion between these variables, we α-rename all bound
variables x in t′ to their primed variants x′.

In order to proceed, we first fix some notations. Let Ξ be a context such that
Γ̃Ξ valid. We denote with Ξ ′ the context Ξ where each variable x has been
replaced by its primed version x′ and each occurrence of f has been replaced
by f ′. If Γ̃Ξ � a : A, then a′ denotes the term a where each variable from the
context Ξ has been replaced by x′ and each occurrence of f has been replaced
by f ′. Note that Γ̃Ξ ′ � a′ : A′, and that this can be proven by using the
same tree of inference rules. One further notation we use is Ξ ∼= Ξ ′ for the
context expressing pairwise equality between the variables in Ξ and Ξ ′. For
example, if Ξ = (n : Nat)(v : Vec n) and Ξ ′ = (n′ : Nat)(v′ : Vec n′), then
Ξ ∼= Ξ ′ = (eqn : n ∼= n′)(eqv : v ∼= v′).

In order to prove tσ ∼= t′σ in the context Γ̃ , we give for all contexts Ξ and
all terms Γ̃Ξ � a : A a proof Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � eqa : a ∼= a′. As long as a is not
a recursive call of the form f ū, we proceed by induction on the derivation of
Γ̃Ξ � a : A (and hence also that of Γ̃Ξ ′ � a′ : A′). See Fig. 2, Fig. 3, and Fig. 4
for the relevant rules.

Overlapping and Order-Independent Patterns 103

Var rule. In this case we have a = x for some variable x from the context Γ̃Ξ. If
it comes from Γ̃ , we have a′ = x and hence Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � refl : x ∼= x. If
on the other hand it comes from Ξ, we have a′ = x′ and eqx : x ∼= x′ ∈ (Ξ ∼=
Ξ ′), hence Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � eqx : x ∼= x′ (where eqx : x ∼= x′ ∈ Ξ ∼= Ξ ′).

=Ty rule. In this case we just proceed with the induction on the derivation of
the first assumption of the rule.

Set rule. In this case we have a = Seti for some i, hence also a′ = Seti. So we
have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � refl : Seti ∼= Seti.

Π rule. In this case we have a = (x : U) → V and a′ = (x : U ′) → V ′ =
(x′ : U ′) → V ′[x �→ x′]. By the induction hypothesis, we have Γ̃ΞΞ ′(Ξ ∼=
Ξ ′) � eqU : U ∼= U ′ and Γ̃Ξ(x : U)Ξ ′(x′ : U ′)(Ξ ∼= Ξ ′)(eqx : x ∼= x′) �
eqV : V ∼= V ′[x �→ x′]. This gives us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � Π-cong eqU
(λx x′ eqx. eqV) : (x : U)→ V ∼= (x′ : U ′)→ V ′[x �→ x′].

λ rule. In this case we have a = λ(x : U). v and a′ = λ(x : U ′). v′ = λ(x′ :
U ′). v′[x �→ x′]. By the induction hypothesis, we have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) �
eqU : U ∼= U ′ and Γ̃Ξ(x : U)Ξ ′(x′ : U ′)(Ξ ∼= Ξ ′)(eqx : x ∼= x′) � eqv : v ∼=
v′[x �→ x′]. This gives us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � λ-cong eqU (λx x′ eqx. eqv) :
λ(x : U). v ∼= λ(x′ : U ′). v′[x �→ x′].

App rule. In this case we have a = g u and a′ = g′ u′. By the induction
hypothesis, we have Γ̃Ξ(x : U)Ξ ′(x′ : U ′)(Ξ ∼= Ξ ′)(eqx : x ∼= x′) � eqV :
V ∼= V ′[x �→ x′], Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � eqg : g ∼= g′, and Γ̃ΞΞ ′(Ξ ∼= Ξ ′) �
equ : u ∼= u′. This gives us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � ap-cong (λx x′ eqx. eqV) eqg
equ : g u ∼= g′ u′.

Cons rule. In this case we have a = c and a′ = c for a constructor c. This gives
us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � refl : c ∼= c.

Data rule. In this case we have a = D and a′ = D for an inductive family D.
Hence we have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � refl : D ∼= D.

Func rule. In this case we have a = g and a′ = g for a defined function g
distinct from f and f ′. Then we have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � refl : g ∼= g.

In the end, we reach a recursive call: a = f ū and a′ = f ′ ū′. In this case,
we recursively call the proof ẽqf(Δ) which we are in the process of defining:
Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � ẽqf(Δ) ū : f ū ∼= f ′ ū. This call is structurally recursive
because the recursive call to f in a is. By continuing the induction as above
we also get Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � eqū : ū ∼= ū′. By applying ap-cong repeatedly,
we get Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � eqf ′(ū) : f ′ ū ∼= f ′ ū′, and by transivity of ∼=, we
get Γ̃ΞΞ ′(Ξ ∼= Ξ ′) � eqf(ū) : f ū ∼= f ′ ū′, completing the definition of ẽqf(Δ)

and hence also that of ẽqf . Finally, by het-to-hom (16), we get eqf such that
Γ � eqf : f ≡ f ′, finishing the proof. &'

8 Related Work

Dependent pattern matching was introduced by Coquand in [Coq92]. A big
step toward its practical usefulness was the introduction of the ‘with’ construct
by [MM04]. On a more fundamental level, [GMM06] shows that definitions by
dependent pattern matching can be translated to pure type theory with the K

104 J. Cockx, F. Piessens, and D. Devriese

axiom. Real languages with dependent pattern matching include Agda [Nor07],
Coq [Soz10], and Idris [Bra13].

– In [Ken90], tightest-match semantics for overlapping patterns are used. To
ensure confluence, they require for each pair of overlapping patterns that
their unification is also part of the definition. In contrast to our current
work, they do not look at the right-hand sides to check confluence.

– In the Calculus of Algebraic Constructions [BJO99] general well-typed rewrit-
ing rules are allowed. However, in order to prove confluence they have to
assume that the left-hand sides of the rewrite rules do not overlap.

– In deduction modulo [DHK03], overlapping rewriting rules are allowed, but
confluence is usually assumed or proven manually.

– In systems based on the LF logical framework and the λΠ-calculus (for
example Twelf [PS99]), there can be overlapping clauses, but definitions are
not required to be confluent. Instead backtracking is utilized to generate all
possible solutions.

– In Isabelle/HOL, it is possible to define functions by pattern matching such
that the result doesn’t depend on the order of the patterns [Kra06]. In con-
trast to our work, they don’t deal with dependent pattern matching, and
they don’t give a concrete algorithm for confluence checking.

– Even though we provide more definitional equalities than the standard for-
mulation of pattern matching, some will always be missing. Another possibil-
ity would be to add a better support for coercion by propositional equality
proofs, as supported for example by OTT [AMS07].

– The recent work on adding equations for neutral terms [ABM13] starts from a
motivation similar to ours, but doesn’t focus on pattern matching in specific.

9 Conclusion and Future Work

The main goal of this paper is to make dependent pattern matching more intu-
itively usable for specialists and non-specialists alike. We do this by extending the
semantics of pattern matching in order to allow overlapping patterns. Because
all clauses are interpreted as definitional equalities, these definitions behave as
one would expect them to. This also makes pattern matching more amenable to
equational reasoning. Type theory supports equational reasoning in the language
itself by means of the identity type, so this is not just a theoretical advantage,
but also a practical one.

In practice, a typical user would probably start by giving a non-overlapping
definition and add overlapping clauses when he has a need for them. For example,
when giving the clause concat v ε = v for the concatenation operator on vectors,
the type checker complains that the length plus n zero of the left-hand side does
not equal the length n of the right-hand side. The user can then add the clause
plus n zero = n to the definition of plus, after which the clause for concat

passes the type checker. This blends well with the typical interactive development
of dependently typed programs in dependently typed programming languages.

The current implementation is still very experimental. It would be interesting to
give a full implementation that is compatible with extensions of pattern matching

Overlapping and Order-Independent Patterns 105

such as wildcard patterns, ‘with’-expressions [MM04], and coinductive data types.
It should also be possible to implement the pattern matching described in this
paper in other languages with dependent pattern matching such as Coq.

One limit to our approach is that the confluence checker doesn’t always see
that a definition is confluent. This occurs when inaccessible patterns overlap
with constructor patterns or other inaccessible patterns. This could be solved
by improving the unification algorithm for patterns. Another case where the
confluence check fails, is the definition of multiplication (13). This problem is not
easily solved by improving the confluence checker, however. Rather, it depends
crucially on the question whether we want to see l+ (m+n) and (l+m) + n as
‘the same’ even if l, m and n are free variables.

When designing a dependently-typed programming language, a balance
needs to be found w.r.t. the definitional equality. It typically includes at
least β-equivalence for functions, but e.g. Agda additionally has definitional η-
equivalence for functions and record types [Nor07]. Strengthening definitional
equality generally increases programmer convenience but makes equality and
type-checking harder for the compiler to decide and may exclude certain models
of the theory. When adding functions defined by pattern matching to the theory,
definitional equality needs to be extended with their computational behaviour
as in the Clause rule of Fig. 4. In this setting, our work can be seen as allowing
functions with overlapping reduction rules that cannot be reduced to the non-
overlapping rules of data type eliminators. Our new compromise is that we allow
overlapping reduction rules as long as confluence can be checked definitionally.
We think our approach strikes an interesting new balance between having too
little and too many definitional equalities: have any less evaluation rules, and
overlapping clauses cannot all hold as definitional equalities; have any more, and
extra equalities have to be introduced to regain confluence.

As with any modification to type theory, there is the question of soundness. We
think thatTheorem 3 gives a step in the right direction, but it is an interesting ques-
tion whether any extra requirements are needed in order to give a definitive answer.
A practical use of this theorem is program extraction: since we have f ∼= f ′, these
functions both give the same results for closed arguments. In a compiled program,
only closed terms are evaluated so we can freely replace f by f ′. Because f ′ can be
compiled to a case tree, this increases the efficiency of the extracted program.

Acknowledgments. This research is partially funded by the Research Fund
KU Leuven, and by the Research Foundation - Flanders under grant number
G004321N. Jesper Cockx and Dominique Devriese both hold a Ph.D. fellowship
of the Research Foundation - Flanders (FWO).

References

Ab12. Abel, A.: Agda: equality,
http://www2.tcs.ifi.lmu.de/~abel/Equality.pdf

ABM13. Allais, G., Boutillier, P., McBride, C.: New equations for neutral terms.
Dependently-Typed Programming (2013)

http://www2.tcs.ifi.lmu.de/~abel/Equality.pdf

106 J. Cockx, F. Piessens, and D. Devriese

AMS07. Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! Pro-
gramming languages meets program verification (2007)

BJO99. Blanqui, F., Jouannaud, J., Okada, M.: The calculus of algebraic construc-
tions. Rewriting Techniques and Applications (1999)

Bla04. Blanqui, F.: A type-based termination criterion for dependently-typed higher-
order rewrite systems. Rewriting Techniques and Applications (2004)

BP85. Bachmair, L., Plaisted, D.A.: Termination orderings for associative-
commutative rewriting systems. Journal of Symbolic Computation 1, 4
(1985)

Bra13. Brady, E.: Idris, a General Purpose Dependently Typed Programming Lan-
guage: Design and Implementation. JFP 23(5) (2013)

Coc13. Cockx, J.: Overlapping and order-independent patterns in type theory. Mas-
ter thesis, KU Leuven (2013)

Coq92. Coquand, T.: Pattern matching with dependent types. Types for proofs and
programs (1992)

DHK03. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of
Automated Reasoning (2003)

Dyb94. Dybjer, P.: Inductive families. Formal Aspects of Computing 6(4) (1994)
GMM06. Goguen, H., McBride, C., McKinna, J.: Eliminating dependent pattern

matching. Algebra, Meaning, and Computation (2006)
Hof95. Hofmann, M.: Extensional concepts in intensional type theory. PhD thesis,

University of Edinburgh (1995)
Hud89. Hudak, P.: Conception, evolution, and application of functional programming

languages. ACM Computing Surveys 21(3) (1989)
Ken90. Kennaway, R.: The specificity rule for lazy pattern-matching in ambiguous

term rewrite systems. In: Jones, N.D. (ed.) ESOP 1990. LNCS, vol. 432,
pp. 256–270. Springer, Heidelberg (1990)

Kra06. Krauss, A.: Partial recursive functions in higher-order logic. Automated Rea-
soning (2006)

LJB01. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for pro-
gram termination. ACM SIGPLAN Notices 36(3) (2001)

Luo94. Luo, Z.: Computation and reasoning: a type theory for computer science.
International Series of Monographs on Computer Science 11 (1994)

McB00. McBride, C.: Dependently typed functional programs and their proofs. PhD
thesis, University of Edinburgh (2000)

ML84. Martin-Löf, P.: Intuitionistic type theory. Studies in Proof Theory 1 (1984)
MM04. McBride, C., McKinna, J.: The view from the left. JFP 14(1) (2004)
Nor07. Norell, U.: Towards a practical programming language based on dependent

type theory. PhD Thesis, Chalmers University of Technology (2007)
PS99. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical

framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

Soz10. Sozeau, M.: Equations: A dependent pattern-matching compiler. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 419–434.
Springer, Heidelberg (2010)

VCW12. Vytiniotis, D., Coquand, T., Wahlstedt, D.: Stop when you are almost-full.
In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 250–265.
Springer, Heidelberg (2012)

Verified Compilation for Shared-Memory C

Lennart Beringer1, Gordon Stewart1, Robert Dockins2,
and Andrew W. Appel1

1 Princeton University
2 Portland State University

Abstract. We present a new architecture for specifying and proving op-
timizing compilers in the presence of shared-memory interactions such
as buffer-based system calls, shared-memory concurrency, and separate
compilation. The architecture, which is implemented in the context of
CompCert, includes a novel interaction-oriented model for C-like lan-
guages, and a new proof technique, called logical simulation relations, for
compositionally proving compiler correctness with respect to this inter-
action model. We apply our techniques to CompCert’s primary memory-
reorganizing compilation phase, Cminorgen. Our results are formalized
in Coq, building on the recently released CompCert 2.0.

1 Introduction

Shared-memory cooperation—the coordinated use of memory by several static
or dynamic execution units—occurs ubiquitously in systems software. Sequential
applications exchange pointers across module boundaries; concurrent threads
interact via memory synchronization and by communicating pointers to shared
data; nearly all programs communicate via memory with libraries and make
pointer-valued system calls. Correct compilers—that preserve program safety
and functional specifications—must respect a program’s effects on memory.

Yet optimizing compilers for system languages such as C routinely perform
code transformations that alter memory behavior. They relocate or eliminate
load and store operations, they coalesce allocation events (especially as local
variables are formulated into a stack frame), and they delete and insert loads,
stores, stack allocations, and stack frees. For example, consider the CompCert
verified optimizing C compiler [Ler11]. To limit pointer aliasing and perform
efficient register allocation, CompCert identifies in an early compiler phase all
local variables whose addresses are not taken. These unaddressed variables are
shifted from in-memory blocks in function stack frames to register-allocated
compiler temporaries. The variables are thus “removed from memory” (though
some may later be spilled back into memory after register allocation).

Optimizing transformations are important for generating efficient code, yet
also complicate the compiler’s specification as it relates to memory. Correctness
of any phase that adjusts the memory layout must preserve the program’s mem-
ory behavior. However, it is not clear what “preservation of memory behavior”
means when the compiler may introduce or remove memory effects. The difficul-
ties are even more acute when translation units may be separately compiled, since

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 107–127, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

108 L. Beringer et al.

a pointer passed as an argument between modules may need to be translated
depending on the (intermediate) languages in which the modules are expressed.

To address these issues, we present a novel framework for specifying C-like
languages—imperative languages with low-level memory models—and their
translations. The framework consists of two major components.

First, we develop a new interaction model, core semantics, that describes
communication between execution threads with pointer exchange. A thread, or
core, might represent true concurrency, or a sequential call to an external func-
tion. Crucially, our model is language-independent, separating thread-local data
such as the control stack and local environment from global data such as shared
memory. The caller of an external function thus need not know in which lan-
guage the invoked function is implemented—a necessary precondition even for
the specification of separate compilation and linking.

Second, we introduce logical simulation relations (LSRs), a notion of compiler
correctness that supports the core semantics model. Critically important—and
a major contribution of our work—is a proof that LSRs compose transitively.
Transitivity is essential for compositional verification of multiphase compilers.

We develop our framework in the concrete setting of CompCert. CompCert
is an ideal testbed for three reasons: (i) it is the only publicly available opti-
mizing C compiler that is equipped with a formal specification and correctness
proof; (ii) CompCert provides a uniform memory model across all intermedi-
ate languages, a prerequisite for meaningful pointer communication; and (iii)
CompCert punts on shared-memory cooperation, by disallowing communication
of pointers to dynamically allocated data. CompCert’s transitivity proof is de-
pendent on this restriction, but in consequence, even basic interactions with
system calls such as Linux read and write cannot be validated. Our framework
reformulates CompCert’s correctness theorem to lift these restrictions.

Contributions and Outline

i. We provide a detailed analysis of the tensions that result when proving
compiler correctness in the shared-memory setting (§2). Our analysis is con-
ducted in the concrete setting of CompCert and its memory model.

ii. We present core semantics, a new execution model for C-like languages (§3).
Core semantics capture the interactions between a running thread, or core,
and its environment via calls to external functions. Unlike in current Comp-
Cert, our execution model enables pointer sharing at interaction points.

iii. We develop (§4) a language-independent notion of shared-memory compiler
correctness, called logical simulation relations (LSRs), that is compatible
with all three classes of memory transformations employed by CompCert.
Our model of compiler correctness is transitively composable, a result that
is necessary for the verification of multiphase compilers.

iv. Our approach requires minimal changes to CompCert’s existing machine-
checked correctness proofs. We demonstrate a proof adaptation for the hard-
est case, Cminorgen (§6).

Verified Compilation for Shared-Memory C 109

injection (phase 1) extension (phase 2)

local variable env.
memoryspillrelocation

b1

b0

b2
b3 b3

Fig. 1. CompCert block-level memory transformations

v. Our operational-semantic model supports the soundness proof of expressive
program logics. For example, we have formalized the soundness proof of a
step-indexed program logic for C light [A+14], but could support xcap-
like syntactic models [NS06] just as well. Section 5 briefly describes the
connection of the C light logic to the techniques of this paper.

2 Technical Challenges and Approach

The technical challenges inherent in adapting CompCert to support shared
memory lie in three major areas: the CompCert memory model, the Comp-
Cert correctness proofs, and the compiler’s specification of external functions.
This section motivates, with examples, the main technical challenges in each of
these three areas, and outlines our solutions.

2.1 The CompCert C Memory Model

The semantics of pointer arithmetic, pointer comparison, and other “messy” fea-
tures of C led Leroy, Blazy et al. to strike a balance in the design of CompCert’s
memory model [LB08,L+12] between concreteness and abstraction. Concreteness
is necessary to model C’s low-level memory behavior, such as aliasing and par-
tial overlap of word-sized loads due to pointer arithmetic. Abstraction is needed
for high-level reasoning. These competing requirements have led to a memory
model—for use in operational semantics—that is elegant, yet inherently complex.

CompCert models memory as a set of blocks, the sizes of which are fixed at
allocation time. Addresses are pairs of a block-number and an offset, which is
an integer pointing to a particular location within the block. Pointer arithmetic
is allowed within blocks but not across blocks. CompCert allocates a fresh block
for each local variable, thus permitting pointer arithmetic within a local (array
or struct) variable, but not across them. A stack-allocated char array of size n
would be allocated an n-byte block, whereas a local integer variable occupies a
block of size 4 (on 32-bit architectures).

This memory model is used in all operational semantics from C, through sev-
eral intermediate languages, to assembly language. Because CompCert may al-
ter a program’s memory layout during compilation, the model must also support

110 L. Beringer et al.

memory transformations. The transformations include (1) removal from function
activation records of scalar local variables that are never addressed with the &
operator, and (2) spilling of local variables that could not be register-allocated.
Figure 1 depicts these transformations schematically. In CompCert’s variable re-
location phase (labeled injection in the diagram), local variables that are never
addressed (here, block 0) are moved from memory into a local variable envi-
ronment. Additionally in this phase, CompCert coalesces the distinct memory
blocks of the local variables for each function activation (here, blocks 1 and 2)
into a single block representing the entire activation record (block 3). It is sound
to merge blocks—thus permitting more pointer arithmetic in the target program
than in the source program—because we assume that the source program did
not go wrong: i.e., did not do forbidden cross-variable pointer arithmetic.

To model phase (1), CompCert introduces a generic form of memory em-
bedding called memory injection: a block-wise partial function of the form
B ⇀ B × Z. Here B is a countable set of blocks. The second component Z
of the result pair is an integer offset that is applied, in the resulting memory,
uniformly to every address in the mapped block. For example, assuming four
byte blocks in the source language, the memory injection in phase (1) would be
specified as, b0 �→ None b1 �→ Some (b3, 4) b2 �→ Some (b3, 0).

Block b0 is unmapped because it is not addressed, block b1 is mapped to block
b3 at offset 4 and block b2 is mapped to block b3 at offset 0. Thus a load from block
b1 at offset 0 becomes a load from block b3 at offset 4 after the transformation.

Variables in the local variable environment do not have addresses, but may
be spilled back into memory in phase (2) (labeled extension in Figure 1) after
register allocation. Spilling requires that certain (stack-frame) blocks be extended
(here, block 3) to make room for the spilled variables. Extension of a block is
modeled by a change in memory permissions, which record the level of access
allowed (read, write, etc.) at a particular memory location.

CompCert 1.x’s1 memory injections and memory extensions did not compose.
This was not a problem for CompCert 1.x because memory was not exposed at
external calls. We discuss the solution for CompCert 2.x in Section 4.1.

Permission Changes. A different limitation of CompCert 1.x is its operational
model of memory-access permissions: at each abstract block number, a range
lo . . . hi of addresses could be read or written. Calling a function would allocate
a new (stack) block, returning would deallocate (without reusing block numbers).

Consider a source-level program logic for shared-memory concurrency, such as
Concurrent Separation Logic [O’H07], in which we prove that a synchronization

1 We describe as CompCert 1.x early versions of CompCert dating from 2006 in
which Leroy et al. focused on whole-program single-threaded execution. Certain
releases between 1.0 and 2.0 have incorporated several technical suggestions that
resulted from the work reported in this paper and from discussions with Leroy. We
describe as CompCert 2.x the 2.0 release, incorporating these changes, and near-
future CompCert versions in which other adjustments to the specification may be
made to improve compositionality of shared-memory interaction. Of course, between
CompCert 1.0 and 2.0, Leroy et al. made many other unrelated enhancements.

Verified Compilation for Shared-Memory C 111

operation (lock acquire/release) adds or removes write or read permission to
some set of addresses. To communicate the result of the program-logic reasoning
to CompCert, without embedding the entire program logic into CompCert, we
now use a finer-grain permission structure in the operational semantics: byte by
byte, read or write [L+12]. External functions (such as lock-acquire, lock-release)
may change the permissions in arbitrary and nondeterministic ways.2 Reason-
ing in the program logic ensures that the source program (with its operational
permission changes) is safe. These permissions in the operational semantics will
not exist physically when executing the compiled program.

CompCert 1.x could not permit this; it could not even permit general system
calls such as brk to change memory permissions; malloc and free could not
be modeled as system calls, so had to be special built-ins. The new permission
model allows for expressive proofs about correct compilation of synchronized
shared-memory programs.

2.2 The CompCert Correctness Proofs

The correctness proofs of the CompCert phases generally take the form of for-
ward simulations to deterministic languages. By proving receptiveness of the
source language, CompCert recovers event trace equivalence from the forward
simulation proofs, for a limited class of events not containing pointers to stack or
heap data. For shared-memory interaction, the events in CompCert 1.x’s event
traces are simply too inexpressive; but we will use forward simulations.3

A forward simulation proof consists of a measured simulation relation between
the states of the source and target languages and a proof that the simulation
relation can be re-established over execution steps. For example, in the proof of
CompCert’s variable relocation phase, the simulation relation asserts that the
values of variables that have been removed from memory match the contents of
the blocks from which the variables were relocated. That is, a four byte load from
block b0 in Figure 1 should produce the same value as evaluation of the associated
local variable in the environment that results after the injection. “Measured”
means the simulations allow multiple source language steps to correspond to
zero target language steps, as long as there is a well-founded order on source
language states that decreases at each step.

2 CompCert need not know which external functions do what; any external call may
change memory permissions. Standard optimizing compilers such as gcc behave con-
sistently with similar conservative assumptions. In principle, one could tell CompCert
that lock-acquire only increases permissions, and lock-release only decreases them;
then CompCert could hoist loads/stores past these calls (down, and up, respectively).

3 Forward simulations are adequate because: We determinize multithreading with
an external oracle (schedule), we transform racy loads/stores into “external calls”
(which the compiler cannot remove or reschedule). Nonracy loads/stores are thread-
modular by Dijkstra/Hoare (Pthreads) locking, modeled by (implicit virtual) per-
mission transfers at acquire/release events; load/store without permission is “stuck”
in the source program. In summary, no unmatched target behaviors are possible.

112 L. Beringer et al.

{

0

{a, 0}

injection

a

b

c

0

0

0

0

0a

b

c

3

3

3

3

Source

Pre-call

g(&b, &c) g(&b, &c)
{a, 0}match

injection

match

{ {Target

Post-call

{

Fig. 2. Schematic CompCert simulation diagram for f’s call to external function g.
Compilation goes left-to-right; execution goes top-to-bottom.

CompCert 1.x permits calls to external functions that take numeric param-
eters and do not access shared memory. For whole-program embedded appli-
cations without an operating system, such an external function could drive an
actuator or read a scalar value from a sensor. But more generally in the C lan-
guage, external functions are just those that are declared within the current
module (as extern) but defined, or implemented, in another.

// Module A

extern void g(int *d, int *e);

int f(void) {

int a=0, b=0, c=0;

g(&b, &c);

return a + b + c;

}

// Module B

void g(int *d, int *e) {

*d = 3;

*e = 3;

}

For example, module A above declares an external function g taking two integer
pointers as parameters and returning void. It also defines an internal function f

calling g with the addresses of f’s local variables b and c as arguments. Module
B defines g to perform side effects on the pointers that are passed.

Now imagine CompCert compiles module A through its variable relocation
phase, with external module B remaining uncompiled. The memory state before
and after the memory injection, just before external function g is called, is shown
in the top half of Figure 2. The simulation invariant, pre-call, says that the value
in memory at address &a in the source (i.e., before variable relocation) equals
the value of the variable a in the local variable environment in the target, after
variable relocation. In the diagram, we depict this constraint as a bold line
labeled “match” connecting the two boxes along the compilation axis.

Verified Compilation for Shared-Memory C 113

To preserve semantics, CompCert needs to show that at the point of the
external call, g will succeed in the injected memory state assuming it succeeded
before memory injection, and that the “match” relation can be re-established
after the call, assuming it held initially. This proof corresponds to the completion
of the lower half of the diagram in Figure 2. We must find a state that (1) results
from running g with injected arguments; (2) is the injection of the lower left
state; and (3) satisfies the match invariant with respect to the lower left. But
an issue arises when we attempt to establish (3). To retain expressiveness, we
must give external functions the freedom to mutate memory. On the other hand,
simulation proofs for modules such as A should be able to safely assume that
certain portions of memory remain unchanged by external calls. For example,
the value in memory at address &a above, which is private to module A because
the location has not been leaked as a parameter to g, should match the value
assigned to a in the local variable environment both before and after the call to
function g. How to reconcile these opposing concerns?

2.3 External Functions

CompCert 1.x maintains a distinction between “public” and “private” memory,
but does so in a way that restricts the kinds of external functions that may be
defined. To see why, consider CompCert 1.13’s specification of external calls,
modeled as a relation on the function arguments, the initial memory, the re-
turn value, and the final memory. We call this relation ec sem, for external-call
semantics. The axiom for external calls is: Suppose

• ec sem ge −→v1 m1 rv1 m ′
1; inject j m1 m2 (we use notation m1 �j m2 for this);

• block validity, and permissions (see below) are suitably preserved; we use
notation forward m1 m ′

1 for this; and
• val list inject j −→v1 −→v2 (notation: −→v1 �j

−→v2);

that is, in the source language, in global environment ge, calling a particular
function with parameters−→v1 and memorym1 yields return-value rv1 and memory
m ′

1; and there is a source-to-target memory injection j injecting −→v1 into −→v2 , and
m1 into m2. Then there must exist a post-call injection j ′ extending j (notation
j ≤ j ′), and rv2 and m ′

2 such that:

• ec sem ge −→v2 m2 rv2 m ′
2; forward m2 m ′

2; rv1 �j ′ rv2; m
′
1 �j ′ m

′
2;

• unchOn (loc unmapped j) m1 m ′
1; and unchOn (loc out of reach j m1) m2 m ′

2.

That is, at every external function call (ec sem ge −→v1 m1 rv1 m ′
1) one can com-

plete the simulation diagram (ec sem ge −→v2 m2 rv2 m ′
2) for compiler phases that

adjust the memory representation via a memory injection. (CompCert imposes
a similar restriction in the memory extension case.) Also, on locations such as
&a that are unmapped by the memory injection, the memory remains unmod-
ified (unchOn, “unchanged on”) in the pre-transformation execution. Memory
locations in the post-transformation states that have empty permission initially,
before the injection is applied (loc out of reach j m1), must remain unmodified
by the external function call.

114 L. Beringer et al.

There are two problems with these restrictions. The first is that they impose
a big-step semantics on external calls. Clause ec sem ge −→v2 m2 rv2 m ′

2 requires
that the external function terminate, in one step, when executed in m2. This
requirement is incompatible with external functions implemented by potentially
nonterminating code, or that might block in a concurrent setting.

The second problem lies with the restrictions on how external function calls
may mutate memory (clauses beginning unchOn. . .). The unchOn P m m ′ clauses
have two effects. They ensure that (1) external calls do not modify, in the pre-
compilation memoriesm1 and m ′

1, locations which are unmapped by the memory
injection j (loc unmapped); and (2) they ensure that external calls do not modify
locations in m2 which were unreachable in m1 under j (loc out of reach). The
problem here is that CompCert is using injections both to specify the memory
transformations performed by the compiler, and to axiomatize the behavior of
external function calls. In other words, restrictions on which locations external
calls may mutate are keyed to the compiler transformations themselves. (Lo-
cations mapped by a memory injection are made public, whereas unmapped
locations, e.g., &a in the example above, remain private.) Unfortunately, this
dual-purpose use of memory injections (and extensions) fails to account for situ-
ations in which the external function is itself code, perhaps a second CompCert
translation unit, that is compiled independently from the calling module.

To illustrate the issues that arise when external functions are compiled, con-
sider the case in which the function g of module B itself contains an unaddressed
local variable, say h, which is relocated out of memory by CompCert’s variable
relocation phase.

void g(int *d, int *e) { //Module B’

int h = <expr >; *d = h; *e = <expr >;

}

By the above axiom, module B’ must not mutate memory blocks that are subse-
quently removed from memory by compilation (here, the block containing vari-
able h). Yet this is exactly what module B’ does when it assigns to h. Indeed, since
h is a private local variable, the modification is perfectly acceptable behavior.

3 Core Semantics

The first major part of our solution is to define a uniform, protocol-oriented inter-
face to languages that interact with their environments. Imagine a multithread
shared-memory execution. One can spawn a new thread; a thread may yield (or
block on a synchronization) and perhaps later resume; eventually a thread may
exit. We use this model not only for concurrency but also for sequential calls to
separately compiled functions (spawn a new “thread” to run the call, block until
it returns) and for a single thread running in an operating-system context with
system calls. When a thread yields (or calls a sequential external function), its
local state including stack and registers will be preserved until it resumes, but
the state of most of memory may have changed arbitrarily upon resumption.

Verified Compilation for Shared-Memory C 115

Core semantics (Figure 3) are a general formulation of a thread protocol. At
a high level, a core semantics (G,C ,M) is a partitioning of a thread’s state into
a global environment (G), a local part (C), which we call the core state, or core,
and which typically includes both the control continuation and local variable
environment, and a shared part (M), which we typically identify with shared
memory. V is the type of values, and F is the type of external function names.

initial_core running

halted after_external

at_external

interference

Fig. 3. Core Semantics interface

The types G (global environment), C (core state), and M (memory) are
parameters to the interface. F is the type of external function identifiers. V is the
type of values, and T is Coq’s type of propositions, Prop. The names initial core,
at external, after external, halted are not constructors, but are (proved) disjoint
predicates.

initial core : G → V → list V → option C
at external : C → option (F × list V)

after external : option V → C → option C
halted : C → option V

corestep : G → C → M → C → M → T

With this partitioning comes a step relation (corestep) on core states and
memories that defines the small-step operational model of the core semantics.
We will often write the corestep relation as ge � 〈c,m〉 �−→ 〈c′,m ′〉. The global
environment ge maps functions to their definitions and does not vary.

In a (concurrently or sequentially) multithreaded system, different cores could
have different core types (C) and different corestep relations. This permits in-
teroperation of modules written in different languages. But such a surrounding
system, modeling (respectively) a scheduler or a linker, is not needed for speci-
fying compilation. This is an important separation of concerns.

To enforce the protocol described above, we divide core states into the five
lifetime stages. Initial cores result directly from the creation of the thread or
initialization of the program using initial core. Typically, an initial core contains
an empty local environment, together with a control continuation consisting of a
single function call (the V parameter in the definition), with arguments (list V).
For a standalone program, this function is main; for a thread, it is the function
that was forked; for a call to a separately compiled module, it is the called
function. At external cores are those initiating an external function call. In C

116 L. Beringer et al.

terminology, external functions are just functions that are declared within the
current translation unit or module but which are defined elsewhere (e.g., in a
module that is later linked to the current one). After external cores result from
resumption of the thread or program after an external call. In the transition from
after external to a running state, a core is expected to incorporate the return value
(option V) into its local variables (in its own language-dependent way). Halted
cores are just that: threads or programs that have terminated normally, yielding
an optional return value (option V). Finally, running cores are neither blocked
on an external function call nor halted.

Preemption. The core semantics protocol is nonpreemptive—it does not directly
model thread preemption that may result from interrupt handling. We can make
this simplification—even though the underlying machine-language system may
do preemption—because we write well-synchronized race-free code. Our source-
level program logic verifies a stronger property than race-freedom: every mem-
ory access is performed with permission, and synchronization ensures that no
two threads have conflicting permissions to a given address. Race-free programs
running in a nonpreemptive semantics soundly approximate race-free programs
in an interleaving semantics. Moreover, we are interested ultimately in proving
correctness of the logic and compilation toolchain with respect to weak memory
models—on such machines, interleaving is not even the right model. Race-free
programs have sequentially consistent behavior on all well-behaved weakly con-
sistent machines.4 In our approach, the compiler correctness theorems can be
oblivious of preemption and weak cache coherence—they just follow the rules of
operational memory permissions.

3.1 Example: C Light

As an example of a core semantics, we show CompCert C light. This high-level
subset of C is the target of CompCert’s first translation phase (from the full
CompCert C language). It serves as a natural interface between CompCert,
user-level program logics, and verified static analyses.

Figure 4 gives the syntax of C light. The syntax of expressions a is standard. In
the statement syntax, for and while loops have already been translated (in an
earlier compiler phase) to combinations of the more primitive Sloop and Sbreak
constructs. The details of local control flow (loop, if, break, continue, switch,
goto) are standard CompCert 1.13 Clight, and not relevant to (or changed by)
our work on external interaction.

Functions F are either internal (defined in the current translation unit) or
external (declared here but defined elsewhere). Internal functions comprise a
record containing the function return type, a list of function parameters with
their types, a local variable environment for address-taken variables, a tempo-
raries environment for the rest of the function variables, and the function body.
External functions comprise an external function identifier f , a list of argument

4 This is not a theorem, it’s better than a theorem: it is the definition of “well-behaved”
for weakly consistent memory models.

Verified Compilation for Shared-Memory C 117

Statements:

s ::= Sskip no-op
| Sassign a1 a2 lval ← rval
| Sset id a temp ← rval
| Scall optid a −→a function call
| Sbuiltin optid f −→τ −→a intrinsic
| Ssequence s1 s2 sequence
| Sifthenelse a s1 s2 conditional
| Sloop s1 s2 infinite loop
| Sbreak | Sreturn aopt break/return
| Scontinue s continue stmt.
| Switch s | Slabel l s | Sgoto l

Internal Functions:

Fi ::= { returnType τ ; fun. ret. type

params
−−−−→
(id , τ); params./types

locals ρv ; local var. env.
temps ρt ; temp. env.
body s } function body

Internal & External Fun. Definitions:

τ ::= int | float | long | single
F ::= Internal Fi

| External f −→τ τ

Fig. 4. Syntax of C light

types −→τ and a return type τ , where τ is int, float, long, or single (single-precision
floats). External functions do not contain a function body. The core semantics for
C light will stop at external calls and yield control to the execution environment.

Semantics. Figure 5 shows our reformulation of the internal and external func-
tion call rules of the C light operational semantics. The operational semantics is
a three-place relation on global environments ge : G, initial configurations 〈c,m〉
and final configurations 〈c′,m ′〉. Here c is a core state; m is a CompCert mem-
ory. The relation ge � a ⇓ρv ,ρt ,m v denotes big-step evaluation of expression a
to value v in global environment ge, local variable environment ρv , temporaries
environment ρt , and memory m.

We instantiate the type C of the core semantics interface to C light as follows.

c ∈ C ::= RunState ρv ρt κ “running” states
| ExtCallState f sig −→v optid ρv ρt κ at external states

RunStates are normal execution states. ExtCallStates are calls to an external func-
tion f , with arguments −→v . Parameter optid is an optional return value variable
(= None when the function has void return type). The control continuation κ
is a stack of suspended commands and function activations. In the ExtCallState
constructor, sig is the external function type signature.

Next, we define the at external function of the core semantics interface as a
straightforward match on a core state c, returning Some (f ,−→v) when c is an
ExtCallState, and None otherwise.

After external takes as arguments an optional return value vret (again, None
is used for void functions) and a core state c. If c is an ExtCallState and the
return value is not None, then the temporary environment is updated to reflect
the new return value. After external will return None if c is not a proper external
call state or if the return value and return variable are incompatible.

Readers familiar with CompCert 1.x will observe the proximity of our defini-
tion to Leroy et al.’s presentation: our adaptation removes the memory

118 L. Beringer et al.

ge � a ⇓ρv ,ρt ,m vf ge � −→a ⇓ρv ,ρt ,m
−→v ge[vf] = Some (Internal Fi)

typeOf Fi = Tfunction −→τ τ allocVars ρ∅ m (locals Fi) = (ρ′
v ,m

′)
bindParams (params Fi)

−→v (initTempEnv (temps Fi)) = Some ρ′
t

ge � 〈RunState(ρv , ρt ,Scall optid a −→a · κ),m〉 �−→
〈RunState(ρ′

v , ρ
′
t , bodyFi · Sreturn None · Kcall optid Fi ρv ρt κ),m

′〉
(ScallInternal)

ge � a ⇓ρv ,ρt ,m vf ge � −→a ⇓ρv ,ρt ,m
−→v ge[vf] = Some (External f −→τ τ)

ge � 〈RunState(ρv , ρt ,Scall optid a −→a · κ),m〉 �−→
〈ExtCallState(f ,−→τ , τ,−→v , optid , ρv , ρt , κ),m〉

(ScallExternal)

Fig. 5. Internal and external call rules from the operational semantics of C light

components from the two state constructors RunState and ExtCallState and adds
the definitions of after external and so on. The operational semantics (not shown)
arises by refactoring the existing definition in accordance with these state rep-
resentation changes and removing the rule for external function calls: such calls
are now handled by the generic core-semantics interface.

4 Logical Simulation Relations

To adapt compiler correctness to the core semantics of Section 3 in a composable
way, we take inspiration from the well established notion of type-indexed logical
relations. Given a pair of core semantics, our notion of compiler correctness takes
the form of a forward simulation, a correspondence relation between cores that
is structure-preserving in source-to-target direction. Given the absence of suffi-
ciently expressive type structure, preservation of structure in our case amounts
to compatibility with the cores’ lifetime stages.

CompCert distinguishes among three kinds of translations: memory equality
passes leave memory unaffected but may modify the representation or opera-
tional behavior of cores; memory extension passes may enlarge existing memory
blocks (by increasing the block size during allocation) and increase the defined-
ness of memory-held values, but do not add or remove blocks; memory injection
passes may discard or merge blocks by eliminating or coalescing allocation in-
structions. Our simulation relation accordingly defines distinct clauses for the
three cases. Definition 1 below details the clause for injection passes, where
j , j ′, . . . : B ⇀ B × Z indicate block relocations (e.g., j b = (b′, z) relocates
block b to a contiguous region in block b′, starting at offset z), j ≤ j ′ indicates
inclusion of relocations, j ��m1;m2 j ′ denotes that for any entry j ′ b1 = (b2, z)
not present in j , blocks b{1,2} must be unallocated in m{1,2}, and m1 �j m2

indicates that m2 is m1’s image under j (and similarly for −→v1 �j
−→v2).

Verified Compilation for Shared-Memory C 119

Definition 1 (Measured Forward Simulation (Injection Case)). Let M
be the type of CompCert memories; L1 = (G1,C1,M) be the source core seman-
tics; L2 = (G2,C2,M) be the target core semantics; ge1 : G1 be some source
global environment; ge2 : G2 be some target global environment.

Then we say there is a measured forward simulation for injections from L1

to L2 (notation L1)Inj L2) if there exist a well-founded-order < and a family of
relations (∼j) : C1 → M → C2 → M → T on cores and memory states, indexed
by memory injections, such that the following hold.

1. If initial core ge1 u1
−→v1 = Some c1; entryPoints u1 u2 sig; m1 �j m2; and−→v1 �j

−→v2 then there exists c2 such that initial core ge2 u2
−→v2 = Some c2 and

〈c1,m1〉 ∼j 〈c2,m2〉.
2. If halted c1 = Some v1 and 〈c1,m1〉 ∼j 〈c2,m2〉 then there exists v2 such

that halted c2 = Some v2, v1 �j v2, and m1 �j m2.

3. If ge1 � 〈c1,m1〉 �−→ 〈c′1,m ′
1〉 then for all c2, j , m2 such that 〈c1,m1〉 ∼j

〈c2,m2〉, there exist c′2, m
′
2, j

′ for which j ≤ j ′; j ��m1;m2 j ′; and 〈c′1,m ′
1〉 ∼j ′

〈c′2,m ′
2〉; and either

– ge2 � 〈c2,m2〉 �−→+ 〈c′2,m ′
2〉; or

– ge2 � 〈c2,m2〉 �−→∗ 〈c′2,m ′
2〉 and c′1 < c1.

4. If 〈c1,m1〉 ∼j 〈c2,m2〉 and at external c1 = Some (f ,−→v1) then m1 �j m2,
and there exists −→v2 with −→v1 �j

−→v2 and at external c2 = Some (f ,−→v2).
5. If 〈c1,m1〉 ∼j 〈c2,m2〉 and at external c1 = Some (f ,−→v1), then for all m ′

1,
m ′

2, j
′, v ′1, v

′
2 with j ≤ j ′; j ��m1;m2 j ′; m ′

1 �j ′ m
′
2; v

′
1 �j ′ v

′
2 and

– forward m1 m ′
1; forward m2 m ′

2;

– unchOn (loc unmapped j) m1 m ′
1; unchOn (loc out of reach j m1) m2 m ′

2

there exist c′1, c
′
2 such that

– after external (Some v ′1) c1 = Some c′1;

– after external (Some v ′2) c2 = Some c′2; and 〈c′1,m ′
1〉 ∼j ′ 〈c′2,m ′

2〉.

The definition contains one clause for each protocol stage of core semantics:
Initial Cores. Clause 1, the base case, requires L2 to match any L1-initial core,
given matching memories and arguments and related entry points.
Halted Cores. Symmetrically, clause 2 propagates termination from L1 to L2 for
any ∼j -related states, guaranteeing correspondence with respect to j for final
memories and return values.
Core Steps. Clause 3 handles core steps, following the pattern of CompCert 1.x’s
forward simulations. An L1 step may be matched by empty or nonempty se-
quences of L2 core steps. In order to prevent infinite stuttering, the well-founded
measure < over core states c must decrease each time a possibly empty sequence
is chosen. Since c1 and c2 may allocate new blocks during execution, resulting
in larger memories m ′

1 and m ′
2, the relocation map j may also be extended to j ′

(notation j ≤ j ′) to account for the new blocks (under condition j ��m1;m2 j ′).
External Steps. The most interesting clauses concern the interaction of a core
semantics with its environment. Clause 4 requires that L2 match any call per-
formed by L1 with a call to the same function, with corresponding arguments.

120 L. Beringer et al.

Function Returns (Clause 5). In contrast to formulations using logical relations
or -closure, we do not explicitly impose a simulation relation on environ-
ments. Instead, we require that the cores be ready to accept (and to re-establish
the match relation on) nearly any pair of memories and return values the en-
vironments happen to return.5 As a consequence, a compilation is considered
correct independent of the termination behavior of its environment.

More precisely, given a call in L1 (and, necessarily, a corresponding call in
L2, by Clause 4), we mandate that the match relation ∼ be re-established (and
the resumption of normal execution succeed in both languages) whenever the
environments yield back with return values v ′1 and v ′2 and updated memories
m ′

1 and m ′
2 that are related by a relocation map j ′. Here j ′ is an extension of

the relocation map j provided at the time of the calls, meaning it agrees with j
wherever j was defined, but may relocate new, freshly allocated blocks.

In accordance with the restrictions on external calls in CompCert, however,
we assume that the evolution of memories across calls satisfies some basic con-
ditions: forward m m ′ requires that an evolution m � m ′ does not invalidate
(i.e., return to the allocation pool) any block that was previously allocated,
and at most decreases the maximum permissions of the block’s individual loca-
tions.6 Blocks may of course be freed, but in CompCert’s memory model, freed
blocks are never re-allocated (each new allocation takes a fresh block-number
from a countable set of positive numbers). The unchOn conditions impose a
frame discipline, by confining the effects of the commands to addresses speci-
fiable using j . In particular, unchOn (loc unmapped j) m1 m ′

1 requires that m ′
1

contain identical values as m1 in all blocks b outside the preimage of j , while
unchOn (loc out of reach j m1) m2 m ′

2 imposes preservation of values at m2 ad-
dress whose preimage under j has empty Max permission.

In addition to the clauses in Definition 1, our formal definition imposes some
structural conditions on the relation 〈c1,m1〉 ∼j 〈c2,m2〉, such as a constraint
that global environments be suitably preserved (notation preservesGlobals ge1 j),
and that all blocks mentioned by j be valid in the respective memories. We omit
the details of these clauses from our presentation.

We denote simulations for extension and equality passes by L1)Ext L2 and
L1)Eq L2, respectively—the definitions of these notions mirror that of L1)Inj

L2, but we omit the details. We write .) . for the union of all three relations.

4.1 Transitive Composition of Simulations

In order to verify a multiphase compiler in a modular way, it is critically im-
portant to transitively compose correctness proofs of individual compiler phases.

5 This is an important point! The authors of a compiler such as gcc or CompCert
make few assumptions about the environment, or about separately compiled mod-
ules. They do not want their reasoning about compiler correctness entangled with
specifications of the programs to be linked with.

6 The current permission at each memory location may fluctuate arbitrarily so long
as it does not exceed the Max permission.

Verified Compilation for Shared-Memory C 121

m1 m2 m3

m ′
1 ∃ m ′

2 m ′
3

forward,
unchOn

j1

forward,
unchOn

j2

j ′1

forward,
unchOn

j ′2

j ′

Fig. 6. Interpolation lemma for composing injection phases L1 Inj L2 and L2 Inj L3.
Solid lines represent assumptions; dashed lines represent constraints that the con-
structed m ′

2 has to satisfy. Similar lemmas have been validated in Coq for all com-
binations of injection and extension passes.

That is, we would like to prove that L1) L3 holds whenever L1) L2 and
L2) L3. In the following, we summarize our Coq proof of this result.

A cooperative core semantics is a core semantics such that ge � 〈c,m〉 �−→
〈c′,m ′〉 implies forward m m ′.

Theorem 1. For cooperative L1,L2,L3, suppose L1) L2 and L2) L3. Then
there exists a simulation L1) L3.

The proof of this result proceeds by case distinction on L1) L2 and L2) L3,
yielding nine cases. The resulting simulation is of type .)Inj . whenever at least
one hypothesis is an injection, is of type .)Eq . if both hypotheses are equalities,
and is of type .)Ext . otherwise. Each case consists of subgoals according to the
clauses in Definition 1 (or the similar clauses in case of .)Ext . and .)Eq .).

The most interesting subgoals are those for the after external-clauses.7 In order
to establish the desired relation 〈c′1,m ′

1〉 ∼j ′ 〈c′3,m ′
3〉 between the return states

in languages L1 and L3, one would like to appeal to the corresponding relations
that are inductively given for L1) L2 and L2) L3. However, in order for these
induction hypotheses to apply, one must provide a suitable intermediate state
〈c′2,m ′

2〉, and in particular the memory m ′
2. Figure 6 depicts this situation for

the case in which both compiler phases are injection passes. As illustrated in the
figure, we require the existence of a post-call memory m ′

2 in L2 such that m ′
1 can

be injected to m ′
2 (via an extension j ′1 of j1) and m ′

2 can be injected to m ′
3 via

j ′2, such that j ′ = j ′2 ◦ j ′1 (j2 ◦ j1 defines injection composition). This is assuming
j1 injects m1 to m2, j2 injects m2 to m3, and j ′ injects m ′

1 to m ′
3.

Prior to CompCert 2.0, memory injections did not compose, i.e. m1 �j2◦j1 m3

did not follow from m1 �j1 m2 and m2 �j2 m3. Because the simulations did not
expose memory, transitive compiler correctness did not require this property to
hold. In CompCert 2.0, Leroy respecified injections to facilitate such composi-
tion, based on a suggestion of Tahina Ramananandro. The interpolation lemma

7 Indeed, a principal result of this paper is that one can reason about the interac-
tion between the memory manipulations of the compiler and the memory effects of
external function calls.

122 L. Beringer et al.

provides the counterpart to this composition, by guaranteeing that the post-call
injection m ′

1 �j ′ m ′
3 can be split into some m ′

2, j
′
1, and j ′2 with m ′

1 �j ′1 m ′
2

and m ′
2 �j ′2 m ′

3. Moreover, these items can be constructed in such a way that
the evolution m2 � m ′

2 inherits the appropriate forward and unchOn properties
from the extremal evolutions m1 � m ′

1 and m3 � m ′
3. Our proofs of the inter-

polation lemmas suggested a handful of additional alterations to the memory
model, which we communicated to Leroy. These included a subtle refinement
to the treatment of permissions across external calls and a tweak to the defi-
nition of unchOn. Leroy installed these modifications in CompCert 2.0, and we
formally validated the interpolation lemma in Coq. That is, we have proved that
intermediate memories m ′

2, and injections j ′1 and j ′2 with the required properties
can indeed be constructed.8 Having proved similar lemmas for the cases where
one or both of the phases are memory extension translations, we combined the
interpolation lemmas to a Coq proof of Theorem 1.

The evolutions mi � m ′
i in Figure 6 are stated purely extensionally, in terms

of forward and unchOn. The alternative would be a requirement to preserve se-
quences of memory operations—but the question of which sequences we’d want to
preserve would take us back exactly to square one: simply requiring all sequences
to be preserved prevents the compiler from optimizing redundant loads/stores
and from reordering loads/stores once we refine external calls into (compilable)
code. On the other hand, any other equivalence would itself require extensional
justification, so nothing would be gained by considering such sequences.

5 Semantics Preservation

As Section 4 showed, LSRs support phase-by-phase verification of a compiler
such as CompCert. But what end-to-end result do LSRs guarantee?

This section answers this question, by stating and proving a strong semantics
preservation theorem implied by LSRs. In order to simplify the presentation of
this theorem, we deal here only with closed programs, i.e., those whose calls
to external functions have been fully resolved after linking. But LSRs imply a
strong semantics preservation theorem for open programs as well.

We prove semantics preservation as a corollary of safety preservation, under
the following definition of program safety.

8 Differences between injections and extensions mean that the intermediate memories
differ slightly between these cases, although several auxiliary lemmas are shared. As a
consequence of our work, it became apparent that under certain conditions, namely
the absence of pointers to previously unallocated blocks, memory extensions are
special cases of memory injections. This opens the potential to unify the two notions
across the entire CompCert development, and hence to coalesce all interpolation
lemmas. The price is that all languages would have to (be proven to) preserve the
absence of such wild pointers throughout execution. At present, it is unclear which
way CompCert will eventually go, so we adopt the status quo for the time being.

Verified Compilation for Shared-Memory C 123

Definition 2 (Safety). A program 〈c,m〉 is safe for n steps with postcondition
Q and in global environment ge when either

– n = 0, or
– n �= 0 and if halted c = Some v then Q(v ,m) else there exist c′,m ′ such

that ge � 〈c,m〉 �−→ 〈c′,m ′〉 and 〈c′,m ′〉 is safe for n − 1 steps.

A program 〈c,m〉 is safe iff it is safe for all n.

In particular, if 〈c,m〉 is safe with postconditionQ , then 〈c,m〉 will either infinite
loop or halt in a state (return value and memory) satisfying Q .

We state safety preservation in terms of this definition of safety as follows.

Theorem 2 (Safety Preservation). Let M be the type of CompCert memo-
ries; L1 = (G1,C1,M) be the source semantics; L2 = (G2,C2,M) be the target
semantics; 〈c1,m1〉 be a configuration of L1; and 〈c2,m2〉 be a configuration of
L2. Assume that L1 and L2 are deterministic, and that L1)Inj L2 holds with
〈c1,m1〉 ∼j 〈c2,m2〉 for some injection j . Then for all postconditions Q up to
injection, if 〈c1,m1〉 is safe for Q then 〈c2,m2〉 is safe for Q.

By “postconditions Q up to injection,” we mean the set of predicates on return
values and memories that remain true under injection of their arguments. For-
mulating Theorem 2 with respect to .)Inj . is appropriate since this is the type
of simulation one obtains when composing all translation phases of CompCert.
In the Verified Software Toolchain [App11], a proof of {P}c{Q} in our C light
program logic [A+14] and soundness of the logic together give us the required
safety theorem for source-language C light configurations.

As a corollary of Theorem 2 and from termination preservation, we get the
following semantics preservation result.

Corollary 1 (Semantics Preservation). For any execution of L1 starting in
an initial state (module entry point) and resulting in a halted state, and for any
observation Q up to injection one could make of that halted state, there is a
unique execution starting from the initial state of L2 that terminates in a unique
halted state also satisfying the predicate Q.

These top-level theorems concern fully linked programs, but our results on
LSRs allow the extensions of these theorems to the situation in which a thread
interacts with its environment using shared-memory interaction, provided exter-
nal functions are equipped with suitable up-to-injection specifications. To get an
even stronger result regarding fully separate compilation, some additional con-
straints need to be imposed on CompCert’s specification: that all assumptions
made in the External Steps clause are established by the Core Steps clause.

6 Backwards Compatibility

Although CompCert 2.0’s top-level correctness theorems still say very little
about the memory transformations performed by the compiler, many of the com-
piler’s internal invariants—established in proofs of individual compiler phases—
make more precise statements about these memory transformations. In order to

124 L. Beringer et al.

maximize the reuse of CompCert’s proof infrastructure, it is desirable to preserve
as many of these internal invariants as possible.

To evaluate our approach, we adapted the proof of one of the trickiest com-
pilation passes, Cminorgen, to the simulation structures of Section 4. The main
task of Cminorgen is to remove from activation records any local variables that
are not address-taken (these local variables are allocated in registers, or occa-
sionally spilled back into activation records after CompCert’s register allocation
pass). Because the Cminorgen pass significantly reorganizes memory, CompCert
2.0 proves Cminorgen as an injection pass.

First, we refactored the source and target languages of the transformation,
Csharpminor and Cminor, as described for C light in Section 3.1. This involved
isolating the memory component from the core data and giving definitions for the
core semantics interface from Figure 3. Next, we adapted the proof, by exposing
the memory injection in a match relation that described the evolution of the call
stack, and reassembling the main inductive argument. While most instruction
forms were rather easy to adapt, the rule for internal function calls required a
slight strengthening of invariants in order to establish the j ��m1;m2 j ′ condition
of clause 3 from Definition 1. In contrast, the case for external functions, which
in CompCert 1.x and 2.0 was rather involved, disappeared completely since
external function calls are now handled by the core semantics interface.

That the adaptation of the Cminorgen proof, one of CompCert’s most com-
plicated phases, to our setting was reasonably straightforward indicates that
our proof techniques will scale to the remainder of CompCert. Indeed, many of
CompCert’s phases make no adaptations to the memory layout at all. For these
phases, all that is needed is to adapt the source and target languages to the core
semantics interface of Section 3, and its strengthening to cooperative semantics.

7 Related Work

Some of the most appealing treatments of compiler correctness to-date have
been developed in the setting of ML-like languages or (typed) lambda-calculi
[Plo73,Rey74]. Proof techniques such as logical relations or -closure exploit
type structure to capture the relationship between code and its execution con-
text, supporting advanced language features such as higher-order functions, ex-
istential or recursive types, polymorphism, and references. But the property of
transitive compositionality has often been difficult to obtain.

Inspired in part by Pitts and Stark’s work on Kripke logical relations [PS98],
recent years have seen progress on supporting local state in the form of mutable
references [ADR09,DNB10,HDNV12,HNDV13]. State transition systems, which
are similar in some respects to our protocol-oriented semantics, figure promi-
nently in many of the recent approaches as a means of specifying invariants
on local state. However, this work has all been done in the context of strongly
typed functional languages, e.g., System F extended with recursive types and
mutable references. Our context and goals are different: we apply logical simula-
tion relations to the problem of verified separate compilation of a weakly typed

Verified Compilation for Shared-Memory C 125

language (C), in the context of a realistic optimizing compiler (CompCert). The
application to CompCert is one of the major contributions of our work.

Arguably, the most closely related work to ours is Hur et al.’s integration of
bisimulations and Kripke logical relations [HDNV12]. Hur et al. achieve com-
positionality for the rich setting of Fμ!, but employ a highly nonstandard con-
struction: the cardinalities of the syntactic categories for types and values, and
of the semantic interpretation of the type nat, are exploited to construct “bad”
values that have little motivation from a typed perspective (these values occur
in the logical relation at function type position, despite being integers) and are
then used to “artificially” block certain executions in the intermediate language
L2. In contrast, although being far from trivial, the proofs of our interpolation
lemmas have significantly more constructive content.

A strength of Hur et al.’s contribution is to capture the intricate interactions
between global (shared) and local knowledge. Hur et al.’s analysis is formulated
using relation-transition systems (RTS’s), an evolution of the authors’ earlierwork
on using state transition systems to index Kripke-worlds in step-indexed logical
relations [ADR09,DNB10]. Our protocol-oriented interaction model shares many
of the features of RTS’s but is used to specify the “operational ground truth”.

Progress has also been made in extending logical relations to low-level code,
and to compilation [BH09,BH10]. One of the challenges is to transform high-level
type structure into well-behavedness at the low level even in the presence of more
fine-grained observation contexts. Again, the situation for our work is different,
as the C language does not provide us with much high-level type structure to
start with. It is indeed the memory model, not type structure, that constitutes
the lingua franca between C modules, and the use of a uniform memory model
across all stages of compilation is a crucial feature of CompCert.

Recently, Liang et al. [LFF12] have explored applications of rely-guarantee
reasoning [Jon83] to proving the correctness of concurrent program transforma-
tions. In that work, rely-guarantee conditions were used to model the interactions
of a program thread with its concurrent context. There are natural extensions of
these ideas to separate compilation in the CompCert setting. Indeed, we are ac-
tively exploring a rely-guarantee simulation proof method that would allow sep-
arate compilation of linked modules even in the presence of mutually recursive
inter-module dependencies. In the CompCert setting, rely conditions correspond
to the assumptions CompCert currently makes about the behaviors of external
function calls, and which we expose in Clause 5 of measured forward simulations
(Definition 1, Section 4). Adapting CompCert to support symmetric guarantees
about compiled code is much trickier. Solving these issues is active research.

Our work on verified compilation of concurrent programs has goals similar to
those of CompCertTSO [ŜVZN+11] but with a quite different method. Instead
of modeling a specific relaxed memory model, e.g., x86-TSO, as CompCert-
TSO does, we prove—by instrumenting the CompCert languages with memory
permissions—that data race freedom is preserved by compilation. For programs
proved data race free in our concurrent separation logic we will therefore get cor-
rectness guarantees with respect to even weaker memory models than x86-TSO,

126 L. Beringer et al.

e.g., the POWER and ARM models. Our approach even permits CompCert to
optimize nonsynchronizing loads and stores, e.g., hoist loads/stores, eliminate
redundant load/stores, when they do not cross synchronization operations.

8 Conclusion

Compositional compilation is not an easy problem. In this paper, we attack the
problem “at scale,” in the intensely practical CompCert compiler. In this setting,
we show that core semantics and LSRs, together with the program logic [A+14],
enable end-to-end verification of C programs that interact via shared memory.
But our approach to “how to specify a compiler” is significant beyond just Comp-
Cert, and will be relevant to optimizing compilation of any C-like language.

Acknowledgments. We thank the members of the Princeton programming lan-
guages group and the ESOP anonymous reviewers for their comments on earlier
drafts of this paper. We are indebted to Xavier Leroy and Tahina Ramananandro
for many enlightening technical conversations.

This material is based on research sponsored by the DARPA under agreement num-
ber FA8750-12-2-0293. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

References

A+14. Appel, A.W., et al.: Program logics for certified compilers, Cambridge
(2014)

ADR09. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation in-
dependence. In: POPL (2009)

App11. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011.
LNCS, vol. 6602, pp. 1–17. Springer, Heidelberg (2011)

BH09. Benton, N., Hur, C.-K.: Biorthogonality, step-indexing and compiler cor-
rectness. In: ICFP, New York, pp. 97–108 (2009)

BH10. Benton, N., Hur, C.-K.: Realizability and compositional compiler correct-
ness for a polymorphic language. Tech. Report MSR-TR-2010-62, Microsoft
Research (2010)

DNB10. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and
control effects on local relational reasoning. ACM SIGPLAN Notices 45,
143–156 (2010)

HDNV12. Hur, C.-K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimula-
tions and Kripke logical relations. In: POPL (2012)

HNDV13. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: Parametric bisimulations:
A logical step forward, draft (2013)

Jon83. Jones, C.B.: Tentative steps toward a development method for interfering
programs. TOPLAS 5(4), 596–619 (1983)

Verified Compilation for Shared-Memory C 127

L+12. Leroy., X., et al.: The CompCert memory model, version 2. Tech. Report
RR-7987, INRIA (2012)

LB08. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its
uses for verifying program transformations. JAR 41(1) (2008)

Ler11. Leroy, X.: The CompCert verified compiler, software & ann. proof (2011)
LFF12. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying

concurrent program transformations. In: POPL (2012)
NS06. Ni, Z., Shao, Z.: Certified assembly programming with embedded code

pointers. In: POPL (2006)
O’H07. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical

Computer Science 375(1), 271–307 (2007)
Plo73. Plotkin, G.: Lambda-definability and logical relations, School of Artificial

Intelligence, University of Edinburgh (1973)
PS98. Pitts, A., Stark, I.: Operational reasoning for functions with local state.

Higher Order Operational Techniques in Semantics, 227–273 (1998)
Rey74. Reynolds, J.: On the relation between direct and continuation semantics.

Automata, Languages and Programming, 141–156 (1974)
ŜVZN+11. Ŝevčik, J., Vafeiadis, V. Zappa Nardelli, F. Jagannathan, S., and Sewell,

P.: Relaxed-memory concurrency and verified compilation. ACM SIGPLAN
Notices 46(1), 43–54 (2011)

Verifying an Open Compiler
Using Multi-language Semantics

James T. Perconti and Amal Ahmed

Northeastern University

Abstract. Existing verified compilers are proved correct under a closed-world as-
sumption, i.e., that the compiler will only be used to compile whole programs. We
present a new methodology for verifying correct compilation of program compo-
nents, while formally allowing linking with target code of arbitrary provenance. To
demonstrate our methodology, we present a two-pass type-preserving open com-
piler and prove that compilation preserves semantics. The central novelty of our
approach is that we define a combined language that embeds the source, interme-
diate, and target languages and formalizes a semantics of interoperability between
them, using boundaries in the style of Matthews and Findler. Compiler correctness
is stated as contextual equivalence in the combined language.

Note to reader: We use blue, red, and purple to typeset terms in various lan-
guages. This paper will be difficult to follow unless read/printed in color.

1 Introduction

There has been remarkable progress on formally verified compilers over the last few
years, with researchers proving the correctness of increasingly sophisticated compilers
for increasingly realistic languages. The most well known instance of this is the Comp-
Cert compiler [1,2] which uses the Coq proof assistant to both implement and verify
a multi-pass optimizing compiler from C to PowerPC, ARM, and x86 assembly, prov-
ing that the compiler preserves semantics of source programs. Several other compiler-
verification efforts have successfully followed CompCert’s lead and basic methodology,
for instance, focusing on multithreaded Java [3], just-in-time compilation [4], and C
with relaxed memory concurrency [5].

Unfortunately, these projects prove compiler correctness under a closed-world
assumption, that is, assuming that the verified compiler will always compile whole
programs. Despite the immense effort put into verification, the compiler correctness
theorem provides no guarantees about correct compilation of components. This whole-
program assumption is completely unrealistic since most software systems today are
comprised of many components written in different languages compiled to a common
target, as well as runtime-library routines that may be handwritten in the target lan-
guage. We need compiler correctness theorems applicable to the way we actually use
these compilers.

Formally verifying that components are compiled correctly—often referred to as
compositional compiler correctness—is a challenging problem. A key difficulty is that,
in the setting of compiling components, it is not clear how to even state the compiler cor-
rectness theorem. CompCert’s compiler correctness theorem is easy to state thanks to

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 128–148, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Verifying an Open Compiler Using Multi-language Semantics 129

the whole program assumption: informally, it says that if a source program PS compiles
to a target program PT , then running PS and PT results in the same trace of observable
events. The same sort of theorem does not make sense when we compile a component
eS to a component eT : we cannot “run” a component since it is not a complete program.

Intuitively, we want the compiler correctness theorem to say that if a component eS
compiles to eT , then some desired relationship eS � eT holds between eS and eT . The
central question is: how do we formally specify eS � eT ? To answer this question, we
must consider how the compiled component is actually used: it needs to be linked with
some e′T , creating a whole program that can be run. Informally, the compiler correctness
theorem should guarantee that if we link eT with e′T , then the resulting target-level
program should correspond to the source component eS linked with e′T . But, formally
speaking, how can one link a source component with a target component and what
are the rules for running the resulting source-target hybrid? These questions demand
a semantics of interoperability between the source and target languages. We give our
semantics of interoperability as a multi-language operational model. We then define
eS � eT as a contextual equivalence in that model.

There are two other important issues to consider when evaluating a compositional
compiler correctness theorem and its supporting formalism. The first is the degree of
horizontal compositionality that the model allows, that is, which target components e′T
may formally be linked with a compiled component. At the lower end of the horizontal
compositionality spectrum are fully abstract compilers. Full abstraction states that the
compiler both preserves and reflects contextual equivalence. Hence, a fully abstract
compiler preserves all of the source language’s abstractions, and compiled components
are only allowed to link with components that can be expressed in the source language.

But real systems often link together components from multiple languages with dif-
ferent guarantees and different expressive power. We are particularly interested in sup-
porting interoperability between parametric typed languages like ML and low-level
languages like C. Thus, full abstraction is often too restrictive. To support the whole
programs that we actually run, the compiler correctness theorem should formally sup-
port linking with as large a class of programs as possible, and in particular, should not
require an e′T to have been compiled from the same source language as eT .

Abandoning full abstraction in favor of greater horizontal compositionality does not
require giving up all the guarantees of the source language. The compiler and its ver-
ification framework can be designed to preserve the source-level equivalences that are
critically needed without forbidding all foreign behavior. To show that different levels
of abstraction preservation are possible, we will deliberately pick a target language that
is more expressive than the source and design our compiler so that it is not fully ab-
stract. Our focus in this paper is on how to preserve the representation independence
and information hiding guarantees provided by type abstraction in our source language.

The second important issue for a compiler correctness framework is that we want to
be able to verify multi-pass compilers. For example, if we have a two-pass compiler that
compiles a source component eS to an intermediate-language component eI to a target
component eT , we should be able to verify each pass separately, showing eS � eI and
eI � eT , and then compose these results to get a correctness theorem for the whole
compiler saying eS � eT . This is typically referred to as vertical compositionality.

130 J.T. Perconti and A. Ahmed

We will show that our approach of using a multi-language operational model suc-
ceeds at both horizontal and vertical compositionality. In particular, we validate our
methodology by applying it to a two-pass type-preserving compiler. The compiler deals
with three languages: our source language F (System F with existential and recursive
types), an intermediate language C (the target of a typed closure conversion pass), and
our target language A (the target of a heap allocation pass).1 The target language A
allows tuples and closures to live only on the heap and supports both mutable and im-
mutable references. Our closure conversion pass translates F components of type τ to
C components of type τC, where τC denotes the type translation of τ . The subsequent
allocation pass translates C components of type τ to A components of type τA, where
τA is the type translation of τ .

To define the semantics of interoperability between these languages, we embed them
all into one language, FCA, and add syntactic boundary forms between each pair of ad-
jacent languages, in the style of Matthews and Findler [7] and of Ahmed and Blume [8].
For instance, the term CFτ (eF) allows an F component eF of type τ to be used as a C
component of type τC , while τFC(eC) allows a C component eC of translation type
τC to be used as an F component of type τ . Similarly, we have boundary forms AC
and CA for the next language pair. Non-adjacent languages can interact by stacking up
boundaries: for example,FC(CA eA) (abbreviatedFCA(eA)) allows an A component
eA to be embedded in an F term.

FCA Design Principles. Our goal is for the FCA interoperability semantics to give us
a useful specification of when a component in one of the underlying languages should
be considered equivalent to a component in another language. We realize that goal by
following three principles.

First, we define the operational semantics of FCA so that the original languages are
embedded into FCA unchanged: running an FCA program that’s written solely in one of
the embedded languages is identical to running it in that language alone. For instance,
execution of the A program eA proceeds in exactly the same way whether we use the
operational semantics of A or the augmented semantics for FCA.

Next, we ensure that the typing rules are similarly embedded: a component that con-
tains syntax from only one underlying language should typecheck under that language’s
individual type system if and only if it typechecks under FCA’s type system.

The final property we need is boundary cancellation, which says that wrapping two
opposite language boundaries around a component yields the same behavior as the un-
derlying component with no boundaries. For example, any eF : τ must be contextually
equivalent to τFC(CFτeF), and any eC : τC must be equivalent to CFτ (τFCeC).
Compiler Correctness. We state the correctness criterion for our compiler as a contex-
tual equivalence. For each pass of the compiler from a source S to a target T , where S
and T interoperate via boundaries ST and T S, define our source-target relationship by

eS ! eT
def
= eS ≈ctx

FCA
τST (eT) : τ.

We prove that if eS : τ compiles to eT , then eS � eT . Since contextual equivalence
is transitive, our framework achieves vertical compositionality immediately: it is easy

1 We have extended our F to A compiler with a code-generation pass to an assembly language,
much like Morrisett et al.’s stack-based TAL [6]. We will report on that work in a future paper.

Verifying an Open Compiler Using Multi-language Semantics 131

to combine the two correctness proofs for the individual compiler passes, giving the
overall correctness result that if eF compiles to eA, then eF � eA, or

eF ≈ctx
FCA

τFCA(eA) : τ .

Reasoning About Linking. Our approach enjoys a strong horizontal compositionality
property: we can link with any target component e′A that has an appropriate type, with
no requirement that e′A was produced by any particular means or from any particular
source language. Specifically, if eF expects to be linked with a component of type τ ′ and
compiles to eA, then eA will expect to be linked with a component of type ((τ ′)C)A. If
e′A has this type, then using our compiler correctness theorem, we can conclude that

(eF
τ ′
FCA(e′A)) ≈ctx FCA(eA e′A),

or equivalently,
ACF (eF

τ ′
FCA(e′A)) ≈ctx eA e′A.

The right-hand side of this equality is exactly the A program we ultimately want to run,
and the left-hand side is an FCA program that models that program.

Contributions. Our main contributions are our methodology and that we have proven
correctness for an open multi-pass compiler. We have designed a multi-language seman-
tics that lets us state a strong compiler-correctness theorem, and to prove the theorems,
we have developed a logical relation for proving contextual equivalences between FCA
components. The most significant technical challenges were related to interoperability
between languages with type abstraction, specifically, in designing the multi-language
semantics so it preserves type abstraction between languages (§5), and in designing
the parts of the logical relation that model the handling of type abstraction in a multi-
language setting (§9).

Due to space constraints, we elide various technical details and omit proofs. All def-
initions, lemmas, and proofs are spelled out in full detail in the accompanying technical
report [9], available at: http://ccs.neu.edu/home/amal/voc/

2 Related Work: Benton-Hur Approach

Before beginning our technical development, we compare our methodology to the only
prominent existing approach to compositional compiler correctness.

To eliminate the closed-world assumption, Benton and Hur [10] advocate setting up
a logical relation between the source and target languages, specifying when a source
term semantically approximates target code and vice versa. We will refer to a logical
relation that relates terms from two different languages as a cross-language logical re-
lation. The relation is defined by induction on source-language types. Benton and Hur
verified a compiler from the simply-typed λ-calculus with recursion [10]—and later,
from System F with recursion [11]—to an SECD machine, proving that if source com-
ponent eS compiles to target code eT , then eS and eT are logically related. Later, Hur
and Dreyer [12] used essentially the same approach to prove correctness of a compiler
from an idealized ML to assembly.

However, the Benton-Hur (henceforth, BH) approach suffers from serious drawbacks
in both vertical and horizontal compositionality. First, the cross-language framework
does not scale to a multi-pass compiler. Both Benton-Hur and Hur-Dreyer handle only

132 J.T. Perconti and A. Ahmed

a single pass. To achieve vertical compositionality in the BH style, one would have to
define separate cross-language logical relations relating the source and target of each
compiler pass, and then prove that the logical relations compose transitively in order to
establish that the correctness of each pass implies correctness for the entire compiler.
But this kind of transitive composition of cross-language logical relations has been
an open problem for some time. (We’ll discuss recent work towards addressing this
problem in §11.)

The second drawback to the BH approach is its limited horizontal compositionality.
Consider the situation where a verified compiler from language S to language T is used
to compile a source component eS to some target code eT . The BH compiler correctness
theorem tells us that eS and eT are logically related. We wish to link the compiled code
eT with some other target code e′T and verify the resulting program. To do this using the
BH framework, we must now come up with a source-level component e′S and show that
it is logically related to e′T . This is an onerous requirement: while it may be reasonable
to come up with e′S when the given e′T is very simple, it seems almost impossible when
e′T consists of hundreds of lines of assembly! Further, if e′T is compiled from some
other source language R, it may not even be possible to write down an e′S in language
S that is related to e′T .

Technically speaking, the BH approach does support linking with any target code
that can be proved logically related to a source component. But it cannot support link-
ing with any components that are not expressible in the source language. And we con-
tend that even for the theoretically-allowed cases, in practice the approach is limited
to allowing linking between only very simple components or components that were all
compiled from the same source language.

Overcoming BH Limitations. By reasoning about components in the FCA setting, we
can overcome both limitations of the BH framework. We have already pointed out that
our framework admits vertical compositionality thanks to the transitivity of contextual
equivalence.

For the second limitation of the BH approach, consider a target component e′A. While
the BH approach would need to find a related source component to fit e′A into their
framework, we only need to find an FCA component that looks like a source component.
Specifically, we can use e′A itself in a source context by wrapping it in appropriate
boundaries:FCA(e′A).

3 The Languages

We begin our technical development with a few notes on typesetting and notational con-
ventions. We typeset the terms, types, and contexts of our various languages as follows:

– F (System F) in a blue sans-serif font;
– C (Closure conversion) in a red bold font with serifs;
– A (Allocation) in a purple sans-serif bold font.

For each of our languages, we will use the metavariable e for components and t for
terms. In the first two languages, F and C, terms and components coincide, but the
distinction will be meaningful in language A. Similarly, all languages use τ for types,
v for values, E for evaluation contexts, and C for general contexts. We write fv(e)

Verifying an Open Compiler Using Multi-language Semantics 133

τ ::= α | unit | int | ∀[α].(τ)→ τ | 〈τ 〉 | ∃α.τ | μα.τ
e ::= t
t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [τ] t | 〈t〉 | πi(t) | pack〈τ,t〉 as∃α.τ

| unpack 〈α, x〉 = t in t | foldμα.τ t | unfold t
p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | 〈v〉 | pack〈τ,v〉 as ∃α.τ | foldμα.τ v
E ::= [·] | E p t | v p E | if0 E t t | E [τ] t | v [τ] v E t | . . .

e �−→ e′ E[λ[α](x : τ).t [τ ′] v] �−→ E[t[τ ′/α] [v/x]] . . .

Δ;Γ � e : τ where Δ ::= · |Δ, α and Γ ::= · | Γ, x : τ
τ ::= α | unit | int | ∀[α].(τ)→ τ | 〈τ〉 | ∃α.τ | μα.τ
e ::= t

t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [] t | t[τ] | 〈t〉 | πi(t)

| pack〈τ,t〉as∃α.τ | unpack 〈α, x〉 = t in t | foldμα.τ t | unfold t
p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | 〈v〉 | pack〈τ,v〉 as ∃α.τ | foldμα.τ v | v[τ]

E ::= [·] | . . . | E [] t | v [τ] v E t | E[τ] | . . .

e �−→ e′ E[λ[α](x : τ).t [τ ′] v] �−→ E[t[τ ′/α] [v/x]] . . .

Δ;Γ � e : τ where Δ ::= · | Δ, α and Γ ::= · | Γ, x: τ

α;x: τ � t : τ ′

Δ;Γ � λ[α](x : τ).t :∀[α].(τ)→ τ ′
Δ;Γ � t :∀[].(τ)→ τ ′ Δ;Γ � t : τ

Δ;Γ � t [] t : τ ′

Δ;Γ � t :∀[β, α].(τ)→ τ ′ Δ � τ0

Δ;Γ � t[τ0] :∀[α].(τ [τ0/β])→ τ ′[τ0/β]
. . .

τ ::= α | unit | int | ∃α.τ | μα.τ | ref ψ | boxψ

ψ ::= ∀[α].(τ)→ τ | 〈τ, . . . , τ〉
e ::= (t,H)

t ::= x | () | n | t p t | if0 t t t | � | t [] t | t[τ] | pack〈τ,t〉 as∃α.τ | unpack 〈α, x〉 = t in t

| foldμα.τ t | unfold t | ralloc 〈t〉 | balloc 〈t〉 | read[i] t | write t [i] ← t

p ::= + | − | ∗
v ::= () | n | pack〈τ,v〉 as∃α.τ | foldμα.τ v | � | v[τ]

E ::= (Et, ·) Et ::= [·] | . . . | balloc 〈v, Et, t〉 | . . .

h ::= λ[α](x : τ).t | 〈v, . . . , v〉 H ::= · | H, � 	→ h

〈H | e〉 �−→ 〈H′ | e′〉 Reduction Relation (selected cases)

〈H | (t, (H′, � 	→ h)〉 �−→ 〈H, �′ 	→ h | (t[�′/�],H′[�′/�])〉 if �′ �∈ dom(H)

〈H | E[� [τ ′] v]〉 �−→ 〈H | E[t[τ ′/α][v/x]]〉 if H(�) = λ[α](x : τ).t

Ψ � h :ψ where Ψ ::= · | Ψ, � : refψ | Ψ, � : boxψ

Ψ � H :Ψ′ which implies dom(Ψ) ∩ dom(Ψ′) = ∅
Ψ;Δ; Γ � e : τ where Δ ::= · | Δ, α and Γ ::= · | Γ, x : τ

Ψ � H :Ψ′ (Ψ,Ψ′);Δ; Γ � t : τ

Ψ;Δ; Γ � (t,H) : τ
. . .

Ψ;Δ;Γ � t : τ

Ψ;Δ;Γ � balloc 〈t〉 : box 〈τ〉
Ψ;Δ;Γ � t : box 〈τ0, . . . τi . . . , τn〉

Ψ;Δ; Γ � read[i] t : τi

Fig. 1. Definition of F (top), C (middle), and A (bottom)

134 J.T. Perconti and A. Ahmed

to denote the free term variables of e and ftv(e) (or ftv(τ)) to denote the free type
variables of e (or of type τ). We use a line above a syntactic element to indicate a list of
repeated instances of this element, e.g., α = α1, . . . , αn for n ≥ 0. When the arities of
different lists are required to match up in a definition or inference rule, these constraints
will usually be obvious from context. Whenever two environments (e.g. Δ or Γ or Ψ)
are joined by a comma, this should be interpreted as a disjoint union.

Source Language. Our source language F is System F with recursive types, existential
types, and tuples. The syntax of types and terms in F is shown in Figure 1 (top). We
combine type- and term-level abstractions of arbitrary arity into a single binding form
∀[α].(τ)→ τ ′, abbreviating ∀[].(τ)→ τ ′ as τ → τ ′. We define a small-step operational
semantics for F (written e �−→ e′) using evaluation contextsE to lift the primitive reduc-
tions to a standard left-to-right call-by-value semantics for the language. The reduction
rules are standard; we show only the application rule.

F’s typing judgment has the form Δ; Γ � e : τ . The type environment Δ tracks the
type variables in scope. The value environment Γ tracks the term variables in scope
along with their types τ , which must be well formed under Δ (written Δ � τ and
defined as ftv(τ) ⊆ Δ). The typing rules are standard and hence omitted.

Intermediate Language. Our intermediate language C, shown in Figure 1 (middle), is
nearly identical to F, with two exceptions. First, since this language is the target of
closure conversion, functions are not allowed to contain free type or term variables.
Second, we allow the partial application of a function to a type. Hence, C terms include
t[τ] and we consider v[τ] to be a value.

The reduction relation e �−→ e′ is identical to that of F, and the typing judgment
Δ;Γ � e : τ differs only in the rules for abstraction and application which are shown
in the figure. Note that the body of a C function must typecheck in an environment that
contains only the function’s formal arguments.

Target Language. Our target A must serve as a target for heap allocation. Its design
is similar to the language λA from [13]. Since we are compiling a source language
without mutable references, it would suffice for A to provide only immutable references
to functions and tuples that must now live on the heap. However, to provide a concrete
illustration of the ability to link with target code that cannot be expressed in the source
language, we augment A with mutable references to tuples.

The language A is shown in Figure 1 (bottom). Functions in A are stored only in
immutable cells on the heap, while tuples are stored in heap cells that can be either
mutable or immutable. We use ψ for the types of these heap values h. Mutable and
immutable references have types ref ψ and boxψ, respectively. The terms ralloc 〈t〉
and balloc 〈t〉—which allocate mutable and immutable cells, respectively—each allo-
cate a new location � and initialize it to the given tuple. The instructions read[i] � and
write � [i] ← v respectively read from and write the value v to the i-th slot in the tuple
(of length n) stored at �, assuming 0 ≤ i < n. The type system ensures that writes are
only performed on mutable tuples.

Unlike F and C, the syntax of A distinguishes components e from terms t. A compo-
nent e pairs a term t with a heap fragment H. H can contain functions and tuples that t
may use by referring to locations in H. Intuitively, we need this notion of components
because a bare term t is not as expressive as C component. In particular, A does not

Verifying an Open Compiler Using Multi-language Semantics 135

provide any way to dynamically allocate a location and initialize it to a function. We
discuss how the compiler produces components with heap fragments in §4.

Heap fragments are assigned heap types Ψ. A heap fragment may reference locations
that are to be linked in by another component, so the judgment Ψ � H :Ψ′ includes an
external heap type Ψ as an environment used in assigning H the type Ψ′. Here, Ψ′

must provide types for exactly the locations in H. Each h in H must typecheck under
the disjoint union of the two heap types (Ψ,Ψ′). Similarly, a component (t,H) can
reference both external locations and those bound by H, that is, locations in the domain
of either the external heap type Ψ or of H.

Our operational semantics for A is a relation between configurations 〈H | e〉. Any
code or data in the internal heap fragment of component e must be loaded into memory
before it can be run. We formally capture this with a reduction rule that “loads” a com-
ponent by merging its internal heap fragment with the external heap. When loading a
component (t,H), we must rename the locations bound in H so that they do not conflict
with the external heap. After the loading step, the term component t can be evaluated
using standard reduction rules.

The structure of A components also entails a small change to the structure of eval-
uation contexts, which are defined in two layers: contexts E expect components e, and
term contexts Et expect terms t. Terms are plugged into term contexts in the obvious
way. Plugging a component-level evaluation context E = (Et, ·) with a component e is
defined by (Et, ·)[(t,H)] = (Et[t],H)

4 The Compiler

Compiling F to C. Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional argument to the
function, thus turning the function into a closed term. The closed function is paired
with its environment to create a closure. The basic idea of typed closure conversion
goes back to Minamide et al. [14], whom we follow in using an existential type to
abstract the type of the environment. This ensures that two functions with the same
type but different free variables still have the same type after closure conversion: the
abstract type hides the fact that the closures’ environments have different types.

We must also rewrite functions to take their free type variables as additional argu-
ments. However, instead of collecting these types in a type environment as Minamide et
al. do, we follow Morrisett et al. [13] and directly substitute the types into the function.
Like the latter, we adopt a type-erasure interpretation, which means that since all types
are erased at run time the substitution of types into functions has no run-time effect.

Our closure-conversion pass compiles F terms of type τ to C terms of type τC. Fig-
ure 2 (top) presents the type translation τC and some of the compilation rules. Since
this is closure conversion, the only interesting parts are those that involve functions.
The omitted rules are defined by structural recursion on terms.

Compiling C to A. Our second compiler pass combines hoisting of functions with ex-
plicit allocation of tuples. It takes a C component (that is, just a C term t) of type τ ,
and produces an A term t as well as a heap fragment H with all the hoisted functions.

136 J.T. Perconti and A. Ahmed

τC Type Translation

αC = α unitC = unit intC = int ∀[α].(τ)→ τ ′C = ∃β.〈(∀[α].(β, τC)→ τ ′C), β〉
∃α.τC = ∃α.τC μα.τC = μα.τC 〈τ1, . . . , τn〉C = 〈τ1C, . . . , τnC〉

Δ; Γ � e : τ � e Compiler (implies ΔC; ΓC � e : τC)

x : τ ∈ Γ

Δ; Γ � x : τ � x Δ; Γ � () : unit � () Δ; Γ � n : int � n

y1, . . . , ym = fv(λ[α](x : τ).t) β1, . . . , βk = ftv(λ[α](x : τ).t)

Δ, α; Γ, x : τ � t : τ ′ � t τenv = 〈(Γ(y1))C, . . . , (Γ(ym))C〉
v = λ[β, α](z : τenv, x: τC).(t[π1(z)/y1] · · · [πm(z)/ym])

Δ; Γ � λ[α](x : τ).t :∀[α].(τ)→ τ ′ �
pack〈τenv,〈v[β], 〈y〉〉〉 as∃α′.〈(∀[α].(α′, τC)→ τ ′C), α′〉

Δ; Γ � t0 :∀[α].(τ1)→ τ2 � t0 Δ � τ Δ; Γ � t : τ1[τ/α] � t

Δ; Γ � t0 [τ] t : τ2[τ/α] � unpack 〈β, z〉 = t0 in π1(z) [τC]π2(z), t

τA Type Translation

αA = α unitA = unit intA = int ∀[α].(τ)→ τ ′A = box∀[α].(τA)→ τ ′A

∃α.τA = ∃α.τA μα.τA = μα.τA 〈τ1, . . . , τn〉A = box 〈(τ1A), . . . (τn
A)〉

Δ;Γ � e : τ � (t,H :Ψ) Compiler (implies · � H :Ψ, and ·;ΔA;ΓA � (t,H) : τA)

x: τ ∈ Γ

Δ;Γ � x : τ � (x, · : ·) Δ;Γ � () :unit � ((), · : ·) · · ·

α;x: τ � t : τ ′ � (t,H :Ψ)

Δ;Γ � λ[α](x : τ).t :∀[α].(τ)→ τ ′ �
(�, (H, � �→ λ[α](x : τA).t) : (Ψ, � : box∀[α].(τA)→ τ ′A))

Δ;Γ � t1 : τ1 � (t1,H1 :Ψ1) · · · Δ;Γ � tn : τn � (tn,Hn :Ψn)

Δ;Γ � 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉 �
(balloc 〈t1, . . . , tn〉, (H1, . . . ,Hn) : (Ψ1, . . . ,Ψn))

Fig. 2. Compiler from F to C (top) and from C to A (bottom)

The component (t,H) is the overall output, and has type τA under an empty exter-
nal heap. The heap fragment generated by the compiler does not contain tuples: the
compiler translates C tuples by generating balloc expressions, not by putting them in
a static heap fragment. The type translation and interesting parts of the term translation
are shown in Figure 2 (bottom).

Verifying an Open Compiler Using Multi-language Semantics 137

5 F and C Interoperability

5.1 The Basics

We now present a formal semantics for interoperability between F and C. For now,
we define a combined language FC; in §6, we will extend this to FCA. Our FC multi-
language system embeds the languages F and C so that both languages have natural
access to foreign values (i.e., values from the other language). In particular, we want
F components of type τ to be usable as C components of type τC, and vice versa. To
allow cross-language communication, FC extends the original F and C with syntactic
boundaries, written τFC e (C inside, F outside) and CFτ e (F inside, C outside).

The interesting cases in the semantics of boundaries are those that handle universal
and existential types. These must be defined carefully to ensure that type abstraction
is not broken as values pass between languages. First, though, we explain the general
principles of our boundary semantics by looking at the cases for simple types and their
translations.

CF Boundary Semantics. A term CFτe has type τC if e has type τ . To evaluate this
boundary term, FC’s operational semantics require first that e be reduced to a value v
(using F reduction rules). Then a type-directed meta-function is applied to v, yielding
a value in C of type τC (written CFτ (v) = v). An important restriction on this meta-
function, which we call the value translation, is that it is only defined for closed values.
This is sufficient for our needs because it is used only by the FC operational semantics,
and substitution-based reduction relations are defined only for closed programs. We
can still write FC programs with free variables appearing under boundaries, but by the
time we evaluate the boundary term, we will have supplied values for all of these free
variables.

At base types, value translation is easy: for example, translating a value n of type
int yields the same integer in C, n. Most of the other types are translated simply by
structural recursion.

The interesting case is the case for function types. Consider the translation of a value
v of type τ → τ ′. As per the type translation, this should produce a value of type
∃β.〈((β, τC) → τ ′C), β〉. Since v is closed, we can simply use unit for the type
β of the closure environment:

CFτ→ τ ′
(v) = pack〈unit,〈v, ()〉〉 as ∃β.〈((β, τC) → τ ′C), β〉

We must still construct the underlying function v for this closure, which we can do
using boundary terms and the original function v:

v = λ(z : unit, x: τC).CFτ
′
(v τFC x).

The function we build simply translates its argument from C to F, applies v to the
translated argument, and finally translates the result back into C.

The full translation rule for functions must also handle type arguments and requires
some additional machinery, which we will discuss momentarily.

FC Boundary Semantics. The term τFC e has type τ when e has type τC. As before,
to evaluate a boundary term, we first evaluate the component under the boundary, this
time to a value v. Then we apply a value translation τFC(v) = v that yields an F value
v of type τ . Again, this translation is only defined for closed values of translation type.

138 J.T. Perconti and A. Ahmed

Let us consider the type τ → τ ′ again. A closure v of type (τ → τ ′)C must be trans-
lated to an F function that first translates its argument from F to C, then unpacks the
closure v and applies the code to its environment and the translated argument, and fi-
nally translates the result back from C to F:

τ→ τ ′
FC(v) = λ(x : τ).τ

′
FC(unpack 〈β, y〉 = v in π1(y) π2(y) CFτ x)

In both function cases, notice that the direction of the conversion (and the boundary
used) reverses for function arguments.

5.2 Handling Abstract Types

Now that we have established the general structure of boundary rules, we come to the
interesting cases, those for abstract types.
FC Type Abstraction. Consider the type ∀[α].(α)→ α. Since αC = α, the translation
of this type is

(∀[α].(α)→ α)C = ∃β.〈(∀[α].(β,α)→ α), β〉.
If we naively try to extend the function case of the value translation given above, we get
the following:

∀[α].(α)→ αFC(v) = λ[α](x :α).αFC(unpack 〈β, y〉 = v in π1(y) [α
C]π2(y) CFαx)

Note that we have not expanded αC in the application produced by this translation. It
would expand to a C type variable α, but we cannot allow this, because that α would
be unbound! What we really want is that when α is instantiated with a concrete type τ ,
the positions inside language C where that type is needed receive τC .

We resolve this by making two changes to our system: first, we add a type �α�
(which may be read as “α suspended in C”) that allows an F type variable to appear
in a C type. The F type variable α needs to be translated, but the translation is delayed
until α is instantiated with a concrete type. We enforce this semantics in the definition
of type substitution: �α�[τ/α] = τC.

Second, we adjust the type translation to turn F type variables into suspended type
variables instead of C type variables. We call this modified version of the type transla-
tion the boundary type translation, and notate it by τ 〈C〉. Formally, the rule for type
variables in the compiler’s type translation is replaced by the rule α〈C〉 = �α� in
the boundary type translation. We only want to suspend free type variables, so when
we translate a type that contains bound variables, we need to restore the behavior of
the compiler’s type translation when we translate the binding position. We can do this
using a substitution, e.g., (∃α.τ)〈C〉 = ∃α.(τ〈C〉[α/�α�]). Thus the boundary type
translation preserves the binding structure of the type to which it is applied.

With these two changes, we can correct the example above by replacing the appear-
ance of αC with α〈C〉, and we get a sensible translation from C to F for values of type
(∀[α].(α)→ α)C.
CF Type Abstraction. Next, consider translating values of type ∀[α].(α)→ α from
F into C. Once again, the existing machinery is not quite sufficient. Here is a naive
attempt:

CF∀[α].(α)→ α(v) = pack〈unit,〈v, ()〉〉 as (∀[α].(α)→ α)〈C〉

where v = λ[α](z : unit, x:α).CFα(v [α] αFCx).

Verifying an Open Compiler Using Multi-language Semantics 139

τ ::= · · · | L〈τ 〉
t ::= · · · | τFC e
v ::= · · · | L〈τ〉FCv
E ::= · · · | τFC E

τ ::= · · · | �α	
t ::= · · · | CFτ e
v ::= · · ·
E ::= · · · | CFτE

τ ::= τ | τ
e ::= e | e
v ::= v | v
E ::= E | E

Δ ::= · | Δ,α | Δ,α
Γ ::= · | Γ, x : τ | Γ,x: τ

τ〈C〉 Boundary Type Translation

∀[α].(τ)→ τ ′〈C〉 = ∃β.〈
(
∀[α].(β, τ 〈C〉[α/�α])→ τ ′〈C〉[α/�α]

)
, β〉

α〈C〉 = �α	 unit〈C〉 = unit int〈C〉 = int ∃α.τ 〈C〉 = ∃α.(τ〈C〉[α/�α])
μα.τ 〈C〉 = μα.(τ〈C〉[α/�α]) 〈τ〉〈C〉 = 〈τ〈C〉〉 L〈τ 〉〈C〉 = τ

Type Substitution: �α	[τ/α] = τ 〈C〉

Δ;Γ � e : τ Include F and C rules, with environments replaced by Δ;Γ

Δ;Γ � e : τ 〈C〉

Δ;Γ � τFC e : τ
Δ;Γ � e : τ

Δ;Γ � CFτ e : τ〈C〉

CFτ (v) = v Value Translation CFunit(()) = () CFint(n) = n CFL〈τ〉(L〈τ〉FCv) = v

CF∀[α].(τ)→ τ ′
(v) = pack〈unit,〈v, ()〉〉 as (∀[α].(τ)→ τ ′)〈C〉

where v = λ[α](z : unit, x: τ〈C〉[α/�α]).CFτ ′[L〈α〉/α](v [L〈α〉] τ [L〈α〉/α]FCx)
CF∃α.τ (pack〈τ ′,v〉 as ∃α.τ) = pack〈τ ′〈C〉,v〉 as ∃α.τ 〈C〉 where CFτ [τ

′/α](v) = v

CFμα.τ (foldμα.τ v) = foldμα.τ 〈C〉v where CFτ [μα.τ/α](v) = v

CF〈τ1, . . . , τn〉(〈v1, . . . , vn〉) = 〈v1, . . . , vn〉 where CFτi(vi) = vi

τFC(v) = v Value Translation unitFC(()) = () intFC(n) = n L〈τ〉FC(v) = L〈τ〉FCv
∀[α].(τ)→ τ ′

FC(v) = λ[α](x : τ).τ
′
FC(unpack 〈β, y〉 = v in π1(y) [�α]π2(y), CFτ x)

∃α.τFC(pack〈τ ′,v〉 as ∃α.τ〈C〉) = pack〈L〈τ ′〉,v〉 as ∃α.τ where τ [L〈τ
′〉/α]FC(v) = v

μα.τFC(foldμα.τ 〈C〉 v) = foldμα.τ v where τ [μα.τ/α]FC(v) = v

〈τ1, . . . , τn〉FC(〈v1, . . . , vn〉) = 〈v1, . . . , vn〉 where τiFC(vi) = vi

e �−→ e′ Include F and C rules, replacing eval. contexts E, E with E.
CFτ (v) = v

E[CFτ v] �−→ E[v]

τFC(v) = v τ �= L〈τ 〉
E[τFCv] �−→ E[v]

Fig. 3. FC multi-language system (extends F and C from Figure 1)

This time, we have translated the binder for α into a C binder for α, but we are left
with free occurrences of α in the result! This is not a suitable translation, as we must
produce a closed value. Note that the boundary terms in the body of v expect to be
annotated with a type that translates to α.

To fix this problem, we introduce a lump type L〈τ 〉 that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type is the boundary term
L〈τ〉FCe, and the elimination form is CFL〈τ〉e. A pair of opposite boundaries at lump
type cancel, to yield the underlying C value. We extend the boundary type translation
by defining L〈τ 〉〈C〉 = τ .

Now the three free occurrences of α in v can be replaced with L〈α〉, yielding a
well-typed translation.

140 J.T. Perconti and A. Ahmed

Summary. With the additional tools of lumps, suspensions, and the boundary type trans-
lation, we have now developed everything needed for the FC multi-language system.
Figure 3 presents more of the details, including the complete value translations.

The syntax of FC simply combines the syntax of F with that of C, and adds bound-
aries, lumps, and suspensions. The type judgment combines the type rules for F and
C, but with the environments replaced by environments that can contain variables from
both languages. We also add rules to typecheck boundary terms.

The cases of the value translations we have not yet covered mostly proceed by struc-
tural recursion, but note that the cases for existential types need to make use of lumps
and suspensions (the suspensions are introduced by the boundary type translation) in
ways that are dual to the function cases.

The reduction relation combines the reduction rules from F and C and adds rules for
boundaries. The boundary reduction rules use the value translations to produce a value
in the other language.

τ ::= · · · | L〈τ 〉
t ::= · · · | τCA e

v ::= · · · | L〈τ〉CA v
E ::= · · · | τCA E

τ ::= · · · | �α	 | �α	
t ::= · · · | ACτe
v ::= · · ·
Et ::= · · · | ACτE

τ ::= · · · | τ
e ::= · · · | e
v ::= · · · | v
E ::= · · · | E

Δ ::= · · · | Δ,α
Γ ::= · · · | Γ, x : τ

τ 〈A〉 Boundary Type Translation

∀[α].(τ)→ τ ′〈A〉 = box∀[α].(τ 〈A〉[α/�α])→ τ ′〈A〉[α/�α]
α〈A〉 = �α	 . . . L〈τ 〉〈A〉 = τ �α	〈A〉 = �α	

Type Substitution: �α	[τ/α] = (τ 〈C〉)〈A〉 �α	[τ/α] = τ 〈A〉

Ψ;Δ;Γ � e : τ Include A rules and add Ψ to existing rules

Ψ;Δ;Γ � e :τ 〈A〉

Ψ;Δ;Γ � τCA e :τ

Ψ;Δ;Γ � e : τ

Ψ;Δ;Γ � ACτe : τ 〈A〉

ACτ (v,H) = (v,H′) Value Translation (selected cases) ACunit((),H) = ((),H)

AC∀[α].(τ)→ τ ′
(v,H) = (�, (H, � �→ h))

where h = λ[α](x : τ 〈A〉[α/�α]).ACτ ′[L〈α〉/α]v [L〈α〉] τ [L〈α〉/α]CA x

AC〈τ〉(〈v〉,H1) = (�, (Hn+1, � �→ 〈v〉)) where ACτi(vi,Hi) = (vi,Hi+1)

τCA(v,H) = (v,H′) Value Translation (selected cases) unitCA((),H) = ((),H)

∀[α].(τ)→ τ ′
CA(v,H) = (λ[α](x : τ).τ

′
CA(v [�α]ACτx),H)

〈τ〉CA(�,H1) = (〈v〉,Hn+1) where H1(�) = 〈v〉 and τiCA(vi,Hi) = (vi,Hi+1)

〈H | e〉 �−→ 〈H′ | e′〉 Lift FC rules to new config.; replace E with E

ACτ (v,H) = (v,H′)

〈H |E[ACτv]〉 �−→ 〈H′ |E[v]〉

τCA(v,H) = (v,H′) τ �= L〈τ 〉
〈H |E[τCA v]〉 �−→ 〈H′ |E[v]〉

Fig. 4. FCA multi-language system (extends Figures 1 and 3)

Verifying an Open Compiler Using Multi-language Semantics 141

6 C and A Interoperability

The extensions to FC for interoperability with A are given in Figure 4. The principles
discussed in the development of FC still apply, but here we need to handle the presence
of the heap. Specifically, since functions and tuples in A are contained in the heap,
the value translations need access to the program’s memory. Going from C to A, the
value translation may allocate new memory for functions and tuples; going from A to C
requires looking up the contents of locations and translating those contents to functions
or tuples in C. Thus, we pass the current memory as an argument to the translations,
and return a memory that may have had additional locations allocated. Memory cells
allocated by boundaries are always immutable.

Aside from this change, the extension for the new language mostly follows what we
did for FC: we augment the syntax with boundaries between C and A, a lump type L〈τ 〉
for opaquely embeddingA values into C, and suspensions of type variables into A. Note
that we need the boundary type translation from C to A to handle both C type variables
α and suspended F type variables �α�. Thus A has both �α� and �α� as suspension
types. The boundary type translation τ 〈A〉 works similarly to τ 〈C〉. The figure shows
the function case and the cases involving lumps and suspensions. The type judgment
merges the A type rules with the FC type rules, but where the latter are modified to
add the extra environment Ψ, and adds type rules for boundaries. Finally, the reduction
relation for FCA lifts the FC reductions to use the configuration from A, with a program
heap. We also add the reduction rules from A and a pair of boundary reduction rules
that utilize the value translations.

7 Compiler Correctness

As mentioned in §1, we state compiler correctness in terms of FCA contextual equiva-
lence. Below, we formally define contextual equivalence for FCA components and then
present our compiler correctness theorems. We discuss how to prove these theorems in
§9 and give a longer discussion and the full proofs in the technical report [9].

7.1 FCA Contextual Equivalence

A general context C is an FCA component with a hole. A component e can be plugged
into the context only if it is from the same language as the hole. Since contexts can
contain boundaries, e need not be from the same language as the outermost layer of C.
The syntax of general contexts is given in Figure 5 (top). Contexts for F and C forms are
standard. In A, we need contexts to be able to have their hole in either the term part of a
component, or in the body of a function contained in the heap fragment. So in addition
to contexts C that produce components, we have context forms Ct and CH that produce
terms and heap fragments, respectively.

When plugging an A component (t,H) into a context C, the heap fragment H is
placed at the innermost component-level layer of C—that is, at the language boundary
closest to the hole—and merged with the heap fragment already in that position. To
formalize this, the A portion of the definition of plugging a component into a context is
given in Figure 5 (middle). The definition of plugging for F and C contexts is standard.

142 J.T. Perconti and A. Ahmed

C ::= [·] | C p t | · · · | λ[α](x : τ).C | · · · | τFC C
C ::= [·] | · · · | λ[α](x : τ).C | · · · | CFτC | τCAC
C ::= (Ct,H) | (t,CH)
Ct ::= [·] | · · · | ACτC CH ::= CH, � �→ h | H, � �→ λ[α](x : τ).Ct

C ::= C | C | C

C[e] Context Plugging (A cases shown)

(Ct,H)[e] =

{
(Ct[t], (H,H′)) e = (t,H′) ∧ Ct contains no language boundaries

(Ct[e],H) otherwise

(t,CH)[e] =

{
(t, (CH[t

′],H′)) e = (t′,H′) ∧ CH contains no language boundaries

(t,CH[e]) otherwise

[·][t] = t (Ct p t)[e] = (Ct[e]) p t · · ·

(CH, � �→ h)[e] = (CH[e]), � �→ h

(H, � �→ λ[α](x : τ).Ct)[e] = H, � �→ λ[α](x : τ).(Ct[e])

� C : (Ψ;Δ;Γ � τ) � (Ψ′;Δ′;Γ ′ � τ ′) Context Typing (omitted)

Contextual Equivalence

Ψ;Δ;Γ � e1 ≈ctx e2 : τ
def
= Ψ;Δ;Γ � e1 : τ ∧ Ψ;Δ;Γ � e2 : τ ∧
∀C,H,Ψ′, τ ′. � C : (Ψ;Δ;Γ � τ) � (Ψ′; ·; · � τ ′) ∧ � H :Ψ′

=⇒ (〈H | C[e1]〉↓ ⇐⇒ 〈H | C[e2]〉↓)

Fig. 5. General Contexts & Contextual Equivalence for FCA

Given this notion of general contexts, contextual equivalence for FCA is standard
(see Figure 5, bottom). It says that two components e1 and e2 are contextually equiva-
lent under environments Ψ, Δ, Γ and at type τ if the following hold: First, both com-
ponents must typecheck under Ψ, Δ, Γ at type τ . Second, if C is a context that expects
to be given a component that typechecks under Ψ, Δ, Γ at type τ , and produces a re-
sulting program that is closed but expects to be run with a heap of type Ψ′, then C[e1]
and C[e2] have the same termination behavior when we run them with any initial heap
H that has type Ψ′.

7.2 Compiler Correctness

We can now state our main result: compiler-correctness theorems for both passes of our
compiler.

Theorem 1 (Closure Conversion is Semantics-Preserving). If α; x : τ ′ � e : τ � e,
then ·;α; x : τ ′ � e ≈ctx τFC(e[�α�/α] [CFτ ′

x/x]) : τ .

Theorem 2 (Allocation is Semantics-Preserving). If α;x: τ ′ � e : τ � (t,H :Ψ),

then ·;α;x: τ ′ � e ≈ctx τCA(t[�α�/α] [ACτ ′
x/x],H) : τ .

The formal theorems are essentially as we described our compiler correctness re-
sults in §1, with only one additional subtlety: we need to perform a substitution so that

Verifying an Open Compiler Using Multi-language Semantics 143

the free variables of the original component match those of the compiled component.
Recall that the compiler turns free type and term variables α and x into type and term
variables α and x from the next language, whereas FCA needs the binding structure of
components to be preserved, including free variables being in the language prescribed
by the type environments Δ and Γ . To get the free variables of the two components
back into sync, we substitute suspended type variables for translated type variables, and
we substitute boundary terms for translated term variables. Note that we do not need to
perform a substitution in the heap fragment produced by the allocation pass, since heap
values must be closed anyway.

We could equivalently have stated these theorems with the substitution on the other
side, and the environments correspondingly translated; e.g.

·;αC; x : τ ′C � e[L〈α〉/α] [τ̂ ′FCx/x] ≈ctx τ̂FC e : τ̂ ,
where τ̂ = τ [L〈α〉/α] and τ̂ ′ = τ ′[L〈α〉/α].

It also does not matter which side the boundary term is placed on: boundary cancel-
lation lemmas allow us to prove as a corollary that, for example,

·;α; x : τ � CFτ e ≈ctx e[�α	/α] [CFτ ′
x/x] : τ〈C〉.

Since we want to ensure that type variables in the environment remain tied to their
free occurrences in the result type, this version of the theorem uses the boundary type
translation τ 〈C〉 for the result type (instead of the compiler’s type translation τC).

Contextual equivalence is transitive, so we can easily chain these theorems together
to prove correctness for the full compiler:

Corollary 1 (Compiler Correctness). If α; x : τ ′ � e : τ � e � e, then
·;α; x : τ ′ � e ≈ctx τFCA(e[�α	/α][ACFτ ′

x/x]) : τ.

8 An Example

We can use our compiler correctness theorem to make statements about linking with
arbitraryA components, as long as they have translation type. In this section, we present
an example showing how our framework allows linking both with A components that
cannot be expressed in F, and with those that can. To keep our example concise, we use
variable substitution as a simple notion of linking.

Consider the component
e = (λg : unit→int. (g ()) ∗ (g ())) x,

where ·; ·; (x : unit→ int) � e : int. In F alone, only divergent or constant functions can
have type unit→ int, but if we are compiling to A before linking, we could be given a
component that makes use of A’s mutable references.

Putting e through the first compiler pass, we get a C component that contains several
administrative reductions. The complete result of compilation is shown in the technical
report, but for readability, we pretend that e compiles to
e = (λg :∃α.〈(α,unit)→int, α〉.(unpack 〈β, z〉 = g in (π1(z) π2(z) ()))

∗ (unpack 〈β, z〉 = g in (π1(z) π2(z) ()))) x,

which is equivalent to the actual result of compilation, and has exactly the same function
body as the closure produced by the compiler.

144 J.T. Perconti and A. Ahmed

The second pass brings us to an A component e = (t,H), where t = � x and
H = � �→ λg :∃α.box 〈box (α, unit) → int, α〉.

((unpack 〈β, z〉 = g in ((read[1] z) (read[2] z) ())) ∗
(unpack 〈β, z〉 = g in ((read[1] z) (read[2] z) ()))).

By compiler correctness, we know that
·; ·; (x : unit→ int) � e ≈ctx intFCA(e[ACFunit → intx/x]) : int.

Equivalently,
·; ·; (x : τ) � ACF int(e[unit → intFCA x/x]) ≈ctx e : int,

where τ = unit→int〈C〉〈A〉 = ∃α.box 〈box (α, unit) → int, α〉.
Suppose we want to instantiate x with the following A component, which creates a

function that uses a mutable reference to return the number of times it has been called:

e′ = (pack〈ref int,balloc 〈�, ralloc 〈0〉〉〉 as τ,
� 	→ λ(x : ref int, z : unit). let y = read[1] x in let z = write x [1] ← y + 1 in y + 1).

We would then have
·; ·; · � ACF int(e[unit → intFCA e′/x]) ≈ctx e[e′/x] : int,

The right-hand side of this equivalence is exactly the pure-A program that we would ul-
timately run, and the left-hand side is an FCA program that models it. Note that on either
side of the equation, the function exported by e′ will be applied to the unit value twice,
returning 1 the first time and 2 the second time. An F function could not exhibit this
behavior. This demonstrates how our framework allows for linking with components
that are not expressible in F.

If we want instead to link with a different A component ê that was compiled from an
F component ê, we can still make the statement

·; ·; · � ACF int(e[unit → intFCA ê/x]) ≈ctx e[ê/x] : int,

but we can also simplify this statement using our additional knowledge of ê. Our com-
piler correctness theorem tells us that

·; ·; · � ACFunit → int ê ≈ctx ê :τ .

From this, we can infer that
·; ·; · � ACF int(e[unit→intFCA(ACFunit→int ê)/x]) ≈ctx e[ê/x] : int.

Applying boundary cancellation yields
·; ·; · � ACF int(e[ê/x]) ≈ctx e[ê/x] : int.

Now we are essentially equating the pure-A program with a pure-F program, since the
only multi-language element in this statement is the integer boundary at the outermost
level, which merely converts an n to n. This demonstrates that when we do have source-
language equivalents for all our target-level components, our framework allows us to
model target-level linking with source-level linking.

9 Proving Compiler Correctness

To prove the compiler correctness theorem, we design a step-indexed Kripke logical
relation as a sound and complete model of contextual equivalence in FCA. Our logical
relation extends that of Dreyer et al. [15] with the ability to handle multi-language type

Verifying an Open Compiler Using Multi-language Semantics 145

abstraction. We give an overview of the logical relation and a more detailed discussion
of its novel features in the technical report [9]. In this section, we briefly discuss the
high-level ideas behind our model’s novel elements.

A logical-relations model provides a relational value interpretation of each type τ .
This relation, which we denote V�τ�, specifies when two values of type τ should be
considered related or equivalent. When τ has free type variables, an environment ρ
holds arbitrary relational interpretations for those abstract types. The relations in ρ
capture the invariants of different instantiations of polymorphic values, which allows us
to prove parametricity properties.

The interpretation V�α�ρ is defined by just looking up ρ(α). To prove important
properties of V�τ�ρ for all types, we must ensure those properties hold in the α case
by constraining the relations we can put into ρ to require these properties to hold up-
front. Interpretations that satisfy these properties are called candidates or admissible
relations.

In our multi-language setting, the two key properties we need to require for admis-
sibility are boundary cancellation and the bridge lemma. The bridge lemma states that,
given a pair of values v1 and v2 related according to the interpretation V�τ�ρ, the CFτ

translations of those values must be related according to V�τ 〈C〉�ρ. Similarly, given val-
ues v1 and v2 related according to V�τ 〈C〉�ρ, their τFC translations must be related
according to V�τ�ρ. (We also require the analogous properties for the second pass.)

The type translation of α is �α�, so in order for the bridge lemma to hold at type α,
we need a suitable definition of V��α��ρ, which necessarily will depend on ρ(α). One
naı̈ve definition we tried is the set of translations of values from ρ(α), roughly:

V��α	�ρ = {(v1,v2) | (v1, v2) ∈ ρ(α) ∧ CF(vi) = vi}.
While this definition does let us prove the bridge lemma at type α, it does not satisfy
boundary cancellation: if v1 and v2 are related according to this definition of V��α��ρ,
it is not necessarily the case that CA(AC(v1)) and v2 are related.

All the ways we tried to define V��α��ρ by a simple formula in terms of ρ(α) failed
for similar reasons. Instead of giving a uniform definition, we took the viewpoint that
if the properties of ρ(α) must be given a priori, then the particular relations with those
properties that instantiate V�α�ρ and V��α��ρ should be given a priori as well. Specif-
ically, in our model, an interpretation ρ(α) is not just given by a relation on F values,
but by a triple containing the relation on F values, a relation on C values to serve as its
“translation” and instantiateV��α��ρ, and a relation onA values to instantiateV��α��ρ.
Similarly, an interpretation ρ(α) is given by a pair containing a C-level relation and an
A-level relation. For ρ(α), since A is the target language, only one relation is needed.

This strategy moves the burden for defining the “translations” of candidate relations
to the places in our proof development where individual candidates are needed. But in
all these places, there is some specific information available about the relation, so it was
not difficult to construct them.

10 Discussion and Future Work

Software is composed from components written in different languages because different
languages are suited to different tasks. We have provided a novel methodology for ver-
ifying open, multi-pass compilers, one that yields a stronger theorem than any existing

146 J.T. Perconti and A. Ahmed

work, allowing target-level linking with components of arbitrary provenance regardless
of whether the component can be expressed in the source language compiled by the
verified compiler.

Adding Compiler Passes. Adding more intermediate languages to our compiler pipeline
requires extending the multi-language model with new boundary forms and translation
rules, and extending the logical relation with new clauses. Our aim is that the proof
structure should be as modular as possible, so that the major lemmas and the correct-
ness proof for one compiler pass can be completed independently of the rest of the
pipeline. Presently, since our admissible relations design requires relations from mul-
tiple languages, we have a small number of places where a proof about one pass is
affected by the other languages and passes. We hope to improve our proof engineering
so that proofs for existing passes are unaffected when the compiler pipeline is changed.

Compiling to Assembly. We have extended our compiler with a code-generation pass
that translates A components to a stack-based typed assembly language, T. The latter
is similar to Morrisett et al.’s stack-based TAL [6] but with a type system that tracks
more information. Informally, the T type system allows us to track calls and returns of
semantic “functions” that may span multiple basic blocks, and to determine the “return
type” of such functions. With this information, we are able to give a formal definition of
contextual equivalence for T that makes distinctions about assembly at an appropriate
level of granularity. That is, we relate assembly language components comprised of any
number of basic blocks, rather than relating individual basic blocks. An equivalence
relation based on individual blocks would be too fine grained; for instance, it would
be unable to relate two components with an unequal number of basic blocks that may
have been produced by compiling two equivalent source terms. We are working on the
proofs for this pass and will report on it in a future paper.

Mutable References. Consider adding mutable references to F and C. For the first com-
piler pass, we would extend the type translation with (ref τ)C = ref τC. When defining
interoperability at type ref τ , it doesn’t make sense to convert an F location into a fresh
C location � (and vice versa) since it would lead to duplication of mutable cells in the
interoperating languages and these would be impossible to keep in sync. One solution is
to treat a wrapped location (e.g., ref τFC�) as a value form. Operations on these wrapped
locations can be performed by reduction rules such as these:

!(ref τFC�) �−→ τFC(!�) (ref τFC�) := v �−→ unitFC(� := CFτv),
where !v is a dereference and v := v′ is an assignment. Passing references between C
and A can be done analogously. While these interoperability semantics are straightfor-
ward, we expect to find nontrivial challenges in designing a logical relation to properly
handle the wrapped-location value forms they introduce.

Supporting Realistic Interoperability. We are particularly interested in supporting
target-level interoperability between a language with parametric polymorphism such
as ML and languages without type abstraction such as Scheme or C. For instance, given
a generic tree library compiled from ML, we want to allow code compiled from Scheme
or C to be able to use the library but ensure that such use cannot invalidate ML’s para-
metricity guarantees by inspecting values that have abstract type on the ML side. In this
paper, we have shown how to preserve ML’s parametricity guarantees part-way through
the compiler. Going forward we wish to develop a gradually typed assembly language

Verifying an Open Compiler Using Multi-language Semantics 147

that, following Matthews and Ahmed [16], uses dynamic sealing on the untyped side to
enforce parametricity guarantees provided by type abstraction on the typed side.

11 Related Work

The literature on compiler verification spans over four decades but is mostly limited
to whole-program compilation; we refer the reader to the bibliography by Dave [17]
for compilers for first-order languages, and to Chlipala [18] for compilers for higher-
order functional languages. We have already discussed the existing work [10,12] on
compositional compiler correctness in §2. Here we focus on other closely related work.

Dreyer et al. have recently been working on Relational Transition Systems (RTS’s) [19]
that may provide an alternative cross-language specification technique that is designed
to make it possible to prove transitivity. Regardless, it is still not easy to do: see their
technical report [20] where they prove transitivity for their single-language RTS system
for an idealized ML. It is a non-trivial task to do this for multiple cross-language RTS’s.
Additionally, even if the RTS approach proves effective for verifying a multi-pass com-
piler, it still does not address the problem of linking with a component e′T for which there
is no related source-level e′S .

The design of our multi-language system builds on that of Ahmed and Blume [8],
who developed a boundary-based multi-language system embedding the source (STLC)
and target (System F) of CPS translation. Ahmed and Blume did not have type abstrac-
tion in the source language, which meant that they did not have to make use of lumps
or suspensions, nor design a logical relation to handle these. Our semantics preserva-
tion proof is analogous to theirs. However, since they were interested in fully abstract
CPS translation, they designed their type translation to disallow linking compiled code
with target components whose behavior cannot be expressed at the source level. The
additional work that they do to prove full abstraction provides a roadmap for how to
extend our methodology to prove full abstraction in a setting where the type translation
enforces it.

Acknowledgements. We would like to thank Nick Benton, whose views on compo-
sitional compiler correctness have been an inspiration to us. In particular, our thinking
has been influenced by Benton and Hur’s introduction [11], which eloquently lays out
desirable features of a compiler correctness specification. We would also like to thank
Aaron Turon for helpful feedback on an earlier version of this paper. This research was
supported by the National Science Foundation (grant CCF-1203008).

References

1. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In: POPL (2006)

2. Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43(4), 363–446
(2009)

3. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP 2010.
LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010)

148 J.T. Perconti and A. Ahmed

4. Myreen, M.O.: Verified just-in-time compiler on x86. In: POPL 2010 (2010)
5. Sevcik, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: Relaxed-memory concur-

rency and verified compilation. In: POPL 2011 (2011)
6. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly language. J.

Functional Programming 12(1), 43–88 (2002)
7. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. In: POPL

2007 (2007)
8. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-language se-

mantics. In: ICFP 2011 (2011)
9. Perconti, J.T., Ahmed, A.: Verifying an open compiler using multi-language semantics (tech-

nical report) (January 2014), http://ccs.neu.edu/home/amal/voc/
10. Benton, N., Hur, C.K.: Biorthogonality, step-indexing and compiler correctness. In: ICFP

2009 (2009)
11. Benton, N., Hur, C.K.: Realizability and compositional compiler correctness for a polymor-

phic language. Technical Report MSR-TR-2010-62, Microsoft Research (April 2010)
12. Hur, C.K., Dreyer, D.: A Kripke logical relation between ML and assembly. In: POPL 2011

(2011)
13. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly language.

ACM TOPLAS 21(3), 527–568 (1999)
14. Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: POPL 1996 (1996)
15. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control effects on

local relational reasoning. J. Functional Programming 22(4&5), 477–528 (2012)
16. Matthews, J., Ahmed, A.: Parametric polymorphism through run-time sealing, or, theorems

for low, low prices! In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 16–31.
Springer, Heidelberg (2008)

17. Dave, M.A.: Compiler verification: A bibliography. ACM SIGSOFT Software Engineering
Notes 28(6) (2003)

18. Chlipala, A.: A verified compiler for an impure functional language. In: POPL 2010 (2010)
19. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and Kripke

logical relations. In: POPL 2012 (2012)
20. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and Kripke

logical relations. Technical report, Max Planck Institute for Software Systems (January 2012)

http://ccs.neu.edu/home/amal/voc/

Impredicative Concurrent Abstract Predicates

Kasper Svendsen and Lars Birkedal

Aarhus University
{ksvendsen,birkedal}@cs.au.dk

Abstract. We present impredicative concurrent abstract predicates –
iCAP – a program logic for modular reasoning about concurrent, higher-
order, reentrant, imperative code. Building on earlier work, iCAP uses
protocols to reason about shared mutable state. A key novel feature of
iCAP is the ability to define impredicative protocols; protocols that are
parameterized on arbitrary predicates, including predicates that them-
selves refer to protocols. We demonstrate the utility of impredicative
protocols through a series of examples, including the specification and
verification, in the logic, of a spin-lock, a reentrant event loop, and
a concurrent bag implemented using cooperation, against modular
specifications.

1 Introduction

It is well-known that modular specification and verification of concurrent higher-
order imperative programs is very challenging. Recently good progress has been
made on reasoning about subsets of these language features. For instance, con-
current abstract predicates [8] has proved useful for reasoning about shared
mutable data structures in a concurrent setting and state transition systems [10]
have proved useful for reasoning about higher-order functions and shared muta-
ble data structures and, very recently, also concurrency [23].

Internal and External Sharing. The logics referred to above extend rely-
guarantee versions of separation logic [24,11] with protocols governing access to
shared mutable state. These logics are sufficiently expressive to verify implemen-
tations of abstract data structures that use sharing internally against abstract
specifications that hide this internal sharing. However, in practice programmers
often also use shared mutable data structures to facilitate external sharing –
the sharing of a mutable data structure through another shared mutable data
structure. A lock is the canonical example of a data structure used to facilitate
external sharing. In higher-order separation logic we can easily express specifi-
cations that support reasoning about external sharing, by parameterizing our
specifications with assertions that describe the external resources shared through
the data structure. However, without imposing severe predicativity restrictions
(as in our earlier [21]), verifying implementations against such higher-order spec-
ifications in the logic is currently impossible!

To illustrate, consider a simple lock. We can specify a lock in higher-order sep-
aration logic by parameterizing our lock specification with a resource invariant

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 149–168, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

150 K. Svendsen and L. Birkedal

R that describes the resources protected by the lock (the externally shared re-
sources):

{R} new Lock() {isLock(R, ret)}
{isLock(R, x)} x.Acquire() {locked(R, x) ∗ R}

{locked(R, x) ∗ R} x.Release() {isLock(R, x)}
isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x)

Here isLock and locked are abstract predicates; isLock(R, x) expresses that x is a
lock protecting the resource invariant R and locked(R, x) expresses that the lock
x is indeed locked. Acquiring the lock grants ownership of R, while releasing the
lock requires the client to relinquish ownership of R. Since the resource invariant
R is universally quantified, this is a very strong specification; in particular, the
client is free to instantiate R with any assertion, including assertions about other
shared resources or even the lock itself. In Section 2.2 we will see that resource
invariants that refer to the lock itself are useful for reasoning about reentrancy.

There has been some previous work on logics for languages with built-in locks
[12,14]. In [14] the built-in locks were shown to satisfy a similar higher-order
specification, as part of the logic’s soundness proof. However, to reason about
libraries in general (not just built-in locks), we, of course, need to able to verify
that implementations satisfy such specifications in the logic.

Our first contribution is a new program logic, impredicative Concurrent Ab-
stract Predicates or iCAP, that is sufficiently expressive to support modular
reasoning about both internal and external sharing. It is the first logic that can
verify implementations of synchronization primitives, such as locks, against such
higher-order specifications in the logic.

Layered and Recursive Abstractions. One of the main objectives of iCAP
is to support modular reasoning about libraries consisting of concurrent, higher-
order, reentrant, imperative code. In iCAP we have focused on two types of
modularity that are both important in programming practice. The first type is
simply the ability to build layers of abstractions; for instance, we want to be
able to reason about a hashtable library implemented using a linked list library
through an abstract linked list specification and hide this internal use of the
linked list abstraction in the abstract hashtable specification. The second type
of modularity is more challenging, namely the ability to build recursive abstrac-
tions; for instance, we want to be able to verify reentrant libraries against an
abstract specification that allows clients to register callbacks that can themselves
use the abstract library specification to reason about calls into the library.

To illustrate the problem of modular reasoning about reentrant libraries, con-
sider an event loop library satisfying the interface given below.1

1 The first line declares a delegate type (a type-safe function pointer type) by the name
handler for delegates that do not take any arguments and do not return anything.

Impredicative Concurrent Abstract Predicates 151

public delegate void handler();

interface IEventLoop {
void loop();
void signal();
void when(handler f);

}

This library allows clients to emit an event using the signal method, to register
an event handler using the when method and start the event loop using the loop
method. Crucially, this library explicitly allows event handlers to emit events
and thereby schedule themselves for execution once again! We have simplified
this example to focus on the main difficulty introduced by reentrancy – namely
that clients can tie Landin’s knot through the library – however, this pattern
is ubiquitous in the real world. For instance, event-driven code is ubiquitous
in GUI applications and high-performance network applications as a way of
implementing asynchronous I/O [1,18].

To supportmodular reasoning about such examples and in particular the event
loop, we need a logic that is sufficiently expressive to (1) define an abstract event
loop specification that allows clients to register callbacks that emit events and
reason about these callbacks using the same abstract specification and (2) allow
implementors to verify an implementation of the event loop against the abstract
event loop specification.

In Section 2.2 we explain how to verify an implementation against such an
abstract specification, by defining the memory footprint of the event loop im-
plementation recursively. In iCAP we achieve this using guarded recursion. One
of the implementations we consider uses the lock module and thus, as we shall
see, the recursively defined predicate involves the abstract isLock predicate. To
the best of our knowledge, iCAP is the first program logic that supports such
modular reasoning about layered and recursive abstractions, and a key techni-
cal contribution of our work is the model used to show the soundness of this
expressive logic, in particular, the ability to define predicates recursively across
abstraction boundaries.

Fine-Grained Concurrency. Fine-grained concurrent ADTs allow multiple
threads to interleave memory operations on the underlying data representation,
with the goal of reducing critical sections as much as possible, often down to basic
compare-and-swap operations. Sophisticated fine-grained concurrent ADTs also
employ cooperation [23] among threads and in particular the technique of helping,
where one thread may help another complete its operation [13].

Conceptually, separation logic achieves modular reasoning about shared mu-
table state through the notion of resources that describe information about some
part of the state and assert certain rights to modify this part of the state. To sup-
port modular reasoning about ADTs we need abstract specifications that allow
clients to define high-level ADT resources with a notion of rights expressed in
terms of the operations provided by the ADT rather than rights to modify the
underlying data representation. Previous CAP-based techniques for reasoning

152 K. Svendsen and L. Birkedal

about fine-grained concurrent data structures have either not scaled to handle
implementations that employed helping [21], or have verified implementations
with helping against non-modular specifications [8] that imposed a fixed notion
of rights – choosen by the module implementor – on clients.

In iCAP, using impredicative protocols, we can verify fine-grained concurrent
ADTs implemented with helping againstmodular specifications that allow clients
to define high-level ADT resources. In Section 2.3 we present an example to show
how this is done.

Details and proofs can be found in the accompanying appendix and technical
report available at:

https://bitbucket.org/logsem/public/wiki/icap

1.1 Summary of Contributions

In summary, our contributions include the design of a new sound program logic,
iCAP, for modular reasoning about concurrent, higher-order, reentrant, imper-
ative programs. In particular, iCAP supports modular reasoning about internal
and external sharing, layered and recursive abstractions, and fine-grained coop-
erative implementations of concurrent data structures.

iCAP’s expressiveness derives from the fact that it is a higher-order logic sup-
porting guarded recursion and impredicative protocols. The presence of these
features means that soundness of iCAP is non-trivial. Thus a key technical con-
tribution of our work is our soundness proof of iCAP, which uses a novel model
construction that we explain in Section 3.

2 Examples

2.1 Internal and External Sharing – A Lock

Following concurrent separation logic and its descendants [16,12,14], assertions in
iCAP describe resources that may potentially be shared between several threads
according to some protocol. A key feature of iCAP is that it supports full higher-
order quantification over assertions in specifications. This means that we can
give the following general abstract specification for a lock, which we explained
informally in the introduction.

∃isLock, locked : Prop× Val→ Prop. ∀R : Prop. stable(R) ⇒
{R}new Lock(−) {ret. isLock(R, ret)}

∧ {isLock(R, x)}x.Acquire(−) {locked(R, x) ∗ R}
∧ {locked(R, x) ∗ R}x.Release(−) {ret. emp}
∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))

∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

In this formal specification Prop is the type of iCAP assertions, which includes
assertions about shared resources. The specification thus explicitly requires the

Impredicative Concurrent Abstract Predicates 153

resource invariant R to be stable (invariant under any changes to the state
the environment is permitted to make). The existentially quantified predicates
isLock and locked are used to support modular reasoning about internal shar-
ing, whereas the universally quantified predicate R is used to support modular
reasoning about external sharing.

This specification asserts the existence of a lock representation predicate that
is parametric in the resource invariant R. This allows us to use the lock repre-
sentation predicate itself when defining resource invariants and thus to define
recursive resource invariants. Had we simply asserted that for each resource in-
variant R, there exists a non-parametric lock representation predicate isLockR,
this would not be possible! As we will see in Section 2.2, the above third-order
lock specification and the ability to define recursive resource invariants is critical
for reasoning about the reentrancy of a multi-threaded event loop.

To verify an implementation against this specification we have to provide con-
crete instantiations for the parametric isLock and locked predicates and prove
that the implementation satisfies the specification with these concrete instantia-
tions. Since this specification explicitly allows clients to define recursive resource
invariants, most of the difficulty in verifying an implementation boils down to
defining the parametric isLock and locked predicates. In iCAP this is trivial using
impredicative protocols.

A Spin-Lock. The implementation we have in mind is a simple spin-lock; it
maintains a single boolean field, locked, which is true if and only if the lock is
currently held. When the lock is unlocked, the lock owns the resource invariant
R. Once the lock has been locked, only the exclusive owner of the locked resource
is allowed to unlock the lock! We can express this protocol formally using iCAP.

iCAP extends separation logic with shared regions. Resources in shared re-
gions are — as the name implies — shared between all clients. Upon allocation
of a new shared region, we can pick a protocol of our choice, describing what
resources the shared region must own. A protocol consists of a labelled transition
system, labelled with action identifiers, and an assertion for each abstract state
in the transition system that describes the resources the shared region must own
in the given state. The transitions then specify how the abstract states of the
region are allowed to evolve and the labels how different clients are allowed to
evolve the states. In particular, for a client to change the state from s1 to s2,
the client must own permissions to labels along a path from s1 to s2.

In the case of the spin-lock, for each instance of the spin-lock, we introduce
a new shared region that governs that spin-lock and the resources protected by
that lock. The labelled transition system that governs a spin-lock is very simple:
it contains two abstract states — locked (L) and unlocked (U) — and the two
obvious transitions:

LU

Rel

Acq

154 K. Svendsen and L. Birkedal

The next step is to define an assertion for each abstract state describing the
resources owned by the spin-lock region (conceptually, the lock) in the given
state. This is mostly straightforward. When the lock is locked, the lock owns the
locked field, which contains true. However, when the lock is unlocked, the lock
owns both the locked field, which contains false, and the resource invariant R:

I(n,R, x)(L)
def
= x.locked �→ true I(n,R, x)(U)

def
= x.locked �→ false ∗ R ∗ [Rel]n1

To capture that only the owner of the locked resource is allowed to unlock
the lock, we also let the lock take full ownership of the Rel transition for the
given region, when the lock is unlocked. Formally this is expressed using an
action assertion, [α]nπ . Here π is a fraction between 0 and 1, and [α]nπ asserts
π-ownership of the α action on region n. When the client locks the lock, the
client can thus take ownership of both the resource invariant R and the exclusive
(1) permission to transition the shared region back into the unlocked state. Note
that this spin-lock protocol is parameterized over an arbitrary resource invariant
R provided by the client and is thus an impredicative protocol.

With these ingredients we are now ready to instantiate isLock. The isLock
predicate asserts that there exists a shared region governed by the above spin-
lock protocol, that is either in the unlocked or locked state; and furthermore, it
asserts non-exclusive permission to the Acq action. Formally, this is expressed
as follows (where Tlock refers to the labelled transition system above):

isLock(R, x)
def
= ∃n : RId. [Acq]n ∗ rintr(I(n,R, x), n) ∗ region({L,U}, Tlock, n)

The region assertion, region(X,T, n), asserts that there exists a region with
region identifier n, whose labelled transition system is T and that the current
abstract state of region n is a member of the setX . The labelled transition system
T is represented as a function from action identifiers to relations on abstract
states; see the appendix for details. To specify the spin-lock protocol we also need
to specify what resources the spin-lock must own in the different abstract states.
This is expressed using the region interpretation assertion, rintr(I, n), which takes
as argument a predicate I, indexed by the abstract states of the given region.
We use [α]n as shorthand for ∃π. [α]nπ to express non-exclusive ownership of an
action α.

This illustrates the use of iCAP’s impredicative protocols for defining the con-
crete instantion of isLock for a spin-lock. Now that isLock has been defined, the
actual verification of the spin-lock implementation with this concrete instantia-
tion follows the structure of the original CAP proof of a spin-lock [8]. One crucial
difference is that iCAP features enough proof rules to carry out the proof in the
logic, including stability proofs. In the appendix, we show in detail how to verify
the spin-lock implementation with this concrete instantiation using the formal
iCAP proof system.

Compared to earlier work on concurrent abstract predicates [8,9,21], in iCAP
we simplify the description of protocols, by describing them using state transi-
tion systems. This presentation is inspired by earlier work by Dreyer et. al. on
protocols for reasoning about local state in higher-order programs [10]. We be-
lieve this description of protocols is a useful conceptual simplification compared

Impredicative Concurrent Abstract Predicates 155

to the original CAP presentation [8], in particular since protocols can now eas-
ily be drawn. However, we stress that this presentation also simplifies stability
proofs in the program logic, since they only have to refer to abstract states in
the transition system. The iCAP stability obligations for the verification of the
spin-lock are thus significantly easier to prove that the corresponding stability
obligations from the original spin-lock CAP proof.

2.2 Layered and Recursive Abstractions – An Event Loop

The previous example illustrated how iCAP’s impredicative protocols allow mod-
ular reasoning about internal and external sharing. In this section we illustrate
how higher-order logic and guarded recursion allow modular reasoning about
layered and recursive abstractions.

A Single-Threaded Event Loop. Recall the reentrant event loop library from
the introduction. We can express an abstract event loop specification for single-
threaded event loops that explicitly allows clients to reason about event handlers
using the same event loop specification as follows:

∃eloop : Val→ Prop.

{emp}new EventLoop(−) {ret. eloop(ret)}
∧ {eloop(x)}x.loop(−) {eloop(x)}
∧ {eloop(x)}x.signal(−) {eloop(x)}
∧ {eloop(x) ∗ f �→ {eloop(x)}{eloop(x)}}x.when(f) {eloop(x)}

This specification asserts the existence of an abstract event loop resource, eloop,
which is created by creating a new event loop instance and preserved by all event
loop methods. The when method for registering event handlers requires that the
given event handler satisfies the nested Hoare triple

f �→ {eloop(x)}{eloop(x)},

thereby explicitly allowing event handlers to use the abstract eloop resource to
emit events. In a sense this is a very weak specification, in that it only allows
us to reason about memory safety of our clients. However, in the presence of
reentrancy, verifying an implementation against this simplified specification is
highly non-trivial and beyond almost all current program logics.2

To define a concrete eloop resource, imagine a concrete implementation that
maintains a set of pending events and a set of registered handlers, as sketched
below.

class EventLoop : IEventLoop {
private Set<event> signals;
private Set<handler> handlers;
...

}
2 The exception being our own HOCAP [21], which, however, had other severe restric-
tions compared to iCAP.

156 K. Svendsen and L. Birkedal

To allow the event loop to call registered event handlers, the eloop resource must
assert that the registered event handlers satisfy some specification. To allow event
handlers to emit events, this specification must itself refer to the eloop resource.
In iCAP we can express this recursion by guarding the recursive occurence of
the eloop resource and defining eloop by guarded recursion (note the use of the
“later” (�) connective, which serves as a guard):

eloop = fix(λeloop : Val→ Prop. λx : Val. ∃y, z : Val. ∃A,B : Pfin(Val).

x.signals �→ y ∗ x.handlers �→ z ∗ set(y, A) ∗ set(z, B) ∗
∀b ∈ B. � b �→ {eloop(x)}{eloop(x)})

This event loop resource asserts exclusive ownership of the signals field, the
handlers field, the set of pending events, the set of registered handlers, and that
all registered handlers satisfy the specification f �→ {eloop(x)}{eloop(x)}, one
step later.

In our operational semantics each atomic statement takes one step to execute
and executing a method or delegate call executes one atomic statement before the
body of the method or delegate is executed. Hence, to verify a call to a method
or delegate, it suffices to know the specification of the method or delegate body,
one step later. We can thus verify calls from the event loop to the registered
event handlers using the guarded eloop resource defined above.

Note that eloop is not definable by induction, as the recursive argument is not
applied to a structurally smaller argument, nor by Tarski’s fixed-point theorem,
as nested Hoare triples are contravariant in the pre-condition and covariant in
the postcondition.

As with the lock example, the interesting part of the verification of a reen-
trant event loop is the definition of the event loop resource. Once the event
loop resource has been defined, the verification is routine. The real challenge is
defining a logic and accompanying model that supports such recursive resource
definitions!

A Multi-threaded Event Loop. The single-threaded event loop example il-
lustrated the use of guarded recursion for reasoning about recursive abstractions.
To make the example even more challenging and truly illustrate the power of im-
predicative protocols, let us now consider a multi-threaded reentrant event loop
library. The abstract event loop specification remains the same, expect with the
added axiom that the abstract event loop resource is freely duplicable (thus
allowing any number of clients to use the event loop concurrently):

valid(∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x))

As for the implementation, imagine a lock-based implementation that extends
the previous implementation with a lock that protects the set of pending events
and the set of registered event handlers. Conceptually, we thus have a library
that allows clients to tie Landin’s knot through a reference protected by a lock.
To verify the single-threaded implementation, we needed to refer to eloop to
specify the registered handlers when defining eloop. Likewise, now eloop must

Impredicative Concurrent Abstract Predicates 157

assert the existence of a lock that protects the registered event handlers that are
again specified in terms of eloop (note the use of isLock):

eloop = fix(λeloop : Val→ Prop. λx : Val. ∃l : Val. x.lock �→ l ∗
isLock(l, ∃y, z : Val. ∃A,B : Pfin(Val).

x.signals �→ y ∗ x.handlers �→ z ∗ set(y, A) ∗ set(z, B) ∗
∀b ∈ B. � b �→ {eloop(x)}{eloop(x)}))

This definition is extremely interesting! First of all, it illustrates the true power
of the third-order lock specification to define recursive resource invariants that
refer back to the lock itself. This is only possible because the abstract lock spec-
ification asserts the existence of a parameterized lock representation predicate;
thus allowing us to define the resource invariant in terms of the lock itself (the
resource invariant we use for the lock is the argument given to isLock, which
refers to eloop, which again refers to isLock).

This example also illustrates the ability of iCAP to combine layered and recur-
sive abstractions; in this example we are reasoning about the recursive event loop
abstraction in terms of the lock abstraction defined in Section 2.1. In particular,
the eloop representation predicate is defined in terms of an abstract isLock rep-
resentation predicate. To ensure that eloop is well-defined we thus have to prove
guardedness across an abstraction boundary (i.e., that the recursive occurence
of eloop inside the abstract isLock assertion is guarded). This is automatically
enforced in iCAP (!), and thus iCAP supports modular reasoning about guard-
edness. Semantically, this is enforced in the interpretation of the iCAP function
space, which intuitively does not consist of all set-theoretic functions, but only
those functions that are suitably non-expansive. Note that these intracies in the
model are abstracted away by the iCAP logic and the proof in iCAP of the well-
definedness of the eloop predicate above is completely trivial and just follows
from the fact that the recursive occurrence of eloop is under a � guard.

These two event loop examples illustrate how we can reason about recursive
abstractions in iCAP and also exemplify the power of impredicative protocols.
For presentation purposes we considered the core part of a simple example —
we emphasize that this style of reasoning also scales to full functional verifi-
cation of complicated examples such as the joins library [19], which combines
layered and recursive abstractions with internal and external sharing in a higher-
order, concurrent, reentrant, imperative library. We have previously verified a
lock-based joins implementation in HOCAP against an abstract joins specifica-
tion with an explicit predicative stratification [20]. In iCAP, using impredicative
protocols, we can verify the joins implementation against a much simpler and
more expressive joins specification. Furthermore, in HOCAP we could not verify
a fine-grained implementation of the joins library; in iCAP this is now possible
using the techniques explained in the following.

158 K. Svendsen and L. Birkedal

2.3 Fine-Grained Concurrency – A Concurrent Bag

In this section we illustrate how iCAP supports modular reasoning about ad-
vanced concurrent ADTs by verifying a fine-grained implementation of a con-
current bag, implemented using helping, against a modular ADT specification.

We start by recalling our specification pattern from HOCAP [21] for express-
ing modular ADT specifications that allow clients to define a high-level ADT
resources with a notion of rights that matches the client’s intended use. Next,
we sketch how to verify a fine-grained implementation with helping of a concur-
rent bag against an abstract bag specification expressed using this specification
pattern. See the associated technical report for the full proof.

A Modular ADT Specification. Recall that in a sequential setting, one typ-
ically specifies data structure operations by relating an abstraction of the initial
and terminal state of the operation through an abstract representation predi-
cate. For instance, we might specify a Push method for an unordered bag as
follows:

{bag(x, A)} x.Push(y) {bag(x, A ∪ {y})}

This says that if, initially, the bag contains the elements in the multiset A, then,
upon termination, the bag contains the elements in A and y. Crucially, this
specification relates the abstract initial and terminal effects of the entire Push
method.

In a concurrent setting we can reason modularly about implementations that
satisfy that for each intermediate state in its execution, there exists some abstract
state describing the concrete state and the method contains zero or more atomic
instructions that modify the abstract state. Following our earlier work [21], the
idea now is to allow clients to reason about the abstract initial and terminal state
for each of these atomic instructions, rather than the abstract initial and termi-
nal state of the entire method. By allowing clients to reason about the atomic
instructions that modify the abstract state, clients can define their own high-
level ADT resources with a notion of rights expressed in terms of the abstract
state.

Technically, we achieve this using a phantom field, shared between the concur-
rent ADT and any clients, that stores the current abstract state of an instance.
Phantom fields play a similar role as ghost/auxiliary variables [17], in that they

are fields used only for specification purposes. We use xf
π�→ v to assert fractional

ownership of phantom field f on object x with fraction π. By splitting owner-
ship of the phantom field we ensure that the concurrent ADT and any clients
agree on the current abstract state. To allow clients to reason about the atomic
instructions that modify the abstract state (and thus the phantom field), we fur-
ther parameterize the specification of each method with a view shift. View shifts
describe updates to the instrumented state that do not affect the concrete state.
View shifts can thus be used to update phantom fields, allocate new regions and
change the abstract state of a region, potentially transferring ownership of some
resource in the process. We use P � Q to express that P can be view shifted to
Q. See the appendix for proof rules relating to phantom fields and view shifts.

Impredicative Concurrent Abstract Predicates 159

A Modular Bag Specification. We present part of the bag specification in
Figure 1; we now explain it. We only include an operation to create the bag and
a push operation, the specification for a pop method is similar and omitted.

∃bag : RId× Val→ Prop.

{emp} new Bag(−) {ret. ∃n : RId. bag(n, ret) ∗ retcont
1/2�→ ∅}

∀P,Q : Val× Val→ Prop. ∀n : RId.

(∀X : Pm(Val). ∀x, y : Val.

xcont
1/2�→ X ∗ P(x, y) �RId\{n} xcont

1/2�→ (X ∪ {y}) ∗ Q(x, y)) ⇒
{bag(n, x) ∗ P(x, y)} x.Push(y) {bag(n, x) ∗Q(x, y)}

Fig. 1. Part of a modular bag specification

In the case of the Push method, assuming it only contains a single atomic
instruction that “commits” the push, we can express this formally by relating
the effects of the Push method with an arbitrary “push” view shift provided
by the client, see Lines 3–6 in Figure 1. The view shift expresses what should
happen at the client side when the abstract state of the push operation takes

place. The assertion xcont
1/2�→ X asserts half-ownership of the phantom field cont,

which contains the current abstract state of the bag. By letting the data structure
own half and clients share the other half (clients get the other half by calling the
new method), clients can impose a protocol on the abstract state that matches
their intended notion of rights through their half of the phantom field. Since
updating the phantom field requires both halves, this forces clients to prove that
the abstract effects of any call to the Push method satisfies any protocols clients
may have imposed.

We call the view shift in the premise of the above rule a “push” view shift
because it requires the client to update the initial abstract state from X to
X∪{y}, for any abstract state X. Conceptually, this view shift is thus an atomic
“push” method at the instrumented level and the push specification expresses
that the Push method simulates any such “push” view shift provided by the
client. The universally quantified predicates P and Q allow the client to relate its
local state with the abstract initial and terminal state of the atomic instruction
that “commits” the push. We refer to P and Q as synchronization pre- and
postconditions.

In [21] we had to impose severe restrictions on P and Q due to the lack of
impredicative protocols, but with iCAP, there are no restrictions on P and Q,
resulting in much simpler and more expressive refinable specifications.

Finally we comment on the superscript on the view shifts and the region
identifier n argument to the bag predicate, bag(n, x). In iCAP, when reasoning
about an atomic instruction, we can “open” a shared region and move the shared
resources into our local state for the duration of the atomic instruction, provided

160 K. Svendsen and L. Birkedal

we obey the protocol imposed by the region. Clearly, it is only sound to “open”
each region once for each atomic instruction (opening a region twice results in
two local copies of the shared region’s resources).3 Since the “push” view shifts
provided by the client are used during the atomic instruction that “commits” the
push, we have to ensure that the client does not “open” the module’s region with
its view shifts. We thus parameterize the bag predicate with a region identifier
n to reveal that the bag module may use region n. As discussed in the appendix,
this allows us to express, qua the superscript on the view shift, that the view
shift provided by the client should not open the region n.

Now we have explained how to give a modular, refinable, specification to
a concurrent data structure. We now sketch how iCAP can be used to verify
that a sophisticated fine-grained concurrent implementation using cooperation
actually meets the modular bag specification. iCAP is the first program logic
that supports verification of such sophisticated implementations against such
modular specifications (in particular, in our earlier work [21] we could not deal
with implementations using cooperation).

To reduce contention on the main data structure used to implement the bag,
a thread seeking to push an element (the “pusher”) may offer the push operation
to other threads, using a side-channel. If a thread seeking to pop (the “popper”)
then comes along, it may notice and accept the push-offer, without touching the
main data structure at all. By accepting the push-offer the popper also completes
the operation of the pusher, and in that sense it has helped the pusher. The
heart of the verification is the protocol used for handling offers. In our case, that
protocol can be described using the following labelled transition system, denoted
Toffer:

pendingacceptedack’ed revoked
Accept RevokeAck

Intuitively, pending means that an offer has been made and it is waiting for
somebody to accept it, accepted means that the offer has been accepted, ack’ed
means that we have acknowledged that somebody has accepted the offer, and
revoked is used for the case where we revoke the offer (since no one accepted it
and now we will re-attempt to push).

The interpretation of the states of Toffer are as follows:

Ioffer(n,P,Q, b, x, y)(pending)
def
= x.state �→ 0 ∗ P(b, y) ∗

spec(∀X : Pm(Val). ∀x, y : Val.

xcont
1/2�→ X ∗ P(x, y) �RId\{n} xcont

1/2�→ (X ∪ {y}) ∗ Q(x, y))

3 See the appendix for a concrete counterexample.

Impredicative Concurrent Abstract Predicates 161

Ioffer(n,P,Q, b, x, y)(accepted)
def
= x.state �→ 1 ∗ Q(b, y)

Ioffer(n,P,Q, b, x, y)(revoked)
def
= x.state �→ 2

Ioffer(n,P,Q, b, x, y)(ack’ed)
def
= x.state �→ 1

Here b refers to the bag, x refers to the offer, y is the value on offer, and P and
Q are the pusher’s synchronization pre- and postconditions.

The interpretations of the states contain information about the value of pro-
gram variable state, which is used by the implementation to keep track of which
state the offer is in. The point to notice, however, is that the pending state con-
tains both the pusher’s synchronization precondition, P(b, y), and the pusher’s
“push” view shift, and the accepted state contains the pusher’s synchronization
postcondition, Q(b, y). To accept an offer (transition the abstract state from
pending to accepted) the popper thus has to perform the pusher’s “push” view
shift. Conceptually, the offer protocol “transfers” the pusher’s view shift to the
popper.

Note how the combination of view shifts and impredicative protocols together
allows us to prove that the fine-grained implementation with helping meets the
modular bag specification.

See the accompanying technical report for the full proof.

3 Model

In this section we present a model of iCAP. Soundness of iCAP is non-trivial.
Indeed, in our earlier work on HOCAP [21], we discovered that a recent proposal
for a higher-order variant of concurrent abstract predicates [9] was unsound.
This led us to consider only predicative protocols in [21], which simplified the
construction of a sound model, but also resulted in much weaker and more
complicated specifications and proofs. Here instead, we follow ideas from models
of impredicative type systems with higher-order store, e.g. [2,4], and define our
model of iCAP using a guarded-recursively defined space of protocols. We define
our model in the type theory and logic of the topos of trees [4]. This has the
advantage that most of the model construction is done as if we were working with
ordinary sets, except for those places where we need to guard some recursive
definitions for well-definedness. More importantly, it makes it straightforward
to define a higher-order logic, since the recursively defined space of protocols
is now simply a type in the type theory of the topos of trees, which already
includes function and powerset types! The resulting program logic includes the
later operator from the ambient type theory. As we have already seen, we use this
later operator to define guarded-recursive assertions and protocols. It can also
be used to define guarded-recursive specifications. We emphasize that readers
need not be familiar with [4] in order to understand the present paper.

Topos of Trees. The internal language of the topos of trees is an intuitionistic
higher-order logic over a simply-typed term language extended with subset types
and guarded-recursive types. This internal language features a new type former

162 K. Svendsen and L. Birkedal

�, pronounced later, for defining guarded-recursive types, and a new logical
connective �, also pronounced later, for defining guarded-recursive predicates.
(For readers who are familiar with the use of theorem provers, such as Coq,
for formalizing models of logics or programming languages, it may be helpful
to think of the type theory of the topos of trees as playing the rôle of the Coq
type theory.) The point of using the guarded type theory and logic is that it
makes it easy to define the space of protocols, which needs to be recursively
defined. Crucially, this results in a type in the guarded type theory, and thus,
since that type theory includes higher function types, we can then easily define
the interpretation of the function spaces in iCAP.4 The guarded type theory
also includes types of the form ΔX , for any ordinary set X . Such types ΔX are
referred to as constant sets. We define the non-recursive part of the model in the
category of sets and use these as constant sets to construct the recursive part of
the model in the topos of trees.

The presentation of the iCAP model is inspired by the Views framework [7]
and models of impredicative type systems, e.g., [5], with higher-order store.

The Views framework provides a general way of relating a concrete semantics
with an instrumented semantics and constructing a separation logic over the
instrumented semantics. In our case the concrete semantics is a subset of C#
with an interleaving semantics. The instrumented semantics extends the concrete
C# states with phantom fields, shared regions, and protocols and enforces that
clients respect the protocols governing shared resources.

The model of iCAP is defined in Figure 2, and is defined over countably
infinite and disjoint set of action identifiers, AId, state identifiers, SId, object
identifiers, OId, closure identifiers CId, region identifiers RId, class names CN,
field names FN, and method names MN.

Instrumented states (m ∈ M) are tuples consisting of three components: a
local state, a shared state and an action model. We use m.l,m.s and m.a to
refer to the first, second and third component of m. The local state (l ∈ LS)
consists of a partial C# heap, a partial phantom heap and a capability map. The
partial C# heap and phantom heaps specify the current value and permissions to
heap cells and phantom fields, respectively. The capability map specifies action
permissions on shared regions. In particular, it records the fractional permission
the client owns on each region and action identifier. The shared state (s ∈ SS)
specifies the current abstract state of each allocated region and the labelled
transition system governing the given region. We use s(r).s and s(r).p to refer
to the state and labelled transition system of region r of a shared state s. The
set of abstract states, AS, consists of pairs of local and shared state. Finally,
the action model (ς ∈ AMod) specifies the interpretation of the abstract states
of each allocated region. Since the interpretation of each abstract state is given
by a general assertion, which is itself a subset of instrumented states, a naive

4 If we had worked in the category of sets and used step-indexing directly, we would
have had to define an appropriate notion of function space between the resulting
indexed space of protocols and itself, and that would essentially amount to unrolling
the definition from the topos of trees model.

Impredicative Concurrent Abstract Predicates 163

Semantic domains in the category of Sets

Cap
def
= {f : (RId× AId) → [0, 1] | ∃R ⊆fin RId. ∀r ∈ RId \ R. ∀α ∈ AId. f(r, α)=0}

Heap
def
= (OId × FN ⇀fin Val)× (OId ⇀fin CN)× (CId ⇀fin OId ×MN)

PHeap
def
= {(pc, ph) ∈ (OId× FN → [0, 1])× (OId × FN ⇀fin Val) |

∀o ∈ OId. ∀f ∈ FN. pc(o, f) = 0 ⇒ (o, f) �∈ dom(ph)}
l ∈ LS

def
= PHeap× Heap× Cap LTS

def
= AId → P(SId × SId)

s ∈ SS
def
= RId ⇀fin (SId × LTS) AS

def
= LS× SS

Semantic domains in the topos of trees

RIntr ∼= �((ΔSId × (ΔRId ⇀fin RIntr)) →mon P↑(ΔAS)) s ∈ Spec
def
= Ω

ς ∈ AMod
def
= ΔRId ⇀fin RIntr m ∈ M def

= ΔLS ×ΔSS × AMod p ∈ Prop
def
= P↑(M)

where the ordering on M is RRId and the ordering on ΔAS is

m1 ≤ m2 iff m1.l ≤ m2.l ∧m1.s ≤ m2.s ∧m1.a ≤ m2.a

Interference relation

acts(l, r)
def
= {α | π3(l)(r, α) < 1}

upds(l, r, p)
def
= {(s1, s2) | ∃α ∈ acts(l, r). (s1, s2) ∈ p(α)}

RA
def
= {((l1, s1), (l2, s2)) | l1 ≤ l2 ∧ ∀r ∈ dom(s1).

((r ∈ A ∧ (s1(r).s, s2(r).s) ∈ upds(l1, r, s1(r).p))

∨ s1(r).s = s2(r).s) ∧ s1(r).p = s2(r).p}

where (−) denotes the transitive, reflexive closure.

Orderings l1 ≤ l2 iff ∃l3. l2 = l1 •LS l3
s1 ≤ s2 iff ∀r ∈ dom(s1). r ∈ dom(s2) ∧ s1(r) = s2(r)

ς1 ≤ ς2 iff ∀r ∈ dom(ς1). r ∈ dom(ς2) ∧ ς1(r) = ς2(r)

Composition

x •= y
def
= x if x = y f •+ g

def
= λx. f(x) + g(x) if ∀x. f(x) + g(x) ≤ 1

f •∪ g
def
= f ∪ g if dom(f) ∩ dom(g) = ∅

f •? g
def
= f ∪ g if ∀x ∈ dom(f) ∩ dom(g). f(x) = g(x)

•Heap
def
= •∪ × •= × •= •PHeap

def
= •+ × •?

•LS
def
= •PHeap × •Heap × •+ •M

def
= •LS × •= × •=

Erasure �(s, ς)�r
def
= {l ∈ LS | (l, s) ∈ app(ς(r))(s(r).s, ς)}

�(l, s, ς)�A
def
= {h ∈ Heap | ∃l′, sr : dom(s) ∩ A→ LS.

h = l′.h ∧ l′ = l •Πr∈dom(s)∩Asr(r) ∧
∀r ∈ dom(s) ∩ A. sr(r) ∈ �(s, ς)�r}

Fig. 2. Model of iCAP

164 K. Svendsen and L. Birkedal

definition of AMod in set theory is not well-defined. Instead, we let RIntr (the
type of interpretations of abstract states for a single region) denote a solution
to the following guarded-recursive equation

RIntr ∼= �((ΔSId × (ΔRId ⇀fin RIntr))→mon P↑(ΔAS))

Here ΔSId is the constant set of state identiers,ΔRId is the constant set of region
identifiers, ΔAS is the constant set of abstract states, and P↑(ΔAS) consistst
of the upwards-closed subsets of ΔAS with respect to the ordering shown in
Figure 2. Note the use of the � operator, which acts as a guard, and ensures
that RIntr is well-defined (unique up to isomorphism). Using RIntr we can then
define the type of action models as the type of finite functions from region

identifiers to region interpretations: AMod
def
= ΔRId ⇀fin RIntr. From the above

isomorphism we can define the following abstraction and application functions
to fold and unfold elements of RIntr:

lam : (ΔSId×AMod→mon P↑(ΔAS))→ RIntr

app : RIntr→ (ΔSId×AMod→mon P↑(ΔAS))

Crucially, because of the guard, if we unfold a folded element x, we get back the
element x, one step later: app ◦ lam = �, where � refers to the pointwise lifting
of � to function spaces.

Assertions in iCAP are modeled as upwards-closed subsets of instrumented
states (see the definition of Prop in Figure 2), where the upwards-closure ex-
presses that assertions should be closed under allocation of new regions and
extensions of the local state. Assertions in the specification logic are simply
modeled as assertions in the topos of trees. The function types of iCAP are sim-
ply modeled using the function space in the guarded type theory! (We emphasize
again that this is one of the advantages of using the topos of trees as the ambient
theory in which to define the model of iCAP; if we had worked in ordinary sets,
then iCAP types could not simply be interpreted as sets,5 they would have to
be indexed families of sets, and then the iCAP function space would also have
to be appropriate families of functions satisfying certain naturality conditions.

Interference Relation and Stability. The interference relation, RA, specifies
how the environment is allowed to modify the abstract state of shared regions.
The interference relation is indexed by a set of region identifiers, A, of regions
that are allowed to change. RRId thus allows the environment to change the
abstract state using any path in the labelled transition system governing the
region, along actions not exclusively owned by the client. RA is defined in Figure
2 in terms of two functions, acts and upds. The acts function specifies the actions
not exclusively owned by the client and the upds function specifies the set of
transitions labelled with actions not exclusively owned by the client.

Unlike previous models of CAP, this interference relation is expressed entirely
in terms of abstract states and is completely independent of the interpretation

5 Why? Because then we could not guarantee the existence of guarded recursive predi-
cates involving higher-order functions (such as the eloop predicate from Section 2.2).

Impredicative Concurrent Abstract Predicates 165

of these abstract states. This is why stability in iCAP is also expressed at the
abstract level and why it is much simpler than previous versions of CAP. An
assertion is A-stable if it is closed under RA:

stableA(p)
def
= (RA × idAMod)(p) ⊆ p

where R(p) = {m′ ∈ M | ∃m ∈ p. (m,m′) ∈ R}. Intuitively, an assertion is
A-stable if it is closed under interference from the environment on regions in A.
An assertion is thus stable if it is RId-stable.

Erasure. The relation between the instrumented semantics and the concrete se-
mantics is expressed through an erasure function, !−"A, that maps instrumented
states to sets of concrete states. Like the interference relation, the erasure is in-
dexed by a set of region identifiers, A, of regions to erase. The erasure works
by picking a concrete state lr for each allocated region r ∈ A that satisfies the
interpretation of the current abstract state of the given region, and composing
all these states with the current local state. The erasure is defined in terms of
a single-region erasure, !−"r, that defines the set of concrete states satisfying
the interpretation of the current abstract state of region r. Note that this is ex-
pressed in terms of the application function, app, introduced earlier for unfolding
a region interpretation.

View shifts describe changes at the instrumented level that preserves the
state at the concrete level. An A-view shift p �A q describes a view shift that is
only allowed to modify regions in A. We can express this formally (and build-in
framing) by requiring the view shift to preserve all A-stable frames r:

p �A q
def
= ∀r ∈ Prop. stableA(r)⇒ !p ∗ r"A ⊆ !q ∗ r"A

The operational semantics of the underlying programming language is defined in
terms of a labelled thread pool evaluation relation,

a→ , and an action semantics,
[[−]]. The labelled thread pool evaluation relation,

a→, defines the local effects
(i.e., stack effects) of executing a single thread for one step of execution, while
the action semantics defines the global effects (i.e., heap effects) of executing an
atomic action. Atomic satisfaction expresses what it means for an atomic action
a to satisfy a given Hoare specification:

a satA {p} {q} def
= ∀r ∈ Prop. ∀m ∈ M. ∀h, h′ ∈ Heap.

m ∈ p ∗ �r ∧ h ∈ !m"A ∧ h′ ∈ [[a]](h) ∧ stableA(r)

⇒ ∃m′ ∈ M. � (m′ ∈ q ∗ r ∧ h′ ∈ !m′"A)

This is the case, if, executing a from any initial concrete state h in the erasure
of p there exists an abstract state in q that erases to the terminal concrete state
h′ ∈ [[a]](h), and preserves �r, for all stable frames r. Intuitively, the � operator
expresses that executing an atomic action corresponds to one step of execution
in the operational semantics.

Safety, safe(s, p, q), extends satisfaction from atomic actions to statements s.
Intuitively, it expresses that every step of s at the concrete level has a correspond-
ing step at the abstract level. Formally, safe is defined using guarded recursion to

166 K. Svendsen and L. Birkedal

establish the connection between steps in the underlying operational semantics
and steps in the topos of trees. See the accompanying technical report for the
formal definition.

Interpretation. Most of the interpretation of iCAP is fairly straightforward
and reduces directly to the topos of trees. For instance, conjunction in iCAP is

interpreted using conjunction in the topos of trees: p∧q def
= {m ∈M | m ∈ p∧m ∈

q}. The most interesting case is the interpretation of the region interpretation
assertion, rintr(−):

rintr(I, r)
def
= {(l, s, ς) ∈ M | r ∈ dom(ς) ∧ ∀x ∈ Δ(SId).

∀ς ′ ≥ ς. app(ς(r))(x, ς ′) = �(λ(l, s). I(x)(l, s, ς ′))}

Readers familiar with models of ML references may understand this region in-
terpretation assertion by analogy to the ref type constructor of ML, which can
be modelled by a similar equation [2,4].6 The reference type in ML describes a
simple invariant for a single location, which expresses that the values stored at
that location are always of the given type. With iCAP we can describe invariants
given by a protocol and covering a region of memory (varying according to the
protocol).

4 Logic

In the accompanying appendix we introduce a formal proof system for iCAP
and in the accompanying technical report we present the entire proof system.
We stress that the logic contains sufficient proof rules for proving all the examples
sketched in this paper, including all stability proofs and all proofs about atomic
instructions !

In the accompanying technical report we prove that iCAP is sound with re-
spect to the model described in the previous section. As a corollary of this
soundness theorem it follows that if Γ | − � (Δ).{P}s{Q}, then

∀ϑ ∈ [[Γ]]. safe(s, [[Γ ;Δ � P : Prop]](ϑ), [[Γ ;Δ � Q : Prop]](ϑ)).

5 Discussion

We have presented iCAP, the first program logic for modular reasoning about
higher-order concurrent imperative programs that supports full impredicative
quantification over general predicates, including predicates describing protocols
over shared regions of memory. We have presented examples illustrating how
iCAP supports modular reasoning about internal and external sharing, layered

6 Think of ς as the world in models of references; then the equation says that, for all
future worlds, the interpretation of the region recorded in the world agrees with the
interpretation given by I .

Impredicative Concurrent Abstract Predicates 167

and recursive abstractions, and fine-grained concurrent ADTs implemented using
helping, entirely in the logic.

We have discussed related work on program logics along the way. As an alter-
native to program logics, there has also been several recent advances on using
relational models for reasoning about concurrent programs. In particular, Liang
et. al. [15] presented a simulation relation based on rely-guarantee to verify pro-
gram transformations for a first-order concurrent imperative language; Birkedal
et. al. [5] presented a logical relations model for verifying effect-based program
transformations for a higher-order concurrent imperative language, and Turon et.
al. [23,22] extended [5] with an extension of the protocols of Dreyer et. al. [10]
to allow for relational refinement proofs of sophisticated fine-grained concurrent
algorithms, including cooperation. To reason about cooperation, the model and
logic of Turon et. al. [23,22] uses specification code (i.e., an expression of the
programming language) as a transferrable resource. This is similar to how view
shifts are transferred here to reason about cooperation; the difference is that
here we do not use code (since we are not proving refinement), but allow for
transfer of more abstract specifications given by view shifts. The model in [23]
is defined using step-indexing and involves an indexed definition of what essen-
tially amounts to a recursively defined space of protocols, similar in spirit to
the one we are using in this paper. However, the model in [23] does not support
impredicative protocols, technically since island predicates (corresponing to re-
gion predicates) in loc. cit. have a restriction on how they can be parameterized.
It is probably possible to lift this restriction, but one would still need a richer
notion of model in order to model impredicative higher-order logic, essentially
since constant sets would no longer suffice. As explained earlier, we use the type
theory of the topos of trees as our metatheory for that purpose.

In this paper we have focused on the foundational issue of establishing sound-
ness of a new very expressive logic for reasoning about higher-order concurrent
imperative programs. Future work includes implementing a tool for interactive
verification of programs using iCAP. We plan to do so in Coq, following the
approaches of the Bedrock [6] and Charge! [3] tools, which have been successful
in using Coq tactics to automate large parts of formal reasoning.

Acknowledgements. This research was supported in part by the ModuRes
Sapere Aude Advanced Grant from The Danish Council for Independent Re-
search for the Natural Sciences (FNU).

References

1. Node.js, http://www.nodejs.org
2. Appel, A.W., Melliès, P.-A., Richards, C.D., Vouillon, J.: A Very Modal Model of

a Modern, Major, General Type System. In: Proceedings of POPL (2007)
3. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! In: Beringer, L., Felty, A. (eds.)

ITP 2012. LNCS, vol. 7406, pp. 315–331. Springer, Heidelberg (2012)

http://www.nodejs.org

168 K. Svendsen and L. Birkedal

4. Birkedal, L., Møgelberg, R., Schwinghammer, J., Støvring, K.: First Steps in Syn-
thetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. In: Proceed-
ings of LICS (2011)

5. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A Concurrent Logical Relation. In:
Proceedings of CSL (2012)

6. Chlipala, A.: Mostly-Automated Verification of Low-Level Programs in Computa-
tional Separation Logic. In: Proceedings of PLDI (2011)

7. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
Compositional Reasoning for Concurrent Programs. In: Proceedings of POPL
(2013)

8. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

9. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: Proceedings of POPL, pp. 259–270 (2011)

10. Dreyer, D., Neis, G., Birkedal, L.: The Impact of Higher-Order State and Control
Effects on Local Relational Reasoning. In: Proceedings of ICFP (2010)

11. Feng, X., Ferreira, R., Shao, Z.: On the Relationship between Concurrent Separa-
tion Logic and Assume-Guarantee Reasoning. In: De Nicola, R. (ed.) ESOP 2007.
LNCS, vol. 4421, pp. 173–188. Springer, Heidelberg (2007)

12. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for
Storable Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807,
pp. 19–37. Springer, Heidelberg (2007)

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

14. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008)

15. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-
current program transformations. In: POPL (2012)

16. O’Hearn, P.W.: Resources, Concurrency and Local Reasoning. Theor. Comput.
Sci. 375(1-3), 271–307 (2007)

17. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cor-
nell (1975)

18. Provos, N., Mathewson, N.: libevent – an event notification library,
http://www.monkey.org/~provos/libevent

19. Russo, C.V.: The Joins Concurrency Library. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 260–274. Springer, Heidelberg (2007)

20. Svendsen, K., Birkedal, L., Parkinson, M.: Joins: a Case Study in Modular Spec-
ification of a Concurrent Reentrant Higher-order Library. In: Castagna, G. (ed.)
ECOOP 2013. LNCS, vol. 7920, pp. 327–351. Springer, Heidelberg (2013)

21. Svendsen, K., Birkedal, L., Parkinson, M.: Modular Reasoning about Separation
of Concurrent Data Structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013)

22. Turon, A., Dreyer, D., Birkedal, L.: Unifying Refinement and Hoare-Style Reason-
ing in a Logic for Higher-Order Concurrency. In: Proceedings of ICFP (2013)

23. Turon, A., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical Relations
for Fine-Grained Concurrency. In: Proceedings of POPL (2013)

24. Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation
Logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 256–271. Springer, Heidelberg (2007)

http://www.monkey.org/~provos/libevent

Local Reasoning for the POSIX File System

Philippa Gardner, Gian Ntzik, and Adam Wright

Imperial College London
{p.gardner,gian.ntzik08,adam.wright07}@imperial.ac.uk

Abstract. We provide a program logic for specifying a core subset of
the sequential POSIX file system, and for reasoning abstractly about
client programs working with the file system.

Keywords: file systems, POSIX, local reasoning, separation logic.

1 Introduction

Local reasoning, in the style of separation logic, was introduced to reason about
programs that manipulate the RAM memory model. Local reasoning has strong
modular properties, which means that it scales. Many forms of abstract local rea-
soning have been introduced to specify structured data libraries: e.g. abstract
predicates for linked lists [20], concurrent abstract predicates for abstract con-
current sets [7, 24, 23], and context logic for complex structured data such as the
DOM [13]. Despite these advances, there are many other properties of real-world
libraries that naturally resonate with this local-reasoning approach but have yet
to be studied.

We study abstract local reasoning for the POSIX file system [2]. POSIX has an
English specification which naturally describes commands which globally follow
directory paths to locally update files or directories1. There has been much
work on traditional reasoning techniques for specifying POSIX, such as the well-
known Z specification [18]. However, the global path constraints associated with
this work are substantial. Our aim is to use local reasoning to minimise the
global path constraints. POSIX is an interesting test case for abstract local
reasoning. It has enough emphasis on local update to suggest that the advantages
of local reasoning might apply. However, the complexity of the data combined
with concurrency, global paths and local update means that the application of
local reasoning to this example is not straightforward.

Current work on abstract local reasoning cannot specify POSIX. For exam-
ple, context logic works well for reasoning about sequential update of complex
data, such as the W3C DOM library for XML update [13, 5, 22]. However, it
has no mechanism for reasoning about global paths, it does not extend simply to
concurrency, and it does not integrate well with ideas from separation logic. Con-
current abstract predicates [7, 24, 23] work well for reasoning abstractly about

1 Both files and directories are called ‘files’ in POSIX. We use the term ‘entries’ to
denote either directories or files.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 169–188, 2014.
© Springer-Verlag Berlin Heidelberg 2014

170 P. Gardner, G. Ntzik, and A. Wright

simple concurrent data structures. However, they do not extend to complex data
structures since the implementation details leak into the abstraction [12].

We introduce structural separation logic (SSL) for reasoning abstractly about
complex structured data. SSL provides more fine-grained reasoning than context
logic, leading to straightforward reasoning about disjoint concurrency and a nat-
ural integration with separation logic. Here, we demonstrate SSL by reasoning
about POSIX. In [25, 12], we provide the general theory which relies substan-
tially on ideas from the views framework [6]2. SSL combines fine-grained local
reasoning about e.g. directory fragments with global path constraints about the
overall structured data. The global path constraints limit the use of the frame
rule in our sequential setting, and specify stability requirements of the envi-
ronment in the concurrent setting. We illustrate our ideas using absolute linear
paths, called paths in this paper. In future, it will be very interesting to study
general paths (with the backwards .. and symbolic links) as part of our abstract
local reasoning agenda, since they walk right across the directory structure.

In this paper, we use SSL to reason about the sequential POSIX file system,
demonstrating that our axioms correspond to the English description given in
the POSIX standard. We identify a core subset of POSIX, which is both faithful
to the standard and a natural subset with which to introduce our reasoning. We
model various structures of the file-system state as standard heaps: file heaps
mapping file identifiers (inodes) to bytes; and file-descriptor heaps mapping file
descriptors to input/output related data. Separation logic can reason about these
heap structures. We require SSL to reason about the directory structure, which
we regard as a tree-shaped hierarchy3. SSL naturally integrates with separation
logic, enabling us to reason about directories and the standard heap within the
same logic. We demonstrate this integrated reasoning by verifying natural safety
properties of a client software installer. Although we concentrate on sequential
POSIX in this paper, our results immediately extend to POSIX with disjoint
concurrency. In future, we will explore POSIX with shared-memory concurrency.

Related Work. There has been substantial work on formal specifications of
file systems [15, 18, 9, 4], leading to a verification challenge by Joshi and Holz-
mann [17, 10]. It is not feasible to give a comprehensive account of this work
in the space available; such an account will be in Ntzik’s thesis [19]. Here, we
concentrate on demonstrating the advantages of local directory tree reasoning
compared with first-order global tree reasoning and reasoning about heap struc-
tures with paths as addresses.

A natural question is whether we might use first-order reasoning as in [8],
rather than local reasoning in the style of separation logic. For our program-
logic application, first-order reasoning leads to scalability problems. Consider
one case of a first-order specification of the rename(p/a, p’/b) command:

2 Previous work on segment logic [14] was too complicated, because we needed views.
3 In general, files and directories can be hard linked more than once. Most implemen-
tations only allow files to be linked more than once. This is a sensible choice as,
for example, cycles generated by directory hard links are not detected by recursive
traversal programs. We therefore regard POSIX as a tree-shaped hierarchy.

Local Reasoning for the POSIX File System 171

{ resolve(p, d[t + a[t′]] ∧ resolve(p′, d′[t′′ ∧ ¬exists(b)]) ∧ ¬∃p′′. p′ = p/a/p′′ }
rename(p/a, p’/b)

{ resolve(p, d[t]) ∧ resolve(p′, d′[t′′ + b[t′]]) ∧ ¬∃p′′. p′ = p/a/p′′ }

In the precondition, the assertion resolve(p, d[t + a[t′]]) states that path p re-
solves to the directory d containing the subdirectory a and list t of unknown
entries. The assertion resolve(p′, d′[t′′∧¬exists(b)]) states that path p′ resolves
to directory d′ with no b entry. Finally, the assertion ¬∃p′′. p′ = p/a/p′′ is a path
constraint, stating that path p′ cannot be a descendant of p/a which would be an
error case in POSIX. In the postcondition, the assertions state that the directory
a has gone from d, and a new directory b has been created under directory d′

with the contents of the old a.
Now consider program rename(p/a, p’/b) ; rename(p’’/c, p’’’/d). In

this case, we need path constraints in the precondition stating the following
properties: path p′ is not a descendant of path p/a; p′′′ is not a descendant of
p′′/c; and, in addition, p′′/c is not a descendant of p/a since directory a has been
removed. These syntactic path checks mushroom as more rename commands
are added. Hence, this style of reasoning does not scale. Those familiar with
separation logic might recognise that this example is analogous to Reynolds’
original list example for justifying separation logic [21].

A completely different approach, used in much of the work on the formal
specification of file systems in Z [18] and other methods [15], is to treat paths

as heap addresses. Define the set of heaps as Paths
fin
⇀ Bytes ∪ P(FNames),

mapping paths to byte sequences in the file case or sets of names in the directory
case. This approach requires significant global constraints: for example, in the
specification of rename(p/a, p/a’) not only we would replace p/a with p/a′ in
the heap, but also every descendant p/a/p′ with p/a′/p′ in order to preserve path
consistency.

T

usr home opt

adw07 widget

widget : i data.wconf : j widgProg : i

bin

T

usr home opt

adw07 x

widget : i .wconf : j

bin

widget

data widgProg : i

xF F

T/opt

Fig. 1. The left-hand diagram represents a complete directory; the right, the same
directory instrumented with abstract addresses

2 Example Specifications

We focus on the sequential POSIX file system in this paper, in particular study-
ing a core fragment of 16 commands. Although this fragment is small, it includes
most of the primitive commands that manipulate the structure and perform

172 P. Gardner, G. Ntzik, and A. Wright

input-output (IO) and a large proportion of the file system commands can be
implemented using them.

First consider the English description of the rmdir command4:
[r := rmdir(path)] Remove the directory identified by path and set r to 0.
The directory must be empty.

Intuitively, this command traverses the global structure, using the global path
path to identify the location of the update. It then performs local update, re-
moving the empty directory whilst leaving the rest of the file system unchanged.

We capture this combination of global traversal and local update using struc-
tural separation logic. Consider figure 1. The left-hand side illustrates part of a
standard structured heap, consisting of a heap cell with address F whose struc-
tured value is a complete directory tree. The right-hand side illustrates part of
an abstract heap, consisting of the heap cell F whose value is now an incom-
plete directory tree with body address x, and an abstract heap cell with abstract
address x whose value is a pair consisting of a path promise ‘⊺/opt’ and, in this
case, a complete subdirectory. The path promise provides the stability condition
that body address x must be at the end of ‘⊺/opt’. This promise to x allows us to
reason locally about the abstract heap cell x whilst retaining the knowledge of
its location in the global structure. Notice that the two heaps illustrated in figure
1 describe the same state, in that they differ only in the instrumentation added
by abstract addresses. We move from the left-hand to the right-hand view of the
state using abstract allocation which creates a new abstract heap cell containing
the subdirectory; the converse is abstract deallocation.

With structured separation logic (SSL), we can reason about such abstract
heap cells. For example, the assertion subdir (α@P,A[∅]) describes the ownership
of the abstract heap cell with address given by logical variable α and value given
by the path promise P and empty subdirectory A[∅]. Using this assertion, we
are able to provide an axiomatic specification of the rmdir command:

{expr(path,P/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@P,A[∅])}
r:=rmdir(path)

{var(r,0) ⋆ E ⋆ subdir (α@P,∅)}

In the precondition, the assertion for the abstract heap cell at α describes the
subdirectory resource necessary for the command to succeed, plus the stable
information that the subdirectory is to be found under global path P . In addi-
tion, the precondition contains assertions about path expressions and variables.
The expression assertion expr(path,P/A) is a pure assertion which states that
expression path has logical expression P/A as its value. This logical expres-
sion describes an arbitrary path P followed by the directory or file name A.
The variable assertion var(r,−) states that the program variable r has some

4 This description only presents the case when the operation succeeds. When the
command fails, for example if path does not identify an existing file or directory,
the result is to assign -1 to r and set the global variable errno to enoent. We give
the full error specifications in our technical report [11]. In this paper we discuss such
cases only when required by an example.

Local Reasoning for the POSIX File System 173

arbitrary value, and E describes the extra variable resource necessary for path

to be evaluated. This follows the standard variables-as-resource approach [3]
The postcondition states that variable r now has value 0, whilst the abstract

heap cell α is empty with the path promise P. Notice that we do not remove
the abstract heap cell α. If the axiom destroyed this cell, the associated α body
address (which must exist in some data in the frame) would have no matching cell
address. This would break the stability of the system, where a cell address always
matches with a body address at the appropriate path promise. The additional
variable resource predicate E is unchanged between the pre and postconditions.

The specification of rmdir is small in that the precondition intuitively de-
scribes local ownership of the minimum resource needed to safely run the com-
mand: the variables r and those needed to evaluate path given by E ; and the
abstract cell address α with the subdirectory being updated. It also describes
the global information that only (incomplete) directories satisfying path promise
P associated with α can be framed on. To illustrate this, consider the complete
directory dir(F ,⊺[C+D[A[∅]]]), the path P = ⊺/D/A and the proof derivation:

{ expr(path,⊺/D/A) ∧ var(r,−) ⋆ E ⋆ dir(F ,⊺[C +D[A[∅]]])}
// abstract allocation

{ expr(path,⊺/D/A) ∧ var(r,−) ⋆ E ⋆ ∃α. (dir(F ,⊺[C+D[α]]) ⋆ subdir (α@⊺/D,A[∅])) }
// existential elimination and frame rule and apply the axiom

{ expr(path,⊺/D/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@⊺/D,A[∅])}
r := rmdir(path)

{ var(r,0) ⋆ E ⋆ subdir (α@⊺/D,∅)}
// existential, frame rule reapplication

{ var(r,0) ⋆ E ⋆ ∃α. (dir(F ,⊺[C +D[α]]) ⋆ subdir (α@⊺/D,∅))}
// abstract deallocation

{ var(r,0) ⋆ E ⋆ dir(F ,⊺[C +D[∅]])}

The initial precondition contains the assertion dir(F ,⊺[C+D[A[∅]]]) describ-
ing a complete directory tree at the file-system root ⊺, with arbitrary contents
captured by the logical variable C and a directory named D that contains the
empty directory A. This precondition does not match the precondition of rmdir,
and so we take the following steps. First, we abstractly allocate a new abstract
heap cell containing the A directory, existentially quantifying the abstract ad-
dress α to ensure that the address is fresh. Then, we apply the standard Hoare
logic existential elimination to set aside the existential binding of α, and use the
frame rule to set aside the resource that rmdir does not need. We are now in
a position to match rmdir’s precondition, where ⊺/D is P. After applying the
axiom we can reintroduce the resource and binding set aside with frame and
existential elimination, and abstractly deallocate the cell with address α.

Now consider the unlink command and its English specification:
[r := unlink(path)] Remove the link to the file identified by path.

Using SSL, we can formalise the English specification in a similar fashion, with
the following small axiom:

{expr(path,P/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@P,A ∶ I)}
r:=unlink(path)

{var(r,0) ⋆ E ⋆ subdir (α@P,∅)}

174 P. Gardner, G. Ntzik, and A. Wright

In the precondition, subdir (α@P,A ∶ I) states that a file named A is found at
abstract cell address α at the end of path P. The file data is not included in
the precondition, but can be found at file inode I. When the last link to a file
is removed, the file will no longer be accessible by any path, and we assume
garbage collection will remove any associated file data.

Finally, consider the stat command, which returns meta-data about the file
or directory identified by the path argument. In this paper, we take that meta-
data to be just the file type, D for directory and F for file. There is one axiom
for each file type; the directory case is:

{ expr(path,P/A) ∧ var(t,−) ⋆ E ⋆ subdir (α@P,A[β]) }
t:=stat(path)

{ var(t,D) ⋆ E ⋆ subdir (α@P,A[β]) }
Notice that the specification uses body address β in A[β] to specify that the
content of A is not changed by the command. It does not need more detailed
knowledge of the contents of A since the command does not require this knowl-
edge to determine that the entry is a directory.

The commands discussed so far are enough to implement the POSIX com-
mand r := remove(path). According to its POSIX description, this command
removes the file or empty directory identified by the path argument. In figure 2
we implement remove and derive its specification. Notice that the derived specifi-
cation exactly matches the English description obtained from POSIX. Following
the same process, we can use the core fragment of this paper to “discover” formal
specifications of many more complex commands of POSIX.

{ expr(path,P/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@P, (A ∶ I ∨A[∅])) }

r := remove(path) ≜ local t {
t := stat(path);

{ ∃T. expr(path,P/A) ∧ var(r,−) ⋆ var(t,T) ⋆ E ⋆ subdir (α@P, (A ∶ I ∧T = F) ∨ (A[∅] ∧T = D)) }

if t = F

{ expr(path,P/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@P,A ∶ I) }

r := unlink(path);

{ var(r, 0) ⋆ E ⋆ subdir (α@P,∅)}

else if t = D

{ expr(path,P/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@P,A[∅]) }

r := rmdir(path);

{ var(r, 0) ⋆ E ⋆ subdir (α@P,∅)}

else r := -1;

{ var(r, 0) ⋆ var(t,−) ⋆ E ⋆ subdir (α@P,∅)}

}
{ var(r, 0) ⋆ subdir (α@P,∅) }

Fig. 2. An implementation of remove and the derived specification

3 File System Specification

We provide an axiomatic specification of our sequential POSIX commands using
SSL.

Local Reasoning for the POSIX File System 175

3.1 Abstract Program State

An abstract program state comprises: an abstract file-system heap, which repre-
sents the directory tree and associated files, as might intuitively reside on a hard
disk; a process heap, which represents the computer memory during execution;
and a variable store, which represents the values of program variables.

File-System Heaps. Abstract file-system heaps are abstract heaps whose cells
contain partial directories. Directories are defined using a set of inodes Inodes,
ranged over by ι, κ,⋯, and a set of file names FNames, ranged over by A,B,⋯,
for naming directories and files. Both sets are defined as in POSIX. Our partial
directories are instrumented by body addresses (context holes), drawn from the
countably infinite set of abstract addresses AbsAddrs, ranged over by x, y, z,⋯,
with (FNames ∪ {F} ∪ Inodes) ∩AbsAddrs = ∅ where F is the distinguished
address of the root directory.

Definition 1 (Directories). The set of unrooted directories, UDirs, is:

ud ∶∶= ∅ ∣ a ∶ ι ∣ a[ud] ∣ ud + ud ∣ x

where ∅ is the empty list of entries, a ∶ ι is a file link associating file name
a ∈ FNames with inode ι ∈ Inodes, a[ud] is a directory named a containing
unrooted abstract directory ud, + is directory composition and x ∈ AbsAddrs

is a body address. The directories have sibling-unique names, body addresses are
unique, and + is commutative and associative with identity ∅.

There is a distinguished ⊺ /∈ FNames representing the root directory of the
file-system tree. The set of rooted directories, RDirs, is defined as RDirs ≜
{⊺[ud] ∣ ud ∈ UDirs}. The set of directories, d ∈ Dirs, is defined by Dirs ≜
UDirs ∪RDirs. Each directory entry has a type DETypes ≜ {F,D}, where F

denotes a hard link to a file and D a directory.

Each body address can be replaced by entries via context application.

Definition 2 (Context application). The addresses function, addrs ∶ Dirs →
P(AbsAddrs) describes the set of body addresses in a directory. Context ap-
plication is the function ○∶ AbsAddrs → (Dirs → UDirs) ⇀ Dirs defined by:

d1 ○x ud2 = {
d1[ud2/x] x ∈ addrs(d1) ∧ addrs(d1) ∩ addrs(ud2) ⊆ {x}
undefined otherwise

where d1[ud2/x] is the substitution of ud2 for x in d1. The function is defined
only if the result is in Dirs.

Many POSIX commands refer to entries in the file system tree by absolute
linear paths through the directory tree. General paths (with .. and symbolic links)
are complex but we should be able to handle general paths using a combination
of promises and obligations discussed in the conclusions: the abstract address x
will have the promise that the part of the path in the context is stable, and the
obligation to keep the part of the path in the context stable.

Definition 3 (Paths and Resolution). The set of relative paths, RelPaths,
is defined by:

176 P. Gardner, G. Ntzik, and A. Wright

rp ∶∶= ε ∣ a ∣ rp/rp

where a ∈ FNames and the path composition / is associative with identity ε. The
set of absolute paths is AbPaths ≜ {⊺} ∪ {⊺/rp ∣ rp ∈ RelPaths}. The set of
abstract paths is AbsPaths = {p/x ∣ p ∈ AbPaths, x ∈ AbsAddrs}. The set of
paths, p ∈ Paths, is Paths ≜ RelPaths ∪AbPaths ∪AbsPaths.

The path resolution function resolve ∶ Paths ×Dirs ⇀ Dirs is defined by:

resolve(a, d + a ∶ ι) = a ∶ ι
resolve(a, d1 + a[d2]) = a[d2]
resolve(x,x + d) = x

resolve(a/rp, d1 + a[d2]) = resolve(rp, d2) if rp /≡ ε
resolve(⊺,⊺[d]) = ⊺[d]

resolve(⊺/rp,⊺[d]) = resolve(rp, d) if rp /≡ ε

In all other cases, the result is undefined.

A file-system heap is the union of three finite partial functions: from distin-
guished address F to the root directory which might be partial; from abstract ad-
dresses to absolute paths (expressing where the corresponding body address lies)
and directories; and from inodes to byte sequences representing file contents. We
construct file-system heaps in two phases: first, we define pre-file-system heaps ;
then, we define well-formedness conditions to give the full definition.

Definition 4 (Pre-file-system Heap). Let Bytes be the set of finite byte
sequences. A pre-file-system heap, pfs ∈ PreFS, is a function in the set

({F} ⇀ {ε} ×RDirs) ⊔ (AbsAddrs

fin
⇀ AbPaths ×Dirs) ⊔ (Inodes

fin
⇀ Bytes)

Let inodes(d) denote the set of all inodes occurring in directory d. A pre-file-
system-heap, pfs, is complete if: dom(pfs) ∩ AbsAddrs = ∅; pfs(F) = (ε, rd);
addrs(rd) = ∅; and inodes(rd) ⊆ dom(pfs)5.

Pre-file-system heaps may use abstract addresses incorrectly. For example,
two separate partial directories at different addresses may contain the same
body address, or the path promises may not correctly identify the location of
the directory. We define a collapse relation, with which we give a well-formedness
condition that ensures addresses are used correctly. The collapse relation intu-
itively states that we can connect a cell address to the matching body address
with context application, if the paths match, as illustrated in figure 3.

Fig. 3. Collapse relation

5 Complete pre-file-system-heaps are thus simple DAGs, with sharing occurring only
at the leaves in the sense that two separate file names can point to the same inode.

Local Reasoning for the POSIX File System 177

Definition 5 (Collapse Relation). Theone-step collapse relation, ↓ ⊆ PreFS×
PreFS, relates pfs1 ↓pfs2 if and only if there is some address addr ∈ AbsAddrs ∪
{F} and unique y ∈ AbsAddrs such that:

1. pfs1(addr) = (p, d) and pfs1(y) = (py, dy);
2. y ∈ addrs(d);
3. there is some q ∈ Paths such that py = p/q;
4. resolve(q, d) = y;
5. pfs2 = pfs1[addr ↦ (p, d ○y dy)]/y

6.

Let ↓* be the reflexive, transitive closure of ↓.

Using collapse, we can detect all pre-file-system heaps that use invalid ad-
dressing. Given pfs, the correct use of abstract addressing falls into three cases:

1. pfs is complete, and is thus trivially uses abstract addresses correctly.
2. pfs uses abstract addresses, but is related via collapse to a complete abstract

file system. In this case, the complete system it is related to must be unique
(see [25] for details).

3. pfs uses abstract addresses, but is not immediately related to a complete
file system. However, at least one other pre-abstract file system pfs′ can be
found such that the union of the two does collapse to a complete file system
(as in case 2). In this case, pfs is a partial file-system heap, missing some
data, but still using abstract addressing in a consistent way.

With the collapse relation, we can now define file-system heaps.

Definition 6 (File-system Heaps). The set of file-system heaps, FS ranged
by fs, is defined as:

FS = {pfs ∈ PreFS ∃pfs′,pfs′′ ∈ PreFS. pfs ⊔ pfs′ ↓* pfs′′ ∧ pfs′′ is complete }

Process Heaps. The process heap represents the contents of the heap during
program execution. It contains structures used for controlling access to files and
directories: open file descriptions and directory streams. An open file description
is a record holding information that controls file accesses: the inode and current
offset of an open file. It is used to support the commands read, write, lseek
and close. The heap addresses of open file descriptions, in POSIX terminology
called file descriptors, are given by the set OFAddrs and ranged by f, g,

A directory stream is an abstract data structure that captures the set of the
entries in a given directory and supports the opendir, readdir and closedir

commands. For example, when opendir(p) is used, a fresh directory stream
address from the set DSAddrs is allocated and mapped to a directory stream,
which provides a snapshot of the entry names in the directory given by path
p. Here, we deviate from POSIX. The readdir command returns the names
of entries contained within a directory. POSIX allows a high degree of non-
determinism when using readdir on a directory whilst modifying its contents:
one may see some changes; all changes; or none. Specifying the full behaviour is
possible, but complex. To aid comprehension, we chose a snapshot semantics.

6 That is, pfs2 is equal to the function obtained from pfs1 by removing y from the
domain, mapping addr to (p, d ○y dy), and leaving the other mappings the same.

178 P. Gardner, G. Ntzik, and A. Wright

Definition 7 (Process Heaps). A process heap, denoted ph ∈ Ph, is a partial

function in the set (DSAddrs

fin
⇀ P(FNames)) ⊔ (OFAddrs

fin
⇀ (Inodes×N))

Variable Stores. Variables are assigned values through a variable store, σ ∶
Vars ⇀ Values, with the set of variable stores denoted Σ. Variables are dy-
namically typed, with values drawn from the set:

Values ≜
Z ⊎ {true, false} ⊎RelPaths ⊎AbPaths ⊎Bytes ⊎ Inodes

⊎ OFAddrs ⊎DSAddrs⊎DETypes

Definition 8 (Abstract Program States). Given the sets of file-system heaps
FS, process heaps Ph and variable stores Σ, the set of abstract program states,
as ∈ AStates, is defined as: AStates ≜ FS ×Ph ×Σ.

3.2 Programming Language

We define a standard imperative sequential WHILE language with calls to POSIX
commands. Program expressions are used as the rvalue of assignments and as
parameters to control-flow commands. They consist of the standard literals,
variable lookup, arithmetic and boolean operations, and path concatenation
Expr/Expr. Expression evaluation [[⋅]]σ ∶ Expr → Σ ⇀ Values is mostly stan-
dard7. Our core POSIX commands can be classified into structural commands
that manipulate the file system structure, primitive IO commands that read and
write the contents of files, and state commands for querying the type of files.

Definition 9 (Core Fragment & Programming Language). The core
POSIX fragment consists of structural commands CStr ∈ CommStr, IO com-
mands CIO ∈ CommIO, and state commands CStat ∈ CommStat:

CStr ∶∶=
r := mkdir(path)∣ r := rmdir(path)∣ r := link(existing, new)

∣ r := unlink(path)∣ r := rename(old, new)

CIO ∶∶=

dir := opendir(path)∣ fn := readdir(dir) ∣ closedir(dir)
∣ fd := open(path, flags)∣ buffer := read(fd, size)

∣ size := write(fd, buffer)

∣ offset’ := lseek(fd, offset, whence) ∣ close(fd)
CStat ∶∶= t := stat(path)

The commands, C ∈ Comm, of the programming language are:

C ∶∶= var := Expr ∣ local var in C ∣ if Expr then C else C
∣ while Expr do C ∣ skip ∣ C ; C ∣ CStr ∣ CIO ∣ CStat

In POSIX, the commands are specified as C function interfaces. Here, we adapt
them to a simple imperative programming style for simplicity. Details relating
to the semantics of C are thus abstracted. We have formally specified all the
commands of this fragment using SSL in [11]. Here, we present specifications for
those commands that are used in our examples.

7 Concatenation: [[Expr/Expr′]]σ ≜ [[Expr]]σ/[[Expr′]]σ iff [[Expr′]]σ /∈ AbPaths.

Local Reasoning for the POSIX File System 179

3.3 Assertions

We describe assertions for reasoning about POSIX programs.8 Analogous to
programs using variables and expressions, assertions use logical variables and
expressions. Logical variables are mapped to values by a logical environment,
e ∈ LEnv, extending program values with directories, paths, abstract addresses,
and sets of these values. Logical expressions, denoted by E,E′, are defined and
evaluated similarly to program expressions, disallowing program variables. We
denote logical variables with block capitals A,B,X,Y, . . ., except for abstract
address variables denoted α,β,

Cell Assertions Directory Assertions φ
Directory Tree dir(F , φ)
Subdirectory subdir (α@E, φ)
File file(I,E)
File Descriptor fd(X, I,E)
Directory Stream ds(X,E)
Heap ptr(E,E)
Variable var(var,E)
Expression expr(Expr,E)

Empty Entry ∅
File Type Entry E ∶ I
Directory Type Entry E[φ]
File System Root ⊺[φ]
Logical Expression E
Entry List φ + φ
Context Application φ ○α φ
Path Resolution @E

Fig. 4. Assertion language

Assertions, P,Q ∈ Asrts, are constructed from: the standard first-order logic
connectives and quantifiers; the separating conjunction of separation logic, P ⋆Q,
and its unit, emp; and the cell assertions of figure 4 which describe file-system
heaps, process heaps and variable stores. Key is the subdirectory assertion,
subdir (α@E, φ), which combines local information φ about the partial directory
at α, and global information about the environment using path promise E. It
states that, at abstract cell address given by α, there is a partial subdirectory
satisfying directory assertion φ (to be explained) which can be rejoined with the
main directory using body address α which must be at the end of path expression
E. The splitting and joining of partial directories gives rise to novel allocation
and deallocation axioms, discussed in Section 3.4.

The file assertion, file(I,E), describes the file with inode address given by
the logical variable I and contents given by the byte sequence described by logi-
cal expression E. The next three cell assertions describe elements of the process
heap and are directly lifted from definition 7. The final two describe the contents
of the variable store. The assertion var(var,E), describes program variable var
with its value given by the logical expression E. Our core program commands ac-
cept parameters given by program expressions. The pure assertion expr(Expr,E)
states that the program expression Expr evaluates to the value of the logical ex-
pression E. The evaluation requires that we own all the variables used in the
expression. Since in an arbitrary expression the variables are unknown, we will

8 We have been asked whether ramified separation logic for reasoning about dags might
be worth exploring [16]. It uses the sepish connective to say that there is possibly
some shared dag structure, but where it is not determined. Here, the dag structure
is fully determined at the leaves, so ramified separation logic is not appropriate.

180 P. Gardner, G. Ntzik, and A. Wright

typically use this assertion in conjunction with an exact assertion E , leading
to assertions of the form expr(Expr,E) ∧ E , where E captures all the variable
resource required to evaluate Expr.

Directory assertions, φ,ψ ∈ DirAsrts, are constructed from the standard
first-order connectives and quantifiers, and the directory assertions of figure 4
describing the structure of directories, context application and path resolution.
Most have been directly lifted from the structure of directories (definition 1).
Context application, φ ○α ψ, taken from context logic, describes a directory
tree that can be separated into an partial directory satisfying φ, with abstract
body address α bound in the assertion, and a partial directory satisfying ψ. The
assertion @E describes directories in which the path given by E resolves.

Definition 10 (Derived Assertions). The standard first-order logic asser-
tions are derived from ⇒ and false. Additionally, we define the following:

◇φ ≜ true ○α φ
complete ≜ ¬∃α.◇α
entry(A) ≜ A[true] ∨ ∃I. (A ∶ I)

�φ ≜ true + φ
top complete ≜ ¬∃α.� α

top(φ) ≜ φ ∧ top complete

can create(A) ≜ (¬�entry(A)) ∧ top complete
names(S) ≜ ∀A. (A ∈ S ⇐⇒ �entry(A)) ∧ top complete

The assertion ◇φ is read “somewhere φ”, and describes directories containing
some directory satisfying φ. The assertion �φ is similar, restricted to siblings.
The assertion complete describes directories that do not contain any abstract
body addresses and thus no subdirectory is missing; top complete is similar, but
restricted to siblings. The assertion top(φ) states that the directory entries satisfy
φ, and that no sibling entries have been split away. The assertion can create(A)
states that an entry named A can be safely created at the current sibling level
(used for commands that create new entries such as mkdir). Finally, names(S)
states that every name in the set S is present as an entry.

3.4 Program Logic

We describe our program logic for reasoning about our core fragment of se-
quential POSIX, comprising standard rules from separation logic, axioms for
specifying the POSIX commands (Figure 5), and abstract allocation and deallo-
cation axioms 11. The abstract allocation and deallocation axioms are similar to
normal heap allocation and deallocation axioms, but instead of introducing and
deleting fresh heap cells, they introduce and delete abstract heap cells in order to
split and recombine partial directories. They are essential for our local reasoning
about directories, and are only possible due to the recent technological advances
of the views framework [6]. For uniformity, we give these as axioms over the id
command, which has no operational effect. It is a technical device to enable the
small axioms in Figure 5 to be used whenever required.

Definition 11 (Abstract allocation and deallocation axioms). The ax-
ioms for abstract allocation and abstract deallocation are, respectively:

{subdir (α@P, (φ1 ∧@q/β) ○β φ2)}
id

{∃γ. (subdir (α@P, (φ1 ∧@q/β) ○β γ) ⋆ subdir (γ@P/Q, φ2))}

Local Reasoning for the POSIX File System 181

{∃γ. (subdir (α@P, (φ1 ∧@q/β) ○β γ) ⋆ subdir (γ@P/Q, φ2))}
id

{subdir (α@P, (φ1 ∧@q/β) ○β φ2)}

The first axiom is abstract allocation. The precondition states that there is a
partial directory at cell α with path promise P . This partial directory can be
viewed as an application of two separate parts: the context directory described
by φ1 which contains a relative path Q ending in body address β, applied via
β to the subdirectory described by φ2. The postcondition states that directory
really can be separated into its two subparts: the subdirectory satisfying φ2 is
“allocated” into its own abstract heap cell γ whose corresponding body address
is at absolute path P/Q; and the context directory at α satisfying φ1 with γ
replacing β. Abstract deallocation is the converse: if we know that γ is at the end
of path Q in a directory that is itself at the end of path P, it is safe to combine
the two using context application.

We justify the abstract allocation and deallocation axioms by referring to the
collapse relation in Definition 5. Abstract allocation is the assertion equivalent
of “expanding” by one step, in that the result introduces one additional abstract
address, but still collapses to the same complete heap. Deallocation is the equiva-
lent of a single collapse step, and will still result in the same complete file system.
Therefore, whilst abstract (de)allocation changes the abstract addressing in use
by a file system, it does not change the underlying file system.

Figure 5 provides the axioms for specifying the commands used in our soft-
ware installer example, plus the axioms for rename as it is the most challenging
command. The complete set of axioms is given in [11]. Each axiom must be stable
with respect to both abstract addresses and path promises. Axioms cannot intro-
duce or remove abstract addresses, and must not invalidate any path promises
that have been issued. Commands that alter paths (for example, rename) ensure
this later point by requiring that the subdirectories described by the precondi-
tions contain no abstract body addresses. Commands such as rename and stat

have multiple axioms, each covering a different behaviour specified in POSIX
depending on the precondition state9.

Consider the mkdir(path) command. According to its POSIX description, it
creates a new empty directory identified by path. An existing entry with the same
name must not already exist. In our precondition, path evaluates to a path of
the form P/B/A. The subdirectory assertion subdir (α@P,B[C ∧ can create(A)])
states that the subdirectory B must be at abstract address α found at the end
of path P with contents C where the predicate can create(A) (definition 10)
states that it is safe to create a new entry A. In the postcondition, the assertion
subdir (α@P,B[C +A[∅]]) states that the empty directory A has indeed been
created. Note that in the case we create a new directory directly under the root,
in the path expression P will be an empty path and B will be ⊺.

Now consider link(existing, new), which creates a new hard link with
path new to the file identified by the path existing. Its first axiom is similar
to that of mkdir. In the precondition, it has two subdirectory assertions, one

9 The preconditions in such cases are mutually exclusive.

182 P. Gardner, G. Ntzik, and A. Wright

{
expr(path,P/B/A) ∧ var(r,−) ⋆ E

⋆ subdir (α@P,B[C ∧ can create(A)])
}

r := mkdir(path)

{ var(r, 0) ⋆ E ⋆ subdir (α@P,B[C +A[∅]]) }

{
expr(path,P/A) ∧ var(r,−)
⋆ E ⋆ subdir (α@P,A[∅])

}

r := rmdir(path)

{ var(r, 0) ⋆ E ⋆ subdir (α@P,∅) }

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

expr(existing,P/A) ∧ expr(new,P′/D/B)
∧ var(r,−) ⋆ E ⋆ subdir (α@P,A ∶ I)

⋆ subdir (β@P
′,D[C ∧ can create(B)])

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

r := link(existing, new)

{
var(r, 0) ⋆ E ⋆ subdir (α@P,A ∶ I)

⋆ subdir (β@P
′,D[C +B ∶ I])

}

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

expr(existing,P/D/A)
∧ expr(new,P/D/B) ∧ var(r,−) ⋆ E

⋆ subdir (α@P,D[(C +A ∶ I) ∧ can create(B)])

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

r := link(existing, new)

{ var(r, 0) ⋆ E ⋆ subdir (α@P,D[C +A ∶ I +B ∶ I]) }

{
expr(path,P/A) ∧ var(r,−)
⋆ E ⋆ subdir (α@P,A ∶ I)

}

r := unlink(path)

{ var(r, 0) ⋆ E ⋆ subdir (α@P,∅) }

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

expr(old,P/A) ∧ expr(new,P′/D/B)
∧var(r,−) ⋆ E ⋆ subdir (α@P,A[C ∧ complete])

⋆ subdir(β@P
′,D [C

′

∧ can create(B)])

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

r := rename(old, new)

{

var(r, 0) ⋆ E ⋆ subdir (α@P,∅)
⋆ subdir(β@P

′,D[C′ +B[C]])
}

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

expr(old,P/D/A) ∧ expr(new,P/D/B)
∧ var(r,−) ⋆ E

⋆ subdir(α@P,D[
(C +A [C

′

∧ complete])
∧ can create(B)

])

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

r := rename(old, new)

{ var(r, 0) ⋆ E ⋆ subdir (α@P,D[C +B[C
′

]]) }

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

expr(old,P/A) ∧ expr(new,P′/B)
∧ var(r,−) ⋆ E

⋆ subdir (α@P,A[C ∧ complete])
⋆ subdir (β@P

′,B[∅])

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

r := rename(old, new)

{
var(r, 0) ⋆ E ⋆ subdir (α@P,∅)

⋆ subdir (β@P
′,B[C])

}

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

expr(old,P/A) ∧ expr(new,P′/B)
∧ var(r,−) ⋆ E ⋆ subdir (α@P,A ∶ I)

⋆ subdir(β@P
′,B ∶ I

′
)

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

r := rename(old, new)

{
var(r, 0) ⋆ E ⋆ subdir (α@P,∅)

⋆ subdir (β@P
′,B ∶ I)

}

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

expr(old,P/D/A) ∧ expr(new,P/D/B)
∧ var(r,−) ⋆ E

⋆ subdir(α@P,D [
(C +A ∶ I)

∧ can create(B)
])

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

r := rename(old, new)

{
var(r, 0) ⋆ E

⋆ subdir (α@P,D[C +B ∶ I])
}

⎧
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

expr(old,P/A) ∧ expr(new,P′/D/B)
∧ var(r,−) ⋆ E ⋆ subdir (α@P,A ∶ I)

⋆ subdir (β@P
′,D [C ∧ can create(B)])

⎫
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

r := rename(old, new)

{
var(r, 0) ⋆ E ⋆ subdir (α@P,∅)
⋆ subdir (β@P

′,D[C +B ∶ I])
}

⎧
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

expr(old,P/A) ∧ expr(new,P/A)
∧ var(r,−) ⋆ E

⋆ subdir (α@P,C∧ entry(A))

⎫
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

r := rename(old, new)

{ var(r, 0) ⋆ E ⋆ subdir (α@P,C) }

{
expr(path,P/A) ∧ var(t,−) ⋆ E

⋆ subdir (α@P,A[β])
}

t := stat(path)

{ var(t,D) ⋆ E ⋆ subdir (α@P,A[β]) }

{
expr(path,P/A) ∧ var(t,−)
⋆ E ⋆ subdir (α@P,A ∶ I)

}

t := stat(path)

{ var(t,F) ⋆ E ⋆ subdir (α@P,A ∶ I) }

{
expr(path,P/D) ∧ var(dir,−) ⋆ E

⋆ subdir (α@P,D[top(C)])
}

dir := opendir(path)
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

∃H. var(dir,H) ⋆ E
⋆ subdir (α@P,D[C ∧ names(A)])

⋆ ds(H,A)

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

{
var(dir,H) ⋆ var(fn,−)
⋆ ds(H,A) ∧A ≠ {}

}

fn := readdir(dir)

{
var(fn,B) ⋆ var(dir,H)

⋆ ds(H, (A ∖ { B})) ∧B ∈ A
}

{
var(dir,H) ⋆ var(fn,−)

⋆ ds(H, {})
}

fn := readdir(dir)

{
var(dir,H) ⋆ var(fn, ε)

⋆ ds(H, {})
}

{ var(dir,H) ⋆ ds(H,A) }
closedir(dir)

{ var(dir,H) }

Fig. 5. Axioms for some POSIX commands

Local Reasoning for the POSIX File System 183

for each path. The assertion subdir (α@P,A ∶ I) states that the existing path
P/A identifies a file link named A to the file with inode address I. The assertion
subdir (β@P

′,D[C ∧ can create(B)]) states, as in mkdir, that an entry with the
name we want to create does not already exist. In the postcondition, the asser-
tion subdir (β@P

′,D[C +B ∶ I]) states that this new entry has been created with
another file link to the same file. Note that, in this first axiom, the update takes
place between two different directories; in the second, they take place within the
same directory.

The rename(old,new) command moves and/or renames the entry identified
by the path old to that identified by new. Consider the first axiom where
old is a directory and new does not exist. In the precondition, the assertion
subdir (α@P,A[C ∧ complete]) states that the subdirectory A must be complete
and the assertion subdir (β@P

′,D [C′ ∧ can create(B)]) states that it is possible
to create the new directory B under D. The only path constraints are that the
global paths P and P

′ must exist in the underlying global directory, thus restrict-
ing the application of the frame rule. In contrast to the first-order rename axiom
discussed in related work, we do not require any additional path constraints to
ensure that P

′ is not a descendant of P/A. It comes automatically from the
separating conjunction.

Finally, the dir:=opendir(path) command allocates a new directory stream
for the directory identified by path and assigns its address to dir. In the precon-
dition, the assertion top(C) (definition 10) states that the entries of the identified
subdirectory D are complete at the top level. In the postcondition, the assertion
subdir (α@P,D[C ∧ names(A)]) declares the set A of all the entries of the direc-
tory D, and uses it in the assertion ds(H,A) to describe the allocated directory
stream atH. Elements of the directory stream are obtained via the readdir com-
mand, for which we have two cases: one when the directory stream is not empty;
and one where it is. Note that readdir non-deterministically selects which en-
try name to return and remove from the A set. This mirrors the fact the order
of directory entries is implementation defined in POSIX. The closedir(dir)

command simply deallocates the directory stream given by dir.

Sequential Soundness.We believe it is enough to justify our axiomatic specifi-
cation by comparing it with the POSIX English standard, since the descriptions
are naturally close. However, this is perhaps a controversial point. In [11], we give
a standard soundness result for sequential programs (no external processes modi-
fying the file system), providing an operational semantics and proving soundness
in the style of the views framework [6].

4 Software Installer

We now demonstrate our reasoning by considering a software installer. New
software is typically provided as a bundle, either downloaded onto the users file
system or provided on some media containing a file system. The goal is to place
the bundle’s contents correctly in the users’ file system which may involve other
tasks such as removing any previous installations and dealing with incompatible

184 P. Gardner, G. Ntzik, and A. Wright

user files. Installers are a common class of client programs that perform complex
manipulation of file system structure.

Here, we develop an installer for the fictional software “Widget v2”. It super-
sedes “Widget v1”, but is incompatible with any v1 user configuration files. Wid-
get v2 consists of a program executable, ‘widgProg’ and a data file, ‘widgData’.
Following common conventions [1], we place the files in ‘⊺/opt/widget/’ and cre-
ate a link from ‘⊺/usr/bin/widget’ to ‘⊺/opt/widget/widgProg’. An example
situation the installer may encounter is that in figure 1, where v1 exists and the
user ‘adw07’ has a configuration file.

Even though our installer is fictional, it follows a common workflow found in
real practice. In our example, this workflow translates to the following steps:

1○ Test if entries already exist at the locations we wish to place Widget v2 files.
If they exist, we expect ‘⊺/usr/bin/widget’ to be a file and ‘⊺/opt/widget’ to
be a directory. If this is the case, we remove them. If it is not, the installer
aborts without modifying the system to avoid damaging other components.

2○ Check for v1 configuration files in home directories, and remove them where
they exist as they are assumed to be incompatible.

3○ Copy Widget v2 files to the target location on the file system.
4○ Make a link to the Widget v2 executable, so the user can run it.

Before implementing the installer we need to consider errors. So far, our spec-
ifications describe only when commands succeed. However, commands can also
fail with an error result. Our installer relies on the stat command returning an
error when a path does not exist. We consider error specifications for the entire
subset in [11]. Here, we discuss only the enoent error for stat, triggered when
a path does not resolve to a file or directory. To describe a file system in which
a path cannot resolve, we define the following:

enoent(P)≜P ≡ ε∨(∃P′,A,B,P′′. P≡P′/A/B/P′′. subdir (α@P
′,A[can create(B)]))

This predicate states that the path P has a prefix which can be resolved, but a
suffix which cannot. All paths which do not resolve will satisfy this specification
and with it, we can give the following error axiom for stat:

{ expr(path,P) ∧ var(t,−) ⋆ var(errno,−) ⋆ E ⋆ S ∧ enoent(P) }
t := stat(path)

{ var(t,−1) ⋆ var(errno,enoent) ⋆ E ⋆ S}

In the precondition we use the predicate on the value of path to assert that we
are in the error case. Note that we capture the state satisfying the predicate in
the logical variable S. In the postcondition, this state is preserved and the global
variable errno is assigned the error value, for which we use the same name as
the predicate for convenience.

To remove an existing Widget installation (point 2○) we need to be able to
remove non-empty directories, but rmdir only removes empty directories. We
can implement a program rmdirRec that recursively removes all the directories
entries before removing the directory itself. The specification is:

{ expr(path,P/A) ∧ var(r,−) ⋆ E ⋆ subdir (α@P,A[complete])}
r := rmdirRec(path)

{ var(r,0) ⋆ E ⋆ subdir (α@P,∅) }

Local Reasoning for the POSIX File System 185

Finally, to copy files (point 4○), we can implement the program fileCopy

with the following specification:

{ expr(source,P/A) ∧ expr(target,P′/D) ∧ var(r,−) ⋆ E
⋆ subdir (α@P,A ∶ I) ⋆ subdir (β@P

′,D[C ∧ can create(A)]) ⋆ file(I,Sd)}

r := fileCopy(source, target)

{∃I
′. var(r,0) ⋆ E ⋆ subdir (α@P,A ∶ I) ⋆ subdir (β@P

′,D[C +A ∶ I′])
⋆ file(I,Sd) ⋆ file(I′,Sd) }

We have implemented both rmdirRec and fileCopy and derived their specifi-
cations in [11].

The installation of a simple, two file program is a surprisingly complex task.
We therefore specify our intuitions about good behaviour and prove that our
installer matches them. First, we develop abstractions to assist us in the speci-
fications. We use the following predicates to assert that entries may or may not
exist within a given directory resource:

out(C,A) ≜ top(C) ∧ ¬� entry(A) in(C,A) ≜ C + entry(A)
infile(C,A) ≜ C + ∃I. A ∶ I

The first predicate describes directory entries C in which an entry named A does
not exist, whereas the second describes entries C in which it does. infile(C,A)
is more specific and describes directory entries C with an A file entry.

We build a precondition for our installer out of several sub-assertions with
the help of the above predicates. In these, the assertion +X∈E φ is the iterated
version of +, interpreted as φ1+⋯+φ

∣E∣
where each φi has X bound to a distinct

member of E.

srcPre ≜ subdir (δ@IL,widgProg ∶ J +widgData ∶ K) ⋆ file(J,Prog) ⋆ file(K,Dat)

homePre ≜ subdir (α@⊺,home [+(N,C)∈H N [infile(C, .wconf) ∨ out(C, .wconf)]])

binPre ≜ subdir (γ@⊺/usr,bin [in(B,widget) ∨ out(B,widget)])

optPre ≜ subdir (β@⊺,opt [top(T) + (∅ ∨widget[Tw ∧ complete]])

Each of these describes the states that parts of the file system may be in for
the installer to run safely. The directory entries and file data that make up the
Widget v2 installation sources are described by srcPre. We require them to be
in a location given by the variable il. homePre captures all the home directories
of the system, along with the fact that some of them will contain a v1 ‘.wconf ’
configuration file. The binPre resource captures the UNIX executables directory,
that may contain a ‘widget’ entry. Finally, optPre describes the target installation
directory, which may already contain a previous installation, which we require
to be complete, as it will be deleted.

We combine these descriptions into a precondition, where we also snapshot
the initial state in the logical variable W, to show that nothing changes in the
event of an error.

Pi ≜ var(il, Il) ⋆ var(r,−) ⋆ var(errno,−) ∧W ∧ srcPre ⋆ homePre ⋆ binPre ⋆ optPre

If the installer errors, we expect the file system to be unchanged. If it succeeds,
we expect Widget v1 to be installed successfully. There should be no other
outcome. We describe a successful installation with the following sub-assertions:

186 P. Gardner, G. Ntzik, and A. Wright

{Pi }

r := installWidgetV2 ≜

local t1, t2, hDir, user {
{ var(t1,−) ⋆ var(t2,−) ⋆ var(errno,−) ⋆ binPre ⋆ optPre }

// Check for preexisting files (point 1○). The installer expects ⊺/usr/bin/widget
// to be a file and ⊺/opt/widget to be a directory, if they exist.
t1 := stat(‘⊺/usr/bin/widget’); t2 := stat(‘⊺/opt/widget’);

{
var(t1,T1) ∧ (T1 = F ∨D ∨ −1) ⋆ var(t2,T2) ∧ (T2 = F ∨D ∨ −1)

⋆ var(errno,E) ∧ ((T1 = −1 ∨T2 = −1) ⇒ E = enoent) ⋆ binPre ⋆ optPre
}

if t1 = D ∨ t2 = F
// There are preexisting entries, but not of a previous installation.
// The installer ends here without any modifications.
r = -1;

else
// Either previous entries do not exist, or they are of a previous installation.

{ var(r,−) ⋆ var(t1,F) ∨ var(t1,−1) ⋆ var(t2,D) ∨ var(t2,−1) ⋆ binPre ⋆ optPre }

if t1 = F
// Remove previous installation executable.
r := unlink(‘⊺/usr/bin/widget’);

if t2 = D
// Remove previous installation directory. We apply the rmdirRec specification.

{ var(t2,D) ⋆ var(r,−) ⋆ subdir (β@⊺, opt[T +widget[Tw ∧ complete]]) }

r := rmdirRec(‘⊺/opt/widget’);

{ var(t2,D) ⋆ var(r, 0) ⋆ subdir (β@⊺, opt[T]) }

{
var(r, 0) ⋆ var(t1,F) ∨ var(t1,−1) ⋆ var(t2,D) ∨ var(t2,−1)

⋆ subdir (γ@⊺/usr,bin[B]) ⋆ subdir (β@⊺, opt[T])
}

// Remove any stale Widget configuration files (point 2○)

{var(hDir,−)⋆var(user,−)⋆subdir(α@⊺,home[+(N,C)∈HN [infile(C, .wconf) ∨out(C, .wconf)]]) }

hDir := opendir(‘⊺/home’);
user := readdir(hDir);

{

∃Hd,U,Us. var(hDir,Hd) ⋆ var(user,U) ⋆ ds(Hd,Us)

⋆ subdir(α@⊺,home[+(N,C)∈H N [out(C, .wconf) +N ∈ Us ⇒ (∅∨ ∃I. .wconf ∶ I) ∧N /∈ Us⇒∅]])
}

while user ≠ ε
// We iterate over every user’s home directory and delete the file.
// If the file does not exist, then unlink returns -1 as in stat.
r := unlink(‘⊺/home’/user/‘.wconf’); user := readdir(hDir);

closedir(hDir);
// In the end, there are no Widget V1 configuration files.

{ subdir (α@⊺,home [+(N,C)∈H N [C ∧ can create(.wconf)]]) }

// Now we create the new installation, copy the new Widget files
// and link the executable (Points 3○ and 4○)

{
var(r,−) ⋆ var(il, Il) ⋆ subdir (δ@Il, v2DirPre) ⋆ subdir (α@⊺, homePost)

⋆ subdir (γ@⊺/usr,bin[B]) ⋆ subdir (β@⊺, opt[T]) ⋆ file(J,Prog) ⋆ file(K,Dat)
}

r := mkdir(‘⊺/opt/widget’);
r := fileCopy(il/‘widgProg’, ‘⊺/opt/widget’);
r := fileCopy(il/‘widgData’, ‘⊺/opt/widget’);
r := link(‘⊺/opt/widget/widgProg’, ‘⊺/usr/bin/widget’); r := 0

⎧
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∃J’,K’. var(r, 0) ⋆ var(il, Il) ⋆ srcPre ⋆ homePost

⋆ subdir (β@⊺, opt [T +widget [widgProg ∶ J’ +widgData ∶ K’]])

⋆ subdir (γ@⊺/usr,bin[B +widget ∶ J’]) ⋆ file(J’,Prog) ⋆ file(K’,Dat)

⎫
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

}

{

∃R, J′,K′. var(il, Il) ⋆ var(r,R) ⋆ var(errno,−) ∧ (R = −1 ⇒W)

∧ R = 0 ⇒ (srcPre ⋆ homePost ⋆ optPost(J
′,K′) ⋆ binPost(K

′

) ⋆ v2FilesPost(J
′,K′))

}

{Qi }

Fig. 6. Widget v2 software installer

Local Reasoning for the POSIX File System 187

v2FilesPost(J,K) ≜ file(J,Prog) ⋆ file(K,Dat)

homePost ≜ subdir (α@⊺,home [+(N,C)∈H N [C ∧ can create(.wconf)]])

binPost(J) ≜ subdir (γ@⊺/usr,bin[B +widget ∶ J])

optPost(J,K) ≜ subdir (β@⊺,opt[T +widget[widgProg ∶ J +widgDat ∶ K]])

The postcondition is built from these sub-assertions.

Qi ≜
∃R,J′,K′. var(il, Il) ⋆ var(r,R) ⋆ var(errno,−) ∧ (R = −1⇒W)
∧ R = 0⇒ (srcPre ⋆ homePost ⋆ optPost(J′,K′) ⋆ binPost(J′)⋆v2FilesPost(J′,K′))

Note that if the installer fails, the return variable r has value -1 and the state of
the file system is the same as in the precondition, captured by the logical variable
W. Otherwise, r is 0 and the state changes according to the sub-assertions that
we have defined.

Our installer implementation, along with a proof that it meets its specification,
{Pi}installWidgetV2{Qi}, is given in figure 6. Throughout the proof we make
implicit use of the frame rule to temporarily discard irrelevant state, and at the
points of axiom application we implicitly use abstract allocation/deallocation.

5 Conclusions and Future Work

The POSIX file system provides an interesting challenge for local reasoning: com-
plex abstract data update with global absolute paths for identifying the place
to do local update. We give a natural axiomatic specification of the sequential
POSIX file system using SSL; the general theory is in [25, 12]. We verify safety
properties for a client software installer, demonstrating integrated reasoning for
the file system and the heap. Our POSIX reasoning provides an illustrative exam-
ple of reasoning about global access and local update; other natural applications
include identifying the ith element of a list [25] and querying the DOM.

The promises in our POSIX reasoning are naturally stable. Wright has also
explored the combination of promises and obligations: promises on abstract heap
cells give information about what can be relied upon by the environment; obliga-
tions gives information about what data fragments must guarantee; sometimes
both are needed for stability. In this paper, the only obligations are that the
abstract cell and body addresses must be preserved. In general, understanding
obligations is hard. A natural test example would be to extend the core POSIX
fragment presented here with non-linear paths (.. and symbollic links), where the
paths can move back and forth over the structure. We also believe obligations
will be useful for file-access permissions and shared-memory concurrency.

Acknowledgements. We acknowledge funding from an EPSRC DTA (Ntzik,
Wright) and EPSRC programme grant EP/H008373/1 (Gardner, Ntzik and
Wright). We also thank Pedro da Rocha Pinto, Ramana Kumar, Azalea Raad,
Tom Ridge and Mark Wheelhouse for many interesting discussions.

188 P. Gardner, G. Ntzik, and A. Wright

References

[1] Filesystem Hierarchy Standard Group. Filesystem hierarchy standard
[2] POSIX.1-2008, IEEE 1003.1-2008, The Open Group Base Specifications Issue 7
[3] Variables as resource in separation logic. Electronic Notes in Theoretical Computer

Science 155, 247–276 (2006)
[4] Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: Verifying a File System Imple-

mentation. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 373–390. Springer, Heidelberg (2004)

[5] Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. SIGPLAN
Not. (2005)

[6] Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL (2013)

[7] Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

[8] Fisher, K., Foster, N., Walker, D., Zhu, K.Q.: Forest: a language and toolkit for
programming with filestores. In: ICFP (2011)

[9] Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/Eves: an experiment in the
verified software repository. In: IEEE International Conference on Engineering of
Complex Computer Systems (2007)

[10] Freitas, L., Woodcock, J., Butterfield, A.: POSIX and the verification grand chal-
lenge: A roadmap. In: ICECCS (2008)

[11] Gardner, P., Ntzik, G., Wright, A.: Local Reasoning for the POSIX File System.
Technical report, Imperial College London (2014),
http://www.doc.ic.ac.uk/~gn408/POSIXFS/

[12] Gardner, P., Raad, A., Wheelhouse, M., Wright, A.: Abstract Local Reasoning for
Concurrent Libraries. In preparation (2014)

[13] Gardner, P., Smith, G., Wheelhouse, M., Zarfaty, U.: Local Hoare reasoning about
DOM. In: PODS (2008)

[14] Gardner, P., Wheelhouse, M.: Small specifications for tree update,
http://www.doc.ic.ac.uk/~pg/papers/move.pdf

[15] Hesselink, W.H., Lali, M.: Formalizing a hierarchical file system. In: REFINE
(2009)

[16] Hobor, A., Villard, J.: The ramifications of sharing in data structures. In: POPL
(2013)

[17] Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Form.
Asp. Comput. (2007)

[18] Morgan, C., Sufrin, B.: Specification of the UNIX Filing System. IEEE Transac-
tions on Software Engineering (1984)

[19] Ntzik, G.: Local Reasoning about File Systems. PhD thesis (expected, 2014)
[20] Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL (2005)
[21] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

LICS (2002)
[22] Smith, G.: Local Reasoning about Web Programs. PhD thesis (2011)
[23] Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,

Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014)
[24] Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning

in a logic for higher-order concurrency. In: ICFP (2013)
[25] Wright, A.: Structural Separation Logic. PhD thesis, Imperial College London

(2013)

http://www.doc.ic.ac.uk/~gn408/POSIXFS/
http://www.doc.ic.ac.uk/~pg/papers/move.pdf

A Coq Formalization of the Relational

Data Model�

Véronique Benzaken1, Évelyne Contejean2, and Stefania Dumbrava1

1 Université Paris Sud, LRI, France
2 CNRS, LRI, Université Paris Sud, France

Abstract. In this article, we propose a Coq formalization of the re-
lational data model which underlies relational database systems. More
precisely, we present and formalize the data definition part of the model
including integrity constraints. We model two different query language
formalisms: relational algebra and conjunctive queries. We also present
logical query optimization and prove the main “database theorems”: al-
gebraic equivalences, the homomorphism theorem and conjunctive query
minimization.

1 Introduction

Current data management applications and systems involve increasingly mas-
sive data volumes. Surprisingly, while the amount of data stored and managed
by data engines has drastically increased, little attention has been devoted to
ensure that those are reliable. Obtaining strong guarantees requires the use of
formal methods and mature tools. A very promising approach consists in using
proof assistants such as Coq [10]. Among such systems, relational database man-
agement systems (RDBMS) are the most widespread, motivating our choice to
focus on the formalization of the relational data model.

The relational model serves different related purposes: it allows to represent
information through relations, to refine the represented information by further
restricting it through integrity constraints. It also provides ways to extract in-
formation through query languages based on either algebra (relational algebra
queries) or first-order logic (conjunctive queries). Two different equivalent ver-
sions of the relational model exist: the unnamed and the named ones. In the
unnamed setting, the specific attributes of a relation are ignored: only the arity
(i.e., the number of attributes) of a relation is available to query languages. In
the named setting, attributes are viewed as an explicit part of a database and
are used by query languages and integrity constraints. In practice, systems such
as Oracle, DB2, PostgreSQL or Microsoft Access, rely on the named version of
the model. They do it for several reasons. First, because for modeling purposes,
names carry much more semantics than column numbers. Second, query opti-
mizers do exploit auxiliary data structures such as indexes natively based on
attributes names for physical optimization purposes (exploiting different algo-
rithms and/or indexes). We thus chose to formalize this version.

� This work is partially supported by ANR project Typex no 11BS0200702.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 189–208, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

190 V. Benzaken, É. Contejean, and S. Dumbrava

1.1 Related Work

The first attempt in that direction is found in Gonzalia [5,6]. This work inves-
tigates different formalizations of the unnamed version of the model and only
addresses data definition and relational algebra aspects. A more recent formal-
ization is found in Malecha et al., [8] which addresses the problem of designing
a fully verified, lightweight implementation of a relational database system. The
authors prove that their implementation meets the specification, all the proofs
being written and verified in the Ynot [3] extension of Coq. However, they imple-
mented only a single-user database system. Both works chose a very unrealistic
data model, the unnamed version, and gave only a partial modeling, insofar
as conjunctive queries, serious optimization techniques, as well as integrity con-
straint aspects, are left for future work. Any modeling aiming at being a realistic
full-fledged specification of the relational model has to include all of them.

1.2 Contributions

Our long term purpose is to prove that existing systems conform to their specifi-
cations and to verify that programs that make intensive use of database queries
are correct and not to implement a RDBMS in Coq. So, the first essential step is
to formalize the relational model of data. We first formalize the data definition
part of the model, relational algebra and conjunctive queries. Since the latter
play a central role in optimization, as they admit an exact equivalent optimized
form, we provide both a formal specification and a certified version of the al-
gorithm that translates relational algebra queries into conjunctive queries. We
then present logical query optimization, for both query formalisms, and prove
the main “databases theorems”: algebraic equivalences, the homomorphism the-
orem and conjunctive query minimization. We also provide a certified algorithm
for such a minimization. As integrity constraints are central to database tech-
nology at the design level, to build relation structures (called schemas in the
database dialect) enjoying good properties, and at the compiler and optimizer
levels, to generate optimizations, we thus specify the integrity constraints part
of the relational model. We model functional and general dependencies which
are considered by the database community as the most important constraints.
We then deal with the problem of implication, i.e., inferring all logically implied
constraints from a given set. Inferring all constraints is important, as these are
intensively used for design and optimization purposes, and since, in the absence
of some of them, the compiler could miss further optimizations. We provide a
formal Coq proof that the inference system for functional dependencies, a.k.a.,
Armstrong’s system, is sound, complete and terminating. We formalize and prove
the correctness of the procedure for deducing new general dependencies, a.k.a.,
the chase. The informal presentation of all concepts is directly taken from refer-
ence textbooks on the topic [1,11,9]. Our formalization achieves a high degree of
abstraction and modularity and is, to our knowledge, the most realistic mech-
anization of classic database theory to date. A last but not least contribution
is that through this formalization process, we also bring insight both to the

A Coq Formalization of the Relational Data Model 191

database and to the Coq communities. To this extent, we emphasize, through-
out this article, the subtleties, which were hidden (or even missing) in textbooks.
Finally, we would like to stress that this formalization step is not a mere Coq
exercise of style but a needed phase in the realistic verification of full fledged
database management systems, and there is no way around it.

1.3 Organization

In Section 2, we present and formalize the named version of the relational model,
in Section 3, we model relational algebra, and conjunctive queries, we formal-
ize and extract an algorithm translating algebra queries into conjunctive ones.
In Section 4, we present the logical query optimization and prove the main
“database theorems”: algebraic equivalences, tableaux query minimization and
the homomorphism theorem. We discuss and formalize the constraint part of the
model in Section 5. We conclude by drawing lessons and giving perspectives in
Section 6.

2 Data Representation

Intuitively, in the relational model, data is represented by tables (relations) con-
sisting of rows (tuples), with uniform structure and intended meaning, each of
which gives information about a specific entity. For example, assuming we want
to describe movies, we can represent each movie by a tuple, whose fields (at-
tributes) could be the movie title, its director and one of its actors. Note that
we will have as many rows as there are actors for a given movie. Then, assuming
that movies are screened in specific locations, these could be described by a the-
ater name, an address and a phone number. Last, one should be able to find in
the Pariscope journal1 which theater features which movie on which schedule.

2.1 Attributes, Domains, Values

Quoting [1], a set attribute of (names for) attributes is fixed and equipped with
a total order ≤att. When different attributes should have distinct domains (or
types), a mapping, dom, from attribute to domain is assumed. Further, an infinite
set value is fixed. Usually, the set of attributes is assumed to be countably infinite
but in our formal development this assumption was not needed. We also assume
several distinct domain names (e.g., “string”, “integer”), which belong to set
domain. In the database context, domain corresponds to the Coq notion of type.
In order to have a decidable equality, we rather used our own type : Type. In our
setting, dom is called type–of–attribute. Each value has a formal type (obtained
by the function type–of– value) which belongs to type. All these assumptions are
gathered in a Coq record Tuple.Rcd, whose contents will be enriched throughout
this section.

1 The Pariscope is a Parisian journal for advertising cultural events.

192 V. Benzaken, É. Contejean, and S. Dumbrava

Module Tuple.
Record Rcd : Type :=
mk–R {
(∗ Basic ingredients,
attributes, types and values ∗)

attribute : Type;

type : Type;
value : Type;
(∗ Typing attributes and values. ∗)
type– of– attribute : attribute →

type;
type– of– value : value → type;

(∗ Default Values. ∗)
default– value : type → value;
... }.
End Tuple.

We illustrate these definitions with our running movie example. Recall that our
purpose is not to store an actual database schema or instance in Coq, rather the
following example is intended to be a proof of concept.

Inductive attribute :=
| Title | Director | Actor | Theater
| Address | Phone | Schedule.

Inductive type :=
| type– string | type– nat | type– Z.

Inductive value :=
| Value– string : string → value
| Value– nat : nat → value

| Value– Z : Z → value.
Definition type– of– attribute x :=
match x with
| Title | Director | Actor | Theater
| Address | Phone ⇒ type– string
| Schedule ⇒ type– nat

end.

Definition type– of– value v :=
match v with
| Value– string –⇒ type– string
| Value– nat –⇒ type– nat
| Value– Z –⇒ type– Z
end.

There is also a more generic modeling for attributes, and in that case, for the
sake of readability, we could use the Coq notations shown in [2].

2.2 Tuples

In the named perspective, tuples are characterized by their relevant attributes
(for example {Title, Director, Actor} for movies). We call this the tuple’s support.
Following textbooks, we naturally model support’s by finite sets. To this end,
we mainly used Letouzey’s MSet library [7]. To be as modular as possible, we
still dissociate the specification of finite sets from the implementation. The spec-
ification is given by a record Fset.Rcd parametrized by the elements’ type and
contains a comparison function elt–compare. From now on, we use the notation

set
=

to denote set equivalence, which is actually the usual mathematical extensional
equality for sets: ∀s s′, s

set
= s′ ⇐⇒ (∀e, e ∈ s ⇐⇒ e ∈ s′). For the sake of

readability, the usual sets operators will be denoted with their usual mathemati-
cal notations (∩ , ∪ , \, ∈ ,...). Extending the record Tuple.Rcd, we further assume:

Module Tuple.
Record Rcd : Type := mk–R {
(∗∗ Basic ingredients,

attributes, domains and values ∗)
...
A : Fset.Rcd attribute;
(∗∗ tuples ∗)
tuple : Type;
support : tuple → set A;
dot : tuple → attribute → value;
mk– tuple : set A → (attribute → value) → tuple;

support– mk– tuple– ok :

∀V f, support (mk– tuple V f)
set
= V;

dot–mk– tuple– ok :
∀ a V f, a ∈V → dot (mk– tuple V f) a = f a;
FTuple : Fset.Rcd tuple;
tuple– eq– ok : ∀ t1 t2 : tuple,

(Fset.elt– compare FTuple t1 t2 = Eq) ←→
(support t1

set
= support t2

∧

∀ a, a ∈ (support t1) → dot t1 a = dot t2 a)
}

where A models finite sets of attribute’s. We still keep the type of tuples abstract
and assume the existence of two functions: support, returning the relevant tu-
ple attributes, and dot, the associated field extraction. These functions allow to
characterize tuple equivalence (tuple–eq–ok) since a tuple t behaves as the pair
(support t, dot t). Further, we assume the existence of the mk– tuple function which
builds tuples. This and the previous modeling of attribute induce a notion of tuple

A Coq Formalization of the Relational Data Model 193

well-typedness. A tuple t is well-typed if and only if for any attribute a in its
support the type of the value t.a is the type of attribute a:

Definition well– typed– tuple (t : tuple) := ∀ a, a ∈ (support t) → type– of– value (dot t a)= type– of– attribute a.

However and surprisingly, such a notion was useless to prove all the results stated
in theoretical textbooks. This is an a posteriori justification of the relevance of
the assumption that it suffices to use a unique domain for values. The previously
presented record Tuple.Rcd captures exactly the abstract behavior of tuples i.e.,
the needed properties for proving all the theorems presented hereafter. To illus-
trate the generality and flexibility of our specification, we give, in [2], different
possible implementations for tuples. All of them satisfy the required proper-
ties and are orthogonal to the implementation of attributes. Among others, one
implements tuples as pairs containing a set of attributes and a function, and
sticks to the abstract definition. For instance, another one implements tuples as
association lists between attributes and values.

2.3 Relations, Schemas and Instances

A distinction is made between the database schema, which specifies the structure
of the database, and the database instance, which specifies its actual content:
sets of tuples. In textbooks, each table is called a relation and has a name. A set
relname of relation names, equipped with a suitable comparison function specified
by ORN, is thus assumed. The structure of a table is given by a relation name
and a finite set of attributes: its sort. The relation name, together with its sort, is
called the relation schema. A database schema is a non-empty finite set of relation
schemas. We choose to model database schemas with a function basesort which
associates to each relname its sort. We adopted this representation because it is
the most abstract and makes no further choices on any concrete implementation
(e.g., association lists or finite maps or even functions) of function basesort.

Module DatabaseSchema.
Record Rcd attribute (A : Fset.Rcd attribute) : Type :=
mk–R { (∗∗ names for relations ∗) relname : Type; ORN : Oset.Rcd relname; basesort : relname → set A}.
End DatabaseSchema.

More precisely, the basesort function will be used to relate the support of tuples
(in the instance they belong to) and the structure of the corresponding relation
name.

Definition well– sorted– instance (I : relname → setT) :=

∀ (r : relname) (t : tuple), t ∈ (I r) → support t
set
= basesort r.

It is important to mention that, in all our further development, the notion of
well-sorted instance resulted central to the correctness of many theorems.

3 Queries

Queries allow the extraction of information from tables. The result of a query is
also a table or a collection of tables. Information extraction is usually performed
by a query language, the standard being SQL or QBE. All these languages rely

194 V. Benzaken, É. Contejean, and S. Dumbrava

on a more formal basis: relational algebra or first-order logic. Both formalisms
are based on the notion of tuples. Thus, we assume the existence of a record
T of type Tuple.Rcd, for representing tuples, as well as of a record DBS of type
DatabaseSchema.Rcd, for representing base relations. Moreover, we assume that
T and DBS use the same representation, A, for finite sets of attributes. This is
achieved by parameterizing DBS by (A T). For the sake of readability, we shall
omit all extra (implicit) record arguments and denote by setA and setT finite sets
of attributes and tuples respectively.

3.1 Relational Algebra

Relational algebra consists of a set of (algebraic) operators with relations as
operands. The algebra we shall consider in this article is the SPJRU(ID), where
S stands for selection, P for projection, J for natural join, R for renaming and
last U for union. Though intersection (I) and difference (D) are not part of the
SPJRU minimal algebra, we decided to include them at this point, as they are
usually part of commercial query languages. In the context of the named version,
the natural way to combine relations is the natural join, whereas in the unnamed
one it is the Cartesian product. The complete definition of queries is given in
Figure 1. In our development, we chose, as far as possible, not to embed proofs
in types. Hence, types are much more concise and readable.

Inductive query : Type :=
| Query– Basename : relname → query
| Query– Sigma : formula → query → query
| Query– Pi : setA → query → query
| Query–NaturalJoin : query → query → query
| Query– Rename : renaming → query → query
| Query–Union : query → query → query
| Query– Inter : query → query → query
| Query–Diff : query → query → query

with variable : Type :=
| Var : query → varname → variable
with term : Type :=
| Term– Constant : value → term

| Term–Dot : variable → attribute → term
with atom : Type :=
| Atom–Eq : term → term → atom
| Atom– Le : term → term → atom
with formula : Type :=
| Formula– Atom : atom → formula
| Formula– And : formula → formula → formula
| Formula– Or : formula → formula → formula
| Formula– Not : formula → formula
| Formula– Forall : variable → formula → formula
| Formula– Exists : variable → formula → formula.

Fig. 1. Queries

Syntax. Base relations are queries. Concerning the selection operator, in text-
books, it has the form σA=a or σA=B, where A,B ∈ attribute and a ∈ value.
The notation A = a (A = B resp.,) is improper and corresponds to x.A = a
(x.A = x.B resp.,) where x is a free variable. Given a set of tuples I, with
the same support S, we shall call S the sort of I. The selection applies to any
set of tuples I of sort S, (with A,B ∈ S) and yields an output of sort S. The
semantics of the operator is σf (I) = {t | t ∈ I ∧ f{x → t}} where f{x → t}
stands for “t satisfies formula f”, x being the only free variable of f . Formula
satisfaction is based on the standard underlying interpretation. Since, in another
context (database program verification) we use general first-order formulas, we

A Coq Formalization of the Relational Data Model 195

chose to model selection’s (filtering) conditions with them, rather than restrict-
ing ourselves to the simpler case found in textbooks. We first introduce names
for variables:

Inductive varname : Set := VarN : N → varname.

Then formulas are built in the standard way from equality and inequality atoms
which compare either constants or tuples’ field extractions. However, one should
notice that variables are used to denote tuples in the output of specific queries,
therefore containing information about the query itself. For example variable x

below is intended to represent any tuple in the Movies relation while formula f

corresponds to x ∈ Movies⇒ x.Director = ”Fellini”.

Notation x := (Var (Query– Basename Movies) (VarN 0)).
Definition f := (∗ x ∈Movies ⇒ x.Director = ”Fellini” ∗)
(Formula– Atom (Atom–Eq (Term–Dot x Director) (Term–Constant (Coq– string ”Fellini”)))).

The projection operator has the form π{A1,...,An}, n ≥ 0 and operates on all in-
puts, I, whose sort contains the subset of attributes W = {A1, . . . , An} and pro-
duces an output of sort W . The semantics of projection is πW (I) = {t|W | t ∈ I}
where the notation t|W represents the tuple obtained from t by keeping only
the attributes in W . Remember that setA denotes finite sets of attributes and
embeds as an implicit argument (A T), the record representing all types and
operations on finite sets. Depending on the actual implementation of sets, this
definition may contain some proofs in the setA data type. For instance the proof
that a set is an AVL tree may be part of the type. The natural join operator,
denoted ��, takes arbitrary inputs I1 and I2 having sorts V and W , respec-
tively, and produces an output with sort equal to V ∪ W . The semantics is,
I1 �� I2 = {t | ∃v ∈ I1, ∃w ∈ I2, t|V = v ∧ t|W = w}. When sort(I1) = sort(I2),
then I1 �� I2 = I1 ∩ I2 , and when sort(I1) ∩ sort(I2) = ∅, then I1 �� I2
is the cross-product of I1 and I2. The join operator is associative and com-
mutative. An attribute renaming for a finite set V of attributes is a one-one
mapping from V to attribute. In textbooks, an attribute renaming g for V is
specified by the set of pairs (a, g(a)), where g(a) �= a; this is usually written as
a1a2 . . . an → b1b2 . . . bn to indicate that g(ai) = bi for each i ∈ [1, n], n ≥ 0.
A renaming operator for inputs over V is an expression ρg, where g is an at-
tribute renaming for V ; this maps to outputs over g[V]. Precisely, for I over
V , ρg(I) = {v | ∃u ∈ I, ∀a ∈ V, v(g(a)) = u(a)}. We made a different more
abstract choice to model this operator. To avoid proofs in types, we made no
assumptions on the “renaming” function except for its type attribute → attribute

in the inductive definition. However, the one-to-one assumption will explicitly
appear as an hypothesis for some theorems. Set operators can be applied over
sets of tuples, I1, I2, with the same sort. As standard in mathematics, I1 ∪ I2
(resp. I1 ∩ I2, I1 \ I2) is the set having this same sort and containing the union
(resp., intersection, difference) of the two sets of tuples. Sort compatibility con-
straints are absent in our modeling so as to avoid proofs and will be enforced in
the semantics part.

196 V. Benzaken, É. Contejean, and S. Dumbrava

Semantics. We present our Coq modeling of query evaluation. We, hence, have
to explicitly describe constraints about sorts, which were, deliberately, left out
of the query syntax. For base queries, the sort corresponds to the basesort of the
relation name, for selections, the sort is left unchanged and for joins, the sort is
as expected the union of sorts. The cases which are of interest are projections,
renaming and set theoretic operators. For projections, rather than imposing that
the set W of attributes on which we project, be a subset of the sort of q1, we
chose to define the sort of Query–Pi W q1 as their intersection (W ∩ sort q1). For
renaming, we check that the corresponding function rho behaves as expected,
i.e., that it is a one-to-one mapping over attributes in q1; otherwise the sort of
the query is empty. Last, for set theoretic operators, if the input’s sorts are not
compatible, the sort of the query is empty. This is formally defined by:

Fixpoint sort (q : query) : setA := match q with
| Query– Basename r ⇒ basesort r
| Query– Sigma – q1 ⇒ sort q1
| Query– Pi W q1 ⇒W ∩ sort q1
| Query– Join q1 q2 ⇒ sort q1 ∪ sort q2
| Query– Rename rho q1 ⇒

let sort– q1 := sort q1 in
if one– to– one– renaming– bool sort– q1 rho
then fset–map A A rho sort– q1

else ∅
| Query–Union q1 q2 | Query– Inter q1 q2
| Query–Diff q1 q2 ⇒

let sort– q1 := sort q1 in

if sort– q1
set
=? sort q2

then sort– q1
else ∅

end.

At this point we are ready to interpret queries. We first assume an interpretation
for base relations. When we shall prove the usual structural equivalence theo-
rems (Section 4) for query optimization, we shall impose that queries’ results are
well-sorted. This means that all tuples in an instance or query evaluation must
have the same support which is the sort of the query. This property is inherited
from base instances as stated below:

Lemma well– sorted– query : ∀ (I : relname → setT), well– sorted– instance I →
∀ (q : query) (t : tuple), t ∈ (eval– query I q) → support t

set
= sort q.

Query evaluation is inductively defined from a given interpretation I for base
relations. We sketch its structure (the complete definition of eval–query is given
in [2]) in order to emphasize the fact that the same tests as for sorts, are per-
formed. For example, for renaming, if the corresponding function is not suitable,
the query evaluates to the empty set of tuples.

Fixpoint eval– query I (q : query) : setT := match q with
| Query– Basename r ⇒ I r
| Query– Sigma f q1 ⇒ ...
| Query– Pi W q1 ⇒ ...
| Query– Join q1 q2 ⇒ ...
| Query– Rename rho q1 ⇒

let sort– q1 := sort q1 in
if one– to– one– renaming– bool sort– q1 rho
then ...
else ∅

| Query–Union q1 q2 ⇒
if sort q1

set
=? sort q2

then (eval– query I q1) ∪ (eval– query I q2)
else ∅

| Query– Inter q1 q2 ⇒ if sort q1
set
=? sort q2 ...

| Query–Diff q1 q2 ⇒ if sort q1
set
=? sort q2 ...

end.

Our definition enjoys the standard properties stated in all database textbooks
which are expressed in our framework by the following lemmas. We only present
some of them ; the full list, as well as the complete code, is given in [2]. In
particular, the way terms, atoms and formulas are interpreted is detailed. For

the sake of readability we used some syntactic sugar, such as
I
= , ∈I , as well as

f {x → t}, for the interpretation of formula f under assignment x → t.

A Coq Formalization of the Relational Data Model 197

Notation query– eq q1 q2 := (eval– query I q1
set
= eval– query I q2).

Infix ”
I
= ” := query– eq.

Notation ”t ’∈I ’ q” := t ∈ (eval– query I q).
Lemma mem–Basename : ∀ I r t, t ∈I (Query– Basename r) ←→ t ∈ (I r).

Lemma mem– Inter : ∀ I q1 q2, sort q1
set
= sort q2 → ∀ t, t ∈I (Query– Inter q1 q2) ←→ (t ∈I q1

∧
t ∈I q2).

Lemma mem– Sigma : ∀ I, well– sorted– instance I → ∀ f x q t, set– of– attributes– f f ⊆ sort q →
Fset.elements FV (free– variables– f f) = x :: nil →
(t ∈I (Query– Sigma f q) ←→ (t ∈I q

∧
f {x → t} = true)).

Lemma mem–Pi : ∀ I, well– sorted– instance I →
∀W q t, t ∈I Query– Pi W q ←→ ∃t’, (t’ ∈I q

∧
t

t
=mk– tuple (W ∩ sort q) (dot t’)).

Lemma mem– Join : ∀ I, well– sorted– instance I → ∀ q1 q2 t,
t ∈I Query– Join q1 q2 ←→

∃t1, ∃t2, (t1 ∈I q1
∧

t2 ∈I q2
∧

(∀ a, a ∈ sort q1 ∩ sort q2 → dot t1 a = dot t2 a)
∧

t
t
=mk– tuple (sort q1 ∪ sort q2) (fun a ⇒ if a ∈? (sort q1) then dot t1 a else dot t2 a)).

Lemma mem–Rename : ∀ I, well– sorted– instance I → ∀ rho q, one– to– one– renaming (sort q) rho →
∀ t, t ∈I (Query– Rename rho q) ←→ (∃ t’, t’ ∈I q

∧
t

t
= rename– tuple rho t’).

Lemma NaturalJoin– Inter : ∀ I, well– sorted– instance I → ∀ q1 q2, sort q1
set
= sort q2 →

Query– NaturalJoin q1 q2
I
=Query– Inter q1 q2.

Those lemmas highlight the heterogeneous nature of relational operators. In
order to prove that they enjoy their usual semantics, on the one hand, the purely
set theoretic ones, only need sort compatibility conditions, on the other hand, the
database ones need well-sortedness. Interestingly, the lemma, NaturalJoin– Inter,
bridging both worlds, needs both.

3.2 Conjunctive Queries

In this context, the query language is slightly different. Rather than relying
on algebraic operators, queries are expressed by logical formulas of the form
{(a1, . . . , an) | ∃b1, . . .∃bm, P1∧ . . .∧Pk}, where the ai, bi denote variables which
will be interpreted by values and where Pi’s denote either equalities or member-
ship to a base relation. For example the query: “Which of “Fellini” ’s movies are
played at the cinema “Action Christine” ?” expressed by the following relational
algebra expression:

π{Title, Director, Actor}(σ x.Director=”Fellini”∧
x.Theater = ”Action Christine”

(Movies �� Pariscope))

will be: {
(t, d, a) | ∃th, ∃t

′, ∃s, Movies(t, d, a) ∧ Pariscope(th, t′, s)
∧t = t′ ∧ d = ”Fellini” ∧ th = ”Action Christine”

}
Quoting [1], “if we blur the difference between a variable and a constant, the

body of a conjunctive query can be seen as an instance with additional con-
straints”. This leads to the notion of extended tuples mapping attributes to
either constants or variables. Hence, a tableau over a schema is defined exactly
as was the notion of an instance over this schema, except that it contains ex-
tended tuples. A conjunctive query is simply a pair (T, s) where T is a tableau
and s, an extended tuple called the summary of the query. Variables occur-
ring in s are called distinguished variables or distinguished symbols in textbooks.

198 V. Benzaken, É. Contejean, and S. Dumbrava

The summary s in query (T, s) represents the answer to the query which consists
of all tuples for which the pattern described by T is found in the database. This
formulation of queries is closest to the QBE visual form. Equality conditions are
embedded in the tableau itself as shown by the following example:

Title Director Actor Theater Schedule

t ‘‘Fellini’’ a Movies

t ‘‘Action Christine’’ s Pariscope

t d a summary

Syntax. The formal way to “blur” the differences between variables and con-
stants (value’s in our modeling) is achieved by embedding them in a single Coq
type tvar.

Inductive tvar : Type := Tvar : nat → tvar | Tval : value → tvar.
Inductive trow : Type := Trow : relname → (attribute → tvar) → trow.

Notice that a row, modeled by type trow, is tagged by a relation name (its first
argument) and gathers variables and constants thanks to its second argument.
For instance the first row of the above query is:

Trow Movies (fun a : attribute ⇒match a with | Title ⇒Tvar 0 | Director ⇒Tval ‘‘Fellini’’ | ... end)

A tableau is a set of trow’s. This set is built using a comparison function similar
to the one for tuples. Next a summary is tagged by a set of relevant attributes
and maps attribute’s to tvar’s. Last a conjunctive query consists of a tableau and
a summary.

Notation setR := (Fset.set (Ftrow T DBS)).
Definition tableau := SetR.
Inductive summary : Type := Summary : setA → (attribute → tvar) → summary.
Definition tableau– query := (tableau ∗ summary)

Semantics. Let us grasp, through our former example, the semantics of such
queries. This query is expressed by the summary

Summary (mk– set A (Title :: Director :: Actor :: nil))
(fun a : attribute ⇒match a with | Title ⇒Tvar 0 | Director ⇒Tvar 1 | ... end)

and its result consists in the set of movies

mk– set A ((mk–movie ”Casanova” ”Fellini” ”Donald Sutherland”) ::
(mk–movie ”La strada” ”Fellini” ”Giulietta Masini”) :: nil)

This set is computed by composing the summary function with some mappings
from variables in the tableau rows to values, hence mapping summaries to tu-
ples. Thus, we first need to define the notion of valuation which, as usual, maps
variables to values. More precisely, in our case, as we embedded variables and
constants in a single abstract type tvar, and because variables are characterized
by their nat identifier, the type of valuation is nat→ value. Hence applying a val-
uation (thanks to apply–valuation) on constants consists in applying the identity
function.

Definition valuation := nat → value.
Definition apply– valuation (ν : valuation) (x : tvar) : value := match x with | Tvar n ⇒ ν n | Tval c ⇒ c end.
Notation ”ν ’[[’ x ’]]’” := (apply– valuation ν x).

A Coq Formalization of the Relational Data Model 199

Valuations naturally extend to trow’s and summary’s, yielding tuples, and to ta-
bleaux, yielding sets of tuples.

Definition apply– valuation– t (ν : valuation) (x : trow) : tuple :=
match x with Trow r f ⇒mk– tuple (basesort r) (fun a ⇒ ν [[f a]]) end.
Notation ”ν ’[[’ x ’]]t’” := (apply– valuation– t ν x).
Definition apply– valuation– s (ν : valuation) (x : summary) : tuple :=
match x with Summary V f ⇒mk– tuple V (fun a ⇒ ν [[f a]]) end.

Notation ”ν ’[[’ x ’]]s’” := (apply– valuation– s ν x).

Given a query (T, s), its result on instance I is given by {t | ∃ν, ν(T) ⊆ I ∧ t =ν(s)}
where ν is a valuation. In our development, we characterize this set by the pred-
icate is–a– solution I (T, s), where

t
= denotes the equivalence of tuples.

Inductive is– a– solution (I : relname → setT) : tableau– query → tuple → Prop :=
| Extract : ∀ (ST : tableau) (s : summary) (ν : valuation),

(∀ (r : relname) (f : attribute → tvar), (Trow r f) ∈ ST → ν [[Trow r f]]t ∈I (Query– Basename r)) →
∀ (t : tuple), t

t
= ν [[s]]s → is– a– solution I (ST, s) t.

3.3 From Algebra Queries to Conjunctive Queries

The two formalisms presented are not exactly equivalent except in the case
where relational queries are only built with selections, projections and joins.
In this case there is an apparently straightforward way to construct the corre-
sponding conjunctive query. We give hereafter the algorithm found in [11] as it
is presented. If we try to apply this algorithm on the following relational ex-
pression σA=B(r) �� σB=C(r), we obtain for E1 and E2 the following tableaux:
x1 x1 x2 r
x1 x1 x2

and
y1 y2 y2 r
y1 y2 y2

. Given those two tableaux whatever renaming we

choose to apply to the second one as stated in [11] there is no way to be in
the situation described by the algorithm, i.e., if both (T1, s1) and (T2, s2) have
distinguished symbols in the summary column for attribute A then those sym-
bols are the same. We fixed this source of incompleteness by using unification

Given an SPJ algebraic expression, a con-

junctive query equivalent to this expression

is inductively constructed using the following

rules. The base case consists in a relation

r(A1, . . . , An) the corresponding tableau con-

sists in a single row and summary which are

exactly the same with one variable for each Ai.

Assume that we have an expression of the form

πW (E) and that we have constructed (T, s) for

E, then to reflect the projection, all the distin-

guished variables that are not in W are deleted

from s. For selections σf (E) where f is either

of the form A = B or A = c, in the former

case, the distinguished symbols for columns A

and B in the summary and the tableau are iden-

tified, in the latter, the distinguished variable

for A is replaced by c. For joins E1 �� E2, it is

assumed without loss of generality that if both

(T1, s1) and (T2, s2) have distinguished symbols

in the summary column for attribute A then

those symbols are the same, but that otherwise

(T1, s1) and (T2, s2) have no symbols in com-

mon. Then the tableau for E1 �� E2 has a sum-

mary in which a column has a distinguished

symbol a if a appears as a distinguished symbol

in that column of s1 or s2 or both. The new

tableau has as rows all the rows of T1 and T2.

Fig. 2. Ullman’s book algorithm presentation

200 V. Benzaken, É. Contejean, and S. Dumbrava

instead of renaming. If we unify the two summaries of our example, we obtain

x2 �→ x1; y1 �→ x1; y2 �→ x1 yielding the tableau
x1 x1 x1 r
x1 x1 x1

which indeed

corresponds to what is expected in terms of semantics. The unify function, given
in [2], is readable but the proofs of its soundness (the result of unify is a uni-
fier) and completeness (whenever there is a unifier, unify finds it) took more
than 4000 lines of code. Thanks to it we are able to express the translation
algorithm, also given in [2], which is sound and complete and handles all SPJ
queries. If the selection condition is a conjunction of equalities, a preprocess-
ing step, expand–query, transforms it into a sequence of selections whose condi-
tions are equalities. The translation yields either an equivalent query, EmptyRel

when the original query has no solution or NoTranslation when the input query
is not SPJ. The translation algorithm relies on several auxiliary functions. The
first one, fresh– row n r, is used for the base case and generates a row, Trow r fr,
tagged by relation name r. Function fr maps attributes to fresh variables starting
from index n. The second one rename t1 t2 is used for selections with condition
t1 = t2 and returns either None if t1 and t2 are distinct constants or Some rho

where rho is a substitution which replaces one of the t1 and t2 by the other
one, avoiding to replace a constant by a variable. In that case rho is applied
to the whole tableau. The only case where unify is needed is for joins. In this
case the translation is applied to both operands and then compatibility on com-
mon attributes is ensured by applying the resulting substitution to the whole
query. The following lemma states that the algorithm behaves as expected.

Our formalization helped us in
making precise the exact behavior
of the translation algorithm. In the
informal presentation taken from
textbooks, an underlying assump-
tion is made about freshness of

Lemma algebra– to– tableau– expand– is– complete :
∀ (q : query) (n : nat) (I : relname → setT),
well– sorted– instance I →
match algebra– to– tableau (S n) (expand– query q) with
| TQ –Ts ⇒

∀ t, is– a– solution I Ts t ←→ t ∈ (eval– query I q)
| EmptyRel ⇒∀ t, t ∈ (eval– query I q) → False
| NoTranslation ⇒ translatable– q q = false

end.

variables for the base case, which is quite tedious to handle at the formal level.
To our knowledge our algorithm is the first one for such a translation which is
formally specified and fully proved.

4 Logical Optimization

4.1 Optimizing Relational Algebra Queries

Query optimization exploits algebraic equivalences. Such equivalences are found
in all textbooks and in particular in [9]. We list the most classical ones hereafter.

σf1∧f2(q) ≡ σf1(σf2(q)) (1)

σf1(σf2(q)) ≡ σf2(σf1(q)) (2)

(q1 �� q2) �� q3 ≡ q1 �� (q2 �� q3) (3)

q1 �� q2 ≡ q2 �� q1 (4)

πW1(πW2(q)) ≡ πW1(q) if W1 ⊆ W2 (5)

πW (σf (q)) ≡ σf (πW (q)) if Att(f) ⊆ W (6)

σf (q1 �� q2) ≡ σf (q1) �� q2 if Att(f) ⊆ sort(q1)(7)

σf (q1∇q2) ≡ σf (q1)∇σf (q2)where ∇ is ∪,∩ or \(8)

A Coq Formalization of the Relational Data Model 201

All these have been formally proved and their formal statements are given in [2].
Although not technically involved, all the proofs relied on the assumption that
instances are well sorted. To illustrate this, we give the formal statement of (7).

Lemma Sigma–NaturalJoin– comm : ∀ I, well– sorted– instance I → ∀ f q1 q2, set– of– attributes– f f ⊆ sort q1 →
Query– Sigma f (Query– NaturalJoin q1 q2)

I
=Query–NaturalJoin (Query– Sigma f q1) q2.

4.2 Optimizing Conjunctive Queries

For the algebraic queries that are expressible by a conjunctive query, there ex-
ists an exact optimization technique. In this case, query optimization is based
on the following consideration: the number of lines in the tableau corresponds
to the number of joins (plus one) in the relational expression. Therefore, the
optimization consists in reducing this number of lines. This is achieved through
the notions of tableaux containment and equivalence and finally through a min-
imality condition. More precisely, let (T1, s1) and (T2, s2) be two conjunctive
queries, (T1, s1) is contained in (T2, s2) written (T1, s1) ⊆ (T2, s2) iff (T1, s1) and
(T2, s2) have the same set of attributes, and, for all relations’ instances, solutions
of (T1, s1) are included in the set of solutions of (T2, s2). This inclusion relation
naturally induces an equivalence. (T1, s1) ≡ (T2, s2) iff (T1, s1) ⊆ (T2, s2) and
(T2, s2) ⊆ (T1, s1). This is formalized in Coq by:

Definition is– contained– instance I Ts1 Ts2 := ∀ (t : tuple), is– a– solution I Ts1 t → is– a– solution I Ts2 t.
Definition is– contained Ts1 Ts2 := ∀ I, is– contained– instance I Ts1 Ts2.
Definition are– equivalent Ts1 Ts2 := is– contained Ts1 Ts2

∧
is– contained Ts2 Ts1.

These semantical notions can be checked syntactically relying on tableaux’s sub-
stitutions. A (tableau) substitution θ is a mapping from variables to variables
or constants. The following database theorem expresses this syntactical charac-
terization of containment.

Theorem 1 (Tableaux Homomorphism). If (T1, s1) and (T2, s2) are con-
junctive queries, (T1, s1) ⊆ (T2, s2) iff there exists a substitution tableau θ such
that for all line t tagged by relation name r in T2, θ(t) occurs tagged by r in T1,
and θ(s2) = s1. θ is called a tableau homomorphism from (T2, s2) to (T1, s1).

We first give the definition of substitution in our setting and then formally define
the application of a substitution to a variable. This notion extends to trow’s and
summary’s. Then we provide the formal definition of tableau homomorphism and
state the homomorphism theorem.

Definition substitution := nat → tvar.
Definition apply– subst– tvar (θ : substitution) (x : tvar) := match x with Tvar n ⇒ θ n | Tval –⇒ x end.
Notation ”θ ’[’ x ’]– v’” := (apply– subst– tvar θ x).
Definition tableau– homomorphism (θ : substitution) Ts2 Ts1 :=

match Ts1, Ts2 with (T1, s1), (T2, s2) ⇒ (fset–map Ftrow Ftrow (fun t ⇒ θ [t]– t) T2) ⊆T1
∧
θ [s2]– s

s
= s1

end.
Theorem Homomorphism– theorem :

∀Ts1 Ts2, (∃ θ , tableau– homomorphism θ Ts2 Ts1) ←→ is– contained Ts1 Ts2.

We briefly sketch the proof of the homomorphism theorem. Interestingly in text-
books a lot of material is hidden. Namely, the notion of fresh constants is central
to the proof in order to be able to define a list of such distinct fresh constants
for each variable present in the query. We assume therefore

202 V. Benzaken, É. Contejean, and S. Dumbrava

Hypothesis fresh : (Fset.set Ftvar) → value.
Hypothesis fresh– is– fresh : ∀ lval, (Tval (fresh lval)) ∈ lval → False.

This implies that domains are infinite. Based on fresh constants we define a
variable assignment μ from variables to new fresh abstract constants on (T1, s1).
We then show that μ is a solution of (T1, s1) w.r.t. the interpretation I which
contains exactly μ(T1). Thanks to the definition of tableaux containment, μ is a
solution of (T2, s2) w.r.t. I. Hence there is an assignment ν which corresponds
to a solution of (T2, s2), ν(s2) = μ(s1) ∧ (∀t2 r, t2 : r ∈ T2 ⇒ ν(t2) ∈ I(r)), that
is ν(s2) = μ(s1) ∧ (∀ t2 r, t2 : r ∈ T2 ⇒ ∃ t1, t1 : r ∈ T1∧ ν(t2) = μ(t1)). By
construction μ admits an inverse function defined over the variables of (T1, s1).
What remains to show is that x �→ μ−1(ν(x)) is an homomorphism from (T2, s2)
to (T1, s1). The main difficulties encountered in Coq were to properly define the
notion of query solution, to build the variable assignment μ as a function from
the fresh function and to prove that μ is injective.

At this point, based on the homomorphism theorem, given a conjunctive
query, we shall explicitly construct an equivalent minimal one. Indeed another,
well known, database theorem states that for each conjunctive query there exists
a minimal equivalent query among its sub-queries. A sub-query of (T, s) is simply
(T ′, s) such that T ′ ⊆ T . Hence, the optimization process consists in inspecting
all equivalent sub-tableaux and among those keeping a minimal one.

Definition min– tableau Ts Ms :=
are– equivalent Ts Ms

∧
(∀ Ts’, are– equivalent Ts Ts’ → cardinal (fst Ms) ≤ cardinal (fst Ts’)).

Lemma tableaux– optimisation : ∀T s, {T’ | min– tableau (T, s) (T’, s)}.

More precisely, the corner stone of the algorithm is to find an homomorphism
from the initial tableau to a given sub-tableau. To do so we used a function
abstract–matching. All further details are given in [2]. Not only do we prove this
result but we also provide a certified algorithm to build this minimal tableau
both in Coq and by extraction from tableaux–optimization in OCaml.

5 Integrity Constraints

Constraints are captured by the theory of dependencies which deal with the
semantics of data. For example, returning to our running example, we may know
that there is only one director associated with each movie title. Such properties
are called functional dependencies because the values of some attributes of a
tuple uniquely determine the values of other attributes of that tuple. Let us
further assume that we have another relation: Showings(Theater, Screen, Title,
Snack) which contains tuples (th, sc, ti, sn) if the theater th is showing the movie
ti on the screen sc and if the theater th offers snack sn. Intuitively, one would
expect a certain independence between the Screen-Title attributes, on the one
hand, and the Snack attribute, on the other, for a given value of Theater. For
example, if (Action Christine, 1, Casanova, Coffee) and (Action Christine, 2, M,
Tea) are in Showings, we also expect (Action Christine, 1, Casanova, Tea) and
(Action Christine, 2, M, Coffee) to be present. Such dependencies are called
tuple generating dependencies. Functional and tuple generating dependencies

A Coq Formalization of the Relational Data Model 203

fall under the wider class of general dependencies which we model and that also
capture inclusion dependencies which correspond to foreign key constraints in
real systems. First we introduce functional dependencies, then we present the
class of general dependencies. An important problem concerning dependencies
is that of the so called logical implication: given a set of constraints, what other
constraints could be inferred ? Armstrong’s system that allows to deduce, in the
functional case, all dependencies implied by a given set, is sound, complete and
terminating. We then detail the chase, a procedure that allows to infer general
dependencies, and prove its soundness.

5.1 Functional Dependencies

A functional dependency (fd) expresses a constraint between schema attribute
sets. Specifically, given a database schema R, an instance r of R and attribute
sets V and W (in the sort ofR), a functional dependency V ↪→W over r, denoted
r |= V ↪→ W , holds if ∀t1 t2, t1 ∈ r ⇒ t2 ∈ r ⇒ t1|V = t2|V ⇒ t1|W = t2|W .

Let F be a set of functional dependencies over a given schema R. A functional
dependency d = X ↪→ Y is semantically implied by F , denoted F |= d, if ∀r :
R, (r |= F ⇒ r |= d). This is formally defined in Coq by:

Inductive fd : Type := FD : setA → setA → fd.
Notation ”V ’↪→’ W” := (FD V W).
Definition fd– sem (ST : setT) (d : fd) := match d with | V ↪→W ⇒
∀ t1 t2, t1 ∈ ST → t2 ∈ ST → (∀ x, x ∈V → dot T t1 x = dot T t2 x)

→ ∀ y, y ∈W → dot T t1 y = dot T t2 y
end.

Armstrong’s inference system A is modeled via the dtree inductive definition,
representing a derivation tree, whose branches are the axioms above and the D–ax

rule, for deriving dependencies already in the context and where setF denotes the
type of sets of dependencies.

Inductive dtree (F : setF) : fd → Type :=
| D–Ax : ∀X Y, (X ↪→Y) ∈ F → dtree F (X ↪→Y)
| D–Refl : ∀X Y, Y ⊆X → dtree F (X ↪→Y)

| D–Aug : ∀X Y Z XZ YZ, XZ
set
= (X ∪Z) → YZ

set
= (Y ∪Z) → dtree F (X ↪→Y) → dtree F (XZ ↪→YZ)

| D–Trans : ∀X Y Y’ Z, Y
set
= Y’ → dtree F (X ↪→Y) → dtree F (Y’ ↪→Z) → dtree F (X ↪→Z).

Theorem Armstrong– soundness : ∀ F d (t : dtree F d) ST, (∀ f, f ∈ F → fd– sem ST f) → fd– sem ST d.

This theorem is formally proven by an easy induction on the derivation tree.
The completeness proof borrows from [11] the central idea of building a model M.
Given a set of dependencies F and a set of attributes X , M consists of two tuples
t0 and t1, which only agree on the closure attribute set [X]+F . The constructive
proof of completeness is simply based on the fact that if F |= X ↪→ Y , since M
is a model of F , then M is a model of X ↪→ Y .

Lemma Armstrong– completeness : ∀U F X Y, X ⊆U → Y ⊆U → (∀ ST,(∀ t, t ∈ ST → support T t
set
= U)

→ (∀ f, f ∈ F → fd– sem ST f) → fd– sem ST (X ↪→Y)) → (dtree F (X ↪→Y)).

Interestingly, while for soundness the hypotheses did not make any assumption
on the finiteness of the attribute universe, for the completeness, this assumption
was needed. All intermediate lemmas are given in [2] and the main theorem
explicitly mentions the fact that all sets of attributes are included in the finite
universe U and that the values zero and one are distinct.

204 V. Benzaken, É. Contejean, and S. Dumbrava

5.2 General Dependencies

Constraints described in textbooks (functional, join or inclusion dependencies)
are first-order logic sentences of the form

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ ∃z1 . . .∃zkψ(x1, . . . , xn, z1, . . . , zk)),

where φ is a (possibly empty) conjunction of atoms and ψ an atom. In both φ
and ψ, one finds relation atoms of the form r(w1, . . . , wl) and equality atoms
of the form w = w′, where each of the w,w′, w1, . . . , wl is a variable or a con-
stant. Inclusion dependencies can be expressed by ∀x1 . . . ∀xn(r1(x1, . . . , xn) ⇒
r2(x1, . . . , xn)). According to textbooks, the semantics of such formulas is the
natural one. There is a strong relationship between general dependencies and
tableaux which provides a convenient notation for expressing and working with
dependencies. For example the functional dependencyA ↪→ B on relation r(A,B),
is represented by the following formula ∀v, v1, v2 r(v, v1)∧r(v, v2)⇒ v1 = v2 and

conjunctive query

A B
v v1 r
v v2 r

v1 = v2 . When the right part of the implication is a relation

predicate, the last line is a summary and such dependencies are referred as “tu-
ple generating” while the other ones are referred as “equality generating”. We
model this by the following inductive definition of gd, according to whether φ is
a relation predicate or an equality, we use two constructors TupleGen or EqGen.

Notation ”s1 ’
r
= ’ s2” := (∗∗ equivalence of rows ∗∗) (Fset.elt– compare Ftrow s1 s2 = Eq).

Inductive gd := TupleGen : setR → trow → gd | EqGen : setR → tvar → tvar → gd.

The natural semantics is provided by:

Inductive gd– sem : gd → setT → Prop :=
| TupleGenSem : ∀ (SR : setR) (s : trow) (ST : setT), (∀ (ν : valuation), (∀ x, x ∈ SR → (ν [[x]]t) ∈
ST) →

∃νe , (∀ x, x ∈ variables– tableau SR → νe [[x]] = ν [[x]])
∧
νe [[s]]t ∈ ST) →

gd– sem (TupleGen SR s) ST
| EqGenSem : ∀ (SR : setR) x1 x2 (ST : setT),

(∀ (ν : valuation), (∀ x, x ∈ SR → ν [[x]]t ∈ ST) → ν [[x1]] = ν [[x2]]) → gd– sem (EqGen SR x1 x2) ST.

The only subtle point in this definition is that it is stated for tableaux, but
corresponds exactly to the semantics of logical formulas. Due to the particular
form of the latter, given a valuation ν assigning values to the x’s we extend it
by νe over the existentially quantified z’s.

5.3 The Chase

We present the so-called chase a procedure for reasoning about dependencies
and used to determine logical implication between sets of dependencies. More
precisely, given a set D of dependencies and a dependency d over a given schema,
the chase allows to decide whether D |= d. The intuition is that the chase starts
assuming that the tableau part of d is satisfied and consists in applying all
dependencies in D. If the conclusion of d is inferred then we have a proof that

A Coq Formalization of the Relational Data Model 205

A B C D
a1 b1 c1 d1

a1 b2 c2 d2

a1 b1 c2 d3

tg1

A B C D
a2 b3 c3 d4

a3 b3 c4 d5

d4 = d5

eg2

A B C D
a4 b4 c5 d6

a4 b5 c6 d7

a4 b6 c5 d7

tg

A B C D
a4 b4 c5 d6

a4 b5 c6 d7

(i)

A B C D
a4 b4 c5 d6

a4 b5 c6 d7

a4 b5 c5 d8

(ii)

A B C D
a4 b4 c5 d6

a4 b5 c6 d7

a4 b5 c5 d7

(iii)

Fig. 3. Applying Dependencies

D |= d. The main result stated in the literature is that, any instance of the
schema, satisfying d′ and chase(d, d′) (the dependency obtained by applying
d′ to d), also satisfies d. All the magic resides in the definition of “applying a
dependency”. Assume that we want to prove that dependencies tg1 and eg2 in
Figure 3 imply dependency tg, where we omit to tag the rows as a single relation
name r is assumed. To do so, we apply them to instance (i) (indeed the tableau
part of tg). More precisely, applying tg1 to (i) consists in finding a mapping ν
such that {ν(a1, b1, c1, d1), ν(a1, b2, c2, d2)} ⊆ (i). For instance in this case we
can choose, among other mappings, ν(a1) = a4, ν(b1) = b5, ν(c1) = c6, ν(d1) =
d7, ν(b2) = b4, ν(c2) = c5, ν(d2) = d6. Tuple ν(a1, b1, c2, d3) is then added to
(i) yielding (ii). There is a subtlety: as d3 appears only in the summary, d3 is
existentially quantified therefore ν(d3) is a fresh variable (d8). Then applying
eg2 to (ii) makes d7 and d8 equal in (iii). Again, as b6 is existentially quantified
in tg, it can be instantiated by b5 and allows to conclude that since the tuple to
be generated in tg occurs in (iii), tg is implied.

We tried to formalize what is very informally provided by textbooks with the
following inference rules. Let d and d′ be respectively ∀#x, φ(#x)⇒ ∃#z, ψ(#x ∪ #z)

and ∀#x′, φ′(#x′) ⇒ ∃#z′, ψ′(#x′ ∪ #z′). For applying d′ to d we first need to find

a mapping ν such that ν(φ′(#x′)) seen as a set of atoms is a subset of φ(#x).
Depending on the form of ψ′, we get

1. if ψ′ ≡ y′1 = y′2 then let ρ be the renaming: {ν(y′2) �→ ν(y′1)} and chase(d, d′)
is ∀#x, ρ(φ(#x)⇒ ∃#z, ψ(#x ∪ #z)).

2. if ψ′ ≡ r′(#y′) then chase(d, d′) is ∀#x, φ(#x) ∧ ν(r′(#y′))⇒ ∃#z, ψ(#x ∪ #z).

However the above version is faulty due to variable’s capture for ν(r′(#y′)) by
∀#x which naturally arose in the second case as shown by the following counter-
example. Let d be ∀y z, r(y, y, z) ⇒ r(y, y, y) and d′ be ∀x y, r(x, x, y) ⇒
∃z, r(x, z, x). With mapping ν = {x �→ y, y �→ z}, the above definition yields:

chase(d, d′) ≡ ∀y z, r(y, y, z) ∧ r(y, z, y)⇒ r(y, y, y).

Consider the instance I = {(a, a, b), (a, c, a)}. We have I |= d′, and I |=
chase(d, d′) since there is no μ such that μ(y, y, z) ∈ I ∧ μ(y, z, y) ∈ I. But
I �|= d as shown by μ1 = {y �→ a, z �→ b} since μ1(y, y, z) = (a, a, b) ∈ I and
μ1(y, y, y) = (a, a, a) /∈ I. This counter-example does not affect the essence of the
theorem but emphasizes the fact that humans naturally perform α-conversion
in order to avoid capture; therefore when defining the chase in Coq we had to
seriously take this into account.

206 V. Benzaken, É. Contejean, and S. Dumbrava

Since variables (in the gd’s) are indexed by integers, in order to avoid cap-
tures, we generate fresh variables for renaming, starting from the maximum
index of all variables in the constraints which is computed thanks to the func-
tion max–var–chase. Then, avoid–capture– trow max–n phi’ psi’ computes a renaming
for the variables which are in psi’ and not in phi’. The chase may yield three
different results: the first one is when there is at least one ν producing a new
constraint, the second captures the fact that no such mappings exist, then the
third one corresponds to the fact that the current dependency tries to identify
two distinct constants. There is one further subtle point to detail. Given a pair
of dependencies, there may exist several mapping ν’s, thus, in order to avoid
the design of a lazy matching function, we chose to apply them at once. The
first case applies an equality generating dependency EqGen SR x1 x2. It consists
in iterating the replacement of ν x1 by ν x2 for all such ν’s. The second case ap-
plies a tuple generating dependency TupleGen SR s. In that case we simply add
all ν s to current tableau. The only point is to avoid capture for existential vari-
ables and also to avoid interference between the different mappings. This has
the unfortunate consequence that the chase step given in [2] as well as sound-
ness proofs are intricate. As the chase terminates only for a specific class of
dependencies (the one with no existential quantifiers), we defined a kind of “for
loop” in order to iterate the application of a set of dependencies over d a fixed
number of times. At this point the algorithm stops with a (potentially) new de-
pendency. If this dependency is trivial (i.e., either of the form ∀#x, φ(#x)⇒ y = y
or ∀#x, φ(#x)⇒ ∃#z, ψ(#x∪ #z) where there exists a substitution σ for z’s such that

ψ(#x ∪ #σ(z)) is an atom of φ(#x)) then the initial set of dependencies implies d.
Last the result that the chase procedure is sound is established by

Inductive res : Type := Res : gd → res | NoProgress | Fail.
...
Definition var– in– query x SR := match x with Tvar –⇒ x ∈ variables– gd SR | Tval –⇒True end.
Lemma chase– is– sound :
∀ ST n D d d’, chase n d D = Res d’ →
match d with TupleGen – –⇒True | EqGen SR1 x1 x2 ⇒ var– in– query x1 SR1

∧
var– in– query x2 SR1 end

→ (∀ gd, List.In gd D → gd– sem gd ST) → gd– sem d’ ST → gd– sem d ST.

Doing the proof, the main subtle point was to avoid variables’ capture through
iteration. Again, it was during this proof step that we discovered that the text-
books were imprecise not to say faulty. The needed functions and technical lem-
mas are given in [2].

6 Conclusion, Lessons and Perspectives

This article provides a specification of the relational model, a first, unavoidable,
step towards verifying relational database management systems with the Coq
proof assistant. Our specification is the first that covers the named version of
the relational model, both algebra and conjunctive queries, logical optimization
for both languages, and, finally, dependencies (both functional and general). The
whole development consists of 21,000 loc. It makes a clear distinction between
specification and implementation, achieved thanks to a parametrization of the
data definition part of the model – attributes, tuples, relations and constraints – by

A Coq Formalization of the Relational Data Model 207

modules whose interface is independent from the concrete implementation (e.g.,
Letouzey’s finite sets). This allowed us to reach a very modular and reusable li-
brary. From the data definition point of view, our modeling is very close to the one
found in textbooks as well as in real systems and is expressive and versatile enough
to allow us to express the main algorithms and to prove the database theorems.
In particular, we gave a completely certified version of the algorithm that trans-
lates an SPJ query into a conjunctive one, a proof of the main relational structural
equivalences, a proof of the homomorphism theorem and based on this proof a cer-
tified version of the tableauxminimization algorithm, its extraction in OCaml and
finally we modeled and certified Armstrong’s system for functional dependencies
and the chase procedure for which we also extracted an OCaml algorithm.

We learned several lessons both from the database and Coq sides. There are two
different aspects in our work: one concerns modeling, the second is about prov-
ing properties and algorithms’ correctness. On the side of proofs, the article does
not bring very new insights except expliciting technical points such as freshness,
unification in the translation, avoiding variables’ capture. This is not new for Coq
users or even the functional programming community. However it is worth precis-
ing that for the database theoreticians and practitioners as well. Such aspects are
never mentioned in text books nor appear explicitly in implementations (usually
written in C). The real challenge was to model. Our contribution, unlike, [8,6], is
almost complete. We were able to model all these various aspects because our very
first choices for attributes, tuples were adequate. Such choices were not trivial nor
immediate and neither [8] nor [5] made them hence they never reached the general-
ity we achieved. Obviously once the right choices are done, the whole seems simple.

In a first version of our development, we heavily used dependent types and
proofs in types. In particular, they expressed that tuples and queries were well-
typed by construction. But, we experienced a lot of problems with type con-
version in proofs. In all algorithms given in the article, it is crucial to check
equality (or congruence). In Coq one can only check equality between two terms
which belong to the same Type. With dependent types, there are two possibil-
ities: either to use type conversion or John Major equality (fortunately we fall
in the decidable case). Both are very cumbersome. Moreover, in order to debug
we needed to run the algorithms with well-typed terms (i.e., with hand-written
proofs embedded in types). The benefits of our approach are three (i) with it,
it is easier and lighter to write algorithms and perform case analysis in proofs
(ii) it is closer to main stream programming languages in which real systems are
encoded (iii) it precisely allows to locate where well-typedness is needed. Surpris-
ingly, we discovered that types, in the usual sense, were not useful, rather, the
notion of well-sortedness was indeed crucial. This is an a posteriori justification
of the fact that in all theoretical books values range in a unique domain. Specify-
ing the main algorithms and proving the “database theorems” for tableaux and
the chase led us to thoroughly make explicit some notions or definitions which
were either unclear or at least very sloppy. For example, freshness or variables’
capture are almost completely left aside in textbooks. However, such notions are
central to the correctness of the results, as shown by our counter-example.

208 V. Benzaken, É. Contejean, and S. Dumbrava

The long term goal of our work is to verify data intensive systems with the Coq
proof assistant and the Why3 [4] program verification suite. We shall extend our
work in several directions. First for the specification part we shall capture other
data models such as JSon, XML etc to mechanize the semantics of languages such
as JAQL or Pig. Then, we shall model all the relational normalization theory
for logical schema design. Based on our library, another line of research will
consist in verifying an SQL compiler and optimizer against our specification. SQL
compilers not only transform queries into relational algebra (as far as possible)
yielding an AST whose nodes are labeled by relational operators and leaves
are base relations, but, they also choose the ”best” access method to evaluate
the query. To do so they rely on the fact that different algorithms for joins or
selections do exist (sort-merge joins, hash-based, nested loops) and on different
access paths to actual data (for example indexes). They generate so called query
evaluation plans and choose, according to a cost model, the most efficient one.
We plan to verify those algorithms using our formalization and Why3. We shall
also handle transactions and concurrency control, updates and database triggers
as well as security and privacy aspects.

Acknowledgements. We are very grateful to Arthur Charguéraud for his help-
ful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Benzaken, V., Contejean, E., Dumbrava, S.: A Relational Library (2013),
http://datacert.lri.fr/esop/html/Datacert.AdditionalMaterial.html

3. Chlipala, A., Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective
interactive proofs for higher-order imperative programs. In: Hutton, G., Tolmach,
A.P. (eds.) ICFP, pp. 79–90. ACM (2009)

4. Filliâtre, J.-C., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013)

5. Gonzalia, C.: Relations in Dependent Type Theory. Ph.D. thesis, Chalmers
Göteborg University (2006)

6. Gonzalia, C.: Towards a formalisation of relational database theory in constructive
type theory. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003.
LNCS, vol. 3051, pp. 137–148. Springer, Heidelberg (2004)

7. Letouzey, P.: A library for finite sets
8. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational

database management system. In: ACM Int. Conf. POPL (2010)
9. Ramakrishnan, R., Gehrke, J.: Database management systems, 3rd edn. McGraw-

Hill (2003)
10. The Coq Development Team: The Coq Proof Assistant Reference Manual (2010),

http://coq.inria.fr, http://coq.inria.fr
11. Ullman, J.D.: Principles of Database Systems, 2nd edn. Computer Science Press

(1982)

http://datacert.lri.fr/esop/html/Datacert.AdditionalMaterial.html
http://coq.inria.fr
http://coq.inria.fr

On Probabilistic Applicative Bisimulation
and Call-by-Value λ-Calculi�

Raphaëlle Crubillé1 and Ugo Dal Lago2

1 ENS-Lyon
raphaelle.crubille@ens-lyon.fr

2 Università di Bologna & INRIA
dallago@cs.unibo.it

Abstract. Probabilistic applicative bisimulation is a recently introduced coin-
ductive methodology for program equivalence in a probabilistic, higher-order,
setting. In this paper, the technique is applied to a typed, call-by-value, lambda-
calculus. Surprisingly, the obtained relation coincides with context equivalence,
contrary to what happens when call-by-name evaluation is considered. Even more
surprisingly, full-abstraction only holds in a symmetric setting.

Keywords: lambda calculus, probabilistic computation, bisimulation,
coinduction.

1 Introduction

Traditionally, an algorithm is nothing but a finite description of a sequence of determin-
istic primitive instructions, which solve a computational problem when executed. Along
the years, however, this concept has been generalized so as to reflect a broader class of
effective procedures and machines. One of the many ways this has been done consists in
allowing probabilistic choice as a primitive instruction in algorithms, this way shifting
from usual, deterministic computation to a new paradigm, called probabilistic compu-
tation. Examples of application areas in which probabilistic computation has proved to
be useful include natural language processing [19], robotics [28], computer vision [3],
and machine learning [22]. Sometimes, being able to “flip a fair coin” while computing
is a necessity rather than an alternative, like in computational cryptography (where, e.g.,
secure public key encryption schemes are bound to be probabilistic [10]).

Any (probabilistic) algorithm can be executed by concrete machines only once it
takes the form of a program. And indeed, various probabilistic programming languages
have been introduced in the last years, from abstract ones [15,26,21] to more concrete
ones [23,11]. A quite common scheme consists in endowing any deterministic language
with one or more primitives for probabilistic choice, like binary probabilistic choice or
primitives for distributions.

Viewing algorithms as functions allows a smooth integration of distributions into the
playground, itself nicely reflected at the level of types through monads [12,26]. As a
matter of fact, some existing probabilistic programming languages [23,11] are designed

� The authors are partially supported by the ANR project 12IS02001 PACE.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 209–228, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

210 R. Crubillé and U. Dal Lago

around the λ-calculus or one of its incarnations, like Scheme. This, in turn has stim-
ulated foundational research about probabilistic λ-calculi, and in particular about the
nature of program equivalence in a probabilistic setting. This has already started to pro-
duce some interesting results in the realm of denotational semantics, where adequacy
and full-abstraction results have recently appeared [7,9].

Not much is known about operational techniques for probabilistic program equiv-
alence, and in particular about coinductive methodologies. This is in contrast with
what happens for deterministic or nondeterministic programs, when various notions of
bisimulation have been introduced and proved to be adequate and, in some cases, fully
abstract [1,20,18]. A recent paper by Alberti, Sangiorgi and the second author [5] gen-
eralizes Abramsky’s applicative bisimulation [1] to Λ⊕, a call-by-name, untyped λ-
calculus endowed with binary, fair, probabilistic choice [6]. Probabilistic applicative
bisimulation is shown to be a congruence, thus included in context equivalence. Com-
pleteness, however, fails, the counterexample being exactly the one separating bisim-
ulation and context equivalence in a nondeterministic setting. Full abstraction is then
recovered when pure, deterministic λ-terms are considered, as well as when another,
more involved, notion of bisimulation, called coupled logical bisimulation, takes the
place of applicative bisimulation.

In this paper, we proceed with the study of probabilistic applicative bisimulation,
analysing its behaviour when instantiated on call-by-value λ-calculi. This investigation
brings up some nice, unexpected results. Indeed, not only the non-trivial proof of con-
gruence for applicative bisimulation can be adapted to the call-by-value setting, which
is somehow expected, but applicative bisimilarity turns out to precisely characterize
context equivalence. This is quite surprising, given that in nondeterministic λ-calculi,
both when call-by-name and call-by-value evaluation are considered, applicative bisim-
ilarity is a congruence, but finer than context equivalence [18]. There is another, even
less expected result: the aforementioned correspondence does not hold anymore if we
consider applicative simulation and the contextual preorder.

Technically, the presented results owe much to a recent series of studies about prob-
abilistic bisimulation for labelled Markov processes [8,29], i.e., labelled probabilistic
transition systems in which the state space is continuous (rather than discrete, as in
Larsen and Skou’s labelled Markov chains [17]), but time stays discrete. More specif-
ically, the way we prove that context equivalent terms are bisimilar goes by construc-
tively showing how each test of a kind characterizing probabilistic bisimulation can be
turned into an equivalent context. If, as a consequence, two terms are not bisimilar, then
any test the two terms satisfy with different probabilities (of which there must be at least
one) becomes a context in which the two terms converge with different probabilities.
This helps understanding the discrepancies between the probabilistic and nondetermin-
istic settings, since in the latter the class of tests characterizing applicative bisimulation
is well-known to be quite large [20]. The mismatch between the symmetric and asym-
metric cases is also clarified — again, the language of tests characterizing similarity is
strictly more general than the one characterizing bisimilarity [29].

The whole development is done in a probabilistic variation on PCF with lazy lists,
called PCFL⊕. Working with an applied calculus allows to stay closer to concrete
programming languages, this way facilitating exemplification, as in Section 2 below.

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 211

Infinitary data structures are there to show that probabilistic applicative bisimulation
works well in a setting where coinduction plays a key rôle.

2 Some Motivating Examples

In this section, we want to show how λ-calculus can naturally express probabilistic
programs. More importantly, we will argue that checking the equivalence of some of
the presented programs is not only interesting from a purely theoretical perspective, but
corresponds to a proof of perfect security in the sense of Shannon [27].

Let’s start from the following very simple programs:

NOT = λx.if x then false else true : bool→ bool;

ENC = λx.λy.if x then (NOT y) else y : bool→ bool→ bool;

GEN = true ⊕ false : bool.

The function ENC computes exclusive disjunction as a boolean function, but can also
be seen as the encryption function of a one-bit version of the so-called One-Time Pad
cryptoscheme (OTP in the following). On the other hand, GEN is a term reducing
probabilistically to one of the two possible boolean values, each with probability 1

2 , and
is meant to be a way to generate a random key for the same scheme.

One of the many ways to define perfect security of an encryption scheme consists
is setting up an experiment [16]: the adversary generates two messages, of which one
is randomly chosen, encrypted, and given back to the adversary who, however, should
not be able to guess whether the first or the second message have been chosen (with
success probability strictly greater than 1

2). This can be seen as the problem of proving
the following two programs to be context equivalent:

EXP = λx.λy.ENC (x⊕ y) GEN : bool→ bool→ bool;

RND = λx.λy. true ⊕ false : bool→ bool→ bool;

where ⊕ is a primitive for fair, probabilistic choice. Analogously, one could verify that
any adversary is not able to distinguish an experiment in which the first message is
chosen from an experiment in which the second message is chosen. This, again, can be
seen as the task of checking whether the following two terms are context equivalent:

EXPFST = λx.λy.ENC x GEN : bool→ bool→ bool;

EXPSND = λx.λy.ENC y GEN : bool→ bool→ bool.

But how could we actually prove two programs to be context equivalent? The universal
quantification in its definition, as is well known, turns out to be burdensome in proofs.
The task can be made easier by way of various techniques, including context lemmas
and logical relations. Later in this paper, we show how the four terms above can be
proved equivalent by way of applicative bisimulation, which is proved sound (and com-
plete) with respect to context equivalence in Section 4 below.

Before proceeding, we would like to give examples of terms having the same type,
but which are not context equivalent. We will do so by again referring to perfect secu-
rity. The kind of security offered by the OTP is unsatisfactory not only because keys

212 R. Crubillé and U. Dal Lago

cannot be shorter than messages, but also because it does not hold in presence of mul-
tiple encryptions, or when the adversary is active, for example by having an access to
an encryption oracle. In the aforementioned scenario, security holds if and only if the
following two programs (both of type bool→ bool→ bool× (bool→ bool)) are
context equivalent:

EXPCPA
FST = λx.λy.(λz.〈ENC x z, λw.ENC w z〉)GEN ;

EXPCPA
SND = λx.λy.(λz.〈ENC y z, λw.ENC w z〉)GEN .

It is very easy, however, to realize that if C = (λx.(snd (x))(fst (x)))([·] true false),
then C[EXPCPA

FST] reduces to true , while C[EXPCPA
SND] reduces to false , both with

probability 1. In other words, the OTP is not secure in presence of active adversaries,
and for very good reasons: having access to an oracle for encryption is essentially equiv-
alent to having access to an oracle for decryption.

3 Programs and Their Operational Semantics

In this section, we will present the syntax and operational semantics of PCFL⊕, the lan-
guage on which we will define applicative bisimulation. Due to lack of space, we cannot
give all the details, which are anyway available in [4]. Moreover, PCFL⊕ is identical to
Pitts’ PCFL [24], except for the presence of a primitive for binary probabilistic choice.

3.1 Terms and Types

The terms of PCFL⊕ are built up from constants (for boolean and integer values, and for
the empty list) and variables, using the usual constructs from PCF, and binary choice.
In the following, X = {x, y, . . .} is a countable set of variables and O is a finite set of
binary arithmetic operators including at least the symbols +, ≤, and =.

Definition 1. Terms are expressions generated by the following grammar:

M,N ::= x | n | b | nil | 〈M,M〉 | M :: M | λx.M | fixx.M

| M ⊕M | ifM thenM elseM | M opM | fst (M) | snd (M)

| caseM of {nil→M | h :: t→M} | M M,

where x, h, t ∈ X , n ∈ N, b ∈ B = { true , false }, and op ∈ O.

In what follows, we consider terms of PCFL⊕ as α-equivalence classes of syntax trees.
The set of free variables of a term M is indicated as FV (M). A term M is closed if
FV (M) = ∅. The (capture-avoiding) substitution of N for the free occurrences of x in
M is denoted M [N/x].

The constructions from PCF have their usual meanings. The operator (· :: ·) is the
constructor for lists, nil is the empty list, and caseL of {nil → M | h :: t → N} is
a list destructor. The construct M ⊕ N is a binary choice operator, to be interpreted
probabilistically, as in Λ⊕ [6].

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 213

Example 1. Relevant examples of terms are Ω = (fixx. x) 0, and I = λx.x: the first
one always diverges, while the second always converges (to itself). In between, one can
find terms that converge with probability between 0 and 1, excluded, e.g., I ⊕ Ω, and
I ⊕ (I ⊕Ω).

We are only interested in well-formed terms, i.e., terms to which one can assign a type.

Definition 2. Types are given by the following grammar:

σ, τ ::= γ | σ → σ | σ × σ | [σ]; γ, δ ::= bool | int.

The set of all types is Y . Please observe that the language of types we consider here
coincides with the one of Pitts’ PCFL [24]. An alternative typing discipline for proba-
bilistic languages (see, e.g. [26]), views probability as a monad, this way reflecting the
behaviour of programs in types: if σ is a type, �σ is the type of probabilistic distribu-
tions over σ, and the binary choice operator always produces elements of type �σ.

We assume that all operators fromO take natural numbers as input, and we associate
to each operator op ∈ O its result type γop ∈ {bool, int} and its semantics op :
N×N→ X where X is either B or N, depending on γop. A typing context Γ is a finite
partial function from variables to types. dom(Γ) is the domain of the function Γ . If
x �∈ dom(Γ) , (x : σ, Γ) represents the function which extends Γ to dom(Γ) ∪ {x},
by associating σ to x.

Definition 3. A typing judgement is an assertion of the form Γ � M : σ, where Γ is a
context, M is a term, and σ is a type. Typing rules are standard, and the most interesting
ones are in Figure 1.

Γ �M : int Γ �M : int
Γ �M opM : γop

Γ �M : σ Γ � N : σ
Γ �M ⊕N : σ

Γ, x : σ → τ �M : σ → τ x �∈ dom(Γ)

Γ � fixx.M : σ → τ

Γ � T : [σ] Γ � H : σ

Γ � H :: T : [σ]

Γ � L : [σ] Γ �M : τ Γ, h : σ, t : [σ] � N : τ

Γ � caseL of {nil→M | h :: t→ N} : τ

Fig. 1. Type Assignment in PCFL⊕ — Rule Selection

Please notice that any term of which we want to form the fixpoint needs to be a function.
If σ is a type and Γ is a typing context, then T σ = {t | ∅ � t : σ}, T = {t | ∃σ, t ∈
T σ}, T σΓ = {t |Γ � t : σ}. Terms in T σ are said to be the closed terms (also called
programs) of type σ.

214 R. Crubillé and U. Dal Lago

3.2 Operational Semantics

Because of the probabilistic nature of choice in PCFL⊕, a program does not evaluate
to a value, but to a probability distribution of values. Therefore, we need the following
notions to define an evaluation relation.

Definition 4. Values are terms of the following form:

V ::= n | b | nil | λx.M | fixx.M | M :: M | 〈M,M〉.

We will call V the set of values, and we note Vσ = V ∩ T σ . A value distribution is a
function D : V→ [0, 1], such that

∑
V ∈V D(V) ≤ 1. Given a value distribution D , we

will note S(D) the set of those values V such that D(V) > 0. A value distribution D
is said finite whenever S(D) has finite cardinality. If V is a value, we note {V 1} the
value distribution D such that D(W) = 1 if W = V and D(V) = 0 otherwise. Value
distributions can be ordered pointwise.

We first give an approximation semantics, which attributes finite probability distribu-
tions to terms, and only later define the actual semantics, which will be the least upper
bound of all distributions obtained through the approximation semantics. Big-step se-
mantics is given by way of a binary relation ⇓ between closed terms and value distribu-
tions, which is defined by some rules, of which we only give the most interesting ones
in Figure 2. This evaluation relation, by the way, is the natural extension to PCFL⊕

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M opN ⇓
∑

n∈S(D),m∈S(E)

D(n)E (m){op(m,n)1}

M ⇓ K N ⇓ F {P [V/x] ⇓ E P,V }λx.P∈S(K), V ∈S(F)

{Q[fixx.Q/x]V ⇓ GQ,V }fix x.Q∈S(K), V ∈S(F)

MN ⇓
∑

V ∈S(F)

F (V)

(∑
λx.P∈S(K)

K (λx.P)EP,V +
∑

fix x.Q∈S(K)

K (fix x.Q)GQ,V

)

M ⇓ D N ⇓ E L ⇓ F

if M thenN elseL ⇓ D(true)E +D(false)F

M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2
D + 1

2
E

Fig. 2. Evaluation — Rule Selection

of the evaluation relation given in [6] for the untyped probabilistic λ-calculus. Please
observe how function arguments are evaluated before being passed to functions. More-
over, M :: N is a value even if M or N are not, which means that lists are lazy and
potentially infinite.

Proposition 1. Call-by-value evaluation preserves typing, that is: if M ⇓ D , and M ∈
T σ , then for every V ∈ S(D), V ∈ Vσ.

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 215

Lemma 1. For every term M , if M ⇓ D , and M ⇓ E , then there exists a distribution
F such that M ⇓F with D ≤ F , and E ≤ F .

Proof. The proof is by induction on the structure of derivations for M ⇓ D .

Definition 5. For any closed term M , we define the big-steps semantics �M� of M as
supM⇓D D .

Since distributions form an ω-complete partial order, and for every M the set of those
distributions D such that M ⇓ D is a countable directed set, this definition is well-
posed, and associates a unique value distribution to every term.

The distribution �M� can be obtained equivalently by taking the least upper bound
of all finite distributions D for which M ⇒ D , where⇒ is a binary relation capturing
small-step evaluation of terms. More about it can be found in [4].

Example 2. Approximation semantics does not allow to derive any assertion about Ω,
and indeed �Ω� = ∅. Similarly, �I� = {I1}. Recursion allows to define much more
interesting programs, e.g. M = (fixx. (λy.y) ⊕ λy.x(y + 1)) 0. Indeed, �M�(n) =

1
2n+1 for every n ∈ N, even if M �⇓ �M�.

3.3 Relations

A typed relation is a familyR = (RΓσ)σ,Γ , where eachRΓσ is a binary relation on T Γσ .
Sometime, M RΓσ N will be noted as Γ � M Rσ N (or as Γ � M R N : σ). The
notions of symmetry, reflexivity, transitivity and compatibility can all be extended to
typed relations in the natural way. Since being compatible can be seen as being reflexive
on ground types and stable by the constructors of the language, the following is easy to
prove:

Proposition 2. LetR be a typed relation. IfR is compatible, thenR is reflexive.

Any typed relation capturing a notion of equivalence should be a congruence, this way
being applicable at any point in the program, possibly many times:

Definition 6. LetR be a typed relation. ThenR is said to be a precongruence relation
if R is transitive and compatible, and R is said to be a congruence relation if R is
symmetric, transitive and compatible.

We write R for the set of type-indexed families R = (Rσ)σ of binary relations Rσ
between the terms in T σ .

3.4 Context Equivalence

The general idea of context equivalence is the following: two terms M and N are equiv-
alent if any occurrence of M in any program L can be replaced with N without chang-
ing the observable behaviour of L. The notion of a context allows us to formalize this
idea.

Definition 7. A context is a term containing a unique hole [·]. Given a context C and a
term M , C[M] is the term obtained by substituting the unique hole in C with M .

216 R. Crubillé and U. Dal Lago

When defining context equivalence, we work with closing contexts, namely those
contexts C such that C[M], and C[N] are closed terms (where M and N are the possi-
bly open terms being compared). In the following, we will use judgements in the form
Γ � C(Δ;σ) : τ , which informally means that if M is a term of type σ under the typing
context Δ, then the hole of C can be filled by M , obtaining a term of type τ under the
typing context Γ . Correct assertions of this form can be derived by a formal system,
which we cannot present for lack of space, but which can be anyway found in [4].

Example 3. Example of derivable judgments of the just described form are ∅ � λx.[·]
(x : σ; τ) : (σ → τ) and ∅ � ((λx. true) [·]) (∅;σ) : bool.
Here, following [7,5], we consider that the observable behaviour of a program M is its
probability of convergence

∑�M� =
∑

V �M�(V). We now have all the ingredients
necessary to define what context equivalence is:

Definition 8. The contextual preorder is the typed relation ≤ given by: for every
M,N ∈ T Γτ , Γ � M ≤ N : τ if for every context C such that ∅ � C (Γ ; τ) : σ,
it holds that

∑�C[M]� ≤∑�C[N]�. Context equivalence is the typed relation≡ given
by stipulating that Γ �M ≡ N : σ iff Γ �M ≤ N : σ and Γ � N ≤M : σ.

Another way to define context equivalence would be to restrain ourselves to contexts of
bool and int type in the definition of context equivalence: this is the so-called ground
context equivalence. In a call-by-value setting, however, this gives exactly the same
relation, since any non-ground context can be turned into a ground context inducing the
same probability of convergence. A similar argument holds for a notion of equivalence
in which one observes the obtained (ground) distribution rather than merely its sum.
The following can be proved in a standard way:

Proposition 3. ≤ is a typed relation, which is reflexive, transitive and compatible.

Because of the quantification over all contexts, it is usually difficult to show that M
and N are two context equivalent terms. In the next sections, we will introduce another
notion of equivalence, and we show that it is included in context equivalence.

4 Applicative Bisimulation

In this section, we introduce the notions of similarity and bisimilarity for PCFL⊕. We
proceed by instantiating probabilistic bisimulation as developed by Larsen and Skou
for a generic labelled Markov chain in [17]. A similar use was done for a call-by-name
untyped probabilistic λ-calculus Λ⊕ in [5].

4.1 Larsen and Skou’s Probabilistic Bisimulation

Preliminary to the notion of (bi)simulation, is the notion of a labelled Markov chain
(LMC in the following), which is a triple M = (S,L,P), where S is a countable set
of states, L is a set of labels, and P is a transition probability matrix, i.e., a function
P : S × L × S → R such that for every state s ∈ S and for every label l ∈ L,∑

t∈S P(s, l, t) ≤ 1. Following [8], we allow the sum above to be smaller than 1,
modelling divergence this way. The following is due to Larsen and Skou [17]:

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 217

Definition 9. Given (S,L,P) a labelled Markov chain, a probabilistic simulation is
a preorder relation R on S such that (s, t) ∈ R implies that for every X ⊆ S and for
every l ∈ L, P(s, l,X) ≤ P(t, l, R(X)), with R(X) = {y | ∃x ∈ X such that x R y}.
Similarly, a probabilistic bisimulation is an equivalence relation R on S such that
(s, t) ∈ R implies that for every equivalence class E modulo R, and for every l ∈ L,
P(s, l, E) = P(t, l, E).

Insisting on bisimulations to be equivalence relations has the potential effect of not
allowing them to be formed by just taking unions of other bisimulations. The same can
be said about simulations, which are assumed to be partial orders. Nevertheless:

Proposition 4. If (Ri)i∈I is a collection of probabilistic (bi)simulations, then the re-
flexive and transitive closure of their union, (∪i∈IRi)∗, is a (bi)simulation.

A nice consequence of the result above is that we can define probabilistic similarity
(noted �) simply as the relation � =

⋃
{R | R is a probabilistic simulation}. Analo-

gously for the largest probabilistic bisimulation, that we call probabilistic bisimilarity
(noted), defined as 	 =

⋃
{R | R is a probabilistic bisimulation}. A property of

probabilistic bisimulation which does not hold in the usual, nondeterministic, setting,
is the following:

Proposition 5. 	=� ∩ �op.

4.2 A Concrete Labelled Markov Chain

Applicative bisimulation will be defined by instantiating Definition 9 on a specific
LMC, namely the one modelling evaluation of PCFL⊕ programs.

Definition 10. The labelled Markov chainM⊕ = (S⊕,L⊕,P⊕) is given by:
• A set of states S⊕ defined as follows:

S⊕ = {(M,σ) |M ∈ T σ} . {(V̂ , σ) | V ∈ Vσ},

where terms and values are taken modulo α-equivalence. A value V in the second
component of S⊕ is distinguished from one in the first by using the notation V̂ .

• A set of labels L⊕ defined as follows:

V . Y . N . B . {nil , hd , tl} . {fst , snd} . {eval},

where, again, terms are taken modulo α-equivalence, and Y is the set of types.
• A transition probability matrix P⊕ such that:
• For every M ∈ T σ , P⊕ ((M,σ), σ, (M,σ)) = 1, and similarly for values.

• For every M ∈ T σ , and any value V ∈ S(�M�), P⊕
(
(M,σ), eval , (V̂ , σ)

)
=

�M�(V).
• If V ∈ Vσ then certain actions from L⊕ are enabled and produce the natural

outcomes depending on the shape of σ. As a an example, if σ = τ → θ, and

V = λx.M , then for each W ∈ Vτ , P⊕
(
(V̂ , τ → θ),W, (M [W/x], θ)

)
= 1.

As another example, if σ = int, then there is k ∈ N such that V = k and

P⊕
(
(V̂ , int), k, (V̂ , int)

)
= 1. The other cases are similar, and more details

are in [4].

218 R. Crubillé and U. Dal Lago

For all s, l, t such that P⊕(s, l, t) is not defined above, we have P⊕(s, l, t) = 0.

Please observe that if V ∈ Vσ, both (V, σ) and (V̂ , σ) are states of the Markov chain
M⊕. A similar Markov chain was used in [5] to define bisimilarity for the untyped
probabilistic λ-calculus Λ⊕. We use here in the same way actions which apply a term
to a value, and an action which models term evaluation, namely eval .

4.3 The Definition

We would like to see any simulation (or bisimulation) on the LMC M⊕ as a family
in R. As can be easily realized, indeed, any (bi)simulation on M⊕ cannot put in cor-
respondence states (M,σ) and (N, τ) where σ �= τ , since each such pair exposes its
second component as an action. Moreover, (V̂ , σ) is (bi)similar to (Ŵ , σ) iff (V, σ) is
(bi)similar to (W,σ). This then justifies the following:

Definition 11. A probabilistic applicative simulation (a PAS in the following), is a fam-
ily (Rσ) ∈ R such that there exists a probabilistic simulation R on the LMC M⊕
such that for every type σ, and for every M,N ∈ T σ it holds that M Rσ N ⇔
(M,σ) R (N, σ). A probabilistic applicative bisimulation (PAB in the following) is
defined similarly, requiring R to be a bisimulation rather than a simulation.

The greatest simulation and the greatest bisimulation onM⊕ are indicated with �, and
	, respectively. In other words, �σ is the relation {(M,N) | (M,σ) � (N, σ)}, while
	σ is the relation {(M,N) | (M,σ) 	 (N, σ)}. Terms having the same semantics
need to be bisimilar:

Lemma 2. Let (Rσ) ∈ R be defined as follows: M Rσ N ⇔ M,N ∈ T σ ∧ �M� =
�N�. Then (Rσ) is a PAB.

As a consequence, if M,N ∈ T σ are such that �M� = �N�, then M 	σ N .

Example 4. For all σ, M , N such that ∅ � M,N : σ and �N� = ∅, we have that
M �σ N implies �M� = ∅. For every terms M,N such that x : τ � M : σ, and
∅ � N : τ , we have, as a consequence of Lemma 2, that (λx.M)N 	σ M [N/x].

We have just defined applicative (bi)simulation as a family (Rσ)σ , each Rσ being a
relation on closed terms of type σ. We can extend it to a typed relation, by the usual
open extension:

Definition 12. 1. If Γ = x1 : τ1, . . . , xn : τn is a context, a Γ -closure makes each
variable xi to correspond to a value Vi ∈ Vτi (where 1 ≤ i ≤ n). The set of Γ -
closures is CC Γ . For every term Γ � M : σ and for every Γ -closure ξ, Mξ is
the term in T σ obtained by substituting the variables in Γ with the corresponding
values from ξ.

2. Let beR = (Rσ) ∈ R. We define the open extension of (Rσ) as the typed relation
R◦ = (PΓσ) where PΓσ ⊆ T Γσ × T Γσ is defined by stipulating that M PΓσ N iff for
every ξ ∈ CC Γ , (Mξ) Rσ (Nξ).

Definition 13 (Simulation Preorder and Bisimulation Equivalence). The typed re-
lation �◦ is said to be the simulation preorder. The typed relation 	◦ is said to be
bisimulation equivalence.

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 219

4.4 Bisimulation Equivalence Is a Congruence

In this section, we want to show that 	◦ is actually a congruence, and that �◦ is a
precongruence. In view of Proposition 5, it is enough to show that the typed relation
�◦ is a precongruence, since 	◦ is the intersection of �◦ and the opposite relation of
�◦. The key step consists in showing that �◦ is compatible. This will be carried out
by the Howe’s Method, which is a general method for establishing such congruence
properties [14].

The main idea of Howe’s method consists in defining an auxiliary relation �H◦ , such
that it is easy to see that it is compatible, and then prove that �◦ = (�H◦)+.

Definition 14. Let R be a typed relation. The relation RH is defined by a set of rules,
of which we report a selection in Figure 3. The others can be found in [4], and are
anyway identical to the analogous ones from [24].

Γ, x : σ � x RM : σ

Γ, x : σ � x RH M : σ

Γ � n RM : int

Γ � n RH M : int

Γ �M RH N : int Γ � L RH P : int Γ � (N opP) R R : γop

Γ � (M opL) RH R : γop

Γ, x : σ �M RH N : τ Γ � (λx.N) R L : σ → τ

Γ � (λx.M) RH L : σ → τ

Γ, x : σ �M RH N : σ Γ � (fixx.N) R L : σ

Γ � (fix x.M) RH L : σ

Γ �M RH N : σ → τ Γ � L RH P : σ Γ � (NP) R R : τ

Γ � (ML) RH R : τ

Fig. 3. Howe’s Construction — Rule Selection

We are now going to show, that if the relationRwe start from satisfies minimal require-
ments, namely that it is reflexive and transitive, then the transitive closure (RH)+ of the
Howe’s lifting is guaranteed to be a precongruence which contains R. This is a direct
consequence of the following results, whose proofs are standard inductions (see [4] for
some more details):
• LetR be a reflexive typed relation. ThenRH is compatible.
• LetR be transitive. Then:(

Γ �M RH N : σ
)
∧ (Γ � N R L : σ)⇒

(
Γ �M RH L : σ

)
• IfR is reflexive and Γ �M R N : σ, then Γ �M RH N : σ.
• IfR is compatible, then so is R+.

220 R. Crubillé and U. Dal Lago

We can now apply the Howe’s construction to �◦, since it is clearly reflexive and tran-
sitive. The points above then tell us that �H◦ , and (�H◦)+ are both compatible. What
we are left with, then, is proving that (�H◦)+ is also a simulation. The following is a
crucial step towards proving it:

Lemma 3 (Key Lemma). For every terms M,N , the following hold:
• If ∅ � M �H◦ N : σ → τ , then for every X1 ⊆ T τx:σ and X2 ⊆ T σ→τ

x:σ→τ , it holds
that �M� (λx.X1

⋃
fixx.X2) ≤ �N�(�◦ (λx.Y1

⋃
fixx. Y2)), where Y1 = {L ∈

T τx:σ | ∃P ∈ X1.x : σ � P �H◦ L : τ} and Y2 = {L ∈ T σ→τ
x:σ→τ | ∃P ∈ X2.x :

σ → τ � P �H◦ L : σ → τ}.
• If ∅ � M �H◦ N : σ × τ , then for every X ⊆ Vσ×τ we have: �M�(X) ≤

�N�(�◦(Y)), where Y = {〈L, P 〉 | ∃〈R, T 〉 ∈ X ∧ ∅ � R �H◦ L : σ ∧ ∅ � T �H◦
P : τ}.

• If
(
∅ �M �H◦ N : [σ]

)
then it holds that �M�(nil) ≤ �N�(nil) and for every X ⊆

V [σ], �M�(X) ≤ �N�(�◦(Y)) where Y is the set of those K :: L such that there
are H,T with H :: T ∈ X , ∅ � H �H◦ K : σ, and ∅ � T �H◦ L : [σ].

• ∅ �M �H◦ N : int⇒ ∀k ∈ N, �M�(k) ≤ �N�(k).
• ∅ �M �H◦ N : bool⇒ ∀b ∈ B, �M�(b) ≤ �N�(b).

The Key Lemma can be proved with tools very similar to the ones employed in [5] for
an analogous result in an untyped call-by-name setting. Details can be found in [4]. A
careful look at its statement reveals that, indeed, what it says is that �H◦ satisfies the
axioms of a simulation when instantiated on the concrete LMCM⊕.

A consequence of the Key Lemma, then, is that (�H◦)+ is an applicative bisimula-
tion, thus included in the largest one, namely �◦. Since the latter is itself included in
�H◦ , we obtain that �◦ = (�H◦)+. But (�H◦)+ is a precongruence, and we get the main
result of this section: �◦ is a precongruence.

Theorem 1 (Soundness). The typed relation �◦ is a precongruence relation included
in ≤. Analogously, 	◦ is a congruence relation included in ≡.

4.5 Back to Our Examples

We now have all the necessary tools to prove that the example programs from Section 2
are indeed context equivalent. As an example, let us consider again the following terms:

EXPFST = λx.λy.ENC x GEN : bool→ bool→ bool;

EXPSND = λx.λy.ENC y GEN : bool→ bool→ bool.

One can define the relationsRbool,Rbool→bool,Rbool→bool→bool by stipulating that
Rσ = Xσ ×Xσ ∪ IDσ where

Xbool = {(ENC true GEN), (ENC false GEN)};
Xbool→bool = {(λy.ENC y GEN), (λy.ENC true GEN), (λy.ENC false GEN)};

Xbool→bool→bool = {EXPFST ,EXPSND};

and for every type σ, IDσ is the identity on T σ. When σ is not one of the types above,
Rσ can be set to be just IDσ . This way, the family (Rσ) can be seen as a relation R on
the state space ofM⊕ (since any state in the form (V̂ , σ) can be treated as (V, σ)). But
R is easily seen to be a bisimulation. Indeed:

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 221

• All pairs of terms inRbool have the same semantics, since �ENC true GEN � and
�ENC false GEN � are both the uniform distribution on the set of boolean values.

• The elements of Xbool→bool are values, and if we apply any two of them to a fixed
boolean value, we end up with two termsRbool puts in relation.

• Similarly for Xbool→bool→bool: applying any two elements of it to a boolean value
yields two elements which are put in relations by Xbool→bool.

Being an applicative bisimulation, (Rσ)σ is included in ∼. And, by Theorem 1, we can
conclude that EXPFST ≡ EXPSND . Analogously, one can verify that EXP ≡ RND .

5 Full Abstraction

Theorem 1 tells us that applicative bisimilarity is a sound way to prove that certain terms
are context equivalent. Moreover, applicative bisimilarity is a congruence, and can then
be applied in any context yielding bisimilar terms. In this section, we ask ourselves how
close bisimilarity and context equivalence really are. Is it that the two coincide?

5.1 LMPs, Bisimulation, and Testing

The concept of probabilistic bisimulation has been generalized to the continuous case
by Edalat, Desharnais and Panangaden, more than ten years ago [8]. Similarity and
bisimilarity as defined in the aforementioned paper were later shown to exactly cor-
respond to appropriate, and relatively simple, notions of testing [29]. We will make
essential use of this characterization when proving that context equivalence is included
in bisimulation. And this section is devoted to giving a brief but necessary introduction
to the relevant theory. For more details, please refer to [29] and to [4].

In the rest of this section, A is a fixed set of labels. The first step consists in giving
a generalization of LMCs in which the set of states is not restricted to be countable:

Definition 15. A labelled Markov process (LMP in the following) is a triple C =
(X , Σ, μ), consisting of a set X of states, a σ-field Σ on X , and a transition proba-
bility function μ : X ×A ×Σ → [0, 1], such that:
• for all x ∈ X , and a ∈ Act, the naturally defined function μx,a(·) : Σ → [0, 1] is a

subprobability measure;
• for all a ∈ Act, and A ∈ Σ, the naturally defined function μ(·),a(A) : X → [0, 1]

is measurable.

The notion of (bi)simulation can be smoothly generalized to the continuous case:

Definition 16. Let (X , Σ, μ) be a LMP, and let R be a reflexive relation on X . We
say that R is a simulation if it satisfies Condition 1 below, and we say that R is a
bisimulation if it satisfies both conditions 1 and 2:
1. If x R y, then for every a ∈ A and for every A ∈ Σ such that A = R(A), it holds

that μx,a(A) ≤ μy,a(A).
2. If x R y, then for every a ∈ A and for every A ∈ Σ, μx,a(X) = μy,a(X).

We say that two states are bisimilar if they are related by some bisimulation.

222 R. Crubillé and U. Dal Lago

We will soon see that there is a natural way to turn any LMC into a LMP, in such a way
that (bi)similarity stays the same. Before doing so, however, let us introduce the notion
of a test:

Definition 17. The test language T is given by the grammar t ::= ω | a · t | 〈t, t〉,
where a ∈ A .

Please observe that tests are finite objects, and that there isn’t any disjunctive nor any
negative test in T . Intuitively, ω is the test which always succeeds, while 〈t, s〉 corre-
sponds to making two copies of the underlying state, testing them independently accord-
ing to t and s and succeeding iff both tests succeed. The test a · t consists in performing
the action a, and in case of success performing the test t. This can be formalized as
follows:

Definition 18. Given a labelled Markov Process C = (X , Σ, μ), we define an indexed
family {PC(·, t)}t∈T (such that PC(·, t) : X → R) by induction on the structure of t:

PC(x,ω) = 1; PC(x, a · t) =
∫

PC(·, t)dμx,a; PC(x, 〈t, s〉) = PC(x, t) · PC(x, s).

From our point of view, the key result is the following one:

Theorem 2 ([29]). Let C = (X , Σ, μ) be a LMP. Then x, y ∈ X are bisimilar iff
PC(x, t) = PC(y, t) for every test t ∈ T .

5.2 From LMPs to LMCs

We are now going to adapt Theorem 2 to LMCs, thus getting an analogous characteri-
zation of probabilistic bisimilarity for them.

Let M = (X ,A ,P) be a LMC. The function μM : X × A ×P(X) → [0, 1] is
defined by μM(s, a,X) =

∑
x∈X P(s, a, x). This construction allows us to see any

LMC as a LMP:

Lemma 4. Let M = (X ,A ,P) be a LMC. Then (X ,P(X), μM) is a LMP, that we
denote as CM.

But how about bisimulation? Do we get the same notion of equivalence this way? The
answer is positive:

Lemma 5. Let M = (X ,A ,P) be a LMC, and let R be an equivalence relation
over X . Then R is a bisimulation with respect to M if and only if R is a bisimulation
with respect to CM. Moreover, two states are bisimilar with respect to M iff they are
bisimilar with respect to CM.

Let M = (X ,A ,P) be a LMC. We define an indexed family {PM(·, t)}t∈T by
PM(x, t) = PCM(x, t), the latter being the function from Definition 18 applied to
the Markov process CM. As a consequence of the previous results in this section, we
get that:

Theorem 3. LetM = (X ,A ,P) be a LMC. Then two states x, y ∈ X are bisimilar if
and only if for all tests t ∈ T , PM(x, t) = PM(y, t).

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 223

The last result derives appropriate expressions for the PM(·, ·), which will be extremely
useful in the next section:

Proposition 6. LetM = (X ,A ,P) be a LMC. For all x ∈ X , and t ∈ T , we have:

PM(x, ω) = 1; PM(x, a · t) =
∑

s∈X
P(x, a, s) · PM(s, t); PM(x, 〈t, s〉) = PM(x, t) · PM(x, s).

5.3 Every Test Has an Equivalent Context

We are going to consider the labelled Markov chainM⊕ defined previously. We know
that two programs M and N in T σ are bisimilar if and only if the states (M,σ) and
(N, σ) have exactly the same probability to succeed for the tests in T , measured ac-
cording to PM(·, ·). Proving that context equivalence is included in bisimulation boils
down to show that if M and N have exactly the same convergence probability for all
contexts, then they have exactly the same success probability for all tests. Or, more pre-
cisely, that for a given test t, and a given type σ, there exists a context C, such that for
every term M of type σ, the success probability of t on (M,σ) is exactly the conver-
gence probability of C[M]. However, we should take into account states in the form
(V̂ , σ) ∈ S⊕, where V is a value. The formalisation of the just described idea is the
following Lemma:

Lemma 6. Let σ be a type, and t a test. Then there are contexts Cσ
t , and Dσ

t such that
∅ � Cσ

t (∅;σ) : bool, ∅ � Dσ
t (∅;σ) : bool, and for every M ∈ T σ and every V ∈ Vσ,

it holds that

PM⊕((M,σ), t) =
∑

�Cσ
t [M]�; PM⊕((V̂ , σ), t) =

∑
�Dσ

t [V]�.

The proof of Lemma 6 is by induction on the structure of the test t. If t = ω, we
can take (λx. true)(λx.[·]) for Cσ

t , and Dσ
t , since it always converges. If t = 〈t, s〉,

we want to have a context which makes two copies of a term M , and applies t to the
first copy and s to the second copy; this strategy can of course be implemented. The
most delicate case is the one in which t = a · s. We consider here only the case where
a = eval . We take Dσ

t = (λx.[·])Ω, since eval is aimed to be applied only to states
of the form (M,σ). If Dσ

s is the context associated to s for values of type σ, we take
Cσ
t = (λx.Dσ

s [x])[·]. Since the evaluation is call-by-value, the reduction of Cσ
t [M] is

done in the following way: first M is evaluated , and then the context Dσ
s is applied to

the result of the evaluation of M . So the probability of convergence of Cσ
t [M] is equal to∑

V ∈Vσ (�M�(V) · (
∑�Dσ

s [V]�)), which is precisely what we wanted. Please observe
that it couldn’t be done similarly in a call-by-name setting, since ((λx.B[x])[·]) [M] has
there the same probability of convergence that B[M].

It follows from Lemma 6 that if two well-typed closed terms are context equivalent,
they are bisimilar:

Theorem 4. Let M,N be terms such that ∅ �M ≡ N : σ. Then ∅ �M	◦N : σ.

Proof. Let t be a test. We have that, since M ≡ N ,

PM⊕((M,σ), t) =
∑

�Cσ
t [M]� =

∑
�Cσ

t [N]� = PM⊕((N, σ), t),

224 R. Crubillé and U. Dal Lago

where Cσ
t is the context from Lemma 6. By Theorem 3, (M,σ) and (N, σ) are bisimilar.

So ∅ �M	◦N : σ which is the thesis.

We can now easily extend this result to terms in T Γσ , which gives us Full Abstraction:
bisimilarity and context equivalence indeed coincide.

Theorem 5 (Full Abstraction). Let M and N be terms in T Γσ .Then Γ � M ≡ N : σ
iff Γ �M	◦N : σ.

5.4 The Asymmetric Case

Theorem 5 establishes a precise correspondence between bisimulation and context
equivalence. This is definitely not the end of the story — surprisingly enough, indeed,
simulation and the contextual preorder do not coincide, and this section gives a coun-
terexample, namely a pair of terms which can be compared in the context preorder but
which are not similar.

Let us fix the following terms: M = λx.λy.(Ω ⊕ I) and N = λx.(λy.Ω)⊕ (λy.I).
Both these terms can be given the type σ = bool → bool → bool → bool in the
empty context. The first thing to note is that M and N cannot even be compared in the
simulation preorder:

Lemma 7. It is not the case that ∅ �M�◦N : σ nor that ∅ � N�◦M : σ.

We now proceed by proving that M and N can be compared in the contextual pre-
order. We will do so by studying their dynamics seen as terms of Λ⊕ [6] (in which
the only constructs are variables, abstractions, applications and probabilistic choices,
and in which types are absent) rather than terms of PCFL⊕. We will later argue why
this translates back into a result for PCFL⊕. This detour allows to simplify the overall
treatment without sacrificing generality. From now on, then M and N are seen as pure
terms, where Ω takes the usual form (λx.xx)(λx.xx).

Let us introduce some notation now. First of all, three terms need to be given names
as follows: L = λy.(Ω ⊕ I), L0 = λy.Ω, and L1 = λy.I . If b = b1, . . . , bn ∈
{0, 1}n, then Lb denotes the sequence of terms Lb1 · · ·Lbn . If P is a term, P ⇒p means
that there is distribution D such that P ⇒ D and

∑
D = p (where ⇒ is small-step

approximation semantics [6]; see [4] for more details).
The idea, now, is to prove that in any term P , if we replace an occurrence of M by an

occurrence of N , we obtain a term R which converges with probability smaller than the
one with which P converges. We first need an auxiliary lemma, which proves a similar
result for L0 and L1.

Lemma 8. For every term P , if (P [L0/x]) ⇒p, then there is another real number
q ≥ p such that (P [L1/x])⇒q .

Proof. First, we can remark that, for every term P and any variable z which doesn’t
appear in P , P [L0/x] = (P [λy.z/x]) [Ω/z], and P [L1/x] = (P [λy.z/x]) [I/z]. It is
thus enough to show that for every term R, if (R[Ω/x]) ⇒p, then there is q ≥ p such
that (R[I/x])⇒q . This is an induction on the proof of (R[Ω/x])⇒p, i.e., an induction
on the structure of a derivation of (R[Ω/x]) ⇒ D where

∑
D = p. Some interesting

cases:

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 225

• If (R[Ω/x]) = V is a value, then the term (R[I/x]) is a value too. So we have
(R[I/x])⇒ {(R[I/x])

1}, and so (R[I/x])⇒1, and the thesis holds.
• Suppose that the derivation looks as follows:

(R[Ω/x])→ T Ti ⇒ Ei

(R[Ω/x])⇒
∑

1≤i≤k
1
k · Ei

Then there are two possible cases :
• If R[Ω/x] → T1, . . . , Tk, but the involved redex is not Ω, then we can easily

prove that each Ti can be written in the form Ui[Ω/x], where

R[Ω/x]→ U1[Ω/x], . . . , Uk[Ω/x].

Similarly R[I/x] → U1[I/x], . . . , Uk[I/x]. We can then apply the induction
hypothesis to each of the derivations for Ui[Ω/x].

• The interesting case is when the active redex in R[Ω/x] is Ω. Since we have
Ω → Ω, we have R[Ω/x]→ R[Ω/x], and so T = T1 = R[Ω/x], and D = E1.
We can apply the induction hypothesis to T1 ⇒ E1, and the thesis follows.

This concludes the proof. &'

We are now ready to prove the central lemma of this section, which takes a rather
complicated form just for the sake of its inductive proof:

Lemma 9. Suppose that P is a term and suppose that (P [M,L/x, y])⇒p, where y =
y1, . . . , yn. Then for every b ∈ {0, 1}n there is pb such that (P [N,Lb/x, y]) ⇒pb and∑

b
pb
2n ≥ p.

Proof. This is an induction on the proof of (P [M,L/x, y]) ⇒p, i.e., an induction on
the structure of a derivation of (P [M,L/x, y])⇒ D where

∑
D = p:

• If P [M,L/x, y] is a value, then:
• either p = 1, but we can also choose pb to be 1 for every b, since the term

P [N,Lb/x, y] is a value, too;
• or p = 0, and in this case we can fix pb to be 0 for every b.

• If P [M,L/x, y] → R1, . . . , Rk, but the involved redex has not M nor L as func-
tions, then we are done, because one can easily prove in this case that each Ri can
be written in the form Ti[M,L/x, y], where

P [N,Lb/x, y]→ T1[N,Lb/x, y], . . . , Tk[N,Lb/x, y].

It suffices, then, to apply the induction hypothesis to each of the derivations for
Ti[M,L/x, y], easily reaching the thesis;

• The interesting case is when the active redex in P [M,L/x, y] has either M or L (or,
better, occurrences of them coming from the substitution) in functional position.
• If M is involved, then there are a term R and a variable z such that

P [M,L/x, y]→ R[M,L,L/x, y, z];

P [N,Lb/x, y]→ R[N,Lb, L0/x, y, z],→ R[N,Lb, L1/x, y, z].

This, in particular, means that we can easily apply the induction hypothesis to
R[M,L,L/x, y, z].

226 R. Crubillé and U. Dal Lago

• If, on the other hand L is involved in the redex, then there are a term R and a
variable z such that

P [M,L/x, y]→ R[M,L,Ω/x, y, z], R[M,L, I/x, y, z].

Moreover, the space of all sequences b can be partitioned into two classes of the
same cardinality 2n−1, call them BB and BG; for every b ∈ BB , we have that
P [N,Lb/x, y] is diverging, while for every b ∈ BG, we have that

P [N,Lb/x, y]→ R[N,Lb, I/x, y, z].

Observe how for any b ∈ BB there is b̂ ∈ BG such that b and b̂ agree on
every bit except one, which is 0 in b and 1 in b̂. Now, observe that p = q

2
where R[M,L, I/x, y, z] ⇒q . We can then apply the induction hypothesis and
obtain that q ≤

∑
b
qb
2n where R[N,Lb, I/x, y, z] ⇒qb . Due to Lemma 8, we

can assume without losing generality that qb ≤ qb̂ for every b ∈ BB . Now, fix
pb = 0 if b ∈ BB and pb = qb if b ∈ BG. Of course (P [N,Lb/x, y])⇒pb . But
moreover,

p =
q

2
≤ 1

2

∑
b

qb
2n
≤ 1

2

∑
b∈BG

2 · qb
2n

=
∑
b∈BG

qb
2n

=
∑
b

pb
2n

.

This concludes the proof. &'

From what we have seen so far, it is already clear that for any context C, it cannot be that∑�C[M]� >
∑�C[N]�, as this would mean that for a certain term P , P [M/x] would

converge to a distribution D whose sum p is higher than the sum of any distribution to
which P [N/x] converges, and this is in contradiction with Lemma 9: simply consider
the case where n = 0.

But how about PCFL⊕? Actually, there is an embedding 〈〈·〉〉 of PCFL⊕ into Λ⊕
such that for every P ∈ T σ, it holds that

∑�P � =
∑�〈〈P 〉〉� (again, see [4] for more

details). As a consequence there cannot be any PCFL⊕ context contradicting what we
have said in the last paragraph. Summing up,

Theorem 6. The simulation preorder �◦ is not fully abstract.

The careful reader may now wonder whether a result akin to Theorem 3 exists for
simulation and testing. Actually, there is such a result [29], but for a different notion
of test, which not only, like T , includes conjunctive tests, but also disjunctive ones.
Now, anybody familiar with the historical developments of the quest for a fully abstract
model ofPCF [25,2] would immediately recognize disjunctive tests as something which
cannot be easily implemented by terms.

6 A Comparison with Call-by-Name

Actually, PCFL⊕ could easily be endowed with call-by-name rather than call-by-value
operational semantics. The obtained calculus, then, is amenable to a treatment similar

On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi 227

to the one described in Section 4. Full abstraction, however, holds neither for simula-
tion nor for bisimulation. These results are given in more detail in [4], and are anyway
among the major contributions of [5]. The precise correspondence between testing and
bisimulation described in Section 5.2 shed some further light on the gap between call-
by-value and call-by-name evaluation. In both cases, indeed, bisimulation can be char-
acterized by testing as given in Definition 17. What call-by-name evaluation misses,
however, is the capability to copy a term after having evaluated it, a feature which is
instead available if parameters are passed to function evaluated, as in call-by-value. In
a sense, then, the tests corresponding to bisimilarity are the same in call-by-name, but
the calculus turns out to be too poor to implement all of them. We conjecture that the
subclass of tests which are implementable in a call-by-name setting are those in the
form 〈t1, . . . , tn〉 (where each ti is in the form a1i · . . . ·ami

i ·ω), and that full abstraction
can be recovered if the language is endowed with an operator for sequencing.

7 Conclusions

In this paper, we study probabilistic applicative bisimulation in a call-by-value scenario,
in the meantime generalizing it to a typed language akin to Plotkin’s PCF. Actually,
some of the obtained results turn out to be surprising, highlighting a gap between the
symmetric and asymmetric cases, and between call-by-value and call-by-name evalu-
ation. This is a phenomenon which simply does not show up when applicative bisim-
ulation is defined over deterministic [1] nor over nondeterministic [18] λ-calculi. The
path towards these results goes through a characterization of bisimilarity by testing
which is known from the literature [29]. Noticeably, the latter helps in finding the right
place for probabilistic λ-calculi in the coinductive spectrum: the corresponding notion
of test is more powerful than plain trace equivalence, but definitely less complex than
the infinitary notion of test which characterizes applicative bisimulation in presence of
nondeterminism [20].

Further work includes a broader study on (not necessarily coinductive) notions of
equivalence for probabilistic λ-calculi. As an example, it would be nice to understand
the relations between applicative bisimulation and logical relations (e.g. the ones de-
fined in [13]). Another interesting direction would be the study of notions of approxi-
mate equivalence for λ-calculi with restricted expressive power. This would be a step
forward getting a coinductive characterization of computational indistinguishability,
with possibly nice applications for cryptographic protocol verification.

References

1. Abramsky, S.: The Lazy λ-Calculus. In: Turner, D. (ed.) Research Topics in Functional Pro-
gramming, pp. 65–117. Addison Wesley (1990)

2. Berry, G., Curien, P.-L.: Sequential algorithms on concrete data structures. Theor. Comput.
Sci. 20, 265–321 (1982)

3. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern
Analysis and Machine Intelligence 25(5), 564–577 (2003)

4. Crubille, R., Dal Lago, U.: On Probabilistic applicative bisimulation for call-by-value lambda
calculi (long version) (2014), http://arxiv.org/abs/1401.3766

http://arxiv.org/abs/1401.3766

228 R. Crubillé and U. Dal Lago

5. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-order prob-
abilistic functional programs. In: POPL, pp. 297–308 (2014)

6. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calculus. RAIRO
- Theor. Inf. and Applic. 46(3), 413–450 (2012)

7. Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. Comput. Log. 3(3),
359–382 (2002)

8. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov processes. Inf.
Comput. 179(2), 163–193 (2002)

9. Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully abstract for
probabilistic PCF. In: POPL, pp. 309–320 (2014)

10. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299
(1984)

11. Goodman, N.D.: The principles and practice of probabilistic programming. In: POPL, pp.
399–402 (2013)

12. Gordon, A.D., Aizatulin, M., Borgström, J., Claret, G., Graepel, T., Nori, A.V., Rajamani,
S.K., Russo, C.V.: A model-learner pattern for bayesian reasoning. In: POPL, pp. 403–416
(2013)

13. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types. Mathemat-
ical Structures in Computer Science 18(6), 1169–1217 (2008)

14. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Inf.
Comput. 124(2), 103–112 (1996)

15. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS, pp. 186–195
(1989)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall Cryptography
and Network Security Series. Chapman & Hall (2007)

17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28
(1991)

18. Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD thesis, Uni-
versity of Aarhus (1998)

19. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing, vol. 999.
MIT Press (1999)

20. Ong, C.-H.L.: Non-determinism in a functional setting. In: LICS, pp. 275–286 (1993)
21. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sampling functions. ACM

Trans. Program. Lang. Syst. 31(1) (2008)
22. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-

gan Kaufmann (1988)
23. Pfeffer, A.: IBAL: A probabilistic rational programming language. In: IJCAI, pp. 733–740.

Morgan Kaufmann (2001)
24. Pitts, A.: Operationally-based theories of program equivalence. In: Semantics and Logics of

Computation, pp. 241–298. Cambridge University Press (1997)
25. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5(3),

223–255 (1977)
26. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions.

In: POPL, pp. 154–165 (2002)
27. Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28,

656–715 (1949)
28. Thrun, S.: Robotic mapping: A survey. Exploring artificial intelligence in the new millen-

nium, 1–35 (2002)
29. van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell, J.: Domain theory, testing and simu-

lation for labelled markov processes. Theor. Comput. Sci. 333(1-2), 171–197 (2005)

Grounding Synchronous Deterministic

Concurrency in Sequential Programming�

Joaqúın Aguado1, Michael Mendler1, Reinhard von Hanxleden2,
and Insa Fuhrmann2

1 Otto-Friedrich-Universität Bamberg, Germany
2 Christian-Albrechts-Universität zu Kiel, Germany

Abstract. Using a new domain-theoretic characterisation we show that
Berry’s constructive semantics is a conservative approximation of the
recently proposed sequentially constructive (SC) model of computation.
We prove that every Berry-constructive program is deterministic and
deadlock-free under sequentially admissible scheduling. This gives, for
the first time, a natural interpretation of Berry-constructiveness for
shared-memory, multi-threaded programming in terms of synchronous
cycle-based scheduling, where previous results were cast in terms of syn-
chronous circuits. This opens the door to a direct mapping of Esterel’s
signal mechanism into boolean variables that can be set and reset under
the programmer’s control within a tick. We illustrate the practical use-
fulness of this mapping by discussing how signal reincarnation is handled
efficiently by this transformation, which is of linear complexity in pro-
gram size, in contrast to earlier techniques that had quadratic overhead.

Keywords: Concurrency, Constructiveness, Determinism, Mealy Reac-
tive Systems, Synchronous Programming, Esterel.

1 Introduction

If traditional main-stream programming was largely single-threaded and sequen-
tial, the new multi-core processing age raises the incentives for concurrent pro-
gramming. However, multi-threaded, shared memory programming is notoriously
difficult because of data races (write-write, read-write conflicts) which jeopar-
dise the functional correctness and predictability of program behaviour. The
main-stream answer to avoid the non-determinism are elementary synchronisa-
tion primitives, such as monitors, semaphores and locks. Stemming from the
early days of concurrent programming, these general-purpose operators are safe
in the hands of an expert, at least for systems of limited complexity, but not
necessarily in the hands of the novice or for complex systems [1,2].

An approach which does not rely on synchronisation through low-level prim-
itives is the synchronous model of computation (SMoC). SMoC is a disciplined

� This work is part of the PRETSY project and supported by the German Science
Foundation (DFG HA 4407/6-1 and ME 1427/6-1).

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 229–248, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

230 J. Aguado et al.

scheduling regime based on logical clocks and signals as the key synchronisation
mechanisms. To ensure determinism and bounded response, it enforces a strict
cycle-based communication pattern between concurrent threads, which abstracts
the principle of deterministic input-output Mealy machines.

A synchronous computation, consisting of a system and an environment, is
generally described by an ordered sequence of reaction instants, each one occur-
ring at a global clock tick acting as a synchronisation barrier. In a synchronous
program, these ticks are derived from explicit clocks, as in Lustre [3] or Sig-
nal [4], or from statements such as Esterel’s [5] pause, which establish precisely
identifiable global configurations of the system in question. What happens, then,
between two ticks, i. e., within a macro-step, is a change from one system con-
figuration to the next. This change results from the combined execution of the
system’s individual statements ormicro-steps. The environment perceives macro-
steps as atomic (instantaneous) computations. The environment’s observations
and interactions can only occur at globally consistent configurations delimited
by the clock tick. This modelling is known as the Synchrony Hypothesis.

This abstraction has led to the family of synchronous languages [6], which have
been used successfully in particular in safety-critical embedded systems, such as
avionics applications. The synchrony abstraction naturally leads to a fixed-point
semantics,where all variables that are computed as part of a reaction have a unique
value throughout the reaction. In data-flow oriented synchronous languages, such
as Lustre, this means that for each variable there must be a unique defining
equation, leading to a declarative programming style. In imperative, control-flow
oriented languages, such as Esterel, SyncCharts [7] or Quartz [8], the synchrony
abstractionmeans that a signalmust not bemodified after it has been read (“write-
before-read”). This protocol leads to the notion of constructiveness, also referred to
as causality; a program is considered constructive if and only if this “write-before-
read” protocol is neither too stringent, to avoid deadlocks, nor too lax, to avoid non-
determinism.Programs that are not constructivemust be rejected at compile time.
This compile-time reasoning, which eliminates deadlock and non-determinism is
one of the strengths of synchronous programming.

The synchrony abstraction has proven to be useful in practice, and its sound
mathematical basis allows formal reasoning and verification. The SMoC construc-
tion principles—used so far mainly in synchronous languages—can be naturally
generalised and be mapped to familiar, sequential programming concepts as used
in C or Java. This not only allows a fresh look at existing synchronous languages,
includingmore efficient compilation strategies, but also leads to natural extensions
that allow a familiar, sequential programming style. In this vein, we recently intro-
duced the notion of sequential constructiveness (SC) to integrate SMoCwithmain-
stream sequential languages such as Java or C [9,10]. The idea is to reconstruct
signals and their synchronisation properties in terms of variables and scheduling
constraints on variable accesses. SC leaves more control to the programmer than
traditional SMoC. It exploits the fact that the program-prescribed sequencing of
statements can typically be implemented reliably by the compiler on the run-time
system. This assumption is not usually made in traditional SMoC. The SMoC

Grounding Synchronous Deterministic Concurrency 231

advantage is that it offers more robustness with respect to the admissible run-time
models regarding reordering of statements, while SC is more permissive and more
flexible to use in the context of sequential programming.

Contributions. In this paper, we investigate the formal relationship between SC
and SMoC which has been discussed only informally before. Our results offer
an interpretation of SC as a clocked scheduling protocol which, within a single
clock tick, supports arbitrary sequences of concurrent init-update-read accesses
on shared variables. This reduces the number of required clock cycles compared
to SMoC which does not permit such repetitions.

– We introduce the class ofΔ0 or stronglyBerry-constructive programs formulti-
threaded shared memory programs in which one concurrent init-update-read
cycle is permitted and initialisations are under the programmer’s control. This
generalisesBerry-constructiveness for Esterel whichwe identify as a relaxation
Δ1 in which all initialisations are implicit.

– We presentΔ0 andΔ1 in the form of fixed point analyses in abstract domains
of signal statuses. Concretely, Δ1 is equivalent to ternary analysis, which is
known to be related to delay-insensitive Boolean circuits, while Δ0 refines
this naturally in a 10-valued lattice domain of approximation intervals I(D).
This brings a novel characterisation of Berry’s must-cannot analysis that
suggests extensions to other data types.

– We show that both Δ0 and Δ1 are properly included in SC, referred to as
Δ∗, which permits arbitrarily many repetitions of concurrent init-update-
read cycles. This proves formally that SC is indeed a conservative extension
of Esterel thus solving an open problem [9].

– Finally, to illustrate the usefulness of SC (beyond Δ1) we show by example
how two initialisations during one tick implement efficiently some forms of
signal reincarnation, known in SMoC as the “schizophrenia” problem. Earlier
work suggests that code transformations for separating signal incarnations re-
quire at least quadratic-size code duplication [11,12,13]. This is a consequence
of working at the Δ0,1 level. We show that in Δ∗, a code transformation that
separates signal incarnations can be implemented in linear size.

Overview. Sec. 2 provides the technical setup for our results. We start with a brief
discussion on how synchronous signals can be represented using variables in shared
memorymulti-threading.We illustrate the SCmodel of synchronous computation
and its role for the proper sequencing of signal initialisation (Sec. 2.1). This is fol-
lowed by the definition of a kernel language for pure boolean programs of single syn-
chronous instants (Sec. 2.2), the formal definition of its operational semantics and
the notion of sequential constructiveness, called Δ∗-constructiveness (Sec. 2.3).
Sec. 3 contains our main results, where we introduce the Δ0 and Δ1 levels of ab-
straction for SC for approximating Δ∗-constructiveness. We study their relation-
ship and connectΔ1withBerry’s notion of constructiveness introduced forEsterel.
Finally, Sec. 4 discusses relatedwork, Sec. 5 sums up the paper and provides an out-
look. Further material on the theory outlined in this paper, such as detailed proofs
and expository examples can be found in [14].

232 J. Aguado et al.

2 Model and Δ∗ Constructiveness of Boolean SC

Synchronous computations relate to classical automata in the sense that macro-
steps correspond to automata transitions and clock ticks separate automata
states at which system and environment can synchronize and communicate with
each other. At this level of modelling, where a macro-step appears as an atomic
interaction, the SMoC can be analysed by means of well-known FSM techniques.
However, synchronous programming languages generate Mealy automata whose
outputs depend instantaneously on the inputs. Thus, multiple accesses to the
same object cannot necessarily be sequentially separated by the ticks of the
macro-level clock. Here, the coordination of variable accesses raises problems of
causality, initialisation, reincarnation and schizophrenia within macro steps.

2.1 Grounding Synchronous Signals in Sequential Variables

Before a formal treatment of the subject matter in later sections, we will set
the stage by comparing signals, a key SMoC concept to achieve deterministic
concurrency, with variables, familiar from sequential languages as C and Java.
We here use a C-like language, called SCL [9], which extends C by synchronous
primitives, such as pause to delineate ticks as in Esterel.

A signal is per default absent in each tick, unless it is emitted, in which case
it becomes present in the current tick. Fig. 1a shows schizo-strl, an example of
how signals are used in Esterel, taken from [13]. In the initial tick, the present S
statement emits O if S is present; however, as S has not been emitted yet, O is not
emitted. The pause statement then terminates the current tick. In the next tick,
the emit S makes S present, however, the local scope of S is left immediately
afterwards. When, after looping around, the scope of S is re-entered, a fresh
instance of S is in place that has not been emitted yet, so the test for the
presence of S fails again.

Signals that may become absent and present in the same tick, such as S in
schizo-strl, are called schizophrenic. Schizophrenic signals bring a risk for non-
determinism, for example, when synthesizing hardware, as signal wires must have
a stable voltage. Thus a number of strategies have been proposed to eliminate
schizophrenia by code transformations [11,12,13]. These transformations essen-
tially duplicate loop bodies when they contain local signal scopes that might be
left and re-entered in the same tick, as illustrated in schizo-cured-strl in Fig. 1b.
This approach “cures” the schizophrenia problem, but could lead to an expo-
nential code increase (each loop nesting level can double the code size, and the
nesting level can be linear in the size of the program). This can be improved by
distinguishing surface and depth [11] of a (compound) statement S, where S in
this case is the body of the loop. The surface is the part that can be executed
in the same tick when entering S, and the depth is the part of S that can be
executed in subsequent ticks. The schizo-cured2-strl version in Fig. 1c illustrates
this approach which, however, can still lead to a quadratic code size increase in
the worst case (the recursive code expansion due to loops can only happen in
the depth copy of the loop body, not anymore in the surface copy).

Grounding Synchronous Deterministic Concurrency 233

1 module schizo−strl
2 output O;
3

4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

(a) The original Esterel
version [13]. The output
signal O is communicated
to the environment at each
tick. The local signal S is
not observable from the
outside.

1 module schizo−cured−strl
2 output O;
3

4 loop
5 signal S in
6 present S then
7 emit O
8 end;
9 pause;

10 emit S;
11 end;
12 signal S’ in
13 present S’ then
14 emit O
15 end;
16 pause;
17 emit S’;
18 end;
19 end loop

(b) Esterel version with
schizophrenia cured by du-
plicating the loop body
(exponential complexity).
Just for clarity, we re-
named the second copy of
S to S’.

1 module schizo−cured2−strl
2 output O;
3

4 loop
5 % Surface
6 signal S in
7 present S then
8 emit O
9 end;

10 end;
11

12 % Depth
13 signal S’ in
14 pause;
15 emit S’;
16 end;
17 end loop

(c) Esterel version with
schizophrenia cured by
splitting the loop body
into surface and depth
(quadratic complexity).

1 schizo−seq−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S;
6

7 // Surf init
8 S = false ;
9 O = S;

10 pause;
11 // Depth init
12 S = false ;
13 // Emit
14 S = true;
15 }
16 }

(d) An SCL version, still
sequential, with boolean
flags O and S. S is
explicitly initialised to
false (“absent”) when
entering its scope (“sur-
face initialisation”) and
at the subsequent tick
(“depth initialisation”).

1 schizo−conc−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S, Term;
6

7 Term = false;
8 fork
9 O = S;

10 pause;
11 S = true; // Emit
12 Term = true;
13 par
14 while (true) {
15 S = false ; // Init
16 if (Term)
17 break;
18 pause;
19 }
20 join ;
21 }
22 }

(e) SCL version with ini-
tialisations of S in a sepa-
rate thread concurrent to
the scope of S.

1 schizo−conc−cured−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S, Term;
6

7 S = false ; // Surf init
8 Term = false;
9 fork

10 O = S;
11 pause;
12 S = true; // Emit
13 Term = true;
14 par
15 do {
16 pause;
17 S = false ; // Depth init
18 } while (! Term);
19 join ;
20 }
21 }

(f) SCL version with separate
surface and depth initialisa-
tions of S to cure schizophrenia
(linear complexity).

Fig. 1. The schizo example illustrating the correspondence between Esterel signals and
boolean, sequentially controlled variables

234 J. Aguado et al.

The schizophrenia issue that arises at the signal-based view (as in Esterel)
can be elegantly handled by the variable-based approach (as in SCL). The sig-
nals used in schizo-strl can be replaced by boolean variables that are explicitly
set to false (absent) before they are possibly updated to true (present). The
schizo-seq-scl code in Fig. 1d shows a functionally equivalent version of schizo-
strl that replaces signals O and S by boolean variables of the same name. False
is interpreted as signal absence and true as signal presence.

To fully emulate signals, we need to allow concurrent writes, but must make
sure that initialising writes (S = false) precede non-initialising, or updating writes
(S = true). With such an init-update-read protocol [10,9], for concurrent (not se-
quential!) variable accesses in place, we can emulate signals even in a concurrent
setting, as is illustrated in the schizo-conc-scl code in Fig. 1e. This is still equiva-
lent to the non-concurrent schizo-seq-scl, but uses concurrency for separating the
initialisation of S from the original code. The point of this example is two-fold:
1) it illustrates how to handle signals in a concurrent setting, and 2) it presents a
way to initialise signals in a way that scales up well to signal scopes that contain
an arbitrary number of tick boundaries (pause statements) that would otherwise
each require an explicit initialisation of every signal at every pause statement.
In schizo-conc-scl, the back-and-forth scheduling between the concurrent threads
that puts everything in the right order is induced by the aforementioned init-
update-read protocol. With the advantage of having direct access to the signal
initialisation we can cure schizophrenia of signals efficiently by just duplicating
the reincarnated initialisation statement, again into surface and depth initiali-
sation. This results in the schizo-conc-cured-scl code in Fig. 1f which only incurs
a linear cost in code expansion over the original Esterel.

2.2 Language and Terminology

For our further elaborations, we need a language that focuses on the micro-steps.
Programs in this language, called combinational programs or cprogs for short,
contain the necessary control structures for capturing multiple variable accesses
as they occur inside macro-steps, and abstract syntactic and control particu-
larities of existing synchronous languages not directly related to our analysis.
This not only provides generality but also avoids over-complicating our formal
treatment. A cprog is pure in the sense that it manipulates Boolean variables
from a finite set V carrying values in B = {0, 1}. The values 0 and 1 emulate
the synchronous signal statuses, respectively, of absent (initialised) and present
(updated) through appropriate scheduling constraints. The syntax of cprogs is
given by the BNF

P := ε | ¡s | !s | s ? P : P | P ||P | P ; P.

Intuitively, the empty statement ε is a cprog that terminates instantaneously. The
reset ¡s (“unemit s”, initialise) and set !s (“emit s”, update) constructs modify
the value of s ∈ V to 0 or 1, respectively. The conditional control s ? P : Q has
the usual interpretation: depending on the value 1 or 0 of the guard variable s

Grounding Synchronous Deterministic Concurrency 235

either P or Q is executed. Parallel composition P ||Q forks P and Q, so both are
executed concurrently. This composition terminates (joins) when both threads
terminate. When just one of the two threads in P ||Q terminates, the computation
continues from the statements of the other thread until it terminates, too. In
the sequential composition P ; Q the statements of P are first executed until P
terminates. Then the control is transferred to Q which determines the behaviour
of the composition thereafter. A more elaborate language handling loops and
sequential pausing is treated in [14].

2.3 SC Operational Semantics and Δ∗-Constructiveness

An executing cprog, called a process, is a triple T = 〈T.id, T.prog, T.next〉. The
identifier T.id locates the process in the sequential-concurrent control flow with
respect to other processes. As described in [14] a preorder T1.id ≺ T2.id expresses
that T2 has been instantiated sequentially after T1. If T1.id �) T2.id and T2.id �)
T1.id, where) is the reflexive closure of ≺, then both processes are concurrent.
The current-program T.prog is the expression that defines the next action of T .
The next-control T.next is a list of future program fragments that are converted
into actions sequentially after T.prog has terminated.

A configuration (Σ, ρ) consists of the global memory ρ storing the current
value ρ(x) ∈ B for each variable x ∈ V , and the process pool Σ, which is a
finite set of processes with distinct identifiers. We call T ∈ Σ active if T.id is
)-maximal in Σ, otherwise T is waiting. In a given configuration (Σ, ρ) every
active process T ∈ Σ can be selected to execute its action, thereby producing a
micro-step T : (Σ, ρ) →μs (Σ′, ρ′). Since the resulting configuration (Σ′, ρ′) is
uniquely determined by the process T , we may write (Σ′, ρ′) = T (Σ, ρ).

In a micro-sequence the scheduler runs through a succession (Σi+1, ρi+1) =
Ti+1(Σi, ρi), 0 ≤ i < k, of micro-steps obtained from the interleaving of process
executions. We let
μs be the reflexive and transitive closure of→μs. That is, we
write R : (Σ0, ρ0)
μs (Σk, ρk) to express that there exists a micro-sequenceR =
T1, T2, . . . , Tk, not necessarily maximal, from configuration (Σ0, ρ0) to (Σk, ρk).
A (synchronous) instant, abbreviated R : (Σ0, ρ0) =⇒μs (Σk, ρk), is a maximal
micro-sequence R that reaches a final quiescent configuration in which all the
processes have terminated, i. e., in which Σk = ∅.

Let us explain the operational semantics of SC by way of an example, for for-
mal definitions see [14]. Consider the second tick of program schizo-conc-cured-scl
(Fig. 1f), which starts immediately after the pauses in lines L11 and L17, concur-
rently. As a cprog this is expressed by P0 := (L11 ||L17) ; L7 where L7 stands for
the code executed from line L7 after completion of the join wrapping around the
while loop. The sub-expressions are L11 = !s ; !term, L17 = ¡s ; term ? ε : L16.
We start in the configuration (Σ0, ρ0) where ρ0 gives value 0 to every variable
and the process pool consists of a single process Σ = {T0} with T0 = 〈0, P0, []〉.
Since T0 is active it can induce the micro-step (Σ0, ρ0)→μs (Σ1, ρ0) where Σ1 =
{T1} with T1 = 〈0, L11 ||L17, [L7]〉. Notice how this action has split up the se-
quential cprog P0 into the current-program L11 ||L17 and the next-control [L7].
Executing T1, we obtain (Σ1, ρ0) →μs (Σ2, ρ0), where Σ2 = {T20, T21, T22} has

236 J. Aguado et al.

forked the parent T20 = 〈0, ε, [L7]〉 and the two children T21 = 〈0.l.0, L11, []〉
and T22 = 〈0.r.0, L17, []〉. Since 0) 0.l.0 and 0) 0.r.0 but 0.l.0 �) 0.r.0 and
0.r.0 �) 0.l.0 the two children are are concurrent with each other and active
in Σ2, whereas the parent T20 is waiting. The parent plays the role of a join
in the sense that it cannot execute until T21 and T22 terminate. The top-level
operators of both T21.prog = L11 and T22.prog = L17 are sequential composi-
tions. Executing these does not change the memory, so both processes are con-
fluent with each other. Any scheduling order results in the same configuration
(Σ2, ρ0)
μs (Σ4, ρ0) with Σ4 = {T20, T31, T32}, where T31 = 〈0.l.0, !s, [!term]〉
and T32 = 〈0.r.0, ¡s, [term ? ε : L16]〉 are active. In (Σ4, ρ0) we have conflicting
concurrent writes as T31.prog sets the variable s and T32.prog resets it. Now
the scheduling order matters. The “init-update-read” protocol resolves the non-
determinism, as the initialisation of T32 is always performed first and only then
the update by T31. So, (Σ4, ρ0)
μs (Σ6, ρ11) results from scheduling T32 fol-
lowed by T31, where the memory is ρ11(s) = 1 and the process pool Σ6 =
{T20, T41, T42}, with T41 = 〈0.l.1, !term, []〉 and T42 = 〈0.r.1, term ? ε : L16, []〉.
In configuration (Σ6, ρ11) there is a race between the reading of term by T42

and the writing to term by T41. Again, the “init-update-read” protocol fixes the
choice. It forces the run-time system to schedule first the set operation !term
of T41, whereupon this child terminates and disappears from the process pool.
Then, the conditional test T42 is scheduled which selects its ‘then’-branch ε
and then terminates, too. Therefore, we reach the configuration (Σ9, ρ21) with
Σ9 = {T20} with memory ρ21(s) = ρ21(term) = 1. This brings back the parent
T20 = 〈0, ε, [L7]〉 as the only active process so that the next configuration is
(Σ10, ρ21) with Σ10 = {〈1, L7, []〉}. At this point we have come around the while
loop and continue to execute program schizo-conc-cured-scl (Fig. 1f) from line
L7 expressed by the cprog L7 := ¡s ; (¡term ; o = s ; L11 ||L16), where o = s is
an abbreviation for s ? !o : ¡o. This generates a determinate final configuration
(Σ21, ρ0) with Σ21 = ∅ considering that for the current macro-step the pauses
L11 and L16 behave like ε, i.e., they terminate instantaneously.

Roughly, a cprog P is Δ∗-constructive if the “init-update-read” scheduling
does not deadlock and all such admissible executions of P produce the same
final memory. The following Defs. 1 and 2 make this formal.

Definition 1 (Confluence and Init-Update-Read Precedence)
Let R : (Σ0, ρ0)
μs (Σk, ρk) be a micro-sequence and R = T1, T2, . . . , Tk. Pick
any two processes Ti1 and Ti2 and let j = min(i1, i2)− 1:

– Ti1 and Ti2 are confluent in R if there is no micro-sequence (Σj , ρj)
μs

(Σ′, ρ′) such that (i) Ti1 , Ti2 ∈ Σ′ are both active and (ii) Ti1(Ti2(Σ
′, ρ′)) �=

Ti2(Ti1(Σ
′, ρ′)).

– Ti1 precedes Ti2 if Ti1 and Ti2 are concurrent and either: (i) Ti1 performs
a reset ¡s or set !s on a variable s that is read (tested) by Ti2 , or (ii) Ti1
performs a reset ¡s on a variable s on which Ti2 performs a set !s.

Grounding Synchronous Deterministic Concurrency 237

Definition 2 (Δ∗-Admissibility and Δ∗-Constructiveness)

– A micro-sequence R = T1, T2, . . . , Tn is Δ∗-admissible or SC-admissible, if
whenever Ti1 precedes Ti2 , then i1 < i2 or both Ti1 , Ti2 are confluent in R.

– A cprog P is Δ∗-constructive, or SC-constructive, if for all configurations
(Σ0, ρ0) with Σ0 = {〈0, P, []〉} we have: (i) there exists a Δ∗-admissible syn-
chronous instant (Σ0, ρ0) =⇒μs (∅, ρk) and (ii) every Δ∗-admissible syn-
chronous instant leads to the same final configuration (∅, ρk).

A cprog that is not Δ∗-constructive is P1 := (x ? !y : !y) ‖ (y ? !x : !x).
From initial ρ0(x) = ρ0(y) = 0 all schedules force a concurrent, non-confluent,
write !y or !x sequentially after a read x? or y?. Hence, the protocol deadlocks.
Another not Δ∗-constructive program is P2 := (x ? ε : !y) ‖ (y ? ε : !x), which
does not deadlock but has two Δ∗-admissible schedules with different results.

3 Δ0/1-Constructiveness: An Abstraction for Δ∗-Analysis

In earlier work [10] we have presented a simple static cycle criterion for the
analysis of SC-constructiveness, called ASC-schedulability. Since the ASC test
is purely static it cannot deal with data dependencies. This unnecessarily re-
jects programs as non-constructive even when the causality cycles are not ex-
ecutable in the run-time control flow. We now introduce an approximation to
Δ∗-constructiveness which does account for data dependencies. It can deal with
the difference of a variable retaining its original initial value from the initial
memory (pristine), being initialised to 0 and then either remaining 0 (signal ab-
sence) or being set to 1 (signal presence). This includes monotonic value changes
from 0 to 1 but is restricted to a single “init-update-read” cycle within a logical
tick rather than arbitrarily many as would be permitted by Δ∗-constructiveness.

3.1 Abstract Value Domain I(D) and Environments

Our constructiveness analysis takes place in an abstract domain of informa-
tion values which describe the sequential and concurrent interaction of signals.
Instead of distinguishing just two signal statuses “absent” and “present” as
in the traditional SMoC, we consider the sequential behaviour of a variable
(during each instant) as taking place in a linearly ordered 4-valued domain
D = {⊥ ≤ 0 ≤ 1 ≤ }. The linear ordering ≤ captures a trajectory through
a single instance of the init-update protocol. Every declared variable starts off
initially in status ⊥ (pristine). It can later be reset (initialised) to 0 and then,
possibly, set (updated) to 1. On the other hand, changes from status 1 back to 0
are not permitted. Any attempt to reset a variable sequentially after it has been
set results in the value , denoting a model crash. The status for a variable x
indicates that more than one init-update cycle is necessary to analyse the final
response of x. If this is intended, then an analysis for Δ≥2 may resolve the case.
Clearly, ≤ induces a lattice structure over D with minimum ⊥, maximum and
the join (max) and meet (min) operations obtained in the obvious fashion.

238 J. Aguado et al.

In the analysis we operate on predictions of variable values. Possible statuses
of variables are approximated by closed intervals I(D) = {[a, b] | a, b ∈ D, a ≤ b}
over D. An interval [a, b] ∈ I(D) in this 10-valued domain corresponds to the set
set([a, b]) = {x | a ≤ x ≤ b} ⊆ D which, if a < b, denotes uncertain information,
i. e., a potential non-deterministic response. Such a general interval represents
an approximation to the final (stable) state of a variable from its two ends,
the lower bound a and the upper bound b. An interval [a, b] associated with a
variable x ∈ V can thus be read as follows: “the execution ensures that x has at
least status a, yet it cannot be excluded that some statements might be executed
which could increase the status of x up to b”. In this vein, the intervals [a, a]
correspond to decided, or crisp, statuses which are naturally identified with the
values a, i. e., D ⊂ I(D). A variable s ∈ V with status γ ∈ I(D) is denoted by sγ .

(w,u)

(¹,)

Kleene‘s ternary domain (Esterel)

crisp
values extension for

initialisation
and crash

[,]

[1, 1]

[0, 0]

[>,>]

[, 0]
[, 1]

I(D)

[,>]

[0,>]
[0, 1]

[1,>]

Fig. 2. Interval domain I(D) of signal variable statuses

On the constructive value domain I(D) we can define two natural orderings:
The point-wise ordering [a1, b1]) [a2, b2] iff a1 ≤ a2 and b1 ≤ b2 and the (in-
verse) inclusion ordering [a1, b1] � [a2, b2] iff set([a2, b2]) ⊆ set([a1, b1]) endow
I(D) with a full lattice structure for) and a lower semi-lattice structure for �.
The point-wise lattice 〈I(D),)〉 has minimum element [⊥,⊥], the minimum for
the inclusion semi-lattice 〈I(D),�〉 is [⊥,].

The element [,] is a maximal element for both orderings but it is the
maximum only for). For � all singleton intervals [a, a] are maximal. Join ∨ and
meet ∧ for the)-lattice are obtained in the point-wise manner: [a1, b1]∨[a2, b2] :=
[max(a1, a2),max(b1, b2)] and [a1, b1]∧ [a2, b2] := [min(a1, a2),min(b1, b2)]. In the
inclusion �-lattice the meet & is [a1, b1] & [a2, b2] := [min(a1, a2),max(b1, b2)].
The semi-lattice 〈I(D),�〉 does not possess joins, but it is consistent complete,
i. e., whenever in a nonempty subset ∅ �= X ⊆ I(D) any two elements x1, x2 ∈ X
have an upper bound y ∈ I(D), x1 � y and x2 � y, then there exists the least
upper bound 'X = &{y | ∀x ∈ X. x � y}. This will give us least fixed points.

Fig. 2 illustrates the two-dimensional lattice structure of I(D). The vertical
direction (upwards) corresponds to) and captures the sequential dimension of
the statuses. The horizontal direction (right-to-left) is the inclusion ordering �

Grounding Synchronous Deterministic Concurrency 239

and expresses the degree of precision of the approximation. The most precise
status description is given by the crisp values on the left side, which are �-
maximal and make up the embedded domain D. The least precise information
value is the interval [⊥,] on the right.

Observe that the well-known ternary domain for the fixed-point analysis of
Pure Esterel [15] or constructive Boolean circuits [16] is captured, as indicated
in Fig. 2, by the inner part with values [0, 0] (“absent”), [1, 1] (“present”) and
[0, 1] (“undefined”). In ternary analysis all signal variables are implicitly assumed
initialised, hence no need for ⊥. Moreover, since there is no reset operator and
thus programs cannot fail the monotonic single-change requirement, there is no
need for . This ternary fragment of I(D) corresponds to three-valued Kleene
logic with ∨ disjunction and ∧ logical conjunction. Fig. 2 visualises clearly how
the 10-valued domain I(D) offers an extended playground to represent the logic
of explicit initialisation.

The statuses of variables are kept in environments E : V → I(D) mapping
each variable x ∈ V to an interval E(x) ∈ I(D). The orderings and (semi-)lattice
operations are lifted to environments by stipulating E1 � E2 iff E1(x) � E2(x)
for � ∈ {),�} and (E1 2 E2)(x) = E1(x) 2 E2(x) for 2 ∈ {∨,∧,&} and all
x ∈ V . If E(x) = [a, b] then we will also write x[a,b] ∈ E and further xγ ∈ E
when E(x) = [γ, γ].

It is natural to identify the values [a, b] ∈ I(D) with constant environments
such that [a, b](x) = [a, b] for all x ∈ V . An environment E is called decided,
or crisp, if E(x) ∈ D; ternary if E(x) ∈ {0, 1, [0, 1]}; and crash-free if E(x)) 1
for all variables x ∈ V . Every environment can be separated into its lower
projection low (E) := {x[a,�] | x[a,b] ∈ E} and upper projection upp(E) :=
{x[⊥,b] | x[a,b] ∈ E} so that E = &{X | low (E) � X and upp(E) � X}. We use
the set-like notation {〈xγ11 , xγ22 , . . . , xγnn 〉} for finite environments that explicitly
set the status γi for the listed variables xi and implicitly define the status ⊥ for
all other variables z ∈ V \{x1, x2, . . . , xn}. Then, {〈 〉} = ⊥ is the neutral element
for ∨.

3.2 Δ0 and Δ1-Constructiveness

The classes of Δ0 and Δ1 constructiveness over-approximateΔ∗ for pure SC pro-
grams by performing an abstract program simulation in I(D). The denotational
semantics of a cprog P is given by a function 〈〈P 〉〉SC , called Extended Berry Re-
sponse Function that determines constructive (non-speculative) information on
the instantaneous response of P to an external stimulus consisting of a sequential
environment S and a concurrent environment C. The sequential context S can
be thought of as an initialisation under which P is activated. It represents knowl-
edge about the value of variables sequentially before P is started. In contrast,
the parallel environment C contains the external stimulus which is concurrent
with P . The lower bound low 〈〈P 〉〉SC of the response tells us what P must write
to the variables and the upper bound upp 〈〈P 〉〉SC is the level that the variables
may reach upon execution of P . The function 〈〈P 〉〉SC is defined by recursion on
the structure of the cprog P as seen in Fig. 3.

240 J. Aguado et al.

〈〈ε〉〉SC := S

〈〈¡s〉〉SC :=

⎧⎪⎨⎪⎩
S ∨ {〈s�〉} if 1 S(s)

S ∨ {〈s0〉} if S(s) 0

S ∨ {〈s[0,�]〉} otherwise

〈〈!s〉〉SC := S ∨ {〈s1〉}

〈〈P ||Q〉〉SC := 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC

〈〈s ? P : Q〉〉SC :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈〈P 〉〉SC if s1 ∈ C

〈〈Q〉〉SC if s0 ∈ C

S ∨ upp〈〈P 〉〉SC∨upp〈〈Q〉〉SC
otherwise

〈〈P ; Q〉〉SC :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈〈Q〉〉〈〈P 〉〉SC

C

if cmpl 〈P,C〉={0}
〈〈P 〉〉SC ∨ upp

(
〈〈Q〉〉〈〈P 〉〉SC

C

)
otherwise

Fig. 3. Abstract analysis for cprogs

The definition of 〈〈P ; Q〉〉SC involves computing a set of completion codes
cmpl 〈P,C〉. For cprogs we only need one code 0 for “instantaneous” termina-
tion. Informally, cmpl 〈P,C〉 = {0} iff P is guaranteed to execute to completion
without getting blocked by a conditional test s ? P ′ : Q′ where guard s does
not evaluate to a crisp value 0 or 1 in C. The precise definition can be found
in [14].

– The empty cprog 〈〈ε〉〉SC just passes out its sequential stimulus S.
– The result of resetting a variable 〈〈¡s〉〉SC depends on whether the sequential

stimulus S already contains a status 1 for s or not. If 1) S(s), then the
sequential status of s is one of the intervals S(s) ∈ {1, [1,], }. This in-
dicates that s must have been set sequentially before the execution of the
reset ¡s. Hence, we must crash s since a change from 1 to 0 falls outside of
the 〈〈 〉〉 model. All other variables x �= s retain their status from S. This is
what (S ∨{〈s�〉})(s) = achieves. If S(s)) 0 then the sequential status of s
is one of S(s) ∈ {⊥, [0,⊥], 0}. This says that s cannot have been set before
and so we can execute the reset by returning (S ∨ {〈s0〉})(s) = 0. Finally, the
remaining cases are S(s) = [a, b], where a < 1 and b ≥ 1. These statuses
say that s may have been set before. So, the execution of ¡s may crash the
model, whence the result S ∨ {〈s[0,�]〉} forces the status of s to be [0,].

– Setting a variable 〈〈!s〉〉SC updates the sequential environment S with the
status s1 for variable s if S(s)) 1 and preserves the crash if S(s) = .

– The response of a parallel 〈〈P ||Q〉〉SC is obtained by letting each of the child
threads P , Q react to the S and C environments, independently, and then
combine their responses using ∨.

– The result of a branching test s ? P : Q can only be predicted if and
when the value of s has been firmly established as a crisp 0 or 1 under
all possible SC-admissible schedules. The decision value for s is taken from
the concurrent environment C. Accordingly, if s1 ∈ C then 〈〈s ? P : Q〉〉SC
behaves like 〈〈P 〉〉SC and if s0 ∈ C the result of the evaluation is 〈〈Q〉〉SC . As
long as the value of s is still undecided, i. e., if s0 �∈ C and s1 �∈ C, we cannot
know if branch P or Q will be executed. However, at least the write accesses

Grounding Synchronous Deterministic Concurrency 241

already recorded in the sequential environment S must become effective.
This gives the condition low 〈〈s ? P : Q〉〉SC = low (S) for the lower bound.
A write access may be produced by s ? P : Q if it may be generated by
S or by one of the branches P or Q. This implies upp 〈〈s ? P : Q〉〉SC =
upp(S)∨upp 〈〈P 〉〉SC ∨upp 〈〈Q〉〉SC for the upper bound. Both can be expressed
by the single equation 〈〈s ? P : Q〉〉SC = S ∨ upp 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉SC .

– If 0 ∈ cmpl 〈P,C〉 then the overall response 〈〈P ; Q〉〉SC is that of Q reacting
to the concurrent stimulus C using the response 〈〈P 〉〉SC as the sequential
stimulus. If 0 �∈ cmpl 〈P,C〉 this means that some conditional test on the
execution path in P cannot be decided in C. Thus, it is not known yet if P
will terminate and Q will be executed. Therefore, we can only say a variable
must be written by P ; Q, if it must be written by P . This leads to low 〈〈P ;
Q〉〉SC = low 〈〈P 〉〉SC . As regards upper bounds, a variable may be written if
it may be written by Q with the response of P as its sequential stimulus:

upp 〈〈P ; Q〉〉SC = upp 〈〈Q〉〉〈〈P 〉〉
S
C

C . One can show that both lower and upper

bound equations can be combined into 〈〈P ; Q〉〉SC = 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C .

While 〈〈P 〉〉SC describes the instantaneous behaviour of P in a compositional
fashion, the constructive response of P running by itself is obtained by the least
fixed point

μC.〈〈P 〉〉SC =
⊔
i≥0

Ci, (1)

where C0 := [⊥,] and Ci+1 := 〈〈P 〉〉SCi
. The fixed point (1) lets P communi-

cate with itself by treating P as its own concurrent context. The fixed point
exists, because the completion set cmpl 〈P, S〉 and the functional 〈〈P 〉〉SC are well-
behaved. In particular, 〈〈P 〉〉SC is monotonic in both S, C with respect to � and
it is monotonic and inflationary in S for). For a detailed exposition of the
technical background the reader is referred to [14].

Definition 3. A cprog P is Δ0-constructive, or strongly Berry-constructive, iff
∀x ∈ V . (μC.〈〈P 〉〉⊥C)(x) ∈ {⊥, 0, 1}. A cprog P is Δ1-constructive, or Berry-
constructive, iff ∀x ∈ V . (μC. 〈〈P 〉〉0C)(x) ∈ {0, 1}.

As stated in Def. 3, a cprog is Δ0-constructive if its 〈〈 〉〉 fixed point is crisp and
associates with every variable a unique reaction status ⊥ (pristine, unchanged),
0 (initialised by reset and not updated) or 1 (updated by set and never re-
initialised later). The crisp status is excluded because it indicates that the
variable is re-initialised by P after having been updated. This is not tracked by
Δ0 and requires Δ∗ analysis capabilities. The difference between the two forms
of Berry-constructiveness Δ0 and Δ1 is whether we run the simulation with the
sequential stimulus ⊥ or 0, respectively. Because of its default initialisation, Δ1

is less restrictive and therefore contains more programs than Δ0. However, if the
initialisation is added then both notions coincide.

242 J. Aguado et al.

Theorem 1 (Relationship between Δ0, Δ1 and Δ∗)

1. Every Δ0-constructive cprog is both Δ1-constructive and Δ∗-constructive
with the same final response.

2. Let P init = Init ; P or P init = Init ‖ P , where Init is the cprog which resets
every variable. If P is Δ1-constructive, then P init is Δ0-constructive and the
Δ1-response of P is identical to the Δ0-response of P init .

By Thm. 1 every Δ0-constructive cprog is also Δ∗-constructive. On the other
hand, there are Δ∗-constructive cprogs which are not Δ0-constructive. The rea-
son is essentially that (i) Δ0 requires constructive initialisation of every signal
variable, where Δ∗ permits implicit initialisation through memory and (ii) that
Δ0 requires a monotonic status change, where Δ∗ permits re-initialisation. A
simple example for (i) is P3 = x ? !x : !x. For every initial memory ρ0, P3 admits
exactly one (Δ∗-admissible) schedule, ending up with memory ρk(x) = 1, whence
P3 is Δ∗-constructive. However, P3 is not Δ0-constructive since μC.〈〈P3〉〉⊥C =
{〈x[⊥,1]〉}. An example for (ii) is P4 = !x ; ¡x which is Δ∗-constructive for the
same reason, but not Δ0-constructive since it forces a reset of x sequentially
after a set. In the fixed point we get a crash μC.〈〈P4〉〉⊥C = {〈x�〉}. Note, neither
P3 nor P4 is Δ1-constructive, viz. μC.〈〈P3〉〉0C = {〈x[0,1]〉} and μC.〈〈P4〉〉0C = {〈x�〉}.

The benefit of (i) and (ii) is thatΔ0 provides stronger constructiveness guaran-
tees making it more robust under scheduling non-determinism. It does not depend
on initial memory and proper isolation of successive “init-update-read” phases. In
fact, the restriction (ii) of Δ0 to monotonic status changes (from 0 → 1 but not
1 → 0) is the definitive feature of signals in traditional SMoC as exemplified by
the constructive semantics [15] of the Esterel language [5] or of Quartz [8]. On the
other hand, in these languages constraint (i) does not exist because initialisation is
not done by the programbut the run-time system. Specifically, Esterel’s semantics
assumes that all signals are reset to 0 by default, at the beginning of every instant.

Our Δ0 semantics is more general, in the sense that it verifies proper initialisa-
tion as part of the constructiveness analysis. It holds the programmer responsible
for proper initialisation, not the compiler or the run-time system. However, one
can emulate initialisation directly by running the fixed point over 〈〈 〉〉 in the
sequential environment S = 0 instead of S = ⊥ which is what Δ1 does. For
instance, P5 = x ? !y : !y is Δ1-constructive with μC.〈〈P5〉〉0C = {〈x0, y1〉} but not
Δ0-constructive since μC.〈〈P5〉〉⊥C = {〈y[⊥,1]〉}.

The following Prop. 1 shows that Δ1 precisely coincides with Berry’s notion
of constructiveness for Pure Esterel [15] whose semantics is given in terms of a
set must (P,C) ⊆ V of signals that must be emitted by P under C and a set
cannot (P,C) ⊆ V which cannot be emitted by P in environment C.

Proposition 1 (Semantics of Pure Esterel). For reset-free cprog P and
ternary environment C, s ∈ must(P,C) iff s1 ∈ 〈〈P 〉〉0C and s ∈ cannot(P,C) iff
s0 ∈ 〈〈P 〉〉0C . It follows that a reset-free cprog P is constructive in Berry’s sense
iff it is Δ1-constructive and the response coincides in both semantics.

Let P be a Δ1-constructive cprog and Init ; P the instrumented version of
P where Init resets every variable. In refinement of Thm. 1(2) one can show

Grounding Synchronous Deterministic Concurrency 243

that μC. 〈〈P 〉〉0C = μC. 〈〈Init ; P 〉〉⊥C = μC. 〈〈Init ; P ∗〉〉⊥C , where P ∗ is P with
all occurrences of a reset ¡x substituted by ε. This implies that Init ; P ∗ is Δ0-
constructive, whence by Thm. 1(1) Init ; P ∗ is Δ∗-constructive with the same
response. Together with Prop. 1 this proves the conjecture [9] that sequentially
constructive cprogs conservatively extend Esterel. Also, we can extract from
every Δ0-constructive cprog P an equivalent constructive Esterel program P ∗.

4 Related Work

In terms of programming languages, the work presented here is at the inter-
face between synchronous concurrent languages and C-like sequential languages,
and is strongly influenced by both worlds. Edwards [17] and Potop-Butucaru
et al. [18] provide good overviews of compilation challenges and approaches for
concurrent languages, including synchronous languages. They discuss efficient
mappings from Esterel to C, thus their work is related to ours in the sense
that we present a means to express Esterel-style signal behaviour and deter-
ministic concurrency directly with variables in a C-like language. However, a
key difference is that we do not “compile away” the concurrency as part of our
signal-to-variable mapping, but fully preserve the original, concurrent semantics
with shared variables.

Coming from the other, C-like side, there have been several proposals that
extend C or Java with synchronous concurrency constructs. Reactive C [19] is
an extension of C that employs the concepts of ticks and preemptions, but does
not provide true concurrency. FairThreads [20] are an extension introducing con-
currency via native threads. Precision Timed C (PRET-C) [21] and Synchronous
C [22] provide macros for defining synchronous concurrent threads. Synchronous
C also permits dynamic thread scheduling, and thus would be a suitable im-
plementation target for the analyses discussed here. SHIM [23], another C-like
language, provides concurrent Kahn process networks with CCS-like rendezvous
communication [24] and exception handling. SHIM has also been inspired by syn-
chronous languages, but it does not use the synchronous programming model,
instead relying on communication channels for synchronisation. None of these
language proposals claims and proves to embed and conservatively extend the
concept of Esterel-style constructiveness into shared variables as we do here. As
far as these language proposals include signals, they come as “closed packages”
that do not, for example, allow to separate initialisations from updates.

As traditional sequential, single-core execution platforms are being replaced
by multi-core/processing architectures, determinism is no longer a trade secret
of synchronous programming but has become an important issue in shared mem-
ory concurrent programming. Powerful techniques have recently been developed
to verify program determinism statically. For Java with structured parallelism,
the tool DICE by Vechev et al. [25] performs static analysis to check that con-
current tasks do not interfere on shared array accesses. Leung et al. [26] present
a test amplification technique based on a combination of instrumented test exe-
cution and static data-flow analysis to verify that the memory accesses of cyclic,

244 J. Aguado et al.

barrier-synchronised, CUDA C++ threads do not overlap during a clock cycle
(barrier interval). For polyhedral X10 programs with finish/async parallelism
and affine loops over array-based data structures, Yuki et al. [27] describe an
exact algorithm for static race detection that ensures deterministic execution.

These recently published analyses [25,26,27] are targeted at data-intensive,
array/pointer/based code building on powerful arithmetical models and deci-
sion procedures for memory separation. Yet, they address determinism in more
limited models of communication. SMoC constructiveness concerns the determin-
ism and reactivity of “control-parallel” rather than “data-parallel” synchronous
programs and permits instantaneous communication between threads during a
single tick. The challenge is to deal with feedbacks and reaction to absence,
as in circuit design, which is difficult. The causality of SMoC memory accesses
cannot necessarily be captured in terms of regular affine arithmetics as done
in the polyhedral model of [25,27] or reduced to a “small core of configuration
inputs” as in [26]. Further, analyses such as [25,26,27] verify race-freedom for
maximally strong data conflicts: Within the barrier no write must ever compete
with a concurrent read or another conflicting write. Soundness of the analy-
sis is straightforward under such full isolation. Full thread isolation is fine for
Moore-style communication but does not hold in SMoCs whose hallmark is the
Mealy model. Threads do in fact share variables during a clock phase and multi-
emissions are permitted. Analysing SMoC determinism, therefore, is tricky and
argueing soundness of the constructivity analysis in SMoCs (e.g., our Thm. 1) is
non-trivial. This is particularly true if reaction to absence is permitted, as in our
work, which introduces non-monotonic system behaviour on which the standard
(naive) fixed-point techniques fail.

For functional programming languages, traditionally abstracting from the im-
purity of low-level scheduling, determinism on concurrent platforms also has
become an issue. For instance, Kuper et al. [28] extend the IVar/LVar approach
in Haskell to provide deterministic shared data-structures permitting multiple
concurrent reads and writes. This extension, dubbed LVish, adds asynchronous
event handlers and explicit value freezing to implement negative data queries.
Since the negative information is transient, run-time exceptions are possible due
to the race between freezing and writing. However, all error-free executions pro-
duce the same result which is called quasi-determinism. Because of the instanta-
neous communication and the negative information carried by the value status
of shared data, the quasi-deterministic model of [28] is similar in spirit to our
approach. However, there are at least two differences: First, our programming
model deals with first-order imperative programs on boolean data, while [28]
considers higher-order λ-functions on more general “atomistic” data structures.
Second, our Δ0,1,∗ constructivity includes reactivity, which is a liveness prop-
erty, whereas [28] only address the safety property of non-interference. Our two-
dimensional lattice I(D) seems richer than the lifted domain Freeze(D) of [28]
which only distinguishes between the “unfrozen” statuses [⊥,], [0,], [1,],
[,] (lower information) and the “frozen” statuses [⊥,⊥], [0, 0], [1, 1] (crisp
information). There do not seem to be genuine upper bound approximations

Grounding Synchronous Deterministic Concurrency 245

expressible in Freeze(D). It will be interesting to study the exact relationship
between the two models.

Coming back to SMoCs, there is already a large body of related work inves-
tigating different notions of constructiveness, in the literature also referred to
as causality. Causal Esterel programs on pure signals satisfy a strong schedul-
ing invariant: they can be translated into constructive circuits which are delay-
insensitive [29] under the non-inertial delay model, which can be fully decided
using ternary Kleene algebra [16]. This makes Malik’s work on causality analysis
of cyclic circuits [30] applicable to the constructiveness analysis of combinational
Esterel programs. This has been extended by Shiple et al. [31] to state-based sys-
tems, as induced by Esterel’s pause operator, thus handling sequential programs
as well. The algebraic transformations proposed by Schneider et al. [32] increase
the class of programs considered constructive by permitting different levels of
partial evaluation. However, none of these approaches separates initialisations
and updates or permits sequential writes within a tick as we do here. Recently,
Mandel et al.’s clock domains [33] and Gemünde’s clock refinement [34] provide
sequences of micro-level computations within an outer clock tick. This also in-
creases sequential expressiveness albeit in an upside-down fashion compared to
our approach. Our work on SC aims to reconstruct the scope of a synchronous
instant on top of the primitive notion of sequential composition. In the clock
refinement approach clocks are the only sequencing mechanism, so micro-level
sequencing is implemented in terms of lower-level clocks.

An acknowledged strength of synchronous languages is their formal founda-
tion [6], which facilitates formal verification, timing analyses, and inclusion results
of the type presented here. Our algebraic approach based on I(D) generalises the
“must-cannot” analysis for constructiveness [15] and the ternary analysis for syn-
chronous control flow [35] and circuits [30,31]. The extension lies in the ability
to deal with non-initialisation (⊥) and re-initialisation () in sequential control
flow, which the analyses [15,35,30,31] cannot handle. Due to the two-sided nature
of intervals our semantics permits the modelling of instantaneous reaction to ab-
sence, a definitive feature of Esterel-style synchrony for control-flow languages. In
contrast, the balance equations (see, e.g., [36]) or the clock calculus (see, e.g., [3])
of synchronous reactive data flow do not handle reaction to absence. These analy-
ses are concerned with inter-tick causality (i.e., in which ticks a signal is present)
rather than intra-tick causality (i.e., presence or absence in a given tick) which we
focus on here. Reflected into I(D), Lustre clocks collapse the signal status (within
a tick) to either ⊥ (value not initialised or computed) or [0,] (value computed).
However, since each program abstracts to a continuous function on I(D)-valued
environments our model fits naturally into the Kahn-style fixed-points semantics
and scheduling analysis for synchronous block diagrams [37,38].

5 Conclusion and Outlook

On the theoretical side, we have identified an abstract value domain I(D) with
special topological features. First, it has an interval structure in which lower and
upper bounds are indispensable when dealing with the non-monotonic nature

246 J. Aguado et al.

causality analysis (cf. [39]). The generality of this domain makes it possible to
handle co-/contra-variant fixed point computations by means of approximations
in the intervals much in the style of Berry’s must and cannot constructiveness
analysis. Second, this domain has two complementary dimensions) and � which
makes it sensitive not only to the concurrent but also the sequential interaction
of a synchronous object. This is in contrast to Esterel, Quartz or ternary sim-
ulation where all micro-steps are considered concurrent. With this at hand, we
have given a new functional interpretation 〈〈 〉〉 to Berry’s behavioural seman-
tics of Esterel and have proven that SC (Δ∗) is indeed a conservative extension
of Esterel. In view of Prop. 1 we propose to consider the Extended Berry Re-
sponse Function 〈〈 〉〉 as the analogue of Berry’s ternary constructive semantics
in the SC setting. It matches Berry’s semantics on initialised programs (Δ1) and
additionally verifies constructive initialisation on general programs (Δ0).

It should not be difficult to generalise the linear data structure D to capture
signal protocols that span more than only one “init-update-read” cycle in order
to define similar analyses for Δ2, Δ3 and so on. Here we introduce the essential
ideas for Δ0/Δ1 only, anticipating generalisations to richer sequential data types
in follow-up work.

On the practical side, we have shown how to emulate signals with variables,
even in a concurrent setting. Furthermore, we can do so with constant code
size increase per signal, i. e., with overall code size increase that is at worst
linear in the size of the program. Like in the sequential case, the transformation
still properly handles schizophrenia. Thus, for schizophrenic signals, this is a
clear improvement over existing techniques for eliminating schizophrenia at the
Esterel level. Note that here we focus on handling schizophrenia for signals.
This does not address reincarnation in general, i. e., the repeated execution of
statements within a tick; this still must be addressed separately by one of the
existing techniques [11,12,13].

More fundamentally, emulating signals by plain, standard variables closes a
conceptual gap between programming and implementation. The statements of the
variable-based program can be mapped directly to the run-time behaviour of a
software implementation, or alternatively to the gate-and-wire structure of a hard-
ware implementation. There are no implicit mechanisms, such as default absence,
that a programmer has no control over and that must be delegated to a synthe-
sis tool. Every synchronous language ultimately depends on sequential variable
accesses somewhere downstream in the compilation path. For uniformity, there-
fore, it is expedient to build on notions of constructiveness which are sensitive to
micro-step sequential behaviour such as Δ0, Δ1, ..., Δ∗, at the outset.

References

1. Hansen, P.B.: Java’s insecure parallelism. SIGPLAN Not. 34, 38–45 (1999)
2. Lee, E.A.: The problem with threads. IEEE Computer 39, 33–42 (2006)
3. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative lan-

guage for programming synchronous systems. In: Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL
1987), Munich, Germany, pp. 178–188. ACM (1987)

Grounding Synchronous Deterministic Concurrency 247

4. Guernic, P.L., Goutier, T., Borgne, M.L., Maire, C.L.: Programming real time
applications with SIGNAL. Proceedings of the IEEE 79, 1321–1336 (1991)

5. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19, 87–152 (1992)

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The Synchronous Languages Twelve Years Later. In: Proc. IEEE, Special Issue
on Embedded Systems, Piscataway, NJ, USA, vol. 91, pp. 64–83. IEEE (2003)

7. André, C.: SyncCharts: A visual representation of reactive behaviors. Technical
Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France (1996)

8. Schneider, K.: The synchronous programming language Quartz. Internal report,
Department of Computer Science, University of Kaiserslautern, Kaiserslautern,
Germany (2010), http://es.cs.uni-kl.de/publications/datarsg/Schn09.pdf

9. von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika,
C., Mercer, S., O’Brien, O., Roop, P.: Sequentially Constructive Concurrency—A
conservative extension of the synchronous model of computation. Technical Report
1308, Christian-Albrechts-Universität zu Kiel, Department of Computer Science
(2013)) ISSN 2192-6247

10. von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika,
C., Mercer, S., O’Brien, O.: Sequentially Constructive Concurrency—A conserva-
tive extension of the synchronous model of computation. In: Proc. Design, Automa-
tion and Test in Europe Conference (DATE 2013), Grenoble, France, pp. 581–586.
IEEE (2013)

11. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)
Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 425–454.
MIT Press, Cambridge (2000)

12. Schneider, K., Wenz, M.: A new method for compiling schizophrenic synchronous
programs. In: International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), Atlanta, Georgia, USA, pp. 49–58. ACM (2001)

13. Tardieu, O., de Simone, R.: Curing schizophrenia by program rewriting in Esterel.
In: Proceedings of the Second ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE 2004), San Diego, CA, USA
(2004)

14. Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Grounding synchronous
deterministic concurrency in sequential programming. Technical report, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science (2014) ISSN 2192-
6247

15. Berry, G.: The Constructive Semantics of Pure Esterel. Draft Book, Version 3.0,
Centre de Mathématiques Appliqées, Ecole des Mines de Paris and INRIA, 2004
route des Lucioles, 06902 Sophia-Antipolis CDX, France (2002),
http://www-sop.inria.fr/members/Gerard.Berry/Papers/

EsterelConstructiveBook.zip
16. Mendler, M., Shiple, T.R., Berry, G.: Constructive boolean circuits and the exactness

of timed ternary simulation. Formal Methods in System Design 40, 283–329 (2012)
17. Edwards, S.A.: Tutorial: Compiling concurrent languages for sequential processors.

ACM Transactions on Design Automation of Electronic Systems 8, 141–187 (2003)
18. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel, vol. 86. Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands (2007)
19. Boussinot, F.: Reactive C: An extension of C to program reactive systems. Software

Practice and Experience 21, 401–428 (1991)
20. Boussinot, F.: Fairthreads: mixing cooperative and preemptive threads in C. Con-

currency and Computation: Practice and Experience 18, 445–469 (2006)

http://es.cs.uni-kl.de/publications/datarsg/Schn09.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.zip
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.zip

248 J. Aguado et al.

21. Andalam, S., Roop, P.S., Girault, A.: Deterministic, predictable and light-weight
multithreading using pret-c. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE 2010), Dresden, Germany, pp. 1653–1656 (2010)

22. von Hanxleden, R.: SyncCharts in C—A Proposal for Light-Weight, Determinis-
tic Concurrency. In: Proceedings of the International Conference on Embedded
Software (EMSOFT 2009), Grenoble, France, pp. 225–234. ACM (2009)

23. Tardieu, O., Edwards, S.A.: Scheduling-independent threads and exceptions in
SHIM. In: Proceedings of the International Conference on Embedded Software
(EMSOFT 2006), Seoul, South Korea, pp. 142–151. ACM (2006)

24. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

25. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of determin-
ism for structured parallel programs. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010)

26. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying
GPU kernels by test amplification. In: Programming Language Design and Imple-
mentation, PLDI 2012, pp. 383–394. ACM, New York (2012)

27. Yuki, T., Feautrier, P., Rajopadye, S., Saraswat, V.: Array dataflow analysis for
polyhedral X10 programs. In: Principles and Practice of Parallel Programming,
PPoPP 2013, pp. 23–34. ACM, New York (2013)

28. Kuper, L., Turon, A., Krishnaswami, N.R., Newton, R.R.: Freeze after writing:
Quasi-deterministic parallel programming with LVars. In: Principles of Program-
ming Languages, POPL 2014. ACM, New York (2014)

29. Brzozowski, J.A., Seger, C.J.H.: Asynchronous Circuits. Springer, New York (1995)
30. Malik, S.: Analysis of cyclic combinational circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 13, 950–956 (1994)
31. Shiple, T.R., Berry, G., Touati, H.: Constructive Analysis of Cyclic Circuits. In:

Proc. European Design and Test Conference (ED&TC 1996), Paris, France, Los
Alamitos, California, USA, pp. 328–333. IEEE Computer Society Press (1996)

32. Schneider, K., Brandt, J., Schüle, T., Türk, T.: Improving constructiveness in
code generators. In: Maraninchi, F., Pouzet, M., Roy, V. (eds.) Int’l Workshop on
Synchronous Languages, Applications, and Programming, SLAP 2005, Edinburgh,
Scotland, UK. ENTCS, pp. 1–19 (2005)

33. Mandel, L., Pasteur, C., Pouzet, M.: Time refinement in a functional synchronous
language. In: ACM SIGPLAN Int. Symp. on Principles and Practice of Declarative
Programming, PPDP 2013, pp. 169–180. ACM, New York (2013)

34. Gemünde, M.: Clock Refinement in Imperative Synchronous Languages. PhD the-
sis, University of Kaiserslautern (2013)

35. Schneider, K., Brandt, J., Schuele, T.: Causality analysis of synchronous programs
with delayed actions. In: Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), Washington, D.C., USA, pp. 179–189. ACM (2004)

36. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. In: Proceedings of the
IEEE, vol. 75, pp. 1235–1245. IEEE Computer Society Press (1987)

37. Edwards, S.A., Lee, E.A.: The Semantics and Execution of a Synchronous Block-
Diagram Language. In: Science of Computer Programming, vol. 48, Elsevier (2003),
http://www1.cs.columbia.edu/~sedwards/papers/edwards2003semantics.pdf

38. Pouzet, M., Raymond, P.: Modular static scheduling of synchronous data-flow net-
works: an efficient symbolic representation. In: EMSOFT, pp. 215–224 (2009)

39. Aguado, J., Mendler, M.: Constructive semantics for instantaneous reactions. The-
oretical Computer Science 241, 931–961 (2011)

http://www1.cs.columbia.edu/~sedwards/papers/edwards2003semantics.pdf

The Duality of Construction

Paul Downen and Zena M. Ariola

University of Oregon
{pdownen,ariola}@cs.uoregon.edu

Abstract. We explore the duality of construction and deconstruction in
the presence of different evaluation strategies. We characterize an evalua-
tion strategy by the notion of substitutability, given by defining what is a
value and a co-value, and we present an equational theory that takes the
strategy as a parameter. The theory may be extended with new logical
connectives, in the form of user-defined data and co-data types, which
are duals of one another. Finally, we explore a calculus with composite
evaluation strategies that allow for more flexibility over evaluation order
by mingling multiple primitive strategies within a single program.

1 Introduction

Over two decades ago, Filinski [5] discovered the dual relationship between the
call-by-value and call-by-name evaluation strategies by relating programs that
produce information with continuations that consume information. Since then,
this duality has been studied from the perspective of category theory [5,10]
and proof theory [3,11,12]. In particular, the sequent calculus has provided a
fruitful foundation for this study, due to the inherent duality in the form of
sequent judgments: assumptions act as inputs and conclusions act as outputs.
This notion has been formalized [3,11] as foundational calculi which execute at
the level of an abstract machine. For example, the inference rule for implication
on the left of a sequent is viewed as the typing rule for a call-stack in a Krivine
machine.

More recently [13,8,4], polarization in logic has been used as a type-based
account of evaluation order, which divides types into two classifications, positive
and negative, based on properties of their inference rules. On the one hand,
positive types are defined by their rules of introduction, i.e., construction, and
are given a call-by-value interpretation. The use of a positively typed value is
given by cases over the possible constructions, in the style of data types in
functional languages like ML. On the other hand, negative types are defined
by their rules of elimination, i.e., observation, and are given a call-by-name
interpretation. In order to produce a negatively typed value, we must consider
all possible observations, giving us a message-passing programming style. If there
is ever an apparent ambiguity on the evaluation order of a program, the type is
consulted and the order is determined by considering the type’s polarity.

The primary focus on either introduction or elimination divides programs into
two parts: concrete programs that are constructed and abstract programs de-
fined by cases. This division describes the behavior of programs as an interaction

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 249–269, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

250 P. Downen and Z.M. Ariola

between construction and deconstruction, with two dual ways of orienting the
roles between a consumer and a producer: data with concrete producers and ab-
stract consumers, and co-data with abstract producers and concrete consumers.
In high-level languages, both data and co-data are useful tools for organizing
information in programs, and may be interpreted by different evaluation strate-
gies: we may want strictly evaluated terms defined by dynamic dispatch on their
observations (as in an object-oriented language), and likewise we may want lazily
evaluated terms that are defined by construction (as in Haskell). Polarized logic
can account for this behavior by translating a program into one with polarities
to provide the desired evaluation order, much like how a continuation-passing
style transformation can define the evaluation order for a language.

The goal of this paper is to provide a general account of the data and co-data
definitional paradigms along with an equational theory that directly supports
evaluation according to different strategies, expressing both the duality between
strategies and the two paradigms. A better understanding of the data and
(co-)data paradigms may eventually lead to a more suitable foundation for study-
ing the design of languages that contain both functional and object-oriented
features. Since the sequent calculus exposes details that appear in abstract ma-
chines while still maintaining high-level reasoning principles, it may serve as a
bridge between programming languages and their low-level representations, for
example as an intermediate language in a compiler.

We develop a sequent calculus that is parameterized by a chosen evaluation
strategy, similar to the parametric λ-calculus [9], which guides the notion of
substitution in the calculus. The goal of choosing a strategy is to eliminate the
fundamental inconsistency of the calculus by eliminating the single point of con-
flict between producers and consumers. The equational theory is untyped since
any conflicts that arise are resolved by the strategy, meaning that we do not need
to consult the type of a program during evaluation. We begin by examining the
core calculus (Section 3) which expresses the impact of an evaluation strategy on
the behavior of a program as a restriction of what may be substituted for a vari-
able. We take notions of call-by-name and call-by-value as our primary examples
for characterizing strategies, but also show a characterization of call-by-need and
its dual, demonstrating that there are more than two possible strategies.

Atop the core calculus of substitution, we consider functions (Section 4) and
describe their behavior in terms of β and η rules. Unlike in the λ-calculus and
previous formulations of the sequent calculus [3,11], these same rules apply in
every evaluation strategy, and we show that they provide a complete definition
of functions. Next, we extend the language with basic data and co-data types
(Section 5), illustrating two forms of pairs (⊗,&) and two forms of sums (⊕,`)
that correspond to similar concepts in Girard’s linear logic [6] and polarized
logic [13,4]. As with functions, we give a similar βη characterization of the ba-
sic (co-)data types that does not reference the chosen evaluation strategy, and
show that this characterization derives the various “lifting” (ς) rules of Wadler’s
sequent calculus [11,12]. Finally, we use the common βη theme in order to
present a general notion of user-defined data and co-data types (Section 6) which

The Duality of Construction 251

encompasses all of the previous types. On the one hand, since we are working
in an untyped setting, (co-)data type declarations are used for introducing new
ways to form structures and abstractions in a program, independently of a static
type system. On the other hand, (co-)data type declarations are inspired by logic
and may be seen as describing a static type system for the parametric sequent
calculus.

We also consider how to compose several strategies into a single composite
strategy (Section 7). This allows a single program to be written with call-by-
name and call-by-value parts, or any other combination of two (or more) strate-
gies. To maintain consistency of the calculus, we separate the (co-)data types
into different kinds that denote different strategies, so that well-kinded programs
are consistent. When considering only one strategy, this degenerates into the pre-
vious untyped equational theory, and for two strategies the approach is similar
to Zeilberger’s [14] “bi-typed” system, except generalized to also work with any
number of additional strategies like call-by-need (or its dual).

Our contributions are: (1) We develop a parametric equational theory for the
sequent calculus that may be instantiated by various strategies. We express the
essence of a strategy by what may be substituted for a (co-)variable. In other
words, a strategy is identified by a choice of values and co-values. (2) We enrich
the sequent calculus with user-defined data and co-data types, whose behavior
are defined exclusively in terms of β and η principles that do not refer to the cho-
sen strategy. These two principles provide the basis for all user-defined (co-)data
types, and may be used to derive other properties like Wadler’s ς rules [11].
(3) We give call-by-value and call-by-name strategies for the equational theory
that are sound and complete with respect to known CPS transformations [3] and
their extension with user-defined (co-)data types. (4) We generalize the known
duality of call-by-value and call-by-name evaluation in the sequent calculus [3,11]
to be parametric over evaluation strategies and types, giving a mechanical pro-
cedure for generating the dual language for any choice of connectives and eval-
uation strategy, as expressed in the parametric calculus. (5) We exhibit that
the parametric theory supports more intricate notions of evaluation strategy by
instantiating it with a call-by-need strategy and generating its dual. (6) We il-
lustrate how to compose two or more primitive strategies, such as call-by-value,
call-by-name, and call-by-need, into a single composite strategy, so that a pro-
gram may selectively choose and switch between several evaluation strategies at
run-time.

2 Introduction to the Sequent Calculus

When implementing an evaluator for the λ-calculus, it becomes necessary to find
the next reduction, or step, to perform in a term. Searching for the next reduction
is not always trivial, since it may be buried deep inside the syntax of the term. For
instance, consider the syntax tree for the term (((λx.M) N1) N2) N3 as shown
in Figure 1(a), where the name α is a placeholder for the rest of the surrounding
context. The next step is to call the function (λx.M) with the argument N1, but

252 P. Downen and Z.M. Ariola

α

·

N3·

N2·

N1λx

M

||

·

·

·

αN3

N2

N1

λx

M

(a) λ-calculus (b) λμμ̃-calculus

Fig. 1. Re-association of the abstract-syntax tree for function calls

the term for this function call is at the bottom of the tree, and to reach it we need
to search past the function calls with N3 and N2 as arguments. As an alternate
representation of the same program, we can re-associate the syntax tree so that
the next step to perform is located at the top of the tree, as shown in Figure 1(b).
Imagine that we take hold of the edge connecting the function to its call and drag
it upward so that the rest of the tree hangs off both sides of the edge, turning
the context inside out. Syntactically, this amounts to converting the evaluation
context into a term in its own right, i.e., a co-term. Written out sequentially
using Curien and Herbelin’s λμμ̃-calculus [3], the re-associated program is the
command 〈λx.M ||N1 ·N2 ·N3 · α〉, where · builds a call-stack and associates to
the right. From the perspective of the Curry-Howard correspondence, this change
in orientation in the syntax of programming languages corresponds with a similar
change in the structure of proofs. Just as the λ-calculus corresponds with natural
deduction, the λμμ̃-calculus corresponds with the sequent calculus.

Fundamentally, the λμμ̃-calculus describes computation as the interaction
between a term and a co-term. For example, if we evaluate the program in Fig-
ure 1(b) according to a call-by-name strategy, where a function call is performed
without evaluating the argument, we get the reduction

〈λx.M ||N1 ·N2 ·N3 · α〉 →→ 〈M {N1/x}||N2 ·N3 · α〉

where we take the first argument, N1, in the co-term and substitute it for x in the
body of the function. Afterward, we evaluate the interaction between M {N1/x}
and the remaining co-term. Alternatively, we may want to consider a call-by-
value strategy, where we evaluate N1 before calling the function. As a way to
keep reduction at the top of the syntax tree, a μ̃-abstraction can give a name to
N1. The co-term μ̃x.〈M ||N2 ·N3 · α〉 should be read as letx = � in (M N2 N3)
in the context α. Therefore, we can make the call-by-value reduction

〈λx.M ||N1 ·N2 ·N3 · α〉 →→ 〈N1||μ̃x.〈M ||N2 ·N3 · α〉〉

with the understanding that we must first fully evaluate N1 to a value be-
fore substituting it for x in 〈M ||N2 ·N3 · α〉. In addition to μ̃-abstraction, we
have the dual notion of μ-abstraction that allows a term to name its co-term.

The Duality of Construction 253

Therefore, we can close off the command by introducing α, giving us the term
μα.〈(λx.M)||N1 ·N2 ·N3 · α〉.

The λμμ̃-calculus takes implication (functions) as its only logical connective
(type constructor). However, we want to explore a variety of other connectives
in the sequent calculus. Furthermore, once we have a method for declaring new
type constructors, functions just become another instance of a user-defined type.
For this reason, we temporarily forgo functions and more closely examine the
core language of substitution.

3 The Parametric μμ̃ Core

We now consider the μ and μ̃-abstractions which lie at the heart of the λμμ̃-
calculus. More specifically, programs in the μμ̃-calculus are defined as follows:

c ∈ Command ::= 〈v||e〉 v ∈ Term ::= x || μα.c e ∈ CoTerm ::= α || μ̃x.c

The μ and μ̃-abstractions, μα.c and μ̃x.c respectively, embody the primitive
variable binding structure of the language, giving a name to a (co-)term in an
underlying command. It follows that during evaluation, these abstractions imple-
ment a notion of substitution. The μ axiom gives control to the term (producer)
by substituting the co-term for a co-variable, whereas the μ̃ gives control to the
co-term (consumer) by performing the opposite substitution:

(μ) 〈μα.c||e〉 = c {e/α} (μ̃) 〈v||μ̃x.c〉 = c {v/x}

As is, this theory is not consistent, as shown by the fact that the μ and μ̃ axioms
fight for control in the command 〈μα.c||μ̃x.c′〉1. To restore consistency, we can
give priority to one axiom over the other [3]:

Call-by-value consists in giving priority to the (μ) axiom, while call-by-
name gives priority to the (μ̃) axiom.

In lieu of considering two (or more) different theories that place restrictions
where necessary, we instead give a single parametric equational theory that does
not assume a particular evaluation strategy a priori. The theory is parameterized
by a choice of strategy, S, which is defined as a set of values and co-values that
are subsets of terms and co-terms, respectively. The axioms for the parametric
core μμ̃S-calculus are given in Figure 2, where the meta-variables V and E range
over the set of values and co-values given by S, respectively. In addition to the
substitution axioms, μ̃V and μE , we also have extensionality axioms, ημ and ημ̃,
that eliminate trivial μ- and μ̃-abstractions. Note that all equations follow the
usual restrictions to avoid capture of static variables. For instance, α is not a
free variable of v in the ημ axiom of Figure 2.

Since the μE and μ̃V axioms are restricted by the strategy, carefully chosen
combinations of values and co-values may avoid the fundamental inconsistency
of the calculus. The simplest consistent choice of (co-)values that we can make
is to always exclude either μ or μ̃-abstractions, as shown in Figure 3. We can

1 If α �∈ FV (c) and x �∈ FV (c′) then 〈μα.c||μ̃x.c′〉 = c, c′, equating arbitrary c and c′.

254 P. Downen and Z.M. Ariola

(μE) 〈μα.c||E〉 = c {E/α}
(μ̃V) 〈V ||μ̃x.c〉 = c {V/x}

(ημ) μα.〈v||α〉 = v

(ημ̃) μ̃x.〈x||e〉 = e

Fig. 2. The parametric equational theory μμ̃S

V ∈ V alueN ::= v E ∈ CoV alueN ::= α V ∈ V alueV ::= x E ∈ CoV alueV ::= e

Fig. 3. Call-by-name (N) and call-by-value (V) strategies of μμ̃S

then form a core call-by-name evaluation strategy, N , by letting every term be
a value, and restricting co-values to just co-variables. Dually, we have a core
call-by-value evaluation strategy, V , by letting every co-term be a co-value, and
restricting values to just variables. To disambiguate the different instances of
the parametric equational theory μμ̃S , we write μμ̃N � c = c′ and μμ̃V � c = c′

to mean that c and c′ are equated by the N and V instances of the parametric
theory, respectively. Notice that in both the N and V strategies, (co-)variables
are considered co-values, which is a condition we always assume to hold when
speaking of strategies in general. Moreover, the μμ̃S equational theory is closed
under substitution of (co-)values for (co-)variables.

Finally, we can also give a continuation-passing style (CPS) transformation
that maps sequent calculus programs to the λ-calculus. The CPS transformation
can be used as a reference point for reasoning about the correctness of the equa-
tional theory through the usual β and η axioms in the resulting λ-calculus term.
In Figure 4, we recount the call-by-name and call-by-value CPS transformations
given in [3] for the core calculus, denoted � �N and � �V . The μμ̃N and μμ̃V
equational theories are sound and complete with respect to βη equality of the
λ-calculus terms resulting from the � �N and � �V transformations, respectively.

4 Functions

Having first laid out the core μμ̃S-calculus, we consider the behavior of functions
in more detail. Using the same notation as the λμμ̃-calculus [3], we extend the
core μμ̃S -calculus with the following syntax, giving us the μμ̃→S -calculus:

v ∈ Term ::= . . . || λx.v e ∈ CoTerm ::= . . . || v · e

Functions are expressed as λ-abstraction terms (λx.v), the same as in the λ-
calculus. A function call, on the other hand, is represented by the co-term v · e,
where v stands for the function’s argument and e for the calling context, which
we first saw in Section 2. Additionally, we may extend our core call-by-name
and call-by-value strategies from Figure 3 to account for functions, as shown in
Figure 5. In the call-by-value strategy V , we admit λ-abstractions as values and
continue to let every co-term be a co-value. In the call-by-name strategy N , we
continue to let every term be a value, and admit the co-term v ·E as a co-value,
representing a λ-calculus context of the form E[� v].

The Duality of Construction 255

�〈v||e〉�N � �e�N �v�N

�α�N � λx.x α �x�N � x

�μ̃x.c�N � λx.�c�N �μα.c�N � λα.�c�N

�〈v||e〉�V � �v�V �e�V

�x�V � λα.α x �α�V � α

�μα.c�V � λα.�c�V �μ̃x.c�V � λx.�c�V

Fig. 4. Call-by-name (N) and call-by-value (V) CPS transformations of μμ̃S

V ∈ V alueN ::= v

E ∈ CoV alueN ::= α || v ·E
V ∈ V alueV ::= x || λx.v

E ∈ CoV alueV ::= e

Fig. 5. Call-by-name (N) and call-by-value (V) strategies of μμ̃→
S

Now, we need to determine which axioms to add to our equational theory in
order to give a complete account for the run-time behavior of functions. It is
obvious we need an axiom for β reduction, as given in [3] for λμμ̃, since that is
the primary computational rule for functions. In addition, we also consider an
axiom for η equality, giving functions a notion of extensionality similar to the
λ-calculus. We therefore extend the core μμ̃S equational theory from Figure 2
with the two rules for functions in Figure 6 to obtain the μμ̃→S -calculus.

Notice that unlike in [3,11], these rules define the behavior of functions inde-
pendently of the strategy since the β→ and η→ axioms do not reference V or E
— the evaluation strategy is implemented by the core μμ̃S-calculus alone.

We should ask ourselves if these rules make sense computationally, so that a
consistent strategy for the core calculus is still consistent when extended with
functions. The β→ axiom is applicable to any command between a λ-abstraction
and a call, and dissolves the function call into a μ̃ binding, thereby relying on
the consistency of the strategy in the core μμ̃S-calculus. For example, with the
call-by-value strategy V , the μ̃-abstraction bears the responsibility of ensuring
that the argument v′ to a function call is a value before substituting it into the
body of the function — if v′ is the non-value μα.c then it gets to go first by
means of the μE rule. On the other hand, the η→ axiom is restricted to apply
only to variables. Intuitively, the η→ axiom states that an unknown function is
indistinguishable from a λ-abstraction. Recall that the core μμ̃S theory is closed
under substitution of values for variables, so the usual η→ axiom that applies
to values is derivable within the equational theory. This restriction is crucial for
preserving consistency of certain strategies, like the V strategy, and comes out
for free from the meaning of μ̃-abstractions in the core calculus.

We should also ask ourselves if these rules are complete enough to describe
the other behavioral properties of functions. For instance, previous reduction
systems for the sequent calculus [11,8] include a family of ς rules that lift sub-
computations to the top of a command. For implication, this takes the form of
axioms that lift out the sub-expressions of a function call:

(ς→x) v · e = μ̃f.〈v||μ̃x.〈f ||x · e〉〉 (ς→α) V · e = μ̃f.〈μα.〈f ||V · α〉||e〉

256 P. Downen and Z.M. Ariola

(β→) 〈λx.v||v′ · e〉 = 〈v′||μ̃x.〈v||e〉〉 (η→) λx.μα.〈z||x · α〉 = z

Fig. 6. The β and η axioms of the μμ̃→
S equational theory

�λx.v�N � λ(x, β).�v�Nβ

�v · e�N � λx.�e�Nλβ.x (�v�N , β)

�λx.v�V � λα.α λ(x, β).�v�Vβ

�v · e�V � λx.�v�Vλy.x (y, �e�V)

Fig. 7. Call-by-name (N) and call-by-value (V) CPS transformations of functions

The ς rules are necessary for making progress with some programs. For exam-
ple, call-by-value evaluation of the command 〈z||μα.c · e〉 cannot proceed by β
reduction, and since the non-value argument μα.c is buried inside of a function
call, it needs to be lifted out for it to take control so that evaluation can con-
tinue. A course-grained version of the lifting axiom, which lifts out both parts
of a function call

(ς→) v · e = μ̃f.〈v||μ̃x.〈μ̃α.〈f ||x · α〉||e〉〉

is easily derived from the ημ̃, η
→, and β→ axioms as follows:

v · e =ημ̃ μ̃f.〈f ||v · e〉 =η→ μ̃f.〈λx.μα.〈f ||x · α〉||v · e〉 =β→ μ̃f.〈v||μ̃x.〈μα.〈f ||x · α〉||e〉〉

Furthermore, the ς→ axiom can be broken down into the more atomic rules
within the existing equational theory. The derivation of ς→α from ς→ is a conse-
quence of the μ̃V axiom, and we can derive the ς→x axiom as follows:

v · e =ς→ μ̃f.〈v||μ̃x.〈μα.〈f ||x · α〉||e〉〉
=μ̃V μ̃f.〈v||μ̃x.〈f ||μ̃f ′.〈x||μ̃x′.〈μα.〈f ′||x′ · α〉||e〉〉〉〉 =ς→ μ̃f.〈v||μ̃x.〈f ||x · e〉〉

Therefore, the combination of β→ and η→ axioms is powerful enough in the
parametric equational theory μμ̃→S to express other known behavioral properties
of functions that are needed for certain strategies.

We can achieve a more concrete sense of completeness for the specific cases
of call-by-name and call-by-value functions by extending our core CPS transfor-
mations for the N and V strategies, as in λμμ̃ [3] and shown in Figure 7, with
clauses that handle function abstractions and calls. The μμ̃→N and μμ̃→V equa-
tional theories are sound and complete with respect to the � �N and � �V CPS
transformations, respectively. This was previously known to hold for two sepa-
rate and disjoint subsets of λμμ̃ [3], but we now show that the correspondence
holds for the full μμ̃→N - and μμ̃→V -calculi using the equational theories given by
the strategies presented here.

Theorem 1. μμ̃→S � c = c′ if and only if βη � �c�S = �c′�S , for S = V or N .

Therefore, it turns out that the combination of the β→ and η→ axioms alone re-
ally do give a complete account of functions in the sequent calculus. Furthermore,
both of these axioms do not reference the strategy: all of the details regarding
order of evaluation has been taken care of by the core μμ̃S-calculus.

The Duality of Construction 257

Remark 1. Now that we have a logical connective to work with, we can compare
our use of strategies for determining evaluation order with the use of types in
polarized logic. Take the usual ambiguous command, 〈μα.c||μ̃x.c′〉, in which both
sides appear to be fighting for control, and let’s assume that the term and co-term
belong to the type A→ B. One way to resolve the conflict is to assume that the
η→ rule, corresponding to the reversibility of implication introduction in a proof
or the universal property of exponentials in a category, is as strong as possible.
Under this assumption, we can use the η→ rule to expand any term of type A→
B into a λ-abstraction. Therefore, the ambiguous command is actually equivalent
to the unambiguous command 〈λy.v||μ̃x.c′〉, where v = μβ.〈μα.c||y · β〉, and the
conflict has been resolved in favor of the consumer. This goes to show that
under the polarized view of types, in which the η rules are taken to be as strong
as possible, the type of the active (co-)terms in a command can be used to
determine evaluation order. Since the η rules for negative types like A → B
apply to terms, then every term must be equivalent to a value, leading to a call-
by-name interpretation. Dually, the η rules for positive types apply to co-terms,
so every co-term must be a co-value, giving us a call-by-value interpretation.
In contrast, the strategy based interpretation allows the user of the equational
theory to choose what is considered a (co-)value, and the logical η rules are
weakened so that they are consistent with the choice of strategy.

5 Basic Data and Co-data Structures

So far, our approach has been to characterize the behavior of functions in terms
of β and η axioms alone, giving us a complete axiomatization for functions in
the sequent calculus. All other details relevant to computation, such as when
to lift out sub-computations in a function call, are derived from the primitive β
and η principles. Furthermore, the β and η rules did not directly reference the
strategy, but instead the meaning of the strategy is entirely defined by the core
μμ̃S calculus. To demonstrate the general applicability of this approach, and to
build toward a more complete language, we should also account for pairs and
disjoint unions, giving us a notion of products and sums in the sequent calculus.
As a test to see if our formulation of the β and η axioms are sufficient, we will
derive similar lifting rules, ς , as those described in Section 4 for functions.

We begin by considering sums (⊕) in the μμ̃S-calculus. As per the usual ap-
proach in functional programming languages (based on natural deduction style),
terms are injected into the sum as ι1(v) or ι2(v), and later analyzed by cases
in the form case v of ι1(x) ⇒ v1|ι2(y) ⇒ v2. In the sequent setting, we can
keep the same terms, and reify the context for case analysis into the co-term
μ̃[ι1(x).c1|ι2(y).c2]. Our goal now is to characterize the dynamic behavior of
sums in terms of β and η axioms. Performing β reduction is implemented by a
straightforward case analysis, matching the tag of the term with the appropri-
ate branch of the co-term. For the η rule, we want to recognize a trivial case

258 P. Downen and Z.M. Ariola

analysis that rebuilds the sum exactly as it was. Therefore, to extend the core
μμ̃S-calculus with sums, we include the following two axioms:

(β⊕) 〈ιi(v)||μ̃[ι1(x).c1|ι2(x).c2]〉 = 〈v||μ̃x.ci〉
(η⊕) μ̃[ι1(x).〈ι1(x)||α〉|ι2(y).〈ι2(y)||α〉] = α

Notice in particular that under call-by-value evaluation, the β axiom is applica-
ble even when ιi(v) is not a value, which is not directly allowed in Wadler’s [11]
call-by-value sequent calculus but is sound with respect to the CPS transfor-
mation. As with the β rule for functions, we are relying on the fact that a
μ̃-abstraction establishes the correct evaluation order, so that the underlying
term will only be substituted if it is a value. Additionally, substitution of a
co-value for α means that the η axiom for sums is also applicable to co-values.
Because of the ability to substitute a co-value for a co-variable, we end up with a
stronger η axiom for sums than we may have otherwise considered in natural de-
duction, corresponding to (case v of ι1(x) ⇒ E[ι1(x)]|ι2(x) ⇒ E[ι2(x)]) = E[v]
where E is an evaluation context of the chosen strategy. Restricting the η ax-
iom to co-variables captures the fact that languages which impose restrictions
on co-values have a correspondingly restricted notion of sums, as observed by
Filinski for call-by-name languages [5]. To test that this combination of β and η
axioms completely defines the behavior of sums, we derive Wadler’s [12] lifting
rule: (ς⊕) ιi(v) = μα.〈v||μ̃x.〈ιi(x)||α〉〉

ιi(v) =ημ,η⊕ μα.〈ιi(v)||μ̃[ι1(x).〈ι1(x)||α〉|ι2(x).〈ι2(x)||α〉]〉 =β⊕ μα.〈v||μ̃x.〈ιi(x)||α〉〉

The fact that we have unrestricted β reduction for sums is crucial for deriving
the ς⊕ axiom. If we were only allowed to work with values, then the second step
of the derivation would not be possible.

Next, we would like to formulate products (⊗) that correspond to eager pairs
in the call-by-value setting. Constructing a pair can be given straightforwardly
as (v1, v2), following natural deduction style. Suppose now that we choose to
define the co-terms as the projections π1[e] and π2[e], to correspond with the
natural deduction terms π1(v) and π2(v). In order to implement eager pairs using
this formulation, we would be forced to restrict β reduction to commands of the
form 〈(V1, V2)||πi[e]〉, since we can only project out of an eager product when
both components are values. This restriction on the β axiom makes it impossible
to derive the appropriate lifting axioms for eager products, which means that
the β and η axioms would be necessarily incomplete. The fundamental problem
is that this formulation of pairs does not give us a μ̃-abstraction to rely on
for evaluating the sub-terms, forcing us to infect the β rule with details about
evaluation order. Instead, we define the co-term as a case abstraction, μ̃(x, y).c,
which corresponds to case analysis on the structure of a pair in natural deduction,
case v of (x, y)⇒ v′. As before, β reduction decomposes the structure, and the
η axiom recognizes a trivial case abstraction that immediately rebuilds the pair:

(β⊗) 〈(v1, v2)||μ̃(x, y).c〉 = 〈v1||μ̃x.〈v2||μ̃y.c〉〉 (η⊗) μ̃(x, y).〈(x, y)||α〉 = α

The Duality of Construction 259

Notice that the β axiom is strong enough to break apart any pair (v1, v2) without
throwing anything away, allowing us to still evaluate the two sub-terms eagerly
afterward with the μ̃-abstractions generated by the β rule. For instance, in the
call-by-value strategy V , the command 〈(V, μ .c′)||μ̃(x,).c〉 rightly reduces to c′.
Additionally, because the β axiom breaks apart a pair containing (potentially)
non-values, it must give an order to the bindings of the elements, thereby deter-
mining an order of evaluation between them. In the β rule presented here, we
(arbitrarily) give priority to the first component of the pair. We can now pass
our test by deriving a lifting rule for products that pulls out the two components
so that they may be evaluated: (ς⊗) (v1, v2) = μα.〈v1||μ̃x.〈v2||μ̃y.〈(x, y)||α〉〉〉

(v1, v2) =ημ,η⊗ μα.〈(v1, v2)||μ̃(x, y).〈(x, y)||α〉〉=β⊗ μα.〈v1||μ̃x.〈v2||μ̃y.〈(x, y)||α〉〉〉

As with functions, we derive Wadler’s [12] more atomic rules that lift out one
term at a time:

(ς⊗x) (v1, v2)=μα.〈v1||μ̃x.〈(x, v2)||α〉〉 (ς⊗x) (V1, v2) = μα.〈v2||μ̃y.〈(V1, y)||α〉〉

The symmetry of the sequent calculus points out a dual formulation of pairs
and sums. This corresponds to the two forms of conjunction and disjunction
in Girard’s linear logic [6] and polarized logic [13,4]. Taking the mirror im-
age of sums (⊕) gives a formulation of products (&) using projection as primi-
tive that computes either the first or the second component on demand. The
mirror image of products (⊗) gives us a “classical” disjunction (`), result-
ing in a lazier sum which only evaluates the term as it is needed, once both
branches of its co-term have been reduced to co-values. The syntax and axioms
for these connectives are exactly dual to those given above. The & connective
has terms of the form μ(π1[α].c1|π2[β].c2) and the co-terms π1[e] and π2[e], and
the ` connective has the term μ[α, β].c and the co-term [e1, e2]. For example,
μ(π1[α].〈1||α〉|π2[β].〈2||β〉) is a & product that immediately returns 1 or 2 when
asked, and given a & product x, we may swap its responses by intercepting and
reversing the messages it receives: μ(π1[α].〈x||π2[α]〉|π2[β].〈x||π1[β]〉). Addition-
ally, a ` term may return a result to one of the two branches by responding to
one of the provided co-variables, for example responding with 1 to the left branch
is written μ[α, β].〈1||α〉. Intuitively, ⊕ and & express the concept of choice (the
choice to produce either the first or second or the choice to ask for the first or
second), whereas ⊗ and ` are about an amalgamation of two sub-parts.

To finish off the development, we also extend our call-by-value and call-by-
name strategies to account for the new (co-)terms. We extend the sets of V values
and N co-values as

V ∈ V alueV ::= . . . || (V, V ′) || ιi(V) || μ(π1[α].c|π2[β].c
′) || μ[α, β].c

E ∈ CoV alueN ::= . . . || μ̃(x, y).c || μ̃[ι1(x).c|ι2(y).c′] || πi[E] || [E,E′]

and continue to accept every co-term as a V co-value and every term as a N
value. Notice in particular that the V strategy has a notion of eager and non-
eager pairs: the concrete⊗ term, (v, v′), will eagerly evaluate its sub-terms before

260 P. Downen and Z.M. Ariola

becoming a value, whereas the abstract & term, μ(π1[α].c|π2[β].c
′), is a value that

is waiting for a message before running one of its sub-commands. The meanings
of functions and & are similar in call-by-value, where we eagerly evaluate a
term down to an abstraction and then stop. On the other hand, the N strategy
implements the idea of a strict and non-strict sum: the ⊕ case abstraction is a
co-value that forces evaluation of its term, whereas the ` co-structure only forces
evaluation of its term when both branches are co-values, so that they are strict
in their input. This fundamental difference of the two views on disjunction has
been previously observed by Selinger [10], who pointed out that in call-by-name,
the two forms of disjunction cannot be isomorphic to one another. We also have
the dual property, that there are two fundamentally different forms of products
in call-by-value: a concrete pair and an abstract pair.

6 User-Defined Data and Co-data Types

By this point, we have arrived at a common pattern for adding basic (co-)data
types to the core μμ̃S-calculus, which we will now generalize to user-defined
types, similar to Herbelin’s notion of generalized connectives [7]. We will take
the data or co-data nature of a type constructor as a fundamental ingredient to
its definition, therefore allowing the user to declare new data types (with con-
crete terms) and co-data types (with abstract terms). These are two dual ways
of approaching data structures in programming languages: data corresponds to
ordinary data types in functional languages like ML, whereas co-data is more
akin to an interface for abstract objects that defines a fixed set of allowable
observations or messages. The utility of definition by observations has been pre-
viously shown for infinite structures [1]. We present (co-)data declarations in the
style of a statically typed language, like Haskell. However, since we are focused
on an equational theory in an untyped setting, we use the declarations as a way
to extend the language with new syntactic forms for structures and abstractions
and to extend the theory with rules defining their operational meaning.

6.1 Defining Basic Data and Co-data Types

We first approach user-defined (co-)data types by example, and observe how the
basic type constructors we have considered so far fit within the same general
framework. To express the declarations in their full generality, we use a richer
notation than that provided for ordinary algebraic data types in ML. Therefore,
consider how the syntax of GADT declarations in Haskell can be applied to
ordinary algebraic data types. For instance, the basic Either and Both (a tuple of
two components) type constructors in Haskell are declared using GADT notation
as follows:

dataEitherA Bwhere

Left : A→ EitherA B

Right : B → EitherA B

dataBothA Bwhere

Pair : A→ B → BothA B

The Duality of Construction 261

dataA⊕Bwhere

ι1 : A � A⊕B|
ι2 : B � A⊕B|

dataA⊗Bwhere

pair : A,B � A⊗B|
data 1where

unit : � 1|
data 0where

dataA−Bwhere

uncall : A � A−B|B

codataA & Bwhere

π1 : |A & B � A

π2 : |A & B � B

codataA ` Bwhere

split : |A ` B � A,B

codata⊥where

tp : | ⊥ �
codata)where

codataA→ Bwhere

call : A|A→ B � B

Fig. 8. Declarations for basic (co-)data types

The declaration of EitherA B corresponds with the sequent declaration of A ⊕
B in Figure 8, both of which introduce a data type with two constructors:
one accepting an input of type A and the other an input of type B. However,
the sequent declaration separates input from output with entailment, �, rather
than a function arrow, and explicitly distinguishes the result produced by the
constructor as A ⊕ B|. Similarly, the constructor Pair from the declaration of
BothA B can be seen as a curried form of the constructor pair from A ⊗ B. In
addition, the data declarations of 1 and 0 in Figure 8 correspond to the usual
unit and empty types in functional programming languages.

However, the rest of the declarations in Figure 8 step outside the usual notion
of data type in functional programming languages, and illustrate the various pos-
sibilities for defining new type constructors in the sequent calculus. The co-data
declaration for A&B introduces a pair that is uniquely defined by their first and
second projections, which consume the distinguished input written as |A & B,
rather than by a structure containing two elements. The declaration for A ` B
demonstrates that a (co-)constructor in the sequent calculus may have multiple
outputs. The co-data declarations for and ⊥ give a dual notion of the unit and
empty types, respectively, where the unit is an abstract object with no possible
observations, and the empty type has one observation that produces no output.
We can also express implication, A → B, and its dual, A − B, as user-defined
types that make use of both input and output at the same time.

6.2 Defining New Data and Co-data Types

Next, we consider how to introduce a new data type to the μμ̃S-calculus, in its full
generality. A data type is defined by cases over a set of constructors, K1, . . . ,Kn.
The general form of declaration for the new data type F(

#»

X), where
#»

X are zero

262 P. Downen and Z.M. Ariola

data F(
»
Xj

j
)where

K1 :
»
A1j

j � F(
»
Xj

j
)| # »
B1j

j

. . .

Kn :
»
Anj

j � F(
»
Xj

j
)| # »Bnj

j

codataG(
»
Xj

j
)where

H1 :
»
A1j

j |G(# »
Xj

j
) � # »

B1j
j

. . .

Hn :
»
Anj

j |G(# »
Xj

j
) � # »

Bnj
j

Fig. 9. The general forms of (co-)data declarations in μμ̃F
S

(βF) 〈Ki(
#»ej

j , #»vj
j)||μ̃[

»

Ki(
»αij

j , # »xij
j).ci

i

]〉 = 〈μ # »αij
j .〈 #»vj

j ||μ̃ # »xij
j .ci〉|| #»ejj〉

(ηF) μ̃[
»

Ki(
»αij

j , # »xij
j).〈Ki(

»αij
j , # »xij

j)||γ〉
i

] = γ

(βG) 〈μ(
»

Hi[
»xij

j , # »αij
j].ci

i

)||Hi[
#»vj

j , #»ej
j]〉 = 〈 #»vj

j ||μ̃ # »xij
j .〈μ # »αij

j .ci|| #»ejj〉〉

(ηG) μ(
»

Hi[
»xij

j , # »αij
j].〈z||Hi[

»xij
j , # »αij

j]〉
i

) = z

Fig. 10. The β and η axioms for (co-)data of the μμ̃F
S equational theory

or more type variables2, is given in Figure 9. The type variables may appear in
any of the types

#»
A and

#»
B , and each constructor has F(

#»
X) as the distinguished

output type on the right of the sequent. Syntactically, each constructor builds a
new term not only from other terms, as per usual in a functional programming
language, but also possibly from co-terms that represent reified contexts. The
data declaration for F(

#»
X) introduces the family of data structures, Ki(

#»e , #»v), as

new terms and the single case abstraction, μ̃[
»

K(#»α , #»x).c], as the new co-term of

that type. In addition to the syntax for the data type F(
#»
X), we also have two

primitive axioms, βF and ηF shown in Figure 10. Following the same pattern as
pairs and sums, the axioms are strategy independent and rely on μ and μ̃ in μμ̃S
to manage evaluation order. Binding the sequence of terms #»v = v1, v2, . . . , vn
to the sequence of variables #»x = x1, x2, . . . , xn is defined as

〈 #»v ||μ̃ #»x .c〉 � 〈v1||μ̃x1.〈v2||μ̃x2. . . . 〈vn||μ̃xn.c〉 . . .〉〉

and analogously for binding a sequence of co-terms to co-variables. The βF axiom
performs case analysis by looking up the appropriate command to run based on
the constructor and binding the sub (co-)terms of the structure by matching it
with the appropriate pattern. The ηF axiom states that an unknown co-value γ
is treated the same as a trivial case abstraction that re-constructs all matched
structures and forwards them along to γ. As before, we have a family of axioms
that lift out sub-(co-)terms in a data structure, which can be derived by following
the same pattern shown in Section 5 for products and sums.

2 We write
»
Xi

i
to mean a sequence X1, . . . , Xn of zero or more elements indexed by

i. The index is left implicit when it is clear from context.

The Duality of Construction 263

(
data F(

#»
X)where

»

K :
#»
A � F(

#»
X)| #»B

)◦
� codata F(

#»
X)where

»

K :
#»
B |F(#»

X) � #»
A(

codataG(
#»
X)where

»

H :
#»
A |G(#»

X) � #»
B
)◦

� dataG(
#»
X)where H :

#»
B � G(

#»
X)| #»A

〈v||e〉◦ � 〈e◦||v◦〉

(μα.c)◦ � μ̃α◦.c◦ (K(#»e , #»v))◦ � K[
#»

e◦ ,
#»

v◦] (μ(
»

H[#»x , #»α].c))
◦
� μ̃[

»

H(
»

x◦ ,
»

α◦).c◦]

(μ̃x.c)◦ � μx◦.c◦ (H[#»v , #»e])◦ � H(
#»

v◦ ,
#»

e◦) (μ̃[
»

K(#»α , #»x).c])
◦
� μ(

»

K(
»

α◦ ,
»

x◦).c◦)

Fig. 11. The duality operation for the μμ̃F
S -calculus

Introducing a new co-data type to the μμ̃S-calculus follows the same gen-

eral pattern, but with a twist. Instead of defining a co-data type G(
#»
X), by its

constructors, which produce a data structure as output, it is defined by cases
over its possible co-constructors which build concrete co-structures on the side
of co-terms. The co-structures can be thought of as observations or messages
that are sent to and analyzed by abstract terms of type G(

#»
X). It follows that

the co-data declaration mirrors the general form of a data declaration, as shown
in Figure 9. Likewise, the syntax introduced for the co-data type G(

#»

X) is dual
to the data form. We now have a family of co-data structures, Hi[

#»v , #»e], as new

co-terms, and a single new term, μ(
»

H[#»x , #»α].c). This term is a co-case abstraction
which responds to a co-data structure, i.e., a message, by giving a command to
perform for every possible case.

Following the exchanged roles between term and co-term, the primitive βG

and ηG axioms are mirror images of their counterparts for data types, as seen in
Figure 10. The βG axiom performs case analysis on a co-constructor, matching
the co-structure to the given pattern and running the appropriate command
given by the abstract term. The ηG axiom wraps an unknown value z in a co-case
abstraction that just forwards every co-structure to that original value. We also
have a family of axioms that lift out sub-(co-)terms in a co-data structure, which
exactly mirror the derived lifting axioms for data types.

6.3 Duality and Strategies for User-Defined Co-data Types

We also extend the duality relationship of Curien and Herbelin [3] andWadler [11]
to be parametric over evaluation strategies and user-defined (co-)data types. The
duality operation, given in Figure 11, transforms a program in the μμ̃FS -calculus
into its dual in the μμ̃F

◦
S◦ -calculus. The duality operation flips the roles of a pro-

gram, mapping terms into co-terms, co-terms into terms, and exchanges the two
sides of a command. The dual of a set of declared (co-)data types, F , is given by
the dual of each (co-)data type declaration ofF . In addition, we can automatically
generate the dual of a strategy, S◦, by taking the point-wise dual of the values and
co-values of S. Notice that the double dual of a (co-)data declaration is identical
to the original declaration. This gives us soundness and involution of duality that
is parametric in evaluation strategy and (co-)data types.

264 P. Downen and Z.M. Ariola

V ∈ V alueV ::= x || Ki(#»e ,
#»
V) || μ(# »

H(#»x , #»α).c) E ∈ CoV alueV ::= e

V ∈ V alueN ::= v E ∈ CoV alueN ::= α || μ̃[
»

K(#»α , #»x).c] || Hi[
#»v ,

#»
E]

Fig. 12. Call-by-value (V) and call-by-name (N) strategies of μμ̃F
S

�Ki(
#»e , #»v)�V = λα.�v1�Vλx1. . . . �vn�Vλxn.α Ki(

»

�e�V , #»x)

�μ(# »

H[#»x , #»α].c)�V = λβ.β λγ. case γ of
»

H(#»x , #»α)⇒ �c�V

�μ̃[# »

K(#»α , #»x).c]�V = λz. case z of
»

K(#»α , #»x)⇒ �c�V

�Hi[
#»v , #»e]�V = λx.�v1�Vλy1. . . . �vn�Vλyn.x Hi(

#»y ,
»

�e�V)

Fig. 13. Call-by-value (V) CPS transformation of μμ̃F
S

Theorem 2. – If μμ̃FS � c = c′ then μμ̃F
◦

S◦ � c◦ = c′
◦
.

– c◦◦ � c, S◦◦ � S, and F◦◦ � F .
It is worthwhile to pause over the statement of this theorem: for every strategy
and collection of (co-)data types under which two commands are equated, the
strategy and (co-)data types obtained from their duals equate the dual com-
mands. In addition to recognizing a duality between two hand-crafted strategies
and sets of connectives, like for N and V , this theorem demonstrates a mechan-
ical procedure for generating the semantic dual of any strategy and any set of
(co-)data types, as well as the dual to any theory given as an instance of μμ̃FS .

Finally, we need to choose an evaluation strategy for each newly declared
(co-)data type. We can do this generically across user-defined (co-)data by de-
ciding on a schema for extending the sets of values and co-values based on
(co-)data declarations. For our call-by-value strategy V , we can say that data
structures are values if every sub-term is a value, abstract terms are values, and
every co-term is a co-value, as shown in Figure 12. This schema agrees with the
definition of our call-by-value strategy for all the previously considered (co-)data
types, and gives us exactly the same equational theory as we had before. We can
provide a schema for our call-by-name evaluation strategy N in the dual way.
In this case, we say that co-structures are co-values if every sub-co-term is a
co-value, abstract co-terms are co-values, and every term is a value. Likewise,
this schema agrees with the previous definition of our call-by-name strategy.

In addition, we extend the basic call-by-value CPS transformation � �V with
clauses for the newly declared (co-)data types by encoding (co-)structures and
(co-)case abstractions into a CPS λ-calculus extended with user-defined data
types, à la ML, as given in Figure 13.

The call-by-nameCPS transformation is defined as the dual of the call-by-value
transformation, � �N = � ◦�V . It follows that the call-by-value and call-by-name
equational theories are sound and complete with respect to the call-by-value and
call-by-name CPS transformations, respectively.

The Duality of Construction 265

V ∈ V alueLV ::=x || Ki(
#»
E,

#»
V) || μ(# »

H[#»x , #»α].c) CLV ∈ ContextLV ::=� || 〈v||μ̃x.CLV〉

E ∈ CoV alueLV ::= α || μ̃[
»

K(#»x , #»α).c] || Hi[
#»v ,

#»
E] || μ̃x.CLV [〈x||E〉]

Fig. 14. The LV strategy for μμ̃F
S

V ∈ V alueLN ::= x || Ki(#»e ,
#»
V) || μ(# »

H[#»x , #»α].c) || μα.CLN [〈V ||α〉]

E ∈ CoV alueLN ::=α || μ̃[
»

K(#»x , #»α).c] || Hi[
#»
V ,

#»
E] CLN ∈ ContextLN ::=� || 〈μα.CLN ||e〉

Fig. 15. The LN strategy for μμ̃F
S

Theorem 3. μμ̃FS � c = c′ if and only if βη � �c�S = �c′�S , for S = V or N .

The parametric μμ̃S -calculus extended with user-defined (co-)data types encom-
passes Wadler’s dual sequent calculus [12], where conjunction and disjunction
are mapped to the A⊕B and A⊗B data types for the call-by-value calculus, and
to the A&B and A`B co-data types for the call-by-name calculus. Additionally,
negation is mapped to the co-data type form of negation for call-by-value, and
to the data type form of negation for call-by-name.

Remark 2. So far, we have focused our attention only on two evaluation strate-
gies: the N strategy for call-by-name and the V strategy for call-by-value. How-
ever, there are other strategies that can be studied by this parametric approach.
For instance, we can adapt the “lazy value” strategy [2], LV , to the paramet-
ric μμ̃S-calculus with user-defined (co-)data types as shown in Figure 14. The
LV strategy uses the same notion of value as in V , but restricts co-values to
only those co-terms that “need” a value in order to continue. In this way, the
LV behaves in a call-by-name manner by first prioritizing the co-term, and
only evaluates terms when demanded. The intuition is that in a context like
〈v1||μ̃y1.〈v2||μ̃y2.�〉〉, v1 and v2 are delayed computations whose results are bound
to y1 and y2 so that they are shared. The co-term μ̃x.〈v1||μ̃y1.〈v2||μ̃y2.〈x||E〉〉〉
is strict since 〈x||E〉 is the actively running command and it needs the value of
x in order to continue, making the whole μ̃-abstraction a co-value. In the com-
mand 〈μα.c1||μ̃x.c2〉, we begin to evaluate c2 as if we performed a call-by-name
substitution until the value of x is demanded (in a command like CLV [〈x||E〉]),
and then switch to evaluating c1 by the μE rule. The call-by-need LV strategy
demonstrates that there are more than two possible strategies of interest, and
that more subtle concerns about evaluation order, such as sharing the results of
computations in a non-strict setting, is captured by the parametric μμ̃S -calculus.

Furthermore, the procedure illustrated by Theorem 2 can be used to mechan-
ically generate a strategy dual to call-by-need, LN , as shown in Figure 15. In
this setting, priority is initially given to the producer, but we still share the work
needed to reduce a consumer. This strategy may be thought of as call-by-value
with a delayed form of control effects, so that a continuation is reduced first

266 P. Downen and Z.M. Ariola

before being copied. Delayed control effects introduce new values of the form
μα.〈μβ.〈V ||α〉||e〉, where we are returning the value V from inside a delayed cap-
ture of e. LN implements the dual form of sharing as call-by-need: it behaves
like call-by-value but only captures strict contexts in the sense of call-by-name.

7 Composing Multiple Strategies

We have now seen how to reason about data and co-data in the sequent calculus
according to multiple different evaluation strategies by capturing the essence
of the strategy as the parameter to the equational theory. The parameter for
the strategy fixes evaluation order once and for all as a global property of the
language. However, can we also allow for a program to make use of more than
one strategy at a time? Or put another way, can we take several independently
consistent strategies and compose them together into a composite strategy for
the parametric equational theory, while still maintaining consistency?

The problem calls for a more subtle approach than just taking the union of two
or more strategies. For example, if we take the simple union of the call-by-name
N and call-by-value V strategies, so a (co-)term is a (co-)value if it fits either the
N or V notions of (co-)value, then the combined strategy considers every term
and co-term to be a (co-)value. In the command 〈μα.c||μ̃x.c′〉, we could consider
the term to be a value byN criteria and the co-term to be a co-value by V criteria,
leading back to the fundamental inconsistency we were trying to avoid. The issue
is that allowing a N (co-)term interact with a V (co-)term opens the door for
further inconsistencies, even though the two strategies are perfectly consistent in
isolation. The solution comes by disallowing (co-)terms from different strategies
from interacting directly with one another. If the strategy S is consistent, then
we know that every command is interpreted consistently if we evaluate both the
term and co-term by S. Our goal is to ensure that every command consistently
interprets both term and co-term by the same strategy, and that this consistency
is maintained by the rules of the equational theory.

One approach for ensuring that terms only communicate with co-terms fol-
lowing the same strategy is to think about types. We can take all the types
which classify programs and put them into different universes, or kinds, so that
each kind represents one primitive strategy. However, a full static typing disci-
pline is more than necessary for ensuring that programs are consistent. After all,
we were able to consistently reason about untyped programs by using a single
global strategy, and ideally we would like to keep this property when possible.
Therefore, we relax the typing relationship by collapsing all of the types for a
particular kind into a single universal type. The notion of having more than one
universal type for untyped evaluation is similar to Zeilberger’s [14] “bi-typed”
system, except that we admit more than two universes, thereby allowing a pro-
gram to make use of more than two primitive evaluation strategies at a time and
in other combinations like call-by-value and call-by-need. To make the strat-
egy for interpreting a (co-)term apparent from its syntax, we explicitly annotate
(co-)variables with their kind. An inference system for checking kinds of the core

The Duality of Construction 267

Γ, x :: S � xS :: S|Δ
c :: (Γ � α :: S ,Δ)

Γ � μαS .c :: S|Δ

Γ |αS :: S � α :: S ,Δ
c :: (Γ, x :: S � Δ)

Γ |μ̃xS .c :: S � Δ

Γ � v :: S|Δ Γ |e :: S � Δ

〈v||e〉 :: (Γ � Δ)

Fig. 16. Type-agnostic kind system for the core calculus

calculus, shown in Figure 16, resembles the type system for λμμ̃ [3] except at
one level up. The most interesting rule is the cut rule for forming commands
that only allows v and e to interact if they both belong to a type of the same
kind, ensuring that we interpret v and e according to the same strategy.

In order to allow for user-defined (co-)data types in the presence of multiple
primitive strategies, we need to consider kinds when declaring a new (co-)data
type. We will illustrate (co-)data declaration with explicit, multiple kinds by
example in lieu of presenting the general form. We can declare a strict pair A⊗B,
where both components are evaluated eagerly, by annotating the declaration in
Figure 8 so that A, B, and A⊗B belong to the kind V :

data (A : V)⊗ (B : V) : V where pair : A : V , B : V � A⊗B : V|

The annotated declaration for A ⊗ B : V introduces the term pair(v, v′) and
co-term μ̃[pair(xV , yV).c]. In addition, the declaration extends the set of V values
with pair(V, V ′), where V and V ′ are V values, as intended. We are also at liberty
to declare a pair using more interesting combinations of strategies, as expressed
by kinds. For example, we can introduce a lazy pair MixedProduct(A,B) of the
kind N where the first component is evaluated strictly:

dataMixedProduct(A : V , B : N) : N where

MixedPair : A : V , B : N � MixedProduct(A,B) : N|

The declaration of MixedProduct(A,B) : N introduces the term MixedPair(v, v′)
and co-term μ̃[MixedPair(xV , yN).c], both of which are taken to be N (co-)values.
The interesting interplay between the V and N strategies in a MixedProduct is
revealed during β reduction:

〈MixedPair(v, v′)||μ̃[MixedPair(xV , yN).c]〉 =β,μ̃V 〈v||μ̃xV .c
{
v′/yN

}
〉

The intended behavior is that after breaking apart the mixed pair, v is evaluated
eagerly until it is reduced to a value according to the V strategy, after which the
value is substituted for xV . On the other hand, v′ is interpreted according to the
N strategy, so that it is already a value and may be substituted immediately.

Observe that the parametric equational theory instantiated with multiple
strategies

#»S and type constructorsF , written μμ̃F#»S , preserves the well-kindedness
of commands and (co-)terms. The axioms in need of the most care are the η ax-
ioms, which only apply to variables of the appropriate kind. For instance, the η
axiom for A ⊗ B of the kind V only applies to a co-variable αV , whereas the η
axiom for MixedProduct(A,B) of the kind N only applies to αN .

268 P. Downen and Z.M. Ariola

Theorem 4. If
#»S are consistent strategies, then μμ̃F#»S is consistent for well-

kinded commands and (co-)terms.

8 Conclusion

The parametric theory provides a direct framework for reasoning about the be-
havior of programs with both data and co-data in the sequent calculus. We
may understand the meaning of a sequent calculus program using both data
structures and message-passing in terms of the intended evaluation strategy. As
future work, we would like to develop the theory of the sequent calculus so that
it may provide a foundation for objects as a form of co-data, giving us a frame-
work where a notion of object-oriented programming is expressed as the dual
paradigm to functional programming. This will involve extending the theory
with more advanced features such as inductive and co-inductive forms of self-
reference, subtyping, and parametric polymorphism. In addition, we would like
to study the suitability of the sequent calculus as an intermediate language in
a compiler. Since the sequent calculus provides a framework in which low-level
implementation details can be better expressed than in the λ-calculus, we want
to study its impact on reasoning about optimizations and program analysis.

Acknowledgments. We would like to thank Pierre-Louis Curien, Hugo Her-
belin, and Alexis Saurin for their helpful input and discussion in early versions
of this paper, and to acknowledge the support of INRIA and Paris Diderot Uni-
versity while both authors were visiting Paris, where this work was carried out.
The authors have also been supported by NSF grant CCF-0917329 and INRIA
Équipe Associée SEMACODE.

References

1. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: POPL 2013 (2013)

2. Ariola, Z.M., Herbelin, H., Saurin, A.: Classical call-by-need and duality. In: Ong,
L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 27–44. Springer, Heidelberg (2011)

3. Curien, P.-L., Herbelin, H.: The duality of computation. In: International Confer-
ence on Functional Programming, pp. 233–243 (2000)

4. Curien, P.-L., Munch-Maccagnoni, G.: The duality of computation under focus.
In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 165–181.
Springer, Heidelberg (2010)

5. Filinski, A.: Declarative Continuations and Categorical Duality. Master thesis,
DIKU, Danmark (August 1989)

6. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
7. Herbelin, H.: Duality of computation and sequent calculus: a few more remarks

(2012), http://pauillac.inria.fr/~herbelin/publis/full-dual-lk.pdf
8. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: Grädel, E.,

Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 409–423. Springer, Heidelberg
(2009)

http://pauillac.inria.fr/~herbelin/publis/full-dual-lk.pdf

The Duality of Construction 269

9. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: a Metamodel for
Computation. Springer (2004)

10. Selinger, P.: Control categories and duality: on the categorical semantics of the
lambda-mu calculus. MSCS 11(2), 207–260 (2001)

11. Wadler, P.: Call-by-value is dual to call-by-name. In: Proceedings of ICFP,
pp. 189–201. ACM (2003)

12. Wadler, P.: Call-by-value is dual to call-by-name – reloaded. In: Giesl, J. (ed.) RTA
2005. LNCS, vol. 3467, pp. 185–203. Springer, Heidelberg (2005)

13. Zeilberger, N.: On the unity of duality. Annals of Pure Applied Logic 153(1-3),
66–96 (2008)

14. Zeilberger, N.: The Logical Basis of Evaluation Order and Pattern-Matching. PhD
thesis, Carnegie Mellon University (2009)

Deriving Pretty-Big-Step Semantics
from Small-Step Semantics

Casper Bach Poulsen and Peter D. Mosses

Department of Computer Science, Swansea University, Swansea, UK
{cscbp,p.d.mosses}@swansea.ac.uk

Abstract. Big-step semantics for languages with abrupt termina-
tion and/or divergence suffer from a serious duplication problem, ad-
dressed by the novel ‘pretty-big-step’ style presented by Charguéraud at
ESOP’13. Such rules are less concise than corresponding small-step rules,
but they have the same advantages as big-step rules for program correct-
ness proofs. Here, we show how to automatically derive pretty-big-step
rules directly from small-step rules by ‘refocusing’. This gives the best
of both worlds: we only need to write the relatively concise small-step
specifications, but our reasoning can be big-step as well as small-step.
The use of strictness annotations to derive small-step congruence rules
gives further conciseness.

Keywords: structural operational semantics, SOS, Modular SOS,
pretty-big-step semantics, small-step semantics, big-step semantics, nat-
ural semantics, refocusing.

1 Introduction

Structural operational semantics (SOS) are typically given in either small-step
(Plotkin 2004) or big-step (Kahn 1987) style. Big-step rules evaluate terms by
relating them to their computed values, whereas small-step evaluation involves
partly evaluated terms. Both styles are powerful frameworks for formalizing op-
erational semantics, and each has its own merits and limitations. For example,
small-step semantics is usually preferred for process algebras (Milner 1980), in-
terleaving, and type soundness proofs (Pierce 2002; Wright and Felleisen 1994),
whereas the big-step style is more suitable for proving correctness of program
transformations (Charguéraud 2013; Leroy and Grall 2009). An equally impor-
tant concern is the effort involved in specifying the semantics: rules should be
concise, but comprehensible. But which style requires less effort?

The answer to this question depends not only on conciseness, but also on the
application, i.e., on features of the specified language and properties that the
semantics will be used to reason about. When the language involves abrupt ter-
mination, Charguéraud (2013) recently noted that big-step semantics (also called
natural semantics) duplicate premises and rules to propagate abrupt termina-
tion and/or divergence. In contrast, the small-step style allows for more concise

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 270–289, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 271

specifications involving abrupt termination, and there is no need to specify prop-
agation of divergence. However, this would seem of little consolation if the use of
the semantics requires big-step reasoning. Charguéraud provides an alternative
by showing how to decompose big-step rules into simpler pretty-big-step rules.
Such rules allow for more concise specifications without sacrificing the ability to
do big-step reasoning. The style also incorporates coinductive reasoning similar
to coinductive big-step semantics (Leroy and Grall 2009).

Table 1 illustrates the difference between big-step, pretty-big-step, and small-
step SOS rules for subtracting natural numbers. In the small-step SOS rules we
use a state variable a to propagate exceptions. By matching on the exception

Table 1. Comparison of big-step, pretty-big-step, and small-step SOS rules for partially
defined subtraction of natural numbers (N)

Big-step SOS t⇒ b
t ::= minus(t, t) | n n ∈ N b ::= n | exc(n)

t1 ⇒ n1 t2 ⇒ n2 n1 ≥ n2 n = n1 − n2
[Big1]

minus(t1, t2)⇒ n

t1 ⇒ n1 t2 ⇒ exc(n′)
[Big2]

minus(t1, t2)⇒ exc(n′)

t1 ⇒ n1 t2 ⇒ n2 n1 < n2 [Big3]
minus(t1, t2)⇒ exc(0)

t1 ⇒ exc(n′)
[Big4]

minus(t1, t2)⇒ exc(n′)

Pretty-big-step SOS e ⇓ o

t ::= minus(t, t) | n n ∈ N e ::= t | minus1(o, t) | minus2(n, o) o ::= n | exc(n)
t1 ⇓ o1 minus1(o1, t2) ⇓ o

[Pretty1]
minus(t1, t2) ⇓ o

t2 ⇓ o2 minus2(n1, o2) ⇓ o
[Pretty2]

minus1(n1, t2) ⇓ o

n1 ≥ n2 n = n1 − n2
[Pretty3]

minus2(n1, n2) ⇓ n

n1 < n2 [Pretty4]
minus2(n1, n2) ⇓ exc(0)

abort(o1)
[Pretty5]

minus1(o1, t2) ⇓ o1

abort(o2)
[Pretty6]

minus2(n1, o2) ⇓ o2
[Abort]

abort(exc(n))

Small-step SOS 〈t, a〉 → 〈t′, a′〉
t ::= minus(t, t) | n n ∈ N a ::= τ | exc(n)

〈t1, τ 〉 → 〈t′1, a′〉
[Small1]

〈minus(t1, t2), τ 〉 → 〈minus(t′1, t2), a′〉
〈t2, τ 〉 → 〈t′2, a′〉

[Small2]
〈minus(n1, t2), τ 〉 → 〈minus(n1, t

′
2), a

′〉
n1 ≥ n2 n = n1 − n2 [Small3]
〈minus(n1, n2), τ 〉 → 〈n, τ 〉

n1 < n2 [Small4]
〈minus(n1, n2), τ 〉 → 〈0, exc(0)〉

272 C. Bach Poulsen and P.D. Mosses

state, rather than explicit exception terms, we can abruptly terminate as soon
as an exception state is entered.

As the table illustrates, pretty-big-step rules eliminate the duplicate premise
evaluating t1 to n1 in the big-step rules. However, both the big-step and pretty-
big-step rules are less concise than their small-step counterparts – even more so
if we generate small-step congruence rules, i.e., rules which perform a single con-
traction in the context of a term, such as [Small1] and [Small2], from strictness
annotations, as used in the K-framework (Roşu and Şerbănuţă 2010).

We could ask ourselves: does (pretty-)big-step reasoning always come at the
cost of less concise specifications? In this paper we answer this question in the
negative. We show how we can have our cake and eat it by writing concise
specifications in small-step style and automatically deriving their pretty-big-step
counterparts. This allows us to do both small-step and big-step reasoning based
on the same semantics. Our derivation differs in two ways from Charguéraud’s
manual transformation:

1. rather than transforming big-step rules into pretty-big-step rules, we trans-
form small-step rules into pretty-big-step rules; and

2. our transformation is fully mechanical and has been automated.

Our pretty-big-step rules are derived by refocusing (Danvy and Nielsen 2004),
which allows us to go from reduction-based (small-step) to reduction-free (big-
step) evaluation (Danvy 2008b). We have previously adapted the techniques
of Danvy and Nielsen to Modular SOS (MSOS) to generate efficient prototype
interpreters (Bach Poulsen and Mosses 2014). Here, we extend and combine that
with research in pretty-big-step semantics and modular semantics specification
to make the following contributions to semantics engineering and its applications:

– We compare the effort required to extend a language with exceptions for
big-step, pretty-big-step, and (modular) small-step semantics (Sect. 2). Our
conclusion is that small-step MSOS specifications are more concise than
corresponding pretty-big-step (SOS) and big-step (SOS and MSOS)
specifications.

– We demonstrate that pretty-big-step semantics is within the range of refocus-
ing by extending the diagram from (Danvy 2008a, p. 131) by the highlighted
box and arrows1:

small-step MSOS pretty-big-step
MSOS

big-step MSOS

reduction
semantics

small-step
abstract machine

big-step abstract
machine

1 Danvy (2008a) gave arrows for SOS rather than MSOS. The extension to MSOS
follows from the correspondence between SOS and MSOS (Mosses 2004, Proposi-
tion 3 and 4).

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 273

By unfolding a refocused small-step semantics as described in Sect. 3 we de-
rive pretty-big-step rules with fewer intermediate terms than Charguéraud’s
original formulation and which do not require auxiliary predicates.

– We adapt strictness annotations to MSOS (Sect. 4). By comparing the num-
ber of rules and premises required to specify an example language involving
a considerable number of language features, we conclude that small-step
MSOS with strictness annotations can be significantly more concise than
the pretty-big-step style.

We claim that refocusing small-step MSOS specifications with strictness anno-
tations gives the best of both the small-step and the big-step worlds: a con-
cise specification format from which somewhat less concise pretty-big-step rules,
amenable to the big-step proof techniques pioneered by Charguéraud (2013) and
Leroy and Grall (2009), can be mechanically derived.

2 The Language and Its Semantics

We recall and contrast big-step semantics, pretty-big-step semantics, and small-
step SOS and MSOS, and illustrate that small-step semantics is more concise
than big-step semantics. Following Charguéraud (2013) and Leroy and Grall
(2009), the language here considered is the call-by-value λ-calculus extended
with constants. We consider the problem of extending this language with
exceptions.

2.1 Big-Step Semantics

We give an environment-based semantics for the big-step semantics of the call-by-
value λ-calculus based on closures2. Judgments take the form ρ � t⇒ v, asserting
that, under environment ρ, t evaluates to v. Environments ρ : Var → Val map
variables to values, and N are the natural numbers.

Val � v ::= n | clo(x, t, ρ) n ∈ N x ∈ Var

[B1]
ρ � v ⇒ v

ρ(x) = v
[B2]

ρ � var(x)⇒ v
[B3]

ρ � abs(x, t)⇒ clo(x, t, ρ)

ρ � t1 ⇒ clo(x, t, ρ′) ρ � t2 ⇒ v ρ′[x �→ v] � t⇒ v′
[B4]

ρ � app(t1, t2)⇒ v′

Following Charguéraud (2013), we introduce an exception term for abruptly
terminating evaluation. Under this extension, our judgment becomes ρ � t ⇒ b
and now asserts that, under environment ρ, t results in the behaviour b. The
grammar and rules immediately above are extended by:

Behaviour � b ::= v | exc(v)
2 By using closures we avoid the need to specify substitution.

274 C. Bach Poulsen and P.D. Mosses

ρ � t1 ⇒ exc(v′)
[B5]

ρ � app(t1, t2)⇒ exc(v′)

ρ � t1 ⇒ clo(x, t, ρ′) ρ � t2 ⇒ exc(v′)
[B6]

ρ � app(t1, t2)⇒ exc(v′)

ρ � t1 ⇒ clo(x, t, ρ′) ρ � t2 ⇒ v ρ′[x �→ v] � t⇒ exc(v′)
[B7]

ρ � app(t1, t2)⇒ exc(v′)

In order to propagate the exception, the premise evaluating t1 to a closure
clo(x, t, ρ′) becomes duplicated between the rules [B4], [B6], and [B7], the premise
evaluating t2 to a value v is duplicated between [B4] and [B7], and the number of
rules defining the application construct grows from one ([B3]) to four ([B3]–[B7]).
This is the duplication problem with abrupt termination in big-step semantics.

As illustrated by Charguéraud (2013) and Leroy and Grall (2009), a similar
duplication problem arises if we express divergence following Cousot and Cousot
(1992), e.g., by introducing a ‘divergence relation’ coinductively defined by rules
similar to [B4]–[B7] above. Coinductive big-step semantics (Leroy and Grall 2009)
avoids the duplication problem with divergence in big-step semantics by giving
a dual (inductive and coinductive) interpretation of the same set of rules. Coin-
ductive big-step semantics does not, however, offer any obvious solutions to the
duplication problem with abrupt termination. Pretty-big-step semantics does.

2.2 Pretty-Big-Step Semantics

Charguéraud defines pretty-big-step rules as “rules that consider the evaluation
of at most one subterm at a time” and are syntax-directed (Charguéraud 2013,
Sect. 2.1), i.e., the initial term (conclusion source) for each rule is syntactically
distinct. Using pretty-big-step rules, duplicate premises are eliminated:

Outcome � o ::= b | div Intermediate � e ::= t | app1(o, t) | app2(v, o)

[P1]
ρ � v ⇓ v

ρ(x) = v
[P2]

ρ � var(x) ⇓ v
[P3]

ρ � abs(x, t) ⇓ clo(x, t, ρ)

ρ � t1 ⇓ o1 ρ � app1(o1, t2) ⇓ o
[P4]

ρ � app(t1, t2) ⇓ o

ρ � t2 ⇓ o2 ρ � app2(v1, o2) ⇓ o
[P5]

ρ � app1(v1, t2) ⇓ o

ρ′[x �→ v] � t ⇓ o
[P6]

ρ � app2(clo(x, t, ρ′), v) ⇓ o

abort(o)
[P7]

ρ � app1(o, t2) ⇓ o

abort(o)
[P8]

ρ � app2(v, o) ⇓ o
[Abort-Exc]

abort(exc(v))

[Abort-Div]
abort(div)

Here, e denotes intermediate terms. Like coinductive big-step semantics, each
pretty-big-step rule has a dual interpretation: inductive and coinductive. Thus,
the judgment ρ � e ⇓ o asserts that, under environment ρ, t either terminates
with, or coevaluates to, an outcome o. An outcome is either a behaviour b (e.g.,
an exception or a value), or div, the term representing divergence which is only

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 275

derivable under a coinductive interpretation. The abort(o) auxiliary predicate
allows abrupt termination or divergence to be propagated in a generic way.

While pretty-big-step rules eliminate duplicate premises, they also introduce
additional terms in the grammar of the language (app1(o, t) and app2(v, o)), an
auxiliary predicate (abort(o)), and the number of rules compared to big-step
semantics has increased from seven to eight.

2.3 Small-Step SOS

We now compare big-step and pretty-big-step semantics to small-step SOS. Con-
sider the following small-step SOS rules for the call-by-value λ-calculus without
exceptions:

ρ(x) = v
[S1]

ρ � var(x)→ v
[S2]

ρ � abs(x, t)→ clo(x, t, ρ)

ρ � t1 → t′1 [S3]
ρ � app(t1, t2)→ app(t′1, t2)

ρ � t2 → t′2 [S4]
ρ � app(v1, t2)→ app(v1, t′2)

ρ′[x �→ v] � t→ t′
[S5]

ρ � app(clo(x, t, ρ′), v)→ app(clo(x, t′, ρ′), v)
[S6]

ρ � app(clo(x, v′, ρ′), v)→ v′

The small-step judgment ρ � t → t′ asserts that, under environment ρ, t makes
a transition to t′, which need not be a value. This formulation uses two more
rules than the big-step style specification before adding exceptions (Sect. 2.1).
This is in part due to the two congruence rules [S3] and [S4] which propagate
the result of doing a contraction inside a subterm. Section 4.3 shows how these
can be replaced by a strictness annotation.

Following Plotkin (2004), evaluation in a small-step SOS is given by (possibly
infinite) sequences of transition steps in an underlying labelled terminal transition
system (LTTS). The LTTS for the SOS with the rules [S1]–[S6] above is given by
〈Term ,1,→,Val〉, where → ⊆ Term × 1× Term is the transition relation that
our rules inductively define, and 1 denotes the singleton set containing a unit
label that is implicitly present on all transitions. Divergence in small-step SOS
corresponds to an infinite sequence of transition steps in the underlying LTTS.

To extend our small-step semantics with exceptions, we could follow
Charguéraud (2013) in introducing an exception term. This would require us
to introduce rules propagating exceptions similarly to the pretty-big-step rules.
An alternative, following Mosses (2004), is to model exceptions as signals in the
label of the transition relation. In this approach, a top-level term abruptly ter-
minates evaluation if an exception signal is propagated to the top-level. Here, we
take a different approach and model exceptions as states in the configurations of
the underlying LTTS. Updating our relation, the judgment ρ � 〈t, a〉 → 〈t′, a′〉
asserts that, under environment ρ, the configuration 〈t, a〉 makes a transition to

276 C. Bach Poulsen and P.D. Mosses

〈t′, a′〉, where a ::= τ | exc(v). Our small-step rules are updated to propagate
the exception state:

ρ(x) = v
[S1′]

ρ � 〈var(x), τ 〉 → 〈v, τ 〉
[S2′]

ρ � 〈abs(x, t), τ 〉 → 〈clo(x, t, ρ), τ 〉

ρ � 〈t1, τ 〉 → 〈t′1, a′〉
[S3′]

ρ � 〈app(t1, t2), τ 〉 → 〈app(t′1, t2), a′〉
ρ � 〈t2, τ 〉 → 〈t′2, a′〉

[S4′]
ρ � 〈app(v1, t2), τ 〉 → 〈app(v1, t′2), a′〉

ρ′[x �→ v] � 〈t, τ 〉 → 〈t′, a′〉
[S5′]

ρ � 〈app(clo(x, t, ρ′), v), τ 〉 → 〈app(clo(x, t′, ρ′), v), a′〉

[S6′]
ρ � 〈app(clo(x, v′, ρ′), v), τ 〉 → 〈v′, τ 〉

Here, τ indicates that no exception is being thrown. By matching on the excep-
tion state for each transition at the top-level of our LTTS, we can decide whether
evaluation should continue (in case of a τ state), or whether to terminate (in
case of an exception).

2.4 Small-Step Modular SOS

Unlike pretty-big-step semantics, introducing abrupt termination in the small-
step SOS in previous subsection did not increase the number of rules. Unlike
big-step semantics, nor did introducing abrupt termination result in duplication
of premises. To introduce the exception state, we did, however, reformulate all of
our rules. If we use MSOS instead of ordinary SOS, we do not need to update our
rules at all. The MSOS rules corresponding to the small-step SOS rules [S1]–[S6]
in the previous subsection are:

ρ(x) = v
[M1]

var(x)
{env=ρ,−−}−−−−−−−−→ v

[M2]

abs(x, t)
{env=ρ,−−}−−−−−−−−→ clo(x, t, ρ)

t1
�−→ t′1 [M3]

app(t1, t2)
�−→ app(t′1, t2)

t2
�−→ t′2 [M4]

app(v1, t2)
�−→ app(v1, t′2)

t
{env=ρ′[x �→v],...}−−−−−−−−−−−−→ t′ [M5]

app(clo(x, t, ρ′), v)
{env=ρ,...}−−−−−−−→ app(clo(x, t′, ρ′), v)

[M6]

app(clo(x, v′, ρ′), v)
{−−}−−→ v′

The judgment t
�−→ t′ asserts that, under label , t reduces to t′. Labels in MSOS

are comprised of label components, such as env = ρ in the rules above, and
are denoted using Standard ML syntax for record patterns (Milner et al. 1997).
Whereas SOS requires auxiliary entities to be explicitly propagated, even for
rules that don’t explicitly use them, MSOS uses label variables to refer to label
components that are not explicitly needed. In the rules above, ‘. . .’ is an example
of such a variable. The ‘−−’ in the rules above is a variable with a special meaning
in MSOS: it says that no side-effects occur in the step. For example, if ‘−−’ refers

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 277

to, say, a pair of read-write store label components 〈sto= σ, sto′ = σ′〉, where
sto=σ is the store before the transition, and sto′=σ′ is the store resulting from
making the transition, the ‘−−’ variable requires that the state is not updated,
i.e., that σ = σ′.

While side-effects (or lack hereof) on auxiliary entities in SOS are explicitly
propagated, side-effects in MSOS are propagated by label composition. Formally,
a label is a morphism in a product category, the members of the product being
the label components. Propagating side-effects between transitions corresponds
to composition in the product category. ‘No side-effects’ (or unobservability)
is represented by identity morphisms. Recalling that composition in a product
category corresponds to taking the product of compositions for each of the corre-
sponding individual members of the product (Pierce 1991), composing two labels
corresponds to propagating the side-effects for each of the underlying label com-
ponents. We briefly recall the basic label component categories for MSOS and
their composition principles:

Read-only: modelled by a discrete category where objects only have identity
morphisms. This corresponds to environments which may be inspected but
not changed. Composition principle for read-only entities ro: ro ◦ ro = ro.

Read-write: modelled by a preorder category where morphisms between ob-
jects constitute a preorder. Corresponds to stores which may be inspected
and changed by a transition. Each morphism is a pair; e.g., 〈rw, rw′〉. Com-
position principle for read-write entities 〈rw, rw′〉: 〈rw′, rw′′〉 ◦ 〈rw, rw′〉 =
〈rw, rw′′〉.

Write-only: modelled by a free monoid considered as a category with a single
object. The morphisms are (possibly empty) sequences of observable actions
and signals. One of the identity arrows corresponds to the unobservable
action τ (the empty sequence); all others represent observable sequences
of actions. Composition principle for write-only entities wo′: wo′2 ◦ wo′1 =
wo′1 • wo′2 where • is the composition operator in the monoid

By convention, readable label components are labelled by unprimed indices, such
as env, and writable label components are labelled by primed indices, such as
sto′. For example, for the two labels 1 = {env = ρ, sto = σ, sto′ = σ} and
 2 = {env=ρ, sto=σ, sto′=σ′}, their composition 2 ◦ 1 is given by the label
{env=ρ, sto=σ, sto′=σ′}.

Following Mosses (2004), evaluation in MSOS corresponds to (possibly infi-
nite) sequences of transition steps in an underlying generalized transition system.
The generalized transition system for the MSOS given by rules [M1]–[M6] above
is a tuple 〈Term,L,→,Val〉, where L is a product category consisting of a single
discrete category, corresponding to the read-only label component env=ρ.

In a similar style to Leroy and Grall (2009), the iteration of this GTS can be
expressed by a relation −→∗ for which judgments take the form t

�−→∗ v, asserting
that term t evaluates to value v under label . −→∗ is defined by the rules:

[MRefl]

v
{−−}−−−→∗ v

t
�1−→ t′ t′

�2−→∗ v [MTrans]

t
�2◦�1−−−→∗ v

278 C. Bach Poulsen and P.D. Mosses

To extend our semantics with exceptions, we extend the product category L
by a new read-write label component 〈exc=a, exc′=a′〉, where a ::= τ | exc(v).
There are several ways of inhibiting further evaluation after an exception state
is entered in MSOS. One is to follow the approach taken in our SOS rules and
explicitly modify our rules such that each transition only matches when exc=τ .
Another way, which does not require the modification of our transition rules, is to
update the evaluation rules [MRefl] and [MTrans] as we illustrate in Sect. 3.1.

Table 2. Required number of rules, premises, and rule modifications in order to express
abrupt termination. Rule modifications are counted by comparing with the correspond-
ing semantics without abrupt termination, where we count each reformulated existing
rule and each introduction of a new rule for previously defined constructs.

Variant (exceptions) Rules Premises Modifications

Big-step terms 7 ([B1]–[B7]) 10 3
states 6 7 3

Pretty-big-step terms 8 ([P1]–[P8]) 8 2
states 8 8 2

Small-step SOS terms 8 4 2
states 6 ([S1′]–[S6′]) 4 6

Small-step MSOS terms 8 4 2
states 6 ([M1]–[M6]) 4 0

Table 2 summarizes the effort required to specify and update our semantics.
From this, we can see that SOS with exception labels requires fewer rules and
premises to handle abrupt termination than big-step and pretty-big-step rules.
This is in part due to the fact that we followed Charguéraud (2013) in using
explicit exception terms rather than exception states. By refocusing our small-
step MSOS rules in Sect. 3.2, we demonstrate how to derive more concise pretty-
big-step rules based on small-step MSOS. Deriving pretty-big-step MSOS rules in
this fashion also reduces the need for intermediate terms and auxiliary predicates.

3 From Small-Step to Pretty-Big-Step Modular SOS

After introducing some preliminary requirements, we show how to derive pretty-
big-step rules from small-step rules by refocusing.

3.1 Preliminaries

To ensure the correctness of our derivation, we require that:

1. the small-step MSOS is syntax-directed; and
2. exception states are explicitly recognizable at the top-level of the semantics.

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 279

The first requirement ensures that derived pretty-big-step rules are syntax-
directed. The second ensures that abrupt termination is propagated correctly
in derived pretty-big-step rules.

Syntax-DirectedEvaluation. Following Charguéraud(2013), rules are syntax-
directed if the initial configuration (i.e., the conclusion source term) of each rule is
distinct from all other rules. In MSOS rules, an initial configuration consist of the
initial (conclusion source) term together with the readable label components in the
conclusion. The small-step MSOS rules from the previous section are not syntax-
directed: e.g., for some value v and term t, app(v, t) matches the conclusions of
both [M3] and [M4]. Rather than introducing intermediate terms, like in Sect. 2.2,
we modify the abstract syntax to distinguish terms and values:

Val � v ::= n | clo(x, e, ρ) n ∈ N x ∈ Var

Term � t ::= var(x) | app(e, e) | abs(x, e)

Expr � e ::= term(t) | val(v)

Using this abstract syntax, values are no longer instances of terms. However,
terms and values are both instances of expressions in Expr . To avoid the tedium
of writing out the constructor names term and val each time we need them, we
will leave them implicit, like Charguéraud (2013), and simply write t instead of
term(t), and v instead of val(v). We revise our relations and rules from Sect. 2.4
to reflect the updated abstract syntax:

[ERefl]

v
{−−}−−−→∗ v

t
�1−→ e e

�2−→∗ v [ETrans]

t
�2◦�1−−−→∗ v

e
�−→∗ e t

�−→ e

ρ(x) = v
[E1]

var(x)
{env=ρ,−−}−−−−−−−−→ v

[E2]

abs(x, e)
{env=ρ,−−}−−−−−−−−→ clo(x, e, ρ)

t1
�−→ e1 [E3]

app(t1, e2)
�−→ app(e1, e2)

t2
�−→ e2 [E4]

app(v1, t2)
�−→ app(v1, e2)

t
{env=ρ′[x �→v],...}−−−−−−−−−−−−→ e [E5]

app(clo(x, t, ρ′), v)
{env=ρ,...}−−−−−−−→ app(clo(x, e, ρ′), v)

[E6]

app(clo(x, v′, ρ′), v)
{−−}−−→ v′

These rules are syntax-directed: app(v, t) only matches the conclusion of [E4].

Exception State Recognition. Consider the extension of our language by a
throw(v) construct for throwing exceptions:

t ::= ... | throw(v) v ::= ... | unit

[E7]

throw(v)
{exc=τ,exc′=exc(v),−−}−−−−−−−−−−−−−−−−→ unit

We expect evaluation of the term app(abs(x, var(x)), throw(42)) to abruptly ter-
minate after reducing throw(42). However, using [ETrans] as defined above,

280 C. Bach Poulsen and P.D. Mosses

this is not what happens. First, abs(x, var(x)) is evaluated to the closure
clo(x, var(x), ∅), where ∅ is the empty environment. The next step throws the
exception, giving the subject term app(clo(x, var(x), ∅), unit) and label {exc =
τ, exc′ = exc(42), . . .}. Rather than abruptly terminate at this point, the excep-
tion is forward propagated by label composition, whereafter evaluation of the
subject term app(clo(x, unit, ∅), unit) and label {exc = exc(42), exc′ = a, . . .}
continues. We update our evaluation rules to terminate when exc=exc(v):

a ::= τ | exc(v)

t
{exc=τ,exc′=a,X1}−−−−−−−−−−−−−→ e e

�2−→∗ e′ [Trans]

t
�2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→∗ e′

[Exc]

e
{exc=exc(v),exc′=exc(v),−−}−−−−−−−−−−−−−−−−−−−→∗ e

By the definition of label composition, the conclusion of the first rule only
matches transitions with exc = τ , since the result of composing an arbitrary
label with {exc= τ, exc′=a,X1} is a label with exc= τ . The initial configura-
tions for [Trans] and [Exc] are distinct and hence syntax-directed.

Evaluating the subject term app(clo(x, var(x), ∅), throw(42)) under [Trans]
and [Exc] changes the exception state from τ to exc(42), after which only
[Exc] matches the rule. Evaluation therefore abruptly terminates with label
{exc=τ, exc′=exc(42), . . .} and term app(clo(x, var(x), ∅), unit).

It is equally straightforward to extend our language with a catch construct
for catching and handling exceptions. We give a syntax-directed definition by
introducing an eq(e, e) construct for checking syntactic equality for values and
an if(e, e, e) construct for checking the outcome of the exc′ label component:

t ::= ... | if(e, e, e) | eq(e, e) | catch(e, e) v ::= ... | true | false | a

t
�−→ e [E8]

if(t, e1, e2)
�−→ if(e, e1, e2)

[E9]

if(true, e1, e2)
{−−}−−−→ e1

[E10]

if(false, e1, e2)
{−−}−−−→ e2

t1
�−→ e1 [E11]

eq(t1, e2)
�−→ eq(e1, e2)

t2
�−→ e2 [E12]

eq(v1, t2)
�−→ eq(v1, e2)

v1 = v2 [E13]

eq(v1, v2)
{−−}−−−→ true

v1 �= v2
[E14]

eq(v1, v2)
{−−}−−−→ false

[E15]

catch(v1, e2)
{−−}−−−→ v1

t1
{exc=τ,exc′=a,X}−−−−−−−−−−−−→ e1 [E16]

catch(t1, e2)
{exc=τ,exc′=τ,X}−−−−−−−−−−−−→ if(eq(a, τ), catch(e1, e2), app(e2, a))

The resulting semantics is syntax-directed and explicitly recognizes abrupt ter-
mination at the top-level.

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 281

3.2 Deriving Pretty-Big-Step Rules by Refocusing

Following our previous work (Bach Poulsen and Mosses 2014), refocusing a small-
step MSOS involves extending the MSOS evaluation rules from previous section
by a refocusing rule. Renaming [ERefl] to [Refl], the evaluation rules extended
by the [Refocus] rule are:

[Refl]

v
{−−}−−−→∗ v

t
{exc=τ,exc′=a,X1}−−−−−−−−−−−−−→ e e

�2−→∗ e′ [Trans]

t
�2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→∗ e′

[Exc]

e
{exc=exc(v),exc′=exc(v),−−}−−−−−−−−−−−−−−−−−−−→∗ e

t
�−→∗ e [Refocus]

t
�−→ e

Introducing the [Refocus] rule allows evaluation to occur inside derivation trees,
as opposed to always at the top-level. However, it also breaks syntax-direction:
the initial configuration of [Refocus] matches that of every other transition rule.
To get the effect of refocusing while preserving syntax-direction, we unfold the
refocusing rule and replace our transition rules by the derived rules corresponding
to the partial derivation for each transition rule [r]:

P1 · · · Pn [r]

t
{exc=τ,exc′=a,X1}−−−−−−−−−−−−−→ e e

�2−→∗ e′ [Trans]

t
�2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→∗ e′ [Refocus]

t
�2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→ e′

∼ P1 · · · Pn e
�2−→∗ e′

t
�2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→ e′

Noticing that we have to propagate the label components exc=τ, exc′=a many
times, we introduce the notation ‖X‖ for abbreviating {exc=τ , exc′=a,X}.

Returning to our running example, refocusing the [E3] rule from Sect. 3.1
Gives the following partial derivation and derived (refocused) rule [ER3]:

t1
‖X1‖−−−→ e1 [E3]

app(t1, e2)
‖X1‖−−−→ app(e1, e2) app(e1, e2)

�2−→∗ e′
[Trans]

app(t1, e2)
�2◦‖X1‖−−−−−→∗ e′

[Refocus]

app(t1, e2)
�2◦‖X1‖−−−−−→ e′

∼ t1
‖X1‖−−−→ e1 app(e1, e2)

�2−→∗ e′
[ER3]

app(t1, e2)
�2◦‖X1‖−−−−−→ e′

282 C. Bach Poulsen and P.D. Mosses

The refocused rules corresponding to [E1]–[E7] are:

ρ(x) = v
[ER1]

var(x)
‖env=ρ,−−‖−−−−−−−−→ v

[ER2]

abs(x, e)
‖env=ρ,−−‖−−−−−−−−→ clo(x, e, ρ)

t1
‖X1‖−−−→ e1 app(e1, e2)

�2−→∗ e′
[ER3]

app(t1, e2)
�2◦‖X1‖−−−−−→ e′

t2
‖X1‖−−−→ e2 app(v1, e2)

�2−→∗ e′
[ER4]

app(v1, t2)
�2◦‖X1‖−−−−−→ e′

t
‖env=ρ′[x �→v],X1‖−−−−−−−−−−−−→ e app(clo(x, e, ρ′), v)

�2−→∗ e′
[ER5]

app(clo(x, t, ρ′), v)
�2◦‖env=ρ,X1‖−−−−−−−−−−→ e′

[ER6]

app(clo(x, v′, ρ′), v)
‖−−‖−−→ v′

[ER7]

throw(v)
{exc=τ,exc′=exc(v),−−}−−−−−−−−−−−−−−−−→ unit

Our refocused rules are very closely related to pretty-big-step rules. Like pretty-
big-step rules, each refocused rule:

– relates a term to a value or an exception state;
– reduces a single subterm at a time; and
– is syntax-directed.

A significant difference is that our refocused rules mutually define both −→∗ and
→. However, we can observe that each ordinary transition step (→) either maps
a term to an exception state, or maps a term to a value. From this, it follows
that the top-level application of [Trans] has the form:

t
‖X1‖−−−→ e

[R]

e
�2−→∗ e′ [Trans]

t
�2◦‖X1‖−−−−−→∗ e′

Either e is going to be a value v, in which case [R]=[Refl]. Otherwise, for the
label 2 = {exc = a, exc′ = a′, . . .} it is the case that a �= τ , whereby [R]=[Exc].
Therefore, in a semantics with refocused rules, all applications of [Trans] match
the derived rule:

t
‖X‖−−−→ e [TTrans]

t
‖X‖−−−→∗ e

By applications of [Refocus] and [TTrans], each occurrence of an ordinary
step (→) can be replaced by a transitive step (−→∗). Replacing ordinary steps
gives the MSOS pretty-big-step rules in Table 3. These rules describe the same
language as the pretty-big-step rules given in (Charguéraud 2013, Fig. 2). In
contrast to Charguéraud’s pretty-big-step semantics, we have not introduced
any intermediate terms or auxiliary predicates.

The correctness of the derivations presented in this section have been tested by
using the MSOS Derivation Tool (Bach Poulsen and Mosses 2014) to generate
and compare executable interpreters for the small-step semantics, its refocused,
and its pretty-big-step counterpart. The generated interpreters and test suite are
available online3. Sections 5 and 6 suggest future directions for a more formal
treatment of correctness.
3 www.plancomps.org/bachpoulsen2014a

http://www.plancomps.org/bachpoulsen2014a

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 283

Table 3. Derived pretty-big-step rules for [E1]–[E16]

[EPRefl]

v
{−−}−−−→∗ v

[EPExc]

e
{exc=exc(v),exc′=exc(v),−−}−−−−−−−−−−−−−−−−−−−→∗ e

ρ(x) = v
[EP1]

var(x)
‖env=ρ,−−‖−−−−−−−−→∗ v

[EP2]

abs(x, e)
‖env=ρ,−−‖−−−−−−−−→∗ clo(x, e, ρ)

t1
‖X1‖−−−→∗ e1 app(e1, e2)

�2−→∗ e′
[EP3]

app(t1, e2)
�2◦‖X1‖−−−−−→∗ e′

t2
‖X1‖−−−→∗ e2 app(v1, e2)

�2−→∗ e′x
[EP4]

app(v1, t2)
�2◦‖X1‖−−−−−→∗ e′

t
‖env=ρ′[x �→v],X1‖−−−−−−−−−−−−→∗ e app(clo(x, e, ρ′), v)

�2−→∗ e′
[EP5]

app(clo(x, t, ρ′), v)
�2◦‖env=ρ,X1‖−−−−−−−−−−→∗ e′

[EP6]

app(clo(x, v′, ρ′), v)
‖−−‖−−→∗ v′

[EP7]

throw(v)
{exc=τ,exc′=exc(v),−−}−−−−−−−−−−−−−−−−→∗ unit

t
‖X1‖−−−→∗ e if(e, e1, e2)

�2−→∗ e′
[EP8]

if(t, e1, e2)
�2◦‖X1‖−−−−−→∗ e′

e1
�−→∗ e′

[EP9]
if(true, e1, e2)

�−→∗ e′

e2
�−→∗ e′

[EP10]
if(false, e1, e2)

�−→∗ e′
t1

‖X1‖−−−→∗ e1 eq(e1, e2)
�2−→∗ e′

[EP11]

eq(t1, e2)
�2◦‖X1‖−−−−−→∗ e′

t2
‖X1‖−−−→∗ e2 eq(v1, e2)

�2−→∗ e′
[EP12]

eq(v1, t2)
�2◦‖X1‖−−−−−→∗ e′

v1 = v2 [EP13]

eq(v1, v2)
{−−}−−−→∗ true

v1 �= v2
[EP14]

eq(v1, v2)
{−−}−−−→∗ false

[EP15]

catch(v1, e2)
{−−}−−−→∗ v1

t1
‖exc=τ,exc′=a,X1‖−−−−−−−−−−−−−→∗ e1 if(eq(a, τ), catch(e1, e2), app(e2, a))

�2−→∗ e′
[EP16]

catch(t1, e2)
�2◦‖exc=τ,exc′=τ,X1‖−−−−−−−−−−−−−−−→ e′

4 Scaling Up to Real Languages

Our running example in this paper has been the λ-calculus with exceptions. This
section illustrates how the derivation in Sect. 3.2 scales up to other language
features.

4.1 Side-Effects

We have already shown how to derive pretty-big-step rules for semantics with
exceptions. Other kinds of abrupt termination can be handled in a similar way.
Small-step MSOS rules with output channels (such as printing) and mutable

284 C. Bach Poulsen and P.D. Mosses

storage impose no additional constraints when deriving pretty-big-step rules by
refocusing. To demonstrate, we extend our language with printing and ML-style
references. To handle these features, we introduce two new label components: a
read-write label component 〈sto=σ, sto′ =σ〉, where σ : Loc → Val are stores
mapping locations (such as memory addresses) to values; and a write-only label
component out′ = [v] containing a (possibly empty) list of printed values. The
extended language is:

t ::= ... | print(e) | ref(e) | deref(e) | assign(e, e) v ::= ... | l l ∈ Loc

t
�−→ e [E17]

print(t) �−→ print(e)
[E18]

print(v)
{out′=[v],−−}−−−−−−−−−→ unit

t
�−→ e [E19]

ref(t) �−→ ref(e)

l �∈ dom(σ)
[E20]

ref(v)
{sto=σ,sto′=σ[l !→v],−−}−−−−−−−−−−−−−−−−→ l

t
�−→ e [E21]

deref(t) �−→ deref(e)

σ(l) = v
[E22]

deref(l)
{sto=σ,sto′=σ,−−}−−−−−−−−−−−−→ v

t1
�−→ e1 [E23]

assign(t1, e2)
�−→ assign(e1, e2)

t2
�−→ e2 [E24]

assign(l, t2)
�−→ assign(l, e2)

[E25]

assign(l, v)
{sto=σ,sto′=σ[l !→v],−−}−−−−−−−−−−−−−−−−→ v

No modification of our evaluation rules is necessary. These syntax-directed rules
are straightforwardly refocused and unfolded into pretty-big-step rules as de-
scribed in Sect. 3.2.

4.2 C-Style for-Loops

Following Charguéraud (2013), we illustrate how to express a C-style for-loop
construct. We recall Charguéraud’s pretty-big-step rules, and compare with
a corresponding small-step formulation and its derived pretty-big-step MSOS
counterpart.

A C-style for-loop, for(e1, e2, e3), continually evaluates body e3 of a loop,
until the condition e1 no longer holds. Between each iteration of the for-loop,
incrementer e2 is evaluated. Charguéraud gives pretty-big-step rules that reflect
this as follows:

t ::= for(e, e, e) | v Intermediate � e ::= t | for(i, o, t, t, t) i ∈ {1, 2, 3}

b ::= v | exc(v) o ::= 〈b, σ〉 | div

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 285

〈t1, σ〉 ⇓ o1 〈for(1, o1, t1, t2, t3), σ〉 ⇓ o

〈for(t1, t2, t3), σ〉 ⇓ o 〈for(1, 〈false, σ〉, t1, t2, t3), σ′〉 ⇓ 〈unit, σ〉
〈t3, σ〉 ⇓ o3 〈for(2, o3, t1, t2, t3), σ〉 ⇓ o

〈for(1, 〈true, σ〉, t1, t2, t3), σ′〉 ⇓ o

〈t2, σ〉 ⇓ o2 〈for(3, o2, t1, t2, t3), σ〉 ⇓ o

〈for(2, 〈unit, σ〉, t1, t2, t3), σ′〉 ⇓ o

〈for(t1, t2, t3), σ〉 ⇓ o

〈for(3, 〈unit, σ〉, t1, t2, t3), σ′〉 ⇓ o

abort(o)
〈for(i, o, t1, t2, t3), σ〉 ⇓ o

abort(exc(v))
In small-step MSOS, a corresponding specification of for-loops is in terms of
the conditional if(e, e, e) defined in Sect. 3.1 rules [E8]–[E10], and sequential
composition seq(e, e):

t ::= ... | seq(e, e) | for(e, e, e)

t1
�−→ e1 [E26]

seq(t1, e2)
�−→ seq(e1, e2)

[E27]

seq(v1, e2)
{−−}−−−→ e2

[E28]

for(e1, e2, e3)
{−−}−−−→ if(e1, seq(e3, seq(e2, for(e1, e2, e3))), unit)

Deriving the pretty-big-step MSOS rules gives:

t1
‖X1‖−−−→∗ e1 seq(e1, e2)

�2−→∗ e′
[EP26]

seq(t1, e2)
�−→∗ e′

e2
‖X1‖−−−→∗ e′

[EP27]

seq(v1, e2)
‖X1‖−−−→∗ e′

if(e1, seq(e3, seq(e2, for(e1, e2, e3))), unit)
‖X‖−−−→∗ e

[EP28]

for(e1, e2, e3)
‖X‖−−−→∗ e

These pretty-big-step rules correspond to Charguéraud’s rules. In fact, we can
derive Charguéraud’s pretty-big-step rules directly from these rules. Replacing
a rule by the derived rule(s) corresponding to all possible partial derivations
is trivially correct. We can compress transitions, similar to (Danvy 2008b), by
unfolding the rightmost ‘continuation’ premise in pretty-big-step rules. This cor-
responds to striding as described in (Bach Poulsen and Mosses 2014). Transition
compressing [EP28] once gives:

e1
‖X1‖−−−→∗ e′1 if(e′1, seq(e3, seq(e2, for(e1, e2, e3))), unit)

�2−→∗ e
[EP28′]

for(e1, e2, e3)
�2◦‖X1‖−−−−−→∗ e

[EP29]

for(false, e2, e3)
{−−}−−−→∗ unit

seq(e3, seq(e2, for(e1, e2, e3)))
�−→∗ e

[EP30]

for(true, e2, e3)
�−→∗ e

If we continue doing this, we get a set of classic big-step rules. Decomposing the
derived big-step rules into pretty-big-step rules, as described by Charguéraud
(2013), we obtain a set of rules that coincides with the pretty-big-step semantics
for C-style for loops given in the beginning of this subsection.

286 C. Bach Poulsen and P.D. Mosses

4.3 Strictness Annotations

Inspired by the K-framework (Roşu and Şerbănuţă 2010), we can use strictness
annotations to automatically generate congruence rules. For example, for appli-
cation in the λ-calculus:

t ::= ...
| app(e, e) [seq-strict]
| ...

The seq-strict annotation automatically generates congruence rules for evaluat-
ing each sub-term fully in left-to-right order. Recall the original rules defining
app(e, e):

t1
�−→ e1 [E3]

app(t1, e2)
�−→ app(e1, e2)

t2
�−→ e2 [E4]

app(v1, t2)
�−→ app(v1, e2)

t
{env=ρ′[x �→v],...}−−−−−−−−−−−−→ e [E5]

app(clo(x, t, ρ′), v)
{env=ρ,...}−−−−−−−→ app(clo(x, e, ρ′), v)

[E6]

app(clo(x, v′, ρ′), v)
{−−}−−→ v′

We can omit [E3] and [E4], since these congruence rules correspond exactly to
the rules generated by seq-strict.

To generate congruence rules for subterm positions n1, n2, . . . numbered in the
order they should be evaluated, we use the annotation strict(n1 n2 . . .). E.g.,
if(e, e, e) can be specified as:

t ::= ...
| if(e, e, e) [strict(1)]
| ...

[E9]

if(true, e1, e2)
{−−}−−−→ e1

[E10]

if(false, e1, e2)
{−−}−−−→ e2

This annotation automatically generates rule [E8] from Sect. 3.1.

Table 4. Comparison of number of rules and premises for strictness annotated small-
step, ordinary small-step, and derived pretty-big-step MSOS

Variant
Explicit
rules Premises

Generated
rules

Generated
premises

Strictness-annotated small-
step MSOS

20 9 31 20

Small-step MSOS 31 20 31 20

Pretty-big-step MSOS 30 35 30 35

Table 4 summarizes how the use of strictness annotations reduces the number
of explicitly specified rules by a third. As expected, small-step specifications are

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 287

more concise than their pretty-big-step counterparts. By deriving the pretty-
big-step rules automatically as described in this paper, we get the best of both
worlds: a concise small-step specification format, and derived pretty-big-step
rules that can be used for (pretty-)big-step reasoning.

5 Related Work

As illustrated throughout this paper, specifications in small-step MSOS require
less effort to specify than corresponding big-step and pretty-big-step specifi-
cations. By automatic derivation, it is possible to apply both small-step and
(pretty-)big-step reasoning to the same semantics. Many other authors have
considered the relationship between small-step and big-step semantics.

Danvy et al. (2004; 2008a; 2008b) have explored this relationship by inter-
deriving functional programs implementing many different semantic styles by
provably correct transformations. Refocusing (Danvy and Nielsen 2004) was
originally formulated for reduction semantics (Felleisen and Hieb 1992), but is
also applicable to the K-framework, whose heating and cooling rules closely re-
semble reduction contexts (Roşu and Şerbănuţă 2010).

Recently, Ciobâcă (2013) described a means of deriving big-step semantics
automatically from small-step semantics. His transformation essentially corre-
sponds to the derivation we describe here. Unlike this work, his transformation
does not describe the intermediate steps involved in the derivation, and is de-
fined for substitution-based small-step semantics, which are transformed into
substitution-based classic big-step rules. The correctness of Ciobâcă’s transfor-
mation is based on notions of star-soundness and star-completeness. Comparing
with Leroy and Grall’s proof method for relating small-step and big-step se-
mantics, these notions coincide with their proof method (Leroy and Grall 2009,
Theorem 9)4. Star-soundness corresponds to the helper lemmas required for the
“easy induction” used by Leroy and Grall, which holds for semicompositional
semantics in the sense of Jones (2004). Similarly, star-completeness says that a
big-step can be decomposed into a small-step followed by a big-step on the re-
sulting term, corresponding to the second step of the “only if” part of Leroy and
Grall’s proof. The decomposition of a big-step into a small-step followed by a
big-step is correct when the semantics is either confluent or deterministic, which
corresponds to the unique decomposition requirement of refocusing in reduction
semantics, and to Ciobâcă’s requirement that the semantics is confluent.

We have taken a syntactic approach to deriving pretty-big-step semantics by
describing each of the intermediate steps involved in the derivation. To ensure
correct derivations, we required (Sect. 3.1) that:

1. the small-step semantics is syntax-directed; and
2. exception states are explicitly recognizable at the top-level of the semantics.

By insisting that our semantics is syntax-directed we avoid the issue of having
to prove unique decomposition, as is required for refocusing in reduction se-
mantics (Xiao et al. 2001). Syntax-direction implies determinism, which in turn
4 See also their Coq proofs: http://gallium.inria.fr/˜xleroy/coindsem/

http://gallium.inria.fr/~xleroy/coindsem/

288 C. Bach Poulsen and P.D. Mosses

implies unique decomposition. Whereas Ciobâcă and Danvy and Nielsen prove
their transformations correct, we have so far relied on testing by generating exe-
cutable interpreters using the MSOS Derivation Tool (Bach Poulsen and Mosses
2014) and comparing their outputs for example programs.

6 Conclusion and Future Directions

Small-step MSOS requires less effort than big-step and pretty-big-step rules to
specify. We have shown that pretty-big-step semantics is within the range of
refocusing, and that it is therefore possible to automatically derive pretty-big-
step rules. In our examples, the derived pretty-big-step rules do not require
auxiliary predicates, and are more concise than the pretty-big-step rules one
would specify manually.

Future work includes exploring whether all pretty-big-step semantics are
derivable by refocusing, and whether refocusing always yields a pretty-big-step
semantics. A first step towards answering these questions is to mechanically
verify, using, e.g., Coq, the correctness criteria for the derivation presented
in Sect. 3.25. Existing work by Leroy and Grall (2009), Ciobâcă (2013), and
Sieczkowski et al. (2011) are notable sources of reference for aiding such mech-
anization.

Acknowledgements. We would like to thank Martin Churchill, Paolo Torrini,
and the anonymous referees for their useful comments. This work was supported
by an EPSRC grant (EP/I032495/1) to Swansea University in connection with
the PLanCompS project (www.plancomps.org).

References

Bach Poulsen, C., Mosses, P.D.: Generating specialized interpreters for modular struc-
tural operational semantics. In: LOPSTR 2013. LNCS, Springer, Heidelberg (to ap-
pear, 2014)

Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013)

Ciobâcă, Ş.: From small-step semantics to big-step semantics, automatically. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 347–361. Springer,
Heidelberg (2013)

Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpretations.
In: POPL 1992, pp. 83–94. ACM (1992)

Danvy, O.: Defunctionalized interpreters for programming languages. In: Hook, J.,
Thiemann, P. (eds.) ICFP 2008, pp. 131–142. ACM (2008a)

Danvy, O.: From reduction-based to reduction-free normalization. In: Koopman, P.,
Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 66–164. Springer,
Heidelberg (2009)

5 Preliminary work on a Coq mechanization of the correctness proofs for the deriva-
tions in Sect. 3 and 4 is available online: www.plancomps.org/bachpoulsen2014a

http://www.plancomps.org
http://www.plancomps.org/bachpoulsen2014a

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 289

Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. BRICS Research Series
RS-04-26, Dept. of Comp. Sci., Aarhus University (2004)

Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control
and state. Theor. Comput. Sci. 103(2), 235–271 (1992)

Jones, N.D.: Transformation by interpreter specialisation. Sci. Comput. Program.
52(1-3), 307–339 (2004)

Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G.
(eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput. 207(2),
284–304 (2009)

Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge (1997)

Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program. 60-
61, 195–228 (2004)

Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press (1991)
Pierce, B.C.: Types and programming languages. MIT Press (2002)
Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Pro-

gram. 60-61, 17–139 (2004)
Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log. Algebr.

Program. 79(6), 397–434 (2010)
Sieczkowski, F., Biernacka, M., Biernacki, D.: Automating derivations of abstract ma-

chines from reduction semantics. In: Hage, J., Morazán, M.T. (eds.) IFL 2011. LNCS,
vol. 6647, pp. 72–88. Springer, Heidelberg (2011)

Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput. 115(1),
38–94 (1994)

Xiao, Y., Sabry, A., Ariola, Z.M.: From syntactic theories to interpreters: Automating
the proof of unique decomposition. Higher-Order and Symbolic Computation 14(4),
387–409 (2001)

Communicating State Transition Systems
for Fine-Grained Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute, Spain
{aleks.nanevski,ilya.sergey,german.delbianco}@imdea.org

2 LogicBlox, USA
ruy.leywild@logicblox.com

Abstract. We present a novel model of concurrent computations with shared
memory and provide a simple, yet powerful, logical framework for uniform Hoare-
style reasoning about partial correctness of coarse- and fine-grained concurrent
programs. The key idea is to specify arbitrary resource protocols as communicat-
ing state transition systems (STS) that describe valid states of a resource and the
transitions the resource is allowed to make, including transfer of heap ownership.

We demonstrate how reasoning in terms of communicating STS makes it easy
to crystallize behavioral invariants of a resource. We also provide entanglement
operators to build large systems from an arbitrary number of STS components,
by interconnecting their lines of communication. Furthermore, we show how the
classical rules from the Concurrent Separation Logic (CSL), such as scoped re-
source allocation, can be generalized to fine-grained resource management. This
allows us to give specifications as powerful as Rely-Guarantee, in a concise,
scoped way, and yet regain the compositionality of CSL-style resource manage-
ment. We proved the soundness of our logic with respect to the denotational se-
mantics of action trees (variation on Brookes’ action traces). We formalized the
logic as a shallow embedding in Coq and implemented a number of examples,
including a construction of coarse-grained CSL resources as a modular composi-
tion of various logical and semantic components.

1 Introduction

There are two main styles of program logics for shared-memory concurrency, customar-
ily divided according to the supported kind of granularity of program interference. Log-
ics for coarse-grained concurrency such as Concurrent Separation Logic (CSL) [12,14]
restrict the interference to critical sections only, but generally lead to more modular
specifications and simpler proofs of program correctness. Logics for fine-grained con-
currency, such as Rely-Guarantee (RG) [8] admit arbitrary interference, but their spec-
ifications have traditionally been more monolithic, as we shall illustrate. In this paper,
we identify the essential ingredients required for compositional specification of con-
current programs, and combine them in a novel way to reconcile the two approaches.
We present a semantic model and a logic that enables specification and reasoning about
fine-grained programs, but in the style of CSL. To describe our contribution more pre-
cisely, we first compare the relevant properties of CSL and RG.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 290–310, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Communicating State Transition Systems for Fine-Grained Concurrent Resources 291

CSL employs shared resources and associated resource invariants [13], to abstract
the interference between threads. A resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [2].

Γ � {p ∗ I} c {q ∗ I}
Γ, r : I � {p} with r do c {q} CRITSECCSL

Γ is a context of currently existing resources. The rule for parallel composition assumes
that forked threads don’t share any state beyond that of the resources in Γ, and may
divide the private state of the parent thread disjointly among the children.

Γ � {p1} c1 {q1} Γ � {p2} c2 {q2}
Γ � {p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2}

PARCSL

A private heap of a thread may be promoted into a freshly allocated shared resource in
a scoped manner by the following rule.

Γ, r : I � {p} c {q}
Γ � {p ∗ I} resource r in c {q ∗ I} RESOURCECSL

One may see from these rules that resources are abstractions that promote modularity.
In particular, one may verify a thread wrt. the smallest resource context required. By
context weakening, the introduction of new resources will not invalidate the existing
verification. Thread-local resources can be hidden from the environment by the RE-
SOURCECSL rule.

In RG, the interaction between threads is directly specified by the rule for parallel
composition.1

R ∨G2,G1 � {p} c1 {q1} R ∨G1,G2 � {p} c2 {q2}
R,G1 ∨G2 � {p} c1 ‖ c2 {q1 ∧ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more expressive than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state, the
transitions in RG treat the whole state as monolithically shared. Feng’s work on Local
Rely Guarantee (LRG) [5] has made first steps in improving RG in this respect.

1 In the presence of heaps, the rule is more complicated [6, 18], but we elide the issue here.

292 A. Nanevski et al.

1.1 Contributions

We propose that a logic for fine-grained concurrency can be based on a notion of a fine-
grained resource. Fine-grained resources serve as buildings blocks for program specifi-
cation, and generalize CSL-style coarse-grained resource management. A fine-grained
resource is specified by a resource invariant, as in CSL, but it also adds transitions in the
form of relations between resource states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant specifies the state space. We identify a num-
ber of properties that an STS has to satisfy to specify a fine-grained resource, and refer
to such STSs as concurroids. We refer to our generalization of CSL as Fine-grained
CSL (FCSL).

There are two main ideas that we build on in FCSL, and which separate FCSL from
LRG and other recent related work [4,15,17] (see Section 6 for details): (a) subjectivity
and (b) communication. Subjectivity [10] means that each state of a concurroid STS
describes not only the shared resource, but also two abstractions of it that represent the
views of the state by the thread, and by its environment, respectively. Subjectivity will
enable us to capture the idea of forking shuffle by a rule for parallel composition akin to
PARCSL (but with a somewhat generalized notion of separating conjunction (∗) [10]),
rather than in the monolithic style of PARRG.

To compositionally build large systems out of a number of smaller ones, we make
concurroids communicate. In addition to standard for STS internal transitions between
states, concurroids contain external transitions. These may be thought of as “wires”
whose one end is connected to a state in the STS, but whose other end is dangling,
representing either an “input” into or an “output” out of the STS. Concurroids can be
entangled, i.e., composed by interconnecting their dangling wires of opposite polar-
ity, where the interconnections serve to transfer heap ownership between concurroids.
Communication and entanglement endow FCSL with the compositionality of CSL. For
example, entanglement generalizes the notion of adding a resource to the context Γ in
RESOURCECSL. We also rely on entanglement to formulate a rule generalizing the
scoped resource allocation of RESOURCECSL. More precisely, our contributions are:

– We identify STSs with subjectively-shaped states (concurroids) and a number of
algebraic properties, as a natural model for scalable concurrency verification. We
show how communication enables composing larger STSs out of smaller ones.

– We present FCSL—a simple and expressive logic for fine-grained resources that
combines expressivity of RG with the compositional resource management of CSL.

– We illustrate FCSL by showing how to implement a coarse-grained resource of
CSL by a fine-grained resource of FCSL in which an explicit spin lock protects the
resource’s state. We also implemented examples such as ticketed locks, that go be-
yond coarse-grained CSL resources, and present them in the extended version [11].

– We implemented FCSL [11] as a shallow embedding within the type theory of the
Calculus of Inductive Constructions (i.e., Coq [1, 16]). Thus, FCSL naturally rec-
onciles with features such as higher-order functions, abstract predicates, modules
and functors. We formally instantiated the whole stack of abstractions: the semantic
model is formalized in Coq, FCSL is built on top of the semantic model, CSL is
built on top of FCSL, and then verified programs are built on top of CSL.

Communicating State Transition Systems for Fine-Grained Concurrent Resources 293

2 An Overview of Fine-Grained Resources

There are three different aspects along which fine-grained resources can be composed:
space (i.e., states), ownership, and time (i.e., transitions). In this section, we describe
how to represent these aspects in the assertion logic of FCSL.

Space. The heap belonging to a fine-grained resource,2 is explicitly identified by a
resource label. We use assertions in the “points-to” style of separation logic, to name
resources and identify their respective heaps. For example, the assertion

�1
j�→ h1 ∗ �2 j�→ h2

describes a state in which the heaps h1 and h2 are associated with the resources labeled
�1 and �2, respectively. The connective ∗ ensures that �1 and �2 are distinct labels, and
that h1 and h2 are disjoint heaps. The superscript j indicates that the heaps are joint
(shared), i.e., can be accessed by any thread, even though they are owned by the re-
sources �1 and �2, respectively.

The heaps h1 and h2 are not described by means of points-to assertions, but are built
using operators for singleton heaps x � v and disjoint union ·∪. For example, the heap of
the resource lock, which explicitly encodes a coarse-grained resource with the resource
invariant I [12] may be described by the assertion

lock
j�→ ((lk � b) ·∪ h) ∧ if b then h = empty else I h. (1)

The assertion exposes the fact that the heap owned by lock contains a boolean pointer lk
encoding a lock that protects the heap h. The conditional conjunct is a pure (i.e., label-
free) assertion, which describes an aspect of the ownership transfer protocol of CSL.
When the lock is not taken (i.e. b = false), the heap h satisfies the resource invariant.
When the lock is taken, the heap is transfered to the private ownership of the locking
thread, so h equals the empty heap, but lk remains in the ownership of lock.

Ownership. Data in FCSL may be owned by a resource, as illustrated above, or by
individual threads. The thread-owned data, however, is also associated with a resource,
which it refines with thread-relative information. For example, the resource lock owns a
pointer lk which operationally implements a lock. However, just knowing that the lock
is taken or not is not enough for reasoning purposes; we need to know which thread
has taken it, if any. Thus, we associate with each thread an extra bit of lock-related
information, Own or���Own, which will identify the lock-owning thread as follows.

Following the idea of subjectivity [10], FCSL assertions are interpreted in a thread-
relative way. We use self to name the interpreting thread, and other to name the combi-
nation of all other threads running concurrently with self (i.e., the environment of self).

We use two different assertions to describe thread-relative views: �
s�→ v and �

o�→ v. The
first is true in the self thread, if self ’s view of the resource � is v. The second is true in

2 Or just resource for short. Later on, we explicitly identify CSL resources as coarse-grained.

294 A. Nanevski et al.

the self thread, if other’s view of the resource � is v. In this sense, the �
j�→ v describes

the resource’s view of the data. In the case of lock, the thread that acquired the lock will
validate the assertion:

lock
s�→ Own ∧ lock

j�→ (lk � true),

while the symmetric assertion holds in all other threads at the same moment of time:

lock
j�→ (lk � true) ∧ lock

o�→ Own.

In general, the values of the self and other views for any resource are elements of
some resource-specific partial commutative monoid (PCM) [10]. A PCM is a set with
a commutative and associative operation • with a unit element. • combines the self
and other views into a view of the parallel composition of self and other threads. The
• operation is commutative and associative because parallel composition of threads is
commutative and associative, and the unit element models the view of the idle thread.
Partiality models impossible thread combinations. For example, the elements of O =

{���Own,Own} represent thread-relative views of the lock lk. O forms a PCM under the
operation defined as x •���Own = ���Own • x = x, with Own • Own undefined. The unit
element is���Own, and the undefinedness of the last combination captures that two threads
can’t simultaneously own the lock. Notice that heaps form a PCM under disjoint union,
with the empty heap as unit. Thus, they too obey the discipline required of the general
self and other components.

Anticipating lock-related examples in Section 3, we combine thread-relative views
of the lock with thread-relative views of the lock-protected heap h. We parametrize the
resource lock by a PCM U, which the user may choose depending on the application.

Then we use assertions over pairs, such as lock
s�→ (mS, aS) and lock

o�→ (mO, aO), to
express that mS,mO ∈ O are views of the lock lk, and aS, aO ∈ U are views of the
heap h. The following assertion illustrates how the different FCSL primitives combine.
It generalizes (1) and defines the valid states of the resource lock.

lock
s�→ (mS, aS) ∧ lock

o�→ (mO, aO) ∧ lock
j�→ ((lk � b) ·∪ h) ∧

if b then h = empty ∧mS •mO = Own else I (aS • aO) h ∧mS •mO =��Own
(2)

The assertion states that if the lock is taken (b = true) then the heap h is given away,
otherwise it satisfies the resource invariant I. In either case, the thread-relative views
mS, mO, aS and aO are consistent with the resource’s views of lk and h. Indeed, notice
how mS, mO and aS, aO are first •-joined (by the •-operations of O and U, respectively)
and then related to b and h; the former implicitly by the conditional, the latter explicitly,
by the resource invariant I, which is now parametrized by aS • aO.

Private heaps. In addition to a private view of a resource, a thread may own a pri-
vate heap as well. We describe such thread-private heaps by means of the same thread-
relative assertions, but with a different resource label. We consider a dedicated resource
for private heaps, with a dedicated label priv. Then we can write, say, priv

s�→ x � 4
to describe a heap consisting of a pointer x private to the self thread. By definition,

priv
j�→ empty, i.e., the joint heap of the priv resource is always empty.

Communicating State Transition Systems for Fine-Grained Concurrent Resources 295

Time. Fine-grained reasoning requires characterization of the possible changes the
threads can make to the state. We encode such a characterization as relations between
states of possibly multiple resources (i.e., using multiple labels). For example, coarse-
grained resources require that upon successful acquisition, the resource’s heap is trans-
fered into the private ownership of the acquiring thread. In our fine-grained encoding,
the transition can be represented as follows:

priv
s�→ hS ∗ (lock

s�→ (��Own, aS) ∧ lock
j�→ ((lk � false) ·∪ h))�

priv
s�→ (hS ·∪ h) ∗ (lock

s�→ (Own, aS) ∧ lock
j�→ (lk � true))

(3)

This transition preserves heap footprints, in the sense that the domain of the combined
heaps in the source of the transition equals the domain in the target of the transition. We
refer to such transitions as internal. Footprint preservation is an essential property, as it
facilitates composing and framing transitions. In particular, adding additional labels and
heaps with non-overlapping footprint to a source of an internal transition is guaranteed
to produce non-overlapping footprints in the target of the transition as well.

We also consider external transitions that can acquire and release heaps. We use
external transitions to build internal ones. For example, the above internal transition
over priv and lock resources can be obtained as an interconnection (to be defined in
Section 4) of two external transitions, each operating on an individual label.

priv
s�→ hS

+h
� priv

s�→ (hS ·∪ h)

lock
s�→ (��Own, aS) ∧ lock

j�→ ((lk � false) ·∪ h)
−h
� lock

s�→ (Own, aS) ∧ lock
j�→ lk � true

(4)
The transition over priv takes a heap h as an input and attaches it to the self heap.
The transition over lock gives the heap h as an output. When interconnected, the two
transitions exchange the ownership of h between the lock and priv, producing (3).

A concurroid is an STS that formally represents a collection of resources. Each state
of the STS contains a number of components, identified by the labels naming the in-
dividual resources. Each concurroid contains one internal transition, and an arbitrary
number of external ones. The internal transition describes how threads specified by the
concurroid may change their state in a single step. The external transitions are the “dan-
gling wires”, which provide means for composing different concurroids by entangling
them, i.e., interconnecting (some or all of) their dually polarized external transitions, to
obtain a larger concurroid.

For example, if P is the concurroid for private heaps (containing a single label priv),
and L{lock,lk,I} is the concurroid for a lock (with a single label lock, lock pointer lk and
protected heap described by the coarse-grained resource invariant I), we could con-
struct the entangled concurroid CSL{lock,lk,I} = P � L{lock,lk,I} that captures the heap
ownership-exchange protocol (3) of CSL for programs with one coarse-grained re-
source.3 The entanglement can be iterated, to obtain an STS for two coarse-grained
resources CSL{lock,lk,I},{lock′,lk′,I′} = CSL{lock,lk,I} � L{lock′ ,lk′,I′}, and so on. In this way, con-
curroids generalize the notion of resource context from the RESOURCECSL rule, with
entanglement modeling the addition of new resources to the context.

3 The formal definition of the � is postponed until Section 4.

296 A. Nanevski et al.

Fig. 1. Semantics of selected FCSL assertions

w |= � iff always

w |= � s�→ v iff valid w, and w. s = � � v

w |= � j�→ h iff valid w, and w. j = � � h

w |= � o�→ v iff valid w, and w. o = � � v
w |= p ∧ q iff w |= p and w |= q
w |= p ∗ q iff valid w, and w = w1 ·∪ w2, and w1 |= p and w2 |= q
w |= p−−∗ q iff for every w1, valid w ·∪ w1 and w1 |= p implies w ·∪ w1 |= q
w |= p � q iff valid w, and w. s = s1 ·∪ s2, and

[s1 | w. j | s2 ◦ w. o] |= p and [s2 | w. j | s1 ◦ w. o] |= q
w |= this w′ if w = w′

|= p ↓ h iff for every valid w, w |= p implies �w� = h

3 Reasoning with Concurroids

Auxiliary Definitions. A PCM-map is a finite map from labels (isomorphic to nat)
to Σ

U:pcmU. It associates each label with a pair of a PCM U and a value v ∈ U. A
heap-map is a finite map from labels to heaps. If m1,m2 are PCM-maps, then m1 ◦ m2

is defined as empty ◦ empty = empty, and ((� �
U

v1) ·∪ m′1) ◦ ((� �
U

v2) ·∪ m′2) =

(� �
U

v1 • v2) ·∪ (m′1 ◦ m′2), and undefined otherwise. By overloading the notation, we
define state w as a triple [s | j | o], where s, o are PCM-maps, and j is a heap-map. We
abbreviate [� � vs | � � v j | � � vo] with � � [vs | v j | vo]. w is valid if w. s, w. j, w. o
have the same domain as PCM-maps, w. s ◦ w. o is defined, and the heaps in w. s, w. j
and w. o are disjoint (if w. s and w. o contain heaps in their codomain). State flattening
�w� is the disjoint union of all such heaps. w1 ·∪ w2 is the pairwise disjoint union of
component maps of w1 and w2. The semantics of the main FCSL assertions is provided

in Figure 1. The subjective assertions (e.g., w |= � s�→ v) constrain the value of one state
component, assuming others to be existentially quantified over.

FCSL specifications take the form of Hoare 4-tuple {p} c {q}@U expressing that the
thread c has a precondition p, postcondition q, in a state space and under transitions
defined by the concurroid U, which in FCSL takes the role of a resource context from
CSL. We next present the characteristic inference rules of FCSL.

Parallel Composition. The rule for parallel composition in FCSL is similar to PARCSL,
with Γ replaced by a concurroid U, which we will define formally in Section 4.

{p1} c1 {q1}@U {p2} c2 {q2}@U

{p1 � p2} c1 ‖ c2 {q1 � q2}@U
PAR

The PAR rule uses subjective separating conjunction � (see [10] and Figure 1) to split
the state of c1 ‖ c2 into two. The split states contain the same labels, and equal joint
portions, but the self and other portions are recombined to match the thread-relative
views of c1 and c2. When the parent thread forks the children c1 and c2, the PCM values
in the parent’s self components are split between the children (similarly ∗ splits heaps in
CSL), while the children’s other component are implicitly induced to preserve overall

Communicating State Transition Systems for Fine-Grained Concurrent Resources 297

•-total (i.e., c1’s other view includes c2’s self view, and vice versa). For example, in the
case of one label �, we have

�
s�→ a • b ∧ � o�→ c =⇒ (�

s�→ a ∧ � o�→ c • b) � (�
s�→ b ∧ � o�→ c • a).

The implication encodes the idea of a forking shuffle from RG, but via states, rather than
transitions as in RG. It allows us to use the same concurroid U to specify the transitions
of both c1 and c2 in PAR, much like PARCSL uses the same context Γ. Essentially, we
rely on the recombination of views to select the transitions of U available to each of c1

and c2, instead of providing distinct transitions for c1 and c2 as in PARRG.
We commonly encounter cases where the other views are existentially abstracted,

hence the conjuncts �
o�→ − are omitted. In those cases, we have the simplified

bi-implication:

�
s�→ a • b ⇐⇒ �

s�→ a � �
s�→ b (5)

The implications generalize to �-separated assertions with more than one distinct label.
We illustrate PAR and � with the example of concurrent incrementation [10,13] in a

setting of a concurroid CSLlock,lk,I (i.e., private state and one lock). The lock lk protects
a shared integer pointer x, that is, the resource invariant is I (a : nat) (h : heap) =̂

h = x � a. For the nat argument, we chose the PCM structure under addition; thus, an

assertion lock
s�→ (−, aS) expresses that the self thread has added aS to x, and dually for

lock
o�→ (−, aO). Therefore, whenever the lock is not taken, x stores the sum aS + aO.

This follows from interpreting • with + in the lock state invariant (2).
Procedure incr(n) acquires the lock to ensure exclusive access to x, increments x by

n, and releases the lock. In FCSL, it has the following specification:
{

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
}

incr(n)
{

priv
s�→ empty ∗ lock

s�→ (��Own, n)
}

@CSLlock,lk,I

The specification states that incr runs in an empty private heap (hence by framing, in
any larger heap), the lock is not owned by the calling thread initially, and will not be
owned in the end. The addition of calling thread to x increases from 0 to n (hence by
framing, from m to m + n). We now prove that incr(i) ‖ incr(j) increments x by i + j.

{

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
}

{

priv
s�→ empty ·∪ empty ∗ lock

s�→ (��Own •��Own, 0 + 0)
}

{

(priv
s�→ empty ∗ lock

s�→ (��Own, 0)) � (priv
s�→ empty ∗ lock

s�→ (��Own, 0))
}

{

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
} {

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
}

incr(i) incr(j)
{

priv
s�→ empty ∗ lock

s�→ (��Own, i)
} {

priv
s�→ empty ∗ lock

s�→ (��Own, j)
}

{

(priv
s�→ empty ∗ lock

s�→ (��Own, i)) � (priv
s�→ empty ∗ lock

s�→ (��Own, j))
}

{

priv
s�→ empty ∗ lock

s�→ (��Own, i + j)
}

The proof uses the bi-implication (5) to move between �-separated assertions and •-
joined views. The proof is compositional in the sense that the same verification of incr
is used as a black box in both parallel threads, with the subproofs merely instantiating
the parameter n with i and j respectively.

298 A. Nanevski et al.

Injection. The PAR rule requires c1 and c2 to share the same concurroid U, which
describes the totality of their resources. If the threads use different concurroids, they
first must be brought into a common entanglement, via the rule INJECT.

{p} c {q}@U r stable under V

{p ∗ r} inject c {q ∗ r}@U � V
INJECT

If c is verified wrt. concurroid U, it can be injected (i.e. coerced) into a larger concur-
roid U � V . In programs, we use the explicit coercion inject to describe the change of
“type” from U to U � V . Reading the rule bottom-up, it says we can ignore V , as V’s
transitions and c operate on disjointly-labeled state. V may change U’s state by commu-
nication, but the change is bounded by U’s external transitions. Thus, we are justified
in verifying c against U alone. In this sense, INJECT may be seen as generalizing the
rule for resource context weakening of CSL.

The connective ∗ splits the state according to labels of U and V; p and q describe
the part labeled by U, and r describes the part labeled by V . Since r describes both the
prestate and poststate, it has to be stable [11] under V; that is, determine a subset of V’s
states that remains fixed under transitions the other thread takes over the labels from V .

We illustrate INJECT and stability by verifying incr. To set the stage, we need atomic
commands for reading from and writing to a pointer x. These have the following obvi-
ous specification relative to the concurroid P for private state:

{

priv
s�→ x � v

}

read x
{

priv
s�→ x � v ∧ res = v

}

@P
{

priv
s�→ x � −

}

write x v
{

priv
s�→ x � v

}

@P

The commands for acquiring and releasing lock exchange ownership of the protected
pointer x. Thus, they have specifications relative to the concurroid CSLlock,lk,I = P �
Llock,lk,I , which we have already used before.

{

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
}

acquire
{

∃aO.priv
s�→ x � aO ∗ (lock

s�→ (Own, 0) ∧ lock
o�→ (−,aO))

}

@CSLlock,lk,I

{

priv
s�→ x � aS + aO ∗ (lock

s�→ (Own, 0) ∧ lock
o�→ (−, aO))

}

release
{

priv
s�→ empty ∗ lock

s�→ (��Own, aS)
}

@CSLlock,lk,I

acquire assumes that lock is not taken, and that the self thread so far has added 0 to x.
Thus, the overall contents of x is 0 + aO = aO, where aO is the addition of the other
threads. Note that acquire does not have to be atomic:4 as implemented, it just spins
on lk, and after acquisition, x is transferred into the private heap of self . aO must be
existentially quantified, because other’s may add to x while acquire is spinning.

4 The implementation of acquire and release relies on atomic actions (Section 5), specific for a
particular concurroid, e.g. CSLlock,lk,I .

Communicating State Transition Systems for Fine-Grained Concurrent Resources 299

release assumes that lock is taken by self , and that prior to taking lock, self and other
have added 0 and aO to x, respectively. After acquiring x, self has mutated it, so that its
contents is aS+aO. After releasing, x is moved from the private heap to the joint portion
of lock. The postcondition does not mention x, as once in joint, x’s contents becomes
unstable. Indeed, other may acquire the lock and change x after release terminates.
However, other can’t change the self view of x, which is now set to aS.

The following proof outline presents the implementation and verification of incr(n).
{

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
}

acquire;
{

∃aO.priv
s�→ x � aO ∗ (lock

s�→ (Own, 0) ∧ lock
o�→ (−, aO))

}

res← inject (read x);
{

∃aO.priv
s�→ x � aO ∧ res = aO ∗ (lock

s�→ (Own, 0) ∧ lock
o�→ (−,aO))

}

inject (write x (res + n));
{

∃aO.priv
s�→ x � n + aO ∗ (lock

s�→ (Own, 0) ∧ lock
o�→ (−,aO))

}

release
{

priv
s�→ empty ∗ lock

s�→ (��Own, n)
}

INJECT is used twice, to coerce read and write from the concurroid P to CSLlock,lk,I .
These commands manipulate the contents of priv, but retain the framing predicate

lock
s�→ (Own, 0) ∧ lock

o�→ (−, aO). This predicate is stable wrt. Llock,lk,I . Intuitively,
because self owns lock, other can’t acquire x and add to it. Thus, no matter what other
does, aO and the framing predicate remain invariant.

To simplify the proof, we have not emphasized the invariance of aO between calls
to acquire and release, even though it is the case (we could do it using the rule EXIST

from Figure 2). However, this invariance is what allowed us to calculate the contribution
of self to x as n (i.e., final contents of x minus aO). Without tracking aO, we would not
know how much of the final contents of x is attributable to self , and how much to other.

Hiding. refers to the ability to construct a concurroid V from the thread-private heap,
in a scope of a thread c. The children forked by c can interfere on V’s state, respecting
V’s transitions, but V is hidden from the environment of c. To the environment, V’s state
changes look like changes of the private heap of c. In this sense, hiding generalizes the
RESOURCECSL rule to fine-grained resources.
{

priv
s�→ h ∗ p

}

c
{

priv
s�→ h′ ∗ q

}

@(P �U) � V (omitted side condition on U and V)

{Ψ g h ∗ (Φ (g)−−∗ p)} hideΦ,g c {∃g′.Ψ g′ h′ ∗ (Φ (g′)−−∗ q)}@P � U
HIDE

where Ψ g h = ∃k:heap. priv
s�→ h ·∪ k ∧ Φ (g) ↓ k

Since installing V consumes a chunk of private heap, the rule requires the overall con-
curroid to support private heaps, i.e., to be an entanglement P � U, where P is the
concurroid for private heaps, and U is arbitrary (it is also possible to generalize the rule
so as to be not tied to the specific concurroid P, see [11]). The omitted side condition
on U and V is essential for the existence of entanglement and will be explained in Sec-
tion 5. When U is of no interest, we set it to the empty concurroid E (Section 4), for
which P � E = P.

300 A. Nanevski et al.

In programs, we use the explicit coercion hideΦ,g to indicate the change of type from
(P � U) � V to P � U. The annotation Φ(g) corresponds to a set of concrete states of
a concurroid V to be created. Its parameter g is a meaningful abstraction of such a set
(e.g., (mS, aS) for the L{lock,lk,I} concurroid) and can be thought of as an “abstract state”.
In the rule HIDE, g is the initial abstract state, i.e., upon creation, the state of V satisfies

Φ (g). In the premise of the HIDE rule, the predicates priv
s�→ − describe the behavior

of c on the private heaps, while p and q describe the state of the labels belonging to U
and V . In the conclusion,Ψ g h and Ψ g′ h′ map the abstract states g and g′ into private
heaps h and h′. This follows from the definition of Ψ , in which Φ (g) ↓ k indicates that
states satisfying Φ (g) erase to the private heap k (see Figure 1). Thus, changes that c
imposes on abstract states, appear as changes to private heaps for hideΦ,g c.

In the conclusion, the assertion Φ (g)−−∗ p states that attaching any state satisfying
Φ (g) to the chunk of the initial state identified by the labels from U produces a state in
which p holds, “compensating” for the component k in Ψ . That is, p corresponds to an
abstract state g and c can be safely executed in such a state. The rule guarantees that if
c terminates with a postcondition q, then q corresponds to some abstract state g′.

We illustrate the rule with a proof outline for program hideΦ,g (incr(n)). We show
how to choose Φ and g so that the program implements the following functionality. It
starts with only the concurroid P, and the private heap containing pointers lk and x. It
locally installs Llock,lk,I , which makes x a shared pointer, protected by the lock lk. It runs
incr(n), after which the local concurroid is disposed, and lk and x return to the private
heap. We prove that if initially x � 0, then in the end x � n. The abstract states are
pairs (mS, aS), encodings of the self views of the concrete state of lock. Φ maps a self
view into a predicate on the full state of lock, specifying joint and other views as well.

Φ (mS, aS) = lock
s�→ (mS, aS) ∧ lock

o�→ (��Own, 0) ∧
if mS =��Own then lock

j�→ ((lk � false) ·∪ (x � aS)) else lock
j�→ (lk � true)

We choose the initial state g = (mS, aS) = (���Own, 0): indicating that the lock is installed
with lk unlocked, and x set to 0.

The proof outline uses the facts that Φ (���Own, aS) ↓ lk � false ·∪ x � aS, and thus

Ψ (���Own, aS) empty = priv
s�→ lk � false ·∪ x � 0. Also, Φ (mS, aS)−−∗ lock

s�→ (m′S, a
′
S)

is equivalent to (mS, aS) = (m′S, a
′
S) in the label-free state.

{

priv
s�→ lk � false ·∪ x � 0

}

@P

{Ψ (��Own, 0) empty}@P
{

Ψ (��Own, 0) empty ∗ (Φ (��Own, 0)−−∗ lock
s�→ (��Own, 0))

}

@P (= P � E)

hideΦ,(��Own,0)

{

priv
s�→ empty ∗ lock

s�→ (��Own, 0)
}

@CSLlock,lk,I (= P � E � Llock,lk,I)

incr(n)
{

priv
s�→ empty ∗ lock

s�→ (��Own, n)
}

@CSLlock,lk,I
{

∃g2.Ψ g2 empty ∗ (Φ g2 −−∗ lock
s�→ (��Own, n))

}

@P

{Ψ (��Own, n) empty}@P
{

priv
s�→ lk � false ·∪ x � n

}

@P

Communicating State Transition Systems for Fine-Grained Concurrent Resources 301

The soundness of HIDE depends on a number of semantic properties of Φ [11]. The
most important one is that states in the range ofΦ have fixed other views for every label
� of V; equivalently, that environment threads for the program hideΦ,g1 c do not interfere
with c on the states of V: all interference on V is hidden within the hide-section.

if w1 |= Φ g1 ∧ (�
o�→ v1 ∗ �) and w2 |= Φ g2 ∧ (�

o�→ v2 ∗ �) then v1 = v2

Concretely for our example, Φ g ∧ (lock
o�→ v) implies v = (���Own, 0), thus the above

property clearly holds.

4 Concurroids Abstractly

A concurroid is a 4-tuple V = (L,W, τ,E) where: (1) L is a set of labels, where a label
is a nat; (2)W is the set of states, each state w ∈ W having the structure described in
Section 3; (3) τ is the internal transition, which is a relation onW; (4) E is a set of pairs
(α, ρ), where α and ρ are external transitions of V . An external transition is a function,
mapping a heap h into a relation onW. The components must satisfy a further set of
requirements, discussed next.

State Properties. Every state w ∈ W is valid as defined in Figure 1, and its label
footprint is L, i.e. dom (w. s) = dom (w. j) = dom (w. o) = L. Additionally, W
satisfies the property:

Fork-join closure: ∀t:PCM-map.w
 t ∈ W ⇐⇒ w � t ∈ W,
where w
 t = [t ◦ w. s | w. j | w. o], and w � t = [w. s | w. j | t ◦ w. o]

The property requires thatW is closed under the realignment of self and other com-
ponents, when they exchange a PCM-map t between them. Such realignment is part
of the definition of �, and thus appears in proofs whenever the rule PAR is used, i.e.
whenever threads fork or join. Fork-join closure ensures that if a parent thread forks in
a state fromW, then the child threads are supplied with states which also are in W,
and dually for joining.

Transition Properties. A concurroid transition γ is a relation onW satisfying:

Guarantee: (w,w′) ∈ γ =⇒ w. o = w′. o
Locality: ∀t:PCM-map.w. o = w′. o =⇒ (w � t,w′ � t) ∈ γ =⇒ (w
 t,w′
 t) ∈ γ

Guarantee restricts γ to only modify the self and joint components. Therefore, γ de-
scribes the behavior of a viewing thread in the subjective setting, but not of the thread’s
environment. In the terminology of Rely-Guarantee logics [5,6,8,18], γ is a guarantee
relation. To describe the behavior of the thread’s environment, i.e. obtain a rely relation,
we merely transpose the self and other components of γ:

γ� = {(w�1 ,w�2) | (w1,w2) ∈ γ}, where w� = [w. o | w. j | w. s].

In this sense, FCSL transitions always encode both guarantee and rely relations.

302 A. Nanevski et al.

Locality ensures that if γ relates states with a certain self components, then γ also
relates states in which the self components have been simultaneously framed by a PCM-
map t, i.e., enlarged according to t. It thus generalizes the notion of locality from sepa-
ration logic [14], with a notable difference. In separation logic, the frame t materializes
out of nowhere, whereas in FCSL, t has to be appropriated from other; that is, taken out
from the ownership of the environment.

An internal transition τ is a transition which is reflexive and preserves heap foot-
prints. An acquire transition α, and a release transition ρ are functions mapping heaps
to transitions which extend and reduce heap footprints, respectively, as formalized be-
low. An external transition is either an acquire or a release transition. If (α, ρ) ∈ E, then
α is an acquire transition, and ρ is a release transition.

Footprint preservation: (w,w′) ∈ τ =⇒ dom �w� = dom �w′�
Footprint extension: ∀h:heap. (w,w′) ∈ (α h) =⇒ dom (�w� ·∪ h) = dom �w′�
Footprint reduction: ∀h:heap. (w,w′) ∈ (ρ h) =⇒ dom (�w′� ·∪ h) = dom �w�

Internal transitions are reflexive so that programs specified by such transitions may be
idle (i.e., transition from a state to itself). Footprint preservation requires internal tran-
sitions to preserve the domains of heaps obtained by state flattening. Internal transitions
may exchange the ownership of subheaps between the self and joint components, or
change the contents of individual heap pointers, or change the values of non-heap (i.e.,
auxiliary) state, which flattening erases. However, they cannot add new pointers to a
state or remove old ones, which is the task of external transitions, as formalized by
Footprint extension and reduction.

Example 1 (The concurroid for private state). P = ({priv},WP, τP, {(αP, ρP)}), with

WP =
{

priv � [hS | empty | hO] | hS and hO disjoint heaps
}

, and
(w,w′) ∈ τP ⇐⇒ w. s = priv � hS,w′. s = priv � h′S, dom hS = dom h′S,w. o = w′. o
(w,w′) ∈ αP h ⇐⇒ w. s = priv � hS,w′. s = priv � hS ·∪ h,w. o = w′. o
(w,w′) ∈ ρP h ⇐⇒ w. s = priv � hS ·∪ h,w′. s = priv � hS,w. o = w′. o

The internal transition admits arbitrary footprint-preserving change to the private heap
hS, while the acquire and release transitions simply add and remove the heap h from hS.

Example 2 (The concurroid for a lock). Llock,lk,I = ({lock},WL, τL, {(αL, ρL)}), with
WL = { w | w |= assertion (2) }, and (assuming w. o = w′. o everywhere):

(w,w′) ∈ τL ⇐⇒ w = w′

(w,w′) ∈ αL h ⇐⇒ w. s = lock � (Own, aS), w. j = lock � (lk � true),
w′. s = lock � (��Own, a′S), w′. j = lock � ((lk � false) ·∪ h)

(w,w′) ∈ ρL h ⇐⇒ w. s = lock � (��Own, aS), w. j = lock � ((lk � false) ·∪ h),
w′. s = lock � (Own, aS), w′. j = lock � (lk � true)

The internal transition admits no changes to the state w. The αL transition corresponds
to unlocking, and hence to the acquisition of the heap h. It flips the ownership bit from
Own to���Own, the contents of the lk pointer from true to false, and adds the heap h to
the resource state. The ρL transition corresponds to locking, and is dual to αL. When
locking, the ρL transition keeps the auxiliary view aS unchanged. Thus, the resource

Communicating State Transition Systems for Fine-Grained Concurrent Resources 303

“remembers” the auxiliary view at the point of the last lock. Upon unlocking, the αL

transition changes this view into a′S, where a′S is some value that is coherent with the
acquired heap h, i.e., which makes the resource invariant I (aS • aO) h hold, and thus,
the whole state belongs toWL.

Entanglement. Let U = (LU ,WU , τU ,EU) and V = (LV ,WV , τV ,EV), be concur-
roids. The entanglement U � V is a concurroid with the label component LU�V =

LU ∪LV . The state set component combines the individual states of U and V by union-
ing their labels, while ensuring that the labels contain only non-overlapping heaps.

WU�V = {w ·∪ w′ | w ∈ WU ,w
′ ∈ WV , and �w� disjoint from �w′�}

To define the transition components of U � V , we first need the auxiliary concept of
transition interconnection. Given transitions γU and γV overWU andWV , respectively,
the interconnection γ1 �
 γ2 is a transition onWU�V which behaves as γU (resp. γV) on
the part of the states labeled by U (resp. V).

γ1 �
 γ2 = {(w1 ·∪ w2,w
′
1
·∪ w′2) | (wi,w

′
i) ∈ γi,w1 ·∪ w2,w

′
1
·∪ w′2 ∈ WU�V }.

The internal transition of U �V is defined as follows, where idU is the diagonal ofWU .

τU�V = (τU �
 idV) ∪ (idU �
 τV) ∪
⋃

h, (αU , ρU) ∈ EU , (αV , ρV) ∈ EV

(αU h �
 ρV h) ∪ (αV h �
 ρU h).

Thus, U � V steps internally whenever U steps and V stays idle, or when V steps and
U stays idle, or when there exists a heap h which U and V exchange ownership over by
synchronizing their external transitions.

Example 3. The transitions αp of P and ρL of Llock,lk,I have already been described in
display (4) of Section 2, but using assertions, rather than semantically. The display (3)
of Section 2 presents the interconnection αP h �
 ρL h, which moves h from Llock,lk,I to
P, and is part of the definition of τP�Llock,lk,I . The latter further allows moving h in the
opposite direction (αL h �
 ρP h), independent stepping of P (τP �
 idL) and of Llock,lk,I

(idP �
 τL).

The external transitions of U � V are those of U, framed wrt. the labels of V .

EU�V = {(λh. (αU h) �
 idV , λh. (ρU h) �
 idV) | (αU , ρU) ∈ EU}
We note that EU�V somewhat arbitrarily chooses to frame on the transitions of U rather
than those of V . In this sense, the definition interconnects the external transitions of
U and V , but it keeps those of U “open” in the entanglement, while it “shuts down”
those of V . The notation U � V is meant to symbolize this asymmetry. The asymmetry
is important for our example of encoding CSL resources, as it enables us to iterate the
(non-associative) addition of new resources as ((P� Llock1,lk1,I1)� Llock2,lk2,I2)� · · · while
keeping the external transitions of P open to exchange heaps with new resources.

Clearly, many ways exist to interconnect transitions of two concurroids and select
which transitions to keep open. In our implementation, we have identified several opera-
tors implementing common interconnection choices, and proved a number of equations

304 A. Nanevski et al.

and properties about them (e.g., all of them validate an instance of the INJECT rule). We
also show a version of the INJECT rule with a different operator (�) [11]. However, as
none of these operators is needed for the examples in this paper, we omit them.

Lemma 1. U � V is a concurroid.

We can also reorder the iterated addition of lock concurroids.

Lemma 2 (Exchange law). (U � V) �W = (U �W) � V.

We close the section with the definition of the concurroid E which is the right unit
of the entanglement operator �. E is defined as E = (∅,WE, id, ∅), whereWE contains
only the empty state (i.e. the state with no labels).

5 Language and Logic

In the tradition of axiomatic program logics, the language of FCSL splits into purely
functional expressions e (v when the expression is a value), and commands c with the
effects of divergence, state and concurrency. We also include procedures F, for com-
mands with arguments.

FCSL Commands. A command c satisfies the Hoare tuple {p} c : A {q}@U if c’s effect
on states respects the internal transition of the concurroid U, c is memory-safe when ex-
ecuted from a state satisfying p, and concurrently with any environment that respects the
transitions (internal and external) of U. Furthermore, if c terminates, it returns a value
of type A in a state satisfying q. Formally, q may use a dedicated variable res of type A
to name the return result.5 FCSL uses a procedure tuple, ∀x:B. {p} f (x) : A {q}@U, to
specify a potentially recursive higher-order procedure f taking an argument x of type
B to a result of type A. The assertions p and q may depend on x. FCSL does not treat
first-order looping commands, as these are special cases of recursive procedures. In the
case of recursive procedures, p and q in the procedure tuple together correspond to a
loop invariant, and typically are provided by the programmer.

The syntax of commands and procedures is as follows.

c ::= x← c1; c2 | c1 ‖ c2 | if e then c1 else c2 | F(e) | return v | act a | inject c | hideΦ,g c
F ::= f | fix f . x. c

Commands and procedures include atomic actions act a, a monadic unit return v that
returns v and terminates, a monadic bind (i.e. sequential composition) x ← c1; c2 that
runs c1 then substitutes its result v1 for x to run c2 (we write c1; c2 when x � FV(c2)),
parallel composition c1 ‖ c2, a conditional, a procedure application F(e), a procedure
variable f , a fixed-point construct for recursion, and injection and hiding commands.

Judgments and Inference Rules. The FCSL judgments are hypothetical under a con-
text Γ that maps program variables x to their type and procedure variables f to their
specification. We allow each specification to depend on the variables declared to the left.

Γ ::= · | Γ, x:A | Γ,∀x:B.{p} f (x) : A {q}@U

5 When A = unit, we suppress the type and the variable res, as we did in previous sections.

Communicating State Transition Systems for Fine-Grained Concurrent Resources 305

Fig. 2. FCSL inference rules

Γ � {p} c1 : B {q}@U Γ, x : B � {[x/res]q} c2 : A {r}@U x � FV(r)

Γ � {p} x← c1; c2 : A {r}@U
SEQ

Γ � {p1} c1 : A1 {q1}@U Γ � {p2} c2 : A2 {q2}@U

Γ � {p1 � p2} c1 ‖ c2 : A1 × A2 {[π1 res/res]q1 � [π2 res/res]q2}@U
PAR

∀x:B. {p} f (x) : A {q}@U ∈ Γ
Γ � ∀x:B. {p} f (x) : A {q}@U

HYP

Γ � {p1} c : A {q1}@U Γ � (p1 , q1) � (p2, q2)

Γ � {p2} c : A {q2}@U
CONSEQ

Γ � {p} c : A {q}@U r stable under U

Γ � {p � r} c : A {q � r}@U
FRAME

Γ � {e = true ∧ p} c1 : A {q}@U Γ � {e = false ∧ p} c2 : A {q}@U

Γ � {p} if e then c1 else c2 : A {q}@U
IF

Γ � {p1} c : A {q1}@U Γ � {p2} c : A {q2}@U

Γ � {p1 ∧ p2} c : A {q1 ∧ q2}@U
CONJ

Γ � {p} c : A {q}@U α � dom Γ

Γ � {∃α:B. p} c : A {∃α:B.q}@U
EXIST

Γ � e : A p stable under U

Γ � {p} return e : A {p ∧ res = e}@U
RET

Γ,∀x:B. {p} f (x) : A {q}@U, x:B � {p} c : A {q}@U

Γ � ∀x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

Γ � ∀x:B. {p} F(x) : A {q}@U Γ � e : B

Γ � {[e/x]p} F(e) : A {[e/x]q}@U
APP

Γ � {p} c : A {q}@U r stable under V

Γ � {p ∗ r} inject c : A {q ∗ r}@U � V
INJECT

Γ �
{

priv
s�→ h ∗ p

}

c
{

priv
s�→ h′ ∗ q

}

@(P � U) � V P, U and V have disjoint sets of labels

Γ � {Ψ g h ∗ (Φ (g)−−∗ p)} hideΦ,g c
{∃g′ .Ψ g′ h′ ∗ (Φ (g′)−−∗ q)

}

@P � U
HIDE

where Ψ g h = ∃k:heap. priv
s�→ h ·∪ k ∧Φ (g) ↓ k

a = (U, A, σ, μ) is an action Γ � (σ ∧ this w, λw′. (w,w′, res) ∈ μ) � (p, q) p, q stable under U

Γ � {p} act a : A {q}@U
ACTION

Γ does not bind logical variables. In first-order Hoare logics, logical variables are im-
plicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [9]. We
also assume a formation requirement on Hoare tuples FLV(p) ⊇ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., Φ in the HIDE rule) may freely use the variables in Γ. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts Γ.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. A side
condition of HIDE ensures that the sets of labels of P, U and V don’t clash, so the
entanglement (P � U) � V is defined. The rule FRAME is a special case of PAR when
c2 is taken to be the idle thread (i.e., c2 = return()). Just like in the rule RET, we
need to prove the framing assertion r stable, to account for the interference of the other
threads. The rule FIX requires proving a Hoare tuple for the procedure body, under a

306 A. Nanevski et al.

hypothesis that the recursive calls satisfy the same tuple. The procedure APPlication
rule uses the typing judgment for expressions Γ � e : A, which is the customary one
from a typed λ-calculus, so we omit its rules; in our formalization in Coq, this judgment
will correspond to the CiC’s typing judgment. The CONSEQ rule uses the judgment
Γ � (p1, q1) � (p2, q2), which generalizes the customary side conditions p2 =⇒ p1 for
strengthening the precondition and q1 =⇒ q2 for weakening the postcondition, to deal
with the local scope of logical variables [11]. The other rules are standard from Hoare
logic, except the ACTION rule for atomic actions. We devote the rest of the section to it.

Atomic Actions. Actions perform atomic steps from state to state, such as, e.g., re-
aligning the boundaries between, or changing the contents of self , joint and other state
components. The actions thus serve to synchronize the changes to operational state (i.e.,
heaps), with changes to the logical information required for verification (i.e. auxiliary,
or abstract, parts of the state: aS, aO, etc.). If the logical information is erased, that is, if
the states are flattened to heaps, then an action implements a single atomic memory op-
eration such as looking up or mutating a heap pointer, CAS-ing over a heap pointer, or
performing some other atomic Read-Modify-Write operation [7, § 5.6]. How an action
manipulates the logical state is up to the user, depending on the application: we provide
a formal definition of actions, and require that user’s choices adhere to the definition.

An action is a 4-tuple a = (U, A, σ, μ) where: (1) the concurroid U whose internal
transition a respects, (2) the type A of the action’s return value, (3) the predicate σ on
states describing the states in which the action could be executed, and (4) the relation μ
relating the initial state, the ending state, and the ending result of the action. σ and μ are
given in a large-footprint style, giving fully the heaps and the auxiliaries they accept.

For example, consider the action release used in Section 3 to release a lock and
transfer the pointer x from a private heap of a thread to the ownership of the lock re-
source. This action is over the entangled concurroid CSLlock,lk,I = P � Llock,lk,I as it
transfers the ownership of (x � −). Its return value type is A = unit. It can be executed
in states in which the lock is taken by the self thread, and the pointer x is in the private
heap. The contents of x is aS + a′S + aO, for some aS and a′S, so that once x is transfered
to the ownership of the lock resource, it satisfies the resource invariant. Thus:

w ∈ σ ⇐⇒ w = priv � [x � (aS + a′S + aO) ·∪ hS | empty | hO] ·∪
lock � [(Own, a′S) | lk � true | (��Own, aO)]

(w,w′, res) ∈ μ ⇐⇒ w = priv � [x � (aS + a′S + aO) ·∪ hS | empty | hO] ·∪
lock � [(Own, a′S) | lk � true | (��Own, aO)] ∧

w′ = priv � [hS | empty | hO] ·∪
lock � [(��Own, aS + a′S) | lk � false ·∪ x � (aS + a′S + aO) | (��Own, aO)]

Once the states are flattened into heaps, the σ and μ components of release reduce
to describing the behavior of a memory mutation on the pointer lk. For example, the
relation �μ� = {(�w�, �w′�, r) | (w,w′, r) ∈ μ} relates (h, h′, r) iff

h = (x � (aS + a′S + aO)) ·∪ hS ·∪ (lk � true) ·∪ hO

h′ = (x � (aS + a′S + aO)) ·∪ hS ·∪ (lk � false) ·∪ hO

Thus, operationally, release can be implemented as a single mutation to the lk pointer.

Communicating State Transition Systems for Fine-Grained Concurrent Resources 307

The inference rule ACTION takes an action a = (U, A, σ, μ) and checks that a satisfies
thatσ can be strengthened into p and μ can be weakened into q. As μ is not a postcondi-
tion itself, but a relation taking input states, we first introduce a fresh logical variable w
to name the input state using a predicate this. Then the predicate expressing post states
for the action is computed out of μ and w, and it is this predicate that’s weakened into q.
p and q must be stable wrt. U, in order to account for the possibility that an interference
of the environment appears just before, or just after, the action is executed.

Soundness and Implementation. We have established the soundness of FCSL by
exhibiting a denotational model based on action trees [10,11], which are a variation on
Brookes’ action trace semantics, so we can formulate the following theorem.

Theorem 1. FCSL is sound with respect to the denotational model of action trees.

We developed the model in the logics of Calculus of Inductive Constructions, thus, the
model is a shallow embedding in Coq, and its implementation is available on-line [11].
The implementation also defines denotational semantics for constructs and ascribes
them types corresponding to rules in Figure 2. These type ascriptions require proofs,
and together establish soundness of the logic, although rules/types in the implemen-
tation differ somewhat from those in Figure 2, facilitating encoding in Coq: (1) they
use binary postconditions, (2) pre-/postconditions are in higher-order logic over heaps
and PCMs, instead of notation from Figure 1, (3) they infer weakest-pre-/strongest-
postconditions and (4) assertions are stabilized. The correspondence between the im-
plementation and Figure 2 is straightforward, but established by hand.

6 Related Work

FCSL builds on the previous work on subjective auxiliary state and SCSL logic [10].
The SCSL logic contained the distinction between self and other views, which was es-
sential for compositional implementation of auxiliary state. However, it contained ex-
actly one coarse-grained resource, with no ability to create and dispose new resources.
In contrast, FCSL can introduce any number of fine-grained resources in a scoped way.

The work on Concurrent Abstract Predicates (CAP) [4] introduces a notion of shared
region that serves a similar purpose as concurroids, in that regions circumscribe a chunk
of shared heap with a protocol governing its evolution. A protocol is defined by a set of
atomic actions, which are RG-style transitions on private state and a region. In addition
to heaps, regions may contain abstract capabilities that identify enabled actions. Thus
there is a subtle mutual recursion in a protocol definition between an action and the
capability to perform the action. A recurring pattern for this approach is quantification
over all possible capabilities and placing them in a shared region, to be used up if needed
in the execution of the protocol. The CAP framework could atomically change only
one region; a restriction lifted in the recent work on Views [3] and HOCAP [15] that
introduced view shifts to synchronize changes in several regions. Once allocated, CAP’s
regions have dynamically-scoped lifetime, and they can be disposed by a particular
thread if it collects all corresponding region’s capabilities. To the best of our knowledge,
HOCAP does not allow the removal or scoped hiding of a shared region.

308 A. Nanevski et al.

In contrast with CAP and their successors, FCSL does not require capabilities to
perform actions, as these are naturally represented in the self and other views associated
with a resource (and can also be seen as auxiliary state). Such auxiliary state is simpler
than capabilities; it is not subject to ownership transfer, and there is no need to quantify
over all capabilities. In our experience, this simplicity extends to the specification of
invariants and transitions, and to the proofs of stability. In FCSL, synchronizing changes
over a number of concurroids is achieved directly at the level of transitions by means of
entanglement, and at the level of programs by allowing actions to be defined over any
concurroid, including entangled ones. Thus, no view shifts are required. The burden of
stability proofs is further reduced in FCSL by formulating private heaps as a separate
concurroid that one may, but need not, entangle with. Thus, when an action manipulates
only the internal state of a resource, the attendant stability proofs can ignore private
heaps, e.g., the take action of a ticketed lock [4, 11]. Moreover, the communication in
FCSL makes it possible for concurroids to pass heaps between each other directly, rather
than going through private state. While the current paper does not present examples that
exploit this ability, we have found it useful when verifying in FCSL a more advanced
example of readers-writers, which we will present in future work.

CaReSL [17] uses the same notion of shared region as CAP, though it specifies the
transitions in a manner closer to FCSL, namely by means of STS’s. CaReSL does not
directly provide subjective self and other views of a resource, but it provides a notion of
tokens, whose ownership is exchanged between a thread and its environment. CaReSL
assertions explicitly allow statements only about self-owned tokens, not other-owned
ones. Thus, reasoning about the lack of logical changes to environment-owned data has
to be encoded with a level of indirection, potentially quantifying over all tokens, similar
to CAP’s quantification over capabilities. A frequent side condition in CaReSL rules is
that various assertions are token-pure, which does not have a direct correspondent in
FCSL. Similar to CAP, CaReSL currently allows actions that work over only a single
region, and will require an extension akin to view shifts to enable synchronized updates.
CaReSL does not consider removal or scoped hiding of shared regions, although it
can be emulated by introducing an empty “final” protocol state. Instead of stability
checks in FCSL, in CaReSL one may stabilize assertions by composing them with
environment stepping. In our experience, this does not change the proofs: the same
obligations reappear in proofs out of stabilized hypotheses. On the other hand, CaReSL
can reason about fine-grained data structure by means of refinement (a generalization of
linearizability). FCSL supports higher-order functions by means of shallow embedding
into CiC [1,16], but we have not considered linearizability so far, which is future work.

Feng’s Local Rely-Guarantee (LRG) [5] is, to the best of our knowledge, the first
work that reconciled fine-grained reasoning in the style of RG with framing and hiding
at the level of transitions (similar to our INJECT and HIDE). We differ from LRG in
that we introduce communication and subjectivity into the mix; thus our injection and
hiding rules take self and other views into account. The latter are a compositional form
of auxiliary state, whereas LRG in practice has to use the classical, non-compositional
form of auxiliary state [10, 13].

Communicating State Transition Systems for Fine-Grained Concurrent Resources 309

7 Conclusion and Future Work

We presented concurroids—a novel model for scalable shared-memory concurrency
verification, based on communicating STS, and FCSL—a logic for concurroids.

In the future work, we are going to build a number of concurroids to encode common
programming patterns. For example, dynamic allocation and deallocation of memory
can be encoded via an allocator concurroid (without extensions of FCSL), and similarly
for dynamic allocation and deallocation of locks. We hope to investigate if concur-
roids can be endowed with analogues of channel relabeling and restriction operators
from process algebras, to provide finer control over interconnection and closure of ex-
ternal transitions. Finally, we plan to consider refinement which allows weakening the
ascribed concurroid U of a program, to a coarser-grained concurroid V , if U can be
shown to simulate V . One could then verify fine-grained concurrent ADTs against V ,
and afterwards hide the granularity by switching to U.

Acknowledgments. We thank Anindya Banerjee, Thomas Dinsdale-Young and the
ESOP 2014 anonymous reviewers for their comments. This research was partially sup-
ported by Spanish MINECO projects TIN2012-39391-C04-01 Strongsoft, TIN2010-
20639 Paran10, AMAROUT grant PCOFUND-GA-2008-229599, and Ramon y Cajal
grant RYC-2010-0743.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Springer (2004)

2. Brookes, S.: A semantics for concurrent separation logic. Th. Comp. Sci. 375(1-3) (2007)
3. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views: composi-

tional reasoning for concurrent programs. In: POPL 2013 (2013)
4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent

abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 504–528.
Springer, Heidelberg (2010)

5. Feng, X.: Local rely-guarantee reasoning. In: POPL 2009 (2009)
6. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation

logic and assume-guarantee reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 173–188. Springer, Heidelberg (2007)

7. Herlihy, M., Shavit, N.: The art of multiprocessor programming. M. Kaufmann (2008)
8. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM

Trans. Prog. Lang. Syst. 5(4) (1983)
9. Kleymann, T.: Hoare logic and auxiliary variables. Formal Asp. Comput. 11(5) (1999)

10. Ley-Wild, R., Nanevski, A.: Subjective auxiliary state for coarse-grained concurrency.
In: POPL 2013 (2013)

11. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Supporting Material,
http://software.imdea.org/˜aleks/fcsl/

12. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Th. Comp. Sci. 375(1-3) (2007)
13. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.

Commun. ACM 19(5) (1976)

http://software.imdea.org/~aleks/fcsl/

310 A. Nanevski et al.

14. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS (2002)
15. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of

concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 169–188. Springer, Heidelberg (2013)

16. The Coq Development Team. The Coq Proof Assistant Reference Manual - Version V8.4
(2012), http://coq.inria.fr/

17. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning in a logic
for higher-order concurrency. In: ICFP 2013 (2013)

18. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007)

http://coq.inria.fr/

Checking Linearizability of Encapsulated

Extended Operations�

Oren Zomer1, Guy Golan-Gueta1, G. Ramalingam2, and Mooly Sagiv1

1 Tel Aviv University, Tel Aviv, Israel
2 Microsoft Research, Bangalore, India

Abstract. Linearizable objects (data-structures) provide operations
that appear to execute atomically. Modern mainstream languages pro-
vide many linearizable data-structures, simplifying concurrent program-
ming. In practice, however, programmers often find a need to execute a
sequence of operations (on linearizable objects) that executes atomically
and write extended operations for this purpose. Such extended operations
are a common source of atomicity bugs.

This paper focuses on the problem of verifying that a set of exten-
sion operations (to a linearizable library) are themselves linearizable. We
present several reduction theorems that simplify this verification problem
enabling more efficient verification.

We first introduce the notion of an encapsulated extension: this is
an extension that (a) does not introduce new shared state (beyond the
shared state in the base linearizable library), and (b) accesses or mod-
ifies the shared state only through the base operations. We show that
encapsulated extensions are widely prevalent in real applications.

We show that linearizability of encapsulated extended operations can
be verified by considering only histories with one occurrence of an ex-
tended operation, interleaved with atomic occurrences of base and ex-
tended operations. As a consequence, this verification needs to consider
only histories with two threads, whereas general linearizability verifica-
tion requires considering histories with an unbounded number of threads.

We show that when the operations satisfy certain properties, each
extended operation can be verified independently of the others, enabling
further reductions.

We have implemented a simple static analysis algorithm that conser-
vatively verifies linearizabilty of encapsulated extensions of Java concur-
rent maps. We present empirical results illustrating the benefits of the
reduction theorems.

Keywords: concurrency, linearizability, atomicity, verification, compo-
sition, extension.

� Zomer, Gueta, and Sagiv were funded by the European Research Council under
the European Unions Seventh Framework Program (FP7/2007-2013) / ERC grant
agreement no. [321174-VSSC].

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 311–330, 2014.
© Springer-Verlag Berlin Heidelberg 2014

312 O. Zomer et al.

1 Introduction

Concurrent programs are challenging to write. To ease the programmer’s burden,
modern programming platforms provide libraries of efficient concurrent data
structures. These libraries provide operations that are guaranteed to be atomic,
while hiding the complexity of the implementation from clients.

Unfortunately, clients often need to atomically perform some computation
that may invoke multiple library operations. Programmers end up extending
a linearizable data type by defining new custom atomic operations, which we
refer to as extended operations. Figure 1 and Figure 2 are real world examples of
linearizable operations that extend the Java ConcurrentMap interface. As shown
in [1], such extended operations are a common source of concurrency bugs. In
this paper, we consider the problem of verifying the correctness of an extension
of a linearizable data-structure. Specifically, we wish to verify that the extension
of the data-structure is linearizable [2].

Encapsulated Extension. In this paper, we identify a restricted class of exten-
sions of a data-structure, inspired by the examples in [1]. This class is realistic
and includes many commonly found extensions. As we show, this class is also
amenable to more efficient verification. An extension is said to be encapsulated
if it satisfies the following two restrictions:

Encapsulation. The extension methods do not directly access or modify any
global (shared) state. Instead, extension methods access shared state only
via operations of the underlying data-structure that is being extended.

Open Environment. All of the operations of the underlying data-structure
are exposed to the clients: i.e., none of the underlying operations are hidden
by the extension.

A Simple Verification Approach. Informally, an execution in which multiple
threads invoke a data-structure’s operations concurrently is said to be lineariz-
able if each invoked operation appears to execute instantaneously, with the result
that the data-structure’s operations appear to be executed sequentially (with-
out any overlap). The data-structure is said to be linearizable if all possible
concurrent executions involving the data-structure are linearizable.

Consider a data-structure with core methods m1, . . . ,mn that has been ex-
tended by adding extension methods em1, . . . , emk. We can verify that the ex-
tended ADT is linearizable by considering all executions of the following “driver”
program, and verifying that each of these executions is linearizable (We write
s1|s2 to indicate that either s1 or s2 may be executed non-deterministically). For
simplicity we have omitted parameters and return-values in this code template.

Checking Linearizability of Encapsulated Extended Operations 313

Val computeIfAbsent(Key k) {
Val temp1, temp2 ;
temp1 = this.get(k) ;
if (temp1 == null) {
temp2 = hardLocalPureStateComputation(k) ;
temp1 = this.putIfAbsent(k, temp2) ;
if (temp1 == null) temp1 = temp2 ;

}
return temp1 ;

}

Fig. 1. A linearizable operation that extends Java ConcurrentMap. The pure com-
putation can be, for example if k is an integer, evaluating the square of k. The get

operation in ConcurrentMap returns the value mapped from the given key (initialized
to null). The putIfAbsent operation in ConcurrentMap atomically checks whether
the given key is mapped to null: if it is mapped to null, the operation immediately
maps the key to the given value and returns null, otherwise the operation returns the
non-null value that the key is mapped to without changing the map.

void inc(Class<?> key) {
for (;;) {
Integer i = this.get(key);
if (i == null) {
if (this.putIfAbsent(key, 1) == null) return;

} else {
if (this.replace(key, i, i + 1)) return;

}
}

}

Fig. 2. An extended encapsulated operation over Java ConcurrentMap from
OpenJDK 7 , class: ThrowingTasks. The replace operation atomically checks whether
the given key is mapped to the first value: if it is mapped to that value, the opera-
tion immediately remaps the key to the second value and returns true, otherwise the
operation returns false without changing the map.

while (∗) do {
create new thread to execute {
while (∗) do {

m1() | · · · | mn() | em1() | · · · | emk();
}

}
}

314 O. Zomer et al.

Incremental Verification. Suppose the core ADT (consisting only of the core
methods) is known to be linearizable. We can then exploit this to simplify the
driver program as shown below, replacing each call to a core method mi by
“atomic si”, where si is the sequential specification for mi. (Note that this
replacement is done within the code for any extension method emj as well, even
though that is not shown below.)

while (∗) do {
create new thread to execute {
while (∗) do {
atomic {s1()} | · · · | atomic{sn()} | em1() | · · · | emk();

}
}

}

Note that this reduction is valid only because of the “encapsulation” assumption
stated earlier. If the code for extended operations directly accesses or manipu-
lates the shared state (of the underlying data-structure), this reduction is invalid.
However, accessing this shared state via the core operations is fine.

Reduction to Two Threads. As we show in the paper, it is not necessary to
consider all executions of the preceding driver program. Using induction, we show
that it suffices to consider a single occurrence of any one extended operation and
replace other occurrences of an extended operation emi by an atomic execution of
its sequential specification esi. If the implementations and specifications do not
depend on thread identifiers (such as Java ThreadLocal class), we can rewrite the
driver program so that it contains only two threads (since all atomic executions
of operations can be treated as executed by the same thread). This gives us the
following simplified driver program:

// Thread 1 (Environment thread)
while (∗) do {
atomic { s1() } | · · · | atomic { sn() } | atomic { es1() } | · · · | atomic { esk() };
}
||
// Thread 2 (Nonatomic extension method)
{ em1() | · · · | emk(); }

Note that such a reduction is not possible for general linearizability verifica-
tion. Consider the simple example shown in Figure 3, which is not linearizable.
However, all histories of this example with less than K threads are linearizable.
Hence, the verifier will find a counterexample only when it considers executions
with K threads.

Proving linearizability is intractable even for finite systems, in general [3].
However, bounding the number of threads reduces the complexity of lineariz-
ability verification (see [3]).

Further Reductions. We then describe additional conditions (explained later)
that, when satisfied, allow us to verify the linearizability of the extension opera-
tions em1 to emk independent of each other. These conditions, in fact, allow us

Checking Linearizability of Encapsulated Extended Operations 315

to verify the linearizability of the executions produced by the following driver
program, for each i, independently.

// Environment thread
while (∗) do {
atomic { s1() } | · · · | atomic { sn() };

}
||
// One nonatomic extension method:
{ emi() }

Such a reduction is not always valid, even when we have only one extension
operation, as demonstrated by the example in Figure 4. This extension method
sets a boolean register to true and returns the original value. This method is
not linearizable. Assume that the initial value of the register is false and that
there are two concurrent invocations of the extension method. It is possible
for both invocations to return a value of false, which is not possible in any
sequential execution. However, any execution that contains only one occurrence
of the extension method (along with any number of occurrences of the core
methods read and write) can be shown to be linearizable.

int s = 0;
// Specifications:
// return value must be true.
// K is a constant value larger
// than 1.
boolean incReadAssertDec() {
s++;
boolean b = (s < K);
s−−;
return b;

}

Fig. 3. A simple example of a method
which is linearizable for up to K

threads. (we assume that the opera-
tions on s are atomic.)

boolean readAndWriteTrue() {
boolean temp = this.read() ;
if (!temp) {
this.write(true) ;

}
return temp ;

}

Fig. 4. An extension of the interface
of a boolean register. The base object
has a boolean value and two atomic
base-operations: read() that returns
the boolean value and write(x) that
overwrites it and returns nothing. This
encapsulated extended operation is an
incorrect implementation of a simple
test-and-set operation.

Empirical Evaluation. Java’s concurrent maps are widely used, not surprisingly,
since they are a higher-level shared memory abstraction. Our empirical study
shows that encapsulated extensions over maps are widely used, and that the re-
ductions described above are applicable to many of these extensions, simplifying
the verification. We have implemented a static checker for verifying linearizabil-
ity of encapsulated extensions of the Java concurrent map.

However, we did not find encapsulated extensions over other interesting data
structures, such as queues, stacks and deques, in which non-linearizability might

316 O. Zomer et al.

cause errors. The implementations of these data-structures, such as Java Con-
currentLinkedQueue and ConcurrentLinkedDeque, do not provide methods for
“conditional modifications” like ConcurrentMap’s putIfAbsent and replace.
For this reason, in most real-world scenarios, the programmer must call exter-
nal synchronization mechanisms (such as locks and transactions) in order to
implement linearizable extensions. This type of extensions contradicts our En-
capsulation requirement and therefore it is not in the range of this paper. On
the other hand, if those data structures had provided base operations for “con-
ditional modifications”, we could write interesting encapsulated extensions on
top of them, as demonstrated in [4].

2 Concurrent Objects and Linearizability

In this section we review standard terminology relating to concurrent objects
(without extended operations) and linearizability (as in [2]).

A concurrent execution of an object is modeled by a history, which is a finite
sequence of method invocation and response events. We write a method invoca-
tion as [t.m(arg) where t is a thread name, m is a method name and arg denotes
the values of actual argument values of the method. We write a method response
as]t.m/b where t is a thread name, m is a method name and b is the return
value. We sometimes write t.m(arg)/b instead of writing the sequence of the two
events [t.m(arg) ,]t.m/b (this is used as a short way to represent an invocation
which is immediately followed by its corresponding response). For convenience,
we assume that a unique identifier is attached to every event in a history.

A response matches an invocation if they have the same thread name and
the same method name. A method call in a history h is a pair consisting of an
invocation and the next matching response in h. An invocation is pending in h
if no matching response follows the invocation. complete(h) is the subsequence
of h consisting of all non-pending invocations and all responses. A history h is
complete if h = complete(h).

A history h is sequential if the first event of h is an invocation, and each invo-
cation, except possibly the last, is immediately followed by a matching response.

A thread subhistory h|t of history h is the subsequence of all events in h whose
thread names are t. Two histories h and h′ are equivalent if for every thread t,
h|t = h′|t.

Definition 1 (well formed history). A history h is well formed if each thread
subhistory of h is sequential.

We assume that all histories that represent object executions are well formed
— because, given a concurrent object x, well formed histories represent all rea-
sonable behaviors of x (see [2]).

Definition 2 (Linearization of a history). We say that a sequential history s
is a linearization of a history h, if there exists a history h′ such that the following
conditions are satisfied:

Checking Linearizability of Encapsulated Extended Operations 317

– h′ is constructed by appending zero or more responses to h.
– complete(h′) is equivalent to s.
– If a response event e precedes an invocation event e′ in h, then the same is

true in s.

Definition 3 (Sequential Specification). A sequential specification of a con-
current object is a set of sequential histories.

A sequential specification is used to describe the legal behaviors of an object
in the absence of concurrency.

Definition 4 (Linearizable Object). We say that an object x is linearizable
with respect to a sequential specification S, if for any feasible history h of x there
exists s ∈ S, such that s is a linearization of h.

Note that, from the above definition, if x is linearizable with respect to S then
any feasible sequential history of x is in S. Furthermore, intuitively, any feasible
history of x can be seen as a history in which each method call is atomic.

3 Linearizability of Encapsulated Extensions

In this section we generalize the model from Section 2 for encapsulated exten-
sions of a linearizable object and present our reduction theorem for proving
linearizablity of encapsulated extensions.

3.1 The Problem

Let Base be a specification describing a (base) linearizable object. An encap-
sulated extension of Base consists of a set of extension methods (including
their implementation). The only global (shared) state accessed by the extension
methods is the state of Base, which can be accessed only via the methods of
Base.

Extended Histories. Consider an execution of an arbitrary concurrent client pro-
gram that uses the extended object. For our purposes, it suffices to focus on the
invocation and response events of the (base and extended) operations of the ob-
ject. Hence, we model an execution of the object by an extended-history, defined
to be a finite sequence of method invocation and response events in which the
events can be divided into two types:
(i) basic events : represent invocations and responses of base methods of the given
object ;
(ii) extension events : represent invocations and responses of the extended
methods.
Each event in an extended-history is either a basic event or an extension event
(and not both). As in Section 2, we assume that a unique identifier is attached
to each event in an extended-history.

Figure 5 shows an example for 3 extended histories. In this figure, the events
that refer to the inc method are extension events and the other events are basic
events.

318 O. Zomer et al.

h
:
[t

1
.i
n
c
(
c
)
,
t 1
.g
e
t(
c
)/

n
u
ll
,
t 2
.p
u
t(
c
,
7
)/

n
u
ll
,
t 1
.p
u
tI
fA

b
se

n
t(
c
,
1
)/

7
,
t 1
.g
e
t(
c
)/

7
,
t 1
.r
e
p
la
ce

(c
,
7
,
8
)/

tr
u
e
,
] t

1
.i
n
c
/
∅,
t 2
.g
e
t(
c
)/

8

c
li
e
n
t(
h
):

[t
1
.i
n
c
(
c
)
,

t 2
.p
u
t(
c
,
7
)/

n
u
ll
,

] t
1
.i
n
c
/
∅,
t 2
.g
e
t(
c
)/

8

o
b
j(
h
):

t 1
.g
e
t(
c
)/

n
u
ll
,

t 1
.p
u
tI
fA

b
se

n
t(
c
,
1
)/

7
,
t 1
.g
e
t(
c
)/

7
,
t 1
.r
e
p
la
ce

(c
,
7
,
8
)/

tr
u
e
,

t 2
.g
e
t(
c
)/

8

Fig. 5. Example for 3 ex-
tended histories of a Map
with the extended opera-
tion from Figure 2. The
histories are executed by
threads t1 and t2.

Internal Events. Let h be an extended-history that
contains an extension invocation event einv . We say
that a basic event e is executed by einv in h, if e and
einv have the same thread name, and one of the fol-
lowing conditions is satisfied: (1) e appears between
einv and the next matching response of einv ; (2) einv
is pending in h, and e appears after einv . We write
h|einv to denote the subsequence of h of all events
that are executed by einv . We say that a basic event
e is internal in h if e is executed by an extension in-
vocation event in h.

For example, in the extended-history h1 from Fig-
ure 5, the events that are marked with an underline are
executed by the extension event [t1.inc(c) and therefore
they are internal events in h1. Together they form the
subsequence h1|[t1.inc(c).

Two Perspectives. An object perspective of an
extended-history h, denoted by obj (h), is the maximal
subsequence of h such that obj (h) does not contain
extension events. A client perspective of an extended-
history h, denoted by client(h), is the maximal sub-
sequence of h such that client(h) does not contain
internal events. Figure 5 shows the two perspectives
of an extended history.

Definition 5 (well formed extended-history).
We say that an extended-history h is well formed if:
(1) both obj (h) and client(h) are well formed histo-
ries, (2) for every extension invocation einv in h that
is non-pending, h|einv is complete.

In the sequel, we consider only well-formed
extended-histories.

Definition 6 (Sequential Specification). A se-
quential specification of an object with extended
operations is a set of extended-histories S such that
every s ∈ S is sequential and does not contain inter-
nal events.

Semantics of an Encapsulated Extension. An imple-
mentation of a linearizable object x with extended op-
erations defines a set of possible extended historiesHx,
defined as follows.

Checking Linearizability of Encapsulated Extended Operations 319

Define an operation history (for an extended method m) to be an extended
history consisting of an invocation event e ofm, followed by a sequence of internal
events executed by e, optionally followed by a matching response of e. The
semantics of the implementation of m, denoted [[m]] can be formally represented
as a set of operation histories (denoting possible executions of a single invocation
of m).

Given an extended history h and an extended invocation event e in h, define
h[e] to be the sequence e(h|e) if e is pending in h and the sequence e(h|e)e′, if
e′ is the next matching response of e in h. Thus, h[e] represents the operation
history corresponding to e.

An extension x of a sequential specification Base consists of a set of extension
operations m1, · · · ,mk. The set of extended histories Hx is defined to be the set
of all well-formed extended histories h such that (a) obj (h) ∈ Base, and (b) For
any invocation event e, of an extension operation mi, in h, we have h[e] ∈ [[mi]].

The above definition captures the possible behaviors of x when used with any
linearizable implementation of Base. The following definition thus captures the
intuition that x should work correctly when used with any correct implementa-
tion of Base.

Definition 7 (Linearizable Encapsulated Extension). We say that the en-
capsulated extension x is linearizable with respect to a sequential specification S,
if for every h ∈ Hx there exists s ∈ S such that s is a linearization of client(h).

3.2 The Reduction Theorem

Properties of Extended-Objects. It can be checked that the set Hx satisfies the
following properties, for any extended history h:

(1) if h ∈ Hx and h′ is a well-formed subsequence of h such that obj (h) = obj (h′),
every internal event in h′ is executed by the same extension invocation in
h′ as in h, and every extension response in h′ matches the same extension
invocation in h′ as in h, then h′ ∈ Hx.

(2) if obj (h) ∈ Hx and for every extension invocation event einv there is h′ ∈ Hx

in which h[einv] = h′[einv], then h ∈ Hx.

Condition (1) means that we can create a history in Hx by omitting some of
the extension invocation events with their next matching responses (or without
them if they are pending). This ensures that the behaviour of the concurrent
object is not affected by the extended events. This condition is satisfied because
the concurrent object’s state is only accessed by its client API.

Condition (2) means that the behavior of an extended method only depends on
its arguments and its interaction with the base object. This condition is satisfied
because the only shared state (between threads) is the state of the concurrent
object.

Reduction Theorem. Let einv be an invocation event in an extended-history h.
We say that einv is interrupted if there exists an event e in h such that: (i) einv

320 O. Zomer et al.

and e have a different thread name; (ii) e appears after einv ; (iii) e does not
appear after the matching response of einv . For example, in the extended-history
h1 from Figure 5, the event einc = [t1.inc(c) is interrupted because the events of
t2.put(c, 7)/null appear between einc and its matching response.

We write #(h) to denote the number of interrupted invocation events in h.
We write Hk

x to denote {h ∈ Hx | #(h) ≤ k}, and H0
x to denote the subset of

sequential histories. client
[
H0
x

]
=
{
client(h) | h ∈ H0

x

}
is the client perspective

of the sequential histories.
We present our reduction theorem below, treating the implementation of the

extension itself as its sequential specification. Specifically, we consider the case
where client

[
H0
x

]
is the sequential specification for the extension. In [4] we

present a generalization of this theorem which handles general specifications.

Theorem 1 (Reduction Theorem). If the set H1
x is linearizable with respect

to client
[
H0
x

]
, then the set Hx is linearizable with respect to client

[
H0
x

]
.

Proof (Sketch). We use induction to show that for any n ≥ 1, Hn
x is linearizable

with respect to client
[
H0
x

]
. Let’s assume that for some k ≥ 1, Hk

x is linearizable,
and prove that Hk+1

x is linearizable. Let h ∈ Hk+1
x be a history with #(h) = k+1

which contains an interrupted extension invocation einv . Let’s assume that einv is
not pending and has a matching response eres (the case in which einv is pending
can be shown in a similar way).

Using condition (1), we can remove einv and eres from h, and get a new history
h′ ∈ Hx with #(h′) = k. Notice that all internal method calls h|einv are not
internal in h′, and appear in client(h′). By the induction hypothesis, client(h′) is
linearizable — let s′ be its linearization. s′ also contains the subsequence h|einv .

s′ ∈ client
[
H0
x

]
, so let h′′ ∈ H0

x be a history such that client(h′′) = s′.
We know that #(h′′) = 0, and we also know that h|einv is a subsequence of
client(h′′).

Let’s add einv to h′′ right before the beginning of the subsequence, and eres
right after the end of the subsequence, and denote the new history by ĥ.

obj (ĥ) = obj (h′′) ∈ Hx, and for any invocation e′inv �= einv in ĥ we know that

ĥ[e′inv] = h′′[e′inv]. Furthermore, for einv in ĥ we know that ĥ[einv] = h[einv].

Together, we can apply condition (2), so ĥ ∈ Hx.

#(ĥ) ≤ #(h′′)+1 = 1, so by the induction hypothesis client(ĥ) is linearizable.

client(ĥ) can be created from client(h) by omitting some pending invocations,
appending matching responses to other pending invocations, and moving einv
and eres closer to each other. The order of operations in client(ĥ) preserves the

order of operations in client(h), and therefore the linearization of client(ĥ) is
also a linearization of client(h), which means that client(h) is linearizable.

The complete proof is presented in [4].

4 Non-interfering Linearizable Extensions

In this section, we consider conditions under which different linearizable ex-
tensions of a concurrent object do not interfere with each other. Specifically, let

Checking Linearizability of Encapsulated Extended Operations 321

em1, · · · , emk be encapsulated extended operations of a concurrent object Base.
Suppose that, for each i, {emi}∪Base is linearizable. We present sufficient con-
ditions under which {em1, · · · , emk} ∪ Base is guaranteed to be linearizable.
When these conditions hold, verifying linearizability of an encapsulated exten-
sion is further simplified as each extended operation can be independently veri-
fied. Many extended operations in the programs in our empirical studies satisfy
these conditions.

Recall that a method call is a pair of events of the form [t.m(a)]t.m/b which we
also refer as t.m(a)/b. In the sequel, we may refer to m(a)/b when the thread
name is irrelevant or can be understood from the context.

Given a sequence α = c1 · · · cm, where each ci is a method call of the form
mi(ai)/bi, we define t.α to be the sequential history t.c1 · · · t.cm. We denote M
to the set of base method calls, andME to denote the set of both base method
calls and extension method calls.

4.1 Replaceability

We first introduce a notion of replaceability.
Let c ∈ ME be some method call and let M ⊆ME be a set of method calls.

We say that c ∝M if for every concurrent history α(t.c)β in client [Hx] there is
some c′ ∈M such that α(t.c′)β is in client [Hx]. For example:

readAndWriteTrue()/false ∝ {write(true)/ok}

computeIfAbsent(3)/4 ∝ {get(3)/4}
computeIfAbsent(3)/9 ∝ {get(3)/9, put(3, 9)/null} 1

We say that a method call c is replacement equivalent to M if c ∝ M and
for every c′ ∈ M we have c′ ∝ {c}. We say that c is replaceable by M if c is
replacement equivalent to some subset of M . We say that a method is replaceable
by M if each of its method calls is replaceable by M .

Recall that H1
x denotes the set of extended histories of x containing at most

one occurrence of an interrupted invocation event. For any set of method calls
M ⊆ ME , let H1

M denote the subset of histories from H1
x in which all the

uninterrupted operations are in M .

Lemma 1. If c is replaceable by a set of method calls M , and all the histories
in H1

M are linearizable, then all the histories in H1
M∪{c} are linearizable.

Proof. Assume that all histories in H1
M are linearizable. Consider any history

h ∈ H1
M∪{c}. Replace all (uninterrupted) appearances of c with other calls from

M to get a history h′ in H1
M . Let s′ be a linearization of h′. Replace the replace-

ment calls back by c to get a sequential history s, which will be a linearization
of h.

Corollary 1. If every method call in ME \ M (of an extended operation) is
replaceable by M, then Hx is linearizable iff H1

M is linearizable.

1 The pure computation in computeIfAbsent calculates the square of the given key.

322 O. Zomer et al.

Discussion. Consider the examples computeIfAbsent (Figure 1) and inc (Fig-
ure 2). Each of these extension operations are replaceable (by the base map
method calls). For example, the method call computeIfAbsent(3)/9 is replace-
able because in any history we can replace such uninterrupted call with a call to
put or get, as appropriate:

computeIfAbsent(3)/9 ∝ {get(3)/9, put(3, 9)/null}

and in any other history with these calls, we can replace them back:

get(3)/9 ∝ {computeIfAbsent(3)/9}

put(3, 9)/null ∝ {computeIfAbsent(3)/9}

It follows from the above corollary that these two extension operations are
non-interfering. To verify that an extension consisting of this pair of operations
is linearizable it suffices to verify that the two extensions consisting of each of
these operations separately is linearizable.

Not only does the corollary help decouple the verification of multiple extension
operations, it also helps simplify the verification of an extension consisting of a
single operation. This is because the set of histories H1

M we need to check is
smaller than the set Hx even when the extension consists of a single operation.

Just as we expect, the above corollary does not apply to the example in Fig. 4.
As explained in Section 1, H1

M (i.e., the set of histories with at most one invoca-
tion of readAndWriteTrue) is linearizable for this example, but the extension is
not linearizable. Corollary 1 does not apply because readAndWriteTrue()/false
is not replaceable — we can take any history in client [Hx] and replace a method
call readAndWriteTrue()/false with the method call write(true)/ok to get a
new history in client [Hx], however, in some histories in client [Hx] we cannot
replace a method call write(true)/ok back with readAndWriteTrue()/false
and get a history in client [Hx] (consider histories where the state of the register
before the call is true).

4.2 Composition Closure

A sequence of method calls β is said to be atomically equivalent to a method call
c if for all α, γ, we have α(t.β)γ ∈ obj [Hx] iff α(t.c)γ ∈ obj [Hx]. We say that a
set of method calls M is composition-closed if every sequence of calls from M is
atomically equivalent to a single call in M .

Example. AGeneric Register is a register with three linearizable base operations:
read() that returns the register’s value, write(x) that changes the register’s
value to x and returns the register’s old value (an unconditional “swap”), and
a unique operation compareAndSwap(expect,new) that changes the register’s
value to new if it equals expect, and returns the register’s old value (whether it
changed or not).

Checking Linearizability of Encapsulated Extended Operations 323

In this example, the sequence write(7)/0 write(8)/7 is atomically equivalent
to the call write(8)/0. Furthermore, any sequence of read and write over a
generic register (with at least one write):

m1 (args1)/b1 . . .mk (argsk)/bk

is atomically equivalent to write(argsj)/b1, where j is the index of the last write
— this single operation makes the change of the whole sequence atomically, and
returns the value of the register before the sequence. Hence, the set of all method
calls to {read, write} is composition-closed. This composition-closure property
holds even if we include the compareAndSwap operation.

Lemma 2. The set of all base method calls of a generic register is composition-
closed.

Now let’s look at encapsulated operations over any M that is composition-
closed:

Lemma 3. If M is composition-closed, then every encapsulated extended oper-
ation of the object is replaceable by M.

Proof. In any extended history, an uninterrupted call of the encapsulated ex-
tended operation can be replaced by its internal base operation calls. This se-
quence of base calls is atomically equivalent to a single base call which can
replace it, and vice versa.

By combining Lemma 3 with Corollary 1, we get:

Corollary 2. Let M, the set of all base method calls of a concurrent object, be
composition-closed. For any encapsulated extension x of this object, if H1

M is
linearizable, then Hx (and x) is linearizable.

The immediate implication of Corollary 2 on the generic register example is that
checking the linearizability of H1

{read()/b,write(a)/b,compareAndSwap(a,b)/c} guaran-
tees the linearizability of Hx. We can further reduce the set of histories that
need to be checked by noticing that every compareAndSwap(a, b)/c is replaceable
by the set of read and write operations:

Corollary 3. For encapsulated extended operations over a generic register, ver-
ifying the linearizability of the histories in H1

{read()/b,write(a)/b} guarantees the
linearizability of every history in Hx.

In Section 5.2 we show that verifying the linearizability of many real world
methods can be reduced to verifying linearizability of encapsulated extended
operations over a generic register.

4.3 Further Reductions

Let’s look at some history h ∈ H1
M, assuming M is composition-closed. Let’s

assume that there is a sequence s ∈ M∗ of successive base operations in h, and

324 O. Zomer et al.

the interrupted encapsulated operation does not call any internal operations
during that sequence, i.e., its thread is idle. The sequence of base operations
is atomically equivalent to some single base operation m(a)/b ∈ M that can
replace s and give a new history h′ ∈ H1

M. Verifying the linearizability of h′

guarantees that h is linearizable, because we can take the linearization of h′ and
replace m(a)/b back with s.

Let H1
M ⊆ H1

M be the subset of histories where between every two uninter-
rupted base operations, the interrupted encapsulated operation must have called
an internal operation. By induction, we can conclude:

Lemma 4. If M is composition-closed, then verifying the linearizability of H1
M

guarantees the linearizability of H1
M, and therefore guarantees the linearizability

of Hx.

Corollary 4. For encapsulated extended operations over a generic register, ver-
ifying the linearizability of the histories in H1

{read()/b,write(a)/b} guarantees the

linearizability of every history in Hx.

Corollary 4 subsumes the results of Corollary 3.
In every history h ∈ H1

M, between every two uninterrupted base operations,
there must be an internal operation of the interrupted call. This means that if
h is linearizable, the linearization point of the interrupted call may be seen as if
it happened in one of its internal operations (or in its invocation/response) —
we look at the uninterrupted calls with the linearization points that precede
and succeed the one of the interrupted call, find an internal operation (of the
interrupted call) that reside between them, and move the linearization point of
the interrupted call inside it, without breaking the total order of the linearization
points.

Lemma 5. If M is composition-closed and H1
M is linearizable, then we can

linearize every history in H1
M using linearization points that reside in the same

thread.

Notice the necessity of M being composition-closed. Figure 6 is an artificial
example for a replaceable encapsulated operation over a base data-structure that
is not composition-closed — the sequence increase()/ok increase()/ok is not
atomically equivalent to any single operation. In this linearizable example, some
histories can be linearized only by picking a linearization point that resides in a
different thread, such as:

Env.:
[

increase()

]
/ok

[
increase()

]
/ok

Main:
[

optimisticIsEven()

[
read()

]
/1

◦
[

read()

]
/3

]
optimisticIsEven/true

Checking Linearizability of Encapsulated Extended Operations 325

boolean optimisticIsEven() {
int temp1, temp2;
temp1 = read();
if (temp1 % 2 == 0) {
return true;

}
temp2 = read();
if (temp1 == temp2) {
return false;

}
else {
return true;

}
}

optimisticIsEven()/true ∝ {read()/x | x is even}
∀x even : read()/x ∝ {optimisticIsEven()/true}
optimisticIsEven()/false ∝ {read()/x | x is odd}
∀x odd : read()/x ∝ {optimisticIsEven()/false}

Fig. 6. An encapsulated extended operation over an integer register with two base
operations: read() that returns the register’s value and increase() that increases its
value by one. optimisticIsEven() is replaceable by the base methods.

5 On the Applicability of the Reduction

5.1 Checking Encapsulation of Extended Operations

Checking that a method is an encapsulated extension can be done conservatively
by checking that: (1) The method does not access global mutable variables, and
(2) all external methods invoked by an encapsulated method are either base-
methods or pure.

Out of 109 methods used [5], 55 methods were identified as encapsulated
operations, using the technique described in [6]. The base data-structure in all
of the 55 methods was the linearizable Java ConcurrentMap interface.

5.2 Checking Composition Closure

In general, checking that an encapsulated operation is replaceable (as defined in
Section 4) can be hard. It requires verifying all sequential executions, which is un-
decidable. In contrast, checking composition closure can be done once and for all
for a given base data structure. Unfortunately, the Java ConcurrentMap, which
is heavily used, does not satisfy this closure property since a sequence of opera-
tions on different keys is not necessarily equivalent to any single ConcurrentMap
operation.

We observed 52 out of the 55 operations employ maps in a limited fashion: any
single invocation of the operation is guaranteed to invoke map operations on only
one key (Note that different execution paths may, however, operate on different
keys — Figure 7 is an interesting example which illustrates this). Such operations
are guaranteed to be replaceable by ConcurrentMap’s base operations. In fact,

326 O. Zomer et al.

the code can be syntactically replaced by an equivalent extended encapsulated
operation over a generic register as follows:

map.get(k)⇒ reg.read()

map.put(k, v)⇒ reg.write(v)

map.remove(k)⇒ reg.write(null)

map.putIfAbsent(k, v)⇒ reg.compareAndSwap(null,v)

map.replace(k, v1, v2)⇒ (reg.compareAndSwap(v1, v2) == v1)

Intuitively, checking the linearizability of the new method is equivalent to check-
ing the linearizability of the original method.

The other 3 out of the 55 operations employ either use size and clean or
more than one key and therefore are not considered.

final FxLanguage DEFAULT = ...
final ConcurrentMap<FxLanguage, FxValueRenderer> renderers = ...

FxValueRenderer getInstance(FxLanguage language) {
if (language == null) {
// default renderer always exists
return renderers.get(DEFAULT);

}
if (!renderers.containsKey(language)) {
renderers.putIfAbsent(language, new FxValueRendererImpl(language));

}
return renderers.get(language);

}

Fig. 7. An extended encapsulated operation from Flexive, class: FxValueRendererFac-
tory. In every execution path, only a single key is used. This example is not lin-
earizable — consider the following history: [A.getInstance(L),A.containsKey(L)/false,
A.putIfAbsent(L,FxA)/null ,B .put(L,FxB)/FxA,A.get(L)/FxB ,]A.getInstance/FxB .

5.3 Checking Linearizaibility via Abstract Interpretation

We implemented a conservative tool to check the linearizability of the 52 ex-
amples using the abstract interpreter described in [4]. The tool employs our
theoretical results by checking only histories with 2 threads in which the ex-
tended operation run once. We verified 24 examples as linearizable (Table 1)
and detected 27 linearizabilty violations (Table 2). Our implementation failed to
verify one linearizable example due to the abstraction, and issued a false alarm
(see Figure 8) — The reason for the failure is an over approximation that did
not store the correlations between objects and constants, such as osFamily and
"windows"/"unix".

Checking Linearizability of Encapsulated Extended Operations 327

Table 1. Encapsulated operations verified as linearizable by the static analysis method
presented in [4]

Application Name Class Name Code Lines Verification Time Abstract States
Apache ServiceMix SimpleLockManager 11 2375 (ms) 49
Clojure Namespace 8 2329 (ms) 49
Cometdim ChatService 7 2169 (ms) 49
DWR AbstractMapContextScope 14 2357 (ms) 49
ehcache-spring-annotation CacheAttributeSourceImpl 11 2466 (ms) 49
FindBugs Profiler 8 2451 (ms) 54
Granite ExternalizerFactory 14 2559 (ms) 49
GWTEventService DefaultUserManager 11 1702 (ms) 14
Hazelcast Log4jFactory 12 2450 (ms) 49
ifw2 PropertyNavigator 14 2794 (ms) 91
ifw2 ReflectiveClone 11 2310 (ms) 49
ifw2 ClassInfo 10 2326 (ms) 49
Jboss AOPLogger 14 2404 (ms) 49
Jetty AbstractBayeux 12 2450 (ms) 49
Jetty OortChatService 7 2185 (ms) 47
Jetty OortChatService 7 2341 (ms) 47
Jexin ActiveTemplateMap 8 2341 (ms) 47
Jsefa InitialConfiguration 14 2388 (ms) 49
Keyczar StreamCache 12 2502 (ms) 49
OpenJDK ThrowingTasks 12 3776 (ms) 98
Tammi StaticPersisterFactory 18 3308 (ms) 122
ProjectTrack MethodCallRecorder 8 2326 (ms) 48
ProjectTrack MethodCallRecorder 8 2357 (ms) 49
Yasca Profiler 8 2356 (ms) 49

Table 2. Encapsulated operations with non-linearizability reports issued by the static
analysis. The bold row (autoandroid) is the benchmark from Figure 8 that raised a
false alarm.

Application Name Class Name Code Lines Verification Time Abstract States
Adobe BlazeDS FIFOMessageQueue 10 1498 (ms) 17
Adobe BlazeDS FIFOMessageQueue 10 1452 (ms) 17
Annsor Annsor 11 1405 (ms) 12
Apache Cassandra SuperColumn 15 1529 (ms) 12
Apache Cassandra ColumnFamily 21 1498 (ms) 12
Apache MyFaces Trinidad SessionChangeManager 5 1297 (ms) 8
Apache Tomcat ApplicationContext 9 1343 (ms) 9
Apache Tomcat ApplicationContext 8 1374 (ms) 12
Apache Tomcat ReplicatedContext 6 1436 (ms) 9
Apache CXF ClassResourceInfo 12 1483 (ms) 24
autoandroid AndroidTools 16 1342 (ms) 17
dyuproject StandardConvertorCache 10 1438 (ms) 17
dyuproject StandardConvertorCache 11 1437 (ms) 20
Flexive MessageBean 7 1390 (ms) 8
Flexive FxValueRendererFactory 10 1655 (ms) 19
GlassFish BeanManager 13 1531 (ms) 13
Gridkit ReflectionPofSerializer 14 1455 (ms) 12
GWTEventService AutoIncrementFactory 4 1266 (ms) 7
Hazelcast ClientEndpoint 8 1655 (ms) 12
Hudson Hudson 10 1307 (ms) 12
JRipples HessianSkeletonProviderImpl 21 1483 (ms) 19
memcache-client SockIOpool 10 1327 (ms) 8
Tammi StaticVariableRegistry 14 1389 (ms) 11
RestEasy XmlJAXBContextFinder 8 1395 (ms) 13
RestEasy JsonJAXBContextFinder 5 1732 (ms) 12
RestEasy JsonJAXBContextFinder 5 1436 (ms) 12
Torque-spring PersistenceManagerFactory 8 1529 (ms) 12
Webmill ContextNavigator 9 1545 (ms) 12

328 O. Zomer et al.

public static AndroidTools forOsFamily(String osFamily) {
AndroidTools instance = androidTools.get(osFamily);
if (instance == null) {
AndroidTools newInstance = null;
if (osFamily.equals(”windows”)) {
newInstance = new WindowsAndroidTools();

} else if (osFamily.equals(”unix”)) {
newInstance = new UnixAndroidTools();

} else {
throw new UnsupportedOperationException(
”Don’t know how to start android tools on ”+ osFamily);

}
instance = androidTools.putIfAbsent(osFamily,newInstance);
if (instance == null) instance = newInstance;

}
return instance;

}

Fig. 8. Application Name: autoandroid, Class Name: AndroidTools. A linearizable en-
capsulated operation that the verification failed to verify, due to impreciseness of our
abstraction.

6 Related Work

Linearizability checking tools can be very effective in identifying bugs and a sub-
stantial body of work exists in this space, as discussed below. A distinguishing
aspect of our work is that we focus on a special case, namely verifying lineariz-
ability of encapsulated extensions of a linearizable object. This problem was
motivated by [1] which shows that extended operations of linearizable collec-
tions are widespread and are a source of concurrency bugs. While [1] presents
a dynamic tool for checking linearizability of extended operations, we focus on
static verification of the same.

Modular Reasoning. The basic techniques we utilize have a long history in the
literature on modular reasoning techniques for concurrent systems. The idea of
using a general client over-approximating the thread environment is common in
modular verification. Previous work represented the environment as invariants [7]
or relations [8] on the shared state. This idea has also been used early on for
automatic compositional verification [9]. In addition, this approach has led to the
notion of thread-modular verification for model checking systems with finitely-
many threads [10], and has also been applied to the domain of heap-manipulating
programs with coarse-grained concurrency [11]. The main ideas in these works
is to approximate the thread environment.

Checking Linearizability of Encapsulated Extended Operations 329

Exploiting Atomicity of Methods. [12] shows that schedules where linearizable
operations are executed with interruptions need not be generated. This can re-
duce the number of interleavings that need to be explored. This insight has also
been discussed and made use of in the preemption sealing work of [13]. [14,15]
use the atomicity proof to simplify the correctness proofs of multithreaded pro-
grams. [16] presents a proof calculus for reasoning about concurrent programs
with atomic sections. It would be interesting to see if such a proof calculus can
be used to simplify the proofs of our reduction theorems.

Dynamic Tools for Finding Linearizabilty Violations. Vyrd [17] is a dynamic
checking tool that checks a property similar to linearizability. Line-Up [18] is a
dynamic linearizability checker that enumerates schedules.

Static Linearizability Verification. [19] manually proves correctness of several
interesting concurrent data structure implementations using rely-guarantee rea-
soning. The PVS system has been successfully used to semi-automatically verify
linearizability [20,21,22] of several interesting programs.

[23] pioneered the idea of using abstract interpretation [24] to develop an au-
tomatic over-approximation for checking linearizability. Thus, the algorithm can
prove linearizability in certain programs but may fail due to overly conservative
abstraction. [25,26] generalize [23] using a thread-centric approach to programs
with unbounded number of threads. [27] combines the idea of bounded difference
with rely guarantee reasoning and shape abstractions in order to perform fast
linearizability checks.

Composing Linearizable Operations. Recently several interesting techniques for
enforcing atomicity of sequences of linearizable operations were developed. [28]
employs a variation of the join-calculus to compose operations via DCAS. [29,6]
synthesize locks to enforce atomicity and deadlock freedom. In contrast to these
approaches, we focus on understanding the complexity of verifying the lineariz-
ability of a special useful class of composed operations.

References

1. Shacham, O., Bronson, N.G., Aiken, A., Sagiv, M., Vechev, M.T., Yahav, E.: Test-
ing atomicity of composed concurrent operations. In: OOPSLA, pp. 51–64 (2011)

2. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12(3) (1990)

3. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for
concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000)

4. Zomer, O., Golan-Gueta, G., Ramalingam, G., Sagiv, M.: Checking linearizability
of encapsulated extended operations. Technical report, Tel Aviv University (2013),
http://www.cs.tau.ac.il/~ggolan/papers/ESOP14TechRep.pdf

5. Shacham, O.: Verifying Atomicity of Composed Concurrent Operations. PhD the-
sis, Tel Aviv University (2012)

6. Golan-Gueta, G., Ramalingam, G., Sagiv, M., Yahav, E.: Concurrent libraries with
foresight. In: PLDI, pp. 263–274 (2013)

7. Hoare, C.A.R.: Towards a theory of parallel programming. Operating System Tech-
niques (1972)

8. Jones, C.B.: Specification anddesign of (parallel) programs. In: IFIPCongress (1983)

http://www.cs.tau.ac.il/~ggolan/papers/ESOP14TechRep.pdf

330 O. Zomer et al.

9. Clarke Jr., E.: Synthesis of resource invariants for concurrent programs.
TOPLAS 2(3), 338–358 (1980)

10. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

11. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2007, pp. 266–277. ACM, New York (2007)

12. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent ob-
jects. Theoretical Computer Science 411(51-52), 4379–4398 (2010)

13. Ball, T., Burckhardt, S., Coons, K.E., Musuvathi, M., Qadeer, S.: Preemption seal-
ing for efficient concurrency testing. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 420–434. Springer, Heidelberg (2010)

14. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp.
338–349 (2003)

15. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455 (2007)

16. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL, pp.
2–15 (2009)

17. Elmas, T., Tasiran, S., Qadeer, S.: Vyrd: verifying concurrent programs by runtime
refinement-violation detection. In: PLDI, pp. 27–37 (2005)

18. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI, pp. 330–340 (2010)

19. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: PPoPP (2006)

20. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

21. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

22. Gao, H., Hesselink, W.H.: A formal reduction for lock-free parallel algorithms.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 44–56. Springer,
Heidelberg (2004)

23. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

24. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: POPL,
pp. 238–252 (1977)

25. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quan-
tification for concurrent shape analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)

26. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decom-
position for concurrent shape analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008.
LNCS, vol. 5079, pp. 363–377. Springer, Heidelberg (2008)

27. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

28. Turon, A.: Reagents: expressing and composing fine-grained concurrency. In: PLDI,
pp. 157–168 (2012)

29. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Concurrent data
representation synthesis. In: PLDI, pp. 417–428 (2012)

Bounded Linear Types in a Resource Semiring

Dan R. Ghica and Alex I. Smith

University of Birmingham, UK

Abstract. Bounded linear types have proved to be useful for automated
resource analysis and control in functional programming languages. In
this paper we introduce a bounded linear typing discipline on a general
notion of resource which can be modeled in a semiring. For this type
system we provide both a general type-inference procedure, parameter-
ized by the decision procedure of the semiring equational theory, and a
(coherent) categorical semantics. This could be a useful type-theoretic
and denotational framework for resource-sensitive compilation, and it
represents a generalization of several existing type systems. As a non-
trivial instance, motivated by hardware compilation, we present a com-
plex new application to calculating and controlling timing of execution
in a (recursion-free) higher-order functional programming language with
local store.

1 Resource-Aware Types and Semantics

The two important things about a computer program are what it computes and
what resources it needs to carry out the computation successfully. Correctness of
the input-output behavior of programs has been, of course, the object of much
research from various conceptual angles: logical, semantical, type-theoretical and
so on. Resource analysis has been conventionally studied for algorithms, such as
time and space complexity, and for programs has long been a part of research in
compiler optimization.

An exciting development was the introduction of semantic [1] and especially
type theoretic [14] characterizations of resource consumption in functional pro-
gramming languages. Unlike algorithmic analyses, type based analysis are for-
mal and can be statically checked for implementations of algorithms in concrete
programming languages. Unlike static analysis, a typing mechanism is composi-
tional which means that it supports, at least in principle, separate compilation
and even a foreign function interface: it is an analysis based on signatures rather
than implementations.

Linear logic and typing, because of the fine-grained treatment of resource-
sensitive structural rules, constitute an excellent framework for resource anal-
ysis, especially in its bounded fragment [13], which can logically characterize
polynomial time computation. Bounded Linear Logic (BLL) was subsequently
extended to improve its flexibility while retaining poly-time [5] and further exten-
sions to linear dependent typing were used to completely characterize complexity
of evaluation of functional programs [4].

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 331–350, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

332 D.R. Ghica and A.I. Smith

Such analyses use time as a motivating example, but can be readily adapted to
other consumable resources such as energy or network traffic. What they have in
common is a monadic view of resources, tracking their global usage throughout
the execution of the term.

A complementary view on resource sensitivity is the co-monadic one, as ad-
vocated by Melliès and Tabareau [18]. The intuition is that the type system
tracks how much resource a term needs in order to execute successfully. This
is quite typical when controlling reusable resources which can be allocated and
de-allocated at runtime, the typical example of which is memory, especially lo-
cal (stack-allocated) memory. In fact this resource-sensitive approach is key in
giving a better semantic understanding of higher-order state [17]. This view of
resources is instrumental in facilitating the compilation of functional-imperative
programming languages directly for resource-constrained runtimes, such as elec-
tronic circuits [8].

2 Bounded Linear Types Over a Semiring

Types are generated by the grammar θ ::= σ | (J ·θ) � θ, where σ is a fixed
collection of base types and J ∈ J , where (J ,+,×,0,1) is a semiring. We will
always take · to bind strongest so we will omit the brackets.

Let Γ = x1:J1·θ1, . . . , xn:Jn·θn be a list of identifiers xi and types θi, anno-
tated with semiring elements Ji. Let fv(M) be the set of free variables of term
M , defined in the usual way. The typing rules are:

Identity
x : 1·θ � x : θ

Γ �M : θ Weakening
Γ, x : J ·θ′ �M : θ

Γ, x : J ·θ �M : θ′
Abstraction

Γ � λx.M : J ·θ � θ′

Γ �M : J ·θ � θ′ Γ ′ � N : θ Application
Γ, J ·Γ ′ �MN : θ′

Γ, x : J ·θ, y : K·θ �M : θ′
Contraction

Γ, x : (J +K)·θ �M [x/y] : θ′

In Weakening we have the side condition x �∈ fv(M), and in Application we
require dom(Γ) ∩ dom(Γ ′) = ∅. In the Application rule we use the notation

J ·(x1 : K1·θ1, . . . , xn : Kn·θn) � x1 : (J ×K1)·θ1, . . . , xn : (J ×Kn)·θn (1)

Note. For the sake of simplicity we take operations in the semiring to be re-
solved syntactically within the type system. So types such as 2·A and (1 + 1)·A
are taken to be syntactically equal. In the context of type-checking this is rea-
sonable because semiring actions are always constants that the type-checker
can calculate with. If we were to allow resource variables, i.e. some form of

Bounded Linear Types in a Resource Semiring 333

resource-based polymorphism (cf. [5]) then a new structural rule would be re-
quired to handle type congruences induced by the semiring theory:

Γ, x : J ·θ′ �M : θ J =J J ′
Semiring

Γ, x : J ′·θ′ �M : θ

But in our current system this level of formalization is not worth the
complication.

2.1 Examples

Bounded Linear Logic. If we take J to be resource polynomials we obtain
BLL. A monomial is any finite product of binomial coefficients

∏n
i=1

(
xi

ni

)
; a

resource polynomial is a finite sum of monomials. They are closed under sum
and product and have a semiring structure. The Axiom of BLL is not quite the
same as ours, as we require a unit action on the type of the variable, whereas
in BLL any bound can be introduced, hence the whimsical name of Waste of
Resources for the BLL Axiom. In our system a wasteful axiom is admissible only
if a resource can be decomposed as a sum involving the unit resource, by using
a combination of contraction and weakening.

x : 1·θ � x : θ
y : J ·θ, x : 1·θ � x : θ

x : (J + 1)·θ � x : θ

The intuition of this restriction is that we need at least an unit of resource in
order to use x.

Syntactic Control of Concurrency (SCC). It is possible to use a comonadic
notion of resource to bound the number of threads used by a parallel program-
ming language [10]. This has the advantage of identifying programs with finite-
state models, with applications in automated verification [9] and in hardware
synthesis [11]. If we instantiate J to the semiring of natural numbers we obtain
SCC. However, SCC includes an additive conjunction rule to model sequentiality:

Γ �M : θ Γ � N : θ′

Γ � 〈M,N〉 : θ × θ′

This allows to distinguish between sequential and concurrent programming lan-
guage constants, e.g.: seq :!1·com×!1·com � com versus par :!1·com �!1·com �
com. This is an idea borrowed from Reynolds’s Syntactic Control of Interference
(SCI) [23].

This distinction between sequential and parallel composition becomes inter-
esting when contraction is involved, e.g.

λx.seq〈x, x〉 :!1·com � com vs. λx.par xx :!2·com � com. (2)

Note that SCC uses the notation !k− instead of k ·− to indicate resource actions.

334 D.R. Ghica and A.I. Smith

Tagged Control of Concurrency (TCC). SCI is akin to SCC where all
bounds are set to 1. This means that in SCI the first term in Eqn. 2 can be
typed, but the second cannot. Both SCI and SCC are complicated semantically
by the presence of the extra additive conjunction because it lacks an adjoint
exponential. The complication is also syntactic as the two composition operators
have peculiarly different signatures (uncurried vs. curried).

Completing the syntactic and semantic tableau by providing both conjunc-
tions with exponentials leads to Bunched Typing [21]. However, it is possible
to have an SCI-like type system without using both additive and multiplicative
conjunctions, but harnessing the power of an expressive enough set of resources.
The elements of the semiring are a system of tags corresponding, intuitively, to
run-time locks that need to be acquired. A notion of safety is introduced for
tags, corresponding to the requirement that locks cannot be grabbed more than
once. The restrictions on terms of an SCI-like type system can be recovered by
imposing the restriction that all tags are safe. The two command compositions,
sequential and parallel, have types:

seqτ1,τ2 : τ1·com � τ2·com � com vs. parτ : τ ·com � τ ·com � com,

for any (safe) tags τ, τ1, τ2 such that τ1+ τ2 is also safe. Note that the two com-
mand compositions (sequential and parallel) now have the same type skeleton
(com � com � com) and no extra rules are required. The example terms in
Eqn. 2 can be written in a more uniform way as:

λx.x;x : (τ1 + τ2)·com � com vs. λx.x ||x : (τ + τ)·com � com. (3)

As in SCI, the second one is not a valid term, as the tag (τ + τ) cannot be safe.
The uniformity of the type skeleton is quite important for practical usage.

Under the original SCI, functions that need their arguments to share information
must use an uncurried signature, as opposed to functions that disallow that. A
syntactic distinction that poses a sometimes difficult burden on the programmer.
By contrast, in TCC the tags are inferred automatically by the compiler.

A full description of the type system, its game semantics and an application
to hardware compilation is forthcoming [24].

2.2 Modularity

Given two semirings J ,J ′ their Cartesian product J ×J ′ is also a semiring with
multiplicative unit (1,1′), additive unit (0,0′) and addition and multiplication
defined component-wise. Because there are many different resources one might
want to track in the type system (time, space, energy, bandwidth, etc.) with
significantly different properties, the fact that they can be easily combined in a
modular way can be a quite appealing feature.

2.3 Type Inference

We present a bound inference algorithm for the abstract system which works
by creating a system of constraints to be solved, separately, by an SMT-solver
thatcan handle the equational theory of the resource semiring. In the type

Bounded Linear Types in a Resource Semiring 335

grammar, for the exponential type J ·θ � θ we allow J to stand for a concrete el-
ement of J or for a variable in the input program; the bound-inference algorithm
will produce a set of constraints such that every model of those constraints gives
rise to a typing derivation of the program without resource variables as vari-
ables are instantiated to suitable concrete values. Type judgments have form
Γ � M : θ � χ, where χ is a set of equational constraints in the semiring. We
also allow an arbitrary set of constants k : θ, which will allow the definition
of concrete programming languages based on the type system. We allow each
constant k to introduce arbitrary resource constraints χk

x : 1·θ � x : θ � true ∅ � k : θ � χk

Γ �M : θ � χ

Γ, x : J ·θ′ �M : θ � χ

Γ, x : J ·θ �M : θ′ � χ

Γ � λx : θ.M : J ·θ � θ′ � χ

Γ, x : J1·θ′, y : J2·θ′′ �M : θ � χ

Γ, x : J ·θ′ �M [x/y] : θ � χ ∪ {J = J1 + J2} ∪ θ′ = θ′′

Γ �M :J ·θ � θ′ � χ x1:J1·θ1, . . . , xn:Jn·θn � N :θ′′ � χ′

Γ, x1:J
′
1·θ1, . . . , xn:J

′
n·θn �MN :θ′ � χ∪χ′∪{J ′

k = J ·Jk | k = 1, n}∪θ = θ′′

The constraints of shape θ1 = θ2 are to be interpreted in the obvious way, as the
set of pairwise equalities between resource bounds used in the same position in
the two types:

σ = σ
def
= ∅

J1·θ1 � θ′1 = J2·θ2 � θ′2
def
= {J1 = J2} ∪ θ1 = θ2 ∪ θ′1 = θ′2.

If M is a model, i.e. a function mapping variables to concrete values, by Γ [M]
we write the textual substitution of each variable by its concrete value in a
sequent. The following is then true by construction:

Theorem 1. If Γ � M : θ � χ and M is a model of the system of constraints
χ in the semiring J then (Γ �M : θ)[M] is derivable.

2.4 Categorical Semantics

We give an abstract framework suitable for interpreting the abstract type system
of Sec. 2. Up to this point the calling discipline of the type system was not
relevant, as there are no side-effects, but for giving an interpretation we need
to make this choice. In order to remain relevant to our motivating application,
hardware compilation, we shall choose the call-by-name mechanism, which is
used by the Geometry of Synthesis compiler.

We require two categories.We interpret computations in a symmetric monoidal
closed category (G,⊗, I) in which the tensor unit I is a terminal object. Let α
be the associator and λ, ρ be the right and left unitors. We write the unique
morphism into the terminal object as !A : A→ I. Currying is the isomorphism

ΛA,B,C : A⊗B → C � A→ B � C,

and the evaluation morphism is evalA,B : A⊗ (A � B)→ B.

336 D.R. Ghica and A.I. Smith

We interpret resources in a category R with two monoidal tensors (�, 0) and
(, 1) such that:

J 	 (K � L) � J 	 K � J 	 L (r-distributivity)

(J � K) 	 L � J 	 L � K 	 L (l-distributivity)

J 	 0 � 0 	 J � 0 (zero).

The action of resources on computations is modeled by a functor · : R×G → G
such that the following natural isomorphisms must exist:

δJ,K,A : J ·A⊗K·A � (J � K)·A (4)

πR,R′,A : R·(R′·A) � (R2R′)·A (5)

ζA : 0·A � I (6)

ιA : 1·A � A (7)

and the following diagrams commute:

J ·A⊗K·A⊗ L·A

1J·A⊗δK,L,A

��

δJ,K,A⊗1L·A �� (J � K)·A⊗ L·A

δJ�K,L,A

��
J ·A⊗ (K � L)·A

δJ,K�L,A �� (J � K � L)·A

(8)

J ·A⊗K·A

J·f⊗K·f
��

δJ,K,A �� (J � K)·A

(J�K)·f
��

J ·B ⊗K·B
δJ,K,B �� (J � K)·B

(9)

Natural isomorphism π (Eqn. 5) reduces successive resource actions on com-
putations to a composite resource action, corresponding to the product of the
semiring. Natural isomorphism δJ,K,A in Eqn. 4 is a “quantitative” version of
the diagonal morphism in a Cartesian category, which collects the resources of
the contracted objects. The commuting diagram in Eqn. 8 stipulates that the
order in which we use the “quantitative” diagonal order to contract several ob-
jects is irrelevant, and the commuting diagram in Eqn. 9 gives a “quantitative”
counterpart for the naturality of the diagonal morphism. Finally, Eqns. 6 and 7
show the connection between the units of the tensors involved.

A direct consequence of the naturality of ρ and I being terminal, useful for
proving coherence, is:

Proposition 1. The following diagram commutes in the category G for any
f : B → C:

B ⊗A
1B⊗!A ��

f⊗1A

��

B ⊗ I
ρB �� B

f

��
C ⊗A

1C⊗!A �� C ⊗ I
ρC �� C.

Bounded Linear Types in a Resource Semiring 337

Computations are interpreted in a canonical way in the category G. Types are
interpreted as objects and terms as morphisms, with

�J ·θ � θ′�G = (�J�R·�θ�G) � �θ′�G .

From now on, the interpretation of the resource action is written as J instead of
�J�R when there is no ambiguity and the subscript of �−�G is left implicit.

Environments are interpreted as

�Γ � = �x1 : J1·θ1, . . . xn : Jn·θn� = J1·�θ1�⊗ · · · ⊗ Jn·�θn�.

Terms are morphisms in G, �Γ �M : θ� defined as follows:

�x : 1·θ � x : θ� = ι�θ�

�Γ, x : J ·θ �M : θ′� = 1�Γ �⊗!J·�θ�; ρ�Γ �; �Γ �M : θ�
�Γ � λx.M : J ·θ � θ′� = ΛJ·�θ�

(�Γ, x : J ·θ �M : θ′�)
�Γ, J ·Γ ′ � FM : θ′� = (�Γ � F : J ·θ � θ′�⊗ J ·�Γ ′ �M : θ�); evalJ·�θ�,�θ′�
�Γ, x : (J +K)·θ �M [x/y] : θ′� = 1�Γ � ⊗ δJ,K,θ; �Γ, x : J ·θ, y : K·θ �M : θ�.

2.5 Coherence

The main result of this section is the coherence of typing. The derivation trees are
not unique because there is choice in the use of the weakening and contraction
rules. Since meaning is calculated on a particular derivation tree we need to show
that it is independent of it. The coherence conditions for the monoidal category
are standard [15], but what is interesting and new is that resource manipulation
does not break coherence. The key role is played by the isomorphism δ which is
the resource-sensitive version of contraction, which can combine or de-compose
resources without loss of information.

The key idea of the proof is that we can bring any derivation tree to a standard
form (which we call stratified), with weakening and contraction performed as late
as possible. A combination of weakenings and contractions can bring a term to
linear form, which has a uniquely determined derivation tree. The key result is
Lem. 3 which stipulates that the order in which contractions and weakenings are
performed is irrelevant.

The following derivation rules is admissible because it is a chain of contractions
and weakenings, followed by an abstraction:

x1 : J1·θ, . . . , xn : Jn·θ, Γ �M : θ′
ACW

Γ � λx.M [x/xi] : (J1 + · · ·+ Jm)·θ � θ′

where x, xj �∈ fv(M), for some 1 ≤ m ≤ n, and all 1 ≤ i ≤ m, m ≤ j ≤ n.
Variables x1, . . . , xm are contracted into a fresh variable x and dummy variables
xm+1, . . . , xn can be added.

We denote sequents Γ � M : θ by Σ and derivation trees by ∇. Let Λ(Σ) ∈
{id, wk, ab, ap, co, acw} be a label on the sequents, indicating whether a sequent

338 D.R. Ghica and A.I. Smith

is derived using the rule for identity, weakening, etc. If a sequent Σ = Γ �M : θ
is the root of a derivation tree ∇ we write it Σ∇ or Γ �∇ M : θ.

We say that a sequent is linear if each variable in the environment Γ occurs
freely in the term M exactly once.

Definition 1. For a linear sequent, we call a stratified derivation tree the unique
derivation tree produced by the following deterministic algorithm.

MN : The only possible rule is Application and, since the judgement Γ, J ·Δ �
MN : θ is about a linear term, both Γ � M : J · θ′ � θ and Δ � N : θ′

are linear and there is only one way Γ can be split, unless J = 0. In this
case any resource actions in Δ can be chosen, since they will be zeroed by
the action of J . To keep the algorithm deterministic we choose zeroes. This
ensures that every resource action in the derivation of N is also 0.

λx.M : We use AWC to give each occurrence of x : J · A in M a new (fresh)
name xi : Ji : A. Each Ji is uniquely determined by the context in which xi
occurs. Note that it is necessary that

∑
Ji ≤ J , otherwise the term cannot

be typed.

x: The only possible rule is Weakening.

Lemma 1. If a linear sequent has a derivation tree then it has a (unique) strat-
ified derivation tree. Moreover, all the sequents occurring in the tree are linear.

Proof. The proof is almost immediate (by contradiction). Linear derivations can-
not use weakening or contractions except where they can be replaced by AWC,
so to construct a stratified tree, we just ned to normalise uses of 0.

We now show that any derivation can be reduced to a stratified derivation
through applying a series of meaning-preserving tree transformations, which we
call stratifying rules.

The Weakening rule commutes trivially with all other rules except Identity,
Abstraction and Contraction, if they act on the weakened variable. In thes cases
we replace the sequence of Weakening followed by Abstraction and/or Contrac-
tion with the combined AWC rule. The more interesting tree transformation
rules are for Contraction.

Contraction commutes with Application. There are two pairs of such rules,
one for pushing down contraction in the function and one for pushing down
contraction in the argument:

Γ, x : J ·θ, y : J ′·θ � F : J1·θ1 � θ2

Γ, x : (J + J ′)·θ � F [x/y] : J1·θ1 � θ2 Γ ′ �M : θ1

Γ, x : (J + J ′)·θ, J1·Γ ′ � F [x/y]M : θ2

AL⇐⇒
Γ, x : J ·θ, y : J ′·θ � F : J1·θ1 � θ2 Γ ′ �M : θ1

Γ, x : J ·θ, y : J ′·θ, J1·Γ ′ � FM : θ2

Γ, x : (J + J ′)·θ, J1·Γ ′ � (FM)[x/y] : θ2

Bounded Linear Types in a Resource Semiring 339

Similarly for pushing down contraction from the argument side and similarly for
rules involving weakening:

Γ � F : J1·θ1 � θ2

Γ, x : J ·θ, y : J ′·θ �M : θ1

Γ, x : (J + J ′)·θ �M [x/y] : θ1

Γ, x : (J1 × (J + J ′))·θ, Γ ′ � F (M [x/y]) : θ2

AR⇐⇒
Γ � F : J1·θ1 � θ2 Γ ′, x : J ·θ, y : J ′·θ �M : θ1

Γ, J1·Γ ′, x : (J1 × J)·θ, y : (J1 × J ′)·θ � FM : θ2

Γ, x : (J1 × J + J1 × J ′)·θ, Γ ′ � (FM)[x/y] : θ2

Contraction also commutes with Abstraction, if the contracted and abstracted
variables are distinct, x �= y:

Γ, x : J ·θ, x′ : J ′·θ, y : K·θ′ �M : θ′′

Γ, x : (J + J ′)·θ, y : K·θ′ �M [x/x′] : θ′′

Γ, x : (J + J ′)·θ � λy.M [x/x′] : K·θ′ � θ′′

CA⇐⇒
Γ, x : J ·θ, x′ : J ′·θ, y : K·θ′ �M : θ′′

Γ, x : J, x′ : J ′·θ � λy.M : K·θ′ � θ′′

Γ, x : (J + J ′)·θ � (λy.M)[x/x′] : K·θ′ � θ′′

The rule for swapping contraction and weakening is (types are obvious and we
elide them for concision):

Γ, y, z �M

Γ, y �M [y/z]

Γ, y, x �M [y/z]

WC⇐⇒
Γ, y, z �M

Γ, y, z, x �M

Γ, y, x �M [y/z]

The final rule is to zero-out the resource actions of free identifiers used in deriva-
tions of functions with zero-types.

Γ �M : 0·θ � θ′ Γ ′ � N : θ
Γ, 0·Γ ′ �MN : θ′

ZO⇐⇒ Γ �M : 0·θ � θ′ 0·Γ ′ � N : θ
Γ, 0·Γ ′ �MN : θ′

Proposition 2. The following judgments are syntactically equal

Γ, x : θ, Γ ′ � F [x/y]M : θ′ = Γ, x : θ, Γ ′ � (FM)[x/y] : θ′,

Γ, x : (J1 × (J + J ′))·θ, Γ ′ � F (M [x/y]) : θ2

= Γ, x : (J1 × J + J1 × J ′)·θ, Γ ′ � (FM)[x/y] : θ2,

Γ, x : (J + J ′)·θ � λy.M [x/x′] : K·θ′ � θ′

= Γ, x : (J + J ′)·θ � (λy.M)[x/x′] : K·θ′ � θ′′.

Proof. The proof of the first two statements is similar. Because Application is
linear it means that an identifier y occurs either in F or in M , but not in both.

340 D.R. Ghica and A.I. Smith

Therefore (FM)[x/y] is either F (M [x/y]) or (F [x/y])M . This makes the terms
syntactically equal. In any semiring, J1×(J+J ′) = J1×J+J1×J ′, which makes
the environments equal. Note that semiring equations are resolved syntactically
in the type system, as pointed out at the beginning of this section. For the third
statement we know that x �= y.

Proposition 3. If ∇ is a derivation and ∇′ is a tree obtained by applying a
stratifying rule then ∇′ is a valid derivation with the same root Σ∇ = Σ∇′

and
the same leaves.

Proof. By inspecting the rules and using Prop. 2.

Most importantly, stratifying transformation preserve the meaning of the
sequent.

Lemma 2. If ∇ ⇒ ∇′ is a stratifying rule then �Σ∇� = �Σ∇′�.
Proof. By inspecting the rules. Prop. 3 states that the root sequents are equal
and the trees are well-formed. For WC (and the other rules involving the strati-
fication of Weakening) this is an immediate consequence of Prop. 1. For AL and
AR the equality of the two sides is an immediate consequence of symmetry in G
and the functoriality of the tensor ⊗. For CA the equality of the two sides is an
instance of the general property in a symmetric monoidal closed category that

f ;Λ(g) = Λ((f ⊗ 1B′); g) for any A
f→ B, B ⊗ B′ g→ C. For ZO the equality is

given by the (zero) isomorphism in the resource category and the ζ isomorphism
(Eqn. 6).

Lemma 3. If ∇,∇′ are derivation trees consisting only of Contraction and
Weakening with a common root Σ then �Σ∇� = �Σ∇′�.
Proof. Weakening commutes with any other rule (Prop. 1). Changing the order
of multiple contraction of the same variable uses the associativity coherence
property in Eqn. 8. Changing the order in which different variables are contracted
uses the naturality coherence property in Eqn. 9.

The lemma above ensures that the AWC rule is itself semantically coherent.

Lemma 4. If ∇ is a derivation there exists a stratified derivation tree ∇′ which
can be obtained from ∇ by applying a (finite) sequence of stratifying tree trans-
formations. Moreover, �Σ∇� = �Σ∇′�.
Proof. The stratifying transformations push contraction and weakening through
any other rules and the derivation trees have finite height. If a contraction or
weakening cannot be pushed through a rule it means that the rule is an ab-
straction on the variable being contracted or weakened, and we replace the rules
with AWC. For the weakening and contractions pushed to the bottom of the tree
the order is irrelevant, according to Lem. 3 The result is a stratified tree. Next
we apply induction on the chain of stratifying rules using Lem. 2 for every rule
application and Lem. 3 for the final chain of weakening and contractions.

Bounded Linear Types in a Resource Semiring 341

Theorem 2 (Coherence). For any derivation trees ∇1,∇2 with common root
Σ, �Σ∇1� = �Σ∇2�.
Proof. Using Lem. 4, ∇1,∇2 must be effectively stratifiable into trees ∇′

1,∇′
2

with the same root and �Σ∇i� = �Σ∇′
i� for i = 1, 2. We first reduce Σ∇i to

a linear form (using contractions and weakenings) then use Lem. 1. The only
difference between ∇′

1,∇′
2 are the order of the abstractions and permutations at

the bottom of the tree, and the choice of names of variables, both of which are
semantically irrelevant (Lem. 3).

3 Case Study: Timing Analysis

In the sequel we will present a more complex resource semiring which we shall use
in giving a precise type-level analysis of timing. The interpretation of the type
J ·θ � θ′ is that the function needs a schedule of execution J for the argument
in order to execute. Again, note the comonadic interpretation of resources. This
type system is interesting in its own right, as a way of capturing timing at the
level of the type system. A full blown analysis for timing bounds, as part of a
more general approach to certifying resource bounds, has been given before using
dependent types [3]. However, this approach only automates the certification
of the bounds whereas we fully automate the process, at the expense of less
precision.

A schedule J = [x1, x2, . . . , xn] is a multiset of stages xi, which are one-
dimensional contractive affine transformations over R. This means that our read-
ing of time is a relative one. A contractive affine transformation is represented

as xs,p =

(
s p
0 1

)
, where 0 ≤ s ≤ 1 and 0 ≤ s + p ≤ 1.. The value s is a scaling

factor relative to the unit interval, and p is a phase change, i.e. a delay from the

time origin. For example, x.25,.5 =

(
.25 .5
0 1

)
represents a stage that starts when

1
2 of the duration has elapsed and lasts for 1

4 the duration relative to which we

are measuring. Some extreme values are

(
1 0
0 1

)
which overlaps perfectly to the

reference interval or

(
0 1
0 1

)
which starts at the end of the reference interval and

has zero duration (is instantaneous).
For an example of how schedules are interpreted as type annotations, the type

[x.5,0, x.5,.5]·com � com is of a function that executes its argument twice. First
argument starts instantly and the second starts half-way through its execution;
both take 1

2 of the execution.
In mathematical terms, schedules are the semigroup semiring of one-

dimensional contractive affine transformations, usually written as J = N[Affc1].
This is a canonical construction which has the mathematical properties we
desire.

Contractive affine transformations enable composition of timed functions
in a natural way, because such transformations compose, by matrix product.

342 D.R. Ghica and A.I. Smith

Composing time represented as absolute intervals is perhaps possible, but it
complicates the rules of the type system significantly. By using relative timing
the rules of the system are clean, at the expense of having a rather complicated
final step of elaborating relative into absolute timings for a closed term (i.e. a
program), as it will be seen in Sec. 3.3.

When we refer to the timing of a computation, and it is unambiguous from
context, we will sometimes use just x to refer to its action on the unit interval
u = [0, 1]. For example, if we write x ⊆ x′ we mean x·u ⊆ x′·u, i.e. [p, s + p] ⊆
[p′, s′ + p′], i.e. p ≥ p′ and s + p ≤ s′ + p′. If we write x ≤ x′ we mean the
Egli-Milner order on the two intervals, x·u ≤ x′·u, i.e. p ≤ p′ and s+ p ≤ s′+ p′.
If we write x∩x′ = ∅ we mean the two intervals are disjoint, x·u∩ x′·u = ∅, etc.

Contractive affine transformations form a semigroup with matrix product as

multiplication and unit element I �
(
1 0
0 1

)
. The semiring of a semigroup (G,×, I)

is a natural construction from any semiring and any semigroup. In our case the
semiring is natural numbers (N), so the semigroup semiring is the set of finitely
supported functions J : Affc1 → N with

0(x) = 0 1(x) =

{
1 if x = I

0 otherwise

(J +K)(x) = J(x) +K(x) (J ×K)(x) =
∑

y,z∈Affc
1

y×z=x

J(y)×K(z).

This is isomorphic to finite multisets over Affc1. We use interchangeably whichever
representation is more convenient.

3.1 A Concrete Programming Language

A concrete programming language is obtained by adding a family of functional
constants in the style of Idealized Algol [22]. We take commands and integer
expressions as the base types, σ ::= com | exp.

Ground-type constants are just n : exp and skip : com. Ground-type operators
are provided with explicit timing information. For example, for commands we
have a family of timed composition operators (i.e. schedulers):

compx,y : [x]·com � [y]·com � com.

Both sequential and parallel composition are subsumed by the timed sched-
uler. Sequential composition is a scheduler in which the arguments are non-
overlapping, with the first argument completing before the second argument
starts: seqx,y = compx,y where x ≤ y and x ∩ y = ∅ (which we write x < y).
Parallel composition is simply parx = compx,x, with both arguments initiating
and completing execution at the same time. Schedulers that are neither purely
sequential nor parallel, but a combination thereof, are also possible.

Bounded Linear Types in a Resource Semiring 343

Arithmetic operators and branching (if) are also given explicit timings.

opx,y : [x]·exp � [y]·exp � exp,

ifx,y : [x]·exp � [y]·σ � [y]·σ � σ, x < y.

Note that branching has an additional sequentiality constraint which stipulates
that the guard must execute before the branches are allowed to start executing.
This is not a type-related constraint, but a language-level constraint.

Assignable variables are handled by separating read and write access, as is
common in Idealized Algol (IA). Let the type of acceptors be defined (syntac-
tically) as the familly accw � [w]·exp � com. There is no stand-alone var type,
instead the reader and writers to a variable are bound to the same memory
location by a block variable constructor with signature:

newσ,J,w1,...,wn : (J ·exp � accw1 � · · ·� accwn � σ) � σ, σ ∈ {exp, com}.

The asymmetric treatment of readers and acceptors is a consequence of using
call-by-name: the read operation is an expression thunk with no arguments, but
the acceptor needs to evaluate its argument which can take an arbitrary amount
of time. For programmer convenience var-typed identifiers can be sugared into
the language but, because the read and write schedules of access need to be
maintained separately, the contraction rules become complicated (yet routine)
so we omit them here.

Example 1. The timings of the IA program new v. v := !v + 1 can be captured
by this typing system. First let us write it in a functional-style syntax where
the occurrences of v are linearized: new(λv1λv2.v2(add v1 1)). The type of this
linearized local-variable binder is new : (exp � acc � com) � com.

The next step is to determine schedules of execution for the constants. The
typing derivation is

v2:[w]·exp�com # v2:accw

v1:exp # v1:exp # addx,y :[x]·exp�[y]·exp�exp

v1:[x]·exp # addx,y v1:[y]·exp�exp # 1:exp

v1:[x]·exp # addx,y v1 1:exp

v2:accw, v1:[w × x]·exp # v2(addx,y v1 1):com

λv1λv2.v2(addx,y v1 1):[w × x]·exp�accw�com

for any stages x, y, w. To complete the term we need to apply the binder
newcom,[w×x],w. Written in a fully sugared notation, this term would be:
newcom,[w×x],w x := !x +x,y 1. We will see later how to choose sensible concrete
values for the stages.

3.2 Type Inference for Pipelining

Computing such detailed timings can perhaps be useful when doing real-time
computation using programs with higher-order functions without recursion, as
this language is expressive enough for implementing, for example, certain digital
signal processing algorithms. However, we will look at a different application mo-
tivated by hardware compilation: imposing a pipelining discipline via the type

344 D.R. Ghica and A.I. Smith

system. Pipelining is important because it allows the concurrent use of a hard-
ware component and thus reduces the overall footprint of a program compiled
in hardware. Without it, any concurrently used component is systematically
replicated, a process called serialization [11].

The constraints imposed by the typing system, as seen in Example 1 can be
quite loose, and there can be broad choice in selecting concrete values for the
stages. In some sense this is a bug, because there can be no principal type, but
we will turn it into a handy feature by introducing extra constraints motivated
by the platform to which we are compiling the program, in this case one relying
on pipelining. Thus the overall system of constraints will contain type, language
and platform constraints independently of each other, a pleasant degree of mod-
ularity. The rest of the section describes the type inference algorithm.

First an observation: the general recipe from Sec. 2.3 cannot be immediately
applied because there is no (off-the-shelf) SMT solver for N[Affc1]. We need to
run the SMT in two stages: first we calculate the sizes of the multiset (as in
SCC inference), which allows us to reduce constraints in N[Affc1] to constraints in
Affc1. Then we map equations over Affc1 into real-number equations, which can be
handled by the SMT solver. There is a final, bureaucratic, step of reconstructing
the multi-sets from the real-number values. To fully automate the process we
start with the Hindley-Milner type inference to determine the underlying simple-
type structure [19].

Multiset size (SCC) type inference is presented in detail elsewhere [11], but
we will quickly review it here. We first interpret schedules as natural numbers,
representing their number of stages J ∈ N. Unknown schedules are variables,
schedules with unknown stages but fixed size (such as those for operators) are
constants. A type derivation results in a constraint system over N which can
be solved by an SMT tool such as Z3 [20]. More precisely, Z3 can attempt to
solve the system, but it can be either unsatisfiable in some cases or unsolvable
as nonlinear systems of constraints over N are generally undecidable.

As a practical observation, solving this constraint using general-purpose tools
will give an arbitrary solution, if it exists, whereas a “small” solution is prefer-
able. [11] gives a special-purpose algorithm guaranteed to produce solutions that
are in a certain sense minimal. To achieve a small solution when using Z3 we set
a global maximum bound which we increment on iterated calls to Z3 until the
system is satisfied.

Next we instantiate schedules to their known sizes, and to re-run the inference
algorithm, this time in order to compute the stages. This proceeds according to
the general type-inference recipe, resulting in a system of constraints over the
N[Affc1] semiring, with the particular feature that all the sizes of all the multisets
is known. We only need to specify the schedules for the constants:

� 1 : exp � true � skip : com � true

� opx,y : [x]·σ � [y]·σ � σ � {x �= I, y �= I}

Bounded Linear Types in a Resource Semiring 345

� ifx,y : [x]·exp � [y]·σ � [y]·σ � σ � {x < y}

�newσ,J,w1,...,wn : (J ·exp � accw1 � · · ·� accwn � σ) � σ �
∧

i=1,n{0 �= wi}

In the typing for op we disallow an instant response and in the typing for new
we disallow instantanewous write operations.

As mentioned, in the concrete system it is useful to characterize the resource
usage of families of constants also by using constraints, which can be combined
with the other constraints (of the type system, etc.). The language of constraints
itself can be extended arbitrarily, provided that eventually we can represent it
into the language of our external SMT solver, Z3. The constraints introduced by
the language constants are motivated as follows:

op: We prevent the execution of any of the two arguments to take the full inter-
val, because an arithmetic operation cannot be computed instantaneously.

if: The execution of the guard must precede that of the branches.
new: The write-actions cannot be instantaneous.

This allows us to translate the constraints from the semiring theory into real-
number constraints. Solving the system (using Z3) gives precise timing bounds
for all types. However, this does not guarantee the fact that computations can
be pipelined, it just establishes timings. In order to force a pipeline-compatible
timing discipline we need to add extra constraints guaranteeing the fact that
each timing annotation J is in fact a proper pipeline.

Two stages x1, x2 ∈ Affc1 are FIFO if they are Egli-Milner-ordered, x1 ≤ x2.
They are strictly FIFO, written x1 x2 if they are FIFO and they do not start
or end at the same time, i.e. if xi·[0, 1] = [ti, t

′
i] then t0 �= t′0 and t1 �= t′1.

Definition 2. We say that a schedule J ∈ N[Affc1] is a pipeline, written Pipe(J),
if and only if ∀x ∈ Affc1, J(x) ≤ 1 (i.e. J is a proper set) and for all x, x′ ∈ J ,
either x x′ or x′ x or x = x′.

Given a system of constraints χ over N[Affc1], before solving it we augment it
with the condition that every schedule is a proper pipeline: for any J used in
χ, Pipe(J). Using the conventional representation (scaling and phase), the usual
matrix operations and the pipelining definitions above we can represent χ as a
system of constraints over R, and solve it using Z3.

Implementation note. For the implementation, we enforce arbitrary orders on
the stages of the pipeline and, if that particular order is not satisfiable then
a different (arbitrary) order is chosen and the process is repeated. However,
spelling out the constraint for the existence of a pipelining order for any
schedule J would entail a disjunction over all possible such orders, which is O(n!)
in the size of the schedule, for each schedule, therefore not realistic. However, if
the systems of constraints have few constants and mostly unknowns, i.e. we are
trying to find a schedule rather than accommodate complex known schedules,
our experience shows that this pragmatic approach is reasonable.

346 D.R. Ghica and A.I. Smith

Example 2. Let us first consider the simple problem of using three parallel adders
to compute the sum fx+ fx+ fx+ fx when we know the timings of f . Suppose
f : ([(0.5, 0.1); (0.5, 0.2)]·exp � exp, i.e. it is a two-stage pipeline where the
execution of the argument takes half the time of the overall execution and have
relative delays of 0.1 and 0.2 respectively. We have the choice of using three
adders with distinct schedules +i : [xi]·exp � [yi]·exp � exp (i ∈ {1, 2, 3}) so
that the expression respects the pipelined schedule of execution of f . The way
the operators are associated is relevant: (fx +2 fx) +1 (fx +3 fx). Also note
that part of the specification of the problem entails that the adders are trivial
(single-stage) pipelines. Following the algorithm above, the typing constraints
are resolved to the following:

+1 : [(0.5, 0.265625)]·exp � [(0.5, 0.25)]·exp � exp

+2 : [(0.5, 0.21875)]·exp � [(0.5, 0.25)]·exp � exp

+3 : [(0.5, 0.375)]·exp � [(0.5, 0.25)]·exp � exp

In the implementation, the system of constraints has 142 variables and 357 as-
sertions, and is solved by Z3 in circa 0.1 seconds on a high-end desktop machine.

Example 3. Let us now consider a more complex, higher-order example. Sup-
pose we want to calculate the convolution (∗) of a pipelined function (f :
[(0.5, 0.1); (0.5, 0.2)]·exp � exp) with itself four times. And also suppose that
we want to use just two instances of the convolution operator ∗1, ∗2, so we need
to perform contraction on it as well. The type skeleton of the convolution oper-
ator is (∗) : (exp→ exp)→ (exp→ exp)→ exp→ exp.

The implementation of f and ∗ are unknown, so we want to compute the
timings for the term

(∗1):Jvi1 ·(J i1·(J ii1 ·exp�exp)→ J iv1 ·(J iii1 ·exp�exp)�Jv1 ·exp�exp),

(∗2):Jvi2 ·(J i2·(J ii2 ·exp�exp)→ J iv2 ·(J iii2 ·exp�exp)�Jv2 ·exp�exp),

f :J3·([(0.5, 0.1); (0.5, 0.2)]·exp�exp) � (f ∗1 f) ∗2 (f ∗1 f) : θ.

The constraint system has 114 variables and 548 assertions and is solved by Z3
in 0.2 seconds on a high-end desktop machine. The results are:

J i1 = J iv1 = J i2 = J iv2 = [(1.0, 0.0)]

J ii1 = J iii1 = Jv1 = J ii2 = J iii2 = Jv2 = [(0.5, 0.1); (0.5, 0.2)]

Jvi1 = J3 = [(0.5, 0.125); (0.5, 0.25); (0.5, 0.375); (0.5, 0.4375)]

Jvi2 = [(0.25, 0.25); (0.25, 0.5); (0.25, 0.625)]

3.3 Absolute Timing

This section is a variation of the type system in order to deal with absolute rather
than relative timing. The presentation is more informal, but the formalism of
the previous sections can be applied here if desired.

Bounded Linear Types in a Resource Semiring 347

In our main intended application, hardware compilation, relative timing rather
than absolute timing is relevant. However, for other applications such as real-
time computing absolute timing might be required. We can recover absolute
timings for a program (closed term) in two steps. What is interesting here is
the introduction of yet another level of constraints, this times imposed by the
physical characteristics of the computational platform we use. They come in
addition to the structural, language and architectural constraints seen so far.

In the first step we propagate the timing annotations all the way down to
the constants. The constants of the language are families indexed by schedules,
and this propagation will generate the set of all concrete constants used by a
program, with timings given relative to the overall execution of the program.
The function �−� takes as arguments a schedule and a term and produces as set
of language constants. It is defined inductively on the type derivation as follows:

�x : 1·θ � x : θ�(J) = ∅
�Γ, x : K·θ �M : θ′�(J) = �Γ �M : θ′�(J), x �∈ fv(M)

�Γ � λx.M : K·θ � θ′�(J) = �Γ, x : K·θ �M : θ′�(J)
�Γ,K·Γ ′ � FM : θ′�(J) = �Γ � F : K·θ � θ′�(J) ∪ �Δ �M : θ�(J ×K)

�Γ, x : (K + L)·θ �M [x/y] : θ′�(J) = �Γ, x : K·θ, y : L·θ �M : θ′�(J)
�k : θ�(J) = {k : �θ�([x]) | x ∈ J}

�K · θ � θ′�(J) = K · �θ�(J) � �θ′�(J)
�σ�(J) = J · σ.

What is the most interesting is the translation of the constants. In the case of
our concrete programming language we have, for example:

�op : [x] · exp � [y] · exp � exp�[u] = op : [u× x] · exp � [u× y] · exp � [u] · exp

and so on. This is a constant which executes in interval u, and its arguments
in u× x and u × y, which now represent absolute timings. The reasons that we
collect these constants is because depending on the concrete target platform some
of them may be impossible to implement from a timing point of view. For the
operation above (op), if we work out the numbers we get t1 = u1x1+u1x2+u2 and
t2 = u1y1+u1y2+u2 as the respective times when the two arguments terminate,
which means that the duration in which op must compute the result is before
its own termination at t = u1+u2, i.e. δt = u1−max(u1x1+u1x2, u1y1+u1y2).
This δt must be greater than a system-defined constant such as the duration of
one clock cycle (e.g. 1 ns).

For any program � M : com, its set of constants is ��M : σ�([d]) where d is
an affine (not necessarily contractive) transform defining its total duration. The
value of d is not known and must be chosen large enough so that all constants
in �M�[d] are implementable.

348 D.R. Ghica and A.I. Smith

Example 4. Consider the term � 1+x,y(2+u,v3) : exp. It is quite easy to calculate
that

�� 1 +x,y (2 +u,v 3) : exp�([d]) = {+ : [d× x] · exp � [d× y] · exp � [d] · exp,
+ : [d× x× u] · exp � [d× x× v] · exp � [d× x] · exp,
1 : [d× x] · exp, 1 : [d× x× u] · exp, 1 : [d× x× v] · exp}

Suppose that all the additions can performed in 1 ns and the constants can be

computed instantaneously. These timing constraints are satisfied by d =

(
2 0
0 1

)
,

y =

(
0.5 0
0 1

)
, and x, u, v =

(
0 0
0 1

)
.

4 Related Work

The BLL type system has been already generalized by Dal Lago and collabora-
tors to Linear Dependent Types (LDT) [4,6]. This greatly increases the expres-
siveness of the type system but at the expense of losing decidability. We also
generalize BLL but in a different way, by using an abstract notion of resource.
It is natural to think of resources as having a monoidal structure, as resources
can be aggregated. However, we show that the additional structure of a semiring
can be employed in a useful way to scale resources. Our generalization consists
of replacing the family of modalities !xA of BLL, which are interpreted as A
may be reused less than x times with a general resource action R·A, which is
interpreted as A may use at most R resources. This is a generalization because R
can be simply instantiated to x, giving back BLL. For this abstract type system
we show how the problem of type inference can be naturally reduced to a sys-
tem of constraints parametrized by the equational theory of the resource semir-
ing. Provided this theory is decidable, a type inference algorithm automatically
follows.

We also provide a categorical framework, for which we prove the key result of
coherence. This is the main technical contribution of the paper. Coherence is an
essential technical property because denotational interpretations are given in-
ductively on type derivations, which are generally not unique. This means that
in the absence of coherence a denotational interpretation cannot make sense.
Coherence for a categorical semantics is also the generalization of the subject
reduction property used by operational semantics, as substitution is usually in-
terpreted by composition in the category. Resource-awareness has been usu-
ally modeled operationally, but game-semantic [7] and, more recently, relational
models [16] have been proposed to model resources denotationally.

The same typing framework presented here was developed independently in [2]
(published in this volume), but includes resource actions in covariant positions
so it could be used to model call-by-value languages. For this larger type system
the soundness of the system is proved relative to an operational semantics with
so-called coeffect actions.

Bounded Linear Types in a Resource Semiring 349

The second part of the paper presents a non-trivial motivating application
to timing analysis and automated pipelining of computations in a recursion-free
functional programming language with local store, and is meant to illustrate
several points. The first one is showing a complex notion of resource in action.
The second one is presenting a non-trivial multi-stage type inference algorithm
for this resource. The third one is to show a specialization of the type infer-
ence algorithm in the case of a concrete programming language when language
constants and arbitrary system-level resources can come into play.

5 Conclusion

We have presented an abstract framework for BLL using a more general notion
of resource which can be modeled in a semiring, gave a categorical model and
a proof of coherence. We gave several instances of this general typing frame-
work, depending on several notions of resource, one of which is a fairly elaborate
method for tracking execution time in a higher-order setting. We have not given
concrete semantics here, but denotational (game) models of various programming
languages that fit this framework have been developed elsewhere [10,12,24].

One methodological feature which seems quite unique for this typing frame-
work, and is amply illustrated in the previous section, is its degree of flexibility
and modularity. In addition to the structural constraints imposed by the type
system we can freely add language-level constraints (e.g. “the if statement is
sequential”), architectural constraints (e.g. “schedules must be pipelines”) and
physical constraints (e.g. “addition can be performed no faster than 1 ns”). Var-
ious passes of the type-inference algorithm collect constraints which, ultimately,
are about what language constants are implementable or not within certain
resource constraints on a particular physical platform. The modularity of the
system is expressed in a different dimension as well. Since the Cartesian product
of semirings is a semiring we can easily combine unrelated notions of constraints,
which is essential in managing the trade-offs that need to be made in a realistic
system.

Acknowledgment. Sec. 2.4 benefited significantly from discussions with Steve
Vickers. Olle Fredriksson and Fredrik Nordvall Forsberg provided useful com-
ments. The authors express gratitude for their contribution.

References

1. Boudol, G.: The lambda-calculus with multiplicities (abstract). In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 1–6. Springer, Heidelberg (1993)

2. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 351–370. Springer,
Heidelberg (2014)

3. Crary, K., Weirich, S.: Resource bound certification. In: POPL 2000, pp. 184–198.
ACM, New York (2000)

350 D.R. Ghica and A.I. Smith

4. Lago, U.D., Gaboardi, M.: Linear Dependent Types and Relative Completeness.
Logical Methods in Computer Science 8(4) (2011)

5. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. In: Curien, P.-L. (ed.)
TLCA 2009. LNCS, vol. 5608, pp. 80–94. Springer, Heidelberg (2009)

6. Lago, U.D., Petit, B.: The geometry of types. In: Giacobazzi, R., Cousot, R. (eds.)
POPL, pp. 167–178. ACM (2013)

7. Dan, R.: Ghica. Slot games: a quantitative model of computation. In: POPL 2005,
Long Beach, California, USA, January 12-14, pp. 85–97. ACM (2005)

8. Dan, R.: Ghica. Geometry of Synthesis: a structured approach to VLSI design. In:
Hofmann, M., Felleisen, M. (eds.) POPL, pp. 363–375. ACM (2007)

9. Ghica, D.R., Murawski, A.S.: Compositional model extraction for higher-order
concurrent programs. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 303–317. Springer, Heidelberg (2006)

10. Ghica, D.R., Murawski, A.S., Luke Ong, C.-H.: Syntactic control of concurrency.
Theor. Comput. Sci. 350(2-3), 234–251 (2006)

11. Ghica, D.R., Smith, A.: Geometry of synthesis iii: resource management through
type inference. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 345–356. ACM (2011)

12. Ghica, D.R., Smith, A.: From bounded affine types to automatic timing analysis.
CoRR, abs/1307.2473 (2013)

13. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach to
polynomial-time computability. Theoretical Computer Science 97(1), 1–66 (1992)

14. Hofmann, M.: Linear types and non-size-increasing polynomial time computation.
In: LICS, pp. 464–473. IEEE Computer Society (1999)

15. Kelly, G.M.: On MacLane’s conditions for coherence of natural associativities, com-
mutativities, etc. Journal of Algebra 1(4), 397–402 (1964)

16. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: LICS, pp. 301–310. IEEE Computer Society (2013)

17. Melliès, P.-A., Tabareau, N.: An algebraic account of references in game semantics.
Electr. Notes Theor. Comput. Sci. 249, 377–405 (2009)

18. Melliès, P.-A., Tabareau, N.: Resource modalities in tensor logic. Ann. Pure Appl.
Logic 161(5), 632–653 (2010)

19. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17(3), 348–375 (1978)

20. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

21. O’Hearn, P.W.: On bunched typing. J. Funct. Program. 13(4), 747–796 (2003)
22. Reynolds, J.C.: The essence of ALGOL. In: ALGOL-like Languages, vol. 1, pp.

67–88. Birkhauser Boston Inc. (1997)
23. John, C.: Reynolds. Syntactic control of interference. In: Aho, A.V., Zilles, S.N.,

Szymanski, T.G. (eds.) POPL, pp. 39–46. ACM Press (1978)
24. Smith, A.: Type-directed hardware synthesis. PhD thesis, University of Birming-

ham (forthcoming)

A Core Quantitative Coeffect Calculus

Alöıs Brunel1, Marco Gaboardi2, Damiano Mazza1, and Steve Zdancewic3

1 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
2 University of Dundee

3 University of Pennsylvania

Abstract. Linear logic is well known for its resource-awareness, which
has inspired the design of several resource management mechanisms in
programming language design. Its resource-awareness arises from the dis-
tinction between linear, single-use data and non-linear, reusable data.
The latter is marked by the so-called exponential modality, which, from
the categorical viewpoint, is a (monoidal) comonad.

Monadic notions of computation are well-established mechanisms used
to express effects in pure functional languages. Less well-established is
the notion of comonadic computation. However, recent works have shown
the usefulness of comonads to structure context dependent computations.
In this work, we present a language RPCF inspired by a generalized
interpretation of the exponential modality. In RPCF the exponential
modality carries a label—an element of a semiring R—that provides
additional information on how a program uses its context. This additional
structure is used to express comonadic type analysis.

1 Introduction

Linear Types. The ideas of linear logic [17] have found several applications
in programming languages. The most popular aspect of linear logic is certainly
the distinction it makes between objects that can be used exactly once and ob-
jects that can be used several times—zero or more. This distinction allows type
systems to introduce the concept of usage that can be exploited to reason about
resources in various contexts such as explicit memory management, complex-
ity analysis or process specification. The explicit manipulation of resources is
obtained formally by introducing the so-called exponential modality ! that dis-
tinguishes two kinds of types linear A,B, . . .—for objects that can be used only
once—and non-linear !A, !B, . . .—for objects that can be used several times.

Monads and Effects. The use of monads in programming languages, origi-
nally introduced in category theory, was pioneered by Moggi [29] as a way to
structure the semantics of his computational lambda calculus. The use of monads
was further advocated by Wadler [40] and they have since found important appli-
cations in the development of Haskell. A monad T represents a notion of compu-
tation from a value that is obtained by distinguishing value types A,B, . . .—the
types of the language values—from computation types TA, TB, . . .—the types
of computations over values. From a different perspective a monadic type TA

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 351–370, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

352 A. Brunel et al.

can be seen as a computation that outputs a value of type A and that pro-
duces the effect described by T on its environment—e.g. a change in the state,
input-output operations, etc. Effect systems [36] were developed independently
as a way to use static type analysis to understand how programs influence their
environment. Besides this superficial correspondence, monads and effect systems
are indeed intimately related as shown by Wadler [41].

Comonads and Coeffects. A comonad is the categorical dual of a monad.
While monads have grown very popular in the recent years, comonads are still
not well-known and probably less understood. Recent works [38, 39, 33] have pro-
posed to interpret a comonad D as a notion of value in a context that is obtained
by distinguishing value types A,B, . . .—the types of the language values—from
contextual types DA,DB, . . .—the types of values in contexts. From a different
perspective, a comonadic type DA can be seen as a computation that consumes
a value of type A producing the coeffect described by D on its environment. The
coeffect described by D can be seen as a requirement of the program with respect
to the environment—e.g. the availability of a resource, a specific prerequisite on
the input, etc. A general theory of coeffect systems has not yet been established,
but some steps in this direction have been recently proposed [33].

Our Contributions. It is not difficult to see a common pattern here. Indeed,
linear types, monads and comonads are all ways to structure computations by
interpreting types in two different ways. The correspondence clearly goes farther:
as we already said, monad and comonad are dual notions; moreover, it is a well-
known fact that the linear logic exponential modality ! has the structure of a
(monoidal) comonad [26]; finally, both the computational λ-calculus and the
linear λ-calculus can be embedded in the adjoint calculus, where their relations
is revealed through an adjunction [6].

Besides these technical similarities, one may wonder if the comonadic structure
of the modality ! can also be used to design general comonadic analyses.

The answer we give in the present work is affirmative. Starting from linear
logic, we derive a core PCF-like comonadic language, named RPCF, that is
able to express at the same time quantitative reasoning and general comonadic
reasoning. Our proposal follows a simple remark (which will not surprise linear
logic semantics experts): in many concrete models of linear logic several different
interpretations of the ! modality (in terms of abstract resources) are possible. In
the present work, we make explicit in the syntax these different interpretations by
introducing a modality !r indexed by an element r of an abstract structure R—
a structural semiring—that naturally arises from the structural rules of linear
logic. Interestingly, this abstract structure also permits general coeffect analyses
like the ones previously studied by Petricek et al. [33].

A key ingredient of RPCF is the presence of explicit co-handlers coeff, which
are typed primitives performing an action r ∈ R on the context. For instance,
a first example of a simple co-handler in the context of clocked dataflow pro-
gramming [38, 39, 33], is the primitive next that shifts the clock of the input
signal s one step forward. This operation can be seen as a co-handler requiring
that the context be able to provide signal information one step in the future.

A Core Quantitative Coeffect Calculus 353

To express this requirement in our framework one can add a co-handler next
with the associated action 1 on the context. In fact, RPCF is parametrized over
the structure R and the set of co-handlers. Hence, different comonadic analyses
may be performed using different primitives and different structures R.

The focus of our work is on providing a framework for specifying sound type
analyses even in the presence of operations—like co-handlers—that change the
semantics of the language in terms of contextual operations. For this reason, we
instrument the language and the operational semantics—presented in the form
of an abstract machine—with informations about the observable actions of coef-
fects. This is achieved by adding to the language an explicit observation �−� that
mark where to monitor the behavior of a specific part of the program during the
computation. We prove a parametric soundness theorem for the type system with
respect to the information collected by the instrumented operational semantics.
That is, we associate to each term (through its type derivation) a value in R
and we show that this value approximates the information that can be observed
at runtime with the instrumented operational semantics. This result is proved
by defining a general quantitative realizability model, based on biorthogonality
and parametrized overR. Finally, we sketch a denotational semantics for RPCF
in the form of an interpretation of RPCF programs in a categorical structure
describing the properties of R.

Summarizing, our contributions are:

– A quantitative comonadic core language inspired by linear logic semantics.
This language is parametrized over an abstract structure R and over a set of
coeffect primitives (co-handlers). By instantiatingR with concrete structures
and by choosing particular sets of co-handlers we are able to perform several
context-dependent analysis.

– A parametrized quantitative realizability technique used to prove the sound-
ness of the different analyses. The realizability is parametrized over R and
the set of coeffect primitives. The soundness is proved with respect to an
abstract machine reduction relation.

– The description of a categorical model, based on Melliès’s work on parametric
comonads [27, 28], showing the abstract structure needed to interpret our
language. Such a categorical semantics provides a base for a comparison with
usual semantics of linear logic.

2 The �RPCF Language

Syntax: Linear Constructors and Coeffects. The language of RPCF,
defined in Fig. 1.a, is a linearized version of PCF (i.e., with explicit constructors
for the modalities of linear logic) extended with coeffects.

The !-constructor and let bindings are standard in languages designed using
the proofs-as-programs correspondence with linear logic. Here, they are used to
explicitly track the use of the coeffects in expressions. We consider three kinds of
values: numerals n, abstractions λx.e and expressions of the form !e. The latter
are useful to delimit the scope of coeffects.

354 A. Brunel et al.

e ::= x | λx.e | e e | let !x = e in e | !e | �e� | coeff(e) | (expressions)
n | s(e) | case e of 0→ e else x+ 1→ e | fix x.e

v ::= λx.e | n | !e (values)

A ::= Nat | !rA | A � A r ∈ R (types)

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r r ∈ R (contexts)

c ::= (e, ρ) (closures)

ρ ::= [] | ρ · [x/c] (environments)

π ::= 6 | 〈c〉.π | 〈x, e, ρ〉.π | 〈coeff〉.π | 〈s〉.π | 〈e1, x, e2, ρ〉.π (stacks)

C ::= (c, π) (configurations)

Fig. 1. RPCF (a) grammar (b) typing (c) abstract machine configurations

The construction coeff(e) wraps expression e in a coeffect handler coeff. Note
that coeff is a metavariable, ranging over a (finite) set of coeffect handler iden-
tifiers or, more simply, co-handlers. We leave the set of co-handlers unspecified,
as a parameter of RPCF.

Finally, the construct � − � is an observation. It has no computational value
but makes our quantitative analysis more flexible. By arbitrarily introducing
observations in expressions, we can track the behavior of specific subterms during
a computation, giving more power to our quantitative soundness result.

Structural Semirings. The other main parameter of RPCF (or, rather, of
its type system) is the following algebraic structure.

Definition 1 (Structural semiring). A structural semiring, denoted in gen-
eral by R, is a tuple (R,+,0, *,1,)) such that:

– (R,+,0, *,1) is a unit semiring, that is:
• (R,+,0) is a commutative monoid;
• (R, *,1) is a monoid;
• multiplication distributes over addition, i.e., for all p, q, r ∈ R:

∗ r * (p + q) = r * p+ r * q,
∗ (p + q) * r = p * r + q * r;

• 0 is absorbing for multiplication: p * 0 = 0 * p = 0 for all p ∈ R.
– (R,)) is a bounded sup-semilattice, that is:

•) is a partial order on R such that the least upper bound of every two
elements p, q ∈ R exists and is denoted by p ∨ q;

• there is a least and greatest element, the latter being denoted by ∞.

Moreover, the following compatibility conditions hold, for all p, q, r ∈ R:

– 0 is the least element;
– p) q implies p+ r) q + r, r * p) r * q and p * r) q * r.

A Core Quantitative Coeffect Calculus 355

Note that the compatibility conditions imply that ∞ is absorbing for addition
and that it is idempotent w.r.t. both operations.

The notion of structural semiring arises naturally from the structural rules of
linear logic, hence the name.1 It is possible to give a categorical generalization
of this structure, which is used for describing the denotational models of RPCF
(cf. Sect. 4).

The presence of least upper bounds is not strictly necessary; it is useful to
provide a more precise typing of the case construction. Similarly, the existence
of a greatest element is postulated only to ensure that fixpoints may be given at
least a trivial type.

The following are some notable examples of structural semirings:
– the extended natural numbers N := N ∪ {∞} (usual operations and order);
– the tropical semiring T := (N,min,∞,+, 0,≥) (note the reversed ordering);
– the arctic semiring A := (N ∪ {−∞},max,−∞,+, 0,≤);
– the Boolean lattice {0, 1}, as well as any bounded distributive lattice;

– the probability semiring R
+
of non-negative real numbers plus infinity, with

the usual operations and order.

Type System. As mentioned above, the type system of RPCF is parametrized
over a structural semiringR. Elements ofR can appear in types (defined in Figure
Fig. 1.b) as decorations of the exponential modality, as well as in discharged types
(of the form [A]r) in typing contexts (also defined in Fig. 1.b). Discharged types
are not themselves types; they can appear only in contexts and they cannot be
nested.

Each co-handler coeff comes with three pieces of information: its source type
Acoeff , its target type Bcoeff and its coeffect rcoeff ∈ R. It also comes with a coeffect
map ϕcoeff , which assigns to every value of type Acoeff a value of type Bcoeff . The
coeffect map will be required to satisfy a semantic soundness property, which we
will give in Sect. 3. We use the term “map” instead of “function” because we
do not want to restrict the kind of transitions (of the abstract machine, to be
introduced below) we can consider. For instance, ϕcoeff may be probabilistic or
non-deterministic. We consider only unary co-handlers; n-ary co-handlers could
be obtained by combining unary co-handlers with the usual tensor product of
linear logic, which we do not include here for brevity.

A typing context Γ is a set of typed variables that are either of the form
x : A (linear variables) or x : [A]r (discharged variables). Discharged variables
are a technical artifact useful to implicitly manage variables in contexts. More
specifically, if we denote by [Γ] a discharged context (a context containing only
discharged variables) we can extend the operation + of the semiring to contexts:

∅+Δ = Δ
(x : [A]p, Γ) + (x : [A]q , Δ) = x : [A]p+q , (Γ +Δ)

(x : [A]p, Γ) +Δ = x : [A]p, (Γ +Δ) if x /∈ Δ
(x :A,Γ) +Δ = x :A, (Γ +Δ) if x /∈ Δ

1 For the acquainted reader: contraction is addition, with weakening being its neutral
element; multiplication comes from crossing the context of a promotion rule, with
dereliction being its unit.

356 A. Brunel et al.

O-I
A <: A

A <: B q) p
O-B

!pA <: !qB

A′ <: A B <: B′

O-L
A � B <: A′ � B′

A <: B q) p
O-D

[A]p <: [B]q
O-IC

Γ <: Γ

Γ <: Δ A <: B
O-C

Γ, x : B <: Δ,x : A

id
x :A � x : A

Γ, x :A � e : B
lam

Γ � λx.e : A � B

Γ � e : A � B Δ � e′ : A
app

Γ +Δ � e e′ : B

Γ, x :A � e : B
der

Γ, x : [A]1 � e : B

[Γ] � e : B
pr

r * [Γ] � !e : !rB

Γ � e : !rA Δ, x : [A]r � e′ : B
let

Γ +Δ � let !x = e in e′ : B

nat
� n : Nat

Γ � e : Nat
succ

Γ � s(e) : Nat

[Γ], x : [A]p � e : A 1+ p * q) q
fix

q * [Γ] � fix x.e : A

Γ � e : Nat Δ � e1 : A Δ, x :Nat � e2 : A
case

Γ +Δ � case e of 0→ e1 else x+ 1→ e2 : A

Δ � e : B Γ <: Δ
sub

Γ,Ξ � e : B

[Γ] � e : Acoeff
coeff

rcoeff * [Γ] � coeff(e) : Bcoeff

Γ � e : A
obs

Γ � �e� : A

Fig. 2. (a) Subtyping rules (b) Typing rules

Note that the addition of contexts is partial: Γ + Δ is defined only if Γ and
Δ do not share any linear variable declaration. In what follows, the use of this
operation implicitly means that this condition is met. Similarly, the action of
an element r ∈ R on a discharged context [Γ], denoted by r * [Γ], is defined by
induction on the size of [Γ] as: r * ∅ = ∅ and r * (x : [A]p, [Γ]) = x : [A]r�p, r * [Γ].
We also extend to contexts the partial order of R, by introducing subtyping
between types. A subtyping judgment A <: B can be obtained using the rules
in Fig. 2.a. The subtyping rules are rather standard with the exception of rules
O-B and O-D, which lift the semiring partial order to types; notice that these
rules are contravariant in the elements of the semiring.

As usual, typing judgments are of the form Γ � e : A, where in our case Γ may
contain both linear and discharged variables. The typing rule are in Fig. 2.b.

The rule der introduces a discharged variable starting from a linear variable.
This rule may be seen as a quantitative analog of the dereliction principle of
linear logic: !A � A. A way of reading this rule is: “a variable with coeffect 1

A Core Quantitative Coeffect Calculus 357

x ρ · [x/(e, ρ′)] π →v e ρ′ π
λx.e ρ 〈c〉.π →λ e ρ · [x/c] π
e1 e2 ρ π →@ e1 ρ 〈(e2, ρ)〉.π

let !x = e1 in e2 ρ π →l e1 ρ 〈x, e2, ρ〉.π
!e1 ρ1 〈x, e2, ρ2〉.π →! e2 ρ2 · [x/(e1, ρ1)] π
s(e) ρ π →s e ρ 〈s〉.π
n ρ 〈s〉.π →+ n+ 1 ρ π(

case e of 0→ e1
else x+ 1→ e2

)
ρ π →i e ρ 〈e1, x, e2, ρ〉.π

0 ρ1 〈e1, x, e2, ρ2〉.π →z e1 ρ2 π
n+ 1 ρ1 〈e1, x, e2, ρ2〉.π →e e2 ρ2 · [x/(n, ρ1)] π
fix x.e ρ π →f e ρ · [x/(fix x.e, ρ)] π
coeff(e) ρ π →c e ρ 〈coeff〉.π

v ρ 〈coeff〉.π →x ϕcoeff(v) ρ π
�e� ρ π →o e ρ π

Fig. 3. The KR machine

is also linear”. Similarly, the pr rule corresponds to a quantitative version of the
promotion rule of linear logic. Note that this rule is in fact a scheme for rules
parametrized by an element r ∈ R. A way of reading this rule is: “if a co-handler
whose coeffect is r is to operate on an expression e, then r has to act on the
context of e”. The rule sub is at the same time the rule for the subtyping and for
weakening (of the context Ξ); indeed, the system is actually affine, not strictly
linear. The rule let is responsible for removing discharged variables. This can be
seen as an analog (or dual) of the let of the computational λ-calculus. Note
that this rule, as well as all the binary rules, uses the operation + to merge the
contexts of the two premises. This is because the resulting coeffect is the sum of
the coeffects in the two premises.

The rule coeff is the rule for typing co-handler expressions. It is parametrized
on the particular co-handler. We could have chosen to have this rule as deriv-
able from an application of the pr rule—introducing an extra !-operator in the
expression—and an application of an axiom rule introducing the co-handler. We
prefer this formulation so that co-handlers are always applied in expressions—
and we also avoid the use of an extra !-operator.

The additive management of the context Δ in the two branches of the case
rule is standard for languages inspired by linear logic. Note that the existence
of least upper bounds is useful here for type-inference: it allows to find minimal
discharged types to build the contextΔ. The last rule deserving some explanation
is fix. This is parametrized by an element q ∈ R that has to satisfy the side
condition 1 + q * p) q. Note that for every p ∈ R the element ∞ satisfies this
condition. However, in general there may be other elements satisfying it.

The Abstract Machine. The operational semantics we consider is provided
by an adaptation of the Krivine abstract machine [22]. In particular, we extend
(in a standard way) Krivine’s machine to deal with natural numbers, conditional
and fixpoint. The basic components of the machine (closures, environments,
stacks, configurations) are defined in Fig. 1.c. Stacks are also assigned a weight :

358 A. Brunel et al.

Definition 2 (Weight of a stack). Let π be a stack. Its weight w(π) is the
element of R defined by induction on π as follows:

– w(6) = 1;
– w(〈coeff〉.π′) = w(π′) * rcoeff ;
– w(κ.π′) = w(π′) in all other cases.

A state of the machine is a pair (C, r), where C is a configuration and r ∈ R.
This latter, called the observable quantity, must be seen as the value of a counter.
It adds a quantitative aspect to the operational semantics of RPCF.

The transitions of the KR machine are given in Fig. 3. The counter of the
machine is left untouched by all transitions except the o transition: if C =
(�e�, ρ, π) and C′ = (e, ρ, π), then the state (C, r) evolves to (C′, r + w(π)). We
write C → C′ when we do not want to specify the kind of transition.

In general, we are interested in computations of the shape ((e, [], 6),0) →∗

((v, ρ, 6), r), i.e., computations that evaluate expressions in the empty environ-
ment and the empty stack starting with an observable quantity of 0. In this case,
we can say that r is the observable quantity of the computation. The goal of our
type analysis is to provide by static analysis a bound to this quantity. This is
obtained by a quantitative realizability technique that we present in the next
section.

3 Quantitative Realizability

This section presents the construction of a realizability interpretation suitable
for modeling RPCF as parameterized by an arbitrary structural semiring R.
However, to soundly handle the fixpoint typing rule, it is necessary to “step
index” the construction. Fortunately, such step indexing can itself be smoothly
added using a structural semiring.

In the rest of the section we fix an arbitrary structural semiring R and we
consider the structural semiring R⊕T , where T is the tropical semiring defined
in Sect. 2. The elements of R⊕ T , which we denote by α, β, γ, are pairs of the
form (p,m) where p ∈ R and m ∈ N. The operations and order relation on these
elements are (abusively) denoted like the operations and order relation of R:
(p,m)+ (q, n) = (p+ q,min(m,n)) with neutral element (0,∞), (p,m)* (q, n) =
(p*q,m+n) with neutral element (1, 0), and (p,m)) (q, n) iff p) q and n ≤ m
(note the reverse ordering on integers).

The elements of R may be (monotonically) embedded in R ⊕ T through
the additive endomorphism p �→ (p,∞) and the multiplicative endomorphism
p �→ (p, 0). In the sequel, we tacitly apply such embeddings to treat elements
of R as elements of R ⊕ T , using the suitable endomorphism according to the
operation of interest. For instance, given a stack π, we write α+w(π) to actually
mean α+ (w(π),∞), and we write w(π) * α to actually mean (w(π), 0) * α.

Orthogonality. In what follows, we associate with each transition C → C′ of
the KR machine a function θ[C → C′] : R⊕ T → R⊕ T which is the identity
in all cases except:

A Core Quantitative Coeffect Calculus 359

– when C →f C′, in which case we set θ[C → C′](p,m) = (p,m+ 1);
– when C = (�e�, ρ, π) and C →o C′, in which case we set θ[C → C′](p,m) =

(p + w(π),m).

Definition 3 (Pole). A pole is a family ⊥⊥ = (⊥⊥α)α∈R⊕T of sets of configu-
rations such that:

– Saturation: if C′ ∈ ⊥⊥α and C → C′, then C ∈ ⊥⊥θ[C→C′](α);
– Monotonicity: α) β implies ⊥⊥α ⊆ ⊥⊥β;
– Approximation: for all p ∈ R, ⊥⊥(p,0) is the set of all configurations and⋂

n∈N⊥⊥(p,n) = ⊥⊥(p,∞);
– Weakening: for all α and (e, ρ, π) ∈ ⊥⊥α, if y1, . . . , yk do not appear free in

e, then, for all closures c1, . . . , ck, (e, ρ · [y1/c1] · · · [yk/ck], π) ∈ ⊥⊥α.
Definition 4 (Weighted closures and stacks, orthogonality). A weighted
closure (resp. weighted stack) is a pair (c, α) (resp. (π, α)) where c is a closure
(resp. π is a stack) and α ∈ R⊕ T .

Let ((e, ρ), α), (π, β) be a weighted closure and stack, respectively, and let ⊥⊥
be a pole. We define the orthogonality relation w.r.t. ⊥⊥ by

((e, ρ), α) ⊥ (π, β) iff (e, ρ, π) ∈ ⊥⊥w(π)�α+β.

Intuitively, the pole expresses a notion of correctness, and ortogonality means
that the closure (program) and stack (environment) interact correctly. In Sect. 5
we will give explicit examples of poles and clarify this intuition.

The orthogonality relation lifts to sets of weighted closures X and sets of
weighted stacks Y as usual: X⊥ := { (π, β) | ∀(c, α) ∈ X, (c, α) ⊥ (π, β) },
and Y ⊥ := { (c, α) | ∀(π, β) ∈ Y, (c, α) ⊥ (π, β) }. The biorthogonality operator
(.)⊥⊥ on sets of weighted closures is then a closure operator.

Lemma 5. Suppose that X is a set of weighted closures or weighted stacks.
Then: (i) X ⊆ X⊥⊥; (ii) Y ⊆ X implies X⊥ ⊆ Y ⊥; (iii) X⊥⊥⊥ = X⊥.

Moreover, it is easy to see that the properties of the pole are transferred to
biorthogonally-closed sets of weighted closures:

Lemma 6. Let X be a set of weighted closures. Then:

1. if, for all n ∈ N, (c, (p, n)) ∈ X, then (c, (p,∞)) ∈ X⊥⊥;
2. if ((e, ρ), α) ∈ X, α) β and if y1, . . . , yk are variables not appearing free in

e, then ((e, ρ · [y1/c1] · · · [yk/ck]), β) ∈ X⊥⊥ for all closures c1, . . . , ck.

Interpretation. We are now going to assign to each type a set of weighted
closures. We first define in Fig. 4 two operations � and !r, along with the set
Nat (for convenience, we use the same notation as the type).

Definition 7 (Interpretation, realizability, adaptation). Let A be a type.
Its interpretation ‖A‖ is the set of weighted closures defined as follows:

‖Nat‖ := Nat⊥⊥ ‖A � B‖ := (‖A‖� ‖B‖)⊥⊥ ‖!rA‖ := (!r‖A‖)⊥⊥

The realizability relation (c, α) � A is valid if and only if (c, α) ∈ ‖A‖.
Note that realizability depends on the pole. We say that a pole is adapted if

we have (6, (0,∞)) ∈ ‖A‖⊥ for every type A.

360 A. Brunel et al.

Nat := { ((n, []), (0,∞)) | n ∈ N }
X � Y := { ((λx.e, ρ), α) | ∀(c′, β) ∈ X, ((e, ρ · [x/c′]), α+ β) ∈ Y ⊥⊥ }

r * X := { (c, (r * p,m)) | (c, (p,m)) ∈ X }
!rX := { ((!e, ρ), α) | ((e, ρ), α) ∈ r * X }

Fig. 4. Realizability operations. X and Y are generic sets of weighted closures.

Soundness. We start by introducing the notions needed to state the soundness
theorem. We first need to extend the realizability relation to open terms. Then,
we will define what it means for a typing judgment and a typing rule to be
sound.

Definition 8 (Sound environment). Suppose γ is a sequence γ1, . . . , γn of
elements of R ⊕ T . We say that an environment ρ = [x1/c1] · · · [xn/cn] is γ-
sound with respect to Γ = x1 : A1, . . . , xk : Ak, xk+1 : [Ak+1]rk+1

, . . . , xn : [An]rn,
and we write (ρ,γ) � Γ , if (ci, γi) ∈ ‖Ai‖ for 1 ≤ i ≤ k, and (ci, γi) ∈ ri *(‖Ai‖)
for k + 1 ≤ i ≤ n.

In what follows, if γ is a sequence γ1, . . . , γn of elements of R ⊕ T , we denote
by
∑

γ the element γ1 + . . .+ γn (which is (0,∞) if n = 0).

Definition 9 (Sound judgment and rules). Let p ∈ R. We say that the
judgment Γ � e : A is p-sound if (ρ,γ) � Γ implies ((e, ρ), p+

∑
γ) � A.

Consider a typing rule R whose premises are the judgments J1, . . . , Jn and
whose conclusion is the judgment K. Let φ : Rn →R. We say that R is φ-sound
if for all p1, . . . , pn ∈ R such that Ji is pi-sound, then K is φ(p1, . . . , pn)-sound.

Any judgment obtained by composition of sound rules is itself a sound judg-
ment. Hence, to prove soundness of our type system with respect to the realiz-
ability semantics, it will suffice to prove the soundness of each typing rule.

If R is an n-ary rule of our type system, we associate to it a soundness function
of type Rn → R denoted by φ[R]. The definition is given in Fig. 5, where we use
meta-λ-notation. For instance, φ[obs] is the function taking an element p ∈ R
and returning the element p+ 1 of R.

If δ is a typing derivation of conclusion Γ � e : A, then we may assign to it a
soundness element p[δ] ∈ R, defined by composing the φ[R] for each rule R used
in δ, inductively. Then, we have the following:

Theorem 10 (Soundness). The conclusion of every derivation δ is p[δ]-sound.

The proof of the above result, which we omit here for space reasons, is con-
ditional to the following hypothesis being verified, for every co-handler coeff,
which we call soundness of coeff:

(π, β) ∈ ‖Bcoeff‖⊥ implies (〈coeff〉.πβ) ∈ ‖Acoeff‖⊥.

A Core Quantitative Coeffect Calculus 361

φ[id] := 0 φ[lam] := λp.p φ[app] := λ(p, q).p + q
φ[der] := λp.p φ[pr] := λp.r * p φ[let] := λ(p, q).p + q
φ[nat] := 0 φ[succ] := λp.p φ[fix] := λp.q * p
φ[sub] := λp.p φ[coeff] := λp.rcoeff * p φ[obs] := λp.p + 1

φ[case] := λ(p, q, r).p + (q ∨ r)

Fig. 5. Soundness functions of the typing rules of Fig. 2.b. The arity of each function is
the same as that of its associated rule; p, q, r correspond to the first, second and third
premises, respectively (from left to right).

This is the semantic condition on coeffect maps which we mentioned when we
introduced the type system.

In case the pole is adapted, we obtain the following important result:

Corollary 11. If � e : A via a typing derivation δ, then (e, [], 6) ∈ ⊥⊥(p[δ],∞).

Since C ∈ ⊥⊥(p,∞) usually means “the configuration C uses at most p resources”,
we have that, for properties that can be expressed using an adapted pole, typing
derivations of RPCF imply quantitative bounds on the execution of the typed
expression.

4 Categorical Semantics

Our framework has a rich underlying structure that we describe in categori-
cal terms in this section. The first step is introducing bimonoidal categories
(formerly called ring categories [25]), which are a “categorification” of the no-
tion of semiring. The most synthetic way of defining a bimonoidal category is
saying that it is a one-object category enriched over symmetric monoidal cat-
egories [19]. Spelled out, this means that a bimonoidal category is a structure
(S,+, 0, *, 1, dl, dr, al, ar) such that (S,+, 0) is a symmetric monoidal category,
(S, *, 1) is a monoidal category and dl, al, dr, ar are structure maps ensuring
distibutivity and absorption laws. A certain numer of coherence diagrams are
required to commute, of course; the precise definition may be found in [19].

Next, we introduce a notion of parametric comonad, that we take from [27].
In what follows, we will deal with two categories S and A and we shall use x, y
(resp. a, b) as placeholders for the arguments of a functor of domain S (resp. A),
e.g. an endofunctor F of A will be denoted by F (a), whereas we use p, q, r (resp.
A,B) to range over the objects of S (resp. A).

Definition 12 (Positive action). A positive action of a monoidal cate-
gory (S, *, 1) on a category A is a functor � : S × A −→ A with two natural

362 A. Brunel et al.

transformations δ : (x * y) � a =⇒ x � (y � a) and ε : 1 � a =⇒ a such that the
following diagrams commute:

(p * (q * r)) �A

δ

��

α��A �� ((p * q) * r) �A δ �� (p * q) � (r �A)

δ

��
p � ((q * r) � A)

p�δ
�� p � (q � (r � A))

(1 * p) � A λ�
��

δ

��

p � A (p * 1) �Aρ���

δ

��
1 � (p �A)

ε
�� p � A p � (1 � A)

p�ε
��

We now generalize Definition 12 to the case of a bimonoidal category acting
on a symmetric monoidal category. This should be seen as a categorification of
the “raising to a power” action: the natural transormations required correspond
to the usual, elementary laws of exponentiation (such as Ap+q = ApAq, A0 = I,
and so on). Although not contained in either [27] or [28], the definition was still
suggested to the authors by Melliès.

Definition 13 (Exponential action). Let (A,⊗, I) be a symmetric monoidal
category, and let (S,+, 0, *, 1) be a bimonoidal category. An exponential action
of S on A is a positive action (�, δ, ε) of (S, *, 1) on A together with four natural
transformations c : (x+ y) � a =⇒ x � a⊗ y � a, w : 0 � a =⇒ I, m : x � a⊗ x � b =⇒
x � (a⊗ b), and n : I =⇒ x � I such that

– for every object A of A, the natural transformations cA,wA induced by fixing
the parameter A in c,w make the functor x � A : (S,+, 0) → A symmetric
comonoidal (i.e. oplax monoidal);

– for every object p of S, the natural transformations mp, np induced by fixing
the parameter p in m, n make the endofunctor p �a of A symmetric monoidal.

Furthermore, we require 12 diagrams to commute, which are fairly natural but
cannot be included for space reasons.

Definition 14 (Bounded exponential situation). A bounded exponential
situation consists of the following data:

– a symmetric monoidal closed category (A,⊗, I,�);
– a bimonoidal category (S,+, 0, *, 1) with finite coproducts (not necessarily

expressed by +) and a terminal object, in which 0 is initial;
– an exponential action ! of Sop on A, for which we use the notation !pA (with

p an object of S and A an object of A).
A bounded exponential situation is affine if I is terminal in A.

An affine bounded exponential situation is enough to interpret the typing
rules of RPCF (Fig. 2). The category S is a “category of bounds”: it is the
generalization of a structural semiring, in which an arrow p → q may be seen
as a proof that p) q. In fact, for the sake of this paper, it does not hurt to
assume that S is just a (preordered) structural semiring, i.e., that the monoidal
structures are strict and that there is at most one arrow in every homset.

It is obvious how to interpret each type constructor of RPCF as a func-
tor of A. A typing derivation δ of the judgment x1 : B1, . . . , xm : Bm, y1 :
[C1]r1 , . . . , yn : [Cn]rn � e : A is interpreted by an arrow �δ� : �B1� ⊗ · · · ⊗
�Bm�⊗ !r1�C1�⊗· · ·⊗ !rn�Cn�→ �A� of A, built by induction on the derivation:

A Core Quantitative Coeffect Calculus 363

– the interpretation of the rules id, lam and app is standard; the only non-
standard feature is the + operation on contexts, which is interpreted by
means of the natural transformation c.

– The rule der corresponds to the natural transformation ε. The rule pr is just
the application of the endofunctor !r(−), plus the natural transformations
δ and m (if the context has more than one variable) or n (if the context is
empty). The let rule is just a composition of morphisms.

– The sub rule is intepreted thanks to the contravariance of the action ! in its
first argument: p) q corresponds to the existence of an arrow f : p → q in
S, from which we have an arrow !f (idA) : !qA → !pA in A, implementing
subtyping. Free weakening is available because I is the terminal object of A.

The intepretation of the type Nat and the PCF-specific constructions (successor,
fixpoint. . .) require a suitable object and morphisms of A, as usual. The inter-
pretation of co-handlers is also dependent on the specific case, and cannot be
defined in general.

Notice that, when S is the one-object category (which is tivially bimonoidal),
then an exponential action is just a comonad (!, δ, ε), which is monoidal thanks
to the natural transformations m and n. In this degenerated case, the conditions
of Definition 13 boil down to asking that the natural transformations δ, ε, c,w are
monoidal; that, for every object A of A, (!A, cA,wA) is a commutative comonoid
in the category of free !-coalgebras ofA; and that free coalgebra morphisms (such
as δ) are also comonoid morphisms. This amounts to giving a model of linear
logic in the sense of [4] (and in fact, when R is the trivial semiring, RPCF is
just multiplicative-exponential intuitionistic affine logic).

5 Examples

Before introducing the examples, it is worth noticing the importance of obser-
vations and coeffects for the evolution of observable quantities in the abstract
machine states. First, note that the state changes only when an observation is
performed. So, depending on where we place the observation we can obtain dif-
ferent quantitative information about our programs. Moreover, note that in the
evaluation of a co-handler-free program the weight of each stack is always 1,
so the state of the machine contains only an additive information of the shape
1+ . . .+ 1, where the number of 1’s depends on the number of observations en-
countered in the evaluation. These two remarks are important for understanding
the kind of analysis our framework can perform. Indeed, the observable quan-
tities in the abstract machine states are ultimately the only quantities that the
type system is able to analyze thanks to the soundness Theorem 10.

We show here the details of three examples and then we conclude by comment-
ing on other examples. We choose three examples that stress different features of
our framework: the first example is a classic of linear type systems—complexity
analysis—this is helpful to see that we do not loose anything. The second ex-
ample is inspired by Uustalu and Vene [38, 39] and Petricek et al. [33]—signal
processing—this example requires an analysis that is quantitative on * but not

364 A. Brunel et al.

on +, differing so from the previous one. Finally, the third example uses an op-
erational semantics that is probabilistic—probability analysis—this shows that
the analysis can be performed even when the underlying semantics changes.

In all cases, we will use one of the structural semirings introduced after
Definition 1 and we will always use the same pole (or, rather, instances of a
pole parametric in the semiring of choice). We first say that a state of the KR

machine (C′, p′) is l-fixpoint-reachable from another state (C, p), and we write
(C, p)
l (C′, p′), if (C, p)→∗ (C′, p′) and l is the number of f-transitions in the
computation. Then, we set

⊥⊥(p,m) := { C | whenever (C,0)
l (C′, r), l < m implies r) p }.

This pole expresses the following notion of correctness: a configuration is (p,m)-
correct if, when evaluated with the quantity 0 and left evolving for a number
of steps including strictly less than m recursive calls, produces an observable
quantity bounded by p. We leave it as an easy (but instructive) exercise to the
reader to show that the above definition gives a pole, for any structural semiring
R. The fact that it is adapted may be proved by a straightforward induction on
types. Then, we have

Fact 15. If � e : A with a type derivation δ, then any computation of the form
((e, [], 6),0)→∗ (C, r) satisfies r) p[δ].

The above fact, which holds regardless of the chosen semiring, is an immediate
consequence of Corollary 11 (we just spelled out the property (e, [], 6) ∈ ⊥⊥(p[δ],∞)

for this particular pole). The exact meaning will depend on the coeffects and on
the semiring.

Complexity Analysis. As a warm up we sketch how we can use observations to
express a simple complexity analysis for coeffect-free programs inspired by [18, 9].
We want to analyze the complexity (in terms of time) of the execution of a closed
term on the KR machine. We remark two properties of the machine: first, the
evaluation of a program e in an empty environment and an empty stack requires
environments containing only subterms of e; second, v-transitions are the only
ones2 that increase the overall size of a configuration3. Therefore, if e is a closed,
observation- and co-handler-free term and n is the number of v-transitions in
the computation from (e, [], 6) to its normal form, a good estimate of the time
complexity of such a computation is n·size(e). This requires to compute n, which
is precisely the quantity that our type system is able to provide.

First of all, we insert observations around each variable of e, obtaining a term
e′. This does not alter the computational behavior of e but ensures that each
o-transition is followed by an v-transition, so the number of o-transitions of e′,
which are the ones we can account for, bounds the number of v-transitions of e.
Now, we set R := N, with the usual operations and order. We obviously have
that � e : A implies � e′ : A. Call the latter type derivation δ. Recalling Fact 15,

2 Here we consider co-handler-free programs so there are no x-transitions.
3 For a suitable notion of configurations size [9].

A Core Quantitative Coeffect Calculus 365

we have that any computation ((e′, [], 6),0) →∗ (C, n) satisfies n ≤ p[δ]. But,
as noted above, n is nothing but the number of o-transitions performed in the
computation, which in turn are no less than the v-transitions in the evaluation
of e, so p[δ] · size(e) is the desired complexity bound.

Weobserve that our analysis for programs including recursion is very limited: the
presence of fixpoints is likely to yield p[δ] =∞. However, as we will discuss below,
we expect our approach to be adaptable to the use of dependent types as in [9].

Signal Processing. The second example we consider is signal processing. We
take this example from Petricek et al. [33] and show how RPCF provides a
bound on the number of look-ahead operations each program performs for the
given inputs. This enables optimization of memory allocation and buffering needs
for each input. To make this example interesting, we add to the language a type
Sig representing signals as globally clocked streams of natural numbers. We add
to the grammar of RPCF terms non-denumerably many constants s, s′, . . ., one
for each stream, and the nullary typing rule � s : Sig. We denote by n · s the
stream whose head is n and tail s.

We set R := A, the arctic semiring. We consider two co-handlers: read, with
Aread = Sig, Bread = Nat and rread = 0, and next, with Anext = Sig, Bnext = Sig
and rnext = 1. Their semantic maps are defined as follows: ϕread(n · s) = n
and ϕnext(n · s) = s. In other words, read and next return the head and tail
of the stream, respectively. In order to check the semantic condition on ϕread

and ϕnext which ensure soundness, we need to define the realizability interpre-
tation of the type Sig. This is done as for Nat: abusing the notations, we set
Sig := { ((s, []), (0,∞)) | ∀ streams s } and ‖Sig‖ := Sig⊥⊥. Now, to prove the
soundness of ϕread, we need to check that, for all (π, (t,m)) ∈ ‖Nat‖⊥ = Nat⊥,
we have (read.π, (t,m)) ∈ ‖Sig‖⊥ = Sig⊥. This amounts to checking that, for all
((s, []), (0,∞)) ∈ Sig, we have (s, [], read.π) ∈ ⊥⊥(w(read.π)+t,m). But w(read.π) =
rread+w(π) = w(π) (remember that multiplication in A is addition in N), so this
follows by saturation. Similarly, for the soundness of next, let (π, (t,m)) ∈ Sig⊥.
We need to check that (next.π, (t,m)) ∈ Sig⊥, which amounts to verifying that,
for every stack constant s, (s, [], next.π) ∈ ⊥⊥(w(next.π)+t,m). Now, we know by
saturation that (s, [], next.π) ∈ ⊥⊥(w(π)+t,m), but w(next.π) = 1 + w(π), so
⊥⊥(w(π)+t,m) ⊆ ⊥⊥(w(next.π)+t,m) by monotonicity, which allows us to conclude.

We are now in position to apply the Soundness Theorem 10. From � �s� : Sig
we have ((s, []), (t,∞)) ∈ t * ‖Sig‖ for all t ∈ N. Now, suppose that e is a pro-
gram (with no observations) with a free variable x, and suppose that x : [Sig]t �
e : A with a typing derivation δ. Theorem 10 gives us that (e, [x/�s�], 6) ∈
⊥⊥(max(p[δ],t),∞). By observing the soundness function of Fig. 5, we realize that
if e contains no observation, then p[δ] is necessarily 0, which is equal to −∞ in
A. Therefore, (e, [x/�s�], 6) is (t,∞)-correct. So, any computation starting with
((e, [x/�s�], 6),−∞) terminates on a state (C, u) such that u ≤ t. By looking at
the transition rules (Fig. 3), we see that u is the maximum (addition in A is
max) of the number of next co-handlers that were present on the stack (multipli-
cation in A is addition) at each o-transition. But since e contains no observation,
o-transitions are possible only when we access the stack s in the environment,

366 A. Brunel et al.

and it is not hard to see that the number of next co-handlers on the stack is the
number of look-ahead operations performed on s. Therefore, we have

Fact 16. If x : [Sig]t � e : A, then e uses at most the first t values of the stack
fed to its argument x.

We hope that the above result gives an idea of the kind of analysis that may
be performed for this application. Other more general results can be obtained
by placing observations on different subterms. Also, here we considered only
terminating computations but for this application one can use a different pole
to allow analysis of non-terminating programs as well.

Probabilistic Usage. We now turn to probabilistic setting. Monadic program-
ming languages have been extensively used for describing probabilistic compu-
tations. Here we propose something slightly different. We want to consider the
situation in which accessing certain memory locations is subjected to proba-

bilistic failures. For this application, we set R = R
+
, the probability semiring,

and we consider a single co-handler, coflip, with Acoflip = N, Bcoflip = N and
rcoflip = λ ∈ [0, 1]. The coeffect map ϕcoflip is the identity, which is obviously
sound. However, we change the operational semantics: the x-transition of the
KR machine, when coflip is on the stack, is executed with probability λ, whereas
with probability 1 − λ the machine halts because of a failure. When we want
to model the fact that a variable x in a program e represents a failure-prone
memory location, we replace every occurrence of x in e with coflip(x).4

Consider now a closed program e. We define var(e) as the number of v-
transitions in the computation starting from (e, [], 6) before a failure occurs or a
normal form is reached. Due to the probabilistic nature of the machine, var(e) is a
random variable with values in N. Our type system allows us to estimate the ex-
pected value of var(e). Indeed, given such a closed program e and a configuration
C, we may define obs(e, C) as the number of o-transitions in the computation
(e, [], 6)→∗ C, which is a random variable too. It is not hard to the check that
the observable quantity r ∈ R+ of the computation ((e, [], 6), 0)→∗ (C, r) is the
expected value of obs(e, C): every time an o-transition is executed, the quantity
λn is added to the observable quantity, with n being the number of coflip coef-
fects on the stack. This is the probability of success, i.e., the probability that
the evaluation will “survive” in the current environment.

More generally, we define obs(e) as the number of o-transitions in the longest
computation starting from (e, [], 6), and we apply the same decoration used in
complexity analysis, i.e., we consider programs obtained by inserting observa-
tions around every variable of a program. In this way, we know that, if e′ is the
decoration of e, var(e) ≤ obs(e′) and therefore, applying Fact 15, we have

Fact 17. Let e be a program (observation-free) and let � e : A through a typing
derivation δ. Then, p[δ] bounds the expected value of var(e).

4 For simplicity we used a single co-handler, with a single probability of failure, but
of course any number of co-handlers may be used, each with its own probability λ.

A Core Quantitative Coeffect Calculus 367

Other Analyses. We presented three examples that are representative of some
of the reasoning that may be performed in our framework. Other analyses may be
obtained in a similar way. For instance, a liveness analysis like the one of [33]may be
obtained by considering the Boolean lattice. Furthermore, the scheduling analysis
of [16], which uses a semiring of affine transformations, is another application of
our framework, independently developed (we discuss this a bit more in Sect. 6).

More interestingly, also the type system for sensitivity analysis from [35] and the
one for non-interference analysis of the SLam calculus [20] can be seen as instances
of our calculus. Unfortunately, the realizability semantics is not enough expressive
for proving the soundness of these analyses. What we need is a relational version
of our realizability technique, which we leave for future investigations.

6 Related Work

Indexed Notions of Monads and Comonads. Several works have extended
monads with the aim of reasoning about more general effects: indexed mon-
ads [41], parametrised monads [2], layered monads [13], etc. Similarly, we aim
at providing a theory to reason about general coeffects. Abadi et al. [1] use an
indexed monad as a basis for their core calculus of dependencies. Similar to our
modalities, their indexed monad is useful to capture dependencies between input
and output and so to perform several program analysis. Moreover, they provide a
generalized soundness result using domain theory. Tate [37] proposes the notion
of productor to describe general producer effect systems. Interestingly, his notion
can be specialized to capture all the other extensions of monads referred above.
Tate also mention the notion of consumptor, as dual to productor, and he suggest
as an example of consumptor the non-linear use of resources. Our development
can be seen as a step in the direction of developing a theory of consumptor.
Several effect type systems have been used for program analysis [36, 30]. The
common aspect with our work is the use of indices in types to track information
about the interaction of the program with the environment.

Uustalu and Vene [38, 39] have proposed a general comonadic approach to
programming following the idea of values in context. In particular, they showed
how to formulate several context dependent programming models in terms of
comonadic computations. Extending this approach, the closest work to our own
approach, in the motivations as well as in technical terms is certainly [33, 32].
In these papers, the authors present a coeffect system parametrised over a coef-
fect algebra that has some remarkable similarities with our notion of structural
semiring. The main difference is that while we use two monoids for the different
operations in the semiring—plus some additional structure—they use instead
a semilattice and a monoid. The semilattice operation is idempotent, so they
loose in this way the possibility of being quantitative with respect to this op-
eration. Moreover, they consider “global” comonadic information, i.e., applied
to the whole context, whereas our information is “local”, i.e., on each variable,
as customary in linear logic. The global aspect of their approach forces them to
introduce an additional operation ∧ in their algebra, needed to split the infor-
mation in the case of λ-abstraction, which isolates one variable from the context.

368 A. Brunel et al.

However, this operation has no algebraic requirement and in all of the examples
they consider we are able to simulate it by means of subtyping. Finally, the
most important difference is that they do not provide any soundness result for
the analyses that may be performed using their framework (even though they do
provide a categorical model), while we prove a parametric soundness theorem.

Linear Indexed Types. The idea of distinguishing between linear, single-use
data and non-linear, reusable data has been one of the reasonof the success of linear
logic. Less attention has attracted the idea, already presented by Girard in [17], of
using indexed approximated modalities !n for counting multiple uses of the same
resource. The first real attempt on using this kind of modalities is Bounded Linear
Logic [18], wheremodalities are indexed by polynomial expressions.More recently,
indexed modalities similar to the ones studied in the present work have been used
in [23, 9] for complexity analysis, in [35, 14] for sensitivity analysis in the context
of Differential Privacy, and in [16] for automatic scheduling analysis.

Interestingly, the authors of the latter work, inspired by their previous
work [15], introduce an abstract type system that is essentially the call-by-name
fragment of our RPCF. They also present a categorical model, less general than
ours, and prove a coherence theorem for it. However, they do not prove any form
of soundness. Therefore, the present paper and [16] (which will be presented at
the same conference) are in a way complementary: that work provides a further,
highly interesting example of analysis to which our soundness proof applies.

Other indexed modalities, dubbed “subexponentials”, have also been used in
[31] with the aim of increasing the expressiveness of linear logic programming.
However, this use of indexes seems orthogonal to the one studied in the present
paper. Another work that, superficially, seems to be related to ours is [24], where
the authors introduced a class of denotational models of linear logic parametrized
over continuous semirings. However, the connection does not seem to be very
strong, because their technical results are totally different. Indeed, the elements
of their semiring are used as coefficients for terms in the language.

Realizability and Logical Relations. Realizability and (unary) logical rela-
tions are well-establishe reasoning tools. Step-indexing and biorthogonality (also
referred as “TT closure”) are technical mechanisms that permit to extend the
reasoning to consider languages with potentially infinite computations and to
consider different properties of programs in a uniform way. Several works have
studied step indexing and biorthogonality, see for instance [5, 34]. The extension
of realizability for reasoning about quantitative properties has been pioneered
in [21] and further developed in [10, 11]. The realizability we use is in the spirit
of the quantitative classical realizability proposed by Brunel [7]. Moreover, we
use a combination of quantitative realizability with biorthogonality and step in-
dexing similar to the one of [8] with the difference that here the step-indexing is
used as usual to control recursion. A last work that has some similarities with
ours is [3]. The authors use indexed types, logical relations and parametricity to
achieve invariance under changes of data representation. The invariance allows
them to capture program properties in a spirit similar to ours. In particular, also
their language is parametrized over a choice of basic data types and primitives.

A Core Quantitative Coeffect Calculus 369

7 Conclusion and Future Work

In our work we focused on showing how indexed linear types, naturally arising
from linear logic semantics, can be used to talk about value in context. This
suggests that linear logic semantics can be a unifying framework for several
program analyses. Several steps however need to be done. A first simple step is
to lift the analysis we have presented here to the standard lambda calculus—this
can be done in a rather standard way by using the usual call-by-name and call-
by-value translation. Moreover, a type inference algorithm parametrized over
constraints in R can be designed in a natural way following D’Antoni et al. [12].
A second and more important step is to broaden the scope of the analysis. Indeed,
the analysis for the fixpoint and pattern matching are too limited in practice.
For this reason we plan to extend our work with polymorphism and a restricted
form of dependent types as in [9, 14]. A point that is worth to stress here is that
the realizability semantics we have presented is already able to accommodate
some of the future presented there. For instance by interpreting basic constants
with non-zero quantities we can accommodate basic indexed types.

Acknowledgments. We are grateful to Emilio Jesús Gallego Arias, Jan Hoff-
mann, Paul-André Melliès, Dominic Orchard, and Tarmo Uustalu for fruitful
discussions. This work benefited from partial support of: ANR, under projects
Logoi ANR-2010-BLAN-0213-02 (A. Brunel and D. Mazza) and Coquas ANR-
12-JS02-006-01 (D. Mazza); the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement No. 272487 (M. Gaboardi);
DARPA Crash program under Contract No. FA8650-10-C-7090 (A. Brunel).
The views expressed are those of the authors and do not reflect the official pol-
icy or position of the Department of Defense or the U.S. Government.

References

[1] Abadi, M., Banerjee, A., Heintze, N., Riecke, J.: A core calculus of dependency.
In: POPL. ACM (1999)

[2] Atkey, R.: Parameterised notions of computation. JFP 19(3-4) (2009)

[3] Atkey, R., Johann, P., Kennedy, A.: Abstraction and invariance for algebraically
indexed types. In: POPL. ACM (2013)

[4] Benton, N., Bierman, G.M., Hyland, J.M.E., de Paiva, V.: Term assignment for
intuitionistic linear logic. Technical Report 262, University of Cambridge (1992)

[5] Benton, N., Tabareau, N.: Compiling functional types to relational specifications
for low level imperative code. In: TLDI. ACM (2009)

[6] Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: LICS.
IEEE (1996)

[7] Brunel, A.: Quantitative classical realizability. Inf. and Comp. (to appear, 2013)

[8] Brunel, A., Madet, A.: Indexed realizability for bounded-time programming with
references and type fixpoints. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS,
vol. 7705, pp. 264–279. Springer, Heidelberg (2012)

[9] Dal Lago, U., Gaboardi, M.: Linear dependent types and relative completeness.
In: LICS. IEEE (2011)

370 A. Brunel et al.

[10] Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. In: Curien, P.-L. (ed.)
TLCA 2009. LNCS, vol. 5608, pp. 80–94. Springer, Heidelberg (2009)

[11] Dal Lago, U., Hofmann, M.: Realizability models and implicit complexity.
TCS 412(20) (2011)

[12] D’Antoni, L., Gaboardi, M., Gallego Arias, E.J., Haeberlen, A., Pierce, B.: Sensi-
tivity analysis using type-based constraints. In: FPCDSL. ACM (2013)

[13] Filinski, A.: Representing layered monads. In: POPL. ACM (1999)
[14] Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent

types for differential privacy. In: POPL. ACM (2013)
[15] Ghica, D.R., Smith, A.: Geometry of synthesis III: Resource management through

type inference. In: POPL. ACM (2011)
[16] Ghica, D.R., Smith, A. I.: Bounded linear types in a resource semiring. In: Shao,

Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 331–350. Springer, Heidelberg (2014)
[17] Girard, J.-Y.: Linear logic. TCS 50(1), 1–102 (1987)
[18] Girard, J.-Y., Scedrov, A., Scott, P.: Bounded linear logic. TCS 97(1) (1992)
[19] Guillou, B.: Strictification of categories weakly enriched in symmetric monoidal

categories. Theory and Applications of Categories 24(20), 564–579 (2010)
[20] Heintze, N., Riecke, J.G.: The SLam calculus: Programming with secrecy and

integrity. In: POPL. ACM (1998)
[21] Hofmann, M., Scott, P.J.: Realizability models for BLL-like languages. TCS 318(1-

2) (2004)
[22] Krivine, J.-L.: A call-by-name lambda-calculus machine. HOSC 20(3) (2007)
[23] Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon,

A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010)
[24] Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models

of typed lambda-calculi. In: LICS. IEEE (2013)
[25] Laplaza, M.: Coherence for distributivity. Lecture Notes in Math. 281 (1972)
[26] Melliès, P.-A.: Categorical semantics of linear logic. Panoramas et Syntheses (2009)
[27] Melliès, P.-A.: Parametric monads and enriched adjunctions. Technical report

(2012), http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic/
[28] Melliès, P.-A.: The parametric continuation monad. Mathematical Structures in

Computer Science (to appear, 2014)
[29] Moggi, E.: Computational lambda-calculus and monads. In: LICS. IEEE (1989)
[30] Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer

(1999)
[31] Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponen-

tials. In: PPDP. ACM (2009)
[32] Orchard, D.: Programming contextual computations, Cambridge University

(2013)
[33] Petricek, T., Orchard, D., Mycroft, A.: Coeffects: Unified static analysis of context-

dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 385–397. Springer, Heidelberg (2013)

[34] Pitts, A.M.: Step-indexed biorthogonality: a tutorial example, Dagstuhl (2010)
[35] Reed, J., Pierce, B.C.: Distance makes the types grow stronger: A calculus for

differential privacy. In: ICFP. ACM (2010)
[36] Talpin, J.-P., Jouvelot, P.: The type and effect discipline. In: LICS. IEEE (1992)
[37] Tate, R.: The sequential semantics of producer effect systems. In: POPL (2013)
[38] Uustalu, T., Vene, V.: Signals and comonads. J. UCS 11(7) (2005)
[39] Uustalu, T., Vene, V.: Comonadic notions of computation. ENTCS 203 (2008)
[40] Wadler, P.: The essence of functional programming. In: POPL. ACM (1992)
[41] Wadler, P.: The marriage of effects and monads. In: ICFP. ACM (1998)

http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic/

Measurements in Proof Nets
as Higher-Order Quantum Circuits

Akira Yoshimizu1, Ichiro Hasuo1, Claudia Faggian2, and Ugo Dal Lago3

1 University of Tokyo, Japan
2 CNRS and Université Paris Diderot, Paris 7, France

3 Università di Bologna, Italy

Abstract. We build on the series of work by Dal Lago and coauthors and identify
proof nets (of linear logic) as higher-order quantum circuits. By accommodating
quantum measurement using additive slices, we obtain a comprehensive frame-
work for programming and interpreting quantum computation. Specifically, we
introduce a quantum lambda calculus MLLqm and define its geometry of interac-
tion (GoI) semantics—in the style of token machines—via the translation of terms
into proof nets. Its soundness, i.e. invariance under reduction of proof nets, is es-
tablished. The calculus MLLqm attains a pleasant balance between expressivity
(it is higher-order and accommodates all quantum operations) and concreteness
of models (given as token machines, i.e. in the form of automata).

1 Introduction

Quantum Programming Languages. Quantum computation and quantum communica-
tion have been attracting growing attention. The former achieves real breakthrough in
computational power—at least for some classes of problems, such as the integer fac-
torization problem (Shor’s algorithm) and search problems. While it is often disputed
if quantum computation is physically realizable, quantum communication is close to
actual deployment in real-world applications. By exploiting the nonlocal character of
quantum phenomena (notably quantum entanglement), quantum cryptography proto-
cols accomplish perfect security that do not rely on any computational assumptions
(like Diffie-Hellman).

Compared to the algorithmic aspects, the theory of quantum programming is rel-
atively new. For example, quantum algorithms are most often expressed in quantum
circuits that lack structuring means like recursion or higher-order functions. Conse-
quently we have seen some proposals for quantum programming languages including
QCL [19], quantum lambda calculi [21, 23] and most recently Quipper [10]: QCL is
imperative and the others are functional.

Our interests are in a quantum lambda calculus as a prototype of functional quan-
tum programming languages. The functional style comes with several advantages. For
one, a type system based on resource-sensitive linear logic [6] can force no-cloning of
quantum states via type safety [23]. Moreover, various techniques for classical func-
tional programming can often be “transferred” to the quantum setting, since they are
formulated in an abstract mathematical language and hence are generic. For example,

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 371–391, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

372 A. Yoshimizu et al.

in [11, 16, 21] various semantical techniques in the classical setting—such as linear-
nonlinear adjunctions, categorical geometry of interaction, and presheaf completion—
are applied to quantum calculi, exploiting the categorical genericity of these techniques.

From Quantum Circuits to Proof Nets. The current work relies on another rich body of
techniques that are developed in the linear logic community. Specifically we follow the
line of [3, 4] where, roughly speaking,

proof nets are thought of as extended quantum circuits.

Proof nets as devised in [6] are a graphical presentation of linear lambda terms (i.e.
linear logic proofs) whose principal concern is reduction of terms (i.e. cut-elimination).
Proof nets are “extended quantum circuits” in the following sense: (some) wires in
proof nets can be naturally identified with those in quantum circuits; and at the same
time higher-order computation is naturally accommodated using a linear type system
(A�B ≡ A⊥`B). This view is hence a quantum version of the one in [22]. See §3.5
for further discussion.

Once a quantum lambda term is presented as a proof net, the geometry of interaction
(GoI) interpretation [7]—especially its concrete presentation as token machines [14]—
gives a concrete and operational interpretation of the term as a state transition system.
This is a main advantage of the current “proof net and GoI” approach compared to the
categorical one taken in [11, 16]: in the latter models tend to be abstract and huge.

A main disadvantage, however, is that it is harder to interpret extra features in a cal-
culus. Such desired features include recursion and accommodation of duplicable clas-
sical data by the ! modality; these are all present e.g. in [11]. In fact, in the preceding
work [3, 4] of the current approach, even measurements are excluded from the calculi.
Hence important (and basic) examples like quantum teleportation cannot be expressed
in their calculi.

Contributions. In the current work we present a comprehensive framework for pro-
gramming and interpreting higher-order quantum computation based on a linear lambda
calculus, proof nets and GoI interpretation. More specifically:

• We introduceMLLqm, a linear lambda calculus with quantum primitives (including
measurement, unlike [3, 4]).

• We define a notion of proof net, into which terms of MLLqm are translated. For
accommodating measurements we follow the idea of (additive) slices (see e.g. [8]).
We also define the reduction of proof nets and prove that it is strongly normalizing.

• We define token machine semantics of MLLqm proof nets and prove that it is sound,
i.e., is invariant under reduction of proof nets. Here we have multiple tokens in a
token machine (this is as in [4]); the slices are suitably handled following the token
machine semantics in [13] for additives.

Our framework attains a balance between expressivity and concreteness of models that
we find pleasant. On the one hand, the calculus MLLqm is reasonably expressive: it
does include all the quantum operations (preparation, unitary transformation, and most
importantly, measurement) and is capable of expressing examples like quantum tele-
portation, which is not possible in the earlier work [3, 4] of the same proof net ap-
proach. Moreover, our framework can naturally express higher-order procedures that

Measurements in Proof Nets as Higher-Order Quantum Circuits 373

are essential e.g. in formalizing quantum pseudo-telepathy games in quantum game
theory. The latter are attracting attention as a useful presentation of quantum nonlo-
cality (see e.g. [9]). On the other hand, while the languages in [11, 16, 21] are much
more expressive—they include duplicable classical data (by the ! modality) and/or
recursion—their models given in [11,16] rely on abstract categorical constructions and
it is not trivial to describe them in concrete terms. In contrast, our token machine se-
mantics for MLLqm is given explicitly by a transition system.

The current work shares the same interest as [2], in the sense that both aim at pictorial
formalisms for operational structures in quantum computation. We follow the linear
logic tradition; an advantage is explicit correspondence with a term calculus. In contrast,
[2] employs string diagrams for monoidal categories (more specifically compact closed
categories with biproducts). The two approaches are not unrelated: there is a body of
literature studying monoidal categories as models of linear logic. See [17] for a survey.

Organization of the Paper. After introducing the calculus MLLqm in §2, in §3 we define
MLLqm proof nets and translate terms into proof nets. As usual, proof nets are defined
to be proof structures satisfying a certain correctness criterion. We also define reduction
(i.e. cut-elimination) of proof nets. In §4 we give GoI semantics to MLLqm proof nets,
in the form of token machines. Our main result is soundness of the GoI semantics, i.e.
that it is invariant under reduction of proof nets. Quantum teleportation will exemplify
these constructions.

Most of the proofs are deferred to the extended version [24]. Familiarity to linear
logic techniques like proof nets and token machine semantics is helpful in reading this
paper. Our favorite reference is [20].

2 Syntax of Quantum Lambda Calculus MLLqm

We introduce a typed calculus MLLqm. It is a term calculus based on linear logic—
specifically multiplicative linear logic (MLL) that has connectives ⊗, ` and (·)⊥. It is
further augmented with quantum primitives that are rich enough to express any quan-
tum operation. The latter notion is roughly for “what we can do to quantum states” and
can be represented as a combination of preparation, unitary transformation and mea-
surement. See [18, Chap. 8] for more details. The name MLLqm stands for “MLL for
quantum computation with measurements.”

Definition 2.1 (Types of MLLqm). Types of MLLqm are defined by the following BNF:
A,B ::= qbit | qbit⊥ |A⊗B |A`B .

The syntactic equality shall be denoted by ≡. As is customary in linear logic, we
syntactically identify types according to the following rules: (A⊗B)⊥ ≡ A⊥ ` B⊥,

(A`B)
⊥ ≡ A⊥ ⊗B⊥, and (A⊥)

⊥ ≡ A. We write A�B for A⊥ `B and A⊗n for
(· · · (A⊗A)⊗A) · · ·)⊗A (here ⊗ occurs n− 1 times).

Definition 2.2 (Terms of MLLqm). Terms of MLLqm are defined by:
M,N,L ::= x |λxA.M |MN | 〈M,N〉 |λ〈xA, yB〉.M

| new|ϕ〉 |U | if measM thenN elseL .
Here x is an element of a fixed countable set Var of variables. new|ϕ〉 is a constant for
each normalized vector |ϕ〉 in C2 and designates preparation of a qubit. U is a constant

374 A. Yoshimizu et al.

for each 2n-dimension unitary matrix, where n ∈ N. Measurements meas occur only
in conditionals. Note that in variable binders λxA and λ〈xA, yB〉, variables x, y come
with explicit type labels. This is to ensure Lem. 2.5.

Remark 2.3. The constructor if measM thenN elseL is intended for “classical con-
trol”: operationally, the qubit represented by M is actually measured before going on
to evaluate N or L.

This is not to be confused with “quantum control.” In quantum circuits, it is well-
known that any measurement can be postponed to the end of a circuit (the principle
of deferred measurement, [18, §4.4]). This is possible by use of controlled operations
like CNOT [18, §4.3]. We shall stick to classical control because, in the current higher-
order setting, it is not clear how to simulate classical control by quantum control, or
how to systematically construct quantum controlled operations.

Definition 2.4 (Typing rules of MLLqm). Typing rules of MLLqm are shown below. A
context Γ in a type judgment is a set {x1 : A1, . . . , xn : An} of variables and their
types. We write its domain {x1, . . . , xn} as |Γ |. The juxtaposition Γ,Δ of contexts
denotes their union and we assume |Γ | ∩ |Δ| = ∅.

x : A � x : A
ax

Γ, x : A �M : B

Γ � λxA.M : A� B
�I1

Γ, x : A, y : B �M : C

Γ � λ〈xA, yB〉.M : A⊗B � C
�I2

Γ �M : A�B Δ � N : A
Γ,Δ �MN : B

�E
Γ �M : A Δ � N : B
Γ,Δ � 〈M,N〉 : A⊗B

⊗I

� new|ϕ〉 : qbit
new � U : qbit⊗n � qbit⊗n

Un

Γ �M : qbit Δ � N : A Δ � L : A

Γ,Δ � if measM thenN elseL : A
meas

The rule �I2 replaces the usual ⊗E rule that is problematic in the current linear
setting. The following will enable inductive translation of terms into proof nets.

Lemma 2.5. A derivable type judgment Γ �M : A has a unique derivation. &'

3 MLL Proof Nets with Quantum Nodes

In this section we introduce the notion of proof nets tailored for the calculus MLLqm. It
is based on MLL proof nets [6] (see also [20]) and has additional nodes that correspond
to quantum primitives (preparation, unitary transformation and measurement). Among
them, (conditionals based on) measurements are the most challenging to model; we
follow the idea of additive slices that are successfully utilized e.g. in [15].

As usual, we start with the notion of proof structures as graphs consisting of certain
nodes. Then proof nets are defined to be those proof structures which comply with a
correctness criterion (like Danos & Regnier’s in [5]). We define translation of MLLqm
terms into proof structures, which we prove to be proof nets. Moreover, we define re-
duction of proof structures, which we think of as one operational semantics of MLLqm
terms. It is shown that proof nets are reduced to proof nets, and that reduction of proof
nets is strongly normalizing (SN). Note that recursion is not in MLLqm.

Measurements in Proof Nets as Higher-Order Quantum Circuits 375

3.1 MLLqm Proof Structures

an if node

In addition to the usual nodes in MLL proof nets, we introduce three
kinds of nodes for quantum computation: new (preparation of a single
qubit), U (unitary transformations/gates), and if (conditionals accord-
ing to measurement of a qubit). An if node is as shown on the right. It
is like a box in standard proof nets.

An if node will appear in a proof structure in the form where the two dashed boxes on
its top are filled with “internal” proof structures. Such a combination of an if node and
two (internal) proof structures shall be called a meas node. Overall, in MLLqm proof
structures we allow the following seven kinds of nodes (Fig. 1).

reg: Q0 reg: Q1

a meas node (= an if node & two proof structures)

Fig. 1. Nodes of MLLqm proof structures

Note that nodes and proof structures are defined by mutual induction: in a proof
structure there is a meas node, in whose dashed boxes there are other internal proof
structures, and so on. We will make this precise in Def. 3.1. In Fig. 1, a unitary gate
node for a 2n-dimension unitary matrix U has n-many qbit edges and n-many qbit⊥

edges. Γ denotes a finite sequence of types. In a meas node, the qbit⊥-typed edge
sticking out to the down-left is called a query edge.

As usual, incoming edges of a node are called premises and outgoing edges are called
conclusions. A proof structure is roughly a graph that consists of nodes in Fig. 1, and

reg: 1 reg: 1

reg: reg: 1
√
3

2
|03〉+ 1

2
|13〉

reg:
1√
2
|0102〉+ 1√

2
|1112〉

Fig. 2. An example of proof structure

376 A. Yoshimizu et al.

is augmented with a quantum state called a quantum register, whose functionality we
shall explain by an example.

See Fig. 2. The outermost proof structure (we say it is of level 0) has two new nodes,
a cut node, a ⊗ node and a meas node. Its quantum register is a state of a 2-qubit sys-
tem; each qubit corresponds to a certain new node and the correspondence is designated
by indices. Therefore our intention is that each proof structure has a quantum register
whose size is the number of new nodes, and that the proof structure explicitly carries the
content of the quantum register. Such pairing of computational structure (proof struc-
tures here) and quantum registers is inspired by the operational semantics of [21], where
a term of a calculus and a quantum state together form a quantum closure.

Definition 3.1 (MLLqm proof structure). Let S be a directed finite graph consisting of
nodes in Fig. 1; Q be a quantum register of length n ∈ N (that is, a normalized vector in
C2n); k be the number of new nodes in S; and l be a bijection {the new nodes in S} ∼=→
{1, 2, . . . , k}. A triple (S, Q, l) satisfying

– each edge in S is well-typed;
– no incoming edge in S is dangling; and
– n = k

is called a proof structure. The types on the dangling outgoing edges in S are called the
conclusions of S.

Let (S0, Q0, l0) and (S1, Q1, l1) be proof structures with the same conclusions,
say Γ . We call a triple

(
if node, (S0, Q0, l0), (S1, Q1, l1)

)
a meas node and regard

it as a node with conclusions qbit⊥, Γ . Each of the proof structures (S0, Q0, l0) and
(S1, Q1, l1) is called a branch of the meas node.

The outermost proof structure is said to be of level 0 and the branches of a meas
node of level n are said to be of level n+ 1.

We emphasize again that the above definitions of proof structures and meas nodes are
mutually inductive. We allow meas nodes nested only finitely many times. The bijec-
tion l in a proof structure (S, Q, l) gives indices to new nodes and designates corre-
spondences between new nodes and qubits in a quantum register Q.

For example, in Fig. 2 the unitary gate nodes U and V belong to level 2. The quantum
state that corresponds to the node new3 is in the level-1 register. Note that it is invisible
from level 0.

Finally we define slices for MLLqm proof structures, like usual additive slices. We
will employ this notion later in §4.

Definition 3.2 (Slicing and slices). Let N = (S, Q, l) be an MLLqm proof structure.
A slicing is a function b : {all if nodes in S (of any level)} → {0, 1}. Abusing notation,
a slice b(N) is a graph obtained by deleting the unselected branch of each if node
according to the slicing b, i.e. if b(v) = 0 delete the branch on the right and if b(v) = 1
delete the branch on the left for each if node v. Note that a slice is not a proof structure.

3.2 Reduction of MLLqm Proof Structures
We now introduce reduction rules for MLLqm proof structures. Following the Curry-
Howard intuition that normalization of a proof is computation, a reduction step is
thought of as a step in quantum computation.

Measurements in Proof Nets as Higher-Order Quantum Circuits 377

Definition 3.3 (Reduction rules of MLLqm proof structures). Reduction rules are
shown in Fig. 3. The first two are standard in MLL proof nets; the latter three are new.
In the unitary gate rule, the unitary matrix Uj1,...,jm acts on j1, . . . , jm-th qubits in
the same way as U does, and leaves other qubits unchanged. The last two rules occur
probabilistically, where the resulting quantum registers |ϕ′

0〉, |ϕ′
1〉 and probabilities∑

j |αj |2,
∑

j |βj |2 defined in the obvious way. Explicitly:
|ϕ0〉 =

∑
j αj

(
|ψ0

j 〉 ⊗ |0〉 ⊗ |χ0
j 〉
)
, |ϕ′

0〉 =
∑

j

αj√∑
k |αk|2

(
|ψ0

j 〉 ⊗ |χ0
j 〉
)
,

|ϕ1〉 =
∑

j βj

(
|ψ1

j 〉 ⊗ |1〉 ⊗ |χ1
j 〉
)
, |ϕ′

1〉 =
∑

j

βj√∑
k |βk|2

(
|ψ1

j 〉 ⊗ |χ1
j 〉
)
,

(1)

where |ψbj〉 of length m − 1 and m is the index of the new node that is measured. The
other rules occur with probability 1. In meas rules, the indexing function l is suitably
updated too.

ax

reg: Q reg: Q

⊗-`
reg: Q reg: Q

unitary gate

reg: Q reg: Uj1, … jmQ

meas0

reg: |φ0 + |φ1

reg: P0 reg: P1 ∑
j

|αj |2

reg: |φ0’ P0

meas1

reg: |φ0 + |φ1

reg: P0 reg: P1 ∑
j

|βj |2

reg: |φ1’ P1

Fig. 3. Reduction rules of MLLqm proof structures

3.3 MLLqm Proof Nets and the Correctness Criterion

Our view of MLLqm proof structures is that they are “extended quantum circuits” that
allow formalization of higher-order quantum computation.

378 A. Yoshimizu et al.

reg: 1As usual with proof structures, however, Def. 3.1 does not ex-
clude proof structures that carries no computational contents—to put
it technically, those which have cut nodes that cannot be eliminated.
This is mainly due to vicious “feedback loops,” as seen in the proof
structure on the right. We exclude such feedback loops by imposing a correctness crite-
rion that is similar to Danos and Regnier’s “connected and acyclic” one [5]. Then proof
nets are proof structures that comply with the correctness criterion.

In the current quantum setting the challenge is to devise a graph-theoretic correctness
condition for unitary gate nodes. We follow the idea in [4].

Definition 3.4 (Correctness graphs with quantum nodes). Let N = (S, Q, l) be a
proof structure. A correctness graph of N is an undirected graph obtained by applying
the following operations to S.

– Ignore directions of all edges.
– For each ` node, choose one of the two premises and disconnect the other.
– For each unitary gate node, choose an arbitrary bijective correspondence between

the sets of qbit⊥ edges and qbit edges. Remove the node and connect each corre-
spondent pair of edges.

– For each meas node, ignore its branches.

reg: |01
Here is an example. The correctness
graphs for the proof structure on the
right are the four undirected graphs be-
low. There are two choices for the `
node and two for the unitary gate node.

Definition 3.5 (MLLqm proof nets). A correctness graph is said to satisfy the correct-
ness criterion if it is acyclic and connected.

A proof structure N is called a proof net if each of its correctness graphs satisfies
the correctness criterion and every branch in it is a proof net.

Lemma 3.6. If a proof net N reduces to another proof structure N ′ (according to the
rules in Def. 3.3), then N ′ is also a proof net. &'

3.4 Translation of MLLqm Terms into Proof Nets

We assign a proof structure �Γ �M : A� to each derivable type judgment Γ �M : A.
This turns out to satisfy the correctness criterion. Lem. 2.5 allows for the definition of
�Γ �M : A� by induction on derivation.

Definition 3.7 (Translation of terms into proof nets). For each derivable type judg-
ment Γ �M : A, a proof structure �Γ �M : A� is defined inductively as in Fig. 4–5.

Measurements in Proof Nets as Higher-Order Quantum Circuits 379

�x : A � x : A� �Γ � λxA.M : A �B� �� new|ϕ〉 : qbit�

reg: 1

reg: QΓ, x:A M:B

reg: |φ

�Γ �MN : B�
reg: QΔ M:A B QΘ N:A

where Γ = Δ,Θ and the derivation is

....
Δ �M : A �B

....
Θ � N : A

Γ �MN : B
�E

�Γ � 〈M,N〉 : A⊗B�
reg: QΔ M:A QΘ N:B

where Γ = Δ,Θ and the derivation is

....
Δ �M : A

....
Θ � N : B

Γ � 〈M,N〉 : A⊗B
⊗I

�Γ � λ〈xA, yB〉.M : A⊗B � C� �� U : qbit⊗n � qbit⊗n�
reg: QΓ, x:A, y:B M:C reg: 1

Fig. 4. Proof net translation of MLLqm terms—part I

380 A. Yoshimizu et al.

�Γ � if measM thenN elseL : A�

reg: QΘ N:A reg: QΘ L:A

reg: QΔ M:qbit where Γ = Δ,Θ and the derivation is

....
Δ �M : qbit

....
Θ � N : A

....
Θ � L : A

Γ � if measM thenN elseL : A

Fig. 5. Proof net translation of MLLqm terms—part II

Here we let �Γ �M : A� = (SΓ#M :A, QΓ#M :A, lΓ#M :A); and Γ denotes a sequence
A1, A2, . . . , An of types. In each case, the types Aj in the context Γ of Γ � M : A

appear as their dual Aj
⊥ in the conclusions of SΓ#M :A.

The indexing l between new nodes and quantum registers are merged in the obvious
way, in the cases of �Γ � 〈M,N〉 : A⊗B� and �Γ �MN : B�.

Lemma 3.8. For any derivable type judgment Γ � M : A, the proof structure
�Γ �M : A� is a proof net. &'

Hence, regarding MLLqm proof structures as a rewriting system for quantum com-
putation, it is sufficient to consider solely proof nets. This rewriting system exhibits the
following pleasant properties (Thm. 3.9–3.10).

Theorem 3.9 (Termination of reduction). The reduction of MLLqm proof nets is ter-
minating. &'

Regarding reduction of proof nets as cut elimination, it is natural to expect all the
cut nodes to disappear after reduction terminates. This is unfortunately not the case
and we have the following restricted result (Thm. 3.10). The condition in Thm. 3.10
corresponds to the condition that a term of MLLqm is closed, i.e. has no free variable.
Intuitively, it states that a proof net “executes all computation steps” if the whole input
is given.

Theorem 3.10 (Strong normalization). LetN = (S, Q, l) be an MLLqm proof net. If
no type containing qbit⊥ occurs in the conclusions of S, then every maximal sequence
of reductions from N reaches a proof net that contains no cut nodes, no unitary gate
nodes, or no if nodes. &'

Remark 3.11. For MLL proof nets, one of the purposes to introduce correctness cri-
teria in [5, 6] is to characterize those proof structures which arise from some proof in
sequent calculus. Therefore the converse of Lem. 3.8—so-called sequentialization—is
also proved in [6]. It allows (re)construction of sequent calculus proofs from proof nets.

However, sequentialization fails for MLLqm. Consider the following reduction; the
original proof net is the translation of the term CNOT〈new|0〉, new|0〉〉.

Measurements in Proof Nets as Higher-Order Quantum Circuits 381

�−→∗

After two ⊗-` reductions we do not yet get rid of the CNOT node; it is easily seen that
there is no MLLqm term that gives rise to the resulting proof net.

This is a phenomenon that reflects the nonlocal character of MLLqm; and ultimately
the nonlocality of quantum entanglement is to blame.

Sequentialization fails in general. Those proof nets which are sequentializable in-
clude: the net �Γ �M : A� (trivially); and the normal form of the net �Γ �M : A� for
a closed term M . The latter is because Thm. 3.10 says that in that case the normal form
is merely an MLL proof net with new nodes.

reg: 1 reg: 1

reg: 1 reg: 1

reg: (α|01〉+ β|11〉)⊗
(

1√
2
|0203〉+ 1√

2
|1213〉

)

Fig. 6. Quantum teleportation (after some reductions irrelevant to the quantum part)

3.5 Examples and Discussion

As syntax sugar we write 〈x1, x2, x3〉 ≡ 〈x1, 〈x2, x3〉〉 and λ〈xA1
1 , xA2

2 , xA3
3 〉.M ≡

λ〈xA1
1 , yA2⊗A3〉.((λ〈xA2

2 , xA3
3 〉.M)y), where y is a fresh variable. Let

B :≡ λ〈xqbit, yqbit, zqbit〉.
(
(λ〈vqbit, wqbit〉.〈H v, w, z〉)(CNOT〈x, y〉)

)
,

C :≡ λ〈sqbit, tqbit, uqbit〉.(if meas s thenZ else I)
(
(if meas t thenX else I)u

)
, and

β00 :≡ CNOT 〈Hnew|0〉, new|0〉〉
where H is the Hadamard gate, CNOT is the controlled
not gate, I is the identity matrix, and Z and X are the Pauli
matrices. The term β00 denotes one of the Bell state; and
the terms B and C represent the quantum circuits on the
right, respectively. Quantum teleportation of one qubit α|0〉+β|1〉 (where α, β ∈ C) is
then described as a MLLqm term T :≡

(
λxqbit.C(B〈x, β00〉)

)
newα|0〉+β|1〉 .

The term T is closed and has the type qbit. Its proof net translation �� T : qbit�,
after some reductions that are irrelevant to the quantum part, is shown in Fig. 6.

382 A. Yoshimizu et al.

It is not hard to notice the similarity between the proof net in Fig. 6 and the presen-
tation by a quantum circuit. In general, when we translate a first-order MLLqm term the
resulting proof net looks quite much like a quantum circuit. Notice that the term T is
indeed first-order.

It is when higher-order functions are involved that our linear logic based approach
shows its real advantage. For example, the proof net in the figure below receives a
transformation E of a qubit into a qubit as an input; and feeds E with either H |ϕ〉 or
|ψ〉, according to the outcome of the measurement of |χ〉. (It is straightforward to write
down an MLLqm term that gives rise to this proof net. Explicitly, the term is:
if meas new|χ〉 then (λf

qbit�qbit.f (Hnew|φ〉)) else (λf
qbit�qbit.f new|ψ〉).) This is a

“quantum circuit with a hole,” so to speak; our current MLLqm framework can express,
execute and reason about such procedures in a structural manner.

4 Token Machine Semantics for MLLqm Proof Nets

In this section we go on to introduce token machine semantics for MLLqm proof nets
and prove its soundness, that is, the semantics is invariant under reduction of proof nets.

qbit⊥

qbit⊗ qbit⊥ qbit`
(qbit � qbit) � qbit

reg: |ϕ〉 reg: |ψ〉

qbit⊥
cut

new

qbit

reg: |χ〉

⊗

(qbit � qbit) � qbit

new

qbit
ax

qbit⊥

qbit⊗ qbit⊥
qbit`

(qbit � qbit) � qbit

⊗
new

qbit
axH

cut
qbitqbit⊥

if

Token machines are one presentation of Girard’s geometry of interaction [7]. Un-
like the original presentation by C∗-algebras, token machines as devised in [14] are
(concrete) automata and carry a strong operational flavor. For more details see [20].

TheMLLqm token machines are different from the usual MLL ones in that it employs
multiple tokens. Intuitively one token corresponds to one qubit; and they are required
to synchronize when they go beyond a unitary gate node. This is one way how quan-
tum entanglement (hence nonlocality) can be taken care of in token machine semantics.
Use of multiple tokens is already in [4] where the style is called wave-style token ma-
chine. Multiple tokens inevitably results in nondeterminism in small-step behaviors of
machines (which token moves first?). We prove confluence of small-step behaviors, and
also uniqueness of big-step behaviors as its consequence. This is like in [4].

In the current work we go beyond [4] and interpret measurements too. For that pur-
pose we rely on the ideas developed in linear logic towards accommodating additive
connectives: namely (additive) slicing of proof nets, and weights in token machines.
See e.g. [8, 13].

Measurements in Proof Nets as Higher-Order Quantum Circuits 383

4.1 Tokens

We start with usual definitions. We follow [13] most closely. The presentation in [20] is
essentially the same.

Definition 4.1 (Context). A context is defined by the following BNF:
C ::= [] |C ⊗A |A⊗ C |C `A |A` C ,

where A is a type of MLLqm. Note that every context has exactly one hole []. The type
obtained by substituting a type A for the hole in a context C is denoted by C[A]. A
context C is called a context for A if the type A is obtained by substituting some type B
for the hole [], i.e. A ≡ C[B]. The negation C⊥ of a context C is defined in a natural
way, e.g. (qbit⊗ [])

⊥
:= qbit⊥ ` [].

Definition 4.2 (Token). Given a proof net N = (S, Q, l), a token is a 4-tuple
(A,C,D, ζ) where

– A is an edge of S (we abuse notations and identify an edge and the type occurrence
A assigned to it; no confusion is likely),

– C is a context for A,
– D is a direction, that is an element of {⇑,⇓}, and
– ζ ∈ N.

Intuitively, a token is a particle moving around the given proof net. The type oc-
currence A of a token indicates on which edge the token is. The context C designates
which base type in A the token is concerned about. An example is A ≡ qbit⊥ ` qbit
and C ≡ [] ` qbit; token machine semantics is defined in such a way that a token’s
context determines which edge to take when the token hits a fork, namely a ` node.
The direction D of a token specifies whether it is going up or down along the edge.

Finally, the natural number ζ is a feature that is not in usual MLL proof nets: it
records to which qubit of a quantum register the token corresponds. When a token is
deployed the initial value of ζ is 0, meaning that the token does not yet know which
qubit it corresponds to. When it hits a new node newj , its index j is recorded in ζ.

4.2 The Token Machine TN

Our goal is to construct a transition system (called a token machine) TN for a given
MLLqm proof netN . As an example, one state of the token machine is depicted below.

qbit⊥

qbit⊥ ` qbit

reg: 1 reg: 1

if

new3

qbit

⊗
ax

qbit
qbit⊥

qbit⊗ qbit⊥
cut

X

qbit⊥ qbit`
qbit⊥ ` qbit

I

qbit⊥ qbit`
qbit⊥ ` qbit

qbit⊥

cut

qbit⊥ ` qbit

reg: 1 reg: 1

if
qbit

⊗
ax

qbit⊥

qbit⊗ qbit⊥
cut

Z

qbit⊥ qbit`
qbit⊥ ` qbit

I

qbit⊥ qbit`
qbit⊥ ` qbit

cut

CNOT

qbit⊥

qbit⊥

qbit

qbit

cut

new1

cut

new2

qbit

cut

qbit

H

reg: |ϕ1〉 ⊗ (1√
2
|0203〉+ 1√

2
|1213〉)

qbit

qbit⊥

A state of TN is roughly the data that specifies the tokens in the proof netN (how many
of them, their locations, their contexts, etc.).

384 A. Yoshimizu et al.

In the current setting of MLLqm a state carries much more data, in fact. For example
it has a slicing, which is depicted by hatching the unselected branches in the above
figure. It may feel strange that the selection of branches are specified even before the
relevant qubits are measured: a probability—that is also carried by a state of a token
machine (p = 1/2 in the above figure)—represents the likelihood of the slicing actually
taken. The formal definition is as follows.

Definition 4.3 (State). Given a proof netN = (S, QN , l), a state of the token machine
TN is a 5-tuple (Q, p, b, Tpr, Tms) where

– Q is a quantum register,
– p is a probability, i.e. a real number satisfying 0 ≤ p ≤ 1,
– b is a slicing,
– Tpr is a finite set of tokens (called principal tokens),
– Tms is another finite set of tokens (called measurement tokens).

A quantum register Q of a state is related to QN (that of the proof net) but not neces-
sarily the same—this will be clarified by definitions below of the transition relation and
the initial states of TN .

We go on to define the transition structure→N of TN (Def. 4.4). We note that tran-
sitions →N form a binary relation between states—without any labels or probabilities
assigned to transitions. Hence TN is simply a Kripke frame. We shall refer to the tran-
sitions→N in TN also as the small-step semantics of TN .

The rules in Def. 4.4 are fairly complicated so their intuitions are stated first. The
rules mainly describe how token(s) “move around the net.” Almost every rule moves
only one token. An exception is the U-Apply rule: it makes tokens “synchronized” and
moves them at once. The if-Meas rule deletes one measurement token. The U-Apply and
if-Meas rules also act on the quantum register and the probability of a state, reflecting
the quantum effects of the corresponding operations. A slicing b is left untouched by
transitions.

Definition 4.4 (Transition →N of the token machine TN). The transition relation
→N between states of the token machine TN is defined by the rules as in Fig. 7–8. Each
rule except the U-Apply and if-Meas rules is divided into two rules, one for principal
tokens and the other for measurement tokens.

For each rule, we informally depict the intended movement of token(s) too.
Hatching over a branch means the branch is not selected by the slicing.

Lemma 4.5 (One-step confluence). Let N = (S, Q, l) be an MLLqm proof net. The
transition relation →N of its token machine TN is one-step confluent. That is, if both
s →N s1 and s →N s2 hold, then either s1 = s2 or there exists a state s′ such that
s1 →N s′ and s2 →N s′. &'

4.3 Big-Step Semantics of TN

We identify the “computational content” of a proof net N to be the big-step semantics
of the token machine TN that is defined below. The big-step semantics is intuitively
the correspondence between an initial state s ∈ IN and a final state s′ ∈ FN , such

Measurements in Proof Nets as Higher-Order Quantum Circuits 385

ax ax
AA⊥

� A,C,⇑, ζ AA⊥
�A⊥, C⊥,⇓, ζ

→N
ax

(
Q, p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊥, C⊥,⇓, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊥, C⊥,⇓, ζ)} ∪ Tms

)
cut

cut

AA⊥
�

A,C,⇓, ζ �
A⊥, C⊥,⇑, ζ

→N
cut

AA⊥

(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊥, C⊥,⇑, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊥, C⊥,⇑, ζ)} ∪ Tms

)
⊗-UpLeft A, C, ⇑, ζ⊗A B

A⊗B � A⊗B, C ⊗B, ⇑, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(A⊗B,C ⊗B,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A⊗B,C ⊗B,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)
⊗-UpRight B, C, ⇑, ζ⊗A B

A⊗B � A⊗B, A⊗ C, ⇑, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(A⊗B,A⊗ C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(B,C,⇑, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A⊗B,A⊗C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(B,C,⇑, ζ)} ∪ Tms

)
⊗-DownLeft A, C, ⇓, ζ ⊗A B

A⊗B � A⊗B, C ⊗B, ⇓, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊗B,C ⊗B,⇓, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊗B,C ⊗B,⇓, ζ)} ∪ Tms

)
⊗-DownRight B, C, ⇓, ζ ⊗A B

A⊗B � A⊗B, A⊗ C, ⇓, ζ
⊗A B

A⊗B

�

→

(
Q, p, b, {(B,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A⊗B,A⊗ C,⇓, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(B,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A⊗B,A⊗C,⇓, ζ)} ∪ Tms

)
`-UpLeft (pictures for the ` rules are similar to the ⊗ rules)(
Q, p, b, {(A ` B,C ` B,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A ` B,C ` B,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)
`-UpRight(
Q, p, b, {(A ` B,A ` C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(B,C,⇑, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A ` B,A `C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(B,C,⇑, ζ)} ∪ Tms

)
`-DownLeft(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A ` B,C ` B,⇓, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A ` B,C ` B,⇓, ζ)} ∪ Tms

)
`-DownRight(
Q, p, b, {(B,C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A ` B,A ` C,⇓, ζ)} ∪ Tpr, Tms

)(
Q, p, b, Tpr, {(B,C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A ` B,A `C,⇓, ζ)} ∪ Tms

)
Fig. 7. Transition rules for TN —part I

386 A. Yoshimizu et al.

new

�

newk

qbit qbit, [], ⇑, 0 �

newk

qbit qbit, [], ⇓, k
→N(

Q,p, b, {(qbit, [],⇑, 0)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(qbit, [],⇓, k)} ∪ Tpr, Tms

)(
Q,p, b, Tpr, {(qbit, [],⇑, 0)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(qbit, [],⇓, k)} ∪ Tms

)
where v is the new node and k = l(v).

U-Through U

qbit⊥1 qbit⊥nqbit⊥k qbit1 qbitnqbitk

�qbitk, [], ⇑, ζ �
→N

U

qbit⊥1 qbit⊥nqbit⊥k qbit1 qbitnqbitk

qbit⊥k , [], ⇓, ζ(
Q,p, b, {(qbitk, [],⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(qbitk⊥, [],⇓, ζ)} ∪ Tpr, Tms

)(
Q,p, b, Tpr, {(qbitk, [],⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(qbitk⊥, [],⇓, ζ)} ∪ Tms

)
U-Apply U

qbit⊥1 qbit⊥n qbit1 qbitn

�qbit⊥1 , [], ⇑, ζ1 � qbit⊥n , [], ⇑, ζn

state: Q state: Uζ1,...,ζnQ

→N

U

qbit⊥1 qbit⊥n qbit1 qbitn

� �qbit1, [], ⇓, ζ1
qbitn, [], ⇓, ζn(

Q,p, b, {(qbitρ(1)⊥, [],⇑, ζρ(1)), . . . , (qbitρ(m)
⊥, [],⇑, ζρ(m))} ∪ Tpr,

{(qbitρ(m+1)
⊥, [],⇑, ζρ(m+1)), . . . , (qbitρ(n)

⊥, [],⇑, ζρ(n))} ∪ Tms

)
→N

(
Uζ1,...,ζnQ, p, b, {(qbitρ(1), [],⇓, ζρ(1)), . . . , (qbitρ(m), [],⇓, ζρ(m))} ∪ Tpr,

{(qbitρ(m+1), [],⇓, ζρ(m+1)), . . . , (qbitρ(n), [],⇓, ζρ(n))} ∪ Tms

)
where 0 ≤ m ≤ n and ρ is an appropriate permutation.

if-Meas state: |ϕ0〉+|ϕ1〉 state: |ϕ′
j〉

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

�qbit, [], ⇑, n

→N

(
|ϕ0〉+ |ϕ1〉, p, b, Tpr, {(qbit⊥, [],⇑, ζ)} ∪ T ′

ms

)
→N

(
|ϕ′

0〉, p
∑

j |αj |2, b, Tpr, T
′
ms

)
when b(v) = 0 where v is the if node.(
|ϕ0〉+ |ϕ1〉, p, b, Tpr, {(qbit⊥, [],⇑, ζ)} ∪ T ′

ms

)
→N

(
|ϕ′

1〉, p
∑

j |βj |2, b, Tpr, T
′
ms

)
when b(v) = 1 where v is the if node.

if-In

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A

→N

if

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

� A, C, ⇑, ζ

A0, C, ⇑, ζ �

(
Q,p, b, {(A,C,⇑, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(Aj , C,⇑, ζ)} ∪ Tpr, Tms

)(
Q,p, b, Tpr, {(A,C,⇑, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(Aj , C,⇑, ζ)} ∪ Tms

)
when b(v) = j where v is the if node.

if-Out

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A

→N
�

if

A0, C, ⇓, ζ

qbit⊥
Γ

A0

S0 S1

reg: Q0 reg: Q1

Γ0 Γ1
A1

A
if

� A, C, ⇓, ζ(
Q,p, b, {(Aj , C,⇓, ζ)} ∪ Tpr, Tms

)
→N

(
Q, p, b, {(A,C,⇓, ζ)} ∪ Tpr, Tms

)(
Q,p, b, Tpr, {(Aj , C,⇓, ζ)} ∪ Tms

)
→N

(
Q, p, b, Tpr, {(A,C,⇓, ζ)} ∪ Tms

)
Fig. 8. Transition rules for TN —part II

Measurements in Proof Nets as Higher-Order Quantum Circuits 387

that s reaches s′ via a succession of →N . By confluence of →N (Lem. 4.5) such s′ is
shown to be unique if it exists (Prop. 4.12); hence the big-step semantics is given as
a partial function IN ⇀ FN . Later in §4.4 we will show soundness, that is, the big-
step semantics is invariant under the reduction of proof nets (as defined in §3), modulo
certain “quantum effects.”

We start with singling out some states of TN as initial and final.

Notation 4.6 (Qv
b). Let N = (S, QN , l) be an MLLqm proof net, b be a slicing of N ,

and v be an if node in S. By Qv
b we denote the quantum register associated with the

branch designated by b.

Hence Qv
b is a quantum register inside a dashed box attached to the if node v.

Definition 4.7 (Initial states). Let N = (S, QN , l) be an MLLqm proof net. A state
s = (Q, p, b, Tpr, Tms) of TN is said to be initial if:

– Q = QN ⊗
(⊗
v∈V

Qv
b

)
where V is the set of all if nodes in the slice b(N) (of any

level; recall Def. 3.2).
– A token (A,C,D, ζ) belongs to Tpr if and only if

• A is a conclusion edge of level 0 (recall that we denote an edge by its type
occurrence);

• C[qbit] ≡ A; D =⇑; and ζ = 0.
– A token (A,C,D, ζ) belongs to Tms if and only if

• A ≡ qbit⊥, a query edge (one sticking left-down from an if node) in a branch
remaining in the slice b(N);

• C ≡ []; D =⇓; and ζ = 0.
The set of initial states is denoted by IN .

In an initial state, every principal token is at one of the conclusion edges (of level 0),
waiting to go up. Measurement tokens are at query edges of any level (but only those
which are in the slice b(N)). The quantum register Q keeps track not only of the level-0
register QN but also of “internal” registers (again which are in the slice b(N)).

Definition 4.8 (Final states). Let N = (S, QN , l) be an MLLqm proof net. A state
s = (Q, p, b, Tpr, Tms) of TN is said to be final if:

– each principal token (A,C,D, ζ) ∈ Tpr satisfies
• A is a conclusion edge;
• C[qbit] = A; and D =⇓.

– Tms = ∅.

Therefore in a final state, all the principal tokens are back at conclusion edges, and all
the measurement tokens are gone. Recall that the if-Meas transition in Def. 4.4 deletes
a measurement token.

Definition 4.9 (Token machine). The token machine for an MLLqm proof net N is
the 4-tuple TN = (SN , IN , FN ,→N) where SN is the set of states (Def. 4.3), IN and
FN are the sets of initial and final states (Def. 4.7–4.8), and →N⊆ SN × SN is the
(small-step) transition relation (Def. 4.4).

In what follows, the transitive closure of→N is denoted by→+
N .

388 A. Yoshimizu et al.

Definition 4.10 (Big-step semantics). Let N be an MLLqm proof net. The big-step
semantics of the token machine TN , denoted by �N �, is the partial function �N � :

IN ⇀ FN defined by �N �(s) :=

{
s′ ∈ FN if s→+

N s′;

⊥ otherwise.

Prop. 4.12 below exhibits the legitimacy of this definition (as a partial function). It is
not total but partial in general: partiality arises when the conclusion contains a qbit⊥.
For the proof nets translated from closed MLLqm terms, it is always total (Cor. 4.16).

Lemma 4.11 (Termination of transition). LetN = (S, Q, l) be an MLLqm proof net.
There is no infinite sequence of small-step transitions→N in TN . &'

Proposition 4.12 (Unique final state). Let N = (S, Q, l) be an MLLqm proof net. If
s→+

N s0 and s→+
N s1 with s0, s1 ∈ FN , then s0 = s1. &'

4.4 Soundness of the Token Machine Semantics

Soundness of the big-step semantics—that it is invariant under the reduction of proof
nets—holds only modulo certain quantum effects. The latter are formalized as follows,
as suitable transformations of token machine states.

Definition 4.13 (U). Let N = (S, QN , l) be an MLLqm proof net. Assume that there
is a unitary gate node U inN for which the unitary gate reduction rule in Fig. 3 can be
applied, resulting in the proof netN ′. In this case, we define a function U : SN → SN ′

by U(Q, p, b, Tpr, Tms) := (Uj1,...,jmQ, p, b, Tpr, Tms).

Definition 4.14 (meas). Let N = (S, QN , l) be an MLLqm proof net. Assume that
there is an if node v inN to which the meas0 and meas1 rules in Fig. 3 are applicable,
resulting in nets N0 andN1, respectively.

First we define functions measv|0〉 : IN → IN0 and measv|1〉 : IN → IN1 , by
measv|0〉

(
|ϕ0〉+|ϕ1〉, p, b, Tpr,

{
(qbit⊥, [],⇓, ζ)

}
∪ Tms

)
:=
(
|ϕ′

0〉, p
∑

j |αj |2, b0, Tpr, Tms

)
,

measv|1〉
(
|ϕ0〉+|ϕ1〉, p, b, Tpr,

{
(qbit⊥, [],⇓, ζ)

}
∪ Tms

)
:=
(
|ϕ′

1〉, p
∑

j |βj |2, b1, Tpr, Tms

)
,

where bj is defined by bj(u) := b(u) on every if node u in the proof net Nj (j ∈
{0, 1}). Here the token (qbit⊥, [],⇓, ζ) in the definition is on the query edge of v, and
|ϕ0〉, |ϕ′

0〉, |ϕ1〉, |ϕ′
1〉 are registers as in (1) in §3.2.

Finally we define a function measv : IN → IN0 + IN1 by (+ denotes disjoint union)

measv(s) :=

{
measv|0〉(s) if b(v) = 0,

measv|1〉(s) if b(v) = 1,
where s = (|ϕ〉, p, b, Tpr, Tms).

Intuitively, the function measv “deletes” the if node v together with relevant entries
in the slicing b. A quantum register and a probability are updated too, in an obvious
manner.

Using these state transformations our main result is stated as follows.

Theorem 4.15 (Soundness). LetN �→ N ′ be a reduction of MLLqm proof nets. Then,

1. �N � = �N ′� if the reduction is by the ax-cut or the ⊗-` rule.
2. �N � = �N ′� ◦ U if the reduction is by the unitary gate rule, where U is the corre-

sponding unitary matrix.

Measurements in Proof Nets as Higher-Order Quantum Circuits 389

3. �N � � (�N0� + �N1�) ◦measv if the reduction is by one of the meas rules. In this
case there must be another reduction possible due to the other meas rule, and we
denote the resulting two proof nets byN0 andN1 (N ′ is one of these). The function
�N0� + �N1� means case-distinction (recall the type IN → IN0 + IN1 of measv).
Here the equivalence � is a natural identification of final states of TN , TN0 and

TN1 . That is, F � G
def.⇐⇒ ∀x.F (x) ∼ G(x) and

s ∼ s′
def.⇐⇒ s = s′ disregarding slicings.

Pictorially, the statements 2. and 3. say the following diagrams commute:

IN
U ��

�N � �� FN IN
measv ��

�N � �� FN
∼��

IN ′
�N ′� �� FN ′ IN0 + IN1

�N0�+�N1� �� FN0 + FN1 . &'

Thm. 4.15 together with Thm. 3.10 yield the following corollary (Cor. 4.16). This
corollary implies that the computation of a closed term ends with a result.

Corollary 4.16. Let N be a proof net with no qbit⊥ in its conclusions. Then the big-
step semantics �N � is total. &'

4.5 Example

As a concrete example we briefly look at the token machine for the proof net for quan-
tum teleportation (Fig. 6); we shall demonstrate that the qubit α|01〉 + β|11〉 (“stored”
in the node new1) is transmitted correctly.

The initial states of our interests are the following four:(
Q, 1, bij,

{
(qbit, [],⇑, 0)

}
,
{
(qbitx

⊥, [],⇓, 0), (qbitz⊥, [],⇓, 0)
})

,

where Q is the quantum register (α|01〉+β|11〉)⊗
(

1√
2
|0203〉+ 1√

2
|1213〉

)
and i, j ∈

{0, 1}. Each initial state (with a different slicing bij) corresponds to possible outcomes
of the two measurements. Note that each has the probability 1.

It is straightforward to see that each of the four initial states is led to the final state(
α|0〉 + β|1〉, 1/4, bij, {(qbit, [],⇓, 3)}, ∅

)
, with the qubit α|0〉 + β|1〉 assigned to the

node new3. The probabilities (1/4 each) add up to 1 with the four initial states to-
gether, a fact which witnesses that the original qubit is successfully transmitted with the
probability 1.

5 Conclusions and Future Work

We introduced the notion of MLLqm proof net. It is the first one that accommodates
measurements as proof structures, and has suitable features for expressing higher-order
computation thus going beyond quantum circuits.

The GoI semantics with measurements in this paper is also the first one, which was
mentioned in [4] as one of future work. The ideas of using a form of “weakening”
to capture measurements (qubits are deleted) and that states of a token machine carry
probabilities are new and clean, while the overall structure of the machine follows the
usual notion of slice used in linear logic.

390 A. Yoshimizu et al.

As future work, one direction is to accommodate duplicable data, namely the bit
type. Although linear logic has a standard tool—the ! modality—to handle such data,
there are subtle problems coming from the no-cloning property, nonlocality, etc. An-
other is to accommodate recursion. We expect to be able to adapt the techniques
developed in [14] and [12].

Acknowledgments. Thanks are due to Kentaro Honda, Tristan Roussel, and Alexis
Saurin for useful discussions. A.Y. and I.H. are supported by Grants-in-Aid for Young
Scientists (A) No. 24680001, and by Aihara Innovative Mathematical Modeling Project,
FIRST Program, JSPS/CSTP. C.F. is supported by the ANR project ANR-2010-BLAN-
021301 LOGOI.

References

1. 19th IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, Finland, July
14-17. Proceedings. IEEE Computer Society (2004)

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: LICS [1],
pp. 415–425

3. Dal Lago, U., Faggian, C.: On multiplicative linear logic, modality and quantum circuits. In:
Jacobs, B., Selinger, P., Spitters, B. (eds.) QPL. EPTCS, vol. 95, pp. 55–66 (2011)

4. Dal Lago, U., Zorzi, M.: Wave-style token machines and quantum lambda calculi (2013)
5. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. for Math. Logic 28(3), 181–203

(1989)
6. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
7. Girard, J.Y.: Geometry of interaction 1: Interpretation of system F. Logic Colloquium 88

(1989)
8. Girard, J.Y.: Proof-nets: The parallel syntax for proof-theory. In: Logic and Algebra,

pp. 97–124. Marcel Dekker (1996)
9. Gisin, N., Methot, A.A., Scarani, V.: Pseudo-telepathy: input cardinality and Bell-type in-

equalities. International Journal of Quantum Information 5(4), 525–534 (2007)
10. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quan-

tum programming language. In: Boehm, H.J., Flanagan, C. (eds.) PLDI, pp. 333–342. ACM
(2013)

11. Hasuo, I., Hoshino, N.: Semantics of higher-order quantum computation via geometry of
interaction. In: LICS, pp. 237–246. IEEE Computer Society (2011)

12. Hoshino, N.: A modified GoI interpretation for a linear functional programming language
and its adequacy. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 320–334.
Springer, Heidelberg (2011)

13. Laurent, O.: A token machine for full geometry of interaction. In: Abramsky, S. (ed.) TLCA
2001. LNCS, vol. 2044, pp. 283–297. Springer, Heidelberg (2001)

14. Mackie, I.: The geometry of interaction machine. In: POPL, pp. 198–208 (1995)
15. Mairson, H.G., Terui, K.: On the computational complexity of cut-elimination in linear

logic. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 23–36. Springer,
Heidelberg (2003)

16. Malherbe, O., Scott, P., Selinger, P.: Presheaf models of quantum computation: An outline.
In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games and Quantum
Foundations. LNCS, vol. 7860, pp. 178–194. Springer, Heidelberg (2013)

Measurements in Proof Nets as Higher-Order Quantum Circuits 391

17. Melliès, P.A.: Categorical semantics of linear logic. Panoramas et Synthèses, ch. 1, vol. 27,
pp. 15–215. Société Mathématique de France (2009)

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
Univ. Press (2000)

19. Ömer, B.: Quantum programming in QCL. Master’s thesis, Institute of Information Systems,
Technical University of Vienna (2000)

20. Pinto, J.S.: Implantation Parallèle avec la Logique Linéaire (Applications des Réseaux
d’Interaction et de la Géométrie de l’Interaction). Ph.D. thesis, École Polytechnique, Main
text in English (2001)

21. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic
Techniques in Quantum Computation, pp. 135–172. Cambridge Univ. Press (2009)

22. Terui, K.: Proof nets and boolean circuits. In: LICS [1], pp. 182–191
23. van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput. 33(5),

1109–1135 (2004)
24. Yoshimizu, A., Hasuo, I., Faggian, C., Dal Lago, U.: Measurements in proof nets as higher-

order quantum circuits. Extended version with proofs (2014),
www-mmm.is.s.u-tokyo.ac.jp/˜ayoshimizu

www-mmm.is.s.u-tokyo.ac.jp/~ayoshimizu

Automatic Termination Verification for Higher-Order
Functional Programs�

Takuya Kuwahara1, Tachio Terauchi2, Hiroshi Unno3, and Naoki Kobayashi4

1 University of Tokyo
kuwahara@is.s.u-tokyo.ac.jp

2 Nagoya University
terauchi@is.nagoya-u.ac.jp

3 University of Tsukuba
uhiro@cs.tsukuba.ac.jp

4 University of Tokyo
koba@is.s.u-tokyo.ac.jp

Abstract. We present an automated approach to verifying termination of higher-
order functional programs. Our approach adopts the idea from the recent work on
termination verification via transition invariants (a.k.a. binary reachability anal-
ysis), and is fully automated. Our approach is able to soundly handle the subtle
aspects of higher-order programs, including partial applications, indirect calls,
and ranking functions over function closure values. In contrast to the previous
approaches to automated termination verification for functional programs, our
approach is sound and complete, relative to the soundness and completeness of
the underlying reachability analysis and ranking function inference. We have im-
plemented a prototype of our approach for a subset of the OCaml language, and
we have confirmed that it is able to automatically verify termination of some
non-trivial higher-order programs.

1 Introduction

Recent years have witnessed a dramatic progress in automated verification of higher-
order functional programs [27,31,24,11,16,33,37]. The line of work takes the ideas from
the recent advances in the verification of non-functional programs, such as predicate ab-
straction, counterexample-guided abstraction refinement, and interpolation [1,9,21,10],
to the verification of higher-order functional programs by way of refinement (depen-
dent) types [36] and higher-order model checking [23,14].

However, except for the case when the base-type data is of a finite domain [15,20],
the above line of work (to the extent of software model checking techniques for higher-
order programs) has been limited to the verification of safety (i.e., reachability) proper-
ties. In particular, it is unable to verify liveness properties, such as termination.

For automated termination verification of higher-order programs, popular methods
have been based on size-change termination [12,29,28] or TRS (term rewriting sys-
tems) techniques [6]. (Besides them, Xi [35] has proposed termination analysis based
on dependent types, but his technique is not fully automated in the sense that users

� This work was supported by MEXT Kakenhi 23220001, 23700026, 25280023, and 25730035.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 392–411, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Automatic Termination Verification for Higher-Order Functional Programs 393

let rec app f x () =
if x>0 then app f (x-1) () else f x () in

let id () = () in
let rec g x = if x=0 then id else app g x in
let t = * in g t ()

Fig. 1. A non-terminating higher-order program

have to provide dependent types of recursive functions as witness of termination.) The
current methods based on those approaches are not completely satisfactory, especially
in terms of precision. Roughly, these techniques first construct a finite graph (called a
static call graph [12,29,28] or a termination graph [6]) that over-approximates certain
dependencies on termination, and then use techniques for first-order programs [19,7] to
show that there is no cyclic dependency. In these two-phase approaches to termination,
information is often lost in the first phase; see Section 5 for more details.

In the present paper, we follow an approach based on transition invariants [26,4,5],
and extend it to deal with higher-order functional programs. The transition-invariant-
based approach has emerged as a powerful technique for verifying termination of first-
order imperative programs [26,4,5]. The technique iteratively reduces the termination
verification problem to the problem of checking the binary reachability of program
transition relations. It then delegates the binary reachability checking to a reachability
checker by encoding the problem as a plain reachability problem via a program trans-
formation. Advantages of this approach are that termination arguments can be flexibly
adjusted for each program by choosing an appropriate binary reachability relation, and
that precise flow information can be taken into account in the plain reachability verifica-
tion phase. The latter advantage is particularly important since the termination property
often depends on safety properties. For example, consider the program:

let f x = if p(x) then () else loop_forever()

Then, a call of f terminates if and only if p(x) is true, and the latter condition can
be checked during the reachability verification. In the higher-order case, termination
verification would be even more complicated since the condition can be passed as a
parameter of f. This shows the advantage of reducing termination verification to reach-
ability verification, where all the relevant information (such as value-dependent control
flow and size change) is put together and precisely analyzed by taking advantage of the
recent advance of reachability verification tools for higher-order programs.

The extension of the transition invariant-based technique for higher-order programs
is non-trivial. To see why, let us consider the OCaml program P0 shown in Figure 1.
(Here, * denotes a non-deterministic integer.) The program is non-terminating for any
non-deterministic choice of t such that t < 0. For example, for t = −1, the program
exhibits the following infinite reduction sequence.

g (-1) ()→∗ app g (-1) ()→∗ g (-1) ()→∗ app g (-1) ()→∗ · · ·

Note here that g is passed to and indirectly called by app, and there is no direct call
to g in the definition of g. Moreover, g itself does not (totally) call app but returns a

394 T. Kuwahara et al.

partially applied closure of the form app g n. Therefore, a termination verifier must
soundly handle indirect calls and function closures to avoid incorrectly reporting that
the program is terminating.

For a terminating example, let us consider a variation P1 of the above program, ob-
tained by replacing the branching condition x = 0 in g with x ≤ 0. To prove that P1 is
terminating for any non-deterministically chosen t (and any non-deterministic choice of
the integers chosen inside g), we need to know that the sequence of the third arguments
passed to the recursive calls to app is strictly decreasing and is bounded below by 0.

Our technique consists of: (i) a method to find an appropriate (disjunctively) well-
founded relation, including those over function closure values, that over-approximates
the binary reachability relation (the relation between two recursive function calls), (ii)
a program transformation that reduces the binary reachability problem to the plain
reachability problem, and (iii) a plain reachability analysis for higher-order programs.
For (iii), we employ off-the-shelf reachability verification tools for higher-order pro-
grams [27,31,11,16,33,37]. For (i), we adopt the previous technique [33] for automat-
ically inserting implicit integer parameters that represent information about function
closures. We can then adopt the existing techniques to find ranking functions (on integer
arguments) from counterexamples [25,3,5]. The most subtle part is (ii): how to reduce
the binary reachability analysis to plain reachability analysis. Actually, Ledesma-Garza
and Rybalchenko [18] has recently tackled this problem, but (as admitted in [18], Sec-
tion 8), their solution does not work quite well in the presence of partial applications
and indirect function calls. In fact, their method cannot properly deal with the programs
P0 and P1 above (cf. Section 5 of this paper for more details). By contrast, the reduc-
tion from binary reachability to plain reachability presented in this paper is sound and
complete.

Our contributions are: (i) The first sound approach to the termination verification
of higher-order functional programs that is based on the transition invariant / binary
reachability technique. The approach is also complete relative to the completeness of
the backend reachability checker and the ranking function inference process. A notable
aspect of our approach is an inference of ranking functions over closure values via the
automatic inference of implicit parameter instantiations. (ii) A prototype implementa-
tion to show the effectiveness of the proposed approach.

The rest of the paper is organized as follows. We define the target functional language
of termination verification in Section 2. Section 3 formalizes our termination verification
method. Section 4 reports on a preliminary implementation and experiment results. We
compare our method with related work in Section 5 and conclude the paper in Section 6.
The extended report [17] contains extra materials and proofs of the theorems.

2 Preliminaries

In this section, we introduce a higher-order functional language L, which is the target of
our termination verification. Figure 2 shows the syntax of L. Here, x̃ is an abbreviation
for a (non-empty) variable sequence x1 x2 . . . xk. The meta-variables f , x, c and
op range over the sets of function symbols, variables, constants, and binary operators
respectively. We write |x̃| for the length of x̃. The arity of function fi, written arity(fi),
is the number of formal parameters, i.e., |x̃i| in the function definition fi x̃i = ei.

Automatic Termination Verification for Higher-Order Functional Programs 395

Programs P ::= {f1 x̃1 = e1, . . . , fn x̃n = en}
Expressions e ::= v | x | let x = e1 in e2 | e1 op e2 | e1 e2 | if e1 then e2 else e3 | ∗int

Values v ::= c | f | f ṽ (where |ṽ| < arity(f))

Fig. 2. Syntax of L

Eval. contexts E ::= [] | E op e | v op E | E e | v E | let x = E in e

| if E then e1 else e2

E [c1 op c2]→P E [[[op]](c1, c2)]

E [let x = v in e]→P E [[v/x] e]

E [if true then e1 else e2]→P E [e1]

E [if false then e1 else e2]→P E [e2]

n ∈ Z

E [∗int]→P E [n]

f x̃ = e ∈ P |x̃| = |ṽ|
E [f ṽ]→P E [[ṽ/x̃] e]

Fig. 3. Operational semantics of L

We assume that the set of constants includes (), true, false and (unbounded) integers,
and that the set of binary operators includes comparators: >, <, ≥, ≤, = and boolean
operators: ∧,∨,⇒. We also assume that a program has a special one-arity function
named main that does not occur in the body of a function definition.

A program is a set of top-level function definitions; note that this does not lose gen-
erality because any functional program can be transformed to this form via λ-lifting. In
the definition of the expression, ∗int evaluates to some integer in a non-deterministic
manner. Note that the non-deterministic boolean, ∗bool, can be defined as ∗int = 0.

The set of evaluation contexts and the reduction relation are given in Figure 3. Here,
[[op]] denotes the binary operation on constants denoted by op. Note that the evaluation
is call-by-value and non-deterministic (because of ∗int). We write→∗

P for the reflexive
and transitive closure of→P , and→+

P for the transitive closure of→P . When it is clear
from the context, we omit the subscript P from the relations.

Example 1. The following program fib chooses an integer n non-deterministically and
computes the n-th Fibonacci number.{

fib n = if n < 2 then 1 else fib(n− 1) + fib(n− 2),
main () = fib ∗int

}
The following is a possible reduction sequence of the program:

main ()→fib fib ∗int →fib fib(2)→∗
fib fib(1) + fib(0)

→∗
fib 1 + fib(0)→∗

fib 1 + 1→∗
fib 2

For readability, we often write a program in the OCaml-like syntax as shown below:

let rec fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)
let main () = fib ∗int

396 T. Kuwahara et al.

Example 2. The following program indirect is a simplified variant of the program P1

in Section 1, obtained by removing the then branch of app and moving the decrement
operation (i.e., x− 1) to inside g.⎧⎪⎪⎨⎪⎪⎩

app f x u = f x u

id u = u

g x = if x ≤ 0 then id else app g (x− 1)
main () = g ∗int ()

⎫⎪⎪⎬⎪⎪⎭
The following is a possible reduction sequence of the program.

main ()→∗ g 2 ()→∗ app g 1 ()→∗ g 1 ()
→∗ app g 0 ()→∗ g 0 ()→∗ id ()→∗ ()

Note that, although g is applied to two arguments in the reduction above, arity(g) = 1
in our definition (because x is the only formal parameter in the definition of g).

We define termination as follows.

Definition 1. A program P is terminating, if there is no infinite reduction sequence
main ()→P e1 →P e2 →P · · · .

Remark 1. The language L is untyped and therefore, a program evaluation may get
stuck. We consider a reduction sequence that ends with a stuck expression as terminat-
ing. Our approach is sound and complete even for untyped languages. But, our imple-
mentation currently supports only the typed subset because it delegates the reachability
checking to a higher-order program model checker for a typed language.

3 Termination Verification via Binary Reachability

This section describes our termination verification method. We give an informal overview
of the whole process in Subsection 3.1, and discuss each step in a more detail in the later
subsections.

3.1 Overview
main ()

g n app g (n− 1) ()

g (n− 1) app g (n− 2) ()

g (n− 2) ...
app g 0 ()

g 0 id ()

Fig. 4. A call tree of program indirect

We use indirect from Example 2 as a
running example in this subsection. Our
termination verification method is based
on the observation that a functional pro-
gram is terminating if and only if each
of its call tree,1 which expresses how the
functions are called in an execution of
the program, is finite. Figure 4 shows a
call tree for indirect. Each node ex-
presses a fully applied function call (a

1 The call tree in this paper roughly corresponds to the dynamic call graph of [29].

Automatic Termination Verification for Higher-Order Functional Programs 397

Input Program P

Step 1: Program
Translation

(Subsection 3.3)

�P �σ,f,Df

Step 2: Reachability
Analysis [16,31]

Counterexample

Safe

Step 3: Ranking
Function & Implicit
Parameter Inference

(Subsection 3.4) [25,3,5,33]

Candidate Df and σ

Fail

Rec(f) is disjunctively well-founded P may not terminate

Fig. 5. Overview of the termination verification process

call of the form f ṽ with arity(f) = |ṽ|), and an edge represents that the function
call represented by the target node is made from the function call of the source node.
For example, the edge from “app g (n− 1) ()” to “g (n− 1)” means that g (n− 1) is
called during evaluation of app g (n−1) () (i.e., app g (n−1) ()→+ E[g (n−1)] for
some evaluation context E). For every (possibly infinite) reduction sequence, the cor-
responding call tree is finitely branching. Therefore, by König’s lemma, to show that
every call tree of the program is finite and therefore the program is terminating, it is suf-
ficient to show that no call tree has an infinite path from the root. The latter is equivalent
to showing that for every function f , there is no infinite path f ṽ1 � f ṽ2 � f ṽ3 � · · ·
where f ṽ � g w̃ means that f ṽ is an ancestor of g w̃ in the call tree. In the running
example, the only non-trivial sequence is app gn1 () � app gn2 () � app gn3 () � · · ·
and this sequence must be finite since ni is decreasing and bounded below by 0. Thus,
we may conclude that indirect is terminating. We refer to Subsection 3.2 for the
formal exposition of the above argument.

By the above argument, to show that the program terminates, it suffices to show that,
for every function f , the relation Rec(f) = {(ṽ, ṽ′) | f ṽ � f ṽ′} is well-founded, or
disjunctively well-founded2 [26] because RecP (f) is transitive. Thus, as mentioned in
Section 1, our termination verification method proceeds as follows.

(i) For each function f , guess a disjunctively well-founded relation Df that over-
approximates Rec(f), and reduce the termination verification problem to the so
called the binary reachability analysis problem of showing Rec(f) ⊆ Df .

2 A binary relation is disjunctively well-founded if it is a finite union of well-founded sets [26].

398 T. Kuwahara et al.

(ii) Use a program transformation to reduce the binary reachability problem to a plain
reachability problem; and

(iii) Solve the plain reachability problem by using an off-the-shelf software model
checker.

We express the disjunctively well-founded relation Df by using a set of ranking func-
tions, and gradually refine the set by using the technique of counterexample-guided
abstraction refinement [25,3,5,33].

Figure 5 shows the overall flow of the process. We start with an empty set of ranking
functions (i.e., with Df = ∅), and apply a program transformation to reduce the binary
reachability analysis problem of deciding Rec(f) ⊆ Df to the plain reachability anal-
ysis problem of deciding if an assertion failure is reachable in the translated program
#P $σ,f,Df

(Step 1 in Figure 5). Here, σ is a candidate implicit parameter instantiation
and is used for ranking functions over higher-order values (i.e., function closures). For
the purpose of the exposition, we focus on the case where the ranking functions are only
over the first-order values in Subsections 3.2 and 3.3, and defer implicit parameters and
ranking functions over higher-order values to Subsection 3.4. For simplicity, we write
#P $f,Df

for #P $σ,f,Df
when implicit parameters are irrelevant to the discussion.

Informally, the idea of the program transformation is to pass around the argument
p̃v of an ancestor call as an extra argument, and assert in the body of f that p̃v and the
current argument ṽ are related by Df . For the running example, the definition of app
would be transformed as follows.

app s1 f s2 x s3 u = assert((s3,(f,x,u))∈ Dapp); ...

Here, s1, s2, and s3 are the extra arguments that carry the arguments of ancestor calls
to app. Because a function body does not evaluate until the function is fully applied,
only s3 is relevant and is checked with the current arguments (f, x, u) for the candidate
disjunctively well-founded relation Dapp. We use non-determinism to ensure that the
extra parameter can be bound to the argument of an arbitrary ancestor call, so that the
transformed program is assertion safe if and only if Rec(f)⊆Df . Because a function
can be called indirectly in a higher-order program, we pass extra arguments at all call
sites, including indirect calls, to account for all possible ancestor relations. Therefore,
for the running example, we also transform the functions g and id to take extra pa-
rameters (but only track and check the arguments of app). This makes our approach
sound and complete even in the presence of higher-order functions.3 In this manner,
the binary reachability problem is reduced to a plain reachability problem. We refer to
Subsection 3.3 for a more formal exposition.

We proceed to the plain reachability analysis (Step 2 in Figure 5), to check if the in-
serted assertion may fail. If the assertion cannot fail, then we conclude that Rec(f)⊆Df
holds (and if that is the case for every function f in the program, we conclude that the
program is terminating). Even if the program is terminating, however, an assertion fail-
ure may occur, because of a wrongly guessedDf . For our running example, in the initial

3 This is a crucial difference with the previous approaches to automated termination verification
for higher-order programs [30,28,29,6,12] that handle higher-order functions by approximat-
ing the call graph up front (e.g., via a control flow analysis), which can lose precision when
the calls depend on non-trivial safety conditions.

Automatic Termination Verification for Higher-Order Functional Programs 399

iteration, we set Dapp = ∅, and when the transformed program is given to a reachability
verifier (e.g., MoCHi [16]), the verifier would return a concrete counterexample to the
assertion safety. Suppose the following counterexample is returned.

main ()→∗ app s1 g s2 0 (g, 1, ()) ()→∗ fail

which corresponds to the following reduction sequence in the original program:

main ()→∗ g 2 ()→∗ app g 1 ()→∗ app g 0 ()

We analyze the counterexample, and infer a new ranking function to refine Df
(Step 3 in Figure 5). For the running example, we look for a ranking function r such
that r(g, 1, ()) > r(g, 0, ()) ≥ 0 and update Dapp to Dapp ∪ {((pf, px, pu), (f, x, u)) |
r(pf, px, pu) > r(f, x, u) ≥ 0}. To find a ranking function, we adopt the existing
techniques for inferring ranking functions from counterexamples of first-order pro-
grams [25,5].4 If no ranking function can be found, then we report that the program
may not be terminating. This may happen either because the program is indeed non-
terminating, or the method used for the ranking function synthesis is incomplete. We
refer to Subsection 3.4 for a more formal exposition on this step.

Upon refining Df , we go back to Step 1 and repeat the process. If the program is
terminating, and if the underlying reachability analysis tool and the ranking function
synthesis were complete, the loop eventually terminates and we conclude that the pro-
gram is terminating.

3.2 Termination and Binary Reachability

We discuss how termination verification is reduced to binary reachability analysis (to
show Rec(f) ⊆ Df) more formally. First, we define the relations � and Rec(f).

Definition 2. The call relation �P is the binary relation defined by:

�P := {(f ṽ, g w̃) | (main ()→∗
P E1 [f ṽ]) ∧ (f ṽ →+

P E2 [g w̃])
∧arity(f) = |ṽ| ∧ arity(g) = |w̃|}

We often use the infix notation f ṽ �P g w̃ for (f ṽ, g w̃) ∈ �P .

Definition 3. RecP (f), the recursion relation of f in P , is the binary relation defined
by:

RecP (f) :=
{
(〈ṽ1〉, 〈ṽ2〉) |f ṽ1 �P f ṽ2

}
When it is clear from contexts, we omit the subscript P . Note that the relations �P and
RecP (f) are transitive.

Example 3. Recall program fib in Example 1. Rec(fib) is:

({(n, n− 1)|n > 1} ∪ {(n, n− 2) | n > 2})+ = {(m,n) | m > n ≥ 0}
4 To infer a ranking relation over function closure values, we use implicit parameters and in-

fer sufficient instantiations for them to represent the closures. This is done by adopting the
counterexample-guided technique from the previous work [33] (cf. Subsection 3.4).

400 T. Kuwahara et al.

As shown in the example below, Rec(f) may be non-empty even if f is not recur-
sively defined, and Rec(f) may be empty even if f is recursively defined.

Example 4. Recall the program in Example 2. The recursion relations are:

Rec(app) = {(〈g,m, ()〉, 〈g, n, ()〉) | m > n ≥ 0}
Rec(id) = Rec(g) = ∅

Note that g is defined recursively but does not cause a recursive call to g. Therefore,
the relation Rec(g) is empty. On the other hand, app is not recursively defined but
Rec(app) �= ∅. This shows that we must check the disjunctive well-foundedness of
Rec(f) for each function f , regardless of whether f is recursively defined or not.

Next, we show the termination verification problem can be reduced soundly and
completely to the problem of showing that Rec(f) is disjunctively well-founded for
every f .

We state the soundness and the completeness of the reduction.

Theorem 1 (Soundness). A program P is terminating if RecP (f) is disjunctively well-
founded for every f defined in P .

Theorem 2 (Completeness). If a program P is terminating, then RecP (f) is disjunc-
tively well-founded for every f defined in P .

3.3 From Binary Reachability to Plain Reachability

This subsection presents the reduction from the binary reachability problem of deciding
RecP (f) ⊆ Df to a plain reachability problem. As remarked in Subsection 3.1, we
transform P to the program #P $f,Df

that simulates the program P and asserts the

property (ṽ′, ṽ) ∈ Df whenever a recursive call relation f ṽ′ �P f ṽ is detected. Then,
RecP (f) ⊆ Df holds if and only if an assertion in #P $f,Df

may fail.
The target language of the program transformation is an extension of L with tuples

〈e1, . . . , ek〉, assertions assert(e1); e2, and a special value ⊥. The semantics of asser-
tions is defined by:

E[assert(true); e]→P E[e] E[assert(false); e]→P fail

where the evaluation contexts are extended accordingly: E ::= · · · | assert(E); e.
The special value ⊥ is used in place of the argument of an ancestor call, when there is
no tracked ancestor call; see examples below.

Before we give the formal definition of the transformation, #·$f,Df
, we informally

describe the idea. The program #P $f,Df
is obtained by adding extra function arguments

that represent the arguments of past calls to f .
First we consider the simple case where the program only contains first-order func-

tions. For example, let P be the Fibonacci program from Example 1. Let Dfib =
{(pn, n) | pn > n ≥ 0}. Then, #P $fib,Dfib would be as follows.

Automatic Termination Verification for Higher-Order Functional Programs 401

1: let rec fib pn n =
2: assert(pn>n && n≥0);
3: let pn’ = if ∗bool then pn else n in
4: if n < 2 then 1 else fib pn’ (n-1) + fib pn’ (n-2)
5: let main () = fib ⊥ ∗int
We have added the formal argument pn that represents the argument of an ancestor call
(i.e., a call that corresponds to an ancestor node in the call tree) for fib, and inserted the
assertion that checks (pn,n) ∈ Dfib (lines 1-2). Accordingly, we have also inserted an
extra parameter to each function call (calls in line 4). In line 3, we non-deterministically
“update” the tracked argument to the current argument in order to compare the argument
of the current call with a future call of fib. The extra parameter is initially set to ⊥,
to indicate that there is no ancestor call (line 5). We assume that > is extended so that
⊥ > n holds for every n. For the two recursive calls to fib in the definition of fib,
pn or n is passed in a non-deterministic manner. Below is a possible reduction of the
transformed program.

main ()→∗ fib ⊥ 2→∗ assert(⊥ > 2&&2 ≥ 0); · · ·
→∗ fib 2 1 + fib 2 0
→∗ (assert(2 > 1&&1 ≥ 0); · · ·) + fib 2 0
→∗ 1 + fib 2 0
→∗ 1 + (assert(2 > 0&&0 ≥ 0); · · ·)
→∗ 1 + 1→∗ 2

The subexpressions fib 2 1 and fib 2 0 capture the fact that fib 1 and fib 0 are
called from fib 2 in the original program. It is easy to see that RecP (fib) ⊆ Dfib if
and only if #P $fib,Dfib does not cause an assertion failure.

The transformation is more subtle for higher-order programs with partial applica-
tions and indirect calls. For example, let P be the program indirect from Exam-
ple 2 and 4. Suppose that we wish to show RecP (app) ⊆ Dapp where Dapp =
{((ph, pv, pu), (h, v, u)) | pv > v ≥ 0}. Then, #P $app,Dapp would be as follows.

1: let app h v (ph,pv,pu) u =
2: assert(pv>v && v≥0);
3: let (ph,pv,pu) = if ∗bool then (ph,pv,pu) else (h,v,u)
4: in
5: h (ph,pv,pu) v (ph,pv,pu) u
6: let id (ph,pv,pu) u = u
7: let rec g (ph,pv,pu) x =
8: if x≤0 then id
9: else app (ph,pv,pu) g (ph,pv,pu) (x-1)

10: let main () = g ⊥̃ ∗int ⊥̃ ()

Here, ⊥̃ denotes (⊥,⊥,⊥). As before, the extra parameter (ph,pv,pu) is inserted
to represent the arguments of an ancestor call to app (line 1). Note that the extra pa-
rameter for this program takes a tuple of values, so that all three arguments of app
can be tracked (i.e., h, v, and u). As before, the assertion is inserted at the beginning

402 T. Kuwahara et al.

of the body of app to check ((ph, pv, pu), (h, v, u)) ∈ Dfib (line 2), and we update
the tracked past arguments with the current arguments non-deterministically, in order
to compare the arguments of the current call with a future call of the function (line 3).

To soundly and completely track the extra parameters through partial applications
and indirect calls, we pass the extra parameter at every function application site (lines
5, 9, and 10). To be able to do this, note that we have also transformed the definitions
of id and g to take the extra parameters and pass them at the applications that occur
in their body (lines 6 and 7), and also transformed the definition of app to take an
extra parameter argument just before h and v as well as just before u, even though
app only checks the well-foundedness against the one passed just before u. (Note that

in the definition of app is an unused argument.) This is needed, because, in general,
we cannot statically decide which (indirect) function call is a fully applied function
call, nor which is a call to the target function (i.e., app in the example). We note that
it is possible to soundly eliminate some of the redundancy via a static analysis (see
Example 5 below), but it is in general impossible to completely decide a priori which
function is called in what context. In effect, the idea of our transformation is to delegate
such tasks to the backend reachability checker.

Example 5. By using useless code elimination [34,13], we can simplify the above pro-
gram to:

let app h v (ph,pv,pu) u =
assert(pv>v && v≥0);
let (ph,pv,pu) = if ∗bool then (ph,pv,pu) else (h,v,u) in
h v (ph,pv,pu) u

let id (ph,pv,pu) u = u
let rec g x = if x≤0 then id else app g (x-1)
let main () = g ∗int ⊥̃ ()

Below is a possible reduction of #P $app,Dapp . (For simplicity, we use a reduction
sequence from the optimized version in Example 5.)

main () −→∗ g 2 ⊥̃ () −→∗ app g 1 ⊥̃ ()
−→∗ g 1 (g, 1, ()) () −→∗ app g 0 (g, 1, ()) ()

Note that the reached state appg 0 (g, 1, ()) () captures the recursion relation app g 1
() �P app g 0 () of the original program P .

The Formal Definition of �·�f,D

We now define the transformation formally. #P $f,D is obtained by transforming each
function definition:

#P $f,D = {#g x̃ = e$f,D | g x̃ = e ∈ P}

Automatic Termination Verification for Higher-Order Functional Programs 403

where the function definition transformation is defined as follows.

#g x1 · · · xk = e$f,D =⎧⎪⎪⎨⎪⎪⎩
g s1 x1 · · · sk xk =
let s = check&upd(D, sk, 〈x1, . . . , xk〉) in #e$s

if g = f
g s1 x1 · · · sk xk = #e$sk if g �= f

Note that an extra parameter si is added before every original parameterxi of a function.
Therefore, as opposed to the informal examples given above, the main function in the
target program now takes two arguments, the first of which is always instantiated to ⊥.
The code that checks the candidate well-foundedness and non-deterministically updates
the arguments is inserted at the beginning of the body of the target function f . Here,
check&upd(D, sk, 〈x1, . . . , xk〉) denotes the expression

assert(D#(sk, 〈x1, . . . , xk〉); if ∗bool then sk else 〈x1, . . . , xk〉.

where the relation D# is the extension of D defined by:

D# = {(⊥̃, 〈v1, . . . , vk〉) | v1, . . . , vk are values}∪
{(〈v′1, . . . , v′k〉, 〈v1, . . . , vk〉) | (〈!v′1", . . . , !v′k"〉, 〈!v1", . . . , !vk"〉) ∈ D}

Here, !v" is the value obtained by removing all the extra arguments from partial appli-
cations; see below for the definition. We assume thatD# is represented by a formula of
some logic. (In the implementation, we use the first-order logic with linear arithmetic.)

Note that the body e of each function definition is transformed by #e$s where s is the
extra parameter passed just before the last argument (non-deterministically updated to
the current arguments in the case of the target function). The expression transformation
#e$s passes s at each application site in e, and is formally defined as follows.

#c$s = c #∗int$s = ∗int #f$s = f #x$s = x
#let x = e1 in e2$s = let x = #e1$s in #e2$s
#e1 op e2$s = #e1$s op #e2$s
#if e1 then e2 else e3$s = if #e1$sthen #e2$selse #e3$s
#e1 e2$s = #e1$s s #e2$s

The operation !e" for removing extra arguments (used in the definition of D#) is
defined as follows.

!c" = c !∗int" = ∗int !f" = f !x" = x
!let x = e1 in e2" = let x = !e1" in !e2"
!e1 op e2" = !e1" op !e2" !e1 s e2" = !e1" !e2"
!if e1 then e2 else e3" = if !e1"then !e2"else !e3"

Note that !#e$s" = e.
We prove the soundness and the completeness of the transformation. The follow-

ing theorem states the soundness of the transformation. It says that the target program
reaches an assertion failure when the recursion relation is not a subset of D.

404 T. Kuwahara et al.

Theorem 3 (Soundness of #·$f,Df
)

Suppose that main () →∗
P E1[f v1 · · · vk], f v1 · · · vk →+

P E2[f w1 · · · wk], and
(〈v1, . . . , vk〉, 〈w1, . . . , wk〉) �∈ D. Then, main⊥ ()→∗

&P'f,D fail.

The theorem below states the completeness. It says that the target program reaches
an assertion failure only when the recursion relation is not a subset of D.

Theorem 4 (Completeness of #·$f,Df
)

If main⊥ () →∗
&P'f,D fail, then main () →∗

P E1[f ṽ] and f ṽ →+
P E2[f w̃], and

(〈ṽ〉, 〈w̃〉) �∈ D for some E1, E2, ṽ, w̃.

3.4 Ranking Function Inference

This subsection details how we refine the candidate disjunctively well-founded relation
Df . As remarked in Subsection 3.1, we actually infer both Df and the implicit param-
eter instantiation σ. The implicit parameters are used to assert and check well-founded
relation over function closure values.

We first describe the case where only Df is inferred. (This happens, for example,
when f is first-order and does not take function closures as arguments.) Recall that the
inference is invoked when Rec(f) �⊆ Df (cf. Step 3 of Figure 5), and in such a case,
the reachability checker returns a counterexample of the form:

main () →∗ E[f s1 v1 s2 v2 · · · (v′1, . . . , v′n) vn]
→ assert((v′1, . . . , v

′
n), (v1, . . . , vn)) ∈ Df); . . .→ fail

As remarked in Subsection 3.3, this implies that f v′1 · · · v′n � f v1 · · · vn, and we have
that ((v′1, . . . , v

′
n), (v1, . . . , vn)) ∈ Rec(f) and ((v′1, . . . , v

′
n), (v1, . . . , vn)) �∈ Df .

The goal of ranking function inference is to obtain a refined disjunctively well-
founded relation D′

f such that

Df ∪ {((v′1, . . . , v′n), (v1, . . . , vn))} ⊆ D′
f .

To this end, we infer a new ranking function r(x1, . . . , xn) such that r(v′1, . . . , v
′
n) >

r(v1, . . . , vn) ≥ 0 and let D′
f = Df ∪ {(x̃′, x̃) | r(x̃′) > r(x̃) ≥ 0}. We adopt the

constraint-based technique [25,5] to infer r(x̃).
We overview the inference process. We prepare a ranking function template c0 +

c1x1 + · · ·+ cnxn. Here, ci’s are fresh variables, serving as unknowns. Then, we solve
for the assignments to ci’s that satisfy the constraint

∀x̃.[[π]]⇒ c0 + c1v
′
1 + · · ·+ cnv

′
n > c0 + c1v1 + · · ·+ cnvn ≥ 0

where x̃ are the free variables in [[π]] and v1, . . . , vn, v
′
1, . . . , v

′
n. Here, [[π]] is the strongest

postcondition of the given counterexample π.5 Finally, we set r(x1, . . . , xn) = α0 +
α1x1 + · · ·+ αnxn where each αi is the assignment obtained for ci.

Next, we extend the above process with implicit parameters to infer ranking func-
tions over higher-order values. We illustrate the need for ranking functions over higher-
order values with the following program indirectHO.

5 More precisely, we construct a corresponding straightline program from the counterexample,
and take its strongest postcondition (cf. [16,33] and the extended report [17].

Automatic Termination Verification for Higher-Order Functional Programs 405

let app h v = h () v
let id x = x
let rec g x u =

if x <= 0 then id else app (g (x-1))
let main () = g ∗int () ()

The program is similar to indirect from Example 2 and 4, except that app no longer
takes an integer argument and instead has the “decreasing” integer value captured inside
the function closure passed as h. To show that this program is terminating, we need
to show that the recursion relation for app is disjunctively well-founded. However,
because app only takes function-type arguments (besides unit), ranking functions over
first-order values are insufficient for this.

To this end, we adopt the idea from the previous work [33] and systematically
add an integer-type implicit parameter just before each function-type parameter.6 For
indirectHO, we add an implicit parameter h IMPARAM before h so that the program
is now the following. (The added parts are underlined.)

let app h IMPARAM h () = h () ()
let id x = x
let rec g x () =

if x <= 0 then id else app σ() (g (x-1))
let main () = g ∗int () ()

Here, σ is the candidate implicit parameter instantiation that maps each instantiation
site to an arithmetic expression over the variables bound in the context of . Formally,
an instantiation site is at an application of a function-type argument, and is syntactically
determined (i.e., between e1 e2 where e2 is function-type). Clearly, the addition of
implicit parameters and their instantiations do not affect the termination of the program,
and so we may check the termination of the program with the implicit parameters added
to check the termination of the original. The verification process starts by initializing
the candidate instantiations to some arithmetic expression (e.g., 0), and refine them
iteratively via a counterexample analysis (cf. Figure 5).

As remarked above, in the presence of implicit parameters, we infer both σ and Df
when given a counterexample. To this end, the above inference process is extended
as follows. We prepare templates for the instantiation expressions in addition to the
templates for the ranking functions. Then, when generating the constraints, we use the
template instantiation expressions in the strongest postcondition of the counterexample,
and solve for both the unknowns in the ranking function templates and the instantiation
expression templates.

More formally, let Π = {π1, . . . , πm} be the set of counterexamples we have seen
so far for f . We prepare a template instantiation map Δ that maps each to an expres-
sion of the form c0 + c1x1 + · · ·+ cnxn where ci’s are fresh unknowns and xi’s are the

6 Implicit parameters are called “extra parameters” in [33]. We call them implicit parameters
here to avoid confusion with the extra parameters in this paper which are used for a different
purpose.

406 T. Kuwahara et al.

Table 1. Experiment results

program ord time program ord time program ord time
Ackermann 1 5.85 alias partial 1 0.32 churchNum 4 3.13
Fibonacci 1 0.15 quicksort 2 timeout CE-Jones Bohr 4 0.71
McCarthy91 1 4.95 indirectIntro 2 4.76 up down 2 0.65
loop2 1 0.61 indirect 2 1.36 map 2 1.59
append 1 0.14 indirectHO 2 7.75 toChurch 2 0.69
zip 1 0.15 CE-0CFA 2 0.14 x plus 2ˆn 2 2.02
binomial 1 0.70 CE-1CFA 2 0.24 foldr 2 1.19

integer-type variables that are bound in the context of (which may include implicit
parameters). Then, we form the following constraint∧
π∈Π

∀x̃.[[πΔ]]⇒ cπ,0+cπ,1v
′
π,1+· · ·+cπ,nv

′
π,n > cπ,0+cπ,1vπ,1+· · ·+cπ,nvπ,n ≥ 0

where cπ,i’s are fresh unknowns, and x̃ are the free non-unknown variables in [[πΔ]]
and v1, . . . , vn, v

′
1, . . . , v

′
n. (Here, we assume that the counterexamples π explicitly

use the instantiation sites as expressions.) We solve for the unknowns that satisfy
the constraint to obtain implicit parameter instantiations and ranking functions that
refute the counterexample. We obtain the new candidate disjunctive well-founded re-
lation from the ranking functions: D =

⋃
π∈Π{(x̃′, x̃) | rπ(x̃′) > rπ(x̃) ≥ 0} where

rπ(x̃) = απ,0 + απ,1x1 + · · · + απ,nxn and each απ,i is the obtained assignment for
cπ,i. And, we substitute the assignments to the unknowns in Δ to obtain the new can-
didate implicit parameter instantiation. The extended report [17] contains details of the
inference process applied to indirectHO.

4 Implementation and Experiments

We have implemented a prototype of the termination verifier for a subset of OCaml.
We use MoCHi [16] as the backend reachability checker, and Z3 [22] as a constraint
solver for ranking function inference. As an optimization, we have extended the rank-
ing function inference described in Section 3.4 to also infer lexicographic linear ranking
functions [5] whenever possible. The extended report [17] contains details of the lexi-
cographic linear ranking function inference process.

We have tested our tool on various termination verification benchmark programs in
literature, taken mostly from the previous work on termination verification of higher-
order programs, as well as some synthetic but non-trivial examples. We ran the exper-
iment on a machine with 3.20GHz CPU and 16GB of memory, with timeout of 600
seconds. The web interface of the verification tool and the programs used in the exper-
iments are available online [17].

Table 1 summarizes the experiment results. The column “program” shows the names
of programs, and the column “ord” shows the order of the program (where order-1
functions take only base type values, order-2 functions may take order-1 functions as

Automatic Termination Verification for Higher-Order Functional Programs 407

arguments, etc., and the order of a program is the maximum order of the functions in
the program). The column “time” shows the running time in seconds.

We briefly describe the benchmark programs. The seven programs in the left column
and alias partial are first-order (i.e., order-1) programs. The programs append,
zip, and binomial are from [2]. Ackermann is the Ackermann’s function, and is
also used as examples in [2,35]. McCarthy91 is the McCarthy’s 91 function (used as
a benchmark program in, e.g., [18]7). Fibonacci is the Fibonacci number function
from Example 1. The program alias partial is from Section 8 of [18] and is given
as an example on which their approach fails.

The program quicksort is from [35],8 and is a second-order program where the
list sorting function is parametrized by the “compare” function. We check the termi-
nation of a program that passes the sorting function a terminating compare function
and an arbitrary list. (Our tool currently does not directly support lists, and so a list
is represented by the integer denoting its length.) Our tool fails to verify the program
within the time limit due to the underlying reachability checker MoCHi failing to verify
the necessary assertion safety. This is not a fundamental limitation with our termina-
tion verification approach, and we expect further advances in reachability verification
to allow our approach to verify instances like quicksort.

The rest of the programs are higher-order programs whose termination depends non-
trivially on the functions passed as the arguments, and precise reasoning about the func-
tion arguments is required for proving termination. They are mostly from the examples
and benchmarks in [12,28,29]. Many of these are difficult examples that the previous
approaches cannot verify. (We have selected the ones given as examples where their
approaches fail). We refer to the extended report [17] for further description of these
programs. As seen in Table 1, the benchmark results are promising and show that our
tool is able to automatically verify the difficult instances quickly, except quicksort
whose reason for the failure is elaborated above.

5 Related Work

There have been three major approaches to automated termination verification for first-
order programs: transition invariants [26,3,4], size-change termination [19], and term
rewriting [7] (see also [32,8] for relationships between those approaches). The ap-
proaches have recently been extended to the termination verification of higher-order
programs [18,30,28,29,6,12]. Below, we compare them with our approach.

5.1 Transition Invariants

Closest to our work is the work by Ledesma-Garza and Rybalchenko [18]. Similar
to our work, they propose a program transformation to reduce the transition invariant
verification problem (i.e., binary reachability analysis) to a plain reachability problem
via a program transformation. Unfortunately, as also admitted in their paper (Section

7 [18] is not fully automated and requires the user to provide the sufficient ranking functions as
well as the predicates to be used for reachability checking.

8 [35] is not automated.

408 T. Kuwahara et al.

8 of [18]), their approach has a limited applicability to the verification of higher-order
programs because it does not correctly handle indirect calls and is actually unsound.
For example, their approach would incorrectly report the program P0 from Section 1
to be terminating. Moreover, their approach is not fully automated and requires a suf-
ficient well-foundedness relation to be provided manually, and it also cannot handle
well-foundedness relations over function closure values.

By contrast, we have proposed the first sound and (relatively) complete approach
to termination verification of higher-order programs via binary reachability analysis.
A key idea of our approach is the novel program transformation that precisely tracks
the call-tree ancestor’s arguments values through the higher-order control flow without
a priori approximation. We have also presented a method to infer well-foundedness
relations (including those over function closure values) from counterexamples returned
by a higher-order program verifier, thus realizing a fully automated verification.

5.2 Size-Change Analysis

The size-change approach [19] to termination verification involves the following two
steps: (1) an analysis of the program to construct a size-change graph, and (2) an anal-
ysis of the obtained graph to decide if the program is terminating. For functional pro-
grams, the size-change graph is a graph comprising functions in the program where the
edges express the changes in the values that may be passed as arguments. Step (1) con-
structs the graph by statically approximating the possible calls that the program would
make in its actual execution.

To apply size-change termination verification to higher-order programs, a control
flow analysis (CFA) is employed to statically approximate the possible call relations as
a call graph and construct a sound size-change graph from the call graph [30,28,29,12].
Therefore, the approach involves a priori approximation of the program, and can lead
to loss in a precision when a precise graph cannot be constructed by the static analysis.
For example, the approach may fail on cases where a non-terminating call depends on
a safety property (recall the simple example from Section 1 where a non-terminating
function is called if and only if the condition p(x) is met). By contrast, our approach
suffers no a priori loss in precision and is sound and complete.

Like our approach, the size-change approach to higher-order programs [30,28,29,12]
can prove termination of programs that require well-foundedness relation over function
closure values. For example, Jones and Bohr [12] and Sereni [28] order closure argu-
ments by using the subtree relation on their tree representations. By contrast, we have
presented a generic approach that uses implicit parameters and counterexample analysis
to infer the appropriate instantiations for the implicit parameters. Our approach is more
general in the sense that it is not fixed to one pattern of closure information to be used
for the well-foundedness relation. For example, the subtree relation used in [12,28] can
be expressed by inferring instantiations that encode the depth of the closures, and our
prototype implementation automatically verifies examples in their paper that require
such information (cf. Section 4 and the extended report [17]).

On the other hand, we employ counterexample analysis and constraint-based infer-
ence to automatically infer the instantiations, and so the approach of Jones, Bohr, and

Automatic Termination Verification for Higher-Order Functional Programs 409

Sereni that fixes the closure information to a pre-determined pattern may be more effi-
cient on instances that are known to be verifiable with such information.

5.3 Term Rewriting

Similar to the size-change approach, the application of termination verification
techniques for term rewriting systems to higher-order programs is done in a two-step
process [6]. There, in the first step, a static analysis is employed to construct a term
rewriting system that soundly approximates the given program such that the program
is terminating if the constructed rewriting system is terminating. Then, the second step
applies a termination verifier for term rewriting systems [7] to verify termination.

As with the size-change approach, this two-step approach can introduce a loss in pre-
cision because of the approximation in the first step. For example, Giesl et al. [6] show a
simple program on which their approach fails because of this limitation (Example 4.12
in [6]).

6 Conclusion

We have presented a new automated approach to termination verification of higher-
order functional programs. In stark contrast to the previous approaches, our approach
is sound and complete relative to the soundness and completeness of the underlying
reachability analysis and ranking function inference. Our approach is the first sound
binary reachability analysis based approach to the termination verification of higher-
order programs. The key features of our approach are the novel program transformation
that correctly tracks the call-tree ancestor’s arguments through the higher-order con-
trol flow, and the inference method for ranking functions over higher-order values via
implicit parameter instantiation inference.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis.
In: POPL, pp. 1–3 (2002)

2. Chin, W.N., Khoo, S.C.: Calculating sized types. Higher-Order and Symbolic Computa-
tion 14(2-3), 261–300 (2001)

3. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)

4. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI,
pp. 415–426. ACM (2006)

5. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61. Springer, Heidelberg
(2013)

6. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Automated
termination proofs for Haskell by term rewriting. ACM Transactions on Programming Lan-
guages and Systems 33(2), 7:1–7:39 (2011)

7. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination proofs with
aProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–220. Springer,
Heidelberg (2004)

410 T. Kuwahara et al.

8. Heizmann, M., Jones, N.D., Podelski, A.: Size-change termination and transition invari-
ants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–50. Springer,
Heidelberg (2010)

9. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70
(2002)

10. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4) (2009)
11. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying functional programs using ab-

stract interpreters. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 470–485. Springer, Heidelberg (2011)

12. Jones, N.D., Bohr, N.: Call-by-value termination in the untyped lambda-calculus. Logical
Methods in Computer Science 4(1) (2008)

13. Kobayashi, N.: Type-based useless-variable elimination. Higher-Order and Symbolic Com-
putation 14(2-3), 221–260 (2001)

14. Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3) (2013)
15. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus model

checking of higher-order recursion schemes. In: LICS, pp. 179–188. IEEE Computer So-
ciety (2009)

16. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-order model
checking. In: PLDI, pp. 222–233. ACM (2011)

17. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination verification for
higher-order functional programs (2013),
http://www-kb.is.s.u-tokyo.ac.jp/˜kuwahara/termination

18. Ledesma-Garza, R., Rybalchenko, A.: Binary reachability analysis of higher order func-
tional programs. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 388–404.
Springer, Heidelberg (2012)

19. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termina-
tion. In: POPL, pp. 81–92. ACM (2001)

20. Lester, M.M., Neatherway, R.P., Ong, C.H.L., Ramsay, S.J.: Model checking liveness prop-
erties of higher-order functional programs. In: Proceedings of ML Workshop 2011 (2011)

21. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

22. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

23. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In:
LICS, pp. 81–90. IEEE Computer Society (2006)

24. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching algebraic
data types. In: Proceedings of POPL 2011, pp. 587–598. ACM (2011)

25. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking func-
tions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer,
Heidelberg (2004)

26. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE Computer
Society (2004)

27. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI, pp. 159–169. ACM (2008)
28. Sereni, D.: Termination analysis of higher-order functional programs. Ph.D. thesis, Magdalen

College (2006)
29. Sereni, D.: Termination analysis and call graph construction for higher-order functional pro-

grams. In: ICFP, pp. 71–84. ACM (2007)
30. Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs. In: Yi, K.

(ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer, Heidelberg (2005)
31. Terauchi, T.: Dependent types from counterexamples. In: POPL, pp. 119–130. ACM (2010)

http://www-kb.is.s.u-tokyo.ac.jp/~kuwahara/termination

Automatic Termination Verification for Higher-Order Functional Programs 411

32. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termination of
term rewriting. Appl. Algebra Eng. Commun. Comput. 16(4), 229–270 (2005)

33. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification of higher-
order functional programs. In: POPL, pp. 75–86. ACM (2013)

34. Wand, M., Siveroni, I.: Constraint systems for useless variable elimination. In: Proceedings
of POPL 1999, pp. 291–302 (1999)

35. Xi, H.: Dependent types for program termination verification. In: LICS 2001, pp. 231–242.
IEEE (2001)

36. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL, pp. 214–227
(1999)

37. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference for
ML. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 295–314. Springer, Heidelberg (2013)

An Abstract Domain to Infer

Ordinal-Valued Ranking Functions�

Caterina Urban and Antoine Miné

ÉNS & CNRS & INRIA, Paris, France
{urban,mine}@di.ens.fr

Abstract. The traditional method for proving program termination
consists in inferring a ranking function. In many cases (i.e. programs
with unbounded non-determinism), a single ranking function over natu-
ral numbers is not sufficient. Hence, we propose a new abstract domain
to automatically infer ranking functions over ordinals.

We extend an existing domain for piecewise-defined natural-valued
ranking functions to polynomials in ω, where the polynomial coefficients
are natural-valued functions of the program variables. The abstract do-
main is parametric in the choice of the maximum degree of the polyno-
mial, and the types of functions used as polynomial coefficients.

We have implemented a prototype static analyzer for a while-language
by instantiating our domain using affine functions as polynomial coeffi-
cients. We successfully analyzed small but intricate examples that are
out of the reach of existing methods.

To our knowledge this is the first abstract domain able to reason about
ordinals. Handling ordinals leads to a powerful approach for proving ter-
mination of imperative programs, which in particular subsumes existing
techniques based on lexicographic ranking functions.

1 Introduction

The traditional method for proving program termination [12] consists in inferring
ranking functions, namely mappings from program states to elements of a well-
ordered set (e.g. ordinals) whose value decreases during program execution.

Intuitively, we can define a partial ranking function from the states of a pro-
gram to ordinal numbers in an incremental way: we start from the program final
states, where the function has value 0 (and is undefined elsewhere); then, we
add states to the domain of the function, retracing the program backwards and
counting the maximum number of performed program steps as value of the func-
tion. In [10], this intuition is formalized into a most precise ranking function that
can be expressed in fixpoint form by abstract interpretation [8] of the program
maximal trace semantics.

� The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement no. 269335 (ARTEMIS project MBAT) (see
Article II.9. of the JU Grant Agreement).

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 412–431, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 413

However, the most precise ranking function is not computable. In [22], we
present a decidable abstraction for imperative programs by means of piecewise-
defined ranking functions over natural numbers. These functions are attached
to the program control points and represent an upper bound on the number
of program execution steps remaining before termination. Nonetheless, in many
cases (i.e. programs with unbounded non-determinism), natural-valued ranking
functions are not powerful enough. For this reason, we propose a new abstract
domain to automatically infer ranking functions over ordinals.

We extend the abstract domain of piecewise-defined natural-valued ranking
functions to piecewise-defined ordinal-valued ranking functions represented as
polynomials in ω, where the polynomial coefficients are natural-valued functions
of the program variables. The domain automatically infers such ordinal-valued
functions through backward invariance analysis. To handle disjunctions arising
from tests and loops, the analysis automatically partitions the space of values
for the program variables into abstract program states, inducing a piecewise
definition of the functions. Moreover, the domain naturally infers sufficient pre-
conditions for program termination. The analysis is sound: all program execu-
tions respecting these sufficient preconditions are indeed terminating, while an
execution that does not respect these conditions might not terminate.

The abstract domain is parametric in the choices of the state abstraction
used for partitioning (in particular, we can abstract the program states using
any convex abstract domain such as intervals [7], octagons [19], polyhedra [11],
. . .), the maximum degree of the polynomials, and the type of functions used as
polynomial coefficients of ωk (e.g. affine, quadratic, cubic, exponential, . . .). We
have implemented an instance of the abstract domain based on interval partitions
and affine functions. We successfully analyzed small but intricate examples out
of the reach of existing methods.

To our knowledge this is the first abstract domain able to reason about ordi-
nals. We show that handling ordinals leads to a powerful approach for proving
program termination of imperative programs which, in particular, subsumes ex-
isting techniques based on lexicographic functions.

Motivating Example. In order to motivate the need for ordinal numbers, let us
consider the well-known program in Figure 1. At each loop iteration, either it
decrements the value of x2 or it decrements the value of x1 and resets the value
of x2, until one of the variables becomes less than or equal to zero. The pro-
gram presents unbounded non-determinism: there is a non-deterministic choice
between the branches of the if statement at program point 2, and the value of the
variable x2 is chosen non-deterministically at program point 4 in the first branch
of the if statement. The program terminates whatever the initial values for x1

and x2 are, and whatever the non-deterministic choices taken during execution.
In the graph of Figure 2, each node represents a state of the program (the

nodes with a double outline are final states) and each edge represents a loop it-
eration. We define a ranking function for the program following the intuition
described above: we start from the final states, where we assign value 0 to
the function; then, we follow the edges backwards, and for each state that we

414 C. Urban and A. Miné

int : x1, x2

while 1(x1 ≥ 0 ∧ x2 ≥ 0) do

if 2(?) then
3x1 := x1 − 1
4x2 := ?

else
5x2 := x2 − 1

od6

Fig. 1. Motivating example. The symbol ? stands for a non-deterministic choice.

encounter we define the value of the ranking function as the maximum of all
values of the function plus 1 for all successors of the state. Hence, we need a
transfinite value whenever we encounter a state that leads through unbounded
non-determinism to program executions of arbitrary length. In this example, in
particular, we need ordinal numbers for all states where x1 > 1 and x2 > 0.

In Section 5 we will detail the analysis of the program by means of our abstract
domain of ordinal-valued ranking functions.

It is also possible to prove the termination of the program using a lexicographic
ranking function (x1, x2). Indeed, a lexicographic tuple (fn, . . . , f1, f0) of natural
numbers is an isomorphic representation of the ordinal ωn · fn+ · · ·+ω · f1 + f0
[18]. However, reasoning directly with lexicographic ranking functions, poses
the additional difficulty of finding an appropriate lexicographic order. Existing
methods [1,3,5, etc.] use heuristics to explore the space of possible orders, which
grows very large with the number of program variables. Instead, the interesting
aspect of ordinal-valued ranking functions is that the coefficients fn, . . . , f1, f0
(and thus their order) are automatically inferred by the analysis. We refer to
Section 7 for further discussion on the comparison between lexicographic and
ordinal-valued ranking functions.

Our Contribution. In summary, in this paper we propose a parameterized ab-
stract domain for proving termination of imperative programs by abstract inter-
pretation. We introduce the abstract domain of ordinal-valued ranking functions,
which we subsequently lift to piecewise-defined ranking functions. We also de-
scribe the implementation of an instance of the abstract domain based on affine
functions, and we provide experimental evidence of its expressivity.

Outline of the Paper. Section 2 gives a brief overview of the theory of ordinals and
ordinal arithmetic. In Section 3 we recall our concrete semantics, and in Section 4
we introduce the abstract domain of ordinal-valued ranking functions, which
we extend to piecewise-defined ranking functions in Section 5. We describe the

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 415

x1 ≤ 0
x2 ≤ 0

0

x1 ≤ 0
x2 = 1

0

x1 ≤ 0
x2 = 2

0
. . .

x1 ≤ 0
x2 = n

0
. . .

x1 = 1
x2 ≤ 0

0

x1 = 1
x2 = 1

1

x1 = 1
x2 = 2

2
. . .

x1 = 1
x2 = n

n
. . .

x1 = 2
x2 ≤ 0

0

x1 = 2
x2 = 1

ω

x1 = 2
x2 = 2

ω + 1
. . .

x1 = 2
x2 = n

ω + n− 1
. . .

.

x1 = n
x2 ≤ 0

0

x1 = n
x2 = 1

ω · (n− 1)

x1 = n
x2 = 2

ω · (n− 1) + 1
. . .

x1 = n
x2 = n

ω · (n− 1) + n− 1
. . .

.

Fig. 2. Transitions between states at control point 1 for the program in Figure 1. There
is an edge from any node where x1 has value k > 0 (and x2 > 0) to all nodes where
x1 has value k − 1 (and x2 has any value). In every node we indicate the maximum
number of loop iterations needed to reach a final state.

implementation of our prototype static analyzer and we experimentally evaluate
our approach in Section 6. Section 7 discusses relatedwork and Section 8 concludes.

2 Ordinals

A relation < is well-founded if every <-decreasing sequence is finite. A well-
ordered set is a pair 〈X,≤〉 where ≤ is a well-ordering, i.e. a total order whose
corresponding strict order < is a well-founded relation over X . Two well-ordered
sets 〈X,≤X〉 and 〈Y,≤Y 〉 are order-isomorphic if there is a bijection f : X → Y
such that, for all x1, x2 ∈ X , x1 ≤X x2 if and only if f(x1) ≤Y f(x2). Two
order-isomorphic well-ordered sets are said to have the same order type.

An ordinal number is defined as the order type of a well-ordered set. In the
following, we will use lower case Greek letters to denote ordinals. In particular,
a well-ordered set 〈X,≤〉 with order type α is order-isomorphic to the set {x ∈
X | x < α} of all ordinals strictly less than the ordinal α itself. In fact, this
property permits the representation of each ordinal as the set of all ordinals that
precede it: the smallest ordinal is ∅, denoted as 0. The successor of an ordinal α
is defined as α∪{α} and is denoted as α+1. Thus, the first successor ordinal is
{0}, denoted as 1. The next is {0, 1}, denoted as 2. Continuing in this manner, we
obtain all natural numbers (i.e. all finite ordinals). A limit ordinal is an ordinal
number which is neither zero nor a successor ordinal. The set of all natural
numbers, denoted as ω, is the first limit ordinal (and the first transfinite ordinal).

In the following we will use 〈O,≤〉 to denote the well-ordered set of ordinals.

416 C. Urban and A. Miné

Ordinal Arithmetic. We recall the definition and some properties of addition,
multiplication and exponentiation on ordinals [15].

Addition. Ordinal addition can be defined by transfinite induction:

α+ 0 = α (zero case)

α+ (β + 1) = (α + β) + 1 (successor case)

α+ β =
⋃
γ<β

(α + γ) (limit case)

Note that addition is associative, i.e. (α + β) + γ = α + (β + γ), but not
commutative, e.g. 1 + ω = ω �= ω + 1.

Multiplication. Ordinal multiplication can also be defined inductively:

α ··· 0 = 0 (zero case)

α ··· (β + 1) = (α ··· β) + α (successor case)

α ··· β =
⋃
γ<β

(α ··· γ) (limit case)

Multiplication is associative, i.e. (α×β)×γ = α×(β×γ), and left distributive,
i.e. α × (β + γ) = (α × β) + (α × γ). However, commutativity does not hold,
e.g. 2× ω = ω �= ω × 2, and neither does right distributivity, e.g. (ω + 1)× ω =
ω × ω �= ω × ω + ω.

Exponentiation. We define ordinal exponentiation again by transfinite induction:

α0 = 1 (zero case)

αβ+1 = (αβ) · α (successor case)

αβ =
⋃
γ<β

(αγ) (limit case)

Cantor Normal Form. Using ordinal arithmetic, we can build all ordinal
numbers up to ε0 (i.e. the smallest ordinal such that ε0 = ωε0):

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, ω · 2 + 2, . . . , ω2, . . . , ω3, . . . , ωω, . . .

In the following, we will use the representation of ordinals based on Cantor
Normal Form [15], i.e. every ordinal α > 0 can be uniquely written as

ωβ1 · n1 + · · ·+ ωβk · nk

where k is a natural number, the coefficients n1, . . . , nk are positive integers and
the exponents β1 > β2 > · · · > βk ≥ 0 are ordinal numbers. Throughout the rest
of the paper we will consider ordinal numbers only up to ωω.

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 417

3 Termination Semantics

We consider a programming language that allows non-deterministic assignments
and non-deterministic tests. The operational semantics of a program is described
by a transition system 〈Σ, τ〉, where Σ is the set of program states and τ ⊆ Σ×Σ
is the program transition relation. Let βτ � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 �∈ τ} denote
the set of final states. The maximal trace semantics [6] generated by a transition
system is the set of all infinite traces over the states in Σ and all finite traces
that end with a state in βτ .

The traditional method for proving program termination [12] consists in infer-
ring ranking functions, namely mappings from program states to elements of a
well-ordered set (e.g. ordinals) whose value decreases during program execution.

Intuitively, we have seen that we can define a ranking function from the states
of a program to ordinal numbers in an incremental way: starting from the pro-
gram final states and retracing the program backwards while counting the max-
imum number of performed program steps as value of the function. In Section 1,
we have justified the need for ordinal numbers in case of programs with un-
bounded non-determinism. In [10], Patrick Cousot and Radhia Cousot formalize
this intuition and prove the existence of a most precise ranking function that can
be expressed in fixpoint form by abstract interpretation of the program trace se-
mantics. This partial function1 v ∈ Σ ⇀ O extracts the well-founded part of
the transition relation τ : starting from the final states in βτ and mapping each
program state in Σ definitely leading to a final state (i.e. a program state such
that all the traces to which it belongs end up at a final state in βτ) to an ordinal
in O representing an upper bound on the number of program execution steps
remaining to termination. It is defined as the least fixpoint of the operator φ
starting from the totally undefined function ∅̇:

v � lfp�
∅̇

φ

φ(v) � λs.

⎧⎪⎨⎪⎩
0 if s ∈ βτ

sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} if s ∈ p̃re(dom(v))

undefined otherwise

where v1 � v2 � dom(v1) ⊆ dom(v2) ∧ ∀x ∈ dom(v1) : v1(x) ≤ v2(x) and
p̃re(X) � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}. Therefore v is a partial
function the domain dom(v) of which is the set of states definitely leading to pro-
gram termination: any trace starting in a state s ∈ dom(v) must terminate in at
most v(s) execution steps, while at least one trace starting in a state s �∈ dom(v)
does not terminate. Note that whenever v(s) ≥ ω, the programs still terminates,
but the number of program execution steps before termination is unbounded.

The ranking function v constitutes a programsemanticswhich is sound and com-
plete toproveprogramtermination (see [10]).However, it is usuallynot computable.
In the following, we will present a decidable abstraction of v. The abstraction uses

1 A ⇀ B is the set of partial maps from a set A to a set B.

418 C. Urban and A. Miné

the following approximation order (see [9] for further discussion on approximation
and computational orders of an abstract domain):

v1 � v2 � dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x).

It computes an over-approximation of the value of the function v but it
under-approximates its domain of definition dom(v). In this way, the abstrac-
tion provides sufficient preconditions for program termination: if the abstraction
is defined on a program state, then all program execution traces branching from
that state are definitely terminating.

4 Ordinal-Valued Ranking Functions

We derive an approximate program semantics by abstract interpretation [8].
First, we introduce the abstract domain of ordinal-valued ranking functions O,
which abstracts ranking functions in Σ ⇀ O by abstract ranking functions o# ∈
O# attached to program control points. Then, in the next section, we employ
state partitioning to lift this abstraction to piecewise-defined ranking functions.

Let X be a finite set of program variables. We split the program state space
Σ into program control points L and environments S � X → Z, which map
each program variable to an integer value. No approximation is made on L. On
the other hand, each program control point l ∈ L is associated with an element
o# ∈ O# of the abstract domain O. Specifically, o# represents an abstraction
of the function o ∈ S ⇀ O defined on the environments related to the program
control point l:

〈S ⇀ O,�〉 γO←− 〈O#,�O〉.

Natural-Valued Functions. We assume we are given an abstraction 〈S#,�S〉
of environments: 〈P(S),⊆〉 γS←− 〈S#,�S〉 (i.e. any abstract domain such as inter-
vals [7], octagons [19], polyhedra [11], . . .), and an abstraction 〈S# × F#,�F〉
of 〈S ⇀ O,�〉 by means of natural-valued functions of the program variables:

〈S ⇀ O,�〉 γF←− 〈S# ×F#,�F〉.

More specifically, the abstraction 〈S# × F#,�F〉 encodes a partial function
v ∈ S ⇀ O by a pair of an abstract state s# ∈ S# and a natural-valued
function (e.g. an affine function) of the program variables f# ∈ F# [22]. We can
now use the abstractions S# and F# to build the abstract domain O.

Ordinal-Valued Functions. The elements of the abstract domain O belong
to O# � S# × P# where

P# � {⊥P} ∪ {p# | p# =
∑
i

ωi · f#
i , f#

i ∈ F#} ∪ { P}

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 419

is the set of ordinal-valued ranking functions of the program variables (in addi-
tion to the function ⊥P representing potential non-termination, and the function
 P representing the lack of enough information to conclude). More specifically,
an abstract function o# ∈ O# is a pair of an abstract state s# ∈ S# and a
polynomial in ω (i.e. an ordinal number in Cantor Normal Form) p#:

p# � ωk · f#
k + · · ·+ ω2 · f#

2 + ω · f#
1 + f#

0 k > 0

where the coefficients f#
0 , f#

1 , . . . , f#
k belong to F#. In the following, with abuse

of notation, we use a map s# �→ p# to denote the pair of s# ∈ S# and p# ∈ P#.
The abstract domain O is parameterized by the choices of the state abstraction

〈S#,�S〉, the maximum degree k of the polynomial, and the type (e.g. affine,
quadratic, cubic, exponential, . . .) of functions used as polynomial coefficients

f#
0 , f#

1 , f#
2 , . . . , f#

n .

Concretization Function. The concretization function γO ∈ O# → (S ⇀ O)
depends on γS, which maps an abstract state s# ∈ S# to the corresponding set
of program environments, and on γF, which maps a relation v# ∈ S# × F# to
the corresponding partial function v ∈ S ⇀ O:

γO(s
�→ ⊥P) = ∅̇

γO(s
�→ p#) = λs ∈ γS(s

#). p#(s)

where p#(s) =
∑
i≤k

ωi · γF(s# �→ f#
i)(s)

γO(s
�→ P) = ∅̇

where ∅̇ denotes the totally undefined function. Note that the concretization
function γO forgets about all program states that are potentially non-terminating
(⊥P) and all program states for which there is not enough information (P). This
agrees with our goal to under-approximate the domain of definition of the most
precise ranking function (cf. Section 3).

Order. To compare two abstract functions, we define the abstract approximation
order �O as the abstract counterpart of the approximation order �:

(s#1 �→ p#1) �O (s#2 �→ p#2) � s#2 �S s#1 ∧ p#1 �P p#2

where p#1 �P p#2 � ∀s ∈ γS(s
#
2) : p

#
1 (s) ≤ p#2 (s).

In order for an abstract function o#1 to be smaller than an abstract function

o#2 , we require the domain of o#2 to be included in the domain of o#1 (s#2 �S s#1)

and, for all states in the domain of o#2 , we require o#1 to have smaller (or equal)

value than o#2 (p#1 �P p#2). The relative precision between abstract functions is
preserved by the concretization function γO:

(s#1 �→ p#1) �O (s#2 �→ p#2)⇒ γO(s
#
1 �→ p#1) � γO(s

#
2 �→ p#2)

420 C. Urban and A. Miné

Join. The join operator 'O, given two abstract functions o#1 � s#1 �→ p#1 and

o#2 � s#2 �→ p#2 , determines the function o# � s# �→ p#, defined on their

common domain s# � s#1 &S s#2 with value p# � p#1 'P p#2 .

Specifically, the unification p#1 'P p#2 of two polynomials p#1 and p#2 is done in
ascending powers of ω, joining the coefficients of similar terms (i.e. terms with

the same power of ω). The join of two coefficients f#
1 and f#

2 is provided by

f# � f#
1 'F f#

2 and is defined as a natural-valued function (of the same type

of f#
1 and f#

2) greater than f#
1 and f#

2 (on the domain s#). Whenever such
function does not exist, we force f# to equal 0 and we carry 1 to the unification
of terms with next higher degree (unless we have already reached the maximum
degree for the polynomial, in which case we abandon to P).

Example 1. Let X = {x1, x2} and let 〈S# × F#,�F〉 be an abstraction of
〈S ⇀ O,�〉 that uses intervals [7] as state abstraction and affine functions as
abstract functions f# ∈ F# [22]. We consider the join of the abstract functions:

o#1 � s#1 �→ p#1 � [−∞,+∞] �→ ω · x1 + x2

o#2 � s#2 �→ p#2 � [−∞,+∞] �→ ω · (x1 − 1)− x2

Their common domain is trivially s# � [−∞,+∞]. The unification of the two

polynomials p#1 and p#2 starts from joining the functions f#
01

� x2 and f#
02

� −x2.

However, there does not exist a natural-valued affine function f#
0 greater than

f#
01

and f#
02

for all possible values of x2 (since s# � [−∞,+∞]). We force f#
0 to

equal 0 and we carry 1 to the unification of f#
11

� x1 and f#
12

� x1 − 1 which

becomes f#
1 = x1 + 1 (i.e. x1 after the unification, and x1 + 1 after carrying).

The result of the join is o# � [−∞,+∞] �→ ω · (x1 + 1). &'

Intuitively, whenever natural-valued functions are not sufficient, we naturally
resort to ordinal numbers. Let us consider the join ωk · f# of two terms ωk · f#

1

and ωk · f#
2 . Forcing f# to equal 0 and carrying 1 to the terms with next higher

degree is exactly the same as considering f# equal to ω (and applying the limit
case of ordinal multiplication): ωk · f# = ωk · ω = ωk+1 · 1 + ωk · 0 = ωk+1.

Widening. The widening operator �O summarizes two abstract functions o#1 �
s#1 �→ p#1 and o#2 � s#2 �→ p#2 into a single one o# � s# �→ p#, where

s# � s#1 'S s
#
2 and p# � p#1 'P p#2 (unless the two abstract functions are already

defined on the same abstract state — i.e. s#1 =S s#2 — and p#1 �P p#2 , in which
case p# � P to ensure convergence). Note that �O differs from the join 'O in

that it widens the abstract state s# to the union of s#1 and s#2 . Indeed, the join is
an upper-bound with respect to the approximation order �, while the widening
is an upper-bound with respect to the computational order � (cf. Section 3).

Assignments. In order to handle assignments, the abstract domain is equipped
with an operation to substitute an arithmetic expression for a variable within a

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 421

function f# ∈ F#. Given an abstract function o# � s# �→ p#, an assignment is
carried out independently on the abstract state s# and on the polynomial p#. In
particular, an assignment on p# is performed in ascending powers of ω, possibly
carrying 1 to the term with next higher degree, and is preceded by the addition
of 1 to the polynomial constant (to take into account that one more program
step is needed before termination). The need for carrying might occur in case of
non-deterministic assignments: it is necessary to take into account all possible
outcomes of the assignment, possibly using ω as approximation.

Example 2. Let X = {x1, x2}. We consider the result of the non-deterministic
assignment x1 := ? to the polynomial p# � ω · x1 + x2. First, we add 1 to the
function f#

0 � x2 to count the assignment as an additional step needed before
termination. Then, we perform the assignment on the terms of the polynomial:
the function f#

0 remains unchanged (since the assignment involves only the vari-

able x1), whereas the coefficient f#
1 � x1 of ω is reset to 0 and carries 1 to the

term with next higher degree ω2. In fact, the assignment x1 := ? allows x1 (and

consequently f#
1) to take any value, but there does not exist a natural-valued

function that properly abstracts all possible outcomes of the assignment. The
resulting polynomial is p̄# � ω2 · 1 + ω · 0 + x2 + 1 = ω2 + x2 + 1. &'

Tests. Test statements only affect the abstract states s# ∈ S# (and are managed
by the state abstraction) and leave unchanged the polynomials p# ∈ P#.

5 Piecewise-Defined Ranking Functions

In the following, we will briefly recall the abstract domain of piecewise-defined
ranking functions [22]. Then, we describe our extension of this domain using the
ordinal-valued ranking functions we presented in Section 4.

5.1 Piecewise-Defined Natural-Valued Ranking Functions

In [22], a decidable abstraction of the most precise ranking function v ∈ Σ ⇀ O
(cf. Section 3) is provided by the abstract domain V(F(S)), where V is a functor
abstract domain parameterized by S, an abstract domain for states, and F, an
abstract domain based on natural-valued functions of the program variables.

The elements of the abstract domain belong to V# � P(S# × F#), where
S# is the set of abstract program states (e.g. intervals [7]) and F# is the set of
natural-valued functions of the program variables (e.g. affine functions). More
specifically, an element v# ∈ V# has the form:

v# �

⎧⎪⎪⎨⎪⎪⎩
s#1 �→ f#

1
...

s#k �→ f#
k

422 C. Urban and A. Miné

where the abstract states s#1 , . . . , s#k induce a partition of the space of environ-

ments S � X → Z, and f#
1 , . . . , f#

k are ranking functions.
The binary operators of the abstract domain rely on a partition unification al-

gorithm that, given two piecewise-defined ranking functions v#1 and v#2 , modifies
the partitions on which they are defined into a common refined partition of the
space of program environments. For example, in case of partitions determined
by intervals with constant bounds, the unification simply introduces new bounds
consequently splitting intervals in both partitions. Then, the binary operators
are applied piecewise. The approximation order �V and the computational order
�V return the conjunction of the piecewise comparisons. The piecewise join 'V

computes the piecewise-defined natural-valued ranking function greater than v#1
and v#2 . The piecewise widening �V summarizes adjacent pieces of a function
joining them into a single one. In this way, it prevents the number of pieces of
an abstract function from growing indefinitely. It also prevents the indefinite
growth of the value of an abstract function going to on the partitions where
the value of the ranking function has increased between iterations.

The unary operators for assignments and tests are also applied piecewise. In
particular, assignments are carried out independently on each abstract state
and each ranking function. Then, the resulting covering induced by the over-
approximated abstract states is refined (joining overlapping pieces) to obtain
once again a partition.

The operators of the abstract domain are combined together to compute an
abstract ranking function for a program, through backward invariance analysis.
The starting point is the constant function equal to 0 at the program final
control point. The ranking function is then propagated backwards towards the
program initial control point taking assignments and tests into account with join
and widening around loops. As a consequence of the soundness of all abstract
operators (see [22]), we can establish the soundness of the analysis for proving
program termination: the program states, for which the analysis finds a ranking
function, are states from which the program indeed terminates.

However, since the abstract domain V is limited to ranking functions over
natural numbers, all program traces with unbounded non-determinism are disre-
garded by the abstraction. As a result, the abstract domain is not able to prove
the termination of programs as the one in Figure 1. In the following, we describe
how we extend this abstract domain to ranking functions over ordinal numbers.

5.2 Piecewise-Defined Ordinal-Valued Ranking Functions

We propose the abstract domain V(O(F(S))) obtained by extending V(F(S)) with
the domain of ordinal-valued ranking functions O presented in Section 4.

An element v# ∈ V# of the abstract domain has now the form:

v# �

⎧⎪⎪⎨⎪⎪⎩
s#1 �→ p#1

...

s#k �→ p#k

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 423

where the abstract states s#1 , . . . , s#k ∈ S# induce a partition of the space of

environments S and p#1 , . . . , p#k are ranking functions represented as polynomials

ωk · f#
k + · · ·+ω2 · f#

2 +ω · f#
1 + f#

0 whose coefficients f#
0 , f#

1 , f#
2 , . . . , f#

n ∈ F#

are natural-valued functions of the program variables.
The partition unification algorithm of V(O(F(S))) works exactly in the same

way as that of V(F(S)), while the piecewise operators of the domain now use
the operators of O (which in turn exploit the operators of F for the polynomial
coefficients) instead of using directly those of F. The soundness of all abstract
operators of V(O(F(S))) follows by the soundness of all abstract operators of
V(F(S)), and by the soundness of all abstract operators of O with respect to or-
dinal arithmetic. Therefore, the abstract domain V(O(F(S))) is suitable to prove
program termination and is more powerful than V(F(S)) because it overcomes
the limitations of natural-valued ranking functions. Indeed, V(O(F(S))) is able
to prove the termination of the non-deterministic program in Figure 1.

Motivating Example (continued). Due to space constraints, we describe in some
detail only a few interesting iterations of the (backward) analysis of the program
in Figure 1. We invite the interested reader to refer to our prototype implemen-
tation [21] for a more complete and detailed program analysis.

The starting point is the constant function f6(x1, x2) = 0 at the program final
control point 6. We use a widening delay of 3 iterations. At the fourth iteration,
the ranking function at the loop control point 1 is:

f4
1 (x1, x2) =

⎧⎪⎨⎪⎩
1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

⊥ otherwise

In the second case, the function 3x2 + 2 comes out as a result of the widening
between adjacent pieces with consecutive values for x2 (i.e. between the pieces
(x1 = 1 ∧ x2 = 1) �→ 5 and (x1 = 1 ∧ x2 = 2) �→ 8).

Ordinal numbers appear for the first time at program control point 4 due to
the non-deterministic assignment to x2:

f4
4 (x1, x2) =

⎧⎪⎨⎪⎩
2 x1 ≤ 0

ω x1 = 1

⊥ otherwise

In the first case, the value of the function is simply increased (to count one more
program step before termination) but (since x2 can now have any value) its
domain is modified forgetting all constraints on x2 (i.e. x2 ≤ 0). In the second
case, 3x2 + 2 is increased to 3x2 + 3 (to count one more program step) which
then becomes ω (due to approximation of the non-deterministic assignment).

424 C. Urban and A. Miné

At the seventh iteration, at control point 1, we obtain the ranking function:

f7
1 (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 3x2 + 9 x1 = 2

⊥ otherwise

as a result of the widening between the preceding iterate f6
1 :

f6
1 (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 12 x1 = 2 ∧ x2 = 1

ω + 15 x1 = 2 ∧ x2 = 2

⊥ otherwise

and the ranking function f6′
1 , obtained from f6

1 after one loop iteration:

f6′
1 (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 12 x1 = 2 ∧ x2 = 1

ω + 15 x1 = 2 ∧ x2 = 2

ω + 18 x1 = 2 ∧ 3 ≤ x2

⊥ otherwise

In particular, widening occurs between the pieces where x1 = 2. It is performed
in ascending powers of ω: from the constants 12, 15 and 18 (all corresponding to
consecutive values for x2), it infers the affine function 3x2 +9 (by classic join of
affine functions); then, since for all pieces the coefficient of ω is equal to 1, the
inferred coefficient of ω is again 1. Thus, the result of the widening for x1 = 2 is
ω + 3x2 + 9.

Finally, at the eleventh iteration, we reach a fixpoint f11
1 :

f11
1 (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 x1 ≤ 0 ∨ x2 ≤ 0

3x2 + 2 x1 = 1

ω + 3x2 + 9 x1 = 2

ω · (x1 − 1) + 7x1 + 3x2 − 5 otherwise

Note that the second and third expressions are particular cases (for x1 = 1 and
x1 = 2 respectively) of the last expression and are explicitly listed only due to
the amount of widening delay we used. The function f(x1, x2) = ω · (x1 − 1) +
7x1+3x2−5 constitutes a ranking function2 for the program loop, while the first
case represents immediate program exit (without even entering the loop). &'
2 The reason why we obtain a different ranking function with respect to Figure 2 is
because we count the number of program execution steps whereas, for convenience
of presentation, in Figure 2 we count the number of loop iterations.

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 425

6 Implementation

We have incorporated the implementation of our abstract domain for ordinal-
valued ranking functions O into our prototype static analyzer [21] based on
piecewise-defined ranking functions.

The prototype accepts programs written in a small non-deterministic while-
language. It is written in OCaml and, at the time of writing, the available abstrac-
tion for program states S is based on intervals [7] and the available abstraction
for natural-valued functions F is based on affine functions represented as convex
polyhedra [11]. The operators for the intervals and convex polyhedra abstract
domains are provided by the Apron library [14]. The extension to ordinal-valued
ranking functions is optional, but when activated it requires to choose a maxi-
mum degree for the abstract polynomials. It is also possible to tune the precision
of the analysis by adjusting the widening delay.

The analysis proceeds by structural induction on the program syntax, iterating
loops until an abstract fixpoint is reached. In case of nested loops, a fixpoint on
the inner loop is computed for each iteration of the outer loop.

6.1 Examples

To illustrate the expressiveness of our domain, we consider two more examples,
besides the one shown in Section 5.

Example 3. Let us consider the program in Figure 3 which is an involved varia-
tion of the one in Figure 1. The variables x1 and x2 can have any initial integer
value, and the program behaves differently depending on whether x1 is positive
or negative. In case x1 is positive, the program behaves exactly as in Figure 1.
In case x1 is negative, the program either increments the value of x1 or it decre-
ments the value of x2 and resets x1 to any value (possibly positive). The loop
exits when x1 is equal to zero or x2 is less than zero.

Note that there does not exist a lexicographic ranking function for the loop.
In fact, the variables x1 and x2 can be alternatively reset to any value at each
loop iteration: the value of x2 is reset at the program control point 5 (in the first
branch of the first if statement, i.e. if x1 > 0) while the value of x1 is reset at the
control point 10 (in the second branch of the first if statement, i.e. if x1 < 0).

Nonetheless, the program always terminates, regardless of the initial values for
x1 and x2, and regardless of the non-deterministic choices taken during execution.
Let us consider the graph in Figure 5. Whenever x2 is reset to any value, we
move towards the final states decreasing the value of x1, and whenever x1 is
reset to any value, we move towards the final states decreasing the value of x2.
Moreover, whenever x1 is reset to a positive value, its value will only decrease
until it reaches zero (or x2 is reset to a value less than zero).

Our prototype is able to prove the program termination in about 10 seconds
(with a widening delay of 3 iterations). We automatically infer the following
piecewise-defined ranking function:

426 C. Urban and A. Miné

int : x1, x2

while 1(x1 �= 0 ∧ x2 ≥ 0) do

if 2(x1 > 0) then

if 3(?) then
4x1 := x1 − 1
5x2 := ?

else
6x2 := x2 − 1

else

if 7(?) then
8x1 := x1 + 1

else
9x2 := x2 − 1
10x1 := ?

od11

Fig. 3. Program with no lexicographic
ranking function

int : x1, x2

1x1 := N

while 2(x1 ≥ 0) do
3x2 := N

while 4(x2 ≥ 0) do
5x2 := x2 − 1

od
6x1 := x1 − 1

od7

Fig. 4. Program with non-linear com-
putational complexity

f(x1, x2) =

⎧⎪⎨⎪⎩
ω2 + ω · (x2 − 1)− 4x1 + 9x2 − 2 x1 < 0 ∧ x2 > 0

1 x1 = 0 ∨ x2 ≤ 0

ω · (x1 − 1) + 9x1 + 4x2 − 7 x1 > 0 ∧ x2 > 0

In Figure 5, we justify the need for ω2. Indeed, from any state where x1 < 0
and x2 = k2 > 0, whenever x1 is reset at program control point 10, it is possible
to jump to any state where x2 = k2 − 1. In particular, for example from the
state where x1 = −1 and x2 = 2, it is possible to jump through unbounded
non-determinism to states with value of the most precise ranking function equal
to an arbitrary ordinal number between ω and ω2, which requires ω2 as upper
bound of the maximum number of loop iterations needed to reach a final state.

Finally, note the expressions identified as coefficients of ω: where x1 < 0, the
coefficient of ω is an expression in x2 (since x2 guides the progress towards the fi-
nal states), and where x1 > 0, the coefficient of ω is an expression in x1 (because
x1 now rules the progress towards termination). The expressions are automati-
cally inferred by the analysis without requiring assistance from the user. &'

Example 4. Let us consider the program in Figure 4. Since the program has
quadratic time complexity, we cannot prove its termination limiting ourselves to
piecewise-defined natural-valued affine ranking functions.

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 427

x1 ≤ 0
x2 ≤ 0

0

x1 ≤ 0
x2 = 1

0

x1 ≤ 0
x2 = 2

0
. . .

x1 ≤ 0
x2 = n

0
. . .

x1 = 1
x2 ≤ 0

0

x1 = 1
x2 = 1

1

x1 = 1
x2 = 2

2
. . .

x1 = 1
x2 = n

n
. . .

x1 = −1
x2 ≤ 0

0

x1 = −1
x2 = 1

1

x1 = −1
x2 = 2

ω2
. . .

x1 = −1
x2 = n

ω2 + ω · (n− 1)
. . .

x1 = 2
x2 ≤ 0

0

x1 = 2
x2 = 1

ω

x1 = 2
x2 = 2

ω + 1
. . .

x1 = 2
x2 = n

ω + n− 1
. . .

x1 = −2
x2 ≤ 0

0

x1 = −2
x2 = 1

2

x1 = −2
x2 = 2

ω2 + 1
. . .

x1 = −2
x2 = n

ω2 + ω · (n− 1) + 1
. . .

.

.

x1 = n
x2 ≤ 0

0

x1 = n
x2 = 1

ω · (n− 1)

x1 = n
x2 = 2

ω · (n− 1) + 1
. . .

x1 = n
x2 = n

ω · (n− 1) + n− 1
. . .

x1 = −n
x2 ≤ 0

0

x1 = −n
x2 = 1

n

x1 = −n
x2 = 2

ω2 + n− 1
. . .

x1 = −n
x2 = n

ω2 + ω · (n− 1) + n− 1
. . .

.

.

Fig. 5. Transitions between states at control point 1 for the program in Figure 3. There
is an edge from any node where x1 has value k1 > 0 (and x2 > 0) to all nodes where
x1 has value k1 − 1 (and x2 has any value); there is also an edge from any node where
x2 has value k2 > 0 (and x1 < 0) to all nodes where x2 has value k2 − 1 (and x1 has
any value). In every node we indicate the maximum number of loop iterations needed
to reach a final state: the highlighted nodes require an ordinal greater than ω2.

428 C. Urban and A. Miné

Program Ranking Function

[1, Figure 1]
f(x, y) = 57x + 3y + 28

Time: < 3 s (Widening Delay: 2)

[4, Figure 1]
f(x, y) = 7y + 3x− 5

Time: < 1 s (Widening Delay: 2)

[5, Figure 7a]
f(x, y, d) = ω · (y − 1) + 4x + 9y − 7

Time: < 60 s (Widening Delay: 3)

[5, Figure 7b]
f(x, y, z) = ω2 · (y − 1) + ω · (y + z − 2) + 3x + 13y + 8z − 18

Time: < 240 s (Widening Delay: 3)

[5, Figure 8a]
f(x) =

⎧⎪⎨⎪⎩
−3x + 1 x < 0

1 x = 0

3x + 1 x > 0

Time: < 1 s (Widening Delay: 2)

[23, MirrorIntervSim]
f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 x ≤ −6
⊥ −5 ≤ x ≤ −1
1 x = 0

6 x = 1

5x + 1 2 ≤ x ≤ 30

⊥ 31 ≤ x ≤ 35

4 x ≥ 36

Time: < 1 s (Widening Delay: 2)

Fig. 6. Some of the benchmarks used in experiments

However, with the extension to ordinal-numbers, our prototype analyzes the
program in about 2 seconds (with a widening delay of 2 iterations). The inferred
ranking function is f(x1, x2) = ω+2, where ω constitutes an upper-bound on the
number of program execution steps spent inside the while loop (i.e. it testifies
that the number of execution step spent inside the while loop is finite), and
the constant 2 takes into account the initialization step x1 := N and the test
x1 < 0 that enforces loop exit. This ordinal-valued ranking function represents
a rough approximation of the program computational complexity, but allows
nonetheless to prove its termination without requiring to handle ranking function
more complex than affine functions. &'

6.2 Experiments

We have evaluated our prototype implementation against a set of benchmarks
collected from publications in the area [1,4,5,23, etc.] or inspired from real code.

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 429

We analyzed 38 examples: 25 terminating loops and 13 conditionally terminating
loops. Among them, nine are “simple loops” (i.e. loops with only variable up-
dates in the loop body) and seven are nested loops. We successfully proved (con-
ditional) termination for all simple loops but one, and for four out of the seven
nested loops. Only two nested loops required the extension to ordinal numbers
(to cope with a non-linear computational complexity). 13 of the 38 benchmarks
are non-deterministic programs. We proved termination for ten of them, using
ordinal numbers in five cases. In the other five cases, piecewise-defined natural-
valued ranking functions were sufficient (even when the programs were presented
in the literature as requiring a lexicographic ranking function). In summary, our
prototype was able to automatically solve 30 of the 38 benchmarks we consid-
ered. Failure in the eight missing cases is due to the non-relational nature of
partitioning with intervals and, in particular, is not related to the use of ordi-
nal numbers. Almost all examples were analyzed in less than 60 seconds (only
one example took aroud 240 seconds), with maximum polynomial degree of two
and maximum widening delay of seven iterations. In Figure 6 are depicted some
representatives of the benchmarks, together with our results.

7 Related Work

In the recent past, a large body of work has been devoted to proving program
termination of imperative programs. To the best of our knowledge, in this setting,
the inference of ordinal-valued ranking functions is unique to our work.

Aside from the use of ordinal numbers, the approach presented in this paper is
mostly related to [1]: both techniques handle programs with arbitrary structure
and infer ranking functions (that also provide information on the program com-
putational complexity in terms of executions steps) attached to program control
points. The technique proposed in [1] uses invariants (pre)computed for each
program control point to infer lexicographic ranking functions (also attached to
program points). On the other hand, with our approach, we infer ordinal-valued
ranking functions directly as invariants attached to program control points. In [1],
the problem of finding an appropriate lexicographic order is handled by a greedy
algorithm, whereas dealing with ordinal numbers relieves us from the burden
of finding lexicographic orders (cf. Section 1). In contrast, ordinal-valued rank-
ing functions parameterized by functions with limited expressivity (e.g. affine
functions) might produce a rough approximation of the program computational
complexity (cf. Example 4). We plan to study these issues further and support
non-linear functions as part of our future work.

In order to avoid lexicographic ranking functions, many other approaches rely
on the transition invariants method introduced in [20]. The advantage of this
method is that it only requires to find a set of ranking functions, without lexi-
cographic ordering between them. However, the main drawback of the method
is the cost of explicitly checking the validity of the termination argument. On
the other hand, our approach also avoids explicit lexicographic orders, but in
addition it does not suffer from this disadvantage because the validity of the
termination argument is automatically enforced at each loop iteration.

430 C. Urban and A. Miné

In a different context, a large amount of research followed the introduction of
size-change termination (SCT) [17]. The SCT approach consists in collecting a
set of size-change graphs (representing function calls) and combining them into
multipaths (representing program executions) in such a way that at least one
variable is guaranteed to decrease. Compared to SCT, our approach avoids the
exploration of the combinatorial space of multipaths with the explicit manipu-
lation of ordinal numbers. In [16,2], algorithms are provided to derive explicit
ranking functions from size-change graphs, but these ranking functions have a
shape quite different from ours which makes it difficult for us to compare their ex-
pressiveness. For example, the derived ranking functions use lexicographic orders
on variables while our polynomial coefficients are arbitrary linear combinations
of variables. In general, an in-depth comparison between such fairly different
methods is an open research topic (e.g. see [13] for the comparison of the tran-
sition invariants and the size-change termination methods).

Finally, we have seen that there exist programs (e.g., the program in Fig-
ure 3) for which there does not exist a lexicographic ranking function. In [5]
the authors discuss the problem and propose some heuristics to circumvent it.
Interestingly these heuristics rediscover exactly the need for piecewise-defined
ranking functions, even if implicitly and in a roundabout way.

8 Conclusion

In this paper, we proposed a parameterized abstract domain for proving termi-
nation of imperative programs. The domain automatically infers sufficient condi-
tions for program termination, and synthesizes piecewise-defined ordinal-valued
ranking functions through backward invariance analysis.

We also described the implementation of an instance of the abstract domain
based on affine functions, and we have provided experimental evidence of its
expressivity. In particular, we have seen that inferring ranking functions over
ordinals removes the burden of finding lexicographic orders (cf. Section 1 and
Section 5), and overcomes the limitations of affine functions in case of programs
with non-linear computational complexity (cf. Example 4). Finally, we have seen
(cf. Example 3) that piecewise-defined ordinal-valued ranking functions are cru-
cial where lexicographic ranking functions are not powerful enough.

It remains for future work to support non-linear functions (e.g. quadratic, cu-
bic, exponential, . . .) and relational abstract domains (e.g. octagons [19], poly-
hedra [11], . . .) for better state partitioning.

Acknowledgments. We are very grateful to Damien Massé for the interesting
discussions and his helpful suggestions. We also thank the anonymous reviewers
for their careful reviews and their useful comments.

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-Dimensional Rankings, Pro-
gram Termination, and Complexity Bounds of Flowchart Programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

An Abstract Domain to Infer Ordinal-Valued Ranking Functions 431

2. Ben-Amram, A.M., Lee, C.S.: Ranking Functions for Size-Change Termination II.
Logical Methods in Computer Science 5(2) (2009)

3. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear Ranking with Reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005)

4. Cook, B., Podelski, A., Rybalchenko, A.: Proving Program Termination. Commu-
nications of the ACM 54(5), 88–98 (2011)

5. Cook, B., See, A., Zuleger, F.: Ramsey vs. Lexicographic Termination Proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013)

6. Cousot, P.: Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Electronic Notes in Theoretical Computer Science 6,
77–102 (1997)

7. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs.
In: Symposium on Programming, pp. 106–130 (1976)

8. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL,
pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Higher Order Abstract Interpretation (and Application to
Comportment Analysis Generalizing Strictness, Termination, Projection, and PER
Analysis. In: ICCL, pp. 95–112 (1994)

10. Cousot, P., Cousot, R.: An Abstract Interpretation Framework for Termination.
In: POPL, pp. 245–258 (2012)

11. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL, pp. 84–96 (1978)

12. Floyd, R.W.: Assigning Meanings to Programs. In: Proceedings of Symposium on
Applied Mathematics, vol. 19, pp. 19–32 (1967)

13. Heizmann, M., Jones, N.D., Podelski, A.: Size-Change Termination and Transition
Invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–50.
Springer, Heidelberg (2010)

14. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

15. Kunen, K.: Set Theory: An Introduction to Independence Proofs. Studies in Logic
and the Foundations of Mathematics (1980)

16. Lee, C.S.: Ranking Functions for Size-Change Termination. ACM Transactions on
Programming Languages and Systems 31(3) (2009)

17. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The Size-Change Principle for Program
Termination. In: POPL, pp. 81–92 (2001)

18. Manna, Z., Pnueli, A.: The Temporal Verification of Reactive Systems: Progress
(1996)

19. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

20. Podelski, A., Rybalchenko, A.: Transition Invariants. In: LICS, pp. 32–41 (2004)
21. Urban, C.: FuncTion, http://www.di.ens.fr/~urban/FuncTion.html
22. Urban, C.: The Abstract Domain of Segmented Ranking Functions. In: Logozzo, F.,

Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 43–62. Springer, Heidelberg
(2013)

23. Velroyen, H., Rümmer, P.: Non-Termination Checking for Imperative Programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008)

http://www.di.ens.fr/~urban/FuncTion.html

Model and Proof Generation

for Heap-Manipulating Programs�

Martin Brain, Cristina David, Daniel Kroening, and Peter Schrammel

University of Oxford
Department of Computer Science
first.lastname@cs.ox.ac.uk

Abstract. Existing heap analysis techniques lack the ability to supply
counterexamples in case of property violations. This hinders diagnosis,
prevents test-case generation and is a barrier to the use of these tools
among non-experts. We present a verification technique for reasoning
about aliasing and reachability in the heap which uses ACDCL (a com-
bination of the well-known CDCL SAT algorithm and abstract interpre-
tation) to perform interleaved proof generation and model construction.
Abstraction provides us with a tractable way of reasoning about heaps;
ACDCL adds the ability to search for a model in an efficient way. We
present a prototype tool and demonstrate a number of examples for
which we are able to obtain useful concrete counterexamples.

1 Introduction

Heap-manipulating programs are notoriously hard to verify. Although there are
successful approaches to proving the safety of such programs, e.g. analyses based
on three-valued logic [1] and separation logic [2, 3], these analyses are primarily
concerned with proof generation and only very few provide a concrete counter-
model when a property is violated [4, 5]. Such countermodels can be used as
test cases that lead the program execution to the error, and hence, they are
invaluable in debugging and understanding the nature of the defect.

As properties of dynamically allocated data structures involve quantifiers,
inductive definitions and transitive closure, the concrete interpretation is im-
practical, and abstraction is used to give an approximate representation of sets
of concrete values, providing an effective way of dealing with such specifications.
In approaches based on abstract interpretation [6], the behaviour of a program is
evaluated over the abstract domain using an abstract transformer, which is iter-
ated until the set of abstract states saturates. The generated abstract fixed point
is an over-approximation of the set of reachable states of the original program.
Now, the difficulty is that, due to the precision loss involved in this analysis,
an abstract countermodel might be spurious, i.e. it can reach the error state ac-
cording to an abstract semantics, but not in the concrete semantics. Our goal

� Supported by the ARTEMIS VeTeSS project, UK EPSRC EP/J012564/1 and ERC
project 280053.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 432–452, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Model and Proof Generation for Heap-Manipulating Programs 433

is hence to compute a concrete countermodel, i.e. a witness for the refutation of
a property in the form of a concrete heap configuration that, starting from the
initial program state, will reach an error state according to concrete semantics.

Generation of Concrete Countermodels. We identify and address two
specific issues hindering the generation of concrete countermodels.

The first issue is the loss of precision caused by join operators when reason-
ing about multiple execution paths. Join operations are well-known for losing
precision [7, 8]. One way to retain precision in such situations is to use disjunc-
tive (powerset) abstractions that express all the possible behaviours individually,
avoiding the need for an overapproximative join operator. However, disjunctive
abstractions increase space and time requirements exponentially. Thus, in order
to achieve scalability, shape analyses generally relinquish the precision offered
by the powerset domain in favour of more practical solutions. Options include
partially disjunctive heap abstractions [9], or special join operations for the sep-
aration logic domain which abstract information selectively [8]. However, due to
the precision loss, generating counterexamples is difficult or even impossible.

We propose an analysis capable of regaining just the right amount of precision
lost by the join without a powerset domain. This is achieved by exploiting recent
results on embedding abstract domains inside the Conflict Driven Clause Learn-
ing (CDCL) algorithm used by SAT solvers, a framework known as Abstract
Conflict Driven Clause Learning (ACDCL). As our main focus is on proving
aliasing and reachability properties about the heap, we instantiate ACDCL with
a heap domain. Our technique produces an abstract countermodel such that any
concrete instantiation of it will always provide a valid concrete countermodel.

The second scenario where concrete countermodels are difficult to generate is
in the presence of loops, when a widening operator may be required to acceler-
ate convergence by extrapolation. For programs with loops, we propose using a
combined approach based on loop unwinding and widening. Unwinding allows us
to construct concrete refutation witnesses for property invalidations that appear
within a certain number of loop unwindings. As this technique is inconclusive
if no such invalidations appear for the specified number of unwindings, widen-
ing will be used to prove safety in such situations. Any abstract countermodel
generated subsequent to widening may be spurious, i.e., may not correspond to
any concrete execution in the original program. The experience from bounded
model checking indicates that many bugs are found with a small number of loop
unwindings.

Contributions. Our contributions are summarised as follows:

– An abstract domain specialised for heap-manipulating programs that is used
to express aliasing and reachability facts about the heap.

– A verification technique for heap-manipulating programs that interleaves
model construction and proof generation by exploiting recent results on
embedding abstract domains inside the CDCL algorithm used by SAT
solvers. As precision loss caused by joins is recovered through decisions and
learning, our technique is capable of path-sensitive reasoning. Crucially, by

434 M. Brain et al.

generalizing causes of conflict, stronger facts can be learned, avoiding case
and path enumeration.

– In contrast to most other heap analysis techniques based on abstract in-
terpretation, our analysis produces abstract countermodels that are under-
approximations of concrete countermodels and can hence be used to diagnose
the property violation. We provide an algorithm for obtaining concrete in-
stantiations of our abstract countermodels.

– We present a prototype tool and demonstrate that we are able to obtain
useful concrete counterexamples for typical list-manipulating programs and
for benchmarks from SV-COMP’13 involving various kinds of lists and trees.

2 A Running Example

For illustration, let us consider the example in Fig. 1, with the corresponding
CFG in Fig. 2. Function running example takes as input two pointers x and y
to singly-linked lists, and removes the head of the list x and frees it.

Property 1. We instrument the code with the assumption at Line 7, stating
that y is non-dangling. At the end of the method we expect y not to be affected by
the memory deallocation at Line 12, and to remain non-dangling. Accordingly,
in the CFG representation, an error state is reached only if y is dangling at
the end of the program. The fact that the error location can be reached is
easily discovered by any heap verification technique (if x and y are aliases, the
memory location pointed to by y does get deallocated, leaving y dangling at
location N5). However, the join operation performed at location N5 will usually

1 typedef struct node {
2 int val ;
3 struct node ∗n ;
4 } L i s t ;
5
6 void running example (L i s t ∗x , L i s t ∗y) {
7 assume (! Dangling (y)) ;
8
9 i f (x!= nu l l) {

10 L i s t ∗aux = x ;
11 x = x−>n ;
12 f r e e (aux) ;
13 }
14
15 a s s e r t (! Dangling (y)) ; // proper ty 1
16 }

Fig. 1. Running example (with property 1)

Model and Proof Generation for Heap-Manipulating Programs 435

N0 N1

N2

N3

N4

N5 �

!Dangling(y)
x!=null

aux=x

x=x->n

free(x)

x==null

Dangling(y)

Fig. 2. CFG for the running example (with property 1)

void counterexample1 () {

L i s t ∗x , ∗y ;
x = new(L i s t) ;
y = x ;

running example (x , y) ;
}

Fig. 3. A concrete counterexample for
property 1 of the running example

void counterexample2 () {

L i s t ∗x , ∗y ;
y = new(L i s t) ;
y−>n = nu l l ;
x = y ;

running example (x , y) ;
}

Fig. 4. A concrete counterexample for
property 2 of the running example

lose the information about the two independent behaviours corresponding to
whether or not x is null . This is due to the fact that the most precise property
at the join point requires disjunction, and correspondingly a disjunctive domain.

We use a heap domain inside a Conflict-Driven Learning algorithm as used by
SAT solvers to construct a countermodel consisting of reachability and aliasing
facts without using a powerset domain. The generated abstract countermodel
consists of the facts x�=null and x = y. A concrete instantiation of this counter-
model as a test case that triggers the property violation is given in Fig. 3. We
shall return with details on how the countermodel is generated for this example
in Sec. 5, after describing the analysis.

Property 2. Now, let us consider a slightly more involved heap property. As-
suming the existence of a path from y to null via field n at Line 7 in Fig. 1
(by replacing assume(!Dangling(y)) with assume(Path(y, null , n))), we want
to check that this path is preserved at Line 15 (assert(!Dangling(y)) is re-
placed by assert(Path(y, null , n))). The abstract countermodel constructed by
our technique is such that, in order for the error location to be reached, x must

436 M. Brain et al.

datat := struct C {(typ v)∗}
e := v | v→f | new(C) | null
S := v:=e | v1→f :=v2 | free(v) | S1;S2 | if (B) S1 else S2 |

while (B) S | assert(φ) | assume(φ)
B := e1=e2 | e1 �=e2
A := ¬A | Path(v1, v2, f) | OnPath(v1, v2, v3, f) | Dangling(v)
φ := A | B | φ ∧ φ | φ ∨ φ

Fig. 5. Programming Language

be on the path from y to null . A concrete countermodel obtained by instantiating
the abstract countermodel is shown in Fig. 4.

3 Preliminaries

3.1 Programming Language

We use the sequential programming language in Fig. 5. It allows heap alloca-
tion and mutation, with v denoting a variable and f a pointer field. To simplify
the presentation but without loss of expressiveness, we allow only one-level field
access, denoted by v→f . Chained dereferences of the form v→f1→f2. . . are han-
dled by introducing auxiliary variables. The statement assert(φ) checks whether
the given argument holds for the current program state, whereas assume(φ) con-
strains the program state. Path(v1, v2, f) captures the fact that the heap location
referenced by pointer variable v2 is reachable from the memory location refer-
enced by v1 via the field f , whereas OnPath(v1, v2, v3, f) denotes the existence of
a memory location referenced by v3 on the path from v1 to v2 via the field f . The
predicate Dangling(v) indicates that a pointer v points to a non-allocated mem-
ory location, i.e. after a call to free(v), pointer v still points to the deallocated
memory location.

The predicates Path, OnPath, and Dangling are used to instrument the code
in order to prove the absence of memory safety errors such as null pointer deref-
erences, dangling pointer dereferences and double frees, for example.

3.2 Logical Encoding

We translate a program as defined in Sec. 3.1 to an equivalent logical formula.
This is done in the spirit of [10] via transforming the program into static single
assignment (SSA) form, where each variable is assigned to only once (auxiliary
variables are introduced to record intermediate values). This encoding is purely
syntactic and can be performed in linear time. It also makes explicit the state
dependency of heap accesses and updates. Finally, the formula is translated into
conjunctive normal form (CNF).

Model and Proof Generation for Heap-Manipulating Programs 437

v1:=v2→f �M v1=sel(M,v2, f)
v1→f :=v2 �M M ′=store(M,v1, f, v2)
Path(v1, v2, f) �M Path(M,v1, v2, f)
OnPath(v1, v2, v3, f) �M OnPath(M,v1, v2, v3, f)
Dangling(v) �M Dangling(M,v)
v:=new(C) �M M ′=new(M,v,C)
free(v) �M M ′=free(M,v)
assume(φ) �M φ
assert(φ) �M ¬φ

Fig. 6. Logical encoding

Most constructs such as sequential statements and if -else are encoded as
usual. while loops are unrolled up to a given bound. In Sec. 5 we give an example
how iterations beyond this bound can be translated as a fixed point construct
in order to prove unbounded safety. Unless otherwise stated, we assume in the
sequel that loops have been unwound, and hence, programs are loop-free. For
the heap-related statements the encoding rules are given in Fig. 6. We have to
capture the effects that an update to a dynamically allocated data structure has
on all the pointers referencing that memory location. To this end, we introduce
an explicit notion of heap, updated via operators store, new , free. More precisely,
if M denotes such a heap, then the encoding rules in Fig. 6 apply, where M ′ is
the updated heap.

Note that for assert(e), the negation of the asserted property is added to
the formula. Thus, an unsatisfiable formula corresponds to the scenario when
the assertion holds, whereas any model of the formula denotes a witness for the
invalidation of the asserted property.

Example 1. Our example in Fig. 1 is translated to the following formula:

(
¬Dangling(M1, y1) ∧
Dangling(M2, y1)

)
∧

⎛⎝⎛⎝x1 �=null ∧ aux 1=x1 ∧
x2=sel(M1, x1, n) ∧

M2=free(aux 1)

⎞⎠ ∨ (x1=null ∧
M1=M2

)⎞⎠
Transformed into CNF, we have:

¬Dangling(M1, y1) ∧ (aux 1=x1 ∨ x1=null) ∧
(x2=sel(M1, x1, n) ∨ x1=null) ∧ (M2=free(M1, aux 1) ∨ x1=null) ∧

(x1 �=null ∨M1=M2) ∧ Dangling(M2, y1)

3.3 Concrete Semantics

We define the concrete semantics of a program in terms of the logical formula
obtained through the transformation described in the previous section.

Given the set PVar of pointer variables and Fld of pointer fields, a concrete
program state ρ is defined as a triple (Obj , P, L), where Obj denotes the set of all

438 M. Brain et al.

�v1 = v2�ρ ≡ L(v1)=L(v2)

�M ′=store(M, v1, f, v2)�ρ ≡ ρ |=c M =⇒
(Env,Obj,P/P [(L(v1), f)�→L(v2)], L) |=c M ′

�M ′=M�ρ ≡ ρ |=c M =⇒ ρ |=c M ′

�M ′=free(M,v)�ρ ≡ ρ |=c M =⇒ (Env,Obj\L(v), P, L) |=c M ′

�M ′=new(M, v, C)�ρ ≡ ρ |=c M =⇒
∃o�∈Obj. (Env,Obj∪{o}, P, L/L[v �→ o]) |=c M ′

�sel(M, v, f)�ρ ≡ P (L(v), f)

�Path(M,v1, v2, f)�ρ ≡ L(v1)=L(v2) ∨

⎛
⎜⎝

∃o∈Obj, v3 �∈PVar .P (L(v1), f)=o ∧
�Path(v3, v2, f)�(Obj, P, L/L[v3 �→o])∧

¬�Path(M, v2, v1, f)�ρ

⎞
⎟⎠

�OnPath(M, v1, v2, v3, f)�ρ ≡
(

�Path(M, v1, v3, f)�ρ ∧ �Path(M, v3, v2, f)�ρ ∧
¬Path(M, v2, v3, f)�ρ

)

�Dangling(M, v)�ρ ≡ �o∈Obj. L(v)=o

Fig. 7. Concrete semantics dedc

the allocated heap nodes plus a distinguished null node, P is the set of points-to
relations such that P ⊆ Obj×Fld×Obj , and L is the pointer variable labelling
function, L : PVar→Obj .

Before defining the concrete semantics in Fig. 7, we provide a consistency
relation ρ |=c M between a concrete program state ρ and an explicit heap con-
figuration M . The consistency relation states that the same reachability and
aliasing facts must hold in both M and ρ.

ρ |=c M ⇐⇒ ∀v, v1, v2∈PVar , f∈Fld .�Path(M, v1, v2, f)�ρ ∧
�OnPath(M, v1, v2, v, f)�ρ ∧ �Dangling(M, v)�ρ

Memory allocation M ′=new(M,v,C) assigns a new heap node to the pointer
variable v, whereas the deallocation statement M ′=free(M,v) removes the deal-
located heap node from Obj. As the mapping of v to the deallocated node is
not removed from L, the variable points to an invalid memory location, i.e. v is
dangling. Note that the definition of Path excludes circular paths. We add the
predicate OnPath for notational convenience; it can be expressed with the help
of Path .

We refer to concrete program states (Obj, P, L) as structures Structs, and the
concrete domain of structures as (P(Structs),⊆,∪,∩). A structure ρ is called a
model of ϕ if �ϕ�ρ = 1, and a countermodel if �ϕ�ρ = 0.

4 Our Approach

4.1 Abstract Conflict Clause Learning (ACDCL)

Conflict Driven Clause Learning (CDCL) [11] is used by all industrially-relevant
propositional SAT solvers. It consists of two complementary phases, iterated un-
til either a model is found or a proof is generated. The first phase, model search,

Model and Proof Generation for Heap-Manipulating Programs 439

Algorithm 1. ACDCL Algorithm

1 while true do
2 S =) ;
3 while true do /* PHASE 1: Model Search */

4 repeat /* deduction */

5 S ← S . ded(S);
6 until S=S . ded(S);
7 if S=⊥ then break ; /* conflict */

8 if complete(ded,S) then return (not ⊥,S); /* return SAT model */

9 S ← decision(S); /* make decision */

10 end
11 L ← analyse conflict(S) ; /* PHASE 2: Conflict Analysis */

12 if L=) then return (⊥,L); /* return UNSAT */

13 ded ← ded . dedL; /* learn: refine transformer */

14 end

tries to construct a model by using a partial assignment of truth values for the
propositional variables and extending it using deduction (unit clause propaga-
tion) and heuristic guesses. If this constructs a model, then it is returned and the
algorithm terminates. If not, a conflicting partial assignment is produced and is
passed, along with the reasons for each truth assignment, to the second phase.
In contrast to the model-theoretic approach of the first phase, the second phase,
conflict analysis, takes a proof-theoretic approach. The failed model search is
used to guide resolution to produce a clause that allows deduction to avoid the
conflict and others like it. If the learnt clause is empty, then the problem is
unsatisfiable and the algorithm terminates. The key to the algorithm’s effective-
ness is the synergy between the two approaches; failed model generation targets
the resolution so that high-value clauses are produced and these clauses in turn
strengthen deduction and target the heuristics to improve model generation.

An alternative view of CDCL is that the partial assignments are an over-
approximation of the space of full logical assignments [12]. Thus, the first phase is
application of an over-approximate abstract transformer plus extrapolation and
the second phase is using an underapproximation and interpolation to generalise
the reason for the conflict and increase the precision of the abstract transformer.
From this viewpoint it is possible to lift CDCL to give ACDCL [13], which applies
the approach but works over a variety of abstract domains (see Alg. 1).

To use ACDCL we first need a concrete domain (a lattice) and a transformer.
ACDCL determines whether the transformer projects all elements to ⊥. In the
case of propositional SAT, the concrete domain is the lattice of sets of truth
assignments and the transformer projects a set of assignments to the subset of
them that are models of the formulae. If this is ⊥ for all points, then the formulae
has no models (UNSAT), otherwise it has models (SAT). When applied to heaps,
the concrete domain is (P(Structs),⊆,∪,∩) and the transformer projects sets of

440 M. Brain et al.

heaps to the subset of these that are models, thus proving the program safe (if
the transformer projects all sets to ⊥) or finding counterexamples.

The second component needed for ACDCL is an abstract domain and an
abstract transformer that over-approximates the concrete transformer. In the
case of propositional SAT solvers, the abstract domain is partial assignments
and the abstract transformer is unit propagation. In this work, Heapdom (see
Sec. 4.2) is an abstract domain capable of capturing reachability and aliasing
facts in the heap and ded (detailed in Sec. 4.3) is the abstract transformer.

The final components required are the completeness test and extrapolation
used in the model search phase and the generalisation function used in the
conflict analysis phase. Model search applies the abstract transformer until a
fixed point is reached (Lines 4 to 6). It then tests for completeness (Line 8). In the
case of propositional SAT solvers, this test is checking whether all variables have
been assigned. In this work, it is the procedure complete, detailed in Sec. 4.4. If
the abstract element is not complete (and not⊥), then a heuristic guess is needed
to add new information (Line 9). Modern propositional SAT solvers use a variant
of the VSIDS heuristic, while the procedure decision given in Sec. 4.3 is used for
heaps. If the model search phase reaches a ⊥, then the conflict analysis phase is
run (Lines 11–13). This uses a generalisation function to underapproximate the
reasons for the conflict. In the case of propositional SAT solvers, this is usually
First-UIP based learning, while heaps use analyse conflict given in Sec. 4.3.

4.2 Abstract Heap Domain

The structure of our abstract heap domain Heapdom is given in Fig. 8. An ele-
ment S of Heapdom is a conjunction of predicates pred or their negation (literals
Heaplit), represented as a set. Heaplits are equalities/disequalities represent-
ing aliasing information, together with predicates describing reachability/valid-
ity facts about heap configurations (Path", OnPath" and Dangling"). Heapdom
forms a lattice 〈Heapdom ,⊇,∪,∩,Heaplit , ∅〉. Note that the meet operation & is
the union of literals ∪, the join ' is the intersection ∩, and inclusion � is ⊇. The
top element is the empty set and bottom ⊥ is the set of all literals Heaplit .
For convenience, all inconsistent heap configurations will be projected to bot-
tom, e.g., pred ∧ ¬pred and Path"(M, v1, v2, f)∧Dangling"(M, v1) are ⊥.1 Note
that Heapdom is finite for programs with a finite number of pointer variables
and loops being unwound a finite number of times.

From a shape analysis point of view, the reachability predicate Path�(M,x, y, n)

denotes a list segment from x to y, whereas Path�(M,x, null, n) represents a full
list. When interested in heap reachability analysis, our heap abstract domain is
applicable to general heap-allocated data structures that go beyond linked lists.

Abstract Semantics. We define now the semantics of programs (as given in
Sec. 3) in our abstract heap domain. In Fig. 9, the abstract semantics is given

1 The intuition behind the latter case is that, in accordance with the semantics in
Fig. 7, reachability facts can only involve pointers to allocated heap locations.

Model and Proof Generation for Heap-Manipulating Programs 441

Heapdom := P(Heaplit)
Heaplit := pred | ¬pred
pred := v=e | Path�(M,v1, v2, f) | OnPath�(M,v1, v2, v3, f) | Dangling�(v)

e := null | v | sel �(M,v, f)
v ∈ Var , f ∈ Fld

Fig. 8. Abstract heap domain

in form of an abstract transformer ded : Heapdom → Heapdom that defines the
effect �p�" of the predicates p in the logical encoding on abstract heap states S.

Path, OnPath, Dangling and sel generate the corresponding abstract predi-
cates Path", OnPath", Dangling", and sel ". An equality between heaps M = M ′

results in duplicating all facts for the new heap.
The transformers for new , free, and store are more complicated because they

involve the creation of a new heap M ′ that is a modified version of the previous
heap configuration M :
– new allocates a new memory location, disjoint from all the other allocated

memory locations. Accordingly, the abstract transformer (see Fig. 11) adds
a non-null, non-dangling pointer v (S2), generates disequalities between the
pointer to the newly allocated location and all the other non-dangling point-
ers (S3), and copies all known facts to the new heap (S1).

– free and store have to capture the effects of a strong update on the predicates
describing heap facts.2 Corresponding to the effects of a strong update, any
pointer variable that is an alias of v1 is pointing to the updated heap object in
the new heap, while any pointer variable disjoint from v1 points to the same
heap object as it did before the update. Thus, the abstract transformers must
capture the truth value of the predicates Path, OnPath and Dangling in the
updated heap in a precise manner. For this purpose, there are transformers
that define the effects of the memory update on the corresponding positive
literal, i.e. whether or not the literal preserves its truth value in the new
heap, as well as the effects on the negative literal. The abstract transformer
for the store operator is the most complex and is shown in Fig. 11. The free
operation is a simpler version of store (omitted here).
The copying of the facts from the previous heap configuration M that are
unaffected by the heap update to the new heap M ′ is performed by the
“heap copy” functions, also shown in Fig. 11. The hcp functions filter ab-
stract elements present in both S and S1 if the constraint c holds in S1

while also substituting the heap configuration from M to M ′. The ∈̂
operator in these definitions is given as c1 ∧ c2 ∈̂ S ≡ c1 ∈ S ∧ c2 ∈ S, and
c1 ∨ c2 ∈̂ S ≡ c1 ∈ S ∨ c2 ∈ S.

2 In shape analysis, a strong update to an abstract memory location overwrites its old
content with a new value, whereas a weak update adds new values to the existing
set of values associated with that memory location [1, 14].

442 M. Brain et al.

�v1 = v2��S ≡ {v1 = v2}
�v = sel(M,v, f)��S ≡ {v = sel �(M,v, f)}
�M ′=store(M,v1, f, v2)��S ≡ dedM′=store(M,v1,f,v2) (see Fig. 11)
�M ′=new (M,v, C)��S ≡ dedM′=new(M,v,C) (see Fig. 11)

�M ′=free(M,v)��S ≡ dedM′=free(M,v) (see text)

�M ′=M��S ≡ {s[M/M ′] | s ∈ S}
�Path(M,v1, v2, f)��S ≡ {Path�(M,v1, v2, f)}
�OnPath(M,v1, v2, v3, f)��S ≡ {OnPath�(M,v1, v2, v3, f)}
�Dangling(M,v)��S ≡ {Dangling�(M,v)}

Fig. 9. Abstract semantics: abstract transformer ded

The concretisation function γ that relates abstract states S with concrete
states ρ (cf. Fig. 7) is given in Fig. 10 with γ(S) = ∩s∈Sγs.

γv1=v2 ≡ {ρ | �v1 = v2�ρ}
γv=sel�(M,v,f) ≡ {ρ | �v = sel �(M,v, f)�ρ}
γPath�(M,v1,v2,f)

≡ {ρ | �Path(M,v1, v2, f)�ρ}
γOnPath�(M,v1,v2,v3,f)

≡ {ρ | �OnPath(M,v1, v2, v3, f)�ρ}
γDangling�(M,v) ≡ {ρ | �Dangling(M,v)�ρ}

Fig. 10. Concretisation function γ

We now state the theorems that establish the soundness of the abstraction:

Theorem 1. The concrete domainP(Structs) and the abstract domain Heapdom

form a Galois connection, i.e. (P(Structs),⊆) −−→←−−α
γ

(Heapdom ,⊇).

Theorem 2. The abstract semantics is a sound over-approximation of the con-
crete semantics, i.e. (dedc ◦ γ)(S) ⊆ (γ ◦ ded)(S).

The proofs establish the inclusion case by case over the structure of P(Structs)
and Heapdom , respectively dedc and ded .

4.3 ACDCL Instantiation

The ACDCL algorithm in Alg. 1 is instantiated using our abstract heap domain
as follows:

Deduction. The abstract semantics in Sec. 4.2 defines an abstract transformer
ded : Heapdom → Heapdom , which can also be viewed as a set of deduction
rules. During model search ACDCL applies the abstract transformer ded to
deduce facts until saturation or detection of a conflict (the abstract value ⊥).

Model and Proof Generation for Heap-Manipulating Programs 443

[DED−[NEW]]

S1 = hcp

({
v1=sel �(M,v2, f),Path

�(M,v1, v2, f),

OnPath�(M,v1, v2, v3, f),Dangling�(M,v)

}
, true , S,M,M ′

)
S2 = {v �=null ,¬Dangling�(M ′, v)}
S3 = {v �=v′ | v′∈PVar ∧ v �=v′ ∧ ¬Dangling�(M ′, v) ∈ S}

dedM′=new(M,v,C)(S) = (S1 ∪ S2 ∪ S3)

[DED−[STORE]]

S1 = hcp pos({v3=sel �(M,v4, f)}, v1 �=v3, S,M,M ′)
S2 = hcp pos({¬(v3=sel �(M,v4, f))}, v1 �=v3 ∨ v2 �=v4, S,M,M ′)
S3 = hcp neg({¬(v3=sel �(M,v4, f))}, v1=v3 ∧ v2=v4, S,M,M ′)

S4 = hcp pos

⎛⎝{Path �(M,v3, v4, f)},
¬Path�(M,v3, v1, f) ∨ ¬OnPath�(M,v3, v4, v1, f) ∨ Path�(M,v2, v4, f),
S,M,M ′

⎞⎠
S5 = hcp neg

⎛⎝{Path �(M,v3, v4, f)},
Path�(M,v3, v1, f) ∧OnPath�(M,v3, v4, v1, f) ∧ ¬Path�(M,v2, v4, f),
S,M,M ′

⎞⎠
S6 = hcp pos({¬Path�(M,v3, v4, f)},¬Path�(M,v3, v1, f) ∨ ¬Path�(M,v2, v4, f), S,M,M ′)
S7 = hcp neg({¬Path�(M,v3, v4, f)},Path�(M,v3, v1, f) ∧ Path�(M,v2, v4, f), S,M,M ′)

S8 = hcp pos

⎛⎜⎜⎝
{OnPath�(M,v3, v4, v5, f)},

Path�(M,v3, v4, f) ∧
(

¬Path�(M,v3, v1, f) ∨
¬OnPath�(M,v3, v5, v1, f) ∧ Path�(M,v2, v5, f)

)
,

S,M,M ′

⎞⎟⎟⎠
S9 = hcp neg

⎛⎜⎜⎝
{OnPath�(M,v3, v4, v5, f)},

¬Path�(M,v3, v4, f) ∨
(
Path�(M,v3, v1, f) ∧ OnPath�(M,v3, v5, v1, f)

∨ ¬Path�(M,v2, v5, f)

)
,

S,M,M ′

⎞⎟⎟⎠
S10 = hcp pos

⎛⎝{¬OnPath �(M,v3, v4, v5, f)},
¬Path�(M,v3, v4, f) ∨ ¬Path�(M,v3, v1, f) ∨ ¬Path�(M,v2, v5, f),
S,M,M ′

⎞⎠
S11 = hcp neg

⎛⎝{¬OnPath �(M,v3, v4, v5, f)},
Path�(M,v3, v4, f) ∧ Path�(M,v3, v1, f) ∧ Path�(M,v2, v5, f),
S,M,M ′

⎞⎠
S12 = hcp

({
v1=sel �(M,v2, f

′),Path�(M,v1, v2, f
′),

OnPath�(M,v1, v2, v3, f
′),Dangling�(M,v)

}
, true , S,M,M ′

)
S13 = hcp pos({Dangling�(M,v3)}, v1 �=v3, S,M,M ′)
S14 = {v2=sel�(M ′, v1, f)}

dedM′=store(M,v1,f,v2)(S) =

{
⊥ if (Dangling�(M,v1) ∨ v1=null) ∈̂ S⋃

i=1..14 Si otherwise

Functions for copying heap facts:
hcp(S, c, S1,M,M ′) = {s[M/M ′] | s ∈ S ∩ S1 ∧ c ∈̂ S1}
hcp pos(S, c, S1,M,M ′) = {s[M/M ′] | s ∈ S ∩ S1 ∧ c ∈̂ S1}
hcp neg(S, c, S1,M,M ′) = {¬s[M/M ′] | s ∈ S ∩ S1 ∧ c ∈̂ S1}

Fig. 11. Abstract transformers

In addition to the abstract transformer ded , we make use of a transitive
closure transformer that infers all the possible new heap facts from existent
ones, e.g. it infers Path(M,v1, v3, f) from Path(M,v1, v2, f) and Path(M,v2, v3, f).

444 M. Brain et al.

The transitive closure is also necessary to canonicalize abstract elements. This
is in particular important for checking whether an abstract value is equivalent
to ⊥ (which has multiple representations).

We can show that the abstract transformer ded we presented in Sec. 4.2 is the
best abstract transformer in our heap domain. However, this is not necessary for
the completeness and termination of the ACDCL algorithm: less precise trans-
formers can be used, as they will be subsequently refined through decisions and
learning. This is frequently a worthwhile trade-off for performance.

Maintaining the Set of Relevant Decisions. During this propagation
phase, we maintain a set H (“hints”) of literals (Heaplit) for the benefit of
the decision heuristic explained in the next section. The set H consists of those
literals that appear in the transformer’s hypothesis and are not present in the
current abstract model S, and hence, they constitute the set of literals that guar-
antees that a decision actually triggers a deduction. Hints are collected during
the application of the transformers based on the c, S1 arguments to the heap
copy functions (hcp, hcp pos, hcp neg):

extract hints(c, S1) = {h | h ∈ literals(c)\S1}

where

literals(c) =

⎧⎨⎩
literals(c1) ∪ literals(c2) if c = (c1 ∧ c2)
literals(c1) if c = (c1 ∨ c2)
{s} if c = s

returns a set of literals in formula c that is sufficient to trigger a deduction: note
that in the case of disjunction in the hypothesis c, only one disjunct is added
in order to avoid unnecessary decisions. A consequence of this definition is that
whenever the completeness test (Line 8 in Alg. 1) fails, there must be at least
one hint in H .

Decisions. Once no new information can be deduced through propagation, the
ACDCL algorithm makes a decision by guessing the truth value of a predicate
and adding it to the partial abstract model S. As explained above, we collect the
relevant potential decisionsH during deduction in order to restrict the choices for
decisions. We may use any decision heuristic get a hint to return (and remove)
an element from H . A trivial option is to simply take the first element, but we
could also use elaborate ranking heuristics in order to prioritise certain literals.
The decision function (Line 9 in Alg. 1) adds the obtained literal to the abstract
model:

decisionH : Heapdom → Heapdom
decisionH(S) = S ∪ {get a hint(H)}

Conflict Analysis and Learning. In the conflict analysis phase, the learning
function identifies the cause of the conflict:

analyse conflict : Heapdom→P(Heapdom)
analyse conflict(S) = (generalise ◦ complement)(decisions(S))

Model and Proof Generation for Heap-Manipulating Programs 445

where decisions returns the set of decision literals in the current iteration of main
(outer) iteration of the ACDCL algorithm. As a learning heuristic, the conjunc-
tion of all the decisions leading to conflict is initially complemented according
to the complement function:

complement : Heapdom → P(Heapdom)
complement(S) = {{¬s} | s ∈ S}

Subsequently, the found cause of conflict is generalised using the generalise
function:

generalise : P(Heapdom)→ P(Heapdom)

Generalisation is important to efficiently prune the search space so as to avoid
case enumeration. Generalisation is based on heuristics (e.g. First-UIP in SAT
solving). The generalise function we have implemented is for example able to
perform the following generalisations:

– x=y =⇒ ∀f ∈ F ld.Path�(x, y, f)

– ¬Path�(M,x, y, f) =⇒ x �=y.

The set L returned by analyse conflict is then used to build the learned trans-
former dedL that is used to refine the abstract transformer ded (Alg. 1, Line 13):

dedL : Heapdom → Heapdom
dedL =

⊔
�∈L ded �

meaning dedL(S) =
⋂
�∈L(S∪). In our implementation, transformer refinement

is realised by conjoining the CNF formula corresponding to L with the formula.

4.4 Soundness and Completeness

Using various properties of the abstract domain, we show that the instantiation
of the ACDCL framework given here is a decision procedure (i.e. it is sound,
complete and terminating) for loop-free programs. Sketches of the heap-specific
parts of the proof are given here, the correctness of the framework is shown
in [13]. We recall the definition of γ-completeness:

Definition 1. A transformer ded is γ-complete at S ∈ Heapdom if
γ(ded(S)) = dedc(γ(S)).

The way we construct the set of relevant possible decisions H enables a simple
implementation of complete:

completeH(ded , S) ≡ (H = ∅)

which has the following properties:

Lemma 1. If completeH(ded , S) is true then ded is γ-complete at S.
If completeH(ded , S) is false then the decision function refines the partial ab-
stract model, S⊂decisionH(S).

446 M. Brain et al.

Central to the correctness of the system is the invariant that ded is an over-
approximation of dedc and that each iteration of the outer loop strengthens it.
This can be proven inductively; Theorem 2 gives the base case and the inductive
step is a consequence of the next lemma:

Lemma 2. Given ded, an over-approximation of dedc , the second phase of the
algorithm gives a strictly stronger over-approximation of dedc .

Given ϕ, a loop-free program with a finite number of variables, termination,
soundness and completeness follow:

Theorem 3. Alg. 1 terminates.

Proof sketch. Heapdom is finite, and thus the application of ded will reach a fixed
point. Likewise, owing to the second part of Lemma 1, the main loop of phase 1
will either exit as completeH(ded , S) is true or will eventually reach ⊥. Finally,
as Heapdom is finite, there are only a finite number of over-approximations of
dedc , so the invariant implies the main loop will terminate.

Theorem 4. If Alg. 1 returns (not ⊥, S) then ∀ρ ∈ γ(S).�ϕ�ρ = 1

Proof sketch. The preconditions of the statement that returns not ⊥ include
completeH(ded , S) and S = ded(S). Using Lemma 1, γ(S) = dedc(γ(S)), thus
all elements of the concrete set are models. Note that γ(S) can contain an infinite
family of models; the next section shows how to produce counterexamples.

Theorem 5. If Alg. 1 returns ⊥ then ∀ρ ∈ Structs.�ϕ�ρ = 0

Proof sketch. The only statement that returns ⊥ occurs when L= , i.e. ded &
dedL is the function that maps all abstract elements to ⊥. Using the invariant
this is an overapproximation, thus dedc() = ⊥, thus there are no models of ϕ.

4.5 From Abstract to Concrete Countermodels

In Fig. 2 we provide a high-level overview of the algorithm for the generation of
concrete countermodels from abstract ones. Our goal is to compute a concrete
countermodel that contains only three types of elements: v1=v2, v=null and
v1=sel(M,v2, f). Initially, the abstract model is split into positive reachability-
based constraints (S1), and the rest of the abstract model (S2) (Lines 1 and 2,
respectively). Subsequently, S1 is used to infer candidate concrete models, which
are exhaustively generated in C such that each path constraint in S1 is concre-
tised to a length of at most l (Line 5). The inner loop (Lines 6–13) iteratively
attempts to find a valid concrete counterexample. In order to qualify, a candidate
must be consistent with the rest of the abstract constraints in S2. This consis-
tency check translates into a satisfiability call to our instantiation of ACDCL
(Line 10). If no candidate qualifies, the minimum length of the heap paths is
incremented and the process is reiterated with new candidates.

Model and Proof Generation for Heap-Manipulating Programs 447

Algorithm 2. Concretisation of Abstract Countermodels

1 S1 ← {s|s∈S and (s = Path(M,v1, v2, n) or s = OnPath(M,v1, v2, v3, n))};
2 S2 ← S\S1 ;
3 l = 0;
4 while true do
5 C ← {c | c is a concrete model of S1 for paths of length ≤ l} ;
6 while C �= ∅ do
7 π ← choose a model from C;
8 C ← C \ π;
9 ∀si∈(π ∪ S2).φ←

∧
i si ;

10 if φ is SAT then
11 return π;
12 end

13 end
14 l ← l + 1

15 end

Theorem 6. Given an abstract counterexample (an abstract element different
from ⊥ at which ded is γ-complete, then Alg. 2 always terminates with a finite
concrete countermodel.

Proof sketch. A partial ordering of the current variables can be computed such
that Path(M,v1, v2, n)⇒ v1 v2 and OnPath(M,v1, v2, v3, n)⇒ v1 v3 v2. It is al-
ways possible to generate a countermodel from this ordering without introducing
any auxiliary variables. As S1∪S2 �=⊥, there must exist one such countermodel
that satisfies both S1 and S2.

5 Experiments

We have implemented the ACDCL instantiation with the Heapdom domain de-
scribed in Alg. 1 in a prototype solver and connected it to the Model Checker
CBMC 4.6. The source code of the prototype tool and the benchmarks are avail-
able online.3 The prototype was subsequently used to verify memory safety and
reachability properties for some typical list-manipulating programs for singly-
linked lists, e.g. filter, find, bubble sort, and benchmarks from the SV-COMP’13
list-properties and memsafety-ext sets.

In addition to checking memory safety, i.e. absence of null or dangling pointer
dereferences, we have also added reachability assertions, e.g. the reachability
predicate Path(x, y, n) denotes a list segment from x to y, and Path(x, null, n)

represents a full list.

1. Countermodel Construction. In order to test the soundness of the tool
and its capacity to construct witnesses for property refutation, we applied it

3 http://www.cprover.org/svn/cbmc/branches/ESOP2014-heap

http://www.cprover.org/svn/cbmc/branches/ESOP2014-heap

448 M. Brain et al.

Table 1. Experimental results: lines of code (loc), clauses (cls) and analysis time
(t, in seconds) for safe and unsafe versions of the benchmarks; timeout 15 minutes
(t.o.). All experiments were performed with two loop unwindings.

safe unsafe
Benchmark loc cls t cls t

bubble sort∗ 40 728 0.86 732 10.1
concat∗ 24 45 0.08 45 0.08
copy∗ 40 159 0.20 158 1.50
create∗ 27 100 0.15 100 0.15
filter∗ 42 259 0.68 259 0.55
find∗ 23 47 0.09 35 0.08
insert∗ 17 18 0.13 16 0.15
reverse∗ 20 81 0.07 83 0.08
traverse∗ 15 16 0.08 18 0.07

alternating list 65 278 0.21 282 0.28
list flag 62 244 0.46 246 0.57

safe unsafe
Benchmark loc cls t cls t

list 60 294 1.57 296 1.14
simple built from end 34 124 0.17 120 0.16
simple 45 157 0.18 157 0.17
splice 89 474 0.33 478 0.55

dll extends pointer 64 302 0.29 308 0.79
skiplist 2lvl 91 520 t.o. 514 4.87
skiplist 3lvl 105 722 t.o. 726 15.5
tree cnstr 85 942 3.31 922 2.56
tree dsw 117 1037 2.43 984 3.24
tree parent ptr 95 844 0.43 811 45.9
tree stack 93 1413 0.50 1394 t.o.

to safe and unsafe, i.e. faulty, versions of our benchmarks (with loops unwound
twice), followed by manually inspecting the countermodels generated for the
unsafe versions. The results of these experiments are given in Table 1. Both the
safe and unsafe versions of each program are instrumented with memory safety
assertions. Those marked with a * have additional reachability assertions.

Example 2. We describe how countermodel construction proceeds for our run-
ning example in Fig. 1. Recall the corresponding logical encoding in Sec. 3.2.

Model Search (1). After the first propagation, the partial abstract model con-
sists of the elements ¬Dangling(M1, y1) and Dangling(M2, y1), representing neither
a conflict, nor a complete countermodel. Thus, a decision constrains x1 to be not
null , and the model search loop is reiterated. This time, the abstract transformers
for aux1=x1, x2=sel(M1, x1, n) and M2=free(M1, aux1) are applied. As the appli-
cation of M2=free(M1, aux1) is imprecise (no aliasing information for x1 and y1 is
available), a second decision is made assuming that y1 is not reachable from x1,
i.e. ¬Path(M1, x1, y1, n). Consequently, a new application of M2=free(M1, aux1)

will preserve the non-dangling knowledge about y1 from M1 to M2, resulting in
the conflict ¬Dangling(M2, y1) and Dangling(M2, y1).

Conflict Analysis (2). The cause of conflict is x1 �= null ∧ ¬Path(M1, x1, y1, n).
Hence, one possible clause to be learned is x1=null ∨ Path(M1, x1, y1, n). As we
want to avoid case enumeration, we generalise the cause of conflict. For example,
the fact that x1 and y1 are not aliases is more general than ¬Path(M1, x1, y1, n),
i.e. ¬Path(M1, x1, y1, n)⇒ x1 �= y1.4 Thus, we learn x1=null ∨ x1=y1 and restart
the model search phase.

Model Search (3). After a decision x1 �= null , the abstract element x1=y1
is added to the abstract model and M2=free(M1, aux1) is now complete. Thus,

4 A heap path between two pointer variables may be empty (cf. Fig. 7).

Model and Proof Generation for Heap-Manipulating Programs 449

the abstract transformer passes the completeness test, and the abstract counter-
model {x1 �= null , x1=y1} is generated.

Concrete Countermodel Generation (4). Fig. 3 shows a test case trig-
gering the property violation obtained from the abstract countermodel using
Alg. 2.

2. Safety Proof Generation. When failing to construct a concrete refutation
witness after a bounded number of unwindings, a safety proof is attempted by
applying a fixed point computation. This computation makes use of a widening
operator that loses information about individual points-to facts by generalising
them to reachability facts, e.g. y=sel(M,x, n) is generalised to Path(M,x, y, n).

We do not detail the fixed point computation and the widening operator as
they are both rather standard (in particular in the spirit of [15]). In order to
investigate feasibility of our approach, we have experimented with the backend
solver of our prototype by trying simple list-manipulating programs like filter,
concat, copy, and reverse on singly-linked lists, where we computed invariants
for each loop.

For instance, for the concat example in Fig. 12, we replace the while loop
by the invariant Path(x, curr, n) ∧ curr → n = null resulting from the fixed point
computation with widening. The transformer for the store curr → n = y joins
this information yielding Path(x, y, n), thus proving safety.

6 Related Work

ACDCL. We build on previous results on embedding abstract domains in-
side the Conflict Driven Clause Learning (CDCL) algorithm used by modern
SAT solvers in a framework known as Abstract Conflict Driven Clause Learning
(ACDCL) [13]. Other promising instances of this framework include a bit-precise
decision procedure for the theory of binary floating-point arithmetic [16].

void concat (L i s t ∗x , L i s t ∗y) {
L i s t ∗ curr ;
assume (! Path (x , y)) ;
i f (x==nu l l) x = y ;
else {

curr = x ;
while (curr−>n != nu l l) curr = curr−>n ;
curr−>n = y ;

}
a s s e r t (Path (x , y)) ;

}

Fig. 12. List concatenation

450 M. Brain et al.

The ACDCL framework enables the design of property-driven analyses (anal-
yses that propagate facts starting with states exhibiting a certain prop-
erty of interest, e.g. backward under-approximation). The model search phase
of the ACDCL framework exhibits the property-driven nature of backward
analysis, while using transformers that are forward in nature. This differs
from most abstract-interpretation-based analyses for heap-manipulating pro-
grams [8, 17, 1, 9], which perform exhaustive forward propagation.

Model vs. Proof Generation. Among the successful approaches for prov-
ing safety of heap-manipulating programs, the most prominent ones are based
on three-valued logic [1] and separation logic [2, 3]. Although the majority of
these analyses are mainly concerned with proof generation and do not construct
witnesses for the refutation of a property [8, 17, 9], there are recent advances in
diagnosing failure with the purpose of refining shape abstractions [4, 5]. These
works start with failed proofs, and subsequently try to find concrete counter-
models from possible spurious abstract ones. Thus, the proof generation phase
is independent from model construction. The same remark applies to an approach
designed to find memory leaks in Android applications [18], which answers reach-
ability queries by refining a points-to analysis through a backwards search for
a witness. In contrast, the ACDCL framework, and hence our instantiation, ex-
ploits the interleaving of model construction and proof generation to mutually
support model search and conflict analysis.

Decidable Logics. Recently, several decidable logics for reasoning about linked
lists have been proposed [19–23]. Piskac et al. provide a reduction of decidable
separation logic fragments to a decidable first-order SMT theory framework [20].
A decision procedure for a new logic that is an alternation-free sub-fragment of
first-order logic with transitive closure and no alternation between universal and
existential quantifiers is described in [19]. While these works design decision pro-
cedures for handling quantified constraints, we use an abstract domain enabling
us to employ the ACDCL framework. As a direct implication, we do not have
a separation between propositional and theory-specific reasoning. Thus, theory-
specific facts can be learned during conflict analysis, which may result in better
pruning of the search space.

7 Conclusions

We have presented a verification technique for reasoning about aliasing and
reachability in the heap which uses ACDCL to perform both proof generation
and model construction. Proof generation benefits from model construction by
learning how to refine the abstract transformer, and in turn, it assists in pruning
the search space for a model. The ACDCL framework was instantiated with a
newly designed abstract heap domain. From a shape analysis perspective, this
domain allows expressing structural properties of list segments, whereas in a
more general context of reachability analysis it can denote reachability facts
regardless of the underlying data structure.

Model and Proof Generation for Heap-Manipulating Programs 451

References

1. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL, pp. 105–118 (1999)

2. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

3. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2), 215–244 (1999)

4. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.M.: Diagnosing abstraction fail-
ure for separation logic-based analyses. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 155–173. Springer, Heidelberg (2012)

5. Beyer, D., Henzinger, T.A., Théoduloz, G., Zufferey, D.: Shape refinement through
explicit heap analysis. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS,
vol. 6013, pp. 263–277. Springer, Heidelberg (2010)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252 (1977)

7. Laviron, V., Logozzo, F.: Refining abstract interpretation-based static analyses
with hints. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 343–358. Springer,
Heidelberg (2009)

8. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

9. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive heap
abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279.
Springer, Heidelberg (2004)

10. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. FMSD 25(2-3), 105–127 (2004)

11. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

12. D’Silva, V., Haller, L., Kroening, D.: Satisfiability solvers are static analysers. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 317–333. Springer,
Heidelberg (2012)

13. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: POPL,
pp. 143–154 (2013)

14. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

15. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-
level software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 379–392. Springer, Heidelberg (2007)

16. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: FMCAD, pp. 131–140 (2012)

17. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26 (2011)

18. Blackshear, S., Chang, B.Y.E., Sridharan, M.: Thresher: precise refutations for
heap reachability. In: PLDI, pp. 275–286 (2013)

19. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013)

452 M. Brain et al.

20. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013)

21. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reach-
able patterns in linked data-structures. J. Log. Alg. Prog. 73(1-2) (2007)

22. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL, pp. 611–622 (2011)

23. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 167–182. Springer, Heidelberg
(2012)

REAP: Reporting Errors

Using Alternative Paths�

João Matos, João Garcia, and Paolo Romano

INESC-ID / Instituto Superior Técnico

Abstract. Software testing is often unable to detect all program flaws.
These bugs are most commonly reported to programmers in error
reports containing core dumps and/or execution traces that frequently
reveal users’ private information without providing all necessary informa-
tion for effective debugging. Hence, these mechanisms are sparsely used
due to users’ data privacy concerns. This paper presents REAP, a new
fault replication method, which allows for enhancing privacy protection
while still providing software developers with the ‘steps-to-reproduce”
errors. REAP uses symbolic execution and randomized search heuristics
to identify alternative execution paths leading to an observed error. We
evaluated REAP using a testbed including real bugs of popular, large
scale applications. The results show the high effectiveness of REAP in
anonymizing user input: on average, REAP reveals only 16.78% of the
bits in the original input, achieving an average residue (the number of
common characters in the original and anonymized input) of 15.07%. Our
evaluation also highlights that REAP significantly outperforms state of
the art techniques in terms of achieved privacy and/or scalability.

Keywords: Software Bugs, Error Reporting, Fault-Replication, Privacy.

1 Introduction

It is common for software errors to manifest themselves after the software is re-
leased and persist long after that [1], despite more than half of the resources in a
typical development cycle being invested in testing and bug fixing. Software bugs
represent several billion dollars per year worth of maintenance costs in Europe
and in the US alone [2]. Currently, the most popular tools to provide develop-
ers with information about application crashes (e.g. [3–5]) are error-reporting
tools. These tools aim to allow software vendors to fix bugs in a timely manner.
However, error reports usually include solely partial snapshots of the memory,
stack traces of the failed process and a textual description of the faulty scenario,
which is often insufficient to reproduce the error [6, 7]. Fault replication mecha-
nisms address the shortcomings of classical error reports, by allowing engineers
to reproduce, at the development site, a faulty execution taken place at the
client side. These mechanisms monitor target applications on client devices in
order to gather enough information for execution reproduction, while imposing
the least overhead possible. Numerous fault-replication mechanisms have been

� This work was supported by national funds through FCT - Fundação para a Ciência
e Tecnologia - under project PEst-OE/EEI/LA0021/2013, and by GreenTM project
(EXPL/EEI-ESS/0361/2013).

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 453–472, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

454 J. Matos, J. Garcia, and P. Romano

developed and are becoming more capable of efficient application monitoring
and successful bug reproduction ([8–10] to name a few). Unfortunately, privacy
and security concerns have prevented widespread adoption of many of these tech-
niques and, because they rely on user participation, have ultimately limited their
usefulness [11]. In fact, whether the user is working on a confidential document
or has typed in personal information, sensitive private information is likely to
be included either in the memory snapshot taken to generate an error report or
in the non-deterministic sources logged by fault replication mechanisms [12].

A promising approach aimed at tackling these privacy concerns is based on the
idea of obfuscating sensitive information inserted while ensuring the reproduc-
tion of the faulty execution ([11–13]). These mechanisms use symbolic execution
(e.g. [14]) in order to derive a set of logical constraints of the user input, called
path condition [15], that ensures the application will re-execute along the same
execution path that previously led to failure. Alternative inputs, which reproduce
the bug can then be drawn from the set of all inputs satisfying the identified
path condition. This approach was shown to have the potential to achieve high
obfuscation levels since large portion of the input data can often be replaced by
alternative values derived from less constrained symbolic values. However, the
degree of obfuscation achievable by these techniques is directly dependent on
the restrictiveness of the path condition’s constraints (i.e. on the cardinality of
the set of inputs that match a given constraint), which can be critically affected
by the application’s structure and bug placement in the code.

In this paper we propose REAP (Reporting Errors using Alternative Paths),
a novel approach based on the idea of increasing the degree of obfuscation by
exploiting the presence of alternative execution paths leading to the same fail-
ure. REAP relies on symbolic execution techniques, and on lightweight search
heuristics that perform bounded-depth detours from the original execution path
in order to identify alternative, failure inducing paths (and their corresponding
alternative user inputs). We provide a theoretical analysis of the search heuristics
employed by REAP, establishing a conservative upper bound on the information
leakage that it can achieve and the information that an attacker can derive on the
original user input. We present the results of an extensive experimental analysis
based on 6 publicly available applications, which includes popular, large scale
software projects and privacy-sensitive applications from the financial and online
dating domains. REAP’s evaluation assesses the feasibility of the proposed so-
lution in realistic settings, and quantifies the obfuscation quality enhancements
achievable in comparison with state of the art solutions. The results show that,
contrasted with state of the art solutions analyzing solely the conditions of the
original execution path, REAP can achieve, with comparable execution times, up
to an 83.22% average reduction in revealed input data. Furthermore, REAP can
identify alternative inputs in a matter of minutes with large scale applications.

This paper is organized as follows. Section 2 overviews existing obfuscation
mechanisms and discusses their main strengths and limitations. Section 3 presents
the REAP system. We evaluate the proposed system in Sec. 4 before presenting
some concluding remarks.

REAP: Reporting Errors Using Alternative Paths 455

2 State of the Art and Motivations

2.1 Final Application State Error Reporting

Initial approaches to automatic error report, such asWindows Error Reporting [4]
and Mozilla Crash Report [5] involved mainly information collected at the end of
a failed program execution. When an application crashes, the error reporting sys-
tem gathers information uncritically from the state of the process at the moment
of the crash and submits it as an error report, if authorized by the user. Two major
disadvantages of these methods stand out: i) there is no filtering of the submitted
information regarding users’ privacy preservation, which means that sensitive in-
formation may end up being incorporated in the dump of the application state
performed upon the occurrence of the bug [12]; ii) the generated report does not
provide any historical information on how the error was reached, which typically
makes the reproduction of the bug a complex and time consuming task [6, 7].

One of the first systems to attempt to filter user private information from error
reports was Scrash [16]. Applications have all their sensitive data marked as such
during development, and allocated in a specially reserved area of memory. When
an error report is submitted for a Scrash enabled application, all the sensitive
variables are removed. This approach has three main problems. First, it requires
access to an application’s source code. Second, it assumes that the application
programmers are trustworthy and will mark all sensitive data as such. And finally,
error reports that have been amputated of relevant data may not allow for the
full replay of the original error.

2.2 Input Anonymization in Fault Replication Systems

Fault replication systems that transmit the user input to the maintenance site
arguably raise even larger privacy concerns. Two main approaches have been pro-
posed to identify anonymized, failure-inducing inputs: input minimization [17]
and path condition analysis [11, 12, 18].

Input minimization techniques [17] were originally designed to speed-up test-
ing/debugging and attempt repeated random removals of input chunks, in order
to identify input fragments that are irrelevant for the reproduction of the bug.
By purging irrelevant inputs, these techniques can enhance privacy. However, as
discussed in previous works [11, 12], due to their purely random nature, input
minimization techniques typically fail in frequent scenarios in which valid in-
puts must respect precise structural conditions. (e.g. a credit card number must
be composed of exactly 16 digits satisfying the Luhn checksumming algorithm;
XML documents must comply with a defined structure).

Approaches based on path condition analysis [11, 12, 18] overcome these
limitations, by reasoning on the logical constraints imposed by the conditional
branches that were taken during a failure-inducing execution, i.e. its path condi-
tion. In other words, the logical restrictions imposed by a path condition delimit
the domain from which input values can be chosen and still trigger the same
error.

456 J. Matos, J. Garcia, and P. Romano

1: int age, n=0; /*bug source*/
2: boolean isMale, isMarried;
3: double score=1;
4: read from input: age, isMale, isMarried;
5: if (age>25)
6: score = score * 1.5;
7: else
8: score = score / 2;
9: if (isMale)
10: score = score * 2;
11: else
12: score=score / 2;
13: if (isMarried)
14: score = score * 2;
15: else
16: score = score / 2;
17: score = score / n /*divide by 0*/

Fig. 1. Example code excerpt Fig. 2. Trade-off explored by REAP

Therefore, the degree of obfuscation attained by these approaches [11, 12,
18] is critically affected by the restrictiveness of the logical clauses in a path
condition. The two main metrics to evaluate privacy in this context [11, 12] are
the number of leaked information bits (henceforth called leakage) and the residue.
The leakage of a particular path condition is calculated as − log2(α), where α
is the fraction of the domain of the application input variables that satisfy the
path condition. The residue is a more intuitive metric defined as the number of
input characters that remain unchanged after the anonymization process.

The code excerpt in Figure 1 is used to motivate and illustrate the behavior of
REAP. We note that the code excerpt exhibits a trivial bug (division by 0 caused
by a wrong initialization of variable n in line 3, which manifests itself in line 17).
The bug could be easily detected using classic debugging tools. However, despite
its simplicity, the example clearly highlights the potentialities of REAP and the
limitations of the two existing approaches. Now let us assume that the user input:
age = 26, isMale = true, and isMarried = false. The path condition derived
from the execution with this data yields the constraints:

age ∈ [25,MaxInt] ∧ isMale ∧ isMarried (1)

In such a scenario, the age input by the user can be (partially) obfuscated by
replacing it with any value larger than 25. The remaining input values, on the
other hand, will have to be fully disclosed. It should be noted that in the program
of Figure 1, it is actually possible to achieve total input anonymization, given
that the bug manifests in all possible execution paths, and, hence, independently
from the value of the user input. MPP [19] is, to the best of our knowledge, the
only system that attempts to exploit the presence of multiple failure-inducing
execution paths in order to maximize the obfuscation level of a bug report.

By considering the disjunction of the path conditions of all execution paths lead-
ing to a bug, MPP can achieve, at least for small-scale programs, the theoretical
lower bound on information leakage, identifying all the possible inputs that replay

REAP: Reporting Errors Using Alternative Paths 457

the bug. Unfortunately, MPP suffers from severe scalability limitations for two
main reasons. MPP relies on an off-line reachability analysis that performs a sym-
bolic execution of the program, and produces as output, for all lines of code, a path
condition and a triggering input for all the execution paths that traverse that line
of code. As demonstrated by the experimental data presented inMPP’s paper [19],
and as confirmed by our experimental evaluation, the costs associatedwithMPP’s
off-line reachability analysis are prohibitive for applications other than small scale
ones. Also, as not all the execution paths identified during the symbolic execution
may actually trigger the bug, the client needs to re-execute all of them, in order to
verify which subset of the paths actually reproduces the error. This can be quite
inefficient especially if the bug is located in a line of code that happens to be reach-
able through a high number of paths.

In the considered code example, MPP would generate 8 path conditions, each
one associated with different combinations of the three tests on the input vari-
ables. As all of these paths lead to the bug, the disjunction of their path con-
ditions yields a total relaxation of the constraints on the input variables, and
achieves perfect anonymization. Unfortunately, the price for attaining such a
boost on input obfuscation grows exponentially with the number of tests on
different input variables contained by the program.

As depicted in Fig. 2, REAP seeks an innovative balance between efficiency
and anonymity in the design space of privacy preserving fault replication schemes.
At the extreme of lowest anonymity are systems like in [11, 12, 18], which explore
only the original execution path. On the other hand, by exploring all execution
paths leading to the observed point of crash, MPP may provide the maximum
possible anonymity, but suffer of severe scalability limitations. REAP strikes
a balance between these two extremes, by taking advantage from alternative
failure-inducing execution paths, while using scalable search heuristics that en-
sure its practicality even in large-scale, complex programs.

3 REAP

This section presents an overview of REAP’s framework, used to generate search
heuristics aimed at identifying alternative failure-inducing execution paths. It is
also discussed the anonymization capabilities of REAP.

3.1 Overview of the System

The various stages of execution of REAP are illustrated by the diagram in Fig-
ure 3, and described in the following.

Original Input Anonymization Phase. Similarly to existing fault-replication
systems [11, 12, 19], REAP relies on automatic code instrumentation to log user in-
puts in a transparent fashion. When an application failure f is detected, REAP re-
executes symbolically the application feeding it with the original failure-inducing
input I (just as in the systems in [11, 12]). The Original Input Anonymization

458 J. Matos, J. Garcia, and P. Romano

φ φ φ

Fig. 3. Architectural Overview of REAP

(OIA) phase pursues a twofold goal: i) identifying the sequence of program state-
ments composing the original failure-inducing execution path, denoted as φ; ii)
computing the path conditions, P , associated with φ.

Leakage Minimization Phase. Next, REAP executes what we called leak-
age minimization (LM) phase. In this phase REAP relies on randomized depth-
bounded search heuristics that aim to identify an alternative failure-inducing
execution path φ′ by performing controlled detours from φ. To this end, we
introduce a flexible search heuristics framework, which allows not only to con-
trol the duration/extensiveness of the search phase, but also to customize the
behavior of the search algorithm, i.e., the logic controlling the selection of the
detouring points and the trajectories to explore once a detour is ongoing. In this
work we show how REAP’s search framework can be used to derive two alter-
native heuristics for which we prove a fundamental property: if REAP identifies
an alternative path φ′, it guarantees that no attacker can deterministically de-
duce φ, even if she is aware of the topology of the full execution graph and has
unbounded processing capabilities. Beyond that, if such an attacker performed
a probabilistic analysis of every possible failure-inducing path, it could only de-
duce that the most likely original execution path coincides with that output by
REAP (i.e., φ′), hence effectively concealing φ. Section 3.3 provides a theoretical
analysis of REAP’s anonymization capabilities.

Privacy Evaluation and Report Submission. Once φ′ is obtained, REAP
determines a feasible value for the input I ′ that triggers the execution path φ′

by finding a solution to the corresponding path condition P ′. Further, REAP
computes the residue associated with I ′, and derives a conservative lower bound
for the attained leakage level. Finally, the user is presented with the anonymized
input, along with the corresponding leakage and residue values, and is asked to
authorize the transmission of the bug report to the maintenance site.

3.2 Search Heuristics Framework

As we have already mentioned, REAP searches for alternative failure-inducing
execution paths by performing detours of bounded length from the original faulty
execution path φ. Before detailing the algorithms employed by REAP to this end,
we introduce how an execution path is modeled in REAP.

REAP associates with the execution path φ of a program a directed acyclic
graphwhere each node of the graph represents a sequence of statements comprised

REAP: Reporting Errors Using Alternative Paths 459

between two subsequent conditional tests on some input-dependent variable. The
graph is built dynamically, during the symbolic execution of φ, adding a node to
the graph (and connecting it to the previously generated node) every time that a
branch of an input-dependent test is taken. Whenever a node is added to the
graph, this is also labeled using the following triple: a location identifier com-
posed by line of code and class signature; the current stack trace; the value of
the current iteration of any cycle within which the node is being executed. This
simple scheme allows us to avoid aliasing problems, ensuring that if a program
statement is executed in two different execution contexts, two unique identifiers
will be attributed to it. As in typical symbolic execution engines [20], an execu-
tion path is modeled assuming that each logical test generates only two edges1,
hence the execution graph is a binary tree.

We can now present the framework used to generate the search heuristics em-
ployed by REAP. The framework is embodied by the function φSeeker, whose
pseudocode is shown in Algorithm 1. This function encapsulates the logic of a
generic search heuristic that, given the original execution path φ and a fault f2,
returns the path condition of a possible alternative failure-inducing execution
path φ′. The behavior of φSeeker is customizable via the following parameters:

– numDetours: the total number of detours the search heuristic should at-
tempt.

– maxDetourLength: the maximum depth that the search heuristic can traverse
after having performed a detour and before joining back the original path;

– maxAttempts: the maximum number of times that the LM-phase can be run;

and via the following two functions, whose implementation allows to flexibly
derive a wide range of alternative search algorithms:

– DetoursSelector takes as input the original path φ, and the total number
of detours that should be attempted, numDetours, and returns a set of
numDetours nodes in φ from which φSeeker should attempt a detour;

– PickChild is used whenever a detour is being performed, to determine
which of the two branches outgoing from a node (passed as input parameter)
should be explored next. Both functions accept also as input parameter the
identifier of the current search attempt, in order to allow the definition of
adaptive policies whose behavior evolves across different attempts.

The heuristics’ behavior is fully specified by defining how they implement
the functions DetoursSelector and PickChild, as well as they set the
numDetours parameter. The parameters maxDetourLength and maxAttempts
are used as tuning knobs to control, respectively, the radius of the search, and
the maximum duration of the search. At each step of the search, the current
node is executed symbolically and the corresponding logical constraint is added
to the path condition P that identifies the domain of feasible input values that
are able to replay the current execution path. The logical constraint for the first

1 This simplifies reasoning on the execution graph, while still allowing capturing
arbitrarily complex branching structures.

2 We assume that faults are observable and uniquely identifiable as in [11, 12, 19].

460 J. Matos, J. Garcia, and P. Romano

Algorithm 1. Pseudocode defining the family of algorithms used to iden-
tify alternative paths

1 function φSeeker
Input parameters:

ExecPath φ;
Fault f ;
int numDetours,maxDetourLength, maxAttempts;
function Node PickChild(Node n, int attempt);
function Set<Node> DetoursSelector(ExecPath

φ, int numDetours, int attempt);
Output parameter:

PathCondition;

2 begin
3 for int currAtt=0; currAtt < maxAtt; currAtt++ do
4 Set<Node> detours=∅;
5 PathCondition P=∅;
6 detours = DetoursSelector(φ, numDetours, currAtt);
7 if (Forward(φ.getFirstNode(),P) ∧ P �= φ.getPathCondition()) then

// an alternative failure-inducing path was found
8 if currAtt == 1 then
9 return P ;

10 else
11 return with probability 0.5 either P or φ.getPathCondition();

12 return φ.getPathCondition();

13 boolean Forward(Node n, PathCondition P)
14 begin
15 if n == null then

return false;

16 execute n symbolically;
17 add to P the logical constraint of n;
18 if n reproduces f then

return true;

19 Node next,checkp,current;
20 checkp = next = the successor of n that lays on the original path φ;
21 if n ∈ detours then
22 current = the successor of n that does not lay on the original path φ;
23 next = Detour(current,maxDetourLength, P);
24 if next == null then

next = checkp; // detour failed, continue along the original path φ

25 return Forward(next, P);

26 Node Detour(Node n, int bound, PathCondition P)
27 begin
28 if bound == 0 then

return null;

29 execute n symbolically;
30 Node next = PickChild(n, currAtt);
31 if next ∈ φ then

// the detour has re-joined the original path φ
32 add to P the logical constraints of this detour;

return next;

33 return Detour(next,bound-1,P);

starting node of the program is void, but, for every other node n, it is equal to
the logical condition imposed by the edge connecting n’s predecessor to n.

REAP: Reporting Errors Using Alternative Paths 461

Next, if the current node has been selected for a detour (line 21), a detour
attempt is performed using the Detour function. This function implements a
bounded-depth search in which, at each step, the next node to be explored is
selected by means of the PickChildmethod. If the detour joins back the original
path (line 31), the path condition of the detour is added to that of the current
execution path. Otherwise, if the detour reaches the upper bound on its length
(maxDetourLength) without joining the original path, the detour attempt is
aborted and the exploration proceeds along the original path (line 24).

The Forward function can terminate either because it reaches the same
crash point as φ and does not reproduce f (line 15) - which can happen if
one or more nodes of φ, required to reproduce f , were detoured - or because
it replays f (line 18). Note that in the latter case, Forward may fail all the
detour it attempts and return the original path. This case is detected in line 7,
where it is accounted as a failed attempt. In case of successful identification of
an alternative failure-inducing path, φSeeker behaves differently depending on
whether this is the first attempt or not. In the former case, the corresponding
path condition P is returned. If REAP performs multiple attempts to find path
φ′ it may create a bias towards φ. For example, if only two failure inducing paths
exist and maxAttempts =∞, REAP eventually finds the alternative path with
probability 1. Consequently the original path could be deduced deterministically
by an attacker who knows REAP’s behavior. To cope with this issue, if REAP
requires more than one attempt to find an alternative path, it returns φ with
probability 0.5 (line 11). As we will discuss in Section 3.3 this allows effectively
concealing the original path φ in case an alternative path φ′ �= φ is returned by
φSeeker. Finally, if no failure-inducing path is identified after maxAttempts
attempts, φSeeker simply returns φ.

Below we describe two different search algorithms, which we called Bounded
Random Walk (REAP-BRW) and Bounded Adaptive Greedy (REAP-BAG).

REAP-BRW: Bounded Random Walk. This algorithm has a similar behavior
to a random walk, within the radius bounded by maxDetourLength around φ.
The value of numDetours is picked at random between 0 and the length of φ.
Further, DetoursSelector selects numDetours nodes in φ as the source of
a detour with uniform probability. Finally, the function PickChild returns a
child node at random, also with equal probability.

REAP-BAG: Bounded Adaptive Greedy. A logical test made on a set of input
variables generates two edges that divide the input domain (of these variables),
usually in a not equal way. This algorithm is biased to pick the edge outgoing
from a node, whose path condition is satisfied by the largest number of input
values (i.e., associated with the least restrictive path condition), a broad edge.
We refer to the edge associated with the smaller part of the domain as narrow
edge. This heuristic tends to choose broad edges over narrow edges, although
with an adaptive probability, which decreases as the number of attempts per-
formed so far increases. For this algorithm, the function SortChild returns
the child node that encompasses the largest fraction of the input domain. The
SortChild function implements the adaptive greedy policy, by selecting a broad

462 J. Matos, J. Garcia, and P. Romano

edge from the currently visited node (automatically selected for the detour as
numDetours = |φ|) with probability P (B):

P (B) =
t+ 1

2t
(2)

where t is the attempt being performed, and a narrow edge with the complemen-
tary probability P (N) = 1−P (B). This ensures that in the first iterations REAP-
BAG will attempt with higher probability to follow the least restrictive execution
paths, while converging the behavior towards the REAP-BRW heuristic as the
number of attempts grows.We note that this heuristic is inspired to analogous poli-
cies used in the context of reinforcement learning problems to explore the trade-
off between exploration and exploitation in face of uncertainty in [21]. In the cases
where the input domain is divided equally, the edges are chosen with 0.5 probabil-
ity, like in REAP-BRW. The DetoursSelector function selects the nodes in φ
to be the source of a detour, with the probability given by equation 2.

3.3 Privacy

In this Section we analyze the privacy properties ofREAP-BRW andREAP-BAG.

Preliminary notations. We denote with F the set of all failure inducing paths
and with F(φ′,MDL) the set of all failure-inducing paths from which the execu-
tion path φ′ could be obtained via detours of maximum length equal to MDL.
Further, we denote with i the original input that triggered the bug, and with
I(φ) the set of inputs triggering an execution path φ. Finally, we denote re-
spectively P (BRW → φ′), P (BAG → φ′), the probability that REAP-BRW,
REAP-BAG output an input associated with the failure-inducing path φ′ start-
ing from the failure-inducing path φ. When we refer to both REAP’s variants
we write, instead, P (R→ φ′).

Proof overview. We demonstrate that the original path, denoted as φ, cannot
be deduced from the path output by REAP, denoted as φ′. To do so, we first
demonstrate that if REAP outputs a path φ′, then φ′ is the execution path in
F(φ′,MDL) that is the most likely of being the original path. Next we discuss
why, in case REAP outputs an alternative path φ′ �= φ, the information leakage
of φ∪φ′ and can be used as an upper bound of the information leakage reached
by REAP. This result allows us to derive a methodology to quantify and report
to end-users the information leakage allowed by REAP. Before presenting the
proofs, we introduce some preliminary remarks.

Remark 1. In order for REAP to be application independent, its privacy guar-
antees (including the measurements of both leakage and residue) rely on the
assumption of pure entropy, just like in all previous work [11, 12, 19]. Hence, we
assume no a priori knowledge on the input structure nor on any information
that can be deduced or contextualized in the program semantics.

Remark 2. Let φ∗ be the original failure-inducing path in F(φ′,MDL) (note
that this set also includes φ∗ = φ′). We denote with C(φ∗, φ′) the set of edges

REAP: Reporting Errors Using Alternative Paths 463

in common between φ∗ and φ′, and with D(φ∗, φ′) the set of edges present in φ∗

and not in φ′. The latter set contains the edges obtained when REAP performs
a detour from φ∗, whereas the edges in C(φ∗, φ′) are obtained whenever a node
of φ∗ is not selected to perform a detour, or when a detour attempt starting
from that node fails. Finally |C(φ∗, φ′)|+ |D(φ∗, φ′)| = |φ′|.

Remark 3. Both REAP-BRW and REAP-BAG, when executed with MDL = d
starting from an execution path φ, can only identify alternative paths φ′ such
that each sub-path (i.e., sequence of consecutive edges) si ∈ D(φ, φ′) has length
at most d. This allows us to provide a more rigorous definition of the set of
alternative failure-inducing paths identifiable starting from a path φ, which we
denoted as F(φ, d): φ∗ ∈ F(φ, d)⇒ ∀si ∈ D(φ, φ∗) |si| ≤ d.

Remark 4. Since we are assuming that the only source of non-determinism is
the user input, then, given two execution paths φ and φ′ where φ �= φ′, it follows
that, given two inputs3 i ∈ I(φ) and i′ ∈ I(φ′), they must differ by at least one
bit. Hence, I(φ) ∩ I(φ′) = ∅.

Theorem 1. Assume REAP-BRW is provided with the execution path φ as in-
put and that it returns a (possibly different execution path) φ′. Then among all
paths φ∗ ∈ F(φ′, d), no path has higher probability of being the original path than
φ′. Formally: φ′ ∈ argmax

φ∗∈F(φ′,d)
P (BRW → φ′|i ∈ I(φ∗))

Proof. For REAP-BRW to generate path φ′ starting from path φ∗, with φ∗ �= φ′,
in one of the maxAttempts attempts it performs the following must happen:

1. for all edges c ∈ C(φ∗, φ′), REAP-BRW must either i) not detour from the
original path φ∗, or ii) detour from the original path and fail the detour
attempt. As the start node, say nc, of an edge c ∈ C(φ∗, φ′) is also in the
original path φ∗, when REAP-BRW encounters n, it decides whether to
detour with probability 0.5. Conversely, the probability of failing a detour
attempt from node n depends on the actual topology of the execution graph
of the program, but it is independent from the original path φ∗; we denote
this probability as Pfd(nc) and assume it unknown in the following. Overall,
the probability for REAP-BRW to generate all the edges nc ∈ C(φ∗, φ′)
starting from φ∗ is: ∏

nc∈C(φ∗,φ′)

0.5 + Pfd(nc)

2. when it encounters the starting node, say n, of every edge di ∈ D(φ∗, φ′),
REAP-BRW must select (between the two edges outgoing from n) the edge
di ∈ φ′. As REAP-BRW picks an edge during a detour with probability
0.5, the probability for REAP-BRW to generate the edges in D(φ∗, φ′) is
0.5|D(φ∗,φ′)|.

3 Recall that when we refer to an input i ∈ I(φ), we mean the entire string of bytes
provided as input to trigger the execution path φ.

464 J. Matos, J. Garcia, and P. Romano

Hence, the conditional probability that REAP-BRW identifies path φ′ from any
path φ∗ ∈ F(φ′, d) in a single attempt, given that the original user input was
associated with φ∗ is:

P (BRW → φ′|i ∈ I(φ∗)) = 0.5|D(φ∗,φ′)| ·
∏

nc∈C(φ∗,φ′)

0.5 + Pfd(nc) (3)

It is straightforward to observe that:

φ′ ∈ argmax
φ∗∈F(φ′,d)

P (BRW → φ′|i ∈ I(φ∗))

as i) the cardinality of |C(φ∗, φ′)| is maximum when φ∗ = φ′, and ii) Pfd ≥ 0.
Hence, no path in F(φ′, d) is more likely to be the original path than φ′, if
REAP-BRW outputs φ′ in a single attempt.

On the other hand, if REAP identifies an alternative pathφ′ �=φusingmore than
one attempt, it outputs, with probability 0.5, either φ or φ′. This guarantees that
no path in F(φ′, d) has higher probability of being the original path than φ′. &'
Theorem 2. Assume REAP-BAG is provided with the execution path φ as input
and that it returns a (possibly different execution path) φ′. Then among all paths
φ∗ ∈ F(φ′, d), no path has higher probability of being the original path than φ′.
Formally: φ′ ∈ argmax

φ∗∈F(φ′,d)
P (BAG→ φ′|i ∈ I(φ∗))

Proof. The proof structure is analogous to the one of Theorem 1, so only a
sketch of proof is provided for space constraints. Consider the set of edges in
C(φ∗, φ′), and denote with B(C(φ∗, φ′)), resp. N(C(φ∗, φ′)), the set of broad,
resp. narrow, edges in C(φ∗, φ′). Also, denote with E(C(φ∗, φ′)) the set of edges
that are neither broad, nor narrow - which we call even edges. Using the same
arguments employed in the previous theorem, one can compute the probability
that REAP-BAG generates all the edges nc ∈ C(φ∗, φ′) starting from φ∗, denoted
as PC(BAG→ φ′|i ∈ I(φ∗)), as:∏
nc∈E(C(φ∗,φ′))

0.5 + Pfd(nc)
∏

nc∈B(C(φ∗,φ′))

P (B) + Pfd(nc)
∏

nc∈N(C(φ∗,φ′))

P (N) + Pfd(nc)

and the probability PD(BAG→ φ′|i ∈ I(φ∗)) of yielding the edges in D(φ∗, φ′):

0.5|E(D(φ∗,φ′))| · P (B)|B(D(φ∗,φ′))| · P (N)|N(D(φ∗,φ′))|

The probability P (BAG→ φ′|i ∈ I(φ∗)), which is equal to:

PC(BAG→ φ′|i ∈ I(φ∗)) · PD(BAG→ φ′|i ∈ I(φ∗)) (4)

is maximum for φ∗ = φ′, since ∀φ∗ ∈ F(φ′, d) with φ∗ �= φ′ it must be that
|C(φ′, φ′)| > |C(φ∗, φ′)|.

When considering scenarios in which an alternative path φ′ is output after
multiple attempts by REAP-BAG, the same considerations valid for REAP-
BRW also apply to REAP-BAG. &'

REAP: Reporting Errors Using Alternative Paths 465

Theorem 3. If REAP finds an alternative path φ′ starting from a different path
φ, the information leakage is at most equal to that computed by considering the
logical disjunction of the path conditions associated with φ and φ′.

Proof. Assume that an attacker was provided with the correct knowledge that,
among all the paths in F(φ′, d), the actual original path may only be either φ or
φ′. In this case, the uncertainty of the attacker is smaller than if she had to select
among the entire set of paths in F(φ′, d) (as, in general, the paths in this set
may have a non-null probability of being the original path). The uncertainty of
this scenario is therefore a lower bound on the actual uncertainty of the attacker.
Hence, the leakage results that we derive in the following represent a consistent
upper bound on the actual leakage allowed by REAP.

Given that we are assuming that all inputs are equiprobable, and that we are
only considering the paths φ and φ′, it follows that the probability that the user
original input lies on path φ, φ′, denoted, resp., as P (i ∈ I(φ)), P (i ∈ I(φ′)), is:

P (i ∈ I(φ)) = |I(φ)|
|I(φ ∪ φ′)| , P (i ∈ I(φ′)) = |I(φ′)|

|I(φ ∪ φ′)| (5)

where we denoted with |I(φ)| the cardinality of the input domain associated with
φ. The unconditional probability for both variants of REAP to output a failure
inducing path φ′ starting from a path φ∗ ∈ F(φ′, d) can hence be computed as:

P (R→ φ′ ∧ i ∈ I(φ∗)) = P (R→ φ′|i ∈ I(φ∗)) · P (i ∈ I(φ∗)) (6)

The attacker can compute the probability that φ is the original path given
that REAP outputs φ′, denoted as P (i ∈ I(φ)|R → φ′), as follows:

P (i ∈ I(φ)|R → φ′) = (7)

=
P (R→ φ′ ∧ i ∈ I(φ))

P (R→ φ′ ∧ i ∈ I(φ)) + P (R→ φ′ ∧ i ∈ I(φ′)) = (8)

=
P (R→ φ′|i ∈ I(φ)) · P (i ∈ I(φ))

P (R→ φ′|i ∈ I(φ)) · P (i ∈ I(φ)) + P (R→ φ′|i ∈ I(φ′)) · P (i ∈ I(φ′))

where, in order to derive Eq. 8 from Eq. 7, we have exploited Remark 4.
Since by Eq. 4 (for REAP-BAG) and Eq. 3 (for REAP-BRW) we have that

P (R → φ′|i ∈ I(φ)) ≤ P (R → φ′|i ∈ I(φ′)), we can obtain an upper bound for
Eq. 7 by replacing in its denominator P (R → φ′|i ∈ I(φ′)) with P (R → φ′|i ∈
I(φ)), and simplifying the expression using Eq. 5:

P (i ∈ I(φ)|R → φ′) ≤ P (i ∈ I(φ))
P (i ∈ I(φ)) + P (i ∈ I(φ′)) =

|I(φ)|
|I(φ)| + |I(φ′)| (9)

Finally, for the attacker to correctly guess the actual user input, in addition
to identifying that the original path was not φ′ but φ (whose probability is given
by Eq. 7), she needs to pick the correct input among those in I(φ). Since we
are assuming that inputs are equiprobable, the latter probability, which we note
P (right input in I(φ) is guessed), is simply |I(φ))|−1 hence:

466 J. Matos, J. Garcia, and P. Romano

P (original input is guessed|R→ φ′) =

= P (i ∈ I(φ)|R → φ′) · P (right input in I(φ) is guessed) ≤

≤ 1

|I(φ))| + |I(φ′))| (10)

Recalling that, by Remark 4, I(φ) ∩ I(φ′) = ∅, the claim follows. &'

3.4 Prototype Implementation

We implemented REAP for applications written in the Java language4. This tool
has three main components: the execution monitor, the symbolic execution en-
gine and the anonymizer. The execution monitor instruments the compiled Java
application using the SOOT [22] bytecode instrumentation tool in order to log
all user input in a transparent fashion. Note that, in order to ensure determin-
istic error replay, one should log all sources of non-determinism of the program,
and not solely user input. On the other hand, dealing with other sources of
non-determinism is out of the scope of the REAP system for the following two
main reasons: i) different types of non-deterministic sources could be tackled
using dedicated solutions aimed at supporting deterministic replay [23, 24]; ii)
from the privacy perspective, which represents the focus of our work, user in-
puts are arguably the most critical sources of non-determinism. Our prototype of
REAP supports multi-threaded programs (using the Java Pathfinder extension
jpf-concurrent [25]) but, at this time, does not handle the reproduction of concur-
rency bugs. Coping with such kind of bugs would require instrumenting REAP
to log, during the symbolic execution phase, any accesses to shared memory,
analogously to other sources of non-determinism.

The symbolic execution engine is one of the most crucial components of REAP.
REAP uses Java PathFinder [14, 20] (JPF) for this purpose. By default, all vari-
ables that are affected by the execution of read calls of the java.io library are as-
sumed to be user input and are therefore marked as symbolic. Our anonymization
tool is implemented in Java and uses JPF’s constraint solving implementation
to obtain new input from the path condition. The JPF solving implementation
bridges JPF to the actual solver, which can be specified as a parameter. JPF’s
constraint solving implementation supports several constraint solvers, but in our
work we used z3 [26].

4 Evaluation

In this section we evaluate REAP’s anonymization quality and scalability. REAP
was evaluated using six different applications, selected because they manage user
sensitive private information, and/or due to their high popularity and to the
availability of real bugs. We provide only a brief overview of these applications
and of their bugs and references for detailed descriptions.

4 The REAP prototype is open source:
http://sourceforge.net/projects/fastfixrsm/

http://sourceforge.net/projects/fastfixrsm/

REAP: Reporting Errors Using Alternative Paths 467

In every plot in this section, the first data point (labeled ’-’ in the x-axis)
represents the results of the OIA phase. Due to the non-deterministic properties
of our algorithms, especially of the REAP-BRW, each point of the x-axis of each
plot represents the average of 50 runs. The experimental platform used in this
study is a machine running the MacOS X Lion operating system, with a 2.5 GHz
Intel Core i5 processor and 4 GB of memory. In all experiments, we evaluate each
of the algorithms presented in this paper with the test cases presented above for
several values of maxDetourLength.

4.1 Subjects

• Apache Tomcat is a large and well-known Java web server (4213 classes,
188 kLOC) that powers numerous large-scale, mission-critical web applications
across a diverse range of industries and organizations [27]. In our test caseTomcat
crashes due to the bug reported in [28]. We aim to anonymize several properties
such as security roles, application parameters, amongst many other fields.
• Apache Xerces [29] is a popular and large application for parsing and manip-
ulating XML files (1436 classes, 90 kLOC). The bug reported in [30] causes a
NullPointerException to be thrown when using external unparsed entities. In our
test case Xerces parses a xml file that triggers this bug and REAP will attempt
to anonymize its content.
• MySQL/JDBC [31] is the most popular open source Java database connector
(752 classes, 85 kLOC). Our test case is based on the vulnerability reported
in [32] and we intend to anonymize the content of the queries.
• Apache Commons CLI [33] is a well known application that provides an API
for parsing command line options passed to programs (110 classes, 4145 LOC).
The bug considered [34] throws an exception when the parser erroneously treats
arguments as commands in case of syntax similarities. REAP is intended to
anonymize the commands and arguments inserted by the user.
• PaiNPai [35] is an personal finances manager (108 classes, 5369 LOC). The
bug in this subject is artificial. However, it is a great example of a program that
deals with highly sensitive information, such as bank account numbers and other
private information of the account holders. Given the confidential nature of such
information we consider PaiNPai to be an important subject in our evaluation.
• iDate is a dating mobile application that finds people matching a specified
profile. This application crashes when users use different versions of this applica-
tion, as they differ in the representation of the input values. In similarity to the
PaiNPai subject, iDate requires the input of very private information. The users
devise a personal profile with information such as age, gender, height, weight and
also their dating preferences, to be compared with the profiles of other users. We
adapted iDate (3 classes, 1225 LOC) to run on a desktop computer.

4.2 Privacy

We measure privacy using two metrics: leakage, the amount of bits of the orig-
inal input revealed by the new input, and residue, the amount of bytes of the

468 J. Matos, J. Garcia, and P. Romano

 0

 10

 20

 30

 40

 50

 60

- 2 4 8 16 32 64 - 2 4 8 16 32 64 - 2 4 8 16 32 64

Tomcat Xerces MySQL
B

its
 r

ev
ea

le
d

(%
)

REAP-BRW
REAP-BAG

 0

 10

 20

 30

 40

 50

 60

- 2 4 8 16 32 64 - 2 4 8 16 32 64 - 2 4 8 16 32 64

CLI PaiNPai iDate

Fig. 4. Bar charts showing the leakage

original user input that remain unchanged in the new input. For each test case
in every plot, the first point represents the privacy attainable by exploiting the
path condition associated with the original execution path φ, generated by the
OIA phase (which coincide with that achieved by the solutions in Castro et
al. [12] and Clause and Orso [11]). Additionally these plots measure the impact
on privacy due to choice of the value of maxDetourLength, which we treat as
the independent parameter of our study.

Leakage. Figure 4 shows the amount of bits revealed in our experiments. The
results suggest that even considering a conservative overestimation of the leak-
age allowed by REAP, evaluated by the path conditions in φ ∪ φ′, REAP-BAG
reveals considerably less information than state of the art solutions [11]. In this
evaluation, REAP-BAG achieved anonymizations of 83, 22%, on average, and up
to 99.84%, whereas REAP-BRW achieved an average of 68.18%. Comparing to
the OIA phase, the LM phase of REAP-BAG was able to improve 28.34%, on av-
erage, and up to 53.88%, whereas REAP-BRW improved 13.30%. Specifically for
each test case, the average improvement of REAP-BAG/REAP-BRW compar-
ing to the OIA phase was respectively: 31.58%/2.07% for Tomcat, 2.55%/2.55%
forXerces, 8.22%/ 4.61% for MySQL, 42.09%/27.26% for CLI, 32.19/0.87% for
PaiNPai and 53.43/42.45% for iDate. Figure 4 also suggests that increasing the
value of maxDetourLength may not provide a path that leaks less information,
which was the case specially for Xerces and iDate. In some cases, REAP-BRW
did not show significant improvements when compared to the OIA phase. This
is due to its random nature that, in many cases, returns an alternative path
that is mostly composed by narrow edges. These paths give very few additional
solutions and therefore there is little gain in terms of leakage. In Xerces, REAP
did not anonymize more than 70.15%, as many XML tags need to be fully dis-
closed if the failure is to be reproduced. Nevertheless these parts are merely XML
structural terms and do not reveal sensitive information about the user.

Figure 4 suggests that many of our subjects perform several restrictive logical
tests, which force the leakage of significant portion of the user input thereby

REAP: Reporting Errors Using Alternative Paths 469

// e a c h o f t h e f o l l o w i n g t e s t s f u l l y l e a k t h e t y p e o f q u e r y
i f (S t r i n gU t i l s . startsWithIgnoreCaseAndWs (noCommentSql , ”INSERT”)
| | St r i n gU t i l s . startsWithIgnoreCaseAndWs (noCommentSql , ”UPDATE”)
| | (. . .)

Listing 1.1. MySQL/JDBC

// t r u e i f f t h e u s e r
// i s a m ino r
i f (IsNomineeMinor){
(. . .)
}

Listing 1.2. PaiNPai

// i f t h e v a l u e o f t h e v a r i a b l e r o l e i s i n
// s e c u r i t y R o l e s [] , i t w i l l b e r e v e l e a l e d
for (int i =0; i<s e cu r i tyRo l e s . l ength ; i++){

i f (r o l e . equa l s (s e cu r i t yRo l e s [i]))
return (true) ;

Listing 1.3. Tomcat

Fig. 5. Code excerpts exemplifying restrictive logical tests

 0

 10

 20

 30

 40

 50

 60

- 2 4 8 16 32 64 - 2 4 8 16 32 64 - 2 4 8 16 32 64

Tomcat Xerces MySQL

R
es

id
ue

 (
%

)

REAP-BRW
REAP-BAG

 0

 10

 20

 30

 40

 50

 60

- 2 4 8 16 32 64 - 2 4 8 16 32 64 - 2 4 8 16 32 64

CLI PaiNPai iDate

Fig. 6. Box plots showing the residue

reducing the effectiveness of an OIA-only approach. Figure 5 presents examples
of code excerpts from some of our test cases. In these examples, a mechanism
such as the OIA phase (or previous work [11, 12, 18]) would leak all the informa-
tion introduced by the user. However, REAP may be able to circumvent those
branches taken in φ, and find alternative solutions, as suggested in Fig. 4.

Residue. Figure 6 presents the residue measurements in our experiments. The
results show that REAP is also able to considerably reduce the dissimilarity
between the original input and the alternative input. In this evaluation REAP-
BAG achieved, on average, residue reductions of 84.93% and REAP-BRW at-
tained 83.07%. Compared with the OIA phase, the LM phase of REAP-BAG
improved 23.42% and REAP-BRW improved 21.5%. This means that, before the
report is sent, the user is be presented with a very dissimilar input from the one
in the original execution.

The main lessons learned in this part of the evaluation are i) solutions that
consider only the original execution path, such as the OIA phase and mechanisms
presented in [11, 12, 18], often leak considerable amounts of information, ii)
by detouring restrictive logical tests, REAP is able to further anonymize the

470 J. Matos, J. Garcia, and P. Romano

 16

 32

 64

 128

 256

 512

- 2 4 8 16 32 64 - 2 4 8 16 32 64 - 2 4 8 16 32 64

Tomcat Xerces MySQL
E

la
ps

ed
 T

im
e

(s
)

-
lo

gs
ca

le

REAP-BRW
REAP-BAG

 1

 2

 4

 8

 16

 32

 64

- 2 4 8 16 32 64 - 2 4 8 16 32 64 - 2 4 8 16 32 64

CLI PaiNPai iDate

Fig. 7. Bar charts showing the execution time

input, iii) informed search heuristics, such as REAP-BAG, have the potential
to significantly outperform pure random approaches, like REAP-BRW and iv)
REAP is able to produce alternative inputs that are very dissimilar comparing
to the original ones.

4.3 Scalability

Figure 7 gives a complete notion of the overhead of REAP when compared with
the single phase process of obfuscating using only the original execution path.
It is important to note that for each run (with the exception of OIA), the total
execution time includes the execution time of the OIA phase and the execution
time of the LM phase. The results show that REAP takes at most a few minutes
to finish. This is, in practice, perfectly admissible, especially if one considers that
REAP will run as a background task executing during idle periods.

Figure 7 suggests that REAP-BRW algorithm is faster than REAP-BAG. This
is because, REAP-BRW is biased towards shorter paths. In fact, the number of
constraints of the path conditions obtained by REAP-BRW was, on average,
77.23, which is much smaller than the average 223.22 of REAP-BAG and 134.31
of the OIA phase. Additionally REAP performed, on average, 1.09 attempts
to reproduce the error. In other words, REAP seldom requires more than one
attempt to reproduce the error. In terms of memory usage use REAP-BRW
required, on average, 373MB and REAP-BAG 601MB.

We also ran MPP [19] with these subjects and, except for iDate, MPP either
depleted all available memory or did not find any reproducible alternative path
in the first 24 hours of execution. These results confirm what was already found
in [19], i.e. it can be prohibitively expensive to compute all possible execution
paths of medium/large sized programs, even if this is done offline. For iDate,
which is by far the smallest subject in our testbed, the execution time of the
MPP Client — even when provided with all pre-computed paths of MPP Server—
was two orders of magnitude larger than REAP’s (300 sec vs 2 sec).

REAP: Reporting Errors Using Alternative Paths 471

The main lessons learned in this part of our evaluation are i) REAP is a
feasible approach for large applications and may not require to be bounded to
small values of maxDetourLength, ii) REAP-BAG is slower than REAP-BRW
iii) REAP-BRW is likely to find shorter paths and iv) MPP is not a feasible
approach for medium and large-sized applications.

5 Conclusions and Future Work

This paper presented REAP, a system that tackles the issue of user privacy
in error reporting. REAP advances the state of the art by increasing privacy
through the exploration of alternative execution paths using heuristics that per-
form bounded deviations in the surroundings of the original path in a scalable
way. Our experimental study highlighted that the additional costs, in terms of
computation time needed to identify alternative failure-inducing paths, were of
at most a few minutes, even for complex applications. Our evaluation also demon-
strated that REAP is able to reduce significantly the information leaked with
respect to state of the art solutions [11, 12, 18] that do not identify alterna-
tive failure-inducing paths, achieving average leakage and residue reductions of
83.22% and 84.93% respectively. We conducted a rigorous analysis of the security
properties and guarantees of REAP.

REAP was released as an open-source framework and designed to maximize
flexibility and ease of extension. By open sourcing REAP, we hope to foster
the interest of other researchers in investigating the design of alternative search
algorithms aimed at further enhancing its performance and privacy.

Our future research direction aims at extending REAP in order to support
the anonymization of concurrency bugs.

References

1. Zamfir, C., Candea, G.: Execution synthesis: A technique for automated software
debugging. In: EUROSYS, pp. 321–334. ACM, New York (2010)

2. Research Triangle Institute: The Economic Impacts of Inadequate Infrastructure
for Software Testing. Technical Report Planning Report 02-3, NIST (2002)

3. Apple Inc: Technical Note TN2123: CrashReporter (2010)

4. Microsoft Corporation: Windows Error Reporting (2012),
http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx

5. Mozilla Foundation: GNOME bug tracking (2013), http://bugzilla.gnome.org/

6. Bettenburg, N., Just, S., Schroter, A., Weiss, C., Premraj, R., Zimmermann, T.:
What makes a good bug report? In: FSE, pp. 308–318. ACM, New York (2008)

7. Laukkanen, E., Mantyla, M.: Survey reproduction of defect reporting in industrial
software development. In: ESEM, pp. 197–206 (2011)

8. Altekar, G., Stoica, I.: Odr: Output-deterministic replay for multicore debugging.
In: SOSP, pp. 193–206. ACM, New York (2009)

9. Huang, J., Liu, P., Zhang, C.: Leap: Lightweight deterministic multi-processor
replay of concurrent java programs. In: FSE, pp. 207–216. ACM, New York (2010)

http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://bugzilla.gnome.org/

472 J. Matos, J. Garcia, and P. Romano

10. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: Pres: Proba-
bilistic replay with execution sketching on multiprocessors. In: SOSP, pp. 177–192.
ACM, New York (2009)

11. Clause, J., Orso, A.: Camouflage: Automated anonymization of field data. In: ICSE,
pp. 21–30. ACM, New York (2011)

12. Castro, M., Costa, M., Martin, J.P.: Better bug reporting with better privacy. In:
ASPLOS, pp. 319–328. ACM, New York (2008)

13. Wang, R., Wang, X., Li, Z.: Panalyst: Privacy-aware remote error analysis on
commodity software. In: Security, pp. 291–306. USENIX, Berkeley (2008)

14. Anand, S., Păsăreanu, C.S., Visser, W.: Jpf-se: A symbolic execution extension to
java pathfinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 134–138. Springer, Heidelberg (2007)

15. Snelting, G.: Combining slicing and constraint solving for validation of measure-
ment software. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145,
pp. 332–348. Springer, Heidelberg (1996)

16. Broadwell, P., Harren, M., Sastry, N.: Scrash: A system for generating secure crash
information. In: Security. SSYM 2003, p. 19. USENIX, Berkeley (2003)

17. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
TSE 28(2), 183–200 (2002)

18. Andrica, S., Candea, G.: Mitigating anonymity challenges in automated testing
and debugging systems. In: ICAC, pp. 259–264. USENIX, Berkeley (2013)

19. Louro, P., Garcia, J., Romano, P.: Multipathprivacy: Enhanced privacy in fault
replication. In: European Dependable Computing Conference, pp. 203–211 (2012)

20. National Aeronautics and Space Administration: Java Pathfinder (2013)
21. Sutton, R.S., Barto, A.G.: Reinforcement learning i: Introduction (1998)
22. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -

a Java Optimization Framework. In: CASCON, pp. 125–135 (1999)
23. Machado, N., Romano, P., Rodrigues, L.: Lightweight cooperative logging for fault

replication in concurrent programs. In: DSN, pp. 1–12 (2012)
24. VMware: The Amazing VM Record/Replay Feature in VMware Workstation 6

(2011)
25. Ujma, M., Shafiei, N.: jpf-concurrent: An extension of java pathfinder for

java.util.concurrent. CoRR abs/1205.0042 (2012)
26. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

27. Apache Foundation: Apache Tomcat (2013), http://tomcat.apache.org
28. Apache Foundation: Tomcat Bug Report 29688 (2004),

https://issues.apache.org/bugzilla/show_bug.cgi?id=29688

29. Apache Foundation: Apache Xerces (2013), http://xerces.apache.org
30. Apache Foundation: Xerces Bug Report 4026 (2004),

https://issues.apache.org/bugzilla/show_bug.cgi?id=4026

31. MySQL: Connector/J (2013), http://dev.mysql.com/downloads/connector/j/
32. MySQL: Bug Report 64731 (2012), http://bugs.mysql.com/bug.php?id=64731
33. Apache Foundation: CLI (2013), http://commons.apache.org/cli/
34. Apache Foundation: CLI bug report CLI-71 (2007),

https://issues.apache.org/jira/browse/CLI-71

35. Ajey Joshi: PaiNPai (2013), http://painpai.sourceforge.net/

http://tomcat.apache.org
https://issues.apache.org/bugzilla/show_bug.cgi?id=29688
http://xerces.apache.org
https://issues.apache.org/bugzilla/show_bug.cgi?id=4026
http://dev.mysql.com/downloads/connector/j/
http://bugs.mysql.com/bug.php?id=64731
http://commons.apache.org/cli/
https://issues.apache.org/jira/browse/CLI-71
http://painpai.sourceforge.net/

The Network as a Language Construct

Tony Garnock-Jones1, Sam Tobin-Hochstadt2, and Matthias Felleisen1

1 Northeastern University, Boston, Massachusetts, USA
2 Indiana University, Bloomington, Indiana, USA

Abstract. The actor model inspires several important programming
languages. In this model, communicating concurrent actors collaborate
to produce a result. A pure actor language tends to turn systems into
an organization-free collection of processes, however, even though most
applications call for layered and tiered architectures. To address this lack
of an organizational principle, programmers invent design patterns.

This paper investigates integrating some of these basic patterns via
a programming language construct. Specifically, it extends a calculus
of communicating actors with a “network” construct so that actors can
conduct scoped, tiered conversations. The paper then sketches how to
articulate design ideas in the calculus, how to implement it, and how
such an implementation shapes application programming.

1 Organizing Squabbling Actors

Hewitt’s actor model [1] presents computation as a collaboration of concurrent
and possibly parallel agents. Collaboration necessitates communication, and all
communication among actors happens by message passing. The resulting sepa-
ration of actors isolates resources and thus prevents conflicting use due to com-
peting activities. Several programming languages and frameworks use the actor
model as a design guideline, most prominently Erlang [2] and Scala [3].

Like the λ-calculus, the actor model is an elegant foundation for language
design but fails to scale to real systems. Hence, a pure actor language turns
programs and systems into organization-free “soups of processes.” More precisely,
the model provides no organizational principle that helps programmers arrange
collections of actors into a layered or tiered architecture; also out of scope is
the management and monitoring of actors via actors. Similarly, the model does
not support common idioms of communication, such as multi-cast messaging,
sessions, or connections. Finally, it ignores exceptions and errors, meaning it
does not deal with partial failures.

Implementations of the actor model meet programmer demand for organiza-
tional principles with libraries whose APIs and protocols realize appropriate de-
sign patterns. Many such APIs hide a mini language that deserves the same kind
of focused study that proper linguistic features earn. In this paper, we explain
the network as such a hidden language feature. Our central innovation is the Net-
work Calculus, which explains how to equip a given programming language with
networks. Our prototype implementation of the calculus, Marketplace, illustrates
the potential of the network as a language construct.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 473–492, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

474 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

2 Our Model of Actors

While Agha et al. [4] present an elegant operational semantics as a verification
framework for imperative actors, our goal is to create a calculus of actors to
articulate a language design idea. Specifically, we wish to show how to construct
an actor language from an arbitrary base language via the addition of a fixed
communication layer. To this end, we make the state of actors explicit, require
their specification as a state-transition function, and demand that they interact
exclusively via messages—not effects. This strict enforcement of the message-
passing discipline does not prevent us from using an imperative base language,
as long as its effects do not leak. In other words, the base could be a purely
functional language such as Haskell, a higher-order imperative language such as
Racket, or an object-oriented language such as JavaScript.1

The abstract syntax of our calculus is straightforward:

C = [α A] CQ = [·AQ] (Actor Configurations)
A = x : Σ AQ = x : ΣQ (Actors)
Σ = a � B ΣQ = · � B (Actor States)
B = f ;u (Simple Behaviors)
a = α | A (Actions)
α = 〈x, v〉 (Events)
v = u | x | v, v (Message Values)

We use p to denote a queue of ps. The xs in this grammar are drawn from an
unspecified set of names or atoms; u ranges over base language values.

An actor configuration C consists of some actors A and a queue α of pending
events. An actor is a named (x) state that combines a behavior B with a queue
a of pending actions. A behavior B pairs a function f with a state value u, both
from the base language. We use AQ to denote the set of quiescent actors, i.e.,
those with an empty queue of pending actions; a quiescent configuration CQ has
no pending events and all its actors are quiescent. Our actors may perform one
of two actions: send a message or create another actor. The latter is specified as
x : Σ, i.e., a complete actor, while 〈x, v〉 denotes a request to send message v to
the actor named x. On receipt of a message, actor x computes the actions a it
wishes to perform.

This response computation makes up the complete interface between the base
language and the communication layer.2 The interface consists of an interp0

function, which interprets an actor-level event α and yields actor-level actions a:

interp0 : f × α× u→ a× u

1 In fact, each base actor could in principle use a different language, turning the
network calculus into a semantics of middleware.

2 The traditional actor model includes a become primitive, updating an actor’s code
and its state simultaneously. Such a primitive would require that the interpretation
function delivers actions, a state, and a state-transformation function, i.e., f×a×u.

The Network as a Language Construct 475

The base language itself must also include facilities for analyzing and construct-
ing representations of network-level events and actions, respectively.

We can now formulate the dispatch rule for communicating actors:

AQ
α−→ A′

(dispatch)
[αα0 AQ] −→ [α0 A

′
]

To keep the interactions between the base and the network simple, the dispatch
rule fires only when all the configuration’s actors are quiescent. It relies on an
event-indexed family of relations α−→ that dispatch events α to actors:

interp0 f α u = (a, u′)

x : · � f ;u
α−→ x : a � f ;u′

α = 〈x, v〉
x : Σ

α−→ x : Σ
α �= 〈x, v〉

Since the dispatch rule adds actions to an actor’s queue, we need two additional
rules to interpret these actions:

[α AQ (x : 〈y, v〉a � B) A] −→ [α〈y, v〉 AQ (x : a � B) A] (send)

[α AQ (x : Anewa � B) A] −→ [α AQ (x : a � B) A Anew] (spawn)

Due to their syntactic constraints, dispatch and interpretation alternate, and
messages sent by any given actor are received by peers in order.

While spawn is semantically straightforward, users of the model have a prag-
matic hurdle to overcome if they wish to ensure uniqueness of actor names in a
configuration. They may choose to use a “name-factory” service, to preallocate
names, or any other of a wide range of appropriate strategies. Unique naming in
a distributed setting is a well-known thorny issue, and it is one of our motivations
in separating actor naming and addressing from actor identity below.

In our calculus, actors do not block; they remain responsive to inputs. Tradi-
tional behaviors such as “nested receive” and mailbox filtering are still expressible
using well-known techniques [5].

Our actor calculus satisfies basic correctness theorems. First, the communi-
cation layer does not add any errors. Second, it is deterministic.

Theorem 1 (Soundness). If interp0 is total, an actor configuration C is either
quiescent or there exists C′ such that C −→ C′.

Proof (Sketch). The lemma is a reasonably standard “progress lemma” and fol-
lows from a conventional proof approach [6]. &'

Theorem 2 (Determinism). For any actor configuration C, there is at most
one C′ such that C −→ C′ (modulo systematic actor renaming).

Proof (Sketch). The lemma is a conventional diamond lemma and follows from
an inspection of all possible critical pairs in the reduction relation. &'

476 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

3 Making Networks a Proper Part of the Language

The actor model of computation comes with one special, built-in network that
connects the actors to each other. Both our experience and the literature [7,8,9]
lead us to argue, however, that programmers must be able to create and manage
recursively-nestable networks. To make this point, we sketch and analyze the
implementation of a chat room server, a typical example. We assume that users
access this chat room over TCP via a telnet-like client and that the chat room
broadcasts each “line” from one user to every other user. As users connect, these
new connections are announced to the signed-up users, and the list of already-
connected peers is sent to the new user. Disconnections are announced in a
similar fashion.

broad-
cas t

AB

C
D

EA natural starting point is to create one actor per
connecting user. Unfortunately the point-to-point
messaging in an actor network conflicts with the
desire to broadcast messages among users. One op-
tion is for each actor to maintain a list of peers, but
synchronizing so much state becomes challenging as
the number of participants grows. A more scalable,
idiomatic option is to reify the medium of commu-
nication as a “broadcasting” actor, shown at right.

Our service now involves two different classes of actor: one for relaying to
and from connected users and one for mediating the interactions of the former.
The system cleanly divides responsibilities among the two. Each “relay” actor
registers with the “chatroom” actor, relays messages from the chatroom to the
associated TCP socket, and parses incoming utterances from the TCP socket,
converting them into chatroom messages. The chatroom actor, for its part, must
manage a directory of active relay actors, announce comings and goings, and
broadcast chat messages received from the relays.

Both kinds of parties must detect failure in other actors. A failing relay actor
should be treated as if the user had requested disconnection, causing both the
closing of the associated TCP socket and an announcement of the departure of
the user to the remaining users. Similarly, if the chatroom actor fails, each relay
actor should take some emergency action such as announcing the problem and
presumably closing its connection.

room1

room2

room3

room
directory

A

B

C

D

E

Now imagine that the service supports
several named chat rooms and that con-
necting users may join any number of
rooms. This refined design calls for a di-
rectory mapping room names to actor ad-
dresses. Again, it is natural to implement
this service as an actor. This “room direc-
tory” actor maintains a directory of avail-
able chat rooms and responds to room
lookup requests from relay actors. Each
chatroom actor now registers itself with the

The Network as a Language Construct 477

room directory as it is created and relay actors query the room directory as users
ask to join individual chatrooms. Finally, all three types of actor are now com-
mitted to monitoring the health of other actors to maintain their own state.

As simple as it is, the scenario exemplifies a number of classic patterns in
actor architectures that internalize concepts from distributed object systems:

– dynamic naming service, illustrated by directory and chatroom actors;
– a multicast medium, implemented in the chatroom actor and also known as

a data distribution service [10] or a publish/subscribe broker [11];
– dealing with partial failure [12]; each actor must detect and handle failures

in the assembled system as part of its regular duties.

Furthermore, we can identify common patterns from layered architectures [13]:

– Members of each layer communicate using a layer-specific protocol. As mes-
sages cross layers, actors translate them from one protocol to another. In
our example, relay actors translate from TCP to chat messages.

– Layers isolate components. Explicit relaying and message transformation
protects services from external requests. For the chat service, the relay actors
make up the periphery, protecting chat rooms and room directories.

The chat room scenario is simple but not special. Programmers re-implement
naming services and multicast over and over. They ensure isolation and protec-
tion for layers of communication in actor systems. And they equip actors with
code to detect and signal partial failures. This happens regardless of whether
the system is sequential, concurrent or parallel, distributed or monolithic.

In response, we supply these services via a novel linguistic construct, dubbed
“network” because it internalizes networking-style programming into actor sys-
tems. A network is a communications medium and a resource container [7,9]
offering naming, delivery, relaying, and multiplexing services to its clients and
enabling them to monitor the coming and going of their peers.

4 The Network Calculus

To address the design concerns raised above, we experimented with three gen-
erations of actor middleware and a number of full-scale applications. Here we
distill our experience into a calculus of networks, which we consider a tool for
language re-design. This section presents the calculus, again as a layer atop a
sequential language, and sketches some variations. The next two illustrate how
to “code” in the calculus and how to use it as a guide to language design.

The Calculus. We extend our actor calculus to the Network Calculus (NC) in
three syntax design steps: (1) we turn the communications substrate into a lin-
guistic construct; (2) we generalize from point-to-point messaging to broadcasts;
and (3) we signal routing changes as events alongside regular messages.

478 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

The first step is to promote configurations to behavior status:

B = f ;u | C BQ = f ;u | CQ BI = f ;u | CI (Behaviors)

C = [α π A] CQ = [· π AQ] CI = [· π AI] (Configurations)

This change allows programs to spawn entire networks recursively as actors. Mul-
tiple networks can thus exist side-by-side and nested within other configurations.
Each actor, except for the root configuration, is contained in a configuration.

The second step introduces a form of publish-subscribe messaging that allows
both point-to-point messaging and broadcasting. Actors thus no longer come
with names but subscriptions π describing their interests, and a network main-
tains a set of subscriptions π, describing the interests of its environment:

A = π : Σ AQ = π : ΣQ AI = π : ΣI (Actors)
Σ = a � B ΣQ = · � B ΣI = · � BI (Actor States)

In addition to quiescent configurations CQ and actors AQ, we now distinguish
inert variations: CI ⊂ CQ ⊂ C and AI ⊂ AQ ⊂ A. While a quiescent configura-
tion has merely emptied its local queues, inert variants have empty queues at all
levels. In other words, inert actors or networks are waiting for external events.

A subscription is an expression of interest in certain messages. Messages come
in two, symmetric varieties: 〈v〉, an ordinary data-bearing message, and (v), a
feedback message that travels along routes in the opposite direction to ordinary
messages. Feedback messages are useful for flow-control and acknowledgement
signalling. A message may also be prefixed by i ≥ 0 downward arrows �, indi-
cating that it should be relayed out to the ith-innermost containing network:

m = 〈v〉 | (v) | �m (Messages)
v = u | x | v, v (Message values)

Messages carry binary trees3 of values from the base language and atoms x from
an unspecified set.

Equipped with messages, we can describe subscriptions:

π = 〈p〉n | (p)n | �π (Subscriptions)
p = u | x | p, p | * (Message patterns)

Temporarily ignoring the subscripts, the syntax of a subscription specifies a tree
over values and atoms and the wildcard *. Semantically, a subscription π is an
expression of interest in messages:

– (p)n, a subscriber pattern specifies interest in receiving ordinary data mes-
sages and sending feedback messages,

– 〈p〉n, a publisher pattern expresses an interest in receiving feedback messages
and sending ordinary messages.

3 Our choice of trees allows a convenient representation of arbitrary structured data
along with a simple definition of pattern-matching. Many other suitable choices exist.

The Network as a Language Construct 479

Just as for message transmission, prefixing a subscription with i downward ar-
rows (�π) indicates the subscription pertains to the ith-innermost containing
network. A network aggregates subscriptions to form its routing table.

The third design step adds a novel form of event, a routing event π.4 Actions
are extended in an analogous manner to match the new class of events:

α = m | π (Events)
a = α | S (Actions)

S = π : a � f ;u | · : · � [· · (· : S � · ; ·)] (Spawnable actors)

Every time a network’s routing table changes, it sends routing events π to its
actors describing its current aggregate routing table. Each actor’s view of the
routing table is then filtered by its own subscriptions, and in particular by the
observer level (subscript n) attached to each subscription: a subscription (p1)n
is only signalled to actors with matching subscriptions 〈p2〉m where both m > n
and p1 || p2; see figure 1 for the definition of the matching functions (· || ·). Actors
interested in participating in conversations without observing other participants
subscribe at level n = 0; those interested in observing participants use n = 1;
those interested in observing observers use n = 2; and so on.

To formulate the semantics of the NC, we need to introduce the notion of
a spawnable actor because spawning an entire network requires restrictions to
preserve routing table consistency. A spawned network holds a list of spawn
actions, which start the configuration’s processes. They run within a special,
primordial process. A newly spawned actor whose subscription set is non-empty
is effectively assigned responsibilities from the very first moments of its existence.

Actor configurations evolve via two reduction relations: Σ −→ Σ′ encodes
internal reduction steps toward inertness, and A

α−→ A′ informs actors of the
event α. Our formulation of the semantics relies on the definitions in figure 1.

When a configuration’s actors are quiescent, it sends the next queued event:

AQ
α−→ A′

(dispatch)
a � [αα0 π1 AQ] −→ a � [α0 π1 A

′
]

Dispatched events are matched against the active subscriptions of each actor.
Events not matching are ignored,5 while matching events are delivered:

π : Σ
α−→ π : Σ α || π is undefined

interp0 f (α || π) u = (a, u′)

π : · � f ;u
α−→ π : a � f ;u′

α || π is defined

inject(α || π) C = C′

π : · � C
α−→ π : · � C′

α || π is defined

4 A routing event is, on the one hand, like “service presence” in XMPP [14] and, on the
other hand, resembles route advertisements in distance-vector routing protocols [15].

5 Inspired by the “discard” relation of Ene and Muntean’s broadcast π-calculus [16].

480 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

table : A→ π Extracts the current subscription set from an actor
lift : π → π “Lifts” a subscription set by prepending � to each subscription

drop : π → π Almost-inverse of lift: removes � from subscriptions in a sub-
scription set, omitting those lacking �.

α || π : α× π ⇀ α Filter/restrict an event by a subscription set
(v) || π = (v), if ∃〈p〉n ∈ π such that v ||v p

〈v〉 || π = 〈v〉, if ∃(p)n ∈ π such that v ||v p

�m || π =�m, if m || drop(π)
π1 || π2 = (π11 || π21) ·· (π11 || π2m)(π12 || π21) ·· (π1n || π2m)

where π11 · · ·π1n = π1 and π21 · · ·π2m = π2

π || π : π × π ⇀ π Intersection of two subscriptions, respecting observer level
(p1)n || 〈p2〉m = (p1 || p2)n, if n < m

〈p1〉n || (p2)m = 〈p1 || p2〉n, if n < m

�π1 || �π2 = �(π1 || π2)

p || p : p× p ⇀ p Intersection of patterns; standard unification-style algorithm
v ||v p : v × p ⇀ v Match v against p; standard unification-style algorithm

Fig. 1. Network Calculus metafunctions

The function inject transforms events from the outside world before adding them
to a configuration’s event queue. Incoming messages are marked as originating
from one layer down and incoming routing table updates are similarly marked
with lift before they are aggregated with the routes of the network itself:

inject : α× C → C

inject m [α π A] = [α�m π A] (relay-in)

inject π′ [α π A] = [α πtotal πnew A] (routes-in)

where πnew = lift(π′) and πtotal = table(A) πnew

A dispatched event results in an enqueued action, which may trigger events
within the local configuration, actions for the containing network, or both:

a0 � [α π1 AQ(π : 〈v〉a � B)A] −→ a0 � [α〈v〉 π1 AQ(π : a � B)A] (send)

a0 � [α π1 AQ(π : (v)a � B)A] −→ a0 � [α(v) π1 AQ(π : a � B)A] (feedback)

a0 � [α π1 AQ(π : �ma � B)A] −→ a0m � [α π1 AQ(π : a � B)A] (relay-out)

a0 � [α π1 AQ(π : π′a � B)A] −→ a0drop(π
′′) � [α(π′′π1) π1 AQ(π

′ : a � B)A]

where π′′ = table(AQ) π′ table(A) (routes-out)

The rule for spawning new actors is complex. Its essence is as follows:

a0�[α π1AQ(π : Anewa�B)A] −→ a0�[α π1AQ(π : a�B)AAnew] (spawn, draft)

The spawned actor Anew is lifted out of the spawning actor’s action queue and
placed at the end of the containing configuration’s actor list. This first draft elides

The Network as a Language Construct 481

a critical detail, however. Since newly-spawned actors may arrive complete with
non-empty subscription sets, the subscriptions must be incorporated into the
configuration’s routing tables and propagated to other interested parties:

. . . −→ a0drop(π
′) � [α(π′π1) π1 AQ(π : a � B)A Anew]

where π′ = table(AQ) π table(A) table(Anew) (spawn)

The entire subscription table is sent to actors; if an actor needs the difference
between the old and the new table, it must perform the computation on its own.

Finally, a network may step if a contained actor state can step:

ΣQ −→ Σ′

a0 � [· π1 AI(π : ΣQ)AQ] −→ a0 � [· π1 AQ AI(π : Σ′)]
(schedule)

This rule allows variations in scheduling. As written, the rule preserves deter-
ministic stepping, picking the leftmost non-inert actor, and it rotates the queue
of contained actors, giving each a chance to take a step.

NC satisfies the same basic correctness theorems as our actor calculus. First,
the communication layer never fails. Second, the calculus remains deterministic.

Theorem 3 (Soundness). If interp0 is total, a behavior B is either inert or
there exists some Σ′ such that · � B −→ Σ′.

Proof (Sketch). We employ the same Wright/Felleisen technique as for theo-
rem 1, with a slight modification embodied in the progress lemma below.

Definition 1 (Height). Let the height of an actor be defined as follows:

height : A→ N

height(π : a � f ;u) = 0

height (π : a � [α π1 A]) = 1 +max (height A)

Let the height of a configuration C be height(· : · � C).

Lemma 1 (Progress). If interp0 is total, for all a � C and H ∈ N with
height(C) ≤ H, C is either inert or there exists some Σ′ such that a�C −→ Σ′.

Proof (Sketch). By nested induction on the height bound and structure of C. &'

Theorem 4 (Deterministic Evaluation). For any actor state Σ there exists
at most one Σ′ such that Σ −→ Σ′ (modulo systematic renaming).

Proof (Sketch). The proof shows that, due to the restrictions on the scheduling
rule, the reduction system cannot create non-trivial diamonds. &'

We modeled NC with Redex [17] and Coq [18]; testing the theorems in the
former and proving them in the latter.6

6 Models and proofs available at http://www.ccs.neu.edu/home/tonyg/esop2014/.

http://www.ccs.neu.edu/home/tonyg/esop2014/

482 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

An Interpretation. NC comes with several novelties, including concepts such
as routing events, subscription, and connection. Together these concepts help
address a number of programming problems:

Starting Up Services. Assembling service components into a complete ap-
plication involves determining a suitable startup order. Otherwise a service may
attempt to access another service before the latter is initialised. Routing events
solve this problem in a natural fashion. Once a service is ready, it subscribes
to incoming requests via (service, *)0 and therefore its clients can notice it via
subscriptions to 〈service, *〉1.

Session Management. A connection is a relationship between two commu-
nicating stateful parties. If some peer A subscribes to 〈A, c, *〉0 (for connection
identifier c) and (B, c, *)1 while B subscribes to (A, c, *)1 and 〈B, c, *〉0, they not
only construct two unidirectional streams, but also each observes the presence
of the other. During their conversation, if A receives a routing event in which
〈B, c, *〉0 is absent, it knows that B disconnected or faulted and that it may now
release any state associated with the connection.

Demultiplexing. A network automatically demultiplexes incoming events
via subscription-based message filtering. Imagine an NC program that imple-
ments an SSH server and uses an SSH-styled protocol. Each SSH packet carries
a type identifier number. If each packet type handler subscribes with a pattern
identifying a specific type number, e.g. (ssh, 21, *)0, and each actor responsible
for dispatching incoming packets subscribes to 〈ssh, *, *〉1, the dispatcher can
use the resulting routing events to decide whether an “unhandled packet type”
error response to an incoming packet is required.

Demand Tracking. By keeping track of active service instances and monitor-
ing client connections via routing events, “management” actors can match supply
to demand for a service, spawning new service instances as clients appear.

VPNs. With layering comes a need for coordinating actors, not just direct
peers, but also those communicating across levels of containment. By tunneling
encoded routing events as messages to remote parties, subscriptions can be prop-
agated between subnets; the relaying actor becomes a proxy for remote peers.
This approach is analogous to the topology notifications in distance-vector rout-
ing protocols; it yields a form of “virtual private network.”

Design Variations. Like λ-calculus, NC is a flexible system that can easily serve
as the basis for variations and extensions.

Non-determinism. While NC is intrinsically concurrent, connecting event-
driven and message-exchanging actors, it remains deterministic. Its design care-
fully ensures that the addition of networks to a deterministic base language
yields a deterministic result. Real-world communicating systems are often non-
deterministic, however. There are two obvious ways to introduce forms of non-
determinism that allow the calculus to exhibit parallelism and racing. First, we
can loosen the quiescence and inertness restrictions on the reduction rules. Do-
ing so introduces new interleavings that make the system truly parallel. Second,
we can weaken the network’s guarantee of delivering messages in order or at all.

The Network as a Language Construct 483

For out-of-order delivery, the dispatch rule can be modified to select arbitrar-
ily from the queue. For packet loss, the system needs a new rule for discarding
messages from the queue. This form of non-determinism primitively reflects the
uncertainty that comes with actors relaying messages across layers.

Routing. Since routing events do not distinguish entire networks from atomic
actors, actors cannot tell the two apart. It is therefore possible to introduce
new types of network with the same interface but different internal routing and
delivery rules. For example, altering the dispatch rule for message events to
select only the first actor matching the message, instead of all matching actors,
gives “anycast” routing [19]. If, in addition, unroutable events are retained in the
event queue until a matching subscription is created, the network behaves as a
“message queue” in the terminology of messaging middleware [11].

Furthermore, protocol-specific routing optimizations can be applied to indi-
vidual layers without breaking encapsulation. For example, IP datagrams are
routed on target IP address alone; an IP-specific layer could restrict patterns
to permit matching only on target IP address, enabling traditional routing ta-
ble implementation techniques. In general, each network instance can enforce its
own message formats and protocols, for which a session type system [20] is likely
to provide the matching static checking.

Fairness. NC does not guarantee fairness. If an atomic actor constantly sends
itself events, it can starve its siblings. To avoid such starvations, the network
could buffer events for atomic actors or rotate the actor queue as part of every
action-interpretation step.

Faults and Supervision. While the interpretation rule also assumes totality,
a practical variant of NC can easily handle crashes. If interp0 can return some
exception token indicating failure, the rule

interp0 f (α || π) u = exception

π : · � f ;u
α−→ π : (·) � · ; ·

α || π is defined

causes a crashing actor to retract its subscriptions. If a “supervisor” actor [2]
exists, it may then deploy matching recovery strategies as failures are detected.

5 Programming with the Network Calculus

Network Calculus, like λ-calculus, is too spare for programming. To make such
an exercise reasonably convenient, we assume a purely functional base lan-
guage extended with a conventional pattern-matching facility. We choose to
model atomic behaviors f ;u using functions in this base language, meaning that
interp0 f α u = f α u. This assumption also means that events α and actions a
are data structures in the base language.

To illustrate NC, we implement the chat room of section 3. Bold identifiers
denote NC terms, monospace literal atoms, and italics base language concepts.

The chat service is structured as a single network. Contained actors communi-
cate with each other using a chat-network-specific protocol, namely the exchange
of 〈chat, username, text〉 messages. Each such message conveys the information
that username said text.

484 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

The chat users necessarily exist outside the service itself. Instead of regarding
users and their telnet connections as meta-entities, we take advantage of the
layered structure of NC. While our chat network communicates internally with
a chat-specific protocol, we simulate the external world as if it were another
network layer below the chat network. Actors receive and send messages on
both the internal chat network and the simulated network that connects the
entire service to the outside world. Ordinary messages are delivered to siblings
within the chat network, while arrow-prefixed messages �m are delivered to the
outside world, where the users are. Figure 2 shows the layering.

Our telnet-like protocol rests on four message types: 〈connect, username〉,
〈disconnect, username〉, 〈input, username, line〉 and 〈output, username, line〉.
The actors in our chat network are then responsible for (1) interpreting these
messages and transforming them into messages for their direct peers on the inner,
chat-specific network, and (2) vice versa.

The service’s starting configuration room both creates the chat network and
spawns within it the single stateless actor acceptor, which responds to connect
messages received from the outer network:

room = · : · � [· · (· : acceptor � · ; ·)]
acceptor = · : �(connect, *)0 � acceptor ; ·

The � prefix on the acceptor’s subscription indicates that it pertains to the
network containing the whole service, shaded in figure 2, rather than the chat-
specific inner network. The acceptor wishes to receive connect messages from
the outside world, but takes action locally in response.

The base-language function acceptor implements acceptor’s behavior. When
it receives a connect message, it spawns a relay actor responsible for managing
communication with the newly-arrived user:

acceptor �〈connect, user〉 state = (relay user , state)

relay user = · : (�(input, user , *)0
�〈output, user , *〉0
�(disconnect, user)0
〈chat, user , *〉0
(chat, *, *)1) � relay ; (user , {})

The relay actor advertises subscriptions for telnet-like input, output and dis-
connection events taking place in the outside world, and advertises its intent

user user . . .

acceptor relay relay . . .
(chat,*,*)

Chat network
(connect,*) / (disconnect,*) / (input,*,*) / (output,*,*)

"outside world"

Fig. 2. Chat service layering. Shaded regions are implicit, not part of the program.

The Network as a Language Construct 485

to send chat messages into the inner network on behalf of the connected user.
All these subscriptions are marked with a subscript 0, because relay is only
interested in receiving these messages, and is not interested in receiving related
routing event notifications. In contrast, its final subscription, (chat, *, *)1, has
a subscript of 1, indicating interest not only in receiving chat messages from the
inner network, but also in hearing about related changes to the routing table.

As its peers come and go, their 〈chat, user , *〉0 subscriptions match the
(chat, *, *)1 subscription and are delivered to relay as routing events. The actor
thus uses information about the routing table to inform the remote user of the
arrival and departure of other users. In order to do so, it maintains in its actor
state not only its own name but also the set of peers it has seen so far; initially,
the empty set {}.

The base-language function relay handles both routing and message events:

relay �〈input, user , line〉 (user , peers) = (〈chat, user , line〉, (user , peers))
relay �〈disconnect, user〉 (user , peers) = (π′, nil) where π′ = ·

relay 〈chat,who, line〉 (user , peers) =
(�〈output, user ,who ++ “ says ” ++ line〉, (user , peers))

relay π (user , peers) = (arrvls ++ dprt , (user , peers ′))

where peers ′ = {u | 〈chat, u, *〉0 ∈ π}
arrvls = [�〈output, user , u++ “ arrived”〉 | u ∈ peers ′ − peers]

dprt = [�〈output, user , u++ “ departed”〉 | u ∈ peers − peers ′] (†)

Text arriving from the user via the remote network is relayed to peers in the
chat network. Next, a disconnection notice from the outside world translates into
withdrawal of all the relay’s subscriptions. Messages from peers are relayed to
the user via output messages on the outer network. Finally, when a routing event
arrives, relay computes routing table differences and announces corresponding
arrivals and departures to its user.

The subscription withdrawals triggered by disconnect events cause routing
events to be delivered to other relays. Because subscriptions are being withdrawn,
the routing table has shrunk, and so (peers − peers ′) on line (†) is nonempty,
resulting in a “departed” notification being sent to the remaining users.

With the model in place, we can now simulate communication and computa-
tion using the inject metafunction from section 4. For example, to simulate the
connection of user A, reduce the configuration state

· � (inject 〈connect, A〉 room)

to a �C′
I . The actions a include output messages for connected users, and C′

I is
the final state of the server, waiting for the next event from the outside world.

In this way, inject and the resulting a provide an I/O interface between an
NC program and its context. Our layered structure cleanly accounts for “real
I/O” performed by a group of actors in a way that is impossible in a non-layered
actor model, lacking any facility for distinguishing actions intended for sibling
actors from actions intended for entities outside the actor configuration.

486 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

6 Implementing the Network Calculus

Marketplace is a Racket-based [21] implementation of NC. Event handlers are
Racket functions, and data structures represent events and actions. Marketplace
actor behaviors are also plain Racket functions, meaning interp0 becomes apply.
In turn, Marketplace’s networks are ordinary actors. A second prototype, Mar-
ketplace/JS, uses Javascript as the base language and runs in the browser.

To connect to the outside world, Marketplace provides a ground network [22].
Its subscriptions are interpreted as subscriptions to Racket’s I/O events. It ob-
serves the routing table and creates corresponding Racket event descriptors. For
example, a Marketplace program may subscribe to a timer or a TCP socket.

Marketplace implements one of the variants of NC discussed in section 4.
The Marketplace scheduler is fair. Exceptions thrown by Racket code are trans-
lated into failures of actors. Support libraries assist with the manipulation of
subscriptions and the interpretation of routing events.

We have written a chat server in Marketplace, comparing it with Python,
Haskell and Erlang implementations. Much socket- and state-management is
automatic, a consequence of our routing events. Our Python and Haskell im-
plementations initially came with subtle flaws in handling simultaneous discon-
nections; doing so corrupted shared state in the server. Marketplace avoids such
problems by construction, with no shared state but the routing table, and no
in-place mutation at all.

We have also implemented two major applications to explore Marketplace’s
potential: a DNS system and an SSH protocol implementation and server.7

Our Marketplace DNS service is a two-layered network system. While the
bottom layer speaks UDP, the upper layer implements a DNS protocol. Relay
actors encode and decode DNS packets as they traverse the UDP/DNS layer
boundary. Within the DNS layer, actors cooperate to enact the DNS protocol
for iteratively discovering the answers to incoming DNS questions. Questions
are processed concurrently, with one actor allocated to each DNS inquiry. The
system uses broadcasting to keep the internal DNS cache database up-to-date.
The cache management actor subscribes to a wildcard so that it can eavesdrop
on actors as they communicate DNS answers to each other; it populates the
cache based on what it hears.

Our Marketplace SSH server consists of three network layers; see figure 3.
Its organization directly matches the specification of the protocol [23]. Each new
connection results in new Session and Application layer instances. Relay actors
receive encrypted TCP data from the ground layer, decrypting and parsing it
before sending the results into the session-specific layer. Packet-handler actors
in that layer enact the SSH protocol, relaying application data packets to the
innermost, application-specific layer. If any actor within the session layer ex-
its unexpectedly, a “watchdog” supervisory actor notices via routing events and
disconnects the session. Nesting of layers separates groups of related actors by

7 All code is available via http://www.ccs.neu.edu/home/tonyg/esop2014/.

http://www.ccs.neu.edu/home/tonyg/esop2014/

The Network as a Language Construct 487

TC
P

dr
iv

er

Ti
m

er
 d

ri
ve

r

Se
ss

io
n

fa
ct

or
y

TC
P

so
ck

et
 m

gr
.

Ev
en

t r
el

ay

Ti
m

er
 r

el
ay

W
at

ch
do

g

In
bo

un
d

re
la

y

O
ut

bo
un

d
re

la
y

Pa
ck

et
 h

an
dl

er

C
ha

nn
el

 fa
ct

or
y

C
ha

nn
el

 1 . . .

C
ha

nn
el

 n

Application-specific conversations

Application Layer
SSH command packets + Timers + Channel management

Session Layer

. . .

TCP + Timers

Ground Layer

Fig. 3. Layered structure of the SSH implementation

clearly defining the available channels for communication between groups. Each
network also provides a crisp boundary for the resources under its control.

Our prototype Marketplace implementations take a simple, unoptimized ap-
proach to routing. Nevertheless, the performance of our DNS resolver is ade-
quate; it has been quietly serving web browsers in our lab for the past year.

7 Related Work

On the theoretical level, our work on NC extends previous work on event-driven
systems [8], and invites comparison with process calculi and actor-based models
of concurrency. On the practical level, our Marketplace language is comparable
to actor-inspired languages and their libraries, especially Erlang, Scala, E and
AmbientTalk.

In general, most related work concerns point-to-point communication between
named entities within a single layer, dealing with broadcasting and layered ar-
chitectures as derived concepts. In contrast, NC eschews names, treats broad-
casting as fundamental, and adds novel routing events. The latter solve many
problems: startup ordering, session lifetimes, failures, supervisors, etc. Lacking
routing events completely, related systems address these problems on an ad-hoc
basis, if at all, rather than as consequences of a unifying mechanism.

The Conversation Calculus. Spiritually closest to our work is the Conversation
Calculus [24,25], based on π-calculus. Its conversational contexts scope multi-
party interactions. Named contexts nest hierarchically, forming a tree. Processes
running within a context may communicate with others in the same context
and processes running in their context’s immediate container. Contexts on dis-
tinct tree branches may share a name and thus connect transparently through
hyperlinks. The Conversation Calculus also provides a Lisp-style throw facility
that aborts to the closest catch clause. This mechanism enables supervisor-like
recovery strategies for exceptions.

Although Conversational and NC serve different goals—the former is a cal-
culus of services while the latter is a language design guideline—the two are
strikingly similar. Like a network, a conversational context has both a spatial
meaning as a location for computation and a behavioral meaning as a delimiter

488 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

for a session or protocol instance. Both calculi permit communication within
their respective kinds of boundary as well as across them.

The two calculi starkly differ in three aspects. First, NC cannot transparently
link subnets into logical overlay networks because its actors are nameless. In-
stead, inter-subnet routing has to be implemented in an explicit manner, based
on NC’s routing events. Proxy actors tunnel events and actions across links
between subnets; once such a link is established, actors may ignore the actual
route. Any implementation of Conversation Calculus must realize just such ex-
plicit routing; NC can provide the same expressiveness as a library feature.

Second, Conversation Calculus lacks routing events and does not automat-
ically signal peers when conversations come to an end—normally or through
failure. Normal termination in Conversation Calculus is a matter of convention,
while exceptions signal failure to containing contexts but not to remote par-
ticipants in the conversational context. In contrast, Network Calculus’s routing
events signal failure to all interested parties transparently.

Finally, our implementation experiences with Marketplace suggest that map-
ping context names to “wire level” identifiers poses a steep obstacle for a similar
effort for Conversation Calculus. After all, different parts of the system are go-
ing to be written in different base languages. With the explicit demultiplexing
in Network Calculus, managing a heterogeneous system poses no problems.

Actors. One major family of Actor models is due to Agha and colleagues [4,26,27].
Varela and Agha’s variation [27] groups actors into hierarchical casts via di-

rector actors, which control some aspects of communication between their casts
and other actors. If multicast is desired, it must be explicitly implemented by
a director. While casts and directors have some semblance to the layered Net-
work Calculus, the two differ in many aspects. Our system’s use of pub/sub
automatically provides multicast without forcing all members of a layer to use
the same conversational pattern. Directors are computationally active, but our
networks are not. In their place, Network Calculus employs relay actors that
connect adjacent layers. Finally, Varela and Agha’s system lacks routing events
and thus cannot deal with failures easily. They propose mobile messenger actors
for localizing failure instead.

In Callsen and Agha’s ActorSpace [26] actors join and leave actorspaces.
Each actorspace provides a scoping mechanism for pattern-based multicast and
anycast message delivery. Besides communication via actorspace, a separate
mechanism exists to let actors address each other directly. In contrast, our system
performs all communication with subscription-based routing and treats networks
as specialized actors, enforcing abstraction boundaries and making it impossi-
ble to distinguish between a single actor or an entire network providing some
service. Actors may join multiple actorspaces, whereas Network Calculus actors
may only inhabit a single network, reflecting physical and logical layering of
networks and giving an account of locality. In our system, actors join multiple
networks by spawning proxy actors, which tunnel events and actions through in-
tervening layered networks. Finally, ActorSpace does not specify a failure model,
whereas Network Calculus signals failure with routing events.

The Network as a Language Construct 489

All actor models lack an explicit interface to the outside world. I/O remains
a brute-force side-effect instead of a messaging mechanism. Our functional ap-
proach to messaging and recursive layers empowers us to treat this question as
an implementation decision.

Mobile Ambients. Cardelli and Gordon [28] describe the Mobile Ambient Calcu-
lus. An ambient is a nestable grouping of processes, an “administrative domain”
within which computation and communication occur.

At first glance, the two pieces of work are duals. While Network Calculus fo-
cuses on routing data between domains, from which code mobility can be derived,
Mobile Ambients derives message routing from a primitive notion of process mo-
bility. By restricting ourselves to transporting data rather than code from place
to place, we avoid a large class of mobility-related complication and closely re-
flect real networks, which transport only first-order data. Moving higher-order
data (functions, objects) happens via encodings. Furthermore, mobility of code
is inherently point-to-point, and the π-calculus-like names attached to ambients
reflect this fact. Our pattern-based routing is a natural fit for a more general
class of conversational patterns in which duplication of messages is desired.

Mobile Ambients can directly express locks, trading broadcast communica-
tion for the ability to express guaranteed-two-party atomic protocols. Network
Calculus comes without such locks and guarantees, because communications are
always broadcast even if they are intended to be two-party conversations. This
seeming weakness is a reflection of our desire to align Network Calculus with
the abilities of real networks, which likewise have no means of expressing atomic
transfer of ownership. Hence, programs in Network Calculus must, like Actors,
implement distributed locking algorithms explicitly.

Process Calculi. Fournet and Gonthier’s Distributed Join Calculus [29] arranges
processes in a tree of locations, with automatic mobility and communication
between them; Network Calculus manages such nonlocal interaction explicitly.
Similarly, neither first- nor higher-order π-calculi [30] represent layered or nested
process groups; the spatial arrangement of their processes remains implicit.

Middleware. A comparison with publish/subscribe brokers [11] supplies an ad-
ditional perspective. Essentially, a network corresponds to a broker: the routing
table of a network is the subscription table of a broker; the network buffers are
broker “queues;” characteristic protocols are used for communication between
parties connected to a broker; etc. In short, Network Calculus can be viewed as
the first formal semantics of brokers.

Erlang/OTP. The closest relative to Marketplace is Erlang/OTP [31,2]. Both
support isolated “shared-nothing” message-passing processes; crash reporting in
the form of explicit events to interested parties; and supervisory processes. Er-
lang’s gen_server interface corresponds closely to our interp0 signature.

Marketplace differs from Erlang in its use of: broadcasting in lieu of point-
to-point communication; abstract topics to name services versus Erlang’s use of

490 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

process IDs; nesting to demultiplex conversations versus explicit demultiplexing;
and routing events versus exit signals and process monitors.

Many of the OTP design patterns are linguistic constructs in Marketplace. For
example, debugging and tracing of subsystems requires explicit handling of “de-
bug facilities” and “system messages” by OTP processes, whereas in Marketplace
the uniform type of an actor behavior allows tracing actors without changing any
code. OTP’s global service registries are Marketplace’s built-in routing tables.
Each Erlang application is responsible for solving its startup ordering problem,
whereas Marketplace applications can use routing events to find the required
topological dependency ordering implicitly.

Scala. Several Scala [3] libraries support Actor-style programming. Most of them
implement Erlang-style actor supervision. Notable among the implementations
is Akka, which arranges actors in a tree—spawned actors are considered children
of the spawning actor—and uses the tree as the basis of supervision. Akka’s tree
arrangement does not constrain communication, and Akka does not support
routing events. Akka’s multiple distinct broadcast mechanisms, especially the
EventBus, resemble our pub/sub mechanism. As in Erlang, no special support
is provided for solving startup ordering problems.

E and AmbientTalk. The E programming language provides language-level sup-
port for vats [32], which like actors, take atomic turns at responding to events.
Their state persists between turns for fault-tolerance and recovery. In addition to
Miller and his colleagues [33,34], work on AmbientTalk [35] continues to explore
vats. AmbientTalk adds distributed service discovery, error handling, anycast
and multicast within a mobile, ad-hoc network context. In contrast to Market-
place, AmbientTalk lacks layering and does not exploit pub/sub communication
for service discovery, failures, error handling, etc.

8 Conclusion

Existing programming languages fail to support layered communication architec-
tures with linguistic constructs. Instead, programmers develop design patterns
and support them with frameworks and libraries. The prevalence of these con-
cepts suggests that language designers should consider the inclusion of appropri-
ate programming constructs. In response, our paper presents a novel language
idea—the network—in the form of the Network Calculus, building on existing
actor-model designs. With the addition of a network construct, language design-
ers can automatically provide services that programmers routinely redevelop.
Programmers in turn can internalize idioms from the networking world to sim-
plify their architectures.

The paper explains how to program in this calculus and how to use it as the
basis for a language implementation. We have used Marketplace, our implemen-
tation of NC, to create and deploy two major systems. Our experience with
this prototype suggests that the resulting applications are more modular than
comparable systems while providing sufficient performance for daily use.

The Network as a Language Construct 491

NC is a malleable design. In its basic form, it is a deterministic concurrency
theory. As discussed, it can readily be extended to a parallel and non-deterministic
variant and optimised in protocol-specific ways. We expect to explore both the
theoretical framework and its implementation.

Acknowledgements. This work was supported in part by the DARPA CRASH
program and NSF Infrastructure grant CNS-0855140. The authors would like to
thank Olin Shivers and Mitch Wand for listening to many rough presentations
on this material. In addition the participants of NU PLT’s coffee round posed
many helpful questions that helped hone this research.

References

1. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proc. 3rd Int. Joint Conf. on Artificial Intelligence,
pp. 235–245. Morgan Kaufmann Publishers Inc. (August 1973)

2. Ericsson(AB): Erlang/OTP Design Principles (2012),
http://www.erlang.org/doc/design_principles/des_princ.html

3. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

4. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor Com-
putation. J. Functional Programming 7(1) (1997)

5. Li, P., Zdancewic, S.: Combining Events and Threads for Scalable Network Ser-
vices. In: Proc. Conf. on Programming Language Design and Implementation, pp.
189–199 (2007)

6. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115, 38–94 (1992)

7. Day, J.: Patterns in Network Architecture: A Return to Fundamentals. Prentice
Hall (2008)

8. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: A Functional I/O Sys-
tem. In: ICFP (2009)

9. Zave, P., Rexford, J.: The geomorphic view of networking: A network model and
its uses. In: Proc. of the Middleware for Next Generation Internet Computing
Workshop (2012)

10. Object Management Group: Data Distribution Service for Real-time Systems (Jan-
uary 2007)

11. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

12. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on Distributed Computing.
Sun Microsystems Laboratories Technical Report SMLI TR-94-29 (November 1994)

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall (1996)

14. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120 (March 2011)

15. Heart, F.E., Kahn, R.E., Ornstein, S.M., Crowther, W.R., Walden, D.C.: The
interface message processor for the ARPA computer network. In: Proc. Spring
Joint Computer Conference (AFIPS 19870), pp. 551–567 (May 1970)

16. Ene, C., Muntean, T.: A Broadcast-based Calculus for Communicating Systems.
In: Proc. of the Workshop on Formal Methods for Parallel Programming (2001)

http://www.erlang.org/doc/design_principles/des_princ.html

492 T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen

17. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press (2009)

18. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, Version 8.0 (2004)

19. Partridge, C., Mendez, T., Milliken, W.: Host Anycasting Service. RFC 1546 (In-
formational) (November 1993)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. Symp. on Principles of Programming Languages, pp. 273–284 (January 2008)

21. Flatt, M.: PLT: Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.
(2010), http://racket-lang.org/tr1/

22. Lieberman, H.: Concurrent Object-Oriented Programming in Act 1. In: Yonezawa,
A., Tokoro, M. (eds.) Object-Oriented Concurrent Programming. MIT Press (1987)

23. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251
(January 2006)

24. Caires, L., Vieira, H.T.: Analysis of Service Oriented Software Systems with the
Conversation Calculus. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS,
vol. 6921, pp. 6–33. Springer, Heidelberg (2012)

25. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-
oriented computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

26. Callsen, C.J., Agha, G.: Open Heterogeneous Computing in ActorSpace. J. Parallel
and Distributed Computing 21(3), 289–300 (1994)

27. Varela, C.A., Agha, G.: A Hierarchical Model for Coordination of Concurrent
Activities. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS,
vol. 1594, pp. 166–182. Springer, Heidelberg (1999)

28. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1),
177–213 (2000)

29. Fournet, C., Gonthier, G.: The Join Calculus: a Language for Distributed Mobile
Programming. In: Applied Semantics: International Summer School (2000)

30. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press (October 2003)

31. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. PhD thesis, Royal Institute of Technology, Stockholm (2003)

32. Miller, M.S.: Robust composition: Towards a unified approach to access control
and concurrency control. PhD thesis, Johns Hopkins University (2006)

33. Miller, M.S., Van Cutsem, T., Tulloh, B.: Distributed electronic rights in javaScript.
In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 1–20.
Springer, Heidelberg (2013)

34. Yoo, S., Killian, C., Kelly, T., Cho, H.K., Plite, S.: Composable Reliability for
Asynchronous Systems. In: Proc. USENIX Annual Technical Conference (June
2012)

35. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter,
W.: AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad hoc
Networks. In: Intl. Conf. of the Chilean Society of Computer Science (SCCC),
pp. 3–12. IEEE (November 2007)

http://racket-lang.org/tr1/

Resolving Non-determinism in Choreographies *

Laura Bocchi1, Hernán Melgratti2, and Emilio Tuosto3

1 Department of Computing, Imperial College London, UK
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires - Conicet, Argentina

3 Department of Computer Science, University of Leicester

Abstract. Resolving non-deterministic choices of choreographies is a crucial
task. We introduce a novel notion of realisability for choreographies –called
whole-spectrum implementation– that rules out deterministic implementations of
roles that, no matter which context they are placed in, will never follow one of the
branches of a non-deterministic choice. We show that, under some conditions, it
is decidable whether an implementation is whole-spectrum. As a case study, we
analyse the POP protocol under the lens of whole-spectrum implementation.

1 Introduction

The Context. A choreography describes the expected interactions of a system in terms
of the message exchanged between its components (aka roles):

“Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced [...]. Each party can then use the global definition to build
and test solutions that conform to it. The global specification is in turn realised by
combination of the resulting local systems [...]”

The first part of the excerpt above taken from [15] envisages a choreography as a global
contract regulating the exchange of messages; the last part identifies a distinctive ele-
ment of choreographies: the global definition can be used to check the conformance of
local components so to (correctly) realise the global contract. Choreographies allows
for the combination of independently developed distributed components (e.g., services)
while hiding implementation details. Moreover, the communication pattern specified in
the choreography suffices to check each component.

For illustration, take a simple choreography, hereafter called ATM, involving the cash
machine of a bank B and a customer C depicted as either of the following diagrams:

deposit

overdraft

C B

ok

ko

amount

amount

login login
C --> B

deposit
C --> B

overdraft
C --> B

aumount
C --> B

ok
B --> C

aumount
C --> B

ko
B --> C

In the diagram on the left,
the doubly stroked lines
represent choices and the
dashed lines connect inter-
actions with the branches
where they occur. On the
right, ATM is expressed in
terms of the conversation
protocols of [12].

* This work has been partially sponsored by Projects: EU 7FP Grant 295261 (MEALS), AN-
PCyT BID-PICT-2008-00319, Ocean Observatories Initiative and EPSRC EP/K034413/1.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 493–512, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

494 L. Bocchi, H. Melgratti, and E. Tuosto

After successful authentication, B offers a deposit and an overdraft service to C. When
opting for a deposit, C indicates the amount of money to be deposited. If C asks to
overdraft then B can either grant or deny it; in the former case C will communicate the
amount of money required.

On Realisations. A set of processes is a realisation of a choreography when the be-
haviour emerging from their concurrent execution matches the behaviour specified by
the choreography. A choreography is realisable when it has a realisation.

A realisation of ATM can be given using two CCS-like processes [20] (augmented
with internal ⊕ and external + choice operators) for roles B and C:

TB = login.(deposit.amount + overdraft.(ok.amount ⊕ ko))
TC = login.(deposit.amount ⊕ overdraft.(ok.amount + ko))

In words, TB specifies that, after C logs in, B waits to interact either on deposit or
on overdraft; in the latter case, B non-deterministically decides whether to grant or
deny the overdraft; TC is the dual of TB. Note that ATM uses non-determinism to avoid
specifying the criteria for B to grant or deny an overdraft. The use of non-determinism
is also reflected in realisations, in fact TB uses the internal choice operator ⊕ to model
the reaction when C requests an overdraft.

Choreographies can be interpreted either as constraints or as obligations of dis-
tributed interactions [19]. The former interpretation (aka partial [19] or weak [23])
admits a realisation if it exhibits a subset of the behaviour. For instance, take

T ′B = login.(deposit.amount + overdraft.ko)

then T ′B and TC form a partial realisation of ATM where requests of overdraft are con-
sistently denied. On the contrary, when interpreting choreographies as obligations, a
realisation is admissible if it is able to exhibit all interaction sequences (hence such
realisations are also referred to as complete realisations [19]). For instance, TB and TC
form a complete realisation of ATM.

The Problem. Choreographies typically yield non-deterministic specifications; here we
explore the problem of resolving their non-determinism. In fact, despite being a valu-
able abstraction mechanism, non-determinism has to be implemented using determin-
istic constructs such as conditional branch statements.

Using again ATM, we illustrate that traditional notions of complete realisation are
not fully satisfactory. The non-deterministic choice in TB abstracts away from the actual
conditions used in implementations to resolve the choice. This permits, e.g., different
banks to adopt different policies depending, for instance, on the type of the clients’ ac-
counts. Consider the (deterministic) implementations B1 and B2 of TB below (for brevity,
each name refers to the interaction of ATM with the same initial):

Bi ::= l(c);(d();a(x);Q+o();Pi(c)) for i = 1,2 (Q is immaterial)
P1(c) ::= if check(c) : ok.a(x) else ko and P2(c) ::= ko

The expression check(c) in P1 deterministically discriminates if the overdraft should
be granted. Clearly both B1 and B2 can be used as implementations of TB in partial
realisations of the choreography.1 (as e.g. in [11]).

1 For instance, both B1 and B2 type-check against TB considered as a session type due to the
fact that subtyping for session types [13] is contra-variant with respect to internal choices (and
covariant with respect to external choices).

Resolving Non-determinism in Choreographies 495

Conversely, neither B1 nor B2 can be used in a complete realisation. This is straight-
forward for B2 (unable to interact over ok after receiving an overdraft request), but not
so evident for B1. Depending on the credentials c sent by the customer to login, check(c)
will evaluate either to true or to false. Therefore, B2 will be unable to exhibit both
branches. This will be the case for any possible deterministic implementation of ATM:
only one branch will be matched. Consequently, there is not a complete, deterministic
realisation for ATM.

We prefer B1 to B2 arguing that they are not equally appealing when interpreting
choreographies as obligations. In fact, B2 consistently precludes one of the alternatives
while B1 guarantees only one or the other alternative (provided that check is not the
constant map) depending on the deterministic implementation of the role TC.

Contributions and Synopsis. We introduce whole-spectrum implementation (WSI),
a new interpretation of choreographies as interaction obligations. A WSI of a role R

guarantees that, whenever the choreography allows R to make an internal choice, there is
a context (i.e., an implementation of the remaining roles) for which (the implementation
of) R chooses such alternative. We illustrate the use of WSI to analyse the POP2 protocol
(i.e., choreography § 2.2, implementation § 3.1, and verification § 5.1).

We develop our results in a behavioural typing framework since types directly relate
specifications to implementations, but our results can be established in different con-
texts (c.f. [3, Appendix F]). Our technical contributions are a formalisation of WSI and
a sound type system that guarantees that typable processes form WSIs. For instance,
our type system validates B1 against TB while it discards B2. Typing is decidable if so
is the logic expressing internal conditions. We relate a denotational semantics of global
types (featuring optional behaviours) to the operational semantics of local types (c.f.
Thm. 3). Finally, the strong connection between local types and processes ensures that
well-typed processes enjoy whole-spectrum implementability (c.f. Thm. 4).

2 Global and Local Types

Our types elaborate from [18] and use a more tractable form of iteration (discussed
below). We fix a countably infinite set C of (session channel) names ranged over by
u,y,s, . . . and a countably infinite set P of (participants) roles ranged over by p,q,r, . . .
(with C∩P = /0). Basic data types, called sorts, (e.g., booleans Bool, integers Int,
strings Str, record types, etc.) are assumed; U ranges over sorts.

Tuples are written in bold font and, abusing notation, we use them to represent their
underlying set (e.g., if y = (y1,y2,y3), we write y2 ∈ y for y2 ∈ {y1,y2,y3}). Let #X
denote the cardinality of a set X . Write { / } for substitutions and in {y/s} assume that
s and y have the same length, that the components of y are pairwise disjoint, and that
the i-th element of y is replaced by the i-th element of s.

2.1 Types

A global type term (GTT, for short) G is derived by the following grammar:

G ::= p→ q : y〈U〉
∣∣ G+G

∣∣ G | G ∣∣ G;G
∣∣ G∗ f ∣∣ end

496 L. Bocchi, H. Melgratti, and E. Tuosto

In words, a GTT can either be a single interaction, the non-deterministic (+), parallel
(|), or sequential (;) composition of two GTTs, the iteration of a GTT (∗), or the
empty term. Hereafter, we tacitly assume p �= q in any interaction p→ q : y〈U〉. As in [7],
we adopt a form of iteration to statically check for WSI (see § 4); in G∗

f
, f injectively

maps roles in G to pairs of channels and sorts; i.e., f (p) = y〈U〉 is used to notify p ∈ G

when the iteration ends. We use cod(f) to denote the set of channels appearing as first
component in the image of f .

For a GTT G, ch(G) ⊆ C are the names, P (G) are the participants, and fst(G) are
the initially enabled input and output actions of each each participant in G; e.g., in

Gf = p→ q : y〈U〉; q→ s : z〈U〉 (2.1)

ch(Gf) = {y,z}, P (Gf) = {p,q,s}, and fst(Gf) = {(p,y),(q,y),(s,z)}. Formal defi-
nitions of such maps are standard and relegated in [3, Appendix A].

A global type is defined by an equation G(y)
9
= G where y⊆ C are pairwise distinct

names and ch(G)⊆ y. The syntax of global types explicitly mentions names as they are
needed when typing processes to check if they form a WSI (c.f. § 5). We write G(y)
when the defining equation of a global type is understood or its corresponding GTT is
immaterial; we write G or G instead of G(y) when parameters are understood.

GTTs are taken up to structural congruence, defined as the smallest congruence
≡ such that ; , | , and + form a monoid with identity end and | and + are

commutative. Two global types G1(y1)
9
= G1 and G2(y2)

9
= G2 are structurally equivalent

when G1 ≡ G2{y2/y1}, in which case we write G1 ≡ G2.
We define the set of ready participants of G as follows.

rdy(p→ q : y〈U〉) = {p} rdy(G+G′) = rdy(G | G′) = rdy(G)∪rdy(G′) rdy(end) = /0
rdy(G;G′) = rdy(G), if rdy(G) �= /0 rdy(G;G′) = rdy(G′), if rdy(G) = /0 G∗

f
= rdy(G)

(note that for the GTT (2.1) rdy(Gf) = {p}). We extend P () and rdy() to global

types G(y)
9
= G by defining P (G) = P (G) and rdy(G) = rdy(G).

As customary in session types, we restrict the attention to well-formed global types
in order to rule out specifications that cannot be implemented distributively. A global
type is well-formed when it enjoys the following properties: linearity, single threadness,
single selector [14], knowledge of choice [14,7], and single iteration controller. All but
the last condition are standard. The last condition is specific to our form of iteration;
informally, it requires that in each interation there is a unique participant that decides
when to exit the loop (see [3, Appendix B] for its definition).

A local type term (LTT for short) T is derived by the following grammar:

T ::=
⊕
i∈I

yi!Ui;Ti
∣∣ ∑

i∈I
yi?Ui;Ti

∣∣ T1;T2
∣∣ T∗ ∣∣ end

An LTT is either an internal (
⊕

) or external (∑) guarded choice, the sequential com-
position of LTTs ; , an iteration ∗, or the empty term end. The set ch(T) of channels
of T is standard (see [3, Appendix A]).

A local type is defined by an equation T (y)
9
= T where y are pairwise distinct names

and ch(T) ⊆ y. Hereafter, we write T (y) when the defining equation of a local type

Resolving Non-determinism in Choreographies 497

is understood or its corresponding LTT is immaterial; we may write T or T instead of
T (y) when parameters are understood. We overload≡ to denote the structural congru-
ence over local types defined as the least congruence such that internal and external
choice are associative, commutative and have end as identity, while ; is associative.
In the following, we consider types up-to structural congruence.

The projection operation extracts the local types from a global type. For a well-
formed GTT G and r∈ P, G�r is the projection of G on r and it is defined homomorphi-
cally on ⊕ , + , and ; and as follows on the remaining constructs:

G�r=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y!U (resp. y?U) if G= r→ p : y〈U〉 (resp. if G= p→ r : y〈U〉)
Gi�r if G= G1 | G2 and r �∈ P (G j) with j �= i ∈ {1,2}
(G1�r)∗;b1!U1; . . .;bn!Un if G= G∗

f

1 , cod(f) = {b1〈U1〉, . . . ,bn〈Un〉}, and r ∈ rdy(G1)

(G1�r)∗;b?U if G= G∗
f

1 , f (r) = b〈U〉, and r �∈ rdy(G1)

end if G= p→ q : y〈U〉 and r �= p,q or if G= end

end if G= G∗
f

1 and r �∈ P (G1) or f (r) is undefined

Our projection is total on well-formed global types. All but the clauses for the pro-
jections of iteration in the definition of � are straightforward (c.f. [14]). Each iteration
has a unique participant r ∈ rdy(G1) (by well-formedness) dictating when to stop the
iteration, and a number of ‘passive’ participants. Projection sends messages from r to
each passive participant to signal the termination of the iteration. The projection G(y)�r
of a global type G(y)

9
= G with respect to r is a local type T (y)

9
= T where T= G�r.

Example 1. Let G = G∗
f

f , with Gf defined in (2.1), f (q) = b1〈U1〉 and f (s) = b2〈U2〉.
Then, the projections of G are

G�p= (y!U)∗;b1!U1;b2!U2 G�q = (y?U;z!U)∗;b1?U1 G�s = (z?U)∗;b2?U2

2.2 Running Example

We illustrate our approach on a real yet tractable protocol, the Post Office Protocol -
Version 2 (POP2) [5] between a client and a mail server. We describe POP2 with the
following choreography where GEXIT=S→ C : BYE〈〉:

GPOP = C→ S : QUIT 〈〉;GEXIT + C→ S : HELO 〈Str〉;GMBOX
GMBOX = S→ C : R〈Int〉;GNMBR + S→ C : E〈〉;GEXIT
GNMBR = (C→ S : FOLD 〈Str〉;S→ C : R〈Int〉

+ C→ S : READ 〈Int〉;S→ C : R〈Int〉;GSIZE)∗S �→QUIT〈〉;GEXIT
GSIZE = (C→ S : RETR 〈〉;S→ C : MSG 〈Data〉.GXFER

+C→ S : READ 〈Int〉;S→ C : R〈Int〉)∗S �→FOLD〈Str〉;S→ C : R〈Int〉
GXFER = C→ S : ACKS 〈〉;S→ C : R〈Int〉+C→ S : ACKD 〈〉;S→ C : R〈Int〉

+C→ S : NACK 〈〉;S→ C : R〈Int〉
The protocol GPOP starts with C sending S either an empty message along channel QUIT

to quit the session, or a string on channel HELO representing C’s password. In the first
case, the protocol ends as per GEXIT while in the latter case the GMBOX is executed.

498 L. Bocchi, H. Melgratti, and E. Tuosto

In GMBOX, the server S either sends the number of messages in the default mailbox or
it signals an error and ends the session as per GEXIT. In the former case, GNMBR establishes
that C repeatedly asks either (a) to enter a folder (sending the folder’s name on FOLD) and
then receiving back the number of messages in that folder, or (b) to request a message by
sending its index along READ and then receiving back the length of the message. In case
(a), the loop is immediately repeated after S’s reply, in case (b) the protocol continues
as GSIZE where another loop starts with C either (a) retrieving the message or (b) asking
for another message (by interacting again on READ). For (a), C signals on RETR that it is
ready to receive data that are sent by S on MSG (sort Data abstracts away the format of
messages specified in [10]); after these interactions the choreography continues as GXFER
where the transmission is acknowledged by C with the interactions in GXFER: ACKS keeps
the message in the mailbox, ACKD deletes the message, NACK notifies that the message
has not been received and must be kept in the mailbox; after any acknowledgement,
S sends C the length of the next message. After some iterations in GSIZE, C specifies a
different folder and repeats GNMBR.

The projection TS = GPOP�S of GPOP onto the server is below; GPOP�C is dual.

TS = QUIT?;TEXIT
+ HELO?Str;TMBOX

TMBOX = R!Int;TNMBR⊕E!;TEXIT
TEXIT = BYE!

TNMBR = (FOLD?Str;R!Int+READ?Int;R!Int;TSIZE)∗;
QUIT?;TEXIT

TSIZE = (RETR?;MSG!Data;TXFER+READ?Int;R!Int)∗;
FOLD?Str;R!int

TXFER = ACKS?;R!Int+ACKD?;R!Int+NACK?;R!Int

The messages in TS are as in GPOP and S iterates until either a signal on QUIT or on
FOLD is sent by C.

In Ex. 2 we present, for illustrative purpose, a multiparty variant of GPOP where the
authentication is outsourced.

Example 2. A multiparty variant of POP2 is given by G′POP below where S uses a third-
party authentication service A:

G′POP = C→ S : QUIT 〈〉;GEXIT + C→ S : HELO 〈Str〉;G′MBOX
G′MBOX = S→ A : REQ 〈Str〉;A→ S : RES 〈Bool〉;

S→ C : R〈Int〉;GNMBR + S→ C : E〈〉;GEXIT
where, on RES, A sends the result of the authentication of C (GNMBR and GEXIT remain

unchanged). The projection of G′POP on S is

T′S = QUIT?;TEXIT + HELO?Str;TAUTH
TAUTH = REC!Str;RES?Bool;T′MBOX T′MBOX = R!Int;TNMBR ⊕ E!;TEXIT

�

2.3 Behaviour of Types

The semantics of local types is given in terms of specifications, namely pairs of partial
functions Γ and Δ such that Γ maps session names to global types and names to sorts,
and Δ maps tuples of session names to local types. We use Γ•Δ to denote a specification
and adopt the usual syntactic notations for environments:

Γ ::= /0
∣∣ Γ,u : G

∣∣ Γ,x : U Δ ::= /0
∣∣ Δ,s : T

Resolving Non-determinism in Choreographies 499

Γ(u)≡G(y)

Γ•Δ uny→ Γ•Δ,y : G(y)�0
[TReq]

Γ(u)≡G(y)

Γ•Δ uiy→ Γ•Δ,y : G(y)�i
[TAcc]

v : U j s j ∈ s j ∈ I

Γ•Δ,s :
⊕
i∈I

si!Ui;Ti
s jv→ Γ•Δ,s : T j

[TSend]
v : U j s j ∈ s j ∈ I

Γ•Δ,s : ∑
i∈I

si?Ui;Ti
s jv→ Γ•Δ,s : T j

[TRec]

Γ•Δ,s : T α−→ Γ•Δ,s : T ′

Γ•Δ,s : T ;T ′′ α−→ Γ•Δ,s : T ′;T ′′
[TSeq]

Γ•Δ1
τ→ Γ•Δ′1

Γ•Δ1,Δ2
τ→ Γ•Δ′1,Δ2

[TPar]

Γ•Δ,s : T ∗ τ→ Γ•Δ,s : end[TLoop1] Γ•Δ,s : T ∗ τ→ Γ•Δ,s : T ;T ∗[TLoop2]

Fig. 1. Labelled transitions for specifications

as usual, when writing Δ,s : T , s �∈ dom(Δ) is implicitly assumed (likewise for Γ, :)
and Δ1,Δ2 ≡ Δ2,Δ1.

The semantics of specifications is generated by the rules in Fig. 1 using the labels

α ::= uns | uis | sv | sv | τ (2.3)

that respectively represent the request on u for the initialisation of a session among
n+ 1 roles, the acceptance of joining a session of u as the i-th role, the sending of a
value on s, the reception of a value on s, and the silent step.

Intuitively, the rules of Fig. 1 specify how a single participant behaves in a session
s and are instrumental for type checking processes. Rules [TReq] and [TAcc] allow a
specification to initiate a new session by projecting (on 0 and i, resp.) the global type
associated2 to name u in Γ. By [TSend], if types are respected, a specification can send
any value on one of the names in a branch of an internal choice. Dually, [TRec] accounts
for the reception of a value. Note that values occur only on the label of the transitions
and are not instantiated in the local types. Rule [TSeq] is trivial. Rule [TPar] allows part
of a specification to make a transition. Finally, an iterative local type can either stop by
rule [TLoop1] or arbitrarily repeat itself by rule [TLoop2].

3 Processes and Systems

As we will see (Def. 1 in § 4), global types are implemented by systems. Our systems
exchange values specified by expressions having the following syntax:

e ::= x | v | e1 op e2 ::= [e1, . . . ,en] | e1..e2

An expression e is either a variable, or a value, or else the composition of expres-
sions (we assume that expressions are implicitly sorted and do not include names). Lists
[e1, . . . ,en] and numerical ranges e1..e2 are used for iteration; in the former case, all the
items of a list have the same sort, in the latter case, both expressions are integers and

2 The use of ≡ in the premises caters for α-conversion of names y. Also, P is the set of natural
numbers (0 is the initiator of sessions) and for readability, in examples we use names to denote
participants.

500 L. Bocchi, H. Melgratti, and E. Tuosto

the value of e1 is smaller than or equal to the value of e2. The empty list is denoted as ε
and the operations hd() and tl() respectively return the head and tail of (defined as
usual). We write var(e) and var() for the set of variables of e and .

The syntax of processes and systems below relies on queues of basic values M and
input-guarded non-deterministic sequential process N, respectively defined as

M ::= /0
∣∣ v ·M N ::= ∑

i∈I
yi(xi);Pi

where i �= j ∈ I =⇒ yi �= y j; we define 0
9
= ∑

i∈ /0
yi(xi);Pi.

The syntax of systems S and processes P is

P,Q ::= ui(y).P
∣∣ un(y).P

∣∣ N
∣∣ se

∣∣ if e : P else Q
| P;P

∣∣ for x in : P
∣∣ do N until b(x)

S ::= P
∣∣ (νs)S

∣∣ S | S
∣∣ s : M

All constructions but loops are straightforward. In for x in : P, the body P is executed
for each element in , while do N until b(x) repeats N until a message on b is received.
Intuitively, the former construct is executed by the (unique) role that decides when to
exit the iteration while the latter construct is used by the “passive” roles in the loop
(see § 2.1 and § 5). Given a process P, fv(P) denotes the set of all variables appearing
outside the scope of input prefixes in P. Also, we extend var() to systems in the obvious
way. In (νs)S, names s are bound (the set fc(S) of free session names of S is defined as
expected); a system S is closed when fc(S) = /0 and it is initial when S does not contain
runtime constructs, namely new session (νs)S′ and queues s : M. Formally, S is initial
iff for each s and S′, if S ≡ (νs)S′ then s �⊆ fc(S′).

The structural congruence≡ is the least congruence over systems closed with respect
to α-conversion, such that | and + are associative, commutative and have 0 as
identity, ; is associative and has 0 as identity, and the following axioms hold:

(νs)0≡ 0 (νs)(νs′)S ≡ (νs′)(νs)S (νs)(S | S′)≡ S | (νs)S′, when s �⊆ fc(S)

The operational semantics of systems is in Fig. 2 where a store σ records the values
assigned to variables, e ↓ σ is the evaluation of e (defined if var(e) ⊆ dom(σ) and un-
defined otherwise), and σ[x �→ v] is the update of σ at x with v. Labels are obtained by
extending the grammar in (2.3) with the production α ::= e � α where e is a boolean

expression used in conditional transitions 〈S,σ〉 e�α−−→ 〈S′,σ′〉 representing the fact that
〈S,σ〉 has an α-transition to 〈S′,σ′〉 provided that e ↓ σ actually holds. We may write α
instead of true � α and e∧ e′ � α instead of e � (e′ � α).

We comment on the rules in Fig. 2 where fc(α) is defined as fc(uns) = fc(uis) =
{u}, fc(sv) = fc(sv) = {s}, and fc(τ) = /0. Rules [SReq] and [SAcc] are for request-
ing and accepting new sessions; in their continuations, newly created session names s
replace y. Rule [SRec] is for receiving messages in an early style approach (variables
are assigned when firing input prefixes); note that the store is updated by recording that
x is assigned v. Rule [SSend] is for sending values. Rules [SThen] and [SElse] han-
dle ‘if’ statements as expected; their only peculiarity is that the guard is recorded on
the label of the transition: this is instrumental for the correspondence between systems

Resolving Non-determinism in Choreographies 501

s �∈ fc(P)

〈un(y).P,σ〉 uns−−→ 〈P{y/s},σ〉
[SReq]

 ↓ σ �= ε 〈P,σ[x �→ hd(↓ σ)]〉 e�α−−→ 〈P′,σ′〉

〈for x in : P,σ〉 e�α−−→ 〈P′;for x in tl() : P,σ′〉
[SFor2]

s �∈ fc(P)

〈ui(y).P,σ〉 uis−→ 〈P{y/s},σ〉
[SAcc]

e ↓ σ = true 〈P,σ〉 e′�α−−−→ 〈P′,σ′〉

〈if e : P else Q,σ〉 e∧e′�α−−−−→ 〈P′,σ′〉
[SThen]

〈s(x);P+N,σ〉 sv−→ 〈P,σ[x �→ v]〉[SRec]
e ↓ σ = false 〈Q,σ〉 e′�α−−−→ 〈Q′,σ′〉

〈if e : P else Q,σ〉 ¬e∧e′�α−−−−−→ 〈Q′,σ′〉
[SElse]

e ↓ σ = v

〈se,σ〉 sv−→ 〈0,σ〉
[SSend] 〈do P until b(x),σ〉 bv−→ 〈0,σ[x �→ v]〉[SLoop1]

〈P,σ〉 e�α−−→ 〈P′,σ′〉

〈P;Q,σ〉 e�α−−→ 〈P′;Q,σ′〉
[SSeq]

〈P,σ〉 e�α−−→ 〈P′,σ′〉 b �∈ fc(α)

〈do P until b,σ〉 e�α−−→ 〈P′;do P until b,σ′〉
[SLoop2]

 ↓ σ = ε

〈for x in : P,σ〉 τ−→ 〈0,σ〉
[SFor1]

P≡ P′ 〈P′,σ〉 e�α−−→ 〈Q′,σ′〉 Q′ ≡ Q

〈P,σ〉 e�α−−→ 〈Q,σ′〉
[SStruct]

s �∈ fc(Pi) Qi = Pi{yi/s} for i = 0, . . . ,n

〈un(y0).P0 | u1(y1).P1 | . . . | un(yn).Pn,σ〉 τ−→ 〈(νs)(Q0 | . . . | Qn | s : /0),σ〉
[SInit]

〈P,σ〉 e�sv−−−→ 〈P′,σ′〉

〈P | s : M,σ〉 e�τ−−→ 〈P′ | s : M ·v,σ′〉
[SCom1]

〈P,σ〉 e�sv−−−→ 〈P′,σ′〉

〈P | s : v ·M,σ〉 e�τ−−→ 〈P′ | s : M,σ′〉
[SCom2]

〈S,σ〉 e�α−−→ 〈S′,σ′〉 s �∈ fc(α)

〈(νs)S,σ〉 e�α−−→ 〈(νs)S′,σ′〉
[SNews]

〈S1,σ〉
e�α−−→ 〈S′1,σ′〉 var(S1)∩var(S2) = /0

〈S1 | S2,σ〉
e�α−−→ 〈S′1 | S2,σ′〉

[SPar]

Fig. 2. Labelled transitions for processes (top) and systems (bottom)

and their types (c.f. § 6). Rules [SFor1], [SFor2], [Sloop1], [Sloop2] unfold the corre-
sponding iterative program in an expected way. Except for session initialisation, the re-
maining rules are standard. Rule [SInit] allows n roles to synchronise with un(y0).P0;
in the continuation of each role i, the bound names yi are replaced with a tuple of
freshly chosen session names for which the corresponding queues are created. Such
queues are used to exchange values as prescribed by rules [SCom1] and [SCom2]. Rule
[SNews] is standard and allows an action α to pass a restriction that does not involve
the names of α. Rule [SInit] requires the synchronisation of all roles. Since processes
are single-threaded, this is only possible when each process plays exactly one role in
that session. Note that the semantics relies on a global store σ. However, the condi-
tion var(S1)∩ var(S2) = /0 in rule [SPar] ensures that each program has its own local
(logical) store (i.e., there is no confusion between local variables of different programs).

Note that, in a sequential composition P;Q, the store σ allows us to extend the scope
of names bound in P by input prefixes to Q.

3.1 Running Examples

In Ex. 3 we give the implementation of TS (i.e., participant S of GPOP) from § 2.2. To
ease the presentation, we use the following auxiliary functions.

502 L. Bocchi, H. Melgratti, and E. Tuosto

– auth : Str→ Bool that is used for authenticating clients;
– fn : Str→ Int that given a folder name returns the number of messages in that

folder (we assume inbox to be the default folder);
– mn : Int→ Int that given a message number returns its length (in bytes);
– data : void→ Data that returns the current message;
– next : void→ Int that returns the next message number;
– del : void→ Int that returns the next message number and deletes the current

message from the folder.

Let sk denote the name in s corresponding to channel k in GPOP and likewise for G′POP.

Example 3. The process PINIT below implements POP2’s server.

PINIT=uS(s).PS PS=sQUIT();PEXIT+ sHELO(x);PMBOX PEXIT=sBYE
PMBOX = if auth(x) : sRfn(inbox);PNMBR else sE;PEXIT
PNMBR = do(sFOLD(x);sRfn(x) + sREAD(x′);sRmn(x′);PSIZE) until sQUIT();PEXIT
PSIZE = do(sRETR();sMSGdata();PXFER + sREAD(x′);sRmn(x′)) until sFOLD(x);sRfn(x)

PXFER = sACKS();sRmn(next()) + sACKD();sRmn(del()) + sNACK();sRmn(x′)

Firstly, PINIT initiates a session of type GPOP as S then it behaves according to TS. The
non-deterministic choice is resolved in the conditional statement of PMBOX. �

Ex. 4 gives an implementation of the server T′S of the multiparty variant of POP2.

Example 4. Let G′POP be as in Ex. 2 and P′INIT=uS(s).P′S where

P′S = sQUIT();PEXIT+ sHELO(x);PAUTH
PAUTH = sREQx;sRES(y);P′MBOX
P′MBOX = if auth(x)∧ y : sRfn(inbox);PNMBR else sE;PEXIT

Here, P′INIT resolves the non-deterministic choice in P′MBOX by taking into account both
the value returned by auth() and the feedback of A stored in variable y. �

4 Whole-Spectrum Implementation

Definition 1 below introduces the notion of candidate implementation of a global type,
that is a system consisting of one process for each role in the global type.

Definition 1 (Implementation). Given G(y)
9
= G s.t. P (G) = {p1, . . . ,pn} and a map-

ping ι assigning a process to each p ∈ P (G), a ι-implementation of G is a system I ι
G

such that either (i) I ι
G ≡ ι(p1) | . . . | ι(pn) and y∩fc(ι(p1)) = . . .= y∩fc(ι(pn)) = /0

or (ii) I ι
G ≡ (νy)(ι(p1) | . . . | ι(pn) | y : M).

In case (i) the session that implements G is not initiated. For simplicity, we assume
that roles do not use the channels defined by the global type before initiating the corre-
sponding session (i.e., y∩fc(ι(pi)) = /0). This is not a limitation since channel names
can always be renamed to avoid clashes. Case (ii) captures already initiated sessions;
wlog, we assume that the system and the global type use the same session channels y.

We characterise WSI as a relation between the execution traces of a global type G
and its implementations I ι

G . An execution trace of I ι
G is a sequence of input and output

actions decorated with the role that performs them (in symbols 〈p,s!U〉 and 〈p,s?U〉).

Resolving Non-determinism in Choreographies 503

Let 〈ι(p),σ〉 e′�α−−−→ 〈ι′(p),σ′〉 stand for 〈ι(p),σ〉 e′�α−−−→ 〈P,σ′〉 and ι′ = ι[p �→ P]

〈I ι
G ,σ〉 e�τ−−→ 〈I ι′

G ,σ′〉 〈ι(p),σ〉 e′�α−−−→ 〈ι′(p),σ′〉
fc(α)∩y �= /0 r ∈ Ru(〈I ι′

G ,σ′〉) obj(α) : U

〈p,α{obj(α)/U}〉r ∈ Ru(〈I ι
G ,σ〉)

[RRInt]
〈I ι

G ,σ〉 �−→

ε ∈ Ru(〈I ι
G ,σ〉)

[RREnd]

〈I ι
G ,σ〉 e�α−−→ 〈I ι′

G ,σ′〉 u �∈ fc(α) 〈ι(p),σ〉 e′�β−−→ 〈ι′(p),σ′〉
fc(β)∩y = /0 r ∈ Ru(〈I ι′

G ,σ′〉)

r ∈ Ru(〈I ι
G ,σ〉)

[RRExt]

Fig. 3. Runs of implementations

Definition 2 (Runs of implementations). Let I ι
G be an implementation of G(y)

9
= G.

The set Ru(〈I ι
G ,σ〉) of runs of I ι

G initiated on u with store σ is the least set closed with
respect to the rules in Fig. 3. We write Ru(I ι

G) for Ru(〈I ι
G , /0〉). The runs of a set of

implementations I is Ru(I) = ∪I∈IRu(I).

Rules in Fig. 3 rely on the semantics of Fig. 2. In rule [RRInt] (where obj(α) = v for
α = sv or α = sv), a system reduces when some process ι(p) in the implementation
interacts over a session channel (i.e., α is either yv or yv with y∈ y). Since the action α
performed by ι(p) involves a session channel of the global type, an event α associated
to the role p is added to the trace. Note that the actual value of the message α is sub-
stituted by its type, i.e., α{obj(α)/U} in place of α. Rule [RREnd] is straightforward.
Rule [RRExt] accounts for a computation step that does not involve session channels,
i.e., an internal transition τ in a role, a communication over a channel not in y, or a
session initiation. This rule allows a process to freely initiate sessions over channels
different from u (i.e., sessions that do not corresponds to the global type G). On the
contrary, when a role attempts to initiate a session over u, rule [RRExt] requires all roles
in the implementation to initiate the session (this behaviour is imposed by the premise
u �∈ fc(α)). We assume that any role in the implementation will execute exactly one ac-
tion over the channel u which also matches the role assigned by ι. Nested sessions are
handled by assuming that all sessions are created over different channels that have the
same type. This is just a technical simplification analogous to the possibility of having
annotations to indicate the particular instance of the session under analysis.

For global types, we deviate from standard definition of traces [9,7] and use, for tech-
nical convenience, annotated traces that distinguish mandatory from optional actions.
We write [r] to denote the optional sequence r. Moreover, we consider an asynchronous
communication model as in [16] and a trace implicitly denotes the equivalence class of
all traces obtained by permuting causally independent actions.

Definition 3 (Runs of a global type). Given a global type term G, the set R (G) denotes
the runs allowed by G and is defined as the least set closed under the rules in Fig. 4.

The first four rules are straightforward. Rule [RGPar] considers just the sequential com-
position of the traces corresponding to the two parallel branches (recall that a trace de-
notes an equivalence class of executions). The traces of an iterative type G∗

f
are given

504 L. Bocchi, H. Melgratti, and E. Tuosto

ε ∈ R (end)
[RGEnd]

〈p,s!U〉〈q,s?U〉 ∈ R (p→ q : s〈U〉)
[RGComm]

r ∈ R (G1)∪R (G1)

r ∈ R (G1 +G2)
[RGCh]

r1 ∈ R (G1) r2 ∈ R (G2)

r1r2 ∈ R (G1;G2)
[RGSeq]

r1 ∈ R (G1) r2 ∈ R (G2)

r1r2 ∈ R (G1 | G2)
[RGPar]

r1 ∈ R (G)

r1 ∈ R̃ (G∗
f
)
[RG∗1]

r1 ∈ R̃ (G∗
f
) r2 ∈ R (G)

[r1]r2 ∈ R̃ (G∗
f
)

[RG∗2]

r ∈ R̃ (G∗
f
) rdy(G) = {p} P (G) = {p,p1, . . . ,pn} ∀1≤ i≤ n : f (pi) = si〈Ui〉

r〈p,s1!U1〉 . . .〈p,sn!Un〉〈p1,s1?U1〉 . . . 〈pn,sn?Un〉 ∈ R (G∗
f
)

[RGIter]

Fig. 4. Runs of a global type

by the rule [RGIter]; the set R̃ (G∗
f
) in the premise contains the traces of the unfolding

of G∗
f

defined by the rules [RG∗1] and [RG∗2]. Optional events are introduced when un-
folding an iterative type (rule [RG∗2]). The main motivation is that an iterative type G∗

f

denotes an unbounded number of repetitions G (i.e., an infinite number of traces). Note
that R̃ (G∗

f
) = {r1, [r1]r2, [[r1]r2]r3, . . .} with ri ∈ R (G). When implementing an itera-

tive type, we will allow the implementation to perform just a finite number of iterations
(but we require at least once iteration). Annotation of optional events are instrumental to
the comparison of traces associated with iterative types (which is defined below). Rule
[RGIter] adds the events associated to the termination of an iteration: (i) the ready role
p sends the termination signal to any other role by using the dedicated channels speci-
fied by f (i.e., 〈p,s1!U1〉 . . . 〈p,sn!Un〉), and (ii) the waiting roles receive the termination
message (i.e., 〈p1,s1?U1〉 . . . 〈pn,sn?Un〉). As for parallel composition, we just consider
one of the possible interleavings for the receive events (that can actually happen in any
order).

We use the operator � to compare annotated traces, which is defined as the least
preorder satisfying the following rules

[r]� ε ε� r r� r′ =⇒ [r]� [r′] r1 � r′1∧ r2 � r′2 =⇒ r1r2 � r′1r′2

Basically, r�r′ means that r′ matches all mandatory actions of r and all optional actions
in r′ are also optional in r. Let R1 and R2 be two sets of annotated traces, we write
R1 � R2 if r ∈ R1 implies ∃r′ ∈ R2 such that r� r′.

Definition 4 (Whole-spectrum implementation). A set I of implementations covers
a global type G with respect to u iff R (G) � Ru(I). A process P is a whole-spectrum
implementation of pi ∈ P (G) = {p0, . . . ,pn} when there exists a set I of implementations
that covers G with respect to u s.t. I ι

G ∈ I implies ι(pi) = P.

A whole-spectrum implementation (WSI) of a role pi is a process P such that any ex-
pected behaviour of the global type can be obtained by putting P into a proper context.
For iteration types, the comparison of annotated traces implies that the implementation
has to be able to perform the iteration body at least once but possibly many times.

Resolving Non-determinism in Choreographies 505

Remark 1. A set of implementations covering a global type G can exhibit more be-
haviour than the runs of G . Nonetheless, we use WSI with the usual soundness require-
ment (given in § 6) to characterise valid implementations.

5 Typing Rules

We now give a typing system to guarantee that well-typed systems are a WSI of their
global type. Systems are typed by judgements of the form C Γ � S � Δ � Γ′
stipulating that, under condition C and environment Γ, system S is typed as Δ and
yields Γ′ (where environments Γ, Γ′ and Δ are as in § 2.3). Condition C is called context
assumption; it is a logical formula derivable by the grammar

C ::= e
∣∣ ¬C

∣∣ C ∧C where e is of type bool

that identifies the assumptions on variables taken by processes in S. The map Γ′ extends
Γ with the sorts for the names bound in S. This is needed to correctly type P;Q where
in fact a free name of Q could be bound in P.

Due to space limits, Fig. 5 gives only the typing rules to validate processes (the
rules for systems are adapted from [14] and detailed in [3, Appendix C]). Condition
C �� ⊥ is implicitly assumed among the hypothesis of each rule of Fig. 5. Rule [VReq]
types session requests of the form un(y).P; its premise checks that P can be typed by
extending Δ with the mapping from session names y to the projection of the global
type Γ(u) on the 0-th role. Dually, rule [VAcc] types the acceptance of a session request
as i-th role. Rule [VRec] types an external choice P = ∑

i∈I
yi(xi);Pi checking that each

branch Pi can be typed against the respective continuation of the type, Δ,y : Ti (once
Γ is updated with the type assignment on the bound name xi); rule [VRec] cannot be
applied (making the validation fail) when the names in fv(P)∪fc(P) are not mapped
to the same sorts in all environments Γi. Rule [VSend] is trivial.

Rules [VThen] and [VElse] handle the cases in which the guard of the conditional
statement is either a tautology or a contradiction. Rule [VCond] ensures that both branches
can be selected by fixing a proper assumption (i.e., both C ∧e and C ∧¬e are consistent).
Note that C is augmented with the condition e (resp. ¬e) for typing the ‘then’-branch
(resp. ‘else’-branch). The resulting type is Δ1 �� Δ2 defined in Fig. 6. The merge Δ1 �� Δ2

is defined only when Δ1 and Δ2 are compatible, namely iff

∀s1 ∈ dom(Δ1),s2 ∈ dom(Δ2) : s1∩ s2 �= /0 =⇒ s1 = s2

For s /∈ dom(Δ1)∩dom(Δ2), the merging behaves as the union of environments Δ1 and
Δ2, otherwise it returns the merging of the local types T1 = Δ1(s) and T2 = Δ2(s); in
turn, T1 �� T2 yields an internal choice of T1 and T2, but for a common sequence of
outputs. Rule [VFor1] assigns the type T ∗ to a for loop when its body P has type T
under C extended with x ∈ , and the environment Γ extended with x : U. Rule [VFor2]
is for empty lists. By rule [VLoop], the type of a loop is T ∗;b?U when its body P has
type T and b is the channel used to receive the termination signal. Notice that the
environments of the rules [VFor1] and [VLoop] include only one session (respectively
y : T ∗ and y : T ∗;b?U), hence the body can only perform actions within a single session.

506 L. Bocchi, H. Melgratti, and E. Tuosto

Γ(u)≡G(y) C Γ � P � Δ,y : G(y)�0 � Γ′

C Γ � un(y).P � Δ � Γ′
[VReq]

Γ(u)≡G(y) C Γ � P � Δ,y : G(y)� i � Γ′

C Γ � ui(y).P � Δ � Γ′
[VAcc]

P = ∑
i∈I

yi(xi);Pi ∀i : yi ∈ y and C Γ,xi : Ui � Pi � Δ,y : Ti � Γi

Γ′ =
⋂

i∈I Γi fv(P)∪fc(P)⊆ dom(Γ′)

C Γ � P � Δ, y : ∑
i∈I

yi?Ui;Ti � Γ′
[VRec]

Γ(e)=U y ∈ y

C Γ � ye � y : y!U � Γ
[VSend]

Δ(s) = end ∀s ∈ dom(Δ)

C Γ � 0 � Δ � Γ
[VEnd]

C Γ � P1 � Δ1 � Γ1 C Γ1 � P2 � Δ1 � Γ2

C Γ � P1;P2 � Δ1;Δ2 � Γ2

[VSeq]

Γ(e)=bool C ∧ e �� ⊥ C ∧¬e � ⊥ C ∧ e Γ � P � Δ � Γ′

C Γ � if e : P else Q � Δ � Γ′
[VThen]

Γ(e)=bool C ∧ e � ⊥ C ∧¬e �� ⊥ C ∧¬e Γ � Q � Δ � Γ′

C Γ � if e : P else Q � Δ � Γ′
[VElse]

Γ(e)=bool C ∧ e �� ⊥ C ∧¬e �� ⊥
C ∧ e Γ � P � Δ1 � Γ1 C ∧¬e Γ � Q � Δ2 � Γ2

C Γ � if e : P else Q � Δ1 �� Δ2 � Γ1∩Γ2

[VCond]

Γ()=[U] C � �= ε C ∧ x ∈ Γ,x : U � P � y : T � Γ′

C Γ � for x in : P � y : T ∗ � Γ′
[VFor1]

C � = ε

C Γ � for x in : P � y : end � Γ′
[VFor2]

C Γ � N � y : T � Γ′

C Γ � do N until b(x) � y : T ∗;b?U � Γ′,x : U
[VLoop]

Fig. 5. Typing rules for processes

Iterations involving messages over multiple sessions could not be checked composition-
ally since the conformance of a process to a local type would not be sufficient to ensure
the correct coordination of a ‘for’-iteration with the corresponding ‘loop’-iterations.
Rule [VEnd] types idle processes with a Δ that maps each session s to the end type.
Rule [VSeq] checks sequential composition. Here Δ1;Δ2 is the pointwise sequential
composition of Δ1 and Δ2, i.e., (Δ1;Δ2)(s) = T1;T2 where Ti = Δi(s) if s ∈ dom(Δi)
and Ti = end otherwise, for i = 1,2. Note that P2 is typed under the environment Γ1,
which contains the names bound by the input prefixes of P1.

The following result ensures that type checking is decidable (it follows from the
obvious recursive algorithm and decidability of the underlying logic).

Resolving Non-determinism in Choreographies 507

(Δ1 �� Δ2)(s) =

⎧⎪⎨⎪⎩
Δ1(s) if s ∈ dom(Δ1)\dom(Δ2)

Δ2(s) if s ∈ dom(Δ2)\dom(Δ1)

Δ1(s) �� Δ2(s) if s ∈ dom(Δ1)∩dom(Δ2)

T1 �� T2 =

⎧⎪⎨⎪⎩
T1⊕T2 if T1 = y1!U1;T ′

1 , T2 = y2!U2;T ′
2 , y1 �= y2

y!U;(T ′
1 �� T ′

2) if T1 = y!U;T ′
1 , T2 = y!U;T ′

2

⊥ otherwise

Fig. 6. Composition of types

Theorem 1. Given C ,Γ,Γ′,S and Δ, then the provability of C Γ � S � Δ � Γ′ is
decidable.

Our proof system discerns between B1 and B2 in the introduction (i.e., only B1

is validated) due to the rules for conditional statements and to the lack of a rule for
type refinement. In fact, after a few verification steps on B1 (resp. B2) we would reach
the following scenario: P1(c) = if c : sOK;sAMOUNT(x) else sKO (resp. P2(c) = sKO) and
Δ = s : OK!;AMOUNT?⊕ KO!. The verification of P1(c) terminates successfully after an
application of [VCond]. In the case of P2(c) the only rule for a sending process, [VSend],
cannot be applied against a type with a choice.

5.1 Running Examples

We now apply our typing to different implementations of POP2.

Example 5. The first few verification steps of PINIT from Ex. 3 are shown below. By
rule [VAcc], the newly created session is added to the session environment, then the
verification of the external choice is split by [VRec] into the verification of each branch.
As we omit the whole derivation, just assume that PINIT yields Γ′ = Γ,x : Str.

true Γ � PEXIT � s : TEXIT � Γ′
true Γ,x : Str � PMBOX � s : TMBOX � Γ′

[VRec]
Γ(u)≡ GPOP(s) true Γ � sQUIT();PEXIT+ sHELO(x);PMBOX � s : TS � Γ′

[VAcc]
true Γ � uS(s).PS � /0 � Γ′

Consider the second branch PMBOX; assuming that true∧auth(x) is neither a tautol-
ogy nor a falsum, we apply [VCond] (if it was, the verification would terminate unsuc-
cessfully as the only possible branch would not validate against the choice in TMBOX).

auth(x) Γ,x : Str � sRmn(inbox);PNMBR � s : R!Int;TNMBR � Γ′
¬auth(x) Γ,x : Str � sE;PEXIT � s : E!;TEXIT � Γ′

[VCond]
true Γ,x : Str � PMBOX � s : TMBOX � Γ′

The rest is trivial observing s : TMBOX = s : R!Int;TNMBR �� s : E!;TEXIT. �

Ex. 6 types the multiparty variant given in Ex. 4.

Example 6. Assume Γ(u) ≡ G′POP. The first steps are as in Ex. 5 by rules [VAcc] and
[VRec]. We focus on the second branch that in this case is PAUTH and apply [VSeq].

true Γ,x : Str � sREQx � s : REQ!Str � Γ′
true Γ,x : Str � sRES(y);P′MBOX � s : RES?Bool;TAUTH � Γ′

[VSeq]
true Γ,x : Str � sREQx;sRES(y);P′MBOX � s : TAUTH � Γ′

508 L. Bocchi, H. Melgratti, and E. Tuosto

We show the verification of the first branch

−
[VEnd]

true Γ,x : Str � 0 � s : end � Γ′
[VSend]

true Γ,x : Str � sREQx � s : REQ!Str � Γ′

and the successive steps for the second branch:

true Γ,x : Str,y : Bool � P′MBOX � s : T′MBOX � Γ′
[VRec]

true Γ,x : Str � sRES(y);P′MBOX � s : RES?Bool;T′MBOX � Γ′

The verification of P′MBOX proceeds with an application of [VCond], [VIf] or [VElse]
depending on auth()∧ y. If auth() is not a contradiction then [VCond] can be applied
as the condition depends from the context (that is the administrator). This leads to a suc-
cessful validation. In this case, unlike in Ex. 5, the implementation is whole-spectrum
even if auth() is a tautology. If auth() is a falsum then [VElse] is applied and the
process will not validate against the type which has a choice. �

Ex. 7 deals with a process implementing two interleaved sessions. Ex. 7 shows that
the verification scales to more complex processes that compose different protocols.

Example 7. We give a process that, upon request, engages as a server in a session GPOP
(§ 2.2), and as a client in a session GADMIN to outsource the authentication. Instead of
embedding in the same session this extra interactions with the administrator, as we did
in Ex. 2, we represent the multiparty interaction as two interleaved sessions.

GADMIN=C→ A : REQ 〈Str〉;A→ C : RES 〈Bool〉 TC=REQ!Str;RES?Bool

In GADMIN, the client C sends the administrator A a password and A replies along RES.
TC is the projection on GADMIN on C. We assume Γ(u)≡ GPOP and Γ(v)≡ GADMIN. Process
PINIT starts, upon request, a session of type GPOP and then requests to start a session of
type GADMIN. We omit the definition of processes PNMBR and PEXIT which are as in Ex. 3.

P′′INIT=uS(s).vC(t).P′′S P′′S=sQUIT();PEXIT+ sHELO(x);PAUTH
PAUTH=tREQx;tRES(y);P′′MBOX P′′MBOX=if y : sRfn(inbox);PNMBR else sE;PEXIT

The authentication is delegated to the administrator in session t via the message
along tREQ. Session s continues using the information in y, which stores the last message
received in session t. The first verification steps are by rules [VAcc], [VReq] and [VRec].

true Γ � PEXIT � s : TEXIT, t : TS � Γ′
true Γ,x : Str � PAUTH � s : TMBOX , t : TS � Γ′

[VRec]
Γ(u)≡ GPOP(s) Γ(v)≡ GPOP(t) true Γ � P′′S � s : TS, t : TS � Γ′

[VAcc],[VReq]
true Γ � uS(s).vS(t).P′′S � /0 � Γ′

The verification of the second branch PAUTH proceeds with one application of [VSeq]
where (s : TMBOX, t : TS)≡ (s : end, t : REQ!Str);(s : TMBOX, t : RES?Bool).

Resolving Non-determinism in Choreographies 509

Let push([],s!v) = s!v[] and push(s1!v1; . . . ;sn!vn[],s!v) = s1!v1; . . . ;sn!vn;s!v[]

Γ•Δ,s : s!v;M@p
sv→ Γ•Δ,s : M@p [TQueue]

Γ• s : T sv→ Γ• s : T ′ M′[] = push(M[],s!v)

Γ•Δ,s : M[T]@p
τ→ Γ•Δ,s : M′[T ′]@p

[TCom1]

Γ• s : T sv→ Γ• s : T ′

Γ• s : s!v;M1@p, M2[T]@q
τ→ Γ• s : M1@p, M2[T ′]@q

[TCom2]

u ∈ dom(Γ) Γ(u)≡ G(s)
9
= G P (G) = {p1, . . . ,pn}

Γ•Δ τ→ Γ•Δ,s : (G�p1)@p1, . . . ,s : (G�pn)@pn

[TInit]

Fig. 7. Additional labelled transitions (to those of Fig. 1) for runtime specifications

true Γ,x : Str � tREQx � Δ � s : end, t : REQ!Str
true Γ,x : Str � tRES(y);P′′MBOX � s : TMBOX , t : RES?Bool � Γ′

[VSeq]
true Γ,x : Str � tREQx;tRES(y);P′′MBOX � s : TMBOX, t : TS � Γ′

Focusing on the second branch we apply [VRec]

true Γ,x : Str,y : Bool � P′′MBOX � s : TMBOX, t : end � Γ′
[VRec]

true Γ,x : Str � tRES(y);P′′MBOX � s : TMBOX , t : RES?Bool � Γ′

Rule [VCond] can be applied since condition y of the conditional statement in P′′MBOX
is neither a tautology nor a contradiction. The rest is as in Ex. 5. �

6 Properties of the Type System

Runtime Types. The properties of our type system are stated in terms of the behaviour
of local types. As in [14], runtime types extend local types with message contexts M of
the form s1!v1; · · · ;sn!vn[] with n≥ 0, namely M is a sequence of outputs followed by
a hole []. To model asynchrony, we stipulate the equality

s1!v1;s2!v2;M≈ s2!v2;s1!v1;M if s1 �= s2

A runtime type is either a message context M or a “type in context”, that is a term
M[T]. We extend environments so to map session names s to runtime types of roles in
s; we write Δ,s : M[T]@p to specify that (1) the runtime type of p ∈ P in s is M[T] and
(2) that for any s : M′[T ′]@q in Δ we have q �= p.

The semantics of runtime types is obtained by adding the rules in Fig. 7 to those in
Fig. 1. Rule [TQueue] removes a message from of a queue. Rules [TCom1] and [TCom2]
establish how runtime specifications send and receives messages (the transition in their
premises are derived from the rules in Fig. 1). Rule [TInit] initiates a new session by
mapping the new session s to the projections of the global type assigned by Γ.

Soundness. The typing rules in § 5 ensure the semantic conformance of processes with
the behaviour prescribed by their types. Here, we define conformance in terms of condi-
tional simulation that relates states and specifications. Our definition is standard, except
for input actions, for which specifications have to simulate only inputs of messages with
the expected type (i.e., systems are not responsible when receiving ill-typed messages).

Define
α

=⇒=
τ→
∗ α→. Let Γ•Δ s

=⇒ shorten ∃Δ′∃v : Γ•Δ sv
=⇒ Γ•Δ′.

510 L. Bocchi, H. Melgratti, and E. Tuosto

Definition 5 (Conditional simulation). A relation R between states and specifications

is a conditional simulation iff for any (〈S,σ〉,Γ•Δ) ∈ R, if 〈S,σ〉 e�α−−→ 〈S′,σ′〉 then

1. if α = sv then Γ•Δ s
=⇒ and if Γ•Δ sv

=⇒ then there is Γ•Δ′ such that Γ•Δ sv
=⇒

Γ•Δ′ and (〈S′,σ′〉,Γ•Δ′) ∈ R
2. otherwise, Γ•Δ α

=⇒ Γ•Δ′ and (〈S′,σ′〉,Γ•Δ′) ∈R.

We write 〈S,σ〉� Γ•Δ if there is a conditional simulation R s.t. (〈S,σ〉,Γ•Δ) ∈R.

By (1), only inputs of S with the expected type have to be matched by Γ•Δ (recall rule
[TRec] in Fig. 1), while it is no longer expected to conform to the specification after an
ill-typed input (i.e., not allowed by Γ•Δ).

Def. 6 establishes consistency for stores in terms of preservation of variables’ sorts.

Definition 6 (Consistent store). Given an environment Γ, a context assumption C , and
a state 〈S,σ〉 with var(S)⊆ dom(σ), store σ is consistent for S with respect to Γ and C
iff ∀x ∈ dom(σ), σ(x) : Γ(x), and C ↓ σ = true.

Theorem 2 (Subject reduction). Assume that

C Γ � S � Δ � Γ′ and 〈S,σ〉 e�α−−→ 〈S′,σ′〉
with σ consistent for S with respect to Γ and C . Then

1. if α = sv then Γ•Δ s
=⇒ and if Γ•Δ sv

=⇒ then there is Γ•Δ′ such that Γ•Δ sv
=⇒

Γ•Δ′ with v : U and C ∧ e Γ,x : U � S′ � Δ′ � Γ′′ for some x and some Γ′′ ⊇ Γ′
2. otherwise Γ•Δ α

=⇒ Γ•Δ′ and C ∧ e Γ � S′ � Δ′ � Γ′′ for some Γ′′ ⊇ Γ′.
Corollary 1 (Soundness). If C Γ � S � Δ � Γ′ then 〈S,σ〉 � Γ •Δ for all σ
consistent store for S with respect to Γ and C .

WSI by typing
We show that well-typed processes are WSIs (Def. 4). First, we relate the runs of a

global type with those of its corresponding runtime types. Then, we state the correspon-
dence between the runs of runtime types and well-typed implementations.

Definition 7 (Runs of runtime types). The set Rs(Δ) denotes the runs of events over
the channels in s generated by Δ, and is inductively defined by the rules in Fig. 8.

Rule [RTCom] builds the runs for two communicating types. Rules [RTIt1] and [RTIt2]
unfold the runs of an iterative type. Note that the mandatory actions of runs associated
to recursive types are those requiring at least one execution of the iteration body, while
additional executions are optional. The remaining rules are self-explanatory. (The cor-
respondence between the operational and denotational semantics is in [3, Appendix E].)

Thm. 3 ensures that well-formed global types are covered by their projections, while
Thm. 4 states that the set of well-typed implementation covers its specification.

Theorem 3. For any global type G(s), R (G(s)) � Rs({s : (G(s)�p)@p}p∈P (G(s))).

Theorem 4. Let G(s)
9
= G be a global type. Fix p ∈ P (G) and P a well-typed imple-

mentation of p. Define

Ip,P = {I ι
G |ι(p) = P,∀q ∈ P (G) : true Γ,u : G(s) � ι(q) � Δ,s : G(s)�q � Γ′}

then, Rs({s : (G(s)�p)@p}p∈P (G)) � Ru(Ip,P).

Resolving Non-determinism in Choreographies 511

r ∈ Rs(Δ,s : M[Tk]@p, M′[T′k]@q) k ∈ J

〈p,sk!Uk〉〈q,sk?Uk〉r ∈ Rs(Δ,s : M[sk!Uk;Tk]@p, M′[∑
j∈J

s j?U j;T
′
j]@q)

[RTCom]

r ∈ Rs(Δ,s : Ti;T j@p)

r ∈ Rs(Δ,s : T∗i ;T j@p)
[RTIt1]

rr′ ∈ Rs(Δ,s : Ti;T∗i ;T j@p) r′ ∈ Rs(Δs : Ti;T j@p)

[r]r′ ∈ Rs(Δ,s : T∗i ;T j@p)
[RTIt2]

r ∈ Rs(Δ) s �= r

r ∈ Rs(Δ,r : T)
[RTPar]

r ∈ Rs(Δ)

r ∈ Rs(Δ,s : end@p)
[RTEnd1] ε ∈ Rs(/0)[RTEnd2]

r ∈ Rs(Δ,s : s j!U j;T j@p) j ∈ I

r ∈ Rs(Δ,s :
⊕
i∈I

si!Ui;Ti@p)
[RTCh]

Fig. 8. Runs of runtime local types

7 Conclusion and Related Work

WSI forbids implementations of a role that persistently avoid the execution of some al-
ternative branches in a choreography. Although WSI is defined as a relation between the
traces of a global type and those of its candidate implementations, it can be checked by
using multiparty session types. Technically, we show that (i) the sets of the projections
of a global type G preserves all the traces in G (Thm. 3); and (ii) any trace of a local
type can be mimicked by a well-typed implementation, if interacting in a proper con-
text (Thm. 4). The soundness of our type system (Corollary 1) ensures that well-typed
implementations behave as prescribed by the choreography.

We are currently working on the extension of WSI to other models of choreography
as e.g. those based on automata [12], which poses the classical question about the de-
cidability of the notion of realisability (see [1]). To the best of our knowledge, the only
proposal dealing with complete (i.e., exhaustive) realisations in a behavioural context
is [7] but this approach focuses on non-deterministic implementation languages. Our
type system is more restrictive than [14,2,4,8,6]. We do not consider subtyping because
the liberal elimination of internal choices prevents WSI. The investigation of suitable
forms of subtyping for WSIs is scope for future work.

WSI coincides with projection realisability [17,22,7] when implementation languages
feature non-deterministic internal choices. On the contrary, WSI provides a finer crite-
rion to distinguish deterministic implementations, as illustrated by the motivating ex-
ample in the introduction. To some extent our proposal is related to the fair subtyping
approach in [21], where refinement is studied under the fairness assumption: Fair sub-
typing differs from usual subtyping when considering infinite computations but WSI
differs from partial implementation also when considering finite computations.

The static verification of WSI requires a form of recursion more restrictive than the
one in [14,2], where the number of iterations is limited. This restriction is on the lines
of [7] that also considers finite traces. The extension of our theory with a more general
form of iteration is scope for future work.

Acknowledgements. We thank the reviewers for their insightful and helpful comments.

512 L. Bocchi, H. Melgratti, and E. Tuosto

References

1. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL (2012)
2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida, N.:

Global progress in dynamically interleaved multiparty sessions. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

3. Bocchi, L., Melgratti, H., Tuosto, E.: Extended version of this paper (2014)
http://publicaciones.dc.uba.ar/Publications/2014/BMT14c/

4. Bravetti, M., Zavattaro, G.: A theory of contracts for strong service compliance. MSCS 19(3)
(2009)

5. Butler, M., Postel, J., Chase, D., Goldberger, J., Reynoldsa, J.: Post office protocol - version
2. RFC 918 (February 1985), http://tools.ietf.org/html/rfc937

6. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

7. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party session.
LMCS 8(1) (2012)

8. Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 11–228. Springer, Heidelberg (2009)

9. Chen, T.-C., Honda, K.: Specifying stateful asynchronous properties for distributed pro-
grams. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 209–224.
Springer, Heidelberg (2012)

10. Crocker, D.: Standard for the format of arpa internet text messages. RFC 822 (February
1982), www.ietf.org/rfc/rfc0822.txt

11. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An overview. In: Lan-
eve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer, Heidelberg (2010)

12. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message contents. Int.
J. Web Service Res. 2(4), 68–93 (2005)

13. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Inf. 42(2/3),
191–225 (2005)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL
(2008)

15. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y. (2004),
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. CACM 21(7),
558–564 (1978)

17. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between interaction-and
process-oriented choreographies. In: SEFM (2008)

18. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239. Springer, Heidelberg
(2012)

19. Lohmann, N., Wolf, K.: Decidability results for choreography realization. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084,
pp. 92–107. Springer, Heidelberg (2011)

20. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
21. Padovani, L.: Fair subtyping for multi-party session types. In: De Meuter, W., Roman, G.-C.

(eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 127–141. Springer, Heidelberg (2011)
22. Salaün, G., Bultan, T.: Realizability of choreographies using process algebra encodings. In:

Integrated Formal Methods (2009)
23. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies. In: Du-

mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer, Heidelberg
(2008)

http://publicaciones.dc.uba.ar/Publications/2014/BMT14c/
http://tools.ietf.org/html/rfc937
www.ietf.org/rfc/rfc0822.txt
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217

A Correspondence between Two Approaches

to Interprocedural Analysis in the Presence
of Join

Ravi Mangal1, Mayur Naik1, and Hongseok Yang2

1 Georgia Institute of Technology
2 University of Oxford

Abstract. Many interprocedural static analyses perform a lossy join for
reasons of termination or efficiency. We study the relationship between
two predominant approaches to interprocedural analysis, the summary-
based (or functional) approach and the call-strings (or k-CFA) approach,
in the presence of a lossy join. Despite the use of radically different ways
to distinguish procedure contexts by these two approaches, we prove
that post-processing their results using a form of garbage collection ren-
ders them equivalent. Our result extends the classic result by Sharir and
Pnueli that showed the equivalence between these two approaches in the
setting of distributive analysis, wherein the join is lossless.

We also empirically compare these two approaches by applying them to
a pointer analysis that performs a lossy join. Our experiments on ten Java
programs of size 400K–900K bytecodes show that the summary-based ap-
proach outperforms an optimized implementation of the k-CFA approach:
the k-CFA implementation does not scale beyond k=2,while the summary-
based approach proves up to 46%more pointer analysis client queries than
2-CFA.The summary-based approach thus enables, via our equivalence re-
sult, to measure the precision of k-CFA with unbounded k, for the class of
interprocedural analyses that perform a lossy join.

1 Introduction

Two dominant approaches to interprocedural static analysis are the summary-
based approach and the call-strings approach. Both approaches aim to analyze
each procedure precisely by distinguishing calling contexts of a certain kind. But
they differ radically in the kind of contexts used: the summary-based (or func-
tional) approach uses input abstract states whereas the call-strings (or k-CFA)
approach uses sequences of calls that represent call stacks.

Sharir and Pnueli [SP81] showed that, in the case of a finite, distributive anal-
ysis, the summary-based approach is equivalent to the unbounded call-strings
approach (hereafter called ∞-CFA). In this case, both these approaches main-
tain at most one abstract state at each program point under a given context of
its containing procedure, applying a join operation to combine different abstract
states at each program point into a single state. The distributivity condition en-
sures that this join is lossless. As a result, both approaches compute the precise
meet-over-all-valid-paths (MVP) solution, and are thus equivalent.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 513–533, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

514 R. Mangal, M. Naik, and H. Yang

Many useful static analyses using the summary-based approach, however, lack
distributivity. They too use a join, in order to maintain at most one abstract
state at each program point under a given context, and thereby scale to large
programs (e.g., [FYD+08]). But in this non-distributive case, the join is lossy,
leading such analyses to compute a solution less precise than the MVP solution.

We study the relationship between the summary-based and call-strings ap-
proaches, in the presence of a lossy join. Our main result is that these two ap-
proaches are equivalent in precision despite their use of radically different ways
to distinguish procedure contexts. This result yields both theoretical and practi-
cal insights. The theoretical insight includes two new proof techniques. The first
is a form of garbage collection on the results computed by the non-distributive
summary-based approach. This garbage collection removes entries of procedure
summaries that are used during analysis but not in the final analysis results.
It provides a natural way for connecting the results of the summary-based ap-
proach with those of ∞-CFA. The other is a new technique for proving that a
fixpoint of a non-monotone function is approximated by a pre-fixpoint of the
function. Standard proof techniques do not apply because of non-monotonicity,
but such an approximation result is needed in our case because non-distributive
summary-based analyses use non-monotone transfer functions.

On the practical side, our equivalence result provides, for the class of
non-distributive interprocedural analyses, a feasible approach to determine how
precise k-CFA can get using arbitrary k. This feasible approach is the summary-
based one, which scales much better than k-CFA. State-of-the-art algorithms
for k-CFA do not scale to beyond small values of k, as the number of call-string
contexts in which they analyze procedures grows exponentially with k. As a con-
crete example, we compare the performance of the summary-based approach to
an optimized BDD-based implementation of k-CFA for a non-distributive pointer
analysis for object-oriented programs. On ten Java programs each of size 400K-
900K bytecodes from the DaCapo benchmark suite, we find that the k-CFA im-
plementation does not scale beyond k=2, and even for k=2, it computes 4X–7X
more contexts per benchmark than the summary-based approach. Furthermore,
for three clients of the pointer analysis—downcast safety, call graph reachabil-
ity, and monomorphic call inference—the summary-based approach proves up to
46% more client queries per benchmark than 2-CFA, providing an upper bound
on the number of queries that is provable by k-CFA using arbitrary k.

2 Example

We illustrate various interprocedural approaches by means of a pointer analysis
on the Java program in Figure 1. All the approaches infer points-to information—
aliasing relationships among program variables and heap objects—but differ in
their treatment of methods. We illustrate five key aspects of these approaches: (i)
0-CFA produces imprecise results; (ii) using k-CFA with k > 0 helps to address
this imprecision but hurts scalability; (iii) summary-based analysis (hereafter
called SBA) causes no loss in precision compared to k-CFA; (iv) the lossy join

A Correspondence between Two Approaches to Interprocedural Analysis 515

class A {}

class B {}

class Container {
Object holder;

Container() { holder = null; }
void add(Object x) {

if (x.equals(holder)) return;

holder = x;

}
bool isEmpty() {

return (holder==null);

}
}

class C {
static Container foo() {

h1: Container s1 = new Container();

h2: A a = new A();

i1: s1.add(a);

return s1;

}
static Container bar() {

h3: Container s2 = new Container();

h4: B b = new B();

i2: s2.add(b);

return s2;

}
static void taz(Container s){...}
static void main() {

Container s=(*) ? foo() : bar();

j1: // join point

i3: s.isEmpty();

i4: s.isEmpty();

i5: taz(s);

}
}

Fig. 1. Example Java program

operation in SBA allows analyzing methods in fewer contexts and thereby im-
proves scalability; and (v) SBA can merge multiple k-CFA contexts of a method
into a single SBA context which also improves scalability.

We start with 0-CFA which treats method calls in a context insensitive man-
ner. This means that the analysis does not differentiate different call sites to
a method, and merges all the abstract states from these call sites into a single
input. For instance, consider the program in Figure 1, where the main()method
calls either foo() or bar(), creates a container object s containing an A or B

object, and operates on this container s by calling isEmpty() and taz(). When
the pointer analysis based on 0-CFA is applied to main, it imprecisely concludes
that the returned container from foo() may contain an A or B object, instead
of the true case of containing only an A object. Another imprecise conclusion
is what we call call graph reachability. The analysis infers that at one point of
execution, the call stack may contain both foo() and B::equals(), the second
on top of the first, i.e., B::equals() is reachable from foo(). Note that this
reachability never materializes during the execution of the program. The main
source of both kinds of imprecision is that 0-CFA does not differentiate between
the calls to add() from i1 in foo() and i2 in bar(). It merges the abstract states
from both call sites and analyzes add() under the assumption [x → {h2, h4}],
which means that x points to a heap object allocated at h2 or h4, so the object

516 R. Mangal, M. Naik, and H. Yang

x has type A or B. Note that once this assumption is made, the analysis cannot
avoid the two kinds of imprecision discussed above.

One way to resolve 0-CFA’s imprecision is to use an analysis based on k-CFA
with k > 0, which analyzes method calls separately if the call stacks at these call
sites store sufficiently different sequences of call sites. For instance, the pointer
analysis based on 1-CFA analyzes a method multiple times, once for each of its
call sites. Hence, when it is applied to our example, it differentiates two call sites
to add() (i.e., i1 and i2), and analyzes add() twice, once for the call site i1
with the assumption [x→ {h2}] on the parameter x, and again for the call site
i2 with the assumption [x → {h4}]. This differentiation enables the analysis to
infer that the returned container from foo() contains objects of the type A only,
and also that B::equals() is not reachable from foo(). In other words, both
kinds of imprecision of 0-CFA are eliminated with 1-CFA.

An alternative solution to the imprecision issue is to use SBA. Unlike k-CFA,
SBA does not distinguish contexts based on sequences of call sites stored in the
call stack. Instead, it decides that two calling contexts differ when the abstract
states at call sites are different. SBA re-analyzes a method in a calling context
only if it has not seen the abstract state τ of this context before. In Figure 1, the
abstract states at call sites i1 and i2 are, respectively, [s1 → {h1}, a → {h2}]
and [s2 → {h3}, b → {h4}], which become the following input abstract states
to add() after the actual parameters are replaced with the formal parameters;
[this → {h1}, x → {h2}] and [this → {h3}, x → {h4}]. Since these inputs are
different, SBA analyzes method add() separately for the calls from i1 and i2,
and reaches the same conclusion about the return value of foo() and call graph
reachability as that of 1-CFA described previously. This agreement in analysis
results is not an accident. We prove in Section 3 that SBA’s results always
coincide with those of ∞-CFA, a version of k-CFA that does not put a bound
on the length of call-strings.

An important feature of SBA is that at every control-flow join point in a
program, incoming abstract states to this point are combined to a single abstract
state via a lossy join operator (if they all originate from the same input abstract
state to the current method). This greatly helps the scalability of SBA, because
it leads to fewer distinct abstract states at call sites and reduces the number of
times that each method should be analyzed. For instance, when SBA analyzes
the program in Figure 1, it encounters two incoming abstract states at the join
point j1, τ1 = [s → {h1}] from the true branch and τ2 = [s → {h3}] from the
false branch. The analysis combines τ1 and τ2 using a lossy join operator, and
results in τ ′ = [s → {h1, h3}]. As a result, at the subsequent call site i5, the
analysis has only one input abstract state τ ′, instead of two (i.e., τ1 and τ2), and
it analyzes the method taz() only once.

Using a lossy join operator differentiates SBA from the well-known distribu-
tive summary-based analysis [RHS95, SP81], which uses a lossless join. If such
an analysis were applied to our program, it would collect τ1, τ2 as the set {τ1, τ2}
at the join point j1, and analyze the call to taz() twice. As a result, the co-
incidence between the results of SBA and ∞-CFA does not follow from what

A Correspondence between Two Approaches to Interprocedural Analysis 517

(method) m ∈ M = { mmain , ... }
(atomic command) a ∈ A

(method call) i ∈ I

(statement) s ∈ S � (A ∪ I)
(CFG node) n ∈ N
(CFG edge) e ∈ E ⊆ N× S×N

e � 〈n1, s, n2〉
p ∈ P � (N ∪E)

origin(〈n1, s, n2〉)� n1

stmt(〈n1, s, n2〉)� s

target(〈n1, s, n2〉)� n2

callEdge(〈n1, a, n2〉)� false

callEdge(〈n1, i, n2〉)� true
(method of node/edge) method ∈ P→M
(entry node of method) entry ∈ M→N
(exit node of method) exit ∈ M→N

Fig. 2. Notation for interprocedural control flow graphs

was established previously by Sharir and Pnueli. In fact, proving it requires new
proof techniques, as we explain in Section 3.

According to our experiments reported in Section 5, SBA scales better than k-
CFA for high k values. This is because SBA usually distinguishes calling contexts
of a method less than k-CFA, and re-analyzes the method less often than k-CFA.
Concretely, a method may be invoked multiple times with call stacks storing
different sequences of call sites but with the same abstract state. In this case,
k-CFA re-analyzes the method for each call sequence in the stack, but SBA
analyzes the method only once and reuses the computed summary for all the
invocations of this method. In effect, SBA merges multiple k-CFA contexts into
a single SBA context in this case. This phenomenon can be seen in Figure 1
at the two calls to isEmpty() in i3 and i4. Since these call sites are different,
isEmpty() would be analyzed twice by k-CFA with k ≥ 1. However, the abstract
state at both of the call sites is the same [s → {h1, h3}]. Hence, SBA analyzes
the method only once and reuses the computed summary for the second call.

3 Formal Description and Correspondence Theorem

This section formalizes an unbounded k-CFA and a summary-based interproce-
dural analysis. The former is an idealization of usual k-CFA that does not put a
bound on the length of tracked call strings (i.e., sequences of call sites in the call
stack), and records analysis results separately for each call string. To emphasize
the absence of bound, we call this analysis∞-CFA. The summary-based analysis
is a non-distributive variant of the standard summary-based approach for dis-
tributive (and disjunctive) analyses [RHS95]. It treats join points approximately
using a lossy join operator, unlike the standard approach, and trades precision for
performance. The main result of the section is that the summary-based analysis
has the same precision as ∞-CFA, despite the lossy join.

3.1 Interprocedural Control Flow Graph

In our formalism, we assume that programs are specified in terms of interpro-
cedural control flow graphs G = (M,A, I,N,E,method , entry, exit) in Figure 2.
Set M consists of method names in a program, and A and I specify available

518 R. Mangal, M. Naik, and H. Yang

(abstract state) τ ∈ Γ = { τinit , ... }
(lattice operations)

⊔
,
�
∈ P(Γ)→ Γ ⊥,) ∈ Γ � ⊆ Γ× Γ

(transfer functions) �a� ∈ Γ→ Γ
(targets of call) calls(s, τ) ∈ P(M)

(call string) π ∈ Π �
⋃

n≥0(M ∪E)n

(∞-CFA annotation) κ ∈ Acfa = (P×Π)→ Γ
(SBA annotation) σ ∈ Asba = (P× Γ)→ Γ

Fig. 3. Analysis domains and transfer functions

Fcfa(κ)(n, π)=

⎧⎨⎩
⊔
{κ(e, π) | n = target(e) } if �m : n=entry(m)⊔
{ τ | ∃e, π1 : callEdge(e) ∧ π = m⊕ e⊕ π1

∧ τ = κ(origin(e), π1) ∧m ∈ calls(stmt(e), τ) }
if n = entry(m)

Fcfa(κ)(e, π)=

⎧⎨⎩
�stmt(e)�(κ(origin(e), π)) if ¬callEdge(e)⊔
{ τ | ∃τ1,m : τ1 = κ(origin(e), π)
∧m∈ calls(stmt(e), τ1) ∧ τ =κ(exit(m),m⊕ e⊕ π) }

if callEdge(e)

Fig. 4. Transfer function Fcfa on ∞-CFA annotations

atomic commands and method call instructions. Sets N and E determine nodes
and intraprocedural edges of a control flow graph. Each node in this graph be-
longs to a method given by the function method . The functions entry and exit
decide the entry and exit nodes of each method. The figure also shows defined
entities—origin , stmt , target , and callEdge , which can be used to obtain com-
ponents of an edge and to decide the type of the edge. We assume all the five
sets in a control flow graph are finite.

Our control flow graphs are required to satisfy well-formedness conditions.
First, mmain ∈M. Second, for all m ∈M and e ∈ E,

entry(m) �= exit(m) ∧ (method ◦ entry)(m) = (method ◦ exit)(m) = m ∧
(method ◦ target)(e) = (method ◦ origin)(e) = method(e).

The first conjunct means that the entry node and the exit node of a method
are different, the second says that entry and exit pick nodes belonging to their
argument method, and the last conjunct states that an edge and its source and
target nodes are in the same method.

3.2 Formal Description of Analyses

Both∞-CFA and the summary-based analysis assume (Γ, τinit , � �, calls) in Fig-
ure 3, which are needed for performing an intraprocedural analysis as well as pro-
cessing dynamically dispatched method calls. Component Γ is a finite complete
lattice, and consists of abstract states used by the analysis. The next τinit ∈ Γ is
an initial abstract state to the root method mmain , and �a� represents abstract
transfer functions for atomic commands a. The final component calls takes a

A Correspondence between Two Approaches to Interprocedural Analysis 519

Fsba(σ)(n, τ) =

⎧⎨⎩
⊔
{σ(e, τ) | n = target (e) } if �m : n= entry(m)⊔
{ τ | ∃e, τ1 : callEdge(e) ∧ τ=σ(origin(e), τ1)
∧m ∈ calls(stmt(e), τ) }

if n = entry(m)

Fsba(σ)(e, τ)=

⎧⎨⎩
�stmt(e)�(σ(origin(e), τ)) if ¬callEdge(e)⊔
{ τ ′ | ∃τ1,m : τ1 = σ(origin(e), τ)
∧m ∈ calls(stmt(e), τ1) ∧ τ ′ = σ(exit(m), τ1) }

if callEdge(e)

Fig. 5. Transfer function Fsba on SBA annotations

pair (s, τ), and conservatively estimates target methods of a call s in (concrete)
states described by τ , if s is a method call. Otherwise, it returns the empty set.

We require that the components of the analysis satisfy the following proper-
ties: (i) τinit �= ⊥; (ii) calls(s,) and �a� are monotone with respect to the order
in Γ or the subset order1; (iii) calls(s,⊥) = ∅ and �a�(⊥) = ⊥; (iv) for all s and
τ , mmain �∈ calls(s, τ), and if s is not a method call, calls(s, τ) = ∅.
∞-CFA Analysis. The ∞-CFA analysis is an interprocedural analysis that
uses call strings of arbitrary length as calling contexts and analyzes a method
separately for each call string. If a reader is familiar with k-CFA, we suggest to
view ∞-CFA as the limit of k-CFA with k tending towards ∞. Indeed, ∞-CFA
computes a result that is as precise as any k-CFA analysis.

The ∞-CFA works by repeatedly updating a map κ ∈ Acfa = (P ×Π)→ Γ,
called∞-CFA annotation. The first argument p to κ is a program node or an
edge, and the second π a call string defined in Figure 3, which is a finite sequence
of method names and edges. A typical call string is m2 ⊕ e2 ⊕m1 ⊕ e1⊕mmain .
It represents a chain of calls mmain → m1 → m2, where m1 is called by the edge
e1 and m2 by e2. The function κ maps such p and π to an abstract state τ , the
current estimation of concrete states reaching p with π on the call stack.

We order∞-CFA annotations pointwise: κ � κ′ ⇐⇒ ∀p, π : κ(p, π) � κ′(p, π).
This order makes the set of∞-CFA annotations a complete lattice. The∞-CFA
analysis computes a fixpoint on ∞-CFA annotations:

κcfa = leastFix λκ. (κI ' Fcfa(κ)). (1)

Here κI is the initial ∞-CFA annotation, and models our assumption that a
given program starts at mmain in a state satisfying τinit :

κI(p, π) = if ((p, π) = (entry(mmain),mmain)) then τinit else ⊥.

Function Fcfa is the so called transfer function, and overapproximates one-step
execution of atomic commands and method calls in a given program. Figure 4
gives the definition of Fcfa. Although this definition looks complicated, it comes
from a simple principle: Fcfa updates its input κ simply by propagating abstract
states in κ to appropriate next nodes or edges, while occasionally pushing or
popping call sites and invoked methods in the tracked call string.

1 This means ∀τ, τ ′ ∈ Γ : τ � τ ′ =⇒ (calls(s, τ) ⊆ calls(s, τ ′) ∧ �a�(τ) � �a�(τ ′)).

520 R. Mangal, M. Naik, and H. Yang

We make two final remarks on ∞-CFA. First, Fcfa is monotone with respect
to our order on ∞-CFA annotations. This ensures that the least fixpoint in
(1) exists. Although the monotonicity is an expected property, we emphasize it
here because the transfer function of our next interprocedural analysis SBA is
not monotone with respect to a natural order on analysis results. Second, the
domain of ∞-CFA annotations is infinite, so a finite number of iterations might
be insufficient for reaching the least fixpoint in (1). We are not concerned with
this potential non-computability, because we use ∞-CFA only as a device for
comparing the precision of SBA in the next subsection with that of k-CFA.

Summary-Based Analysis. The summary-based analysis SBA is another
approach to analyze methods context-sensitively. Just like∞-CFA, it keeps sep-
arate analysis results for different calling contexts, but differs from ∞-CFA in
that it uses input abstract states to methods as contexts, instead of call strings.

The main data structures of SBA are SBA annotations σ:

σ ∈ Asba = (P× Γ)→ Γ.

An SBA annotation σ specifies an abstract state σ(p, τ) at each program point
p for each calling context τ . Recall that a calling context here is just an initial
abstract state to the current method. SBA annotations are ordered pointwise:
σ � σ′ ⇐⇒ ∀p, τ : σ(p, τ) � σ′(p, τ). With this order, the set of SBA annota-
tions forms a complete lattice. Further, it is finite as P and Γ are finite.

The summary-based analysis is an iterative algorithm for computing a fixpoint
of some function on SBA annotations. It starts with setting the current SBA
annotation to σI below:

σI(p, τ) = if ((p, τ) = (entry(mmain), τinit)) then τinit else ⊥,

which says that only the entry node of mmain has the abstract state τinit under
the context τinit . Then, it repeatedly updates the current SBA annotation using
the transfer function Fsba in Figure 5. The function propagates abstract states at
all program nodes and edges along interprocedural control-flow edges. In doing
so, it approximates one-step execution of every atomic command and method
call in a given program. The summary-based analysis does the following fixpoint
computation and calculates σsba:

σsba = fixσI (λσ. σ ' Fsba(σ)). (2)

Let G = (λσ. σ'Fsba(σ)). Here (fix
σI G) generates the sequence G0(σI), G

1(σI),
G2(σI), . . ., until it reaches a fixpointG

n(σI) such thatGn(σI) = Gn+1(σI). This
fixpoint Gn(σI) becomes the result σsba of fixσI G.

Note that fix always reaches a fixpoint in (2). The generated sequence is always
increasing because σ � G(σ) for every σ. Since the domain of SBA annotations
is finite, this increasing sequence should reach a fixpoint. One might wonder why
SBA does not use the standard least fixpoint. The reason is that our transfer
function Fsba is not monotone, so the standard theory for least fixpoints does not
apply. This is in contrast to ∞-CFA that has the monotone transfer function.

A Correspondence between Two Approaches to Interprocedural Analysis 521

Non-monotone transfer functions commonly feature in program analyses for nu-
merical properties that use widening operators [Min06, CC92], and the results
of these analyses are computed similarly to what we described above (modulo
the additional use of a widening operator).

3.3 Correspondence Theorem

The main result of this section is the Correspondence Theorem, which says that
∞-CFA and SBA have the same precision.

Recall that the results of SBA and ∞-CFA are functions of different types:
the domain of σsba is P×Γ, whereas that of κcfa is P×Π. Hence, to connect the
results of both analyses, we need a way to relate functions of the first kind with
those of the second. For this purpose, we use a particular kind of functions:

Definition 1. A translation function η is a map of type M×Π→ Γ.

Intuitively, η(m,π) = τ expresses that although a call string π and an abstract
state τ are different types of calling contexts, we will treat them the same when
they are used as contexts for method m.

One important property of a translation function η is that it induces maps
between SBA and ∞-CFA annotations:

L(η,−) : Asba → Acfa L(η, σ) = λ(p, π). σ(p, η(method (p), π)),
R(η,−) : Acfa → Asba R(η, κ) = λ(p, τ).

{κ(p, π) | τ � η(method(p), π)}.

Both L and R use η to convert calling contexts of one type to those of the other.
The conversion in L(η, σ) is as we expect; it calls η to change an input call string
π to an input abstract state η(method(p), π), which is then fed to the given SBA
annotation σ. On the other hand, the conversion in R(η, κ) is unusual, but follows
the same principle of using η for translating contexts. Conceptually, it changes
an input abstract state τ to a set of call strings π that would be translated to an
overapproximation of τ by η (i.e., τ � η(method(p), π)), looks up the values of
κ at these call strings, and combine the looked-up values by the meet operation.
The following lemma relates L(η,−) and R(η,−):
Lemma 1. For all σ and κ, if σ � R(η, κ), then L(η, σ) � κ.

The definition of a translation function does not impose any condition, and
permits multiple possibilities. Hence, a natural question is: what is a good trans-
lation function η that would help us to relate the results of the SBA analysis with
those of the ∞-CFA analysis? The following lemma suggests one such candidate
ηsba, which is constructed from the results σsba of the SBA analysis:

Lemma 2. There exists a unique translation function η : M×Π→ Γ such that
for all m ∈M, e ∈ E and π ∈ Π,

η(mmain ,mmain) = τinit ,
η(m,m⊕ e⊕ π) = if (m ∈ calls(stmt(e), σsba(origin(e), η(method(e), π)))

∧ callEdge(e)) then σsba(origin(e), η(method(e), π)) else⊥,
η(m,π) = ⊥ (for all the other cases).

We denote this translation with ηsba.

522 R. Mangal, M. Naik, and H. Yang

Intuitively, for each call string π, the translation ηsba in the lemma follows the
chain of calls in π while tracking corresponding abstract input states stored in σ.
When this chasing is over, it finds an input abstract state τ corresponding to the
given π. For instance, given a method m2 and a call string m2 ⊕ e2 ⊕m1 ⊕ e1⊕
mmain , if all the side conditions in the lemma are met, ηsba returns abstract state
σsba(origin(e2), σsba(origin(e1), τinit)). This corresponds to the input abstract
state to method m2 that arises after method calls first at e1 and then e2.

Another good intuition is to view ηsba as a garbage collector. Specifically, for
each method m, the set

Γm = {ηsba(m,π) | π ∈ Π}. (3)

identifies input abstract states for m that contribute to the analysis result σsba

along some call chain from mmain to m; every other input abstract state τ for
m is garbage even if it was used during the fixpoint computation of σsba and so
σsba(entry(m), τ) �= ⊥.

Our Correspondence Theorem says that the SBA analysis and the ∞-CFA
analysis compute the same result modulo the translation via L(ηsba,−).
Theorem 2 (Correspondence). L(ηsba, σsba) = κcfa.

One important consequence of this theorem is that both analyses have the same
estimation about reachable concrete states at each program point, if we garbage-
collect the SBA’s result using ηsba:

Corollary 1. For all p ∈ P and m ∈M, if method(p) = m, then

{κcfa(p, π) | π ∈ Π} = {σsba(p, τ
′) | τ ′ ∈ Γm}, where Γm is defined by (3).

Overview of Proof of the Correspondence Theorem. Proving the Corre-
spondence Theorem is surprisingly tricky. A simple proof strategy is to show that
the relationship in the theorem is maintained by each step of the fixpoint compu-
tations of∞-CFA and SBA, but this strategy does not work. Since ∞-CFA and
SBA treat the effects of method calls (i.e., call edges) very differently, the rela-
tionship in the theorem is not maintained during fixpoint computations. Further
difficulties arise because the SBA analysis uses a non-monotone transfer function
Fsba and does not necessarily compute the least fixpoint of λσ. σI'Fsba(σ)—these
render standard techniques for reasoning about fixpoints no longer applicable.

In this subsection, we outline our proof of the Correspondence Theorem, and
point out proof techniques that we developed to overcome difficulties mentioned
above. The full proof is included in the Appendix.

Let Gcfa = λκ. κI 'Fκ(κ) and Gsba = λσ. σI 'Fsba(σ). Recall that the∞-CFA
analysis computes the least fixpoint of Gcfa while the SBA analysis computes
some pre-fixpoint of Gsba (i.e., Gsba(σsba) � σsba) via an iterative process. Our
proof consists of the following four main steps.

1. First, we prove that Gcfa(L(ηsba, σsba)) � L(ηsba, σsba). That is, L(ηsba, σsba)
is a pre-fixpoint of Gcfa. This implies

κcfa � L(ηsba, σsba), (4)

A Correspondence between Two Approaches to Interprocedural Analysis 523

a half of the conclusion in the Correspondence Theorem. To see this impli-
cation, note that the function Gcfa is monotone and works on a complete
lattice, and the analysis computes the least fixpoint κcfa of Gcfa. According
to the standard result, the least fixpoint is also the least pre-fixpoint, so κcfa

is less than or equal to another pre-fixpoint L(ηsba, σsba).
2. We next construct another translation, denoted ηcfa, this time from the result

of the ∞-CFA analysis: ηcfa = λ(m,π). κcfa(entry(m), π). Then, we show

σsba � R(ηcfa, κcfa). (5)

The proof of this inequality uses our new technique for verifying that an
SBA annotation overapproximates σsba, a pre-fixpoint of a non-monotone
function Gsba. We will explain this technique at the end of this subsection.

3. Third, we apply Lemma 1 to the inequality in (5), combine the result of this
application with (4), and derive

L(ηcfa, σsba) � κcfa � L(ηsba, σsba). (6)

4. Finally, using the relationship between σsba and κcfa in (6), we show that
ηcfa = ηsba. Note that conjoined with the same relationship again, this equal-
ity entails L(ηsba, σsba) = κcfa, the claim of the Correspondence theorem.

Before finishing, let us explain a proof technique used in the second step. An
SBA annotation σ is monotone if ∀p, τ, τ ′ : τ � τ ′ =⇒ σ(p, τ) � σ(p, τ ′). Our
proof technique is summarised in the following lemma:

Lemma 3. For all SBA annotations σ, if σ is monotone, Gsba(σ) � σ and

∀m : τ � σ(entry(m), τ), (7)

then σsba � σ.

We remind the reader that if Gsba is a monotone function and σsba is its least
fixpoint, we do not need the monotonicity of σ and the condition in (7) in the
lemma. In this case, σsba � σ even without these conditions. This lemma extends
this result to the non-monotone case, and identifies additional conditions.

The conclusion of the second step in our overview above is obtained using
Lemma 3. In that step, we prove that (1) R(ηcfa, κcfa) is monotone; (2) it is a
pre-fixpoint of Gsba; (3) it satisfies the condition in (7). Hence, Lemma 3 applies,
and gives σsba � R(ηcfa, κcfa).

A final comment is that when the abstract domain of a static analysis is
infinite, if it is a complete lattice, we can still define SBA similar to our current
definition. The only change is that the result of SBA, σsba, is now defined in terms
of the limit of a potentially infinite chain (generated by the application of Gsba

and the least-upper-bound operator for elements at limit ordinals), instead of a
finite chain. This new SBA is not necessarily computable, but we can still ask
whether its result coincides with that of ∞-CFA. We believe that the answer
is yes: most parts of our proof seem to remain valid for this new SBA, while
the remaining parts (notably the proof of Lemma 3) can be modified relatively
easily to accommodate this new SBA. This new Coincidence theorem, however,
is limited; it does not say anything about analyses with widening.

524 R. Mangal, M. Naik, and H. Yang

4 Application to Pointer Analysis

We now show how to apply the summary-based approach to a pointer analysis
for object-oriented programs, which also computes the program’s call graph.

The input to the analysis is a program in the form of an interprocedural con-
trol flow graph (defined in Section 3.1). Figure 6 shows the kinds of statements
it considers: atomic commands that create, read, and write pointer locations,
via local variables v, global variables (i.e., static fields) g, and object fields (i.e.,
instance fields) f . We label each allocation site with a unique label h. We elide
statements that operate on non-pointer data as they have no effect on our anal-
ysis. For brevity we presume that method calls are non-static and have a lone
argument, which serves as the receiver, and a lone return result. We use functions
arg and ret to obtain the formal argument and return variable, respectively, of
each method. Finally, our analysis exploits type information and uses function

(allocation site) h ∈ H

(local variable) v ∈ V

(global variable) g ∈ G

(object field) f ∈ F

(class type) t ∈ T

(atomic command) a ::=v = null |
v = new h | v = (t) v′ | g = v |
v = g | v.f = v′ | v′ = v.f

(method call) i ::=v′ = v.m()

(allocation type) type ∈ H → T

(subtypes) sub ∈T → P(T)

(class hierarchy analysis) cha ∈ (M ×T) → M

(method argument) arg ∈M → V

(method result) ret ∈M → V

(abstract contexts) Γ =V → P(H)

(points-to of locals) ptsV ∈V → P(H)

(points-to of globals) ptsG ∈G → P(H)

(points-to of fields) ptsF ∈ (H × F) → P(H)

(call graph) cg ⊆ (Γ× E× Γ×M)

Fig. 6. Data for our pointer analysis

�v = null�(ptsV) = ptsV[v �→ ∅] (8)

�v = new h�(ptsV) = ptsV[v �→ { h }] (9)

�g = v�(ptsV) = ptsV (10)

�v.f = v′�(ptsV) = ptsV (11)

�v′ = (t) v�(ptsV) = ptsV[v′ �→ { h ∈ ptsV(v) | type(h) ∈ sub(t) }] (12)

�v = g�(ptsV) = ptsV[v �→ ptsG(g)] (13)

�v′ = v.f�(ptsV) = ptsV[v′ �→
⋃
{ptsF(h, f) | h ∈ ptsV(v)}] (14)

calls(v′ = v.m(), ptsV) = { cha(m, type(h)) | h ∈ ptsV(v) } (15)

�g = v�(ptsG) = λg′. if (g′ = g) then (ptsG(g) ∪ ptsV(v)) else ptsG(g) (16)

�v.f = v′�(ptsF) = λ(h, f ′). if (h ∈ ptsV(v) ∧ f ′ = f)
then (ptsF(h, f ′) ∪ ptsV(v′)) else ptsF(h, f ′)

(17)

Fig. 7. Transfer functions for our pointer analysis

A Correspondence between Two Approaches to Interprocedural Analysis 525

type to obtain the type of objects allocated at each site, function sub to find all
the subtypes of a type, and function cha(m, t) to obtain the target method of
calling method m on a receiver object of run-time type t.

We specify the analysis in terms of the data (Γ, τinit , � �, calls) in Section 3.
Abstract states τ ∈ Γ in our analysis are abstract environments ptsV that track
points-to sets of locals. Our analysis uses allocation sites for abstract memory
locations. Thus, points-to sets are sets of allocation sites. The lattice opera-
tions are standard, for instance, the join operation takes the pointwise union of
points-to sets:

⊔
{ptsV1, ..., ptsVn} = λv.

⋃n
i=1 ptsVi(v). The second component

τinit is the abstract environment λv.∅ which initializes all locals to empty points-
to sets. The remaining two components � � and calls are shown in Figure 7. We
elaborate upon them next. Equations (8)–(14) show the effect of each statement
on points-to sets of locals. We explain the most interesting ones. Equation (12)
states that cast statement v′ = (t) v sets the points-to set of local v′ after the
statement to those allocation sites in the points-to set of v before the statement
that are subtypes of t. Equations (13) and (14) are transfer functions for state-
ments that read globals and fields. Since ptsV tracks points-to information only
for locals, we use separate data ptsG and ptsF to track points-to information for
globals and fields, respectively. These data are updated by transfer functions for
statements that write globals and fields, shown in Equations (16) and (17). Since
the transfer functions both read and write data ptsG and ptsF, the algorithm for
our combined points-to and call graph analysis has an outer loop that calls the
SBA algorithm from Section 3 until ptsG and ptsF reach a fixpoint, starting with
empty data for them in the initial iteration, λg.∅ and λ(h, f).∅. This outer loop
implements a form of the reduced product [CC79] of our flow-sensitive points-to
analysis for locals and the flow-insensitive analysis for globals and fields.2 It is
easy to see that the resulting algorithm terminates as Γ is finite.

Finally, in addition to points-to information, our analysis produces a context
sensitive call graph, denoted by a set cg containing each tuple (τ1, e, τ2,m) such
that the call at control-flow edge e in context τ1 of its containing method may
call the target method m in context τ2. It is straightforward to compute this
information by instrumenting the SBA algorithm to add tuple (τ1, e, τ2,m) to cg
whenever it visits a call site e in context τ1 and computes a target method m
and a target context τ2.

5 Empirical Evaluation

We evaluated various interprocedural approaches on our pointer analysis using
ten Java programs from the DaCapo benchmark suite (http://dacapobench.org),
shown in Table 1. All experiments were done using Oracle HotSpot JVM 1.6.0
on a Linux machine with 32GB RAM and AMD Opteron 3.0GHz processor. We
also measured the precision of these approaches on three different clients of the
pointer analysis. We implemented all our approaches and clients using the Chord

2 We used flow-insensitive analysis for globals and fields to ensure soundness under
concurrency—many programs in our experiments are concurrent.

http://dacapobench.org

526 R. Mangal, M. Naik, and H. Yang

Table 1. Program statistics by flow and context insensitive call graph analysis (0CFAI)

brief description classes methods bytecode (KB) KLOC
app total app total app total app total

antlr parser/translator generator 109 1,091 873 7,220 81 467 26 224
avrora microcontroller simulator/analyzer 78 1,062 523 6,905 35 423 16 214
bloat bytecode optimization/analysis tool 277 1,269 2,651 9,133 195 586 59 258
chart graph plotting tool and pdf renderer 181 1,756 1,461 11,450 101 778 53 366
hsqldb SQL relational database engine 189 1,341 2,441 10,223 190 670 96 322
luindex text indexing tool 193 1,175 1,316 7,741 99 487 38 237
lusearch text search tool 173 1,157 1,119 7,601 77 477 33 231
pmd Java source code analyzer 348 1,357 2,590 9,105 186 578 46 247
sunflow photo-realistic rendering system 165 1,894 1,328 13,356 117 934 25 419
xalan XSLT processor to transform XML 42 1,036 372 6,772 28 417 9 208

program analysis platform for Java bytecode (http://jchord.googlecode.com).
We next describe the various approaches and clients.

Interprocedural Approaches. The approaches we evaluated are shown in
Table 2. They differ in three aspects: (i) the kind of implementation (tabula-
tion algorithm from [RHS95] called RHS for short vs. BDD); (ii) the degree of
call-strings context sensitivity (i.e., the value of k); and (iii) flow sensitive vs.
flow insensitive tracking of points-to information for locals. The approach in
Section 4 is the most precise one, SBAS. It is a non-distributive summary-based
approach that yields unbounded k-CFA context sensitivity, tracks points-to in-
formation of locals flow sensitively, and does heap updates context sensitively. It
is implemented using RHS. Doing context sensitive heap updates entails SBAS

calling the tabulation algorithm repeatedly in an outer loop that iterates un-
til points-to information for globals and fields reaches a fixpoint (each iteration
of this outer loop itself executes an inner loop—an invocation of the tabulation
algorithm—that iterates until points-to information for locals reaches a fixpoint).
We confirmed that the non-distributive aspect (i.e., the lossy join) is critical to
the performance of our RHS implementation: it ran out of memory on all our
benchmarks without lossy join. In fact, the lossy join even obviated the need for
other optimizations in our RHS implementation, barring only the use of bitsets
to represent points-to sets.

It is easy to derive the remaining approaches in Table 2 from SBAS. 0CFAS

is the context insensitive version of SBAS. It also uses the RHS implementation
and leverages the flow sensitive tracking of points-to information of locals in the
tabulation algorithm. We could not scale the RHS implementation to simulate
k-CFA for k > 0. Hence, our evaluation includes a non-RHS implementation:
an optimized BDD-based one that tracks points-to information of locals flow
insensitively but allows us to do bounded context sensitive k-CFA for k > 0.
Even this optimized implementation, however, ran out of memory on all our
benchmarks beyond k = 2. Nevertheless, using it up to k = 2 enables us to gauge
the precision and performance of a state-of-the-art bounded k-CFA approach.

http://jchord.googlecode.com

A Correspondence between Two Approaches to Interprocedural Analysis 527

Table 2. Interprocedural approaches evaluated in our experiments

kind of implementation context sensitivity degree (k) flow sensitivity for locals?

SBAS RHS ∞ yes
0CFAS RHS 0 yes
kCFAI BDD 0,1,2 no

To summarize, the relative precision of the approaches we evaluate is: SBAS)
0CFAS) 0CFAI and SBAS) 2CFAI) 1CFAI) 0CFAI. In particular, the only
incomparable pairs are (0CFAS, 1CFAI) and (0CFAS, 2CFAI).

Pointer Analysis Clients. We built three clients that use the result of our
pointer analysis: downcast safety, call graph reachability, and monomorphic call
site inference. The result used by these clients is the context sensitive call graph,
cg ⊆ (C × E × C ×M), and context sensitive points-to sets of locals at each
program point, pts ∈ (N × C) → Γ, where contexts c ∈ C are abstract envi-
ronments (in domain Γ) for the SBA∗ approaches and bounded call strings (in
domain Π) for the CFA∗ approaches. The above result signatures are the most
general, for instance, a context insensitive approach like 0CFAI may use a degen-
erate C containing a single context, and a flow insensitive approach like kCFAI

may ignore program point n in pts(n, c), giving the same points-to information
at all program points for a local variable of a method under context c. We next
formally describe our three clients using the above results.

Downcast Safety. This client statically checks the safety of downcasts. A safe
downcast is one that cannot fail because the object to which it is applied is
guaranteed to be a subtype of the target type. Thus, safe downcasts obviate the
need for run-time cast checking. We define this client in terms of the downcast
predicate: downcast(e) ⇐⇒ ∃c : { type(h) | h ∈ pts(n, c)(v) } � sub(t), where
the command at control-flow edge e with origin(e) = n is a cast statement
v′ = (t) v. The predicate checks if the type of some allocation site in the points-
to set of v is not a subtype of the target type t. Each query to this client is a
cast statement at e in the program. It is proven by an analysis if downcast(e)
evaluates to false using points-to information pts computed by the analysis.

Call Graph Reachability. This client determines pairwise reachability be-
tween every pair of methods. The motivation is that the different approaches
in Table 2 may not differ much in broad statistics about the size of the call
graph they produce, such as the number of reachable methods, but they can
differ dramatically in the number of paths in the graph. This metric in turn may
significantly impact the precision of call graph clients.

We define this client in terms of the reach predicate:

reach(m,m′) ⇐⇒ ∃c, e, c′ : method(e) = m ∧ (c, e, c′,m′) ∈ R,
(where R = leastFix λX. (cg ∪ {(c, e, c′′,m) | ∃c′,m′, e′ : method(e′) = m′ ∧

(c, e, c′,m′) ∈ X ∧ (c′, e′, c′′,m) ∈ cg})).
The above predicate is true if there exists a path in the context sensitive call
graph from m to m′. The existence of such a path means that it may be possible

528 R. Mangal, M. Naik, and H. Yang

 0

 20

 40

 60

 80

 100
a

n
tl

r

a
v

ro
ra

b
lo

a
t

c
h

a
rt

h
s

q
ld

b

lu
in

d
e

x

lu
s

e
a

rc
h

p
m

d

s
u

n
fl

o
w

x
a

la
n

1
1

.9

1
1

.7

2
4

.5

2
2

.2

1
9

.2

1
3

.1

1
2

.7

1
4

.9

2
6

.3

1
1

.5

%
 p

ro
v

e
n

 q
u

e
ri

e
s

#queries (times 100)

0CFAI

1CFAI

2CFAI

0CFAS

SBAS

(a) Downcast safety.

 0

 20

 40

 60

 80

 100

a
n

tl
r

a
v

ro
ra

b
lo

a
t

c
h

a
rt

h
s

q
ld

b

lu
in

d
e

x

lu
s

e
a

rc
h

p
m

d

s
u

n
fl

o
w

x
a

la
n

2
6

.0

2
3

.8

4
1

.7

6
5

.4

5
2

.2

3
0

.0

2
8

.8

4
1

.4

8
9

.0

2
2

.9

#queries (times 100,000)

(b) Call graph reachability.

 0

 20

 40

 60

 80

 100

a
n

tl
r

a
v

ro
ra

b
lo

a
t

c
h

a
rt

h
s

q
ld

b

lu
in

d
e

x

lu
s

e
a

rc
h

p
m

d

s
u

n
fl

o
w

x
a

la
n

1
8

.3

1
5

.1

2
7

.7

2
7

.4

2
6

.0

1
8

.0

1
6

.9

2
0

.3

3
0

.0

1
4

.9

#queries (times 1,000)

(c) Monomorphic inference.

Fig. 8. Precision of various interprocedural approaches on clients of pointer analysis

Table 3. Statistics of call graphs computed by various interprocedural approaches

antlr avrora bloat chart hsqldb luindex lusearch pmd sunflow xalan

number of edges
in call graph
as % of 0CFAI

0CFAI 26,871 25,427 42,766 41,655 38,703 28,064 27,978 32,447 49,502 25,037
1CFAI 95.8 96.3 96.4 96.0 92.5 96.3 96.7 96.8 94.2 96.3
2CFAI 93.6 93.9 94.7 94.6 90.8 94.0 94.3 94.7 91.7 93.8
0CFAS 98.0 98.6 98.6 81.3 97.2 98.7 98.7 98.2 95.6 98.6
SBAS 91.4 91.5 92.4 75.8 87.4 91.9 91.6 91.9 86.8 91.5

number of
reachable methods
as % of 0CFAI

0CFAI 7,220 6,905 9,133 11,450 10,223 7,741 7,601 9,105 13,356 6,772
1CFAI 98.7 99.0 99.1 99.0 99.1 99.0 99.1 99.2 99.2 99.0
2CFAI 98.0 98.3 98.6 98.6 98.5 98.4 98.4 98.7 98.6 98.3
0CFAS 98.9 99.2 99.2 81.8 98.1 99.3 99.3 99.1 95.9 99.2
SBAS 96.8 97.1 97.3 80.3 96.6 97.3 97.3 97.4 94.4 97.1

total # contexts
total # methods

1CFAI 5.3 5.1 6.9 5.2 5.1 5.1 5.1 5.0 4.9 5.1
2CFAI 41.9 41.8 54.6 35.7 34.3 38.8 39.9 35.9 31.5 42.4
SBAS 6.7 6.4 9.9 7.2 6.6 6.4 6.2 6.8 7.4 6.4

to invoke m′ while m is on the call stack, either directly or transitively from a
call site in the body m. Each query to this client is a pair of methods (m,m′)
in the program. This query is proven by an analysis if reach(m,m′) evaluates to
false using the call graph cg computed by that analysis—no path exists from m
to m′ in the graph.

Monomorphic Call Inference. Monomorphic call sites are dynamically dis-
patched call sites with at most one target method. They can be transformed into
statically dispatched ones that are cheaper to run. We define a client to statically
infer such sites, in terms of the polycall predicate: polycall(e) ⇐⇒ |{ m | ∃c, c′ :
(c, e, c′,m) ∈ cg}| > 1, where the command at control-flow edge e is a dynami-
cally dispatching call. Each query to this client is a dynamically dispatched call
site e in the program. The query is proven by an analysis if polycall(e) evaluates
to false using call graph cg computed by that analysis.

We next summarize our evaluation results, including precision, interesting
statistics, and scalability of the various approaches on our pointer analysis and
its three clients described above.

A Correspondence between Two Approaches to Interprocedural Analysis 529

Table 4. Running time of pointer analysis using various approaches

antlr avrora bloat chart hsqldb luindex lusearch pmd sunflow xalan

0CFAI 1m45s 1m42s 3m10s 4m40s 3m29s 2m34s 2m22s 3m52s 5m00s 2m32s
1CFAI 40m 38m 82m 121m 74m 41m 43m 61m 148m 36m
2CFAI 72m 68m 239m 256m 158m 83m 80m 112m 279m 82m
0CFAS 23m 26m 38m 30m 34m 35m 24m 34m 58m 23m
SBAS 21m 17m 60m 51m 37m 27m 16m 29m 72m 16m

Precision on Clients. Figure 8 shows the precision of the approaches on the
three clients. We measure the precision of an approach on a client in terms of
how many queries posed by the client can be proven by the approach on each
benchmark. The total number of queries is shown at the top. For instance, for
antlr, there are 11.9× 102 queries by the downcast safety client.

The stacked bars in the plots show the fraction of queries proven by the vari-
ous approaches. We use separate bars for the flow-insensitive and flow-sensitive
approaches, and vary only the degree of context sensitivity within each bar. At
the base of each kind of bar is the fraction of queries proven by the context
insensitive approaches (0CFAI and 0CFAS). The bars stacked above them de-
note fractions of queries proven exclusively by the indicated context sensitive
approaches. For instance, for the downcast safety client on antlr, the left bar
shows that 0CFAI proves 32% queries, 1CFAI proves an additional 15% queries
(for a total of 47% proven queries), and 2CFAI proves another 3% queries (for
a total of 50% proven queries). The right bar shows that 0CFAS proves 34%
queries, and SBAS proves an additional 20% queries (for a total of 54% proven
queries). We next briefly summarize the results.

The SBAS approach is theoretically the most precise of all five approaches.
Compared to the next most precise approach 2CFAI, it proves 12% more down-
cast safety queries on average per benchmark, and 9% more call graph reacha-
bility queries, but only 0.6% more monomorphic call site inference queries. The
largest gain of SBAS over 2CFAI is 21.3%, and occurs on bloat for the call graph
reachability client. The relatively lower benefit of increased context sensitivity
for the monomorphic call site inference client is because the context insensitive
approaches are themselves able to prove over 90% of the queries by this client on
each benchmark. We also observe that 0CFAS proves only slightly more queries
than 0CFAI for each client on each benchmark, suggesting that flow sensitivity is
ineffective without an accompanying increase in context sensitivity. In particular,
with the exception of chart, 0CFAS proves less queries than 1CFAI.

Call Graph Statistics. We found it instructive to study various statistics of
the call graphs computed by the different approaches. The first two sets of rows
in Table 3 show the number of reachable methods and the number of edges
in the call graphs computed by the different approaches. Both decrease with
an increase in the precision of the approach, as expected. But the reduction is
much smaller compared to that in the number of unproven queries for the call
graph reachability client, shown in Figure 8(b). An unproven reach(m,m′) query
indicates the presence of one or more paths in the call graph from m to m′ and

530 R. Mangal, M. Naik, and H. Yang

the higher the number of such unproven queries, the higher the number of paths
in the call graph. The average reduction in the number of such unproven queries
from 0CFAI to SBAS is 41%, but the corresponding average reduction in the
number of call graph edges is only 10.8%, and that in the number of reachable
methods is even smaller, at 4.8%. From these numbers, we conclude that the
various approaches do not differ much in coarse-grained statistics of the call
graphs they produce (e.g., the number of reachable methods) but they can differ
dramatically in finer-grained statistics (e.g., the number of paths), which in turn
can greatly impact the precision of certain clients.

Scalability. Lastly, we compare the scalability of the different approaches. Ta-
ble 4 shows their running time on our pointer analysis, exclusive of the clients’
running time which is negligible. The running time increases from 0CFAI to
2CFAI with large differences between the different flow insensitive approaches.
The similar running times of 0CFAS and SBAS is because of the use of the tab-
ulation algorithm with almost identical implementation for both. Finally, SBAS

runs much faster than 2CFAI on all benchmarks.
The improved performance of SBAS over 2CFAI can be explained by the ra-

tio of the number of contexts to that of reachable methods computed by each
approach. This ratio is shown in the bottom set of rows in Table 3 for 1CFAI,
2CFAI, and SBAS. (It is not shown for context insensitive approaches 0CFAI and
0CFAS as it is the constant 1 for them.) These numbers elicit two key observa-
tions. First, the rate at which the ratio increases as we go from 0CFAI to 2CFAI

suggests that call-strings approaches with k ≥ 3 run out of memory by comput-
ing too many contexts. Second, 2CFAI computes almost 4X-7X more contexts
per method than SBAS on each benchmark, implying that the summary-based
approach used in SBAS is able to merge many call-string contexts.

The primary purpose of the empirical evaluation in this work was to deter-
mine how precise k-CFA can get using arbitrary k. The proof of equivalence
between ∞-CFA and SBA enabled us to use SBAS for this evaluation. However,
other works [MRR05, LH08] have shown that, in practice, using object-sensitivity
[MRR02, SBL11] to distinguish calling contexts for object-oriented programs is
more precise and scalable than k-CFA. Though call string and object-sensitive
contexts are incomparable in theory, an interesting empirical evaluation in fu-
ture work would be to compare the precision of ∞-CFA with analyses using
object-sensitive contexts.

6 Related Work

This section relates our work to existing equivalence results, work on summary-
based approaches, and work on cloning-based approaches of which call-strings
approaches are an instance.

Equivalence Results. Sharir and Pnueli [SP81] prove that the summary-based
and call-strings approaches are equivalent in the finite, distributive setting. They
provide constructive algorithms for both approaches in this setting: an iterative
fixpoint algorithm for the summary-based approach and an algorithm to obtain

A Correspondence between Two Approaches to Interprocedural Analysis 531

a finite bound on the lengths of call strings to be computed for the call-strings
approach. They prove each of these algorithms equivalent to the meet-over-
all-valid-paths (MVP) solution (see Corollary 3.5 and Theorem 5.4 in [SP81]).
Their equivalence proof thus relies on the distributivity assumption. Our work
can be viewed as an extension of their result to the more general non-distributive
setting. Also, they do not provide any empirical results, whereas we measure the
precision and scalability of both approaches on a widely-used pointer analysis,
using real-world programs and clients.

For points-to analyses, Grove and Chambers [GC01] conjectured that Agesen’s
Cartesian Product Algorithm (CPA) [Age95] is strictly more precise than ∞-
CFA, and that SBA(which they refer as SCS for Simple Class Set)has the same
precision as∞-CFA. The first conjecture was shown to be true by Besson [Bes09]
while we proved that the second conjecture also holds in this work.

Might et al. [MSH10] show the equivalence between k-CFA in the object-
oriented and functional paradigms. The treatment of objects vs. closures in the
two paradigms causes the same k-CFA algorithm to be polynomial in program
size in the object-oriented paradigm but EXPTIME-complete in the functional
paradigm. Our work is orthogonal to theirs. Specifically, our formal setting is ag-
nostic to language features, assuming only a finite abstract domain Γ and mono-
tone transfer functions � �, and indeed instantiating these differently for different
language features can cause the k-CFA algorithm to have different complexity.

Summary-Based Interprocedural Analysis. Sharir and Pnueli [SP81] first
proposed using functional summaries to solve interprocedural dataflow problems
precisely. Later, Reps et al. [RHS95] proposed an efficient quadratic represen-
tation of functional summaries for finite, distributive dataflow problems, and
the tabulation algorithm based on CFL-reachability to solve them in cubic time.
More recent works have applied the tabulation algorithm in non-distributive set-
tings, ranging from doing a fully lossy join to a partial join to a lossless join. All
these settings besides lossy join are challenging to scale, and either use symbolic
representations (e.g., BDDs in [BR01]) to compactly represent multiple abstract
states, or share common parts of multiple abstract states without losing preci-
sion (e.g., [YLB+08, MSRF04]) or at the expense of precision (e.g., [BPR01]).
Summary-based approaches like CFA2 [VS10] have also been proposed for func-
tional languages to perform fully context-sensitive control-flow analysis. Our
work is motivated by the desire to understand the formal relationship between
the widely-used summary-based approach in non-distributive settings and the
call-strings approach, which is also prevalent as we survey next.

Cloning-Based Interprocedural Analysis. There is a large body of work
on bounded call-string-like approaches that we collectively call cloning-based ap-
proaches. Besides k-CFA [Shi88], another popular approach is k-object sensitive
analysis for object-oriented programs [MRR02, SBL11]. Many recent works ex-
press cloning-based pointer analyses in Datalog and solve them using specialized
Datalog solvers [Wha07, BS09]. These solvers exploit redundancy arising from
large numbers of similar contexts computed by these approaches for high k val-
ues. They either use BDDs [BLQ+03, WL04, ZC04] or explicit representations

532 R. Mangal, M. Naik, and H. Yang

from the databases literature [BS09] for this purpose. Most cloning-based ap-
proaches approximate recursion in an ad hoc manner. An exception is the work
of Khedker et al. [KMR12, KK08] which maintains a single representative call
string for each equivalence class. Unlike the above approaches, it does not ap-
proximate recursion in an ad hoc manner, and yet it is efficient in practice by
avoiding the computation of redundant call-string contexts. Our pointer analysis
achieves a similar effect but by using the tabulation algorithm.

7 Conclusion

We showed the equivalence between the summary-based and unbounded call-
strings approaches to interprocedural analysis, in the presence of a lossy join.
Our result extends the formal relationship between these approaches to a set-
ting more general than the distributive case in which this result was previously
proven. We presented new implications of our result to the theory and practice of
interprocedural analysis. On the theoretical side, we introduced new proof tech-
niques that enable to reason about relationships that do not hold between two
fixpoint computations at each step, but do so when a form of garbage collection
is applied to the final results of those computations. On the practical side, we
empirically compared the summary-based and bounded call-strings approaches
on a widely-used pointer analysis with a lossy join. We found the summary-based
approach on this analysis is more scalable while providing the same precision as
the unbounded call-strings approach.

Acknowledgement. We thank the anonymous reviewers for insightful com-
ments. This work was supported by DARPA under agreement #FA8750-12-2-
0020, NSF award #1253867, gifts from Google and Microsoft, and EPSRC. The
U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

References

[Age95] Agesen, O.: The cartesian product algorithm. In: Olthoff, W. (ed.) ECOOP
1995. LNCS, vol. 952, pp. 2–26. Springer, Heidelberg (1995)

[Bes09] Besson, F.: CPA beats ∞-CFA. In: FTfJP (2009)
[BLQ+03] Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to anal-

ysis using BDDs. In: PLDI (2003)
[BPR01] Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction

for model checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS
2001. LNCS, vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

[BR01] Ball, T., Rajamani, S.: Bebop: a path-sensitive interprocedural dataflow
engine. In: PASTE (2001)

[BS09] Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of so-
phisticated points-to analyses. In: OOPSLA (2009)

[CC79] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks.
In: POPL (1979)

A Correspondence between Two Approaches to Interprocedural Analysis 533

[CC92] Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of
Logic and Computation 2(4) (1992)

[FYD+08] Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM TOSEM 17(2) (2008)

[GC01] Grove, D., Chambers, C.: A framework for call graph construction algo-
rithms. ACM TOPLAS 23(6) (2001)

[KK08] Khedker, U.P., Karkare, B.: Efficiency, precision, simplicity, and generality
in interprocedural dataflow analysis: Resurrecting the classical call strings
method. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 213–228.
Springer, Heidelberg (2008)

[KMR12] Khedker, U.P., Mycroft, A., Rawat, P.S.: Liveness-based pointer analysis.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 265–282.
Springer, Heidelberg (2012)

[LH08] Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-
to analysis using a BDD-based implementation. ACM TOSEM 18(1) (2008)

[Min06] Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Com-
putation 19(1) (2006)

[MRR02] Milanova, A., Rountev, A., Ryder, B.: Parameterized object sensitivity for
points-to and side-effect analyses for Java. In: ISSTA (2002)

[MRR05] Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity
for points-to analysis for Java. ACM TOSEM 14(1) (2005)

[MSH10] Might, M., Smaragdakis, Y., Horn, D.: Resolving and exploiting the k-CFA
paradox: illuminating functional vs. oo program analysis. In: PLDI (2010)

[MSRF04] Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive
heap abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148,
pp. 265–279. Springer, Heidelberg (2004)

[RHS95] Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis
via graph reachability. In: POPL (1995)

[SBL11] Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: un-
derstanding object-sensitivity. In: POPL (2011)

[Shi88] Shivers, O.: Control-flow analysis in scheme. In: PLDI (1988)
[SP81] Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analy-

sis. In: Program Flow Analysis: Theory and Applications, ch. 7. Prentice-
Hall (1981)

[VS10] Vardoulakis, D., Shivers, O.: CFA2: A Context-Free Approach to Control-
Flow Analysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
570–589. Springer, Heidelberg (2010)

[Wha07] Whaley, J.: Context-Sensitive Pointer Analysis using Binary Decision Dia-
grams. PhD thesis, Stanford University (March 2007)

[WL04] Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In: PLDI (2004)

[YLB+08] Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D.,
O’Hearn, P.W.: Scalable shape analysis for systems code. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer,
Heidelberg (2008)

[ZC04] Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: PLDI (2004)

Targeted Update – Aggressive Memory

Abstraction Beyond Common Sense
and Its Application on Static Numeric Analysis

Zhoulai Fu�

IMDEA Software

Abstract. Summarizing techniques are widely used in the reasoning
of unbounded data structures. These techniques prohibit strong update
unless certain restricted safety conditions are satisfied. We find that by
setting and enforcing the analysis boundaries to a limited scope of pro-
gram identifiers, called targets in this paper, more cases of strong update
can be shown sound, not with regard to the entire heap, but with regard
to the targets. We have implemented the analysis for inferring numeric
properties in Java programs. The experimental results show a tangible
precision enhancement compared with classical approaches while pre-
serving a high scalability.

Keywords: abstract interpretation, points-to analysis, abstract numeric
domain, abstract semantics, strong update.

1 Introduction

Static analysis of heap-manipulating programs has receivedmuch attention due to
its fundamental role supporting a growing list of other analyses (Blanchet et al.,
2003b; Chen et al., 2003; Fink et al., 2008). Summarizing techniques, where the
heap is partitioned into finite groups,can manipulate unbounded data structures
through summarized dimensions (Gopan et al., 2004). These techniques have
many possible uses in heap analyses, such as points-to analysis (Emami et al.,
1994) and TVLA (Lev-Ami and Sagiv, 2000), and also have been investigated as a
basis underpinning the extension of classic numeric abstract domains to pointer-
aware programs (Fu, 2013). Most of these analyses follow the strong/weak update
paradigm (Chase et al., 1990) to model the effects of assignments on summarized
dimensions. A strong update overwrites the data that may be accessed with a new
value, whereas a weak update adds a new value to the summarized dimensions and
preserves their old values. Strong update is desired whenever safe as it provides
better precision.

Applying strong update to a summarized dimension requires that it repre-
sent a single run-time memory. This requirement poses a difficulty for applying

� In addition to research facilities granted by IMDEA Software, this work has also
received financial support from AX – L’Association des Anciens Élèves et Diplômés
de l’École polytechnique at 5, rue Descartes 75005 Paris.

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 534–553, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Targeted Update 535

strong update as it is usually hard to know the element number represented by
a summarized dimension. Efforts have been made to use sophisticated heap dis-
ambiguation techniques (Sagiv et al., 1999). While such approaches indeed help
to find out more strong update circumstances, many of the proposed algorithms,
such as focus and blur operations in shape analysis, are often hard to implement
or come with a considerable complexity overhead.

The paper presents a new memory abstraction that makes strong update
possible for summarized dimensions even if they do not necessarily represent
a singleton. The approach is called targeted update. It extends the traditional
notion of soundness in heap analysis by focusing the abstract semantics on a
selected set of program identifiers, called targets.

Our major finding can be summarized as follows: By focusing on the tar-
gets, we are able to perform an aggressive analysis even if the traditional safety
condition for strong update fails.

A motivating example. Consider the assignment y.f = 7. Assume that the
memory state before the assignment is informally represented in Fig. 1.

δ1 δ2

x.f y.f

[0, 5] [0, 9]

Fig. 1. Memory state be-
fore statement y.f = 7

The two access paths x.f and y.f are of integer type.
The two gray clouds denoted by δ1 and δ2 represent
two disjoint summarized dimensions. They initially
store numeric values in the range of [0, 5] and [0, 9]
respectively. An edge from an access path to a cloud
indicates a may-access relation.

The memory state does not tell which summa-
rized dimension (δ1 or δ2) should be updated. In
addition, more than one concrete memory cell may
be associated with δ1 or δ2. Thus, traditional anal-
ysis of y.f = 7 performs weak update on δ1 and
δ2. The abstract state after the assignment becomes
δ1 ∈ [0, 7]∧ δ2 ∈ [0, 9], following which we infer x.f ∈ [0, 7]∧ y.f ∈ [0, 9]. We call
this approach common sense strong/weak update paradigm.

Now we present the targeted update approach. In this approach, a set of access
paths needs to be selected before the analysis. The selected set is called target
set. Here, if we set {y.f} as target set, we are able to apply strong update on both
δ1 and δ2. This is because making wrong assertions on the concrete memories of
δ1 or δ2 that are not pointed to by y.f does not contravene the soundness with
regard to the targets : The two clouds are at most pointed to by x.f and y.f , yet
x.f is not a target. The described approach is called targeted update. Applying
targeted update with target set {y.f} allows for precise analysis of y.f , but the
value of the non-target x.f is not tracked. The obtained δ1 = 7 ∧ δ2 = 7 only
infers y.f = 7. There is no information concerning x.f .

It can be seen that depending on specific analysis requirement, the target set
{y.f}may not be appropriate. Imagine that we want to verify this post-condition
of the statement y.f = 7

x.f ∈ [0, 7] ∧ y.f ∈ [0, 7] (1)

536 Z. Fu

This property cannot be verified by the strong/weak update paradigm, neither
by the targeted update using {y.f} as the target set. To use targeted update with
the target set T = {x.f, y.f} solves the problem. The summarized dimension δ1
is now pointed to by both targets, and δ2 by one target. Targeted update weakly
updates δ1 because updating δ1 has an effect on both x.f and y.f that are
targets. It strongly updates δ2 because it is a region that can only be “observed”
from y.f : For the concrete memories represented by δ2 that are not pointed to
by y.f , nothing is wrong to associate whatever values with δ2; for the concrete
memories represented by δ2 that are truly pointed to by y.f , the values associated
with δ2 due to targeted update are correct. Finally, targeted update obtains
δ1 ∈ [0, 7] ∧ δ2 = 7, from which we infer (1).

In summary, targeted update has only responsibilities for its targets, namely,
the objects pointed to by these targets, and it has no obligation to be sound
with regard to the entire heap as in the common sense approach. As illustrated
by the example, targeted update has two major characteristics: 1) More strong
update cases on summarized dimensions can be discovered by targeted update.
2) Picking up right target set is a trade-off problem since targeted update can
be very precise for targets, but it does not track non-targets.

This paper makes the following key contributions:

– We introduce the concept of targets and formalize the soundness notion with
regard to targets (Sect. 3). The crucial insight lies in the fundamental differ-
ence of this notion of soundness with that in the common sense strong/weak
paradigm.

– We derive an aggressive abstract semantics (Sect. 4 and 5) from the notion of
targets. This is made possible due to a simple condition we have discovered
that allows targeted update to be safely applied. We have formalized and
proved the soundness of targeted update.

– Important design choices are discussed in Sect. 6. The implemented analyzer
was tested on the SPECjvm98 benchmark suite, composed of 10 real-world
Java programs.

2 Preliminaries

This section gives a brief review of some basic concepts from static program
analysis that are used in this paper. A companion report of this paper is pro-
vided 1 with more details, including the notions of abstract interpretation, the
semantics of points-to graph, the resolution of an access path, etc.

General Notations. For a given set U , the notation U⊥ represents the disjoint
union U ∪ {⊥}. Given a mapping m ∈ A → B⊥, we express the fact that m is
undefined in a point x by m(x) = ⊥. We write post [m] ∈ ℘(A) → ℘(B) for the
mapping λA1.{b | ∃a ∈ A1 : m(a) = b}.
1 http://hal.inria.fr/hal-00921702/en

http://hal.inria.fr/hal-00921702/en

Targeted Update 537

Syntactical Notations. The primary data types include scalar numbers in I,
where I can be integers, rationals or reals, and pointers (or references) in Ref .
The primary syntactical entities include the universe of local variables and fields.
They are denoted byVar and Fld respectively. An access path (Landi and Ryder,
1992) is either a variable or a variable followed by a sequence of fields. The
universe of access paths is denoted by Path. We subscript Varτ , Fld τ , Pathτ
and their elements with τ ∈ {n, p} to indicate their types as scalar number or
reference. We use Impn to refer to the basic statements involving only numeric
variables and use the meta-variables sn to range over these statements. Similarly,
we let Impp be the statements that use only pointer variables and let sp range
over these statements. Below we show the main syntactical categories and the
meta-variables used in the paper.

k ∈ I scalar numbers
r ∈ Ref concrete references
xτ , yτ ∈ Var τ numeric/pointer variables
fτ , gτ ∈ Fldτ numeric/pointer fields
uτ ,vτ ∈ Pathτ numeric/pointer access paths
sn ∈ Impn xn = k | xn = yn | xn = yn / zn | xn �� yn
sp ∈ Impp xp = new | xp = null | xp = yp.fp | xp = yp | xp.fp = yp

where 6 ∈ {+,−, ∗, /}, and �� is an arithmetic comparison operator.

Analysis of Impn. We express a numeric property by a conjunction of arith-
metic formulae such as {x+y ≤ 1, x ≤ 0}. The universe of the numeric properties
is denoted by Num". As usual, an environment maps variables to their values. We
consider numeric environments Num � Varn → I⊥. The relationship between
an environment and a property can be formalized by the relation of valuation.
We say that n ∈ Num is a valuation of n" ∈ Num", denoted by

n |= n" (2)

if n" becomes a tautology after each of its free variables is replaced by its corre-
sponded value in n. For example, if n = {x→ 7, y → 7}, and n" = {x+ y < 15}
then we have n |= n". For each statement sn of Impn, the concrete semantics is

given by a standard rule of state transition
Num−→ (sn) ∈ Num → Num. We write

' and ; for the join and widening operator.
In this paper, we assume that a sound abstract semantics of sn of signature

[|·|]"n ∈ Impn → (Num" → Num") is available to us. The abstract semantics

is assumed to be sound with regard to the concrete
Num−→ : For any n, n" and

sn ∈ Impn, n |= n" ⇒Num−→ (sn)(n) |= [|sn|]"n (n").

Analysis of Impp. A concrete state in Impp is thought of as a graph-like struc-
ture representing the environment and heap. The universe of the concrete states
is denoted by Pter . We write p to range over them.

538 Z. Fu

p ∈ Pter � (Varp → Ref ⊥)× ((Ref × Fldp)→ Ref ⊥) (3)

Points-to analysis is a dataflow analysis for detecting pointer relations. The
essential process is to partition Ref into a finite set H and then to summarize
the run-time pointer relations via elements of H and program variables. The
elements of H are called allocation sites or abstract references. The process can
be interfaced with a function � called naming scheme.

� ∈ Ref → H (4)

In this paper, we consider a standard naming scheme that names heap objects
after the control points where the objects are allocated. We assume that the
naming scheme is flow-independent. That is to say, the analysis of two control
branches uses the same naming scheme. Note that this is the case for points-to
analysis but not for shape-analysis.

Definition 1 (Interface of traditional points-to analyzer)

(Impp,Pter ,
Pter−→,Pter ", γp, [|·|]"p)

The universe of the concrete states is denoted by Pter, and the concrete tran-

sition rule is denoted by
Pter−→∈ Impp → (Pter → Pter). The universe of the

abstract states is denoted by Pter ". We write p" to range over them.

p" ∈ Pter " � (Varp → ℘(H))× ((H × Fldp)→ ℘(H)) (5)

Each abstract state is called a points-to graph. The concretization function
γp : Pter " → ℘(Pter) specifies the semantics of points-to graph. The abstract

semantics [|·|]"p is assumed to be sound with regard to the concrete
Pter−→: For any

p, p" and sp ∈ Impp, p |= p" ⇒Pter−→ (sp)(p) ∈ γp ◦ [|sp|]"p (p").

3 Summarizing Technique with Targets

In this section, we introduce the concept of targets and how summarizing tech-
nique with targets differs from classic summarizing technique.

The Analyzed Language. This paper focuses on how to deal with language
Impnp. The statements in Impnp include these in Impn and Impp, and statements
in the forms of yp.fn = xn and xn = yp.fn. We write snp to range over Impnp.

snp ::= sn | sp | yp.fn = xn | xn = yp.fn (6)

We call yp.fn = xn or yp.fn = k a write access and xn = yp.fn a read access.

Targeted Update 539

A Non-standard Concrete Semantics. A concrete state in Impnp is an en-
vironment mapping variables to values and a mapping from fields of references
to values. By grouping the numeric and pointer parts, we formalize the universe
of the concrete states as

State =

Num[Varn∪(Ref×Fldn)]︷ ︸︸ ︷
(Varn → I⊥)× ((Ref × Fldn)→ I⊥) (7)

× (Varp → Ref ⊥)× ((Ref × Fldp)→ Ref ⊥)︸ ︷︷ ︸
Pter

(8)

Thus, a state is a pair (n, p) where n can be regarded as a concrete state of Impn
over Varn ∪ (Ref × Fldn), and p as a concrete state of Impp. In the companion

report, we express the concrete semantics of Impnp, denoted by −→$, via
Num−→

and
Pter−→.

Example 1 Consider the following program:

1 L i s t tmp = null , hd ;
2 int idx ;
3 for (idx = 0 ; idx < 3 ; idx++){
4 hd = new L i s t () ; // a l l o c a t i o n s i t e h

5 hd . val = idx ;
6 hd . next = tmp ;
7 tmp = hd ;
8 }

The integers 0, 1 and 2 are stored iteratively on the heap. The head of the list is
pointed to by the variable hd. The concrete state at the end of the program can
be specified as (n, p). We write r0, r1 and r2 for the concrete memories allocated
at allocation site h.

n = {(r0, val)→ 0, (r1, val)→ 1, (r2, val)→ 2, idx→ 3}
p = {hd→ r2, tmp→ r2, (r2, next)→ r1, (r1, next)→ r0} (9)

Common Sense Summarizing Technique. A naming scheme � ∈ Ref → H
is assumed for the analysis of Impnp. In this context, the idea of summarizing
technique is to use the names computed by the naming scheme to create sum-
marized dimensions that represent the numeric values stored on the heap.

Below we show an abstraction of the concrete state (9).

(n", p") =
(
δh,val ∈ [0, 2], idx = 3, hd �� h next

��)
(10)

In this abstraction, the naming scheme maps the concrete r0, r1 and r2 to an
abstract reference h ∈ H . We can perform pointer analysis based on the naming
scheme and, on the other hand, summarize numeric information on the val field
of r0, r1 and r2 by a summarized dimension related to h and val, denoted by
δh,val. The summarized dimension in this context is an element H × Fldn.

540 Z. Fu

In the following, we denote H ×Fldn by Δ, and use δ to range over the pairs
in Δ. We also write δh,fn to indicate the summarized dimension corresponding
to the allocation site h and the field fn.

Definition 2 An abstract state is defined to be a pair (n", p") of

NumP" � Num"[Varn ∪Δ]× Pter " (11)

where Num"[Varn∪Δ] is similar to Num", but defined over Varn∪Δ, and Pter "

is the universe of points-to graphs (Sect. 2).

The summarizing process can be formalized through the extended naming
scheme on Ref × Fldn → H × Fldn, defined as λ(r, fn).(�(r), fn). By abuse of
notation, we still write � for the extended naming scheme. For example, the
naming scheme used in (10) satisfies �(ri, f) = δh,f for i = 0, 1 and 2. In (10),
δh,val → [0, 2] asserts that its concrete state (n, p) must satisfy

∀(r, val) ∈ �−1(δh,val) : n(r, val) ∈ [0, 2] (12)

This is common sense — a summarized dimension represents a set of concrete
locations, and the fact over the summarized dimension translates to all the heap
locations represented by the summarized dimension. Although it seems natural
to require (12), we find that this kind of “contract” between the abstract and
concrete states can be in some circumstances, too strong to be useful.

Assume that we have an extra statement hd.val = 0 after l. 8. Imagine that
we only want to ensure that hd.val becomes 0 after the statement. We cannot up-
date δh,val to 0 because that would mean all (r, val) ∈ �−1(δh,val) store the value
0, which is clearly unsound. To make a more precise analysis in this situation,
we need to relax the condition (12) so that a fact over a summarized dimension
does not always translate to all their represented concrete heap locations.

This is where targeted update comes in. It allows a subset S ⊆ �−1(δh,val)
in (12) to be specified so that the abstract semantics only needs to guarantee
n(r, val) ∈ [0, 2] for (r, val) belonging to the specified subset S.

Targets. In the context of Impnp, a target set, or targets, is a set of access paths
holding numeric values on the heap. These access paths should not be local
variables, and may not occur in the analyzed program syntax.

We use two operations on targets: Let t be an access path of a target set,
p ∈ Pter , d ∈ Ref × Fldn. Then d = p(t) reads as t resolves to or points to d
under p. If p has an arc from variable x to r, then p(x.fn) = (r, fn); δ ∈ p"(t)
reads as t resolves to or points to δ under p". For example, in Fig. 1, we have
p"(x.f) = {δ1} and p"(y.f) = {δ1, δ2}. See the companion report for their formal
definitions.

Below we write p ∈ γp(p
") to denote that p is abstracted by p"; we write

n |= [ins]n" to denote that n is a valuation (the symbol |= is introduced in
Sect. 2) of n" with its variables substituted following ins . For example, let ins =
{δ1 → d1, δ2 → d2} and n" = {δ1 + δ2 > 0, δ > 10}. Then we have [ins]n" =
{d1 + d2 > 0, d2 > 10}.

Targeted Update 541

If a target set is selected and the soundness is enforced with regard to the
targets, the abstract state (n", p") represents all concrete states (n, p) as long
as p is abstracted by p" and n can be abstracted by whatever n"′ that is n"

with its summarizing dimensions δ1, . . . , δm instantiated with some d1, . . . , dm
satisfying: For 1 ≤ i ≤ m, �(di) = δi and di can be reached by targets, i.e.,
∃t ∈ T : di = p(t).

Definition 3 Let T be the target set. The concretization of a state (n", p") ∈
NumP" is defined as

γ〈T 〉(n
", p") � {(n, p) | p ∈ γp(p

"), ∀ins ∈ Insp〈T 〉 : n |= [ins](n")} (13)

with Insp〈T 〉 � {ins ∈ Δ → D | ∀(δ, d) ∈ ins : �(d) = δ ∧ d ∈ post [p](T)}.
Read it as, an element (n, p) is in the concretization γ〈T 〉(n

", p"), if p is in the

concretization of p", and n is in the concretization of [ins]n" where ins is called
an instantiation mapping summarized dimensions to concrete d ∈ D that are
pointed to by the targets T .

Below, we present the abstract semantics of statements in Impnp, called tar-
geted update.

4 Targeted Update — The Case of Write Access
yp.fn = xn

Algorithm. Targeted update uses two operators: The local strong update op-
erator [|δ = xn|]S assigns xn to δ, regarding xn and δ as scalar variables. For
example, if it is interval domain on which targeted update is built, we have

[|δ = xn|]S ({δ ∈ [1, 2], xn ∈ [3, 4]}) = {δ ∈ [3, 4], xn ∈ [3, 4]} (14)

Another operator [|δ = xn|]W is called local weak update operator. It assigns xn
to δ and then joins the result with its original state, for example,

[|δ = xn|]W ({δ ∈ [1, 2], xn ∈ [3, 4]}) = {δ ∈ [1, 4], xn ∈ [3, 4]} (15)

It is clear that both operators can be computed from traditional numeric
domains.

The input of targeted update is an abstract state (n", p") ∈ NumP" and a
pre-selected target set T . We do not care about how this set is selected for
now. Targeted update first computes the summarized dimensions to which yp.fn
resolves, namely p"(yp.fn). Each summarized dimension δ is then treated one by
one.2 If the following condition holds:

δ is pointed to by no target in T \{yp.fn} (TU)

2 Dealing with δ in different orders could have an influence on precision, but this point
is not studied in the paper.

542 Z. Fu

then local strong update will be performed on δ; otherwise, local weak update
has to be performed on δ. The above condition is referred to as (TU) condition
subsequently. This algorithm for the abstract semantics is presented in Algo. 1.

Algorithm 1. Targeted update for yp.fn = xn

Input: Abstract state (n�, p�), targets T
Output: The abstract state after targeted update [|yp.fn = xn|]�〈T〉 (n

�, p�)

1 n�′ ← n�

2 for δ ∈ p�(yp.fn) do
3 if there exists no t ∈ T\{yp.fn} satisfying δ ∈ p�(t) then

4 n�′ ← [|δ = xn|]S (n�′)
5 else

6 n�′ ← [|δ = xn|]W (n�′)
7 end if

8 end for

9 return n�′, p�

Remark 1 Automatically finding targets adapted to specific problem require-
ments is a problem in itself. In our implementation, we use the numeric access
paths (excluding scalar variables) that appear syntactically in the program as
targets.

Comparison with Strong/Weak Update. Below, we present a case study. It
shows how targeted update works and in which way it differs from the common
sense strong/weak update paradigm.

Example 2 Assume that a program has three numeric access paths: t, yp.fn and
s, and there are three summarized dimensions: δ1, δ2 and δ3. Assume that the
access paths resolve to summarized dimensions as depicted:

t

�����
����

����
����

�� yp.fn

�������
���

����
���

�
s

�������
���

��

δ1 δ2 δ3

(16)

namely, p"(t) = {δ3}, p"(yp.fn) = {δ1, δ2, δ3}, p"(s) = {δ2, δ3}. We shall compare
targeted update and strong/weak update paradigm of yp.fn = xn.

The concrete semantics of yp.fn = xn is known: It modifies one element of
d ∈ �−1(δ1) ∪ �−1(δ2) ∪ �−1(δ3). It is clear that the information from (16)
does not help to identify the one among δ1, δ2, and δ3 that will be modified
by the statement. In addition, this specific δ may have more than one con-
crete represented element. Thus, the traditional approach performs weak update
which amounts to a conservative join of [|δ1 = xn|]W (n"), [|δ2 = xn|]W (n") and

[|δ3 = xn|]W (n"). Formally, the weak update is defined as

Targeted Update 543

[|yp.fn = xn|]" (n", p") �
(
'δ∈p�(yp.fn) [|δ = xn|]W (n")

)
, p" (17)

Now, let us consider targeted update. Assume that all three access paths are
targets, T = {t, yp.fn, s}. Because only δ1 satisfies (TU) condition, targeted
update abstracts yp.fn = xn as a composition of local weak update of δ2 and

δ3, and local strong update of δ1, namely, [|δ3 = xn|]W ◦ [|δ2 = xn|]W ◦ [|δ1 = xn|]S .
Formally, we define targeted update as follows.

Definition 4 Let T be a set of targets, (n", p") ∈ NumP". Define the targeted
update for yp.fn = xn:

[|yp.fn = xn|]"〈T 〉 (n
", p") � [|δ1 = xn|]η(δ1) ◦ · · · ◦ [|δM = xn|]η(δM) n", p" (18)

with {δ1, . . . , δM} = p"(yp.fn),

η � λδ : p"(yp.fn).

{
S if {t ∈ T | t �= yp.fn ∧ δ ∈ p"(t)} = ∅
W otherwise

(19)

Correctness. The correctness of the abstract semantics can be formalized as
follows.

Theorem 1 Let T be a target set. For any abstract state (n", p") of NumP" and
any (n, p) ∈ γ〈T 〉(n

", p"). We have

−→$(yp.fn = xn)(n, p) ∈ γ〈T 〉 ◦ [|yp.fn = xn|]"〈T 〉 (n
", p") (20)

We need a lemma for the proof. If the (TU) condition holds, the summarized
dimension δ specified in the condition is pointed to by at most one target. Obser-
vationally, δ is a singleton representing only one object, although δ may represent
more than one object that is not necessarily pointed to by targets.

This intuition is formalized as the lemma below. We write tu(T, p", yp.fn, δ)
as a shortcut for (TU), namely � ∃t ∈ T \{yp.fn} : δ ∈ p"(yp.fn). The proof of
the lemma needs a property as stated of points-to graph: For any concrete p and
abstract p" such that p ∈ γp(p

"), if access path u resolves to d ∈ Ref × Fldn,
i.e. p(u) = d, then we have �(d) ∈ p"(u). This property ensures, for example, if
p(x) = r in the concrete, then p"(x) has to contain �(r).

Lemma 1 Assume that tu(T, p", yp.fn, δ) holds. Then, for any p ∈ γp(p
") and

ins ∈ Insp〈T 〉, we have ins(δ) = p(yp.fn).

Proof (Proof of Lem. 1) Because ins ∈ Insp〈T 〉, we have ins(δ) must be pointed
to by targets in T .

544 Z. Fu

ins(δ) ∈ {p(t) | t ∈ T, t �= yp.fn} ∪ {p(yp.fn)} (21)

Condition (TU) combined with the semantics of points-to graph tells that the
first part of (21) has to be empty. Otherwise, we have some t ∈ T \{yp.fn}
pointing to δ, which contradicts tu(T, p", yp.fn, δ). By consequence, we have
ins(δ) = p(yp.fn). &'

This lemma plays a crucial role in proving the correctness of the abstract
semantics. We give a proof sketch in the companion report.

5 Targeted Update — The Case of Read Access
xn = yp.fn, sn and sp

We have developed an abstract semantics for the write access statement using
the soundness notion with regard to targets. This section presents our abstract
semantics for other types of statements in Impnp.

Case for xn = yp.fn. Assume that yp.fn only resolves to δ. It is tempting, but

wrong, to abstract statement as in traditional numeric analysis, i.e., [|xn = δ|]"n.
Consider a = x.f; b = y.f; if (a < b){...}. Assume that p"(x.f) =
p"(y.f) = {δ}. If the abstract semantics relates a (resp. b) with δ after a = x.f
(resp. b = y.f), the analysis will wrongly argue that the following if branch
can never be reached. The above reasoning is wrong because we should not, in
general, correlate a summarized dimension with a scalar variable.

Gopan et al. have pointed out that to assign a summarized dimension δ to
a non-summarized dimension xn takes three steps: First, extend δ to a fresh
dimension δ′ (using the operator expand"δ,δ′ that copies dimensions. Then, re-

late xn with δ′ using traditional abstract semantics for assignment [|xn = δ′|]"n.
Finally, the newly introduced dimension δ′ has to be dropped (using the opera-

tor drop"δ′ that removes dimensions). See (Gopan et al., 2004) for the details of

drop"δ′ and expand"δ,δ′ .
In summary, Gopan’s operator copies the values of the summarized dimension

to the scalar variable but keeps them uncorrelated. The following operator is used
to assign a summarized dimension δ to a scalar variable xn.

G(xn, δ) � λn". drop"δ′ ◦ [|xn = δ′|]"n ◦ expand
"
δ,δ′ n

" (22)

For example, the property G(xn = δ){δ > 1} = {xn > 1, δ > 1} after applying
x = δ. We see that scalar variable xn and summarized dimension δ cannot be
related, even if the underlined numeric domain is relational.

Remark 2 The lack of correlation between δ and xn reveals another source of
imprecision of the classic soundness notion, besides its weak update semantics.

Targeted Update 545

Sharper analysis can be obtained thanks to the notion of targets. In Lem. 1, we
have shown an important consequence of (TU), that is, the underlined summa-
rized dimension δ represents a single concrete object among the objects pointed
to by the targets. This lemma allows us to deal with δ satisfying (TU) as a
scalar variable.

Consider the read access xn = yp.fn. Let (n
", p") be the input abstract state,

T be the targets. If yp.fn �∈ T , we have to unconstrain xn. If yp.fn ∈ T and
p"(yp.fn) = {δ1, . . . , δM}, targeted update joins the effects of assigning δi to xn
for 1 ≤ i ≤ M . For each δi, if (TU) satisfies, the effect of assigning δi to xn is

the same as [|xn = δi|]"n (n"), as if δi is a scalar variable; if (TU) fails, the best
we can do is to copy the possible values of δi into xn, which amounts to using
Gopan’s operator (22). This is summarized in Algo. 2. That is,

[|xn = yp.fn|]"〈T 〉 (n
", p") �

{
[|xn =?|]"n n", p" yp.fn �∈ T⊔
δ∈p�(yp.fn)

[|xn = δ|]η(δ) n", p" yp.fn ∈ T
(23)

where the operator [|xn =?|]"n unconstrains xn, η is the shortcut defined in (19),
and

[|xn = δ|]S � [|xn = δ|]"n , [|xn = δ|]W � G(xn, δ) (24)

Algorithm 2. Targeted update for xn = yp.fn

Input: Abstract state (n�, p�), targets T
Output: The abstract state after targeted update [|xn = yp.fn|]�〈T〉 (n

�, p�)

1 if yp.fn �∈ T then

2 return [|xn =?|]�n (n�), p�

3 n�′ ← ⊥
4 for δ ∈ p�(yp.fn) do
5 if there exists no t ∈ T\{yp.fn} satisfying δ ∈ p�(t) then

6 n�′ ← n�′ 1 [|xn = δ|]�n (n�′)
7 else

8 n�′ ← n�′ 1G(xn, δ)
9 end if

10 end for

11 return n�′, p�

Case for sn. If sn is an assignment in Impn, it can be treated in the same

way as in traditional numeric analysis using its abstract transfer function [|·|]"n
(Sect. 2). In this paper, the transfer function for updating (n", p") with sn is
defined as:

[|sn|]"〈T 〉 (n
", p") � ([|sn|]"n n", p") (25)

546 Z. Fu

Case for sp. Targeted update tracks the heap objects pointed to by the targets.
An important thing to note is that sp may cause changes to what objects the
access paths are pointing—necessitating changes to the numeric portion of the
abstract state. Subsequently, we write sp in the form of ‘l=r’.

Given a target set T and an abstract state (n", p") ∈ NumP". Taking an

arbitrary (n, p) ∈ γ〈T 〉(n
", p"), we want to find n"′ so that (n,

Pter−→ (sp)p) is in

the concretization of (n"′, [|sp|]"p (p")). The hypothesis (n, p) ∈ γ〈T 〉(n
", p") states

that n |= [ins]n" for any ins ∈ Insp〈T 〉; for the sake of soundness, the updated
n"′ has to satisfy n |= [ins]n"′ for any ins ∈ Ins Pter−→(sp)p

〈T 〉. Following Def. 3, it

suffices to unconstrain all summarized dimensions of n"′ in the form of �(d) with

d ∈ post [
Pter−→ (sp)p](T)\post [p](T). Let M � post [

Pter−→ (sp)p](T)∩post [p](T). We
can show that M ⊇ {p(t) | t ∈ T, t does not have l as prefix}. This is because
for any p(t) such that t ∈ T and t does not have l as prefix, p(t) ∈ post [p](T)

immediately implies p(t) ∈ post [
Pter−→ (sp)](T).

In conclusion, a conservative way to model sp is to unconstrain targets that
do not necessarily point to where they previously pointed. Thus, we unconstrain
all p"(t) such that t ∈ T and t has l as prefix. For example, in x = new; we
unconstrain δ if it is pointed to by the target x.val. The transfer function for sp
is modeled as:

[|sp|]"〈T 〉 (n
", p") �

⊔
δ∈uncons〈T〉(sp,p�)

[|δ =?|]"n n
", [|sp|]"p p

" (26)

Here, uncons〈T 〉(sp, p
") � {δ | sp = ‘l=r’, ∃t ∈ T : t has l as prefix ∧ δ ∈ p"(t)}.

6 A Discussion of Some Important Design Choices

Targets. Our implementation uses the numeric access paths excluding variables
that appear syntactically in the program as targets. Without prior knowledge of
specific program properties to be verified, this design choice seems to give a trade-
off between expressiveness and precision. Although this target set may appear
large, our experiments (Sect. 8) show that targeted update using this target set
still provides a significant precision enhancement while covering common cases
where program properties to be expressed only use program syntax.

Join and Widening. The design of the join operator is usually a difficult step
for developing abstract domains. We have assumed (Sect. 2) that the naming
scheme should be flow independent. Thanks to the naming scheme hypothe-
sis, our join operator seems to be delightfully uncomplicated: We just compute
the join (or widening) component-wise. Then, if a concrete state (n, p) is in

γ〈T 〉(n
"
1, p

"
1) or in γ〈T 〉(n

"
2, p

"
2), it is also in the concretization of (n"1 'n

"
2, p

"
1 ∪p

"
2).

The case for widening is similar.

Targeted Update 547

(n"1, p
"
1) '" (n

"
2, p

"
2) = (n"1 ' n"2, p

"
1 ∪ p"2) (27)

(n"1, p
"
1);" (n"2, p

"
2) = (n"1 ; n"2, p

"
1 ∪ p"2) (28)

Constraint System with a Flow-Insensitive Points-to Analysis. As in
the implementation of (Fu, 2014), we use a flow-insensitive points-to analysis
to simplify the states propagation. The analysis is done in a pre-analysis phase
and does not participate with the propagation of numeric lattices. The obtained
flow-insensitive points-to graph is then used at each control point as a superset
of the flow-sensitive points-to graph.

Using flow-insensitive variant does not cause any soundness issue. This is
because the soundness of our analysis is based on the soundness of its component
numeric domains and pointer analysis. Using the single flow-insensitive points-
to graph for all program control points can be modeled as an analysis that is
initialized with an over-approximation of the least fixpoint of a flow-sensitive
analysis that propagates in the style of skip.

Let F "(s) � λn".fst ◦ [|s|]"〈T 〉 (n", p
"
fi), where p"fi is the flow-insensitive points-

to graph, and fst is the operator that extracts the first element from a pair
of components. We use the following the constraint system that operates on
numeric lattice n" only (rather than on (n", p") pair):

n"[l] < F "(s)(n"[l′]) (29)

where we write n"[l] (resp. n"[l′]) for the numeric component of NumP" at control
point l (resp. l′), l′ is the control point of statement s, and (l′, l) is an arc in the
program control flow.

Intra-procedural Numeric Analysis. While the points-to graph is computed
by an interprocedural pointer analysis, the static numeric anlaysis is intentionally
left intra-procedural.

Existing numeric domains, in particular the relational ones, are generally sen-
sitive to the size of the program and number of variables. The objective of
scalability is hard to achieve if the problem solving has to iterate through all the
program call-graph. To take variables in all the procedures as a whole necessarily
incurs a high complexity for the numeric part in our analysis. To give an idea of
this complexity, our experiments on the abstract domains in PPL show that oc-
tagonal analysis can hardly run on several hundreds of variables, and polyhedral
analysis can quickly time out with more than 30 variables; on the other hand,
a real-world Java program, with all its procedures put in together, could easily
reach tens of thousands of variables to be analyzed.

A known workaround exists. The pre-analysis of variable packing technique
allows ASTREE (Blanchet et al., 2003a) to successfully scale up to large sized
C programs. We regard intra-procedural numeric analysis as a lightweight al-
ternative to variable packing: Variables are related only if they are in the same
procedure. In this way, we do not need to invent strategies to pack variables.

548 Z. Fu

7 An Example

We discuss a Java program with interesting operations on a single linked list.
Fig. 2 presents the program. Here, our goal is to show how targeted update
works in practice and to prove two properties that are challenging for a human.
The analysis results from our implemented analyzer are shown in the companion
report.

1 L i s t hd , node ; int idx ;
2 hd = new L i s t () ; // a l l o c a t i o n s i t e h1

3 hd . val = 0 ;
4 hd . next = null ;
5 for (idx = - 17 ; idx < 42 ; idx++){
6 node = new L i s t () ; // a l l o c a t i o n s i t e h2

7 node . val = idx ;
8 node . next = hd . next ;
9 hd . next = node ;

10 hd . val = hd . val + 1 ;
11 }
12 return ;

Fig. 2. A Java program

Example 3 Observe that there are two allocation sites h1 and h2 in the program,
with the head of the list stored in h1 and the body of the list stored in h2. The
head node has a special meaning. It is used to indicate of length of the list. From
l. 1 to l. 4, the program creates an empty list with a single head node. From
l. 5 to l. 11, a list of integers is iteratively stored on the list. Within the loop,
the head node is updated (l. 10) to track list length whenever a new list cell is
created.

Targeted update, instantiated with polyhedral analysis, is able to infer the
following properties:

– Prop1: At the loop entry (l. 5), hd.val ∈ [0, 60] ∧ hd.val − idx = 17.
– Prop2: From l. 5 to l. 10, hd.val − node.val = 17.
– Prop3: At the exit of the loop (l. 12), hd.val = 60.

Targeted update works as follows: First, it pre-analyzes the program with
flow-insensitive points-to analysis.

hd

		���
����

node
��

h1
��
h2

next

(30)

Targeted Update 549

All numeric access paths appeared in program syntax that are not variables are
taken as targets: T = {hd.val, node.val}. By computing {δ | ∃t ∈ T, δ ∈ p"fi(t)},
targeted update obtains two summarized dimensions δh1,val and δh2,val. The
initial abstract state is set to {δh1,val → , δh2,val → , idx → }. Then,
we apply transfer functions of targeted update and solve the constraint system
(29). For example, the statements at l. 3 and l. 7 are treated as write access
yp.fn = xn. The statement at l .10 is transformed by SOOT into three short
ones: tmp1 = hd.val, tmp2 = tmp1 + 1 and hd.val = tmp2. They are treated
as read access, sn and write access statements, respectively. Finally, targeted
update obtains (1) at l. 5: δh1.val ∈ [0, 60]∧ δh1,val− idx = 17, (2) at l. 5 to l. 10:
δh1.val−δh2.val = 17 and (3) At l. 12: δh1.val = 60. From these, we deduce Prop1,
Prop2 and Prop3 respectively (based on the concretization function defined in
Def. 3).

These properties are interesting and useful. Prop1 tells a non-trivial loop in-
variant involving access paths and scalar variables. Prop2 is particularly difficult
to infer: hd.val and node.val have an invariant difference 17 because this is the
case at the loop entry; in addition, node.val increments by one (because it is
correlated with the idx at l. 7) at each iteration, and hd.val increments by one
as well (l. 10). Prop3 gives a precise value stored in the head node, indicating
that the list length is tracked as 60, precisely.

Remark 3 Targeted update is able to infer these relations because the summa-
rized dimensions δh1,val and δh2,val lose their original sense: They can be cor-
related with scalar variables and strongly updated because (TU) condition is
satisfied there. In addition, since targeted update is built on traditional numeric
domains, we can take the best from these, such as the very precise polyhedral
abstraction and the widening/narrowing techniques (Cousot and Cousot, 1992)
used in this example.

8 Experiments

The implemented targeted update is built on the static numeric analyzer NumP
developed in (Fu, 2014). Our implementation of targeted update is called T-NumP.
The analyzed language of T-NumP is Jimple (Vallée-Rai et al., 1999). The com-
piler framework SOOT is used as the analysis front-end. It offers a range of
pointer analyses as well, including the points-to analysis and the side-effect
analysis (to approximate the effects of invocation). The default flow-insensitive
points-to analysis used in SOOT is denoted by Pter subsequently. For the pur-
pose of comparison, we have implemented a traditional static numeric analyzer
for Java by wrapping abstract domains in PPL. The implemented analyzer is
called Num.

Assessment. To demonstrate the effectiveness of our technique, we evaluate it
on the SPECjvm98 benchmark suite. The experiments were performed on a 3.06
GHz Intel Core 2 Duo with 4 GB of DDR3 RAM laptop with JDK 1.6.

550 Z. Fu

We tested all the 10 benchmarks in SPECjvm98. The corresponding results
are given in Tab. 1 and 2. The characteristics of the benchmarks are presented
by the number of the analyzed Jimple statements (col. 2, STATEMENT), the
number of write access statements in the form of yp.fn = xn or yp.fn = k (col. 3,
WA), and the number of read access statements in the form of xn = yp.fn (col. 4,
RA). Experimental results are shown in Tab. 1 where we use the interval domain
Int64 Box of PPL.

Table 1. Evaluation of targeted update on the benchmark suite SPECjvm98: Interval
+ Spark

Benchmark Characteristics Precision Time Metrics
BENCHMARK STATEMENT WA RA TU PRCS SCALAR T NUM T PTER T TNUMP Q TU Q PRCS Q SCALAR Q T

200 check 2307 25 48 19 18 6 00m12s 02m36s 03m13s 76% 72% 13% 115%

201 compress 2724 96 142 89 55 9 00m07s 02m39s 03m34s 93% 57% 6% 129%

202 jess 12834 232 646 212 102 2 00m16s 02m43s 05m02s 91% 44% 0% 169%

205 raytrace 5465 53 64 52 24 0 00m05s 02m35s 03m35s 98% 45% 0% 134%

209 db 2770 32 65 31 19 0 00m04s 02m41s 03m47s 97% 59% 0% 138%

213 javac 25973 342 1362 312 143 25 00m12s 04m15s 10m12s 91% 42% 2% 229%

222 mpegaudio 14604 138 247 124 62 6 00m18s 02m50s 04m15s 90% 45% 2% 136%

227 mtrt 5466 53 64 52 24 0 00m06s 02m40s 03m42s 98% 45% 0% 134%

228 jack 12221 462 414 436 102 7 00m31s 02m45s 06m03s 94% 22% 2% 185%

999 checkit 3038 38 53 29 19 0 00m05s 02m38s 03m44s 76% 50% 0% 137%

Mean 90% 48% 3% 151%

Three parameters TU, PRCS, and SCALAR (col. 5-7) are measured to esti-
mate the precision gain. The parameter TU counts the number of write access
statements before which condition (TU) is satisfied. We record PRCS for the
number of the write access statements after which the obtained invariants are
strictly more precise than Num. Improvement on scalar variables is assessed by
the number of read-access statements after which the obtained numeric invariant
by T-NumP is strictly more precise than Num in terms of scalar variables (sum-
marized dimensions are unconstrained for this comparison). The execution time
is measured for Num, Pter, and T-NumP (col. 8-10). The parameters T Num and
T Pter are the times spent by Num and Pter when they analyze individually.
The parameter T TNUMP records the time of our analysis.

The last four columns compute the metrics for assessment. The metrics Q TU
� TU/WA and Q PRCS � PRCS/WA (col. 11-12) are the ratios of TU and
PRCS to the number of write access statements. The metrics Q SCALAR �
SCALAR/RA (col. 13) is defined with regard to read-access statements. The
metric Q T � T TNUMP/(T Num+T Pter) (col. 14) records the ratio of the
time spent by our analysis to the total time of its component analyses.

The size of the analyzed Jimple statements ranges from 2307 (200 check)
to 25973 (213 javac).3 We observe that T Pter is always much larger than
T Num. This is because the points-to analysis is interprocedural while the nu-
meric analysis is run procedures by procedures. Our analysis relies on the pointer
analysis and is thus bottlenecked by it in terms of efficiency. Still, the time spent

3 The Jimple statements are generally less than in the source program, because SOOT
typically analyzes a subset of its call-graph nodes.

Targeted Update 551

for the benchmark takes several minutes, with an average Q T = 151%. The
average precision metrics is calculated on the last row of Tab. 1. Q TU = 90%,
Q PRCS = 48% show a clear precision enhancement of our approach over tra-
ditional approaches.

Please mind the gap between TU and PRCS in Tab. 1 (and between Q TU nd
Q PRCS as well). Besides the non-monotonicity of widening operators
(Cortesi and Zanioli, 2011), we observe that the practical reason causing this
disparity is that targeted update, in the context of non-relational analysis (as
the interval analysis above), is helpless in dealing with write-access statements
in the form of yp.fn = xn as long as no information on xn has been gathered.

This point can be remedied by relational analysis. Tab. 2 shows our experi-
mental results with octagonal analysis and the same points-to analysis as above.
Since the condition (TU) can not be influenced by numeric analysis, we obtain
the same Q TU as in Tab. 1. The parameters Q PRCS and Q SCALAR can
be greatly improved due to the relational analysis, with similar time overhead
Q TU as in Tab. 1.

Table 2. Evaluation of targeted update on the benchmark suite SPECjvm98: Octag-
onal + Spark

Benchmark Characteristics Precision Time Metrics
BENCHMARK STATEMENT WA RA TU PRCS SCALAR T NUM T PTER T TNUMP Q TU Q PRCS Q SCALAR Q T

200 check 2307 25 48 19 19 6 00m13s 02m44s 03m48s 76% 76% 13% 129%

201 compress 2724 96 142 89 93 70 00m09s 03m18s 05m16s 93% 97% 49% 153%

202 jess 12834 232 646 212 215 52 00m36s 02m46s 06m38s 91% 93% 8% 197%

205 raytrace 5465 53 64 52 52 8 00m10s 02m38s 03m52s 98% 98% 13% 138%

209 db 2770 32 65 31 31 13 00m08s 02m42s 03m51s 97% 97% 20% 136%

213 javac 25973 342 1362 312 244 156 02m35s 05m31s 14m28s 91% 71% 11% 179%

222 mpegaudio 14604 138 247 124 117 36 00m39s 02m45s 06m44s 90% 85% 15% 198%

227 mtrt 5466 53 64 52 52 8 00m21s 02m37s 03m58s 98% 98% 13% 134%

228 jack 12221 462 414 436 410 168 00m34s 02m43s 08m06s 94% 89% 41% 247%

999 checkit 3038 38 53 29 28 6 00m09s 02m52s 04m46s 76% 74% 11% 158%

Mean 90% 88% 19% 167%

The experimental results show that targeted update discovers significantly
more program properties in summarized dimensions and scalar variables as
well, at a cost comparable to that of running the numeric and pointer analysis
separately.

9 Related Work

This research continues the work in (Fu, 2014) that addresses the general issue
of lifting numeric domains to heap-manipulating programs.

Memory abstraction using strong and weak updates (Chase et al., 1990;
Wilson and Lam, 1995) is common sense. Efforts have been made to enable
safe application of strong update. Sagiv et al. used the focus operation (that
isolates individual elements of the summarized dimensions) of shape analy-
sis (Sagiv et al., 1999) to apply strong update. Fink et al. (Fink et al., 2008)

552 Z. Fu

used a uniqueness analysis based on must-alias and liveness information to fa-
cilitate the verification of whether a summarized node represents more than one
concrete reference.

The recency abstraction (Balakrishnan and Reps, 2006) is a simple and ele-
gant technique that enables strong update by distinguishing the objects recently
allocated from those created earlier. This approach allows strong update to be
applied whenever a write access immediately follows an allocation, which is usu-
ally the case for initialization. Although the objective of recency abstraction is
similar to targeted update, it uses a different abstraction that is not comparable
to ours.

The issue of strong/weak update has been mostly studied for array structures.
Cousot et al. (Cousot et al., 2010) proposed an efficient solution based on the
ordering of array indexes. It may be not easy to generalize their method to the
analysis of the pointer access. Fluid update (Dillig et al., 2010) is much closer
to our approach. It is an abstract semantics that provides a sharp analysis for
the array structure. The authors used bracket constraints to refine points-to
information on arrays, which was shown to be effective to disambiguate array
indexes. This approach was also extended in (Dillig et al., 2011) to deal with
containers and other non-array structures.

10 Conclusion

Targeted update introduces a novel dimension in program analysis for tuning
precision and efficiency. We have derived the abstract semantics from the con-
cept of targets. This approach is validated on the benchmark suite SPECjvm98.
The experimental results show a tangible precision enhancement compared with
classical approaches while preserving a high scalability.

Acknowledgments. The author wishes to thank Laurent Mauborgne for his
thoughtful feedback.

References

Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

Blanchet, B., Cousot, P., Cousot, R.: A static analyzer for large safety-critical software.
In: PLDI, pp. 196–207 (2003a)

Blanchet, B., Cousot, P., Cousot, R., et al.: A static analyzer for large safety-critical
software. In: PLDI, pp. 196–207 (2003b)

Chase, D.R., Wegman, M.N., Zadeck, F.K.: Analysis of pointers and structures (with
retrospective). In: Best of PLDI, pp. 343–359 (1990)

Chen, P.S., Hung, M.Y., Hwang, Y.S.: et al. Compiler support for speculative multi-
threading architecture with probabilistic points-to analysis. In: PPoPP, pp. 25–36
(2003)

Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract interpretation.
Computer Languages, Systems & Structures 37(1), 24–42 (2011)

Targeted Update 553

Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing ap-
proaches to Abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP
1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

Cousot, P., Cousot, R., Mauborgne, L.: A scalable segmented decision tree abstract
domain. In: Manna, Z., Peled, D.A. (eds.) Pnueli Fetschrift. LNCS, vol. 6200,
pp. 72–95. Springer, Heidelberg (2010)

Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In:
POPL, pp. 187–200 (2011)

Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to anal-
ysis in the presence of function pointers. In: PLDI, pp. 242–256 (1994)

Fink, S.J., Yahav, E., Dor, N., et al.: Effective typestate verification in the presence of
aliasing. ACM Trans. Softw. Eng. Methodol. 17(2) (2008)

Fu, Z.: Static Analysis of Numerical Properties in the Presence of Pointers. PhD thesis,
Université de Rennes 1 – INRIA, Rennes, France (2013)

Fu, Z.: Modularly combining numeric abstract domains with points-to analysis, and a
scalable static numeric analyzer for java. In: McMillan, K.L., Rival, X. (eds.) VMCAI
2014. LNCS, vol. 8318, pp. 282–301. Springer, Heidelberg (2014)

Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with summa-
rized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 512–529. Springer, Heidelberg (2004)

Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural pointer
aliasing. In: PLDI, pp. 235–248 (1992)

Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: SAS
2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In:
POPL, pp. 105–118 (1999)

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a
Java bytecode optimization framework. In: CASCON, p. 13 (1999)

Wilson, R.P., Lam, M.S.: Efficient Context-Sensitive Pointer Analysis for C Programs.
In: PLDI, pp. 1–12 (1995)

Affine Parallelization of Loops with Run-Time

Dependent Bounds from Binaries

Aparna Kotha, Kapil Anand, Timothy Creech, Khaled ElWazeer,
Matthew Smithson, and Rajeev Barua

University of Maryland,
College Park, MD 20742

{akotha,kapil,tcreech,wazeer,msmithso,barua}@umd.edu

Abstract. An automatic parallelizer is a tool that converts serial code
to parallel code. This is an important tool because most hardware today
is parallel and manually rewriting the vast repository of serial code is
tedious and error prone. We build an automatic parallelizer for binary
code, i.e. a tool which converts a serial binary to a parallel binary. It
is important because: (i) most serial legacy code has no source code
available; (ii) it is compatible with all compilers and languages.

In the past binary automatic parallelization techniques have been de-
veloped and researchers have presented results on small kernels from
polybench. These techniques are a good start; however they are far from
parallelizing larger codes from the SPEC2006 and OMP2001 benchmark
suites which are representative of real world codes. The main limitation of
past techniques is the assumption that loop bounds are statically known
to calculate loop dependencies. However, in larger codes loop bounds are
only known at run-time; hence loop dependencies calculated statically
are overly conservative making binary parallelization ineffective.

In this paper we present a novel algorithm that enhancing past tech-
niques significantly by guessing the most likely loop bounds using only
the memory expressions present in that loop. It then inserts run-time
checks to see if these guesses were indeed correct and if correct executes
the parallel version of the loop, else the serial version executes. These
techniques are applied to the large affine benchmarks in SPEC2006 and
OMP2001 and unlike previous methods the speedups from binary are as
good as from source. We also present results on the number of loops par-
allelized directly from a binary with and without this algorithm. Among
the 8 affine benchmarks among these suites, the best existing binary par-
allelization method achieves an average speedup of 1.74X, whereas our
method achieves a speedup of 3.38X. This is close to the speedup from
source code of 3.15X.

Keywords: Automatic Parallelization, Binary Rewriting, Affine loop
parallelization, Run-time dependent loop bounds.

1 Introduction

With the advent of multi-core machines it is most efficient to run parallel code
on them. However, most code ever written is serial. Several methods have been

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 554–574, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Affine Parallelization of Loops with Run-Time Dependent Bounds 555

proposed to parallelize serial code which include: (i) explicitly rewriting se-
rial code using Message Passing Interface (MPI), pthreads, Threading Building
Blocks (TBB) etc; (ii) using program directives such as Open Multi-Processing
(OMP) to specify parallelism in serial code and (iii) using an automatic paral-
lelizer to convert serial code to parallel without any human intervention. Auto-
matic parallelizer is more attractive than the first two methods since: (i) it is
not prone to human error; (ii) programmers do not need to be trained to think
and program in parallel. Hence, we choose automatic parallelization to bridge
the gap between serial code and parallel hardware.

In this paper we develop mechanisms to implement an automatic parallelizer
within a binary rewriter. i.e. we develop a tool that takes as input serial binary
code and produces as output a parallel binary. The advantages of parallelizing
binary code include: (i) it works on old legacy code for which no source code
is available; (ii) it works for all binaries of an instruction set irrespective of
the language/compiler they come from; (iii) it works on hand-coded assembly
language programs as well; (iv) it can be used by the end user who does not
have access to the source code.

In the past a few attempts have been made to parallelize affine codes directly
from binaries Kotha et al. (2010); Pradelle et al. (2012). Though these papers
present good foundational ideas and results on polybench kernels, they are only
a start to parallelizing large real world affine codes. The major limitation of these
methods is that their algorithms are not powerful enough to handle loops with
run-time dependent loop bounds and such loops are present in abundance in real
life code. In this paper we present a novel algorithm to work on such loops whose
bounds are run-time dependent or statically unknown. The idea is that we guess
the most likely loop bounds using the memory expressions present in the loop
and add run-time checks to see if these were indeed correct before executing the
parallel version of the loop. These run-time checks may slow down the program
in the worst case but open up for more possible parallelism. Our results show
that affine benchmarks from the SPEC2006 and OMP2006 benchmark suites
(much larger benchmarks representative of real world codes) can be parallelized
with our techniques.

Further, this paper is arranged as follows. Section 2 presents the closest related
work contrasting our techniques to them. Section 3 presents the limitations of the
present binary affine parallelization techniques using an example and motivates
the algorithm followed by a brief algorithm and more examples in section 4.
The core algorithm is presented in section 5 followed by the description of our
infrastructure in section 6 and the results in section 7.

2 Related Work

In this section, we present potentially competing related work contrasting it
to this paper in the following categories: (i) static automatic parallelization of
binaries; (ii) dynamic automatic parallelization of binaries; (iii) automatic vec-
torization of binaries and (iv) array delinearization techniques.

556 A. Kotha et al.

Static Automatic Parallelization of Binaries: Kotha et al. (2010) and
Pradelle et al. (2012) are the only two static methods we are aware of that
have done automatic parallelization in a binary rewriter. Both these methods
present results on small kernels that are a part of the polybench benchmark
suite. Pradelle et al. (2012) automatically parallelizes binaries by feeding the
binary intermediate form to the polyhedral compiler. Its results are only on the
polybench benchmark suite. Kotha et al. (2010) statically parallelizes binaries by
using dependence information determined from binaries. However, its methods
are limited to affine loops where loop bounds are known and hence, it also can
only parallelize small kernels from the polybench benchmark suite. Both these
methods present a brief section on run-time dependent loop bounds and suggest
adding run-time checks to check if different accesses were indeed to different
arrays. Their methods are highly lacking since they have no mechanisms to
reason about dependencies between accesses to the same array and in the absence
of such a mechanism it will be conservative and not parallelize real world code.
We build on this work and have devised a novel algorithm to guess the possible
loop bounds of affine loops. We are able to parallelize affine benchmarks from
the SPEC2006 and OMP2001 benchmark suites.

Dynamic Automatic Parallelization of Binaries: Dynamic automatic par-
allelization techniques present in literature are Yardimci and Franz (2006),
Wang et al. (2009) and J. Yang and Whitehouse (2011). Yardimci and Franz
(2006) focuses on a dynamic method to detect non-affine parallelism. Wang et al.
(2009) presents a dynamic method to parallelize binaries using speculative slicing
and J. Yang and Whitehouse (2011) presents a method to use run-time informa-
tion to parallelize binary code. All the three methods are dynamic. Hence, they
suffer from run-time overheads from analysis. Most importantly, they do not
optimize for affine loops whereas our method does.

VectorizationofBinaries: Nakamura et al. (2011) andDasgupta and Dasgupta
(2003) present techniques to analyze binaries and vectorize them. Their analysis is
limited to vectorization of binaries and do not attempt to parallelize using threads
like we do.

Array Delinearization Techniques: Array Delinearization methods Maslov
(1992) Franke and O’boyle (2003) take source code with linearized multi-
dimensional accesses, and convert them to multi-dimensional accesses when pos-
sible. Ideally, if we delinearize array accesses in a binary we can parallelize them
as effectively as from source. However, source-level methods to delinearize ar-
ray accesses cannot be adapted to binaries easily. Delinearization methods such
asMaslov (1992), Franke and O’boyle (2003) require high level intermediate C like
representationwhich is not available frombinary code. They use symbolic informa-
tion which contains information about the number, location, and dimension sizes
of arrays, to delinearize arrays. Finding this information in the general case from
stripped binaries (i.e. those without symbolic information) is impossible since it
is discarded by the linker. Hence, delinearization methods cannot be adapted for
binary code.

Affine Parallelization of Loops with Run-Time Dependent Bounds 557

The method in this paper circumvents the problem of missing array informa-
tion in binaries by not attempting to recover guaranteed information about array
locations and dimension sizes. Instead it guesses the possible bounds for loops.
When the guesses are correct, the code can be parallelized. Run-time checks en-
sure that when the guessed bounds are wrong, the serial code is executed. No pre-
vious method guesses loop bounds from binaries, or uses run-time checks like our
method. The result is that our method is the first to parallelize binary code with
unknown loop bounds.

3 Motivation

Toparallelize affine loops, traditional techniques calculate distance vectors for each
loop and use them to reason about parallelizing the loop. In this section we first
describe the best-known methods for obtaining distance vectors from source code
for affine loops with run-time determined loop bounds.We then present the limita-
tions of the existing binary method for the same and briefly describe our method.

int A[20,50]
for i = 0 → ubi step 1

for j = 0 → ubj step 1
A[i,j] = A[i,j] + 10

The code shows a normalized loop, i.e. a loop
with a lower bound of zero and a step of one.
Loops can be normalized using existing meth-
ods such as the normalization pass in LLVM.

Fig. 1. Code Example

Distance vectors from source for code in figure 1 are calculated as follows. Ex-
isting methods make the assumption that row and column accesses are within the
bounds of the array’s dimensions. They solve for two iterations that refer to the
samememory location in the infinite space for each dimension separately. If no so-
lution exists, like in this example, they conclude that no two iterations ever access
the same memory. This implies that iterations of the j loop can execute in parallel
(i.e., the component of the distance vector for j dimension is zero.) Similarly, they
proves that the loop i is parallel.

To obtain distance vectors from binary for this code we cannot use the above
sourcemethod since it relies on known affine expressions for array indexes in terms
of induction variables, which are not apparent from the binary. Instead we start
with the existing method for binaries in Kotha et al. (2010). It shows that we can
recover linearized expressions for memory accesses from a binary, and solving these
linearized expressions gives us distance vectors. In the presence of loop bounds the
solutions from binaries are very powerful, and can handle most linear algebraic
kernels as presented in Kotha et al. (2010). However, when loop bounds are run-
time dependent, we need to solve these linearized expressions in the infinite space
(since we need to assume that the loop bounds can take any value at run-time).
This greatly reduces the precision of the analysis.

Let us apply the existing binary method to code in figure 1. From its binary,
we recover a memory expression of the form BaseA + 200i + 4j which corresponds
to the A[i,j] access (assuming the element size is 4). The “200” in 200i is because

558 A. Kotha et al.

the size of a row is 50 elements, each of 4 bytes. We need to reason about this ac-
cess in the infinite space for i and j since the loop bounds are unknown. In the
infinite space, iterations (2, 0), (1, 50) and (0, 100) refer to the same memory lo-
cation. All the iterations except (2, 0) are not possible since the legal range of j is
[0,49] and beyond 49 the code accesses columns out of bounds wrapping into rows.
Source code methods assume that such iterations are not possible; hence prov-
ing the loop is parallel. However, the binary method in Kotha et al. (2010) cannot
make any such assumptions about iterations remaining within array bounds, since
array bounds and dimensions are not known. As a result, without loop bounds, the
binarymethod inKotha et al. (2010) fails to prove that this loop is parallel because
false loop-carried dependence appears.

In this paper we present a method to statically guess the most likely upper
bounds of loops when loop bounds are statically unknown. We then use run-
time checks to see if the loop bounds were indeed within the guessed range and
execute the parallel version when the run-time checks succeed, else we execute
the serial version. For example, for code in figure 1, using the theory presented
in Kotha et al. (2010) we discover the memory expression for the A[i][j] access to
be BaseA + 200i + 4j.We then look at the coefficientsmultiplying the induction vari-
ables in this memory expression and guess that the likely limit of the induction
variable with the smallest coefficient (i.e. j, as the immediately higher coefficient
divided by the coefficient of this induction variable; i.e. in this example we guess
the limit on j as (Coefficient of i/Coefficient of j) (i.e. 200

4
= 50). By guessing that

j is less than 50 no two iterations will access the same memory location because
now j has been prevented to wrap into i. At run-time, we check if j is indeed less
than 50. In this case, this check will always succeed and we will always execute the
parallel version of the loop.

4 Examples

In this section we first briefly describe the steps of the algorithm described in sec-
tion 5 and then apply it to four code examples to show how their loops can be
parallelized from a binary even though the loop bounds are run-time dependent.

First, we state the algorithm that we use to guess the loop bounds for a loop
directly from a binary and then present details in section 5.

Step 1: Divide memory accesses (both reads and writes) in a loop into Depen-
dence Groups (DGs). Intuitively, a DG is a subset of memory addresses in the loop
that are sufficiently close to one another.

Step 2: Arrange all DGs in ascending order of their base addresses, from
DG1 to DGT.

Step 3:For all the DGs that havewrites in themmakebest guesses for the possi-
ble range for induction variables. These guesses are called intra-group constraints,
since they are obtained by working on one DG at a time.

Step 4: Initiate worklist with DGs that have constraints remaining after step 3.
Step 5: Work on each DGi in the worklist and solve for the values of induc-

tion variables such that the accesses in DGi do not overlap with those in DG(i+1).

Affine Parallelization of Loops with Run-Time Dependent Bounds 559

This generates further guesses on the induction variables. Merge these new con-
straints with existing constraints for the same induction variable by choosing the
minimum. These guesses are called inter-group constraints because they are ob-
tained by constraining DGi to not overlap DG(i+1) .

int A[20,50]
int B[20,50]
for i = 0 → ubi step 1

for j = 0 → ubj step 1
B[i,j] = A[i,j] + 10

(a) Example 1

int A[20,50]
for i = 0 → ubi step 1

for j = 0 → ubj step 1
A[2i,j] = 10*i+j

(b) Example 2

int A[100]
for i = 0 → ubi step 1
A[i] = i;
A[i+50] = i + 50;

(a) Example 3

Example 1: The memory address expressions that we recover from the binary of
example 1 are of the form BaseA + 200i + 4j and BaseB + 200i + 4j (Assuming that
the size of an integer is 4.). BaseA and BaseB will at least differ by 4000, since the
size of each array is 4000 bytes. Without loss of generality let’s assume we recover
the following from the binary 100 + 200i + 4j and 4100 + 200i + 4j.

When the code above is compiled to a striped binary, all symbolic information
is lost. Hence we no longer know the location or dimension sizes (20, 50) of array
A. Hence we can no longer infer (as we implicitly do from source) that ubi < 20 and
ubj < 50. Instead we must assume that the loop bounds can take any value.

We now show briefly how our algorithm is applied to these accesses to guess the
bounds on i and j. In Step 1, we check to see if the accesses belong to different DGs.
The heuristic we use is that the difference of the bases is greater than a factor (5 for
our experiments) of the highest coefficient; i.e. BaseB −BaseA > 5× 200 i.e. (4100-
100) > 5× 200. Since this is true both the accesses will belong to different DGs. In
Step 2, we arrange the DGs in ascending order of their bases. 100+200i+4j belongs
to DG1 because its base is lower than the second access which belongs to DG2. In
Step 3, we solve for intra-group constraints in DG2 since it contains a write. We
guess the bound on j by dividing the co-efficient multiplying i (the just higher co-
efficient in the linearized equation) by the co-efficient of j i.e. (200

4
= 50). Hence,

we guess that j must belong to [0, 49]. In step 4, we create a worklist with all DGs
that have constraints remaining. In this example both the DGs have constraints
remaining on i; hence both of them will belong to the worklist. In step 5, we guess
the bound on i by solving that DG1 i.e. 100+200i+4j does not overlap withDG2 i.e.
4100+200i+4j given the highest possible value for j is 49; i.e. 100+200i+4∗49 < 4100.
Hence, i must be less than 19.02 or in the range [0, 19]. Since DG2 is the highest
DG we do not solve for it overlapping with any other DG.

After we have applied our algorithm to this loop, our guess for i is [0, 19] and j is
[0, 49]. We now solve for dependencies within this range for the loop and discover
that the loop can be parallelized. We also add lightweight run-time checks before
the parallel version of the loop (which will always succeed for this loop).

Example 2: The memory address expression that we recover from the binary in
example 2 is BaseA+400i+4j. Since there is only one access, step 1 and 2 will result
in placing it in DG1. In step 3, we guess that the bound of j is (400

4
= 100) or the

range of j is guessed to be [0, 99]. There would be no step 4 and 5 for this loop since
there is only one DG.

560 A. Kotha et al.

Next we calculate dependencies assuming the range of j is [0, 99] and i can take
any value and discover that the loop can be parallelized. In reality however the
range of j will not exceed [0, 49]. But our larger discovered bounds work well since
even if they did exceed 49 and be below 99 this loop can still be parallelized i.e. if
the programmer decided to access two rows using a column increment (whichmost
programmers would not do) it is still a parallel loop. From the binary this means
that we see array A of size [20,50] as an array of size [10,100]. However, this is fine
since we reason about the dependencies in the correct way and parallelize the loop
only when our run-time checks succeed.

Example 3: The equations we will recover from the binary of example 3 areBaseA+

4i and BaseA + 200 + 4i. After step 1, we will place them in different DGs since the
difference between the bases (200) is greater than 5 times the highest co-efficient 4.
After arranging the DGs in ascending order in step 2, BaseA+4i will belong to DG1

andBaseA+200+4iwill belong toDG2. No intra-groupguesses are calculated in step
3 since the recovered equations are single dimensional. After step 4, the worklist
is populated with both the DGs since both contain i for which there is no guess as
yet. In step 5, we solve for inter-group guesses such thatDG1 does not overlapwith
DG2, i.e. 4i < 200 or i < 50. Hence, the range we guess for i is [0, 49] which is also
the actual limit on i from source. The run-time check will always succeed in binary
code and we will execute the parallel version of this loop. This is correct because,
regardless of the value of ubi, the two array references access non-intersecting por-
tions of the array. Our method correctly treats these non-intersecting portions as
different arrays.

5 Algorithm toGuess Loop Bounds

In this section we describe in detail the algorithm briefly presented in section 4.
First we describe which loops from binary code we work on and then in subsequent
subsections we describe the steps of the algorithm in detail.

First, we would like to present to you the kind of loops on which our algorithm
is applied on and the kind of loops on which our algorithm is effective. We apply
our method to every loop that has only affine accesses in them i.e. accesses of the
form A[i+3][5j], A[i+j][k+i], A[j][j] etc are all processed by our method. We also
apply our method only on loops whose bounds are loop invariant. Our method is
able to effectively parallelize loop nests with array accesses of the form A[i][2j],
A[3j][i+100], and A[j][i] i.e. normalized accesses with induction variables in any
order; however affine accesses having multiple induction variables in a single array
index expression (such as A[i+j]) or having repeated induction variables (such as
A[j][j]) are not currently effectively parallelizedby ourmethod. Our guessesmaybe
incorrect for these loops. Hence, the run-time checks might fail for these loops and
the serial version of the code may be executed. However, these kinds of accesses
are rare in real code and hence our method is nearly as powerful from binary as
from source.

Affine Parallelization of Loops with Run-Time Dependent Bounds 561

Every affine memory address that we recover from the binary is a linearized
multidimensional equation of the form Kotha et al. (2010):

MemAddr(Base, d) = Base +
n

Σ
j=1

dj × ij (1)

(where Base and d’s are constants or loop invariant quantities, i’s are induction
variables, and d1 >= d2 >= >= dn). We arrange the memory expression with d’s in
this order since in the algorithm we use the immediately higher coefficient while
guessing the value of a particular induction variable, i.e. we use d(m+1) when guess-
ing the values of induction variable im. We will refer to memory addresses from bi-
nary using MemAddr(Base, d) throughout the paper. Different memory addresses from
binary will have different Base and ds. Since we work on loops with only affine ac-
cesses in them, if we discover that a loop contains an access that is not affine i.e.
we cannot discover a linearized expression for it then we do not work that loop.

In the following subsections we first describe our algorithm and then present an
intuition for it.

5.1 Step 1: Divide the Accesses into DGs

A DG is a subset of memory references in the loop that are sufficiently close to
one another and these set of references most likely do not overlap with other DGs.
Intuitively, while dividing memory references into DGs we try to guess all the ref-
erences which access the same array, or a region of an array not overlapping with
other regions. This is not immediately apparent since binaries lack symbolic infor-
mation containing the locations and sizes of arrays.

We createDGs using the followingmethod.We look at the address of eachmem-
ory reference and place it in an already present DG if it is sufficiently close to the
addresses already in that DG; else we create a new DG with this memory address.
We define that two accesses are sufficiently close to one another if the difference
between the bases is within a factor (5) of the highest coefficient in the memory
expression. The formal algorithm is presented in algorithm 1. We use a factor 5
which we find effective in most cases; however any other method can be used as
well to determine which accesses are close to each other.

We now describe some of the terms used in the algorithm. DGlist is the list of
DGs that is initialized to NULL and then populated as we consider every memory
access in the loop. d1 is the highest coefficient in the memory expression; hence, if
the difference between the base and any of the bases already in a DG is within a
factor of it, we guess that itmost likely belongs to the samememory arrayand place
this reference in that DG. CDThres is a number that guesses the maximum difference
between references in the same DG. Currently we set CDThres to 5. With CDThres = 5,
two accesses to A[i] and A[i+4] will belong to the same DG, whereas two accesses
to A[i] and A[i+10] will belong to different DGs.

We manually looked at many affine benchmarks and determined that having
accesses A[i] and A[i+e] where e > 5 in the same loop is relatively rare in affine
codes; as most constants in affine codes are less than 5. Most of the codes only look
at neighbouring values (i.e. use constants± 2) to update an array.Hence, even if we
had accesses to A[i+2] and A[i-2], the difference 4 is still lower than the factor 5 we

562 A. Kotha et al.

choose. If the rare case occurs, and there are accesses to A[i] and A[i+e] (e > 5), we
would treat them as accesses to two different arrays. Accesses to different arrays
A and B will belong to different DGs unless the highest dimension of A has size
less than 5 (which again is very rare) and B immediately follows A in the binary’s
data layout. Most often in affine codes, the array sizes are relatively huge running
into thousands. If this rare case appears we will treat both A and B as the same
array. In both the above cases, the run-time checks will fail and the serial version
of the loop will be executed. Hence, the loop may run slower than from source, but
correctness is always maintained.

Algorithm 1. Step 1: Algorithm to divide accesses into DGs

Input: MemAddr(Base,d) for all accesses in loop
Output: DGlist has the accesses divided into DGs

Require: Initialize DGlist to NULL
for all MemAddr(Base,d) in loop do

Initialize TmpDGlist to NULL
for all DGi in DGlist do

if |Base − Any base in DGi|<d1 × CDThres then
Put MemAddr(Base,d) in DGi

Put DGi in TmpDGlist
end if

end for
if sizeof TmpDGList > 1 then

Merge all the DGs in TmpDGList
end if
if sizeof TmpDGList == 0 then

A new DG with MemAddr in it is added to DGlist
end if

end for

5.2 Step 2: Arrange DGs in Ascending Order

In this step we reorganize the DGs in DGlist in ascending order of the bases present
in them. After arranging those in ascending order the following will be true:

All bases in DG1 < All bases in DG2 < · · · < All bases in DGT (This will be < since if
they are equal they would belong to the same DG). We call this ordering of DGs,
the FullList.

5.3 Step 3: Induce Intra-group Dependencies

In this step we make our best guesses for all array bounds, and hence induction
variables, except the array bound of the highest dimension in an array reference.
Wemake the guesses based on the assumption that array references accesses arrays
within the bounds of each dimension.

We apply step 3 to everyDG that has awrite in it. The reasonwe apply it toDGs
with writes in them is that even if a read accesses across bounds it does not create a

Affine Parallelization of Loops with Run-Time Dependent Bounds 563

Algorithm 2. Step 3.1: Guesses for induction variables using one access

Input: All DGs that have a write in them
Output: Initial guesses for the induction variables

Require: Initialize each of g1, g2, · · · , gn to TOP
for all DGi in FullList that has a write in it do

for all MemAddr(Base,d) in DGi do
for k = 2→ n do

g1k = 2 d(k−1)

dk
3

gk = min(gk, g1k)
end for

end for
end for

loop dependency that prevents parallelization; hence guessing bounds considering
DGs with only reads is not necessary. For example, if there is an affine loop that
only reads from an array, there is no need to guess bounds for such a loop as it is
parallel in the infinite space as long as there is no scalar dependency in it.

Step 3 is divided into two sub steps 3.1 and 3.2. Step 3.1 is applied to every
access in a DG and step 3.2 is applied to a pair of accesses in a DG.We first present
the algorithms for both the sub steps before presenting intuitions for them.

Step 3.1:The formal algorithm for step 3.1 is presented in algorithm 2. We are
working on loop nests with induction variables say i1, i2, · · · , in and guesses for each
g1, g2, · · · , gn. First, we initialize the guesses for each of these induction variables to
TOP representing infinity which is what we know about each of the induction vari-
ables before the start of this step. Then we look at everymemory access which is of
the form MemAddr(Base, d) (from eq(1)) and make guesses for each induction variable
as follows.

The guess on ik, g1k = � d(k−1)

dk
� ∀k ∈ [2, n] (2)

We then update the guess already in gk for ik using

gk = min(gk, g1k) (3)

Note: min(TOP, g1k) = g1k since TOP represents infinity.
We apply this to everymemory access in everyDG that has a write and guess for

every induction variable other than the highest dimension i1. Note that we cannot
make a guess for i1 since there is no d0 in the equation. Hence, we do not have a
guess for i1 in this step. The guess for i1 is made in step 5 and will be described
later.

Step 3.2: After we have applied step 3.1 to all DGs that have a write in them,
we work on the same DGs considering pairs of accesses in them and apply step 3.2
on them. This algorithm is presented in algorithm 3.

We now describe the algorithm briefly. We first initialize x1, x2, · · · , xn to zeroes.
These represent the adjustment we need to make to each of the induction variable
bound guesses at the end of this step. Then we consider pairs of accesses in this
DG, if the bases are different then we store the absolute difference in Basediff. We
then run a loop that checks to see which factor of this difference came from which

564 A. Kotha et al.

Algorithm 3. Step 3.2: Guesses for induction variables using pair of accesses

Input: All DGis that have a write in them and g1, g2, · · · , gn from step 3.1
Output: Refined guesses for induction variables

Require: Initialize x1, x2, · · · , xn to zeroes
for MemAddr1(Base1, d),MemAddr2(Base2, e) in DGi do

Basediff = | Base1 - Base2 |
for k = 1→ n do

if
Basediff

gcd(dk,ek)
≥ 1 then

x11 = 2 Basediff

gcd(dk,ek)
3

xk = max(xk, x11)

Basediff = Basediff − 2 Basediff

gcd(dk,ek)
3 × gcd(dk, ek)

end if
end for

end for
for k = 1→ n do

gk = gk − xk

end for

co-efficient andkeep track of that in dks. Later these are subtracted from the guesses
for induction variables gk from step 3.1.

It is important to make this adjustment to the guesses on loop bounds from step
3.1 since by doing so we are making sure that each of the accesses do not run into
the higher dimension of the other. After this adjustment we will not have spuri-
ous dependencies from binary that prevent prallelization. We will present further
intuition to this step below.

Intuition for Step 3.1: Let us assume that the binary code we are accessing
came fromsource codewhere the loopnesthad inductionvariables (say i1, i2, · · · , in)
and an array accesses A[C1 × i1 + B1][C2 × i2 + B2] · · · [Cn × in + Bn] in the loop and the
size of array A is [n1][n2] · · · [nn]. Assume that none of the induction variables is re-
peated; however anyordering of the inductionvariables is allowed.This accesswhen
recovered from the binary will be of the form.

(BaseA +
n

Σ
j=1

Bj ×
n

Π
m=j+1

nm) +
n

Σ
j=1

Cj ×
n

Π
m=j+1

nm × ij (4)

(This assumes an element size of 1; else each one of the terms will be multi-
plied by the element size.) The algorithm is correct even if the compiler uses the
column-major layout; we assume the row-major layout only for explaining the intu-
ition. Our results also include FORTRANbenchmarks for which the gfortran com-
piler uses the column-major layout. BaseA and all the terms containing B’s (shown
in parenthesis above) are rolled into the constant term when recovered from the
binary. We know that the memory address that we recover from binary is of the
form MemAddr(Base, d) (from eq.(1)).

Equating (4) and (1) we get:
Base = BaseA +

n

Σ
j=1

Bj ×
n

Π
m=j+1

nm (5)

and, dj = Cj ×
n

Π
m=j+1

nm (6)

Affine Parallelization of Loops with Run-Time Dependent Bounds 565

First, let us calculate the actual upper bounds of the induction variables from
source. From source we know that the array indices do not access arrays out of
their bounds. Hence, each dimension index must be less than the actual size of
that dimension.

i.e. Ck × ik + Bk < nk (7)

Rearranging the terms, ik <
(nk−Bk)

Ck
(8)

Hence, the upper bound of ik from source is (nk−Bk)
Ck

.
Second, let us see what our guess for induction variable ik is by applying step

3.1 to this access. Our guess for induction variable ik is obtained by substituting
eq(6) in eq(2)

i.e. g1k = � C(k−1)×nk

Ck
� ∀k ∈ [2, n] (9)

Next taking the minimum of g1k and TOP (the initialized value) we get,
gk = min(TOP, g1k) = g1k = � C(k−1)×nk

Ck
� ∀k ∈ [2, n] (10)

We now show that the guesses for induction bounds are greater than or equal to
the actual loop bounds. This is important because if the guesses were lower than
the actual bounds our run-time checks would fail. We have already seen that the
guess on the induction variable ik =

C(k−1)×nk

Ck
, this is greater than the actual limit

of ik, which is (nk−Bk)
Ck

from eq.(8). We observe that if C(k−1) is 1 and Bk is 0, then
the value we would have guessed is the same as the actual upper bound. Further,
if Ck is 1 as well, the guess for ik is nk, which is the size of that array dimension.
Every guess we make for the induction variables is actually higher than or equal
to its actual bound as shown above. By taking the minimum at every step we have
a guess that is at least its actual bound.

Intuition for step 3.2: Let us assume that there is a second accesses to A,
A[C1 × i1 + B1 + E1] · · · [Cn × in + Bn + En] in this loop where Es are small numbers < 5.
The memory address for this access from binary will be of the form:

BaseA +
n

Σ
j=1

(Bj + Ej)×
n

Π
x=j+1

nx +
n

Σ
j=1

Cj ×
n

Π
x=j+1

nx × ij (11)

Recollect that this access when recovered from the binary will be of the form
MemAddr(Base2 , e), from equation (1):

MemAddr(Base2 , e) = Base2 +
n

Σ
j=1

ej × ij (12)

Equating eq.(11) and eq.(12), we get:
Base2 = BaseA +

n

Σ
j=1

(Bj + Ej)×
n

Π
x=j+1

nx (13)

and, ej = Cj ×
n

Π
x=j+1

nx (14)

First, let us prove that both the references belong to the same DG using step 1
since we would apply step 3.2 to them only if both of them belong to the same DG.
From step 1 we know that if the difference between the bases is < d1 × CDThres, then
they will belong to the same DG.

i.e. if |Base2 − Base| < d1 × CDThres (15)

then, both the accesses will belong to this DG.
The difference between the bases from eq.(13) and eq.(5) is

Base2 − Base =
n

Σ
j=1

Ej ×
n

Π
x=j+1

nj (16)

566 A. Kotha et al.

We know from eq.(14) and eq.(6) that:
d1 = e1 = C1 ×

n

Π
m=2

nm (17)

Now, substituting eq.(16) and eq.(17) in eq.(15) we get:
If

n

Σ
j=1

Ej ×
n

Π
x=j+1

nj < C1 ×
n

Π
m=2

nm × CDThres (18)

, then both the accesses will belong to this DG
⇒ E1

C1
+ E2

C1×n2
+ · · ·+ En

C1×
n
Π
m=2

nm

< CDThres (19)

(which will be true in most cases since C1 and Es are small positive numbers < 5
and n2 · · · nn are relatively large, and CDThres is 5 in our experiments.)

Hence, both these accesses represented by MemAddr(Base, d) and MemAddr(Base2 , e)

from the binary will belong to the same DG.
First, let us see what the bounds for the induction variable from source would

be in the presence of the second access as well. We know that accesses from source
do not access out of bounds in correct programs.We have seen that the bounds for
each induction variable (ik) only considering the first access is (nk−Bk)

Ck
as shown in

eq.(8). Now considering that the second access does not access out of bounds we
get:

Ck × ik + Bk + Ek < nk (20)

Rearranging the terms, ik <
(nk−(Bk+Ek))

Ck
(21)

The difference between the bounds calculated from eq.(8) and eq.(21) is Ek
Ck

Now let us apply algorithm 3 to both these accesses.
We know that Basediff =

n

Σ
j=1

Ej ×
n

Π
x=j+1

nj. By dividing it with gcd(dk, ek) = dk (since

dk = ek in our case) repeatedly in loop and keeping the remainder of it for the next
iteration we recover xks of the form � Ek

Ck
� as long as Cks are factors of Eks. By sub-

tracting xks from the already present guesses of the induction variables we get
gk =

C(k−1)×nk

Ck
− Ek

Ck
. Many of the Es will be zeroes, hence wewill notmake adjustment

to many bounds, however we will make adjustment to the bounds that have small
constant Es in their terms. Further, it is good to note that the term we subtract
using algorithm 3 is equivalent to the difference of the bounds as shown above.

It is important to note at this point that by subtracting from the already guessed
bounds, we are making sure that the second access which accesses a few extra ele-
ments in some dimensions does not run into the higher dimension of the first access.
This is very important because if we do not make this adjustment we will have ex-
tra dependencies frombinarywhichwill prevent parallelization and by subtracting
the extra from bounds we will not see those spurious dependencies. Also it is im-
portant to note that the new guess we have for the bounds is also higher than or
equal to the actual bounds of the loop.

5.4 Step 4: Create the Worklist

In this step we create a worklist with DGs that have accesses with remaining con-
straints so that we can apply step 5 on them to guess the upper bounds for the
remaining induction variables. After step 3 we have upper bound constraints for

Affine Parallelization of Loops with Run-Time Dependent Bounds 567

all the induction variables in the memory addresses other than the ones that cor-
respond to the highest dimension in the write accesses.We need a method to guess
the upper bound on these induction variables as well. Thismethod is step 5. Hence,
we now create a worklist with all DGs in which there is an induction variable for
which we do not have an upper bound guess as yet. These would be the highest
dimension induction variables since we do not have guesses for those after step
3. This worklist will enable us to work on only those DGs that have remaining
constraints.

5.5 Step 5: Work on Inter-group Constraints

In this step we look at all DGs in the worklist created in step 4 (recall that these
DGs have induction variables for which we have no guesses as yet) and solve for
this DG not overlapping with the immediately following DG in the FullList. While
creating DGs we assumed that each DG corresponds to a non-overlapping array
region. Hence, it is required that different DGs do not overlapwith each other; else
thiswould generate false dependencies frombinaries. Solving this generates further
guesses on the remaining induction variables. These guesses are called inter-group
constraints.

The formal method for solving that DGi from worklist does not overlap with
DG(i+1) (the immediately following DG in the FullList of DGs) is presented in algo-
rithm 4, we describe it briefly here. For every DGi that has constraints remaining we
substitute the guesses for all induction variables other than the highest one in all
its memory expressions and require that this be less than the lowest base in DG(i+1).
Solving the above constraint we can obtain an higher bound for the highest induc-
tion variable. We then choose the minimum of the present guess and the already
present minimum guess for that induction variable. This way we ensure that all
our guesses are respected.

Algorithm 4. Step 5: Algorithm for Inter-group constraints

Input: Worklist from step 4 and guesses g1, g2, · · · , gn from step 3.2
Output: Final guesses for bounds g1, g2, · · · , gn
for all DGi in worklist after step 4 do

for all MemAddr(Base,d) in DGi do
Baselow = Lowest Base from DG(i+1) in FullList

g11 = 2
Baselow−Base−(

n
Σ

j=2
d2∗g2)

d1
3

g1 = min(g1, g11)
end for

end for

Intuition for step 5:Now that we have presented an algorithm for calculating
the bounds on the highest induction variable, let us apply this to an access from
source code, to show that our method guesses the value for the highest induction
variable that is ≥ to the actual bound on that induction variable.

568 A. Kotha et al.

In step 3 we assumed we were working with loop nests comprising of the
following induction variables (say, i1, i2, · · · in) and array accesses
A[C1 × i1 + B1] · · · [Cn × in + Bn] in the loop, and the size of array A is [n1][n2] · · · [nn]. Let
this access belong to DGi.

First, let us recollect the guesses for all induction variables except the highest
induction variable from step 3. One of the guesses we would have made for induc-
tion variable ik (where k ∈ [2,n]) is

C(k−1)×nk

Ck
(eq.(9)). Hence, the final guess after

step 4 will be equal to or lower than this guess.
Next, let us assume that there is an access to array B in the same loop belonging

to DG(i+1), i.e. the immediately following DG in the FullList. If this second array B

is laid immediately after A in the binary, then BaseB will be at least:
BaseB = BaseA +

n

Π
j=1

nj (this term is the size of A) (22)

Let us assume that all accesses corresponding to B belong to DG(i+1). The lowest
address of DG(i+1) will be BaseB.

Next, we apply the method in algorithm 4 for solving DGi not overlapping with
DG(i+1) from source to derive the guess for i1 and then verify that this guess is cor-
rect. For doing so we must substitute our guesses for all the induction variables
except the highest dimension induction variable in the expression of memory ad-
dress A and this must be less than BaseB. The expression for memory address A
obtained by substituting the intra-group guesses eq.(9) in eq.(4) is:

BaseA+
n
Σ
j=1

Bj×
n
Π

x=j+1
nx+C1×

n
Π
x=2

nx×i1+
n
Σ
j=2

Cj×
n
Π

x=j+1
nx×(

Cj−1×nj

Cj
−1) (23)

The only unknown in eq.(23) is i1. This must be less than BaseB (from eq.(22)).
Hence,

BaseA+
n
Σ
j=1

Bj×
n
Π

x=j+1
nx+C1×

n
Π
x=2

nx×i1+
n
Σ
j=1

Cj×
n
Π

x=j+1
nx−

n
Σ
j=2

Cj×
n
Π

x=j+1
nx

≤BaseA+
n
Π
j=1

nj

(24)

Rearranging the terms we get,

i1 ≤
n
Π
j=1

nj−(C1×
n
Π
x=2

nx+
n
Σ
j=1

Bj×
n
Π

x=j+1
nx)

C1×
n
Π
x=2

nx

(25)

Further,
i1 ≤ n1

C1
− 1− B1

C1
−

(
n
Σ
j=2

Bj×
n
Π

x=j+1
nx)

C1×
n
Π
x=2

nx

(26)

i.e. i1 ≤ n1
C1

− 1− B1
C1

− (Δ) (27)

The remaining values are small since the constant C’s and B’s are small and the
sizes of arrays in affine code are generally large.

Hence, the guess for i1 will be:
g1 = � (n1 −B1)

C1
− 1� (28)

As seen before from source we require that the array expression must not ex-
ceed the size of the array dimension. Hence the highest dimension array expression
(C1 × i1 + B1) must not exceed the highest dimension (n1).

i.e. C1 × i1 + B1 < n1 (29)

Rearranging the terms i1 <
(n1−B1)

C1

Affine Parallelization of Loops with Run-Time Dependent Bounds 569

Hence, the maximum value i1 can take is (n1−B1)
C1

− 1 and this is what we get by
solving the equations from binary.

We have now seen that the algorithm 4 to calculate the bounds on the highest
dimension induction variable yields a limit on it that is the true limit on it even
from source code.

At the end of step 5, we now have made best guesses for all induction variables
in the loop that appear in a memory address. If there is an induction variable
that does not appear in any memory access, then we just assume that it can take
any value since we have no way of determining its bounds. This does not hurt our
method and is reasonable since even from source if an induction variable does not
appear in any of the memory addresses present in the loop it could take any value
at run-time and this would be legal.

For array accesses that came from dynamically allocated memory we apply
the same algorithm described above. It is important to note that all ds in the
MemAddr(Base, d) expression would be loop invariant symbols rather than constants.
In many cases the memory expression we recover from binary code for these ac-
cesses will be of the form

Base+ x1 × x2 · · · xn × i1 + x2 × x3 · · · xn × i2 + · · ·+ xn × in (30)

where all the xs and Base are loop invariant quantities. By applying the algorithm
to such an access we guess that the bound on ik is x(n−1). We then check that the
actual bounds are less than this loop invariant quantity (this check would succeed)
before executing the parallel version of the loop.

Now that we have constraints on all the induction variables, we calculate the
distance vectors and take parallelizing decisions for this loop assuming these as
loop bounds. We then clone this loop and run the parallel version of the loop when
the run-time checks for all induction variables succeed; elsewe run the serial version
of the loop. Since we check at run-time that the loop bounds that we have guessed
are actually correctwewill always be conservatively correct. Please note that using
the distance vector method to parallelize is our implementation method, one may
use any parallelizing decision algorithm including polyhedral methods.

6 Implementation-SecondWrite

In this section we describe the binary rewriting infrastructure, SecondWrite
Kotha et al. (2010); O’Sullivan et al. (2011); Anand and et. al. (2013) used for this
research and how the automatic parallelizer interacts with rest of the system.

Architecture of Binary Rewriter called SecondWrite is presented in fig-
ure 2. SecondWrite’s custom binary reader and de-compiler modules translate the
input x86 binary into the intermediate representation (IR) of the LLVM compiler.
LLVM is a well-known open-source compiler Lattner and Adve (2004) developed
at the University of Illinois, and is now maintained by Apple Inc. LLVM IR is lan-
guage and machine independent. Thereafter the LLVM IR produced is optimized
using LLVM’s pre-existing optimizations, as well as our enhancements, including
automatic parallelization. Our new algorithm is implemented within this static

570 A. Kotha et al.

Fig. 2. SecondWrite

affine automatic parallelizer. Finally, the LLVM IR is code generated to output
x86 code using LLVM’s existing x86 code generator.

Currently SecondWrite rewrites x86 binaries from both Linux and Windows.
It successfully rewrites binaries coming from source totaling over 2 million lines
of code, including all of the SPEC2006 benchmarks. Real world programs such as
the apache web server (230K+ LOC), Lynx browser (135K+ LOC) and MySQL
(1.7M LOC) are also successfully rewritten. Rewritten benchmark binaries on av-
erage run 10% faster than highly optimized input binaries, and 45% faster than
unoptimized input binaries because of the existing optimizations in LLVM not in-
cluding parallelization.

SecondWrite is able to rewrite binaries without relocation informa-
tion Smithson et al. (2010). SecondWrite implements various mechanisms
O’Sullivan et al. (2011); Anand and et. al. (2013) to obtain an intermediate
representation which contains features like procedure arguments, return values,
types, high-level control flow, symbols and aggregate data structures. Second-
Write also employs extra mechanisms to safely handle indirect calls and indirect
branches Smithson et al. (2010). It employs alias analysis frameworks present
in LLVM to discover all the possible target procedures at indirect callsites,
given by the points-to set of the operand in indirect call instruction. An edge is
added from the indirect call-site to all its possible target procedures. Indirect
branches are mostly present due to jump tables in the binary. Procedure boundary
determination techniques are devised to limit the possible branch targets within
the current procedure and extra control flow edges are added corresponding to
the possible targets determined by alias analysis. If one of the target is outside
procedure boundary, it is handled as an indirect call.

The algorithm presented in section 5 can be implemented in any static or dy-
namic binary rewriter as long as symbol recognition and induction variable anal-
ysis is implemented in the system.

7 Results

We use “-O3” optimized binaries from gcc-4.3 and gfortran-4.3 as input to Sec-
ondWrite, which includes the new algorithm proposed in this paper within a static

Affine Parallelization of Loops with Run-Time Dependent Bounds 571

affine parallelizer. The static affine automatic parallelizer, that is in SecondWrite
works on LLVM IR. We build a source automatic parallelizer by feeding it LLVM
IR generated from clang LLVM (2007) (a C language front-end for llvm) for the
‘C’ benchmarks and LLVM IR generated using the dragonegg LLVM (2009) plu-
gin (a plugin that integrates the LLVM optimizers and code generator with GCC)
for the FORTRAN benchmarks. The LLVM IR fed to the stand-alone automatic
parallelizer contains array location and dimension information, hence the source
parallelizer uses it to take parallelization decisions. We run all the binaries on the
AMD Opteron(TM) processor 6212 and present results.

In this section we present our results on parallelizing binaries from SPEC2006
and OMP2001 using our new algorithm. First, we introduce our benchmarks. Sec-
ond, we present the speedups we have from source and binary. For the binary num-
bers, we present results for speedups both with and without the new algorithm.
Third, we present the actual number of affine loops that are parallelized from the
binary with and without the algorithm. We measure speedups by measuring the
clock time to run the programs on 1 thread and 8 threads.

Table 1. Description of Benchmarks

Benchmark Language # LOC Suite Benchmark Language # LOC Suite

swim Fortran 275 OMP2001 quake C 1151 OMP2001
bwaves Fortran 680 SPEC2006 libquantum C 2605 SPEC2006
mgrid Fortran 789 OMP2001 milc C 9575 SPEC2006
lbm C 908 SPEC2006 cactus Fortran + C 59827 SPEC2006

First, table 1 lists the 8 affine benchmarks that we present our results on. Our
source and binary parallelizers correctly parallelize every benchmark from both
the benchmark suites; however do not give any speedup on the remaining bench-
marks since those benchmarks do not contain affine rich regions. We have picked
only the affine rich benchmarks from the SPEC2006 and OMP2001 benchmark
suites. We manually profiled every benchmark belonging to both the benchmark
suites and after examining the hot regions classified benchmarks as affine or not
affine. We present our results on all the affine benchmarks discovered from both
the benchmark suites. The benchmarks swim, mgrid and quake belong to the
OMP2001 benchmark suite and bwaves, lbm, libquantum, milc and cactus belong
to the SPEC2006 benchmark suite. These benchmarks range from 275 to 59,827
lines of code as shown in table 1.

Second, figure 3 presents the speedup for 8 threads from source and binary for
each of the benchmarks w.r.t the gcc “-O3” compiled single thread version of the
benchmark.There are three bars for eachbenchmark; (i) the first bar is the speedup
of the benchmark from source code for 8 threads; (ii) the second bar is the speedup
of the binary for 8 threads without the new algorithm using only the theory pre-
sented in Kotha et al. (2010) and (iii) the third bar is the speedup of the binary for
8 threads using the new algorithm presented in this paper. We observe that swim,
bwaves, mgrid, quake, milc and cactus gain significant speedups when the new al-
gorithm presented in this paper is present in the static affine binary parallelizer.

572 A. Kotha et al.

Fig. 3. Speedup of 8 threads for the affine benchmarks from SPEC2006 and OMP2001

The significant affine loops in these benchmarks have run-time determined loop
bounds and hence using our new algorithm we are able to parallelize these loops
that were not parallelized using the theory developed before. The benchmarks lbm
and libquantum do not have any difference in the speedups with and without the
algorithm. The reason being; (i) in lbm, the loops bounds are statically known and
hence the theory in Kotha et al. (2010) is sufficient to parallelize the affine loops
in it and (ii) in libquantum the loops are single dimensional with a write to one
single dimensional memory accesses. These loops can be parallelized without the
new algorithm and hence we see a speedup in libquantum even without the new
algorithm. Overall the average speedup for 8 threads for the 8 benchmarks from
binaries increases from 1.75X to 3.38Xwith the addition of the new algorithm.Our
binaries run slightly faster than source since SecondWrite is able to rewrite “-O3”
binaries to run 10% faster than the input binaries.

Table 2. Number of loops parallelized with and without the new algorithm

Benchmark # loops w/o algo # loops with algo Benchmark # loops w/o algo # loops with algo

swim 6 18 quake 7 9
bwaves 0 1 libquantum 18 18
mgrid 0 6 milc 37 43
lbm 4 4 cactus 112 126

Third, table 2 presents the number of loops that are parallelized from the binary
with and without the new algorithm. We observe that in the benchmarks lbm and
libquantum the number of loops parallelized with and without the algorithm do
not change. The reasons for this have been explained earlier. In swim, quake, milc
and cactus, a number of loops are parallelized even when the new algorithm is not
present in the static affinebinary parallelizer; however, these loops are small and do
not contribute to the run-time of the benchmark. Hence, these loops do not result
in a speedup from 8 threads for these benchmarks. We make this comparison to
show that it is not the number of loops that are parallelized that matter, but it is
important to parallelize the run-time intensive loops that can be parallelized by
our new algorithm.

Affine Parallelization of Loops with Run-Time Dependent Bounds 573

8 Discussion and Future Directions

In this section we describe few salient aspects of our algorithm choice and alternate
ideas that can be tested in the future.

8.1 Choice of a Heuristic Based Method

In the algorithm presented in this paper, one observes that we are solving a sys-
tem of equations using a set of constraints to obtain loop bounds. We also observe
that the number of constraints we have are not sufficient to solve for definite solu-
tions for loop bounds. In this scenario, there are two possible methods to obtain a
solution: (i) using a linear systems of equation solver that gives all possible solu-
tions; and (ii) using a heuristic based solution relying on assumptions about loop
structure and memory accesses, which gives one solution.

We choose a heuristic based approach over an equation solver for the following
reasons: (i) it gives only one definite solution that can be used to insert run-time
checks in the code and execute the parallel version only if the check succeeds; and
(ii) it arrives at a solution in linear time complexity. One way of looking at our
heuristic based algorithm is that it picks the one solution from all the possible
solutions (that can be obtained using a solver) making assumptions on the loop
structure most amenable to parallelization. Hence, even though there are many
other solutions, this is the one that is mostly likely correct and going to yield from
parallelization. Further, using our method we obtain the solution in linear time as
against in exponential time complexity using a solver.

8.2 Future Directions

The present algorithm is two-dimensional; i.e. if the guess is wrong then at run-
time it uses the fall-back solution and executes the serial version of the loop. In the
future the following ideas can be used to enhance it.

1. If a run-time checks fails, then the loop bounds for that loop can be written
to a log file and in future they can be used to parallelize the loop. That way in
future with some run-time feedback, the algorithm to parallelize affine loops
can be enhanced further.

2. In the present algorithm, we make a lot of assumptions to arrive at one set
of loop bounds. In future, we will look into refining our assumptions to arrive
at a few possible loop bounds and then use run-time feedback to use a different
one in the next execution if this set fails in this run. This will provide fall-back
solutions beyond serial execution.

3. In the present algorithm, we do not include any mechanism for user feed-
back. In future, we envision a system where the user can explicitly turn off
parallelization of certain loops it they know that it would not be as profitable.

574 A. Kotha et al.

References

Anand, K., et al.: A compiler level intermediate representation based binary analysis and
rewriting system. In: Proceedings of the 8th ACMEuropean Conference on Computer
Systems (2013)

Dasgupta, A., Dasgupta, A.: Vizer: A framework to analyze and vectorize intel x86 bi-
naries (2003)

Franke, B., O’boyle, M.: Array recovery and high-level transformations for dsp applica-
tions. ACM Trans. Embed. Comput. Syst. (2003)

Yang, J., Soffa, M.L., Skadron, K., Whitehouse, K.: Feasibility of dynamic binary par-
allelization (2011)

Kotha, A., Anand, K., Smithson, M., Yellareddy, G., Barua, R.: Automatic paralleliza-
tion in a binary rewriter. In: Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (2010)

Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proceedings of the International Symposium on CGO (2004)

LLVM, clang: a C language family frontend for LLVM (2007), http://clang.llvm.org/
LLVM, DragonEgg - Using LLVM as a GCC backend (2009),

http://dragonegg.llvm.org/

Maslov, V.: Delinearization: an efficient way to break multiloop dependence equations.
In: Proc. the SIGPLAN 1992 Conference on Programming Language Design and Im-
plementation, pp. 152–161 (1992)

Nakamura, T., Miki, S., Oikawa, S.: Automatic vectorization by runtime binary transla-
tion. In: Proceedings of the 2011 Second International Conference on Networking and
Computing (2011)

O’Sullivan, P., Anand, K., Kotha, A., Smithson, M., Barua, R., Keromytis, A.D.:
Retrofitting security in cots software with binary rewriting. In: Proceedings of the
26th International Information Security Conference (2011)

Pradelle, B., Ketterlin, A., Clauss, P.: Polyhedral parallelization of binary code. ACM
Trans. Archit. Code Optim. (2012)

Smithson, M., Anand, K., Kotha, A., Elwazeer, K., Giles, N., Barua, R.: Binary rewrit-
ing without relocation information. Technical report, University of Maryland, College
Park (2010)

Wang, C., Wu, Y., Borin, E., Hu, S., Liu, W., Sager, D., Ngai, T.-F., Fang, J.: Dynamic
parallelization of single-threaded binary programs using speculative slicing. In: Pro-
ceedings of the 23rd International Conference on Supercomputing, ICS 2009 (2009)

Yardimci, E., Franz, M.: Dynamic parallelization and mapping of binary executables on
hierarchical platforms. In: Proceedings of the 3rd Conference on Computing Frontiers
(2006)

http://clang.llvm.org/
http://dragonegg.llvm.org/

Author Index

Aguado, Joaqúın 229
Ahmed, Amal 128
Anand, Kapil 554
Appel, Andrew W. 107
Archer, Dave 8
Ariola, Zena M. 249

Bach Poulsen, Casper 270
Barua, Rajeev 554
Benzaken, Véronique 189
Beringer, Lennart 107
Birkedal, Lars 149
Bocchi, Laura 493
Brain, Martin 432
Brunel, Alöıs 351

Cockx, Jesper 87
Contejean, Évelyne 189
Creech, Timothy 554
Crubillé, Raphaëlle 209

Dal Lago, Ugo 209, 371
David, Cristina 432
Delbianco, Germán Andrés 290
Devriese, Dominique 87
Dockins, Robert 107
Downen, Paul 249
DuBuisson, Thomas 8
Düdder, Boris 67
Dumbrava, Stefania 189

ElWazeer, Khaled 554

Faggian, Claudia 371
Felleisen, Matthias 473
Fennell, Luminous 47
Fu, Zhoulai 534
Fuhrmann, Insa 229

Gaboardi, Marco 351
Garcia, João 453
Gardner, Philippa 169
Garnock-Jones, Tony 473
Ghica, Dan R. 331
Golan-Gueta, Guy 311

Hasuo, Ichiro 371
Herlihy, Maurice 1

Kobayashi, Naoki 392
Koskinen, Eric 1
Kotha, Aparna 554
Kroening, Daniel 432
Kuwahara, Takuya 392

Launchbury, John 8
Ley-Wild, Ruy 290

Mangal, Ravi 513
Manolios, Panagiotis 27
Martens, Moritz 67
Matos, João 453
Mazza, Damiano 351
Melgratti, Hernán 493
Mendler, Michael 229
Mertens, Eric 8
Miné, Antoine 412
Mosses, Peter D. 270

Naik, Mayur 513
Nanevski, Aleksandar 290
Ntzik, Gian 169

Perconti, James T. 128
Piessens, Frank 87

Ramalingam, G. 311
Rehof, Jakob 67
Romano, Paolo 453

Sagiv, Mooly 311
Schrammel, Peter 432
Sergey, Ilya 290
Shivers, Olin 27
Slepak, Justin 27
Smith, Alex I. 331
Smithson, Matthew 554
Stewart, Gordon 107
Svendsen, Kasper 149

Terauchi, Tachio 392
Thiemann, Peter 47

576 Author Index

Tobin-Hochstadt, Sam 473
Tuosto, Emilio 493

Unno, Hiroshi 392
Urban, Caterina 412

von Hanxleden, Reinhard 229

Wright, Adam 169

Yang, Hongseok 513
Yoshimizu, Akira 371

Zdancewic, Steve 351
Zomer, Oren 311

	Foreword
	Preface
	Conference Organization
	Table of Contents
	Invited Talks
	Composable Transactional Objects:A Position Paper
	1 Introduction
	2 Overview
	3 Persistent Data Structures
	4 Optimism
	5 Preliminary Results and the Road Ahead
	References

	Application-Scale Secure MultipartyComputation
	1 Introduction
	1.1 Contributions of This Paper

	2 Background
	3 Applications
	3.1 Secure Mail Filter
	3.2 Application 2: Secure VoIP Teleconference

	4 Scaling the Secure Computation
	4.1 Secure Mail Filter
	4.2 Secure VoIP Teleconference

	5 Assessment
	6 Related Work
	7 Conclusion
	References

	Type Systems
	An Array-Oriented Language with Static RankPolymorphism
	1 The Promise of Rank Polymorphism
	1.1 Addressing the Model’s Shortcomings

	2 Background: Array-Oriented Programming
	2.1 Iverson’s Model
	2.2 Related Work

	3 An Untyped Array Language
	3.1 Syntax
	3.2 Semantics
	3.3 Sample Code

	4 Types for Array-Oriented Programming
	4.1 Syntax
	4.2 Static Semantics
	4.3 Dynamic Semantics
	4.4 Type Soundness

	5 Future Work
	6 Conclusion
	References

	Gradual Typing for Annotated Type Systems
	1 Introduction
	2 Gradual Refinement Typing at Work
	2.1 Dimensions
	2.2 Tracking Encrypted Data

	3 The Generic Calculus with Base Type Annotations
	3.1 Static Annotated Typing
	3.2 Gradual Annotated Typing
	3.3 Results
	3.4 Subtyping
	3.5 Alternative Modeling
	3.6 Annotation Erasure

	4 Eliminating Run-Time Checks
	4.1 Transformation Rules
	4.2 Contextual Equivalence and Bisimulation

	5 Related Work
	6 Conclusion
	References

	Staged Composition Synthesis
	1 Introduction
	2 Implementation Languages
	3 Semantic Types
	4 Combinatory Logic and Composition Synthesis
	5 Example
	6 Implementation Type Correctness
	7 Inhabitation
	8 Experiments with
	9 Related Work
	10 Conclusion
	A Native Language
	B OperationalSemanticsof
	References

	Overlapping and Order-Independent PatternsDefinitional Equality for All
	1 Introduction
	2 Conventions and Terminology
	3 Problem Statement
	4 Allowing More General Pattern Sets
	5 Checking Definitions with Overlapping Patterns
	6 Implementation and Examples
	7 Link with Non-overlapping Definitions
	8 Related Work
	9 Conclusion and Future Work
	References

	Verified Compilation
	Verified Compilation for Shared-Memory C
	1 Introduction
	2 Technical Challenges and Approach
	2.1 The CompCert C Memory Model
	2.2 The CompCert Correctness Proofs
	2.3 External Functions

	3 CoreSemantics
	3.1 Example: C Light

	4 Logical Simulation Relations
	4.1 Transitive Composition of Simulations

	5 Semantics Preservation
	6 Backwards Compatibility
	7 Related Work
	8 Conclusion
	References

	Verifying an Open Compiler Using Multi-language Semantics
	1 Introduction
	2 Related Work: Benton-Hur Approach
	3 The Languages
	4 The Compiler
	5 F and C Interoperability
	5.1 The Basics
	5.2 Handling Abstract Types

	6 C and A Interoperability
	7 Compiler Correctness
	7.1 FCA Contextual Equivalence
	7.2 Compiler Correctness

	8 An Example
	9 Proving Compiler Correctness
	10 Discussion and Future Work
	11 RelatedWork
	References

	Program Verification I
	Impredicative Concurrent Abstract Predicates
	1 Introduction
	1.1 Summary of Contributions

	2 Examples
	2.1 Internal and External Sharing – A Lock
	2.2 Layered and Recursive Abstractions – An Event Loop
	2.3 Fine-Grained Concurrency – A Concurrent Bag

	3 Model
	4 Logic
	5 Discussion
	References

	Local Reasoning for the POSIX File System
	1 Introduction
	2 Example Specifications
	3 File System Specification
	3.1 Abstract Program State
	3.2 Programming Language
	3.3 Assertions
	3.4 Program Logic

	4 Software Installer
	5 Conclusions and Future Work
	References

	A Coq Formalization of the RelationalData Model
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Organization

	2 Data Representation
	2.1 Attributes, Domains, Values
	2.2 Tuples
	2.3 Relations, Schemas and Instances

	3 Queries
	3.1 Relational Algebra
	3.2 Conjunctive Queries
	3.3 From Algebra Queries to Conjunctive Queries

	4 Logical Optimization
	4.1 Optimizing Relational Algebra Queries
	4.2 Optimizing Conjunctive Queries

	5 Integrity Constraints
	5.1 Functional Dependencies
	5.2 General Dependencies
	5.3 The Chase

	6 Conclusion, Lessons and Perspectives
	References

	Semantics
	On Probabilistic Applicative Bisimulationand Call-by-Value λ-Calculi
	1 Introduction
	2 Some Motivating Examples
	3 Programs and Their Operational Semantics
	3.1 Terms and Types
	3.2 Operational Semantics
	3.3 Relations
	3.4 Context Equivalence

	4 Applicative Bisimulation
	4.1 Larsen and Skou’s Probabilistic Bisimulation
	4.2 A Concrete Labelled Markov Chain
	4.3 The Definition
	4.4 Bisimulation Equivalence Is a Congruence
	4.5 Back to Our Examples

	5 Full Abstraction
	5.1 LMPs, Bisimulation, and Testing
	5.2 From LMPs to LMCs
	5.3 Every Test Has an Equivalent Context
	5.4 The Asymmetric Case

	6 A Comparison with Call-by-Name
	7 Conclusions
	References

	Grounding Synchronous DeterministicConcurrency in Sequential Programming
	1 Introduction
	2 ModelandΔ∗ Constructiveness of Boolean SC
	2.1 Grounding Synchronous Signals in Sequential Variables
	2.2 Language and Terminology
	2.3 SC Operational Semantics and

	3 Δ0/1-Constructiveness: An Abstraction for Δ∗-Analysis
	3.1 Abstract Value Domain
	3.2 Δ0 and Δ1-Constructiveness

	4 Related Work
	5 Conclusion and Outlook
	References

	The Duality of Construction
	1 Introduction
	2 Introduction to the Sequent Calculus
	3 TheParametricμ˜μ Core
	4 Functions
	5 Basic Data and Co-data Structures
	6 User-Defined Data and Co-data Types
	6.1 Defining Basic Data and Co-data Types
	6.2 Defining New Data and Co-data Types
	6.3 Duality and Strategies for User-Defined Co-data Types

	7 Composing Multiple Strategies
	8 Conclusion
	References

	Deriving Pretty-Big-Step Semantics from Small-Step Semantics
	1 Introduction
	2 The Language and Its Semantics
	3 From Small-Step to Pretty-Big-Step Modular SOS
	4 Scaling Up to Real Languages
	5 Related Work
	6 Conclusion and Future Directions
	References

	Concurrency
	Communicating State Transition Systems for Fine-Grained Concurrent Resources
	1 Introduction
	1.1 Contributions

	2 An Overview of Fine-Grained Resources
	3 Reasoning with Concurroids
	4 Concurroids Abstractly
	5 Language and Logic
	6 Related Work
	7 Conclusion and Future Work
	References

	Checking Linearizability of EncapsulatedExtended Operations
	1 Introduction
	2 Concurrent Objects and Linearizability
	3 Linearizability of Encapsulated Extensions
	3.1 The Problem
	3.2 The Reduction Theorem

	4 Non-interfering Linearizable Extensions
	4.1 Replaceability
	4.2 Composition Closure
	4.3 Further Reductions

	5 On the Applicability of the Reduction
	5.1 Checking Encapsulation of Extended Operations
	5.2 Checking Composition Closure
	5.3 Checking Linearizaibility via Abstract Interpretation

	6 Related Work
	References

	Linear Types
	Bounded Linear Types in a Resource Semiring
	1 Resource-Aware Types and Semantics
	2 Bounded Linear Types Over a Semiring
	2.1 Examples
	2.2 Modularity
	2.3 Type Inference
	2.4 Categorical Semantics
	2.5 Coherence

	3 Case Study: Timing Analysis
	3.1 A Concrete Programming Language
	3.2 Type Inference for Pipelining
	3.3 Absolute Timing

	4 Related Work
	5 Conclusion
	References

	A Core Quantitative Coeffect Calculus
	1 Introduction
	2 The�RPCF Language
	3 Quantitative Realizability
	4 Categorical Semantics
	5 Examples
	6 Related Work
	7 Conclusion and Future Work
	References

	Measurements in Proof Nets as Higher-Order Quantum Circuits
	1 Introduction
	2 Syntax of Quantum Lambda Calculus
	3 MLL Proof Nets with Quantum Nodes
	3.1 MLLqm Proof Structures
	3.2 Reduction of MLLqm Proof Structures
	3.3 MLLqm Proof Nets and the Correctness Criterion
	3.4 Translation of MLLqm Terms into Proof Nets
	3.5 Examples and Discussion

	4 Token Machine Semantics forMLLqm Proof Nets
	4.1 Tokens
	4.2 The Token Machine
	4.3 Big-Step Semantics of TN
	4.4 Soundness of the Token Machine Semantics
	4.5 Example

	5 Conclusions and Future Work
	References

	Program Verification II
	Automatic Termination Verification for Higher-Order Functional Programs
	1 Introduction
	2 Preliminaries
	3 Termination Verification via Binary Reachability
	3.1 Overview
	3.2 Termination and Binary Reachability
	3.3 From Binary Reachability to Plain Reachability
	3.4 Ranking Function Inference

	4 Implementation and Experiments
	5 Related Work
	5.1 Transition Invariants
	5.2 Size-Change Analysis
	5.3 Term Rewriting

	6 Conclusion
	References

	An Abstract Domain to InferOrdinal-Valued Ranking Functions
	1 Introduction
	2 Ordinals
	3 Termination Semantics
	4 Ordinal-Valued Ranking Functions
	5 Piecewise-Defined Ranking Functions
	5.1 Piecewise-Defined Natural-Valued Ranking Functions
	5.2 Piecewise-Defined Ordinal-Valued Ranking Functions

	6 Implementation
	6.1 Examples
	6.2 Experiments

	7 Related Work
	8 Conclusion
	References

	Model and Proof Generationfor Heap-Manipulating Programs
	1 Introduction
	2 A Running Example
	3 Preliminaries
	3.1 Programming Language
	3.2 Logical Encoding
	3.3 Concrete Semantics

	4 Our Approach
	4.1 Abstract Conflict Clause Learning (ACDCL)
	4.2 Abstract Heap Domain
	4.3 ACDCL Instantiation
	4.4 Soundness and Completeness
	4.5 From Abstract to Concrete Countermodels

	5 Experiments
	1. Countermodel Construction.
	2. Safety Proof Generation.

	6 Related Work
	7 Conclusions
	References

	REAP: Reporting ErrorsUsing Alternative Paths
	1 Introduction
	2 State of the Art and Motivations
	2.1 Final Application State Error Reporting
	2.2 Input Anonymization in Fault Replication Systems

	3 REAP
	3.1 Overview of the System
	3.2 Search Heuristics Framework
	3.3 Privacy
	3.4 Prototype Implementation

	4 Evaluation
	4.1 Subjects
	4.2 Privacy
	4.3 Scalability

	5 Conclusions and Future Work
	References

	Network and Process Calculi
	The Network as a Language Construct
	1 Organizing Squabbling Actors
	2 Our Model of Actors
	3 Making Networks a Proper Part of the Language
	4 TheNetworkCalculus
	5 Programming with the Network Calculus
	6 Implementing the Network Calculus
	7 Related Work
	8 Conclusion
	References

	Resolving Non-determinism in Choreographies
	1 Introduction
	2 Global and Local Types
	2.1 Types
	2.2 Running Example
	2.3 Behaviour of Types

	3 Processes and Systems
	3.1 Running Examples

	4 Whole-Spectrum Implementation
	5 TypingRules
	5.1 Running Examples

	6 Properties of the Type System
	7 Conclusion and RelatedWork
	References

	Program Analysis
	A Correspondence between Two Approachesto Interprocedural Analysis in the Presenceof Join
	1 Introduction
	2 Example
	3 Formal Description and Correspondence Theorem
	3.1 Interprocedural Control Flow Graph
	3.2 Formal Description of Analyses
	3.3 Correspondence Theorem

	4 Application to Pointer Analysis
	5 Empirical Evaluation
	6 Related Work
	7 Conclusion
	References

	Targeted Update – Aggressive MemoryAbstraction Beyond Common Senseand Its Application on Static Numeric Analysis
	1 Introduction
	2 Preliminaries
	3 Summarizing Technique with Targets
	4 Targeted Update — The Case of Write Access
	5 Targeted Update — The Case of Read Accessxn = yp.fn, sn and sp
	6 A Discussion of Some Important Design Choices
	7 An Example
	8 Experiments
	9 Related Work
	10 Conclusion
	References

	Affine Parallelization of Loops with Run-TimeDependent Bounds from Binaries
	1 Introduction
	2 Related Work
	3 Motivation
	4 Examples
	5 Algorithm to Guess Loop Bounds
	5.1 Step 1: Divide the Accesses into DGs
	5.2 Step 2: Arrange DGs in Ascending Order
	5.3 Step 3: Induce Intra-group Dependencies
	5.4 Step 4: Create theWorklist
	5.5 Step 5:Work on Inter-group Constraints

	6 Implementation-SecondWrite
	7 Results
	8 Discussion and Future Directions
	8.1 Choice of a Heuristic Based Method
	8.2 Future Directions

	References

	Author Index

