
A Relatively Complete Calculus for Structured
Heterogeneous Specifications�

Till Mossakowski1 and Andrzej Tarlecki2

1 Faculty of Computer Science, Otto-von-Guericke University of Magdeburg
2 Institute of Informatics, University of Warsaw

Abstract. Proof calculi for structured specifications have been developed inde-
pendently of the underlying logical system (formalised as institution). Typically,
completeness of these calculi requires interpolation properties of the underlying
logic. We develop a relatively complete calculus for structured heterogeneous
specifications that does not need interpolation.

1 Introduction

The theory of institutions [GB92] provides an excellent framework where the theory
of specification and formal software development may be presented in an adequately
general and abstract way [ST88a, ST12]. The initial work within this area captured
specifications built and developments carried out in an arbitrary but fixed logical sys-
tem formalised as an institution. However, the practice of software specification and
development goes much beyond this. Different logical systems may be appropriate or
most convenient for specification of different modules of the same system, of different
aspects of system behaviour, or of different stages of system development. This leads
to the need for a number of logical systems to be used in the same specification and
development project, linked by appropriate notions of morphisms between institutions
[GR02]. This observation spurred a substantial amount of research work already, and
motivates the research presented here.

In such a framework, one works in a heterogeneous logical environment formed by
a number of logical systems formalised as institutions and linked with each other in
a way captured by various maps between institutions. One such logical environment
is the CafeOBJ cube [DF02], another one the HETS family of institutions [Mos05],
supported by a tool to build and work with heterogeneous specifications [MML07].
The standard ways of building structured specifications within an institution may then
be complemented by heterogeneous specification building constructs, that allow one to
move specifications from one institution to another, and then combine specifications
originally built in different institutions [Tar00, DF02, MML07, Mos05, MT09].

We study here proof systems for so obtained structured heterogeneous specifica-
tions. Of course, we build on the calculi that deal with homogeneous specifications,
constructed within a single institution. This topic has been well-studied
[ST88a, Bor02, Dia08, ST12], with completeness of the resulting systems being the

� This work has been partially supported by the German Research Foundation (DFG) via the
SFB/TR 8 “Spatial Cognition”, project I1-[OntoSpace] (TM) and by the Polish Ministry of
Science and Higher Education, grant N206 493138 (AT).

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 441–456, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

442 T. Mossakowski and A. Tarlecki

main problematic issue. The completeness results, where they can be achieved, either
rely on strong interpolation properties, or sacrifice compositionality of the proof sys-
tems, allowing the structure of the specifications to be flattened out entirely. We pro-
pose a middle way here, keeping as much as possible of the specification structure,
and still ensuring completeness of the resulting calculus. We argue that in many prac-
tical situations the structure that is kept is relevant, and the minimal massaging of the
specifications we suggest brings no real harm.

We extend this idea to heterogeneous specifications, where the required interpolation
property cannot be really expected, and our approach is in fact the only realistically
possible. A technical tool here is the notion of modification between institution maps
(which we adapt from [Dia02]) and lax compatibility of such maps, which serves us to
formulate the necessary (and realistic) compatibility conditions that make the complete-
ness of the resulting calculus for structured heterogeneous specifications achievable.

2 Structured Specifications and Proofs

Let us begin by recalling the notion of an institution, as a formalisation of an arbitrary
logical system [GB92], assuming that the reader is familiar with all the intuitions that
this notion brings in (see [Mac98] for an introduction to category theory).

Definition 2.1. An institution I consists of:

– a category SignI of signatures;
– a functor SenI : SignI → Set,1 giving a set Sen(Σ) of Σ-sentences for each

signature Σ ∈ |SignI |, and a function Sen(σ) : Sen(Σ) → Sen(Σ′), denoted
by σ(), that yields σ-translation of Σ-sentences to Σ′-sentences for each signature
morphism σ : Σ → Σ′;

– a functor ModI : Sign
op
I → Class,2 giving a class Mod(Σ) of Σ-models for

each signature Σ ∈ |SignI |, and a functor Mod(σ) : Mod(Σ′) → Mod(Σ),
denoted by |σ , that yields σ-reducts of Σ′-models for each signature morphism
σ : Σ → Σ′; and

– for each Σ ∈ |SignI |, a satisfaction relation |=I,Σ ⊆ ModI(Σ)× SenI(Σ)

such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ SenI(Σ) and
Σ′-model M ′ ∈ ModI(Σ′):

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ [Satisfaction condition]

The satisfaction condition expresses that truth is invariant under change of notation
and context.

Example 2.2. Propositional Logic. The institution Prop of propositional logic has sets
Σ (of propositional symbols) as signatures, and functions σ : Σ1 → Σ2 between such
sets as signature morphisms. A Σ-model M is a mapping from Σ to {true, false}. The

1 The category Set has all sets as objects and all functions as morphisms.
2 Class is the quasi-category of all classes, where “quasi” means that it lives in a higher set-

theoretic universe. If model morphisms are needed, one may use categories instead of classes.

A Relatively Complete Calculus for Structured Heterogeneous Specifications 443

reduct of a Σ2-modelM2 along σ : Σ1 → Σ2 is the Σ1-model given by the composition
σ;M2.3 Σ-sentences are built from Σ with the usual propositional connectives, and
sentence translation along a signature morphism just replaces the propositional symbols
along the morphism. Finally, satisfaction of a sentence in a model is defined by the
standard truth-table semantics. It is straightforward to see that the satisfaction condition
holds.

Example 2.3. Untyped First-order Logic. In the institution UFOL= of untyped
first-order logic with equality, signatures are first-order signatures, consisting of a set of
function symbols with arities, and a set of predicate symbols with arities. Signature mor-
phisms map symbols so that arities are preserved. Models are first-order structures, and
sentences are first-order formulas. Sentence translation means replacement of the trans-
lated symbols. Model reduct means reassembling the model’s components according to
the signature morphism. Satisfaction is the usual satisfaction of a first-order sentence in
a first-order structure.

Many-sorted First-order Logic. The institution FOL= of many-sorted first-order
logic with equality is similar to UFOL=. Signatures are many-sorted first-order signa-
tures, consisting of sorts and typed function and predicate symbols. The rest is similar
to UFOL=. For details, see [GB92].

Many-sorted Partial First-order Logic. The institution PFOL= is similar to FOL=,
but functions can be partial. Atomic formulas evaluate to false if some component term
involves some undefinedness. See [CoF04].

CASL extends PFOL= with subsorting and induction (for datatypes), see [CoF04].
Many-sorted Equational Logic (EqL) is the sublogic of FOL= restricting signa-

tures to those without predicate symbols and sentences to universally quantified
equations.

In any institution I, standard logical notions, like the model class Mod(Γ) for any
set Γ of sentences, semantic (logical) consequence Γ |= ϕ for any set Γ of sentences
and sentence ϕ over the same signature, are defined as usual. In particular, a theory is a
pair T = 〈Σ,Γ 〉, where Σ ∈ Sign and Γ ⊆ Sen(Σ). Theory morphisms are signature
morphisms mapping axioms to logical consequences, leading to a category Th of the-
ories. It is easy to extend this to an institution of theories Ith = (Th,Sen,Mod, |=)
over I.

Definition 2.4. A cocone for a diagram inSign is (weakly) amalgamable if it is mapped
to a (weak) limit in Class under Mod. I (or Mod) admits (finite) (weak) amalgama-
tion if (finite) colimits exists in Sign and colimiting cocones are (weakly) amalgam-
able, i.e. if Mod maps (finite) colimits to (weak) limits. An important special case
is pushouts: I (or Mod) is (weakly) semi-exact, if pushouts exist in Sign and are
(weakly) amalgamable.

Definition 2.5. An institution I is quasi-exact if for each diagram D : J −→ Sign,
there is some weakly amalgamable cocone over D. Quasi-semi-exactness is the restric-
tion of this notion to diagrams of shape • •�� �� • .

3 We write composition in any category in the diagrammatic order and denote it by “;”.

444 T. Mossakowski and A. Tarlecki

We recall a variant of Craig interpolation that better fits for logics that may have no
implication, namely Craig-Robinson interpolation [DM00, Sho67].

Definition 2.6. Given an institution I, a commuting square in Sign

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1
��

Σ2
θ2

�� Σ′

admits Craig-Robinson interpolation whenever for all finite sets of sentences Ψ1 ⊆
Sen(Σ1) and Ψ2, Γ2 ⊆ Sen(Σ2), if θ1(Ψ1) ∪ θ2(Γ2) |= θ2(Ψ2) then there exists a
finite set Ψ of Σ-sentences such that Ψ1 |= ϕ1(Ψ) and ϕ2(Ψ) ∪ Γ2 |= Ψ2.

I has Craig-Robinson interpolation if all signature pushouts admit Craig-Robinson
interpolation.

This is the category-theoretic generalisation of the usual notion of interpolation. In
particular, the usual notion of “common language of Ψ1 and Ψ2” is generalised to an

arbitrary span Σ1 Σ
ϕ1�� ϕ2 �� Σ2 (imagine Σ to be the intersection Σ1 ∩ Σ2).

Craig interpolation is a weaker version of Craig-Robinson interpolation, with Γ2 = ∅
in Def. 2.6.

Institutions were originally introduced to free the theory of specifications from de-
pendency on any particular logical system. We follow [ST88a] and for any institu-
tion I consider a class SpecI of specifications built in I from basic specifications
(presentations, which consist of a signature and a set of sentences over this signa-
ture) by means of a number of specifications-building operations. Fix an institution
I = (Sign,Sen,Mod, |=). Simultaneously with the notion of structured specifica-
tion, we define functions Sig and Mod yielding the signature and the model class for
any specification.

presentations: For any signature Σ ∈ |Sign| and finite set Γ ⊆ Sen(Σ) of Σ-
sentences, the presentation 〈Σ,Γ 〉 is a specification with:

Sig [〈Σ,Γ 〉] := Σ Mod [〈Σ,Γ 〉] := {M ∈ Mod(Σ) | M |= Γ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2, their
union SP1 ∪ SP2 is a specification with:

Sig [SP1 ∪ SP2] := Σ Mod [SP1 ∪ SP2] := Mod [SP1] ∩Mod [SP2]

translation: For any signature morphism σ : Σ −→ Σ′ andΣ-specificationSP , σ(SP)
is a specification with:

Sig [σ(SP)] := Σ′ Mod [σ(SP)] := {M ′ ∈ Mod(Σ′)| M ′|σ∈Mod [SP]}
hiding: For any signature morphism σ : Σ −→ Σ′ and Σ′-specification SP ′, SP ′|σ is

a specification with:

Sig [SP ′|σ] := Σ Mod [SP ′|σ] := {M ′|σ | M ′ ∈ Mod [SP ′]}

A Relatively Complete Calculus for Structured Heterogeneous Specifications 445

Typical structuring constructs of many existing specification languages like CASL

[CoF04], CafeOBJ [DF02] and others can be mapped to this kernel formalism.
The semantics determines specification equivalence: SP1 ≡ SP2 iff Sig[SP1] =

Sig [SP2] and Mod [SP1] = Mod [SP2]. Furthermore, we get the obvious notion of
semantic consequence for structured specifications: given a specification SP , a sentence
ϕ ∈ Sen(Sig [SP]) is a semantic consequence of SP , written SP |= ϕ, if M |=
ϕ for all models M ∈ Mod [SP]. Then, given two specifications SP and SP ′, SP
refines to SP ′, written SP ���� �� SP ′, if Sig [SP] = Sig [SP ′] and Mod [SP ′] ⊆ Mod [SP].
These two simple notions underlie the standard view of properties that specifications
ensure and of systematic development of programs from specifications by step-wise
refinements, see [ST88b, ST12].

3 Proofs

We very briefly recalled above the semantic concepts developed within the theory of
institutions that underlie the methodology for formal specification and systematic de-
velopment of software, cf. [ST12]. For practical applications they need a proof-theoretic
counterpart, whereby the semantic, hard to establish relationships are augmented by cal-
culi to approximate them in an effective way.

Proof-theoretic entailment to approximate semantic entailment in any institution is
captured by the following notion, introduced in the institutional context in [FS88] under
the name of π-institution, see also [Mes89, HST94].

Definition 3.1. Given an institution I = (Sign,Sen,Mod, |=), an entailment system

 for I consists of a relation
Σ ⊆ P(Sen(Σ))×Sen(Σ) for each Σ ∈ |Sign|, such
that the following properties are satisfied:

1. reflexivity: for any ϕ ∈ Sen(Σ), {ϕ}
Σ ϕ,
2. monotonicity: if Γ
Σ ϕ and Γ ′ ⊇ Γ then Γ ′
Σ ϕ,
3. transitivity: if Γ
Σ ϕi for i ∈ I and Γ ∪ {ϕi | i ∈ I}
Σ ψ, then Γ
Σ ψ,
4.
-translation: if Γ
Σ ϕ, then for any σ : Σ−→Σ′ in Sign, σ(Γ)
Σ′ σ(ϕ),
5. soundness: if Γ
Σ ϕ then Γ |=Σ ϕ.

The entailment system is complete if, in addition, Γ |=Σ ϕ implies Γ
Σ ϕ.

A logic LOG = (Sign,Sen,Mod, |=,
) is an institution (Sign,Sen, Mod, |=)
equipped with an entailment system
. In an arbitrary logic, it is possible to design a
logic independent proof calculus [ST88a] for proving entailments between specifica-
tions and sentences, written in the form SP
 ϕ, where SP is a structured specification
and ϕ is a formula, see Fig. 1.

(CR)
{SP � ϕi}i∈I {ϕi}i∈I � ϕ

SP � ϕ
(basic)

ϕ ∈ Γ
〈Σ,Γ 〉 � ϕ

(sum1)
SP1 � ϕ

SP1 ∪ SP2 � ϕ

(sum2)
SP2 � ϕ

SP1 ∪ SP2 � ϕ
(trans)

SP � ϕ
σ(SP) � σ(ϕ)

(derive)
SP � σ(ϕ)
SP |σ � ϕ

Fig. 1. Proof calculus for entailment in structured specifications

446 T. Mossakowski and A. Tarlecki

(Basic)
SP � ϕ for all ϕ ∈ Γ

〈Σ,Γ 〉 � SP
(Sum) SP1 � SP SP2 � SP

SP1 ∪ SP2 � SP

(Trans)
SP � SP ′|σ
σ(SP) � SP ′ (Derive) SP � SP ′′

SP |σ � SP ′
if σ : SP ′−→SP ′′ is a
conservative extension

Fig. 2. Proof calculus for refinement of structured specifications

Fig. 2 shows an extension of this calculus to refinements between specifications,
with judgements written as SP � SP ′, where SP and SP ′ are structured specifica-
tions with a common signature. Note that rule (CR) can be limited to a finitary version
for compact institutions (where an institution is compact if Γ |= ϕ implies the exis-
tence of a finite Γ ′ ⊆ Γ with Γ ′ |= ϕ). The extended calculus relies on an oracle for
conservative extensions, where given specifications SP and SP ′, a signature morphism
σ : Sig [SP] → Sig [SP ′] is a conservative extension if it is a specification morphism
σ : SP → SP ′ (i.e., M ′|σ ∈ Mod [SP] for all M ′ ∈ Mod [SP ′]) and is conservative
(for all M ∈ Mod [SP] there is M ′ ∈ Mod [SP ′] with M ′|σ = M).

Theorem 3.2 (Soundness [ST88a, Bor02]). The calculi for specification entailment
and refinement between structured specifications given above are sound: if SP
 ϕ
then SP |= ϕ, and if SP � SP ′ then SP ���� �� SP ′.

Theorem 3.3 (Completeness [Bor02, Dia08, ST13]). Assuming that

– the institution has Craig-Robinson interpolation,
– the institution is weakly semi-exact,
– the entailment system is complete,

the calculi for specification entailment and refinement between structured specifications
are sound and complete: SP
 ϕ iff SP |= ϕ, and SP � SP ′ iff SP ���� �� SP ′.

Actually, as discussed in [Bor02, ST13], the assumption of Craig-Robinson inter-
polation and weak amalgamation can be restricted to those pushouts for which it is
really needed. Typically, we can limit the classes of morphisms used to build structured
specification by hiding and translation, respectively. Under suitable technical condi-
tions, Craig-Robinson interpolation is needed then for pushouts of spans formed by
morphisms permitted in hiding on the left and those permitted in translations on the
right. Still, the requirement that the institution admits Craig-Robinson interpolation is
the strongest assumption in Thm. 3.3. While it holds in many logics, there are promi-
nent examples where is fails. For example, even Craig interpolation fails in QS5, the
first-order version of the modal logic S5 [Fin79], which is just one instance of many
failures of interpolation in various versions of modal logics. Interpolation also fails in
some typical logical systems used in specification formalisms, with interpretation of
some types or concepts fixed semantically; for instance, interpolation fails for the logic
of CASL due to CASL-style subsorting [Bor00]. Even the standard first-order logic may
cause problems here. While untyped first-order logic UFOL= has Craig-Robinson in-
terpolation, its many-sorted version FOL= admits Craig-Robinson interpolation for
pushouts of spans where at least one morphism is injective on sorts. To use Thm. 3.3

A Relatively Complete Calculus for Structured Heterogeneous Specifications 447

even in the refined version hinted at above for specifications in FOL= we would have
to limit the use of hiding to signature morphisms that are injective on sorts — a se-
riously limiting restriction. Things get even worse with many-sorted equational logic
EqL, which admits Craig-Robinson interpolation for pushouts of spans with the left
morphism satisfying a strong “encapsulation” property, see [Dia08] (Craig, but not nec-
essarily Craig-Robinson interpolation, is also ensured here for pushouts of spans with
the right morphism being injective).

As shown in [ST13], Craig-Robinson interpolation is necessary for the complete-
ness of the above calculi, and moreover, the calculus for specification entailments can-
not be improved without sacrificing its compositionality (consequences of a structured
specification are deduced from the consequences of its immediate components).

When we sacrifice compositionality of the calculus, a sound and complete calculus
may be obtained also for institutions without interpolation when we agree that speci-
fications are “massaged” before calculating their consequences, so allowing the calcu-
lus to reach arbitrarily deep into the specification structure. This is often done using
normal forms of specifications. The well-known normal form result is that each struc-
tured specification SP as considered here can be turned into an equivalent normal form
nf (SP) = 〈Σ′, Γ ′〉|σ , thus entirely flattening the specification to a theory with a single
use of hiding (this requires the institution to have relevant signature pushouts that admit
weak amalgamation). Then an obvious rule

(nf)
Γ ′
 σ(ϕ)

SP
 ϕ
if nf (SP) = 〈Σ′, Γ ′〉|σ

yields a sound and complete calculus for specification entailments.
However, this normal form and its use in the above proof rule entirely forgets about

any structure that was given in SP . We show how some key aspects of the structure may
be maintained without losing the completeness of the calculus. To achieve this we define
a structured normal form snf (SP) for any structured specification SP , which only
pushes out the hiding operations, while retaining the key structure given by union and
translation (and, very informally, renaming hidden symbols to avoid unintended name
clashes). The definition below requires existence and suitable choice of the relevant
signature pushouts:

snf (〈Σ,Γ 〉) = 〈Σ,Γ 〉|id

snf (SP1) = SP ′
1|σ1 snf (SP2) = SP ′

2|σ2

snf (SP1 ∪ SP2) = (θ1(SP
′
1) ∪ θ2(SP

′
2))|σ1;θ1

if

Sig[SP1]

σ2

��

σ1 �� Sig[SP ′
1]

θ1

��
Sig[SP ′

2]
θ2 �� Σ′

is a
pushout

snf (SP) = SP ′|σ1

snf (σ2(SP)) = (θ1(SP
′))|θ2 if

Sig [SP]

σ2

��

σ1 �� Sig [SP ′]

θ1

��
Σ2

θ2 �� Σ′

is a pushout

snf (SP) = SP ′|σ
snf (SP |θ) = SP |θ ;σ

448 T. Mossakowski and A. Tarlecki

Proposition 3.4. In any weakly semi-exact institution, SP and snf (SP) are equivalent.

Moreover, we can obtain a stronger completeness result:

Theorem 3.5. Under the assumptions that the institution is weakly semi-exact and the
entailment system is complete, the calculi for specification entailments and refinement
between structured specifications extended by the following structured normal form
rule:

(snf)
SP ′
 σ(ϕ)

SP
 ϕ
if snf (SP) = SP ′|σ

are sound and complete.

Let us stress again that using structured normal forms is much better than using
normal forms: the latter flatten out specification structure completely, while the for-
mer keep the structure almost intact — only hiding, not so frequently used in typical
specifications, is moved outside. In many institutions, the obvious choice of signature
pushouts involved in the definition of snf leads to the structured normal forms where
all the visible names are kept as in the original structured specification, while only the
hidden operations may need to be renamed so that name clashes are avoided. This al-
lows proof search strategies in structured specifications, as discussed for instance in
[SB83, HST94], to be easily mimicked in their corresponding structured normal forms.

Consequently, the above proof calculus for specification entailments with the rule
(snf) offers a well-balanced choice, maintaining the key advantages of compositional-
ity and keeping the need for restructuring specifications to the necessary minimum.

A complete oracle for conservative extensions is very powerful: it can be used to triv-
ially obtain a complete refinement calculus. Namely, in order to decide whether
SP1

���� �� SP2, it suffices to check whetherSP1 ∪ SP2 is a conservative extension ofSP2.
Nevertheless, our completeness theorem is meaningful and useful. This is because the
completeness proof uses the oracle for conservative extensions only in a limited way. The
extensions considered are those obtained from hidings (pushed along some morphism
into a “big” signature collecting everything). This means, for example, that if we use
hiding only to hide symbols that have been defined using some logic-specific definition
scheme, we will need the oracle for conservative extensions only for checking this def-
inition scheme — and typically all such “definitional extensions” are conservative. We
cannot expect in general to check conservativity independently of the underlying institu-
tion; institution-specific rules are needed. See e.g. [CMM13] for checking conservativity
in CASL.

4 Heterogeneous Specifications

So far, we have covered specifications built and their refinements carried out in an arbi-
trary but fixed logical system formalised as an institution. In practice though, different
logical systems may be appropriate or most convenient for specification of different
modules of the same system, of different aspects of system behaviour, or of different
stages of system development. This leads to the need for a number of logical systems
to be used in the same specification and development project. This makes sense though

A Relatively Complete Calculus for Structured Heterogeneous Specifications 449

only if the logical systems involved (formalised as institutions) are linked appropri-
ately, with links captured by various notions of morphisms between institutions [GR02],
yielding heterogeneous specification environments such as those of CafeOBJ [DF02]
and HETS [MML07].

Definition 4.1. An institution comorphism ρ : I → I ′ consists of:

– a functor Φ : Sign → Sign′;
– a natural transformation α : Sen → Φ ;Sen′, and
– a natural transformation β : Φop ;Mod′ → Mod,

such that for any Σ ∈ |Sign|, for any ϕ ∈ Sen(Σ) and M ′ ∈ Mod′(Φ(Σ)):

M ′ |=′
Φ(Σ) αΣ(ϕ) ⇐⇒ βΣ(M

′) |=Σ ϕ [Satisfaction condition]

Institution comorphisms compose in the obvious, component-wise manner. The category
of institutions with institution comorphisms is denoted by coINS .

Example 4.2. Consider the translation of propositional logic into untyped first-order
logic, mapping propositions to unary predicates plus a global constant a. An atomic
sentence p is mapped to p(a); this is inductively extended to all sentences. A first-order
model is translated to a propositional model by inspecting whether the interpretation
of a is contained in a given predicate. This can easily be organised as an institution
comorphism.

Example 4.3. Many examples for comorphisms arise from subinstitutions, where we
follow [Mes89] and define them as comorphisms ρ = 〈Φ, α, β〉 such that the signature
translation Φ is an embedding of categories, all sentence translations αΣ are injective
and and all model translations βΣ are isomorphisms. For example, propositional logic
and many-sorted equational logic are both subinstitutions of many-sorted first-order
logic (but not of untyped first-order logic).

Example 4.4. The encoding of PFOL= into FOL= that adds definedness predicates
to signatures and restricts carrier sets of models to these predicates can easily be for-
malised as an institution comorphism [Mos02b].

The following properties of institution comorphisms ensure a good interaction with
logical consequence:

Definition 4.5. An institution comorphism is model expansive, if all the model transla-
tion functors are surjective on objects.

An institution comorphism is (weakly) exact, if the naturality squares for the model
translation are (weak) pullbacks.

For example, the comorphism from propositional logic to UFOL from Example 4.2
is model-expansive and weakly exact. Any subinstitution comorphism is both model-
expansive and exact.

The notion of a heterogeneous logical environment (called indexed coinstitutions in
[Mos02a], dualising the indexed institutions of [Dia02]) may be formalised as a collec-
tion of institutions linked by institution comorphisms.

450 T. Mossakowski and A. Tarlecki

Definition 4.6. A heterogeneous logical environmentHLE is a collection of institutions
and institution comorphisms between them, that is, a diagram HLE : G → coINS4 in
the category coINS .

Working in a heterogeneous logical environment, we can enrich the collection of
specification-building operations by translation along institution comorphisms, see
[ST12]. Somewhat less naturally, we can also define hiding w.r.t. institution comor-
phisms, but the target signature has to be given explicitly then. Namely, given an
institution comorphism ρ : I → I ′, we define:

heterogeneous translation: For any I-specification SP , ρ(SP) is a specification with:

Sig [ρ(SP)] := Φ(Sig [SP]) Mod [ρ(SP)] := β−1
Sig[SP](Mod [SP])

heterogeneous hiding: For any I ′-specification SP ′ and signature Σ with Sig[SP ′] =
Φ(Σ), SP ′|Σρ is a specification with:

Sig [SP ′|Σρ] := Σ Mod [SP ′|Σρ] := β
Σ
(Mod [SP ′])

These new, inter-institutional specification-building operations may be arbitrarily mixed
with other (intra-institutional) operations, yielding heterogeneous specifications. Parts
of such specifications may be given in different institutions of the heterogeneous logi-
cal environment we work in. However, each such a specification as a whole eventually
focuses on a particular institution in this environment, where its overall semantics (sig-
nature and the class of models) is given. In essence, viewed from a certain perspective,
such focused heterogeneous specifications do not differ much from the structured spec-
ifications built within a single institution. For instance, the view of a software specifica-
tion and development process as presented in [ST12] directly adapts to the use of such
specifications without much (semantic) change. We will make this view more formal
now.

Definition 4.7. Consider institutions I and I ′ and signatures Σ ∈ |Sign| and Σ′ ∈
|Sign′|. A heterogeneous signature comorphism is a pair 〈ρ, σ′〉 : Σ → Σ′ that consists
of an institution comorphism ρ : I → I ′ and a signature morphism σ′ : Φ(Σ) → Σ′

in Sign′. It induces the heterogeneous reduct |〈ρ,σ′〉 : Mod′(Σ′) → Mod(Σ) de-
fined as the composition Mod′(σ′) ;βΣ , i.e., M ′|〈ρ,σ′〉 = βΣ(M

′|σ′), for all M ′ ∈
Mod′(Σ′). Heterogeneous sentence translations are defined similarly.

Heterogeneous signature comorphisms compose as expected: 〈ρ1, σ1〉; 〈ρ2, σ2〉 =
〈ρ1; ρ2, Φ2(σ1);σ2〉. For any heterogeneous logical environment HLE : G → coINS
this yields the heterogeneous category SignHLE of signatures in institutions in HLE
with heterogeneous comorphisms that involve institution comorphisms in HLE . Then
model functors extend to ModHLE : (SignHLE)op → Class using the reducts defined
above. Similarly, we obtain SenHLE : SignHLE → Set.

Proposition 4.8 ([Mos02a]). The constructions in Def. 4.7 augmented with the family
of satisfaction relations defined component-wise yield an institution

IHLE = 〈SignHLE ,SenHLE ,ModHLE , |=HLE〉.
4 We introduce the following notation: the objects n ∈ |G| carry institutions HLE(n) = In =
〈Signn,Senn,Modn, 〈|=n〉Σ∈|Signn|〉 linked by institution comorphisms HLE(e) =
ρe = 〈Φe, αe, βe〉 : HLE(n) → HLE(m) for each morphism e : n → m in G.

A Relatively Complete Calculus for Structured Heterogeneous Specifications 451

The institution IHLE is known as the Grothendieck institution [Dia02, Mos02a].
For full formality, signatures in the heterogeneous categories of signatures defined

above should really be written as pairs 〈i, Σ〉, with i ∈ |G|.
The inter-institutional specification-building operations given above arise as hid-

ing w.r.t. and translation along heterogeneous signature comorphisms within the
Grothendieck institution IHLE . Namely, given an institution comorphism ρ : I →
I ′ and I-specification SP , ρ(SP) can be captured as 〈ρ, idΣ′〉(SP), where Σ′ =
Φ(Sig [SP]). Similarly, for I ′-specification SP ′ and I-signature Σ such that Φ(Σ) =
Sig [SP ′], SP ′|Σρ becomes now SP ′|〈ρ,idΣ〉. Conversely, the “intra-institutional”
specification-building operations introduced in Sect. 2 in the Grothendieck institution
IHLE may be presented using the inter-institutional operations introduced above in
combination with intra-institutional operations in component institutions. In particular,
translation along 〈ρ, σ〉 is the composition of heterogeneous translation along ρ with
(intra-institutional) translation along σ, and analogously for hiding w.r.t. 〈ρ, σ〉.

Consequently, the proof calculi introduced in Sect. 3 can be directly used for hetero-
geneous specifications by considering them for specifications built in the Grothendieck
institution. The soundness (as given by Thm 3.2) carries over without change. The
completeness theorems (Thm. 3.3 and 3.5) carry over as well, but the problem is that
the assumptions under which they guarantee completeness of the calculi typically fail
in Grothendieck institutions for many logical environments. Craig-Robinson interpo-
lation was problematic even for truly homogeneous logical systems — it will fail in
Grothendieck institutions for heterogeneous logical environments that contain even one
institution where it fails. If all the institutions in the environment have interpolation, it
still is likely to fail for the Grothendieck institution, even if [Dia04, Dia08] offer re-
sults which carry over Craig-Robinson interpolation from component institutions to the
Grothendieck institution — under rather strong assumptions though.

The other key assumption in Thm. 3.3 and, especially, Thm 3.5, the weak amal-
gamation property, carries over from the heterogeneous logical environment to the
Grothendieck institution rather naturally:

Proposition 4.9 ([Mos02a]). Let HLE : G → coINS be a heterogeneous logical en-
vironment consisting of comorphisms with cocontinuous signature translation functors.
Its Grothendieck institution is (weakly) semi-exact if and only if

– HLE is (weakly) locally semi-exact, i.e., each institution in HLE is (weakly) semi-
exact,

– HLE is (weakly) semi-exact, i.e., pushouts in G exist and are for each signature,
(weak) pullbacks of model translation functors, and

– all institution comorphisms in HLE are (weakly) exact.

Unfortunately, again, the conditions of Prop. 4.9 are not fulfilled in many typical logi-
cal environments. For example, neither the CASL institution nor the HETS logical en-
vironment are weakly semi-exact. Indeed, in HETS, there are many spans of institution
comorphisms which can only be complemented to squares that do not even commute
— see [Mos06] for an example.

452 T. Mossakowski and A. Tarlecki

5 Lax Heterogeneous Logical Environments

Sometimes it is useful to indicate that two institution comorphisms differ only in an
inessential way. This in particular applies when the comorphisms arise as compositions
of other comorphisms. We therefore introduce the notion of modification. Modifications
are also useful for solving the problem mentioned at the end of the previous section
(see Def. 5.6 below). Moreover, they naturally arise when representing comorphisms
in some “universal” logic, along with the representation of source and target logic.
Following [Mos02a], we dualise and strengthen the original notion from [Dia02] to
discrete modifications (but we omit the qualifier “discrete” henceforth):

Definition 5.1. Given two institution comorphisms ρ1, ρ2 : I −→J , an institution co-
morphism modification τ : ρ1 −→ ρ2 is a natural transformation τ : Φ1 −→ Φ2 such
that α1; (SenJ · τ) = α2 and (ModJ · τ);β2 = β1.

Together with obvious identities and compositions, modifications can serve as 2-
cells, leading to a 2-category which we also denote by coINS .

Example 5.2. There are two ways to go from equational logic to first-order logic: one
is the obvious subinstitution comorphism ρ1 from Example 4.3, the other one is the
composition ρ2 of the obvious subinstitution comorphism ρ′2 from equational logic to
partial first-order logic with the encoding ρ′′2 of partial first-order logic into first-order
logic from Example 4.4. (Actually, the latter ends in FOLth.) These comorphisms are
different: ρ2 adds some (superfluous) coding of partiality. The comorphism modifica-
tion τ : ρ1 −→ ρ2 is just the pointwise inclusion of an algebraic signature viewed as
first-order signature into the theory coding a partial variant of that signature.

FOLth

EqL

ρ1 ��������������

ρ′
2

�������
������

� τ

��
��

��
�

��
��

�

PFOL

ρ′′
2

	�

This motivates the following extension of the notion of heterogeneous logical
environment:

Definition 5.3. A lax heterogeneous logical environment is a 2-functor HLE : G →
coINS , where both G and coINS are 2-categories.5

We can then use the institution comorphism modifications to obtain a congruence on
Grothendieck signature morphisms: the congruence is generated by

〈d′, τuΣ : Φd′
(Σ)−→Φd(Σ)〉 ≡ 〈d, id : Φd(Σ)−→Φd(Σ)〉 : 〈i, Σ〉 → 〈j, Φd(Σ)〉

for Σ ∈ Signi, d, d′ : i −→ j ∈ G, and u : d′ ⇒ d ∈ G. This congruence has the
following crucial property:

5 Extending the notation introduced in footnote 4, a 2-cell u : d ⇒ d′ determines the corre-
sponding modification HLE(u) = τu : ρd ⇒ ρd

′
.

A Relatively Complete Calculus for Structured Heterogeneous Specifications 453

Proposition 5.4. Equivalent signature morphisms have identical sentence translation
and model reduct functors.

Let qHLE : SignHLE −→ SignHLE/≡ be the quotient functor induced by ≡ (see
[Mac98] for the definition of quotient category). Note that it is the identity on objects.
We easily obtain that the model and sentence functors of the Grothendieck institution
IHLE factor through the quotient category SignHLE/≡:

Corollary 5.5. The components of the Grothendieck institution IHLE factor through
the equivalence ≡, yielding the quotient Grothendieck institution, which by abuse of
notation we write as IHLE/≡ = 〈SignHLE/≡,SenHLE ,ModHLE , |=HLE〉.

When considering e.g. the comorphism going from partial first-order logic PFOL=

to first-order logic FOL=, and the composite comorphism going from PFOL= to
CASL and then to FOL=, we end up in different comorphisms, which are however re-
lated by a comorphism modification. The above identification process in the
Grothendieck institution now tells us that it does not matter which way we choose.

Definition 5.6. Given a lax heterogeneous logical environment HLE : G −→ coINS ,
a square consisting of two lax triangles of index morphisms

i
d1

	���

��� d2
�
��

���
�

d

��
j1

e1 �
��
���

�
u1�� u2 �� j2

e2
	���
���

k

is called (weakly) amalgamable, if the following outer square is a (weak) pullback

Modi(Σ) Modj1(Φd1(Σ))
βd1
Σ��

Modk(Φd(Σ))

βd
Σ

�												

Modk(Φe1(Φd1(Σ)))

βe1
Σ

	�

Modk(τu1
Σ)��

Modj2(Φd2(Σ))

βd2
Σ

	�

Modk(Φe2(Φd2(Σ)))
βe2
Σ��

Modk(τu2
Σ)

	�

•

	�

��

where the lower right square is a pullback.

HLE is called lax-quasi-exact, if each pair of arrows j1 i
d1�� d2 �� j2 in G may

be completed to a weakly amalgamable square of lax triangles

id1

	���
��� d2

�
��
���

�

��
j1

�
��
���

� �� �� j2

	���
���

k
��

6 A Proof Calculus for Heterogeneous Specifications

We obtain a proof calculus for entailment between heterogeneous specifications and
sentences by extending the proof calculus in for structured specifications in Sect. 3,
Fig. 1, with the following rules:

454 T. Mossakowski and A. Tarlecki

(het -trans) SP
 ϕ
ρ(SP)
 α(ϕ)

(het -derive) SP
 α(ϕ)
SP |Σρ
 ϕ

(borrowing)
ρ(SP)
 α(ϕ)

SP
 ϕ
if ρ is model-expansive

(Het -snf)
SP ′
 σ(α(ϕ))

SP
 ϕ
if hsnf (SP) = (SP ′|σ)|Σρ

(where hsnf is snf for the Grothendieck institution) and the calculus for refinements
between heterogeneous specifications in Fig. 2 is extended as follows:

(Het-Trans)
SP � SP ′|Σρ
ρ(SP) � SP ′ (Het-Derive) SP � SP ′′

SP |Σρ � SP ′
if ρ : SP ′−→SP ′′ is a
conservative extension

Conservativity of ρ = (Φ, α, β) : SP ′ −→ SP ′′ means that for each model M ′ ∈
Mod(SP ′), there is a model M ′′ ∈ Mod(SP ′′) with β(M ′′) = M ′.

Theorem 6.1. For a lax heterogeneous logical environmentHLE : G−→coINS (with
some of the institutions also being logics), the proof calculi for heterogeneous specifi-
cations are sound for IHLE/≡. If

1. HLE is lax-quasi-exact,
2. all institution comorphisms in HLE are weakly exact,
3. there is a set L of institutions in HLE that come as complete logics,
4. all institutions in L are quasi-semi-exact,
5. from each institution in HLE , there is some model-expansive comorphism in HLE

going into some logic in L,

then the proof calculus for entailments between heterogeneous specifications and sen-
tences is complete over IHLE/≡. If, moreover, the rule system is extended with a (sound
and complete) oracle for conservative extension, then the proof calculus for refinements
between heterogeneous specifications is also complete.

The oracle for conservative extensions cannot be resigned (not even in the homoge-
neous case, see [MAH06]). One crucial achievement here is that, in contrast to Prop. 4.9,
we need neither cocontinuity nor exactness of the comorphisms. Moreover, we need
quasi-exactness only for some of the logics; this allows us to include logics which are
not quasi-exact, such as CASL. Our proof calculus is related to, but different from and
conceptually simpler than the one for heterogeneous development graphs in
[Mos02a, Mos05]: it is defined along the structure of heterogeneous structured spec-
ifications. A similar proof calculus has been implemented in the heterogeneous tool set
HETS [MML07].

7 Final Remarks

Building on the standard approach to structured specifications in an arbitrary institution,
we extend it to deal with heterogeneous specifications constructed in a heterogeneous
logical environment, formalised as a diagram of institutions with institution comor-
phisms. The focus in this paper is on the proof systems for consequences of so obtained

A Relatively Complete Calculus for Structured Heterogeneous Specifications 455

structured heterogeneous specifications and for refinements between such specifica-
tions. We put forward a modification of the standard proof systems of homogeneous
structured specifications that strike a proper balance between compositionality and the
need for completeness. This system is then extended to heterogeneous specifications.
The key result is the (soundness and) completeness of the system under assumptions
considerably milder than those that guarantee completeness of purely compositional
calculi.

In order to make the work in this paper practically useful for formal software devel-
opment with heterogeneous logics, the implementation of heterogeneous specifications
and proofs in HETS [MML07, Mos05] needs to be generalised to the lax case (see
Sect. 5). It also would be important to generalise the present work to further practically
relevant notions of maps between institutions, studied in [GR02]. Future work will ap-
ply the presented approach to the heterogeneous logical environment arising from UML
(see [CKTW08] for initial promising steps in this direction).

References

[Bor00] Borzyszkowski, T.: Generalized interpolation in CASL. Information Processing Let-
ters 79, 19–24 (2000)

[Bor02] Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Com-
puter Science 286, 197–245 (2002)

[CKTW08] Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

[CM97] Cerioli, M., Meseguer, J.: I borrow your logic? (transporting logical structures along
maps). Theor. Comput. Sci. 173(2), 311–347 (1997)

[CMM13] Codescu, M., Mossakowski, T., Maeder, C.: Checking conservativity with HETS. In:
Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 315–321. Springer,
Heidelberg (2013)

[CoF04] Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg
(2004), http://www.cofi.info

[DF02] Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theoretical Com-
puter Science 285, 289–318 (2002)

[Dia02] Diaconescu, R.: Grothendieck institutions. J. Applied Categorical Structures 10,
383–402 (2002)

[Dia04] Diaconescu, R.: Interpolation in Grothendieck Institutions. Theoretical Computer
Science 311(1-3), 439–461 (2004)

[Dia08] Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)
[DM00] Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information

Processing Letters 74, 65–71 (2000)
[Fin79] Fine, K.: Failures of the Interpolation Lemma in Quantified Modal Logic. J. of Sym-

bolic Logic 44(2), 201–206 (1979)
[FS88] Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D.,

Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 44–72. Springer,
Heidelberg (1988)

[GB92] Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM 39(1), 95–146 (1992)

http://www.cofi.info

456 T. Mossakowski and A. Tarlecki

[GR02] Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13(3-
5), 274–307 (2002)

[HST94] Harper, R., Sannella, D., Tarlecki, A.: Structured presentations and logic represen-
tations. Annals of Pure and Applied Logic 67, 113–160 (1994)

[Mac98] Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)
[MAH06] Mossakowski, T., Autexier, S., Hutter, D.: Development graphs – proof management

for structured specifications. J. of Logic and Algebraic Programming 67(1-2), 114–
145 (2006)

[Mes89] Meseguer, J.: General logics. In: Logic Colloquium 1987, pp. 275–329. North Hol-
land (1989)

[MML07] Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

[Mos02a] Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K., Rytter, W.
(eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)

[Mos02b] Mossakowski, T.: Relating CASL with other specification languages: the institution
level. Theoretical Computer Science 286, 367–475 (2002)

[Mos05] Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Ha-
bilitation thesis, Universität Bremen (2005)

[Mos06] Mossakowski, T.: Institutional 2-cells and grothendieck institutions. In: Futatsugi,
K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation.
LNCS, vol. 4060, pp. 124–149. Springer, Heidelberg (2006)

[MT09] Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed
specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS,
vol. 5486, pp. 266–289. Springer, Heidelberg (2009)

[SB83] Sannella, D., Burstall, R.: Structured theories in LCF. In: Ausiello, G., Protasi, M.
(eds.) CAAP 1983. LNCS, vol. 159, pp. 377–391. Springer, Heidelberg (1983)

[Sho67] Shoenfield, J.: Mathematical Logic. Addison-Wesley (1967)
[ST88a] Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and

Computation 76, 165–210 (1988)
[ST88b] Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic

specifications: Implementations revisited. Acta Informatica 25, 233–281 (1988)
[ST12] Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-

ware Development. Monographs in Theoretical Computer Science. An EATCS Se-
ries. Springer (2012)

[ST13] Sannella, D., Tarlecki, A.: Property-oriented semantics of structured specifications.
In: Mathematical Structures in Computer Science (2013)

[Tar00] Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M.
(eds.) Frontiers of Combining Systems 2, Studies in Logic and Computation, pp.
337–360. Research Studies Press (2000)

	A Relatively Complete Calculus for Structured Heterogeneous Specifications
	1 Introduction
	2 Structured Specifications and Proofs
	3 Proofs
	4 Heterogeneous Specifications
	5 Lax Heterogeneous Logical Environments
	6 A Proof Calculus for Heterogeneous Specifications
	7 FinalRemarks
	References

