
Generalized Synchronization Trees

James Ferlez1,2, Rance Cleaveland1,3, and Steve Marcus1,2

1 The Institute for Systems Research, University of Maryland
2 Department of Electrical and Computer Engineering, University of Maryland

3 Department of Computer Science, University of Maryland

Abstract. This paper develops a generalized theory of synchronization
trees. In their original formulation, synchronization trees modeled the
behavior of nondeterministic discrete-time reactive systems and served
as the foundational theory upon which process algebra was based. In this
work, a more general notion of tree is proposed that is intended to sup-
port the modeling of systems with a variety of notions of time, including
continuous and hybrid versions. (Bi)simulation is also studied, and it is
shown that two notions that coincide in the discrete setting yield different
relations in the generalized framework. A CSP-like parallel composition
operator for generalized trees is defined as a means of demonstrating the
support for compositionality the new framework affords.

1 Introduction

Research into process algebra has been highly influential in the mathematical
study of system modeling [4]. Such algebras include a collection of operators
for assembling more complex systems from smaller ones, as well as notions of
behavioral equivalence and refinement for determining when two systems are in-
distinguishable behaviorally and when one system is an elaboration of another.
This principled approach to compositional modeling has inspired the develop-
ment of a wealth of mechanisms for combining systems in practically interesting
yet mathematically well-founded ways for event-driven systems.

Synchronization trees, as proposed originally by Milner [15], played a pivotal
role in the development of process algebra. In any algebraic theory, carrier sets
must be specified; operators in the algebra are then interpreted as constructions
over the elements from these sets. Synchronization trees play this role in tradi-
tional process algebras. Intuitively, a synchronization tree encodes the behavior
of a system: nodes in the tree correspond to states, with edges, which are la-
beled by events, representing execution steps. Composition operators may then
be interpreted as constructions on these trees, with the result of the construction
representing the behavior of the composite system. These constructions in turn
may be specified co-inductively via inference rules [5]. The simplicity and flexibil-
ity of synchronization trees led several researchers to formalize Milner’s original
notion using different mathematical machinery [1,3,17] and indeed helped inspire
seminal work on co-induction in computing [12,18].

Synchronization trees are intended to model discrete systems that evolve by
engaging in atomic events and changing state. For systems with non-discrete

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 304–319, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Generalized Synchronization Trees 305

behavior, a similarly general yet simple model for defining composition has ar-
guably yet to emerge. Some researchers use transition systems to model such be-
havior [6,9], while others adopt category-theoretic [10,11] and trajectory-based
models [14,19]. However, neither case has yielded the rich results for composi-
tion operators that can be found in discrete process algebra. By contrast, others
have recently recognized that generalizing the notion of a tree is a profitable ap-
proach [7,8]. However, in [8], generalized trees appear only as a consequence of
other system models, whereas in [7], the notions of bisimulation and CSP-parallel
composition are not generalized to non-discrete behavior.

The purpose of this paper is to propose a new tree-based model of system
behavior, which we call generalized synchronization trees, that is intended to play
the same role in a generalized-time setting that synchronization trees play for
discrete time. Our goal is to provide the foundation for a general, flexible theory
of composition for systems that include components with a variety of different
notions of time, including continuous, discrete, and their hybrids. Generalized
synchronization trees also represent system behavior and subsume traditional
synchronization trees, but include a flexible mechanism for modeling non-discrete
models of time as well. In this paper, we define these trees and study notions of
equivalence (bisimulation) and refinement (simulation) in a logical (i.e. non-real-
time) setting. Our results show in particular that definitions of these behavioral
relations that coincide in the discrete setting differ in the generalized setting.
We also show how our trees subsume some existing models of hybrid behavior,
and we initiate the study of composition operations in this theory by showing
how CSP parallel composition can be extended to this framework.

The remainder of the paper is structured as follows. The next section presents
mathematical preliminaries, while the section following gives the definition of
generalized synchronization trees and some examples. Section 4 then studies
different notions of bisimulation for this model, and the section after shows how
our trees may be used to model systems in an existing hybrid process algebra.
The next section considers parallel composition in the setting of our new trees,
and the final section concludes with directions for future work.

2 Preliminaries

This section presents basic background on partial and total orders and reviews
a classical definition of tree in this setting.

Definition 1 (Partial Order). Let P be a set, and let �⊆ P ×P be a binary
relation on P . Then � is a partial order on P if the following hold.

1. � is reflexive: for all p ∈ P, p � p.
2. � is anti-symmetric: for all p1, p2 ∈ P , if p1 � p2 and p2 � p1 then p1 = p2.
3. � is transitive: for all p1, p2, p3 ∈ P , if p1 � p2 and p2 � p3 then p1 � p3.

306 J. Ferlez, R. Cleaveland, and S. Marcus

We abuse terminology and refer to 〈P,�〉 as a partial order if � is a partial order
over set P . We write p1 ≺ p2 if p1 � p2 and p1 �= p2 and p2 	 p1 if p1 � p2. We
adapt the usual interval notation for numbers to partial orders as follows.

[p1, p2] � {p ∈ P | p1 � p � p2}
(p1, p2) � {p ∈ P | p1 ≺ p ≺ p2}

Half-open intervals, e.g. [p1, p2) and (p1, p2], have the obvious definitions.

Definition 2 (Upper/Lower Bounds). Fix partial order 〈P,�〉 and P ′ ⊆ P .

1. p ∈ P is an upper (lower) bound of P ′ if for every p′ ∈ P ′, p′ � p (p � p′).
2. p ∈ P is the least upper (greatest lower) bound of P ′ if p is an upper (lower)

bound of P ′ and for every upper (lower) bound p′ of P ′, p � p′ (p′ � p).

When set P ′ has a least upper bound (greatest lower bound) we sometimes use
supP ′ (inf P ′) to denote this element.

Definition 3 (Total Order). Let 〈P �〉 be a partial order. Then � is a total
or linear order on P if for every p1, p2 ∈ P , either p1 � p2 or p2 � p1.

If 〈P,�〉 is a partial order and P ′ ⊆ P , then we sometimes abuse notation and
write 〈P ′,�〉 for the partial order obtained by restricting � to elements in P ′.
We say that P ′ is totally ordered by � if � is a total order for P ′. We refer to
P ′ as a linear subset of P in this case. Trees may now be defined as follows [13].

Definition 4 (Tree [13]). A tree is partial order 〈P,�〉 such that for each
p ∈ P , the set {p′ ∈ P | p′ � p} is totally ordered by �. If there is also a p0 ∈ P
such that p0 � p for all p ∈ P , then p0 is called the root of the tree, and 〈P,�, p0〉
is said to be a rooted tree.

In [7], these structures are referred to as prefix orders. The distinguishing feature
of a tree implies that � defines a notion of ancestry. In a rooted tree, the root
is an ancestor of every node, so every node has a unique “path” to the root.
Since the subsequent development is modeled on synchronization trees, we will
consider only rooted trees in the sequel.

We conclude this section by discussing a notion of discreteness for trees.

Definition 5 (Discrete Tree). A tree 〈P,�, p0〉 is discrete if and only if for
every p, the set [p0, p] is finite.

The following alternative characterization of discreteness is sometimes useful.

Proposition 1. A tree 〈P,�, p0〉 is discrete if and only the following all hold.

1. For every p �= p0, sup[p0, p) ∈ [p0, p).
2. For every p ∈ P and p′
 p, inf(p, p′] ∈ (p, p′].
3. Every nonempty linear subset P ′ of P has a greatest lower bound.

Generalized Synchronization Trees 307

3 Generalized Synchronization Trees

This section defines, and gives examples of, generalized synchronization trees.

3.1 Traditional Synchronization Trees

Milner introduced the notion of synchronization tree in [15]. The following quotes
the definition given on p. 16 of that reference.

“A Synchronization Tree (ST) of sort L is a rooted, unordered, finitely
branching tree each of whose arcs is labelled by a member of L∪ {τ}.”1

(Milner also indicates that such trees may be of infinite depth. Note that because
of its reference to “arcs”, Milner’s definition implies that synchronization trees
must be discrete in the sense of Definition 5.) Intuitively, the set L of labels
contains externally visible actions that systems may engage in; τ denotes a des-
ignated internal action. A tree then represents the full behavior of a system; the
root represents the start state, while edges represent discrete computation steps
and branching represents nondeterminism. Milner shows how the basic compo-
sition operators, including choice and parallel composition, of his Calculus of
Communicating Systems (CCS) may be interpreted as constructions on these
trees. Throughout his presentation Milner consciously follows a traditionally al-
gebraic approach, making CCS one of the earliest process algebras.

Process algebras are often given a semantics in terms of labeled transition
systems ; a ST may be seen as the “unrolling” of such a system.

Milner also defined a notion of strong equivalence (now called bisimulation
equivalence) on systems in order to equate synchronization trees that, while not
isomorphic, nevertheless represent the same behavior. The definitions below are
adapted from [16]; recall that if R is a binary relation on a set S × T then R−1,
the inverse of R, is binary relation on T×S defined by R−1 � {〈t, s〉 | 〈s, t〉 ∈ R}.

Definition 6 (Simulation and Bisimulation for Synchronization Trees).
Let L be a set of labels, and let STL be the set of STs whose labels come from L.

1. Let T, T ′ ∈ STL and a ∈ L. Then T
a−→ T ′ if there is an edge labeled by a

from the root of T to the root of T ′.
2. Relation R ⊆ STL × STL is a simulation if, whenever 〈T1, T2〉 ∈ R and

T1
a−→ T ′

1, then there exists T ′
2 such that T2

a−→ T ′
2 and 〈T ′

1, T
′
2〉 ∈ R.

3. Relation R ⊆ STL×STL is a bisimulation if both R and R−1 are simulations.
4. Let T1, T2 ∈ STL. Then T1 is simulated by T2 (notation T1
 T2) if there is

a simulation relation R with 〈T1, T2〉 ∈ R.
5. Let T1, T2 ∈ STL. Then T1 and T2 are bisimulation equivalent, or bisimilar

(notation T1 ∼ T2), if there is a bisimulation R with 〈T1, T2〉 ∈ R.

1 Milner also introduces the notion of rigid synchronization tree, which limit edge
labels to the set L. We elide this distinction, as we do not consider τ in this paper.

308 J. Ferlez, R. Cleaveland, and S. Marcus

The relation
 is often called the simulation preorder. It can be shown that the
simulation preorder (bisimulation equivalence) itself is a simulation (bisimula-
tion) relation, and indeed is the unique largest such relation.

Milner’s definition of synchronization tree may be seen as semi-formal in that
trees are not formally defined. Other authors [1,3,17,20] subsequently developed
the underlying mathematics fully, and in the process helped justify, as coinduc-
tive constructions, the composition operations given by Milner on infinite trees.

3.2 Generalized Synchronization Trees

The impact of Milner’s work is hard to overstate; process algebra is a major
field of study in computing, and the notions of simulation and bisimulation have
had a substantial influence on other areas such as control-system modeling and
systems biology, where the focus is on continuous, rather than discrete, behav-
ior. However, the rich array of composition operators, and associated elegant
metatheoretical results [2,5] found in traditional process algebra have yet to
emerge in these more general contexts. Our motivation for generalized synchro-
nization trees is to provide a flexible framework analogous to synchronization
trees over which composition operations may be easily defined, and their alge-
braic properties studied, for this more general setting.

Synchronization trees are intended to model discrete systems that evolve via
the execution of atomic actions. This phenomenon is evident in the fact that
trees have edges that are labeled by these actions; each node in a tree is thus at
most finitely many transitions from the root. For systems that have continuous as
well as discrete dynamics, synchronization trees offer a problematic foundation
for system modeling, since the notion of continuous trajectory is missing.

Generalized synchronization trees are intended to provide support for dis-
crete, continuous, and hybrid notions of computation, where nondeterminism
(branching) may also be discrete, continuous, or both.

Definition 7 (Generalized Synchronization Tree). Let L be a set of labels.
Then a generalized synchronization tree (GST) is a tuple 〈P,�, p0,L〉, where:

1. 〈P,�, p0〉 is a tree in the sense of Definition 4; and
2. L ∈ P\{p0} → L is a (possibly partial) labeling function.

A GST differs from a synchronization tree in two respects. On the one hand, the
tree structure is made precise by reference to Definition 4. On the other hand,
labels are attached to (non-root) nodes, rather than edges; indeed, a GST may
not in general have a readily identifiable notion of edge.

In the rest of this section we show how different classes of systems may be
encoded as GSTs. These example contain different mixtures of discrete / con-
tinuous time and discrete / continuous nondeterminism (called “choice”).

Example 1 (Labeled Transition Systems as GSTs). Let T = 〈X,L,→, x0〉 be
a labeled transition system with state set X , label set L, transition relation
→⊆ X × L × X , and initial state x0. Then the behavior of T starting from

Generalized Synchronization Trees 309

x0 may be encoded as a discrete GST. Define an execution e of T to be a
sequence of transitions (formally, an element of →∗) such that if e = 〈x, �, x′〉 · e′
then x = x0 (i.e. the first transition is always from the start state), and if
e = e1 · 〈x1, �1, x

′
1〉 · 〈x2, �2, x

′
2〉 · e2 then x′

1 = x2 (i.e. the next transition always
starts from the target state of the last transition). Let ET be the set of all
executions of T ; note that ε, the empty sequence of transitions, is in ET , and
that �T , the prefix ordering on →∗, is a partial order on ET such that ε �T e
for all e ∈ ET . Finally, if e = e′ · 〈x, �, x′〉, define LT (e) to be � (i.e. the label of
the last transition in e). It is easy to see that GT = 〈ET ,�T , ε,LT 〉 is a GST,
and that GT is discrete in the sense of Definition 5.

The previous construction is the classical “unrolling” method for generating
trees from LTSs, and is generally associated with discrete-time modeling. Per-
haps surprisingly, however, it is also applicable to formalisms that model con-
tinuous behavior via transition systems. For example, Hybrid Process Algebra
(HyPA) [6] is a compositional algebraic framework for modeling hybrid systems
that permit instantaneous jumps in their continuous model variables; the sig-
nature of HyPA reflects this by including reinitialization operators, flow clauses
and disrupt operators. The behavior of HyPA terms depends on the values of the
continuous model variables; transitions are enabled only for certain valuations
of thse variables, and transitions can also alter the model variables when they
execute. Thus, the operational semantics, which is specified in the traditional
SOS style, defines transitions for HyPA-term / variable-valuation pairs. Two
types of transitions are in fact defined; zero-duration, discrete-action “jumps”,
and finite-duration continuous flows. The results is a labeled transition system
where each state (location) is specified by a HyPA term and a valuation of the
model variables. These labeled transition systems are coined hybrid transition
systems in [6]. As labeled transitions systems, hybrid transition systems can be
represented as GSTs using the construction above; these GSTs are also discrete,
interestingly, even though the phenomena being modeled in HyPA are not.

Difference equations with inputs also represent models that semantically give
rise to transition systems. Such models often arise in the description of control
systems when the quantities of interest – states and inputs, for example – are
sampled in time. Such difference equations typically take the form

xk+1 = f(xk, uk),

where xk represents state at the kth sampling interval, uk represents an input
arriving between time k and k+1, and f is a function computing the new state
based on the existing state and this input. These systems can be represented as
labeled transition systems, with states given by the x and transitions labeled by
u defined by f , so the above construction yields discrete GSTs in this case, too.

Example 2 (Differential Equations with Inputs as GSTs). Continuous-time, con-
tinuous - choice systems have traditionally been the standard problem considered
by control theorists; these systems usually take the form of an ordinary differ-
ential equation (ODE) with inputs. A simple example of this class of systems
is one derived from Newton’s laws of motion. For example, consider an object

310 J. Ferlez, R. Cleaveland, and S. Marcus

with mass m that is both confined to travel in a straight line and affected by
a time-varying external force u (from a motor, say). If we let x1 represent the
position of the object and we let x2 represent its velocity, then Newton’s laws
can be used to derive the following state equations for the object:[

ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0

1/m

]
u (1)

where all the variables are functions of time and ẋ represents the time-derivative
of x. Recently, Willems et al. [19] have suggested that continuous-time systems
be treated as a collection of time trajectories (or behaviors) instead of a set of
state equations. If we suppose that time starts from 0, then the previous system
is completely described by the set of all pairs of functions

B �
{
〈u, x〉 ∈ (R≥0 → R)× (R≥0 → R2) : u is locally integrable and

∃x0 ∈ R2 s.t. x(t) = exp(At)x0 +

∫ t

0

exp(A(t− τ))Bu(τ)dτ ∀t ≥ 0

}
(2)

where A = [0 1
0 0], B =

[
0

1/m

]
and the function exp should be interpreted as the

matrix exponential. The function u is assumed to be locally integrable so that
the subsequent integral is well defined for all t.

This behavioral treatment of continuous-time systems facilitates the construc-
tion of GSTs using a generalized notion of “prefix”. To help with this, we define
a notion of truncation for functions defined on R≥0: given a function f ∈ B, we
define f |t to be the restriction of the function f to the set [0, t]. Now we can
define a GST from B as follows.

– Let P = {〈t, f〉 : t ∈ R≥0 and f = x|t for some x ∈ B} ∪ {p0} where p0 is a
distinguished element not in the first set.

– The partial order � is defined in the following way: let p0 � p for all p ∈ P
and for p1 � 〈t1, f1〉, p2 � 〈t2, f2〉 let p1 � p2 if and only if t1 ≤ t2 and
f1 = f2|t1 .

– The labeling function L : P\{p0} → R is defined so that L(〈t, f〉) = π1f(t).

We close this section by remarking on correctness issues for the translations
just given; in what sense are they “right”? In the absence of notions of equiva-
lence, this question is hard to answer. The next section helps remedy the situ-
ation by defining (bi)simulation for GSTs; this permits us to revisit HyPA, for
example, in Section 5 in order to give a different, more satisfactory translation
of HyPA terms into GSTs.

4 (Bi)Simulations for Generalized Synchronization Trees

Section 2 defined standard notions of equivalence (bisimulation) and refinement
(simulation) on synchronization trees. The goal of this section is to study adap-
tations of these notions for generalized synchronization trees. In the process of

Generalized Synchronization Trees 311

doing so, we highlight a subtlety that arises because of GSTs’ capability of mod-
eling non-discrete time. As the notions of simulation and bisimulation are closely
linked (see Definition 6), in what follows we focus our attention on simulation.

4.1 Simulations for Generalized Synchronization Trees

Simulation relations in Definition 6 rely on a notion, labeled edges, that syn-
chronization trees possess but GSTs do not. However, an intuition underlying
the simulation relation is that if T1
 T2, then every “execution step” of T1

can be matched by T2 in such a way that the resulting trees are still related.
This observation provides a starting point for simulations on GSTs; rather than
relying on edges to define computation, use the notion trajectory instead.

Definition 8 (Trajectory). Let 〈P,�, p0,L〉 be a GST, and let p ∈ P . Then
a trajectory from p is a linear subset P ′ ⊆ P such that for all p′ ∈ P ′:

1. p′
 p and
2. (p, p′] ⊆ P ′.

A trajectory from a node p in a GST is a path that starts from p, but for technical
reasons, does not include p. A trajectory can be bounded with a maximal element
as in the case of the interval (p, p′], or it can be bounded with a least upper bound
as in the case of (p, p′). It is also possible for a trajectory to be bounded without
a least upper bound or even unbounded.

Trajectories are analogous to computations and thus will form the basis of the
simulation relations given below. In order to determine when two trajectories
“match”, we introduce the concept of order-equivalence.

Definition 9 (Order Equivalence). Let 〈P,�P , p0,LP 〉 and 〈Q,�Q, q0,LQ〉
be GSTs, and Tp, Tq be trajectories from p ∈ P and q ∈ Q respectively. Then Tp

and Tq are order-equivalent if there exists a bijection λ ∈ TP → TQ such that:

1. p1 �P p2 if and only if λ(p1) �Q λ(p2) for all p1, p2 ∈ TP , and
2. LP (p) = LQ(λ(p)) for all p ∈ TP .

When λ has this property, we say that λ is an order equivalence from TP to TQ.

Two trajectories that are order-equivalent can be seen as possessing the same
“content”, as given by the labeling functions of the trees, in the same “order”.
Note that in general, the bijections used to relate two order-equivalent trajecto-
ries need not be unique, although when the trees in question are discrete, they
must be. The first notion of simulation may now be given as follows.

Definition 10 (Weak Simulation for GSTs). Let G1 = 〈P,�P , p0,LP 〉 and
G2 = 〈Q,�Q, q0,LQ〉 be GSTs. Then R ⊆ P ×Q is a weak simulation from G1

to G2 if, whenever 〈p, q〉 ∈ R and p′ 	 p, then there is a q′ 	 q such that:

1. 〈p′, q′〉 ∈ R, and
2. Trajectories (p, p′] and (q, q′] are order-equivalent.

312 J. Ferlez, R. Cleaveland, and S. Marcus

G1
w G2 if there is a weak simulation R from G1 to G2 with 〈p0, q0〉 ∈ R.

Weak bisimulation equivalence can be defined easily. Call a weak simulation R
from G1 to G2 a weak bisimulation if R−1 is a weak simulation from G2 to G1.
Then G1 ∼w G2 iff there is a weak bisimulation R with 〈p0, q0〉 ∈ R.

Weak simulation appears to be the natural extension of simulation to GSTs:
for one node to be simulated by another, each bounded trajectory from the first
node must be appropriately “matched” by an equivalent trajectory from the
second node. However, one may impose a stronger condition on the trajectories
emanating from related nodes, as follows.

Definition 11 (Strong Simulation for GSTs). Let G1 = 〈P,�P , p0,LP 〉
and G2 = 〈Q,�Q, q0,LQ〉 be GSTs. Then R ⊆ P × Q is a strong simulation
from G1 to G2 if, whenever 〈p, q〉 ∈ R and Tp is a trajectory from p, there is a
trajectory Tq from q and bijection λ ∈ Tp → Tq such that:

1. λ is an order equivalence from Tp to Tq, and
2. 〈p′, λ(p′)〉 ∈ R for all p′ ∈ Tp.

G1
s G2 if there is a strong simulation R from G1 to G2 with 〈p0, q0〉 ∈ R.

Strong simulations strengthen weak ones by requiring that matching trajectories
also pass through nodes that are related by the simulation relation, and by also
considering potentially unbounded trajectories as well as bounded ones.

4.2 Relating Strong and Weak Simulations

This section now considers the relationships between weak and strong simulation.
The first result indicates that the latter is indeed stronger than the former.

Theorem 1. Let G1 and G2 be GSTs with G1
s G2. Then G1
w G2.

The proof follows from the fact that every strong simulation is a weak simulation.
The next result, coupled with the previous one, establishes that for discrete

trees, the two simulation orderings in fact coincide.

Theorem 2. Suppose that G1 and G2 are discrete GSTs, and that G1
w G2.
Then G1
s G2.

The proof uses induction on transitions to show that any weak simulation is also
strong.

We now show that
w /
s coincides with the simulation ordering,
, given
for synchronization trees (i.e. discrete, finite-branching GSTs) in Definition 6.

The next definition defines a notion of
a−→ for discrete GSTs.

Definition 12 (Transitions for Discrete GSTs). Let G = 〈P,�, p0,L〉 be a
GST, with p, p′ ∈ P .

1. p′ is an immediate successor of p if p′
 p and there exists no p′′ ∈ P such
that p′
 p′′
 p.

Generalized Synchronization Trees 313

3,13, 1
33, 1

4

3,1′3, 1
2
′

3, 1
3
′

3, 1
n

α α α α

β β β

α

1, 1
2 1,11, 1

31, 1
4

1,1′

1, 1
n

α α α α

β

α

1
2 11

3
1
4

1′1
2
′1

3
′1

4
′

1
n

1
n
′

α α α α

β β β β

α

β

p01

p02

2, 1
2 2,12, 1

3

2,1′2, 1
2
′

2, 1
42, 1

n

α α α α

β β

α

S1

S2

S3

T1

T2

T3

...
...

G2

G1

k, 1
2 k,1

k,1′k, 1
2
′

k, 1
3
′

k, 1
k
′

k, 1
k k, 1

3k, 1
k+1

α α α

β β β β

α α

3, 1
2

Fig. 1. Visualization of the GSTs used in proof of Theorem 4

2. G�p, the subtree of G rooted at p, is 〈P ′,�′, p,L′〉, where P ′ = {p′ ∈ P |
p � p′}, and �′ / L′ are the restrictions of � and L to P ′ / P ′/{p}.

3. Let G′ = 〈P ′,�′, p′0,L′〉 be a GST. Then G
a−→ G′ exactly when p′0 ∈ P , p′0

is an immediate successor of p0, G
′ = G�p′0, and L(p′) = a.

Intuitively, G
a−→ G′ if G′ is an immediate subtree of G′ and the root of G′

labeled by a. Based on this notion, Definition 6 may now be applied to discrete
GSTs. We have the following.

Theorem 3. Let G1, G2 be discrete GSTs. Then the following are equivalent.

1. G1
 G2.
2. G1
w G2.
3. G1
s G2.

One might hope that
w and
s would coincide for general GSTs, thereby
obviating the need for two notions. Unfortunately, this is not the case.

Theorem 4. There exist GSTs G1 and G2 such that G1
w G2 but G1 �
s G2.

Proof. Consider the GSTs depicted in Figure 1. It turns out that the trees G1

and G2 are such that G1
w G2, but G1 �
s G2.

314 J. Ferlez, R. Cleaveland, and S. Marcus

Both G1 and G2 use a label set {α, β}, and both are discrete except for their
start states. Each tree is constructed from a basic “time axis” T = {1/n | n ∈
N\{0}} ∪ {0}, with the usual ordering ≤. The start state G1 corresponds to
time 0; each subsequent node is labeled by α if there is an edge to the next time
point, or β if the node is maximal. In traditional synchronization-tree terms,
each (non-start) node has an outgoing labeled α and another labeled β. G2 is
similar to G1 except it contains an infinite number of branches from the start
state, with branch k only enabling β transitions for the last k nodes.

The shading in the diagram illustrates a weak simulation that may be con-
structed and used to show that the start states in G1 and G2 are indeed related
by a weak simulation. Intuitively, every trajectory from the start node of G1

leads to a node from which a finite number of αs are possible, with a β possible
at each step also. This trajectory can be matched by one from the start state of
G2 that leads to a branch from which enough β-less nodes can be bypassed.

On the other hand, no strong simulation can be constructed relating the start
node of G1 with G2. The basic intuition is that any trajectory leadings from the
start node of G1 has βs enabled at every intermediate node, and this behavior
does not exist in any trajectory leading from the start node of G2. ��

The preceding result suggests that simulation is more nuanced for GSTs than
for synchronization trees. One naturally may wonder which of the two notions
proposed in this section is the “right” one. Our perspective is that the strong
notion possesses a sense of invariance that one might expect for simulation; if one
system is simulated by the other then any execution of the former can be “traced”
by the latter following only related states. In this sense, strong simulation may
be seen to have stronger intuitive justifications than the weaker one.

5 Constructing GSTs and Implications for Bisimulation

This section shows how discrete GSTs can be constructed from HyPA terms so
that bisimulation on GSTs (recall that weak and strong bisimulation coincide
for discrete trees) corresponds exactly with a congruence for HyPA terms in [6].

In Example 1, reference was made to the operational semantics of HyPA being
given as a hybrid transition system; the states in the transition were HyPA-term
/ variable-valuation pairs. Bisimulation may be defined as usual for such a transi-
tion system. The authors of [6] then consider different definitions of bisimulation
for terms alone. One obvious candidate defines terms p and q to be bisimilar iff
for all variable valuations ν, 〈p, ν〉 and 〈q, ν〉 are bisimilar as states in the HyPA
hybrid transition system. Unfortunately this relation is not a congruence for
HyPA terms; the problem resides in the fact that parallel processes within terms
can interfere with the variable valuations produced by another parallel process.
To fix this problem, the authors introduce another relation, robust bisimulation,
show it to be a congruence for HyPA, then establish that it is the same as another
relation, stateless bisimulation, given in the same paper.

In the rest of this section we show how to construct GSTs from HyPA terms in
such as way that two HyPA terms are statelessly bisimilar iff the corresponding

Generalized Synchronization Trees 315

ν1

ν2

ν3

�3

ν2

ν2 �2

ν1

ν3

ν2 �2

�2

ν1

ν1

�1

�3

�1

�3ν3

�1

ν3

..
.

..
.

..
.

...
...

...
...

..
.

...
...

...
...

...
...

...
...

..
.

..
. ..
.

..
.

..
.

..
. ..
.

...
...

...
...

..
.

...
...

...
...

...
...

...
...

ν1

ν3

ν2

p′

p′

p′

p′

p′

p′

a
a�p′ p′a�p′

a,ν3

a,ν2

a,ν1

〈a�p′ ,ν3〉

〈a�p′ ,ν1〉

〈a�p′ ,ν2〉

Fig. 2. Constructing GSTs from HyPA Terms

GSTs are bisimilar. We begin by reviewing the definition of stateless bisimula-
tion. T (Vp) is the set of HyPA terms that use only the recursive process variables
Vp, Val is the set of valuations for the (continuous) model variables, the transi-

tion
�→ represents either a discrete action or a continuous flow (depending on �)

and � is a set of “terminating” states.

Definition 13 (Stateless bisimulation [6]). Given a hybrid transition system
with state space T (Vp) × Val, a stateless bisimulation relation is a binary
relation R ⊆ T (Vp)× T (Vp) such that for all ν, ν′ ∈ Val and pRq,

– 〈p, ν〉 ∈ � implies 〈q, ν〉 ∈ �,
– 〈q, ν〉 ∈ � implies 〈p, ν〉 ∈ �,

– 〈p, ν〉 �→ 〈p′, ν′〉 implies ∃q′ ∈ T (Vp) such that 〈q, ν〉 �→ 〈q′, ν′〉
∧
p′Rq′ and

– 〈q, ν〉 �→ 〈q′, ν′〉 implies ∃p′ ∈ T (Vp) such that 〈p, ν〉 �→ 〈p′, ν′〉
∧

p′Rq′.

For simplicity we ignore � in what follows. The construction of GST Gp from
HyPA term p is exemplified in Figure 2. First, let the root of the Gp be iden-
tified with p. Then for each valuation ν of the model variables, create one suc-
cessor node of p that is identified with 〈p, ν〉 and label these nodes as ν. Since
each 〈p, ν〉 is a hybrid transition system state, the node has transitions of form

〈p, ν〉 �→ 〈p′, ν′〉 for some �; for each such 〈p′, ν′〉, make a node for p′ labeled by
�. Now repeat this procedure (coinductively) from p′ to obtain discrete GST Gp.
We now have the following (recall that weak and strong bisimilarity coincide for
discrete GSTs).

Theorem 5. Let p and q be HyPA terms. Then p and q are statelessly bisimilar
iff Gp and Gq are bisimilar.

There are yet other ways to represent HyPA processes as GSTs. For example,
the behavioral systems in Example 2 suggest that if HyPA processes are re-
garded in terms of execution trajectories (i.e. functions of time), yet a different

316 J. Ferlez, R. Cleaveland, and S. Marcus

GST construction can be obtained. It should be noted that such a construction
necessarily has a great deal more granularity, as the resulting GSTs would be
non-discrete. Consequently, our previous results about strong bisimulation would
likely have significant ramifications for such a GST construction.

6 Composition of GSTs

One of the motivations for this work is to provide a framework for defining
composition operators for systems having discrete / non-discrete behavior. In
this section, we illustrate the potential of GSTs for this purpose by showing how
a version of CSP parallel composition may be defined as a GST construction.

The parallel composition operator we consider is notated |S|, where S is a
set of action labels. Given two (discrete) systems P and Q, P |S|Q interleaves
the executions of P and Q, with the following exception: actions in S must be
performed by both P and Q in order to for P |S|Q to perform them. The precise
semantics of the operator may be given via the following SOS rules.

P
a−→ P ′ a �∈ S

P |S|Q a−→ P ′ |S|Q
Q

a−→ Q′ a �∈ S

P |S|Q a−→ P |S|Q′
P

a−→ P ′ Q
a−→ Q′ a ∈ S

P |S|Q a−→ P ′ |S|Q′

Defining this operator in the GST setting requires first identifying the non-
discrete analog of “interleaved execution.” Recall that for a GST, the analog of
an execution is a (bounded) trajectory (cf. Definition 8). Interleaving two such
trajectories can then be formalized as a linearization of the partial order obtained
by taking the union of the trajectories. To formalize these ideas, first recall that
if two partial orders 〈P,�P 〉 and � Q,�Q are disjoint (i.e. P ∩ Q = ∅), then
〈P ∪ Q,�P ∪ �Q〉 is also a partial order. Interleavings can now be defined as
follows.

Definition 14 (S-synchronized Interleaving). Let G1 = 〈P1,�1, p1,L1〉
and G2 = 〈P2,�2, p2,L2〉 be GSTs, and WLOG assume that P1 ∩ P2 = ∅.
Also let T1 and T2 be trajectories (cf. Definition 8) from the roots of G1 and
G2, respectively. Also let S ⊆ L. Then total order 〈Q,�Q〉 is an S-synchronized
interleaving of T1 and T2 iff there exists a monotonic bijection λ ∈ {p ∈ T1 |
L1(p) ∈ S} → {p ∈ T2 | L2(p) ∈ S} such that the following hold.

1. L1(p) = L2(λ(p)) for all p ∈ T1 such that L1(p) ∈ S.
2. Q = {p ∈ T1 | L1(p) �∈ S} ∪ {p ∈ T2 | L2(p) �∈ S} ∪ {〈p, λ(p)〉 | L1(p) ∈ S}.
3. Define π1 ∈ Q → (T1 ∪ T2) by π1(p) = p if p ∈ T1 ∪ T2 and π1(〈p′1, p′2〉) = p′1

otherwise, and similarly for π2. Then, π1(q) �1 π1(q
′) or π2(q) �2 π2(q)

implies q �Q q′.

We write IS(T1, T2) for the set of S-synchronized interleavings of T1 and T2.

Intuitively, an S-synchronized interleaving of two trajectories from different (dis-
joint) trees is a total ordering on the union of the execution that respects the
individual orderings from each of the trees in isolation while requiring synchro-
nization on events in S. The bijection λ in the definition is used to identify the

Generalized Synchronization Trees 317

synchronization partners in the trajectories. We may now define the CSP parallel
composition construction on GST as follows.

Definition 15. Let G1 = 〈P1,�1, p1,L1〉 and G2 = 〈P2,�2, p2,L2〉 be GSTs
with P1 ∩ P2 = ∅. Then the GST G1 |S|G2 = 〈Q,�Q, q0,LQ〉 is given by:

1. Q = {〈p1, p2〉}∪{T | T ∈ IS(T1, T2) for some trajectories T1 = (p1, p
′
1] of G1,

T2 = (p2, p
′
2] of G2}.

2. q �Q q′ iff q = 〈p1, p2〉, or q = 〈r,�r〉, q′ = 〈r′,�r′〉, and �r ⊆�r′.
3. q0 = 〈p1, p2〉.
4. Let q ∈ Q and let p′ = sup(q). Then define LQ according to

LQ(q) =

⎧⎪⎨
⎪⎩
L1(p

′) if p′ ∈ P1

L2(p
′) if p′ ∈ P2

L2(p
′
1) if p′ = 〈p′1, p′2〉

To justify this construction, the following theorem shows that the definition
coincides with the standard one for discrete systems (i.e. those modeled using
labeled transition systems).

Theorem 6. Let GT be the GST associated with a labeled transition system
(LTS) T as given in Section 3. Then we have the following for LTSs T1 and T2.

G(T1 |S|T2) ∼w GT1 |S|GT2 .

This result establishes that for discrete-time systems, the GST construction coin-
cides with the standard one for labeled transition systems. However, Theorem 6
depends on the prohibition of unbounded trajectories in part 1 of Definition 15.
This suggests that there is a non-trivial interplay between the properties of
the parallel composition operator and the trajectories that are permitted in
Definition 15. We regard this as an interesting direction for future research.

7 Conclusions and Directions for Future Research

This paper has defined Generalized Synchronization Trees, which are intended to
provide a modeling framework for composition operations on systems that may
contain non-discrete time. Like Milner’s synchronization trees, GSTs are also
trees, but are based on earlier, non-inductive definitions of these structures that
permit discrete as well as non-discrete behavior to be modeled uniformly. The
work then considers notions of simulation and bisimulation for GSTs, establish-
ing that definitions that coincide in the purely discrete setting of synchronization
trees nevertheless differ in the generalized setting. It is then shown how a hybrid
process algebra can be captured cleanly in our formalism, and also how a notion
of parallel composition may be interpreted at a construction on GSTs.

There are numerous directions for future work. The framework in this paper
makes no mention of real-time; indeed the definitions of simulation given in this

318 J. Ferlez, R. Cleaveland, and S. Marcus

paper impose no restrictions on preserving duration information when match-
ing up trajectories. This is by design, as one of the interesting observations to
emerge is that one can have continuous as well as discrete notions of logical time.
Nevertheless, enhancing the framework to accommodate metric notions of time
would permit the embedding of various hybrid and real-time models into trees
and the development of general notions of composition as a result. Describing
other composition operations, and studying their congruence properties vis à
vis (bi)simulation would yield useful insights into the algebra of GSTs. Finally,
developing parsimonious mechanisms à la SOS rules for defining composition
operations coinductively would simplify their definition and open up insights
into the meta-theory of GSTs.

References

1. Abramsky, S.: A domain equation for bisimulation. Information and Computa-
tion 92(2), 161–218 (1991)

2. Aceto, L., Bloom, B., Vaandrager, F.: Turning SOS rules into equations. Informa-
tion and Computation 111(1), 1–52 (1994)

3. Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14. Center for the
Study of Language and Information (1988)

4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland, Amsterdam (2001)

5. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),
232–268 (1995)

6. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. The Journal of Logic and
Algebraic Programming 62(2), 191–245 (2005)

7. Cuijpers, P.J.L.: Prefix Orders as a General Model of Dynamics. In: 9th Interna-
tional Workshop on Developments in Computational Models, CONCUR (2013)

8. Davoren, J.M., Tabuada, P.: On Simulations and Bisimulations of General Flow
Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 145–158. Springer, Heidelberg (2007)

9. Girard, A., Pappas, G.J.: Approximate bisimulation: A bridge between computer
science and control theory. Eur. J. Control 17(5-6), 568–578 (2011)

10. Haghverdi, E., Tabuada, P., Pappas, G.J.: Unifying Bisimulation Relations for
Discrete and Continuous Systems. In: Proceedings of the International Symposium
MTNS 2002, South (2002)

11. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical,
control, and hybrid systems. Theoretical Comput Science 342, 229–261 (2005)

12. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bul-
letin 62, 62–222 (1997)

13. Jech, T.: Set Theory. Academic Press (1978)
14. Julius, A.A., van der Schaft, A.J.: Bisimulation as congruence in the behavioral

setting. In: Proceedings of the 44th IEEE Conference on Decision and Control and
2005 European Control Conference, pp. 814–819 (2005)

15. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

Generalized Synchronization Trees 319

16. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

17. Rounds, W.C.: On the relationships between Scott domains, synchronization trees,
and metric spaces. Information and Control 66(1-2), 6–28 (1985)

18. Sangiorgi, D.: An introduction to bisimulation and coinduction. Cambridge Uni-
versity Press, Cambridge (2012)

19. Willems, J.C.: On interconnections, control, and feedback. IEEE Transactions on
Automatic Control 42(3), 326–339 (1997)

20. Winskel, G.: Synchronization Trees. Theoretical Computer Science 34(1-2), 33–82
(1984)

	Generalized Synchronization Trees
	1 Introduction
	2 Preliminaries
	3 Generalized Synchronization Trees
	3.1 Traditional Synchronization Trees
	3.2 Generalized Synchronization Trees

	4 (Bi)Simulations for Generalized Synchronization Trees
	4.1 Simulations for Generalized Synchronization Trees
	4.2 Relating Strong and Weak Simulations

	5 Constructing GSTs and Implications for Bisimulation
	6 Composition of GSTs
	7 Conclusions and Directions for Future Research
	References

