
Latticed-LTL Synthesis in the Presence of Noisy Inputs

Shaull Almagor and Orna Kupferman

The Hebrew University, Jerusalem, Israel

Abstract. In the classical synthesis problem, we are given a linear temporal
logic (LTL) formula ψ over sets of input and output signals, and we synthesize
a finite-state transducer that realizes ψ: with every sequence of input signals, the
transducer associates a sequence of output signals so that the generated compu-
tation satisfies ψ. In recent years, researchers consider extensions of the classical
Boolean setting to a multi-valued one. We study a setting in which the truth val-
ues of the input and output signals are taken from a finite lattice, and the speci-
fication formalism is Latticed-LTL (LLTL), where conjunctions and disjunctions
correspond to the meet and join operators of the lattice, respectively. The lattice
setting arises in practice, for example in specifications involving priorities or in
systems with inconsistent viewpoints.

We solve the LLTL synthesis problem, where the goal is to synthesize a trans-
ducer that realizes ψ in desired truth values.

For the classical synthesis problem, researchers have studied a setting with
incomplete information, where the truth values of some of the input signals are
hidden and the transducer should nevertheless realize ψ. For the multi-valued
setting, we introduce and study a new type of incomplete information, where
the truth values of some of the input signals may be noisy, and the transducer
should still realize ψ in a desired value. We study the problem of noisy LLTL
synthesis, as well as the theoretical aspects of the setting, like the amount of
noise a transducer may tolerate, or the effect of perturbing input signals on the
satisfaction value of a specification.

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a system and verifying that it ad-
heres to its specification, we would like to have an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [10]. The modern approach to synthesis was initiated
by Pnueli and Rosner, who introduced LTL (linear temporal logic) synthesis [24]: We
are given an LTL formula ψ over sets I and O of input and output signals, and we syn-
thesize a finite-state system that realizes ψ. At each moment in time, the system reads
a truth assignment, generated by the environment, to the signals in I , and it generates a
truth assignment to the signals in O. Thus, with every sequence of inputs, the transducer
associates a sequence of outputs, and it ψ if all the computations that are generated by
the interaction satisfy ψ. Synthesis has attracted a lot of research and interest [28].

In recent years, researchers have considered extensions of the classical Boolean set-
ting to a multi-valued one, where the atomic propositions are multi-valued, and so is

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 226–241, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Latticed-LTL Synthesis in the Presence of Noisy Inputs 227

the satisfaction value of specifications. The multi-valued setting arises directly in sys-
tems in which the designer can give to the atomic propositions rich values, expressing,
for example, energy consumption, waiting time, or different levels of confidence [5,1],
and arises indirectly in probabilistic settings, systems with multiple and inconsistent
view-points, specifications with priorities, and more [20,14,2]. Adjusting the synthesis
problem to this setting, one works with multi-valued specification formalisms. In such
formalisms, a specification ψ maps computations in which the atomic propositions take
values from a domain D to a satisfaction value in D. For example,ψ may map a compu-
tation in ({0, 1, 2, 3}{p})ω to the maximal value assigned to the (multi-valued) atomic
proposition p during the computation. Accordingly, the synthesis problem in the multi-
valued setting gets as input a specification ψ and a predicate P ⊆ D of desired values,
and seeks a system that reads assignments in DI , responds with assignments in DO, and
generates only computations whose satisfaction value is in P . The synthesis problem
has been solved for several multi-valued settings [4,1].

A different extension of the classical setting of synthesis considers settings in which
the system has incomplete information about its environment. Early work on incom-
plete information considers settings in which the system can read only a subset of the
signals in I and should still generate only computations that satisfy the specification,
which refers to all the signals in I ∪ O [18,6,7]. The setting is equivalent to a game
with incomplete information, extensively studied in [25]. As shown there, the common
practice in handling incomplete information is to move to an exponentially-larger game
of complete information, where each state corresponds to a set of states that are indis-
tinguishable by a player with incomplete information in the original game.

More recent work on synthesis with incomplete information studies richer types of
incomplete information. In [8], the authors study a setting in which the transducer can
read some of the input signals some of the time. In more detail, sensing the truth value
of an input signal has a cost, the system has a budget for sensing, and it tries to realize
the specification while minimizing the required sensing budget. In [30], the authors
study games with errors. Such games correspond to a synthesis setting in which there
are positions during the interaction in which input signals are read by the system with
an error. The games are characterized by the number or rate of errors that the system
has to cope with, and by the ability of the system to detect whether a current input is
erred.

In this work we introduce and study a different model of incomplete information in
the multi-valued setting. In our model, the system always reads all input signals, but
their value may be perturbed according to a known noise function. This setting nat-
urally models incomplete information in real-life multi-valued settings. For example,
when the input is read by sensors that are not accurate (e.g., due to bounded precision,
or to probabilistic measuring) or when the input is received over a noisy channel and
may come with some distortion. The multi-valued setting we consider is that of finite
lattices. A lattice is a partially-ordered set L = 〈A,≤〉 in which every two elements �
and �′ have a least upper bound (� join �′, denoted �∨ �′) and a greatest lower bound (�
meet �′, denoted �∧ �′). Of special interest are two classes of lattices: (1) Fully ordered,
where L = 〈{1, . . . , n},≤〉, for an integer n ≥ 1 and the usual “less than or equal”
order. In this lattice, the operators ∨ and ∧ correspond to max and min, respectively.

228 S. Almagor and O. Kupferman

(2) Power-set lattices, where L = 〈2X ,⊆〉, for a finite set X , and the containment (par-
tial) order. In this lattice, the operators ∨ and ∧ correspond to ∪ and ∩, respectively.

The lattice setting is a good starting point to the multi-valued setting. While their
finiteness circumvents the infinite-state space of dense multi-values, lattices are suffi-
ciently rich to capture many quantitative settings. Fully-ordered lattices are sometimes
useful as is (for example, when modeling priorities [2]), and sometimes thanks to the
fact that real values can often be abstracted to finitely many linearly ordered classes.
The power-set lattice models a wide range of partially-ordered values. For example, in
a setting with inconsistent viewpoints, we have a set X of agents, each with a differ-
ent viewpoint of the system, and the truth value of a signal or a formula indicates the
set of agents according to whose viewpoint the signal or the formula are true. As an-
other example, in a peer-to-peer network, one can refer to the different attributes of the
communication channels by assigning with them subsets of attributes. From a technical
point of view, the fact that lattices are partially ordered poses challenges that do not
exist in (finite and infinite) full orders. For example, as we are going to see, the fact that
a specification is realizable with value � and with value �′ does not imply it is realizable
with value � ∨ �′, which trivially holds for full orders.

We start by defining lattices and the logic Latticed LTL (LLTL, for short). We then
study theoretical properties of LLTL: We study cases where the set of attainable truth
values of an LLTL formula are closed under ∨, thus a maximal attainable value exists,
even when the lattice elements are partially ordered. We also study stability properties,
namely the affect of perturbing the values of the atomic propositions on the satisfaction
value of formulas. We continue to the synthesis and the noisy-synthesis problems for
LLTL, which we solve via a translation of LLTL formulas to Boolean automata. We
show that by working with universal automata, we can handle the exponential blow-
up that incomplete information involves together with the exponential blow-up that
determination (or alternation removal, if we take a Safraless approach) involves, thus
the noisy-synthesis problem stays 2EXPTIME-complete, as it is for LTL.

Due to lack of space, some of the proofs are omitted and can be found in the full
version, in the authors’ home pages.

2 Preliminaries

2.1 Lattices

Consider a set A, a partial order ≤ on A, and a subset P of A. An element � ∈ A is an
upper bound on P if � ≥ �′ for all �′ ∈ P . Dually, � is a lower bound on P if � ≤ �′

for all �′ ∈ P . The pair 〈A,≤〉 is a lattice if for every two elements �, �′ ∈ A, both the
least upper bound and the greatest lower bound of {�, �′} exist, in which case they are
denoted � ∨ �′ (� join �′) and � ∧ �′ (� meet �′), respectively. We use � < �′ to indicate
that � ≤ �′ and � �= �′. We say that � is a child of �′, denoted � ≺ �′, if � < �′ and there
is no �′′ such that � < �′′ < �′.

A lattice L = 〈A,≤〉 is finite if A is finite. Note that finite lattices are complete:
every subset of A has a least-upper and a greatest-lower bound. We use � (top) and
⊥ (bottom) to denote the least-upper and greatest-lower bounds of A, respectively. A
lattice is distributive if for every �1, �2, �3 ∈ A, we have �1∧(�2∨�3) = (�1∧�2)∨(�1∧

Latticed-LTL Synthesis in the Presence of Noisy Inputs 229

�3) and �1∨(�2∧�3) = (�1∨�2)∧(�1∨�3). The traditional disjunction and conjunction
logic operators correspond to the join and meet lattice operators. In a general lattice,
however, there is no natural counterpart to negation. A De-Morgan (or quasi-Boolean)
lattice is a lattice in which every element a has a unique complement element ¬� such
that ¬¬� = �, De-Morgan rules hold, and � ≤ �′ implies ¬�′ ≤ ¬�. In the rest of this
paper we consider only finite distributive De-Morgan lattices. We focus on two classes
of such lattices: (1) Fully ordered, where L = 〈{1, . . . , n},≤〉, for an integer n ≥ 1
and the usual “less than or equal” order. Note that in this lattice, the operators ∨ and ∧
correspond to max and min, respectively, and ¬i = n − i + 1. (2) Power-set lattices,
where L = 〈2X ,⊆〉, for a finite set X , and the containment (partial) order. Note that
in this lattice, the operators ∨ and ∧ correspond to ∪ and ∩, respectively, and negation
corresponds to complementation.

Consider a lattice L = 〈A,≤〉. A join irreducible element in L is l ∈ A such that
l �= ⊥ and for all elements l1, l2 ∈ A, if l1 ∨ l2 ≥ l, then l1 ≥ l or l2 ≥ l. For example,
the join irreducible elements in 〈2X ,⊆〉 are all singletons {x}, for x ∈ X . By Birkhoff’s
representation theorem for finite distributive lattices, in order to prove that l1 = l2, it is
sufficient to prove that for every join irreducible element l it holds that l1 ≥ l iff l2 ≥ l.
We denote the set of join irreducible elements of L by JI(L). For convenience, we often
talk about a lattice L without specifying A and ≤. We then abuse notations and refer to
L as a set of elements and talk about l ∈ L or about assignments in LAP (rather than
l ∈ A or assignments in AAP).

2.2 The Logic LLTL

The logic LLTL is a natural generalization of LTL to a multi-valued setting, where
the atomic propositions take values from a lattice L [9,16]. Given a (finite distributive
De-Morgan) lattice L, the syntax of LLTL is given by the following grammar, where p
ranges over a set AP of atomic propositions, and � ranges over L.

ϕ := � | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

The semantics of LLTL is defined with respect to a computation π = π0, π1, . . . ∈
(LAP)ω. Thus, in each moment in time the atomic propositions get values from L.
Note that classical LTL coincides with LLTL defined with respect to the two-element
fully-ordered lattice. For a position i ≥ 0, we use πi to denote the suffix πi, πi+1, . . .
of π. Given a computation π and an LLTL formula ϕ, the satisfaction value of ϕ in π,
denoted [[π, ϕ]], is defined by induction on the structure of ϕ as follows (the operators
on the right-hand side are the join, meet, and complementation operators of L). 1

– [[π, �]] = �. –[[π, ϕ ∨ ψ]] = [[π, ϕ]] ∨ [[π, ψ]].
– [[π, p]] = π0(p). –[[π,Xϕ]] = [[π1, ϕ]].
– [[π,¬ϕ]] = ¬[[π, ϕ]]. –[[π, ϕUψ]] =

∨
i≥0([[π

i, ψ]] ∧
∧

0≤j<i[[π
j , ϕ]]).

Example 1. Consider a setting in which three agents a, b, and c have different view-
points on a system S. A truth assignment for the atomic propositions is then a function

1 Unlike LTL, where the constants True and False do not increase the expressive power, in
LLTL the constants � ∈ L do increase the expressive power.

230 S. Almagor and O. Kupferman

in (2{a,b,c})AP assigning to each p ∈ AP the set of agents according to whose view-
point p is true. We reason about S using the lattice L = 〈2{a,b,c},⊆〉. For example, the
truth value of the formula ψ = G(req → F grant) in a computation is the set of agents
according to whose view-point, whenever a request is sent, it is eventually granted.

2.3 LLTL Synthesis

Consider a lattice L and finite disjoint sets I and O of input and output signals that
take values in L. An (I/O)-transducer over L models an interaction between an en-
vironment that generates in each moment in time an input in LI and a system that
responds with outputs in LO. Formally, an (I/O)-transducer over L (transducer, when
I , O, and L are clear from the context) is a tuple T = 〈L, I, O, S, s0, η, τ〉 where S
is a finite set of states, s0 ∈ S is an initial state, η : S × LI → S is a deterministic
transition function, and τ : S → LO is a labeling function. We extend η to words in
(LI)∗ in the straightforward way. Thus, η : (LI)∗ → S is such that η(ε) = s0, and
for x ∈ (LI)∗ and i ∈ LI , we have η(x · i) = η(η(x), i). Each transducer T induces
a strategy fT : (LI)∗ → LO where for all w ∈ (LI)∗, we have fT (w) = τ(η(w)).
Thus, fT (w) is the letter that T outputs after reading the sequence w of input letters.
Given a sequence i0, i1, i2, . . . ∈ (LI)ω of input assignments, the transducer generates
the computation ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . ∈ (LI∪O)ω, where for all j ≥ 1,
we have oj = fT (i0 · · · ij−1).

Consider a lattice L, an LLTL formula ϕ over the atomic propositions I ∪O, and a
predicate P ⊆ L. We say that a transducer T realizes 〈ϕ, P 〉 if for every computation
ρ of T , it holds that [[ρ, ϕ]] ∈ P . The realizability problem for LLTL is to determine,
given ϕ and P , whether there exists a transducer that realizes 〈ϕ, P 〉. We then say that
ϕ is (I/O)-realizable with values in P . The synthesis problem is then to generate such
a transducer. Of special interest are predicates P that are upward closed. Thus, P is
such that for all � ∈ L, if � ∈ P then �′ ∈ P for all �′ ≥ �.

2.4 Noisy Synthesis

Consider an LLTL formula ϕ over atomic proposition I ∪ O and a predicate P . In
noisy synthesis, we consider the synthesis problem in a setting in which the inputs are
read with some perturbation and the goal is to synthesize a transducer that nevertheless
realizes 〈ϕ, P 〉.

In order to formalize the above intuition, we first formalize the notion of noise. Con-
sider a lattice L = 〈A,≤〉 and two elements �1, �2 ∈ L. We define the distance between
�1 and �2, denoted d(�1, �2), as the shortest path from �1 to �2 in the undirected graph
〈A,E≺〉 in which E≺(v, v

′) iff v ≺ v′ or v′ ≺ v. For example, in the fully-ordered
lattice L, we have d(i, j) = |i − j|, and in the power-set lattice, the distance coincides
with the Hamming distance, thus d(X1, X2) = |(X1 \ X2) ∪ (X2 \ X1)|. For two
assignments f, f ′ ∈ LAP , we define d(f, f ′) = maxp∈AP d(f(p), f ′(p)).

We assume we are given a noise function ν : LI → 2L
I

, describing the possible
perturbations of each input. That is, for every i ∈ LI the set ν(i) consists of the inputs
that may have been actually generated by the environment, when the system reads i. A
natural noise function is ν(i) = {j : d(i, j) ≤ γ}, for some constant γ, which is the

Latticed-LTL Synthesis in the Presence of Noisy Inputs 231

γ-units ball around i. Given a noise function ν and two computations π, π′ ∈ (LI∪O)ω,
we say that π′ is ν-indistinguishable from π if for every i ≥ 0, we have that π′

i|I ∈
ν(πi|I) and π′

i|O = πi|O, where σ|I is the restriction of σ ∈ LI∪O to inputs in I , and
similarly for σ|O andO. Thus, π′ is obtained from π by changing only the assignment to
input signals, within ν. Note that ν need not be a symmetric function, nor is the definition
of ν-indistinguishablity. We say that a transducer T realizes 〈ϕ, P 〉 with noise ν if for
every computation π of T , we have that [[π′, ϕ]] ∈ P for all computations π′ that are
ν-indistinguishable from π. Thus, the reaction of T on every input sequence satisfies ϕ
in a desired satisfaction value even if the input sequence is read with noise ν.

2.5 Automata and Games

An automaton over infinite words is A = 〈Σ,Q,Q0, δ, α〉, where Σ is the input alpha-
bet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q×Σ → 2Q is a tran-
sition function, and α is an acceptance condition. When A is a generalized Büchi or a
generalized co-Büchi automaton, then α ⊆ 2Q is a set of sets of accepting states. When
A is a parity automaton, then α = 〈F1, . . . , Fd〉, where the sets in α form a partition of
Q. The number of sets in α is the index of A. An automaton is deterministic if |Q0| = 1
and for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1. A run r = r0, r1, . . . of A
on a word w = w1 ·w2 · · · ∈ Σω is an infinite sequence of states such that r0 ∈ Q0, and
for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). We denote by inf(r) the set of states
that r visits infinitely often, that is inf(r) = {q : ri = q for infinitely many i ∈ �}.
The run r is accepting if it satisfies α. For generalized Büchi automata, a run is accept-
ing if it visits all the sets in α infinitely often. Formally, for every set F ∈ α, we have
that inf(r) ∩ F �= ∅. Dually, in generalized co-Büchi automata, there should exist a
set F ∈ α for which inf(r) ∩ F = ∅. For parity automata, a run r is accepting if the
minimal index i for which inf(r) ∩ Fi �= ∅ is even.

When A is a nondeterministic automaton, it accepts a word w if it has an accepting
run of on w. When A is a universal automaton, it accepts a word w if all its runs on w
are accepting. The language of A, denoted L(A), is the set of words that A accepts.

A parity game is G = 〈Σ1, Σ2, S, s0, δ, α〉, where Σ1 and Σ2 are alphabets for
Players 1 and 2, respectively, S is a finite set of states, s0 ∈ S is an initial state, δ :
S×Σ1×Σ2 → S is a transition function, and α = 〈F1, . . . , Fd〉 is a parity acceptance
condition, as described above. A play of the game starts in s0. In each turn Player 1
chooses a letter σ ∈ Σ1 and Player 2 chooses a letter τ ∈ Σ2. The play then moves from
the current state s to the state δ(s, σ, τ). Formally, a play of G is an infinite sequence ρ =
〈s0, σ0, τ0〉, 〈s1, σ1, τ1〉, . . . such that for every i ≥ 0, we have that si+1 = δ(si, σi, τi).
We define inf(ρ) = {s ∈ S : s = si for infinitely many i ∈ �}. A play ρ is winning
for Player 1 if the minimal index i for which inf(ρ) ∩ Fi �= ∅ is even. A strategy
for Player 1 is a function f : (S × Σ1 × Σ2)

∗ × S → Σ1 that assigns, for every
finite prefix of a play, the next move for Player 1. Similarly, a strategy for Player 2 is a
function g : (S ×Σ1 × Σ2)

∗ × S ×Σ1 → Σ2. A strategy is memoryless if it does not
depend on the history of the play. Thus, a memoryless strategy for Player 1 is a function
f : S → Σ1 and for Player 2 it is a function g : S ×Σ1 → Σ2.

A pair of strategies f, g for Players 1 and 2, respectively, induces a single play that
conforms with the strategies. We say that Player 1 wins G if there exists a strategy f

232 S. Almagor and O. Kupferman

for Player 1 such that for every strategy g for Player 2, the play induced by f and g is
winning for Player 1. Otherwise, Player 2 wins. By determinancy of Parity games [21],
Player 2 wins G if there exists a strategy g for Player 2 such that for every strategy f of
Player 1, the play induced by f and g is not winning for Player 1.

2.6 Solving the Boolean Synthesis Problem

The classical solution for the synthesis problem for LTL goes via games [24].2 It in-
volves a translation of the specification into a deterministic parity word automaton
(DPW) over the alphabet 2I∪O, which is then transformed into a game in which the
players alphabets are 2I and 2O. More recent solutions avoids the determination and
the solution of parity games and use instead alternating tree automata [19,13]. The
complexity of both approaches coincide. Below we describe the classical solution for
the synthesis problem, along with its complexity, when the starting point is a specifi-
cation given by a DPW.3 In Remark 1, we describe an alternative, Safraless, approach,
where the starting point is a universal co-Büchi automaton.

Theorem 1. Consider a specification ϕ over I and O given by means of a DPW Dϕ of
size t over the alphabet 2I∪O, with index k. The synthesis problem for ϕ can be solved
in time O(tk).

Proof. Let Dϕ = 〈2I∪O, Q, q0, δ, α〉. We define a game Gϕ that models an inter-
action that simulates Dϕ between a system (Player 1) that generates assignments in
2O and an environment (Player 2) that generates assignments in 2I . Formally, Gϕ =
〈2O, 2I , Q, q0, η, α〉, where η : Q× 2O × 2I → Q is such that for every q ∈ Q, i ∈ 2I ,
and o ∈ 2O, we have that η(q, i, o) = δ(q, i ∪ o). By [11], the game is determined and
one of the players has a memoryless winning strategy. Such a strategy for Player 1 in
Gϕ is then a transducer that realizes ϕ. The game Gϕ is of size O(t) and index k. Hence,
by [15,27], we can find a memoryless strategy for the winner in time O(tk). ��

3 Properties of LLTL

In this section we study properties of the logic LLTL. We focus on the set of attainable
satisfaction values of an LLTL formula and on stability properties, namely the affect of
perturbing the values of the atomic propositions on the satisfaction value of formulas.

3.1 Attainable Values

Consider a lattice L. We say that L is pointed if for all LLTL formulas ϕ, partitions
I ∪ O of AP , and values �1, �2 ∈ L, if ϕ is (I/O)-realizable with value �1 and with
value �2, then ϕ is also (I/O)-realizable with value �1∨�2. Observe that if L is pointed,
then every LLTL formula over L has a transducer that realizes it with a maximal value.

2 In [24] and other early works the games are formulated by means of tree automata.
3 State-of-the-art algorithms for solving parity games achieve a better complexity [15,27]. The

bound, however, remains polynomial in the size of the game and exponential in its index.
Since the challenge of solving parity games is orthogonal to our contribution here, we keep
this component of our contribution simple.

Latticed-LTL Synthesis in the Presence of Noisy Inputs 233

We start by showing that in general, not all lattices are pointed. In fact, our example
has O = ∅, where (I/O)-realizability coincides with satisfiability. The lattices we focus
on, are, however, pointed.

Theorem 2. Not all distributive De-Morgan lattices are pointed. Fully-ordered lattices
and power-set lattices are pointed.

Proof. The proof of the positive result is in the full version. For the negative one, con-
sider the lattice L = 〈2{a,b} × {0, 1},≤〉 where 〈S1, v1〉 ≤ 〈S2, v2〉 iff v1 ≤ v2 or
(v1 = v2 and S1 ⊆ S2). We define ¬〈S, v〉 = 〈{a, b} \S, 1− v〉. It is easy to verify that
L is a distributive De-Morgan lattice.

Let I = {p} and consider the formula ϕ = (p ∧ 〈{a}, 1〉) ∨ (¬p ∧ 〈{b}, 1〉). Both
〈{a}, 1〉 and 〈{b}, 1〉 are attainable satisfaction values of ϕ. For example, by setting p
to 〈{a}, 1〉 or to 〈{a}, 0〉. On the other hand, for every assignment � to p, the second
component of either � or ¬� is 0. Consequently, 〈{a, b}, 1〉 is not attainable, thus L is
not pointed. ��

3.2 Stability

For two computations π = π0, π1, . . . and π′ = π′
0, π

′
1, . . ., both in (LAP)ω , we de-

fine the global distance between π and π′, denoted gd(π, π′), as
∑

i≥0 d(πi, π
′
i). Note

that gd(π, π′) may be infinite. We define the local distance between π and π′, denoted
ld(π, π′), as maxi≥0 d(πi, π

′
i). Note that ld(π, π′) ≤ |L|.

Consider an LLTL formula ϕ over AP and L. We say that ϕ is globally stable
if for every pair π and π′ of computations, we have d([[π, ϕ]], [[π′, ϕ]]) ≤ gd(π, π′).
Thus, the difference between the satisfaction value of ϕ in π and π′ is bounded by the
sum of differences between matching locations in π and π′. Also, ϕ is locally stable
if for every pair π and π′ of computations, we have d([[π, ϕ]], [[π′, ϕ]]) ≤ ld(π, π′).
Thus, the difference between the satisfaction value of ϕ in π and π′ is bounded by the
maximal difference between matching locations in π and π′. Here, we study stability of
all LLTL formulas. In Section 5.3, we study the problem of deciding whether a given
LLTL formula is stable, and discuss the relevancy of stability to synthesis with noise.

Consider an LLTL formula ϕ over the atomic propositions AP , and consider com-
putations π, π′ ∈ (LAP)ω. Assume that gd(π, π′) ≤ 1. That is, π and π′ differ only
in one location, where they differ in the value of a single atomic proposition, whose
value in π is a child of its value in π′ or vice versa. It is tempting to think that then,
d([[π, ϕ]], [[π′, ϕ]]) ≤ 1, which would imply that ϕ should be globally stable.

We start by breaking this intuition, showing that for non-distributive lattices, this is
false. The proof makes use of an N5 structure. Formally, an N5 structure in a lattice
L is a tuple 〈x, y, z, w, s〉 such that the following relations hold: s < x < y < w,
s < z < w, y �≤ z, z �≤ y, x �≤ z, and z �≤ x. Note that x ∨ (z ∧ y) = x ∨ s = x,
whereas (x∨z)∧ (x∨y) = w∧y = y. Hence, the structure of N5 is never a sub-lattice
in a distributive lattice.

Theorem 3. LLTL formulas may not be globally stable with respect to non-distributive
lattices.

234 S. Almagor and O. Kupferman

Proof. Consider the lattice N5, the formula ϕ = p ∨ q, and a computation π such that
π0(p) = s and π0(q) = x. Clearly [[π, ϕ]] = x. Now, let π′ be the computation obtained
from π by setting π′

0(p) = z. It holds that gd(π, π′) = 1. However, [[π′, ϕ]] = z∨x = w,
and d(x,w) = 2. Thus, ϕ is not globally stable over the lattice N5. ��

We now proceed to show that when defined with respect to a distributive lattice, all
LLTL formulas are globally stable.

Theorem 4. LLTL formulas over De-Morgan distributive lattices are globally stable.

Proof. We prove that for every LLTL formula ϕ and computations π, π′ ∈ (LAP)ω, if
gd(π, π′) = 1, then d([[π, ϕ]], [[π′, ϕ]]) ≤ 1. We then proceed by induction on gd(π, π′).

Consider an LLTL formula ϕ and computations π, π′ such that gd(π, π′) = 1. That
is, there exists a single index i ≥ 0 such that d(πi, π

′
i) = 1 and πj = π′

j for all
j �= i. W.l.o.g, there is p ∈ AP such that πi(p) � π′

i(p). By Birkhoff’s representation
theorem, there exists a unique element u ∈ JI(L) such that π′

i(p) = πi(p)∨u. We prove,
by induction over the structure of ϕ, that [[π′, ϕ]] ∈ {[[π, ϕ]] ∧ ¬u, [[π, ϕ]], [[π, ϕ]] ∨ u}
and that d([[π′, ϕ]], [[π, ϕ]]) ≤ 1.

The proof appears in the full version. As detailed there, the interesting case is when
ϕ = ψ ∨ θ, where we use the fact that a distributed lattice cannot have an N5 structure.

��

We now turn to study local stability. Since local stability refers to the maximal change
along a computation, it is a very permissive notion. In particular, it is not hard to see
that in a fully-ordered lattice, a local change of 1 entails a change of at most 1 in the
satisfaction value. Thus, we have the following.

Theorem 5. LLTL formulas are locally stable with respect to fully-ordered lattices.

In partially-ordered lattices, however, things are more involved, as local changes may
be in different “directions”. Formally, we have the following.

Theorem 6. LLTL formulas may not be locally stable.

Proof. Consider the power-set lattice 〈2a,b,⊆〉 and the LLTL formula ϕ = p ∨ Xp.
Consider computations π and π′ with π0(p) = π1(p) = ∅, π′

0(p) = {a}, and π′
1(p) =

{b}. It holds that ld(π, π′) = 1, whereas d([[π, ϕ]], [[π′, ϕ]]) = d(∅, {a, b}) = 2. We
conclude that ϕ is not locally stable. ��

4 Translating LLTL to Automata

In this section we describe an automata-theoretic approach for reasoning about LLTL
specifications. One approach is to develop a framework that is based on lattice au-
tomata [16]. Like LLTL formulas, lattice automata map words to values in a lattice.
Lattice automata have proven to be useful in solving the satisfiability and the model-
checking problems for LLTL [16]. However, the solution of the synthesis problem in-
volves automata-theoretic constructions for which the latticed counterpart is either not
known or is very complicated. In particular, Safra’s determinization construction has
not yet been studied for lattice automata, and a latticed counterpart of it is not going

Latticed-LTL Synthesis in the Presence of Noisy Inputs 235

to be of much fun. Likewise, the solution of two-player games (even reachability, and
moreover parity) in the latticed setting is much more complicated than in the Boolean
setting. In particular, obtaining a value �1 ∨ �2 in a latticed game may require one strat-
egy for obtaining �1 and a different strategy for obtaining �2 [17]. When the game is
induced by a realizability problem, it is not clear how to combine such strategies into a
single transducer that realizes the underlying specification with value �1 ∨ �2.

Accordingly, a second approach, which is the one we follow, is to use Boolean au-
tomata. The fact LLTL formulas have finitely many possible satisfaction values sug-
gests that this is possible. For fully-ordered lattices, a similar approach has been taken
in [12,1]. Beyond the challenge in these works of maintaining the simplicity of the
automata-theoretic framework ofLTL, an extra challenge in the latticed setting is caused
by the fact values may be only partially ordered. We will elaborate on this point below.

In order to explain our framework, let us recall first the translation of LTL formu-
las to nondeterministic generalized Büchi automata (NGBW), as introduced in [29].
There, each state of the automaton is associated with a set of formulas, and the NGBW
accepts a computation from a state q iff the computation satisfies exactly all the for-
mulas associated with q. The state space of the NGBW contains only states associated
with maximal and consistent sets of formulas, the transitions are defined so that require-
ments imposed by temporal formulas are satisfied, and the acceptance condition is used
in order to guarantee that requirements that involve the satisfaction of eventualities are
not delayed forever.

In the construction here, each state of the NGBW assigns a satisfaction value to every
subformula. While it is not difficult to extend the local consistency rules to the latticed
settings, handling of eventualities is more complicated. To see why, consider for exam-
ple the formula Fp, for p ∈ AP , and the computation π in which the satisfaction value
of p is ({a}, {b}, {c})ω . While [[π, Fp]] = {a, b, c}, the computation never reaches a
position in which the satisfaction value of the eventuality p is {a, b, c}. This poses a
problem on translations of LTL formulas to automata, where eventualities are handed
by making sure that each state in which the satisfaction of ψ1Uψ2 is guaranteed, is
followed by a state in which the satisfaction of ψ2 is guaranteed. For a multi-valued
setting with fully-ordered values, as is the case in [12,1], the latter can be replaced by a
requirement to visit a state in which the guaranteed satisfaction value of ψ exceeds that
of ψ1Uψ2. As the example above demonstrates, such a position need not exist when the
values are partially ordered. In order to address the above problem, every state in the
NGBW associates with every subformula of the form ψ1Uψ2 a value in L that ψ2 still
needs “accumulate” in order for ψ1Uψ2 to have its assigned satisfaction value. Thus, as
in other break-point constructions [29,22], we decompose the requirement to obtain a
value � to requirements to obtain join-irreducible values whose join is �, and we check
these requirements together.

Theorem 7. Let ϕ be an LLTL formula over L and P ⊆ L be a predicate. There exists
an NGBW Aϕ,P such that for every computation π ∈ (2AP)ω , it holds that [[π, ϕ]] ∈ P
iff Aϕ,P accepts π. The state space and transitions of Aϕ,P are independent of P , which
only influences the set of initial states. The NGBW Aϕ,P has at most |L|O(|ϕ|) states
and index at most |ϕ|.

236 S. Almagor and O. Kupferman

Proof. We define Aϕ,P = 〈LAP , Q, δ,Q0, α〉 as follows. Let cl(ϕ) be the set of ϕ’s
subformulas, and let ucl(ϕ) be the set of ϕ’s subformulas of the form ψ1Uψ2. Let Gϕ

and Fϕ be the collection of functions g : cl(ϕ) → L and f : ucl(ϕ) → L, respectively.
For an element v ∈ L, let JI(v) be the minimal set S ⊆ JI(L) such that v =

∨
s∈S s.

By Birkhoff’s theorem, this set is well defined, and the JI mapping is a bijection.
For a pair of functions 〈g, f〉 ∈ Gϕ×Fϕ, we say that 〈g, f〉 is consistent if for every

ψ ∈ cl(ϕ), the following holds.

– If ψ = v ∈ L, then g(ψ) = v.
– If ψ = ¬ψ1, then g(ψ) = ¬g(ψ1).
– If ψ = ψ1 ∨ ψ2, then g(ψ) = g(ψ1) ∨ g(ψ2).
– If ψ = ψ1Uψ2, then JI(f(ψ)) ∩ JI(g(ψ2)) = ∅.

The state space Q of Aϕ,� is the set of all consistent pairs of functions in Gϕ × Fϕ.
Intuitively, while the function g describes the satisfaction value of the formulas in the
closure, the function f describes, for each subformula of the form ψ1Uψ2, the values
in which ψ2 still has to be satisfied in order for the satisfaction value g(ψ1Uψ2) to be
fulfilled. Accordingly, if a value is in JI(g(ψ2)), it can be removed from f(ψ1Uψ2),
explaining why JI(f(ψ1Uψ2)) ∩ JI(g(ψ2)) = ∅.

Then, Q0 = {g ∈ Q : g(ϕ) ∈ P} contains all states in which the value assigned to
ϕ is in P .

We now define the transition function δ. For two states 〈g, f〉 and 〈g′, f ′〉 in Q and a
letter σ ∈ LAP , we have that 〈g′, f ′〉 ∈ δ(〈g, f〉, σ) iff the following hold.

– For all p ∈ AP , we have that σ(p) = g(p).
– For all Xψ1 ∈ cl(ϕ), we have g(Xψ1) = g′(ψ1).
– For all ψ1Uψ2 ∈ cl(ϕ), we have g(ψ1Uψ2) = g(ψ2) ∨ (g(ψ1) ∧ g′(ψ1Uψ2)) and

f ′(ψ1Uψ2) =

{
JI(f(ψ1Uψ2)) \ JI(g′(ψ2)) If JI(f(ψ1Uψ2)) �= ∅,
JI(g′(ψ1Uψ2)) \ JI(g′(ψ2)) Otherwise.

Finally, every formula of the form ψ1Uψ2 contributes to the acceptance condition α the
set Fψ1Uψ2 = {〈g, f〉 : JI(f(ψ1Uψ2)) = ∅}.

Observe that while δ is nondeterministic, it is only nondeterministic in the first com-
ponent. That is, once the function g′ is chosen, there is a single function f ′ that can
match the transition. The correctness proof can be found in the full version. ��

5 LLTL Synthesis

Recall that in the synthesis problem we are given an LLTL formula ϕ over sets I and
O of input and output variables, taking truth values from a lattice L, and we want to
generate an (I/O)-transducer over L all whose computations satisfy ϕ in a value from
some desired set P of satisfaction values. In the noisy setting, the transducer may read
a perturbed value of the input signals, and still all its computations need to satisfy ϕ as
required. In this section we use the construction in Theorem 7 in order to solve both
variants of the synthesis problem.

Latticed-LTL Synthesis in the Presence of Noisy Inputs 237

5.1 Solving the LLTL Synthesis Problem

Theorem 8. The synthesis problem for LLTL is 2EXPTIME-complete. Given an LLTL
formula ϕ over a lattice L and a predicate P ⊆ L, we can solve the synthesis problem
for 〈ϕ, P 〉 in time 2|L|O(|ϕ|)

.

Proof. Let m denote the size of L, and let n denote the length of ϕ. The construction
in Theorem 7 yields an NGBW with mO(n) states and index n. By determinizing the
NGBW we obtain an equivalent DPW Dϕ,P of size 2m

O(n) logmO(n)

= 2O(n)mO(n)

=

2m
O(n)

and index mO(n) [26,23]. Following the same lines as the proof of Theorem 1,
we see that in order to solve the LLTL synthesis problem, it suffices to solve the parity
game that is obtained from Dϕ, except that here the alphabets of Players 1 and 2 are
LO and LI , respectively. Accordingly, a winning memoryless strategy for Player 1 is
an (I/O)-transducer over L that realizes 〈ϕ, P 〉.

As stated in Theorem 1, the parity game that is obtained from Dϕ,P can be solved

in time (2m
O(n)

)m
O(n)

= 2m
O(n)

. We conclude that the LLTL-synthesis problem is in
2EXPTIME. Hardness in 2EXPTIME follow from the hardness of the synthesis prob-
lem in the Boolean setting, which corresponds to a fully-ordered lattice with two values.

��
5.2 Solving the Noisy LLTL Synthesis Problem

Consider an LLTL formula ϕ over the atomic propositions I ∪ O, a predicate P ⊆ L,
and a noise function ν : LI → 2L

I

. Recall that the goal in noisy synthesis is to find a
transducer T that realizes 〈ϕ, P 〉 with noise ν. Our goal is to construct a DPW on which
we can apply the algorithm described in Theorem 1. For this, we proceed in three steps.
First, we translate ϕ to a universal generalized co-Büchi word automaton (UGCW).
Then, we incorporate the noise in the constructed UGCW. Finally, we determinize the
UGCW to obtain a DPW, from which we proceed as described in Theorem 1. We start
by showing how to incorporate noise in universal automata.

Lemma 1. Consider a UGCW D and a noise function ν. There exists a UGCW D′

such that D′ accepts a computation ρ iff D accepts every computation ρ′ that is ν-
indistinguishable from ρ. Moreover, D′ has the same state space and acceptance con-
dition as D.

Proof. Let D = 〈I ∪O,Q,Q0, δ, α〉. We obtain D′ = 〈I ∪O,Q,Q0, δ
′, α〉 from D by

modifying δ as follows. For everyσ ∈ I∪O, letΓσ={γ : γ|O = σ|O and γ|I ∈ ν(σ|I)}.
Thus, Γσ contains all letters that are ν-indistinguishable from σ. Then, for every state
q ∈ Q, we have that δ′(q, σ) =

⋃
γ∈Γσ

δ(q, γ). Thus, reading the letter σ, the UGCW
D′ simulates all the runs of D on all the letters that D may read when the actual letter in
the input is σ.

It is not hard to show that the set of runs of D′ on a computation ρ is exactly the set
of all the runs of D on all the computations that are ν-indistinguishable from ρ. From
this, the correctness of the construction follows. ��
Theorem 9. The noisy synthesis problem for LLTL is 2EXPTIME-complete. Given an
LLTL formula ϕ over a lattice L, a predicate P ⊆ L, and a noise function ν, we can
solve the synthesis problem for 〈ϕ, P 〉 with noise ν in time 2m

O(n)

.

238 S. Almagor and O. Kupferman

Proof. Let P = L \ P , and let Aϕ,P be the NGBW constructed for ϕ and P in The-
orem 7. Observe that Aϕ,P accepts a computation ρ iff [[ρ, ϕ]] /∈ P . Next, we dualize
Aϕ,P and obtain a UGCW Dϕ,P for the complement language, namely all computa-
tions ρ such that [[ρ, ϕ]] ∈ P . We now apply the procedure in Lemma 1 to Dϕ,P and
obtain a UGCW D′

ϕ,P that accepts ρ iff Dϕ,P accepts every computation ρ′ that is
ν-indistinguishable from ρ. Next, we determinize D′

ϕ,P to an equivalent DPW D′′
ϕ,P .

We claim that the algorithm described in the proof of Theorem 1 can be applied to
D′′

ϕ,P . To see this, let D′′
ϕ,P = 〈I ∪ O,S, s0, η, β〉 and consider the game G that is

obtained from D′′
ϕ,P . That is, G = 〈LO,LI , S, s0, η, β〉, where for every q ∈ S, i ∈ LI ,

and o ∈ LO , we have that η(q, i, o) = μ(q, i ∪ o).
A (memoryless) winning strategy f for Player 1 in G is then an (I/O)-transducer

over L with the following property: for every strategy g of the environment, consider
the play ρ that is induced by f and g. The play ρ induces a computation w ∈ LI∪O that
is accepted by D′′

ϕ,P . By the construction of D′′
ϕ,P , this means that for every computa-

tion w′ that is ν-indistinguishable from w, the run of Dϕ,P on w′ is accepting. Hence,
[[w′, ϕ]] ∈ P , which in turn implies that f realizes 〈ϕ, P 〉 with noise ν.

We now analyze the complexity of the algorithm. Let m denote the size of L, and let
n denote the length of ϕ. By Theorem 7, the size of Aϕ,P is mO(n) and it has index at
most n. Dualizing results in a UGCW of the same size and acceptance condition, and
so is the transition to D′

ϕ,P . Determinization involves an exponential blowup, such that

D′′
ϕ,P is of size 2m

O(n) logmO(n)

= 2m
O(n)

and index mO(n). Finally, solving the parity

game can be done in time (2m
O(n)

)m
O(n)

= 2m
O(n)

. We conclude that the LLTL-noisy-
synthesis problem is in 2EXPTIME. Hardness in 2EXPTIME again follows from the
hardness of the synthesis problem in the Boolean setting. ��

Remark 1. The approach described in the proofs of Theorems 1, 8, and 9 is Safrafull,
in the sense it involves a construction of a DPW. As has been the case with Boolean
synthesis [19], it is possible to proceed Safralessly also in LLTL synthesis with noise.
To see this, note that the starting point in Theorem 1 can also be a UGCW, and that
Lemma 1 works with UGCWs. In more details, once we construct a UGCW U for the
specification, possibly with noise incorporated, the Safraless approach expands U to
a universal co-Büchi tree automaton that accepts winning strategies for the system in
the corresponding synthesis game, and checks its emptiness. In terms of complexity,
rather than paying an additional exponent in the translation of the specification to a
deterministic automaton, we pay it in the non-emptiness check of the tree automaton.

5.3 Local Stability Revisited

In Section 3.2 we have seen that not all LLTL formulas are locally stable. This gives
rise to the question of deciding whether a given LLTL formula is locally stable. In the
context of synthesis, if ϕ is known to be locally stable and we have a transducer T
that realizes 〈ϕ, P 〉 with no noise, we know that T realizes 〈ϕ, P ⊕ γ〉 with noise νγ ,
where νγ(σ) = {τ : d(σ, τ) ≤ γ}, and P ⊕ γ is the extension of P to noise νγ . Thus,
� ∈ P ⊕ γ iff there is �′ ∈ P such that d(�, �′) ≤ γ.

Latticed-LTL Synthesis in the Presence of Noisy Inputs 239

Theorem 10. Given an LLTL formula ϕ over a lattice L, deciding whether ϕ is locally
stable is PSPACE-complete.

Proof. In order to show that the problem is in PSPACE, we consider the following,
more general, problem: given an LLTL formula ϕ and a noise-threshold γ, we want to
compute the maximal distraction, denoted Δϕ,γ , that noise γ may cause to ϕ. Formally,

Δϕ,γ = max {d([[π, ϕ]], [[π′, ϕ]]) : π, π′ ∈ (LAP)ω and ld(π, π′) ≤ γ}.

Observe that finding Δϕ,γ allows us to decide local stability by iterating over all ele-
ments γ ∈ {1, . . . , |L|} and verifying that Δϕ,γ ≤ γ. Furthermore, in order to compute
Δϕ,γ , it is enough to decide whether Δϕ,γ ≤ μ for a threshold μ ∈ {1, ..., |L|}, since
we can then iterate over thresholds.

We solve the dual problem, namely deciding whether there exist π, π′ ∈ (LAP)ω

such that ld(π, π′) ≤ γ and d([[π, ϕ]], [[π′, ϕ]]) > μ. In order to solve this problem, we
proceed as follows. In Theorem 7 we showed how to how to construct n NGBW Aϕ,�

such that Aϕ,� accepts a computation π iff [[π, ϕ]] = �. In Section 5.2, we showed how
to construct a UGCW D′

ϕ,�⊕μ such that D′
ϕ,�⊕μ accepts π iff [[π′, ϕ]] ∈ �⊕ μ for every

computation π′ that is νγ-indistinguishable from π. Now, there exist π, π′ ∈ (LAP)ω

such that ld(π, π′) ≤ γ and d([[π, ϕ]], [[π′, ϕ]]) > μ iff there exists � ∈ L such that
[[π, ϕ]] = � and the latter conditions hold. Observe that these conditions hold iff there
exists a computation π that is accepted by Aϕ,� but not by D′

ϕ,�⊕μ. Thus, it suffices to

decide whether L(Aϕ,�) ∩ L(D′
ϕ,�⊕μ) = ∅ for every � ∈ L.

Finally, we analyze the complexity of this procedure. Let |L| = m and |ϕ| = n.
Complementation of D′

ϕ,�⊕μ can be done by constructing D′
ϕ,�⊕μ

. Hence, both Aϕ,�

and D′
ϕ,�⊕μ have mO(n) states. Checking the emptiness of their intersection can be

done on-the-fly in PSPACE, implying the required upper bound.
We prove hardness in PSPACE by describing a polynomial time reduction from the

satisfiability problem for LTL to the complement of the local-stability problem. Con-
sider an LTL formula ϕ over AP . We assume that ϕ is not valid, thus there is a compu-
tation that does not satisfy it (clearly LTL satisfiability is PSPACE-hard also with this
promise). We construct an LLTL formula ψ over the lattice L = 〈2{a,b},⊆〉 as follows.
Let AP ′ = {p′ : p ∈ AP} be a tagged copy of AP . We define ψ = ϕ ∨ ϕ′ over
AP ∪ AP ′, where ϕ′ is obtained form ϕ by replacing each atomic proposition by its
tagged copy. Clearly this reduction is polynomial. In the full version, we show that ϕ is
satisfiable iff ψ is not locally stable. ��

References
1. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: Fomin,

F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966,
pp. 15–27. Springer, Heidelberg (2013)

2. Alur, R., Kanade, A., Weiss, G.: Ranking automata and games for prioritized requirements.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 240–253. Springer, Heidel-
berg (2008)

240 S. Almagor and O. Kupferman

3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis
through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

4. Cerný, P., Henzinger, T.: From boolean to quantitative synthesis. In: EMSOFT, pp. 149–154
(2011)

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Mar-
tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

6. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular
games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–
302. Springer, Heidelberg (2006)

7. Chatterjee, K., Majumdar, R.: Minimum attention controller synthesis for omega-regular ob-
jectives. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 145–
159. Springer, Heidelberg (2011)

8. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Controller synthesis with budget constraints.
In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 72–86. Springer,
Heidelberg (2008)

9. Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with
fine-grained abstractions using SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057,
pp. 16–36. Springer, Heidelberg (2001)

10. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathematicians,
1962, pp. 23–35. Institut Mittag-Leffle (1962)

11. Emerson, E., Jutla, C.: Tree automata, μ-calculus and determinacy. In: Proc. 32nd FOCS, pp.
368–377 (1991)

12. Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic. Electr.
Notes Theor. Comput. Sci. 220(3), 61–77 (2008)

13. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)

14. Huth, M., Pradhan, S.: Consistent partial model checking. Electr. Notes Theor. Comput.
Sci. 73, 45–85 (2004)

15. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solv-
ing parity games. SIAM Journal on Computing 38(4), 1519–1532 (2008)

16. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

17. Kupferman, O., Lustig, Y.: Latticed simulation relations and games. International Journal on
the Foundations of Computer Science 21(2), 167–189 (2010)

18. Kupferman, O., Vardi, M.: Church’s problem revisited. The Bulletin of Symbolic Logic 5(2),
245–263 (1999)

19. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th FOCS, pp. 531–540
(2005)

20. Kwiatkowska, M.: Quantitative verification: models techniques and tools. In:
ESEC/SIGSOFT FSE, pp. 449–458 (2007)

21. Martin, D.A.: Borel Determinacy. Annals of Mathematics 65, 363–371 (1975)
22. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. TCS 32, 321–330 (1984)
23. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-

tomata. In: Proc. 21st LICS, pp. 255–264. IEEE (2006)
24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–

190 (1989)
25. Reif, J.: The complexity of two-player games of incomplete information. Journal of Com-

puter and Systems Science 29, 274–301 (1984)
26. Safra, S.: Exponential Determinization for ω-Automata with Strong-Fairness Acceptance

Condition. In: Proc. 24th STOC, pp. 275–282 (1992)

Latticed-LTL Synthesis in the Presence of Noisy Inputs 241

27. Schewe, S.: Solving Parity Games in Big Steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS
2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

28. Vardi, M.Y.: From verification to synthesis. In: Shankar, N., Woodcock, J. (eds.) VSTTE
2008. LNCS, vol. 5295, p. 2. Springer, Heidelberg (2008)

29. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

30. Velner, Y., Rabinovich, A.: Church synthesis problem for noisy input. In: Hofmann, M. (ed.)
FOSSACS 2011. LNCS, vol. 6604, pp. 275–289. Springer, Heidelberg (2011)

	Latticed-LTL Synthesis in the Presence of Noisy Inputs
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 The Logic LLTL
	2.3 LLTL Synthesis
	2.4 Noisy Synthesis
	2.5 Automata and Games
	2.6 Solving the Boolean Synthesis Problem

	3 Properties of
	3.1 Attainable Values
	3.2 Stability

	4 Translating
	5 LLTL
Synthesis
	5.1 Solving the LLTL Synthesis Problem
	5.2 Solving the Noisy LLTL Synthesis Problem
	5.3 Local Stability Revisited

	References

