Resource Reachability Games
on Pushdown Graphs

Martin Lang*

RWTH Aachen University, Lehrstuhl fiir Informatik 7, D-52056 Aachen, Germany
lang@automata.rwth-aachen.de

Abstract. We consider two-player reachability games with additional
resource counters on arenas that are induced by the configuration graphs
of pushdown systems. For a play, we define the resource cost to be the
highest occurring counter value. In this way, we quantify resources and
memory that player 0 needs to win. We introduce the bounded winning
problem: Is there a uniform bound & such that player 0 can win the
game from a set of initial configurations with this bound k? We provide
an effective, saturation-based method to solve this problem for regular
sets of initial and goal configurations.

1 Introduction

Pushdown automata have become an important tool in the formal analysis and
verification of recursive programs. Since their introduction by A.G. Oettinger in
1961 and M.-P. Schiitzenberger in 1963, they have been intensively studied and
are relatively well-understood today. Pushdown automata without input alpha-
bet, which only operate with their control states on the stack, are usually called
pushdown systems. The configuration graphs of such systems are called pushdown
graphs. They can be used as a formal model for recursive programs because they
combine good expressive power with an (efficiently) decidable point-to-point
reachability problem. An example of their application in the area of formal veri-
fication is the model checker jMoped [14], which uses symbolic pushdown systems
to verify Java bytecode.

However, mere reachability on transition systems lacks the possibility to model
an environment system or possible user input. This can be achieved by two-
player games on graphs. Such games were studied in the course of the controller
synthesis problem proposed by A. Church in [8], and many positive algorithmic
results are known today for games on finite graphs. Moreover, two player games
on pushdown graphs with w-regular winning conditions were solved in [15] by
I. Walukiewicz. Later, T. Cachat showed in [4] that the well-known saturation
approach for pushdown system reachability can be extended to reachability and
Biichi games on pushdown graphs.

* Supported by DFG research grant Automatentheoretische Verifikationsprobleme mit
Ressourcenschranken

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 195-209, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

196 M. Lang

Recently, several models of games with additional resource constraints were
introduced to provide a model for systems with resource consumption. In this
context, the resources are usually modeled by integer counters that can be mod-
ified by the players but not read during the game. In addition to usual winning
conditions such as Biichi or Parity, the winning conditions of these games re-
strict the values of the resource counters throughout the game. Typically, it is
required that these values are bounded by a global limit. Examples for such
games are energy games (cf. [5]), energy parity games (cf. [6]), or consumption
games (cf. [3]). However, all these previous games are defined over finite graphs.
Only very recently, and independently from the author, games with such a struc-
ture were considered on graphs induced by pushdown systems (cf. [7]). Although
the game model considered there is essentially the same, the questions we solve
and the methods we use are quite different from those in [7].

In this work, we consider resource pushdown systems. These are pushdown
systems that are extended with a finite set of non-negative integer counters.
They can be used to model recursive programs with resource consumption. We
examine two-player games on the configuration graphs of these systems. Every
resource counter can be modified by the pushdown rules either by incrementing it
(for short i), or resetting it to zero (for short r). Moreover, it is possible to leave
a counter unchanged (no operation or n). The counters cannot be read during
the game. This reflects a step-by-step consumption and all-at-once replenishment
model of resources. The form of the counters is the same as in the wB-games
considered in [7] and very similar to the model used in consumption games
(cf. [3]) on finite graphs. It is also used in the model of B-automata (cf. [9]).

We introduce reachability games with an additional bound on the resource
counters — called resource reachability games. We fix some resource bound k € N.
In a play on the configuration graph of a resource pushdown system, the coun-
ters are updated according to the operations associated with the used pushdown
rules. In order to win the game w.r.t. the bound k, player 0 does not only have
to reach a certain set of goal configurations F' but also needs to ensure that all
counter values throughout the play stay below k. We examine this kind of game
and present a method to compute the winning region and winning strategies
for player 0 in the case of regular sets of goal configurations. Furthermore, we
investigate the bounded winning problem. Given a set A of initial configurations.
Is there a uniform resource bound k € N such that player 0 wins the resource
reachability game from all configurations in A w.r.t. this bound k7 In order to
solve this problem, we thoroughly analyze the propagation of counter operations
in the saturation approach. Thereby, we can extend the saturation idea intro-
duced by T. Cachat to effectively translate the question of winning cost into a
membership query for alternating B-automata. In total, we reduce the bounded
winning problem to a boundedness problem for B-automata. In contrast to [7],
we consider only finite plays and are interested in finding uniform bounds that
can be respected by all plays starting from sets of initial configurations. In [7],
infinite games are considered with an interest in checking for a given initial
configuration whether for each play there is an individual bound.

Resource Reachability Games on Pushdown Graphs 197

This work is grouped into three parts. First, we fix the notation and present
the preliminaries. Second, we formally introduce resource pushdown systems and
resource reachability games. Furthermore, we investigate some general properties
of the games and calculate the winning region of player 0 for a given resource
bound. In the third part, we consider the bounded winning problem and present
our solution approach.

2 Preliminaries

For a set X, we denote the set of finite sequences (or words) over X' by X*. For
a word w € X*, we write w(i) for the i-th letter in the word (zero indexed). For
sets A, B, we write B4 for the set of all functions from A to B and Bl‘;1 for the
set of all partial functions from A to B. We write L to indicate that a partial
function is undefined on some value.

The fundamental model that we consider are two-player games on graphs. A
game graph A = (V, E) is directed and its vertices V are partitioned into two
sets Vp, V1 indicating to which player the vertex belongs. Such a game graph
is often called arena. The two players are called 0 (or Eve) and 1 (or Adam).
A play of a game on A is a (possibly infinite) sequence of moves in which the
two players move a game pebble across the graph. A play starts in some vertex
v € V. In each step of the game, the player to which the current vertex belongs
can move the pebble to one of the successor vertices. Formally, we say a play is
the sequence 7 of edges along which the pebble is moved.

The winner of a fixed play in a game is determined by the so-called winning-
condition. In a reachability game, we fix a goal set F C V of vertices in the game
graph. Player 0 wins the reachability game if the play visits a vertex from F' after
a finite number of moves. Otherwise, player 1 wins the game. In general, we are
interested in knowing whether one of the players can force to win (independent
of how the other player moves) by following a certain strategy. A strategy for
player i is a mapping o that maps all past moves (€ E*) of the play to the
next edge to take whenever the current position is a vertex of V;. A strategy
is called winning for player i if all plays in which player ¢ moves according to
the strategy are winning for player i¢. A strategy is called finite memory if it
can be implemented by a finite state Mealy machine that reads all the moves
of the opponent and outputs the next move of the respective player. It is called
memoryless or positional if the next move only depends on the current vertex.
We call the vertices from which player i has a winning strategy the winning
region of player i. A game is called determined if for every starting vertex either
player 0 or player 1 has a winning strategy. Reachability games are know to be
determined and admit positional winning strategies for both players on their
respective winning regions. A comprehensive introduction to two-player games
and proofs for the claims above can be found, e.g., in [11].

198 M. Lang

a:i a:n b:n
b:r b:n

Fig. 1. Example B-automaton: left: count maximal length of uninterrupted a-block /
right: count minimal length of uninterrupted a-block

2.1 Counters as Resource Model

We model resources by a finite set of non-negative integer counters. Each counter
supports two kinds of operations. First, the counter can be incremented (for
short i). This represents the usage of a single resource. Second, a counter can
be reset to zero (for short r). This models the full replenishment of the resource.
Additionally, we use n as a shorthand notation for no operation (the counter
is left unchanged). The counters operate independently from each other. Thus,
we can use multiple counters in order to model different types of resources. We
associate the resource usage or consumption with the highest occurring counter
value. This scheme of step-by-step consumption and all at once replenishment
is motivated by scenarios such as battery driven systems or the usage of paper
in a printer.

Finite state automata with similar counters have been studied in [1] (R-
automata) and [9] (B-automata). In the context of this work, we use the model
of B-automata and known results for this formalism as a tool. B-automata were
introduced by T. Colcombet in [9] and extend finite state automata with a finite
set of counters (denoted by I') as described above!. The counters can be manip-
ulated by the transitions but not read by the automaton. Throughout a run, the
counters are updated according to the used transitions. The value of a run is the
maximal counter value (over all counters) that occurs in the run. B-automata
naturally define a function from words to N U {oo}. For a B-automaton 2 and
a word w, we assign w to the infimum of the values of all accepting runs of 2
on w and denote this value by [](w). We also call it the (resource) cost of w.
Note that [](w) = oo if there is no accepting run for w.

Figure 1 shows two examples of B-automata. Their semantics are to count
the maximal (left) / minimal (right) number of subsequent letters a without
interruption. The left automaton just increments for each letter a and resets the
counter to zero when it reads a b. Consequently, the unique run of a word has the
value of the longest uninterrupted block of as. The right automaton calculates
the minimal length of a blocks by nondeterministically guessing the position of
the minimal block in the word. It changes to g1 when the block starts (or starts
in ¢y if this block is at the beginning) and counts its length.

In the context of systems with resources modeled by counters as described
above, we are especially interested in the question of boundedness: Is there a
bound on the resource consumption for a given set of runs? A solution to this

! In difference to the original publication we do not use the counter operation check
because it is not necessary for our work and simplifies the overall presentation.

Resource Reachability Games on Pushdown Graphs 199

question is part of the realizability problem since real world systems can only
have limited resources. With formal verification in mind, we are especially in-
terested in decidable variants of this question. The boundedness problem for
B-automata is decidable, i.e., one can algorithmically check if there is a global
bound k£ € N for a given B-automaton 2 such that for all words w, we have
[2A](w) < k. In the case of multiple counters, this was first shown by D. Kirsten
in [13] for a slightly more restrictive counter model (hierarchical counters). He
also proved that this problem is PSPACE-hard. In the case of B-automata, the
boundedness problem was solved by T. Colcombet in [9].

2.2 Counter Profiles

In order to provide a well understandable way to reason about sequences of
counter operations, we introduce a structured representation in the form of a
well-partially ordered monoid. This enables us to present our results more gen-
erally for systems that are annotated with such a structure and to emphasize
which properties are needed to obtain the results. For sequences of counter op-
erations, we introduce the notion of counter profiles and use this model instead
of sequences of counter operations in the context of the bounded winning prob-
lem. A counter profile is a 3-tuple (i1, ¢ynaz,i5,) € (NU{})3. It represents a
sequence u of counter operations (from {i,n,r}*) with the following intuition.
For the sake of simplicity, we assume that u does not contain any ns since they
have no influence on the counter. The component i represents the number of
increments before the first reset, i.e., the largest j € N such that i/ is a prefix
of u. The component c¢,,,, represents the maximal counter value between two
subsequent resets, i.e., the largest j € N such that rifr is an infix of u. Lastly,
iT, represents the number of increments after the last reset, i.e., the largest j € N
such that ri is a suffix of u. If the sequence u contains only one (or even no)
reset, the components ¢,,q; (and if,) are set to / (read n/a). On these profiles,
we define the concatenation o such that it reflects the concatenation of counter
sequences. One can see by checking all cases that all counter profiles together
with the concatenation and (0, , /) as neutral element form a monoid. Each
of the three base operations directly corresponds to a profile —n to (0, /, /), i
to (1, /, /) and r to (0, /,0). By translating each operation into its profile and
concatenating all the profiles along a run, one obtains a profile that provides
the value of this run by its maximal entry as well as all information necessary
to interpret the sequence as part of a longer sequence. As a result, we can use
counter profiles as an equivalent representation for counter sequences.

In contrast to counter sequences, counter profiles offer a natural way to define
a partial order. For two profiles p; and ps we say p; is less than or equal to
p2 (and write p; < po) if all components of p; are less than or equal to py
(component-wise order). In each component we use the canonical order on N
and let the newly introduced , be incomparable to all natural numbers. This
order is a well-partial order in every component since it has neither infinitely
decreasing chains nor infinite anti-chains. By a result of Higman (cf. [12]), we
obtain that the component-wise order we defined on the counter profiles is a

200 M. Lang

well-partial order, too. We remark that the order is compatible with the monoid
operation.

Systems with several counters can be represented by a vector of counter pro-
files. We extend the concatenation and the order to these vectors by applying the
concatenation in each component and taking the component-wise order. Again
by the result of Higman and simple checking, we obtain that these vectors of
counter profiles still form a monoid and the order is a well-partial order. For a
set of such vectors of profiles or a set of profiles A, we denote the set of maximal
elements of A by max A. We remark that max A may contain several elements
because the order is not total. However, by definition of maximal, max A is an
anti-chain and thus finite.

3 Resource Reachability Games

We introduce pushdown systems with a finite set of counters as model for re-
cursive programs with resource consumption. These counters follow the previ-
ously described ideas and provide a way to model step-by-step usage and all at
once replenishment of several resource types during the execution of recursive
programs.

Definition 1. A resource pushdown system is a 4-tuple P = (P, X, A, I') where
P is a finite set of control states, X is a finite stack alphabet, A C P x X x X* X
P x {i,r,n}l is a finite transition relation and I is a finite set of counters.

Similar to normal pushdown systems, a configuration of a resource pushdown
system is a pair of a state from P and a finite word from X*. The successor
relation on configurations is defined similar to normal pushdown systems. We
additionally associate this step of the system with the counter operation f of
the transition used. Formally, for two configurations pu,qu € P x X*, we say qu
is an f-successor of pu and write pu F; quv if there is a common suffix w and
a transition (p,a’,v’,q, f) € A such that v = a’w and v = v'w. We denote the
configuration graph of P by Cp = (P x X*,F). In our examples, we use systems

with only one counter and write, e.g., pa — quv as a shorthand notation for a
transition (p, a,v,q, f) where f maps the unique counter to i. Analogously, we
write pu b3 qu if pu by qu with f(c) = i for the unique counter c.

We obtain a game arena from the configuration graph of a resource pushdown
system by providing an additional partition of the state space P = Py W P;.
Configurations with a state in P; belong to player i. A game on this arena
is played as in the classical case but each move additionally provides counter
operations according to the corresponding pushdown rule. As for B-automata,
we simulate the counters along the play and associate the resource consumption
at every point in the play with the highest counter value that occurred so far. On
such arenas, we consider a combined reachability and resource limit objective.
Let F be a set of goal configurations and k& € N be a resource limit. Player 0
wins the resource reachability game with respect to F' and k if the play reaches
a configuration in F' and the resource consumption at this point is at most k.

Resource Reachability Games on Pushdown Graphs 201

i i i i i
T A
r r r r eEr

Fig. 2. Example for the configuration graph of a simple resource pushdown system

For these games, we consider different kinds of winning regions. First, we con-
sider the resource independent winning region of player 0 denoted by Wy (F).
A configuration pw is in Wy (F') if player 0 can reach F' from pw with arbi-
trarily high resource consumption. Second, we consider the winning region with
resource limit k& denoted by Wo(k) (F). A configuration pw is in Wo(k) (F) if player
0 wins the resource reachability game with the respective limit k£ on the resource
consumption. This second, new type of winning region immediately yields two
algorithmic questions:

1. We fix F' and k € N and ask what is Wo(k) (F)?

2. We fix a set A and ask whether there is a uniform resource bound k such
that player 0 wins the resource reachability game with bound k from A, i.e.,
whether A C Wo(k) (F). We call this problem the bounded winning problem.

We illustrate the newly introduced concepts with the following example. Con-
sider a resource pushdown system P = (P, X, A, I') with only one state p € P,

the stack alphabet X = {a} and only one pushdown rule pa — ps € A. Fig-
ure 2 (without the dotted transitions) shows a part of the configuration graph
of P. On this configuration graph, we compare the different winning regions for
the resource reachability game in which all configurations belong to player 0
and the goal set is F' = {pe}. First, the resource independent winning region is
Wo (F) = {pa™ | n € N} because one can remove all letters a from the stack by

successively applying the rule pa = pe. However, each such step costs one incre-
ment of the resource counter. Hence, the winning region with resource bound k
is Wo(k) (F) = {pa™ | n < k}. Consequently, there is no uniform bound % such
that player 0 wins on complete Wy (F') with this bound.

Now, we add the pushdown rule pa — paa to A of P. Then, the configuration
graph includes the dotted transitions in Figure 2. This does not change Wy (F)
in the considered resource reachability game but reduces the resources needed
to reach F' from an arbitrary configuration to 2. For instance, let us start at
configuration pa®. The sequence pa® i pa® ;i pa Fr pa® i pa b3 pe shows
that F' is reachable with a resource bound of 2. This idea of incrementing two
times and then resetting one time can easily be extended to all configurations.
Thus, we obtain that 2 is a uniform bound such that player 0 wins the resource
reachability game, i.e., W0(2) (F) = Wy (F). This example already shows that we
generally cannot expect to obtain memoryless winning strategies for player 0 in
resource reachability games. Moreover, it illustrates that memoryless strategies
cannot obtain minimal resource bounds even on finite graphs.

202 M. Lang

Fig. 3. Exponential memory in the number of counters is unavoidable to achieve the
best resource-limit possible

In the following, we solve the two algorithmic questions for the case that F’
and A are regular. First, we consider the problem of calculating Wo(k) (F) for
a fixed F' and k. This problem can be reduced to solving (normal) reachability
games on pushdown graphs. The reduction is based on the idea of simulating the
counters up to the (finite) value k in the state space of the pushdown system.
With standard techniques (see e.g. [11]), we can obtain the winning region and
a winning strategy for the original game. We formalize this idea by

Proposition 2. Let P = (PyW P, X, A I') be a resource pushdown system. Let
F be a reqular goal set and k € N a resource bound for the bounded reachability
game on the configuration graph of P. One can effectively compute the winning
region W (F)) nnt

gion Wy (F) and a corresponding finite memory winning strategy.

In a similar way as previously described, we obtain winning strategies for
player 1 for all configurations in P x X* \ Wo(k) (F). As a direct consequence,
we obtain that resource reachability games are determined. We remark that this
idea can be easily extended to all w-regular winning conditions.

The strategy obtained from the above reduction uses a memory structure that
is exponential in the number of counters. The example in Figure 3 shows that
this is generally unavoidable if the strategy should achieve the lowest possible re-
source bound. We use 5 counters in the example and denote the increment/reset
of counter j by i;/r;. While it is possible to get through the shown gadget with
resource limit 1 and all counters reset to zero before leaving, the strategy of
player 0 has to store the state of all counters in order to achieve this (25 = 32).
Nevertheless, if we allow a resource limit of 5, all counters can be reset to zero
before leaving the gadget with a memory structure of size 6.

4 The Bounded Winning Problem

In this section, we first show that the bounded winning problem is at least as com-
plex as solving the boundedness problem for B-automata. As already mentioned,
this is known to be PSPACE-hard (cf. [13]) even for a slightly simpler version
of automata (with hierarchical counters). Furthermore, there is a 2-EXPSPACE
algorithm (cf. [1]) to solve it. Subsequently, we introduce an alternating variant
of automata with monoid annotations, such as counter profiles. This model en-
ables us to extend a saturation-based solution approach for normal reachability
games on pushdown graphs to resource reachability games.

Resource Reachability Games on Pushdown Graphs 203

Proposition 3. The bounded winning problem is at least as complex as the
boundedness problem for B-automata.

Proof. Let 2 = (Q, X, qo, A, Fin, I') be a B-automaton. We define a resource
pushdown system with the following idea in mind: The pushdown system simu-
lates the automaton by letter-wise consuming the stack contents and simulating
the operation of 2l in its state space and with its counters. Formally, we define
the resource pushdown system by P = (Q, X, A’, I'") where

A, = {(paaaEaQ>f) ‘ (paaaqaf) GA}

With this definition, we obtain for all words w € X* the equivalence that
[2](w) < k iff there is is a ¢y € Fin and a sequence of pushdown operations to
reach gyre from gow with resource limit k. Consequently, there is a global bound
k such that for all words w € X* : [A](w) < k iff there is a bound k such that
one can reach Fin x {e} from all configurations in goX* with bound k. That is
exactly the bounded winning problem on P for Py = Q, P, = 0, F = Fin x {¢}
and A = {gow | w € X*}. O

The main tool in constructing our saturation method for resource reachability
games is the model of alternating automata with B-automaton like counters. We
introduce and argue on the base of a slightly more general model with annota-
tions from well-partially ordered monoids. This shows the properties we use more
clearly, and simplifies the presentation. In the analysis of resource reachability
games, we instantiate the model with (vectors of) counter profiles as a formalism
equivalent to B-automaton counters. We model the alternation by nondetermin-
istic choice among transitions with possibly several target states. A run of the
alternating automaton has the form of a tree. For the transition chosen, the
run has to be continued from all target states of the respective transition. This
is an explicit presentation of the otherwise often used positive boolean formula
notation for transitions of alternating automata. It has the advantage, for our
purpose, that we can associate the different paths in the automaton with differ-
ent annotations more easily. This is needed to reflect the multiple choices in the
game. Formally, we have

Definition 4. An annotated alternating automaton is a tuple A = (Q, X, In, A,
F, M). The components Q, X, In and F are defined as usually for automata.
M = (M,o,epm, <) is a well-partially ordered monoid. The transition relation
A is a finite set A C Q x X x (AntiChain(M))g2 where AntiChain(M) is the set
of all anti-chains with elements from M. For a transition t = (p,a, f), we define
the successor states of the transition by Succ(t) := dom(f). The automaton is
called normalized, if states in In have no ingoing transitions.

In order to define a run and the (annotation) values associated with the run,
we need the notion of a tree.

Definition 5. A tree T consists of a set of nodes T, a root node tg € T and a
child (or successor) function s : T — Pow (T) such that:

204 M. Lang

1. for every node v € T \ {to} there is a unique parent node p € T such that

v € sz(p).

2. the child function has no loops, i.e., there is no sequence vy, v1,...,v, with
Vit1 € sx(v;) for alli=1,...,n —1 such that vy = vy,.

3. every node is reachable from the root, i.e., for all nodes v € T there is a
sequence tg = vg, ..., U, = v such that viy1 € sz (v;).

We use the following common operations on trees. The parent function mg :
T\ {to} — T maps all nodes but the root to their unique parent nodes. The
distance function dz : T — N maps every node v to its distance from the root
node. The leafs of a tree are denoted by Leafsg = {v € T | sg(v) = 0}. A level
of a tree is a maximal set of nodes 7" C T that all have the same distance from
the root, i.e., for v,v’ € T” we always have dz(v) = d=(v').

A run of an alternating automaton on a word w = ay ... a, follows the idea of
an inductive tree construction. It starts with the root node and associates this
node with the initial state of the automaton. Then, a transition a (p, a1, f) € A
is selected and child nodes are created for all states in ¢ € dom(f) with their
different annotations f(g). For all child nodes, this construction continues on
the rest of the word as,...,a,. A run is called accepting if all the leaf nodes of
the tree are associated with final states of the automaton. Moreover, such a run
yields values from the annotation monoid by multiplying the annotations along
each path. We formalize this idea in the following two definitions.

Definition 6. A run of an annotated alternating automaton A on a word w is a
4-tuple p = (pg, pa, pm, X) of three labeling functions and a tree ¥. The function
po T — Q is called state labeling function. The function pa : T \ Leafss — A
is called transition labeling function. The function ppr @ T\ {to} — M s the
annotation labeling function. They satisfy the following consistency properties:

1. po(ty) € In

2. The state labeling and the transition labeling are consistent with each other
and with the word w: For all v € T \ Leafsx with labeled state pg(v) = g
and selected transition pa(v) =t = (p,a, f) we have w(d<(v)) = a, ¢ = p,
p(sx(v)) = Succ()

3. For each node v € T \ Leafsx with pa(v) =t and every state ¢ € Succ(t),
there is exactly one child per annotation. Let Vi = {v' € sz(v) | po(v') = ¢}.
We have V| = | ()] and par(Vy) = /(@)

We call a run partial if it does not start in In, and call it accepting if
pq(Leafsz) C F. If there is an accepting run of 2 on w, we write w € L().
Moreover, if there is a run of A on w with pg(Leafsz) C S, we write w € Lg(A).

Definition 7. Let p = (pg,pa,pm,T) be a runtree of an automaton A =
(Q, 2, In, A, F, M). For each q € pg(Leafsz), we define the value of p induc-
tively over the runtree.

Resource Reachability Games on Pushdown Graphs 205

0 otherwise if v € Leafsg

vall (v) = {{em} if po(v) =4

valf(v) = max{m; oms | v € sx(v),my = ppr(v'),
ma € valf(v')} otherwise

Additionally, we define the total value val,(v) = max e, (Leatse) Va5 (V). We
write val!(p) as a shorthand for vali(to) and val(p) as a shorthand for val,(to).

In the context of resource reachability games on pushdown graphs, we take
the annotation monoid M to be the vector of counter profiles with its dimension
matching the number of counters. Furthermore, we use the idea of P-automata
to read pushdown configurations. For a pushdown system P with control states
P and an automaton 2 reading configurations from P, we assume that P is part
of the state space of 2. A run of 2 on some pushdown configuration pw then
starts in state p of . This way 2 operates only on X and we do not need to
distinguish the different kinds of input symbols (from P and X).

The traditional saturation approach for reachability in pushdown systems
gradually extends a finite automaton with transitions that enable the automa-
ton to simulate replacement steps of the pushdown system. It starts with a
P-automaton 2 that recognizes some set F' of pushdown configurations to be
reached. For a pushdown rule pa — qu it searches states ¢’ that can be reached
in 20 when reading the configuration qu. Then, an a-transition from p is added
to ¢’. This new transition enables the automaton to behave as if it had read qu
although it actually read pa. Hence, the automaton can now simulate the push-
down rule pa — qu. This is repeated until no more transitions can be added.
The resulting automaton recognizes the set of all predecessor configurations of
F. A complete presentation of this basic idea can be found in [2].

In [4], T. Cachat used alternating automata to lift this basic idea to reachabil-
ity games. His approach uses the similarities between games and the semantics
of alternating automata in the following way. Let 2 be an alternating automa-
ton recognizing a regular goal set F' of the reachability game. Consider a player
1 state p of the pushdown system and let pa — qiuq,...,pa — qnu, be all
pushdown rules originating in p with letter a on top of the stack. The satura-
tion method now looks for states ¢} in 2 that can be reached when reading q;u;
(i € {1,...,n}) on A. It then adds an a-transition from p to {qf,...,q,} in A.
By the semantics of alternating automata, a run of the automaton is continued
in all target states of the transition. This reflects the fact that player 1 can
choose among pa — qiu1,...,pa = quu, and player 0 has to be able to reach
the goal set F' for all possible choices in order to win the reachability game. The
case of player 0 states can be handled similar to the case of mere reachability.
Again, this procedure is repeated until no more transitions can be added to the
automaton. The resulting alternating automaton recognizes the winning region
of player 0.

We extend this idea with the overall goal of constructing an automaton with
counters that recognizes a pushdown configuration with cost & iff player 0 has

206 M. Lang

a strategy to win the resource reachability game with a resource limit of k. To
realize this, the designed saturation method has to keep track of the resource
counter operations executed by the simulated pushdown transitions. We use
the monoid annotation of the automaton to store the counter profile associated
with the resource counter operation of the simulated pushdown rule. The major
difficulty arises from the fact that there are incomparable choices in the game.
While it is easy to see that two increments are better than three, there are (even
for finite game graphs) situations that do not have a unique best choice. For
example, consider a resource pushdown system with two counters and two nearly
identical pushdown rules. The first rule resets the first counter and increments
the second whereas the other increments the first and resets the second. The
decision which one is better depends on the context in this case. Thus, the
designed method has to represent all such situations.

We illustrate the intuition behind newly added transitions with an example.
Again, let 21 be the automaton to be saturated. Consider a player 1 state p of
the pushdown system and let pa —% qui,...,pa — gnu, be all pushdown
rules originating in p that can be applied with an a on top of the stack. For
the sake of clarity, assume that there are linear (non-branching) runs of 2 on
giu;. These runs end in a state ¢/ and have an accumulated annotation m.
Then, the saturation procedure adds a transition ¢t = (p, a, f) with target states
dom(f) = {q,---¢,}- This part is identical to the situation without annotations.
Similar to the target states of ¢, which represent the states into which player 1
can force player 0, the annotation in 2 has to represent the possible annotations
in the game that player 1 can enforce while reaching this state. Consequently, the
annotation f(q) for a target state ¢ € dom(f) is the maximum over all combined
annotations m; om) (first apply the pushdown rule, then the skipped part of the
original run) of runs that end in a state ¢, equal to g.

In order to simplify the presentation of the saturation algorithm and the sub-
sequent termination argument, we introduce an order on the transitions of the
automaton and show that this order is a well-partial order. First, we order sets
of elements from ordered monoids. Let M be a well-partially ordered monoid
and A, B C M two sets. We say A is dominated by B and write A < B if
for all elements a € A there is an element b € B such that a < b. Now, let
t=(p,a,f),t' = ,d,f) be two transitions of an annotated alternating au-
tomaton. We order ¢ and ¢ by t < ' if p = p', a = o/, dom(f) = dom(f’) and
for all ¢ € dom(f) f(q) < f'(¢). With the finiteness of the states, the alphabet,
and arguments about well-partial orders from [12], we deduce:

Lemma 8. Let A = (Q, X, In, A, F, M) be an annotated alternating automaton.
The order on A is a well-partial order.

With all previous preparations, we are now able to present the complete sat-
uration procedure in Algorithm 1. It operates on arbitrary monoid annotations
and assumes the resource pushdown system to be labeled with counter profiles.
The resulting automaton and the arguments are stated in terms of counter pro-
files. To this end, we say that player 0 wins the resource reachability game with
profile bound B if the resulting play has a combined counter profile p such that

Resource Reachability Games on Pushdown Graphs 207

Algorithm 1. Saturation procedure
input : resource pushdown system P = (P, X, Ap), state partition
P = P, ¥ P, normalized annotated alternating P-automaton
A= (Q, X, P, A, F, M) (all annotations are {exrq}, and for all

(¢;a,f) € A [dom(f)] =1)
output: annotated alternating P-automaton 2* = (Q, X, P, A*, F, M)

1 A°:=92;45:=0
2 while automaton can be updated do
3 For p € Py, pa = qw € Ap do
4 Find Runtree p = (pg, pa, %) of A on qw
5 t:= (p,a, f) with
{max{m om, | m, €vall(p)} if ¢ € pg(Leafss)
fi=q— .
1 otherwise
6 if 3t' € A® with t' > t then
7 AT = AN\ € AP | >t u{t);i=i+1
8 else if —(3t' € A® with t' < t) then
9 AiJrl::AiU{t};i::i—i—l
10 For p € Pi and pa =% quwi € Ap, ..., pa —2 guwn € Ap all a-pushdown
rules starting in p do
11 Find Runtrees p’ = (p]é,ij,Tj) of A on qjw; forj € {1,...,n}
12 t:= (p,a, f) with f defined by
max{m; om, | m, € val’(p’), ifqc O pg(Leafsgj)
g je{l,....n}} =
1 otherwise
if 3t € A" with t' >t then
13 AT = AN\ € AT | > thU{t} ;i=i+ 1
14 else if —(3t' € A® with t' < t) then
15 Ai+1::AiU{t};i::i+l

Result: 2* := 2°

{p} < B. Accordingly, we write WO(B) (F) to denote the region in which player
0 wins with profile bound B.

Lemma 9. Algorithm 1 terminates for all inputs.

Proof. We remark that the set of all transitions always forms an anti-chain
by construction. If the algorithm does not terminate either 11. 7, 13 or 11. 9,15
are executed infinitely many times. Assume the instructions in 1. 7 or 13 are
executed infinitely many times. Since there are only finitely many transitions in
A at each point in time, there has to be a descending chain of transitions. This
is a contradiction to the fact that the order is a well-partial order. Otherwise,

208 M. Lang

1. 9 or 15 are executed infinitely often. Since both update rules only add a new
transition relation, we obtain A* C A*! for all i > j for some threshold j. Thus,
the set |J;= ;A" is an infinite anti-chain. Also a contradiction. O

In order to prove the correctness of the saturation procedure, we show a direct
correspondence between the games winning with certain profiles and runs on the
saturated automaton.

Lemma 10. Let F be a regular set of configurations represented by a normal-
ized annotated alternating P-automaton A as stated in the precondition of Algo-
rithm 1. Furthermore, let A* be the result of the algorithm and B € AntiChain(M)
such that {ep} < B.

(i) Let qu € WO(B) (F). Then, there is an accepting run p of A* on qu such
that val(p) < B.

(ii) Let p = (pg, pa,pm,T) be a run of A* on quw with S = pg(Leafsz). Then
player 0 has a strategy o, to reach a configuration in L(Ug). Moreover,
for a play T that is played according to o, and that ends in a configuration
qw', let p™ be an accepting run of A on ¢'w' with (single) final state .
The value of T is bounded by val”(p).

The above presented procedure effectively reduces the bounded winning prob-
lem to a boundedness problem for alternating B-automata. After exchanging the
counter profiles back to direct counter operations, we obtain an automaton that
recognizes a configuration pw with some cost k iff player 0 wins the resource
reachability game from this configuration with bound k. Since the set of initial
configurations A is regular, we can easily construct an automaton that recognizes
the complement A with cost 0 and A with cost co. By the closure of B-automata
under taking the minimum (cf. [10]) we obtain an automaton that yields value 0
for all elements outside of A. As a consequence, the boundedness of this automa-
ton only depends on the boundedness on A. By [10], we know that boundedness
for these automata is decidable. Altogether, we obtain our main result:

Theorem 11. Let P = (PyW P, X, A, I') be a resource pushdown system. Let
F be a regular goal set for the bounded reachability game on the configuration
graph of P and A a regular set of start configurations. It is decidable whether
there is a k € N such that A C Wo(k) (F).

We remark that the winning strategies constructed in the inductive proof can-
not be directly transformed into pushdown strategies as in the traditional case.
This difference arises from the fact that we do not have memoryless runs on our
alternating automaton model because of incomparable annotations. However,
once the bound k is determined, one can use the methods of the previous section
to obtain a finite memory winning strategy.

5 Conclusion

We considered two-player games on pushdown graphs with additional non-nega-
tive integer counters as model for reactive, recursive systems with resource con-
sumption. On these games, we examined a combined reachability and resource

Resource Reachability Games on Pushdown Graphs 209

limit winning condition. We showed that these games are determined and that
for regular goal sets one can compute the winning region of player 0 with a cer-
tain resource limit as well as decide whether there is a resource limit such that
player 0 wins from a given regular set of initial configurations with this limit.
In the main theorem, we solved the bounded winning problem by an exten-
sion of the traditional saturation idea. Our approach can be used for a variety
of annotated pushdown games. We only require that the annotations form a
well-partially ordered monoid. In the semantics, the value of a play has to be as-
sociated with the concatenation of all the values on the transitions along the play
and the order has to reflect that smaller annotations are preferred. For the spe-
cific case of counter profiles as annotation, we obtain a reduction of the bounded
winning problem to the boundedness problem of alternating B-automata.

References

1. Abdulla, P.A., Krcal, P., Yi, W.: R-automata. In: van Breugel, F., Chechik, M.
(eds.) CONCUR 2008. LNCS, vol. 5201, pp. 67-81. Springer, Heidelberg (2008)

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135-150. Springer, Heidelberg (1997)

3. Brazdil, T., Chatterjee, K., Kucera, A., Novotny, P.: Efficient controller synthesis
for consumption games with multiple resource types. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 23-38. Springer, Heidelberg (2012)

4. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 704-715. Springer, Heidelberg (2002)

5. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, L. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117-133. Springer,
Heidelberg (2003)

6. Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science 458,
49-60 (2012)

7. Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In: CSL,
pp. 181-196 (2013)

8. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
Summaries of the Summer Institute of Symbolic Logic 1, 3-50 (1957)

9. Colcombet, T.: Regular cost functions over words (2009)

10. Colcombet, T., Léding, C.: Regular cost functions over finite trees. In: LICS, pp.
70-79 (2010)

11. Gréadel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

12. Higman, G.: Ordering by Divisibility in Abstract Algebras. Proceedings London
Mathematical Society s3-2(1), 326-336 (1952)

13. Kirsten, D.: Distance desert automata and the star height problem. RAIRO -
Theoretical Informatics and Applications 39, 455-509 (2005)

14. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A java bytecode checker
based on moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 541-545. Springer, Heidelberg (2005)

15. Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Com-
put. 164(2), 234-263 (2001)

	Resource Reachability Games
on Pushdown Graphs
	1 Introduction
	2 Preliminaries
	2.1 Counters as Resource Model
	2.2 Counter Profiles

	3 Resource Reachability Games
	4 The Bounded Winning Problem
	5 Conclusion
	References

