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Foreword

ETAPS 2014 was the 17th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998, and this year consisted of six constituting conferences
(CC, ESOP, FASE, FoSSaCS, TACAS, and POST) including eight invited speak-
ers and two tutorial speakers. Before and after the main conference, numerous
satellite workshops took place and attracted many researchers from all over the
globe.

ETAPS is a confederation of several conferences, each with its own Program
Committee (PC) and its own Steering Committee (if any). The conferences cover
various aspects of software systems, ranging from theoretical foundations to pro-
gramming language developments, compiler advancements, analysis tools, formal
approaches to software engineering, and security. Organizing these conferences
in a coherent, highly synchronized conference program, enables the participation
in an exciting event, having the possibility to meet many researchers working
in different directions in the field, and to easily attend the talks of different
conferences.

The six main conferences together received 606 submissions this year, 155 of
which were accepted (including 12 tool demonstration papers), yielding an over-
all acceptance rate of 25.6%. I thank all authors for their interest in ETAPS, all
reviewers for the peer reviewing process, the PC members for their involvement,
and in particular the PC co-chairs for running this entire intensive process. Last
but not least, my congratulations to all authors of the accepted papers!

ETAPS 2014 was greatly enriched by the invited talks of Geoffrey Smith
(Florida International University, USA) and John Launchbury (Galois, USA),
both unifying speakers, and the conference-specific invited speakers (CC) Benôıt
Dupont de Dinechin (Kalray, France), (ESOP) Maurice Herlihy (Brown
University, USA), (FASE) Christel Baier (Technical University of Dresden, Ger-
many), (FoSSaCS) Petr Jančar (Technical University of Ostrava, Czech Repub-
lic), (POST) David Mazières (Stanford University, USA), and finally (TACAS)
Orna Kupferman (Hebrew University Jerusalem, Israel). Invited tutorials were
provided by Bernd Finkbeiner (Saarland University, Germany) and Andy Gor-
don (Microsoft Research, Cambridge, UK). My sincere thanks to all these speak-
ers for their great contributions.

For the first time in its history, ETAPS returned to a city where it had been
organized before: Grenoble, France. ETAPS 2014 was organized by the Univer-
sité Joseph Fourier in cooperation with the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and
EASST (European Association of Software Science and Technology). It had
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support from the following sponsors: CNRS, Inria, Grenoble INP, PERSYVAL-
Lab and Université Joseph Fourier, and Springer-Verlag.

The organization team comprised:

General Chair: Saddek Bensalem
Conferences Chair: Alain Girault and Yassine Lakhnech
Workshops Chair: Axel Legay
Publicity Chair: Yliès Falcone
Treasurer: Nicolas Halbwachs
Webmaster: Marius Bozga

The overall planning for ETAPS is the responsibility of the Steering Commit-
tee (SC). The ETAPS SC consists of an executive board (EB) and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board comprises Gilles Barthe (satellite
events, Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (chair,
Aachen and Twente), Gerald Lüttgen (treasurer, Bamberg), and Tarmo Uustalu
(publicity, Tallinn). Other current SC members are: Mart́ın Abadi (Santa Cruz
and Mountain View), Erika Ábráham (Aachen), Roberto Amadio (Paris), Chris-
tel Baier (Dresden), Saddek Bensalem (Grenoble), Giuseppe Castagna (Paris),
Albert Cohen (Paris), Alexander Egyed (Linz), Riccardo Focardi (Venice), Björn
Franke (Edinburgh), Stefania Gnesi (Pisa), Klaus Havelund (Pasadena), Reiko
Heckel (Leicester), Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kre-
mer (Nancy), Pasquale Malacaria (London), Tiziana Margaria (Potsdam), Fabio
Martinelli (Pisa), Andrew Myers (Boston), Anca Muscholl (Bordeaux), Catuscia
Palamidessi (Palaiseau), Andrew Pitts (Cambridge), Arend Rensink (Twente),
Don Sanella (Edinburgh), Vladimiro Sassone (Southampton), Ina Schäfer (Braun-
schweig), Zhong Shao (New Haven), Gabriele Taentzer (Marburg), Cesare Tinelli
(Iowa), Jan Vitek (West Lafayette), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work in making the
17th ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. Finally, many thanks
to Saddek Bensalem and his local organization team for all their efforts enabling
ETAPS to return to the French Alps in Grenoble!

January 2014 Joost-Pieter Katoen



Preface

This volume contains the proceedings of the 17th International Conference on
the Foundations of Software Science and Computation Structures, FOSSACS
2014, held in Grenoble, France, 5–13 April 2014. FOSSACS is an event of the
Joint European Conferences on Theory and Practice of Software (ETAPS).

FOSSACS presents original papers on the foundations of software science.
The conference invited submissions on theories and methods to support analysis,
synthesis, transformation, and verification of programs and software systems. We
received 128 abstracts and 106 full paper submissions; of these, 28 were selected
for presentation at FOSSACS and inclusion in the proceedings. Also included is
the abstract of a lecture by Petr Jančar, the FOSSACS 2014 invited speaker.

The PC members, and the external experts they consulted, wrote over 320
paper reviews, and the discussion phase of the meeting included a 3-day author
rebuttal phase. The competition was very strong, and unfortunately many good
papers could not be accepted.

I thank all the authors of papers submitted to FOSSACS 2014. I thank also all
members of the PC for their excellent work, as well as the external reviewers for
the expert help they provided. Throughout the phases of submission, evaluation,
and production of the proceedings, we relied on the invaluable assistance of the
EasyChair system; we are very grateful to its developer Andrei Voronkov and
his team. Last but not least, I would like to thank the ETAPS 2014 Local
Organizing Committee (chaired by Saddek Bensalem) and the ETAPS Steering
Committee (chaired by Joost-Pieter Katoen) for their efficient coordination of
all the activities leading up to FOSSACS 2014.

January 2014 Anca Muscholl
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Equivalences of Pushdown Systems Are Hard

Petr Jančar�

Dept Comp. Sci., FEI, Techn. Univ. of Ostrava (VŠB-TUO),
17. Listopadu 15, 70833 Ostrava, Czech Rep.

petr.jancar@vsb.cz

http://www.cs.vsb.cz/jancar

Abstract. Language equivalence of deterministic pushdown automata
(DPDA) was shown to be decidable by Sénizergues (1997, 2001); Stirling
(2002) then showed that the problem is primitive recursive.

Sénizergues (1998, 2005) also generalized his proof to show decidabi-
lity of bisimulation equivalence of (nondeterministic) PDA where ε-rules
can be only deterministic and popping; this problem was shown to be
nonelementary by Benedikt, Göller, Kiefer, and Murawski (2013), even
for PDA with no ε-rules.

Here we refine Stirling’s analysis and show that DPDA equivalence
is in TOWER, i.e., in the “least” nonelementary complexity class. The
basic proof ideas remain the same but the presentation and the analysis
are simplified, in particular by using a first-order term framework.

The framework of (nondeterministic) first-order grammars, with term
root-rewriting rules, is equivalent to the model of PDA with restricted
ε-rules to which Sénizergues’s decidability proof applies. We show that
bisimulation equivalence is here Ackermann-hard, and thus not primitive
recursive.

1 Introduction

Pushdown automata (PDA) are a standard and widely used model in computer
science; we recall that a PDA is a (generally nondeterministic) finite automaton
equipped with an (unbounded) stack, i.e., with a (LIFO) linear list accessible
at only one end (at the “top”). PDA are naturally used to model (sequential)
programs with recursive procedure calls, and they also form a basis for (auto-
mated) verification of some program properties. A traditional area that employs
deterministic PDA (DPDA) is the syntactic analysis of programming languages.

Given such “devices” or “systems” (like PDA or DPDA), it is standard to
ask if their (functional or behavioural) equivalence can be effectively, or even
efficiently, checked. A classical equivalence is language equivalence, asking if two
given systems accept the same sequences of (external) input symbols, or from
another viewpoint, if they can perform the same sequences of actions.

While language equivalence of PDA was quickly recognized to be undecid-
able, the decidability question for DPDA had been a famous open problem since

� Supported by the Grant Agency of the Czech Rep., project GAČR:P202/11/0340.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 1–28, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.cs.vsb.cz/jancar


2 P. Jančar

1960s. The decidability was finally shown by Sénizergues [21], who got the Gödel
Prize in 2002 for this achievement. Stirling [26] then showed that the problem is
primitive recursive. We note that the known complexity lower bound for DPDA
equivalence is just P-hardness (derived from P-hardness of the emptiness prob-
lem for context-free languages).

A fundamental behavioural equivalence is bisimulation equivalence, also called
bisimilarity; roughly speaking, two states of a system (or of two systems) are
bisimilar if performing an action a in one state can be matched by performing an
action with the same name a in the other state so that the resulting states are
also bisimilar. For deterministic systems this equivalence in principle coincides
with language equivalence, but for nondeterministic ones it is finer.

Sénizergues [22] generalized his proof for DPDA to show decidability of bisi-
mulation equivalence of (nondeterministic) PDA where ε-rules (internally chang-
ing the current state) can be only deterministic and stack-popping. (If we allow
the option that a popping ε-rule can apply at the same time when an “external-
action” rule can also apply, then bisimilarity becomes undecidable [14].) For this
more general decidable problem no complexity upper bound has been shown.
Regarding the lower bound, the previously known ExpTime-hardness [18] has
been recently shifted: Benedikt, Göller, Kiefer, and Murawski [2] showed that
the problem is nonelementary, even for “real-time” PDA (RT-PDA), i.e. PDA
with no ε-rules.

Contribution of this paper is summarized in the following points 1, 2.
1. Equivalence of DPDA is in TOWER. We refine Stirling’s ana-

lysis (from [26]) and show that DPDA equivalence is in TOWER, i.e., in
the least (reasonably defined) nonelementary complexity class. We note that
TOWER = F3 in the hierarchy of fast-growing complexity classes recently de-
scribed by Schmitz [19]. The basic proof ideas remain the same (as in [26]) but
the presentation and the analysis are simplified, in particular by using a first-
order term framework, called deterministic first-order grammars (detFOG).

2. Bisimilarity of first-order grammars is Ackermann-hard. The ge-
neral framework of (nondeterministic) first-order grammars (FOG), i.e. of finite
sets of term root-rewriting rules, is equivalent to PDA with deterministic and
popping ε-rules, i.e. to the model where decidability of bisimilarity was shown by
Sénizergues [22]. We show that bisimulation equivalence is here even Ackermann-
hard, and thus not primitive recursive. The proof is given by a reduction from
the control-state reachability problem for reset (or lossy) counter machines for
which Ackermann-hardness was shown by Schnoebelen (see [20] and references
therein, and [28] for an independent proof related to relevance logic).

Further Comments. Some advantages of using first-order terms, i.e. a formal-
ism with which (not only) every computer scientist is intimately familiar, were
already demonstrated in [15]. Though the close relationship between (D)PDA
and first-order schemes has been long known (see, e.g., [7]), the perspective
viewing (D)PDA as (deterministic) finite sets of term root-rewriting rules seems
not to have been fully exploited so far. We note that the decidability proof
in [15] (for deterministic grammars) was constructed so that it constitutes a
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good basis for extending the decidability proof to the nondeterministic case
(to match [22]). Here we concentrate on bounding the length of shortest words
witnessing nonequivalence, which cannot be easily generalized, as is now also
indicated by the gap between TOWER and the Ackermann-hardness.

We summarize the relevant known results in the following table.

DPDA=detFOG RT-PDA PDA∼FOG PDA
Lang-Eq P-hard Undecidable Undecidable Undecidable

in TOWER
Bisi-Eq P-hard TOWER-hard ACK-hard Undecidable

in TOWER Decidable Decidable

In the column PDA∼FOG we refer to those PDA that are equivalent to first-
order grammars, i.e., to PDA with only deterministic and popping ε-rules. PDA
in the last column can have unrestricted ε-rules.

The results in the boldface are shown in this paper. The TOWER-
membership is only one result, since language equivalence and bisimilarity in
principle coincide for DPDA. As already mentioned, this result is derived by
a finer look at Stirling’s approach [26], where only a primitive recursive upper
bound is claimed. The TOWER-hardness for RT-PDA is, in fact, a slight ex-
trapolation of the result presented in [2]. The authors only claim nonelementary
complexity but their proof can be adjusted to show TOWER-hardness in the
sense of [19]. (This is the usual case with proofs showing nonelementary comple-
xity lower bounds, as is also explained in [19]; in the particular case of RT-PDA
this was also confirmed by a personal communication with S. Kiefer.)

We also note that the proof of Ackermann-hardness for first-order grammars
presented here uses the feature (namely varying lengths of branches of syntactic
trees of terms) corresponding to (restricted) ε-rules; hence TOWER-hardness
remains the best known lower complexity bound for bisimilarity of RT-PDA.

The problem for reset counter machines, used in the hardness proof here, is in
fact Ackermann-complete (or ACK-complete, or Fω-complete in the hierarchy
of [19]); the upper bound was shown in [9]. The question of a similar upper
bound for the bisimilarity problem is not discussed here.

Related Work and Some Open Questions. Here we only briefly mention
some results and questions that are very close to the above discussed equivalence
problems, with no attempt to give any sort of a full account. (For an updated
survey of a specific area, namely bisimilarity checking of infinite-state systems,
we can refer to [24].)

The main challenge is still to clarify the complexity status of DPDA equi-
valence, which is still far from being understood. The practical experiments by
Henry and Sénizergues [12] have strengthened the feeling that the TOWER

bound is indeed too large. More pleasant upper bounds were shown for sub-
classes of DPDA. A co-NP upper bound is known for finite-turn DPDA [23].
For simple grammars (real-time DPDA with a single control state), a polyno-
mial algorithm deciding equivalence was shown in [13] (see [8] for a recent upper
bound); it is worth to note that the language inclusion problem is undecidable
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even in this simple case [10]. A recent result also shows NL-completeness of
equivalence of deterministic one-counter automata [3] (answering the forty-year
old polynomiality question posed by Valiant and Paterson).

A natural subclass of PDA are visibly pushdown automata, with ExpTime-
complete language equivalence problem (Alur and Madhusudan [1]); for bisi-
milarity the ExpTime-completeness was shown by Srba [25], who also used
Walukiewicz’s result on model checking pushdown systems [29]. For real-time
one-counter automata bisimilarity is PSPACE-complete [4]. An interesting sub-
class is BPA (Basic Process Algebra), corresponding to real-time PDA with
a single control state. In the so called normed case bisimilarity is polynomial
(see the above mentioned [13], [8]), but in general bisimilarity is in 2-ExpTime

(claimed in [6] and explicitly proven in [16]) and ExpTime-hard [17].
We can also mention the higher-order case. The decidability question for

higher-order DPDA equivalence remains an open problem; some progress in this
direction was made by Stirling in [27]. Bisimilarity of second-order RT-PDA is
undecidable [5]. Another generalization of pushdown systems are ground term
(or tree) rewrite systems (where rules replace subterms with subterms). Here
the decidability of bisimilarity is open [11].

2 Preliminaries

In this section we define the basic notions; some standard definitions might be
given in restricted forms when we do not need the full generality.

By N we denote the set {0, 1, 2, . . .} of nonnegative integers; we put [i, j] =
{i, i+1, . . . , j}. For a set A, by card(A) we denote its cardinality (i.e. the num-
ber of elements when A is finite). By A∗ we denote the set of finite sequences
of elements of A, which are also called words (over A). By |w| we denote the
length of w ∈ A∗. If w = uv then u is a prefix of w, and v is a suffix of w. By ε
we denote the empty sequence (|ε| = 0).

2.1 Bisimulation Equivalence in LTSs and in Deterministic LTSs

Labelled Transition Systems. A labelled transition system (an LTS) is a

tuple L = (S, Σ, ( a−→)a∈Σ) where S is a finite or countable set of states, Σ is

a finite set of actions (or letters), and
a−→⊆ S × S is a set of a-transitions (for

each a ∈ Σ). We write s
a−→ s′ instead of (s, s′) ∈ a−→. By s

w−→ s′, where

w = a1a2 . . . an ∈ Σ∗, we denote that there is a path s = s0
a1−→ s1

a2−→ · · · an−→
sn = s′; if s

w−→ s′, then s′ is reachable from s. By writing s
w−→ we mean that

s enables w, i.e., s
w−→ s′ for some s′.

Deterministic LTSs. An LTS L = (S, Σ, ( a−→)a∈Σ) is deterministic, a det-
LTS for short, if for each pair s ∈ S, a ∈ Σ there is at most one s′ such that
s

a−→ s′. Hence if w is enabled by s then there is precisely one s′ such that
s

w−→ s′. Here we also use expressions like “the path s
w−→ s′ ” or “the path

s
w−→” since the respective path is unique.
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Bisimilarity.We assume a (general) LTS L = (S, Σ, ( a−→)a∈Σ). A set B ⊆ S×S
is a bisimulation if for any (s, t) ∈ B we have: for any s

a−→ s′ there is t
a−→ t′

such that (s′, t′) ∈ B, and for any t
a−→ t′ there is s

a−→ s′ such that (s′, t′) ∈ B.
States s, t ∈ S are bisimulation equivalent, or bisimilar, written s ∼ t, if there is a
bisimulation B containing (s, t). In fact, ∼⊆ S ×S is the maximal bisimulation,
the union of all bisimulations.

Trace Equivalence and Eq-levels in Det-LTSs. It is easy to check that in
det-LTSs bisimulation equivalence coincides with so called trace equivalence, i.e.,
in any deterministic LTS L = (S, Σ, ( a−→)a∈Σ) we have

s ∼ t iff ∀w ∈ Σ∗ : s
w−→⇔ t

w−→.

Hence s, t are equivalent iff they enable the same set of words, also called traces.
This suggests the following natural stratification of ∼; it can be defined in the

general (nondeterministic) case as well, but the (technically easier) deterministic

case is sufficient for us. We thus assume a given det-LTS L = (S, Σ, ( a−→)a∈Σ).
For any k ∈ N we put Σ≤k = {w ; |w| ≤ k}, and

s ∼k t if ∀w ∈ Σ≤k : s
w−→⇔ t

w−→.

We note that ∼0= S × S, and ∼0⊇∼1⊇∼2⊇ · · · . Since our assumed L is
deterministic, it is also obvious that

⋂
k∈N

∼k=∼.
We use the notation s ∼k t also for k = ω, identifying s ∼ω t with s ∼ t. For

each pair (s, t) of states we define its equivalence level, its eq-level for short:

EqLv(s, t) = max { k ∈ N ∪ {ω} | s ∼k t }.

We stipulate that k < ω and ω − k = ω + k = ω for any k ∈ N. (Hence, e.g.,
s ∼e−5 t means s ∼ t when e = ω.)

Witnesses for Nonequivalent Pairs in Det-LTSs. Given a det-LTS L =
(S, Σ, ( a−→)a∈Σ), we note that s �∼ t implies that any shortest word wa (a ∈ Σ)
witnessing their nonequivalence (i.e., enabled by precisely one of s, t) satisfies
|w| = EqLv(s, t). For technical convenience we introduce the following definition:

a word w ∈ Σ∗ is a witness for (s, t)

if it is a shortest word such that for some a ∈ Σ we have that wa is enabled
by precisely one of s, t. (A witness w for (s, t) is thus a shortest word satisfying

s
w−→ s′, t

w−→ t′ where EqLv(s′, t′) = 0, i.e. s′ �∼1 t
′.) The witness set for (s, t)

is the set of all witnesses for (s, t) (which is empty iff s ∼ t).
We state some obvious facts in the next proposition. The crux is that by

performing the same action a ∈ Σ from s and t in a det-LTS the eq-level drops by
at most one (if at all), and it does drop for some action when ω > EqLv(s, t) > 0.

Proposition 1. In any det-LTS L = (S, Σ, ( a−→)a∈Σ) we have:

1. If EqLv(s, s′) > EqLv(s, t), then EqLv(s, t) = EqLv(s′, t) and the witness
sets for (s, t) and (s′, t) are the same.
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2. If u is a witness for (s, t) and u = wu′, then u′ is a witness for (s′, t′) where

s
w−→ s′, t

w−→ t′. Hence also EqLv(s′, t′) = EqLv(s, t)− |w|.
3. If s

v−→ s′′ and t
v−→ t′′, then EqLv(s′′, t′′) ≥ EqLv(s, t)− |v|.

2.2 First-Order Terms, FO Grammars, and Det-FO Grammars

We aim to look at LTSs in which states are first-order terms. Transitions in such
an LTS will be determined by a finite set of root-rewriting rules. We start with
definitions of these ingredients.

First-Order (Regular) Terms. The terms are built from some specified func-
tion symbols, using variables from a fixed set Var = {x1, x2, x3, . . . }.

A finite term is either a variable xi, or A(G1, . . . , Gm) where A is a function
symbol with arity m and Gj are finite terms. Each finite term has its (rooted,
finite, ordered) syntactic tree: for xi it is just the root labelled with xi; for
A(G1, . . . , Gm), the root is labelled with A, and the ordered root-successors are
the trees corresponding to G1, . . . , Gm, respectively. The height of a finite term
E, denoted Height(E), is the length of the longest branch of its syntactic tree.

Given a syntactic tree of a term, if we allow redirecting the arcs (i.e. changing
their target nodes) arbitrarily, then we get a finite graph presentation (with
a designated root but with possible cycles) of a regular term; its syntactic tree
might be infinite, but the term has only finitely many subterms, where a subterm
can have infinitely many occurrences, in arbitrarily large depths. By size(E) we
mean the size (the number of nodes, say) of the smallest graph presentation of a
regular term E. (At the level of our later analysis, the details of such definitions
are unimportant.)

In what follows, by a “term” we mean a “regular term” if we do not say explic-
itly that the term is finite. We reserve symbols E,F,G,H , and also T, U, V,W ,
for denoting (regular) terms.

Substitutions, and Their Associative Composition. By TermsN we de-
note the set of all (regular) terms over a (finite) set N of function symbols
(called “nonterminals” later). A substitution σ is a mapping σ : Var→ TermsN
whose support supp(σ) = {xi | σ(xi) �= xi} is finite; we reserve the symbol σ
for substitutions. By range(σ) we mean the set {σ(xi) | xi ∈ supp(σ)}. The
finite-support restriction allows us to present any σ as a finite set of pairs. E.g.,
{(xi, H)} where H �= xi is a substitution with the one-element support {xi}.

By applying a substitution σ to a term E we get the term Eσ that arises from
E by replacing each occurrence of xi with σ(xi); given graph presentations, in
the graph of E we just redirect each arc leading to xi towards the root of σ(xi)
(which includes the special “root-designating arc” when E = xi). For E = xi we
thus have Eσ = xiσ = σ(xi).

The natural composition of substitutions (where σ = σ1σ2 satisfies σ(xi) =
(σ1(xi))σ2) is obviously associative. We thus write simply Eσ1σ2 when mean-
ing (Eσ1)σ2 or E(σ1σ2). For future use we might note that {(xi, H)}σ is the
substitution arising from σ by replacing σ(xi) with Hσ.
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First-Order Grammars, and Det-FO Grammars. A first-order grammar,
an FO grammar or just a grammar for short, is a tuple G = (N , Σ,R) where
N = {A1, A2, . . . } is a finite set of ranked nonterminals, viewed as function
symbols with arities, Σ = {a1, a2, . . . } is a finite set of actions (or letters), and
R is a finite set of (root rewriting) rules of the form

A(x1, x2, . . . , xm)
a−→ E (1)

where A ∈ N , arity(A) = m, a ∈ Σ, and E is a finite term over N in
which each occurring variable is from the set {x1, x2, . . . , xm}. (We exem-

plify the rules by A(x1, x2, x3)
b−→ C(D(x3, B), x2), A(x1, x2, x3)

b−→ x2,

D(x1, x2)
a−→ A(D(x2, x2), x1, B); here the arities of A,B,C,D are 3, 0, 2, 2,

respectively.)
A grammar G = (N , Σ,R) is a det-FO grammar (deterministic first-order

grammar) if for each pair A ∈ N , a ∈ Σ there is at most one rule of the
type (1).

2.3 LTSs of Grammars, Equivalence Problem, Relation to PDA

LTSs Associated with Grammars and Det-FO Grammars. A grammar
G = (N , Σ,R) defines the LTS LG = (TermsN , Σ, (

a−→)a∈Σ) in which each rule

A(x1, . . . , xm)
a−→ E induces transitions (A(x1, . . . , xm))σ

a−→ Eσ

for all substitutions σ : Var→ TermsN .
(Examples of transitions induced by the previously given rules are

A(x1, x2, x3)
b−→ C(D(x3, B), x2), A(x5, x5, x2)

b−→ C(D(x2, B), x5),

A(U1, U2, U3)
b−→ C(D(U3, B), U2), A(U1, U2, U3)

b−→ U2, etc.)
We complete the definition of LG by stipulating that

EqLv(xi, H) = 0 if H �= xi (in particular, xi �∼1 xj for i �= j).

To stay in the realm of pure LTSs, we could imagine that each used variable
x ∈ Var is equipped with a fresh unique action ax and with the rule x

ax−→ x.
But we never consider such “transitions” in our reasoning, and we handle xi as
“dead terms” (not enabling any action). We thus (often tacitly) use the fact that

F
w−→ G implies Fσ

w−→ Gσ (though not vice-versa in general).
Since the rhs (right-hand sides) in the rules (1) are finite terms, all terms

reachable from a finite term are finite. (It turns out technically convenient to
have the rhs finite while taking the set TermsN of all regular terms as the state
set of LG ; the other options are in principle equivalent.)

We also observe that the LTS LG is deterministic iff G is a det-FO grammar.

Equivalence Problems. By the bisimilarity problem (or the bisimulation equi-
valence problem) for FO grammars we mean the decision problem that asks,
given a grammar G and terms T0, U0, whether T0 ∼ U0 in LG .

By the equivalence problem for det-FO grammars we mean the restriction of
the bisimilarity problem to deterministic first-order grammars.
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Relation of Grammars and Pushdown Automata. We have mentioned the
relationship between (D)PDA and first-order schemes (see, e.g., [7]). A concrete
transformation of a PDA (or of a DPDA) to an FO grammar (or to a det-
FO grammar) can be found in [15]. We just sketch the idea, though it is not
important here, and can be skipped; it suffices just to accept the main message
mentioned afterwards.

A configuration qiY1Y2 . . . Yk⊥ of a PDA, where ⊥ is the bottom-of-the-
stack symbol and the control states are q1, q2, . . . , qm, can be viewed as the
term T (qiY1Y2 . . . Yk⊥) defined inductively as follows: T (qi⊥) = ⊥, T (qiY α) =
[qiY ](T (q1α), T (q2α), . . . , T (qmα)). Hence we view each pair (qi, Y ) of a control
state and a stack symbol as a nonterminal [qiY ] with arity m; a special case is

⊥ with arity 0. A pushdown rule qiY
a−→ qjβ is rewritten to qiY x

a−→ qjβx for

a special formal symbol x, and the rule is transformed to T (qiY x) a−→ T (qjβx),
where we define T (qjx) = xj ; hence T (qiY x) = [qiY ](x1, x2, . . . , xm). In fact, we

still modify the operator T when deterministic popping ε-rules qiY
ε−→ qj are

present. (In this case no other rule of the form qiY
..−→ .. can be present.) For

each such rule we do not create the grammar rule T (qiY x) ε−→ T (qjx) (recall
that we have no ε-rules in our grammars) but we put T (qiY α) = T (qjα). (Hence
the branches of the syntactic tree of T (qα) can have varying lengths.)

The main message is that the classical language equivalence of DPDA is easily
inter-reducible with the equivalence of det-FO grammars. (This also uses the fact
that trace equivalence is a version of language equivalence to which the classical
accepting-state equivalence can be easily reduced. Another standard fact is that
in DPDA we can w.l.o.g. assume that all ε-rules are deterministic and popping.)
A similar inter-reducibility holds for the bisimilarity problem for PDA and FO
grammars, with the proviso that we restrict ourselves to (nondeterministic) PDA
where all ε-rules (if any are present) are deterministic and popping.

2.4 Complexity Classes TOWER and ACK (Ackermann)

We now recall the notions needed for stating our complexity results. A hierarchy
of “hard” complexity classes (where TOWER = F3 and ACK = Fω) as well as
more details can be found in [19].

An elementary function Nk → N arises by a finite composition of constants,
the elementary operations +,−, · , div and the exponential operator ↑, where
m ↑ n = mn . E.g., the triple-exponential function f(n) = 22

2n

is elementary.

Tower-Bounded Functions, Class TOWER. Function Tower : N→ N defined
by Tower(0) = 1 and Tower(n+1) = 2Tower(n) is nonelementary. We say that a
function f : N → N is Tower-bounded if there is an elementary function g such
that f(n) ≤ Tower(g(n)). By TOWER we denote the class of decision problems
solvable by Turing machines with Tower-bounded time (or space).

Class ACK, and Ackermann-Hardness. Let the family f0, f1, f2, . . . of func-
tions be defined by putting f0(n) = n+1 and fk+1(n) = fk(fk(. . . fk(n) . . . ))
where fk is applied n+1 times. By (our version of) the Ackermann function we
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mean the function fA defined by fA(n) = fn(n); it is a “simplest” non-primitive
recursive function. A decision problem belongs to the class ACK if it is solv-
able in time (or space) fA(g(n)) where g is a primitive recursive function. It
is the ACK-hardness, called Ackermann-hardness, what is important here. We
refer to [19] for a full discussion, but for our use the following restricted version
suffices.

We define HP-Ack as the problem that asks, given a Turing machine M , an
input w, and some n ∈ N, whether M halts on w within fA(n) steps. We say
that a problem P is Ackermann-hard if HP-Ack is reducible to P , or to the
complementary problem co-P , by a standard polynomial many-one reduction.

3 Equivalence of Det-FO Grammars Is in TOWER

In this section we show that the lengths of witnesses for pairs of nonequivalent
terms in LTSs associated with det-FO grammars are Tower-bounded. It is then
obvious that the equivalence problem for det-FO grammars is in TOWER.

To make this precise, we define the function MaxFEL : N → N (“Maximal
Finite Eq-Level”) as given below. We stipulate max ∅ = 0, and by size(G, T, U)
we mean the size of a standard presentation of grammar G and terms T, U . For
any j ∈ N, we put

MaxFEL(j) = max { e | there are a det-FO grammar G and terms T, U such
that T �∼ U in LG , size(G, T, U) ≤ j, and EqLv(T, U) = e }.

Theorem 2. Function MaxFEL (for det-FO grammars) is Tower-bounded.

Corollary 3. The equivalence problem for det-FO grammars, as well as for
DPDA, is in TOWER.

In Section 3.2 we describe a proof of Theorem 2 at a partly informal level.
Some more formalized proof parts are then given in Section 3.3. Before starting
with the proof, we first observe some important facts in Section 3.1. These facts
are more or less straightforward, and an “impatient” reader might thus have
only a quick look at Section 3.1 and read Section 3.2 immediately, returning to
Section 3.1 if/when needed.

3.1 Compositionality of Terms, and Safe Changes of Substitutions

Given a det-FO grammar G = (N , Σ,R), the LTS LG is deterministic, and it
thus has the properties captured by Prop. 1. We now note some other properties,
using the structure of states of LG , i.e. the structure of terms. (Recall that by a
“term” we mean a “regular term”, unless we explicitly say a “finite term”.)

It is useful to extend the relations ∼k and ∼ to substitutions. For σ, σ′ :
Var→ TermsN and k ∈ N ∪ {ω} we put

σ ∼k σ
′ if σ(xi) ∼k σ

′(xi) for all xi ∈ Var.

We also put EqLv(σ, σ′) = max { k | σ ∼k σ
′}.
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Congruence Properties, and the Limit of a Repeated Substitution
The items 1, 2 in the next proposition (Prop. 4) state the simple fact that ∼k

are congruences (for all k ∈ N ∪ {ω}) in our term-setting. The item 3 states a
basic fact underpinning our use of regular terms.

The point where and why we come to regular terms even when starting with
finite terms can be roughly described as follows: If we can replace subterms
σ(xi) in a pair (Eσ, Fσ) with Hσ, while keeping the same eq-level, i.e. having
EqLv(Eσ, Fσ) = EqLv(E{(xi, H)}σ, F{(xi, H)}σ), then we can repeat such
replacing of σ with {(xi, H)}σ forever, keeping the same eq-level all the time. The
limit of this process is the pair (E′σ, F ′σ) where E′ = E{(xi, H)}{(xi, H)} · · ·
and F ′ = F{(xi, H)}{(xi, H)} · · · . In (E′σ, F ′σ) the value σ(xi) is irrelevant,
and we can thus “remove” xi from the support of σ (as described below).

We note that the limit H ′ = H{(xi, H)}{(xi, H)}{(xi, H)} · · · is a well-
defined regular term, when H is a (regular) term. If H = xi, then H ′ = xi,
and otherwise H ′ is the unique term satisfying H ′ = H{(xi, H ′)}; we note that
H ′ = H if xi does not occur in H , which includes the case H = xj for j �= i.
(A graph presentation of H ′ arises from a graph presentation of H by redirecting
any arc leading to xi towards the root.)

We note that H �= xi implies that xi does not occur in H ′. We also observe
that if xi does not occur in a term G then σ(xi) plays no role in the composition
{(xi, G)}σ. In this case {(xi, G)}σ = {(xi, G)}σ[−xi] where σ[−xi] arises from σ
by removing xi from the support (if it is there), i.e.,

σ[−xi](xi) = xi and σ[−xi](xj) = σ(xj) for j �= i.

Proposition 4

1. If E ∼k F , then Eσ ∼k Fσ. Hence EqLv(E,F ) ≤ EqLv(Eσ, Fσ).
2. If σ ∼k σ

′ then Eσ ∼k Eσ
′. Hence EqLv(σ, σ′) ≤ EqLv(Eσ,Eσ′).

Moreover, if σ �∼ σ′ and E �∈ Var then EqLv(σ, σ′) < EqLv(Eσ,Eσ′).
3. If σ(xi) ∼k Hσ and H �= xi, then σ ∼k {(xi, H ′)}σ[−xi] where
H ′ = H{(xi, H)}{(xi, H)} · · · .

Proof. The points 1 and 2 can be easily shown by induction on k; for k = ω
we use the fact that ∼=

⋂
j∈N

∼j . It is also obvious that EqLv(Eσ,Eσ′) ≥
|w|+EqLv(σ, σ′) if w is a shortest word such that E

w−→ xj for some xj ∈ Var;
if there is no such w, then Eσ ∼ Eσ′.

3. Suppose σ(xi) ∼k Hσ and H �= xi, and put σ′ = {(xi, H ′)}σ[−xi]; hence
σ′ = {(xi, H ′)}σ since xi does not occur in H

′. We need to show σ ∼k σ
′.

Since σ′(xj) = σ(xj) for j �= i, we have EqLv(σ, σ′) = EqLv(σ(xi), σ
′(xi)) =

EqLv(σ(xi), H
′σ). Hence it suffices to show EqLv(σ(xi), H

′σ) ≥ k; we assume
σ(xi) �∼ H ′σ, since otherwise we are done.

Since H ′ = H{(xi, H ′)}, we deduce that H ′σ = Hσ′. Using 2 (and the fact
σ′(xj) = σ(xj) when H = xj), we deduce that EqLv(Hσ,Hσ

′) > EqLv(σ, σ′) =
EqLv(σ(xi), H

′σ).
Hence EqLv(σ(xi), H

′σ) = EqLv(σ(xi), Hσ) ≥ k (by using Prop. 1(1)). ��
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Getting an “Equation” σ(xi) ∼k Hσ
The (technical) item 1 in the next proposition (Prop. 5) is trivial. The item
2 “completes” the item 1 in Prop. 4 : Roughly speaking, if we can “increase”
EqLv(E,F ) by applying some σ to both E and F , then the reason is that any
witness w for (E,F ) reaches some xi on one side and H �= xi on the other side.
We have EqLv(xi, H) = 0 but EqLv(σ(xi), Hσ) might be larger.

Proposition 5

1. If E
w−→ xi, F

w−→ H or E
w−→ H, F

w−→ xi where H �= xi, then for any σ
we have EqLv(σ(xi), Hσ) ≥ EqLv(Eσ, Fσ) − |w|.

2. If EqLv(E,F ) < EqLv(Eσ, Fσ) for some σ, then for any witness w for

(E,F ) there are some xi ∈ supp(σ) and H �= xi such that E
w−→ xi, F

w−→
H or E

w−→ H, F
w−→ xi.

Proof. 1. Since E
w−→ xi implies Eσ

w−→ σ(xi) and F
w−→ H implies Fσ

w−→ Hσ,
the claim follows from Prop. 1(3).

2. By induction on e = EqLv(E,F ). We cannot have (E,F ) = (xi, xi) since
E �∼ F ; if {E,F} = {xi, H} for H �= xi, then we are done: e = 0, w = ε, and
if xi �∈ supp(σ) then {Eσ, Fσ} = {xi, Hσ}, in which case EqLv(xi, Hσ) > 0
implies that H = xj (for j �= i) and σ(xj) = xi, whence xj ∈ supp(σ).

We thus assume that both root(E) and root(F ) are nonterminals. If e = 0
(i.e., the roots enable different sets of actions), then EqLv(Eσ, Fσ) = 0 – a

contradiction; hence e > 0. Then for each a ∈ Σ where E
a−→ E′, F

a−→ F ′ and
EqLv(E′, F ′) = e−1 (hence for each a “starting” a witness for (E,F )) we have
EqLv(E′σ, F ′σ) ≥ EqLv(Eσ, Fσ)−1 > e−1. By the induction hypothesis any
witness w′ for (E′, F ′) satisfies the claim, and thus any witness aw′ for (E,F )
satisfies the claim as well. ��
Safe Changes of Subterms in a Pair of Terms (Keeping the Eq-Level)
The form of the next proposition is tailored to match our later use. The crux of
the item 1 (of Prop. 6) trivially follows from the already established facts: we can
“safely” replace a subterm V in one term of a pair (T, U) with another subterm
V ′ if EqLv(V, V ′) > EqLv(T, U). By “safely” we mean that the eq-level does
not change: if the arising pair is (T ′, U), say, then EqLv(T ′, U) = EqLv(T, U);
moreover, even the witness sets for (T, U) and (T ′, U) are the same.

The item 2 is slightly subtler: if we want to safely replace (Eσ, Fσ)
with (Eσ′, Fσ′) (thus replacing the relevant subterms on both sides simul-
taneously), then a (substantially) weaker condition for EqLv(σ, σ′) suffices.
Roughly speaking, from (Eσ′, Fσ′) we should first perform a word at least
as long as a witness for (E,F ) before the change of substitutions might
matter (regarding the eq-level). For a safe replacing, i.e. for guarantee-
ing EqLv(Eσ′, Fσ′) = EqLv(Eσ, Fσ), it thus suffices that EqLv(σ, σ′) >
EqLv(Eσ, Fσ) − EqLv(E,F ).

Proposition 6

1. If EqLv(σ, σ′) > EqLv(Gσ,U), then the witness sets for (Gσ,U) and
(Gσ′, U) are the same (and EqLv(Gσ,U) = EqLv(Gσ′, U)).



12 P. Jančar

2. Assume EqLv(E,F ) = k < ω and EqLv(Eσ, Fσ) = e (hence k ≤ e). If
σ ∼e−k+1 σ

′ then EqLv(Eσ′, Fσ′) = e.

Proof
1. Since EqLv(Gσ,Gσ′) ≥ EqLv(σ, σ′), the claim follows from Prop. 1(1).
2. If e = ω, then we have σ ∼ σ′, and thus Eσ′ ∼ Eσ ∼ Fσ ∼ Fσ′. Suppose
now a counterexample with the minimal e; hence EqLv(Eσ′, Fσ′) = e′ > e. (If
e′ < e, then swapping σ, σ′ contradicts our minimality assumption.)

If {E,F} = {xi, H}, then H �= xi, k = 0, and EqLv(σ(xi), Hσ) = e. Since
σ ∼e+1 σ

′, we have EqLv(σ′(xi), Hσ
′) = e, a contradiction. Otherwise (when

{E,F} �= {xi, H}, and thus root(E) and root(F ) are nonterminals) we must

have 1 ≤ k ≤ e < e′, and there is a ∈ Σ such that E
a−→ E′, F

a−→ F ′ and
EqLv(E′σ, F ′σ) = e−1. We thus have

k−1 ≤ k′ = EqLv(E′, F ′) ≤ EqLv(E′σ, F ′σ) = e−1 <
< e′−1 ≤ EqLv(E′σ′, F ′σ′).

Since σ ∼e−1−k′+1 σ
′, we contradict our minimality assumption. ��

We now state a simple corollary of the previous facts; its form will be particu-
larly useful in an inductive argument based on decreasing the support of certain
substitutions.

Corollary 7. Suppose EqLv(Eσ, Fσ) > EqLv(Eσ′σ, Fσ′σ). Then E �∼ F and

for any witness w for (E,F ) there are xi, H �= xi such that E
w−→ xi, F

w−→ H,
or vice versa. For any such xi, H we have

EqLv (Eσ′σ, Fσ′σ ) = EqLv (Eσ′{(xi, H ′)}σ[−xi], Fσ
′{(xi, H ′)}σ[−xi] ),

where H ′ = H{(xi, H)}{(xi, H)} · · · .

Proof. Let the assumption hold. We can thus write

k = EqLv(E,F ) ≤ EqLv(Eσ′σ, Fσ′σ) = e′ < e = EqLv(Eσ, Fσ).

Hence E �∼ F . Let us fix a witness w for (E,F ); it has the associated xi, H
by Prop 5(2), and |w| = k. We deduce σ(xi) ∼e−k Hσ (by Prop 5(1)), and
σ ∼e−k {(xi, H ′)}σ[−xi] (by Prop. 4(3)).

Since k ≤ k′ = EqLv(Eσ′, Fσ′) ≤ e′ < e, we have σ ∼e′−k′+1

{(xi, H ′)}σ[−xi]. The claim thus follows from Prop. 6(2). ��

3.2 Proof of Theorem 2 (Partly Informal)

Convention (on Small Numbers, and on (A, i)-Sink Words)
In the following reasoning we assume a fixed det-FO grammar G = (N , Σ,R).
To ease the presentation, we also use informally-sounding words like “small”
or “short”. Nevertheless, we will not further formalize such usages, since the
respective expressions have rigorous meanings: we view a number as small if it is
bounded by an elementary function of size(G) (independently of any initial terms
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T0, U0). I.e., we (implicitly) claim in each such case that there is an elementary
function f : N→ N, independent of our concrete grammar G, such that the value
f(size(G)) is an upper bound for our “small number”. When we say that a word,
or a sequence in general, is short, then we mean that its length is small. A set
is small if its cardinality is small. A term is small when its (presentation) size
is small.

E.g., we can easily check that if U is shortly reachable from W , i.e., if there
is a short w such that W

w−→ U , then there are small finite terms H,F such
that W = Hσ, U = Fσ (F being shortly reachable from H) where range(σ)
contains only subterms of W occurring in small depths in W . This is based on
the fact that performing one transition from a term W results in Eσ where E
is the rhs of a rule in R and range(σ) contains only depth-1 subterms of W ;
we note that size(E) is bounded by the small number TransInc (“Increase by
a Transition”) that is equal to the maximal size of the right-hand sides of the
rules in R.

We can explicitly note that W
w−→ U implies size(U) ≤ size(W ) + |w| ·

TransInc; if W is finite then also Height(U) ≤ Height(W )+ |w| ·TransInc.
A useful exercise is to note that if there is a word w ∈ Σ∗ such that

A(x1, . . . , xm)
w−→ xi, called an (A, i)-sink word, then a shortest such word

is short. (More details for this claim are in Section 3.3.) We say that any (A, i)-
sink word exposes the ith root-successor in any term A(V1, . . . , Vm). If there
is no (A, i)-sink word, then the ith root-successor Vi in A(V1, . . . , Vm) is non-
exposable, and plays no role (i.e., by any change of Vi another equivalent term
arises). In fact, we will assume that all root-successors are exposable (since the
grammar G can be harmlessly adjusted to satisfy this), and

we fix a shortest (A, i)-sink word w[A,i]

for all A ∈ N , i ∈ [1, arity(A)]. We also define the following small number:

M0 = 1 +max { |w[A,i]|;A ∈ N , i ∈ [1, arity(A)] }. (2)

Start of the Proof of Theorem 2
We have fixed a det-FO grammar G = (N , Σ,R), and we now assume a witness
u0 for (T0, U0) where T0, U0 are finite terms; hence T0 �∼ U0 in LG and |u0| =
EqLv(T0, U0). (The restriction to finite T0, U0 is here technically convenient, not
really crucial.) If u0 = a1a2 . . . ak, then (T0, U0), u0 generate the sequence

(T0, U0)
a1−→ (T1, U1)

a2−→ . . .
ak−→ (Tk, Uk) (3)

where we write (T, U)
a−→ (T ′, U ′) instead of T

a−→ T ′, U
a−→ U ′. We note that

EqLv(Ti, Ui) = k−i; the sequence (T0, U0), (T1, U1), . . . , (Tk, Uk) is thus eqlevel-
decreasing, i.e., it satisfies EqLv(T0, U0) > EqLv(T1, U1) > · · · > EqLv(Tk, Uk).
Moreover, ai+1ai+2 . . . ak is a witness for (Ti, Ui).

We prove Theorem 2 by deriving a Tower-bounded function (of size(G, T0, U0))
that bounds the length k of (3); we use two macro-steps described below.
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First Macro-step: Controlled Balancing. Both paths T0
u0−→ Tk, U0

u0−→ Uk

in (3) can have “sinking” and “non-sinking” segments distributed quite differ-
ently. By sinking we mean “exposing subterms” (corresponding to popping,
i.e. stack-height decreasing, in DPDA), by non-sinking we mean the oppo-
site (the stack-height can only increase). We will now show particular “ba-
lancing steps” that allow us to stepwise modify the pairs (Tj , Uj) in (3) so
that the component terms in the final modified (T j , U j) are more “balanced”
(i.e., more “close to each other”) while the eq-levels are kept unchanged (i.e.,
EqLv(T j, U j) = EqLv(Tj , Uj)). We will have (T 0, U0) = (T0, U0), and all T j , U j

will be finite terms.
A slight control of balancing steps will give rise to a certain subsequence

(T i0 , U i0), (T i1 , U i1), . . . , (T i� , U i�) of the sequence of pairs in the “balanced ver-
sion” of (3), where i0 = 0. The subsequence satisfies that each pair (T ij , U ij ) is
“close” to a certain finite term Wj , called a “(balancing) pivot”; this also entails
that the heights of T ij and U ij are bounded by Height(Wj) + x where x is a
small number.

Moreover, the sequence W0,W1, . . . ,W� of pivots will be “sufficiently repre-
sentative” in the sense that for any r ∈ [0, k] we can bound Height(T r) and
Height(U r) by Height(Wj)+ y where y is a small number and j is the largest
such that ij ≤ r. In other words, the heights of terms in the segment (T ij , U ij ),

(T ij+1, U ij+1), (T ij+2, U ij+2), . . . , (T r, Ur), where r = ij+1−1 if j < 	 and
r = k if j = 	, are bounded by Height(Wj) + z for a small number z.

Hence it suffices to bound 	 (the length of the subsequence) by a Tower-
bounded function (of size(G, T0, U0)); this will be achieved by the second macro-

step, by using the “pivot-path”W0
w1−→W1

w2−→ · · · w�−→W� that will be precisely
defined at the end of this first macro-step.

Balancing Steps
We say that a path V

u−→ is root-performable if A(x1, . . . , xm)
u−→ where A =

root(V ). For technical convenience we define a non-sink segment as a root-

performable path V
w−→ V ′ where |w| = M0. (Thus V

w−→ V ′ might expose a

root-successor in V , but only by the last step if at all; so V
w−→ V ′ surely “misses”

the possibility to expose some root-successor in V as quickly as possible.)

Let T
w−→ T ′ be a non-sink segment for a part

(T, U)
w−→ (T ′, U ′)

of (3); hence (T, U) = (Tr−M0 , Ur−M0), (T ′, U ′) = (Tr, Ur), and w =
ar−M0+1 ar−M0+2 . . . ar, for some r ∈ [M0, k]. Then T = A(V1, . . . , Vm),

A(x1, . . . , xm)
w−→ G, and T

w[A,j]−→ Vj for each j ∈ [1,m]. We recall that
|w[A,j]| < |w| =M0.

Since T ∼M0 U , we must have U
w[A,j]−→ V ′

j for some V ′
j , and EqLv(Vj , V

′
j ) >

EqLv(T ′, U ′) (by Prop. 1(2,3)).
We thus have T ′ = Gσ where σ(xj) = Vj for j ∈ [1,m], and we can

replace the pair (T ′, U ′) = (Gσ,U ′) with (T ′′, U ′) = (Gσ′, U ′)



Equivalences of Pushdown Systems Are Hard 15

where σ′(xj) = V ′
j . After replacing (T ′, U ′) with (T ′′, U ′), the whole respective

suffix of (3) changes: we generate it by (T ′′, U ′), u′ where u′ = ar+1 ar+2 · · · ak.
This is safe in the sense that the witness sets (and the eq-levels) for (T ′′, U ′) and
(T ′, U ′) are the same (by Prop. 6(1)).

In our concrete notation, we have transformed (3) to

(T0, U0)
a1−→ · · · (Tr−1, Ur−1)

ar−→ (T̂r, Ur)
ar+1−→ (T̂r+1, Ur+1) . . .

ak−→ (T̂k, Uk)

where Tr−1
ar−→ T̂r might be not a valid transition but the eq-levels have not

changed, i.e., EqLv(T̂r+i, Ur+i) = EqLv(Tr+i, Ur+i) for i ∈ [0, k−r]. (The nota-

tion T̂j should not be mixed with T j discussed previously; any Tj can undergo
several changes, though at most one “balancing”, before becoming the “final”
T j .)

Since w is short (|w| = M0), the pair (T ′′, U ′) (i.e. (T̂r, Ur)) is “balanced”
in the sense that both terms are “close” to one term, namely to U : we have
(T ′′, U ′) = (Gσ′, U ′) where G is a small finite term (since shortly reachable from
A(x1, . . . , xm)), and range(σ′) contains only terms that are shortly reachable
from U , and U ′ is itself shortly reachable from U . We capture the discussed
closeness by the notation

U |= (T ′′, U ′),

and we also say that U is the pivot of our balancing step, while (T ′′, U ′) is called
the balancing result.

Analogously to the described left-balancing step, where we replace (Gσ,U ′)

with (Gσ′, U ′), we define a right-balancing step, where (U
w−→ U ′ is a non-sink

segment and) we replace (T ′, Gσ) with (T ′, Gσ′); here T is the pivot and we
have T |= (T ′, Gσ′).

An important feature of our (ternary) predicate |= is that

W |= (T, U) implies that W = Hσ, T = Eσ, U = Fσ

for some small finite terms H,E, F , where range(σ) contains only subterms of
W occurring in small depths in W ; moreover, at least one of E,F is shortly
reachable from H (and thus at least one of T, U is shortly reachable from W ).
(A precise definition of W |= (T, U) is given in Section 3.3.)

Quadruple-Sequences, and Pivot Paths
We use the described balancing steps as follows. We first artificially create
a “pivot” W0 = B(T0, U0) for a (possibly added) nonterminal B so that we
have W0 |= (T0, U0). Our aim is to transform (3), by stepwise balancing, into a
certain sequence of a different kind, namely to

((W0, T0, U0), u0) � ((W1, T
′
1, U

′
1), u1) � · · ·� ((W�, T

′
�, U

′
�), u�) (4)

where also Wi |= (T ′
i , U

′
i) for i ∈ [1, 	] and ui is a proper suffix of ui−1 and a

witness for (T ′
i , U

′
i). (The sequence (T0, U0), (T

′
1, U

′
1), . . . , (T

′
� , U

′
�) will be the

subsequence (T i0 , U i0), (T i1 , U i1), . . . , (T i� , U i�) discussed earlier.)
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We start with the one-element sequence ((W0, T0, U0), u0). Then we tra-
verse (3) from left to right, and we perform a first possible balancing step (if

there is any non-sink segment in T0
u0−→ or U0

u0−→). We prolong our sequence
to ((W0, T0, U0), u0) � ((W1, T

′
1, U

′
1), u1) where W1 is the pivot and (T ′

1, U
′
1) the

balancing result of this step; u1 is the suffix of u0 that is a witness for (T ′
1, U

′
1).

Now we continue, by traversing the sequence generated by (T ′
1, U

′
1), u1, or by

(T ′
j , U

′
j), uj in general; this generated sequence corresponds to the current version

of the respective suffix of the stepwise modified (3). We look for the first possible
balancing step in this sequence, with one proviso: if we have Wj |= (Gσ′, U ′

j)
after a left-balancing step, then the next balancing step can be a right-balancing
(thus changing the pivot-side) only if the “rest-head”G has been in the meantime
erased, i.e., some σ′(xi) (that is shortly reachable from Wj) has been exposed.
Hence shortly after a left-balancing step corresponding toWj |= (Gσ′, U ′

j) either
another left-balancing step is performed or G is erased and balancing at both
sides is again allowed.

After any right-balancing step, an analogous proviso applies. This guarantees

that Wj+1 is reachable from Wj , by a certain path Wj
wj+1−→ Wj+1 in which at

most a small number of non-sink segments occurs : either the pathWj
wj+1−→ Wj+1

is short, or it has a short prefix after which no non-sink segment occurs. (More
details are in Section 3.3.)

We finish creating the sequence (4) when the paths T ′
�

u�−→, U ′
�

u�−→ do not
allow further balancing; it is clear that these paths then must be either short
or sinking all the time (in which case the heights of terms in the paths T ′

�
u�−→,

U ′
�

u�−→ are successively decreasing).
To summarize, from the sequence (3), whose length k we want to bound, we

have come to the sequence (4) that also has the associated pivot-path

W0
w1−→W1

w2−→ · · · w�−→W�, (5)

where the number of non-sink segments in each subpath Wj−1
wj−→Wj is small.

Second Step: Deriving a Tower-bound from a Pivot Path. As we made
clear, for each term W there is only a small number of pairs (T, U) such that
W |= (T, U). Since (T0, U0), (T

′
1, U

′
1), (T

′
2, U

′
2), . . . , (T

′
�, U

′
�) in (4) is an eqlevel-

decreasing sequence, we have no repeat of a pair here, and thus the number of
occurrences of each concrete Wj in the sequence W0,W1, . . . ,W� is small.

We can intuitively note that if the sequence (3) is “very long” (w.r.t.
size(G, T0, U0)) then the maximal Height(Wj) is “much larger” than
Height(W0). In this case the pivot path (5) must have “long increasing seg-
ments”. In a long increasing segment the pivots Wj are “frequent” since each

(sub)path Wj−1
wj−→Wj has at most a small number of non-sink segments.

We formalize this intuition by help of “stair sequences” that correspond to the
standard “stair-growing” stack-contents in a path from one PDA-configuration
to a larger configuration.
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Stair Sequences. Let us present (5) as

W0
w′

1−→ V1
w′′

1−→W1
w′

2−→ V2
w′′

2−→W2 · · ·
w′

�−→ V�
w′′

�−→W� (6)

where Vj is the term in the path Wj−1
wj−→ Wj for which the respective w′

j is

the shortest possible such that the path Vj
w′′

j−→ Wj does not expose any root-
successor in Vj (and is thus also root-performable). There is always such Vj ; in
some cases we might have Vj =Wj−1 (w′

j = ε) or Vj =Wj (w′′
j = ε).

Hence Vj = A(x1, . . . , xm)σ and Wj = Gσ where A(x1, . . . , xm)
w′′

j−→ G and
range(σ) contains root-successors in Vj ; since the number of non-sink segments

in Wj−1
wj−→Wj is small, G is a small finite term. We say that a subsequence

i1 < i2 < · · · < ir (7)

of the sequence 1, 2, . . . , 	 is a stair sequence if for each j ∈ [1, r−1] the subpath

Vij
w′′

ij−→
w′

ij+1

−→ · · ·
w′′

ir−1−→
w′

ir−→ Vir

of (6) does not expose any root-successor in Vij (and is thus root-performable).
Moreover, for convenience we require that the sequence is maximal in the sense
that we would violate the above condition by inserting any i where ij < i < ij+1

for some j ∈ [1, r−1]. This requirement guarantees the small-stair property:
for any j ∈ [1, r−1] we have Vij = A(x1, . . . , xm)σ and Vij+1 = Fσ where

A(x1, . . . , xm)
w′′

ij−→
w′

ij+1

−→ · · ·
w′′

ij+1−1

−→
w′

ij+1−→ F and F is a small finite term (though
not all terms in the path A(x1, . . . , xm) −→ · · · −→ F are claimed to be small).

It Suffices to Get a Tower-bound on the Lengths of Stair Sequences
Later we show that the lengths of stair sequences are bounded by a Tower-
bounded function f of size(G), independently of T0, U0; now we assume such f .
For any pivot Wj (in the sequence (5)) we then obviously have

Height(Wj) ≤ Height(W0) + stair · (1 + f(size(G)))

where stair is an appropriate small number.
Since the number of (finite) terms with the height at most H ∈ N is bounded

by y ↑ (m ↑ H) for some small numbers m, y (recall that ↑ is the exponential
operator), we easily deduce that the number of elements of the sequence (4) is
bounded by a Tower-bounded function (of size(G, T0, U0)).

For j ∈ [0, 	] we consider ((Wj , T
′
j , U

′
j), uj) in (4), where we put (T ′

0, U
′
0) =

(T0, U0). Let uj = wuj+1; we put w = u� when j = 	. It is easy to check that the

heights of terms on the paths T ′
j

w−→ and U ′
j

w−→ are bounded byHeight(Wj)+x
where x is a small number. Since the sequence generated by (T ′

j , U
′
j), w is eqlevel-

decreasing, and thus has no repeat, we get that |w| is bounded by the value
(y ↑ (m ↑ (Height(Wj) + x)))2 for some small m,x, y.

We thus routinely derive a Tower-bounded function (of size(G, T0, U0)) that
bounds the length of u0 and thus EqLv(T0, U0). Hence after we show the
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promised Tower-bounded function f (of size(G)) that bounds the lengths of
stair sequences, the proof of Theorem 2 will be finished.

A Tower-bound on the Lengths of Stair Sequences
Let us fix a stair sequence i1 < i2 < · · · < ir, referring to the notation around (7).
We now show that r ≤ f(size(G)) for a Tower-bounded function f (independent
of G).

By our definition, which also implies the small-stair property, we can easily
observe that the sequence Vi1 , Vi2 , Vi3 , . . . , Vir can be presented as

A1σ
′, A2σ

′
1σ

′, A3σ
′
2σ

′
1σ

′, . . . , Arσ
′
r−1σ

′
r−2 · · ·σ′1σ′

where we write shortly Aj instead of Aj(x1, . . . , xmj ) and where

Aj(x1, . . . , xmj )
w−→ Aj+1(x1, . . . , xmj+1 )σ

′
j for the respective w from (6), i.e.

w = w′′
ij
· · ·w′

ij+1
. Hence the supports of σ′ and σ′j are subsets of {x1, x2, . . . , xm}

wherem is the maximal arity of nonterminals, and range(σ′j) contains the root-

successors in the small finite term F such that Aj(x1, . . . , xmj )
w−→ F . Hence σ′j

are small, i.e., they are small sets of small pairs of the form (xi, E).
By the definition of (6), we can present Wi1 , Wi2 , Wi3 , . . . , Wir as

G1σ
′, G2σ

′
1σ

′, G3σ
′
2σ

′
1σ

′, . . . , Grσ
′
r−1σ

′
r−2 · · ·σ′1σ′ (8)

where Gj are small finite terms. Recalling the discussion around the introduction
of W |= (T, U) (namely the form W = Hσ, T = Eσ, U = Fσ), it is useful to
rewrite (8) as

H1σ, H2ρ1σ, H3ρ2ρ1σ, . . . , Hrρr−1ρr−2 · · · ρ1σ

where Hj are also small finite terms, but maybe with larger heights than Gj ,
guaranteeing that the sequence (T ′

i1 , U
′
i1), (T

′
i2 , U

′
i2), . . . , (T

′
ir , U

′
ir) (extracted

from (4)) can be presented as

(E1σ, F1σ), (E2ρ1σ, F2ρ1σ), . . . , (Erρr−1ρr−2 · · · ρ1σ, Frρr−1ρr−2 · · · ρ1σ) (9)

where all Ej , Fj are small. This forces us to increase the supports of σ and ρj
comparing to σ′ and σ′j (since range(σ) contains deeper subterms of Vi1) but
it is obvious that we can take the supports of σ and of all ρj as subsets of

Sup0 = {x1, x2, . . . , xn0} (10)

where n0 is small. Moreover, all terms in range(ρj) are small (but this is not
claimed for σ). (We use the symbol “ρ” instead of a variant of “σ” to stress the
small size of all ρj .) Given σ, (9) is fully determined by the sequence of triples

(E1, F1, ρ0) (E2, F2, ρ1) · · · (Er, Fr, ρr−1) (11)

which can be viewed as a word in a small alphabet AL (consisting of the respective
triples); we use ρ0 for uniformity, defining it as the empty-support substitution.

We now note a useful combinatorial fact. Let us define a function h : N→ N

inductively as follows:
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h(0) = 1, and h(j+1) = h(j) · (1 + qh(j)) where q = card(AL).

Viewing q as a constant, h is obviously a Tower-bounded function. The pigeon-
hole principle implies that in any h(1)-long segment of (11), i.e. in any segment
with length h(1) = 1+card(AL), there are two different occurrences of one
element of AL. Moreover, in any h(j+1)-long segment there are two different,
non-overlapping, occurrences of one h(j)-long segment.

We aim to show that r ≤ h(n0+1), where r is the length of our stair sequence,
as well as of the sequences (9) and (11), and n0 = card(Sup0) is introduced
in (10). Since n0 and q = card(AL) are small numbers (bounded by elementary
functions of size(G)), the value h(n0+1) is obviously bounded by g(size(G)) for
a Tower-bounded function g. Hence after we show r ≤ h(n0+1) (in the following
last part of this section), the proof of Theorem 2 will be finished.

Length r of Any Stair Sequence Is Less Than h(n0+1)
We first introduce certain “recurrent-pattern” sequences, now using general reg-
ular terms and substitutions as ingredients, with no size-restrictions.

We define (n, 	)-presentations where n, 	 ∈ N (not to be mixed with 	 in (5)).
Each (n, 	)-presentation presents a sequence with 2� elements where an element
is a pair of (regular) terms. A sequence that can be presented by an (n, 	)-
presentation is called an (n, 	)-sequence. An (n, 	)-presentation consists of

– a set Sup ⊆ Var where card(Sup) ≤ n,
– a pair (E,F ) of (regular) terms, and
– substitutions σ1, σ2, . . . , σ� and σ whose supports are subsets of Sup.

If 	 = 0, then the presented (n, 0)-sequence is the one-element sequence (Eσ, Fσ).
If 	 > 0, then the presented sequence (with 2� elements) arises by concatenating
two (n, 	−1)-sequences: the first half (with 2�−1 elements) is presented by Sup,
(E,F ), σ1, σ2, . . . , σ�−1, σ, and the second half by Sup, (E,F ), σ1, σ2 . . . , σ�−1,
and σ′ = σ�σ.

An example of an (n, 2)-sequence is

(Eσ, Fσ), (Eσ1σ, Fσ1σ), (Eσ2σ, Fσ2σ), (Eσ1σ2σ, Fσ1σ2σ) (12)

if the supports of σ, σ1, σ2 are subsets of Sup with card(Sup) ≤ n. If also
supp(σ3) ⊆ Sup, and we replace σ in (12) with σ3σ, we get

(Eσ3σ, Fσ3σ), (Eσ1σ3σ, Fσ1σ3σ), (Eσ2σ3σ, Fσ2σ3σ), (Eσ1σ2σ3σ, Fσ1σ2σ3σ).

Put together, the above 8 pairs constitute an (n, 3)-sequence, presented by Sup,
(E,F ), σ1, σ2, σ3, and σ.

We now prove the next claim, which also implies that any h(n0+1)-long seg-
ment of the (eqlevel-decreasing) sequence (9) contains an (n0, n0+1)-subsequence
(i.e. a subsequence that is an (n0, n0+1)-sequence).

Claim. Any h(	)-long segment of (9) contains an (n0, 	)-subsequence.

Proof. We give an inductive definition (based on 	) of so called good (n0, 	)-
presentations. It will be guaranteed that each h(	)-long segment of (9) has an
(n0, 	)-subsequence with a good (n0, 	)-presentation.
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Any h(0)-long segment is an element (Eiρi−1ρi−2 . . . ρ1σ, Fiρi−1ρi−2 . . . ρ1σ);
it trivially constitutes an (n0, 0)-sequence, and we define its good (n0, 0)-
presentation as Sup, (E,F ), σ where (E,F ) = (Ei, Fi) and σ = ρi−1ρi−2 . . . ρ1σ.

For a h(	+1)-long segment S of (9) we define a respective good (n0, 	+1)-
presentation as follows. We take two h(	)-long non-overlapping subsegments S1,
S2 of S such that the respective “images” of S1 and S2 in (11) are the same.
(This is possible by the definition of h.)

Let Sup, (E,F ), σ1, σ2, . . . , σ�, σ be a good (n0, 	)-presentation of a subse-
quence of S1, starting at (the relative) position prel1 inside S1 and at (the abso-
lute) position pabs1 in (9); let pabs2 denote the position in (9) that corresponds to
the relative position prel1 in S2. Our (inductive) construction of good presenta-
tions guarantees that (E,F ) = (Epabs

1
, Fpabs

1
) and σ = ρpabs

1 −1ρpabs
1 −2 · · · ρ1σ. An-

other (inductive) property of good presentations is that Sup, (E,F ), σ1, σ2, . . . ,
σ�, σ�+1σ, where where we put σ�+1 = ρpabs

2 −1ρpabs
2 −2 · · · ρpabs

1
, is a good (n0, 	)-

presentation of a subsequence of S2 (since the images of S1 and S2 in (11) are the
same). (Our definition in the case 	 = 0 indeed guarantees these two properties.)

Then Sup, (E,F ), σ1, σ2, . . . , σ�+1, σ is defined to be a good (n0, 	+1)-
presentation, presenting a subsequence of the h(	+1)-long segment S. The above
used properties of good (n0, 	)-presentations are obviously guaranteed for the
defined good (n0, 	+1)-presentation as well. ��
We observe that all elements of a (0, 	)-sequence are the same. There is thus
no eqlevel-decreasing (0, 	)-sequence for 	 > 0. The next claim shows that an
eqlevel-decreasing (n, 	)-sequence with 	 > 0 gives rise to an eqlevel-decreasing
(n−1, 	−1)-sequence (arising from the original even-index elements by subterm
replacing that does not change the respective eq-levels). This implies that

there is no eqlevel-decreasing (n, 	)-sequence where n < 	;

in particular, there is no eqlevel-decreasing (n0, n0+1)-sequence. Using the pre-
vious claim, we deduce that there is no h(n0+1)-long segment in (9); this implies
r < h(n0+1), and the proof of Theorem 2 is finished.

Claim. Let ej denote the eq-level of the jth element of an (n, 	)-sequence, and
assume 	 > 0 and e1 > e2 > · · · > e2� . Then n > 0 and there is an (n−1, 	−1)-
sequence in which the eq-level of its jth element is e2j.

Proof. Let Seq be an (n, 	)-sequence, presented by Sup, (E,F ), σ1, σ2, . . . , σ�,
and σ, where 	 > 0 and e1 > e2 > · · · > e2� are the eq-levels of the elements of
Seq in the respective order. We must obviously have n > 0.

Since EqLv(Eσ, Fσ) = e1 > e2 = EqLv(Eσ1σ, Fσ1σ), we can fix some xi ∈
Sup and H �= xi, where E

w−→ xi and F
w−→ H , or vice versa, for a witness w

for (E,F ). (This follows from Prop. 5(2).) We put

H ′ = H{(xi, H)}{(xi, H)} · · · , and σ′j = σj {(xi, H ′)} (for all j ∈ [1, 	]).

We note that σ′jσ = σ′jσ[−xi] for any σ (where σ[−xi] arises from σ by putting
σ[−xi](xi) = xi). We say that the above (n, 	)-presentation of Seq (accompanied)
with xi, H gives rise to the (n−1, 	−1)-sequence Seq′ presented by
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Sup� {xi}, (Eσ′1, Fσ′1), (σ′2)[−xi], (σ
′
3)[−xi], . . . , (σ

′
�)[−xi], σ[−xi]. (13)

We now show that Seq′ satisfies the desired condition, i.e., the eq-levels of its
elements are e2 > e4 > e6 > · · · > e2� . We prove this by induction on 	.

By Cor. 7 we deduce that EqLv (Eσ′1σ[−xi], Fσ
′
1σ[−xi] ) = e2, since

EqLv (Eσ1σ, Fσ1σ ) = EqLv (Eσ1{(xi, H ′)}σ[−xi], Fσ1{(xi, H ′)}σ[−xi] ).

If 	 = 1, then we are done.
If 	 > 1, then the (n, 	−1)-presentation Sup, (E,F ), σ1, σ2, . . . , σ�−1, σ (pre-

senting the first half of Seq) with xi, H gives rise to the (n−1, 	−2)-sequence Seq′1
that is the first half of Seq′; hence Seq′1 is presented by Sup� {xi}, (Eσ′1, Fσ′1),
(σ′2)[−xi], (σ

′
3)[−xi], . . . , (σ

′
�−1)[−xi], σ[−xi]. By the induction hypothesis, the eq-

levels in Seq′1 are e2, e4, . . . , e2�−1 .
The (n, 	−1)-presentation Sup, (E,F ), σ1, σ2, . . . , σ�−1, σ�σ (presenting the

second half of Seq) with xi, H gives rise to the (n−1, 	−2)-sequence Seq′′2 pre-
sented by Sup�{xi}, (Eσ′1, Fσ′1), (σ′2)[−xi], (σ

′
3)[−xi], . . . , (σ

′
�−1)[−xi], (σ�σ)[−xi].

By the induction hypothesis, the eq-levels in Seq′′2 are e2�−1+2, e2�−1+4, . . . , e2� .
By another (repeated) use of Cor. 7, the eq-levels in Seq′′2 do not change

when we replace (σ�σ)[−xi] with (σ�{(xi, H ′)}σ[−xi])[−xi] = (σ′�)[−xi]σ[−xi] in the
presentation. By this replacing we get the sequence Seq′2 that is the second half
of Seq′, in fact. The proof is thus finished. ��

3.3 Formalizing Informal Parts of the Proof of Theorem 2

In this section we just add more formal details to some parts of the proof in
Section 3.2 where the reasoning might look too informal. We assume a given
det-FO grammar G = (N , Σ,R).

Sink Words, Normal-Form Grammars, Small Number M0

For every A ∈ N and i ∈ [1,m] where m = arity(A) we say that w ∈ Σ∗ is an

(A, i)-sink word if A(x1, . . . , xm)
w−→ xi. We can compute a shortest (A, i)-sink

word w[A,i] for each (A, i) for which such a word exists. The lengths of some
w[A,i] can be exponential in size(G), but we can compute these lengths (and
concise presentations of w[A,i]) by a polynomial algorithm based on dynamic
programming. The essential fact is that the length of a shortest (A, i)-sink word

is 1+|v| where v is a shortest word such that E
v−→ xi for the right-hand side

E of a rule A(x1, . . . , xm)
a−→ E in R. If E = xi then v = ε; otherwise v can

be composed from the (A, i)-sink words corresponding to a respective branch in
the syntactic tree of E.

We assume that the grammar G is in the normal form, i.e., there is w[A,i] for
each (A, i). This is harmless: if there is no such word for a concrete pair A, i,
then we can decrease the arity of A and modify the rules in R accordingly, while
the LTS LG remains unchanged, in fact.

It is now also quite clear that M0 defined by (2) is indeed a small number.
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Closeness Predicate |= Defined via |=B, |=R, |=L

We recall the small numberTransInc (the maximal size of the rhs of a rule inR)
that also bounds the term-height increase caused by performing one transition,
and we define another small number:

M1 = TransInc · (M0)
2 + 2 ·M0.

The points 1-4 below define (a technically convenient form of) the predicate
W |= (T, U), divided into three (not necessarily disjoint) cases |=B (“both sides
reachable”), |=R (“right-hand side reachable”), and |=L (“left-hand side reach-

able”). We say that a term T is k-reachable from W if W
w−→ T where |w| ≤ k.

1) W |=B (T, U) if each of T, U is M1-reachable from W .
2) W |=R (T, U) if U isM0-reachable fromW and T = Gσ where Height(G) ≤

M0 ·TransInc and σ(xi) is M0-reachable from W for each xi in G.
3) W |=L (T, U) if T isM0-reachable fromW and U = Gσ where Height(G) ≤

M0 ·TransInc and σ(xi) is M0-reachable from W for each xi in G.
4) W |= (T, U) if W |=B (T, U) or W |=L (T, U) or W |=R (T, U).

We can easily verify a claim from Section 3.2: if W |= (T, U), then W = Hσ,
T = Eσ, U = Fσ for some small finite terms H,E, F , where range(σ) contains
only subterms of W occurring in small depths in W .

Relation � on the Set of Quadruples ((W,T, U), u)
Now we define the relation � (used in (4)), by the following (deduction) rules

divided into the cases a), b), c). In fact, formally we introduce the relations
bal�

(“balance”) and
post� (“postpone”) where �=

bal� ∪ post� · bal� . We assume that

W |= (T, U) and u is a witness for (T, U),

and we describe ((W ′, T ′, U ′), u′) such that ((W,T, U), u)
bal� ((W ′, T ′, U ′), u′)

or ((W,T, U), u)
post� ((W ′, T ′, U ′), u′); at the same time we verify that W ′ |=

(T ′, U ′) and that u′ is a proper suffix of u and a witness for (T ′, U ′).

a) W |=B (T, U).

Suppose that u has the shortest prefix w such that one of the paths T
w−→,

U
w−→ finishes by a non-sink segment.

i) Suppose w = u1u2 where T
u1−→ T1

u2−→ T2 and T1
u2−→ T2 is a non-sink

segment; we thus have |u2| = M0, T1 = A(V1, . . . , Vm), and T2 = Gσ

where A(x1, . . . , xm)
u2−→ G and σ(xi) = Vi (for i ∈ [1,m]).

Let U
u1−→ U1

u2−→ U2 and u = u1u2u
′. Then we deduce

((W,T, U), u)
bal� ((U1, Gσ

′, U2), u
′)

putting σ′(xi) = V ′
i where U1

w(A,i)−→ V ′
i .

We can verify that U1 |=R (Gσ′, U2). Moreover, u′ is a witness for
(Gσ′, U2) (by using Prop. 6(1)).

ii) If w = u1u2 where U
u1−→ U1

u2−→ U2 and U1
u2−→ U2 is a non-sink

segment, then we proceed symmetrically and deduce
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((W,T, U), u)
bal� ((T1, T2, Gσ

′), u′).

Here T1 |=L (T2, Gσ
′), and u′ is a witness for (T2, Gσ

′).

b) W �|=B (T, U) and W |=R (T, U).
Hence W |=R (Gσ,U) where Gσ is a presentation of T in the form of the
definition of |=R (in the point 2); thus Height(G) ≤ M0 · TransInc, and
G is not a variable since W �|=B (T, U). Suppose now that u has the shortest
prefix w such that one of the following two conditions holds:
i) G

w−→ xi (hence Gσ
w−→ σ(xi) where σ(xi) is M0-reachable from W ), or

ii) w = u1u2 where G
u1−→ G1

u2−→ G2 and G1
u2−→ G2 is a non-sink segment.

We note that if there is no such w, then u is short. Here we assume u = wu′.
In the case i), G

w−→ xi, we take U ′ such that U
w−→ U ′ and we deduce

((W,Gσ,U), u)
post� ((W,σ(xi), U

′), u′).

We note that W |=B (σ(xi), U
′): since |w| ≤ (1 +M0 · TransInc) ·M0 and

U is M0-reachable from W , we have that U ′ is M1-reachable from W ; and
σ(xi) is even M0-reachable from W .

In the case ii) we proceed as in a), i.e., for U
u1−→ U1

u2−→ U2 we deduce

((W,Gσ,U), u)
bal� ((U1, G

′σ′, U2), u
′)

accordingly (whereG1σ = A′(x1, . . . , xm′)σ′′
u2−→ G′σ′′ = G2σ is the non-sink

segment). Here U1 |=R (G′σ′, U2) and u
′ is a witness for (G′σ′, U2).

c) W �|=B (T, U) and W |=L (T,Gσ).
This case is analogous to b). We can here deduce

((W,T,Gσ), u)
post� ((W,T ′, σ(xi)), u

′)

where W |=B (T ′, σ(xi)) and u
′ is a witness for (T ′, σ(xi)), or

((W,T,Gσ), u)
bal� ((T1, T2, G

′σ′), u′)

where T1 |=L (T2, G
′σ′) and u′ is a witness for (T2, G

′σ′).

We recall that �=
bal� ∪ post� · bal� , and we note that

post� · post� is empty.
We can easily verify the next claims:

1. If ((W,T, U), u)
bal� ((W ′, T ′, U ′), u′) by a), then W ′ is M0-reachable from a

subterm of a term (T or U) that is M1-reachable from W .

2. If ((W,T, U), u)
post� ((W ′, T ′, U ′), u′) then W ′ =W .

3. If ((W,T, U), u)
bal� ((W ′, T ′, U ′), u′) by b) or c), then W ′ is M1-reachable

from W .

Hence ((W,T, U), u) � ((W ′, T ′, U ′), u′) implies that W
v1−→ W ′

1
v2−→ W ′

2
v3−→

W ′ for some v1, v2, v3 and W ′
1, W

′
2 where |v1| ≤M1, |v3| ≤M0, and W

′
1

v2−→W ′
2

sinks from W ′
1 to its subterm W ′

2: we take v2 as the sequence of the appropriate
(A, i)-sink words w[A,i] (along the respective branch in the syntactic tree of W ′

1).

We fix such a path W
w−→ W ′, where w = v1v2v3, for each ((W,T, U), u) �

((W ′, T ′, U ′), u′). It is obvious that W
w−→W ′ contains at most a small number

of non-sink segments.
We have thus formalized deriving a pivot-path (5) from the sequence (4).
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4 Bisimilarity of FO Grammars Is Ackermann-Hard

Here we prove the next theorem, referring to the notions discussed in Section 2.4.

Theorem 8. Bisimilarity of first-order grammars is Ackermann-hard.

We do not give a direct reduction from HP-Ack, since using Lemma 9 below
is much more convenient. We define the necessary notions first.

Reset Counter Machines (RCMs). An RCM is a tupleM = (d,Q, δ) where
d is the dimension, yielding d nonnegative counters c1, c2, . . . , cd, Q is a finite
set of (control) states, and δ ⊆ Q×Op×Q is a finite set of instructions, where
the set Op of operations contains inc(ci) (increment ci), dec(ci) (decrement ci),
and reset(ci) (set ci to 0), for i = 1, 2, . . . , d. We view Q×Nd as the set Conf

of configurations of M. The transition relation −→⊆ Conf ×Conf is induced
by δ in the obvious way: If (p, op, q) ∈ δ then we have (p, (n1, . . . , nd)) −→
(q, (n′1, . . . , n

′
d)) in the following cases:

– op = inc(ci), n
′
i = ni+1, and n′j = nj for all j �= i; or

– op = dec(ci), ni > 0, n′i = ni−1, and n′j = nj for all j �= i; or
– op = reset(ci), n

′
i = 0, and n′j = nj for all j �= i.

By −→∗ we denote the reflexive and transitive closure of −→.

Control-State Reachability Problem for RCMs
We define the RCM control-state reachability problem in the following form:
given an RCM M = (d,Q, δ) and (control) states pin, pf, we ask if pf is reach-
able from (pin, (0, 0, . . . , 0)), i.e., if there are m1,m2, . . . ,md ∈ N such that
(pin, (0, 0, . . . , 0)) −→∗ (pf, (m1,m2, . . . ,md)).

Lemma 9. [20] RCM control-state reachability problem is Ackermann-hard.

We mentioned this problem, and its ACK-completeness, in Section 1. (The
crux of the hardness proof is an efficient construction that, given n ∈ N, provides
RCMs M1, M2 that “weakly compute” the function fn and its inverse, for fn
used in the definition of the Ackermann function. By “weakly” we mean that
some computations can also return smaller values than expected.)

RCM Control-State Reachability Reduces to First-Order Bisimilarity
We finish by proving the next lemma; this establishes Theorem 8, by using
Lemma 9. The given reduction is obviously polynomial. (In fact, it can be checked
to be a logspace reduction, but this is a minor point in the view of the fact that
even a primitive-recursive reduction would suffice here.)

Lemma 10. The RCM control-state reachability problem is polynomially re-
ducible to the complement of the bisimilarity problem for first-order grammars.

Proof. Let us consider an instance M = (d,Q, δ), pin, pf of the RCM control-
state reachability problem, and imagine the following game between Attacker
(he) and Defender (she). This is the first version of a game that will be afterwards
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implemented as a standard bisimulation game. Attacker aims to show that pf is
reachable from (pin, (0, 0, . . . , 0)), while Defender opposes this.

The game uses 2d game-counters, which are never decremented; each counter
ci ofM yields two game-counters, namely cIi and cDi , for counting the numbers
of Increments and Decrements of ci, respectively, since the last reset or since
the beginning if there has been no reset of ci so far. The initial position is
(pin, ((0, 0), . . . , (0, 0))), with all 2d game-counters (organized in pairs) having
the value 0.

A game round from position (p, ((n1, n
′
1), . . . , (nd, n

′
d))) proceeds as described

below. It will become clear that it suffices to consider only the cases ni ≥ n′i; the
position then corresponds to the M’s configuration (p, (n1−n′1, . . . , nd−n′d)).

If p = pf, then Attacker wins; if p �= pf and there is no instruction (p, op, q) ∈ δ,
then Defender wins. Otherwise Attacker chooses (p, op, q) ∈ δ, and the continu-
ation depends on op as follows:

1. If op = inc(ci), then the next-round position arises (from the previous one)
by replacing p with q and by performing cIi := cIi+1 (the counter of incre-
ments of ci is incremented, i.e., ni is replaced with ni+1).

2. If op = reset(ci), then the next-round position arises by replacing p with q
and by performing cIi := 0 and cDi := 0 (hence both ni and n

′
i are replaced

with 0).

3. If op = dec(ci), then Defender chooses one of the following options:

(a) the next-round position arises by replacing p with q and by performing
cDi := cDi +1 (the counter of decrements of ci is incremented, i.e., n′i is
replaced with n′i+1), or

(b) (Defender claims that this decrement is illegal since ni = n′i and) the
next position becomes just (ni, n

′
i). In this case a (deterministic) check

if ni = n′i is performed, by successive synchronized decrements at both
sides. If indeed ni = n′i (the counter-bottoms are reached at the same
moment), then Defender wins; otherwise (when ni �= n′i) Attacker wins.

If (pin, (0, 0, . . . , 0)) −→∗ (pf, (m1,m2, . . . ,md)) for some m1,m2, . . . ,md, i.e.,
if the answer to RCM control-state reachability is YES, then Attacker has a
winning strategy: he just follows the corresponding sequence of instructions. He
thus also always chooses dec(ci) legally, i.e. only in the cases where ni > n′i, and
Defender loses if she ever chooses 3(b). If the answer is NO (pf is not reachable),
and Attacker follows a legal sequence of instructions, then he either loses in a
“dead” state or the play is infinite; if Attacker chooses an illegal decrement, then
in the first such situation we obviously have ni = n′i for the respective counter
ci, and Defender can force her win via 3(b).

Since the game-counters can be only incremented or reset, it is a routine to
implement the above game as a bisimulation game in the grammar-framework
(using a standard method of “Defender’s forcing” for implementing the choice
in 3). We now describe the corresponding grammar G = (N , Σ,R).

The set N of nonterminals will include a unary nonterminal I, a nullary
nonterminal ⊥, and the nonterminals with arity 2d that are induced by control
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states ofM as follows: each p ∈ Q induces Ap, A(p,i), Bp, B(p,i,1), B(p,i,2), where
i = 1, 2, . . . , d.

We intend that a game-position (p, ((n1, n
′
1), . . . , (nd, n

′
d))) corresponds to the

pair of terms(
Ap(I

n1⊥, In′
1⊥, . . . , Ind⊥, In′

d⊥), Bp(I
n1⊥, In′

1⊥, . . . , Ind⊥, In′
d⊥)

)
(14)

where Ik⊥ is a shorthand for I(I(. . . I(⊥) . . . )) with I occurring k times; we put
I0⊥ = ⊥. The RCM control-state reachability instanceM, pin, pf will be reduced
to the (non)bisimilarity-problem instance G, Apin

(⊥, . . . ,⊥), Bpin
(⊥, . . . ,⊥).

We put Σ = δ � {a, b}, i.e., the actions of G correspond to the instructions
(or instruction names) ofM, and we also use auxiliary (fresh) actions a, b.

The set of rules R contains a sole rule for I, namely I(x1)
a−→ x1, and no

rule for ⊥; hence In⊥ ∼ In
′⊥ iff n = n′. Each instruction Ins = (p, op, q) ∈ δ

induces the rules in R as follows:

1. If op = inc(ci), then the induced rules are

Ap(x1, . . . , x2d)
Ins−→ Aq(x1, . . . , x2(i−1), I(x2i−1), x2i, . . . , x2d), and

Bp(x1, . . . , x2d)
Ins−→ Bq(x1, . . . , x2(i−1), I(x2i−1), x2i, . . . , x2d).

2. If op = reset(ci), then the induced rules are

Ap(x1, . . . , x2d)
Ins−→ Aq(x1, . . . , x2(i−1),⊥,⊥, x2i+1, . . . , x2d),

Bp(x1, . . . , x2d)
Ins−→ Bq(x1, . . . , x2(i−1),⊥,⊥, x2i+1, . . . , x2d).

3. If op = dec(ci), then the induced rules are below; here we use the shorthand

A
a−→ B when meaning A(x1, . . . , x2d)

a−→ B(x1, . . . , x2d):

Ap
Ins−→ A(q,i), Ap

Ins−→ B(q,i,1), Ap
Ins−→ B(q,i,2), Bp

Ins−→ B(q,i,1),

Bp
Ins−→ B(q,i,2),

A(q,i)(x1, . . . , x2d)
a−→ Aq(x1, . . . , x2i−1, I(x2i), x2i+1, . . . , x2d),

B(q,i,1)(x1, . . . , x2d)
a−→ Bq(x1, . . . , x2i−1, I(x2i), x2i+1, . . . , x2d),

B(q,i,2)(x1, . . . , x2d)
a−→ Aq(x1, . . . , x2i−1, I(x2i), x2i+1, . . . , x2d),

A(q,i)(x1, . . . , x2d)
b−→ x2i−1, B(q,i,1)(x1, . . . , x2d)

b−→ x2i−1,

B(q,i,2)(x1, . . . , x2d)
b−→ x2i.

Moreover, R contains Apf
(x1, . . . , x2d)

a−→ ⊥ (but not Bpf
(x1, . . . , x2d)

a−→ ⊥).
Now we recall the standard (turn-based) bisimulation game, starting with

the pair (Apin
(⊥, . . . ,⊥), Bpin

(⊥, . . . ,⊥)). In the round starting with (T1, T2),

Attacker chooses a transition Tj
a−→ T ′

j and then Defender chooses T3−j
a−→

T ′
3−j (for the same a ∈ Σ); the next round starts with the pair (T ′

1, T
′
2). If a player

gets stuck, then (s)he loses; an infinite play is a win of Defender. It is obvious that
Defender has a winning strategy in this game iff Apin

(⊥, . . . ,⊥) ∼ Bpin
(⊥, . . . ,⊥).

We now easily check that this bisimulation game indeed implements the above
described game; a game-position (p, ((n1, n

′
1), . . . , (nd, n

′
d))) is implemented as

the pair (14). The points 1 and 2 directly correspond to the previous points 1
and 2. If Attacker chooses an instruction Ins = (p,dec(ci), q), then he must
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use the respective rule Ap
Ins−→ A(q,i) in 3, since otherwise Defender installs

syntactic equality, i.e. a pair (T, T ). It is now Defender who chooses Bp
Ins−→

B(q,i,1) (corresponding to the previous 3(a)) or Bp
Ins−→ B(q,i,2) (corresponding

to 3(b)). Attacker then must choose action a in the first case, and action b in
the second case; otherwise we get syntactic equality. The first case thus results
in the pair (Aq(. . . ), Bq(. . . )) corresponding to the next game-position (where

cDi has been incremented), and the second case results in the pair (Ini⊥, In′
i⊥);

we have already observed that Ini⊥ ∼ In
′
i⊥ iff ni = n′i.

Finally we observe that in any pair (Apf
(. . . ), Bpf

(. . . )) Attacker wins imme-

diately (since the transition Apf
(. . . )

a−→ ⊥ can not be matched).
We have thus established that pf is reachable from (pin, (0, . . . , 0)) if, and only

if, Apin
(⊥, . . . ,⊥) �∼ Bpin

(⊥, . . . ,⊥). ��

Acknowledgement. The Ackermann-hardness result was achieved during my
visit at LSV ENS Cachan, and I am grateful to Sylvain Schmitz and Philippe
Schnoebelen for fruitful discussions.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. STOC 2004, pp.
202–211. ACM (2004)
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1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)

7. Courcelle, B.: Recursive applicative program schemes. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. B, pp. 459–492. Elsevier, MIT
Press (1990)

8. Czerwinski, W., Lasota, S.: Fast equivalence-checking for normed context-free pro-
cesses. In: Proc. of FSTTCS 2010. LIPIcs, vol. 8, pp. 260–271. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2010)

9. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with Dickson’s lemma. In: Proc. LICS 2011, pp. 269–
278. IEEE Computer Society (2011)

10. Friedman, E.P.: The inclusion problem for simple languages. Theor. Comput.
Sci. 1(4), 297–316 (1976)

http://dx.doi.org/10.1016/j.jcss.2013.11.003


28 P. Jančar
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15. Jančar, P.: Decidability of DPDA language equivalence via first-order grammars.
In: Proc. LICS 2012, pp. 415–424. IEEE Computer Society (2012)
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Abstract. The diagnosis problem amounts to deciding whether some
specific “fault” event occurred or not in a system, given the observations
collected on a run of this system. This system is then diagnosable if the
fault can always be detected, and the active diagnosis problem consists in
controlling the system in order to ensure its diagnosability. We consider
here a stochastic framework for this problem: once a control is selected,
the system becomes a stochastic process. In this setting, the active diag-
nosis problem consists in deciding whether there exists some observation-
based strategy that makes the system diagnosable with probability one.
We prove that this problem is EXPTIME-complete, and that the active
diagnosis strategies are belief-based. The safe active diagnosis problem is
similar, but aims at enforcing diagnosability while preserving a positive
probability to non faulty runs, i.e. without enforcing the occurrence of
a fault. We prove that this problem requires non belief-based strategies,
and that it is undecidable. However, it belongs to NEXPTIME when
restricted to belief-based strategies. Our work also refines the decidabil-
ity/undecidability frontier for verification problems on partially observed
Markov decision processes.

1 Introduction

Diagnosis for discrete event systems was introduced in [11], and can be described
as follows: a labeled transition system performs a run, which may contain some
specific events called faults. Some of the transition labels are observable, so one
gets information about the performed run through its trace, i.e. its sequence of
observed labels. The diagnosis problem then amounts to determining whether a
fault event occurred or not given the observed trace. The trace is called faulty
(resp. correct) if all runs that can have produced it contain (resp. do not con-
tain) a fault. In the remaining cases the trace is called ambiguous. Along with
the diagnosis problem comes the diagnosability question: does there exist an in-
finite ambiguous trace (thus forbidding diagnosis)? For finite transition systems,
checking diagnosability was proved to have a polynomial complexity [15].
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Diagnosis and diagnosability checking have been extended to numerous models
(Petri nets [3], pushdown systems [9], etc.) and settings (centralized, decentral-
ized, distributed), and have had an impact on important application areas, e.g.
for telecommunication network failure diagnosis. Several contributions have con-
sidered enforcing the diagnosability of a system. Under the generic name of active
diagnosis, the problems take quite different shapes. They range from the selec-
tion of minimal sets of observable labels that make the system diagnosable [4], to
the design of controllers that select a diagnosable sublanguage of a system [10],
and to online aspects that either turn on and off sensors [4, 13] or modify an
action plan [5] in order to reduce the amount of ambiguity. Probabilistic sys-
tems have also received some attention [7, 12], with two essential motivations:
determining the likelihood of a fault given an observed trace and defining di-
agnosability for probabilistic systems. Two definitions have been proposed: The
A-diagnosability, which requires that the ambiguous traces have a null probabil-
ity, and the weaker AA-diagnosability, which requires that fault likelihood will
converge to one with probability one. Interestingly, the A-diagnosability does
not depend on the specific values of transition probabilities, but only on their
support: it is thus a structural property of a system, which can be checked in
polynomial time on finite state systems.

Here we address the question of active diagnosis for stochastic systems. We
elaborate on two recent contributions. The first one [8] improves the work in [10]
and designs an observation-based controller that enables a subset of actions in
the system in order to make it diagnosable while preserving its liveness. Optimal
constructions are then proposed the most relevant for our work being the char-
acterization of unambiguous traces by a deterministic Büchi automaton with
minimal size. The second one [1] considers probabilistic Büchi automata, a sub-
class of partially observed Markov decision processes (POMDP), and proves that
checking the existence of strategies that almost surely achieve a Büchi condition
on POMDP is EXPTIME-complete. The result was later extended in [2]. This
motivates the use of POMDP as semantics for the models we consider.

The first contribution of this paper is a framework for the active diagnosis
problem of probabilistic systems. The models we consider are weighted and la-
beled transition systems, where some transitions represent a fault. Some of the
transition labels are observable, and similarly some are controllable. From a given
state of the system, and given a set of enabled labels, one derives a transition
probability by normalization of transition weights. The active diagnosis prob-
lem amounts to designing a label activation strategy that enforces the stochastic
diagnosability of the system while preserving its liveness. As a second contri-
bution, this problem is proved to be decidable, and EXPTIME complete. The
resulting strategies are belief-based, i.e. they only depend on the set of possible
states of the system given past observations, regardless of the exact values of
transition weights. As a third contribution, we introduce and analyze the safe
active diagnosis problem. It extends the active diagnosis by enforcing a posi-
tive probability of correct runs. In other words, this rules out strategies that
would reach diagnosability only by enforcing the occurrence of a fault. We prove
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that safe active diagnosis may require non belief-based strategies, and that the
existence of such strategies is an undecidable problem. This result refines the
decidability/undecidability frontier for POMDP: the existence of a strategy si-
multaneously ensuring a Büchi condition almost-surely and a safety condition
with positive probability is undecidable. This may seem surprising since the ex-
istence of strategies for each objective taken separately is decidable. As a last
contribution, we prove that, restricted to belief-based strategies, the safe active
diagnosis problem becomes decidable and belongs to NEXPTIME.

The paper is organized as follows: section 2 introduces the active diagnosis
problem for probabilistic systems, and compares it with the state of the art.
Section 3 proposes resolution techniques for active diagnosis. Section 4 analyzes
the safe active diagnosis problem. Section 5 concludes this work. A long version of
this paper including proofs is available at http://hal.inria.fr/hal-00930919

2 The Active Diagnosis Problem

This section recalls diagnosis problems from the literature, and formalizes the
new problems we are interested in.

2.1 Passive (Probabilistic) Diagnosis

When dealing with stochastic discrete event systems diagnosis, systems are often
modeled using labeled transition systems.

Definition 1. A probabilistic labeled transition system (pLTS) is a tuple A =
〈Q, q0, Σ, T,P〉 where:
– Q is a set of states with q0 ∈ Q the initial state;
– Σ is a finite set of events;
– T ⊆ Q×Σ ×Q is a set of transitions;
– P is the transition matrix from T to Q≥0 fulfilling for all q ∈ Q:∑

(q,a,q′)∈T P[q, a, q′] = 1.

Observe that a pLTS is a labeled transition system (LTS) equipped with
transition probabilities. The transition relation of the underlying LTS is defined
by: q

a−→ q′ for (q, a, q′) ∈ T ; this transition is then said to be enabled in q. A
run over the word σ = a1a2 . . . ∈ Σω is a sequence of states (qi)i≥0 such that

qi
ai+1−−−→ qi+1 for all i ≥ 0, and we write q0

σ
=⇒ if such a run exists. A finite run

over w ∈ Σ∗ is defined analogously, and we write q
w
=⇒ q′ if such a run ends at

state q′. A state q is reachable if there exists a run q0
w
=⇒ q for some w ∈ Σ∗.

On the other hand, forgetting the labels and merging the transitions with same
source and target, one obtains a discrete time Markov chain (DTMC).

Definition 2 (Languages of a pLTS). Let A = 〈Q, q0, Σ, T,P〉 be a pLTS.
The finite language L∗(A) ⊆ Σ∗ of A and the infinite language Lω(A) ⊆ Σω of
A are defined by:

L∗(A) = {w ∈ Σ∗ | ∃q : q0 w
=⇒ q } Lω(A) = { σ ∈ Σω | q0 σ

=⇒}

http://hal.inria.fr/hal-00930919
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Observations. In order to formalize problems related to diagnosis, we partition
Σ into two disjoint sets Σo and Σu, the sets of observable and of unobservable
events, respectively. Moreover, we distinguish a special fault event f ∈ Σu. Let
σ be a finite word; its length is denoted |σ|. For Σ′ ⊆ Σ, define PΣ′(σ), the
projection of σ on Σ′, inductively by: PΣ′(ε) = ε; for a ∈ Σ′, PΣ′(σa) =
PΣ′(σ)a; and PΣ′(σa) = PΣ′(σ) for a /∈ Σ′. Write |σ|Σ′ for |PΣ′(σ)|, and for
a ∈ Σ, write |σ|a for |σ|{a}. When σ is an infinite word, its projection is the
limit of the projections of its finite prefixes. This projection can be either finite
or infinite. As usual the projection is extended to languages. In the rest of the
paper, we will only use PΣo , the projection onto observable events, and hence
we will drop the subscript and simply write P instead of PΣo .

With respect to the partition of Σ = Σo � Σu, a pLTS A is convergent if
Lω(A) ∩ Σ∗Σω

u = ∅ (i.e. there is no infinite sequence of unobservable events
from any reachable state). When A is convergent, then for all σ ∈ Lω(A), one
has P(σ) ∈ Σω

o . In the rest of the paper we assume that pLTS are convergent and
we will call a sequence a finite or infinite word over Σ, and an observed sequence
a finite or infinite sequence over Σo. Clearly, the projection of a sequence on Σo

yields an observed sequence. Intuitively, a sequence describes the behavior of a
system during an execution, and an observed sequence represents how such a run
is perceived. Now, the role of diagnosis is to decide, for any observed sequence,
whether a fault has occurred or not.

Ambiguity. A finite (resp. infinite) sequence σ is correct if it belongs to (Σ\{f})∗
(resp. (Σ \ {f})ω). Otherwise σ is called faulty. A correct sequence and a faulty
sequence may have the same observed projection, yielding ambiguity.

Definition 3 (Classification of observed sequences). Let A be a pLTS.
An observed sequence σ ∈ Σω

o is called ambiguous if there exist two sequences
σ1, σ2 ∈ Lω(A) such that P(σ1) = P(σ2) = σ, σ1 is correct and σ2 is faulty. An
observed sequence σ′ ∈ P(Lω(A)) is surely faulty if P−1(σ′)∩Lω(A) ⊆ Σ∗fΣω.
An observed sequence σ′ ∈ P(Lω(A)) is surely correct if P−1(σ′) ∩ Lω(A) ⊆
(Σ \ {f})ω. These notions are defined analogously for finite observed sequences.

Example. Consider the (convergent) pLTS to the left in Fig. 1, where Σu =
{f, u}. We assume uniform distributions so we do not represent the probability
matrix P. This pLTS contains infinite ambiguous sequences: immediately after
a is observed, an ambiguity appears, and this ambiguity remains in all infinite
observed sequences without occurrence of d and finishing with abω. Removing
the loop at q2 and/or q4 makes all infinite ambiguous sequences disappear.

In the sequel, we will use the characterization of unambiguous sequences using
deterministic Büchi automata [8].

Definition 4 (Büchi automaton). A Büchi automaton over Σ is a tuple B =
〈Q, q0, Σ, T, F 〉 with 〈Q, q0, Σ, T 〉 its underlying LTS and F ⊆ Q an acceptance
condition. A run (qi)i≥0 is accepting if qi ∈ F for infinitely many values of i.
The language L(B) consists of all words in Σω for which there exists an accepting
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Fig. 1. Two examples of pLTS (cLTS), with Σu = {f, u} and Σo = {a, b, c, d, e}

run. A Büchi automaton is deterministic if for all q, a, {q′ | q a−→ q′} is either a
singleton or the empty set.

Theorem 1 ([8]). Given a pLTS A with n states, one can build in exponential
time a deterministic Büchi automaton B with 2O(n) states whose language is the
set of unambiguous sequences of A.

We briefly sketch the structure of B. Its states are triples 〈U, V,W 〉, where
U, V,W ⊆ Q, U ∪ V ∪W �= ∅ and V ∩W = ∅, and its transitions are labeled by
events from Σo, that is B recognizes observed sequences. The initial state of B
is 〈{q0}, ∅, ∅〉. Given an observed sequence σ reaching state 〈U, V,W 〉, U is the
set of states of A reached by a correct sequence with projection σ, and V ∪W
is the set of states of A reached by a faulty sequence with projection σ. When
U = ∅, σ is the projection of faulty sequences of A. The decomposition between
V and W reflects the fact that B tries to “solve the ambiguity” between U and
W (when both are non empty), while V corresponds to a waiting room of states
reached by faulty sequences that will be examined when the current ambiguity
is resolved. Given some new observation a, a transition from 〈U, V,W 〉 to the
new state 〈U ′, V ′,W ′〉 is defined as follows. U ′ is the set of states reached from
U by a correct sequence with projection a. Let Y be the set of states reached
from U by a faulty sequence with projection a, or reached from V by a sequence
with projection a. When W is non empty then W ′ is the set of states reached
from W by a sequence with projection a and V ′ = Y . Otherwise, the faulty
sequences ending in states memorized by W cannot be extended by a sequences
with projection a, and we set V ′ = ∅ and W ′ = Y . The ambiguity between
U and W has been resolved, but new ambiguity may arise between U ′ and
W ′. Accepting states in F are triples 〈U, V,W 〉 with U = ∅ or W = ∅. Hence,
all infinite observed sequence of A passing infinitely often through F are not
ambiguous (they resolve ambiguities one after another) and are accepted by B.

We are now in position to define diagnosability. It is well-known that given a
pLTS A and a Büchi automaton B, the set of sequences of A accepted by B is
measurable [14]. So the following definition is sound.
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Definition 5 (Diagnosability). A pLTS A is diagnosable if the set of se-
quences yielding ambiguous observed sequences has null measure.
It is safely diagnosable if it is diagnosable and the set of correct sequences has
positive measure.

The notion of a safely diagnosable pLTS is introduced to ensure that fault
occurrence is not almost sure. This property is important: a diagnosable system
which is not safely diagnosable contains only faulty infinite runs. In the rest of the
paper, we will consider active diagnosis, that is, ways to force a system to become
diagnosable using a controller. If a controlled system is not safely diagnosable,
then the diagnosis solution enforced by the controller is not acceptable.

Example. Consider again the pLTS to the left in Fig. 1. The only ambiguous
observed (infinite) sequences necessarily terminate with abω. But the probability
to produce such a sequence is null, as the system will reach q5 with probability
one. In other words, ambiguity vanishes at the first occurrence of d or cb. Since cb
occurs with probability one, this pLTS is diagnosable. This pLTS is also safely
diagnosable, as it can produce correct sequences with a positive probability:
there is a positive probability to reach q5 by sequence uac. If one removes state
q5 and its connected transitions, the system remains diagnosable, but is not
safely diagnosable anymore: as the graph of the pLTS is strongly connected,
every transition will be visited (infinitely often) with probability 1 implying
that f occurs.

2.2 Active Probabilistic Diagnosis

In order to allow control over the actions of a system while preserving the pos-
sibility of a probabilistic semantic, we introduce controllable weighted labelled
transition system where probabilities are replaced by weights.

Definition 6. A controllable weighted labelled transition system (cLTS) is a
tuple C = 〈Q, q0, Σ, T 〉 where:

– Q is a finite set of states with q0 ∈ Q the initial state;
– the event alphabet Σ is partitionned into observable Σo and unobservable Σu

events, and also partitionned into controllable Σc and uncontrollable Σe (e
for environment) events;

– Σu = {f, u} contains a faulty event, and a non-faulty one;
– T : S × Σ × S → N is the transition function, labelling transitions with

integer weights.

A cLTS has an underlying LTS where the transition relation is defined by q
a−→

q′ if T (q, a, q′) > 0. All previous definitions that do not depend on probabilities
equally apply to cLTS. We denote by Ena(q) the set of events that are enabled
in q: Ena(q) = {a ∈ Σ | ∃q′, T (q, a, q′) > 0}. We assume that the cLTS is
convergent and live: for all q, Ena(q) �= ∅.
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Let C = 〈Q, q0, Σ, T 〉 be a cLTS. For q ∈ Q and Σ• ⊆ Σ, we define

GΣ•
(q) =

∑
a∈Σ•, q′∈Q

T (q, a, q′)

as the (possibly null) global outgoing weight from q restricted to Σ•-events.
Similarly, we define a normalization of the transition relation restricted to Σ•

by

TΣ•
(q, a, q′) =

{
T (q,a,q′)
GΣ• (q) if a ∈ Σ• and T (q, a, q′) > 0

0 otherwise

For a given finite set X , we define by Dist(X) the set of probabilistic distribu-
tions over X . Let x ∈ X , we denote by 1x the Dirac distribution on x. For a dis-
tribution δ ∈ Dist(X), the support of δ is the set Supp(δ) = {x ∈ X | δ(x) > 0}.

A strategy for a cLTS C is a mapping π : Σ∗
o → Dist(2Σ) such that for every

σ ∈ Σ∗
o , for every Σ

′ ∈ Supp(π(σ)), Σ′ ⊇ Σe. A strategy consists in, given some
observation, randomly choosing a subset of allowed events that includes the un-
controllable events. Given a cLTS C and a strategy π, we consider configurations
of the form (σ, q,Σ•) ∈ Σ∗

o ×Q× 2Σ where σ is the observed sequence, q is the
current state and Σ• is a set of events allowed by π after observing σ. We define
inductively the set Reachπ(C) of reachable configurations under π:

– for all Σ• ∈ Supp(π(ε)), (ε, q0, Σ
•) ∈ Reachπ(C);

– for all (σ, q,Σ•) ∈ Reachπ(C), for all a ∈ Σu ∩ Σ•, such that q
a−→ q′

(σ, q′, Σ•) ∈ Reachπ(C), denoted (σ, q,Σ•)
a−→π (σ, q′, Σ•);

– for all (σ, q,Σ•) ∈ Reachπ(C), for all a ∈ Σo ∩ Σ• such that q
a−→ q′ and

Σ•′ ∈ Supp(π(σa)), (σa, q′, Σ•′) ∈ Reachπ(C),
denoted (σ, q,Σ•)

a−→π (σa, q′, Σ•′).

A strategy π is said to be live if for every configuration (σ, q,Σ•) ∈ Reachπ(C),
GΣ•

(q) �= 0. Live strategies are the only relevant strategies as the other strategies
introduce deadlocks. We are now in position to introduce the semantics of a
cLTS. It is defined w.r.t. to some live strategy π as a pLTS. Its set of states
is Reachπ(C) with an initial state whose goal is to randomly select w.r.t. π the
initial control. The transition probabilities are defined by TΣ•

accordingly to
the current control Σ• except that when an observable action occurs it must be
combined with the random choice (w.r.t. π) of the next control.

Definition 7. Let C be a CLTS and π be a live strategy, the pLTS Cπ induced
by strategy π on C is defined as Cπ = 〈Qπ, Σ, q0π, Tπ,Pπ〉 where:

– Qπ = {q0π} ∪ Reachπ(C);
– for all (ε, q0, Σ

•) ∈ Reachπ(C), (q0π, u, (ε, q0, Σ•)) ∈ Tπ;
– for all (σ, q,Σ•), (σ′, q′, Σ•′) ∈ Reachπ(C),(

(σ, q,Σ•), a, (σ′, q′, Σ•′)
)
∈ Tπ iff (σ, q,Σ•)

a−→π (σ′, q′, Σ•′);
– for all (ε, q0, Σ

•) ∈ Reachπ(C), Pπ(q0π, u, (ε, q0, Σ
•)) = π(ε)(Σ•);

– for all ((σ, q,Σ•), a, (σ, q′, Σ•)) ∈ Tπ, for all a ∈ Σu ∩Σ•,
Pπ ((σ, q,Σ

•), a, (σ, q′, Σ•)) = TΣ•
(q, a, q′);
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– for all
(
(σ, q,Σ•), a, (σa, q′, Σ•′

)
)
∈ Tπ, for all a ∈ Σo ∩Σ•,

Pπ

(
(σ, q,Σ•), a, (σa, q′, Σ•′

)
)
= TΣ•

(q, a, q′) · π(σ.a)(Σ•′).

We can now formalize the decision problems we are interested in.

Definition 8 ((Safe) Active probabilistic diagnosis). Given a cLTS C =
〈Q, q0, Σ, T 〉, the active probabilistic diagnosis problem asks, whether there exists
a live strategy π in C such that the pLTS Cπ is diagnosable. The safe active
probabilistic diagnosis problem asks whether there exists a live strategy π in C
such that the pLTS Cπ is safely diagnosable. The synthesis problems consists in
building a live strategy π in C such that the pLTS Cπ is (safely) diagnosable.

Example. Consider the cLTS to the right in Fig. 1 with all weights equal to 1
and Σo = Σc. Without control, the system is not diagnosable as the observed
sequence aadcbω is ambiguous, and it has a positive probability. So the strategy
should disable action a for each correct observed sequence ending by ab∗. In
addition, if this strategy always forbids c, the system becomes diagnosable, but
the occurrence of a fault is enforced: so it is not safely diagnosable. Alternatively,
if the strategy always forbids e, the system becomes safely diagnosable, as we
obtain a pLTS “weakly probabilistically bisimilar” to the one on the left in Fig. 1.

3 Analysis of the Active Probabilistic Diagnosis Problem

To solve the active probabilistic diagnosis problem, we reduce it to a decid-
able problem on POMDP: namely, the existence of a strategy ensuring a Büchi
objective with probability one [1, 2].

Definition 9 (POMDP). A partially observable Markov decision process
(POMDP) is a tuple M = 〈Q, q0,Obs,Act, T 〉 where

– Q is a finite set of states with q0 the initial state;
– Obs : Q→ O assigns an observation O ∈ O to each state.
– Act is a finite set of actions;
– T : Q×Act→ Dist(Q) is a partial transition function. Letting Ena(q) = {a ∈

Act | T (q, a) is defined}, we assume that:

• for all q ∈ Q, Ena(q) �= ∅, and
• whenever Obs(q) = Obs(q′) = O, then Ena(q) = Ena(q′) and slightly
abusing our notation, we will denote by Ena(O) the set of events enabled
in every state with observation O.

A decision rule is an item of Dist(Act) that resolves non-determinism by ran-
domization. A strategy maps histories of observations to decision rules. For-
mally, a strategy is a function π : O+ → Dist(Act) such that for all O1 · · ·Oi,
Supp(π(O1 · · ·Oi)) ⊆ Ena(Oi). Given a strategy π and an initial distribution δ
over states, a POMDP M becomes a stochastic process that can be represented
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by a possibly infinite pLTS denoted M(π). One denotes Pδ
π(Ev) the probability

that event Ev is realized in this process.
A belief is a subset ofObs−1(O) for some observationO that corresponds to the

possible reachable states w.r.t. some sequence of observations. The initial belief
is {q0} and given a current belief B, a decision rule δ and a observation O, the
belief Δ(B, (δ,O)) obtained after δ has been applied and O has been observed
is defined by:

⋃
q∈B,a∈Supp(δ) Supp(T (q, a)) ∩ Obs−1(O). A strategy which only

depends on the current belief is called a belief-based strategy.
In order to provide a POMDP MC for the diagnosis problems of a cLTS C, we

face several difficulties. First, in a cLTS the observations are related to actions
while in a POMDP they are related to states. Fortunately all the information
related to ambiguity is included in the deterministic Büchi automaton described
in section 2. Thus (with one exception) the states are pairs of a state of the Büchi
automaton and a state of the cLTS. In C, the control is performed by allowing a
subset of events. Thus actions ofMC are subset of events that includes the uncon-
trollable events. Given some control Σ′, for defining the transition probability
of MC from (l, q) to (l′, q′), one must consider all paths in C labelled by events of
Σ′ from q to q′ such that the last event (say b) is the single observable one. The
probability of any such path is obtained by the product of the individual step
probabilities. The latter are then defined by the normalization of weights w.r.t.
Σ′. They cannot be infinite paths of unobservable events due to the convergence
of C. However some path can reach a state where no event of Σ′ is possible. In
other words, the control Σ′ applied in (l, q) has a non null probability to reach a
deadlock (i.e. the chosen decision rule leads to a non live strategy for the cLTS).
In order to capture this behaviour and to obtain a non defective probability dis-
tribution, we add an additional state lost, that corresponds to such deadlocks.
The next definition formalizes our approach.

Definition 10. The POMDP MC = 〈QM, qM0 ,Obs,Act, T
M〉 derived from a

cLTS C = 〈Q, q0, Σ, T 〉 and its associated deterministic Büchi automaton B =
〈L, l0, Σo, T

B, F 〉 is defined by:

– QM = L×Q � {lost} with qM0 = ((l0, q0);

– the set of observations is O = L ∪ {lost}, with
Obs((l, q)) = l and Obs(lost) = lost;

– Act = {Σ′ | Σ′ ⊇ Σe};
– for all (l, q) ∈ QM and Σ′ ∈ Act, TM((l, q), Σ′) = μ where:

• μ((l′, q′)) is defined by (with qn = q when n = 0):

∑
l
b−→l′

b∈Σ′∩Σo

∑
q

a1−→q1···
an−−→qn

b−→q′
a1···an∈Σ′∩Σu

TΣ′
(q, a1, q1) ·

(n−1∏
i=1

TΣ′
(qi, ai+1, qi+1)

)
· TΣ′

(qn, b, q
′)



38 N. Bertrand et al.

• μ(lost) is defined by:

∑
q

a1−→q1···
an−−→qn

a1···an∈Σ′∩Σu

GΣ′
(qn)=0

TΣ′
(q, a1, q1) ·

n−1∏
i=1

TΣ′
(qi, ai+1, qi+1)

– TM(lost, Σ′) = 1lost for all Σ′ ∈ Act.

Given C, the construction of the Büchi automaton B is performed in expo-
nential time. The construction of MC is also done in exponential time. Indeed,
there is an exponential blowup for Act but again w.r.t. C. Finally, while the dis-
tributions μ of action effects are presented in the definition as sums over paths
of C, each one can be computed by a matrix inversion in polynomial time (as
done in discrete time Markov chains).

The next lemma is a straightforward consequence of the properties of B and
the above definition of MC . Here we use LTL notations to denote sets of paths
in a POMDP, such as �, � and �� for eventually, always and infinitely often
respectively.

Lemma 1. C is actively diagnosable if and only if there exists a strategy π in
MC such that Pq0

π (MC |= ��(W = ∅ ∨ U = ∅)) = 1.
Moreover, C is safely actively diagnosable if and only if there exists a strategy

π in MC such that Pq0
π (MC |= ��(W = ∅ ∨ U = ∅)) = 1 and Pq0

π (MC |= �(U �=
∅)) > 0 .

In the statement of Lemma 1, W = ∅ ∨ U = ∅ is a shorthand to denote the
set of states (〈U, V,W 〉, q) in MC such that either W = ∅ or U = ∅; similarly,
U �= ∅ represents the set of states (〈U, V,W 〉, q) such that U �= ∅. As a conse-
quence of Lemma 1, the active diagnosis problem for controllable LTS reduces to
the existence of an almost-sure winning strategy for a Büchi objective on some
exponential size POMDP.

Theorem 2. The active probabilistic diagnosis decision and synthesis problems
are EXPTIME-complete. There exists a family (Cn)n∈N of actively diagnosable
cLTS with the size of Cn in O(n), and such that any winning strategy for MCn

diagnosable requires at least 2Ω(n) memory-states.

The EXPTIME upper bound may seem surprising, since MC is exponential in
the size of C, and the procedure to decide whether there exists a strategy in a
POMDP to ensure a Büchi objective with probability 1 is in EXPTIME, due
to the use of beliefs. However, in the POMDP MC we consider, the information
on the belief is already contained in the state (〈U, V,W 〉, q), as U ∪ V ∪ W .
Therfore, a second exponential blowup, due to the beliefs, is avoided and the
active probabilistic diagnosis problem remains in EXPTIME.
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4 Analysis of the Safe Active Probabilistic Diagnosis
Problem

As will be shown below, the status of the active diagnosis problem changes when
the safety requirement is added. The next proposition highlights this difference
and it is the basis for the undecidability result of Theorem 3.

Proposition 1. There exists a cLTS which is safely actively diagnosable and
such that all belief-based strategies are losing.

Proof. Let us consider the cLTS of Figure 2 with Σu = {u, f} and Σe = {u, f, c},
and where all weights are equal to 1.

q0q1q2 r1 r2

r0

fu aa

a f

aa a

c

a

Fig. 2. A cLTS with only non belief-based strategies for safe diagnosis

Pick any sequence of positive integers {αi}i≥1 such that
∏

i≥1 1 − 2−αi > 0.

Define A = {a} ∪ Σe and A = {a} ∪ Σe. We claim that the strategy π that
consists in selecting, after n observations, the nth subset in the following sequence
Aα1AAα2A . . ., is winning. Observe that after an observable sequence of length
i ≤ α1, the system is either after a faulty sequence in r1 with probability 1

2 , or
after a correct sequence in q1 with probability 2−i−1, or after a correct sequence
in q2 with probability 1

2 (1 − 2−i). So, after an observable sequence of length
α1 + 1, the system is either after a faulty sequence in r2 with probability 1

2 , or
after a faulty sequence in r1 (via r0) with probability 2−α1−1, or after a correct
sequence in q1 with probability 1

2 (1−2−α1). At the next step, the faulty sequence
in r2 is then detected by the occurrence of c.
Iterating this process we conclude that:

– any fault that may occur after π is applied up to Aα1AAα2A . . . AαiA, is de-
tected after π is applied up to Aα1AAα2A . . . Aαi+1AA. So the (full) strategy
π = Aα1AAα2A . . . surely detects faults.

– the probability that there is an infinite correct sequence is equal to 1
2

∏
i≥1 1−

2−αi > 0, due to our choice of the αi’s. Therefore, correct sequences have
positive probability under π.
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Consider a belief-based strategy π. There are three possible subsets of allowed
events: A, A and Σ. The decision rule associated with belief {q0} must allow a
in order to get the possibility of a correct sequence which, in case a occurs, leads
to belief {q1, q2, r1}. We should clarify here that beliefs do not correspond to the
possible current states. They represent the possible states after the last observed
event. For instance, when the belief is {q0}, the current state may either be q0,
or q1 after action u, or r1 after fault f . Consider the (randomized) decision rule
of π associated with belief {q1, q2, r1}: pA · A + pA · A + pΣ · Σ (denoted p). If
pA = 1, then the possible first fault remains undetected, and π is losing. So a
may occur leading to belief {q1, r0, r2}.

Consider the decision rule of π associated with belief {q1, r0, r2}: p′A ·A+ p′
A
·

A+ p′Σ ·Σ (denoted p′). If p′
A
= 1, then at the next instant, there is no possible

correct sequence, and π is losing.
So p′

A
< 1 and pA < 1. Assume now that the current distribution of states

is αq1 + βr0 + (1− α− β)r2 (with belief {q1, r0, r2}). The distribution after the
next occurrence of a is defined by αp,p′αq1 + (1− αp,p′)αr0 + (1− α)r2, where
αp,p′ < 1 only depends on p and p′. A correct sequence implies an infinite
number of a; after n occurrences of a the probability of a correct sequence is
bounded by αn

p,p′ . So the probability of an infinite correct sequence is null, and
π is losing. ��

Theorem 3. The safe active diagnosis problem for cLTS is undecidable.

Proof (sketch). We perform a reduction from the following undecidable problem:
given a blind POMDP and a set F of states, does there exist a strategy that
ensures the Büchi objective ��F with positive probability. The structure of the
cLTS we construct is similar to the one of the example from Fig. 2, except that
the states q1 and q2 are replaced with two copies of the POMDP. Consistently
a and a are replaced by two copies of the alphabet of the POMDP with one of
them bared. From F states in the first copy, with a non bared action one moves
to the second one, and from any state, with bared actions, one moves back from
the second copy to the first one, or moves from the first copy to r0.

The following immediate corollary is interesting since both the existence
of a strategy achieving a Büchi objective almost surely, and the existence of
strategy achieving a safety objective with positive probability are decidable for
POMDP [2,6].

Corollary 1. The problem whether, given a POMDP M with subsets of states F
and I, there exists a strategy π with Pπ(M |= ��F ) = 1 and Pπ(M |= �I) > 0,
is undecidable.

Given that the general safe active diagnosis problem is undecidable, and that
belief-based strategies are not sufficient to achieve safe diagnosability, we con-
sider now the restriction of the safe active diagnosis problem to belief-based
strategies. Similarly to the case of active diagnosis, we reduce the safe active
probabilistic diagnosis for belief-based-strategies to some verification question
on POMDP.
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Theorem 4. The safe active probabilistic diagnosis problem restricted to belief-
based strategies is in NEXPTIME and EXPTIME-hard.

5 Conclusion

We studied the active diagnosis and safe active diagnosis problems for proba-
bilistic discrete event systems, within a unifying POMDP framework. While the
active diagnosis problem is EXPTIME-complete, the safe active diagnosis prob-
lem is undecidable in general, and belongs to NEXPTIME when restricted to
belief-based strategies. Since the lower and upper bounds do not coincide for the
latter problem, we strive to close the gap between these bounds in future work.
More generally, we will investigate the safe active diagnosis problem restricted
to finite-memory strategies. Another problem, closely related to diagnosability,
is the predictability problem: given any observation, can we detect that the oc-
currence of a fault before it happens? Last, given the tight relation probabilistic
diagnosis has with verification problems for POMDP, we plan to investigate
further POMDP problems with multiple objectives.
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Abstract. Basic Parallel Processes (BPPs) are a well-known subclass
of Petri Nets. They are the simplest common model of concurrent pro-
grams that allows unbounded spawning of processes. In the probabilistic
version of BPPs, every process generates other processes according to
a probability distribution. We study the decidability and complexity of
fundamental qualitative problems over probabilistic BPPs — in particu-
lar reachability with probability 1 of different classes of target sets (e.g.
upward-closed sets). Our results concern both the Markov-chain model,
where processes are scheduled randomly, and the MDP model, where
processes are picked by a scheduler.

1 Introduction

We study probabilistic basic parallel processes (pBPP), which is a stochastic
model for concurrent systems with unbounded process spawning. Processes can
be of different types, and each type has a fixed probability distribution for gen-
erating new sub-processes. A pBPP can be described using a notation similar to
that of stochastic context-free grammars. For instance,

X
0.2
↪−−→ XX X

0.3
↪−−→ XY X

0.5
↪−−→ ε Y

0.7
↪−−→ X Y

0.3
↪−−→ Y

describes a system with two types of processes. Processes of type X can gener-
ate two processes of type X , one process of each type, or zero processes with
probabilities 0.2, 0.3, and 0.5, respectively. Processes of type Y can generate one
process, of type X or Y , with probability 0.7 and 0.3. The order of processes
on the right-hand side of each rule is not important. Readers familiar with pro-
cess algebra will identify this notation as a probabilistic version of Basic Parallel
Processes (BPPs), which is widely studied in automated verification, see e.g.
[7,11,6,13,12,9],

A configuration of a pBPP indicates, for each type X , how many processes
of type X are present. Writing Γ for the finite set of types, a configuration is
thus an element of NΓ . In a configuration α ∈ NΓ with α(X) ≥ 1 an X-process
may be scheduled. Whenever a process of type X is scheduled, a rule with X
on the left-hand side is picked randomly according to the probabilities of the
rules, and then an X-process is replaced by processes as on the right-hand side.
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In the example above, if an X-process is scheduled, then with probability 0.3 it
is replaced by a new X-process and by a new Y -process. This leads to a new
configuration, α′, with α′(X) = α(X) and α′(Y ) = α(Y ) + 1.

Which type is scheduled in a configuration α ∈ NΓ depends on the model
under consideration. One possibility is that the type to be scheduled is selected
randomly among those types X with α(X) ≥ 1. In this way, a pBPP induces
an (infinite-state) Markov chain. We consider two versions of this Markov chain:
in one version the type to be scheduled is picked using a uniform distribution
on those types with at least one waiting process; in the other version the type
is picked using a uniform distribution on the waiting processes. For instance, in
configuration α with α(X) = 1 and α(Y ) = 2, according to the “type” version,
the probability of scheduling X is 1/2, whereas in the “process” version, the
probability is 1/3. Both models seem to make equal sense, so we consider them
both in this paper. As it turns out their difference is unimportant for our results.

In many contexts (e.g. probabilistic distributed protocols — see [15,14]), it
is more natural that this scheduling decision is not taken randomly, but by a
scheduler. Then the pBPP induces a Markov decision process (MDP), where a
scheduler picks a type X to be scheduled, but the rule with X on the left-hand
side is selected probabilistically according to the probabilities on the rules.

In this paper we provide decidability results concerning coverability with prob-
ability 1, or “almost-sure” coverability, which is a fundamental qualitative prop-
erty of pBPPs. We say a configuration β ∈ NΓ covers a configuration φ ∈ NΓ

if β ≥ φ holds, where ≥ is meant componentwise. For instance, φ may model a
configuration with one producer and one consumer; then β ≥ φ means that a
transaction between a producer and a consumer can take place. Another exam-
ple is a critical section that can be entered only when a lock is obtained. Given a
pBPP, an initial configuration α, and target configurations φ1, . . . , φk, the cov-
erability problem asks whether with probability 1 it is the case that starting
from α a configuration β is reached that covers some φi. One can equivalently
view the problem as almost-sure reachability of an upward-closed set.

In Section 3 we show using a Karp-Miller-style construction that the cover-
ability problem for pBPP Markov chains is decidable. We provide a nonelemen-
tary lower complexity bound. In Section 4 we consider the coverability problem
for MDPs. There the problem appears in two flavours, depending on whether the
scheduler is “angelic” or “demonic”. In the angelic case we ask whether there exists
a scheduler so that a target is almost-surely covered. We show that this problem
is decidable, and if such a scheduler does exist one can synthesize one. In the de-
monic case we ask whether a target is almost-surely covered, no matter what the
scheduler (an operating system, for instance) does. For the question to make sense
we need to exclude unfair schedulers, i.e., those that never schedule a waiting pro-
cess. Using a robust fairness notion (k-fairness), which does not depend on the
exact probabilities in the rules, we show that the demonic problem is also decid-
able. In Section 5 we show for the Markov chain and for both versions of the MDP
problem that the coverability problem becomes P-time solvable, if the target con-
figurations φi consist of only one process each (i.e., are unit vectors). Such target
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configurations naturally arise in concurrent systems (e.g. freedom from deadlock:
whether at least one process eventually goes into a critical section). Finally, in Sec-
tion 6 we show that the almost-sure reachability problem for semilinear sets, which
generalizes the coverability problem, is undecidable for pBPP Markov chains and
MDPs. Some missing proofs can be found in [2].

Related Work. (Probabilistic) BPPs can be viewed as (stochastic) Petri nets
where each transition has exactly one input place. Stochastic Petri nets, in turn,
are equivalent to probabilistic vector addition systems with states (pVASSs),
whose reachability and coverability problems were studied in [1]. This work is
close to ours; in fact, we build on fundamental results of [1]. Whereas we show
that coverability for the Markov chain induced by a pBPP is decidable, it is
shown in [1] that the problem is undecidable for general pVASSs. In [1] it is
further shown for general pVASSs that coverability becomes decidable if the
target sets are “Q-states”. If we apply the same restriction on the target sets,
coverability becomes polynomial-time decidable for pBPPs, see Section 5. MDP
problems are not discussed in [1].

The MDP version of pBPPs was studied before under the name task sys-
tems [3]. There, the scheduler aims at a “space-efficient” scheduling, which is
one where the maximal number of processes is minimised. Goals and techniques
of this paper are very different from ours.

Certain classes of non-probabilistic 2-player games on Petri nets were studied
in [16]. Our MDP problems can be viewed as games between two players, Sched-
uler and Probability. One of our proofs (the proof of Theorem 11) is inspired by
proofs in [16].

The notion of k-fairness that we consider in this paper is not new. Similar
notions have appeared in the literature of concurrent systems under the name
of “bounded fairness” (e.g. see [5] and its citations).

2 Preliminaries

We write N = {0, 1, 2, . . .}. For a countable set X we write dist(X) for the
set of probability distributions over X ; i.e., dist(X) consists of those functions
f : X → [0, 1] such that

∑
x∈X f(x) = 1.

Markov Chains. A Markov chain is a pair M = (Q, δ), where Q is a countable
(finite or infinite) set of states, and δ : Q→ dist(Q) is a probabilistic transition
function that maps a state to a probability distribution over the successor states.

Given a Markov chain we also write s
p−→ t or s −→ t to indicate that p = δ(s)(t) >

0. A run is an infinite sequence s0s1 · · · ∈ Qω with si −→ si+1 for i ∈ N. We write
Run(s0 · · · sk) for the set of runs that start with s0 · · · sk. To every initial state
s0 ∈ S we associate the probability space (Run(s0),F ,P) where F is the σ-
field generated by all basic cylinders Run(s0 · · · sk) with s0 · · · sk ∈ Q∗, and
P : F → [0, 1] is the unique probability measure such that P(Run(s0 · · · sk)) =∏k

i=1 δ(si−1)(si). For a state s0 ∈ Q and a set F ⊆ Q, we write s0 |= ♦F
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for the event that a run started in s0 hits F . Formally, s0 |= ♦F can be seen
as the set of runs s0s1 · · · such that there is i ≥ 0 with si ∈ F . Clearly we
have P(s0 |= ♦F ) > 0 if and only if in M there is a path from s0 to a state
in F . Similarly, for Q1, Q2 ⊆ Q we write s0 |= Q1UQ2 to denote the set of runs
s0s1 · · · such that there is j ≥ 0 with sj ∈ Q2 and si ∈ Q1 for all i < j. We have
P(s0 |= Q1UQ2) > 0 if and only if inM there is a path from s0 to a state in Q2

using only states in Q1. A Markov chain is globally coarse with respect to a set
F ⊆ Q of configurations, if there exists c > 0 such that for all s0 ∈ Q we have
that P(s0 |= ♦F ) > 0 implies P(s0 |= ♦F ) ≥ c.

Markov Decision Processes. A Markov decision process (MDP) is a tuple D =
(Q,A,En, δ), where Q is a countable set of states, A is a finite set of actions, En :
Q→ 2A \ ∅ is an action enabledness function that assigns to each state s the set
En(s) of actions enabled in s, and δ : S×A→ dist(S) is a probabilistic transition
function that maps a state s and an action a ∈ En(s) enabled in s to a probability
distribution over the successor states. A run is an infinite alternating sequence of
states and actions s0a1s1a2 · · · such that for all i ≥ 1 we have ai ∈ En(si−1) and
δ(si−1, ai)(si) > 0. For a finite word w = s0a1 · · · sk−1aksk ∈ Q(AQ)∗ we write
last(w) = sk. A scheduler for D is a function σ : Q(AQ)∗ → dist(A) that maps
a run prefix w ∈ Q(AQ)∗, representing the history of a play, to a probability
distribution over the actions enabled in last(w). We write Run(w) for the set of
runs that start with w ∈ Q(AQ)∗. To an initial state s0 ∈ S and a scheduler σ we
associate the probability space (Run(s0),F ,Pσ), where F is the σ-field generated
by all basic cylinders Run(w) with w ∈ {s0}(AQ)∗, and Pσ : F → [0, 1] is the
unique probability measure such that P(Run(s0)) = 1, and P(Run(was)) =
P(Run(w)) · σ(w)(a) · δ(last(w), a)(s) for all w ∈ {s0}(AQ)∗ and all a ∈ A and
all s ∈ Q. A scheduler σ is called deterministic if for all w ∈ Q(AQ)∗ there is
a ∈ A with σ(w)(a) = 1. A scheduler σ is called memoryless if for all w,w′ ∈
Q(AQ)∗ with last(w) = last(w′) we have σ(w) = σ(w′). When specifying events,
i.e., measurable subsets of Run(s0), the actions are often irrelevant. Therefore,
when we speak of runs s0s1 · · · we mean the runs s0a1s1a2 · · · for arbitrary
a1, a2, . . . ∈ A. E.g., in this understanding we view s0 |= ♦F with s0 ∈ Q and
F ⊆ Q as an event.

Probabilistic BPPs and Their Configurations. A probabilistic BPP (pBPP) is a
tuple S = (Γ, ↪−→,Prob), where Γ is a finite set of types, ↪−→ ⊆ Γ × NΓ is a finite
set of rules such that for every X ∈ Γ there is at least one rule of the form
X ↪−→ α, and Prob is a function that to every rule X ↪−→ α assigns its probability
Prob(X ↪−→ α) ∈ (0, 1] ∩Q so that for all X ∈ Γ we have

∑
X↪−→α Prob(X ↪−→

α) = 1. We write X
p
↪−→ α to denote that Prob(X ↪−→ α) = p. A configuration of S

is an element of NΓ . We write α1 + α2 and α1 − α2 for componentwise addition
and subtraction of two configurations α1, α2. When there is no confusion, we may
identify words u ∈ Γ ∗ with the configuration α ∈ NΓ such that for all X ∈ Γ
we have that α(X) ∈ N is the number of occurrences of X in u. For instance, we
write XXY or XYX for the configuration α with α(X) = 2 and α(Y ) = 1 and
α(Z) = 0 for Z ∈ Γ \ {X,Y }. In particular, we may write ε for α with α(X) = 0
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for all X ∈ Γ . For configurations α, β we write α ≤ β if α(X) ≤ β(X) holds for
all X ∈ Γ ; we write α < β if α ≤ β but α �= β. For a configuration α we define
the number of types |α|type = |{X ∈ Γ | α(X) ≥ 1}| and the number of processes
|α|proc =

∑
X∈Γ α(X). Observe that we have |α|type ≤ |α|proc . A set F ⊆ NΓ of

configurations is called upward-closed (downward-closed, respectively) if for all
α ∈ F we have that α ≤ β implies β ∈ F (α ≥ β implies β ∈ F , respectively).
For α ∈ NΓ we define α↑ := {β ∈ NΓ | β ≥ α}. For F ⊆ NΓ and α ∈ F we say
that α is a minimal element of F , if there is no β ∈ F with β < α. It follows
from Dickson’s lemma that every upward-closed set has finitely many minimal
elements; i.e., F is upward-closed if and only if F = φ1↑ ∪ . . . ∪ φn↑ holds for
some n ∈ N and φ1, . . . , φn ∈ NΓ .

Markov Chains Induced by a pBPP. To a pBPP S = (Γ, ↪−→,Prob) we associate
the Markov chains Mtype(S) = (NΓ , δtype) and Mproc(S) = (NΓ , δproc) with
δtype(ε, ε) = δproc(ε, ε) = 1 and for α �= ε

δtype(α, γ) =
∑

X
p

↪−→β s.t. α(X)≥1

and γ=α−X+β

p

|α|type
and δproc(α, γ) =

∑
X

p

↪−→β s.t.

γ=α−X+β

α(X) · p
|α|proc

.

In words, the new configuration γ is obtained from α by replacing an X-

process with a configuration randomly sampled according to the rules X
p
↪−→ β.

In Mtype(S) the selection of X is based on the number of types in α, whereas
inMproc(S) it is based on the number of processes in α. We have δtype(α, γ) = 0
iff δproc(α, γ) = 0. We write Ptype and Pproc for the probability measures in
Mtype(S) and Mproc(S), respectively.

The MDP Induced by a pBPP. To a pBPP S = (Γ, ↪−→,Prob) we associate the
MDP D(S) = (NΓ , Γ∪{⊥},En, δ) with a fresh action ⊥ �∈ Γ , and En(α) = {X ∈
Γ | α(X) ≥ 1} for ε �= α ∈ NΓ and En(ε) = {⊥}, and δ(α,X)(α −X + β) = p

whenever α(X) ≥ 1 and X
p
↪−→ β, and δ(ε,⊥)(ε) = 1. As in the Markov chain,

the new configuration γ is obtained from α by replacing an X-process with a

configuration randomly sampled according to the rules X
p
↪−→ β. But in contrast

to the Markov chain the selection of X is up to a scheduler.

3 The Coverability Problem for the Markov Chain

In this section we study the coverability problem for the Markov chains induced
by a pBPP. We say a run α0α1 · · · of a pBPP S = (Γ, ↪−→,Prob) covers a con-
figuration φ ∈ NΓ , if αi ≥ φ holds for some i ∈ N. The coverability problem
asks whether it is almost surely the case that some configuration from a finite
set {φ1, . . . , φn} will be covered. More formally, the coverability problem is the
following. Given a pBPP S = (Γ, ↪−→,Prob), an initial configuration α0 ∈ NΓ ,
and finitely many configurations φ1, . . . , φn, does Ptype(α0 |= ♦F ) = 1 hold,
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where F = φ1↑ ∪ . . . ∪ φn↑? Similarly, does Pproc(α0 |= ♦F ) = 1 hold? We will
show that those two questions always have the same answer.

In Section 3.1 we show that the coverability problem is decidable. In
Section 3.2 we show that the complexity of the coverability problem is
nonelementary.

3.1 Decidability

For deciding the coverability problem we use the approach of [1]. The following
proposition is crucial for us:

Proposition 1. Let M = (Q, δ) be a Markov chain and F ⊆ Q such that M
is globally coarse with respect to F . Let F̄ = Q \ F be the complement of F and

let F̃ := {s ∈ Q | P(s |= ♦F ) = 0} ⊆ F̄ denote the set of states from which F is
not reachable in M. Let s0 ∈ Q. Then we have P(s0 |= ♦F ) = 1 if and only if

P(s0 |= F̄UF̃ ) = 0.

Proof. Immediate from [1, Lemmas 3.7, 5.1 and 5.2]. ��

In other words, Proposition 1 states that F is almost surely reached if and only
if there is no path to F̃ that avoids F . Proposition 1 will allow us to decide the
coverability problem by computing only reachability relations in M, ignoring
the probabilities.

Recall that for a pBPP S = (Γ, ↪−→,Prob), the Markov chains Mtype(S) and
Mproc(S) have the same structure; only the transition probabilities differ. In par-

ticular, if F ⊆ NΓ is upward-closed, the set F̃ , as defined in Proposition 1, is the
same forMtype(S) and Mproc(S). Moreover, we have the following proposition
(full proof in [2]).

Proposition 2. Let S = (Γ, ↪−→,Prob) be a pBPP. Let F ⊆ NΓ be upward-
closed. Then the Markov chains Mtype(S) and Mproc(S) are globally coarse
with respect to F .

Proof (sketch). The statement about Mtype(S) follows from [1, Theorem 4.3].
For the statement about Mproc(S) it is crucial to argue that starting with any
configuration α ∈ NΓ it is the case with probability 1 that every type X with
α(X) ≥ 1 is eventually scheduled. Since F is upward-closed it follows that for
all α, β ∈ NΓ with α ≤ β we have Pproc(α |= ♦F ) ≤ Pproc(β |= ♦F ). Then the
statement follows from Dickson’s lemma.

For an illustration of the challenge, consider the pBPP with X
1
↪−→ XX and

Y
1
↪−→ Y Y , and let F = XX↑. Clearly we have Pproc(X |= ♦F ) = 1, as the

X-process is scheduled immediately. Now let α0 = XY . Since α0 ≥ X , the
inequality claimed above implies Pproc(α0 |= F ) = 1. Indeed, the probability
that the X-process in α0 is never scheduled is at most 1

2 ·
2
3 ·

3
4 · . . ., which is 0.

Hence Pproc(α0 |= ♦F ) = 1. ��

The following proposition follows by combining Propositions 1 and 2.
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Proposition 3. Let S = (Γ, ↪−→,Prob) be a pBPP. Let F ⊆ NΓ be upward-
closed. Let α0 ∈ NΓ . We have:

Ptype(α0 |= ♦F ) = 1⇐⇒ Ptype(α0 |= F̄UF̃ ) = 0

⇐⇒ Pproc(α0 |= F̄UF̃ ) = 0⇐⇒ Pproc(α0 |= ♦F ) = 1

By Proposition 3 we may in the following omit the subscript from
Ptype ,Pproc,Mtype ,Mproc if it does not matter. We have the following theorem.

Theorem 4. The coverability problem is decidable: given a pBPP S =
(Γ, ↪−→,Prob), an upward-closed set F ⊆ NΓ , and a configuration α0 ∈ NΓ ,
it is decidable whether P(α0 |= ♦F ) = 1 holds.

Proof. The complement of F̃ (i.e., the set of configurations from which F is
reachable) is upward-closed, and its minimal elements can be computed by a
straightforward fixed-point computation (this is even true for the more gen-
eral model of pVASS, e.g., see [1, Remark 4.2]). By Proposition 3 it suf-

fices to decide whether P(α0 |= F̄UF̃ ) > 0 holds. Define R := {α ∈ F̄ |
α is reachable from α0 via F̄ -configurations}. Observe that P(α0 |= F̄UF̃ ) > 0

if and only if R ∩ F̃ �= ∅. We can now give a Karp-Miller-style algorithm for
checking that R ∩ F̃ �= ∅: (i) Starting from α0, build a tree of configurations
reachable from α0 via F̄ -configurations (i.e., at no stage F -configurations are
added to this tree) — for example, in a breadth-first search manner — but stop
expanding a leaf node αk as soon as we discover that the branch α0 → · · · → αk

satisfies the following: αj ≤ αk for some j < k. (ii) As soon as a node α ∈ F̃
is generated, terminate and output “yes”. (iii) When the tree construction is

completed without finding nodes in F̃ , terminate and output “no”.
To prove correctness of the above algorithm, we first prove termination. To this

end, it suffices to show that the constructed tree is finite. To see this, observe
first that every branch in the constructed tree is of finite length. This is an
immediate consequence of Dickon’s lemma and our policy of terminating a leaf
node α that satisfies α′ ≤ α, for some ancestor α′ of α in this tree. Now since
all branches of the tree are finite, König’s lemma shows that the tree itself must
be finite (since each node has finite degree).

To prove partial correctness, it suffices to show that the policy of terminating
a leaf node α that satisfies α′ ≤ α, for some ancestor α′ of α in this tree, is valid.
That is, we want to show that if R ∩ F̃ �= ∅ then a witnessing vector γ ∈ R ∩ F̃
will be found by the algorithm. We have the following lemma whose proof is
in [2].

Lemma 5. Let α0 ∈ F̄ and let γ ∈ NΓ . Let α0 → α1 → . . .→ αk be a shortest
path in M(S) such that α0, . . . , αk ∈ F̄ and αk ≤ γ. Then for all i, j with
0 ≤ i < j ≤ k we have αi �≤ αj.

Let R ∩ F̃ �= ∅ and let γ ∈ NΓ be a minimal element of R ∩ F̃ . By Lemma 5
our algorithm does not prune any shortest path from α0 to γ. Hence it outputs
“yes”. ��



50 R. Bonnet, S. Kiefer, and A.W. Lin

3.2 Nonelementary Lower Bound

We have the following lower-bound result:

Theorem 6. The complexity of the coverability problem is nonelementary.

The proof is technically involved.

Proof (sketch). We claim that there exists a nonelementary function f such that
given a 2-counter machine M running in space f(k), we can compute a pBPP
S = (Γ, ↪−→,Prob) of size ≤ k, an upward-closed set F ⊆ NΓ (with at most k
minimal elements, described by numbers at most k), and a type X0 ∈ Γ , such
that P(X0 |= ♦F ) = 1 holds if and only if M does not terminate. Recall that by

Proposition 3 we have that P(X0 |= ♦F ) = 1 is equivalent to P(X0 |= F̄UF̃ ) = 0.
Since the exact values of the probabilities do not matter, it suffices to con-

struct a (nonprobabilistic) BPP S. Further, by adding processes that can spawn

everything (and hence cannot take part in F̃ -configurations) one can change the

condition of reaching F̃ to reaching a downward closed set G ⊆ F̄ . So the prob-
lem we are reducing to is: does there exist a path in S that is contained in F̄
and goes from X0 to a downward closed set G.

By defining F suitably we can add various restrictions on the behaviour of
our BPP. For example, the following example allows X to be turned into Y if
and only if there is no Z present:

X ↪−→ YW W ↪−→ ε F =WZ↑
Doubling the number of a given process is straightforward, and it is also

possible to divide the number of a given process by two. Looking only at runs
inside F̄ , the following BPP can turn all its X-processes into half as many X ′-
processes. (Note that more X ′-processes could be spawned, but because of the
monotonicity of the system, the “best” runs are those that spawn a minimal
number of processes.)

X ↪−→ TP T ↪−→ P P ↪−→ ε P ↪−→ ε

P1 ↪−→ P2 P2 ↪−→ P2 P2 ↪−→ P1 P1 ↪−→ P1X
′

F = PP1↑ ∪ PP2↑ ∪ PP1↑ ∪ PP2↑ ∪ T 2↑

αinit = XnP1

Let us explain this construction. In order to make an X-process disappear,
we need to create temporary processes P and P . However, these processes are
incompatible, respectively, with Pi and Pi. Thus, destroying an X-process re-
quires the process P1 to move into P1 and then into P2. By repeatedly destroying
X-processes, this forces the creation of half as many X ′-processes.

It is essential for our construction to have a loop-gadget that performs a
cycle of processes A ↪−→ B ↪−→ C ↪−→ A exactly k times (“k-loop”). By ac-
tivating/disabling transitions based on the absence/presence of an A-, B- or
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C-process, we can force an operation to be performed k times. For example,
assuming the construction of a k-loop gadget, the following BPP doubles the
number of X-processes k times:

X ↪−→ Y Y ↪−→ ZZ Z ↪−→ X

(rules for k-loop on A/B/C)

F = XB↑ ∪ Y C↑ ∪ ZA↑

For the loop to perform A ↪−→ B, all X-processes have to be turned into Y .
Similarly, performing B ↪−→ C ↪−→ A requires the Y -processes to be turned into
Z, then into X . Thus, in order to perform one iteration of the loop, one needs
to double the number of X-processes.

To implement such a loop we need two more gadgets: one for creating k
processes, and one for consuming k processes. By turning a created process
into a consumed process on at a time, we obtain the required cycle. Here is an
example:

I ↪−→ A A ↪−→ B B ↪−→ C C ↪−→ ε

A ↪−→ B B ↪−→ CF C ↪−→ A

(rules for a gadget to consume k processes F )

(rules for a gadget to spawn k processes I)

F = AA↑ ∪ BB↑ ∪ CC↑ ∪ AA↑ ∪ BB↑ ∪ CC↑

αinit = A

By combining a k-loop with a multiplier or a divider, we can spawn or consume
2k processes. This allows us to create a 2k-loop. By iterating this construction,
we get a BPP of exponential size (each loop requires two lower-level loops) that

is able to spawn or consume 22
...k

processes.
It remains to simulate our 2-counter machineM . The main idea is to spawn an

initial budget b of processes, and to make sure that this number stays the same
along the run. Zero-tests are easy to implement; the difficulty lies in the incre-
ments and decrements. The solution is to maintain, for each simulated counter,
two pools of processes X and X, such that if the counter is supposed to have

value k, then we have processes XkX
b−k

. Now, incrementing consist in turning
all these processes into backup processes, except one X-process. Then, we turn
this process into an X-process, and return all backup process to their initial
type.

In [2] we provide complete details of the proofs, including graphical represen-
tations of the processes involved. ��
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4 The Coverability Problem for the MDP

In the following we investigate the controlled version of the pBPP model. Recall
from Section 2 that a pBPP S = (Γ, ↪−→,Prob) induces an MDP D(S) where in
a configuration ε �= α ∈ NΓ a scheduler σ picks a type X with α(X) ≥ 1. The
successor configuration is then obtained randomly from α according to the rules
in S with X on the left-hand side.

We investigate (variants of) the decision problem that asks, given α0 ∈ NΓ

and an upward-closed set F ⊆ NΓ , whether Pσ(α0 |= ♦F ) = 1 holds for some
scheduler (or for all schedulers, respectively).

4.1 The Existential Problem

In this section we consider the scenario where we ask for a scheduler that makes
the system reach an upward-closed set with probability 1. We prove the following
theorem:

Theorem 7. Given a pBPP S = (Γ, ↪−→,Prob) and a configuration α0 ∈ NΓ

and an upward-closed set F ⊆ NΓ , it is decidable whether there exists a sched-
uler σ with Pσ(α0 |= ♦F ) = 1. If such a scheduler exists, one can compute a
deterministic and memoryless scheduler σ with Pσ(α0 |= ♦F ) = 1.

Proof (sketch). The proof (in [2]) is relatively long. The idea is to abstract the
MDP D(S) (with NΓ as state space) to an “equivalent” finite-state MDP. The
state space of the finite-state MDP is Q := {0, 1, . . . ,K}Γ ⊆ NΓ , where K is
the largest number that appears in the minimal elements of F . For finite-state
MDPs, reachability with probability 1 can be decided in polynomial time, and
an optimal deterministic and memoryless scheduler can be synthesized.

When setting up the finite-state MDP, special care needs to be taken of tran-
sitions that would lead from Q to a configuration α outside of Q, i.e., α ∈ NΓ \Q.
Those transitions are redirected to a probability distribution on Tα with Tα ⊆ Q,
so that each configuration in Tα is “equivalent” to some configuration β ∈ NΓ

that could be reached from α in the infinite-state MDP D(S), if the scheduler
follows a particular optimal strategy in D(S). (One needs to show that indeed
with probability 1 such a β is reached in the infinite-state MDP, if the scheduler
acts according to this strategy.) This optimal strategy is based on the observa-
tion that whenever in configuration β ∈ NΓ with β(X) > K for some X , then
type X can be scheduled. This is without risk, because after scheduling X , at
least K processes of type X remain, which is enough by the definition of K. The
benefit of scheduling such X is that processes appearing on the right-hand side
of X-rules may be generated, possibly helping to reach F . For computing Tα,
we rely on decision procedures for the reachability problem in Petri nets, which
prohibits us from giving an upper complexity bound. ��

4.2 The Universal Problem

In this section we consider the scheduler as adversarial in the sense that it tries to
avoid the upward-closed set F . We say “the scheduler wins” if it avoids F forever.
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We ask if the scheduler can win with positive probability: given α0 and F , do
we have Pσ(α0 |= ♦F ) = 1 for all schedulers σ? For the question to make sense,
we need to rephrase it, as we show now. Consider the pBPP S = (Γ, ↪−→,Prob)
with Γ = {X,Y } and the rules X

1
↪−→ XX and Y

1
↪−→ Y Y . Let F = XX↑. If

α0 = X , then, clearly, we have Pσ(α0 |= ♦F ) = 1 for all schedulers σ. However,
if α0 = XY , then there is a scheduler σ with Pσ(α0 |= ♦F ) = 0: take the
scheduler σ that always schedules Y and never X . Such a scheduler is intuitively
unfair. If an operating system acts as a scheduler, a minimum requirement would
be that waiting processes are scheduled eventually.

We call a run α0X1α1X2 . . . in the MDP D(S) fair if for all i ≥ 0 and all
X ∈ Γ with αi(X) ≥ 1 we have X = Xj for some j > i. We call a scheduler σ
classically fair if it produces only fair runs.

Example 8. Consider the pBPP with X
1
↪−→ Y and Y

0.5
↪−−→ Y and Y

0.5
↪−−→ X . Let

F = Y Y ↑. Let α0 = XX . In configuration α = XY the scheduler has to choose
between two options: It can pickX , resulting in the successor configuration Y Y ∈
F , which is a “loss” for the scheduler. Alternatively, it picks Y , which results in
α or α0, each with probability 0.5. If it results in α, nothing has changed; if it
results in α0, we say a “a round is completed”. Consider the scheduler σ that acts
as follows. When in configuration α = XY and in the ith round, it picks Y until
either the next round (the (i + 1)st round) is completed or Y has been picked
i times in this round. In the latter case it picks X and thus loses. Clearly, σ is
classically fair (provided that it behaves in a classically fair way after it loses,
for instances using round-robin). The probability of losing in the ith round is
2−i. Hence the probability of losing is Pσ(α0 |= ♦F ) = 1 −

∏∞
i=1(1 − 2−i) < 1.

(For this inequality, recall that for a sequence (ai)i∈N with ai ∈ (0, 1) we have∏
i∈N

(1−ai) = 0 if and only if the series
∑

i∈N
ai diverges.) One can argue along

these lines that any classically fair scheduler needs to play longer and longer
rounds in order to win with positive probability. In particular, such schedulers
need infinite memory.

It is hardly conceivable that an operating system would “consider” such sched-
ulers. Note that the pBPP from the previous example has a finite state space.

In the probabilistic context, a commonly used alternative notion is probabilis-
tic fairness, see e.g. [10,17] or [4] for an overview (the term probabilistic fairness
is used differently in [4]). We call a scheduler σ probabilistically fair if with
probability 1 it produces a fair run.

Example 9. For the pBPP from the previous example, consider the scheduler σ
that picks Y until the round is completed. Then Pσ(α |= ♦F ) = 0 and σ is
probabilistically fair.

The following example shows that probabilistic fairness for pBPPs can be un-
stable with respect to perturbations in the probabilities.
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Example 10. Consider a pBPP with

X
1
↪−→ Y Y

1
↪−→ XZ Z

p
↪−→ ZZ Z

1−p
↪−−→ ε for some p ∈ (0, 1)

and F = Y Z↑ and α0 = XZ.
Let p ≤ 0.5. Then, by an argument on the “gambler’s ruin problem” (see

e.g. [8, Chapter XIV]), with probability 1 each Z-process produces only finitely
many other Z-processes in its “subderivation tree”. Consider the scheduler σ
that picks Z as long as there is a Z-process. With probability 1 it creates a run
of the following form:

(XZ) · · · (X)(Y )(XZ) · · · (X)(Y )(XZ) · · · (X)(Y )(XZ) . . .

Such runs are fair, so σ is probabilistically fair and wins with probability 1.
Let p > 0.5. Then, by the same random-walk argument, with probability 1

some Z-process (i.e., at least one of the Z-processes created by Y ) produces
infinitely many other Z-processes. So any probabilistically fair scheduler σ pro-
duces, with probability 1, a Y -process before all Z-processes are gone, and thus
loses.

We conclude that a probabilistically fair scheduler σ with Pσ(α0 |= ♦F ) < 1
exists if and only if p ≤ 0.5.

The example suggests that deciding whether there exists a probabilistically fair
scheduler σ with Pσ(α0 |= ♦F ) < 1 requires arguments on (in general) mul-
tidimensional random walks. In addition, the example shows that probabilistic
fairness is not a robust notion when the exact probabilities are not known.

We aim at solving those problems by considering a stronger notion of fair
runs: Let k ∈ N. We call a run α0X1α1X2 . . . k-fair if for all i ≥ 0 and all X ∈ Γ
with αi(X) ≥ 1 we have that X ∈ {Xi+1, Xi+2, . . . , Xk}. In words, if αi(X) ≥ 1,
the type X has to be scheduled within time k. We call a scheduler k-fair if it
produces only k-fair runs.

Theorem 11. Given a pBPP S = (Γ, ↪−→,Prob), an upward-closed set F , a
number k ∈ N, and a configuration α0 ∈ NΓ , it is decidable whether for all
k-fair schedulers σ we have Pσ(α0 |= ♦F ) = 1.

The proof is inspired by proofs in [16], and combines new insights with the
technique of Theorem 4, see [2]. We remark that the proof shows that the exact
values of the positive probabilities do not matter.

5 Q-States Target Sets

In this section, we provide a sensible restriction of input target sets which yields
polynomial-time solvability of our problems. Let Q = {X1, . . . , Xn} ⊆ Γ . The
Q-states set is the upward-closed set F = X1↑ ∪ . . . ∪Xn↑. There are two rea-
sons to consider Q-states target sets. Firstly, Q-states target sets are sufficiently
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expressive to capture common examples in the literature of distributed proto-
cols, e.g., freedom from deadlock and resource starvation (standard examples
include the dining philosopher problem in which case at least one philosopher
must eat). Secondly, Q-states target sets have been considered in the literature
of Petri nets: e.g., in [1]1 the authors showed that qualitative reachability for
probabilistic Vector Addition Systems with States with Q-states target sets be-
comes decidable whereas the same problem is undecidable with upward-closed
target sets.

Theorem 12. Let S = (Γ, ↪−→,Prob) be a pBPP. Let Q ⊆ Γ represent an
upward-closed set F ⊆ NΓ . Let α0 ∈ NΓ and k ≥ |Γ |.

(a) The coverability problem with Q-states target sets is solvable in polynomial
time; i.e., we can decide in polynomial time whether P(α0 |= ♦F ) = 1 holds.

(b) We have:
P(α0 |= ♦F ) = 1

⇐⇒ Pσ(α0 |= ♦F ) = 1 holds for some scheduler σ

⇐⇒ Pσ(α0 |= ♦F ) = 1 holds for all k-fair schedulers σ.

As a consequence of part (a), the existential and the k-fair universal problem
are decidable in polynomial time.

Proof. Denote by Q′ ⊆ Γ the set of types X ∈ Γ such that there are 	 ∈ N, a
path α0, . . . , α� in the Markov chainM(S), and a type Y ∈ Q such that α0 = X
and β = α� ≥ Y . Clearly we have Q ⊆ Q′ ⊆ Γ , and Q′ can be computed in
polynomial time.

In the following, view S as a context-free grammar with empty terminal set
(ignore the probabilities, and put the symbols on the right-hand sides in an
arbitrary order). Remove from S all rules of the form: (i) X ↪−→ α where X ∈ Q
or α(Y ) ≥ 1 for some Y ∈ Q, and (ii) X ↪−→ α where X ∈ Γ \Q′. Furthermore,
add rules X ↪−→ ε where X ∈ Γ \Q′. Check (in polynomial time) whether in the
grammar the empty word ε is produced by α0.

We have that ε is produced by α0 if and only if P(α0 |= ♦F ) < 1. This follows

from Proposition 3, as the complement of F̃ is the Q′-states set. Hence part (a)
of the theorem follows.

For part (b), let P(α0 |= ♦F ) < 1. By part (a) we have that ε is produced
by α0. Then for all schedulers σ we have Pσ(α0 |= ♦F ) < 1. Trivially, as a special
case, this holds for some k-fair scheduler. (Note that k-fair schedulers exist, as
k ≥ |Γ |.)

Conversely, let P(α0 |= ♦F ) = 1. By part (a) we have that ε is not produced
by α0. Then, no matter what the scheduler does, the set F remains reachable.
So all k-fair schedulers will, with probability 1, hit F eventually. ��

1 Our definition seems different from [1], but equivalent from standard embedding of
Vector Addition Systems with States to Petri Nets.
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6 Semilinear Target Sets

In this section, we prove that the qualitative reachability problems that we con-
sidered in the previous sections become undecidable when we extend upward-
closed to semilinear target sets.

Theorem 13. Let S = (Γ, ↪−→,Prob) be a pBPP. Let F ⊆ NΓ be a semilinear
set. Let α0 ∈ NΓ . The following problems are undecidable:

(a) Does P(α0 |= ♦F ) = 1 hold?
(b) Does Pσ(α0 |= ♦F ) = 1 hold for all 7-fair schedulers σ?
(c) Does Pσ(α0 |= ♦F ) = 1 hold for some scheduler σ?

The proofs are reductions from the control-state-reachability problem for 2-
counter machines, see [2].

7 Conclusions and Future Work

In this paper we have studied fundamental qualitative coverability and other
reachability properties for pBPPs. For the Markov-chain model, the coverability
problem for pBPPs is decidable, which is in contrast to general pVASSs. We
have also shown a nonelementary lower complexity bound. For the MDP model,
we have proved decidability of the existential and the k-fair version of the uni-
versal coverability problem. The decision algorithms for the MDP model are not
(known to be) elementary, as they rely on Petri-net reachability and a Karp-
Miller-style construction, respectively. It is an open question whether there exist
elementary algorithms. Another open question is whether the universal MDP
problem without any fairness constraints is decidable.

We have given examples of problems where the answer depends on the exact
probabilities in the pBPP. This is also true for the reachability problem for
finite sets: Given a pBPP and α0 ∈ NΓ and a finite set F ⊆ NΓ , the reachability
problem for finite sets asks whether we have P(α0 |= ♦F ) = 1 in the Markov
chain M(S). Similarly as in Example 10 the answer may depend on the exact

probabilities: consider the pBPP withX
p
↪−→ XX andX

1−p
↪−−→ ε, and let α0 = XX

and F = {X}. Then we have P(α0 |= ♦F ) = 1 if and only if p ≤ 1/2. The same
is true in both the existential and the universal MDP version of this problem.
Decidability of all these problems is open, but clearly decision algorithms would
have to use techniques that are very different from ours, such as analyses of
multidimensional random walks.

On a more conceptual level we remark that the problems studied in this
paper are qualitative in two senses: (a) we ask whether certain events happen
with probability 1 (rather than > 0.5 etc.); and (b) the exact probabilities in the
rules of the given pBPP do not matter. Even if the system is nondeterministic and
not probabilistic, properties (a) and (b) allow for an interpretation of our results
in terms of nondeterministic BPPs, where the nondeterminism is constrained
by the laws of probability, thus imposing a special but natural kind of fairness.
It would be interesting to explore this kind of “weak” notion of probability for
other (infinite-state) systems.
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12. Hüttel, H., Kobayashi, N., Suto, T.: Undecidable equivalences for basic parallel
processes. Inf. Comput. 207(7), 812–829 (2009)
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Abstract. Markov decision processes (MDP) are finite-state systems
with both strategic and probabilistic choices. After fixing a strategy, an
MDP produces a sequence of probability distributions over states. The
sequence is eventually synchronizing if the probability mass accumulates
in a single state, possibly in the limit. Precisely, for 0 ≤ p ≤ 1 the se-
quence is p-synchronizing if a probability distribution in the sequence
assigns probability at least p to some state, and we distinguish three
synchronization modes: (i) sure winning if there exists a strategy that
produces a 1-synchronizing sequence; (ii) almost-sure winning if there
exists a strategy that produces a sequence that is, for all ε > 0, a (1-ε)-
synchronizing sequence; (iii) limit-sure winning if for all ε > 0, there ex-
ists a strategy that produces a (1-ε)-synchronizing sequence. We consider
the problem of deciding whether an MDP is sure, almost-sure, or limit-
sure winning, and we establish the decidability and optimal complexity
for all modes, as well as the memory requirements for winning strategies.
Our main contributions are as follows: (a) for each winning modes we
present characterizations that give a PSPACE complexity for the deci-
sion problems, and we establish matching PSPACE lower bounds; (b) we
show that for sure winning strategies, exponential memory is sufficient
and may be necessary, and that in general infinite memory is necessary
for almost-sure winning, and unbounded memory is necessary for limit-
sure winning; (c) along with our results, we establish new complexity
results for alternating finite automata over a one-letter alphabet.

1 Introduction

Markov decision processes (MDP) are finite-state stochastic models used in the
design of systems that exhibit both controllable and stochastic behavior, such as
in planning, randomized algorithms, and communication protocols [2,13,4]. The
controllable choices along the execution are fixed by a strategy, and the stochas-
tic choices describe the system response. When a strategy is fixed in an MDP,
the symbolic outcome is a sequence of probability distributions over states of the
MDP, which differs from the traditional semantics where a probability measure
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is considered over sets of sequences of states. This view is adequate in many ap-
plications, such as systems biology, sensor networks, robot planning, etc. [15,5],
where the system consists of several copies of the same process (molecules, sen-
sors, robots, etc.), and the relevant information along the execution of the system
is the number of processes in each state, or the relative frequency (i.e., the prob-
ability) of each state. In recent works, the verification of quantitative properties
of the symbolic outcome was shown undecidable [18]. Decidability is obtained
for special subclasses [6], or through approximations [1].

In this paper, we consider a general class of strategies that select actions de-
pending on the full history of the system execution. In the context of several
identical processes, the same strategy is used in every process, but the internal
state of each process need not be the same along the execution, since probabilistic
transitions may have different outcome in each process. Therefore, the execution
of the system is best described by the sequence of probability distributions over
states along the execution. Previously, the special case of word-strategies have
been considered, that at each step select the same control action in all states, and
thus only depend on the number of execution steps of the system. Several prob-
lems for MDPs with word-strategies (also known as probabilistic automata) are
undecidable [3,14,18,11]. In particular the limit-sure reachability problem, which
is to decide whether a given state can be reached with probability arbitrarily
close to one, is undecidable for probabilistic automata [14].

We establish the decidability and optimal complexity of deciding synchro-
nizing properties for the symbolic outcome of MDPs under general strategies.
Synchronizing properties require that the probability distributions tend to accu-
mulate all the probability mass in a single state, or in a set of states. They gener-
alize synchronizing properties of finite automata [20,10]. Formally for 0 ≤ p ≤ 1,
a sequence X̄ = X0X1 . . . of probability distributions Xi : Q→ [0, 1] over state
space Q of an MDP is eventually p-synchronizing if for some i ≥ 0, the distri-
bution Xi assigns probability at least p to some state. Analogously, it is always
p-synchronizing if in all distributions Xi, there is a state with probability at
least p. For p = 1, these definitions are the qualitative analogous for sequences
of distributions of the traditional reachability and safety conditions [9]. In par-
ticular, an eventually 1-synchronizing sequence witnesses that there is a length
	 such that all paths of length 	 in the MDP reach a single state, which is thus
reached synchronously no matter the probabilistic choices.

Viewing MDPs as one-player stochastic games, we consider the following tra-
ditional winning modes (see also Table 1): (i) sure winning, if there is a strategy
that generates an {eventually, always} 1-synchronizing sequence; (ii) almost-sure
winning, if there exists a strategy that generates a sequence that is, for all ε > 0,
{eventually, always} (1−ε)-synchronizing; (iii) limit-sure winning, if for all ε > 0,
there is a strategy that generates an {eventually, always} (1 − ε)-synchronizing
sequence.

We show that the three winning modes form a strict hierarchy for eventu-
ally synchronizing: there are limit-sure winning MDPs that are not almost-sure
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Table 1. Winning modes and synchronizing objectives (where Mα
n(T ) denotes the

probability that under strategy α, after n steps the MDP M is in a state of T )

Always Eventually

Sure ∃α ∀n Mα
n(T ) = 1 ∃α ∃n Mα

n(T ) = 1

Almost-sure ∃α infn Mα
n(T ) = 1 ∃α supn Mα

n(T ) = 1

Limit-sure supα infn Mα
n(T ) = 1 supα supn Mα

n(T ) = 1

winning, and there are almost-sure winning MDPs that are not sure winning.
For always synchronizing, the three modes coincide.

For each winning mode, we consider the problem of deciding if a given initial
distribution is winning. We establish the decidability and optimal complexity
bounds for all winning modes. Under general strategies, the decision problems
have much lower complexity than with word-strategies. We show that all deci-
sion problems are decidable, in polynomial time for always synchronizing, and
PSPACE-complete for eventually synchronizing. This is also in contrast with
almost-sure winning in the traditional semantics of MDPs, which is solvable in
polynomial time for both safety and reachability objectives [8]. Our complexity
results are shown in Table 2.

We complete the picture by providing optimal memory bounds for winning
strategies. We show that for sure winning strategies, exponential memory is suf-
ficient and may be necessary, and that in general infinite memory is necessary for
almost-sure winning, and unbounded memory is necessary for limit-sure winning.

Some results in this paper rely on insights related to games and alternating
automata that are of independent interest. First, the sure-winning problem for
eventually synchronizing is equivalent to a two-player game with a synchronized
reachability objective, where the goal for the first player is to ensure that a target
state is reached after a number of steps that is independent of the strategy of the
opponent (and thus this number can be fixed in advance by the first player). This
condition is stronger than plain reachability, and while the winner in two-player
reachability games can be decided in polynomial time, deciding the winner for
synchronized reachability is PSPACE-complete. This result is obtained by turn-
ing the synchronized reachability game into a one-letter alternating automaton
for which the emptiness problem (i.e., deciding if there exists a word accepted by
the automaton) is PSPACE-complete [16,17]. Second, our PSPACE lower bound
for the limit-sure winning problem in eventually synchronizing uses a PSPACE-
completeness result that we establish for the universal finiteness problem, which
is to decide, given a one-letter alternating automata, whether from every state
the accepted language is finite.

A full version of this paper with all proofs is available [12].

2 Markov Decision Processes and Synchronization

A probability distribution over a finite set S is a function d : S → [0, 1] such
that

∑
s∈S d(s) = 1. The support of d is the set Supp(d) = {s ∈ S | d(s) > 0}.
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We denote by D(S) the set of all probability distributions over S. For T �= ∅,
the uniform distribution on T assigns probability 1

|T | to every state in T . Given

s ∈ S, the Dirac distribution on s assigns probability 1 to s, and by a slight
abuse of notation, we usually denote it simply by s.

2.1 Markov Decision Processes

A Markov decision process (MDP) M = 〈Q,A, δ〉 consists of a finite set Q
of states, a finite set A of actions, and a probabilistic transition function δ :
Q×A→ D(Q). A state q is absorbing if δ(q, a) is the Dirac distribution on q for
all actions a ∈ A.

We describe the behavior of an MDP as a one-player stochastic game played
for infinitely many rounds. Given an initial distribution μ0 ∈ D(Q), the game
starts in the first round in state q with probability μ0(q). In each round, the
player chooses an action a ∈ A, and if the game is in state q, the next round
starts in the successor state q′ with probability δ(q, a)(q′).

Given q ∈ Q and a ∈ A, denote by post(q, a) the set Supp(δ(q, a)), and given
T ⊆ Q let Pre(T ) = {q ∈ Q | ∃a ∈ A : post(q, a) ⊆ T } be the set of states from
which the player has an action to ensure that the successor state is in T . For
k > 0, let Prek(T ) = Pre(Prek−1(T )) with Pre0(T ) = T .

A path in M is an infinite sequence π = q0a0q1a1 . . . such that qi+1 ∈
post(qi, ai) for all i ≥ 0. A finite prefix ρ = q0a0q1a1 . . . qn of a path (or simply
a finite path) has length |ρ| = n and last state Last(ρ) = qn. We denote by
Play(M) and Pref(M) the set of all paths and finite paths inM respectively.

For the decision problems considered in this paper, only the support of the
probability distributions in the transition function is relevant (i.e., the exact
value of the positive probabilities does not matter); therefore, we can encode an
MDP as an A-labelled transition system (Q,R) with R ⊆ Q × A ×Q such that
(q, a, q′) ∈ R is a transition if q′ ∈ post(q, a).

Strategies. A randomized strategy for M (or simply a strategy) is a function
α : Pref(M)→ D(A) that, given a finite path ρ, returns a probability distribution
α(ρ) over the action set, used to select a successor state q′ of ρ with probability∑

a∈A α(ρ)(a) · δ(q, a)(q′) where q = Last(ρ).
A strategy α is pure if for all ρ ∈ Pref(M), there exists an action a ∈ A such

that α(ρ)(a) = 1; and memoryless if α(ρ) = α(ρ′) for all ρ, ρ′ such that Last(ρ) =
Last(ρ′). We view pure strategies as functions α : Pref(M)→ A, and memoryless
strategies as functions α : Q→ D(A), Finally, a strategy α uses finite-memory if
it can be represented by a finite-state transducer T = 〈Mem,m0, αu, αn〉 where
Mem is a finite set of modes (the memory of the strategy),m0 ∈ Mem is the initial
mode, αu : Mem× A×Q→ Mem is an update function, that given the current
memory, last action and state updates the memory, and αn : Mem×Q→ D(A)
is a next-move function that selects the probability distribution αn(m, q) over
actions when the current mode is m and the current state of M is q. For pure
strategies, we assume that αn : Mem×Q→ A. The memory size of the strategy
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is the number |Mem| of modes. For a finite-memory strategy α, letM(α) be the
Markov chain obtained as the product of M with the transducer defining α.

2.2 State Semantics

In the traditional state semantics, given an initial distribution μ0 ∈ D(Q) and a
strategy α in an MDPM, a path-outcome is a path π = q0a0q1a1 . . . inM such
that q0 ∈ Supp(μ0) and ai ∈ Supp(α(q0a0 . . . ai−1qi)) for all i ≥ 0. The probabil-

ity of a finite prefix ρ = q0a0q1a1 . . . qn of π is μ0(q0) ·
∏n−1

j=0 α(q0a0 . . . qj)(aj) ·
δ(qj , aj)(qj+1). We denote by Outcomes(μ0, α) the set of all path-outcomes from
μ0 under strategy α. An event Ω ⊆ Play(M) is a measurable set of paths, and
given an initial distribution μ0 and a strategy α, the probabilities Prα(Ω) of
events Ω are uniquely defined [19]. In particular, given a set T ⊆ Q of target
states, and k ∈ N, we denote by �T = {q0a0q1 · · · ∈ Play(M) | ∀i : qi ∈ T } the
safety event of always staying in T , by �T = {q0a0q1 · · · ∈ Play(M) | ∃i : qi ∈ T }
the event of reaching T , and by �k T = {q0a0q1 · · · ∈ Play(M) | qk ∈ T } the
event of reaching T after exactly k steps. Hence, Prα(�T ) is the probability to
reach T under strategy α.

We consider the following classical winning modes. Given an initial distribu-
tion μ0 and an event Ω, we say that M is:

– sure winning if there exists a strategy α such that Outcomes(μ0, α) ⊆ Ω;
– almost-sure winning if there exists a strategy α such that Prα(Ω) = 1;
– limit-sure winning if supα Prα(Ω) = 1.

It is known for safety objectives �T in MDPs that the three winning modes
coincide, and for reachability objectives �T that an MDP is almost-sure winning
if and only if it is limit-sure winning. For both objectives, the set of initial
distributions for which an MDP is sure (resp., almost-sure or limit-sure) winning
can be computed in polynomial time [8].

2.3 Distribution Semantics

In contrast to the state semantics, we consider the outcome of an MDPM under
a fixed strategy as a sequence of probability distributions over states defined as
follows [18]. Given an initial distribution μ0 ∈ D(Q) and a strategy α in M,
the symbolic outcome of M from μ0 is the sequence (Mα

n)n∈N of probability
distributions defined by Mα

k (q) = Prα(�k {q}) for all k ≥ 0 and q ∈ Q. Hence,
Mα

k is the probability distribution over states after k steps under strategy α.
Note thatMα

0 = μ0.
Informally, synchronizing objectives require that the probability of some

state (or some group of states) tends to 1 in the sequence (Mα
n)n∈N. Given a set

T ⊆ Q, consider the functions sumT : D(Q) → [0, 1] and maxT : D(Q) → [0, 1]
that compute sumT (X) =

∑
q∈T X(q) and maxT (X) = maxq∈T X(q). For

f ∈ {sumT ,maxT } and p ∈ [0, 1], we say that a probability distribution X
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Table 2. Computational complexity of the membership problem, and memory require-
ment for the strategies (for always synchronizing, the three modes coincide)

Always Eventually

Complexity Memory requirement Complexity Memory requirement

Sure PSPACE-C exponential

Almost-sure PTIME-C memoryless PSPACE-C infinite

Limit-sure PSPACE-C unbounded

is p-synchronized according to f if f(X) ≥ p, and that a sequence X̄ = X0X1 . . .
of probability distributions is:

(a) always p-synchronizing if Xi is p-synchronized for all i ≥ 0;
(b) event (or eventually) p-synchronizing if Xi is p-synchronized for some i ≥ 0.

For p = 1, we view these definitions as the qualitative analogous for sequences of
distributions of the traditional safety and reachability conditions for sequences
of states [9]. Now, we define the following winning modes. Given an initial dis-
tribution μ0 and a function f ∈ {sumT ,maxT }, we say that for the objective of
{always, eventually} synchronizing from μ0,M is:

– sure winning if there exists a strategy α such that the symbolic outcome of
α from μ0 is {always, eventually} 1-synchronizing according to f ;

– almost-sure winning if there exists a strategy α such that for all ε > 0 the
symbolic outcome of α from μ0 is {always, eventually} (1− ε)-synchronizing
according to f ;

– limit-sure winning if for all ε > 0, there exists a strategy α such that the
symbolic outcome of α from μ0 is {always, eventually} (1− ε)-synchronizing
according to f ;

We often use X(T ) instead of sumT (X), as in Table 1 where the definitions
of the various winning modes and synchronizing objectives for f = sumT are
summarized. In Section 2.4, we present an example to illustrate the definitions.

2.4 Decision Problems

For f ∈ {sumT ,maxT } and λ ∈ {always, event}, the winning region 〈〈1〉〉λsure(f)
is the set of initial distributions such thatM is sure winning for λ-synchronizing
(we assume thatM is clear from the context). We define analogously the winning
regions 〈〈1〉〉λalmost (f) and 〈〈1〉〉λlimit (f). For a singleton T = {q} we have sumT =
maxT , and we simply write 〈〈1〉〉λμ(q) (where μ ∈ {sure, almost, limit}). We are
interested in the algorithmic complexity of the membership problem, which is to
decide, given a probability distribution μ0, whether μ0 ∈ 〈〈1〉〉λμ(f). As we show
below, it is easy to establish the complexity of the membership problems for
always synchronizing, while it is more tricky for eventually synchronizing. The
complexity results are summarized in Table 2.
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q0 q1 q2 q3
a, b : 1/2

a, b : 1/2

b

a

a, b

a, b

Fig. 1. An MDP M such that 〈〈1〉〉eventsure (q1) �= 〈〈1〉〉eventalmost (q1) and 〈〈1〉〉eventalmost (q2) �=
〈〈1〉〉eventlimit (q2)

Always Synchronizing. We first remark that for always synchronizing, the three
winning modes coincide.

Lemma 1. Let T be a set of states. For all functions f ∈ {maxT , sumT }, we
have 〈〈1〉〉always

sure (f) = 〈〈1〉〉always
almost (f) = 〈〈1〉〉

always
limit (f).

It follows from the proof of Lemma 1 that the winning region for always
synchronizing according to sumT coincides with the set of winning initial distri-
butions for the safety objective �T in the traditional state semantics, which can
be computed in polynomial time [7]. Moreover, always synchronizing according
to maxT is equivalent to the existence of an infinite path staying in T in the
transition system 〈Q,R〉 of the MDP restricted to transitions (q, a, q′) ∈ R such
that δ(q, a)(q′) = 1, which can also be decided in polynomial time. In both cases,
pure memoryless strategies are sufficient.

Theorem 1. The membership problem for always synchronizing can be solved
in polynomial time, and pure memoryless strategies are sufficient.

Eventually Synchronizing. For all functions f ∈ {maxT , sumT }, the following
inclusions hold: 〈〈1〉〉eventsure (f) ⊆ 〈〈1〉〉eventalmost (f) ⊆ 〈〈1〉〉eventlimit (f) and we show that
the inclusions are strict in general. Consider the MDP in Fig. 1 with initial
state q0 and target T = {q1}. For all strategies, the probability in q0 is always
positive, implying that the MDP is not sure-winning in {q1}. However, the MDP
is almost-sure winning in {q1} using a strategy that always plays a. Now, consider
target T = {q2}. For all ε > 0, we can have probability at least 1 − ε in q2 by
playing a long enough, and then b. For a fixed strategy, this probability never
tends to 1 since if the probability p > 0 in q2 is positive at a certain step, then
it remains bounded by 1 − p < 1 for all next steps. Therefore, the MDP is not
almost-sure winning in {q2}, but it is limit-sure winning.

Lemma 2. There exists an MDP M and states q1, q2 such that:

(i) 〈〈1〉〉eventsure (q1) � 〈〈1〉〉eventalmost (q1), and

(ii) 〈〈1〉〉eventalmost (q2) � 〈〈1〉〉eventlimit (q2).

The rest of this paper is devoted to the solution of the membership problem
for eventually synchronizing. We make some preliminary remarks to show that
it is sufficient to solve the membership problem according to f = sumT and for
MDPs with a single initial state. Our results will also show that pure strategies
are sufficient in all modes.
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Remark. For eventually synchronizing and each winning mode, we show that
the membership problem with function maxT is polynomial-time equivalent to
the membership problem with function sumT ′ with a singleton T ′. First, for
μ ∈ {sure, almost, limit}, we have 〈〈1〉〉eventμ (maxT ) =

⋃
q∈T 〈〈1〉〉eventμ (q), showing

that the membership problems for max are polynomial-time reducible to the
corresponding membership problem for sumT ′ with singleton T ′. The reverse
reduction is as follows. Given an MDP M′, a singleton T ′ = {q} and an initial
distribution μ′0, we can construct an MDP M and initial distribution μ0 such
that μ′0 ∈ 〈〈1〉〉eventμ (q) iff μ0 ∈ 〈〈1〉〉eventμ (maxT ) where T = Q is the state space of
M. The idea is to constructM and μ0 as a copy ofM′ and μ′0 where all states
except q are duplicated, and the initial and transition probabilities are evenly
distributed between the copies. Therefore if the probability tends to 1 in some
state, it has to be in q.

Remark. To solve the membership problems for eventually synchronizing with
function sumT , it is sufficient to provide an algorithm that decides membership
of Dirac distributions (i.e., assuming MDPs have a single initial state), since to
solve the problem for an MDPM with initial distribution μ0, we can equivalently
solve it for a copy of M with a new initial state q0 from which the successor
distribution on all actions is μ0. Therefore, it is sufficient to consider initial Dirac
distributions μ0.

3 One-Letter Alternating Automata

In this section, we consider one-letter alternating automata (1L-AFA) as they
have a structure of alternating graph analogous to MDP (i.e., when ignoring the
probabilities). We review classical decision problems for 1L-AFA, and establish
the complexity of a new problem, the universal finiteness problem which is to
decide if from every initial state the language of a given 1L-AFA is finite. These
results of independent interest are useful to establish the PSPACE lower bounds
for eventually synchronizing in MDPs.

One-Letter Alternating Automata. Let B+(Q) be the set of positive Boolean
formulas over Q, i.e. Boolean formulas built from elements in Q using ∧ and ∨.
A set S ⊆ Q satisfies a formula ϕ ∈ B+(Q) (denoted S |= ϕ) if ϕ is satisfied
when replacing in ϕ the elements in S by true, and the elements in Q \ S by
false.

A one-letter alternating finite automaton is a tuple A = 〈Q, δA,F〉 where Q is
a finite set of states, δA : Q→ B+(Q) is the transition function, and F ⊆ Q is the
set of accepting states. We assume that the formulas in transition function are
in disjunctive normal form. Note that the alphabet of the automaton is omitted,
as it has a single letter. In the language of a 1L-AFA, only the length of words
is relevant. For all n ≥ 0, define the set AccA(n,F) ⊆ Q of states from which
the word of length n is accepted by A as follows:
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– AccA(0,F) = F ;
– AccA(n,F) = {q ∈ Q | AccA(n− 1,F) |= δ(q)} for all n > 0.

The set L(Aq) = {n ∈ N | q ∈ AccA(n,F)} is the language accepted by A from
initial state q.

For fixed n, we view AccA(n, ·) as an operator on 2Q that, given a set F ⊆ Q
computes the set AccA(n,F). Note that AccA(n,F) = AccA(1, AccA(n− 1,F))
for all n ≥ 1. Denote by PreA(·) the operator AccA(1, ·). Then for all n ≥ 0 the
operator AccA(n, ·) coincides with PrenA(·), the n-th iterate of PreA(·).

Decision Problems. We present the classical emptiness and finiteness problems
for alternating automata, and we introduce a variant of the finiteness problem
that will be useful for solving synchronizing problems for MDPs.

– The emptiness problem for 1L-AFA is to decide, given a 1L-AFA A and an
initial state q, whether L(Aq) = ∅. The emptiness problem can be solved
by checking whether q ∈ PrenA(F) for some n ≥ 0. It is known that the
emptiness problem is PSPACE-complete, even for transition functions in
disjunctive normal form [16,17].

– The finiteness problem is to decide, given a 1L-AFA A and an initial state q,
whether L(Aq) is finite. The sequence Pre

n
A(F) is ultimately periodic, and for

all n ≥ 0, there exists n0 ≤ 2|Q| such that Pren0

A (F) = PrenA(F). Therefore,
the finiteness problem can be solved in (N)PSPACE by guessing n, k ≤ 2|Q|

such that Pren+k
A (F) = PrenA(F) and q ∈ PrenA(F). The finiteness problem is

PSPACE-complete by a simple reduction from the emptiness problem: from
an instance (A, q) of the emptiness problem, construct (A′, q′) where q′ = q
and A′ = 〈Q, δ′,F〉 is a copy of A = 〈Q, δ,F〉 with a self-loop on q (formally,
δ′(q) = q ∨ δ(q) and δ′(r) = δ(r) for all r ∈ Q \ {q}). It is easy to see that
L(Aq) = ∅ iff L(A′

q′ ) is finite.
– The universal finiteness problem is to decide, given a 1L-AFA A, whether
L(Aq) is finite for all states q. This problem can be solved by checking
whether PrenA(F) = ∅ for some n ≤ 2|Q|, and thus it is in PSPACE. Note
that if PrenA(F) = ∅, then PremA (F) = ∅ for all m ≥ n.

Given the PSPACE-hardness proofs of the emptiness and finiteness problems,
it is not easy to see that the universal finiteness problem is PSPACE-hard.

Lemma 3. The universal finiteness problem for 1L-AFA is PSPACE-hard.

Relation with MDPs. The underlying structure of a Markov decision process
M = 〈Q,A, δ〉 is an alternating graph, where the successor q′ of a state q is
obtained by an existential choice of an action a and a universal choice of a
state q′ ∈ Supp(δ(q, a)). Therefore, it is natural that some questions related
to MDPs have a corresponding formulation in terms of alternating automata.
We show that such connections exist between synchronizing problems for MDPs
and language-theoretic questions for alternating automata, such as emptiness
and universal finiteness. Given a 1L-AFA A = 〈Q, δA,F〉, assume without loss
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of generality that the transition function δA is such that δA(q) = c1∨· · ·∨cm has
the same number m of conjunctive clauses for all q ∈ Q. From A, construct the
MDP MA = 〈Q,A, δM〉 where A = {a1, . . . , am} and δM(q, ak) is the uniform
distribution over the states occurring in the k-th clause ck in δA(q), for all
q ∈ Q and ak ∈ A. Then, we have AccA(n,F) = PrenM(F) for all n ≥ 0.
Similarly, from an MDP M and a set T of states, we can construct a 1L-AFA
A = 〈Q, δA,F〉 with F = T such that AccA(n,F) = PrenM(T ) for all n ≥ 0 (let
δA(q) =

∨
a∈A

∧
q′∈post(q,a) q

′ for all q ∈ Q).
Several decision problems for 1L-AFA can be solved by computing the se-

quence AccA(n,F), and we show that some synchronizing problems for MDPs
require the computation of the sequence PrenM(F). Therefore, the above rela-
tion between 1L-AFA and MDPs establishes bridges that we use in Section 4 to
transfer complexity results from 1L-AFA to MDPs.

4 Eventually Synchronization

In this section, we show the PSPACE-completeness of the membership problem
for eventually synchronizing objectives and the three winning modes. By the
remarks at the end of Section 2, we consider the membership problem with
function sum and Dirac initial distributions (i.e., single initial state).

4.1 Sure Eventually Synchronization

Given a target set T , the membership problem for sure-winning eventually syn-
chronizing objective in T can be solved by computing the sequence Pren(T ) of
iterated predecessor. A state q0 is sure-winning for eventually synchronizing in T
if q0 ∈ Pren(T ) for some n ≥ 0.

Lemma 4. Let M be an MDP and T be a target set. For all states q0, we have
q0 ∈ 〈〈1〉〉eventsure (sumT ) if and only if there exists n ≥ 0 such that q0 ∈ PrenM(T ).

By Lemma 4, the membership problem for sure eventually synchronizing is
equivalent to the emptiness problem of 1L-AFA, and thus PSPACE-complete
(even when T is a singleton). Moreover if q0 ∈ PrenM(T ), a finite-memory strategy
with n modes that at mode i in a state q plays an action a such that post(q, a) ⊆
Prei−1(T ) is sure winning for eventually synchronizing. There exists a family of
MDPs Mn (n ∈ N) that are sure winning for eventually synchronization, and
where the sure winning strategies require exponential memory [12]. Essentially,
the structure ofMn is an initial uniform probabilistic transition to n components
H1, . . . , Hn where Hi is a cycle of length pi the i-th prime number, and sure
eventually synchronization requires memory size p#n =

∏n
i=1 pi. The following

theorem summarizes the results for sure eventually synchronizing.

Theorem 2. For sure eventually synchronizing in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.
2. (Memory). Exponential memory is necessary and sufficient for both pure and

randomized strategies, and pure strategies are sufficient.
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q0 q1 q2
a : 1/2

a : 1/2
b

b

a

a, b

Fig. 2. An MDP where infinite memory is necessary for almost-sure eventually syn-
chronizing strategies

4.2 Almost-Sure Eventually Synchronization

We show an example where infinite memory is necessary to win for almost-
sure eventually synchronizing. Consider the MDP in Fig. 2 with initial state q0.
We construct a strategy that is almost-sure eventually synchronizing in {q2},
showing that q0 ∈ 〈〈1〉〉eventalmost (q2). First, observe that for all ε > 0 we can have
probability at least 1 − ε in q2 after finitely many steps: playing n times a and
then b leads to probability 1− 1

2n in q2. Thus the MDP is limit-sure eventually
synchronizing in q2. Moreover the remaining probability mass is in q0. It turns out
that from any (initial) distribution with support {q0, q2}, the MDP is again limit-
sure eventually synchronizing in q2 (and with support in {q0, q2}). Therefore we
can take a smaller value of ε and play a strategy to have probability at least 1−ε
in q2, and repeat this for ε → 0. This strategy ensures almost-sure eventually
synchronizing in q2. The next result shows that infinite memory is necessary for
almost-sure winning in this example.

Lemma 5. There exists an almost-sure eventually synchronizing MDP for
which all almost-sure eventually synchronizing strategies require infinite memory.

It turns out that in general, almost-sure eventually synchronizing strategies
can be constructed from a family of limit-sure eventually synchronizing strategies
if we can also ensure that the probability mass remains in the winning region (as
in the MDP in Fig. 2). We present a characterization of the winning region for
almost-sure winning based on an extension of the limit-sure eventually synchro-
nizing objective with exact support. This objective requires to ensure probability
arbitrarily close to 1 in the target set T , and moreover that after the same num-
ber of steps the support of the probability distribution is contained in a given
set U . Formally, given an MDPM, let 〈〈1〉〉eventlimit (sumT , U) for T ⊆ U be the set
of all initial distributions such that for all ε > 0 there exists a strategy α and
n ∈ N such that Mα

n(T ) ≥ 1 − ε and Mα
n(U) = 1. We say that α is limit-sure

eventually synchronizing in T with support in U .
We will present an algorithmic solution to limit-sure eventually synchronizing

objectives with exact support in Section 4.3. Our characterization of the winning
region for almost-sure winning is as follows. There must exist a support U such
that (i) the MDP is sure winning for eventually synchronizing in target U ,
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and (ii) from distributions with support in U , it is possible to get probability
arbitrarily close to 1 in T , and support back in U . In the example of Fig. 2 with
T = {q2}, we can take U = {q0, q2}.

Lemma 6. Let M be an MDP and T be a target set. For all states q0, we have
q0 ∈ 〈〈1〉〉eventalmost (sumT ) if and only if there exists a set U such that:

– q0 ∈ 〈〈1〉〉eventsure (sumU ), and

– dU ∈ 〈〈1〉〉eventlimit (sumT , U) where dU is the uniform distribution over U .

As we show in Section 4.3 that the membership problem for limit-sure even-
tually synchronizing with exact support can be solved in PSPACE, it follows
from the characterization in Lemma 6 that the membership problem for almost-
sure eventually synchronizing is in PSPACE, using the following (N)PSPACE
algorithm: guess the set U , and check that q0 ∈ 〈〈1〉〉eventsure (sumU ), and that
dU ∈ 〈〈1〉〉eventlimit (sumT , U) where dU is the uniform distribution over U (both
can be done in PSPACE by Theorem 2 and Theorem 4). We present a matching
lower bound using a reduction from the membership problem for sure eventually
synchronization [12], which is PSPACE-complete by Theorem 2.

Lemma 7. The membership problem for 〈〈1〉〉eventalmost (sumT ) is PSPACE-hard
even if T is a singleton.

The results of this section are summarized as follows.

Theorem 3. For almost-sure eventually synchronizing in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.
2. (Memory). Infinite memory is necessary in general for both pure and ran-

domized strategies, and pure strategies are sufficient.

4.3 Limit-Sure Eventually Synchronization

In this section, we present the algorithmic solution for limit-sure eventually syn-
chronizing with exact support. Note that the limit-sure eventually synchronizing
objective is a special case where the support is the state space of the MDP. Con-
sider the MDP in Fig. 1 which is limit-sure eventually synchronizing in {q2},
as shown in Lemma 2. For i = 0, 1, . . . , the sequence Prei(T ) of predecessors
of T = {q2} is ultimately periodic: Pre0(T ) = {q2}, and Prei(T ) = {q1} for all
i ≥ 1. Given ε > 0, a strategy to get probability 1 − ε in q2 first accumulates
probability mass in the periodic subsequence of predecessors (here {q1}), and
when the probability mass is greater than 1 − ε in q1, the strategy injects the
probability mass in q2 (through the aperiodic prefix of the sequence of predeces-
sors). This is the typical shape of a limit-sure eventually synchronizing strategy.
Note that in this scenario, the MDP is also limit-sure eventually synchroniz-
ing in every set Prei(T ) of the sequence of predecessors. A special case is when
it is possible to get probability 1 in the sequence of predecessors after finitely
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many steps. In this case, the probability mass injected in T is 1 and the MDP is
even sure-winning. The algorithm for deciding limit-sure eventually synchroniza-
tion relies on the above characterization, generalized in Lemma 8 to limit-sure
eventually synchronizing with exact support, saying that limit-sure eventually
synchronizing in T with support in U is equivalent to either limit-sure eventu-
ally synchronizing in Prek(T ) with support in Prek(U) (for arbitrary k), or sure
eventually synchronizing in T (and therefore also in U).

Lemma 8. For all T ⊆ U and all k ≥ 0, we have 〈〈1〉〉eventlimit (sumT , U) =

〈〈1〉〉eventsure (sumT ) ∪ 〈〈1〉〉eventlimit (sumR, Z) where R = Prek(T ) and Z = Prek(U).

Thanks to Lemma 8, since sure-winning is already solved in Section 4.1, it
suffices to solve the limit-sure eventually synchronizing problem for target R =
Prek(T ) and support Z = Prek(U) with arbitrary k, instead of T and U . We
can choose k such that both Prek(T ) and Prek(U) lie in the periodic part of
the sequence of pairs of predecessors (Prei(T ),Prei(U)). We can assume that
k ≤ 3|Q| since Prei(T ) ⊆ Prei(U) ⊆ Q for all i ≥ 0. For such value of k the
limit-sure problem is conceptually simpler: once some probability is injected in
R = Prek(T ), it can loop through the sequence of predecessors and visit R
infinitely often (every r steps, where r ≤ 3|Q| is the period of the sequence of
pairs of predecessors). It follows that if a strategy ensures with probability 1 that
the set R can be reached by finite paths whose lengths are congruent modulo r,
then the whole probability mass can indeed synchronously accumulate in R in
the limit. Therefore, limit-sure eventually synchronizing in R reduces to standard
limit-sure reachability with target set R and the additional requirement that the
numbers of steps at which the target set is reached be congruent modulo r. In
the case of limit-sure eventually synchronizing with support in Z, we also need
to ensure that no mass of probability leaves the sequence Prei(Z). In a state
q ∈ Prei(Z), we say that an action a ∈ A is Z-safe at position i if1 post(q, a) ⊆
Prei−1(Z). In states q �∈ Prei(Z) there is no Z-safe action at position i.

To encode the above requirements, we construct an MDP MZ × [r] that
allows only Z-safe actions to be played (and then mimics the original MDP),
and tracks the position (modulo r) in the sequence of predecessors, thus simply
decrementing the position on each transition since all successors of a state q ∈
Prei(Z) on a safe action are in Prei−1(Z). Formally, if M = 〈Q,A, δ〉 then
MZ × [r] = 〈Q′,A, δ′〉 where:

– Q′ = Q × {r − 1, . . . , 1, 0} ∪ {sink}; intuitively, we expect that q ∈ Prei(Z)
in the reachable states 〈q, i〉 consisting of a state q ofM and a position i in
the predecessor sequence;

– δ′ is defined as follows (assuming an arithmetic modulo r on positions) for
all 〈q, i〉 ∈ Q′ and a ∈ A: if a is a Z-safe action in q at position i, then
δ′(〈q, i〉, a)(〈q′, i− 1〉) = δ(q, a)(q′), otherwise δ′(〈q, i〉, a)(sink) = 1 (and sink
is absorbing).

1 Since Prer(Z) = Z and Prer(R) = R, we assume a modular arithmetic for exponents
of Pre, that is Prex(·) is defined as Prex mod r(·). For example Pre−1(Z) is Prer−1(Z).
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Note that the size of the MDPMZ× [r] is exponential in the size ofM (since
r is at most 3|Q|).

Lemma 9. Let M be an MDP and R ⊆ Z be two sets of states such that
Prer(R) = R and Prer(Z) = Z where r > 0. Then a state q0 is limit-sure
eventually synchronizing in R with support in Z (q0 ∈ 〈〈1〉〉eventlimit (sumR, Z)) if
and only if there exists 0 ≤ t < r such that 〈q0, t〉 is limit-sure winning for the
reachability objective �(R× {0}) in the MDP MZ × [r].

Since deciding limit-sure reachability is PTIME-complete, it follows from
Lemma 9 that limit-sure synchronization (with exact support) can be decided
in EXPTIME. We can show that the problem can be solved in PSPACE by
exploiting the special structure of the exponential MDP in Lemma 9.

Lemma 10. The membership problem for limit-sure eventually synchronization
with exact support is in PSPACE.

To establish the PSPACE-hardness for limit-sure eventually synchronizing in
MDPs, we use a reduction from the universal finiteness problem for 1L-AFAs.

Lemma 11. The membership problem for 〈〈1〉〉eventlimit (sumT ) is PSPACE-hard
even if T is a singleton.

The example in Fig. 2 can be used to show that the memory needed by
a family of strategies to win limit-sure eventually synchronizing objective (in
target T = {q2}) is unbounded.

Theorem 4. For limit-sure eventually synchronizing (with or without exact sup-
port) in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.
2. (Memory). Unbounded memory is required for both pure and randomized

strategies, and pure strategies are sufficient.

Acknowledgment. We are grateful to Winfried Just and German A. Enciso
for helpful discussions on Boolean networks and for the gadget in the proof of
Lemma 3.
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Abstract. In this paper, we consider multi-dimensional maximal cost-
bounded reachability probability over continuous-time Markov decision
processes (CTMDPs). Our major contributions are as follows. Firstly,
we derive an integral characterization which states that the maximal
cost-bounded reachability probability function is the least fixed-point
of a system of integral equations. Secondly, we prove that the maximal
cost-bounded reachability probability can be attained by a measurable
deterministic cost-positional scheduler. Thirdly, we provide a numerical
approximation algorithm for maximal cost-bounded reachability prob-
ability. We present these results under the setting of both early and
late schedulers. Besides, we correct a fundamental proof error in the
PhD Thesis by Martin Neuhäußer on maximal time-bounded reachabil-
ity probability by completely new proofs for the more general case of
multi-dimensional maximal cost-bounded reachability probability.

1 Introduction

The class of continuous-time Markov decision processes (CTMDPs) (or con-
trolled Markov chains) [13,12] is a stochastic model that incorporates both
features from continuous-time Markov chains (CTMCs) [6] and discrete-time
Markov decision processes (MDPs) [13]. A CTMDP extends a CTMC in the
sense that it allows non-deterministic choices, and it extends an MDP in the
sense that it incorporates negative exponential time-delays. Due to its modelling
capability of real-time probabilistic behaviour and non-determinism, CTMDPs
are widely used in dependability analysis and performance evaluation [2].

In a CTMDP, non-determinism is resolved by schedulers [16]. Informally, a
scheduler determines the non-deterministic choices depending on the finite tra-
jectory of the CTMDP so far and possibly the sojourn time of the current state.
A scheduler is assumed to be measurable so that it induces a well-defined proba-
bility space over the infinite trajectories of the underlying CTMDP. Measurable
schedulers are further divided into categories of early schedulers and late sched-
ulers [10,16]. A scheduler that makes the choice solely by the trajectory so far is
called an early scheduler, while a scheduler that utilizes both the trajectory and

� Partially funded by the EU FP7 projects CARP and SENSATION. Full version
available at [7].

�� Supported by a CSC scholarship.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 73–87, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



74 H. Fu

the sojourn time (at the current state) is called a late scheduler. With schedulers,
one can reason about quantitative information such as the maximal/minimal
probability/expectation of certain property.

In this paper, we focus on the problem to compute max/min resource-bounded
reachability probability on a CTMDP. Typical resource types considered here
are time and cost, where a time bound can be deemed as a special cost bound
with unit-cost 1. In general, the task is to compute or approximate the opti-
mal (max/min) reachability probability to certain target states within a given
resource bound (e.g., a time bound).

Optimal time-bounded reachability probability over CTMDPs has been widely
studied in recent years. Neuhäußer et al. [11] proved that the maximal time-
bounded reachability probability function is the least fixed point of a system
of integral equations. Rabe and Schewe [14] showed that the max/min time-
bounded reachability probability can be attained by a deterministic piecewise-
constant time-positional scheduler. Efficient approximation algorithms are also
developed by, e.g., Neuhäußer et al. [11], Brázdil et al. [3], Hatefi et al. [8] and
Rabe et al. [5].

As to optimal cost-bounded reachability probability, much less is known. To
the best of the author’s knowledge, the only prominent result is by Baier et
al. [1], which establishes a certain duality property between time and cost bound.
Their result is restrictive in the sense that (i) it assumes that the CTMDP
have everywhere positive unit-cost values, (ii) it only takes into account one-
dimensional cost-bound aside the time-bound, and (iii) it does not really provide
an approximation algorithm when both time- and cost-bounds are present.

Besides resource-bounded reachability probability, we would like to mention
another research field on CTMDPs with costs (or dually, rewards), which is
(discounted) accumulated reward over finite/infinite horizon (cf. [4,12], just to
mention a little).

Our Contribution. We consider multi-dimensional maximal cost-bounded
reachability probability (abbr. MMCRP) over CTMDPs, under the setting of
both early and late schedulers, for which the unit-cost is constant. We first prove
that the MMCRP function is the least fixed-point of a system of integral equa-
tions. Then we prove that deterministic cost-positional measurable schedulers
suffice to achieve the MMCRP value. Finally, we describe a numerical algorithm
which approximates the MMCRP value with an error bound. The approximation
algorithm relies on a differential characterization which in turn is derived from
the least fixed-point characterization. The complexity of the approximation al-
gorithm is polynomial in the size of the CTMDP and the reciprocal of the error
bound, and exponential in the dimension of cost vectors.

Besides, we point out a fundamental proof error in the treatment of maxi-
mal time-bounded reachability probability on continuous-time Markov decision
processes [9,11]. We fix this error in the more general setting of maximal cost-
bounded reachability probability by completely new proofs.
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Structure of the Paper. Section 2 introduces some preliminaries of CTMDPs.
Section 3 illustrates the definition of schedulers and the probability spaces they
induce. In Section 4, we define the notion of maximal cost-bounded reachability
probability and derive the least-fixed-point characterization, while we also point
out the proof error in [9,11]. In Section 5, we prove that the maximal cost-
bounded reachability probability can be reached by a measurable deterministic
cost-positional scheduler. In Section 6, we derive a differential characterization
which is crucial to our approximation algorithm. In Section 7, we present our
approximation algorithm. Finally, Section 8 concludes the paper.

Due to page limit, we omit all the proofs and only present the results for late
schedulers. The details can be found at [7].

2 Continuous-Time Markov Decision Processes

In the whole paper, we will use the following convention for notations. We will
denote by R≥0 the set of non-negative real numbers and by N0 the set of non-
negative integers. We use x, d, t, τ to range over real numbers, m,n, i, j to range
over N0, and bold-face letters x, c,d to range over (column) real vectors. Given
c ∈ Rk (k ∈ N), we denote by ci (1 ≤ i ≤ k) the i-th coordinate of c. We denote
by 0 the real vector whose coordinates are all equal to 0 (with the implicitly
known dimension). We extend {≤, <,≥, >} to real vectors and functions in a
pointwise fashion: for two real vectors c,d, c ≤ d iff ci ≤ di for all i; for two
real-valued functions g, h, g ≤ h iff g(y) ≤ h(y) for all y. Given a set Y , we
let 1Y be the indicator function of Y , i.e, 1Y (y) = 1 if y ∈ Y and 1Y (y) = 0
for y ∈ X − Y , where X ⊇ Y is an implicitly known set. Given a positive real
number λ > 0, let fλ(t) := λ · e−λ·t (t ≥ 0) be the probability density function
of the negative exponential distribution with rate λ. Besides, we will use g, h to
range over general functions.

2.1 The Model

Definition 1. A Continuous-Time Markov Decision Process (CTMDP) is a tu-
ple (L,Act,R, {wi}1≤i≤k) where

– L is a finite set of states (or locations);

– Act is a finite set of actions;

– R : L×Act× L→ R≥0 is the rate matrix;

– {wi : L×Act→ R≥0}1≤i≤k is the family of k unit-cost functions (k ∈ N);

An action a ∈ Act is enabled at state s ∈ L if E(s, a) :=
∑

u∈L R(s, a, u) is
non-zero. The set of enabled actions at s ∈ L is denoted by En(s). We assume
that for each state s ∈ L, En(s) �= ∅.

Let (L,Act,R, {wi}1≤i≤k) be a CTMDP. For each s, s′ ∈ L and a ∈ En(s),

we define P(s, a, s′) := R(s,a,s′)
E(s,a) to be the discrete transition probability from

s to s′ via a. We denote by w(s, a) the real vector {wi(s, a)}1≤i≤k for each
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(s, a) ∈ L × Act . Given s ∈ L and a ∈ Act, we denote by D[s] the Dirac
distribution (over L) at s (i.e., D[s](s) = 1 and D[s](s′) = 0 for s′ ∈ L − {s})
and by D[a] the Dirac distribution (over Act) at a. Moreover, we define (with
min ∅ := 1):

– wmin := min{wi(s, a) | 1 ≤ i ≤ k, s ∈ L, a ∈ En(s),wi(s, a) > 0} ;
– wmax := max{wi(s, a) | 1 ≤ i ≤ k, s ∈ L, a ∈ En(s)} ;

– Emax := max{E(s, a) | s ∈ L, a ∈ En(s)} ;

We will use s, s′ (resp. a, b) to range over states (resp. actions) of a CTMDP.
Often, a CTMDP is accompanied with an initial distribution which specifies

the initial stochastic environment (for the CTMDP).

Definition 2. LetM = (L,Act,R, {wi}1≤i≤k) be a CTMDP. An initial distri-
bution (for M) is a function α : L→ [0, 1] such that

∑
s∈L α(s) = 1 .

Intuitively, the execution of a CTMDP (L,Act,R, {wi}1≤i≤k) with a scheduler
is as follows. At the beginning, an initial state s is chosen (as the current state)
w.r.t the initial distribution α. Then the scheduler chooses an action a enabled at
s either before or after a time-delay occurs at the state s. After the time-delay, the
current state is switched to an arbitrary state s′ ∈ L with probability P(s, a, s′),
and so forth. Besides, each cost functionwi assigns to each state-action pair (s, a)
the i-th constant unit-cost wi(s, a) (per time unit) when the CTMDP dwells at
state s. Basically, the scheduler makes the decision of the action to be chosen
when entering a new state, and has two distinct objectives: either to maximize a
certain property or (in contrast) to minimize a certain property. In this paper, we
will focus on the objective to maximize a cost-bounded reachability probability
for a certain target set of states.

In this paper, we focus on an important subclass of CTMDPs, called locally-
uniform CTMDPs (cf. [10]).

Definition 3. A CTMDP (L,Act,R, {wi}1≤i≤k) is locally-uniform if E(s, a) =
E(s, b) and wi(s, a) = wi(s, b) for all 1 ≤ i ≤ k, s ∈ L and a, b ∈ En(s).

Intuitively, a locally uniform CTMDP has the property that the time-delay and
the cost is independent of the action chosen at each state. For locally-uniform
CTMDPs, we simply use E(s) to denote E(s, a) (a ∈ En(s) is arbitrary), and
w(s),wi(s) for w(s, a),wi(s, a) likewise.

2.2 Paths and Histories

In this part, we introduce the notion of paths and histories. Intuitively, paths
reflect infinite executions of a CTMDP, whereas histories reflect finite executions
of a CTMDP. Below we fix a CTMDP M = (L,Act,R, {wi}1≤i≤k) .

Definition 4. A(n infinite) path π is an infinite sequence

π =
〈
s0

a0,t0−−−→ s1
a1,t1−−−→ s2 . . .

〉
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such that si ∈ L, ti ∈ R≥0 and ai ∈ Act for all i ≥ 0; We denote si, ti and ai by
π[i], π〈i〉 and π(i), respectively. A (finite) history ξ is a finite sequence

ξ =
〈
s0

a0,t0−−−→ s1
a1,t1−−−→ s2 . . . sm

〉
(m ≥ 0)

such that si ∈ L, ti ∈ R≥0 and ai ∈ Act for all 0 ≤ i ≤ m− 1, and sm ∈ L; We
denote si, ti, ai and m by ξ[i], ξ〈i〉, ξ(i) and |ξ|, respectively. Moreover, we define
ξ ↓:= ξ [|ξ|] to be the last state of the history ξ .

Below we introduce more notations on paths and histories. We denote the set of
paths and histories (ofM) by Paths(M) and Hists(M), respectively. We define
Histsn(M) := {ξ ∈ Hists(M) | |ξ| = n} to be the set of all histories with length
n (n ≥ 0). For each n ∈ N0 and π ∈ Paths(M), we define the history π[0..n] to
be the finite prefix of π up to n; Formally,

π[0..n] :=

〈
π[0]

π(0),π〈0〉−−−−−−→ . . . π[n]

〉
.

Given π ∈ Paths(M) and (s, a, t) ∈ L × Act × R≥0, we denote by s
a,t−−→ π the

path obtained by “putting” the prefix “s
a,t−−→” before π; Formally,

s
a,t−−→ π :=

〈
s

a,t−−→ π[0]
π(0),π〈0〉−−−−−−→ π[1]

π(1),π〈1〉−−−−−−→ . . .

〉
.

Analogously, we define s
a,t−−→ ξ (for ξ ∈ Hists(M)) to be the history obtained

by “putting” “s
a,t−−→” before the history ξ.

Intuitively, a path π reflects a whole execution (trajectory) of the CTMDP
where π[i] is the current state at the i-th stage, π(i) is the action chosen at π[i]
and π〈i〉 is the dwell-time (time-delay) on π[i]. On the other hand, a history ξ
is a finite prefix of a path which reflects the execution up to |ξ| stages.

Below we extend sets of histories to sets of paths in a cylindrical fashion.

Definition 5. Suppose n ∈ N0 and Ξ ⊆ Histsn(M). The cylinder extension of
Ξ, denoted Cyl(Ξ), is defined as follows:

Cyl(Ξ) := {π ∈ Paths(M) | π[0..n] ∈ Ξ} .

In this paper, we concern costs on paths and histories. The cost is assigned
linearly w.r.t the unit-cost and the time spent in a state. The following definition
presents the details.

Definition 6. Given a path π ∈ Paths(M) and a set G ⊆ L of states, we
denote by Cj(π,G) (1 ≤ j ≤ k) the j-th accumulated cost along π until G is
reached; Formally, if π[m] ∈ G for some m ≥ 0 then

Cj(π,G) :=

n∑
i=0

wj(π[i], π(i)) · π〈i〉
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where n ∈ N0 ∪ {−1} is the smallest integer such that π[n + 1] ∈ G; otherwise
Cj(π,G) := +∞ . Given a history ξ ∈ Hists(M), we denote by Cj(ξ) (1 ≤ j ≤
k) the accumulated cost of ξ w.r.t the j-th unit-cost function; Formally,

Cj(ξ) :=

|ξ|−1∑
i=0

wj(ξ[i], ξ(i)) · ξ〈i〉 .

We denote byC(π,G) andC(ξ) the vectors {Cj(π,G)}1≤j≤k and {Cj(ξ)}1≤j≤k.

2.3 Measurable Spaces on Paths and Histories

In the following, we define the measurable spaces for paths and histories, follow-
ing the definitions of [16,10]. Below we fix a CTMDPM=(L,Act,R, {wi}1≤i≤k).
Firstly, we introduce the notion of combined actions and its measurable space.

Definition 7. A combined action is a tuple (a, t, s) where a ∈ Act, t ∈ R≥0 and
s ∈ L. The measurable space (ΓM,UM) over combined actions is defined as
follows:

– ΓM := Act× R≥0 × L is the set of combined actions;

– UM := 2Act⊗B(R≥0)⊗ 2L is the product σ-algebra for which B(R≥0) is the
Borel σ-field on R≥0 .

The following definition introduces the notion of templates which will be used
to define the measurable spaces.

Definition 8. A template θ is a finite sequence θ = 〈s, U1, . . . , Um〉 (m ≥ 0)
such that s ∈ L and Ui ∈ UM for 1 ≤ i ≤ m; The length of θ, denoted by |θ|, is
defined to be m. The set of histories Hists(θ) spanned by a template θ is defined
by:

Hists (〈s, U1, . . . , Um〉) :=
{
ξ ∈ Histsm(M) |

ξ[0] = s and (ξ(i), ξ〈i〉, ξ[i + 1]) ∈ Ui+1 for all 0 ≤ i < m
}
.

Now we introduce the measurable spaces on paths and histories, as in the fol-
lowing definition.

Definition 9. The measurable space (Ωn
M,Sn

M) over Histsn(M) (n ∈ N0) is
defined as follows: Ωn

M = Histsn(M) and Sn
M is generated by the family

{Hists(θ) | θ is a template and |θ| = n}

of subsets of Histsn(M).
The measurable space (ΩM,SM) over Paths(M) is defined as follows: ΩM =

Paths(M) and SM is the smallest σ-algebra generated by the family

{Cyl(Ξ) | Ξ ∈ Sn
M for some n ≥ 0}

of subsets of Paths(M).
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3 Schedulers and Their Probability Spaces

The stochastic feature of a CTMDP is endowed by a (measurable) scheduler
which resolves the action when a state is entered. In the following, we briefly in-
troduce late schedulers for CTMDPs. Most notions in this part stem from [16,10].
Below we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k) .

Definition 10. A late scheduler D is a function

D : Hists(M)× R≥0 ×Act→ [0, 1]

such that for each ξ ∈ Hists(M) and t ∈ R≥0, the following conditions hold:

–
∑

a∈ActD(ξ, t, a) = 1 ;

– for all a ∈ Act, D(ξ, t, a) > 0 implies a ∈ En(ξ↓) .

D is measurable iff for all n ≥ 0 and a ∈ Act, the function D(�, �, a) is measur-
able w.r.t (Ωn

M × R≥0, Sn
M ⊗ B(R≥0)), provided that the domain of D(�, �, a) is

restricted to Histsn(M)× R≥0 .

Intuitively, a late scheduler D chooses a distribution over actions immediately
after the time-delay at the current state s (i.e., the last state of a history) is
ended; the time-delay observes the negative exponential distribution with rate
E(s). The decision D(ξ, t, �) is based on the history ξ and the dwell time t at ξ↓;
the next state is determined stochastically w.r.t P(ξ↓, a, �), where a is in turn
determined w.r.t D(ξ, t, �). The local-uniformity allows a late scheduler to make
such decision, without mathematical ambiguity on the accumulated cost and
the probability density function for the time-delay. Moreover, the measurability
condition will be needed to define a probability measure for the measurable space
(ΩM,SM).

Each measurable late scheduler will induce a probability measure on combined
actions, when applied to a specific history. Below we introduce the probability
measure induced by measurable late schedulers.

Definition 11. Let ξ ∈ Hists(M) be a history and D a measurable late sched-
uler. The probability measure μDM(ξ, �) for the measurable space (ΓM,UM) is
defined as follows:

μD
M(ξ, U) :=

∫
R≥0

fE(ξ↓)(t) ·
⎧⎨⎩ ∑

a∈En(ξ↓)
D(ξ, t, a) ·

[∑
s∈L

1U (a, t, s) ·P(ξ↓, a, s)
]⎫⎬⎭ dt

for each U ∈ UM.

Now we define the probability spaces on histories and paths. Firstly, we de-
fine the probability space on histories. To this end, we introduce the notion of
concatenation as follows.

Definition 12. Let ξ ∈ Hists(M) be a history and (a, t, s) ∈ ΓM be a com-
bined action. We define ξ ◦ (a, t, s) ∈ Hists(M) to be the history obtained by

concatenating (a, t, s) to ξ↓ (i.e. ξ ◦ (a, t, s) = ξ[0] . . . ξ↓ a,t−−→ s) .
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Then the probability space on histories of fixed length is given as follows.

Definition 13. Suppose D is a measurable late scheduler and α is an initial
distribution. The sequence

{
PrnM,D,α : Sn

M → [0, 1]
}
n≥0

of probability measures

is inductively as follows:

Pr0M,D,α(Ξ) :=
∑
s∈Ξ

α(s) ;

Prn+1
M,D,α(Ξ) :=

∫
Ωn

M

[∫
ΓM

1Ξ(ξ ◦ γ) μDM(ξ, dγ)

]
PrnM,D,α(dξ) ;

for each Ξ ∈ Sn
M .

Finally, the probability space on paths is given as follows.

Definition 14. Let D be a measurable late scheduler and α be an initial distri-
bution. The probability space (ΩM,SM,PrM,D,α) is defined as follows:

– ΩM and SM is defined as in Definition 9;

– PrM,D,α is the unique probability measure such that

PrM,D,α(Cyl(Ξ)) = PrnM,D,α (Ξ)

for all n ≥ 0 and Ξ ∈ Sn
M .

We end this section with a fundamental property asserting that the role of initial
distribution α can be decomposed into Dirac distributions on individual states.

Proposition 1. For each measurable late scheduler D and each initial distribu-
tion α, PrM,D,α(Π) =

∑
s∈L α(s) · PrM,D,D[s](Π) for all Π ∈ SM.

4 Maximal Cost-Bounded Reachability Probability

In this section, we consider maximal cost-bounded reachability probabilities.
Below we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k) and a set
G ⊆ L. For the sake of simplicity, we omit the ‘M’ which appear in the subscript
of ‘Pr’.

Definition 15. Let D be a measurable late scheduler. Define the function
probDG : L× Rk → [0, 1] by: probDG(s, c) := PrD,D[s] (Π

c
G) where

Πc
G := {π ∈ Paths(M) | C(π,G) ≤ c} .

Define probmax
G : L × Rk → [0, 1] by: probmax

G (s, c) := supD∈LM probDG(s, c) for
s ∈ L and c ∈ Rk, where LM is the set of all measurable late schedulers.
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From the definition, we can see that Πc
G is the set of paths which can reach

G within cost c, probmax
G (s, c) is the maximal probability of Πc

G with initial
distribution D(s) (i.e., fixed initial state s) ranging over all late schedulers. It
is not hard to verify that Πc

G is measurable, thus all functions in Definition 15

are well-defined. It is worth noting that if c �≥ 0, then both probDG(s, c) and
probmax

G (s, c) is zero.
The following theorem mainly presents the fixed-point characterization for

probmax
G , while it also states that probmax

G is Lipschitz continuous.

Theorem 1. The function probmax
G is the least fixed-point (w.r.t ≤) of the high-

order operator TG :
[
L× Rk → [0, 1]

]
→
[
L× Rk → [0, 1]

]
defined as follows:

– TG(h)(s, c) := 1Rk
≥0
(c) if s ∈ G;

– If s �∈ G then

TG(h)(s, c) :=∫ ∞

0

fE(s)(t) · max
a∈En(s)

[∑
s′∈L

P(s, a, s′) · h(s′, c− t ·w(s))

]
dt ;

for each h : L× Rk → [0, 1]. Moreover,

|probmax
G (s, c)− probmax

G (s, c′)| ≤ Emax

wmin
· ‖c− c′‖∞

for all c, c′ ≥ 0 and s ∈ L .

The Lipschitz constant Emax

wmin
will be crucial to the error bound of our approxi-

mation algorithm.
Now we describe the proof error in [9,11]. The error lies in the proof of [9,

Lemma 5.1 on Pages 119] which tries to prove that the time-bounded reachability
probability functions are continuous. In detail, the error is at the proof for right-
continuity of the functions. Let us take the sentence “This implies ... for some
ξ ≤ ε

2 .” from line -3 to line -2 on page 119 as (*). (*) is wrong in general, as one
can treat D’s as natural numbers, and define

Prn(“reach G within z”) :=

{
n · z if z ∈ [0, 1n ]

1 if z ∈ ( 1n ,∞)
.

Then supn Prn(“reach G within z”) equals 1 for z > 0 and 0 for z = 0. Thus
supD PrD(“reach G within z”) on z ≥ 0 is right-discontinuous at z = 0, which
does not satisfy (*) (treat D as a natural number). Note that a concrete coun-
terexample does not exist as [9, Lemma 5.1] is correct due to this paper; it is the
proof that is flawed. Also note that Lemma 5.1 is important as the least fixed-
point characterization [9, Theorem 5.1 on Page 120] and the optimal scheduler
[9, Theorem 5.2 on page 124] directly rely on it. We fix the error in the more
general setting of cost-bounded reachability probability by providing new proofs.
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5 Optimal Schedulers

In this section, we establish optimal late schedulers for maximal cost-bounded
reachability probability. We show that there exists a deterministic cost-positional
late scheduler that achieves the maximal cost-bounded reachability probability.
Below we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k) . We first
introduce the notion of deterministic cost-positional schedulers.

Definition 16. A measurable late sheduler D is deterministic cost-positional
iff (i) D(ξ, t, �) = D(ξ′, t′, �) whenever ξ↓ = ξ′↓ and C(ξ) + t ·w(ξ↓) = C(ξ′) +
t′ ·w(ξ′↓), and (ii) D(ξ, t, �) is Dirac for all histories ξ and t ≥ 0.

Intuitively, a deterministic cost-positional scheduler makes its decision solely on
the current state and the cost accumulated so far, and its decision is always
Dirac. The following theorem shows that such a scheduler suffices to achieve
maximal cost-bounded reachability probability.

Theorem 2. For all c ∈ Rk and G ⊆ L, there exists a deterministic cost-
positional measurable late scheduler D such that probmax

G (s, c) = PrD,D[s](Π
c
G)

for all s ∈ L .

6 Differential Characterization for Maximal Reachability
Probabilities

In this section, we derive differential characterization for the function probmax
G .

The differential characterization will be fundamental to our approximation al-
gorithm. Below we fix a locally-uniform CTMDP (L,Act,R, {wi}1≤i≤k) and a
set G ⊆ L.

The differential characterization relies on a notion of directional derivative as
follows.

Definition 17. Let s ∈ L−G and c ≥ 0. Define

∇+probmax
G (s, c) := lim

t→0+

probmax
G (s, c+ t ·w(s)) − probmax

G (s, c)

t
.

If ci > 0 whenever wi(s) > 0 (1 ≤ i ≤ k), define

∇−probmax
G (s, c) := lim

t→0−

probmax
G (s, c+ t ·w(s))− probmax

G (s, c)

t
;

Otherwise, let ∇−probmax
G (s, c) = ∇+probmax

G (s, c) .

The following theorem gives a characterization for the directional derivative.

Theorem 3. For all s ∈ L−G and c ≥ 0, ∇+probmax
G (s, c) = ∇−probmax

G (s, c).
Moreover,

∇+probmax
G (s, c) = max

a∈En(s)

∑
s′∈L

R(s, a, s′) · (probmax
G (s′, c)− probmax

G (s, c)) .
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As ∇+probmax
G (s, c) = ∇−probmax

G (s, c), we will solely use ∇probmax
G (s, c) to

denote both of them.
Theorem 3 allows one to approximate probmax

G (s, c+ t ·w(s)) by probmax
G (s, c)

and ∇+probmax
G (s, c). An exception is the case w(s) = 0. Below we tackle this

situation.

Proposition 2. Let YG := {s ∈ L | w(s) = 0} . For each c ≥ 0, the function
s !→ probmax

G (s, c) is the least fixed-point (w.r.t ≤) of the high-order operator
Yc,G : [YG → [0, 1]]→ [YG → [0, 1]] defined as follows:

Yc,G(h)(s) :=

max
a∈En(s)

[ ∑
s′∈YG

P(s, a, s′) · h(s′) +
∑

s′∈L−YG

P(s, a, s′) · probmax
G (s′, c)

]
.

7 Numerical Approximation Algorithms

In this section, we develop an approximation algorithm to compute the maxi-
mal cost-bounded reachability probability under late schedulers. In the following
we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k). Our numerical
algorithm will achieve the following tasks:

Input: a set G ⊆ L, a state s ∈ L, a vector c ∈ Nk
0 and an error bound ε > 0;

Output: a value x ∈ [0, 1] such that |probmax
G (s, c)− x| ≤ ε.

For computational purposes, we assume that each wi(s) is an integer; rational
numbers (and simultaneously the input cost bound vector) can adjusted to inte-
gers by multiplying a common multiplier of the denominators, without changing
the maximal probability value to be approximated.

We base our approximation scheme on Theorem 3 and Proposition 2. In the
following we fix a set G ⊆ L.

Below we illustrate the discretization and the approximation scheme for late
schedulers. Note that probmax

G (s, c) = 1 whenever s ∈ G and c ≥ 0. Thus we do
not need to incorporate those points into the discretization.

Definition 18. Let c ∈ Nk
0 and N ∈ N. Define

Disc(c, N) := {d ∈ Rk | 0 ≤ d ≤ c and N · di ∈ N0 for all 1 ≤ i ≤ k} .

The set Dc
N of discretized grid points is defined as follows:

Dc
N := (L−G)×Disc(c, N) .

The following definition presents the approximation scheme on Dc
N .

Definition 19. Define XG := (L −G) − YG. The approximation scheme ΥG
c,N

on Dc
N consists of the following items:
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– exactly one rounding argument for each element of Dc
N ;

– a system of equations for elements in XG ×Disc(c, N) ;

– a linear program on YG for each d ∈ Disc(c, N) .

Rounding Arguments: For each element y ∈ Dc
N , the rounding argument for

y is as follows:

probG(y) :=
K

N2
if probG(y) ∈

[
K

N2
,
K + 1

N2

)
for some integer 0 ≤ K ≤ N2 .

Equations: The system of equations is described as follows. For all (s,d) ∈ Dc
N

with w(s) �= 0 and d− 1
N ·w(s) ≥ 0, there is a linear equation

probG(s,d)− probG(s, pre(d, s))
1
N

= (E1)

max
a∈En(s)

∑
s′∈L

R(s, a, s′) ·
(
probG(s

′, pre(d, s)) − probG(s, pre(d, s))
)

where pre(d, s) := d− 1
N ·w(s). For all (s,d) ∈ Dc

N with w(s) �= 0 and d− 1
N ·

w(s) �≥ 0, there is a linear equation

probG(s,d) = 0 . (E2)

Linear Programs: For each d ∈ Disc(c, N), the collection {probG(s,d)}s∈YG

of values is the unique optimum solution of the linear program as follows:

min
∑

s∈YG
probG(s,d), subject to:

– probG(s,d) ≥
∑

s′∈LP(s, a, s′) · probG(s′,d) for all s ∈ YG and a ∈ En(s);

– probG(s,d) ∈ [0, 1] for all s ∈ YG;

where the values {probG(s,d)}s∈XG are assumed to be known. All probG(s,d)’s
and probG(s,d) above with s ∈ G are predefined to be 1.

Generally, probG(s,d) approximates probmax
G (s,d) and probG(s,d) approximates

the same value with a rounding operation. A detailed computational sequence
of the approximation scheme is described in Algorithm 1.

In principle, we compute the “higher” grid point probG(s,d + 1
N · w(s)) by

probG(s,d) and (E1), and then update other “higher” points through the linear
program. The rounding argument is incorporated to avoid precision explosion
caused by linear programming. The following proposition shows that Algorithm 1
indeed terminates after a finite number of steps.

Proposition 3. Algorithm 1 terminates after a finite number of steps for all
c ∈ Nk

0 and N ∈ N.

The following theorem states that the approximation scheme really approx-
imates probmax

G . To ease the notation, we shall use probG(s,d) or probG(s,d)
to denote both the variable at the grid point and the value it holds under the
approximation scheme.
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Algorithm 1. The Computation of ΥG
c,N (for late schedulers)

1: Set all grid points in {(s,d) ∈ Dc
N | d− 1

N
·w(s) �≥ 0} to zero by (E2);

2: Compute all probG(s,d) that can be directly obtained through the linear program;

3: Compute all probG(s,d) that can be directly obtained by the rounding argument;
4: Compute all probG(s,d) that can be directly obtained through (E1), and back to

Step 2. until all grid points in Dc
N are computed;

Theorem 4. Let c ∈ Nk
0 and N ∈ N with N ≥ Emax. For each (s,d) ∈ Dc

N ,

|probG(s,d)− probmax
G (s,d)| ≤

(
2 · E2

max ·wmax

N ·wmin
+

1

N

)
·
[

k∑
i=1

di

]
+

Emax

N

and ∣∣probG(s,d)− probmax
G (s,d)

∣∣ ≤(
2 ·E2

max ·wmax

N ·wmin
+

1

N

)
·
[

k∑
i=1

di

]
+

Emax

N
+

1

N2

From Theorem 4, we derive our approximation algorithm as follows.

Corollary 1. There exists an algorithm such that given any ε > 0, s ∈ L,
G ⊆ L and c ∈ Nk

0 , the algorithm outputs a d ∈ [0, 1] which satisfies that
|d− probmax

G (s, c)| ≤ ε. Moreover, the algorithm runs in

O((max{Emax,
M

ε
})k · (Πk

i=1ci) · (|M|+ log
M

ε
)8)

time, where M := (2 · E2
max · wmax

wmin
+ 1) ·

[∑k
i=1 ci

]
+ Emax + 1 and |M| is the

size of M .

Proof. The algorithm is an simple application of Theorem 4. If s ∈ G, the al-
gorithm just returns 1. Otherwise, the algorithm just calls Algorithm 1 with
N := "max{Emax,

M
ε }# + 1 and set d = probG(s, c); By Theorem 4, we di-

rectly obtain that |d− probmax
G (s, c)| ≤ M · 1

N . For each d ∈ Disc(c, N), the

total computation of {probG(s,d)}s∈XG∪YG and {probG(s,d)}s∈XG∪YG takes
O(|M| + log M

ε )
8) time since the most time consuming part is the linear pro-

gram which takes O((|M|+logN)8) time (cf. [15]). Thus the total running time
of the algorithm is O((max{Emax,

M
ε })k · (Πk

i=1ci) · (|M| + log M
ε )

8) since the
size of Disc(c, N) is O(Nk · (Πk

i=1ci)) .

8 Conclusion

In this paper, we established an integral characterization for multi-dimensional
maximal cost-bounded reachability probabilities in continuous-time Markov de-
cision processes, the existence of deterministic cost-positional optimal scheduler
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and an algorithm to approximate the cost-bounded reachability probability with
an error bound, under the setting of both early and late schedulers. The approx-
imation algorithm is based on a differential characterization of cost-bounded
reachability probability which in turn is derived from the integral characteriza-
tion. The error bound is obtained through the differential characterization and
the Lipschitz property described. Moreover, the approximation algorithm runs in
polynomial time in the size of the CTMDP and the reciprocal of the error bound,
and exponential in the dimension of the unit-cost vector. An important missing
part is the generation of an ε-optimal scheduler. However, we conjecture that
an ε-optimal scheduler is not difficult to obtain given that the approximation
scheme has been established.

A future direction is to determine an ε-optimal scheduler, under both early
and late schedulers. Besides, we believe that the paradigms developed in this
paper can also be applied to minimum cost-bounded reachability probability
and even stochastic games [12] with multi-dimensional cost-bounded reachability
objective.

Acknowledgement. I thank Prof. Joost-Pieter Katoen for his valuable advices
on the writing of the paper, especially for the Introduction part. I also thank
anonymous referees for valuable comments.
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Type Reconstruction for the Linear π-Calculus
with Composite and Equi-Recursive Types

Luca Padovani

Dipartimento di Informatica, Università di Torino, Italy

Abstract. We extend the linear π-calculus with composite and equi-recursive
types in a way that enables the sharing of data containing linear values, provided
that there is no overlapping access on such values. We show that the extended type
system admits a complete type reconstruction algorithm and, as a by-product, we
solve the problem of reconstruction for equi-recursive session types.

1 Introduction

The linear π-calculus [11] is a formal model of communicating processes in which
channels are either unlimited or linear. Unlimited channels can be used without restric-
tions, while linear channels can only be used once for an input/output. Linear channels
occur frequently in actual systems, they allow optimisations and efficient implementa-
tions [6,5,11], and communications on linear channels enjoy important properties such
as interference freedom and partial confluence [13,11].

Type reconstruction is the problem of inferring the type of entities – channels in
our case – given a program using them. For the linear π-calculus this problem was
addressed in [7], although that work did not consider composite or recursive types. The
goal of this work is the definition of a type reconstruction algorithm for the linear π-
calculus extended with pairs, disjoint sums, and equi-recursive types. These constructs,
albeit standard, gain relevance and combine in non-trivial ways with the features of the
linear π-calculus. We explain why this is the case in the rest of this section.

By definition, linear channels can only be used for one-shot communications. It is a
known fact, however, that more sophisticated interactions can be implemented taking
advantage of channel mobility using a continuation-passing style [9,2]. The basic idea is
that, along with the proper payload of a communication, one can send another channel
on which the rest of the conversation takes place. This technique is illustrated below

P(x,y)
def
= (νa)(x〈y,a〉 |P〈a,y+ 1〉) C(x)

def
= x(y,z).C〈z〉 (1.1)

where a producer process P sends messages to a consumer process C. At each itera-
tion, the producer creates a new channel a, sends the payload y to the consumer on x
along with the continuation a on which subsequent communications will take place,
and iterates. In parallel, the consumer waits for the payload and the continuation from
the producer on x and then iterates. Explicit continuations are key to preserve the or-
der of produced messages. Had we modelled (1.1) re-using the same channel x at each
iteration, there would be no guarantee that messages were received in order.

Let us now assign types to the channels in (1.1) starting from x in the consumer.
There, x is used once for receiving a pair made of an integer y and another channel z.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 88–102, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Say the type of z is t and note that z is used in C〈z〉 in the same place as x, meaning that
x and z must have the same type. Then, also x has type t and t must be a channel type
satisfying the equation t = [int× t]1,0 where int× t is the type of messages received
from the channel and the numbers 1 and 0, henceforth called uses, indicate that the
channel of type t is used once for input and never for output. Channel x is used once
in the producer for sending an integer y and a continuation a. Clearly, the continuation
must have type t for that is how it is used in C. Therefore, x in P has type s = [int× t]0,1

where the uses 0 and 1 indicate that x is never used for input and is used once for output.
Finally, there are two (non-binding) occurrences of a in the producer: a in x〈n,a〉 has
type t because that is how a will be used by the consumer; a in P〈a,y+ 1〉 has type s
because that is how a will be used by the producer at the next iteration. Overall, the
uses in the types of a say that a is a linear channel: it is used once by the producer for
sending the payload and once by the consumer for receiving it.

Note that linear channels, like a in (1.1), may syntactically occur multiple times and
that different occurrences of the same channel may have different yet compatible types.
In the case of (1.1), the types t and s of the non-binding occurrences of a are compat-
ible because corresponding uses in t and s are never 1 at the same time. The binding
occurrence of a in (νa) has type [int× t]1,1, which can be seen as the combination of
t and s as defined in [11,14].

One legitimate question is whether and how the notions of type compatibility and
combination extend beyond channel types. In this respect, the existing literature lacks
definitive and satisfactory answers: the works on (type reconstruction for) the linear π-
calculus [11,7] do not consider composite or recursive types. Linear type systems with
composite types have been discussed in [5,6] for the linear π-calculus and in [15] for
a functional language. These works, however, see linearity as a “contagious” property:
every structure that contains linear values becomes linear itself (there are a few ex-
ceptions for specific types [10] or relaxed notions of linearity [8]). Such interpretation
may be appropriate in a sequential setting, but is not the only sensible one in a concur-
rent/parallel setting. In fact, it is acceptable (and desirable, for the sake of parallelism)
that several processes share the same composite data structure, provided that they ac-
cess different linear values stored therein. The problem is whether the type system is
accurate enough to capture the fact that there are no overlapping accesses to the same
linear values. To illustrate, consider the type tlist satisfying the equation

tlist = unit⊕ ([int]0,1× tlist)

which is the disjoint sum between unit and the product [int]0,1× tlist and which can
be used for typing lists of linear channels with type [int]0,1. If we follow [15,5,6], an
identifier l having type tlist can syntactically occur only once in a program, and a process
like for instance Odd〈l〉 |Even〈l〉 where l occurs twice is illegal. However, suppose that
Odd and Even are the two processes defined by

Odd(x)
def
= case x of [] ⇒ 0

y: z ⇒ y〈3〉 |Even〈z〉
Even(x)

def
= case x of [] ⇒ 0

y: z ⇒ Odd〈z〉

which walk through a list x: if x is the empty list [] they do nothing; if x has head y and
tail z, Odd sends 3 on y and continues as Even〈z〉 while Even ignores y and continues
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as Odd〈z〉. So, Odd〈l〉 sends 3 on every odd-indexed channel in l and Even〈l〉 sends 3
on every even-indexed channel in l. The fact that Odd and Even access different linear
values of a list is reflected in the two (mutually recursive) types of x in Odd and Even:

todd = unit⊕ ([int]0,1× teven) and teven = unit⊕ ([int]0,0× todd) (1.2)

where the two 0’s in teven denote that Even does not use at all the first (and more gen-
erally every odd-indexed) element of its parameter x. The key observation is that just
like a was allowed to occur twice in (1.1) with two compatible types t and s whose
combination was [int× t]1,1, then we can allow l to occur twice in Odd〈l〉 |Even〈l〉
given that the two occurrences of l are used according to two compatible types todd and
teven whose combination is tlist. The “only” difference is that, while t and s were channel
types and their combination could be expressed simply by combining the uses in them,
todd and teven are recursive, structured types that combine to tlist in the limit.

To summarise, composite and recursive types are basic yet fundamental features
whose smooth integration in the linear π-calculus requires some care. In this work we
extend the linear π-calculus with composite and recursive types in such a way that mul-
tiple processes can safely share structured data containing linear values and we define a
complete type reconstruction algorithm for the extended type system.

We proceed with the formal definition of the language and of the type system (Sec-
tion 2). The type reconstruction algorithm consists of a constraint generation phase
(Section 3) and a constraint solving phase (Section 4). Section 5 concludes. The full
version of the paper (with proofs) and a Haskell implementation of the algorithm are
available on the author’s home page.

2 The Linear π-Calculus

We let m, n, . . . range over integer numbers; we use a countable set of channels a, b, . . .
and a disjoint countable set of variables x, y, . . . ; names u, v, . . . are either channels or
variables. We work with the asynchronous π-calculus extended with constants, pairs,
and disjoint sums. The syntax of expressions and processes is defined below:

e ::= n
∣∣ u

∣∣ (e,e) ∣∣ inl e
∣∣ inr e

∣∣ · · ·
P ::= 0

∣∣ u(x).P
∣∣ u〈e〉

∣∣ (P |Q)
∣∣ ∗P ∣∣ (νa)P

∣∣ let x,y = e
in P

∣∣ case e of

{ inl x⇒ P,
inr y⇒ Q }

Expressions e, . . . are either integers, names, pairs (e1,e2) of expressions, or the
injection (i e) of an expression e using the constructor i ∈ {inl,inr}. Values v, w, . . .
are expressions without variables.

Processes P, Q, . . . comprise the standard constructs of the asynchronous π-calculus.
In addition to these, we include two process forms for deconstructing pairs and disjoint
sums. In particular, the process let x1,x2 = e in P evaluates e, which must result into
a pair v1,v2, binds each vi to xi, and continues as P.1 The process case e of{i xi ⇒

1 As pointed out by one reviewer, this construct is superfluous, because the type system we
are about to define allows linear pairs to be accessed more than once with the conventional
projection operators. We have added support for pair projections in the implementation, but
we keep the let construct in the formal presentation.
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Table 1. Reduction of processes

[R-COMM]
a〈v〉 |a(x).Q a−→ Q{v/x}

[R-LET]

let x,y = (v,w) in P
τ−→ P{v,w/x,y}

[R-CASE]
k ∈ {inl,inr}

case (k v) of{i xi ⇒ Pi}i=inl,inr
τ−→ Pk{v/xk}

[R-PAR]

P
	−→ P′

P |Q 	−→ P′ |Q

[R-NEW 1]
P

a−→ Q

(νa)P
τ−→ (νa)Q

[R-NEW 2]

P
	−→ Q 	 �= a

(νa)P
	−→ (νa)Q

[R-STRUCT]

P≡ P′ P′
	−→ Q′ Q′ ≡ Q

P
	−→ Q

Pi}i=inl,inr evaluates e, which must result into a value (i v) for i ∈ {inl,inr}, binds
v to xi and continues as Pi. Notions of free names fn(P) and bound names bn(P) of P
are as expected. We identify processes modulo renaming of bound names and we write
P{v/x} for the capture-avoiding substitution of v for the free occurrences of x in P.

The operational semantics of the language is defined in terms of a structural congru-
ence relation and a reduction relation, as usual. Structural congruence≡ is completely
standard (in particular, it includes the law ∗P≡ ∗P |P). Reduction is defined in Table 1
and is also conventional, except that, like in [11], we decorate the relation with labels
	 that are either channels or the special symbol τ , denoting an unobservable action: in
[R-COMM] the label is the channel a on which a message is exchanged, while in [R-LET]
and [R-CASE] it is τ to denote the fact that these are internal computations not involving
communications. Rules [R-PAR], [R-NEW 1], and [R-NEW 2] propagate labels through par-
allel compositions and restrictions. In [R-NEW 1], the label a becomes τ when it escapes
the scope of a. Rule [R-STRUCT] closes reduction under structural congruence.

The type system makes use of a countable set of type variables α , β , . . . and of uses
κ , . . . which are elements of the set {0,1,ω}. Types t, s, . . . are defined by

t ::= int
∣∣ α

∣∣ t× t
∣∣ t⊕ t

∣∣ [t]κ ,κ ∣∣ μα.t

and include the type of integers int, products t1× t2 typing values of the form (v1,v2)
where vi has type ti for i = 1,2, and disjoint sums t1⊕ t2 typing values of the form
(inl v) where v has type t1 or of the form (inr v) where v has type t2. Throughout the
paper we let( stand for either× or⊕. The type [t]κ1,κ2 denotes channels for exchanging
messages of type t. The uses κ1 and κ2 respectively denote how many input and output
operations are allowed on the channel: 0 for none, 1 for a single use, and ω for any
number of uses. For example: a channel with type [t]1,1 must be used once for receiving
a message of type t and once for sending a message of type t; a channel with type [t]0,0

cannot be used; a channel with type [t]ω,ω can be used any number of times for sending
and/or receiving. Type variables and μ operators are used for building recursive types,
as usual. Notions of free and bound type variables are as expected. We assume that every
bound type variable is guarded by a constructor to avoid meaningless terms such as
μα.α . We identify types modulo renaming of bound type variables and if their infinite
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unfoldings are the same (regular) tree [1]. In particular, we let μα.t = t{μα.t/α}where
t{s/α} is the capture-avoiding substitution of the free occurrences of α in t with s.

We now define some key relations on uses and types. In particular, ≤ is the least
partial order such that 0≤ κ and compatibility) is the least relation such that

0) κ κ ) 0 ω ) ω (2.1)

In what follow we will write κ1 < κ2 if κ1 ≤ κ2 and κ1 �= κ2 and κ1 ∨ κ2 for the
least upper bound of κ1 and κ2, when it is defined. Note that 1 �≤ ω does not hold.
Compatibility determines whether the least upper bound of two uses expresses their
combination without any loss of precision. For example, 0) 1 because the combination
of 0 uses and 1 use is 0∨ 1 = 1 use. On the contrary, 1 �) 1 because there is no 2 use
that expresses the combination of 1 and 1 and ω is less precise than 2. Similarly, 1 �) ω
because there is no use expressing the fact that a channel is used at least once.

Every binary relation Ruse on uses induces a corresponding relation Rtype on types,
defined coinductively by the following rules:

intRtype int
κ1 Ruse κ3 κ2 Ruse κ4

[t]κ1,κ2 Rtype [t]
κ3,κ4

t1 Rtype s1 t2 Rtype s2

t1( t2 Rtype s1( s2
(2.2)

Similarly, the partial operation ∨ on uses coinductively induces one on types so that
t ∨ s is the least upper bound of t and s, if it is defined. Note that ≤ is antisymmetric,
in particular t = s if and only if t ≤ s and t ≥ s. Note also that [t]κ1,κ2 Rtype [s]κ3,κ4

implies t = s regardless of Rtype. The relation t ) t is particularly interesting, because
it characterises unlimited types, those typing values that must not or need not be used.
Linear types, on the other hand, denote values that must be used:

Definition 2.1. We say that t is unlimited if t ) t. We say that t is linear otherwise.

Channel types are either limited or unlimited depending on their uses. So, [t]1,0, [t]0,1,
and [t]1,1 are all linear types whereas [t]0,0 and [t]ω,ω are both unlimited. Other types
are linear or unlimited according to the channel types occurring in them. For example,
[t]0,0× [t]1,0 is linear while [t]0,0× [t]ω,0 is unlimited. Recursion does not affect the
classification of types into linear and unlimited. For example, μα.[int×α]1,0 is a
linear type that denotes a channel that must be used once for receiving a pair made of
an integer and another channel with the same type.

We type check expressions and processes in type environments Γ , . . . , which are
finite maps from names to types that we write as u1 : t1, . . . ,un : tn. We identify type
environments modulo the order of their bindings, we denote the empty environment
with /0, we write dom(Γ) for the domain of Γ , namely the set of names for which there
is a binding in Γ , and Γ1,Γ2 for the union of Γ1 and Γ2 when dom(Γ1)∩dom(Γ2) = /0. We
extend the relation ) between types pointwise to type environments:

Γ1 + Γ2
def
= Γ1,Γ2 if dom(Γ1)∩dom(Γ2) = /0

(Γ1,u : t)+ (Γ2,u : s)
def
= (Γ1 + Γ2),u : t ∨ s if t ) s

(2.3)

The operator + generalises type combination in [11] and the � operator in [14]. Note
that Γ1 + Γ2 is undefined if there is u ∈ dom(Γ1)∩dom(Γ2) and Γ1(u) �) Γ2(u) and that
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Table 2. Type rules for expressions and processes

Expressions

[T-CONST]
Γ ) Γ

Γ * n : int

[T-NAME]
Γ ) Γ

Γ ,u : t * u : t

[T-PAIR]
Γ * e : t Γ ′ * e′ : s

Γ + Γ ′ * (e,e′) : t× s

[T-INL]
Γ * e : t

Γ * inl e : t⊕ s

[T-INR]
Γ * e : s

Γ * inr e : t⊕ s

Processes

[T-IDLE]
Γ ) Γ

Γ * 0

[T-IN]
Γ ,x : t * P 0< κ
Γ +u : [t]κ ,0 * u(x).P

[T-OUT]
Γ * e : t 0< κ
Γ +u : [t]0,κ * u〈e〉

[T-PAR]
Γi * Pi

(i=1,2)

Γ1 + Γ2 * P1 |P2

[T-REP]
Γ * P Γ ) Γ

Γ * ∗P

[T-NEW]
Γ ,a : [t]κ ,κ * P

Γ * (νa)P

[T-LET]
Γ * e : t× s Γ ′,x : t,y : s * P

Γ + Γ ′ * let x,y = e in P

[T-CASE]
Γ * e : t⊕ s Γ ′,xi : t * Pi

(i=inl,inr)

Γ + Γ ′ * case e of{i xi ⇒ Pi}i=inl,inr

dom(Γ1+Γ2) = dom(Γ1)∪dom(Γ2). Thinking of type environments as of specifications
of the resources used by expressions/processes, Γ1 + Γ2 expresses the combined use
of the resources specified in Γ1 and Γ2. Any resource occurring in only one of these
environments occurs in Γ1 + Γ2; any resource occurring in both Γ1 and Γ2 must be used
according to compatible types, and its type in Γ1 + Γ2 is their least upper bound. For
example, if a channel is used by a process for sending a message of type int, it has
type [int]0,1 in that process; if it is used by another process for receiving a message of
type int, it has type [int]1,0 in that process. Overall, the two processes in parallel use
the channel according to the type [int]0,1∨ [int]1,0 = [int]1,1.

Type rules for expressions and processes are presented in Table 2. These rules are
basically the same as those found in the literature [11,7], and the additional flexibility
enabled by our typing discipline is actually a consequence of our notion of type com-
bination ∨. The rules for expressions are unremarkable. Just observe that the part of
the type environment that is not used in the expression must be unlimited (Γ ) Γ ). The
idle process does nothing, so it is well typed only in an unlimited environment. Input
and output processes require a strictly positive use of the corresponding operation in
the type of the channel u used for communication. Rule [T-REP] states that a replicated
process ∗P is well typed in the environment Γ provided that P is well typed in Γ and
that Γ is unlimited. The rationale for this is that ∗P stands for an unbounded number
of copies of P composed in parallel, hence it cannot contain (free) linear channels. The
rules [T-PAR], [T-LET], and [T-CASE] are conventional. Finally, rule [T-NEW] states that
(νa)P is well typed if so is P, where P has visibility of a. We require the type of a to
have the same uses for input and output. This is not necessary for the soundness of the
type system, although it is a sensible choice in practice.

The type system is sound and the results in Section 4.3 of [11] can be formulated in
our setting. In particular, the operations on a channel never exceed the uses in its type. It
is possible to establish other basic safety properties, for instance that closed, well-typed
let’s and case’s always reduce. The long version of the paper gives more details.
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Example 2.1. We model a recursive process definition using unlimited channels: a repli-
cated input on the channel represents the definition, while an output on the channel
represents an invocation of the definition. For example, for Odd and Even we have

∗a(x).case x of

inl y1 ⇒ 0
inr y2 ⇒ let y,z = y2 in y〈3〉 |b〈z〉

∗b(x).case x of

inl y1 ⇒ 0
inr y2 ⇒ let y,z = y2 in a〈z〉

and we assume that inl 0 represents the empty list [] and inr (y,z) represents the non-
empty list y: z with head y and tail z. Below is a derivation showing that Odd encoded
as shown above is well typed, where we take todd and teven defined in (1.2):

[T-IDLE]
y1 : int * 0

[T-OUT]
y : [int]0,1 * y〈3〉

[T-OUT]
b : [teven]

0,ω ,z : teven * b〈z〉
[T-PAR]

b : [teven]
0,ω ,y : [int]0,1,z : teven * y〈3〉 |b〈z〉

[T-LET]
b : [teven]

0,ω ,y2 : [int]0,1× teven * let y,z = y2 in · · ·
[T-CASE]

b : [teven]
0,ω ,x : todd * case x of · · ·

[T-IN]
a : [todd]

ω ,0,b : [teven]
0,ω * a(x).case x of · · ·

[T-REP]
a : [todd]

ω ,0,b : [teven]
0,ω * ∗a(x).case x of · · ·

Note that a and b must be unlimited channels because they occur free in a replicated
process, for which rule [T-REP] requires an unlimited environment. A similar deriva-
tion shows that Even is well typed in an environment where the types of a and b have
swapped uses

a : [todd]
0,ω ,b : [teven]

ω,0 * ∗b(x).case x of · · ·

so the combined types of a and b are [todd]
ω,ω and [teven]

ω,ω respectively. We conclude

a : [todd]
ω,ω ,b : [teven]

ω,ω , l : tlist * a〈l〉 |b〈l〉

because todd ) teven and todd∨ teven = tlist. �

3 Constraint Generation

We can formalise the problem of type reconstruction as follows: given a process P, find
a type environment Γ such that Γ * P, provided there is one. In general we also want
to maximise the number of linear types in Γ . The rules shown in Table 2 rely on a fair
amount of guessing that concerns the structure of types in the type environment, how
they are split/combined using ∨, and the uses occurring in them. So, these rules cannot
be easily turned into a type reconstruction algorithm. The way we follow to define one
is rather conventional: we give an alternative set of syntax-directed rules that compute
constraints on types and uses and then we search for a solution of such constraints.
The novelty is that we need constraints expressing not only the equality between types
and uses, but also the order ≤ and compatibility ), which affect the solution phase in
non-trivial ways.
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To get started, we generalise uses to use expressions, which are either uses or use
variables ρ , . . . that denote an unknown use. We also define type expressions as types
without μ’s and where we admit use expressions wherever uses can occur. We keep κ
and t for ranging over use and type expressions, respectively, and we say that t is proper
if it is not a type variable. Constraints ϕ , . . . have one of these forms:

ϕ ::= κ1 Rc κ2 | t1 Rc t2

where R ∈ {≤,<,),∼} and ∼ is the trivial relation such that κ1 ∼ κ2 holds for all
κ1 and κ2. We call κ1 Rc κ2 a use constraint and t1 Rc t2 a type constraint. The sub-
script ·c reminds us that κ1 Rc κ2 and t1 Rc t2 are just triples made of two use or type
expressions and a symbol Rc denoting a relation. Equality constraints =c can be ex-
pressed as the conjunction of two constraints≤c and≥c, given that≤ is antisymmetric.
Constraints with the strict order <c will be generated only for use expressions. Com-
patibility constraints )c will be generated for ensuring type and use combination, as
well as for expressing the assumption that a type/use is unlimited (see e.g. the premise
of [T-IDLE]). Finally, ∼c constraints relate types that must be structurally coherent. For
example, [t]κ1,κ2 ∼ [t]κ3,κ4 holds regardless of κ1, κ2, κ3, and κ4 (but note that according
to (2.2) there must be the same t in the two types). We will see in Section 4 the role of
these constraints.

We let C , . . . range over finite sets of constraints. The domain of C , written dom(C ),
is the (finite) set of use and type expressions occurring in the constraints in C . We let σ
range over finite maps from type variables to types and from use variables to uses. The
application of σ replaces use variables ρ and type variables α with the corresponding
uses σ(ρ) and types σ(α). We write σκ and σ t for the application of σ to κ and t,
respectively. We say that σ is a solution of C if σ t R σs for every t Rc s ∈ C and
σκ1 R σκ2 for every κ1 Rc κ2 ∈ C . We extend the ≤ relation pointwise to solutions
and we say that a solution σ for C is minimal if every solution σ ′ ≤ σ for C is such
that σ ≤ σ ′. We say that C is satisfiable if it has a solution. We say that C1 and C2 are
equivalent if they have the same solutions.

We need two operators for combining and merging type environments in the recon-
struction algorithm. They take two type environments Γ1 and Γ2 and produce a pair
consisting of another type environment Γ and a set of constraints C :

dom(Γ1)∩dom(Γ2) = /0

Γ1� Γ2 � Γ1,Γ2; /0

Γ1 � Γ2 � Γ ;C α fresh

(Γ1,u : t)� (Γ2,u : s)� Γ ,u : α;C ∪{t )c s, t ≤c α,s≤c α}

/0� /0 � /0; /0
Γ1� Γ2 � Γ ;C

(Γ1,u : t)� (Γ2,u : s)� Γ ,u : t;C ∪{t =c s}

The relation Γ1 � Γ2 � Γ ;C combines the type environments Γ1 and Γ2 into Γ when
the names in dom(Γ1)∪ dom(Γ2) are used both as specified in Γ1 and also in Γ2, so
� is analogous to + in (2.3). When Γ1 and Γ2 have disjoint domains, their combina-
tion is just their union and no constraints are generated. Any name u that occurs in
dom(Γ1)∩dom(Γ2) must be used according to compatible types Γ1(u) ) Γ2(u) and its
type must be an upper bound of both Γ1(u) and Γ2(u). In general Γ1(u) and Γ2(u) are
type expressions with free type variables, hence these relations cannot be checked right



96 L. Padovani

Table 3. Constraint generation for expressions and processes

Expressions
[I-INT]
n : int� /0; /0

[I-NAME]
u : α �u : α; /0

[I-PAIR]
ei : ti � Γi;Ci

(i=1,2) Γ1� Γ2 � Γ ;C3

(e1,e2) : t1× t2 � Γ ;C1 ∪C2 ∪C3

[I-INL]
e : t � Γ ;C

inl e : t⊕α � Γ ;C

[I-INR]
e : t � Γ ;C

inr e : α⊕ t � Γ ;C

Processes

[I-IDLE]
0� /0; /0

[I-IN]
P� Γ ,x : t;C Γ �u : [t]ρ ,0 � Γ ′;C ′

u(x).P� Γ ′;C ∪C ′ ∪{0 <c ρ}

[I-OUT]
e : t � Γ ;C Γ �u : [t]0,ρ � Γ ′;C ′

u〈e〉� Γ ′;C ′ ∪{0 <c ρ}

[I-PAR]
Pi � Γi;Ci

(i=1,2) Γ1� Γ2 � Γ ;C3

P1 |P2 � Γ ;C1 ∪C2 ∪C3

[I-REP]
P� Γ ;C Γ � Γ � Γ ′;C ′

∗P� Γ ′;C ∪C ′

[I-WEAK]
P� Γ ;C

P� Γ ,u : α;C ∪{α )c α}

[I-NEW]
P� Γ ,a : t;C

(νa)P � Γ ;C ∪{t =c [α]ρ ,ρ}

[I-LET]
e : t � Γ1;C1 P� Γ2,x : t1,y : t2;C2 Γ1 � Γ2 � Γ ;C3

let x,y = e in P� Γ ;C1 ∪C2∪C3 ∪{t =c t1× t2}

[I-CASE]
e : t � Γ1;C1 Pi � Γi,xi : ti;Ci

(i=inl,inr) Γinl� Γinr � Γ2;C2 Γ1 � Γ2 � Γ3;C3

case e of{i xi ⇒ Pi}i=inl,inr � Γ3;C1 ∪C2∪C3 ∪Cinl∪Cinr∪{t =c tinl⊕ tinr}

away. Rather, they are symbolically recorded in the set of constraints C . Note in partic-
ular that the combined type of u is unknown and is represented by a fresh type variable
that is an upper bound of Γ1(u) and Γ2(u). The relation Γ1� Γ2 � Γ ;C merges the type
environments Γ1 and Γ2 into Γ when the names in dom(Γ1)∪ dom(Γ2) are used in al-
ternative branches of a case construct. Note that Γ1 � Γ2 � Γ ;C holds if and only if
Γ1(u) = Γ2(u) for every u ∈ dom(Γ1) = dom(Γ2). This corresponds to the fact that in
[T-CASE] we use the same type environment Γ ′ for typing the two branches of the case.

The rules to reconstruct type environments and to generate constraints are presented
in Table 3 and derive judgements of the form e : t � Γ ;C for expressions and P � Γ ;C
for processes. They closely correspond to those in Table 2; for this and space reasons
we will not describe them in detail. In general, unknown uses and types become fresh
use and type variables (all variables introduced by the rules are assumed to be fresh),
every application of + in Table 2 becomes an application of � in Table 3, and every
assumption on uses and types becomes a constraint. Constraints accumulate from the
premises to the conclusion of each rule. In rules [I-INL] and [I-INR] the type of the
disjoint sum which was guessed in [T-INL] and [T-INR] becomes a fresh type variable. In
rules [I-IN] and [I-OUT] it is not known whether the used channel u is linear or unlimited,
so the constraint 0 <c ρ records the fact that ρ must be either 1 or ω . Rule [I-NEW]
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requires a to have a channel type with equal uses by having the same use variable
ρ twice. There is also a rule [I-WEAK] that has no correspondence in Table 2. It is
necessary because [I-IN], [I-NEW], [I-LET], and [I-CASE], which correspond to the binding
constructs of the calculus, assume that the bound names occur in the premises on these
rules. This may not be the case if a bound name is never used. With rule [I-WEAK] we can
introduce missing names in type environments wherever is convenient. Of course, an
unused name must have a type α that is unlimited, which is recorded by the constraint
α )c α . Strictly speaking, with [I-WEAK] this set of rules is not syntax directed, which
in principle is a problem if we want to obtain an algorithm. In practice, the places where
[I-WEAK] may be necessary are easy to spot (in the premises of all the aforementioned
rules for the binding constructs). What we gain with [I-WEAK] is a simpler presentation
of the rules for constraint generation.

There is a tight correspondence between the type system and constraint generation.
Every satisfiable set of constraints generated from P corresponds to a typing for P.

Theorem 3.1. If P� Γ ;C and σ is a minimal solution for C , then σΓ * P.

In fact, when P� Γ ;C we can think of Γ ;C as the principal typing of P, because any
type environment Γ ′ such that Γ ′ * P can be obtained by applying a solution for C to Γ .

Theorem 3.2. If Γ ′ * P, then P� Γ ;C for some Γ , C and σ solution of C and Γ ′ = σΓ .

Example 3.1. We show the constraint set generated by two processes accessing the
same composite structure containing linear values. The Odd and Even processes in Sec-
tion 1 are too large to be discussed in here, so we focus on a simpler, artificial process
that exhibits the same phenomenon. We consider

a(x).(let y,z = x in y〈1〉 |let y,z = x in z〈2〉)

which receives a pair x of channels from a and sends 1 and 2 on them. Note that the pair
x is deconstructed twice, but every time only one of its components is used. We obtain

[I-OUT]
y〈1〉� y : [int]0,ρ1 ;C1

[I-WEAK]
y〈1〉� y : [int]0,ρ1 ,z : γ;C2

[I-LET]
let y,z = x in y〈1〉� x : α1;C3

[I-OUT]
z〈2〉� z : [int]0,ρ2;C4

[I-WEAK]
z〈2〉� y : β ,z : [int]0,ρ2 ;C5

[I-LET]
let y,z = x in z〈2〉� x : α2;C6

[I-PAR]
let y,z = x in y〈1〉 |let y,z = x in z〈2〉� x : α;C7

[I-IN]
a(x).(let y,z = x in y〈1〉 |let y,z = x in z〈2〉)� a : [α]ρ3,0;C8

where

C1
def
= {0<c ρ1} C2

def
= C1∪{γ )c γ} C3

def
= C2∪{α1 =c [int]

0,ρ1× γ}
C4

def
= {0<c ρ2} C5

def
= C4∪{β )c β} C6

def
= C5∪{α2 =c β × [int]0,ρ2}

C7
def
=C3∪C6∪{α1 )c α2,α1 ≤c α,α2 ≤c α} C8

def
= C7∪{0<c ρ3}

Within each let the variable x is assigned a distinct type variable αi. Eventually,
[I-PAR] finds out that x occurs twice, so it records in C7 the fact that the two types α1

and α2 must be compatible and that the overall type α of x must be an upper bound of
both. �
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Table 4. Constraint solver algorithm

Input: a set of constraints C .
Output: either fail or a solution of C .

1. Compute C ;
2. Compute a minimal solution σuse for the use constraints in C , or fail if there is none;
3. If t ∼c s ∈ C and t,s are proper and have different topmost type constructors, then fail;
4. Let σtype = {α !→ supC ,σuse

({α}) | α ∈ dom(C )};
5. Return σuse∪σtype.

4 Constraint Solving

In this section we define an algorithm that determines whether a given set of con-
straints C is satisfiable and, if this is the case, computes a solution of C . The algorithm,
sketched in Table 4, comprises 5 steps that can be roughly grouped in three phases:
saturation, verification, and synthesis. The phases are detailed in the rest of the section.

Saturation (step 1). The ≤c and )c constraints determined during constraint genera-
tion relate type expressions, but they are meant to affect the use variables occurring in
these type expressions (recall from (2.2) that every relation Rtype between types is the
extension of Ruse between uses). In order to find all constraints that must hold between
use expressions, we saturate the set C with all the constraints that are entailed by those
already in C . Entailment is expressed through a binary relation � defined as follows:

[E-REFL] {t Rc s} � {t Rc t,s Rc s} R ∈ {≤,∼}
[E-SYMM] {t Rc s} � {s Rc t} R ∈ {=,∼}
[E-TRANS] {t1 Rc t2, t2 Rc t3} � {t1 Rc t3} R ∈ {≤,∼}
[E-COMP 1] {t1 =c t2, t2 )c t3} � {t1 )c t3}
[E-COMP 2] {t1 ≤c t2, t2 )c t3} � {t1 )c t3}
[E-OPER] {t1( t2 Rc s1( s2} � {t1 Rc s1, t2 Rc s2}
[E-CHANNEL] {[t]κ1,κ2 Rc [s]κ3,κ4} � {t =c s,κ1 Rc κ3,κ2 Rc κ4}
[E-STRUCT] {t Rc s} � {t ∼c s}

The first three rules [E-REFL], [E-SYMM], and [E-TRANS] compute the reflexive, symmet-
ric, and transitive closures of those relations that enjoy such properties. Rule [E-COMP 1]
propagates compatibility constraints across equivalent types, and [E-COMP 2] propagates
compatibility constraints “downwards” from a type to a smaller one (indeed, it is the
case that κ1 ≤ κ2 ) κ3 implies κ1 ) κ3). Rule [E-OPER] propagates constraints between
composite types to their components. Rule [E-CHANNEL] propagates constraints from
type to use expressions and imposes the equality of message types for related channel
types. Finally, rule [E-STRUCT] generates∼c constraints between any pair of related type
expressions. This is necessary to make sure that all message type equality constraints
are generated by [E-CHANNEL], given that) is not transitive. We denote by C the small-
est set that includes C and that is closed by the rules [E-*] above. Observe that every
C generated by the rules in Table 3 is finite, and that the entailment rules [E-*] do not
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change the domain of the set C being saturated. Therefore, C is always finite and can
be computed in finite time by a simple iterative algorithm that repeatedly applies the
entailment rules until no new constraints are discovered. We have:

Proposition 4.1. C and C are equivalent.

Verification (steps 2 and 3). In this phase the algorithm verifies whether C is satis-
fiable and fails if this is not the case. The key observation is that satisfiability of the
type constraints does not depend upon one particular solution of the use constraints
because the previous phase has computed all possible relations that must hold between
use expressions. Therefore, we can independently verify the satisfiability of use and
type constraints and fail if any of these checks fails.

Recall that there is a finite number of use constraints, which are relationships be-
tween use expressions made of a finite number of use variables ranging over a finite
domain {0,1,ω}. Therefore, there exists a complete (albeit combinatorial) verification
algorithm that determines whether or not the use constraints in C are satisfiable. It is
also possible to define an “optimal” algorithm that aims at maximising the number of
use variables that are assigned value 1 as opposed to ω . We do not discuss the issues
related to solving use constraints any further.

If the use constraints in C are satisfiable, then satisfiability of the type constraints
is granted provided that there are no constraints relating types built with different con-
structors. For example, int ≤c [α]κ1,κ2 is clearly unsatisfiable. Because of [E-STRUCT]
and [E-TRANS], for any pair of types that must be related there is a constraint t ∼c s in
C . Therefore, if there is any such constraint where t and s are not type variables and
are built using different topmost constructors, then C is for sure unsatisfiable and the
algorithm fails.

Proposition 4.2. If the algorithm fails in this phase, then C is not satisfiable.

Synthesis (steps 4 and 5). The last phase computes a solution σtype for the type con-
straints in C given any minimal solution σuse for the use constraints in C determined at
step 2 of the algorithm. To compute σtype we need the definitions below:

clsR,C (T )
def
= {s | s Rc t ∈ C for some t ∈ T and s is proper}

supC ,σ (T )
def
=

⎧⎪⎨⎪⎩
[supC ,σ ({ti}i∈I)]

∨
i∈I σκi,

∨
i∈I σκ ′i if cls≤,C (T ) = {[ti]κi,κ ′i }i∈I �= /0

supC ,σ ({ti}i∈I)( supC ,σ ({si}i∈I) if cls≤,C (T ) = {ti( si}i∈I �= /0

zeroC ,σ (T ) otherwise

zeroC ,σ (T )
def
=

⎧⎪⎨⎪⎩
[supC ,σ ({ti}i∈I)]

0,0 if cls∼,C (T ) = {[ti]κi,κ ′i }i∈I �= /0

zeroC ,σ ({ti}i∈I)( zeroC ,σ ({si}i∈I) if cls∼,C (T ) = {ti( si}i∈I �= /0

int otherwise

The set clsR,C (T ) is made of the proper type expressions s such that s Rc t ∈ C
for some t ∈ T . Note that not all R’s are symmetric and that s is the type expression
on the left hand side of Rc. So, cls≤,C (T ) is the set of type expressions that are lower
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bounds of some t ∈ T , while cls∼,C (T ) is the set of type expressions that share the same
topmost type constructor with some t ∈T but have possibly different uses. Note also that
cls≤,C (T )⊆ cls∼,C (T ) because≤⊆∼. The algorithm (Table 4) resolves each variable
α to supC ,σuse

({α}) where, supC ,σ (T ) is, roughly speaking, the least upper bound of
the types in T (even though the algorithm always invokes supC ,σ with a singleton, in
general we need to define supC ,σ over a set of type expressions that are known to be
equivalent). There are three cases that determine supC ,σ (T ): if there exists any lower
bound for some of the types in T and these lower bounds are either channel or composite
types, then supC ,σ (T ) is defined as the least upper bound of such lower bounds (first
two cases in the definition of supC ,σ ); if there is no lower bound but there exists at
least one ∼c constraint involving any of the types in T , then supC ,σ (T ) is defined as
a type that is structurally coherent with such constraints but has use 0 for all of its
topmost channel types (third case in the definition of supC ,σ and first two cases in the
definition of zeroC ,σ ); if there are no ∼c constraints involving any of the types in T , or
if some of the types in T have been determined to be structurally coherent with int,
then zeroC ,σ (T ) is defined to be int (third case in the definition of zeroC ,σ ).

Interpreting supC ,σ and zeroC ,σ as functions is appropriate for presentation (and im-
plementation) purposes, but formally tricky for two reasons: (1) the equations given
above are mutually dependent and (2) they are undefined for some particular T ’s (for
instance, for T = {int, [int]0,0}which contains two types with incompatible structures
or for T = {[int]ω,0, [int]1,0} which contains two types with incompatible uses). Con-
cerning (1), the formal interpretation of the equations above is as a set {αi = ti} where
each αi has the form supC ,σ (T ) or zeroC ,σ (T ), T ⊆ dom(C ), and ti is determined by the
right hand side of the equation. We know that this set is always finite because dom(C )
is finite and so is its powerset. Furthermore, zeroC ,σ always yields a proper type when
it is defined and so does supC ,σ when it is not defined in terms of zeroC ,σ . Therefore,
the equations in {αi = ti} are contractive in the sense that there is no infinite chain of
equations involving type variables only. In this case, it is known [1] that these equations
can be folded into a possibly recursive contractive term using μ’s. Concerning (2), it
turns out that, when σ is a solution of the use constraints in C , supC ,σ (T ) is defined if
T is C -composable and that zeroC ,σ (T ) is defined if T is C -compatible, where:

– T is C -composable if t ≤c s ∈ C or s≤c t ∈ C or t )c s ∈ C for every t,s ∈ T ;
– T is C -compatible if t ∼c s ∈ C for every t,s ∈ T .

Indeed observe that: cls≤,C (T ) is C -composable if so is T by [E-COMP 2]; cls∼,C (T )
is C -compatible if T is C -composable by [E-STRUCT]; if {[ti]κi,κ ′i }i∈I is C -composable
then the least upper bounds

∨
i∈I σκi and

∨
i∈I σκ ′i are defined (consequence of the use

constraints generated by [E-CHANNEL] and the hypothesis that σ is a solution of them); if
{[ti]κi,κ ′i }i∈I is C -compatible, then {ti}i∈I is C -composable (consequence of the =c con-
straints generated by [E-CHANNEL]); if {ti( si}i∈I is C -composable/compatible, then so
are the sets {ti}i∈I and {si}i∈I by [E-OPER]; the type expressions in C -composable/com-
patible sets are built using the same topmost constructor (check in step 3 of the algo-
rithm). Finally, observe that a singleton {α} is always C -composable, so the invocations
of supC ,σuse

in Table 4 regard well-defined equations. We conclude:

Theorem 4.1. If the algorithm returns σ , then σ is a minimal solution for C .
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Each step of the algorithm terminates and if the algorithm fails it is because C has
no solution (Proposition 4.2). Therefore:

Corollary 4.1 (completeness). If C is satisfiable, the algorithm returns a solution.

Example 4.1. The saturation of the constraint set C computed in Example 3.1 con-
tains, among others, the constraints [int]0,ρ1 × γ )c β × [int]0,ρ2 and consequently
[int]0,ρ1 )c β and γ )c [int]

0,ρ2 by [E-COMP 1] and [E-COMP 2]. An optimal solution
of the use constraints in C is σuse

def
= {ρ1 !→ 1,ρ2 !→ 1,ρ3 !→ 1}. From this we obtain

supC ,σuse
({α}) = [int]0,1× [int]0,1

indicating that the pair of channels received from a is shared by the two let processes
in such a way that each of the two channels contained therein is used exactly once. �

5 Concluding Remarks

Previous works on the linear π-calculus either ignore composite types [11,7] or are
based on an interpretation of linearity that limits data sharing and parallelism [5,6].
Recursive types have also been neglected, despite their prominent role for describing
complex interactions occurring on linear channels [2]. In this work we extend the linear
π-calculus with both composite and recursive types and we adopt a more relaxed atti-
tude towards linearity that fosters data sharing and parallelism while preserving com-
plete type reconstruction. The extension is a very natural one, as witnessed by the fact
that our type system uses essentially the same rules of previous works, the main novelty
being a different type composition operator. This small change has nonetheless non-
trivial consequences on the reconstruction algorithm, which must reconcile the prop-
agation of constraints across composite types with the impossibility to rely on plain
type unification due to the fact that different occurrences of the same identifier may
be assigned different types and because of recursive types. Technically, we tackle these
problems by expressing type combination in previous works (which is a ternary relation
t1 + t2 = t3) in terms of two simpler binary relations, namely compatibility t1 ) t2 and
order ti ≤ t3, and by seeking for minimal solutions of the constraint set. Our extension
also gives renewed relevance to types like [t]0,0. In previous works these types were
admitted but essentially useless: channels with such types could only be passed around
in messages without actually ever being used. That is, they could be erased without af-
fecting processes. In our type system, it is the existence of these types that enables the
sharing of structured data (see the decomposition of tlist into teven and todd in Section 1).

Given that sessions [3,4] can be fully encoded into the linear π-calculus [9,2], we
also indirectly provide a complete reconstruction algorithm for equi-recursive session
types without subtyping. Interestingly, the concept of duality, which is a source of sig-
nificant complication of the type reconstruction algorithm for finite session types [12],
is simplified by the encoding, where it reduces to compatibility.

To assess the feasibility of the approach, we have developed a prototype based on the
naı̈ve constraint saturation and combinatorial verification of use expressions described
in Section 4. Regarding the complexity of the reconstruction algorithm, the most critical
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aspects are the solution of use constraints and the computation of the transitive closure
of type constraints. While polynomial algorithms are known for the latter, the former
problem entails, in principle, an exponential cost. Preliminary experiments with the
prototype implementation of the algorithm have shown that, in both cases, constraints
can often be partitioned into relatively small independent subsets that can be solved
in isolation (the prototype already supports such partitioning for use constraints). This
property paves the way for significant performance improvements.

Acknowledgements. The author is grateful to the FoSSaCS’14 reviewers for their
detailed and insightful comments. This work has been partially supported by ICT COST
Action IC1201 BETTY, MIUR project CINA, and Ateneo/CSP project SALT.

References

1. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comp. Sci. 25, 95–169 (1983)
2. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP 2012, pp. 139–

150. ACM (2012)
3. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,

pp. 509–523. Springer, Heidelberg (1993)
4. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for

structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

5. Igarashi, A.: Type-based analysis of usage of values for concurrent programming languages
(1997), http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/

6. Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent program-
ming languages. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 187–201.
Springer, Heidelberg (1997)

7. Igarashi, A., Kobayashi, N.: Type Reconstruction for Linear π-Calculus with I/O Subtyping.
Inf. and Comp. 161(1), 1–44 (2000)

8. Kobayashi, N.: Quasi-linear types. In: POPL 1999, pp. 29–42. ACM (1999)
9. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K. (ed.) Formal

Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757,
pp. 439–453. Springer, Heidelberg (2003), Extended version at http://www.kb.ecei.

tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf

10. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)

11. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Trans. Pro-
gram. Lang. Syst. 21(5), 914–947 (1999)

12. Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231.
Springer, Heidelberg (2008)

13. Nestmann, U., Steffen, M.: Typing confluence. In: FMICS 1997, pp. 77–101 (1997), Also
available as report ERCIM-10/97-R052, European Research Consortium for Informatics and
Mathematics (1997)

14. Sangiorgi, D., Walker, D.: The Pi-Calculus - A theory of mobile processes. Cambridge Uni-
versity Press (2001)

15. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: FPCA 1995, pp. 1–11 (1995)

http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/
http://www.kb.ecei.tohoku.ac.jp/~{}koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~{}koba/papers/tutorial-type-extended.pdf


A Semantical and Operational Account

of Call-by-Value Solvability

Alberto Carraro1,2 and Giulio Guerrieri2
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Abstract. In Plotkin’s call-by-value lambda-calculus, solvable terms
are characterized syntactically by means of call-by-name reductions and
there is no neat semantical characterization of such terms. Preserving
confluence, we extend Plotkin’s original reduction without adding extra
syntactical constructors, and we get a call-by-value operational charac-
terization of solvable terms. Moreover, we give a semantical character-
ization of solvable terms in a relational model, based on Linear Logic,
satisfying the Taylor expansion formula. As a technical tool, we also use
a resource-sensitive calculus (with tests) in which the elements of the
model are definable.

Keywords: (resource) call-by-value lambda-calculus, tests, potential
valuability, solvability, relational semantics, weak and stratified
reductions.

1 Introduction

In the theory of ordinary (i.e. untyped call-by-name) λ-calculus, the notion of
solvability plays a crucial role. A λ-term M is solvable if there is a head con-
text H such that H�M� �β λx.x = I (the identity); M is unsolvable if it is not
solvable. Solvability (see [1]) underlies the fundamental notions of approximants,
Böhm-trees and separability; moreover, it is possible to encode partial recursive
functions in λ-calculus in such a way that undefinedness is represented by un-
solvable λ-terms ([1, Ch. 8]). Enforcing the idea of unsolvable-as-meaningless,
it is consistent to equate all unsolvable λ-terms (but not all λ-terms having
no β-normal form, [1, Ch. 16]). A fundamental theorem for ordinary λ-calculus
(see [2,3]) states that for every λ-term M the following are equivalent: (1) M
is solvable; (2) the head reduction of M terminates; (3) the semantics of M
in the Scott’s model D∞ is not the least element. Equivalence (1)⇔(2) (resp.
(1)⇔(3)) gives a semantical (resp. syntactical or operational) characterization
of solvability in ordinary λ-calculus.

The most common parameter passing policy for programming languages is
call-by-value (CBV). Plotkin [4] introduced the λv-calculus in order to grasp the
CBV paradigm in a pure λ-calculus setting. The λv-calculus (without constants)

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 103–118, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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has the same syntax as ordinary λ-calculus but its βv-reduction rule allows the
contraction of a β-redex only if the argument is a λ-value, i.e. a variable or an
abstraction. As argued in [5], a good CBV λ-calculus should enjoy an internal op-
erational characterization (i.e. by using CBV reduction rules) of CBV-solvability.
This is not the case for Plotkin’s λv-calculus and the weakness of βv-reduction
is widely recognized and accepted. Following [6,7], a λ-term M is λv-solvable
if there is a head context H such that H�M� �βv I. Let Δ = λx.xx: there is
no head context sending (via βv-reduction) N = (λy.Δ)(xI)Δ to I, thus N is
λv-unsolvable and hence it should be divergent, whereas it is βv-normal. An oper-
ational characterization of λv-solvability has been provided in [6,7] but through a
call-by-name reduction; this result is improved in [8] where the characterization
is built upon strong normalization of the (call-by-name) lazy β-reduction.

There are many proposals of alternative CBV λ-calculi (see [9,10,11,12,5])
extending Plotkin’s one by using explicit substitutions (constructors of the form
let...in). In particular, Accattoli and Paolini [5] introduced recently the λvsub-
calculus where the reduction rule acts at a distance by extending the notion of
βv-redex (with explicit substitutions). In this setting they give an internal oper-
ational characterization of solvability and this characterization lifts to Herbelin
and Zimmermann’s λCBV-calculus, another CBV λ-calculus with explicit substi-
tutions introduced in [9] (without rules acting at a distance but with commuta-
tion rules for explicit substitutions).

Paolini and Ronchi Della Rocca [6,7] made major contributions to the study
of CBV-solvability through denotational semantics. In [6] they showed an inter-
section type system that characterizes λv-potentially valuable1 (Thm. 6.4) and
λv-solvable λ-terms (Thm. 6.5). We quote from [6, p. 28]: “The type assign-
ment system presented here is strongly related to the system presented in [13]
for reasoning on the denotational semantics of the [Plotkin’s] λv-calculus. [. . . ]
The two systems have the same typability power”. It is not shown whether this
type system is “legal” (see [7, Def. 10.1.5]), which is substantially a sufficient
condition to turn the type system into a filter model (i.e. a true domain model).
In [7, Ch. 12] the same authors exhibit two models, V (§ 12.1) and VV (§ 12.2),
both built from intersection type systems. The model V comes from a legal
type system and it is shown to be isomorphic to the one of [13]. All and only
λv-potentially valuable λ-terms have non trivial interpretation in V , but V gives
only a partial semantical characterization of λv-solvable λ-terms (Thm. 12.1.19).
The model VV characterizes observational equivalence (Thm. 12.2.14) but it is
not a filter model. Recently, Ehrhard [14] used a relational model of the λv-
calculus, based on Linear Logic, to show that if the semantics of a λ-term M
is not empty, then M is strongly normalizing for the lazy βv-reduction (which
does not reduce under abstractions); the converse is false (the aforesaid λ-term
N is a counterexample).

1 Following [6,7], a λ-term is λv-potentially valuable if there is a substitution sending
it (via �βv ) into a λ-value. This notion is important for a CBV λ-calculus because if
we want to manipulate some subterms, we need first to transform them into λ-values.
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The starting points of our work are [6,5,14]. We introduce the λσv -calculus,
a CBV λ-calculus having the same syntax as ordinary (and hence Plotkin’s
CBV) λ-calculus (there are no explicit substitutions) and extending the βv-
reduction by adding two reduction rules, σ1 and σ3. For the λσv -calculus we
give a semantical and an internal operational characterization of solvability and
potential valuability. We use the relational model of [14], which can also be seen
as a model of ordinary λ-calculus (unlike the model V of [7]) and satisfies a
version of the Taylor formula (see [14]). We also introduce a resource-sensitive
calculus with tests in which the elements of the relational model are definable:
this is a promising tool to face the CBV full abstraction problem, along the lines
of [15].

Our λσv -calculus springs from Girard’s call-by-value “boring” translation (·)v
of λ-calculus into Intuitionistic Multiplicative Exponential Linear Logic (IMELL)
proof-nets, identified by (A⇒ B)v = !Av � !Bv (see [16]). The images of a σ1-
or σ3-redex and its contractum under (·)v are equal modulo some specified “im-
mediate” steps of cut-elimination. Our σ-rules are related to (but partly different
from) Regnier’s σ-reduction defined in [17,18] for the ordinary λ-calculus. More-
over, σ1 and σ3 correspond respectively to the commutation rules letapp and
(a generalization of) let let in λCBV-calculus (see [9,5]). In some sense, they can
be seen as a finer (and local) decomposition of the reduction rules acting at a
distance in λvsub-calculus (it is possible to simulate λvsub- and λCBV-calculus in
our λσv -calculus), but the absence of explicit substitutions in λσv -calculus pre-
vents from lifting the internal operational characterization of CBV-solvability
from λvsub- or λCBV-calculus to our λσv -calculus.

Outline. In §2 we introduce our λσv -calculus. Then, §3, §4 and §5 are devoted to
the technical notions which are necessary in order to state our main results: in
§3 we present two sub-reductions in the λσv -calculus, called w- and s-reduction;
in §4 and §5 we present a resource-sensitive version of the λσv -calculus and the
relational model of the (resource) λσv -calculus. In §6 we state and prove our main
theorems: the semantical (via the relational model) and syntactical (via w- and
s-reductions) characterization of potential valuability and solvability; they say
also that weak and strong normalizations coincide for both w- and s-reductions.

2 A CBV Lambda-Calculus with Sigma-Like-Reductions

In this section we introduce λσv , our version of CBV λ-calculus. The syntax of λσv
is the same as the one of ordinary λ-calculus. Given a countable set of variables
(denoted by x, y, z, . . . ), the language of λσv is defined by the following grammar:

(Λv) V, U ::= x | λx.M λ-values
(Λ) M,N,L ::= V | MN λ-terms

All λ-terms are considered up to α-conversion. The set of free variables of a
λ-term M is denoted by fv(M). Given pairwise distinct variables x1, . . . , xn, we
denote by M{V1/x1, . . . , Vn/xn} the λ-term obtained by the capture-avoiding
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simultaneous substitution of each free occurrence of xi in the λ-term M by the
λ-value Vi (for 1 ≤ i ≤ n). Notice that, for all λ-values V, V1, . . . , Vn and pairwise
distinct variables x1, . . . , xn, V {V1/x1, . . . , Vn/xn} is a λ-value.

Contexts (with exactly one hole) are defined as usual via the grammar:

C ::= �·� | λx.C | CM | MC .

We use C�M� for the λ-term obtained by the capture-allowing substitution of
the λ-term M for �·� in the context C.

Definition 1. We define the following binary relations from Λ to Λ:

(λx.M)V !→βv M{V/x} with V ∈ Λv

(λx.M)NL !→σ1 (λx.ML)N with x �∈ fv(L)
V ((λx.L)N) !→σ3 (λx.V L)N with x �∈ fv(V ) and V ∈ Λv

For R ∈ {βv, σ1, σ3}, if M !→R M ′ then M is called R-redex.
We set !→σ = !→σ1 ∪ !→σ3 and !→v = !→βv ∪ !→σ.

The side conditions on !→σ in Def. 1 can be always fulfilled by α-renaming.

Notation. Let !→R⊆ Λ × Λ. We use →R (called R-reduction) for the closure
of !→R under all contexts; we denote by �R (resp. →+

R) the reflexive-transitive
(resp. transitive) closure of →R. Let M be a λ-term: M is R-normal if there is
no λ-term N such thatM →R N ;M is R-normalizable if there is a R-normal λ-
term N such thatM �R N ;M is strongly R-normalizing if there is no sequence
(Ni)i∈N such that M = N0 and Ni →R Ni+1 for every i ∈ N.

Notice that, for any λ-value V , if V →v M , then M is a λ-value.
The λσv -calculus is the set Λ of λ-terms endowed with the v-reduction→v. The

set Λ endowed with →βv is Plotkin’s CBV λ-calculus ([4]) without constants.
Informally, σ-rules unblock βv-redexes which are hidden by the “hyper-

sequential structure” of λ-terms. This approach is alternative to the one in [5]
where hidden βv-redexes are reduced thanks to a rule acting at a distance.

Example. N = (λy.Δ)(xI)Δ →σ1 (λy.ΔΔ)(xI)→βv (λy.ΔΔ)(xI)→βv . . . is the
only possible v-reduction path from N : N is not v-normalizable but βv-normal.

2.1 Confluence of Our CBV Lambda-Calculus

Our goal here is to prove that the v-reduction is confluent.

Proposition 2. The reduction →σ is strongly normalizing.

Proof. First, we define two sizes s(M) and #M by induction on the λ-term M :

s(x) = 2; #x = 1;

s(λx.M) = s(M) + 1; #λx.M = #M + s(M);

s(MN) = s(M) + s(N). #MN = #M +#N + 2s(M)s(N)− 1.

It is sufficient to show that if N →σ N
′ then s(N) = s(N ′) and #N > #N ′. ��
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Proposition 3. The reduction →σ is (not strongly) confluent.

Proof. ByNewman’s Lemma and Prop. 2, it is sufficient to show that→σ is locally
confluent. The proof of local confluence is by induction on M . The λ-term Ξ =
(λx.x′)

(
(λy.y′I)(zI)

)
(z′I) is an objection to strong confluence of→σ. ��

Lemma 4 (Hindley–Rosen, [1, p. 64]). Let →1,→2⊆ X2 (for any set X).
If they are both confluent and they commute, i.e. if t �1 u1 and t �2 u2 then
there exists s such that u1 �2 s and u2 �1 s, then →1 ∪ →2 is confluent.

Lemma 5. Let M,M ′ ∈ Λ, V, V ′, V1, . . . , Vm ∈ Λv and R ∈ {βv, σ, v}.

(i) If V →R V ′ then M{V/x}�R M{V ′/x}.
(ii) If M →R M ′ then M{V1/x1, . . . , Vm/xm} →R M ′{V1/x1, . . . , Vm/xm}.

Lemma 6. The reductions →βv and →σ commute.

Proof. It suffices to prove that if M →σ N1 and M →βv N2 then there is L s.t.
N2 �σ L and N1 →βv L. The proof of this statement is by induction on M . ��

By Lemmas 4 and 6, Prop. 3 and confluence of →βv (see [4]), we conclude:

Theorem 7. The reduction →v is (not strongly) confluent.

The λ-term Ξ (see proof of Prop. 3) is an objection to strong confluence of →v.
If in the definition of !→σ3 (Def. 1) we replace the λ-value V with any λ-termM

then →σ and →v are not (locally) confluent: consider (λx.x′)(zI)
(
(λy.y′)(z′I)

)
.

3 Weak and Stratified CBV Reductions

In this section we introduce two sub-reductions of →v: weak (or w-
)reduction and stratified (or s-)reduction. We will show in §6 that they
give an operational characterization of potential valuability and solvabil-
ity: they are the “CBV counterpart” of head reduction for ordinary λ-
calculus. Whereas head reduction is strictly deterministic (any λ-term has
at most one head redex), a λ-term might have several (overlapping) w-
or s-redexes. Anyway, both w- and s-reductions are confluent (Prop. 10)
and for them weak and strong normalization coincide (Thm. 24 and 25).
We have gathered our definition of w- and s-reductions from [5].

Definition 8. Weak and stratified contexts (denoted respectively by W and S)
are contexts defined via the grammar:

W ::= �·� | WM | MW | (λx.W)M S ::= W | λx.S | SM

Notation. Let !→R⊆ Λ × Λ: we use →w[R] (resp. →s[R]) for the closure under
weak (resp. stratified) contexts of !→R. We set w = w[v] and s = s[v]; for instance,
→w =→w[v] (called w-reduction) and →s =→s[v] (called s-reduction).
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Note that→w �→s�→v. In weak contexts, if the hole is under an abstraction
then this abstraction is the left-hand side of an application. Stratified contexts
never contain the hole under an abstraction which is in the right-hand side of
some application, unless the abstraction is the left-hand side of an application.

Example. Let Ω = ΔΔ: one has Ω →w Ω →w . . . , λy.Ω →s λy.Ω →s . . . , and
x(λy.Ω)→v x(λy.Ω)→v . . . , whereas λy.Ω (resp. x(λy.Ω)) is w-(resp. s-)normal.

We will now prove that the w- and s-reductions are confluent.

Lemma 9. (i) The reductions →w[βv] and →s[βv] are strongly confluent.
(ii) The reductions →w[σ] and →s[σ] are confluent.
(iii) The reductions →w[βv] and →w[σ] (resp. →s[βv] and →s[σ]) commute.

By Lemmas 4 and 9 we can conclude:

Proposition 10. The reductions →w and →s are (not strongly) confluent.

The λ-term Ξ (see p. 107) is an objection to strong confluence of →w and →s.

3.1 Characterization of w- and s-Normal Forms

Our goal here is to characterize w- and s-normal forms. Having no explicit sub-
stitutions, our characterization appears more concise than the one in [5].

Definition 11. We define the subsets anf, snf and wnf of Λ as follows:

(anf) Anf ::= xV | xAnf | AnfWnf

(wnf) Wnf ::= V | (λx.Wnf)Anf | Anf

(snf) Snf ::= x | λx.Snf | (λx.Snf)Anf | Anf

A β-redex is a λ-term of shape (λx.M)L. Notice that anf � snf � wnf and
if N ∈ anf then N has a free “head variable” and it is neither a value nor a
β-redex.

Proposition 12. Let M be a λ-term.

(i) M is w-normal iff M ∈ wnf.
(ii) M is s-normal iff M ∈ snf.
(iii) M is w-(resp. s-)normal and is neither a value nor a β-redex iff M ∈ anf.

4 A Resource CBV Lambda-Calculus

We now introduce the resource λσv -calculus, a valuable tool to prove some parts
of our main results. It is an extension of the resource CBV λ-calculus introduced
in [14, §5.2]. Its syntax is defined by the following grammar (the same as in [14]):

(rΛv) u, v ::= x | λx.t resource values
(rΛt) s, t ::= st | [v1, . . . , vk] (k ≥ 0) resource terms
(rΛ) e, f ::= v | t expressions

A resource term like [v1, . . . , vk] is a multiset of resource values (called bag).
The resource-version of the βv-rule makes use of linear substitution, which

requires to enrich the syntax of the calculus with finite sets of resource terms.
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Notation. Since the set Pf(A) of all finite subsets of a set A is the free module
2〈A〉 generated by A over the boolean semiring {0, 1} with 1 + 1 = 1, we will
use algebraic notations for operations on its elements (+ for set unions, 0 for the
empty set), as done in [15,14].

We denote by degx(e) the number of free occurrences of the variable x in the
expression e. Given e ∈ rΛ, v1, . . . , vk ∈ rΛv and an enumeration of the free occur-
rences of variable x in e, if degx(e) = k then by

∑
f∈Sk

e{vf(1)/x1, . . . , vf(k)/xk}
we mean the sum of all expressions obtained by substituting vf(i) for the i-th free
occurrence of x in e, as f varies over all elements of the set Sk of permutations
of {1, . . . , k}. Finally, the linear substitution of [v1, . . . , vk] for x in e is

e〈[v1, . . . , vk]/x〉 =
{∑

f∈Sk
e{vf(1)/x1, . . . , vf(k)/xk} if degx(e) = k

0 otherwise

Notice that, for n ∈ {v, t}, if e ∈ rΛn then e〈[v1, . . . , vk]/x〉 ∈ 2〈rΛn〉.
Resource contexts (with exactly one hole) are defined via the grammar:

R ::= �·� | Rt | tR | [λx.R, v1, . . . , vk] (k ≥ 0)

Let R be a resource context. We use R�t� for the resource term obtained by
the capture-allowing substitution of the resource term t for the hole �·� in R. If
T =

∑n
i=1 ti (with t1, . . . , tn ∈ rΛt), then R�T� =

∑n
i=1 R�ti� ∈ 2〈rΛt〉 (see also

[14, §5.2] and [15, §2.1]). For example, R�0� = 0 and [λx.[x]�[y][z] + [z][y]�, y] =
[λx.[x]([y][z]), y] + [λx.[x]([z][y]), y].

Definition 13. We define the following binary relations from rΛt to 2〈rΛt〉:

[λx.t][v1, . . . , vk] !→βv t〈[v1, . . . , vk]/x〉 [λx.t]ss′ !→σ1 [λx.ts′]s if x /∈ fv(s′)

[v1, . . . , vn]t !→0 0 if n �= 1 [v]([λx.t]s) !→σ3 [λx.[v]t]s if x /∈ fv(v)

We set !→v = !→βv ∪ !→σ1 ∪ !→σ3 ∪ !→0.

According to the convention of §2,→v⊆ rΛt×2〈rΛt〉 is the reduction obtained
by resource-contextual closure of !→v.

The resource λσv -calculus consists of the language rΛt and the reduction →v:
it is the resource CBV λ-calculus of [14] plus the σ1- and σ3-rules.

As a technical simplification, we extend →v to a binary relation on 2〈rΛt〉 by
linearity, i.e. (

∑n
i=1 ti) + S →v (

∑n
i=1 Ti) + S iff ti →v Ti for every i = 1, . . . , n

(n ≥ 1). With this extension we can concisely state the following theorem:

Theorem 14. Reduction →v on 2〈rΛt〉 is strongly normalizing and confluent.

We omit the proof of Thm. 14. Strong normalization is evident (see [14] for
a proof for the resource-contextual closure of !→βv ∪ !→0). The proof of local
confluence for the resource λσv -calculus is analogous to the one for v-reduction
on λ-terms (see §2). Finally, confluence is obtained by Newman’s Lemma.
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5 A Relational Model of (Resource) CBV
Lambda-Calculus

In this section we present a relational model for both the λσv -calculus and the
resource λσv -calculus. This model is to be found in the category Rel of sets
and relations (i.e. Rel(X,Y ) = P(X × Y )). In Rel identities are diagonal re-
lations and composition of morphisms is the standard composition of relations.
This category has a symmetric monoidal structure given by 1 = {1} (arbi-
trary singleton set) and X ⊗ Y = X × Y . This symmetric monoidal category
is closed, with X � Y = X × Y , and ∗-autonomous with dualizing object
⊥ = 1. Category Rel is cartesian, with X & Y = ({1} × X) ∪ ({2} × Y ), and
has an exponential functor ! defined by !X =Mf(X) (the set of finite multisets
on X) and !f = {([α1, . . . , αn], [β1, . . . , βn]) : n ≥ 0, (αi, βi) ∈ f ∀ 1≤ i≤n} for
f ∈ Rel(X,Y ).

All this structure makes Rel a new-Seely category and hence a categorical
model of Linear Logic (LL). For more details we refer the reader to [19,14].

The model. We build inductively a family of sets (Un)n∈N given by U0 = ∅
and Un+1 = Mf(Un) × Mf(Un). Finally, we set U =

⋃
n∈N Un. Notice that

Un � Un+1 for all n ∈ N, and U =Mf(U)×Mf(U) = !U � !U .

5.1 Interpreting the CBV Lambda-Calculus

Using the fact that Rel has the structure of a LL model, we can give a concrete
interpretation of λ-terms as morphisms from Mf(U)n toMf(U) in Rel (where
Mf(U)n is the n-fold set-theoretic power ofMf(U)). This semantics can also be
described by type judgements (see [14]). With a� b we indicate the union of the

multisets a and b (accounting for repetitions); if �a and �b are two finite sequences

(of the same length) of multisets, �a ��b is their component-wise union.

Definition 15. For every λ-term M and repetition-free list �x ⊇ fv(M), we de-
fine, by induction on M , its interpretation �M��x ⊆Mf(U)n×Mf(U) (where n
is the length of �x), as follows:

�xi��x = {(�a, ai) : ai ∈ Mf(U), aj = [ ] for all 1 ≤ j ≤ n with j �= i}
�λy.N��x = {(

⊎k
i=1 �ai,

⊎k
i=1[(bi, ci)]) : k≥0, ∀i = 1, . . . , k. ((�ai, bi), ci)∈�N��x,y}

�MN��x = {(�a0 � �a1, c) : ∃ b ∈Mf(U). (�a0, [(b, c)]) ∈ �M��x, (�a1, b) ∈ �N��x} .
Notation. Hereafter, whenever we write �M��x we suppose that �x is a repetition-
free list of variables containing fv(M). Moreover, we will sometimes silently use
the fact that �M��x,y = {((�a, [ ]), b) : (�a, b) ∈ �M��x} whenever y �∈ �x.
Theorem 16 (soundness). Let M,N ∈ Λ. If M →v N , then �M��x = �N��x.

5.2 Interpreting the Resource CBV Lambda-Calculus

In addition to the structure mentioned above,Rel is additive, and more precisely
its hom-sets are enriched over the category of complete lattices, with set-theoretic
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union as join operation. The category Rel is a weak differential LL model (see
[14]). Using this structure we can give the concrete interpretation of expressions
as morphisms fromMf(U)n to Mf(U) in Rel.

Definition 17. For every expression e and repetition-free list �x ⊇ fv(e), we
define, by induction on e, its interpretation �e��x ⊆Mf(U)n ×Mf(U) (where n
is the length of �x), as follows:

�xi��x = {(�a, [α]) : α ∈ U, ai = [α], aj = [ ] for all 1≤j≤n with j �= i}
�λz.t��x = {(�a, [(b, c)]) : ((�a, b), c) ∈ �t��y,z}

�st��x = {(�a0 � �a1, c) : ∃b ∈ Mf(U). (�a0, [(b, c)]) ∈ �s��x, (�a1, b) ∈ �t��x}
�[v1, . . . , vk]��x = {(

⊎k
i=1 �ai,

⊎k
i=1 bi) : k ≥ 0, ∀i = 1, . . . , k. (�ai, bi) ∈ �vi��x} .

Finally, sums of expressions are interpreted by setting �∑n
i=1 ei��x =

⋃n
i=1�ei��x.

Notation. As for λ-terms, whenever we write �e��x we suppose that �x is a
repetition-free list of variables containing fv(e), and similarly for the sums. Note
that �[ ]��x = {([ ]n, [ ])} ⊆Mf(U)n ×Mf(U), where [ ]n = ([ ], . . . , [ ]︸ ︷︷ ︸

n times

).

Theorem 18 (soundness). Let S,T ∈ 2〈rΛt〉. If S→v T, then �S��x = �T��x.
The following notion of CBV Taylor expansion has been introduced in [14].

Definition 19 ([14], Taylor expansion). Given a λ-term M , we inductively
define a set T (M) of resource terms, called the Taylor expansion of M , as
follows:

T (x) = {[xn] : n ≥ 0} where [xn] = [

n times︷ ︸︸ ︷
x, . . . , x]

T (λx.M) = {[λx.t1, . . . , λx.tn] : n ≥ 0, ∀i. ti ∈ T (M)}
T (MN) = {st : s ∈ T (M), t ∈ T (N)} .

Theorem 20 ([14]). Let M be a λ-term. Then �M��x =
⋃

t∈T (M)�t��x .
Thm. 20 shows the semantical connection between λ-terms and their Taylor

expansion. In the next section (§6) it will be applied in Thm. 39.1, which is in
turn a fundamental part of one of our main results Thm. 24.

Definition 21. For every expression e we define by induction the set strat(e) of
multisets of resource values that occur in e in stratified position, as follows:

strat(x) = ∅; strat([v1, . . . , vn]) = {[v1, . . . , vn]} ∪
⋃n

i=1strat(vi) (n≥0);

strat(st) = strat(s); strat(λx.t) = strat(t) .

We set Strat = {t ∈ rΛt : [ ] /∈ strat(t)}, whose elements are called stratified
resource terms.
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A stratified resource term t does not contain any [ ] in stratified position, i.e.
every occurrence of [ ] in t is a subterm of some subterm of t in argument position.
For instance: [x][ ], [x]([λz.[ ]][ ]) ∈ Strat but [ ], [ ][z], [λz.[ ][x, y]] /∈ Strat.

Stratified resource terms are not closed under v-reduction. For example, the
stratified resource term [λx.[x]][λy.[ ]] v-reduces to the non-stratified [λy.[ ]].

Definition 22 (stratified Taylor expansion). Given a λ-term M , we define
its stratified Taylor expansion Ts(M) = {t ∈ T (M) : if t�v T, then T ⊆ Strat}.

Example. The λ-termM = (λxy.x)Ω is neither w- nor s-normalizable and every
resource term in T (M) v-reduces to 0. Instead the non-s-normalizable (but w-
normal) λ-term N = (λxy.Ω)(zz′) has infinitely many resource terms in T (N)
that do not v-reduce to 0, like t = [λx.[ ]]([z][z′]) for example. However t �∈ Ts(N)
and Ts(N) contains only resource terms that v-reduce to 0, because all resource
terms in T (N) not v-reducing to 0 contain at least one [ ] in stratified position.

The semantical connection between λ-terms and their stratified Taylor expan-
sion is illustrated in one of our main results, Thm. 25. In particular, Thm. 39.2 is
the step in which it is proved that the interpretation of Ts(M) actually witnesses
the strong s-normalization of M . Intuitively, if t ∈ Ts(M) then the v-normal
form of t is a sum

∑n
i=1 ti (n ≥ 0) of stratified resource terms, each of which

does not contain [ ] in stratified position: a subterm [ ] inside a ti does not “hide”
a non-s-normalizable λ-term N such that M = S�N�. So, by Lemma 38.ii one
can prove that if t �= 0 then M is strongly s-normalizing.

6 The Main Theorems

In this section we will present our main results: the semantical and internal
operational characterization of potential valuability (Thm. 24) and solvability
(Thm. 25) for the λσv -calculus. See §1 for a overview of these notions.

Definition 23 (Potential valuability, solvability). Let M be a λ-term:

– M is potentially valuable if there exist variables x1, . . . , xm and λ-values
V, V1, . . . , Vm (with m ≥ 0) such that M{V1/x1, . . . , Vm/xm}�v V ;

– M is solvable if there exist variables x1, . . . , xm and λ-terms N1, . . . , Nn (for
some n,m ≥ 0) such that (λx1 . . . xm.M)N1 · · ·Nn �v I.

We state now the two main theorems. In particular, Thm. 24 says that w-
normalizability (i.e. potential valuability) plays a role analogous to that of head-
normalizability for many call-by-name models, like Scott’s D∞.

Theorem 24. LetM be a λ-term with �x ⊇ fv(M). The following are equivalent:

(i) M is w-normalizable;
(ii) M is potentially valuable;

(iii) �M��x �= ∅;
(iv) M is strongly w-normalizing.

Theorem 25. LetM be a λ-term with �x ⊇ fv(M). The following are equivalent:
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(i) M is s-normalizable;

(ii) M is solvable;

(iii)
⋃

t∈Ts(M)�t��x �= ∅;
(iv) M is strongly s-normalizing.

An immediate corollary of Thm. 24 and 25 is that every solvable (i.e. s-
normalizable) λ-term is also potentially valuable (i.e. w-normalizable).

The proofs of Thm. 24 and 25 are divided into parts, which are detailed sepa-
rately in the next subsections, due to the different techniques used for each one of
them. The splitting of the two proofs follows the same pattern. The implications
(i)⇒ (ii) of both theorems are proved in §6.1 by purely syntactical means. The
implication (ii)⇒ (iii) of Thm. 24 is shown in §6.2 using the resource λσv -calculus
of §4; for this implication of Thm. 25 we use an extension of the resource λσv -
calculus presented in §6.3. The implication (iii)⇒ (iv) of both theorems is proved
in §6.4 using simulations of w- and s-reductions in λσv -calculus by the v-reduction
of the resource λσv -calculus. Finally, (iv)⇒ (i) are trivial in both cases.

6.1 From Weak and Stratified Normalization to Solvability and
Potential Valuability

Our goal here is to prove the implication (i) ⇒ (ii) of Thm. 24 and 25. Our
approach is largely inspired by [6,7,5].

For every n ∈ N, we set on = λxn . . . x0.x0. Notice that o0 = I and on is a
closed value for any n ∈ N. Moreover, onV !→βv on−1 for any n > 0 and V ∈ Λv.

Lemma 26. Let M ∈ wnf with fv(M) ⊆ {x1, . . . , xm} and let j ∈ N. Then
there exists h > 0 such that for all n1, . . . , nm ≥ j + h there exists a λ-term N
such that M{on1/x1, . . . , o

nm/xm}�v λx.N and λx.N is closed.

Lemma 27. Let M ∈ snf with fv(M) ⊆ {x1, . . . , xm} and let j ∈ N. Then there
exist h, k ∈ N such that for all n1, . . . , nm+k ≥ j+h there exists n ≥ j such that
M{on1/x1, . . . , o

nm/xm}onm+1 . . . onm+k �v o
n.

Theorem 28. Let M be a λ-term.

1. [(i)⇒(ii) of Thm. 24] If M is w-normalizable then M is potentially valuable.
2. [(i)⇒(ii) of Thm. 25] If M is s-normalizable then M is solvable.

Proof. For point 1 (resp. 2), hypothesis means that there is a w-(resp. s-)normal
formM ′ such thatM �w M

′ (resp.M �s M
′), moreoverM ′ ∈ wnf (resp.M

′ ∈
snf) by Prop. 12. Let fv(M) = {x1, . . . , xm} and thus fv(M ′) ⊆ {x1, . . . , xm}.
1. By Lemma 26 (taking j = 0) there exists h > 0 such that:
M ′{oh/x1, . . . , oh/xm}�v λx.N , for some closed λ-value λx.N . One has
M{oh/x1, . . . , oh/xm}�v M

′{oh/x1, . . . , oh/xm} by Lemma 5.ii, so that M
is potentially valuable because λx.N is a closed λ-value.

2. By Lemma 27 (taking j = 0), there exist h, k, n ∈ N such that:
(M ′{oh/x1, . . . , oh/xm})oh . . . oh �v o

n (oh is applied k times). We conclude
thatM is solvable because if we set H = (λx1 . . . xm.�·�) oh . . . oh︸ ︷︷ ︸

m+k times

I . . . I︸ ︷︷ ︸
n times

, then

H�M� �v H�M ′�
�v (M

′{oh/x1, . . . , oh/xm})oh . . . ohI . . . I �v o
nI . . . I �v I. ��
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6.2 From Potential Valuability to Non-emptyness

The following theorem proves the implication (ii) ⇒ (iii) of Thm. 24.

Theorem 29. Let M be a λ-term with �x ⊇ fv(M). If M is potentially valuable,
then �M��x �= ∅.
Proof. If M is potentially valuable (see Def. 23) there exist variables x1, . . . , xm
and λ-values V, V1, . . . , Vm (for some m ≥ 0) s.t. M{V1/x1, . . . , Vm/xm}�v V .
Since variables are λ-values, we can suppose without loss of generality that
�x = (x1, . . . , xm) ⊇ fv(M). Let �y = fv(V ) ∪

⋃m
i=1 fv(Vi). One can prove by

induction on M that

�M{V1/x1, . . . , Vm/xm}��y =
{
(
⊎m

i=1 �ai, c) : ∃ b1, . . . , bm ∈Mf(U) :

((b1, . . . , bm), c) ∈ �M��x, (�ai, bi) ∈ �Vi��y for all 1 ≤ i ≤ m
}
.

Since �V ��y �= ∅ (this can be proved by simple inspection), by Thm. 16 we
obtain that �M{V1/x1, . . . , Vm/xm}��y �= ∅ also holds, so that �M��x �= ∅. ��

6.3 From Solvability to Non-emptyness of Stratified Taylor
Expansion

The implication (ii) ⇒ (iii) of Thm. 25 seems much more difficult to prove. To
accomplish this task we introduce the resource λσv -calculus with tests, a CBV
version of the resource calculus with tests defined in [15]. In this syntax all
elements of the relational model are definable (see Def. 34).

The language extends that of resource λσv -calculus (see §4, p. 108) as follows:

(rΛv) u, v ::= x | λx.t resource values
(rΛt) s, t ::= t ∗ p | st | [v1, . . . , vk] (k ≥ 0) resource terms
(rΛτ ) p, q ::= τ [t1, . . . , tk] (k ≥ 0) tests

Note the overloaded use of rΛv and rΛt, which now (and until Lemma 36) indicate
larger sets than those introduced in §4. We will use this extension to prove
Lemma 36 (whose statement concerns only resource terms without tests).

Tests are – formally – multisets of resource terms, the “τ” being a tag for
distinguishing them from bags of values. Intuitively, they are constructions which
can produce either success, represented by τ [ ], or failure, represented by 0.

Notation. We set ε = τ [ ] and τ [t1, . . . , tk] ‖ τ [tk+1, . . . , tn] = τ [t1, . . . , tn]
(k≤n).

The test p ‖ q represents the (must-)parallel composition of p and q (i.e., p ‖ q
succeeds iff both p and q succeed). The composition is parallel in the sense that
the order of evaluation is inessential (remember that they are multisets). The
binary operator ∗ allows to build a resource term out of a resource term and a
test: intuitively, the resource term t ∗ p may be thought of as something that
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outputs the result of t only if p succeeds. Dually, the “cork construction” τ [t]
may be thought of as a check that tests whether or not t v-reduces to [ ].

Resource, test-resource and test-test contexts (with exactly one hole), denoted
resp. by R, Q and P, are defined by mutual induction via the grammar (k ≥ 0):

R ::= �·� | Rt | tR | t ∗ Q | [λx.R, v1, . . . , vk] (resource contexts);

Q ::= τ [R, t1, . . . , tk] (test-resource c.); P ::= �·�‖τ [t1, . . . , tk] (test-test c.).
Let t, t1, . . . , tn ∈ rΛt (resp. p, p1, . . . , pn ∈ rΛτ ). We use Q�t� (resp. P�p�) for
the test obtained by the capture-allowing substitution of t (resp. p) for the hole
�·� in Q (resp. P); similarly for R�t� (see p. 109). As usual, R�∑i ti� =

∑
i R�ti�,

Q�∑i ti� =
∑

i Q�ti� and P�∑i pi� =
∑

i P�pi�. E.g., t ∗ 0 = t ∗ Q�0� = R�0� = 0.

Definition 30. The operational semantics of the resource λσv -calculus with tests
extends the set of rules listed in Def. 13 with the following ones:

t(s ∗ p) !→τ1 ts ∗ p τ [t ∗ p] !→τ4 τ [t] ‖ p
(t ∗ p)s !→τ2 ts ∗ p τ [[v1, . . . , vn]] !→τ5

{
ε if n = 0

0 otherwise(t ∗ p) ∗ q !→τ3 t ∗ (p ‖ q)

We set !→vτ = !→v ∪ (
⋃5

i=1 !→τi) ⊆ (rΛt × 2〈rΛt〉) ∪ (rΛτ × 2〈rΛτ 〉). Then,
according to the convention of §2, →vτ ⊆ rΛτ ×2〈rΛτ 〉 is the reduction obtained
by test-contextual closure4 of !→vτ . The resource λσv -calculus with tests consists
of the language rΛτ and the reduction →vτ .

As a technical simplification, we extend→vτ to a binary relation on 2〈rΛτ 〉 by
linearity, i.e., (

∑n
i=1 qi)+P→vτ (

∑n
i=1 Qi)+P iff qi →vτ Qi for every i = 1, . . . , n

(n ≥ 1). With this extension we can concisely state the following theorem:

Theorem 31. Reduction →vτ on 2〈rΛτ 〉 is strongly normalizing and confluent.

Definition 32. For every test p and repetition-free list �x ⊇ fv(p), we define the
interpretation �p��x ⊆ Mf(U)n × 1 of p, where n is the length of �x, by mutual
induction with Def. 17 as follows:

�ε��x = {([ ]n, 1)} �p‖q��x = {(�a ��b, 1) : (�a, 1)∈�p��x, (�b, 1)∈�q��x}
�τ [t]��x = {(�a, 1) : (�a, [ ])∈�t��x} �t ∗ p��x = {(�a ��b, c) : (�a, c)∈�t��x, (�b, 1)∈�p��x}.
Finally, sums of tests are interpreted by setting �∑n

i=1 pi��x =
⋃n

i=1�pi��x.
Theorem 33 (soundness). Let P,Q ∈ 2〈rΛτ 〉. If P→vτ Q, then �P��x = �Q��x.

A key tool to connect the semantics with the vτ -reduction is the following
transformation of elements ofMf(U) into resource terms and test contexts. The
role of this transformation is made clear in Lemma 35, used to prove Lemma 36.

4 This means that, for every p ∈ rΛτ and p′ ∈ 2〈rΛτ 〉, if p →vτ p
′ then either there

exist a test-test context P, q ∈ rΛτ and q′ ∈ 2〈rΛτ 〉 such that p = P�q�, p′ = P�q′�
and q �→τi q

′ with i ∈ {4, 5}; or there exist a test-resource context Q, t ∈ rΛt and
t′ ∈ 2〈rΛt〉 such that p = Q�t�, p′ = Q�t′� and t �→vτ ′ t′ with �→vτ ′ = �→v∪ (

⋃3
i=1 �→τi).
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Definition 34. Let c = [(a1, b1), . . . , (an, bn)] ∈Mf(U) (n ≥ 0). We define:

– the closed resource term c− = [λy1.b1
−∗a1+�[ym1

1 ]�, . . . , λyn.bn−∗an+�[ymn
n ]�],

where mi is the cardinality of the multiset ai (for i = 1, . . . , n);
– the test-resource context c+ = τ [[λx.[ ]∗ ‖ni=1 τ [[λy.[ ] ∗ bi+�[yki ]�]([x]ai−)]]�·�],

where ki is the cardinality if the multiset bi (for i = 1, . . . , n).

Notation. For any a ∈ Mf(U), #a indicates its cardinality. For �a =
(a1, . . . , an) ∈ Mf(U)n and t ∈ rΛt, we write t〈�a−/�x〉 as a shorthand for
t〈a1−/x1〉 · · · 〈an−/xn〉.

Lemma 35. Let (�a, b) ∈Mf(U)n×Mf(U), k = #b and t ∈ rΛt with �x ⊇ fv(t).
Then (�a, b) ∈ �t��x iff τ [[λy.[ ] ∗ b+�[yk]�](t〈�a−/�x〉)] �vτ ε.

Lemma 36. Let s and t be v-normal resource terms without tests (i.e., generated
by the grammar on §4, p. 108). If s ∈ Strat and t �∈ Strat, then �s��x ∩ �t��x = ∅.

Proof. Let (�a, b) ∈Mf(U)n×Mf(U) and Q�·� = τ [[λy.[ ] ∗ b+�[yk]�](�·�〈�a−/�x〉)],
with k = #b. One can prove by induction on the v-normal resource terms (with-
out tests) that: either Q�t� �vτ ε and Q�s� �vτ 0; or Q�s� �vτ ε and Q�t� �vτ 0;
or Q�s� �vτ 0 and Q�t� �vτ 0. Hence, by Lemma 35, (�a, b) �∈ �s��x ∩ �t��x. ��

Hereafter, when we will mention resource terms, we will refer to the ones
without test (i.e., generated by the grammar on §4, p. 108).

The following theorem proves the implication (ii) ⇒ (iii) of Thm. 25.

Theorem 37. Let M be a λ-term and let �x ⊇ fv(M). If M is solvable, then⋃
t∈Ts(M)�t��x �= ∅.

Proof. If M is solvable then there exists a context C = (λx1 . . . xm.�·�)N1 · · ·Nn

(for some n,m ≥ 0) such that C�M� �v I. By Thm. 16 and 20,
⋃

t∈T (C�M�)�t��x =

�C�M���x = �I��x =
⋃

t∈T (I)�t��x. Using Lemma 36 we infer that
⋃

t∈Ts(C�M�)�t��x =⋃
t∈Ts(I)

�t��x. Therefore
⋃

t∈Ts(C�M�)�t��x �= ∅ because it is easy to check that⋃
t∈Ts(I)

�t��x �= ∅. By Thm. 18 and 14,
⋃

t∈Ts(C�M�)�t��x �= ∅ implies that there

is a resource term in Ts(C�M�) that v-reduces to a non-zero v-normal form. Now
all resource terms in Ts(C�M�) are of the shape R�s� for some s ∈ Ts(M) (be-
cause the hole of C is in stratified position), so that if all resource terms in Ts(M)
v-reduced to 0, then all resource terms in Ts(C�M�) would v-reduce to 0. Thus,
there is t ∈ Ts(M) that v-reduces to a v-normal form T �= 0. It is easy to prove
that �t′��x �= ∅ for every v-normal form t′, hence �t��x = �T��x �= ∅ by Thm. 18. ��

6.4 From Non-emptyness to Strong Normalization

Our goal here is to prove the implication (iii) ⇒ (iv) of Thm. 24 and 25.
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Lemma 38. Let M,M ′ be λ-terms.

(i) If M →w M
′ and t ∈ T (M), then there exists T ⊆ T (M ′) such that t→v T.

(ii) If M →s M
′ and s ∈ Ts(M), then there exists S ⊆ Ts(M ′) such that s→+

v S.

Lemma 38.i is false if we replace the hypothesis M →w M
′ with M →s M

′.
For instance, takeM = λx.Ω: then [ ] ∈ T (M) andM →s M , but [ ] is v-normal.

Theorem 39. Let M be a λ-term and let �x ⊇ fv(M).

1. [(iii)⇒(iv) of Thm. 24] If �M��x �= ∅ then M is strongly w-normalizing.
2. [(iii)⇒(iv) of Thm. 25] If

⋃
t∈Ts(M)�t��x �= ∅, then M is strongly s-

normalizing.

Proof. Let (�a, b) ∈ �M��x (resp. (�a, b) ∈
⋃

t∈Ts(M)�t��x). By Thm. 20 (resp. Then)

there exists t ∈ T (M) (resp. t ∈ Ts(M)) such that (�a, b) ∈ �t��x. If M →w

M ′ (resp. M →s M
′), then by Lemma 38.i (resp. Lemma 38.ii) there exists

T ⊆ T (M ′) (resp. T ⊆ Ts(M ′)) such that t →+
v T. According to Thm. 18,

(�a, b) ∈ �T��x, hence T �= ∅ and so there exists t′ ∈ T such that (�a, b) ∈ �t′��x.
Therefore, if there was an infinite reduction M →w M1 →w M2 →w . . . (resp.
M →s M1 →s M2 →s . . . ) then there would also be a an infinite reduction
t→+

v T1 →+
v T2 →+

v . . . , which is impossible by Thm. 14. ��

Conclusions and Future Work

Our approach, that exploits the validity of the Taylor formula for a resource
CBV λ-calculus, makes use of purely combinatorial proofs, rather than more
standard approaches based on reducibility or some specific machines. The inter-
esting feature of this approach is that it can be used for many different calculi
always using a similar relational model and a suitable resource calculus.

We think that using the ordinary syntax of λ-calculus with our reduction will
allow to develop a reasonable theory of CBV Böhm trees, never defined before
(Paolini’s separability result in [20] for λv-calculus does not use Böhm trees),
together with connections between equivalence of Böhm trees and observational
equivalence. A future challenge is that of finding other fully abstract denotational
models, in view of Paolini and Ronchi Della Rocca’s proof of absence of fully
abstract filter models (see [7, Thm. 12.1.25]) built from legal type systems.

Another direction is relating two equivalence relations on λ-terms, the one
generated by our σ-rules and the one induced by Girard’s CBV “boring” trans-
lation (·)v of λ-calculus into IMELL proof-nets (along the lines of [17,18,21]).
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Abstract. Classical network-formation games are played on a directed graph.
Players have reachability objectives, and each player has to select a path satisfy-
ing his objective. Edges are associated with costs, and when several players use
the same edge, they evenly share its cost. The theoretical and practical aspects of
network-formation games have been extensively studied and are well understood.
We introduce and study network-formation games with regular objectives. In our
setting, the edges are labeled by alphabet letters and the objective of each player
is a regular language over the alphabet of labels, given by means of an automaton
or a temporal-logic formula. Thus, beyond reachability properties, a player may
restrict attention to paths that satisfy certain properties, referring, for example,
to the providers of the traversed edges, the actions associated with them, their
quality of service, security, etc.

Unlike the case of network-formation games with reachability objectives, here
the paths selected by the players need not be simple, thus a player may traverse
some transitions several times. Edge costs are shared by the players with the share
being proportional to the number of times the transition is traversed. We study
the existence of a pure Nash equilibrium (NE), convergence of best-response-
dynamics, the complexity of finding the social optimum, and the inefficiency of
a NE compared to a social-optimum solution. We examine several classes of net-
works (for example, networks with uniform edge costs, or alphabet of size 1) and
several classes of regular objectives. We show that many properties of classical
network-formation games are no longer valid in our game. In particular, a pure
NE might not exist and the Price of Stability equals the number of players (as
opposed to logarithmic in the number of players in the classic setting, where a
pure NE always exists). In light of these results, we also present special cases for
which the resulting game is more stable.

1 Introduction

Network design and formation is a fundamental well-studied problem that involves
many interesting combinatorial optimization problems. In practice, network design is
often conducted by multiple strategic users whose individual costs are affected by the
decisions made by others. Early works on network design focus on analyzing the effi-
ciency and fairness properties associated with different sharing rules (e.g., [23,30]). Fol-
lowing the emergence of the Internet, there has been an explosion of studies employing
game-theoretic analysis to explore Internet applications, such as routing in computer
networks and network formation [17,1,12,2]. In network-formation games (for a sur-
vey, see [35]), the network is modeled by a weighted graph. The weight of an edge

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 119–133, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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indicates the cost of activating the transition it models, which is independent of the
number of times the edge is used. Players have reachability objectives, each given by
sets of possible source and target nodes. Players share the cost of edges used in order
to fulfill their objectives. Since the costs are positive, the runs traversed by the players
are simple. Under the common Shapley cost-sharing mechanism, the cost of an edge is
shared evenly by the players that use it.

The players are selfish agents who attempt to minimize their own costs, rather than
to optimize some global objective. In network-design settings, this would mean that the
players selfishly select a path instead of being assigned one by a central authority. The
focus in game theory is on the stable outcomes of a given setting, or the equilibrium
points. A Nash equilibrium (NE) is a profile of the players’ strategies such that no
player can decrease his cost by an unilateral deviation from his current strategy, that is,
assuming that the strategies of the other players do not change.1

Reachability objectives enable the players to specify possible sources and targets.
Often, however, it is desirable to refer also to other properties of the selected paths.
For example, in a communication setting, edges may belong to different providers,
and a user may like to specify requirements like “all edges are operated by the same
provider” or “no edge operated by AT&T is followed by an edge operated by Verizon”.
Edges may also have different quality or security levels (e.g., “noisy channel”, “high-
bandwidth channel”, or “encrypted channel”), and again, users may like to specify their
preferences with respect to these properties. In planning or in production systems, nodes
of the network correspond to configurations, and edges correspond to the application of
actions. The objectives of the players are sequences of actions that fulfill a certain plan,
which is often more involved than just reachability [13]; for example “once the arm is
up, do not put it down until the block is placed”.

The challenge of reasoning about behaviors has been extensively studied in the con-
text of formal verification. While early research concerned the input-output relations of
terminating programs, current research focuses on on-going behaviors of reactive sys-
tems [22]. The interaction between the components of a reactive system correspond to
a multi-agent game, and indeed in recent years we see an exciting transfer of concepts
and ideas between the areas of game theory and formal verification: logics for speci-
fying multi-agent systems [3,9], studies of equilibria in games that correspond to the
synthesis problem [8,7,16], an extension of mechanism design to on-going behaviors
[25], studies of non-zero-sum games in formal methods [10,6], and more.

In this paper we extend network-formation games to a setting in which the players
can specify regular objectives. This involves two changes of the underlying setting:
First, the edges in the network are labeled by letters from a designated alphabet. Second,
the objective of each player is specified by a language over this alphabet. Each player
should select a path labeled by a word in his objective language. Thus, if we view
the network as a nondeterministic weighted finite automaton (WFA) A, then the set
of strategies for a player with objective L is the set of accepting runs of A on some
word in L. Accordingly, we refer to our extension as automaton-formation games. As
in classical network-formation games, players share the cost of edges they use. Unlike

1 Throughout this paper, we focus on pure strategies and pure deviations, as is the case for the
vast literature on cost-sharing games.
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the classical game, the runs selected by the players need not be simple, thus a player
may traverse some edges several times. Edge costs are shared by the players, with the
share being proportional to the number of times the edge is traversed. This latter issue
is the main technical difference between automaton-formation and network-formation
games, and as we shall see, it is very significant.

Many variants of cost-sharing games and congestion games have been studied. A
generalization of the network-formation game of [2] in which players are weighted
and a player’s share in an edge cost is proportional to its weight is considered in [11],
where it is shown that the weighted game does not necessarily have a pure NE. In
a different type of congestion games, players’ payments depend on the resource they
choose to use, the set of players using this resource, or both [29,26,27,19]. In some of
these variants a NE is guaranteed to exist while in others it is not. All these variants are
different from automaton-formation games, where a player needs to select a multiset of
resources (namely, the edges he is going to traverse) rather than a single one.

We study the theoretical and practical aspects of automaton-formation games. In ad-
dition to the general game, we consider classes of instances that have to do with the
network, the specifications, or to their combination. Recall that the network can be
viewed as a WFA A. We consider the following classes of WFAs: (1) all-accepting, in
which all the states of A are accepting, thus its language is prefix closed (2) uniform
costs, in which all edges have the same cost, and (3) single letter, in which A is over
a single-letter alphabet. We consider the following classes of specifications: (1) single
word, where the language of each player is a single word, (2) symmetric, where all play-
ers have the same objective. We also consider classes of instances that are intersections
of the above classes.

Each of the restricted classes we consider corresponds to a real-life variant of the
general setting. Let us elaborate below on single-letter instances. The language of an
automaton over a single letter {a} induces a subset of IN, namely the numbers k ∈ IN
such that the automaton accepts ak. Accordingly, single-letter instances correspond to
settings in which a player specifies possible lengths of paths. Several communication
protocols are based on the fact that a message must pass a pre-defined length before
reaching its destination. This includes onion routing, where the message is encrypted
in layers [33], or proof-of-work protocols that are used to deter denial of service attacks
and other service abuses such as spam (e.g., [15]).

We provide a complete picture of the following questions for various classes of the
game (for formal definitions, see Section 2): (i) Existence of a pure Nash equilibrium.
That is, whether each instance of the game has a profile of pure strategies that constitutes
a NE. As we show, unlike the case of classical network design games, a pure NE might
not exist in general automaton-formation games and even in very restricted instances
of it. (ii) The complexity of finding the social optimum (SO). The SO is a profile that
minimizes the total cost of the edges used by all players; thus the one obtained when
the players obey some centralized authority. We show that for some restricted instances
finding the SO can be done efficiently, while for other restricted instances, the com-
plexity agrees with the NP-completeness of classical network-formation games. (iii)
An analysis of equilibrium inefficiency. It is well known that decentralized decision-
making may lead to solutions that are sub-optimal from the point of view of society
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as a whole. We quantify the inefficiency incurred due to selfish behavior according
to the price of anarchy (PoA) [24,31] and price of stability (PoS) [2] measures. The
PoA is the worst-case inefficiency of a Nash equilibrium (that is, the ratio between the
worst NE and the SO). The PoS is the best-case inefficiency of a Nash equilibrium
(that is, the ratio between the best NE and the SO). We show that while the PoA in
automaton-formation games agrees with the one in classical network-formation games
and is equal to the number of players, the PoS also equals the number of players, again
already in very restricted instances. This is in contrast with classical network-formation
games, where the PoS tends to log the number of players. Thus, the fact that players
may choose to use edges several times significantly increases the challenge of finding a
stable solution as well as the inefficiency incurred due to selfish behavior. We find this
as the most technically challenging result of this work. We do manage to find structural
restrictions on the network with which the social optimum is a NE.

The technical challenge of our setting is demonstrated in the seemingly easy instance
in which all players have the same objective. Such symmetric instances are known to be
the simplest to handle in all cost-sharing and congestion games studied so far. Specifi-
cally, in network-formation games, the social optimum in symmetric instances is also a
NE and the PoS is 1. Moreover, in some games [18], computing a NE is PLS-complete
in general, but solvable in polynomial time for symmetric instances. Indeed, once all
players have the same objective, it is not conceivable that a player would want to deviate
from the social-optimum solution, where each of the k players pays 1

k of the cost of the
optimal solution. We show that, surprisingly, symmetric instances in AF-games are not
simple at all. Specifically, the social optimum might not be a NE, and the PoS is at least
k

k−1 . In particular, for symmetric two-player AF games, we have that PoS = PoA = 2.
We also show that the PoA equals the number of players already for very restricted
instances.

Due to lack of space, some proofs are omitted and can be found in the full version,
in the authors’ homepages.

2 Preliminaries

2.1 Automaton-Formation Games

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A = 〈Σ,Q,Δ, q0, F, c〉, where Σ is an alphabet, Q is a set of states, Δ ⊆ Q×Σ ×Q
is a transition relation, q0 ∈ Q is an initial state, F ⊆ Q is a set of accepting states, and
c : Δ → IR is a function that maps each transition to the cost of its formation [28]. A
run of A on a word w = w1, . . . , wn ∈ Σ∗ is a sequence of states π = π0, π1, . . . , πn

such that π0 = q0 and for every 0 ≤ i < n we have Δ(πi, wi+1, π
i+1). The run π is

accepting iff πn ∈ F . The length of π is n, whereas its size, denoted |π|, is the number
of different transitions in it. Note that |π| ≤ n.

An automaton-formation game (AF game, for short) between k selfish players is a
pair 〈A, O〉, where A is a WFA over some alphabet Σ and O is a k-tuple of regular
languages overΣ. Thus, the objective of Player i is a regular languageLi, and he needs
to choose a word wi ∈ Li and an accepting run of A on wi in a way that minimizes
his payments. The cost of each transition is shared by the players that use it in their
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selected runs, where the share of a player in the cost of a transition e is proportional to
the number of times e is used by the player. Formally, The set of strategies for Player i
is Si = {π : π is an accepting run of A on some word in Li}. We assume that Si is not
empty. We refer to the set S = S1 × . . .× Sk as the set of profiles of the game.

Consider a profile P = 〈π1, π2, . . . , πk〉. We refer to πi as a sequence of transitions.
Let πi = e1i , . . . , e

�i
i , and let ηP : Δ→ IN be a function that maps each transition in Δ

to the number of times it is traversed by all the strategies in P , taking into an account
several traversals in a single strategy. Denote by ηi(e) the number of times e is traversed
in πi, that is, ηi(e) = |{1 ≤ j ≤ 	i : e

j
i = e}|. Then, ηP (e) =

∑
i=1...k ηi(e). The cost

of player i in the profile P is

costi(P ) =
∑
e∈πi

ηi(e)

ηP (e)
c(e). (1)

For example, consider the WFA A depicted in Fig. 1. The label e1 : a, 1 on the
transition from q0 to q1 indicates that this transition, which we refer to as e1, traverses
the letter a and its cost is 1. We consider a game between two players. Player 1’s ob-
jective is the language is L1 = {abi : i ≥ 2} and Player 2’s language is {ab, ba}.
Thus, S1 = {{e1, e2, e2}, {e1, e2, e2, e2}, . . .} and S2 = {{e3, e4}, {e1, e2}}. Con-
sider the profile P = 〈{e1, e2, e2}, {e3, e4}〉, the strategies in P are disjoint, and
we have cost1(P ) = 2 + 2 = 4, cost2(P ) = 1 + 3 = 4. For the profile P ′ =
〈{e1, e2, e2}, {e1, e2}〉, it holds that η1(e1) = η2(e1) and η1(e2) = 2 · η2(e2). There-
fore, cost1(P ′) = 1

2 + 2 = 2 1
2 and cost2(P ′) = 1

2 + 1 = 1 1
2 .

q1q0q2q3
e1 : a, 1

e2 : b, 3
e3 : a, 2e4 : b, 2

Fig. 1. An example of a WFA

We consider the following instances of AF games. Let G = 〈A, O〉. We start with
instances obtained by imposing restrictions on the WFA A. In one-letter instances, A
is over a singleton alphabet, i.e., |Σ| = 1. When depicting such WFAs, we omit the
letters on the transitions. In all-accepting instances, all the states in A are accepting;
i.e., F = Q. In uniform-costs instances, all the transitions in the WFA have the same
cost, which we normalize to 1. Formally, for every e ∈ Δ, we have c(e) = 1. We
continue to restrictions on the objectives in O. In single-word instances, each of the
languages in O consists of a single word. In symmetric instances, the languages in O
coicide, thus the players all have the same objective. We also consider combinations on
the restrictions. In particular, we say that 〈A, O〉 is weak if it is one-letter, all states are
accepting, costs are uniform, and objectives are single words. Weak instances are simple
indeed – each player only specifies a length of a path he should patrol, ending anywhere
in the WFA, where the cost of all transitions is the same. As we shall see, many of our
hardness results and lower bounds hold already for the class of weak instances.
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2.2 Nash Equilibrium, Social Optimum, and Equilibrium Inefficiency

For a profile P , a strategy πi for Player i, and a strategy π, let P [πi ← π] denote the
profile obtained from P by replacing the strategy for Player i by π. A profile P ∈ S
is a pure Nash equilibrium (NE) if no player i can benefit from unilaterally deviating
from his run in P to another run; i.e., for every player i and every run π ∈ Si it holds
that cost i(P [πi ← π]) ≥ cost i(P ). In our example, the profile P is not a NE, since
Player 2 can reduce his payments by deviating to profile P ′.

The (social) cost of a profile P , denoted cost(P ), is the sum of costs of the players
in P . Thus, cost(P ) =

∑
1≤i≤k costi(P ). Equivalently, if we view P as a set of tran-

sitions, with e ∈ P iff there is π ∈ P for which e ∈ π, then cost(P ) =
∑

e∈P c(e).
We denote by OPT the cost of an optimal solution; i.e., OPT = minP∈S cost(P ).
It is well known that decentralized decision-making may lead to sub-optimal solutions
from the point of view of society as a whole. We quantify the inefficiency incurred
due to self-interested behavior according to the price of anarchy (PoA) [24,31] and
price of stability (PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash
equilibrium, while the PoS measures the best-case inefficiency of a Nash equilibrium.
Formally,

Definition 1. Let G be a family of games, and let G ∈ G be a game in G. Let Υ (G) be
the set of Nash equilibria of the game G. Assume that Υ (G) �= ∅.

– The price of anarchy of G is the ratio between the maximal cost of a NE and the
social optimum of G. That is, PoA(G) = maxP∈Υ (G) cost(P )/OPT (G). The
price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability ofG is the ratio between the minimal cost of a NE and the so-
cial optimum of G. That is, PoS(G) = minP∈Υ (G) cost(P )/OPT (G). The price
of stability of the family of games G is PoS(G) = supG∈GPoS(G).

Uniform Sharing Rule: A different cost-sharing rule that could be adopted for
automaton-formation games is the uniform sharing rule, according to which the cost
of a transition e is equally shared by the players that traverse e, independent of the
number of times e is traversed by each player. Formally, let κP (e) be the number of
runs that use the transition e at least once in a profile P . Then, the cost of including a
transition e at least once in a run is c(e)/κP (e). This sharing rule induces a potential
game, where the potential function is identical to the one used in the analysis of the clas-
sical network design game [2]. Specifically, let Φ(P ) =

∑
e∈E c(e) ·H(κP (e)), where

H0 = 0, and Hk = 1 + 1/2 + . . . + 1/k. Then, Φ(P ) is a potential function whose
value reduces with every improving step of a player, thus a pure NE exists and BRD is
guaranteed to converge2. The similarity with classical network-formation games makes
the study of this setting straightforward. Thus, throughout this paper we only consider
the proportional sharing rule as defined in (1) above.

2 Best-response-dynamics (BRD) is a local-search method where in each step some player is
chosen and plays his best-response strategy, given that the strategies of the other players do
not change.
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3 Properties of Automaton-Formation Games

In this section we study the theoretical properties of AF games: existence of NE and
equilibrium inefficiency. We show that AF games need not have a pure Nash equilib-
rium. This holds already in the very restricted class of weak instances, and is in contrast
with network-formation games. There, BRD converges and a pure NE always exists. We
then analyze the PoS in AF games and show that there too, the situation is significantly
less stable than in network-formation games.

Theorem 1. Automaton-formation games need not have a pure NE. This holds already
for the class of weak instances.

Proof. Consider the WFAA depicted in Fig. 2 and consider a game with k = 2 players.
The language of each player consists of a single word. Recall that in one-letter instances
we care only about the lengths of the objective words. Let these be 	1 and 	2, with
	1 , 	2 , 0 that are multiples of 12. For example, 	1 = 30000, 	2 = 300. Let C3

and C4 denote the cycles of length 3 and 4 in A, respectively. Let D3 denote the path
of length 3 from q0 to q1. Every run of A consists of some repetitions of these cycles
possibly with one pass on D3.

q0 q1

Fig. 2. A weak instance of AF games with no NE

We claim that no pure NE exists in this instance. Since we consider long runs, the
fact that the last cycle might be partial is ignored in the calculations below. We first
show that the only candidate runs for Player 1 that might be part of a NE profile are

π1 = (C4)
�1
4 and π′1 = D3 · (C3)

�1
3 −1. If Player 1 uses both C3 and C4 multiple times,

then, given that 	1 , 	2, he must almost fully pay for at least one of these cycles, thus,
deviating to the run that repeats this fully-paid cycle is beneficial.

When Player 1 plays π1, Player 2’s best response is π2 = (C4)
�2
4 . In the profile

〈π1, π2〉, Player 1 pays almost all the cost of C4, so the players’ costs are (4 − ε, ε).
This is not a NE. Indeed, since 	2 , 0, then by deviating to π′1, the share of Player 1
in D3 reduces to almost 0, and the players’ costs in 〈π′1, π2〉, are (3 + ε, 4 − ε). This

profile is not a NE as Player 2’s best response is π′2 = D3 · (C3)
�2
3 −1. Indeed, in the

profile 〈π′1, π′2〉, the players’ costs are (4.5 − ε, 1.5 + ε) as they share the cost of D3

and Player 1 pays almost all the cost of C3. This is not a NE either, as Player 1 would
deviate to the profile 〈π1, π′2〉, in which the players’ costs are (4−ε, 3+ε). The latter is
still not a NE, as Player 2 would head back to 〈π1, π2〉. We conclude that no NE exists
in this game. ��

The fact that a pure NE may not exist is a significant difference between standard
cost-sharing games and AF games. The bad news do not end here and extend to equi-
librium inefficiency. We first note that the cost of any NE is at most k times the social
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optimum (as otherwise, some player pays more than the cost of the SO and can benefit
from migrating to his strategy in the SO). Thus, it holds that PoS ≤ PoA ≤ k. The
following theorem shows that this is tight already for highly restricted instances.

Theorem 2. The PoS in AF games equals the number of players. This holds already for
the class of weak instances.

Proof. We show that for every k, δ > 0 there exists a simple game with k players
for which the PoS is more than k − δ. Given k and δ, let r be an integer such that
r > max{k, k−1

δ −1}. Consider the WFAA depicted in Fig. 3. LetL = 〈	1, 	2, . . . , 	k〉
for 	2 = . . . = 	k and 	1 , 	2 , r denote the lengths of the objective words. Thus,
Player 1 has an ‘extra-long word’ and the other k − 1 players have words of the same,
long, length. Let Cr and Cr+1 denote, respectively, the cycles of length r and r + 1 to
the right of q0. LetDr denote the path of length r from q0 to q1, and let Dkr denote the
‘lasso’ consisting of the kr-path and the single-edge loop to the left of q0.

q0 q1

. . .
(r + 1)-edge cycle

. . .
r-edge cycle. . .

k · r edges

Fig. 3. A weak instance of AF games for which PoS = k

The social optimum of this game is to buy Cr+1. Its cost is r + 1. However, as we
show, the profile P in which all players use Dkr is the only NE in this game. We first
show that P is a NE. In this profile, Player 1 pays r + 1− ε and each other player pays
r + ε/(k − 1). No player will deviate to a run that includes edges from the right side
of A. Next, we show that P is the only NE of this game: Every run on the right side
of A consists of some repetitions of Cr+1 and Cr, possibly with one traversal of Dr.
Since we consider long runs, the fact that the last cycle might be partial is ignored in
the calculations below.

In the social optimum profile, Player 1 pays r + 1− ε and each of the other players
pays ε/(k − 1). The social optimum is not a NE as Player 1 would deviate to Dr · C∗

r

and will reduce his cost to r+ε′. The other players, in turn, will also deviate toDr ·C∗
r .

In the profile in which they are all selecting a run of the form Dr · C∗
r , Player 1 pays

r + r/k − ε > r + 1 and prefers to return to C∗
r+1. The other players will join him

sequentially, until the non-stable social optimum is reached. Thus, no NE that uses the
right part of A exists. Finally, it is easy to see that no run that involves edges from both
the left and right sides ofA or includes both Cr+1 and Cr can be part of a NE.

The cost of the NE profile is kr+1 and the PoS is therefore kr+1
r+1 = k− k−1

r+1 > k−δ.
��

4 Computational Complexity Issues in AF Games

In this section we study the computational complexity of two problems: finding the
cost of the social optimum and finding the best-response of a player. Recall that the
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social optimum (SO) is a profile that minimizes the total cost the players pay. It is well-
known that finding the social optimum in a network-formation game is NP-complete.
We show that this hardness is carried over to simple instances of AF games. On the
positive side, we identify non-trivial classes of instances, for which it is possible to
compute the SO efficiently. The other issue we consider is the complexity of finding the
best strategy of a single player, given the current profile, namely, the best-response of a
player. In network-formation games, computing the best-response reduces to a shortest-
path problem, which can be solved efficiently. We show that in AF games, the problem
is NP-complete.

The proofs of the following theorems can be found in the full version. The reductions
we use are from the set-cover problem, where choice of sets are related to choice of
transitions.

Theorem 3. Finding the value of the social optimum in AF games is NP-complete.
Moreover, finding the social optimum is NP-complete already in single-worded in-
stances that are also uniform-cost and are either single-lettered or all-accepting.

The hardness results in Theorem 3 for single-word specification use one of two prop-
erties: either there is more than one letter, or not all states are accepting. We show that
finding the SO in instances that have both properties can be done efficiently, even for
specifications with arbitrary number of words.

For a language Li over Σ = {a}, let short(i) = minj{aj ∈ Li} denote the length
of the shortest word in Li. For a set O of languages over Σ = {a}, let 	max(O) =
maxi short(i) denote the length of the longest shortest word inO. Clearly, any solution,
in particular the social optimum, must include a run of length 	max(O). Thus the cost of
the social optimum is at least the cost of the cheapest run of length 	max(O). Moreover,
since the WFA is single-letter and all-accepting, the other players can choose runs that
are prefixes of this cheapest run, and no additional transitions should be acquired. We
show that finding the cheapest such run can be done efficiently.

Theorem 4. The cost of the social optimum in a single-letter all-accepting instance
〈A, O〉 is the cost of the cheapest run of length 	max(O). Moreover, this cost can be
found in polynomial time.

We turn to prove the hardness of finding the best-response of a player. Our proof is
valid already for a single player that needs to select a strategy on a WFA that is not used
by other players (one-player game).

Theorem 5. Finding the best-response of a player in AF games is NP-complete.

5 Tractable Instances of AF Games

In the example in Theorem 1, Player 1 deviates from a run on the shortest (and cheapest)
possible path to a run that uses a longer path. By doing so, most of the cost of the
original path, which is a prefix of the new path and accounts to most of its cost, goes
to Player 2. We consider semi-weak games in which the WFA is uniform-cost, all-
accepting, and single-letter, but the objectives need not be a single word. We identify a
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property of such games that prevents this type of deviation and which guarantees that
the social optimum is a NE. Thus, we identify a family of AF games in which a NE
exists, finding the SO is easy, and the PoS is 1.

Definition 2. Consider a semi-weak game 〈A, O〉. A lasso is a path u · v, where u is a
simple path that starts from the initial state and v is a simple cycle. A lasso ν is minimal
in A if A does not have shorter lassos. Note that for minimal lassos u · v, we have that
u ∩ v = ∅. We say that A is resistant if it has no cycles or there is a minimal lasso
ν = u · v such that for every other lasso ν′ we have |u \ ν′|+ |v| ≤ |ν′ \ ν|.

Consider a resistant weak game 〈A, O〉. In order to prove that the social optimum is
a NE, we proceed as follows. Let ν be the lasso that is the witness for the resistance
of A. We show that the profile S∗ in which all players choose runs that use only the
lasso ν or a prefix of it, is a NE. The proof is technical and we go over all the possible
types of deviations for a player and use the weak properties of the network along with
its resistance. By Theorem 4, the cost of the profile is the SO. Hence the following. The
full proof can be found in full version.

Theorem 6. For resistent semi-weak games, the social optimum is a NE.

A corollary of Theorem 6 is the following:

Corollary 1. For resistant semi-weak games, we have PoS= 1.

We note that resistance can be defined also in WFAs with non-uniform costs, with
cost(ν) replacing |ν|. Resistance, however, is not sufficient in the slightly stronger
model where the WFA is single-letter and all-accepting but not uniform-cost. Indeed,
given k, we show a such a game in which the PoS is kx, for a parameter x that can be
arbitrarily close to 1. Consider the WFA A in Fig. 5. Note thatA has a single lasso and
is thus a resistant WFA. The parameter 	1 is a function of x, and the players’ objec-
tives are single words of lengths 	1 , 	2 , . . . , 	k , 0. Similar to the proof of
Theorem 2, there is only one NE in the game, which is when all players choose the left
chain. The social optimum is attained when all players use the self-loop, and thus for
a game in this family, PoS = k·x

1 . Since x tends to 1, we have PoS = k for resistant
all-accepting single-letter games. The proof can be found in the full version.

q0 q1 . . . q�1−2 q�1−1q′
1

q′
2

. . .q′
�1−1

q′
�1

1

x 0 0 0k · x0000

Fig. 4. A resistant all-accepting single-letter game in which the PoS tend to k

6 Surprises in Symmetric Instances

In this section we consider the class of symmetric instances, where all players share
the same objective, that is, there exists a language L, such that for all 1 ≤ i ≤ k, we
have Li = L. In such instances it is tempting to believe that the social optimum is also
a NE, as all players evenly share the cost of the solution that optimizes their common
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objective. While this is indeed the case in all known symmetric games, we show that,
surprisingly, this is not valid for AF-games, in fact already for the class of one-letter, all
accepting, unit-cost and single-word instances.

Before we show that the PoS can be larger than 1, let us elaborate on the PoA. It is
easy to see that in symmetric AF games, we have PoA = k. This bound is achieved, as
in the classic network-formation game, by a network with two parallel edges labeled by
a and having costs k and 1. The players all have the same specification L = {a}. The
profile in which all players select the expensive path is a NE. We show that PoA = k
is achieved even for weak symmetric instances.

Theorem 7. The PoA equals the number of players, already for weak symmetric in-
stances.

Proof. We show a lower bound of k. The example is a generalization of the PoA in cost
sharing games [2]. For k players, consider the weak instance depicted in Fig. 6, where
all players have the length k. Intuitively, the social optimum is attained when all players
use the loop 〈q0, q0〉 and thus OPT = 1. The worst NE is when all players use the run
q0q1 . . . qk, and its cost is clearly k. Formally, there are two NEs in the game:

– The cheap NE is when all players use the loop 〈q0, q0〉. This is indeed a NE because
if a player deviates, he must buy at least the transition 〈q0, q1〉. Thus, he pays at least
1, which is higher than 1

k , which is what he pays when all players use the loop.
– The expensive NE is when all players use the run q0, q1, . . . , qk. This is a NE be-

cause a player has two options to deviate. Either to the run that uses only the loop,
which costs 1, or to a run that uses the loop and some prefix of q0, q1, . . . , qk, which
costs at least 1 + 1

k . Since he currently pays 1, he has no intention of deviating to
either runs.

Since the cheap NE costs 1 and the expensive one costs k, we get PoA = k. ��

q0 q1 q2 · · · qk

Fig. 5. The WFA A for which a symmetric game with |L| = 1 achieves PoA = k

We now turn to the PoS analysis. We first demonstrate the anomaly of having
PoS > 1 with the two-player game appearing in Fig. 6. All the states in the WFA
A are accepting, and the objectives of both players is a single long word. The social
optimum is when both players traverse the loop q0, q1, q0. Its cost is 2 + ε, so each
player pays 1 + ε

2 . This, however, is not a NE, as Player 1 (or, symmetrically, Player 2)
prefers to deviate to the run q0, q1, q1, q1, . . ., where he pays the cost of the loop q1, q1
and his share in the transition from q0 to q1. We can choose the length of the objective
word and ε so that this share is smaller than ε

2 , justifying his deviation. Note that the
new situation is not a NE either, as Player 2, who now pays 2, is going to join Player 1,
resulting in an unfortunate NE in which both players pay 1.5.

It is not hard to extend the example from Fig. 6 to k > 2 players by changing the
2-valued transition to k, and adjusting ε and the lengths of the players accordingly. The
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q0 q1

2

ε

1

Fig. 6. The WFA A for which the SO in a symmetric game is not a NE

social optimum and the only NE are as in the two-player example. Thus, the PoS in the
resulting game is 1 + 1

k .
A higher lower bound of 1+ 1

k−1 is shown in the following theorem. Although both
bounds tend to 1 as k grows to infinity, this bound is clearly stronger. Also, for k = 2,
the bound PoS = 1+ 1

k−1 = 2 is tight. We conjecture that k
k−1 is tight for every k > 2.

Theorem 8. In a symmetric k-player game, the PoS is at least k
k−1 .

Proof. For k ≥ 2, we describe a family of symmetric games for which the PoS tends
to k

k−1 . For n ≥ 1, the game Gε,n uses the WFA that is depicted in Figure 7. Note
that this is a one-letter instance in which all states are accepting. The players have an
identical specification, consisting of a single word w of length 	 , 0. We choose 	
and ε = ε0 > . . . > εn−1 as follows. Let C0, . . . , Cn denote, respectively, the cycles
with costs (kn + ε0), (k

n−1 + ε1), . . . , (k + εn−1), 1. Let r0, . . . , rn be lasso-runs on
w that end in C0, . . . , Cn, respectively. Consider 0 ≤ i ≤ n − 1 and let Pi be the
profile in which all players choose the run ri. We choose 	 and εi so that Player 1
benefits from deviating from Pi to the run ri+1, thus Pi is not a NE. Note that by
deviating from ri to ri+1, Player 1 pays the same amount for the path leading to Ci.
However, his share of the loop Ci decreases drastically as he uses the kn−i-valued
transition only once whereas the other players use it close to 	 times. On the other hand,
he now buys the loop Ci+1 by himself. Thus, the change in his payment change is
1
k · (kn−i + εi)− (ε′ + kn−(i+1) + εi+1). We choose εi+1 and 	 so that εi

k > ε′ + εi+1,
thus the deviation is beneficial.

kn

ε0

kn−1

ε1

. . .

kn−2

ε2

k2

εn−2

k

εn−1

1

Fig. 7. The network of the identical-specification game Gε,n, in which PoS tends to k
k−1

We claim that the only NE is when all players use the run rn. Indeed, it is not hard to
see that every profile in which a player selects a run that is not from r0, . . . , rn cannot
be a NE. Also, a profile in which two players select runs ri and rj , for 1 ≤ i < j ≤ n,
cannot be a NE as the player using ri can decreases his payment by joining the other
player in rj . Finally, by our selection of ε1, . . . , εn, and 	, every profile in which all the
players choose the run ri, for 0 ≤ i ≤ n− 1, is not a NE.



Network-Formation Games with Regular Objectives 131

Clearly, the social optimum is attained when all players choose the run r0, and its
cost is kn + ε. Since the cost of the only NE in the game is

∑
0≤i≤n k

n−i, the PoS in

this family of games tends to k
k−1 as n grows to infinity and ε to 0. ��

Finally, we note that our hardness result in Theorem 5 implies that finding the social
optimum in a symmetric AF-game is NP-complete. Indeed, since the social optimum
is the cheapest run on some word in L, finding the best-response in a one-player game
is equivalent to finding the social optimum in a symmetric game. This is contrast with
other cost-sharing and congestion game (e.g. [18], where the social optimum in sym-
metric games can be computed using a reduction to max-flow).

7 Conclusions and Future Work

Our results on the stability of AF games are mostly negative. We identified some sta-
ble cases and we believe that additional positive results can be derived for restricted
classes of instances. As we suggest below, these restrictions can be characterized by the
structure of the automaton or by the set of players’ objectives.

Ordinary open problems include the study of approximate-NE, networks with profits,
capacitated networks, and coordinated deviation. We highlight below several interesting
directions for future work that are specific to the study of AF games.

1. Our lower bounds use WFAs with cycles. We believe that for acyclic all-accepting
one-letter instances, the PoS for can be bounded by a constant. Specifically, for k
players, we conjecture that PoS =

∑k
i=1

1
2i−1 , which is bounded by 2. In the full

version we present a lower bound of this value that is valid already for automata
consisting of disjoint paths. Such an analysis will provide a nice distinction between
the classical network-formation game, for which PoS = Θ(log k), and our game,
even when all players use a simple path for their run. We note that it is possible to
restrict the class of languages in the objectives so that the players have no incentive
not to use simple paths for their runs. For example, when the languages are closed
under infix disposal (that is, if x · y · z ∈ L, for x, y, z ∈ Σ∗, then x · z ∈ L).

2. Other presumably more stable games are those in which the range of costs or the
ratio between the maximal and the minimal transition costs is bounded, or when
the ratio between the longest and the shortest word in the objective languages is
bounded. Indeed, bounding these ratios also bounds the proportion in which costs
are shared, making the game closer to one with a uniform sharing rule.

3. AF-games are an example of cost-sharing games in which players’ strategies are
multisets of resources. In such games, a player may need multiple uses of the same
resource, and his share in the resource cost is proportional to the number of times
he uses the resource. Our results imply that, in general, such games are less stable
than classical cost-sharing games. It is desirable to study more settings of such
games, and to characterize non-trivial instances that arise in practice and for which
the existence of pure NE can be shown, and its inefficiency can be bounded. In
the context of formal methods, an appealing application is that of synthesis from
components, where the resources are functions from a library, and agents need to
synthesize their objectives using such functions, possibly by a repeated use of some
functions.
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4. For symmetric AF games, we leave open the problem of NE existence as well as
the problem of finding an upper-bound for the PoS for k > 2.

Recall that in planning, the WFA models a production system in which transitions
correspond to actions. In such cases, the objectives of the players may be languages of
infinite words, describing desired on-going behaviors. The objectives can be specified
by linear temporal logic or nondeterministic Büchi automata, and each player has to
select a lasso computation or accepting run for a word in his language. The setting
of infinite words involves transitions that are taken infinitely often and calls for new
sharing rules. When the sharing rule refers to the frequency in which transitions are
taken, we obtain a proportional sharing rule that is similar to the one studied here. One
can also follow a sharing rule in which all players that traverse a transition infinitely
often share its cost evenly, perhaps with some favorable proportion towards players that
use it only finitely often. This gives rise to simpler sharing rules, which seem more
stable.

Acknowledgments. We thank Michal Feldman, Noam Nisan, and Michael Schapira for
helpful discussions.
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Abstract. We study verification problems for a model of network with
the following characteristics: the number of entities is parametric, com-
munication is performed through broadcast with adjacent neighbors, en-
tities can change their internal state probabilistically and reconfiguration
of the communication topology can happen at any time. The semantics
of such a model is given in term of an infinite state system with both non
deterministic and probabilistic choices. We are interested in qualitative
problems like whether there exists an initial topology and a resolution of
the non determinism such that a configuration exhibiting an error state
is almost surely reached. We show that all the qualitative reachability
problems are decidable and some proofs are based on solving a 2 player
game played on the graphs of a reconfigurable network with broadcast
with parity and safety objectives.

1 Introduction

Providing methods to analyze and verify distributed systems is a complex task
and this for several reasons. First there are different families of distributed sys-
tems depending on the communication means (shared memory or message pass-
ing), on the computing power of the involved entities, on the knowledge of the
system provided to the entities (full knowledge, or local knowledge of their neigh-
bors, or no knowledge at all) or on the type of communication topology that is
considered (ring, tree, arbitrary graph, etc). Second, most of the protocols devel-
oped for distributed systems are supposed to work for an unbounded number of
participants, hence in order to verify that a system behaves correctly, one needs
to develop methods which allow to deal with such a parameter.

In [12], the authors propose a model which allows to take into account the
main features of a family of distributed networks, namely ad-hoc networks. It
characterizes the following aspects of such systems: the nodes in the network can
only communicate with their neighbors using broadcast communication and the
number of participants is unbounded. In this model, each entity behaves similarly
following a protocol which is represented by a finite state machine performing
three kinds of actions (1) broadcast of a message, (2) reception of a message and
(3) internal action. Furthermore, the communication topology does not change
during an execution and no entity is deleted or added during an execution.
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The control state reachability problem consists then in determining whether there
exists an initial number of entities in a communication topology such that it
is possible to reach a configuration where at least one process is in a specific
control state (considered for instance as an error state). The main difficulty
in solving such a problem lies in the fact that both the number of processes
and the initial communication topology are parameters, for which one wishes
to find an instantiation. In [12], it is proven that this problem is undecidable
but becomes decidable when considering non-deterministic reconfiguration of
the communication topology, i.e. when at any moment the nodes can move and
change their neighborhood. In [11] this latter problem is shown to be P-complete.
An other way to gain decidability in such so called broadcast networks consists in
restricting the set of communication topologies to complete graphs (aka cliques)
or bounded depth graphs [13] or acyclic directed graphs [1].

We propose here to extend the model of reconfigurable broadcast networks
studied in [11] by allowing probabilistic internal actions, that is, a process can
change its internal state according to a probabilistic distribution. Whereas the
semantics of reconfigurable broadcast networks was given in term of an infinite
state system with non-determinism (due to the different possibility of sending
messages from different nodes and also to the non-determinism of the proto-
col itself), we obtain here an infinite state system with probabilistic and non-
deterministic choices. On such a system we study the probabilistic version of
the control state reachability by seeking for the existence of a scheduler resolv-
ing non-determinism which minimizes or maximizes the probability to reach a
configuration exhibiting a specific state. We focus on the qualitative aspects of
this problem by comparing probabilities only with 0 and 1. Note that another
model of broadcast networks with probabilistic protocols was defined in [6]; it
was however different: the communication topologies were necessarily cliques and
decidability of qualitative probabilistic reachability only holds when the network
size evolves randomly over time.

For finite state systems with non-determinism and probabilities (like finite
state Markov Decision Processes), most verification problems are decidable [5],
but when the number of states is infinite, they are much harder to tackle. The
introduction of probabilities might even lead to the undecidability, for problems
that are decidable in the non-probabilistic case. For instance for extensions of
pushdown systems with non-deterministic and probabilistic choices, the model-
checking problems of linear time or branching time logic are undecidable [14,8].
On the other hand, it is not always the case that the introduction of probabilistic
transitions leads to undecidability but then dedicated verification methods have
to be invented, as it is the case for instance for nondeterministic probabilistic
lossy channel systems [4]. Even if for well-structured infinite state systems [2,15]
(where a monotonic well-quasi order is associated to the set of configurations),
a class to which belong the broadcast reconfigurable networks of [12], a general
framework for the extension to purely probabilistic transitions has been proposed
in [3], it seems hard to adapt such a framework to the case with probabilistic
and non-deterministic choices.
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In this paper, we prove that the qualitative versions of the control state reach-
ability problem for reconfigurable broadcast networks with probabilistic internal
choices are all decidable. For some of these problems, like finding a scheduler
such that the probability of reaching a control state is equal to 1, our proof tech-
nique is based on a reduction to a 2 player game played on infinite graphs with
safety and parity objectives. This translation is inspired by a similar translation
for finite state systems (see for instance [9]). However when moving to infinite
state systems, two problems raise: first whether the translation is correct when
the system has an infinite number of states, and then whether we can solve the
game. In our translation, we answer the first question in Section 3 and the second
one in Section 4. We also believe that the parity game we define on broadcast
reconfigurable networks could be used to verify other properties on such systems.
Due to lack of space, omitted details and proofs can be found in [7].

2 Networks of Probabilistic Reconfigurable Protocols

2.1 Preliminary Definitions

For a finite or denumerable set E, we write Dist(E), for the set of discrete
probability distributions over E, that is the set of functions δ : E !→ [0, 1] such
that Σe∈Eδ(e) = 1. We now give the definition of a 1 − 1

2 player game, which
will be later used to provide the semantics of our model.

Definition 1 (1 − 1
2 player game). A 1 − 1

2 player game is a tuple M =

(Γ, Γ (1), Γ (p),→, prob) where Γ is a denumerable set of configurations (or ver-
tices) partitioned into the configurations of Player 1 Γ (1) and the probabilistic
configurations Γ (p); →: Γ (1) !→ Γ is the non deterministic transition relation;
prob : Γ (p) !→ Dist(Γ (1)) is the probabilistic transition relation.

For a tuple (γ, γ′) ∈→, we will sometimes use the notations γ → γ′. A finite
path in the game M = (Γ, Γ (1), Γ (p),→, prob) is a finite sequence of configura-
tions γ0γ1 . . . γk such that for all 0 ≤ i ≤ k − 1, if γi ∈ Γ (1) then γi → γi+1 and
otherwise prob(γi)(γi+1) > 0; moreover we will say that such a path starts from
the configuration γ0. An infinite path is an infinite sequence ρ ∈ Γω such that
any finite prefix of ρ is a finite path. Furthermore we will say that a path ρ is
maximal if it is infinite or it is finite and there does not exist a configuration γ
such that ργ is a finite path (in other words a finite maximal path ends up in a
deadlock configuration). The set of maximal paths is denoted Ω.

A scheduler in the game M = (Γ, Γ (1), Γ (p),→, prob) is a function π : Γ ∗ ·
Γ (1) !→ Γ that assigns, to a finite sequence of configurations ending with a
configuration in Γ (1), a successor configuration such that for all ρ ∈ Γ ∗, γ ∈ Γ (1)

and γ′ ∈ Γ , if π(ρ · γ) = γ′ then γ → γ′. We denote by Π the set of schedulers
for M. Given a scheduler π ∈ Π , we say that a finite path γ0γ1 . . . γn respects
the scheduler π if for every i ∈ {0 . . . n − 1}, we have that if γi ∈ Γ (1) then
π(γ0 . . . γi) = γi+1. Similarly we say that an infinite path ρ = γ0γ1 . . . respects
the scheduler π if every finite prefix of ρ respects π.
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Remark 1. Alternatively, a scheduler in the game M = (Γ, Γ (1), Γ (p),→, prob)
can be defined as what is often called a scheduler with memory. It is given by a
setM called the memory together with a strategic function πM : Γ (1)×M → Γ ,
an update function UM : Γ (1)×M ×Γ →M , and an initialization function IM :
Γ (0) →M . Intuitively, the update function updates the memory state given the
previous configuration, the current memory state and the current configuration.
The two definitions for schedulers coincide, and we will use one or the other,
depending on what is more convenient.

The set of paths starting from a configuration and respecting a scheduler
represents a stochastic process. Given a measurable set of paths A ⊆ Ω, we
denote by P(M, γ, π,A) the probability of event A for the infinite paths starting
from the configuration γ ∈ Γ and respecting the scheduler π. We define then
extremal probabilities of the event A starting from configuration γ as follows:

Pinf(M, γ,A) = inf
π∈Π

P(M, γ, π,A) and Psup(M, γ,A) = sup
π∈Π

P(M, γ, π,A)

2.2 Networks of Probabilistic Reconfigurable Protocols

We introduce in this section our model to represent the behavior of a communi-
cation protocol in a network. This model has three main features : the commu-
nication in the network is performed via broadcast communication, each node in
the network can change its internal state probabilistically and the communica-
tion topology can change dynamically. This model extends the one proposed in
[11] with probability and can be defined in two steps. First, a configuration of the
network is represented by a labelled graph in which the edges characterize the
communication topology and the label of the nodes give the state and whether
they are the next node which will perform an action or not.

Definition 2 (L-graph). Given L a set of labels, an L-graph is a labelled
undirected graph G = (V,E, L) where: V is a finite set of nodes, E ⊆ V × V \
{(v, v) | v ∈ V } is a finite set of edges such that (v, v′) ∈ E iff (v′, v) ∈ E, and
L : V !→ L is a labelling function.

We denote by GL the infinite set of L-graphs and for a graph G = (V,E, L),
let L(G) ⊆ L be the set of all the labels present in G, i.e. L(G) = {L(v) | v ∈ V }.
For an edge (v, v′) ∈ V , we use the notation v ∼G v′ to denote that the two
vertices v and v′ are adjacent in G. When the considered graph G is made clear
from the context, we may omit G and write simply v ∼ v′.

Then, in our model, each node of the network behaves similarly following a
protocol whose description is given by what can be seen as a finite 1− 1

2 player
game labelled with a communication alphabet.

Definition 3 (Probabilistic protocol).A probabilistic protocol is a tuple P =
(Q,Q(1), Q(P ), q0, Σ,Δ,Δ

int) where Q is a finite set of control states partitioned
into Q(1), the states of Player 1, and Q(P ) the probabilistic states; q0 ∈ Q(1) is the
initial control state; Σ is a finite message alphabet; Δ ⊆ (Q(1) × {!!a, ??a | a ∈
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Σ} ×Q(1)) ∪ (Q(1) × {ε} ×Q) is the transition relation; Δint : Q(P ) !→ Dist(Q(1))
is the internal probabilistic transition relation.

The label !!a [resp. ??a] represents the broadcast [resp. reception] of the mes-
sage a ∈ Σ, whereas ε represents an internal action. Given a state q ∈ Q
and a message a ∈ Σ, we define the set Ra(q) = {q′ ∈ Q | (q, ??a, q′) ∈ Δ}
containing the control states that can be reached in P from the state q af-
ter receiving the message a. We also denote by ActStates the set of states
{q ∈ Q | ∃(q, !!a, q′) ∈ Δ or ∃(q, ε, q′) ∈ Δ} from which a broadcast or an
internal action can be performed.

The semantics associated to a protocol P = (Q,Q(1), Q(P ), q0, Σ,Δ,Δ
int) is

given in terms of an infinite state 1 − 1
2 player game. We will represent the

network by labelled graphs. The intuition is that each node of the graph runs
the protocol and the semantics respect the following rules: first the Player 1
chooses non deterministically a communication topology (i.e. the edge relation)
and a node which will then perform either a broadcast or an internal change;
if the node broadcasts a message, all the adjacent nodes able to receive it will
change their states, and if the node performs an internal move, then it will be
the only one to change its state to a new state, if it is a probabilistic state a
probabilistic move will then follow. Observe that the topology can hence possibly
change at each step of the Player 1. Finally, in our model, there is no creation
neither deletion of nodes, hence along a path in the associated game the number
of nodes in the graphs is fixed. We now formalize this intuition.

Let P = (Q,Q(1), Q(P ), q0, Σ,Δ,Δ
int) be a probabilistic protocol. The set of

configurations ΓP of the network built over P is a set of (Q × {⊥,-})-graphs
formally defined as follows: Γ

(1)
P = {(V,E, L) ∈ GQ(1)×{⊥,�} | card({v ∈ V |

L(v) ∈ Q(1) × {-}}) ≤ 1} and Γ
(p)
P = {(V,E, L) ∈ GQ×{⊥} | card({v ∈ V |

L(v) ∈ Q(P ) × {⊥}}) = 1} and ΓP = Γ (1) ∪ Γ (p). Hence in the configurations
of Player 1, there is no node labelled with probabilistic state and at most one
node labelled with - (it is the chosen node for the action to be performed) and
in the probabilistic configurations no node is labelled with - and exactly one
node is labelled with a probabilistic state. For this last set of configurations, the
intuition is that when in the network one node changes its state to a probabilistic

one then the network goes in a configuration in Γ
(p)
P from which it performs a

probabilistic choice for the next possible state of the considered node.
The semantics of the network built over P is then given in terms of the 1− 1

2

player gameMP = (ΓP , Γ
(1)
P , Γ

(p)
P ,→P , probP) where:

– →P⊆ Γ
(1)
P × ΓP is defined as follows, for all γ = (V,E, L) in Γ

(1)
P , all γ′ =

(V ′, E′, L′) in ΓP , we have γ →P γ′ iff one of the following conditions hold:

Reconfiguration and process choice: γ ∈ GQ(1)×{⊥}, V
′ = V and there

exists a vertex v ∈ V and a state q ∈ ActStates such that L(v) = (q,⊥)
and L′(v) = (q,-) and for all v′ ∈ V \ {v}, L(v′) = L′(v′) (in this step
E′ is arbitrarily defined and this is what induces reconfiguration);
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Internal: γ ∈ Γ (1)
P , V ′ = V , E′ = E and there exists v ∈ V , q ∈ Q(1) and

q′ ∈ Q such that L(v) = (q,-), L′(v) = (q′,⊥) and (q, ε, q′) ∈ Δ, and
for all v′ ∈ V \ {v}, L′(v′) = L(v′);

Communication: γ′ ∈ Γ (1)
P , V ′ = V , E′ = E and there exists v ∈ V , q, q′ ∈

Q(1) and a ∈ Σ such that L(v) = (q,-), L′(v) = (q′,⊥), (q, !!a, q′) ∈ Δ
and for every v′ ∈ V \{v} with L(v′) = (q′′,⊥), if v ∼ v′ and Ra(q

′′) �= ∅
then L′(v′) = (q′′′,⊥) with q′′′ ∈ Ra(q

′′) and otherwise L′(v′) = L(v′);

– probP : Γ
(p)
P !→ Dist(Γ

(1)
P ) is defined as follows, for all γ = (V,E, L) ∈ Γ (p)

P ,
we have : if v ∈ V is the unique vertex such that L(v) ∈ Q(P ) × {⊥} and if
Δint(L(v)) = μ, then for all γ′ = (V ′, E′, L′) ∈ ΓP , if V

′ = V and E′ = E
and for all v′ ∈ V \ {v}, L′(v′) = L(v) and then probP(γ)(γ

′) = μ(q′) where
(q,⊥) = L(v) and (q′,⊥) = L′(v) , and otherwise probP(γ)(γ

′) = 0.

Finally we will denote by ΓP,0 the set of initial configurations in which all the
vertices are labelled with (q0,⊥). We point out the fact that since we do not
impose any restriction on the size of the Q-graphs, the 1− 1

2 player gameMP has
hence an infinite number of configurations. However the number of configurations
reachable from an initial configuration γ ∈ ΓP,0 since the number of states
in a probabilistic protocol is finite. Furthermore, note that since the topology
can change arbitrarily at any reconfiguration step, we could have considered an
equivalent semantics without topology but with a set of possible receivers for
each emitted message.

A simple example of probabilistic protocol is represented on Figure 1. The
initial state is q0 and the only probabilistic state is qp. From qr the broadcast of
a message a leads back to q0, and this message can be received from ql to reach
the target qf .

q0 qp

ql

qr

qf

ε

1
2

1
2

ε

!!a

??a

Fig. 1. Simple example of probabilistic protocol

2.3 Qualitative Reachability Problems

The problems we propose to investigate are qualitative ones where we will com-
pare the probability of reaching a particular state in a network built over a proba-
bilistic protocol with 0 or 1. Given a probabilistic protocol P = (Q,Q(1), Q(P ), q0,
Σ,Δ,Δint) and a state qf ∈ Q, we denote by �qf the set of all maximal paths of
MP of the form γ0 · γ1 · · · such that there exists i ∈ N verifying (qf ,⊥) ∈ L(γi),
i.e. the set of paths which eventually reach a graph where a node is labelled with
the state qf . It is well known that such a set of paths is measurable (see [5] for
instance). We are now ready to provide the definition of the different qualitative
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reachability problems that we will study. Given opt ∈ {min,max}, b ∈ {0, 1}
and ∼∈ {<,=, >}, let Reach

∼b
opt be the following problem:

Input: A probabilistic protocol P , and a control state qf ∈ Q.
Question: Does there exist an initial configuration γ0 such that
Popt(MP , γ0,�qf ) ∼ b ?

Remark that this problem is parameterized by the initial configuration and this
is the point that make this problem difficult to solve (and that leads to unde-
cidability in the case with no probabilistic choice and no reconfiguration in the
network [12]). However for a fixed given initial configuration, the problem boils
down to the analysis of a finite 1 − 1

2 player game as already mentioned. As a
consequence, the minimum and maximum (rather than infimum and supremum)
probabilities are well-defined when an initial configuration γ0 is fixed; moreover,
these extremal values are met for memoryless schedulers.

3 Networks of Parity Reconfigurable Protocols

3.1 Parity, Safety and Safety/parity Games

We first introduce 2 player turn-based zero-sum games with various winning
objectives. For technical reasons, our definition differs from the classical one:
colors (or parities) label the edges rather than the vertices.

Definition 4 (2 player game). A 2 player game is a tuple G = (Λ,Λ(1), Λ(2), T,
col, safe) where Λ is a denumerable set of configurations, partitioned into Λ(1)

and Λ(2), configurations of Player 1 and 2, respectively; T ⊆ Λ × Λ is a set of
directed edges; col : T → N is the coloring function such that col(T ) is finite;
safe ⊆ T is a subset of safe edges.

As in the case of 1 − 1
2 player game, we define the notions of paths and

the equivalent to schedulers: strategies. A finite path ρ is a finite sequence of
configurations λ0λ1 · · ·λn ∈ Λ∗ such that (λi, λi+1) ∈ T for all 0 ≤ i < n. Such a
path is said to start at configuration λ0. An infinite path is an infinite sequence
ρ ∈ Λω such that any finite prefix of ρ is a finite path. Similarly to paths in 1− 1

2
player game, maximal paths in G are infinite paths or finite paths ending in a
deadlock configuration.

A strategy for Player 1 dictates its choices in configurations of Λ(1). More
precisely, a strategy for Player 1 in the game G = (Λ,Λ(1), Λ(2), T, col, safe) is
a function σ : Λ∗Λ(1) !→ Λ such that for every finite path ρ and λ ∈ Λ(1),
(λ, σ(ρλ)) ∈ T . Strategies τ : Λ∗Λ(2) → Λ for Player 2 are defined symmetrically,
and we write S(1) and S(2) for the set of strategies for each player. A strategy
profile is a pair of strategies, one for each player. Given a strategy profile (σ, τ)
and an initial configuration λ0, the game G gives rise to the following maximal
path, aka the play, ρ(G, λ0, σ, τ) = λ0λ1 · · · such that for all i ∈ N, if λi ∈ Λ(1)

then λi+1 = σ(λ0 . . . λi), otherwise λi+1 = τ(λ0 . . . λi).
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Remark 2. Similarly to the case of schedulers in 1 − 1
2 player game, (see Re-

mark 1), when convenient the players’ strategies can be alternatively defined as
strategies with memory. In this case, a strategy for Player 1 with memory M is
given by means of a strategic function σM : Λ(1) ×M → Λ, an update function
UM : Λ(1) ×M × Λ→M , and an initialization function IM : Λ→M .

The winning condition for Player 1 is a subset of plays Win ⊆ Λ∗∪Λω . In this
paper, we characterize winning conditions through safety, parity objectives and
combinations of these two objectives, respectively denoted by Wins, Winp and
Winsp, and defined as follows:

Wins = {ρ ∈ Λ∗ ∪ Λω | ∀0 ≤ i < |ρ| − 1.(ρ(i), ρ(i+ 1)) ∈ safe and ρ is maximal}
Winp = {ρ ∈ Λω | max{n ∈ N | ∀i ≥ 0.∃j ≥ i.col((ρ(j), ρ(j + 1))) = n}is even}
Winsp = (Winp ∩Wins) ∪ (Λ∗ ∩Wins)

The safety objective denotes the maximal path that use only edges in safe, the
parity objective denotes the infinite paths for which the maximum color visited
infinitely often is even and the safety-parity objective denotes the set of safe
maximal paths which have to respect the parity objectives when they are infinite.
Note that in the context of games played over a finite graph the safety-parity
objective can easily be turned into a parity objective, by removing the unsafe
edges and by adding an even parity self-loop on deadlock states; However when
the game is played on an infinite graph, this transformation is difficult because
one first has to be able to detect deadlock configurations. Finally, we say that
a play ρ is winning for Player 1 for an objective Win ⊆ Λ∗ ∪ Λω if ρ ∈ Win,
in the other case it is winning for Player 2. Last, a strategy σ for Player 1 is a
winning strategy from configuration λ0 if for every strategy τ of Player 2, the
play ρ(G, λ0, σ, τ) is winning for Player 1.

3.2 Networks of Parity Reconfigurable Protocols

We now come to the definition of networks of parity reconfigurable protocols,
introducing their syntax and semantics. The main differences with the probabilis-
tic protocol introduced previously lies in the introduction of states for Player 2,
the use of colors associated to the transition relation and the removal of the
probabilistic transitions.

Definition 5 (Parity protocol). A parity protocol is as a tuple P = (Q,Q(1),
Q(2), q0, Σ,Δ, col, safe) where Q is a finite set of control states partitioned into
Q(1) and Q(2); q0 ∈ Q(1) is the initial control state; Σ is a finite message alphabet;
Δ ⊆

(
Q(1) ×

(
{!!a, ??a | a ∈ Σ} ∪ {ε}

)
×Q

)
∪
(
Q(2) × {ε}×Q

)
is the transition

relation; col : Δ→ N is the coloring function; safe ⊆ Δ is a set of safe edges.

Note that the roles of Player 1 and Player 2 are not symmetric: only Player 1
can initiate a communication, and Player 2 performs only internal actions. The
semantics associated to a parity protocol is given in term of a 2 player game
whose definition is similar to the 1− 1

2 player game associated to a probabilistic
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protocol (the complete definition can be found in [7]). Here also the Player 1 has
the ability to choose a communication topology and a node which will perform
an action, and according to the control state labelling this node either Player 1
or Player 2 will then perform the next move. The set of configurations ΛP of
the network built over a parity protocol P = (Q,Q(1), Q(2), q0, Σ,Δ, col, safe)
is defined as follows: ΛP = {(V,E, L) ∈ GQ×{⊥,�} | card({v ∈ V | L(v) ∈
Q× {-}}) ≤ 1} and then we have Λ

(1)
P = GQ×{⊥} ∪ {(V,E, L) ∈ ΛP | card({v ∈

V | L(v) ∈ Q(1) × {-}}) = 1}and Λ(2)
P = {(V,E, L) ∈ ΛP | card({v ∈ V | L(v) ∈

Q(2) × {-}}) = 1}. We observe that Player 1 owns vertices where no node is
tagged -, and Player i owns the vertices where the node tagged - is in a Player i
control state. The semantics of the network built over P is then given in term of

the 2 player game GP = (ΛP, Λ
(1)
P , Λ

(2)
P , TP, colP, safeP) where TP ⊆ ΛP ×ΛP is

defined using reconfiguration and process choices for Player 1 and internal and
communication rules as the one defined in the case of probabilistic protocols,
whereas colP : TP → N and safeP ⊆ TP are defined following col and safe
lifting the definition from states to configurations. Finally, we will say that a
configuration λ = (V,E, L) is initial if L(v) = (q0,⊥) for all v ∈ V and we will
write ΛP,0 the set of initial configurations. Note that here also the number of
initial configuration is infinite. We are now able to define the game problem for
parity protocol as follows:

Input: A parity protocol P, and a winning condition Win.
Question: Does there exists an initial configuration λ0 ∈ ΛP,0 such that
Player 1 has a winning strategy in GP from λ0?

3.3 Restricting the Strategies of Player 2

In order to solve the game problem for parity protocols, we first show that we
can restrict the strategies of Player 2 to strategies that always choose from a
given control state the same successor, independently of the configuration, or
the history in the game.

We now consider a parity protocol P = (Q,Q(1), Q(2), q0, Σ,Δ, col, safe). We
begin by defining what are the local positional strategies for Player 2 in GP. A
local behavior for Player 2 in GP is a function b : (Q(2) ∩ ActStates) !→ Δ such
that for all q ∈ Q(2) ∩ ActStates, b(q) ∈ {(q, ε, q′) | (q, ε, q′) ∈ Δ}. Such a local
behavior induces what we will call a local strategy τb for Player 2 in GP defined
as follows: let ρ be a finite path in Λ∗

P and λ = (V,E, L) ∈ Λ(2), if v is the unique
vertex in V such that L(v) ∈ Q(2)×{-} and if L(v) = (q,-), we have τb(ρλ) = λ′

where λ′ is the unique configuration obtained from λ by applying accordingly
to the definition of GP the rule corresponding to b(q) (i.e. the internal action

initiated from vertex v). We denote by S(2)
l the set of local strategies for Player 2.

Note that there are a finite number of states and of edges in P, the set S(2)
l is

thus finite and contains at most card(Δ) strategies. The next lemma shows that
we can restrict Player 2 to follow only local strategies in order to solve the game
problem for P when considering the previously introduced winning objectives.
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Lemma 1. For Win ∈ {Wins,Winp,Winsp}, we have ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈
S(2), ρ(GP, λ0, σ, τ) ∈ Win ⇐⇒ ∀τ ∈ S(2)

l . ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0,
σ, τ) ∈Win

The proof of this lemma shares some similarities with the one to establish that
memoryless strategies are sufficient for Player 2 in energy parity games [10]. It is
performed by induction on the number of states of Player 2 in the parity protocol.
In the induction step, a configuration is split into several sub-configurations
(one for each local strategy of Player 2) and Player 1 navigates among the sub-
configurations each time Player 2 changes strategy. For instance if Player 2 has
two choices, say left and right, then at the beginning Player 1 plays in the “left”-
sub-configuration and when Player 2 decides to choose right instead of left, then
the associated node is moved to the “right”-sub-configuration and the game
proceeds in this sub-configuration, and so on. It can be shown that if Player 1
wins against the strategy which chooses always left and against the one which
chooses always right, then it wins agains any strategy of Player 2.

3.4 Solving the Game against Local Strategies

In this section, we explain how to decide whether there exists an initial con-
figuration and a strategy for Player 1 which is winning against a fixed lo-
cal strategy. We consider a parity protocol P = (Q,Q1, Q2, q0, Σ,Δ, col, safe)
and a local behavior b. From this parity protocol we build a parity protocol
P′ = (Q, q0, Σ,Δ

′, col′, safe′) by removing the choices of Player 2 not corre-
sponding to b and by merging states of Player 1 and states of Player 2; this
protocol is formally defined as follows: Δ′ ⊆ Δ and (q, a, q′) ∈ Δ′ iff q ∈ Q(1)

and (q, a, q′) ∈ Δ′, or, q ∈ Q(2) and b(q) is defined and equal to (q, a, q′), fur-
thermore col′ is the restriction of col to Δ′ and safe′ = Δ′ ∩ safe. The following
lemma states the relation between P and P′.

Lemma 2. For Win ∈ {Wins,Winp,Winsp}, there exists a path ρ in GP′ start-
ing from an initial configuration and such that ρ ∈ Win iff ∃λ0 ∈ ΛP,0. ∃σ ∈
S(1), ρ(GP, λ0, σ, τb) ∈ Win.

We will now show how to decide the two following properties on GP′ : whether
there exists a maximal finite path in Wins starting from an initial configuration
in GP′ and whether there exists an infinite path ∈Winp ∩Wins starting from an
initial configuration. Once, we will have shown how to solve these two problems,
this will provide us, for each winning condition, an algorithm to decide whether
there exists a winning path in GP′ .

We now provide the idea to solve the first problem. By definition, a finite
path ρ = λ0λ1 · · ·λn in the game GP′ is maximal if there does not exist a
configuration λ ∈ ΛP′ such that (λn, λ) ∈ T ′

P and according to the semantics of
the parity protocol P′, this can be the case if and only if λn = (V,E, L) where
L(λn) ⊆ (Q×{⊥})\(ActStates×{⊥}). In [11], it is shown that, for reconfigurable
broadcast protocol, one can decide in NP whether, given a set of protocol states,
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there exists a path starting from an initial configuration reaching a configuration
in which no vertices are labelled by the given states. We deduce the next lemma.

Lemma 3. The problem of deciding whether there exists in GP′ a finite maximal
path belonging to Wins starting from an initial configuration is in NP.

We now show how to decide in polynomial time whether there exists an infi-
nite path in Winp ∩Wins starting from an initial configuration. The idea is the
following. We begin by removing in P′ the unsafe edges. Then we compute in
polynomial time all the reachable control states using an algorithm of [11]. Then
from [11] we also know that there exists a reachable configuration exhibiting as
many reachable states as we want. Finally, we look for an infinite loop respecting
the parity condition from such a configuration. This is done by using a counting
abstraction method which translates the system into a Vector Addition System
with States (VASS) and then by looking in this VASS for a cycle whose effect
on each of the manipulated values is 0 (i.e. a cycle whose edge’s labels sum to
0) and this is can be done in polynomial time thanks to [16].

Lemma 4. The problem of deciding whether there exists an infinite path ρ start-
ing from an initial configuration in GP′ such that ρ ∈ Winp ∩Wins is in Ptime.

By Lemma 2 we know hence that: there is an NP algorithm to decide whether
∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0, σ, τb) ∈ Wins (in fact this reduces to looking
for a finite maximal path belonging to Wins and use Lemma 3 or an infinite
safe path, in this case we put all the colors to 0 and we use Lemma 4); there is
a polynomial time algorithm to decide the same problem with Winp instead of
Wins (use Lemma 3 with all the transitions considered as safe) and there is an
NP algorithm for the same problem with Winsp (here again we look either for a
finite maximal safe path and use Lemma 3 or for an infinite safe path satisfying
the parity condition and we use Lemma 4).

So now since the number of local strategies is finite, this gives us non deter-

ministic algorithms to solve whether ∃τ ∈ S(2)
l . ∀λ0 ∈ ΛP,0. ∀σ ∈ S(1), ρ(GP, λ0,

σ, τ) /∈ Win with Win ∈ {Wins,Winp,Winsp}. Note that for Winp we will have
an NP algorithm and for Wins and Winsp, an NP algorithm using an NP oracle
(i.e. an algorithm in NP

NP = ΣP
2 ). Hence thanks to Lemma 1, we are able to

state the main result of this section.

Theorem 1. For safety and safety-parity objectives, the game problem for parity
protocol is decidable and in ΠP

2 (=co-NP
NP), and in co-NP for parity objectives.

4 Solving Probabilistic Networks

In this section we solve the qualitative reachability problems for probabilistic
reconfigurable broadcast networks. The most involved case is Reach

=1
max for

which we reduce to games on parity protocols with a parity winning condition.
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4.1 Reach=1
max

Let us now discuss the most involved case, Reach
=1
max, and show how to reduce it

to the game problem for parity protocols with a parity winning condition. From
P = (Q,Q(1), Q(P ), q0, Σ,Δ,Δ

int) a probabilistic protocol and qf ∈ Q a control

state, we derive the parity protocol P = (QP, Q
(1)
P , Q

(2)
P , q0P, ΣP, ΔP, col, safe)

as follows: QP = Q
(1)
P ∪ Q(2)

P , Q
(1)
P = Q(1) ∪ Q(P ) × {1}, Q(2)

P = Q(P ) ×
{2}, and q0P = q0; ΣP = Σ; ΔP =

(
Q(1) × {!!a, ??a | a ∈ Σ} ×Q(1) ∩Δ

)
∪

{(qf , ε, qf)} ∪ {(q, ε, (q′, 2)), ((q′, i), ε, q′), ((q, 2), ε, (q, 1)) | (q, ε, q′) ∈ Δ, i ∈
{1, 2}} ∪ {((q, i), ε, q′) | Δint(q)(q′) > 0, i ∈ {2, 3}}; and last col((qf , ε, qf )) = 2,
col(((q, 2), ε, q′) = 2 and otherwise col(δ) = 1.

Intuitively, all random choices corresponding to internal actions in P are re-
placed in P with choices for Player 2, where either he decides the outcome of the
probabilistic choice, or he lets Player 1 choose. Only transitions where Player 2
makes the decision corresponding to a probabilistic choice and the self loop on
the state qf have parity 2. Figure 2 illustrates this reduction on the example
probabilistic protocol from Figure 1. This construction ensures:

q0 qp, 2 qp, 1

ql

qr

qf

ε:1

ε:2

ε:2

ε:1

ε:1

ε:1

ε:1

!!a:1

??a:1
ε:2

Fig. 2. Parity protocol for the probabilistic protocol from Figure 1

Proposition 1. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winp if
and only if ∃γ0 ∈ ΓP,0. Pmax(MP , γ0,�qf ) = 1.

Proof (sketch). The easiest direction is from left to right. Assuming that some
scheduler π ensures to reach qf with probability 1, one builds a winning strategy
σ for the parity objective as follows. When Player 2 makes a decision correspond-
ing to a probabilistic choice in P , the strategy chooses to play this probabilistic
transition. Now, when Player 1 needs to make a decision in some configuration λ
where there is a vertex v labelled by ((q, 1),-) ∈ Q(P )×{1}×{-}, the strategy
is to play along a shortest path respecting π from γ to a configuration containing
qf , where γ is defined as λ but the label of v is q. Assuming that π reaches qf
with probability 1, such a path must exist for every reachable configuration in the
game. This definition of σ ensures to eventually reach qf under the assumption
that Player 2, from some point on, always lets Player 1 decide in configurations
corresponding to probabilistic states of P .

Let us now briefly explain how the right to left implication works. Notice
that if Player 2 always chooses transitions with parity 1 (thus letting Player 1
decide the outcome of probabilistic choices), the only way for Player 1 to win
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is to reach qf , and from there use the self loop to ensure the parity condition.
As a consequence, from any reachable configuration, the target state qf must be
reachable.
From a winning strategy σ, we define a scheduler π that mimics the choices of σ
on several copies of the network. The difficulty comes from the transformation
of choices of Player 1 in states of the form (q, 1) ∈ Q(P ) × {1} into probabilistic
choices. Indeed, the outcome of these random choices cannot surely match the
decision of Player 1. The idea is the following: when a probabilistic choice in
P does not agree with the decision of Player 1 in P, this “wrong choice” is
attributed to Player 2. The multiple copies thus account for memories of the
“wrong choices”, and a process performing such a choice is moved to a copy
where the choice was made by Player 2. With probability 1, eventually a “good
choice” is made, and the 1-1/2 player game can continue in the original copy of
the network. Therefore, almost-surely the play will end in a given copy, where
Player 1 always decides, and thus qf is reached. ��

Theorem 2. Reach
=1
max is co-NP-complete.

Proof (sketch). The co-NP membership is a consequence of Proposition 1 and
Theorem 1, and we now establish the matching lower-bound. To establish the
coNP-hardness we reduce the unsatisfiability problem to Reach

=1
max. From ϕ a

formula in conjunctive normal form, we define a probabilistic protocol Pϕ and a
control state qf such that ϕ is unsatisfiable if and only if there exists an initial
configuration γ0 ∈ ΓP,0 and a scheduler π such that P(MP , γ0, π,�qf) = 1.

We provide here the construction on an example in Figure 3, the general
definition is given in Appendix. For simplicity, the initial state q0 of the proba-
bilistic protocol is duplicated in the picture. The idea, if ϕ is unsatisfiable, is to
generate a random assignment of the variables (using the gadgets represented
bottom of the Figure), which will necessarily violate a clause of ϕ. Choosing then
this clause in the above part of the protocol allows to reach state r1, and from
there to reach qf with probability half. Iterating this process, the target can be
almost-surely reached. The converse implication relies on the fact that if ϕ is
satisfiable, there is a positive probability to generate a valuation satisfying it,
and then not to be able to reach r1, a necessary condition to reach qf . Therefore,
the maximum probability to reach the target is smaller than 1 in this case. ��

4.2 Other Cases

The decision problems Reach
=0
min [resp. Reach

<1
min] can be reduced to a game

problem for parity protocols with a safety [resp. safety/parity] winning condition.
From a probabilistic protocol P , for Reach

=0
min, we build a parity protocol P

where all random choices in P are replaced in P with choices for Player 2. The
transitions with target qf are the only ones that do not belong to the safe set
safe. For Reach

<1
min, P consists of two copies of P . In the first copy, all random

choices are replaced with choices of Player 1, whereas in the second copy they
are replaced with choices of Player 2. Also, at any time, one can move from the
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Fig. 3. Probabilistic protocol for the formula ϕ = (a ∨ b ∨ c̄) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

first to the second copy. The parity of transitions with target in the second copy
is 2, and otherwise it is 1. Moreover, the only unsafe transitions are those with
targer qf . In these two cases, using Theorem 1, we obtain:

Theorem 3. Reach
=0
min and Reach

<1
min are in ΠP

2 .

The decidability and complexity of the remaining cases are established di-
rectly, without reducing to games on parity protocols. First of all, Reach

>0
max

is interreducible to the reachability problem in non-probabilistic reconfigurable
broadcast networks, known to be P-complete [11]. For the other decision prob-
lems we use a monotonicity property: intuitively, with more nodes, the proba-
bility to reach the target can only increase. The problems are then reduced to
qualitative reachability problems in the finite state MDP for the network with
a single process, and thus belong to PTIME.

Theorem 4. Reach
>0
max, Reach

=0
max, Reach

<1
max, Reach

=1
min and Reach

>0
min are

in PTIME.

5 Conclusion

In this paper we introduced probabilistic reconfigurable broadcast networks and
studied parameterized qualitative reachability questions. The decidability of
these verification questions are proved by a reduction to a 2-player games played
on an infinite graphs, for which we provide decision algorithms. The complexities
range from PTIME to coNP

NP, as summarized in the table below.

Problem Reach
=0
min Reach

<1
min Reach

=1
max others

Complexity ΠP

2 ΠP

2 coNP-complete PTIME
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In the future, we would like to find the precise complexity for Reach
=0
min and

Reach
<1
min either by determining matching lower bounds or by improving the

decision procedures. We will also study quantitative versions of the reachability
problem. Finally we also believe that we could use our games played over recon-
figurable broadcast protocols either to decide other properties on this family of
systems or to analyze new models.
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Abstract. Higher-order grammars have been extensively studied in
1980’s and interests in them have revived recently in the context of
higher-order model checking and program verification, where higher-
order grammars are used as models of higher-order functional programs.
A lot of theoretical questions remain open, however, for unsafe higher-
order grammars (grammars without the so-called safety condition). In
this paper, we show that any tree languages generated by order-2 un-
safe grammars are context-sensitive. This also implies that any unsafe
order-3 word languages are context-sensitive. The proof involves novel
technique based on typed lambda-calculus, such as type-based grammar
transformation.

1 Introduction

Higher-order (or high-level) grammars, where non-terminal symbols may take
higher-order functions as arguments, have been introduced in 1970’s [19,20,15]
and extensively studied in 1980’s [3]. They form a natural extension of Chom-
sky hierarchy [20], in the sense that they form an infinite language hierarchy,
where the order-0 and order-1 word languages are exactly regular languages and
context-free languages respectively. Recently, higher-order grammars have been
studied as models of higher-order programs [8,16], and applied to automated
verification of higher-order programs [9,13,17].

Earlier theoretical results on higher-order grammars [3,8,6] have been for
those with the so-called safety restriction [8] (or, with the condition on derived
types [3]). Although some of the analogous results have recently been obtained for
unsafe grammars (those without the safety restriction) [16,7,14], many problems
still remain open, such as the context-sensitiveness of higher-order languages.
This is a pity, as many of the recent applications of higher-order grammars
make use of unsafe ones.

In the present paper, we are interested in the open problem mentioned above:
whether the languages generated by higher-order grammars are context-sensitive.
As a solution to a special case of the open problem, we show that the tree lan-
guages (or more precisely, the word languages obtained by preorder traversal of
trees, because the context-sensitiveness is usually the terminology for word lan-
guages) generated by any order-2 grammars are also context-sensitive. Since the

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 149–163, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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order-(n+1) word languages can be obtained as the leaf languages of trees gen-
erated by order-n grammars [11], the result also implies that the word languages
generated by order-3 grammars are context-sensitive.1

Our techniques to prove the context-sensitiveness of order-2 tree languages
are quite different from those used in Inaba and Maneth’s proof for context-
sensitiveness of safe languages [6]. Recall that the context-sensitiveness is equiv-
alent to the membership problem being NLIN-SPACE (non-deterministic linear
space). To show that, Inaba and Maneth decomposed higher-order (safe) trans-
ducers (whose image is the set of higher-order safe languages) into macro tree
transducers, and transformed the transducers so that the size of intermediate
trees increases monotonically. For the unsafe case, similar decomposition ap-
pears to be extremely difficult.

Instead of going through transducers or automata, we directly reason about
grammars with a help of techniques of typed λ-calculus (intersection types, in
particular). The high-level structure of our proof is actually similar to that of the
(straightforward) proof of the context-sensitivity of context-free languages. For a
context-free grammar (say, {S → aAA,A→ ε | aAb}), one can eliminate ε-rules
(A → ε in the above example) to ensure that the size of intermediate phrases
occurring in a production of a final word w is bounded by the size of w. For
example, the above grammar can be transformed to {S → aAA | a | aA,A →
aAb | ab}, by propagating information that A may be replaced by ε. The first
part of our proof shows that intersection types can be used to achieve a similar
(but more elaborate) transformation of higher-order grammars to exclude out
certain rewriting rules. More precisely, given a finite set C of functions, one can
exclude out rules that allow non-terminals to behave like one of the functions
in C. The second part of the proof shows that for the order-2 case, if we choose
as C a set of “permutator [2]-like” terms, then the size of intermediate terms
occurring in a production of a tree π is linearly bounded by the size of π. Thus,
given an order-2 grammar G, one can first transform G to an equivalent grammar
G′ that satisfies the property above, and then the membership of a tree π in the
tree language of G′ can be decided in space linear in π. This implies that the
language of (word representation of) trees generated by G is context-sensitive.

From a practical viewpoint, the result may be applicable to the following
problem: given a program P and a possible execution trace (or an execution
tree) π, is π a real trace of P? If P is a simply-typed program with recursion
and finite base types, one can use the technique of [9] to construct a grammar
that represents all the possible traces of P . One can then use the above algorithm
to decide the membership problem in linear space with respect to the size of π. If
one asks many questions for a fixed P and different π, using the above algorithm
is theoretically more efficient than using higher-order model checking [9].

The rest of the paper is structured as follows. Section 2 defines higher-order
grammars and the languages generated by grammars. Section 3 describes the

1 The order-2 word languages are known to be context-sensitive. The result follows
from context-sensitiveness of safe word languages [6] and the equivalence of safe and
unsafe word languages for the order-2 case [1].
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type-based grammar transformation that removes certain rewriting rules. Sec-
tion 4 focuses on order-2 grammars and shows that after the grammar trans-
formation, the size of intermediate terms is linearly bounded by the size of the
produced tree. Section 5 discusses related work and Section 6 concludes. For
the space limitation, we omit some details and proofs, which are found in an
extended version of this paper, available from the first author’s web page.

2 Preliminaries

This section defines higher-order grammars and the languages generated by
them. When f is a map, we write dom(f) and codom(f) for the domain and
codomain of f .

Definition 1 (types). The set of simple types, ranged over by κ, is defined
by: κ ::= o | κ1 → κ2. The order and arity of a simple type κ, written order(κ)
and ar(κ), are defined by:

order(o) = 0 order(κ1 → κ2) = max(order(κ1) + 1, order(κ2))
ar(o) = 0 ar(κ1 → κ2) = 1 + ar(κ2)

Intuitively, o is the type of trees. We assume a ranked alphabet Σ, which is a
map from a finite set of symbols (called terminals) to their arities. We use each
terminal a as a tree constructor of arity Σ(a). We assume a finite set of symbols
called non-terminals, ranged over by A.

Definition 2 (λ-terms). The set of λ-terms, ranged over by t, is defined by:
t ::= x | A | a | t1 t2 | λx :κ.t. A term t is called an applicative term (or simply
a term) if it does not contain λ-abstractions.

We often omit the type annotation and just write λx.t for λx : κ.t. We consider
only well-typed terms; the type judgment relation K *ST t : κ (where non-
terminals are treated as variables) is defined inductively by:

K ∪ {x : κ} *ST x : κ
K *ST a : o→ · · · → o︸ ︷︷ ︸

Σ(a)

→ o

K *ST t1 : κ2 → κ K *ST t2 : κ2

K *ST t1 t2 : κ

K ∪ {x : κ1} *ST t : κ2
K *ST λx : κ1.t : κ1 → κ2

We call t a (finite, Σ-ranked) tree if t consists of only terminals and applica-
tions, and ∅ *ST t : o holds. We write TreeΣ for the set of Σ-ranked trees, and
use the meta-variable π for a tree.

Definition 3 (higher-order grammar). A higher-order grammar (called
simply a grammar) is a quadruple (Σ,N ,R, S), where (i) Σ is a ranked alpha-
bet; (ii) N is a map from a finite set of non-terminals to their types; (iii) R is
a finite set of rewriting rules of the form Ax1 · · · x� → t, where A ∈ dom(N )
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and t is an applicative term. We require that N (A) must be of the form κ1 →
· · · → κ� → o and N , x1 : κ1, . . . , x� : κ� *ST t : o must hold. (iv) S is a non-
terminal called the start symbol, and N (S) = o. The order (arity, resp.) of
a grammar G, written order(G) (ar(G), resp.), is the largest order (arity, resp.)
of the types of non-terminals. We sometimes write ΣG ,NG ,RG , SG for the four
components of G.

For a grammar G = (Σ,N ,R, S), the rewriting relation −→G is defined by:

Ax1 · · · xk → t ∈ R
At1 · · · tk −→G [t1/x1, . . . , tk/xk]t

ti −→G t
′
i i ∈ {1, . . . , k} Σ(a) = k

a t1 · · · tk −→G a t1 · · · ti−1 t′i ti+1 · · · tk
Here, [t1/x1, . . . , tk/xk]t is the term obtained by substituting ti for the free oc-
currences of xi in t. We write −→∗

G for the reflexive transitive closure of −→G .
The tree language generated by G, written L(G), is the set {π ∈ TreeΣG |

S −→∗
G π}. When the arity of every symbol in Σ is at most 1, the word lan-

guage generated by G is {a1 · · · an | a1(· · · (an e) · · ·) ∈ L(G)}. The leaf lan-
guage generated by G, written Lleaf(G), is the set: {leaves(π) | S −→∗

G π ∈
TreeΣG}, where leaves(π) is the sequence of symbols in the leaves of π, defined
inductively by: leaves(a) = a, and leaves(a π1 π2) = leaves(π1)leaves(π2). The
order of a tree language is the smallest order of a grammar that generates
the language.

A grammar is safe if for the type κ1 → · · · → · · · → κ� → o of each term t,
(i) order(κ1) ≥ · · · ≥ order(κ�) holds, and (ii) if order(κi) = order(κi+1), the
i-th and (i+1)-th arguments of t are passed always together. Grammars without
the safety restriction are sometimes called unsafe, to emphasize the fact that
there is no safety restriction. (Thus, the set of unsafe grammars include safe
grammars.) A language is called safe if it is generated by some safe grammar.

In the rest of this paper, we assume that every terminal has arity 0 or 2. This
does not lose generality, because every tree can be represented by a corresponding
binary tree with linear size increase.

Example 1. Consider the order-2 grammar G0 = ({a : 2, b : 2, e :0}, {S :o, F : (o→
o) → o → o, C : (o → o → o) → (o → o → o) → o → o, T : (o → o) → o →
o},R, S) where R consists of the rules:

S → F (C a b) e F g x→ g x, F g x→ F (T g)x
C g h x→ g xx C g h x→ hxx T g x→ g(g x).

Then, the following is a possible reduction sequence:

S −→ F (C a b) e −→ F (T (C a b)) e −→ T (C a b) e
−→ (C a b) (C a b e) −→ a (C a b e) (C a b e) −→∗ a (b e e) (a e e).

L(G0) is the set of perfect finite trees of height 2n (where all the leaves have the

same depth). Lleaf(G0) = {e2
2n | n ≥ 0}.
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Example 2. Consider the grammar G1 = ({f :2, g :2, a :0, b :0, e :0}, {S :o, F :(o→
o)→ o→ o→ o, G : o→ o, H : o→ o},R, S) where R consists of:

S → F G a b F ϕxy → f(F (F ϕx) y (H y))(f (ϕy)x) F ϕxy → e

Gx→ g x e H x→ g e x.

This has been obtained from the grammar conjectured to be inherently unsafe
([8], p.213), by adding the rule F ϕxy → e (so that the grammar generates a set
of finite trees, instead of an infinite tree) and encoding unary tree constructors
g and h in their grammar as G and H (so that h(π) and g(π) are represented by
g e π′ and g π′ e respectively). The following is a possible reduction sequence:

S −→ F G a b −→ f(F (F G a) b (H b))(f (G b) a) −→ f e (f (G b) a)
−→ f e (f (g b e) a).

3 Type-Based Grammar Transformation

As mentioned in Section 1, a key idea of our proof is to first transform a grammar
to an equivalent grammar, so that the size of intermediate terms in a production
sequence of tree π is linearly bound by the size of π. Note that the size of
intermediate terms is not bounded for arbitrary grammars. For example, for
the rewriting rules {S → F e, F x → e, F x → F (F x)}, an arbitrarily large
intermediate term Fn e may occur in a production of e. As another example,
replace the rule F x → e above with F x → x. Again, an arbitrarily large
intermediate term Fn e may occur in a production of e.

The problems above are attributed to the rules F x→ e and F x→ x, which
respectively allow F to ignore arguments and to behave like an identity function.
This section formalizes a type-based transformation that can remove such “non-
productive” behaviors of non-terminals. A complication arises because (i) the
grammars must actually be extended to enable such transformation, and (ii) the
kinds of non-productive behaviors that should be removed depends on the order
of grammars (more need to be eliminated with the increase of the order) and
we have not yet obtained a general characterization of non-productive behaviors.
We thus first present extended grammars in Section 3.1, and formalize the trans-
formation by parametrizing it with a set of prohibited behaviors in Section 3.2.
In the next section, we provide a sufficient characterization of prohibited behav-
iors for the order-2 case, and show that the removal of those behaviors indeed
guarantee that the size of intermediate terms is linearly bounded by a generated
tree.

3.1 Extended Grammars

This section introduces extended grammars, which are used as the target of the
transformation.
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Definition 4 (extended terms). The set of extended terms, ranged over by
e, is defined by:

e ::= a | x | A | eE | 〈f〉E E ::= {e1, . . . , ek} f ::= e | λx : κ.f

Here, A ranges over non-terminals, and k > 0 in {e1, . . . , ek}. We require that
f in 〈f〉 contains no non-terminals, terminals, nor free variables.

Intuitively, e {e1, . . . , ek} applies the function e to the argument {e1, . . . , ek},
which non-deterministically evaluate to ei for some i; however, e must use each
e1, . . . , ek at least once. Thus, if we have a rule Ax→ a xx, then A {e1, e2} may
be reduced to a e1 e2 or a e2 e1 but not to a e1 e1. We often write e e1 for e {e1}.
The term 〈f〉 is semantically the same as the (extended) λ-term f . Note that
〈f〉 cannot occur in an argument position; for example, A 〈λx.x〉 is disallowed.
(To save the number of rules, however, we allow e to be instantiated to 〈f〉 in
the definitions of the type judgment and substitutions below.) We later restrict
the set of terms f that may occur in the form of 〈f〉.

The type judgment relation K *E e : κ is defined inductively by:

{x : κ} *E x : κ {A : κ} *E A : κ ∅ *E a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o

{x1 : κ1, . . . , xk : κk} *E e : o

*E 〈λx1 : κ1. · · ·λxk : κk.e〉 : κ1 → · · · → κk → o

K1 *E e1 : κ2 → κ K2 *E E2 : κ2

K1 ∪K2 *E e1E2 : κ

Ki *E ei : κ for each i ∈ I⋃
i∈I Ki *E {ei | i ∈ I} : κ

Please notice that weakening is not allowed in the above rules. Therefore, if
K *E e : κ, then every variable in K must occur at least once in e.

Definition 5 (extended grammars). A combinator is an extended λ-term
f such that ∅ *E f : κ for some κ. Let C be a finite set of combinators. An
extended grammar over C is a quadruple (Σ,N ,R, S), where: (i) Σ is a ranked
alphabet; (ii) N is a map from a finite set of non-terminals to their types; (iii) R
is a finite set of extended rewriting rules of the form Ax1 · · · x� → e, where
A ∈ dom(N ), and f ∈ C for every 〈f〉 in e. We require that N (A) must be of
the form κ1 → · · · → κ� → o and Γ ∪ {x1 : κ1, . . . , x� : κ�} *E e : o must hold for
some Γ ⊆ N . Furthermore, λx1. · · ·λx�.e �∈ C, and e must not contain a subterm
of the form 〈λx1 · · ·xk.e′〉E1 · · · Ek. (iv) S is a non-terminal called the start
symbol, and N (S) = o. As before, the order and arity of G, written order(G)
and ar(G), are the largest order and arity of the types of non-terminals.

To define the rewriting relation for extended grammars, we need to extend
the ordinary notion of substitutions. An (extended) substitution is a map from
variables to sets of terms. We write [E1/x1, . . . , Ek/xk] for the substitution that
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maps xi to Ei, and use the meta-variable θ. The operation [E/x]e replaces each
occurrence of x in e with an element of E in a non-deterministic manner. Thus,
we define the substitution operation as a relation θ |= e � e′, which means
that e′ is the term obtained by applying the substitution θ to e. The relations
θ |= e� e′ and θ |= E � E′ are defined inductively by:

[ ] |= a� a [ ] |= A� A [ ] |= 〈f〉� 〈f〉 [{e}/x] |= x� e

θ1 |= e1 � e′1
θ2 |= E2 � E′

2

θ1 ∪ θ2 |= e1E2 � e′1E
′
2

θi,j |= ei � ei,j for each i ∈ I, j ∈ Ji⋃
i∈I,j∈Ji

θi,j |= {ei | i ∈ I}� {ei,j | i ∈ I, j ∈ Ji}

Here, the operation θ0 ∪ θ1 on substitutions is defined by: (i) dom(θ0 ∪ θ1) =
dom(θ0) ∪ dom(θ1); (ii) (θ0 ∪ θ1)(x) = θ0(x) ∪ θ1(x) if x ∈ dom(θ0) ∩ dom(θ1),
and (iii) (θ0 ∪ θ1)(x) = θi(x) if x ∈ dom(θi) \ dom(θ1−i).

Example 3. Let θ = [{b, c}/x] and e = a xx. Then θ |= e � a b c and θ |= e �
a c b hold, but neither θ |= e� a b b nor θ |= e� a c c does.

For G = (Σ,N ,R, S), the rewriting relation −→G on terms is defined by:
Ax1 · · · xk → e ∈ R

[E1/x1, . . . , Ek/xk] |= e� e′

AE1 · · · Ek −→G e
′

(ER-NT)

[E1/x1, . . . , Ek/xk] |= e� e′

〈λx1 · · ·xk.e〉E1 · · · Ek −→G e′

(ER-Comb)

ei −→G e
′
i i ∈ {1, . . . , Σ(a)}

a {e1} · · · {eΣ(a)} −→G a {e1} · · · {ei−1} {e′i} {ei+1} · · · {eΣ(a)}
(ER-Cong)

We often omit the subscript G. The tree language generated by an ex-
tended grammar G, written L(G), is the set {π ∈ TreeΣG | S −→∗

G π} (where
we identify a singleton set {e} with e; for example, the extended term a {e} {e}
is interpreted as the tree a e e).

Example 4. Consider the extended grammar G2 = ({a :2, b :0, c :0}, {S :o, F :o→
o},R, S) where R = {S → F {b, c}, F x→ a{F {x}}{F {x}}, F x→ x}, then:

S −→ F{b, c} −→ a(F{b}) (F{b, c}) −→∗ a b (a (F{c}) (F{b})) −→∗ a b (a c b).

L(G2) is the set of all binary trees that contain at least one b and one c.

Reduction with Eager Normalization. We define e −→λ e′ inductively by: (i)
e −→λ e′ if e −→G e′ is derivable by using rule ER-Comb, (ii) eE −→λ e′E
if e −→λ e′; (iii) e0 (E � {e}) −→λ e0 (E ∪ {e1, . . . , ek}) if e −→λ ei for each
i ∈ {1, . . . , k} with k ≥ 1; (iv) (λx.e)E −→λ e

′ if [E/x] |= e� e′; (v) λx.e −→λ

λx.e′ if e −→λ e′; and (vi) 〈f1〉(〈f2〉E) −→λ 〈f〉E if λx.f1(f2 x) −→λ f ∈ C.
In the above definition, we have extended the syntax of extended terms and
allowed λ-abstractions to occur outside 〈·〉, but ordinary extended terms are
closed under −→λ. In e −→λ e

′, we implicitly require that every argument of a
terminal symbol must be a singleton set both in e and e′.
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Henceforth, we assume that the set C is closed under composition, in the sense
that if f1, f2 ∈ C and λx.f1(f2 x) −→∗

λ e, then e −→∗
λ f for some f ∈ C. We

write e ↓λ e′ if e −→∗
λ e

′ �−→λ, and write e =⇒G e
′ if e(↓λ· −→G ·↓λ)e′. For every

term e of type o and tree π, e −→∗
G π if and only if e =⇒∗

G π. In Section 4, we
bound the size of intermediate terms in a rewriting sequence S =⇒∗

G π.

3.2 From Grammars to Extended Grammars

This section presents a translation from (ordinary) grammars to extended gram-
mars over a finite set C of combinators, and shows that the translation preserves
the tree language. We use type-based transformation techniques to eliminate use-
less arguments and (non-applied) combinators in C.

Definition 6 (intersection types). The set of intersection types over C,
ranged over by τ , is given by:

τ ::= o | (σ1 → · · · → σk → o, η) σ ::=
∧
{τ1, . . . , τ�} η (flag) ::= nc | 〈f〉

Here, f ranges over C. We define flag(τ) by flag(o) = nc and flag(σ1 → · · · →
σk → o, η) = η.

We often write τ1 ∧ · · · ∧ τk and - for
∧
{τ1, . . . , τk} and

∧
∅ respectively. We

assume a certain total order < on the intersection types. Intuitively, the type
o describes trees. The type

∧
{τ1, . . . , τ�} describes terms that behave like a

value of type τi for every i ∈ {1, . . . , 	}. The type (σ1 → · · · → σk → o, η)
describes functions that take arguments of types σ1, . . . , σk and return a tree
of type o. The flag η describes how the term behaves after the transformation
for removing unused arguments. If η = 〈f〉, then the term behaves like f after
the transformation, and if η = nc, the term does not behave like any of the
combinators in C. For example, the term λx.λy.y has type (- → o→ o, 〈λy.y〉),
because after removing the redundant argument x, the term behaves like the
identity function λy.y.

We consider only types that respect underlying sorts. The operation [[ · ]] given
below maps an intersection type to the simple type obtained by the grammar
transformation.

[[(σ̃ → o, η)]] = [[σ̃ → o ]] [[o]] = o

[[
∧
{τ1, . . . , τ�, τ ′1, . . . , τ ′�′} → σ̃ → o]] = [[τ1]]→ · · · → [[τ�]]→ [[σ̃ → o]]

if flag(τ ′j) �= nc and flag(τj) = nc and j < j′ implies τj < τj′

Here, σ̃ → o is an abbreviation of σ1 → · · · → σk → o. The type τ is called a
refinement of κ, if τ :: κ is derivable by the following rules.

o :: o
σi :: κi for each i ∈ {1, . . . , k} ∅ * 〈f〉 : [[(σ̃ → o, f)]]

(σ̃ → o, 〈f〉) :: κ̃→ o

τi :: κ for each i ∈ {1, . . . , k}∧
{τ1, . . . , τk} :: κ

σi :: κi for each i ∈ {1, . . . , k}
(σ̃ → o,nc) :: κ̃→ o

Henceforth we consider only intersection types that are refinement of some simple
types. For example, intersection types like

∧
{o, (o → o,nc)} → o and (o →

o, 〈λf.λx.f(x)〉) are excluded out.
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Transformation Rules. We define the term transformation relation Γ * t :
τ ⇒ e, where: (i) Γ is an (intersection) type environment, i.e., a set of type
bindings of the form {x1:τ1, . . . , xk :τk}, where each variable may occur more than
once (we often omit curly brackets and just write x1:τ1, . . . , xk:τk); (ii) t is a term;
(iii) τ is the type of t; and (iv) e is an extended term. When σ =

∧
{τ1, . . . , τk},

we sometimes write x : σ for x : τ1, . . . , x : τk. Intuitively, Γ * t : τ ⇒ e means
that the term t corresponds to e, when t behaves as specified by τ . For example,
if Γ = {g : (o → o, 〈λx.x〉)}, then Γ * g e : τ ⇒ 〈λx.x〉e should hold, since Γ
says that g will be transformed to a term that behaves like λx.x.

The transformation relation is inductively defined by the following rules:
flag(τ) = 〈f〉

x : τ * x : τ ⇒ 〈f〉
(X-VarC)

flag(τ) = nc

x : τ * x : τ ⇒ xτ
(X-Var)

∅ * a : (o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o,nc)⇒ a
(X-T) flag(τ) = nc

∅ * A : τ ⇒ Aτ

(X-NT)

Ax1 · · · xk → t ∈ R f = λVars({x1 : σ1, . . . , xk : σk}, x1 · · ·xk).e ∈ C
τ = (σ1 → · · · → σk → o, 〈f〉) x1 : σ1, . . . , xk : σk * t : o⇒ e

∅ * A : τ ⇒ 〈f〉
(X-NTC)

Γ0 * t0 : (
∧
{τ1, . . . , τ�} → ρ, η)⇒ e0 η′ =

{
η if k = 0
nc if k > 0

Γi * t1 : τi ⇒ Ei flag(τi) = nc for i ∈ {1, . . . , k} τi < τj if i < j ≤ k
Γi * t1 : τi ⇒ e1,i flag(τi) �= nc for i ∈ {k + 1, . . . , 	}

Γ0 ∪
⋃

i∈{1,...,�} Γi * t0t1 : (ρ, η′)⇒ e0E1 · · · Ek

(X-App)

Γ * t : τ ⇒ 〈λx1. · · ·λxk.e0〉E1 · · · Ek [E1/x1, . . . , Ek/xk] |= e0 � e

Γ * t : τ ⇒ e
(X-Red)

Γi * t : τ ⇒ ei for each i ∈ {1, . . . , k} k ≥ 1

Γ1 ∪ · · · ∪ Γk * t : τ ⇒ {e1, . . . , ek}
(X-Set)

In the rule X-NTC above, Vars(Γ, x̃) (where x̃ is a possibly empty sequence of
variables) is a sequence of type bindings defined by (recall that < is the total
order on intersection types):

Vars(Γ, ε) = ε Vars(Γ, xỹ) = (xτ1 : [[τ1]]) · · · (xτk : [[τk]])Vars(Γ, ỹ)
where {τ1, . . . , τk} = {τ | x : τ ∈ Γ,flag(τ) = nc} and τ1 < · · · < τk.

Here is some explanation of the transformation rules. The rule X-VarC en-
sures that if x behaves like f , then x is replaced with 〈f〉; this allows us to
propagate information about elements of C during the transformation, and avoid
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passing them around as function arguments. The rule X-Var says that if x does
not behave like an element of C, then the variable is replicated for each type τ .
(Here, we assume that xτ and x′τ ′ are different variables if x �= x′ or τ �= τ ′.)
Similarly, there are two rules for non-terminals, depending on whether the body
of a rule behaves like an element of C. The rule X-App is for applications. We
ensure that only terms with nc flags remain as arguments, so that terms be-
having like elements of C are not passed around. Each argument is now a set
of terms; this is because the output of transformation may not be unique. For
example, if F has both types (o → - → o,nc) and (- → o → o,nc) (which
means that F may use either the first or second argument), then F b c in an
argument position would be replaced by {F(o→�→o,nc) b, F(�→o→o,nc) c}.

For a grammar G = (Σ,N ,R, S) and an extended one G′ = (Σ,N ′,R′, So),
we write * G ⇒ G′ if (i) N ′ = {Fτ !→ [[τ ]] | τ ::N (F )} and (ii) R′ is the set:

{F(σ1→···→σk→o,nc) y1 · · · ym → e |
(F x1 · · · xk → t) ∈ R ∧ x1 : σ1, . . . , xk : σk * t : o⇒ e
∧Vars({x1 : σ1, . . . , xk : σk}, x1 · · ·xk) = (y1 : κ1) · · · (ym : κm)
∧(σ1 → · · · → σk → o,nc) ::N (F ) ∧ λy1 : κ1. · · ·λym : κm.e �∈ C ∧ e �−→λ}.

So far we have implicitly assumed the set C is fixed when we write Γ * t : τ ⇒ e
and * G ⇒ G′. We write Γ *C t : τ ⇒ e and *C G ⇒ G′ if we wish to make the
set C explicit.

Example 5. Recall G0 in Example 1. Let C = {λg.λx.g x, λg.λx.g x x}. By apply-
ing the transformation and removing redundant rules, we obtain the grammar
G′
0 = (Σ,N ′,R′, So), where f = λg.λx.g x x and τ = ((o→ o,nc)→ o→ o,nc)

with:

N ′ = {So : o, Fτ : (o→ o)→ o→ o, Tτ : (o→ o)→ o→ o}
R′ = {So → a e e, So → b e e, So → Fτ {〈f〉 a} e,

So → Fτ {〈f〉 b} e, So → Fτ {〈f〉 a, 〈f〉 b} e,
Fτ g x→ Tτ g x, Fτ g x→ Fτ (Tτ g)x, Tτ g x→ g(g x)}.

The tree a (b e e) (a e e) is obtained as follows. (We omit the subscripts of non-
terminals, as they happen to be the same for each original non-terminal.)

S −→ F {〈f〉 a, 〈f〉 b} e −→ T {〈f〉 a, 〈f〉 b} e −→ 〈f〉 a{〈f〉 a e, 〈f〉 b e}
−→ a (〈f〉 b e) (〈f〉 a e) −→∗ a (b e e) (a e e).

The following theorem states that the transformation preserves the language.

Theorem 1. If G is an order-n grammar and * G ⇒ G′, then G′ is a valid
order-n extended grammar and L(G) = L(G′).

4 Bounding the Size of Intermediate Terms

In this section, we restrict the order of grammars to 2, and let C be the following
set Cm:

{λx : o.x}∪
{λy1 · · · yk.yi E1 · · · E� | k, 	 ≤ m, and E1 ∪ · · · ∪ E� = {y1, . . . , yk} \ {yi}}.
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We shall show that for an extended order-2 grammar over C, the size of inter-
mediate terms occurring in a production of a tree π is linearly bounded by the
size of π. The size |e| of an extended term e is defined by:

|a| = |x| = |A| = 1
|e {e1, . . . , ek}| = |e|+ |e1|+ · · ·+ |ek| |〈f〉 {e1, . . . , ek}| = 1 + |e1|+ · · ·+ |ek|.

Here, e1, . . . , ek are different from each other. The size |π| of a tree π is the size
of π as an extended term, which is the same as the number of nodes and leaves
of π. The property mentioned above is stated more formally as follows.

Theorem 2. Let G = (Σ,N ,R, S) be an order-2 extended grammar over Cm
with ar(G) ≤ m. Then there exists an (effectively computable) constant c such
that for every tree π ∈ TreeΣ, if So =⇒∗

G′ e =⇒∗
G′ π, then |e| ≤ c|π|.

The following main result of this paper is obtained as a corollary:

Corollary 1. Fix an order-2 grammar G, Then the membership problem π
?
∈

L(G) can be decided in a non-deterministic Turing machine in O(|π|) space.

Proof. Suppose ar(G) = k′ and k = max(k′, 2). We first determine m of Cm. For
each order-1 type κ of arity k, the number of intersection types such that τ :: κ
and flag(τ) = nc is 2k. Thus, for each order-2 type κ = κ1 → · · · → κj → o

(with j ≤ k), the arity of [[σ]] for σ such that σ :: κ is at most k × 2k. Let
m = k × 2k and C = Cm. By Theorem 1, we can effectively construct an order-2
extended grammar G′ over Cm such that L(G) = L(G′). By the above reasoning,
ar(G′) ≤ m. Compute the constant c of Theorem 2. Since G is fixed, those
steps can be performed offline. Given π, one can non-deterministically apply
reductions by =⇒G either until π is obtained (and answer yes only in this case),
the size of a term exceeds c|π|, or the reduction gets stuck. By Theorem 2, there
is an execution sequence that outputs yes if and only if π ∈ L(G′). Since G
is fixed (therefore non-terminals, terminals, and Cm are also fixed), the actual
space required for storing each intermediate term e is also linearly bounded
by |e| ≤ c|π|; hence this computation can be simulated by a non-deterministic
Turing machine with O(|π|) space. 	

We sketch the proof of Theorem 2 in the rest of this section. We call a λ-term
of the form λx1. · · ·λxk.xθ(1)xθ(2) · · ·xθ(k) (where k ≥ 1 and θ is a permutation
on {1, . . . , k}) an extended permutator. The proof consists of two steps. In
the first step, from the reduction sequence e =⇒∗

G π, we construct a term M of
the linear λ-calculus that simulates the behavior of e in e =⇒∗

G π, such that |e|
is bounded by the measure asize(M) defined below (which is the number of top-
level abstractions and variables), and M contains extended permutators only in
restricted positions. In the second step, we show that any linear λ-term M that
satisfies the conditions above is linearly bounded by |π|. For space restriction,
we discuss only the first step below. Details about the first step and the second
step are found in the extended version.

We first define a translation from extended grammars to linear λ-calculus with
product types.
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Definition 7. The set of linear types, ranged over by γ, is given by:

γ ::= o | γ × · · · × γ → γ

We assume a total order ≤ on linear types. The refinement relation γ :: κ on
types is defined by:

o :: o

γ1,i :: κ1 for each i ∈ {1, . . . , k} γ2 :: κ2 γ1,1 ≤ · · · ≤ γ1,k

(γ1,1 × · · · × γ1,k → γ2) :: (κ1 → κ2)

Henceforth we consider only types γ such that γ :: κ for some κ.

Definition 8. The set of linear λ-terms, ranged over by u, is given by:

u ::= x | uU | λ(x1 : γ1, . . . , xk : γk).u U ::= (u1, . . . , uk)

A linear λ-term u is called a pure linear λ-term if the size of every tuple in
u is 1 (i.e., k = 1 for every subterm of the form λ(x1, . . . , xk).u

′ or (u1, . . . , uk)
and every type γ1 × · · · × γk → γ). We define asize(u) by:

asize(x) = asize(λ(x1, . . . , xk).u) = 1
asize(u0(u1, . . . , uk)) = asize(u0) + asize(u1) + · · ·+ asize(uk).

We use a meta-variable M for pure linear λ-terms. We often omit parentheses
for unary tuples, and write λx.u for λ(x).u, and u for (u).

The type judgment relation Δ *L u : γ for linear λ-terms is given by:

{x : γ} *L x : γ
Δ � {x1 : γ1, . . . , xk : γk} *L u : γ

Δ *L λ(x1, . . . , xk).u : γ1 × · · · × γk → γ

Δ0 *L u0 : γ1 × · · · × γk → γ Δi *L ui : γi for each i ∈ {1, . . . , k}
Δ0 � · · · �Δk *L u0(u1, . . . , uk) : γ

Here, Δ0 �Δ1 is defined to be Δ0 ∪Δ1 only if dom(Δ0) ∩ dom(Δ1) = ∅.
The transformation relations K * e : κ ⇒ u : γ . Δ and K * E : κ ⇒ U :

γ1 × · · · × γk . Δ are defined by the rules below.

i fresh

∅ * a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o⇒ a(i) : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o . a(i) : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o

(LX-Const)

i fresh γ :: κ

{x : κ} * x : κ⇒ x(i) : γ . x(i) : γ
(LX-V)

∅ * f : κ⇒ u : γ . ∅
∅ * 〈f〉 : κ⇒ u : γ . ∅

(LX-Com)

∅ * λx1. · · ·λxk.e : κ⇒ u : γ . Δ F x1 · · · xk → e ∈ R
∅ * F : κ⇒ u : γ . Δ

(LX-NT)
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Ki * ei : κ⇒ ui : γi . Δi for each i ∈ {1, . . . , 	} γ1 ≤ · · · ≤ γ�

K1 ∪ · · · ∪ K� * {e1, . . . , e�} : κ⇒ (u1, . . . , u�) : γ1 × · · · × γ� . Δ1 � · · · �Δ�

(LX-Tset)

K0 * e0 : κ0 → κ⇒ u0 : γ1 × · · · × γk → γ . Δ0

K1 * E : κ0 ⇒ U : γ1 × · · · × γk . Δ1

K0 ∪K1 * e0E : κ⇒ u0U : γ . Δ0 �Δ1
(LX-App)

K ∪ {x : κ0} * e : κ⇒ u : γ . Δ,x(i1) : γ1, . . . , x(i�) : γ�
γ1 ≤ · · · ≤ γ� x �∈ dom(K)

K * λx.e : κ0 → κ⇒ λ(x(i1), . . . , x(i�)).u : γ1 × · · · × γ� → γ . Δ
(LX-Ab)

The idea is to replicate each variable and terminal for each use in a rewriting
sequence e −→∗

G π. In rule LX-Const, a(i) obtained by the translation is treated
as a variable. In LX-NT, a non-terminal is (non-deterministically) expanded,
and then transformed to a linear λ-term. In LX-Tset, we allow ei = ej even if
i �= j.

Example 6. Recall G′
0 in Example 5. The term T {〈f〉a, 〈f〉b} {e} occurring in

the production of a (b e e) (a e e) is transformed to:(
λ(g(1), g(2), g(3)).λ(x(1), x(2), x(3), x(4)).g(1)

(
g(2)(x(1), x(2)), (g(3)(x(3), x(4)))

))((
λg.λ(y(1), y(2)).g(y(1), y(2))

)
a(1),

(
λg.λ(y(1), y(2)).g(y(1), y(2))

)
b(2),(

λg.λ(y(1), y(2)).g(y(1), y(2))
)
a(3)

)
(e(1), e(2), e(3), e(4))

with Δ = a(1) :o→ o→ o, b(2) :o→ o→ o, a(3) :o→ o→ o, e(1) :o, e(2) :o, e(3) :
o, e(4) : o. Here we have reused labels (for i in LX-V) when there is no danger
of variable confusion.

The transformation satisfies the following property.

Theorem 3. If e −→∗
G π, then there exists u such that ∅ * e : o ⇒ u : o . Δ

where for each terminal symbol a, the number of bindings of the form a(i) in Δ
is the same as the number of occurrences of a in π.

We can obtain the following property from the above theorem.

Theorem 4. Let G be an order-2 extended grammar over Cm with ar(G) ≤ m.
If S =⇒∗

G e =⇒∗
G π, then there exists a pure linear λ-term M that satisfies:

(i) Δ *L M : o; (ii) codom(Δ) ⊆ {o, o → o → o} and |{x | Δ(x) = o}| equals
the number of leaves of π; (iii) asize(M) ≥ |e|; (iv) M contains only top-level
β-redexes; and (v) M does not contain any extended permutator in an argument
position, nor any consecutive application of extended permutators.
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Proof Sketch. Since e =⇒∗
G π, we also have e −→∗

G π. Thus, one can construct a
term u that satisfies the condition of Theorem 3. LetM be the pure linear λ-term
obtained from u by applying the currying transformation, and then normalizing
all the redexes under λ-abstraction. Then M satisfies the required conditions. 	

In the second step, we show that asize(M) ≤ 28|{x | x : o ∈ Δ}| holds for any
pure linear λ-term M and type environment Δ that satisfy the conditions (i),
(ii), (iv), and (v), from which Theorem 2 follows.

5 Related Work

As mentioned in Section 1, higher-order (formal) languages have been intro-
duced in 1970’s and actively studied since then, but a number of problems re-
main open especially about unsafe higher-order languages. Inaba and Maneth [6]
proved that any safe higher-order (word) languages are context-sensitive; they
actually proved the stronger result that the membership is in the intersection of
deterministic linear space and NP. Context-sensitiveness of unsafe higher-order
languages has been open (for order-2 or higher for the tree language case, and
for order-3 or higher for the word language case).

Type-based techniques for reasoning about higher-order grammars have been
recently applied to obtain simpler proofs for the decidability of higher-order (lo-
cal) model checking [9,12], and the strictness of tree hierarchy [10]. Haddad [4]
developed a type-based transformation to eliminate non-productive OI deriva-
tions in deterministic higher-order tree grammars. He has also recently devel-
oped a type-based method for logical reflection and selection (which is a kind
of grammar transformation) [5]. There is some similarity between the resource
λ-calculus [18] and extended terms. In the resource λ-calculus, a function may
be applied to a multiset consisting of linear terms (which must be used exactly
once) and reusable terms (which may be used an arbitrary number of times). In
our extended terms, each element of a set must be used at least once.

6 Conclusion

We have shown that order-2 unsafe tree languages are context-sensitive, by using
novel type-based grammar transformation. It is not yet clear whether this ap-
proach can be extended to show context-sensitiveness of languages of arbitrary
orders. For the general case, we need to find an appropriate set C of combinators,
and generalize the arguments in Section 4, which are currently specific to the
order-2 case. We expect that the grammar transformation in Section 3 is also
useful for reasoning about other properties of higher-order languages, such as
pumping lemmas for higher-order languages.

Acknowledgments. We thank anonymous reviewers for useful comments. This
work was partially supported by JSPS KAKENHI 23220001 and the Mitsubishi
Foundation.
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Abstract. We present a fully abstract denotational model for a higher-order pro-
gramming language combining call-by-value evaluation and local exceptions.
The model is built using nominal game semantics and is the first one to achieve
both effective presentability and freedom from “bad exception” constructs.

1 Introduction

Exceptions are a standard programming effect for raising and handling eccentric pro-
gram behaviour, and more generally for manipulating the flow of control. They are a
key feature, for example, of ML, Java and C++. The raising of an exception forces a
program to escape out of its context and to the nearest applicable exception-handler.
Thus, exceptions provide a means of overriding nested behaviour of pure functional
programs. The mechanism that allows handlers to recognise the exceptions to be han-
dled usually relies on the use of names. In the paper we shall focus on modelling such
nominal exceptions.

The difficulties in modelling (even soundly) nominal exceptions stem from the com-
bination of name-locality and name-mobility with non-local control flow. In particular,
traditional approaches do not cope with locality and examine global exceptions only via
the exception monad [9]. On the other hand, existing game models [5] rely on Reynolds’
principle of modelling references as objects with read/write methods [13], extended to
the modelling of exceptions as objects with raise/handle methods. The main defect of
this principle is that, in order to achieve full abstraction, “bad” constructors have to
be included in the syntax, which means that the language examined will include “bad
exceptions”, which are terms of exception type that do not correspond to genuine ex-
ceptions, but rather to couplings of arbitrary raise/handle methods. These constructs,
while solving the full-abstraction problem, distance the languages from the program-
ming features they were set out to capture; in particular, term-equivalence is not conser-
vative with respect to bad constructors. For example, “handle x in (raise x) with skip”
is not equivalent to “skip”.

Nominal game semantics advocates a departure from Reynolds’ modelling rule and
stipulates that “nameful” types be modelled by names rather than objects. Nominal
games were introduced in [1] and [6] in order to provide the first fully abstract models
of the ν-calculus and its extension with pointers (i.e. storable names) respectively. They
constitute a ‘nominalised’ version of game semantics, in which names may appear in
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class MyExn extends Exception {}

public class Trap {
public static void main(String [] argv)
throws Exception {

Exception e1 = new MyExn();
Exception e2 = new MyExn();
try { foo(e1); }
catch ( Exception x ) {

System.out.printf("%b, %b",
x==e1, x==e2);

}
}
static void foo(Exception e)
throws Exception {

throw(e);
}

}

exception MyExn
let e1 = MyExn
let e2 = MyExn
let foo(x) = raise x;;

try foo(e1) with x -> (x==e1, x==e2)

fun new_exn() =
let exception MyExn

fun eq(x) = case x of
MyExn => true
| _ => false

in (MyExn, eq) end
val e1 = new_exn()
val e2 = new_exn()
fun foo(x) = raise x;

foo(#1 e1) handle x => (#2 e1 x, #2 e2 x)

Fig. 1. Code samples. Clockwise, from upper-left corner: Java, OCaML and SML. In the Java
example, the catch clause in method main is able to trap the exception e1 raised by foo, extract
its name and pass it to x. As a result, the program prints true, false. In OCaML, the same
effect is achieved by pattern matching the handled expression. We instigate analogous behaviour
in SML, using the generativity of the exception constructor to produce local exceptions.

plays as atomic moves. Put differently, they are ordinary games constructed within the
universe of nominal sets [2]. A first attempt to model exceptions using nominal games
was made in [15]. However, the close reliance on the monadic approach led to a model
which was too intensional to yield an explicit characterisation of contextual equiva-
lence and the full abstraction result had to be obtained through the intrinsic quotient
construction ([15, Proposition 5.23]). The development of a direct model was left as a
major challenge for future work in [15]. In the present paper, we meet that challenge
by producing two fully abstract and effectively presentable models for higher-order
languages with references and exceptions. The fact that our models are not quotiented
yields a direct approach to proving program equivalences, with scope for future automa-
tion (cf. [11]). In particular, we prove new non-trivial equivalences (cf. Example 28).

We consider two kinds of exception-handling mechanisms, in Sections 2-4 and 5-6
respectively. In the first one, illustrated by the code samples in Figure 1, the handler is
given explicit access to the exception names that it encounters. Another, less invasive
approach, is to require the handler to specify which exception is to be intercepted, under
the assumption that all the others will be propagated by default. This approach respects
privacy of exceptions in that no handler may react to a freshly generated exception. The
latter kind of exceptions turns out to lead to a slightly more complicated game model.1

At the technical level our full abstraction results are obtained by modelling the ex-
ception type by an arena whose moves belong to a countable set of names. Additionally,
players are allowed use moves of the form e! (where e is an exception name) as answers
to arbitrary questions. Uses of e! can be taken to correspond to raising an exception.
These two relatively simple enrichments, along with standard game semantic conditions
such as alternation and well-bracketing, already give rise to a fully abstract model of the

1 This is a common pattern in game semantics: fewer conditions are needed to describe models
of richer languages, because the corresponding interactions are less constrained.
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u, Γ � (), Ω : unit
i ∈ Z

u, Γ � i : int
l ∈ u ∩ Lβ

u, Γ � l : ref β
e ∈ u ∩ E

u, Γ � e : exn
u, Γ �M : int u, Γ � N0, N1 : θ
u, Γ � if0M thenN0 elseN1 : θ

u, Γ �M,N : int
u, Γ �M ⊕N : int

u, Γ �M,N : exn, ref β
u, Γ �M = N : int

(x : θ) ∈ Γ
u, Γ � x : θ

u, Γ, x : θ �M : θ′

u, Γ � λxθ.M : θ → θ′
u, Γ �M : θ → θ′ u, Γ � N : θ

u, Γ �MN : θ′

u, Γ �M : β
u, Γ � refβ(M) : ref β

u, Γ �M : ref β
u, Γ � !M : β

u, Γ �M : ref β u, Γ � N : β
u, Γ �M :=N : unit

u, Γ � exn() : exn
u, Γ �M : exn

u, Γ � raiseM : θ
u, Γ �M : θ u, Γ, x : exn � N : θ

u, Γ �M handlex =>N : θ

Fig. 2. Syntax of ExnML

first kind of exceptions, i.e. handlers have direct access to exception names. To model
the other type of handlers, we identify a compositional subclass of strategies that must
propagate any exceptions unless they were revealed to the program by the environment.
In both cases, we obtain an explicit characterisation of contextual equivalence through
the induced sets of complete plays, ones in which all questions are answered. In the
setting where handling of private exceptions is not available, the latter set needs to be
appropriately trimmed, so as to reflect the handling restrictions on environments.

2 A Language with Local Exceptions and Ground References

We introduce the language ExnML, which is a fragment of ML with full ground refer-
ences2 augmented with nominal exceptions. Its types θ are generated according to the
following grammar.

θ ::= β | θ → θ β ::= unit | int | exn | ref β

Note that reference types are available for each type of the shape β, including the ex-
ception type (full ground storage). We assume disjoint denumerable sets L and E of
locations and exceptions respectively, such that L =

⊎
β Lβ . We range over location

names by l, l′ and over exception names by e, e′. Terms are typed in contexts (u, Γ ),
where u a finite subset of L ∪ E and Γ is a variable context. Moreover, we assume a
fixed set of binary integer operators ranged over by ⊕. The terms of the language are
given by the following grammar (all i ∈ Z), while its typing rules are in Figure 2.

M ::= () | Ω | i | l | e | x | λxθ.M |MM | if0M thenM elseM |M ⊕M
|M =M | refβ(M) | !M |M :=M | exn() | raiseM |M handlex =>M

2 Elements of all ground types are storable.We omit higher-order references in order not to com-
plicate the exposition. The game model of higher-order references from [10] can be extended
to exceptions by following Section 3.
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We shall write Γ * M : θ iff ∅, Γ * M : θ can be derived using the rules of Figure 2.
Similarly, * M : θ is shorthand for ∅, ∅ * M : θ. In what follows, we write M ;N
for the term (λzθ.N)M , where z does not occur in N and θ matches the type of M .
letx =M inN will stand for (λxθ.N)M in general. Value terms v, are given by:

v ::= () | i | e | l | λxθ .M

The operational semantics of the language utilises finite stores, which record generated
exceptions and assign to locations atomic values of compatible type:

Sto = {s : L⇀finVal | l ∈ dom(s) ∩ Lβ =⇒ s(l) ∈ Valβ} × Pfin(E),

whereVal = Valunit∪Val int∪Val exn∪
⊎

βVal refβ , Valunit = {∗},Val int = Z,Val exn =
E ,Val refβ = Lβ . We range over Sto by Σ, T (and variants). Given Σ ∈ Sto we write
Σ1, Σ2 to refer to its respective components. Stores must be closed in the following
sense: for all Σ ∈ Sto and l ∈ dom(Σ1),

(Σ1(l) ∈ L =⇒ Σ1(l) ∈ dom(Σ1)) ∧ (Σ1(l) ∈ E =⇒ Σ1(l) ∈ Σ2).

Finally, we let evaluation contexts be given by the syntax:

E ::=[ ] | EN | (λx.M)E | if0E thenN0 elseN1 | E ⊕N | i⊕ E | refγ(E) | E :=N

| l :=E | !E | E = N | e = E | l = E | E handlex =>N | raiseE.

We write E¬H for contexts E derived from the above grammar applying any of the
rules apart from E handlex =>N . In Figure 3 we give a small-step reduction relation
for terms in contexts from Sto. Given *M : unit we writeM ⇓ iff (∅, ∅),M −→−→Σ, ()
for some Σ.

Definition 1. We say that the term-in-context u, Γ * M1 : θ approximates u, Γ *
M2 : θ (written u, Γ * M1

�∼M2) if C[M1] ⇓ implies C[M2] ⇓ for any context C[−]
such that u, ∅ * C[M1], C[M2] : unit. Two terms-in-context are equivalent if one ap-
proximates the other (written u, Γ *M1

∼=M2).

Example 2. Take the terms *M1,M2 : unit→ unit to be respectively

M1 ≡ let y = exn() inλxunit.raise y and M2 ≡ λxunit.raise (exn()).

Their game semantics will contain the following plays respectively

qΣ0
0 $Σ0

0 qΣ0e1!
Σ1qΣ1e1!

Σ1 · · · qΣ1e1!
Σ1 qΣ0

0 $Σ0
0 qΣ0e1!

Σ1 · · · qΣk−1ek!
Σk

where Σi = (∅, {e1, · · · , ei}). Handlers of ExnML can extract the name of an excep-
tion and remember it for future comparisons. Accordingly, we have * M1 �∼=M2 (cf.
Example 19).
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Σ, (λx.M)v −→ Σ,M [v/x] Σ, if0 0 thenN0 elseN1 −→ Σ,N0

Σ, i1 ⊕ i2 −→ Σ, (i1 ⊕ i2) Σ, if0 i thenN0 elseN1 −→ Σ,N1 (i �= 0)

Σ, !l −→ Σ, s(l) Σ, refγ(v) −→ Σ[l �→ v], l (l /∈ dom(Σ1))

Σ, l := v −→ Σ[l �→ v], () Σ, exn() −→ Σ ∪ {e}, e (e /∈ Σ2)

Σ, e = e −→ Σ, 1 Σ, e = e′ −→ Σ, 0 (e �= e′)

Σ, l = l −→ Σ, 1 Σ, l = l′ −→ Σ, 0 (l �= l′)

Σ, v handlex =>N −→ Σ, v Σ, (raise e) handlex =>N −→ Σ,N [e/x]

Σ,E¬H [raise e] −→ Σ, raise e
Σ,M −→ Σ′,M ′

Σ,E[M ] −→ Σ′, E[M ′]

Fig. 3. Small-step operational semantics of ExnML

3 Game Semantics

We construct a game model for ExnML by extending the fully abstract model of Ground
ML [11] so as to incorporate nominal exceptional effects. Let A be a countably infinite
collection of names, corresponding to reference and exception names:

A =
⊎

β
Aβ � Ae where Aβ = Lβ , Ae = E .

We range over names with a, b, etc, and also l, ewhen we want to be specific about their
kind. The model is constructed using mathematical objects (moves, plays, strategies)
that will feature names drawn from A. Although names underpin various elements of
our model, their precise nature is irrelevant. Hence, all of our definitions preserve name-
invariance, i.e. our objects are (strong) nominal sets [2,16]. Note that we do not need
the full power of the theory but mainly the basic notion of name-permutation. Here
permutations are bijections π : A → A with finite support which respects the indexing
of name-sets. For an element x belonging to a (nominal) set X , we write ν(x) for its
name-support, i.e. the set of names occurring in x. Moreover, for any x, y ∈ X , we write
x ∼ y if x and y are the same up to a permutation of A. We let [x] = {y ∈ X | x ∼ y}.

Our model is couched in the Honda-Yoshida style of modelling call-by-value com-
putation [3]. Before we define what it means to play our games, let us introduce the
auxiliary concept of an arena.

Definition 3. An arena A = 〈MA, IA, λA,*A,Me〉 is given by:

– a set MA of ordinary moves, a set IA ⊆MA of initial moves,
– a labelling function λA :MA ∪Me → {O,P} × {Q,A},
– a justification relation *A ⊆MA × (MA \ IA) ∪Me,
– and a fixed set Me = {e!O | e ∈ Ae} ∪ {e!P | e ∈ Ae} of exceptional moves;

such that MA ∩Me = ∅ and, for all m,m′ ∈MA and e ∈ Ae:

– m ∈ IA =⇒ λA(m) = (P,A),
– m *A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q,
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MA⊗B = (IA × IB) � ĪA � ĪB
IA⊗B = IA × IB

λA⊗B = [(iA, iB) �→ PA, λA 
 ĪA, λB 
 ĪB]
�A⊗B = {((iA, iB),m) | iA �A m ∨ iB �B m} ∪ �̄A ∪ �̄B

MA+B =MA�MB

IA+B = IA∪IB
λA+B = [λA, λB ]

�A+B = �A ∪ �B

MA⇒B = {�} �MA �MB

IA⇒B = {�}
λA⇒B = [ � �→ PA, λA[iA �→ OQ], λB ]

�A⇒B = {(�, iA), (iA, iB)}∪ �A ∪ �B

MA→B =MA �MB

IA→B = IA

λA→B = [λA[iA �→ OQ], λB]

�A→B = {(iA, iB)}∪ �A ∪ �B

Fig. 4. Basic arena and prearena constructions

– m *A m′ =⇒ λOP
A (m) �= λOP

A (m′),
– λA(e!O) = (O,A) ∧ (λA(m) = (P,Q) =⇒ m *A e!O),
– λA(e!P ) = (P,A) ∧ (λA(m) = (O,Q) =⇒ m *A e!P ).

We write λOP
A (resp. λQA

A ) for λA post-composed with the first (second) projection.

Note that, as Me is fixed for all arenas A and so are the parts of λA,*A concerning
moves from it, we will not be specifying them explicitly in definitions, We shall refer
to moves fromMA∪Me collectively as moves of A, we shall use i to range over initial
moves (which are necessarily ordinary moves), and we shall range over exceptional
moves via e!. Let λA be the OP -complement of λA. We define the basic (flat) arenas:

1 = 〈{$}, {$}, {($, PA)}, ∅〉 Aβ = 〈Aβ ,Aβ , {(a, PA) | a ∈ Aβ}, ∅〉
Z = 〈Z,Z, {(i, PA) | i ∈ Z}, ∅〉 Ae = 〈Ae,Ae, {(a, PA) | a ∈ Ae}, ∅〉

Given arenasA,B, the arenasA⊗B andA⇒ B are constructed as in Figure 4, where
ĪA = MA \ IA, *̄A = (*A
 ĪA × ĪA) (and similarly for B). For each type θ we can
now define the corresponding arena �θ� by setting:

�unit� = 1 �ref β� = Aβ �int� = Z �exn� = Ae �θ → θ′� = �θ�⇒ �θ′�
Although types are interpreted by arenas, the actual games will be played in prearenas,
which are defined in the same way as arenas with the exception that initial moves are
O-questions. Given arenas A,B we define the prearena A → B as in Figure 4. The
moves will be accompanied by an explicit store componentΣ. A move-with-store on a
prearenaA is thus a pair mΣ with m ∈MA ∪Me and Σ ∈ Sto.

Definition 4. A justified sequence on a prearena A is a sequence of moves-with-store
s on A such that, apart from the first move, which must be of the form iΣ with i ∈ IA,
every move nΣ

′
in s is equipped with a pointer to an earlier move mΣ such that m *A

n. We then call m the justifier of n and, if λQA
A (n) = A, we also say that n answers m.

Remark 5. Note that, by definition, any exceptional move e! can answer any question
move in a play, as long as the latter has not already be answered. Thus, exceptional
moves will model situations when evaluation of some term leads to raising an exception.
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We shall write s 0 s′ to mean that s is a prefix of s′. For each S ⊆ A and Σ we
define Σ0(S) = S and Σi+1(S) = Σ1(Σ

i(S)) ∩ A (i ≥ 0). Let Σ∗(S) =
⋃

iΣ
i(S).

The set of available names of a justified sequence is defined inductively by Av(ε) = ∅
and Av(smΣ) = Σ∗(Av(s) ∪ ν(m)). The view of a justified sequence s is defined as
follows: view (ε) = ε, view (mΣ) = mΣ and view (s mΣ t nΣ

′
) = view (s)mΣnΣ

′
.

Definition 6. Let A be a prearena. A justified sequence s on A is called a play, if it
satisfies the conditions below.

– No adjacent moves belong to the same player (Alternation).
– The justifier of each answer is the most recent unanswered question (Bracketing).
– For any s′mΣ 0 s with non-empty s′, the justifier of m occurs in view (s′) (Visi-

bility).
– For any s′mΣ 0 s, ν(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

We say that a name a is a P-name of a play s if there is s′mΣ 0 s such that a ∈
ν(mΣ) \ ν(s′) and m is a P-move. We write P (s) for the set of all P-names of s. The
setO(s) is defined dually. We moreover define a partial function on alternating justified
sequences which imposes the frugality condition by restricting the stores in moves to
available names. More precisely, we define γ(s) inductively by γ(ε) = ε and:

γ(smΣ) = γ(s)mΣ�Av(smΣ) if m an O-move

γ(smΣ) = γ(s)mΣ�Av(smΣ) if m a P-move, Av(smΣ) ∩ ν(s) ⊆ Av(s)

and ∀a ∈ dom(Σ) \ Av(smΣ). Σ(a) = Σ′(a)

where, in the last clause above, the last move of s has store Σ′ and, for each store Σ
and set S ⊆ A, Σ 
 S = ({(a, v) ∈ Σ1 | a ∈ S}, Σ2 ∩ S). Note that partiality arises
from sequences breaking the conditions of the last clause.

Definition 7. A strategy σ on a prearenaA is a set of even-length plays ofA satisfying:

– If soΣpΣ
′ ∈ σ then s ∈ σ (Even-prefix closure).

– If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).
– If s1p

Σ1
1 , s2p

Σ2
2 ∈ σ and s1 ∼ s2 then s1p

Σ1
1 ∼ s2p

Σ2
2 (Nominal determinacy).

We write σ : A for σ being a strategy on A.

Example 8. For each arena A, the strategy idA : A→ A, is defined by

idA = { s ∈ P even
A→A | ∀s′ 0even s. s′ 
 Al = s′ 
 Ar },

where the indices l, r distinguish the two copies ofA, and s′ 
 Ax is the subsequence of
s′ containing only moves from the x-copy, along with any exceptional moves justified
from them. For each arena A, let us write TA for the arena 1 ⇒ A, i.e. MTA =
{$1, $2} �MA. Next we define the following exception-related strategies:

– raizA : Ae → A = {e{e}e!{e} | e ∈ Ae}
– trapA : TA→ (A+ Ae) = {$1 $2 s | s ∈ idA} ∪ {$1 $2 e!{e}e{e} | e ∈ Ae}
– newe : 1→ Ae = {$ e(∅,{e}) | e ∈ Ae}
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Note that, in definitions like the above, we implicitly assume that we close the con-
structed set of plays under even-prefix closure. Thus, in raizA the play starts with O
providing an exception name e, to which P answers by raising the exception e! (thus,
e{e} justifies e!{e}); note that the play never opens in arena A. On the other hand, in
trapA, O starts the play by opening the initial move $1 under TA, to which P responds
with a question $2. At this point, O is given two choices: (a) to answer with an initial
move of A, so the play will transform into a copycat between the A components of TA
and A + Ae; (b) to answer with an exceptional move e!, in which case P will ‘trap’
the name e and return it in the Ae component of A + Ae. Finally, in newe P answers
the initial move by playing a fresh exception name and adding it to the store. We will
see below that the above mechanisms give us all the structure we need for modelling
exceptional behaviours.

We proceed to strategy composition. Given arenas A,B,C, we define the prearena
A→ B → C by setting MA→B→C =MA→B �MC , IA→B→C = IA and:

λA→B→C = [λA→B [iB !→ PQ], λC ] *A→B→C= *A→B ∪ {(iB, iC)}∪ *C

Let u be a justified sequence on A → B → C. We define u 
 BC to be u in which
all A-moves and all exceptional moves justified by A-moves are suppressed. u 
 AB
is defined analogously, only that we also remove any exceptional move justified by an
initial move ofB. u 
 AC is defined similarly with the caveat that, if there was a pointer
from an initial C-move (resp. an exceptional move) to an initial B-move, which in turn
had a pointer to an A-move, we add a pointer from the C-move (the exceptional move)
to the A-move. Let us write u 
γ X for γ(u 
 X) with X ∈ {AB,BC,AC}. Below
we shall often say that a move is an O- or a P-move in X meaning ownership in the
associated prearena (A→ B, B → C or A→ C).

Definition 9. A justified sequence u on A → B → C is an interaction sequence on
A,B,C if it satisfies bracketing and frugality and, for all X ∈ {AB,BC,AC}, we
have (u 
γ X) ∈ PX and the following conditions hold.

– P (u 
γ AB) ∩ P (u 
γ BC) = ∅;
– O(u 
γ AC) ∩ (P (u 
γ AB) ∪ P (u 
γ BC)) = ∅;
– For each u′ 0 u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

• m′ is a P-move in AB and a /∈ Av(u′ 
 AB),
• or m′ is a P-move in BC and a /∈ Av(u′ 
 BC),
• or m′ is an O-move in AC and a /∈ Av(u′ 
 AC),

then Σ(a) = Σ′(a).

We write Int(A,B,C) for the set of interaction sequences on A,B,C, and σ‖τ for the
set of interactions between strategies σ : A→ B and τ : B → C:

σ‖τ = { u ∈ Int(A,B,C) | (u 
γ AB) ∈ σ ∧ (u 
γ BC) ∈ τ }.

and let σ; τ : A→ C = {u 
γ AC | u ∈ σ‖τ}.

The following result is deduced by translating our strategies into [7,10].
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Lemma 10. Strategy composition is associative and identity strategies are neutral ele-
ments. Thus, arenas and strategies yield a category of games G.

A first property of G is that it has coproducts, given by + and copairings [σ, τ ] :

(A+B)→ C = σ ∪ τ (for A
σ−→ C

τ←− B). Richer structure is highlighted below.

Remark 11. G can be shown to host a lluf subcategory G′, consisting of a variant of
single-threaded strategies [7], where (1,⊗) yield finite products. Moreover, the oper-
ation T on arenas extends to a strong monad in G′ with T -exponentials, i.e. for all
A,B,C there is a bijection ΛT : G′(A ⊗ B, TC) ∼= G′(A,B ⇒ C) natural in A,C.
Then one can show that there exists a bijection Φ : G(A,B) ∼= G′(A, TB), which es-
tablishes equivalence of G and the Kleisli category on G′ determined by T (G′

T ). We
write 〈 , 〉 for the left-pairing obtained in G from pairing in G′

T , and Λ( ) for the weak
exponential structure.

The above provides a canonical interpretation of application and λ-abstraction in
G. To interpret the remaining constructs of ExnML in G, we need to define special
morphisms for reference manipulation (cf. [14]) while for exceptions we shall use the
morphisms from Example 8.

getβ : Aβ → �β� = {lΣΣ(l)Σ ∈ PAβ→�β�}
setβ : Aβ ⊗ �β�→ 1 = {(l, v)Σ$Σ[l �→v] ∈ PAβ⊗�β�→1}
newβ : �β�→ Aβ = {vΣ lΣ[l �→v] ∈ P�β�→Aβ

| l /∈ dom(Σ)}

We interpret any term-in-context u, Γ *M : θ with a strategy �u, Γ *M : θ� : �u, Γ *
θ�, denoted also as �M� : �u, Γ * θ�. The interpretation is given explicitly below.
Suppose that u = {a1, · · · , an} and Γ = {x1 : θ1, · · · , xk : θk}. We write �u, Γ �
for the arena �u� ⊗ �θ1�⊗ · · · ⊗ �θk�, where �u� is the flat arena 〈Mu, Iu, λu,*u〉 with
Mu = Iu = [(a1, · · · , an)].

– �u, Γ * () : unit� = �u, Γ � !−→ 1 , where ! = {(ā, iΓ )Σ$Σ} .

– �u, Γ * Ω : unit� = �u, Γ � ⊥−→ 1 , where ⊥ = {ε} .

– �u, Γ * i : int� = �u, Γ � !−→ 1
î−→ Z , where î = {$ i} .

– �u, Γ * xj : θj� = �u, Γ � πn+j−−−→ �θj� .

– �u, Γ * M1 ⊕ M2 : int� = �u, Γ � 〈�M1�,�M2�〉−−−−−−−−→ Z ⊗ Z
σ⊕−−→ Z , where σ⊕ =

{(i1, i2) (i1 ⊕ i2)} .

– �u, Γ * if0M thenN0 elseN1 : θ� = �u, Γ � 〈�M�,id〉−−−−−→ Z⊗ �u, Γ � if0⊗id−−−→ (1+1)⊗
�u, Γ � ∼=−→ �u, Γ � + �u, Γ � [�N0�,�N1�]−−−−−−−→ �θ� , where if0 = {0 $l, i $r | i �= 0} .

– �u, Γ * refβ(M) : ref β� = �u, Γ � �M�−−−→ �β� newβ−−−→ Aβ .

– �u, Γ *!M : β� = �u, Γ � �M�−−−→ Aβ
get−−→ �β� .

– �u, Γ *M := N : unit� = �u, Γ � 〈�M�,�N�〉−−−−−−−→ Aβ ⊗ �β� setβ−−→ 1 .

– �u, Γ *MN : θ′� = �u, Γ � 〈�M�,�N�〉−−−−−−−→ (�θ�⇒ �θ′�)⊗ �θ� ev−→ �θ′� .
– �u, Γ * λx.M : θ → θ′� = Λ(�M� : �u, Γ �⊗ �θ�→ �θ′�) .



Game Semantics for Nominal Exceptions 173

– �u, Γ * exn() : exn� = �u, Γ � t−→ 1
newe−−−→ Ae .

– �u, Γ * raiseM : θ� = �u, Γ � �M�−−−→ Ae

raiz�θ�−−−−→ �θ� .

– �u, Γ * M handlex =>N : θ� = �u, Γ � 〈id,Φ(�M�)〉−−−−−−−→ �u, Γ � ⊗ T �θ� id⊗trap�θ�−−−−−−→
�u, Γ �⊗ (�θ� + Ae)

∼=−→ (�u, Γ �⊗ �θ�) + (�u, Γ �⊗ Ae))
[π2,�N�]−−−−−→ �θ� .

We can demonstrate that the game model is sound for contextual approximation (Propo-
sition 12) by following the traditional route through Computational Soundness and Ad-
equacy. For the former we show that we work in a modified version of a νερ-model [15,
Def. 5.13]. Recall that a play is complete if each question occurring in it justifies an
answer. Given a set of playsX , let us write comp(X) for the set of complete plays inX.

Proposition 12. Let Γ * M1,M2 : θ be terms of ExnML.comp(�Γ * M1 : θ�) ⊆
comp(�Γ *M2 : θ�) implies Γ *M1

�∼M2.

4 Full Abstraction

We prove full abstraction by showing that all finitary behaviours in the model are de-
finable in ExnML. For the latter we use a factorisation argument which decomposes,
in three steps, a strategy from G into an exception-free strategy and strategies man-
aging handling, raising and creation of exceptions respectively. Then, for the class of
exception-free strategies we show that finitary members can be expressed in the frag-
ment of ExnML corresponding to Ground ML.

We call a strategy σ finitary if the set [σ] = {[s] | s ∈ σ} is finite (i.e. σ is orbit-finite
in the nominal sense). For the first factorisation, we restrict strategies in the following
manner. First, for each even-length play s, we let φ(s) be the justified sequence obtained
from s by deleting all its O-moves of the form e!Σ (any e,Σ), as well as the moves
following these. That is, φ(ε) = ε and

φ(smΣnT ) =

{
φ(s) if mΣ = e!T

φ(s)mΣnT otherwise

We say that a play s ∈ PA is exception-propagating if γ(φ(s)) is defined and, for all
s′e!ΣmT 0even s, mT = e!Σ . We write P prop

A for the set of exception-propagating
plays onA. We say that a strategy σ : A is exception-propagating if σ ⊆ P prop

A and, for
all s ∈ σ,

– for all s e!Σ ∈ PA, we have s e!Σe!Σ ∈ σ;
– for all s′ ∈ P prop

A with γ(φ(s)) = γ(φ(s′)), we have s′ ∈ σ.

The former condition says that P always copycats raised exceptions, and the latter en-
sures that P cannot register moves that raise exceptions. We say that an exception-
propagating strategy σ is φ-finitary if the set {[γ(φ(s))] | s ∈ σ} is finite.
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Lemma 13. Let σ : A → B be a strategy in G. There is an exception-propagating
strategy σ̂ : Ae ⊗A⊗ ((1⇒ 1)⇒ Ae)→ B such that3

σ = 〈〈!; �exn()�, id〉, !; �λf. f() handlex =>x�〉; σ̂.
Moreover, if σ is finitary then σ̂ is φ-finitary.

Proof. Let τ = 〈〈!; �exn()�, id〉, !; �λf. f() handlex =>x�〉 and C = Ae ⊗ A⊗ ((1 ⇒
1)⇒ Ae) → B. We construct σ̂ : C as follows. For each s ∈ σ, build ŝ in two stages.
In the first stage, perform the following move replacements in s, from left to right.

– Replace the initial move iΣ with (h, i, $)Σ , for some fresh h ∈ Ae.
– Replace each P-question qΣ with a sequence qΣ1 q

Σ
2 q

Σ , where q1 a question justified
by the (newly added) initial $, and q2 justified by q1.

– Replace each exceptional move e!T of O, answering some previous qΣ , with
e!T e!T eT , where the first (resp. second) e! is justified by q (q2), and e is justified by
q1. Diagrammatically:

i · · · qΣ · · · e!T · · · !−→ (h, i, $) · · · qΣ1 qΣ2 qΣ · · · e!T e!T eT · · ·

– Replace each P-answermT (to some previous q′Σ) with hThT · · ·hThTmT , where
m is justified by q, and the the hT ’s answer all open q1 and q2 moves that were
added in the second step above and appear after q′. Note that these qi’s are visible
at the corresponding h because they are, in each such case, the pending question.

In the second stage, replace each storeΣ in the resulting play with (Σ1, Σ2�{h}) (h is
chosen fresh for s). We take σ̂ = {t ∈ P prop

C | ∃s ∈ σ. γ(φ(t)) = γ(φ(ŝ))}. Note first
that σ̂ includes the strategy σ′ = {ŝ | s ∈ σ}, as ŝ ∈ P prop

C for all s ∈ σ, and τ ;σ′ = σ.
Hence, σ = τ ; σ̂. By construction, σ̂ is exception-propagating, and [γ(φ(σ̂))] is finite if
[σ] is finite. Finally, note that the passage from σ′ to σ̂ does not break determinacy, as
the moves deleted by φ are pairs of identical O/P moves. ��

The next factorisation eliminates from strategies the capability of raising excep-
tions. We say that an exception-propagating strategy σ is handle/raise-free if, for all
smT e!Σ ∈ σ, we have m = e!.

Lemma 14. Let σ : Ae ⊗ A → B be an exception-propagating strategy. There is a
handle/raise-free σ̂ : Ae⊗A⊗ (Ae ⇒ 1)→ B such that σ = 〈id, !; �* λx.raise x�〉; σ̂.
Moreover, if σ is φ-finitary then so is σ̂.

Proof. Let τ = 〈id, !; �* λx.raise x�〉 and C = Ae ⊗ A ⊗ (Ae ⇒ 1) → B. For each
s ∈ σ we construct ŝ by replacing each initial move (h, i)Σ with (h, i, $)Σ , and each
P-move e!T braking handle/raise-freeness with a sequence eT e!T e!T . Diagrammatically
(m �= e! and we omit some stores for brevity):

(h, i) · · · q · · ·mΣe!T · · · !−→ (h, i, $) · · · q · · ·mΣeT e!T e!T · · ·
3 The role of the leftmost Ae in σ̂ is purely technical and fulfils two functions: (a) it supplies the

default return value of f() handlex =>x; (b) it provides a default exception name to be used
in subsequent factorisations removing reference generation (the name will be used as initial
value for external generators of names in Aexn).
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We let σ̂ = {t ∈ P prop
C | ∃s ∈ σ. γ(φ(t)) = γ(φ(ŝ))} . As above, we have that τ ; σ̂ =

σ. Since σ is exception-propagating, the move m above cannot be of the form e′! (any
e′ ∈ Ae), and therefore σ̂ preserves the exception-propagating conditions. Moreover,
by construction, σ̂ is handle/raise-free, and [γ(φ(σ̂))] is finite if [γ(φ(σ))] is. ��

Our final factorisation concerns removing any exception-name generation capability
from our strategies. The technique is similar to the one used in the factorisations above
and amounts to delegating all fresh exception-name creation to an external generator.
Formally, a handle/raise-free strategy is called exception-free if, for all s ∈ σ, P (s) ∩
Ae = ∅.

Lemma 15. Let σ : Ae⊗A→ B be a handle/raise-free strategy. There is an exception-
free σ̂ : Ae ⊗ A⊗ (1 ⇒ Ae) → B such that σ = 〈id, !; �λz.exn()�〉; σ̂. Moreover, if σ
is φ-finitary then so is σ̂.

Let us call ExnML¬e the fragment of ExnML obtained by suppressing the con-
structors handle, raise and exn(). We can show that exception-freeness is captured by
ExnML¬e in the following sense.

Lemma 16. Let σ : Ae ⊗A→ B a φ-finitary exception-free strategy over a denotable
prearena. There is an ExnML¬e term u, Γ *M : θ such that �M� = σ.

Combining the four previous lemmas we obtain the following.

Proposition 17. Let Ae ⊗ A → B be a denotable prearena and σ : A → B a finitary
strategy. There is an ExnML term u, Γ *M : θ such that �M� = σ.

Theorem 18. For all ExnML-terms Γ *M1,M2 : θ, we have comp(�Γ *M1 : θ�) ⊆
comp(�Γ *M2 : θ�) if, and only if, Γ *M1

�∼M2.

5 Idealised Exceptions

The design of exception handling in ExnML was guided by common practice. In an
idealised world, private exceptions should not be amenable to handling. This can be
achieved by the alternative handling construct:

u, Γ *M,N ′ : θ u, Γ * N : exn

u, Γ *M handleN ->N ′ : θ

We call ExnML$ the language which differs from ExnML in featuring the above con-
struct instead of “M handlex =>N”. The new language has additional reduction rules:

Σ, (raise e) handle e ->N −→ Σ,N

Σ,E¬e[raise e] −→ Σ, raise e

Evaluation contexts are now given by:

E ::=[ ] | EN | (λx.M)E | if0E thenN0 elseN1 | E ⊕N | i⊕ E | refγ(E) | E :=N

| l :=E | !E | E = N | e = E |M handleE ->N | E handle e ->N | raiseE
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and, for each e ∈ E , we write E¬e for contexts E derived by the above grammar
applying any of the rules apart from E handle e ->N . Note that the new handler is
easily definable in ExnML by:

M handleN ->N ′ ≡ let z = N in (M handlex => (if0 x = z then raisex elseN ′))

Thus, ExnML$ is a sublanguage of ExnML in terms of expressivity.

Example 19. Recall the terms M1 and M2 from Example 2. They will turn out equiv-
alent in ExnML$, because in either case the private exceptions raised by the terms can
only be propagated. Next we shall develop game-semantic constraints that reflect such
scenarios.

6 Games Propagating Private Exceptions

We derive the game model of ExnML$ by restricting the category G with an additional
condition on strategies. We need to depict semantically that terms in ExnML$ are only
able to handle exception names that are ‘known’ to them. In particular, fresh excep-
tions cannot be handled and will break through any evaluation context. Moreover, such
exceptions cannot be remembered and neither can their accompanying stores. We there-
fore define the following notion of available subplay. For any even-length play s over
some prearenaA, we define the justified sequence $(s) inductively by $(ε) = ε and:

$(smΣnT ) =

{
$(s) if m = e! and e /∈ Av($(s))

$(s)mΣnT otherwise

We let Av$(s) = Av($(s)). The above definition disregards not only fresh exceptions
raised by O, but also the P-moves succeeding them. This is due to the fact that the terms
(and strategies) we consider simply propagate such exceptions.

Definition 20. We say that a play s ∈ PA is $-propagating if γ($(s)) is defined and,
for all s′e!ΣmT 0even s with e /∈ Av$(s), mT = e!Σ .
We say that a strategy σ : A is $-propagating if σ ⊆ P $prop

A and, for all s ∈ σ,

– for all s e!Σ ∈ PA and e /∈ Av$(s), we have s e!Σe!Σ ∈ σ;
– for all s′ ∈ P $prop

A with γ($(s)) = γ($(s′)), we have s′ ∈ σ.

We write P $prop
A for the set of $-propagating plays of A.

Thus, the former condition stipulates that strategies propagate raised exceptions if
these feature fresh exception names. The latter ensures that strategies do not depend on
these raised exceptions or their stores. We can show that these conditions are composi-
tional. Suppose we compose $-propagating strategies σ : A → B and τ : B → C.
Exceptional moves suppressed by $ are O-moves, carrying O-names. Thus, by the
name-ownership conditions of strategy-composition, if a move is suppressed in a com-
posite play in AC, then it is also suppressed in its constituent plays in AB and BC. As
a result, suppressed exceptions are propagated in σ and τ , resulting in propagation by
σ; τ . Similarly, saturation under γ($( )) of σ; τ is ensured by componentwise saturation
of σ and τ respectively.
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Lemma 21. If σ : A→ B, τ : B → C are $-propagating then so is σ; τ .

Identity strategies are $-propagating by construction. We therefore obtain a lluf cat-
egory G$ of $-propagating strategies. Terms from ExnML$ are given denotations in G$
as before, only that now we use the strategies hdl$A : TA⊗ Ae → A+ 1 =

{($1, e){e} ${e}2 s | s ∈ idA, e ∈ Ae} ∪ {($1, e){e} ${e}2 e!{e} ${e} | e ∈ Ae}

instead of trapA, which break $-propagation. With these constructs we obtain a νερ-
model [15] with references restricted to ground types. We thus have soundness.

Lemma 22. For all ExnML$-terms Γ * M1,M2 : θ, if �Γ *M1 : θ� ⊆ �Γ *M2 : θ�
then Γ *M1

�∼M2.

Remark 23. In previous game models of control, the control-manipulating effect of
privately-propagating exceptions was captured by relaxing the bracketing condition [4,8].
The latter was achieved in the expense of adding an additional pointer structure, called
control (or contingency) pointers, to mark violations of bracketing. Here we took a differ-
ent approach by exposing the private-exception mechanism that caters for such violations
(cf. [15,8]). As a result, our model consists of plays that still satisfy bracketing, albeit in
this extended setting. As in the case of control pointers, to avoid being overly intentional,
we need to hide access to private exceptions via the propagation conditions.

While previously term approximation was characterised by inclusion of complete
plays, now we have to restrict the set of plays to take into account $-propagation on the
part of the environment. Given a complete play s on a prearena 1→ A with final store
Σ, we let ŝ ≡ $ s $Σ ∈ P(1⇒A)→1. For each $-propagating strategy σ : 1 → A, we

then define comp$(σ) = {γ($(ŝ)) | s ∈ comp(σ), ŝ ∈ P $prop
(1⇒A)→1}.

Proposition 24. For allExnML$-terms *M1,M2 :θ, if comp$(�M1�)⊆ comp$(�M2�)
then *M1

�∼M2.

Proof. Suppose the inclusion holds and let C[M1]⇓ for some context C. Then, by
Lemma 22, �C[M1]� = {$$}, that is, �λz.M1�; �f * C[f()]� = {$$}. Let us write
M ′

i for λz.Mi (i = 1, 2), N for �f * C[f()]�, γ$( ) for γ($( )) and let A = �θ�.
Then, �M ′

1�; �N� = {$$}, the latter due to composing some complete play $ $ s ∈
�M ′

1� with some $s$Σ ∈ �N�. Since M ′
1 ≡ λ�x.M1, s must be an interleaving of

complete plays s1, · · · , sk ∈ �M1�. For each i, we have ŝi ∈ P $prop
(1⇒A)→1, because

$s$Σ ∈ �N� ⊆ P $prop
(1⇒A)→1, and therefore γ$(ŝi) ∈ comp$(�M1�). By hypothesis,

γ$(ŝi) ∈ comp$(�M2�), and so there is s′i ∈ comp(�M2�) such that γ$(ŝi) = γ$(ŝ
′
i).

Let s′ ∈ P1→(1⇒A) be the interleaving of s′1, · · · , s′k obtained by simulating the inter-
leaving pattern of s. Note that, for each i, since γ$(ŝi) = γ$(ŝ

′
i), si and s′i share the

same structure apart from P/O pairs of exceptional moves deleted by $, which do not af-
fect simulating the interleaving of s (change of thread can only occur in O-moves). We
thus obtain some $s′$Σ

′ ∈ P prop
(1⇒A)→1 and, by lifting equality under γ$ from threads to

thread-interleavings, we have γ$($s$Σ) = γ$($s
′$Σ). But, since �N� is $-propagating,

$s$Σ ∈ �N� implies $s′$Σ
′ ∈ �N� and therefore �M ′

2�; �N� = {$$} = �C[M2]�. By
Lemma 22, then, C[M2]⇓. ��
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For completeness, we again work our way through a finitary definability result, es-
tablished via factorisations. The first factorisation brings us to handle-free strategies,
from which the factorisations of the previous section can be applied. We say that an
$-propagating strategy σ is $-finitary if the set {[γ($(s))] | s ∈ σ} is finite.

Lemma 25. Let σ : A → B be a $-finitary strategy. There is some n ∈ ω and a
φ-finitary handle-free strategy σ̂ : Ae ⊗A⊗ An

exn ⊗ ((1⇒ 1)⇒ Ae)→ B such that

σ=〈!; �exn()�, id〉; 〈id, π1; 〈−−−−−−−−−−−−→�x : exn * ref (x)�, id〉〉; 〈π1, �−−−−−−→z : ref exn, h : exn *M�〉; σ̂
with M≡λf. (· · · (f();h handle !z1 -> !z1) handle !z2 -> !z2 · · · ) handle !zn -> !zn : exn.

The above factorisation is identical to the corresponding one in the previous section,
only that instead of simply delegating exception handling to the environment, the strat-
egy σ̂ also stores all exception names encountered, apart from those in $-removable
moves, in the variables zi.

Proposition 26. Let A → B be a denotable arena. For each $-finitary strategy σ :
A→ B there is an ExnML$ term u, Γ *M : θ such that �M� = σ.

We can now prove completeness, and thus full abstraction.

Theorem 27. For all ExnML$-terms * M1,M2 : θ, we have comp$(M1) ⊆
comp$(M2) if, and only if, *M1

�∼M2.

Proof. We show completeness (right-to-left). Let us write M ′
i for λz.Mi (i = 1, 2).

Suppose s ∈ comp$(�M1�) \ comp$(�M2�). Let A = �θ� and define the strategy
ρ : (1 ⇒ A) → 1 by: ρ = {t ∈ P $prop

(1⇒A)→1 | γ($(t)) 0even s}. By construction, ρ
is $-propagating and $-finitary. Hence, there is a term f : unit → θ * N : unit such
that �N� = ρ. Moreover, s ∈ �N� and thus, by Lemma 22, (λf.N)M ′

1⇓. We claim
that $$ /∈ �M ′

2�; ρ and therefore (λf.N)M ′
2 �⇓. For suppose $$ ∈ �M ′

2�; ρ, because
of composing �M ′

2� with some play t = $s′$Σ ∈ ρ. Then, s′ ∈ comp(�M2�) and
γ($($s′$Σ)) 0 s. Since $Σ is not deleted by $, we have in fact γ($($s′$Σ)) = s,
hence s ∈ comp$(�M2�), contradicting the hypothesis. ��

Example 28. Let us revisit the terms from Examples 2 and 19. We have comp$(�Mi�) =
{$Σ0qΣ0

0 $Σ0 $Σ0} for i = 1, 2, because other plays from �Mi� would give rise to non-
propagating interactions ŝ. Thus, in ExnML$ we do have *M1

∼=M2.
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Abstract. This paper studies the complexity of the reachability problem
(a typical and practically important instance of the model-checking prob-
lem) for simply-typed call-by-value programs with recursion, Boolean val-
ues, and non-deterministic branch, and proves the following results. (1)
The reachability problem for order-3 programs is nonelementary. Thus,
unlike in the call-by-name case, the order of the input program does not
serve as a good measure of the complexity. (2) Instead, the depth of types
is an appropriate measure: the reachability problem for depth-n programs
is n-EXPTIME complete. In particular, the previous upper bound given
by the CPS translation is not tight. The algorithm used to prove the up-
per bound result is based on a novel intersection type system, which we
believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs is to use
higher-order model checking [7,8,15], which is a decision problem about the trees
generated by higher-order recursion schemes. Various verification problems such
as the reachability problem and the resource usage verification [5] are reducible
to the higher-order model checking [8].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. This is
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. In fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
to a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has a bad effect: the order of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call-
by-name programs is (n− 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase
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of the largest arity in a program. Thus, important questions are: Is the double
exponential blow-up of the time complexity (with respect to the arity increase)
inevitable? If not, what is the exact complexity of the reachability problem for
call-by-value programs, and how can we achieve the exact complexity?

The above questions are answered in this paper. We first show that the
single exponential blow-up with respect to the arity increase is inevitable for
programs of order-3 or higher. This implies that when the arity is not fixed,
the reachability problem for order-3 call-by-value programs is nonelementary.
The key observation used in the proof is that the subset of natural numbers
{0, 1, . . . , expn(2)−1} (here expn(k) is the nth iterated exponential function,
defined by exp0(k) = k and expn+1(k) = 2expn(k)) can be embedded into the

set of values of the type

n︷ ︸︸ ︷
�→ �→ · · · → �→ � by using non-determinism.

Second, we show the depth of types is an appropriate measure, i.e. the reach-
ability problem for depth-n programs is n-EXPTIME complete. The depth of
function type is defined by depth(κ→ κ′) = max{depth(κ) + 1, depth(κ′) + 1}.
In particular, the previous bound given by the CPS translation is not tight.
To prove the upper-bound, we develop a novel intersection type system that
completely characterises programs that reach the failure. Since the target is a
call-by-value language with effects (i.e. divergence, non-determinism and fail-
ure), the proposed type system is much different from that for call-by-name
calculi [18,7,9], which we believe is of the independent interest.

Organisation of the paper Section 2 defines the problem addressed in the paper.
Section 3 proves that the reachability problem for order-3 programs is nonele-
mentary. Section 4 provides a sketch of the proof of n-EXPTIME hardness of the
reachability problem for depth-n programs. In Section 5, we develop an intersec-
tion type system that characterises the reachability problem, and a type-checking
algorithm. We discuss related work in Section 6 and conclude in Section 7. For
the space limitation, we omit some details and proofs, which are found in a long
version available from the first author’s web page.

2 Call-by-Value Reachability Problem

The target language of the paper is a simply-typed call-by-value calculus with
recursion, product types (restricted to argument positions), Boolean and non-
deterministic branch. Simple types are called sorts in order to avoid confusion
with intersection types introduced later. The sets of sorts, terms and function
definitions (definitions for short) are defined by the following grammar:

(Sorts) κ, ι ::= � | κ1×. . .×κn → ι
(Terms) s, t, u ::= x | f | λ〈x1, . . . , xn〉.t | t 〈u1, . . . , un〉

| t⊕ u | t | f | if(t, u1, u2) | Fκ | Ωκ

(Definitions) D ::= {fi = λ〈xi,1, . . . , xi,ni〉.ti}i≤m,

where 〈x1, . . . , xn〉 (resp. 〈u1, . . . , un〉) is a non-empty sequence of variables (resp.
terms). The sort � is for Boolean values and the sort κ1× . . .×κn → ι is for
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b ∈ {t, f}
Δ | K � b :: �

x :: κ ∈ K
Δ | K � x :: κ

f :: κ ∈ Δ
Δ | K � f :: κ

Δ | K, �x :: �κ � t :: ι
Δ | K � λ〈�x〉.t :: �κ→ ι

Δ | K � t :: �κ→ ι′ Δ | K � �u :: �κ

Δ | K � t 〈�u〉 :: ι
Δ | K � t :: � Δ | K � ui :: κ (i ∈ {1, 2})

Δ | K � if(t, u1, u2) :: κ

Δ | K � t :: κ Δ | K � u :: κ

Δ | K � t⊕ u :: κ Δ | K � Fκ :: κ Δ | K � Ωκ :: κ

Fig. 1. Sorting rules for terms

functions that take an n-tuple as the argument and returns a value of ι. A term
is a variable x, a function symbol f (that is a variable expected to be defined
in D), an abstraction λ〈x1, . . . , xn〉.t that takes an n-tuple as its argument, an
application t 〈u1, . . . , un〉 of t to n-tuple 〈u1, . . . , un〉, a non-deterministic branch
t1⊕t2, a truth value (t or f), a conditional branch if(t, u1, u2), a special constant
Fκ (standing for ‘Fail’) to which the reachability is considered, or divergence Ωκ.
A function definition is a finite set of elements of the form f = λ〈x1, . . . , xn〉.t,
which defines functions by mutual recursion. If (f = λ〈�x〉.t) ∈ D, we write
D(f) = λ〈�x〉.t. The domain dom(D) of D is {f | (f = λ〈�x〉.t) ∈ D}.

For notational convenience, we use the following abbreviations. We write �x for
a non-empty sequence of variables x1, . . . , xn, and simply write λ〈x1, . . . , xn〉.t as
λ〈�x〉.t. Similarly, t 〈u1, . . . , un〉 is written as t 〈�u〉, where �u indicates the sequence
u1, . . . , un, and κ1×. . .×κn → ι as �κ→ ι, where �κ = κ1, . . . , κn. Note that �κ→ ι
is not κ1 → · · · → κn → ι. Sort annotation of Fκ and Ωκ are often omitted. For
a 1-tuple 〈t〉, we often write just t.

The sort system is defined straightforwardly. A sort environment is a finite
set of sort bindings of the form x :: κ (here a double-colon is used for sort
bindings and judgements, in order to distinguish them from type bindings and
judgements). We write K(x) = κ if x :: κ ∈ K. A sort judgement is of the form
Δ | K * t :: κ, where Δ is the sort environment for function symbols and K is
the sort environment for free variables of t. Given sequences �x and �κ of the same
length, we write �x :: �κ for x1 :: κ1, . . . , xn :: κn. Given sequences �t and �κ of the
same length, we write Δ | K * �t :: �κ just if we have Δ | K * ti :: κi for all i ≤ n,
where n is the length of �t. The sorting rules are listed in Fig. 1.

When term t does not contain function symbols, we simply write ∅ | K * t :: κ
as K * t :: κ. We assume that terms in the sequel are explicitly typed, i.e. every
term is equipped with a sort derivation for it and we can freely refer to sorts of
subterms and variables in the term. For function definitions, a judgement is of
the form * D :: Δ, which is derived by the following rule:

Δ | ∅ * D(f) :: κ (for every f :: κ ∈ Δ)

* D :: Δ

A program is a pair of a definition D and a term t of the ground sort � with
* D :: Δ and Δ | ∅ * t :: � for some Δ. A program is written as let rec D in t.
A program let rec ∅ in t with no function symbols is simply written as t.
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The set of values is defined by: v, w ::= λ〈�x〉.t | t | f. Recall that �x is a
non-empty sequence. Evaluation contexts are defined by: E ::= 	 | E 〈�t〉 |
v 〈w1, . . . , wk−1, E, tk+1, . . . , tn〉 | if(E, t1, t2). Therefore arguments are evalu-
ated left-to-right. The reduction relation on terms is defined by the rules below:

E[(λ〈�x〉.t) 〈�v〉] −→ E[ [�v/�x]t ] E[t1 ⊕ t2] −→ E[ti] (for i = 1, 2)
E[if(t, t1, t2)] −→ E[t1] E[if(f, t1, t2)] −→ E[t2].

We write −→∗ for the reflexive and transitive closure of −→. The reduction
relation is not deterministic because of the non-deterministic branch. A closed
well-typed term t cannot be reduced just if (1) t is a value, (2) t = E[F] or (3)
t = E[Ω]. In the second case, t immediately fails and in the third case, t never
fails since Ω diverges. So we do not need to consider further reduction steps for
E[F] and E[Ω]. By this design choice, −→ is terminating.

Lemma 1. If ∅ * t :: κ, then t has no infinite reduction sequence.

Given a function definition D, the reduction relation −→D is defined by the
same rules as −→ and the following additional rule:

E[f ] −→D E[D(f)].

We write −→∗
D for the reflexive and transitive closure of −→D. Note that reduc-

tion by −→D does not terminate in general.

Definition 1 (Reachability Problem). We say a program let rec D in t
fails if t −→∗

D E[F] for some E. The reachability problem is the problem to
decide whether a given program fails.

Example 1. Let t0 = λf.if(f t, if(f t, Ω,F), Ω), which calls the argument f (at
most) twice with the same argument t and fails just if the first call returns t and
the second call f. Let u0 = (λx.t)⊕ (λx.f) and e1 = t0 u0. Then e1 has just two
reduction sequences starting from e1 −→ t0 (λx.t) and e1 −→ t0 (λx.f), both of
which do not fail. In the call-by-name setting, however, e1 would fail since

e1 −→ if(u0 t, if(u0 t, Ω,F), Ω) −→ if((λx.t) t, if(u0 t, Ω,F), Ω)

−→∗ if(u0 t, Ω,F) −→ if((λx.f) t, Ω,F) −→∗ F.

Consider the program e′1 = t0 u
′
0 where u′0 = λx.(t ⊕ f), in which the non-

deterministic branch is delayed by the abstraction. Then e′1 would fail both in
call-by-name and in call-by-value.

Example 2. Consider the program P2 = let rec D2 in e2, where D2 = {f =
λx.f x} and e2 = (λy.F) (f t). Then P2 never fails because

e2 = (λy.F) (f t) −→D2 (λy.F) ((λx.f x) t) −→D2 (λy.F) (f t) = e2 −→D2 · · · .

In the call-by-name case, however, P2 would fail since (λx.F) (f t) −→ F.
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Example 3. Consider the program e3 = (λx.t)F. Then e3 (immediately) fails
because e3 = E[F], where E = (λx.t)	. In contrast, e3 would not fail in the
call-by-name setting, in which E is not an evaluation context and e3 −→ t.

We give a technically convenient characterisation of the reachability problem.
Let {f1, . . . , fn} be the set of function symbols in D. The mth approximation of
fi, written F

m
i , is the term obtained by expanding the definition m times, as is

formally defined below:

F 0
i = λ〈x1, . . . , xk〉.Ωι (where fi :: κ1×. . .×κk → ι ∈ Δ)
Fm+1
i = [Fm

1 /f1, . . . , F
m
n /fn](D(fi)).

The mth approximation of t is defined by: [t]mD = [Fm
1 /f1, . . . , F

m
n /fn]t.

Lemma 2. Let P = let rec D in t be a program. Then t −→∗
D E[F] for some

E if and only if [t]nD −→∗ E′[F] for some n and E′.

Size of terms and programs The size of sorts is inductively defined by |�| = 1
and |κ1× . . .×κn → ι| = 1 + |ι| +

∑n
i=1 |κi|. The size of sort environments is

given by |K| =
∑

x::κ∈K |κ|. The size of a term is defined straightforwardly (e.g.
|x| = 1 and |t 〈u1, . . . , un〉| = 1 + |t| +

∑n
i=1 |ui|) except for the abstraction

|λ〈x1, . . . , xn〉.t| = 1 + |t| +
∑n

i=1(1 + |κi|), where κi is the sort of xi. Here a
term t is considered to be explicitly sorted, and thus the size of annotated sorts
should be added. For programs, |let rec D in t| = |t|+

∑
f∈dom(D) |D(f)|.

Order and depth of programs. Order is a well-known measure that characterises
complexity of the call-by-name reachabilityproblem [10,15] (it is (n−1)-EXPTIME
complete for order-nprograms) and, aswe shall see, depth characterises complexity
in the call-by-value case.Order and depth of sorts are defined by:

order (�) = depth(�) = 0
order (�κ→ ι) = max{order(ι), order (κ1)+1, . . . , order(κn)+1}
depth(�κ→ ι) = max{depth(ι)+1, depth(κ1)+1, . . . , depth(κn)+1}

For a sort environment, depth(K) = max{depth(κ) | x :: κ ∈ K}. Order and
depth of judgements are defined by ϕ(Δ | K * t :: κ) = ϕ(κ), where ϕ ∈
{order , depth}. The order of a sort derivation is the maximal order of judgements
in the derivation. The order of a sorted term t is the order of its sort derivation
Δ | K * t :: κ. The order of a program let rec D in t is the maximal order
of terms t and D(f) (f ∈ dom(D)). The depth of derivations, sorted terms and
programs are defined similarly.

3 Order-3 Reachability is Nonelementary

This section proves the following theorem.

Theorem 1. The reachability problem for order-3 programs is nonelementary.
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The key observation is that, for every n, the subset of natural numbers

{0, 1, . . . , expn(2)−1} can be implemented by

n︷ ︸︸ ︷
�→ · · · → � → � in a certain

sense (see Definition 2). The non-determinism of the calculus is essential to the
construction. Note that in the call-by-name case, the set of closed terms (modulo
observational equivalence) of this sort can be bounded by 44

n

, since

n︷ ︸︸ ︷
�→ · · · → �→ � ∼=

n︷ ︸︸ ︷
�× · · · × �→ �.

The proof in this section can be sketched as follows. Let L ⊆ {0, 1}∗ be
a language in n-EXPSPACE. We can assume without loss of generality that
there exists a Turing machine M that accepts L and runs in space expn(x)
(here x is the size of the input). Given a word w, we reduce its acceptance by
M to the reachability problem of a program (say PM,w) of the call-by-value
calculus in Section 2 extended to have natural numbers up to N ≥ expn(x)
(Lemma 3). The order of PM,w is independent from M and w: it is 3 when the
order of the natural number type is defined to be 1. Recall that the natural
numbers up to expn+x(2) ≥ expn(x) can be implemented by the order-1 sort

n+x︷ ︸︸ ︷
�→ · · · → � → �. By replacing natural numbers in PM,w with the implemen-
tation, the acceptance of w by M can be reduced to the reachability problem of
an order-3 program without natural numbers.

3.1 Simulating Turing Machine by Program with Natural Numbers

First of all, we define programs with natural numbers up to N , which is an
extension of the typed calculus presented in Section 2. The syntax of sorts and
terms is given by:

(Sorts) κ, ι ::= · · · | �
(Terms) s, t, u ::= · · · | S | P | EQ | 0 | 1 | · · · | N − 1

The extended calculus has an additional ground sort � for (bounded) natural
numbers. Constants S and P are functions of sort �→ � meaning the successor
and the predecessor functions, respectively, and EQ is a constant of sort�×�→ �

which checks if two arguments are equivalent. A constant n indicates the natural
number n. The set of values is defined by: v ::= · · · | S | P | EQ | n. Function
definitions and evaluation contexts are given by the same syntax as in Section 2,
but terms and values may contain natural numbers. The additional reduction
rules are given by

E[Sn] −→D E[n+ 1] (if n+ 1 < N)

E[Pn] −→D E[n− 1] (if n− 1 ≥ 0)

E[EQ 〈n, n〉] −→D E[t]

E[EQ 〈n,m〉] −→D E[f] (if n �= m).
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Note that E[SN − 1] and E[P 0] get stuck. A program with natural numbers up
to N is a pair of a function definition D and a term t of sort �, written as
let rec D in t. We assume that programs in the sequel do not contain constant
numbers except for 0. The order of � is defined as 1.

Lemma 3. Let L ⊆ {0, 1}∗ be a language and M be a deterministic Turing ma-
chine accepting L that runs in space expn(x) for some n. Then, for every word
w ∈ {0, 1}∗ of length k and natural number N ≥ expn(k), one can construct a
program PM,w with natural numbers up to N such that PM,w fails if and only
if w ∈ L. Furthermore PM,w is of order-3 and can be constructed in polynomial
time with respect to k.

Proof. Let M be a Turing machine with states Q and tape symbols Σ and w be
a word of length k. We can assume without loss of generality that Q = {t, f}q
(that is, the set of all sequences of length q consisting of t and f) and Σ = {t, f}l.

A configuration is expressed as a value of sort1

Config =

q︷ ︸︸ ︷
�× · · · × �×

l︷ ︸︸ ︷
(�→ �)× · · · × (�→ �)×�,

where the first part represents the current state, the second part the tape and
the third part the position of the tape head. The program PM,w has one recursive
function isAccepted of sort Config → �. It checks if the current state is a final
state and it fails if so. Otherwise it computes the next configuration and passes it
to isAccepted itself. The body of the program generates the initial configuration
determined by w and passes it to the function isAccepted .

Clearly we can construct PM,w in polynomial time with respect to k (the
length of w) and the order of PM,w is 3. ��

3.2 Implementing Natural Numbers

Let νn be the order-1 sort defined by ν0 = � and νn+1 = �→ νn. We shall show
that natural numbers up to expn(2) can be implemented as values of νn.

Intuitive Explanation. We explain the intuition behind the construction by
using the set-theoretic model. Let N = {0, 1, . . . , N − 1}. We explain the way
to express the set 2N ∼= {0, 1, . . . , 2N − 1} as (a subset of) non-deterministic
functions of �→ N, i.e. functions of �→ P(N), where P(N) is the powerset of
N. The set (�⇒ N) ⊆ (�→ P(N)) is defined by:

(�⇒ N) = {f : �→ P(N) | f(t) ∪ f(f) = N and f(t) ∩ f(f) = ∅}.

In other words, f ∈ �→ P(N) is in �⇒ N if and only if, for every i ∈ N, exactly
one of i ∈ f(t) and i ∈ f(f) holds. Hence a function f : � ⇒ N determines a

function of N→ �, say f̂ , defined by f̂(i) = b iff i ∈ f(b) (b ∈ {t, f}).
1 Strictly speaking, it is not a sort in our syntax because products are restricted
to argument positions. But there is no problem since occurrences of Config in the
following construction are also restricted to argument positions.
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There is a bijection between the set of functions N → � and the subset of
natural numbers {0, 1, . . . , 2N−1}, given by binary encoding, i.e. (f̂ : N→ �) !→∑

i<N,f̂(i)=t 2
i. For example, consider the case that N = 4 and N = {0, 1, 2, 3}.

Then 6 (= 0110 in binary) is represented by f̂6 such that f̂6(0) = f̂6(3) = f and

f̂6(1) = f̂6(2) = t. Therefore f6 is given by f6(t) = {1, 2} and f6(f) = {0, 3}.
Now let us consider the way to define operations such as the successor, pre-

decessor and equality test. The key fact is that there is a term (say get) that

computes f̂(i) for f ∈ � ⇒ N and i ∈ N, and there exists a term (say put)

that computes g ∈ � ⇒ N such that ĝ = f̂ [i !→ b] for f ∈ � ⇒ N, i ∈ N and
b ∈ {t, f}. They are given by the following informal equations:

get 〈f, i〉 = if(f t = i, t, Ω) ⊕ if(f f = i, f, Ω)
put 〈f, i, b〉 = λc�.

(
if(b = c, i, Ω) ⊕ ((λj.if (i �= j, j, Ω)) (f c))

)
where f :: �→ N and i, j :: N and b, c :: �. Note that put would be incorrect in
the call-by-name setting. By using these functions, we can write operations like
successor, predecessor and equality test for � ⇒ N. For example, the equality
test eq can be defined by eq = λ〈f, g〉.e 〈f, g,N − 1〉, where e is given by the
following recursive definition:

e 〈f, g, i〉 = if((get 〈f, i〉)=(get 〈g, i〉), if(i = 0, t, e 〈f, g, (i− 1)〉), f).

Formal Development. We formally define the notion of implementations and
show that replacement of natural numbers with its implementations preserves
reachability.

Definition 2 (Implementation of Natural Numbers). Let N be the tuple
(N,D, κ, {Vi}i∈{0,1,...,N−1}, eq, s,p, z,max), where N is a natural number, D is
a function definition, κ is a sort, {Vi}i is an indexed set of pairwise disjoint sets
of closed values of sort κ, eq is a closed value of sort κ × κ → �, s and p are
closed values of sort κ → κ, and z and max are closed values of sort κ. Here
we consider terms without natural numbers. We say N is an implementation of
natural numbers up to N just if the following conditions hold (here V =

⋃
i Vi).

– For every v, v′ ∈ V , evaluation of eq 〈v, v′〉, s v and p v under D never fails.
– z ∈ V0 and max ∈ VN−1.
– For every v ∈ Vn and v′ ∈ Vn′ , eq 〈v, v′〉 −→∗

D t if and only if n = n′, and
eq 〈v, v′〉 −→∗

D f if and only if n �= n′.
– For every v ∈ Vn, s v −→∗

D v′ implies v′ ∈ Vn+1 and if n + 1 < N then
s v −→∗

D v′ for some v′ ∈ Vn+1. Similarly, p v −→∗
D v′ implies v′ ∈ Vn−1 and

if n ≥ 1 then p v −→∗
D v′ for some v′ ∈ Vn−1.

The sort of N is κ and the order of N is that of κ.

Given an implementation N of natural numbers up to N and a term t with
natural numbers up to N , we write tN for the term without natural numbers
obtained by replacing constants with values given by N, e.g.,

0N = z SN = s (t u)N = tN uN (λx.t)N = λx.(tN).
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Note that programs do not contain constant numbers except for 0 by definition.
Given a function definition D, DN can be defined straightforwardly. See the long
version for the concrete definition.

Lemma 4. Let let rec D in t be a program with natural numbers up to N ,
and N be an implementation of natural numbers up to N . Then let rec D in t
fails if and only if let rec DN in tN fails.

Given a natural number n ≥ 1, we present an implementation of natural
numbers up to expn(2) whose order is 1. By using the implementation to the
program constructed in Lemma 3, the nonelementary result for the reachability
problem for order-3 programs is established.

For every n, we shall define an implementation N(n) of natural numbers up
to expn(2) by induction on n. As for the base case, the natural numbers up to
exp0(2) = 2 (i.e. {0, 1}) can be naturally implemented by using �. We call this
implementation N(0). As for the induction step, assuming an implementation
N = (N,D, κ, {Vi}i, eq, s,p, z,max) of natural numbers up to N , it suffices to
construct an implementation of natural numbers up to 2N , say �N = (2N , D ∪
D′,�→ κ, {V ′

i }i∈{0,1,...,2N−1}, eq
′, s′,p′, z′,max′).

– The additional function definition D′ defines get, put and other auxiliary
functions used to define s′ and others. The definitions of get and put are:

get = λ〈x�→κ, iκ〉. if(eq 〈x t, i〉, t, Ω) ⊕ if(eq 〈x f, i〉, f, Ω)

put = λ〈x�→κ, iκ, b�〉.λc�.
(
if(b = c, i, Ω) ⊕ ((λj.if (eq 〈i, j〉, Ω, j)) (x c))

)
– Let m < 2N and bN−1 . . . b0 be its binary representation. Then V ′

m is the set
of values v of sort �→ κ such that
1. bi = 1 iff v t −→∗ v′ for some v′ ∈ Vi,
2. bi = 0 iff v f −→∗ v′ for some v′ ∈ Vi, and
3. v t −→∗ v′ or v f −→∗ v′ implies v′ ∈

⋃
i∈{0,...,N−1} Vi.

Here x = y is the shorthand for if(x, if (y, t, f), if(y, f, t)). For n ≥ 1, we define
N(n+ 1) = �(N(n)). See the long version for the concrete definition of �N.

Lemma 5. N(n) is an implementation of natural numbers up to expn(2). Fur-
thermore, the sort, the function definition and the operations of N(n) can be
constructed in time polynomial with respect to n.

Proof (Theorem 1). The claim follows from Lemmas 3, 4 and 5. Note that (i)
expn(x) ≤ expn+x(2), and (ii) given an order-n program with natural numbers
up to expm(2), the replacement of natural number constants with N(m) can be
done in time polynomial with respect to m and the size of the program, and the
resulting program is of order n (provided that n ≥ 2). ��
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4 Depth-n Reachability is n-EXPTIME Hard

In this section, we show a sketch of the proof of Theorem 2 below.

Theorem 2. For every n > 0, the reachability problem for depth-n programs is
n-EXPTIME hard.

We reduce the emptiness problem of order-n alternating pushdown systems,
which is known to be n-EXPTIME complete [4], to the reachability problem
for depth-n programs. The basic idea originates from the work of Knapik et
al. [6], which simulates a deterministic higher-order pushdown automaton by a
safe higher-order grammar.

Since Knapik et al. [6] considered call-by-name grammars, we need to fill the
gap between call-by-name and call-by-value. A problem arises when a divergent
term that would not be evaluated in the call-by-name strategy appears in an
argument position. We use the non-deterministic branch and the Boolean values
to overcome the problem. Basically, by our reduction, every term of the ground
sort is of the form f⊕ s, and thus one can choose whether s is evaluated or not,
by selecting one of the two possible reduction f ⊕ s −→ f and f ⊕ s −→ s. A
detailed proof can be found in the long version.

5 Intersection-Type-Based Model-Checking Algorithm

We develop an intersection type system that completely characterises the reacha-
bility problem and give an upper bound of complexity of the reachability problem
by solving the typability problem.

5.1 Types

The pre-types are given by the following grammar:

(Value Pre-types) θ ::= t | f |
∧

i∈I(θ1,i×. . .×θn,i → τi)
(Term Pre-types) τ, σ ::= θ | Fκ

The index I of the intersection is a finite set. We allow I to be the empty set,
and we also write

∧
∅ for the type. The subscript κ of Fκ is often omitted. We

use infix notation for intersection, e.g. (θ1 → τ1) ∧ (θ2 → τ2). The intersection
connective is assumed to be associative, commutative and idempotent. Thus
types

∧
i∈I(θ1,i×. . .×θn,i → τi) and

∧
j∈J (θ

′
1,j×. . .×θ′n,j → τ ′n,j) are equivalent

if {(θ1,i, . . . , θn,i, τi) | i ∈ I} and {(θ′1,j , . . . , θ′n,j , τ ′j) | j ∈ J} are equivalent sets.
Value pre-types are types for values and term pre-types are those for terms.
The value pre-type t is for the Boolean value t and f for the Boolean value

f. The last one is for abstractions. It can be understood as the intersection of
function types of the form θ1×. . .×θn → τ . The judgement λ〈�x〉.t : θ1×. . .×θn → τ
means that, for all values vi : θi (for every i ≤ n), one has [�v/�x]t : τ . For example,
λx.x : t→ t and λx.x : f→ f. The judgement λ〈�x〉.t :

∧
i∈I(θ1,i×. . .×θn,i → τi)

means that, for every i ∈ I, one has λ〈�x〉.t : θ1,i× . . .×θn,i → τi. Therefore,
λx.x : (t→ t) ∧ (f→ f).
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The term pre-type F means failure, i.e. t : F just if t −→∗ E[F]. The term
pre-type θ is for terms that is reducible to a value of type θ, i.e. t : θ just if
t −→∗ v and v : θ for some v. For example, consider u0 = (λx.t) ⊕ (λx.f)
and u′0 = λx.(t ⊕ f) in Example 1. Then u0 : t → t since u0 −→ λx.t, and
u0 : t → f since u0 −→ λx.f. It is worth noting that t : θ1 and t : θ2 does not
imply t : θ1 ∧ θ2, e.g. u0 does not have type (t → t) ∧ (t → f). In contrast,
u′0 : (t→ t)∧(t→ f). So the difference between u0 and u

′
0 is captured by types.

Given a sort κ, the relation τ :: κ, read “τ is a refinement of κ,” is inductively
defined by the following rules:

t :: � f :: � Fκ :: κ

θk,i :: κk τi :: ι (for all i ∈ I, k ∈ {1, . . . , n})∧
i∈I(θ1,i×. . .×θn,i → τi) :: κ1×. . .×κn → ι

Note that intersection is allowed only for pre-types of the same sort. So a pre-
type like ((t → t) → t) ∧ (t → t) is not a refinement of any sort. A type is a
value pre-type with its sort θ :: κ or a term pre-type with its sort τ :: κ. A type
is often simply written as θ or τ .

Let θ, θ′ :: κ be value types of the same sort. We define θ ∧ θ′ by:

t ∧ t = t f ∧ f = f (
∧
i∈I

(�θi → τi)) ∧ (
∧
j∈J

(�θj → τj)) =
∧

i∈I∪J

(�θi → τi)

and t ∧ f and f ∧ t are undefined.

5.2 Typing Rules

A type environment Γ is a finite set of type bindings of the form x : θ (here x
is a variable or a function symbol). We write Γ (x) = θ if x : θ ∈ Γ . We assume
type bindings respect sorts, i.e. x :: κ implies Γ (x) :: κ. A type judgement is of
the form Γ * t : τ . The judgement intuitively means that, if each free variable
x in t is bound to a value of type Γ (x), then at least one possible evaluation of
t results in a value of type τ . We abbreviate a sequence of judgements Γ * t1 :
τ1, . . . , Γ * tn : τn as Γ * �t : �τ . The typing rules are listed in Fig. 2.

Here are some notes on typing rules. Rule (Abs) can be understood as
the (standard) abstraction rule followed by the intersection introduction rule.
Rule (App) can be understood as the intersection elimination rule followed by
the (standard) application rule. Note that intersection is introduced by (Abs)

rule and eliminated by (App) rule, which is the converse of the call-by-name
case [7]. Rule (Var) is designed for ensuring weakening. Rule (App-F1) re-
flects the fact that, if t −→∗ E[F], then t 〈�u〉 −→∗ E′[F] where E′ = E 〈�u〉.
Rule (App-F2) reflects the fact that, if t −→ v0 and ui −→∗ vi for i <
l, then t 〈u1, . . . , ul−1, ul, ul+1, . . . , un〉 −→∗ v0 〈v1, . . . , vl−1, E[F], ul+1, . . . , un〉.
The premises t : θ0 and ui : θi (i < l) ensure may-convergence of their evaluation.

Typability of a program is defined by using the notion of the nth approxima-
tion (see Section 2 for the definition). Let P = let rec D in t be a program.
Thus t is a term of sort � with free occurrences of function symbols. We say the
program P has type τ (written as * P : τ) just if * [t]nD : τ for some n.



Complexity of Model-Checking Call-by-Value Programs 191

x : θ ∧ θ′ ∈ Γ for some θ′

Γ � x : θ
(Var)

b ∈ {t, f}
Γ � b : b (Bool)

Γ � F : F
(F)

Γ, �x : �θi � t : τi for all i ∈ I
Γ � λ〈�x〉.t : ∧i∈I(

�θi → τi)
(Abs)

Γ � t : ∧i∈I(
�θi → τi)

Γ � �u : �θl l ∈ I
Γ � t 〈�u〉 : τl

(App)

Γ � t : F
Γ � t 〈�u〉 : F (App-F1)

Γ � t : θ0
Γ � u1 : θ1

...
Γ � ul−1 : θl−1

Γ � ul : F

Γ � t 〈�u〉 : F (App-F2)

Γ � t : t Γ � s1 : τ

Γ � if(t, s1, s2) : τ
(C-T)

Γ � t : f Γ � s2 : τ

Γ � if(t, s1, s2) : τ
(C-F)

Γ � t : F
Γ � if(t, s1, s2) : F

(C-F)

∃i ∈ {1, 2} Γ � ti : τ
Γ � t1 ⊕ t2 : τ

(Br)

Fig. 2. Typing Rules

Soundness and completeness of the type system can be proved by using a
standard technique for intersection type systems, except that Substitution and
De-Substitution Lemmas are restricted to substitution of values and Subject
Reduction and Expansion properties are restricted to call-by-value reductions.
For more details, see the long version of the paper.

Theorem 3. * P : F if and only if P fails.

5.3 Type-Checking Algorithm and Upper Bound of Complexity

We provide an algorithm that decides the typability of a given depth-n program
P in time O(expn(poly(|P |))) for some polynomial poly . Let P = let rec D in t
and suppose that * D :: Δ, Δ * t :: � and Δ = {fi :: δi | i ∈ I}.

We define T (κ) = {τ | τ :: κ} and T (Δ) = {Γ | Γ :: Δ}. For τ, σ ∈ T (κ), we
write τ 1 σ just if τ = σ ∧ σ′ for some σ′. The ordering for type environments
is defined similarly. Let FD be a function on T (Δ), defined by:

FD(Θ) =
{
f :
∧
{�θ → τ | Θ, �x : �θ * t : τ}

∣∣∣ (f = λ〈�x〉.t) ∈ D
}
.

The algorithm to decide whether * let rec D in t : F is shown in Fig. 3.
Termination of the algorithm comes from monotonicity of FD and finiteness of

T (Δ). Correctness is a consequence of the following lemma and the monotonicity
of the approximation (i.e. if [t]mD fails and m ≤ m′, then [t]m

′
D fails).
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1 : Θ0 := {f :
∧ ∅ | f ∈ dom(Δ)}, Θ1 = FD(Θ0), i := 1

2 : while Θi �= Θi−1 do

2-1 : Θi+1 := FD(Θi)
2-2 : i := i+ 1
3 : if Θi � t : F then yes else no

Fig. 3. Algorithm checking if � let rec D in t : F

Lemma 6. Suppose Δ | K * t :: �. Then ∅ * [t]nD : τ if and only if Θn * t : τ .

We shall analyse the cost of the algorithm. For a set A, we write #A for the
number of elements. The height of a poset A is the maximum length of strictly
increasing chains in A.

Lemma 7. Let κ be a sort of depth n. Then #T (κ) ≤ expn+1(2|κ|) and the
height of T (κ) is bounded by expn(2|κ|).

Lemma 8. Let Δ | K * t :: κ be a sorted term of depth n, and Θ :: Δ. Assume
that depth(K) ≤ n− 1. Then AΘ,t = {(Γ, τ) ∈ T (K) × T (κ) | Θ,Γ * t : τ} can
be computed in time O(expn(poly(|t|))) for some polynomial poly.

Proof. We can compute AΘ,t by induction on t. An important case is that the
sort κ is of depth n. In this case, there exists BΘ,t ⊆ T (K)×T (κ) such that (1)
(Γ, τ) ∈ AΘ,t if and only if (Γ, τ ′) ∈ BΘ,t for some τ ′ 1 τ and (2) for each Γ , the
number of elements in BΘ,t 
 Γ = {τ | (Γ, τ) ∈ BΘ,t} is bounded by |t|. See the
long version for the proof of this claim. By using BΘ,t as the representation of
AΘ,t, AΘ,t can be computed in the desired bound. For other cases, one can enu-
merate all the elements in AΘ,t, since #AΘ,t ≤ expn(2(|K|+ |κ|)) ≤ expn(2|t|)
(here we assume w.l.o.g. that each variable in dom(K) appears in t). ��

Theorem 4. The reachability problem for depth-n programs is in n-EXPTIME.

Proof. By Lemma 8, each iteration of loop 2 in Fig. 3 runs in n-EXPTIME. Since
the height of T (Δ) is bounded by expn(2|Δ|), one needs at most expn(2|Δ|)
iterations for loop 2, and thus loop 2 runs in n-EXPTIME. Again by Lemma 8,
step 3 can be computed in n-EXPTIME. Thus the algorithm in Fig. 3 runs in
n-EXPTIME for depth-n programs. ��

6 Related Work

Higher-order model checking. Model-checking recursion schemes against modal
μ-calculus (known as higher-order model checking) has been proved to be de-
cidable by Ong [15], and applied to various verification problems of higher-order
programs [7,11,12,17]. The higher-order model-checking problem is n-EXPTIME
complete for order-n recursion schemes [15]. The reachability problem for call-
by-name programs is an instance of the higher-order model checking, and (n−1)-
EXPTIME complete for order-n programs [10].
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Model-checking call-by-value programs via the CPS translation. The previous
approach for model-checking call-by-value programs is based on the CPS trans-
lation. Our result implies that the upper bound given by the CPS translation
is not tight. However this does not imply that the CPS translation followed
by call-by-name model-checking is inefficient. It depends on the model-checking
algorithm. For example, the näıve algorithm in [7] following the CPS transla-
tion takes more time than our algorithm, but we conjecture that HorSat [2]
following the CPS translation meets the tight bound.

Sato et al. [16] employed the selective CPS translation [14] to avoid unneces-
sary growth of the order, using a type and effect system to capture effect-free
fragments and then added continuation parameters to only effectful parts.

Intersection types for call-by-value calculi. Davies and Pfenning [3] studied an
intersection type system for a call-by-value effectful calculus and pointed out
that the value restriction on the intersection introduction rule is needed. In our
type system, the intersection introduction rule is restricted immediately after the
abstraction rule, which can be considered as a variant of the value restriction.

Similarly to the previous work on type-based approaches for higher-order
model checking [7,8,9], our intersection type system is a variant of the Essential
Type Assignment System in the sense of van Bakel [18], in which the typing rules
are syntax directed. Our syntax of intersection types differs from the standard
one for call-by-name calculi. Our syntax is inspired by the embedding of the call-
by-value calculus into the linear lambda calculus [13], in which the call-by-value
function type A→ B is translated into !(A � B) (recall that function types in
our intersection type system is

∧
i(τi → σi)).

Zeilberger [19] proposed a principled design of the intersection type system
based on the idea from focusing proofs [1]. Its connection to ours is currently
unclear, mainly because of the difference of the target calculi.

Our type system is designed to be complete. This is a characteristic feature
that the previous work for call-by-value calculi [3,19] does not have.

7 Conclusion

We have studied the complexity of the reachability problem for call-by-value
programs, and proved the following results. First, the reachability problem for
order-3 programs is non-elementary, and thus the order of the program does not
serve as a good measure of the complexity, in contrast to the call-by-name case.
Second, the reachability problem for depth-n programs is n-EXPTIME complete,
which improves the previous upper bound given by the CPS translation.

For future work, we aim to (1) develop an efficient model-checker for call-by-
value programs, using the type system proposed in the paper, and (2) study the
relationship between intersection types and focused proofs [1,19].

Acknowledgement. This work is partially supported by JSPS KAKENHI
Grant Number 23220001.
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Abstract. We consider two-player reachability games with additional
resource counters on arenas that are induced by the configuration graphs
of pushdown systems. For a play, we define the resource cost to be the
highest occurring counter value. In this way, we quantify resources and
memory that player 0 needs to win. We introduce the bounded winning
problem: Is there a uniform bound k such that player 0 can win the
game from a set of initial configurations with this bound k? We provide
an effective, saturation-based method to solve this problem for regular
sets of initial and goal configurations.

1 Introduction

Pushdown automata have become an important tool in the formal analysis and
verification of recursive programs. Since their introduction by A.G. Oettinger in
1961 and M.-P. Schützenberger in 1963, they have been intensively studied and
are relatively well-understood today. Pushdown automata without input alpha-
bet, which only operate with their control states on the stack, are usually called
pushdown systems. The configuration graphs of such systems are called pushdown
graphs. They can be used as a formal model for recursive programs because they
combine good expressive power with an (efficiently) decidable point-to-point
reachability problem. An example of their application in the area of formal veri-
fication is the model checker jMoped [14], which uses symbolic pushdown systems
to verify Java bytecode.

However, mere reachability on transition systems lacks the possibility to model
an environment system or possible user input. This can be achieved by two-
player games on graphs. Such games were studied in the course of the controller
synthesis problem proposed by A. Church in [8], and many positive algorithmic
results are known today for games on finite graphs. Moreover, two player games
on pushdown graphs with ω-regular winning conditions were solved in [15] by
I. Walukiewicz. Later, T. Cachat showed in [4] that the well-known saturation
approach for pushdown system reachability can be extended to reachability and
Büchi games on pushdown graphs.
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Recently, several models of games with additional resource constraints were
introduced to provide a model for systems with resource consumption. In this
context, the resources are usually modeled by integer counters that can be mod-
ified by the players but not read during the game. In addition to usual winning
conditions such as Büchi or Parity, the winning conditions of these games re-
strict the values of the resource counters throughout the game. Typically, it is
required that these values are bounded by a global limit. Examples for such
games are energy games (cf. [5]), energy parity games (cf. [6]), or consumption
games (cf. [3]). However, all these previous games are defined over finite graphs.
Only very recently, and independently from the author, games with such a struc-
ture were considered on graphs induced by pushdown systems (cf. [7]). Although
the game model considered there is essentially the same, the questions we solve
and the methods we use are quite different from those in [7].

In this work, we consider resource pushdown systems. These are pushdown
systems that are extended with a finite set of non-negative integer counters.
They can be used to model recursive programs with resource consumption. We
examine two-player games on the configuration graphs of these systems. Every
resource counter can be modified by the pushdown rules either by incrementing it
(for short i), or resetting it to zero (for short r). Moreover, it is possible to leave
a counter unchanged (no operation or n). The counters cannot be read during
the game. This reflects a step-by-step consumption and all-at-once replenishment
model of resources. The form of the counters is the same as in the ωB-games
considered in [7] and very similar to the model used in consumption games
(cf. [3]) on finite graphs. It is also used in the model of B-automata (cf. [9]).

We introduce reachability games with an additional bound on the resource
counters – called resource reachability games. We fix some resource bound k ∈ N.
In a play on the configuration graph of a resource pushdown system, the coun-
ters are updated according to the operations associated with the used pushdown
rules. In order to win the game w.r.t. the bound k, player 0 does not only have
to reach a certain set of goal configurations F but also needs to ensure that all
counter values throughout the play stay below k. We examine this kind of game
and present a method to compute the winning region and winning strategies
for player 0 in the case of regular sets of goal configurations. Furthermore, we
investigate the bounded winning problem. Given a set A of initial configurations.
Is there a uniform resource bound k ∈ N such that player 0 wins the resource
reachability game from all configurations in A w.r.t. this bound k? In order to
solve this problem, we thoroughly analyze the propagation of counter operations
in the saturation approach. Thereby, we can extend the saturation idea intro-
duced by T. Cachat to effectively translate the question of winning cost into a
membership query for alternating B-automata. In total, we reduce the bounded
winning problem to a boundedness problem for B-automata. In contrast to [7],
we consider only finite plays and are interested in finding uniform bounds that
can be respected by all plays starting from sets of initial configurations. In [7],
infinite games are considered with an interest in checking for a given initial
configuration whether for each play there is an individual bound.
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This work is grouped into three parts. First, we fix the notation and present
the preliminaries. Second, we formally introduce resource pushdown systems and
resource reachability games. Furthermore, we investigate some general properties
of the games and calculate the winning region of player 0 for a given resource
bound. In the third part, we consider the bounded winning problem and present
our solution approach.

2 Preliminaries

For a set Σ, we denote the set of finite sequences (or words) over Σ by Σ∗. For
a word w ∈ Σ∗, we write w(i) for the i-th letter in the word (zero indexed). For
sets A,B, we write BA for the set of all functions from A to B and BA

p for the
set of all partial functions from A to B. We write ⊥ to indicate that a partial
function is undefined on some value.

The fundamental model that we consider are two-player games on graphs. A
game graph A = (V,E) is directed and its vertices V are partitioned into two
sets V0, V1 indicating to which player the vertex belongs. Such a game graph
is often called arena. The two players are called 0 (or Eve) and 1 (or Adam).
A play of a game on A is a (possibly infinite) sequence of moves in which the
two players move a game pebble across the graph. A play starts in some vertex
v ∈ V . In each step of the game, the player to which the current vertex belongs
can move the pebble to one of the successor vertices. Formally, we say a play is
the sequence τ of edges along which the pebble is moved.

The winner of a fixed play in a game is determined by the so-called winning-
condition. In a reachability game, we fix a goal set F ⊆ V of vertices in the game
graph. Player 0 wins the reachability game if the play visits a vertex from F after
a finite number of moves. Otherwise, player 1 wins the game. In general, we are
interested in knowing whether one of the players can force to win (independent
of how the other player moves) by following a certain strategy. A strategy for
player i is a mapping σ that maps all past moves (∈ E∗) of the play to the
next edge to take whenever the current position is a vertex of Vi. A strategy
is called winning for player i if all plays in which player i moves according to
the strategy are winning for player i. A strategy is called finite memory if it
can be implemented by a finite state Mealy machine that reads all the moves
of the opponent and outputs the next move of the respective player. It is called
memoryless or positional if the next move only depends on the current vertex.
We call the vertices from which player i has a winning strategy the winning
region of player i. A game is called determined if for every starting vertex either
player 0 or player 1 has a winning strategy. Reachability games are know to be
determined and admit positional winning strategies for both players on their
respective winning regions. A comprehensive introduction to two-player games
and proofs for the claims above can be found, e.g., in [11].
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q0
a : i
b : r

q0 q1 q2 q3
a : n
b : n

b : n a : i

a : i

b : n a : n
b : n

Fig. 1. Example B-automaton: left: count maximal length of uninterrupted a-block /
right: count minimal length of uninterrupted a-block

2.1 Counters as Resource Model

We model resources by a finite set of non-negative integer counters. Each counter
supports two kinds of operations. First, the counter can be incremented (for
short i). This represents the usage of a single resource. Second, a counter can
be reset to zero (for short r). This models the full replenishment of the resource.
Additionally, we use n as a shorthand notation for no operation (the counter
is left unchanged). The counters operate independently from each other. Thus,
we can use multiple counters in order to model different types of resources. We
associate the resource usage or consumption with the highest occurring counter
value. This scheme of step-by-step consumption and all at once replenishment
is motivated by scenarios such as battery driven systems or the usage of paper
in a printer.

Finite state automata with similar counters have been studied in [1] (R-
automata) and [9] (B-automata). In the context of this work, we use the model
of B-automata and known results for this formalism as a tool. B-automata were
introduced by T. Colcombet in [9] and extend finite state automata with a finite
set of counters (denoted by Γ ) as described above1. The counters can be manip-
ulated by the transitions but not read by the automaton. Throughout a run, the
counters are updated according to the used transitions. The value of a run is the
maximal counter value (over all counters) that occurs in the run. B-automata
naturally define a function from words to N ∪ {∞}. For a B-automaton A and
a word w, we assign w to the infimum of the values of all accepting runs of A
on w and denote this value by �A�(w). We also call it the (resource) cost of w.
Note that �A�(w) =∞ if there is no accepting run for w.

Figure 1 shows two examples of B-automata. Their semantics are to count
the maximal (left) / minimal (right) number of subsequent letters a without
interruption. The left automaton just increments for each letter a and resets the
counter to zero when it reads a b. Consequently, the unique run of a word has the
value of the longest uninterrupted block of as. The right automaton calculates
the minimal length of a blocks by nondeterministically guessing the position of
the minimal block in the word. It changes to q1 when the block starts (or starts
in q1 if this block is at the beginning) and counts its length.

In the context of systems with resources modeled by counters as described
above, we are especially interested in the question of boundedness : Is there a
bound on the resource consumption for a given set of runs? A solution to this

1 In difference to the original publication we do not use the counter operation check
because it is not necessary for our work and simplifies the overall presentation.
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question is part of the realizability problem since real world systems can only
have limited resources. With formal verification in mind, we are especially in-
terested in decidable variants of this question. The boundedness problem for
B-automata is decidable, i.e., one can algorithmically check if there is a global
bound k ∈ N for a given B-automaton A such that for all words w, we have
�A�(w) ≤ k. In the case of multiple counters, this was first shown by D. Kirsten
in [13] for a slightly more restrictive counter model (hierarchical counters). He
also proved that this problem is PSPACE-hard. In the case of B-automata, the
boundedness problem was solved by T. Colcombet in [9].

2.2 Counter Profiles

In order to provide a well understandable way to reason about sequences of
counter operations, we introduce a structured representation in the form of a
well-partially ordered monoid. This enables us to present our results more gen-
erally for systems that are annotated with such a structure and to emphasize
which properties are needed to obtain the results. For sequences of counter op-
erations, we introduce the notion of counter profiles and use this model instead
of sequences of counter operations in the context of the bounded winning prob-
lem. A counter profile is a 3-tuple (i+←, cmax , i

+
→) ∈ (N ∪ {�})3. It represents a

sequence u of counter operations (from {i, n, r}∗) with the following intuition.
For the sake of simplicity, we assume that u does not contain any ns since they
have no influence on the counter. The component i+← represents the number of
increments before the first reset, i.e., the largest j ∈ N such that ij is a prefix
of u. The component cmax represents the maximal counter value between two
subsequent resets, i.e., the largest j ∈ N such that rijr is an infix of u. Lastly,
i+→ represents the number of increments after the last reset, i.e., the largest j ∈ N

such that rij is a suffix of u. If the sequence u contains only one (or even no)
reset, the components cmax (and i+→) are set to � (read n/a). On these profiles,
we define the concatenation ◦ such that it reflects the concatenation of counter
sequences. One can see by checking all cases that all counter profiles together
with the concatenation and (0,�,�) as neutral element form a monoid. Each
of the three base operations directly corresponds to a profile – n to (0,�,�), i
to (1,�,�) and r to (0,�, 0). By translating each operation into its profile and
concatenating all the profiles along a run, one obtains a profile that provides
the value of this run by its maximal entry as well as all information necessary
to interpret the sequence as part of a longer sequence. As a result, we can use
counter profiles as an equivalent representation for counter sequences.

In contrast to counter sequences, counter profiles offer a natural way to define
a partial order. For two profiles p1 and p2 we say p1 is less than or equal to
p2 (and write p1 ≤ p2) if all components of p1 are less than or equal to p2
(component-wise order). In each component we use the canonical order on N

and let the newly introduced � be incomparable to all natural numbers. This
order is a well-partial order in every component since it has neither infinitely
decreasing chains nor infinite anti-chains. By a result of Higman (cf. [12]), we
obtain that the component-wise order we defined on the counter profiles is a
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well-partial order, too. We remark that the order is compatible with the monoid
operation.

Systems with several counters can be represented by a vector of counter pro-
files. We extend the concatenation and the order to these vectors by applying the
concatenation in each component and taking the component-wise order. Again
by the result of Higman and simple checking, we obtain that these vectors of
counter profiles still form a monoid and the order is a well-partial order. For a
set of such vectors of profiles or a set of profiles A, we denote the set of maximal
elements of A by maxA. We remark that maxA may contain several elements
because the order is not total. However, by definition of maximal, maxA is an
anti-chain and thus finite.

3 Resource Reachability Games

We introduce pushdown systems with a finite set of counters as model for re-
cursive programs with resource consumption. These counters follow the previ-
ously described ideas and provide a way to model step-by-step usage and all at
once replenishment of several resource types during the execution of recursive
programs.

Definition 1. A resource pushdown system is a 4-tuple P = (P,Σ,Δ, Γ ) where
P is a finite set of control states, Σ is a finite stack alphabet, Δ ⊆ P ×Σ×Σ∗×
P × {i, r, n}Γ is a finite transition relation and Γ is a finite set of counters.

Similar to normal pushdown systems, a configuration of a resource pushdown
system is a pair of a state from P and a finite word from Σ∗. The successor
relation on configurations is defined similar to normal pushdown systems. We
additionally associate this step of the system with the counter operation f of
the transition used. Formally, for two configurations pu, qv ∈ P ×Σ∗, we say qv
is an f -successor of pu and write pu *f qv if there is a common suffix w and
a transition (p, a′, v′, q, f) ∈ Δ such that u = a′w and v = v′w. We denote the
configuration graph of P by CP = (P ×Σ∗,*). In our examples, we use systems

with only one counter and write, e.g., pa
i−→ qv as a shorthand notation for a

transition (p, a, v, q, f) where f maps the unique counter to i. Analogously, we
write pu *i qv if pu *f qv with f(c) = i for the unique counter c.

We obtain a game arena from the configuration graph of a resource pushdown
system by providing an additional partition of the state space P = P0 � P1.
Configurations with a state in Pi belong to player i. A game on this arena
is played as in the classical case but each move additionally provides counter
operations according to the corresponding pushdown rule. As for B-automata,
we simulate the counters along the play and associate the resource consumption
at every point in the play with the highest counter value that occurred so far. On
such arenas, we consider a combined reachability and resource limit objective.
Let F be a set of goal configurations and k ∈ N be a resource limit. Player 0
wins the resource reachability game with respect to F and k if the play reaches
a configuration in F and the resource consumption at this point is at most k.
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. . . pa4 pa3 pa2 pa1 pε

∈ F

i i i i i

r r r r

Fig. 2. Example for the configuration graph of a simple resource pushdown system

For these games, we consider different kinds of winning regions. First, we con-
sider the resource independent winning region of player 0 denoted by W0 (F ).
A configuration pw is in W0 (F ) if player 0 can reach F from pw with arbi-
trarily high resource consumption. Second, we consider the winning region with

resource limit k denoted byW
(k)
0 (F ). A configuration pw is inW

(k)
0 (F ) if player

0 wins the resource reachability game with the respective limit k on the resource
consumption. This second, new type of winning region immediately yields two
algorithmic questions:

1. We fix F and k ∈ N and ask what is W
(k)
0 (F )?

2. We fix a set A and ask whether there is a uniform resource bound k such
that player 0 wins the resource reachability game with bound k from A, i.e.,

whether A ⊆W
(k)
0 (F ). We call this problem the bounded winning problem.

We illustrate the newly introduced concepts with the following example. Con-
sider a resource pushdown system P = (P,Σ,Δ, Γ ) with only one state p ∈ P ,
the stack alphabet Σ = {a} and only one pushdown rule pa

i−→ pε ∈ Δ. Fig-
ure 2 (without the dotted transitions) shows a part of the configuration graph
of P . On this configuration graph, we compare the different winning regions for
the resource reachability game in which all configurations belong to player 0
and the goal set is F = {pε}. First, the resource independent winning region is
W0 (F ) = {pan | n ∈ N} because one can remove all letters a from the stack by

successively applying the rule pa
i−→ pε. However, each such step costs one incre-

ment of the resource counter. Hence, the winning region with resource bound k

is W
(k)
0 (F ) = {pan | n ≤ k}. Consequently, there is no uniform bound k such

that player 0 wins on complete W0 (F ) with this bound.

Now, we add the pushdown rule pa
r−→ paa to Δ of P . Then, the configuration

graph includes the dotted transitions in Figure 2. This does not change W0 (F )
in the considered resource reachability game but reduces the resources needed
to reach F from an arbitrary configuration to 2. For instance, let us start at
configuration pa3. The sequence pa3 *i pa2 *i pa *r pa2 *i pa *i pε shows
that F is reachable with a resource bound of 2. This idea of incrementing two
times and then resetting one time can easily be extended to all configurations.
Thus, we obtain that 2 is a uniform bound such that player 0 wins the resource

reachability game, i.e., W
(2)
0 (F ) =W0 (F ). This example already shows that we

generally cannot expect to obtain memoryless winning strategies for player 0 in
resource reachability games. Moreover, it illustrates that memoryless strategies
cannot obtain minimal resource bounds even on finite graphs.
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Fig. 3. Exponential memory in the number of counters is unavoidable to achieve the
best resource-limit possible

In the following, we solve the two algorithmic questions for the case that F

and A are regular. First, we consider the problem of calculating W
(k)
0 (F ) for

a fixed F and k. This problem can be reduced to solving (normal) reachability
games on pushdown graphs. The reduction is based on the idea of simulating the
counters up to the (finite) value k in the state space of the pushdown system.
With standard techniques (see e.g. [11]), we can obtain the winning region and
a winning strategy for the original game. We formalize this idea by

Proposition 2. Let P = (P0 �P1, Σ,Δ, Γ ) be a resource pushdown system. Let
F be a regular goal set and k ∈ N a resource bound for the bounded reachability
game on the configuration graph of P. One can effectively compute the winning

region W
(k)
0 (F ) and a corresponding finite memory winning strategy.

In a similar way as previously described, we obtain winning strategies for

player 1 for all configurations in P × Σ∗ \W (k)
0 (F ). As a direct consequence,

we obtain that resource reachability games are determined. We remark that this
idea can be easily extended to all ω-regular winning conditions.

The strategy obtained from the above reduction uses a memory structure that
is exponential in the number of counters. The example in Figure 3 shows that
this is generally unavoidable if the strategy should achieve the lowest possible re-
source bound. We use 5 counters in the example and denote the increment/reset
of counter j by ij/rj. While it is possible to get through the shown gadget with
resource limit 1 and all counters reset to zero before leaving, the strategy of
player 0 has to store the state of all counters in order to achieve this (25 = 32).
Nevertheless, if we allow a resource limit of 5, all counters can be reset to zero
before leaving the gadget with a memory structure of size 6.

4 The Bounded Winning Problem

In this section, we first show that the bounded winning problem is at least as com-
plex as solving the boundedness problem for B-automata. As already mentioned,
this is known to be PSPACE-hard (cf. [13]) even for a slightly simpler version
of automata (with hierarchical counters). Furthermore, there is a 2-EXPSPACE
algorithm (cf. [1]) to solve it. Subsequently, we introduce an alternating variant
of automata with monoid annotations, such as counter profiles. This model en-
ables us to extend a saturation-based solution approach for normal reachability
games on pushdown graphs to resource reachability games.
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Proposition 3. The bounded winning problem is at least as complex as the
boundedness problem for B-automata.

Proof. Let A = (Q,Σ, q0, Δ,Fin, Γ ) be a B-automaton. We define a resource
pushdown system with the following idea in mind: The pushdown system simu-
lates the automaton by letter-wise consuming the stack contents and simulating
the operation of A in its state space and with its counters. Formally, we define
the resource pushdown system by P = (Q,Σ,Δ′, Γ ) where

Δ′ := {(p, a, ε, q, f) | (p, a, q, f) ∈ Δ}

With this definition, we obtain for all words w ∈ Σ∗ the equivalence that
�A�(w) ≤ k iff there is is a qf ∈ Fin and a sequence of pushdown operations to
reach qfε from q0w with resource limit k. Consequently, there is a global bound
k such that for all words w ∈ Σ∗ : �A�(w) ≤ k iff there is a bound k such that
one can reach Fin × {ε} from all configurations in q0Σ

∗ with bound k. That is
exactly the bounded winning problem on P for P0 = Q,P1 = ∅, F = Fin× {ε}
and A = {q0w | w ∈ Σ∗}. ��

The main tool in constructing our saturation method for resource reachability
games is the model of alternating automata with B-automaton like counters. We
introduce and argue on the base of a slightly more general model with annota-
tions from well-partially ordered monoids. This shows the properties we use more
clearly, and simplifies the presentation. In the analysis of resource reachability
games, we instantiate the model with (vectors of) counter profiles as a formalism
equivalent to B-automaton counters. We model the alternation by nondetermin-
istic choice among transitions with possibly several target states. A run of the
alternating automaton has the form of a tree. For the transition chosen, the
run has to be continued from all target states of the respective transition. This
is an explicit presentation of the otherwise often used positive boolean formula
notation for transitions of alternating automata. It has the advantage, for our
purpose, that we can associate the different paths in the automaton with differ-
ent annotations more easily. This is needed to reflect the multiple choices in the
game. Formally, we have

Definition 4. An annotated alternating automaton is a tuple A = (Q,Σ, In, Δ,
F,M). The components Q, Σ, In and F are defined as usually for automata.
M = (M, ◦, eM ,≤) is a well-partially ordered monoid. The transition relation

Δ is a finite set Δ ⊆ Q × Σ × (AntiChain(M))Qp where AntiChain(M) is the set
of all anti-chains with elements from M . For a transition t = (p, a, f), we define
the successor states of the transition by Succ(t) := dom(f). The automaton is
called normalized, if states in In have no ingoing transitions.

In order to define a run and the (annotation) values associated with the run,
we need the notion of a tree.

Definition 5. A tree T consists of a set of nodes T , a root node t0 ∈ T and a
child (or successor) function sT : T → Pow (T ) such that:
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1. for every node v ∈ T \ {t0} there is a unique parent node p ∈ T such that
v ∈ sT(p).

2. the child function has no loops, i.e., there is no sequence v0, v1, . . . , vn with
vi+1 ∈ sT(vi) for all i = 1, . . . , n− 1 such that v0 = vn.

3. every node is reachable from the root, i.e., for all nodes v ∈ T there is a
sequence t0 = v0, . . . , vn = v such that vi+1 ∈ sT(vi).

We use the following common operations on trees. The parent function πT :
T \ {t0} → T maps all nodes but the root to their unique parent nodes. The
distance function dT : T → N maps every node v to its distance from the root
node. The leafs of a tree are denoted by LeafsT = {v ∈ T | sT(v) = ∅}. A level
of a tree is a maximal set of nodes T ′ ⊆ T that all have the same distance from
the root, i.e., for v, v′ ∈ T ′ we always have dT(v) = dT(v

′).
A run of an alternating automaton on a word w = a1 . . . an follows the idea of

an inductive tree construction. It starts with the root node and associates this
node with the initial state of the automaton. Then, a transition a (p, a1, f) ∈ Δ
is selected and child nodes are created for all states in q ∈ dom(f) with their
different annotations f(q). For all child nodes, this construction continues on
the rest of the word a2, . . . , an. A run is called accepting if all the leaf nodes of
the tree are associated with final states of the automaton. Moreover, such a run
yields values from the annotation monoid by multiplying the annotations along
each path. We formalize this idea in the following two definitions.

Definition 6. A run of an annotated alternating automaton A on a word w is a
4-tuple ρ = (ρQ, ρΔ, ρM ,T) of three labeling functions and a tree T. The function
ρQ : T → Q is called state labeling function. The function ρΔ : T \ LeafsT → Δ
is called transition labeling function. The function ρM : T \ {t0} → M is the
annotation labeling function. They satisfy the following consistency properties:

1. ρQ(t0) ∈ In
2. The state labeling and the transition labeling are consistent with each other

and with the word w: For all v ∈ T \ LeafsT with labeled state ρQ(v) = q
and selected transition ρΔ(v) = t = (p, a, f) we have w(dT(v)) = a, q = p,
ρQ(sT(v)) = Succ(t)

3. For each node v ∈ T \ LeafsT with ρΔ(v) = t and every state q ∈ Succ(t),
there is exactly one child per annotation. Let Vq = {v′ ∈ sT(v) | ρQ(v′) = q}.
We have |Vq| = |f(q)| and ρM (Vq) = f(q).

We call a run partial if it does not start in In, and call it accepting if
ρQ(LeafsT) ⊆ F . If there is an accepting run of A on w, we write w ∈ L(A).
Moreover, if there is a run of A on w with ρQ(LeafsT) ⊆ S, we write w ∈ LS(A).

Definition 7. Let ρ = (ρQ, ρΔ, ρM ,T) be a runtree of an automaton A =
(Q,Σ, In, Δ, F,M). For each q ∈ ρQ(LeafsT), we define the value of ρ induc-
tively over the runtree.
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valqρ(v) =

{
{eM} if ρQ(v) = q

∅ otherwise
if v ∈ LeafsT

valqρ(v) = max{m1 ◦m2 | v′ ∈ sT(v),m1 = ρM (v′),

m2 ∈ valqρ(v
′)} otherwise

Additionally, we define the total value valρ(v) = max
⋃

q∈ρQ(LeafsT) val
q
ρ(v). We

write valq(ρ) as a shorthand for valqρ(t0) and val(ρ) as a shorthand for valρ(t0).

In the context of resource reachability games on pushdown graphs, we take
the annotation monoidM to be the vector of counter profiles with its dimension
matching the number of counters. Furthermore, we use the idea of P -automata
to read pushdown configurations. For a pushdown system P with control states
P and an automaton A reading configurations from P , we assume that P is part
of the state space of A. A run of A on some pushdown configuration pw then
starts in state p of A. This way A operates only on Σ and we do not need to
distinguish the different kinds of input symbols (from P and Σ).

The traditional saturation approach for reachability in pushdown systems
gradually extends a finite automaton with transitions that enable the automa-
ton to simulate replacement steps of the pushdown system. It starts with a
P -automaton A that recognizes some set F of pushdown configurations to be
reached. For a pushdown rule pa −→ qu it searches states q′ that can be reached
in A when reading the configuration qu. Then, an a-transition from p is added
to q′. This new transition enables the automaton to behave as if it had read qu
although it actually read pa. Hence, the automaton can now simulate the push-
down rule pa −→ qu. This is repeated until no more transitions can be added.
The resulting automaton recognizes the set of all predecessor configurations of
F . A complete presentation of this basic idea can be found in [2].

In [4], T. Cachat used alternating automata to lift this basic idea to reachabil-
ity games. His approach uses the similarities between games and the semantics
of alternating automata in the following way. Let A be an alternating automa-
ton recognizing a regular goal set F of the reachability game. Consider a player
1 state p of the pushdown system and let pa −→ q1u1, . . . , pa −→ qnun be all
pushdown rules originating in p with letter a on top of the stack. The satura-
tion method now looks for states q′i in A that can be reached when reading qiui
(i ∈ {1, . . . , n}) on A. It then adds an a-transition from p to {q′1, . . . , q′n} in A.
By the semantics of alternating automata, a run of the automaton is continued
in all target states of the transition. This reflects the fact that player 1 can
choose among pa −→ q1u1, . . . , pa −→ qnun and player 0 has to be able to reach
the goal set F for all possible choices in order to win the reachability game. The
case of player 0 states can be handled similar to the case of mere reachability.
Again, this procedure is repeated until no more transitions can be added to the
automaton. The resulting alternating automaton recognizes the winning region
of player 0.

We extend this idea with the overall goal of constructing an automaton with
counters that recognizes a pushdown configuration with cost k iff player 0 has
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a strategy to win the resource reachability game with a resource limit of k. To
realize this, the designed saturation method has to keep track of the resource
counter operations executed by the simulated pushdown transitions. We use
the monoid annotation of the automaton to store the counter profile associated
with the resource counter operation of the simulated pushdown rule. The major
difficulty arises from the fact that there are incomparable choices in the game.
While it is easy to see that two increments are better than three, there are (even
for finite game graphs) situations that do not have a unique best choice. For
example, consider a resource pushdown system with two counters and two nearly
identical pushdown rules. The first rule resets the first counter and increments
the second whereas the other increments the first and resets the second. The
decision which one is better depends on the context in this case. Thus, the
designed method has to represent all such situations.

We illustrate the intuition behind newly added transitions with an example.
Again, let A be the automaton to be saturated. Consider a player 1 state p of
the pushdown system and let pa

m1−−→ q1u1, . . . , pa
mn−−→ qnun be all pushdown

rules originating in p that can be applied with an a on top of the stack. For
the sake of clarity, assume that there are linear (non-branching) runs of A on
qiui. These runs end in a state q′i and have an accumulated annotation m′

i.
Then, the saturation procedure adds a transition t = (p, a, f) with target states
dom(f) = {q′1, . . . q′n}. This part is identical to the situation without annotations.
Similar to the target states of t, which represent the states into which player 1
can force player 0, the annotation in A has to represent the possible annotations
in the game that player 1 can enforce while reaching this state. Consequently, the
annotation f(q) for a target state q ∈ dom(f) is the maximum over all combined
annotations mi ◦m′

i (first apply the pushdown rule, then the skipped part of the
original run) of runs that end in a state q′i equal to q.

In order to simplify the presentation of the saturation algorithm and the sub-
sequent termination argument, we introduce an order on the transitions of the
automaton and show that this order is a well-partial order. First, we order sets
of elements from ordered monoids. Let M be a well-partially ordered monoid
and A,B ⊆ M two sets. We say A is dominated by B and write A ≤ B if
for all elements a ∈ A there is an element b ∈ B such that a ≤ b. Now, let
t = (p, a, f), t′ = (p′, a′, f ′) be two transitions of an annotated alternating au-
tomaton. We order t and t′ by t ≤ t′ if p = p′, a = a′, dom(f) = dom(f ′) and
for all q ∈ dom(f) f(q) ≤ f ′(q). With the finiteness of the states, the alphabet,
and arguments about well-partial orders from [12], we deduce:

Lemma 8. Let A = (Q,Σ, In, Δ, F,M) be an annotated alternating automaton.
The order on Δ is a well-partial order.

With all previous preparations, we are now able to present the complete sat-
uration procedure in Algorithm 1. It operates on arbitrary monoid annotations
and assumes the resource pushdown system to be labeled with counter profiles.
The resulting automaton and the arguments are stated in terms of counter pro-
files. To this end, we say that player 0 wins the resource reachability game with
profile bound B if the resulting play has a combined counter profile p such that
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Algorithm 1. Saturation procedure

input : resource pushdown system P = (P,Σ,ΔP), state partition
P = P1 � P2, normalized annotated alternating P -automaton
A = (Q,Σ,P,Δ, F,M) (all annotations are {eM}, and for all
(q, a, f) ∈ Δ |dom(f)| = 1)

output: annotated alternating P -automaton A∗ = (Q,Σ,P,Δ∗, F,M)
1 A0 := A ; i := 0
2 while automaton can be updated do

3 For p ∈ P0, pa
m−→ qw ∈ ΔP do

4 Find Runtree ρ = (ρQ, ρΔ,T) of Ai on qw
5 t := (p, a, f) with

f := q �→
{
max{m ◦mρ | mρ ∈ valq(ρ)} if q ∈ ρQ(LeafsT)
⊥ otherwise

6 if ∃t′ ∈ Δi with t′ > t then
7 Δi+1 := Δi \ {t′ ∈ Δi | t′ > t} ∪ {t} ; i := i+ 1

8 else if ¬(∃t′ ∈ Δi with t′ ≤ t) then
9 Δi+1 := Δi ∪ {t} ; i := i+ 1

10 For p ∈ P1 and pa
m1−−→ q1w1 ∈ ΔP , . . . , pa

mn−−→ qnwn ∈ ΔP all a-pushdown
rules starting in p do

11 Find Runtrees ρj = (ρjQ, ρ
j
Δ,T

j) of Ai on qjwj for j ∈ {1, . . . , n}
12 t := (p, a, f) with f defined by

q �→

⎧⎪⎪⎨⎪⎪⎩
max{mj ◦mρ | mρ ∈ valq(ρj),

j ∈ {1, . . . , n}}
if q ∈

n⋃
j=1

ρjQ(LeafsTj )

⊥ otherwise

if ∃t′ ∈ Δi with t′ > t then
13 Δi+1 := Δi \ {t′ ∈ Δi | t′ > t} ∪ {t} ; i := i+ 1

14 else if ¬(∃t′ ∈ Δi with t′ ≤ t) then
15 Δi+1 := Δi ∪ {t} ; i := i+ 1

Result: A∗ := Ai

{p} ≤ B. Accordingly, we write W
(B)
0 (F ) to denote the region in which player

0 wins with profile bound B.

Lemma 9. Algorithm 1 terminates for all inputs.

Proof. We remark that the set of all transitions always forms an anti-chain
by construction. If the algorithm does not terminate either ll. 7, 13 or ll. 9,15
are executed infinitely many times. Assume the instructions in ll. 7 or 13 are
executed infinitely many times. Since there are only finitely many transitions in
Δi at each point in time, there has to be a descending chain of transitions. This
is a contradiction to the fact that the order is a well-partial order. Otherwise,
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ll. 9 or 15 are executed infinitely often. Since both update rules only add a new
transition relation, we obtain Δi � Δi+1 for all i > j for some threshold j. Thus,
the set

⋃∞
i=j Δ

i is an infinite anti-chain. Also a contradiction. ��
In order to prove the correctness of the saturation procedure, we show a direct

correspondence between the games winning with certain profiles and runs on the
saturated automaton.

Lemma 10. Let F be a regular set of configurations represented by a normal-
ized annotated alternating P -automaton A as stated in the precondition of Algo-
rithm 1. Furthermore, let A∗ be the result of the algorithm and B ∈ AntiChain(M)
such that {eM} ≤ B.

(i) Let qw ∈ W (B)
0 (F ). Then, there is an accepting run ρ of A∗ on qw such

that val(ρ) ≤ B.
(ii) Let ρ = (ρQ, ρΔ, ρM ,T) be a run of A∗ on qw with S = ρQ(LeafsT). Then

player 0 has a strategy σρ to reach a configuration in L(AS). Moreover,
for a play τ that is played according to σρ and that ends in a configuration
q′w′, let ρA be an accepting run of A on q′w′ with (single) final state r.
The value of τ is bounded by valr(ρ).

The above presented procedure effectively reduces the bounded winning prob-
lem to a boundedness problem for alternating B-automata. After exchanging the
counter profiles back to direct counter operations, we obtain an automaton that
recognizes a configuration pw with some cost k iff player 0 wins the resource
reachability game from this configuration with bound k. Since the set of initial
configurationsA is regular, we can easily construct an automaton that recognizes
the complement A with cost 0 and A with cost∞. By the closure of B-automata
under taking the minimum (cf. [10]) we obtain an automaton that yields value 0
for all elements outside of A. As a consequence, the boundedness of this automa-
ton only depends on the boundedness on A. By [10], we know that boundedness
for these automata is decidable. Altogether, we obtain our main result:

Theorem 11. Let P = (P0 � P1, Σ,Δ, Γ ) be a resource pushdown system. Let
F be a regular goal set for the bounded reachability game on the configuration
graph of P and A a regular set of start configurations. It is decidable whether

there is a k ∈ N such that A ⊆W
(k)
0 (F ).

We remark that the winning strategies constructed in the inductive proof can-
not be directly transformed into pushdown strategies as in the traditional case.
This difference arises from the fact that we do not have memoryless runs on our
alternating automaton model because of incomparable annotations. However,
once the bound k is determined, one can use the methods of the previous section
to obtain a finite memory winning strategy.

5 Conclusion

We considered two-player games on pushdown graphs with additional non-nega-
tive integer counters as model for reactive, recursive systems with resource con-
sumption. On these games, we examined a combined reachability and resource



Resource Reachability Games on Pushdown Graphs 209

limit winning condition. We showed that these games are determined and that
for regular goal sets one can compute the winning region of player 0 with a cer-
tain resource limit as well as decide whether there is a resource limit such that
player 0 wins from a given regular set of initial configurations with this limit.

In the main theorem, we solved the bounded winning problem by an exten-
sion of the traditional saturation idea. Our approach can be used for a variety
of annotated pushdown games. We only require that the annotations form a
well-partially ordered monoid. In the semantics, the value of a play has to be as-
sociated with the concatenation of all the values on the transitions along the play
and the order has to reflect that smaller annotations are preferred. For the spe-
cific case of counter profiles as annotation, we obtain a reduction of the bounded
winning problem to the boundedness problem of alternating B-automata.
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Abstract. The theory of graph games is the foundation for modeling and syn-
thesizing reactive processes. In the synthesis of stochastic processes, we use 2 1

2
-

player games where some transitions of the game graph are controlled by two
adversarial players, the System and the Environment, and the other transitions
are determined probabilistically. We consider 2 1

2
-player games where the objec-

tive of the System is the conjunction of a qualitative objective (specified as a
parity condition) and a quantitative objective (specified as a mean-payoff condi-
tion). We establish that the problem of deciding whether the System can ensure
that the probability to satisfy the mean-payoff parity objective is at least a given
threshold is in NP∩ coNP, matching the best known bound in the special case
of 2-player games (where all transitions are deterministic). We present an algo-
rithm running in time O(d · n2d ·MeanGame) to compute the set of almost-sure
winning states from which the objective can be ensured with probability 1, where
n is the number of states of the game, d the number of priorities of the parity
objective, and MeanGame is the complexity to compute the set of almost-sure
winning states in 2 1

2
-player mean-payoff games. Our results are useful in the

synthesis of stochastic reactive systems with both functional requirement (given
as a qualitative objective) and performance requirement (given as a quantitative
objective).

1 Introduction

Perfect-information stochastic games. A perfect-information stochastic graph
game [16] is played on a finite directed graph with three kinds of states (or vertices):
player-Max, player-Min, and probabilistic states. At player-Max states, player Max
chooses a successor state; at player-Min states, playerMin (the adversary of playerMax)
chooses a successor state; and at probabilistic states, a successor state is chosen ac-
cording to a fixed probability distribution. The result of playing the game forever is
an infinite path through the graph. If there are no probabilistic states, we refer to the
game as a 2-player graph game; otherwise, as a 2 1

2 -player graph game. There has been

� This research was supported by Austrian Science Fund (FWF) Grant No P23499- N23, FWF
NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft Fac-
ulty Fellowship Award, and European project Cassting (FP7-601148).

�� Fuller version: IST Technical Report No IST-2013-128.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 210–225, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Perfect-Information Stochastic Mean-Payoff Parity Games 211

a long history of using 2-player graph games for modeling and synthesizing reactive
processes [7,23,26]: a reactive system and its environment represent the two players,
whose states and transitions are specified by the states and edges of a game graph.
Consequently, 2 1

2 -player graph games provide the theoretical foundation for modeling
and synthesizing processes that are both reactive and stochastic [17,25]. They subsume
both 2-player games which have no probabilistic states, and Markov decision processes
(MDPs) which have no player-Min states.

Qualitative and quantitative objectives. In the analysis of reactive systems, the goal is
specified as a set of desired paths (such as ω-regular specifications), or as a quantitative
optimization objective for a payoff function on the paths. In verification and synthesis
of reactive systems all commonly used properties are expressed as ω-regular objectives,
and parity objectives are a canonical way to express ω-regular objectives [27]. In a
parity objective, an integer priority is assigned to every state, and a path satisfies the
objective for player Max if the maximum priority visited infinitely often is even. The
most classical example of quantitative objective is the mean-payoff objective [17,24],
where a reward is associated with every state and the payoff of a path is the long-run
average of the rewards of the path. While traditionally the verification and the synthesis
problems were considered with qualitative objectives, recently combinations of quali-
tative and quantitative objectives have received a lot of attention. Qualitative objectives
such as ω-regular objectives specify the functional requirements of reactive systems,
whereas the quantitative objectives specify resource consumption requirements (such as
for embedded systems or power-limited systems). Combining quantitative and qualita-
tive objectives is crucial in the design of reactive systems with both resource constraints
and functional requirements [9,14,5,3]. For example, mean-payoff parity objectives are
relevant in synthesis of optimal performance lock-synchronization for concurrent pro-
grams [8], where one player is the synchronizer, the opponent is the environment, and
the randomization arises due to the randomized scheduler; the performance objective
is specified as mean-payoff condition and the functional requirement (e.g., data-race
freedom or liveness) as an ω-regular objective. Mean-payoff parity objectives have also
been used in other applications such as to define permissivity for parity games [6]. Thus
2 1
2 -player mean-payoff parity games provide the theoretical foundation for analysis of

stochastic reactive systems with functional as well as performance requirements.

Algorithmic questions in 2 1
2 -player games. The study of 2 1

2 -player games has a wealth
of algorithmic problems. For example, given a 2 1

2 -player game with reachability ob-
jective (where the goal is to reach a target set of states), whether the player Max can
ensure the objective with probability at least 1

2 (called the value-strategy problem) is
in NP∩ coNP [16]. This is one of the rare combinatorial problems that belong to
NP∩ coNP, but are not known to be solvable in polynomial time. It is a major and
long-standing open question whether the problem can be solved in polynomial time.
Moreover, 2-player games with mean-payoff (resp. parity) objectives lies in NP∩ coNP
(even in UP∩ coUP) [21,29,20], and again no polynomial time algorithm is known.
Both 2-player parity games and 2-player mean-payoff games admit a polynomial reduc-
tion to the value-strategy problem of 2 1

2 -player reachability games. The value-strategy
problem for 2 1

2 -player mean-payoff (resp. parity) games also lie in NP∩ coNP: the key
property to show that the problem is in NP∩ coNP for mean-payoff (resp. parity) games
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is to show that it is sufficient to consider positional strategies (that are independent of the
past history and depend only on the current state), see [22] for mean-payoff and [15]
for parity objectives. In this work we consider 2 1

2 -player games with conjunction of
mean-payoff and parity objectives for player Max. The study of 2 1

2 -player games with
conjunction of mean-payoff and parity objectives poses new algorithmic challenges as
infinite-memory strategies are required. The key challenge is to obtain succinct (polyno-
mial) witnesses for the infinite-memory strategies and their characterization to obtain
complexity results matching the simpler classes of games where positional strategies
suffice. Besides the complexity result, our characterization of strategies will also allow
us to obtain algorithms to solve 2 1

2 -player mean-payoff parity games.

Contributions. The details of our contributions are as follows:

1. We first present polynomial witnesses for infinite-memory strategies required
by player Max, and a polynomial-time verification procedure for the witnesses,
thereby establishing that the value-strategy problem (of whether player Max can
ensure that the probability to satisfy the objective is at least a given threshold) is in
NP. The fact that player Max requires infinite-memory strategies follows from the
special case of 2-player mean-payoff parity games [14].

2. We show that positional strategies are sufficient for player Min (note that
player Max and Min are asymmetric since player Max has a conjunction of par-
ity and mean-payoff objectives to satisfy, whereas player Min has disjunction of
parity or mean-payoff objectives to falsify). From the existence of positional strate-
gies for player Min it follows that the value-strategy problem is also in coNP. Our
NP∩ coNP bound for the problem matches the special cases of 2-player mean-
payoff parity games.

3. We present an algorithm for the computation of the almost-sure winning set (the
set of states where the objective can be ensured with probability 1 by player Max)
for 2 1

2 -player mean-payoff parity games in time O(d · n2d · MeanGame), where
n is the number of states of the game graph, d the number of priorities of the
parity objective, and MeanGame denotes the complexity to compute the almost-
sure winning set in 2 1

2 -player mean-payoff games.

In summary, we present results that establish computational, strategy, and algorith-
mic complexity of solving 2 1

2 -player mean-payoff parity games.

Technical difficulty. For 2-player games the NP∩ coNP result for mean-payoff par-
ity objectives was established in [10]: the technique relied on reduction of 2-player
mean-payoff parity games to 2-player energy-parity games, and in 2-player energy-
parity games finite-memory strategies suffice (for details related to energy objectives
see [10,12]). However the technique of reduction of mean-payoff games to energy
games (even without the parity condition) for almost-sure winning does not hold in the
presence of stochastic transitions because for energy conditions (which are like safety
conditions) the precise probabilities do not matter, whereas they matter for mean-payoff
conditions. Hence the techniques for 2-player mean-payoff parity games do not extend
to 2 1

2 -player games, and we need to explicitly construct succinct witness to show the
NP∩ coNP result. The succinct witness construction of infinite-memory strategies in
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the presence of adversary and stochastic transitions is the main technical challenge in
2 1
2 -player mean-payoff parity games.

Related works. The problem of 2-player mean-payoff parity games was first studied
in [14]. The NP∩ coNP complexity bound was established in [10], and an improved
algorithm for the problem was given in [6]. The algorithmic analysis of 2 1

2 -player mean-
payoff games has been studied in [1,4]: a reduction to 2 1

2 -player reachability games was
presented in [1], and approximation schemes were considered in [4]. The polynomial
time complexity for MDPs with mean-payoff parity objectives was established in [11]
and the polynomial time complexity for MDPs with positive average parity objectives
was shown in [19]. The generalization to 2 1

2 -player games with mean-payoff parity
objectives gives rise to many delicate issues, such as dealing at the same time with
infinite-memory strategies, stochastic transitions, as well as the opponent.

2 Definitions

In this section we present definitions of game graphs, objectives, and the basic decision
problems.

Probability Distributions. For a finite set S, we denote by Δ(S) the set of all
probability distributions over S, i.e., the set of functions p : S → [0, 1] such that∑

s∈S p(s) = 1. For a set U ⊆ S we use the following notation: p(U) =
∑

s∈U p(s).

Stochastic Games. A perfect-information stochastic game graph (for brevity, stochas-
tic game) is a tuple G = (S, (SMax, SMin), A, δ), where S is a finite set of states,
(SMax, SMin) is a partition of S such that SMax is the set of states controlled by
player Max and SMin is the set of states controlled by player Min, A is a finite set of
actions, and δ : S ×A→ Δ(S) is a probabilistic transition function. Stochastic games
are also known as 2 1

2 -player games where probabilistic states are explicitly present. In
our model, the probabilistic states can be embedded in the probabilistic transition func-
tion. A Markov decision process (MDP) is the special case of a stochastic game where
either SMax = ∅, or SMin = ∅. Typically in this paper, we obtain MDPs from stochastic
games after fixing the action choices of one of the players.

For complexity issues, we assume that the probabilities in stochastic games are ra-
tional numbers whose numerator and denominator are encoded in binary. We denote by
|δ| the size of the encoding of the probabilistic transition function δ.

Subgames and Traps. Given a stochastic game G, a set U ⊆ S of states induces a
subgame if for all s ∈ U , there exists an action as ∈ A such that δ(s, as)(U) = 1; the
induced subgame is G[U ] = (U, (U ∩SMax, U ∩SMin), A, δ

′) where, for all states s ∈ U
and action a ∈ A, we have δ′(s, a) = δ(s, a) if δ(s, a)(U) = 1, and δ′(s, a) = δ(s, as)
otherwise. We take this definition of subgame to keep the same alphabet of actions in
every state. The subgame G[U ] is a trap for player Min in the original game G if for
all s ∈ U ∩ SMin and for all a ∈ A we have δ(s, a)(U) = 1. A trap for player Max is
defined similarly.

Plays and Strategies. A play ρ = s0s1 · · · ∈ Sω is an infinite sequence of states such
that for all i ≥ 0 there exists a ∈ A such that δ(si, a)(si+1) > 0. A strategy for
Max is a recipe to describe what is the next action to play; formally, it is a function
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σ : S∗SMax → A. A positional strategy is independent of the past and depends only on
the current state. We view it as a function σ : SMax → A.

A strategy σ uses finite memory if there exists an equivalence relation ∼ on Sω of
finite index, such that σ(ρ1) = σ(ρ2) for all plays ρ1, ρ2 such that ρ1 ∼ ρ2. We define
strategies, positional strategies, and finite-memory strategies analogously for Min. A
strategy that is not finite-memory is refered to as an infinite-memory strategies.

Probability Measures. Given a finite prefix ρ ∈ S∗ of a play, denote by |ρ| the length
of ρ and by Cone(ρ) the set of plays with prefix ρ. If ρ ∈ S+ is nonempty, we denote
by Last(ρ) the last state of ρ. Given a pair of strategies (σ, τ) for Max and Min, and an
initial state s, we first define the probability measure on cones inductively as follows:
for all s′ ∈ S, let

Pσ,τ
s (Cone(s′)) =

{
1 if s′ = s
0 if s′ �= s

and for all ρ ∈ S+ (where S+ = S∗ \ {ε} and ε is the empty string), let

Pσ,τ
s (Cone(ρ · s′)) =

⎧⎨⎩
Pσ,τ
s (Cone(ρ)) · δ(Last(ρ), σ(ρ))(s′) if Last(ρ) ∈ SMax

Pσ,τ
s (Cone(ρ)) · δ(Last(ρ), τ(ρ))(s′) if Last(ρ) ∈ SMin

By Caratheodary’s extension theorem, there is a unique extension of this probability
measure to Sω which is also denoted as Pσ,τ

s (·) [2].

Mean-Payoff Parity Objectives. An objective is a measurable set ϕ ⊆ Sω of plays. Let
rwd : S × S → Q be a reward function defined on edges and χ : S → N be a priority
function defined on states. Given a set of states U ⊆ S and a priority d ∈ N, we de-
note by U(d) the set {s ∈ U | χ(s) = d} of states with priority d. The mean-payoff

objective Mean =
{
s0s1 · · · ∈ Sω | lim supn→∞

1
n ·
∑n−1

i=0 rwd(si, si+1) ≥ 0
}

re-

quires that the long-run average of rewards be non-negative. The parity objective
Par = {s0s1 · · · ∈ Sω | lim supn→∞ χ(sn) is even} requires that the maximal pri-
ority visited infinitely often be even. The mean-payoff parity objective Mean∩Par is
the conjunction of a mean-payoff objective Mean and a parity objective Par.

Almost-Sure and Positive Winning. We say that playerMax wins almost-surely (resp.,
positively) from an initial state s for an objective ϕ if there exists a strategy σ for Max
such that for every strategy τ of player Min we have Pσ,τ

s (ϕ) = 1 (resp., Pσ,τ
s (ϕ) > 0).

The state s is called almost-sure (resp., positive) winning for Max. In the sequel, we say
that a game G is almost-sure (resp., positive) winning, if every state in G is almost-sure
(resp., positive) winning for Max. We use analogous definitions for player Min. Note
that almost-sure winning for Max is the dual of positive winning for Min.

Value-Strategy Problem and Reduction to Almost-Sure Winning. Given a thresh-
old λ, the value-strategy problem for an objective asks whether there exists a strategy
for player Max to ensure against all strategies of player Min that the objective is sat-
isfied with probability at least λ. A strategy for player Max is optimal if it ensures the
maximal value λ (for stochastic mean-payoff parity games, optimal strategies are guar-
anteed to exist [18]). In this paper we focus on the almost-sure winning problem, which
is to decide whether there exists an almost-sure winning strategy for player Max for
a mean-payoff parity objective, that is the value-strategy problem for λ = 1. While
for player Max infinite-memory strategies are necessary [14], we will show that for
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player Min positional strategies are sufficient, and that the almost-sure winning prob-
lem is in NP∩ coNP.

Remark 1. It follows from the results of [13, Lemma 7] and [18, Theorem 4.1] that
since mean-payoff parity objectives are tail objectives (independent of finite prefixes),
the memory requirement for optimal strategies of both players is the same as for almost-
sure winning strategies, and if the almost-sure winning problem is in NP∩ coNP, then
the value-strategy problem is also in NP∩ coNP. The details are as follows: The re-
sults of [13, Lemma 7] and [18, Theorem 4.1] show that for the quantitative analysis
of tail objectives it suffices to guess the value classes (where a value class for r, with
0 ≤ r ≤ 1, is the set of states with value r), almost-sure winning witness in a modified
game for each value class, and then the verification problem requires the almost-sure
witness verification in each value class, and verification of MDPs which is polynomial
time. Since NP∩ coNP bound for the almost-sure problem imply polynomial witness
and polynomial-time verification for the witness, it follows (using the results of [13,18])
that the NP∩ coNP bound for almost-sure winning imply that there exists polynomial
witness and polynomial-time verification for quantitative analysis, and thereby estab-
lish the NP∩ coNP bound. Thus from our results it will follow that the value-strategy
problem is in NP∩ coNP for 2 1

2 -player mean-payoff parity games.

Positive Attractors. Given a stochastic game G, letU ⊆ S induce a subgameG[U ] with
probabilistic transition function δ : U ×A→ Δ(U). For T ⊆ U , let fT : 2U → 2U be
the operator such that for all Z ⊆ U ,

fT (Z) = T ∪{s ∈ SMax ∩ U | ∃a ∈ A : δ(s, a)(Z) > 0}
∪ {s ∈ SMin ∩ U | ∀a ∈ A : δ(s, a)(Z) > 0} .

Then AttrMax(T,G[U ]) is the least fixed point of fT , called the positive attractor for
Max to T in G[U ]. It can be computed as the limit of the iteration (f iT (∅))i∈N. There
exists a positional strategy for Max (referred to as positive-attractor strategy) to ensure
that from all states in AttrMax(T,G[U ]), the set T is reached within |U | steps with
positive probability. We define AttrMin(T,G[U ]) as the positive attractor for Min in
an analogous way. An important property of positive attractors is that if X is a positive
attractor forMax in G[U ], then G[U\X ] is a subgame and it is a trap forMax. Analogous
statement holds for Min.

3 Characterization of the Almost-Sure Winning Set

In this section we present the key lemmas that enable an inductive characterization of
certificates and a polynomial-time verification procedure for the existence of almost-
sure winning strategies, showing that the almost-sure winning problem is in NP for
stochastic games with mean-payoff parity objectives.

It follows from the results of [14] that finite-memory strategies are not suffi-
cient for Max and infinite-memory strategies are required for almost-sure winning.
We present polynomial witnesses and polynomial-time verification procedure for the
infinite-memory almost-sure winning strategies. The polynomial witnesses consists of
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Fig. 1. Stochastic game G with largest priority even

a trap U for player Min that defines a subgame where all states are almost-sure winning
for player Max, together with a certificate defined as an inductive decomposition of the
subgame induced by U constructed according to the parity of the largest priority d in
U . If d is even we refer to the certificate as an even certificate, if d is odd as an odd
certificate.

Intuitive description. To present the intuition of the (inductive) certificates, we infor-
mally explain some key properties in establishing that all states in a (sub)game are
almost-sure winning for Max. In figures, we denote states of player Max by circles, and
states of player Min by square boxes. Probability distributions over states are shown
by a diamond. We omit actions and assume that every outgoing edge from player-Max
and player-Min states corresponds to a different action. Let G be a (sub)game with state
space S where all states are almost-sure winning. Then, we describe a certificate ac-
cording to the parity of the largest priority d in G as follows.

1. If d is even (see Example 1 and Fig. 1), let X = AttrMax(S(d),G) and Y = S \X .
An even certificate for G ensures that (1) in G all states are almost-sure winning
for the objective Mean; and (2) in G[Y ] all states are almost-sure winning for Max
for the objective Mean∩Par (using a certificate defined recursively in the subgame
G[Y ], which has at least one less priority as there is no priority-d state in Y ). In other
words, the even certificate consists of (i) a positional positive attractor strategy in
X for the target S(d); (ii) a positional almost-sure winning strategy in G for the
mean-payoff objective; and (iii) a certificate for G[Y ]. We establish that the above
two conditions ensure that in G all states are almost-sure winning for Max for the
objective Mean∩Par. An almost-sure winning strategy for Max is as follows: if
the current state is in the subgame G[Y ], then player Max ignores the history of the
play up to the last state that was not in Y , and uses an almost-sure winning strategy
in G[Y ] (such a strategy exists in G[Y ] by the certificate). If the opponent decides
to visit the positive attractorX , then player Max switches to a (positional) positive-
attractor strategy for at most |S| steps. Then, either after |S| steps or before (e.g., if
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Fig. 2. Stochastic game G with largest priority odd

a state with priority d is reached), player Max switches to an almost-sure winning
strategy for Mean and plays it for a long finite time (that increases over the play).
After that, the play might be in Y or in X , and player Max restarts from scratch
the same process of playing. Intuitively, if the play keeps visiting X , then with
probability 1 the positive-attractor strategy ensures infinitely many visits to a state
with priority d (thus the parity condition is satisfied), and the almost-sure winning
strategy for Mean played for increasing number of steps ensures that the mean-
payoff objective is satisfied. On the other hand, if the play eventually stays in G[Y ]
forever, then the almost-sure winning strategy in G[Y ] ensures the mean-payoff
parity objective is satisfied with probability 1 (since the objective is independent of
finite prefixes).

Example 1. Consider the stochastic game G in Fig. 1 where the largest priority is 2.
All states are almost-sure winning for the Mean objective, and a positional strategy
for player Max is as follows: for state q1 choose the edge labeled reward 1; and for
state q4 choose the edge to q3. The positive attractor for Max to the largest priority
isX = {q4, q7, q8}. In the subgame induced by Y = {q1, q2, q3, q5, q6} there is one
less priority, and player Min can decide to leave the subgame in states q3 and q6. An
(odd) certificate defined in the subgame G[Y ] witnesses that all states in G[Y ] are
almost-sure winning for the mean-payoff parity objective. Thus the even certificate
consists of the positional strategy for Mean, the positive-attractor strategy, and a
certificate for G[Y ].
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2. If d is odd (see Example 2 and Fig. 2), an odd certificate is a layer-decomposition
of the state space of G into non-empty sets R1, . . . , Rk and Z1, . . . , Zk defined
recursively as follows: (1)R1 ⊆ S \S(d) is a trap for player Min in G that contains
no priority-d state, and such that all states in R1 are almost-sure winning for Max
for the objective Mean∩Par (using a certificate defined recursively in the subgame
G[R1], which has at least one less priority since priority d does not occur in R1),
(2) Z1 = AttrMax(R1,G) is the positive attractor for player Max to R1 in G, and
(3) the sets R2 and Z2 are defined analogously in the subgame G[S \ Z1], and the
sets R3 and Z3 in the subgame G[S \Z2] where Z2 = AttrMax(R2,G[S \Z1]), and
so on to obtain the layer-decomposition of G. Such a decomposition must cover the
state space, and thus the sets Z1, . . . , Zk form a partition of S (and k ≤ |S|). An
almost-sure winning strategy for player Max is as follows: if the current state is in
a subgame Ri, then player Max ignores the history of the play up to the last state
that was not in Ri, and uses an almost-sure winning strategy (that exists in Ri by
the certificate). If the current state is in Zi \Ri, then player Max uses the positive-
attractor strategy defined in Zi. We show that almost-surely, one of the sets Ri is
never left from some point on, and then the almost-sure winning strategy in G[Ri]
ensures that the mean-payoff parity objective is satisfied with probability 1 (since
the objective is independent of finite prefixes).

Example 2. Consider the stochastic game G in Fig. 2 where the largest priority
is 1. A layer-decomposition is shown where R1 = {q1} is a trap of almost-sure
winning states for Max, and Z1 = {q1, q2} is the positive attractor to R1. In the
subgame G[S \ Z1], there is no edge from q4 to q2, and it follows that the states in
R2 = {q3, q4} form a trap of almost-sure winning states in this subgame, and the
positive attractor toR2 is Z2 = R2∪{q5}. The last layer consists ofR3 = {q6, q7}
and Z3 = R3 ∪ {q8}. As this layer-decomposition covers the state space of G, it
gives an odd certificate for player Max.

Given the basic intuitions, we now present the formal proofs. We start with a basic
lemma, and then consider the two cases when the largest priority is even or odd.

Lemma 1. Let G be a stochastic mean-payoff game with state space S where all
states are almost-sure winning for the mean-payoff objective Mean. Then there ex-
ists a positional strategy σ for player Max such that against all strategies τ for Min,
for all s ∈ S and for all ε > 0, there exists kε such that for all k ≥ kε we have

Pσ,τ
s

({
s0s1 . . . ∈ Sω |

∑k−1
i=0

1
k · rwd(si, si+1) ≥ −ε

})
≥ 1− ε.

Lemma 2. Let G be a stochastic mean-payoff parity game with state space S and such
that the largest priority d in G is even. Let X = AttrMax(S(d),G) and Y = S \ X .
All states in G are almost-sure winning for player Max with the mean-payoff parity
objective Mean∩Par if and only if:

1. all states in G are almost-sure winning for the mean-payoff objective Mean for
Max, and

2. all states in G[Y ] are almost-sure winning for the mean-payoff parity objective
Mean∩Par for Max.
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Proof. Let G satisfy the conditions of the lemma. We first show that all states in G
are almost-sure winning for Max for the objective Mean∩Par. Let σSub be an almost-
sure winning strategy for Mean∩Par in the subgame G[Y ] induced by Y , let σAttr be
a positional positive-attractor strategy to S(d) in G, and let σMean be an almost-sure
winning strategy for Mean in G. LetW = maxs,s′∈S |rwd(s, s′)| be the largest absolute
reward and for every j > 0, let εj = 1

j and let Kj = max
{
kεj , j

2 ·W
}

where kεj is
defined in Lemma 1.

The strategy σ that Max uses is played in rounds numbered 1, 2, · · · , and at round i,
the strategy σ is defined as follows:

Phase 1: (Mean-payoff phase). Let j be the length of the current play prefix until the
end of phase 3 of round i− 1; then play according to the positional strategy σMean

for Kj steps. Switch to Phase 2.
Phase 2: (Subgame phase). While the current play ρ is in Y , let ρ′ be the suffix of ρ

obtained by ignoring the prefix of ρ up to the end of Phase 1 of the current round.
Play σSub(ρ′). If the play leaves Y (and thus reaches X), then switch to Phase 3.

Phase 3: (Attractor phase). Play σAttr for at most |S| steps, or until a state with pri-
ority d is reached, or the positive attractor X is left. Switch to Phase 1 in round
i+ 1.

We show that σ is almost-sure winning for the Mean∩Par objective. Consider the
following events:

A = {s0s1 · · · | ∃J ≥ 0 · ∀j ≥ J : sj ∈ Y } ,
B = {s0s1 · · · | ∀J ≥ 0 · ∃j ≥ J : sj ∈ X} .

Intuitively,A denotes that from some point on the play remains only in the subgame
Y (and thus the strategy σ remains forever in the subgame phase), and B denotes that
the set X (the positive attractor to priority d) is visited infinitely often. Let τ be a
strategy for Min, then any play consistent with (σ, τ) belongs to A ∪ B and since A ∩
B = ∅ we have Pσ,τ

s (A ∪ B) = Pσ,τ
s (A) + Pσ,τ

s (B) = 1. We now consider two cases
to establish that σ is almost-sure winning.

1. (Under eventA). Observe that both parity and mean-payoff objectives are indepen-
dent of finite prefixes, and if a play belongs to A, then the finite prefix of the play
after which the play only visits states in Y does not change the mean-payoff nor
the parity objective. Since σSub is almost-sure winning in the subgame induced by
Y , it follows that for all s ∈ S and all strategies τ of player Min in G we have
Pσ,τ
s (Mean∩Par | A) = 1 (if Pσ,τ

s (A) �= 0).
2. (Under event B). We now reason under the event B and show that both the parity

and the mean-payoff objectives are satisfied almost-surely. We first show that the
parity objective is satisfied almost-surely. Consider an arbitrary strategy τ for player
Min in G and a state s ∈ S.

Parity objective almost-surely. Given the event B, the strategy is in attractor mode
infinitely often. Given the strategy is in the attractor phase, the probability to reach
a priority-d state within the next |S| steps after the attractor mode starts is at least
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x = (pmin)
|S| > 0, where pmin is the minimum positive transition probability (i.e.,

pmin = min {δ(s, a)(t) > 0 | s, t ∈ S, a ∈ A}). It follows that if the strategy is
switching k times to the attractor phase, then the probability not to visit the priority-
d set is at most (1 − x)k . The event B ensures that the strategy is in the attractor
phase infinitely often, and thus the probability that given the event B after some
point a priority d state is not visited at all is limk→∞(1 − x)k = 0. Hence given
event B, the best even priority d is visited infinitely often almost-surely, ensuring
that the parity objective is satisfied, that is for all s ∈ S and all strategies τ of player
Min in G we have Pσ,τ

s (Par | B) = 1 (if Pσ,τ
s (B) �= 0).

In other words, given that the positive attractor to a set T is visited infinitely often,
it follows that the set T is visited infinitely often with probability 1, and we refer to
this property as the almost-sure positive attractor property.

Mean-payoff objective almost-surely. We now prove that the mean-payoff objective
is almost-surely satisfied. Given the event B, the strategy σ is in the mean-payoff
phase infinitely often. Consider the finite prefixes of play ρ = s0 · · · sj+1 consistent
with (σ, τ) that are in the mean-payoff phase for the first time in the current round.
Then by the definition of the strategy σ, every play prefix ρ′ = ρ · sj+1 · · · sj+i

consistent with (σ, τ) that extends ρ, for all 0 < i ≤ Kj , is in the mean-payoff
phase. The sum of the rewards for all prefixes of length j is at least −j ·W and
then applying Lemma 1 we have

Pσ,τ
s

⎛
⎝
⎧⎨
⎩s0s1 · · · | 1

j +Kj
·
j+Kj∑
i=0

rwd(si, si+1) ≥ − εj ·Kj + j ·W
j +Kj

⎫⎬
⎭ | Cone(ρ)

⎞
⎠ ≥ 1− εj

By the choice of Kj (that Kj ≥ j2 · W ) and εj = 1
j , we have − εj·Kj+j·W

j+Kj
≥

− εj·Kj

Kj
− j·W

j2·W ≥ − 2
j . Consider the function f that given a number 	 returns the

maximum number j such that j+Kj ≤ 	. Note that f is a non-decreasing function
and as 	 tends to ∞, also f(	) tends to ∞. Given the event B, there are infinitely
many prefixes ρ consistent with (σ, τ) that are in the mean-payoff phase for the first
time in the current round. Hence we have

lim sup
�→∞

Pσ,τ
s

({
s0s1 · · · | 1

�
·

�∑
i=0

rwd(si, si+1) ≥ − 2

f(�)

}
| B

)
≥ lim sup

�→∞
1− 1

f(�)
= 1.

By Fatou’s lemma [2] we know that for an event sequence E� we have that
lim sup�→∞ P(E�) ≤ P(lim sup�→∞ E�). Hence an application of the Fatou’s
lemma gives us that

Pσ,τ
s

(
lim sup
�→∞

{
s0s1 · · · |

1

	
·

�∑
i=0

rwd(si, si+1) ≥ −
2

f(	)

}
| B
)

= 1.

Let ϕ� =
{
s0s1 · · · | 1

� ·
∑�

i=0 rwd(si, si+1) ≥ − 2
f(�)

}
and ϕ = lim sup�→∞ ϕ�.

Consider a play ρ = s0s1 · · · ∈ ϕ. Fix ε > 0, and consider 	0 such that
2

f(�0)
≤ ε. Since ρ ∈ ϕ, there exists infinitely many 	 ≥ 	0 such that ρ ∈ ϕ�,

and hence for infinitely many 	 we have 1
� ·
∑�−1

i=1 rwd(si, si+1) ≥ −ε. Hence
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lim sup�→∞
1
� ·

∑�−1
i=1 rwd(si, si+1) ≥ −ε. Since this holds for all ε > 0, it

follows that lim sup�→∞
1
� ·
∑�−1

i=1 rwd(si, si+1) ≥ 0. In other words, we have
ϕ ⊆ Mean and hence for all s ∈ S and all strategies τ of player Min in G we have
Pσ,τ
s (Mean | B) = 1 (if Pσ,τ

s (B) �= 0).

Thus given either eventA or B, the mean-payoff parity objective is satisfied almost-
surely. Note that if one of the event has probability 0, then the other has probability 1. It
follows that the mean-payoff parity objective is satisfied almost-surely. This concludes
one direction of the proof that if the conditions of the lemma are satisfied, then almost-
sure winning for Mean∩Par is ensured with probability 1.

We now prove the converse. Consider a game G such that all states in its state space
S are almost-sure winning for the objective Mean∩Par for player Max. First, observe
that since Mean∩Par ⊆ Mean, almost-sure winning for Mean∩Par implies almost-
sure winning for Mean. This implies the first condition. Second, observe that Y is a
trap for player Max. If player Max does not have an almost-sure winning strategy for a
non-empty set Z ⊆ Y in the subgame G[Y ], then player Max does not have an almost-
sure winning strategy from Z in G, which contradicts that all states in G are almost-sure
winning. This proves the second condition of the lemma and completes the proof. ��

Lemma 3. Let G be a stochastic mean-payoff parity game with state space S, and such
that the largest priority d in G is odd. All states in G are almost-sure winning for the
objective Mean∩Par if and only if there exists a partition {Zi}1≤i≤k of S and non-
empty sets Ri, Ui for i = 1, . . . , k, and Uk+1 such that U1 = S and for all 1 ≤ i ≤
k: (1) Ri ⊆ Ui \ Ui(d) is a trap for Min in G[Ui], and all states in Ri are almost-
sure winning for the objective Mean∩Par in G[Ui]; (2) Zi = AttrMax(Ri,G[Ui]); and
(3) Ui+1 = Ui \ Zi.

Lemma 3 presents a characterization of the certificate for almost-sure winning when
the largest priority is odd. The key correctness argument uses the almost-sure positive
attractor property to show that the event that from some point on only states in Ri are
visited for some i has probability 1. From the above fact and the almost-sure winning
strategies in Ri we obtain an almost-sure winning strategy in G.

We remark that it follows from our proofs that the infinite-memory required by the
strategies can be captured in terms of counter-based strategies that keep track of the
number of steps that certain positional strategies need to be played.

4 Algorithm

In this section we present an algorithm for the almost-sure winning problem. Let G be
a stochastic mean-payoff parity game with largest priority d. Our algorithm computes
the set R of almost-sure winning states for Max, by iterations that, from the state space
S of G remove positive winning states of player Min. When a fixpoint is obtained, we
show that it satisfies the characterization of Lemma 2 and Lemma 3, hence it is the
almost-sure winning set. Starting with R = S, the algorithm considers two cases:

(a) If d is even: First, compute the almost-sure wining region U for the Mean objective
in G[R]. Compute the positive attractor X for player Max to the set of states with
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priority d in U , and let Y be the complement. Recursively compute the almost-sure
winning region R′ in G[Y ] for the mean-payoff parity objective, and iterate (until
R′ = Y ) in the subgame induced by the complement U \ Z of the player-Min
positive attractor Z = AttrMin(Y \R′,G[U ]) (i.e., removing some positive winning
states for player Min).

(b) If d is odd: In each iteration of the main loop, the algorithm computes a set of
positive winning states for player Min as the positive attractor (for Min) to the set U
computed in the inner loop. The inner loop computes inR′ the almost-sure winning
states of player Max in the subgame induced by the complement Y of player-Min
positive attractor to priority d, using a recursive call. The positive attractor for Max
to R′ is removed, and the next iteration starts (if R′ �= ∅) with a strictly smaller
state space U . The main loop terminates when there is nothing to remove (U = ∅).

Correctness and termination. The correctness and termination of our algorithm (which
we refer to as AlgStMPP, algorithm for stochastic mean-payoff parity games) is estab-
lished using an argument by induction on the depth of the recursive calls, which are
always invoked with games that have at least one less priority than the current game,
and using Lemma 2 and Lemma 3.

The complexity of AlgStMPP is exponential in the number of priorities in the game,
like the basic algorithm for parity games [28]. The key differences to the basic algorithm
for parity games are as follows: (i) in our algorithm there is an extra nested loop when
the maximum priority is odd; and (ii) in addition to the basic attractor computation
for parity games we also need to compute the almost-sure winning set for stochastic
mean-payoff games.

Theorem 1. Given a stochastic mean-payoff parity game G with n states, probabilis-
tic transition function δ, priorities in {0, 1, . . . , d − 1}, and largest absolute reward
W , AlgStMPP computes the almost-sure winning region of G in time O(d · n2d ·
MeanGame(n, |δ|,W )) where MeanGame(n, |δ|,W ) is the time complexity of solving
the almost-sure winning problem for stochastic games with only a mean-payoff objec-
tive.

Note that MeanGame(n, |δ|,W ) ∈ |A|n · Poly(n, |δ|,W ) by simply enumerating
over all positional strategies and then solving in polynomial time the MDP obtained by
fixing the positional strategy.

5 Computational Complexity

In this section we establish the NP∩ coNP complexity bound for the almost-sure win-
ning problem.

The NP Membership. Although infinite-memory strategies are necessary for
player Max to win mean-payoff parity games almost surely [14], we show that the
almost-sure winning problem can be solved in NP by guessing a polynomial-size de-
composition of the state space along with positional strategies that allow to construct an
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almost-sure winning strategy, possibly with infinite memory. The polynomial certificate
is obtained from the characterization of Lemma 2 and Lemma 3; and the verification
procedure requires solving MDPs with mean-payoff parity objectives, which can be
done in polynomial time [11].

Lemma 4. The almost-sure winning problem for stochastic mean-payoff parity games
is in NP.

The coNP Membership. We show that positional strategies are sufficient for
player Min to win positively in stochastic mean-payoff parity games. Using the fact
that AlgStMPP maintains in variable R an over-approximation of the almost-sure win-
ning set for player Max, we construct a positional strategy for player Min from all states
that are removed from R by the algorithm.

Lemma 5. To win positively in stochastic mean-payoff parity games, positional strate-
gies are sufficient for player Min.

We then show how to use the positional strategy for positive winning to obtain a
positional strategy for almost-sure winning for player Min. By Remark 1 it follows that
positional optimal strategies exist for player Min. Lemma 4, the existence of positional
optimal strategies for player Min, and the fact that MDPs with mean-payoff parity ob-
jectives can be solved in polynomial time [11], gives us the following result.

Theorem 2. The following assertions hold: (1) Positional optimal strategies exist for
player Min in stochastic mean-payoff parity games (2) The almost-sure winning and
the value-strategy problem for stochastic mean-payoff parity games can be decided in
NP∩ coNP.

Remark 2. The complexity result of Theorem 2 matches the best known complexity for
stochastic mean-payoff games [22], stochastic parity games [15] (also see [1] for rela-
tionship of stochastic mean-payoff and stochastic parity games), and (non-stochastic)
mean-payoff parity games [12].

Concluding Remarks. In this work we studied the computational and strategy com-
plexity of the value-strategy problem for 2 1

2 -player mean-payoff parity games. In ad-
dition we presented an algorithm for computing the almost-sure winning states which
requires the computation of the almost-sure winning states for 2 1

2 -player mean-payoff
games. Improved algorithmic solutions for the computation of the almost-sure winning
states in 2 1

2 -player mean-payoff games is an interesting question. Our algorithm for
almost-sure winning and the general technique mentioned in Remark 1 for 2 1

2 -player
games with tail objectives provide an exponential-time algorithm for the value-strategy
problem. Whether more specialized algorithms (such as strategy-iteration algorithms)
can be developed for the value-strategy problem in 2 1

2 -player mean-payoff parity games
is another interesting algorithmic question.
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Latticed-LTL Synthesis in the Presence of Noisy Inputs
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Abstract. In the classical synthesis problem, we are given a linear temporal
logic (LTL) formula ψ over sets of input and output signals, and we synthesize
a finite-state transducer that realizes ψ: with every sequence of input signals, the
transducer associates a sequence of output signals so that the generated compu-
tation satisfies ψ. In recent years, researchers consider extensions of the classical
Boolean setting to a multi-valued one. We study a setting in which the truth val-
ues of the input and output signals are taken from a finite lattice, and the speci-
fication formalism is Latticed-LTL (LLTL), where conjunctions and disjunctions
correspond to the meet and join operators of the lattice, respectively. The lattice
setting arises in practice, for example in specifications involving priorities or in
systems with inconsistent viewpoints.

We solve the LLTL synthesis problem, where the goal is to synthesize a trans-
ducer that realizes ψ in desired truth values.

For the classical synthesis problem, researchers have studied a setting with
incomplete information, where the truth values of some of the input signals are
hidden and the transducer should nevertheless realize ψ. For the multi-valued
setting, we introduce and study a new type of incomplete information, where
the truth values of some of the input signals may be noisy, and the transducer
should still realize ψ in a desired value. We study the problem of noisy LLTL
synthesis, as well as the theoretical aspects of the setting, like the amount of
noise a transducer may tolerate, or the effect of perturbing input signals on the
satisfaction value of a specification.

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a system and verifying that it ad-
heres to its specification, we would like to have an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [10]. The modern approach to synthesis was initiated
by Pnueli and Rosner, who introduced LTL (linear temporal logic) synthesis [24]: We
are given an LTL formula ψ over sets I and O of input and output signals, and we syn-
thesize a finite-state system that realizes ψ. At each moment in time, the system reads
a truth assignment, generated by the environment, to the signals in I , and it generates a
truth assignment to the signals inO. Thus, with every sequence of inputs, the transducer
associates a sequence of outputs, and it ψ if all the computations that are generated by
the interaction satisfy ψ. Synthesis has attracted a lot of research and interest [28].

In recent years, researchers have considered extensions of the classical Boolean set-
ting to a multi-valued one, where the atomic propositions are multi-valued, and so is

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 226–241, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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the satisfaction value of specifications. The multi-valued setting arises directly in sys-
tems in which the designer can give to the atomic propositions rich values, expressing,
for example, energy consumption, waiting time, or different levels of confidence [5,1],
and arises indirectly in probabilistic settings, systems with multiple and inconsistent
view-points, specifications with priorities, and more [20,14,2]. Adjusting the synthesis
problem to this setting, one works with multi-valued specification formalisms. In such
formalisms, a specification ψ maps computations in which the atomic propositions take
values from a domainD to a satisfaction value inD. For example,ψ may map a compu-
tation in ({0, 1, 2, 3}{p})ω to the maximal value assigned to the (multi-valued) atomic
proposition p during the computation. Accordingly, the synthesis problem in the multi-
valued setting gets as input a specification ψ and a predicate P ⊆ D of desired values,
and seeks a system that reads assignments inDI , responds with assignments inDO, and
generates only computations whose satisfaction value is in P . The synthesis problem
has been solved for several multi-valued settings [4,1].

A different extension of the classical setting of synthesis considers settings in which
the system has incomplete information about its environment. Early work on incom-
plete information considers settings in which the system can read only a subset of the
signals in I and should still generate only computations that satisfy the specification,
which refers to all the signals in I ∪ O [18,6,7]. The setting is equivalent to a game
with incomplete information, extensively studied in [25]. As shown there, the common
practice in handling incomplete information is to move to an exponentially-larger game
of complete information, where each state corresponds to a set of states that are indis-
tinguishable by a player with incomplete information in the original game.

More recent work on synthesis with incomplete information studies richer types of
incomplete information. In [8], the authors study a setting in which the transducer can
read some of the input signals some of the time. In more detail, sensing the truth value
of an input signal has a cost, the system has a budget for sensing, and it tries to realize
the specification while minimizing the required sensing budget. In [30], the authors
study games with errors. Such games correspond to a synthesis setting in which there
are positions during the interaction in which input signals are read by the system with
an error. The games are characterized by the number or rate of errors that the system
has to cope with, and by the ability of the system to detect whether a current input is
erred.

In this work we introduce and study a different model of incomplete information in
the multi-valued setting. In our model, the system always reads all input signals, but
their value may be perturbed according to a known noise function. This setting nat-
urally models incomplete information in real-life multi-valued settings. For example,
when the input is read by sensors that are not accurate (e.g., due to bounded precision,
or to probabilistic measuring) or when the input is received over a noisy channel and
may come with some distortion. The multi-valued setting we consider is that of finite
lattices. A lattice is a partially-ordered set L = 〈A,≤〉 in which every two elements 	
and 	′ have a least upper bound (	 join 	′, denoted 	∨ 	′) and a greatest lower bound (	
meet 	′, denoted 	∧ 	′). Of special interest are two classes of lattices: (1) Fully ordered,
where L = 〈{1, . . . , n},≤〉, for an integer n ≥ 1 and the usual “less than or equal”
order. In this lattice, the operators ∨ and ∧ correspond to max and min, respectively.
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(2) Power-set lattices, where L = 〈2X ,⊆〉, for a finite set X , and the containment (par-
tial) order. In this lattice, the operators ∨ and ∧ correspond to ∪ and ∩, respectively.

The lattice setting is a good starting point to the multi-valued setting. While their
finiteness circumvents the infinite-state space of dense multi-values, lattices are suffi-
ciently rich to capture many quantitative settings. Fully-ordered lattices are sometimes
useful as is (for example, when modeling priorities [2]), and sometimes thanks to the
fact that real values can often be abstracted to finitely many linearly ordered classes.
The power-set lattice models a wide range of partially-ordered values. For example, in
a setting with inconsistent viewpoints, we have a set X of agents, each with a differ-
ent viewpoint of the system, and the truth value of a signal or a formula indicates the
set of agents according to whose viewpoint the signal or the formula are true. As an-
other example, in a peer-to-peer network, one can refer to the different attributes of the
communication channels by assigning with them subsets of attributes. From a technical
point of view, the fact that lattices are partially ordered poses challenges that do not
exist in (finite and infinite) full orders. For example, as we are going to see, the fact that
a specification is realizable with value 	 and with value 	′ does not imply it is realizable
with value 	 ∨ 	′, which trivially holds for full orders.

We start by defining lattices and the logic Latticed LTL (LLTL, for short). We then
study theoretical properties of LLTL: We study cases where the set of attainable truth
values of an LLTL formula are closed under ∨, thus a maximal attainable value exists,
even when the lattice elements are partially ordered. We also study stability properties,
namely the affect of perturbing the values of the atomic propositions on the satisfaction
value of formulas. We continue to the synthesis and the noisy-synthesis problems for
LLTL, which we solve via a translation of LLTL formulas to Boolean automata. We
show that by working with universal automata, we can handle the exponential blow-
up that incomplete information involves together with the exponential blow-up that
determination (or alternation removal, if we take a Safraless approach) involves, thus
the noisy-synthesis problem stays 2EXPTIME-complete, as it is for LTL.

Due to lack of space, some of the proofs are omitted and can be found in the full
version, in the authors’ home pages.

2 Preliminaries

2.1 Lattices

Consider a set A, a partial order ≤ on A, and a subset P of A. An element 	 ∈ A is an
upper bound on P if 	 ≥ 	′ for all 	′ ∈ P . Dually, 	 is a lower bound on P if 	 ≤ 	′

for all 	′ ∈ P . The pair 〈A,≤〉 is a lattice if for every two elements 	, 	′ ∈ A, both the
least upper bound and the greatest lower bound of {	, 	′} exist, in which case they are
denoted 	 ∨ 	′ (	 join 	′) and 	 ∧ 	′ (	 meet 	′), respectively. We use 	 < 	′ to indicate
that 	 ≤ 	′ and 	 �= 	′. We say that 	 is a child of 	′, denoted 	 ≺ 	′, if 	 < 	′ and there
is no 	′′ such that 	 < 	′′ < 	′.

A lattice L = 〈A,≤〉 is finite if A is finite. Note that finite lattices are complete:
every subset of A has a least-upper and a greatest-lower bound. We use - (top) and
⊥ (bottom) to denote the least-upper and greatest-lower bounds of A, respectively. A
lattice is distributive if for every 	1, 	2, 	3 ∈ A, we have 	1∧(	2∨	3) = (	1∧	2)∨(	1∧
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	3) and 	1∨(	2∧	3) = (	1∨	2)∧(	1∨	3). The traditional disjunction and conjunction
logic operators correspond to the join and meet lattice operators. In a general lattice,
however, there is no natural counterpart to negation. A De-Morgan (or quasi-Boolean)
lattice is a lattice in which every element a has a unique complement element ¬	 such
that ¬¬	 = 	, De-Morgan rules hold, and 	 ≤ 	′ implies ¬	′ ≤ ¬	. In the rest of this
paper we consider only finite distributive De-Morgan lattices. We focus on two classes
of such lattices: (1) Fully ordered, where L = 〈{1, . . . , n},≤〉, for an integer n ≥ 1
and the usual “less than or equal” order. Note that in this lattice, the operators ∨ and ∧
correspond to max and min, respectively, and ¬i = n − i + 1. (2) Power-set lattices,
where L = 〈2X ,⊆〉, for a finite set X , and the containment (partial) order. Note that
in this lattice, the operators ∨ and ∧ correspond to ∪ and ∩, respectively, and negation
corresponds to complementation.

Consider a lattice L = 〈A,≤〉. A join irreducible element in L is l ∈ A such that
l �= ⊥ and for all elements l1, l2 ∈ A, if l1 ∨ l2 ≥ l, then l1 ≥ l or l2 ≥ l. For example,
the join irreducible elements in 〈2X ,⊆〉 are all singletons {x}, for x ∈ X . By Birkhoff’s
representation theorem for finite distributive lattices, in order to prove that l1 = l2, it is
sufficient to prove that for every join irreducible element l it holds that l1 ≥ l iff l2 ≥ l.
We denote the set of join irreducible elements of L by JI(L). For convenience, we often
talk about a lattice L without specifyingA and ≤. We then abuse notations and refer to
L as a set of elements and talk about l ∈ L or about assignments in LAP (rather than
l ∈ A or assignments in AAP ).

2.2 The Logic LLTL

The logic LLTL is a natural generalization of LTL to a multi-valued setting, where
the atomic propositions take values from a lattice L [9,16]. Given a (finite distributive
De-Morgan) lattice L, the syntax of LLTL is given by the following grammar, where p
ranges over a set AP of atomic propositions, and 	 ranges over L.

ϕ := 	 | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

The semantics of LLTL is defined with respect to a computation π = π0, π1, . . . ∈
(LAP )ω. Thus, in each moment in time the atomic propositions get values from L.
Note that classical LTL coincides with LLTL defined with respect to the two-element
fully-ordered lattice. For a position i ≥ 0, we use πi to denote the suffix πi, πi+1, . . .
of π. Given a computation π and an LLTL formula ϕ, the satisfaction value of ϕ in π,
denoted [[π, ϕ]], is defined by induction on the structure of ϕ as follows (the operators
on the right-hand side are the join, meet, and complementation operators of L). 1

– [[π, 	]] = 	. –[[π, ϕ ∨ ψ]] = [[π, ϕ]] ∨ [[π, ψ]].
– [[π, p]] = π0(p). –[[π,Xϕ]] = [[π1, ϕ]].
– [[π,¬ϕ]] = ¬[[π, ϕ]]. –[[π, ϕUψ]] =

∨
i≥0([[π

i, ψ]] ∧
∧

0≤j<i[[π
j , ϕ]]).

Example 1. Consider a setting in which three agents a, b, and c have different view-
points on a system S. A truth assignment for the atomic propositions is then a function

1 Unlike LTL, where the constants True and False do not increase the expressive power, in
LLTL the constants � ∈ L do increase the expressive power.
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in (2{a,b,c})AP assigning to each p ∈ AP the set of agents according to whose view-
point p is true. We reason about S using the lattice L = 〈2{a,b,c},⊆〉. For example, the
truth value of the formula ψ = G(req → F grant) in a computation is the set of agents
according to whose view-point, whenever a request is sent, it is eventually granted.

2.3 LLTL Synthesis

Consider a lattice L and finite disjoint sets I and O of input and output signals that
take values in L. An (I/O)-transducer over L models an interaction between an en-
vironment that generates in each moment in time an input in LI and a system that
responds with outputs in LO. Formally, an (I/O)-transducer over L (transducer, when
I , O, and L are clear from the context) is a tuple T = 〈L, I, O, S, s0, η, τ〉 where S
is a finite set of states, s0 ∈ S is an initial state, η : S × LI → S is a deterministic
transition function, and τ : S → LO is a labeling function. We extend η to words in
(LI)∗ in the straightforward way. Thus, η : (LI)∗ → S is such that η(ε) = s0, and
for x ∈ (LI)∗ and i ∈ LI , we have η(x · i) = η(η(x), i). Each transducer T induces
a strategy fT : (LI)∗ → LO where for all w ∈ (LI)∗, we have fT (w) = τ(η(w)).
Thus, fT (w) is the letter that T outputs after reading the sequence w of input letters.
Given a sequence i0, i1, i2, . . . ∈ (LI)ω of input assignments, the transducer generates
the computation ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . ∈ (LI∪O)ω, where for all j ≥ 1,
we have oj = fT (i0 · · · ij−1).

Consider a lattice L, an LLTL formula ϕ over the atomic propositions I ∪O, and a
predicate P ⊆ L. We say that a transducer T realizes 〈ϕ, P 〉 if for every computation
ρ of T , it holds that [[ρ, ϕ]] ∈ P . The realizability problem for LLTL is to determine,
given ϕ and P , whether there exists a transducer that realizes 〈ϕ, P 〉. We then say that
ϕ is (I/O)-realizable with values in P . The synthesis problem is then to generate such
a transducer. Of special interest are predicates P that are upward closed. Thus, P is
such that for all 	 ∈ L, if 	 ∈ P then 	′ ∈ P for all 	′ ≥ 	.

2.4 Noisy Synthesis

Consider an LLTL formula ϕ over atomic proposition I ∪ O and a predicate P . In
noisy synthesis, we consider the synthesis problem in a setting in which the inputs are
read with some perturbation and the goal is to synthesize a transducer that nevertheless
realizes 〈ϕ, P 〉.

In order to formalize the above intuition, we first formalize the notion of noise. Con-
sider a lattice L = 〈A,≤〉 and two elements 	1, 	2 ∈ L. We define the distance between
	1 and 	2, denoted d(	1, 	2), as the shortest path from 	1 to 	2 in the undirected graph
〈A,E≺〉 in which E≺(v, v

′) iff v ≺ v′ or v′ ≺ v. For example, in the fully-ordered
lattice L, we have d(i, j) = |i − j|, and in the power-set lattice, the distance coincides
with the Hamming distance, thus d(X1, X2) = |(X1 \ X2) ∪ (X2 \ X1)|. For two
assignments f, f ′ ∈ LAP , we define d(f, f ′) = maxp∈AP d(f(p), f

′(p)).

We assume we are given a noise function ν : LI → 2L
I

, describing the possible
perturbations of each input. That is, for every i ∈ LI the set ν(i) consists of the inputs
that may have been actually generated by the environment, when the system reads i. A
natural noise function is ν(i) = {j : d(i, j) ≤ γ}, for some constant γ, which is the
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γ-units ball around i. Given a noise function ν and two computations π, π′ ∈ (LI∪O)ω,
we say that π′ is ν-indistinguishable from π if for every i ≥ 0, we have that π′i|I ∈
ν(πi|I) and π′i|O = πi|O, where σ|I is the restriction of σ ∈ LI∪O to inputs in I , and
similarly for σ|O andO. Thus, π′ is obtained from π by changing only the assignment to
input signals, within ν. Note that ν need not be a symmetric function, nor is the definition
of ν-indistinguishablity. We say that a transducer T realizes 〈ϕ, P 〉 with noise ν if for
every computation π of T , we have that [[π′, ϕ]] ∈ P for all computations π′ that are
ν-indistinguishable from π. Thus, the reaction of T on every input sequence satisfies ϕ
in a desired satisfaction value even if the input sequence is read with noise ν.

2.5 Automata and Games

An automaton over infinite words is A = 〈Σ,Q,Q0, δ, α〉, where Σ is the input alpha-
bet,Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q×Σ → 2Q is a tran-
sition function, and α is an acceptance condition. When A is a generalized Büchi or a
generalized co-Büchi automaton, then α ⊆ 2Q is a set of sets of accepting states. When
A is a parity automaton, then α = 〈F1, . . . , Fd〉, where the sets in α form a partition of
Q. The number of sets in α is the index ofA. An automaton is deterministic if |Q0| = 1
and for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1. A run r = r0, r1, . . . of A
on a wordw = w1 ·w2 · · · ∈ Σω is an infinite sequence of states such that r0 ∈ Q0, and
for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). We denote by inf(r) the set of states
that r visits infinitely often, that is inf(r) = {q : ri = q for infinitely many i ∈ �}.
The run r is accepting if it satisfies α. For generalized Büchi automata, a run is accept-
ing if it visits all the sets in α infinitely often. Formally, for every set F ∈ α, we have
that inf(r) ∩ F �= ∅. Dually, in generalized co-Büchi automata, there should exist a
set F ∈ α for which inf(r) ∩ F = ∅. For parity automata, a run r is accepting if the
minimal index i for which inf(r) ∩ Fi �= ∅ is even.

When A is a nondeterministic automaton, it accepts a word w if it has an accepting
run of on w. When A is a universal automaton, it accepts a word w if all its runs on w
are accepting. The language of A, denoted L(A), is the set of words that A accepts.

A parity game is G = 〈Σ1, Σ2, S, s0, δ, α〉, where Σ1 and Σ2 are alphabets for
Players 1 and 2, respectively, S is a finite set of states, s0 ∈ S is an initial state, δ :
S×Σ1×Σ2 → S is a transition function, and α = 〈F1, . . . , Fd〉 is a parity acceptance
condition, as described above. A play of the game starts in s0. In each turn Player 1
chooses a letter σ ∈ Σ1 and Player 2 chooses a letter τ ∈ Σ2. The play then moves from
the current state s to the state δ(s, σ, τ). Formally, a play of G is an infinite sequence ρ =
〈s0, σ0, τ0〉, 〈s1, σ1, τ1〉, . . . such that for every i ≥ 0, we have that si+1 = δ(si, σi, τi).
We define inf(ρ) = {s ∈ S : s = si for infinitely many i ∈ �}. A play ρ is winning
for Player 1 if the minimal index i for which inf(ρ) ∩ Fi �= ∅ is even. A strategy
for Player 1 is a function f : (S × Σ1 × Σ2)

∗ × S → Σ1 that assigns, for every
finite prefix of a play, the next move for Player 1. Similarly, a strategy for Player 2 is a
function g : (S ×Σ1 × Σ2)

∗ × S ×Σ1 → Σ2. A strategy is memoryless if it does not
depend on the history of the play. Thus, a memoryless strategy for Player 1 is a function
f : S → Σ1 and for Player 2 it is a function g : S ×Σ1 → Σ2.

A pair of strategies f, g for Players 1 and 2, respectively, induces a single play that
conforms with the strategies. We say that Player 1 wins G if there exists a strategy f
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for Player 1 such that for every strategy g for Player 2, the play induced by f and g is
winning for Player 1. Otherwise, Player 2 wins. By determinancy of Parity games [21],
Player 2 wins G if there exists a strategy g for Player 2 such that for every strategy f of
Player 1, the play induced by f and g is not winning for Player 1.

2.6 Solving the Boolean Synthesis Problem

The classical solution for the synthesis problem for LTL goes via games [24].2 It in-
volves a translation of the specification into a deterministic parity word automaton
(DPW) over the alphabet 2I∪O, which is then transformed into a game in which the
players alphabets are 2I and 2O. More recent solutions avoids the determination and
the solution of parity games and use instead alternating tree automata [19,13]. The
complexity of both approaches coincide. Below we describe the classical solution for
the synthesis problem, along with its complexity, when the starting point is a specifi-
cation given by a DPW.3 In Remark 1, we describe an alternative, Safraless, approach,
where the starting point is a universal co-Büchi automaton.

Theorem 1. Consider a specification ϕ over I and O given by means of a DPW Dϕ of
size t over the alphabet 2I∪O, with index k. The synthesis problem for ϕ can be solved
in time O(tk).

Proof. Let Dϕ = 〈2I∪O, Q, q0, δ, α〉. We define a game Gϕ that models an inter-
action that simulates Dϕ between a system (Player 1) that generates assignments in
2O and an environment (Player 2) that generates assignments in 2I . Formally, Gϕ =
〈2O, 2I , Q, q0, η, α〉, where η : Q× 2O × 2I → Q is such that for every q ∈ Q, i ∈ 2I ,
and o ∈ 2O, we have that η(q, i, o) = δ(q, i ∪ o). By [11], the game is determined and
one of the players has a memoryless winning strategy. Such a strategy for Player 1 in
Gϕ is then a transducer that realizes ϕ. The game Gϕ is of sizeO(t) and index k. Hence,
by [15,27], we can find a memoryless strategy for the winner in time O(tk). ��

3 Properties of LLTL

In this section we study properties of the logic LLTL. We focus on the set of attainable
satisfaction values of an LLTL formula and on stability properties, namely the affect of
perturbing the values of the atomic propositions on the satisfaction value of formulas.

3.1 Attainable Values

Consider a lattice L. We say that L is pointed if for all LLTL formulas ϕ, partitions
I ∪ O of AP , and values 	1, 	2 ∈ L, if ϕ is (I/O)-realizable with value 	1 and with
value 	2, then ϕ is also (I/O)-realizable with value 	1∨	2. Observe that if L is pointed,
then every LLTL formula over L has a transducer that realizes it with a maximal value.

2 In [24] and other early works the games are formulated by means of tree automata.
3 State-of-the-art algorithms for solving parity games achieve a better complexity [15,27]. The

bound, however, remains polynomial in the size of the game and exponential in its index.
Since the challenge of solving parity games is orthogonal to our contribution here, we keep
this component of our contribution simple.



Latticed-LTL Synthesis in the Presence of Noisy Inputs 233

We start by showing that in general, not all lattices are pointed. In fact, our example
hasO = ∅, where (I/O)-realizability coincides with satisfiability. The lattices we focus
on, are, however, pointed.

Theorem 2. Not all distributive De-Morgan lattices are pointed. Fully-ordered lattices
and power-set lattices are pointed.

Proof. The proof of the positive result is in the full version. For the negative one, con-
sider the lattice L = 〈2{a,b} × {0, 1},≤〉 where 〈S1, v1〉 ≤ 〈S2, v2〉 iff v1 ≤ v2 or
(v1 = v2 and S1 ⊆ S2). We define ¬〈S, v〉 = 〈{a, b} \S, 1− v〉. It is easy to verify that
L is a distributive De-Morgan lattice.

Let I = {p} and consider the formula ϕ = (p ∧ 〈{a}, 1〉) ∨ (¬p ∧ 〈{b}, 1〉). Both
〈{a}, 1〉 and 〈{b}, 1〉 are attainable satisfaction values of ϕ. For example, by setting p
to 〈{a}, 1〉 or to 〈{a}, 0〉. On the other hand, for every assignment 	 to p, the second
component of either 	 or ¬	 is 0. Consequently, 〈{a, b}, 1〉 is not attainable, thus L is
not pointed. ��

3.2 Stability

For two computations π = π0, π1, . . . and π′ = π′0, π
′
1, . . ., both in (LAP )ω , we de-

fine the global distance between π and π′, denoted gd(π, π′), as
∑

i≥0 d(πi, π
′
i). Note

that gd(π, π′) may be infinite. We define the local distance between π and π′, denoted
ld(π, π′), as maxi≥0 d(πi, π

′
i). Note that ld(π, π′) ≤ |L|.

Consider an LLTL formula ϕ over AP and L. We say that ϕ is globally stable
if for every pair π and π′ of computations, we have d([[π, ϕ]], [[π′, ϕ]]) ≤ gd(π, π′).
Thus, the difference between the satisfaction value of ϕ in π and π′ is bounded by the
sum of differences between matching locations in π and π′. Also, ϕ is locally stable
if for every pair π and π′ of computations, we have d([[π, ϕ]], [[π′, ϕ]]) ≤ ld(π, π′).
Thus, the difference between the satisfaction value of ϕ in π and π′ is bounded by the
maximal difference between matching locations in π and π′. Here, we study stability of
all LLTL formulas. In Section 5.3, we study the problem of deciding whether a given
LLTL formula is stable, and discuss the relevancy of stability to synthesis with noise.

Consider an LLTL formula ϕ over the atomic propositions AP , and consider com-
putations π, π′ ∈ (LAP )ω. Assume that gd(π, π′) ≤ 1. That is, π and π′ differ only
in one location, where they differ in the value of a single atomic proposition, whose
value in π is a child of its value in π′ or vice versa. It is tempting to think that then,
d([[π, ϕ]], [[π′, ϕ]]) ≤ 1, which would imply that ϕ should be globally stable.

We start by breaking this intuition, showing that for non-distributive lattices, this is
false. The proof makes use of an N5 structure. Formally, an N5 structure in a lattice
L is a tuple 〈x, y, z, w, s〉 such that the following relations hold: s < x < y < w,
s < z < w, y �≤ z, z �≤ y, x �≤ z, and z �≤ x. Note that x ∨ (z ∧ y) = x ∨ s = x,
whereas (x∨z)∧ (x∨y) = w∧y = y. Hence, the structure of N5 is never a sub-lattice
in a distributive lattice.

Theorem 3. LLTL formulas may not be globally stable with respect to non-distributive
lattices.
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Proof. Consider the lattice N5, the formula ϕ = p ∨ q, and a computation π such that
π0(p) = s and π0(q) = x. Clearly [[π, ϕ]] = x. Now, let π′ be the computation obtained
from π by setting π′0(p) = z. It holds that gd(π, π′) = 1. However, [[π′, ϕ]] = z∨x = w,
and d(x,w) = 2. Thus, ϕ is not globally stable over the lattice N5. ��

We now proceed to show that when defined with respect to a distributive lattice, all
LLTL formulas are globally stable.

Theorem 4. LLTL formulas over De-Morgan distributive lattices are globally stable.

Proof. We prove that for every LLTL formula ϕ and computations π, π′ ∈ (LAP )ω, if
gd(π, π′) = 1, then d([[π, ϕ]], [[π′, ϕ]]) ≤ 1. We then proceed by induction on gd(π, π′).

Consider an LLTL formula ϕ and computations π, π′ such that gd(π, π′) = 1. That
is, there exists a single index i ≥ 0 such that d(πi, π′i) = 1 and πj = π′j for all
j �= i. W.l.o.g, there is p ∈ AP such that πi(p) 1 π′i(p). By Birkhoff’s representation
theorem, there exists a unique element u ∈ JI(L) such that π′i(p) = πi(p)∨u. We prove,
by induction over the structure of ϕ, that [[π′, ϕ]] ∈ {[[π, ϕ]] ∧ ¬u, [[π, ϕ]], [[π, ϕ]] ∨ u}
and that d([[π′, ϕ]], [[π, ϕ]]) ≤ 1.

The proof appears in the full version. As detailed there, the interesting case is when
ϕ = ψ ∨ θ, where we use the fact that a distributed lattice cannot have an N5 structure.

��

We now turn to study local stability. Since local stability refers to the maximal change
along a computation, it is a very permissive notion. In particular, it is not hard to see
that in a fully-ordered lattice, a local change of 1 entails a change of at most 1 in the
satisfaction value. Thus, we have the following.

Theorem 5. LLTL formulas are locally stable with respect to fully-ordered lattices.

In partially-ordered lattices, however, things are more involved, as local changes may
be in different “directions”. Formally, we have the following.

Theorem 6. LLTL formulas may not be locally stable.

Proof. Consider the power-set lattice 〈2a,b,⊆〉 and the LLTL formula ϕ = p ∨ Xp.
Consider computations π and π′ with π0(p) = π1(p) = ∅, π′0(p) = {a}, and π′1(p) =
{b}. It holds that ld(π, π′) = 1, whereas d([[π, ϕ]], [[π′, ϕ]]) = d(∅, {a, b}) = 2. We
conclude that ϕ is not locally stable. ��

4 Translating LLTL to Automata

In this section we describe an automata-theoretic approach for reasoning about LLTL
specifications. One approach is to develop a framework that is based on lattice au-
tomata [16]. Like LLTL formulas, lattice automata map words to values in a lattice.
Lattice automata have proven to be useful in solving the satisfiability and the model-
checking problems for LLTL [16]. However, the solution of the synthesis problem in-
volves automata-theoretic constructions for which the latticed counterpart is either not
known or is very complicated. In particular, Safra’s determinization construction has
not yet been studied for lattice automata, and a latticed counterpart of it is not going
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to be of much fun. Likewise, the solution of two-player games (even reachability, and
moreover parity) in the latticed setting is much more complicated than in the Boolean
setting. In particular, obtaining a value 	1 ∨ 	2 in a latticed game may require one strat-
egy for obtaining 	1 and a different strategy for obtaining 	2 [17]. When the game is
induced by a realizability problem, it is not clear how to combine such strategies into a
single transducer that realizes the underlying specification with value 	1 ∨ 	2.

Accordingly, a second approach, which is the one we follow, is to use Boolean au-
tomata. The fact LLTL formulas have finitely many possible satisfaction values sug-
gests that this is possible. For fully-ordered lattices, a similar approach has been taken
in [12,1]. Beyond the challenge in these works of maintaining the simplicity of the
automata-theoretic framework ofLTL, an extra challenge in the latticed setting is caused
by the fact values may be only partially ordered. We will elaborate on this point below.

In order to explain our framework, let us recall first the translation of LTL formu-
las to nondeterministic generalized Büchi automata (NGBW), as introduced in [29].
There, each state of the automaton is associated with a set of formulas, and the NGBW
accepts a computation from a state q iff the computation satisfies exactly all the for-
mulas associated with q. The state space of the NGBW contains only states associated
with maximal and consistent sets of formulas, the transitions are defined so that require-
ments imposed by temporal formulas are satisfied, and the acceptance condition is used
in order to guarantee that requirements that involve the satisfaction of eventualities are
not delayed forever.

In the construction here, each state of the NGBW assigns a satisfaction value to every
subformula. While it is not difficult to extend the local consistency rules to the latticed
settings, handling of eventualities is more complicated. To see why, consider for exam-
ple the formula Fp, for p ∈ AP , and the computation π in which the satisfaction value
of p is ({a}, {b}, {c})ω . While [[π, Fp]] = {a, b, c}, the computation never reaches a
position in which the satisfaction value of the eventuality p is {a, b, c}. This poses a
problem on translations of LTL formulas to automata, where eventualities are handed
by making sure that each state in which the satisfaction of ψ1Uψ2 is guaranteed, is
followed by a state in which the satisfaction of ψ2 is guaranteed. For a multi-valued
setting with fully-ordered values, as is the case in [12,1], the latter can be replaced by a
requirement to visit a state in which the guaranteed satisfaction value of ψ exceeds that
of ψ1Uψ2. As the example above demonstrates, such a position need not exist when the
values are partially ordered. In order to address the above problem, every state in the
NGBW associates with every subformula of the form ψ1Uψ2 a value in L that ψ2 still
needs “accumulate” in order for ψ1Uψ2 to have its assigned satisfaction value. Thus, as
in other break-point constructions [29,22], we decompose the requirement to obtain a
value 	 to requirements to obtain join-irreducible values whose join is 	, and we check
these requirements together.

Theorem 7. Let ϕ be an LLTL formula over L and P ⊆ L be a predicate. There exists
an NGBWAϕ,P such that for every computation π ∈ (2AP )ω , it holds that [[π, ϕ]] ∈ P
iffAϕ,P accepts π. The state space and transitions ofAϕ,P are independent ofP , which
only influences the set of initial states. The NGBW Aϕ,P has at most |L|O(|ϕ|) states
and index at most |ϕ|.
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Proof. We define Aϕ,P = 〈LAP , Q, δ,Q0, α〉 as follows. Let cl(ϕ) be the set of ϕ’s
subformulas, and let ucl(ϕ) be the set of ϕ’s subformulas of the form ψ1Uψ2. Let Gϕ

and Fϕ be the collection of functions g : cl(ϕ)→ L and f : ucl(ϕ)→ L, respectively.
For an element v ∈ L, let JI(v) be the minimal set S ⊆ JI(L) such that v =

∨
s∈S s.

By Birkhoff’s theorem, this set is well defined, and the JI mapping is a bijection.
For a pair of functions 〈g, f〉 ∈ Gϕ×Fϕ, we say that 〈g, f〉 is consistent if for every

ψ ∈ cl(ϕ), the following holds.

– If ψ = v ∈ L, then g(ψ) = v.
– If ψ = ¬ψ1, then g(ψ) = ¬g(ψ1).
– If ψ = ψ1 ∨ ψ2, then g(ψ) = g(ψ1) ∨ g(ψ2).
– If ψ = ψ1Uψ2, then JI(f(ψ)) ∩ JI(g(ψ2)) = ∅.

The state space Q of Aϕ,� is the set of all consistent pairs of functions in Gϕ × Fϕ.
Intuitively, while the function g describes the satisfaction value of the formulas in the
closure, the function f describes, for each subformula of the form ψ1Uψ2, the values
in which ψ2 still has to be satisfied in order for the satisfaction value g(ψ1Uψ2) to be
fulfilled. Accordingly, if a value is in JI(g(ψ2)), it can be removed from f(ψ1Uψ2),
explaining why JI(f(ψ1Uψ2)) ∩ JI(g(ψ2)) = ∅.

Then, Q0 = {g ∈ Q : g(ϕ) ∈ P} contains all states in which the value assigned to
ϕ is in P .

We now define the transition function δ. For two states 〈g, f〉 and 〈g′, f ′〉 in Q and a
letter σ ∈ LAP , we have that 〈g′, f ′〉 ∈ δ(〈g, f〉, σ) iff the following hold.

– For all p ∈ AP , we have that σ(p) = g(p).
– For all Xψ1 ∈ cl(ϕ), we have g(Xψ1) = g′(ψ1).
– For all ψ1Uψ2 ∈ cl(ϕ), we have g(ψ1Uψ2) = g(ψ2) ∨ (g(ψ1) ∧ g′(ψ1Uψ2)) and

f ′(ψ1Uψ2) =

{
JI(f(ψ1Uψ2)) \ JI(g′(ψ2)) If JI(f(ψ1Uψ2)) �= ∅,
JI(g′(ψ1Uψ2)) \ JI(g′(ψ2)) Otherwise.

Finally, every formula of the form ψ1Uψ2 contributes to the acceptance condition α the
set Fψ1Uψ2 = {〈g, f〉 : JI(f(ψ1Uψ2)) = ∅}.

Observe that while δ is nondeterministic, it is only nondeterministic in the first com-
ponent. That is, once the function g′ is chosen, there is a single function f ′ that can
match the transition. The correctness proof can be found in the full version. ��

5 LLTL Synthesis

Recall that in the synthesis problem we are given an LLTL formula ϕ over sets I and
O of input and output variables, taking truth values from a lattice L, and we want to
generate an (I/O)-transducer over L all whose computations satisfy ϕ in a value from
some desired set P of satisfaction values. In the noisy setting, the transducer may read
a perturbed value of the input signals, and still all its computations need to satisfy ϕ as
required. In this section we use the construction in Theorem 7 in order to solve both
variants of the synthesis problem.
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5.1 Solving the LLTL Synthesis Problem

Theorem 8. The synthesis problem for LLTL is 2EXPTIME-complete. Given an LLTL
formula ϕ over a lattice L and a predicate P ⊆ L, we can solve the synthesis problem
for 〈ϕ, P 〉 in time 2|L|O(|ϕ|)

.

Proof. Let m denote the size of L, and let n denote the length of ϕ. The construction
in Theorem 7 yields an NGBW with mO(n) states and index n. By determinizing the
NGBW we obtain an equivalent DPW Dϕ,P of size 2m

O(n) logmO(n)

= 2O(n)mO(n)

=

2m
O(n)

and index mO(n) [26,23]. Following the same lines as the proof of Theorem 1,
we see that in order to solve the LLTL synthesis problem, it suffices to solve the parity
game that is obtained from Dϕ, except that here the alphabets of Players 1 and 2 are
LO and LI , respectively. Accordingly, a winning memoryless strategy for Player 1 is
an (I/O)-transducer over L that realizes 〈ϕ, P 〉.

As stated in Theorem 1, the parity game that is obtained from Dϕ,P can be solved

in time (2m
O(n)

)m
O(n)

= 2m
O(n)

. We conclude that the LLTL-synthesis problem is in
2EXPTIME. Hardness in 2EXPTIME follow from the hardness of the synthesis prob-
lem in the Boolean setting, which corresponds to a fully-ordered lattice with two values.

��
5.2 Solving the Noisy LLTL Synthesis Problem

Consider an LLTL formula ϕ over the atomic propositions I ∪ O, a predicate P ⊆ L,
and a noise function ν : LI → 2L

I

. Recall that the goal in noisy synthesis is to find a
transducer T that realizes 〈ϕ, P 〉with noise ν. Our goal is to construct a DPW on which
we can apply the algorithm described in Theorem 1. For this, we proceed in three steps.
First, we translate ϕ to a universal generalized co-Büchi word automaton (UGCW).
Then, we incorporate the noise in the constructed UGCW. Finally, we determinize the
UGCW to obtain a DPW, from which we proceed as described in Theorem 1. We start
by showing how to incorporate noise in universal automata.

Lemma 1. Consider a UGCW D and a noise function ν. There exists a UGCW D′

such that D′ accepts a computation ρ iff D accepts every computation ρ′ that is ν-
indistinguishable from ρ. Moreover, D′ has the same state space and acceptance con-
dition as D.

Proof. LetD = 〈I ∪O,Q,Q0, δ, α〉. We obtainD′ = 〈I ∪O,Q,Q0, δ
′, α〉 fromD by

modifying δ as follows. For everyσ ∈ I∪O, letΓσ={γ : γ|O = σ|O and γ|I ∈ ν(σ|I)}.
Thus, Γσ contains all letters that are ν-indistinguishable from σ. Then, for every state
q ∈ Q, we have that δ′(q, σ) =

⋃
γ∈Γσ

δ(q, γ). Thus, reading the letter σ, the UGCW
D′ simulates all the runs ofD on all the letters thatD may read when the actual letter in
the input is σ.

It is not hard to show that the set of runs of D′ on a computation ρ is exactly the set
of all the runs of D on all the computations that are ν-indistinguishable from ρ. From
this, the correctness of the construction follows. ��
Theorem 9. The noisy synthesis problem for LLTL is 2EXPTIME-complete. Given an
LLTL formula ϕ over a lattice L, a predicate P ⊆ L, and a noise function ν, we can
solve the synthesis problem for 〈ϕ, P 〉 with noise ν in time 2m

O(n)

.
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Proof. Let P = L \ P , and let Aϕ,P be the NGBW constructed for ϕ and P in The-
orem 7. Observe that Aϕ,P accepts a computation ρ iff [[ρ, ϕ]] /∈ P . Next, we dualize
Aϕ,P and obtain a UGCW Dϕ,P for the complement language, namely all computa-
tions ρ such that [[ρ, ϕ]] ∈ P . We now apply the procedure in Lemma 1 to Dϕ,P and
obtain a UGCW D′

ϕ,P that accepts ρ iff Dϕ,P accepts every computation ρ′ that is
ν-indistinguishable from ρ. Next, we determinizeD′

ϕ,P to an equivalent DPW D′′
ϕ,P .

We claim that the algorithm described in the proof of Theorem 1 can be applied to
D′′

ϕ,P . To see this, let D′′
ϕ,P = 〈I ∪ O,S, s0, η, β〉 and consider the game G that is

obtained fromD′′
ϕ,P . That is, G = 〈LO,LI , S, s0, η, β〉, where for every q ∈ S, i ∈ LI ,

and o ∈ LO , we have that η(q, i, o) = μ(q, i ∪ o).
A (memoryless) winning strategy f for Player 1 in G is then an (I/O)-transducer

over L with the following property: for every strategy g of the environment, consider
the play ρ that is induced by f and g. The play ρ induces a computationw ∈ LI∪O that
is accepted by D′′

ϕ,P . By the construction of D′′
ϕ,P , this means that for every computa-

tion w′ that is ν-indistinguishable from w, the run of Dϕ,P on w′ is accepting. Hence,
[[w′, ϕ]] ∈ P , which in turn implies that f realizes 〈ϕ, P 〉 with noise ν.

We now analyze the complexity of the algorithm. Letm denote the size of L, and let
n denote the length of ϕ. By Theorem 7, the size of Aϕ,P is mO(n) and it has index at
most n. Dualizing results in a UGCW of the same size and acceptance condition, and
so is the transition to D′

ϕ,P . Determinization involves an exponential blowup, such that

D′′
ϕ,P is of size 2m

O(n) logmO(n)

= 2m
O(n)

and index mO(n). Finally, solving the parity

game can be done in time (2m
O(n)

)m
O(n)

= 2m
O(n)

. We conclude that the LLTL-noisy-
synthesis problem is in 2EXPTIME. Hardness in 2EXPTIME again follows from the
hardness of the synthesis problem in the Boolean setting. ��

Remark 1. The approach described in the proofs of Theorems 1, 8, and 9 is Safrafull,
in the sense it involves a construction of a DPW. As has been the case with Boolean
synthesis [19], it is possible to proceed Safralessly also in LLTL synthesis with noise.
To see this, note that the starting point in Theorem 1 can also be a UGCW, and that
Lemma 1 works with UGCWs. In more details, once we construct a UGCW U for the
specification, possibly with noise incorporated, the Safraless approach expands U to
a universal co-Büchi tree automaton that accepts winning strategies for the system in
the corresponding synthesis game, and checks its emptiness. In terms of complexity,
rather than paying an additional exponent in the translation of the specification to a
deterministic automaton, we pay it in the non-emptiness check of the tree automaton.

5.3 Local Stability Revisited

In Section 3.2 we have seen that not all LLTL formulas are locally stable. This gives
rise to the question of deciding whether a given LLTL formula is locally stable. In the
context of synthesis, if ϕ is known to be locally stable and we have a transducer T
that realizes 〈ϕ, P 〉 with no noise, we know that T realizes 〈ϕ, P ⊕ γ〉 with noise νγ ,
where νγ(σ) = {τ : d(σ, τ) ≤ γ}, and P ⊕ γ is the extension of P to noise νγ . Thus,
	 ∈ P ⊕ γ iff there is 	′ ∈ P such that d(	, 	′) ≤ γ.
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Theorem 10. Given an LLTL formula ϕ over a latticeL, deciding whether ϕ is locally
stable is PSPACE-complete.

Proof. In order to show that the problem is in PSPACE, we consider the following,
more general, problem: given an LLTL formula ϕ and a noise-threshold γ, we want to
compute the maximal distraction, denotedΔϕ,γ , that noise γ may cause to ϕ. Formally,

Δϕ,γ = max {d([[π, ϕ]], [[π′, ϕ]]) : π, π′ ∈ (LAP )ω and ld(π, π′) ≤ γ}.

Observe that finding Δϕ,γ allows us to decide local stability by iterating over all ele-
ments γ ∈ {1, . . . , |L|} and verifying thatΔϕ,γ ≤ γ. Furthermore, in order to compute
Δϕ,γ , it is enough to decide whether Δϕ,γ ≤ μ for a threshold μ ∈ {1, ..., |L|}, since
we can then iterate over thresholds.

We solve the dual problem, namely deciding whether there exist π, π′ ∈ (LAP )ω

such that ld(π, π′) ≤ γ and d([[π, ϕ]], [[π′, ϕ]]) > μ. In order to solve this problem, we
proceed as follows. In Theorem 7 we showed how to how to construct n NGBW Aϕ,�

such that Aϕ,� accepts a computation π iff [[π, ϕ]] = 	. In Section 5.2, we showed how
to construct a UGCW D′

ϕ,�⊕μ such that D′
ϕ,�⊕μ accepts π iff [[π′, ϕ]] ∈ 	⊕ μ for every

computation π′ that is νγ-indistinguishable from π. Now, there exist π, π′ ∈ (LAP )ω

such that ld(π, π′) ≤ γ and d([[π, ϕ]], [[π′, ϕ]]) > μ iff there exists 	 ∈ L such that
[[π, ϕ]] = 	 and the latter conditions hold. Observe that these conditions hold iff there
exists a computation π that is accepted by Aϕ,� but not by D′

ϕ,�⊕μ. Thus, it suffices to

decide whether L(Aϕ,�) ∩ L(D′
ϕ,�⊕μ) = ∅ for every 	 ∈ L.

Finally, we analyze the complexity of this procedure. Let |L| = m and |ϕ| = n.
Complementation of D′

ϕ,�⊕μ can be done by constructing D′
ϕ,�⊕μ

. Hence, both Aϕ,�

and D′
ϕ,�⊕μ have mO(n) states. Checking the emptiness of their intersection can be

done on-the-fly in PSPACE, implying the required upper bound.
We prove hardness in PSPACE by describing a polynomial time reduction from the

satisfiability problem for LTL to the complement of the local-stability problem. Con-
sider an LTL formula ϕ overAP . We assume that ϕ is not valid, thus there is a compu-
tation that does not satisfy it (clearly LTL satisfiability is PSPACE-hard also with this
promise). We construct an LLTL formula ψ over the lattice L = 〈2{a,b},⊆〉 as follows.
Let AP ′ = {p′ : p ∈ AP} be a tagged copy of AP . We define ψ = ϕ ∨ ϕ′ over
AP ∪ AP ′, where ϕ′ is obtained form ϕ by replacing each atomic proposition by its
tagged copy. Clearly this reduction is polynomial. In the full version, we show that ϕ is
satisfiable iff ψ is not locally stable. ��

References
1. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: Fomin,

F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966,
pp. 15–27. Springer, Heidelberg (2013)

2. Alur, R., Kanade, A., Weiss, G.: Ranking automata and games for prioritized requirements.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 240–253. Springer, Heidel-
berg (2008)



240 S. Almagor and O. Kupferman

3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis
through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)
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Abstract. We consider two-player partial-observation stochastic games on finite-
state graphs where player 1 has partial observation and player 2 has perfect ob-
servation. The winning condition we study are ω-regular conditions specified
as parity objectives. The qualitative-analysis problem given a partial-observation
stochastic game and a parity objective asks whether there is a strategy to ensure
that the objective is satisfied with probability 1 (resp. positive probability). These
qualitative-analysis problems are known to be undecidable. However in many
applications the relevant question is the existence of finite-memory strategies,
and the qualitative-analysis problems under finite-memory strategies was recently
shown to be decidable in 2EXPTIME. We improve the complexity and show that
the qualitative-analysis problems for partial-observation stochastic parity games
under finite-memory strategies are EXPTIME-complete; and also establish op-
timal (exponential) memory bounds for finite-memory strategies required for
qualitative analysis.

1 Introduction

Games on graphs. Two-player stochastic games on finite graphs played for infinite
rounds is central in many areas of computer science as they provide a natural set-
ting to model nondeterminism and reactivity in the presence of randomness. In par-
ticular, infinite-duration games with omega-regular objectives are a fundamental tool in
the analysis of many aspects of reactive systems such as modeling, verification, refine-
ment, and synthesis [2,16]. For example, the standard approach to the synthesis problem
for reactive systems reduces the problem to finding the winning strategy of a suitable
game [22]. The most common approach to games assumes a setting with perfect infor-
mation, where both players have complete knowledge of the state of the game. In many
settings, however, the assumption of perfect information is not valid and it is natural to
allow an information asymmetry between the players, such as, controllers with noisy
sensors and software modules that expose partial interfaces [23].

� This research was supported by Austrian Science Fund (FWF) Grant No P23499- N23, FWF
NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft Fac-
ulty Fellowship Award, European project Cassting (FP7-601148), NSF grants CNS 1049862
and CCF-1139011, by NSF Expeditions in Computing project “ExCAPE: Expeditions in Com-
puter Augmented Program Engineering”, by BSF grant 9800096, and by gift from Intel.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 242–257, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



The Complexity of Partial-Observation Stochastic Parity Games 243

Partial-observation stochastic games. Partial-observation stochastic games are played
between two players (player 1 and player 2) on a graph with finite state space. The game
is played for infinitely many rounds where in each round either player 1 chooses a move
or player 2 chooses a move, and the successor state is determined by a probabilistic
transition function. Player 1 has partial observation where the state space is partitioned
according to observations that she can observe i.e., given the current state, the player
only views its observation (the partition the state belongs to), but not the precise state.
Player 2 (adversary to player 1) has perfect observation and observes the precise state.

The class of ω-regular objectives. An objective specifies the desired set of behaviors
(or paths) for player 1. In verification and control of stochastic systems an objective is
typically an ω-regular set of paths. The class of ω-regular languages extends classical
regular languages to infinite strings, and provides a robust specification language to
express all commonly used specifications [24]. In a parity objective, every state of the
game is mapped to a non-negative integer priority and the goal is to ensure that the
minimum priority visited infinitely often is even. Parity objectives are a canonical way
to define such ω-regular specifications. Thus partial-observation stochastic games with
parity objective provide a general framework for analysis of stochastic reactive systems.

Qualitative and quantitative analysis. Given a partial-observation stochastic game with
a parity objective and a start state, the qualitative-analysis problem asks whether the
objective can be ensured with probability 1 (almost-sure winning) or positive proba-
bility (positive winning); whereas the quantitative-analysis problem asks whether the
objective can be satisfied with probability at least λ for a given threshold λ ∈ (0, 1).

Previous results. The quantitative analysis problem for partial-observation stochastic
games with parity objectives is undecidable, even for the very special case of proba-
bilistic automata with reachability objectives [21]. The qualitative-analysis problems
for partial-observation stochastic games with parity objectives are also undecidable [3],
even for probabilistic automata. In many practical applications, however, the more rel-
evant question is the existence of finite-memory strategies. The quantitative analysis
problem remains undecidable for finite-memory strategies, even for probabilistic au-
tomata [21]. The qualitative-analysis problems for partial-observation stochastic par-
ity games were shown to be decidable with 2EXPTIME complexity for finite-memory
strategies [20]; and the exact complexity was open which we settle in this work.

Our contributions. Our contributions are as follows: for the qualitative-analysis prob-
lems for partial-observation stochastic parity games under finite-memory strategies we
show that (i) the problems are EXPTIME-complete; and (ii) if there is a finite-memory
almost-sure (resp. positive) winning strategy, then there is a strategy that uses at most
exponential memory (matching the exponential lower bound known for the simpler case
of reachability and safety objectives). Thus we establish both optimal computational
and strategy complexity results. Moreover, once a finite-memory strategy is fixed for
player 1, we obtain a finite-state perfect-information Markov decision process (MDP)
for player 2 where finite-memory is as powerful as infinite-memory [12]. Thus our
results apply to both cases where player 2 has infinite-memory or restricted to finite-
memory strategies.

Technical contribution. The 2EXPTIME upper bound of [20] is achieved via a reduc-
tion to the emptiness problem of alternating parity tree automata. The reduction of [20]
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to alternating tree automata is exponential as it requires enumeration of the end com-
ponents and recurrent classes that can arise after fixing strategies. We present a poly-
nomial reduction, which is achieved in two steps. The first step is as follows: a local
gadget-based reduction (that transforms every probabilistic state to a local gadget of
deterministic states) for perfect-observation stochastic games to perfect-observation de-
terministic games for parity objectives was presented in [11,5]. This gadget, however,
requires perfect observation for both players. We extend this reduction and present a lo-
cal gadget-based polynomial reduction of partial-observation stochastic games to three-
player partial-observation deterministic games, where player 1 has partial observation,
the other two players have perfect observation, and player 3 is helpful to player 1. The
crux of the proof is to show that the local reduction allows to infer properties about
recurrent classes and end components (which are global properties). In the second step
we present a polynomial reduction of the three-player games problem to the emptiness
problem of alternating tree automata. We also remark that the new model of three-player
games we introduce for the intermediate step of the reduction maybe also of indepen-
dent interest for modeling of other applications.

Related works. The undecidability of the qualitative-analysis problem for partial-
observation stochastic parity games with infinite-memory strategies follows from [3].
For partially observable Markov decision processes (POMDPs), which is a special case
of partial-observation stochastic games where player 2 does not have any choices, the
qualitative-analysis problem for parity objectives with finite-memory strategies was
shown to be EXPTIME-complete [6]. For partial-observation stochastic games the
almost-sure winning problem was shown to be EXPTIME-complete for Büchi objec-
tives (both for finite-memory and infinite-memory strategies) [10,7]. Finally, for partial-
observation stochastic parity games the almost-sure winning problem under
finite-memory strategies was shown to be decidable in 2EXPTIME in [20].

Summary and discussion. The results for the qualitative analysis of various models of
partial-observation stochastic parity games with finite-memory strategies for player 1
is summarized in Table 1. We explain the results of the table. The results of the first
row follows from [6] and the results for the second row are the results of our contri-
butions. In the most general case both players have partial observation. If we consider
partial-observation stochastic games where both players have partial observation, then
the results of the table are derived as follows: (a) If we consider infinite-memory strate-
gies for player 2, then the problem remains undecidable as when player 1 is non-existent
we obtain POMDPs as a special case. The non-elementary lower bound follows from
the results of [7] where the lower bound was shown for reachability objectives where
finite-memory strategies suffice for player 1 (against both finite and infinite-memory
strategies for player 2). (b) If we consider finite-memory strategies for player 2, then
the decidability of the problem is open, but we obtain the non-elementary lower bound
on memory from the results of [7] for reachability objectives.

2 Partial-Observation Stochastic Parity Games

We consider partial-observation stochastic parity games where player 1 has partial ob-
servation and player 2 has perfect observation. We consider parity objectives, and for
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Table 1. Complexity and memory bounds for qualitative analysis of partial-observation stochastic
parity games with finite-memory strategies for player 1. The new results are boldfaced.

Game Models Complexity Memory bounds

POMDPs EXPTIME-complete [6] Exponential [6]
Player 1 partial and player 2 perfect EXPTIME-complete Exponential

(finite- or infinite-memory for player 2)
Both players partial Undecidable [3] Non-elementary [7]

infinite-memory for player 2 (Lower bound)
Both players partial Open (??) Non-elementary [7]

finite-memory for player 2 (Lower bound)

almost-sure winning under finite-memory strategies for player 1 present a polynomial
reduction to sure winning in three-player parity games where player 1 has partial ob-
servation, player 3 has perfect observation and is helpful towards player 1, and player 2
has perfect observation and is adversarial to player 1. A similar reduction also works for
positive winning. We then show in the following section how to solve the sure winning
problem for three-player games using alternating parity tree automata.

2.1 Basic Definitions

We start with basic definitions related to partial-observation stochastic parity games.

Partial-observation stochastic games. We consider slightly different notation (though
equivalent) to the classical definitions, but the slightly different notation helps for more
elegant and explicit reduction. We consider partial-observation stochastic games as a
tupleG = (S1, S2, SP , A1, δ, E,O, obs) as follows: S = S1∪S2∪SP is the state space
partitioned into player-1 states (S1), player-2 states (S2), and probabilistic states (SP );
and A1 is a finite set of actions for player 1. Since player 2 has perfect observation, she
chooses edges instead of actions. The transition function is as follows: δ : S1 × A1 →
S2 that given a player-1 state in S1 and an action in A1 gives the next state in S2

(which belongs to player 2); and δ : SP → D(S1) given a probabilistic state gives the
probability distribution over the set of player-1 states. The set of edges is as follows:
E = {(s, t) | s ∈ SP , t ∈ S1, δ(s)(t) > 0} ∪ E′, where E′ ⊆ S2 × SP . The
observation set O and observation mapping obs are standard, i.e., obs : S → O. Note
that player 1 plays after every three steps (every move of player 1 is followed by a move
of player 2, then a probabilistic choice). In other words, first player 1 chooses an action,
then player 2 chooses an edge, and then there is a probability distribution over states
where player 1 again chooses and so on.

Three-player non-stochastic turn-based games. We consider three-player partial-
observation (non-stochastic turn-based) games as a tuple G = (S1, S2, S3, A1, δ, E,
O, obs) as follows: S is the state space partitioned into player-1 states (S1), player-2
states (S2), and player-3 states (S3); and A1 is a finite set of actions for player 1. The
transition function is as follows: δ : S1 × A1 → S2 that given a player-1 state in S1

and an action in A1 gives the next state (which belongs to player 2). The set of edges
is as follows: E ⊆ (S2 ∪ S3) × S. Hence in these games player 1 chooses an action,
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and the other players have perfect observation and choose edges. We only consider the
sub-class where player 1 plays in every k-steps, for a fixed k. The observation set O
and observation mapping obs are again standard.

Plays and strategies. A play in a partial-observation stochastic game is an infinite se-
quence of states s0s1s2 . . . such that the following conditions hold for all i ≥ 0: (i) if
si ∈ S1, then there exists ai ∈ A1 such that si+1 = δ(si, ai); and (ii) if si ∈ (S2∪SP ),
then (si, si+1) ∈ E. The function obs is extended to sequences ρ = s0 . . . sn of
states in the natural way, namely obs(ρ) = obs(s0) . . . obs(sn). A strategy for a player
is a recipe to extend the prefix of a play. Formally, player-1 strategies are functions
σ : S∗ · S1 → A1; and player-2 (and analogously player-3 strategies) are functions:
π : S∗ · S2 → S such that for all w ∈ S∗ and s ∈ S2 we have (s, π(w · s)) ∈ E.
We consider only observation-based strategies for player 1, i.e., for two play prefixes ρ
and ρ′ if the corresponding observation sequences match (obs(ρ) = obs(ρ′)), then the
strategy must choose the same action (σ(ρ) = σ(ρ′)); and the other players have all
strategies. The notations for three-player games are similar.

Finite-memory strategies. A player-1 strategy uses finite-memory if it can be encoded
by a deterministic transducer 〈M,m0, σu, σn〉 where M is a finite set (the memory of
the strategy), m0 ∈ M is the initial memory value, σu : M × O → M is the memory-
update function, and σn : M → A1 is the next-move function. The size of the strategy
is the number |M| of memory values. If the current observation is o, and the current
memory value is m, then the strategy chooses the next action σn(m), and the memory
is updated to σu(m, o). Formally, 〈M,m0, σu, σn〉 defines the strategy σ such that σ(ρ ·
s) = σn(σ̂u(m0, obs(ρ) · obs(s)) for all ρ ∈ S∗ and s ∈ S1, where σ̂u extends σu
to sequences of observations as expected. This definition extends to infinite-memory
strategies by not restricting M to be finite.

Parity objectives. An objective for Player 1 in G is a set ϕ ⊆ Sω of infinite sequences
of states. A play ρ satisfies the objective ϕ if ρ ∈ ϕ. For a play ρ = s0s1 . . . we de-
note by Inf(ρ) the set of states that occur infinitely often in ρ, that is, Inf(ρ) = {s |
sj = s for infinitely many j’s}. For d ∈ N, let p : S → {0, 1, . . . , d} be a priority
function, which maps each state to a nonnegative integer priority. The parity objec-
tive Parity(p) requires that the minimum priority that occurs infinitely often be even.
Formally, Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. Parity objectives are a
canonical way to express ω-regular objectives [24].

Almost-sure winning and positive winning. An event is a measurable set of plays. For
a partial-observation stochastic game, given strategies σ and π for the two players,
the probabilities of events are uniquely defined [25]. For a parity objective Parity(p),
we denote by Pσ,π

s (Parity(p)) the probability that Parity(p) is satisfied by the play
obtained from the starting state s when the strategies σ and π are used. The almost-sure
(resp. positive) winning problem under finite-memory strategies asks, given a partial-
observation stochastic game, a parity objective Parity(p), and a starting state s, whether
there exists a finite-memory observation-based strategy σ for player 1 such that against
all strategies π for player 2 we have Pσ,π

s (Parity(p)) = 1 (resp. Pσ,π
s (Parity(p)) > 0).

The almost-sure and positive winning problems are also referred to as the qualitative-
analysis problems for stochastic games.
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Sure winning in three-player games. In three-player games once the starting state s
and strategies σ, π, and τ of the three players are fixed we obtain a unique play, which
we denote as ρσ,π,τs . In three-player games we consider the following sure winning
problem: given a parity objective Parity(p), sure winning is ensured if there exists a
finite-memory observation-based strategy σ for player 1, such that in the two-player
perfect-observation game obtained after fixing σ, player 3 can ensure the parity objec-
tive against all strategies of player 2. Formally, the sure winning problem asks whether
there exist a finite-memory observation-based strategy σ for player 1 and a strategy τ
for player 3, such that for all strategies π for player 2 we have ρσ,π,τs ∈ Parity(p).

Remark 1 (Equivalence with standard model). We remark that for the model of partial-
observation stochastic games studied in literature the two players simultaneously choose
actions, and a probabilistic transition function determine the probability distribution of
the next state. In our model, the game is turn-based and the probability distribution is
chosen only in probabilistic states. However, it follows from the results of [8] that the
models are equivalent: by the results of [8, Section 3.1] the interaction of the players
and probability can be separated without loss of generality; and [8, Theorem 4] shows
that in presence of partial observation, concurrent games can be reduced to turn-based
games in polynomial time. Thus the turn-based model where the moves of the players
and stochastic interaction are separated is equivalent to the standard model. Moreover,
for a perfect-information player choosing an action is equivalent to choosing an edge
in a turn-based game. Thus the model we consider is equivalent to the standard partial-
observation game models.

Remark 2 (Pure and randomized strategies). In this work we only consider pure strate-
gies. In partial-observation games, randomized strategies are also relevant as they are
more powerful than pure strategies. However, for finite-memory strategies the almost-
sure and positive winning problem for randomized strategies can be reduced in polyno-
mial time to the problem for finite-memory pure strategies [7,20]. Hence without loss
of generality we only consider pure strategies.

2.2 Reduction of Partial-Observation Stochastic Games to Three-Player Games

In this section we present a polynomial-time reduction for the almost-sure winning
problem in partial-observation stochastic parity games to the sure winning problem in
three-player parity games.

Reduction. Let us denote by [d] the set {0, 1, . . . , d}. Given a partial-observation stochas-
tic parity game graph G = (S1, S2, SP , A1, δ, E,O, obs) with a parity objective de-
fined by priority function p : S → [d] we construct a three-player game graph G =
(S1, S2, S3, A1, δ, E,O, obs) together with priority function p. The construction is
specified as follows.
1. For every nonprobabilistic state s ∈ S1 ∪ S2, there is a corresponding state s ∈ S

such that (i) s ∈ S1 if s ∈ S1, else s ∈ S2; (ii) p(s) = p(s) and obs(s) = obs(s);
(iii) δ(s, a) = t where t = δ(s, a), for s ∈ S1 and a ∈ A1; and (iv) (s, t) ∈ E iff
(s, t) ∈ E, for s ∈ S2.
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2. Every probabilistic state s ∈ SP is replaced by the gadget shown in Figure 1 for
illustration. In the figure, square-shaped states are player-2 states (inS2), and circle-
shaped (or ellipsoid-shaped) states are player-3 states (in S3). Formally, from the
state s with priority p(s) and observation obs(s) (i.e., p(s) = p(s) and obs(s) =
obs(s)) the players play the following three-step game in G.

– In state s player 2 chooses a successor (s̃, 2k), for 2k ∈ {0, 1, . . . , p(s) + 1}.
– For every state (s̃, 2k), we have p((s̃, 2k)) = p(s) and obs((s̃, 2k)) = obs(s).

For k ≥ 1, in state (s̃, 2k) player 3 chooses between two successors: state
(ŝ, 2k− 1) with priority 2k− 1 and same observation as s, or state (ŝ, 2k) with
priority 2k and same observation as s, (i.e., p((ŝ, 2k−1)) = 2k−1, p((ŝ, 2k)) =
2k, and obs((ŝ, 2k − 1)) = obs((ŝ, 2k)) = obs(s)). The state (s̃, 0) has only
one successor (ŝ, 0), with p((ŝ, 0)) = 0 and obs((ŝ, 0)) = obs(s).

– Finally, in each state (ŝ, k) the choice is between all states t such that (s, t) ∈
E, and it belongs to player 3 (i.e., in S3) if k is odd, and to player 2 (i.e., in S2)
if k is even. Note that every state in the gadget has the same observation as s.

We denote by G = Tras(G) the three-player game, where player 1 has partial-
observation, and both player 2 and player 3 have perfect-observation, obtained from
a partial-observation stochastic game. Observe that in G there are exactly four steps
between two player 1 moves.

Observation sequence mapping. Note that since in our partial-observation games first
player 1 plays, then player 2, followed by probabilistic states, repeated ad infinitum,
wlog, we can assume that for every observation o ∈ O we have either (i) obs−1(o) ⊆
S1; or (ii) obs−1(o) ⊆ S2; or (i) obs−1(o) ⊆ SP . Thus we partition the observations as
O1,O2, andOP . Given an observation sequence κ = o0o1o2 . . . on inG corresponding
to a finite prefix of a play, we inductively define the sequence κ = h(κ) inG as follows:
(i) h(o0) = o0 if o0 ∈ O1 ∪ O2, else o0o0o0; (ii) h(o0o1 . . . on) = h(o0o1 . . . on−1)on
if on ∈ O1 ∪ O2, else h(o0o1 . . . on−1)ononon. Intuitively the mapping takes care of
the two extra steps of the gadgets introduced for probabilistic states. The mapping is a
bijection, and hence given an observation sequence κ of a play prefix in G we consider

the inverse play prefix κ = h
−1

(κ) such that h(κ) = κ.

Strategy mapping. Given an observation-based strategy σ in G we consider a strategy
σ = Tras(σ) as follows: for an observation sequence κ corresponding to a play pre-
fix in G we have σ(κ) = σ(h(κ)). The strategy σ is observation-based (since σ is
observation-based). The inverse mapping Tras

−1 of strategies from G to G is analo-
gous. Note that for σ in G we have Tras(Tras

−1(σ)) = σ. Let σ be a finite-memory
strategy with memory M for player 1 in the game G. The strategy σ can be considered
as a memoryless strategy, denoted as σ∗ = MemLess(σ), in G ×M (the synchronous
product ofGwith M). Given a strategy (pure memoryless) π for player 2 in the 2-player
gameG×M, a strategy π = Tras(π) in the partial-observation stochastic gameG×M
is defined as: π((s,m)) = (t,m′), if and only if π((s,m)) = (t,m′); for all s ∈ S2.

End components. Given an MDP, a set U is an end component in the MDP if the sub-
graph induced by U is strongly connected, and for all probabilistic states in U all out-
going edges end up in U (i.e., U is closed for probabilistic states). The key property
about MDPs that is used in our proofs is a result established by [12,13] that given an
MDP, for all strategies, with probability 1 the set of states visited infinitely often is an
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s p(s)

. . .
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· ·
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· ·
E(s)

· ·
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· ·
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· ·
E(s)

· ·
E(s)

Fig. 1. Reduction gadget when p(s) is even

end component. The key property allows us to analyze end components of MDPs and
from properties of the end component conclude properties about all strategies.

The key lemma. We now present our main lemma that establishes the correctness of the
reduction. Since the proof of the lemma is long we split the proof into two parts.

Lemma 1. Given a partial-observation stochastic parity game G with parity objective
Parity(p), let G = Tras(G) be the three-player game with the modified parity objective
Parity(p) obtained by our reduction. Consider a finite-memory strategy σ with memory
M for player 1 in G. Let us denote by Gσ the perfect-observation two-player game
played over G×M by player 2 and player 3 after fixing the strategy σ for player 1. Let

U
σ
1 ={(s,m) ∈ S×M | player 3 has a sure winning strategy for Parity(p) from (s,m) in Gσ};

and letU
σ

2 = (S×M)\Uσ

1 be the set of sure winning states for player 2 inGσ . Consider

the strategy σ = Tras(σ), and the sets Uσ
1 = {(s,m) ∈ S ×M | (s,m) ∈ Uσ

1}; and
Uσ
2 = (S ×M) \ Uσ

1 . The following assertions hold.
1. For all (s,m) ∈ Uσ

1 , for all strategies π of player 2 we havePσ,π
(s,m)(Parity(p)) = 1.

2. For all (s,m) ∈ Uσ
2 , there exists a strategy π of player 2 such that

P
σ,π
(s,m)(Parity(p))<1.

We first present the proof for part 1 and then for part 2.

Proof (of Lemma 1: part 1). Consider a finite-memory strategy σ for player 1 with
memory M in the game G. Once the strategy σ is fixed we obtain the two-player finite-
state perfect-observation gameGσ (between player 3 and the adversary player 2). Recall

the sure winning setsU
σ

1 for player 3, andU
σ

2 = (S×M)\Uσ

1 for player 2, respectively,
in Gσ. Let σ = Tras(σ) be the corresponding strategy in G. We denote by σ∗ =
MemLess(σ) and σ∗ the corresponding memoryless strategies of σ in G ×M and σ in
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G×M, respectively. We show that all states inUσ
1 are almost-sure winning, i.e., given σ,

for all (s,m) ∈ Uσ
1 , for all strategies π for player 2 inGwe have Pσ,π

(s,m)(Parity(p)) = 1

(recall Uσ
1 = {(s,m) ∈ S ×M | (s,m) ∈ Uσ

1}). We also consider explicitly the MDP
(G×M 
 Uσ

1 )σ∗ to analyze strategies of player 2 on the synchronous product, i.e., we
consider the player-2 MDP obtained after fixing the memoryless strategy σ∗ in G×M,
and then restrict the MDP to the set Uσ

1 .

Two key components. The proof has two key components. First, we argue that all end
components in the MDP restricted to Uσ

1 are winning for player 1 (have min priority
even). Second we argue that given the starting state (s,m) is in Uσ

1 , almost-surely the
set of states visited infinitely often is an end component in Uσ

1 against all strategies of
player 2. These two key components establish the desired result.

Winning end components. Our first goal is to show that every end component C in the
player-2 MDP (G×M 
 Uσ

1 )σ∗ is winning for player 1 for the parity objective, i.e., the
minimum priority ofC is even. We argue that if there is an end componentC in (G×M 

Uσ
1 )σ∗ that is winning for player 2 for the parity objective (i.e., minimum priority of C

is odd), then against any memoryless player-3 strategy τ in Gσ , player 2 can construct

a cycle in the game (G × M 
 Uσ

1 )σ∗ that is winning for player 2 (i.e., minimum
priority of the cycle is odd) (note that given the strategy σ is fixed, we have finite-
state perfect-observation parity games, and hence in the enlarged game we can restrict
ourselves to memoryless strategies for player 3). This gives a contradiction because

player 3 has a sure winning strategy from the set U
σ

1 in the 2-player parity game Gσ .
Towards contradiction, let C be an end component in (G×M 
 Uσ

1 )σ∗ that is winning
for player 2, and let its minimum odd priority be 2r − 1, for some r ∈ N. Then there
is a memoryless strategy π′ for player 2 in the MDP (G ×M 
 Uσ

1 )σ∗ such that C is a
bottom scc (or a terminal scc) in the Markov chain graph of (G×M 
 Uσ

1 )σ∗,π′ . Let τ be

a memoryless for player 3 in (G×M 
 Uσ

1 )σ∗ . Given τ for player 3 and strategy π′ for

player 2 in G×M, we construct a strategy π for player 2 in the game (G×M 
 Uσ

1 )σ∗

as follows. For a player-2 state in C, the strategy π follows the strategy π′, i.e., for a
state (s,m) ∈ C with s ∈ S2 we have π((s,m)) = (t,m′) where (t,m′) = π′((s,m)).
For a probabilistic state in C we define the strategy as follows (i.e., we now consider a
state (s,m) ∈ C with s ∈ SP ):

– if for some successor state ((s̃, 2	),m′) of (s,m), the player-3 strategy τ chooses
a successor ((ŝ, 2	 − 1),m′′) ∈ C at the state ((s̃, 2	),m′), for 	 < r, then the
strategy π chooses at state (s,m) the successor ((s̃, 2	),m′); and

– otherwise the strategy π chooses at state (s,m) the successor ((s̃, 2r),m′), and at
((ŝ, 2r),m′′) it chooses a successor shortening the distance (i.e., chooses a succes-
sor with smaller breadth-first-search distance) to a fixed state (s∗,m∗) of priority
2r − 1 of C (such a state (s∗,m∗) exists in C since C is strongly connected and
has minimum priority 2r− 1); and for the fixed state of priority 2r− 1 the strategy
chooses a successor (s,m′) such that (s,m′) ∈ C.

Consider an arbitrary cycle in the subgraph (G × M 
 C)σ,π,τ where C is the set of
states in the gadgets of states in C. There are two cases. (Case 1): If there is at least
one state ((ŝ, 2	 − 1),m), with 	 ≤ r on the cycle, then the minimum priority on the
cycle is odd, as even priorities smaller than 2r are not visited by the construction as C
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does not contain states of even priorities smaller than 2r. (Case 2): Otherwise, in all
states choices shortening the distance to the state with priority 2r − 1 are taken and
hence the cycle must contain a priority 2r − 1 state and all other priorities on the cycle
are ≥ 2r − 1, so 2r − 1 is the minimum priority on the cycle. Hence a winning end
component for player 2 in the MDP contradicts that player 3 has a sure winning strategy

in Gσ from U
σ

1 . Thus it follows that all end components are winning for player 1 in
(G×M 
 Uσ

1 )σ∗ .

Almost-sure reachability to winning end-components. Finally, we consider the proba-
bility of staying in Uσ

1 . For every probabilistic state (s,m) ∈ (SP × M) ∩ Uσ
1 , all

of its successors must be in Uσ
1 . Otherwise, player 2 in the state (s,m) of the game

Gσ can choose the successor (s̃, 0) and then a successor to its winning set U
σ

2 . This

again contradicts the assumption that (s,m) belong to the sure winning states U
σ

1 for
player 3 in Gσ . Similarly, for every state (s,m) ∈ (S2 ×M) ∩ Uσ

1 we must have all its
successors are in Uσ

1 . For all states (s,m) ∈ (S1 ×M) ∩ Uσ
1 , the strategy σ chooses

a successor in Uσ
1 . Hence for all strategies π of player 2, for all states (s,m) ∈ Uσ

1 ,
the objective Safe(Uσ

1 ) (which requires that only states in Uσ
1 are visited) is ensured

almost-surely (in fact surely), and hence with probability 1 the set of states visited in-
finitely often is an end component in Uσ

1 (by key property of MDPs). Since every end
component in (G×M 
 Uσ

1 )σ∗ has even minimum priority, it follows that the strategy
σ is an almost-sure winning strategy for the parity objective Parity(p) for player 1 from
all states (s,m) ∈ Uσ

1 . This concludes the proof for first part of the lemma.

Proof (of Lemma 1:part 2). Consider a memoryless sure winning strategy π for player 2

in Gσ from the set U
σ

2 . Let us consider the strategies σ = Tras(σ) and π = Tras(π),
and consider the Markov chain Gσ,π. Our proof shows the following two properties to
establish the claim: (1) in the Markov chainGσ,π all bottom sccs (the recurrent classes)
in Uσ

2 have odd minimum priority; and (2) from all states in Uσ
2 some recurrent class in

Uσ
2 is reached with positive probability. This establishes the desired result of the lemma.

No winning bottom scc for player 1 in Uσ
2 . Assume towards contradiction that there is a

bottom sccC contained inUσ
2 in the Markov chainGσ,π such that the minimum priority

inC is even. FromC we construct a winning cycle (minimum priority is even) in U
σ

2 for
player 3 in the game Gσ given the strategy π. This contradicts that π is a sure winning

strategy for player 2 from U
σ

2 in Gσ . Let the minimum priority of C be 2r for some
r ∈ N. The idea is similar to the construction of part 1. Given C, and the strategies σ
and π, we construct a strategy τ for player 3 in G as follows: For a probabilistic state
(s,m) in C:

– if π chooses a state ((s̃, 2	 − 2),m′), with 	 ≤ r, then τ chooses the successor
((ŝ, 2	− 2),m′);

– otherwise 	 > r (i.e., π chooses a state ((s̃, 2	− 2),m′) for 	 > r), then τ chooses
the state ((ŝ, 2	 − 1),m′), and then a successor to shorten the distance to a fixed
state with priority 2r (such a state exists in C); and for the fixed state of priority 2r,
the strategy τ chooses a successor in C.

Similar to the proof of part 1, we argue that we obtain a cycle with minimum even

priority in the graph (G ×M 
 Uσ

2 )σ,π,τ . Consider an arbitrary cycle in the subgraph
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(G×M 
 C)σ,π,τ whereC is the set of states in the gadgets of states inC. There are two
cases. (Case 1): If there is at least one state ((ŝ, 2	−2),m), with 	 ≤ r on the cycle, then
the minimum priority on the cycle is even, as odd priorities strictly smaller than 2r+ 1
are not visited by the construction as C does not contain states of odd priorities strictly
smaller than 2r + 1. (Case 2): Otherwise, in all states choices shortening the distance
to the state with priority 2r are taken and hence the cycle must contain a priority 2r
state and all other priorities on the cycle are≥ 2r, so 2r is the minimum priority on the
cycle. Thus we obtain cycles winning for player 3, and this contradicts that π is a sure

winning strategy for player 2 from U
σ

2 . Thus it follows that all recurrent classes in Uσ
2

in the Markov chain Gσ,π are winning for player 2.

Not almost-sure reachability to Uσ
1 . We now argue that given σ and π there exists no

state in Uσ
2 such thatUσ

1 is reached almost-surely. This would ensure that from all states
in Uσ

2 some recurrent class in Uσ
2 is reached with positive probability and establish the

desired claim since we have already shown that all recurrent classes in Uσ
2 are winning

for player 2. Given σ and π, let X ⊆ Uσ
2 be the set of states such that the set Uσ

1 is
reached almost-surely from X , and assume towards contradiction that X is non-empty.
This implies that from every state in X , in the Markov chain Gσ,π, there is a path to
the set Uσ

1 , and from all states in X the successors are in X . We construct a strategy
τ in the three-player game Gσ against strategy π exactly as the strategy constructed
for winning bottom scc, with the following difference: instead of shortening distance
the a fixed state of priority 2r (as for winning bottom scc’s), in this case the strategy

τ shortens distance to U
σ

1 . Formally, given X , the strategies σ and π, we construct a
strategy τ for player 3 in G as follows: For a probabilistic state (s,m) in X :

– if π chooses a state ((s̃, 2	),m′), with 	 ≥ 1, then τ chooses the state ((ŝ, 2	 −
1),m′), and then a successor to shorten the distance to the set U

σ

1 (such a successor

exists since from all states in X the set U
σ

1 is reachable).

Against the strategy of player 3 in Gσ either (i) U
σ

1 is reached in finitely many steps,
or (ii) else player 2 infinitely often chooses successor states of the form (s̃, 0) with pri-
ority 0 (the minimum even priority), i.e., there is a cycle with a state (s̃, 0) which has
priority 0. If priority 0 is visited infinitely often, then the parity objective is satisfied.

This ensures that in Gσ player 3 can ensure either to reach U
σ

1 in finitely many steps

from some state in U
σ

2 against π, or the parity objective is satisfied without reachingU
σ

1 .
In either case this implies that against π player 3 can ensure to satisfy the parity objec-

tive (by reaching U
σ

1 in finitely many steps and then playing a sure winning strategy

from U
σ

1 , or satisfying the parity objective without reaching U
σ

1 by visiting priority 0

infinitely often) from some state in U
σ

2 , contradicting that π is a sure winning strategy

for player 2 from U
σ

2 . Thus we have a contradiction, and obtain the desired result.

Lemma 1 establishes the desired correctness result as follows: (1) If σ is a finite-
memory strategy such that in Gσ player 3 has a sure winning strategy, then by part 1
of Lemma 1 we obtain that σ = Tras(σ) is almost-sure winning. (2) Conversely, if σ
is a finite-memory almost-sure winning strategy, then consider a strategy σ such that
σ = Tras(σ) (i.e., σ = Tras

−1(σ)). By part 2 of Lemma 1, given the finite-memory
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strategy σ, player 3 must have a sure winning strategy in Gσ, otherwise we have a
contradiction that σ is almost-sure winning. Thus we have the following theorem.

Theorem 1 (Polynomial reduction). Given a partial-observation stochastic game
graph G with a parity objective Parity(p) for player 1, we construct a three-player
game G = Tras(G) with a parity objective Parity(p), where player 1 has partial-
observation and the other two players have perfect-observation, in timeO((n+m) ·d),
where n is the number of states of the game, m is the number of transitions, and d the
number of priorities of the priority function p, such that the following assertion holds:
there is a finite-memory almost-sure winning strategy σ for player 1 in G iff there exists
a finite-memory strategy σ for player 1 in G such that in the game Gσ obtained given
σ, player 3 has a sure winning strategy for Parity(p). The game graph Tras(G) has
O(n · d) states, O(m · d) transitions, and p has at most d+ 1 priorities.

Remark 3 (Positive winning). We have presented the details of the reduction for almost-
sure winning, and a very similar reduction works for positive winning (see [1]).

3 Solving Sure Winning for Three-player Parity Games

In this section we present the solution for sure winning in three-player non-stochastic
parity games. We start with the basic definitions.

3.1 Basic Definitions

We first present a model of partial-observation concurrent three-player games, where
player 1 has partial observation, and player 2 and player 3 have perfect observation.
Player 1 and player 3 have the same objective and they play against player 2. Three-
player turn-based games model (of Section 2) can be treated as a special case of this
model (see [1, Remark 3] for details).

Partial-observation three-player concurrent games. Given alphabets Ai of actions for
player i (i = 1, 2, 3), a partial-observation three-player concurrent game (for brevity,
three-player game in sequel) is a tuple G = 〈S, s0, δ,O, obs〉 where: (i) S is a finite set
of states and s0 ∈ S is the initial state; (ii) δ : S×A1×A2×A3 → S is a deterministic
transition function that, given a current state s, and actions a1 ∈ A1, a2 ∈ A2, a3 ∈ A3

of the players, gives the successor state s′ = δ(s, a1, a2, a3) of s; and (iii) O is a finite
set of observations and obs is the observation mapping (as in Section 2).

Strategies. Define the set Σ of strategies σ : O+ → A1 of player 1 that, given a
sequence of past observations, return an action for player 1. Equivalently, we sometimes
view a strategy of player 1 as a function σ : S+ → A1 satisfying σ(ρ) = σ(ρ′) for all
ρ, ρ′ ∈ S+ such that obs(ρ) = obs(ρ′), and say that σ is observation-based. A strategy
of player 2 (resp, player 3) is a function π : S+ → A2 (resp., τ : S+ → A3) without any
restriction. We denote by Π (resp. Γ ) the set of strategies of player 2 (resp. player 3).

Sure winning. Given strategies σ, π, τ of the three players in G, the outcome play from
s0 is the infinite sequence ρσ,π,τs0 = s0s1 . . . such that for all j ≥ 0, we have sj+1 =
δ(sj , aj , bj, cj) where aj = σ(s0 . . . sj), bj = π(s0 . . . sj), and cj = τ(s0 . . . sj).
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Given a game G = 〈S, s0, δ,O, obs〉 and a parity objective ϕ ⊆ Sω, the sure winning
problem asks to decide if ∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τs0 ∈ ϕ. It will follow
from our result that if the answer to the sure winning problem is yes, then there exists a
witness finite-memory strategy σ for player 1.

3.2 Alternating Tree Automata

In this section we recall the definitions of alternating tree automata, and present the
solution of the sure winning problem for three-player games with parity objectives by a
reduction to the emptiness problem of alternating parity tree automata.

Trees. Given an alphabet Ω, an Ω-labeled tree (T, V ) consists of a prefix-closed set
T ⊆ N∗ (i.e., if x · d ∈ T with x ∈ N∗ and d ∈ N, then x ∈ T ), and a mapping
V : T → Ω that assigns to each node of T a letter in Ω. Given x ∈ N∗ and d ∈ N such
that x · d ∈ T , we call x · d the successor in direction d of x. The node ε is the root of
the tree. An infinite path in T is an infinite sequence π = d1d2 . . . of directions di ∈ N

such that every finite prefix of π is a node in T .

Alternating tree automata. Given a parameter k ∈ N \ {0}, we consider input trees of
rank k, i.e. trees in which every node has at most k successors. Let [k] = {0, . . . , k−1},
and given a finite set U , let B+(U) be the set of positive Boolean formulas over U , i.e.
formulas built from elements in U ∪ {true, false} using the Boolean connectives ∧ and
∨. An alternating tree automaton over alphabetΩ is a tupleA = 〈S, s0, δ〉 where: (i) S
is a finite set of states and s0 ∈ S is the initial state; and (ii) δ : S×Ω → B+(S× [k]) is
a transition function. Intuitively, the automaton is executed from the initial state s0 and
reads the input tree in a top-down fashion starting from the root ε. In state s, if a ∈ Ω is
the letter that labels the current node x of the input tree, the behavior of the automaton
is given by the formulas ψ = δ(s, a). The automaton chooses a satisfying assignment
of ψ, i.e. a set Q ⊆ S × [k] such that the formula ψ is satisfied when the elements of
Q are replaced by true, and the elements of (S × [k]) \Q are replaced by false. Then,
for each 〈s1, d1〉 ∈ Q a copy of the automaton is spawned in state s1, and proceeds
to the node x · d1 of the input tree. In particular, it requires that x · d1 belongs to the
input tree. For example, if δ(s, a) = (〈s1, 0〉 ∧ 〈s2, 0〉) ∨ (〈s3, 0〉 ∧ 〈s4, 1〉 ∧ 〈s5, 1〉),
then the automaton should either spawn two copies that process the successor of x in
direction 0 (i.e., the node x · 0) and that enter the respective states s1 and s2, or spawn
three copies of which one processes x · 0 and enters state s3, and the other two process
x · 1 and enter the states s4 and s5 respectively.

Runs. A run of A over an Ω-labeled input tree (T, V ) is a tree (Tr, r) labeled by el-
ements of T × S, where a node of Tr labeled by (x, s) corresponds to a copy of the
automaton proceeding the node x of the input tree in state s. Formally, a run of A over
an input tree (T, V ) is a (T × S)-labeled tree (Tr, r) such that r(ε) = (ε, s0) and for
all y ∈ Tr, if r(y) = (x, s), then the set {〈s′, d′〉 | ∃d ∈ N : r(y · d) = (x · d′, s′)}
is a satisfying assignment for δ(s, V (x)). Hence we require that, given a node y in Tr
labeled by (x, s), there is a satisfying assignment Q ⊆ S × [k] for the formula δ(s, a)
where a = V (x) is the letter labeling the current node x of the input tree, and for all
states 〈s′, d′〉 ∈ Q there is a (successor) node y · d in Tr labeled by (x · d′, s′).

Given an accepting condition ϕ ⊆ Sω, we say that a run (Tr, r) is accepting if for
all infinite paths d1d2 . . . of Tr, the sequence s1s2 . . . such that r(di) = (·, si) for all
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i ≥ 0 is in ϕ. The language ofA is the set Lk(A) of all input trees of rank k over which
there exists an accepting run ofA. The emptiness problem for alternating tree automata
is to decide, givenA and parameter k, whether Lk(A) = ∅.

3.3 Solution of the Sure Winning Problem for Three-player Games

Theorem 2. Given a three-player game G = 〈S, s0, δ,O, obs〉 and a parity objective
ϕ, the problem of deciding whether ∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τs0 ∈ ϕ is
EXPTIME-complete.

Proof. The EXPTIME-hardness follows from EXPTIME-hardness of two-player
partial-observation games with reachability objective [23].

We prove membership in EXPTIME by a reduction to the emptiness problem for al-
ternating tree automata, which is solvable in EXPTIME for parity objectives [17,18,19].
The reduction is as follows. Given a game G = 〈S, s0, δ,O, obs〉 over alphabet of ac-
tions Ai (i = 1, 2, 3), we construct the alternating tree automatonA = 〈S′, s′0, δ

′〉 over
alphabet Ω and parameter k = |O| (we assume that O = [k]) where: (i) S′ = S,
and s′0 = s0; (ii) Ω = A1; and (iii) δ′ is defined by δ′(s, a1) =

∨
a3∈A3

∧
a2∈A2

〈δ(s, a1, a2, a3), obs(δ(s, a1, a2, a3))〉 for all s ∈ S and a1 ∈ Ω. The acceptance con-
dition ϕ of the automaton is the same as the objective of the game G. We prove that
∃σ ∈ Σ ·∃τ ∈ Γ ·∀π ∈ Π : ρσ,π,τs0 ∈ ϕ if and only if Lk(A) �= ∅. We use the following
notation. Given a node y = d1d2 . . . dn in a (T × S)-labeled tree (Tr, r), consider the
prefixes y0 = ε, and yi = d1d2 . . . di (for i = 1, . . . , n). Let r2(y) = s0s1 . . . sn where
r(yi) = (·, si) for 0 ≤ i ≤ n, denote the corresponding state sequence of y.
1. Sure winning implies non-emptiness. First, assume that for some σ ∈ Σ and τ ∈ Γ ,

we have ∀π ∈ Π : ρσ,π,τs0 ∈ ϕ. From σ, we define an input tree (T, V ) where
T = [k]∗ and V (γ) = σ(obs(s0) · γ) for all γ ∈ T (we view σ as a function
[k]+ → Ω, since [k] = O and Ω = A1). From τ , we define a (T × S)-labeled tree
(Tr, r) such that r(ε) = (ε, s0) and for all y ∈ Tr, if r(y) = (x, s) and r2(y) = ρ,
then for a1 = σ(obs(s0) · x) = V (x), for a3 = τ(s0 · ρ), for every s′ in the set
Q = {s′ | ∃a2 ∈ A2 : s′ = δ(s, a1, a2, a3)}, there is a successor y · d of y in
Tr labeled by r(y · d) = (x · obs(s′), s′). Note that {〈s′, obs(s′)〉 | s′ ∈ Q} is a
satisfying assignment for δ′(s, a1) and a1 = V (x), hence (Tr, r) is a run ofA over
(T, V ). For every infinite path ρ in (Tr, r), consider a strategy π ∈ Π consistent
with ρ. Then ρ = ρσ,π,τs0 , hence ρ ∈ ϕ and the run (Tr, r) is accepting, showing that
Lk(A) �= ∅.

2. Non-emptiness implies sure winning. Second, assume thatLk(A) �= ∅. Let (T, V ) ∈
Lk(A) and (Tr, r) be an accepting run of A over (T, V ). From (T, V ), define a
strategy σ of player 1 such that σ(s0 · ρ) = V (obs(ρ)) for all ρ ∈ S∗. Note that
σ is indeed observation-based. From (Tr, r), we know that for all nodes y ∈ Tr
with r(y) = (x, s) and r2(y) = ρ, the set Q = {〈s′, d′〉 | ∃d ∈ N : r(y · d) =
(x · d′, s′)} is a satisfying assignment of δ′(s, V (x)), hence there exists a3 ∈ A3

such that for all a2 ∈ A2, there is a successor of y labeled by (x · obs(s′), s′) with
s′ = δ(s, a1, a2, a3) and a1 = σ(s0 · ρ). Then define τ(s0 · ρ) = a3. Now, for all
strategies π ∈ Π the outcome ρσ,π,τs0 is a path in (Tr, r), and hence ρσ,π,τs0 ∈ ϕ.
Therefore ∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τs0 ∈ ϕ.
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The nonemptiness problem for an alternating tree automatonA with parity condition
can be solved by constructing an equivalent nondeterministic parity tree automaton N
(such that Lk(A) = Lk(N )), and then checking emptiness ofN . The construction pro-
ceeds as follows [19]. The nondeterministic automatonN guess a labeling of the input
tree with a memoryless strategy for the alternating automatonA. AsA has n states and
k directions, there are (kn) possible strategies. A nondeterministic parity word automa-
ton with n states and d priorities can check that the strategy works along every branch
of the tree. An equivalent deterministic parity word automaton can be constructed with
(nn) states and O(d · n) priorities [4]. Thus, N can guess the strategy labeling and
check the strategies with O((k · n)n) states and O(d · n) priorities. The nonemptiness
ofN can then be checked by considering it as a (two-player perfect-information deter-
ministic) parity game with O((k · n)n) states and O(d · n) priorities [15]. This games
can be solved in time O((k · n)d·n2

) [14]. Moreover, since memoryless strategies exist
for parity games [14], if the nondeterministic parity tree automaton is nonempty, then it
accepts a regular tree that can be encoded by a transducer with ((k · n)n) states. Thus,
the nonemptiness problem for alternating tree automaton with parity condition can be
decided in exponential time, and there exists a transducer to witness nonemptiness that
has exponentially many states.

Theorem 3. Given a three-player game G = 〈S, s0, δ,O, obs〉 with n states (and k ≤
n observations for player 1) and parity objective ϕ defined by d priorities, the problem
of deciding whether ∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τs0 ∈ ϕ can be solved in time
exponential time. Moreover, memory of exponential size is sufficient for player 1.

Remark 4. By our reduction to alternating parity tree automata and the fact that if an
alternating parity tree automaton is non-empty, there is a regular witness tree for non-
emptiness it follows that strategies for player 1 can be restricted to finite-memory with-
out loss of generality. This ensures that we can solve the problem of the existence
of finite-memory almost-sure winning (resp. positive winning) strategies in partial-
observation stochastic parity games (by Theorem 1 of Section 2) also in EXPTIME,
and EXPTIME-completeness of the problem follows since the problem is EXPTIME-
hard even for reachability objectives for almost-sure winning [10] and safety objectives
for positive winning [9].

Theorem 4. Given a partial-observation stochastic game and a parity objective ϕ
defined by d priorities, the problem of deciding whether there exists a finite-memory
almost-sure (resp. positive) winning strategy for player 1 is EXPTIME-complete. More-
over, if there is an almost-sure (resp. positive) winning strategy, then there exists one
that uses memory of at most exponential size.

Remark 5. As mentioned in Remark 2 the EXPTIME upper bound for qualitative analy-
sis of partial-observation stochastic parity games with finite-memory randomized strate-
gies follows from Theorem 4. The EXPTIME lower bound and the exponential lower
bound on memory requirement for finite-memory randomized strategies follows from
the results of [10,9] for reachability and safety objectives (even for POMDPs).
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Abstract. We continue our study of negotiations, a concurrency model
with multi-party negotiation as primitive. In a previous paper [7] we
have provided a correct and complete set of reduction rules for sound,
acyclic, and (weakly) deterministic negotiations. In this paper we extend
this result to all deterministic negotiations, including cyclic ones. We
also show that this set of rules allows one to decide soundness and to
summarize negotiations in polynomial time.

1 Introduction

Negotiation has long been identified as a paradigm for process interaction [5]. It
has been applied to different problems (see e.g. [17,2]), and studied on its own
[15]. However, there is only little research on negotiations from a concurrency-
theoretic point of view. Some works model the behaviour of a negotiation party
using business process languages or Petri net, and model negotiation protocols
as the concurrent composition of the parties [4,18,16]. In contrast, in [7] we have
introduced a formalism that considers each elementary (multiparty) negotiation
a single atom (graphically represented by a node) and model a distributed ne-
gotiation as a composition of atoms.

Observationally, an elementary negotiation (an atom) is an interaction in
which several partners come together to agree on one out of a number of possi-
ble outcomes (a synchronized nondeterministic choice). Each possible outcome
has associated a state-transformer. Negotiation partners enter the atom in cer-
tain states, and leave it in the states obtained by applying to these states the
state-transformer of the outcome agreed upon. Atoms are combined into more
complex, distributed negotiations by means of a next-atoms function that de-
termines, for each atom, negotiating agent, and outcome, the set of atoms the
agent is ready to engage in next if the atom ends with that outcome.

Like in workflow nets [1], distributed negotiations can be unsound because
of deadlocks or livelocks. The soundness problem consists of deciding if a given
negotiation is sound. Moreover, a sound negotiation is equivalent to a single
atom whose state transformation function determines the possible final states
of all parties as a function of their initial states. The summarization problem
consists of computing such an atomic negotiation, called a summary.
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Negotiations can simulate 1-safe Petri nets (see the arXiv version of [7]), which
proves that the soundness problem and (a decision version of) the summariza-
tion problem are, unsurprisingly, PSPACE-complete. We have studied in [7] two
subclasses: deterministic and weakly deterministic negotiations. Both have lim-
ited expressive power in comparison to general negotiations, but have natural
semantic justifications (see [7]). Only deterministic negotiations are relevant for
this paper. Loosely speaking, a negotiation is deterministic if, for each agent and
each outcome of an atomic negotiation, the next-atom function yields only one
next atom, i.e., each agent can always engage in one atom only.

We have shown in [7] that the soundness and summarization problems for
acyclic deterministic negotiations can be solved in polynomial time. The al-
gorithm progressively reduces the graphical representation of a negation to a
simpler one by means of reduction rules. Each rule preserves soundness and sum-
maries (i.e., the negotiation before the application of the rule is sound iff the
negotiation after the application is sound, and both have the same summary).
Reduction rules have been extensively applied to Petri nets or workflow nets,
but most of this work has been devoted to the liveness or soundness problems
[3,12,13,11,6], and many rules do not preserve summaries.

In [7] we conjectured that the addition of a simple rule allowing one to reduce
trivial cycles yields a complete set of rules for all sound deterministic negotia-
tions. In this paper we prove this result, and we show that the number of rule
applications required to summarize a negotiation is still polynomial. While the
new rule is very simple, the proof of our result is involved. It is structured in
several sections, and some technical proofs have been moved to an extended
version of this paper [8]. Section 2 presents the main definitions of [7] in com-
pact form. Section 3 introduces our reduction rules. Section 4 proves that the
rules summarize all sound deterministic negotiations. Section 5 proves that the
summarization of a sound negotiation requires a polynomial number of steps.

2 Negotiations: Syntax and Semantics

We fix a finite set A of agents. Each agent a ∈ A has a (possibly infinite)
nonempty set Qa of internal states. We denote by QA the cartesian prod-
uct

∏
a∈AQa. A transformer is a left-total relation τ ⊆ QA × QA. Given

S ⊆ A, we say that a transformer τ is an S-transformer if, for each ai /∈ S,(
(qa1 , . . . , qai , . . . , qa|A|), (q

′
a1
, . . . , q′ai

, . . . , q′a|A|)
)
∈ τ implies qai = q′ai

. So an

S-transformer only transforms the internal states of agents in S.

Definition 1. A negotiation atom, or just an atom, is a triple n = (Pn, Rn, δn),
where Pn ⊆ A is a nonempty set of parties, Rn is a finite, nonempty set of out-
comes, and δn is a mapping assigning to each outcome r in Rn a Pn-transformer
δn(r).

Intuitively, if the states of the agents before a negotiation n are given by a tuple
q and the outcome of the negotiation is r, then the agents change their states to
q′ for some (q, q′) ∈ δn(r).
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Fig. 1. Acyclic and cyclic negotiations

For a simple example, consider a negotiation atom nFD with parties F (Father)
and D (teenage Daughter). The goal of the negotiation is to determine whether
D can go to a party, and the time at which she must return home. The possible
outcomes are yes and no. Both sets QF and QD contain a state ⊥ plus a state t
for every time T1 ≤ t ≤ T2 in a given interval [T1, T2]. Initially, F is in state tf
and D in state td. The transformer δnFD

is given by:

δnfd
(yes) = {((tf , td), (t, t)) | tf ≤ t ≤ td ∨ td ≤ t ≤ tf}

δnfd
(no) = {((tf , td), (⊥,⊥)) }

2.1 Combining Atomic Negotiations

A negotiation is a composition of atoms. We add a transition function X that
assigns to every triple (n, a, r) consisting of an atom n, a party a of n, and an
outcome r of n a set X(n, a, r) of atoms. Intuitively, this is the set of atomic
negotiations agent a is ready to engage in after the atom n, if the outcome is r.

Definition 2. Given a finite set of atoms N , let T (N) denote the set of triples
(n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn. A negotiation is a tuple N =
(N,n0, nf ,X), where n0, nf ∈ N are the initial and final atoms, and X : T (N)→
2N is the transition function. Further, N satisfies the following properties:

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .

Negotiations are graphically represented as shown in Figure 1. For each atom
n ∈ N we draw a black bar; for each party a of Pn we draw a white circle on the
bar, called a port. For each (n, a, r) ∈ T (N), we draw a hyperarc leading from
the port of a in n to all the ports of a in the atoms of X(n, a, r), and label it by r.
Figure 1 shows two Father-Daughter-Mother negotiations. On the left, Daughter
and Father negotiate with possible outcomes yes (y), no (n), and ask mother

(am). If the outcome is the latter, then Daughter and Mother negotiate with
outcomes yes, no. In the negotiation on the right, Father, Daughter and Mother
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negotiate with outcomes yes and no. If the outcome is yes, then Father and
Daughter negotiate a return time (atom n1) and propose it to Mother (atom n2).
If Mother approves (outcome yes), then the negotiation terminates, otherwise
(outcome r) Daughter and Father renegotiate the return time. For the sake of
brevity we do not describe the transformers of the atoms.

Definition 3. The graph associated to a negotiation N = (N,n0, nf ,X) is the
directed graph with vertices N and edges {(n, n′) | ∃ (n, a, r) ∈ T (N) : n′ ∈
X(n, a, r)}. N is acyclic if its graph has no cycles, otherwise it is cyclic.

The negotiation on the left of Figure 1 is acyclic, the one the right is cyclic.

2.2 Semantics

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N . Intu-
itively, x(a) is the set of atoms that agent a is currently ready to engage in next.
The initial and final markings, denoted by x0 and xf respectively, are given by
x0(a) = {n0} and xf (a) = ∅ for every a ∈ A.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn, i.e., if every
party of n is currently ready to engage in it. If x enables n, then n can take
place and its parties agree on an outcome r; we say that (n, r) occurs. Abusing
language, we will call this pair also an outcome. The occurrence of (n, r) produces
a next marking x′ given by x′(a) = X(n, a, r) for a ∈ Pn, and x′(a) = x(a) for

a ∈ A \ Pn. We write x
(n,r)−−−−→ x′ to denote this, and call it a small step.

By this definition, x(a) is always either {n0} or equals X(n, a, r) for some
atom n and outcome r. The marking xf can only be reached by the occurrence
of (nf , r) (r being a possible outcome of nf ), and it does not enable any atom.
Any other marking that does not enable any atom is considered a deadlock.

Reachable markings are graphically represented by tokens (dots) on arcs (on
forking points of hyperarcs, respectively). Figure 1 shows on the right a marking
in which F and D are ready to engage in n1 and M is ready to engage in n2.

We write x1
σ−→ to denote that there is a sequence of small steps

x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

such that σ = (n1, r1) . . . (nk, rk) . . .. If x1
σ−→ , then σ is an occurrence se-

quence enabled by x1. If σ is finite, then we write x1
σ−→ xk+1 and call xk+1

reachable from x1. If x1 is the initial marking, then we call σ initial occurrence
sequence. If moreover xk+1 is the final marking, then σ is a large step.

A negotiation can be associated an equivalent Petri net with the same occur-
rence sequences (see [7], arXiv version). However, the Petri net can be exponen-
tially larger than the negotiation.

2.3 Soundness

Following [1], we introduce a notion of well-formedness of a negotiation:
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Definition 4. A negotiation is sound if (a) every atom is enabled at some reach-
able marking, and (b) every occurrence sequence from the initial marking is either
a large step or can be extended to a large step.

The negotiations of Figure 1 are sound. However, if we set in the left negotia-
tion X(n0, M, st) = {nDM} instead of X(n0, M, st) = {nDM, nf}, then the occurrence
sequence (n0, st)(nFD, yes) leads to a deadlock.

Definition 5. Given a negotiation N = (N,n0, nf ,X), we attach to each out-
come r of nf a summary transformer 〈N, r〉 as follows. Let Er be the set of
large steps of N that end with (nf , r). We define 〈N, r〉 =

⋃
σ∈Er

〈σ〉, where for
σ = (n1, r1) . . . (nk, rk) we define 〈σ〉 = δn1(r1) · · · δnk

(rk) (each δni(ri) is a
relation on QA; concatenation is the usual concatenation of relations).

〈N, r〉(q0) is the set of possible final states of the agents after the negotiation
concludes with outcome r, if their initial states are given by q0.

Definition 6. Two negotiations N1 and N2 over the same set of agents are
equivalent if they are either both unsound, or if they are both sound, have the
same final outcomes (outcomes of the final atom), and 〈N1, r〉 = 〈N2, r〉 for every
final outcome r. If N1 and N2 are equivalent and N2 consists of a single atom
then N2 is the summary of N1.

According to this definition, all unsound negotiations are equivalent: if sound-
ness fails, we do not care about the rest. However, an unsound negotiation can
have occurrence sequences from the initial to the final marking, and two unsound
(and thus equivalent) negotiations may have different such occurrence sequences.

Definition 7. A negotiation N is deterministic if for every (n, a, r) ∈ T (N)
there is an atom n′ such that X(n, a, r) = {n′}

Graphically, a negotiation is deterministic if there are no proper hyperarcs.
The negotiation on the left of Figure 1 is not deterministic (it contains a proper
hyperarc for Mother), while the one on the right is deterministic. In the sequel,
we often assume that a negotiation is sound and deterministic, and abbreviate
“sound and deterministic negotiation” to SDN. For deterministic negotiations
we write X(n, a, r) = n′ instead of X(n, a, r) = {n′}.

3 Reduction Rules for Deterministic Negotiations

We present three equivalence-preserving reduction rules for negotiations. Two of
them were already introduced in [7] (in a slightly more general version), while
the iteration rule is new. Here we only consider deterministic negotiations.

A reduction rule, or just a rule, is a binary relation on the set of negotiations.

Given a rule R, we write N1
R−−→ N2 for (N1,N2) ∈ R. A rule R is correct if it

preserves equivalence, i.e., if N1
R−−→ N2 implies N1 ≡ N2. This implies that

N1 is sound iff N2 is sound. Given a set of rules R = {R1, . . . , Rk}, we denote
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by R∗ the reflexive and transitive closure of R1 ∪ . . . ∪ Rk. We call R complete
with respect to a class of negotiations if, for every negotiation N in the class,

there is a negotiation N′ consisting of a single atom such that N
R∗
−−→ N′.

We describe rules as pairs of a guard and an action; N1
R−−→ N2 holds if N1

satisfies the guard and N2 is a possible result of applying the action to N1.

Merge rule. Intuitively, the merge rule merges two outcomes with identical
next enabled atoms into one single outcome.

Definition 8. Merge rule
Guard: N contains an atom n with two distinct outcomes r1, r2 ∈ Rn such

that X(n, a, r1) = X(n, a, r2) for every a ∈ An.

Action: (1) Rn ← (Rn \ {r1, r2}) ∪ {rf}, where rf is a fresh name.
(2) For all a ∈ Pn: X(n, a, rf )← X(n, a, r1).
(3) δ(n, rf )← δ(n, r1) ∪ δ(n, r2).

Shortcut rule. Intuitively, the shortcut rule merges the outcomes of two atoms
that can occur one after the other into one single outcome with the same effect.
The examples in Figure 6 illustrate the definition (ignore the big circles for the
moment): in both negotiations the outcome (n, r′f ) is a “shortcut” of the outcome
(n, r) followed by (n′, r′).

Definition 9. Given atoms n, n′, we say that (n, r) unconditionally enables n′

if Pn ⊇ Pn′ and X(n, a, r) = n′ for every a ∈ Pn′ .

Observe that, if (n, r) unconditionally enables n′, then, for every marking x that

enables n, the marking x′ given by x
(n,r)−−−−→ x′ enables n′. Moreover, n′ can

only be disabled by its own occurrence.

Definition 10. Shortcut rule for deterministic negotiations
Guard: N contains an atom n with an outcome r and an atom n′, n′ �= n, such
that (n, r) unconditionally enables n′.
Action: (1) Rn ← (Rn \ {r}) ∪ {r′f | r′ ∈ Rn′}, where r′f are fresh names.

(2) For all a ∈ Pn′ , r′ ∈ Rn′ : X(n, a, r′f )← X(n′, a, r′).

For all a ∈ P \ Pn′ , r′ ∈ Rn′ : X(n, a, r′f )← X(n, a, r).

(3) For all r′ ∈ Rn′ : δn(r
′
f )← δn(r)δn′ (r′).

(4) If X−1(n′) = ∅ after (1)-(3), then remove n′ from N , where
X−1(n′) = {(ñ, ã, r̃) ∈ T (N) | n′ ∈ X(ñ, ã, r̃)}.

Iteration rule. Loosely speaking, the iteration rule replaces the iteration of a
negotiation by one single atom with the same effect.

Definition 11. Iteration rule
Guard: N contains an atom n with an outcome r such that X(n, a, r) = n for
every party a of n.
Action: (1) Rn ← {r′f | r′ ∈ Rn \ {r}}.

(2) For every r′f ∈ Rn: δn(r
′
f )← δn(r)

∗ δn(r
′).
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Proposition 1. If the application of the shortcut, merge or iteration rule to a
deterministic negotiation N yields negotiation N′ then N′ is deterministic, too.

Theorem 1. The merge, shortcut, and iteration rules are correct.

Proof. Correctness of the merge and iteration rules is obvious. The correctness
of a more general version of the shortcut rule is proved in [7]1. ��

4 Completeness

In [7] we show that every sound and weakly deterministic acyclic negotiation can
be summarized to a single atom, and that in the deterministic case the number
of rule applications is polynomial (actually, [7] provides a sharper bound than
the one in this theorem):

Theorem 2 ([7]). Every sound deterministic acyclic negotiation N can be re-
duced to a single atom by means of |N |2 + |Out(N)| applications of the merge
and shortcut rules, where N is the set of atoms of N, and Out(N) is the set of
all outcomes of all atoms of N .

In the rest of the paper we prove that, surprisingly, the addition of the very
simple iteration rule suffices to extend this result to cyclic deterministic negoti-
ations, although with a higher exponent. The argument is complex and requires
a detailed analysis of the structure of SDNs.

In this section we present the completeness proof, while the complexity result
is presented in the next. We illustrate the reduction algorithm by means of an
example. Figure 2 (a) shows a cyclic SDN similar to the Father-Daughter-Mother
negotiation on the right of Figure 1. We identify an “almost acyclic” fragment,
given by atom n2 with outcome a and atom n4 with outcome b. Intuitively,
“almost acyclic” means that the fragment can be obtained by “merging” the
initial and final atoms of an acyclic SDN; in our example, this is the acyclic
SDN shown in Figure 2 (b). This acyclic SDN can be summarized using the
shortcut and merge rules. If we apply the same sequence of rules to the fragment
mentioned before (with the exception of the last rule, which reduces a negotiation
with two different atoms and one single outcome to an atomic negotiation) we
obtain the negotiation shown in (c). The self-loop can now be eliminated with the
help of the iteration rule, and the procedure can be iterated: we again identify
an “almost acyclic” fragment, (d) shows the corresponding acyclic SDN. Its
reduction yields the the negotiation shown in (e). The self-loops are eliminated
by the iteration rule, yielding an acyclic negotiation, which can be summarized.

In order to prove completeness we must show that every cyclic SDN contains
at least one almost acyclic fragment, which is non-trivial. The proof has three
parts: We first show that every cyclic SDN has a loop: an occurrence sequence
from some reachable marking x back to x. Then we show that each minimal

1 The rule of [7] has an additional condition in the guard which is always true for
deterministic negotiations.
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Fig. 2. The reduction procedure

loop has a synchronizer: an atom involving each agent that is party of any atom
of the loop. Finally we show how to use synchronizers to identify a nonempty
and almost acyclic fragment.

4.1 Lassos and Loops

Definition 12. A lasso of a negotiation is a pair (ρ, σ) of occurrence sequences

such that σ is not the empty sequence and x0
ρ−→ x

σ−→ x for some marking
x. A loop is an occurrence sequence σ such that (ρ, σ) is a lasso for some ρ. A
minimal loop is a loop σ satisfying the property that there is no other loop σ′

such that the set of atoms in σ′ is a proper subset of the set of atoms in σ.

Observe that lassos and loops are behavioural notions, i.e., structures of the
reachability graph of a negotiation. The following result establishes relations
between loops and cycles, where cycles are defined on the graph of a negotiation.
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Fig. 3. Two sound and cyclic negotiations

Lemma 1. (1) Every cyclic SDN has a loop.

(2) The set of atoms of a minimal loop generates a strongly connected subgraph
of the graph of the considered negotiation.

Proof. See [8]. ��

4.2 Synchronizers

Definition 13. A loop σ = (n1, r1) . . . (nk, rk) is synchronized if there is an
atom ni in σ such that Pj ⊆ Pi for 1 ≤ j ≤ k, i.e., every party of every atom in
the loop is also a party of ni. We call ni a synchronizer of the loop. An atom is
a synchronizer of a negotiation if it is a synchronizer of at least one of its loops.

Each loop x
(n,r)−−−−→ x is synchronized. In the graph of a negotiation, such a

loop appears as a self-loop, i.e., as an edge from atom n to atom n.
Some of the loops of the SDN shown in Figure 2 (a) are

(n1, a) (n2, a) (n4, a) (n5, b), (n1, b) (n3, a) (n5, b), and (n2, a) (n4, b). The first
loop is synchronized by (n1, a) and by (n5, b), the two others are synchronized
by all their outcomes.

The main result of this paper is strongly based on the following lemma.

Lemma 2. Every minimal loop of a SDN is synchronized.

Proof. See [8] ��

The negotiation on the left in Figure 3 shows that Lemma 1(1) holds only
in the deterministic case. It is sound and cyclic, but has no loops, because the
only big step is n0 n1 n2 n1 nf (all atoms have only one outcome, whose name is
omitted).

Lemma 2 does not hold for arbitrary (i.e., non-deterministic) sound negotia-
tions. For the negotiation on the right of Figure 3 (the name of the outcome is
again omitted), the sequence n1 n2 is a loop without synchronizers.
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4.3 Fragments

We assign to each atom n of an SDN a “fragment” Fn as follows: we take all the
loops synchronized by n, and (informally) define Fn as the atoms and outcomes
that appear in these loops. Figure 4 (a) and (c) show Fn1 and Fn2 for the SDN
of Figure 2. Since a cyclic SDN has at least one loop and hence also a minimal
one, and since every loop has a synchronizer, at least one of the fragments of a
cyclic SDN is nonempty.

Given a fragment Fn, let Nn denote the negotiation obtained by, intuitively,
“splitting” the atom n into an initial and a final atom. Figure 4 (b) and (d)
show the “splittings” Nn1 and Nn2 of Fn1 and Fn2 . Not all fragments are al-
most acyclic. For instance, Nn1 is not acyclic, and so Fn1 is not almost acyclic.
However, we prove that if a fragment is not almost acyclic, then it contains a
smaller fragment (for instance, Fn1 contains Fn2). This shows that every minimal
fragment is almost acyclic.
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Fig. 4. Fragments of the SDN of Figure 2(a) and their “splittings”

Definition 14. Let L be a set of loops of N. Abusing language, we write (n, r) ∈
L resp. n ∈ L to denote that (n, r) resp. n appears in some loop of L. The pro-
jection of an atom n = (Pn, Rn, δn) ∈ L onto L is the atom nL = (PL, RL, δL),
where PL = Pn, RL = {r | (n, r) ∈ L}, and δL((nL, r)) = δ((n, r)) for every
(n, r) ∈ L.

Definition 15. Let s be an atom of a negotiation N, and let L be the set of
loops synchronized by s. The s-fragment of N is the pair Fs = (Fs,Xs), where
Fs = {nL | n ∈ L} and Xs(nL, a, r) = X(n, a, r) for every a ∈ PL and r ∈ RL.

The s-negotiation of N is the negotiation Ns = (Ns, ns0, nsf ,X
′
s), where Ns

contains the atoms of Fs plus a fresh atom nsf ; ns0 = sL; and

X′
s(nL, a, r) =

{
X(n, a, r) if X(n, a, r) �= s
nsf otherwise
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Lemma 3. A cyclic SDN contains an atom n such that Nn is an acyclic SDN.

Proof. See [8] ��

The example on the left of Figure 3 shows that this result does not hold for
the non-deterministic case.

4.4 The Reduction Procedure

We can now formulate a reduction procedure to summarize an arbitrary SDN.

Input: a deterministic negotiation N0;

1 N← result of exhaustively applying the merge rule to N0;
2 while N is cyclic do
3 select s ∈ N such that Ns is acyclic;
4 apply to N the sequence of rules used to summarize Ns (but the last);
5 apply the iteration rule to s;
6 exhaustively apply the merge rule
7 apply the reduction sequence of Theorem 2

Theorem 3. The reduction procedure returns a summary of N0 iff N0 is sound.

Proof. By induction on the number k of atoms of N that synchonize at least one
loop. If k = 0, then by Lemma 1 and 2 N is acyclic, and the result follows from
Theorem 2. If k > 0, then by Lemma 3 N contains an almost acylic fragment
Fs, and so Ns is acyclic. Since the sequence of rules of line 4 summarizes Ns,
its application to N ends with a negotiation having a unique self-loop-outcome
on s. After removing this outcome with the iteration rule in line 5, we obtain a
SDN with k−1 synchronizers, which can be summarized by induction hypothesis
(line 6 is not necessary for completeness, but required for the complexity result
of the next section). ��

5 Complexity

We analyze the number of rule applications required by the reduction procedure.
Let Ni = (Ni, n0i, nfi,Xi) be the negotiation before the i-th execution of the
while-loop. We next collect some basic properties of the sequence N1,N2, . . ..

Lemma 4. For every i ≥ 1: (a) Ni+1 ⊆ Ni; (b) the merge rule cannot be applied
to Ni; and (c) Ni+1 has fewer synchronizers than Ni.
In particular, by (c) the while loop is executed at most |N1| = |N0| times.

Proof. (a) and (b) follow immediately from the definitions of the rules and the
reduction algorithm. For (c), we observe that every synchronizer of Ni+1 is a
synchronizer of Ni, but the atom s selected at the i-th loop execution is not
a synchronizer of Ni+1, because all loops synchronized by s are collapsed to
self-loops on s during the i-th iteration of the loop, and then removed by the
iteration rule. ��
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By Theorem 2, during the i-th iteration of the while-loop line 4 requires at
most |Ni|2 + |Out(Ni)| rule applications. Line 5 only requires one application.
Now, let N′

i be the negotiation obtained after the execution of line 5. The number
of rule applications of line 6 is clearly bounded by the number of outcomes of
Out(N′

i) . For the total number of rule applications Appl(N0) we then obtain

Appl(N0) ≤
|N0|∑
i=1

(|Ni|2 + |Out(Ni)|+ 1 + |Out(N′
i)|) Lemma 4(c) and

Theorem 2

≤
|N0|∑
i=1

(|N0|2 + 1 + |Out(Ni)|+ |Out(N′
i)|) Lemma 4(a)

∈ O( |N0|3 + |N0|
∑|N0|

i=1 |Out(Ni)|+ |Out(N′
i)| ) (∗)

However, we cannot yet bound Appl(N0) by a polynomial in |N0| and |Out(N0)|,
because, in principle, the number of outcomes of Ni or N

′
i might grow exponen-

tially with i. Indeed, the shortcut rule can increase the number of outcomes.
Consider the degenerate negotiation N with only one agent shown in Figure 5(a).
N has one single loop, namely (n1, a) (n3, a) (n4, b). The corresponding fragment
Fn1 consists of the atoms and outcomes of this loop, and Nn1 is shown below N.
The negotiation Nn1 can be summarized by three applications of the shortcut
rule, shown in the lower row of the figure. The upper row shows the result of
application of the same rules to N.
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Fig. 5. Reducing an SND with one agent
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The first application removes n3 from Nn1 but not from N, because n3 has
more than one input arc in N (Figure 5(b)). Moreover, the rule adds three
outcomes to N (outgoing arcs of n1). The second application removes n4 from
Nn1 but not from N, and adds two new outcomes (n1, a4) and (n1, a5) (Figure
5(c)). The third application removes n′1 from Nn1 ; in N it is replaced by an
application of the iteration rule, yielding the negotiation at the top of Figure
5(d), which has two outcomes more than the initial one.

To solve this problem we introduce sources, targets and exits.

5.1 Sources, Targets, and Exits

Definition 16. Let N = (N,n0, nf ,X) be a negotiation, and let (n, r) be an
outcome. The source of (n, r) is n. The target of (n, r) is the partial function
A→ N that assigns to every party a ∈ Pn the atom X(n, a, r), and is undefined
for every a ∈ A \ Pn. The set of targets of N, denoted by Ta(N), contains the
targets of all outcomes of N.

Consider the reduction process from Ni to Ni+1. It proceeds by applying
to Ni the same sequence of rules that summarizes an acyclic negotiation Ns.
This sequence progressively reduces the fragment Fs until it consists of self-
loops on the atom s, which can then be reduced by the iteration rule. However,
the sequence also produces new outcomes of s that leave Fs, and that become
outcomes of Ni+1 not present in Ni. Consider for instance Figure 6(a), which
sketches an application of the shortcut rule. The outcome (n, r) unconditionally
enables n′, whose outcome (n′, r′) makes the left agent leave Fs. The target of
(n, r′f ) assigns the agents of the negotiations to atoms n1, n2 and n3, respectively.
This target is different from the targets of the other atoms in the figure.

We investigate the sources and targets of outcomes that leave Fs. We call
them exits of Fs.
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Definition 17. Let Fs be a fragment of N. An exit of Fs is an outcome (n, r) ∈
Out(N) such that n ∈ Fs but (n, r) /∈ Out(Fs).

The following lemma presents a key property of the exits of fragments of
SDNs: the occurrence of an exit (n, r) of Fs forces all agents of Ps to leave the
fragment Fs. In other words: all agents of Ps are parties of n, and the occurrence
of (n, r) does not lead any agent back to an atom of Fs.

Lemma 5. Let Fs be a fragment of a SDN N, and let (e, re) be an exit of
Fs. Then e has the same agents as s (i.e., e is also a synchonizer of Fs), and
X(e, a, re) /∈ Fs for every agent a of e.

Proof. See [8]. ��

In particular, the situation of Figure 6(a) cannot occur, and so in SDNs the
correct picture for the application of the shorcut rule to exits is the one of
Figure 6(b): the exit n′ has the same agents as the synchronizer s. Moreover,
the new target of (s, r′f ) equals the already existing target of (n′, r′). So Lemma
5 leads to the following bound on the number of targets of Ni:

Lemma 6. For every 1 ≤ i ≤ |N0|: Ta(Ni) ⊆ Ta(N0).

Proof. See [8]. ��

We use this lemma to bound Out(N ′
i).

Lemma 7. For every 1 ≤ i ≤ |N0|: |Out(N ′
i)| ∈ O(|N0|2 · |Out(N0)|).

Proof. We first give an upper bound for |Out(Ni)|. Since the merge rule cannot
be applied to Ni, no two outcomes of Ni have the same source and the same
target, and so |Out(Ni)| ≤ |Ni| · |Ta(Ni)|.

By Lemma 6, |Out(Ni)| ≤ |N0| · |Out(N0)|.
Now we consider |Out(N ′

i)|. Each outcome of Out(N′
i) \ Out(Ni) has some

atom of Fs as source, and is generated by some exit of Fs. So the number of
such outcomes is at most the product of the numbers of nodes of Fs and the
number of exits of Fs. Since these numbers are bounded by |Ni| and |Out(Ni)|
respectively, we get |Out(N ′

i)| ≤ |Out(Ni)| + |Ni| · |Out(Ni)|. The result now
follows from |Out(Ni)| ≤ |N0| · |Out(N0)| and Lemma 4(a). ��

Finally, combining (∗) and Lemma 7 we get

Theorem 4. Let N0 be an SDN. Then Appl(N0) ∈ O( |N0|4 ·Out(N0) ).

We conjecture that a more detailed complexity analysis can improve this
bound to at least O(|N0|3 ·Out(N0)), but this is beyond the scope of this paper.
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6 Conclusions

We have continued the analysis of negotiations started in [7]. We have provided
a set of three reduction rules that can summarize all and only the sound deter-
ministic negotiations. Moreover, the number of rule applications is polynomial
in the size of the negotiation.

The completeness and polynomiality proofs turned out to be quite involved.
At the same time, we think they provide interesting insights. In particular, the
completeness proofs shows how in deterministic negotiations soundness requires
to synchronize all agents at least once in every loop. It also shows that, intuitively,
loops must be properly nested. Intuitively, sound deterministic negotiations are
necessarily well structured, in the sense of structured programming.

Our rules generalize the rules used to transform finite automata into regular
expressions by eliminating states [14]. Indeed, deterministic negotiations can be
seen as a class of communicating deterministic automata, and thus our result
becomes a generalization of Kleene’s theorem to a concurrency model. In future
work we plan to investigate the connection to other concurrent Kleene theorems
in the literature like e.g. [9,10].
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Abstract. Asymmetric unification is a new paradigm for unification
modulo theories that introduces irreducibility constraints on one side of
a unification problem. It has important applications in symbolic cryp-
tographic protocol analysis, for which it is often necessary to put ir-
reducibility constraints on portions of a state. However many facets
of asymmetric unification that are of particular interest, including its
behavior under combinations of disjoint theories, remain poorly under-
stood. In this paper we give a new formulation of the method for uni-
fication in the combination of disjoint equational theories developed by
Baader and Schulz that both gives additional insights into the disjoint
combination problem in general, and furthermore allows us to extend the
method to asymmetric unification, giving the first unification method for
asymmetric unification in the combination of disjoint theories.

1 Introduction

We examine the disjoint combination problem in the newly developed paradigm
of asymmetric unification. This new unification problem was developed based
on newly identified requirements arising from symbolic cryptographic protocol
analysis [8]. Its application involves unification-based exploration of a space in
which the states obey rich equational theories that can be expressed as a decom-
position R�E, where R is a set of rewrite rules that is confluent, terminating and
coherent modulo E. However, in order to apply state space reduction techniques,
it is usually necessary for at least part of this state to be in normal form, and to
remain in normal form even after unification is performed. This requirement can
be expressed as an asymmetric unification problem {s1 =↓ t1, . . . , sn =↓ tn}
where the =↓ denotes a unification problem with the restriction that any unifier
leaves the right-hand side of each equation irreducible (see Definition 4).
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The concept of asymmetric unification has its genesis in the unification method
that is commonly used in symbolic analysis of cryptographic protocols. Here, two
different requirements must be satisfied. The first is to have a generic unifica-
tion algorithm that can be applied to a large class of equational theories that
are encountered in cryptographic protocol analysis. The second is to guarantee
that certain terms always be in normal form with respect to R (see Section 1.1),
so that it is possible to apply state space reduction techniques. This is done
by decomposing the theory into R � E so that R has the finite variant prop-
erty [6] with respect to E, i.e., for any term t there is a finite set of irreducible
variants V (t) of pairs (u, σ), where u is a term and σ is a substitution, so that
for each (u, σ) ∈ V (t) we have tσ ↓=E u and for any substitution τ there is a
(u, σ) ∈ V (t) and a substitution ρ such that tτ ↓=E uρ. In other words, the set
of variants gives a complete representation of the irreducible forms of t under
any substitution. A unification problem is then solved by computing the variants
of each side and unifying those modulo E. This approach to unification is used
in a number of tools, including ProVerif [4], OFMC [16], Maude-NPA [10], and
Tamarin [15]. More recently, it has been formalized in a procedure known as
folding variant narrowing [12], which terminates if and only if the terms being
unified have a finite number of variants.

Although variant narrowing is sound and complete for theories with the fi-
nite variant property, it is not optimally efficient. In [7] it is pointed out that
the issue can often be addressed by computing the set of variants of only one
side of a unification problem s =? t, replacing it with a new asymmetric prob-
lem s =↓ t1, . . . , s =↓ tn. One may then apply more efficient special-purpose
asymmetric unification algorithms that satisfy the irreducibility constraints. Re-
cent work on asymmetric algorithms for exclusive-or [14], [8] and free Abelian
groups [14] indicate that such algorithms can lead to significant enhancement of
performance.

Although asymmetric unification has the potential of playing an important
role in cryptographic protocol analysis, and possibly other unification-based state
exploration as well, it is still not that well understood. Until the development
of special-purpose algorithms for exclusive-or and free Abelian group theories
mentioned above, the only known asymmetric unification algorithm was variant
narrowing. Since then, some better understanding has been developed. For Ex-
ample, we know that asymmetric unification is strictly harder than “symmetric”
unification. In particular, there are theories for which symmetric unification is
decidable and asymmetric unification is not. Still, there are many questions that
remain to be answered. One of the most important of these unanswered ques-
tions is the problem of asymmetric unification in a combination of theories, in
particular how to produce an algorithm for the combined theory by combining
algorithms for the separate theories. This is particularly significant for crypto-
graphic protocol analysis. Cryptographic protocols generally make use of more
than one cryptoalgorithm. Often, these cryptoalgorithms can be described in
terms of disjoint equational theories. In the case in which the algorithm used
is variant narrowing, the problem is straightforward. If the combination of two
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theories with the finite variant property also has the finite variant property, then
one applies variant narrowing. However, in attempting to combine theories with
special-purpose algorithms, the path is less clear. This is an important point
with respect to efficiency since, as pointed out above, special-purpose asymmet-
ric algorithms have the promise of being more efficient than variant narrowing.

In this paper we take the first step to solving this problem, by showing that
the combination method for the unification problem in disjoint equational theo-
ries developed by Baader and Schulz in [2] can be modified and extended to the
asymmetric unification paradigm, thus providing the first general combination
method for this new paradigm. The only restrictions on this new method are
those inherited from the asymmetric unification problem and those inherited
from Baader and Schulz. From [2] we require that the algorithms being com-
bined solve the asymmetric unification with linear constant restriction problem,
although we show this reduces to solving the general asymmetric unification
problem.

Do to space restrictions some proof details have been omitted. Please see the
technical report version for full proofs [9].

1.1 Preliminaries

We use the standard notation of equational unification [3] and term rewriting
systems [1]. The set of Σ-terms, denoted by T (Σ,X ), is built over the signature
Σ and the (countably infinite) set of variables X . The terms t|p and t[u]p denote
respectively the subterm of t at the position p, and the term t having u as
subterm at position p. The symbol of t occurring at the position p (resp. the
top symbol of t) is written t(p) (resp. t(ε)). The set of positions of a term t is
denoted by Pos(t), the set of non variable positions for a term t over a signature
Σ is denoted by Pos(t)Σ . A Σ-rooted term is a term whose top symbol is in
Σ. The set of variables of a term t is denoted by V ar(t). A term is ground if it
contains no variables. A term t is linear if each variable of t occurs only once
in t.

A Σ-substitution σ is an endomorphism of T (Σ,X ) denoted by {x1 !→ t1, . . . ,
xn !→ tn} if there are only finitely many variables x1, . . . , xn not mapped to
themselves. We call the domain of σ the set of variables {x1, . . . , xn} and the
range of σ the set of terms {t1, . . . , tn}. Application of a substitution σ to a term
t (resp. a substitution φ) may be written tσ (resp. φσ).

Given a first-order signature Σ, and a set E of Σ-axioms (i.e., pairs of Σ-
terms, denoted by l = r), the equational theory =E is the congruence closure
of E under the law of substitutivity. By a slight abuse of terminology, E will
be often called an equational theory. An axiom l = r is variable-preserving if
V ar(l) = V ar(r). An axiom l = r is linear (resp. collapse-free) if l and r are
linear (resp. non-variable terms). An equational theory is variable-preserving
(resp. linear/ collapse-free) if all its axioms are variable-preserving (resp. linear/
collapse-free). An equational theory E is finite if for each term t, there are finitely
many terms s such that t =E s.
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A Σ-equation is a pair of Σ-terms denoted by s =? t. An E-unification prob-
lem is a set of Σ-equations, S = {s1 =? t1, . . . , sm =? tm}. The set of variables
of S is denoted by V ar(S).

A solution to S, called an E-unifier , is a substitution σ such that siσ =E tiσ
for all 1 ≤ i ≤ m. A substitution σ is more general modulo E than θ on a set of
variables V , denoted as σ ≤V

E θ, if there is a substitution τ such that xστ =E xθ
for all x ∈ V . Two substitutions θ1 and θ2 are equivalent modulo E on a set of
variables V , denoted as θ1 =V

E θ2, if and only if xθ1 =E xθ2 for all x ∈ V . A
complete set of E-unifiers of S is a set of substitutions denoted by CSUE(S)
such that each σ ∈ CSUE(S) is an E-unifier of S, and for each E-unifier θ of S,
there exists σ ∈ CSUE(S) such that σ ≤V ar(S)

E θ.
Equational unification problems are classified based on the function symbols

that appear in them, i.e., their signature (Sig). An E-unification problem S is
elementary if and only if Sig(S) = Sig(E). S is called an E-unification problem
with constants if Sig(S) \Sig(E) contains only free constants. Finally, if there
are uninterpreted function symbols in Sig(S) \Sig(E), S is called a general E-
unification problem.

Let E1 and E2 be two equational theories built over the disjoint signatures Σ1

and Σ2. The elements of Σi will be called i-symbols. A term t is an i-term if and
only if it is of the form t = f(t1, , . . . , tn) for an i-symbol f or t is a variable. An
i-term is pure (or an i-pure term) if it only contains i-symbols and variables. An
equation s =? t is i-pure (or just pure) iff there exists an i such that s and t are
i-pure terms or variables. A subterm s of an i-term t is called an alien subterm
(or just alien) of t iff it is a non-variable j-term, j �= i, such that every proper
superterm of s in t is an i-term. A unification problem S is an i-pure problem if
all equations in S are i-pure.

Definition 1. Let Γ be an E-unification problem, let X denote the set of vari-
ables occurring in Γ and C the set of free constants occurring in Γ . For a
given linear ordering < on X ∪ C, and for each c ∈ C define the set Vc as
{x | x is a variable with x < c}. An E-unification problem with linear constant
restriction (LCR) is an E-unification problem with constants, Γ , where each
constant c in Γ is equipped with a set Vc of variables. A solution of the problem
is an E-unifier σ of Γ such that for all c, x with x ∈ Vc, the constant c does not
occur in xσ. We call σ an E-unifier with linear constant restriction.

A rewrite rule is an ordered pair l → r such that l, r ∈ T (Σ,X ) and l �∈ X .
We use R to denote a term rewrite system which is defined as a set of rewrite
rules. The rewrite relation on T (Σ,X ), written t→R s, hold between t and s iff
there exists a non-variable p ∈ PosΣ(t), l → r ∈ R and a substitution σ, such
that t|p = lσ and s = t[rσ]p. The relation →R/E on T (Σ,X ) is =E ◦ →R ◦ =E .
The relation →R,E on T (Σ,X ) is defined as: t→R,E t′ if there exists a position
p ∈ PosΣ(t), a rule l → r ∈ R and a substitution σ such that t|p =E lσ
and t′ = t[rσ]p. The transitive (resp. transitive and reflexive) closure of →R,E

is denoted by →+
R,E (resp. →∗

R,E). A term t is →R,E irreducible (or in R,E-
normal form) if there is no term t′ such that t→R,E t′. If→R,E is confluent and
terminating we denote the irreducible version of a term, t, by t→!

R,E or t ↓R,E .
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Definition 2. A rewrite rule l→ r is duplicating if r contains more occurrences
of some variable than l; otherwise, l → r is non-duplicating. We say that R is
non-duplicating if every l→ r ∈ R is non-duplicating

Definition 3. We call (Σ, E, R) a decomposition of an equational theory Δ
over a signature Σ if Δ = R � E and R and E satisfy the following conditions:

1. E is variable preserving, i.e., for each s = t in E we have V ar(s) = V ar(t).
2. E has a finitary and complete unification algorithm. That is, an algorithm

that produces a finite complete set of unifiers.
3. For each l→ r ∈ R we have V ar(r) ⊆ V ar(l).
4. R is confluent and terminating modulo E, i.e., the relation →R/E is conflu-

ent and terminating.
5. →R,E is E-coherent, i.e., ∀t1, t2, t3 if t1 →R,E t2 and t1 =E t3 then ∃ t4, t5

such that t2 →∗
R,E t4, t3 →+

R,E t5, and t4 =E t5.

This definition is inherited directly from [8] where Asymmetric unification and
the corresponding theory decomposition are first defined. The last restrictions
ensure that s→!

R/E t iff s→!
R,E t (see [11], [8]).

Definition 4 (Asymmetric Unification). Given a decomposition (Σ,E,R)
of an equational theory, a substitution σ is an asymmetric R,E-unifier of a set
S of asymmetric equations {s1 =↓ t1, . . . , sn =↓ tn} iff for each asymmetric
equations si =

↓ ti, σ is an (E∪R)-unifier of the equation si =
? ti and (ti ↓R,E)σ

is in R,E-normal form. A set of substitutions Ω is a complete set of asymmetric
R,E-unifiers of S (denoted CSAUR∪E(S) or just CSAU(S) if the background
theory is clear) iff: (i) every member of Ω is an asymmetric R,E-unifier of S,
and (ii) for every asymmetric R,E-unifier θ of S there exists a σ ∈ Ω such that

σ ≤V ar(S)
E θ.

Example 1. Let R = {x ⊕ 0 → x, x ⊕ x → 0, x ⊕ x ⊕ y → y} and E be
the AC theory for ⊕. Consider the equation y ⊕ x =↓ x ⊕ a, the substitution
σ1 = {y !→ a} is an asymmetric solution but, σ2 = {x !→ 0, y !→ a} is not.

Definition 5 (Asymmetric Unification with Linear Constant Restric-
tion). Let S be a set of of asymmetric equations with some LCR. A substitution
σ is an asymmetric R,E-unifier of S with LCR iff σ is an asymmetric solution
to S and σ satisfies the LCR.

2 Combining Asymmetric Unification Algorithms

Here we modify and extend the method for unification in the union of disjoint
equational theories, developed by Baader and Schulz [2], to the combination of
asymmetric unification algorithms in the union of disjoint equational theories.



On Asymmetric Unification and the Combination Problem 279

Problem Description: Let Δ1 and Δ2 denote two equational theories with
disjoint signatures Σ1 and Σ2. Let Δ be the combination, Δ = Δ1 ∪Δ2, of the
two theories having signature Σ1 ∪ Σ2. Let Ai, i ∈ {1, 2}, be an asymmetric
Δi-unification with linear constants restriction algorithm. We then give an al-
gorithm which uses A1 and A2 to solve the elementary asymmetric unification
problem over Δ. Recall that elementary implies that terms can only contain
symbols in the signature of the theory or variables. But this is not restrictive,
if we wish to have additional free functional symbols, these function symbols
define a new empty theory and lead to another combination. Therefore, in what
follows we will assume that a problem, Γ0, in the combined theory Δ, is an ele-
mentary asymmetric Δ-unification problem. In order to satisfy the requirements
for asymmetric unification we make the following assumptions.
Restrictions: for each constituent theory (Σi, Δi):

1. There is a decomposition Δi = Ri �Ei and u→!
Ri,Ei

v iff u −→!
Ri/Ei

v (see

note (2) below).
2. Ei is collapse-free and there exists a finitary Ei-unification algorithm.
3. There exists a finitary complete asymmetric Δi-unification algorithm with

linear constants restriction, Ai (see note (3) below).
4. Variables are →Ri,Ei-normal forms.
5. Each Ri is non-duplicating.

Notes on the Restrictions :

1. All Restrictions, except (3), are due to the asymmetric unification definition.
2. The definition of decomposition requires that −→Ri/Ei

be confluent and

terminating. Thus, if u →!
Ri,Ei

v iff u −→!
Ri/Ei

v, we have that →Ri,Ei is
also confluent and terminating.

3. We show in Section 2.5 that there exists an asymmetric Δi-unification algo-
rithm with linear constants restriction if there exists a general asymmetric
Δi-unification algorithm.

According to our Restrictions, E1 and E2 are both variable preserving and
collapse-free. Consequently, we have the following property:

Lemma 1. t �=E1∪E2 s, if t is a non-variable i-term and s is a non-variable
j-term, j �= i.

2.1 Rewriting in the Combined Theory

The definition of asymmetric unification in the combined theory Δ, where Δ =
Δ1 ∪Δ2, requires us to not only find Δ-unifiers but also decide if a term is in
→(R1∪R2),(E1∪E2) normal form. Therefore, we need to first ensure the modularity
of rewriting, i.e., ensure we can compute −→(R1∪R2),(E1∪E2)-normal forms.

Consider now the combined theory (Σ,Δ), where Σ = Σ1∪Σ2 and Δ = Δ1∪
Δ2. Let R = R1∪R2 and E = E1∪E2. Therefore, →R,E denotes →R1∪R2,E1∪E2 .

Theorem 1. →R,E = −→R1,E1 ∪ −→R2,E2
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Proof. Follows from the the fact that Σ1 ∩Σ2 = ∅ and E = E1 ∪ E2 is variable
preserving and collapse-free. ��

The relation−→Ri,Ei is decidable for each sub-theory due to the assumption that
−→R1,E1 is convergent. Therefore we obtain the following corollary to Theorem 1.

Corollary 1. The relation −→R,E is decidable.

Note, with respect to termination, R1 ∪ R2 is non-duplicating, this is due to
the disjoint theories and the fact that each Ri is non-duplicating by assumption.
Since R1∪R2 is non-duplicating termination is obtained due to the results of [17],
where it is shown that non-duplicating implies termination in the combination of
terminating rewrite systems. Next we would like to know that −→R,E is complete
with respect to −→R/E , i.e., u →!

Ri,Ei
v iff u −→!

Ri/Ei
v, which is not true in

general. For this to be true we need to know that −→R,E is E-coherent, which
implies the result (see [11]).

Lemma 2. If there exist terms t0, t1 and t2 such that t0 ↔∗
E t2 and t0 →R,E t1

then there exists a term t3 such that t2 →R,E t3.

Proof. This can be shown via an induction argument relying on the fact that
→Ri,Ei is coherent modulo Ei. See [9] for the full proof. ��

Theorem 2. →R,E is E-coherent.

Proof. If t0 →R,E t1 and t0 =E t2, then by Lemma 2, there exists a term, t3, such
that t2 →R,E t3. Thus, t1 ←→R1∪R2∪E1∪E2 t3. Now the combined system has
the properties (normal form variables, Ei collapse-free, and disjoint signatures)
such that the Church-Rosser result in [13] applies. This implies the existence of
terms t4 and t5 such that t1 →∗

R,E t4, t3 →∗
R,E t5 and t4 =E t5. ��

Therefore, based on Corollary 1 and Theorem 2, u →∗
R,E v iff u →∗

R/E v which
implies the following:

Theorem 3. t =R∪E s iff t ↓R,E =E s ↓R,E

2.2 Asymmetry in the Projection of Terms

Now that we have established the modular results for rewriting we can use the
well defined normal forms to define projections onto pure terms. Later we will use
the bijection defined below to prove that if the original problem has a solution
then there exists solutions to the pure sub-problems. This is accomplished by
mapping the combined solution into two pure solutions. In order for this to work
we also need to ensure that equality modulo E and asymmetric restrictions are
maintained after the mapping is applied. Let X and Y be disjoint sets of variables
that are countably infinite. Let T (Σ,X ) be the set of Σ1∪Σ2-terms over X . We
define a bijection

π : (T (Σ,X ) ↓R,E)/=E
→ Y (1)
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The bijection π induces two mappings π1 and π2 of terms in T (Σ,X ) to terms
in T (Σ,Y) as follows. For each x ∈ X , xπ1 := π(x). If t = f(t1, . . . , tn) for a
1-symbol f , then tπ1 := f(tπ1

1 , . . . , t
π1
n ). If t is a 2-term then tπ1 := y where

y = π([s]E ) for the unique →R,E -irreducible term s of t, where [s]E denotes the
equivalence class of s modulo E . The mapping π2 is defined analogously.

Given a substitution σ, σπi denotes the abstraction defined by σπi(x) =
(σ(x))πi , for all x is the domain of σ. These two mapping can be seen as pro-
jections from mixed terms into pure terms. More informally, we can view an
i-abstraction as method for converting a mixed term into a pure term by re-
placing the alien subterms with variables. Recall that we assume that variables
are −→Ri,Ei-irreducible and thus by modularity →R,E-irreducible. As in [2] we
can also define the inverse, π−1 of π as a substitution that maps the variables
y ∈ Y back to terms π−1(y) and is the identity on all other variables. Note that,
π−1(tπi) =E t, if t is in R, E-normal form or an i-term with normal form aliens.

Theorem 4. Let s and t be i-pure terms. Let t and σ be in R, E-normal form,
such that sσ =Δ tσ. Then sσπi =Δi tσ

πi and tσ is in R, E-normal form iff tσπi

is in Ri, Ei-normal form.

Proof. This result follows from the disjoint signatures and the fact that E is
variable preserving. See [9] for the full proof details. ��

2.3 Asymmetric Unification with Linear Constant Restriction

We present the combination Algorithm, AsymComb, in Figure 1. Let us first
give a rough, intuitive overview of the steps. First, equations are purified using
variable abstraction and splitting (steps 1 and 2 ). This ensures that the original
problem is separated into pure problems which can be solved by the algorithms
for the pure theories. Next, a variable identification is non-deterministically cho-
sen, allowing for the testing all the ways the variables may be equated to other
variables. Then, a linear ordering and theory indices are non-deterministically
chosen. Note that a shared variable can only “belong” exclusively to one the-
ory. Since we don’t know beforehand what variable belongs to which theory the
non-deterministic selections allow us to check all the possibilities. In addition,
each solution to the original problem will correspond to one or more linear or-
dering among the variables. Next, the problem is split into two pure problems
where the linear ordering defines a linear constant restriction. The pure problems
are solved by asymmetric unification algorithms with linear constant restriction.
The solutions returned by the sub-algorithms are combined into solutions for
the original problem. The Algorithm AsymComb (cf. Figure 1) must also ensure
that we only combine a specific type of unifier, which ensures asymmetry.

The notions of identification, theory indexes and linear constant restrictions,
have all been used in [2] (see Section 1.1 for definitions). In order to handle the
asymmetry restriction we introduce two additional notions, which ensure pure
problem solutions having these properties will result in asymmetric combined
solutions.
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Input: Γ0, the initial unification problem over the signature Σ1 ∪Σ2, where we assume
the right hand sides of the equations are normalized.

1. Variable Abstraction: Let s =↓ t ∈ Γ0.
(a) Right Abstraction: For each alien subterm t1 of t, let x be a variable not

occurring in the current system and let t′ be the term obtained from replacing
t1 by x in t. Then the original equation is replaced by two equations s =↓ t′

and x =↓ t1.
(b) Left Abstraction: For each alien subterm s1 of s let x be a variable not occur-

ring in the current system and let s′ be the term obtained from replacing s1
by x in s. Then the original equation is replaced by two equations s′ =↓ t and
s1 =↓ x.

The output is a system Γ1 such that all terms are pure.
2. Split non-pure equations: Each non-pure equation of the form s =↓ t is replaced

by two equations s =↓ x, x =↓ t where x is always a new variable. The results is a
system Γ2 of pure equations.

3. Variable Identification: Consider all the possible partitions of the set of vari-
ables. Each partition produces a new system Γ3 as follows. The variables in each
class of the partition are “identified” with each other by choosing an element of the
class as a representative and replacing in the system all occurrences of variables in
each class by their representative.

4. Choose an ordering and Theory index: For each Γ3 we consider all the possible
strict orderings < on the variables of the system and all mappings ind from the set
of variables into the set of indices {1, 2}. Each pair (<, ind) yields a new system
Γ4.

5. Split the system: Each Γ4 is split into two systems Γ5,1 and Γ5,2, the first
containing only 1-equations and the second only 2-equations. In the system Γ5,i

the variables of index j �= i are treated as constants. Each Γ5,i is now a unification
problems with linear constant restriction, where the linear ordering < defines the
set Vc for each constant c corresponding to an index j �= i variable.

6. Compute Mi,j : For the initial system Γ0 let {(Γ 1
5,1, Γ

1
5,2), . . . , (Γ

n
5,1, Γ

n
5,2)} be

the output of the decomposition. For i = 1, . . . , n and j = 1, 2, let Mi,j =
CSAUΔj (Γ

i
5,j) produced by Algorithm Aj , where substitutions that are non-

injective and not theory-preserving are discarded.
7. Output: For i = 1, . . . , n the set of substitutions σ1�σ2 such that σ1 ∈Mi,1 and
σ2 ∈Mi,2.

Fig. 1. Algorithm AsymComb

Definition 6. (Injective)
A substitution, σi, is said to be injective modulo Δi if for any two variables x, y
in the domain of σi, we have that xσi =Δi yσi if and only if x = y.

Definition 7. (Theory Preserving)
A substitution σi, solving an i-pure problem Γi, is said to be theory preserving if
for any variable x of index i in the domain of σi, xσi is not a variable of index
j �= i.

With respect to the combination algorithm this definition basically states
that a substitution σi, which solves an i-pure problem, Γi, produced by Algo-
rithm AsymComb (cf. Figure 1), is theory-preserving if for all x ∈ Dom(σi),
xσi �= c where c is a free constant. This is due to the fact that for the pure
sub-problems produced by the combination algorithm the only free constants
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will be those corresponding to shared variables of a different index. Note, the
definition of theory-preserving does not restrict σi from sending an i-variable x
to a non-variable i-term whose leafs are j-variables. Thus, if xσi = t and t is an
i-term, then t may contain j-variables. In addition, since the Algorithm Asym-
Comb assigns the variable indexes, it can always check the substitutions returned
by the algorithms for the pure theories to ensure that they are injective and
theory-preserving.

Definition 8. Let σ1 and σ2 be unifiers with linear constant restriction for Γ5,1

and Γ5,2 such that Γ5,i is the set of i-pure equations from Γ4 and < is the corre-
sponding linear ordering. The combined solution σ1( σ2 is defined by induction
on <:

Let x be the least variable with respect to the ordering < from step 4 and let i
be its index. Since the solution σi of Γ5,i satisfies the constant restriction induced
by <, xσi does not contain any variables of index j �= i. We define x(σ1 ( σ2)
to be xσi.

Let x be an arbitrary variable of index i and let y1, . . . , ym be the variables of
index j �= i occurring in xσi. Again, due to the constant restriction, the variables
y1, . . . , ym have to be smaller than x. This implies that y1(σ1(σ2), . . . , ym(σ1(
σ2) are already defined. The term x(σ1 ( σ2) is obtained from xσi by replacing
yk by yk(σ1 ( σ2), and we define x(σ1 ( σ2) to be xσi(σ1 ( σ2).

Lemma 3. (Baader-Schulz [2])
The combined unifier σ1 ( σ2 from Definition 8 is a unifier of Γ4.

Example 2. LetΔ1 = R1∪E1, where R1 = {e(x, d(x, y))→ y, d(x, e(x, y))→ y}
and E1 = ∅. LetΔ2 = R2∪E2, where R2 = {x⊕0→ x, x⊕x→ 0, x⊕x⊕y→ y}
and E2 = {x⊕ y = y ⊕ x, (x⊕ y)⊕ z = x⊕ (y ⊕ z)}}. Let Δ = Δ1 ∪Δ2.

Consider the initial problem Γ0 consisting of the following: {x0 ⊕ x1 ⊕ x2 =↓

x3 ⊕ x4, e(x1, d(0, x5)) =↓ x2 ⊕ x0, e(x1, d(x0, e(x2, x6))) =↓ e(x7, x5)}
Let us now examine the action of Algorithm AsymComb (cf. Figure 1) on Γ0

and how it would find a particular asymmetric solution. The first 2 steps produce
the set of pure equations Γ2: {x0⊕x1⊕x2 =↓ x3⊕x4, e(x1, d(z0, x5)) =↓ z1, 0 =↓

z0, z1 =↓ x2 ⊕ x0, e(x1, d(x0, e(x2, x6))) =↓ e(x7, x5)}.
The next step considers the set of variable partitions, one of which is the fol-

lowing partition {{x0, x3}, {x2, x4}, {x5, z1}, {x1, z0, x7}, {x6}} Choosing a rep-
resentative for each set and doing the replacement the Algorithm would produce
the following Γ3 from that partition: {x0⊕x1⊕x2 =↓ x0⊕x2, e(x1, d(x1, x5)) =↓

x5, 0 =↓ x1, x5 =↓ x2 ⊕ x0, e(x1, d(x0, e(x2, x6))) =↓ e(x1, x5)}.
The next step considers the possible pairs of variable orderings and theory

indexes. One pair that would be produced is the following: x6 > x5 > x2 > x1 >
x0, index-1 = {x0, x1, x2, x5} and index-2 = {x6}.

Next Γ4 is produced from that pair and split into pure sets to produce
Γ5,1 and Γ5,2. Let us denote a variable, y, being treated as a constant as y.
Then, Γ5,1 is the following set of equations: {x0 ⊕ x1 ⊕ x2 =↓ x0 ⊕ x2, 0 =↓

x1, x5 =↓ x2⊕x0} and Γ5,2 is the following set of equations: {e(x1, d(x1,x5)) =
↓

x5, e(x1, d(x0, e(x2, x6))) =
↓ e(x1,x5)}
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Next Γ5,1 is solved with A1 and Γ5,2 with A2, where the linear constant
restriction is obtained via the linear ordering and theory index. The last step
is to combine each pair of substitutions (σ1, σ2) into a substitution σ, where
σi is an injective and theory-preserving asymmetric with LCR solution to Γ5,i

returned by Ai. One such pair is σ1 = {x1 !→ 0, x5 !→ x2 ⊕ x0} and σ2 =
{x6 !→ d(x2, e(x0,x5))}. Applying Definition 8 we get the following solution,
{x1 !→ 0, x3 !→ x0, x4 !→ x2, x5 !→ x2⊕x0, x6 !→ d(x2, e(x0, x2⊕x0)), x7 !→ 0},
which is an asymmetric solution to Γ0 (existential variables z0, z1 are removed).

Before presenting the proof details lets us briefly point out the main differences
between Algorithm AsymComb (cf. Figure 1) and the algorithm of [2]. While
the general framework of the two algorithms is similar there are several key
differences. First, we do not consider general theories. Due to the restrictions
inherited from the definition of asymmetric unification we must consider theories
with specific structure, namely the decomposition. This requires new results for
showing the correctness of the algorithm and new results for showing that the
required properties for asymmetric unification are maintained. Second, we must
identify the specific unifiers which satisfy the asymmetry. We accomplish this by
identifying two key properties, theory preservation (Definition. 7) and injectivity
(Definition. 6).

2.4 Correctness

We show in this section that the Algorithm AsymComb (cf. Figure 1) is both
sound and complete for the decision problem. In addition, we show that the
algorithm produces a complete set of asymmetric unifiers.

Lemma 4. Assume that σ1 and σ2 are pure, injective, theory-preserving and
Ri, Ei-normalized unifiers modulo respectively Δ1 = R1 �E1 and Δ2 = R2 �E2

and they satisfy the same linear constant restriction. Then, the substitution σ =
σ1(σ2 satisfies the following properties: (1) σ is an injective substitution modulo
Δ1 ∪Δ2. (2) σ is R, E-normalized.

Proof. We proceed by induction on the linear ordering.
Base case: Let v be the smallest variable, say of index i. Then, σ is clearly
injective and R, E-normalized for variables smaller or equal to v, since vσ = vσi
is Ri, Ei-normalized, and so also R, E-normalized.
Inductive case: Assume the the properties holds for variables smaller than a
variable y of index i. To show that (1) holds, assume by contradiction that
there exists a variable x strictly smaller than y such that xσ =Δ1∪Δ2 yσ. Since
σ is R, E-normalized for variables smaller than y, we have that xσ =Δ1∪Δ2

yσ implies xσπi =Δi yσ
πi . Since σ is injective for variables smaller than y,

there exists a renaming ρ such that xσπiρ = xσi and yσπiρ = yσi. Therefore
xσi =Δi yσi, which is a contradiction. Consider now the property (2): if yσ
is R, E-reducible, then (yσ)πi is Ri, Ei-reducible, which means that yσiρ and
yσi are Ri, Ei-reducible too, which contradicts the assumption that σi is an Ri,
Ei-normalized substitution. ��



On Asymmetric Unification and the Combination Problem 285

Lemma 5. Let Γ0 be a solvable asymmetric Δ-unification problem, where Δ =
Δ1∪Δ2. Assume there exists a pair (Γ5,1, Γ5,2) produced by the Algorithm Asym-
Comb (cf. Figure 1) on Γ0 and a pair (σ1, σ2) such that σi ∈ CSAUΔi(Γ5,i) for
i = 1, 2.
Then, there exists pairs (Γ ′

5,1, Γ
′
5,2) produced by the Algorithm AsymComb on

Γ0 and a pair (φ1, φ2) such that φi is injective and theory-preserving, φi ∈
CSAUΔi(Γ

′
5,i) for i = 1, 2, and φ1 ( φ2 ≤V ar(Γ0)

Δ σ1 ( σ2.

Proof. Construct (Γ ′
5,1, Γ

′
5,2) and (σ′1, σ

′
2): Let Γ4 be the conjunction of Γ5,1 and

Γ5,2. Then there exists a linear ordering, <, and a theory index, ind. From Γ4

we can construct a new Γ ′
4 as follows: If there exists x, y in the domain of σi

such that xσi =Δi yσi we add x = y to the variable identification. If there exists
variables x, y such that x is an index i variable, y is an index j variable and
xσi = y, we replace all x with y in the variable identification. ind and < remain
the same. The result of these steps is a new Γ ′

4, which also gives us a new pair
(Γ ′

5,1, Γ
′
5,2). We can now define the new pair of substitutions (σ′1, σ

′
2) as follows:

Let Dom(σ′i) = V ar(Γ ′
5,i). ∀x ∈ Dom(σ′i), xσ

′
i = xσi and is the identity on all

other variables.
Show that σ′1 and σ′2 are theory-preserving and injective unifiers of Γ ′

5,1 and Γ ′
5,2:

This follows from the construction of Γ ′
4, where variables violating the definitions

have been removed.
Show that ∀x ∈ V ar(Γ0) xσ =Δ xσ′: First, by the definition of σ′ for all x ∈
Dom(σ′), xσ′ = xσ. Therefore, we need only consider the variables removed
by the variable identification step. From Definition 8, for any variable x in the
initial system replaced by a variable y during the identification step, xσ := yσ.
Since any identifications occuring in the definition of Γ4 must also occur in
Γ ′
4, xσ

′ := yσ′ = yσ = xσ. Now consider the variable identifications added to
construct Γ ′

4 but not existing in Γ4. If x = y is added because xσi = yσi, without
loss of generality assume x is replaced by y, then xσ′ := yσ′ = yσ =Δ xσ. Lastly
if x is replaced by y because xσi = y, then xσ′ := yσ = xσ.

To complete the proof, there exists φi ∈ CSAUΔ(Γ
′
5,i) such that φi ≤V ar(Γ0)

Δ

σ′i for i = 1, 2. By the definition of (, we have that φ1(φ2 ≤V ar(Γ0)
Δ σ′1(σ′2 = σ′,

and σ′ =
V ar(Γ0)
Δ σ. Therefore, φ1 ( φ2 ≤V ar(Γ0)

Δ σ1 ( σ2 = σ. ��

Lemma 6. For each asymmetric unifier of a problem Γ0, there exists a pair
(Γ5,1, Γ5,2) computed by the Algorithm AsymComb (cf. Figure 1), where for each
Γ5,i there exist a substitution τi which asymmetrically solves Γ5,i.

Proof. The construction given in [2] can be used here with modifications to
account for asymmetry and the projection π (Equation 1), see [9]. ��

Lemma 7. Let Γ0 be an asymmetric Δ-unification problem. For each asym-
metric unifier τ of Γ0 there exists a pair (Γ5,1, Γ5,2) in the output set of the
Algorithm AsymComb (cf. Figure 1), and a pair of substitutions (σ1, σ2) with
each σi ∈ CSAUΔi(Γ5,i). Such that σ = σ1 ( σ2 is an injective asymmetric

solution to Γ0 with σ ≤V ar(Γ0)
Δ τ .
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Proof. From Lemma 6 we have that given τ there exists a pair (Γ 1
5,1, Γ

1
5,2) and

substitutions (τ11 , τ
1
2 ) such that τ1i asymmetrically solves Γ 1

5,i. Now, if τ
1
i is an

asymmetric solution to Γ 1
5,i, there exists a substitution τ2i produced by the algo-

rithm Ai such that τ2i ∈ CSAUΔi(Γ
1
5,i) and τ

2
i ≤

V ar(Γ5,i)
Δi

τ1i . Furthermore, as in

Lemma 5, by the definition of (, we have that τ2 = τ21 (τ22 ≤
V ar(Γ0)
Δ τ11 (τ12 = τ

From Lemma 5, there exists a pair (Γ 2
5,1, Γ

2
5,2) produced by AsymComb and a

pair (σ1, σ2) such that σi is injective and theory-preserving, σi ∈ CSAUΔi(Γ
2
5,i)

and σ = σ1(σ2 ≤V ar(Γ0)
Δ τ2. By Lemma 4, σ is an injective asymmetric solution

to Γ4. Finally, σ ≤V ar(Γ0)
Δ τ2 and τ2 ≤V ar(Γ0)

Δ τ , and so σ ≤V ar(Γ0)
Δ τ . ��

We can now show the the Algorithm AsymComb (cf. Figure 1) is correct, i.e.,
both sound and complete.

Theorem 5. Let Γ0 be a combined asymmetric unification problem. Γ0 is asym-
metrically unifiable if and only if the Algorithm AsymComb (cf. Figure 1) returns
a combined substitution.

Proof. From Lemma 3, the substitutions returned are unifiers. From Lemma 4
the substitutions are asymmetric. Completeness follows from Lemma 7. ��

Now we can consider the complete set of unifiers.

Theorem 6. Let Γ0 be an asymmetric Δ-unification problem. Then, for every
τ ∈ CSAU(Γ0), Algorithm AsymComb (cf. Figure 1) produces an injective sub-

stitution σ such that σ ≤V ar(Γ0)
Δ τ .

Proof. For any problem, Γ0, the Algorithm AsymComb will try every combina-
tion of variable identification, theory index and linear ordering, i.e. every possible
pair of sub-problems (Γ5,1, Γ5,2). Furthermore, the Algorithm AsymComb will
combine every pair, (σ1, σ2), of injective and theory preserving solutions such
that σi ∈ CSAUΔi(Γ5,i), i ∈ {1, 2}. Thus, the result follows from Lemma 7. ��

2.5 Obtaining Linear Constant Restriction Algorithms

If one has a general asymmetric unification algorithm an algorithm that respects
an LCR can be obtained. The construction is similar to the one given in [2].
Given Γ , an asymmetric unification problem with a linear constant restriction,
we construct a general unification problem Γ ′ such that Γ is solvable iff Γ ′ is
solvable. Let < denote the linear ordering. Let X denote the variables of Γ and
let C denote the set of all free constants in Γ . Now, we construct Γ ′ as follows:
The free constants in Γ are treated as variables in Γ ′. For each free constant c
of Γ we add a new free function symbol fc which has arity |Vc|. Recall that Vc =
{x ∈ X|x < c}. Γ ′ = Γ ∪ {c =↓ fc(x1, . . . , xn) |c ∈ C and Vc = {x1, . . . , xn}}
Theorem 7. The Asymmetric E-unification problem with linear constant re-
striction, Γ , is solvable iff the general Asymmetric E-unification problem Γ ′ is
solvable.

Proof. The same proof used in [2] can here with only a modification for asym-
metric equations. A full proof is given in [9]. ��
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3 Conclusions

With respect to efficiency, the combination algorithm provides a significant first
step to more efficient methods since, unlike a narrowing approach, we can now
combine efficient special purpose asymmetric unification algorithms. In addition,
it should be possible to improve the efficiency of the current algorithm. We are
currently studying the question of improving the efficiency.

Briefly, the only theories that are currently known to have asymmetric uni-
fication algorithms are those with the finite variant property [6], in which case
a general algorithm known as folding variant narrowing [12] applies. This is a
sizable class, including many, but not all, theories of interest to cryptographic
protocol analysis (see [6]). In many cases known characterizations of theories
with the finite variant property [12], [5] depend on conditions on E and R that
can be checked without further reference to Σ, and so for these cases the finite
variant property still holds after the addition of uninterpreted function symbols.
Thus general asymmetric unification algorithms exist. Moreover, the earlier men-
tioned special-purpose algorithms for exclusive-or and free Abelian groups [14],
[8] are also general asymmetric algorithms. In [14] and [8] a strategy is presented
for converting symmetric unification algorithms to asymmetric ones. This opens
up an avenue for the development of special-purpose general asymmetric unifi-
cation algorithms for theories with and without the finite variant property as
well, to which our results would also apply.

There exists an interesting connection between Asymmetric unification and
Disunification. Consider a disunification problem s �= t in the theory Δ = E ∪R
over signature Σ. We can simulate this problem using asymmetric unification.
First, let f and g be new function symbols added to Σ. Let f(x, x) −→ g(x) be
a new rule added to R. Now s �= t can be simulated by {s =↓ u, t =↓ v, w =↓

f(u, v)}. Although there is some connection between the two problems they may
still be independent and resolving this is an interesting open problem.
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Abstract. Probabilistic transition system specifications (PTSS) provide struc-
tural operational semantics for reactive probabilistic labeled transition systems.
Bisimulation equivalences and bisimulation metrics are fundamental notions to
describe behavioral relations and distances of states, respectively. We provide a
method to generate from a PTSS a sound and ground-complete equational ax-
iomatization for strong and convex bisimilarity. The construction is based on the
method of Aceto, Bloom and Vaandrager developed for non-deterministic transi-
tion system specifications. The novelty in our approach is to employ many-sorted
algebras to axiomatize separately non-deterministic choice, probabilistic choice
and their interaction. Furthermore, we generalize this method to axiomatize the
strong and convex metric bisimulation distance of PTSS.

1 Introduction

Structural operational semantics (SOS for short) [20] is a powerful tool to provide se-
mantics to programming languages. In SOS, process behavior is described using transi-
tion systems and the behavior of a composite process is given in terms of the behavior
of its components. Based on this technique, different meta-properties have been stud-
ied. They state general properties on process operations by only inspecting the format
of the rules that define the semantics of this operator. Among them, congruence and
other compositionality properties stand out. (See [19] for an overview.)

However, there are properties that are better understood from an axiomatic point of
view, by regarding the language as a signature equipped with an equational theory (see
e.g. [18,3]). This is a different way to understand the language that brings new insights
on the behavior of its operators and processes. General properties, such as associativity,
distributivity, or reduction to basic operators, or specific ones, can be easily derived
with equational reasoning, which is also used for the verification of systems.

In [1], Aceto, Bloom and Vaandrager link these two approaches by providing an
algorithm to derive an equational theory for any language whose semantics is defined
in terms of SOS rules that meet the GSOS format [7]. This equational theory is sound
and ground-complete for bisimulation equivalence [18]. For recent work in the area,
see [2,11] and references therein.
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The above mentioned results are set in traditional non-deterministic semantics. How-
ever, in the modeling and programming of systems, the interaction of non-determinism
and probabilities arises naturally, for example, in the sampling of a random number or
in the occurrence of an externally induced fault. Therefore, modeling and programming
languages need to have operations whose semantics include probabilistic behavior.

For probabilistic languages, SOS theories have also been developed in which not
only congruence properties are considered, but also non-expansiveness, which is a con-
cept that arises naturally when measuring distances in the probabilistic behavior of two
processes (see, e.g., [9,12] and references therein). Moreover, equational theories for
probabilistic languages have been developed (see [5,15] and references therein).

In this work we lift the result of [1] to languages with probabilistic operations. The
input of our algorithm is an SOS system (more precisely, a PTSS) in PGSOS format
(actually, it is a generalization of the Segala-GSOS format [6]) and the output is a sound
and ground-complete equational theory for strong bisimulation equivalence. Having
this aim, we came across with additional contributions, more precisely:

1. In Sec. 3, we generalize the PGSOS format to two-sorted signatures in order to syn-
tactically denote states and distributions. By doing so, operations can be parameter-
ized on distributions, and moreover, we can neatly express open terms in the rules of
the PTSS. While the syntax somehow resembles the alternating model of probabilis-
tic processes, we continue the research line of [9,17,12] and let PTSS have models in
Segala’s probabilistic automata. We show that strong bisimulation equivalence [16]
and convex bisimulation equivalence (also called probabilistic bisimulation) [21] are
congruences for any operation whose semantics is defined in PGSOS format.

2. In Sec. 4, we provide an algorithm that takes a PGSOS system, and produces an equa-
tional theory that is sound and ground-complete for strong bisimulation equivalence.
We show ground-completeness for semantically well-founded PGSOS systems, and
we indicate how this result can be extended to arbitrary PGSOS. We show how our
algorithm easily extends to derive a sound and ground-complete equational theories
for convex bisimulation equivalence.

3. As a by-product we needed to define a two-sorted calculus for finite probabilistic
processes equipped with two sound and ground-complete equational theories, one
for each bisimulation equivalence. This calculus is adapted from [5]. (See Sec. 2.)

4. In Sec. 5, we provide an equational theory for the basic calculus that captures exactly
the notion of (strong) bisimilarity metric [10]. The equational theory is sound in
the sense that, whenever the equality between the distance of two processes and the
distance of two other processes (or a particular value) can be calculated with the
calculus, it can also be calculated semantically in the probabilistic transition system.
We show that it is also ground-complete (i.e. the inverse implication holds for closed
terms).

5. Also in Sec. 5, we modify the previous algorithm to derive a sound and ground-
complete equational theory for bisimilarity metric from a given PGSOS system.

2 Preliminaries

Let S = {s, d} be a set denoting two sorts. States of the transition system will be of
sort s ∈ S and distributions over states of sort d ∈ S . We let σ range over the sorts
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in S . We write S -sorted families X as pairs (Xs, Xd) with the first element Xs denoting
the member of sort s and the second element Xd denoting the member of sort d. An
S -sorted signature is a structure (F, ar), where (i) F is a set of function names, and
(ii) ar : F → (S ∗×S ) is the arity function. The rank of f ∈ F is the number of arguments
of f , defined by rk( f ) = n if ar( f ) = σ1 . . . σn → σ. (We write “σ1 . . . σn → σ” instead
of “(σ1 . . . σn, σ)”.) Function f is a constant if rk( f ) = 0. To simplify the presentation
we will write an S -sorted signature (F, ar) as a pair of disjoint signatures (Σ, Γ) where
Σ is the set of operations that map to s and Γ is the set of operations that map to d.

Let (V,D) be an infinite set of S -sorted variables where V,D, F are all mutually
disjoint. We use x, y, z (with possible sub- or sup-indexes) to range over V, μ, ν to range
over D and ζ to range over V ∪D. The S -sorted set of Σ-terms over (V,D) ⊆ (V,D),
notation (T (Σ,V), T (Γ,D)), is the smallest set satisfying: (i) V ⊆ T (Σ,V), (ii) D ⊆
T (Γ,D), (iii) f (t1, · · · , trk( f )) ∈ T (Σ,V), if ar( f ) = σ1 . . . σn → σ, σ = s, ti ∈ T (Σ,V)
whenever σi = s, and ti ∈ T (Γ,D) whenever σi = d, and (iv) f (t1, · · · , trk( f )) ∈
T (Γ,D), if instead σ = d. (T (Σ,V), T (Γ,D)) is the set of all open terms and is de-
noted by (T(Σ),T(Γ)). (T (Σ, ∅), T (Γ, ∅)) is the set of all closed terms and is denoted by
(T (Σ), T (Γ)). Var(t) ⊆ (V,D) denotes the S -sorted set of variables in term t. We let ξ
range over terms of both sorts T (Σ) ∪ T (Γ).

Let Δ(T (Σ)) denote the set of all (discrete) probability distributions on T (Σ). We
let π range over Δ(T (Σ)) and ψ range over Δ(T (Σ)) ∪ T (Γ). For each t ∈ T (Σ), let δt

denote the Dirac distribution, i.e., δt(t) = 1 and δt(t′) = 0 if t and t′ are not syntactically
equal. For X ⊆ T (Σ) we define π(X) =

∑
t∈X π(t). The convex combination

∑
i∈I piπi of

a family {πi}i∈I of probability distributions with pi ∈ (0, 1] and
∑

i∈I pi = 1 is defined by
(
∑

i∈I piπi)(t) =
∑

i∈I(piπi(t)).
We fix the signature to describe probability distributions of finite support by ΓΔ =

(FΔ, arΔ) with FΔ = {δ,⊕p | p ∈ Q∩ (0, 1)}, and arΔ(δ) = s → d and arΔ(⊕p) = dd → d.
Given an arbitrary S -sorted signature with Σs = (Fs, ars), the operations that map to sort
s and all function symbols in Fs and FΔ are disjoint. We define the probabilistic lifting of
Σs as an S -sorted signature (Σ, Γ) with Σ = Σs and Γ = (Fd, ard) extending ΓΔ such that
for each f ∈ Fs there is a new distinct function symbol f ∈ Fd with ar( f ) = d...d → d
and rk( f ) = rk( f ). (Operators in boldface are probabilistically lifted.)

The algebra associated with a probabilistically lifted signature (Σ, Γ) is defined as
follows. For sort s, it is the freely generated algebra T (Σ). For sort d, it is defined
by the carrier Δ(T (Σ)) and the following interpretation: �δ(t)� = δt for t ∈ T (Σ),
�θ1 ⊕p θ2� = p�θ1�+(1−p)�θ2� for θ1, θ2 ∈ T (Γ), � f (θ1, . . . , θrk( f ))�( f (ξ1, . . . , ξrk( f ))) =∏
σi=s�θi�(ξi) if for all σ j = d, θ j and ξ j are syntactically equal, and, in any other case,
� f (θ1, . . . , θrk( f ))�(t) = 0.

A substitution is an S -indexed family of maps (ρs, ρd) : (V,D) → (T(Σ),T(Γ)). A
substitution is closed if it maps each variable to a closed term. A substitution extends to
a mapping from terms to terms as usual.

3 Probabilistic Transition System Specifications

Probabilistic transition systems (PTSs) generalize labelled transition systems by allow-
ing for probabilistic choices in the transitions. We consider non-deterministic PTSs
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(Segala-type systems) [21] with countable state spaces. A probabilistic labeled transi-
tion system (PTS) is a triple (T (Σ), A,−→), where Σ is a signature specifying only func-
tions with target sort s, A is a countable set of actions, and −→ ⊆ T (Σ) × A × Δ(T (Σ))

is a transition relation. We write t
a−→ π for (t, a, π) ∈ −→. Satisfaction is defined by

−→ |= t
a−→ π if t

a−→ π ∈ −→, and −→ |= t
a−→� if t

a−→ π � −→ for all π ∈ Δ(T (Σ)).
We specify PTSs by means of transition system specifications [20,7,14]. We gener-

alize the probabilistic GSOS format of [6] with operators of sort s with arguments of
either sort s or d. From now on, (Σ, Γ) denotes a probabilistically lifted signature.

Definition 1 (PGSOS-rule). A PGSOS-rule has the form:

{xi

ai,m−−−→ μi,m | i ∈ I,m ∈ Mi} {xi

bi,n−−−→� | i ∈ I, n ∈ Ni}
f (ζ1, . . . , ζrk( f ))

a−→ θ
with f ∈ F a function symbol, I,Mi,Ni are finite index sets, ai,m, bi,n, a ∈ A are actions,
xi ∈ V, ζi ∈ V∪D, μi,m ∈ D are variables, θ ∈ T(Γ) a distribution term, and satisfying
the following constraints:
1. all μi,m and ζ j, for i ∈ I,m ∈ Mi and j ∈ {1, . . . , rk( f )}, are pairwise different;
2. {xi | i ∈ I} ⊆ {ζ1, . . . , ζrk( f )};
3. Var(θ) ⊆ {μi,m | i ∈ I,m ∈ Mi} ∪ {ζ1, . . . , ζrk( f )}.

A probabilistic transition system specification in PGSOS format (PTSS) is a struc-
ture P = (Σ, A,R) where Σ is a probabilistically lifted signature, A is a finite set of
labels and R is a finite set of PGSOS rules. For any rule r ∈ R, literals above the line
are called premises, notation prem(r); the literal below the line is called conclusion,

notation conc(r). Given a positive literal t
a−→ θ and a closed substitution ρ, �t

a−→ θ�ρ
denotes the transition ρ(t)

a−→ �ρ(θ)�. For negative literals, �t
a−→� �ρ denotes ρ(t)

a−→� . A

supported model of P is a PTS (T (Σ), A,−→) satisfying that t
a−→ π ∈ −→ iff there is a rule

r ∈ R with a substitution ρ such that all premises of r hold, i.e. −→ |= �prem(r)�ρ, and the

conclusion instantiates to t
a−→ π, i.e. �conc(r)�ρ = t

a−→ π. Each PTSS has a supported
model which is, moreover, unique.

A set X ⊆ T (Σ) is closed with respect to a binary relation R ⊆ T (Σ) × T (Σ) if
R(X) ⊆ X where R(X) = {t′ ∈ T (Σ) | ∃t ∈ X . t R t′}. A relation R ⊆ T (Σ) × T (Σ) on
terms of sort s lifts to a relation R ⊆ Δ(T (Σ)) × Δ(T (Σ)) on distributions over terms of
sort s by πR π′ iff π(X) = π′(X) for all X ⊆ T (Σ) that are closed with respect to R.

Definition 2 ([16]). Let (T (Σ), A,−→) be a PTS. A symmetric relation R ⊆ T (Σ) × T (Σ)
is a strong bisimulation if whenever t R t′ and t

a−→ π, there exists a transition t′
a−→ π′

such that πR π′. Strong bisimilarity∼ is defined as the union of all strong bisimulations.

The convex closure cl(D) of a set of distributions D ⊆ Δ(T (Σ)) is the least subset
of Δ(T (Σ)) which contains D and is closed under convex combination. A combined
transition t

a−→c π is given whenever π ∈ cl({π′ | t
a−→ π′}).

Definition 3 ([21]). Let (T (Σ), A,−→) be a PTS. A symmetric relation R ⊆ T (Σ)×T (Σ) is

a convex bisimulation if whenever t R t′ and t
a−→ π, there exists a combined transition
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t′
a−→c π

′ such that πR π′. Convex bisimilarity ∼c is defined as the union of all convex
bisimulations.

A crucial property of process description languages to ensure compositional mod-
eling is the compatibility of process operators with the chosen behavioral relation. In
algebraic terms the compatibility of an equivalence R with an operator f is expressed by
the congruence property which is defined as f (ξ1, . . . , ξrk( f )) R f (ξ′1, . . . , ξ

′
rk( f )) when-

ever ξi R ξ′i with ξi, ξ′i ∈ T (Σ) if σi = s and ξi R ξ′i with ξi, ξ′i ∈ T (Γ) if σi = d. The
PGSOS rule format ensures that both strong and convex bisimilarity are congruences.

Theorem 1. Let P = (Σ, A,R) be a PTSS in PGSOS format. Then, both strong and
convex bisimilarity are congruences for all operators defined by P.

4 Axiomatization of Bisimulation Equivalences

The technique to derive an axiomatization for PGSOS operators follows the same strat-
egy as in [1]. It starts with a given axiomatization of a basic calculus which is a proba-
bilistic extension of CCS similar to the one studied in [5]. Then, according to the rules,
axioms are provided for any other operator so that these operators can be eliminated,
in the sense that every closed term can be equated to another closed term in the basic
calculus. To introduce these new axioms, operators are split in three classes: distinc-
tive, smooth, and non-smooth. Distinctive operators are well-behaved operators that
distribute with summation and the probabilistic operators ⊕p and δ. The defining rules
for distinctive operators can be directly mapped into axioms. Smooth operators are a
generalization of distinctive operators in the sense that the set of rules defining the se-
mantics of a smooth operator can be split in disjoint sets, each one of them satisfying
the conditions of distinctive operators. Thus a smooth operator can be represented as
a non-deterministic sum of distinctive operators. For each non-smooth operator, a new
smooth operator is introduced that, when properly instantiated, shows the same behav-
ior as the original non-smooth operator. Precisely the equality between these terms is
introduced as a new axiom. This section presents these results and provides an algorithm
that, given a PTSS P in PGSOS format, generates an axiom system for all operators in
P that is sound and ground-complete for strong bisimilarity. We close the section with
an explanation on how the technique extends to convex bisimilarity.

Axiomatizing Finite Probabilistic Trees. Let ΣCCS be the signature of the (recursion
free) basic probabilistic CCS defined by constant 0 of sort s, binary operation + with
ar(+) = ss → s and prefix operators a with ar(a) = d → s for all a ∈ A. We write a.θ
for a(θ) with θ ∈ T(Γ). The PTSS PCCS = (ΣCCS, A,R) is given by the following rules R:

a.μ
a−→ μ

x
a−→ μ

x + y
a−→ μ

y
a−→ μ

x + y
a−→ μ

(1)

A closed term t ∈ T (Σ) is in normal form if either t = 0 or t =
∑

i∈I ai.θi with
θi ∈ T (Γ) in normal form. A closed term θ ∈ T (Γ) is in normal form if θ =

⊕
i∈I piδ(ti),

with ti ∈ T (Σ) in normal form and
∑

i∈I pi = 1. Here,
⊕

i∈{1..n} piθi is a shorthand for
θ1 ⊕ p1∑n

j=1 p j

(θ2 ⊕ p2∑n
j=2 p j

(···(θn−1 ⊕ pn−1∑n
j=n−1 p j

θn)···)), and
∑

i∈{1..n} ti is a shorthand for t1+ ···+ tn.



294 P.R. D’Argenio, D. Gebler, and M.D. Lee

Table 1. Axiomatization of strong and convex bisimilarity of CCS

x + y = y + x (N1)

(x + y) + z = x + (y + z) (N2)

x + 0 = x (N3)

x + x = x (N4)

μ ⊕p μ = μ (P1)

μ1 ⊕p μ2 = μ2 ⊕1−p μ1 (P2)

(μ1 ⊕p μ2) + μ3 = (μ1 + μ3) ⊕p (μ2 + μ3) (NP1)

μ1 + (μ2 ⊕p μ3) = (μ1 + μ2) ⊕p (μ1 + μ3) (NP2)

δ(x) + δ(y) = δ(x + y) (NP3)

a.μ1 + a.μ2 =a.μ1 + a.μ2 + a.(μ1 ⊕p μ2) (CC)

μ1 ⊕p1 (μ2 ⊕ p2
1−p1
μ3) = (μ1 ⊕ p1

p1+p2
μ2) ⊕p1+p2 μ3 (P3)

Let ECCS be the set of equations of Table 1 without equation CC. The axioms N1–N4
are standard for non-deterministic choice of reactive systems [18]. The axioms P1–
P3 are standard for probabilistic choice [5]. Moreover, axioms NP1–NP3 allow one
to normalize distribution terms in a similar way to the normalization of state terms
by axioms N1–N4. The axiomatization of [5] did not require those axioms because
distribution terms were assumed to be already in normal form.

Equational reasoning over many-sorted algebras [13] requires non-empty carrier sets.
For ECCS and all its following extensions this holds since 0 ∈ T (Σ) and δ(0) ∈ T (Γ). A
set of S -sorted equations E over signature Σ is a sound and ground-complete axiomati-
zation of strong bisimilarity of P if for all t, t′ ∈ T (Σ), E � t = t′ iff t ∼ t′.

In order to show ground-completeness of ECCS we require that the axiomatization
is normalizing for both sort s and d, i.e. that for each closed term ξ ∈ T (Σ) ∪ T (Γ)
there is a closed term ξ′ ∈ T (Σ) ∪ T (Γ) in normal form such that ECCS � ξ = ξ′. The
proof of the next lemma follows as usual by transforming the axiom system into a term
rewriting system, showing that it is strongly normalizing modulo commutativity and
associativity, and that the normal form is indeed of the expected form.

Lemma 1. The axiom system ECCS is normalizing.

The proof of soundness for axioms involving state terms follows standard lines: for
each axiom we find a bisimulation relation that shows its instances are valid with respect
to bisimilarity. For axioms on distribution terms we prove that both sides of the equation
represent exactly the same distribution. Ground-completeness is proven by first reduc-
ing to normal form and then showing that, for two bisimilar state terms in normal form,
the transfer properties induce a proof using the axioms. Similarly, two distribution terms
in normal form that represent the same distribution up to bisimulation, can be reduced
to the same term using the axioms.

Theorem 2. ECCS is sound and ground-complete for strong bisimilarity.

In order to derive axioms for systems with rules including negative premises, fol-
lowing [1], we introduce the family of one-step restriction operators ∂1

H, where H ⊆ A,
ar(∂1

H) = s → s, and whose semantics is given by

x
a−→ μ

∂1
H(x)

a−→ μ
a � H (2)
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Table 2. Axioms for ∂1
H

∂1
H(x + y) = ∂1

H(x) + ∂1
H(y) (H1)

∂1
H(a.μ) = a.μ if a � H (H2)

∂1
H(a.μ) = 0 if a ∈ H (H3)

∂1
H(0) = 0 (H4)

∂1
H(μ1 ⊕p μ2) = ∂1

H(μ1) ⊕p ∂
1
H(μ2) (H5)

∂1
H(δ(x)) = δ(∂1

H(x)) (H6)

∂1
H(t) represents the inability to perform any action a ∈ H in the next step, other-

wise behaving as t. The signature ΣCCS∂ extends ΣCCS with operators ∂1
H . PCCS∂ =

(ΣCCS∂ , A,RCCS∂ ) is the PTSS whose set of rules RCCS∂ extends RCCS with the family
of rules given in (2).

Let ECCS∂ extends ECCS with equations in Table 2. H1–H4 are standard for the one-
step restriction operator [1]. H5 and H6 propagate the one-step restriction operation
to each single term in the support of a distribution. Hence, restriction distributes over
probabilistic choices and Dirac embedding. Soundness of H1–H4 is proven in the same
way as for the non-probabilistic case [1]. Soundness of H5 and H6 is proven by show-
ing that both sides of each axiom represent exactly the same distribution. ∂1

H can be
eliminated in the sense that for each closed term ξ ∈ T (ΣCCS∂ ) ∪ T (ΓCCS∂ ) there is a
closed term ξ′ ∈ T (ΣCCS) ∪ T (ΓCCS) such that ECCS∂ � ξ = ξ′. This can be proven by
induction on the height of a term. (Notice that, when read from left to right, axioms
H1, H5, and H6 “push” operator ∂1

H inside the term, while axioms H2–H4, remove it.)
Using elimination and Thm. 2, ground-completeness follow immediately.

Theorem 3. ECCS∂ is sound and ground-complete for strong bisimilarity.

Probabilistically Lifted Operators. The semantics of all probabilistically lifted op-
erators is defined following the same scheme. Thus, the axioms for these operators are
defined similarly regardless of whether the original operator is distinctive, smooth or
non-smooth. There are actually two types of axioms that explain how a lifted operation
interacts with the probabilistic operations ⊕p and δ.

Definition 4. Let f be an operator with arity ar( f ) = σ1 . . . σrk( f ) → s. We associate
with f the axiom system E f consisting of the following equations:

1. Probabilistic distributivity laws: For each position i of f , such that σi = s, and for
each p ∈ Q ∩ (0, 1) we have the equations

f (μ1, .., μ
′
i ⊕p μ

′′
i , .., μrk( f )) = f (μ1, .., μ

′
i , .., μrk( f )) ⊕p f (μ1, .., μ

′′
i , .., μrk( f ))

2. Dirac distributivity laws: We have the equation

f (θ1, . . . , θrk( f )) = δ( f (ζ1, . . . , ζrk( f )))

with θi = δ(ζi), ζi ∈ V if σi = s and θi = ζi, ζi ∈ D if σi = d.

The soundness of these laws follows immediately from the semantics of ⊕p, δ and
the lifted operator, and using rational arithmetic. (Rational arithmetic be completely
axiomatized for ground terms, which are the only ones we use, see e.g. [8]).
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Smooth and Distinctive Operators. A smooth rule is a rule that, whenever a variable
is tested in a positive literal, then it is the only literal that tests that variable and the
tested variable does not occur in the target of the conclusion. A smooth operator is an
operator defined only by smooth rules. A distinctive operator is a smooth operator in
which the hypotheses of each pair of rules differ in at least one literal.

Definition 5. A PGSOS rule is smooth if it has the form

{xi
ai−−→ μi | i ∈ I} {xj

b j,n−−−→� | j ∈ J, n ∈ Nj}
f (ζ1, . . . , ζrk( f ))

a−→ θ
(3)

where I and J are disjoint sets s.t. I ∪ J = {i ∈ {1, .., rk( f )} | ζi ∈ V}, and xi � Var(θ) if
i ∈ I. An operator f is smooth if all its defining rules are smooth.

A smooth operator f is distinctive if (i) each f -defining rule tests the same set of
arguments I positively, and (ii) for every two different f -defining rules there is some
argument ζi ∈ V tested positively by both rules, but with a different action.

Notice that + is smooth, but it is not distinctive since, e.g., x is tested positively in the
first rule (actually, a set of rules), but not in the second one. Instead, ∂1

H is distinctive.
We introduce a new operator that we will use in our examples. Assume that each

action a may fail with probability pa ∈ [0, 1). In case of failure, the occurrence of a
is ignored and the system remains in the same state, otherwise, it proceeds normally.
The new operator sc(t) is a safe controller that minimizes the probability of failure of
process t. Its semantics is given by the rules

x
a−→ μ {x b−→� | pb < pa, pa � 0}

sc(x)
a−→ δ(x) ⊕pa sc(μ)

, if pa > 0
x

a−→ μ
sc(x)

a−→ sc(μ)
, if pa = 0

sc is a variant of the ACP-style priority operator and it is not smooth since the rule on
the left tests x in the positive literal but also in the negative literal, and, moreover, x
appears in the target of the conclusion.

Let pos(r) = I (resp. neg(r) = J) be those positions which are positively (resp.
negatively) tested by rule r (considering r as in (3)). Let pact(r, i) = {ai | i ∈ I} (resp.
nact(r, i) = {bi,n | n ∈ Ni}) be those actions for which xi is positively (resp. negatively)
tested by rule r. Note that if Ni = ∅ then nact(r, i) = ∅. A position i of operator f is
positive if i ∈ pos(r) for all rules r defining f .

Definition 6. Let f be a distinctive operator with arity ar( f ) = σ1 . . . σrk( f ) → s. Let
ζi ∈ V if σi = s and ζi ∈ D if σi = d for 1 ≤ i ≤ rk( f ). We associate with f the axiom
system E f consisting of the following equations:

1. Non-deterministic distributivity laws: For each positive position i of f , we have

f (ζ1, .., ζ
′
i + ζ

′′
i , .., ζrk( f )) = f (ζ1, .., ζ

′
i , .., ζrk( f )) + f (ζ1, .., ζ

′′
i , .., ζrk( f ))

2. Action laws: For each f -defining rule r (as in (3)), we have the equation

ρ( f (ζ1, . . . , ζrk( f ))) = a.ρ(θ)
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with θ = trgt(r) the target of r and substitution ρ defined by

ρ(ζ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai.μi if ζ = xi with i ∈ pos(r)

∂1
H(xi) if ζ = xi with i ∈ neg(r) and H = nact(r, i) � ∅
ζ otherwise.

3. Inaction laws: We have the equations

ρ( f (ζ1, . . . , ζrk( f ))) = 0

for all sort-respecting substitutions ρ mapping into terms of the form 0, x, a.μ,
b.μ + x, or μ, such that for every f -defining rule r there is some position i with
sort σi = s satisfying one of the following conditions: (i) if i ∈ pos(r), then either
ρ(ζi) = 0 or ρ(ζi) = a.μi with a � pact(r, i), or (ii) if i ∈ neg(r), then ρ(ζi) = b.μi + x
with b ∈ nact(r, i).

The fact that all rules of a distinctive operator f test positively the same positions
guarantees the soundness of the non-deterministic distributivity law. There is one action
law for each rule of f . The action law describes the execution of an action by pushing
the executing action to the “head” of the term. The conditions of its associated rule are
properly encoded in each operand of f . Contrarily to the action law, an inaction law
traverses every f -defining rule ensuring through the operands that at least one of the
conditions of each rule does not hold.

Soundness of the axioms in E f can be proven regardless of the PTSS containing
operator f as long as the set of rules defining the semantics of f is the same for any
PTSS. That is, if f is defined in a PTSS P, E f is sound for any disjoint extension of P.

Definition 7. Let P = (Σ, A,R) and P′ = (Σ′, A,R′) be two PTSSs in PGSOS format.
P′ is a disjoint extension of P, notation P′ � P, iff Σ ⊆ Σ′, R ⊆ R′ and R′ introduces no
new rule for any operation in Σ.

Then, we have the following theorem.

Theorem 4. Let P = (Σ, A,R) be a PTSS in PGSOS format, s.t. P � PCCS∂ and Σsd =

Σ − Σ∂CCS is a collection of distinctive operators. Let EP be the axiom system consisting
of ECCS∂ and E f ∪ E f , for each f ∈ Σsd. Then, for every disjoint extension P′ � P in
PGSOS format, the axiom system EP is sound for strong bisimilarity on P′.

Notice that the set of rules R defining a smooth operator f in a PTSS P can always
be partitioned into sets R1, . . . ,Rm, such that f is distinctive when considering only the
rules in Ri. Let fi be fresh operators with arity ar( fi) = ar( f ) and let R′

i be the same set
of rule as Ri only that the operator in the source of each rules is renamed to fi. Consider
the disjoint extension P′ � P with all fresh operators fi and rules in R′

1 ∪ . . . ∪ R′
m

added to the signature and set of rules of P, respectively. Then, it should be clear that
the distinctive law

f (ζ1, . . . , ζrk( f )) = f1(ζ1, . . . , ζrk( f )) + · · · + fm(ζ1, . . . , ζrk( f )) (4)

is sound for bisimilarity. Thus, a smooth operator f is axiomatized by the non-deter-
ministic choice over the distinctive variants of f .
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Table 3. Axiomatization of sc (redundant laws, such as sc(0, a.μ) = 0, are omitted)

sc(x1 + x2, y) = sc(x1, y) + sc(x2, y)

sc(a.μ, ∂1
H(x)) = a.(δ(∂1

H(x)) ⊕pa sc(μ))

if pa > 0, with H = {b | pb < pa}
sc(μ1 ⊕p μ2, ν) = sc(μ1, ν) ⊕p sc(μ2, ν)

sc(μ, ν1 ⊕p ν2) = sc(μ, ν1) ⊕p sc(μ, ν2)

sc(a.μ, y) = a.sc(μ) if pa = 0

sc(0, y) = 0

sc(a.μ, b.ν + y) = 0 if pb < pa

sc(δ(x), δ(y)) = δ(sc(x, y))

Theorem 5. Let P = ((Σ, Γ), A,R) be a PTSS in PGSOS format, s.t. P � PCCS∂ and
f ∈ Σ be a smooth operator. There is a disjoint extension P′ = ((Σ′, Γ′), A,R′) of P with
m distinctive smooth operations f1, . . . , fm such that ar( fi) = ar( f ) for 1 ≤ i ≤ m and
(4) is sound for strong bisimulation in any disjoint extension of P′.

Non-smooth Operators. An operator that is not smooth has a rule in which a variable
that is tested in a positive literal either is tested in a second literal or it appears in the
target of a conclusion. In this case we proceed by constructing a smooth version of the
operator with one argument for each kind of use of the variable that breaks smoothness
(actually, one argument for each positive test plus an additional one if the variable is
tested negatively or it appears on the target of the conclusion of a rule). Thus, for the
unary operator sc, we introduce a binary operator sc, the first argument related to the
positive literal and the other related to the negative test and the occurrence in the target
of the rule. So sc is defined by the rules

x
a−→ μ {y b−→� | pb < pa}

sc(x, y)
a−→ δ(y) ⊕pa sc(μ)

, if pa > 0
x

a−→ μ
sc(x, y)

a−→ sc(μ)
, if pa = 0

It should be clear that sc(x) = sc(x, x). Moreover, notice that sc is smooth. (In fact, it
is also distinctive.) The premise on the second rule could have alternatively tested on y
rather than x, in which case, sc would have also been smooth but not distinctive.

In general, given a non-smooth operator f , we define a new smooth operator f ′ by
extending its arity as explained above, and proceeding as following: for each rule r of
f we introduce a new rule r′ for f ′ such that, if we intend to equate f (�ζ) = f ′(�ζ′), and
f (�ς) and f ′(�ς′) are the sources of r and r′, respectively, r[�ζ/�ς] and r′[�ζ′/�ς′] have to be
identical with the exception of their sources. (Here, [�ζ/�ς] denotes the usual substitution
of variables.) Notice that this results in a one to one correspondence between the rules
of f and those of f ′. Then, we have the following theorem.

Theorem 6. Let P be a PTSS in PGSOS format, s.t. P � PCCS∂ . Let f ∈ ΣP be a non-
smooth operator. Then there is a disjoint extension P′ � P with a smooth operator f ′
s.t. the equation f (ζ1, . . . , ζrk( f )) = f ′(ζ′1, . . . , ζ

′
rk( f ′)), where ζi, 1 ≤ i ≤ rk( f ) are all

different variables and {ζ′1, . . . , ζ′rk( f ′)} ⊆ {ζ1, . . . , ζrk( f )}, is sound for strong bisimulation
in every disjoint extension of P′.

As an example, we complete the axiomatization of sc with the axioms for sc which
can be derived using Definitions 4 and 5. They are given in Table 3.

As a result of the previous theorems, we obtain the algorithm of Fig. 1 that, given a
PTSS Pi in PGSOS format, generates an equational theory Eo that captures the behavior
of all operations in Pi and is sound for strong bisimilarity.
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Input: a PTSS Pi in PGSOS format
Output: a PTSS Po in PGSOS format, with Po � Pi, and an equational theory Eo that is sound

for strong bisimilarity in all disjoint extensions of Po.
1. If necessary, complete Pi so that it disjointly extends CCS∂.
2. For each non-smooth operator of Pi, extend the system with a smooth version according to

Thm. 6 and add all the corresponding equations to CCS∂.
3. For each smooth non-distinctive operator f � ΣCCS∂ in the resulting PTSS, apply the con-

struction of Thm. 5 and extend the PTSS with the distinctive operators f1, . . . , fm and the
respective rules. Add also the resulting instances of axiom (4).

4. Add all equations associated to the distinctive operators in the resulting system (but not in
ΣCCS∂ ) according to Def. 6.

5. Finally, for every operator not in ΣCCS∂ add the equation for their respective lifted version
according to Def. 4.

Fig. 1. Algorithm to generate an axiomatization for Pi

The fact that the set of rules of Pi (and hence also Po) is finite guarantees that the
equational theory Eo is head-normalizing for all operations of Po, that is, every closed
term of Po can be proven equal to a term of the form 0,

∑
i∈I ai.θi or

⊕
j∈J p jδ(t j), with

θi ∈ T (ΓPo ) and t j ∈ T (ΣPo ), within the equational theory Eo. The construction of head-
normal forms is the key towards proving ground-completeness. In fact, notice that if
the semantics of a term t ∈ T (ΣPo ) is a finite tree, then all operators can be eliminated
in Eo (i.e., there is a term t′ ∈ T (ΣCCS), s.t., Eo � t = t′). However this is not the case
in general. Consider the constant operator nwf whose semantics is defined by the rule

nwf
a−→ δ(nwf)⊕ 1

2
δ(0). Using the action law, axiom nwf = a.(δ(nwf)⊕ 1

2
δ(0)) is derived,

in which the elimination process will never terminate.
In order to guarantee ground-completeness, we adapt the notion of semantic well-

foundedness of [1] to our setting. A term t ∈ T (ΣP) is semantically well founded in P
if there is no infinite sequence t0 a0 θ0 t1 a1 θ1. . . of terms ti ∈ T (ΣP) and θi ∈ T (ΓP)

and actions ai ∈ A, such that ti
ai−−→ θi is derivable in P and �θi�(ti+1) > 0, for all

i ≥ 0. P is semantically well founded if all its terms are. Now, if Po is semantically well
founded (which is the case if Pi is semantically well-founded and Pi � PCCS), Eo has
an elimination theorem. As a consequence, we have the following theorem.

Theorem 7. Let Pi be the input and Po and Eo be the outputs of the algorithm in Fig. 1.
If Pi is semantically well-founded with Pi � PCCS, then the equational theory Eo is
ground-complete for strong bisimulation in Po.

Ground completeness can be extended to semantically non well-founded PTSS in
PGSOS format by also using the approximation induction principle (AIP) [4]. We omit
the details here. The proof follows closely the lines of [1].

Axiomatization of Convex Bisimulation. Equation CC of Table 1 was introduced
in [5] which proved it sound for convex bisimilarity. The equational theory resulting
from extending ECCS with CC is ground-complete for CCS modulo convex bisimilarity.
The proof of this result proceeds very much like the one in [5].
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Since all the axioms generated by the algorithm in Fig. 1 are sound for strong bisim-
ilarity, they are also sound for convex bisimilarity. Since they also provide elimination
for semantically well founded terms, we have the following result:

Theorem 8. Let Pi be a semantically well-founded PTSS in PGSOS format with Pi �
PCCS. Let the PTSS Po and the equational theory Eo be the outputs of the algorithm in
Fig. 1. Then, (i) Eo ∪ {CC} is sound for convex bisimulation in any disjoint extension of
Po, and (ii) it is ground-complete in Po.

5 Axiomatization of Bisimilarity Metric

In the previous section we developed an equational theory for bisimulation equivalence.
Now we shift our focus to bisimilarity pseudometrics and develop an equational theory
that characterizes the bisimulation distance.

Axiomatization of Finite Probabilistic Trees. A 1-bounded pseudometric on T (Σ)
is a function d : T (Σ) × T (Σ) → [0, 1] such that (i) d(t, t) = 0; (ii) d(t, t′) = d(t′, t);
and (iii) d(t, t′′) ≤ d(t, t′) + d(t′, t′′) for all t, t′, t′′ ∈ T (Σ). Pseudometrics are used to
formalize the notion of behavioral distance between terms.

A matching ω ∈ Δ(T (Σ) × T (Σ)) for (π, π′) ∈ Δ(T (Σ)) × Δ(T (Σ)) is a distribution
satisfying

∑
t′∈T (Σ) ω(t, t′) = π(t) and

∑
t∈T (Σ) ω(t, t′) = π′(t′) for all t, t′ ∈ T (Σ). We

denote by Ω(π, π′) the set of all matchings for (π, π′). The Kantorovich pseudometric
K(d) : Δ(T (Σ)) × Δ(T (Σ)) → [0, 1] lifts a pseudometric d : T (Σ) × T (Σ) → [0, 1] on
state terms to distributions:

K(d)(π, π′) = minω∈Ω(π,π′)
∑

t,t′∈T (Σ) d(t, t′) · ω(t, t′) (5)

for π, π′ ∈ Δ(T (Σ)). Note that K(d)(δt, δt′) = d(t, t′) for all t, t′ ∈ T (Σ). The Hausdorff
pseudometric H(d̂) : P(Δ(T (Σ)))×P(Δ(T (Σ))) → [0, 1] lifts a pseudometric d̂ : Δ(T (Σ))×
Δ(T (Σ)) → [0, 1] on distributions to sets of distributions:

H(d̂)(Π1, Π2) = max
{
supπ1∈Π1

infπ2∈Π2 d̂(π1, π2), supπ2∈Π2
infπ1∈Π1 d̂(π2, π1)

}
(6)

for Π1, Π2 ⊆ Δ(T (Σ)) whereby inf ∅ = 1 and sup ∅ = 0.

Definition 8 ([10]). Let (T (Σ), A,−→) be a PTS. A 1-bounded pseudometric d on T (Σ)
is a bisimulation metric if for all t, t′ ∈ T (Σ) with d(t, t′) < 1, whenever there is a

transition t
a−→ π then there exists a transition t′

a−→ π′ such that K(d)(π, π′) ≤ d(t, t′)

We order bisimulation metrics d1 � d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T (Σ). The
smallest bisimulation metric, notation d, is called bisimilarity metric and assigns to
each pair of processes their least possible distance. Strong bisimilarity is the kernel of
the bisimilarity metric [10], i.e. d(t, t′) = 0 iff t ∼ t′.

Let Em
CCS be the system of equations in Table 4. The equations consider two kind

of symbols for metrics: one on state terms (d) and the other on distribution terms (d).
Axioms D1–D4 correspond to conditions (i) and (ii) of the definition of a pseudometric.
Axioms MN and MP lift the axioms for bisimulation to metrics. In a way, they state that
two bisimilar terms should have the same distance to a third term. From Def. 8, it can be
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Table 4. Axiomatization of bisimilarity metric of CCS. (We assume min∅ = 1.)

d(x, x) = 0 (D1)

d(x, y) = d(y, x) (D2)

d(μ, μ) = 0 (D3)

d(μ, ν) = d(ν, μ) (D4)

d(t, x) = d(t′, x) where t = t′ is one of axioms N1–N4 (MN)

d(θ, μ) = d(θ′, μ) where θ = θ′ is one of axioms NP1–NP3 or P1–P3 (MP)

d(0, a.μ + x) = 1 (H1)

d
(∑

i∈I ai.μi,
∑

j∈J b j.ν j

)
= max

{
max

i∈I
min

j∈J,ai=b j
d(μi, ν j), max

j∈J
min

i∈I,ai=b j
d(μi, ν j)

}
(H2)

d
(⊕

i∈I piδ(xi),
⊕

j∈J q jδ(yj)
)
= min
ω∈Ω(I,J)

∑
i∈I, j∈J d(xi, yj) · ω(i, j) (K)

where Ω(I, J) = {ω : I × J → [0, 1] | ∀i ∈ I : ω(i, J) = pi,∀ j ∈ J : ω(I, j) = qj}

easily seen that d is a bisimulation metric whenever maxa∈A H(K(d))({π | t
a−→ π}, {π′ |

t′
a−→ π′}) ≤ d(t, t′). This is captured by H1 and H2. The equality in the axioms is due

to the fact that we aim to characterize only the bisimilarity metric d. Finally, axiom
K corresponds to the definition of the Kantorovich pseudometric. We also need the
following general rules that should be considered together with the usual inference rules
of equational logic. For all f : σ1 . . . σrk( f ) → s and g : σ1 . . . σrk(g) → d, we have

{d(ζi, ζ
′
i ) = 0, d(ζ j, ζ

′
j) = 0 | 1 ≤ i, j ≤ rk( f ), σi = s, σ j = d}

d( f (ζ1, .., ζrk( f )), z) = d( f (ζ′1, .., ζ
′
rk( f )), z)

(S1)

{d(ζi, ζ
′
i ) = 0, d(ζ j, ζ

′
j) = 0 | 1 ≤ i, j ≤ rk( f ), σi = s, σ j = d}

d(g(ζ1, .., ζrk(g)), z) = d(g(ζ′1, .., ζ
′
rk(g)), z)

(S2)

These rules ensure that Em
CCS � d(t, t′′) = d(t′, t′′) whenever ECCS � t = t′ and similarly

for distribution terms.
Let d be the bisimilarity metric and K(d) its Kantorovich lifting. Let ρ be a closed

substitution. We define �d(t, t′)�ρ = d(ρ(t), ρ(t′)) and �d(θ, θ′)�ρ = K(d)(�ρ(θ)�, �ρ(θ′)�)
for t, t′ ∈ T(ΣCCS) and θ, θ′ ∈ T(ΓCCS). We lift � �ρ to arithmetic terms containing
expressions of the form d(t, t′) or d(θ, θ′) in the obvious way (e.g. �mini∈I expri�ρ =
mini∈I�expri�ρ). Em

CCS is sound for d in the sense that, whenever Em
CCS � expr = expr′

(meaning that expr = expr′ can be proved using axioms in Em
CCS and arithmetic ), then

�expr�ρ = �expr′�ρ for every closed substitution ρ. Soundness should be clear for all the
axioms except maybe for H2. By definition of bisimulation metric, the right-hand side is
smaller than or equal to the left-hand side interpreting them on any closed substitution.
Equality follows from the fact that d is the smallest bisimulation metric.

Besides, Em
CCS is also ground-complete for d, in the sense that, for any (closed)

arithmetic expressions expr and expr′ possibly containing closed terms of the form
d(t, t′) or d(θ, θ′) with t, t′ ∈ T (ΣCCS) and θ, θ′ ∈ T (ΓCCS), �expr� = �expr′� implies
Em

CCS � expr = expr′. Notice that by arithmetic, this is a direct consequence of the fol-
lowing claims: (i) for all closed state terms t, t′ ∈ T (ΣCCS) and p ∈ [0, 1], if d(t, t′) = p
then Em

CCS � d(t, t′) = p, and (ii) for all closed distribution terms θ, θ′ ∈ T (ΓCCS),
if K(d)(�θ�, �θ′�) = p, Em

CCS � d(θ, θ′) = p. The proof of these claims follows by
reducing closed terms involved in d(t, t′) and d(θ, θ′) to normal form using
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axioms D1–D4, MN, and MP (and rules S1 and S2), and then inductively applying
H1, H2, K and arithmetic calculations to reach the expected value.

Theorem 9. Em
CCS is sound and ground-complete for the bisimilarity metric d.

Axiomatization of Bisimilarity Metric of PGSOS. The algorithm of Fig. 1 can be
modified to provide axioms for bisimilarity metric to any operator defined in PGSOS
as follows. Instead of adding the axioms in ECCS, add the axioms in Em

CCS, and for
each equation t1 = t2 (resp. θ = θ′) added by the algorithm in Fig. 1, add instead
d(t1, x) = d(t2, x) (resp. d(θ, μ) = d(θ′, μ)).

Soundness of the axioms introduced by the algorithm is straightforward: we know
that t1 ∼ t2 implies d(t1, t2) = 0 and hence d(t1, t) = d(t2, t) can be calculated from prop-
erties (ii) and (iii) in the definition of pseudometric (similarly for distribution terms).

We already observed that Em
CCS is normalizing. Besides, it can be shown that the

axiom system generated by the new algorithm is head-normalizing. Then, for every
semantically well founded closed term t there is a t′ in normal form such that d(t, t′′) =
d(t′, t′′) for every t′′. Using this elimination result ground-completeness follows.

Theorem 10. Let Pi be a PTSS in PGSOS format and let the PTSS Po and the equa-
tional theory Eo be the outputs of the algorithm in Fig. 1 modified as before. Then,
(i) Eo is sound for the bisimilarity metric d in any disjoint extension of Po, and (ii) it is
ground-complete in Po, provided Po is semantically well founded.

6 Concluding Remarks

As we pointed out in [9], the use of literals as a triple t
a−→ θ in PTSS rules (rather than

the old fashion quadruple t
a,p−−−→ t′ that partially specifies a probabilistic jump) paves

the way for generalizing the theory transition system specification to the probabilistic
setting. We went further in this paper and defined a two-sorted signature that leads to
a rigorous and clear definition of the distribution term in the target of positive literals.
Moreover, this also fits nicely with the introduction of the equational theory.

This setting allows us to borrow the strategies of [1] to obtain the algorithm of Fig. 1
and prove its correctness (Thm. 7). This is particularly facilitated by the introduction of
the operators mapping into sort d, and particularly by the fact that all probabilistically
lifted operators distribute with respect to ⊕p and δ. The generalization of the algorithm
to behavioral equivalences weaker than strong bisimilarity and whose equational theo-
ries contain ECCS, is simple as demonstrated with convex bisimilarity (Thm. 8).

The result that convex bisimilarity is a congruence for all operators defined with
PGSOS rules (Thm. 1) is new in this paper and, to our knowledge, it is actually the first
time that a general congruence theorem is proved for convex bisimilarity. Here, we insist
on the advantages of a good definition: this result is a direct consequence of the fact that
strong bisimilarity is a congruence and this is so because the definition of combined
transition can be encoded with a set of PGSOS rules (then a strong bisimulation in the
extended PTSS is also a convex bisimulation).

We remark that the axiomatization Em
CCS of bisimilarity metric is new in this paper.

Axiom scheme H2 can be translated into a set of axioms that only include binary sum
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by introducing an auxiliary operator. However we have been unable so far to find a set
of axioms that only use binary ⊕p operators in order to replace the axiom scheme K.
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Abstract. This paper develops a generalized theory of synchronization
trees. In their original formulation, synchronization trees modeled the
behavior of nondeterministic discrete-time reactive systems and served
as the foundational theory upon which process algebra was based. In this
work, a more general notion of tree is proposed that is intended to sup-
port the modeling of systems with a variety of notions of time, including
continuous and hybrid versions. (Bi)simulation is also studied, and it is
shown that two notions that coincide in the discrete setting yield different
relations in the generalized framework. A CSP-like parallel composition
operator for generalized trees is defined as a means of demonstrating the
support for compositionality the new framework affords.

1 Introduction

Research into process algebra has been highly influential in the mathematical
study of system modeling [4]. Such algebras include a collection of operators
for assembling more complex systems from smaller ones, as well as notions of
behavioral equivalence and refinement for determining when two systems are in-
distinguishable behaviorally and when one system is an elaboration of another.
This principled approach to compositional modeling has inspired the develop-
ment of a wealth of mechanisms for combining systems in practically interesting
yet mathematically well-founded ways for event-driven systems.

Synchronization trees, as proposed originally by Milner [15], played a pivotal
role in the development of process algebra. In any algebraic theory, carrier sets
must be specified; operators in the algebra are then interpreted as constructions
over the elements from these sets. Synchronization trees play this role in tradi-
tional process algebras. Intuitively, a synchronization tree encodes the behavior
of a system: nodes in the tree correspond to states, with edges, which are la-
beled by events, representing execution steps. Composition operators may then
be interpreted as constructions on these trees, with the result of the construction
representing the behavior of the composite system. These constructions in turn
may be specified co-inductively via inference rules [5]. The simplicity and flexibil-
ity of synchronization trees led several researchers to formalize Milner’s original
notion using different mathematical machinery [1,3,17] and indeed helped inspire
seminal work on co-induction in computing [12,18].

Synchronization trees are intended to model discrete systems that evolve by
engaging in atomic events and changing state. For systems with non-discrete
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behavior, a similarly general yet simple model for defining composition has ar-
guably yet to emerge. Some researchers use transition systems to model such be-
havior [6,9], while others adopt category-theoretic [10,11] and trajectory-based
models [14,19]. However, neither case has yielded the rich results for composi-
tion operators that can be found in discrete process algebra. By contrast, others
have recently recognized that generalizing the notion of a tree is a profitable ap-
proach [7,8]. However, in [8], generalized trees appear only as a consequence of
other system models, whereas in [7], the notions of bisimulation and CSP-parallel
composition are not generalized to non-discrete behavior.

The purpose of this paper is to propose a new tree-based model of system
behavior, which we call generalized synchronization trees, that is intended to play
the same role in a generalized-time setting that synchronization trees play for
discrete time. Our goal is to provide the foundation for a general, flexible theory
of composition for systems that include components with a variety of different
notions of time, including continuous, discrete, and their hybrids. Generalized
synchronization trees also represent system behavior and subsume traditional
synchronization trees, but include a flexible mechanism for modeling non-discrete
models of time as well. In this paper, we define these trees and study notions of
equivalence (bisimulation) and refinement (simulation) in a logical (i.e. non-real-
time) setting. Our results show in particular that definitions of these behavioral
relations that coincide in the discrete setting differ in the generalized setting.
We also show how our trees subsume some existing models of hybrid behavior,
and we initiate the study of composition operations in this theory by showing
how CSP parallel composition can be extended to this framework.

The remainder of the paper is structured as follows. The next section presents
mathematical preliminaries, while the section following gives the definition of
generalized synchronization trees and some examples. Section 4 then studies
different notions of bisimulation for this model, and the section after shows how
our trees may be used to model systems in an existing hybrid process algebra.
The next section considers parallel composition in the setting of our new trees,
and the final section concludes with directions for future work.

2 Preliminaries

This section presents basic background on partial and total orders and reviews
a classical definition of tree in this setting.

Definition 1 (Partial Order). Let P be a set, and let 1⊆ P ×P be a binary
relation on P . Then 1 is a partial order on P if the following hold.

1. 1 is reflexive: for all p ∈ P, p 1 p.
2. 1 is anti-symmetric: for all p1, p2 ∈ P , if p1 1 p2 and p2 1 p1 then p1 = p2.
3. 1 is transitive: for all p1, p2, p3 ∈ P , if p1 1 p2 and p2 1 p3 then p1 1 p3.
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We abuse terminology and refer to 〈P,1〉 as a partial order if 1 is a partial order
over set P . We write p1 ≺ p2 if p1 1 p2 and p1 �= p2 and p2 4 p1 if p1 1 p2. We
adapt the usual interval notation for numbers to partial orders as follows.

[p1, p2] � {p ∈ P | p1 1 p 1 p2}
(p1, p2) � {p ∈ P | p1 ≺ p ≺ p2}

Half-open intervals, e.g. [p1, p2) and (p1, p2], have the obvious definitions.

Definition 2 (Upper/Lower Bounds). Fix partial order 〈P,1〉 and P ′ ⊆ P .

1. p ∈ P is an upper (lower) bound of P ′ if for every p′ ∈ P ′, p′ 1 p (p 1 p′).
2. p ∈ P is the least upper (greatest lower) bound of P ′ if p is an upper (lower)

bound of P ′ and for every upper (lower) bound p′ of P ′, p 1 p′ (p′ 1 p).

When set P ′ has a least upper bound (greatest lower bound) we sometimes use
supP ′ (inf P ′) to denote this element.

Definition 3 (Total Order). Let 〈P 1〉 be a partial order. Then 1 is a total
or linear order on P if for every p1, p2 ∈ P , either p1 1 p2 or p2 1 p1.

If 〈P,1〉 is a partial order and P ′ ⊆ P , then we sometimes abuse notation and
write 〈P ′,1〉 for the partial order obtained by restricting 1 to elements in P ′.
We say that P ′ is totally ordered by 1 if 1 is a total order for P ′. We refer to
P ′ as a linear subset of P in this case. Trees may now be defined as follows [13].

Definition 4 (Tree [13]). A tree is partial order 〈P,1〉 such that for each
p ∈ P , the set {p′ ∈ P | p′ � p} is totally ordered by 1. If there is also a p0 ∈ P
such that p0 � p for all p ∈ P , then p0 is called the root of the tree, and 〈P,1, p0〉
is said to be a rooted tree.

In [7], these structures are referred to as prefix orders. The distinguishing feature
of a tree implies that � defines a notion of ancestry. In a rooted tree, the root
is an ancestor of every node, so every node has a unique “path” to the root.
Since the subsequent development is modeled on synchronization trees, we will
consider only rooted trees in the sequel.

We conclude this section by discussing a notion of discreteness for trees.

Definition 5 (Discrete Tree). A tree 〈P,1, p0〉 is discrete if and only if for
every p, the set [p0, p] is finite.

The following alternative characterization of discreteness is sometimes useful.

Proposition 1. A tree 〈P,1, p0〉 is discrete if and only the following all hold.

1. For every p �= p0, sup[p0, p) ∈ [p0, p).
2. For every p ∈ P and p′ 5 p, inf(p, p′] ∈ (p, p′].
3. Every nonempty linear subset P ′ of P has a greatest lower bound.



Generalized Synchronization Trees 307

3 Generalized Synchronization Trees

This section defines, and gives examples of, generalized synchronization trees.

3.1 Traditional Synchronization Trees

Milner introduced the notion of synchronization tree in [15]. The following quotes
the definition given on p. 16 of that reference.

“A Synchronization Tree (ST) of sort L is a rooted, unordered, finitely
branching tree each of whose arcs is labelled by a member of L∪ {τ}.”1

(Milner also indicates that such trees may be of infinite depth. Note that because
of its reference to “arcs”, Milner’s definition implies that synchronization trees
must be discrete in the sense of Definition 5.) Intuitively, the set L of labels
contains externally visible actions that systems may engage in; τ denotes a des-
ignated internal action. A tree then represents the full behavior of a system; the
root represents the start state, while edges represent discrete computation steps
and branching represents nondeterminism. Milner shows how the basic compo-
sition operators, including choice and parallel composition, of his Calculus of
Communicating Systems (CCS) may be interpreted as constructions on these
trees. Throughout his presentation Milner consciously follows a traditionally al-
gebraic approach, making CCS one of the earliest process algebras.

Process algebras are often given a semantics in terms of labeled transition
systems ; a ST may be seen as the “unrolling” of such a system.

Milner also defined a notion of strong equivalence (now called bisimulation
equivalence) on systems in order to equate synchronization trees that, while not
isomorphic, nevertheless represent the same behavior. The definitions below are
adapted from [16]; recall that if R is a binary relation on a set S × T then R−1,
the inverse of R, is binary relation on T×S defined by R−1 � {〈t, s〉 | 〈s, t〉 ∈ R}.

Definition 6 (Simulation and Bisimulation for Synchronization Trees).
Let L be a set of labels, and let STL be the set of STs whose labels come from L.

1. Let T, T ′ ∈ STL and a ∈ L. Then T a−→ T ′ if there is an edge labeled by a
from the root of T to the root of T ′.

2. Relation R ⊆ STL × STL is a simulation if, whenever 〈T1, T2〉 ∈ R and

T1
a−→ T ′

1, then there exists T ′
2 such that T2

a−→ T ′
2 and 〈T ′

1, T
′
2〉 ∈ R.

3. Relation R ⊆ STL×STL is a bisimulation if both R and R−1 are simulations.
4. Let T1, T2 ∈ STL. Then T1 is simulated by T2 (notation T1 0 T2) if there is

a simulation relation R with 〈T1, T2〉 ∈ R.
5. Let T1, T2 ∈ STL. Then T1 and T2 are bisimulation equivalent, or bisimilar

(notation T1 ∼ T2), if there is a bisimulation R with 〈T1, T2〉 ∈ R.
1 Milner also introduces the notion of rigid synchronization tree, which limit edge
labels to the set L. We elide this distinction, as we do not consider τ in this paper.
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The relation 0 is often called the simulation preorder. It can be shown that the
simulation preorder (bisimulation equivalence) itself is a simulation (bisimula-
tion) relation, and indeed is the unique largest such relation.

Milner’s definition of synchronization tree may be seen as semi-formal in that
trees are not formally defined. Other authors [1,3,17,20] subsequently developed
the underlying mathematics fully, and in the process helped justify, as coinduc-
tive constructions, the composition operations given by Milner on infinite trees.

3.2 Generalized Synchronization Trees

The impact of Milner’s work is hard to overstate; process algebra is a major
field of study in computing, and the notions of simulation and bisimulation have
had a substantial influence on other areas such as control-system modeling and
systems biology, where the focus is on continuous, rather than discrete, behav-
ior. However, the rich array of composition operators, and associated elegant
metatheoretical results [2,5] found in traditional process algebra have yet to
emerge in these more general contexts. Our motivation for generalized synchro-
nization trees is to provide a flexible framework analogous to synchronization
trees over which composition operations may be easily defined, and their alge-
braic properties studied, for this more general setting.

Synchronization trees are intended to model discrete systems that evolve via
the execution of atomic actions. This phenomenon is evident in the fact that
trees have edges that are labeled by these actions; each node in a tree is thus at
most finitely many transitions from the root. For systems that have continuous as
well as discrete dynamics, synchronization trees offer a problematic foundation
for system modeling, since the notion of continuous trajectory is missing.

Generalized synchronization trees are intended to provide support for dis-
crete, continuous, and hybrid notions of computation, where nondeterminism
(branching) may also be discrete, continuous, or both.

Definition 7 (Generalized Synchronization Tree). Let L be a set of labels.
Then a generalized synchronization tree (GST) is a tuple 〈P,1, p0,L〉, where:

1. 〈P,1, p0〉 is a tree in the sense of Definition 4; and
2. L ∈ P\{p0} → L is a (possibly partial) labeling function.

A GST differs from a synchronization tree in two respects. On the one hand, the
tree structure is made precise by reference to Definition 4. On the other hand,
labels are attached to (non-root) nodes, rather than edges; indeed, a GST may
not in general have a readily identifiable notion of edge.

In the rest of this section we show how different classes of systems may be
encoded as GSTs. These example contain different mixtures of discrete / con-
tinuous time and discrete / continuous nondeterminism (called “choice”).

Example 1 (Labeled Transition Systems as GSTs). Let T = 〈X,L,→, x0〉 be
a labeled transition system with state set X , label set L, transition relation
→⊆ X × L × X , and initial state x0. Then the behavior of T starting from



Generalized Synchronization Trees 309

x0 may be encoded as a discrete GST. Define an execution e of T to be a
sequence of transitions (formally, an element of→∗) such that if e = 〈x, 	, x′〉 · e′
then x = x0 (i.e. the first transition is always from the start state), and if
e = e1 · 〈x1, 	1, x′1〉 · 〈x2, 	2, x′2〉 · e2 then x′1 = x2 (i.e. the next transition always
starts from the target state of the last transition). Let ET be the set of all
executions of T ; note that ε, the empty sequence of transitions, is in ET , and
that �T , the prefix ordering on →∗, is a partial order on ET such that ε �T e
for all e ∈ ET . Finally, if e = e′ · 〈x, 	, x′〉, define LT (e) to be 	 (i.e. the label of
the last transition in e). It is easy to see that GT = 〈ET ,�T , ε,LT 〉 is a GST,
and that GT is discrete in the sense of Definition 5.

The previous construction is the classical “unrolling” method for generating
trees from LTSs, and is generally associated with discrete-time modeling. Per-
haps surprisingly, however, it is also applicable to formalisms that model con-
tinuous behavior via transition systems. For example, Hybrid Process Algebra
(HyPA) [6] is a compositional algebraic framework for modeling hybrid systems
that permit instantaneous jumps in their continuous model variables; the sig-
nature of HyPA reflects this by including reinitialization operators, flow clauses
and disrupt operators. The behavior of HyPA terms depends on the values of the
continuous model variables; transitions are enabled only for certain valuations
of thse variables, and transitions can also alter the model variables when they
execute. Thus, the operational semantics, which is specified in the traditional
SOS style, defines transitions for HyPA-term / variable-valuation pairs. Two
types of transitions are in fact defined; zero-duration, discrete-action “jumps”,
and finite-duration continuous flows. The results is a labeled transition system
where each state (location) is specified by a HyPA term and a valuation of the
model variables. These labeled transition systems are coined hybrid transition
systems in [6]. As labeled transitions systems, hybrid transition systems can be
represented as GSTs using the construction above; these GSTs are also discrete,
interestingly, even though the phenomena being modeled in HyPA are not.

Difference equations with inputs also represent models that semantically give
rise to transition systems. Such models often arise in the description of control
systems when the quantities of interest – states and inputs, for example – are
sampled in time. Such difference equations typically take the form

xk+1 = f(xk, uk),

where xk represents state at the kth sampling interval, uk represents an input
arriving between time k and k+1, and f is a function computing the new state
based on the existing state and this input. These systems can be represented as
labeled transition systems, with states given by the x and transitions labeled by
u defined by f , so the above construction yields discrete GSTs in this case, too.

Example 2 (Differential Equations with Inputs as GSTs). Continuous-time, con-
tinuous - choice systems have traditionally been the standard problem considered
by control theorists; these systems usually take the form of an ordinary differ-
ential equation (ODE) with inputs. A simple example of this class of systems
is one derived from Newton’s laws of motion. For example, consider an object
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with mass m that is both confined to travel in a straight line and affected by
a time-varying external force u (from a motor, say). If we let x1 represent the
position of the object and we let x2 represent its velocity, then Newton’s laws
can be used to derive the following state equations for the object:[

ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0

1/m

]
u (1)

where all the variables are functions of time and ẋ represents the time-derivative
of x. Recently, Willems et al. [19] have suggested that continuous-time systems
be treated as a collection of time trajectories (or behaviors) instead of a set of
state equations. If we suppose that time starts from 0, then the previous system
is completely described by the set of all pairs of functions

B �
{
〈u, x〉 ∈ (R≥0 →R)× (R≥0 →R2) : u is locally integrable and

∃x0 ∈ R2 s.t. x(t) = exp(At)x0 +

∫ t

0

exp(A(t− τ))Bu(τ)dτ ∀t ≥ 0

}
(2)

where A = [ 0 1
0 0 ], B =

[
0

1/m

]
and the function exp should be interpreted as the

matrix exponential. The function u is assumed to be locally integrable so that
the subsequent integral is well defined for all t.

This behavioral treatment of continuous-time systems facilitates the construc-
tion of GSTs using a generalized notion of “prefix”. To help with this, we define
a notion of truncation for functions defined on R≥0: given a function f ∈ B, we
define f |t to be the restriction of the function f to the set [0, t]. Now we can
define a GST from B as follows.

– Let P = {〈t, f〉 : t ∈ R≥0 and f = x|t for some x ∈ B} ∪ {p0} where p0 is a
distinguished element not in the first set.

– The partial order 1 is defined in the following way: let p0 1 p for all p ∈ P
and for p1 � 〈t1, f1〉, p2 � 〈t2, f2〉 let p1 1 p2 if and only if t1 ≤ t2 and
f1 = f2|t1 .

– The labeling function L : P\{p0} → R is defined so that L(〈t, f〉) = π1f(t).

We close this section by remarking on correctness issues for the translations
just given; in what sense are they “right”? In the absence of notions of equiva-
lence, this question is hard to answer. The next section helps remedy the situ-
ation by defining (bi)simulation for GSTs; this permits us to revisit HyPA, for
example, in Section 5 in order to give a different, more satisfactory translation
of HyPA terms into GSTs.

4 (Bi)Simulations for Generalized Synchronization Trees

Section 2 defined standard notions of equivalence (bisimulation) and refinement
(simulation) on synchronization trees. The goal of this section is to study adap-
tations of these notions for generalized synchronization trees. In the process of
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doing so, we highlight a subtlety that arises because of GSTs’ capability of mod-
eling non-discrete time. As the notions of simulation and bisimulation are closely
linked (see Definition 6), in what follows we focus our attention on simulation.

4.1 Simulations for Generalized Synchronization Trees

Simulation relations in Definition 6 rely on a notion, labeled edges, that syn-
chronization trees possess but GSTs do not. However, an intuition underlying
the simulation relation is that if T1 0 T2, then every “execution step” of T1
can be matched by T2 in such a way that the resulting trees are still related.
This observation provides a starting point for simulations on GSTs; rather than
relying on edges to define computation, use the notion trajectory instead.

Definition 8 (Trajectory). Let 〈P,1, p0,L〉 be a GST, and let p ∈ P . Then
a trajectory from p is a linear subset P ′ ⊆ P such that for all p′ ∈ P ′:

1. p′ 5 p and
2. (p, p′] ⊆ P ′.

A trajectory from a node p in a GST is a path that starts from p, but for technical
reasons, does not include p. A trajectory can be bounded with a maximal element
as in the case of the interval (p, p′], or it can be bounded with a least upper bound
as in the case of (p, p′). It is also possible for a trajectory to be bounded without
a least upper bound or even unbounded.

Trajectories are analogous to computations and thus will form the basis of the
simulation relations given below. In order to determine when two trajectories
“match”, we introduce the concept of order-equivalence.

Definition 9 (Order Equivalence). Let 〈P,1P , p0,LP 〉 and 〈Q,1Q, q0,LQ〉
be GSTs, and Tp, Tq be trajectories from p ∈ P and q ∈ Q respectively. Then Tp
and Tq are order-equivalent if there exists a bijection λ ∈ TP → TQ such that:

1. p1 1P p2 if and only if λ(p1) 1Q λ(p2) for all p1, p2 ∈ TP , and
2. LP (p) = LQ(λ(p)) for all p ∈ TP .

When λ has this property, we say that λ is an order equivalence from TP to TQ.

Two trajectories that are order-equivalent can be seen as possessing the same
“content”, as given by the labeling functions of the trees, in the same “order”.
Note that in general, the bijections used to relate two order-equivalent trajecto-
ries need not be unique, although when the trees in question are discrete, they
must be. The first notion of simulation may now be given as follows.

Definition 10 (Weak Simulation for GSTs). Let G1 = 〈P,1P , p0,LP 〉 and
G2 = 〈Q,1Q, q0,LQ〉 be GSTs. Then R ⊆ P ×Q is a weak simulation from G1

to G2 if, whenever 〈p, q〉 ∈ R and p′ 4 p, then there is a q′ 4 q such that:

1. 〈p′, q′〉 ∈ R, and
2. Trajectories (p, p′] and (q, q′] are order-equivalent.
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G1 0w G2 if there is a weak simulation R from G1 to G2 with 〈p0, q0〉 ∈ R.

Weak bisimulation equivalence can be defined easily. Call a weak simulation R
from G1 to G2 a weak bisimulation if R−1 is a weak simulation from G2 to G1.
Then G1 ∼w G2 iff there is a weak bisimulation R with 〈p0, q0〉 ∈ R.

Weak simulation appears to be the natural extension of simulation to GSTs:
for one node to be simulated by another, each bounded trajectory from the first
node must be appropriately “matched” by an equivalent trajectory from the
second node. However, one may impose a stronger condition on the trajectories
emanating from related nodes, as follows.

Definition 11 (Strong Simulation for GSTs). Let G1 = 〈P,1P , p0,LP 〉
and G2 = 〈Q,1Q, q0,LQ〉 be GSTs. Then R ⊆ P × Q is a strong simulation
from G1 to G2 if, whenever 〈p, q〉 ∈ R and Tp is a trajectory from p, there is a
trajectory Tq from q and bijection λ ∈ Tp → Tq such that:

1. λ is an order equivalence from Tp to Tq, and
2. 〈p′, λ(p′)〉 ∈ R for all p′ ∈ Tp.

G1 0s G2 if there is a strong simulation R from G1 to G2 with 〈p0, q0〉 ∈ R.

Strong simulations strengthen weak ones by requiring that matching trajectories
also pass through nodes that are related by the simulation relation, and by also
considering potentially unbounded trajectories as well as bounded ones.

4.2 Relating Strong and Weak Simulations

This section now considers the relationships between weak and strong simulation.
The first result indicates that the latter is indeed stronger than the former.

Theorem 1. Let G1 and G2 be GSTs with G1 0s G2. Then G1 0w G2.

The proof follows from the fact that every strong simulation is a weak simulation.
The next result, coupled with the previous one, establishes that for discrete

trees, the two simulation orderings in fact coincide.

Theorem 2. Suppose that G1 and G2 are discrete GSTs, and that G1 0w G2.
Then G1 0s G2.

The proof uses induction on transitions to show that any weak simulation is also
strong.

We now show that 0w / 0s coincides with the simulation ordering, 0, given
for synchronization trees (i.e. discrete, finite-branching GSTs) in Definition 6.

The next definition defines a notion of
a−→ for discrete GSTs.

Definition 12 (Transitions for Discrete GSTs). Let G = 〈P,1, p0,L〉 be a
GST, with p, p′ ∈ P .

1. p′ is an immediate successor of p if p′ 5 p and there exists no p′′ ∈ P such
that p′ 5 p′′ 5 p.
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Fig. 1. Visualization of the GSTs used in proof of Theorem 4

2. G6p, the subtree of G rooted at p, is 〈P ′,1′, p,L′〉, where P ′ = {p′ ∈ P |
p 1 p′}, and 1′ / L′ are the restrictions of 1 and L to P ′ / P ′/{p}.

3. Let G′ = 〈P ′,1′, p′0,L′〉 be a GST. Then G
a−→ G′ exactly when p′0 ∈ P , p′0

is an immediate successor of p0, G
′ = G6p′0, and L(p′) = a.

Intuitively, G
a−→ G′ if G′ is an immediate subtree of G′ and the root of G′

labeled by a. Based on this notion, Definition 6 may now be applied to discrete
GSTs. We have the following.

Theorem 3. Let G1, G2 be discrete GSTs. Then the following are equivalent.

1. G1 0 G2.
2. G1 0w G2.
3. G1 0s G2.

One might hope that 0w and 0s would coincide for general GSTs, thereby
obviating the need for two notions. Unfortunately, this is not the case.

Theorem 4. There exist GSTs G1 and G2 such that G1 0w G2 but G1 �0s G2.

Proof. Consider the GSTs depicted in Figure 1. It turns out that the trees G1

and G2 are such that G1 0w G2, but G1 �0s G2.
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Both G1 and G2 use a label set {α, β}, and both are discrete except for their
start states. Each tree is constructed from a basic “time axis” T = {1/n | n ∈
N\{0}} ∪ {0}, with the usual ordering ≤. The start state G1 corresponds to
time 0; each subsequent node is labeled by α if there is an edge to the next time
point, or β if the node is maximal. In traditional synchronization-tree terms,
each (non-start) node has an outgoing labeled α and another labeled β. G2 is
similar to G1 except it contains an infinite number of branches from the start
state, with branch k only enabling β transitions for the last k nodes.

The shading in the diagram illustrates a weak simulation that may be con-
structed and used to show that the start states in G1 and G2 are indeed related
by a weak simulation. Intuitively, every trajectory from the start node of G1

leads to a node from which a finite number of αs are possible, with a β possible
at each step also. This trajectory can be matched by one from the start state of
G2 that leads to a branch from which enough β-less nodes can be bypassed.

On the other hand, no strong simulation can be constructed relating the start
node of G1 with G2. The basic intuition is that any trajectory leadings from the
start node of G1 has βs enabled at every intermediate node, and this behavior
does not exist in any trajectory leading from the start node of G2. ��

The preceding result suggests that simulation is more nuanced for GSTs than
for synchronization trees. One naturally may wonder which of the two notions
proposed in this section is the “right” one. Our perspective is that the strong
notion possesses a sense of invariance that one might expect for simulation; if one
system is simulated by the other then any execution of the former can be “traced”
by the latter following only related states. In this sense, strong simulation may
be seen to have stronger intuitive justifications than the weaker one.

5 Constructing GSTs and Implications for Bisimulation

This section shows how discrete GSTs can be constructed from HyPA terms so
that bisimulation on GSTs (recall that weak and strong bisimulation coincide
for discrete trees) corresponds exactly with a congruence for HyPA terms in [6].

In Example 1, reference was made to the operational semantics of HyPA being
given as a hybrid transition system; the states in the transition were HyPA-term
/ variable-valuation pairs. Bisimulation may be defined as usual for such a transi-
tion system. The authors of [6] then consider different definitions of bisimulation
for terms alone. One obvious candidate defines terms p and q to be bisimilar iff
for all variable valuations ν, 〈p, ν〉 and 〈q, ν〉 are bisimilar as states in the HyPA
hybrid transition system. Unfortunately this relation is not a congruence for
HyPA terms; the problem resides in the fact that parallel processes within terms
can interfere with the variable valuations produced by another parallel process.
To fix this problem, the authors introduce another relation, robust bisimulation,
show it to be a congruence for HyPA, then establish that it is the same as another
relation, stateless bisimulation, given in the same paper.

In the rest of this section we show how to construct GSTs from HyPA terms in
such as way that two HyPA terms are statelessly bisimilar iff the corresponding
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Fig. 2. Constructing GSTs from HyPA Terms

GSTs are bisimilar. We begin by reviewing the definition of stateless bisimula-
tion. T (Vp) is the set of HyPA terms that use only the recursive process variables
Vp, Val is the set of valuations for the (continuous) model variables, the transi-

tion
�→ represents either a discrete action or a continuous flow (depending on 	)

and  is a set of “terminating” states.

Definition 13 (Stateless bisimulation [6]). Given a hybrid transition system
with state space T (Vp) × Val, a stateless bisimulation relation is a binary
relation R ⊆ T (Vp)× T (Vp) such that for all ν, ν′ ∈ Val and pRq,

– 〈p, ν〉 ∈  implies 〈q, ν〉 ∈ ,
– 〈q, ν〉 ∈  implies 〈p, ν〉 ∈ ,

– 〈p, ν〉 �→ 〈p′, ν′〉 implies ∃q′ ∈ T (Vp) such that 〈q, ν〉 �→ 〈q′, ν′〉
∧
p′Rq′ and

– 〈q, ν〉 �→ 〈q′, ν′〉 implies ∃p′ ∈ T (Vp) such that 〈p, ν〉 �→ 〈p′, ν′〉
∧

p′Rq′.

For simplicity we ignore  in what follows. The construction of GST Gp from
HyPA term p is exemplified in Figure 2. First, let the root of the Gp be iden-
tified with p. Then for each valuation ν of the model variables, create one suc-
cessor node of p that is identified with 〈p, ν〉 and label these nodes as ν. Since
each 〈p, ν〉 is a hybrid transition system state, the node has transitions of form

〈p, ν〉 �→ 〈p′, ν′〉 for some 	; for each such 〈p′, ν′〉, make a node for p′ labeled by
	. Now repeat this procedure (coinductively) from p′ to obtain discrete GST Gp.
We now have the following (recall that weak and strong bisimilarity coincide for
discrete GSTs).

Theorem 5. Let p and q be HyPA terms. Then p and q are statelessly bisimilar
iff Gp and Gq are bisimilar.

There are yet other ways to represent HyPA processes as GSTs. For example,
the behavioral systems in Example 2 suggest that if HyPA processes are re-
garded in terms of execution trajectories (i.e. functions of time), yet a different
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GST construction can be obtained. It should be noted that such a construction
necessarily has a great deal more granularity, as the resulting GSTs would be
non-discrete. Consequently, our previous results about strong bisimulation would
likely have significant ramifications for such a GST construction.

6 Composition of GSTs

One of the motivations for this work is to provide a framework for defining
composition operators for systems having discrete / non-discrete behavior. In
this section, we illustrate the potential of GSTs for this purpose by showing how
a version of CSP parallel composition may be defined as a GST construction.

The parallel composition operator we consider is notated |S|, where S is a
set of action labels. Given two (discrete) systems P and Q, P |S|Q interleaves
the executions of P and Q, with the following exception: actions in S must be
performed by both P and Q in order to for P |S|Q to perform them. The precise
semantics of the operator may be given via the following SOS rules.

P
a−→ P ′ a �∈ S

P |S|Q a−→ P ′ |S|Q
Q

a−→ Q′ a �∈ S
P |S|Q a−→ P |S|Q′

P
a−→ P ′ Q

a−→ Q′ a ∈ S
P |S|Q a−→ P ′ |S|Q′

Defining this operator in the GST setting requires first identifying the non-
discrete analog of “interleaved execution.” Recall that for a GST, the analog of
an execution is a (bounded) trajectory (cf. Definition 8). Interleaving two such
trajectories can then be formalized as a linearization of the partial order obtained
by taking the union of the trajectories. To formalize these ideas, first recall that
if two partial orders 〈P,1P 〉 and 1 Q,1Q are disjoint (i.e. P ∩ Q = ∅), then
〈P ∪ Q,1P ∪ 1Q〉 is also a partial order. Interleavings can now be defined as
follows.

Definition 14 (S-synchronized Interleaving). Let G1 = 〈P1,11, p1,L1〉
and G2 = 〈P2,12, p2,L2〉 be GSTs, and WLOG assume that P1 ∩ P2 = ∅.
Also let T1 and T2 be trajectories (cf. Definition 8) from the roots of G1 and
G2, respectively. Also let S ⊆ L. Then total order 〈Q,1Q〉 is an S-synchronized
interleaving of T1 and T2 iff there exists a monotonic bijection λ ∈ {p ∈ T1 |
L1(p) ∈ S} → {p ∈ T2 | L2(p) ∈ S} such that the following hold.

1. L1(p) = L2(λ(p)) for all p ∈ T1 such that L1(p) ∈ S.
2. Q = {p ∈ T1 | L1(p) �∈ S} ∪ {p ∈ T2 | L2(p) �∈ S} ∪ {〈p, λ(p)〉 | L1(p) ∈ S}.
3. Define π1 ∈ Q→ (T1 ∪ T2) by π1(p) = p if p ∈ T1 ∪ T2 and π1(〈p′1, p′2〉) = p′1

otherwise, and similarly for π2. Then, π1(q) 11 π1(q
′) or π2(q) 12 π2(q)

implies q 1Q q′.

We write IS(T1, T2) for the set of S-synchronized interleavings of T1 and T2.

Intuitively, an S-synchronized interleaving of two trajectories from different (dis-
joint) trees is a total ordering on the union of the execution that respects the
individual orderings from each of the trees in isolation while requiring synchro-
nization on events in S. The bijection λ in the definition is used to identify the
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synchronization partners in the trajectories. We may now define the CSP parallel
composition construction on GST as follows.

Definition 15. Let G1 = 〈P1,11, p1,L1〉 and G2 = 〈P2,12, p2,L2〉 be GSTs
with P1 ∩ P2 = ∅. Then the GST G1 |S|G2 = 〈Q,1Q, q0,LQ〉 is given by:

1. Q = {〈p1, p2〉}∪{T | T ∈ IS(T1, T2) for some trajectories T1 = (p1, p
′
1] of G1,

T2 = (p2, p
′
2] of G2}.

2. q 1Q q′ iff q = 〈p1, p2〉, or q = 〈r,1r〉, q′ = 〈r′,1r′〉, and 1r ⊆1r′.
3. q0 = 〈p1, p2〉.
4. Let q ∈ Q and let p′ = sup(q). Then define LQ according to

LQ(q) =

⎧⎪⎨⎪⎩
L1(p

′) if p′ ∈ P1

L2(p
′) if p′ ∈ P2

L2(p
′
1) if p′ = 〈p′1, p′2〉

To justify this construction, the following theorem shows that the definition
coincides with the standard one for discrete systems (i.e. those modeled using
labeled transition systems).

Theorem 6. Let GT be the GST associated with a labeled transition system
(LTS) T as given in Section 3. Then we have the following for LTSs T1 and T2.

G(T1 |S|T2) ∼w GT1 |S|GT2 .

This result establishes that for discrete-time systems, the GST construction coin-
cides with the standard one for labeled transition systems. However, Theorem 6
depends on the prohibition of unbounded trajectories in part 1 of Definition 15.
This suggests that there is a non-trivial interplay between the properties of
the parallel composition operator and the trajectories that are permitted in
Definition 15. We regard this as an interesting direction for future research.

7 Conclusions and Directions for Future Research

This paper has defined Generalized Synchronization Trees, which are intended to
provide a modeling framework for composition operations on systems that may
contain non-discrete time. Like Milner’s synchronization trees, GSTs are also
trees, but are based on earlier, non-inductive definitions of these structures that
permit discrete as well as non-discrete behavior to be modeled uniformly. The
work then considers notions of simulation and bisimulation for GSTs, establish-
ing that definitions that coincide in the purely discrete setting of synchronization
trees nevertheless differ in the generalized setting. It is then shown how a hybrid
process algebra can be captured cleanly in our formalism, and also how a notion
of parallel composition may be interpreted at a construction on GSTs.

There are numerous directions for future work. The framework in this paper
makes no mention of real-time; indeed the definitions of simulation given in this
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paper impose no restrictions on preserving duration information when match-
ing up trajectories. This is by design, as one of the interesting observations to
emerge is that one can have continuous as well as discrete notions of logical time.
Nevertheless, enhancing the framework to accommodate metric notions of time
would permit the embedding of various hybrid and real-time models into trees
and the development of general notions of composition as a result. Describing
other composition operations, and studying their congruence properties vis à
vis (bi)simulation would yield useful insights into the algebra of GSTs. Finally,
developing parsimonious mechanisms à la SOS rules for defining composition
operations coinductively would simplify their definition and open up insights
into the meta-theory of GSTs.
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Bisimulations for Communicating Transactions�

(Extended Abstract)

Vasileios Koutavas, Carlo Spaccasassi��, and Matthew Hennessy

Trinity College Dublin

Abstract. We develop a theory of bisimulations for a simple language
containing communicating transactions, obtained by dropping the isola-
tion requirement of standard transactions. Such constructs have emerged
as a useful programming abstraction for distributed systems.

In systemswith communicating transactions actions are tentative,wait-
ing for certain transactions to commit before they become permanent. Our
theory captures this by making bisimulations history-dependent, in that
actions performed by transactions need to be recorded. The main require-
ment on bisimulations is the systems being compared need to match up
exactly in the permanent actions but only those.

The resulting theory is fully abstract with respect to a natural con-
textual equivalence and, as we show in examples, provides an effec-
tive verification technique for comparing systems with communicating
transactions.

1 Introduction

Communicating transactions, obtained by dropping the isolation requirement
of standard transactions, is a novel and powerful programming construct for
distributed systems. For example, it can be used to simplify the programming of
complex concurrent consensus scenarios, avoiding the use of locks and explicit
error handling [16]. Variants of such constructs have been proposed as extensions
to programming languages [5,7,11,16] and process calculi [2,1,3]. However, before
they can be adopted in mainstream programming, significant research is needed
in efficient implementation strategies [6,11,16], programming paradigms [1,7],
and viable verification techniques [8]. The last concern is the topic of this paper.

Bisimulations [12] provide an elegant and effective proof technique for proving
equivalences between processes in a variety of settings (e.g., [15,14]). They are
essentially defender strategies in a game where a challenger attempts to discover
a difference in the extensional behaviour of two processes, while the defender tries
to refute these attempts [17]. For example, consider the standard CCS processes

P1 = a.(b.0+ c.0) Q1 = a.b.0+ a.c.0 (1)
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which can perform the action a followed by either b or c, with a slight difference in
when this choice is taken. The challenger choosesQ1 to perform the action a, with
residual Q′

1 = b.0 to which the defender must respond with a matching a action
from P1; the only possibility is for P1 to perform a with residual P ′

1 = b.0+ c.0.
But now the challenger chooses P ′

1 to perform the c action, to which the defender
has no response. The defender loses the game. In fact there is no possible winning
strategy for the defender in this game and thus no bisimulation containing the
pair (P1, Q1). Therefore P1 and Q1 are deemed to be behaviourally distinct.

However, the appropriate notion of the bisimulation game for a language
with communicating transactions or similar constructs is a priori unclear. An
objective criterion for a potential bisimulation game is relation with contextual
equivalence. If the existence of a winning defender’s strategy in a game over two
systems implies that the systems are contextually equivalent then this game is
a sound verification technique. If the absence of such a strategy implies that the
two systems are contextually inequivalent then the game is a complete technique.
The main result of this paper is a weak bisimulation theory for a simple language
containing communicating transactions, TCCSm, which provides a sound and
complete proof methodology with respect to a natural contextual equivalence.

TCCSm is obtained from CCS [12] by essentially adding one construct �P �k Q�
for communicating transactions, and a new command co for committing them.
Here k is the name of the transaction, P the body which is expected to be
completed in its entirety or not at all, and Q is the alternative, to be executed
in case the transaction is aborted. However it should be emphasised that if an
abort occurs not only is Q launched but P and all its effects on the environment
are rolled back. For example consider the systems with p fresh from R and S:

P2 = νp. �a.p.co.R �k 0� | �b.p.co.S �l 0� (2)

Q2 = �a.b.co.(R |S) + b.a.co.(R |S) �m 0�
Here P2 consists of two independent transactions which co-operate by synchro-
nising on a private channel p. If after this synchronisation the left-hand trans-
action aborts then the effect of the a action, which is a communication with
the environment, must be rolled back. But the synchronisation on p must also
be undone, and therefore, because of the all-or-nothing nature of transactions,
the effects of the b action in the right-hand transaction will be rolled back. In-
deed in our reduction semantics, given in Sect. 2, this right-hand transaction is
also aborted. Because of the synchronisation on p, the destiny of both transac-
tions is conjoined. For this reason we should be able to demonstrate that P2 is
behaviourally equivalent to the single transaction Q2.

The standard bisimulation game outlined above cannot be easily extended to
TCCSm. Many actions, such as a, b in (2) above, are tentative, in the sense that
their effect can only be considered to be permanent when the transactions k and
l commit, if ever. To underline this consider the processes:

P3 = �a.(b.co+ c.0) �k 0� Q3 = �a.b.co �l 0� (3)

Here P3 commits only after performing the a, b. It would be unreasonable for the
challenger, after the a action, to demand a response to c. Not only is this action
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tentative on the completion of transaction k but also if c is performed then k
will never commit; so the defender should be able to ignore this challenge.

Our approach is to play the bisimulation game on configurations, of the form
C = (H � P ) where P is a system and H a history of all the tentative ac-
tions taken so far in the game by P . These are of the form k(a), where k is
the name of a transaction which needs to commit before the action becomes a
permanent a. When playing bisimulation moves, the histories of both systems
being scrutinised must remain consistent, in that permanent actions in the re-
spective histories must match exactly (for simplicity old permanent actions are
not garbage collected). The crucial aspect of this new game is that when a sys-
tem commits a transaction k, and only then, all tentative actions in its history
dependent on k are made permanent. This consistency requirement then forces
a response in which the corresponding actions match exactly.

For example consider the following variation on (1), using transactions:

P4 = �a.(b.co + c.co) �l 0� Q4 = �a.b.co + a.c.co �k 0� (4)

Replaying the game from (1), where the challenger first chooses a from Q4 and
then c from P4 with the same responses, we reach the configurations

C4 = (k(a), k(c) � �co �k 0�) D4 = (l(a), l(b) � �co �l 0�)
At this stage the two histories are still consistent as they contain no permanent
actions. However, now there is no possible response when the challenger chooses
the commit move C4 → C′4 = (a, c � 0). This is a silent move from C4 in which
transaction k commits, making the two actions in the history permanent. There
are various ways in which D4 can try to respond but all lead to an inconsistent
history. Thus, with our version of bisimulations P4 and Q4 are not bisimilar.

Note that such a successful attack by the challenger cannot be mounted for (3)
above. After one round in the game we have the configurations

C3 = (k(a) � �b.co+ c.0 �k 0�) D3 = (l(a) � �b.co �l 0�)
and since D3 has no possible c actions the challenger might request a response
to the action C3 → C′3 = (k(a), k(c) � �0 �k 0�). However the tentative k(c)
recorded in the history will never become permanent and thus the defender
can successfully respond with any tentative action of D3 which will also never
become permanent. To ensure that such responses can always be made, our
bisimulations will allow any configuration to make the degenerate silent move
(H � P ) → (H, k($) � P ), where $ is a reserved symbol. This defender move
represents a weak idle move whose validity is postponed until after k commits. So
C3’s move above can be matched by D3 playing this degenerate move followed by
the abort of the transaction. Later we prove that P3 and Q3 are indeed bisimilar.

Using recursion we can write restarting transactions as recX.�P � X�. Here
�P � X� is an uninitiated transaction which has yet to be allocated a name.
These transactions can abort and re-run internal steps, thus branching differ-
ences in initial silent actions can be hidden from the challenger. Consider a
compiler performing common subexpression elimination, transforming P5 to Q5:
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P5 = recX.�τ.b.co+ τ.c.co � X� Q5 = recX.�τ.(b.co+ c.co) � X� (5)

As we will show, all moves of the challenger can be matched by the defender
in the bisimulation game. The interesting scenario is when (after initiating the
transactions) the challenger picks the right τ action from P5 and the defender
responds with the τ action from Q5. We then get the configurations:

C5 = (ε � �c.co �k P5�) D5 = (ε � �b.co+ c.co �l Q5�)
The challenger then picks the b action from D5. The defender responds with
a silent abort of C5 which will reinstate P5, re-initialise the transaction, and
select the left τ action in P5 followed by the b action. This would lead to the
configurations C′5 = (k′(b) � �co �k′ P5�) and D′

5 = (l(b) � �co �l Q5�). We will
in fact prove that this optimisation is sound in our setting, although it is not
sound in the case of P4, Q4, even if we used restarting transactions.

In the remainder of this extended abstract we explain the language TCCSm

(Sect. 2), which is a simplification of that used in previous work [4] in that we
do not consider nested transactions, simplifying technical development. Inspired
by cJoin [1], when transactions co-operate by synchronising on an action they
are virtually merged by acquiring the same name. Thus in P2 from (2), when
synchronisation occurs on the private channel p, the residual will be a term
equivalent to the single transaction νp. �co.(R |S) �n 0 |0�.

This is followed by an exposition of our history dependent bisimulations
(Sect. 3). As we have already stated, these bisimulations demand the appro-
priate matching of all actions, even those dependent on transactions which can
never commit. We also give a variation, called predictive bisimulations, in which
dependent actions need only be matched when the transaction on which they
depend has some future possibility of committing (Sect. 4). We ultimately show
that both equivalences coincide but the former is an easier proof technique while
the latter is easier to prove sound. We then outline the proof of the main result of
the paper, namely that these bisimulation equivalences coincide with contextual
equivalence (Sect. 5).

2 The Language TCCSm

The syntax for terms in the language is given in Fig. 1 where a ∈ Act are
actions, μ ∈ Act � {τ} � Ω are prefixes, and X ranges over a collection of re-
cursion variables. Here ω ∈ Ω are special actions which will be used to define
contextual equivalence, while ( · ) : Act→ Act is a total bijection over Act, used
in the standard manner to formalise CCS synchronisation between processes.
The language contains all the standard constructs of CCS, with the result that
CCS is a sub-language of TCCSm. There are three extra operators, discussed
in the Introduction. We assume the standard notion of free and bound occur-
rence of recursion variables, and only consider closed terms, those which contain
no free occurrences of variables. We use the standard abbreviations associated
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TCCSm Syntax

P,Q,R ::=
∑
μi.Pi

∣∣ P |Q ∣∣ νa.P
∣∣ X

∣∣ recX.P∣∣ �P �k Q� ∣∣ co.P
∣∣ �P � Q�

CCS Transitions

CCSsum

Σμi.Pi
μi−→ε Pi

CCSsync

P
a−→ε P

′ Q
a−→ε Q

′

P |Q τ−→ε P
′ |Q′

CCSrec

μX.P
τ−→ε P [μX.P/X]

Transactional Transitions

TrTau

P
τ−→ε P

′

�P �k Q� τ−→ε

�
P ′ �k Q

�
TrSum

Σμi.Pi
k(a)−−−→ε�→k �Pj | co �k Σμi.Pi�

μj = a

TrAct

P
a−→ε P

′

�P �l Q� k(a)−−−→l �→k

�
P ′ �k Q

�k � l
TrSync

P
k(a)−−−→σ1 P

′ Q
k(a)−−−→σ2 Q

′

P |Q k(τ)−−−→(l̃1,l̃2) �→k P
′σ2 |Q′σ1

σ1 = l̃1 �→ k

σ2 = l̃2 �→ k

Propagation Transitions

Restr

P
α−→σ P

′

νa.P
α−→σ νa.P

′ a �∈ α
ParL

P
α−→σ P

′

P |Q α−→σ P
′ |Qσ

range(σ) � Q

Fig. 1. Communication and internal transitions (omitting symmetric rules)

with CCS, and write s ( s′ when the transaction names of the syntax object s
are fresh from those in s′; ftn(s) denotes the transaction names in s. Note that
unlike previous work [3,4] transaction names are never bound and we do not
require that all transaction names used in a term are distinct. Thus, we allow
terms of the form �P1 �k P2� |R | �Q1 �k Q2� . Here k should be looked upon as a
distributed transaction whose behaviour will be approximately the same as the
centralised �P1 |Q1 �k P2 |Q2� . The use of these distributed transactions will
simplify considerably the exposition of the reduction semantics.

Definition 2.1. A closed term is called well-formed if in every occurrence of
�P �k Q�, �P � Q�, and recX.P , the subterms P and Q do not contain named
transactions of the form �− �− −�. We refer to well-formed terms as processes.

Note that dormant transactions can appear within other transactions and under
recursion but they will be activated only when they end up at top-level. In the
sequel we only consider well-formed terms.

The reduction semantics of the language is given as a binary relation between
processes P → Q. However this is defined indirectly in terms of three auxiliary
relations, which will also be used in the formulation of bisimulations:

P → Q when P
τ−→σ Q or P

β−→ Q or P
k(τ)−−−→σ Q (6)
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TrNew

�P � Q� new k−−−→ �P �k Q�

TrAb

�P �k Q� abk−−→ Q

TrCo

P �co P
′

�P �k Q� cok−−→ P ′

TrBCast

P
β−→ P ′ Q

β−→ Q′

P |Q β−→ P ′ |Q′
β ∈ {cok, abk}

TrIgnore

P
β−→ P ′

P |Q β−→ P ′ |Q
β � Q

TrRestr

P
β−→ P ′

νa.P
β−→ νa.P ′

Fig. 2. Transactional reconfiguration transitions

The first, P
τ−→σ Q, is essentially synchronisation between pure CCS processes.

The second, P
β−→ Q (Fig. 2), where β ranges over co k, ab k and new k, encode

the creation of new named transactions, and commit/abort broadcast transitions
(TrCo, TrAb, TrBCast) which eliminate distributed transactions. The notation
P �co P

′ means the execution of a top-level co in P and the replacement of
all other top-level commits with τ -prefixes. We now concentrate on the third,

P
k(τ)−−−→σ Q, or more generally P

k(μ)−−−→σ Q where μ ∈ Act ∪ {τ}.
Action P

k(a)−−−→σ Q should be viewed as the synchronisation between P and
some transaction named k in the environment which can perform the comple-
mentary a. Because this transaction is external the freshness side conditions in
the rules of Fig. 1 ask that the name k is fresh with respect to P . Also, the
effect of this synchronisation is that the future behaviour of P , or at least any
transactions involved in the execution of a, is dependent on the eventual com-
mitting of k. This dependency is implemented by σ, a substitution renaming
the responsible transaction in P to k. The essential rule in the generation of
these judgements is TrAct in Fig. 1. For example, this rule ensures that we

can derive �a.P1 �l1 Q1� k(a)−−−→l1 �→k �P1 �k Q1� for any fresh k. The substitution
recorded in the action is propagated by ParL into contexts. Note that by TrSum,
even pure CCS processes with no transactions can perform a k(a) action; e.g.,

a.P
k(a)−−−→ε�→k �P | co �k a.P � . This embeds P into the k-transaction; the

distributed part of the k-transaction surrounding P is always ready to commit
(hence the introduction of co). Note that this is a communication-driven em-
bedding, which reduces the nondeterminism of embedding of previous work [3,4],
making semantics more concrete [16]. Embedding leads to a uniform treatment
of CCS processes and transactions, and a simple reduction semantics.

The conjoining of transactions is implemented in TrSync. Using it we infer:

�a.P1 �l1 Q1� | �a.P2 �l2 Q2� k(τ)−−−→(l1,l2) �→k �P1 �k Q1� | �P2 �k Q2�
for any fresh k. Here the previously independent transactions l1, l2 have been
merged into the transaction k (recorded in the substitution (l1, l2) !→ k). Note
that this new transaction is distributed, in that its activity is divided in two. In
order for it to commit the rules in Fig. 2 ensure that both components commit.
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Example 2.2. Consider the process P2 defined in (2) in the Introduction. Two
applications of TrAct followed by rule Restr gives the reduction from (6) above

P2 | a.b→∗ νp. �p.co.R �k1 0� | �p.co.S �k2 0� = P ′
2

where k1 and k2 are fresh names. The synchronisation rule TrSync then gives

P ′
2 → νp. �co.R �k 0� | �co.S �k 0�

where k is an arbitrary fresh name. Here the residual is a single transaction
named k, albeit distributed. For it to commit both components have to commit:
using TrBCast this leads to the process R |S. ��

The semantics has a number of properties: it preserves well-formedness, gen-
erates only fresh transaction names and is equivariant. The properties about
transaction names are important because they give us the liberty to pick fresh
enough transaction names in proofs. To state these properties we use renamings,
ranged over by r, which are bijective substitutions of the form {l1/k1, . . . , ln/kn}.
The range of a fresh renaming rfr has names not appearing in the proof.

Lemma 2.3 (Names). Suppose P
l(μ)−−→σ Q. Then

1. l is fresh to P , Q is well-formed, and the substitution σ has the form k̃ !→ l;

2. (Equivariance) Prfr
l′(μ)−−−→σrfr Qrfr, where rfr(l) = l′. ��

Based on this semantics we give a natural contextual equivalence, using stan-
dard formulations [15]. We write ⇒ for the reflexive transitive closure of →.

Definition 2.4 (Barb). P⇓ω (ω ∈ Ω) if ∃ Q, Q′ such that P ⇒ Q
ω−→ε Q

′.

Definition 2.5 (Reduction Barbed Equivalence (∼=rbe)). (∼=rbe) is the
largest relation for which P ∼=rbe Q when:

1. P⇓ω iff Q⇓ω,
2. if P → P ′ then there exists Q′ such that Q⇒ Q′ and P ′ ∼=rbe Q

′,
3. if Q→ Q′ then there exists P ′ such that P ⇒ P ′ and P ′ ∼=rbe Q

′,
4. P |R ∼=rbe Q |R for any R with R ( P,Q.

Here we consider contexts with fresh transaction names to enforce that observer
transactions are distinct from process transactions before communication occurs.
If this was not the case then transaction names would be observable: �P �k Q�
would not be equivalent to �P �l Q� because by introducing the context �0 �k 0�
the k-transaction can no longer commit but l still can. Thus, all transaction
names are considered local here; the side condition R ( P,Q enforces this without
the syntactic overhead of a ν-binder for all transaction names.

To see why in the above definition we use barbs from a distinct Ω consider:

P = �a.co �k 0� Q = a.0+ τ.0

Intuitively, we would expectP to have exactly the same behaviour asQ, eventually
executing the single action a, or failing with a τ step. But if we allowed the barb
⇓a in Thm. 2.5 then they would not be equivalent because P �⇓a and Q⇓a.
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Example 2.6. P4 and Q4 from (4) in the Introduction are indeed inequivalent.
Assume P4

∼=rbe Q4. Take C1 = ā. Then P4 |C1
∼=rbe Q4 |C1. We have:

Q4 |C1
l(τ)−−→ �b.co �l 0� | �co �l C1� = Q′

4 thus Q4 |C1 −→ Q′
4

Process Q′
4 should be equivalent to P4 |C1 or one of its successors:

1. P4 |C1. Let C2 = c̄.ω; then Q′
4 |C2 �⇓ω, P4 |C1 |C2⇓ω. Thus P4 |C1 �∼=rbe Q

′
4.

2. P ′
4 = �b.co+ c.co �m 0� | �0 �m C1�. Again, P ′

4 |C2⇓ω, thus P ′
4 �∼=rbe Q

′
4.

3. C1 (after an abort). Q′
4 | b.ω⇓ω but C1 | b.ω �⇓ω, so C1 �∼=rbe Q

′
4.

Thus Q′
4 �∼=rbe P4 |C1 or any later state (contradiction), and P4 �∼=rbe Q4. ��

Note that the difference in the branching structure of P4 and Q4 is not ob-
servable by the may- and must-testing equivalences [3,4]. These equivalences are
characterised by so-called clean traces, which are traces in which all tentative
actions are committed. If bisimulations were developed using such clean traces,
P4 and Q4 would also be identified in the resulting bisimulation theory but it
would not correspond to a natural definition of (∼=rbe).

3 Bisimulations

As mentioned in the Introduction, our bisimulations will be over configurations
(H � P ) with a process P and a historyH of the tentative interactions of P with
its environment. An element of such a history can be a k(a), a, ab, k($), or $. A
past tentative action k(a) that has not been committed or aborted is recorded
as is in the history. If the k-transaction that performed this action commits, the
action becomes a; if k aborts, it becomes ab. Histories also record the trivial ac-
tions k($) which can be performed by any process. If k commits, k($)-recordings
become $, which terminates the bisimulation game in favour of the attacker; if k
aborts they become ab. For technical convenience in proofs, elements in a history
are uniquely indexed and permanent actions are not garbage-collected.

Definition 3.1 (History). A history H is a partial function from objects i of
a countable set I to the set {a, $, k(a), k($), ab | a ∈ Act}.

We often write histories as lists, omitting the indices of their elements. History
composition, written as H1, H2, is defined when dom(H1) ∩ dom(H2) = ∅. We

also let â and b̂ range over Act∪{$} and μ̂ range over Act∪Ω∪{τ, $}. To express
the effect of commits and aborts to histories we define the following operations.

Definition 3.2. H \co k and H \ab k are the lifting to lists of the operations:

(i !→ k(â)) \co k = (i !→ â) (i !→ k(â)) \ab k = (i !→ ab)
(i !→ l(â)) \co k = (i !→ l(â)) (i !→ l(â)) \ab k = (i !→ l(â)) when k ( l
(i !→ â) \co k = (i !→ â) (i !→ â) \ab k = (i !→ â)
(i !→ ab) \co k = (i !→ ab) (i !→ ab) \ab k = (i !→ ab)
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For the reasons we explained in the Introduction, weak bisimulations for
TCCSm require configurations to agree on the committed actions in their histo-
ries, and only those actions. Soundness of our technique will establish this as a
sufficient requirement for contextual equivalence between processes.

Definition 3.3 (Consistency). H1 and H2 are consistent when they have the
same domain and for all i ∈ I, a ∈ Act: H1(i) = a iff H2(i) = a.

History consistency is one of the two main requirements for weakly bisimilar
configurations; the other is to have the same barbs. Thus the weak bisimulation
game for TCCSm will be over transitions with three simple labels: ζ ::= τ

∣∣ k ∣∣ ω
annotating internal (τ), tentative synchronisation (k), and barb (ω) transitions.

Definition 3.4 (Bisimulation Transitions). C ζ−→ C′ is derived by the rules:

(H � P )
τ−→ (σ(H) � Q) if P

τ−→σ Q (LTSτ)

(H � P )
τ−→ (σ(H) � Q) if P

k(τ)−−−→σ Q and k ( H (LTSk(τ ))

(H � P )
τ−→ (H � Q) if P

new k−−−→ Q and k ( H (LTSnew)

(H � P )
τ−→ (H \co k � Q) if P

co k−−→ Q (LTSco)

(H � P )
τ−→ (H \ab k � Q) if P

ab k−−→ Q (LTSab)

(H � P )
k−→ (σ(H), k(a) � Q) if P

k(a)−−−→σ Q and k ( H (LTSk(a))

(H � P )
k−→ (H, k($) � P ) if k ( H, P (LTS�)

(H � P )
ω−→ (σ(H) � Q) if P

ω−→σ Q (LTSω)

We define
ζ
=⇒ to be

τ−→∗ when ζ = τ , and
τ
=⇒ ζ−→ τ

=⇒ otherwise.

The first five rules encode the TCCSm reduction semantics of (6) in Sect. 2,
updating the history of the configurations accordingly. LTSk(a) encodes the syn-
chronisation between a transaction in the process and its environment, yielding a
fresh transaction k; this tentative action is recorded in the history. LTSω encodes
top-level barbs and LTS� records a trivial defender synchronisation move. Weak
τ - and k-transitions can always be performed by the defender in the bisimulation
game. Moreover, there are no top-level a-transitions because they can always be
simulated by a k(a)-transition followed by the commit of k.

Lemma 3.5. Suppose P
a−→ε Q; then P

k(a)−−−→ε�→k P
′ cok−−→ Q and (H � P )

k−→
(H, k(a) � P ′)

τ−→ (H, a � Q) for some P ′, any H, and any k ( P,H. ��

To keep histories and the bisimulation game finite in examples, the challenger
of this bisimulation game performs all-but-$ transitions.

Definition 3.6. C1
ζ−→C2 is a challenger move if it is derived without using LTS�.

We now give the definition for a weak bisimulation over the above transitions.

Definition 3.7 (Weak Bisimulation). A binary relation R over configura-
tions is a weak bisimulation when for all C1 R C2:
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R3
def
= { ((ε � P3), (ε � Q3)), ((k(a) � �b.co+ c.0 �k 0�), (k(a) � �b.co �k 0�)),

((k(a), k(b) � �co �k 0�), (k(a), k(b) � �co �k 0�)), ((a, b � 0), (a, b � 0)),
((k(a), k(c) � �0 �k 0�), (ab, ab � 0)), ((ab, . . . � 0), (ab, . . . � 0)) | any k}

R2
def
= { ((ε � P2), (ε � Q2)), ((ab, . . . � 0), (ab, . . . � 0)),

(k1(a) � νp. �p.co.R �k1 0� | �b.p.co.S �k2 0�), (k1(a) � �b.co.(R |S) �k1 0�)),
(k2(b) � νp. �a.p.co.R �k1 0� | �p.co.S �k2 0�), (k2(b) � �a.co.(R |S) �k2 0�)),
((k1(a),k2(b) � νp. �p.co.R �k1 0� | �p.co.S �k2 0�),
(k2(a), k2(b) � �co.(R |S) �k2 0�)),

((k2(b),k1(a) � νp. �p.co.R �k1 0� | �p.co.S �k2 0�),
(k1(b), k1(a) � �co.(R |S) �k1 0�)),

((k(x),k(y) � νp. �co.R �k 0� | �co.S �k 0�), (k(x), k(y) � �co.(R |S) �k 0�))
((x, y,H � νp. R |S), (x, y,H � R |S))
| any k, k1, k2, R, S,H and (x, y) = (a, b) or (b, a) }

R5
def
= { ((H � P5), (H � Q5)), ((H,x � 0), (H,x � 0))

((H � �τ.b.co+ τ.c.co � P5�), (H � �τ.(b.co+ c.co) � Q5�)),
((H � �τ.b.co+ τ.c.co �k P5�), (H � �τ.(b.co+ c.co) �l Q5�)),
((H � �b.co �k P5�), (H � �(b.co+ c.co) �l Q5�)),
((H � �c.co �k P5�), (H � �(b.co+ c.co) �l Q5�)),
((H,k(x) � �co �k P5�), (H,k(x) � �co �k Q5�)),
| any k, l,H = (ab, . . .), and x = a or b }

Fig. 3. Relations used to prove the equivalences in Ex(s). 3.10 to 3.12.

1. hist(C1) and hist(C2) are consistent,

2. if C1
ζ−→ C′1 is a challenger move and ζ ( C2 then ∃ C′2: C2

ζ
=⇒ C′2 and C′1 R C′2,

3. the converse of the preceding condition.

Condition ζ ( C2 guarantees that the choice of fresh transaction names in ζ
does not hinder the transition from C2. Weak bisimilarity (≈) is the largest weak
bisimulation, and extends to processes P ≈ Q if (∅ � P ) ≈ (∅ � Q). Bisimulation
transitions and weak bisimulations are unaffected by fresh renaming. Thus, the
name selected in a challenger move is unimportant.

Lemma 3.8 (ζ-Equivariance). If C ζ−→ C′ then Crfr
ζrfr−−→ C′rfr. ��

Lemma 3.9 (Equivariance of (≈)). If C ≈ D then C ≈ Dr. ��

We close this section by showing the equivalence of the processes in the in-
troduction by proving them weakly bisimilar. The soundness of our bisimulation
technique establishes a proof of contextual equivalence between these processes.

Example 3.10. Recall P3 and Q3 from (3) in the Introduction. We show that
P3 ≈ Q3; i.e., (∅ � P3) ≈ (∅ � Q3). It suffices to check thatR3 in Fig. 3 is a weak
bisimulation. Related histories in R3 are consistent. The interesting case is when

(k(a) � �b.co+ c.0 �k 0�) k′
−→ (k′(a), k′(c) � �0 �k′ 0�). The defender responds:
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(k(a) � �b.co �k 0�) k′
−→

LTS� (k′(a), k′($) � �b.co �k 0�) τ−→
LTSab (ab, ab � 0)

and get (k′(a), k′(c) � �0 �k′ 0�) R3 (ab, ab � 0). The rest is trivial, thus the
defender always wins, therefore R3 is a weak bisimulation and P3 ≈ Q3. ��

Example 3.11. Let us now prove P2 ≈ Q2 from (2) in the Introduction. For this
proof we construct relation R2 in Fig. 3. It is easy to verify that all histories
related in R2 are consistent and all challenger moves can be matched by the de-
fender. Here it is noteworthy that the two tentative actions a and b are recorded
in the left-hand history under different transaction names (k1 and k2, respec-
tively) until the synchronisation on p merges the two transactions; these history
annotations are highlighted in bold typeface. ��

Example 3.12. In our final example proof we show that P5 ≈ Q5 from (5) in the
Introduction. Here we construct relation R5 in Fig. 3. In this construction, H is
a history with zero or more aborted actions; we add this to our configurations
because restarting transactions can nondeterministically abort and restart. The
proof that R5 is a weak bisimulation is again by an easy inspection of the
moves of the challenger. The important move is when from the pair ((H �
�b.co �k P5�), (H � �(b.co+ c.co) �l Q5�)) the challenger picks the transition

(H � �(b.co+ c.co) �l Q5�)) l′−→ (H, l′(c) � �co �l′ Q5�)) and the defender:

((H � �b.co �k P5�) τ−→
(LTSab) (H � P5)

τ−→
(LTSτ ) (H � �τ.b.co+ τ.c.co � P5�) τ−→

(LTSnew) (H � �τ.b.co+ τ.c.co �k P5�)
τ−→

(LTSk(τ )) (H � �c.co �k′ P5�) l′−→
(LTSk(a)) (H, l

′(c) � �co �l′ P5�)

and get (H, l′(c) � �co �l′ Q5�)) R5 (H, l′(c) � �co �l′ P5�). ��

4 Predictive Bisimulations

In the previous section we showed that weak bisimulations provide an effective
verification technique of equivalence. However, it does not enable a direct sound-
ness proof. The difficulty is in proving weak bisimulation compositional (i.e., a
congruence). Here we define predictive bisimulations, an alternative notion of
bisimulations that allows us to give an indirect proof of soundness of (≈). First
we explain the problem with directly proving (≈) compositional.

Failing Proof (Compositionality) We need to proveR a weak bisimulation, when

(H1 � P |R) R (H2 � Q |R) (7)

for any context R and (H1 � P ) ≈ (H2 � Q). Let (H1 � P )
k−→ (H1, k(a) � P ′)

and R can perform k(a) to become R′. We have (H1 � P |R) τ−→ (H1 � P ′ |R′).

We need to show that there exist H ′
2, Q

′′, and R′′ such that (H2 � Q |R) τ
=⇒

(H ′
2 � Q′′ |R′′) and (H1 � P ′ |R′) R (H ′

2 � Q′′ |R′′). Weak bisimilarity gives

(H2 � Q)
k
=⇒ (H2, k(b̂) � Q′) and (H1, k(a) � P ′) ≈ (H2, k(b̂) � Q′)
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for some b̂, Q′, and the new parts k(a) and k(b̂) of the histories are consistent.

However, consistency does not restrict the values of b̂; it can be a name different
than a, or even $, provided that k does not commit in any extension of the
bisimulation game. When b̂ = a we can complete the proof by taking H ′

2 =
(H2, k(â)), Q

′′ = Q′ and R′′ = R′, showing (H1, k(a) � P ′ |R′) R (H2, k(a) �
Q′ |R′) because it is of the same shape as (7). However, when b̂ = c �= a or b̂ = $
it is unclear how to proceed in this direct proof. � ��

We instead prove soundness by defining (≈prd) and showing:

P ≈ Q implies P ≈prd Q implies P ∼=rbe Q (8)

To show the second implication we need to prove (≈prd) compositional. The in-
tuition of why this is possible is because (≈prd) only takes into account those
challenger transitions that have the possibility to be committed later in the
bisimulation game. This allows us to define a stronger definition of consistency
which avoids the problematic cases of the above failed direct proof. Strong con-
sistency is a reflexive, symmetric, and transitive relation.

Definition 4.1 (Strong Consistency (�)). H1 � H2 when:

(H1(i) = â iff H2(i) = â) and (∃k.H1(i) = k(â) iff ∃l.H2(i) = l(â))

In a predictive bisimulation game the challenger only performs transitions
within transactions when those transactions can commit later in the game. Thus,
here we differentiate between τ - and k(τ)-transitions. Moreover, we emphasise
that a challenger k(a) move has to be matched with an identical defender move.
Thus predictive bisimulations are over the actions η ::= τ

∣∣ k(τ) ∣∣ k(a) ∣∣ ω.
Definition 4.2 (Pred. Bisim. Transitions). C η−→ C′ is derived by the rules:

(H � P )
τ−→ (H � Q) if P

τ−→ε Q (LTS
′τ)

(H � P )
k(τ)−−−→ (σ(H) � Q) if P

k(τ)−−−→σ Q and k ( H (LTS
′k(τ ))

(H � P )
τ−→ (H � Q) if P

new k−−−→ Q and k ( H (LTS
′new)

(H � P )
τ−→ (H \co k � Q) if P

cok−−→ Q (LTS
′co)

(H � P )
τ−→ (H \ab k � Q) if P

abk−−→ Q (LTS
′ab)

(H � P )
k(a)−−−→ (σ(H), k(a) � Q) if P

k(a)−−−→σ Q and k ( H (LTS
′k(a))

(H � P )
ω−→ (σ(H) � 0) if P

ω−→σ Q (LTS
′ω)

We define
η
=⇒ to be

(
(
τ−→)∪ (

k(τ)−−−→)
)∗

when η ∈ {τ, k(τ)}, and τ
=⇒ η−→ τ

=⇒ otherwise.

In a predictive bisimulation game, defender moves are weak η-transitions, with
no need for k($)-transitions. Challenger moves are commitable transitions.

Definition 4.3 (Commitable Transition). C η−→ C′ with η ∈ {τ, ω} is com-

mitable; C k(μ)−−−→ (H1 � P1) is commitable when there exists (H1 � P1)
η1−→

. . .
η(n+1)−−−−→ (Hn � Pn) such that for any a and i �∈ dom(H1):

(H1, (i !→ k(a)) � P1)
η1−→ . . .

η(n+1)−−−−→ (Hn, (i !→ a) � Pn)
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Weak predictive bisimulations are thus defined as follows.

Definition 4.4 (Weak Predictive Bisimulation). A binary relation R is a
weak predictive bisimulation when for all C1 R C2:
1. hist(C1) and hist(C2) are strongly consistent,

2. if C1
η−→ C′1 is a commitable transition and ftn(η) ( C2 then ∃ C′2 such that

C2
η
=⇒ C′2 and C′1 R C′2, and its converse.

Weak predictive bisimilarity (≈prd) is the largest such bisimulation and (≈prd)
extends to processes in the same way as (≈). The first part of (8) follows by:

Theorem 4.5. Let C ≈ C′ with strongly consistent histories; then C ≈prd C′.

Proof. The proof of this proposition relies on showing that strong consistency is
closed under commitable transitions of weakly bisimilar configurations. ��

To prove the second part of (8) we need to show that (≈prd) is compositional.

Theorem 4.6. If P ≈prd Q and ftn(R) ( P,Q then P |R ≈prd Q |R.

Proof. This relies on de-/re-composition of actions; e.g., we need to decompose

(H � P |R) η−→ (H � P ′ |R′) into the constituent sub-actions from P , R with
appropriate histories. This is facilitated by strongly consistent histories. ��

5 Full Abstraction

Using (≈) we can prove soundness of our original bisimulation game.

Theorem 5.1 (Soundness). If P ≈ Q then P ∼=rbe Q.

Proof. In view of Thm. 4.5 it is sufficient to prove the result for (≈prd). The
major step in this proof is already established in Thm. 4.6. ��

We prove completeness for LAct by first translating any history H into a
process �H�. Then we show that the transitions of a configuration (H � P )
examined by bisimulations can be modelled by reductions of the process �H� |P ,
when put in parallel with the appropriate contexts. The translation of H is the
parallel composition of the translation of each element in H according to:

�i !→ k(a)� = �
co |ωcommit

ai �k ω
abort
i

� �i !→ a� = ωcommit
ai �i !→ ab� = ωabort

i�i !→ k($)� = �
co �k ω

abort
i

� �i !→ $� = 0

A tentative k(a)-action, recorded in the history as (i !→ k(a)), corresponds to a
particular move of the bisimulation game—say the ith move. This is translated
to a k-transaction which is ready to commit. When k commits because all dis-
tributed parts of k commit, a unique “success” barb ωcommit

ai becomes observable,
signalling that the ith move in the bisimulation game was a synchronisation on
a which became permanent. In the history this is recorded as (i !→ a). If the
k-transaction aborts then a unique ωabort

i barb signals the abortion of the ith
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move, corresponding to (i !→ ab) in the history. The translation of a defender’s
(i !→ k($)) move is similar, with the exception that this is a no-action that has
no “success” barb associated with it. A key proposition is that reductions of
translated configurations model silent bisimulation transitions.

Proposition 5.2. (H1 � P )
τ−→ (H2 � Q) iff �H1� |P → �H2� |Q.

Moreover, the ith tentative k-transition in the bisimulation game is modelled by
the reduction induced by the context:

�k�i = �co | (∑a∈Act a.ω
commit
ai ) + τ.0 + ωbefore

i �k ωabort
i �

When synchronising with a process, this context becomes �i !→ k(a)� (for any
a), modelling a tentative k(a)-transition. It may also spontaneously become
�i !→ k($)�, modelling a k($)-transition. In any case it loses the weak barb ωbefore

i .

Proposition 5.3. Let H2 = σ(H1), (i !→ k(â)) and k′ ( k,H1, P , and ftn(H1) ⊆
ftn(P ); then (H1 � P )

k−→ (H2 � Q) iff �H1� |P | �k′�i → �H2� |Q �⇓ωbefore
i . ��

Theorem 5.4 (Completeness). If P,Q ∈ LAct and P ∼=rbe Q then P ≈ Q.

Proof. Using the above propositions we show X is a weak bisimulation, where
X= {((H � P ), (H ′ � Q)) | H,H ′ cons., P,Q ∈ LAct, �H� |P ∼=rbe �H ′� |Q}. ��

6 Conclusions

We presented a weak bisimulation theory for TCCSm, a simple language with
communicating transactions. In TCCSm, two transactions that communicate
are conjoined by being renamed to the same name forming a distributed ver-
sion of cJoin’s merged transactions [1]. When a transaction communicates with
a non-transactional process, the latter is embedded in the former in line with
the semantics of previous work [3]. Compared to that semantics, embedding and
merging in TCCSm is communication-driven limiting nondeterminism. For sim-
plicity this language has only single-level transactions, although we believe that
the results of this paper can be adapted to a language with nested transactions.

The bisimulation equivalence is sound and complete with respect to a natural
contextual equivalence which equates transactions that differ only in uncom-
mitable actions; these are destined to eventually be rolled back. We motivated
this with examples in the Introduction which we verified in Sect. 3 using our tech-
nique. In related work about reversible calculi [10,9], contextual equivalence can
discriminate between transactions �b+ a.b.co �k 0� and �a.b.co �k 0� by virtue
of the fact that the former contains an extra uncommitable b-action.

Our bisimulations provide an effective verification technique for the afore-
mentioned contextual equivalence which can be applied to related programming
languages where uncommitable actions have no effect [5,7,11,16]. They can also
serve as a verification technique for other forms of contextual equivalences, such
as may- and must-testing equivalences [3,4]. Other bisimulation methods for
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reversible computation [2,8,9,10] may also be used in these settings, but they
are more fine-grained, discriminating even between the above two processes.
Forward-reverse and hereditary history-preserving bisimulations [13] differenti-
ate between forward and reverse transitions, which would discriminate between
the processes P5 and Q5 shown in the Introduction capturing a possible compiler
optimisation. To our knowledge, the bisimulation technique presented here is the
only one that can be used to prove the correctness of such compiler optimisations.
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Upper-Expectation Bisimilarity

and �Lukasiewicz μ-Calculus

Matteo Mio

Computer Laboratory, University of Cambridge, UK

Abstract. Several notions of bisimulation relations for probabilistic
nondeterministic transition systems have been considered in the litera-
ture. We study a novel testing-based behavioral equivalence called upper
expectation bisimilarity and, using standard results from functional anal-
ysis, we develop its coalgebraic and algebraic theory and provide a logical
characterization in terms of an expressive probabilistic modal μ-calculus.

1 Introduction

Directed-graph structures are sufficient for modeling nondeterministic programs
and concurrent systems but cannot directly represent other important aspects
of computation, such as probabilistic behavior, timed transitions and other quan-
titative information one might need to express. Probabilistic nondeterministic
transition systems (PNTS), also known in the literature as (simple) Segala sys-
tems [2], concurrent Markov chains and probabilistic automata [29], have been
identified in the last two decades as convenient mathematical structures, general-
izing standard nondeterministic transition systems (NTS), to provide operational
semantics to probabilistic nondeterministic languages (see, e.g., [2,30]).

A central concept in the theory of programming languages and concurrent sys-
tems is the notion of behavioral equivalence. An equivalence relation 8 ⊆S × S
between states of a system is, informally speaking, a behavioral equivalence if
s 8 t implies that s and t satisfy the same class of properties of interest. Of
course different classes of properties induce different notions of equivalence. The
paradigmatic example of behavioral equivalence for ordinary NTS’s is Milner
and Park’s bisimilarity [21]. Among its good properties, bisimilarity enjoys the
following: B1) two states are bisimilar if and only if they satisfy the same prop-
erties expressed, e.g., in Kozen’s modal μ-calculus [17] or in other (weaker but
useful in practice) branching-time logics such as CTL, CTL∗ [1] and the basic
modal logic K or its labeled version, the Hennessy–Milner modal logic. Further-
more, B2) bisimilarity is a congruence for a wide family of process algebras, all
specified following one of the many rule formats (e.g., GSOS, tyft/tyxt, etc) and
B3) enjoys a rich mathematical theory based on coinduction, playing a role of
paramount importance in coalgebra [28]. Lastly, but importantly, B4) bisimilar-
ity can also be explained in terms of Milner’s standard metaphor of push-button
experiments on systems [21]. Such experiments provide an abstract, yet intuitive,
testing semantics for bisimilarity.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 335–350, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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In the context of PNTS’s several notions of behavioral equivalence, based on
the technical machinery of coinduction, have been considered in the literature
[29,20,31,3,9,10]. The one which has attracted most attention so far was intro-
duced by Segala in [29] and is referred to in this paper as standard bisimilarity.
This is a mathematically natural notion (cf. B3) and, indeed, it has been rediscov-
ered using the methods of coalgebra [30]. In [29] another behavioral equivalence
(strictly coarser than standard bisimilarity), which we refer to as convex bisimi-
larity, is introduced by Segala as a preferable notion because, as we shall discuss
in Section 2, it is strongly motivated by the concept of probabilistic scheduler.
Importantly, both equivalences are congruence relations (cf. B2) for the wide
class of PGSOS process algebras, which includes virtually all Milner’s CCS-style
(probabilistic) process operators of practical interest [2].

Following a traditional approach based on interpreting formulas as sets of
states (or probability distributions over states [10]), several Hennessy-Milner-
style modal logics, capable of characterizing either standard or convex bisimi-
larity have been investigated (see, e.g., [29,20,10,11]). However all these logics
(even when enriched with fixed-point operators as in [10]) lack the expressive
power required to formulate many natural and practically useful properties of
PNTS’s such as, e.g., those expressible in the popular temporal logics PCTL and
PCTL∗ of [4]. Unlike their non-probabilistic counterparts, CTL and CTL∗ [1],
these two logics induce non-standard and different behavioral equivalences [31]:

standard bisimilarity � convex bisimilarity � PCTL∗ � PTCL

Despite significant efforts, the field still lacks a satisfactory logical framework (cf.
B1) for expressing practically useful properties of systems and, at the same time,
reasoning about behavior up-to satisfactory notions of behavioral equivalence.
The problem is further complicated by the lack of a (widely accepted) testing
semantics (cf. B4) for either standard bisimilarity, convex bisimilarity or any of
the other proposed equivalences studied in the literature (e.g., [11,6,3]).

Starting from the late 90’s, following an alternative quantitative approach
based on interpreting formulas as maps �φ� : S→R from states to real values,
fixed-point modal logics (quantitative μ-calculi) for PNTS’s have been studied
(see, e.g., [15,9,26]). The present paper contributes to a programme of ongoing
research, one of whose overall aims is to investigate the extent to which quanti-
tative μ-calculi play as fundamental a rôle in the probabilistic-nondeterministic
setting as that of Kozen’s μ-calculus in the nondeterministic setting.

Following the quantitative approach, the author has recently introduced in
[22,24] the first fixed-point based logic, called �Lukasiewicz μ-calculus (�Lμ), ca-
pable of encoding PCTL. It has been shown in [22,23] how this (and similar)
logic can be given a game semantics generalizing the well-known parity-game se-
mantics of Kozen’s μ-calculus. Compositional verification techniques have been
developed in [25], exploiting the elegant fixed-point semantics. Most recently,
model checking algorithms have been investigated in [24].

Contributions. This paper adds to the mounting evidence that the R-valued ap-
proach to temporal logics for PNTS’s is a convenient framework by showing that
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�Lμ captures what is arguably the preferred notion of bisimilarity for PNTS’s:
convex bisimilarity. A strong novelty of our approach is that to obtain this re-
sult one needs to take a fresh perspective on convex bisimilarity. To this end, a
nonstandard behavioral equivalence called upper expectation (UE) bisimilarity,
which naturally arises from a very abstract testing scenario based on R-valued
experiments (cf. property B4), is introduced. Unlike other related works, our
experiments are not given by, e.g., the formulas of a given logic (such as the μ-
calculus of [9]) nor by terms of some process algebra (see, e.g., [11]) but, instead,
are modeled abstractly by functions f :S→R from program states to real values.

We prove that UE-bisimilarity coincides with the behavioral equivalence in-
duced by the expressive logic �Lμ (cf. property B1). Furthermore, we show that
this logic characterizes the so-called behavioral (Hausdorff) metric, a concept of
fundamental importance in the theory of approximation of probabilistic systems
pioneered by Panangaden [27]. Thus the R-valued approach to logics for PNTS’s
may be considered equally suitable as a mechanism for characterizing process
equivalence as other non-quantitative logics advocated for this specific purpose.

As a main result we prove that, while UE-bisimilarity is generally coarser that
convex bisimilarity, the two notions coincide on a wide class of systems:

convex bisimilarity = UE-bisimilarity = �Lukasiewicz μ-Calculus

As a matter of fact, we argue that UE-bisimilarity constitute a natural relaxation
of convex bisimilarity based on elementary topological considerations. Indeed, a
very interesting feature of our work is that results from linear algebra and func-
tional analysis are crucial to link UE-bisimilarity with the topological notions of
closedness, compactness and convexity. This, in turn, allows the identification of
UE-bisimilarity with the coalgebraic notion of cocongruence of the appropriate
functor type (cf. property B3) and to relate it with Segala’s convex bisimilarity.

In Section 5 we present two algebraic results about UE-bisimilarity: a sound
and complete equational characterization of the behavior of PNTS’s, obtained
once again by applying a known representation theorem from functional analysis,
and a congruence result with respect to the CCS-style process-algebra operators
definable in the PGSOS format of [2] (cf. property B2).

Collectively our results provide strong mathematical foundations for UE-
bisimilarity comparable with those of Milner and Park’s bisimilarity and shed
light on the mathematical nature of PNTS’s and on the quantitative approach
to temporal logics for PNTS’s.

2 Coalgebra and PNTS’s

We employ the basic language of coalgebra in the description of systems and
behavioral equivalences. We refer to [28] for a gentle introduction to the subject.

Definition 1. Let Set be the category of sets and functions between them. The
endofuntor P (powerset) on Set is defined as: P(X) =

{
A | A ⊆ X

}
and(

P(f)
)
(A) = f [A] = {f(x) | x ∈ A}, for all sets X,Y and functions f : X → Y .
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Definition 2. A nondeterministic transition system (NTS) is a F-coalgebra
(X,α : X → F (X)) of the functor F =P.

In applications one most often encounters labeled NTS’s, or Kripke structures,
i.e., NTS’s endowed with a set P of propositional letters p ∈ P interpreted as
predicates. For the sake of simplicity we just consider plain NTS’s and their
probabilistic generalizations. The results we develop extend straightforwardly to
the labeled and propositional extensions.

Coalgebra provides an abstract notion of behavioral equivalence ofF -coalgebras
called cocongruence which is based on the idea of lifting relations on the set X of
states to relations on F (X) [18]. The notion of cocongruence for the functor P
coincides with ordinary Milner and Park’s bisimulation for NTS’s [18].

Definition 3 ([30]). The endofuntor D (discrete probability distributions) on
Set is defined as: D(X) = {μ : X → [0, 1] |

∑
x μ(x) = 1}, and

(
D(f)

)
(μ) =

f [μ] = y !→ μ(f−1(y)) where, for all sets S ⊆ X, we define μ(S)=
∑

x∈S μ(x).

Note that the composite functor PD maps a set X to the collection of all sets
of discrete probability distributions on X .

Definition 4. A probabilistic nondeterministic transition system (PNTS) is a
PD-coalgebra (X,α :X→PD(X)). We write x→ μ to specify that μ ∈ α(x).

The intended interpretation is that the system, at some state x∈X , can evolve
by nondeterministically choosing one of the accessible distributions μ ∈ α(x) and
then continuing its execution from the state y∈X with probability μ(y). PNTS’s
can be visualized, using graphs labeled with probabilities. For example the PNTS
(X,α) having set of states X = {x, x1, x2} and transition map α(x) = {μ1, μ2}
and α(x1) = α(x2) = ∅, with μ1(x1) = μ2(x2) = 0.2 and μ1(x2) = μ2(x1) = 0.8,
can be depicted as in Figure 1. The combination of nondeterministic choices
immediately followed by probabilistic ones, allows the modeling of concurrent
probabilistic programming languages in a natural way [2].

PNTS’s with a definition equivalent to the coalgebraic one given above were
introduced by Segala [29] who also defined two notions of bisimilarity for PNTS’s.
We refer to standard bisimilarity as the the stronger (i.e., finer) of the two:

Definition 5 (Standard Bisimulation). Given a PNTS (X,α), a standard
bisimulation is an equivalence relation E ⊆ X ×X such that if (x, y) ∈ E then

– if x→ μ then there exists ν such that y → ν and (μ, ν)∈Ê, and
– if y → ν then there exists μ such that x→ μ and (μ, ν)∈Ê,

where (μ, ν) ∈ Ê holds if μ(A) = ν(A) (see Definition 3) for all sets A ⊆ X
which are unions of E-equivalence classes.

The definition looks technical but has a simple interpretation. Two states x, y of
a PNTS (X,α) are standard-bisimilar if the two sets of reachable distributions
α(x) and α(y) are equal modulo E, i.e., if {[μ]Ê | μ∈α(x)}={[μ]Ê | μ∈α(y)},
where (μ, ν) ∈ Ê means that if one identifies E-related states, then μ and ν
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become equal, i.e., they assign the same probabilities to all events A ⊆ X/E (i.e.,
unions of equivalence classes). Using this argument one can show that the notion
of standard bisimilarity coincides with that of cocongruence of PD-coalgebras
[30]. As an example, consider the two PNTS’s rooted at x and y respectively,
depicted in Figure 1, and assume the processes x1 and x2 to be observationally
different1. The processes x and y are not standard bisimilar. This is because y
can lead to a probability distribution μ3 which cannot be matched by x.

x

μ1 μ2

x1 x2 x1 x2

0.2 0.8 0.8 0.2

y

μ1 μ3 μ2

x1 x2 x1 x2 x1 x2

0.2 0.8 0.5 0.5 0.8 0.2

Fig. 1. Example of states (x, y) not standard bisimilar

It has been argued by Segala (see, e.g., [29]) that standard bisimilarity is too
strict a behavioral equivalence when PNTS’s are used to model nondeterministic
probabilistic programs/systems. In this setting, the nondeterminism in the sys-
tem is supposed to model all the possible choices which can be made by, e.g., an
external scheduler. It is natural, however, to assume that schedulers can them-
selves use probabilistic methods to perform their choices. Thus, a probabilistic
scheduler could choose to pick, from the state x, the successor distributions μ1
and μ2 with equal probability 1

2 , and consequentely reach states x1 and x2 with
equal probabilities 1

2 (0.2+ 0.8) = 0.5. Thus a scheduler, by choosing probabilis-
tically between μ1 and μ2, can mimic the choice of μ3 = 1

2μ1 +
1
2μ2.

Definition 6. Let X be a set. A convex combination of elements of D(X) is a
distribution ν of the form ν(x)=

∑n
i=1 λi · μi(x), for μi ∈ D(X), λi ∈ [0, 1] and∑

i λi=1. The convex hull of A∈PD(X), denoted by H(A), is the collection of
all convex combinations of elements in A. The set A is convex if A=H(A).

We are now ready to introduce the second notion of bisimilarity introduced
by Segala [29,20], which we refer to2 as convex bisimilarity.

Definition 7 (Convex Bisimulation). Given a PNTS (X,α), a convex bisim-
ulation is an equivalence relation E ⊆ X ×X such that if (x, y) ∈ E then

– if x→C μ then there exists ν such that y →C ν and (μ, ν)∈Ê, and
– if y →C ν then there exists μ such that x→C μ and (μ, ν)∈Ê,

where x→C μ holds if and only if μ∈H(α(x)).

1 By this we mean that (x1, x2) �∈ E for all bisimulations E. Of course this can be
implemented by adding structure to the system (e.g., a single edge from x1 to μ1).
Our assumption thus simply abstracts away from such additional details.

2 The adjective probabilistic is often adopted in the literature [29,31]. We prefer the
adjective convex which transparently reflects the mathematics behind the notion.
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Thus convex bisimilarity is obtained by replacing→ with→C in Definition 5.
Probabilistic schedulers take the place of ordinary schedulers and can simulate
any convex combination of the reachable probability distributions.

Remark 1. Note that Definition 7 remains unaltered if→C is replaced by → (as
originally proposed by Segala in [29]) in the left side of the two conditions.

If probabilistic schedulers are assumed, Example 1 shows how, as observed
by Segala, standard-bisimilarity is too strict because it distinguishes between
states that, under the intended interpretation, ought to be identified. This fact
does not mean that cocogruence (i.e., standard bisimilarity) is not the “right”
notion of behavioral equivalence for PD-coalgebras. Rather, it suggests that
PD-coalgebras do not precisely model the class of systems we have in mind.

Definition 8. The endofuntor PcD (convex sets of probability distributions) on
Set is defined as follows: PcD(X) = {A | A ∈ PD(X) and A = H(A)} and(
D(f)

)
(A)=f [A] = {f [μ] | μ ∈ A}, where f [μ] is defined as in Definition 3.

Remark 2. The functioriality of PcD is well known. In fact more is true, and
PcD carries a monad structure [32]. This property has been extensively studied,
especially in the field of domain theory (see, e.g., [32,13]), and recognized as
important in the setting of probabilistic-nondeterminism.

It is clear that a PcD-coalgebra (X,α) is just a particular kind of PD-
coalgebra such that, for all x ∈X , the set α(x) is convex. Formally (see, e.g.,
[30] for an introduction to this concept) id : PcD→PD is an injective natural
transformation. Furthermore the convex hull operation gives us a natural way
to convert a PD-coalgebra into a PcD-coalgebra (formally, H :PD→PcD is a
surjective natural transformation). Transforming a PD-coalgebra (i.e., a PNTS)
(X,α) into the PcD-coalgebra (X,HX ◦α) precisely corresponds to the substitu-
tion of the arrow relation→ in Definition 5 with the relation→C in Definition 7.
It is now straightforward to verify that an equivalence relation E ⊆ X ×X is a
convex bisimulation in the PNTS (X,α) if and only if E is a cocongruence (i.e.,
standard bisimilarity) in the PcD-coalgebra (X,HX ◦α). Thus convex bisimilar-
ity can be seen as standard bisimilarity modulo (HX is surjective) the behavioral
equation A≈ B whenever H(A) = H(B), for all A,B ∈ PD(X), capturing the
the behavior of probabilistic schedulers.

Remark 3. Although PcD-coalgebras are the models naturally corresponding to
convex bisimilarity, we can always work, concretely, with ordinary PNTS’s (i.e.,
PD-coalgebras) (X,α), perhaps represented as finite graphs, and tacitly replace
α with HX ◦α (i.e., → with →C). This is convenient since, generally, the convex
hull of a finite set is uncountable.

The discussion carried out in this section serves to clarify that no a priori
categorical or coalgebraic argument exists supporting a notion of behavioral
equivalence in favor of another, when modeling computing systems. Coalgebra
provides, e.g., the mathematically deep notion of cocongruence for a functor, but
the choice of an appropriate functor is part of the modeling process.
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3 Upper Expectation Bisimilarity

We saw how convex bisimilarity naturally arises from the observation that sched-
ulers may make probabilistic choices. We also discussed how it can be understood
coalgebraically in terms of cocongruences of PcD-coalgebras. However it is not
possible to claim, on the sole basis of these facts, that convex bisimilarity is a
convenient notion of behavioral equivalence for PNTS’s. Probabilistic schedulers
constitute a good reason to consider two convex bisimilar states as behaviorally
equivalent. But it is not clear why one might want to distinguish between two
states that are not convex bisimilar. We illustrate the problem by means of the
simple example of Figure 2. As usual we assume the three states x1, x2 and x3
to be observationally distinct (cf. Footnote 1). The two states x and y are not
convex bisimilar because μ3 is not a convex combination of μ1 and μ2. It is not

x

μ1 μ2

x1 x2 x3 x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

y

μ1 μ2

μ3x1 x2 x3 x1 x2 x3

x1 x2 x3

0.3 0.3 0.4 0.5 0.4 0.1

0.4 0.3 0.3

Fig. 2. Example of states (x, y) not convex bisimilar

simple, however, to find a concrete3 reason to distinguish between the two states.
As a matter of fact, one can prove (see, e.g., [31]) that the states x and y satisfy
the same properties formulated in the expressive logics PCTL and PCTL∗ of [4].

Remark 4. While modal logics, carefully crafted to capture convex bisimilar-
ity (and even standard bisimilarity) can be defined [20,29,10,11], it is certainly
interesting to look at the distinguishing power of popular temporal logics for
PNTS’s, (of which PCTL and PCTL∗ are main examples) capable of expressing
branching properties of probabilistic concurrent systems useful in practice.

We now introduce a simple, yet realistic, experimental scenario which allows
one to distinguish the two states x and y of Figure 2. Suppose we are allowed
to make repeated experiments (in the sense of Milner’s push-button metaphor
[21]) on the PNTS’s of Figure 1. After a sufficiently large number (n→∞) of
experiments at, e.g., the state x, we observe that an event S (e.g., S = {x1},
representing the occurrence of terminal state x1) happened with upper proba-
bility4 m

n . We can then make the following reasonable assessment: the PNTS

3 This deliberately vague adjective could be seconded by, e.g., experimental, testing-
based, etc.

4 Our scenario is of course based on the common frequentist interpretation of proba-
bilities as limits of relative frequencies in a large number of trials. Technically, due
to the nondeterminism involved, a (unique) limit may not exists. Thus, what is ac-
tually experimentally observed is that the sequence of relative frequencies eventually
settles below an upper value (supremum limit) λ.
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at state x can exhibit behavior S (i.e., end up in x1) with at least probability
m
n . It seems then natural to stipulate that two states x and y are equivalent if,
for every event S, the state x can exhibit behavior (event) S with maximum
probability λ if and only if y can. It is simple to verify (the relevant events S
to be considered are the subsets of {x1, x2, x3}) that the two states x and y of
Figure 2 are equivalent in this sense.

However it is also realistic to assume that in the experiments carried on
PNTS’s, one is not just allowed to observe the occurrences of events and thus,
after a sufficient number of experiments estimate their upper probabilities by
means of relative frequencies. Rather, one is allowed to associate a real valued
information ri ∈ R to the outcome of each experiment i and, after n experiments,
observe the average value 1

n

∑n
i=0 ri. This enhanced scenario is better explained

by a simple example. Consider again the states x and y of Figure 2 and consider
the function g :{x1, x2, x3} → R defined as g(x1)=0.6, g(x2)=0 and g(x3)=0.5.
The function g represents the experiment in the sense that if, after letting the
scheduler choose a transition (i.e., pushing the button, in Milner’s metaphor)
the state xi is reached, then the real number g(xi) is registered as result. Thus,
for instance, if {x1, x2, x3, x2, x1} was the outcome of five experiments, the nu-
merical sequence {0.6, 0.5, 0, 0, 0.6} and its average 0.34 = 1.70

5 would be our
observation. Note that the simpler observation of an event S can be modeled by
the experiment χS : X → {0, 1}, i.e., by the characteristic function of S.

Definition 9. Let X be a set, μ ∈ D(X) and f : X → R. The expected value
of f under μ, written Eμ(f), is defined as Eμ(f) =

∑
x μ(x)f(x).

The expected values of g under μ1, μ2 and μ3 are 0.38, 0.35 and 0.39, respectively,
and this readily means that, for a sufficiently large number of trials, the average
resulting from experiments g on state x is necessarily smaller or equal than 0.38,
while in state y it can be strictly greater than 0.38 (and at most 0.39). Thus,
it is possible that an agent, by means of a sufficiently large number of repeated
experiments g, may be able to distinguish between the two states x and y. This
discussion leads to the following definitions.

Definition 10. Let X be a set and A ∈ PD(X) a set of probability distributions
on X. The upper expectation functional ueA : (X → R)→ R, mapping functions
X → R to real numbers, is defined as ueA(f) =

⊔
μ∈AEμ(f).

Thus, ueA(f) represents the maximum (supremum limit) expected value of f
which may be achieved when choosing probability distributions in A.

Definition 11. Given a PNTS (X,α), an upper expectation (UE) bisimulation
is an equivalence relation E ⊆ X ×X such that if (x, y) ∈ E then the equality
ueα(x)(f) = ueα(y)(f) holds for all E-invariant functions f : X → R, i.e., such
that if (z, w) ∈ E then f(z) = f(w).

We restrict to E-invariant experiments f following the idea that E-related (i.e.,
UE-bisimilar) states ought to be identified. The choice of considering upper
expectations seems one-sided, but one could equally well choose lower expecta-
tions (leA) observing that leA(f) = 1 − ueA(1 − f). This is an instance of the
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may/must duality well known in classical bisimulation theory, modal logic and
concurrency theory [21]. If follows from our discussion that restricting Definition
11 to {0, 1}-valued functions g :X →{0, 1} would weaken the definition to that
of an equivalence relation not capable of, e.g., distinguishing the states x and y
of Figure 2. This remark reveals that R-valued experiments (f :X →R) generally
provide more information than just observation of events (g :X →{0, 1}).

The definition of UE-bisimulation gives reasons for distinguishing states based
on the existence of a witnessing experiment f which may have an expected
outcome in one state which cannot be matched by the other state.

3.1 Relation between Convex and UE-Bisimilarity

UE-bisimilarity arises naturally from the simple testing scenario discussed above
and, as we shall discuss in Section 4, enjoys a remarkable natural connection with
real-valued modal logics. It is thus worth to develop its theory and compare it
with that of convex bisimilarity. In this section we show that the two notions
coincide on a wide class of systems by means of an alternative characterization
of UE-bisimilarity. Recall that PcD-coalgebras (cf. Remark 3) can be thought
of as PD-coalgebras modulo the behavioral equation A ≈ B if H(A) = H(B),
for A,B ∈ PD(X). Following the same idea, to understand UE-bisimilarity
coalgebraically one needs to consider the behavioral equation A≈B if ueA=ueB
(pointwise equality). As it turns out, the two equations coincide under very mild
conditions. In rest of the paper we restrict attention to a fairly simple (yet
important) class of PNTS’s, as this greatly simplifies our discussion. In Remark
5 we briefly outline how our results can be generalized.

Convention 1. We restrict attention to PNTS’s having a finite state space, i.e.,
PD-coalgebras (X,α :X→PD(X)) having a finite carrier set X= {x1, . . . , xn}
(endowed with the discrete topology). This allows one to view the space of func-
tions X→R as the Euclidean space Rn and each μ∈D(X) as the n-dimensional
vector μ = [μ(x1), . . . , μ(xn)]. Note that D(X) is a closed and bounded (hence
compact [16]) subset of Rn and that α(x), for x ∈ X, can be infinite.

The following is a known result from functional analysis [14, §10.2] and opti-
mization theory which generalizes to the setting described in Remark 5.

Theorem 1. Let X be a finite set and A,B ∈ PD(X). Then ueA = ueB iff
cl(H(A))=cl(H(B)), where cl(C) denotes the topological closure of the set C.

It is a standard result in linear algebra that the closure of a convex set is itself
convex (see, e.g., [19, §8.4]). For this reason the set cl(H(A)) is called the closed
convex hull of A. In what follows we denote with H the operation A !→ cl(H(A)).

The result of Theorem 1 can be used to prove the following alternative char-
acterization of UE-bisimulation (cf. Definition 7).

Theorem 2. Given a PNTS (X,α), an equivalence relation E ⊆ X × X is a
UE-bisimulation iff for all (x, y) ∈ E, it holds that:
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– if x→CC μ then there exists ν such that y →CC ν and (μ, ν)∈Ê, and
– if y →CC ν then there exists μ such that x→CC μ and (μ, ν)∈Ê,

where x→CC μ if and only if μ ∈ H(α(x)).

Thus UE-bisimilarity can be obtained by replacing →C with →CC in Defini-
tion 7 of convex bisimilarity. As a consequence UE-bisimilarity can be strictly
coarser than convex bisimilarity. The following proposition, however, reveals that
the two notions coincide for a wide class of PNTS’s.

Proposition 1. Let (X,α) be a PNTS such that α(x) is closed for all x ∈ X.
Then E ⊆ X×X is a convex bisimulation if and only if it is a UE-bisimulation.

Restricting to PNTS’s of this kind can hardly be seen as a limitation in con-
crete applications. Every finite set is closed, thus every PNTS representable as
a finite graph satisfies Convention 1 and the closedness condition of Proposition
1. Furthermore, the restriction to closed sets seems natural as agrees with the
well establiesh motto “observable properties are open sets” suggesting that only
those sets A and B which can be separated by open sets should be distinguished.

Remark 5. Among the possible ways of relaxing the constraint of Convention
1, a very general (and mathematically convenient) approach consists in model-
ing PNTS’s as PD-coalgebras in the category of compact Hausdorff topological
spaces. Here D maps the space X to the space of probability measures on X , en-
dowed with the weak∗-topology, and P maps X to the space of its closed (hence
compact5) subsets, endowed with the Vietoris topology [16]. Experiments on X
are now modeled by the Banach space C(X) of continuous functions X→R [19].
Due to the lack of space, we just mention in this remark that it possible to define
the functor PccD mapping X to its set of convex closed subsets and show that
UE-bisimilarity coincides with the notion of cocongruence of PccD-coalgebras.
All the results presented in this paper generalize to this setting at the cost of
mathematical complications needed to deal with infinite dimensional spaces.

As discussed in Section 2, the notion of probabilistic scheduler gives good
reasons for considering two convex bisimilar states as behaviorally equivalent.
On the other hand UE-bisimilarity provides witnesses (experiments) f :X→R

which can be used to distinguish states that are not UE-bisimilar (cf. example
of Figure 2). Thus the two a posteriori equivalent (under the mild closedness
assumption) viewpoints complement each other in a nice way.

Remark 6. In the significantly different setting of two-player stochastic concur-
rent games, a behavioral equivalence called game bisimilarity is discovered in
[9] as the kernel of a behavioral metric d induced by a quantitative [0, 1]-valued
fixed-point logic qLμ. Up to the necessary modifications, game bisimilarity can
be shown to coincide with UE-bisimilarity. The authors of [9] argue in favor of
game bisimilarity on the basis of the naturalness of the logic qLμ (which is a

5 A closed subset of compact set is itself compact [16]. From the modeling point of
view, this provides a natural topological generalization of finite-branchingness.
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weak logic not capable of encoding PCTL). Our explanation in terms of the sim-
ple metaphor of R-valued experiments is perhaps useful in clarifying and further
motivating this notion using logic-free arguments. No connection between game
bisimilarity and convexity is discussed in [9]. See also Section 4.1 below.

4 Real Valued Modal Logics and �Lukasiewicz μ-Calculus

The result of Theorem 1 states that the closed convex hull operation A !→ H(A)
and the upper expectation A !→ ueA are essentially the same operation.

Proposition 2 ([14]). Let X be a finite set and A ∈ PD(X). Then H(A) =
{μ ∈ D(X) | ∀f :X→R.

(
Eμ(f)≤ueA(f)

)
}.

Thus from the functional ueA it is possible to construct H(A) and, by Theorem
1, from H(A) one obtains ueA=ueH(A). Hence, the transition map α of a PNTS

(X,α), with α(x) convex closed for all x ∈ X (i.e., a PccD-coalgebra, cf. remarks
3 and 5 and Theorem 2), can be seen both as a function (x !→ α(x)) of type
X → PccD(X) and as a function (x !→ ueα(x)) of type X →

(
(X → R) → R

)
.

Equivalently (by currying) the transition map α can alternatively be seen as the
function transformer ♦α : (X → R)→ (X → R) defined as:(

♦αf
)
(x) = ueα(x)(f)

Def 10
=

⊔
x→μ

Eμ(f) (1)

It is remarkable here that the function transformer ♦α happens to coincide
with the interpretation of the diamond modality in all R-valued modal logics for
PNTS’s in the literature [15,26,8,23,12]. The semantics of a formula φ of these
logics, interpreted on a PNTS (X,α), is a function �φ� :X→R and, in particu-
lar, �♦φ�=♦α(�φ�). While it is obvious that the PNTS (X,α) induces ♦α (just
as in the definition), it is far from clear that from ♦α one can reconstruct the
PccD-coalgebra (X,α). The fact that the core of a R-valued logic (i.e., the inter-
pretation of the basic modality ♦) automatically arises from the very elementary
observation (motivating UE-bisimilarity) that R-valued experiments on PNTS’s
are useful and, due to their greater observational power (cf. example of Figure
2) should replace ordinary Boolean predicates, sheds light on the mathematical
nature of the quantitative approach to logics for PNTS’s.

Following our discussions, formulas can then be thought of as experiments and
the value �♦φ�(x) as the maximal expected value of experiment φ performed after
“pushing the button” (in Milner’s terminology) at state x. E.g., the experiment
distinguishing the states x and y of Figure 2 corresponds to the formula ♦φ, for
some φ crafted in such a way that �φ�(x1)=0.6, �φ�(x2)=0 and �φ�(x3)=0.5.

The many concrete R-valued modal logics in the literature are obtained by
considering other connectives (which can then be thought of as ways of com-
positionally constructing complex experiments from simpler ones) to be used in
combination with ♦. For example the constant 1 (�1�(x) = 1) and the connec-
tive � (�φ � ψ�(x) = max{�φ�(x), �ψ�(x)}) are considered in all the logics we
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are aware of. Different choices of connectives have distinct advantages over each
other in terms of, e.g., model checking complexity, expressivity, game semantics,
compositional reasoning methods, etc. In this paper we focus on the recently in-
troduced quantitative fixed-point logic of [24,22], called �Lukasiewicz μ-calculus
(�Lμ), because (unlike the other quantitative logics cited above) it is sufficiently
expressive to encode other popular temporal logics for PNTS, such as PCTL.
Here we limit ourselves to the basic definition of �Lμ and we refer to [24,25,22]
for motivational discussions and theoretical results about �Lμ including: model
checking algorithms, game semantics and proof systems for verification.

Definition 12 (Syntax). Formulas are generated by the following grammar:
φ ::= ♦φ | v | 1 | λφ | ¬φ | φ � φ | φ ⊕ φ | μv.φ, where λ∈ [0, 1] ∩ Q, v ranges
over a countable set Var of variables and (as usual in fixed point logics) bound
variables must occur under the scope of an even number of negations.

Definition 13 (Semantics). Given a PNTS (X,α) and an interpretation ρ :
Var→ (X → [0, 1]) of the variables, the semantics of φ is defined as the map
�φ�ρ : X → [0, 1] defined by structural induction on formulas as:

•�♦φ�ρ=♦α(�φ�ρ) •�v�ρ=ρ(v) •�φ � ψ�ρ(x)=max{�φ�ρ(x), �ψ�ρ(x)}
•�λφ�ρ(x)=λ · �φ�ρ(x) •�1�ρ(x)=1 •�φ⊕ ψ�ρ(x)=min{1, �φ�ρ(x) + �ψ�ρ(x)}
•�¬φ�ρ(x) = 1− �φ�ρ(x) • �μv.φ�ρ = lfp

(
f !→ �φ�ρ[f/v]

)
where lfp denotes the least fixed point operator and ρ[f/v] denotes the update of
the interpretation ρ at variable v defined as expected [24].

The operations of �Lμ, except the modality ♦( ) and the fixed-point operator
μv.( ), are the operations of �Lukasiewicz (fuzzy) logic, the logic of MV-algebras.

The logic �Lμ, as all other R-valued logics for PNTS’s we are aware of, is sound
(or adequate) with respect to UE-bisimilarity.

Theorem 3 (Soundness). Let (X,α) be a PNTS and E ⊆ X × X a UE-
bisimulation. For all �Lμ formulas φ and (x, y)∈E it holds that �φ�(x)=�φ�(y).
Unlike most other logics, however, �Lμ enjoys the following strong property which
generalizes to the setting described in Remark 5.

Theorem 4 (Denseness of �Lμ). Let (X,α) be a PNTS and E ⊆ X×X a
UE-bisimulation. The set of functions {�φ� | φ is a closed �Lμ formula} is dense
(w.r.t the sup-norm on X→R) in the set of functions X → [0, 1] with are E-
invariant (cf. Definition 11). The same result holds even if the fixed-point free
fragment of �Lμ is considered.

This means that for every ε>0 and every experiment f :X → [0, 1] which cannot
distinguish between UE-bisimilar states, there exists a closed (fixed-point free)
�Lμ formula φ such that for all x∈X , |f(x)− �φ�(x)|<ε. Thus, up-to approxima-
tion to an arbitrary degree of precision, the formulas of �Lμ syntactically capture
the set of experiments on PNTS’s that respect UE-bisimilarity. The following
completeness (or expressivity) result is a simple consequence of Theorem 4.

Proposition 3 (Completeness). Let (X,α) be a PNTS and x, y ∈X be two
states which are not UE-bisimilar. Then there exists some (fixed-point free) �Lμ
formula φ such that �φ�(x) �=�φ�(y).
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4.1 Behavioral Metrics

Behavioral metrics for probabilisitic systems, first investigated by Panangaden
in the context of Markov processes [27], are based on the intuition that small
changes in the probabilities of the system corresponds, roughly speaking, to small
changes in behavior. Thus one might wish to relate behavior between states not
in terms of equivalence relations but rather in terms of metrics6 d :X×X → [0, 1]
capturing how much two states behave differently. This approach generalizes that
based on ordinary equivalence relations, as one can always consider the kernel
ker(d)={(x, y) | d(x, y) = 0} of the metric, and proved to be useful in developing
a general theory of approximation for probabilistic systems [27]. In the context of
PNTS’s a robust notion of behavioral metric is given by the so-called Hausdorff
metric which is based on the following idea. For a given PNTS (X,α), and for
any7 metric m on D(X), one can consider the Hausdorff metric dmH on the space
of (compact) closed subsets of D(X). Then it is natural to define a metric on
states as d(x, y) = dmH(α(x), α(y)).

An elegant characterization of the Kantorovich-Hasudorff metric dKH (where
K is the Kantorovich metric on D(X) [16,27]) using the logic qLμ of [9] (cf.,
Remark 6) can be obtained as dKH = sup

{
|�φ�(x) − �φ�(y)|, φ ∈ qLμ}. This re-

lies on the connectives of qLμ carefully chosen so that (following earlier ideas
of Panangaden [27]) denotations of formulas are Lipschitz (not expansive) func-
tions. This, however, implies that qLμ does not satisfy the densedness property
of �Lμ and, as a consequence, cannot express PCTL properties. Since the logic
qLμ is readily a fragment of �Lμ, the �Lukasiewicz μ-calculus can be used to char-
acterize the metric dKH . However it is immediate to observe that, because of the
denseness and completeness properties of �Lμ, the distance logically defined as
above with φ ranging over all �Lμ formulas is necessarily trivial (i.e., d(x, y)=0
if x and y are UE-bisimilar and 1 otherwise). The following result shows how
the TV-Hausdorff metric dTV

H (where TV is the Total Variation metric on D(X)
[16]) admits an elegant characterized in terms of Diamond-guarded �Lμ formulas.

Theorem 5. Let (X,α) be a PNTS quotiented by UE-bisimilarity (cf. Remark
6) and assume without loss of generality (cf. Theorem 1) that α(x) is convex
closed for every x ∈ X. Define dL(x, y) = sup

{
|�♦φ�(x) − �♦φ�(y)|, φ ∈ �Lμ

}
.

Then dL(x, y)=d
TV
H (α(x), α(y)).

Proof. The proof exploits a result about convex closed sets from functional anal-
ysis [19, §8.4] and the denseness property of �Lμ (Theorem 4) in the sup-norm.

The definition of a behavioral metric for PNTS’s based on the TV-metric on
D(X) appears to be novel and seems worth of further investigation. Indeed the

6 Technically, d is a pseudo-metric as states x �= y with d(x, y) = 0 are admitted. The
function d becomes an authentic metric on the state space quotiented by ker(d).

7 Many natural metrics on D(X) exist. E.g., any norm on Rn (cf. Convention 1)
induces a metric on D(X). Since Rn is finite dimensional, they all induce the same
topology. The sup-norm on Rn (cf. Theorem 4) induces the total variation metric
T (μ, ν) = maxx{|μ(x) − ν(x|} [16,19].
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TV-metric is well known in probability theory and has important applications
in statistics. Furthermore, it is natural to interpret dL(x, y) as a value related
to the probability of distinguishing between x and y in a one-shot experiment
φ, modeled by the formula ♦φ (“push the button” once and perform experiment
φ). We plan to investigate this viewpoint, and the possible relations with the
(information-theoretic) one-shot attack models of [5], in future research.

5 Algebraic Aspects of UE-Bisimilarity

As discussed in Section 4, the transition map α : X → PccD(X) of a PccD-
coalgebra (X,α) can be equivalently presented as the function transformer ♦α :
(X→R)→ (X→R) defined as in Equation 1. Clearly, not all transformers F of
this type can be representations of PccD-coalgebras (e.g., F (x !→ 0)= x !→ 1).
The following theorem, based on a type of Riesz representation theorem for con-
vex closed sets from functional analysis [14], provides a precise characterization
of those function transformers F that arise from PccD-coalgebra.

Theorem 6. Let (X,α) be a PccD-coalgebra. Denote with 0 and + the point-
wise order and sum of the vector space X → R, respectively, and with λ( )
the operation of multiplication by scalars. The function transformer ♦α satisfies
the following properties: • (monotone) if f 0 g then ♦αf 0 ♦αg, • (♦α(1) is
Boolean) ♦(x !→ 1) ∈X→{0, 1}, • (sublinear) ♦α(f + g) 0 ♦α(f) + ♦α(g), •
(positive affine homogenous) ♦α(λ1f+λ21) = λ1♦α(f)+λ2♦α(1), for all λ1 ≥ 0
and λ2 ∈ R. Furthermore, every function transformer F : (X→R)→ (X→R)
with these properties arise as F =♦α from a unique PccD-coalgebra (X,α).

The theorem can be generalized to the setting described in Remark 5. In a follow-
up of this paper it will be shown how, on the basis of this result, it is possible to
develop an algebraic account of PccD-coalgebras in the form of a correspondence
between PccD-coalgebras and certain types of algebras (with a rich vector space
structure resembling that of the function space X→R). We expect this result
will be of help in designing compositional verification methods for PNTS’s based
on equational reasoning and axiomatizations of R-valued logics for PNTS’s.

We conclude this section by stating a result of central importance for the
practical applicability of UE-bisimilarity in programming languages which can
be proved by means of standard process-algebra techniques (see, e.g., [7, §3]).

Theorem 7. UE-bisimilarity is a congruence relation for all process algebras
specified by the probabilistic-nondeterministic PGSOS format of [2].
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Abstract. Bialgebras and Frobenius algebras are different ways in
which monoids and comonoids interact as part of the same theory. Such
theories feature in many fields: e.g. quantum computing, compositional
semantics of concurrency, network algebra and component-based pro-
gramming.

In this paper we study an important sub-theory of Coecke and Dun-
can’s ZX-calculus, related to strongly-complementary observables, where
two Frobenius algebras interact. We characterize its free model as a cat-
egory of Z2-vector subspaces. Moreover, we use the framework of PROPs
to exhibit the modular structure of its algebra via a universal construc-
tion involving span and cospan categories of Z2-matrices and distributive
laws between PROPs. Our approach demonstrates that the Frobenius
structures result from the interaction of bialgebras.

1 Introduction

We report on a surprising meeting point between two separate threads of re-
search. First, Coecke and Duncan [9] introduced the ZX-calculus as a graphical
formalism for multi-qubit systems, featuring two interacting separable Frobenius
algebras, which we distinguish here graphically via white and black colouring.
The following equations capture the interaction for an important fragment of
the calculus related to strongly complementary observables [10]:

= = =

= = id0 =

The aforementioned and related works (see e.g. [11]) emphasise the interaction
of two different (here, white and black) Frobenius structures. As we will explain,
from an algebraic point of view, it is natural to consider this system as two
(anti-separable) bialgebras interacting via two distributive laws of PROPs. We
will show that the individual Frobenius structures arise as a result of these
interactions. Consequently, we call the theory above interacting bialgebras, and
the corresponding (free) PROP IB.
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Second, following the work of Katis, Sabadini, Walters and others on the
Span(Graph) algebra [13] of transition systems, the second author introduced
the calculus of Petri nets with boundaries [21] and commenced the study of
the resulting structures in [22]. That calculus and extensions in [5, 6] are based
on the the algebra of stateless connectors [4] of Bruni, Lanese and Montanari,
also generated by two monoid-comonoid structures—which again, for sake of
uniformity we will refer to as black and white.

Intuitively, in [4] a connector n→ m has n ports on the left boundary and m
ports on the right boundary. A black connector forces synchronization on all its
ports, while a white one allows only two ports on opposite boundaries to syn-
chronize. The semantics of connectors n → m are relations {0, 1}n → {0, 1}m.
For example, the black multiplication 2→ 1 is the relation {(00, 0), (11, 1)} while
the white multiplication is the relation {(00, 0), (01, 1), (10, 1)}. The black struc-
ture (the semantics of comultiplication is the opposite relation) is a Frobenius
algebra. The white structure is not Frobenius, but it becomes so if one adds
the behaviour (11, 0) to the semantics of the white multiplication, making it the
graph of addition1 in Z2. The resulting theory satisfies the equations of IB.

The meeting point of the two, seemingly disparate, threads is thus the PROP
IB. Before accounting for other related work, we outline our contributions.

– We characterise IB as the PROP SV of Z2-sub-vector spaces: the arrows
n→ m are sub-vector spaces of Zn

2 × Zm
2 , with relational composition.

– We use Lack’s framework of distributive laws on PROPs [15] to exhibit the
modularity of this theory. The starting point is Lafont’s observation [16,
Theorem 5] that the theory of anti-separable bialgebras AB is precisely the
PROPMatZ2 of Z2-matrices. MatZ2 can be composed with its dual MatZ2

op

via a distributive law given by pullback: the result of this composition is
Span(MatZ2), the PROP of spans over MatZ2. Dually, Cospan(MatZ2) arises
from the distributive law of MatZ2

op over MatZ2 given by pushout. The
theories of Span(MatZ2) and Cospan(MatZ2) are actually the same “up-to
exchanging the colours”: they are the theory of IB, but without the separabil-
ity equation on precisely one of the white or black structures. We call them,
respectively, IB−w and IB−b. We prove that the top and bottom faces in the
cube below are pushout diagrams in the category of PROPs: the isomorphism
between IB and SV then follows from the universal property.

AB+ ABop

∼=

��

�������
�����

�� IB−w

�����
���

∼=
��

IB−b ��

∼=
��

IB

��
MatZ2 +MatZ2

op

��������
�� Span(MatZ2)

������
�

Cospan(MatZ2) �� SV

(�)

1 This works if one takes the graph of addition in any abelian group, which was pointed
out to the second author by RFC Walters.
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The mapping IB→ SV gives a semantics for IB: it can be presented in induc-
tive form, yielding a simple technique for checking term equality in IB.

From a mathematical point of view, the results in this paper are a continu-
ation of the programme initiated by Lack in [15]. In particular, our focus is on
systematically extracting from distributive laws (a) complete axiomatisations
and (b) factorisation systems for theories. Recent work on capturing algebraic
theories using similar techniques includes [12] and [22].

Frobenius algebras [8, 14] have received much attention in topology, physics,
algebra and computer science, partly because of the close correspondence with
2D TQFTs. The algebras we consider are the result of the research initiated by
Abramsky and Coecke [1] on applying graphical techniques associated with alge-
bras of monoidal categories [20] to model and reason about quantum protocols.

Related monoid-comonoid structures have been studied by computer scien-
tists: amongst several the connectors in network algebra [23] and the wiring
operations of REO [2]. Another closely related thread is Lafont’s work on the
algebraic theory of Boolean circuits [16], following the ideas of Burroni [7].

Structure of the paper. In §2 we recall the background on PROPs. In §3 we
introduce the PROP IB and consider some of its properties. In §4 we recall the
theory of anti-separable bialgebras and the characterisation of its free model
as MatZ2. In §5 we give the details of the two distributive laws that yield
Span(MatZ2) and Cospan(MatZ2) and their elementary presentations as the free
PROPs IB−w and IB−b. In §6 we collect our results to construct the cube (�).

Notation. Composition of arrows f : a→ b, g : b→ c is denoted by f ; g : a→ c.
C[a, b] is the set of arrows from a to b in a small category C and f� ∈ Cop[b, a] is
the contravariant counterpart of f ∈ C[a, b]. Given F : C1 → C2, we denote with

Fop : Cop
1 → C

op
2 the functor defined by (a

f−→ b) !→ (a
F(f�)�−−−−→ b).

2 Background

In this section we recall PROPs and their composition.

2.1 PROPs and Symmetric Monoidal Theories

Let P be the skeletal symmetric strict monoidal category of finite sets and bijec-
tions. It is harmless to take the naturals N = {0, 1, 2, . . .} as the objects, where
n ∈ N stands for the finite set {0, 1, n − 1}. The tensor product on objects is
n+m. On arrows, given f : n→ n and g : m→ m, f⊗g = f+g : n+m→ n+m
where + is ordinal sum.

Our exposition is founded on symmetric strict monoidal categories called
PROPs (product and permutation categories [15, 17]). They have N as the
set of objects and the tensor product on objects is addition. Any PROP T con-
tains certain arrows called permutations, which yield the symmetric monoidal
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structure and satisfy the same equations as they do in P—i.e. there is a identity-
on-objects symmetric strict (ISS) monoidal functor from P to T. P is actually
the initial object in PROP, the category of PROPs and their homomorphisms :
ISS monoidal functors that are homomorphic w.r.t. the permutations. In fact,
PROP is the slice category P/PRO where PRO is the category of symmetric
strict monoidal categories that have N as set of objects and ISS functors. The
fact that PROP is a slice category is vital: e.g. when we calculate the coproduct
of two PROPs we must equate the images of the permutations via the injections
(coproducts in a slice category are pushouts in the underlying category).

PROPs can encode (one-sorted) symmetric monoidal theories, that are equa-
tional theories at the level of abstraction of symmetric monoidal categories. A
symmetric monoidal theory (SMT) is a pair (Σ,E) where Σ is a signature with
elements o : n→ m. Here o is an operation symbol with arity n and coarity m.
The Σ-terms are built by composing operations in Σ, subject to laws of sym-
metric monoidal categories. The set E consists of equations between Σ-terms.

The free PROP T(Σ,E) on the theory (Σ,E) is defined by letting T(Σ,E)[n,m]
be the set of Σ-terms with arity n and coarity m quotiented by E. When Σ is
clear from the context, we will usually refer to terms of a SMT as circuits.

As PROPs describe equational theories, they come equipped with a notion of
model: given a PROP T and a symmetric monoidal category V, a T-algebra in
V is any symmetric monoidal functor A : T → V. On objects, A is determined
by the assignment A(1), since A(n) ∼= A(1)⊗n for any n ∈ N. The intuition
is that A(1) is the support carrying the structure specified by T. As expected,
if the PROP T is free on a SMT (Σ,E), then its algebras have a universal
characterization in terms of the models of (Σ,E) [12, 18].

Next we recall two important examples of SMTs: commutative monoids, com-
mutative comonoids and the corresponding free PROPs.

The theory (ΣM , EM ) of commutative monoids has two op-
eration symbols in ΣM - multiplication and unit - for which
we adopt the graphical notation on the right.
The left diagram represents the multiplication operation m : 2 → 1: the two

ports on the left boundary of the box represent the arity of m, whereas the
single port on the right boundary encodes the coarity of m. Similarly, the right
diagram depicts the unit operation u : 0 → 1. ΣM -terms are built out of those
two components, plus the permutation ( ) and identity ( ) circuits, by
sequential (;) and parallel (⊗) composition. The set EM expresses the following
equations, stating associativity (M1), commutativity (M2) and identity (M3).

= (M1) = (M2) = (M3)

The free PROP on (ΣM , EM ) is isomorphic to the skeletal symmetric strict
monoidal category F of finite sets and functions. Indeed, the graph of a function
f : n→ m can be represented as a ΣM -term: the equations (M1)-(M3) guarantee
that this is a bijective representation. Consequently, an F-algebra A : F → V is
precisely a commutative monoid in V with carrier A(1).
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Fop is also a PROP, which is free for the theory (ΣC , EC)
of commutative comonoids. As Fop is the opposite of F, the
operations in ΣC (called comultiplication and counit, on the
right) and the equations in EC are those of EM “rotated by 180◦”.

2.2 Composing PROPs

Given SMTs (Σ,E) and (Σ′, E′), one can define their sum as the theory (Σ �
Σ′, E�E′). Usually one quotients the sum by new equations, describing the way
in which the operations in Σ and Σ′ interact. Both our leading examples of this
construction are quotients of the sum of the theories of monoid and comonoids:

– the theory of (commutative/cocommutative) bialgebras is given as (ΣM �
ΣC , EM � EC �B), where B consists of the following equations.

= (B1) = (B3)

= (B2) = id0 (B4)

– The theory of Frobenius algebras is given as (ΣM �ΣC , EM �EC �F ), where
F consists of the following two equations.

= = (Frob)

(Frob) states that circuits are invariant with respect to any topological de-
formation of their internal structure, provided that the link configuration
between the ports is preserved. The theory of separable Frobenius algebras
(SFAs) is given by adding to F the following equation.

= (Sep)

Just as SFAs and bialgebras express different ways of combining a monoid and
a comonoid, their free PROPs can be equivalently described as different ways
of “composing” the PROPs F and Fop . As we will see, this composition exactly
amounts to the sum of the two SMTs quotiented by new equations.

To make this precise, we recall from [15] how PROP composition is defined in
terms of distributive laws between monads. As shown in [24], the whole theory
of monads can be developed in an arbitrary bicategory. Of particular interest
are monads in the bicategory Span(Set), as they exactly correspond to small
categories. A distributive law between two such monads can be seen as a way of
forming the composite of the associated categories (with the same objects) [19].
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In an analogous way, a PROP can be represented as a monad in a certain
bicategory [15] and any two PROPs T1 and T2 can be composed via a distributive
law λ : T2 ; T1 → T1 ; T2 between the associated monads, provided that λ
“respects” the monoidal structure [15].

Remark 1. The monad T1 ; T2 yields a PROP with the following properties [15]:

(†) any arrow f ∈ T1 ; T2[n,m] can be factorised into f ′ ∈ T1[n, z] and f
′′ ∈

T2[z,m], for some z ∈ N;
(‡) a T1 ; T2-algebra A : T1 ; T2 → V gives A(1) the structure of a T1-algebra

and a T2-algebra, subject to the equations induced by the distributive law.

We provide an example of this construction and refer to [15] for further details.

Example 1. Let us consider what it means to define the composite PROP Fop ; F
via a distributive law λ : F ; Fop → Fop ; F. By its type, λ should map a pair
of arrows f ∈ F[n, z], g ∈ Fop [z,m] into a pair g′ ∈ Fop [n, z], f ′ ∈ F[z,m]. This

amounts to saying that λ maps cospans n
f−→ z

g�

←− m into spans n
g′�
←−− z

f ′
−→ m

in F: a canonical way to define such a mapping is by forming the pullback of
the given cospan. This indeed makes λ satisfy the equations of distributive laws
[15]. The resulting PROP Fop ; F is the category of spans on F, obtained by
identifying the isomorphic 1-cells of the bicategory Span(F) and forgetting the
2-cells. With a slight abuse of notation, we call this category Span(F).

The SMT of Span(F) is the sum of the theories of the composed categories
F and Fop, quotiented by the equations induced by the distributive law. Those
equations can be obtained by interpreting the pullbacks defining λ in a generic
algebra A : Span(F)→ V. In this case, it suffices to consider four pullbacks [15].
One of them is depicted on the left, and its image in V is depicted on the right.

1

2

�������� 0

�

��������

0�

��������
��

id0

��������

A(1) A( )

�����
���

A(2)

A( ) 								

A( )
�����

��� A(0)

A(0) id0

								

Since and originally belong to the Fop-algebra structure, what is in-
terpreted is their contravariant counterpart. Commutativity of the right-hand
diagram is implied by Span(F) being a composite PROP [15] and it yields the
equation (B1). The remaining three pullbacks to be considered yield (B2), (B3)
and (B4). Therefore imposing the equations induced by λ correspond precisely
to quotienting the monoidal and comonoidal structure of A(1) by the bialgebra
equations. It follows that Span(F) is the free PROP on the theory of bialgebras.

We now focus on the dual situation: one can define the PROP F ; Fop via a
distributive law λ′ : Fop ; F→ F ; Fop that forms the pushout of a given span. It
follows that F ; Fop is the category Cospan(F), obtained from the corresponding
bicategory of cospans, analogously to the case of Fop ; F and Span(F). One
obtains the equations given by λ′ by interpreting pushout diagrams, analogously
to what we showed for λ. Those correspond to (Frob) and (Sep) [15], meaning
that Cospan(F) is the free PROP on the theory of SFAs.
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3 Interacting Bialgebras

In this section we present a fragment of the ZX-calculus [9] that we call IB. We
define it as the free PROP on the SMT of interacting bialgebras (below) and
we state that it is isomorphic to the PROP SV of Z2 vector subspaces. The
remainder of the paper is a modular proof of this fact.

Definition 1. The SMT of interacting bialgebras (ΣIB, EIB) consists of a sig-
nature ΣIB with two copies each of the theory of monoids and of comonoids.
In order to distinguish them, we colour one monoid/comonoid white, the other
black. We will informally refer to them as the white and the black structures.

The set EIB of equations consists of:

– the equations making both the white and the black structures SFAs;
– bialgebra equations for the white monoid and the black comonoid;

= (Q1)

= (Q2)

= (Q3)

= id0 (Q4)

– the following two equations, expressing the equivalence between the white and
the black (self-dual) compact closed structure.

= (Q5) = (Q6)

Remark 2. The given axiomatization enjoys the following properties.

(a) “Rotating any equation by 180◦” is sound.
(b) All equations (and thus all derived laws) are completely symmetric up-to

swapping of white and black structures.
(c) IB satisfies the following “anti-separability” law expressing the fact that the

white and the black structure cancel each other.

= (ASep)

(d) IB satisfies the “quasi-Frobenius” law below relating the black and white
structures. This, together with the Frobenius black and white structures,
amounts to saying that “only the topology matters”.

= (QFrob)
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(e) IB has all the “zero laws”, expressing that the only circuit with no ports is
id0: they are (Q4), (Q4) “rotated by 180◦” — cf. (a) — and the following.

= id0 (Zerow) = id0 (Zerob)

Definition 2. Let SV be the following PROP:

– arrows n→ m are subspaces of Zn
2 × Zm

2 (considered as a Z2-vector space).

– The composition ; is relational: for subspaces G = {(u, v) |u ∈ Zn
2 , v ∈ Zz

2}
and H = {(v, w) | v ∈ Zz

2, w ∈ Zm
2 }, their composition is the subspace

{(u,w) | ∃v.(u, v) ∈ G ∧ (v, w) ∈ H}.
– The tensor product ⊗ on arrows is given by direct sum of spaces.

– The permutations n→ n are induced by bijections of finite sets: to ρ :n→ n
we associate the subspace generated by {(1i, 1ρi)}i<n where 1k stands for the
binary n-vector with 1 at the k+1th coordinate and 0s elsewhere. For instance

the twist 2→ 2 is the subspace generated by {(
(
1
0

)
,

(
0
1

)
) , (

(
0
1

)
,

(
1
0

)
)}.

We now introduce a semantics homomorphism SIB : IB → SV that we will later
prove to be an iso. Even if SIB is not necessary for proving IB ∼= SV, we present
it as a valuable tool to reason about the equivalence of circuits in IB.

Definition 3. Let [v1, . . . , vn] denote the space generated by the vectors v1 . . . vn.
The homomorphism SIB : IB→ SV is inductively defined. For the monoids:

!−→ [(

(
1
1

)
,
(
1
)
)] !−→ [(

(
0
1

)
,
(
1
)
), (

(
1
0

)
,
(
1
)
)]

!−→ [() ,
(
1
)
] !−→ [() ,

(
0
)
]

For the comonoids: take the reverse relations of the ones above; for composite
circuits: s⊗ t !→ SIB(s)⊗ SIB(t) and s ; t !→ SIB(s) ; SIB(t).

The homomorphism is well-defined since all the equations of IB are sound
w.r.t. SIB, namely if s = t then SIB(s) = SIB(t). The following theorem guarantees
that the axiomatization is also complete.

Theorem 1. SIB : IB→ SV is an isomorphism of PROPs.

Remark 3. The asymmetry between the black and the white structure in Defi-
nition 3 is forced on us because SIB will be uniquely determined by the universal
property of pushouts in PROP. Yet, strikingly, the axioms of IB describes two
algebraic structures—the white and the black—in a completely symmetric way.

In the sequel, we are going to prove Theorem 1 by exploiting PROP composi-
tion, as described in Section 2.2. While a more direct proof might be given, our
argument reveals the modular structures underlying IB and SV.
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4 Bialgebras and Vector Spaces

In this section we lay the foundations for our approach, by considering the SMT
{ΣAB, EAB} of anti-separable bialgebras. The set ΣAB consists of operations ,

, and . The set EAB contains the equations making the black struc-
ture a commutative comonoid, the white structure a commutative monoid, bial-
gebra equations (Q1)-(Q4) and (ASep). In short, an anti-separable bialgebra is
just a bialgebra quotiented by (ASep)2. We call its free PROP AB .

By virtue of Remark 2.(b)-(c), IB contains both a copy of AB and of ABop .
These describe the interaction between the black and white structures of IB.

Remark 4. As the free PROP for bialgebras is the composite Span(F ) = Fop ;
F (cf. Example 1), AB enjoys the decomposition of Remark 1.(†): any circuit
t ∈ AB[n,m] can be factorised as s ; s′ ∈ AB[n,m], where s ∈ Fop [n, z] is part
of the black comonoid and s′ ∈ F[z,m] is part of the white monoid. Moreover,
by (ASep), we can assume that any port on the left boundary has at most one
connection with any one on the right boundary.

We say that any circuit s ; s′ of the above shape is in matrix form: indeed, it
has an intuitive representation as a matrix, as shown by the following example.

Example 2. The picture on the left shows a circuit t ∈ AB[3, 4] in matrix form
and on the right its representation as a 4× 3 matrix.

M =

⎛⎜⎜⎝
1 0 0
1 0 0
1 1 0
0 0 0

⎞⎟⎟⎠
The values in M are calculated as follows. For each boundary of t, suppose

a top-down enumeration of its ports. Then M [i, j] is 1 if, reading the circuit
from the left to the right, one finds a path connecting the jth port on the left
boundary to the ith port on the right, and 0 otherwise.

We now make the matrix semantics of AB formal. Let MatZ2 be the PROP with
arrows n → m being m × n Z2-matrices, where ; is matrix multiplication and
⊗ is defined in the obvious way. The permutations are the rearrangements of
the rows of the identity matrix. Clearly, MatZ2 is equivalent to the symmetric
monoidal category of finite-dimensional Z2-vector spaces and linear maps.

Definition 4. The homomorphism SAB : AB→ MatZ2 is defined inductively by

!→ ! !→ ¡ !→
(
1 1
)

!→
(
1
1

)

s⊗ t !→ SAB(s)⊗ SAB(t) s ; t !→ SAB(s) ; SAB(t)

where ! : 0→ 1 and ¡ : 1→ 0 are the arrows given by initiality and finality of 0.
It can be checked that SAB is well defined, as it respects the equations of AB.

2 We can consider this as Hopf algebra with a trivial antipode.
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Theorem 2 ([16]). SAB : AB→ MatZ2 is an isomorphism of PROPs.

Proof. Any circuit t is equivalent to one t′ in matrix form (cf. Remark 4), whose
matrix SAB(t

′) can be computed as in Example 2. In fact the encoding of Example
2 is a 1-1 correspondence between matrices and circuits. Then SAB is full and
faithful and (as AB and MatZ2 have the same objects) thus an isomorphism. ��

Remark 5. Observe that SAB maps the circuits and to the same
matrix, meaning that equation (ASep) is necessary to establish Theorem 2. On
the other hand, the theory of bialgebras with (Sep) in place of (ASep) would
yield as free PROP the one of finite sets and relations [3]. The intuition is that
in the realm of Z2-vector spaces a sum v+ v of a vector with itself is equal to 0,
whereas for matrices representing relations + is idempotent, i.e., v + v = v.

5 Composing Bialgebras

The PROPs AB and ABop only describe the interaction between the white and
black structures in IB. We now study their composition, so that the interaction
between the two white and the two black structures may also be observed.

5.1 Cospans

First we obtain the PROP Cospan(MatZ2) via a distributive law λpo : MatZ2
op ;

MatZ2 → MatZ2 ; MatZ2
op that maps a span in MatZ2 into its pushout (cf.

Example 1). The conclusion of Theorem 2 and the factorisation of circuits in AB

(Remark 4) allow us to understand λpo as transforming circuits:

λpo (1)

By Remark 1.(‡), a Cospan(MatZ2)-algebra will consist of an AB-algebra, an
ABop-algebra and equations between them, given by pushouts of spans in AB.
A free characterization of Cospan(MatZ2) can be then given by calculating (in
MatZ2) those pushouts. Analogously to the case of Cospan(F), it suffices to
consider merely the few cases that we list below.

1
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The diagrams of the first row yield (Q5) and (Q6) and Frobenius equations for
the black structure. The second row implies that the white structure is a SFA.

Therefore, the interaction between AB and ABop encoded by λpo has the effect
of adding Frobenius structure to Cospan(MatZ2). In fact, all equations of the the-
ory of interacting bialgebras are covered, with the notable exception of the equa-
tion (Sep) for the black structure, which we denote with (Sepb). Indeed, the two
sides of (Sepb), and , denote different cospans in MatZ2:

1

⎛
⎝1
1

⎞
⎠
�� 2 1

⎛
⎝1
1

⎞
⎠

�

�� �= 1

(
1
)
�� 1 1.

(
1
)�

��

We call IB−b the free PROP for the theory of interacting bialgebras minus the
equation (Sepb). Of the properties in Remark 2, (a), (c) and (d) also hold for
IB−b, whereas (b) does not hold because (Sepb) is missing. Concerning property
(e), (Zerow) does not hold in IB−b, as its proof requires (Sepb). Symmetrically,
(Zerob) is derivable, as IB

−b has the white separability equation (Sepw).

Theorem 3. Cospan(MatZ2) ∼= IB−b.

As a result, IB−b enjoys the properties of composite PROPs. In particular, by
Remark 1.(†) we have the following factorisation, where τ1 : AB → IB−b and
τ2 : AB

op → IB−b denote the obvious inclusion maps.

Corollary 1 (Factorisation). For every circuit t ∈ IB−b[n,m], there exist
z ∈ N, t1 ∈ AB[n, z] and t2 ∈ ABop [z,m] such that t = τ1(t1) ; τ2(t2).

The decomposition of Corollary 1 is the one given in the right-hand side of (1).

Remark 6. The distributive laws for spans and cospans of finite sets [15] deter-
mine factorisation systems unique up-to “internal” permutation: i.e. if t factorises
as t1 ; t2 and t′1 ; t′2 then there exists a permutation p such that t1 = t′1 ; p and
p ; t2 = t′2. The factorisation system of Corollary 1 is strictly weaker, being up-to
“internal” isomorphism in MatZ2. These are all the invertible Z2-matrices, not
merely the permutations in MatZ2. For instance, the two rightmost diagrams in
the first row of (2) give different (but isomorphic) decompositions of .

In order to make the isomorphism between IB−b and Cospan(MatZ2) explicit,
we define a semantics homomorphism SIB−b : IB−b → Cospan(MatZ2) extending
that of AB on MatZ2. It is defined inductively on circuits t in IB−b as follows3:

t !→

⎧⎪⎪⎨⎪⎪⎩
κ1(SAB(t)) if t ∈ ΣAB

κ2(S
op
AB

(t)) if t ∈ ΣABop

SIB−b(t1) ; SIB−b(t2) if t = t1 ; t2
SIB−b(t1)⊗ SIB−b(t2) if t = t1 ⊗ t2

where κ1 : MatZ2 → Cospan(MatZ2) and κ2 : MatZ2
op → Cospan(MatZ2) are

the canonical injections mapping f ∈ MatZ2[n,m] and g ∈ MatZ2
op [n,m] in

3 For the base cases, recall that the signature ΣIB−b of IB−b is that of ΣAB �ΣABop .
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n
f−→ m

id←− m and n
id−→ n

g�

←− m, respectively. The semantics is well-defined as
all the equations of IB−b are sound w.r.t. SIB−b .

Lemma 1. SIB−b : IB−b → Cospan(MatZ2) is an isomorphism of PROPs.

Proof. By Corollary 1, any circuit of IB−b factorises as a cospan n
t1−→ z

t�2←− m
in AB. The statement then follows by Theorem 2.

5.2 Spans

Dually, a distributive law λpb : MatZ2 ; MatZ2
op → MatZ2

op ; MatZ2 given
by pullback yields a composite PROP Span(MatZ2) = MatZ2

op ; MatZ2. The
algebraic characterization of Span(MatZ2) follows the same steps as the one of
Cospan(MatZ2), albeit with the white and black structures swapped.

More formally, let IB−w be the free PROP on the theory of interacting bial-
gebras without the white separability equation (Sepw). We define a semantics
homomorphism SIB−w : IB−w → Span(MatZ2) by induction on circuits t of IB−w:

t !→

⎧⎪⎪⎨⎪⎪⎩
ι1(SAB(t)) if t ∈ ΣAB

ι2(S
op
AB

(t)) if t ∈ ΣABop

SIB−w(t1) ; SIB−w (t2) if t = t1 ; t2
SIB−w(t1)⊗ SIB−w(t2) if t = t1 ⊗ t2

where ι1 : MatZ2 → Span(MatZ2) and ι2 : MatZ2
op → Span(MatZ2) are the

canonical injections mapping f ∈ MatZ2[n,m] and g ∈ MatZ2
op [n,m] in n

id←−
n

f−→ m and n
g�

←− m
id−→ m, respectively.

Lemma 2. SIB−w : IB−w → Span(MatZ2) is an isomorphism of PROPs.

Proof. The proof relies on the transpose homomorphism ξ : MatZ2 → MatZ2
op

mapping matrices to their transposes. This can be equivalently defined for the
circuits in AB: taking the transpose of a circuit means to take its photographic
negative, that is swapping of black and white structures. We call this homomor-
phism ν : AB → ABop . Both ξ and ν are full and faithful and they can be ex-
tended to full and faithful homomorphisms ξ′ : Cospan(MatZ2)→ Span(MatZ2)
and ν′ : IB−w → IB−b. By a simple inductive argument, it holds that SIB−w = ν′ ;
SIB−b ; ξ′ and therefore SIB−w is full and faithful. Since IB−w and Span(MatZ2)
have the same objects, SIB−w is thus an isomorphism of PROPs. ��

As evident from the above, IB−w ∼= IB−b and Cospan(MatZ2) ∼= Span(MatZ2)
(by self-duality of MatZ2). This observation gives a straightforward proof that
IB−w ∼= Span(MatZ2). However, our explicit characterization via SIB−w is in-
strumental in the construction of the next section.

6 The Cube

We now have all the ingredients in order to construct the diagram (�) discussed
in the Introduction and to prove Theorem 1.
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The backward faces. By definitions of SIB−w and SIB−b , the following diagram
commutes, where σ1 : AB→ IB−w and σ2 : AB

op → IB−w are inclusions.

IB−b

S
IB−b

��

AB+ ABop[τ1,τ2]��

SAB+S
op
AB

��

[σ1,σ2] �� IB−w

S
IB−w

��
Cospan(MatZ2) MatZ2 +MatZ2

op

[ι1,ι2]
��

[κ1,κ2]
�� Span(MatZ2)

(Back)

The bottom face. Given a span n
f←− z

g−→ m and a cospan n
p−→ z

q←− m, we define

ϕ(f, g) = {(u, v) | ∃x ∈ Zz
2. fx = u, gx = v} ψ(p, q) = {(u, v) | pu = qv}.

It is easy to show that ϕ and ψ are homomorphisms and that the diagram

MatZ2 +MatZ2
op

[κ1,κ2]

��

[ι1,ι2] �� Span(MatZ2)

ϕ

��
Cospan(MatZ2)

ψ
�� SV

(Bottom)

commutes. It is straightforward to verify that it is a pushout in PROP.

The top face. Take Sepw : IB−w → IB and Sepb : IB
−b → IB to be the homomor-

phisms quotienting the arrows in IB−w and IB−b w.r.t. the equations (Sepw) and
(Sepb), respectively. It is immediate to see that the following diagram commutes.

AB+ ABop

[τ1,τ2]
��

[σ1,σ2] �� IB−w

Sepw

��
IB−b

Sepb

�� IB

(Top)

To see that (Top) is a pushout, take any α : IB−w → C ← IB−b : β such that
[σ1, σ2] ; α = [τ1, τ2] ; β. The mediating homomorphism χ : IB → C is defined
inductively on circuits t in IB as follows:

t !→

⎧⎪⎪⎨⎪⎪⎩
α(σ1(t)) = β(τ1(t)) if t ∈ ΣAB

α(σ2(t)) = β(τ2(t)) if t ∈ ΣABop

χ(t1) ; χ(t2) if t = t1 ; t2
χ(t1)⊗ χ(t2) if t = t1 ⊗ t2

(3)

This is well-defined as all equations of IB hold in either IB−w or in IB−b.
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The front faces. By commutativity of (Back) and (Bottom), the universal prop-
erty of (Top) induces an homomorphismmaking the following diagram commute.

IB−b

S
IB−b

��

Sepb �� IB

��

IB−w

S
IB−w

��

Sepw��

Cospan(MatZ2)
ψ

�� SV Span(MatZ2)ϕ
��

(Front)

This homomorphism is defined as in (3). By induction, one can show that this
is exactly SIB in Definition 3. Fullness and faithfulness follow from fullness and
faithfulness of the other semantics homomorphisms and from the fact that (Top)
and (Bottom) are pushouts.

7 Conclusions

We have studied the theory of interacting bialgebras IB which is relevant for both
categorical quantum computing [9–11] and compositional models of concurrent
systems [4, 5, 21]. We have shown that the PROP SV of Z2 sub-vector spaces
freely characterizes IB and provided an inductive semantics which is useful for
reasoning about equality of circuits in IB.

Most importantly, we have exhibited the modular structure of IB. The theory
of antiseparable bialgebrasAB—freely characterized by MatZ2, the PROP of Z2-
matrices—can be composed with its dual ABop in two different ways, resulting
in two different, albeit isomorphic theories: IB−w and IB−b. These have the
same equations as IB but without the white and the black separability axioms,
respectively. The former is freely characterized by Span(MatZ2) and the latter
by Cospan(MatZ2). Finally, by gluing IB−b and IB−w we obtain IB and, by
gluing Span(MatZ2) and Cospan(MatZ2), we arrive at SV.

In fact, a similar story can be told in the simpler setting of the theory of
monoids and F (the PROP of functions) in place of AB and MatZ2. Following
essentially the same script, one obtains in place of IB−w and IB−b the theory of
bialgebras and the theory of SFAs, as shown in [15]. Instead of SV, one gets the
PROP of equivalence relations over finite sets and, in place of IB, the gluing of
the theories of bialgebras and SFAs which, as shown in [3], can be presented by
the equations (Frob), (Sep) and (B4).

It is thus natural to ask whether this general pattern reoccurs in other settings.
For example, we are interested in sets and relations with contention which, as
shown in [22], are structures underlying the compositional semantics of C/E Petri
nets. We are confident that, following the work of Lafont [16], our results can
be generalized to vector spaces over arbitrary fields. Following in this direction,
one could take aim at the ZX-calculus in its entirety.

Acknowledgment. The first and third author acknowledge support by project
ANR 12IS02001 PACE.
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ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)

10. Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and
non-locality in categorical quantum mechanics. In: LiCS 2012, pp. 245–254 (2012)

11. Coecke, B., Kissinger, A.: Interacting Frobenius algebras and the structure of mul-
tipartite entaglement. Technical Report PGR-RR-09-12, Oxford (2009)

12. Fiore, M., Devesas Campos, M.: The algebra of directed acyclic graphs. In: Coecke,
B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games and Quantum
Foundations. LNCS, vol. 7860, pp. 37–51. Springer, Heidelberg (2013)

13. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): A Categorical algebra of
transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–
321. Springer, Heidelberg (1997)

14. Kock, J.: Frobenius algebras and 2D topological quantum field theories. CUP
(2003)

15. Lack, S.: Composing PROPs. Theor. App. Categories 13(9), 147–163 (2004)
16. Lafont, Y.: Towards an algebraic theory of boolean circuits. J. Pure Appl. Alg. 184,

257–310 (2003)
17. Mac Lane, S.: Categorical algebra. Bull. Amer. Math. Soc. 71, 40–106 (1965)
18. Mac Lane, S.: Categories for the Working Mathematician. Springer (1998)
19. Rosebrugh, R., Wood, R.J.: The formal theory of monads II. J. Pure Appl. Alge-

bra 175(1), 327–353 (2002)
20. Selinger, P.: A survey of graphical languages for monoidal categories.

arXiv:0908.3347v1 [math.CT] (2009)
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Abstract. We investigate the duality between algebraic and coalgebraic recog-
nition of languages to derive a generalization of the local version of Eilenberg’s
theorem. This theorem states that the lattice of all boolean algebras of regular lan-
guages over an alphabet Σ closed under derivatives is isomorphic to the lattice of
all pseudovarieties of Σ-generated monoids. By applying our method to different
categories, we obtain three related results: one, due to Gehrke, Grigorieff and Pin,
weakens boolean algebras to distributive lattices, one due to Polák weakens them
to join-semilattices, and the last one considers vector spaces over Z2.

1 Introduction

Regular languages are precisely the behaviours of finite automata. A machine-indepen-
dent characterization of regularity is the starting point of algebraic automata theory (see
e.g. [10]): one defines recognition via preimages of monoid morphisms f ∶ Σ∗ → M ,
where M is a finite monoid, and every regular language is recognized in this way by
its syntactic monoid. A key result in this field is Eilenberg’s variety theorem, which
establishes a lattice isomorphism

varieties of regular languages ≅ pseudovarieties of monoids.

Here a variety of regular languages is a family of sets VΣ ⊆ RegΣ , where Σ ranges
over all finite alphabets and RegΣ are the regular languages over Σ, such that each VΣ
is closed under left and right derivatives1 and boolean operations (union, intersection
and complement), and moreover ⋃Σ VΣ is closed under preimages of monoid homo-
morphismsΣ∗ → Γ ∗. And a pseudovariety of monoids is a set of finite monoids closed
under finite products, submonoids and quotients (homomorphic images).

Recently Gehrke, Grigorieff and Pin [6, 7] proved a “local” version of Eilenberg’s
theorem where one works with a fixed alphabet Σ: there is a lattice isomorphism be-
tween local varieties of regular languages (sets of regular languages over Σ closed

1 Recall that the left and right derivatives of a language L ⊆ Σ∗ are the languages w−1L = {u ∶
wu ∈ L} and Lw−1 = {u ∶ uw ∈ L} for w ∈ Σ∗, respectively.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 366–380, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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under boolean operations and derivatives) and local pseudovarieties of monoids (sets of
Σ-generated finite monoids closed under quotients and subdirect products). At the heart
of this result lies the use of Stone duality to relate the boolean algebra RegΣ , equipped
with left and right derivatives, to the free Σ-generated profinite monoid.

In this paper we generalize the local Eilenberg theorem to the level of an abstract
duality of categories. Our approach is based on the observation that deterministic au-
tomata are coalgebras for the functor TΣX = � ×XΣ on sets, and that RegΣ can be
captured categorically as the rational fixpoint *TΣ of TΣ , i.e., the terminal locally fi-
nite TΣ-coalgebra [9]. The rational fixpoint *T exists more generally for every finitary
endofunctor T on a locally finitely presentable category C [1]. In this paper we work
with such a category C and its dual D̂ ≅ Cop. The functor TΣX = �×XΣ on C (where �
is a fixed C-object) has the dual endofunctor L̂ΣX = � +∐ΣX on D̂ (where � is dual
to �), so that TΣ-coalgebras correspond to L̂Σ-algebras. This already gives an equiv-
alent description of (possibly infinite) automata as algebras. However, we are mainly
interested in finite automata, and so we will work with another categoryD – a “finitary
approximation” of D̂ – and an endofunctor LΣ on D induced by L̂Σ . Finite automata
are then modeled either as TΣ-coalgebras or LΣ-algebras with finitely presentable car-
rier, shortly fp-(co)algebras. As a first approximation to the local Eilenberg theorem,
we establish a lattice isomorphism

subcoalgebras of *TΣ ≅ ideal completion of the poset of fp-quotient algebras of μLΣ

where μLΣ is LΣ’s initial algebra. This is “almost” the desired general local Eilenberg
theorem. For the classical case one takes Stone duality (C = boolean algebras, D̂ = Stone
spaces). Then D = sets, *TΣ is the boolean algebra RegΣ , LΣ = 1 +∐Σ Id on sets and
μLΣ = Σ

∗. The above isomorphism states that the boolean subalgebras of RegΣ closed
under left derivatives correspond to sets of finite quotient algebras of Σ∗ closed under
quotients and subdirect products. What is missing is the closure under right derivatives
on the coalgebra side, and quotient algebras of Σ∗ which are monoids on the algebra
side.

The final step is to prove that the above isomorphism restricts to one between local
varieties of regular languages (= subcoalgebras of *TΣ closed under right derivatives)
and local pseudovarieties of monoids. For this purpose we introduce the concept of a
bimonoid. If D is a concrete category with forgetful functor ∣ ⋅ ∣ ∶ D → Set, then a
bimonoid is a D-object A equipped with a “bilinear” monoid multiplication ○ on ∣A∣,
which means that the maps a ○ − and − ○ a carry D-morphisms for all a ∈ ∣A∣. For
example, bimonoids in D = sets, posets, join-semilattices and vector spaces over Z2

are monoids, ordered monoids, idempotent semirings and Z2-algebras (in the sense of
algebras over a field), respectively. Our General Local Eilenberg Theorem (Theorem
5.19) holds on this level of generality: if C and D are concrete categories satisfying
some natural properties, there is a lattice isomorphism

local varieties of regular languages in C ≅ local pseudovarieties of bimonoids in D.

This is the main result of our paper. By instantiating it to Stone duality (C = boolean
algebras, D̂ = Stone spaces, D = sets) we recover the “classical” local Eilenberg the-
orem. Priestley duality (C = distributive lattices, D̂ = Priestley spaces, D = posets)
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gives another result of Gehrke et. al, namely a lattice isomorphism between local lat-
tice varieties of regular languages (subsets of RegΣ closed under union, intersection
and derivatives) and local pseudovarieties of ordered monoids. Finally, by taking C =
join-semilattices and C = vector spaces over Z2, we obtain two new local Eilenberg
theorems. The first one establishes a lattice isomorphism between local semilattice va-
rieties of regular languages (subsets of RegΣ closed under union and derivatives) and
local pseudovarieties of idempotent semirings, and the second one gives an isomor-
phism between local linear varieties of regular languages (subsets of RegΣ closed
under symmetric difference and derivatives) and local pseudovarieties of Z2-algebras.

Related work. Our paper is inspired by the work of Gehrke, Grigorieff and Pin [6] who
showed that the algebraic operation of the free profinite monoid on Σ dualizes to the
derivative operations on the boolean algebra of regular languages (and similarly for the
free ordered profinite monoid on Σ). Previously, the duality between the boolean alge-
bra of regular languages and the Stone space of profinite words appeared (implicitly) in
work by Almeida [3] and was formulated by Pippenger [11] in terms of Stone duality.

A categorical approach to the duality theory of regular languages has been sug-
gested by Rhodes and Steinberg [14]. They introduce the notion of a boolean bialgebra,
which is conceptually rather different from our bimonoids, and prove the equivalence
of bialgebras and profinite semigroups. The precise connection to their work is yet to be
understood.

Another related work is Polák [12]. He considered what we treat as the example
of join-semilattices and obtained a (non-local) Eilenberg type theorem in this case. To
the best of our knowledge the local version we prove does not follow from the global
version, and so we believe that our result is new.

The origin of all the above work is, of course, Eilenberg’s theorem [4]. Later Rei-
terman [13] proved another characterization of pseudovarieties of monoids in the spirit
of Birkhoff’s classical variety theorem. Reiterman’s theorem states that any pseudova-
riety of monoids can be characterized by profinite equations (i.e., pairs of elements of a
free profinite monoid). We do not treat profinite equations in the present paper.

2 The Rational Fixpoint

The aim of this section is to recall the rational fixpoint of a functor, which provides a
coalgebraic view of the set of regular languages. As a prerequisite, we need a categorical
notion of “finite automaton”, and so we will work with categories where “finite” objects
exist and are well-behaved – viz. locally finitely presentable categories [2].

Definition 2.1. (a) An object X of a category C is finitely presentable if the hom-
functor C(X,−) ∶ C → Set is finitary (i.e., preserves filtered colimits). Let Cfp
denote the full subcategory of all finitely presentable objects of C.

(b) C is locally finitely presentable if it is cocomplete, Cfp is small up to isomorphism
and every object of C is a filtered colimit of finitely presentable objects.

(c) C is locally finitely super-presentable if it is locally finitely presentable and Cfp is
closed under finite products, subobjects (= monos) and quotients (= epis).
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Example 2.2. The categories in the table below are locally finitely super-presentable.
In each case, the finitely presentable objects are precisely the finite ones.

C objects morphisms
Set sets functions
BA boolean algebras boolean morphisms
DL01 distributive lattices with 0 and 1 lattice morphisms preserving 0 and 1
JSL0 join-semilattices with 0 semilattice morphisms preserving 0
VectZ2 vector spaces over the field Z2 linear maps
Pos partially ordered sets monotone functions

In contrast to DL01, the category of lattices is not locally finitely super-presentable: a
finitely generated lattice can have sublattices that are not finitely generated.

Definition 2.3. An endofunctor T ∶ C → C is strongly finitary if it is finitary and pre-
serves finitely presentable objects, i.e., T [Cfp] ⊆ Cfp.

Example 2.4. (a) If C is locally finitely super-presentable, then the functor

TΣ = � × Id
Σ
= � × Id × Id × . . . × Id

where Σ is a finite alphabet and � is a finitely presentable object of C is strongly
finitary. TΣ-coalgebras are deterministic automata, see e.g. [15]. Indeed, by the
universal property of the product, to give a morphism Q → TΣQ = � ×Q

Σ means
precisely to give an object Q (of states), morphisms δa ∶ Q → Q for every a ∈ Σ
(representing a-transitions) and a morphism f ∶ Q → � (representing final states).
The usual concept of a deterministic automaton (without initial states) is captured
as a coalgebra for TΣ where C = Set and � = {0,1}. An important example of a
TΣ-coalgebra is the automaton RegΣ of regular languages. Its states are the regular
languages over Σ, its transitions are

δa(L) = a
−1L for all L ∈ RegΣ and a ∈ Σ,

and the final states are precisely the languages containing the empty word ε.
(b) Analogously, consider TΣ as an endofunctor of C = BA with � = {0,1} (the two-

element boolean algebra). A coalgebra for TΣ is a deterministic automaton with
a boolean algebra structure on the state set Q. Moreover, the transition maps δa ∶
Q → Q are boolean homomorphisms, and the final states (given by the inverse
image of 1 under f ∶ Q → �) form an ultrafilter. The above automaton RegΣ is
also a TΣ-coalgebra in BA: the set of regular languages is a boolean algebra w.r.t.
the usual set-theoretic operations, left derivatives preserve these operations, and the
languages containing ε form a principal ultrafilter.

(c) Mealy automata with output object � are coalgebras for the strongly finitary functor
T = (� × Id)Σ .

(d) Nondeterministic automata in C = Set are coalgebras for the strongly finitary func-
tor TQ = � × (PfQ)Σ where Pf is the finite powerset functor and � = {0,1}.

Notation 2.5. CoalgT denotes the category of all T -coalgebras and their homomor-
phisms, andCoalgfp T denotes the full subcategory of all fp-coalgebras, i.e., coalgebras
Q→ TQ with finitely presentable carrier Q.
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Remark 2.6. If C is locally finitely presentable and T ∶ C → C is finitary, let

r ∶ *T → T (*T )

be the filtered colimit of all fp-coalgebras, i.e., the colimit of the diagram Coalgfp T ↪
CoalgT . As shown in [1], *T is a fixpoint of T , i.e. r is an isomorphism.

Definition 2.7. *T is called the rational fixpoint of T .

Example 2.8. The rational fixpoint of TΣ ∶ Set→ Set is the automaton *TΣ = RegΣ of
all regular languages over Σ, see Example 2.4(a). Analogously, the functor TΣ ∶ BA →
BA has the rational fixpoint *TΣ = RegΣ .

Definition 2.9 (see [9]). A coalgebra is called locally finitely presentable if it is a fil-
tered colimit of fp-coalgebras. Coalglfp T denotes the full subcategory of CoalgT of
all locally finitely presentable coalgebras. Hence Coalgfp T ⊆ Coalglfp T ⊆ CoalgT .

Example 2.10. A Σ-automaton in Set is locally finitely presentable iff, for every state
q, the set of all states reachable from q is finite.

Remark 2.11. (a) Recall the free completion A ↪ IndA of a small category A under
filtered colimits: it is characterized up to equivalence by the property that IndA
has filtered colimits and every functor F ∶ A → B into a category B with filtered
colimits has an essentially unique finitary extension F ∶ IndA → B. If A has finite
colimits then IndA is locally finitely presentable and (IndA)fp ≅ A. Conversely,
every locally finitely presentable category C arises in this way: C ≅ Ind(Cfp).

(b) If A is a join-semilattice then IndA is its ideal completion, see Remark 4.3.

Theorem 2.12. Let T ∶ C → C be a finitary endofunctor of a locally finitely presentable
category C.

(a) *T is the terminal object of Coalglfp T , i.e., the terminal locally finitely presentable
T -coalgebra [9].

(b) Coalglfp T is the Ind -completion of Coalgfp T .

3 The Dual of the Rational Fixpoint

At the heart of our main results lies the investigation of a duality for our categories
of interest (e.g. Stone duality for BA and Priestley duality for DL01) and the induced
algebra-coalgebra duality.

Assumptions 3.1. Throughout the rest of the paper we work with

(a) a locally finitely super-presentable category C,
(b) a dual category D̂ with an equivalence functor P ∶ D̂

≅

→ C
op, such that the category

D = Ind (Copfp)

is locally finitely super-presentable, and
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(c) a strongly finitary functor T ∶ C → C preserving monomorphisms.

Example 3.2. In our applications we will work with the automata functor T = TΣ ∶
C → C from Example 2.4 and with the following categories:

C D̂ D

BA Stone Set
DL01 Priest Pos
JSL0 JSL0 in Stone JSL0
VectZ2 VectZ2 in Stone VectZ2

(a) For the category C = BA we have the classical Stone duality: D̂ is the category
Stone of Stone spaces (i.e., compact Hausdorff spaces with a base of clopen sets)
and continuous maps. The equivalence functor P ∶ Stone → BAop assigns to each
Stone space the boolean algebra of clopen sets, and its associated equivalenceP −1 ∶
BAop

→ Stone assigns to each boolean algebra the Stone space of all ultrafilters.
Since Stone duality restricts to a dual equivalence BAop

fp ≅ Setfp, we have

D = Ind(BAop
fp) ≅ Ind(Setfp) ≅ Set.

(b) For the category C = DL01 we have the classical Priestley duality: D̂ is the category
Priest of Priestley spaces (i.e., ordered Stone spaces such that given x /≤ y there is a
clopen set containing x but not y) and continuous monotone maps. The equivalence
functor P ∶ Priest → DLop01 assigns to each Priestley space the lattice of all clopen
upsets, and its associated equivalenceP −1 ∶ DLop01 → Priest assigns to each distribu-
tive lattice the Priestley space of all prime filters. Since Priestley duality restricts to
a dual equivalence (DL01)

op
fp ≅ Posfp, we have

D = Ind((DL01)
op
fp) ≅ Ind(Posfp) ≅ Pos.

(c) For C = JSL0 the dual category D̂ is the category of join-semilattices in Stone, see
[8]. Using the self-duality (JSL0)

op
fp ≅ (JSL0)fp we obtain

D = Ind((JSL0)
op
fp) ≅ Ind((JSL0)fp) ≅ JSL0.

(d) For C = VectZ2 the dual category D̂ is the category of Z2-vector spaces in Stone,
see [8]. The self-duality (VectZ2)

op
fp ≅ (VectZ2)fp yields

D = Ind((VectZ2)
op
fp) ≅ Ind((VectZ2)fp) ≅ VectZ2.

Remark 3.3. (a) Dually to Definition 2.1, an object X of D̂ is called cofinitely pre-
sentable if the hom-functor D̂(−,X) ∶ D̂op

→ Set preserves filtered colimits. The
full subcategory of all cofinitely presentable objects is denoted by D̂cfp. Since
C
op
fp ≅ D̂cfp we haveD = Ind (Copfp) ≅ Ind (D̂cfp).

(b) The dual of Ind is denoted by Pro: if A is a small category, then ProA is its free
completion under cofiltered limits. By duality, ProA ≅ (IndAop

)
op.
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Example 3.4. (a) For the category Setfp of finite sets, we have Pro(Setfp) ≅ Stone.
Indeed, Stone duality restricts to a duality between Setfp (= finite Stone spaces)
and BAfp, so

Pro(Setfp) ≅ Pro(BA
op
fp) ≅ (Ind(BAfp))

op
≅ BAop

≅ Stone.

(b) Analogously Pro(Posfp) ≅ Priest.

Definition 3.5. We denote by L̂ ∶ D̂ → D̂ the dual of the functor T ∶ C → C, i.e., the
essentially unique functor with PL̂ = T opP .

Remark 3.6. The categoriesAlg L̂ andCoalgT are dually equivalent. Indeed, the equiv-
alence functor P ∶ D̂ → Cop induces an equivalence functor

P ∶ Alg L̂→ (CoalgT )op, (L̂Z
z
→ Z) ↦ (PZ

Pz
→ PL̂Z = TPZ).

Example 3.7. The dual of TΣX = � ×XΣ
= � ×∏ΣX ∶ C → C, see Example 2.4, is

the endofunctor of D̂
L̂ΣZ = � +∐

Σ

Z

where � = P −1�. In D̂ = Stone the object � is the one-element space. Hence, by the
universal property of the coproduct, an L̂Σ-algebra L̂ΣZ = � + ∐Σ Z → Z is a de-
terministic Σ-automaton (without final states) in Stone, given by a Stone space Z of
states, continuous transition functions δa ∶ Z → Z for a ∈ Σ, and an initial state � → Z .
Analogously for the other dualities of Example 3.2.

Remark 3.8. By the dual of Assumption 3.1(c), the functor L̂ is strongly cofinitary, i.e.,
it preserves cofiltered limits and cofinitely presentable objects. In particular, L̂ restricts
to a functor

L̂cfp ∶ D̂cfp → D̂cfp.

Definition 3.9. The essentially unique finitary extension of the functor

D̂cfp

L̂cfp

→ D̂cfp ↪ Ind(D̂cfp) = D

is denoted by L ∶ D → D. It takes a formal filtered colimit to the actual colimit in D.

Example 3.10. For L̂ΣZ = � +∐Σ Z on D̂ (see Example 3.7) we get the endofunctor
of D

LΣZ = � +∐
Σ

Z.

Here � = P −1� ∈ D̂cfp is an object of D = Ind(D̂cfp). For D̂ = Stone we haveD = Set,
so LΣ-algebras are the classical deterministic automata without final states. Analo-
gously for the other dualities of Example 3.2.

Notation 3.11. The category of all L̂-algebras with a cofinitely presentable carrier
(shortly cfp-algebras) is denoted by Algcfp L̂.
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Example 3.12. (a) If D̂ = Stone, we have D̂cfp ≅ BA
op
fp ≅ Setfp, so cfp-algebras for

L̂Σ are the classical deterministic finite automata without final states.
(b) If D̂ = Priest, since D̂cfp = DL

op
01,fp ≅ Posfp, cfp-algebras for L̂Σ are precisely the

deterministic finite ordered automata without final states.

Definition 3.13. An L̂-algebra is called locally cofinitely presentable if it is a cofiltered
limit of cfp-algebras.

Remark 3.14. The category of all locally cofinitely presentable algebras is equivalent
to Pro(Algcfp L̂). This is the dual of Theorem 2.12. The initial object τL̂ is what one
can call the dual of the rational fixpoint. By the dual of Remark 2.6, one can construct
τL̂ as the limit of all cfp-algebras in Alg L̂, and τL̂ is a fixpoint of L̂.

Example 3.15. (a) For C = BA and D̂ = Stone, we have τL̂Σ = ultrafilters of regular
languages.

(b) Analogously, for C = DL01 and D̂ = Priest, we have τL̂Σ = prime filters of regular
languages.

Definition 3.16. We denote by F ∶ D → D̂ the unique finitary functor for which

D̂cfp� �

�����
�

� �

����
��

D = Ind(D̂cfp)
F

�� Pro(D̂cfp) = D̂

commutes, and by U ∶ D̂ → D the unique cofinitary functor for which

D̂cfp� �

�����
�

� �

����
��

D̂ = Pro(D̂cfp)
U

�� Ind(D̂cfp) = D

commutes.

Lemma 3.17. The functors F and U are well-defined and F is a left adjoint to U .

Example 3.18. 1. If C = BA then D̂ = Stone and D = Set. Then F ∶ Set → Stone is
the Stone-Čech compactification and U ∶ Stone→ Set is the forgetful functor.

2. If C = DL01 then D̂ = Priest and D = Pos. Then F ∶ Pos → Priest constructs the
free Priestley space on a poset and U ∶ Priest → Pos is the forgetful functor.

Notation 3.19. AlgfpL is the full subcategory of AlgL of L-algebras with finitely pre-

sentable carrier, shortly fp-algebras. Note that AlgfpL ≅ Algcfp L̂ because D̂cfp ≅ Dfp.

Definition 3.20. Û ∶ Pro(Algcfp L̂) → AlgL is the unique cofinitary functor that makes
the triangle below commute:

Algcfp L̂ ≅ AlgfpL
� �

��
� 	

�����
��

Pro(Algcfp L̂)
Û

�� AlgL
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Example 3.21. For TΣ = �× Id
Σ
∶ BA→ BA we have L̂Σ = �+∐Σ Id ∶ Stone→ Stone

and LΣ = � + ∐Σ Id ∶ Set → Set. The objects of Pro(Algcfp L̂Σ) are the locally

cofinitely presentable L̂Σ-algebras, and the functor Û ∶ Pro(Algcfp L̂Σ) → AlgLΣ

simply forgets the topology on the carrier of an LΣ-algebra.

Proposition 3.22. Û is a right adjoint.

Remark 3.23. It follows that the left adjoint F̂ of Û maps the initial L-algebra to the
initial locally cofinitely presentable L̂-algebra: F̂ (μL) = τL̂. One can prove that F̂
assigns to every L-algebra α ∶ LA → A the limit of the diagram of all its quotients
in AlgfpL = Algcfp L̂. Thus, we see that τL̂ can be constructed as the limit (taken in

Alg L̂) of all finite quotient L-algebras of μL. This construction generalizes a similar
one given by Gehrke [5]. See also Section 5.1.

4 Algebraic and Coalgebraic Recognition

We are ready to present our first take on the duality of algebraic and coalgebraic recog-
nition and Eilenberg’s theorem (see Proposition 4.2 and Theorem 4.4 below). At this
stage our results are about subcoalgebras of the rational fixpoint *T and quotients of
the initial L-algebra μL, and we obtain uniform proofs at the level of generality of the
previous section. Recall that we have the following dualities:

Category Equivalently Dual category Equivalently
C D̂

CoalgT Alg L̂

Coalgfp T Algcfp L̂ AlgfpL
Coalglfp T Ind(Coalgfp T ) Pro(Algcfp T )

Definition 4.1. (a) By a subcoalgebra of a T -coalgebra (C,γ) is meant one repre-
sented by a homomorphismm ∶ (C′, γ′) ↣ (C,γ) with m monic in C. Subcoalge-
bras are ordered as usual:m ≤m iffm factorizes throughm in CoalgT . We denote
by Sub(*T ) the poset of all subcoalgebras of *T , and by Subfp(*T ) the subposet
of all fp-subcoalgebras of *T , i.e., those with finitely presentable carrier in C.

(b) Likewise, a quotient algebra of an L-algebra (A,α) is one represented by an epi-
carried homomorphism e ∶ (A,α) ↠ (A′, α′). Again the ordering is e ≤ e iff
e factorizes through e in AlgL (so id

(A,α) is the largest quotient). We denote by
Quo(μL) the poset of all quotient algebras of μL, and by Quofp(μL) the subposet
of all fp-quotient algebras, i.e., those with finitely presentable carrier in D.

Proposition 4.2. The posets Subfp(*T ) and Quofp(μL) are isomorphic.

Proof (Sketch). The inverse P
−1
∶ (CoalgT )op → Alg L̂ of P in Remark 3.6 assigns

to each T -coalgebra C
γ
→ TC the L̂-algebra L̂(P −1C)) = P −1(TC)

P−1γ
→ P −1C. If

(C,γ) is an fp-coalgebra, the L-algebra P
−1
(C,γ) has a cofinitely presentable carrier

in D̂ and (since D̂cfp = Dfp) can be viewed as an fp-algebra for L. We denote by

(C,γ)
m
→ *T and μL

e
→ P

−1
(C,γ)
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the unique homomorphisms, and prove that

m is monic (in C) iff e is epic (in D),

using the (epi, strong mono)- and (strong epi, mono)-factorization systems of C and D,
respectively. Thereforem↦ e is an isomorphism Subfp(*T ) ≅ Quofp(μL).

Remark 4.3. Recall that the ideal completion Ideal(A) of a join-semilattice A is the
complete lattice of all ideals (= join-closed downsets) of A ordered by inclusion. Up to
isomorphism Ideal(A) is characterized as a complete lattice containing A such that:

(1) every element of Ideal(A) is a directed join of elements of A, and
(2) the elements of A are compact in Ideal(A): if x ∈ A lies under a directed join of

elements yi ∈ Ideal(A), then x ≤ yi for some i.

Theorem 4.4. If T preserves preimages, then Sub(*T ) ≅ Ideal(Quofp(μL)).

Proof (Sketch). Since Subfp(*T ) ≅ Quofp(μL) by Proposition 4.2, is suffices to prove
that Sub(*T ) is the ideal completion of Subfp(μL). Firstly Sub(*T ) forms a complete
lattice because CoalgT is cocomplete and has a factorization system carried by strong
epis and monos in C. Now one proves that Sub(*T ) ≅ Ideal(Subfp(*T )) by establish-
ing the properties (1) and (2) of Remark 4.3.

5 Local Eilenberg Theorem

The aim of this section is to prove our main result: a general local Eilenberg Theorem
for deterministic automata, i.e., coalgebras for the functor TΣ = � × Id

Σ
∶ C → C. Here

� is a fixed object of Cfp, and we write � = P −1� for the corresponding D̂-object.
Note that � lies in Dcfp und thus is also an object of D = Ind (D̂cfp). TΣ-coalgebras
Q→ � ×QΣ and LΣ-algebras � +∐Σ A→ A are represented as triples

Q = (Q,δa ∶ Q→ Q,f ∶Q → �) and A = (A, δa ∶ A→ A, i ∶ � → A).

Assumptions 5.1. We continue to work under the Assumptions 3.1 and make the fol-
lowing additional assumptions on C and D:

(a) C and D are concrete categories, i.e., forgetful functors to Set are given (notation:
A ↦ ∣A∣ for objects and f ↦ f for morphisms). We assume that these forgetful
functors are strongly finitary right adjoints, and thatD’s forgetful functor preserves
epimorphisms.

(b) An object � ∈ Cfp is selected with underlying set ∣�∣ = {0,1}, and the corresponding
object � = P −1� in D is free on one generator: � = Ψ1 for the left adjoint Ψ ∶ Set →
D of the forgetful functor.

(c) Every object C of C has, for a given subset m ∶ M ↣ ∣C ∣, at most one subobject
carried by m.

(d) D has hom-objects, i.e., for every pair of objects A and B the power B∣A∣ has a
subobject [A,B] ↣ B∣A∣ carried by the set D(A,B) of all morphismsA→ B.
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Example 5.2. All the categories in Example 3.2 meet these assumptions. In BA, JSL0
and DL01 we choose � to be the chain 0 < 1, and in VectZ2 we choose � = Z2.

Remark 5.3. Since the forgetful functors are strongly finitary, the finitely presentable
objects of C and D are carried by finite sets. Hence we will talk about finite objects
rather than finitely presentable ones.

Proposition 5.4. The rational fixpoint *TΣ is carried by the automaton RegΣ of Ex-
ample 2.8. Consequently, a subcoalgebra of *TΣ is a set of regular languages closed
under left derivatives and carrying a subobject of *TΣ in C.

What about closure under right derivatives? Given a TΣ-coalgebra Q = (Q,δa, f)
and w ∈ Σ∗ we consider the coalgebra

Qw = (Q,δa, f ⋅ δw)

where, as usual, δw = δan ⋅ ⋅ ⋅ δa1 for w = a1 . . . an. Closure under right derivatives can
be characterized coalgebraically as follows:

Proposition 5.5
A subcoalgebraQ of *TΣ is closed under right derivatives (i.e., L ∈ ∣Q∣ implies Lw−1 ∈
∣Q∣ for each w ∈ Σ∗) iff there exists a coalgebra morphism from Qw to Q for each
w ∈ Σ∗.

Remark 5.6. Analogously, for an LΣ-algebraA = (A, δa, i) and w ∈ Σ∗ we define

Aw = (A, δa, δw ⋅ i).

Now let A be a finite quotient algebra μLΣ . It corresponds to a finite right-derivative
closed subcoalgebra of *TΣ under the isomorphism of Proposition 4.2 iff anLΣ-algebra
morphism fromA to Aw exists for everyw ∈ Σ∗. Indeed, a coalgebra morphismQw →

Q corresponds to an algebra morphism A → Awr , where A = P
−1
Q (see Remark 3.6)

andwr is the reversed word ofw. Fortunately a better characterization is possible, using
the concept of a bimonoid.

Definition 5.7. A bimonoid in D is a triple (A, ○, i) where (i) A is a D-object, (ii)
(∣A∣, ○, i) is a monoid in Set and (iii) for all a ∈ ∣A∣, the translations a ○ − and − ○ a
carry endomorphisms of A. It is called finite if A ∈ Dfp. A bimonoid morphism h ∶
(A, ○, i) → (A′, ○′, i′) is a D-morphism h ∶ A→ A′ that is also a monoid morphism.

Example 5.8. Bimonoids in D = Set, Pos, JSL0 and VectZ2 correspond to monoids,
ordered monoids, idempotent semirings and Z2-algebras, respectively.

Construction 5.9. We define a monoid multiplication ● on the free object ΨΣ∗. For all
w ∈ Σ∗, let rw ∶ ΨΣ∗ → ΨΣ∗ be the unique D-morphism extending the map − ⋅w on
Σ∗. Let r ∶ ΨΣ∗ → [ΨΣ∗, ΨΣ∗] (see Assumptions 5.1(d)) be the unique D-morphism
extending the map r ∶ Σ∗ →D(ΨΣ∗, ΨΣ∗), w ↦ rw.

Σ∗
−⋅w ��

η
��

Σ∗

η
��

Σ∗
η

�����
���

�
r��

∣ΨΣ∗∣ rw
��
∣ΨΣ∗∣ ∣ΨΣ∗∣

r
��
∣[ΨΣ∗, ΨΣ∗]∣
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Then define the multiplication ● by

x ● y ∶= [r(y)](x) for allx, y ∈ ∣ΨΣ∗∣.

Lemma 5.10. (ΨΣ∗, ●, ηε) is a bimonoid, in fact the free bimonoid on Σ: for any
bimonoid (A, ○, i) and any function f ∶ Σ → ∣A∣, there is a unique extension to a
bimonoid morphism f ∶ ΨΣ∗ → A.

Σ∗
η
��
∣ΨΣ∗∣

f��

Σ
��

��

f
��
∣A∣

Example 5.11. (a) ForD = Set and Pos we have ΨΣ∗ = Σ∗ (discretely ordered in the
case D = Pos) with monoid multiplication = concatenation of words.

(b) For D = JSL0 we have ΨΣ∗ = PfΣ∗ (finite languages over Σ) with join = union
and monoid multiplication = concatenation of languages.

(c) For D = VectZ2 we have ΨΣ∗ = PfΣ∗ with addition = symmetric difference
and monoid multiplication = Z2-weighted concatenation of languages, i.e., L ⊗L′

consists of all words w having an odd number of factorizationsw = uu′ with u ∈ L
and u′ ∈ L′.

This motivates the following definition:

Definition 5.12. (a) A Σ-generated bimonoid is a quotient bimonoid of ΨΣ∗, repre-
sented by a bimonoid morphism e ∶ ΨΣ∗↠ A with e epic in D.

(b) We denote byΣ-Bimfp(D) the poset of allΣ-generated finite bimonoids under the
usual quotient ordering.

Remark 5.13. Σ-Bimfp(D) is a join-semilattice. Indeed, it is easy to see that the cat-
egory of finite bimonoids has finite limits, computed on the level ofD, and also inherits
the (strong epi, mono)-factorization system fromD. Hence the join of two Σ-generated
bimonoids e ∶ ΨΣ∗↠ A and e′ ∶ ΨΣ∗↠ A′ inΣ-Bimfp(D) is their subdirect product,
obtained by factorizing the product map ⟨e, e′⟩ ∶ ΨΣ∗ → A ×A′.

Remark 5.14. Every Σ-generated bimonoid e ∶ ΨΣ∗ ↠ (A, ○, i) induces an LΣ-
algebra ̃A = (A, δa, i) where δa ∶ A→ A is theD-morphism with δa(x) = x○ e(ηa) for
all x ∈ ∣A∣, and i ∶ � → A is the free extension of i ∶ 1→ ∣A∣. One can show that

̃ΨΣ∗ = μLΣ .

Proposition 5.15. An finite quotient algebra A of μLΣ is induced by a Σ-generated
bimonoid iff LΣ-algebra morphisms from A to Aw exist for all w ∈ Σ∗.

Proof (Sketch). Every e ∶ ΨΣ∗ ↠ A in Σ-Bimfp(D) yields a quotient algebra e ∶
μLΣ ↠

̃A of μLΣ . For each w ∈ Σ∗, the desired LΣ-algebra morphism ̃A → ̃Aw is
the D-morphism carried by e(ηw) ● −. Conversely, let e ∶ μLΣ ↠ (A, δa, i) be any
quotient algebra of μLΣ such that LΣ-algebra morphisms A → Aw exist. Define a



378 J. Adámek et al.

monoid multiplication ○ on ∣A∣ as follows: given x, y ∈ ∣A∣, choose x′ ∈ ∣ΨΣ∗∣ and
y′ ∈ ∣ΨΣ∗∣ with ex′ = x and ey′ = y (using that e is surjective by Assumptions 5.1(a)),
and put

x ○ y ∶= e(x′ ● y′).

One then proves that (A, ○, i) is a well-defined bimonoid whose induced LΣ-algebra is
precisely (A, δa, i).

Definition 5.16. By a local variety of regular languages in C is meant a subcoalgebra
of *TΣ closed under right derivatives.

Example 5.17. Local varieties of regular languages in C = BA,DL01, JSL0 andVectZ2

are called local varieties, local lattice varieties, local semilattice varieties and local lin-
ear varieties of regular languages, respectively; see Introduction.

Definition 5.18. By a local pseudovariety of bimonoids in D is meant a set of finite Σ-
generated bimonoids in D closed under subdirect products and quotients, i.e., an ideal
in the join-semilattice Σ-Bimfp(D).

Theorem 5.19 (General Local Eilenberg Theorem). The lattice of local varieties of
regular languages in C is isomorphic to the lattice of local pseudovarieties of bimonoids
in D.

Proof (Sketch). Let Subrfp(*TΣ) denote the poset of all finite local varieties of regular
languages in C, i.e., of all finite subcoalgebras of *TΣ closed under right derivatives.
From Remark 5.6 and Proposition 5.15 we get a join-semilattice isomorphism

Subrfp(*TΣ) ≅ Σ-Bimfp(D).

Taking ideal completions on both sides yields a complete lattice isomorphism

Ideal(Subrfp(*TΣ)) ≅ Ideal(Σ-Bimfp(D)).

One then proves that Ideal(Subrfp(*TΣ)) is isomorphic to the lattice of local varieties
of regular languages in C. Moreover, by definition Ideal(Σ-Bimfp(D)) is precisely the
lattice of local pseudovarieties of bimonoids in D.

Corollary 5.20. By instantiating Theorem 5.19 to the categories of Example 3.2 we
obtain the following lattice isomorphisms:

C D local varieties of regular languages ≅ local pseudovarieties of . . .
BA Set local varieties ≅ monoids
DL01 Pos local lattice varieties ≅ ordered monoids
JSL0 JSL0 local semilattice varieties ≅ idempotent semirings
VectZ2 VectZ2 local linear varieties ≅ Z2-algebras
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5.1 Profinite Monoids

As a consequence of Theorem 5.19 we obtain a generalization of the result of Gehrke,
Grigorieff and Pin [6, 7] that RegΣ endowed with boolean operations and derivatives is
dual to the free profinite monoid onΣ. To see this one observes first that the finite local
varieties of languages form a cofinal subposet of Subfp(*TΣ) – in other words, every
finite subcoalgebra of *TΣ is contained in a finite local variety. Therefore the finite Σ-
generated bimonoids form a cofinal subposet of Quofp(μLΣ). Thus, the corresponding
diagrams have the same limit in Alg L̂Σ . Since the limit of all fp-quotients of μLΣ is
the initial LΣ-algebra μLΣ , we see that τL̂Σ is also the limit of the directed diagram of
all finite Σ-generated bimonoids. Hence, τL̂Σ is a bimonoid and it is then easy to see
that it is the free profinite bimonoid on Σ, where bimonoid now means bimonoid in D̂
w.r.t. ∣U ∣ = ∣−∣ ○ U ∶ D̂ → Set and “profinite” refers to the category Pro(D̂cfp) = D̂; in
fact, (the carrier of) τL̂Σ is F (Ψ(Σ∗)), where F ⋅ Ψ is the left adjoint of ∣U ∣.

Theorem 5.21. τL̂Σ is the free profinite bimonoid on Σ, and this structure is dual to
the structure on *TΣ given by its TΣ-coalgebra structure and right derivatives.

6 Conclusions and Future Work

Inspired by recent work of Gehrke, Grigorieff and Pin [6, 7] we have proved a general-
ized local Eilenberg theorem, parametric in a pair of dual categories C and D̂ and a type
of coalgebras T ∶ C → C. By instantiating our framework to deterministic automata, i.e.,
the functor TΣ = � × Id

Σ on C = BA, DL01, JSL0 and VectZ2, we derived the local
Eilenberg theorems for (ordered) monoids as in [6], as well as two new local Eilenberg
theorems for idempotent semirings and Z2-algebras.

There remain a number of open points for further work. Firstly, our general ap-
proach should be extended to the ordinary (non-local) version of Eilenberg’s theorem.
Secondly, for different functors T on the categories we have considered our approach
should provide the means to relate varieties of rational behaviours of T with varieties
of appropriate algebras. In this way, we hope to obtain Eilenberg type theorems for sys-
tems such as Mealy and Moore automata, but also weighted or probabilistic automata –
ideally, such results would be proved uniformly for a certain class of functors.

Another very interesting aspect we have not treated in this paper are profinite equa-
tions and syntactic presentations of varieties (of bimonoids or regular languages, resp.)
as in the work of Gehrke, Grigorieff and Pin [6]. An important role in studying profinite
equations will be played by the L̂-algebra τL̂, the dual of the rational fixpoint, that we
identified as the free profinite bimonoid. A profinite equation is then a pair of elements
of τL̂. We intend to investigate this in future work.
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Abstract. It was observed by Turi and Plotkin that structural oper-
ational semantics can be studied at the level of universal coalgebra,
providing specification formats for well-behaved operations on many dif-
ferent types of systems. We extend this framework with non-structural
assignment rules which can express, for example, the syntactic format
for structural congruences proposed by Mousavi and Reniers. Our main
result is that the operational model of such an extended specification
is well-behaved, in the sense that bisimilarity is a congruence and that
bisimulation-up-to techniques are sound.

1 Introduction

Structural operational semantics (SOS) is a framework for defining the semantics
of programming languages and calculi in terms of transition system specifica-
tions [1]. By imposing syntactic restrictions, one can prove well-behavedness
properties of transition systems at the meta-level of their specification. For in-
stance, any specification in the GSOS format [4] has a unique operational model,
on which bisimilarity is a congruence.

Traditionally, research in SOS has focused on labelled transition systems as
the fundamental model of behaviour. Turi and Plotkin [27] introduced the bial-
gebraic approach to structural operational semantics, where in particular GSOS
can be studied at the level of universal coalgebra [22]. The theory of coalge-
bras provides a mathematical framework for the uniform study of many types of
state-based systems, including labelled transition systems but also, e.g., (non)-
deterministic automata, stream systems and various types of probabilistic and
weighted automata [23,11,3]. In the coalgebraic framework, there is a canonical
notion of bisimilarity, which instantiates to the classical definition of (strong)
bisimilarity in the case of labelled transition systems. It is shown in [27] that
GSOS specifications can be generalised by certain natural transformations, which
are called abstract GSOS specifications, and that these correspond to the cate-
gorical notion of distributive laws. This provides enough structure to prove at
this general level that bisimilarity is a congruence. By instantiating the theory
to concrete instances, one can then obtain congruence formats for systems such
as probabilistic automata, weighted transition systems, streams, etc. — see [12]
for an overview. Another advantage of abstract GSOS is that bisimulation up to

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 381–395, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



382 J. Rot and M. Bonsangue

context is “compatible” [21,20], providing a sound enhancement of the bisimula-
tion proof method which can be combined with other compatible enhancements
such as bisimulation up to bisimilarity [24,19].

In this paper we add rules such as in (1) to this framework. The rule in (1)

!x | x a−→ t

!x
a−→ t

(1)

properly defines the replication operator in
CCS1: intuitively !x represents x | x | x | . . .,
i.e., the infinite parallel composition of x with
itself. In fact, the above rule can be seen as as-
signing the behaviour of the term !x | x to the simpler term !x, therefore we call
it an assignment rule. Being inherently non-structural, such an assignment rule
cannot directly be embedded in the bialgebraic framework of Turi and Plotkin,
where the behaviour of terms is computed inductively. In this paper we show
how to interpret assignment rules together with abstract GSOS specifications.
As it turns out, this requires the assumption that the functor which represents
the type of coalgebra is ordered as a complete lattice; for example, in the case of
labelled transition systems this order is simply inclusion of sets of pairs (a, x) of
a label a and a state x. The operational model on closed terms then is the least
model such that every transition can either can be derived from a rule in the
specification, or there is a rule assigning to an operator σ the behaviour of a term
t in the model. To ensure the existence of such least models, we disallow negative
premises by using monotone abstract GSOS specifications, a generalisation of
the positive GSOS format for transition systems [8]. Positive GSOS can be seen
as the greatest common divisor of GSOS and the tyft/tyxt format [2].

Our main result is that the interpretation of a monotone abstract GSOS spec-
ification together with a set of assignment rules is itself the operational model
of another (typically larger) abstract GSOS specification. Like the interpreta-
tion of a GSOS specification with assignment rules, we construct this latter
specification by fixpoint induction. As a direct consequence of this alternative
representation of the interpretation, we obtain that bisimilarity is a congruence
and that bisimulation up to context is sound and even compatible — properties
that do not follow from bisimilarity being a congruence [19]. As an example ap-
plication, we obtain the compatibility of bisimulation-up-to techniques for CCS
with replication, which so far had to be shown with an ad-hoc argument [19].

A further contribution of this paper consists in combining structural con-
gruences [16,17] with the bialgebraic framework using assignment rules. Struc-
tural congruences were introduced in the operational semantics of the π-calculus
in [16]. The basic idea is that SOS specifications are extended with equations on
terms, which are then linked by a special deduction rule. This rule essentially
states that if two processes are equated by the congruence generated by the set
of equations, then they can perform the same transitions. Prototypical examples
are the specification of the parallel operator by combining a single rule with
commutativity, and the specification of the replication operator by an equation,
both shown below:

1 The simpler rule x→x′
!x→!x|x′ is problematic in the presence of the sum operator [19,26].
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x
a−→ x′

x | y a−→ x′ | y
x | y = y | x !x = !x | x (2)

In [17] Mousavi and Reniers show how to interpret SOS rules with structural
congruences in various equivalent ways. They exhibit very simple examples of
equations and SOS rules for which bisimilarity is not a congruence, even when
the SOS rules are in the tyft (or the GSOS) format. As a solution to this problem
they introduce a restricted format for equations, called cfsc, for which bisimilarity
is a congruence when combined with tyft specifications.

In the present paper we show how to interpret structural congruences at the
general level of coalgebras, in terms of an operational model on closed terms. We
prove that when the equations are in the cfsc format then they can be encoded by
assignment rules, in such a way that their respective interpretations coincide up
to bisimilarity. Consequently, not only is bisimilarity a congruence for monotone
abstract GSOS combined with cfsc equations, but also bisimulation up to context
and bisimilarity is compatible.

Outline. In Section 2 we recall some preliminaries on (co)algebras and abstract
GSOS. In Section 3, assignment rules and their interpretation are introduced.
We show in Section 4 that this interpretation can be obtained as the operational
model of another abstract GSOS specification. Section 5 contains the integration
of structural congruence with the bialgebraic framework. In Section 6 we discuss
related work, and in Section 7 we conclude with some directions for future work.

To fully understand the technical development in this paper, familiarity with
basic notions in category theory, bialgebraic semantics and order theory is useful.
However, many of the main results and definitions are illustrated with concrete
examples, in particular on the familiar case of transition systems.

2 Coalgebras, Signatures and Bialgebraic Semantics

By Set we denote the category of sets and total functions. We write Id for the
identity functor on Set.

Coalgebras. For an extensive treatment with many examples we refer to [22].
An (F -)coalgebra for a functor F : Set→ Set consists of a set of states C and a
map α : C → FC. Let (C,α) and (D, β) be two coalgebras. A function f : C → D
is an (F -coalgebra) homomorphism if Ff ◦ α = β ◦ f . A relation R ⊆ C ×D is
an (F -)bisimulation if R can be equipped with a transition structure γ : R →
FR such that the two projection functions π1 : R → C and π2 : R → D are
homomorphisms. The largest bisimulation between two systems α and β is called
bisimilarity. Two F -coalgebras α, β : X → FX (on a common carrier X) are
equal up to bisimilarity if the diagonal on X progresses [21] to ∼.

Example 1. Labelled transition systems (LTSs) over a set of labels A are coal-
gebras for the functor FX = (PX)A. For an LTS α : X → (PX)A we write

x
a→ x′ iff x′ ∈ α(x)(a). Intuitively, for a state x ∈ X , α(x)(a) contains all the
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outgoing transitions from x labelled by a. Coalgebraic bisimulation instantiates
to the classical definition by Milner and Park: a relation R ⊆ X ×X is called a
bisimulation provided that for all (x, y) ∈ R, if x a→ x′ then there exists a state

y′ such that y
a→ y′ and (x′, y′) ∈ R, and vice versa.

Image-finite labelled transition systems are coalgebras for the functor FX =
(PωX)A, where PωX is the set of all finite subsets of X .

Coalgebras for the functor FX = R×X , where R is the set of real numbers,
are called stream systems (over the reals). In a stream system, for every state
we can observe an output in R and a next state.

Signatures. A signature Σ is a (possibly infinite) collection of operator names σ ∈
Σ with (finite) arities |σ| ∈ N. Equivalently, it is a polynomial functor as in (3).

ΣX =
∐
σ∈Σ

X |σ| (3)
In the sequel we write σ(x1, . . . , xn) in-
stead of (σ, (x1, . . . , xn)) for elements of
ΣX . The functor ΣX acts on a map
f : X → Y as follows: (Σf)(σ(x1, . . . , xn)) = σ(f(x1), . . . , f(xn)). Above and
in the sequel we abuse notation and use Σ to represent signatures as well as
their associated functors.

A Σ-algebra consists of a set A and a function α : ΣA → A. This coincides
with the standard notion of an algebra for the signature Σ. For a set of variables
X and a signature Σ we denote by TX the set of terms, as defined by the
grammar t ::= σ(t1, . . . , tn) | x where σ ranges over Σ, n is the arity of σ
and x ranges over X . The special case T ∅ is the set of closed terms. Every
set TX can be turned into the (free) Σ-algebra νX : ΣTX → TX by defining
νX(σ(t1, . . . , tn)) = σ(t1, . . . , tn). Note that ν∅ is an isomorphism, since it is the
initial Σ-algebra.

We note that T is the free monad for the signature Σ, without going into
details. Of importance to our purposes is that it comes equipped with natural
transformations η : Id ⇒ T and μ : TT ⇒ T ; for a set (of variables) X , ηX is
the injection of variables into terms, and μX turns a term over terms into a
single term in the expected manner. In the sequel, whenever the type can be
deduced from the context, we omit subscripts from natural transformations to
avoid notational clutter.

Bialgebraic operational semantics. See [12] for an overview of this topic. In the
remainder of this paper, we assume some fixed signature Σ with associated
term monad T , and a Set endofunctor F representing the type of behaviour. An
(abstract GSOS) specification is a natural transformation of the form

ρ : Σ(F × Id)⇒ FT .

As first observed by Turi and Plotkin [27], if F is the functor (Pω−)A of image-
finite labelled transition systems then specifications of the above type can be
induced by specifications in the well-known GSOS format introduced in [4]. A
GSOS rule for an operator σ ∈ Σ of arity n is of the form

{xij
aj→ yj}j=1..m {xik

bk
�→}k=1..l

σ(x1, . . . , xn)
c→ t

(4)
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wherem is the number of positive premises, l is the number of negative premises,
and a1, . . . , am, b1, . . . , bl, c ∈ A are labels. The variables x1, . . . , xn, y1, . . . , ym
are pairwise distinct, and t is a term over these variables.

If we instantiate F to the functor R × Id of stream systems over the reals,
specifications correspond to the format of behavioural differential equations [23]
presented in [13]. By instantiating abstract GSOS specifications to other functors
one can obtain formats for many types of systems, including, e.g., syntactic
formats for probabilistic and weighted transition systems [3,11].

Each specification ρ : Σ(F × Id) ⇒ FT induces a unique operational model
f : T ∅ → FT ∅, also called ρ-model (on the initial algebra), with the following
property:

f ◦ ν = Fμ ◦ ρ ◦Σ〈f, id〉 . (5)

By this equation, to compute the behaviour of a term σ(t1, . . . , tn) in f , we
may compute the behaviour of its subterms t1, . . . , tn and then instantiate a rule
from ρ. For labelled transition systems, f is precisely the unique supported model
corresponding to a GSOS specification ρ: every transition in f is derived from
rules in the specification ρ and each derivable transition occurs in f (see [1,4]).

An important property of GSOS is that bisimilarity is a congruence on the
operational model corresponding to a specification [4]. Turi and Plotkin [27]
proved at the general level of abstract GSOS specifications that coalgebraic
bisimilarity on the operational model is a congruence, extending the result of [4]
to calculi for many other types of systems. Furthermore, these specifications
guarantee the (strictly stronger property of) compatibility of bisimulation-up-to
context on the operational model [20]. This yields an enhanced proof technique
for bisimilarity in which one can use the syntactic structure of the terms to relate
their successors.

3 Adding Assignment Rules

In this section we consider the interpretation of abstract GSOS specifications
(without negative premises) together with assignment rules of the form

σ(x1, . . . , xn) := t (6)

where t is a term over the variables x1, . . . , xn. These will be interpreted as a
kind of rewriting rules: the behaviour of t induces behaviour of σ(x1, . . . , xn).
An example is the replication operator given in equation (1) of the introduction;
this can be given by !x := !x | x. Notice that the above rules, which we will call
assignment rules, do not fit directly into the bialgebraic framework, since they are
inherently non-structural. That is, they ruin the property of GSOS specifications
that the behaviour of terms in the operational model can be computed from the
behaviour of their subterms.

In the case of labelled transition systems, given a GSOS specification and a
set of rules of the above form, the desired interpretation is informally as follows:
every transition from a term σ(t1, . . . , tn) should either be derived from the
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transitions of t1, . . . , tn and a rule in the specification, or from an assignment
rule which has σ on the left-hand side. This suggests a natural extension of
the fixpoint equation of the supported model (equation (5)) to incorporate the
assignment rules. However, because of assignment rules there is not necessarily
a unique supported model anymore, since now there may be infinite inferences.
For example, the rule σ(x) := σ(x) does not have a unique solution. In order
to rule this out, one is interested in the least transition system on closed terms
which satisfies the extended fixpoint equation. Such a least model does not exist
in general because of negative premises, so we will use a formalization of the
notion of positive GSOS at the level of abstract specifications, and restrict to
such specifications in the remainder of this paper.

To interpret specifications which involve assignment rules at the general level
of a functor F one needs a notion of order on F . In the case of labelled transition
systems this order is clear and often left implicit: in that case FX = (PX)A, and
it is simply the (pointwise) subset order. To allow the desired generalisation, we
assume that our behaviour functor F is ordered [9], that is, it factors through
CJSL, which is the category of complete (join semi-)lattices and join-preserving
functions. Thus we assume a functor F̂ : Set → CJSL such that U ◦ F̂ = F ,
where U : CJSL → Set is the forgetful functor that takes a complete lattice to
its underlying set. Thus for every set X we have arbitrary joins in FX ; in the
sequel we denote the join of a set S ⊆ FX by

∨
S, and we write ⊥ for

∨
∅ and

x ≤ y if x ∨ y = y, for x, y ∈ FX .

Example 2. As mentioned above, the functor (P−)A of labelled transition sys-
tems has a natural complete lattice structure.

Any functor F : Set→ Set can be extended to an ordered functor F ′ by taking
F ′X = FX+2 where 2 = {⊥,-}: we then define, for x, y ∈ FX , x ≤ y iff x = y
and use ⊥ and - as the least and greatest element respectively.

The functor for (possibly infinitely branching) weighted transition systems
[11] over a complete lattice, is ordered. For example, one can take as weights the
set R ∪ {∞,−∞}, i.e., the reals extended with top and bottom elements.

For any function f : X → Y we have Ff = U ◦ F̂ (f) and thus Ff is a
join-preserving map: f [

∨
S] =

∨
f [S]. Consequently, Ff is also monotone, i.e.,

x ≤ y implies f(x) ≤ f(y). Given arbitrary sets X and Y , the complete lattice
on FY lifts pointwise to a complete lattice on functions of type X → FY ,
i.e., for a collection {fi}i∈I of functions of the form fi : X → FY we define
(
∨
{fi}i∈I)(x) =

∨
i∈I(fi(x)) . This induces in particular a complete lattice on

the set of all coalgebras on closed terms, which we denote by

M = {f | f : T ∅ → FT ∅} .

The order on F lifts to an order on F × Id by defining (b1, x1) ≤ (b2, x2) iff
b1 ≤ b2 and x1 = x2 for (b1, x1), (b2, x2) ∈ FX × X . Moreover, the order lifts
component-wise to ΣFX (and also to Σ(FX ×X)) for any set X , by defining,
for any σ, τ ∈ Σ of arity n and m respectively, σ(k1, . . . , kn) ≤ τ(l1, . . . , lm) iff
σ = τ (so also n = m) and ki ≤ li for all i ≤ n.
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Definition 3. Using the above lifting of the order to Σ(F × Id), a specification
ρ is said to be monotone if all of its components are.

Example 4. As stated in [8], for the functor F = (P−)A of labelled transition
systems, monotone specifications correspond to specifications in (an infinitary
version of) the positive GSOS format.

Any abstract GSOS specification for a functor F induces a monotone GSOS
specification for the discretely ordered functor F + 2 (see Example 2).

Assignment rules (6) can be formalised categorically in terms of natural trans-
formations. These are independent of the behaviour functor F .

Definition 5. An assignment rule is a natural transformation d : Σ ⇒ T .

For example, the assignment rule for the replication operator is the natural
transformation which sends !x to !x | x for any x, and is the identity on all other
operators in Σ.

Assumption 6. In the remainder of this paper we assume all our abstract
GSOS specifications to be monotone. In particular we fix a monotone GSOS
specification ρ and a set Δ of assignment rules.

Now we have all the necessary tools to define a model on closed terms of an
abstract GSOS specification together with a set of assignment rules.

Definition 7. Let ψ : M→M be the (unique) function such that

ψ(f) ◦ ν = Fμ ◦ ρ ◦Σ〈f, id〉 ∨
∨
d∈Δ

f ◦ μ ◦ d .

A (ρ,Δ)-model is a coalgebra f ∈ M such that ψ(f) = f .

Notice that ν : ΣT ∅ → T ∅ is an isomorphism, so ψ is uniquely defined. As
argued above, in general there may be more than one model for a fixed ρ and Δ.
We will be interested in the least supported model as the correct interpretation.
In order to show that this exists we need the following:

Lemma 8. ψ : M→M is monotone.

By the Knaster-Tarski theorem, ψ has a least fixpoint (e.g., [25]).

Definition 9. The interpretation of ρ and Δ is the least (ρ,Δ)-model.

Example 10. For a GSOS specification on transition systems together with as-
signment rules, the interpretation is the least system where σ(t1, . . . , tn)

a−→ t′

iff it can be derived from a rule in the specification or there is an assignment of
t to σ, and t

a−→ t′. This is a recursive definition; being the least such transition
system has the consequence that every derivation of a transition t

a−→ t′ is finite.
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4 Abstract GSOS Specifications for Assignment Rules

In the previous section we have seen how to interpret an abstract GSOS specifi-
cation ρ together with a set of assignment rulesΔ as a coalgebra on closed terms.
In this section we will show that we can alternatively construct this coalgebra as
the operational model of another specification (without assignment rules), which
is constructed as a least fixpoint of a function on the complete lattice of specifi-
cations. The consequence of this alternative representation is well-behavedness
properties, in particular bisimilarity being a congruence and the compatibility
of bisimulation up to context, on the interpretation of ρ and Δ.

Let S be the set of all monotone abstract GSOS specifications. We turn S into
a complete lattice by defining the order componentwise, i.e., for any L ⊆ S and
any set X : (

∨
L)X =

∨
ρ∈L ρX . The join is well-defined:

Lemma 11. For any L ⊆ S: the family of functions (
∨
L) as defined above is

a monotone specification.

This provides a way of pointwise combining specifications.
Consider, for some assignment rule d ∈ Δ and specification τ , the following

natural transformation:

Σ(F × Id)
d �� T (F × Id)

τ∗
�� FT × T π1 �� FT (7)

Here, and in the sequel, we use τ∗ to denote the inductive extension of τ to
terms (e.g., [3]). Informally, the above natural transformation acts as follows. For
an operator σ of arity n, given behaviour k1, . . . , kn ∈ FX×X of its arguments,
it first applies the assignment rule d to obtain a term t(k1, . . . , kn). Subsequently
τ∗ is used to compute the behaviour of t given the behaviour k1, . . . , kn. In short,
the above transformation computes the behaviour of an operator by using rules
from τ and a single application of the rule d.

Example 12. Suppose ρ is the specification of CCS, without any rules for the
replication operator !x. Moreover suppose d is the assignment rule associated to
the replication. Then the natural transformation in (7) is a specification which

has for the replication operator the rule (for any label a) x
a−→x′

!x
a−→!x|x′ and is un-

changed on all other operators. This rule is deduced from the behaviour of the
parallel operator; since a process !t can not make any transitions by the rules in
ρ, after the construction in (7), !t can make precisely the transitions that t can.

To obtain the correct specification of the replication operator we will need to
apply such a construction recursively, which we will do below. First we define a
function ϕ on S which uses the above construction to build, from an argument
specification τ , the specification containing all rules from our fixed specification
ρ and all rules which can be formed as in (7).

Definition 13. Given our fixed ρ and Δ, the map ϕ : S→ S is defined as

ϕ(τ) = ρ ∨
∨
d∈Δ

(π1 ◦ τ∗ ◦ d) .
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For well-definedness, we need to check that ϕ preserves monotonicity.

Lemma 14. The function ϕ : S→ S is monotone. Moreover, if τ is a monotone
specification, then ϕ(τ) is monotone as well.

As a consequence of ϕ being monotone, it has a least fixpoint, which we denote
by lfpϕ. Moreover, since ϕ preserves monotonicity we obtain monotonicity of
lfpϕ by transfinite induction (the base case and limit steps are rather easy).
This proof technique, which we also use several times below, is justified by the
fact that the least fixpoint of a monotone function in a complete lattice can be
constructed as the supremum of an ascending chain obtained by iterating the
function over the ordinals (see, e.g., [25]).

Corollary 15. lfpϕ is monotone.

Informally, lfpϕ is the specification consisting of rules from ρ and Δ. By

M : S→M

we denote the function which assigns to a specification its unique operational
model (5) (Section 2). We proceed to prove that the operational model of the
least fixpoint of ϕ is precisely the interpretation of ρ and Δ, i.e., thatM(lfpϕ) =
lfpψ. First, we show that M(lfpϕ) is a fixpoint of ψ.

Lemma 16. M(lfpϕ) is a (ρ,Δ)-model.

We proceed to show that M(lfpϕ) ≤ lfpψ. The main step is that any fixpoint
of ψ is “closed under ρ”, i.e., that in such a model, each transition which we
can derive by the specification is already there. This result is the contents of
Lemma 17 below. For the proof, one shows that Fμ ◦ h ◦Σ〈f, id〉 ≤ f ◦ ν holds
for any approximation h of lfpϕ, by transfinite induction.

Lemma 17. Let f ∈M be a fixpoint of ψ. Then Fμ ◦ lfpϕ ◦Σ〈f, id〉 ≤ f ◦ ν .

This allows to prove our main result.

Theorem 18. M(lfpϕ) = lfpψ, i.e., the interpretation of ρ and Δ coincides
with the operational model of the specification lfpϕ.

Proof. By Lemma 16, M(lfpϕ) is a fixpoint of ψ. To show it is the least one, let
f be any fixpoint of ψ; we proceed to proveM(lfpϕ) ≤ f by structural induction
on closed terms. Suppose σ ∈ Σ is an operator of arity n, and suppose we have
t1, . . . , tn ∈ T ∅ such that M(lfpϕ)(ti) ≤ f(ti) for all i with 1 ≤ i ≤ n (note that
this trivially holds in the base case, when n = 0). ThenM(lfpϕ)(σ(t1, . . . , tn)) =
Fμ ◦ lfpϕ ◦Σ〈M(lfpϕ), id〉(σ(t1, . . . , tn)) ≤ Fμ ◦ lfpϕ ◦Σ〈f, id〉(σ(t1, . . . , tn)) ≤
f(σ(t1, . . . , tn)) where the first inequality holds by assumption and monotonicity
of Fμ and lfpϕ (Corollary 15) and the second by Lemma 17. ��

As a consequence, the interpretation of ρ and Δ is well-behaved:
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Corollary 19. Bisimilarity is a congruence on the interpretation of ρ and Δ,
and bisimulation up to context is compatible.

Example 20. The operators of CCS can be given by a positive GSOS specifi-
cation, and equation (1) of the introduction contains a rule for the replication
operator. Thus, by the above Corollary, bisimilarity is a congruence on the op-
erational model of CCS with replication, and bisimulation up to context is com-
patible; this is proved and used in [25], but here we obtain it directly from the
format and the above results.

5 Structural Congruences (as Assignment Rules)

The assignment rules considered in the theory of the previous sections copy
behaviour from a term to an operator, but this assignment goes one way only. In
this section we consider the combination of abstract GSOS specifications with
actual equations, which are elements of TV × TV (where V is an arbitrary set
of variables). Any set of equations E ⊆ TV × TV induces a congruence ≡E :

Definition 21. Let E ⊆ TV ×TV be a set of equations. The congruence closure
≡E of E is the least relation ≡ ⊆ T ∅ × T ∅ satisfying the following rules:

t E u s : V → T ∅
s"(t) ≡ s"(u) t ≡ t

u ≡ t

t ≡ u

t ≡ u u ≡ v

t ≡ v

t1 ≡ u1 . . . tn ≡ un
σ(t1, . . . , tn) ≡ σ(u1, . . . , un)

for each σ ∈ Σ,n = |σ|

where s" is the extension of s to terms (defined by substitution).

In the context of structural operational semantics, equations are often inter-
preted by the structural congruence rule:

t ≡E u u
a−→ u′ u′ ≡E v

t
a−→ v

(8)

Informally, this rule states that we can deduce transitions modulo the congruence
generated by the equations. In fact, removing the part u′ ≡E v from the premise
(and writing u′ instead of v in the conclusion) does not affect the behaviour,
modulo bisimilarity [17]. See [17] for details on the interpretation of structural
congruences in the context of transition systems.

We denote by (T ∅)/≡E the set of equivalence classes, and by q : T ∅ → (T ∅)/≡E

the quotient map of ≡E . Thus q(t) = q(u) iff t ≡E u. Assuming the axiom of
choice, we further have t ≡E u iff there is a right inverse r : (T ∅)/≡E→ T ∅ of
q such that q ◦ r(t) = u. This is exploited in the operational interpretation of a
specification together with a set of equations.

Definition 22. Let θ : M→M be the (unique) function such that

θ(f) ◦ ν = Fμ ◦ ρ ◦Σ〈f, id〉 ∨
∨
r∈R

f ◦ r ◦ q ◦ ν .
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where R is the set of right inverses of q. A (ρ,E)-model is a coalgebra f ∈ M

such that θ(f) = f .

Lemma 23. θ is monotone.

Definition 24. The interpretation of ρ and E is the least (ρ,E)-model.

Example 25. Consider the specification of the parallel operator x | y as given
in (2) in the introduction, i.e., by a single rule and commutativity. In the in-

terpretation, if t
a−→ t′ then t | u a−→ t′ | u simply by the SOS rule. But also

u | t a−→ t′ | u, since t | u ≡E u | t. As for the definition of the replication
operator by the equation !x = !x | x, for a term t the interpretation contains the
least set of transitions from !t which satisfy the equation, as desired.

On stream systems, abstract GSOS specifications correspond to behavioural
differential equations, which are guarded, that is, for each operator (or constant)
one defines its initial value concretely. For example, one can define zip(x, y) =
o(x) : (y, x′), where o(x) denotes the initial value of x and x′ its derivative (its
tail); and, e.g., zeros = 0 : zeros and ones = 1 : ones define the streams consisting
only of zeros and ones, respectively. Taking the discrete order on the functor
(Example 2) we can now add equations to such specifications. For instance, the
paper folding sequence can be defined by the equations2 h = zip(ones, zeros) and
pf = zip(h, pf). In the interpretation, pf then defines the paper folding sequence.

Unfortunately, bisimilarity is not a congruence when equations are added [17].
For convenience we recall the counterexample on transition systems.

Example 26 ([17]). Consider rules p
a−→ p and q

a−→ p and the single equation
p = σ(q), where p, q are constants, σ is a unary operator and a is an arbitrary
label. In the interpretation, p is bisimilar to q, but σ(p) is not bisimilar to σ(q).

The solution of [17] is to introduce a restricted format of equations, called cfsc.
It is then shown that for any tyft specification combined with cfsc equations,
bisimilarity is a congruence.

Definition 27. A set of equations E ⊆ TV × TV is in cfsc format with respect
to ρ if every equation is of one of the following forms:

1. A σx-equation: σ1(x1, . . . , xn) = σ2(y1, . . . , yn), where σ1, σ2 ∈ Σ are of
arity n (possibly σ1 = σ2), x1, . . . , xn are distinct variables and y1, . . . , yn is
a permutation of x1, . . . , xn.

2. A defining equation: σ(x1, . . . , xn) = t where σ ∈ Σ and t is an arbitrary
term (which may involve σ again); x1, . . . , xn are distinct variables, and all
variables that occur in t are in x1, . . . , xn. Moreover σ does not appear in
any other equation in E, and ρX(σ(u1, . . . , un)) = ⊥ for any set X and any
u1, . . . , un ∈ FX ×X.

2 This example was taken from a presentation by Jörg Endrullis.
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A σx-equation allows to assign simple algebraic properties to operators which
already have behaviour; the prototypical example here is commutativity, like in
the specification of the parallel operator in (2). With a defining equation, one can
define the behaviour of an operator. Examples are !x = !x | x and pf = zip(h, pf)
(pf and h are constants). Associativity of | is neither a σx-equation nor a defining
one; see [17] for a discussion why the cfsc format cannot be trivially extended.
The cfsc format depends on an abstract GSOS specification: operators at the left
hand side of a defining equation should not get any behaviour in the specification.

In [17], σx-equations are a bit more liberal in that they do not require the
arities of σ and σ′ to coincide, and do allow variables which only occur on one
side of the equation. But in the interpretation these variables are quantified
universally over closed terms; thus, we can encode this using infinitely many
equations. We work with the simpler format above for technical convenience.

We proceed to show that the interpretation of an abstract GSOS specification
ρ and a set of equations E in cfsc equals the operational model of a certain
other specification, up to bisimilarity. This is done by encoding equations in
this format as assignment rules, and using the theory of the previous section to
obtain the desired result.

First, notice that for any σx-equation σ1(x1, . . . , xn) = σ2(y1, . . . , yn), the
variables on one side are a permutation of the variables on the other, and thus it
can equivalently be represented as a triple (σ1, σ2, p) where p : Id

n → Idn is the
natural transformation corresponding to the permutation given by the equation.
Below, we use t[x1, . . . , xn := t1, . . . , tn] to denote the simultaneous substitution
of variables x1, . . . , xn by terms t1, . . . , tn in a term t.

Definition 28. A set of equations E in cfsc defines a set of assignment rules
ΔE as follows:

1. For every σx-equation (σ1, σ2, p) we define d and d′ on a component X as

dX(σ(u1, . . . , un)) =

{
σ2(pX(u1, . . . , un)) if σ = σ1

σ(u1, . . . , un) otherwise

for all u1, . . . , un ∈ X, and d′ is similarly defined using the inverse permu-
tation p−1, and σ1 and σ2 swapped.

2. For every defining equation σ1(x1, . . . , xn) = t we define a corresponding as-

signment rule dX(σ(u1, . . . , un)) =

{
t[x1, . . . , xn := u1, . . . , un] if σ = σ1

σ(u1, . . . , un) otherwise

for any set X and all u1, . . . , un ∈ X.

If σ(x1, . . . , xn) = t is a defining equation of a set of equations in the cfsc for-
mat, then the behaviour of σ(x1, . . . , xn) will be the same as that of t.

Lemma 29. Let E be a set of equations in cfsc format w.r.t. ρ, and let ψ
be the function of Definition 7 for ρ and ΔE . Then for any defining equa-
tion σ(x1, . . . , xn) = t and any terms t1, . . . , tn ∈ T ∅: (lfpψ)(σ(t1, . . . , tn)) =
(lfpψ)(t[x1, . . . , xn := t1, . . . , tn]).
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The following lemma is the main step towards the correctness of the encoding.

Lemma 30. Let E and ψ be as above. If t ≡E u then Fq ◦ (lfpψ)(t) = Fq ◦
(lfpψ)(u), where q is the quotient map of ≡E.

This allows to prove that lfpψ and lfp θ coincide “up to ≡E”.

Lemma 31. Let ψ and q be as above. Then Fq ◦ (lfp θ) = Fq ◦ (lfpψ).

This implies that lfp θ and lfpψ are behaviourally equivalent up to ≡E. It is
well-known that behavioural equivalence coincides with bisimilarity whenever
the functor F preserves weak pullbacks [22], a mild condition satisfied by most
functors used in practice, including, e.g., transition systems and stream systems.
Under this assumption one can prove that lfp θ is equal to lfpψ up to bisimilarity,
and by Theorem 18 we then obtain our main result of this section.

Theorem 32. Suppose E is a set of equations which is in cfsc format w.r.t.
ρ, and suppose the behaviour functor F preserves weak pullbacks. Then the in-
terpretation of ρ and E equals the operational model of some abstract GSOS
specification, up to bisimilarity. Bisimilarity is a congruence, and bisimulation
up to context and bisimilarity is compatible.

6 Related Work

The main work on structural congruences [17] focuses on labelled transition
systems, whereas our results apply to the more general notion of coalgebras. As
for transition systems, the basic rule format in [17] is tyft/tyxt3, which is strictly
more general than positive GSOS since it allows lookahead. However, while [17]
proves congruence of bisimilarity this does not imply the compatibility (or even
soundness) of bisimulation up to context [19], which we obtain in the present
work (and is in fact problematic in the presence of lookahead).

In the bialgebraic setting, Klin [10] showed that by moving to CPPO-enriched
categories, one can interpret recursive constructs which have a similar form as
our assignment rules. Technically our approach, based on ordered functors, is
different; it allows us to stay in the familiar category of sets and apply the coal-
gebraic bisimulation-up-to techniques of [20], which are based in this category.
Further, in [10] each operator is either specified by an equation or by operational
rules, disallowing a specification such as that of the parallel operator in equa-
tion (2). Plotkin proposed to move to CPPO in [18] to model recursion. The
recent [15] applies the theory of [10] to add silent transitions to their concept
of open GSOS laws. This is then used to show that equations are preserved by
conservative extensions.

In [14] various constructions on distributive laws are presented. Their Exam-
ple 32 discusses the definition of the parallel operator as in (2) above, but a

3 In [17] it is sketched how to extend the results to the ntyft/ntyxt, which involves
however a complicated integration of the cfsc format with the notion of stable model.
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general theory for structural congruence is missing. In [5] it is shown how to
obtain a distributive law for a monad that is the quotient of another one by
imposing extra equations, under the condition that the distributive law respects
the equations. However, this condition requires that the equations already hold
semantically, which is fundamentally different from the present paper where we
define behaviour by imposing equations on an operational specification. Simi-
larly in [6,7] it is shown how to lift calculi with structural axioms to coalgebraic
models, but under the assumption, again, that the equations already hold.

7 Conclusions

We extended Turi and Plotkin’s bialgebraic approach to operational seman-
tics with non-structural assignment rules and structural congruence, providing
a general coalgebraic framework for monotone abstract GSOS with equations.
Our main result is that the interpretation of a specification involving assign-
ment rules is well-behaved, in the sense that bisimilarity is a congruence and
bisimulation-up-to techniques are sound. This result carries over to specifica-
tions with structural congruence in the cfsc format proposed in [17].

There are several promising directions for future work. First, one could ex-
tend our techniques to allow lookahead in premises by using cofree comon-
ads (e.g., [12]). While in general the combined use of cofree comonads and free
monads in specifications is known to be problematic, we expect that these prob-
lems do not arise when considering positive (monotone) specifications. In fact,
this could form the basis for a bialgebraic account of the tyft format. Unfortu-
nately, the compatibility results of bisimulation-up-to do not hold in a setting
with lookahead. Second, in the current work we only consider free monads. One
can possibly incorporate equations which already hold, by using the theory of [5].
Finally, it is worthwhile to consider categorical generalisations to allow, e.g., to
study structural congruences for calculi with names. It could also lead to con-
gruence formats for notions of equivalence other than bisimilarity.
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Abstract. We characterise the polarised evaluation order through a categorical
structure where the hypothesis that composition is associative is relaxed. Duploid
is the name of the structure, as a reference to Jean-Louis Loday’s duplicial algeb-
ras. The main result is a reflection Adj → Dupl where Dupl is a category of
duploids and duploid functors, andAdj is the category of adjunctions and pseudo
maps of adjunctions. The result suggests that the various biases in denotational
semantics: indirect, call-by-value, call-by-name... are ways of hiding the fact that
composition is not always associative.

1 Introduction

In a term language where the order of evaluation is determined by the polarity of a
type or formula, it is not immediate that composition is associative. The associativity of
categorical composition amounts to the following equation on terms:

let y be t in let x be u in v
?
= let x be (let y be t in u) in v

Now, in any setting where t could be of a type that implies a strict evaluation order, and
where u could be of a type that implies a delayed evaluation, we can see a difference in
spirit between these two terms. Indeed, in the left-hand term, the evaluation of t would
happen before the one of v. On the contrary, in the right-hand term, the evaluation of x
is delayed since it has the same type as u, so the term would compute v before t.

This phenomenon is observed with polarisation in logic and denotational se-
mantics [7,21,5,16,12]. Polarisation can thus be described (negatively) as rejecting,
either directly or indirectly, the hypothesis that composition is a priori associative. In
this article, we give a positive and direct description of a polarised evaluation order. To
this effect we introduce a category-like structure where not all composites associate.
Duploid is the name of the structure, as a reference to Jean-Louis Loday’s duplicial
algebras [15].

The main result relates duploids to adjunctions. To help understand this relation, let
us first recall the correspondence between direct models of call by value and indirect
models à la Moggi.

Direct Models. In a direct denotational model, there should be a close match between
the given operations in the model and the constructions in the language. Essentially,
type and program constructors should respectively correspond to operations on objects

* This is a shortened version of Chapter II from the author’s PhD thesis [20, pp. 86-91,103-152].
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Table 1. Comparison of the structures underlying various direct models of computation

Evaluation order By value By name Polarised

Direct model Thunk Runnable monad Duploid

Indirect model Monad T Co-monad L Adjunction F � G

Programs Kleisli maps
P → T Q

Co-Kleisli maps
LN → M

Oblique maps
FP → N� P → GN

Syntactic data Values Stacks Both

Completion into Thunkable
expressions

Linear evaluation
contexts Both

and on morphisms in a category. In particular, it should be possible to reason about
an instance of the model within the language.1 An example of direct models for the
simply-typed lambda calculus is given by cartesian-closed categories.

In a model such as Moggi’s λC models [18], or Lafont, Reus and Streicher’s mod-
els of call by name [10], however, the language is not interpreted directly but through
a Kleisli construction for a monad or a co-monad. We have a precise description of
the link between direct models and indirect models thanks to Führmann [6]. Categories
that model call by value directly are characterised by the presence of a thunk, a formal
account of the well-known structure used to implement laziness in call-by-value lan-
guages.

The characterisation takes the following form: any direct model arises from the
Kleisli construction starting from a λC model. However, from the direct model we can
only recover a specific λC model: its values are made of all the pure expressions. More
precisely, the Kleisli construction is a reflection that conflates any two values equal-
ised by the monad, and turns into a value any thunkable expression. An expression is
thunkable if it behaves similarly to a value in a sense determined by the monad.

Selinger [23] proves a similar relationship between direct models of the call-by-name
λμ calculus and Lafont, Reus and Streicher’s models [10].

Adjunction-Based Models. This article deals with the underlying algebraic structure
in these models: a monad over a category of values for call by value, a co-monad over a
category of stacks for call by name. Duploids generalise the underlying structure to an
adjunction between a category of values and a category of stacks. (See table 1.)

Relationship with polarities comes from Girard’s polarised translation of classical lo-
gic [7,5,11]. Our duploid construction extends the (skeleton of the) polarised translation
to any adjunction. (Notably, we do not need the assumption that there is an involutive
negation operation on formulae.)

We know that there is a practical relevance of decomposing monads, when seen as
notions of computation, into adjunctions, thanks to Levy [13,14]. Levy’s adjunctions
subsume models of call by value and call by name. However the model is indirect, and
still lacks a corresponding notion of direct model.

1 Führmann [6], Selinger [22].
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Outline. Section 2 introduces pre-duploids as categories where the associativity of com-
position is deficient. Section 3 defines duploids as pre-duploids with additional struc-
ture, and characterises this additional structure. The category Dupl of duploids and
duploid functors is introduced. Section 4 proves the main result.

Structure Theorem. The main result is a reflection
�

�

�

�

Dupl �Adj , where Adj is the
category of adjunctions and pseudo maps of adjunctions. In other words, the duploid
construction extends to a functorAdj → Dupl that admits a full and faithful right ad-
joint. In particular, any duploid is obtained from an adjunction, but adjunctions obtained
from duploids are peculiar.

As a consequence of the main result, duploids account for a wide range of computa-
tional models, as we will see in various examples. It suggests that the various biases in
denotational semantics: indirect, call-by-value, call-by-name. . . are ways of hiding the
fact that composition is not always associative.

In addition, the article develops an internal language for duploids. It provides intuitions
from programming languages and abstract machines about polarisation.

Characterisation of Duploids. We also characterise the adjunctions obtained from du-

ploids. We show that there is an equivalence of categories
�

�

�

�

Dupl �Adjeq , where

Adjeq is the full subcategory of adjunctions that satisfies the equalizing requirement:
the unit and the co-unit of the adjunction are respectively equalisers and co-equalisers.

This means that the duploid operates from the point of view of the model of com-
putation defined by the adjunction: first any two values and any two stacks that are not
distinguished by the model of computation are identified; and then the categories of
values and stacks are respectively completed with all the expressions that are thunkable,
and with all the evaluation contexts that are linear.

2 Pre-duploids

We define pre-duploids, which are category-like structures whose objects have a po-
larity, and which miss associativity of composition when the middle map has polarity
+→ �.

Definition 1. A pre-duploid D is given by:

1. A set |D | of objects together with a polarity mapping� : |D | → {+,�}.
2. For all A, B ∈ |D |, a set of morphisms or hom-set D(A, B).
3. For all morphisms f ∈ D(A, B) and g ∈ D(B,C), a morphism g f ∈ D(A,C), also

written as follows depending on the polarity of B:

g • f ∈ D(A,C) if �(B) = + ,

g ◦ f ∈ D(A,C) if �(B) = � .

The following associativities must hold for all objects A, B ∈ |D |; P,Q ∈ �−1({+})
and N,M ∈ �−1({�}):
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(••) For all A
f−→ P

g−→ Q
h−→ B, one has (h • g) • f = h • (g • f ) ;

(◦◦) For all A
f−→ N

g−→ M
h−→ B, one has (h ◦ g) ◦ f = h ◦ (g ◦ f ) ;

(•◦) For all A
f−→ N

g−→ P
h−→ B, one has (h • g) ◦ f = h • (g ◦ f ).

4. For all A ∈ |D |, a morphism idA ∈ D(A, A) neutral for .

The mapping � defines a partition of |D | into the positive objects P,Q... in |P | def
=

�−1({+}) and the negative objects N,M... in |N | def
= �−1({�}). This partition defines

categories P (whose composition is given by •) and N (whose composition is given
by ◦) in an obvious way.

2.1 Linear and Thunkable Morphisms

Definition 2. Let D be a pre-duploid. A morphism f of D is linear if for all g, h one
has:

f (g h) = ( f g) h

A morphism f of D is thunkable if for all g, h one has:

h (g f ) = (h g) f

Thus any morphism f : P → A is linear, and any morphism f : A → N is thunkable.
The terminology thunkable is borrowed from [24,6]. These notions are closed under
composition and identity.

Definition 3. We define sub-categories of D as follows:
Dl is the sub-category of linear morphisms of D .
Dt thunkable morphisms of D .
Nl linear morphisms of N .
Pt thunkable morphisms of P .

Observe that N and Nl are respectively the full sub-categories of Dt and Dl with neg-
ative objects. Symmetrically, P and Pt are respectively the full sub-categories of Dl

and Dt whose objects are positive.

Proposition 4. The hom-sets D(A, B) of a pre-duploid D extend to a (pro-)functor
�

�

�

�

D(−,=) : Dt
op ×Dl → Set defined for f ∈ Dt(A, B) and g ∈ Dl(C,D) with D( f , g) :

D(B,C) → D(A,D); D( f , g)(h) = g h f .

Proof. Restricting to f thunkable and g linear makes the definition unambiguous. Func-
toriality follows from (g1 g2) h ( f2 f1) = g1 (g2 h f2) f1, which holds when
f1 and f2 are thunkable and g1 and g2 are linear. �

2.2 Examples of Pre-duploids

Girard’s Classical Logic. Girard’s correlation spaces are a denotational semantics for
classical logic. They do not form a category for lack of associativity of the composi-
tion [7,12]. However, they form a pre-duploid.
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Blass Games. Blass [3] gives a game model for linear logic that fails to satisfy the asso-
ciativity of composition. Thanks to Abramsky’s analysis of this issue [1], we know that
associativity fails due to composites of the form N −→ P −→ M −→ Q. According to Ab-
ramsky, “none of the other 15 polarisations give rise to a similar problem”. Therefore,
Abramsky’s formalisation of Blass games yields a pre-duploid. Thanks to Melliès’s ana-
lysis of this so-called “Blass problem” [16], we know that the phenomenon is essentially
the same as for Girard’s classical logic.

Direct Models of Call by Value. Führmann [6] characterises the Kleisli category of a
monad via the presence of a structure called thunk. In the contexts of models of call by
value, the thunk implements laziness. Recall that a thunk-force category is a category
(P , •, id) together with a thunk (L, ε, ϑ) as defined next.

Definition 5 (Führmann). A thunk on P is given by a functor L : P → P together
with a natural transformation ε : L →̇ 1 and a transformation ϑ : 1 → L such that
the transformation ϑL : L → L2 is natural; satisfying the equations ε • ϑ = id and
Lε • ϑL = idL and ϑL • ϑ = Lϑ • ϑ.

A thunk induces a comonad (L, ε, ϑL).
Observe that in a thunk-force category (P , •, id, L, ϑ, ε), we can define a composite

of g : P → Q and f : LQ → R with g ◦ f
def
= g • L f •ϑP. This compositions admits εP as

a neutral element. This extends to a pre-duploid with compositions • and ◦ as follows.
The positive objects are the objects of P . The set of negative objects is given with
|N | = ⇑|P | for ⇑ a suitably chosen bijection with domain |P | (in other words |N | is a

disjoint copy of |P |). Then we take
�

�

�

�

D(A, B)
def
=P(A, B) where we define P = P

def
= P

and ⇑P
def
= LP and ⇑P

def
= P. With this definition, ◦ is a map D(⇑P, B) × D(A, ⇑P) →

D(A, B) and εP is an element of D(⇑P, ⇑P). It is easy to check that this defines a pre-
duploid.

In the context of λC models, this pre-duploid formalises how thunks implement lazi-
ness in call by value.

Now recall that Führmann calls thunkable any morphism f ∈ P(P,Q) such that
L f • ϑP = ϑQ • f . Not all morphisms of P are thunkable in general because ϑ is not
necessarily natural. We can prove the following:

Proposition 6. A morphism f : P → Q is thunkable in the sense of thunk-force cat-
egories if and only if it is thunkable in the sense of pre-duploids.

Thus the transformation ϑ is natural if and only if the pre-duploid is a category (i.e.
statisfies ◦•-associativity).

Direct Models of Call by Name. The concept dual to Führmann’s thunk is the one of
runnable monad. A runnable monad on a category C is given by a functor T : C → C
together with a natural transformation η : 1 →̇ T and a transformation ρ : T → 1 such
that the transformation ρT : T 2 → T is natural; satisfying the equations ρ ◦ η = id;
ρT ◦ Tη = idT and ρ ◦ Tρ = ρ ◦ ρT .

Runnable monads implement strictness in call by name. An example of a category
with a runnable monad is given by Selinger’s direct models of the call-by-name λμ
calculus [23]. Given a runnable monad, we can define, symmetrically to thunk-force
categories above, a pre-duploid with a bijective map ⇓ : |N | → |P |.
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2.3 Syntactic Pre-duploid

The syntactic pre-duploid is given by a term syntax. It is made of terms (t) with a polarity
which are identified up to β- and η-like equations. These equations are best described
with auxiliary syntactic categories for evaluation contexts (e) and abstract machines
(c = 〈t || e〉); a technique that arose in the theory of control operators [4,8,2].

There are four sets of variables written x+, α+, x�, α� to consider, and the following
grammar (“. . . ” indicates that we consider an extensible grammar):

t+ � V+ | μα+.c | . . .
t� � x� | μα�.c | . . .

V+ � x+ | . . .
V � V+ | t�

(a) Terms and values

e+ � α+ | μ̃x+.c | . . .
e� � π | μ̃x�.c | . . .
π� � α� | . . .
π� π� | e+

(b) Contexts and stacks

c� 〈t+ || e+〉 | 〈t� || e�〉
(c) Commands

Fig. 1. The syntactic pre-duploid (the variables that appear before a dot are bound)

The binders are μ and μ̃. They allow us to define composition as follows:

�

�

�

�

let x be t in u
def
= μα.

〈
t
∣∣∣
∣∣∣ μ̃x.〈u ||α〉〉 (α � fv(t, u))

In this macro-definition, the polarities of t and x must be the same, and the polarity of
α and of “let x be t in u” is determined by the one of u.

The contextual equivalence relation � determines the equality of morphisms. It is
induced by the following rewrite rules:

〈μα.c || π〉 � c[π/α] t � μα.〈t ||α〉 (α � fv(t))
〈V || μ̃x.c〉 � c[V/x] e � μ̃x.〈x || e〉 (x � fv(e))

The intuition is that positive terms are called by value while negative terms are called
by name. Indeed we have:

〈let x be V in u || π〉 �∗ 〈u[V/x] || π〉
but for a positive non-value t+ instead of V , computation continues with t+. This de-
scribes a call-by-value reduction. And with a negative non-stack e� instead of π compu-
tation is delayed until a stack (a linear evaluation context) is reached. This describes a
call-by-name reduction. In the latter case, “let x be V in u” and therefore u are negative.

Among other equations, we have for all terms and variables:

let x be y in t � t[y/x] (1)

let x be t in x � t (2)

let y+ be (let x be t in u+) in v � let x be t in let y+ be u+ in v (3)

let y be (let x� be t� in u) in v � let x� be t� in let y be u in v (4)
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The syntactic pre-duploid gives rise to a pre-duploid with two objects + and � and with
formal objects (x �→ t) : ε1 → ε2 as morphisms, where ε1 and ε2 determine the po-
larities of x and t (respectively). Equations (1) and (2) mean that modulo α-conversion,
variables provide a neutral element for the composition. Equations (3) and (4) corres-
pond respectively to • - and ◦- associativity.

It is not possible to rewrite “let y� be (let x+ be t+ in u�) in v” into “let x+ be t+ in

let y� be u� in v”. In other words, without imposing additional equations, we have in
general h ◦ (g • f ) � (h ◦ g) • f .

3 Duploids

We now enrich pre-duploids with operators of polarity coercion ⇓, ⇑ called shifts.1

Definition 7. A duploid is a pre-duploid D given with mappings ⇓ : |N | → |P | and
⇑ : |P | → |N |, together with, for all P ∈ |P | and N ∈ |N |, morphisms subject to
equations:

�

�

�

�

delayP : P → ⇑P
forceP : ⇑P → P
wrapN : N → ⇓N

unwrapN : ⇓N → N

�

�

�

�

forceP ◦ (delayP • f ) = f (∀ f ∈ D(A, P))

( f ◦ unwrapN) • wrapN = f (∀ f ∈ D(N, A))

delayP • forceP = id⇑P

wrapN ◦ unwrapN = id⇓N

Proposition 8. For any N, wrapN is thunkable. Dually, for any P, forceP is linear.

Proof. For all g, h we have h ◦ (g • wrapN) = (h ◦ (g • wrapN) ◦ unwrapN) • wrapN =

(h ◦ (g • wrapN ◦ unwrapN)) • wrapN = (h ◦ g) • wrapN . Hence wrapN is linear. The other
result follows by symmetry. �

Thus we have the following equivalent definition of a duploid:

Definition 9. A duploid is a pre-duploid D given with mappings ⇓ : |N | → |P | and
⇑ : |P | → |N |, together with a family of invertible linear maps forceP : ⇑P → P and a
family of invertible thunkable maps wrapN : N → ⇓N.

3.1 Syntactic Duploid

Let us start with the syntax, with which we provide computational intuitions for the
shifts. The syntactic duploid extends the syntactic pre-duploid with a type ⇑P of sus-
pended strict computations, and a type ⇓N of lazy computations encapsulated into a
value. Then delay • f represents the suspended strict computation f and the inverse op-
eration force triggers the evaluation of its argument (this is why it is linear in its negative
argument). The morphism wrap ◦ f represents f encapsulated into a value (this is why
it is thunkable) and unwrap removes the encapsulation.

1 Our notation is reminiscent of Melliès [16].
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We extend the syntactic pre-duploid as follows:

V+ � . . . | {t�} | . . .
t� � . . . | μ{α+}.c | . . .
(a) Terms and values

e+ � . . . | μ̃{x�}.c | . . .
π� � . . . | {e+} | . . .
(b) Contexts and stacks

Fig. 2. The syntactic duploid (extending the syntactic pre-duploid)

We also extend the relation � with the following rules:
�

�

�

�

〈{t�} || μ̃{x�}.c〉 � c[t�/x�] e+ � μ̃{x�}.〈{x�} || e+〉 (x� � fv(e+))
〈μ{α+}.c || {e+}〉 � c[e+/α+] t� � μ{α+}.〈t� || {α+}〉 (α+ � fv(t�))

.

The new constructions add to the syntax of terms the following operations (in addition
to values {t�}):

let {x�} be t+ in u
def
= μα.

〈
t+
∣∣∣
∣∣∣ μ̃{x�}.〈u ||α〉〉

delay(t+)
def
= μ{α+}.〈t+ ||α+〉

force(t�)
def
= μα+.〈t� || {α+}〉

We have in particular:

let {x�} be {t�} in u � u[t�/x�] let {x�} be t+ in {x�} � t+
force(delay(t+)) � t+ delay(force(t�)) � t� .

We can show that this extends the syntactic pre-duploid into a duploid (with wrap and
unwrap interpreted as x� �→ {x�} and x+ �→ let {y�} be x+ in y�, respectively).

3.2 The Duploid Construction

Let C1 and C2 be two categories and F � G : C1 → C2 an adjunction given by natural
transformations � : C1(F−,=) → C2(−,G=) and � = �−1. Note G : C1 → C2.

The goal of the duploid construction is to define a notion of morphisms A → B for A
and B objects of either category C1 and C2. Let us introduce the convention that objects
of C1 are negative and written N,M..., while the objects of C2 are positive and written
P,Q... Also, we write • the composition in C1 and ◦ the composition in C2.

We first define oblique morphisms P →D N, with P ∈ |C2| and N ∈ |C1|, equivalently
as maps P → GN or FP → N (thanks to the isomorphism �). Then we observe that
oblique morphisms compose either in C1 or in C2 as follows:

f : P →D FQ
f : FP → FQ

g : Q →D N
g : FQ → N

g • f : FP → N
g • f : P →D N

f : P →D N
f : P → GN

g : GN →D M
g : GN → GM

g ◦ f : P → GM
g ◦ f : P →D M

Thus we define morphisms A →D B as oblique morphisms:

�

�

�

�

A+ →D B� , where
P+

def
= P P�

def
= FP

N+
def
= GN N�

def
= N
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In other words, we define |D | def
= |C1| � |C2| and (taking an irrelevant bias towards C1)

we define D(A, B)
def
= C1(FA+, B�). Positive composition is given by the composition in

C1. Composition of f ∈ D(A,N) and g ∈ D(N, B) is given by g ◦D f
def
= (g� ◦C2 f �)�.

Identities are given with idD
P

def
= idC1

FP and idDN
def
= idC2

GN

�
.

Proposition 10. The above defines a pre-duploid D .

Proof (sketch). ••-associativity is given, and ◦◦-associativity is immediate using the
fact that � and � are inverse. •◦-associativity relies on the fact that the transformations �
and � are natural. �

Remark 11. In particular P is the Kleisli category (C2)GF of the monad GF and N is
the Kleisli category (C1)FG of the co-monad FG.

The pre-duploid has shifts, defined as follows:

⇑P
def
= FP ⇓N

def
= GN

D(P, ⇑P) � delayP
def
= idC1

FP ∈ C1(FP, FP)

D(⇑P, P) � forceP
def
= (idGFP)� ∈ C1(FGFP, FP)

D(N, ⇓N) � wrapN
def
= idC1

FGN ∈ C1(FGN, FGN)

D(⇓N,N) � unwrapN
def
= (idGN )� ∈ C1(FGN,N)

It is easy to see that:

Proposition 12. Every adjunction determines a duploid as above.

3.3 Linear and Thunkable Morphisms in Duploids

In duploids, we have the following useful characterisation of linear and thunkable
morphisms.

Proposition 13. In a duploid D , let f ∈ D(A, P). Then f is thunkable if and only if:

(wrap⇑P ◦ delayP) • f = wrap⇑P ◦ (delayP • f ) (5)

Dually, let f ∈ D(N, B). Then f is linear if and only if:

f ◦ (unwrapN • force⇓N) = ( f ◦ unwrapN) • force⇓N

Proof. We establish the non-trivial implication for the first case. The second case is
obtained by symmetry. First we prove that any morphism that satisfies (5) also satisfies
(h ◦ delayP) • f = h ◦ (delayP • f ) for any h ∈ D(⇑P, A). Indeed for any such h we have:

(h ◦ delayP) • f = (h ◦ unwrap⇑P) • (wrap⇑P ◦ delayP) • f

= (h ◦ unwrap⇑P) • wrap⇑P ◦ (delayP • f ) (by hypothesis)

= h ◦ (delayP • f )
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Now we prove that f is thunkable. For any g, h we have:

(h ◦ g) • f = (h ◦ (g • forceP) ◦ delayP) • f

= h ◦ (g • forceP) ◦ (delayP • f ) (with the above)

= h ◦ ((g • forceP ◦ delayP) • f ) (with the above again)

= h ◦ (g • f ) �

By applying the above proposition to the duploid construction, we easily deduce the
following:

Proposition 14. Let F �(η,ε) G : C1 → C2 be an adjunction, and consider the associ-
ated duploid D . Then f ∈ D(N, A) is linear if and only if f ◦ εFGN = f ◦ FGεN (in C1),
and f ∈ D(A, P) is thunkable if and only if its transpose f � ∈ C2(A+,GFP) satisfies
ηGFP ◦ f � = GFηP ◦ f � (in C2).

Now recall that an adjunction F � G that satisfies either of the following equivalent
statements is called idempotent: the multiplication of the associated monad is an iso-
morphism; or the co-multiplication of the associated co-monad is an isomorphism; or
we have εGF = GFε ; or we have ηFG = FGη. Thus we deduce the following:

Corollary 15. Let F �(η,ε) G : C1 → C2. The associated duploid D is a category if and
only if the adjunction is idempotent.

3.4 Structure of Shifts

As we have seen, the Kleisli category of a co-monad is described by a runnable monad;
and the Klesli category of a monad is described by a thunk, which is a co-monad. We ob-
serve a similar phenomenon with duploids. We show that there is a reversed adjunction,
in the sense that the right adjoint ⇑ is from positives to negatives:

�

�

�

�

⇓ � ⇑ : P → N

Actually, we state a wider adjunction. First remark that we can extend the shifts ⇓, ⇑ to
all objects in a straightforward manner:

⇓A
def
=

⎧
⎪⎪⎨
⎪⎪⎩

⇓N if A = N

P if A = P

⇑A
def
=

⎧
⎪⎪⎨
⎪⎪⎩

N if A = N

⇑P if A = P

delayN
def
= idN : N → ⇑N

forceN
def
= idN : ⇑N → N

wrapP
def
= idP : P → ⇓P

unwrapP
def
= idP : ⇓P → P

By “extend”, we mean that we have for all f , g:

( f forceA) ◦ (delayA g) = f g delayA forceA = idA

( f unwrapA) • (wrapA g) = f g wrapA unwrapA = idA

Also, extending proposition 8, we have, for all objects A, that unwrapA and wrapA are
thunkable whereas delayA and forceA are linear.
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Proposition 16. Let D be a duploid. The following:

⇑ f
def
= delayB f forceA ⇓ f

def
= wrapB f unwrapA

define functors ⇑ : Dl → Nl and ⇓ : Dt → Pt that take part in adjoint equivalences of
categories I �(delay,force) ⇑ : Dl → Nl and I �(wrap,unwrap) ⇓ : Dt → Pt, where I denotes
the inclusion functors.

Proof (sketch). The result follows from the fact that delay and force are inverse natural
transformations in Dl; likewise for wrap and unwrap in Dt. �

We can deduce the following:

Proposition 17. LetD be a duploid. We have natural isomorphisms between (pro-)func-

tors
�

�

�

�

Dt(−, I⇑=) � D(−,=) � Dl(I⇓−,=) : Dt
op ×Dl → Set where I denotes the

inferrable inclusion functors.

In particular, leaving the inclusion functors implicit, we have the adjunctions:

Dt

⇓


⊥ Dl

⇑
�� N

⇓
��

⊥ P
⇑

��

The adjunction ⇓ � ⇑ distinguishes our interpretation of polarities from ones based
on adjunctions of the form ↑ � ↓ that appears in the context of focusing in logic and
continuation-passing style in programming (see Laurent [11], Zeilberger [25]). Our dir-
ect notion of polarities adds a level of granularity. In terms of continuations, our po-
larities makes the distinction between continuations that are meant to be applied and
continuations that are meant to be passed.

3.5 The Category of Duploids

Definition 18. A functor of pre-duploids F : D1 → D2 is given by a mapping on objects
|F | : |D1| → |D2| that preserves polarities, together with mappings on morphisms FA,B :
D1(A, B) → D2(FA, FB), satisfying FidA = idFA and F(g f ) = Fg F f . A functor of
duploids F : D1 → D2 is a functor of pre-duploids such that FforceP is linear for all
P ∈ |P1|, and FwrapN is thunkable for all N ∈ |N1|.
Proposition 19. Let D and D ′ be two duploids and let F : D → D ′ be a mapping on
objects |F | : |D | → |D ′| that preserves polarities, together with mappings on morphisms
FA,B : D(A, B) → D ′(FA, FB). Then F is a functor of duploids if and only if F restricts
to functors Ft : Dt → D ′

t and Fl : Dl → D ′
l, such that the transformation F :

D(−,=) → D ′(Ft−, Fl=) is natural.

Proof. (⇐) is easy to prove. (⇒): Suppose that F is a functor of duploids. First we
establish that the full sub-pre-duploid FD of D ′ with objects of the form FA for A ∈
|D | has a duploid structure given by Fdelay, Fforce, Fwrap and Funwrap. This follows
from definition 9, using the hypothesis that Fforce is linear and Fwrap is thunkable.
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Then, considering proposition 13 applied to the duploid FD , we show that F preserves
linearity and thunkability. In other words it restricts to functors Ft : Dt → D ′

t and
Fl : Dl → D ′

l. That F : D(−,=) → D ′(Ft−, Fl=) is a natural transformation follows
from Fh Fg F f = F(h g f ) which makes sense for h linear and f thunkable. �

Definition 20. Dupl is the category whose objects are duploids and whose morphisms
are duploid functors. The obvious identity inDupl is written 1D .

3.6 Examples of Duploids

The Blass Phenomenon in Conway Games. Melliès [16] comes close to building a du-
ploid using the construction of Blass games. According to his analysis [16, Section 3],
the Blass problem comes down to the fact that the (pro-)functorC1(F−,=) : C2

op×C1 →
Set, in the terminology of Section 3.2, does not extend into a functor Pop ×N → Set
where P and N are respectively the Kleisli categories of the monad GF and the co-
monad FG. This is the essence of proposition 15. He then defines a category for an
asynchronous variant of Conway games. As he shows, asynchronism is a way to force
the double-negation monad to be idempotent, and therefore to recover associativity of
composition. He builds this way a game model of linear logic.

Girard’s Polarisation. Girard’s polarised translation of the classical logic LC into
intuitionistic logic [7], further formulated by Danos, Joinet and Schellinx [5] and
Laurent [11], inspired the duploid construction. Girard’s translation corresponds to con-
sidering in the duploid construction the self-adjunction of the negation functor ¬ = R−
in Set for R arbitrary. But obviously, the duploid obtained from the self-adjunction
of negation in any response category (in the terminology of Selinger [23]) gives a
denotational semantics of LC. Thielecke [24] later noticed the importance of this
self-adjunction in the understanding of continuation-passing style.

Response categories have recently been refined into dialogue categories by Melliès
and Tabareau [17] to provide a denotational semantics of linear logic via the polarised
translation. This was conceived as an abstract account of the asynchronous games of
Melliès [16] mentioned above.

Direct Models of Call by Value and of Call by Name. We defined a pre-duploid with a
bijection ⇑ : |P | → |N | from a thunk-force category (P , •, id, L, ϑ, ε). We complete
the definition into a duploid by defining ⇓ : |N | → |P | with ⇓⇑P

def
= LP; and delay,

force, wrap, unwrap in an obvious manner. We can show that thunk-force categories are
characterised as duploids where ⇑ is bijective on objects. Symmetrically, we can show
that categories with a runnable monad are characterised as duploids where ⇓ is bijective
on objects.

4 Structure Theorem

4.1 Every Duploid Comes from an Adjunction

Proposition 21. Let D be a duploid. We define ↑ : Pt → Nl the restriction of ⇑ and
↓ : Nl → Pt the restriction of ⇓. There is an adjunction ↑ � ↓ with unit wrap⇑ ◦ delay

and co-unit unwrap • force⇓.
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Proof. Due to the adjoint equivalences from proposition 16, we have the following nat-
ural isomorphisms:

Nl(⇑I−,=) � Dl(I−, I=) : Pt
op ×Nl → Set

Pt(−, ⇓I=) � Dt(I−, I=) : Pt
op ×Nl → Set ,

where I denotes the inferrable inclusion functors. Since we have Dl(P,N) = D(P,N) =
Dt(P,N), we also have Dl(I−, I=) = Dt(I−, I=) above. Thus we have a natural iso-
morphism Nl(↑−,=) = Nl(⇑I−,=) � Pt(−, ⇓I=) = Pt(−, ↓=). We can check that the
unit is wrap⇑ ◦ delay and the co-unit is unwrap • force⇓. �

Proposition 22. There is an isomorphism between D and the duploidD ′ obtained from
the above adjunction ↑ � ↓.

Proof (sketch). Recall that D ′ is defined with |D ′| = |D | and D ′(A, B) = Nl(↑⇓A,
⇑B). According to propositions 16 and 17, we have natural isomorphisms D(−,=) �
Dl(I⇓−,=) � Nl(↑⇓−, ⇑=), and thus for all A, B ∈ |D | we have a bijection D(A, B) →
D ′(A, B). It is easy to verify that this mapping defines a functor of duploids F : D → D ′.
Using the characterisation of proposition 19, its inverse is a functor of duploids. �

4.2 The Equalising Requirement

Definition 23. An adjunction F �(η,ε) G : C1 → C2 satisfies the equalising requirement
if and only if for all P ∈ |C2|, ηP is an equaliser of ηGFP and GFηP, and for all N ∈ |C1|,
εN is a co-equaliser of εFGN and FGεN.

We give an equivalent formulation of this condition in terms of the associated duploid:

Proposition 24. Let F �(η,ε) G : C1 → C2 be an adjunction, and consider the associ-
ated duploid D . The adjunction satisfies the equalising requirement if and only if for all
objects A, P,N the following three conditions hold:

1. εN is an epimorphism and ηP is a monomorphism; or equivalently G and F are
faithful;

2. all linear morphisms f ∈ D(N, A) are of the form g ◦ εN with g ∈ C1(N, A−); or
equivalently all linear morphisms are in the image of G modulo the adjunction;

3. all thunkable morphisms f ∈ D(A, P) are (modulo the adjunction) of the form ηP◦g
with g ∈ C2(A+, P); or equivalently all thunkable morphisms are in the image of F;

Proof (sketch). Follows from the characterisation in proposition 14. �

Proposition 25. Let D be a duploid and consider the adjunction ↑ � ↓ : Nl → Pt . The
adjunction satisfies the equalising requirement.

Proof (sketch). Follows easily from the fact that ε = unwrap• force⇓ has a section in N ,
namely delay⇓ • wrap : 1 →̇ ⇑⇓, and symmetrically for η. �
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4.3 Main Result

We consider pseudo maps of adjunctions as defined by Jacobs [9]:

Definition 26. Let F �(η,ε) G : C1 → C2 and F′ �(η′ ,ε′) G′ : C ′
1 → C ′

2 be two adjunc-
tions. A pseudo map of adjunctions:

�

�

�

�

(H1,H2, φ, ψ) : (F �(η,ε) G) → (F′ �(η′,ε′) G′)

is given by a pair of functors H1 : C1 → C ′
1 and H2 : C2 → C ′

2 together with natural

isomorphisms φ : F′H2
�→ H1F and ψ : G′H1

�→ H2G, such that H1 and H2 preserve η
and ε up to isomorphism: H2η = ψF ◦ G′φ ◦ η′H2

and H1ε = ε
′
H1

◦ F′ψ−1 ◦ φ−1
G .

As noted by Jacobs, two pseudo maps (H1,H2, φ, ψ) and (H′
1,H

′
2, φ

′, ψ′) compose as:

(H′
1,H

′
2, φ

′, ψ′) ◦ (H1,H2, φ, ψ) = (H′
1H1,H

′
2H2,H

′
1φ ◦ φ′H2

,H′
2ψ ◦ ψ′H1

) .

Definition 27. The category of adjunctionsAdj has adjunctions between locally small
categories as objects and pseudo maps of adjunctions as morphisms. The full subcat-
egoryAdjeq ofAdj consists in adjunctions that satisfy the equalising requirement.

Theorem 28. There are a reflection and an equivalence as follows:

Dupl �Adjeq �Adj

Proof (sketch). The functor j : Adj → Dupl is given on objects by the duploid con-
struction. The functor i : Dupl →Adjeq is given on objects by proposition 25. Propos-
ition 22 gives the family of isomorphisms jiD � D .

The complete proof appears in the author’s PhD thesis, Chapter II [20].
Intuitively, theorem 28 together with proposition 24 mean that the duploid construc-

tion j completes the values with all the expressions that are pure, and completes the
stacks with all the evaluation contexts that are linear. Moreover j identifies any two val-
ues that denote the same expression, and any two stacks that denote the same evaluation
context.

5 Ongoing Work

This work was developed during a collaboration with Marcelo Fiore and Pierre-Louis
Curien, in an effort to connect the L system [4,8,19,20] with adjunction models. The
calculus suggests that connectives should have an elegant characterisation in terms of
duploids, which is the subject of an ongoing work.
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Abstract. We establish foundational results on the computational com-
plexity of deciding entailment in Separation Logic with general induc-
tive predicates whose underlying base language allows for pure formulas,
pointers and existentially quantified variables. We show that entailment
is in general undecidable, and ExpTime-hard in a fragment recently
shown to be decidable by Iosif et al. Moreover, entailment in the base
language is ΠP

2 -complete, the upper bound even holds in the presence of
list predicates. We additionally show that entailment in essentially any
fragment of Separation Logic allowing for general inductive predicates is
intractable even when strong syntactic restrictions are imposed.

1 Introduction

Separation Logic (SL) is an extension of Hoare logic for reasoning about pro-
grams which manipulate heap data structures. Introduced in the early 2000s by
O’Hearn, Ishtiaq, Reynolds and Yang [18,20], it has been the starting point of a
line of research that has led to a large body of theoretical and practical work.

In the early days, the potential of Separation Logic was recognised by prov-
ing the (partial) correctness of the Schorr-Waite graph marking algorithm [22]
and Cheney’s copying garbage collector [6]. Those proofs were essentially carried
out in a pen-and-paper fashion and demonstrated the strength of the paradigm
underlying Separation Logic: local reasoning. The latter means that correctness
proofs for heap-manipulating code should only depend on the portions of the
heap accessed by the code and not the entire memory. Motivated by these pos-
itive results, research has been conducted on automating such proofs. On the
one hand, support for Separation Logic has been integrated into proof assistants
such as Coq, enabling semi-automated verification of program code, see e.g. [2].
On the other hand, a number of fully-automatic tools such as SmallFoot,
SLAyer, Space Invader or SLAD have been developed and successfully used
to show absence of memory errors in low-level real-world code, see e.g. [11,7,5].

∗ Supported by the French ANR, ReacHard (grant ANR-11-BS02-001).

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 411–425, 2014.
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A crucial requirement for any of these tools is the ability to check applications
of the consequence rule in Hoare logic, as it is this rule that underpins most meth-
ods of proof based on Separation Logic. The consequence rule, in turn, requires
the ability to check entailment between Separation Logic formulas. However, en-
tailment checking in full Separation Logic is undecidable [12,10], thus these tools
have to work with restricted, decidable fragments. Decidability, though, comes at
the cost of reduced expressive power and, often, reduced generality. For instance,
the fragment used by SmallFoot allows for reasoning about memory shapes
built upon the hard-coded primitives of pointers and linked lists, essentially lim-
iting its applicability to programs only involving those data structures; some
efforts have been made in order to allow for reasoning about more generic list
data structures, see e.g. [3]. The limitations of hard-coded inductive predicates
have been realised by the community, and recent research has been conducted
to enable automated reasoning about generic user-defined inductive predicates,
inside the framework of Separation Logic, see e.g. [13,9], or in related frame-
works such as forest automata [16]. Notable recent progress has been made by
Iosif et al. who showed decidability of satisfiability and entailment for a syntactic
fragment of Separation Logic with general recursively defined predicates by es-
tablishing a reduction to Monadic Second Order Logic on graphs with bounded
tree width [17]. Finally, Brotherston et al. have developed an ExpTime-complete
decision procedure for satisfiability of Separation Logic with general inductively
defined predicates [8]. In the same paper it is shown that the problem becomes
NP-complete if the arity of all predicates is bounded by a constant.

The goal of this paper is to contribute to this line of research and to estab-
lish foundational results on the inherent computational complexity of reasoning
problems in Separation Logic with general inductively defined predicates. In or-
der to obtain meaningful lower bounds, we restrict our analysis to the most basic
syntactic fragment of Separation Logic comprising (positive) Boolean combina-
tions of judgments on stack variables, both fixed and existentially quantified, and
pointers. This fragment also forms the basis of the decidable fragments of Separa-
tion Logic from [17,8]. Standard inductive data types are inductively expressible
in this fragment, for instance singly-linked lists as used by SmallFoot [4] can
be defined as follows:

ls(a, b) := emp ∧ a = b | ∃c. pt(a, c) ∗ ls(c, b) ∧ a �= b (1)

Informally speaking, supposing that ls(x, y) holds in a memory model, this def-
inition states that there is a singly-linked list segment from the memory cell
labeled with the stack variable x to the memory cell labeled with y if either the
heap is empty and x is equal to y, or x is not equal to y and the heap can be
split into two disjoint parts, indicated by the ∗-conjunction, such that on the
first part x is allocated and points to some cell a and heap cell a is the starting
point of a singly-linked list segment ending in y in the other part.

The main results of our paper are as follows. In the first part, we consider
entailment in Separation Logic with general inductive predicates. Given two as-
sertions α, α′ and a finite set of inductive predicates P referred to by α and α′,
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entailment is to decide whether the set of memory models of α is contained in
the set of memory models of α′ with respect to P . We show that this problem
is undecidable in general and ExpTime-hard when restricted to the decidable
syntactic fragment defined by Iosif et al. In the second part, we take a closer look
at entailment in the basic fragment of Separation Logic in the absence of induc-
tive predicates, i.e., Separation Logic with positive pure formulas, existentially
quantified variables and pointers. We show that this problem is complete for ΠP

2 ,
the second level of the polynomial hierarchy. The upper bound also holds when
allowing for the above list predicate hard-coded in the syntax. Subsequently, we
analyse the ΠP

2 lower bound and define a natural syntactic fragment for which
entailment is decidable in polynomial time, yet NP-hard in the presence of a list
predicate, i.e., one of the simplest possible inductive predicates. We discuss the
results obtained in the conclusion at the end of the paper.

Some proofs have been omitted due to lack of space, but are included in a
longer, online version of the paper, obtainable from the authors’ webpages.

2 Preliminaries

Let X and Y be sets, and let R ⊆ X × Y . We say that R is functional if for
every x ∈ X there is at most one y ∈ Y with (x, y) ∈ R. Let Y be a countable,
possibly infinite, set. We write X ⊂fin Y if X is a finite subset of Y . Moreover,
given countable sets X,Y , we write f : X ⇀fin Y if f is a function whose domain
is a finite subset of X and its co-domain is Y . Given f : X → Y , x ∈ X , y ∈ Y ,

we write f [x !→ y] to denote the function f ′ such that f ′(z)
def
= y if z = x, and

f ′(z)
def
= f(z) otherwise. Finally, given i ≤ j ∈ N, we write [i, j] to denote the

set {i, . . . , j} ⊆ N and [i] as an abbreviation for [1, i].

Graphs. Let L be a countable set of labels. We define directed labeled graphs
(just graphs in the following) as tuples G = (V,E, 	), where V denotes the set of
nodes or vertices, E is a subset of V ×V , and 	 : L ⇀fin V is a labeling function.
If L is empty we omit 	 and just write G = (V,E). A graph G = (V,E, 	) is
undirected if E is symmetric. If G is a graph, we also denote its set of nodes by

V (G) and its set of edges by E(G). The size of G is defined as |G| def= |V (G)|.
For interpretations below, we require a slightly more general class of graphs

which we call selector graphs, inspired by [17]. A selector graph is a tuple G =
(V,E, 	, s), where V and 	 are as above, s : V → N assigns an arity to each
vertex, and E : V ×N→ V is a partial function such that E is defined precisely
for every pair (v, i) with v ∈ V and i ∈ [s(v)]. If s(v) ∈ {0, 1} for all v ∈ V , we
obtain partial functional graphs.

Formulas of Separation Logic. The subsequent definitions are partly adapted
or inspired from [17]. Let Vars be a totally ordered countably infinite set of
variable names, which is partitioned into disjoint infinite sets EVars and FVars
representing sets of existential variables and fixed stack variables, respectively.
We will usually use a, b, c for elements from EVars, and x, y, z will usually be
elements from Vars. Variables in FVars will be used to represent fixed stack
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variables. The purpose of the distinction between EVars and FVars is to help
the reader to easily identify in which context a variable occurs. Let PNames
be a finite set of predicate names, where each predicate has an associated arity
k ∈ N, and is written as pred(a1, . . . , ak) with ai ∈ EVars for i ∈ [k]. The syntax
of SL-assertions or SL-formulas over PNames is given by the following grammar,
where x, x1, . . . , xm, y, y1, . . . , yk ∈ Vars, a1, . . . , an ∈ EVars, m ≥ 1 and n ≥ 0:

ϕ ::= - | ⊥ | x = y | ¬ϕ | ϕ ∧ ϕ (pure formulas)
σ ::= emp | tt | pt(x, (x1, . . . , xm)) | pred(y1, . . . , yk) | σ ∗ σ | α (spatial formulas)
α ::= ∃a1, . . . , an.σ ∧ ϕ (SL-assertions)

Here, pt(x, y) is the points-to or pointer predicate of an arbitrary aritym, and the
∗-conjunction is commutative, i.e., SL-assertions are considered equivalent up
to permutations of ∗-connected subformulas. We say that the SL-assertion α =
∃a1, . . . , an.σ ∧ ϕ is flat if σ contains no SL-assertion α′ as a subformula. Given
an SL-assertion α = ∃a1, . . . , am.(σ ∗ ∃b1, . . . , bn.(σ′ ∧ ϕ′)) ∧ ϕ, and supposing
without loss of generality that {ai : i ∈ [m]} ∩ {bj : j ∈ [n]} = ∅, we can
exhaustively rewrite the formula α as ∃a1, . . . , am, b1, . . . , bn.(σ ∗ σ′) ∧ ϕ ∧ ϕ′.
Thus we may assume with no loss of generality that an SL-assertion is flat.

Remark 1. We have imposed flatness and ∗-commutativity as syntactic prop-
erties. This is merely for presentational convenience in order to save space, as
these properties follow from the semantics definition below.

We call ϕ positive if ϕ is a conjunction of literals x = y and x �= y. Moreover, we
say that α is positive if ϕ is positive, and that α is reduced if no pred(y1, . . . , yk)
occurs in σ. By vars(α) ⊆ Vars we denote the set of all variables occurring in α.
The size of α, denoted by |α|, is defined to be the number of symbols in α.

A set P of inductive predicates over PNames is a finite set of definitions

pred(a1, . . . , ak) := α1 | · · · | αm

such that each ai ∈ EVars, αi is a flat SL-assertion αi = ∃b1, . . . , bn.σ ∧ ϕ over
PNames such that {ai : i ∈ [m]} ∩ {bj : j ∈ [n]} = ∅, and each predicate
name pred(a1, . . . , ak) occurs exactly once on the left-hand side of a definition
in P . Moreover, we require that each αi has no unbounded existential variables,
i.e., for each αm as above, vars(αm) ⊆ FVars ∪ {ai, bj : i ∈ [k], j ∈ [n]}.1 Given

x1, . . . , xk ∈ Vars, define pred[x1/a1, . . . , xk/ak]
def
= {αi[x1/a1, . . . , xk/ak] : i ∈ [k]},

where αi[x1/a1, . . . , xk/ak] is obtained from αi by replacing each occurrence of
aj with xj for j ∈ [k]. Given a flat assertion α = ∃c1, . . . cp.σ ∧ ϕ, an unraveling
of α with respect to P is obtained by replacing each pred(x1, . . . , xk) occurring
as a subformula in σ with some α′ ∈ pred[x1/a1, . . . , xk/ak]. We write α →P β
if β is an unraveling of α with respect to P , and denote the reflexive transitive
closure of →P by →∗

P . An unraveling α→∗
P β is complete if no pred(x1, . . . , xk)

occurs in β.

1 In a slight departure from convention, for presentational convenience we allow free
variables to appear in the body of definitions; such predicates can always be trans-
formed to equivalent ones where the previously free variables are parameters, w.l.o.g.
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Example 2. Taking P to be the singleton set consisting of the definition of ls(a, b)
from Equation (1), we have

ls(x, y)→∗
P ∃c1, c2.pt(x, c1) ∗ pt(c1, c2) ∗ ls(c2, y) ∧ x �= y ∧ c1 �= y

with respect to P , which is not a complete unraveling. A complete unraveling is
ls(x, y)→∗

P ∃c.pt(x, c) ∗ emp ∧ x �= y ∧ c = y.

For convenience, we sometimes use a generalised ∗-conjunction and, given
spatial formulas σ1, . . . , σn, write ∗1≤i≤n σi for σ1 ∗ · · · ∗ σn. Likewise, we write
pred(a1, . . . , ak) := ‖i∈[n]αi for pred(a1, . . . , ak) := α1 | · · · | αn. Moreover,
∃a1, . . . , an.σ abbreviates ∃a1, . . . , an.σ ∧ -; we may also write e.g. pt(x, ( , y))
as a shorthand for ∃a.pt(x, (a, y)), where a ∈ EVars is a fresh existential variable.
Furthermore, ∃i∈[n]ai.σ∧ϕ abbreviates ∃a1, . . . , an.σ∧ϕ. If PNames is clear from
the context we will omit stating it explicitly.

Interpretations. As stated above, interpretations are given in terms of selector
graphs. This diversion from the more commonly found “heap-and-stack model”
found in the literature is for technical convenience only, and it is easy to translate
between the two interpretation domains.

An SL-interpretation, or simply interpretation, I is a selector graph I =
(V I , EI , 	I , sI) such that 	I : FVars ⇀fin V . For x1, . . . , xn ∈ FVars and for
v1, . . . , vn ∈ V I , we denote by I[x1 !→ v1; . . . ; xn !→ vn] the SL-interpretation

Î = (V I , EI , 	̂Î , sI), where 	̂Î
def
= 	I [x1 !→ v1; . . . ; xn !→ vn], and we call such an

interpretation an extension of I.
In our interpretations, nodes with arity greater than zero are the equivalent

to allocated heap cells in the “heap-and-stack model”, while record fields are
represented by the different selectors. We define the ∗-decomposition of I as
follows: I = I1 ∗ I2 iff I1 = (V I1 , EI1 , 	I1, sI1) and I2 = (V I2 , EI2 , 	I2 , sI2)
such that V I = V I1 = V I2 ; 	I , 	I1 and 	I2 coincide; for i ∈ {1, 2}, either
sIi(v) = 0 or sIi(v) = sI(v), and sI(v) = sI1(v) + sI2(v) for all v ∈ V I ; for
i ∈ {1, 2}, if sIi(v) > 0 then EIi(v, j) = EI(v, j) for all v ∈ V I and j ∈ [sIi(v)].

Semantics of SL-assertions. The semantics of flat reduced SL-assertions is
defined by structural induction. Let I = (V I , EI , 	I , sI) be an SL-interpretation
and ϕ a pure formula only over variable names from FVars, the satisfaction
relation I |= ϕ is defined such that I |= - holds always, I |= ⊥ never holds,
I |= x = y iff 	I(x) = 	I(y), I |= ¬ϕ iff I �|= ϕ, and I |= ϕ1 ∧ ϕ2 iff I |= ϕ1 and
I |= ϕ2.

For reduced flat spatial formulas σ such that vars(σ) ⊆ FVars, we define
I |= emp iff sI(v) = 0 for all v ∈ V I and I |= tt holds always. Moreover,
I |= σ1 ∗ σ2 iff I = I1 ∗ I2 such that I1 |= σ1 and I2 |= σ2, and finally,
I |= pt(x, (x1, . . . , xm)) iff

• v = 	I(x), sI(v) = m, sI(v′) = 0 for all v′ ∈ V I \ v; and
• EI(v, i) = 	I(xi) for all i ∈ [m].

For a flat reduced SL-assertion α = ∃a1, . . . , an.σ∧ϕ, we define I |= α iff there
is an extension Î = I[x1 !→ v1, . . . , xn !→ vn] for fresh variables x1, . . . , xn ∈ FVars
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such that Î |= σ[x1/a1, . . . , xn/an] and Î |= ϕ[x1/a1, . . . , xn/an]. We call I a
model of α if I |= α. Given α and a set of inductive predicates P , we write
I |=P α if I |= α′ for some α′ obtained from a complete unraveling α →∗

P α′.
Given α and α′ over a set of inductive predicates P , we write α |=P α′ iff
whenever I |=P α then I |=P α′. Given α over a set of inductive predicates P ,
satisfiability is to decide whether there is an interpretation I such that I |=P α.
Given I, model checking is to decide I |=P α. The main decision problem of
interest in this paper is entailment, defined as follows.

Entailment

INPUT: SL assertions α, α′ with respect to a set P of inductive predicates.
QUESTION: Does α |=P α′?

3 Entailment in the Presence of Inductive Predicates

In this section, we show that entailment with general inductive predicates is un-
decidable when no restrictions are imposed. Subsequently, we give an ExpTime

lower bound for the fragment introduced by Iosif et al. [17].

General undecidability. We show undecidability via a reduction from the
undecidable Post Correspondence Problem [19].

Post Correspondence Problem (PCP)

INPUT: A finite set of tiles (v1, w1), . . . , (vk, wk), vi, wi ∈ {0, 1}∗.
QUESTION: Does there exist a sequence s1s2 · · · s� ∈ {1, . . . , k}�, 	 > 0 such

that vs1vs2 · · · vs� = ws1ws2 · · ·ws�?

For any u ∈ {0, 1}∗, denote by |u| the length of each tile, and by u(i) the i-th
symbol of u, for 1 ≤ i ≤ |u|. For example, if u = 01101, we have |u| = 5 and
u(3) = 1. Let (v1, w1), . . . , (vk, wk) be an instance of PCP. The set of predicates
P in Figure 1 establishes a reduction such that this instance has a solution iff
PCP(x, y) ∧ x0 �= x1 �|=P PCP(x, y). The intuition behind these definitions is as
follows. For x, y ∈ FVars, PCP(x, y) generates the set of all possible tilings for
a given instance: in any model the vi-tilings begin at x and the wi-tilings at y.
The fixed stack variables x0, x1 ∈ FVars are used to represent the corresponding
symbols 0 and 1. Likewise, PCP(x, y) generates all tilings which are incorrect.
This is the case if the model is empty, there are two symbols at the same position
which are different (cf. NEqualPair(x, y)), or the length of the strings encoded in
a model is different (cf. NEqualLen(x, y)).

Theorem 3. Entailment in Separation Logic with general inductive predicates
is undecidable.

Remark 4. An anonymous referee remarked that our reduction can also be ap-
plied for showing that satisfiability in the presence of conjunction over spatial
formulas and general inductive predicates is undecidable. The models of the
subsequent predicate encode all pairs of equal strings:

EqPairs(a, b) = emp | ‖i∈{0,1}∃p, r.pt(x, (xi, p)) ∗ pt(y, (xi, r)) ∗ EqPairs(p, r).
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PCP(a, b) := emp | Tile1(a, b) | · · · | Tilek(a, b)
Tilei(a, b), i ∈ [k] := ∃p0, . . . p|vi|, r0, . . . r|wi|. ∗

0≤j<|vi|
pt(pj , (xvi(j+1), pj+1)) ∗

∗ ∗
0≤j<|wi|

pt(rj , (xwi(j+1), rj+1)) ∗ PCP(p|vi|, r|wi|) ∧ a = p0 ∧ b = r0

NEqualPair(a, b) := ∃p, r.pt(a, ( , p)) ∗ pt(b, ( , r)) ∗ NEqualPair(p, r)
| ∃c, d. pt(a, (c, )) ∗ pt(b, (d, )) ∗ tt ∧ c �= d

Tail(a) := emp | ∃b.pt(a, ( , b)) ∗ Tail(b)
NEqualLen(a, b) := ∃x, p, r.pt(a, (x, p)) ∗ pt(b, (x, r)) ∗ NEqualLen(p, r)

| ∃p.pt(a, ( , p)) ∗ Tail(p) | ∃r.pt(b, ( , r)) ∗ Tail(r)
PCP(a, b) := emp | NEqualPair(a, b) | NEqualLen(a, b)

Fig. 1. The set P of inductive predicates for the reduction from PCP

It is then easy to conjoin EqPairs(x, y) with PCP(x, y) such that a model exists
if, and only if, the given PCP instance has a solution.

Inductive Predicates with Bounded Tree Width. Iosif et al. define in [17]
a fragment of Separation Logic by syntactically restricting the definitions of in-
ductive predicates such that all models have bounded tree width. In particular,
their fragment requires that there is exactly one points-to predicate in any defini-
tion, which is clearly not the case in the reduction from PCP. Moreover, briefly
speaking, further restrictions require that in each predicate definition, if a predi-
cate name occurs in the body of a predicate definition then a points-to predicate
occurs in the definition as well, that every existentially quantified variable is
eventually allocated, and some further subtle technical conditions. We omit fur-
ther details for space reason and show that entailment is ExpTime-hard in this
fragment. The reader can easily verify that our reduction fulfils the requirements
defined in [17].

Our reduction is from the language inclusion problem for non-deterministic
top-down binary finite tree automata. A prefix closed set of strings over {0, 1}
is a set of strings S such that for each s ∈ S and any prefix sp of s, sp is also in
S. A binary ordered tree t over a finite alphabet Σ is a tuple (N,Σ, 	), where N
is a prefix closed set of strings over {0, 1} denoting the nodes of the tree, where
for each s ∈ N , s · 1 ∈ N , if and only if s · 0 ∈ N , and 	 : N → Σ is a function
assigning labels to nodes of the tree. The root of a tree is the empty string ε,
and for any two nodes s and s · i, for i ∈ {0, 1}, s · i is a child node of s. We say
that a node s ∈ N is a leaf node if it has no child nodes, and a node is internal
otherwise.

Recall that a finite non-deterministic top-down tree automaton (NFTA) A
is a tuple (Σ,Q, δ, I), where Σ is a finite alphabet, Q is a finite set of states
with a designated state qleaf , I ⊆ Q is the set of initial or accepting states,
and δ : Q×Σ → 2Q×Q is the transition function such that for all σ ∈ Σ,
δ(qleaf , σ) = ∅. A run of A on a tree t = (N,Σ, 	) is a function ρ : N → Q
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assigning states to the nodes of t such that for each internal node s ∈ N ,
(ρ(s · 0), ρ(s · 1)) ∈ δ(ρ(s), 	(s)) and for each leaf node s ∈ N , ρ(s) = qleaf .
A run is accepting if ρ(ε) ∈ I, and the language L(A) accepted by a NFTA A is
the set of trees t for which there is an accepting run of A on t.

NFTA Language Inclusion Problem

INPUT: Two NFTA A1 and A2.
QUESTION: Does L(A1) ⊆ L(A2) hold?

A classical result states that the language inclusion problem for non-deterministic
tree automata is complete for ExpTime [21]. Let A = (Σ,Q, δ, I) be an NFTA.
We define the subsequent set P of inductive predicates, where Treeq,σ(a) is de-
fined for every σ ∈ Σ and q ∈ Q for which δ(q, σ) is non-empty:

Treeq,σ(a) := ‖ (q1,q2)∈δ(q,σ)
σ1,σ2∈Σ

δ(q1,σ1) �=∅∨q1=qleaf
δ(q2,σ2) �=∅∨q2=qleaf

∃l, r. pt(a, (sσ, l, r)) ∗ Treeq1,σ1(l) ∗ Treeq2,σ2(r)

Treeqleaf ,σ(a) := pt(a, sσ)

TreesA(a) := ‖ q∈I
σ∈Σ

∃b. pt(a, b) ∗ Treeq,σ(b)

In any model, the predicate TreesA(x) encodes all trees in L(A): apart from
the node labeled with x, each allocated vertex represents a node of the tree,
the first selector represents the label of the node, and the subsequent selectors
represent respectively the left and right descendants, if the node is an internal
node. The additional pointer at x is for technical reasons in order to comply with
the restrictions defined in [17]. It is now easily checked that given two NFTA A1

and A2 over some alphabet Σ = {σ1, . . . , σn},

TreesA1(x) ∧
∧

1≤i�=j≤n

sσi �= sσj |=P TreesA2(x)

is a valid entailment if, and only if, L(A1) ⊆ L(A2).

Theorem 5. Deciding entailment in Separation Logic with inductive predicates
with bounded tree width as defined in [17] is ExpTime-hard.

It is worth emphasizing that hardness already holds if the arity of the pointer
predicates is fixed to three. Also note that the ExpTime-hardness proof for
satisfiability provided in [8] does not trivially establish that entailment in the
fragment defined in [17] is ExpTime-hard since the definitions given in [8] are
not in the fragment of [17].

Also, note that in [21] it is shown that for two NFTA that accept finite lan-
guages, the language inclusion problem is PSpace-complete, and therefore the
proof of Theorem 5 can be adapted to show PSpace-hardness of entailment with
inductive predicates not involving cyclic definitions.
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4 Entailment for Fixed Fragments

The primary goal of this section is to first study the complexity of entailment
in the base language defined in Section 2, and subsequently in the base lan-
guage equipped with a fixed list predicate as defined in (1), which is a fragment
commonly found in the program verifiers discussed in the introduction.

We first show that entailment in the base language is ΠP

2 -complete. Moreover,
we additionally outline that the upper bound even holds in the presence of the
aforementioned list predicate. This result complements the previous section in
that it indicates that for specific and fixed natural decidable fragments involving
cyclic definitions of small arity the ExpTime lower bound can be avoided.

In the second part we analyse the lower bound from the first part and consider
natural syntactic fragments defined in terms of structural properties of graphs
representing SL-assertions. It has been shown that such restrictions can lead to
polynomial-time decision procedures for entailment when dropping existentially
quantified variables [14] and also decidability results for more expressive exten-
sions of our base assertion language [7]. We show that basically there is no hope of
achieving polynomial-time decision procedures in the presence of list predicates
and existentially quantified variables, even when strong syntactic restrictions on
the assertions are imposed.

Entailment in the General Case. We begin with the lower bound and show
hardness for the base language, i.e. the language having only points-to predi-
cates, via a reduction from a generalisation of graph three-colorability that has
been defined in [1]. Recall that given an undirected graph G = (V,E), graph
three-colorability is to decide whether there is a three-coloring f : V → {1, 2, 3}
such that f(v) �= f(w) for all {v, w} ∈ E. A leaf coloring of G is a function
f : Vl → {1, 2, 3}, where Vl is the set of vertices of G with degree one, i.e.,
those nodes that have exactly one incident edge. The generalisation of graph
three-colorability is given as follows.

2-Round 3-Colorability

INPUT: Undirected graph G = (V,E).
QUESTION: For every fixed leaf coloring f of G, can f be extended to a

three-coloring of G?

It has been shown in [1] that 2-Round 3-Colorability is ΠP
2 -complete. We

now show hardness of entailment for SL-formulas via a reduction from 2-Round

3-Colorability. To this end, we construct flat reduced SL-assertions α, α′ such
that the graph G = (V,E) is a valid instance of 2-Round 3-Colorability iff
α |= α′. We partition V into disjoint sets V ′ = {v1, . . . , vn} of nodes with degree
greater than one and V ′′ = {vn+1, . . . , vm} of nodes with degree equal to one,
and define α and α′ such that

α
def
= ∗

i∈[3]
j∈[n]

pt(xi,j , yi) ∗ ∗
n<j≤m

pt(xj , zj) ∧
∧

n<i≤m

∨
j∈[3]

zi = yj ∧
∧

1≤i�=j≤3

yi �= yj

α′ def
= ∃i∈[n]ai.∃j∈[m]bj .∗

i∈[n]
pt(ai, bi) ∗ ∗

n<j≤m
pt(xj , bj) ∗ tt ∧

∧
(vi,vj)∈E

bi �= bj .
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Intuitively speaking, the pointers pt(xj , zj) in α can choose in any model I of
α a coloring of the leaves of G, represented by the variables yi, i ∈ [3]. The
xi,j are allocated in order to enable α′ to choose a coloring of the nodes which
are not leaves. Consequently in a model I of α, an extension of I determining
the existentially quantified variables bi of α

′ determines a three-coloring of G.
Conversely, if α �|= α′ then the counter-model I encodes a coloring of the leaves
which cannot be extended to a three-coloring.

It is not difficult to see that ΠP
2 -hardness of entailment can already be es-

tablished for SL-assertions without disjunction, by only requiring yi �= yj for
all 1 ≤ i �= j ≤ 3 in the pure part of α: if α |= α′ then, in particular, any
leaf coloring can be extended to a three-coloring since a subset of the models
of α will encode all possible leaf colorings. The converse direction then follows
as above. In addition, by introducing additional existentially quantified slack
variables, the hardness proof can also be tightened in a way such that no “tt” is
required in spatial formulas, i.e., hardness holds in non-intuitionistic fragments.
Finally, this reduction can be reused in order to show NP-hardness of the model
checking problem via a reduction from 3-Colorability.

Since the size of all relevant models is a priori fixed by the size of the formulas
under consideration, a ΠP

2 upper bound follows trivially.

Theorem 6. Entailment for flat reduced SL-assertions is ΠP
2 -complete.

For the remainder of this section, we turn towards entailment in the base
language equipped with an additional fixed list predicate as defined in (1) and
restrict our attention to pointer predicates of arity one, and consequently to
interpretations which are functional graphs.

First, we can also establish a ΠP
2 upper bound for entailment in this fragment

by showing a small-model property. The main idea is that for a sufficiently large
I such that I |= α and I �|= α′, we can find an instantiation of an ls(x, y)
predicate in I such that the path between x and y is long enough that we can
obtain a new I ′ by removing a vertex occurring on this path while ensuring that
the newly obtained I ′ is still a counter-model witnessing α �|= α′.

Lemma 7. Let α, α′ be SL-assertions, let n = |vars(α)| + |vars(α′)| and sup-
pose that α �|= α′. Then there exists an I witnessing α �|= α′ with |V I | ∈ O(n2).

This lemma immediately yields a ΠP
2 upper bound: in order to show α �|= α′, we

can guess a small model I of α and then verify with an NP oracle that I �|= α′.

Theorem 8. Entailment for flat reduced SL-assertions with a fixed list predicate
is ΠP

2 -complete.

Entailment under Structural Restrictions. The goal of this section is to
argue that entailment in essentially any useful fragment is intractable in the
presence of existential quantification and list predicates, even under severe syn-
tactic restrictions. In the following, we will only consider positive SL-assertions,
since otherwise non-entailment is trivially coNP-hard.



Foundations for Decision Problems in Separation Logic 421

In order to identify syntactic fragments with potentially polynomial-time en-
tailment problems, we look at properties of graphs representing SL-formulas. Let
G = (V,E) be a directed graph and v ∈ V a vertex of G. Then, define func-

tions pred(v)
def
= {v′ ∈ V : (v′, v) ∈ E} and succ(v)

def
= {v′ ∈ V : (v, v′) ∈ E}. A

node v ∈ V is a source node if pred(v) = ∅, and v is a sink node if succ(v) = ∅.
Let α = σ ∧ ϕ be an SL-assertion, and x ∈ vars(α) be a variable of α. Then de-
fine the set Eq(ϕ, x) = {y ∈ vars(α) : for all I, if I |= ϕ then I |= x = y}. Next,
we define the graph G(α) corresponding to α as G(α) = (Vα, Eα, 	α), where the

set of vertices is defined as Vα
def
= {Eq(ϕ, x) : x ∈ vars(α)}, and the set of edges

as Eα
def
= {(Eq(ϕ, x),Eq(ϕ, y)) : pt(x, y) or ls(x, y) occurs in σ}. Finally, 	α is such

that 	α(x) = Eq(ϕ, x) for all x ∈ vars(α). A node v ∈ Vα is fixed if there is
x ∈ FVars such that 	α(x) = v.

Inspecting the ΠP
2 -hardness proof above, we see that one fundamental source

of complexity comes from having pointers pt(a, b) with a, b ∈ EVars, i.e., the
graph corresponding to α′ above has source and sink nodes which are not fixed.
On the one hand, when not allowing for list predicates, if all source nodes of
an SL-assertion were to be fixed, entailment between formulas in such a suit-
ably defined fragment would trivially become polynomial-time decidable. The
main reason for this is that in any model I of ∃a.pt(x, a), a would have to be
instantiated with the unique successor of the vertex labeled with x. However,
such a fragment would only allow for reasoning about models whose size is a
priori fixed by the size of the antecedent, which limits its usefulness. On the
other hand, when allowing for list predicates, the proof of NP-hardness of ab-
duction (given in [15]) can be easily adapted to show that entailment becomes
intractable even if source nodes are required to be fixed.

This leaves us with an interesting case, which we introduce by considering an
example of an instance of entailment:

ls(x, y) ∧ x �= y |= ∃a.pt(x, a) ∗ ls(a, y).

The validity of this entailment rests on the fact that x has a successor in any
model containing a non-empty list from x to y. In this example, the consequent is
a formula of the fragment of the assertion language which we are going to consider
in the remainder of this section: an SL-assertion α is in the fixed endpoints
fragment if all source and sink nodes of the graph G(α) corresponding to α are
fixed. We show coNP-hardness of entailment in this fragment via a reduction
from an NP-complete variant of the Hamiltonian path problem.

Fixed Vertex Hamiltonian Path (FVHP)

INPUT: A directed graph G = (V,E) and v ∈ V .
QUESTION: Does there exist a Hamiltonian path in G ending in v?

Given a graph G = (V,E), a vertex v ∈ V and an instance of FVHP such that
V = {v1, . . . , vN+1} and v = vN+1, we show how to compute in polynomial time
SL-formulas α, α′ in the fixed endpoints fragment such that α �|= α′ if and only
if G is a valid instance of FVHP. For i ∈ [N + 1] and j ∈ [N ], for the spatial
parts of α and α′ we define:
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nodej
def
= ls(esj , a

0
j) ∗ ∗

k∈[0,N−1]
ls(akj , b

k+1
j ) ∗ ∗

k∈[N−1]
ls(bkj , a

k
j ) ∗ ls(bNj , efj)

order0i
def
= pt(s0i , f

0
i )

orderji
def
= ls(sji , d

j
i ) ∗ ls(d

j
i , f

j
i )

σ
def
= ∗

j∈[N ]
nodej ∗ ∗

i∈[N+1]
j∈[0,N ]

orderji

A graphical illustration of the formulas nodej , order
j
i and order0i is given in Fig-

ure 2, where list predicates are represented as dashed arrows and pointer predi-
cates as full arrows. Consider the submodels of each of the formulas above. The
intuition behind these formulas, in conjunction with the inequalities introduced
below, is that there will be a model comprising a long concatenation, loosely
speaking, of such submodels, if and only if there is a hamiltonian path in the
given graph. The inequalities introduced below, will additionally ensure that
such a long concatenation can happen only in the models of α and not of α′,
and thus entailment will not hold in such a case. The variables akj and bkj are
essentially used in a way to count how long the concatenation is.

We now turn towards the pure parts of α and α′. For notational conve-
nience, given x ∈ vars(α) and S ⊆ vars(α), subsequently x ≈ S abbreviates∧

y∈vars(α)\(S∪{x}) x �= y. In other words, in any model I of x ≈ S, if 	I(x) = 	I(y)

for some y ∈ vars(α) then y ∈ S or x ≡ y. We define Dvars to be the set
{d�k : k ∈ [N + 1], 	 ∈ [0, N ]}, and we define ϕ to be the conjunction of the
subsequent pure formulas:

s0i ≈ ∅ ∧ fNi ≈ Dvars ∧ d0i = f0i , i ∈ [N + 1]

sji ≈
⋃

vp∈pred(vi),
N−j<k≤N−1

{akp, bkp, bNp , efp} ∪ Dvars, i ∈ [N + 1], j ∈ [N ]

fji ≈ {esi, a0i , b
N−j
i } ∪

⋃
k∈[N−j−1]

{aki , bki } ∪ Dvars, i ∈ [N ], j ∈ [0, N − 1]

fjN+1 ≈ Dvars, j ∈ [0, N − 1]

efi �= efj, 1 ≤ i �= j ≤ N

dji �= bN−j
i , i ∈ [N ], j ∈ [0, N − 1]∧

k∈[N ]\{i}
dji �= bN−j+1

k i ∈ [N + 1], j ∈ [N ]

Finally, we define α and α′ using the set of variables V shown below:

V
def
= {a0i , a

j
i , b

j
i , b

N
i : i ∈ [N ], j ∈ [N − 1]} ∪ {dji : i ∈ [N + 1], j ∈ [0, N ]}

α
def
= ∃x∈Vx.σ ∧ ϕ and α′ def

= ∃x∈Vx.σ ∧ ϕ ∧ dNN+1 �= fNN+1

Note that ϕ includes fNi ≈ Dvars for all i ∈ [N + 1]. Given the additional
disequality in α′, we now have fNN+1 ≈ Dvars \ {dNN+1} in the pure part of α′.
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nodej
def
=

esj a0j b1j a1j b2j
. . .

bN−1
j aN−1

j bNj efj

orderji
def
=

sji dji fji
order0i

def
=

s0i d0i , f
0
i

Fig. 2. Graphical representation of the formulas nodei and orderji

Also note that in order to simplify the presentation, we have defined α and
α′ such that we use the same existentially quantified variables both in α and α′.
It is important to note that given a model I of both α and α′, the extension
Î1 of I that witnesses the satisfaction of the formula α and the extension Î2
that witnesses the satisfaction of the formula α′ do not in general agree on the
mapping of those existentially quantified variables. The existentially quantified
variables in α could also be seen as fixed variables with names different from the
existentially quantified variables of α′. As these variables act in the same way
in both formulas, in order to avoid writing the above definitions twice and to
simplify our proof, we have decided to treat them as existentially quantified and
define them such that they have the same name in both formulas.

Lemma 9. G = (V,E) and v ∈ V is a valid instance of FVHP iff α �|= α′.

Proof (sketch). First, a crucial observation is that for any I such that I |= α
and I �|= α′, in any extension Î witnessing I |= α, we have that the instantiation
of dNN+1 coincides with fNN+1. Suppose this was not the case, then Î would also
witness I |= α′, contradicting our assumption. In this case we say that dNN+1 is
forced on fNN+1. We can show that forcing dNN+1 on fNN+1 is only possible if b1p
is forced on sNN+1 for some unique predecessor vp ∈ pred(vN ) of vN . In order to
force b1p on sNN+1, it can then be shown that dN−1

p and therefore fN−1
p is forced

on a0p. In summary, we can establish the following chain of inductive reasoning:

if dNi0 is forced on fNi0 then b1i1 is forced on sNi0 for some vi1 ∈ pred(vi0)

if b1i1 is forced on sNi0 then dN−1
i1

is forced on fN−1
i1

...
...

...
...

if dNiN−1
is forced on fNiN−1

then bNi1 is forced on s1i0 for some viN ∈ pred(viN−1)

if bNiN is forced on s1iN−1
then d0iN is forced on f0iN

Now considering the variable names bji in the implication chain, we obtain a
sequence b1i1 , b

2
i2 , . . . , b

N−1
iN−1

, bNiN such that for all 1 ≤ j < N , vij is a successor of
vij+1 in G. Consequently, the sequence of nodes π = viN · · · vi2vi1vN+1 is a path
of length N + 1 in G ending in vN+1. Using the definition of ϕ, it follows that
any bji can only be “used” once, hence π does not contain duplicate nodes and
thus is a Hamiltonian path ending in vN+1. ��

It is readily checked that source and sink nodes in the graph corresponding
to the definition of α and α′ are fixed. Hence, we have established the following.

Theorem 10. Entailment in the fixed endpoints fragment is coNP-hard.
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5 Conclusion

The results in this paper can be interpreted as follows: when considering frag-
ments of Separation Logic which allow for existential quantification and un-
bounded data structures, having tractable, polynomial-time decision procedures
will require severe syntactic restriction, since entailment is coNP-hard even in
the strongly constrained fixed endpoints fragment. In the presence of general
inductive predicates, although satisfiability is decidable [8], we have shown that
entailment becomes undecidable. This result complements the decidability re-
sult obtained by Iosif et al. [17] and shows that the syntactic restrictions defined
in [17] are not only natural but also crucial for decidability. However, we have
shown that entailment in this fragment is ExpTime-hard. On the more positive
side, we have shown that entailment is “only” ΠP

2 -complete in the presence of
existential quantification, pointers and linked lists. Since this is a fragment that
has been shown to be useful in program verifiers, this result may be seen as
an argument in favour of supporting the development of decision procedures for
domain-specific fragments of Separation Logic with a fixed set of predicates.

A number of problems remain open which we intend to investigate in the
future. For instance, an open issue is whether a restriction to a one-selector
fragment leads to decidable entailment. Also, although we have shown ExpTime-
hardness for the bounded-tree width fragment, we currently do not know whether
this is a tight bound. This is also true for the fixed endpoints fragment and
its coNP-hardness. Finally, of great interest would be decision procedures for
entailment in these fragments, since most tools use incomplete heuristics.

Acknowledgments. We would like to thank the referees for their helpful com-
ments. In particular, we wish to thank one referee who suggested the reduction
from the inclusion problem for tree automata for the proof of Theorem 5.
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Abstract. We extend recent work on defining linear-time behaviour for
state-based systems with branching, and propose modal and fixpoint log-
ics for specifying linear-time temporal properties of states in such sys-
tems. We model systems with branching as coalgebras whose type arises
as the composition of a branching monad and a polynomial endofunctor
on the category of sets, and employ a set of truth values induced canon-
ically by the branching monad. This yields logics for reasoning about
quantitative aspects of linear-time behaviour. Examples include reason-
ing about the probability of a linear-time behaviour being exhibited by
a system with probabilistic branching, or about the minimal cost of a
linear-time behaviour being exhibited by a system with weighted branch-
ing. In the case of non-deterministic branching, our logic supports rea-
soning about the possibility of exhibiting a given linear-time behaviour,
and therefore resembles an existential version of the logic LTL.

1 Introduction

Linear-time temporal logics such as LTL interpreted over non-deterministic tran-
sition systems and its probabilistic interpretation overMarkov chains (see e.g. [1])
have been used successfully as specification logics in model checking. These logics
share the same notion of linear-time behaviour, and employ a set of truth values
which depends on the type of branching: a two-valued logic is used for non-
deterministic transition systems, whereas elements of the unit interval are the
possible truth values in the case of Markov chains. Despite such commonalities,
a general and uniform account of linear-time logics is still missing.

The present paper fills this gap by building on recent work on defining linear-
time behaviour for states in coalgebras with branching [2]. We model systems as
coalgebras whose type incorporates branching, and define modal and fixpoint log-
ics that are parametric in both the branching type and the transition type. The
branching type canonically induces a set of truth values, whereas the transition
type canonically induces the notion of observable linear behaviour. In addition
to non-deterministic and probabilistic branching, our approach also instantiates
to weighted branching. Our approach can be summarised as follows:

– We model systems as coalgebras of an endofunctor obtained as the compo-
sition of a branching monad T : Set → Set with a polynomial endofunctor
F : Set → Set. The elements of the final F -coalgebra provide the observ-
able linear-time behaviours, whereas the set T1 (with 1 a one-element set)
is taken as domain of truth values.

A. Muscholl (Ed.): FOSSACS 2014, LNCS 8412, pp. 426–440, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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– Fundamental to our approach is a (partial) semiring structure on the set T1,
studied in [8,3,2]. On the one hand, its (partial) addition operation induces
an order on T1 which is used to generalise the notion of predicate typically
employed in the semantics of modal logics, by considering predicates valued
in T1. This subsequently supports the interpretation of fixpoint formulas.
On the other hand, the multiplication operation on T1 is used to canonically
associate a set of predicate liftings to a polynomial endofunctor on Set.

– We employ two kinds of liftings of endofunctors on Set to the category of
generalised predicates: one is inspired by coalgebraic modal logic (see e.g. [9])
and is used to provide semantics to individual modalities of a linear-time
logic, while another is used to abstract away branching.

– We define modal and fixpoint linear-time logics for coalgebras with branch-
ing, and provide an alternative relational semantics for these logics that is
amenable to model checking. The relational semantics relies on a generalised
notion of relation lifting studied in [2], and currently applies to fixpoint
formulas with only one type of fixpoints (either least or greatest ones).

While our approach builds on [2], the study of generalised predicate liftings and
the definition of linear-time modal and fixpoint logics are new. Our results apply
to systems with probabilistic or weighted branching, and yield linear-time logics
for reasoning about the probability or the minimal cost of exhibiting a given
linear-time behaviour. Our relational semantics provides a global approach to
model-checking linear-time logics, whereby the truth values of all sub-formulas
of a given formula are computed simultaneously. In this approach, computing the
truth values of desirable (undesirable) system properties formalised using least
(respectively greatest) fixpoints is done through a sequence of approximations,
and this computation can be stopped once a satisfactory threshold is reached.

The remainder of this paper is structured as follows. Section 2 introduces basic
definitions (Section 2.1) and gives a summary of our previous work on linear-time
behaviour (Sections 2.2 and 2.3). Section 3 defines generalised predicate liftings,
which are used in Section 4 to define multi-valued, linear-time modal logics for
coalgebras with branching. Fixpoint extensions of these logics are considered
in Section 5, where an outline of a relational approach to model checking such
logics is also given. Section 6 describes ongoing and future work.

2 Preliminaries

2.1 Monads and Semirings

In what follows, we use monads (T, η, μ) on Set (where η : Id⇒ T and μ : T◦T⇒
T are the unit andmultiplication of T) to capture branching in coalgebraic types.
Moreover, we assume that these monads are strong and commutative. A strong
monad is equipped with a strength map stX,Y : X×TY → T(X×Y ), natural in
X and Y and subject to coherence conditions w.r.t. η and μ. For such a monad,
one can also define a swapped strength map st′X,Y : TX × Y → T(X × Y ) by:

TX × Y
twTX,Y

�� Y × TX
stY,X

�� T(Y ×X)
TtwY,X

�� T(X × Y )
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where twX,Y : X × Y → Y ×X is the twist map taking (x, y) ∈ X × Y to (y, x).
Commutative monads are strong monads where the maps μX,Y ◦Tst′X,Y ◦stTX,Y :
TX × TY → T(X × Y ) and μX,Y ◦ TstX,Y ◦ st′X,TY : TX × TY → T(X × Y )
coincide, yielding a double strength map dstX,Y : TX×TY → T(X×Y ) for each
choice of sets X,Y .

Example 1. As examples of monads, we consider:

1. the powerset monad P : Set → Set, given by P(X) = {Y | Y ⊆ X},
modelling non-deterministic computations, with unit given by singletons and
multiplication given by unions. Its strength and double strength are given
by

stX,Y (x, V ) = {x} × V dstX,Y (U, V ) = U × V

for x ∈ X , U ∈ PX and V ∈ PY .
2. the sub-probability distribution monad S : Set→ Set, given by

S(X) = {ϕ : X → [0, 1] |
∑

x∈supp(ϕ)

ϕ(x) ≤ 1}

and modelling probabilistic computations. Here, supp(ϕ) = {x ∈ X | ϕ(x) �=
0} is called the support of ϕ. The unit of S is given by the Dirac distribu-
tions (i.e. ηX(x) = (x !→ 1)), and its multiplication is given by μX(Φ) =∑
ϕ∈supp(Φ)

∑
x∈supp(ϕ)

Φ(ϕ) ∗ ϕ(x), with ∗ denoting multiplication on [0, 1]. Its

strength and double strength are given by

stX,Y (x, ψ)(z, y) =

{
ψ(y) if z = x

0 otherwise
dstX,Y (ϕ, ψ)(z, y) = ϕ(z) ∗ ψ(y)

for x ∈ X , ϕ ∈ S(X), ψ ∈ S(Y ), z ∈ X and y ∈ Y .
3. the semiring monad TS : Set→ Set with (S,+, 0, •, 1) a commutative semir-

ing, given by
TS(X) = {f : X → S | supp(f) is finite}

Its unit, multiplication, strength and double strength are defined similarly
to the sub-probability distribution monad (see [2] for details). As a concrete
example we consider the semiringW = (N∞,min,∞,+, 0) (sometimes called
the tropical semiring), and use TW to model weighted computations.

We restrict attention to commutative, partially additive monads [2], as these have
been shown in loc. cit. to induce partial commutative semirings, whose carriers
will serve as our domains of truth values. To define partial additivity, we begin
by observing that any monad T : Set → Set with T∅ = 1 is such that, for any
X , TX has a zero element 0 ∈ TX , obtained as (T!X)(∗), where ∗ denotes the
unique element of 1. This yields a zero map 0 : Y → TX for any X,Y , given by
the composition

Y
!Y �� T∅ T !X �� TX
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with the maps !Y : Y → T∅ and !X : ∅ → X arising by finality and initiality,
respectively. Partial additivity is then defined using the following map:

T (X + Y )
〈μX◦Tp1,μY ◦Tp2〉

�� TX × TY (1)

where p1 = [ηX , 0] : X + Y → TX and p2 = [0, ηY ] : X + Y → TY .

Definition 1. A monad T : Set → Set is called partially additive if T∅ = 1
and the map in (1) is a monomorphism.

Remark 1. When the map in (1) is an isomorphism, then T is called additive.
Additive monads were studied in [8,3].

A (partially) additive monad T induces a (partial) addition operation + on the
set TX , given by T[1X , 1X ] ◦ qX,X :

TX T(X +X)
〈μX◦Tp1,μY ◦Tp2〉

��T[1X ,1X ]
		 TX × TX

qX,X

		� � � � � � � �

+





where qX,X : TX × TX → T(X + X) is the (partial) left inverse of the map
〈μX ◦ Tp1, μY ◦ Tp2〉. That is, a + b is defined if and only if (a, b) ∈ Im(〈μX ◦
Tp1, μY ◦ Tp2〉). Hence, when T is additive, + is a total operation.

The next result relates commutative, partially additive monads to partial com-
mutative semirings. The latter are given by a set S carrying a partial commu-
tative monoid structure (S,+, 0), as well as a commutative monoid structure
(S, •, 1), with • distributing over +. Specifically, for all s, t, u ∈ S, s • 0 = 0, and
whenever t+u is defined, so is s• t+ s•u and moreover s• (t+u) = s• t+ s•u.

Proposition 1 ([2]). Let T be a commutative, (partially) additive monad. Then
(T1, 0,+, •, η1(∗)) is a (partial) commutative semiring.

Example 2. For the monads in Example 1, one obtains the commutative semir-
ings ({⊥,-},∨,⊥,∧,-) when T = P and S when T = TS , and the partial
commutative semiring ([0, 1],+, 0, ∗, 1) when T = S (where in the latter case
a+ b is defined if and only if a+ b ≤ 1).

2.2 Generalised Relations and Relation Lifting

Throughout this section we fix a partial commutative semiring (S,+, 0, •, 1) and,
following [2], define a preorder relation 0 on S by

x 0 y if and only if there exists z ∈ S such that x+ z = y (2)

for x, y ∈ S. It follows immediately from the axioms of a partial commutative
semiring (see [2]) that 0 has 0 ∈ S as bottom element and is preserved by • in
each argument.
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We now let Rel denote the category1 with objects given by triples (X,Y,R),
where R : X × Y → S is a function defining a multi-valued relation (or S-
relation), and with arrows from (X,Y,R) to (X ′, Y ′, R′) given by pairs of
functions (f, g) as below, such that R 0 R′ ◦ (f × g):

X × Y
�

f×g
��

R
��

X ′ × Y ′

R′
��

S S

Here, the order 0 on S has been extended pointwise to S-relations with the same
carrier. We write q : Rel → Set× Set for the functor taking (X,Y,R) to (X,Y )
and (f, g) to itself. It follows easily that q is a fibration, with reindexing functors
(f, g)∗ : RelX′,Y ′ → RelX,Y taking R′ : X ′×Y ′ → S to R′ ◦ (f × g) : X×Y → S.
We also write RelX,Y for the fibre over (X,Y ), i.e. the subcategory of Rel with
objects given by S-relations over X × Y and arrows given by (1X , 1Y ).

[2] shows how to canonically lift polynomial endofunctors on Set (that is,
endofunctors constructed from identity and constant functors using finite prod-
ucts and set-indexed coproducts) to the category of generalised relations. To
define such liftings, an additional assumption that the unit 1 of • is a top el-
ement for 0 is made. The relation lifting of F : Set → Set is an endofunctor
Rel(F ) : Rel→ Rel making the following diagram commute:

Rel

q
��

Rel(F )
�� Rel

q
��

Set× Set
F×F

�� Set× Set

The definition of Rel(F ) is by induction on the structure of F , and makes use
of the • operation in the case of products of polynomial functors. The reader is
referred to [2] for details.

A special relation lifting, called extension lifting and induced canonically by
a commutative, partially additive monad T, is also defined in [2]. This time,
relations are valued into the partial commutative semiring induced by T (i.e. S =
T1), and the extension lifting ET : Rel→ Rel lifts the endofunctor T× Id to Rel

Rel

q
��

ET �� Rel

q
��

Set× Set
T×Id

�� Set× Set

and takes R : X × Y → T1 to the relation ET(R) : TX × Y → T1 given by

TX × Y
st′X,Y

�� T(X × Y )
T(R)

�� T21
μ1 �� T1

1 To keep notation simple, the dependency on S is left implicit.
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(The actual definition of the extension lifting in [2] is given in terms of unique 1-
linear extensions of relations of type X×Y → T1 to relations of type TX×Y →
T1. However, as shown in loc. cit., the above is an equivalent characterisation.)

2.3 Linear-Time Behaviour via Relation Lifting

This section summarises the definition of the linear-time behaviour of a state in a
coalgebra with branching, as proposed in [2]. The approach in loc. cit. applies to
coalgebras of functors obtained as arbitrary compositions of a single branching
monad and a finite number of polynomial endofunctors on Set. Here we restrict
attention to compositions of type T◦F . Thus, we model systems with branching
as T ◦ F -coalgebras on Set, where the partially additive, commutative monad
T : Set → Set specifies the type of branching, and the polynomial endofunctor
F : Set→ Set specifies the structure of individual transitions.

Given an arbitrary endofunctor F : Set → Set, an F -coalgebra is given by
a pair (C, γ) with C a set (of states), and γ : C → FC a function describing
the one-step evolution of the states. The notion of coalgebraic bisimulation pro-
vides a canonical and uniform observational equivalence relation between states
of F -coalgebras. One of the many (and under mild assumptions, equivalent)
definitions of bisimulation involves lifting the endofunctor F to the category of
standard relations (obtained in our setting by taking S = ({⊥,-},∨,⊥,∧,-)).
A similar approach is taken in [2] to define the extent to which a state in a coal-
gebra with branching can exhibit a given linear-time behaviour. The definition
in loc. cit. differs from the relational definition of bisimulation (for which we refer
the reader to [6]) in two ways: (i) generalised relations are used in place of stan-
dard relations, and (ii) the relation lifting employed also involves the extension
lifting ET defined earlier, as the goal is to relate branching-time and linear-time
behaviours, as opposed to behaviours of the same coalgebraic type.

Having fixed the branching type T and the transition type F , the final F -
coalgebra (Z, ζ) provides a natural choice as domain of observable linear-time
behaviours (which we will also refer to as maximal traces), whereas the (partial)
commutative semiring (T1,+, 0, •, 1) induced by T (see Proposition 1) provides,
as argued in [2], a natural choice as set of truth values. Throughout this section,
and in the remainder of the paper, we assume that the preorder 0 induced by
this semiring (defined in (2) ) is an ωop-chain complete partial order, and has
the unit 1 of • as top element. This assumption is satisfied by the preorders
associated to the semirings in Example 2, namely ≤ on {⊥,-} for T = P , ≤ on
[0, 1] for T = S, and ≥ on N∞ for T = TW .

The next definition provides a canonical notion of linear-time behaviour of
states in coalgebras with branching. It is inspired by a characterisation of coal-
gebraic bisimilarity (i.e. the largest bisimulation) between states of coalgebras of
the same type as the greatest fixpoint of a monotone operator on the category
of standard relations (see e.g. [2][Section 2.2] for a summary). It also resembles
partition refinement algorithms for computing largest bisimulations on labelled
transition systems with finite state spaces [7].
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Definition 2 ([2]). The linear-time behaviour of a state in a T ◦ F -coalgebra
(C, γ) is the greatest fixpoint of the operator O on RelC,Z given by the composition

RelC,Z
Rel(F )

�� RelFC,FZ
ET �� RelT(FC),FZ

(γ×ζ)∗
�� RelC,Z (3)

Monotonicity of the operator O is an immediate consequence of the functoriality
of Rel(F ), ET and (γ × δ)∗. The existence of a greatest fixpoint for O is then
guaranteed by the following standard result on the existence of fixpoints in chain-
complete partial orders, applied to the dual of the order 0.

Theorem 1 ([4, Theorem 8.22]). Let P be a complete partial order and let
O : P → P be order-preserving. Then O has a least fixpoint.

Example 3. For T = P , the greatest fixpoint of O relates a state c in a P ◦ F -
coalgebra (C, γ) with a state z of the final F -coalgebra if and only if there exists
a sequence of choices in the unfolding of γ starting from c, that results in an F -
behaviour bisimilar to z. For T = TS , the greatest fixpoint of O yields, for each
state in a S◦F -coalgebra and each maximal trace, the accumulated probability of
this trace being exhibited (across all branches). In particular, for infinite traces,
the associated probability is often 0. The logics defined later provide the ability
to also reason about the probability of exhibiting finite prefixes of infinite traces.
For T = TW , the greatest fixpoint of O maps a pair (c, z), with c a state in a
TW ◦F -coalgebra and z a maximal trace, to the minimal cost of exhibiting that
trace. Intuitively, this is computed by adding the weights of individual transitions
along the same branch, and minimising this sum across the various branches.

Remark 2. We recall from [2] that a relation between states of two T ◦ F -
coalgebras (C, γ) and (D, δ) can also be defined in a similar way, namely as the
greatest fixpoint of the operator O′ : RelC,D → RelC,D given by the composition

RelC,D
Rel(F )

�� RelFC,FD

E′
T �� RelT(FC),T(FD)

(γ×ζ)∗
�� RelC,D

where E′
T : Rel→ Rel is the lifting of T× T to Rel:

Rel

q
��

ET �� Rel

q
��

Set× Set
T×T

�� Set× Set

taking R : X × Y → T1 to the relation E′
T(R) : TX × TY → T1 given by

TX × TY
dstX,Y

�� T(X × Y )
T(R)

�� T21
μ1

�� T1

Example 4. For non-deterministic systems (T = P), the greatest fixpoint of O′

relates two states if and only if they admit a common maximal trace (element of
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the final F -coalgebra). For probabilistic systems (T = S), the greatest fixpoint
measures the probability of two states exhibiting the same maximal trace (any
maximal trace), whereas for weighted systems (T = TW ), the greatest fixpoint
measures the joint minimal cost of two states exhibiting the same maximal trace.
In the latter case, E′

W : Rel→ Rel takes a relation R : X×Y →W to the relation
E′
W (R) : TWX × TWY →W given by

E′
W (R)(f, g) = min

x∈supp(f),y∈supp(g)
(f(x) + g(y) +R(x, y))

The modal and fixpoint logics we introduce later have a similar flavour to the
previous example. In particular, for non-deterministic (respectively probabilis-
tic) systems, the resulting logics will support reasoning about the possibility
(respectively likelihood) of a state satisfying a certain linear-time property.

3 Generalised Predicates and Predicate Lifting

The standard approach to defining the semantics of modal logics involves inter-
preting formulas as predicates over the state space of the system of interest. In
the coalgebraic approach to modal logic, individual modal operators are inter-
preted using so called predicate liftings [9]. In order to follow the same approach
for linear-time logics, we introduce generalised predicates, i.e. predicates valued
in a partial commutative semiring (S,+, 0, •, 1) with induced order 0.

We let Pred denote the category with objects given by pairs (X,P ) with P :
X → S a function defining a multi-valued predicate (or S-predicate), and arrows
from (X,P ) to (X ′, P ′) given by functions f : X → X ′ such that P 0 P ′ ◦ f :

X

�

f
��

P
��

X ′

P ′
��

S S

As in the case of generalised relations, we obtain a fibration p : Pred→ Set, with
p taking (X,P ) to X . The fibre over X is denoted PredX , and the reindexing
functor f∗ : PredX′ → PredX takes P ′ : X ′ → S to P ′ ◦ f : X → S.

The next definition generalises predicate liftings as used in the semantics of
coalgebraic modal logics [9].

Definition 3. A predicate lifting of arity n ∈ ω for an endofunctor F : Set →
Set is a functor L : Predn → Pred making the following diagram commute:

Predn

p
��

L �� Pred

p
��

Set
F

�� Set

where the category Predn has objects given by tuples (X,P1, . . . , Pn) with Pi :
X → S for i ∈ {1, . . . , n}, and arrows from (X,P1, . . . , Pn) to (X ′, P ′

1, . . . , P
′
n)

given by functions f : X → X ′ such that Pi 0 P ′
i ◦ f for all i ∈ {1, . . . , n}.
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We now restrict attention to polynomial functors F : Set → Set, and show how
to define a canonical set of predicate liftings for F by induction on its structure.
Since in Set finite products distribute over arbitrary coproducts, any polynomial
endofunctor is naturally isomorphic to a coproduct of finite (including empty)
products of identity functors. The next definition exploits this observation.

Definition 4. Let F =
∐

i∈I Id
ji , with ji ∈ ω for i ∈ I. The set of predicate

liftings Λ = {Li | i ∈ I} has elements Li : Pred
ji → Pred with i ∈ I given by:

(Li)X(P1, . . . , Pji)(f) =

{
P1(x1) • . . . • Pji (xji) if f = (x1, . . . , xji) ∈ ιi(Idji)
0 otherwise

The functoriality of this definition follows from the preservation of 0 by •.
Example 5. For F = 1+A× Id× Id 8 1+

∐
a∈A Id× Id, F -coalgebras are binary

trees with internal nodes labelled by elements of A. Definition 4 yields a nullary
predicate lifting L0 and an A-indexed set of binary predicate liftings (La)a∈A:

L0(f) =

{
1 if f = ι1(∗)
0 otherwise

(La)X(P1, P2)(f) =

{
P1(x1) • P2(x2) if f = ιa(x1, x2)

0 otherwise

Remark 3. One can also define a single, unary predicate lifting Pred(F ) for each
polynomial functor F : Set→ Set, again by induction on the structure of F :

– If F = Id, Pred(F ) takes an S-predicate to itself.
– If F = 1, Pred(F ) takes an S-predicate to the predicate ∗ !→ 1.
– If F = F1 × F2, Pred(F )(P ) : F1X × F2X → S is given by

Pred(F )(P )(f1, f2) = Pred(F1)(P )(f1) • Pred(F2)(P )(f2), for P : X → S.

– if F =
∐

i∈I Fi, Pred(F )(P ) :
∐

i∈I FiX → S is given by

Pred(F )(P )(ιi(fi)) = Pred(Fi)(P )(fi) for P : X → S, i ∈ I and fi ∈ FiX.

Indeed, this is the approach taken in [5]. However, this predicate lifting turns
out to yield a modal logic with limited expressive power. We show later how
Pred(F ) yields a coinductive interpretation of truth in a system with branching.

Example 6. Let F : Set→ Set be as in Example 5. Then Pred(F ) is given by

Pred(F )(P )(ι1(∗)) = 1 Pred(F )(P )(ιa(x1, x2)) = P (x1) • P (x2)

As can be seen, the resulting unary modality requires the same property (P ) to
hold on both the left- and the right subtree.

As we are interested in linear-time logics, a special extension lifting, akin to the
extension lifting of Section 2.2, will be used to abstract away branching.
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Definition 5. Let T : Set → Set be a commutative, partially additive monad.
The extension lifting PT : Pred→ Pred is the lifting of T : Set→ Set to Pred

Pred

p
��

PT �� Pred

p
��

Set
T

�� Set

which takes P : X → T1 to the predicate PT(P ) : TX → T1 given by μ1(T(P )).

Remark 4. As in the case of ET, PT(P ) can alternatively be defined as the unique
extension of P : X → T1 to a T-algebra homomorphism (TX,μX)→ (T1, μ1).

4 Linear-Time Modal Logics

We are now ready to define linear-time logics for coalgebras of type T ◦ F ,
where the partially additive monad T : Set → Set and the polynomial functor
F : Set → Set are used as in Section 2.3. Our logics will be valued into the
partial semiring (T1,+, 0, •, 1) induced by the monad T (see Section 2.1).

We begin by fixing a set Λ of modal operators with associated predicate liftings
(Pλ)λ∈Λ for F . A canonical choice for Λ is given by the set of predicate liftings
in Definition 4. The next definition adapts the definition of coalgebraic modal
logics [9] in order to provide reasoning about linear-time behaviours.

Definition 6. The logic LΛ has syntax given by

ϕ ::= - | [λ](ϕ1, . . . , ϕar(λ))

with λ ∈ Λ of arity ar(λ), and semantics � �γ : LΛ → PredC (where (C, γ) is a
T ◦ F -coalgebra) defined inductively on the structure of formulas by

– �-�γ(c) = -
– �[λ](ϕ1, . . . , ϕar(λ))�γ = γ∗(PT(Pλ(�ϕ1�γ , . . . , �ϕn�γ)))

where γ∗ : PredC → PredTFC performs reindexing of predicates along γ.

The semantics of LΛ resembles that of coalgebraic modal logics (see e.g. [9]), with
two differences: (i) the interpretation of a formula is a generalised predicate over
the state space as opposed to a subset of the state space, and (ii) the extension
lifting PT : Pred → Pred of Definition 5 is used to abstract away branching. In
particular, the use of PT is what makes LΛ a linear-time logic.

It turns out that an equivalent definition of the semantics of LΛ can be given
in terms of relation lifting. To show this, we let LΛ =

∑
λ∈Λ Idar(λ), and note

that LΛ(L) 8 {[λ](ϕ1, . . . , ϕar(λ)) | λ ∈ Λ, ϕ1, . . . , ϕar(λ) ∈ L}. We now consider
the lifting D : Rel → Rel of the functor F × LΛ : Set × Set → Set × Set defined
through case analysis by

D(R)(f, [λ](ϕ1, . . . , ϕar(λ))) = Pλ(R
"(ϕ1), . . . , R

"(ϕar(λ)))(f)

for R : C × L → T1, f ∈ FC and ϕ1, . . . , ϕar(λ) ∈ L, where R" : L → PredC is
obtained from R by currying.
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Lemma 1. D : Rel→ Rel is a functor making the following diagram commute:

Rel

U
��

D �� Rel

U
��

Set× Set
F×LΛ

�� Set× Set

Proof (Sketch). Functoriality of D follows from the functoriality of Pλ for λ ∈ Λ.

An alternative definition of the semantics of LΛ can now be given by turning
the initial ({-}+ LΛ)-algebra (LΛ, α) into a ({-}+ LΛ)-coalgebra (LΛ, α

−1).

Proposition 2. Consider the operator S on RelC,LΛ given by the composition:

RelC,LΛ

D ��RelFC,LΛLΛ

ET �� RelTFC,LΛLΛ

X �� RelTFC,{�}+LΛLΛ

(γ×α−1)∗
�� RelC,LΛ

where ET is the extension lifting of Section 2.2, and where the lifting X : Rel →
Rel of Id×({-}+ Id) : Set×Set→ Set×Set takes R : C×L→ T1 to the relation
X(R) : C × ({-}+ L)→ T1 given by

X(R)(c, ι1(-)) = 1, X(R)(c, ι2(l)) = R(c, l) for c ∈ C and l ∈ L.

Then, the least and greatest fixpoints of S coincide, and the semantics of LΛ is
obtained via currying from this unique fixpoint fix(S) ∈ RelC,LΛ .

Proof (Sketch). Let fix(S)" : LΛ → PredC be obtained from fix(S) : C×LΛ → T1
by currying. It follows by induction on the modal depth of a formula ϕ (degree
of nesting of the modalities) that for ϕ of depth n, fix(S)(c, ϕ) can be computed
in n steps for any c ∈ C and moreover, fix(S)"(ϕ) = �ϕ�γ . The proof of the
inductive step exploits the close relationships between D and (Pλ)λ∈Λ on the
one hand, and between the extension liftings ET and PT on the other.

In Section 5, a fixpoint extension μLΛ of LΛ is defined and a similar result is
proved for a fragment of μLΛ.

We note the absence of conjunction and disjunction from LΛ. Restricted ver-
sions of these operators can be incorporated into the modal operators, as illus-
trated by the next example, and this appears to be sufficient in practice. On the
other hand, if the domain of truth values carries a lattice structure (which is the
case for all three branching monads considered here), then canonical interpre-
tations for conjunction and disjunction exist. The addition of such operators in
the general case, as well as the expressiveness of LΛ, are left as future work.

Example 7. Let F = 1+A×Id 8 1+
∐

a∈A Id, and let the nullary modality ∗, the
unary modality 〈a〉 and the binary modality [a] be defined using the predicate
liftings P∗ : 1 → Pred, P〈a〉 : Pred → Pred and P[a] : Pred× Pred → Pred for F ,
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given by

P∗(ι1(∗)) = 1 P∗(ιa(x)) = P∗(ιa′(x)) = 0

P〈a〉(P )(ιa(x)) = P (x) P〈a〉(P )(ι1(∗)) = P〈a〉(P )(ιa′(x)) = 0

P[a](P1, P2)(ιa(x)) = P1(x) P[a](P1, P2)(ιa′(x)) = P2(x)

P[a](P1, P2)(ι1(∗)) = 0

where a′ ∈ A \ {a} in the above. Then, the formula 〈a〉- measures the extent
to which the output a is observed in the next step. Also, the formula [a](-, ∗)
measures the extent to which either the output a is observed in the next step,
or an output a′ �= a is observed and following that, the computation terminates.

Modalities of this kind can be defined for an arbitrary polynomial endofunctor,
but space limitations prevent us from including the general case here.

We conclude this section with a brief discussion on the expressiveness of LΛ.
We immediately note that LΛ is intended as a specification logic, and therefore
finding a semantically-defined relation that captures the indistinguishability of
states by formulas is not the primary concern. This paper does not provide
a definitive answer on the expressiveness of LΛ. However, it does provide an
answer in the case when the predicate liftings in Λ are the canonical ones from
Definition 4. In this case, LΛ is (isomorphic to) the initial ({-} + F )-algebra,
whose elements can be thought of as finite trace prefixes, and formulas of LΛ

measure the extent to which finite-trace prefixes are exhibited by states of T◦F -
coalgebras. Thus, two states are indistinguishable by formulas if and only if the
extent to which they can exhibit each finite linear-time behaviour is the same.

Example 8. For F = 1 + A × Id 8 1 +
∐

a∈A Id, finite trace prefixes are in one-
to-one correspondence with finite sequences of one of the forms a1 . . . an- or
a1 . . . an∗ with n ∈ ω and a1, . . . , an ∈ A, where the latter sequence is also a
maximal trace. For F = 1+A× Id× Id 8 1 +

∐
a∈A Id× Id, finite trace prefixes

are given by finite binary trees with internal nodes labelled by elements of A
and with leafs labelled by either ∗ or -.

5 Linear-Time Fixpoint Logics

We now extend the logic LΛ with fixpoints, and describe an approach to model
checking a fragment of the resulting logic, whose formulas do not contain both
least and greatest fixpoints. In order to interpret both greatest and least fix-
points, we additionally assume that the order 0 induced by the (partial) semiring
of Proposition 1 is ω-chain complete. This assumption holds in all our examples.

Definition 7. Let V be a set of variables. The logic μLΛ has syntax given by

ϕ ::= x | - | [λ](ϕ1, . . . , ϕar(λ)) | μx.ϕ | νx.ϕ

with x ∈ V and λ ∈ Λ, and semantics � �Vγ : μLΛ → PredC (where (C, γ) is a
T ◦ F -coalgebra and V : V → PredC is a valuation) defined inductively on the
structure of formulas by
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– �x�Vγ = V (x),

– �μx.ϕ�V \{x}
γ (�νx.ϕ�V \{x}

γ ) is the least (respectively greatest) fixpoint of the

operator on PredC defined by P !−→ �ϕ�V [P/x]
γ , where the valuation V [P/x] :

V → PredC is given by V [P/x](x) = P and V [P/x](y) = V (y) for y ∈ V\{x}

and clauses for - and [λ](ϕ1, . . . , ϕar(λ)) similar to Definition 6.

The fact that the operator used to interpret fixpoint formulas is order-preserving
follows from the functoriality of predicate liftings. Existence of the required least
and greatest fixpoints then follows by Theorem 1.

Example 9. For T = P , predicate liftings for F are as used in the semantics
of coalgebraic modal logic [9], and μLΛ-formulas can be interpreted on F -
coalgebras. In this case, the logic μLΛ can be viewed as an existential version of
the logic LTL, wherein a linear-time formula holds in a state whenever a trace
satisfying the formula can be exhibited from that state. Our logic is however
more general, as it applies to transition structures defined by an arbitrary poly-
nomial functor F . For T = S or T = TW , μLΛ-formulas measure the likelihood,
respectively minimal cost, of satisfying a certain linear-time property.

Example 10. Using the modalities [a] and 〈a〉 of Example 7, the extent to which
a ∈ A appears (i) eventually, (ii) always and (iii) infinitely many times in the
unfolding of a state in a T◦F -coalgebra is measured by the formulas μx.[a](-, x),
νx.〈a〉x, and respectively νx.μy.[a](x, y).

Remark 5. The formula νx.◦x, with ◦ the predicate lifting defined in Remark 3,
can be viewed as providing a coinductive interpretation of truth. When T = P ,
νx.◦x holds in a state precisely when there exists a maximal trace from that
state, arising from a sequence of choices in the branching behaviour. (Such a path
will not exist from a state that offers no choices for proceeding.) For T = TW , the
truth value associated to νx.◦x in a particular state is the minimum accumulated
weight that can be achieved along any maximal trace from that state.

Ongoing work concerns the formulation of a result similar to Proposition 2 for
the logic μLΛ, and its exploitation for model checking μLΛ-formulas. Here we
only present a restricted version of such a result, which concerns the fragment
of μLΛ whose formulas do not contain both least and greatest fixpoints.

The following definitions are standard in the fixpoint logic literature.

Definition 8. A formula ϕ ∈ μLΛ is clean if every variable is bound at most
once in ϕ, and guarded if every occurrence of a bound variable appears within
the scope of a modal operator. A set C ⊆ μLΛ of formulas is closed if

– ϕ ∈ C whenever [λ]ϕ ∈ C, for λ ∈ Λ,
– ϕ[ηx.ϕ/x] ∈ C whenever ηx.ϕ ∈ C, for η ∈ {μ, ν}.

The closure Cl(ϕ) of a μLΛ-formula ϕ is the smallest closed set containing ϕ.

We now proceed by observing that the set F := Cl(ϕ) carries a {-}+ LΛ + Id-
coalgebra structure α : F → {-}+ LΛF + F , defined by:
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– α(-) = ι1(-),
– α([λ](ϕ1, . . . , ϕar(λ))) = ι2(ιλ(ϕ1, . . . , ϕar(λ))),
– α(ηx.ϕ) = ι3(ϕ[ηx.ϕ/x]) for η ∈ {μ, ν}.

Our goal is to characterise the semantics of μLΛ using relation lifting, as this
was done for the logic LΛ. The slight difficulty here is that an unfolding of the
T◦F -coalgebra γ (performed along an unfolding of the {-}+LΛ+Id-coalgebra α)
is only required in the case of formulas whose outer-most operator is a modality.
For formulas whose outer-most operator is a fixpoint operator, only an unfolding
of the respective fixpoint formula should be performed (by unfolding α). This
explains the somewhat involved next definition, which, in particular, replaces the
coalgebra γ as used in Proposition 2 by the coalgebra 〈γ, idC〉 : C → TFC ×C.

Definition 9. The operator Sμ : RelC,F → RelC,F is defined by the composition

RelC,F
F �� RelTFC×C,LΛF+F

X �� RelTFC×C,{�}+LΛF+F
(〈γ,idC〉×α)∗

�� RelC,F

where the lifting F : Rel→ Rel of ((T ◦F )× Id)× (Lλ+ Id) : Set×Set→ Set×Set
takes R : C×L→ T1 to the relation F(R) : (TFC×C)× (LΛL+L)→ T1 given
by

F(R)((u, c), ι1(ιλ(ϕ1, . . . , ϕar(λ)))) = ET(D(R))(u, ιλ(ϕ1, . . . , ϕar(λ)))

F(R)((u, c), ι2(ϕ)) = R(c, ϕ)

The lifting F of Definition 9 plays a rôle similar to that of ET◦D in Proposition 2,
only its definition is more involved for the reasons identified above.

Theorem 2. Let ϕ ∈ μLΛ be a clean, guarded formula containing no free vari-
ables, and only least (or only greatest) fixpoint operators. Let F := Cl(ϕ), and let
(C, γ) be a T ◦ F -coalgebra. Then, �ϕ�γ ∈ PredC can be obtained as fix(Sμ)

"(ϕ),
where fix(Sμ) : C × F → T1 is the least (respectively greatest) fixpoint of the
operator Sμ of Definition 9, and ( )" denotes currying.

Proof (Sketch). The statement follows by induction on the nesting depth of
fixpoint operators. Once the equivalence in Proposition 2 is taken into account,
the only difference between the two characterisations of the fixpoint semantics
is that in the relational semantics, the approximations of outer fixpoints used in
the computation of the inner fixpoints are updated while the computation of the
inner fixpoints is taking place. Given that all the fixpoints are of the same nature
(either least or greatest), this is not a problem. The proof of the inductive step
uses the observation that the above difference only impacts on how quickly the
fixpoint is reached, and not on the truth value of the outer fixpoint formula. For
example, in the case of the formula μx.μy.[a](x, y), the only effect of updating the
truth value of x (with a more accurate approximation) during the computation
of the inner fixpoint is that the outer fixpoint is potentially reached earlier.

We conclude by describing the relevance of Theorem 2 to model checking μLΛ-
formulas. We believe the value of this result stands in providing (so far only for a
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fragment of μLΛ), a global approximation procedure that does not require inner
fixpoints to be fully computed before the computation of the outer fixpoints can
resume. With this procedure, assuming a finite state space, and since the closure
of a formula is itself finite, one obtains increasingly accurate approximations of
the truth value of a formula in finite time, and can choose to stop computing these
approximations as soon as a satisfactory threshold is reached. This methodology
can be applied to desirable properties captured by formulas only involving least
fixpoints, as well as to undesirable properties captured by formulas only involving
greatest fixpoints. In the latter case, as the approximations decrease the truth
values of formulas, computing them can be stopped as soon as the truth value of
the property of interest is sufficiently small in the initial state(s) of the system.

6 Conclusions and Future Work

We have described a uniform approach to defining linear-time fixpoint logics for
a large class of state-based systems, modelled as coalgebras whose type incorpo-
rates branching. In our view, employing a universe of truth values derived from
the type of branching yields more natural logics which may in time prove easier
to model-check. In particular, our results apply to systems with weighted branch-
ing, for which temporal logics and associated model checking techniques have
hardly been studied. Such systems can be used to model resources, including
time, memory or computational power.

Ongoing work concerns extending Theorem 2 to arbitrary μLΛ-formulas. Such
an extension will provide the necessary support for model checking algorithms
based on the relational semantics. Future work will investigate similar logics
for coalgebras of even more general types, including arbitrary compositions of a
single branching monad with several polynomial endofunctors, as considered in
[2]. The expressiveness of the proposed logics also deserves further study.
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Abstract. Proof calculi for structured specifications have been developed inde-
pendently of the underlying logical system (formalised as institution). Typically,
completeness of these calculi requires interpolation properties of the underlying
logic. We develop a relatively complete calculus for structured heterogeneous
specifications that does not need interpolation.

1 Introduction

The theory of institutions [GB92] provides an excellent framework where the theory
of specification and formal software development may be presented in an adequately
general and abstract way [ST88a, ST12]. The initial work within this area captured
specifications built and developments carried out in an arbitrary but fixed logical sys-
tem formalised as an institution. However, the practice of software specification and
development goes much beyond this. Different logical systems may be appropriate or
most convenient for specification of different modules of the same system, of different
aspects of system behaviour, or of different stages of system development. This leads
to the need for a number of logical systems to be used in the same specification and
development project, linked by appropriate notions of morphisms between institutions
[GR02]. This observation spurred a substantial amount of research work already, and
motivates the research presented here.

In such a framework, one works in a heterogeneous logical environment formed by
a number of logical systems formalised as institutions and linked with each other in
a way captured by various maps between institutions. One such logical environment
is the CafeOBJ cube [DF02], another one the HETS family of institutions [Mos05],
supported by a tool to build and work with heterogeneous specifications [MML07].
The standard ways of building structured specifications within an institution may then
be complemented by heterogeneous specification building constructs, that allow one to
move specifications from one institution to another, and then combine specifications
originally built in different institutions [Tar00, DF02, MML07, Mos05, MT09].

We study here proof systems for so obtained structured heterogeneous specifica-
tions. Of course, we build on the calculi that deal with homogeneous specifications,
constructed within a single institution. This topic has been well-studied
[ST88a, Bor02, Dia08, ST12], with completeness of the resulting systems being the
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main problematic issue. The completeness results, where they can be achieved, either
rely on strong interpolation properties, or sacrifice compositionality of the proof sys-
tems, allowing the structure of the specifications to be flattened out entirely. We pro-
pose a middle way here, keeping as much as possible of the specification structure,
and still ensuring completeness of the resulting calculus. We argue that in many prac-
tical situations the structure that is kept is relevant, and the minimal massaging of the
specifications we suggest brings no real harm.

We extend this idea to heterogeneous specifications, where the required interpolation
property cannot be really expected, and our approach is in fact the only realistically
possible. A technical tool here is the notion of modification between institution maps
(which we adapt from [Dia02]) and lax compatibility of such maps, which serves us to
formulate the necessary (and realistic) compatibility conditions that make the complete-
ness of the resulting calculus for structured heterogeneous specifications achievable.

2 Structured Specifications and Proofs

Let us begin by recalling the notion of an institution, as a formalisation of an arbitrary
logical system [GB92], assuming that the reader is familiar with all the intuitions that
this notion brings in (see [Mac98] for an introduction to category theory).

Definition 2.1. An institution I consists of:

– a category SignI of signatures;
– a functor SenI : SignI → Set,1 giving a set Sen(Σ) of Σ-sentences for each

signature Σ ∈ |SignI |, and a function Sen(σ) : Sen(Σ) → Sen(Σ′), denoted
by σ( ), that yields σ-translation ofΣ-sentences toΣ′-sentences for each signature
morphism σ : Σ → Σ′;

– a functor ModI : Sign
op
I → Class,2 giving a class Mod(Σ) of Σ-models for

each signature Σ ∈ |SignI |, and a functor Mod(σ) : Mod(Σ′) → Mod(Σ),
denoted by |σ , that yields σ-reducts of Σ′-models for each signature morphism
σ : Σ → Σ′; and

– for each Σ ∈ |SignI |, a satisfaction relation |=I,Σ ⊆ModI(Σ)× SenI(Σ)

such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ SenI(Σ) and
Σ′-modelM ′ ∈ModI(Σ

′):

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ [Satisfaction condition]

The satisfaction condition expresses that truth is invariant under change of notation
and context.

Example 2.2. Propositional Logic. The institution Prop of propositional logic has sets
Σ (of propositional symbols) as signatures, and functions σ : Σ1 → Σ2 between such
sets as signature morphisms. A Σ-modelM is a mapping fromΣ to {true, false}. The

1 The category Set has all sets as objects and all functions as morphisms.
2 Class is the quasi-category of all classes, where “quasi” means that it lives in a higher set-

theoretic universe. If model morphisms are needed, one may use categories instead of classes.



A Relatively Complete Calculus for Structured Heterogeneous Specifications 443

reduct of aΣ2-modelM2 along σ : Σ1 → Σ2 is theΣ1-model given by the composition
σ;M2.3 Σ-sentences are built from Σ with the usual propositional connectives, and
sentence translation along a signature morphism just replaces the propositional symbols
along the morphism. Finally, satisfaction of a sentence in a model is defined by the
standard truth-table semantics. It is straightforward to see that the satisfaction condition
holds.

Example 2.3. Untyped First-order Logic. In the institution UFOL= of untyped
first-order logic with equality, signatures are first-order signatures, consisting of a set of
function symbols with arities, and a set of predicate symbols with arities. Signature mor-
phisms map symbols so that arities are preserved. Models are first-order structures, and
sentences are first-order formulas. Sentence translation means replacement of the trans-
lated symbols. Model reduct means reassembling the model’s components according to
the signature morphism. Satisfaction is the usual satisfaction of a first-order sentence in
a first-order structure.

Many-sorted First-order Logic. The institution FOL= of many-sorted first-order
logic with equality is similar to UFOL=. Signatures are many-sorted first-order signa-
tures, consisting of sorts and typed function and predicate symbols. The rest is similar
to UFOL=. For details, see [GB92].

Many-sorted Partial First-order Logic. The institution PFOL= is similar to FOL=,
but functions can be partial. Atomic formulas evaluate to false if some component term
involves some undefinedness. See [CoF04].

CASL extends PFOL= with subsorting and induction (for datatypes), see [CoF04].
Many-sorted Equational Logic (EqL) is the sublogic of FOL= restricting signa-

tures to those without predicate symbols and sentences to universally quantified
equations.

In any institution I, standard logical notions, like the model class Mod(Γ ) for any
set Γ of sentences, semantic (logical) consequence Γ |= ϕ for any set Γ of sentences
and sentence ϕ over the same signature, are defined as usual. In particular, a theory is a
pair T = 〈Σ,Γ 〉, whereΣ ∈ Sign and Γ ⊆ Sen(Σ). Theory morphisms are signature
morphisms mapping axioms to logical consequences, leading to a category Th of the-
ories. It is easy to extend this to an institution of theories Ith = (Th,Sen,Mod, |=)
over I.

Definition 2.4. A cocone for a diagram inSign is (weakly) amalgamable if it is mapped
to a (weak) limit in Class under Mod. I (or Mod) admits (finite) (weak) amalgama-
tion if (finite) colimits exists in Sign and colimiting cocones are (weakly) amalgam-
able, i.e. if Mod maps (finite) colimits to (weak) limits. An important special case
is pushouts: I (or Mod) is (weakly) semi-exact, if pushouts exist in Sign and are
(weakly) amalgamable.

Definition 2.5. An institution I is quasi-exact if for each diagram D : J −→ Sign,
there is some weakly amalgamable cocone overD. Quasi-semi-exactness is the restric-
tion of this notion to diagrams of shape • •�� �� • .

3 We write composition in any category in the diagrammatic order and denote it by “;”.
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We recall a variant of Craig interpolation that better fits for logics that may have no
implication, namely Craig-Robinson interpolation [DM00, Sho67].

Definition 2.6. Given an institution I, a commuting square in Sign

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1
��

Σ2
θ2

�� Σ′

admits Craig-Robinson interpolation whenever for all finite sets of sentences Ψ1 ⊆
Sen(Σ1) and Ψ2, Γ2 ⊆ Sen(Σ2), if θ1(Ψ1) ∪ θ2(Γ2) |= θ2(Ψ2) then there exists a
finite set Ψ of Σ-sentences such that Ψ1 |= ϕ1(Ψ) and ϕ2(Ψ) ∪ Γ2 |= Ψ2.
I has Craig-Robinson interpolation if all signature pushouts admit Craig-Robinson

interpolation.

This is the category-theoretic generalisation of the usual notion of interpolation. In
particular, the usual notion of “common language of Ψ1 and Ψ2” is generalised to an

arbitrary span Σ1 Σ
ϕ1�� ϕ2 �� Σ2 (imagine Σ to be the intersection Σ1 ∩ Σ2).

Craig interpolation is a weaker version of Craig-Robinson interpolation, with Γ2 = ∅
in Def. 2.6.

Institutions were originally introduced to free the theory of specifications from de-
pendency on any particular logical system. We follow [ST88a] and for any institu-
tion I consider a class SpecI of specifications built in I from basic specifications
(presentations, which consist of a signature and a set of sentences over this signa-
ture) by means of a number of specifications-building operations. Fix an institution
I = (Sign,Sen,Mod, |=). Simultaneously with the notion of structured specifica-
tion, we define functions Sig and Mod yielding the signature and the model class for
any specification.

presentations: For any signature Σ ∈ |Sign| and finite set Γ ⊆ Sen(Σ) of Σ-
sentences, the presentation 〈Σ,Γ 〉 is a specification with:

Sig [〈Σ,Γ 〉] := Σ Mod [〈Σ,Γ 〉] := {M ∈Mod(Σ) |M |= Γ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2, their
union SP1 ∪ SP2 is a specification with:

Sig [SP1 ∪ SP2] := Σ Mod [SP1 ∪ SP2] := Mod [SP1] ∩Mod [SP2]

translation: For any signature morphism σ : Σ −→ Σ′ andΣ-specificationSP , σ(SP )
is a specification with:

Sig [σ(SP)] := Σ′ Mod [σ(SP)] := {M ′ ∈Mod(Σ′)|M ′|σ∈Mod [SP ]}

hiding: For any signature morphism σ : Σ −→ Σ′ and Σ′-specification SP ′, SP ′|σ is
a specification with:

Sig [SP ′|σ] := Σ Mod [SP ′|σ] := {M ′|σ |M ′ ∈ Mod [SP ′]}
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Typical structuring constructs of many existing specification languages like CASL

[CoF04], CafeOBJ [DF02] and others can be mapped to this kernel formalism.
The semantics determines specification equivalence: SP1 ≡ SP2 iff Sig[SP1] =

Sig [SP2] and Mod [SP1] = Mod [SP2]. Furthermore, we get the obvious notion of
semantic consequence for structured specifications: given a specification SP , a sentence
ϕ ∈ Sen(Sig [SP ]) is a semantic consequence of SP , written SP |= ϕ, if M |=
ϕ for all models M ∈ Mod [SP ]. Then, given two specifications SP and SP ′, SP
refines to SP ′, written SP 
�
� �� SP ′, if Sig [SP ] = Sig [SP ′] and Mod [SP ′] ⊆ Mod [SP ].
These two simple notions underlie the standard view of properties that specifications
ensure and of systematic development of programs from specifications by step-wise
refinements, see [ST88b, ST12].

3 Proofs

We very briefly recalled above the semantic concepts developed within the theory of
institutions that underlie the methodology for formal specification and systematic de-
velopment of software, cf. [ST12]. For practical applications they need a proof-theoretic
counterpart, whereby the semantic, hard to establish relationships are augmented by cal-
culi to approximate them in an effective way.

Proof-theoretic entailment to approximate semantic entailment in any institution is
captured by the following notion, introduced in the institutional context in [FS88] under
the name of π-institution, see also [Mes89, HST94].

Definition 3.1. Given an institution I = (Sign,Sen,Mod, |=), an entailment system
* for I consists of a relation *Σ ⊆ P(Sen(Σ))×Sen(Σ) for each Σ ∈ |Sign|, such
that the following properties are satisfied:

1. reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} *Σ ϕ,
2. monotonicity: if Γ *Σ ϕ and Γ ′ ⊇ Γ then Γ ′ *Σ ϕ,
3. transitivity: if Γ *Σ ϕi for i ∈ I and Γ ∪ {ϕi | i ∈ I} *Σ ψ, then Γ *Σ ψ,
4. *-translation: if Γ *Σ ϕ, then for any σ : Σ−→Σ′ in Sign, σ(Γ ) *Σ′ σ(ϕ),
5. soundness: if Γ *Σ ϕ then Γ |=Σ ϕ.

The entailment system is complete if, in addition, Γ |=Σ ϕ implies Γ *Σ ϕ.

A logic LOG = (Sign,Sen,Mod, |=,*) is an institution (Sign,Sen,Mod, |=)
equipped with an entailment system *. In an arbitrary logic, it is possible to design a
logic independent proof calculus [ST88a] for proving entailments between specifica-
tions and sentences, written in the form SP * ϕ, where SP is a structured specification
and ϕ is a formula, see Fig. 1.

(CR)
{SP � ϕi}i∈I {ϕi}i∈I � ϕ

SP � ϕ (basic)
ϕ ∈ Γ

〈Σ,Γ 〉 � ϕ (sum1 )
SP1 � ϕ

SP1 ∪ SP2 � ϕ

(sum2 )
SP2 � ϕ

SP1 ∪ SP2 � ϕ (trans)
SP � ϕ

σ(SP) � σ(ϕ) (derive)
SP � σ(ϕ)
SP |σ � ϕ

Fig. 1. Proof calculus for entailment in structured specifications
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(Basic)
SP � ϕ for all ϕ ∈ Γ

〈Σ,Γ 〉 � SP
(Sum) SP1 � SP SP2 � SP

SP1 ∪ SP2 � SP

(Trans)
SP � SP ′|σ
σ(SP) � SP ′ (Derive) SP � SP ′′

SP |σ � SP ′
if σ : SP ′−→SP ′′ is a
conservative extension

Fig. 2. Proof calculus for refinement of structured specifications

Fig. 2 shows an extension of this calculus to refinements between specifications,
with judgements written as SP � SP ′, where SP and SP ′ are structured specifica-
tions with a common signature. Note that rule (CR) can be limited to a finitary version
for compact institutions (where an institution is compact if Γ |= ϕ implies the exis-
tence of a finite Γ ′ ⊆ Γ with Γ ′ |= ϕ). The extended calculus relies on an oracle for
conservative extensions, where given specifications SP and SP ′, a signature morphism
σ : Sig [SP ] → Sig [SP ′] is a conservative extension if it is a specification morphism
σ : SP → SP ′ (i.e., M ′|σ ∈ Mod [SP ] for all M ′ ∈ Mod [SP ′]) and is conservative
(for all M ∈ Mod [SP ] there is M ′ ∈ Mod [SP ′] with M ′|σ =M ).

Theorem 3.2 (Soundness [ST88a, Bor02]). The calculi for specification entailment
and refinement between structured specifications given above are sound: if SP * ϕ
then SP |= ϕ, and if SP � SP ′ then SP 
�
� �� SP ′.

Theorem 3.3 (Completeness [Bor02, Dia08, ST13]). Assuming that

– the institution has Craig-Robinson interpolation,
– the institution is weakly semi-exact,
– the entailment system is complete,

the calculi for specification entailment and refinement between structured specifications
are sound and complete: SP * ϕ iff SP |= ϕ, and SP � SP ′ iff SP 
�
� �� SP ′.

Actually, as discussed in [Bor02, ST13], the assumption of Craig-Robinson inter-
polation and weak amalgamation can be restricted to those pushouts for which it is
really needed. Typically, we can limit the classes of morphisms used to build structured
specification by hiding and translation, respectively. Under suitable technical condi-
tions, Craig-Robinson interpolation is needed then for pushouts of spans formed by
morphisms permitted in hiding on the left and those permitted in translations on the
right. Still, the requirement that the institution admits Craig-Robinson interpolation is
the strongest assumption in Thm. 3.3. While it holds in many logics, there are promi-
nent examples where is fails. For example, even Craig interpolation fails in QS5, the
first-order version of the modal logic S5 [Fin79], which is just one instance of many
failures of interpolation in various versions of modal logics. Interpolation also fails in
some typical logical systems used in specification formalisms, with interpretation of
some types or concepts fixed semantically; for instance, interpolation fails for the logic
of CASL due to CASL-style subsorting [Bor00]. Even the standard first-order logic may
cause problems here. While untyped first-order logic UFOL= has Craig-Robinson in-
terpolation, its many-sorted version FOL= admits Craig-Robinson interpolation for
pushouts of spans where at least one morphism is injective on sorts. To use Thm. 3.3
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even in the refined version hinted at above for specifications in FOL= we would have
to limit the use of hiding to signature morphisms that are injective on sorts — a se-
riously limiting restriction. Things get even worse with many-sorted equational logic
EqL, which admits Craig-Robinson interpolation for pushouts of spans with the left
morphism satisfying a strong “encapsulation” property, see [Dia08] (Craig, but not nec-
essarily Craig-Robinson interpolation, is also ensured here for pushouts of spans with
the right morphism being injective).

As shown in [ST13], Craig-Robinson interpolation is necessary for the complete-
ness of the above calculi, and moreover, the calculus for specification entailments can-
not be improved without sacrificing its compositionality (consequences of a structured
specification are deduced from the consequences of its immediate components).

When we sacrifice compositionality of the calculus, a sound and complete calculus
may be obtained also for institutions without interpolation when we agree that speci-
fications are “massaged” before calculating their consequences, so allowing the calcu-
lus to reach arbitrarily deep into the specification structure. This is often done using
normal forms of specifications. The well-known normal form result is that each struc-
tured specification SP as considered here can be turned into an equivalent normal form
nf (SP) = 〈Σ′, Γ ′〉|σ , thus entirely flattening the specification to a theory with a single
use of hiding (this requires the institution to have relevant signature pushouts that admit
weak amalgamation). Then an obvious rule

(nf )
Γ ′ * σ(ϕ)
SP * ϕ if nf (SP) = 〈Σ′, Γ ′〉|σ

yields a sound and complete calculus for specification entailments.
However, this normal form and its use in the above proof rule entirely forgets about

any structure that was given in SP . We show how some key aspects of the structure may
be maintained without losing the completeness of the calculus. To achieve this we define
a structured normal form snf (SP) for any structured specification SP , which only
pushes out the hiding operations, while retaining the key structure given by union and
translation (and, very informally, renaming hidden symbols to avoid unintended name
clashes). The definition below requires existence and suitable choice of the relevant
signature pushouts:

snf (〈Σ,Γ 〉) = 〈Σ,Γ 〉|id

snf (SP1) = SP ′
1|σ1 snf (SP2) = SP ′

2|σ2

snf (SP1 ∪ SP2) = (θ1(SP
′
1) ∪ θ2(SP ′

2))|σ1;θ1

if

Sig[SP1]

σ2

��

σ1 �� Sig[SP ′
1]

θ1

��
Sig[SP ′

2]
θ2 �� Σ′

is a
pushout

snf (SP) = SP ′|σ1

snf (σ2(SP)) = (θ1(SP
′))|θ2 if

Sig [SP ]

σ2

��

σ1 �� Sig [SP ′]

θ1

��
Σ2

θ2 �� Σ′

is a pushout

snf (SP) = SP ′|σ
snf (SP |θ) = SP |θ ;σ
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Proposition 3.4. In any weakly semi-exact institution, SP and snf (SP) are equivalent.

Moreover, we can obtain a stronger completeness result:

Theorem 3.5. Under the assumptions that the institution is weakly semi-exact and the
entailment system is complete, the calculi for specification entailments and refinement
between structured specifications extended by the following structured normal form
rule:

(snf )
SP ′ * σ(ϕ)
SP * ϕ if snf (SP) = SP ′|σ

are sound and complete.

Let us stress again that using structured normal forms is much better than using
normal forms: the latter flatten out specification structure completely, while the for-
mer keep the structure almost intact — only hiding, not so frequently used in typical
specifications, is moved outside. In many institutions, the obvious choice of signature
pushouts involved in the definition of snf leads to the structured normal forms where
all the visible names are kept as in the original structured specification, while only the
hidden operations may need to be renamed so that name clashes are avoided. This al-
lows proof search strategies in structured specifications, as discussed for instance in
[SB83, HST94], to be easily mimicked in their corresponding structured normal forms.

Consequently, the above proof calculus for specification entailments with the rule
(snf ) offers a well-balanced choice, maintaining the key advantages of compositional-
ity and keeping the need for restructuring specifications to the necessary minimum.

A complete oracle for conservative extensions is very powerful: it can be used to triv-
ially obtain a complete refinement calculus. Namely, in order to decide whether
SP1


�
� �� SP2, it suffices to check whetherSP1 ∪ SP2 is a conservative extension ofSP2.
Nevertheless, our completeness theorem is meaningful and useful. This is because the
completeness proof uses the oracle for conservative extensions only in a limited way. The
extensions considered are those obtained from hidings (pushed along some morphism
into a “big” signature collecting everything). This means, for example, that if we use
hiding only to hide symbols that have been defined using some logic-specific definition
scheme, we will need the oracle for conservative extensions only for checking this def-
inition scheme — and typically all such “definitional extensions” are conservative. We
cannot expect in general to check conservativity independently of the underlying institu-
tion; institution-specific rules are needed. See e.g. [CMM13] for checking conservativity
in CASL.

4 Heterogeneous Specifications

So far, we have covered specifications built and their refinements carried out in an arbi-
trary but fixed logical system formalised as an institution. In practice though, different
logical systems may be appropriate or most convenient for specification of different
modules of the same system, of different aspects of system behaviour, or of different
stages of system development. This leads to the need for a number of logical systems
to be used in the same specification and development project. This makes sense though
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only if the logical systems involved (formalised as institutions) are linked appropri-
ately, with links captured by various notions of morphisms between institutions [GR02],
yielding heterogeneous specification environments such as those of CafeOBJ [DF02]
and HETS [MML07].

Definition 4.1. An institution comorphism ρ : I → I ′ consists of:

– a functor Φ : Sign→ Sign′;
– a natural transformation α : Sen→ Φ ;Sen′, and
– a natural transformation β : Φop ;Mod′ →Mod,

such that for any Σ ∈ |Sign|, for any ϕ ∈ Sen(Σ) and M ′ ∈Mod′(Φ(Σ)):

M ′ |=′
Φ(Σ) αΣ(ϕ) ⇐⇒ βΣ(M

′) |=Σ ϕ [Satisfaction condition]

Institution comorphisms compose in the obvious, component-wise manner. The category
of institutions with institution comorphisms is denoted by coINS .

Example 4.2. Consider the translation of propositional logic into untyped first-order
logic, mapping propositions to unary predicates plus a global constant a. An atomic
sentence p is mapped to p(a); this is inductively extended to all sentences. A first-order
model is translated to a propositional model by inspecting whether the interpretation
of a is contained in a given predicate. This can easily be organised as an institution
comorphism.

Example 4.3. Many examples for comorphisms arise from subinstitutions, where we
follow [Mes89] and define them as comorphisms ρ = 〈Φ, α, β〉 such that the signature
translation Φ is an embedding of categories, all sentence translations αΣ are injective
and and all model translations βΣ are isomorphisms. For example, propositional logic
and many-sorted equational logic are both subinstitutions of many-sorted first-order
logic (but not of untyped first-order logic).

Example 4.4. The encoding of PFOL= into FOL= that adds definedness predicates
to signatures and restricts carrier sets of models to these predicates can easily be for-
malised as an institution comorphism [Mos02b].

The following properties of institution comorphisms ensure a good interaction with
logical consequence:

Definition 4.5. An institution comorphism is model expansive, if all the model transla-
tion functors are surjective on objects.

An institution comorphism is (weakly) exact, if the naturality squares for the model
translation are (weak) pullbacks.

For example, the comorphism from propositional logic to UFOL from Example 4.2
is model-expansive and weakly exact. Any subinstitution comorphism is both model-
expansive and exact.

The notion of a heterogeneous logical environment (called indexed coinstitutions in
[Mos02a], dualising the indexed institutions of [Dia02]) may be formalised as a collec-
tion of institutions linked by institution comorphisms.



450 T. Mossakowski and A. Tarlecki

Definition 4.6. A heterogeneous logical environmentHLE is a collection of institutions
and institution comorphisms between them, that is, a diagramHLE : G → coINS4 in
the category coINS .

Working in a heterogeneous logical environment, we can enrich the collection of
specification-building operations by translation along institution comorphisms, see
[ST12]. Somewhat less naturally, we can also define hiding w.r.t. institution comor-
phisms, but the target signature has to be given explicitly then. Namely, given an
institution comorphism ρ : I → I ′, we define:

heterogeneous translation: For any I-specification SP , ρ(SP) is a specification with:

Sig [ρ(SP)] := Φ(Sig [SP ]) Mod [ρ(SP)] := β−1
Sig[SP ](Mod [SP ])

heterogeneous hiding: For any I ′-specification SP ′ and signatureΣ with Sig[SP ′] =
Φ(Σ), SP ′|Σρ is a specification with:

Sig [SP ′|Σρ ] := Σ Mod [SP ′|Σρ ] := β
Σ
(Mod [SP ′])

These new, inter-institutional specification-building operations may be arbitrarily mixed
with other (intra-institutional) operations, yielding heterogeneous specifications. Parts
of such specifications may be given in different institutions of the heterogeneous logi-
cal environment we work in. However, each such a specification as a whole eventually
focuses on a particular institution in this environment, where its overall semantics (sig-
nature and the class of models) is given. In essence, viewed from a certain perspective,
such focused heterogeneous specifications do not differ much from the structured spec-
ifications built within a single institution. For instance, the view of a software specifica-
tion and development process as presented in [ST12] directly adapts to the use of such
specifications without much (semantic) change. We will make this view more formal
now.

Definition 4.7. Consider institutions I and I ′ and signatures Σ ∈ |Sign| and Σ′ ∈
|Sign′|. A heterogeneous signature comorphism is a pair 〈ρ, σ′〉 : Σ → Σ′ that consists
of an institution comorphism ρ : I → I ′ and a signature morphism σ′ : Φ(Σ) → Σ′

in Sign′. It induces the heterogeneous reduct |〈ρ,σ′〉 : Mod′(Σ′) → Mod(Σ) de-
fined as the composition Mod′(σ′) ;βΣ , i.e., M ′|〈ρ,σ′〉 = βΣ(M

′|σ′), for all M ′ ∈
Mod′(Σ′). Heterogeneous sentence translations are defined similarly.

Heterogeneous signature comorphisms compose as expected: 〈ρ1, σ1〉; 〈ρ2, σ2〉 =
〈ρ1; ρ2, Φ2(σ1);σ2〉. For any heterogeneous logical environment HLE : G → coINS
this yields the heterogeneous category SignHLE of signatures in institutions in HLE
with heterogeneous comorphisms that involve institution comorphisms in HLE . Then
model functors extend to ModHLE : (SignHLE)op → Class using the reducts defined
above. Similarly, we obtain SenHLE : SignHLE → Set.

Proposition 4.8 ([Mos02a]). The constructions in Def. 4.7 augmented with the family
of satisfaction relations defined component-wise yield an institution

IHLE = 〈SignHLE ,SenHLE ,ModHLE , |=HLE〉.
4 We introduce the following notation: the objects n ∈ |G| carry institutions HLE(n) = In =
〈Signn,Senn,Modn, 〈|=n〉Σ∈|Signn|〉 linked by institution comorphisms HLE(e) =
ρe = 〈Φe, αe, βe〉 : HLE(n) → HLE(m) for each morphism e : n→ m in G.
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The institution IHLE is known as the Grothendieck institution [Dia02, Mos02a].
For full formality, signatures in the heterogeneous categories of signatures defined

above should really be written as pairs 〈i, Σ〉, with i ∈ |G|.
The inter-institutional specification-building operations given above arise as hid-

ing w.r.t. and translation along heterogeneous signature comorphisms within the
Grothendieck institution IHLE . Namely, given an institution comorphism ρ : I →
I ′ and I-specification SP , ρ(SP) can be captured as 〈ρ, idΣ′〉(SP), where Σ′ =
Φ(Sig [SP ]). Similarly, for I ′-specification SP ′ and I-signature Σ such that Φ(Σ) =
Sig [SP ′], SP ′|Σρ becomes now SP ′|〈ρ,idΣ〉. Conversely, the “intra-institutional”
specification-building operations introduced in Sect. 2 in the Grothendieck institution
IHLE may be presented using the inter-institutional operations introduced above in
combination with intra-institutional operations in component institutions. In particular,
translation along 〈ρ, σ〉 is the composition of heterogeneous translation along ρ with
(intra-institutional) translation along σ, and analogously for hiding w.r.t. 〈ρ, σ〉.

Consequently, the proof calculi introduced in Sect. 3 can be directly used for hetero-
geneous specifications by considering them for specifications built in the Grothendieck
institution. The soundness (as given by Thm 3.2) carries over without change. The
completeness theorems (Thm. 3.3 and 3.5) carry over as well, but the problem is that
the assumptions under which they guarantee completeness of the calculi typically fail
in Grothendieck institutions for many logical environments. Craig-Robinson interpo-
lation was problematic even for truly homogeneous logical systems — it will fail in
Grothendieck institutions for heterogeneous logical environments that contain even one
institution where it fails. If all the institutions in the environment have interpolation, it
still is likely to fail for the Grothendieck institution, even if [Dia04, Dia08] offer re-
sults which carry over Craig-Robinson interpolation from component institutions to the
Grothendieck institution — under rather strong assumptions though.

The other key assumption in Thm. 3.3 and, especially, Thm 3.5, the weak amal-
gamation property, carries over from the heterogeneous logical environment to the
Grothendieck institution rather naturally:

Proposition 4.9 ([Mos02a]). Let HLE : G → coINS be a heterogeneous logical en-
vironment consisting of comorphisms with cocontinuous signature translation functors.
Its Grothendieck institution is (weakly) semi-exact if and only if

– HLE is (weakly) locally semi-exact, i.e., each institution inHLE is (weakly) semi-
exact,

– HLE is (weakly) semi-exact, i.e., pushouts in G exist and are for each signature,
(weak) pullbacks of model translation functors, and

– all institution comorphisms inHLE are (weakly) exact.

Unfortunately, again, the conditions of Prop. 4.9 are not fulfilled in many typical logi-
cal environments. For example, neither the CASL institution nor the HETS logical en-
vironment are weakly semi-exact. Indeed, in HETS, there are many spans of institution
comorphisms which can only be complemented to squares that do not even commute
— see [Mos06] for an example.
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5 Lax Heterogeneous Logical Environments

Sometimes it is useful to indicate that two institution comorphisms differ only in an
inessential way. This in particular applies when the comorphisms arise as compositions
of other comorphisms. We therefore introduce the notion of modification. Modifications
are also useful for solving the problem mentioned at the end of the previous section
(see Def. 5.6 below). Moreover, they naturally arise when representing comorphisms
in some “universal” logic, along with the representation of source and target logic.
Following [Mos02a], we dualise and strengthen the original notion from [Dia02] to
discrete modifications (but we omit the qualifier “discrete” henceforth):

Definition 5.1. Given two institution comorphisms ρ1, ρ2 : I −→J , an institution co-
morphism modification τ : ρ1 −→ ρ2 is a natural transformation τ : Φ1 −→ Φ2 such
that α1; (SenJ · τ) = α2 and (ModJ · τ);β2 = β1.

Together with obvious identities and compositions, modifications can serve as 2-
cells, leading to a 2-category which we also denote by coINS .

Example 5.2. There are two ways to go from equational logic to first-order logic: one
is the obvious subinstitution comorphism ρ1 from Example 4.3, the other one is the
composition ρ2 of the obvious subinstitution comorphism ρ′2 from equational logic to
partial first-order logic with the encoding ρ′′2 of partial first-order logic into first-order
logic from Example 4.4. (Actually, the latter ends in FOLth.) These comorphisms are
different: ρ2 adds some (superfluous) coding of partiality. The comorphism modifica-
tion τ : ρ1 −→ ρ2 is just the pointwise inclusion of an algebraic signature viewed as
first-order signature into the theory coding a partial variant of that signature.

FOLth

EqL

ρ1 ��������������

ρ′
2

�������
������

� τ

��
��

��
�

��
��

�

PFOL

ρ′′
2

��

This motivates the following extension of the notion of heterogeneous logical
environment:

Definition 5.3. A lax heterogeneous logical environment is a 2-functor HLE : G →
coINS , where both G and coINS are 2-categories.5

We can then use the institution comorphism modifications to obtain a congruence on
Grothendieck signature morphisms: the congruence is generated by

〈d′, τuΣ : Φd′
(Σ)−→Φd(Σ)〉 ≡ 〈d, id : Φd(Σ)−→Φd(Σ)〉 : 〈i, Σ〉 → 〈j, Φd(Σ)〉

for Σ ∈ Signi, d, d′ : i −→ j ∈ G, and u : d′ ⇒ d ∈ G. This congruence has the
following crucial property:

5 Extending the notation introduced in footnote 4, a 2-cell u : d ⇒ d′ determines the corre-
sponding modification HLE(u) = τu : ρd ⇒ ρd

′
.
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Proposition 5.4. Equivalent signature morphisms have identical sentence translation
and model reduct functors.

Let qHLE : SignHLE −→ SignHLE/≡ be the quotient functor induced by ≡ (see
[Mac98] for the definition of quotient category). Note that it is the identity on objects.
We easily obtain that the model and sentence functors of the Grothendieck institution
IHLE factor through the quotient category SignHLE/≡:

Corollary 5.5. The components of the Grothendieck institution IHLE factor through
the equivalence ≡, yielding the quotient Grothendieck institution, which by abuse of
notation we write as IHLE/≡ = 〈SignHLE/≡,SenHLE ,ModHLE , |=HLE〉.

When considering e.g. the comorphism going from partial first-order logic PFOL=

to first-order logic FOL=, and the composite comorphism going from PFOL= to
CASL and then to FOL=, we end up in different comorphisms, which are however re-
lated by a comorphism modification. The above identification process in the
Grothendieck institution now tells us that it does not matter which way we choose.

Definition 5.6. Given a lax heterogeneous logical environmentHLE : G −→ coINS ,
a square consisting of two lax triangles of index morphisms

i
d1
�����

��� d2
����

���
�

d

��
j1

e1 ����
���

�
u1�� u2 �� j2

e2�����
���

k

is called (weakly) amalgamable, if the following outer square is a (weak) pullback

Modi(Σ) Modj1(Φd1(Σ))
βd1
Σ��

Modk(Φd(Σ))

βd
Σ
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Modk(τu2
Σ )
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•
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where the lower right square is a pullback.

HLE is called lax-quasi-exact, if each pair of arrows j1 i
d1�� d2 �� j2 in G may

be completed to a weakly amalgamable square of lax triangles

id1

�����
��� d2

����
���

�

��
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�����
���

k
��

6 A Proof Calculus for Heterogeneous Specifications

We obtain a proof calculus for entailment between heterogeneous specifications and
sentences by extending the proof calculus in for structured specifications in Sect. 3,
Fig. 1, with the following rules:
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(het -trans) SP * ϕ
ρ(SP) * α(ϕ) (het -derive) SP * α(ϕ)

SP |Σρ * ϕ

(borrowing)
ρ(SP) * α(ϕ)

SP * ϕ if ρ is model-expansive

(Het -snf )
SP ′ * σ(α(ϕ))

SP * ϕ if hsnf (SP) = (SP ′|σ)|Σρ

(where hsnf is snf for the Grothendieck institution) and the calculus for refinements
between heterogeneous specifications in Fig. 2 is extended as follows:

(Het-Trans)
SP � SP ′|Σρ
ρ(SP) � SP ′ (Het-Derive) SP � SP ′′

SP |Σρ � SP ′
if ρ : SP ′−→SP ′′ is a
conservative extension

Conservativity of ρ = (Φ, α, β) : SP ′ −→ SP ′′ means that for each model M ′ ∈
Mod(SP ′), there is a modelM ′′ ∈ Mod(SP ′′) with β(M ′′) =M ′.

Theorem 6.1. For a lax heterogeneous logical environmentHLE : G−→coINS (with
some of the institutions also being logics), the proof calculi for heterogeneous specifi-
cations are sound for IHLE/≡. If

1. HLE is lax-quasi-exact,
2. all institution comorphisms inHLE are weakly exact,
3. there is a set L of institutions inHLE that come as complete logics,
4. all institutions in L are quasi-semi-exact,
5. from each institution inHLE , there is some model-expansive comorphism inHLE

going into some logic in L,

then the proof calculus for entailments between heterogeneous specifications and sen-
tences is complete over IHLE/≡. If, moreover, the rule system is extended with a (sound
and complete) oracle for conservative extension, then the proof calculus for refinements
between heterogeneous specifications is also complete.

The oracle for conservative extensions cannot be resigned (not even in the homoge-
neous case, see [MAH06]). One crucial achievement here is that, in contrast to Prop. 4.9,
we need neither cocontinuity nor exactness of the comorphisms. Moreover, we need
quasi-exactness only for some of the logics; this allows us to include logics which are
not quasi-exact, such as CASL. Our proof calculus is related to, but different from and
conceptually simpler than the one for heterogeneous development graphs in
[Mos02a, Mos05]: it is defined along the structure of heterogeneous structured spec-
ifications. A similar proof calculus has been implemented in the heterogeneous tool set
HETS [MML07].

7 Final Remarks

Building on the standard approach to structured specifications in an arbitrary institution,
we extend it to deal with heterogeneous specifications constructed in a heterogeneous
logical environment, formalised as a diagram of institutions with institution comor-
phisms. The focus in this paper is on the proof systems for consequences of so obtained
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structured heterogeneous specifications and for refinements between such specifica-
tions. We put forward a modification of the standard proof systems of homogeneous
structured specifications that strike a proper balance between compositionality and the
need for completeness. This system is then extended to heterogeneous specifications.
The key result is the (soundness and) completeness of the system under assumptions
considerably milder than those that guarantee completeness of purely compositional
calculi.

In order to make the work in this paper practically useful for formal software devel-
opment with heterogeneous logics, the implementation of heterogeneous specifications
and proofs in HETS [MML07, Mos05] needs to be generalised to the lax case (see
Sect. 5). It also would be important to generalise the present work to further practically
relevant notions of maps between institutions, studied in [GR02]. Future work will ap-
ply the presented approach to the heterogeneous logical environment arising from UML
(see [CKTW08] for initial promising steps in this direction).
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