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Abstract  In the last decade the use of Virtual Reality platforms in psychology and 
neurorehabilitation increased thanks to a higher availability of low-cost technology 
and a wider acceptance from the clinical world. Nonetheless multiplatform taking 
into consideration the combined use of innovative low-cost technologies are still 
missing. This chapter will extensively discuss the opportunities offered by the 
NeuroVirtual 3D platform in term of technologies innovations for the clinicians. 
After an overview of the state of the art in the field, a comprehensive discussion will 
focus above all on the low-cost stereo cameras and the Eye-Trackers, both more and 
more used in the assessment and neurorehabilitation of motor and cognitive abilities.

15.1 � Introduction

The use of virtual reality (VR) in psychology and neurorehabilitation has continued 
to increase. However, it seems likely that VR can be much more than just a tool to 
provide exposure and desensitization.

In this sense virtual reality has great potential for use in the rehabilitation of 
everyday life activities, involving cognitive and motor functions. The use of simu-
lated environments, perceived by the user as comparable to real world objects and 
situations, can overcome the limits of the traditional tests employed to assess, by 
keeping intact its several advantages.

VR systems in stroke neurorehabilitation both cognitive and motor are rapidly 
expanding and a large number of interesting platforms are currently being developed 
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and tested. Morganti et al. [41] and Ma and Bechkoum [38] proposed a combination  
of standardized paper and pencil neuropsychological tests and a virtual reality-based 
assessment (VR-Maze test and VR-Road Map) for the evaluation of spatial orien-
tation in brain injured patients. Compared to a control group, 4 male patients with 
brain damage revealed significantly shorter times and greater errors in solving a 
virtual spatial task. In a recent review, Tsirli et al. [61] described past and ongoing 
research of VR applications for unilateral neglect post-stroke evaluation: they sug-
gested that VR could improve existing assessment methods by providing informa-
tion about head and eye movements, postural deviations, and limb kinematics.

The use of Virtual Reality systems in motor rehabilitation provides the oppor-
tunity to create tailored interventions in which the duration, intensity and feedback 
can be manipulated according to the specific patient’s needs. In the last decade, 
many investigators have developed and tested the effectiveness of VR-based plat-
forms for rehabilitation of the arm [7, 15–17, 34, 55] or hand [6] in stroke patients. 
Arm motor deficits are, in fact, prevalent post stroke: for example, 55–75  % of 
stroke patients are affected by upper limb (UL) at 3 and 6 months [43, 31]. Merians 
et al. [40] verified the effectiveness of VR training of the hemiparetic hand on 8 
post-stroke patients using a system that provides repetitive motor re-education and 
skill reacquisition. Results showed that patients improved in fractioning, range of 
motion and speed and these changes translated to improvements in the real-world 
measures. They suggested the use of VR environments in movement re-education 
since they have the potential to improve existing rehabilitation therapies. A recent 
meta analysis published on Stroke [57], which included 12 studies (for a total of 
195 patients) highlighted that rehabilitation protocols that include VR are the most 
effective. These studies support the hypothesis that virtual environments are very 
useful in motor rehabilitation since they increase the efficacy of actual therapies.

15.2 � NeuroVirtual 3D Platform: Main Issues and Aims

If, on the one side, the use of VR in rehabilitation represents a consolidated and rising 
scientific trend, the use of this tool in clinical practice is very limited, especially on a 
national level. According to recent reports, in Italy and Europe VR is employed espe-
cially within clinical research projects while its professional use is extremely limited. 
This finding cannot be explained by the immaturity of technological components, 
which have been developed thanks to the huge growth of the videogames market, nor 
in terms of the lack of scientific evidence about the efficacy of this approach.

A more suitable explanation of the absence of diffusion of VR in the rehabili-
tative field is related to two specific problems: (a) the lack of easily usable, low 
cost and high reliability tools; (b) the limited availability of rehabilitative contents, 
which provide interactive simulations aimed at practice and therapeutic stimuli.

Another problem is represented by the absence of integrated solutions between 
research and clinic: often therapists are interested not only in taking care of the 
patient through the use of VR but also in collecting important data for the improve-
ment of the efficacy of the therapeutic solutions.
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Finally, the need to assess the so called “transfer of training” (that is to establish  
to which extent the results obtained through the virtual reality exposure can be 
transferred to daily life activities) should not be overlooked. In this perspective, 
an emerging need is to effectively use the possibilities offered by the new mobile 
technologies (smartphone, wearable sensors) to permit the patient to carry on exer-
cises also at home and to give to the therapist important indications related to the 
level of compliance with the therapeutic instructions.

Starting from these premises, the NeuroVirtual 3D platform aims at addressing  
these challenges by designing, developing and testing a low-cost integrated vir-
tual reality solution for applications in clinical psychology and neuromotor 
rehabilitation.

The platform, which includes the features of the software NeuroVr 2.0 (http://www. 
neurovr.org/neurovr2/) [51], will be expanded as follows:

•	 development of a software interface for integrating into NeuroVirtual 3D com-
mercially-available peripherals that support neuromotor rehabilitation (es. data-
glove, haptic devices, Kinect);

•	 integration with eye-tracking devices;
•	 enable support for multi-users interaction and communication through virtual 

humans;
•	 development of 3D contents for mobile devices (android, iPhone/iPad);
•	 development of a web repository of 3D scenes for allowing researchers and 

rehabilitation professionals to share their virtual environments and protocols.

The development of the platform will be done on the basis of specific ergonomic 
and clinical trials based on the proposed platform.

15.3 � The Scientific-Technological State of the Art

In the last decade, the use of VR in neurorehabilitation rose in a significant way 
and an increasing number of experimental findings suggested that this technology 
can positively impact upon cognitive and motor functional recovery [1–3, 33, 37, 
52, 57]. The rationale for the use of VR systems in the rehabilitation field is based 
on a series of advantages widely documented in the scientific literature:

•	 Neuroplasticity: VR allows the use of scenarios based on principles that regu-
late and facilitate neuroplasticity (for example: exercise intensity, exercise 
frequency, “enriched stimulation”, etc.) that provide a neuro-biological basis for 
the recovery of cognitive and motor functions.

•	 Personalized training: VR is based on highly automated functioning mecha-
nisms that require a minimal contribution by the rehabilitation professional, 
who may make use of the possibility to customize the intensity and the diffi-
culty of the training based on the specific necessities of the patient.

•	 Involving tasks: in the VR, the content of rehabilitative exercises may be 
planned to the extent of defining some tasks oriented to re-train specific abili-
ties (for example, to reach an object), and in the same time integrating in some 

http://www.neurovr.org/neurovr2/
http://www.neurovr.org/neurovr2/
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recreational scenarios to maintain a high level of involvement and compliance 
in the patient in the execution of exercises. In particular, a lot of studies evi-
denced the role of VR in augmenting the sense of Presence [49, 50] and the 
optimal experience [25] in the rehabilitative process.

•	 Tracking and objective/quantitative measure: thanks to the sensors integrated 
in VR systems (for example: cranial movements tracking sensors, sensors for 
superior limbs, dataglove etc.) it is possible to record a high quantity of data 
with regard to actions executed by the patient inside the virtual scenario and to 
use these data to create some indexes of performance in order to measure in a 
quantitative and objective way the improvement in performance observable in 
the course of the rehabilitative process.

•	 Transferring of the training in ADL: many studies that investigated the use of 
VR in the neurorehabilitative field evidenced the potential offered by this meth-
odology to transfer the results of the re-learning of cognitive and motor abilities 
that were damaged in the activity of day living (ADL). The positive impact of 
VR on ADL is documented by many studies and is explained by the fact that 
VR offers the possibility of including rehabilitative exercises in real life context 
simulations (for example: buying an object in a virtual supermarket may help to 
rehabilitate executive functions in patients with frontal lesions).

These advantages, documented by an extensive literature and clinical case record 
in different pathological fields (from mental diseases to neuropsychological, from 
acquired brain injury to neurodegenerative diseases and ictus) increased the interest 
of sanitarian organizations and rehabilitation professionals in this innovative meth-
odology. This increasing interest is documented by the increase in the number of 
studies, by the proliferation of conferences and scientific publications, the increase 
in public and private finance for research into clinical applications of VR. From a 
commercial point of view there is a limited and varied offering of VR systems for 
rehabilitation (neurological or psychological). The main goal of the NeuroVirtual 
3D platform is to design and develop a low-cost VR platform for applications in 
the fields of mental wellbeing and neuromotor rehabilitation. The specific technical 
innovations provided by the platform are described in the following sections.

15.4 � Interfaces Development for Input/Output Hardware 
Devices for Applications in Neurorehabilitation  
(e.g. Dataglove, Haptic Devices, Kinect)

Recently, there has been a progressive diffusion on the home gaming market of 
advanced game technologies (such as Microsoft Kinect, Nintendo Wii) that allow 
the use of a large series of interactive devices at a low cost [26, 27, 35, 47]. Most of 
these devices, in addiction to their low cost (due to the fact of being targeted at the 
consumer market), make available Software Development Kits (sdk) to integrate 
third-part software. The NeuroVirtual 3D platform aims to use such commercial 
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devices to integrate new interactive functionalities in the NeuroVR platform, to be 
used and tested in a neurorehabilitative framework. This strategy is to obtain a dou-
ble result: On one hand, to add new interactive features to the VR platform to allow 
an higher range of content and neurorehabilitative exercises; on the other hand, to 
take advantage from these technologies to offer solutions based on low cost and 
high availability (Figs. 15.1, 15.2 and 15.3).

Fig. 15.1   Device- NeuroVirtual 3D interaction interface

Fig. 15.2   Kinect-NeuroVirtual 3D. Interaction interface

Fig. 15.3   Video signal processing from kinect and Avatar structures
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15.4.1 � Integration with Eye-Tracking Devices

For many decades the recording and processing of cerebral and oculomotor activity 
is a relevant methodology for clinical and neuropsychological assessment [19, 30]. 
In particular, an interesting instrument that has been increasingly used in the past 
decades for clinical assessment is the Eye-tracker [20, 21, 62]. This advanced device 
/method is able to track and record, with a high spatial and temporal precision, ocu-
lar movements, synchronizing them with the stimuli. Traditionally the standard 
methodology uses validated paradigms, such as saccadic, anti-saccadic and smooth 
pursuit [4, 12, 13, 18, 24]. Moreover, recently, the framework of such instruments 
has been widely extended, moving from the classic clinical assessment to a more 
active use of such an instrument as input platform. In this sense, the most extensive 
use is the Alternative and Augmented Communication (AAC), through which it is 
possible to communicate “by the means of eye movements”, also for patients with 
motor or communication deficit [10, 11]. Through the integration of ocular tracking 
in the NeuroVirtual 3D platform, it will be possible to obtain an effective methodol-
ogy to monitor eye-movements during the immersive experience, obtaining useful 
information on cognitive activity of the participant, such as visual attention, percep-
tion, reasoning, information pursuit, and the evaluation of complex environmental 
stimuli. In particular, the integration of the eye-tracker and of the Brain Computer 
Interface (BCI) will provide the following advantages:

•	 Increased accuracy in assessment and diagnostics of ongoing rehabilitation 
processes;

•	 Ability to correlate specific mental states with specific activities executed into 
the virtual environments, through the use of environmental markers that allow 
the synchronization of the ocular path with the action performed by the user.

•	 Ability to study the variables related to attention, perception, and cognition in 
the framework of simulations representing realistic situations and daily con-
texts, increasing the ecological validity of gathered data.

15.4.2 � Development of Multi-User Interaction  
and Communication Through Avatars

Another innovative technological solution introduced by the NeuroVirtual 3D plat-
form is the development of multi-user functionalities, at the present missing in the 
NeuroVR platform.

The use of virtual environments in multi-user modality permits an increase the 
applicability of such a platform in the rehabilitation framework, allowing an extended 
use of complex paradigms, such as including social situations (e.g., the patient has to 
learn to manage a social phobia in a virtual environment, such as public speaking) or 
in rehabilitative situations, where the co-presence of a therapist represents an added 
value in the patient motivation to perform the exercises (e.g., in telemedicine).
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15.4.3 � Development of the Ability to Display 3D Content  
on Mobile Devices

The growing diffusion of mobile platforms, such as smartphones and tablets,  
represents a meaningful chance in rehabilitation, unfortunately not enough 
explored yet. Thanks to the progressive raising of computational and memory capa-
bilities, these devices could provide interactive 3D simulation with a high level 
or realism and complexity, that can effectively be used for rehabilitation, to allow 
the patient to continue exercises in mobility or at home. The objective is to pro-
vide rehabilitative virtual contents and exercises to be used in a hospital environ-
ment with the therapist and to be repeated where the patient desires (e.g., at home) 
through players installed in mobile devices, such as iPhone, iPad and Android.

15.4.4 � Development of an Online Repository of 3D Scenes  
for the Sharing of the Environments Among  
the Software Users

A further innovation proposed by the NeuroVirtual 3D platform is the creation of 
an online repository with validated clinical 3D contents, containing also protocols 
and procedures to share with rehabilitation experts’ community, operating with 
virtual reality or simply interested in experimenting with this approach. The abil-
ity to easily access this content will encourage and promote a wider use of the 
NeuroVirtual 3D platform and will allows users to experiment on a large-scale to 
obtain a higher number of clinical evidences to reach a critical mass of studies to 
support the use of VR in research and in the clinical practice.

The evolution of the platform is to allow the translation of the medical ther-
apy principles, through virtual environments, to the psycho-behavioral and moti-
vational training techniques—typically residential—conveying them through new 
generations distance learning systems, allowing, thanks to the interaction with 
immersive and interactive 3D environments, a greater emotional involvement, thus 
overcoming the main limitations of e-learning.

15.5 � The Clinical Use of Virtual Reality

The use of virtual reality (VR) in clinical psychology has become more wide-
spread [48]. The key characteristics of virtual environments for most clinical 
applications are the high level of control of the interaction with the tool, and the 
enriched experience provided to the patient [58]. Typically, in VR the patient 
learns to cope with problematic situations related to his/her problem. For this 
reason, the most common application of VR in this area is the treatment of anxiety 
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disorders, i.e., fear of heights, fear of flying, and fear of public speaking [23, 63]. 
Indeed, VR exposure therapy (VRE) has been proposed as a new medium for 
exposure therapy [48] that is safer, less embarrassing, and less costly than repro-
ducing the real world situations. The rationale is simple: in VR the patient is inten-
tionally confronted with the feared stimuli while allowing the anxiety to attenuate. 
Avoiding a dreaded situation reinforces a phobia, and each successive exposure to 
it reduces the anxiety through the processes of habituation and extinction.

However, it seems likely that VR can be more than a tool to provide exposure 
and desensitization [48]. As noted by Glantz et al. [28]: “VR technology may cre-
ate enough capabilities to profoundly influence the shape of therapy.” (p. 92). In 
particular we suggest that embodiment through VR might have important applica-
tions in other fields of rehabilitation, and specifically in the treatment of chronic 
pain conditions and weight disorders.

Virtual reality (VR) can provide the appropriate experience to support remote 
rehabilitation [8, 36, 57]. By VR we refer to a set of technologies that attempts 
to create an immersive computer display that surrounds the participant [22]. 
VR replaces direct vision and audition of the real environment with synthesized 
stimuli, and can also integrate haptic (tactile and force) cues representing virtual 
objects or remote interactions [46, 5]. VR is able to provide real time feedback to 
the participant [39, 9], comprised of parallel streams of sensory information (vis-
ual, sound, or haptics; [1]). The capacity of VR-based systems as a facilitation tool 
for functional recovery by engaging brain circuits, such as motor areas, has been 
demonstrated [2].

A recent review study has shown that such systems can be effective and moti-
vating for rehabilitation therapies involving repetition and feedback [33]. It seems 
that motivation is a key factor for applications based on augmented feedback using 
VR for rehabilitation of motor skills of patients with neurological disorders [54]. 
In particular, there is evidence for the effectiveness of such approaches for the 
rehabilitation of upper limbs in patients with stroke [14, 31, 37, 57].

Apart from immersion and motivation, a critical ability of VR in the context of 
neurorehabilitation is the possibility to induce ownership of a whole virtual body 
[60] or specific body parts such as the hand/arm [59] or belly [42].

The fact that a virtual body part can be incorporated into the body schema 
based on synchronous visuo-tactile correlations has opened new paths for examin-
ing the mechanisms of body perception. The strength of the virtual illusion is rein-
forced when, to the visual co-location, synchronous visuo-motor correlations are 
provided, e.g., with the person controlling the body movements (arms, legs, etc.) 
of the avatar, who mimics her movements [29, 56].

In clinical terms, manipulations of a virtual body could have implications not only 
for motor or sensory rehabilitation but also for psychological treatment in different 
pathologies involving body perception, such as painful phantom limbs, regional pain 
syndrome (Llobera et al. in press), eating disorders [45, 53], or burns [32]. Recently, 
a novel approach following these cognitive principles of body perception has been 
proposed [44].
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