
Albert Cohen (Ed.)

 123

23rd International Conference, CC 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5–13, 2014, Proceedings

Compiler
ConstructionLN

CS
 8

40
9

AR
Co

SS

Lecture Notes in Computer Science 8409
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Albert Cohen (Ed.)

Compiler
Construction

23rd International Conference, CC 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5-13, 2014
Proceedings

13

Volume Editor

Albert Cohen
Inria
Paris, France
E-mail: albert.cohen@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54806-2 e-ISBN 978-3-642-54807-9
DOI 10.1007/978-3-642-54807-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933673

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2014 was the 17th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998, and this year consisted of six constituting conferences
(CC, ESOP, FASE, FoSSaCS, TACAS, and POST) including eight invited speak-
ers and two tutorial speakers. Before and after the main conference, numerous
satellite workshops took place and attracted many researchers from all over the
globe.

ETAPS is a confederation of several conferences, each with its own Program
Committee (PC) and its own Steering Committee (if any). The conferences cover
various aspects of software systems, ranging from theoretical foundations to pro-
gramming language developments, compiler advancements, analysis tools, formal
approaches to software engineering, and security. Organizing these conferences
in a coherent, highly synchronized conference program, enables the participation
in an exciting event, having the possibility to meet many researchers working
in different directions in the field, and to easily attend the talks of different
conferences.

The six main conferences together received 606 submissions this year, 155 of
which were accepted (including 12 tool demonstration papers), yielding an over-
all acceptance rate of 25.6%. I thank all authors for their interest in ETAPS, all
reviewers for the peer reviewing process, the PC members for their involvement,
and in particular the PC co-chairs for running this entire intensive process. Last
but not least, my congratulations to all authors of the accepted papers!

ETAPS 2014 was greatly enriched by the invited talks of Geoffrey Smith
(Florida International University, USA) and John Launchbury (Galois, USA),
both unifying speakers, and the conference-specific invited speakers (CC) Benôıt
Dupont de Dinechin (Kalray, France), (ESOP) Maurice Herlihy (Brown Uni-
versity, USA), (FASE) Christel Baier (Technical University of Dresden, Ger-
many), (FoSSaCS) Petr Jančar (Technical University of Ostrava, Czech Repub-
lic), (POST) David Mazières (Stanford University, USA), and finally (TACAS)
Orna Kupferman (Hebrew University Jerusalem, Israel). Invited tutorials were
provided by Bernd Finkbeiner (Saarland University, Germany) and Andy Gor-
don (Microsoft Research, Cambridge, UK). My sincere thanks to all these speak-
ers for their great contributions.

For the first time in its history, ETAPS returned to a city where it had been
organized before: Grenoble, France. ETAPS 2014 was organized by the Univer-
sité Joseph Fourier in cooperation with the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and
EASST (European Association of Software Science and Technology). It had

VI Foreword

support from the following sponsors: CNRS, Inria, Grenoble INP, PERSYVAL-
Lab and Université Joseph Fourier, and Springer-Verlag.

The organization team comprised:

General Chair: Saddek Bensalem
Conferences Chair: Alain Girault and Yassine Lakhnech
Workshops Chair: Axel Legay
Publicity Chair: Yliès Falcone
Treasurer: Nicolas Halbwachs
Webmaster: Marius Bozga

The overall planning for ETAPS is the responsibility of the Steering Commit-
tee (SC). The ETAPS SC consists of an executive board (EB) and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board comprises Gilles Barthe (satellite
events, Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (chair,
Aachen and Twente), Gerald Lüttgen (treasurer, Bamberg), and Tarmo Uustalu
(publicity, Tallinn). Other current SC members are: Mart́ın Abadi (Santa Cruz
and Mountain View), Erika Ábráham (Aachen), Roberto Amadio (Paris), Chris-
tel Baier (Dresden), Saddek Bensalem (Grenoble), Giuseppe Castagna (Paris),
Albert Cohen (Paris), Alexander Egyed (Linz), Riccardo Focardi (Venice), Björn
Franke (Edinburgh), Stefania Gnesi (Pisa), Klaus Havelund (Pasadena), Reiko
Heckel (Leicester), Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kre-
mer (Nancy), Pasquale Malacaria (London), Tiziana Margaria (Potsdam), Fabio
Martinelli (Pisa), Andrew Myers (Boston), Anca Muscholl (Bordeaux), Catuscia
Palamidessi (Palaiseau), Andrew Pitts (Cambridge), Arend Rensink (Twente),
Don Sanella (Edinburgh), Vladimiro Sassone (Southampton), Ina Schäfer (Braun-
schweig), Zhong Shao (New Haven), Gabriele Taentzer (Marburg), Cesare Tinelli
(Iowa), Jan Vitek (West Lafayette), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work in making the
17th ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. Finally, many thanks
to Saddek Bensalem and his local organization team for all their efforts enabling
ETAPS to return to the French Alps in Grenoble!

January 2014 Joost-Pieter Katoen

Preface

This volume contains the papers presented at CC 2014: the 23rd International
Conference on Compiler Construction held on April 5–13, 2014 in Grenoble.

There were 47 complete submissions. Each submission was reviewed by at
least 3 committee members. The review process and edition of the proceedings
was conducted with EasyChair. The committee decided to accept 10 standard
and 4 tool papers. The program also included 1 invited talk.

CC brings together a unique blend of scientists and engineers working on
processing programs in a general sense. The conference is the most targeted fo-
rum for the discussion of progress in analyzing, transforming, or executing input
that describes how a system operates, including traditional compiler construc-
tion as a special case. This year’s topics of interest include, but are not limited to:
compilation and interpretation techniques, including program representation and
analysis, code generation, and code optimization; run-time techniques, including
memory management and dynamic and just-in-time compilation; programming
tools, from refactoring editors to checkers to compilers to virtual machines to
debuggers; techniques for specific domains, such as secure, parallel, distributed,
embedded or mobile environments; and design of novel language constructs and
their implementation.

We take this opportunity to thank our invited speaker, to congratulate the
authors, and to thank them for submitting their fine work to the Compiler
Construction conference. Many thanks to the local organization team led by
Saddek Bensalem, and to the steering committee of ETAPS for making CC 2014
possible.

January 2014 Albert Cohen

Organization

Program Committee

Nelson Amaral University of Alberta, Canada
Sandrine Blazy University of Rennes 1, France
Albert Cohen INRIA, France
Dibyendu Das AMD, India
Bjorn De Sutter Ghent University, Belgium
Gabriel Dos Reis Microsoft, USA
Evelyn Duesterwald IBM, USA
Stephen Edwards Columbia University, USA
Atsushi Igarashi Kyoto University, Japan
Christoph Kessler Linköping University, Sweden
Jens Knoop TU Vienna, Austria
Jenq-Kuen Lee National Tsinghua University, Taiwan
Claire Maiza Grenoble INP, France
Fernando Pereira Federal University of Minas Gerais, Brazil
Louis-Noël Pouchet UCLA, USA
Helmut Seidl TU Munich, Germany
Jan Vitek Purdue University, USA
Jingling Xue University of New South Wales, Australia
Qing Yi University of Colorado at Colorado Springs,

USA
Ayal Zaks Intel, Israel

Additional Reviewers

Barany, Gergö
Barik, Raj
Berube, Paul
Bhattacharyya, Arnamoy
Bodin, Martin
Carrier, Fabienne
Casse, Hugues
Cui, Huimin
Ertl, M. Anton
Herter, Jörg
Herz, Alexander
Ireland, Iain
Kong, Martin

Laporte, Vincent
Mihaila, Bogdan
Moy, Matthieu
Paudel, Jeeva
Puntigam, Franz
Rastello, Fabrice
Rohou, Erven
Schulte, Christian
Simon, Axel
Thiessen, Rei
Zhao, Peng
Zhou, Hao

Table of Contents

Invited Presentation

Using the SSA-Form in a Code Generator . 1
Benôıt Dupont de Dinechin

Program Analysis and Optimization

Parameterized Construction of Program Representations for Sparse
Dataflow Analyses . 18

André Tavares, Benoit Boissinot, Fernando Pereira, and
Fabrice Rastello

Inter-iteration Scalar Replacement Using Array SSA Form 40
Rishi Surendran, Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar

Recovery of Class Hierarchies and Composition Relationships from
Machine Code . 61

Venkatesh Srinivasan and Thomas Reps

Liveness-Based Garbage Collection . 85
Rahul Asati, Amitabha Sanyal, Amey Karkare, and Alan Mycroft

deGoal a Tool to Embed Dynamic Code Generators into
Applications . 107

Henri-Pierre Charles, Damien Couroussé, Victor Lomüller,
Fernando A. Endo, and Rémy Gauguey

Improving the Performance of X10 Programs by Clock Removal 113
Paul Feautrier, Éric Violard, and Alain Ketterlin

Parallelism and Parsing

Taming Control Divergence in GPUs through Control Flow
Linearization . 133

Jayvant Anantpur and Govindarajan R.

Exploitation of GPUs for the Parallelisation of Probably Parallel
Legacy Code . 154

Zheng Wang, Daniel Powell, Björn Franke, and Michael O’Boyle

A Flexible and Efficient ML Lexer Tool Based on Extended Regular
Expression Submatching . 174

Martin Sulzmann and Pippijn van Steenhoven

XII Table of Contents

The PAPAGENO Parallel-Parser Generator . 192
Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli,
Federica Panella, and Matteo Pradella

String Analysis for Dynamic Field Access . 197
Magnus Madsen and Esben Andreasen

New Trends in Compilation

Addressing JavaScript JIT Engines Performance Quirks:
A Crowdsourced Adaptive Compiler . 218

Rafael Auler, Edson Borin, Peli de Halleux, Micha�l Moskal, and
Nikolai Tillmann

A First Step towards a Compiler for Business Processes 238
Thomas M. Prinz, Norbert Spieß, and Wolfram Amme

CBMC-GC: An ANSI C Compiler for Secure Two-Party
Computations . 244

Martin Franz, Andreas Holzer, Stefan Katzenbeisser,
Christian Schallhart, and Helmut Veith

Author Index . 251

Using the SSA-Form in a Code Generator

Benôıt Dupont de Dinechin

Kalray SA

Abstract. In high-end compilers such as Open64, GCC or LLVM, the
Static Single Assignment (SSA) form is a structural part of the target-
independent program representation that supports most of the code
optimizations. However, aggressive compilation also requires that
optimizations that are more effective with the SSA form be applied to the
target-specific program representations operated by the code generator,
that is, the set of compiler phases after and including instruction selection.

While using the SSA form in the code generator has definite advan-
tages, the SSA form does not apply to all the code generator program
representations, and is not suited for all optimizations. We discuss some
of the issues of inserting the SSA form in a code generator, specifically:
what are the challenges of maintaining the SSA form on a program repre-
sentation based on machine instructions; how the SSA form may be used
in the if-conversion optimizations; why the SSA form does not seem to
benefit instruction scheduling; and what is the state-of-the-art in SSA
form destruction on machine code.

Keywords: SSA Form, Code Generation, If-Conversion, Instruction
Scheduling.

1 Introduction

In a compiler for imperative languages such as C, C++, or FORTRAN, the code
generator covers the set of code transformations and optimizations that operate
on a program representation close to the target machine ISA, and produce an
assembly source or relocatable file with debugging information as result.

The main duties of code generation are: lowering the program intermediate
representation to the target machine instructions and calling conventions; laying
out data objects in sections and composing the stack frames; allocating variable
live ranges to architectural registers; scheduling instructions to exploit micro-
architecture; and producing assembly source or object code.

Historically, the 1986 edition of the “Compilers Principles, Techniques, and
Tools” Dragon Book by Aho et al. lists the tasks of code generation as:

– Instruction selection and lowering of calling conventions.

– Control-flow (dominators, loops) and data-flow (variable liveness) analyses.
– Register allocation and stack frame building.

– Peephole optimizations.

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 1–17, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 B.D. de Dinechin

Ten years later, the 1997 textbook “Advanced Compiler Design & Implementa-
tion” by Muchnich extends code generation with the following tasks:

– Loop unrolling and basic block replication.
– Instruction scheduling and software pipelining.
– Branch optimizations and basic block alignment.

In current releases of high-end compilers such as Open64 or GCC, code gen-
eration techniques have significantly evolved, as they are mainly responsible
for exploiting the performance-oriented features of architectures and micro-
architectures. In these compilers, code generator optimizations include:

– If-conversion using SELECT, conditional move, or predicated, instructions.
– Use of specialized addressing modes such as auto-modified and modulo.
– Exploitation of hardware looping or static branch prediction hints.
– Matching fixed-point arithmetic and SIMD idioms to special instructions.
– Memory hierarchy optimizations, including pre-fetching and pre-loading.
– VLIW instruction bundling, that may interfere with instruction scheduling.

This sophistication of modern compiler code generation motivates the in-
troduction of the SSA form on the program representation in order to simplify
some of the analyses and optimizations. In particular, liveness analysis, unrolling-
based loop optimizations, and exploitation of special instructions or addressing
modes benefit significantly from the SSA form. On the other hand, the SSA form
does not apply after register allocation, and there is still debate as to whether
it should be used in the register allocator [3].

In this paper, we review some of the issues of inserting the SSA form in a
code generator, based on experience with a family of code generators and linear
assembly optimizers for the ST120 DSP core [21] [20,49,44], the Lx/ST200 VLIW
family [23] [17,18,8,7,5], and the Kalray VLIW core [19]. Section 2 presents the
challenges of maintaining the SSA form on a program representation based on
machine instructions. Section 3 discusses two code generator optimizations that
seem at odds with the SSA form, yet must occur before register allocation. One is
if-conversion, whose modern formulations require an extension of the SSA form.
The other is pre-pass instruction scheduling, which currently does not seem to
benefit from the SSA form. Going in and out of SSA form in a code generator
is required in such case, so Section 4 characterizes various SSA form destruction
algorithms with regards to satisfying the constraints of machine code.

2 SSA Form Engineering Issues

2.1 Instructions, Operands, Operations, and Operators

An instruction is a member of the machine instruction set architecture (ISA).
Instructions access values and modify the machine state through operands. We
distinguish explicit operands, which are associated with a specific bit-field in
the instruction encoding, from implicit operands, without any encoding bits.

Using the SSA-Form in a Code Generator 3

Explicit operands correspond to allocatable architectural registers, immediate
values, or instruction modifiers. Implicit operands correspond to single instance
architectural registers and to registers implicitly used by some instructions, such
as the status register, the procedure link register, or even the stack pointer.

An operation is an instance of an instruction that composes a program. It
is seen by the compiler as an operator applied to a list of operands (explicit
& implicit), along with operand naming constraints, and has a set of clobbered
registers. The compiler view of operations also involves indirect operands, which
are not apparent in the instruction behavior, but are required to connect the
flow of values between operations. Implicit operands correspond to the registers
used for passing arguments and returning results at function call sites, and may
also be used for the registers encoded in register mask immediates.

2.2 Representation of Instruction Semantics

Unlike IR operators, there is no straightforward mapping between machine in-
structions and their operational semantics. For instance, a subtract with operands
(a, b, c) may either compute c← a−b or c← b−a or any such expression with per-
muted operands. Yet basic SSA form code cleanups such as constant propagation
and sign extension removal need to know what is actually computed by machine
instructions. Machine instructions may also have multiple target operands, such
asmemory accesses with auto-modified addressing, or combined division-modulus
instructions. There are two ways to address this issue.

– Add properties to the instruction operator and to its operands, a technique
used by the Open64 compiler. Operator properties include isAdd, isLoad,
etc. Typical operand properties include isLeft, isRight, isBase, isOffset, is-
Predicated, etc. Extended properties that involve the operator and some of
its operands include isAssociative, isCommutative, etc.

– Associate a semantic combinator, that is, a tree of IR-like operators, to each
target operand of a machine instruction. This more ambitious alternative
was implemented in the SML/NJ [35] compiler and the LAO compiler [20].

An issue related to the representation of instruction semantics is how to factor
it. Most information can be statically tabulated by the instruction operator, yet
properties such as safety for control speculation, or being equivalent to a simple
IR instruction, can be refined by the context where the instruction appears. For
instance, range propagation may ensure that an addition cannot overflow, that a
division by zero is impossible, or that a memory access is safe for control specu-
lation. Alternate semantic combinators, or modifiers of the instruction operator
semantic combinator, need to be associated with each machine instruction of the
code generator internal representation.

Finally, code generation for some instruction set architectures require that
pseudo-instructions with known semantics be available, besides variants of φ-
functions and parallel COPY operations.

4 B.D. de Dinechin

– Machine instructions that operate on register pairs, such as the long multi-
plies on the ARM, or more generally on register tuples, are common. In such
cases there is a need for pseudo-instructions to compose wide operands in
register tuples, and to extract independently register allocatable operands
from wide operands.

– Embedded architectures such as the Tensilica Xtensa provide hardware loops,
where an implicit conditional branch back to the loop header is taken when-
ever the program counter matches some address. The implied loop-back
branch is also conveniently materialized by a pseudo-instruction.

– Register allocation for predicated architectures requires that the live-ranges
of pseudo-registers or SSA variables with predicated definitions be contained
by kill pseudo-instructions [26].

2.3 Operand Naming Constraints

Implicit operands and indirect operands are constrained to specific architectural
registers either by the instruction set architecture (ISA constraints), or by the
application binary interface (ABI constraints). An effective way to deal with such
dedicated register naming constraints in the SSA form is by inserting parallel
COPY operations that write to the constrained source operands, or read from
the constrained target operands of instructions. The new SSA variables thus
created are pre-colored with the required architectural register. With modern
SSA form destruction [48,7], COPY operations are aggressively coalesced, and
the remaining ones are sequentialized into machine operations.

Explicit instruction operands may be constrained to use the same resource
(an unspecified architectural register) between a source and a target operand, as
illustrated by most x86 instructions and by DSP-style auto-modified addressing
modes. A related naming constraint is to require different resources between two
source operands, as with the MUL instructions on the ARM. The same resource
naming constraints are represented under the SSA form by inserting a COPY
operation between the constrained source operand and a new variable, then
using this new variable as the constrained source operand. In case of multiple
constrained source operands, a parallel COPY operation is used. Again, these
COPY operations are processed by the SSA form destruction.

A wider case of operand naming constraint is when a variable must be bound
to a specific architectural register at all points in the program. This is the case
with the stack pointer, as interrupt handling may reuse the run-time stack at any
program point. One possibility is to inhibit the promotion of the stack pointer to
a SSA variable. Stack pointer definitions including memory allocations through
alloca(), activation frame creation/destruction, are then encapsulated as in-
stances of a specific pseudo-instruction. Instructions that use the stack pointer
must be treated as special cases for the SSA form analyses and optimizations.

2.4 Non-kill Target Operands

The SSA form requires that variable definitions be kills. This is not the case
for target operands such as a status register that contains several independent

Using the SSA-Form in a Code Generator 5

bit-fields. Moreover, some instruction effects on bit-field may be sticky, that is,
with an implied OR with the previous value. Typical sticky bits include exception
flags of the IEEE 754 arithmetic, or the integer overflow flag on DSPs with
fixed-point arithmetic. When mapping a status register to a SSA variable, any
operation that partially reads or modifies the register bit-fields should appear as
reading and writing the corresponding variable.

Predicated execution and conditional execution are other sources of definitions
that do not kill their target register. The execution of predicated instructions is
guarded by the evaluation of a single bit operand. The execution of conditional
instructions is guarded by the evaluation of a condition on a multi-bit operand.
We extend the ISA classification of [39] to distinguish four classes:

Partial Predicated Execution Support. SELECT instructions, first intro-
duced by the Multiflow TRACE architecture [14], are provided. The
Multiflow TRACE 500 architecture was to include predicated store and
floating-point instructions [37].

Full Predicated Execution Support. Most instructions accept a Boolean
predicate operand which nullifies the instruction effects if the predicate
evaluates to false. EPIC-style architectures also provide predicate define in-
structions (PDIs) to efficiently evaluate predicates corresponding to nested
conditions: Unconditional, Conditional, parallel-OR, parallel-AND [26].

Partial Conditional Execution Support. Conditional move (CMOV) in-
structions, first introduced by the Alpha AXP architecture [4], are provided.
CMOV instructions are available in the ia32 ISA since the Pentium Pro.

Full Conditional Execution Support. Most instructions are conditionally
executed depending on the evaluation of a condition of a source operand.
On the ARM architecture, the implicit source operand is a bit-field in the
status register and the condition is encoded on 4 bits. On the VelociTITM

TMS230C6x architecture [47], the source operand is a general register en-
coded on 3 bits and the condition is encoded on 1 bit.

2.5 Program Representation Invariants

Engineering a code generator requires decisions about what information is tran-
sient, or belongs to the invariants of the program representation. By invariant we
mean a property which is ensured before and after each phase. Transient infor-
mation is recomputed as needed by some phases from the program representation
invariants. The applicability of the SSA form only spans the early phases of the
code generation process: from instruction selection, down to register allocation.
After register allocation, program variables are mapped to architectural registers
or to memory locations, so the SSA form analyses and optimizations no longer
apply. In addition, a program may be only partially converted to the SSA form.
This motivates the engineering of the SSA form as extensions to a baseline code
generator program representation.

Some extensions to the program representation required by the SSA form
are better engineered as invariants, in particular for operands, operations, basic

6 B.D. de Dinechin

blocks, and control-flow graph. Operands which are SSA variables need to record
the unique operation that defines them as a target operand, and possibly to
maintain the list of where they appear as source operands. Operations such
as φ-functions, σ-functions of the SSI form [6], and parallel copies may appear
as regular operations constrained to specific places in the basic blocks. The
incoming arcs of basic blocks need also be kept in the same order as the source
operands of each of its φ-functions.

A program representation invariant that impacts SSA form engineering is the
structure of loops. The modern way of identifying loops in a CFG is the con-
struction of a loop nesting forest as defined by Ramalingam [43]. Non-reducible
control-flow allows for different loop nesting forests for a given CFG, yet high-
level information such as loop-carried memory dependences, or user-level loop
annotations, are provided to the code generator. This information is attached
to a loop structure, which thus becomes an invariant. The impact on the SSA
form is that some loop nesting forests, such as the Havlak [29] loop structure,
are better than others for key analyses such as SSA variable liveness [5].

Up-to-date live-in and live-out sets at basic block boundaries are also can-
didates for being program representation invariants. However, when using and
updating liveness information under the SSA form, it appears convenient to
distinguish the φ-function contributions from the results of dataflow fix-point
computation. In particular, Sreedhar et al. [48] introduced the φ-function se-
mantics that became later known as multiplexing mode,where a φ-function B0 :
a0 = φ(B1 : a1, . . . , Bn : an) makes a0 live-in of basic block B0, and a1, . . . an
live-out of basic blocks B1, . . . Bn. The classic basic block invariants LiveIn(B)
and LiveOut(B) are then complemented with PhiDefs(B) and PhiUses(B) [5].

Finally, some compilers adopt the invariant that the SSA form be conven-
tional across the code generation phases. This approach is motivated by the fact
that classic optimizations such as SSA-PRE [32] require that ’the live ranges of
different versions of the same original program variable do not overlap’, implying
the SSA form is conventional. Other compilers that use SSA numbers and omit
the φ-functions from the program representation [34] are similarly constrained.
Work by Sreedhar et al. [48] and by Boissinot et al. [7] clarified how to convert
the transformed SSA form conventional wherever required, so there is no reason
nowadays for this property to be an invariant.

3 Code Generation Phases and the SSA Form

3.1 Classic If-conversion

If-conversion refers to optimizations that convert a program region to straight-
line code. It is primarily motivated by instruction scheduling on instruction-level
parallel cores [39], as removing conditional branches enables to:

– eliminate branch resolution stalls in the instruction pipeline,
– reduce uses of the branch unit, which is often single-issue,
– increase the size of the instruction scheduling regions.

Using the SSA-Form in a Code Generator 7

In case of inner loop bodies, if-conversion further enables vectorization [1] and
software pipelining (modulo scheduling) [41]. Consequently, control-flow regions
selected for if-conversion are acyclic, even though seminal techniques [1,41] con-
sider more general control-flow.

The scope and effectiveness of if-conversion depends on the ISA support. In
principle, any if-conversion technique targeted to full predicated or conditional
execution support may be adapted to partial predicated or conditional execution
support. For instance, non-predicated instructions with side-effects such as mem-
ory accesses can be used in combination with SELECT to provide a harmless
effective address in case the operation must be nullified [39].

Besides predicated or conditional execution, architectural support for if-
conversion is improved by supporting speculative execution. Speculative exe-
cution (control speculation) refers to executing an operation before knowing
that its execution is required, such as when moving code above a branch [37] or
promoting operation predicates [39]. Speculative execution assumes instructions
have reversible side effects, so speculating potentially excepting instructions re-
quires architectural support. On the Multiflow TRACE 300 architecture and
later on the Lx VLIW architecture [23], non-trapping memory loads known as
dismissible are provided. The IMPACT EPIC architecture speculative execution
[2] is generalized from the sentinel model [38].

The classic contributions to if-conversion did not consider the SSA form.

Allen et al. [1] convert control dependences to data dependences, motivated by
inner loop vectorization. They distinguish forward branches, exit branches, and
backward branches, and compute Boolean guards accordingly. As this work pre-
dates the Program Dependence Graph [24], complexity of the resulting Boolean
expressions is an issue. When comparing to later if-conversion techniques, only
the conversion of forward branches is relevant.

Park & Schlansker [41] propose the RK algorithm based the control depen-
dences. They assume a fully predicated architecture with only Conditional PDIs.
The R function assigns a minimal set of Boolean predicates to basic blocks, and
the K function express the way these predicates are computed. The algorithm
is general enough to process cyclic and irreducible rooted flow graphs, but it
practice it is applied to single entry acyclic regions.

Blickstein et al. [4] pioneer the use of CMOV instructions to replace conditional
branches in the GEM compilers for the Alpha AXP architecture.

Lowney et al. [37] match the innermost if-then constructs in the Multiflow Trace
Scheduling compiler in order to generate the SELECT and the predicated mem-
ory store operations.

Fang [22] assumes a fully predicated architecture with Conditional PDIs. The
proposed algorithm is tailored to acyclic regions with single entry and multi-
ple exits, and as such is able to compute R and K functions without relying

8 B.D. de Dinechin

on explicit control dependences. The main improvement of this algorithm over
[41] is that it also speculates instructions up the dominance tree through pred-
icate promotion, except for stores and PDIs. This work further proposes a pre-
optimization pass to hoist or sink common sub-expressions before predication
and speculation.

Leupers [36] focuses on if-conversion of nested if-then-else (ITE) statements on
architectures with full conditional execution support. A dynamic programming
technique appropriately selects either a conditional jump or a conditional instruc-
tion based implementation scheme for each ITE statement, and the objective is
the reduction of worst-case execution time (WCET).

A few contributions to if-conversion did use the SSA form but only internally.

Jacome et al. [31] propose the Static Single Assignment - Predicated Switching
(SSA-PS) transformation aimed at clustered VLIW architectures, with predi-
cated move instructions that operate inside clusters (internal moves) or between
clusters (external moves). The first idea of the SSA-PS transformation is to re-
alize the conditional assignments corresponding to φ-functions via predicated
switching operations, in particular predicated move operations. The second idea
is that the predicated external moves leverage the penalties associated with
inter-cluster data transfers. The SSA-PS transformation predicates non-move
operations and is apparently restricted to innermost if-then-else statements.

Chuang et al. [13] introduce a predicated execution support aimed at remov-
ing non-kill register writes from the micro-architecture. They propose SELECT
instructions called phi-ops, predicated memory accesses, Unconditional PDIs,
and ORP instructions for OR-ing multiple predicates. A restriction of the RK
algorithm to single-entry single-exit regions is proposed, adapted to the Uncondi-
tional PDIs and the ORP instructions. Their other contribution is the generation
of phi-ops, whose insertion points are computed like the SSA form placement of
the φ-functions. The φ-functions source operands are replaced by φ-lists, where
each operand is associated with the predicate of its source basic block. The φ-lists
are processed by topological order of the predicates to generate the phi-ops.

3.2 If-conversion under SSA Form

The ability to perform if-conversion on the SSA form of a program representation
requires the handling of operations that do not kill the target operand because
of predicated or conditional execution.

Stoutchinin & Ferrière [49] introduce ψ-functions in order to represent fully
predicated code under the SSA form, which is then called the ψ-SSA form. The
ψ-functions arguments are paired with predicates and are ordered in dominance
order in the ψ-function argument list, a correctness condition re-discovered by
Chuang et al. [13] for their phi-ops.

Using the SSA-Form in a Code Generator 9

Stoutchinin & Gao [50] propose an if-conversion technique based on the predica-
tion of Fang [22] and the replacement of φ-functions by ψ-functions. They prove
the conversion is correct provided the SSA form is conventional. The technique
is implemented in Open64 for the ia64 architecture.

Bruel [10] targets VLIW architectures with SELECT and dismissible load in-
structions. The proposed framework reduces acyclic control-flow constructs from
innermost to outermost, and the monitoring of the if-conversion benefits provides
the stopping criterion. The core technique control speculates operations, reduces
height of predicate computations, and performs tail duplication. It can also gen-
erate ψ-functions instead of SELECT operations.

Ferrière [25] extends the ψ-SSA form algorithms of [49] to architectures with
partial predicated execution support, by formulating simple correctness condi-
tions for the predicate promotion of operations that do not have side-effects.
This work also details how to transform the ψ-SSA form to conventional ψ-SSA
form by generating CMOV operations.

Thanks to these contributions, virtually all if-conversion techniques formu-
lated without the SSA form can be adapted to the ψ-SSA form, with the added
benefit that already predicated code may be part of the input. In practice, these
contributions follow the generic steps of if-conversion proposed by Fang [22]:

– if-conversion region selection;
– code hoisting and sinking of common sub-expressions;
– assignment of predicates to the basic blocks;
– insertion of operations to compute the basic block predicates;
– predication or speculation of operations;
– and conditional branch removal.

The result of an if-converted region is a hyper-block, that is, a sequence of basic
blocks with predicated or conditional operations, where control may only enter
from the top, but may exit from one or more locations [40].

Although if-conversion based on the ψ-SSA form appears effective for the
different classes of architectural support, the downstream phases of the code
generator require at least some adaptations of the plain SSA form algorithms to
handle the ψ-functions. The largest impact of handling ψ-function is apparent in
the ψ-SSA form destruction [25], whose original description [49] was incomplete.

In order to avoid such complexities, the Kalray VLIW code generator adopts
simpler solution than ψ-functions to represent the non-kill effects of conditional
operations on target operands. This solution is based on the observation that un-
der the SSA form, a CMOV operation is equivalent to a SELECT operation with
a same resource naming constraint between one source and the target operand.
Unlike other predicated or conditional instructions, a SELECT instruction kills
its target register. Generalizing this observation provides a simple way to handle
predicated or conditional operations in plain SSA form:

10 B.D. de Dinechin

– For each target operand of the predicated or conditional instruction, add a
corresponding source operand in the instruction signature.

– For each added source operand, add a same resource naming constraint with
the corresponding target operand.

This simple transformation enables the SSA form analyses and optimizations to
remain oblivious to predicated or conditional code. The drawback of this solution
is that non-kill definitions of a given variable (before SSA variable renaming)
remain in dominance order across program transformations, as opposed to ψ-
SSA where predicate value analysis may enable this order to be relaxed.

3.3 Pre-pass Instruction Scheduling

Further down the code generator, the last major phase before register allo-
cation is pre-pass instruction scheduling. Innermost loops with a single basic
block, super-block or hyper-block body are candidates for software pipelining
techniques such as modulo scheduling [45]. For innermost loops that are not
software pipelined, and for other program regions, acyclic instruction schedul-
ing techniques apply: basic block scheduling [27]; super-block scheduling [30];
hyper-block scheduling [40]; tree region scheduling [28]; or trace scheduling [37].

By definition, pre-pass instruction scheduling operates before register allo-
cation. At this stage, instruction operands are mostly virtual registers, except
for instructions with ISA or ABI constraints that bind them to specific architec-
tural registers. Moreover, preparation to pre-pass instruction scheduling includes
virtual register renaming, also known as register web construction, in order to
reduce the number of anti dependences and output dependences in the instruc-
tion scheduling problem. Other reasons why it seems there is little to gain from
scheduling instructions on a SSA form of the program representation include:

– Except in case of trace scheduling which pre-dates the use of SSA form in
production compilers, the classic scheduling regions are single-entry and do
not have control-flow merge. So there are no φ-functions in case of acyclic
scheduling, and only φ-functions in the loop header in case of software
pipelining. Keeping those φ-functions in the scheduling problem has no ben-
efits and raises engineering issues, due to their parallel execution semantics
and the constraint to keep them first in basic blocks.

– Instruction scheduling must account for all the instruction issue slots re-
quired to execute a code region. If the only ordering constraints between
instructions, besides control dependences and memory dependences, are lim-
ited to true data dependences on operands, code motion will create inter-
ferences that must later be resolved by inserting COPY operations in the
scheduled code region. (Except for interferences created by the overlapping
of live ranges that results from modulo scheduling, as these are resolved
by modulo renaming [33].) So scheduling instructions with SSA variables as
operands is not effective unless extra dependences are added to the schedul-
ing problem to prevent such code motion.

Using the SSA-Form in a Code Generator 11

– Some machine instructions have partial effects on special resources such as
the status register. Representing special resources as SSA variables even
though they are accessed at the bit-field level requires coarsening the in-
struction effects to the whole resource, as discussed in Section 2.4. In turn
this implies def-use variable ordering that prevents aggressive instruction
scheduling. For instance, all sticky bit-field definitions can be reordered with
regards to the next use, and an instruction scheduler is expected to do so.
Scheduling OR-type predicate define operations [46] raises the same issues.
An instruction scheduler is also expected to precisely track accesses to un-
related or partially overlapping bit-fields in a status register.

– Aggressive instruction scheduling relaxes some flow data dependences that
are normally implied by SSA variable def-use ordering. A first example is
move renaming [51], the dynamic switching of the definition of a source
operand defined by a COPY operation when the consumer operations ends
up being scheduled at the same cycle or earlier. Another example is inductive
relaxation [16], where the dependence between additive induction variables
and their use as base in base+offset addressing modes is relaxed to the extent
permitted by the induction step and the range of the offset. These techniques
apply to acyclic scheduling and to modulo scheduling.

To summarize, trying to keep the SSA form inside the pre-pass instruction
scheduling appears more complex than operating on the program representation
with classic compiler temporary variables. This representation is obtained af-
ter SSA form destruction and aggressive coalescing. If required by the register
allocation, the SSA form should be re-constructed.

4 SSA Form Destruction Algorithms

The destruction of the SSA form in a code generator is required before the
pre-pass instruction scheduling and software pipelining, as discussed earlier, and
also before non-SSA register allocation. A weaker form is the conversion of trans-
formed SSA form to conventional SSA form, which is required by classic SSA
form optimizations such as SSA-PRE [32] and SSA form register allocators [42].
For all such cases, the main objective besides removing the SSA form extensions
from the program representation is to ensure that the operand naming con-
straints are satisfied. Another objective is to avoid critical edge splitting, as this
interferes with branch alignment [12], and is not possible on some control-flow
edges of machine code such as hardware loop back edges.

The contributions to SSA form destruction techniques can be characterized
as an evolution towards correctness, the ability to manage operand naming con-
straints, and the reduction of algorithmic time and memory requirements.

Cytron et al. [15] describe the process of translating out of SSA as ’naive re-
placement preceded by dead code elimination and followed by coloring’. They
replace each φ-function B0 : a0 = φ(B1 : a1, . . . , Bn : an) by n copies a0 = ai,
one per basic block Bi, before applying Chaitin-style coalescing.

12 B.D. de Dinechin

Briggs et al. [9] identify correctness issues in Cytron et al. [15] out of (trans-
formed) SSA form translation and illustrate them by the lost-copy problem and
the swap problem. These problems appear in relation with the critical edges,
and because a sequence of φ-functions at the start of a basic block has parallel
assignment semantics [7]. Two SSA form destruction algorithms are proposed,
depending on the presence of critical edges in the control-flow graph. However
the need for parallel COPY operations is not recognized.

Sreedhar et al. [48] define the φ-congruence classes as the sets of SSA variables
that are transitively connected by a φ-function. When none of the φ-congruence
classes have members that interfere, the SSA form is called conventional and
its destruction is trivial: replace all the SSA variables of a φ-congruence class
by a temporary variable, and remove the φ-functions. In general, the SSA form
is transformed after program optimizations, that is, some φ-congruence classes
contain interferences. In Method I, the SSA form is made conventional by in-
serting COPY operations that target the arguments of each φ-function in its
predecessor basic blocks, and also by inserting COPY operations that source
the target of each φ-function in its basic block. The latter is the key for not
depending on critical edge splitting [7]. The code is then improved by running
a new SSA variable coalescer that grows the φ-congruence classes with COPY-
related variables, while keeping the SSA form conventional. In Method II and
Method III, the φ-congruence classes are initialized as singletons, then merged
while processing the φ-functions in some order. In Method II, two variables of the
current φ-function that interfere directly or through their φ-congruence classes
are isolated by inserting COPY operations for both. This ensures that the φ-
congruence class which is grown from the classes of the variables related by the
current φ-function is interference-free. In Method III, if possible only one COPY
operation is inserted to remove the interference, and more involved choices about
which variables to isolate from the φ-function congruence class are resolved by
a maximum independent set heuristic. Both methods are correct except for a
detail about the live-out sets to consider when testing for interferences [7].

Leung & George [35] are the first to address the problem of satisfying the same
resource and the dedicated register operand naming constraints of the SSA form
on machine code. They identify that Chaitin-style coalescing after SSA form
destruction is not sufficient, and that adapting the SSA optimizations to enforce
operand naming constraints is not practical. They operate in three steps: collect
the renaming constraints; mark the renaming conflicts; and reconstruct code,
which adapts the SSA destruction of Briggs et al. [9]. This work is also the first
to make explicit use of parallel COPY operations.

Budimlić et al. [11] propose a lightweight SSA form destruction motivated by
JIT compilation. It uses the (strict) SSA form property of dominance of variable
definitions over uses to avoid the maintenance of an explicit interference graph.
Unlike previous approaches to SSA form destruction that coalesce increasingly
larger sets of non-interfering φ-related (and COPY-related) variables, they first

Using the SSA-Form in a Code Generator 13

construct SSA-webs with early pruning of obviously interfering variables, then
de-coalesce the SSA webs into non-interfering classes. They propose the dom-
inance forest explicit data-structure to speed-up these interference tests. This
SSA form destruction technique does not handle the operand naming constraints,
and also requires critical edge splitting.

Rastello et al. [44] revisit the problem of satisfying the same resource and dedi-
cated register operand constraints of the SSA form on machine code, motivated
by erroneous code produced by the technique of Leung & George [35]. Inspired by
work of Sreedhar et al. [48], they include the φ-related variables as candidates in
the coalescing that optimizes the operand naming constraints. This work avoids
the patent of Sreedhar et al. (US patent 6182284).

Boissinot et al. [7] analyze the previous contributions to SSA form destruction
to their root principles, and propose a generic approach to SSA form destruc-
tion that is proved correct, handles operand naming constraints, and can be
optimized for speed. The foundation of the approach is to transform the pro-
gram to conventional SSA form by isolating the φ-functions like in Method I of
Sreedhar et al. [48]. However, the COPY operations inserted are parallel, so a
parallel COPY sequentialization algorithm is provided. The task of improving
the conventional SSA form is then seen as a classic aggressive variable coalesc-
ing problem, but thanks to the SSA form the interference relation between SSA
variables is made precise and frugal to compute. Interference is obtained by com-
bining the intersection of SSA live ranges, and the equality of values which is
easily tracked under the SSA form across COPY operations. Moreover, the use
of the dominance forest data-structure of Budimlić et al. [11] to speed-up inter-
ference tests between congruence classes is obviated by a linear traversal of these
classes in pre-order of the dominance tree. Finally, the same resource operand
constraints are managed by pre-coalescing, and the dedicated register operand
constraints are represented by pre-coloring the congruence classes. Congruence
classes with a different pre-coloring always interfere.

5 Summary and Conclusions

The target independent program representations of high-end compilers are nowa-
days based on the SSA form, as illustrated by the Open64 WHIRL, the GCC
GIMPLE, or the LLVM IR. However support of the SSA form in the code gen-
erator program representations is more challenging. The main issues to address
are the mapping of SSA variables to special architectural resources, the manage-
ment of instruction set architecture (ISA) or application binary interface (ABI)
operand naming constraints, and the representation of non-kill effects on the
target operands of machine instructions. Moreover, adding the SSA form at-
tributes and invariants to the program representations appears detrimental to
the pre-pass instruction scheduling (including software pipelining).

The SSA form benefits most the phases of code generation that run before pre-
pass instruction scheduling. In particular, we review the different approaches to

14 B.D. de Dinechin

if-conversion, a key enabling phase for the exploitation of instruction-level par-
allelism by instruction scheduling. Recent contributions to if-conversion leverage
the SSA form but introduce ψ-functions in order to connect the partial defini-
tions of predicated or conditional machine operations. This approach effectively
extends the SSA form to the ψ-SSA form, which is more complicated to handle
especially in the SSA form destruction phase.

We propose a simpler alternative for the representation of non-kill target
operands without the ψ-functions, allowing the early phases of code generation
to operate on the standard SSA form only. This proposal requires that the SSA
form destruction phase be able to manage operand naming constraints. This
motivated us to extend the technique of Sreedhar et al. (SAS’99), the only one
at the time that was correct, and which did not require critical edge splitting.
Eventually, this work evolved into the technique of Boissinot et al. (CGO’09).

References

1. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control de-
pendence to data dependence. In: Proc. of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL 1983, pp. 177–189
(1983)

2. August, D.I., Connors, D.A., Mahlke, S.A., Sias, J.W., Crozier, K.M., Cheng, B.C.,
Eaton, P.R., Olaniran, Q.B., Hwu, W.M.W.: Integrated predicated and speculative
execution in the impact epic architecture. In: Proc. of the 25th Annual International
Symposium on Computer Architecture, ISCA 1998, pp. 227–237 (1998)

3. Barik, R., Zhao, J., Sarkar, V.: A decoupled non-ssa global register allocation
using bipartite liveness graphs. ACM Trans. Archit. Code Optim. 10(4), 63:1–63:24
(2013)

4. Blickstein, D.S., Craig, P.W., Davidson, C.S., Faiman Jr., R.N., Glossop, K.D.,
Grove, R.B., Hobbs, S.O., Noyce, W.B.: The GEM optimizing compiler system.
Digital Technical Journal 4(4), 121–136 (1992)

5. Boissinot, B., Brandner, F., Darte, A., de Dinechin, B.D., Rastello, F.: A non-
iterative data-flow algorithm for computing liveness sets in strict ssa programs. In:
Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 137–154. Springer, Heidelberg
(2011)

6. Boissinot, B., Brisk, P., Darte, A., Rastello, F.: SSI properties revisited. ACM
Trans. on Embedded Computing Systems (2012); special Issue on Software and
Compilers for Embedded Systems

7. Boissinot, B., Darte, A., Rastello, F., de Dinechin, B.D., Guillon, C.: Revisiting
Out-of-SSA Translation for Correctness, Code Quality and Efficiency. In: CGO
2009: Proc. of the 2009 International Symposium on Code Generation and Opti-
mization, pp. 114–125 (2009)

8. Boissinot, B., Hack, S., Grund, D., de Dinechin, B.D., Rastello, F.: Fast Live-
ness Checking for SSA-Form Programs. In: CGO 2008: Proc. of the Sixth An-
nual IEEE/ACM International Symposium on Code Generation and Optimization,
pp. 35–44 (2008)

9. Briggs, P., Cooper, K.D., Harvey, T.J., Simpson, L.T.: Practical Improvements to
the Construction and Destruction of Static Single Assignment Form. Software –
Practice and Experience 28, 859–881 (1998)

Using the SSA-Form in a Code Generator 15

10. Bruel, C.: If-Conversion SSA Framework for partially predicated VLIW architec-
tures. In: ODES 4, pp. 5–13 (March 2006)

11. Budimlic, Z., Cooper, K.D., Harvey, T.J., Kennedy, K., Oberg, T.S., Reeves, S.W.:
Fast copy coalescing and live-range identification. In: Proc. of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, PLDI
2002, pp. 25–32. ACM, New York (2002)

12. Calder, B., Grunwald, D.: Reducing branch costs via branch alignment. In: Proc.
of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VI, pp. 242–251. ACM, New York
(1994)

13. Chuang, W., Calder, B., Ferrante, J.: Phi-predication for light-weight if-conversion.
In: Proc. of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO 2003, pp. 179–190 (2003)

14. Colwell, R.P., Nix, R.P., O’Donnell, J.J., Papworth, D.B., Rodman, P.K.: A vliw
architecture for a trace scheduling compiler. In: Proc. of the Second International
conference on Architectual Support for Programming Languages and Operating
Systems, ASPLOS-II, pp. 180–192 (1987)

15. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Trans. on Programming Languages and Systems 13(4), 451–490 (1991)

16. deDinechin, B.D.: A unified software pipeline construction scheme for modulo sched-
uled loops. In: Malyshkin, V.E. (ed.) PaCT 1997. LNCS, vol. 1277, pp. 189–200.
Springer, Heidelberg (1997)

17. de Dinechin, B.D.: Time-Indexed Formulations and a Large Neighborhood Search
for the Resource-Constrained Modulo Scheduling Problem. In: 3rd Multidisci-
plinary International Scheduling Conference: Theory and Applications, MISTA
(2007)

18. Dupont de Dinechin, B.: Inter-Block Scoreboard Scheduling in a JIT Compiler for
VLIW Processors. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 370–381. Springer, Heidelberg (2008)

19. de Dinechin, B.D., Ayrignac, R., Beaucamps, P.E., Couvert, P., Ganne, B.,
de Massas, P.G., Jacquet, F., Jones, S., Chaisemartin, N.M., Riss, F., Strudel, T.:
A clustered manycore processor architecture for embedded and accelerated appli-
cations. In: IEEE High Performance Extreme Computing Conference, HPEC 2013,
pp. 1–6 (2013)

20. de Dinechin, B.D., de Ferrière, F., Guillon, C., Stoutchinin, A.: Code Generator
Optimizations for the ST120 DSP-MCU Core. In: CASES 2000: Proc. of the 2000
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pp. 93–102 (2000)

21. de Dinechin, B.D., Monat, C., Blouet, P., Bertin, C.: Dsp-mcu processor optimiza-
tion for portable applications. Microelectron. Eng. 54(1-2), 123–132 (2000)

22. Fang, J.Z.: Compiler algorithms on if-conversion, speculative predicates assignment
and predicated code optimizations. In: Sehr, D., Banerjee, U., Gelernter, D., Nico-
lau, A., Padua, D. (eds.) LCPC 1996. LNCS, vol. 1239, pp. 135–153. Springer,
Heidelberg (1997)

23. Faraboschi, P., Brown, G., Fisher, J.A., Desoli, G., Homewood, F.: Lx: A Tech-
nology Platform for Customizable VLIW Embedded Processing. In: ISCA 2000:
Proc. of the 27th Annual Int. Symposium on Computer Architecture, pp. 203–213
(2000)

24. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

16 B.D. de Dinechin

25. de Ferrière, F.: Improvements to the Psi-SSA representation. In: Proc. of the 10th
International Workshop on Software & Compilers for Embedded Systems, SCOPES
2007, pp. 111–121 (2007)

26. Gillies, D.M., Ju, D.C.R., Johnson, R., Schlansker, M.: Global predicate analysis
and its application to register allocation. In: Proc. of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO 29, pp. 114–125 (1996)

27. Goodman, J.R., Hsu, W.C.: Code scheduling and register allocation in large basic
blocks. In: Proc. of the 2nd International Conference on Supercomputing, ICS 1988,
pp. 442–452 (1988)

28. Havanki, W., Banerjia, S., Conte, T.: Treegion scheduling for wide issue processors.
In: International Symposium on High-Performance Computer Architecture, 266
(1998)

29. Havlak, P.: Nesting of reducible and irreducible loops. ACM Trans. on Program-
ming Languages and Systems 19(4) (1997)

30. Hwu, W.M.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann,
R.A., Ouellette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery,
D.M.: The superblock: An effective technique for vliw and superscalar compilation.
J. Supercomput. 7(1-2), 229–248 (1993)

31. Jacome, M.F., de Veciana, G., Pillai, S.: Clustered vliw architectures with pred-
icated switching. In: Proc. of the 38th Design Automation Conference, DAC,
pp. 696–701 (2001)

32. Kennedy, R., Chan, S., Liu, S.M., Lo, R., Tu, P., Chow, F.: Partial redundancy
elimination in ssa form. ACM Trans. Program. Lang. Syst. 21(3), 627–676 (1999)

33. Lam, M.: Software Pipelining: An Effective Scheduling Technique for VLIW Ma-
chines. In: PLDI 1988: Proc. of the ACM SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation, pp. 318–328 (1988)

34. Lapkowski, C., Hendren, L.J.: Extended ssa numbering: introducing ssa properties
to languages with multi-level pointers. In: Proc. of the 1996 Conference of the Cen-
tre for Advanced Studies on Collaborative Research, CASCON 1996, pp. 23–34.
IBM Press (1996)

35. Leung, A., George, L.: Static single assignment form for machine code. In: Proc.
of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI 1999, pp. 204–214 (1999)

36. Leupers, R.: Exploiting conditional instructions in code generation for embedded
vliw processors. In: Proc. of the Conference on Design, Automation and Test in
Europe, DATE 1999 (1999)

37. Lowney, P.G., Freudenberger, S.M., Karzes, T.J., Lichtenstein, W.D., Nix,
R.P., O’Donnell, J.S., Ruttenberg, J.: The multiflow trace scheduling compiler.
J. Supercomput. 7(1-2), 51–142 (1993)

38. Mahlke, S.A., Chen, W.Y., Hwu, W.M.W., Rau, B.R., Schlansker, M.S.: Sentinel
scheduling for vliw and superscalar processors. In: Proc. of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS-V, pp. 238–247 (1992)

39. Mahlke, S.A., Hank, R.E., McCormick, J.E., August, D.I., Hwu, W.M.W.: A com-
parison of full and partial predicated execution support for ilp processors. In: Proc.
of the 22nd Annual International Symposium on Computer Architecture, ISCA
1995, pp. 138–150 (1995),

40. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective
compiler support for predicated execution using the hyperblock. SIGMICRO
Newsl. 23(1-2), 45–54 (1992)

Using the SSA-Form in a Code Generator 17

41. Park, J.C., Schlansker, M.S.: On predicated execution. Tech. Rep. HPL-91-58,
Hewlett Packard Laboratories, Palo Alto, California (1991)

42. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: Proc. of
the ACM SIGPLAN 2008 Conference on Programming Language Design and Im-
plementation, PLDI 2008, pp. 216–226. ACM (2008)

43. Ramalingam, G.: On loops, dominators, and dominance frontiers. ACM Trans. on
Programming Languages and Systems 24(5) (2002)

44. Rastello, F., de Ferrière, F., Guillon, C.: Optimizing Translation Out of SSA Using
Renaming Constraints. In: CGO 2004: Proc. of the International Symposium on
Code Generation and Optimization, pp. 265–278 (2004)

45. Rau, B.R.: Iterative modulo scheduling. International Journal of Parallel Program-
ming 24(1), 3–65 (1996)

46. Schlansker, M., Mahlke, S., Johnson, R.: Control cpr: A branch height reduc-
tion optimization for epic architectures. In: Proc. of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation, PLDI 1999,
pp. 155–168 (1999)

47. Seshan, N.: High velociti processing. IEEE Signal Processing Magazine, 86–101
(1998)

48. Sreedhar, V.C., Ju, R.D.C., Gillies, D.M., Santhanam, V.: Translating Out of Static
Single Assignment Form. In: SAS 1999: Proc. of the 6th International Symposium
on Static Analysis, pp. 194–210 (1999)

49. Stoutchinin, A., de Ferrière, F.: Efficient Static Single Assignment Form for Pred-
ication. In: Proc. of the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 34, pp. 172–181 (2001)

50. Stoutchinin, A., Gao, G.: If-Conversion in SSA Form. In: Danelutto, M., Vanneschi,
M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 336–345. Springer,
Heidelberg (2004)

51. Young, C., Smith, M.D.: Better global scheduling using path profiles. In: Proc.
of the 31st Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO 31, pp. 115–123 (1998)

Parameterized Construction of Program

Representations for Sparse Dataflow Analyses

André Tavares1, Benoit Boissinot2, Fernando Pereira1, and Fabrice Rastello3

1 UFMG
2 Ens Lyon

3 Inria

Abstract. Data-flow analyses usually associate information with con-
trol flow regions. Informally, if these regions are too small, like a point
between two consecutive statements, we call the analysis dense. On the
other hand, if these regions include many such points, then we call it
sparse. This paper presents a systematic method to build program rep-
resentations that support sparse analyses. To pave the way to this frame-
work we clarify the bibliography about well-known intermediate program
representations. We show that our approach, up to parameter choice,
subsumes many of these representations, such as the SSA, SSI and e-
SSA forms. In particular, our algorithms are faster, simpler and more
frugal than the previous techniques used to construct SSI - Static Single
Information - form programs. We produce intermediate representations
isomorphic to Choi et al.’s Sparse Evaluation Graphs (SEG) for the fam-
ily of data-flow problems that can be partitioned per variables. However,
contrary to SEGs, we can handle - sparsely - problems that are not in
this family. We have tested our ideas in the LLVM compiler, comparing
different program representations in terms of size and construction time.

1 Introduction

Many data-flow analyses bind information to pairs formed by a variable and a
program point [4, 21, 24, 26, 30, 32, 36–39]. As an example, for each program
point p, and each integer variable v live at p, Stephenson et al.’s [36] bit-width
analysis finds the size, in bits, of v at p. Although well studied in the literature,
this approach might produce redundant information. For instance, a given vari-
able v may be mapped to the same bit-width along many consecutive program
points. Therefore, a natural way to reduce redundancies is to make these analyses
sparser, increasing the granularity of the program regions that they manipulate.

There exists different attempts to implement data-flow analyses sparsely. The
Static Single Assignment (SSA) form [13], for instance, allows us to implement
several analyses and optimizations, such as reaching definitions and constant
propagation, sparsely. Since its conception, the SSA format has been generalized
into many different program representations, such as the Extended-SSA form [4],
the Static Single Information (SSI) form [1], and the Static Single Use (SSU)
form [18, 23, 30]. Each of these representations extends the reach of the SSA form
to sparser data-flow analyses; however, there is not a format that subsumes all

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 18–39, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Parameterized Construction of Program Representations 19

the others. In other words, each of these three program representations fit spe-
cific types of data-flow problems. Another attempt to model data-flow analyses
sparsely is due to Choi et al.’s Sparse Evaluation Graph (SEG) [9]. This data-
structure supports several different analyses sparsely, as long as the abstract
state of a variable does not interfere with the abstract state of other variables
in the same program. This family of analyses is known as Partitioned Variable
Problems in the literature [41].

In this paper, we propose a framework that includes all these previous ap-
proaches. Given a data-flow problem defined by (i) a set of control flow nodes,
that produce information, and (ii) a direction in which information flows: for-
ward, backward or both ways, we build a program representation that allows
to solve the problem sparsely using def-use chains. The program representations
that we generate ensure a key single information property: the data-flow facts
associated with a variable are invariant along the entire live range of this variable.

We have implemented our framework in the LLVM compiler [22], and have
used it to provide intermediate representations to well-known compiler opti-
mizations: Wegman et al.’s [39] conditional constant propagation, and Bodik et
al.’s [4] algorithm for array bounds check elimination. We compare these rep-
resentations with the SSI form as defined by Singer. The intermediate program
representations that we build increase the size of the original program by less
than 5% - one order of magnitude less than Singer’s SSI form. Furthermore, the
time to build these program representations is less than 2% of the time taken
by the standard suite of optimizations used in the LLVM compiler. Finally, our
intermediate representations have already been used in the implementation of
different static analyses, already publicly available [7, 15, 32, 34].

2 Static Single Information

Our objective is to generate program representations that bestow the Static
Single Information property (Definition 6) onto a given data-flow problem. In
order to introduce this notion, we will need a number of concepts, which we
define in this chapter. We start with the concept of a Data-Flow System, which
Definition 1 recalls from the literature. We consider a program point a point
between two consecutive instructions. If p is a program point, then preds(p)
(resp. succs(p)) is the set of all the program points that are predecessors (resp.
successors) of p. A transfer function determines how information flows among
these program points. Information are elements of a lattice. We find a solution
to a data-flow problem by continuously solving the set of transfer functions
associated with each program region until a fix point is reached. Some program
points are meet nodes, because they combine information coming from two or
more regions. The result of combining different elements of a lattice is given by
a meet operator, which we denote by ∧.

Definition 1 (Data-Flow System). A data-flow system Edense is an equation
system that associates, with each program point p, an element of a lattice L, given
by the equation xp =

∧
s∈preds(p) F

s,p(xs), where: xp denotes the abstract state

20 A. Tavares et al.

associated with program point p; preds(p) is the set of control flow predecessors
of p; F s,p is the transfer function from program point s to program point p. The
analysis can alternatively be written as a constraint system that binds to each
program point p and each s ∈ preds(p) the equation xp = xp ∧ F s,p(xs) or,
equivalently, the inequation xp � F s,p(xs).

The program representations that we generate lets us solve a class of data-
flow problems that we call Partitioned Lattice per Variable (PLV), and that we
introduce in Definition 2. Constant propagation is an example of a PLV problem.
If we denote by C the lattice of constants, the overall lattice can be written as
L = Cn, where n is the number of variables. In other words, this data-flow
problem ranges on a product lattice that contains a term for each variable in
the target program.

Definition 2 (Partitioned Lattice per Variable Problem (PLV)). Let
V = {v1, . . . , vn} be the set of program variables. The Maximum Fixed Point
problem on a data-flow system is a Partitioned Lattice per Variable Problem if,
and only if, L can be decomposed into the product of Lv1 × · · · ×Lvn where each
Lvi is the lattice associated with program variable vi. In other words xs can be
writen as ([v1]

s, . . . , [vn]
s) where [v]s denotes the abstract state associated with

variable v and program point s. F s,p can thus be decomposed into the product
of F s,p

v1 × · · · × F s,p
vn and the constraint system decomposed into the inequalities

[vi]
p � F s,p

vi ([v1]
s, . . . , [vn]

s).

The transfer functions that we describe in Definition 3 have no influence on
the solution of a data-flow system. The goal of a sparse data-flow analysis is
to shortcut these functions. We accomplish this task by grouping contiguous
program points bound to these functions into larger regions.

Definition 3 (Trivial/Constant/Undefined Transfer functions). Let
Lv1 × Lv2 × · · · × Lvn be the decomposition per variable of lattice L, where Lvi
is the lattice associated with variable vi. Let Fvi be a transfer function from L
to Lvi .
– Fvi is trivial if ∀x = ([v1], . . . , [vn]) ∈ L, Fvi(x) = [vi]
– Fvi is constant with value C ∈ Lvi if ∀x ∈ L, Fvi(x) = C
– Fvi is undefined if Fvi is constant with value �, e.g., Fvi(x) = �, where
� ∧ y = y ∧ � = y.

A sparse data-flow analysis propagates information from the control flow node
where this information is created directly to the control flow node where this
information is needed. Therefore, the notion of dependence, which we state in
Definition 4, plays a fundamental role in our framework. Intuitively, we say that
a variable v depends on a variable vj if the information associated with v might
change in case the information associated with vj does.

Definition 4 (Dependence). We say that Fv depends on variable vj if:

∃x = ([v1], . . . , [vn]) 	= ([v1]
′, . . . , [vn]′) = x′ in L

such that [∀k 	= j, [vk] = [vk]
′ ∧ Fv(x) 	= Fv(x

′)]

Parameterized Construction of Program Representations 21

In a backward data-flow analysis, the information that comes from the pre-
decessors of a node n is combined to produce the information that reaches the
successors of n. A forward analysis propagates information in the opposite direc-
tion. We call meet nodes those places where information coming from multiple
sources are combined. Definition 5 states this concept more formally.

Definition 5 (Meet Nodes). Consider a forward (resp. backward) monotone
PLV problem, where (Y p

v) is the maximum fixed point solution of variable v at
program point p. We say that a program point p is a meet node for variable v
if, and only if, p has n ≥ 2 predecessors (resp. successors), s1, . . . , sn, and there
exists si 	= sj, such that Y si

v 	= Y
sj
v .

Our goal is to build program representations in which the information asso-
ciated with a variable is invariant along the entire live range of this variable. A
variable v is alive at a program point p if there is a path from p to an instruction
that uses v, and v is not re-defined along the way. The live range of v, which we
denote by live(v), is the collection of program points where v is alive.

Definition 6 (Static Single Information property). Consider a forward
(resp. backward) monotone PLV problem Edense stated as in Definition 1. A
program representation fulfills the Static Single Information property if, and only
if, it meets the following properties for each variable v:

[SPLIT-DEF]: for each two consecutive program points s and p such that p ∈
live(v), and F s,p

v is non-trivial nor undefined, there should be an instruction
between s and p that contains a definition (resp. last use) of v;

[SPLIT-MEET]: each meet node p with n predecessors {s1, . . . , sn} (resp.
successors) should have a definition (resp. use) of v at p, and n uses (resp.
definitions) of v, one at each si. We shall implement these defs/uses with
φ/σ-functions, as we explain in Section 2.1.

[INFO]: each program point p 	∈ live(v) should be bound to undefined transfer
functions, e.g., F s,p

v = λx.� for each s ∈ preds(p) (resp. s ∈ succs(p)).
[LINK]: for each two consecutive program points s and p for which F s,p

v de-
pends on some [u]s, there should be an instruction between s and p that
contains a (potentially pseudo) use (resp. def) of u.

[VERSION]: for each variable v, live(v) is a connected component of the CFG.

2.1 Special Instructions Used to Split Live Ranges

We group control flow nodes in three kinds: interior nodes, forks and joins. At
each place we use a different notation to denote live range splitting.

Interior nodes are control flow nodes that have a unique predecessor and a
unique successor. At these control flow nodes we perform live range splitting via
copies. If the control flow node already contains another instruction, then this
copy must be done in parallel with the existing instruction. The notation,

inst ‖ v1 = v′1 ‖ . . . ‖ vm = v′m

22 A. Tavares et al.

denotes m copies vi = v′i performed in parallel with instruction inst. This means
that all the uses of inst plus all v′i are read simultaneously, then inst is computed,
then all definitions of inst plus all vi are written simultaneously.

In forward analyses, the information produced at different definitions of a
variable may reach the same meet node. To avoid that these definitions reach the
same use of v, we merge them at the earliest control flow node where they meet;
hence, ensuring [SPLIT-MEET]. We do this merging via special instructions
called φ-functions, which were introduced by Cytron et al. to build SSA-form
programs [13]. The assignment

v1 = φ(l1 : v11 , . . . , l
q : vq1) ‖ . . . ‖ vm = φ(l1 : v1m, . . . , lq : vqm)

contains m φ-functions to be performed in parallel. The φ symbol works as a
multiplexer. It will assign to each vi the value in vji , where j is determined by lj ,
the basic block last visited before reaching the φ-function. The above statement
encapsulates m parallel copies: all the variables vj1, . . . , v

j
m are simultaneously

copied into the variables v1, . . . , vm. Note that our notion of control flow nodes
differs from the usual notion of nodes of the CFG. A join node actually corre-
sponds to the entry point of a CFG node: to this end we denote as In(l) the point
right before l. As an example in Figure 1(d), l7 is considered to be an interior
node, and the φ-function defining v6 has been inserted at the join node In(l7).

In backward analyses the information that emerges from different uses of a
variable may reach the same meet node. To ensure Property [SPLIT-MEET], the
use that reaches the definition of a variable must be unique, in the same way that
in a SSA-form program the definition that reaches a use is unique. We ensure this
property via special instructions that Ananian has called σ-functions [1]. The
σ-functions are the simetric of φ-functions, performing a parallel assignment
depending on the execution path taken. The assignment

(l1 : v11 , . . . , l
q : vq1) = σ(v1) ‖ . . . ‖ (l1 : v1m, . . . , lq : vqm) = σ(vm)

represents m σ-functions that assign to each variable vji the value in vi if control
flows into block lj. These assignments happen in parallel, i.e., the m σ-functions
encapsulate m parallel copies. Also, notice that variables live in different branch
targets are given different names by the σ-function that ends that basic block.
Similarly to join nodes, a fork node is the exit point of a CFG node: Out(l)
denotes the point right after CFG node l. As an example in Figure 1(d), l2 is
considered to be an interior node, and the σ-function using v1 has been inserted
at the fork node Out(l2).

2.2 Examples of PLV Problems

Many data-flow analyses can be classified as PLV problems. In this section we
present some meaningful examples. Along each example we show the program
representation that lets us solve it sparsely.

Class Inference: Some dynamically typed languages, such as Python, Java-
Scrip, Ruby or Lua, represent objects as hash tables containing methods and

Parameterized Construction of Program Representations 23

def test(i):

 v = OX()

 if i % 2:

 tmp = i + 1

 v.m1(tmp)

 else:

 v = OY()

 v.m2()

 print v.m3()

l1: v = OX()

l4: v.m1()

l7: v.m3()

l6: v.m2()

l5: v = OY()l3: tmp = i + 1

l2: (i%2)?

l1: v = OX()

l4: v.m1()

l7: v.m3()

l6: v.m2()

l5: v = OY()l3: tmp = i + 1

l2: (i%2)?

{m
1
,m

3
}

{m
1
,m

3
}

{m
1
,m

3
}

{m
3
} {m

3
}

{m
2
,m

3
}

{}

v1 = OX()

v2.m1()||(v4) = (v2)

v6 = (v4, v5)

v6.m3()

v3.m2()||(v5) = (v3)

v3 = OY()tmp = i + 1

(i%2)?
(v2,) = (v1)

[v6] {m3}

[v5] [v6]

[v4] [v6]

[v2] {m1} [v4]

[v3] {m2} [v5]

[v7] {}

[v1] [v2] [v7]

(a) (b) (c)

(e) (f)(d)

v1

v2
v3

v6

v5
v4

Fig. 1. Class inference as an example of backward data-flow analysis that takes infor-
mation from the uses of variables

fields. In this world, it is possible to speedup execution by replacing these hash
tables with actual object oriented virtual tables. A class inference engine tries
to assign a virtual table to a variable v based on the ways that v is used. The
Python program in Figure 1(a) illustrates this optimization. Our objective is
to infer the correct suite of methods for each object bound to variable v. Fig-
ure 1(b) shows the control flow graph of the program, and Figure 1(c) shows the
results of a dense implementation of this analysis. In a dense analysis, each pro-
gram instruction is associated with a transfer function; however, some of these
functions, such as that in label l3, are trivial. We produce, for this example,
the representation given in Figure 1(d). Because type inference is a backward
analysis that extracts information from use sites, we split live ranges at these
control flow nodes, and rely on σ-functions to merge them back. The use-def
chains that we derive from the program representation, seen in Figure 1(e), lead
naturally to a constraint system, which we show in Figure 1(f). A solution to
this constraint system gives us a solution to our data-flow problem.
Constant Propagation: Figure 2 illustrates constant propagation, e.g., which
variables in the program of Figure 2(a) can be replaced by constants? The CFG
of this program is given in Figure 2(b). Constant propagation has a very simple
lattice L, which we show in Figure 2(c). Constant propagation is a PLV problem,
as we have discussed before. In constant propagation, information is produced
at the program points where variables are defined. Thus, in order to meet Def-
inition 6, we must guarantee that each program point is reachable by a single
definition of a variable. Figure 2(d) shows the intermediate representation that
we create for the program in Figure 2(b). In this case, our intermediate represen-
tation is equivalent to the SSA form. The def-use chains implicit in our program

24 A. Tavares et al.

a = 1

b = 9

while b > 0

 c = 4 a

 b = b c

l1: a = 1

l2: b = 9

l3: (b < 0)?

l4: c = 4 a

l5: b = b c

T

12 0 +1 +2

a = 1

b0 = 9

b1 = (b0, b2)

(b1 < 0)?

c = 4 a

b2 = b1 c

(a) (b) (c)

(d) (e) (f)

[a] {1}

[b0] {9}

[b1] [b0] [b2]

[c] 4 [a]

[b2] [b1] - [c]

a

b0

b2b1

c

Fig. 2. Constant propagation as an example of forward data-flow analysis that takes
information from the definitions of variables

l1: v = input()

l3: echo v l4: echo v

l5: is v Clean?

(a) (b)

l2: v = "Hi!"

l7: echo v l6: echo v

v1 = input()

echo v1 echo v2

v3 = (v1, v2)

is v3 Clean?

(v4, v5) = (v3)

v2 = "Hi!"

echo v4 echo v5

[v1] {Tainted}

[v2] {Clean}

[v3] [v1] [v2]

[v4] {Tainted}

[v5] {Clean}

(c)

Fig. 3. Taint analysis is a forward data-flow analysis that takes information from the
definitions of variables and conditional tests on these variables

representation lead to the constraint system shown in Figure 2(f). We can use
the def-use chains seen in Figure 2(e) to guide a worklist-based constraint solver,
as Nielson et al. [27, Ch.6] describe.

Taint Analysis: The objective of taint analysis [32, 33] is to find program vul-
nerabilities. In this case, a harmful attack is possible when input data reaches
sensitive program sites without going through special functions called sanitizers.
Figure 3 illustrates this type of analysis. We have used φ and σ-functions to
split the live ranges of the variables in Figure 3(a) producing the program in
Figure 3(b). Let us assume that echo is a sensitive function, because it is used
to generate web pages. For instance, if the data passed to echo is a JavaScript
program, then we could have an instance of cross-site scripting attack. Thus,
the statement echo v1 may be a source of vulnerabilities, as it outputs data
that comes directly from the program input. On the other hand, we know that
echo v2 is always safe, for variable v2 is initialized with a constant value. The

Parameterized Construction of Program Representations 25

l1: v = foo()

l2: v.m()

(a) (b)

l3: v.m()

l4: v.m()

v1 = foo()

v1.m()||v2 = v1

v2.m()||v3 = v2

v4 = (v3, v1)

v4.m()

[v1] {Possibly Null}

[v2] {Not Null}

[v3] {Not Null}

[v4] [v3] [v1]

(c)

Fig. 4. Null pointer analysis as an example of forward data-flow analysis that takes
information from the definitions and uses of variables

call echo v5 is always safe, because variable v5 has been sanitized; however, the
call echo v4 might be tainted, as variable v4 results from a failed attempt to
sanitize v. The def-use chains that we derive from the program representation
lead naturally to a constraint system, which we show in Figure 3(c). The inter-
mediate representation that we create in this case is equivalent to the Extended
Single Static Assignment (e-SSA) form [4]. It also suits the ABCD algorithm for
array bounds-checking elimination [4], Su and Wagner’s range analysis [37] and
Gawlitza et al.’s range analysis [17].

Null Pointer Analysis: The objective of null pointer analysis is to determine
which references may hold null values. Nanda and Sinha have used a variant of
this analysis to find which method dereferences may throw exceptions, and which
may not [26]. This analysis allows compilers to remove redundant null-exception
tests and helps developers to find null pointer dereferences. Figure 4 illustrates
this analysis. Because information is produced at use sites, we split live ranges
after each variable is used, as we show in Figure 4(b). For instance, we know that
the call v2.m() cannot result in a null pointer dereference exception, otherwise an
exception would have been thrown during the invocation v1.m(). On the other
hand, in Figure 4(c) we notice that the state of v4 is the meet of the state of v3,
definitely not-null, and the state of v1, possibly null, and we must conservatively
assume that v4 may be null.

3 Building the Intermediate Program Representation

A live range splitting strategy Pv = I↑ ∪ I↓ over a variable v consists of two
sets of control flow nodes (see Section 2.1 for a definition of control flow nodes).
We let I↓ denote a set of control flow nodes that produce information for a
forward analysis. Similarly, we let I↑ denote a set of control flow nodes that are
interesting for a backward analysis. The live-range of v must be split at least at
every control flow node in Pv. Going back to the examples from Section 2.2, we
have the live range splitting strategies enumerated below. Further examples are
given in Figure 5.

26 A. Tavares et al.

Client Splitting strategy P
Alias analysis, reaching definitions Defs↓

cond. constant propagation [39]

Partial Redundancy Elimination [1, 35] Defs↓
⋃

LastUses↑

ABCD [4], taint analysis [32], Defs↓
⋃

Out(Conds)↓
range analysis [17, 37]

Stephenson’s bitwidth analysis [36] Defs↓
⋃

Out(Conds)↓
⋃

Uses↑

Mahlke’s bitwidth analysis [24] Defs↓
⋃

Uses↑

An’s type inference [19], class inference [8] Uses↑

Hochstadt’s type inference [38] Uses↑
⋃

Out(Conds)↑

Null-pointer analysis [26] Defs↓
⋃

Uses↓

Fig. 5. Live range splitting strategies for different data-flow analyses. We use Defs
(Uses) to denote the set of instructions that define (use) the variable; Conds to denote
the set of instructions that apply a conditional test on a variable; Out(Conds) the exits
of the corresponding basic blocks; LastUses to denote the set of instructions where a
variable is used, and after which it is no longer live.

– Class inference is a backward analysis that takes information from the uses
of variables. Thus, for each variable, the live-range splitting strategy contains
the set of control flow nodes where that variable is used. For instance, in
Figure 1(b), we have that Pv = {l4, l6, l7}↑.

– Constant propagation is a forward analysis that takes information from
definition sites. Thus, for each variable v, the live-range splitting strategy
is characterized by the set of points where v is defined. For instance, in
Figure 2(b), we have that Pb = {l2, l5}↓.

– Taint analysis is a forward analysis that takes information from control
flow nodes where variables are defined, and conditional tests that use these
variables. For instance, in Figure 3(a), we have that Pv = {l1, l2,Out(l5)}↓.

– Nanda et al.’s null pointer analysis [26] is a forward flow problem that
takes information from definitions and uses. For instance, in Figure 4(a), we
have that Pv = {l1, l2, l3, l4}↓.

1 function SSIfy(var v, Splitting Strategy Pv)

2 split(v, Pv)

3 rename(v)

4 clean(v)

Fig. 6. Split the live ranges of v to convert it to SSI form

Parameterized Construction of Program Representations 27

The algorithm SSIfy in Figure 6 implements a live range splitting strategy in
three steps: split, rename and clean, which we describe in the rest of this section.

Splitting Live Ranges through the Creation of New Definitions of
Variables: To implement Pv, we must split the live ranges of v at each control
flow node listed by Pv. However, these control flow nodes are not the only ones
where splitting might be necessary. As we have pointed out in Section 2.1, we
might have, for the same original variable, many different sources of information
reaching a common meet point. For instance, in Figure 3(b), there exist two
definitions of variable v: v1 and v2, that reach the use of v at l5. Information
that flows forward from l3 and l4 collide at l5, the meet point of the if-then-else.
Hence the live-range of v has to be split at the entry of l5, e.g., at In(l5), leading
to a new definition v3. In general, the set of control flow nodes where information
collide can be easily characterized by join sets [13]. The join set of a group of
nodes P contains the CFG nodes that can be reached by two or more nodes of
P through disjoint paths. Join sets can be over-approximated by the notion of
iterated dominance frontier [40], a core concept in SSA construction algorithms,
which, for the sake of completeness, we recall below:

– Dominance: a CFG node n dominates a node n′ if every program path
from the entry node of the CFG to n′ goes across n. If n 	= n′, then we say
that n strictly dominates n′.

– Dominance Frontier (DF): a node n′ is in the dominance frontier of a
node n if n dominates a predecessor of n′, but does not strictly dominate n′.

– Iterated dominance frontier (DF+): the iterated dominance frontier of
a node n is the limit of the sequence:

DF1 = DF (n)
DFi+1 = DFi ∪ {DF (z) | z ∈ DFi}

Similarly, split sets created by the backward propagation of information can be
over-approximated by the notion of iterated post-dominance frontier (pDF+),
which is the DF+ [2] of the CFG where orientation of edges have been reverted.
If e = (u, v) is an edge in the control flow graph, then we define the dominance
frontier of e, i.e.,DF (e), as the dominance frontier of a fictitious node n placed at
the middle of e. In other words, DF (e) is DF (n), assuming that (u, n) and (n, v)
would exist. Given this notion, we also define DF+(e), pDF (e) and pDF+(e).

Figure 7 shows the algorithm that creates new definitions of variables. This
algorithm has three phases. First, in lines 3-9 we create new definitions to split
the live ranges of variables due to backward collisions of information. These new
definitions are created at the iterated post-dominance frontier of control flow
nodes that originate information. Notice that if the control flow node is a join
(entry of a CFG node), information actually originate from each incoming edges
(line 6). In lines 10-16 we perform the inverse operation: we create new definitions
of variables due to the forward collision of information. Finally, in lines 17-23 we
actually insert the new definitions of v. These new definitions might be created
by σ functions (due exclusively to the splitting in lines 3-9); by φ-functions

28 A. Tavares et al.

1 function split(var v, Splitting Strategy Pv = I↓ ∪ I↑)
2 “compute the set of split points”

3 S↑ = ∅
4 foreach i ∈ I↑:
5 if i.is join:

6 foreach e ∈ incoming edges(i):

7 S↑ = S↑
⋃

Out(pDF+(e))

8 else:

9 S↑ = S↑
⋃

Out(pDF+(i))

10 S↓ = ∅
11 foreach i ∈ S↑

⋃
Defs(v)

⋃
I↓:

12 if i.is fork:

13 foreach e ∈ outgoing edges(i)

14 S↓ = S↓
⋃

In(DF+(e))

15 else:

16 S↓ = S↓
⋃

In(DF+(i))

17 S = Pv

⋃
S↑

⋃
S↓

18 “Split live range of v by inserting φ, σ, and copies”

19 foreach i ∈ S:

20 if i does not already contain any definition of v:

21 if i.is join: insert “v = φ(v, ..., v)” at i

22 elseif i.is fork: insert “(v, ..., v) = σ(v)” at i

23 else: insert a copy “v = v” at i

Fig. 7. Live range splitting. We use In(l) to denote a control flow node at the entry of l,
and Out(l) to denote a control flow node at the exit of l. We let In(S) = {l ∈ S | l ∈ S}.
Out(S) is defined in a similar way.

(due exclusively to the splitting in lines 10-16); or by parallel copies. Contrary
to Singer’s algorithm, originally designed to produce SSI form programs, we do
not iterate between the insertion of φ and σ functions.

The Algorithm split preserves the SSA property, even for data-flow analyses
that do not require it. As we see in line 11, the loop that splits meet nodes
forwardly include, by default, all the definition sites of a variable. We chose to
implement it in this way for practical reasons: the SSA property gives us access
to a fast liveness check [5], which is useful in actual compiler implementations.
This algorithm inserts φ and σ functions conservatively. Consequently, we may
have these special instructions at control flow nodes that are not true meet nodes.
In other words, we may have a φ-function v = φ(v1, v2), in which the abstract
states of v1 and v2 are the same in a final solution of the data-flow problem.

Variable Renaming: The algorithm in Figure 8 builds def-use and use-def
chains for a program after live range splitting. This algorithm is similar to the
standard algorithm used to rename variables during the SSA construction [2,
Algorithm 19.7]. To rename a variable v we traverse the program’s dominance
tree, from top to bottom, stacking each new definition of v that we find. The
definition currently on the top of the stack is used to replace all the uses of v that

Parameterized Construction of Program Representations 29

1 function rename(var v)

2 “Compute use-def & def-use chains”

3 “We consider here that stack.peek() = undef if stack.isempty(),

4 and that Def(undef) = entry”

5 stack = ∅
6 foreach CFG node n in dominance order:

7 foreach m that is a predecessor of n:

8 if exists dm of the form “lm : v = . . . ” in a σ-function in Out(m):

9 stack.set def(dm)

10 if exits um of the form “· · · = lm : v” in a φ-function in In(n):

11 stack.set use(um)

12 if exists a φ-function d in In(n) that defines v:

13 stack.set def(d)

14 foreach instruction u in n that uses v:

15 stack.set use(u)

16 if exists an instruction d in n that defines v:

17 stack.set def(d)

18 foreach σ-function u in Out(n) that uses v:

19 stack.set use(u)

21 function stack.set use(instruction inst):

22 while Def(stack.peek()) does not dominate inst: stack.pop()

23 vi = stack.peek()

24 replace the uses of v by vi in inst

25 if vi �= undef: set Uses(vi) = Uses(vi)
⋃

inst

27 function stack.set def(instruction inst):

28 let vi be a fresh version of v

29 replace the defs of v by vi in inst

30 set Def(vi) = inst

31 stack.push(vi)

Fig. 8. Versioning

we find during the traversal. If the stack is empty, this means that the variable
is not defined at that point. The renaming process replaces the uses of undefined
variables by undef (line 3). We have two methods, stack.set use and stack.set def
to build the chain relations between the variables. Notice that sometimes we
must rename a single use inside a φ-function, as in lines 10-11 of the algorithm.
For simplicity we consider this single use as a simple assignment when calling
stack.set use, as one can see in line 11. Similarly, if we must rename a single
definition inside a σ-function, then we treat it as a simple assignment, like we
do in lines 8-9 of the algorithm.

Dead and Undefined Code Elimination: The algorithm in Figure 9 elimi-
nates φ-functions that define variables not actually used in the code, σ-functions
that use variables not actually defined in the code, and parallel copies that ei-

30 A. Tavares et al.

1 function clean(var v)

2 let web = {vi | vi is a version of v}
3 let defined = ∅
4 let active = { inst | inst is actual instruction and web ∩ inst.defs �= ∅}
5 while exists inst in active s.t. web ∩ inst.defs \ defined �= ∅:
6 foreach vi ∈ web ∩ inst.defs\defined:
7 active = active ∪ Uses(vi)

8 defined = defined ∪ {vi}
9 let used = ∅

10 let active = {inst |inst is actual instruction and web ∩ inst.uses �= ∅}
11 while exists inst ∈ active s.t. inst.uses\used �= ∅:
12 foreach vi ∈ web ∩ inst.uses\used:
13 active = active ∪ Def(vi)

14 used = used ∪ {vi}
15 let live = defined ∩ used

16 foreach non actual inst ∈ Def(web):

17 foreach vi operand of inst s.t. vi /∈ live:

18 replace vi by undef

19 if inst.defs = {undef} or inst.uses = {undef}
20 eliminate inst from the program

Fig. 9. Dead and undefined code elimination. Original instructions not inserted by
split are called actual instruction. We let inst.defs denote the set of variables defined
by inst, and inst.uses denote the set of variables used by inst.

ther define or use variables that do not reach any actual instruction. “Actual”
instructions are those instructions that already existed in the program before we
transformed it with split. In line 3 we let “web” be the set of versions of v, so as
to restrict the cleaning process to variable v, as we see in lines 4-6 and lines 10-
12. The set “active” is initialized to actual instructions in line 4. Then, during
the loop in lines 5-8 we add to active φ-functions, σ-functions, and copies that
can reach actual definitions through use-def chains. The corresponding version
of v is then marked as defined (line 8). The next loop, in lines 11-14 performs
a similar process to add to the active set the instructions that can reach ac-
tual uses through def-use chains. The corresponding version of v is then marked
as used (line 14). Each non live variable (see line 15), i.e. either undefined or
dead (non used) is replaced by undef in all φ, σ, or copy functions where it
appears. This is done in lines 15-18. Finally useless φ, σ, or copy functions are
removed in lines 19-20. As a historical curiosity, Cytron et al.’s procedure to
build SSA form produced what is called the minimal representation [13]. Some
of the φ-functions in the minimal representation define variables that are never
used. Briggs et al. [6] remove these variables; hence, producing what compiler
writers normally call pruned SSA-form. We close this section stating that the
SSIfy algorithm preserves the semantics of the modified program 1:

1 The theorems in this paper are proved in the companion report, available on-line.

Parameterized Construction of Program Representations 31

Theorem 1 (Semantics). SSIfy maintains the following property: if a value n
written into variable v at control flow node i′ is read at a control flow node i in
the original program, then the same value assigned to a version of variable v at
control flow node i′ is read at a control flow node i after transformation.

The Propagation Engine: Def-use chains can be used to solve, sparsely, a
PLV problem about any program that fulfills the SSI property. However, in order
to be able to rely on these def-use chains, we need to derive a sparse constraint
system from the original - dense - system. This sparse system is constructed
according to Definition 7. Theorem 2 states that such a system exists for any
program, and can be obtained directly from the Algorithm SSIfy. The algorithm
in Figure 10 provides worklist based solvers for backward and forward sparse
data-flow systems built as in Definition 7.

Definition 7 (SSI constrained system). Let Edense be a constraint system
extracted from a program that meets the SSI properties. Hence, for each pair
(variable v, program point p) we have equations [v]p = [v]p∧F s,p

v ([v1]
s, . . . , [vn]

s).
We define a system of sparse equations Essi

sparse as follows:

– Let {a, . . . , b} be the variables used (resp. defined) at control flow node
i, where variable v is defined (resp. used). Let s and p be the program
points around i. The LINK property ensures that F s,p

v depends only on some
[a]s . . . [b]s. Thus, there exists a function Gi

v defined as the projection of F s,p
v

on La × · · · × Lb, such that Gi
v([a]

s, . . . , [b]s) = F s,p
v ([v1]

s, . . . , [vn]
s).

– The sparse constrained system associates with each variable v, and each
definition (resp. use) point s of v, the corresponding constraint [v] �
Gs

v([a], . . . , [b]) where a, . . . , b are used (resp. defined) at i.

Theorem 2 (Correctness of SSIfy). The execution of SSIfy(v, Pv), for every
variable v in the target program, creates a new program representation such that:

1. there exists a system of equations Essi
dense, isomorphic to Edense for which the

new program representation fulfills the SSI property.
2. if Edense is monotone then Essi

dense is also monotone.

4 Our Approach vs Other Sparse Evaluation Frameworks

There have been previous efforts to provide theoretical and practical frameworks
in which data-flow analyses could be performed sparsely. In order to clarify some
details of our contribution, this section compares it with three previous ap-
proaches: Choi’s Sparse Evaluation Graphs, Ananian’s Static Single Information
form and Oh’s Sparse Abstract Interpretation Framework.

Sparse Evaluation Graphs: Choi’s Sparse Evaluation Graphs [9] are one of
the earliest data-structures designed to support sparse analyses. The nodes of

32 A. Tavares et al.

1 function forward propagate(transfer functions G)
2 worklist = ∅
3 foreach variable v: [v] = �
4 foreach instruction i: worklist += i

5 while worklist �= ∅:
6 let i ∈ worklist

7 worklist −= i

8 foreach v ∈ i.defs:

9 [v]new = [v] ∧Gi
v([i.uses])

10 if [v] �= [v]new :

11 worklist += Uses(v)

12 [v] = [v]new

Fig. 10. Forward propagation engine under SSI. For backward propagation, we replace
i.defs by i.uses and i.uses / Uses(v) by i.defs / Def(v).

this graph represent program regions where information produced by the data-
flow analysis might change. Choi et al.’s ideas have been further expanded, for
example, by Johnson et al.’s Quick Propagation Graphs [21], or Ramalingan’s
Compact Evaluation Graphs [31]. Nowadays we have efficient algorithms that
build such data-structures [20, 29]. These graphs improve many data-flow anal-
yses in terms of runtime and memory consumption. However, they are more
limited than our approach, because they can only handle sparsely problems that
Zadeck has classified as Partitioned Variable. In these problems, a program vari-
able can be analyzed independently from the others. Reaching definitions and
liveness analysis are examples of PVPs, as this kind of information can be com-
puted for one program variable independently from the others. For these prob-
lems we can build intermediate program representations isomorphic to SEGs,
as we state in Theorem 3. However, many data-flow problems, in particular the
PLV analyses that we mentioned in Section 2.2, do not fit into this category.
Nevertheless, we can handle them sparsely. The sparse evaluation graphs can
still support PLV problems, but, in this case, a new SEG vertex would be cre-
ated for every control flow node where new information is produced, and we
would have a dense analysis.

Theorem 3 (Equivalence SSI/SEG). Given a forward Sparse Evaluation
Graph (SEG) that represents a variable v in a program representation Prog with
CFG G, there exits a live range splitting strategy that once applied on v builds a
program representation that is isomorphic to SEG.

Static Single Information Form and Similar Program Representations:
Scott Ananian has introduced in the late nineties the Static Single Information
(SSI) form, a program representation that supports both forward and backward
analyses [1]. This representation was later revisited by Jeremy Singer [35]. The
σ-functions that we use in this paper is a notation borrowed from Ananian’s
work, and the algorithms that we discuss in Section 3 improve on Singer’s ideas.

Parameterized Construction of Program Representations 33

Contrary to Singer’s algorithm we do not iterate between the insertion of phi
and sigma functions. Consequently, as we will show in Section 5, we insert less
phi and sigma functions. Nonetheless, as we show in Theorem 2, our method
is enough to ensure the SSI properties for any combination of unidirectional
problems. In addition to the SSI form, we can emulate several other different
representations, by changing our parameterizations. Notice that for SSI we have
{Defs↓ ∪ LastUses↑}. For Bodik’s e-SSA [4] we have Defs↓

⋃
Out(Conds)↓. Fi-

nally, for SSU [18, 23, 30] we have Uses↑.
The SSI constrained system might have several inequations for the same left-

hand-side, due to the way we insert phi and sigma functions. Definition 6, as
opposed to the original SSI definition [1, 35], does not ensure the SSA or the SSU
properties. These guarantees are not necessary to every sparse analysis. It is a
common assumption in the compiler’s literature that “data-flow analysis (. . .)
can be made simpler when each variable has only one definition”, as stated in
Chapter 19 of Appel’s textbook [2]. A naive interpretation of the above state-
ment could lead one to conclude that data-flow analyses become simpler as soon
as the program representation enforces a single source of information per live-
range: SSA for forward propagation, SSU for backward, and the original SSI for
bi-directional analyses. This premature conclusion is contradicted by the exam-
ple of dead-code elimination, a backward data-flow analysis that the SSA form
simplifies. Indeed, the SSA form fulfills our definition of the SSI property for
dead-code elimination. Nevertheless, the corresponding constraint system may
have several inequations, with the same left-hand-side, i.e., one for each use of
a given variable v. Even though we may have several sources of information, we
can still solve this backward analysis using the algorithm in Figure 10. To see
this fact, we can replace Gi

v in Figure 10 by “i is a useful instruction or one of
its definitions is marked as useful” and one obtains the classical algorithm for
dead-code elimination.

Sparse Abstract Interpretation Framework: Recently, Oh et al. [28] have
designed and tested a framework that sparsifies flow analyses modelled via ab-
stract interpretation. They have used this framework to implement standard
analyses on the interval [11] and on the octogon lattices [25], and have processed
large code bodies. We believe that our approach leads to a sparser implemen-
tation. We base this assumption on the fact that Oh et al.’s approach relies
on standard def-use chains to propagate information, whereas in our case, the
merging nodes combine information before passing it ahead. As an example,
lets consider the code if () then a=•; else a=•; endif if () then •=a;
else •=a; endif under a forward analysis that generates information at defi-
nitions and requires it at uses. We let the symbol • denote unimportant values.
In this scenario, Oh et al.’s framework creates four dependence links between
the two control flow nodes where information is produced and the two control
flow nodes where it is consumed. Our method, on the other hand, converts the
program to SSA form; hence, creating two names for variable a. We avoid the

34 A. Tavares et al.

Fig. 11. Comparison of the time taken to produce the different representations. 100%
is the time to use the SSI live range splitting strategy. The shorter the bar, the faster
the live range splitting strategy. The SSI conversion took 1315.2s in total, the ABCD
conversion took 85.2s, and the CCP conversion took 49.4s.

extra links because a φ-function merges the data that comes from these names
before propagating it to the use sites.

5 Experimental Results

This section describes an empirical evaluation of the size and runtime efficiency of
our algorithms. Our experiments were conducted on a dual core Intel Pentium

D of 2.80GHz of clock, 1GB of memory, running Linux Gentoo, version 2.6.27.
Our framework runs in LLVM 2.5 [22], and it passes all the tests that LLVM does.
The LLVM test suite consists of over 1.3 million lines of C code. In this paper
we show results for SPEC CPU 2000. To compare different live range splitting
strategies we generate the program representations below. Figure 5 explains the
sets Defs, Uses and Conds.

1. SSI : Ananian’s Static Single Information form [1] is our baseline. We build
the SSI program representation via Singer’s iterative algorithm.

2. ABCD : ({Defs ,Conds}↓). This live range splitting strategy generalizes the
ABCD algorithm for array bounds checking elimination [4]. An example of
this live range splitting strategy is given in Figure 3.

3. CCP : ({Defs ,Condseq}↓). This splitting strategy, which supports Wegman
et al.’s [39] conditional constant propagation, is a subset of the previous
strategy. Differently of the ABCD client, this client requires that only vari-
ables used in equality tests, e.g., ==, undergo live range splitting. That is,
Condseq(v) denotes the conditional tests that check if v equals a given value.

Runtime: The chart in Figure 11 compares the execution time of the three
live range splitting strategies. We show only the time to perform live range split-
ting. The time to execute the optimization itself, removing array bound checks
or performing constant propagation, is not shown. The bars are normalized to
the running time of the SSI live range splitting strategy. On the average, the
ABCD client runs in 6.8% and the CCP client runs in 4.1% of the time of SSI.

Parameterized Construction of Program Representations 35

Fig. 12. Execution time of two different live range splitting strategies compared to the
total time taken by machine independent LLVM optimizations (opt -O1). 100% is the
time taken by opt. The shorter the bar, the faster the conversion.

These two forward analyses tend to run faster in benchmarks with sparse con-
trol flow graphs, which present fewer conditional branches, and therefore fewer
opportunities to restrict the ranges of variables.

In order to put the time reported in Figure 11 in perspective, Figure 12 com-
pares the running time of our live range splitting algorithms with the time to
run the other standard optimizations in our baseline compiler2. In our setting,
LLVM -O1 runs 67 passes, among analysis and optimizations, which include par-
tial redundancy elimination, constant propagation, dead code elimination, global
value numbering and invariant code motion. We believe that this list of passes is
a meaningful representative of the optimizations that are likely to be found in an
industrial strength compiler. The bars are normalized to the optimizer’s time,
which consists of the time taken by machine independent optimizations plus the
time taken by one of the live range splitting clients, e.g, ABCD or CCP. The
ABCD client takes 1.48% of the optimizer’s time, and the CCP client takes 0.9%.
To emphasize the speed of these passes, we notice that the bars do not include
the time to do machine dependent optimizations such as register allocation.
Space: Figure 13 outlines how much each live range splitting strategy increases
program size. We show results only to the ABCD and CCP clients, to keep
the chart easy to read. The SSI conversion increases program size in 17.6%
on average. This is an absolute value, i.e., we sum up every φ and σ function
inserted, and divide it by the number of bytecode instructions in the original
program. This compiler already uses the SSA-form by default, and we do not
count as new instructions the φ-functions originally used in the program. The
ABCD client increases program size by 2.75%, and the CCP client increases
program size by 1.84%.

An interesting question that deserves attention is “What is the benefit of
using a sparse data-flow analysis in practice?” We have not implemented dense
versions of the ABCD or the CCP clients. However, previous works have shown
that sparse analyses tend to outperform equivalent dense versions in terms of

2 To check the list of LLVM’s target independent optimizations try
llvm-as < /dev/null | opt -std-compile-opts -disable-output

-debug-pass=Arguments.

36 A. Tavares et al.

Fig. 13. Growth in program size due to the insertion of new φ and σ functions to
perform live range splitting

time and space efficiency [9, 31]. In particular, the e-SSA format used by the
ABCD and the CCP optimizations is the same program representation adopted
by the tainted flow framework of Rimsa et al. [32, 33], which has been shown to
be faster than a dense implementation of the analysis, even taking the time to
perform live range splitting into consideration.

6 Conclusion

This paper has presented a systematic way to build program representations
that suit sparse data-flow analyses. We build different program representations
by splitting the live ranges of variables. The way in which we split live ranges
depends on two factors: (i) which control flow nodes produce new information,
e.g., uses, definitions, tests, etc; and (ii), how this information propagates along
the variable live range: forwardly or backwardly. We have used an implemen-
tation of our framework in LLVM to convert programs to the Static Single In-
formation form [1], and to provide intermediate representations to the ABCD
array bounds-check elimination algorithm [4] and to Wegman et al.’s Conditional
Constant Propagation algorithm [39]. Our framework has been used by Couto et
al. [15] and by Rodrigues et al. [34] in different implementations of range anal-
yses. We have also used our live range splitting algorithm, implemented in the
phc PHP compiler [3], to provide the Extended Static Single Assignment form
necessary to solve the tainted flow problem [32, 33].

Extending our Approach. For the sake of simplicity, in this paper we
have restricted our discussion to: non relational analysis (PLV), intermediate-
representation based appoach, and scalar variables without aliasing.

(1) non relation analysis. In this paper we have focused on PLV problems, i.e.
solved by analyses that associate some information with each variable individ-
ually. For instance, we bind i to a range 0 ≤ i < MAX N, but we do not relate i
and j, as in 0 ≤ i < j. A relational analysis that provides a all-to-all relation
between all variables of the program is dense by nature, as any control flow
node both produces and consumes information for the analysis. Nevertheless,
our framework is compatible with the notion of packing. Each pack is a set of

Parameterized Construction of Program Representations 37

variable groups selected to be related together. This approach is usually adopted
in practical relational analyses, such as those used in Astrée [12, 25].

(2) IR based approach. Our framework constructs an intermediate represen-
tation (IR) that preserves the semantic of the program. Like the SSA form, this
IR has to be updated, and prior to final code generation, destructed. Our own
experience as compiler developers let us believe that manipulating an IR such
as SSA has many engineering advantages over building, and afterward dropping,
a separate sparse evaluation graph (SEG) for each analysis. Testimony of this
observation is the fact that the SSA form is used in virtually every modern
compiler. Although this opinion is admittedly arguable, we would like to point
out that updating and destructing our SSI form is equivalent to the update
and destruction of SSA form. More importantly, there is no fundamental lim-
itation in using our technique to build a separate SEG without modifying the
IR. This SEG will inherit the sparse properties as his corresponding SSI flavor,
with the benefit of avoiding the quadratic complexity of direct def-use chains
(|Defs(v)| × |Uses(v)| for a variable v) thanks to the use of φ and σ nodes. Note
that this quadratic complexity becomes critical when dealing with code with
aliasing or predication [28, pp.234].

(3) analysis of scalar variables without aliasing or predication. The most suc-
cessful flavor of SSA form is the minimal and pruned representation restricted to
scalar variables. The SSI form that we describe in this paper is akin to this flavor.
Nevertheless, there exists several extensions to deal with code with predication
(e.g. ψ-SSA form [14]) and aliasing (e.g. Hashed SSA [10] or Array SSA [16]).
Such extensions can be applied without limitations to our SSI form allowing a
wider range of analyses involving object aliasing and predication.

Acknowledgments. We thank the CC referees for very helpful comments on
this paper, and we thank Laure Gonnord for enlightening discussions about the
abstract interpretation framework. This project has been made possible by the
cooperation FAPEMIG-INRIA, grant 11/2009.

References

1. Ananian, S.: The static single information form. Master’s thesis. MIT (September
1999)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press (2002)

3. Biggar, P., de Vries, E., Gregg, D.: A practical solution for scripting language
compilers. In: SAC, pp. 1916–1923. ACM (2009)

4. Bodik, R., Gupta, R., Sarkar, V.: ABCD: Eliminating array bounds checks on
demand. In: PLDI, pp. 321–333. ACM (2000)

5. Boissinot, B., Hack, S., Grund, D., de Dinechin, B.D., Rastello, F.: Fast liveness
checking for SSA-form programs. In: CGO, pp. 35–44. IEEE (2008)

6. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. TOPLAS 16(3), 428–455 (1994)

38 A. Tavares et al.

7. Campos, V.H.S., Rodrigues, R.E., de Assis Costa, I.R., Pereira, F.M.Q.: Speed
and precision in range analysis. In: de Carvalho Junior, F.H., Barbosa, L.S. (eds.)
SBLP 2012. LNCS, vol. 7554, pp. 42–56. Springer, Heidelberg (2012)

8. Chambers, C., Ungar, D.: Customization: Optimizing compiler technology for self,
a dynamically-typed object-oriented programming language. SIGPLAN Not. 24(7),
146–160 (1989)

9. Choi, J.-D., Cytron, R., Ferrante, J.: Automatic construction of sparse data flow
evaluation graphs. In: POPL, pp. 55–66. ACM (1991)

10. Chow, F., Chan, S., Liu, S.-M., Lo, R., Streich, M.: Effective representation of
aliases and indirect memory operations in SSA form. In: Gyimóthy, T. (ed.) CC
1996. LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252. ACM (1977)

12. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
astrée scale up? Form. Methods Syst. Des. 35(3), 229–264 (2009)

13. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

14. de Ferrière, F.: Improvements to the ψ-SSA representation. In: SCOPES,
pp. 111–121. ACM (2007)

15. Teixeira, D.C., Pereira, F.M.Q.: The design and implementation of a non-iterative
range analysis algorithm on a production compiler. In: SBLP, pp. 45–59. SBC
(2011)

16. Fink, S.J., Knobe, K., Sarkar, V.: Unified analysis of array and object references in
strongly typed languages. In: SAS 2000. LNCS, vol. 1824, pp. 155–174. Springer,
Heidelberg (2000)

17. Gawlitza, T., Leroux, J., Reineke, J., Seidl, H., Sutre, G., Wilhelm, R.: Polynomial
precise interval analysis revisited. Efficient Algorithms 1, 422–437 (2009)

18. George, L., Matthias, B.: Taming the IXP network processor. In: PLDI, pp. 26–37.
ACM (2003)

19. An, J.H., Chaudhuri, A., Foster, J.S., Hicks, M.: Dynamic inference of static types
for ruby. In: POPL, pp. 459–472. ACM (2011)

20. Johnson, R., Pearson, D., Pingali, K.: The program tree structure. In: PLDI,
pp. 171–185. ACM (1994)

21. Johnson, R., Pingali, K.: Dependence-based program analysis. In: PLDI, pp. 78–89.
ACM (1993)

22. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE (2004)

23. Lo, R., Chow, F., Kennedy, R., Liu, S.-M., Tu, P.: Register promotion by sparse
partial redundancy elimination of loads and stores. In: PLDI, pp. 26–37. ACM
(1998)

24. Mahlke, S., Ravindran, R., Schlansker, M., Schreiber, R., Sherwood, T.: Bitwidth
cognizant architecture synthesis of custom hardware accelerators. TCAD 20(11),
1355–1371 (2001)

25. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19, 31–100
(2006)

26. Nanda, M.G., Sinha, S.: Accurate interprocedural null-dereference analysis for java.
In: ICSE, pp. 133–143 (2009)

27. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer
(2005)

Parameterized Construction of Program Representations 39

28. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for c-like languages. In: PLDI, pp. 229–238. ACM (2012)

29. Pingali, K., Bilardi, G.: Optimal control dependence computation and the roman
chariots problem. In: TOPLAS, pp. 462–491. ACM (1997)

30. Plevyak, J.B.: Optimization of Object-Oriented and Concurrent Programs. PhD
thesis, University of Illinois at Urbana-Champaign (1996)

31. Ramalingam, G.: On sparse evaluation representations. Theoretical Computer Sci-
ence 277(1-2), 119–147 (2002)

32. Rimsa, A., d’Amorim, M., Quintão Pereira, F.M.: Tainted flow analysis on e-SSA-
form programs. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 124–143. Springer,
Heidelberg (2011)

33. Rimsa, A.A., D’Amorim, M., Pereira, F.M.Q., Bigonha, R.: Efficient static checker
for tainted variable attacks. Science of Computer Programming 80, 91–105 (2014)

34. Rodrigues, R.E., Campos, V.H.S., Pereira, F.M.Q.: A fast and low overhead tech-
nique to secure programs against integer overflows. In: CGO, pp. 1–11. ACM (2013)

35. Singer, J.: Static Program Analysis Based on Virtual Register Renaming. PhD the-
sis, University of Cambridge (2006)

36. Stephenson, M., Babb, J., Amarasinghe, S.: Bitwidth analysis with application to
silicon compilation. In: PLDI, pp. 108–120. ACM (2000)

37. Su, Z., Wagner, D.: A class of polynomially solvable range constraints for inter-
val analysis without widenings. Theoretical Computeter Science 345(1), 122–138
(2005)

38. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
scheme. In: POPL, pp. 395–406 (2008)

39. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
TOPLAS 13(2) (1991)

40. Weiss, M.: The transitive closure of control dependence: The iterated join.
TOPLAS 1(2), 178–190 (1992)

41. Zadeck, F.K.: Incremental Data Flow Analysis in a Structured Program Editor.
PhD thesis, Rice University (1984)

Inter-iteration Scalar Replacement

Using Array SSA Form

Rishi Surendran1, Rajkishore Barik2, Jisheng Zhao1, and Vivek Sarkar1

1 Rice University, Houston, TX
{rishi,jisheng.zhao,vsarkar}@rice.edu

2 Intel Labs, Santa Clara, CA
rajkishore.barik@intel.com

Abstract. In this paper, we introduce novel simple and efficient analy-
sis algorithms for scalar replacement and dead store elimination that are
built on Array SSA form, a uniform representation for capturing control
and data flow properties at the level of array or pointer accesses. We
present extensions to the original Array SSA form representation to cap-
ture loop-carried data flow information for arrays and pointers. A core
contribution of our algorithm is a subscript analysis that propagates ar-
ray indices across loop iterations. Compared to past work, this algorithm
can handle control flow within and across loop iterations and degrade
gracefully in the presence of unanalyzable subscripts. We also introduce
code transformations that can use the output of our analysis algorithms
to perform the necessary scalar replacement transformations (including
the insertion of loop prologues and epilogues for loop-carried reuse). Our
experimental results show performance improvements of up to 2.29× rel-
ative to code generated by LLVM at -O3 level. These results promise to
make our algorithms a desirable starting point for scalar replacement
implementations in modern SSA-based compiler infrastructures such as
LLVM.

Keywords: Static Single Assignment (SSA) form, Array SSA form,
Scalar Replacement, Load Elimination, Store Elimination.

1 Introduction

Scalar replacement is a widely used compiler optimization that promotes mem-
ory accesses, such as a read of an array element or a load of a pointer location, to
reads and writes of compiler-generated temporaries. Current and future trends
in computer architecture provide an increased motivation for scalar replacement
because compiler-generated temporaries can be allocated in faster and more
energy-efficient storage structures such as registers, local memories and scratch-
pads. However, scalar replacement algorithms in past work [6,9,7,3,14,4,2,21,5]
were built on non-SSA based program representations, and tend to be complex
to understand and implement, expensive in compile-time resources, and limited
in effectiveness in the absence of precise data dependences. Though the ben-
efits of SSA-based analysis are well known and manifest in modern compiler

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 40–60, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Inter-iteration Scalar Replacement Using Array SSA Form 41

infrastructures such as LLVM [13], it is challenging to use SSA form for scalar
replacement analysis since SSA form typically focuses on scalar variables and
scalar replacement focuses on array and pointer accesses.

In this paper, we introduce novel simple and efficient analysis algorithms
for scalar replacement and dead store elimination that are built on Array SSA
form [12], an extension to scalar SSA form that captures control and data flow
properties at the level of array or pointer accesses. We present extensions to
the original Array SSA form representation to capture loop-carried data flow
information for arrays and pointers. A core contribution of our algorithm is a
subscript analysis that propagates array indices across loop iterations. Compared
to past work, this algorithm can handle control flow within and across loop it-
erations and degrades gracefully in the presence of unanalyzable subscript. We
also introduce code transformations that can use the output of our analysis algo-
rithms to perform the necessary scalar replacement transformations (including
the insertion of loop prologs and epilogues for loop-carried reuse). These results
promise to make our algorithms a desirable starting point for scalar replacement
implementations in modern SSA-based compiler infrastructures.

The main contributions of this paper are:

• Extensions to Array SSA form to capture inter-iteration data flow informa-
tion of arrays and pointers
• A framework for inter-iteration subscript analysis for both forward and back-
ward data flow problems
• An algorithm for inter-iteration redundant load elimination analysis using
our extended Array SSA form, with accompanying transformations for scalar
replacement, loop prologs and loop epilogues.
• An algorithm for dead store elimination using our extended Array SSA form,
with accompanying transformations.

The rest of the paper is organized as follows. Section 2 discusses background
and motivation for this work. Section 3 contains an overview of scalar replace-
ment algorithms. Section 4 introduces Array SSA form and extensions for inter-
iteration data flow analysis. Section 5 presents available subscript analysis, an
inter-iteration data flow analysis. Section 6 describes the code transformation
algorithm for redundant load elimination, and Section 7 describes the analysis
and transformations for dead store elimination. Section 8 briefly summarizes
how our algorithm can be applied to objects and while loops. Section 9 contains
details on the LLVM implementation and experimental results. Finally, Section
10 presents related work and Section 11 contains our conclusions.

2 Background

In this section we summarize selected past work on scalar replacement which
falls into two categories. 1) inter-iteration scalar replacement using non-SSA
representations and 2) intra-iteration scalar replacement using Array SSA form,
to provide the background for our algorithms. A more extensive comparison with
related work is presented later in Section 10.

42 R. Surendran et al.

(a) Original Loop (b) After Scalar Replacement

1: for i = 1 to n do
2: B[i] = 0.3333 ∗ (A[i− 1] +A[i] + A[i+ 1])
3: end for

1: t0 = A[0]
2: t1 = A[1]
3: for i = 1 to n do
4: t2 = A[i+ 1]
5: B[i] = 0.3333 ∗ (t0 + t1 + t2)
6: t0 = t1
7: t1 = t2
8: end for

Fig. 1. Scalar replacement on a 1-D Jacobi stencil computation [1]

2.1 Inter-iteration Scalar Replacement

Figure 1(a) shows the innermost loop of a 1-D Jacobi stencil computation [1].
The number of memory accesses per iteration in the loop is four, which includes
three loads and a store. The read references involving array A present a reuse
opportunity in that the data read by A[i + 1] is also read by A[i] in the next
iteration of the loop. The same element is also read in the following iteration
by A[i − 1]. The reference A[i + 1] is referred to as the generator [7] for the
redundant loads, A[i] and A[i − 1]. The number of memory accesses inside the
loop could thus be reduced to one, if the data read by A[i + 1] is stored in a
scalar temporary which could be allocated to faster memory. Assuming n > 0,
the loop after scalar replacement transformation is shown in 1(b). Non-SSA
algorithms for inter-iteration scalar replacement have been presented in past
work including [6,7,9]. Of these, the work by Carr and Kennedy [7] is described
below, since it is the most general among past algorithms for inter-iteration
scalar replacement.

2.2 Carr-Kennedy Algorithm

The different steps in the Carr-Kennedy algorithm [7] are 1) Dependence graph
construction, 2) Control flow analysis, 3) Availability analysis, 4) Reachability
analysis, 5) Potential generator selection, 6) Anticipability analysis, 7) Depen-
dence graph marking, 8) Name partitioning, 9) Register pressure moderation, 10)
Reference replacement, 11) Statement insertion analysis, 12) Register copying,
13) Code motion, and 14) Initialization of temporary variables.

The algorithm is complex, requires perfect dependence information to be ap-
plicable and operates only on loop bodies without any backward conditional
flow. Further, the algorithm performs its profitability analysis on name parti-
tions, where a name partition consists of references that share values. If a name
partition is selected for scalar replacement, all the memory references in that
name partition will get scalar replaced, otherwise none of the accesses in the
name partition are scalar replaced.

Inter-iteration Scalar Replacement Using Array SSA Form 43

2.3 Array SSA Analysis

Array SSA is a program representation which captures precise element-level
data-flow information for array variables. Every use and definition in the ex-
tended Array SSA form has a unique name. There are 3 different types of φ
functions presented in [10].

1. A control φ (denoted simply as φ) corresponds to the φ function from scalar
SSA. A φ function is added for a variable at a join point if multiple definitions
of the variable reach that point.

2. A definition φ (dφ) [12] is used to deal with partially killing definitions. A
dφ function of the form Ak = dφ(Ai, Aj) is inserted immediately after each
definition of the array variable, Ai, that does not completely kill the array
value. Aj is the augmenting definition of A which reaches the point just
prior to the definition of Ai. A dφ function merges the value of the element
modified with the values that are available prior to the definition.

3. A use φ (uφ) [10] function creates a new name whenever a statement reads an
array element. The purpose of the uφ function is to link together uses of the
same array in control-flow order. This is used to capture the read-after-read
reuse (aka input dependence). A uφ function of the form Ak = uφ(Ai, Aj)
is inserted immediately after the use of an array element, Ai. Aj is the
augmenting definition of A which reaches the point just prior to the use of
Ai.

[10] presented a unified approach for the analysis and optimization of object
field and array element accesses in strongly typed languages using Array SSA
form. But the approach had a major limitation in that it does not capture
reuse across loop iterations. For instance, their approach cannot eliminate the
redundant memory accesses in the loop in Figure 1. In Section 4, we introduce
extensions to Array SSA form for inter-iteration analysis.

2.4 Definitely-Same and Definitely-Different Analyses

In order to reason about aliasing among array accesses, [10] describes two rela-
tions: DS represents the Definitely-Same binary relationship and DD represents
the Definitely-Different binary relationship. DS(a, b) = true if and only if a and
b are guaranteed to have the same value at all program points that are dom-
inated by the definition of a and dominated by the definition of b. Similarly,
DD(a, b) = true if and only if a and b are guaranteed to have different values
at all program points that are dominated by the definition of a and dominated
by the definition of b. The Definitely-same (DS) and Definitely-different (DD)
relation between two array subscripts can be computed using different methods
and is orthogonal to the analysis and transformation described in this paper.

3 Scalar Replacement Overview

In this section, we present an overview of the basic steps of our scalar replacement
algorithms: redundant load elimination and dead store elimination. To simplify

44 R. Surendran et al.

the description of the algorithms, we consider only a single loop. We also assume
that the induction variable of the loop has been normalized to an increment
of one. Extensions to multiple nested loops can be performed in hierarchical
fashion, starting with the innermost loop and analyzing a single loop at a time.
When analyzing an outer loop, the array references in the enclosed nested loops
are summarized with subscript information [16].

The scalar replacement algorithms include three main steps:

1. Extended Array SSA Construction:
In the first step, the extended Array SSA form of the original program is
constructed. All array references are renamed and φ functions are introduced
as described in Section 4. Note that the extended Array SSA form of the pro-
gram is used only for the analysis (presented in step 2). The transformations
(presented in step 3) are applied on the original program.

2. Subscript analysis:
Scalar replacement of array references is based on two subscript analyses: (a)
available subscript analysis identifies the set of redundant loads in the given
loop, which is used for redundant load elimination (described in Section 6);
(b) dead subscript analysis identifies the set of dead stores in the given loop,
which is used in dead store elimination (described in Section 7). These anal-
yses are performed on extended Array SSA form and have an associated
tuning parameter: the maximum number of iterations for which the analysis
needs to run.

3. Transformation:
In this step, the original program is transformed using the information pro-
duced by the analyses described in step 2. For redundant load elimination,
this involves replacing the read of array elements with read of scalar tem-
poraries, generating copy statements for scalar temporaries and generating
statements to initialize the temporaries. The transformation is presented in
Section 6. Dead store elimination involves removing redundant stores and
generating epilogue code as presented in Section 7.

4 Extended Array SSA Form

1: for i = 1 to n do
2: if A[B[i]] > 0 then
3: A[i+1] = A[i-1] + B[i-1]
4: end if
5: A[i] = A[i] + B[i] + B[i+1]
6: end for

Fig. 2. Loop with redundant loads and stores

In order to model inter-
iteration reuse, the lattice
operations of the φ function
in the loop header needs
to be handled differently
from the rest of the con-
trol φ functions. They need
to capture what array el-
ements are available from
prior iterations. We introduce a header φ (hφ) node in the loop header. We
assume that every loop has one incoming edge from outside and thus, one of the

Inter-iteration Scalar Replacement Using Array SSA Form 45

arguments to the hφ denotes the SSA name from outside the loop. For each back
edge from within the loop, there is a corresponding SSA operand added to the hφ
function. Figure 2 shows a loop from [11, p. 387] extended with control flow. The
three address code of the same program is given in 3(a) and the extended Array
SSA form is given in 3(b). A1 = hφ(A0, A12) and B1 = hφ(B0, B10) are the two
hφ nodes introduced in the loop header. A0 and B0 contain the definitions of
array A which reaches the loop preheader.

While constructing Array SSA form, dφ and uφ functions are introduced first
into the program. The control φ and hφ functions are added in the second phase.
This will ensure that the new SSA names created due to the insertion of uφ and
dφ nodes are handled correctly. We introduce at most one dφ function for each
array definition and at most one uφ function for each array use. Past work have
shown that the worst-case size of the extended Array SSA form is proportional
to the size of the scalar SSA form that would be obtained if each array access is
modeled as a definition [10]. Past empirical results have shown the size of scalar
SSA form to be linearly proportional to the size of the input program [8].

(a) Three Address Code (b) Array SSA form

1: for i = 1 to n do
2: t1 = B[i]
3: t2 = A[t1]
4: if t2 > 0 then
5: t3 = A[i− 1]
6: t4 = B[i− 1]
7: t5 = t3 + t4
8: A[i+ 1] = t5
9: end if
10: t6 = A[i]
11: t7 = B[i]
12: t8 = B[i+ 1]
13: t9 = t6 + t7
14: t10 = t9 + t8
15: A[i] = t10
16: end for

1: A0 = ...
2: B0 = ...
3: for i = 1 to n do
4: A1 = hφ(A0, A12)
5: B1 = hφ(B0, B10)
6: t1 = B2[i]
7: B3 = uφ(B2, B1)
8: t2 = A2[t1]
9: A3 = uφ(A2, A1)
10: if t2 > 0 then
11: t3 = A4[i− 1]
12: A5 = uφ(A4, A3)
13: t4 = B4[i− 1]
14: B5 = uφ(B4, B3)
15: t5 = t3 + t4
16: A6[i+ 1] = t5

17: A7 = dφ(A6, A5)
18: end if
19: A8 = φ(A3, A7)
20: B6 = φ(B3, B5)
21: t6 = A9[i]
22: A10 = uφ(A9, A8)
23: t7 = B7[i]
24: B8 = uφ(B7, B6)
25: t8 = B9[i+ 1]
26: B10 = uφ(B9, B8)
27: t9 = t6 + t7
28: t10 = t9 + t8
29: A11[i] = t10
30: A12 = dφ(A11, A10)
31: end for

Fig. 3. Example Loop and extended Array SSA form

5 Available Subscript Analysis

In this section, we present the subscript analysis which is one of the key ingre-
dients for inter-iteration redundant load elimination (Section 6) and dead store
elimination transformation (Section 7). The subscript analysis takes as input the
extended Array SSA form of the program and a parameter, τ , which represents
the maximum number of iterations across which inter-iteration scalar replace-
ment will be applied on. An upper bound on τ can be obtained by computing the
maximum dependence distance for the given loop, when considering all depen-
dences in the loop. However, since smaller values of τ may sometimes be better

46 R. Surendran et al.

due to register pressure moderation reasons, our algorithm views τ as a tuning
parameter. This paper focuses on the program analysis foundations of our scalar
replacement approach — it can be combined with any optimization strategy for
making a judicious choice for τ .

Our analysis computes the set of array elements that are available at all the φ,
uφ, dφ and hφ nodes. The lattice element for an array variable, A, is represented
as L(A). The set denoted by L(A), represented as SET(L(A)), is a subset of
UA
ind × Z≥0, where UA

ind denotes the universal set of index values for A and Z≥0

denotes the set of all non-negative integers. The lattice elements are classified
as:

1. L(Aj) = � ⇒ SET(L(Aj)) = UA
ind × Z≥0

This case means that all the elements of A are available at Aj .
2. L(Aj) = 〈(i1, d1), (i2, d2)...〉 ⇒ SET(L(Aj)) = {(i1, d1), (i2, d2), ...}

This means that the array element A[i1] is available at Aj and is generated
in the k − d1th iteration, where k denotes the current iteration. Similarly
A[i2] is available at Aj and is generated in the k− d2th iteration and so on.
d1, d2, ... is used to track the number of iterations that have passed since
the corresponding array element was referenced.

3. L(Aj) = ⊥ ⇒ SET(L(Aj)) = {}
This case means that, according to the current stage of analysis none of the
elements in A are available at Aj .

The lattice element computations for the SSA nodes is defined in terms of
shift, join, insert and update operations. The shift operation is defined as
follows, where step1 denotes the coefficient of the induction variable in i1, step2
denotes the coefficient of the induction variable in i2 and so on.

shift({(i1, d1), (i2, d2), . . .}) = {(i1 − step1, d1 + 1), (i2 − step2, d2 + 1), . . .}
The definitions of join, insert and update operations are given below.

join(L(Ap),L(Aq)) = {(i1, d)|(i1, d1) ∈ L(Ap) and ∃ (i′1, d′1) ∈ L(Aq) and

DS(i1, i′1) = true and d = max(d1, d
′
1)}

insert((i′,d′),L(Ap))={(i1, d1)|(i1, d1)∈L(Ap) andDD(i′, i1)= true}∪{(i′, d′)}

update((i′,d′),L(Ap))={(i1, d1)|(i1, d1)∈L(Ap) andDS(i′, i1)=false}∪{(i′, d′)}

Figures 4, 5, 6 and 7 describe the lattice element computations for the SSA
nodes corresponding to dφ, uφ, φ, and hφ respectively. The lattice values are
initialized as follows:

L(Ai) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(x, 0)} Ai is a definition of the form Ai[x]

{(x, 0)} Ai is a use of the form Ai[x]

� Ai is defined outside the loop

⊥ Ai is a SSA definition inside the loop

Inter-iteration Scalar Replacement Using Array SSA Form 47

Figure 8 illustrates available subscript analysis on the loop in Figure 3.
We now present a brief complexity analysis of the available subscript analysis.

Let k be the total number of loads and stores of different array elements inside
a loop. The number of dφ and uφ nodes inside the loop will be O(k). Based on
past empirical measurements for scalar SSA form [8], we can expect that the
total number of φ nodes created will be O(k). Our subscript analysis involves
τ iterations in the SSA graph [8]. Therefore, in practice the complexity of the
available subscript analysis is O(τ × k), for a given loop.

L(Ar) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � � �
L(Aq) = 〈(i′, d′)〉 � insert((i′, d′), 〈(i1, d1), . . .〉) 〈(i′, d′)〉
L(Aq) = ⊥ ⊥ ⊥ ⊥

Fig. 4. Lattice computation for L(Ar) = Ldφ(L(Aq),L(Ap)) where Ar := dφ(Aq, Ap)
is a definition φ operation

L(Ar) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � � �
L(Aq) = 〈(i′, d′)〉 � update((i′, d′), 〈(i1, d1), . . .〉) L(A1)

L(Aq) = ⊥ � L(Ap) ⊥

Fig. 5. Lattice computation for L(Ar) = Luφ(L(Aq),L(Ap)) where Ar := uφ(Aq, Ap)
is a use φ operation

L(Ar) = L(Aq) L(Ap) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � L(Ap) ⊥
L(Aq) = 〈(i′1, d′1), . . .〉 L(Aq) join(L(Aq),L(Ap)) ⊥
L(Aq) = ⊥ ⊥ ⊥ ⊥

Fig. 6. Lattice computation for L(Ar) = Lφ(L(Aq),L(Ap)), where Ar := φ(Aq, Ap) is
a control φ operation

L(Ar) L(Ap) = � L(Ap) = 〈(i1, d1), . . .〉 L(Ap) = ⊥
L(Aq) = � � L(Ap) ⊥
L(Aq) = 〈(i′1, d′1), . . .〉 shift(L(Aq)) join(shift(L(Aq)),L(Ap)) ⊥
L(Aq) = ⊥ ⊥ ⊥ ⊥

Fig. 7. Lattice computation for L(Ar) = Lhφ(L(Aq),L(Ap)), where Ar := hφ(Aq, Ap)
is a header φ operation

48 R. Surendran et al.

Iteration 1 Iteration 2

L(A1) ⊥ {(i− 1, 1)}
L(B1) ⊥ {(i− 1, 1), (i, 1)}
L(B3) {(i, 0)} {(i− 1, 1), (i, 0)}
L(A3) {(t, 0)} {(i− 1, 1), (t, 0)}
L(A5) {(i− 1, 0), (t, 0)} {(i− 1, 0), (t, 0)}
L(B5) {(i− 1, 0), (i, 0)} {(i− 1, 0), (i, 0)}
L(A7) {(i− 1, 0), (i+ 1, 0)} {(i− 1, 0), (i+ 1, 0)}
L(A8) ⊥ {(i− 1, 1)}
L(B6) {(i, 0)} {(i− 1, 1), (i, 0)}
L(A10) {(i, 0)} {(i− 1, 1), (i, 0)}
L(B8) {(i, 0)} {(i− 1, 1), (i, 0)}
L(B10) {(i, 0), (i+ 1, 0)} {(i− 1, 1), (i, 0), (i+ 1, 0)}
L(A12) {(i, 0)} {(i− 1, 1), (i, 0)}

Fig. 8. Available Subscript Analysis Example

6 Load Elimination Transformation

In this section, we present the algorithm for redundant load elimination. There
are two steps in the algorithm: Register pressure moderation described in Sec-
tion 6.1, which determines a subset of the redundant loads for load elimination
and Code generation described in Section 6.2, which eliminates the redundant
loads from the loop.

The set of redundant loads in a loop is represented using UseRepSet, a set
of ordered pairs of the form (Aj [x], d), where the use Aj [x] is redundant and d
is the iteration distance from the generator to the use. d = 0 implies an intra-
iteration reuse and d ≥ 1 implies an inter-iteration reuse. UseRepSet is derived
from the lattice sets computed by available subscript analysis.

UseRepSet ={ (Ai[x], d) | ∃ (y, d) ∈ L(Aj), Ak = uφ(Ai, Aj), DS(x, y)= true}

For the loop in Figure 3, UseRepSet = {(B2[i], 1), (A4[i − 1], 1), (B4[i − 1], 1),
(B7[i], 0)}

6.1 Register Pressure Moderation

Eliminating all redundant loads in a loop may lead to generation of spill code
which could counteract the savings from scalar replacement. To prevent this, we
need to choose the most profitable loads which could be scalar replaced using
the available machine registers. We define the most profitable loads as the ones
which requires the least number of registers.

When estimating the total register requirements for scalar replacement, all
redundant uses which are generated by the same reference need to be considered
together. To do this UseRepSet is partitioned into U1, ...Uk, such that generators

Inter-iteration Scalar Replacement Using Array SSA Form 49

of all uses in a partition are definitely-same. A partition represents a set of uses
which do not dominate each other and are generated by the same use/def. A
partition Um is defined as follows, where step is the coefficient of the induction
variable in the subscript expression.

Um = {(Ai[xi], di) | ∀ (Aj [xj], dj) ∈ Um,DS(xi + di × step, xj + dj × step) =
true}

If the array index expression is loop-invariant, the number of registers required
for its scalar replacement is one. In other cases, the number of registers required
for eliminating all the loads in the partition Up is given by

NumRegs(Up) = {di + 1 | (Ai[xi], di) ∈ Up ∧ ∀ (Aj [xj], dj) ∈ Up, di ≥ dj}
For the loop in Figure 3, the four elements in UseRepSet will fall into four

different partitions: {(B2[i], 1)}, {(A4[i−1], 1)}, {(B4[i−1], 1)}, {(B7[i], 0)}. The
total number of registers required for the scalar replacement is 7.

The partitions are then sorted in increasing order of the number of registers
required. To select the redundant loads for scalar replacement, we use a greedy
algorithm in which at each step the algorithm chooses the first available partition.
The algorithm terminates when the first available partition does not fit into the
remaining machine registers.

6.2 Code Generation

The inputs to the code generation algorithm are the intermediate representation
of the loop body, the Array SSA form of the loop, and the subset of UseRepSet
after register pressure moderation. The code transformation is performed on the
original input program. The extended Array SSA form is used to search for the
generator corresponding to a redundant use. The algorithm for the transforma-
tion is shown in Figure 9. A scalar temporary, A tx is created for every array
access A[i] that is scalar replaced where, DS(x, i) = true. In the first stage of the
algorithm all redundant loads are replaced with a reference to a scalar temporary
as shown in lines 2-11 of Figure 9. For example the reads of array elements B[i]
in line 1, A[i− 1] in line 5, B[i− 1] in line 6 and B[i] in line 11 of Figure 11(a)
are replaced with reads of scalar temporaries as shown in Figure 11(b). The loop
also computes the maximum iteration distance for all redundant uses to their
generator. It also moves loop invariant array reads to loop preheader. The loop
in lines 15-27 of Figure 9 generates copy statements between scalar temporaries
and code to initialize scalar temporaries if it is a loop carried reuse. The code to
initialize the scalar temporary is inserted in the loop preheader, the basic block
that immediately dominates the loop header. Line 2-4 in Figure 11(b) is the
code generated to initialize the scalar temporaries and lines 23-25 are the copy
statements generated to carry values across iterations. The loop in lines 20-24
of Figure 9 guarantees that the scalar temporaries have the right values if the
value is generated across multiple iterations. Lines 28-35 of Figure 9 identifies
the generators and initializes the appropriate scalar temporaries. The generators
are identified using the recursive search routine SEARCH, which takes two argu-
ments: The first argument is a SSA function Aj and the second argument is an
index i. The function returns the set of all uses/defs which generates A[i]. The

50 R. Surendran et al.

Input: Input loop, Array SSA form of the loop and UseRepSet
Output: Loop after eliminating redundant loads
1: maxd ← 0
2: for all (Ai[x], d) in UseRepSet do
3: Replace lhs := Ai[x] by lhs := A tx
4: if d > maxd and x is not a loop invariant then
5: maxd ← d
6: end if
7: if x is loop invariant then
8: Insert initialization of A tx in the loop preheader
9: UseRepSet ← UseRepSet − (Ai[x], d)
10: end if
11: end for
12: for all (Ai[x], d) in UseRepSet do
13: n ← x
14: dist ← d
15: while dist �= 0 do
16: if A tn is not initialized then
17: Insert A tn := A tn+step at the end of loop

body
18: Insert initialization of A tn in the loop

preheader
19: end if
20: for all defs Aj [k] := rhs do
21: if DS(n, k) then
22: Replace the def by

A tn := rhs;Aj [k] := A tn
23: end if
24: end for
25: dist ← dist− 1
26: n ← n+ step
27: end while
28: genset ← search(Ah, n) where Ah is the hφ
29: for all uses Aj ∈ genset do
30: Replace the use by A tn := Aj [k]; lhs := A tn
31: end for
32: for all defs Aj ∈ genset do
33: Replace the def by A tn := rhs;Aj [k] := A tn
34: end for
35: end for
36: Introduce a maxd-trip count test for the scalar replaced loop

Fig. 9. Redundant Load Elimination Transformation Algorithm

Inter-iteration Scalar Replacement Using Array SSA Form 51

1: procedure search(A, i)
2: if A = hφ(A1, .., Ak) then
3: return ∪j=2,k search(Aj , i)
4: end if
5: if A = φ(A1, .., Ak) then
6: return ∪j=1,k search(Aj , i)
7: end if
8: if A = dφ(A1, A2) then
9: if L(A1) = {k} and DS(i, k) then
10: return {A1}
11: else
12: return search(A2, i)
13: end if
14: end if
15: if A = uφ(A1, A2) then
16: if L(A1) = {k} and DS(i, k) then
17: return {A1}
18: else
19: return search(A2, i)
20: end if
21: end if
22: end procedure

Fig. 10. Subroutine to find the set of generators

(a) Original Loop (b) After Redundant Load Elimination

1: for i = 1 to n do
2: t1 = B[i]
3: t2 = A[t1]
4: if t2 > 0 then
5: t3 = A[i− 1]
6: t4 = B[i− 1]
7: t5 = t3 + t4
8: A[i+ 1] = t5
9: end if
10: t6 = A[i]
11: t7 = B[i]
12: t8 = B[i+ 1]
13: t9 = t6 + t7
14: t10 = t9 + t8
15: A[i] = t10
16: end for

1: if n > 2 then
2: A ti−1 = A[0]
3: B ti = B[1]
4: B ti−1 = B[0]
5: for i = 1 to n do
6: t1 = B ti
7: t2 = A[t1]
8: if t2 > 0 then
9: t3 = A ti−1

10: t4 = B ti−1

11: t5 = t3 + t4
12: A[i+ 1] = t5
13: end if
14: A ti = A[i]
15: t6 = A ti

16: t7 = B ti−1

17: B ti+1 = B[i+ 1]
18: t8 = B ti+1

19: t9 = t6 + t7
20: t10 = t9 + t8
21: A ti = t10
22: A[i] = A ti
23: A ti−1 = A ti
24: B ti−1 = B ti
25: B ti = B ti+1

26: end for
27: else
28: original loop as shown in

Figure 11(a)
29: end if

Fig. 11. Redundant Load Elimination Example

52 R. Surendran et al.

SEARCH routine is given in Figure 10. The routine takes at most one backward
traversal of the SSA graph to find the set of generators. Line 36 of the load
elimination algorithm inserts a loop trip count test around the scalar replaced
loop.

We now present a brief complexity analysis of the load elimination transfor-
mation described in Figure 9. Let k be the total number of loads and stores of
array elements inside the loop and let l be the number of redundant loads. The
algorithm makes l traversals of the SSA graph and examines the stores inside the
loop a maximum of l× d, where d is the maximum distance from the generator
to the redundant use. Therefore the worst case complexity of the algorithm in
Figure 9 for a given loop is O((d + 1)× l × k).

(a) Original Loop (b) After Load Elimination

1: for i = 1 to n do
2: A[i+ 1] = e1
3: A[i] = A[i] + e2
4: end for

1: A t initi = A[1]
2: for j = 1 to n do
3: A ti = φ(A ti+1,A t initi)
4: A ti+1 = e1
5: A[i+ 1] = A ti+1

6: A ti = A ti + e2
7: A[i] = A ti
8: end for

(c) Extended Array SSA (d) After Store Elimination

1: A0 = ...
2: A t initi = A1[1]
3: A2 = uφ(A1, A0)
4: for j = 1 to n do
5: A3 = hφ(A2, A7)
6: A ti = φ(A ti+1,A t initi)
7: A ti+1 = e1
8: A4[i+ 1] = A ti+1

9: A5 = dφ(A4, A3)
10: A ti = A ti + e2
11: A6[i] = A ti
12: A7 = dφ(A6, A5)
13: end for

1: A t initi = A[1]
2: for j = 1 to n do
3: A ti = φ(A ti+1,A t initi)
4: A ti+1 = e1
5: A ti = A ti + e2
6: A[i] = A ti
7: end for
8: A ti = A ti+1

9: A[i+ 1] = e1
10: A ti = A ti + e2
11: A[i] = A ti

Fig. 12. Store Elimination Example

7 Dead Store Elimination

Elimination of loads can increase the number of dead stores inside the loop. For
example, consider the loop in Figure 12(a). The store of A[i+1] in line 2 is used
by the load of A[i] in line 3. Assuming n > 0, Figure 12(b) shows the same loop
after scalar replacement and elimination of redundant loads. The store of A[i+1]

Inter-iteration Scalar Replacement Using Array SSA Form 53

SSA function Lattice Operation

si : Ar = uφ(Aq, Ap) Lu(Ap, si) = L(Ar)− {(v, d) |
∃ (w, 0) ∈ L(Ap) s.t. ¬DD(v, w)}

si : Ar = dφ(Aq, Ap) Lu(Ap, si) = update(L(Ar),L(Aq))

si : Ar = φ(Aq, Ap)
Lu(Aq, si) = L(Ar)
Lu(Ap, si) = L(Ar)

si : Ar = hφ(Aq, Ap)
Lu(Aq, si) = shift(L(Ar))
Lu(Ap, si) = shift(L(Ar))

Fig. 13. Index Propagation for Dead Store Elimination

Iteration 1 Iteration 2

L(A7) ⊥ {(i+1,1),(i+2,1)}
L(A5) {(i,0)} {(i,0),(i+1,1),(i+2,1)}
L(A3) {(i,0),(i+1,0)} {(i,0),(i+1,0),(i+2,1)}

Fig. 14. Dead Subscript Analysis

in line 5 for the first n− 1 iterations is now redundant since it gets overwritten
by the store to A[i] at line 7 in the next iteration with no uses in between.

Dead store elimination is run as a post pass to redundant load elimination
and it uses a backward flow analysis of array subscripts similar to very busy
expression analysis. The analysis computes set L(Ai) for every SSA function in
the program. Similar to available subscript analysis presented in Section 5, the
lattice for dead subscript analysis, L(A) is a subset of UA

ind×Z≥0. Note that there
could be multiple uses of the same SSA name. For instance, the SSA name A3

is an argument of the uφ function in line 12 and the φ function in line 19 in the
loop given in Figure 3(b). A backward data flow analysis will have to keep track
of lattice values for each of these values. To achieve this, we associate a lattice
element with each of the uses of the SSA variable represented as Lu(Ai, sj),
where sj is a statement in the program which uses the SSA variable Ai.

During the backward flow analysis, index sets are propagated from left to right
of φ functions. The lattice operations for the propagation of data flow informa-
tion are shown in Figure 13. The computation of L(Ai) from all the augmented
uses of Ai is given using the following equation.

L(Ai) =
⋂

sj is a φ use of Ai

L(Ai, sj)

The lattice values are initialized as follows:

L(Ai) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(x, 0)} Ai is a definition of the form Ai[x]

{(x, 0)} Ai is a use of the form Ai[x]

� Ai is defined outside the loop

⊥ Ai is a SSA function defined inside the loop

54 R. Surendran et al.

The shift and update operations are defined as follows, where step1 is the
coefficient of the induction variable in i1, step2 is the coefficient of the induction
variable in i2 and so on.

shift〈(i1, d1), (i2, d2), . . .〉 = 〈(i1 + step1, d1 + 1), (i2 + step2, d2 + 1), . . .〉

update((i′, d′),L(Ap)) = {(i1, d1)|(i1, d1) ∈ L(Ap) and DS(i′, i1) = false} ∪ {(i′, d′)}

The result of the analysis is used to compute the set of dead stores:

DeadStores = { (Ai[x], d) | ∃ (y, d) ∈ L(Aj) and DS(x, y) = true and Ak = dφ(Ai, Aj)}

i.e., a store, Ai[x] is redundant with respect to subsequent defs if (y, d) ∈ L(Aj)
and DS(x, y) = true, where Ak = dφ(Ai, Aj) is the dφ function corresponding
to the use Ai[x]. d represents the number of iterations between the dead store
and the killing store.

Figure 12(c) shows the extended Array SSA form of the program in Fig-
ure 12(b). Figure 14 illustrates dead subscript analysis on this loop. The set of
dead stores for this loop is DeadStores = {(A4[i+ 1], 1)}.

Given the set DeadStores = {(S1, d1), ...(Sn, dn)}, the algorithm for dead store
elimination involves peeling the last k iterations of the loop, where k = max

i=1..n
di.

The dead stores could be eliminated from the original loop, but they must be
retained in the last k peeled iterations. The loop in Figure 12(b) after the elim-
ination of dead stores is given in Figure 12(d).

Similar to available subscript analysis, the worst case complexity of dead sub-
script analysis for a given loop is O(τ×k). The complexity of the transformation
is O(n), where n is the size of the loop body.

8 Extension to Objects and While Loops

In the previous sections, we introduced new scalar replacement analysis and
transformations based on extended Array SSA form that can be used to optimize
array accesses within and across loop iterations in counted loops. Past work has
shown that scalar replacement can also be performed more generally on object
fields in the presence of arbitrary control flow [10]. However, though the past
work in [10] used Array SSA form, it could not perform scalar replacement
across multiple iterations of a loop. In this section, we briefly illustrate how our
approach can also perform inter-iteration scalar replacement in programs with
while-loops containing accesses to object fields.

Figure 15(a) shows a simple example of a while loop in which the read of
object field p.x can be replaced by a scalar temporary carrying the value from
the previous iteration. This code assumes that FIRST and LAST refer to the
first node and last node in a linked list, and the result of scalar replacement is
shown in Figure 15(b). A value of τ = 1 suffices to propagate temp from the

Inter-iteration Scalar Replacement Using Array SSA Form 55

previous iteration to the current iteration, provided a prologue is generated that
is guarded by a zero-trip test as shown in Figure 15(b). It is worth noting that no
shape analysis is necessary for the scalar replacement performed in Figure 15(b).
If available, shape analysis [20] can be used as a pre-pass to further refine the
DS and DD information for objects in while loops.

(a) Original Loop (b) After Scalar Replacement

1: p := FIRST
2: while p �= LAST do
3: ... = p.x;
4: ...
5: p = p.next;
6: p.x = ...
7: end while

1: p := FIRST
2: if p �= LAST then
3: temp = p.x;
4: end if
5: while p �= LAST do
6: ... = temp;
7: ...
8: p = p.next;
9: temp = ...
10: p.x = temp;
11: end while

Fig. 15. Scalar replacement example for object accesses in a while loop

9 Experimental Results

In this section, we describe the implementation of our Array SSA based scalar
replacement framework followed by an experimental evaluation of our scalar
replacement and dead store analysis algorithms.

9.1 Implementation

We have implemented our algorithms in LLVM compiler release 3.2. A high-level
view of the implementation is presented in Figure 16. To perform subscript anal-
ysis, we employed scalar evolution [17] as a pre-pass that computes closed form
expressions for all scalar integer variables in a given program. This is followed by
extended Array SSA construction, available subscript analysis, and redundant
load elimination. Since there are uφs associated with the loads that were elim-
inated, an Array SSA repair pass is required after load elimination to cleanup
the uφs and fix the arguments of control φs. The dead subscript analysis and
dead store elimination follows the Array SSA repair pass. Finally, the program
is translated out of Array SSA form.

9.2 Evaluation

Stencil computations offer opportunities for inter-iteration scalar replacement.
We evaluated our scalar replacement transformation on 7 stencil applications:
Jacobi 1-D 3-point, Jacobi 2-D 5-point, Jacobi 3-D 7-point, Jacobi 3-D 13-point,

56 R. Surendran et al.

unoptimized
LLVM IR

Scalar
Evolutaion

Array SSA
Construction

Available
Subscript
Analysis

Redundant
Load

Elimination

Array SSA
Repair

Dead
Subscript
Analysis

Dead Store
Elimination

Out of Array
SSA

optimized
LLVM IR

Fig. 16. High Level View of LLVM Implementation

Jacobi 3-D 19-point, Jacobi 3-D 27-point and Rician Denoising. For Jacobi 2-D
5-point example, we employed unroll-and-jam as a pre-pass transformation with
an unroll factor of 4 to increase scalar replacement opportunities. No unrolling
was performed on the remaining 3-D kernels, since they already contain suffi-
cient opportunities for scalar replacement. We used τ = 5, which is sufficient to
capture all the load elimination opportunities in the applications.

The experimental results were obtained on a 32-core 3.55 GHz IBM Power7
system with 256 GB main memory and running SUSE Linux. The focus of our
measurements was on obtaining dynamic counts of load operations1 and the
runtime improvement due to scalar replacement algorithms. When we report
timing information, we report the best wall-clock time from five runs. We used
the PAPI [15] interface to find the dynamic counts of load instructions executed
for each of the programs. We compiled the programs with two different set of
options described below.

– O3 : LLVM -O3 with basic alias analysis.
– O3SR : LLVM -O3 with basic alias analysis and scalar replacement

Table 1. Comparison of Load Instructions Executed and Runtimes

Benchmark O3 Loads O3SR Loads O3 Time (secs) O3SR Time (secs)

Jacobi 1-D 3-Point 5.58E+8 4.59E+8 .25 .25
Jacobi 2-D 5-Point 4.35E+8 4.15E+8 .43 .32
Jacobi 3-D 7-Point 1.41E+9 1.29E+9 1.66 .74
Jacobi 3-D 13-Point 1.89E+9 1.77E+9 2.73 1.32
Jacobi 3-D 19-Point 2.39E+9 1.78E+9 3.95 1.72
Jacobi 3-D 27-Point 2.88E+9 1.79E+9 5.45 3.16
Rician Denoising 2.71E+9 2.46E+9 4.17 3.53

Table 1 shows the dynamic counts of load instructions executed and the exe-
cution time for the programs without scalar replacement and with scalar replace-
ment. All the programs show a reduction in the number of loads when scalar

1 We only counted the load operations because these benchmarks do not offer oppor-
tunities for store elimination.

Inter-iteration Scalar Replacement Using Array SSA Form 57

Fig. 17. Speedup : O3SR with respect to O3

replacement is enabled. Figure 17 shows the speedup for each of the benchmarks
due to scalar replacement. All the programs, except Jacobi 1-D 3-Point displayed
speedup due to scalar replacement. The speedup due to scalar replacement ranges
from 1.18× to 2.29× for different benchmarks.

10 Related Work

Region Array SSA [19] is an extension of Array SSA form with explicit ag-
gregated array region information for array accesses. Each array definition is
summarized using a region representing the elements that it modifies across all
surrounding loop nests. This region information then forms an integral part of
normal φ operands. A region is represented using an uniform set of references
(USR) representation. Additionally, the region is augmented with predicates to
handle control flow. This representation is shown to be effective for constant
propagation and array privatization, but the aggregated region representation is
more complex than the subscript analysis presented in Section 5 and does not
have enough maximum distance information to help guide scalar replacement to
meet a certain register pressure. More importantly, since the region Array SSA
representation explicitly does not capture use information, it would be hard to
perform scalar replacement across iterations for array loads without any inter-
vening array store.

A large body of past work has focused on scalar replacement [11,6,7,3,14]
in the context of optimizing array references in scientific programs for better
register reuse. These algorithms are primarily based on complex data dependence
analysis and for loops with restricted or no control flow (e.g., [7] only handles
loops with forward conditional control flow). Conditional control flow is often
ignored when testing for data dependencies in parallelizing compilers. Moreover,
[7] won’t be able to promote values if dependence distances are not consistent.
More recent algorithms such as [3,14] use analyses based on partial redundancy

58 R. Surendran et al.

elimination along with dependence analysis to perform load reuse analysis. Bodik
et al. [4] used PRE along with global value-numbering and symbolic information
to capture memory load equivalences.

For strongly typed programming languages, Fink, Knobe and Sarkar [10]
presented a unified framework to analyze memory load operations for both
array-element and object-field references. Their algorithm detects fully redun-
dant memory operations using an extended Array SSA form representation for
array-element memory operations and global value numbering technique to dis-
ambiguate the similarity of object references. Praun et al. [18] presented a PRE
based inter-procedural load elimination algorithm that takes into account Java’s
concurrency features and exceptions. All of these approaches do not perform
inter-iteration scalar replacement.

[5] employed runtime checking that ensures a value is available for strided
memory accesses using arrays and pointers. Their approach is applicable across
loop iterations, and also motivated the specialized hardware features such as
rotating registers, valid bits, and predicated registers in modern processors.

[21] extend the original scalar replacement algorithm of [7] to outer loops
and show better precision. Extensions for multiple induction variables for scalar
replacement are proposed in [2].

[9] presents a data flow analysis framework for array references which prop-
agates iteration distance (aka dependence distance) across loop iterations. That
is, instances of subscripted references are propagated throughout the loop from
points where they are generated until points are encountered that kill the in-
stances. This information is then applied to optimizations such as redundant load
elimination. Compared to their work, our available subscript analysis operates
on SSA form representation and propagates indices instead of just distances.

11 Conclusions

In this paper, we introduced novel simple and efficient analysis algorithms for
scalar replacement and dead store elimination that are built on Array SSA form,
an extension to scalar SSA form that captures control and data flow properties at
the level of array or pointer accesses. A core contribution of our algorithm is a sub-
script analysis that propagates array indices across loop iterations. Compared to
past work, this algorithm can handle control flowwithin and across loop iterations
and degrades gracefully in the presence of unanalyzable subscripts. We also intro-
duced code transformations that can use the output of our analysis algorithms
to perform the necessary scalar replacement transformations (including the in-
sertion of loop prologues and epilogues for loop-carried reuse). Our experimental
results show performance improvements of up to 2.29× relative to code generated
by LLVM at -O3 level. These results promise to make our analysis algorithms a
desirable starting point for scalar replacement implementations in modern SSA-
based compiler infrastructures such as LLVM, compared to the more complex al-
gorithms in past work based on non-SSA program representations.

Inter-iteration Scalar Replacement Using Array SSA Form 59

References

1. Polybench: Polyhedral benchmark suite.
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

2. Baradaran, N., Diniz, P.C., Park, J.: Extending the applicability of scalar replace-
ment to multiple induction variables. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.)
LCPC 2004. LNCS, vol. 3602, pp. 455–469. Springer, Heidelberg (2005)

3. Bodik, R., Gupta, R.: ArrayData-FlowAnalysis for Load-StoreOptimizations in Su-
perscalar Architectures. In: Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter,
D., Nicolau, A., Padua, D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 1–15. Springer,
Heidelberg (1996)

4. Bod́ık, R., Gupta, R., Soffa, M.L.: Load-reuse analysis: Design and evaluation.
SIGPLAN Not. 34(5), 64–76 (1999)

5. Budiu, M., Goldstein, S.C.: Inter-iteration scalar replacement in the presence of
conditional control flow. In: 3rd Workshop on Optimizations for DSO and Embed-
ded Systems, San Jose, CA (March 2005)

6. Callahan, D., Carr, S., Kennedy, K.: Improving Register Allocation for Subscripted
Variables. In: Proceedings of the ACM SIGPLAN 1990 Conference on Program-
ming Language Design and Implementation, White Plains, New York, pp. 53–65
(June 1990)

7. Carr, S., Kennedy, K.: Scalar Replacement in the Presence of Conditional Control
Flow. Software—Practice and Experience (1), 51–77 (1994)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

9. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical data flow framework for array
reference analysis and its use in optimizations. In:Proceedings of theACMSIGPLAN
1993ConferenceonProgrammingLanguageDesignand Implementation,PLDI1993,
pp. 68–77. ACM, New York (1993)

10. Fink, S.J., Knobe, K., Sarkar, V.: Unified analysis of array and object references
in strongly typed languages. In: Proceedings of the 7th International Symposium
on Static Analysis, SAS 2000, pp. 155–174. Springer, London (2000)

11. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: A
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

12. Knobe, K., Sarkar, V.: Array SSA form and its use in Parallelization. In: 25th
Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages (January 1998)

13. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO 2004), Palo Alto, California (March
2004)

14. Lo, R., Chow, F., Kennedy, R., Liu, S.-M., Tu, P.: Register promotion by sparse
partial redundancy elimination of loads and stores. SIGPLAN Not. 33(5), 26–37
(1998)

15. Mucci, P.J., Browne, S., Deane, C., Ho, G.: Papi: A portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

16. Paek, Y., Hoeflinger, J., Padua, D.: Efficient and precise array access analysis.
ACM Trans. Program. Lang. Syst. 24(1), 65–109 (2002)

http://www.cse.ohio-state.edu/~pouchet/software/polybench/

60 R. Surendran et al.

17. Pop, S., Cohen, A., Silber, G.-A.: Induction variable analysis with delayed abstrac-
tions. In: Conte, T., Navarro, N., Hwu, W.-m.W., Valero, M., Ungerer, T. (eds.)
HiPEAC 2005. LNCS, vol. 3793, pp. 218–232. Springer, Heidelberg (2005)

18. Von Praun, C., Schneider, F., Gross, T.R.: Load Elimination in the Presence of
Side Effects, Concurrency and Precise Exceptions. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 390–405. Springer, Heidelberg (2004)

19. Rus, S., He, G., Alias, C., Rauchwerger, L.: Region array ssa. In: Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques, PACT 2006, pp. 43–52. ACM, New York (2006)

20. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

21. So, B., Hall, M.: Increasing the applicability of scalar replacement. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 185–201. Springer, Heidelberg (2004)

Recovery of Class Hierarchies and Composition

Relationships from Machine Code�

Venkatesh Srinivasan1 and Thomas Reps1,2

1 University of Wisconsin, Madison, WI, USA
2 GrammaTech, Inc., Ithaca, NY, USA

Abstract. We present a reverse-engineering tool, called Lego, which
recovers class hierarchies and composition relationships from stripped
binaries. Lego takes a stripped binary as input, and uses information
obtained from dynamic analysis to (i) group the functions in the binary
into classes, and (ii) identify inheritance and composition relationships
between the inferred classes. The software artifacts recovered by Lego
can be subsequently used to understand the object-oriented design of
software systems that lack documentation and source code, e.g., to en-
able interoperability. Our experiments show that the class hierarchies
recovered by Lego have a high degree of agreement—measured in terms
of precision and recall—with the hierarchy defined in the source code.

1 Introduction

Reverse engineering of software binaries is an activity that has gotten an in-
creasing amount of attention from the academic community in the last decade
(e.g., see the references in [2, §1]). However, most of this work has had the goal
of recovering information to make up for missing symbol-table/debugging infor-
mation [1,18,24,16,6,10], to create other basic intermediate representations (IRs)
similar to the standard IRs that a compiler would produce [2,3,22], or to recover
higher-level protocol abstractions or file formats [5,17,9].

In this paper, we address a problem that is complementary to prior work
on reverse engineering of machine code,1 namely, the problem of recovery of
class structure at the machine-code level. In particular, we present a technique

� Supported, in part, by NSF under grants CCF- {0810053, 0904371}; by ONR under
grants N00014- {09-1-0510, 11-C-0447}; by ARL under grant W911NF-09-1-0413; by
AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088; and by DARPA under
cooperative agreement HR0011-12-2-0012. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the authors, and do
not necessarily reflect the views of the sponsoring agencies. T. Reps has an ownership
interest in GrammaTech, Inc., which has licensed elements of the technology reported
in this publication.

1 We use the term “machine code” to refer generically to low-level code, and do not
distinguish between actual machine-code bits/bytes and assembly code to which it
is disassembled.

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 61–84, 2014.
© Springer-Verlag Berlin Heidelberg 2014

62 V. Srinivasan and T. Reps

to group a program’s procedures into classes, and to identify inheritance and
composition relationships between classes.

Class hierarchies and composition relationships recovered from machine code
can be used to understand the object-oriented design of legacy software bina-
ries while porting them to newer platforms. They can also be used while de-
signing new software that is aimed to be interoperable with existing software
binaries. For instance, in the United States, the Digital Millennium Copyright
Act (DMCA) prohibits users from circumventing access-control technologies [8].
However, the DMCA specifically grants a small number of exceptions, including
one for reverse engineering for the purpose of interoperability (§1201(f)). Others
[6] have used similar artifacts as fingerprints of code polymorphic viruses for
malware detection.

We present a tool, called Lego, which takes a stripped executable as input and
uses dynamic analysis to recover the class structure of the program, including
inheritance and composition relationships. Lego is based on two common features
of object-oriented languages. The first is the this-pointer idiom: at the machine-
code level, the object pointer is passed as an explicit first argument to a class’s
methods. Lego exploits this idiom to group calls to instance methods (methods
that have the this-pointer as an explicit first argument), including dynamically
dispatched ones, that have a common receiver object. The second idiom is the
presence of a unique finalizer method in most class declarations, which is called at
the end of an object’s lifetime to do cleanup. Lego exploits this idiom, along with
the aforementioned method-call groupings, to group methods into classes, and
to recover inheritance and composition relationships between recovered classes.

We tested Lego on ten open-source applications. Using the class structure
declared in the source code as ground truth, the classes recovered by Lego had
an average precision of 88% and an average recall of 86.7%.

The contributions of our work include the following:
– We show that even if an executable is stripped of symbol-table and de-

bugging information, and, even if run-time-type information (RTTI) is not
present in the executable, it is still possible to reconstruct a class hierarchy,
including inheritance and composition relationships, with fairly high accu-
racy. Our technique is based on common semantic features of object-oriented
languages, and is not tied to a specific language, compiler, or executable for-
mat. It can be used on any binary generated from a language that uses the
this-pointer and the unique-finalizer features, and a compiler that faithfully
implements those features.

– Our methods have been implemented in a tool, called Lego, that uses dy-
namic analysis to recover a class hierarchy. (Because Lego uses dynamic
analysis, it can recover classes only for the parts of the program that are
exercised during execution.)

– We present a scoring scheme that takes the structure of class hierarchies into
account while scoring a recovered hierarchy with respect to a ground-truth
hierarchy.

Recovery of Class Hierarchies from Machine Code 63

class Vehicle {
public:

Vehicle();
∼Vehicle();
void print_vehicle();

};

class GPS {
public:

GPS();
∼GPS();

};

class Car : public Vehicle {
public:

Car();
Car(int n);
∼Car();
void print_car();

private:
GPS g;

};

class Bus : public Vehicle {
public:

Bus();
∼Bus();
void print_bus();

private:
void helper();

};

void foo(bool flag) {
if (flag) {

Car c;
c.print_car();

} else {
Car c(10);
c.print_car();

}
}

int main() {
Vehicle v;
Bus b;
v.print_vehicle();
foo(true);
foo(false);
b.print_bus();
return 0;

}

Fig. 1. C++ program fragment, with inheritance and composition

– Lego is immune to certain compiler idiosyncrasies and optimization side-
effects, such as reusing stack space for different objects in a given procedure
activation-record.

2 Overview

Lego recovers class structure from binaries in two steps:
1. Lego executes the program binary, monitoring the execution to gather data

about the various objects allocated during execution, the lifetime of those
objects, and the methods invoked on those objects. Once the program ter-
minates, Lego emits a set of object-traces (defined below) that summarizes
the gathered data.

2. Lego uses the object-traces as evidence, and infers a class hierarchy and
composition relationships that agree with the evidence.

This section presents an example to illustrate the approach.
In our study, all of the binaries analyzed by Lego come from source-code

programs written in C++. Fig. 1 shows a C++ program fragment, consisting of
four class definitions along with definitions of the methods main and foo. Classes
Vehicle, Car, and Bus constitute an inheritance hierarchy with Vehicle being
the base class, and Car and Bus being derived classes. There is a composition
relationship between Car and GPS. (Car has a member of class GPS.) Assume
that, in the class definition, helper() is called by ∼Bus(). Also assume that
the complete version of the program shown in Fig. 1 is compiled and stripped
to create a stripped binary.

Lego takes a stripped binary and a test input or inputs, and does dynamic
binary instrumentation. When the execution of the binary under the test input
terminates, Lego emits a set of object-traces, one object-trace for every unique
object identified by Lego during the program execution. An object-trace of an
object O is a sequence of method calls and returns that have O as the receiver
object. Additionally, the set of methods directly called by each method in the

64 V. Srinivasan and T. Reps

v_1:
Vehicle() C
Vehicle() R
print_vehicle() C
print_vehicle() R
∼Vehicle() C
∼Vehicle() R

g_1:
GPS() C
GPS() R
∼GPS() C
∼GPS() R

g_2:
GPS() C
GPS() R
∼GPS() C
∼GPS() R

c_1:
Car() C
Vehicle() C
Vehicle() R
Car() R

Vehicle()
GPS()

print_car() C
print_car() R
∼Car() C
∼Vehicle() C
∼Vehicle() R
∼Car() R

∼GPS()
∼Vehicle()

c_2:
Car(int) C
Vehicle() C
Vehicle() R
Car(int) R

Vehicle()
GPS()

print_car() C
print_car() R
∼Car() C
∼Vehicle() C
∼Vehicle() R
∼Car() R

∼GPS()
∼Vehicle()

b_1:
Bus() C
Vehicle() C
Vehicle() R
Bus() R

Vehicle()
print_bus() C
print_bus() R
∼Bus() C
helper() C
helper() R
∼Vehicle() C
∼Vehicle() R
∼Bus() R

helper()
∼Vehicle()

Fig. 2. Object-traces for the example program. The records in the return-only suffixes
are underlined.

sequence is also available in the object-trace. Concretely, an object-trace for an
object O is a sequence of object-trace records. Each object-trace record has the
following form,

〈method,C |R, calledMethods〉,

where method denotes a method that was called with O as the receiver. Because
we are dealing with binaries, methods are represented by their effective addresses,
and so method is an effective address. C denotes a call event for method ; R
denotes a return event. calledMethods denotes the set of effective addresses of
methods directly called by method. Each method in calledMethods can have any
receiver object (not necessarily O). Object-traces are the key structure used for
recovering class hierarchies and composition relationships.

In the rest of this section, when we use the term “method” in the context
of object-traces or recovered classes, we are referring to the effective address of
the method. However, to make our examples easier to understand, we will use
method names rather than method effective addresses.

Fig. 2 shows the set of object-traces obtained from executing our example
binary with Lego. In the figure, the objects encountered by Lego are denoted
by appending instance numbers to the source-code object names: c 1 and c 2

correspond to different objects in two different activations of method foo, and
g 1 and g 2 correspond to the instances of the GPS class in those objects.

We now describe how Lego obtains the class hierarchy and composition re-
lationships from the set of object-traces. Lego computes a fingerprint for each
object-trace. The fingerprint is a string obtained by concatenating the methods
that constitute a return-only suffix of the object-trace. For our example, the
fingerprint for the object-trace of v 1 is ∼Vehicle(), and for the object-trace
of c 1, it is ∼Vehicle() ∼Car(). The object-trace records that are underlined
in Fig. 2 contribute to fingerprints. A fingerprint represents the methods that
were involved in the cleanup of an object. A fingerprint’s length indicates the

Recovery of Class Hierarchies from Machine Code 65

Fig. 3. Trie constructed by Lego using
the object-trace fingerprints for the ex-
ample program

Table 1. Methods in the set of recovered
classes

Trie
node

Methods in the recovered class

1 Vehicle(), print vehicle(), ∼Vehicle()

2 GPS(), ∼GPS()

3 Bus(), print bus(), ∼Bus(), helper()

4 Car(), Car(int), print car(), ∼Car()

possible number of levels in the inheritance hierarchy from the object’s class to
the root. The methods in a fingerprint represent the potential finalizers in the
class and its ancestor classes.

Next, Lego constructs a trie by inserting the fingerprints into an empty trie
and creating a new trie node for each new method encountered. For the finger-
prints of the object-traces in Fig. 2, the constructed trie is shown in Fig. 3. Each
node’s key is a finalizer method. Event order (i.e., left-to-right reading order in
Fig. 2) corresponds to following a path down from the root of the trie (cf. Fig. 3).

Lego links each object-trace ot to the trie node N that “accepts” ot ’s fin-
gerprint. In particular, N ’s key is the last method in ot ’s fingerprint. In our
example, the object-trace of v 1 is linked to node 1 of Fig. 3, the object-traces
of g 1 and g 2 to node 2, the object-trace of b 1 to node 3, and the object-traces
of c 1 and c 2 to node 4.

Using the linked object-traces, Lego computes, for each trie node, the methods
set and the called-methods set. For a trie node N and a set of object-traces OTN

linked to N, N ’s methods set is the set of methods that appear in some object-
trace record in OTN ; N ’s called-methods set is the set union of the calledMethods
field of the last object-trace record in each object-trace in OTN . For instance,
node 4’s methods set is {Car(), Car(int), Vehicle(), print car(), ∼Car(),
∼Vehicle()}, and its called-methods set is {∼GPS(),∼Vehicle()}. If methods
present in the methods set of ancestor nodes are also present in the methods set
of descendants, Lego removes the common methods from the descendants. The
resulting trie nodes and their methods sets constitute the recovered classes, and
the resulting trie constitutes the recovered class hierarchy. The methods of each
recovered class are shown in Table 1.

To determine composition relationships between recovered classes, for all pairs
of trie nodes m and n, where neither is an ancestor of the other, Lego checks
if n’s key is present in the called-methods set of m. If so, the recovered class
corresponding to m has a member whose class is the one corresponding to n,
and thus there exists a composition relationship between m and n. For instance,
in our example, the objects c 1 and c 2 (associated with node 4) both call
∼GPS(), which is the key of node 2; consequently, Lego reports a composition
relationship between nodes 4 and 2.

66 V. Srinivasan and T. Reps

In this example, the recovered classes exactly match the class definitions from
the source code. However, this example illustrates an idealized case, and for real
applications an exact correspondence may not be obtained.

Threats to validity. There are five threats to the validity of our work.
1. The binaries given as input to Lego must come from a language that uses

the this-pointer idiom.
2. Lego assumes that every class has a unique finalizer method that is called at

the end of an object’s lifetime. If a class has no finalizer or multiple finalizers,
the information recovered by Lego might not be accurate. Lego also assumes
that a parent-class finalizer is called only at the end of a child-class finalizer.
In C++, the class destructor acts as the finalizer. Even if the programmer

has not declared a destructor, in most cases, the compiler will generate one.
A C++ base-class’s destructor is called at the very end of a derived-class’s
destructor. The C++ compiler will sometimes create up to three versions of
the class destructor in the binary [14]. Information that certain methods are
alternative versions of a given destructor can be passed to Lego. However,
our experiments show that there is little change in the results when such
information is not provided to Lego (Fig. 9).

3. If the binary has stand-alone methods that do not belong to any class, but
have an object pointer as the first argument, Lego might include those stand-
alone methods in the set of methods of some recovered class. Although the
recovered classes will not match the source-code class structure, it is arguable
that they reflect the “actual” class structure used by the program.
In addition, stand-alone methods that have a non-object pointer as the

first argument may end up in stand-alone classes that are not part of any
hierarchy.

4. Lego relies on the ability to observe a program’s calls and returns. Ordinarily,
these actions are implemented using specific instructions—e.g., call and ret

in the Intel x86 instruction set. Code that is obfuscated—either because it
is malicious, or to protect intellectual property—may deliberately perform
calls and returns in non-standard ways.

5. Inlining of method calls also causes methods to be unobservable. In particu-
lar, if a method has been uniformly inlined by the compiler, it will never be
observed by Lego.

For real software systems, these issues are typically not completely avoidable.
Our experiments are based on C++, which uses the this-pointer idiom, and
issues 4 and 5 were deemed out of scope. The experiments show that, even if
issues 2 and 3 are present in an executable, Lego recovers classes and a class
hierarchy that is reasonably accurate.

3 Algorithm

Lego needs to accomplish two tasks: (i) compute object-traces, and (ii) identify
class hierarchies and composition relationships. In this section, we describe the
algorithms used during these two phases of Lego.

Recovery of Class Hierarchies from Machine Code 67

Algorithm 1. Algorithm to compute full object-traces

Input: Currently executing instruction I
1. if InstrFW.isCall(I) then
2. m ← InstrFW.eaOfCalledMethod(I)
3. ShadowStack.top().calledMethods.insert(m)
4. ID ← InstrFW.firstArgValue(I)
5. expectedRetAddr ← InstrFW.eaOfNextInstruction(I)
6. ShadowStack.push(〈ID, expectedRetAddr, ∅〉)
7. OTM[ID].append(m, C, ∅)
8. else if InstrFW.isReturn(I) then
9. if not IgnoreReturn(I) then
10. m ← InstrFW.eaOfReturningMethod(I)
11. 〈ID, expectedRetAddr, calledMethods〉 ← ShadowStack.top()
12. ShadowStack.pop()
13. OTM[ID].append(m, R, calledMethods)
14. end if
15. else
16. // Do Nothing
17. end if

3.1 Phase 1: Computing Object-Traces

The input to Phase 1 is a stripped binary; the output is a set of object-traces.
The goal of Phase 1 is to compute and emit an object-trace for every unique
object allocated during the program execution. This ideal is difficult to achieve
because Lego works with a stripped binary and a runtime environment that is
devoid of object types. We start by presenting a näıve algorithm; we then present
a few refinements to obtain the algorithm that is actually used in Lego. In the
algorithms that follow, a data structure called the Object-Trace Map (OTM) is
used to record object-traces. The OTM has the type: OTM:ID → ObjectTrace,
where ID is a unique identifier for a runtime object that Lego has identified.

3.1.1 Base Algorithm
A näıve first cut is to assume that every method in the binary belongs to some
class, and to treat the first argument of every method as a valid this pointer
(address of an allocated object). When Lego encounters a call instruction, it
obtains the first argument’s value, treats it as an ID, and creates an object-trace
call-record for the called method. It then appends the record to ID ’s object-trace
in the OTM. (It creates a new object-trace if one does not already exist.) The
highlighted lines of Alg. 1 show this strawman algorithm.

The algorithms of Phase 1 work in the context of a dynamic binary-
instrumentation framework. They use the framework to answer queries (rep-
resented as calls to methods of an InstrFW object) about static properties of the
binary (“Is this instruction a call?”) and the dynamic execution state. (“What
is the value of the first argument to the current call?”) In this version of the
algorithm, an ID is a machine integer. An ID for which there is an entry in the

68 V. Srinivasan and T. Reps

Algorithm 2. Algorithm IgnoreReturn

Input: Instruction I
Output: true or false
1. actualRetAddress ← InstrFW.targetRetAddr(I)
2. 〈firstArgValue, expectedRetAddr, calledMethods〉 ← ShadowStack.top()
3. if actualRetAddr �= expectedRetAddr then
4. if ShadowStack.matchingCallFound(actualRetAddr) then
5. ShadowStack.popUnmatchedFrames(actualRetAddr)
6. else
7. return true
8. end if
9. end if
10. return false

OTM corresponds to the value of the first argument of some method called at
runtime.

To enable the strawman algorithm to append an object-trace return-record
for a method m, Lego must remember the value of m’s first argument to use as
ID when it encounters m’s return instruction. To accomplish this, Lego uses
a shadow stack. Each shadow-stack frame corresponds to a method m; a stack
frame is a record with a single field, firstArgValue, which holds the value of m’s
first argument. At a call to m, Lego pushes the value of m’s first argument on
the shadow stack. At a return from m, Lego obtains the value at the top of the
shadow stack, treats it as the ID, creates an object-trace return-record for m,
and appends it to ID ’s object-trace in the OTM. It then pops the shadow stack.

Due to optimizations, or obfuscations that use calls or returns as obfuscated
jumps [21], some binaries may have calls with unmatched returns, and returns
with unmatched calls. Unmatched calls and returns would make Lego’s shadow
stack inconsistent with the runtime stack, leading to incorrect object-traces. To
address this issue, Lego does call-return matching. The actions taken are those
of line 9 of Alg. 1, and Alg. 2.

To record the methods called by a method in an object-trace record, we add
another field, calledMethods, to each shadow-stack frame. For a frame corre-
sponding to method m, calledMethods is the set of methods that are directly
called by m (dynamically). The basic algorithm that computes full object-
traces along with call-return matching is shown in Alg. 1 (both the highlighted
and non-highlighted lines). Note that the calledMethods set is empty for call-
records.

3.1.2 Blacklisting Methods
Alg. 1 records the necessary details that we want in object-traces. However,
because Alg. 1 assumes that all methods receive a valid this pointer as the first
argument, stand-alone methods and static methods, such as the following would
end up in object-traces:

Recovery of Class Hierarchies from Machine Code 69

void foo();

static void Car::setInventionYear(int a);

The algorithm actually used in Lego tries to prevent methods that do not re-
ceive a valid this pointer as their first argument from appearing in object-traces.
Because inferring pointer types at runtime is not easy, when the instrumentation
framework provides the first argument’s value v for a method m, Lego checks
whether v could be interpreted as a pointer to some allocated portion of the
global data, heap, or stack. If so, Lego heuristically treats v as a pointer (i.e.,
it uses v as an object ID); if not, Lego blacklists m. Once m is blacklisted, it is
not added to future object-traces; moreover, if m is present in already computed
object-traces, it is removed from them.

The metadata maintained by Lego is only an estimate. For example, Lego
keeps track of the stack bounds by querying the instrumentation framework for
the value of the stack pointer at calls and returns. If the estimates are wrong, it
is possible for a method that receives a valid this pointer to be blacklisted. If the
estimates are correct, methods that receive a valid this pointer are unlikely to
ever be blacklisted. In contrast, methods that do not receive a valid this pointer
are likely to be blacklisted at some point, and thereby prevented from appearing
in any object-trace. One final point is worth mentioning: methods that expect
a valid pointer as their first argument, but not necessarily a valid this pointer,
will not be blacklisted (threat 3 to the validity of our approach).

3.1.3 Object-Address Reuse
§3.1.2 presented a version of the algorithm to compute object-traces that, on a
best-effort basis, filters out methods that do not receive a valid this pointer as
the first argument. However, there are several possible ways for the methods of
two unrelated classes to appear in the same object-trace. Consider the example
shown in Fig. 4. Assuming standard compilation and runtime environments, a
and b will be allocated at the same address on the stack (but in two different
activation-record instances). As a consequence, printA() and printB() will end
up in the same object-trace. Methods of unrelated classes can also end up in the
same object-trace when the same heap address is reused for the allocation of
different objects of different classes.

Lego detects reuse of the same object address by versioning addresses. When
Lego treats the value v of a method’s first argument as a valid this pointer, Lego
associates a version number with v. If v is deallocated (i.e., if it is freed in the
heap, or if the method in whose activation record v was allocated returns), Lego
increments the version number for v. An ID now has the form 〈Addr, n〉, where
Addr is the object address and n is the version number.

3.1.4 Spurious Traces
Even with address versioning, it is possible for methods of two unrelated classes
to end up in the same object-trace. This grouping of unrelated methods in the
same object-trace is caused by the idiosyncrasies of the compiler in reusing stack
space for objects in the same activation record (as opposed to reusing stack space

70 V. Srinivasan and T. Reps

class A {
. . .
printA();

};
class B {

. . .
printB();

};

void foo() {
A a;
a.printA();

}
void bar() {

B b;
b.printB();

}

int main() {
foo();
bar();
return 0;

}

Fig. 4. Example program to illustrate
reuse of stack space for objects in different
activation records

int main() {
{

Foo f;
}
...

{
Bar b;

}
...

}

(a) (b)

Fig. 5. (a) Example to illustrate reuse of
stack space for objects in the same activa-
tion record; (b) a stack snapshot

in different activation records, which §3.1.3 dealt with). We call such traces
spurious traces. Consider the example program and its stack snapshot shown in
Fig. 5. Because f and b are two stack-allocated objects in disjoint scopes, the
compiler could use the same stack space for f and b (at different moments during
execution). Note that object-address versioning does not solve this issue because
an object going out of scope within the same activation record cannot be detected
by a visible event (such as a method return or a heap-object deallocation).

To handle this issue, once the object-traces have been created by Alg. 1, Lego
computes a set of potential initializers and finalizers by examining each object-
trace ot. It adds the method of ot ’s first entry to the set of potential initializers,
and the method of ot ’s last entry to the set of potential finalizers. It then scans
each object-trace, and splits a trace at any point at which one of the potential
finalizers is immediately followed by one of the potential initializers. This scheme
breaks up spurious traces into correct object-traces. Note that if a class does not
have an initializer or a finalizer, many methods of that class might end up in the
set of potential initializers and the set of potential finalizers. As a consequence,
non-spurious object-traces of objects of that class might be split. We examine
the effects of splitting and not splitting spurious traces in our experiments (§4.4).

3.2 Phase 2: Computing Class Hierarchies

If the application does not use inheritance, the object-trace of an object will
contain only the methods of the object’s class. However, if the application uses
inheritance, the object-trace of an object will contain methods of the object’s
class, plus those of the class’s ancestors. In this section, we describe how Lego
teases apart methods of different classes in a hierarchy. The input to this phase
is a set of object-traces from Phase 1. The output is the recovered hierarchy.

3.2.1 Identifying Candidate Classes
A common semantics in object-oriented languages is that a derived class’s final-
izer cleans up the derived part of an object, and calls the base class’s finalizer
just before returning (to clean up the base part of the object). This behavior
is visible in the object-traces that Lego gathers. Consider the example program
and object-trace snippet of a D object shown in Fig. 6. The snippet covers all
of the records between and including the last return record and its matching

Recovery of Class Hierarchies from Machine Code 71

class A {
∼A();

};

class B:
public A {

∼B();
};

class C:
public B {

∼C();
};

class D:
public C {

∼D();
};

∼D() C
∼C() C
∼B() C
∼A() C

∼A() R
∼B() R
∼C() R
∼D() R

(a) (b)

Fig. 6. (a) Example program, and (b) object-trace snippet to illustrate an object-trace
fingerprint (underlined returns)

Algorithm 3. Algorithm to populate candidate classes

Input: OTM, Trie T
Output: Trie T with candidate classes populated with methods
1. for each object-trace ot in OTM do
2. lastRec ← ot.getLastRecord()
3. m ← lastRec.method
4. c ← T.getCandidateClassWithFinalizer(m)
5. c.calledMethods ← lastRec.calledMethods
6. for each object-trace record r in ot do
7. m′ ← r.method
8. c.methods.insert(m′)
9. end for
10. end for

call record. (The values of calledMethods fields of the object-trace records are
omitted.)

We construct a string by concatenating the method fields that appear in the
return-only suffix of an object-trace. We call such a string the fingerprint of the
object-trace. We can learn two useful things from the fingerprint.
1. Because the fingerprint contains the methods involved in the cleanup of the

object and its inherited parts, a fingerprint’s length indicates the number of
levels in the inheritance hierarchy from the object’s class to the root.

2. The methods in the fingerprint correspond to potential finalizers in the class
and its ancestor classes.

Lego computes a fingerprint for every computed object-trace, and creates
a trie from the fingerprints (see §2). Every node in the trie corresponds to a
candidate class, with the node’s key constituting the candidate class’s finalizer.

3.2.2 Populating Candidate Classes
Every computed object-trace ot is linked to the trie node (candidate class) that
accepts ot ’s fingerprint. Every candidate class has a methods set and a called-
methods set. The methods set represents the set of methods in the object-traces
linked to the candidate class, and is used in the computation of the final set of
methods in each recovered class (see §3.2.3). The called-methods set represents
the methods called by the finalizer of the candidate class, and is used to find
composition relationships between recovered classes. The algorithm to populate
the sets is given as Alg. 3.

72 V. Srinivasan and T. Reps

Algorithm 4. Algorithm to find composition relationships

Input: Trie T
Output: Set of candidate class pairs 〈A,B〉 such that A has a member whose class is

B
1. compositionPairs = ∅
2. for each pair of non-ancestors 〈c, c′〉 in T do
3. if c′.finalizer ∈ c.calledMethods then
4. compositionPairs ← compositionPairs ∪ 〈c, c′〉
5. end if
6. end for

3.2.3 Trie Reorganizations
Some methods may appear both in the methods set of a candidate class C
and candidate classes that are descendants of C. To remove this redundancy,
Lego processes the candidate classes in the trie from the leaves to the root, and
eliminates the redundant methods from the methods sets of candidate classes of
descendants.

If two candidate classes C1 and C2, neither of which is an ancestor of the
other, have a common method m in their methods sets, m is removed from
the methods sets of C1 and C2, and put in the methods set of their lowest
common ancestor. This reorganization handles cases where a class C was never
instantiated during the program’s execution, but its descendants C1 and C2

were, and the descendants had methods inherited from C in their object-traces.
After these two transformations, if a candidate class has no methods in its

methods set, its trie node is removed from the trie. The resulting candidate
classes and their corresponding methods sets constitute the final set of classes
recovered by Lego. The final trie represents the recovered class hierarchy.

3.2.4 Composition Relationships
A composition relationship is said to exist between two classes A and B if A has
a member whose class is B. The instance of the member is destroyed when the
enclosing object is destroyed. However, unlike inheritance, A and B do not have
an ancestor-descendant relationship. The algorithm for determining composition
relationships is shown in Alg. 4.

Certain relationships between classes exist only at the source level. At the bi-
nary level, they become indistinguishable from other relationships. Lego cannot
distinguish between certain composition relationships and inheritance. Consider
the example shown in Fig. 7. Because the member g is the first member of a
Car object, it might result in the Car object having the same object address as
g. Methods of g end up in the object-trace of the Car object, and Lego would
recover a hierarchy in which GPS becomes the base class of Car.

Because Lego operates at the binary level, Lego sees multiple inheritance as
a combination of single inheritance and composition. Consider the example
shown in Fig. 8(a). For the object layout shown in Fig. 8(b), Lego would recover

Recovery of Class Hierarchies from Machine Code 73

class Car {
private:

GPS g;
. . .

};

(a) (b)

Fig. 7. (a) Example class-definition
snippet; (b) a possible object layout to
illustrate a composition relationship

class Car {
...

};
class Van {

...
};

class Minivan:
public Car,
public Van {

...
};

(a) (b)

Fig. 8. (a) Example class-definition snippet;
(b) a possible object layout to illustrate multi-
ple inheritance

a class hierarchy in which Car is the base class, Minivan is derived from Car,
and Minivan has a member whose class is Van.

4 Experiments

This section describes Lego’s implementation, the scoring scheme used to score
the conformance of Lego’s output with ground-truth, and the experiments per-
formed.

4.1 Implementation

Lego uses Pin [20] for dynamic binary instrumentation, and Phase 1 of Lego is
written as a “Pintool”. Pin can instrument binaries at the instruction, basic-
block, routine, and image level. (Lego mainly uses instruction instrumentation
for the algorithms of Phase 1; it uses image instrumentation for instrumenting
routines for dynamic memory allocation and deallocation.) Pin executes the bi-
nary for each given test input, while performing Lego’s Phase 1 instrumentation
and analysis actions. Object-traces are computed and stored in memory, and
emitted at the end of the execution of the program. A post-processing step of
Phase 1 reads the object-traces, removes spurious traces, and emits the final set
of object-traces. Phase 2 reads the final object-traces and emits four output files:
1. The set of recovered classes: each class is a set of methods; each class is

uniquely identified by an ID.
2. The recovered class hierarchy: a trie with every node (except the root) having

a class’s ID as its key.
3. The recovered finalizers: a set of methods in which each method is identified

as the finalizer of some class recovered by Lego.
4. The recovered composition relationships: a set of class ID pairs. Each pair
〈A,B〉 indicates that class A has a member whose class is B.

4.2 Ground Truth

We used C++ applications to test Lego. To score the outputs created by Lego,
we collected ground-truth information for our test suite. For each application,
the methods in each class and the set of destructors were obtained from the un-
stripped, demangled binary. The class hierarchy and composition relationships

74 V. Srinivasan and T. Reps

were obtained from source-code class declarations. We refer to this informa-
tion as Unrestricted Ground Truth (UGT). We removed classes and methods
of libraries that were not included in the source code (for example, the C++
standard library) from the UGT (even if they were statically linked to create
the executable) because common library functions could potentially occupy the
bulk of UGT for all our test applications, thereby skewing our scores.

We cannot use UGT to score Lego’s outputs because it contains all the meth-
ods and classes in the program, whereas Lego’s outputs contain only the subset
of classes and methods that was exercised during Phase 1. We give the UGT
files to Lego as an additional input—used only to prepare material for scoring
purposes—and Lego emits “exercised” versions of the ground-truth files at the
end of Phase 1. We refer to these files as Partially-Restricted Ground Truth
(PRGT). Only methods that were exercised, and only classes that had at least
one of their methods exercised, appear in the PRGT files. (For example, the de-
structors file now has only the set of exercised destructors, and the composition-
relationships file contains only pairs 〈A,B〉 for which methods of A and methods
of B were exercised.)

Lego tries to group only methods that receive a this pointer, and it expects
every class in the binary to have a unique finalizer that should be called when-
ever an instance of the class is deallocated. However, PRGT does not comply
with Lego’s goals and restrictions. Some classes in PRGT might contain static
methods, and some might not have a finalizer. (Even if they did, the finalizer
might not have been exercised during Phase 1.) To see how Lego performs in the
ideal case where the ground-truth complies with Lego’s goals and restrictions, we
create another set of ground-truth files called Restricted Ground Truth (RGT).
RGT is a subset of PRGT: RGT is PRGT with all static methods removed,
and all classes removed that lack a destructor, or whose destructors were not
exercised during Phase 1. When Lego’s results are scored against RGT, we are
artificially suppressing threats 2 and 3 to the validity of our study. Note that
the set of exercised destructors is the same for PRGT and RGT.

Scoring against RGT corresponds to the ideal case, whereas scoring against
PRGT corresponds to the more realistic case that would be encountered in
practice. We report Lego’s results for both PRGT and RGT in §4.4.

4.3 Scoring

This section describes the algorithms used to score Lego’s outputs against
ground-truth files. In this section, when we say “ground-truth” we mean RGT
or PRGT.

4.3.1 Scoring Finalizers
This output is the easiest to score because the ground-truth and Lego’s output
are both sets of methods. We merely compute the precision and recall of the
recovered set of destructors against ground-truth.

Recovery of Class Hierarchies from Machine Code 75

4.3.2 Scoring the Class Hierarchy
It is not straightforward to score recovered classes because we are dealing with
sets of sets of methods, which are related by inheritance relationships. We do not
want to match ground-truth classes against recovered classes because a perfect
matching may not always be possible. (For example, due to spurious traces,
Lego may coalesce methods of two ground-truth classes into one recovered class.)
Thus, as our general approach to scoring, we see if any of the recovered classes
match a ground-truth class, both in terms of the set of methods, as well as its
position in the hierarchy.

A näıve way to score would be as follows: Compare the set of methods in each
ground-truth class against the set of methods in each recovered class to determine
the maximum precision and maximum recall obtainable for each ground-truth
class. Note that different recovered classes can contribute to maximum preci-
sion and maximum recall, respectively, for the ground-truth class. However, this
simple approach treats classes as flat sets, and does not account for inheritance
relationships between classes. As a consequence, the penalty for a recovered class
having an extra method from an unrelated class will be the same as having an
extra method from an ancestor class.

The scoring scheme used below addresses the inheritance issue. For every class
in the ground-truth hierarchy and in the recovered hierarchy (except the dummy
root nodes), we compute the extended-methods set. The extended-methods set of
a class is the set union of its methods and the methods of all of its ancestors. For
every ground-truth class, we compare the extended-methods set against every
recovered class’s extended-methods set to determine a maximum precision and
maximum recall for the ground-truth class. This scoring scheme incorporates
inheritance into scoring, by scoring with respect to paths of the inheritance hier-
archy, rather than with respect to nodes. For every unique path in the inheritance
hierarchy, it measures how close are the paths in the recovered hierarchy.

Scoring could also be done in the converse sense—comparing the extended-
methods set of each recovered class with the extended-methods sets of all ground-
truth classes—to determine a maximum precision and maximum recall for each
recovered class. However, recovered classes may contain classes and methods not
present in ground-truth (for example, library methods). For this reason, we do
not score in this converse sense.

We can also view our scoring problem as one of computing an appropriate
similarity measure. For this task we make use of the Jaccard Index. The Jaccard
Index for a pair of sets A and B is defined as

J(A,B) =
|A ∩B|
|A ∪B|

For every ground-truth class, we compare the extended-methods set against
every recovered class’s extended-methods set to determine the recovered class
with the maximum Jaccard Index for the ground-truth class. In contrast, when
computing maximum precision and maximum recall for a ground-truth class, the
respective maxima might be associated with the extended-methods set of two
independent recovered classes.

76 V. Srinivasan and T. Reps

To obtain the precision, recall, and Jaccard Index for the entire ground-truth
hierarchy, we compute the weighted average of, respectively, the maximum preci-
sion, maximum recall, and maximum Jaccard Index computed for each ground-
truth class, using the number of methods in each ground-truth class as its weight.
We compute a weighted average because we want classes with a larger number
of methods to contribute more to the overall score than classes with a smaller
number of methods.

4.3.3 Scoring Composition Relationships
For each ground-truth composition pair and each recovered composition pair,
we compute the composed-methods set. The composed-methods set of a pair
of classes is the set union of the methods of the two classes. We compare
the composed-methods set of each ground-truth composition pair against the
composed-methods sets of recovered composition pairs to determine the maxi-
mum precision, maximum recall, and maximum Jaccard Index. (We compute the
Jaccard Index for scoring composition pairs as well because two different recov-
ered composition pairs might contribute to maximum precision and maximum
recall, respectively, for one ground-truth composition pair.) Finally, we compute
the weighted-average precision, recall, and Jaccard Index for all ground-truth
composition pairs, using the size of the composed-methods set of each pair as
its weight.

4.4 Results

We tested Lego on ten open-source C++ applications obtained from SourceForge
[25], the GNU software repository [13] and FreeCode [12]. The characteristics of
the applications are listed in Table 2. The applications were compiled using
the GNU C++ compiler. The test suite that came with the applications was
used to create test inputs for the binary for Phase 1. The experiments were
run on a system with a dual-core, 2.66GHz Intel Core i7 processor; however,
all the applications in our test suite and all the analysis routines in Lego are
single-threaded. The system has 4 GB of memory, and runs Ubuntu 10.04.

Our experiments had three independent variables:
1. Partially-restricted ground-truth (PRGT) vs. restricted ground-truth

(RGT): See §4.2.
2. Destructor versions provided (Destr) vs. destructor versions not provided

(NoDestr): Recall that some compilers produce up to three versions of a
single declared destructor. In one set of experiments, for each destructor
D we supplied all compiler-generated versions of D as additional inputs to
Phase 1. This information was used to compute object-traces as if each class
had a unique destructor in the binary. In another set of experiments, we did
not coalesce the different destructor versions, and generated object-traces
based on multiple destructors per class.

3. Split spurious traces (SST) vs. do not split spurious traces (NoSST): We
described the additional pass to remove spurious traces from the object-
traces emitted at the end of Phase 1 in §3.1.4. In one set of experiments

Recovery of Class Hierarchies from Machine Code 77

Table 2. Characteristics of our test suite. The applications are sorted by increasing
method coverage.

Software KLOC No. of
classes
in
pro-
gram

No.
of
meth-
ods
in
pro-
gram

No. of
classes
with
multiple
de-
structor
versions

No. of
classes
in
PRGT

No. of meth-
ods in PRGT
(Method cov-
erage)

No. of
methods
in PRGT
belonging
to classes
with un-
exercised
destructors

No. of
classes
in
RGT

No.
of
meth-
ods
in
RGT

TinyXML - XML Parser 5 16 302 13 16 236 (78.14%) 19 13 203

Astyle - source-code
beautifier

10.5 19 350 14 12 195 (55.71%) 3 10 192

gperf - perfect hash func-
tion generator

5.5 25 207 16 20 109 (52.65%) 37 13 72

cppcheck - C/C++
static code analyzer

121 77 1354 46 62 657 (48.52%) 31 54 567

re2c - scanner generator 7.5 36 257 29 32 119 (46.30%) 54 16 57

lshw - hardware lister 18.5 13 161 4 6 61 (37.88%) 2 4 59

smartctl - SMART disk
analyzer

50.5 34 192 30 18 36 (18.75%) 16 8 19

pdftohtml - pdf to html
converter

52.5 131 1693 126 57 314 (18.54%) 37 50 267

lzip - LZMA compressor 3.2 12 74 0 6 11 (14.86%) 7 2 4

p7zip - file archiver 122 372 2461 216 105 365 (14.83%) 38 74 327

(SST), we executed this pass and used the resulting object-traces for Phase
2. In another set of experiments (NoSST), we did not execute this pass.

The first set of experiments measured the conformance of the recovered class
hierarchy with the ground-truth hierarchy. Fig. 9 shows the weighted-average
precision, recall, and Jaccard Index obtained for different combinations of inde-
pendent variables. The applications in the figure are sorted by increasing method
coverage.

The aggregate precision, aggregate recall, and aggregate Jaccard Index re-
ported for the entire test suite is the weighted average of the reported numbers,
with the number of methods in the corresponding ground-truth as the weight.
(The number of methods in PRGT is used as the weight in computing PRGT
aggregates, and the number of methods in RGT is used as the weight in com-
puting RGT aggregates.) One observation is that there is only a slight variation
in precision, recall, and Jaccard Index in the Destr vs. NoDestr case. This tells
us that the destructor versions are not essential inputs to recover accurate class
hierarchies. Also, we can see that there is very little difference between preci-
sion, recall, and Jaccard Index numbers for the RGT vs. PRGT case. This tells
us that even if we do not know if the binary came from clean object-oriented
source-code, Lego’s output can generally be trusted.

Another observation is that for some applications like TinyXML, cppcheck,
etc., comparing against PRGT causes an increase in precision numbers compared
to RGT (which seems counter-intuitive). This increase in precision is because of
the fact that the recovered classes corresponding to the extra classes present in
PRGT (and absent in RGT) get fragmented, with each fragment containing very

78 V. Srinivasan and T. Reps

0

20

40

60

80

100

Class Hierarchies - Precision
Destr

0

20

40

60

80

100

Class Hierarchies - Precision
NoDestr

0

20

40

60

80

100

Class Hierarchies - Recall
Destr

0

20

40

60

80

100

Class Hierarchies - Recall
NoDestr

0

20

40

60

80

100

Class Hierarchies - Jaccard Index
Destr

0

20

40

60

80

100

Class Hierarchies - Jaccard Index
NoDestr

RGT-
SST
PRGT-
SST
RGT-
NoSST
PRGT-
NoSST

Fig. 9. Weighted-average precision, recall, and Jaccard Index for recovered class hier-
archies

few methods of the class and they are not mixed with other recovered classes’
methods. Because we compute weighted-average precision, this fragmentation
causes an increase over the RGT weighted-average precision. However, if the
methods of the extra classes get mixed with other recovered classes’ methods,
we see the intuitive decrease in weighted-average precision for PRGT (cf. lzip)

With SST, the precision increases or stays the same compared with NoSST.
The increase is more pronounced if the source-code heavily uses code blocks
within the same method—for example, TinyXML—à la Fig. 9. The recall for the
SST case is better only if destructor versions were provided and if the source-
code heavily uses code blocks (TinyXML). If, say, by inspecting and testing the
binary, we suspect that code blocks are used, we could ask Lego to run the
split-spurious-traces pass before recovering classes.

The second set of experiments measured the conformance of recovered compo-
sition relationships with ground-truth composition relationships. Lego detects a
composition relationship by looking for finalizers called from the enclosing class’s
finalizer. It makes the most sense to use only RGT as the ground truth while
scoring recovered composition relationships because all classes in the composi-
tion pairs of RGT have their destructors exercised during Phase 1. (All classes
in PRGT may not satisfy this property.) Fig. 10 shows the results. Note that
applications that do not have any composition relationships between classes in
RGT are not shown in the figure. One of the applications (TinyXML) had a

Recovery of Class Hierarchies from Machine Code 79

0

20

40

60

80

100

TinyXML
(5)

Astyle (1) Cppcheck
(2)

re2c (1) lshw (1) pdftohtml
(1)

p7zip (27) Aggregate
(38)

Composition Relationships - Precision

0

20

40

60

80

100

TinyXML AStyle Cppcheck re2c lshw pdftohtml p7zip Aggregate

Composition Relationships - Recall

0

20

40

60

80

100

TinyXML AStyle Cppcheck re2c lshw pdftohtml p7zip Aggregate

Destr-
SST

Destr-
NoSST

NoDestr
-SST

NoDestr
-NoSST

Composition Relationships-Jaccard Index

Fig. 10. Weighted-average precision, recall, and Jaccard Index for recovered composi-
tion relationships

0

20

40

60

80

100 Destructors - Precision
Destr-
SST
NoDestr
-SST
Destr-
NoSST
NoDestr
-NoSST

60

80

100
Destructors - Recall

Fig. 11. Precision and recall for recovered
destructors

Table 3. Time measurements (seconds).
SD indicates slowdown.

Software pin
NULL

pinINSTR
(SD)

I/O Phase
2

tinyxml 3.62 30.54 (8.43x) 7.24 0.49

astyle 6.61 25.04 (3.78x) 2.74 0.88

gperf 2.05 6.51 (3.17x) 0.66 0.085

cppcheck 17.41 60.08 (3.45x) 5.14 1.04

re2c 3.31 7.44 (2.24x) 0.05 0.02

lshw 4.55 20.63 (4.53x) 0.46 0.33

smartctl 5.35 80.58 (15.06x) 1.78 0.15

pdftohtml 4.26 60.60 (14.22x) 15.22 6.40

p7zip 6.88 54.66 (7.94x) 9.73 0.04

lzip 1.47 3.70 (2.51x) 0.02 0.03

composition pair in RGT, in which the enclosing class’s first member was a
class. Because Lego sees this composition relationship as single inheritance (as
described in §3.2.4), we removed this pair from the set of composition rela-
tionships (and added it as single inheritance in the RGT class hierarchy). The
number of composition relationships between classes for each application is listed
below its label in the precision graph. The aggregate precision, aggregate recall,
and aggregate Jaccard Index for the entire test suite is the weighted average of
the computed precision, recall, and Jaccard Index values with the sum of the
sizes of all the composed-methods sets (§4.3.3) of an application as its weight.

The third set of experiments measured the conformance of recovered destruc-
tors with ground-truth destructors. Fig. 11 shows the results. Recall that RGT
and PRGT have the same set of destructors (§4.2), so we report the results only
for the RGT case. The number of destructors in each application is below its
label in the precision graph. (Applications with different numbers of destructors

80 V. Srinivasan and T. Reps

50

60

70

80

90

100

20 30 40 50 60 70 80
Method Coverage (%)

Coverage - Precision

50

60

70

80

90

100

20 30 40 50 60 70 80
Method Coverage (%)

Coverage - Recall

50

60

70

80

90

100

20 30 40 50 60 70 80
Method Coverage (%)

Coverage - Jaccard Index
TinyXML
cppcheck
gperf

**
*

Fig. 12. Weighted-average precision, recall, and Jaccard Index for class hierarchies at
different method coverages

for the Destr and NoDestr cases have both numbers listed.) The aggregate pre-
cision and recall for the entire test suite is the weighted average of the computed
precision and recall values, with the number of destructors in ground-truth as
the weight for each application. Lego identifies all of the destructors in most
cases. In TinyXML, NoSST fails to expose a few destructors that are trapped in
the middle of spurious object-traces. In pdftohtml, a few destructors get black-
listed by Lego and never end up in object-traces. Although Lego succeeds in
identifying most of the destructors (high recall), the overall precision is low be-
cause destructors of classes in libraries—which are not present in the ground
truth—are also reported by Lego.

Table 3 shows the timing measurements for our test suite. pinNULL represents
the execution time of the application on pin, with Lego’s analysis routines com-
mented out. pinINSTR represents the execution time of the application on pin,
with Lego’s analysis routines performing dynamic analysis. The instrumentation
and analysis overhead can be seen in the slowdown reported for each application.
I/O represents the time taken to do file I/O in Phase 1 (reading ground-truth and
destructor versions, writing object-traces, and exercised ground truth). pinIN-
STR + I/O represents the total running time of Phase 1 of Lego. Phase 2 reports
the wall-clock time for Phase 2.

The fourth set of experiments aimed to study the impact of code coverage on
the scoring metrics. For three applications (tinyxml, gperf, and cppcheck) we
aggregated the object-traces from 5 test runs: just run 1; 1 and 2; 1 through
3; 1 through 4; and 1 through 5, resulting in five different amounts of method
coverage for each application, and fed those object traces to Phase 2 of Lego.
The combination of independent variables used in this set of experiments was
Destr-RGT-NoSST. The results are shown in Fig. 12. We did not observe any
global trends for precision, recall, or Jaccard Index with respect to increasing
coverage. We observed that any of the following might happen when there is
additional method coverage in Phase 1:
1. The additional coverage covers methods of a new class, thereby boosting the

overall score for the test suite (see plots for gperf).
2. The additional coverage covers inherited methods of a class that is a sibling of

a class already explored by Lego. This results in common inherited methods
being hoisted to the parent class (see §3.2.3), thereby boosting similarity
(see the line segment marked “*” in the Jaccard Index plot for TinyXML).

Recovery of Class Hierarchies from Machine Code 81

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Precision
Destr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Precision
NoDestr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

RGT-SST

PRGT-SST

RGT-NoSST

PRGT-NoSST

Class Hierarchies – Recall
Destr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Recall
NoDestr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Jaccard Index
Destr

Class Hierarchies – Jaccard Index
NoDestr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

gperf0 – gperf,
g++, O0
gperf1 – gperf,
g++, O1
gperf2 – gperf,
g++, O2
gperf3 – gperf,
g++, O3
gperfI – gperf,
Intel C++
Compiler, O2

Fig. 13. Weighted-average precision, recall, and Jaccard Index for recovered class hi-
erarchies measured for binaries generated from different compilers and at different
optimization levels

3. The additional coverage causes Lego to encounter an object of a class A,
but not objects of A’s ancestors or siblings. This results in methods of A’s
ancestors ending up in the class recovered for A, thereby lowering the the
similarity (see the line segment marked “**” in the Jaccard Index plot for
TinyXML).

We also varied the compiler and optimization levels that were used to generate
the binaries used in our experiments, and tested Lego on the newly generated
binaries. Fig. 13 summarizes the results. We chose gperf as a representative
application and compiled it using the Intel C++ compiler. We also compiled it
using the GNU C++ compiler with different optimization levels. (We used the
optimization flags -O0, -O1, -O2, and -O3.) The PRGT of the binaries generated
using the -O1, -O2, and -O3 flags had 82 fewer methods than that of the binary
generated using the -O0 flag. Methods being optimized away led to recovered
classes that had fewer inherited base-class methods (which causes the slight
increase in precision that one sees by comparing the gperf0 case to the other
cases in Fig. 13).

To test Lego on binaries generated from a different object-oriented language,
we collected applications written in the D programming language [7]. Lego did
poorly in this experiment because D is garbage-collected, and thus many classes
in the collected applications lacked a destructor. This failed experiment illus-
trates threat 2 to the validity of our approach, listed in §2.

5 Related Work

Reverse-Engineering Low-Level Software Artifacts from Binaries.
Many prior works have explored the recovery of lower-level artifacts from bina-
ries. Balakrishnan and Reps use a conjunction of Value Set Analysis (VSA) and
Aggregate Structure Identification (ASI) to recover variable-like entities from

82 V. Srinivasan and T. Reps

stripped binaries [1]. Lee et al. describe the TIE system that recovers types from
executables [16]. TIE uses VSA to recover variables, examines variable-usage
patterns to generate type constraints, and then solves the constraints to infer a
sound and most-precise type for each recovered variable. Dynamic analysis has
also been used to reverse engineer data structures from binaries [24,18,6]. Such
approaches can be used in conjunction with Lego to recover high-level types for
recovered classes. Fields in recovered classes can either be of primitive type or
user-defined type (composition or aggregation). While the tools and techniques
described in the papers mentioned above can be used to recover primitive types,
Lego can be used to recover composition relationships. (Recovering aggregation
relationships is possible future work – see §6.)

Jacobson et al. describe the idea of using semantic descriptors to fingerprint
system-call wrapper functions and label them meaningfully in stripped bina-
ries [15]. Bardin et al. use Value Analysis with Precision Requirements (VAPR)
for recovering a Control Flow Graph (CFG) from an unstructured program [3].
Schwartz et. al. describe the semantics-preserving structural-analysis algorithm
used in Phoenix, their x86-to-C decompiler [22], to recover control structures.
Fokin et al. describe techniques for decompilation of binaries generated from
C++ [11]. During decompilation, they use run-time-type information (RTTI)
and virtual function tables in conjunction with several analyses to recover poly-
morphic parts (virtual methods) of class hierarchies. The artifacts recovered by
Lego complement those recovered by the aforementioned tools and techniques.

Recovering Protocol/File Formats from Executables. Prior works have
also explored recovering higher-level abstractions from binaries. Cho et al. use
concolic execution in conjunction with the L* learning algorithm to construct
and refine the protocol state machine from executables that implement protocols
[5]. Lim et al. describe recovering output file formats from x86 binaries using
Hierarchical Finite State Machines (HFSMs) along with information from VSA
and ASI [17]. Driscoll et al. use Finite Automata (FA) and Visibly Pushdown
Automata (VPA) to infer I/O format of programs and check conformance of
producer and consumer programs [9].

Modularizing Legacy Code. Formal Concept Analysis (FCA) has been
extensively used for software-reengineering tasks [26,19,23]. Siff and Reps used
FCA to modularize C code [23]. They used types and def/use information as
attributes in a context relation to create a concept lattice, which was partitioned
to obtain a set of concepts. Each concept was a maximal group of C functions
that acted as a module. Bojic and Velasevic describe using dynamic analysis in
conjunction with FCA to recover a high-level design for legacy object-oriented
systems [4]. The high-level goals of Lego and these works are the same—namely,
to recover a modular structure. However, Lego works at the binary level, where
types are either absent or difficult to precisely obtain.

6 Conclusion and Future Work

In this paper, we described Lego, a tool that uses dynamic analysis to recover
class hierarchies and composition relationships from stripped object-oriented

Recovery of Class Hierarchies from Machine Code 83

binaries. We presented the algorithms used in Lego, and evaluated it on ten open-
source C++ software applications by comparing the class hierarchies recovered
by Lego with ground truth obtained from source code. Our experiments show
that the class hierarchies recovered by Lego have a high degree of agreement—
measured in terms of precision and recall—with the hierarchy defined in the
source code. On average, the precision is 88% and the recall is 86.7%.

One possible direction for future work would be to use concolic execution to
generate more inputs to achieve better coverage. For the Lego context, a concolic-
execution engine should aim to maximize method coverage, not merely path
coverage. A second direction would be to see how run-time-type information and
virtual-function-table information could be used to improve the class hierarchy
produced by Lego. When such information is available, it allows a portion of the
source-code class hierarchy to be recovered exactly. (The hierarchy is incomplete
because it contains only the program’s virtual functions.) A third direction
would be to use Lego’s object-traces and recovered classes to infer temporal
invariants on method-call order.

Another direction for future work is to use the information maintained by
Lego about objects allocated during program execution to find aggregation re-
lationships between inferred classes.

References

1. Balakrishnan, G., Reps, T.: DIVINE: DIscovering Variables IN Executables. In:
VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer, Heidelberg (2007)

2. Balakrishnan, G., Reps, T.: WYSINWYX:What You See Is NotWhat You eXecute.
TOPLAS 32(6) (2010)

3. Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG reconstruction from
unstructured programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 54–69. Springer, Heidelberg (2011)

4. Bojic, D., Velasevic, D.: A Use-case driven method of architecture recovery for
program understanding and reuse reengineering. In: CSMR (2000)

5. Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: MACE:
Model inference assisted concolic exploration for protocol and vulnerability discov-
ery. In: USENIX Sec. Symp. (2011)

6. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for data structures. In: OSDI
(2008)

7. D Programming Language, http://dlang.org
8. DMCA §1201. Circumvention of Copyright Protection Systems,

www.copyright.gov/title17/92chap12.html#1201

9. Driscoll, E., Burton, A., Reps, T.: Checking compatibility of a producer and a
consumer. In: FSE (2011)

10. ElWazeer, K., Anand, K., Kotha, A., Smithson, M., Barua, R.: Scalable variable
and data type detection in a binary rewriter. In: PLDI (2013)

11. Fokin, A., Derevenetc, E., Chernov, A., Troshina, K.: SmartDec: Approaching C++
decompilation. In: WCRE (2011)

12. Freecode, www.freecode.com
13. GNU Software Repository, www.gnu.org/software/software.html

http://dlang.org
www.copyright.gov/title17/92chap12.html#1201
www.freecode.com
www.gnu.org/software/software.html

84 V. Srinivasan and T. Reps

14. Itanium C++ ABI, refspecs.linux-foundation.org/cxxabi-1.83.html
15. Jacobson, E.R., Rosenblum, N., Miller, B.P.: Labeling library functions in stripped

binaries. In: PASTE (2011)
16. Lee, J., Avgerinos, T., Brumley, D.: TIE: Principled reverse engineering of types

in binary programs. In: NDSS (2011)
17. Lim, J., Reps, T., Liblit, B.: Extracting output formats from executables. In:

WCRE (2006)
18. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from

binary execution. In: NDSS (2010)
19. Lindig, C., Snelting, G.: Assessing modular structure of legacy code based on math-

ematical concept analysis. In: ICSE (1997)
20. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: PLDI (2005)

21. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools.
ACM Computing Surveys 46(1) (2013)

22. Schwartz, E.J., Lee, J., Woo, M., Brumley, D.: Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In:
USENIX Sec. Symp. (2013)

23. Siff, M., Reps, T.: Identifying modules via concept analysis. TSE 25(6) (1999)
24. Slowinska, A., Stancescu, T., Bos, H.: Howard: A Dynamic excavator for reverse

engineering data structures. In: NDSS (2011)
25. SourceForge, http://sourceforge.net
26. Tonella, P.: Concept analysis for module restructuring. TSE 27(4) (2001)

refspecs.linux-foundation.org/cxxabi-1.83.html
http://sourceforge.net

Liveness-Based Garbage Collection

Rahul Asati1, Amitabha Sanyal1, Amey Karkare2, and Alan Mycroft3

1 IIT Bombay, Mumbai 400076, India
{rahulasati,as}@cse.iitb.ac.in,

2 IIT Kanpur, Kanpur 208016, India
karkare@cse.iitk.ac.in,

3 Computer Laboratory, University of Cambridge, CB3 0FD, UK
alan.mycroft@cl.cam.ac.uk

Abstract. Current garbage collectors leave much heap-allocated data
uncollected because they preserve data reachable from a root set. How-
ever, only live data—a subset of reachable data—need be preserved.

Using a first-order functional language we formulate a context-sensitive
liveness analysis for structured data and prove it correct. We then use a
0-CFA-like conservative approximation to annotate each allocation and
function-call program point with a finite-state automaton—which the
garbage collector inspects to curtail reachability during marking. As a
result, fewer objects are marked (albeit with a more expensive marker)
and then preserved (e.g. by a copy phase).

Experiments confirm the expected performance benefits—increase in
garbage reclaimed and a consequent decrease in the number of collec-
tions, a decrease in the memory size required to run programs, and re-
duced overall garbage collection time for a majority of programs.

1 Introduction

Most modern programming languages support dynamic allocation of heap data.
Static analysis of heap data is much harder than analysis of static and stack data.
Garbage collectors, for example, conservatively approximate the liveness of heap
objects by their reachability from a set of memory locations called the root set .
Consequently, many objects that are reachable but not live remain uncollected,
causing a larger-than-necessary memory demand. This is confirmed by empirical
studies on Haskell [1], Scheme [2] and Java [3] programs.

Here we consider a first-order pure functional language and propose a liveness
analysis which annotates various program points with a description of variables
and fields whose object references may be dereferenced in the future. The garbage
collector then only marks objects pointed to by live references and leaves other,
merely reachable, objects to be reclaimed. (Although not strictly necessary, a
collector would normally nullify dead variables and fields rather than leaving
dangling references.) Since there are fewer live objects than reachable objects,
more memory is reclaimed. Additionally, since the collector traverses a smaller
portion of the heap, the time spent for each collection is also smaller. The work
is presented in the context of a stop-the-world non-incremental garbage collector

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 85–106, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

86 R. Asati et al.

(mark-and-sweep, compacting or copying) for which we also show a monotonicity
result: that our technique can never cause more garbage collections to occur in
spite of changing the rather unpredictable execution points at which collections
occur. We anticipate that our technique is applicable to more modern collectors
(generational, concurrent, parallel), but leave such extensions to future work.

We first define a fully context-sensitive (in the sense that its results are un-
affected by function inlining) liveness analysis and prove it correct. However,
fully context-sensitive methods often do not scale, and this analysis would also
require us to determine, at run-time, the internal liveness of a function body
at each call. Hence, similarly to the 0-CFA approach, we determine a context-
independent summary of liveness for each function which safely approximates
the context-dependence of all possible calls [4,5,6]. (Note that an intraproce-
dural context-insensitive method which assumes no information about function
callers would be too imprecise for our needs.) In essence our approach sets up
interprocedural data-flow equations for the liveness summaries of functions and
shows how these can be solved symbolically as context-free grammars (CFGs).
We can then determine a CFG for each program point; these are then safely
approximated with finite-state automata which are encoded as tables for each
program point. For garbage collection purposes only automata corresponding to
GC points need to be stored. GC points are program points associated with a
call to a user function or to cons—see Section 4.

We previously proposed an intraprocedural method for heap liveness analysis
for a Java-like language [7] which statically inserted statements nullifying dead
references to improve garbage collection; by contrast nullification here occurs dy-
namically (which can work better with aliasing) when the garbage collector acts
on liveness annotations to avoid traversing dead references. A workshop paper [8]
outlined the basic 0-CFA-style-summary interprocedural approach to functional-
program liveness analysis. The current paper adds the context-sensitive analysis
and better formalisation along with experimental results.

Motivating Example. Figure 1(a) shows an example program. The label π of
an expression e denotes a program point. During execution of the program, it
represents the instant of time just before the evaluation of e. We view the heap
as a graph. Nodes in the heap, also called (cons) cells contain car and cdr fields
containing values. Edges in the graph are references and emanate from variables
or fields. Variable and field values may also be atomic values (nil, integers etc.)
While it is convenient to box these in diagrams, our presented analysis treats
them as non-heap values.

Figure 1(b) shows the heap at π. The edges shown by thick continuous arrows
are those which are made live by the program. In addition, assuming that the
value of any reachable part of the program result may be explored or printed, the
edges marked by thick dashed arrows are also live. A cell is marked and preserved
during garbage collection, only if it is reachable from the root set through a path
of live edges. All other cells can be reclaimed. We model the liveness properties
of the heap as automata and pass these automata to the garbage collector. Thus

Liveness-Based Garbage Collection 87

(define (append l1 l2)
(if (null? l1) l2

(cons (car l1)
(append (cdr l1) l2))))

(let z ←(cons (cons 4 (cons 5 nil))
(cons 6 nil)) in

(let y ← (cons 3 nil) in
(let w ← (append y z) in

π:(car (cdr w)))))

3

y w z

4 6

5

(a) Example program. (b) Memory graph at π. Thick edges denote
(b) live links. Traversal stops during garbage

(b)collection at edges marked .

Fig. 1. Example Program and its Memory Graph

if a garbage collection happens at π with the heap shown in Figure 1(b), only
the cells w and (cdr w), along with (car (cdr w)) and all cells reachable from it,
will be marked and preserved.

Organisation of the Paper. Section 2 gives the syntax and semantics of
the language used to illustrate our analysis along with basic concepts and no-
tations. Liveness analysis is described in Section 3 followed by a sketch of a
correctness proof relative to a non-standard semantics. Section 4 shows how to
encode liveness as finite-state automata. Section 5 reports experimental results
and Section 6 proves that a liveness-based collector can never do more garbage
collections than a reachability-based collector.

2 The Target Language—Syntax and Semantics

We let x, y, z range over variables, f over user-functions and p over primitive
functions (cons, + etc.). The syntax of our language is shown in Figure 2; it
has eager semantics and restricts programs to be in Administrative Normal Form
(ANF) [9] where all actual parameters to functions are variables. This restriction
does not affect expressibility (and indeed we feel free to ignore it in examples
when inessential), but simplifies the analysis formulation. Additionally, as in
the three-address instruction form familiar from compiler texts, it forces each
temporary to be named and function calls to be serialised (necessary to get an
unambiguous definition of liveness). We further require that each variable in a
program is distinct, so that no scope shadowing occurs—this simplifies proofs
of soundness. In this formulation expressions: either perform a test (if), make
a computation step (let) or return (return). The return keyword is logically
redundant, but we find it clarifies the semantics and analysis.

88 R. Asati et al.

p ∈ Prog ::= d1 . . . dn emain — program

d ∈ Fdef ::= (define (f x1 . . . xn) e) — function definition

e ∈ Expr ::=

⎧⎨
⎩

(if x e1 e2) — conditional
(let x ← s in e) — let binding
(return x) — return from function

s ∈ Stmt ::=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k — constant (numeric or nil)
(cons x1 x2) — constructor
(car x) (cdr x) — selectors
(null? x) (+ x1 x2) — tester and generic arithmetic
(id x) — identity function (for inlining)
(f x1 . . . xn) — function application

Fig. 2. The syntax of our language

The body of the program is the expression denoted by emain; for analy-
sis purposes it is convenient to regard emain as part of a function definition
(define (main) emain) as in C. We write π :e to associate the label π (not part
of the language syntax) with the program point just before expression e.

In spite of the ANF restrictions it is still possible to inline non-recursive
functions (a fact we use to prove the safety of liveness analysis). A user-function
call (let x← (f y1 . . . yn) in e) to a function defined (after renaming its formals
and locals to be disjoint from existing variables) by (define (f z1 . . . zn) ef)
is replaced by a sequence of lets of the form zi ← (id yi) followed by the body
ef but with its (return w) expressions replaced by (let x← (id w) in e). (We
prefer to use id as a form of no-op function rather than introducing the form
(let x← w in e) where the Stmt part of let is a simple variable.)

Semantics. We now give an operational semantics for our language. Later, a
refinement of the operational semantics, which we call minefield semantics, will
serve to prove liveness analysis correct. We give a small-step semantics because,
unlike big-step semantics, correctness for non-terminating programs does not
need special treatment. We start with the domains used by the semantics:

v : Val = N+ {nil}+ Loc – Values
ρ : Env = Var → V al – Environment
H : Heap = Loc → (V al× V al) – Heap

Here Loc is a countable set of locations which hold cons cells. A value is either a
number, the empty list nil, or a location 	. Our liveness analysis does not track
numeric values, and thus is neutral as to whether these are boxed or represented
as immediates. An environment is a finite mapping from variables to values, and
a heap a finite mapping from locations to pairs of values. Finally, S is a stack
(using • for push and [] for empty stack) of frames of unfinished function calls.

Liveness-Based Garbage Collection 89

ρ,H, k � H, k
(ord-const) � �∈ dom(H) is a fresh location

ρ,H, (cons x y) � H[� �→ (ρ(x), ρ(y))], �
(ord-cons)

H(ρ(x)) = (v1, v2)

ρ,H, (car x) � H, v1
(ord-car)

H(ρ(x)) = (v1, v2)

ρ,H, (cdr x) � H, v2
(ord-cdr)

ρ,H, (id x) � H, ρ(x)
(ord-id) ρ(x) ∈ N ρ(y) ∈ N

ρ,H, (+ x y) � H, ρ(x) + ρ(y)
(ord-prim)

ρ(x) �= nil

ρ,H, (null? x) � H, 0

ρ(x) = nil

ρ,H, (null? x) � H, 1
(ord-null)

ρ(x) ∈ N \ {0}
ρ,S,H, (if x e1 e2) −→ ρ,S,H, e1

ρ(x) = 0

ρ,S,H, (if x e1 e2) −→ ρ,S,H, e2
(ord-if)

ρ,H, s � H′, v s is not (f y1 . . . yn)

ρ,S,H, (let x ← s in e) −→ ρ[x �→ v],S,H′, e
(ord-let-nonfn)

s is (f y1 . . . yn) f defined as (define (f z1 . . . zn) ef)

ρ,S,H, (let x ← s in e) −→ [�z �→ ρ(�y)], (ρ, x, e) • S, H, ef
(ord-let-fncall)

ρ, (ρ′, x′, e′) • S, H, (return x) −→ ρ′[x′ �→ ρ(x)],S,H, e′
(ord-return)

Fig. 3. The small-step operational semantics

A frame is a triple (e, x, ρ) representing the call site (let x← (f y1 . . . yn) in e)
being evaluated in environment ρ. Frames can also be viewed as continuations,
in this view the (ord-return) rule in the small-step operational semantics
(Figure 3) invokes them.

The semantics of statements s are given by the judgement form ρ,H, s � H′, v
and those for expressions e by the form ρ, S,H, e→ ρ′, S′,H′, e′. The start state
is ({}, [], {}, emain) and the program terminates successfully with result value
ρ(x) on reaching the halt state (ρ, [],H, (return x))

Notation: we write ρ[x �→ v] for the environment which is as ρ but has value v
at x. We also write [
x �→
v] which respectively has values v1, . . . , vn at x1, . . . , xn

and write [
x �→ ρ(
y)] when v1, . . . , vn are ρ(y1), . . . , ρ(yn).

Stuck states. Note that certain forms of e do not reduce with→ (perhaps because
� could not reduce a contained s). Some of these we eliminate syntactically,
e.g. ensuring all variables and functions are defined and are called with the
correct number of parameters. Others include (cdr nil), (car 3), (+ nil 4) and
(if nil e1 e2). All but the first can be eliminated with a static type system but,
treating our program as dynamically typed, we regard all these as stuck states.

3 Liveness

In classical liveness analysis a variable is either ‘live’ (its value may be used in
future computation) or ‘dead’ (definitely not used). Semantically, a variable is

90 R. Asati et al.

dead at a given program point if arbitrary changes to its value have no effect
on the computation. Later we will use ⊥ to represent a value which ‘explodes’
when it is used in a computation; dead variables can safely have their value
replaced with ⊥. For heap-allocated data we need a richer model of liveness in
that both variables and fields of cons cells may be dead or live. Using 0, 1 to
represent access using car, cdr respectively, liveness of the structure reachable
from a variable is a set of access paths which we represent as a subset of {0,1}∗,
and use conventional grammar notation. Thus the liveness of x being {10,110}
means that future computation can only refer to the second and third members
of x considered as a list. Semantically, access paths are prefix-closed, as accessing
a field requires accessing all the paths from the variable to the field, and hence
the above liveness is properly written {ε,1,10,11,110}. The classical notions
of a scalar variable being live or dead correspond to {ε} and {}.

The overall liveness (also written liveness environment for emphasis) at a
program point is conceptually a mapping from variables to subsets of {0,1}∗,
but we often abuse notation, for example writing {x.01, x.1, y.ε} instead of the
map [x �→ {ε,0,01,1}, y �→ {ε}, z �→ {}]. Analogously to classical liveness, the
liveness at program point π in π : e is the liveness just before executing e.

A complementary notion to liveness is demand. The demand for expression e is
again an access path—that subset of {0,1}∗ which the context of e may explore
of e’s result. So, for example given a demand σ and the expression π : (return x),
the liveness at π is exactly x.σ. The classical analogy of this is in strong liveness,
where an assignment node n : x := y+ z causes y and z to be live on entry to n
if (and only if) x is live at exit of n—the liveness of x at exit from n becomes
the demand on y + z. Note that, for an operation like division which may raise
an exception, the assignment n : x := y/z makes y and z live regardless of the
liveness of x.

We use σ to range over demands, α to range over access paths and L to
range over liveness environments. The notation σ1σ2 denotes the set {α1α2 |
α1 ∈ σ1, α2 ∈ σ2}. Often we shall abuse notation to juxtapose an edge la-
bel and a set of access paths: 0σ is a shorthand for {0}σ. Finally, we use LF
to range over demand transformers; given user function f , LFf transforms de-
mands on a call to f into demands on its formal parameters: if f is defined by
(define (f x1 . . . xn) ef) and called with demand σ, then LFi

f (σ) is the liveness
of xi at ef .

Note that liveness refers to variables and fields, and not to cons cells (i.e.
to edges in the memory graph, not to locations themselves). Hence liveness of
{x.ε, x.0} means that future computation may refer to the value 	 of variable x,
and also to the car field of location 	. In the absence of other pointers to heap
location 	, we are certain that the cdr field of 	 will not be referenced and may
hence be corrupted arbitrarily. Note therefore, that while 	 cannot be garbage
collected, any location 	′ stored in the cdr field of 	 would be garbage (again
provided there are no other aliases to 	 or 	′).

Liveness-Based Garbage Collection 91

3.1 Liveness Analysis

First recall the classical formulation of liveness (as sets of simple variables) on
three-address instructions, live in(I) = liveout (I)\def (I)∪ ref (I), and then note
that strong liveness needs, when I is the instruction z := x + y, that ref (I) be
refined to {x, y} if z ∈ liveout(I) and {} otherwise.

Our liveness analysis formulated in Figure 4 is analogous. Firstly, the function
ref , when given a statement s, returns the liveness generated by s. Because we
generalise strong liveness, ref needs a second parameter, specifying the demand
σ on the result of s, to determine which access paths of its free variables are
made live. The cases for (id x) and (+ x y) exemplify this. A demand of σ
on (car x) is transformed to the demand 0σ on x. In addition, car always
dereferences its argument (even if its result is never used). This generates the
liveness {x.ε} ∪ x.0σ (note σ may be {}). In the opposite sense, the demand of
0σ on (cons x y) is transformed to the demand σ on x. Note that cons does
not, by itself, dereference its arguments. Thirdly, for the case of a user-function
call, a third parameter LF to ref expresses how the demand σ on the result is
transformed into demands on its parameters. Constants generate no liveness.

The function L now gives the (total) liveness of an expression e. The cases
return and if are straightforward, but note the liveness x.ε generated by the
latter. The case (let z ← s in e′) resembles a three-address instruction: the
liveness of e is given by taking the liveness, L, of e′, killing any liveness of z and
adding any liveness generated by s. The main subtlety is how the liveness of z
in L is converted to a demand L(z) to be placed on s via ref (s, L(z), LF).

Finally, the judgement form Prog �l LF is used to determine LF. Analo-
gously to classical liveness being computed as a solution of dataflow equations,
we require, via inference rule (live-define), LF to satisfy the fixed-point prop-
erty that: when we assume LF to be the demand transformer for the program
then the calculated liveness of each function body L(ef , σ, LF) agrees with the
assumed LFf . As usual, there are often multiple solutions to LF; all are safe (see
Section 3.2) but we prefer the least one as giving the least liveness subject to
safety—and hence greatest amount of garbage collected.

We make three observations: firstly the rule (live-define) has a least solution
as L(·) is monotonic in σ; secondly that (live-define) resembles the rule for type
inference of mutually recursive function definitions, and thirdly the asymmetry
of demand and liveness (compared to post- and pre-liveness classically) is due
to the functional formulation here.

Section 4 shows how the demand transformer LF for a program (representing a
fully context-sensitive analysis) can be safely approximated, for each function, by
a procedure summary (unifying the contexts in the style of 0-CFA). The summary
consists of a pair of a single demand and, for this demand, the corresponding
tuple of demands the function makes on its arguments.

3.2 Minefield Semantics and Correctness

This section gives a modified semantics which checks liveness annotations at
run time, and ‘explodes’ when these are found to be inconsistent with execution

92 R. Asati et al.

ref (κ, σ, LF) = { }, for κ a constant, including nil

ref ((cons x y), σ, LF) = {x.α | 0α ∈ σ} ∪ {y.α | 1α ∈ σ}
ref ((car x), σ, LF) = {x.ε} ∪ {x.0α | α ∈ σ}
ref ((cdr x), σ, LF) = {x.ε} ∪ {x.1α | α ∈ σ}
ref ((id x), σ, LF) = {x.σ}

ref ((+ x y), σ, LF) = {x.ε, y.ε}
ref ((null? x), σ, LF) = {x.ε}

ref ((f y1 · · · yn), σ, LF) =
⋃n

i=1 yi.LF
i
f (σ)

L((return x), σ, LF) = x.σ

L((if x e1 e2), σ, LF) = L(e1, σ, LF) ∪ L(e2, σ, LF) ∪ {x.ε}
L((let x ← s in e), σ, LF) = L \ x.{0, 1}∗ ∪ ref (s, L(x),LF), where L = L(e, σ, LF)

L(ef , σ, LF) =
⋃n

i=1 zi.LF
i
f (σ) for each f and σ

d1 . . . dk �l LF
where (define (f z1 . . . zn) ef) is a member of d1 . . . dk

(live-define)

Fig. 4. Liveness equations and judgement rule

behaviour, but otherwise behaves as the standard semantics. We show that such
explosions never occur and hence run-time checks can be elided. We first assume
an arbitrary demand transformer LF (below we assume Prog �l LF). We then
enrich the abstract machine state ρ, S,H, e to ρ, S,H, e, σ,Σ. Here σ is the de-
mand to the currently active function, thus the liveness L at e is L(e, σ, LF),1
and Σ is a stack of demands—one for each function frame pushed in S.

Second, we augment Val with a value ⊥. To model strong liveness ⊥ may be
copied freely, including into a cons cell, but explodes when used computationally
(in a primitive operation other than a copy). Additionally we define GC (L, Σ) :
(ρ,H, S) �→ (ρ′,H′, S′) which determines live-reachability2 using ρ and the ρ’s
in S as the root set and following links in H only as far as allowed by L and
Σ. Hence GC (L, Σ) replaces live-unreachable values—in ρ, in H and the ρ’s in
S—with ⊥. For example, if x.ε 	∈ L then ρ′(x) = ⊥. Only GC (· · ·) introduces ⊥.

Third, we update the semantics in four ways: (i) we arrange that all (→) tran-
sitions on expressions e first use GC (· · ·) to update the state and then continue
as before; and (ii) whenever the value ⊥ is used computationally in a reduc-
tion (�), we enter a distinguished stuck state bang. For example, supposing
ρ(x) = ⊥ then ρ,H, s � bang if s is (car x), (cdr x) or (+ x y), but not if s
is (id x), (cons x y) or (f x y). Finally (iii) we make a similar change to the
(→) reduction for (ord-if) and (iv) augment the (ord-let) rule for primitives
to propagate bang from (�) to (→).

1 This a simple liveness propagation using L(· · ·) and ref (· · ·) as LF is assumed given.
2 Reachability curtailed by liveness information.

Liveness-Based Garbage Collection 93

The resulting minefield semantics behaves identically (identical heap, identical
steps, including possible non-termination) to the standard semantics, except for
the sole possibility of the minefield semantics going bang while the standard
semantics continues (either to a halt state, to a stuck state, or reduces forever).

We now prove a result that relates liveness analysis to the semantics.

Proposition 1. Given program P with P �l LF, then in the minefield seman-
tics P → bang can never occur (cf. ‘well-typed programs do not go wrong’).

Proof outline: Space does not permit a full proof, but we give the two main
steps. We proceed by contradiction and assume there is a program P for which
P �l LF can enter state bang. The first step is to construct a program P ′ with
identical behaviour, but with no user-function definitions, using inlining. This
is possible because a program which goes bang does so after a finite number
of reductions, and hence even recursive functions have only had a finite number
of invocations. We hence repeatedly inline-expand user-function calls in P until
we obtain a program P ′ which behaves identically3 to P in the standard se-
mantics, but executes no user-function calls. Any remaining, non-executed, calls
can be replaced with a new primitive with the same demand-to-liveness trans-
fer function—thus making P ′ a simple expression e′. Not only do the program
points in reducing e′ correspond one-one to states during evaluation of P , but
also the liveness associated with a point in e′ is identical to the liveness at the
corresponding state (ρ, S,H, e, σ,Σ) of P (concatenating the liveness L(e, σ, LF)
at e with the liveness, obtained from Σ, of the call sites in S and after renaming
the variables correspondingly to the inlining which produced e′). This assertion
relies on the analysis being fully context-sensitive, and noting that while the
change of scope caused by inlining changes variable visibility between P and e′

it does not change the liveness—as local-to-a-function let-variables whose scope
has been prolonged due to inlining are dead in the prolonged scope.

The second step of the proof is to show that e′ cannot go bang. We proceed
by induction. Correctness of the if and final return forms are immediate; the
(let z ← s in e) form requires showing the inference rules ensure that any value
referenced via z in e was already live-reachable (via another variable and path)
in any enclosing expression (so that GC (· · ·) could not re-write it to ⊥).

4 Computing Liveness and Its Encoding as a Table

Section 3 gave a context-sensitive liveness analysis and proved it correct with
reference to a minefield semantics. For practical use we need to solve the liveness
equations finitely and symbolically. As expressed mathematically, and given a
fixed program, three things are potentially unbounded: (i) the number of call
strings (and hence arguments σ to LF); (ii) the length of access paths α ∈ σ and
(iii) the number of such access paths.

We commonly first solve (i) by reducing the number of distinct calling con-
texts (e.g. to a single unified context in 0-CFA style). However, it turns out

3 Modulo replacement of (ord-call) and (ord-return) steps with (ord-id) steps.

94 R. Asati et al.

that we can solve the equations for LF symbolically without this reduction, so
here we defer this to Section 4.2. (It also allows easier extension to dynamically
determined liveness—future work.) We address (ii) and (iii) by re-interpreting
the liveness definitions in Figure 4 symbolically as a grammar rather than a
mutually recursive set of equations on sets of access paths.

This requires two ideas. Firstly we have to control the use of functions—they
tend to be infinitary and do not occur naturally in CFGs; in particular our L
maps names to access paths, and LF maps access paths to a tuple of access paths.
The former is achieved by using a separate meta-variable (later non-terminal)
Lxi for each variable x and each program point πi (Lxi represents L(x) at πi).
Section 4.1 shows how the latter LFi

f is also expressible finitely (it is a linear
form).

Secondly, there are also two technical issues in re-interpreting Figure 4 as
a grammar. One is the use of the set-difference operator \ in “· · · \ x.{0,1}∗”
reflecting the classical gen/kill dataflow formulation. However after separating,
as above, liveness environments into per-variable liveness Lxi the ‘\’ operator
reduces to the harmless grammar rule Lxi = {} (assuming i labels the (let x . . .)
expression). The other is that ref for cons decomposes strings and thus gives
a general grammar not a CFG. Below we show how symbols 0̄, 1̄ can give an
equivalent CFG.

Finally, Section 4.3 uses a construction due to Mohri and Nederhof [10] to
over-approximate context-free grammars with regular grammars; these are more
appropriate for run-time use. Hence the overall ‘big picture’ view is that each
GC point is annotated with a table encoding the DFA for that program point.
When garbage collection occurs, each saved return address on the run-time stack
identifies the call-site GC point. The DFA annotating each such GC point is then
used by the garbage collector to curtail (to access paths accepted by the DFA)
its local-variable reachability-based marking.

GC Points. Given a call site (an expression π1: (let x← (f y1 . . . yn) in π2:e))
its associated GC point is π2, as it is liveness at π2 that should be encoded
in the DFA associated with the call.4 In the case of a call to cons as in π1 :
(let x← (cons y1 y2) in π2:e), the situation is slightly more complex. We may
either treat cons as doing a full procedure call (and mark its formal parameters
separately during garbage collection, which again leads to its GC point being
π2), or we may regard cons as being inlined, in which case it is vital that liveness
of y1 and y2 are represented in the DFA (which is achieved by using π1 rather
than π2 as the GC point). We adopt the latter approach.

Modifying the cons Rule. The ref rule for cons, shown in Figure 4, requires
us to remove the leading 0 and 1 from access paths in σ. Mathematically this is

4 A subtlety is that at machine code level the assignment to x does not take place
until after the call, and so for garbage-collection purposes the DFA need not represent
liveness of x.

Liveness-Based Garbage Collection 95

(define (append l1 l2)
π1: (let test ← (null? l1) in

π2: (if test π3:(return l2)
π4: (let tl ← (cdr l1) in

π5: (let rec ← (append tl l2) in
π6: (let hd ← (car l1) in

π7: (let ans ← (cons hd rec) in (return ans))))))))

πmain: . . .
π8: (let y ← (append a b) in

π9: (let w ← (append y z) in
π10: (let c ← (cdr w) in

π11: (let d ← (car c) in (return d)))))))

Fig. 5. An example program. GC points are π6, π7, π9 and π10.

fine but causes problems when solving the liveness equations symbolically since
such decomposition cannot be expressed as a context-free grammar. To handle
this, we introduce two new symbols 0̄ and 1̄ with the properties:

0̄σ � {α | 0α ∈ σ} and 1̄σ � {α | 1α ∈ σ}

We can now rewrite the cons rule as:

ref ((cons x y), σ, LF) = x.0̄σ ∪ y.1̄σ

We call the liveness equations with this modification L′. The definitions of 0̄
and 1̄ induce the following relation ↪→ over sets of access paths:

σ10̄σ2 ↪→ σ1σ
′
2, where σ′

2 = {α | 0α ∈ σ2}, and

σ11̄σ2 ↪→ σ1σ
′
2, where σ′

2 = {α | 1α ∈ σ2}

The reflexive transitive closure of ↪→ will be denoted as
∗
↪→. The following propo-

sition relates L and L′:

Proposition 2. Assume that a liveness computation based on L gives the live-
ness of the variable x at a program point πi as σ (symbolically, Lxi = σ). Further,
suppose Lxi = σ′ when L′ is used for liveness computation instead of L. Then
σ′ ∗

↪→ σ.

To see why the proposition is true, consider an analysis based on L′ in which
σ appears in the context ref ((cons x y), σ, LF). Let α ∈ σ. The symbol 0̄ (re-
spectively 1̄) merely marks a place in α where the original cons rule would
have erased an immediately following 0 (respectively 1), or, in absence of such
a symbol, would have dropped α itself. Since the application of any rule in L′
merely adds symbols at the beginning of α, the markers and other symbols in

96 R. Asati et al.

α are propagated to other dependent parts of program in their same relative
positions. Consequently, the erasure carried out at the end of the analysis with
∗
↪→ gives the same result as obtained through L.

4.1 Generating Equations for the Demand Transformer LF

We shall consider the program in Figure 5 as a running example. Unlike the
program in Figure 1, this program is in ANF.

To generate the equations defining LFf , we follow the rule define-live. We
start with a symbolic demand σ and determine L = L(ef , σ, LF), treating LF
as an uninterpreted function symbol. We then generate equations of the form
LFi

f (σ) = L(xi) where xi is the ith formal parameter of f and L(xi) is the
liveness of xi. For our example program which has a single function append,
this generates the following equations:

LF1
append(σ) = {ε} ∪ 00̄σ ∪ 1LF1

append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

In general, the equations for LF are recursive since L may, in turn, be expressed
in terms of LF. We assume that LFf is expressible in the closed form as:5

LFi
f (σ) = Iif ∪ Di

f σ (1)

where Iif and Di
f are sets of strings over the alphabet {0,1, 0̄, 1̄}. The reason

why LF has this form is as follows. Recall that LFi
f (σ) gives the access paths

starting from i that have to be dereferenced to produce the sub-structure σ of
the result of f . Iif represents the access paths that would be dereferenced, but
do not contribute to the result. This happens, for instance, when the argument
is used only within the condition of an if . Di

f , in contrast, represents the paths
that are dereferenced to actually produce the result.

To solve for LFf , we substitute the guessed form into its equations. LFappend

gives:

I1append ∪ D1
appendσ = {ε} ∪ 00̄σ ∪ 1(I1append ∪D1

append1̄σ)

I2append ∪ D2
appendσ = σ ∪ I2append ∪ D2

append1̄σ

Equating the terms containing σ on the two sides of each equation, and doing
the same for the terms without σ, we get equations for Iif and Di

f that are
independent of σ.

I1append = {ε} ∪ 1I1append I2append = I2append

D1
append = {00̄} ∪ 1D1

append1̄ D2
append = {ε} ∪ D2

append1̄

5 This is similar to solving the differential equation ay ′′ + by ′ + c = 0, where we guess
that the solution has the form y = erx . Substituting the solution in the equation
yields a quadratic equation in r, and each solution of r gives rise to a solution of the
differential equation (in our setup we can effectively pick the least solution rather
than needing linear combinations).

Liveness-Based Garbage Collection 97

Note that these equations can be viewed as CFGs, with all but D1
append being

regular, and that any solution of Iif and Di
f yields a solution of LFf .

4.2 Generating Liveness Equations L for Function Bodies

We now calculate a 0-CFA-style summary liveness for each GC point of a pro-
gram. There are two parts to this. First, for each function f , we determine a sum-
mary demand σf over-approximating any demand σ passed to f . Such demands
are caused by calls to f occurring at call sites. We introduce the notation δf (π, g)
for the contribution to σf caused a call site π occurring in function g. So, suppose
function g contains a call site π to f , say π: (let x← (f y1 . . . yn) in e). Under
the assumption that the demand on g is σg, the liveness at e is L = L(e, σg, LF),
and the let case of Figure 4 tells us this call site contributes L(x) to the demand
σf placed on f ; hence δf(π, g) is simply L(x).

Now, supposing the k call sites to function f are π1 (in function g1) . . .πk

(in function gk), then the over-approximation requirement on σf is achieved by
taking σf = δf (π

1, g1) ∪ · · · ∪ δf (π
k, gk).

The expression emain is a special case; we assume it may be called externally
with demand σmain = {0,1}∗ (denoted σall). This is because any part of its
value may be used by the environment—for printing the result, for instance.

For the running example, append has calls from main at π9 and a recursive
call at π5. So σappend = δappend(π9,main)∪ δappend(π5, append). Calculating
the δappend(π, g) for the two call sites, and substituting gives:

σappend = ({ε,1} ∪ 10σall) ∪ 1̄σappend

Second, for each function f (possibly main) we need the liveness at each con-
tained GC point π. Given σf calculated above, this is simply L(π, σf , LF). For
the running example, containing GC points π6, π7 in append and π9, π10 in
emain, this gives (recall Equation (1) above states LFi

f (σ) = Iif ∪ Di
f .σ):

Ll16 = {ε} ∪ 00̄σappend Lrec6 = 1̄σappend

Lhd7 = 0̄σappend Lrec7 = 1̄σappend

Ly9 = LF1
append({ε,1} ∪ 10σall) Lz9 = LF2

append({ε,1} ∪ 10σall)

Lw10 = {ε,1} ∪ 10σall

In summary, the equations generated during liveness analysis are:

1. For each function f , equations defining Iif and Di
f for use by LFf .

2. For each function f , an equation defining the summary demand σf on ef .
3. For each function f (including main for emain) an equation defining liveness

at each GC point of ef .

4.3 Solving Liveness Equations—The Grammar Interpretation

The liveness equations above (of the form X = . . .) can now be re-interpreted as
a context-free grammar (CFG) on the alphabet {0,1, 0̄, 1̄}. We use 〈X〉 to denote

98 R. Asati et al.

the corresponding non-terminal which then appears in a production 〈X〉 →
We can think of the resulting productions as being associated with several gram-
mars, one for each non-terminal 〈Lxi 〉 regarded as a start symbol. As an example,
the grammar for 〈Ly9〉 comprises the following productions:

〈Ly9〉 → 〈I1append〉 | 〈D1
append〉(ε | 1 | 10〈σall 〉)

〈I1append〉 → ε | 1〈I1append〉
〈D1

append〉 → 00̄ | 1〈D1
append〉1̄

〈σall 〉 → ε | 0〈σall 〉 | 1〈σall 〉

Other equations can be converted similarly. The language generated by 〈Lxi 〉,
denoted L (〈Lxi 〉), is the desired solution of Lxi . However, recall from our earlier
discussion that the decision problem that we are interested in during garbage
collection is:

Let x.α be a forward access path—consisting only of edges 0 and 1 (but

not 0̄ or 1̄). Let L (〈Lxi 〉)
∗
↪→ σ, where σ consists of forward paths only.

Then does α ∈ σ?

We could convert the rules defining ↪→ into productions and add them to the
grammar. However, this results in an unrestricted grammar [11], and the mem-
bership problem for such grammars is undecidable. We circumvent the problem
by over-approximating the CFG generated by the analysis to strongly regular
CFGs which have easy translations to non-deterministic finite state automata
(NFA). The NFAs are then simplified on the basis of the ↪→ rules to enable
checking of membership of forward access paths. The resulting NFAs are finally
converted to DFAs for use during garbage collection.

Approximating CFGs Using NFAs. We use the algorithm by Mohri and
Nederhof [10] to approximate a CFG to a strongly regular grammar. The trans-
formation has the property that if L is a non-terminal in the grammar G and G′

is the grammar after the Mohri-Nederhof transformation, then LG(L) ⊆ LG′(L).
This is required for the approximation to be safe with respect to liveness.

We exemplify the Mohri-Nederhof transformation on the 〈Ly9〉 grammar above.
We pick the only production that is affected by the transformation—the pro-
duction for D1

append. The production for I1append, while recursive, is already in
strongly regular form and is therefore unaffected by the transformation.

〈D1
append〉 → 00̄〈D1

append〉
′ | 1〈D1

append〉
〈D1

append〉
′ → 1̄〈D1

append〉
′ | ε

The languages generated for 〈D1
append〉 in the original grammar and the new

grammar are 1i00̄1̄i and 1∗00̄1̄∗, showing a loss of precision.

Liveness-Based Garbage Collection 99

Input: NFA N with underlying alphabet {0,1, 0̄, 1̄}
Output: NFA N with underlying alphabet {0, 1} such that L (N)

∗
↪→ L (N).

Steps:

i ← 0
N0 ← Equivalent NFA of N without ε-moves [11]
repeat

N ′
i+1 ← Ni

for all states q in Ni such that q has an incoming edge from q′ with label 0̄
and outgoing edge to q′′ with label 0 do

add an edge in N ′
i+1 from q′ to q′′ with label ε. {bypass 0̄0 using ε}

end for
for all states q in Ni such that q has an incoming edge from q′ with label 1̄
and outgoing edge to q′′ with label 1 do

add an edge in N ′
i+1 from q′ to q′′ with label ε. {bypass 1̄1 using ε}

end for
Ni+1 ← Equivalent NFA of N ′

i+1 without ε-moves
i ← i+ 1

until (Ni = Ni−1)
N ← Ni

Fig. 6. Algorithm for transforming an NFA to accept forward paths only

〈I1append〉

1

(a)

〈D1
append〉

1

0 0̄

1̄

(b)

〈Ly9〉

ε

ε 0 0̄ ε 1 0

1

1 1̄ 0/1

(c)

〈Ly9〉 q0 q1 q2 q3 q40 0̄ 1 0

1 1̄ 0/1

(d)

〈Ly9〉 q0 q1 q2 q3 q40 0̄ 1 0

1 1̄ 0/1

ε

(e)

〈Ly9〉 q0 q1 q5 q20 0̄ 0

1 1,1̄ 0,1

ε

(f)

〈Ly9〉 q0 q6 q50 0̄

1 1,1̄0,1

0̄
(g)

〈Ly9〉 q0 q60

1 0,1

(h)

Fig. 7. Automata for the example program

100 R. Asati et al.

Transforming NFAs to Accept Forward Paths: The strongly regular CFGs
obtained after the Mohri-Nederhof transformation are first converted into NFAs.
The algorithm described in Figure 6 converts an NFA N to a NFA N such that

L (N)
∗
↪→ L (N), where N accepts forward paths only. Thus N can be used to

check membership of forward paths.
The algorithm repeatedly introduces ε edges to bypass a pair of consecutive

edges labelled 0̄0 or 1̄1. The process is continued until a fixed point is reached.
When the fixed point is reached, the resulting NFA contains all possible re-
ductions corresponding to all the paths in the original NFA. The proofs of the
termination and correctness of the algorithm are given in our earlier paper [8].

We illustrate the algorithm in Figure 6 by constructing the automaton for
〈Ly9〉. Figure 7 (c) shows the automaton for 〈Ly9〉 constructed by composing the
automata for 〈I1append〉, 〈D1

append〉 and (ε | 1 | 10σall). After ε removal we get
(d). We add an ε edge from q2 to q3 bypassing the 1̄1 pair from q2 to q2 and then
to q3. This is shown in (e). The ε edge is removed in (f) and a second ε is added
to the automaton bypassing the 0̄0 pair from q1 to q2. Removing this ε edge gives
the automaton shown in (g). Restricting this automaton to forward edges only,
we get the final automaton shown in (h). This automaton recognises 1∗ | 1∗0σall,
showing that the entire list y, including its elements, is live at π9. Also note that
the language accepted by the final automaton satisfies the prefix-closed property.

5 Prototype and Evaluation

To demonstrate the effectiveness of liveness-based garbage collection, we have
built a prototype consisting of an interpreter for our language, a liveness analyser
and a copying collector that can optionally use the results of liveness analysis for
marking instead of reachability. When the collector uses liveness for marking,
we call it a liveness-based collector (LGC), else we use the term reachability-
based collector (RGC). The collector is neither incremental nor generational. As
a consequence, any cell that becomes unreachable or dead is assuredly collected
in the next round of garbage collection.

When LGC is invoked (by a call to cons) the activation records on the stack
all correspond to functions suspended at GC points, and by construction at
each GC point we have a DFA specifying liveness of each local variable in the
activation record. As usual such local variables form the root set for garbage
collection.

Let dfaxπ denote the DFA for the variable and program point pair (x, π). We
write initial(dfaxπ) for the initial state of dfaxπ. Considering a DFA as a table,
dfaxπ(q, sym) returns the next state for the state q and the symbol sym, where
sym is 0 or 1. We shall also write dfaxπ(q, sym)? for a predicate indicating whether
there is a transition from q on sym . The LGC action to chase the root variable
x at π can be described as follows: If L (dfaxπ) is empty, then nothing needs
to be done. Otherwise we call copy(dfaxπ, initial(dfa

x
π), x) in Figure 8 and assign

the returned pointer to x. The function move to tospace(x) copies the value of
x in the other semi-space and returns the new address. It hides details such as

Liveness-Based Garbage Collection 101

function copy(dfa, q, x)
let y ← move to tospace(x)
if x.tag �= cons then skip
else if dfa(q,0)? then y.car = copy(dfa, dfa(q,0), x.car)

if dfa(q,1)? then y.cdr = copy(dfa, dfa(q,1), x.cdr)
return y

Fig. 8. Function for copying a root set variable

returning the forwarding pointer if the value of x is already copied, and creating
the forwarding pointer otherwise.

The graphs in Figure 96 show the number of cells in the heap over time for
RGC and LGC—here time is measured in terms of the number of cons cells
allocated. In addition, they also show the number of reachable cells and the
number of cells that are actually live (this is statically approximated by our
liveness analysis). Since the programs have different memory requirements, we
have tuned the size of heap for each program to ensure a reasonable number of
collections. An invocation of RGC decreases the number of cells in heap until it
touches the curve of reachable cells. An invocation of LGC decreases the number
of heap cells to no lower than the curve of live cells.

To construct the reachable and live curves, we record for every cell its creation
time (Create time), its last use time (Use time), and the earliest time when
the cell becomes unreachable and can be garbage collected (Collection time).
For accurate recording of Collection time, we force frequent invocations of
a reachability-based collector in a separate run. A cell is live at time T if
Create time ≤ T ≤ Use time. If Create time ≤ T ≤ Collection time, it is
reachable.

The benchmark programs are drawn from the no-fib suite and other sources
and have been manually converted to ANF. All graphs except fibheap show
strictly fewer garbage collector invocations for LGC; fibheap is an exception in
that the number of reachable cells first grows steadily until it almost fills the
heap. This triggers garbage collections in both LGC and RGC. The number of
reachable cells then drops steeply to a low level and remains low resulting in no
further garbage collections. The graphs also show the precision of our liveness
analysis. For all programs except nperm and lambda, LGC manages to collect a
good portion of the cells that are not live.

5.1 Results

The increased effectiveness of LGC over RGC is also shown in the tables in
Figure 10. The first table provides statistics regarding the analysis itself. The
number of states and the analysis times are within tolerable limits. Precision of
analysis refers to the percentage of dead cells that is collected by LGC, averaged

6 For better clarity, visit http://www.cse.iitk.ac.in/users/karkare/fhra for
coloured versions of the graphs.

http://www.cse.iitk.ac.in/users/karkare/fhra

102 R. Asati et al.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 0 2050 4100 6150 8200 10250

sudoku

 0

 9000

 18000

 27000

 36000

 45000

 54000

 0 100000 200000 300000

lcss

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 400000 800000

gc_bench

 0

 35000

 70000

 105000

 140000

 175000

 210000

 0 145000 290000 435000 580000 725000

nperm

 0

 30000

 60000

 90000

 120000

 150000

 180000

 210000

 240000

 270000

 0 70000 140000 210000 280000 350000

fibheap

 0
 40000
 80000

 120000
 160000
 200000
 240000
 280000
 320000
 360000
 400000
 440000
 480000
 520000

 0 850000 1.7e+06 2.55e+06

knightstour

 0

 210000

 420000

 630000

 840000

 1.05e+06

 1.26e+06

 1.47e+06

 1.68e+06

 1.89e+06

 0 3e+06 6e+06 9e+06 1.2e+07

nqueens

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 900 1800 2700 3600 4500

lambda

Fig. 9. Memory usage of programs. The dotted-grey and the dashed-black curves indi-
cate the number of cons cells in the active semi-space for RGC and LGC respectively.
The solid-grey curve represents the number of reachable cells and the solid-black curve
represents the number of cells that are actually live (of which liveness analysis does a
static approximation). x-axis is the time measured in number of cons cells allocated.
y-axis is the number of cons cells.

Liveness-Based Garbage Collection 103

Program sudoku lcss gc bench nperm fibheap knightstour treejoin nqueens lambda

Time (msec) 120.95 2.19 0.32 1.16 2.4 3.05 2.61 0.71 20.51
DFA size 4251 726 258 526 675 922 737 241 732

Precision(%) 87.5 98.8 99.9 87.1 100 94.3 99.6 98.8 83.8

(a)

Collected # Touched MinHeap Avg. Drag GC time
cells per GC cells per GC #GCs (#cells) (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 1568 774 22 9 1704 589 858 146 .028 .122
lcss 46522 51101 6216 1363 8 7 52301 1701 5147 588 .045 .144

gc bench 129179 131067 1894 4 9 9 131071 6 16970 4 .086 .075
nperm 47586 174478 201585 60882 14 4 202597 37507 171878 76618 1.406 .9
fibheap 249502 251525 5555 2997 1 1 254520 13558 78720 0 .006 .014

knightstour 2593 314564 907502 319299 1161 10 508225 307092 206729 82112 464.902 14.124
treejoin 288666 519943 297570 5547 2 1 525488 7150 212653 1954 .356 .217
nqueens 283822 1423226 2133001 584143 46 9 1819579 501093 521826 39465 70.314 24.811
lambda 205 556 2072 90345 23 8 966 721 303 95 .093 2.49

(b)

Fig. 10. Experimental results comparing RGC and LGC. Table (a) gives data related
to liveness analysis, and (b) gives garbage collection data.

over all invocations. The second table shows garbage collection statistics for RGC
and LGC. LGC collects larger garbage per invocation, drags cells for lesser time
and requires a smaller heap size (MinHeap) for program to run in comparison
with RGC.

There are a couple of issues of concern. The garbage collection time is larger in
the case of LGC for some programs. The reason is that the cost of consulting the
liveness DFA may outweigh the combined benefits of fewer garbage collections
and fewer markings per garbage collection. The other issue is illustrated by the
program lambda. As can be seen from the table in Figure 10, the number of
touched cells7 in this example is much higher for LGC. This increase is due
to excessive sharing among heap nodes in this program. Note that a node re-
visited because of sharing is not explored any further during RGC. However,
this curtailment cannot happen in LGC because of the possibility that the node,
re-visited in a different liveness state, may mark a set of cells different from the
earlier visit.

6 Collecting More Garbage Can Never Slow Things
Down

Since garbage collection is effectively asynchronous to the allocator thread, one
might worry as to how robust our measurements are. For example, while LGC
would, in general, collect more garbage than RGC in the same heap state, might
LGC do a larger number of collections for some programs? We prove below that

7 These are the cells visited during the marking phase, often more than once due to
sharing.

104 R. Asati et al.

this cannot happen. This result applies to classical mark-and-sweep and copying
garbage collectors and, we believe, also to generational collectors.

Lemma 1. For the same mutator, a liveness-based collector can never do more
garbage collections than a reachability-based collector.

Proof. Assume, as before, that time is measured in terms of the number of cons
cells allocated. Now run two copies of the mutator, one with RGC and one with
LGC, in parallel. Memory allocations by cons happen simultaneously, but the
times of garbage collections diverge.

To prove the lemma, it is enough to show the truth of the following statement:
After every LGC invocation, the count of LGC invocations is no greater than
RGC invocations. The base case holds since the first invocations of both GCs
happen at the same time. Assume the statement to be true after n invocations
of LGC. Since LGC copies a subset of reachable cells, its heap would contain no
more cells than RGC heap at the end of the nth invocation. Thus either RGC is
invoked next before LGC, or LGC and RGC are both invoked next at the same
time. In either case, the statement holds after n+ 1 invocations of LGC.

7 Related Work

Previous attempts to increase the space efficiency of functional programs by
additional reclamation of memory fall in two broad categories. In the first, the
program itself is instrumented to manage reclamation and reallocation without
the aid of the garbage collector. Such attempts include: sharing analysis based
reallocation [12], deforestation techniques [13,14,15], methods based on linear
logic [16] and region analysis [17]. Closer to our approach, there are methods
that enable the garbage collector to collect more garbage [18,6] by explicitly
nullifying pointers that are not live. However, the nullification, done at compile
time, requires sharing (alias) analysis. Our method, in contrast, does not require
sharing because of the availability of the heap itself at run time. To the best of
our knowledge, this is the first attempt at liveness-based marking of the heap
during garbage collection.

8 Conclusions

We have defined a notion of liveness on structured data; this generalises classical
liveness and strong liveness. We started with a general fully context-sensitive
analysis which we proved correct with respect to a minefield semantics (this
models the effect of garbage collection between every evaluation step).

To avoid scalability issues (and to avoid performing part of the liveness com-
putation at run time) we defined an 0-CFA version of this liveness analysis in
which demands for function f at all calling contexts are conflated into a single
demand σf . This enabled us to treat the liveness equations symbolically obtain-
ing context-free grammars for liveness at each GC point (calls to user functions

Liveness-Based Garbage Collection 105

and to cons). These were then converted to DFAs for run-time consultation by
the garbage collector. Experiments confirm the precision of the analysis.

To obtain performance figures we compared a reachability-based garbage col-
lector with a liveness-based collector. This showed a decrease in the number of
GCs, more garbage collected per invocation. A significant benefit of LGC is that
programs can run in smaller memory when compared to RGC. This is poten-
tially useful in situations where memory is limited—as with embedded systems.
For a majority of programs, the garbage collection times were reduced.

One issue we highlighted was that while fewer nodes were marked (and hence
more garbage collected), sometimes cons cells could be visited and traversed
multiple times with different sets of liveness paths to explore; this risks infinite
looping if extended to languages with cyclic data structures. Avenues of further
work include static analysis to avoid revisiting cells known to have been visited.
One possibility is to record a representation of the liveness paths already visited
from each cons cell; the classical mark bit indicates that all paths have been
visited from the cell.

Acknowledgements. We thank the anonymous referees for their helpful com-
ments. Thanks are also due to Hemanshu Vadehra for a preliminary implemen-
tation of the prototype system. Amey Karkare was supported for this work by
the DST/SERC fast track scheme for young scientists.

References

1. Röjemo, N., Runciman, C.: Lag, drag, void and use—heap profiling and space-
efficient compilation revisited. In: ICFP (1996)

2. Karkare, A., Sanyal, A., Khedker, U.: Effectiveness of garbage collection in
MIT/GNU Scheme (2006), http://arxiv.org/abs/cs/0611093

3. Shaham, R., Kolodner, E.K., Sagiv, M.: Estimating the impact of heap liveness
information on space consumption in Java. In: ISMM (2002)

4. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL
(1999)

5. Cherem, S., Rugina, R.: A practical escape and effect analysis for building
lightweight method summaries. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007.
LNCS, vol. 4420, pp. 172–186. Springer, Heidelberg (2007)

6. Lee, O., Yang, H., Yi, K.: Static insertion of safe and effective memory reuse
commands into ML-like programs. Science of Computer Programming (2005)

7. Khedker, U.P., Sanyal, A., Karkare, A.: Heap reference analysis using access graphs.
TOPLAS (2007)

8. Karkare, A., Khedker, U., Sanyal, A.: Liveness of heap data for func-
tional programs. In: Heap Analysis and Verification Workshop, HAV (2007),
http://research.microsoft.com/~jjb/papers/HAV_proceedings.pdf

9. Chakravarty, M.M.T., Keller, G., Zadarnowski, P.: A functional perspective on
SSA optimisation algorithms. In: COCV (2003)

10. Mohri, M., Nederhof, M.J.: Regular approximation of context-free grammars
through transformation. In: Junqua, J.C., van Noord, G. (eds.) Robustness in Lan-
guage and Speech Technology, pp. 251–261. Kluwer Academic Publishers (2000)

http://arxiv.org/abs/cs/0611093
http://research.microsoft.com/~jjb/papers/HAV_proceedings.pdf

106 R. Asati et al.

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)

12. Jones, S.B., Metayer, D.L.: Compile-time garbage collection by sharing analysis.
In: FPCA (1989)

13. Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger,
H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)

14. Gill, A., Launchbury, J., Jones, S.L.P.: A short cut to deforestation. In: FPCA
(1993)

15. Chitil, O.: Type inference builds a short cut to deforestation. In: ICFP (1999)
16. Hofmann, M.: A type system for bounded space and functional in-place update.

In: ESOP (2000)
17. Tofte, M., Birkedal, L.: A region inference algorithm. TOPLAS (1998)
18. Inoue, K., Seki, H., Yagi, H.: Analysis of functional programs to detect run-time

garbage cells. TOPLAS (1988)

deGoal a Tool to Embed Dynamic Code

Generators into Applications

Henri-Pierre Charles, Damien Couroussé, Victor Lomüller, Fernando A. Endo,
and Rémy Gauguey

CEA, LIST, Département Architecture Conception Logiciels Embarqués,
F-38054 Grenoble, France

firstname.lastname@cea.fr

Abstract. The processing applications that are now being used in mobile
and embedded platforms require at the same time a fair amount of pro-
cessing power and a high level of flexibility, due to the nature of the data
to process. In this context we propose a lightweight code generation tech-
nique that is able to perform data dependent optimizations at run-time
for processing kernels.

In this paper we present the motivations and how to use deGoal: a
tool designed to build fast and portable binary code generators called
compilettes.

1 Introduction

Today, software development is facing two competing objectives:

– Improve programmers efficiency by using generic and expressive program-
ming languages

– Generate efficient machine code to achieve the best execution speed and
energy efficiency

These two objectives are competing because the more expressive and abstract a
programming language is, the more difficult it is for a code generation tool-chain
to produce efficient machine code.

We believe that code optimization, driven by run-time data characteristics, is
a promising solution to tackle this issue. To achieve this, we propose deGoal: a
lightweight runtime solution for code generation.

deGoal was designed with the limitations of embedded systems computing
power and memory in mind: our bottom-up approach allows code generation of
specialized kernels, at runtime, depending on the execution context, the features
of the targeted processor, and furthermore on the data to process : their charac-
teristics and their values. Runtime code generation is achieved thanks to tiny
ad hoc code generators, called compilettes, which are embedded into the appli-
cation and produce machine code at runtime. Compilettes have only the strict
necessary processing intelligence to perform the required code optimizations. As
a consequence, code generation is:

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 107–112, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

108 H.-P. Charles et al.

1. very fast : 10 to 100 times faster than typical JITs or dynamic compilers
which allow to use code generation inside the application and during the
code execution, not in a virtual machine.

2. lightweight : the typical size of compilettes is only a few kilobytes which
allows its use on constrained memory micro controllers such as the Texas
Instrument MSP430 which has only 512 bytes of available memory [1].
Standard code generators, such as LLC of the LLVM infrastructure, have
Mbytes of memory footprint, making their use impossible in this context.

3. produce compact code: as we are able to generate only the needed specialized
code and not all variants at the same time.

4. portable across processor family: i.e. a compiletteis portable on RISC plat-
forms or on GPU platforms.

5. able to perform cross-jit applications, i.e. a compilette can run on one pro-
cessor model and generate code for an other processor and download the
generated code.

2 Introduction to the deGoal Infrastructure

The deGoal infrastructure integrates a language for kernel description and a
small run-time environment for code generation. The tools used by the infras-
tructure are architecture agnostic, they only require a python interpreter and
an ANSI C compiler. We briefly introduce the language, how applications are
written with deGoal and how they’re are compiled and executed.

2.1 Kernel Description

We use a dedicated language to describe the kernel generation at runtime. This
language is mixed with C code, this latter allowing to control the code generation
performed in compilettes. This combination of C and deGoal code allows to
efficiently design a code generator able to:

1. inject immediate values into the code being generated,
2. specialize code according to runtime data, e.g. selecting instructions,
3. perform classical compilation optimizations such as loop unrolling or dead

code elimination.

deGoal uses a pseudo-assembly language whose instructions are similar to a
neutral RISC-like instruction set. The goal is to achieve:

– A rich instruction set focused on vector and multimedia instructions.
– The capability to use the run-time information in the specialized code.
– Cross-platform code generation: the architecture targeted by the compilette

may also be different from the architecture on which the code generator runs.
– Fast code generation, thanks to the “multiple time” compilation scheme.

The intermediate representation (IR) is processed at static compile time. At
run time the application has only to generate binary code mixed with data.

deGoal a Tool to Embed Dynamic Code Generators into Applications 109

Fig. 1. deGoal work flow: from the writing of applications source code to the execution
of a kernel generated at run-time

Table 1. deGoal support status

Architecture Port
status

SIMD
support

Instruction
bundling

ARM Thumb-2 (+NEON/VFP) N/A

STxP70 (STHORM) N/A

PTX (NVIDIA) N/A

ARM32 N/A

MSP430 N/A N/A

K1

MIPS N/A

2.2 Compilation Chain

To achieve fast code generation, the compilation chain is split into several steps
that run at different “times” (Figure 1).

Static Compilation. The compilette is rewritten into a standard C file by the
degoaltoc tool. The C version of the compilette is then statically compiled
and linked to the targeted architecture deGoal back-end using the C compiler
of the target platform.

Runtime. The application first invocates the compilette to generate the ma-
chine code of the kernel, once the optimizing data from the execution context
are available. The kernel can then be executed as a standard procedure.

Given that the back-end is composed of portable C functions, our compilation
chain is able to generate cross-platform code.

110 H.-P. Charles et al.

2.3 Run-time

At runtime, the compilette generates code according to run-time data and en-
vironment (rightmost block on Figure 1). At this time, registers are allocated,
instructions scheduled and bundled (for VLIW architectures).

3 Current Status

Table 1 details the current support status of deGoal (MIPS is a work in progress).
The column “SIMD support” shows the ability to take advantage of hardware
vectors efficiently. The last column indicates if deGoal is able to generate code
for VLIW processors.

The core infrastructure is licensed under a BSD style license but all hardware-
specific developments are restricted to their respective owners.

4 Related Works

There is an extensive amount of literature about approaches related to our work
with deGoal. Other works are related :

Java JIT mix interpretation and dynamic compilation for hotpots. Such tech-
niques usually require large memory to embed JIT framework, and perfor-
mance overhead. Some research works have tried to tackle these limitations:
memory footprint can be reduced to a few hundreds of KB [6], but the binary
code produced often presents a lower performance because of the smaller
amount of optimizing intelligence embedded in the JIT compiler [12].
Java JITs are unable to directly take data value as parameters. They use
indirect hotspot detection by tracing the application activity at runtime.
In deGoal, the objective is to reduce the cost incurred by runtime code gen-
eration. Our approach allows to generate code at least 10 times faster than
traditional JITs: JITs hardly go below 1000 cycles per instruction generated
while we obtain 25 to 80 cycles per instruction generated on the STxP70
processor.

LLVM [9] (Low Level Virtual Machine) is a compilation framework that can
target many architectures, including x86, ARM or PTX. One of its advan-
tages is the unified internal representation (LLVM IR) that encode a virtual
low-level instruction with some high-level information embedded on it. Var-
ious tools were built on top of it.
In deGoal, we don’t use IR at run-time, we keep only calls (with parameters)
to binary code generators.

Partial evaluation Our approach is similar to partial evaluation techniques
[4,8], which consists in pre-computing during the static compilation passes
the maximum of the generated code to reduce the run-time overhead. At
run-time, the finalization of the machine code consists in: selecting code
templates, filling pre-compiled binary code with data values and jump
addresses.

deGoal a Tool to Embed Dynamic Code Generators into Applications 111

Using deGoalwe compile statically an ad hoc code generator (the compilette)
for each kernel to specialize. The originality of our approach relies in the
possibility to perform run-time instruction selection depending on the data
to process [2].

DyC [7] is a tool that creates code generators from an annotated C code. Like
`C, it adds some tokens such as @ to evaluate C expressions and inject the
results as an immediate value into the machine code.
deGoal is different from DyC because the parameters given to the binary
run-time generators can drive specialized optimization such as loop-unrolling
or vectorizers.

5 Application Domain Examples

As examples, here are some references of work in different application domains
where compilettes have been used:

Specialized memory allocator: memory allocators are specialized depending
on the size of the memory to manage. Lhuilier et al [10] built an example
with a very low memory footprint, able to adapt itself to the size of data set.

Hardware support thanks to the fast generation code scheme we are able to
generate specialized code which run faster with a low overhead. We have
used this support in
Mono-core specialization in an MPSoC context where each node is able

to generate an optimized version of a matrix multiplication function [5].
GPU code specialization on an NVIDIA GPU we have developped a

“cross-JIT” approach where a CPU generate a specialized GPU code
depending on data sets [3].

Microcontrollers with hardware support for floating point arithmetics,
where we are able to generate on the fly 10× faster specialized floating
point routines [1].

Video compression need specialized code depending on data sets as shown
in [11]. deGoal can be used in this domain.

Thanks to the low memory footprint of both code generator and generated code,
deGoal is a perfect match for embedded systems.

This article is only an introductory tutorial; results with discussions about
acceleration and produced code size can be found in the following bibliography.

References

1. Aracil, C., Couroussé, D.: Software acceleration of floating-point multiplication
using runtime code generation. In: Proceedings of the 4th International Conference
on Energy Aware Computing, Istanbul, Turkey (December 2013)

2. Charles, H.P.: Basic infrastructure for dynamic code generation. In: Proceedings of
the Workshop “Dynamic Compilation Everywhere”, in Conjunction with the 7th
HiPEAC Conference, Paris, France (January 2012)

112 H.-P. Charles et al.

3. Charles, H.P., Lomüller, V.: Data Size and Data Type Dynamic GPU Code
Generation. In: GPU Design Pattern. Saxe-Coburg publications (2012)

4. Consel, C., Noël, F.: A general approach for run-time specialization and its ap-
plication to C. In: Proceedings of the 23th Annual Symposium on Principles of
Programming Languages, pp. 145–156 (1996)

5. Couroussé, D., Lomüller, V., Charles, H.P.: Introduction to Dynamic Code Gen-
eration – An Experiment with Matrix Multiplication for the STHORM Platform.
In: Smart Multicore Embedded Systems, ch. 6, pp. 103–124. Springer (2013)

6. Gal, A., Probst, C.W., Franz, M.: HotpathVM: An effective JIT compiler for
resource-constrained devices. In: VEE 2006, pp. 144–153. ACM, New York (2006)

7. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: An expres-
sive annotation-directed dynamic compiler for C. Theor. Comput. Sci. 248(1-2),
147–199 (2000)

8. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28,
480–503 (1996), http://doi.acm.org/10.1145/243439.243447

9. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-
sis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL (2002)

10. Lhuillier, Y., Couroussé, D.: Embedded system memory allocator optimization
using dynamic code generation. In: Proceedings of theWorkshop “Dynamic Compi-
lation Everywhere”, in Conjunction with the 7th HiPEAC Conference, Paris, France
(January 2012)

11. Sajjad, K., Tran, S.M., Barthou, D., Charles, H.P., Preda, M.: A global approach
for mpeg-4 avc encoder optimization. In: 14th Workshop on Compilers for Parallel
Computing (2009)

12. Shaylor, N.: A just-in-time compiler for memory-constrained low-power devices.
In: Java VM 2002, pp. 119–126. USENIX Association, Berkeley (2002)

http://doi.acm.org/10.1145/243439.243447

Improving the Performance of X10 Programs

by Clock Removal

Paul Feautrier1, Éric Violard2, and Alain Ketterlin2

1 INRIA, UCBL, CNRS & École Normale Supérieure de Lyon, LIP, Compsys
2 INRIA & Université de Strasbourg

Abstract. X10 is a promising recent parallel language designed specifi-
cally to address the challenges of productively programming a wide vari-
ety of target platforms. The sequential core of X10 is an object-oriented
language in the Java family. This core is augmented by a few paral-
lel constructs that create activities as a generalization of the well known
fork/join model. Clocks are a generalization of the familiar barriers. Syn-
chronization on a clock is specified by the Clock.advanceAll() method
call. Activities that execute advances stall until all existent activities
have done the same, and then are released at the same (logical) time.

This naturally raises the following question: are clocks strictly neces-
sary for X10 programs? Surprisingly enough, the answer is no, at least for
sufficiently regular programs. One assigns a date to each operation, de-
noting the number of advances that the activity has executed before the
operation. Operations with the same date constitute a front, fronts are
executed sequentially in order of increasing dates, while operations in a
front are executed in parallel if possible. Depending on the nature of the
program, this may entail some overhead, which can be reduced to zero for
polyhedral programs. We show by experiments that, at least for the cur-
rent X10 runtime, this transformation usually improves the performance
of our benchmarks. Besides its theoretical interest, this transformation
may be of interest for simplifying a compiler or runtime library.

1 Introduction

Due to physical limitations, today computers all have explicit parallelism. This
is true over the whole power spectrum, from embedded systems to high perfor-
mance number crunchers, in which millions of cores must contribute to a common
task. Efficient programming of such architectures is one of the most important
challenge of the next decade. Among the many solutions which have been pro-
posed – parallel programming libraries, domain specific languages, automatic
parallelization – one of the most interesting is the use of parallel programming
languages: languages in which parallel constructs are first class citizens, on a par
with standard control constructs like the sequence or the loop. This approach
has two advantages. Firstly, it hides the intricate details of parallel program-
ming at the hardware or operating system level. Second, and most importantly,

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 113–132, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

114 P. Feautrier, É. Violard, and A. Ketterlin

the programmer can express the problem inherent parallelism. Such parallelism
might be difficult to infer from a sequential implementation.

The recent years have seen the creation of many such languages, among which
Titanium [1], Chapel [2], Co-Array Fortran [3], UPC [4], and Habanero Java
[5]. This paper deals with X10 [6], which is being developed at IBM Research.
However, we believe that our techniques – if not our results – can be adapted
without difficulties to other languages. Basically, parallelism is expressed by
syntactic constructions, async/finish in X10 or cobegin/coend in Chapel. For
some algorithms, it is necessary to restrict temporarily the degree of parallelism,
using synchronization objects, called clocks in X10 or phasers in Habanero Java.
These primitives are somewhat redundant with the finish construct, and may
be used interchangeably in some circumstances. The aim of this paper is to
explore these redundancies for X10, and to evaluate their impact on program
performance.

Our key contributions are:

– we give a general scheme for clock elimination, which applies only to static
control programs,

– we show that this scheme is correct and does not lose parallelism,
– for polyhedral programs, the control overhead of the target program can be

reduced or even eliminated by loop transformations,
– experiments show that for the latest version of the X10 compiler and runtime,

the proposed transformation improves the running time for fine grain parallel
programs.

The rest of the paper is structured as follows. We will first give as much in-
formation on X10 as is necessary to understand our approach. The interested
reader is referred to [6] for an in-depth coverage. We will then define the poly-
hedral subset of X10. While our approach is not limited to this subset, it gives
the best results in the case of polyhedral programs.

1.1 The X10 Language

The Base Language. X10 is an object oriented language of the Java family.
It has classes and methods, assignments and method invocation, and the usual
control constructs: conditionals and loops. Dealing with method invocation ne-
cessitates interprocedural analysis, and is beyond the scope of this paper. The
exact shape of assignments is irrelevant in this work.

X10 has two kind of loops: the ordinary Java loop:

for(<initialization>; <tests>; <increment>) S

and an enumerator loop:

for(x in <range>) S

where the type of the counter x is inferred from the type of the range.

Improving the Performance of X10 Programs by Clock Removal 115

Concurrency. Concurrency is expressed in X10 by two constructs, async S and
finish S, where S is an arbitrary statement or statement block. Such constructs
can be arbitrarily nested, except that the whole program is always embedded
in an implicit or explicit finish, which creates the main activity. The effect of
async S is to create a new activity or lightweight thread, which executes S in
parallel with the rest of the program. The effect of finish S is to launch the
execution of S, then to wait until all activities which were created inside S have
terminated.

X10 also allows the distribution of work on a set of logical places (typically,
various nodes of a compute cluster), in a way that is transparent to the orga-
nization of activities. This aspect is orthogonal to the work presented in this
paper, and will not be further discussed.

Synchronization. In some cases, it may be necessary to synchronize several
parallel activities. This can be achieved using clocks. Implicit clocks are created
by clocked finish constructs. Activities are registered to the clock associated
to the innermost enclosing clocked finish if created by a clocked async con-
struct. An activity deregisters itself from its associated clock when it terminates.
Synchronization occurs when an activity executes the Clock.advanceAll()

primitive. This activity is held until all registered activities have executed a
matching Clock.advanceAll(), at which time all registered activities are re-
leased. In the following text, and in the interest of brevity, Clock.advanceAll()
will be abbreviated into advance. X10 also has explicit clocks, which are first
class objects and are always accessed through references. Their analysis poses
difficult points-to problems which are beyond the scope of this paper.

Clocks can be seen as generalization of the classical barriers. The main dif-
ferences are that activities may be distributed among several clocks which work
independently, and that this distribution is dynamic as it can change when an
activity is created or terminated. Refer to Figure 1 for a sample X10 program.

Intuitively, it should be clear that an unclocked finish or a set of advances can
be used interchangeably. In both cases, several activities are stalled until all of
them have reached a synchronization point. If a clock is used, then all clocked
activities are released for further processing, while in the case of a finish, they
are destroyed. The aim of this paper is to explore this analogy, both from the
point of view of expressiveness and from the point of view of performance.

1.2 The Polyhedral Subset of X10

In general, analysis of arbitrary programs in a high level language like X10 is
difficult, due to the presence of dynamic constructs like while loops, tests, and
method invocation. Hence, many authors [7] have defined the so-called polyhe-
dral model, in which many analyses can be done at compile time. The polyhedral
subset of X10 has been defined in [8]. The present section is a summary of this
work. An X10 program is in the polyhedral model if its data structures are ar-
rays and its control structures are loops. An enumerator loop is polyhedral if the

116 P. Feautrier, É. Violard, and A. Ketterlin

range is an integer interval. The bounds of the range and the array subscripts
must be affine functions of surrounding loops counters and integer parameters.

If these conditions are met, one can define statement instances, iteration do-
mains, and an order of execution or happens-before relation. Statement instances
are named by position vectors, which are deduced from abstract syntax trees
(AST).

Consider the following example and its AST:

finish

for(i in 0..(n-1)) {

S1;

async

S2;

}

finish

for i

S1

0

async

S2

0

1

0

Fig. 1. A Sample Program

The position vector for an elementary statement S is obtained by following the
unique path in the AST from the root to S. In the example, the position vector
of S1 is [f, 0, i, 0] and that of S2 is [f, 0, i, 1, a, 0], where f stands for finish

and a stands for async. Let x and y be two position vectors, and let us write
x ≺ y for ”instance x happens before instance y”. To decide whether x ≺ y,
first expand x� y, where � is the ordinary lexicographic order. Then, remove
a term if, after elimination of a common prefix, the first letter one encounter
on the left is an a. This rule reflects the fact that the only temporal effect of
async S is to postpone the execution of S. The reader may care to check that
in the above example, instances of S2 are unordered, while S1(i) happens before
S2(i

′) if i < i′.
Another construction is necessary for programs that use clocks. The simplest

case is that of one-clock programs (or of innermost clocked finishes). One must
distinguish the unclocked happens-before relation, for which advances are treated
as ordinary statements, and the clocked happens-before, noted ≺≺. Let A be the
set of advances inside one clocked finish. The advance counter at operation u is
defined as:

φ(u) = Card{u′ ∈ A |u′ ≺ u}.

When the effect of clocks is taken into account, one can prove that if φ(u) < φ(v),
then u happens before v. As a consequence, the clocked happens-before relation
is:

u ≺≺ v ≡ φ(u) < φ(v) ∨ u ≺ v.

Improving the Performance of X10 Programs by Clock Removal 117

Since for polyhedral programs A is a union of disjoint polyhedra, and u′ ≺ u
is a disjunction of affine inequalities, the set {u′ ∈ A |u′ ≺ u} is the set of
integer points which belong to a union of polyhedra. The cardinal of this set can
be computed in closed form using the theory of Ehrhart polynomials, for which
there exists efficient libraries [9].

2 A Generic Transformation Strategy

Our goal is to remove clocks from X10 programs. To understand the idea of
this transformation, consider Figure 2: the center graph depicts the execution
of an imaginary X10 program, where activities are represented by vertical boxes
that contain regular instruction executions and clock synchronization operations.
These activities “align” on their calls to Clock.advanceAll(). The code on the
left side of the figure is one possible source of this program. The idea of the
transformation is to extract “slices” (or phases) across activities, represented
by horizontal dashed boxes on the graph. A possible corresponding program
appears on the right of the figure: the usage of clocks has been replaced by
the barrier ending finish blocks. We will prove in the next section that both
programs execute the same operations in the same order, except for clocks and
the number (and duration) of activities.

clocked finish {

for (i ...)

clocked async

for (j ...) {

S;

Clock.advanceAll();

}

i

j

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

S
adv

for (j ...)

finish

for (i ...)

async S;

Fig. 2. Parallelism and synchronization in X10, with and without clocks

This transformation, can be implemented by a straightforward technique.
Starting with a given clocked finish block, the result of the transformation
can be sketched as follows:

for (d ...) // where d is a monotonically increasing phase number
finish Sd // the original finish block restricted to phase d

Writing the transformed program this way assumes that it is possible 1) to
determine the number of phases of the program, either statically or dynamically,
2) to execute the given block for a given phase only (the restriction of the block
to that phase), and 3) to repeatedly execute the original block. The rest of this
section explores these three issues.

118 P. Feautrier, É. Violard, and A. Ketterlin

2.1 Motivating Example

Our goal in this section is three-fold. First, it is important to understand what
class of programs the transformation can be applied to. Second, the example
will help pinpointing potential optimizations. And third, we want to empirically
validate our intuition that managing clocks is more expensive than creating
activities.

Our working example appears on the left of Figure 3. The finish block creates
only two activities in addition to the main activity. Each of these execute a loop
that does some work (in abstract instructions S0 and S1), and then conditionally
synchronizes with the other. A set of input parameters, contained in arrays a0
and a1, drives the control of the program and the synchronization scheme. These
parameters make it impossible to statically derive how many phases the program
has, and how many executions of S0 and S1 are performed in each phase.

clocked finish {

clocked async {

for (i in 0..(N-1)) {

S0(i);

if (a0(i) > 0)

Clock.advanceAll();

}

}

clocked async {

for (i in 0..(N-1)) {

S1(i);

if (a1(i) > 0)

Clock.advanceAll();

}

}

}

1 cont = true;

2 for (d=0 ; cont ; d++) {

3 cont = false;

4 finish {φ := 0;

5 async { φ0 := φ;
6 for (i in 0..(N-1)) {

7 if (d == φ0) S0(i);

8 if (a0(i) > 0)

9 ++ φ0;

10 }

11 if (d<φ0) cont = true; }

12 async { φ1 := φ;
13 for (i in 0..(N-1)) {

14 if (d == φ1) S1(i);

15 if (a1(i) > 0)

16 ++ φ1;

17 }

18 if (d<φ1) cont = true; }

19 if (d<φ) cont = true; }

20 }

Fig. 3. An example program, before and after transformation

The resulting program appears on the right of Figure 3. The transformation
can be broken into four successive steps:

1. The finish block is wrapped inside a loop over d, whose iterations represent
the various phases of the execution (line 2 on Fig. 3). The exit condition is
represented with a boolean, named cont, whose role is detailed in the fourth
phase.

Improving the Performance of X10 Programs by Clock Removal 119

2. Every activity gets its own local “counter” (named φ, φ0 and φ1 in the
example),1 initialized at the start of the activity by capturing the value of
the parent activity’s counter if any (lines 4, 5, and 12). Local counters are
maintained by replacing calls to Clock.advanceAll() by an incrementation
(lines 9 and 16).

3. All instructions that have an effect visible outside the finish block are
guarded (lines 7 and 14), and the guard condition checks whether the value
of the local counter matches the currently executed phase (given by d).

4. Finally, when any activity reaches its end, the value of the local counter has
reached its maximum value for that activity. This maximum value is the
index of the last phase for which this activity has work to do. A simple test
decides whether the loop on d should continue iterating (lines 11, 18, and
19).2

To evaluate the performance impact of the transformation, we still need to
give some definition to S0(i) and S1(i). In the experiment below, we use some
“dummy” code of the form:

for (t in 1..T)

a(i) += garbage(k%4)

that is to say, two accesses to arrays plus two arithmetic operations (subject to
optimization). The T parameter is used to control the amount of work performed
by one call to either S0 and S1: on a recent processor, we have observed that such
a loop takes roughly T nanoseconds. To run either the original or the modified
program, the arrays a0 and a1 are filled with randomly generated values with
equiprobable signs.

Figure 4 shows the execution times in milliseconds of both versions with
N = 100 as a function of the parameter T. The original version uses clocks
to synchronize both activities, whereas the modified version simply repeats the
whole finish block as many times as necessary (therefore creating many more
activities). These curves are surprisingly close to each other. For moderately
heavy instruction grain (here between 10 and 100 μs per call to S0 or S1), it
seems that the cost of handling clocks is approximately as high as executing
around 50 instances of the block (including the creation of activities). This ac-
complishes our third goal, and validates our intuition that clocks are expensive.

2.2 Applicability and Correctness

There are two main aspects in the generic transformation:

1. guarding the instructions, so as to have them execute during the right phase;
2. maintaining phase numbers (“dates”) during each iteration of the loop on d.

1 The local counter of the activity executing the body of finish, named φ, is useless
here and was left for completeness only.

2 Activities could be aborted once their local counter is above the value of d: this
aspect is more or less orthogonal to our goal, and is ignored here.

120 P. Feautrier, É. Violard, and A. Ketterlin

Fig. 4. Clocked and clockless execution times (in milliseconds)

Let us for a moment assume that the second aspect is enforced. In that case,
it is easy to see that both versions of the program are equivalent. For, if two
instructions of the original block are executed during different phases, then they
will be executed inside different finish blocks in the transformed program. And
if they are executed during the same phase, they will still be executed in the
right order, since the transformed block is a copy of the original block, and thus
faithfully reproduces program order. Therefore, correctness of the transformation
is guaranteed if phase numbers can be correctly maintained.

Maintaining correct dates at all times, i.e., during every iteration of the d-
loop, however, is not possible for all programs. Here is a simple modification
of our previous example, where the body of the i-loop inside the first async

becomes:

if (a0(i) > 0) {

a0(i) = -1;

Clock.advanceAll();

}

Here, code executed at date d updates a value that will be used at a later date
(an iteration d′ with d′ > d). This means that later iterations of the d-loop will
not be able to maintain phase numbers correctly, leading to an incorrect result.

The general criterion to distinguish programs that can be transformed cor-
rectly is the following: every iteration of the d-loop must perform exactly the
same sequence of advance counter incrementations. To formally capture this
notion, let us define control variables : a variable that is used in a conditional

Improving the Performance of X10 Programs by Clock Removal 121

branch (including loop back-edges), or to update another control variable (with
arrays considered as single variables).3 Then, a program will be correctly trans-
formed, if the history of each control variable is the same in each iteration of
the d loop, i.e. if control variables which are live-in at the begining of the d loop
are not modified within the loop. For sequential structured programs, this can
be checked by many classical algorithms, including reaching definition analysis
and transformation to SSA. These algorithms can be extended to parallel pro-
grams: see for instance [10], where a Concurrent Static Single Assignment form
is defined for programs with parallel construct similar to those of X10, including
post / wait synchronization. The results of this analysis are approximate. For
polyhedral X10 programs, it is possible to do better, as shown in [8].

2.3 Optimization Opportunities

The generic transformation described above uses a very costly strategy: re-
executing the original code again and again, inhibiting the execution of almost
all instructions at each iteration. Even though this cost seems to be amortized
even for moderately heavy computations, the whole structure of the transformed
program is unsatisfactory. This section tries to highlight characteristics of the
transformed program that may lead to further simplification. The various steps
of the intuitive transformation provide important clues on classes of programs
where this applies.

The first aspect is about the local counters that have to be maintained to
model the “date” inside an activity. In some cases, the date may be available at
compile time as a closed form function of loop counters. Or it can be precom-
puted to avoid repeated incrementations of the local counter. In our example,
precomputation would fill two arrays d0 and d1, indexed on i and containing
the date at iteration i. The code of the first activity becomes:

for (i in 0..(N-1))

if (d == d0(i)) S0(i);

In other cases, like the ones described in the next section, dates are functions of
the enclosing loop counters, and do not need dedicated storage.

The second aspect is very much related to the first, and relates to the upper
bound of the enclosing loop. When dates can be calculated statically, it is imme-
diate to compute or memorize their maximal value (which is the upper bound
on d) . This also removes the need of a boolean variable and tests at the end of
activities.

The third aspect relates to the interplay between statement guards and loop
bounds. In our example, we have reached a situation where a loop iterates from
0 to N − 1, but where only a sub-range of this iteration space leads to actual
execution. It is therefore possible to adjust the range of the loop to cover only
the relevant sub-range. In our example, the first activity becomes:

3 In practice, the collection of control-variables can be restricted to programming
constructs containing at least one call to Clock.advanceAll().

122 P. Feautrier, É. Violard, and A. Ketterlin

while (d0(i0) == d) {

S0(i0);

++ i0;

}

where i0 is a global counter, suitably initialized and preserved across activities.
We have given an informal account on how a program with clocks removed

can be further simplified and optimized. The next section describes a class of
programs where these optimizations can be systematically applied, and details
their implementation.

2.4 General Polyhedral Programs

Polyhedral programs with clocks have the property that a date can be computed
directly for any instruction, by counting the number of advances performed be-
fore an instance of the given instruction. This removes the need to maintain
explicit counters, and provides symbolic expressions involving loop counters and
symbolic parameters. One can always evaluate the number of integer points
inside a (parametrized) polyhedron, and therefore assign a monotonically in-
creasing rank to any instance of an instruction. Under reasonable assumptions,
i.e., that loops have unit steps, such ranks are integer-valued polynomials with
rational coefficients [11].

An example program appears on Figure 5, with date expressions placed in
comments. Note that the counting happens in two phases: first, the starting date
of an activity is computed, and second the date of instructions are computed
relative to the activity’s starting date.

clocked finish

for (i in 0..(N-1)) {

clocked async { // i

for (j in 0..(M-1)) {

S0(i,j); // i+j*(j-1)/2

for (k in 0..(j-1)) {

S1(i,j,k); // i+j*(j-1)/2+k

Clock.advanceAll();

} } }

Clock.advanceAll();

}

for (d in 0..(N-2+M*(M-1)/2))

finish

for (i in 0..(N-1)) {

async {

for (j in 0..(M-1)) {

if (d == i+j*(j-1)/2)

S0(i,j);

for (k in 0..(j-1)) {

if (d == i+j*(j-1)/2+k)

S1(i,j,k);

} } }

}

Fig. 5. A polyhedral program with polynomial dates (in comments) on the left, and
the result of the transformation, on the right

The transformation process starts by computing the maximal date at which
an instruction of the original finish block executes. This can be done by max-
imizing for each instruction individually, and then taking the maximum of the

Improving the Performance of X10 Programs by Clock Removal 123

results. This maximum,N−2+M(M−1)/2 in our example, is the upper bound of
the loop wrapped around the original block. Then, calls to Clock.advanceAll()

are removed, and guards are placed around statements. The result appears on
the right part of Figure 5.

After having inserted guards around statements, the last step is to examine
whether the guards have an impact on the bounds of the loops that enclose
the statement. Our example illustrates this situation: after transformation, the
innermost loop becomes:

for (k in 0..(j-1))

if (d == i+j*(j-1)/2+k)

S1(i,j,k);

A trivial rewriting of the guard shows that even though the loop iterates over
a range of values for k, the whole loop will actually execute S1(i,j,k) at most
once. This construct can therefore be replaced by:

k = d - i - j*(j-1)/2;

if (0<=k && k<=j-1)

S1(i,j,k);

which tests whether the single value selected by the guard is inside the range of
the loop.

Note that we started with a depth three loop nest. Then a new loop level was
added around this nest. And finally the deepest level is removed. This is likely to
reduce the overhead introduced by the transformation. This optimization may be
extended to loops containing several statements (at the same or different dates).
However, it applies only when date expressions are linear in the nearest enclosing
loop counter, which we think is a very common case. Actually, for this not to be
the case, an innermost statement-bearing loop should also contain another loop
1) containing only advances, and 2) with a bound being a function of its parent
loop counter. Here is the simplest example of such a construction:

for (y in ...) {

S(...);

for (z in 0..y)

Clock.advanceAll();

}

We think this pathological case and its variations are sufficiently infrequent not
to cause real trouble in practice.

Note that after a loop is removed, the statement is still guarded, but with a
condition involving inequalities. Therefore, there is no possibility of re-applying
the same “iteration space collapsing”, but nothing says that the new guard may
not imply bound adjustments on the enclosing loops. The next section shows an
example of such chained loop adjustments.

124 P. Feautrier, É. Violard, and A. Ketterlin

2.5 Polyhedral Programs with Affine Dates

We have seen that when polynomial dates are available, the resulting program
can be optimized by combining guards and loop bounds. However, dealing with
polynomials of high degree is difficult and may restricts how far optimizations
can go. It is therefore interesting to consider the particular case of affine dates.
In that case, all obstacles to optimization are lifted, and one can hope to be
able to optimize the transformed program up to the point where it has the same
complexity as the original program.4

Whenever the original program induces dates that are all affine forms in the
enclosing loop counters (and parameters), we are guaranteed that the deepest
loop level can be removed. In fact, this last level of loop contains only guarded
statements, and the guards are of the form d = α0i0+ . . .+αnin, where i0, . . . , in
are the counters of the enclosing loops. Such a guard always determines at most
one value of the counter of the nearest loop. This property appears in the pro-
gram in Figure 6. The left part shows the original clocked finish block (dates
appear in comments), whereas the right part shows the mechanically transformed
program. Since dates are affine, one can immediately apply the “iteration space
collapsing” optimization mentioned in the previous section. The first loop on j

then becomes:

if (i<=d && d<=N-1)

S0(i,d);

and the second loop on j can be transformed as well (note that we do not keep
a variable to store the value of j, but rather substitute it immediately).

The major advantage of having affine dates is the fact that the resulting
program can be further optimized. We are going to illustrate these additional
optimizations on the example program in Figure 6, and then we will show how
the program transformations involved are strongly related to the problem of
code generation from a polyhedral model of a program. We will then show, in
the next section, how existing tools can be adapted to directly produce the
optimized version.

Regarding the example of Figure 6, the first step is to replace constructs of the
form async if (...) S(...) with if (...) async S(...), because there is
no need to create an activity that does nothing. All these initial modifications
lead to the following program:

for (d in 0..(2*N-2))

finish

for (i in 0..(N-1)) {

if (i<=d && d<=N-1)

async S0(i,d);

4 Note that the complexity in terms of the number of executions of individual in-
structions is always the same on both versions. Here we refer to the complexity of
the associated control, i.e., the number of times guards and loop exit conditions are
evaluated.

Improving the Performance of X10 Programs by Clock Removal 125

clocked finish {

for (i in 0..(N-1)) {

clocked async // i

for (j in i..(N-1)) {

S0(i,j); // i+j-i = j

Clock.advanceAll();

}

Clock.advanceAll();

clocked async // i+1

for (j in 0..(i-1)) {

S1(i,j); // i+1+j

Clock.advanceAll();

}

}

}

for (d in 0..(2*N-2))

finish {

for (i in 0..(N-1)) {

async

for (j in i..(N-1)) {

if (d == j)

S0(i,j);

}

async

for (j in 0..(i-1)) {

if (d == i+j+1)

S1(i,j);

}

}

}

Fig. 6. A polyhedral program with affine dates on the left, and the corresponding
program after clock removal and before optimization on the right

if (i+1<=d && d<=2*i)

async S1(i,d-i-1);

}

At this point, all remaining optimizations are made possible by the comparison of
the various inequalities that apply to the individual instructions. Since our goal
is to reduce the time taken by evaluating the guards, we are going to rearrange
this code to eliminate useless guards and uselessly large bounds.

The first batch of useless evaluations of guards is caused by the d<=N-1 con-
dition, because at this point d is supposed to iterate from zero to 2*N-2. This
means that half of the values of d will simply fail to satisfy the condition. Elimi-
nating these useless tests requires that the range of d is split into two sub-ranges,
the first of which makes the condition trivially true, and the second which makes
it false. The result appears in Figure 7(a). Range-splitting globally enlarges the
code, but removes any occurrence of S0 in the loop iterating over the second
sub-range. Note also that condition i+1<=d around S1 has become trivially true
in the second loop, and is therefore also omitted.

The second set of unnecessary tests is caused by the remaining conditions,
which in all cases are stricter than the surrounding loop bounds. The range of
the first loop on i can be split into three sub-ranges, namely 0..(d-1), d, and
(d+1)..(N-1): the first leads to the bulk of the work, the second selects only
S0, and the third leads to nothing. The result of bound adjustment appears in
Figure 7(b). What was just done on upper bounds can now be done on lower
bounds as well: the condition d<=2*i appears twice inside loops whose lower
bound on i is zero, for any value of d. Therefore, the lower bound can be adjusted
as well. The details are left to the reader.

126 P. Feautrier, É. Violard, and A. Ketterlin

for (d in 0..(N-1))

finish

for (i in 0..(N-1)) {

if (i<=d)

async S0(i,d);

if (i+1<=d && d<=2*i)

async S1(i,d-i-1);

}

for (d in N..(2*N-2))

finish

for (i in 0..(N-1)) {

if (d<=2*i)

async S1(i,d-i-1);

}

(a) After range splitting on d

for (d in 0..(N-1))

finish {

for (i in 0..(d-1)) {

async S0(i,d);

if (d<=2*i)

async S1(i,d-i-1);

}

async S0(d,d);

}

for (d in N..(2*N-2))

finish

for (i in 0..(N-1)) {

if (d<=2*i)

async S1(i,d-i-1);

}
(b) After bound adjustments

Fig. 7. The program transformed from Fig. 6, after various further optimizations

3 Polyhedral Implementation and Optimized Control

The approach we have taken in the previous section consists in a succession of
elementary transformations: wrapping a loop around the original code, placing
guards around elementary statements, and adjusting iteration domains according
to the guards. In contrast, in the polyhedral model, all these transformations can
be represented in a uniform framework, and polyhedral operations can be used
to manipulate the program. A polyhedral model of an instruction (a polyhedron,
for short) is made up of two distinct parts: first, an ordered list of dimensions,
and second a set of constraints (inequalities) on the values of the various di-
mensions. There are three types of dimensions: 1) syntactic dimensions, which
are usually constants, 2) loop iterators, and 3) parallel constructs indicators,
which are the abstract symbols f(inish) and a(sync). Figure 8 displays the
polyhedra corresponding to the instructions appearing in the original program
of Figure 6. The left part of the figure shows an abstract syntax tree, which is
convenient to read the various dimensions. The right part shows the polyhedra,
using the notation of the iscc polyhedral calculator, part of the barvinok li-
brary [9]. Note that polyhedra can be parametrized (by N in our case), and that
constant dimensions can be written literally, i.e., {[f,0,...]: ...} is equiva-
lent to {[f,p_0,...]: p_0=0 and ...}.

All manipulations necessary for the elimination of clocks can now be formu-
lated as operations on polyhedra:

1. Introducing dates is performed by adding a dimension, at the very end of
the list of dimensions since the date may depend on any of the enclosing
loop counters. For instance, the definition of S0 becomes:

S0 := [N]->{[f,0,i,0,a,0,j,0,d]: 0<=i<N and i<=j<N and d=j};

Improving the Performance of X10 Programs by Clock Removal 127

finish

for i

async

for j

S0

0

advance

1

0

0

advance

1

async

for j

S1

0

advance

1

0

2

0 S0 := [N] ->

{[f,0,i,0,a,0,j,0]:

0<=i<N and

i<=j<N };

S1 := [N] ->

{[f,0,i,2,a,0,j,0]:

0<=i<N and

0<=j<i };

Fig. 8. An AST for the program on Figure 6, and the corresponding polyhedra

2. Representing the whole program simply consists in computing the union of
the individual instruction polyhedra: 5

P := S0+S1;

3. Iterating on dates first is performed by changing the order of the dimensions.
This is written as:

U := {[f,p0,i,p1,a,p2,j,p3,d]->[d,f,p0,i,p1,a,p2,j,p3]}(P);

This does not do anything, but is an important indication to the next step.
4. Producing the final code is performed by generating a program scanning the

resulting polyhedron U. We use the CLooG algorithm [12], which produces a
new loop nest with a loop scanning dates (d) first, and whose body contains
various constructions (finish, async, loops, and instructions) in the order
prescribed by the various other dimensions.

The final code (after trivial cosmetic post-processing) appears on Figure 9:
CLooG has adjusted all loop bounds (even though it could have gone further).
The same result could be obtained by applying, e.g., some variation of Fourier-
Motzkin elimination for bound adjustment [13]. However, reconstructing the
structure would still need additional work. CLooG does both iteration domain
computation and code generation.

4 Experimental Results

To evaluate the effect of eliminating clocks on execution time, we have used
eight different polyhedral programs with affine dates. All these programs are
parametrized by a number N that determines the number of activities and the
number of iterations of loops in various ways. Their execution is depicted on
Figure 10 for N = 6: vertical lines represent activities, horizontal dashed lines

5 For this union operation the dimension of the various lists must coincide; this is
trivially achieved by padding with zeros. No modification is necessary in our example.

128 P. Feautrier, É. Violard, and A. Ketterlin

for (d in 0..(N - 1))

finish

for (i in 0..d) {

async S0(i, d);

if (d >= i + 1 && 2 * i >= d)

async S1(i, d - i - 1);

}

for (d in N..(2 * N - 2))

finish

for (i in (d - d / 2)..(N - 1))

async S1(i, d - i - 1);

Fig. 9. The final result, produced by CLooG

represent phases of execution, and dots represent individual instruction execu-
tions (distinct dot shapes represent distinct static instructions). For instance, the
penultimate iteration domain on Figure 10 corresponds to the program shown
on the left of Figure 6.

Fig. 10. Example iteration spaces, here for N = 6. All examples spawn O(N) activities,
last for O(N) clock steps, and execute O(N2) instructions.

To compare the clocked and clockless versions of each program, we have mea-
sured their execution times (averaged over 20 executions). We have used a not-
quite-recent X86-64 compatible AMD machine with 24 cores (two sockets of
12 cores). X10 programs were compiled with the official release of X10, ver-
sion 2.3.1, available from http://x10-lang.org/. All programs have been run
with N = 100. Because the elimination of clocks affects only the control of the
program, and not its actual work, we have varied the time taken by a single

http://x10-lang.org/

Improving the Performance of X10 Programs by Clock Removal 129

instruction execution (a call of the form Sk(i, j) in all cases) the same way we
did in Section 2.1: a single parameter T controls how much time a single exe-
cution of any Sk(i, j) takes. The goal of the experiment is therefore to measure
the difference in execution times as a function of T .

The results are shown on Figure 11. Every graph shows the execution time
of both versions. In all cases, the clockless version runs faster than the version
with clocks. Rows of three graphs show the times of a given program for various
values of T (the workload): every graph displays ten evenly spaced values of T ,
with one order of magnitude variation from one graph to the next.

Since X10 is not the only language allowing finish/async programming, we
have also conducted preliminary experiments with Habanero-Java [5] (version
1.3.1), with results similar to those presented here.

There are several lessons to learn from Figure 11. First, eliminating clocks
always has a positive impact on execution time. This validates our intuition
that clocks are expensive to manage. At least their use is more expensive than
launching more activities (by a factor O(N) in our case). We acknowledge that
this is fairly dependent on implementation issues, but we also think that it will
be easier to optimize activity creation rather than clock synchronization. Future
implementations of X10 (and related languages, like Habanero and Chapel [2])
may change this situation.

Examination of the leftmost column of Figure 11 shows the relatively irregular
behavior of programs using clocks with fine-grain instructions: it looks as if the
frequent advances make the actual time difficult to predict. Clockless programs
display a smoother, quasi-linear curve. Again, this heavily depends on the imple-
mentation of the activity scheduler, but it seems clear that clockless programs
are “easier” to schedule over an arbitrary number of threads.

The third lesson learned is that, as expected, the difference between versions
vanishes when the workload is reasonably large, because the time spent in control
becomes negligible compared to the time spent on computation. Less obvious is
that this happens for values of T around one million (on our machine, about 1
millisecond). Considering the kind of programs we have used (loops over arrays,
where instructions access one or more arrays), there is little chance that this
workload is reached. This means that for fine-grain programs, the transformation
is probably advantageous, providing significant speedup in most cases.

5 Related Work

There exists a large body of literature on barriers and clocks, their analysis,
optimization and verification. Nearest to the subject of this paper is work on
optimal barrier placement [14,15,16] and verification [17]. While apparently re-
lated to the present work, Chau-Weng Tseng paper [18] deals in fact with a
completely different problem, namely how to distribute work among threads in
order to minimize synchronization. Several authors have argued that barriers or
clocks can be implemented more efficiently than task or activity creation, and
have advocated algorithms for minimizing the number of tasks. To the best of

130 P. Feautrier, É. Violard, and A. Ketterlin

T from 1K to 10K T from 10K to 100K T from 100K to 1M

Fig. 11. Execution times in seconds for clocked () and clockless () versions,
for various scales of workload

Improving the Performance of X10 Programs by Clock Removal 131

our knowledge, the word SPMDization was coined by Padua and Paek in [19]. A
recent discussion of the same idea is by Zaho et. al. [20] in which an algorithm,
which amount to moving parallel loops outside sequential loops with barrier in-
sertion is proposed. Our contention here is that moving in the opposite direction
may be beneficial in some cases. Choosing between the two solutions depends
on many factors: the target system, the compiler and runtime and the source
program. For instance, if the target is hardware, where it is almost impossible to
dynamically create activities and synchronization is cheap, using clocks might
be the best solution. Our work shows that the situation is exactly the reverse
for software.

6 Conclusion

When generating a parallel program, either manually or automatically, one has
to choose between two extreme program shapes: one a sequence of parallel con-
structs, the other a parallel composition of sequential threads. Obviously, these
two extreme cases can be combined to produce many intermediate solutions.

In the first approach, it is usually possible to restrict synchronization to
one barrier after each parallel block. This corresponds to the exclusive use of
async / finish in X10, and is especially suitable for vector or data-parallelism.
In the second approach, it is usually not possible, except in the case of embarrass-
ingly parallel programs, to construct independent threads. Residual dependences
must be satisfied using clocks or phasers [5]. This work shows that deciding which
approach gives the best performance is not obvious, and must be approached
experimentally. Our main contribution is a systematic method for converting a
large class of clocked programs into unclocked ones. Our algorithms can easily be
automated, thus simplifying the comparison process. Let us emphasize that our
transformation is not limited to polyhedral programs or fragments. The only real
constraint is that no control variable which is live-in at the beginning of the con-
sidered fragment is modified. This condition is trivially satisfied for polyhedral
programs, in which case further optimizations are enabled.

This paper has introduced a program transformation that acts on an explic-
itly parallel program, an unusual characteristic in the polyhedral framework.
Such an ability opens up a large space of new potential optimizations, extending
the scope of automatic parallelization. Taking the cost of synchronization prim-
itives into account must also be extended and further generalized, to cover cases
where implementations may have different semantics and/or relative overheads.
Also, the cost of synchronization is only one part of the picture, and more work is
needed to combine synchronization costs with more ”traditional” transformation
objectives in the polyhedral framework, like, e.g., temporal and spatial locality.
Finally, we plan to investigate the use of parallel-to-parallel program transfor-
mations in dynamic optimization frameworks, where switching between various
versions of the same program can alleviate the variation of synchronization costs
linked to changing runtime conditions.

132 P. Feautrier, É. Violard, and A. Ketterlin

References

1. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A.,
Hilfinger, P., Graham, S., Gay, D., Colella, P., et al.: Titanium: A high-performance
Java dialect. Concurrency Practice and Experience 10(11-13), 825–836 (1998)

2. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the
Chapel language. International Journal of High Performance Computing Appli-
cations 21(3), 291–312 (2007)

3. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN
Fortran Forum 17(2), 1–31 (1998)

4. UPC Consortium and others: UPC language specifications. Lawrence Berkeley
National Lab. Tech. Report LBNL–59208 (2005)

5. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-java: The new adventures of
old X10. In: PPPJ 2011, pp. 51–61. ACM (2011)

6. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language
specification version 2.2 (March 2012),
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

7. Feautrier, P., Lengauer, C.: The polyhedral model. In: Padua, D. (ed.) Encyclope-
dia of Parallel Programming. Springer (2011)

8. Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow analysis for
polyhedral X10 programs. In: PPoPP (2013)

9. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. In:
Algorithmica (2007)

10. Lee, J., Padua, D.A., Midkiff, S.P.: Basic compiler algorithms for parallel programs.
In: PPoPP 1999, pp. 1–12. ACM (1999)

11. Clauss, P.: Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: Applications to analyze and transform scientific programs. In: ICS
1996, pp. 278–285. ACM (1996)

12. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2013, Juan-les-Pins, pp. 7–16 (2004)

13. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: Proc. Third
SIGPLAN Symp. on Principles and Practice of Parallel Programming, pp. 39–50.
ACM Press (April 1991)

14. Aiken, A., Gay, D.: Barrier inference. In: POPL 1998, pp. 342–354 (1998)
15. Kamil, A., Yelick, K.: Concurrency analysis for parallel programs with textually

aligned barriers. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan,
P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 185–199. Springer, Heidelberg (2006)

16. Darte, A., Schreiber, R.: A linear-time algorithm for optimal barrier placement.
In: PPoPP 2005, pp. 26–35. ACM (2005)

17. Vasudevan, N., Tardieu, O., Dolby, J., Edwards, S.A.: Compile-time analysis and
specialization of clocks in concurrent programs. In: de Moor, O., Schwartzbach,
M.I. (eds.) CC 2009. LNCS, vol. 5501, pp. 48–62. Springer, Heidelberg (2009)

18. Tseng, C.W.: Compiler optimizations for eliminating barrier synchronization. In:
PPoPP 1995, pp. 144–155. ACM (1995)

19. Padua, D.A., Paek, Y.: Compiling for scalable multiprocessors with Polaris. Parallel
Processing Letters 07(04), 425–436 (1997)

20. Zhao, J., Shirako, J., Nandivada, V.K., Sarkar, V.: Reducing task creation and
termination overhead in explicitly parallel programs. In: PACT 2010, pp. 169–180.
ACM (2010)

http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

Taming Control Divergence in GPUs through Control
Flow Linearization

Jayvant Anantpur and Govindarajan R.

Supercomputer Education and Research Centre
Indian Institute of Science

jayvant@hpc.serc.iisc.ernet.in, govind@serc.iisc.ernet.in

Abstract. Branch divergence is a very commonly occurring performance
problem in GPGPU in which the execution of diverging branches is serialized
to execute only one control flow path at a time. Existing hardware mechanism to
reconverge threads using a stack causes duplicate execution of code for unstruc-
tured control flow graphs. Also the stack mechanism cannot effectively utilize the
available parallelism among diverging branches. Further, the amount of nested di-
vergence allowed is also limited by depth of the branch divergence stack.

In this paper we propose a simple and elegant transformation to handle all
of the above mentioned problems. The transformation converts an unstructured
CFG to a structured CFG without duplicating user code. It incurs only a linear
increase in the number of basic blocks and also the number of instructions. Our
solution linearizes the CFG using a predicate variable. This mechanism recon-
verges the divergent threads as early as possible. It also reduces the depth of the
reconvergence stack. The available parallelism in nested branches can be effec-
tively extracted by scheduling the basic blocks to reduce the effect of stalls due to
memory accesses. It can also increase execution efficiency of nested loops with
different trip counts for different threads.

We implemented the proposed transformation at PTX level using the Ocelot
compiler infrastructure. We evaluated the technique using various benchmarks to
show that it can be effective in handling the performance problem due to diver-
gence in unstructured CFGs.

Keywords: GPU, Control Divergence, Control Flow Graph.

1 Introduction

There has been a tremendous increase in the use of GPUs in general purpose program-
ming, especially to accelerate data parallel code. The emergence of programming mod-
els such as CUDA [17], OpenCL [13] etc., has fuelled the use of GPUs.

Programming models such as CUDA, OpenCL, etc., use the Single Instruction Mul-
tiple Threads (SIMT) computation model [17]. In this model a large number of threads
run in parallel on Single Instruction Multiple Data (SIMD) cores using hardware mul-
tithreading to hide the stalls due to long latency instructions. A group of threads, called
a warp, is scheduled to execute on the SIMD processors. Each thread in a warp exe-
cutes the same instruction. The execution of a branch instruction can cause the control
flow to diverge. The existing hardware solution to handle branch divergence serializes

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 133–153, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

134 J. Anantpur and R. Govindarajan

execution of the two paths till a reconvergence point [10]. Branch divergence is one of
the major sources of performance bottlenecks in GPUs [7] [12] [16] [22]. The diverg-
ing threads are reconverged at the immediate post-dominator (IPDOM) of the branch
instruction.

IPDOM guarantees earliest reconvergence for structured CFGs but not for unstruc-
tured CFGs. Unstructured CFGs (for definition see section 3.2) can result due to the use
of programming language constructs such as goto, break statements, short circuiting
operations, etc., and also due to compiler optimizations such as function inlining [22].
The work by Wu et al. [22] characterizes the use of unstructured control flow in GPU
applications. As per their findings, unstructured CFGs are common in GPU applications
and benchmarks (in 40% of the Parboil, Rodinia and Optix benchmarks).

In the case of unstructured CFGs, some basic blocks between the divergent branch
and its IPDOM may get executed multiple times due to different paths to reach those
blocks from the divergent branch. Diamos et al. [7] proposed a combined hardware
and software solution for this problem and found a reasonable reduction in dynamic
instruction counts for several real applications. Their proposed solution identifies the
thread frontier of each block - set of basic blocks where all other diverged threads may
be executing - and then checks for stalled threads waiting in the thread frontier.

Serial execution of different paths of a branch cannot effectively utilize the paral-
lelism among the paths especially in the case of nested branches and nested loops. In
the case of nested branches, the different execution paths cannot be interleaved to ex-
tract parallelism among them. Rhu et al. [16] proposed a modification to the existing
hardware stack to enable interleaved execution of divergent control flow paths. They
showed performance improvement by utilizing the available parallelism among the di-
verging control flow paths. In the case of nested loops, when the inner loops have differ-
ent trip counts for different threads of the same warp, threads with smaller trip counts
have to wait for the threads with larger trip counts. Han et al. [12] proposed a compiler
transformation to reduce the effect of divergence due to varying trip-counts. It merges
a divergent loop with one or more outer surrounding loops into one loop.

Another limitation of the hardware reconvergence stack is that its depth increases as
the nesting level of branches increases.

In this paper we describe a simple compile time transformation to convert unstruc-
tured CFGs to structured CFGs. The transformation uses a predicate variable to guard
the execution of basic blocks in a CFG. The guard variable acts like a software Program
Counter to decide which basic block to execute next. The transformation implements
the control flow as a simple ”if-then” structure, linearizing the CFG. The proposed
transformation is powerful to convert any unstructured CFG to a structured one. It does
not duplicate the user code unlike in the earlier approach of Zhang et al. [23]. Carter et
al. [5] proved that any node-splitting technique used to convert an irreducible graph to
a reducible graph can increase the code size exponentially. Our algorithm, though does
not fall under node-splitting category, will only cause a linear increase in the code size.

To summarize, our contributions are:

– We propose a very simple and elegant transformation to convert an unstructured
CFG to a structured CFG, with just a linear increase in the number of basic blocks
and instructions.

Taming Control Divergence in GPUs through Control Flow Linearization 135

– We also demonstrate that the proposed transformation is powerful and versatile. It
can be used to handle various performance problems due to branch divergence. In
particular it (a) ensures reconvergence at IPDOM and hence no duplicate execu-
tion of code, (b) enables interleaved execution of blocks from different parts of a
divergent branch and (c) enables merging different invocations of inner loops.

– We show the feasibility of implementing the transformation at PTX level and some
initial experimental results.

To the best of our knowledge, our work is the first to use the transformation described
to convert an unstructured CFG to a structured CFG and further use this idea to reduce
negative effects of branch divergence on GPU performance.

2 Motivation

In this section we discuss in detail the problems due to control divergence in both un-
structured and structured Control Flow Graphs (CFG), arising because of the existing
hardware reconvergence stack and IPDOM mechanism.

2.1 Control Divergence

In GPUs, a group of consecutive threads, called warps, execute together the same in-
struction in a lock step manner.

i f ((c1 () | | c2 ()) && c3 ()) {
S1 ;

e l s e
S2 ;

}
S3 ;

(a) C-Code

(b) CFG

Fig. 1. Short Circuit example

While executing a branch instruction,
if the branch condition evaluates to true
for some threads and false for the other
threads of a warp, then the two parts
of the branch statement are executed
one after the other, masking out threads
based on their branch condition evalu-
ation. This results in smaller groups of
threads executing the then and else parts.
These groups are then merged back when
control reaches the IPDOM of the branch
node. In the case of a structured CFG, IP-
DOM of the branch node is the earliest
reconvergence point, but for an unstruc-
tured CFG, there may be other nodes of
the graph where some of the diverging
groups can potentially reconverge before
all the threads reconverge at the IPDOM.
So, if all the subgroups are allowed to
run without reconverging till the IPDOM,
some of the nodes in the CFG may be
executed multiple times. This leads to
duplicate execution of instructions. We

explain this using the example in Figure 1(a). The unstructured CFG is shown in
Figure 1(b).

136 J. Anantpur and R. Govindarajan

For this example, let us assume a warp with 4 threads T1-T4. Also assume that
threads T1-T2 evaluate c1() to true and T3-T4 evaluate it to false. This causes the
threads to diverge at the end of block B1. The diverging threads are reconverged at
the IPDOM block B6 corresponding to statement S3. Threads T1-T2 take B1→B3 path
whereas threads T3-T4 take B1→B2 path. If we assume that thread T3 evaluates c2()
to true and T4 evaluates it to false, block B3 will be executed twice, once for threads
T1-T2 and then for thread T3. We observe that the problem of branch divergence and
repeated execution of basic blocks exacerbates as we go down the unstructured control
flow graph. For example, B5 is executed thrice, once for each thread T2, T3 and T4.

2.2 Branch Interleaving

The serial execution of the then and else parts of a branch also forgoes the potential
parallelism that can be achieved by interleaved execution of the two parts.

B1 i f (c1 == 1) {
B2 S1 ;

i f (c2 == 1)
B3 S2 ;

e l s e
B4 S3 ;
} e l s e {

B5 S4 ;
i f (c3 == 1)

B6 S5 ;
e l s e

B7 S6 ;
}

(a) C-Code Example for
Branch Interleaving

f o r (i = 0 ; i < 2 ; i ++) {
S1 ;
f o r (j = 0 ; j < cond ; j ++)

S2 ;
S3 ;

}

(b) C-Code Example for Loop Merging

Thread i=1 i=2
T1 cond=10 cond=15
T2 cond=15 cond=10

(c) Trip Counts for Loop Merging Example

Fig. 2. Branch Interleaving and Loop Merging
Examples

Consider a branch with multiple ba-
sic blocks in each part of the branch as
shown in Figure 2(a). The beginning of
each block is shown on the left side. In
this example, if we assume that the then
parts execute before else, the basic blocks
will execute in the order B1, B2, B3,
B4, B5, B6, B7. If the execution in the
then part stalls due to unavailability of
operands, e.g. consider a load in B2 that
results in an L1/L2 cache miss, with its
use in B3, the available ILP in B4 or
other basic blocks cannot be utilized to
mask latencies in B3. This is because the
execution of B4 cannot start until B3 fin-
ishes. Thus SIMD cores may remain un-
used until the operands needed for B3 are
ready. One of the main reasons for stalls
is the high latency for memory accesses.
In the absence of enough threads to hide
the high latency for memory accesses,
the ability to execute code from other
paths of divergent branches can improve
the utilization of the hardware and also
improve the performance. If the blocks
can be ordered differently, e.g. B1, B2,

B5, B3, B6, B4, B7, then the stall on use in B3 can potentially be avoided. Since exe-
cution stalls when a needed operand is not available, the blocks can be ordered so as to
increase the distance between definition and use of an operand. So, if the definition is a
memory load in B2 and the use is in B3, then execution of B5 between B2 and B3 can
avoid the stall in B3.

Taming Control Divergence in GPUs through Control Flow Linearization 137

2.3 Loop Merging

Consider a kernel with a nested loop in which the inner loop has different trip counts for
different threads. Threads of a warp diverging on the inner loop reconverge at the end
of that loop. So, threads with smaller trip counts of the inner loop have to wait for all
other threads of the warp to finish the inner loop execution, before proceeding further.

Consider the example in Figure 2(b). Figure 2(c) shows a scenario where the two
threads have different trip counts for the inner loop. With the existing reconvergence
mechanism, both iterations of the outer loop will execute 15 iterations of the inner loop.
In the first iteration of the outer loop, thread T1 finishes the inner loop execution after
10 iterations but has to wait for thread T2 to finish its remaining 5 iterations. Instead, if
thread T1 is allowed to execute statement S3 and start next iteration of the outer loop, it
can join thread T2 in the execution of the inner loop. With this capability of executing
different invocations of a loop for different threads of a warp, the hardware can be used
more efficiently.

2.4 Hardware Stack Depth

The reconvergence mechanism using hardware stack, handles branch divergence by
pushing two entries on to the hardware stack, one each for the two paths of the branch.
The entry consists of PC of the path, an active mask representing the set of threads in
the warp that follow this path and the reconvergence PC.

B1 i f (c1) { / / b r anch 1
B2 i f (c2) { / / b r anch 2
B4 i f (c3) / / b r anch 3
B6 S1 ;

e l s e
B7 S2 ;
B8 S3 ;

e l s e
B5 S4 ;
B9 S5 ;

e l s e
B3 S6 ;
B10 S7 ;

(a) C-Code

PC Active Mask RPC
B6 1000 B8
B7 0100 B8
B8 1100 B9
B5 0010 B9
B9 1110 B10
B3 0001 B10
B10 1111 -

(b) Reconvergence Stack during
execution of S1

Fig. 3. Stack Depth Example

Each entry is popped when the con-
trol flow corresponding to it reaches the
reconvergence PC (IPDOM) of the di-
vergent branch node. In this way the
stack depth increases for nested divergent
branches and hence cost of the hardware
needed to support nested branches also
increases.

In the example shown in Figure 3(a),
let us assume 4 threads and for each
branch one thread takes the else path
and the remaining threads take the then
path. Also assume that the else path is
pushed onto the stack first and then the
then path. Initially there is only one en-
try on the stack corresponding to all the
threads executing block B1. The execu-
tion of branch 1 adds two entries to the
stack corresponding to blocks B2 and B3.
Then the execution of branches 2 and 3

will add two entries each to the stack. So when S1 is executing, there are 7 entries on
the stack as shown in Figure 3(b).

All the above mentioned problems with the existing hardware stack based reconver-
gence mechanism can be solved with our technique of linearizing a control flow graph.

138 J. Anantpur and R. Govindarajan

3 Linearization Transformation

In the previous section we saw that the reconvergence mechanism using IPDOM suf-
fers from duplicate execution for an unstructured CFG. Our proposed transformation
converts an unstructured CFG to a structured CFG and hence eliminates the problem of
duplicate execution.

In this section we will discuss the linearization transformation in detail, show that it
transforms an unstructured CFG to a structured CFG, prove correctness of the transfor-
mation and then analyze the increase in code size.

3.1 Linearization

Linearization algorithm is based on the idea of predicated/guarded execution of the
basic blocks of a CFG.

i n t g v = B1 id ;
i f (g v == B1 id) {

code f o r B1 ;
g v = c1 v ? B3 id : B2 id ;

}
i f (g v == B2 id) {

code f o r B2 ;
g v = c2 v ? B3 id : B5 id ;

}
i f (g v == B3 id) {

code f o r B3 ;
g v = c3 v ? B4 id : B5 id ;

}
i f (g v == B4 id) {

code f o r B4 ;
g v = B6 id ;

}
i f (g v == B5 id) {

code f o r B5 ;
g v = B6 id ;

}
i f (g v == B6 id)

c ode f o r B6 ;

(a) Transformed Code

(b) Transformed CFG

Fig. 4. Transformed Short Circuit Example

For each basic block of the input CFG,
the transformation creates a guard basic
block to guard its execution; the guard
condition is set by its predecessors. We
will explain this with the short circuit ex-
ample from Figure 1. The transformed
code is shown in Figure 4(a) and the cor-
responding CFG is shown in Figure 4(b).

Execution of the entry block assigns
B1 id to the guard variable as block B1
is the only successor of the entry block.
As the condition in the first branch state-
ment evaluates to true, code for block B1
is executed and the guard variable is set
to index of the successor of B1 based on
the branch condition, i.e., value of c1 v,
where c1 v contains the result of function
call c1(). (Note that in the original code,
based on the value of c1 v, control trans-
fers either to block B2 or B3). This way
at the end of execution of block B1, the
guard variable contains index of the next
block to be executed, i.e. B2 id or B3 id.
Assuming that block B1 sets the guard
variable to the index of block B3, execu-
tion of block B2 is skipped and block B3
is executed (i.e. the guard condition for
block B3 evaluates to true and code for
block B3 is executed). This way the exe-
cution continues till block B6. As can be

seen from Figures 4(a) and (b), linearization algorithm transforms the input CFG into a
sequence of predicated blocks.

Taming Control Divergence in GPUs through Control Flow Linearization 139

3.2 Unstructured CFG to Structured CFG

In this subsection, we explain formally how linearization converts an unstructured CFG
to a structured CFG.

Definition 1. An edge from block Bi to Bj is said to be unstructured if any of the
following three conditions is satisfied:

– Block Bi has multiple successors, block Bj has multiple predecessors, and neither
of Bi or Bj dominates nor postdominates the other,

– Block Bj is in a loop, block Bi is not in the same loop and Bj does not dominate
all other blocks of the loop,

– Block Bi is in a loop, blockBj is not in the same loop andBi does not postdominate
all other blocks of the loop

For example, in Figure 1(b), edges B2→B3, B2→B5 and B3→B5 are unstructured
edges as they satisfy the first condition. Edges B1→B5 and B2→B3 in Figure 6(b) are
marked as unstructured edges as they jump into the loop formed by blocks B3, B4 and
B5. In Figure 5(b), edge B3→B6 and B2→B5 are unstructured edges as they jump out
of the loop formed by blocks B2, B3 and B4.

Zhang et al. [23] showed that repeated applications of their three transformations
convert all possible unstructured programs into structured programs. The three transfor-
mations proposed by them are (a) Forward Copy - for unstructured edges in an acyclic
CFG, (b) Backward Copy - for incoming edge of a loop and (c) Cut - for outgoing edge
of a loop. Based on the prior works by Zhang et al. [23], Wu et al. [22], and our ex-
tensive study of unstructured CFGs from various benchmark suites, we claim that the 3
conditions specified in the definition of an unstructured edge cover all possible cases of
unstructuredness.

We call a CFG containing an unstructured edge, an unstructured CFG (UCFG). For
the discussion in this subsection we define unstructured region to be the region encom-
passing all blocks of the input CFG except for the Entry and Exit blocks. Also we use
the term unstructured block to refer to any block from an unstructured region. In the
next section we will present an algorithm to find the minimal unstructured region of an
unstructured edge.

Now we will describe the algorithm to transform an UCFG into a structured CFG.

Definition 2. The common immediate dominator, CIDOM, D of a set of blocks B in a
CFG is a block such that D dominates all the blocks in B and there does not exist any
other block D̂ such that D̂ dominates all the blocks in B and D dominates D̂.

Definition 3. The common immediate postdominator, CIPDOM, P of a set of blocks B
in a CFG is a block such that P postdominates all the blocks in B and there does not
exist any other block P̂ such that P̂ postdominates all the blocks in B and P
postdominates P̂ .

So, a block that dominates all the blocks in B, will dominate the CIDOM. Similarly,
a block that postdominates all the blocks in B, will postdominate the CIPDOM.

140 J. Anantpur and R. Govindarajan

Algorithm 1. Linearization

1. procedure LinearizeUnstructuredRegion(Ureg)
2. idom ← immedDom(Ureg)
3. ipdom ← immedPostDom(Ureg)
4. prevGuard ← 0, prevBlock ← 0
5. for all blk ∈ Ureg, inRevPostOrder do
6. guard = createGuard(blk)
7. addGuardV arAssign(blk)
8. addBrEdge(guard, blk)
9. if isF irstBlock(blk) then
10. addEdge(idom, guard)
11. end if
12. if prevGuard �= 0 then
13. addEdge(prevGuard, guard)
14. end if
15. if prevBlock �= 0 then
16. addEdge(prevBlock, guard)
17. end if
18. if isLastBlock(blk) then
19. addEdge(guard, ipdom)
20. addEdge(blk, ipdom)
21. end if
22. prevGuard ← guard
23. prevBlock ← blk
24. if isSrcOfRetreatingEdge(blk) then
25. beGuard ← createBEGuard(blk)
26. addEdge(guard, beGuard)
27. addEdge(blk, beGuard)
28. beDst ← getBackEdgeDst(blk)
29. beDstGuard ← getGuard(beDst)
30. addBrEdge(beGuard, beDstGuard)
31. prevGuard ← beGuard
32. prevBlock ← 0
33. end if
34. end for
35. end procedure

Our algorithm for transforming un-
structured graphs first computes the
CIDOM and CIPDOM of the input CFG.
The next step is to generate a reverse
post-order (also known as depth first or-
der [1]) for all the blocks in the unstruc-
tured region, starting from the CIDOM
up to the CIPDOM. The reverse post-
order ensures that before a block is tra-
versed all its predecessors are traversed.
This helps to minimize the number of
guard checks during execution of the
transformed CFG. This is similar to the
case of using a reverse post-order traver-
sal in an iterative algorithm for a forward
data-flow problem. For example in Fig-
ure 4(b), if block B5 was before block
B3, then the linearized CFG would have
needed a back edge to execute block B5
after block B3. In case of a back edge
in a CFG, the reverse post-order contains
the destination of the back edge before
the source and hence the linearized CFG
contains a back edge for it.

Algorithm 1 shows the steps to lin-
earize an unstructured region. The blocks
in the input unstructured region are tra-

versed in the reverse post-order and for each block, a guard block is created (line 6). An
assignment is added to each unstructured block, to set the guard variable to the block id
of one of its successor blocks in the original CFG (line 7). The guard block is populated
with an instruction to branch to the unstructured block - block from the original CFG in
an unstructured region - when the guard variable value matches the block’s index (line
8). The guard block corresponding to the first unstructured block is added as a succes-
sor of the CIDOM of the unstructured region (lines 9-11). The other successor of the
guard block is the guard block for the next unstructured block in the reverse post-order
(lines 12-14). This is the successor on the fall through edge of the guard block. Lines
15-17 add a guard block as successor of the previous unstructured block in the reverse
post-order. The successor of the last guard block is the CIPDOM of the unstructured
region (lines 18-20).

Applying this algorithm on the unstructured CFG in Figure 1(b), we get the trans-
formed CFG in Figure 4(b). B1 G to B6 G are the guard blocks (line 6). In blocks
B1-B5, an assignment is added to set the guard variable to the id of the appropriate
successor block (line 7). Each of B1 G to B6 G contains the guard variable check
(line 8). Block B1 G is made the successor of the entry block (lines 9-11). As per lines
12-14, blocks B2 G to B6 G are made successors of blocks B1 G to B5 G respectively.

Taming Control Divergence in GPUs through Control Flow Linearization 141

f o r (i =0 ; i<N; i ++)
{

S1 ;
i f (c1 == 1)

go to L1 ;
S2 ;

}
S3 ;
L1 : S4 ;

(a) Code Snippet (b) CFG (c) Transformed CFG (d) S-Block

Fig. 5. Jump out of a loop

Blocks B2 G to B6 G are also added as successors of blocks B1 to B5 respectively
(lines 15-17). Finally lines 18-20 add Exit as the successor of blocks B6 and B6 G.

For a block which is the source of a retreating edge (i.e. an edge in which the desti-
nation appears before source in the reverse post-order), another guard block is created
(lines 24-33). For the retreating edge B4→B2 in Figure 5(b), block B4 1 G is created
and a back edge is added to block B2 G as shown in Figure 5(c). None of the blocks
in the loop of this back edge, other than the two blocks of the back edge, can be the
destination of any other back edge, as that will make the CFG unstructured (jump into
a loop). In other words, in the reverse post-order of an unstructured CFG, none of the
blocks that lie between the destination and source of a retreating edge, can become the
destination of any other back edge unless its source also lies between them. This con-
dition ensures that any two loops in the transformed CFG are either nested or disjoint.
If there exists an edge in the input CFG to any of such blocks then destination of the
corresponding back edge in the transformed CFG will be moved up, to the closest back
edge destination. So, if there was an edge from B5 to B3 in Figure 5(b), then in the
linearized CFG the back edge destination would be moved to B2 G.

The transformation converts a CFG into a sequence of if-then statements such that
each branch guard block is the IPDOM of its predecessor branch guard block.

3.3 Converting Irreducible Graph to Reducible Graph

The linearization transformation can be applied to any unstructured CFGs including
irreducible graphs. Figures 6(c) and (d) show an irreducible graph and its transformed
version. In this case the transformed CFG has been obtained by traversing the blocks in
the order B1, B2, B3. Even if they were traversed in the order B1, B3, B2, the resultant
transformed CFG would still be a reducible graph. Since B1 has two successors viz.,
B2 and B3, the reverse post-order traversal can select any one of them and so both the
orders mentioned above are possible in the reverse post-order.

142 J. Anantpur and R. Govindarajan

3.4 Correctness of the transformation

Claim 1: The transformed CFG is structured.

Proof Sketch: To aid in the proof, we will assume that for each block Bi in the unstruc-
tured region, in addition to a guard block, a block is created as a merge point as shown
in Figure 5(d). The merge block acts as the source of a back edge in case Bi is the
source of a retreating edge in the input CFG e.g block B4 1 G in Figure 5(c). Other-
wise the merge block is an empty block and is combined with the successor block. We
call this combination of the three blocks, an S-block, in which the guard block is the en-
try block and the merge block is the exit block. So for each block Bi in the unstructured
region an S-block SBi is created in the transformed CFG. The transformed CFG can
be thought of as a linearized graph of the S-blocks such that (a) if Bi is the predecessor
of Bj in the reverse post-order, then SBi is the predecessor of SBj in the linearized
CFG, and (b) if there is a retreating edge from Bj to Bi in the unstructured CFG, then
a back edge from SBj to SBi is added in the linearized CFG. As explained before this
creates either disjoint or nested loops. The CFG of the blocks in an S-block does not
contain an unstructured edge. This is because (a) for any edge in the CFG either the
source dominates the destination or the destination postdominates the source, and (b)
the CFG has no loops. So, the CFG of the blocks in an S-block is structured. The CFG
formed using the S-blocks (i.e. CFG whose nodes are S-blocks) is also a structured
CFG because (a) if there are no loops in the unstructured CFG, then each S-block has
only one predecessor and one successor, and (b) if there are loops in the unstructured
CFG, then they are either nested or disjoint, and each loop is a natural loop [1]. These
two conditions ensure that the CFG formed using the S-blocks is also structured. Since
the CFG formed using the S-blocks is structured and also the CFG of the blocks in any
S-block is structured, the linearized CFG is structured. �
S-blocks which do not have back edges have empty merge blocks. Each empty merge
block has only one successor. Hence it can be eliminated by connecting its predecessors
to its successor. It can be seen that the resultant CFG is also structured using the same
reasoning as given above. Figure 5(c) shows the S-blocks corresponding to blocks B3
and B4 labelled as SB3 and SB4 respectively. SB3 does not show the empty merge block.

Claim 2: Linearization transformation preserves semantics of the input CFG.

Proof Sketch: We make the following 4 observations regarding the transformation: (1) it
does not delete any basic block from the original CFG, (2) it adds guard blocks and they
do not modify any user defined variables, (3) it replaces conditional and unconditional
branch statements in unstructured blocks by assignments to the guard variable and (4) it
adds an assignment to the guard variable in unstructured blocks that do not have branch
statements. These observations imply that if the order of execution of blocks in the
original CFG is the same as in the transformed CFG then the transformation preserves
the semantics of the input CFG.

First we will prove that for every execution order of blocks in the original CFG the
execution order of those blocks in the transformed CFG is the same. When the control
reaches a basic block, say Bi, in the original CFG there are 3 possibilities:

Taming Control Divergence in GPUs through Control Flow Linearization 143

– Bi has no successors. In this case in the original CFG, the execution stops. In the
transformed CFG, at the end of the execution of Bi, the guard variable is set to an
unused value and hence no other blocks can execute and the execution stops.

– Bi has one successor. In this case in the original CFG, the control will transfer to
the successor block. In the transformed CFG, the guard variable will be assigned
the index of the successor block and hence only that block can execute next.

– Bi has two successors. In the original CFG, the branch condition at the end of Bi

decides the next block to be executed. The transformed CFG sets the guard variable
to the index of the next block to be executed.

This shows that if the original CFG executes block Bj after block Bi, the transformed
CFG will also execute block Bj after Bi. The transformed CFG may execute one or
more guard blocks between Bi and Bj , but since the guard blocks do not modify any
of the original program state, their execution will not have any effect on the final output
of the program. This proves that the order of execution of blocks in the original CFG
remains the same after the transformations.

Next we will prove that for every execution order of the original CFG blocks in the
transformed CFG, there is an equivalent order of those blocks in the original CFG. The
transformed CFG has two types of blocks viz., guard blocks (GB) and original CFG
blocks (OB). So we need to prove that for every execution order of the OBs in the
transformed CFG, the original CFG has an equivalent execution order of them.

Consider two OBs, Bi and Bj . If the transformed CFG executes Bj after Bi with
no other OB executing between them, then it means Bi sets the guard variable to the
index of Bj . This is possible only if Bj is a successor of Bi in the original CFG and the
branch condition in Bi evaluates to a value such that the branch to Bj is taken, so the
original CFG also executes Bj after Bi.

This proves that the transformation preserves the semantics of user code. �

i f (c1 == 1)
go to L1 ;

f o r (i = 0 ; i < N; i ++) {
S1 ;

L1 : S2 ;
}
S3 ;

(a) Jump into a loop Code Snippet (b) Jump into a loop CFG (c) Irreducible
CFG

(d) Reducible
Transformed CFG

Fig. 6. Jump into a loop and Irreducible Graph Example

3.5 Analysis of Increase in Code Size

Claim 3: Increase in code size due to the transformation is linear in the number of
blocks and instructions.

Proof Sketch: One guard block is created for (a) each basic block in the unstructured
region and (b) each retreating edge in the unstructured region. Hence the total number

144 J. Anantpur and R. Govindarajan

of new blocks added is the sum of number of blocks and number of retreating edges in
an unstructured region. The number of retreating edges in a CFG cannot be more than
the number of blocks in the CFG. Hence the total number of new blocks added is at
most two times the total number of blocks in the original CFG.

Each guard block adds one instruction to compare the guard variable with a block
index. For each block in the unstructured region with (a) a fall through edge to its
successor, one instruction is added to set the guard variable, and (b) a branch edge to its
successor, the branch instruction is replaced with an assignment to the guard variable.
This shows that the total number of new instructions added is at most twice the number
of blocks in an unstructured region. �
In contrast to this, the transformations presented by Zhang et al. [23] can have exponen-
tial increase in the code size in their Forward Copy transformation. Even the Backward
Copy transformation makes a copy of the loop to peel its first iteration. Carter et al.
[5] proved that exponential blowup in the size of the CFG is unavoidable when a node-
splitting technique is used to convert an irreducible flow graph to a reducible one. They
have also stated that their results do not apply to techniques which use predicate vari-
ables to guard statements. Since our technique uses predicate variables to guard blocks,
the results proved by Carter et al. do not apply to our technique.

3.6 Earliest Reconvergence

In this section we will show that the transformed CFG has the earliest reconvergence
point for any divergent branch. The IPDOM of a guard block is the successor on its fall
through edge. In Figure 5(c), threads diverging at block B2 G will reconverge at block
B3 G and threads diverging at block B4 1 G will reconverge at block B5 G. So each
fall through edge successor of a guard block acts as a reconvergence point and since
threads can only diverge at a guard block they are immediately reconverged on the fall
through edge successor. In a structured CFG, the IPDOM of a divergent branch is its
earliest recovergence point. Our proposed transformation converts an unstructured CFG
to a structured CFG and hence for any divergent branch, the transformed CFG has the
earliest reconvergence point.

4 Minimizing Unstructured Region

In the previous section we assumed the entire CFG to be unstructured. First we propose
an algorithm to find the unstructured region in the CFG. The intuition behind finding
the unstructured region is to identify blocks for which the linearization transforma-
tion is applied. Further, the size of a transformed CFG linearly increases with size of
the unstructured region and the unstructured CFG may contain subregions which are
structured. To reduce unnecessary code bloat of structured subregions, we propose an
algorithm to identify structured regions within the unstructured region.

To be able to apply the transformation only on an unstructured region, it should have
a single entry point and a single exit point.

Definition 4. The unstructured region of an unstructured edge is defined as a set of
blocks, UR, such that

Taming Control Divergence in GPUs through Control Flow Linearization 145

– it is bounded by blocks D and P , where D is the CIDOM and P is the CIPDOM
of all the blocks in the set (D and P are not in the set),

– it contains blocks of the unstructured edge,
– for any edge Bk → Bl, where Bl ∈ UR, either Bk ∈ UR or Bk = D,
– for any edge Bk → Bl, where Bk ∈ UR, either Bl ∈ UR or Bl = P .

Algorithm 2. Unstructured Region

1. procedure FindUnstructuredRegion()
2. UE = set of all unstruct edges
3. for all edge ∈ UE do
4. UN1 ← φ
5. UN1.insert(edge.src, edge.dst)
6. Done ← false
7. while Done = false do
8. cidom = findIdom(UN1)
9. cipdom = findIpdom(UN1)
10. N1 ← BlksDomBy(cidom)
11. N2 ← BlksThatCanReach(cipdom)
12. N3 ← BlksPostDomBy(cipdom)
13. N4 ← BlksReachableFrom(cidom)
14. UN2 ← (N1 ∩ N2) ∪ (N3 ∩ N4)
15. if UN2 = UN1 then
16. Done ← true
17. end if
18. UN1 ← UN2
19. end while
20. end for
21. end procedure

The algorithm to find the minimal un-
structured regions is shown in Algorithm
2. It iterates over all unstructured edges
in a CFG and finds the unstructured re-
gion for each edge. The first step is to
mark the source and destination of an
unstructured edge as unstructured blocks
UN1 (line 5). Then it finds their CIDOM
and CIPDOM (line 8). Using CIDOM
and CIPDOM as the entry and exit points
of the unstructured region, the algorithm
adds blocks to the region as per the two
criteria: (a) blocks dominated by CIDOM
and that can reach the CIPDOM, and (b)
blocks postdominated by CIPDOM and
that can be reached from CIDOM(lines
9-13). Since these steps can add more
blocks to the set of unstructured blocks,

i.e. UN1, they are repeated until no new blocks are added to the set of unstructured
blocks.

Algorithm 2 identifies all blocks in an unstructured region. Any non-overlapping
structured region is not included in the unstructured region. The unstructured regions
of two unstructured edges cannot partly overlap, i.e. they are either disjoint or one will
contain the other (including the case where they are the same).

4.1 Structured Region

The unstructured regions found by Algorithm 2 may contain structured sub-regions, i.e.
regions with single entry and single exit, and no unstructured edge in them.

Definition 5. A structured region is defined as a set of blocks, SR, such that

– it is bounded by blocks D and P where D is the CIDOM of all the blocks in SR
except for D, and P is the CIPDOM of all the blocks in SR except for P and

– it contains both D and P but does not contain any unstructured edge.

Since a structured region has only one entry block and one exit block, if control does
not reach the entry block, it cannot reach any of the blocks between the entry and exit,
including the exit. Also, the hardware stack based reconvergence mechanism guarantees
earliest reconvergence for a structured region. Hence, the cost of linearization is reduced
by guarding only the entry block of a structured region and not linearizing the structured
region. This helps maintain the original structure of the CFG for the region and hence
reduce the side effects of linearization on the other compilation passes. The algorithm
to find structured regions is presented in Algorithm 3.

146 J. Anantpur and R. Govindarajan

4.2 Optimizations

To further reduce the cost of guard checks, the linearization algorithm optimizes the
transformed CFG to remove unnecessary guard checks, nest guard checks, etc. To be
able to decide which checks can be eliminated or nested under some other checks, the
transformed CFG is analyzed to find the possible values the guard variable can take at
each guard block.

Algorithm 3. Structured Region

1. procedure FindStructuredRegion()
2. for all blk ∈ set of all unstruct blks do
3. structRegion ← false
4. if isImmedDom(blk) then
5. ipdom ← immedPostDom(blk)
6. if blk = immedDom(ipdom) then
7. idom ← blk
8. N1 ← visit(idom, ipdom)
9. N1 ← N1 ∪ visit(ipdom, idom)
10. structRegion ← true
11. for all n1 ∈ N1 do
12. if hasUnstructEdge(blk) then
13. structRegion ← false
14. else if (ipdom �= pdom(n1)) then
15. structRegion ← false
16. else if (idom �= dom(n1)) then
17. structRegion ← false
18. end if
19. end for
20. if structRegion = true then
21. SN ← N1
22. end if
23. end if
24. end if
25. end for
26. end procedure

The first step is to find the guard val-
ues that can reach a guard block from
its predecessor unstructured blocks. The
next step is to propagate the guard val-
ues on the two successor edges of a guard
block. As mentioned before, there are
two types of guard blocks, viz., a guard
block created for an unstructured block
(GB) and a guard block created for a re-
treating edge (RGB). The branch edge of
a GB is to an unstructured block and is
taken only when its guard check is true,
which means for only one of the input
guard values the branch edge is taken
and all other values flow through the fall
through edge. In case of a RGB, both
the branch and fall-through edges are to
guard blocks. The branch edge can be
taken for more than one guard value (e.g.,
in case of loop merging in Figure 8(b),
the branch edge of B6 1 G is taken if
the guard value is either B2 id or B4 id),

Hence all those values will flow on the branch edge and the remaining values will flow
on the fall through edge.

The transformed CFG is iteratively analyzed to propagate the guard values on the
input and output edges of each guard block, till no new values are seen at the input of any
guard block. The iterative algorithm is guaranteed to terminate as i) the cardinality of
the set of guard values at the input of a guard block in each iteration is non-decreasing,
ii) once a guard value is added to the input set of a guard block, it is never removed,
and iii) the cardinality of the set of all possible guard values is equal to the number of
unstructured blocks, At the end of this analysis, values of the guard variable flowing on
edges into and out of each guard block are known.

Now we briefly describe some optimizations to reduce the guard checks:

– (O1) If only one incoming edge of a guard block has the matching guard value
(i.e. the value being checked by the guard block) then the destinations of all other
incoming edges are changed to the next guard block to avoid execution of the guard
check on paths containing those edges. Similarly, if only one incoming edge of a
guard block does not have the matching guard value, then the destination of that
edge is changed to the next guard block.

Taming Control Divergence in GPUs through Control Flow Linearization 147

– (O2) If block Bi dominates block Bj in the original CFG, then the guard block for
Bj can be nested within the guard block for Bi so that the guard check for Bj is
executed only if the guard check for Bi is true.

– (O3) If a guard block has only one predecessor and if that predecessor is a block
from an unstructured region, then the guard block is merged with its predecessor.

5 Applications of Linearization

In this section we will discuss some applications of the linearization transformation.

5.1 Branch Interleaving

As discussed in the motivation section, existing hardware reconvergence stack mecha-
nism using IPDOM forgoes the potential parallelism achievable by interleaved execu-
tion of other basic blocks. We propose to use the linearization transformation to exploit
parallelism among the two paths of a divergent branch.

(a) Original CFG

(b) Transformed CFG

Fig. 7. Branch Interleaving Example

Consider the example in Figure 2(a).
The original CFG and the transformed
CFG are shown in Figures 7(a) and 7(b)
respectively. The transformed CFG has
basic blocks from the two arms of the
branch statement interleaved. A thread
executing the branch statement will ex-
ecute blocks from either of the two arms.
Assuming stall-on-use model, i.e. a core
stalls when the value needed is not avail-
able in the register, we can identify
blocks with potential stalls. For exam-
ple, if block B2 loads a variable which
is used in blocks B3 and B4, then a core
can stall while executing an instruction
that uses the variable, if the load instruc-
tion results in a cache miss. As shown in
Figure 7(b), block B5 is inserted between
blocks B2 and B3. So, if some threads
of a warp take B1→B2 path and oth-
ers take B1→B5 path, then executing in-
structions from block B5 after block B2
can help hide the long latency of a load in
block B2. In contrast, existing hardware
support for branch execution always tra-
verses the blocks in the depth-first or-
der until the IPDOM and hence incur
the stalls.

Linearization can also be used to reduce stalls in a block which loads a variable as
well as uses it. For example, if block B6 loads a variable and uses it, then it can be split

148 J. Anantpur and R. Govindarajan

into two sub blocks, B6 1 and B6 2, such that the load instruction is in B6 1 and use
of the variable is in B6 2. The execution of these two blocks then can be separated by
inserting one or more blocks from the other arm of the branch instruction in B5.

5.2 Loop Merging

In nested loops, if the threads of a warp have different trip counts for the inner loop
then threads with smaller trip counts will have to wait for the thread with the largest trip
count.

(a) Original CFG

(b) Transformed CFG

Fig. 8. Loop Merging Example

We can use the linearization transfor-
mation to let the threads with smaller trip
counts proceed further and join the re-
maining threads in the execution of the
inner loop but for a different invocation
of the inner loop.

Consider the nested loop example in
Figure 2(b). The original CFG and the
transformed CFG after linearization are
shown, respectively, in Figure 8(a) and
(b). The back edge from basic block
B6 1 G to basic block B2 G is for both
the inner as well as the outer loop. The
value of g v is set to B2 id when a
thread finishes the inner loop and is go-
ing to start the next iteration of the outer
loop, whereas g v is set to B4 id to con-
tinue with the next iteration of the inner
loop. So when a thread finishes execution
of the inner loop, it will execute basic
blocks B2 and B3, and then join the re-
maining threads to execute the inner loop
again. This way, different invocations of

the inner loop can be overlapped to reduce the waiting time of threads and improve
performance.

5.3 Hardware Stack Depth Reduction

The proposed linearization technique can be used to reduce the nesting depth of branches
and hence the depth of the hardware stack used for reconvergence. Assuming the reverse
post order traversal of the CFG in Figure 3(a) to be B1, B2, B4, B6, B7, B8, B5, B9,
B3 and B10, it can be seen that threads diverging at block B2 G will reconverge at
block B4 G and hence the depth of the reconvergence stack at B4 G will be the same
as the depth at B2 G. Proceeding further, we see that the stack depth does not increase.
Hence, to restrict depth of the reconvergence stack to a certain limit, branches beyond
that nesting depth limit can be linearized.

Taming Control Divergence in GPUs through Control Flow Linearization 149

Table 1. Linearization Transformation Statistics, PTX-Number of PTX Instructions, BB-Number
of Basic Blocks, Reg-Number of registers used by the compiled code, SASS-Number of instruc-
tions in the assembly code, Bf-before transformation, Af-after transformation, AfOpt-after opti-
mizing the transformed code, Incr-Increase(=AfOpt/Bf)

BM PTX BB Reg SASS
Bf Af AfOpt Incr Bf Af AfOpt Incr Bf AfOpt Incr Bf AfOpt Incr

hotspot [3],[4] 269 289 275 1.02 19 30 20 1.05 30 30 1.00 383 390 1.02
hearwall [3],[4] 1422 1442 1432 1.01 192 206 196 1.02 32 32 1.00 2667 2681 1.01

mcx [9] 1358 1447 1408 1.04 138 185 148 1.07 57 63 1.10 1139 1252 1.10
mum [2] 232 259 256 1.10 37 51 47 1.27 22 32 1.45 202 226 1.12

nqueen [2] 164 175 169 1.03 30 37 31 1.03 16 18 1.12 145 148 1.02
particlefilter [3],[4] 52 63 54 1.04 10 17 10 1.0 13 13 1.00 52 51 0.98

ray [2] 780 869 805 1.03 84 148 90 1.07 43 50 1.16 933 966 1.03

6 Experimental Evaluation

We evaluated our proposed algorithm by implementing it in the Ocelot [8] compiler
framework. The transformation is done at the PTX (version 2.3) IR level. The CFG con-
structed by Ocelot front end is transformed into a linearized CFG and then the modified
PTX code is JIT compiled. We used CUDA toolkit version 4.2 [18] and Tesla C2070
GPU (Fermi) [19]. The CUDA code was compiled with the default optimization level.
Each benchmark was run 10 times and the average of the execution time is reported.
We used CUDA profiler to measure the runtime and other performance counters.

The proposed transformation avoids duplicate execution of basic blocks and also en-
sures early reconvergence which are the primary benefits of converting an unstructured
CFG to a structured CFG. Further the transformation is expected to reduce the number
of global loads and stores. These improvements come, however, at the cost of increased
code size. We report these performance metric in our experimental framework.

We compared number of PTX instructions (PTX), number of basic blocks (BB),
number of registers used (Reg) and number of assembly instructions (SASS) in the
original and transformed code. Table 1 shows the increase in number of PTX instruc-
tions per kernel. It is less than 5% for 6 out of 7 benchmarks. The maximum increase in
code size is 10% in mum benchmark. Table 1 also shows the increase in number of basic
blocks per kernel. It is less than 10% for 5 out of the 7 benchmarks and a maximum of
27% in mum. The improvements with the optimizations are shown in column AfOpt.
Even though the upper bound for increase in code size is linear in terms of the number
of basic blocks, the observed increase is less than 7% on an average.

Out of the 7 benchmarks, 4 show an increase of 10% or more in the number of
registers. This is one of the major side effects of doing the transformations at the PTX
level. In the next subsection we discuss how this transformation can be implemented at
a lower level of IR. The increase in the number of assembly instructions is up to 12%.

Table 2 shows the runtime performance numbers measured using CUDA profiler
counters. Except for the execution time, other metrics reported are aggregate numbers
for all threads on all SMs. For benchmarks mcx and mum the number of global loads
decrease by 4.4% and 48.5% respectively. Also the number of global stores decrease for
benchmarks mcx (13.3%), mum (68.7%) and heartwall (2.5%). Benchmark mum also
shows an improvement of 17.5% in the number of dynamic instructions executed.

150 J. Anantpur and R. Govindarajan

Table 2. Runtime profile per kernel, ExecTime - execution time in micro seconds, InstExec -
number of assembly instructions executed, GlobalLd - number of global load instructions exe-
cuted, GlobalSt - number of global store instructions executed, Before - before transformation,
AfterOpt - after optimizing the transformed code

BM ExecTime(us) InstExec GlobalLd GlobalSt
Before AfterOpt Before AfterOpt Before AfterOpt Before AfterOpt

hotspot 342 360 4.32× 106 4.57× 106 2.92× 104 2.92× 104 1.1× 104 1.1× 104

heartwall 4.22× 104 4.23× 104 4.68× 108 4.71× 108 3.21× 107 3.21× 107 7.82× 106 7.62× 106

mcx 3.15× 106 3.97× 106 2.64× 1010 3.05× 1010 2.48× 108 2.37× 108 8.06× 107 6.99× 107

mum 2242 2224 7.80× 106 6.43× 106 1.69× 105 8.76× 104 5.99× 104 1.87× 104

nqueen 112 110 5.94× 104 5.96× 104 3 3 256 256
particlefilter 187 205 1.02× 105 1.49× 105 1.85× 104 1.85× 104 64 64

ray 163 173 1.82× 106 1.89× 106 2048 2048 4096 4096

Table 3. Increase in Number of PTX instructions, Orig - Before transformation, Ocelot - After
transformations proposed by Wu et al. [22], Linear - After our transformations

BM Orig Ocelot Linear
hotspot 237 242 240

heartwall 1422 1452 1432
particlefilter 54 78 62

Table 4. Reduction in number of instructions executed, Orig - Before transformation, After -
After transformations without any optimizations, O1 to O4 are the optimization levels

BM Orig After O1 O2 O3 O4
hotspot 4.32× 106 4.90× 106 4.98× 106 4.88× 106 4.76× 106 4.57× 106

heartwall 4.68× 108 4.69× 108 4.69× 108 4.69× 108 4.68× 108 4.71× 108

mcx 2.64× 1010 3.7× 1010 3.36× 1010 3.26× 1010 3.18× 1010 3.05× 1010

mum 7.80× 106 6.90× 106 6.66× 106 6.66× 106 6.60× 106 6.43× 106

nqueen 5.94× 104 6.01× 104 6.05× 104 6.05× 104 6.03× 104 5.96× 104

particlefilter 1.02× 105 1.77× 105 2.14× 105 1.86× 105 1.68× 105 1.49× 105

ray 1.82× 106 2.50× 106 2.16× 106 2.13× 106 2.09× 106 1.89× 106

We analyzed the slowdown in mcx and found it to be due to the increase in number
of registers from 57 to 63. Since the register allocator cannot use more than 63 registers
on the GPU used in our experiments, code is introduced to spill registers to global
memory. This increases the number of cache misses and the load on the memory system.
Benchmark mum also has an increase in the number of registers from 22 to 32 and hence
the occupancy drops from 0.833 to 0.667 reducing the performance improvement in
spite of a significant reduction in the numbers of global loads and stores.

Table 3 shows the comparison with the algorithm by Wu et al. [22]. We could get
only 3 benchmarks working with their implementation in the Ocelot framework. Since
our transformation does not duplicate user code, the increase in code size is less than
due to their transformation. For benchmarks hotspot and particlefilter we had to use
CUDA toolkit version 4.0.

Table 4 shows the effect of our proposed optimizations. Optimization level O4 has,
in addition to the three optimizations described in section 4.2, some miscellaneous op-
timizations. As shown in the table, each of these optimizations helps in reducing the
number of instructions executed. Higher optimization levels include the optimizations

Taming Control Divergence in GPUs through Control Flow Linearization 151

done by the lower optimization levels, e.g. O3 has, in addition to the optimizations done
by O1 and O2, the optimization to merge guard blocks with their predecessors.

We used PTX as the IR because of the availability of its documentation and the
Ocelot [8] compilation framework. But ideally this transformation should be done as
late in the compilation process as possible to avoid its side effects on flow analyses,
optimizations, register allocation, etc. Implementing the transformation at a lower level
IR can reduce the major side effect of increase in register pressure and hence reduction
in the occupancy, e.g. benchmarks mum and mcx are severely affected because of the
increase in number of registers. Unfortunately, there is not enough information in public
domain, about assembly level instructions of NVIDIA GPUs and hence we could not
implement the linearization algorithm at that level.

The proposed transformation can be implemented at the assembly level with one ad-
ditional integer register needed to hold the guard variable and one additional predicate
register needed to hold result of the guard check (in case of loop merging, an additional
predicate register per loop to be merged is needed). To make sure that the transforma-
tion will have enough registers left, the register allocator can be restricted to use that
many fewer registers. We also believe that the costs and benefits of linearization can be
estimated more accurately at an assembly level IR than at PTX IR.

7 Related Work

Wu et al. [22] implemented a transformation pass at the PTX level, to convert unstruc-
tured control flow to structured control flow. The transformations are equivalent to the
ones used in Zhang’s [23] work. These transformations duplicate user code, whereas,
our proposed transformations do not. Thread Frontier [7] uses a combined hardware
and software solution to handle unstructured control flow. It identifies the thread fron-
tier of each basic block and using extra hardware prioritizes basic blocks and checks for
stalled threads waiting in the thread frontiers. Our proposed solution does not need any
hardware support and it uses predicated execution to linearize CFGs.

Han et al. [12] have proposed a compiler transformation to merge a divergent loop
with one or more outer surrounding loops into a single loop. Even though they also
transform the CFG to achieve loop merging, our algorithm uses the idea of linearization
to reconverge threads. Stratton et al. [20], Wang et al. [21] and Coutinho et al. [6] discuss
various compile time analyses to identify non-divergent branches which can be used to
skip linearization of non-divergent branches.

Rhu et al. [16] suggested a dual-path stack to keep the two divergent paths of a
branch in parallel. This enables interleaved execution of threads from both the paths.
Dynamic warp formation [10] regroups threads dynamically into new warps based on
their next program counter values. Dynamic Warp subdivision [15] exploits intra-warp
latency hiding, by dynamically subdividing warps and allowing them to run ahead.
Thread block compaction [11] uses a common block-wide stack for divergence han-
dling. New warps are formed from threads of a block at divergent branches. They also
suggest using likely convergence points to converge threads earlier than IPDOM.

The work on obfuscating C++ programs via control flow flattening [14] converts the
high level constructs into if-then-goto constructs and changes the target addresses of
goto statements so that they will be determined dynamically.

152 J. Anantpur and R. Govindarajan

8 Conclusion

In this paper, we presented a simple and elegant transformation to handle the perfor-
mance problems arising due to branch divergence in GPUs. We showed that the trans-
formation converts an unstructured CFG to a structured CFG with linear increase in
the number of instructions. We also discussed three applications of the transformations
viz., branch interleaving, loop merging and reduction in reconvergence stack depth. We
described the implementation of this technique at the PTX IR level with only up to 10%
increase in code size. As future work, we will use a lower level IR and also develop
heuristics for its various applications.

Acknowledgements. We thank the anonymous reviewers for their suggestions and
comments. We also thank Vaivaswatha N. and other members of the Lab for HPC for
discussions and feedback on improving the paper. The first author acknowledges the
funding received under Google India Ph.D. Fellowship.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques and Tools,
2nd edn. Pearson

2. Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing CUDA workloads using
a detailed GPU simulator. In: ISPASS (2009)

3. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Rodinia: A
Benchmark Suite for Heterogeneous Computing. In: IISWC (2009)

4. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A Characterization
of the Rodinia Benchmark Suite With Comparison to Contemporary CMP Workloads. In:
IISWC (2010)

5. Carter, L., Ferrante, J., Thomborson, C.: Folklore Confirmed: Reducible Flow Graphs are
Exponentially Larger. In: POPL (2003)

6. Coutinho, B., Sampaio, D., Pereira, F.M.Q., Meira Jr., W.: Divergence Analysis and Opti-
mizations. In: PACT (2011)

7. Diamos, G., Ashbaugh, B., Maiyuran, S., Kerr, A., Wu, J., Yalamanchili, S.: SIMD Re-
Convergence At Thread Frontiers. In: MICRO (2011)

8. Diamos, G., Kerr, A., Yalamanchili, S., Clark, N.: Ocelot: A dynamic compiler for bulk-
synchronous applications in heterogeneous systems. In: PACT (2010)

9. Fang, Q., Boss, D.A.: Monte Carlo Simulation of Photon Migration in 3D Turbid Media
Accelerated by Graphics Processing Units. Optics Express 17(22), 20178–20190 (2009)

10. Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and scheduling
for efficient gpu control flow. In: MICRO (2007)

11. Fung, W.W.L., Aamodt, T.M.: Thread block compaction for efficient simt control flow. In:
HPCA (2011)

12. Han, T.D., Abdelrahman, T.S.: Reducing Divergence in GPGPU Programs with Loop Merg-
ing. In: GPGPU (2013)

13. OpenCL, http://www.khronos.org/opencl
14. László, T., Kiss, Á.: Obfuscating C++ programs via control flow flattening. Annales Univer-

sitatis Scientarum Budapestinensis de Rolando Ëotv̈os Nominatae, Sectio Computatorica 30,
3–19 (2009)

http://www.khronos.org/opencl

Taming Control Divergence in GPUs through Control Flow Linearization 153

15. Meng, J., Tarjan, D., Skadron, K.: Dynamic Warp Subdivision for Integrated Branch and
Memory Divergence Tolerance. In: ISCA (2010)

16. Rhu, M., Erez, M.: The Dual-Path Execution Model for Efficient GPU Control Flow. In:
HPCA (2013)

17. Nvidia. CUDA C Programming Guide (October 2010)
18. Nvidia, https://developer.nvidia.com/cuda-toolkit-42-archive
19. Nvidia, http://www.nvidia.com/content/PDF/fermi white papers/

NVIDIA Fermi Compute Architecture Whitepaper.pdf
20. Stratton, J.A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., Hwu, W.W.: Efficient

Compilation of Fine-Grained SPMD-threaded Programs for Multicore CPUs. In: CGO (2010)
21. Wang, S., Hung, M., Hwang, Y., Ju, R.D., Lee, J.: Pointer Based Divergence Analysis in the

SSA Form. In: CPC (2013)
22. Wu, H., Diamos, G., Li, S., Yalamanchili, S.: Characterization and Transformation of Un-

structured Control Flow in GPU Applications. In: The First International Workshop on Char-
acterizing Applications for Heterogeneous Exascale Systems, CACHES (June 2011)

23. Zhang, F., D’Hollander, E.H.: Using hammock graphs to structure programs. IEEE Trans.
Softw. Eng., 231–245 (2004)

https://developer.nvidia.com/cuda-toolkit-42-archive
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Exploitation of GPUs for the Parallelisation

of Probably Parallel Legacy Code

Zheng Wang1, Daniel Powell2, Björn Franke2, and Michael O’Boyle2

1 School of Computing and Communications, Lancaster University, United Kingdom
z.wang@lancaster.ac.uk

2 School of Informatics, University of Edinburgh, United Kingdom
d.c.powell@sms.ed.ac.uk, {bfranke,mob}@inf.ed.ac.uk

Abstract General purpose Gpus provide massive compute power, but
are notoriously difficult to program. In this paper we present a complete
compilation strategy to exploit Gpus for the parallelisation of sequential
legacy code. Using hybrid data dependence analysis combining static and
dynamic information, our compiler automatically detects suitable paral-
lelism and generates parallel OpenCl code from sequential programs.
We exploit the fact that dependence profiling provides us with parallel
loop candidates that are highly likely to be genuinely parallel, but can-
not be statically proven so. For the efficient Gpu parallelisation of those
probably parallel loop candidates, we propose a novel software specu-
lation scheme, which ensures correctness for the unlikely, yet possible
case of dynamically detected dependence violations. Our scheme oper-
ates in place and supports speculative read and write operations. We
demonstrate the effectiveness of our approach in detecting and exploit-
ing parallelism using sequential codes from the Nas benchmark suite.
We achieve an average speedup of 3.2x, and up to 99x, over the sequen-
tial baseline. On average, this is 1.42 times faster than state-of-the-art
speculation schemes and corresponds to 99% of the performance level
of a manual Gpu implementation developed by independent expert pro-
grammers.

Keywords: GPU, OpenCL, Parallelization, Thread Level Speculation.

1 Introduction

Gpus have become ubiquitous in a wide range of computing devices and con-
sumer electronics appliances. They provide a powerful resource for parallel pro-
cessing and can deliver great performance improvements for suitably mapped
algorithms. Realising this potential, however, is challenging due to the complex-
ity of their programming.

Auto-parallelisation technology can greatly reduce the barrier for Gpu pro-
gramming by automatically generating parallel code from sequential programs.
However, one of the main problems is the static undecidability of the underly-
ing data dependence problem [9]. Static analysis attempts to determine if two
memory references are dependent, in which case their sequential order needs to

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 154–173, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Exploitation of GPUs for the Parallelisation 155

be retrained for correctness, limiting the amount of parallelism, which can be
exploited. Static analysis is necessarily conservative and despite large research
efforts, frequently fails to deliver, e.g. for complex, pointer-based C code [25].

Off-line profile-guided parallelisation is a recent development, which seeks to
complement static analysis with profiling information [8,7,24,30]. Using such a
scheme, a program is profiled with different input data sets and dependencies
are determined using dynamic memory traces. Although correctness cannot be
guaranteed, given enough input data sets, the probability of correctly identifying
a genuinely parallel loop increases. In this paper, we seek to exploit such probably
parallel loops. In addition, we want to avoid generating potentially unsafe code
or asking the user for final approval. This means, we have to rely on speculative
parallelisation [19].

Current speculation schemes are designed to deal with the occasional depend-
ence violation and, consequently, provide efficient rollback capabilities. In our
case, we can rely on profiling information and we only attempt to speculatively
parallelise loops, where there is almost no chance of misspeculation. We require
speculation support purely as a safety net, which might not be used at all. Hence,
we can afford a more expensive rollback mechanism in favour of faster checks.

In this paper we combine profile-guided parallelisation, OpenCl code gen-
eration and software thread level speculation (Sw-Tls) to exploit highly-likely
parallelism on the Gpu. Our compiler uses static and profile-based dynamic de-
pendence analysis to detect parallelism and to automatically generate parallel
OpenCl code with in place dependence checking. We exploit that parallel loop
candidates are “almost always” genuinely parallel, but escape static analysis.

To provide safety we concurrently execute a sequential version of the program
alongside our speculatively parallelised one. In the unlikely case of a dependence
violation we abort parallel execution and rely on the results of the sequential
program. This simple mechanism enables us to design a simple, yet efficient
dependence checking mechanism for Gpus while at the same time, providing
correctness for speculative parallel executions.

We have implemented our scheme using the Llvm compiler framework and
have evaluated its effectiveness in detecting and exploiting parallelism in bench-
marks, which are known to be manually parallelisable, but present a challenge
to automatic parallelisation approaches. On an Nvidia Gpu platform, our ap-
proach achieves an average speedup of 3.2x (up to 99x), which is 1.42 times
faster than its nearest competitor and delivers 99% of the performance level of
a manual Gpu implementation.

2 Motivation

Consider the code fragment in figure 1 (a). This loop is extracted from the se-
quential version of the BT benchmark from theNas benchmark suite. While con-
servative, static analysis fails to parallelise this loop due to the inter-procedural
call to function binvcrhs at line 14 where an output dependence (i.e. write after
write) to array lhs has to be assumed (inlining of binvcrhs would not elimin-
ate the possible aliasing problem). Without further information, this loop would

156 Z. Wang et al.

1 void b invcrhs (double l h s [5] [5] ,
2 double c [5] [5] , double r [5])
3 {
4 . . .
5 l h s [1] [1] = lh s [1] [1] − c o e f f ∗ l h s [0] [1] ;
6 c [1] [1] = c [1] [1] − c o e f f ∗c [0] [1] ;
7 . . .
8 }
9 . . .

10 void y s o l v e c e l l () {
11 . . .
12 for (j =1; j<g r i d p o i n t s [1] −1 ; j++){
13 for (k=1;k<g r i d p o i n t s [2] −1 ; k++){
14 b invcrhs (l h s [i] [0] [k] [BB] ,
15 l h s [i] [0] [k] [CC] ,
16 rhs [i] [0] [k]) ;
17 }
18 }
19 }

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

 Static provable
 State-of-the-art
 Our approach

(a) source code of an example loop (b) speedups obtained for the program

Fig. 1. An example that static analysis fails to discover parallelism. No speedups were
observed by only exploring statically provable parallelism. Profiling-based analysis, on
the other hand, can provide us with additional information: no dependencies have been
encountered in any trial run. By exploiting this information, we can use the GPU to
execute both statically and probably parallel loops (with speculation support) and to
achieve speedups rather than a slowdown. Our approach gives a speedup of 2.9x which
is 2 times faster than a speedup of 1.45x given by the state-of-the-art GPU speculation
scheme.

have to be executed in sequential on the Cpu (as it is too expensive to do so
on the Gpu). Although we can still execute statically provable, parallel parts of
the loops on the Gpu, we will have to introduce additional synchronisation and
communication between the sequential Cpu and parallel Gpu computation. The
additional overhead, however, could be expensive and can outweigh the benefit
of parallel Gpu execution. In fact, as can be seen from figure 1 (b), doing so
leads to a slowdown of 3.6x over the sequential code on a NVIDIA GTX 580
platform described in section 6.

Profile-based dependence analysis, on the other hand, provides use with the
additional information that no actual data dependence inhibits parallelization
for given sample inputs. While we still cannot prove absence of data depend-
ences for every possible input, we can classify this loop as a highly-likely parallel
candidate. We can then speculatively execute this loop in parallel on the Gpu

with dependence violation checking together with a rollback scheme to ensure
correctness if a true dependence violation is discovered at runtime. This is safe
and potentially fast. As shown in figure 1 (b), a state-of-the-artGpu speculation
scheme, Paragon [21], gives a speedup of 1.45x for this particular benchmark.
Though the result of using Paragon is encouraging, it can be further improved.
Paragon requires a large buffer to record the speculative accessing addresses,
which will be used in a separate dependence checking procedure to check the

Exploitation of GPUs for the Parallelisation 157

Static & Profile-
based Analysis

OpenCL Code
Generation Code Merge

Fig. 2. Our compiler framework first uses static and profiled-based analysis to identify
parallel candidates. Those parallel candidates are then translated into OpenCL kernels.
Dependence checking code is added to perform dependence checking for those candid-
ates that cannot be statically proven to be parallelizable but no dependence violation
was discovered during profiling. Finally, the generated parallel OpenCL program is
merged with the original sequential program as output.

potential violations of speculative accesses. This, however, can result in expens-
ive indirect memory accessing overhead on the Gpu. We would like to avoid this
overhead.

As described later in this paper, our novel in-place dependence checking ap-
proach does not require a buffer to store the speculative accesses. It results in
a speedup of 2.9x, two times faster than Paragon. With a novel dependence
checking scheme, we then build a compiler framework to automatically generate
parallel OpenCL code from sequential code using dependence profiling inform-
ation and without user interaction, allowing us to exploit Gpu parallelism for
highly-likely parallel legacy code.

This example demonstrates that static analysis is overly conservative. Profil-
ing based analysis, by contrast, opens up opportunities to exploit Gpu paral-
lelism for highly-likely parallel code.In the following three sections, we will first
provide an overview of our compiler framework and then describe our parallelism
detection and speculation schemes in details.

3 Overview

Our compiler uses both static and profile-driven dynamic analyses to automatic-
ally discover parallelism from sequential code and to generate parallel OpenCl

code. For this, we also perform loop and array layout optimisations. At runtime,
a safety net is provided for probably parallel loops that require dependence vi-
olation checking. Our prototype compiler is implemented using Llvm.

3.1 Compile Time

Figure 2 depicts our compilation framework. Our compiler uses three steps to
generate parallel Gpu code: parallelism detection, OpenCl code generation and
code merging.

Parallelism Detection. We currently target loop-level parallelism. In particu-
lar, we use static analysis to separate definitely sequential and definitely parallel

158 Z. Wang et al.

loops from other loops, which may or may not be parallel. For these possibly par-
allel loops we rely on dependence profiling [24,26] to extract those loops, which
are probably parallel. We mark a loop as probably parallel if no cross-iteration
dependences have been observed during any profiled execution using different
data inputs. These loops are candidates for speculative parallel execution. The
output of this stage is a program with OpenMp-like annotations to parallel and
probably parallel loops, which include privatisable variables.

OpenCL Code Generation. The annotated program is passed to an OpenCl

code generator [5], which automatically converts data-parallel loops and parallel
reduction loops into OpenCl kernels. Each data-parallel loop is translated to
a separate kernel using the OpenCl Apis, where each iterator of the loop is
replaced by a global work-item Id. Checking code is added to speculative ref-
erences, which may lead to a dependence violation in probably parallel loops.
The details of our speculative checking scheme are described in section 5. Fur-
thermore, as the currently OpencCL implementation does not support I/O op-
erations, our approach does not speculatively parallelize any loops with I/O
operations.

Code Merging. The last compilation stage merges the generated parallelOpenCl

code with the original, sequential program into a single program. As such, the
output program consists of both the original, safe implementation in addition
to the generated OpenCl parallel code. Additional code will be automatically
generated to spawn two processes to run both versions and validate results at
runtime with the support a lightweight library.

3.2 Runtime

The combined use of static analysis and dependence profiling provides us with
sufficient confidence that no data dependences exist in probably parallel loops,
although this cannot be proven. The low expected probability of encountering
any future dependences motivates us to speculatively execute such loops in par-
allel, without provisions for rollback to an earlier, safe state. Instead, we speed up
what we expect to be the common case, i.e. parallel execution without depend-
ence violation. In particular, we do not maintain rollback state or memory write
buffers. Obviously, such as scheme will make the occurrence of a data dependence
expensive to resolve, however, we do not expect this to happen frequently.

Runtime Dependence Checking. Inspired by a Cpu-based Sw-Tls scheme [16],
we propose a in place dependence checking scheme for Gpus. Checking only
needs to be applied to speculative memory references in probably parallel loops.
Statically provable parallel loops do not require any runtime checking at all.
For every access to a speculative variable (i.e. a variable of which a read and
write access may cause an dependence violation with speculative parallel execu-
tion), our compiler automatically converts the memory reference to a speculative
read/write operation. Dependences are checked in place and on the fly, and any

Exploitation of GPUs for the Parallelisation 159

1 void b invc rh s sp e c (g l o b a l double (∗ lhs) [5] ,
2 g l o b a l int (∗ rd log lhs) [5] ,
3 g l o b a l int (∗wr log lhs) [5] ,
4 . . . ,
5 g l o b a l int∗ s p e c f l a g ,
6 g l o b a l int i t e r i d)
7 {
8 . . .
9 r v a l 0 = specLD double(& lhs [1] [1] ,

10 &wr log lhs [1] [1] ,& rd log lhs [1] [1] ,
11 i t e r i d , s p e c f l a g) ;
12
13 r v a l 1 = specLD double(& lhs [0] [1] , . . .) ;
14
15 // sp e cu l a t i v e l y s to re the r e su l t to l h s [1] [1]
16 specST double ((rva l 0−c o e f f ∗ r v a l 1) , &lhs [1] [1] ,
17 &wr log lhs [1] [1] , &rd log lhs [1] [1] ,
18 i t e r i d , s p e c f l a g) ;
19 . . .
20 }
21
22 k e r n e l void y s o l v e c e l l L 0 (. . .)
23 {
24 . . .
25 i t e r i d = g e t g l o b a l i d (1) ∗ g e t g l o b a l s i z e (0)
26 + g e t g l o b a l i d (0) + in i t i t e r n um ;
27 . . .
28 b invc rh s sp e c (lhs , rd log lhs , wr log lhs ,
29 lhs , rd log lhs , wr log lhs ,
30 rhs , rd log lhs , wr log lhs ,
31 s p c f l a g , i t e r i d) ;
32 }

Fig. 3. A simplified OpenCL-based code for the statically undecidable parallel loop
shown in figure 1. A speculative version of the original function binvcrhs is generated
in which every access to the speculative variable lhs is replaced with a speculative
load/store operation.

violation will be reported to the control thread on the Cpu. An example of the
generated code can be found in figure 3, where reads and writes to the spec-
ulative variable lhs are replaced with a speculative load and store operations,
respectively.

Recovery from Dependence Violations. We use competitive scheduling to deal
with unexpected, but possible dependence violations. For this, we launch both
the parallel and the original, sequential program simultaneously. Each version
runs as a separated process which has its own memory space. We immediately
terminate the parallel version on detection of a dependence violation. Otherwise,
if no dependence violations have been observed, the version first to finish kills the
slower competitor. The speculative execution will only commit if no violation is
detected through all speculative execution. Maximum execution time is capped
to time of sequential execution.

160 Z. Wang et al.

Sequential Code

Static
Analysis

Instrumentation

Instrumented
Code

Instrumented
Binary

Program
inputs

Trace File

Dependence
Analysis

Annotated
Parallel Code

Fig. 4. The process of profile-based dependence analysis. Our compiler only uses
profile-guided analysis for code regions where static analysis has bailed out.

4 Compile Time: Parallelism Detection and Code
Generation

4.1 Parallelism Detection

To determine whether or not speculate we use the following hybrid approach: (i)
use static analysis wherever possible and results are conclusive, (ii) use profile-
guided analysis only for dependence checking where static analysis has bailed
out, and (iii) identify parallel loop candidates using combined static and dynamic
dependence information.

Figure 4 illustrates our hybrid static and dynamic parallelism detection ap-
proach. We use a customised memory dependence analysis path from Llvm v3.4
for static analysis. We then perform profile-guided analysis with similar capab-
ilities as [24], but we only instrument memory operations, which previous static
analysis could not resolve with certainty. The instrumented sequential application
is recompiled and executed with several different inputs in sequential to generate
traces of memory operations. Different program inputs are provided by the user.
Each loop will be profiled once during trace collection. Loop traces are further
analysed to determine if data dependences occurred during execution. Any loop
that does not contain cross-iteration data dependences is then marked as probably
parallel. Additionally, traces can be used to support static reduction recognition.

Speculative Variables. Tracking of speculative memory accesses is expensive,
hence it is desirable that we only track those accesses that can potentially
cause a dependence violation. Here we rely on static analysis to generate a
list of variables that require speculative tracking, i.e. those which are subject
to may-dependences. In particular, we do not track the accesses to read-only
and thread-private variables. For the remaining speculative accesses we insert
suitable wrappers, which invoke the appropriate checking functions.

4.2 Code Generation

Definitely parallel and probably parallel loops are treated similarly except prob-
ably parallel loops have references to arrays replaced with speculative loads and
stores. Parallel loops are translated in a straightforward manner into kernels. A
standard two-stage algorithm [3] is used to translate a parallel reduction loop.
Each parallel loop is translated to a separate kernel using the OpenCl APIs
where each iterator is replaced by a global work-item ID.

Exploitation of GPUs for the Parallelisation 161

1 double specLD double (global double ∗a , global int ∗wr log ,

2 global int ∗ rd l og , int i t e r i d , global int ∗ f l a g)
3 {
4 double value ;
5 atom max(rd l og , i t e r i d) ;

6 value = a [0] ;
7 i f (∗ wr log > i t e r i d) /∗Condit ion 1∗/
8 ∗ f l a g = FAIL ;
9 return value ;

10 }
11
12 double specST double (global double ∗a , global int ∗wr log ,

13 global int ∗ rd l og , int i t e r i d , global int ∗ f l ag , double value)
14 {
15 atom max(wr log , i t e r i d) ;
16 i f (∗wr log > i t e r i d) { /∗Condit ion 2∗/
17 ∗ f l a g = FAIL ;
18 }
19 a [0] = value ;
20 i f (∗ rd l og > i t e r i d) { /∗Condit ion 3∗/
21 ∗ f l a g = FAIL ;
22 }
23 return value ;
24 }

Fig. 5. The OpenCL implementation of our speculative load and store. Dependence
checking is combined with speculative loads and stores.

5 Runtime: Safe Speculative Execution

5.1 Runtime Dependence Checking

Dependence checking is combined with speculative loads and stores. Hence, we
only need to check dependence violations for addresses that are actually accessed
at runtime. Figure 5 shows the OpenCl implementation of speculative load and
store operations. Dependence checking is performed in place. For each specu-
latively accesses address, we create a suitable entry in either a read or write
log, i.e. the rd log and wr log variables in figure 5. The read and write logs
are created on the GPU global memory, which are used to store the Id of the
highest iteration that has read/written to the corresponding memory address a
(lines 5 and 15). As OpenCl does not support barriers for Gpu threads across
work groups, we use the atom max operation provided by OpenCl to make sure
only the highest iteration Id is stored in the log. The value in the log entry will
be monotonically increasing1 over time. Using the logs, we can simply determine
whether a speculative load/store is successful.

5.2 Violation Detection

Speculative Load. A speculative load is successful if there have been no spec-
ulative store to the same memory location by a Gpu thread that executes a

1 For a program with multiple Gpu kernels, the iteration Id passed to the speculative
load and store functions starts from the maximum iteration number of the previ-
ous probably parallel loop. Therefore, the number is monotonically increasing for
multiple speculative kernels.

162 Z. Wang et al.

(a) flow dependence

Sequential

tim
e

Runtime Violation

(b) anti dependence (c) output dependence

i=0:

i=1:

Wp

Rp

Thread 1Thread 0

*rd_log=1

*wr_log=0
Wp

Rp

Sequential

tim
e

Runtime Violation

i=0:

i=1:

Rp

Wp

Thread 1Thread 0

*wr_log=1

*rd_log=0
Rp

Wp

Sequential

tim
e

Runtime Violation

i=0:

i=1:

Wp

Wp

Thread 1Thread 0

*wr_log=1

*wr_log=0
Wp

Wp

Fig. 6. Three cross-iteration dependence and the possible runtime violations due to
Gpu thread scheduling. All the three violations can be successful detected by our
dependence checking scheme with the read (rd log) and write (wr log) buffers as
shown in figure 5.

later loop iteration. This condition is checked in line 7. If the memory location is
written in a later iteration, i.e. (*wr log>iter id), a violation will be reported
(line 8).

Speculative Store. Conversely, a speculative store is successful as long as there
has been no speculative accesses (either loads or stores) to the same address by
later iterations. This condition is checked in lines 16 and 18. If a later iteration
attempts to write to the same location, i.e., (*wr log>iter id), or read from
it, i.e., (*rd log>iter id), a violation is detected.

We continue the discussion of our violation detection mechanism for all pos-
sible types of runtime dependence violations. It is worth noting that our scheme
is exact and does not report any false positives. In addition, if cross-iteration
dependent accesses are executed in the correct sequential order by virtue of the
Gpu thread scheduler, it will correctly handle this situation and not flag any
violation.

Our OpenCl code generator maps each loop iteration to an OpenCl work
item to be executed by one Gpu thread. Hence, no dependence violations are
possible within one iteration. Though, cross-iteration dependence violations are
possible due to the arbitrary order of thread scheduling on the Gpu. In this case,
Figure 6 enumerates all three possible cross-iteration violations. Here we show
the sequential dependence of two consecutive iterations that must be respected
and the potential violation due to Gpu thread scheduling.

Flow Dependence. Figure 6(a) illustrates a violation of a flow dependence (i.e.
read after write), where the use of p in iteration 1 happens before p is updated by
thread 0, which executes iteration 0. This violation will be detected in function
specST. It is *rd log=1 and iter id=0 and also Condition 3 (line 18) of figure 5
holds, such that a violation will be reported.

Anti Dependence. In figure 6(b), the use of p happens after it has been updated
by the a later iteration. This causes an anti-dependence (i.e. write after read)
violation, which will be captured by function specLD. In this case, it is *wr log=1

and iter id=0 and Condition 1 (line 7) of figure 5 holds, such that a violation
will be reported.

Exploitation of GPUs for the Parallelisation 163

CPU GPU

serial

Sequent ial
process

L1

L2

L3

CPU GPU

serial

Sequen ti al
process

L1

L2

L3

CPU GPU

serial

Sequent i al
process

L1

L2

Violation
detected

L2:
Probably
Parallel

Serial
L1:
Parallel

L3:
Sequential

(a) (b) (c) (d)

Fig. 7. Three different parallel execution scenarios for the sequential program shown
in (a) : speculative execution runs faster with no conflict (b) , sequential execution
runs faster (c), violation are found for speculative execution (d)

Output Dependence. Figure 6(c) is an output dependence (i.e. write after write)
violation. After thread 1 has updated p, this memory location is overwritten by
thread 0, which executes a previous iteration. In this case, it is *wr log=1 and
iter id=0 and Condition 2 (line 16) in figure 5 holds, such that a violation will
be reported.

5.3 Recovery from Dependence Violations

Speculative parallel executions can fail despite prior dependence profiling. We use
a competitive scheduling scheme where we simultaneously execute a sequential
version of the program alongside the parallelised program on a spare core of the
host Cpu. If a dependence violation is reported, we simply abort speculative
parallel execution and use the result produced by the safe, sequential run as the
output of the program. Competitive scheduling caps the maximum execution
time to that of the sequential program.

Figure 7 depicts our competitive scheduling scheme. This example contains
three loops: a statically proven parallel loop L1, a probably parallel loop L2,
and a statically proven sequential loop L3. In our scheme, loops L1 and L2 will
be executed on the Gpu and the sequential loop L3 will be executed on the host
Cpu. There are three possible scenarios. If the speculative version finishes first
and does not observe any dependence violations, it terminates the sequential
version (figure 7(b)). If the sequential version finishes first, it will abort the par-
allel speculative version (figure 7(c)). Finally, if the speculative version detects a
dependence violation, it aborts and the sequential version will eventually finish
(figure 7(d)) successfully.

5.4 Comparison to other Approaches

Our speculative checking scheme has several advantages when compared to other
state-of-the-art Gpu thread level speculative schemes, e.g. Paragon [21]. Unlike

164 Z. Wang et al.

Table 1. Hardware platform

Intel CPU NVIDIA GPU

Model Core i7 GTX 580
Core Clock 3.6 GHz 1544 MHz
Core Count 6 (12 w/HT) 512
Memory 12 GB 1.5 GB
Peak Performance 122 GFLOPS 1581 GFLOPS

Paragon, our scheme does not explicitly record addresses of speculative memory
accesses. It is an integral part of the speculative accesses and perform checking
on the fly. As such, our scheme does not have the indirect memory access over-
head resulting from the address bookkeeping buffer, a problem which hampers
Paragon’s performance. Our scheme is particularly well suited for sparse data
applications (e.g. using sparse matrices) where only a small number of the total
index space is accessed by the program. Unlike Paragon, load and store logs (i.e
rd log and wr log) can be re-used between multiple speculative kernels without
the need for clearing them in-between. Finally, Paragon uses a naive violation
detection scheme where an output dependence violation will be reported if there
is more than one write to the same memory address. This naive scheme may
cause false positives (i.e. a successful speculative execution is reported as viol-
ation) when an address has been updated multiple times within the same loop
iteration or a write dependence is honoured. By contrast, our precise violation
detection scheme is exact and does not suffer from this problem.

6 Experimental Setup

Platform. We evaluate our approach on a CPU-GPU mixed system with an
Intel Core i7 CPU and an NVIDIA GTX 580 GPU. The system runs with a
openSUSE 12.3 with Linux kernel 3.7.10. Table 1 gives detailed information of
our platform.

Benchmarks. We have used the sequential NAS benchmark v.2.3 suite for which
manually parallelised Cpu and Gpu implementations are available. To parallel-
ise the code, we use a profiling-based auto-parallelisation tool to analyze data
dependences and generate parallel OpenCL code. The tool parallelises loops with
speculative checking, which are found to be parallelisable during profiling but
cannot proven statically. For all loops that can be statically proven to be safe to
parallelise, the tool parallelises them straightforward. The compiler parallelises
up to three-level of a nested loops to create as many Gpu threads as possible.
Whenever possible, we try to avoid the CPU-GPU communications and syn-
chronisation by running a parallel loop on the Gpu. We avoid to parallelize a
loop that accounts for less than 1% of the whole-program execution time unless
there is a consecutive parallel or probably parallel loop candidate after it (so
that we can remove a Cpu-Gpu synchronisation point).

Exploitation of GPUs for the Parallelisation 165

BT CG EP FT IS LU MG SP Geo-Mean0
1
2
3
4
5
6
7
8

S
pe

ed
up

99x

Fig. 8. Speedups over the sequential execution of our approach. We achieve on average a
speedup of 3.2x and has never significantly slowed down the program over the sequential
execution.

Compiler and Evaluation Runs. All programs have been compiled using GCC
4.4.7 with the -O3 option. Each experiment was repeated 5 times and the average
execution time was recorded. All the benchmarks were profiled using the smallest
input (class S) and evaluated with a larger input class (class A).

Comparison. Our approach is evaluated against Paragon [21], the closest com-
petitor. In Paragon, probably parallel loops are discovered at program runtime
by profiling those statically undecidable loops. However, we found doing so is
very expensive. To provide a fair comparison, we make offload the profiling stage
offline and provide Paragon with the same probably parallel code so it is specu-
late on exactly the same loops as our approach. We therefore only evaluate the
efficiency of speculation rather than accuracy of parallelism discovery and pro-
filing overhead. The Paragon scheme relies on OpenCL code generation. Again,
we use the same OpenCL code generator to provide a fair evaluation. In addition
to Paragon, we also compare our approach to two manually parallelised imple-
mentations of the Nas benchmark suite: an OpenMp version and an OpenCl

implementation (SNU NPB [22]). Both versions were implemented by independ-
ent programmers. The two manual implementations provide a good estimation
of the upper bound performance with the help of user assistance.

7 Experimental Results

In this section we first evaluate our approach against the sequential baseline.
We then compare our approach to a scheme that only parallelises statically
decidable loops on Gpus. This is followed by comparisons to a state-of-the-art
Gpu speculation scheme and manually parallelised implementations. Finally,
we take a closer look at the limitations of static analysis and our speculation
overhead, and discuss of dependence violations.

166 Z. Wang et al.

BT CG LU SP
0

1

2

3

4

5

6

7

8

S
pe

ed
up

Statically Safe
Our Approach

Fig. 9. Comparisons of Paragon and our in-place Gpu speculation scheme. Our scheme
achieves higher speedups on more benchmarks when compared to Paragon.

7.1 Overall Results

Figure 8 shows the speedups achieved by our scheme. The performance numbers
presented are speedups over the sequential execution on the Cpu. On average
our scheme achieves a speedup of 3.2x. Furthermore, by co-running the original
sequential program alongside the parallelised Gpu program, our scheme has
never significantly slowed down the program.

As can be seen from figure 8, great performance improvement can be observed
by exploiting Gpu parallelism for probably parallel loops. This is exemplified by
the embarrassing parallel benchmark EP where a speedup of 99x was observed.
Parallel Gpu execution can benefit for other benchmarks too. For benchmarks
BT, CG and SP, we achieved a speedup of at least 2.6x and up to 7x. For
benchmarks FT and MG, we only achieved modest speedups due to the available
parallelism and cost of speculation. For benchmarks LU and IS, no speedups were
observed on our platform. For LU, a new algorithm is required to get improved
performance on the Gpu [22,5]. For IS, the parallel loop only accounts for 27%
of the sequential execution and it is not worth to parallelise it on the Gpu.
Nonetheless, our competitive scheduling scheme caps the execution time to the
time of the sequential run if the parallel Gpu execution is not profitable.

7.2 Comparison with the Statically Safe Approach

We compare our approach to a conservative approach that only parallelises those
statically proved parallel loops on the Gpu and runs the rest part in sequential
on the Cpu. Obviously, no speculation is needed for such a scheme but data
transfers and synchronisation are required to synchronise between the Cpu and
the Gpu threads.

Figure 9 compare our approach with such a statically safe scheme. Here, some
of the benchmarks are omitted because static analysis fails to discover parallelism

Exploitation of GPUs for the Parallelisation 167

BT CG EP FT IS LU MG SP
0

1

2

3

4

5

6

7

8 99x

S
pe

ed
up

Paragon
Our Scheme

83x

Fig. 10. Comparison of Paragon and our in-place Gpu speculation scheme. Our ap-
proach achieves higher speedups on more benchmarks when compared to Paragon.

of them. As can be seen from this figure, no speedups were observed for the
conservative, safe scheme. This is due to the communication and synchronisation
overhead associated with the switch between theCpu andGpu executions, where
shared variables have to be synchronized among the two devices. This comes
at the cost of expensive communications and synchronisation which outweigh
the benefit of Gpu parallel executions. Our approach, by contrast, avoids this
overhead by running two consecutive static and probably parallel loops on the
Gpu so that we can keep the data on the Gpu and avoid the otherwise required
Cpu-Gpu data transfers. Unlike the disappointing results of the static scheme,
our profiled-based, Gpu speculation scheme is able to achieve speedups for all
the four programs except LU where a change of algorithms is require to achieve
speedups on the Gpu [22].

Overall, the static parallelisation technology is too conservative to exploitGpu

parallelism despite the abundant available parallelism for the majority bench-
marks. By contrast, our approach outperforms the static parallelisation approach
by a factor of 7.

7.3 Comparison with Paragon

Figure 10 compares ourGpu speculation scheme with Paragon.We factor out the
performance achieved by co-running of the sequential code and focus solely on the
quality of the Gpu speculation scheme. Note that we applied the same OpenCl

code optimization to both approaches; therefore, the performance variations are
mainly down to the difference of the speculation schemes.

This figure clearly demonstrates the advantages of our approach. As can be
seen from this diagram, the overhead of Paragon can be significant for some
benchmarks. For example, Paragon is not able to achieve speedups for SP while
our approach gives a speedup of over 7x. For this benchmark, the indirect

168 Z. Wang et al.

BT CG EP FT IS LU MG SP Geo-Mean
0
1
2
3
4
5
6
7
8
9

10
11
12 102

S
pe

ed
up

 OpenMP
 Our approach
 SNU NPB

99

Fig. 11. Performance of the manual OpenMP and OpenCl implementation of the Nas

benchmark suite and our automatically generated parallelised code

memory accessing and initialization overhead of Paragon clearly outweighs the
benefit of Gpu parallel execution. Besides SP, our scheme also outperforms Par-
agon on benchmarks BT and FT, with a speedup up to 2 times higher. For
benchmarks CG, EP and MG, speculative checking only needs to be performed
on a few speculative variables and both approaches deliver similar performance.
Finally, for benchmarks IS and LU, none of the two schemes achieve performance
improvement due to the restriction of the program and the Gpu architecture as
explained in section 7.1. Overall, our scheme outperforms Paragon by achieving
higher speedups whenever it is profitable to exploit Gpu parallelism.

7.4 Comparison to Manually Parallelized Code

We also compare our approach to two manually parallelised implementations
developed by independent programmers: (1) the OpenMP version of the Nas

benchmark suite [1] for the Cpu and (2) SNU NPB [22], an OpenCl imple-
mentation of the Nas benchmark suite for the Gpu. The SNU NPB provides a
good estimation of the up-bound performance that our Gpu speculation scheme
can achieve. The results are shown in figure 11.

As can be seen from this diagram, exploiting Gpu parallelism for highly-likely
parallel code can be beneficial. Example benchmarks include BT, CG, EP and
SP where Gpu execution significantly outperforms the OpenMP Cpu execution
by a factor up to 10. It is not supervised that a manually parallelisedGpu imple-
mentation without speculation overhead outperforms our automatic scheme, but
our approach is able to achieve a level of performance close to the manual im-
plementation. For benchmarks CG and SP, our approach even outperforms the
manual Gpu implementation with advanced Gpu memory optimizations such as
dynamic index reordering applied by ourOpenCl code translator [5]. For bench-
marks FT and MG, our approach is not as good as the OpenMP implementation.
This is restricted by the programs themselves as the Cpu-Gpu communications

Exploitation of GPUs for the Parallelisation 169

Table 2. Numbers of statically decidable and undecidable parallel loops of the manual
OpenMP implementation

Benchmark Manual Statically Decidable Statically Undecidable

BT 54 23 31
CG 19 17 2
EP 1 0 1
FT 6 0 6
IS 1 0 1
LU 29 12 17
MG 12 5 7
SP 70 41 29

is relatively high compared to computation. This can be seen from the fact that
the manually parallelised Gpu code only outperforms the OpenMP Cpu code
by a small margin. For benchmark LU, the algorithm in the sequential code has
to be changed to a hyperplane one to achieve speedups on the Gpu [22]. This
is of course out of the scope of our automatic approach. Finally, for IS, none of
the three parallel versions can gain speedups because the execution time of this
program is dominated by serial code.

Overall our automatic approach performs well. The average 3.2x speedup
achieved by our approach is very close to the 3.3x speedup of the manually
parallelised OpenCl implementation. Moreover, our approach also outperforms
the OpenMp implementation on the majority of the benchmarks by exploiting
Gpu parallelism.

7.5 Analysis

Limitation of Static Analysis. Table 2 shows the number of parallelised
loops of the OpenMP implementation and among those how many are statically
decidable and undecidable. For benchmark CG, a considerable number of the
parallelised loops are statically decidable. However, for most of the programs,
merely relying on static analysis is not enough to exploit program parallelism,
which actually misses a significant amount of parallel opportunities. For ex-
ample, for benchmarks EP, FT and IS, static analysis fails to detect any of the
manually parallelised loops. Static analysis fails to explore parallelism for these
three benchmarks including EP where a speedup of 90x is available. Dependence
profiling information, on the other hand, can provide us with additional inform-
ation, enabling us to discover those parallel opportunities. By contrast to static
analysis, our hybrid static and dynamic parallelism detection scheme identifies
all the parallel loops specified in OpenMP implementation. This table shows
that profile-based analysis is a powerful technique that allows us to discover
parallelism for highly-likely parallel legacy code.

Speculation Costs. Figure 12 shows the overhead of the speculation for each
benchmark. In this diagram, the program runtime is broken down into two
parts: speculation overhead and non-speculative Gpu parallel execution. The

170 Z. Wang et al.

BT CG EP FT IS LU MG SP
0

20

40

60

80

100

P
er

ce
nt

an
ge

 to
 th

e
ov

er
al

l e
xe

cu
tio

n
tim

e
(%

)

 Non-speculative GPU execution Speculation Overhead

Fig. 12. Speculation overhead compared to the unsafe parallel execution without spec-
ulation on the Gpu

two breakdowns are shown as the percentage to the overall program runtime.
As can be seen from this diagram, the speculation overhead varies from one
program to the other. Depending on the number of probably parallel loops and
the frequency of speculative accesses, the overhead varies from 60% to 15% rel-
ative to the whole-program execution time. For some benchmarks, such as CG,
FT and SP, the speculation overhead is relatively low, around 20%. This is
because speculation only needs to be applied on a few arrays. For benchmark
LU, the program execution time is dominated by the synchronisation and com-
munication overhead due to the restriction of the program algorithm and thus
the speculation overhead is not significant. For benchmarks IS, MG and BT,
the overhead is more than 30% of the whole-program execution time, because
of the high frequent speculative access to variables. Particularly, benchmark BT
has the highest speculation overhead which accounts for 60% of the total pro-
gram execution time. For this benchmark, 31 out of the 54 parallel loops cannot
be statically determined and speculation has to be performed on those statically
undecidable loops. Despite the speculation overhead, our approach is still able to
achieve a speedup of 2.9x rather than a 3.6x slowdown of a static approach (see
section 2). On average, the speculation overhead is 28% across all benchmarks.

Dependence Violation. Possibly a little surprising, in none of the above exper-
iments dynamic dependence violations have been detected. This indicates that
our profile-guided parallelisation approach correctly identifies probably parallel
loops. Whilst it is easy to construct a counter example, it suggests that many
loops are genuinely parallel even though static analysis is unable to prove this. In
fact, we have compared the loops identified by our analysis with those parallelised
in the manually derived OpenMp reference implementation of the benchmarks
and confirm equivalence (subject to insertion of speculation code).

Exploitation of GPUs for the Parallelisation 171

8 Related Work

Whilst specific pieces of related work have already been discussed earlier on we
will provide a brief overview of Tls and profile-guided parallelisation approaches
as far as relevant for this paper in the following paragraphs.

Thread-Level Speculation (Tls) Padua and Rauchwerger [20] are early pion-
eers of software based Tls. Their framework speculatively executes a loop as a
doall and applies a fully parallel data dependence test to determine if it had any
cross-iteration dependencies; if the test fails, then the loop is re-executed seri-
ally. There are other automatic parallelisation techniques that exploit parallel-
ism in a speculatively execution manner [28,29], some of which require hardware
support [2]. Matthew et al. [4] have manually parallelised the SpecInt-2000
benchmarks with Tls. Their approach relies upon the programmer to discover
parallelism as well as runtime support for parallel execution. Sw-Tls has been
the topic of many research papers, e.g. [14,15,17,12]. All of these papers focus
on individual speculation schemes, but share the assumption that dependence
violations have a significant probability > 0. In fact, it is generally assumed
that speculative parallel code is either generated by a traditional compiler using
static analysis [31] or directly by the programmer [18]. This is different to our
work, where profiling information is available and probably parallel loops have
been identified for speculative execution.

Profile-Guided Parallelisation Static analyses are fundamentally limited by
the undecidability of the underlying data flow problem [9]. This is not only of
theoretical interest, but has practical implications: parallelizing compilers using
static analysis are severely limited in detecting parallelism and fail to provide
speedups across standard industry benchmarks representative of whole classes
of real-world applications [24]. Profile-guided data flow analyses, on the other
hand, have been proven to detect significantly more parallelism than their static
counterparts [7,11,13], but are lacking safety, i.e. critical data dependencies can
be missed. As profile-guided parallelisation has gained popularity in the aca-
demic community, several papers have investigated methods for making profile
collection more efficient [8,27]. Some interactive parallelisation tools incorporate
dynamic information [23], but typically this is restricted to mapping support
and not used for dependence testing.

Automatic Generation of GPU Programs Some of the recent work target
CUDA [10] or OpenCl [5] code generation from an already parallelized pro-
gram, such as OpenMp programs. Unlike these approaches where the program
parallelism needs to be identify and verify by the programmer, our compiler
automatically detects parallelism from sequential code without user assistance.

Speculative Parallel Executions for GPUs The Paragon compiler [21] is the
nearest work. Unlike our approach where profiling is performed off-line, Paragon
uses profiling information at program runtime to determine parallelism of the
statically undecidable loops by recording all the memory access. This approach,
however, can incur significant overhead at program runtime. Furthermore, Par-
agons dependence checking scheme requires a buffer to record the memory access
of speculative variables. This could lead to indirect memory accessing overhead

172 Z. Wang et al.

for a separated checking process and the buffer will need to be initialized be-
fore being used. By contrast to Paragons, our in place dependence checking
scheme does not have this overhead. Finally, Hayashi et al. [6] propose a scheme
to automatically generated OpenCL code for Java parallel constructors and
preserve precise exception semantics.

9 Conclusion

In this paper we have presented a holistic approach to exploit parallelism for
highly-likely parallel legacy code on commodity Gpus. Building on prior work
on profile-guided parallelization, we proposed a novel Gpu-based speculation
scheme to provide correctness guarantees for probably parallel loops. Our scheme
discards expensive check-pointing for rollback that is not suitable for Gpus, but
instead provides faster checking of dependences for speculative parallel execution
regions, which are identified as probably parallel by our profile-guided analysis.
Our novel approach allows dependence checking to be done in place with spec-
ulative accessing operations. We thus only need to perform checking on the
addresses where speculative accesses actually take place. Our approach has been
evaluated on benchmarks that are rich in parallelism, but hard to parallelize
using traditional static analyses. By exploiting Gpu parallel execution, we avoid
the expensive overhead that otherwise would be required for serial CPU execu-
tions. We have demonstrated the effectiveness of our in-place Gpu speculation
scheme by comparing it to a state-of-the-artGpu-based speculation scheme. Ex-
perimental results show that our technique outperforms the state-of-the-art by
a factor of 1.45. This translates to 99% of the performance of a manual OpenCl

implementation without speculation overhead where the probably parallel loops
have been manually verified. Our future work will explore the combination of
CPU and Gpu speculation schemes for auto-parallelisation on heterogeneous
systems.

References

1. NAS parallel benchmarks 2.3, OpenMP C version,
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html

2. Ahn, W., Duan, Y., Torrellas, J.: Dealiaser: Alias speculation using atomic region
support. In: ASPLOS 2013 (2013)

3. AMD. AMD/ATI Stream SDK, http://www.amd.com/stream/
4. Bridges, M., Vachharajani, N., Zhang, Y., Jablin, T., August, D.: Revisiting the

sequential programming model for the multicore era. IEEE Micro 28(1) (2008)
5. Grewe, D., Wang, Z., O’Boyle, M.: Portable mapping of data parallel programs to

opencl for heterogeneous systems. In: CGO 2013 (2013)
6. Hayashi, A., Grossman, M., Zhao, J., Shirako, J., Sarkar, V.: Speculative execution

of parallel programs with precise exception semantics on gpus. In: LCPC 2013
(2013)

7. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: Frame-
work, scope, and optimization. In: MICRO 2012 (2012)

8. Kim, M., Kim, H., Luk, C.-K.: Sd3: A scalable approach to dynamic data-
dependence profiling. In: MICRO 43

http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
http://www.amd.com/stream/

Exploitation of GPUs for the Parallelisation 173

9. Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4)
(December 1992)

10. Lee, S., Eigenmann, R.: Openmpc: Extended openmp programming and tuning for
gpus. In: SC 2010 (2010)

11. Mak, J., Faxén, K.-F., Janson, S., Mycroft, A.: Estimating and exploiting potential
parallelism by source-level dependence profiling. In: EuroPar 2010 (2010)

12. Mehrara, M., Hao, J., Hsu, P.-C., Mahlke, S.: Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In: PLDI
2009 (2009)

13. Mishra, V., Aggarwal, S.K.: Partool: A feedback-directed parallelizer. In: Temam,
O., Yew, P.-C., Zang, B. (eds.) APPT 2011. LNCS, vol. 6965, pp. 157–171. Springer,
Heidelberg (2011)

14. Oancea, C.E., Mycroft, A.: A lightweight model for software thread-level specula-
tion (TLS). In: PACT 2007 (2007)

15. Oancea, C.E., Mycroft, A.: Set-congruence dynamic analysis for thread-level spec-
ulation (TLS). In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 156–171.
Springer, Heidelberg (2008)

16. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: SPAA 2009 (2009)

17. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: SPAA 2009 (2009)

18. Prabhu, M.K., Olukotun, K.: Using thread-level speculation to simplify manual
parallelization. In: PPoPP 2003 (2003)

19. Rauchwerger, L.: Speculative parallelization of loops. Springer, Heidelberg (2011)
20. Rauchwerger, L., Padua, D.A.: The LRPD test: Speculative run-time paralleliza-

tion of loops with privatization and reduction parallelization. IEEE Trans. Parallel
Distrib. Syst. 10(2) (1999)

21. Samadi, M., Hormati, A., Lee, J., Mahlke, S.: Paragon: Collaborative speculative
loop execution on gpu and cpu. In: GPGPU 2012 (2012)

22. Seo, S., Jo, G., Lee, J.: Performance characterization of the nas parallel benchmarks
in opencl. In: IISWC 2011 (2011)

23. Thies, W., Chandrasekhar, V., Amarasinghe, S.P.: A practical approach to exploit-
ing coarse-grained pipeline parallelism in C programs. In: MICRO 2007 (2007)

24. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic approach
to auto-parallelization: Integrating profile-driven parallelism detection and machine
-learning based mapping. In: PLDI 2009 (2009)

25. Vandierendonck, H., Rul, S., De Bosschere, K.: The paralax infrastructure: Auto-
matic parallelization with a helping hand. In: PACT 2010 (2010)

26. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using software
signatures. In: CGO 2012 (2012)

27. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using software
signatures. In: CGO 2012 (2012)

28. Wallace, S., Calder, B., Tullsen, D.M.: Threaded multiple path execution. In: ISCA
1998 (1998)

29. Wu, P., Kejariwal, A., Caşcaval, C.: Compiler-driven dependence profiling to guide
program parallelization. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335,
pp. 232–248. Springer, Heidelberg (2008)

30. Yu, H., Li, Z.: Fast loop-level data dependence profiling. In: ICS 2012 (2012)
31. Zhai, A., Wang, S., Yew, P.-C., He, G.: Compiler optimizations for parallelizing

general-purpose applications under thread-level speculation. In: PPoPP 2008 (2008)

A Flexible and Efficient ML Lexer Tool Based

on Extended Regular Expression Submatching

Martin Sulzmann� and Pippijn van Steenhoven��

Hochschule Karlsruhe - Technik und Wirtschaft

Abstract. Lexical analysis has many applications beyond the first phase
of compilation in programming language processing. We argue that
extended regular expressions combined with the ability to extract sub-
match information significantly increase the expressiveness of lexer
specifications. We show that such an expressive lexical analysis can be
done efficiently using some novel automata-based methods. The approach
has been implemented in an ML lexer tool which is compatible with
ocamllex. Experimental results confirm that our approach is competi-
tive with respect to existing ML lexer tools.

1 Introduction

The task of lexical analysis consists of identifying patterns of character sequences
also known as lexeme [1]. Patterns are typically described by regular expres-
sions. Thus, scanning can be performed efficiently by applying automata-based
methods.

In this paper, we introduce an efficient lexical analysis approach based on
extended regular expressions with support for intersection and negation in com-
bined with submatching. As we will explain in more detail later, extended regular
expressions and submatching provide the means to support clean and concise
lexer specifications. While earlier works [10,9] supports either one of the two,
we are the first to support both extensions. Powerful regular expression libraries
such as [11] provide also a rich feature set but can possibly exhibit a running time
which can be exponential in the size of the input. Our lexical analysis approach
has a guaranteed linear run-time.

Specifically, our contributions are:

– We introduce a novel and expressive scanner approach based on extended
regular expressions combined with submatching (Section 2).

– The expressiveness of our approach poses new challenges when it comes to ef-
ficient scanning (Section 3). We present an efficient automata-based method
to track submatches connected to extended regular expressions. Our method
combines and extends prior work on partial derivative automata-based sub-
matching [14] and partial derivatives of an extended regular expression [4]
(Section 4).

� martin.sulzmann@hs-karlsruhe.de
�� pip88nl@gmail.com

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 174–191, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Flexible and Efficient ML Lexer Tool 175

– We have implemented the approach in an ML lexer tool dreml which is
compatible with ocamllex (Section 5).

– We present empirical measurements which show that our approach is com-
petitive with respect to existing ML lexer tools (Section 6).

Related work is discussed in Section 3 and Section 6. Section 7 concludes.
Our tool including benchmark examples is available via

https://github.com/pippijn/dreml/

2 Expressiveness

We start off with a cursory overview of the novel features of our lexer tool. We
make use of standard math notation for regular expression patterns r:

r ::= ε | φ | l ∈ Σ | r + r | rr | r∗ | ¬r | r ∩ r | x : r

Letters l are taken from a finite alphabet Σ. Symbol ε denotes the empty word
and φ denotes the empty language. The next forms describe alternation, con-
catenation and Kleene star. In examples, we write r+ as a short-hand for rr∗.
In patterns, we will write Σ as a short-hand for l1+ ...+ ln where li ∈ Σ. Choice
and concatenation are assumed to be right-associative. The novelty lies in nega-
tion (¬), intersection (∩) and the submatch annotation x : r. We assume that
pattern variables x are linear, i.e. occurrences are distinct.

As observed in [10], negation is useful for C comments of the form /* ... */.
A pattern to match C comments may be written as

/*(x : ¬(Σ∗*/Σ∗))*/

Describing the same language without negation would require a longer, more
complex and cumbersome expression:

/*((Σ \ {∗})∗(ε+ *∗(Σ \ {/, *})))∗*/

Submatch annotations are highly useful to directly extract subparts during
lexical analysis to avoid clumsy post-processing steps. See the above example
where we directly extract the comment text. Another typical use case for sub-
matching are C preprocessor directives, particularly the #include directive. A
lexical analysis is only interested in the name of the included file, which can be
extracted using a pattern such as #include W ∗"(x : (Σ \ {"})∗)".

Matching a valid include-directive with this pattern will record the file name
in the pattern variable x. For example, consider input #include "stdio.h", the
resulting matching environment will consist of the set Γ = {(x : stdio.h)}. The
file name can then be extracted and used in a semantic action or post-processing
step.

The combination of submatching and extended regular expressions is highly
useful as shown by our final example. Via submatching we can specify a base
pattern for C integer literals, not including hexadecimal literals:

rint = (num : (0 . . . 9)+)(suf : (l + L+ u+ U)∗)

176 M. Sulzmann and P. van Steenhoven

after which num contains the number and suf the type suffix. Via intersection
we can restrict the pattern for octal integer literals by requiring it to begin with
a zero followed by anything not containing digits 8 or 9:

roct = rint ∩ (0, (Σ \ {8, 9})∗)

In general, intersection is particularly useful in the presence of composed
regular grammars. A library of standard regular expressions may define a set
of valid C identifiers, which may then be restricted in specialized lexers used to
verify a coding style or perform syntax highlighting based on coding conventions.

3 Efficient Submatching

Our lexer tool takes as input a sequence of patterns (r1, ..., rn). Each ri repre-
sents the pattern for a particular class of lexeme. The common lexical analysis
approach is to seek for the longest matching pattern by testing each pattern ri
in parallel. Thus, the scanning problem can be reduced to a single pattern r. The
particular challenge we face is that each r is composed of submatch annotations
and extended operations such as negation and intersection. During scanning we
need to efficiently keep track of submatchings.

Earlier works [6,7] advocate the use of Thompson NFAs [15] for tracking
of submatches efficiently. Roughly, the NFA non-deterministically searches for
possible (sub)matchings without having to back-track. Thus, a linear running
time can be guaranteed.

To deal with extended regular expressions, the Thompson transformation ap-
proach from regular expressions to NFA requires some significant changes. To
deal with negation, we must first turn the underlying NFA into a DFA and then
build the negation of the DFA. The DFA construction is costly and may incur
some exponential explosion on the size of the automata. Similar issues arise in
case of intersection where we must build the product automata. Interestingly,
real world regular expression tools such as re2 [5] which rely on the Thompson
NFA construction do not support negation and intersection (but for only very
limited cases).

The work in [10] describes how to support extended regular expressions by
adapting Brzozowski’s derivative operation [3]. A DFA for recognizing expres-
sions is obtained by interpreting regular expression as states. Transitions among
states are obtained via the derivative operation which symbolically transforms
regular expressions by taking away the leading letters. The results in [10] show
that the resulting DFAs are generally optimal in size. However, like the Thomp-
son NFA method, the Brzozowski method possibly suffers from an exponential
explosion in the size of the automata. Furthermore, the work in [10] does not
consider submatching which we consider a highly useful feature.

In conclusion, it is entirely possible to extend earlier works [6,7,10] with miss-
ing features such as submatching and extended regular expressions. However, we
decide to take a different route which allows us to stick to NFAs.

A Flexible and Efficient ML Lexer Tool 177

To support submatching and extended regular expressions, our idea is to rely
on the concept of Antimirov’s partial derivatives [2]. Specifically, we build upon
our own prior work [14] where we show to construct an NFA submatch automata
for standard regular expressions via partial derivatives.

Like Brzozowski’s derivative operation, the partial derivative operation per-
forms a symbolic transformation on regular expressions to take away the leading
letters. The difference is that Brzozowski’s derivatives yield a DFA whereas An-
timirov’s partial derivatives yield an NFA. Roughly, the partial derivative opera-
tion takes an expression r and a letter l and yields a set of alternatives {r1, ..., rn}
where each ri is a partial derivative. We find that L(r) = L(l(r1 + ...+ rn)).

For example, for expression a∗a the set of partial derivatives with respect to
a is {ε, a∗a}. Each expression is a possible successor state. Antimirov shows that
the number of partial derivatives is finite and linear in the size of the initial
regular expressions. Thus, we obtain a fairly compact NFA.

Important for our work is that recently the partial derivative operation has
been generalized to include additional operations such as negation and inter-
section [4]. As we will show in the upcoming section, we can thus extend the
NFA submatch construction in [14] to the case of extended regular expressions.
Experiments in the later Section 6 confirm that our approach works well in
practice.

4 Extended Partial Derivative Submatch Automata

We present the details of the NFA construction for tracking submatches for an
expression which may contain negation and intersection. For the construction of
the automata, we use Antimirov’s partial derivatives method [2] extended to the
case of intersection and negation [4].

Before we dive into the technical details, we illustrate the key ideas of the con-
struction via some example which for simplicity makes use of submatching only.
For pattern (x : a) + (y : ab) our construction yields the following transitions.
Error states and the respective transitions are omitted for brevity.

(x : a) + (y : ab)
(a,(x→a))−−−−−−→ (x : ε)

(x : a) + (y : ab)
(a,(y→a))−−−−−−→ (y : b)

(y : b)
(b,(y→b))−−−−−−→ (y : ε)

In the Antimirov method, NFA states can symbolically be represented by
regular expressions r. There are no ε-transitions because the Antimirov method
builds new states by taking away the leading letter. For state (x : a) + (y : ab)
the set of partial derivatives w.r.t. letter a is {(x : ε), (y : b)}. Following [7],
transitions are tagged by matchings such as (x → a) for which we use function
notation.

For example, consider the transition arrow
(a,(x→a))−−−−−−→ where in case we find

the input letter a we obtain the matching (x→ a). Matchings are accumulated

178 M. Sulzmann and P. van Steenhoven

to compute the bindings for submatch annotations. For example, running the
above NFA on input word ab yields the final binding y → ab.

In detail, here is a sample run of the NFA on input ab where we only follow
a specific path.

(x : a) + (y : ab)
(a,(y→a))−−−−−−→ (y : b)
(b,(y→b)◦(y→a))−−−−−−−−−−−→ (y : ε)

Accumulation of tags is via function composition. We follow the standard def-
inition of function composition with the exception that we concatenate the
codomains of submappings with the same domain, i.e.

(y → w2) ◦ (y → w1) = (y → w1w2)

Thus, we arrive at the final binding y → ab.
The main challenge is to extend the partial derivative operation to the case

of negation and intersection while retaining all the good properties (i.e. finite
number of partial derivatives). Thankfully for us, this problem has been solved
in [4]. The idea is to represent the extended partial derivative result as a dis-
junctive normal form. That is, as a set of alternatives where each alternative is
a conjunction of expressions which is again represented as a set. For example,
the normal form representation of ((a + b)∗ ∩ b∗) + c is {{(a + b)∗, b∗}, {c}}.
In our setting, we additionally need to keep track of submatchings connected
to each alternative. Hence, we need to refine the normal form in [4] to include
submatching.

4.1 Extended Partial Derivatives with Submatchings

Extended regular expressions:

r ::= ε | φ | l ∈ Σ | r + r | rr | r∗ | ¬r | r ∩ r | x : r

Normal form representation:

r̄n ::= {r1, ..., rn} Conjunctive clause
f, g ::= (x1 → w1, ..., xn → wn) Matchings
R ::= (r̄n, f) Conjunctive clause with matchings
R ::= {R1, ...,Rn} Alternatives of conjunctions

Conjunctive clause to expression: Alternatives of conjunction to expression:
{r}↓ = r

({r} ∪ r̄)↓ = r ∩ r̄↓
{} ⇓ = φ

({(r̄n, f)} ∪ R) ⇓ = r̄n↓ +(R ⇓)

Fig. 1. Extended Partial Derivatives Normal Form

A Flexible and Efficient ML Lexer Tool 179

Distributivity of concatenation, intersection and negation:

R ·©g r
′ = {({rr′ | r ∈ r̄n}, f ◦ g) |(r̄n, f) ∈ R}

R1 ∩©R2 = {(r1n ∪ r2
m, f1 ◦ f2) |(r1n, f1) ∈ R1, (r2

m, f2) ∈ R2}

¬©R =

{
{({¬φ}, id)} if R = {}
∩©(r̄n,f)∈R

⋃
r∈r̄n({¬r}, id) otherwise

Collection of ε bindings:

x : r↓ε = (x → ε) ◦ r↓ε ε↓ε = id r1r2↓ε = (r1↓ε) ◦ (r2↓ε)

¬r↓ε = id r1 ∩ r2↓ε = r1↓ε ◦ r2↓ε

r∗↓ε =
{
r↓ε if ε ∈ L(r)
id otherwise

r1 + r2↓ε =
{
r1↓ε if ε ∈ L(r1)
r2↓ε if ε ∈ L(r2)

Extended partial derivatives with submatching:

(1)
∂

∂a
(φ) =

∂

∂a
(ε) =

∂

∂a
(b) = {} (2)

∂

∂a
(a) = {({ε}, id)}

(3)
∂

∂a
(x : r) =

{
({(x : r̄n↓)}, (x → a) ◦ f) |(r̄n, f) ∈ ∂

∂a
(r)

}
(4)

∂

∂a
(r1 + r2) =

∂

∂a
(r1) ∪

∂

∂a
(r2)

(5)
∂

∂a
(r∗) =

∂

∂a
(r) ·©lastfv(r)

r∗

(6)
∂

∂a
(r1r2) =

{
∂
∂a

(r1) ·©id r2 if ε �∈ L(r1)
∂
∂a

(r1) ·©id r2 ∪ ∂
∂a

(r2) ·©r1↓ε ε otherwise

(7)
∂

∂a
(r1 ∩ r2) =

∂

∂a
(r1) ∩© ∂

∂a
(r2)

(8)
∂

∂a
(¬r) = ¬© ∂

∂a
(r)

Fig. 2. Extended Partial Derivatives with Submatching

Figure 1 describes the necessary adjustments. R describes the possible out-
comes of the (shortly defined) extended partial derivative operation ∂

∂a
r. Each

component in R consists of a pair (r̄n, f) where r̄n is a set of conjunctions
{r1, ..., rn} and f the associated matching function (i.e. mapping of pattern
variables to matched words). The translation of R to the underlying regular
expression is straightforward. See operations ·↓ and · ⇓. By construction r̄n is al-
ways non-empty whereas R can possibly be equal to the empty set. For example,
consider r = {({(a+b)∗, b∗}, f), ({c}, g)} for which we find r ⇓= ((a+b)∗∩b∗)+c.

180 M. Sulzmann and P. van Steenhoven

Our refinement of the extended partial derivative operation ∂
∂a
r with sub-

matching is given in Figure 2. We largely follow the definition given in [4] with
of course some necessary adjustments due to submatching. For the definition of
∂
∂a
r we require auxiliary operations ·©g, ∩© and ¬©. These operations apply stan-

dard distributivity laws on expressions in normal form and additionally perform
operations on matching functions.

For operation ·©g, g is generally the identity function. There are two special
non-identity use cases. For Kleene star, g can be customized such that we keep
the matchings for all iterations or (as it is standard) only the last match. For con-
catenation where the first component matches ε, we must collect all “ε” bindings
in combination with the operator ↓ε. Both special cases will be shortly explained
in more detail. Operation ∩© combines conjunctive clauses which requires us to
build the composition of the associated matching functions.

Operation ¬© effectively cancels any submatchings which arise below negation
by simply recording the identity matching function id . The reason is that we can
not give any well-defined meaning to these submatchings. For example, consider
x : ¬(y : a∗). Suppose the pattern matches some word. Then, pattern variable
x will bind any word not containing any letter a. Clearly, the binding of y is
nonsensical here because (due to the outer negation) there cannot be any match
for a∗.

Next, we take a look at the various cases of the extended partial derivative
operation ∂

∂a
r. Base cases (1), (2) are straightforward and so is case (4) which

deals with choice.
Case (3) deals with submatch annotations x : r. The result is a set of alterna-

tives where each conjunctive clause component r̄n resulting from ∂
∂a
r is turned

into an expression by applying ·↓ to satisfy the syntactic forms of extended reg-
ular expressions. For each submatching f connected to a conjunctive clause, we
compose the ‘top-level’ match x → a with f to build the overall submatching
for each alternative in ∂

∂a
(x : r).

Case (5) deals with the Kleene star. We unfold the Kleene star once and then
concatenate the result with r∗. In case of submatchings within r, the common
approach is to keep only the “last” match. This is achieved via last fv(r) whose
special purpose is to cancel all “outer” mappings connected to any variable in
fv(r) where fv(r) refers to all pattern variables in r. 1 For example,

(y → w2) ◦ last{y} ◦ (y → w1) = (y → w1)

For concatenation r1r2, case (6), there are two subcases depending if r1 is
nullable, i.e. ε ∈ L(r1). The nullable test for extended regular expression is
straightforward and omitted for simplicity. In case r1 is not nullable, we only
apply the partial derivative operation on r1 and concatenate the result with r2.
The ·© operation carries the identity function because the matchings for r2 yet
have to be computed.

1 Is is also possible to tailor our approach to record the matchings for each iteration.
We ignore this variation here for brevity.

A Flexible and Efficient ML Lexer Tool 181

If r1 is nullable, we can simply drop r1 and apply the partial derivative op-
eration on r2. What about the bindings in r1? We clearly can not ignore them.
For example, consider

((x : (y : a)∗) + (z : b∗))︸ ︷︷ ︸
r1

r2

Expression r1 matches ε. This implies that the bindings of nullable subexpres-
sions within r1 are equal to ε. Both alternatives are here nullable. The left
alternative (x : (y : a)∗) yields (x → ε, y → ε) and the right alternative yields
z → ε. However, we will only report (x → ε, y → ε) because we follow here a
greedy left-most matching strategy which strictly favors left-most matches.

Collection of “ε bindings” is achieved via r1↓ε. By assumption r1 is nullable.
Hence, we recurse over the structure of r1 and consider all submatch annotations
which match ε. We attach the resulting bindings r1↓ε to the bindings in ∂

∂a
(r2)

by slightly abusing the ·© operator. The concatenated expression ε yields ele-
ments rε in conjunctive clauses. We silently assume that rε will be immediately
simplified to r.

Cases (7) and (8) deal with intersection and negation and make use of the
respective distributivity operators. Recall that we do not track any submatchings
within negation.

4.2 Submatch NFA Construction

The construction of the actual submatch automata proceeds as follows. We re-
peatedly apply the ∂

∂· · operation to compute the set of all states, starting with
the pattern r. This set is finite as verified in [4]. Hence, we can apply the following
fixpoint construction:

fix({r1, ..., rn}) := let x = {r1, ..., rn} ∪
⋃

a∈Σ,ri∈{r1,...,rn}
in if x = {r1, ..., rn}

then {r1, ..., rn}
else fix(x)

The set fix ({r}) denotes the set of states of the automata resulting from r where
r is the initial state and any state r′ ∈ fix(r) where ε ∈ L(r′) is a final state.

We assume that transitions are recorded in some set T where T is defined as
follows:

T = {r1
(a,f)−−−→ r2 |

for each r1, r2 ∈ fix({r}) ∧ a ∈ Σ where
for some (r̄n, f ′) ∈ ∂

∂a
r1 we have that f ′ = f and r2 = r̄n↓}

We describe the execution of the submatch automata of r on some input
word. Transitions operate on a configuration {r1f1 , ..., rnfn

} which is a set of
active states ri attached with the so far accumulated matching function fi. The
initial configuration is {rid}. For input symbol a, the derivation step from one
configuration to the next is as follow:

182 M. Sulzmann and P. van Steenhoven

{r1f1 , ..., rnfn
} a−→ {r′g◦fi | rifi ∈ {r1f1 , ..., rnfn

} ∧ rifi
(a,g)−−−→ r′ ∈ T }

That is, we build the set of follow states which are reachable via a transition
and extend the current matching function. 2

We may encounter duplicate states because submatching may be ambiguous.
For example, consider the pattern (x : a∗) + (y : a∗) where for input a we either
obtain the matching (x → a) or (y → b). Following [14], we remove duplicates
by giving preference to states which are to the left in the order as generated by
the partial derivative operation. We assume that two expressions r1 and r2 are
duplicates if they are syntactically equal assuming that all submatch annotations
(x : r) are replaced by r.

Thus, we follow the greedy left-most submatching strategy for the submatch-
ings connected to a pattern describing a lexeme. Recall that our lexer tool guar-
antees to compute the longest matching among all lexeme patterns by running
each pattern in parallel.

4.3 Example

Notation: eps = ε [x/a] = x → a

Fig. 3. r = (x : a)r2 where r2 = (y : ¬c, r3) and r3 = (z : ab+ ac)

We consider some example to explain the construction in more detail. We
assume the alphabet Σ = {a, b, c} and the pattern expression r = (x : a)r2
where r2 = (y : ¬c)r3 and r3 = (z : ab+ ac), thus r = (x : a)(y : ¬c)(z : ab+ ac).
The resulting NFA is given in Figure 3 where we exclude error states for brevity.
Below, we consider a few steps of the extended partial derivative construction.

We start off with the initial pattern r. The computation of the extended
partial derivative of r for letter a is as follows.

2 In our informal execution notation at the beginning of this section, the extended
matching is put over the derivation arrow whereas in our formalization the extended
matching is now attached to the resulting state.

A Flexible and Efficient ML Lexer Tool 183

∂
∂a
(r) = ∂

∂a
((x : a)r2)

= ∂
∂a
(x : a) ·©id r2

= {({x : r̄n↓}, (x→ a) ◦ f) |(r̄n, f) ∈ ∂
∂a
(a)} ·©id r2

Intermediate step:
∂
∂a
(a) = {({ε}, id)}

= {({x : ε}, (x→ a))} ·©id r2
= {({(x : ε)r2}, (x→ a))}
= {({r2}, (x→ a))}

In the last step, we apply the simplification εr = r. For brevity, such simplifica-
tions are omitted in the formal description in Figure 2.

Computation of ∂
∂b
(r) and ∂

∂c
(r) yield

{
({φr2}, (x→ b))

}
and

{
({φr2}, (x→

c))
}
which are equivalent to the error state.

We continue with the set of derived terms from the previous iteration, in this
case just r2 which is equal to (y : ¬c)(z : ab + ac). We start off with building
the extended partial derivative for the letter a. For the first component of the
concatenated pattern (y : ¬c)(z : ab+ ac) we find ε ∈ L(¬c). Hence, in the first
step we apply the ‘otherwise’ case for concatenation. See case (6) in Figure 2.

∂
∂a
((y : ¬c)(z : ab+ ac))

= ∂
∂a
(y : ¬c) ·©id (z : ab+ ac) ∪ ∂

∂a
(z : ab+ ac) ·©y:¬c↓ε ε

Intermediate step:
∂
∂a
(¬c) = {({¬φ}, id)}

= {({(y : ¬φ)(z : ab+ ac)}, (y → a))} ∪ ∂
∂a
(z : ab+ ac) ·©y:¬c↓ε ε

Intermediate steps:
(1) y : ¬c↓ε = (y → ε)
(2) ∂

∂a
(z : ab+ ac) = {({z : b}, (z → a)), ({z : c}, (z → a))}

where we simplify εb to b and εc to c
(3) Application of ·©y:¬c↓ε ε
invokes another simplification step, bε to b and cε to c

= {({(y : ¬φ)(z : ab+ ac)}, (y → a)), ({z : b},
(z → a, y → ε)), ({z : c}, (z → a, y → ε))}

The remaining states and transitions are computed similarly.
Here is a sample execution for input aab.

{((x : a)r2)id}
a−→ {(r2)(x→a)}
a−→ {((y : ¬φ)r3)(x→a,y→a), (z : b)(x→a,y→ε,z→a), (z : c)(x→a,y→ε,z→a)}
b−→ {((y : ¬φ)r3)(x→a,y→ab), (z : ε)(x→a,y→ε,z→ab)}

State (z : ε) is the only final state. Hence, the resulting matching is (x →
a, y → ε, z → ab).

184 M. Sulzmann and P. van Steenhoven

5 The dreml Tool

Our tool aims to be a fully compatible drop-in replacement for ocamllex [9] with
extended regular expression support and minor additional usability features.
We give some examples in dreml syntax and discuss the current state of our
implementation.

5.1 Lexer Example

We consider some of the earlier examples from Section 2 which deal with C-style
comments and integer literals. Recall that both examples make use of submatch-
ing in combination with negation and intersection. Here are the examples in
dreml syntax.

(∗ Shortcut definitions for regular expressions. ∗)
let digit = [’0’-’9’]

let lowercase = [’a’-’z’]

let suffix = [’l’ ’L’ ’u’ ’U’]

let int = (digit+ as num)(suffix+ as suf)

(∗ Lexer specifications. ∗)
rule c_token = parse

| "/∗" (~(_∗ "∗/" _∗) as s) "∗/" { Comment s }

| int & ([^’0’] _∗) { IntLiteral (Decimal, num, suf) }

| int & (’0’ ([^’8’ ’9’]∗) { IntLiteral (Octal, num, suf) }

...

| _ { failwith "invalid character" }

The dreml tool follows the ocamllex syntax which already has support for
submatching. In addition, dreml adds support for negation and intersection.

– ~ for negation of regular expressions,
– & for their intersection,
– re as name to introduce a pattern variable binding name referring to the

text matched by re,
– (...) for grouping of expressions, not introducing a pattern variable,
– ’a’ to match a single character, and
– "abc" as shorthand for the concatenation of characters in the string.
– [’0’-’9’] for character classes
– [^’8’ ’9’] for negated character classes.

The earlier C comment text extraction is an almost literal translation to
dreml. The earlier octal number specification

rint = (num : (0 . . . 9)+)(suf : (l + L+ u+ U)∗)

is written in dreml syntax as follows

let int = (digit+ as num)(suffix+ as suf)

A Flexible and Efficient ML Lexer Tool 185

The shortcut definition int introduces pattern bindings num and suf. We can
refer to these bindings inside the semantic actions of patterns. For example,
consider

| int & (’0’ ([^’8’ ’9’]∗) { IntLiteral (Octal, num, suf) }

where on the right-hand side we refer to bindings num and suf which arise
from int. Note that the negated character class [^’8’ ’9’] corresponds to
(Σ \ {8, 9})∗.

The above refines our earlier specification by including decimal numbers. Dec-
imal numbers are required to start with a non-zero digit, since the base pattern
requires at least a leading digit.

| int & ([^’0’] _∗) { IntLiteral (Decimal, num, suf) }

Readers familiar with Perl style regular expressions will notice that the
ocamllex syntax slightly differs from Perl. The purpose of the ocamllex syntax
is to match the OCaml syntax more closely, thus making it easier for syntax
highlighting source code editors to properly display the code. Most notably the
two key differences to the Perl style syntax are:

– Characters and strings must be explicitly quoted with ’’ and "", respec-
tively.

– The ML-style _ operator replaces . as wildcard character representing Σ.

5.2 Lexer Engine

Concatenation
φr = rφ = φ εr = rε = r

Choice
r + r = r ¬φ+ r = r + ¬φ = ¬φ

Kleene star

r∗
∗
= r∗ ε∗ = ε φ∗ = ε

Intersection
r ∩ r = r φ ∩ r = r ∩ φ = φ

Negation
¬(¬r) = r

Fig. 4. Simplification rules for regular expression patterns

Simplifications. To reduce the number of states during the NFA submatch au-
tomata construction, we apply simplifications on regular expression patterns.
See Figure 4. For example, via the rules for concatenation we can replace state

186 M. Sulzmann and P. van Steenhoven

φr2 from the earlier Section 4.3 by the canonical error state φ. In r + r = r
we assume that the “right” r will be removed to maintain the greedy left-most
nature of our NFA submatch engine.

Simplification rules are applied from left to right and are guaranteed to termi-
nate as we strictly produce a smaller expression. It is straightforward to verify
that simplification rules are equivalence preserving.

Character classes. Currently, character classes are desugared into plain regular
expressions. We plan to provide ‘native’ support for character classes and adopt
ideas in [10] to support Unicode.

Execution. The current dreml prototype follows an interpreter style table-driven
approach. We are in the process of supporting full code generation. Our plan is
to support two back-ends: a table-based one using a modified version of our
prototype implementation, and a code-based back-end using mutually recur-
sive functions. An implementation of such code generation already exists in the
Thompson DFA based re2ml [12] tool. This older tool supports neither extended
regular expressions nor pattern submatching. Our development of dreml will su-
persede this tool.

Tokenization. At the time of submission, we only provide limited tokenization
support because we do not fully support the Lexing interface in ocamllex.
This interface abstracts processing of arbitrary streams as well as plain strings.
Position information is extracted by notifying the library when matching a full
lexeme. The underlying library takes care of all details concerning buffering.
Hence, the implementation effort to achieve full support for tokenization is rather
straightforward.

Redundancy Check. Using our extended regular expression automata construc-
tion, we can decide whether the language of an expression r1 is a subset of the
language of another expression r2. If it is, and r1 occurs after r2, a greedy left-
most match will never reach it. We can notify the user of this problem. re2ml
implements this check in an ad-hoc way, due to the lack of extended regular
expressions. In dreml, we can accurately solve the equation

L(r1) ⊆ L(r2)
⇔ L(r1) \ L(r2) = ∅
⇔ L(r1) ∩ ¬L(r2) = ∅
⇔ L(r1 ∩ ¬r2) = ∅

by constructing the automata for r1 ∩¬r2. If the resulting automata accepts no
language, i.e. it is empty or contains no final state, the equation is true and we
can issue a warning.

A Flexible and Efficient ML Lexer Tool 187

6 Empirical Results

We benchmark the performance of dreml. Benchmarks are executed under
Ubuntu Linux 3.8.0 with 3.4GHz Intel Quad Core and 8GB RAM. Our bench-
marks focus on the size of the resulting automata and the time spent on the
automata construction. We also consider timing results for (sub)matching but
for all cases we ignore the cost of tokenization. The contenders are ocamllex and
ml-ulex which are lexing tools part of OCaml [8] and respectively SML/NJ [13].
For experiments, we use OCaml 4.00.1 and SML/NJ 110.74. ocamllex supports
submatching and ml-ulex supports extended regular expressions based on the
ideas described in [10]. Neither tool supports both features like our dreml tool.

The comparison to ocamllex is interesting, as we aim to produce a drop-
in replacement for this tool. However, dreml is strictly implemented in OCaml
and currently only supports a table-driven approach whereas the ocamllex DFA
matching engine is implemented in C. Our measurements show that we already
obtain good performance results.

A comparison with ml-ulex is more representative, since both SML/NJ and
ocamlopt3 produce relatively straightforward native code.

In our first benchmark, we consider a C lexical grammar specification. The
ml-ulex and dreml variant make use of extended regular expressions whereas
the ocamllex variant uses a more clumsy workaround with standard regular
expressions. Both ocamllex and dreml use submatching which is not supported
by ml-ulex.

Tool States

ml-ulex 171
ml-ulex (minimized) 167
ocamllex 127
dreml 60

Fig. 5. Number of automata states

Figure 5 shows the number of automata states. Note that since ocamllex has
a very low automata size limit, the grammar we use does not include keywords
and simply collapses all of them into the identifier rule with a subsequent
table lookup. As can been seen, our non-deterministic automata is the smallest
(as expected). The reason why the DFA produced by ocamllex is smaller than
the minimized ml-ulex DFA is unclear to us.

Figure 6 shows the timing result matching against a larger C file. Timings
for ocamllex and dreml include variations where we do not perform any sub-
matching. That is, effectively ignore the context of C comments and the path
of include directives. As can been seen, for both cases performance results are

3 The “optimizing” OCaml native compiler merely performs some inlining, which was
turned off for the tests.

188 M. Sulzmann and P. van Steenhoven

1

2
t
[s
ec
]

3×106 6×106 9×106 1.2×107

n

sub-dreml
sub-ocamllex
nosub-dreml
nosub-ocamllex
nosub-mlulex

Fig. 6. Time taken lexing a Mozilla source file of n bytes

comparable. This indicates that submatching generally does not incur any severe
run-time penalty.

The timings for ml-ulex (which does not support submatching) appear to be
the worst. We would have expected its timings to be similar to, or even slightly
better, due to the DFA-based approach, than the ones for the NFA-based dreml.
We suspect the ‘bad’ timing behavior of ml-ulex might be due to the fact that
the input file is read in chunks of 4KB. Hence, we observe overhead due to IO.

0.001

0.002

0.003

t
[s
ec
]

10 20 30 40 50
n

dreml

ml-ulex

ocamllex

perl
pcre

Fig. 7. Running a∗ on n bytes

Figure 7 shows the timing results for matching a simple pattern against some
large file. dreml and ml-ulex are comparable whereas ocamllex is much faster
due to its C-based table engine. For comparison, we also include results for Perl
and PCRE.

The next two benchmarks measure the time spent on constructing the au-
tomata. Figure 8 considers the pattern an which is a short-hand for a con-
catenated n times. Clearly, the pattern is deterministic. Hence, dreml will also
produce a DFA. As expected, the dreml NFA method causes some unnecessary
overhead. Interestingly, ocamllex performs the worst.

A Flexible and Efficient ML Lexer Tool 189

0.001

0.002

0.003

t
[s
ec
]

10 20 30
n

dreml
ml-ulex
ocamllex

Fig. 8. Constructing automata for an

0.1

0.2

0.3

t
[s
ec
]

10 20 30 40 50
n

dreml
ml-ulex
ocamllex

Fig. 9. Constructing automata for (a+ b)∗b(a+ b)n

Figure 9 shows a worst-case scenario for DFA approaches. Performance results
of ml-ulex and dreml are similar for the extended regular expression (¬(¬a ∩
¬b))∗. Obviously, we assume here that the above is not simplified to (a+ b)∗.

1000

2000

st
at
es

10 20 30 40 50
n

dreml
ml-ulex
ocamllex

Fig. 10. Automata size for (a+ b)∗b(a+ b)n

The exponential behavior of ocamllex and ml-ulex is due to the exponential
size of the DFA automata. See Figure 10. In contrast, the NFA approach in
dreml shows polynomial growth.

190 M. Sulzmann and P. van Steenhoven

7 Conclusion

The combination of submatching and extended regular expressions improves
the expressiveness of lexer specifications. Efficient lexing is achieved via a novel
NFA-based method. Our prototype tool dreml implements the idea and can be
used as a drop-in replacement for ocamllex with additional functionality. Initial
performance results are encouraging. Future efforts will be aimed at improving
usability and performance of the tool.

Some ideas for future development are:

– Add Unicode support, building on the ideas implemented in ml-ulex and
presented in [10]. This would improve compile time performance even for
non-Unicode patterns.

– Perform static analysis on regular expressions and the resulting automaton
to provide better error messages, both at compile time and at runtime.
Abstract interpretation may be helpful to prove properties of a scanner
description.

– Provide an option to turn the NFA into a DFA and minimize the resulting
DFA, at the expense of increased compile time. A DFA is often a feasible
alternative to NFAs, when the combinatorial explosion of states does not or
minimally occur.

– Implement an ML code generator producing mutually recursive functions in
addition to the current table-based back-end. This is likely to vastly improve
matching performance for large lexemes.

– Investigating the possibilities within a generic submatching based lexer
engine.
It would be interesting to include the semantic action functions in the AST
data structure representing patterns. These functions would replace the vari-
able names and using GADTs4, we might be able to construct a statically
typed heterogeneous matching environment. Initial attempts at this failed,
so further research is required.
This type of lexer engine would not be compatible with ocamllex, but would
allow a user to write the semantic actions directly into the pattern in native
OCaml syntax.

Acknowledgments. We thank the reviewers for their comments. We thank
John Reppy and Aaron Turon for their ml-ulex benchmark examples.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science 155(2), 291–319 (1996)

4 Generalised Algebraic Data Types.

A Flexible and Efficient ML Lexer Tool 191

3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
4. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

5. Russ Cox. re2 – an efficient, principled regular expression library,
http://code.google.com/p/re2/

6. Cox, R.: Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...) (2007),
http://swtch.com/~rsc/regexp/regexp1.html

7. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions. In: SPIRE, pp. 181–187 (2000)

8. OCaml, http://caml.inria.fr/pub/docs/manual-ocaml
9. ocamllex, http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html

10. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives reexamined. Journal
of Functional Programming 19(2), 173–190 (2009)

11. PCRE - Perl Compatible Regular Expressions, http://www.pcre.org/
12. re2ml: Code-based replacement for ocamllex without submatching support,

https://github.com/pippijn/re2ml

13. Standard ML of New Jersey, http://www.smlnj.org/
14. Sulzmann, M., Lu, K.Z.M.: Regular expression sub-matching using partial deriva-

tives. In: Proc. of PPDP 2012, pp. 79–90. ACM (2012)
15. Thompson, K.: Programming techniques: Regular expression search algorithm.

Commun. ACM 11(6), 419–422 (1968)

http://code.google.com/p/re2/
http://swtch.com/~rsc/regexp/regexp1.html
http://caml.inria.fr/pub/docs/manual-ocaml
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
http://www.pcre.org/
https://github.com/pippijn/re2ml
http://www.smlnj.org/

The PAPAGENO Parallel-Parser Generator

Alessandro Barenghi1, Stefano Crespi Reghizzi1,2, Dino Mandrioli1,
Federica Panella1, and Matteo Pradella1,2

1 Dipartimento di Elettronica, Informazione e Bioingegneria - Politecnico di Milano
2 National Research Council - Institute of Electronics, Computer and Telecommunication

Engineering (CNR-IEIIT)
{alessandro.barenghi,stefano.crespireghizzi,

dino.mandrioli,federica.panella,matteo.pradella}@polimi.it

Abstract. The increasing use of multicore processors has deeply transformed
computing paradigms and applications. The wide availability of multicore sys-
tems had an impact also in the field of compiler technology, although the re-
search on deterministic parsing did not prove to be effective in exploiting the
architectural advantages, the main impediment being the inherent sequential na-
ture of traditional LL and LR algorithms. We present PAPAGENO, an automated
parser generator relying on operator precedence grammars. We complemented
the PAPAGENO-generated parallel parsers with parallel lexing techniques, ob-
taining near-linear speedups on multicore machines, and the same speed as Bison
parsers on sequential execution.

Keywords: Parser generation, Parallel Parsing, Operator Precedence Grammars.

1 Introduction

Parsing, or syntactic analysis, plays a fundamental role in a wide variety of computing
applications, ranging from compilation to browsing of structured and semi-structured
data, natural language processing and genomics. In the last years all these fields have
experienced increasingly demanding requirements in terms of time and energy con-
sumption or size of the data sets to be processed, which urged for new effective parsing
solutions. Some attempts have been made to devise new parsing algorithms, or obtain
relevant speedups from the classic deterministic ones, by exploiting the computing ca-
pability offered by modern multiprocessor architectures, but they had almost no success
except for a few overly specific cases (as e.g. for ad-hoc parsers for XML and HTML).

The classical parsing algorithms used for deterministic context-free (DCF) languages,
such as LR and LL, can be efficiently implemented (in linear-time) on sequential ma-
chines, however they do not achieve speedups on multicore architectures due to their
inherent sequential nature: if an input string is split into several parts, handled by dif-
ferent processors, the parsing actions may require communication among the different
processing nodes, with considerable additional overhead. Although this work is no place
for a comprehensive survey, we point out the works of Mickunas and Schell [1] and the
more recent ones of [2] as an example of such issues.

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 192–196, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The PAPAGENO Parallel-Parser Generator 193

Recently we focused on a subclass of DCF the Operator precedence languages
(OPLs), and their grammars (Operator precedence grammars, OPGs) which have been
defined by Robert Floyd a few decades ago [3], and represent a precursor of LR lan-
guages. OPLs have some limits in terms of expressive power and they had been soon
overtaken by parsing techniques based on the more expressive LR family: still, OPGs
are adequate for many common programming languages [4]. The remarkable – and un-
til now unnoticed – aspect of OPLs, is that differently from the larger class of DCF
languages they enjoy a property of local parsability, which makes them suitable for ef-
ficient parallel parsing. Local parsability means that parsing of any substring of a string
according to an OPG depends only on information that can be obtained from a local
analysis of the portion of the substring under processing and is, thus, not influenced by
parsing of other substrings [5,6].

In this work we present a generator of deterministic parallel parsers (PAPAGENO)
for syntactic grammars specified as OPGs, which exploits their local parsability prop-
erty. To our knowledge, PAPAGENO is the first general-purpose practical generator
of efficient deterministic parallel parsers. It features significant speedups in parsing of
both general programming languages and standard data representation languages. In
this work we improve the tool features presented in [5,6] through the effective coupling
of the parallel parsing with a parallel lexical analysis. Moreover, we show that it is
possible, exploiting a moderately tailored parallel lexical analysis, to describe the Lua
programming language with OPGs.

2 Parallel Parser Generation with PAPAGENO

We first recall the essentials of OPGs and of the corresponding bottom-up parsers (more
details in [4,5,7]).

A grammar rule is in operator form if its right hand sides (r.h.s.) have no adjacent
nonterminals; an operator grammar (OG) contains only such rules. Without loss of
generality, we can also assume that the rules of the grammar have no repeated r.h.s. and
renaming rules are absent.

OPGs exploit three binary partial relations on the set of terminal symbols, named
precedence relations, which can be automatically derived from the rule set of the gram-
mar: between any two terminals the equal in precedence (

.
=), yields precedence (�),

takes precedence (�) relations may hold. An OPG is defined as an OG where between
any pair of terminal symbols there is at most one precedence relation. Precedence re-
lations are inspired by the notion of precedence between the operators of arithmetic
expressions: in the same way as e.g. the precedence of product over sum controls the
parsing and evaluation of an arithmetic expression, similarly the relations between the
terminal symbols guide deterministically the parsing of a string.

Precedence relations, in particular, determine the local parsability property of OPGs:
in any partially reduced string, any segment delimited by a pair � and �, where

.
=

holds between consecutive terminal characters within it (possibly separated by a non-
terminal), corresponds to the r.h.s. of a grammar rule. The parsing of the sentence can
start from an arbitrary position in the string: when the parsing algorithm identifies a
segment with the aforementioned pattern through examining the precedence relations,

194 A. Barenghi et al.

Lexical
Grammar

Specification

Operator
Form

Grammar
Specification

BNF Syntax
Specification

Grammar
Normal-
ization

Lexer
C code

Is it operator
precedence?

Grammar
Definition

Tuning

Parser
Generation

Parser
C code

No

Yes

Fig. 1. Typical development flow of a parser, employing PAPAGENO. The human operator stages
are marked in green, while the PAPAGENO automated staged are marked in blue.

it reduces it to the corresponding l.h.s. (which is unique if the grammar has no repeated
r.h.s.) and the reduction by means of the chosen rule will never be affected or invalidated
by the processing of other portions of the whole string.

A very efficient parallel parsing algorithm can be devised from this parsing strategy:
the input string is split in different parts, each one parsed in parallel by independent
processors. The choice of the positions where the string is split is fully arbitrary, dif-
ferently from other proposed parallel parsing algorithms, f.i. [8], which require each
substring to start at the beginning of suitable (language-dependent) syntactic units (e.g.
loops, blocks, etc.). The partial parsing trees generated by the different processors can
then be pairwise combined with constant-time transformations and reduced into the fi-
nal tree, possibly with a further or – seldom – multiple parallel passes, depending on
the structure of the syntax trees.

3 Tool Structure, Performances and Applications

PAPAGENO offers a practical tool to automatically generate parallel parsers starting
from the description of a grammar in a GNU Bison-like syntax. It has been conceived
to be a drop-in replacement to Bison-generated parsers, allowing to exploit the benefits
of automatically generated parallel parsers with a minimum codebase re-engineering
effort. The generated parser can thus be combined with a scanner generated by GNU
Flex in the same way a Bison generated parser does, and does not rely on any external
libraries, except the common C library.

The parallel workers are implemented exploiting POSIX threads, and have been suc-
cessfully benchmarked with Linux and MacOS X implementations. To prevent thread
interlocking due to the memory allocation performed via the libc allocation func-
tions, the generated parser adopts a pooled allocation strategy to handle both the pars-
ing stack involved in the process and the construction of the AST. As it is frequent
to check whether the current symbol under analysis is a terminal or a nonterminal, its
belonging to one of the two sets is bit-packed within the same integer value represent-
ing the symbol, thus yielding a fast checking strategy by means of bit-masks. To ease

The PAPAGENO Parallel-Parser Generator 195

portability, the position of the packed bit is designer-tunable, while the tool provides a
suitable default value for x86(64) and ARM architectures.

In order to optimize r.h.s. matching at reduction time, the r.h.s. of the grammar rules
are stored in a prefix trie, so that the recognition of the correct reduction is performed
in linear time with respect to the longest r.h.s. of the grammar and is fully independent
from the grammar size. To prevent a performance loss from the scarce spatial local-
ity of a trie, the data structure is effectively linearized into a constant vector at parser
generation time, thus yielding efficient memory accesses upon look-up.

We have been able to successfully generate a full JSON parallel parser, together with
a straightforward lexer, proving the practicality of parallel parsing through OPGs of
data description languages. Contrary to common belief, we note that the parallelization
of the lexing phase becomes relevant when dealing with operator precedence parsing,
as the running times of the parser and the lexer are comparable for lightweight syntax
languages such as JSON. For instance, parsing a 10 MB JSON file with 8 workers, we
obtain a 3.18× speedup (3.6× against Bison) employing a parallel lexer coupled to the
PAPAGENO generated parser, while the speedups drop to 2.08× (2.29× against Bison)
when employing a sequential lexer.

We have also been able to tackle the parsing of the Lua programming language,
assuming some sensible, and much widespread, programming practices are employed
when writing Lua sources. Parsing Lua through OPGs has been possible thanks to a
proper lexing stage which allows a more natural expression of the grammar in operator
precedence form through token renaming, in a fashion similar to the one proposed by
Floyd for an ALGOL-like language in [9], and by De Bosschere for Prolog in [10]. We
note that this enriched lexer can still be parallelized effectively: we achieved near linear
improvements in our current tests.

The overall parser design workflow with PAPAGENO is summarized in Figure 1. The
figure shows the novel and enriched role of lexical analysis w.r.t. to classical compilers:
the lexical analysis in fact, besides being carried over in parallel, has also the goal of
producing an intermediate code better suited for an operator precedence parsing.

4 State of the Project

The current state of PAPAGENO provides a working tool to generate parallel parsers
starting from the grammar description. The violations to the constraint on the absence
of repeated right hand side rules in the grammar is pointed out to the parser designer
and an automated r.h.s. elimination algorithm is run assist developers. Currently, we
provide the JSON sequential lexer and parallel parser with the codebase as a work-
ing example to ease the understanding of the toolchain. Interested users should thus
be able to express their preferred language in an OPG compliant syntax with a lim-
ited effort. The number of parallel parsing threads can be chosen at parsing run-time,
simply providing it as an input parameter to the parsing function, allowing efficient
adaptation to the target platform capabilities. Moreover, we perform fully parallel lex-
ing of JSON and Lua, obtaining further speedups. The generated parsers were tested
on x86 64, ARM 926, and ARM Cortex-A architectures retaining the same perfor-
mance across all the platforms. We are planning to enlarge the set of languages sup-
ported by OPGs and the corresponding lexical specifications. Further improvements

196 A. Barenghi et al.

involve a more methodical approach to the parallelization of the lexing stage, and
the integration with incremental parsing methods such as [11], which are particularly
well suited to our operator precedence parallel parsing algorithm, is also considered.
In addition, we are considering the possibility of tackling other data description lan-
guages: among them restricted XML documents may offer a viable topic for further
research. In particular, we note that current parallel XML parsers, such as [2] em-
ploy a language specific approach to tackle the problem, often resorting to linear-
time sequential preprocessing passes. The codebase of PAPAGENO is available at:
https://github.com/PAPAGENO-devels/papageno

References

1. Mickunas, M.D., Schell, R.M.: Parallel compilation in a multiprocessor environment. In:
Proceedings of the 1978 Annual Conference, pp. 241–246. ACM, New York (1978)

2. You, C.H., Wang, S.D.: A data parallel approach to XML parsing and query. In: HPCC,
pp. 520–527. IEEE (2011)

3. Floyd, R.W.: Syntactic Analysis and Operator Precedence. J. ACM 10(3), 316–333 (1963)
4. Grune, D., Jacobs, C.J.: Parsing techniques: A practical guide. Springer, New York (2008)
5. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing of operator

precedence grammars. Inf. Process. Lett. 113(7), 245–249 (2013)
6. Barenghi, A., Viviani, E., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: PAPAGENO:

A parallel parser generator for operator precedence grammars. In: Czarnecki, K., Hedin, G.
(eds.) SLE 2012. LNCS, vol. 7745, pp. 264–274. Springer, Heidelberg (2013)

7. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property.
Journal of Computer and System Science 78(6), 1837–1867 (2012)

8. Sarkar, D., Deo, N.: Estimating the speedup in parallel parsing. IEEE Trans. on Softw.
Eng. 16(7), 677 (1990)

9. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963)
10. De Bosschere, K.: An Operator Precedence Parser for Standard Prolog Text. Softw., Pract.

Exper. 26(7), 763–779 (1996)
11. Ghezzi, C., Mandrioli, D.: Incremental parsing. ACM Trans. Program. Lang. Syst. 1(1),

58–70 (1979)

https://github.com/PAPAGENO-devels/papageno

String Analysis for Dynamic Field Access

Magnus Madsen and Esben Andreasen

Aarhus University
{magnusm,esbena}@cs.au.dk

http://cs.au.dk/~{magnusm,esbena}

Abstract. In JavaScript, and scripting languages in general, dynamic
field access is a commonly used feature. Unfortunately, current static
analysis tools either completely ignore dynamic field access or use overly
conservative approximations that lead to poor precision and scalability.

We present new string domains to reason about dynamic field access
in a static analysis tool. A key feature of the domains is that the equal,
concatenate and join operations take O(1) time.

Experimental evaluation on four common JavaScript libraries, in-
cluding jQuery and Prototype, shows that traditional string domains are
insufficient. For instance, the commonly used constant string domain can
only ensure that at most 21% dynamic field accesses are without false
positives. In contrast, our string domain H ensures no false positives for
up to 90% of all dynamic field accesses.

We demonstrate that a dataflow analysis equipped with the H do-
main gains significant precision resulting in an analysis speedup of more
than 1.5x for 7 out of 10 benchmark programs.

1 Introduction

JavaScript is a notoriously difficult language for static analysis due to its many
dynamic features, including a flexible object-model, prototype-based inheritance,
dynamic property accesses1, non-standard scope rules, coercions, and the eval-
construct [3, 5, 6, 9, 10, 13].

This paper focuses on the problem of dynamic property accesses in points-
to or dataflow analysis of JavaScript, that is, reads or writes to objects where
the property names are computed on-the-fly. This involves statements such as
v = o[p] or o[p] = v where the value of p is not statically known. A simple
sound approach is to treat the first statement as a read of any property of o and
the second statement as a write to all properties of o. However, such an approach
loses the benefits of field-sensitivity. And, as the following sections illustrate, it
is too imprecise in practice. In JavaScript, string manipulations and dynamic
property accesses are common, and to paraphrase an old mantra: “One man’s
string is another man’s heap location”.

1 In JavaScript a field is called a property and reading/writing a field is called a
property access. We will use this terminology for the remainder of the paper.

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 197–217, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

198 M. Madsen and E. Andreasen

Dynamic Reads. The JavaScript code below shows three different ways of
accessing a property of an object o.

1 x = o.p; // a static read of ’p’

2 x = o["p" + "q"]; // a dynamic read of ’pq’

3 x = o[c ? "p" : "q"]; // a dynamic read of ’p’ or ’q’

Line 1 is straightforward to analyze. Line 2 can be handled using syntactic con-
stant folding. However, if the concatenation involves variables or heap locations
the syntactic approach is no longer viable, instead some kind of string analysis
is required. Line 3 is even more nefarious for a static analysis. If the statement is
analyzed using the constant string lattice – without context sensitivity or path
sensitivity – the result will be � (corresponding to any property) and thus it
is unknown which property is read from o. A sound analysis will then conser-
vatively include all properties accessible on the o object in the result. However
this includes all properties available in the prototype hierarchy of o! If o is a
regular object and its prototype is Object[[proto]] then around 10 properties
are involved, including functions such as toString and defineSetter . If the
internal prototype object is Array[[proto]] then the problem is exacerbated by
an additional 20 properties, including mutators such as pop, push, and reverse,
leading to even more spurious flow.

Dynamic Writes. The JavaScript code below shows three different ways to
store a value into an object property.

1 o.p = function () {}

2 o.["p" + "q"] = function () {}

3 o.[c ? "p" : "q"] = function () {}

The first two statements can be handled like in the previous section. However,
the third statement requires extra care. If it is not known to which property a
value is written, then the analysis must conservatively write it to all properties
of that object using a weak update, i.e. by joining the new value into the existing
values. Thus, after the last statement, any property of object o can point to the
function defined on line 3.

Dynamic Reads and Writes. Even more precision is lost when dynamic reads
and writes are combined as shown below:

o[p][q] = function () {};

If neither p nor q are known by the analysis, e.g. if the constant string lattice
is � for both, then p could potentially be the string “ proto ” and as a re-
sult o[p] could be the internal prototype object of o. If o is a regular object
then this would be the Object[[proto]] object. Thus, the write will cause the
function to be written to all properties of the Object[[proto]] object which
is shared by all JavaScript objects. In Java, for instance, this would correspond
to overriding all fields and methods of the java.lang.Object with a spurious

String Analysis for Dynamic Field Access 199

function. To handle such scenarios, a better string abstraction is required, in
particular, the abstraction of p and q should be able to rule out property names
such as proto . Furthermore, should a loss of precision occur for p, then the
abstraction of q should still limit the damage done to Object[[proto]] by
writing to just a few of its properties.

Event Handlers. An additional challenge occurs for JavaScript web applica-
tions. In JavaScript, an event handler may be registered on a HTML object
by writing to several special properties, e.g. onclick, ondblclick, onload and
onsubmit. For instance, writing a function value to the onclick property reg-
isters that function as a callback which is executed whenever the user clicks the
mouse on its corresponding HTML object.

A sound analysis must take such registrations into account. If a dynamic
property write occurs, where a HTML object is the base object, and the analysis
cannot rule out that the write occurs to one of these special properties, then it
must conservatively assume that an event handler registration occurs. This can
lead to spurious event handler registration and spurious dataflow.

Usage in Practice. According to a study of JavaScript behavior by Richards et
al. [14]: 8.3% of all property reads are dynamic and 10.3% of all property writes
are dynamic (c.f. Section 5.2 in [14] and the associated web page2). Furthermore,
as Table 5 shows, many popular JavaScript libraries contain several hundred
dynamic property reads and writes.

Contributions. In summary our paper makes the following contributions:

– We describe twelve different string abstractions – five previously known and
seven new. We focus on abstractions which require O(1) space and support
the equal, concatenate and join operations in O(1) time. We place a strong
emphasis on the precision and performance of the equal operation.

– We experimentally evaluate each string abstraction on four common
JavaScript libraries: jQuery, Prototype, MooTools and jQuery UI. We base
our evaluation on concrete executions of each library thus providing an anal-
ysis independent upper bound on the precision of each string abstraction.

– We propose a precise and efficient string abstraction H for reasoning about
dynamic property accesses. Experiments show that H has no spurious flow
for up to 90% of all dynamic property accesses compared to at most 21% for
the constant string abstraction.

– We equip a dataflow analysis with the proposed H string abstraction and
show that it leads to a significant improvement in precision and performance.
In particular, the analysis achieves a speedup of at least 1.5x for 7 out of 10
benchmark programs.

2 http://dumbo.cs.purdue.edu/js/analysis-charts/events.html

200 M. Madsen and E. Andreasen

2 Related Work

We begin with a discussion of prior work related to string analysis and JavaScript.

String Analysis. Costantini et al. presents an abstract interpretation-based
framework for string analysis and instantiates the framework for four different
abstract domains [4]: a) The character inclusion domain, which tracks what
characters may or must occur within the string, b) the prefix/suffix domain,
which tracks the k first and last characters of the string, c) the bricks domain,
where a brick b = [P(s)]max

min represents all strings that can be generated by
concatenating elements of P(s) between min and max times, and d) the string
graph domain for which we refer the reader to [4] for details. Costantini et al.’s
work does not discuss string equality which is a key issue for our work. Another
difference is that Costantini et al. focus on the theoretical aspects of the strings
domains, whereas we provide an experimental evaluation of the precision and
performance of the domains.

Christensen et al. presents the Java String Analyzer [2] (JSA), a static anal-
ysis tool which approximates string expressions in a Java program by a regular
language. The technique is based on translation from the control-flow graph into
the def-use graph, which is then translated to a context-free grammar and finally
widened into a regular language. JSA has found a wide variety of applications;
including verification of generated SQL statements and validation of dynami-
cally constructed HTML. In comparison to our work Christensen et al. focus on
string analysis in general, whereas we focus on string analysis for reasoning about
dynamic property accesses. Furthermore, we place a strong emphasis constant
time and space bounds for our abstract domains compared to the potentially
exponential time bound for the whole JSA analysis.

Zheng et al. present Z3-str a general purpose string solver based on the Mi-
crosoft Z3 SMT solver [16]. The solver models strings as a primitive type to-
gether with booleans and integers. Its supported operations include concate-
nation, equality, sub-string and replace. Kiezun et al. present Hampi a string
solver based on constraints on regular languages and fixed-size context-free lan-
guages [11]. In relation to our work, general purpose string solvers such as Z3-str
and Hampi, are heavy-weight. We aim to construct a light-weight string domain,
which can be used in any points-to or dataflow analysis, to address the problem
of dynamic property accesses.

JavaScript Analysis. Guarnieri et al. present Gatekeeper, a tool for static
enforcement of security policies for JavaScript programs [6]. The authors present
an Andersen-style [1] inclusion-based, context-insensitive, points-to analysis for
JavaScript. Gatekeeper classifies whether JavaScript “widgets” are safe with
respect to a security policy by inspecting information from the computed points-
to sets and call graph. Gatekeeper cannot soundly reason about dynamic
property accesses and thus must resort to runtime enforcement of the security
policy for every dynamic read or write (c.f. Section 3.2.2, [6]).

String Analysis for Dynamic Field Access 201

Guarnieri et al. present Actarus, a static taint analysis for JavaScript [7].
Actarus tracks information flow to ensure that data from an untrusted source
cannot reach a high-integrity sink. The analysis, like the Gatekeeper project,
is based on inclusion-based points-to analysis. Actarus handles dynamic prop-
erty accesses (called reflective property accesses in their paper) by keeping known
string constants separated and creating new abstract objects when strings ob-
jects are concatenated (Section 3.3 in [7]). Yet, abstraction must be introduced
at some point, and it is not clear from the paper, how this is implemented in
Actarus.

Jensen et al. present the Type Analysis for JavaScript (TAJS) tool based
on inter-procedural dataflow analysis [10]. The analysis aims for soundness and
goes to great lengths to faithfully model the semantics of JavaScript. The string
abstraction is based on the constant string lattice extended to track whether
the string may or must be a number-string. In more recent work, Jensen et al.
extends TAJS with the Unevalizer, a technique for analyzing certain invocations
of eval [8]. For this purpose, the string lattice is extended to track strings
which are valid JavaScript identifiers or contain characters which are valid inside
identifiers. Jensen et al. originally identified the problem of dynamic property
writes to HTML objects [9].

Sridharan et al. present correlation tracking, a technique for identifying and
tracking dynamic property reads and writes which are related [15]. The purpose
of their technique is to ensure that e.g. for-each-in loops which copy properties
from one object osrc to another odst maintain the relation s.t. odst[p] = osrc[p].
Thus, preserving field-sensitive precision. We believe that correlation tracking is
a step in the right direction for scaling points-to and dataflow analyses for large
JavaScript libraries. However, not all dynamic property accesses are correlated
and this paper presents an orthogonal way to improve precision.

In summary, except for Sridharan et al., most work use very simple techniques
for dealing with dynamic property accesses.

3 String Domains

In this section we present some existing and several new abstract string domains.
We have marked the domains which we believe are new to the literature with
the � symbol.

Assumptions. We assume, for the rest of the paper, an underlying points-to or
dataflow analysis with a standard field-sensitive heap abstraction. It is our goal
to design string lattices which can be used together with the analysis without
increasing its running time.

String Operations. JavaScript has around 15 built-in string operations. We
consider the abstract equality (=̂), abstract concatenation (+) and lattice join
(#) operations central for reasoning precisely and efficiently about dynamic prop-
erty accesses. The =̂ operation is applied at every dynamic property access to

202 M. Madsen and E. Andreasen

decide which property names may be referenced. Thus, it must be both precise
– to rule out many property names – and efficient since it will be evaluated
often. Similarly, the + and # operations should be efficient, while maintaining
as much knowledge about the underlying strings as possible. Additional string
operations are discussed in Section 3.16. All domains described in the following
have finite height, thus widening is not required to ensure termination.

3.1 Constant String

The constant string lattice C tracks a single concrete string. The lattice is ele-
ments are ⊥,� and s ∈ Str where ⊥ and � are the bottom and top elements,
respectively. The ⊥ element represents no concrete strings, whereas � represents
all possible concrete strings. The lattice supports the equal, concatenate and join
operations in O(n) time in the length of the string. In practice most strings are
short so we do not consider the linear complexity to be a problem. The constant
string lattice is the standard solution used by much prior work (as discussed in
Section 2) and is used as the baseline abstraction in Section 4.2.

3.2 String Set

The string set lattice SS is the powerset lattice ordered by subset-inclusion of
a bounded number of concrete strings. The lattice elements are � and {s|s ∈
P(Str)∧ |s| ≤ k} where s is a set of up to k strings and � represents all possible
concrete strings. The lattice supports the equal, concatenate and join operations
in O(k2 × n) time, where k is the bound and n is length of the longest string.

3.3 Length Interval

The length interval lattice I is the interval lattice on the string length. It tracks
the minimum and maximum length of the concrete strings it represents. The
length interval lattice can distinguish property names which are usually short,
from data strings such as HTML code, image data or other serialized data. The
interval representation is standard, with a bounded width k, and supports the
equal, concatenate and join operations in O(1) time. Finally, we note that the
length interval lattice can be useful for coercions from strings to booleans as
it tells us whether the string may be the empty string, and thus can coerce to
false.

3.4 Length Hash �

The length interval lattice I loses much precision whenever strings of disparate
length are joined. We propose to overcome this by introducing the length hash
lattice LH. The length hash lattice tracks a set of string length hashes instead
of tracking the minimum and maximum string length. We take a universe of
fixed size U = {0 . . . b} and a hash function h : S → U s.t. each string length

String Analysis for Dynamic Field Access 203

def concat(A: Long , B: Long): Long = {
var R: Long = Long.reverse (B);
var C: Long = 0L;
for (i <- 0 until b) {

r = Long.rotateLeft(r, 1);
if ((A & R) != 0L) {

C |= (1 << i);
}

}
return C;

}

Fig. 1. Implementation of fast hash con-
catenation in Scala. In Java/Scala bit po-
sitions are indexed in the opposite direc-
tion of what we have described on thus
rotateLeft is used instead of a right ro-
tate.

B

Rj

210 b-1... b-2...

j-1 j-2 ... jj+1j+2...

1

R0

b-1 b-2 ... 012...

1

R2

1 0 ... 234...

1

10

1 0

0 1

Fig. 2. The top part of the figure shows
the bitvector Rj , obtained by reversing
and right-rotating B j times. The bot-
tom part is an example where R0 and
R2 are obtained from the bitvector B.

hashes to a particular bucket in the universe. The lattice is the powerset lattice
of U ordered by subset-inclusion (i.e. ⊥ is the empty set and represents no
concrete strings). If we fix b at the word size of the target architecture we can
efficiently implement LH as a bitset. The equal and join operations can then be
implemented as bitwise operations in O(1) time.

Concatenation is more tricky. If we require the hash function h to be dis-
tributive, s.t. (h(s1 + s2) = h(s1) + h(s2) mod b), then concatenation can be
implemented precisely. Concatenation of the abstract strings ŝ1 and ŝ2 is com-
puted by summing all lengths in ŝ1 with all lengths in ŝ2 and taking the modulus.
A naive implementation calculates these sums inside two nested loops. The com-
plexity of this implementation is O(b2) where b is the size of the universe. This
is O(1) since b is a fixed constant, but in practice b = 64 and thus the naive
implementation may require up to 4096 iterations.

A better solution achieves O(b) time by only iterating through the lengths of
ŝ1 and summing with the lengths of ŝ2 simultaneously by using a few clever bit
operations. Let A and B be the bitvectors representing ŝ1 and ŝ2 respectively.
We observe that the k’th position in the resulting bitvector C depends on all
A[i] and B[j] where i+ j ≡ k mod b.

We define Rj to be the bitvector obtained from B by first reversing it and
then right rotating the result j positions. Thus, e.g. R0 is the reverse of B and
R2 is the reverse of B right rotated two positions, as shown in Figure 2.

We can now compute C[k] by evaluating A ∧ Rk+1 	= 0, since Rk+1[i] =
B[(b− 1− i) + (k + 1) mod b] = B[k − i mod b] = B[j] and thus:

C[k] = (A ∧Rk+1 	= 0) =

b−1∨
i=0

A[i] ∧B[j]

204 M. Madsen and E. Andreasen

which is equivalent to what is computed by the naive implementation. The code
in Figure 1 implements this strategy. In a synthetic benchmark the above code
resulted in a factor 70 speedup compared to the naive implementation.

As an example, the abstraction of {abc, abcdef} is a bitset containing the
elements 3 and 6. This bitset represents all strings of length {l|l = 3+ b ∗ i∨ l =
6 + b ∗ i, ∀i ≥ 0}.

3.5 Prefix and Suffix Characters

The prefix-suffix character lattice PS tracks the first and last character symbol
of the string. It is formed as the cartesian product of two constant character
lattices; one for the prefix and one for the suffix. The lattice supports the equal,
concatenation and join operations in O(1) time.

In jQuery HTML tags can be passed into to the $-function to construct new
HTML elements. Inside the $-function3, the following test is used to inspect
whether an argument is an HTML tag:

var length = selector .length;

if (selector .charAt (0) === "<" &&

selector .charAt(length - 1) === ">" &&

length >= 3) {

The prefix-suffix character lattice can analyze code like the above by providing
information about whether the first and last character may or must not be the
< and > characters, respectively.

3.6 Character Inclusion

The character inclusion lattice CI tracks what character symbols may and must
occur within a string. It is formed as the cartesian product of the four sub-
lattices: cmay, cmust, emay and emust. The cmay and cmust lattices are powerset
lattices of character symbols ordered by subset- and superset inclusion, respec-
tively. The emay and emust boolean lattices tracks whether the concrete set of
strings may or must include the empty string or a character symbol which is not
representable by cmay or cmust. As an example, the empty string, and the strings
foo and moo are represented as:

CI = (cmay = {f, m, o}, cmust = {o},�emay,⊥emust)

The equal operation of CI1 and CI2 is implemented as:

1. If CI1 or CI2 is⊥CI then the result is⊥bool, i.e. if one (or both) of the lattices
represents the empty set of concrete strings then the results represents the
empty set of concrete booleans (denoted by ⊥bool).

2. If c1must ∩ c2may = ∅ or c2must ∩ c1may = ∅ the result is False, i.e. if a character
must be in CI1 but at the same time is definitely not present in CI2 the
strings cannot be the same (and vice versa).

3 jQuery v. 1.8.3, line 114.

String Analysis for Dynamic Field Access 205

3. If c1may ∩ c2may = ∅ and e1may = e2may = ⊥ then the result is False, since no
characters overlap between CI1 and CI2, and none of them are the empty
string.

4. If CI1 must contain the empty string or an unrepresented character and CI2
definitely does not (or vice versa) the result is False, since either contains
characters which the other does not.

5. Otherwise the result is �bool, i.e. the concrete set of true and false.

We implement the character inclusion lattice using two bitsets. The first bitset
tracks may-information and the second tracks must-information. In each bitset
we use a bit to track whether the string may/must be the empty string or con-
tain an unrepresentable character. The remaining bits are reserved for character
symbols. If we use a word size of 64 this leaves space for 63 character symbols.

We represent character symbols in the ASCII range from 32 to 95, which in-
cludes the characters 0-9, A-Z, the special characters !"#$%&’()*+,-./:;<=>?@
and space. Lowercase letters can be accommodated by converting them to up-
percase, i.e. the character inclusion lattice is case-insensitive. In summary, the
bitset-based character inclusion lattice supports the equal, concatenate and join
operations in O(1) time.

3.7 Index Predicate �

The index predicate lattice (IP) tracks whether a boolean valued predicate ρ(c)
may or must hold for the character symbol c at index i of the string, where the
index is bounded by a constant b. That is, the lattice only tracks the predicate for
the first b characters. Most property names are short, and thus having incomplete
information for long strings is unlikely to be a problem in practice. We can
instantiate the lattice with predicates like the following:

– Lowercase / Uppercase – whether the character at index i may or must be
a lowercase or uppercase letter. This is useful for property names that use
camel casing, e.g. hasOwnProperty.

– Underscore – whether the character at index imay or must be an underscore.
Like above, this is useful for “hidden” property names with underscores, e.g.
defineGetter .

– Digit – whether the character at index i may or must be a digit. If all
character symbols must be digits then the entire string represents a number.

– Non-identifier Character – whether the character at index i may or must be
a non-identifier character. (A generalization of the idPart in Unevalizer [8])

– Whitespace – whether the character at index i may or must be white space
(i.e. space, tabs or newline) which is useful for e.g. split.

The index predicate lattice is the cartesian product of two powerset lattices of
indices imay and imust and the length interval lattice. The length interval lattice
is used to handle concatenation precisely.

We implement the imay and imust lattices as bitsets for the first 64 string in-
dices. The length interval lattice uses the standard representation. The join op-
eration is straightforward to implement in O(1) time. The equal operation can

206 M. Madsen and E. Andreasen

be implemented similarly to the equal operation for the character inclusion lat-
tice. The concatenate operation, however, requires more legwork. If the strings
s1 = (i1may, i

1
must) and s2 = (i2may, i

2
must) are concatenated and the length of s1 is

not an interval, but a concrete number, then concatenation is simply a matter
of merging the i1may and i2may bitsets using the concrete length of s1 as an offset.

On the other hand, if the length of the string s1 is an interval then the i1may and

i2may bitsets must be merged by all offsets in that interval. Similarly for the must
bitsets, as shown in Figure 3.

A 001 1 1 1

B 10

R 001 1 1 0

B 10

0

i j

i j

Fig. 3. Concatenation of two index predicate lattices A and B for the i1must and i2must
sets, respectively. Here the length of A is between [5, 6]. The example shows how the
indices i and j are computed by bitwise-and.

3.8 Sliding Index Predicate �

The sliding index predicate lattice SIP tracks a boolean valued predicate for
pairs of consecutive characters. That is, the predicate is of the form ρ : Char×
Char → Bool, where the two characters are adjacent inside the string. We can
instantiate the lattice with predicates like the following:

– Gemination - whether two consecutive characters are the same. E.g. in the
property names defineGetter and defineSetter there are three
geminations, one for the preceding underscores, one for the double t’s and
one for the succeeding underscores.

– Inversions - whether two consecutive characters are inverted with respect
to their lexicographical ordering. E.g. in the property name valueOf the
characters v and a are inverted. If no characters may be inverted then the
characters in the string must be sorted.

The sliding index predicate lattice is similar to the index predicate lattice.
However, in addition to may- and must- bitsets and the length interval lattice,
it must be equipped with the prefix-suffix lattice. This lattice is required for the
concatenation operation: When s1 and s2 are concatenated the prefix-suffix is
used to evaluate the predicate for the last character of s1 and the first character of
s2 thus ensuring that knowledge of the predicate is preserved for all consecutive
pairs of characters in the resulting string.

String Analysis for Dynamic Field Access 207

3.9 Prefix Suffix Inclusion �

The prefix-suffix inclusion lattice PSI is inspired by the prefix-suffix and char-
acter inclusion lattices. It tracks the set of characters that the first and last
character in the string may or must be. As for the character inclusion lattice, it
tracks whether the string is the empty string or if the prefix/suffix may be a non-
representable character symbol. Its representation is based on no less than four
bitsets: May- and must- bitsets for both the prefix and suffix character. Equal,
concatenation and join is implemented as bitwise operations in O(1) time.

The prefix-suffix inclusion lattice can rule out equality of the concrete string
prototype and the abstract string ŝ, if the first character of ŝ is definitely not
p or the last character of ŝ is definitely not e.

3.10 String Hash �

The string hash lattice SH lattice is inspired by the length hash lattice, but
instead of hashing the string length, it hashes the string itself: It uses a hash
function h : S → U which takes the sum of all character codes in the string and
hashes it into a bucket (as described in Section 3.4). The strength of the string
hash lattice is that it can keep separate strings for which the other lattices might
lose all information. Consider the example:

"foo"=̂("The" # "quick"# "brown"# "fox")

Here, for instance, the length interval, the length hash and the character inclu-
sion lattices lose information and cannot rule out that the strings may be equal.
In contrast, the four strings hash to 33, 29, 40 and 13, respectively, and "foo"

hash to 4, and thus the abstraction is able to rule out equality between the left
and right side. We implement the string hash lattice as a single bitset which sup-
ports equal, concatenate and join in O(1) time. Concatenation is implemented
in the same way as the length hash lattice and requires the hash function to be
distributive (see Section 3.4).

3.11 Number Strings �

In JavaScript it is common for numbers to be coerced to strings. We introduce
the number string lattice N to track JavaScript numbers encoded as strings. It
is the powerset lattice of the elements ∞, −∞, NaN, N and Other ordered by
subset-inclusion:

N = (P{∞,−∞, NaN,N, Other},⊆)
Here ∞ represents the number “positive infinity” which coerced to a string
yields "Infinity", similarly −∞ coerces to "-Infinity", NaN represents “not-
a-number” which coerces to "NaN" and N which represents any natural number
which coerces to itself as a string. The number string lattice is implemented as a
bitset and supports equal, concatenate and join operations in O(1) time. With
respect to concatenate, we take a pragmatic approach and let it return �, i.e.
all lattice elements.

208 M. Madsen and E. Andreasen

�

CN T

SS

I

IP

SIP

PS

PSI

CILH SH

H

A

Fig. 4. A diagram showing how the precision of the lattices relate to each other. As an
example, the precision of the prefix-suffix lattice PS lattice is fully subsumed by the
prefix-suffix inclusion lattice PSI.

3.12 Type Strings �

In JavaScript the typeof operator inspects the runtime type of a value and
returns one of the string constants: boolean, function, object, string and
undefined. The typeof operator is widely used in jQuery, for instance4:

stop: function (type , clearQueue , gotoEnd) { // ...

if (typeof type !== "string") { // ...

Here the behaviour of the stop function depends on the type of its first argument.
We introduce the type string lattice T to explicitly track the five strings returned
by typeof:

T = (P({Bool, Func, Obj, Str, Undef, Other}),⊆)

The Other element, as for the number string lattice, represents all strings other
than the type strings. We implement the lattice as a single bitset which supports
the equal and join operations in O(1) time.

3.13 The Hybrid Lattice �

We introduce the hybrid string lattice H as the cartesian product of the string
set SS (Section 3.2), character inclusion CI (Section 3.6) and string hash SH
(Section 3.10) lattices. The intuitive idea behind the lattice is to track a few
concrete strings with full precision and then “fallback” to the character inclusion
and string hash lattices when there are too many strings to track. As will be
shown in Section 4, the hybrid lattice achieves almost the same precision as the
combination of all presented lattices.

3.14 Lattice Relations

Figure 4 shows how the precision of the lattices relate to each other. As discussed
in the previous section, the figure shows that the hybrid string lattice H is at
least as precise as the string set SS, character inclusion CI and string hash
lattices SH. We call the cartesian product of all lattices A.
4 jQuery v1.8.3, line 9,046.

String Analysis for Dynamic Field Access 209

Table 1. Overview of lattice characteristics

C SS I LH PS CI IP PSI SH N T H
New � � � � � � �
Structural � � � � � � � �
Subset � � � � � � � � �
Parametric � � � � �
Space |s| k × |s| 2 1 2 2 4 5 1 1 1 k × |s|+ 3

3.15 Overview

We briefly summarize some characteristics of the presented lattices:

New We believe that the lattice is new to the literature.
Structural The lattice tracks the structure of the string. As an example, the

prefix-suffix lattice PS tracks the first and last character of the string.
Subset The lattice subset or superset-based.
Parametric The lattice has different instantiations. For instance, the index

predicate lattice IP can be instantiated with different predicates.
Space The space (memory) required to represent a single lattice element. In

machine words, except for C and SS which must store the entire string(s).

Table 1 shows an overview of these characteristics.

3.16 Additional String Operations

We now describe some additional string operations which the lattices support.

charAt and charCodeAt. The charAt(i) and charCodeAt(i) string functions
return the character or character code at position i inside the string.

– PS– if the index is zero then the prefix-suffix lattice knows the precise result.
– IP– the index predicate lattice can provide an upper bound on what char-

acter symbols may occur at index i. E.g. if the predicate is isUpperCase and
it holds for index i, then the character must be in the set [A− Z].

– CI– the character inclusion lattice can provide an upper bound on what
character symbols may occur at index i.

indexOf, lastIndexOf and Search. The indexOf(s) and lastIndexOf(s) func-
tions return the index of respectively the first and last occurrence of s in the
string. If s is not contained in the string, the value −1 is returned.

– CI– if the query string is a single character the character inclusion lattice
can decide whether that character may or must occur within the string. It
cannot give the precise index, but it can decide whether the −1 value should
be part of the return value.

210 M. Madsen and E. Andreasen

– IP– if the query string is a single character and some property of that
character is tracked by the index predicate lattice, then a set of indices can
be returned. E.g. if the query string is an uppercase A and the index predicate
lattice tracks uppercase letters, then the lattice can provide all indices where
uppercase letters may occur.

– I– the length interval lattice can provide a bound on the returned index.

Substring. The substring(b, e) function returns the substring beginning at
position b and ending immediately before position e.

– I & LH– the length interval and length hash lattices simply restrict their
intervals to the range [b, e].

– PS– if the extracted string is a prefix, i.e. if b = 0, then the prefix-suffix
lattice can retain its first component.

– CI– the character inclusion lattice can retain its may-set of character sym-
bols, but its must-set must be replaced by �.

– IP & SIP– the index predicate and sliding index predicate lattices can
retain all their information for the substring.

4 Evaluation

We have described the theoretical properties of the lattices and now turn to their
practical application by considering the research questions:

– Q1: How precise are the lattices, independent of any particular analysis, for
reasoning about strings used in dynamic property accesses?

– Q2: To what degree does a more precise string lattice, for dynamic property
accesses, improve the overall precision and performance of a static analysis?

4.1 Dynamic Analysis

We investigate Q1 by performing a dynamic analysis of strings and dynamic
property accesses in four large JavaScript libraries. Inspired by Liang et al. [12]
the dynamic analysis is used to provide a (static-) analysis independent upper
bound on the precision of each lattice. That is, the best precision each lattice
can possibly provide for a set of concrete execution traces.

We instantiate the string set lattice with k = 3 (see Section 3.2), the length
interval lattice with width k = 20 (see Section 3.3), the index predicate lattice
with the uppercase predicate (see Section 3.7) and the remaining lattices are
instantiated as described in their respective sections.

Benchmarks. We collect concrete execution traces for the four large JavaScript
libraries shown in Table 5. The traces expose a total of 80,000 dynamic property
accesses of which 60,000 are reads. We obtained the traces by loading twelve

String Analysis for Dynamic Field Access 211

Reads Writes

Library Lines Locations Properties Locations Properties

jQuery-1.9.1 9,597 400 7.0 124 5.8
jQuery-1.8.1 9,301 377 12.0 102 8.3
jQuery-1.7.1 9,266 401 6.8 101 6.6
Prototype-1.7.0 7,036 226 9.8 43 14.7
MooTools-1.4.5 5,976 281 13.7 110 14.2
jQueryUI-1.8.24 11,377 265 8.1 75 7.4

Fig. 5. The JavaScript libraries used for the dynamic analysis evaluation. Here the
locations column indicates the number of syntactic occurrences of dynamic property
accesses. The properties column indicates the average number of property names read-
/written by a dynamic property access expression.

popular websites according to the Alexa rankings5. The complete list of websites
is available in Appendix A. Since jQuery is prevalent, we include three different
versions. The websites are automatically modified to use instrumented versions
of the libraries which record information about every dynamic property access.

We explain Table 5 by example. The table shows that the jQuery-1.9.1 source
code has 400 dynamic property read expressions and 124 write expressions. For
the read expressions, an average of 7.0 properties are read by each expression,
and an average of 5.8 properties are written by each expression.

Concrete Traces. We instrument the source code to register the following for
every dynamic property access o[p]:

T = (R,L, E ,Po,Pp) , where

– R is a unique identifier for the concrete run.
– L is the physical location of the dynamic property access in the source code.
– E is the expression tree corresponding to how the property name, which is

being used for the dynamic property access, was created. An expression tree
is a tree where the leaves are string constants and the internal nodes are
string operations, which are equipped with their source code location.

– Po is the set of properties available on the object o itself.
– Pp is the set of properties available on the prototype objects of o.

Here R and L is meta data about the concrete trace and E ,Po,Pp is information
about the dynamic property access. As an example, the execution of the code
snippet on the left produces the trace on the right.

Here Toplevel is the name of the toplevel “function”, E is the expression
tree for the string concatenation of "p" and "q", Po contains a and b (i.e all
properties of o) and Pp contains all properties of the Object[[prototype]]

object.

5 http://www.alexa.com/topsites

212 M. Madsen and E. Andreasen

x = new Object();

x.a = 42;

x.b = 21;

z = x["p" + "q"];

T = (0, input.js:4, Toplevel, E ,Po,Pp)

E = Concat(input.js:4, "p", "q")

Po = {a, b}
Pp = {..., toString, valueOf, ...}

Abstract Traces. We simulate the effects of abstraction by merging several
concrete traces into a smaller set of abstract traces. We merge concrete traces
which share the same location L to obtain a single abstract trace for that lo-
cation. In particular, given two concrete traces T 1 = (R1,L1, E1,P1

o ,P1
p) and

T 2 = (R2,L2, E2,P2
o ,P2

p) we define the abstract trace T̂ = (L, Ê , P̂o, P̂p) where

L = L1 = L2 Ê = {T 1
E , T 2

E } P̂o = T 1
Po
∪ T 2

Po
P̂p = T 1

Pp
∪ T 2

Pp

The generalization to multiple traces is straightforward.
We now consider two scenarios. First, we evaluate the precision of the lattices

on the abstract traces where the expression tree E is fully evaluated before any
abstraction. That is, if an abstract trace has the two expressions trees E1 = ”a”
and E2 = ”b” + ”c” + ”d” then we consider the abstraction α(”a”) # α(”bcd”),
i.e. concatenation occurs before abstraction. Second, we evaluate the precision
when concatenation occurs after abstraction. For instance, we would evaluate
α(”a”) # (α(”b”) + α(”c”) + α(”d”)). Here α is the abstraction function which
lifts a concrete string into the abstract domain.

Precision without Concatenation. Figure 6 shows the percentage of dy-
namic property access locations with zero false positives for each lattice. That
is, a value of 100% implies that the lattice is complete for all dynamic property
accesses. A value of 50% implies that half of all locations of dynamic property
accesses have at least one false positive. The figure shows two bars for each lat-
tice; the light bar represents locations with false positives involving properties in
the base object, and the dark bar represents false positives involving properties
in the prototype objects.

We observe that the constant string lattice ensures that at most 50% of all
dynamic property accesses involving base object properties have zero false posi-
tives. If we consider prototype properties, the number drops to 31%. This means
that for more than half of all dynamic property accesses the constant string lat-
tice will cause spurious flow. For the string set lattice the percentages are not
surprisingly higher at 72% and 58%, respectively. The character inclusion lattice
achieves the highest precision with 79% and 78% of all dynamic property ac-
cesses having zero false positives. Remarkably, the prefix-suffix inclusion lattice
achieves nearly the same precision, even though it only tracks information about
the first and last characters in the string. The hybrid lattice achieves 89% and
86% which is only slightly lower than the all lattice (the product of all lattices).
The number string and type string lattices achieve less than 25% of property
accesses with zero false positives and are omitted from the graphs.

String Analysis for Dynamic Field Access 213

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DP
As

 w
ith

 ze
ro

 fa
lse

 p
os

iti
ve

(s
)

Precision (no concatenation)

Object
Prototype

Fig. 6. Precision without concatenation,
measured as the number of dynamic prop-
erty accesses with zero false positives

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DP
As

 w
ith

 ze
ro

 fa
lse

 p
os

iti
ve

(s
)

Precision (with concatenation)

Object
Prototype

Fig. 7. Precision with concatenation,
measured as the number of dynamic prop-
erty accesses with zero false positives

We attribute the difference in precision for object and prototype properties
to the fact that most objects have fewer properties than their corresponding
prototype object(s).

Precision with Concatenation. Figure 7 shows the percentage of dynamic
property accesses with zero false positives for each lattice restricted to traces
which involve at least one concatenation. This restriction reduces the number
of concrete traces from 80,000 to around 8,000. Note that this implies that
Figures 6 and 7 are not directly comparable.

We observe, when concatenation is involved, the constant string lattice is
only able to achieve a zero false positive rate of 21% and 14% for object and
prototype properties. Again, the character inclusion lattice achieves the best
precision with 64% and 93% property accesses with zero false positives. The
hybrid lattice achieves 90% and 97% which is only slightly less than all the
lattices combined. The number string and type string lattices achieve less than
10% with zero false positives and are omitted from the graphs.

We leave the evaluation of the sliding index predicate as future work for two
reasons: First, initial experiments on the index predicate lattice showed that it
has very poor performance for concatenation. Second, it was not clear to us what
kind of predicate would be a good discriminator for property names.

We answer Q1 by concluding that the precision of the constant string lattice is
worse than most other of the presented lattices. Furthermore, the hybrid string
lattice H achieves almost the same precision as all the lattices combined.

4.2 Static Analysis

We investigate Q2 by comparing the precision and performance of a static anal-
ysis equipped with the constant string lattice C and the proposed hybrid string
lattice H.

214 M. Madsen and E. Andreasen

Table 2. Static Analysis results. Lines is the number of lines of source code. Nodes is
the number of control-flow graph nodes. PAs↓ is the percentage of property reads with
improved precision. PointsTo↓ is the average reduction in the size of points-to sets for
all property reads.

Precision Performance

Program Lines Nodes PAs↓ PointsTo↓ Constant Hybrid Speedup

3d-cube.js 343 2,794 14% 10% 1.7s 1.0s 1.6x
3d-raytrace.js 443 2,874 57% 41% 38.5s 4.7s 8.2x
access-nbody.js 170 828 9% 7% 0.3s 0.2s 2.1x
astar.js 355 1,406 68% 58% 5.9s 0.3s 16.8x
crypto-md5.js 295 1,422 93% 93% 0.3s 0.2s 1.8x
garbochess.js 2,812 15,795 78% 77% 56.3s 24.3s 2.3x
javap.js 1,400 5,104 28% 27% 7.5s 7.3s 1.0x
richards.js 541 1,602 3% 2% 3.7s 3.3s 1.1x
simplex.js 450 2,056 73% 72% 0.6s 0.3s 2.0x
splay.js 398 1,016 2% 2% 0.4s 0.4s 1.0x

Dataflow Analysis. We have implemented an inter-procedural, flow-sensitive
and context-insensitive dataflow analysis for JavaScript in the style of Jensen et
al. [10]. The analysis can be instantiated with different string lattices without
any changes to the rest of the abstraction.

Benchmarks. We evaluate the analysis on the programs shown in Table 2.
The 3d-cube.js, 3d-raytrace.js, access-nbody.js and crypto-md5 pro-
grams originate from the Mozilla SunSpider benchmark suite, richards.js and
splay.js originate from the Google Octane benchmark suite and astar.js,
garbochess.js, javap.js and simplex.js were collected from GitHub and
various sources on the Internet. The table lists the benchmark name, number
of lines of code and the number of control-flow graph nodes in the first three
columns. We use these benchmarks, instead of the libraries from the previous
section, since we know of no analysis which is yet able to analyze such large and
complex libraries.

Precision. We compare the precision of the string lattices in two ways. First,
we compute for how many property read locations that the points-to sets are
smaller. Second, we compute on average how much smaller the points-to sets are.
We look at all property reads and not just dynamic property reads. The reason
is that spurious flow in one dynamic property access may cause imprecision in
a non-dynamic read. Thus, by looking at all reads we get a clearer picture of
overall analysis precision.

The PAs↓ column in Table 2 shows the percentage of property reads where the
use of the hybrid string lattice results in a smaller points-to set than the constant
string lattice, that is, the percentage of reads where the hybrid string lattice
yields at least one less pointer than the constant string lattice. The results show
that for 5 of the 10 programs at least 50% of all property reads have improved

String Analysis for Dynamic Field Access 215

precision, and that all programs show some improvement. The PointsTo↓ column
shows how much smaller on average the points-to sets are for all property reads.
The results show that the hybrid lattice ensures significantly smaller sets and
that for 5 of the 10 programs the reduction is more than 40%. Thus the hybrid
lattice improves precision for many property accesses and is effective at reducing
spurious flow compared to the constant string lattice.

Performance. The last three columns of Table 2 compare the analysis time
with the two different lattices. The results show that for 7 of the 10 programs
the analysis is more than 1.5x faster, and for 5 of the programs the analysis is
more than 2.0x faster. We attribute this to the fact that the analysis is more
precise with the hybrid lattice and propagates less spurious flow. In the case of
javap.js, richards.js and splay.js there is no significant speedup. In case
of richards.js and splay.js this can be explained by the fact that these two
benchmarks gain little in terms of improved precision. The javap.js program
appears to be an outlier which gains significantly improved precision, but no
corresponding boost in performance. Naturally, the degree of speedup will vary
from analysis to analysis. In particular, if the analysis is efficient at representing
and propagating large point-to sets the performance improvement will likely be
less pronounced.

We answer Q2 by concluding that the hybrid string lattice H is preferable to
the commonly used constant string lattice C. We have shown that the hybrid
string lattice leads to significantly improved precision and performance.

5 Conclusion

We have described twelve different string abstractions – five previously known
and seven new – for reasoning about dynamic property accesses in static analysis
of JavaScript. Experimental evaluation on four common and large JavaScript
libraries, including jQuery, suggests that dynamic property accesses are prevalent
and that the standard approach of tracking strings with the constant string
lattice is insufficient. We have presented the hybrid lattice H which supports the
equal, concatenate and join operations in O(1) time. Experimental results on
10 JavaScript programs show that the hybrid string lattice leads to significantly
improved precision and performance when used in a dataflow analysis.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

2. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

3. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged Information Flow for
JavaScript. In: PLDI, pp. 50–62 (2009)

216 M. Madsen and E. Andreasen

4. Costantini, G., Ferrara, P., Cortesi, A.: Static Analysis of String Values. In: Qin,
S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505–521. Springer, Heidelberg
(2011)

5. Crockford, D.: JavaScript: The Good Parts. O’Reilly Media, Inc. (2008)
6. Guarnieri, S., Livshits, V.B.: GATEKEEPER: Mostly Static Enforcement of Secu-

rity and Reliability Policies for JavaScript Code. In: USENIX Security Symposium,
pp. 151–168 (2009)

7. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
World Wide Web from Vulnerable JavaScript. In: ISSTA, pp. 177–187 (2011)

8. Jensen, S.H., Jonsson, P.A., Møller, A.: Remedying the Eval that Men Do. In:
ISSTA, pp. 34–44 (2012)

9. Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and Browser
API in Static Analysis of JavaScript Web Applications. In: Proc. 8th Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE (September
2011)

10. Jensen, S.H., Møller, A., Thiemann, P.: Type Analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

11. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: A Solver
for String Constraints. In: ISSTA, pp. 105–116 (2009)

12. Liang, P., Tripp, O., Naik, M., Sagiv, M.: A Dynamic Evaluation of the Precision
of Static Heap Abstractions. In: OOPSLA, pp. 411–427 (2010)

13. Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer,
Heidelberg (2008)

14. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An Analysis of the Dynamic Be-
havior of JavaScript Programs. In: PLDI, pp. 1–12 (2010)

15. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking for
points-to analysis of javaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 435–458. Springer, Heidelberg (2012)

16. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based String Solver for Web Ap-
plication Analysis. In: ESEC/SIGSOFT FSE, pp. 114–124 (2013)

String Analysis for Dynamic Field Access 217

A Appendix

The concrete traces were scraped from the following websites:

URL Library Version

http://jquery.com/ jQuery 1.9.1
http://www.chacha.com/ jQuery 1.9.1
http://themeforest.net/ jQuery 1.8.1
http://www.guardian.co.uk/ jQuery 1.8.1
http://adf.ly/ jQuery 1.7.1
http://stackoverflow.com/ jQuery 1.7.1
http://www.fixya.com/ jQuery UI 1.8.24
http://www.goal.com/en-us/ jQuery UI 1.8.24
http://www.6.cn/ MooTools 1.4.5
http://www.aeriagames.com/ MooTools 1.4.5
http://hubpages.com/ Prototype 1.7.0
http://www.last.fm/ Prototype 1.7.0

Addressing JavaScript JIT Engines Performance

Quirks: A Crowdsourced Adaptive Compiler

Rafael Auler1, Edson Borin1, Peli de Halleux2,
Micha�l Moskal2, and Nikolai Tillmann2

1 University of Campinas, Brazil
{auler,edson}@ic.unicamp.br

2 Microsoft Research, Redmond, WA, USA
{jhalleux,micmo,nikolait}@microsoft.com

Abstract. JavaScript has long outpaced its original target applications,
being used not only for coding complex web clients, but also web servers,
game development and even desktop applications. The most appealing
advantage of moving applications to JavaScript is its capability to run
the same code in a large number of different devices. It is not surpris-
ing that many compilers target JavaScript as an intermediate language.
However, writing optimizations and analyses passes for a compiler that
emits JavaScript is challenging: a long time spent in optimizing the code
in a certain way can be excellent for some browsers, but a futile effort for
others. For example, we show that applying JavaScript code optimiza-
tions in a tablet with Windows 8 and Internet Explorer 11 increased
performance by, on average, 5 times, while running in a desktop with
Windows 7 and Firefox decreased performance by 20%. Such a scenario
demands a radical new solution for the traditional compiler optimiza-
tion flow. This paper proposes collecting web clients performance data
to build a crowdsourced compiler flag suggestion system in the cloud that
helps the compiler perform the appropriate optimizations for each client
platform. Since this information comes from crowdsourcing rather than
manual investigations, fruitless or harmful optimizations are automati-
cally discarded. Our approach is based on live measurements done while
clients use the application on real platforms, proposing a new paradigm
on how optimizations are tested.

Keywords: Adaptive compilation, JavaScript engines, just-in-time com-
pilation.

1 Introduction

JavaScript started as a simple non-professional scripting language in 1995 to
support small-scale client-side logic in the earliest versions of the Netscape Nav-
igator web browser. By now the language has become so pervasive that it invaded
even non-web domains previously reserved for classic programming languages.
With the availability of high performing virtual machines like Node.js [28] and
efficient Just-in-Time (JIT) compilation technology, not only are complex web

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 218–237, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Addressing JavaScript JIT Engines Performance Quirks 219

applications moving its logic to client-side JavaScript, but server applications
are also being coded in JavaScript as much of the server-side programming logic
fits nicely with JavaScript closures. Overall, JavaScript’s popularity made the
language common for coding web clients, web servers, game development and
even desktop applications [1].

The most appealing advantage of moving applications to JavaScript is its ca-
pability to run the same code in a large number of different devices. This was a
major factor for the design of TouchDevelop [29], a modern, device independent
browser-based programming language and development environment. TouchDe-
velop offers a platform for users to create scripts in its own custom language,
designed for simplicity of programming on touch devices. As far as we are aware,
TouchDevelop is currently the most advanced environment for programming on
the phone. While the original purpose was to create simple scripts selecting cod-
ing structures with your finger, it turned out to be so easy to program that it
began being adopted as a teaching environment in schools, by hobbyist program-
mers, and even by professional developers using their phone to program while
on the go.

TouchDevelop scripts inherit the characteristics of their platform and run
on the browser as JavaScript code, so there is a compiler that translates the
TouchDevelop language to JavaScript. JavaScript is a hot target for compilers,
as seen by the increasing number of projects that compile code to it, such as
the Google Web Toolkit [2] by Google, TypeScript [7] by Microsoft, Dart [5] by
Google or the Emscripten [30] used in the LLVM [10] community.

However, the ability to run on many different environments also brings new
challenges when it comes to ensure good performance of the scripts. Since clients
have different browsers to choose from and each browser implements its own
JavaScript engine (e.g. SpiderMonkey [3], V8 [9], JavaScriptCore (aka. Nitro) [8]
or Chakra [6]), optimizing the JavaScript code becomes a guessing game because
each engine has its own optimizations and limitations.

Moreover, writing optimizations and analyses passes for a compiler that emits
JavaScript is further complicated because of the time spent in optimizing code,
which affects user experience when the compilation is not offline, as in TouchDe-
velop. The compiler can spend a significant amount of time to apply an opti-
mization that is worthless for a particular JIT engine or even make the script
slower. There is a number of possible causes: the underlying JIT engine may
already apply this kind of optimization; changing the code in a particular way
may preclude further JIT optimizations by the browser; or perhaps this partic-
ular issue was never the true performance bottleneck of this system. Overall, it
is expensive to handle all particularities of each platform.

To overcome these problems, we developed a crowdsourced approach to drive
our JavaScript compiler optimizations. We use a benchmark set of TouchDevelop
scripts to exercise common performance bottlenecks and compile these scripts
with different optimizations in different clients, storing the results of each client
in the cloud. This enables us to characterize how each system responds to our
optimizations and this information gets uploaded to the cloud. When another

220 R. Auler et al.

user that uses the same platform compiles the TouchDevelop script to JavaScript,
the system queries the cloud to know the best set of flags, or optimizations to
apply, that best suits her system.

In this paper we describe this system in detail and report on our experience
with our crowdsourced flag inference to circumvent JIT engines limitations. We
also present a set of optimizations that addresses common language implemen-
tation issues when compiling to JavaScript that is able to speed applications up
by 30x.

The main contributions of this work are as follows:
– We identify how JavaScript performance can vary from browser to browser

and present three optimizations that handle the limitations of each JavaScript
engine regarding common language implementation issues;

– We describe an approach to performance data crowdsourcing of web client
software;

– We present a compiler flag suggestion system for a compiler that targets
the JavaScript language;

– We implement and test these concepts in a real web-based programming
environment used by tens of thousands of users, TouchDevelop, and present data
from more than a thousand users that collaborated with the project.

This paper is organized as follows. Section 2 presents our benchmark selection,
Section 3 discusses how performance data is reported to the cloud, Section 4
presents the overall structure of the TouchDevelop compiler, Section 5 presents
the experimental results, Section 6 discusses related work and Section 7 presents
the conclusions.

2 Selection of Benchmarks

The selection of benchmarks shapes the development of compiler optimizations
and the performance bottlenecks identification. At the same time that it is at the
crux of the performance study of any computer system [27], it is also impossible
to build a set of programs that exercises the execution paths of all possible
programs that can be written in a general purpose programming language.

To commit to a specific set of benchmarks is an important step, and there-
fore we chose the benchmarks from the Computer Languages Benchmarks Game
(CLBG) [4] because of the benefit of comparing the TouchDevelop language per-
formance with several other languages that had the same programs implemented
using them. Table 1 presents the 8 chosen benchmark programs from the Com-
puter Language Benchmarks Game.

Our benchmark selection includes all of the CLBG programs, except for those
that use thread support, since TouchDevelop does not support multi-threading
nor does the underlying language that TouchDevelop compiles to, JavaScript.

The CLBG website also publishes results and implementations of the same
programs in optimized JavaScript. This enables us to compare the performance
of the code generated by the TouchDevelop compiler against a manually written
version of the same program in JavaScript.

Addressing JavaScript JIT Engines Performance Quirks 221

Table 1. Description of the selected benchmark programs taken from the CLBG
website [4]

Program Description

n-body Perform an N-body simulation of the Jovian planets

fannkuch-redux Repeatedly access a tiny integer-sequence

fasta Generate and write random DNA sequences

spectral-norm Calculate an eigenvalue using the power method

reverse-complement Read DNA sequences and write their reverse-complement

mandelbrot Generate a Mandelbrot set and write a portable bitmap

k-nucleotide Repeatedly update hashtables and k-nucleotide strings

binary-trees Allocate and deallocate many binary trees

3 Live Crowdsourced Performance Measurement

A primary issue in the live performance measurement of web client software,
which is the measurement of the users experience while they are using the plat-
form, is how to cope with the diversity of platforms where the measurements are
taking place. Specifically, how to compare and keep track of the performance of
the web client software if the computers that run it are constantly changing?

For example, a näıve comparison can mistakenly report code performance
improvements between two measurements simply because the latest measure-
ment took place in a client device that is more powerful than the device where
previous measurements were taken. To tackle this issue, we first start by aggre-
gating data by each different platform string taken from the User Agent string
in HTTP requests. We tallied over 30 different client platforms that were using
the TouchDevelop web client. This allows us to examine separately the behavior
on each different kind of platform.

Table 2 shows the number of synchronization requests to update the web
client with respect to the cloud data, a measurement of the activity by platform.
Along with the data required to identify the platform, we also send to the server
the wall time that this device took to run our benchmarks in JavaScript. For
example, the first line shows the platform with the highest activity measured,
a version of the Windows Phone 8 with the Internet Explorer 10 browser with
11,756 requests, whose average time to complete the execution of the JavaScript
benchmark is 688.86 ms and the standard deviation is 266.84 ms. This data was
extracted from a batch of 50,000 requests.

Categorizing the performance data with respect to the platform string is use-
ful, but not enough. Table 2 shows that in a given platform, there is a very high
standard deviation between all the measurements of the run time to complete
the same task. While identifying devices by the User Agent string gives some
characteristics of the client system, we are not able to fully identify underlying
hardware configuration, which plays a crucial role in the final system speed and
cause significant differences in the reported run time to complete the same task.

222 R. Auler et al.

Table 2. Frequency of use of the 5 most popular TouchDevelop web clients by platform
string, in number of synchronization requests (total of 50,000 requests by 32 different
platforms during August 2013)

Platform Requests Average Time to Com-
plete Benchmark (ms)

Windows Phone 8.0.10211.0 with IE10 11,756 688.86 ± 266.84 ms

Windows 7 Desktop with Chrome 6,046 149.52 ± 172.47 ms

Windows 8 Desktop with Chrome 5,731 144.93 ± 140.82 ms

Windows Phone 8.0.10328.0 with IE10 3,998 623.18 ± 219.17 ms

Windows 8 Desktop with IE10 3,336 572.26 ± 1638.84 ms

To allow us to study the performance improvement of web clients regardless
of the client speed, we adopted the run time of the JavaScript version of the
programs featured in our subset of the Computer Language Benchmarks Game
run on a particular small input, as a reference time for this platform, the unit
time. It is an indication of the processing power of the platform, measured by
the time it took to complete (the lower, the better).

Time measurements reported to the cloud comes with the unit time as well,
along with the raw time required to complete a task. The raw time is divided
by the reference time, and finally this ratio is reported as an approximated task
performance score.

Figure 1 shows a diagram explaining how different devices report performance
results to the cloud. The raw run time required to run a certain task, for example,
a script execution, is divided by the unit time, a reference of its computational
power.

Fig. 1. A diagram showing how performance of different client devices is reported back
to the cloud

Addressing JavaScript JIT Engines Performance Quirks 223

For example, a desktop with Mozilla Firefox 23 typically executes the unit
benchmark in 210 ms, while a slower smartphone with Internet Explorer 10 in
1200 ms and an intermediary tablet device with Chrome in 600 ms. Suppose we
want to test the execution speed of a script S. The script execution time is very
different across these devices, but the run time of S divided by the unit time
will be closer even among different devices, since the slowdown caused by the
different device speed is factored out.

A special case is that of measuring our optimizations effects on the benchmark
programs, as reported in this paper. The benchmark measurements are normal-
ized against the JavaScript version of each corresponding individual benchmark
in JavaScript running the exact same input, rather than the time taken to run
the unit benchmark.

3.1 Distribution of Client Performance Scores

Figure 2 shows a histogram of the time a device needs to complete the execution
of our reference benchmark in JavaScript, giving an overview of the range of
TouchDevelop clients performance. The client unit time piggybacks on every
synchronization request to the cloud, allowing us to examine how fast our client
platforms are. The histogram shows three distinct classes:

0
20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

1,
60
0

0

5,000

10,000
Tablets, Faster Phones

Desktops

Slower Phones

Time to Perform Unit Benchmark in JavaScript (ms)

N
u
m
b
er

o
f
D
ev

ic
e
R
eq

u
es
ts

Fig. 2. Unit time histogram (50,000 client requests)

1. Desktops: With an average of 70ms to complete the JavaScript benchmark,
these represent the fastest edge in the devices spectrum.

2. Tablets and Faster Phones: They have an average of 570ms to complete
the benchmark and represent the latest generation smartphones and tablets.

3. Low-end Phones: They have a wider variation and greater diversity in
models, but typically completes the benchmark in approximately 1 second,
10 times slower than desktops. Their worse performance is due to a combi-
nation of simpler hardware and JIT engines.

224 R. Auler et al.

4 TouchDevelop Compiler Overview

The TouchDevelop compiler is the component that translates scripts written
in the TouchDevelop language to pure JavaScript running on the following
browsers: Internet Explorer 10+, Chrome 22+ for PCs, Macs and Linux, Firefox
16+ for PCs, Macs and Linux, Safari 6+ for Macs, Mobile Safari on iOS 6+ for
iPad, iPhone and iPod Touch and Chrome 18+ for Android. Figure 3 shows a
diagram with an overview of how scripts are executed.

The complete software stack involves two layers of translators, the first trans-
lating TouchDevelop scripts to JavaScript, and the second translating JavaScript
to machine code. We use a black-box approach to the second layer and we do
not focus on investigating its internals, but we wish to infer its capabilities by
analyzing performance results. This section discusses only the first layer.

The script on the left-hand side of Figure 3 is the input script written by
the user. Since the script code can call asynchronous functions (e.g. consume
a web service), the Execution Manager, the component responsible for ensuring
correct script execution, must remember the context of the call in order to resume
script execution when the request response arrives. However, there is no support
for direct jump to a specific point of the code in JavaScript. To overcome this
issue, the Execution Manager splits the script code into several separate native
JavaScript functions and executes them in a continuation-passing style [11].

Fig. 3. Overview of TouchDevelop scripts execution

In the script, every point that is a target of a jump starts a new JavaScript
function. Besides asynchronous calls, this is also true for loop structures because
the Execution Manager must also ensure that the browser user interface (UI)
update stack runs periodically, which does not happen if a loop structure runs
for too much time without returning to the Execution Manager. In this case, the

Addressing JavaScript JIT Engines Performance Quirks 225

UI may look frozen or, in an even worse scenario, the browser may terminate
the script (after possibly asking the user), which is undesirable, particularly
for games. The Execution Manager avoids this situation by deciding the next
program segment to run; if a time budget is exceeded, it yields control back
to the browser by means of a call to a setTimeout function to resume script
execution later.

Owing to the lack of a jump construct in JavaScript, the continuation-passing
style execution is a common language implementation technique and we targeted
two optimizations at improving this kind of execution. The next subsections
present all three code transformations we employed to optimize the execution of
the scripts compiled to JavaScript code.

4.1 Safety Checks Elimination

Prior to every use of a value in the TouchDevelop language or in any other
language where sanity checks must be performed, the value must be checked for
undefined references (see Figure 4). In the case of TouchDevelop, where first-
time programmers are the language target audience, the detection of uses of
the undefined value makes it easier to understand and spot bugs. The removal
of these safety checks can propagate the error inside a runtime function and
cause crashes outside the scope of the TouchDevelop script, that is, errors in the
JavaScript run time library that intimidates novice programmers unaware of the
underlying infrastructure.

function ok1(a0) {

if (a0 == undefined)

TDev.Util.userError("using invalid value");

}

Fig. 4. Code excerpt for the safety check

Figure 4 shows a separate function to check for undefined references. We put
the code in a separate function to help us distinguish this code in our profiler;
inlining the calls to this function has no difference in performance.

Figure 5 shows the results of profiling, on an Internet Explorer 10 desktop
platform, of the execution of the Mandelbrot program from the CLBG imple-
mented as a TouchDevelop script. Mandelbrot spends most of its time in a loop
body calculating values of the pixels of a fractal image. Function arun6 is this
loop body and, therefore, corresponds to time spent executing the actual algo-
rithm.

All other functions are execution overhead. The ExecutionManager entry is
the time spent inside the Execution Manager while it is giving back control to
the browser or to the next script fragment scheduled. The ok1 and ok2 functions
are safety checks for 1 and 2 arguments operations respectively. Therefore, 72%

226 R. Auler et al.

ExecutionManager

ok1

arun6

ok2

5%

22%

23%

50%

Percentage of Total Execution Time

F
u
n
ct
io
n
N
a
m
e

Fig. 5. Profiling of the Mandelbrot benchmark script in Internet Explorer 10 for a
desktop machine

of the script execution time is spent checking whether values are undefined for
the Mandelbrot when running on Internet Explorer.

This motivated the construction of analyses passes to remove unnecessary,
redundant checks for which we can either prove that the tested value is never
undefined or that has already been checked in the past and was not changed
since then.

4.2 Stack Frame Bypass

Recall that if the script calls an asynchronous function, the Execution Man-
ager needs to remember the point where the script stopped in order to resume
the execution when the response comes, and how this can be addressed by the
continuation-passing style of execution. It also needs to remember all of the caller
action local variables. This context-saving performed by the Execution Manager
requires the maintenance of a data structure to hold the call stack with stored
local variables for the current action.

To allow this, each time the script needs to call an action, the TouchDevelop
analogue for a function, the Execution Manager first needs to build an object to
hold all locals of this action and then call the first function fragment to start its
execution. Furthermore, the explicit stack frame causes an additional overhead:
each local read and write translates to JavaScript object accesses instead of a
JavaScript local variable access.

However, if the action does not call other actions and does not have loop
structures, there is no point in building expensive, explicit stack frames because
there is no need to resume execution of the action: it executes once and exits
back to the caller. It is possible to build a call graph and remove the stack
frame from leaf functions with these properties. When this is done, the script
can bypass the Execution Manager and call the leaf function directly, as it would
call a JavaScript helper function, since the execution manager does not need to
instantiate a special stack anymore.

Figure 6 shows the call graph construction where we can see that Action F is
a simple leaf function that can be emitted as a native JavaScript function. An
important observation is that if an action only calls other actions that don’t need
context and it does not have loop structures or calls to asynchronous functions,

Addressing JavaScript JIT Engines Performance Quirks 227

Fig. 6. A call graph identifying optimization opportunities for actions whose stack
frame can be removed

it also does not need a context itself. To implement this, we employ a bottom-up
analysis of the call graph, which enables us to remove the stack frame at multiple
levels, not only leaf functions.

4.3 Block Chaining

The Execution Manager is an expensive mechanism in script execution because
after a script fragment finishes, it hands over control back to the Execution
Manager along with an indication of the next fragment to execute, which means
the regular program flow always involves visiting the Execution Manager several
times. This is especially true for loop constructs because they involve going back
to some previous point in the script and this is accomplished by isolating the
loop body into a separate JavaScript function that will be called every iteration.

At the end of each loop iteration, it must return back to the Execution Man-
ager that in turn calls the fragment again to execute the next iteration. It is not
possible to bypass the Execution Manager by emitting a native for or while

construct in JavaScript because if the loop body makes an asynchronous call, it
is no longer possible to resume execution to the next program point. Further-
more, giving control to the script for too much time, for instance, over many
iterations of a loop, can delay the browser UI update thread and make the app
looks unresponsive.

For a loop-intensive benchmark like the Pfannkuchen program, which repeat-
edly calculates permutations using a complex loop structure, this mechanism
generates a considerable overhead. Figure 7 shows the profiling of this program
running on Chrome 29 for desktops, and we see that the Execution Manager
actually spends more time than the application itself.

Figure 8 presents a technique to avoid excessive returns to the Execution
Manager by chaining fragments execution: instead of returning the next fragment
to execute, a fragment can call the next fragment itself, bypassing the Execution
Manager. To avoid that a really long loop takes control of the thread making

228 R. Auler et al.

garbage-collector
index-check

oks
runtime-library

actual-program-code
ExecutionManager

0.66%
1.31%

3.96%
15.51%

37.71%
38.9%

Percentage of Total Execution Time

P
ro
g
ra
m

F
ra
g
m
en

t

Fig. 7. Profiling of the Pfannkuchen benchmark script in Chrome 29 for a desktop
machine

the app unresponsive, we add a trip count to mark how many iterations skipped
the Execution Manager and once a threshold is met, it finally returns to the
Execution Manager. Notice that this parameter affects the call nesting level and
should be tuned by platform, since some systems, most notoriously the Mobile
Safari browser, implement a very shallow call stack.

Fig. 8. Chaining blocks of execution to bypass the Execution Manager

Even taking care of the trip count, this technique can reduce responsiveness of
the application unnecessarily. It is important to have the crowdsourced perfor-
mance measurements to know where it is profitable to apply this optimization.
The next section dives into the crowdsourced performance results and discuss
the effectiveness of all these optimizations.

5 Results

We show the crowdsourced compiler flag recommendation system in practice
with an experiment to test the performance of the three optimizations imple-
mented for JavaScript code emission. Users of TouchDevelop were prompted to

Addressing JavaScript JIT Engines Performance Quirks 229

Fig. 9. Color-coded recommendation table that suggests which flags to apply on each
client browser platform

help with benchmark measurements and, once accepted, a single benchmark with
random flags ran on their platform and the results were uploaded back to the
cloud. We collected more than 1,000 measurements, allowing us to draw clear
conclusions for 8 different platforms. The results appear in Figure 9.

The second line shows that the Windows 8 with Chrome platform has, on aver-
age, 10% performance improvements after Safety Checks Elimination, 20% after
Stack Frame Bypass, 10% with Block Chaining and therefore no special flags are
recommended for this platform. In order to show that an optimization is really
important, the crowdsourced data must show that the average improvements for
a given platform surpass 30%. We see this scenario for a Tablet with Windows
8 and IE 11: programs run 4.5 times faster after removing safety checks, 5 times
faster after bypassing the stack frame whenever possible and 6 times faster with
block chaining. However, we see a 20% performance decrease for Windows 7
with Firefox, showing that changing the code can actually be worse for some
platforms and, therefore, the importance of crowdsourcing the performance of
optimizations, checking whether we have real improvements.

In order to understand why the crowdsourced data lead to these conclusions,
the next subsections describes in detail experiments on a single desktop platform,
showing what happens with each browser after each of our optimizations are
turned on. Finally, we show how the improvements on a Microsoft Surface RT
Tablet platform look like.

5.1 No Optimizations

Figure 10 presents the performance figures for our benchmark implemented in
TouchDevelop compared against optimized hand-crafted JavaScript code, for
different JIT engines. For example, the program Binary Trees in TouchDevelop
runs 46.3 times slower than the same algorithm implemented in JavaScript on
Chrome 27. Slowdowns of this magnitude are expected because of the runtime

230 R. Auler et al.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

0

200

400

600

4
6
.3

x

3
6
.8

x

6
9
.9

x

2
5
.4

x 1
2
2
.3

x

4
3
.9

x

7
5
.5

x

2
6
.6

x

6
5
.8

x

3
3
9
.1

x

2
3
2
.8

x

1
5
8
.9

x 3
0
3
.2

x

1
2
0
.4

x

5
3
.3

x

4
0
.4

x

8
0
.2

x 1
8
0
x

1
9
7
.6

x

1
0
1
x

3
6
5
.4

x

5
3
.2

x

4
5
.3

x

3
2
.4

xS
lo
w
d
ow

n
Chrome

IE

Firefox

Fig. 10. The slowdown of running each benchmark as a TouchDevelop script, when
compared to optimized JavaScript code

mechanism for TouchDevelop scripts, which is continuously interrupting script
execution to yield control back to the browser when it is necessary. However,
higher slowdowns are a consequence of a performance bottleneck.

The JavaScript optimized performance is only used as a reference and as an
upper bound for performance. We focus on the difference of performance between
the different JIT engines. Perhaps the most notorious performance result is that
of Mandelbrot, a small program that fits almost completely in Figure 11. Its
purpose is to calculate a fractal image, and for each pixel of the image it uses
a formula to determine whether the pixel is black or white. Its performance
running on a desktop with Chrome 27 is 36.8 times slower than the JavaScript
version running in the same environment, while on Internet Explorer 10 the
slowdown is 339.1 times and on Firefox 21 it is 180 times.

The cause of such large performance differences amongst different JIT engines
is a consequence of the different compilation schemes employed by each one, and
we need to be aware of these idiosyncrasies and handle them when optimizing
for performance. The fact that Internet Explorer 10 runs this script with a
slowdown of 339.1 means that either the JavaScript baseline version is too fast
or the TouchDevelop version is too slow, when compared to other browsers. In
both cases, it is clear that out compiler fails to extract the performance that
this browser can deliver for this code fragment as good as we do it for Chrome.
Nevertheless, the JavaScript execution time differences of Mandelbrot for both
Chrome and Internet Explorer are negligible, showing that the problem is really
a bad interaction of our generated JavaScript code and Internet Explorer 10.

The programs Spectral Norm, for calculating eigen values, N Body, for per-
forming physics simulation and Pfannkuchen, for calculating the maximum num-
ber of permutations in a math riddle, all suffer similar performance differences
between JIT engines.

Addressing JavaScript JIT Engines Performance Quirks 231

Fig. 11. Main loop of the Mandelbrot algorithm implemented in TouchDevelop, acces-
sible via https://www.touchdevelop.com/iyyydbkw

5.2 Safety Checks Elimination

Figure 12 presents the results of the safety checks elimination, an optimization
we wrote for the TouchDevelop compiler, and its effects on different JIT engines.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

5

10

15

0
.8

9
x

1
.2

4
x

0
.9

1
x

0
.9

1
x

0
.9

4
x

1
.0

3
x

1
.4

2
x

1
.0

4
x

1
.0

3
x

1
.0

2
x

1
0
.7

3
x

1
.9

9
x

2
.6

1
x

2
.8

x

1
.8

4
x

1
.5

4
x

0
.9

8
x

2
.1

4
x

0
.8

9
x

1
.3

5
x

1
.1

3
x

1
.4

x

1
.2

2
x

1
.0

3
x

0
.9

8
x

1
.0

9
x

1
.1

2
xS
p
ee
d
u
p

Chrome

IE

Firefox

Fig. 12. Elimination of safety checks: Speedups over baseline with no optimizations

The graph now shows the speedup of the optimized script code versus the
unoptimized version. We see that one of the pathological cases, Mandelbrot, got
its performance substantially improved (10.73 times faster) in Internet Explorer
10, bringing its slowdown, when compared to the native JavaScript version, to
31.6 times for Internet Explorer. Chrome 27 executes the same program with

232 R. Auler et al.

29.7 times of slowdown, while without optimizations it executed with 36.8 times
of slowdown.

The elimination of safety checks has almost no effect on Chrome, but it is really
important for Internet Explorer, showing that the knowledge of the underlying
platform that is running our script is crucial to drive which optimizations our
compiler should apply.

5.3 Stack Frame Bypass

Figure 13 presents the effect of bypassing the creation of a separate stack frame
for actions in which it is not necessary to have one. The graph shows the cumu-
lative effect of applying both the elimination of safety checks and stack frame
bypass. The greatest speedup remains that of Mandelbrot thanks to the elimina-
tion of safety checks. The stack frame bypass affects only Spectral Norm, which
is a program whose inner loop depends on calling a helper action and therefore
exercises this kind of bottleneck. However, the platforms see uneven improve-
ments. Firefox 21 benefits the most out of this optimization, with an speedup of
9.11 times, while Internet Explorer 10 had 2.83 times, the lowest improvement,
and Chrome 27 had 3.92 times.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

5

10

15

0
.8

9
x

1
.2

3
x 3
.9

2
x

0
.8

9
x

1
.2

7
x

1
.0

8
x

0
.7

7
x

0
.8

8
x

1
.1

6
x

1
.0

1
x

1
0
.4

x

2
.8

3
x

2
.6

4
x

2
.6

9
x

2
.0

5
x

1
.6

6
x

1
.1

8
x

2
.3

2
x

0
.9

6
x

1
.3

6
x

9
.1

1
x

1
.2

5
x

1
.3

2
x

1
.2

4
x

1
x

1
.0

3
x

1
.5

xS
p
ee
d
u
p

Chrome

IE

Firefox

Fig. 13. Adding stack frame bypass: Speedups of safety checks elimination added with
stack frame bypass over baseline with no optimizations

For Firefox 21, Spectral Norm started with a slowdown of 197.6 times and,
after this optimization, finished with a slowdown of 21.7 times, one of the lowest
slowdowns for TouchDevelop scripts execution.

5.4 Block Chaining

Figure 14 shows the final improvements of all optimizations, including block
chaining, when compared with the baseline without optimizations for a desktop
computer. The block chaining boosts Mandelbrot speedup in Internet Explorer
10 to be 21.19 times faster, making its original slowdown, when compared to pure
JavaScript, to be of 16 times, as opposed to 339.1 times without optimizations.

Addressing JavaScript JIT Engines Performance Quirks 233

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

10

20

30

0
.9

x

2
.4

1
x

5
.3

3
x

0
.8

8
x

1
.7

1
x

1
.0

9
x

0
.7

8
x

0
.9

5
x

1
.3

9
x

1
x

2
1
.1

9
x

3
.1

6
x

2
.4

1
x

3
.8

5
x

2
.2

1
x

1
.5

6
x

1
.1

1
x

2
.6

4
x

1
.1

7
x

8
.7

8
x 1
4
.6

4
x

1
.3

8
x

3
.1

7
x

1
.8

4
x

1
.0

1
x

1
.1

8
x

2
.4

8
xS
p
ee
d
u
p

Chrome

IE

Firefox

Fig. 14. Adding block chaining: Speedups of all optimizations over baseline with no
optimizations

The speedup of Mandelbrot for Firefox 21 boosts from 1.36 times to 8.78 times
faster, showing that, for Firefox, the block chaining mechanism is much more
important than the elimination of safety checks. The block chaining in Firefox is
also responsible for making Spectral Norm 14.64 times faster, doubling the gain
obtained by stack frame bypass.

5.5 Surface RT with IE 11

So far, we have presented the effects of three code optimizations when generat-
ing JavaScript code for desktop browsers. However, the main audience for the
TouchDevelop project are mobile users, since it is a touch-friendly integrated de-
velopment environment. The combination of the software JIT methods with the
underlying simpler hardware platform creates yet another effects on the results.
The final effect of applying all three optimizations described in this paper when
running on a Microsoft Surface RT tablet with Internet Explorer 11 appears in
Figure 15.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

10

20

30

40

1.12x

34.39x

2.97x 2.49x 3.5x 1.69x 1.99x 1.05x 2.77x

S
p
ee
d
u
p

IE 11

Fig. 15. All optimizations speedups over baseline performance for Surface RT with
Internet Explorer 11

234 R. Auler et al.

In general, we observe that these optimizations are more important for the
Surface RT platform: the geometric mean of the measured speedups among all
programs is 2.77x, while for a desktop machine it is 2.64x. The largest improve-
ment is still Mandelbrot, but it is now 34.49 times faster, while on a desktop the
maximum speedup seen in Mandelbrot is 21.19x. The simpler low-power ARM-
based hardware platform is more sensitive to code improvements in comparison
with a power-hungry Intel out-of-order core, which can extract instruction-level
parallelism and can compensate for a lower quality code emission by the JIT
engine.

6 Related work

In this work we study how we can infer optimization flags based on crowdsourced
performance data for a compiler that produces JavaScript code. Since JavaScript
performance is largely dependent on the JIT compilation techniques employed
by the JavaScript interpreter, it is important to know which browser will run
this code. However, we assume no knowledge about the underlying JIT compila-
tion mechanism – instead, we expect to draw all necessary conclusions from our
collected data. On the other hand, there are several other studies that focus on
tuning the underlying JavaScript JIT compilation mechanism to improve perfor-
mance [12,21,22,23,24] or on selecting the best JavaScript framework to program
with [17]. For instance, Lee and Moon [22] study, for mobile web browsers, how
the JIT engine can be turned on or off in order to avoid waiting for the com-
pilation of a code that may be not frequently executed enough to pay off the
compilation time. Furthermore, mobile web browsers are such an important cell-
phone use case that they deserve a specific study on how to render pages with
the minimum use of battery: Zhu and Vijay [31] analyze how to leverage hetero-
geneous multiprocessor systems to render mobile web pages fast enough to the
user while maximizing power efficiency. Notice that although our data collection
mechanism cannot receive power information from our users, for homogeneous
systems, our recommendation system also improves power efficiency when it
reduces total script execution time.

Another important related field of study is in determining the best set of
optimizations to apply on a given compilation unit for traditional, static com-
pilers that does not rely on cloud support [13,14,16,19,20,25,26]. These works
differ from ours because they are targeted at traditional compilers rather than a
web-based compiler, and they focus on producing efficient assembly code rather
than JavaScript that runs on top of a JavaScript interpreter. Since, in this scope,
this problem involves deciding between tens of optimizations and the ordering
between then, it is a difficult problem even for a single well-known platform.
While compiler users traditionally have been using a fixed set of optimizations
to all programs, Cavazos et al. [13] were able to reduce the Jikes virtual machine
execution time on the SPECjvm98 benchmark by 29% on average by employ-
ing machine learning techniques to train the Jikes system to recognize methods
and decide which subset of optimizations to apply and its order. Pan et al. [25],

Addressing JavaScript JIT Engines Performance Quirks 235

Haneda et al. [19] and Pekhimenko et al. [26] also investigate methods to auto-
matically find a good subset of optimizations to apply to a given program.

Perkhimenko et al. apply a similar technique of Cavazos to a commercial static
compiler, reporting a compilation run time speed up by a factor of at least 2.
To do this, a feature vector – characteristics that describe a method – is com-
puted from a program at compile time (statically) for the commercial compiler
Toronto Portable Optimizer (TPO). They extract instruction types and loop-
based parameters to describe methods. Our approach, on the other hand, does
not suggest flags per program, but it does per platform because we are primar-
ily concerned with dealing with a large number of client platforms, which must
be addressed before each program is fine-grainedly tuned. In our technique, we
determine the overall optimization efficiency based on the performance reports
of a benchmark set. If the benchmarks show improvements in total run time for
a given platform, the selected flags are suggested to be used for all programs of
this platform. Notice that the benchmark was selected to exercise the language
performance bottlenecks.

Perhaps the work with a greater similarity to ours is the GCC MILEPOST
project [16], an adaptive compiler framework that was created for research pur-
poses. To our knowledge, the MILEPOST project is the first attempt to use tun-
ing technology using a crowdsourced database to create real-world self-tuning
machine learning enabled static compilers. However, their work is targeted at
lower level compilation rather than JavaScript code emission, and their chal-
lenges are quite different since they do not have to run code on top of an existing
JIT infrastructure. Our work, on the other hand, is targeted at learning how to
generate efficient code for different browsers and JIT engines using crowdsourced
data for a modern, device independent browser-based programming language and
development environment. MILEPOST relies on machine learning techniques to
train the traditional open-source compiler GCC [15] in how to best optimize
programs. Fursin et al. [16] were able to learn a model that improved the per-
formance of the MiBench [18] benchmark by 11%.

7 Conclusion

We present a system that collects web clients performance data to build a crowd-
sourced compiler flag suggestion system in the cloud, helping the compiler per-
form the appropriate optimizations for a given platform. We also show a set
of optimizations that address common language implementation issues when
targeting JavaScript. Extracting performance and generating quality code for
JavaScript is quite challenging, since each JavaScript engine behaves in a differ-
ent way.

We implement and test these concepts in a real web-based programming envi-
ronment used by tens of thousands of users, TouchDevelop, allowing us to better
explore the crowdsourcing and cloud dimensions of this project. We enhance the
TouchDevelop compiler, which translates TouchDevelop scripts to JavaScript,
with three new optimizations.

236 R. Auler et al.

We then present data from more than a thousand users that collaborated
with the project, showing a scenario where optimizations, on average, extract
5x speedups in a tablet with Windows 8 and Internet Explorer 11 but reduces
performance by 20% in a desktop with Windows 7 and Firefox. This is a con-
sequence of running code on top of complex Just-in-Time compilation engines,
which already apply its own optimizations and can make undisclosed code trans-
formations. The crowdsourcing approach allows us to detect such scenarios and
disable unfruitful optimizations in a per-platform basis by simply asking the
cloud the best set of flags for a given client.

In this work we assume no knowledge about the underlying JavaScript engine.
We rely on the crowdsourced performance data in order to overcome the difficul-
ties of increasing the performance of JavaScript and come up with an adaptive
compiler that applies a custom set of optimizations for each web client. This
automatic compiler flag suggestion system is able to cope with a wide variety of
more than 30 different client platforms without any manual effort.

As future work, we intend to leverage an existing system of crowdsourced
profiling of the scripts to also record the effects of a particular optimization on
the average performance of real-world programs in the field.

References

1. Develop High Performance Windows 8 Application with HTML 5 and JavaScript,
http://blogs.msdn.com/b/dorischen/archive/2013/04/26/

develop-high-performance-windows-8-application-with-html5-and-

javascript-best-practices-amp-tips.aspx

2. Google Web Toolkit Page, http://www.gwtproject.org/
3. Mozilla SpiderMonkey JavaScript Engine,

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

4. The Computer Language Benchmarks Game,
http://benchmarksgame.alioth.debian.org/

5. The Dart Language Web Page, https://www.dartlang.org/
6. The New JavaScript Engine in Internet Explorer 9,

http://blogs.msdn.com/b/ie/archive/2010/03/18/

the-new-javascript-engine-in-internet-explorer-9.aspx

7. The TypeScript Language Web Page, http://www.typescriptlang.org/
8. The WebKit Open Source Project, http://webkit.org/
9. V8 JavaScript Engine, http://code.google.com/p/v8

10. Adve, V., Lattner, C., Brukman, M., Shukla, A., Gaeke, B.: LLVA: A low-level
virtual instruction set architecture. In: MICRO 36 (2003)

11. Appel, A.W.: Compiling with continuations. Cambridge University Press, New
York (1992)

12. Bebenita, M., Brandner, F., Fahndrich, M., Logozzo, F., Schulte, W., Tillmann,
N., Venter, H.: SPUR: A trace-based JIT compiler for CIL. In: OOPSLA 2010.
ACM (2010)

13. Cavazos, J., O’Boyle, M.F.P.: Method-specific dynamic compilation using logistic
regression. In: OOPSLA 2006. ACM (2006)

14. Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S., Subramanian, D., Torczon, L.,
Waterman, T.: Acme: Adaptive compilation made efficient. In: LCTES 2005 (2005)

http://blogs.msdn.com/b/dorischen/archive/2013/04/26/develop-high-performance-windows-8-application-with-html5-and-javascript-best-practices-amp-tips.aspx
http://blogs.msdn.com/b/dorischen/archive/2013/04/26/develop-high-performance-windows-8-application-with-html5-and-javascript-best-practices-amp-tips.aspx
http://blogs.msdn.com/b/dorischen/archive/2013/04/26/develop-high-performance-windows-8-application-with-html5-and-javascript-best-practices-amp-tips.aspx
http://www.gwtproject.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://benchmarksgame.alioth.debian.org/
https://www.dartlang.org/
http://blogs.msdn.com/b/ie/archive/2010/03/18/the-new-javascript-engine-in-internet-explorer-9.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/18/the-new-javascript-engine-in-internet-explorer-9.aspx
http://www.typescriptlang.org/
http://webkit.org/
http://code.google.com/p/v8

Addressing JavaScript JIT Engines Performance Quirks 237

15. Free Software Foundation, Inc. Using the GNU compiler collection, For GCC ver-
sion 4.9.0. (March 2013)

16. Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-Tov, E., Zaks, A.,
Mendelson, B., Bonilla, E., Thomson, J., Leather, H., et al.: MILEPOST GCC:
Machine learning based research compiler. In: GCC Summit (2008)

17. Gizas, A., Christodoulou, S.P., Papatheodorou, T.S.: Comparative evaluation of
javascript frameworks. In: 21st International Conference Companion on World
Wide Web (2012)

18. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A free, commercially representative embedded benchmark suite.
In: IISWC 2001. IEEE (2001)

19. Haneda, M., Knijnenburg, P.M., Wijshoff, H.A.: Automatic selection of compiler
options using non-parametric inferential statistics. In: PaCT 2005. IEEE (2005)

20. Hoste, K., Georges, A., Eeckhout, L.: Automated just-in-time compiler tuning. In:
CGO 2010. ACM (2010)

21. Jeon, S., Choi, J.: Reuse of JIT compiled code in JavaScript engine. In: 27th Annual
ACM Symposium on Applied Computing (2012)

22. Lee, S.-W., Moon, S.-M.: Selective just-in-time compilation for client-side mobile
javascript engine. In: CASES 2011. ACM (2011)

23. Lee, S.-W., Moon, S.-M., Kim, W.-J., Jin Oh, S., Oh, H.-S.: Code size and perfor-
mance optimization for mobile JavaScript just-in-time compiler. In: 2010 Workshop
on Interaction between Compilers and Computer Architecture (2010)

24. Martinsen, J.K., Grahn, H., Isberg, A.: Using speculation to enhance javascript
performance in web applications. IEEE Internet Computing 17(2), 10–19, 3 (2013)

25. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: CGO 2006. ACM (2006)

26. Pekhimenko, G., Brown, A.D.: Efficient program compilation through machine
learning techniques. Software Automatic Tuning: From Concepts to State-of-the-
Art Results, 335 (2010)

27. Richards, G., Gal, A., Eich, B., Vitek, J.: Automated construction of javascript
benchmarks. In: OOPSLA 2011. ACM (2011)

28. Tilkov, S., Vinoski, S.: Node.js: Using JavaScript to Build High-Performance Net-
work Programs. IEEE Internet Computing 14(6), 80–83 (2010)

29. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M.: TouchDevelop: Program-
ming cloud-connected mobile devices via touchscreen. In: ONWARD 2011. ACM
(2011)

30. Zakai, A.: Emscripten: An LLVM-to-JavaScript compiler. In: SPLASH 2011. ACM
(2011)

31. Zhu, Y., Reddi, V.J.: High-performance and energy-efficient mobile web browsing
on big/little systems. In: HPCA 2013. IEEE (2013)

A First Step towards a
Compiler for Business Processes

Thomas M. Prinz, Norbert Spieß, and Wolfram Amme

Friedrich Schiller University Jena
07743 Jena, Germany

{Thomas.Prinz,Norbert.Spiess,Wolfram.Amme}@uni-jena.de

Abstract. The verification of business processes is crucial since an er-
roneous execution causes high costs and damages the reputation of the
providing company. The first step towards correct business processes is
the verification of structural correctness, i.e., the absence of deadlocks
and lack of synchronization.

In this demonstration paper, we present a system which was integrated
into the Activiti BPMN 2.0 designer for Eclipse, allowing an immediate
user support during the development of business processes. Therefore,
an entire business process is transformed into semantically equivalent
workflow graphs on which a new structural correctness verification is
performed directly. This is done for each modification and the determined
failures are visualized directly in the business process. The system can
be seen as first step towards a compiler for business processes.

1 Introduction

Business processes are well-established in business management, in the context
of service-oriented architectures, and cloud computing. Since business processes
are described by graphical specification languages like BPMN 2.0 [1], there is a
need for transformations into more technical representations to allow and out-
perform analyses and verifications, i.e., a compiler. The verification of business
processes becomes crucial as business processes are frequently used and could
have runtimes over months, whereby an erroneous execution causes high costs
and could lasting damage the reputation of the providing company. Therefore,
support for the development of correct business processes is essential for all
business process development tools.

Structural correctness, which focuses only on the structure of business pro-
cesses without consideration of data aspects, builds the first step towards correct
business processes. Business processes can have two kinds of structural errors:
deadlocks and lack of synchronization [2]. Deadlocks are situations in which the
execution within business processes blocks partly or completely, and lack of syn-
chronization are situations in which parts of business processes are executed
twice unintentionally because of unsuccessfully joined parallel control flows. The

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 238–243, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A First Step towards a Compiler for Business Processes 239

absence of deadlocks and lack of synchronization in business processes is called
soundness in the literature [3,4]. However, we prefer to call it structural correct-
ness like Sadiq and Orlowska [2], since soundness describes the overall correct-
ness.

In our previous work [5,6], we have introduced new compiler-based techniques
to find structural errors within workflow graphs. Workflow graphs are a more
formal representation of business processes containing exactly one start and one
end node, activities, forks, joins, splits, and merges. Since the algorithm works
only on simple workflow graphs, i.e., on workflow graphs in which each edge
contains an activity, and business processes can have more than one start and
end node, the transformation of the business process model into the workflow
graph representation is not a trivial one-to-one transformation.

In this demonstration paper, we present our analysis tool mojo which was inte-
grated into the Activiti BPMN 2.0 designer (http://activiti.org), a tool for
creating BPMN 2.0 business processes. The resulting system allows immediate
and serious support during the development of business processes by visualizing
structural errors directly in the graphical model and providing a failure analysis
mode, which highlights a selected error. The rest of the paper is structured as
follows: Section 2 introduces structural correctness to the reader, Section 3 gives
an overview of the implemented system and transformations, whereas Section 4
evaluates their robustness. Eventually, the paper is concluded in Section 5.

2 Informal Description

A formal representation of business processes are workflow graphs. A workflow
graph is a directed graph WFG = (N,E) such that N consists of activities, forks,
joins, splits, merges, and one start as well as one end node. Each activity, split,
fork, and the end node have exactly one incoming edge; whereas each activity,
merge, join, and the start node have exactly one outgoing edge. Merges and joins
have at least two incoming edges, and splits and forks have at least two outgoing
edges. Concluding, each node lies on a path from the start to the end node. A
workflow graph is called simple if for each edge e = (n1, n2) ∈ E the source n1
or the target n2 is an activity.

Fig. 1. A workflow graph

Figure 1 shows a workflow graph
with annotated node types. After the
instantiation of a workflow graph, a
control flow starts at the start node
and follows the flow given by the
graph. Each node, except a join, i.e.,
activities, splits, merges, forks, and
the end node, can be executed if a con-
trol flow reaches one of its incoming
edges. However, joins can only fire if
all incoming edges are reached by a
control flow. Since data aspects are out of the scope of structural correctness, a

S

A3

A1

A2
E

M1

F1

S2

J1

S1

M2

start
node

fork join

end
node

split

merge

activity

http://activiti.org

240 T.M. Prinz, N. Spieß, and W. Amme

S

A2

A3

A1

EA6A0 M1

A5

A4

S1 J1F1

Fig. 2. A workflow graph containing two structural errors

split decides nondeterministically which of its outgoing edges will be followed by
the control flow. A fork produces a control flow for each of its outgoing edges,
i.e., parallelism.

Without loss of generality, each workflow graph is simple for the remainder of
this paper, since there is a fast transformation from common to simple workflow
graphs, e.g., by placing a new activitiy on each edge. It simplifies analyses and
algorithms.

Structural correctness describes the absence of deadlocks and lack of synchro-
nization. A deadlock appears for a join, if the join was not executed as often
as each of its direct predecessor nodes and cannot be executed in future. An
executable fork causes a lack of synchronization if it may result in simultaneous
executions of the same node.

Structural correctness is a standard problem of business processes and has
been solved efficiently and with detailed failure information in our previous work
[5,6]. The basic idea is to start the analysis for structural correctness at different
points (nodes) of a workflow graph, which we call entrypoints. It is comparable
to a compiler trying to find the next safe program point in order to find further
errors after a previous failure. Take the workflow graph of Fig. 2 as example. It
contains a deadlock in join J1 as well as a lack of synchronization caused by
fork F1. Starting an analysis in the start node would detect only the lack of
synchronization, whereas restarting the analysis at split S1 identifies also the
deadlock.

We have found out, that activation points are good entrypoints for the de-
tection of deadlocks. An activation point pnt belongs always to another node n
whereas the execution of pnt guarantees the future execution of n. Each activa-
tion point of a join has to be also an activation point of all of its predecessor
nodes, and each closest activation point of a join, i.e., there is at least one path
to the join without another activation point, has to be a fork. As a result, a
join in a workflow graph without lack of synchronization has a deadlock if on
at least one path, from the start node to itself or from itself to itself, lies none
of its activation points. In other words, before any control flow ever reaches a
join within a workflow graph, being free of lack of synchronization, one of its
activation point must be executed.

The identification of lack of synchronization starts in forks, since only forks
build more than one control flow causing simultaneous executions of the same
node. Generally, two control flows have to be joined before the end node. These

A First Step towards a Compiler for Business Processes 241

joining nodes are called intersection points. It is valid, that there are two disjoint
paths from the fork to each of its intersection points. If a lack of synchronization
occurs at runtime, there is an intersection point of a fork which is not a join, or
there is a path from a fork to itself and a path from this fork to the end node,
such that both paths are disjoint.

The conditions of deadlocks as well as of lack of synchronization describe
supersets of them, since parts of it never occur at runtime, because forgoing
deadlocks prevent their execution. Such failures within these supersets are called
potential. We have proven, that the absence of deadlocks and lack of synchro-
nization corresponds to the absence of potential deadlocks and potential lack of
synchronization.

The detection of potential deadlocks can be efficiently implemented via data-
flow analyses, being realized in the presented system, whereas the detection of
potential lack of synchronization can be done with the help of dominators, post-
dominators, loop detection, and decomposition. In summary, compiler-based
techniques can be successfully applied to the analysis of workflow graphs.

3 System Overview

The Activiti BPMN 2.0 Designer is an Eclipse plugin which allows for the de-
velopment of business processes with a subset of BPMN 2.0 model elements.
Developed business processes are held as graphical models which can be ac-
cessed over an extension point for adding business process verifications. We have
created own extensions of this extension point which will be executed for ev-
ery modification of the business process. These extensions are called mojo - our
open source business process analysis tool (http://www.bpmn-compiler.org,
https://sourceforge.net/projects/bpmojo). Figure 3 visualizes our system.
The transformation and structural correctness verification can be used as an
extension of Activiti. The following steps are performed by our tool.

At first, the entire business process is transformed into at least one semanti-
cally equivalent workflow graph. Therefore, all end events of a BPMN business
process are mapped to a single one using the algorithm of Kiepuszewski et al.
[7], which was extended for working on workflow graphs instead of Petri nets.
The start events of a BPMN business process are merged into a single one using

Fig. 3. The verification system

mojo

Activiti BPMN
2.0 Designer Transformation

Structural
correctness
verification

BPMN 2.0

Graphical
model

Workflow
graphs

 Failures

http://www.bpmn-compiler.org
https://sourceforge.net/projects/bpmojo

242 T.M. Prinz, N. Spieß, and W. Amme

the rules of the BPMN 2.0 specification [1], e.g., tasks without an incoming edge
are combined by a fork and start events are combined by a split.

If the business process is not connected, it is translated into different workflow
graphs, whereas each workflow graph will be verified for structural correctness
in isolation. Gateways with multiple incoming and multiple outgoing edges are
disassembled into two gateways, so that the first gateway has all incoming edges
and the second all outgoing edges. XOR gateways are transformed to splits and
merges, and AND gateways to forks and joins in conclusion. Finally, each task
becomes an activity.

In general, the resulting workflow graphs are not simple regarding to its defini-
tion in Section 2. Thus, each edge having no activity as source or sink is replaced
by two edges, the first connecting the source with a new activity, whereas the
second connects the new activity with the sink. The dependencies between the
workflow graph and the graphical model of the business process are built up in
each step of the transformation algorithm.

In the second step, our algorithm for structural correctness verification [5,6]
is performed directly on each workflow graph. The algorithm finds all potential
deadlocks and lack of synchronization, and localizes them precisely. The results
of the structural correctness verification are visualized in the graphical model
of Activiti: (1) directly in the business process with marks on failure producing
nodes, (2) as an error list in the error view of Eclipse, and (3) as a detailed failure
highlighting for the failure analysis mode. The failure analysis mode is one of the
features of our system (see Fig. 4). It allows for the selection of an error within
the error view of Eclipse, which then will be highlighted in the business process
in isolation. Therefore, the developer of the business process can find the reasons
of these errors.

4 Evaluation

The system was evaluated, using benchmarks of real world business pro-
cesses, with regard to robustness and performance. On the one hand,
the transformation process was tested with the BPMN 2.0 bench-
mark of IBM http://www.zurich.ibm.com/csc/bit/downloads.html,
and, on the other hand, the structural correctness verification was
validated and evaluated with the business process benchmark of
http://www.service-technology.org/soundness. Both algorithms run
stable and take less than one millisecond in the average case (see our previous
work [5] for more details). Therefore, the analysis can be done for every
modification of the business process, instead only by saving or on demand.

5 Conclusion

In this demonstration paper, we presented a system which allows direct user
support during the development of business processes. It is based on the Ac-
tiviti BPMN 2.0 Designer and our analysis tool mojo, transforming an entire

http://www.zurich.ibm.com/csc/bit/downloads.html
http://www.service-technology.org/soundness

A First Step towards a Compiler for Business Processes 243

Fig. 4. Visualizing an error in failure analysis mode

business process into semantically equivalent workflow graphs, on which a struc-
tural correctness verification is performed. The determined structural errors are
directly visualized in the business process, which supports an immediate correc-
tion. Furthermore, the system is fast enough to perform the verification for each
modification of the business process.

In the future, the system will be extended by analyses considering data aspects,
extensive failure explanations, and an automatically correction of structural er-
rors. Furthermore, a coding into a mobile format with a virtual machine is in
the scope of our work.

References
1. OMG: Business process model and notation. Specification (2.0) (March 2011)
2. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-

niques. Inf. Syst. 25(2), 117–134 (2000)
3. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An alternative way to

analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

4. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis
on demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011)

5. Prinz, T.M., Amme, W.: Practical compiler-based user support during the develop-
ment of business processes. In: Service-Oriented Computing - ICSOC 2013 Work-
shops. Springer, December 2013 (to be published)

6. Prinz, T.M., Amme, W.: Practical compiler-based user support during the devel-
opment of business processes. Technical Report Math/Inf/02/13, Friedrich Schiller
University Jena, 07743 Jena, Thuringia, Germany (June 2013)

7. Kiepuszewski, B., Hofstede, A.H.M.T., van der Aalst, W.: Fundamentals of control
flow in workflows. Acta Informatica 39, 143–209 (2002)

CBMC-GC: An ANSI C Compiler
for Secure Two-Party ComputationsÆ

Martin Franz1, Andreas Holzer2, Stefan Katzenbeisser3, Christian Schallhart4,
and Helmut Veith2

1 Deutsche Bank
2 TU Wien

3 TU Darmstadt & CASED
4 Oxford University

Abstract. Secure two-party computation (STC) is a computer security paradigm
where two parties can jointly evaluate a program with sensitive input data, pro-
vided in parts from both parties. By the security guarantees of STC, neither party
can learn any information on the other party’s input while performing the STC
task. For a long time thought to be impractical, until recently, STC has only been
implemented with domain-specific languages or hand-crafted Boolean circuits for
specific computations. Our open-source compiler CBMC-GC is the first ANSI C
compiler for STC. It turns C programs into Boolean circuits that fit the require-
ments of garbled circuits, a generic STC approach based on circuits. Here, the
size of the resulting circuits plays a crucial role since each STC step involves en-
cryption and network transfer and is therefore extremely slow when compared to
computations performed on modern hardware architectures. We report on newly
implemented circuit optimization techniques that substantially reduce the circuit
sizes compared to the original release of CBMC-GC.

Keywords: Secure Computations, Privacy, Compilers, Circuit Optimization.

1 Introduction

Imagine Alice and Bob as two millionaires who want to determine the richer one among
them – but without revealing how much they own, neither to the other millionaire nor
to somebody else. This is the “millionaires’ problem”, first described by Yao [18], who
thereby initiated research on secure two party computation (STC). Subsequently it has
been shown that every computable function over two inputs is also computable in the
framework of STC: Two players can evaluate the function on their respective private
inputs so that the result of the computation is available to both, without needing to
share the inputs with each other.

In modern information processing infrastructures, not only data but also code is be-
coming more mobile, e.g., in cloud services. Thus, with the increasing amount of sen-
sitive information processed, and facing laws and regulations that are not only hard

Æ This work was supported in part by the Austrian National Research Network S11403 and
S11405 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Technol-
ogy Fund (WWTF) through grant PROSEED, and by CASED.

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 244–249, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations 245

C Program CBMC-GC Circuit

STC Platform

Party A

Party B

Intermediate
Representation

Loop
Unrolling

AIG
Generation

Circuit
Minimization

Garbled
Circuit

(Network
Transfer)

Intermediate
Representation

Circuit
Minimization

Loop
Unrolling

Fig. 1. STC Tool Chain

to understand but even harder to enforce across national boundaries, the demand for
technical solutions is growing. These solutions, called Privacy Enhancing Technolo-
gies (PETs), assure data secrecy and privacy, even if data is processed on potentially
untrusted platforms. The central cryptographic tool enabling such PETs is STC, allow-
ing two distrusting parties to perform arbitrary computations on sensitive data without
ever exposing their input in the clear. Hence, no information on the other party’s input
is revealed, beyond the information derivable from the commonly computed function
output.

After 30 years of mainly theoretical studies, increased computational power and ad-
vanced cryptographic protocols make it feasible to evaluate reasonably large functions
in an STC context [2,5,8,4,17]. The predominant approach to implement STC are Gar-
bled Circuits (GCs), as originally proposed by Yao [19], working in two steps: First,
Alice garbles a given circuit and hands this garbled circuit to Bob, together with a set
of keys representing Alice’s input. Using Oblivious Transfer [16], Bob obtains the set
of keys corresponding to his own input, without obtaining any other key, and such that
Alice does not know which keys Bob took. With these keys, Bob can evaluate the gar-
bled circuit – unable to learn anything on Alice’s input that is not implied by the final
output. We refer to [12] for details.

One main obstacle for practical application of STC was the lack of support for gen-
eral programming languages, as only circuit evaluation [7] or simplified programming
languages [13] were supported. Recently at CCS [6], we presented CBMC-GC, the first
STC compiler for full ANSI C.We argue that practical application of STC should be

1 #include <cbmc-gc.h>

2 void millionaires() {
3 int a, b, result;

4 __CBMC_GC_INPUT_A(1, a);
5 __CBMC_GC_INPUT_B(2, b);

6 result = (a > b)?1:0;

7 __CBMC_GC_OUTPUT(3, result);
8 }

Fig. 2. C code for Yao’s millionaires’ problem

viewed as a combination of compiler
and security research (cf. Figure 1):
(i) STC compilation, i.e., the STC
compiler translates the source code
into a circuit that is optimized to-
wards its use in STC and (ii) STC
interpretation, i.e., the STC frame-
work evaluates generated circuits in
a way that ensures the STC guaran-
tees. We believe that this separation
of concerns is a crucial step towards
broad practical use of STC.

246 M. Franz et al.

Figure 1 shows CBMC-GC in the STC tool chain. CBMC-GC translates a C pro-
gram into a circuit which is then deployed to the two STC parties A and B. The STC
framework is essentially an interpreter for the circuit. In our current implementation,
we use the GC construction proposed in [10] with optimizations from [9,15], allowing
XOR-gates to be evaluated at essentially no cost. After compilation, party A garbles the
circuit including party A’s input and sends the resulting garbled circuit to party B. Due
to the potentially huge size of garbled circuits, party B evaluates the circuit on-the-fly
instead of storing it in memory. We refer to [12] for details and a security proof, only
sketching the STC evaluation.

(1) Garbling. Party A assigns to each circuit wire w two random keys KT
w and KF

w ,
each representing one truth value of w (T = true, F = false). For all binary gates
G�u, v� � o with input wires u, v and output wire o, party A encrypts each entry
�val�u�, val�v�, val�o�� of G’s truth table by computing

encrypt
K

val�u�
u

�encrypt
K

val�v�
v

�Kval�o�
o ��,

i.e., Kval�o�
o gets encrypted using the keys K

val�u�
u and K

val�v�
v . Therein, val�u� is the

evaluation of u (i.e., the truth value T or F), and hence, if G is, say, an or-gate, party A
garbles the entry �F, T, T � by encryptingKT

o with KF
u and KT

v ; finally, A permutes the
resulting four encrypted keys so that the evaluating party does not see which encrypted
key corresponds to which entry of the truth table. If G is an output gate, A encrypts no
further key but the plain truth value from G’s truth table.

(2) Evaluation. The garbled circuit is handed to party B together with the keys corre-
sponding to party A’s input. B obtains the keys corresponding to its own inputs with
Oblivious Transfer [16], guaranteeing that B only obtains one key per input wire, and
guaranteeing that A does not know which keys B has chosen. With these keys, B de-
crypts inductively the keys for the truth values corresponding to the valuation of the
wires in the circuit under the combined inputs of A and B – and importantly, B can only
decrypt those. More precisely, for each gate he tries to decrypt all four (permuted) truth
table entries; only one decryption will succeed, giving him the necessary key for the
subsequent gate.

CBMC-GC solves the millionaires’ problem with the source code shown in Figure 2:
The procedure millionaires is a standard C procedure, where only the input and out-
put variables are specifically marked up, designated as input of party A or B (Lines 4
and 5) or as output (Line 7). But aside this input/output convention, arbitrary C com-
putations are allowed to produce the desired result, in this case a simple comparison
(Line 6). This paper presents CBMC-GC v0.9, an improved version of the compiler
presented at CCS [6] which combines various techniques known from logic optimiza-
tion to produce substantially smaller circuits.

2 CMBC-GC in a Nutshell

Our compiler CBMC-GC1 is based on the software verification tool CBMC [3]. Since
CBMC is a bounded model checker for ANSI C, it translates any given C program into

1 http://forsyte.at/software/cbmc-gc/

http://forsyte.at/software/cbmc-gc/

CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations 247

Table 1. Circuit sizes produced by CBMC-GC v0.8 and v0.9

#gates (v0.8) #gates (v0.9)

Benchmark total non-XOR total non-XOR

Hamming distance, 320 bit 19031 6038 4010 924
Hamming distance, 800 bit 47816 15143 10119 2344
Hamming distance, 1600 bit 95791 30318 20356 4738

matrix multiplication, 5x5 797751 221625 401250 148650
matrix multiplication, 8x8 3267585 907776 1636096 600768

2000 arithmetic operations 1531601 405640 938671 319584
3000 arithmetic operations 2298441 608668 1417684 479463

median, merge sort, 21 elements 750471 244720 210727 136154
median, merge sort, 31 elements 1840339 602576 550918 348761

median, bubble sort, 21 elements 346380 112800 67050 40320
median, bubble sort, 31 elements 1066470 349600 147600 89280

XOR gates are evaluated at essentially no cost and therefore non-XOR gates are mentioned explicitly. For details on

the benchmarks see [6].

a Boolean constraint which represents the program behavior at a bit-precise level up to a
bounded number of steps. In a nutshell, we adapted this capability of CBMC to provide
the circuits needed for STC. The compilation is divided into four steps, where the first
two steps are part of the standard CBMC processing and the second two are specific to
STC tasks. For more details on the first two compilation steps, please see [6].

(1) Intermediate Representation. The C program gets translated into an intermediate
representation—a so-called GOTO program. The only control structures remaining in a
GOTO program are guarded GOTOs.

(2) Loop Unrolling. Loops and recursive function calls are unrolled up to a specific
depth. CBMC-GC tries to compute this depth by a static analysis, but in case of failure,
the depth can be specified by the user. After unrolling, we have a loop-free representa-
tion of the program.

(3) AIG Generation. It remains to translate each program statement into a circuit which
encodes the bit-precise semantics of the computation the statement performs. CBMC-
GC uses and-inverter graphs (AIGs) as an intermediate circuit representation. AIGs
are directed acyclic graphs whose nodes represent logical AND gates. The edges of an
AIG represent wires between gates. Some of these wires can negate the transmitted sig-
nal. Throughout the generation of this intermediate circuit, structural hashing, i.e., the
removal of duplicated gates, and constant propagation are performed to keep the result-
ing circuit small [14]. CBMC-GC incorporates the ABC framework [1] to generate the
intermediate representation.

(4) Circuit Minimization. XOR gates are preferable due to their small computation costs
and therefore the circuit minimization step tries to maximize the number of XOR gates
in the resulting circuit while keeping the overall circuit size small. Here, a repeated

248 M. Franz et al.

pattern based subcircuit rewriting is performed in combination with structural hashing,
constant propagation, and a simplified version of SAT-sweeping [11].

By compiling the source code with CBMC-GC, we obtain a description of the cir-
cuit performing the computation and a mapping between in- and output identifiers and
the corresponding circuit pins. Table 1 compares the circuit sizes produced by CBMC-
GC v0.8 and CBMC-GC v0.9. The benchmarks were originally used to show the practi-
cality of CBMC-GC v0.8 and are discussed in detail in [6]. We can observe a consider-
able reduction of circuit sizes when using CBMC-GC v0.9 instead of CBMC-GC v0.8.

References

1. Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis
and Verification, Release 30916,
http://www.eecs.berkeley.edu/˜alanmi/abc/

2. Bogetoft, P., Damgård, I.B., Jakobsen, T., Nielsen, K., Pagter, J.I., Toft, T.: A Practical Imple-
mentation of Secure Auctions Based on Multiparty Integer Computation. In: Di Crescenzo,
G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)

3. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

4. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-
Preserving Face Recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

5. Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T.: On secure scalar product computation
for privacy-preserving data mining. In: ICISC 2004 (2004)

6. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure Two-Party Computations in ANSI
C. In: CCS 2012 (2012)

7. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster Secure Two-Party Computation Using Gar-
bled Circuits. In: USENIX 2011 (2011)

8. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbi-
trarily partitioned data. In: KDD 2005 (2005)

9. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved Garbled Circuit Building Blocks
and Applications to Auctions and Computing Minima. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)

10. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Applica-
tions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Hei-
delberg (2008)

11. Kuehlmann, A.: Dynamic transition relation simplification for bounded property checking.
In: ICCAD 2004 (2004)

12. Lindell, Y., Pinkas, B.: A Proof of Security of Yao’s Protocol for Two-Party Computation.
Journal of Cryptology 22, 161–188 (2009)

13. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — A Secure Two-Party Computation
System. In: SSYM 2004 (2004)

14. Mishchenko, A., Chatterjee, S., Brayton, R.: FRAIGs: A Unifying Representation for Logic
Synthesis and Verification. Technical report (2005)

15. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is
Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer,
Heidelberg (2009)

http://www.eecs.berkeley.edu/~alanmi/abc/

CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations 249

16. Rabin, M.O.: How To Exchange Secrets with Oblivious Transfer. IACR Cryptology ePrint
Archive 2005, 187 (2005)

17. Smaragdis, P., Shashanka, M.V.S.: A framework for secure speech recognition. IEEE Trans-
actions on Audio, Speech & Language Processing 15(4), 1404–1413 (2007)

18. Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: FOCS 1982 (1982)
19. Yao, A.C.-C.: How to Generate and Exchange Secrets. In: FOCS 1986 (1986)

Author Index

Amme, Wolfram 238
Anantpur, Jayvant 133
Andreasen, Esben 197
Asati, Rahul 85
Auler, Rafael 218

Barenghi, Alessandro 192
Barik, Rajkishore 40
Boissinot, Benoit 18
Borin, Edson 218

Charles, Henri-Pierre 107
Couroussé, Damien 107
Crespi Reghizzi, Stefano 192

Dupont de Dinechin, Benôıt 1
de Halleux, Peli 218

Endo, Fernando A. 107

Feautrier, Paul 113
Franke, Björn 154
Franz, Martin 244

Gauguey, Rémy 107

Holzer, Andreas 244

Karkare, Amey 85
Katzenbeisser, Stefan 244
Ketterlin, Alain 113

Lomüller, Victor 107

Madsen, Magnus 197
Mandrioli, Dino 192

Moskal, Micha�l 218
Mycroft, Alan 85

O’Boyle, Michael 154

Panella, Federica 192
Pereira, Fernando 18
Powell, Daniel 154
Pradella, Matteo 192
Prinz, Thomas M. 238

R., Govindarajan 133
Rastello, Fabrice 18
Reps, Thomas 61

Sanyal, Amitabha 85
Sarkar, Vivek 40
Schallhart, Christian 244
Spieß, Norbert 238
Srinivasan, Venkatesh 61
Sulzmann, Martin 174
Surendran, Rishi 40

Tavares, André 18
Tillmann, Nikolai 218

van Steenhoven, Pippijn 174
Veith, Helmut 244
Violard, Éric 113

Wang, Zheng 154

Zhao, Jisheng 40

	Foreword
	Preface
	Organization
	Table of Contents
	Invited Presentation
	Using the SSA-Form in a Code Generator
	1 Introduction
	2 SSA Form Engineering Issues
	2.1 Instructions, Operands, Operations, and Operators
	2.2 Representation of Instruction Semantics
	2.3 Operand Naming Constraints
	2.4 Non-kill Target Operands
	2.5 Program Representation Invariants

	3 Code Generation Phases and the SSA Form
	3.1 Classic If-conversion
	3.2 If-conversion under SSA Form
	3.3 Pre-pass Instruction Scheduling

	4 SSA Form Destruction Algorithms
	5 Summary and Conclusions
	References

	Program Analysis and Optimization
	Parameterized Construction of Program Representations for Sparse Dataflow Analyses
	1 Introduction
	2 Static Single Information
	2.1 Special Instructions Used to Split Live Ranges
	2.2 Examples of PLV Problems

	3 Building the Intermediate Program Representation
	4 Our Approach vs Other Sparse Evaluation Frameworks
	5 Experimental Results
	6 Conclusion
	References

	Inter-iteration Scalar Replacement Using Array SSA Form
	1 Introduction
	2 Background
	2.1 Inter-iteration Scalar Replacement
	2.2 Carr-Kennedy Algorithm
	2.3 Array SSA Analysis
	2.4 Definitely-Same and Definitely-Different Analyses

	3 Scalar Replacement Overview
	4 Extended Array SSA Form
	5 Available Subscript Analysis
	6 Load Elimination Transformation
	6.1 Register Pressure Moderation
	6.2 Code Generation

	7 Dead Store Elimination
	8 Extension to Objects and While Loops
	9 Experimental Results
	9.1 Implementation
	9.2 Evaluation

	10 Related Work
	11 Conclusions
	References

	Recovery of Class Hierarchies and Composition Relationships from Machine Code
	1 Introduction
	2 Overview
	3 Algorithm
	3.1 Phase 1: Computing Object-Traces
	3.2 Phase 2: Computing Class Hierarchies

	4 Experiments
	4.1 Implementation
	4.2 Ground Truth
	4.3 Scoring
	4.4 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Liveness-Based Garbage Collection
	1 Introduction
	2 The Target Language—Syntax and Semantics
	3 Liveness
	3.1 Liveness Analysis
	3.2 Minefield Semantics and Correctness

	4 Computing Liveness and Its Encoding as a Table
	4.1 Generating Equations for the Demand Transformer LF
	4.2 Generating Liveness Equations L for Function Bodies
	4.3 Solving Liveness Equations—The Grammar Interpretation

	5 Prototype and Evaluation
	5.1 Results

	6 Collecting More Garbage Can Never Slow Things Down
	7 Related Work
	8 Conclusions
	References

	deGoal a Tool to Embed Dynamic Code Generators into Applications
	1 Introduction
	2 Introduction to the
	Infrastructure
	2.1 Kernel Description
	2.2 Compilation Chain
	2.3 Run-time

	3 Current Status
	4 Related Works
	5 Application Domain Examples
	References

	Improving the Performance of X10 Programs by Clock Removal
	1 Introduction
	1.1 The X10 Language
	1.2 The Polyhedral Subset of X10

	2 A Generic Transformation Strategy
	2.1 Motivating Example
	2.2 Applicability and Correctness
	2.3 Optimization Opportunities
	2.4 General Polyhedral Programs
	2.5 Polyhedral Programs with Affine Dates

	3 Polyhedral Implementation and Optimized Control
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Parallelism and Parsing
	Taming Control Divergence in GPUs through Control Flow Linearization
	1 Introduction
	2 Motivation
	2.1 Control Divergence
	2.2 Branch Interleaving
	2.3 Loop Merging
	2.4 Hardware Stack Depth

	3 Linearization Transformation
	3.1 Linearization
	3.2 Unstructured CFG to Structured CFG
	3.3 Converting Irreducible Graph to Reducible Graph
	3.4 Correctness of the transformation
	3.5 Analysis of Increase in Code Size
	3.6 Earliest Reconvergence

	4 Minimizing Unstructured Region
	4.1 Structured Region
	4.2 Optimizations

	5 Applications of Linearization
	5.1 Branch Interleaving
	5.2 Loop Merging
	5.3 Hardware Stack Depth Reduction

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	Exploitation of GPUs for the Parallelisation of Probably Parallel Legacy Code
	1 Introduction
	2 Motivation
	3 Overview
	3.1 Compile Time
	3.2 Runtime

	4 Compile Time: Parallelism Detection and Code Generation
	4.1 Parallelism Detection
	4.2 Code Generation

	5 Runtime: Safe Speculative Execution
	5.1 Runtime Dependence Checking
	5.2 Violation Detection
	5.3 Recovery from Dependence Violations
	5.4 Comparison to other Approaches

	6 Experimental Setup
	7 Experimental Results
	7.1 Overall Results
	7.2 Comparison with the Statically Safe Approach
	7.3 Comparison with Paragon
	7.4 Comparison to Manually Parallelized Code
	7.5 Analysis

	8 Related Work
	9 Conclusion
	References

	A Flexible and Efficient ML Lexer Tool Based on Extended Regular Expression Submatching
	1 Introduction
	2 Expressiveness
	3 Efficient Submatching
	4 Extended Partial Derivative Submatch Automata
	4.1 Extended Partial Derivatives with Submatchings
	4.2 Submatch NFA Construction
	4.3 Example

	5 Thedreml Tool
	5.1 Lexer Example
	5.2 Lexer Engine

	6 Empirical Results
	7 Conclusion
	References

	The PAPAGENO Parallel-Parser Generator
	1 Introduction
	2 Parallel Parser Generation with PAPAGENO
	3 Tool Structure, Performances and Applications
	4 State of the Project
	References

	String Analysis for Dynamic Field Access
	1 Introduction
	2 Related Work
	3 StringDomains
	3.1 Constant String
	3.2 String Set
	3.3 Length Interval
	3.4 Length Hash
	3.5 Prefix and Suffix Characters
	3.6 Character Inclusion
	3.7 Index Predicate
	3.8 Sliding Index Predicate
	3.9 Prefix Suffix Inclusion
	3.10 String Hash
	3.11 Number Strings
	3.12 Type Strings
	3.13 The Hybrid Lattice
	3.14 Lattice Relations
	3.15 Overview
	3.16 Additional String Operations

	4 Evaluation
	4.1 Dynamic Analysis
	4.2 Static Analysis

	5 Conclusion
	References
	A Appendix

	New Trends in Compilation
	Addressing JavaScript JIT Engines Performance Quirks: A Crowdsourced Adaptive Compiler
	1 Introduction
	2 Selection of Benchmarks
	3 Live Crowdsourced Performance Measurement
	3.1 Distribution of Client Performance Scores

	4 TouchDevelop Compiler Overview
	4.1 Safety Checks Elimination
	4.2 Stack Frame Bypass
	4.3 Block Chaining

	5 Results
	5.1 No Optimizations
	5.2 Safety Checks Elimination
	5.3 Stack Frame Bypass
	5.4 Block Chaining
	5.5 Surface RT with IE 11

	6 Related work
	7 Conclusion
	References

	A First Step towards a Compiler for Business Processes
	1 Introduction
	2 Informal Description
	3 SystemOverview
	4 Evaluation
	5 Conclusion
	References

	CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations
	1 Introduction
	2 CMBC-GCinaNutshell
	References

	Author Index

