
Stefania Gnesi
Arend Rensink (Eds.)

 123

17th International Conference, FASE 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5–13, 2014, Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 8

41
1

AR
Co

SS

Lecture Notes in Computer Science 8411
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Stefania Gnesi Arend Rensink (Eds.)

FundamentalApproaches
to Software Engineering

17th International Conference, FASE 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5-13, 2014
Proceedings

13

Volume Editors

Stefania Gnesi
Istituto di Scienza e Tecnologie dell’Informazione "A. Faedo"
Consiglio Nazionale delle Ricerche, Pisa, Italy
E-mail: stefania.gnesi@isti.cnr.it

Arend Rensink
University of Twente, Enschede, The Netherlands
E-mail: arend.rensink@utwente.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54803-1 e-ISBN 978-3-642-54804-8
DOI 10.1007/978-3-642-54804-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933951

CR Subject Classification (1998):

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2014 was the 17th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998, and this year consisted of six constituting conferences
(CC, ESOP, FASE, FoSSaCS, TACAS, and POST) including eight invited speak-
ers and two tutorial speakers. Before and after the main conference, numerous
satellite workshops took place and attracted many researchers from all over the
globe.

ETAPS is a confederation of several conferences, each with its own Program
Committee (PC) and its own Steering Committee (if any). The conferences cover
various aspects of software systems, ranging from theoretical foundations to pro-
gramming language developments, compiler advancements, analysis tools, formal
approaches to software engineering, and security. Organizing these conferences
in a coherent, highly synchronized conference program, enables the participation
in an exciting event, having the possibility to meet many researchers working
in different directions in the field, and to easily attend the talks of different
conferences.

The six main conferences together received 606 submissions this year, 155 of
which were accepted (including 12 tool demonstration papers), yielding an overall
acceptance rate of 25.6%. I thank all authors for their interest in ETAPS, all
reviewers for the peer reviewing process, the PC members for their involvement,
and in particular the PC co-chairs for running this entire intensive process. Last
but not least, my congratulations to all authors of the accepted papers!

ETAPS 2014 was greatly enriched by the invited talks of Geoffrey Smith
(Florida International University, USA) and John Launchbury (Galois, USA),
both unifying speakers, and the conference-specific invited speakers (CC) Benôıt
Dupont de Dinechin (Kalray, France), (ESOP) Maurice Herlihy (Brown Uni-
versity, USA), (FASE) Christel Baier (Technical University of Dresden, Ger-
many), (FoSSaCS) Petr Jančar (Technical University of Ostrava, Czech Repub-
lic), (POST) David Mazières (Stanford University, USA), and finally (TACAS)
Orna Kupferman (Hebrew University Jerusalem, Israel). Invited tutorials were
provided by Bernd Finkbeiner (Saarland University, Germany) and Andy Gor-
don (Microsoft Research, Cambridge, UK). My sincere thanks to all these speak-
ers for their great contributions.

For the first time in its history, ETAPS returned to a city where it had been
organized before: Grenoble, France. ETAPS 2014 was organized by the Univer-
sité Joseph Fourier in cooperation with the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and
EASST (European Association of Software Science and Technology). It had

VI Foreword

support from the following sponsors: CNRS, Inria, Grenoble INP, PERSYVAL-
Lab and Université Joseph Fourier, and Springer-Verlag.

The organization team comprised:

General Chair: Saddek Bensalem
Conferences Chair: Alain Girault and Yassine Lakhnech
Workshops Chair: Axel Legay
Publicity Chair: Yliès Falcone
Treasurer: Nicolas Halbwachs
Webmaster: Marius Bozga

The overall planning for ETAPS is the responsibility of the Steering Commit-
tee (SC). The ETAPS SC consists of an executive board (EB) and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board comprises Gilles Barthe (satellite
events, Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (chair,
Aachen and Twente), Gerald Lüttgen (treasurer, Bamberg), and Tarmo Uustalu
(publicity, Tallinn). Other current SC members are: Mart́ın Abadi (Santa Cruz

and Mountain View), Erika Ábráham (Aachen), Roberto Amadio (Paris), Chris-
tel Baier (Dresden), Saddek Bensalem (Grenoble), Giuseppe Castagna (Paris),
Albert Cohen (Paris), Alexander Egyed (Linz), Riccardo Focardi (Venice), Björn
Franke (Edinburgh), Stefania Gnesi (Pisa), Klaus Havelund (Pasadena), Reiko
Heckel (Leicester), Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kre-
mer (Nancy), Pasquale Malacaria (London), Tiziana Margaria (Potsdam), Fabio
Martinelli (Pisa), Andrew Myers (Boston), Anca Muscholl (Bordeaux), Catuscia
Palamidessi (Palaiseau), Andrew Pitts (Cambridge), Arend Rensink (Twente),
Don Sanella (Edinburgh), Vladimiro Sassone (Southampton), Ina Schäfer (Braun-
schweig), Zhong Shao (New Haven), Gabriele Taentzer (Marburg), Cesare Tinelli
(Iowa), Jan Vitek (West Lafayette), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work in making the
17th ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. Finally, many thanks
to Saddek Bensalem and his local organization team for all their efforts enabling
ETAPS to return to the French Alps in Grenoble!

January 2014 Joost-Pieter Katoen

Preface

This volume contains the proceedings of FASE 2014, the 17th International
Conferences on Fundamental Approaches to Software Engineering, which was
held in Grenoble, Italy, in April 2014 as part of the annual European Joint
Conferences on Theory and Practice of Software (ETAPS).

As with previous editions of FASE, this year’s papers presented foundational
contributions to a broad range of topics in software engineering, including soft-
ware verification and validation, model-driven engineering, debugging, and test-
ing. This year we received 125 submissions from 35 countries, of which 28 were
accepted by the Program Committee for presentation at the conference, consti-
tuting an acceptance rate of approximately 22%. Each paper received a minimum
of three reviews; acceptance decisions were reached through online discussions
among the members of the Program Committee.

We were honored to host Christel Baier from the Technische Universität
Dresden (Germany) as the FASE keynote speaker at ETAPS 2014. She gave a
talk entitled “Probabilistic Model Checking and Non-standard Multi-objective
Reasoning” (the paper is included in these proceedings). Christel is an interna-
tionally recognized researcher who has made major contributions to the field of
quantitative analysis of stochastic systems and probabilistic model checking.

Many persons contributed to the success of FASE 2014. Authors of all sub-
mitted papers represent the core of such a conference, and we believe that the
accepted papers make significant advances in the foundations of software engi-
neering. However, the program could not have been assembled without the great
effort of the Program Committee members and their sub-reviewers in critically
assessing and discussing the papers: thanks a lot for your active participation!
We also express our full gratitude to the additional reviewers coming to our aid
at the last minute to provide additional insights for papers under dispute, for
producing high-quality reviews in a very short time. Finally, we thank Gabriele
Taentzer, the FASE Steering Committee Chair, for her timely and accurate re-
sponses to our queries about the whole process management, and the ETAPS
Steering and Organizing Committees for their coordination work.

We sincerely hope you enjoy these proceedings!

January 2014 Stefania Gnesi
Arend Rensink

Organization

Program Committee

Marsha Chechik University of Toronto, Canada
Myra Cohen University of Nebraska-Lincoln, USA
Vittorio Cortellessa Università dell’Aquila, Italy
Krzysztof Czarnecki University of Waterloo, Canada
Nancy Day University of Waterloo, Canada
Juan De Lara Universidad Autonoma de Madrid, Spain
Ewen Denney SGT/NASA Ames, USA
Juergen Dingel Queen’s University, Canada
José Luiz Fiadeiro Royal Holloway, University of London, UK
Dimitra Giannakopoulou NASA Ames, USA
Holger Giese University of Potsdam, Germany
Stefania Gnesi CNR-ISTI, Pisa, Italy
Reiko Heckel University of Leicester, UK
John Hosking Australian National University, Australia
Jochen Kuester IBM Research, Switzerland
Ralf Laemmel Universität Koblenz-Landau, Germany
Yves Le Traon University of Luxembourg, Luxembourg
Antónia Lopes University of Lisbon, Portugal
Mieke Massink CNR-ISTI, Pisa, Italy
Richard Paige University of York, UK
Rosario Pugliese Università degli Studi di Firenze, Italy
Arend Rensink University of Twente, The Netharlands
Bernhard Rumpe RWTH Aachen University, Germany
Alessandra Russo Imperial College London, UK
Ina Schaefer Technische Universität Braunschweig, Germany
Andy Schürr TU Darmstadt, Germany
Gabriele Taentzer Philipps-Universität Marburg, Germany
Daniel Varro Budapest University of Technology

and Economics, Hungary
Eelco Visser Delft University of Technology,

The Netherlands
Martin Wirsing Ludwig-Maximilians-Universität München,

Germany

X Organization

Additional Reviewers

Abreu, Rui
Ahn, Ki Yung
Albarghouthi, Aws
Almeida Castelo Branco, Moises
Alrajeh, Dalal
Anjorin, Anthony
Arcelli, Davide
Arendt, Thorsten
Baldan, Paolo
Bartel, Alexandre
Berardinelli, Luca
Berger, Thorsten
Bergmann, Gábor
Beyhl, Thomas
Binder, Walter
Bodden, Eric
Boreale, Michele
Bracciali, Andrea
Bruni, Roberto
Bürdek, Johannes
Cesari, Luca
Ciancia, Vincenzo
Clarisó, Robert
Cohen, David
Deckwerth, Frederik
Di Ciccio, Claudio
Diskin, Zinovy
Dyck, Johannes
Fantechi, Alessandro
Faria, Joao Pascoal
Fazal-Baqaie, Masud
Fischer, Bernd
Garbajosa, Juan
Gerth, Christian
Greenyer, Joel
Groenewegen, Danny
Guimaraes, Mario
Guo, Jianmei
Gutin, Gregory
Gönczy, László
Haber, Arne
Hebig, Regina
Hegedüs, Ábel

Heindel, Tobias
Hermans, Felienne
Hermerschmidt, Lars
Holthusen, Sönke
Horváth, Ákos
Howar, Falk
Hénard, Christopher
Hölldobler, Katrin
Izsó, Benedek
Khan, Tamim
Kiss, Akos
Klein, Jacques
Kolassa, Carsten
Konat, Gabriël D.P.
Lachmann, Remo
Lambers, Leen
Lamo, Yngve
Latella, Diego
Lavygina, Anna
Leblebici, Erhan
Legay, Axel
Lindt, Achim
Lluch Lafuente, Alberto
Lochau, Malte
Loreti, Michele
Ma, Jiefei
Maoz, Shahar
Margheri, Andrea
Martinez, Jabier
Martins, Francisco
Matos, Carlos
Mazzanti, Franco
Mottu, Jean-Marie
Mouelhi, Tejeddine
Mueller, Klaus
Navarro Pérez, Antonio
Neron, Pierre
Neumann, Stefan
Nunes, Isabel
Nyman, Ulrik
Orejas, Fernando
Paci, Federica
Pai, Ganesh

Organization XI

Papadakis, Mike
Patzina, Lars
Patzina, Sven
Polini, Andrea
Puviani, Mariachiara
Raco, Deni
Ravn, Anders
Roveri, Marco
Rozier, Kristin Yvonne
Rubin, Julia
Rungta, Neha
Ráth, István
Salay, Rick
Saller, Karsten
Santos, André L.
Schulze, Christoph
Schulze, Sandro
Schumann, Johann
Senni, Valerio
Sunye, Gerson
Sánchez Cuadrado, Jesús
T. Vasconcelos, Vasco
Tegawendé, Bissyandé
Ter Beek, Maurice H.

Tiezzi, Francesco
Torres Vieira, Hugo
Traonouez, Louis-Marie
Tribastone, Mirco
Trubiani, Catia
Turliuc, Calin-Rares
Ulidowski, Irek
Varanovich, Andrei
Varro, Gergely
Varró-Gyapay, Szilvia
Vaupel, Steffen
Venet, Arnaud
Vergu, Vlad
Vidács, László
Vogel, Thomas
von Wenckstern, Michael
Vörös, András
Wachsmuth, Guido
Weber, Michael
Wieber, Martin
Winkelmann, Tim
Wortmann, Andreas
Wtzoldt, Sebastian

Table of Contents

Invited Paper

Probabilistic Model Checking and Non-standard Multi-objective
Reasoning . 1

Christel Baier, Clemens Dubslaff, Sascha Klüppelholz,
Marcus Daum, Joachim Klein, Steffen Märcker, and
Sascha Wunderlich

Modelling and Model Transformation

Target Oriented Relational Model Finding . 17
Alcino Cunha, Nuno Macedo, and Tiago Guimarães

Bidirectionally Tolerating Inconsistency: Partial Transformations 32
Perdita Stevens

Splitting Models Using Information Retrieval and Model Crawling
Techniques . 47

Daniel Strüber, Julia Rubin, Gabriele Taentzer, and Marsha Chechik

Sound Merging and Differencing for Class Diagrams 63
Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej W ↪asowski

Time and Performance

Heterogeneous and Asynchronous Networks of Timed Systems 79
José Luis Fiadeiro and Antónia Lopes

Family-Based Performance Analysis of Variant-Rich Software
Systems . 94

Matthias Kowal, Ina Schaefer, and Mirco Tribastone

Static Analysis

TouchCost: Cost Analysis of TouchDevelop Scripts 109
Pietro Ferrara, Daniel Schweizer, and Lucas Brutschy

Efficient Incremental Static Analysis Using Path Abstraction 125
Rashmi Mudduluru and Murali Krishna Ramanathan

Type-Based Taint Analysis for Java Web Applications 140
Wei Huang, Yao Dong, and Ana Milanova

XIV Table of Contents

Mining the Categorized Software Repositories to Improve the Analysis
of Security Vulnerabilities . 155

Alireza Sadeghi, Naeem Esfahani, and Sam Malek

Scenario-Based Specification

Modularizing Early Architectural Assumptions in Scenario-Based
Requirements . 170

Dimitri Van Landuyt and Wouter Joosen

Semantically Configurable Analysis of Scenario-Based Specifications 185
Barak Cohen and Shahar Maoz

Software Verification

Formal Verification of Medical Device User Interfaces Using PVS 200
Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon, and
Harold Thimbleby

Sound Control Flow Graph Extraction from Incomplete Java Bytecode
Programs . 215

Pedro de Carvalho Gomes, Attilio Picoco, and Dilian Gurov

Verifying Class Invariants in Concurrent Programs 230
Marina Zaharieva-Stojanovski and Marieke Huisman

Analysis and Repair

Automatic Program Repair by Fixing Contracts . 246
Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer

Dynamic Package Interfaces . 261
Shahram Esmaeilsabzali, Rupak Majumdar, Thomas Wies, and
Damien Zufferey

Verification and Validation

SMT-Based Checking of SOLOIST over Sparse Traces 276
Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi,
Srd̄an Krstić, and Pierluigi San Pietro

An Online Validator for Provenance: Algorithmic Design, Testing,
and API . 291

Luc Moreau, Trung Dong Huynh, and Danius Michaelides

Comparator: A Tool for Quantifying Behavioural Compatibility 306
Meriem Ouederni, Gwen Salaün, Javier Cámara, and
Ernesto Pimentel

Table of Contents XV

Graph Transformation

Transformation of Attributed Structures with Cloning 310
Dominique Duval, Rachid Echahed, Frederic Prost, and Leila Ribeiro

Implementing Graph Transformations in the Bulk Synchronous Parallel
Model . 325

Christian Krause, Matthias Tichy, and Holger Giese

Modularizing Triple Graph Grammars Using Rule Refinement 340
Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schürr

Polymorphic Single-Pushout Graph Transformation 355
Michael Löwe, Harald König, and Christoph Schulz

Debugging and Testing

Causal-Consistent Reversible Debugging . 370
Elena Giachino, Ivan Lanese, and Claudio Antares Mezzina

An Expressive Semantics of Mocking . 385
Josef Svenningsson, Hans Svensson, Nicholas Smallbone,
Thomas Arts, Ulf Norell, and John Hughes

Integration Testing in the Test Template Framework 400
Maximiliano Cristiá, Joaqúın Mesuro, and Claudia Frydman

Data Flow Coverage for Circus-Based Testing . 415
Ana Cavalcanti and Marie-Claude Gaudel

Author Index . 431

Probabilistic Model Checking

and Non-standard Multi-objective Reasoning�

Christel Baier, Clemens Dubslaff, Sascha Klüppelholz, Marcus Daum,
Joachim Klein, Steffen Märcker, and Sascha Wunderlich

Institute for Theoretical Computer Science
Technische Universität Dresden, Germany

Abstract. Probabilistic model checking is a well-established method
for the automated quantitative system analysis. It has been used in var-
ious application areas such as coordination algorithms for distributed
systems, communication and multimedia protocols, biological systems,
resilient systems or security. In this paper, we report on the experiences
we made in inter-disciplinary research projects where we contribute with
formal methods for the analysis of hardware and software systems. Many
performance measures that have been identified as highly relevant by the
respective domain experts refer to multiple objectives and require a good
balance between two or more cost or reward functions, such as energy and
utility. The formalization of these performance measures requires several
concepts like quantiles, conditional probabilities and expectations and
ratios of cost or reward functions that are not supported by state-of-
the-art probabilistic model checkers. We report on our current work in
this direction, including applications in the field of software product line
verification.

1 Introduction

Probabilistic phenomena occur rather naturally for many types of hardware-
and software systems. Typical examples are randomized algorithms for the co-
ordination of distributed systems, such as mutual exclusion, leader election
or consensus protocols where coin-tossing actions are used to break symmetry,
or systems with unreliable or only partially known components where stochastic
distributions can be used to model the system load or the frequency of failures
(e.g. message losses, bit flips in hardware components). Various models and for-
mal methods for the analysis of probabilistic systems have been proposed in the
literature. We focus here on probabilistic model-checking (PMC) on Markovian
models, which can be seen as automata annotated with probabilistic distribu-
tions and cost or reward functions modeling resource requirements. The Marko-
vian property that the future system behavior only depends on the current state

� The authors are supported by the DFG through the collaborative research centre
HAEC (SFB 912), the cluster of excellence cfAED, Deutsche Telekom Stiftung, the
ESF young researcher group IMData (100098198), the Graduiertenkolleg QuantLA
(1763) the DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261).

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 1–16, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 C. Baier et al.

but not on the history makes these models best-suited for algorithmic quantita-
tive analysis. Whereas Markov chains (MCs) are purely probabilistic and can be
seen as transition systems where the probabilities are attached to the outgoing
transitions of each state, Markov decision processes (MDPs) support both non-
deterministic and probabilistic choices. This is useful for modeling randomized
distributed protocols where the nondeterminism models the interleaving of inde-
pendent (possibly randomized) actions executed in parallel. The nondeterminism
in MDPs can be resolved by schedulers, allowing to reason about extremal prob-
abilities. The typical task of PMC on a given MDP is to compute the maximal
or minimal probabilities of path properties specified by some formula of linear
temporal logic (LTL) [37,18], the path-formula fragment of probabilistic compu-
tation tree logic (PCTL) or its variant PRCTL with reward-bounded temporal
modalities [27,9,19,2]. Algorithms for Markovian models and LTL- or PRCTL-
specifications were implemented in various model checkers, such as Prism [29]
and MRMC [31]. They provide several engines with sophisticated techniques
to tackle the state-explosion problem and have been continuously extended by
new features and were successfully applied in various areas, such as randomized
distributed systems, multimedia, security protocols and systems biology.

In current inter-disciplinary research projects, where we apply (among others)
PMC for the analysis of low-level resource-management algorithms, we made a
series of interesting observations concerning the strengths and limitations of
state-of-the-art PMC-techniques. Within these projects, the PMC-based ap-
proach is complementary to the measurement- and simulation-based analysis
conducted by project partners to provide insights in the energy-utility, reliabil-
ity and other performance characteristics from a global and long-run perspective.
The evaluation results obtained by a probabilistic model checker guide the opti-
mization of resource-management algorithms. They can be useful to predict the
performance of management algorithms on future hardware or low-level proto-
cols that have not been implemented yet, making measurements are impossible.
We successfully applied PMC, e.g., for the analysis of a spinlock protocol [5], a
lock-free synchronization protocol for read-write problems [6], a bonding network
device [22] and an energy-aware job scheduling scenario [4].

The application of PMC was, however, not straightforward. Besides the ex-
pected state-explosion problem, difficulties arose to find appropriate probabilistic
distributions to model cache-effects and other hardware details. These problems
have been addressed in [5] by means of a simple spinlock example. To our sur-
prise, our case studies revealed the lack of performance measures that have been
identified as most significant by our cooperation partners, but were not supported
by existing probabilistic model checkers. This mainly concerns the calculation of
measures that provide insights in the tradeoff between multiple cost and reward
functions, such as energy and utility. Usually, the gained utility increases (within
certain bounds) with the price to be payed. For example, the performance of a
CPU (measured, e.g., in the maximum number of instructions per second) cru-
cially depends on its frequency, but so does its energy consumption. The tradeoff
is now to maximize the performance, while at the same time minimizing the

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 3

energy consumption. In the described setting, one has the freedom to select the
frequency the CPU is operating with. The maximal number of instructions per
second then appears as a consequence of the choice for the frequency. The goal is
now to find “optimal” solutions for the above tradeoff. In requirement specifica-
tion it is very natural to introduce lower bounds for the gained utility and upper
bounds for the costs. One could either ask for the minimal amount of energy to
be spend given a lower bound on the performance, or for the maximal perfor-
mance given a certain upper bound on the energy consumption. Other examples
for low-cost objectives and high quality-of-service objectives are constraints on
the maximal time to recover from failures in a resilient system or the penalty to
be paid for missed deadlines, the average amount of time that a process has to
wait for a requested resource, or the frame rate of a video platform. Assuming
such a given cost function for the energy consumption and a reward function for
the achieved degree of utility, we consider the design of algorithms answering
multi-objective problems for MDPs exemplified by the following tasks:

(M) Given an energy budget e and a utility threshold u, find a scheduler for
completing a task such that the expected achieved utility is at least u and
there is a 80% chance that the energy consumption is at most e.

(Q) Given an energy budget e, maximize the utility value that can be guar-
anteed for the completion of a task when consuming e or less energy with
probability 0.8.

(Qe) Find a scheduler requiring a minimal energy budget to ensure the expected
utility for completing a task to be larger than a given utility threshold u.

(C) Suppose the total energy consumption for completing a task is at most e.
Find a scheduler maximizing the probability for the property stating that
the utility value achieved by completing a task is at least u.

(Cq) Find a scheduler maximizing utility in terms of completed tasks, such
that the probability for utility being at least u under the assumption that
the energy consumed does not exceed a given threshold e is greater than 0.8.

(R) Find a scheduler for completing infinitely many tasks such that almost
surely the ratio between the achieved utility and the consumed energy is
always greater than a given quality threshold.

(Rc) Under the assumption that the consumed energy is always smaller than
a given threshold e, find a scheduler which guarantees almost surely the
energy-utility ratio being greater than a quality threshold.

The first task (M) can be seen as a standard multi-objective query [14,23],
where the task is to check the existence of a scheduler satisfying a probability
condition and an expectation condition. This type of multi-objectives is not in
the scope of this paper, which addresses non-standard multi-objectives exempli-
fied by all the other tasks. (Q) and (Qe) can be formalized as quantiles, where
the latter stands for an expectation quantile. (C) is an instance of conditional
probabilities and (Cq) describes a conditional quantile. Although quantiles and
conditional probabilities and expectations are standard concepts in mathemat-
ics and statistics, they have drawn very few attention in the context of PMC.
Our recent work [36,4] shows how quantiles can be derived from computation

4 C. Baier et al.

schemes for the probabilities or expectations of reward-bounded path properties.
A brief summary will be provided in Section 3. Explanations on the computation
of conditional probabilities are provided in Section 4, based on our recent work
[8]. Tasks (R) and (Rc) refer to the quotient of two cost or reward functions in
an MDP (e.g., one for the energy and one for the utility). There has been some
work on such ratios, e.g., by [1,38] for expected ratios or [20] for long-run ratios
when the denominator has the purpose of a counter. This work does not seem
to be adequate for solving the tasks stated above. Instead, we show in Section 5
that instances of (R) are reducible to problems that have been studied for prob-
abilistic energy games [12] or probabilistic push-down systems [11]. Combining
these results with methods presented in Section 4 for conditional probabilities,
yields solutions for (Rc). We illustrate how the exemplified tasks stated above
can be used in the field of software product line verification. Based on our recent
work [22], we detail its application to the energy-aware server system eBond+.

2 Theoretical Foundations

The reader is supposed to be familiar with ω-automata and temporal logics. See,
e.g., [15,25,7]. At several places, we will use notations of linear temporal logics
(LTL) and computation tree logic (CTL) where ♦, �, ©, U and R stand for
the temporal modalities “eventually”, “always”, “next”, “until” and “release”,
while ∃ and ∀ are used as CTL-like path quantifiers. The notion path property
will be used for any language consisting of infinite words over 2AP , where AP is
the underlying set of atomic propositions. LTL-formulas are often identified with
such path properties that are models for the formulas. Having in mind temporal
logical specifications, we use the logical operators ∨, ∧, ¬ for union, intersection
and complementation of path properties.

In the remainder of this section, we provide a brief summary of our notations
for Markov decision processes and related concepts. For further details we refer
to textbooks on model checking [15,7] and on probability theory and Markovian
models [33,32,28]. Let S be a nonempty, countable set. A distribution on S is a
function μ : S → [0, 1] with

∑
s∈S μ(s) = 1.

Markov Decision Processes (MDPs). MDPs can be seen as a generaliza-
tion of transition systems where the operational behavior in a state s consists
of a nondeterministic selection of an enabled action α, followed by a proba-
bilistic choice of the successor state, given s and α. Formally, an MDP is a
tuple M = (S,Act , P,AP , L) where S is a finite set of states, Act a finite set of
actions, AP a finite set of atomic propositions and L : S → 2AP a labeling func-
tion. The enabled actions and transition probabilities are specified by a function
P : S ×Act × S → [0, 1] ∩Q with

∑
s′∈S P (s, α, s′) ∈ {0, 1} for all s ∈ S and

α ∈ Act .
The triples (s, α, s′) where P (s, α, s′) > 0 are called transitions. We write

Act(s) for the set of actions that are enabled in s, i.e., P (s, α, s′) > 0 for some
s′ ∈ S. For technical reasons, we require that Act(s)
= ∅ for all states s. If the
sets Act(s) are singletons for all states s, M is called a Markov chain.

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 5

Paths inM are finite or infinite alternating sequences ζ = s0 α0 s1 α1 s2 α2 . . .
of states and actions built by consecutive transitions, i.e., P (si−1, αi−1, si) > 0
for all i � 1. The length |ζ| denotes the number of transitions in π. If k � |ζ| then
ζ[k] = sk denotes the (k+1)-st state in ζ. FinPaths(s) and InfPaths(s) stand for
the sets of all finite resp. infinite paths starting in s. If ζ = s0 α0 s1 α1 s2 α2 . . .
is an infinite path then its trace trace(ζ) = L(s0)L(s1)L(s2) . . . ∈ (2AP)ω is
obtained by the projection to the state labels.

Schedulers and Probability Measure. Reasoning about probabilities for
path properties in an MDP M requires the selection of an initial state and the
resolution of the nondeterministic choices between the possible transitions. This
is formalized via schedulers, which take as input a finite path and select an action
to be executed. For the purposes of this paper, we define schedulers as functions
S : FinPaths → Act such that S(π) ∈ Act(last(π)) for all finite paths π, where
last(π) denotes the last state of π. For a pointed MDP (M, s), i.e., an MDP as
before with some distinguished initial state s = sinit ∈ S, the behavior of (M, s)
under S is purely probabilistic. The probability measure PrSs for measurable
sets of the infinite S-paths starting in s is defined in the standard way (see, e.g,
[7]) and yields the probability for a path property ϕ under S starting in s:

PrSs (ϕ)
def
= PrSs

{
ζ ∈ InfPaths(s) : ζ |= ϕ

}
For a worst-case analysis of a system modeled by a pointed MDP (M, s), one
ranges over all schedulers (i.e., all possible resolutions of the nondeterminism)
and considers the maximal or minimal probabilities for ϕ:

Prmin
s (ϕ)

def
= min

S
PrSs (ϕ) Prmax

s (ϕ)
def
= max

S
PrSs (ϕ)

Automata-Based PMC for LTL-Specifications. Figure 1 sketches the main
steps of the automata-based PMC-approach for MDP against LTL-specifications.
Maxima and minima are taken over all potential resolutions of the nondetermin-
ism, formalized by schedulers. We suppose here that the formula ϕ describes
the undesired behaviors where the requirement does not hold, in which case the
maximal probability for ϕ and a corresponding scheduler that maximizes the
probabilities for ϕ provides insights in the worst-case scenarios.

The idea is to apply at first known algorithms that transform the given LTL-
formula into a deterministic automaton A over infinite words (see [25]) and then
to compute the maximimal probabilities for the paths satisfying A’s acceptance
condition in the product-MDP M ⊗ A. The latter reduces to a probabilistic
reachability problem and is solvable by linear-programming techniques [9,7].

A worst-case analysis as in Fig. 1 is adequate if the choices between the
nondeterministic alternatives in the given MDP are uncontrollable (e.g. if they
represent the possible interactions with an unknown or unpredictable environ-
ment). Likewise, if the given LTL-formula ϕ formalizes the desired behaviors, the
computation of the maximal probability for ϕ can be seen as a best-case anal-
ysis. Then, a scheduler maximizing the probability for ϕ serves as an optimal
controller for the objective ϕ.

6 C. Baier et al.

requirement
probabilistic

system

LTL-formula ϕ
for the undesired behaviors

deterministic
automaton A

probabilistic model:
pointed MDP (M, sinit)

probabilistic model checker
quantitative reachability analysis of M⊗A

maximal probability for “bad behaviors”

Fig. 1. Automata-based PMC-approach for MDP and LTL-specifications

Weight and Reward Functions. A weight function for M is a function of
the form wgt : S × Act → Z that assigns an integer for all state-action pairs
where wgt(s, α) = 0 if α /∈ Act(s). If wgt is non-negative, i.e., wgt(s, s′) � 0
for all states s, s′, then we refer to wgt as a reward function. We say wgt is
positive if wgt(s, α) > 0 for all state-action pairs (s, α) where α is enabled in s.
Occasionally, we also consider weight functions with rational values and refer to
them as rational-valued weight functions. The accumulated weight of finite paths
is defined as wgt(s0 α0 s1 α1 . . . αn−1 sn) =

∑
0�i<n wgt(si, αi).

Expected Accumulated Reward. Let χ be a predicate for finite paths and
rew a reward function. The random variable rewχ : InfPaths → Z∪{∞} assigns
to each infinite path ζ the accumulated reward of the longest prefix of ζ where
χ does not hold. That is:

rewχ(ζ)
def
= sup

{
rew(ζ[0 . . . k]) : k ∈ N, ζ[0 . . . k])
|= χ

}
We will use two types of predicates for finite paths: reachability constraints
χ = Reach(goal) where goal is a state predicate (i.e., Boolean combination of
atomic propositions) and predicates χ of the form rew > r or rew � r imposing
a lower bound on the accumulated reward (where r ∈ N). If π is a finite path
of length n then π |= Reach(goal) if π[k] |= goal for some k ∈ {0, 1, . . . , n}
and π |= rew > r if rew(π) > r. For these types of predicates, the set of finite
paths π with π |= χ is prefix-closed and the set ♦χ of infinite paths ζ with
ζ[0 . . . k] |= χ for some position k ∈ N is measurable. Obviously, reachability
predicates Reach(goal) can be mimicked by the predicate rew � 1 where rew
is a fresh reward function with rew(s, α) = 1 if s |= goal and α ∈ Act(s) and
rew(s, α) = 0 in all other cases.

Given state s of M and a scheduler S such that PrSs (♦χ) = 1, the ex-

pected accumulated reward until χ, denoted E[rew]
S
s (♦χ) =

∑
π probS(π) is the

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 7

expectation of the random variable rewχ. Here, π ranges over all finite S-paths
with π
|= χ. If Prmin

s (♦χ) = 1, then

E[rew]max
s (♦χ) = maxS E[rew]Ss (♦χ), E[rew]min

s (♦χ) = minS E[rew]Ss (♦χ)

are computable using linear-programming techniques [33,21].

3 Quantiles

Quantiles are well-established in statistics (see, e.g., [34]), where they are used
to reason about the cumulative distribution function of a random variable R. If
p ∈]0, 1[, then the p-quantile is the maximal value r such that the probability for
the event R > r is at least p. Although quantiles can provide very useful insights
in the interplay of various cost functions and other system properties, they have
barely obtained attention in the model-checking community. We provide here a
brief summary of the concepts presented in [36,4]. The formula

φe,u = ♦
(
goal ∧ (energy � e) ∧ (utility � u)

)
states that eventually a goal state will be reached along some finite path where
the accumulated energy is at most e and the accumulated utility value is at
least u. Path properties ϕ[e] (and ψ[u]) parametrizing only over the energy costs
(utility reward, respectively) are obtained from φe,u by fixing the maximal energy
costs e (minimal utility u, respectively). Whereas ϕ[e] is increasing with the
available energy budged e, ψ[u] is decreasing with the requested utility u.

p
ro
b
a
b
il
it
y 80%

emin

energy budget

p
ro
b
a
b
il
it
y 80%

umax

gained utility

Fig. 2. Quantiles for increasing (left) and decreasing (right) properties

Quantiles now ask for the minimal e (maximal u) such that the probability
of all paths starting in a designated state and fulfilling ϕ[e] (ψ[u], respectively)
exceed a given probability bound p. The arising quantile values are illustrated in
Figure 2 for p = 0.8. In order to formally define the quantiles used throughout
this paper, let us fix an MDP M and a reward function rew : S × Act → N as
in Section 2. Given an increasing path property ϕ[r], where parameter r ∈ N
stands for some bound on the accumulated reward, we can define the following
types of existential quantiles, where ψ[r] = ¬ϕ[r], � ∈ {�, >} and p ∈ [0, 1]∩Q:

min
{
r ∈ N : Prmax

s

(
ϕ[r]
)
� p
}

and max
{
r ∈ N : Prmax

s

(
ψ[r]
)
� p
}

8 C. Baier et al.

Analogously, universal quantiles are defined by considering the probability of
a path property which can be guaranteed under every scheduler, i.e., replacing
Prmax

s above by Prmin
s . If the extrema are taken over the empty set, they are

defined to be ∞ in the case of minima and as undefined in the case of maxima.
One example is reward-bounded path properties. For instance, ϕ[r] = ♦�ra
and ϕ[r] = ��ra are increasing, while their duals ψ[r] = ♦�ra and ψ[r] =
��ra are decreasing. Here, a is an atomic proposition or a Boolean combination
thereof.1 Within these notations, the formula φe,u above can be reformulated
as ♦�e(goal ∧ (utility � u)) when the consumed energy is modeled by a reward
function and the accumulated utility is assumed to be encoded in the states, or
as ♦�u(goal ∧(energy � e)) when utility is represented by a reward function and
the consumed energy is augmented to states. Thus, query (Q) of the introduction
corresponds to the task of computing an optimal scheduler S for the quantile:

max
{
u ∈ N : Prmax

sinit

(
♦�u(goal ∧ (energy � e))

)
� 0.8

}
Similar to the already mentioned quantiles, we can define expectation quantiles,
where the probability bound is replaced by a bound on an expected accumulated
reward. For example, given two reward functions energy and utility, we may
ask for min {e ∈ N : E[utility]max

sinit
(♦(energy > e)) > u} given a fixed utility

threshold u, which corresponds to task (Qe) from the introduction.

Computation of Quantiles. For qualitative quantiles with upper-bounded
eventually properties, i.e., quantiles with the probability bounds = 1, < 1, = 0
or > 0, the quantile values can be computed in polynomial time using a greedy
method that shares some ideas of Dijkstra’s shortest-path algorithm [36]. For
other probability bounds, the schema for computing the quantile is as follows.
We explain here the case qs = min{r ∈ N : Prmin

s (♦�ra) > p}. The treatment of
other probability quantiles of the above type is analogous.

1. Compute ps = Prmin
s (♦a) for all states s. Then, with X = {s ∈ S : ps � p}

we have qs =∞ iff s ∈ X .

2. If S
= X then for r = 0, 1, 2, . . ., compute the values ps,r = Prmin
s (♦�ra) for

all s ∈ S. Proceed with step 3, as soon as ps,r > p for all states s ∈ S \X .

3. For each s ∈ S \X , return qs = min{r ∈ N : ps,r > p}.

The computation of the values ps,r in step 2 can be carried out using linear-
programming techniques and reusing the values pt,i for i < r computed in
previous iterations. The computation of expectation quantiles can follow an anal-
ogous approach as for probability quantiles. The idea is first to identify the states
where the expectation quantile is infinite. We then iteratively compute the val-
ues us,e = E[utility]max

s (♦(energy > e)) for e = 0, 1, . . . solving linear programs
until us,e>u. Detailed explanations for computing quantiles can be found in [4].

1 The semantics of the reward-bounded eventually and always operator is as follows.
If ζ is an infinite path, then ζ |= ♦��ra where �� ∈ {�,�} if there exists a position
k ∈ N with rew (pref (ζ, k)) �� r and ζ[k] |= a. Similarly, ���ra ≡ ¬(¬♦��r¬a).

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 9

4 Conditional Probabilities and Expectations

Probabilities and expectations under the assumption that some additional tem-
poral condition holds are often needed within the quantitative analysis of pro-
tocols. Constraints in conditional probabilities or expectations can be seen as
a non-standard type of multi-objective properties. For example, in the context
of energy-utility analysis, conditional probabilities or expectations are useful to
analyze the energy-efficiency, while assuming that a certain condition on the
achieved utility is guaranteed. Vice versa, one might ask, e.g., for the expected
utility, while not exceeding a given energy budget.

Conditional probabilities in Markov chains can be computed simply by the
definition of conditional probabilities as the quotient of ordinary probabilities:

PrMs (ϕ | ψ) =
PrMs (ϕ ∧ ψ)

PrMs (ψ)

where PrMs (ψ) > 0. In what follows we refer to ϕ as the objective and to ψ as
the condition. This approach has been taken in [3], where the condition and the
objective are specified as PCTL path properties. The quotient method has been
extended recently [24,30] for discrete and continuous-time Markov chains and
patterns of path properties with multiple time- and cost-bounds. An alternative
approach relies on a transformationM�Mψ such that for all measurable path
properties ϕ the conditional probability for ϕ of M under condition ψ agrees
with the standard (unconditional) probability for ϕ in Mψ [8].

More challenging is the task to reason about conditional probabilities in
MDPs. The crux is that for the computation of, e.g.,

Prmax
s

(
ϕ |ψ
)

= max
S

PrSs
(
ϕ |ψ
)

= max
S

PrSs
(
ϕ ∧ ψ

)
PrSs
(
ψ
)

we cannot simply maximize the nominator and denominator independently. This
problem has been addressed first in [3], where an extension of PCTL over MDPs
[9] by a conditional probability operator has been introduced. The presented
model-checking algorithm relies on an exhaustive search (with heuristic bounding
techniques) in some finite, but potentially exponentially large class of finite-
memory schedulers. In [8] we improved this result by presenting a polynomial
transformationM�Mϕ|ψ for reachability objectives and conditions, which has
been shown to be the core problem for reasoning about ω-regular objectives and
conditions by using automata representations of the objective and the condition.
In this approach, we fix an initial state sinit ofM. The idea for the construction
of the transformed MDPMϕ|ψ is to redistribute the probabilities of paths where
the condition ψ does not hold by adding reset-transitions to sinit . In the case of
prefix-independent conditions (e.g. a reachability or a fairness condition) reset-
transition t −→ sinit are introduced for all states t where Prmax

t (ψ) = 0.

10 C. Baier et al.

The transformation explained in [8] relies on a preprocessing depending on
both the condition ψ and the objective ϕ and generates a normal form for con-
ditional probabilities. This preprocessing can, however, be dropped resulting
in a transformation M � Mψ that only depends on the condition such that
Prmax

M,sinit (ϕ |ψ) equals Prmax
Mψ,sinit (ϕ ∧ ψ) for all objectives ϕ, e.g., formalized as

LTL or PRCTL path formulas. With this approach we can, for instance, compute
conditional quantiles as in (Cq), which are of the form

min
{
r ∈ N : Prmax

M,sinit

(
ϕ[r] |ψ) � p

}
= min

{
r ∈ N : Prmax

Mψ,sinit

(
ϕ[r] ∧ ψ) � p

}
where ϕ[r] is an increasing path property such as ♦�ra (see also Section 3).

5 Reasoning about the Energy-Utility Ratio

As a third type of non-standard multi-objective reasoning in MDPs we consider
conditions on the quotient of two reward functions. The problem to compute
expected ratios of accumulated rewards in MDPs was already addressed, e.g.,
in [1,38]. Probabilistic constraints on special types of long-run limits of accumu-
lated rewards were studied in [20]. The results by [10,35] indicate that reasoning
about long-run limits of (ratios of) accumulated values is algorithmically simpler
than reasoning about the accumulated values along the prefixes of infinite paths.
Indeed, [10] proves the undecidability of the model-checking problem for tempo-
ral logics extended by assertions on the accumulated values along the prefixes
of infinite paths. Nevertheless, as the work on energy games [12,13] shows, there
are several interesting patterns of formulas with prefix-accumulation assertions.

We consider here a pointed MDP (M, sinit) with two weight functions, say
energy and utility where the energy reward function is supposed to be positive.
Let ratio = utility

energy : FinPaths → Q given by ratio(π) = utility(π)/energy(π) if

|π| � 1 and ϑ a rational number specifying a quality threshold. Using an LTL-
like syntax, we define the path property ψϑ = �(ratio > ϑ) where ζ |= ψϑ iff
ratio(pref (ζ, k)) > ϑ for all positions k ∈ N with k � 1. We now discuss the
following questions assuming a given LTL-formula ϕ:

(E1) Prmax
sinit (ψϑ ∧ ϕ) = 1

(E0) Prmax
sinit (ψϑ ∧ ϕ) > 0

(A1) Prmin
sinit (ψϑ ∧ ϕ) = 1

(A0) Prmin
sinit (ψϑ ∧ ϕ) > 0

Problems (A1) and (E1). Obviously, the almost-sure problems (A1) and
(E1) relate to the problems of deciding whether PrSsinit (ψϑ ∧ ϕ) = 1 for all
schedulers S (problem (A1)) respectively some scheduler S (problem (E1)).
We can rely on a simple transformation (energy , utility) �→ wgt that permits
to replace the ratio-constraint ψϑ with a constraint �(wgt > 0) for a single
rational-valued weight function wgt : S × Act → Q defined by wgt(s, α) =
utility(s, α) − ϑ · energy(s, α). It is clear that for all finite paths π we have
ratio(π) > ϑ iff wgt(π) > 0, such that for all infinite paths ζ it holds that
ζ |= ψϑ ∧ ϕ iff ζ |= �(wgt > 0) ∧ ϕ. Since the weight functions for the energy
and the utility are supposed to be integer-valued, we multiply wgt with the

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 11

denominator of ϑ to obtain an integer-valued weight function. This permits to
assume that wgt(s, α) ∈ Z for all states s, s′ ∈ S.

We now address (A1). Clearly, Prmin
sinit (�(wgt > 0)∧ϕ) = 1 iff Prmin

sinit (�(wgt >

0)) = 1 and Prmin
sinit (ϕ) = 1. The condition Prmin

sinit (ϕ) = 1 can be checked in
time polynomial in the size of M using standard techniques. The condition
Prmin

sinit (�(wgt > 0)) = 1 is equivalent to s
|= ∃♦(wgt < 0) and can be checked in
polynomial time using standard shortest-path algorithms.

By the results established in [12] for energy games with an MDP game arena,
problem (E1) is in NP∩coNP, when ϕ is a reachability, Büchi or parity condition.
If ϕ is an LTL formula, we can rely on standard techniques to generate a deter-
ministic parity automaton A for ϕ and then switch from (M, ϕ) to (M⊗A, ϕA),
where ϕA is the acceptance (parity) condition of A.
Problems (A0) and (E0). Let us now turn to (A0) and (E0), where the
task is to check whether PrSsinit (ψθ ∧ϕ) > 0 for all schedulers S (problem (A0))
or for some scheduler S (problem (E0)). The challenge in providing algorithms
for these two problems becomes clear as they depend on the concrete transition
probabilities of M. This even holds for the case of M being a Markov chain.
Consider the Markov chainM =Mp in the following picture where p ∈]0, 1[is
a probability parameter.

s0

s+ s−

minus,1−pplus,p

ret,1ret,1

wgt(s0, plus) = 1

wgt(s0,minus) = −1
wgt(s+, ret) = 0

wgt(s−, ret) = 0

Finite paths in M starting and ending in s0 constitute a biased random walk,
for which it is well-known that for p > 1

2 , the random walk drifts to the right
and never reaches position −1 with positive probability, whereas for 0 < p � 1

2 ,

position −1 will be visited almost surely. Thus, PrMs0
(
�(wgt � 0)

)
> 0 iff p > 1

2 .
As a consequence, the answers for questions (A0) and (E0) may depend on the
concrete transition probabilities. This observation rules out simple algorithms
relying on shortest-path arguments as for (A1). Nevertheless, problems (A0)
and (E0) and even the task to check whether PrMsinit (ψϑ ∧ϕ) � p for some given
p ∈ [0, 1]∩Q and � ∈ {�, <,�, >} is decidable whenM is a Markov chain. For
this, we can rely on a reduction to the probabilistic model-checking problem for
probabilistic push-down automata (pPDA) and apply the techniques presented,
e.g., in [11]. The idea is simply to consider the states of M as control states
of a pPDA and to mimic each transition s → s′ in M of weight k > 0 by k
push operations and each transition s→ s′ with weight −k by k pop operations.
This reduction is exponential, but shows the decidability of the problems men-
tioned above for Markov chains. To the best of our knowledge, the decidability
of problems (E0) and (A0) for MDPs is an open problem.

12 C. Baier et al.

6 Multi-objective Analysis of Software Product Lines

The previously presented methods are also suitable for feature-oriented software
engineering areas such as software product line (SPL) engineering. An SPL spec-
ifies a collection of software products by their commonalities in terms of features
rather than specifying all software products separately [17]. Formal analysis of
SPLs has to tackle the combinatorial blow-up in the number of features aris-
ing from composing features and their dynamical changes during runtime of the
system (e.g., by software updates or in-app purchases). Family-based analysis ap-
proaches [39], where all possible software products are checked at once instead
of checking each feature combination one-by-one, turned out to be very suc-
cessful [16]. Recently, we proposed a compositional framework for probabilistic
SPLs which supports dynamic feature changes and has an MDP-based seman-
tics, allowing for quantitative analysis using standard PMC-methods [22]. We
demonstrated feasibility of our approach by analyzing an extended version of
the energy-aware bonding network device eBond [26]. The so-called eBond+

describes how energy can be saved by switching to various network-card combi-
nations in a server depending on the requested traffic load. Already the analysis
of single objectives in terms of performance measures, energy consumption and
monetary costs revealed interesting insights of the influence of feature combina-
tions. In this section we detail how the methods for analyzing multiple objectives
in terms of quantiles, conditionals and ratio reasoning can be applied to SPLs
such as eBond+.

For a set of features in an SPL,

Base System Network Cards

Fast 2Slow

1470 e 2793 e 526 e

Professional

eBond+

1Slow

Coordination

Standard

24 e 24 e

Aggressive High Savings Balanced

S ⇒ ¬(F ∧ 1 ∧ 2)

Fig. 3. Feature diagram of eBond+ SPL

feature combinations which yield
a valid product are usually de-
fined through a feature diagram,
providing a hierarchical structure
of features. As shown in Figure
3, the eBond+ SPL consists of a
base feature containing one base
standard or professional system,
one coordination feature which
defines how network traffic is dis-
tributed on the network cards

(aggressive, high or balanced energy savings) and one fast or two slow network
cards which can be plugged into the system in several combinations. The latter
is illustrated in the feature diagram by dashed optional features that can be
activated or deactivated during runtime of the system. Feature diagrams may be
further annotated with propositional formulas over features, e.g., S ⇒ ¬(F∧1∧2)
states that within a standard version of the base system, at most two network
cards can be plugged simultaneously.

Various measures in terms of cost and rewards can now be investigated. We
considered the different measures within a fixed time horizon of t minutes the sys-
tem is observed. The amount of time a service-level agreement (SLA) is fulfilled,
i.e., the number of minutes within this time horizon the requested bandwidth is

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 13

served, can be used as a measure for utility that is decreasing over time. The op-
posite, an SLA violation, occurs, e.g., due to a probabilistically modeled system
failure or due to aggressively putting network cards into sleeping mode by the
energy savings coordination feature. Costs for keeping SLA violations as rare as
possible may be formalized as increasing measures in terms of energy (the fast
network card consumes more energy than the slower ones) or money (monetary
costs as annotated in Figure 3 are higher for better equipped eBond+ product).

The eBond+ model is an MDP encoding all the cost and utility measures
described above, allowing for PMC-based analysis. In order to minimize SLA vi-
olations, money investments or energy consumption we are thus able to construct
optimal schedulers for activating and deactivating network cards during runtime
according to rules fixed by an operational model called feature controller (solv-
ing the strategy synthesis problem). All of the exemplified tasks described in the
introduction and formalized in the last sections are also useful in the eBond+

setting, employing the utility and energy measures described above and choos-
ing the goal set T of states representing the states where the time horizon t
is reached. For instance, the expectation quantile task (Qe) with u = 0.99 · t
amounts to minimizing the energy required to ensure that at least 99% of the
time no SLA violation can be expected. A similar task can also be stated mini-
mizing the money which needs to be invested for expecting a quality of service
of at least 99%, replacing energy by money in the formula stated in Section 3.

To reason about feature combinations, conditional probabilities turned out to
be very useful: The rules for feature changes defined by the feature controller can
be further restricted according to assumed behavior of the environment, e.g., by
fairness assumptions. For instance, the maximal probability that no SLA viola-
tion occurs under the condition that infinitely often a slow network card (1 or 2)
is plugged in can be expressed by Prmax

sinit

(
♦NoSla | �♦(1∨2)

)
, where NoSla ⊆ T

denotes the set of states where utility � t, i.e., the time horizon has been reached
without an SLA violation in the past. Conditional expectations also play an im-
portant role when expected costs and rewards do not yield proper values, e.g.,
if Prmin

sinit

(
♦χ
)
< 1 and hence the expectation E[energy]min

sinit
(♦χ) is infinite. While

♦NoSla does not hold almost surely without any further assumptions, this can
be guaranteed for a plugged fast network card (F) and assuming that no failures
occur. When the set of states Fail represents that a failure of network cards
occurred, E[energy]min

sinit
(♦NoSla | �(¬Fail ∧ F)) thus yields a proper energy ex-

pectation. Hence, this expectation can be used for best-case analysis which may
help to schedule further development steps of the eBond+ SPL or estimate
overall system quality.

Departing from the finite time horizon perspective and having in mind that
the fast network card consumes most energy, one could also ask for a sched-
uler which guarantees the ratio between energy and utility to be almost surely
above a certain threshold and infinitely often switches from the fast network
card to a slower one. This task corresponds to (R), which can be furthermore
combined with requiring the total accumulated energy to be always below a
given energy threshold e if the system intents to use the fast network card (Rc).

14 C. Baier et al.

That extension, which requires the energy consumption to be encoded into the
states of the model, can be formalized by asking whether

PrSsinit
(
�(ratio > ϑ) ∧ ¬♦�F |�(F ⇒ (energy � e))

)
= 1.

It is obvious that the approaches of computing quantiles, conditionals and ra-
tios can be further combined, which enables to provide even more insights on
feature-oriented quantitative properties of eBond+ than already demonstrated
in [22] within single objectives.

Detailed case studies for multi-objective reasoning and theoretical considerations
of nesting such objectives are subject of our current work.

References

1. Aggarwal, V., Chandrasekaran, R., Nair, K.: Markov ratio decision processes. Jour-
nal of Optimization Theory and Application 21(1) (1977)

2. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

3. Andrés, M., van Rossum, P.: Conditional probabilities over probabilistic and nonde-
terministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 157–172. Springer, Heidelberg (2008)

4. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: NFM 2014. LNCS (to appear, 2014)

5. Baier, C., Daum, M., Engel, B., Härtig, H., Klein, J., Klüppelholz, S., Märcker,
S., Tews, H., Völp, M.: Locks: Picking key methods for a scalable quantitative
analysis. Journal of Computer and System Sciences (to appear, 2014)

6. Baier, C., Engel, B., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: A probabilis-
tic quantitative analysis of probabilistic-write/copy-select. In: Brat, G., Rungta, N.,
Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 307–321. Springer, Heidelberg
(2013)

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
8. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-

ities in Markovian models efficiently. In: TACAS 2014. LNCS (to appear, 2014)
9. Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

10. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications
with accumulative values. In: LICS 2011, pp. 43–52. IEEE Computer Society (2011)

11. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties
of probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005)

12. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision pro-
cesses. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907,
pp. 206–218. Springer, Heidelberg (2011)

Probabilistic Model Checking and Non-standard Multi-objective Reasoning 15

13. Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science 458,
49–60 (2012)

14. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-
tiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 325–336. Springer, Heidelberg (2006)

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
16. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.:

Featured transition systems: Foundations for verifying variability-intensive systems
and their application to ltl model checking. In: IEEE TSE (2012)

17. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional (2001)

18. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

19. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science (1997)

20. de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: LICS 1998, pp. 454–465. IEEE Computer Society (1998)

21. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999)

22. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: MODULARITY 2014 (to appear, 2014)

23. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Logical Methods in Computer Science 4(4)
(2008)

24. Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for
continuous-time Markov chains. IPL 113(1-2), 44–50 (2013)

25. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

26. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: ebond: Energy saving in heteroge-
neous R.A.I.N. In: Proc. of the Fourth International Conference on Future Energy
Systems, e-Energy 2013, pp. 193–202. ACM (2013)

27. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 512–535 (1994)

28. Haverkort, B.: Performance of Computer Communication Systems: A Model-Based
Approach. Wiley (1998)

29. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

30. Ji, M., Wu, D., Chen, Z.: Verification method of conditional probability based on
automaton. Journal of Networks 8(6), 1329–1335 (2013)

31. Katoen, J.-P., Zapreev, I., Hahn, E., Hermanns, H., Jansen, D.: The ins and outs
of the probabilistic model checker MRMC. Performance Evaluation 68(2) (2011)

32. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall
(1995)

33. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley (1994)

34. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley (1980)

16 C. Baier et al.

35. Tomita, T., Hiura, S., Hagihara, S., Yonezaki, N.: A temporal logic with mean-
payoff constraints. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635,
pp. 249–265. Springer, Heidelberg (2012)

36. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfen-
ning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg
(2013)

37. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.
In: FOCS 1985, pp. 327–338. IEEE Computer Society (1985)

38. von Essen, C., Jobstmann, B.: Synthesizing systems with optimal average-case
behavior for ratio objectives. In: iWIGP 2011. EPTCS, vol. 50, pp. 17–32 (2011)

39. von Rhein, A., Apel, S., Kästner, C., Thüm, T., Schaefer, I.: The PLA model: On
the combination of product-line analyses. In: Proc. of VaMoS 2013. ACM (2013)

Target Oriented Relational Model Finding

Alcino Cunha, Nuno Macedo, and Tiago Guimarães

HASLab — High Assurance Software Laboratory
INESC TEC & Universidade do Minho, Braga, Portugal

{alcino,nfmmacedo,tguimaraes}@di.uminho.pt

Abstract. Model finders are becoming useful in many software engi-
neering problems. Kodkod [19] is one of the most popular, due to its
support for relational logic (a combination of first order logic with rela-
tional algebra operators and transitive closure), allowing a simpler spec-
ification of constraints, and support for partial instances, allowing the
specification of a priori (exact, but potentially partial) knowledge about
a problem’s solution. However, in some software engineering problems,
such as model repair or bidirectional model transformation, knowledge
about the solution is not exact, but instead there is a known target that
the solution should approximate. In this paper we extend Kodkod’s par-
tial instances to allow the specification of such targets, and show how
its model finding procedure can be adapted to support them (using both
PMax-SAT solvers or SAT solvers with cardinality constraints). Two case
studies are also presented, including a careful performance evaluation to
assess the effectiveness of the proposed extension.

1 Introduction

In the last decades SAT solvers have shown great potential in many areas. How-
ever, their applicability to software engineering problems is somehow hampered
by the low-level nature of SAT problems and the low expressiveness of proposi-
tional logic. Specifying high-level constraints in such solvers can be quite cum-
bersome, and using them to solve software engineering problems usually requires
a complex embedding. Recently, some higher-level solvers have been proposed
that are more suitable for such problems. Among those, Kodkod [19] is one of
the most popular, mainly due to its support for relational logic, an extension
of first-order logic with relational operators and transitive closure. The former
gives an object-oriented feeling to Kodkod specifications, making it accessible
to software engineering practitioners, and the latter allows the specification of
(many times essential) reachability properties.

The most well-known application of Kodkod is the automated analysis of
specifications written in Alloy [6], a lightweight formal specification language
also based on relational logic. The Alloy Analyzer supports model finding via an
embedding to Kodkod. Alloy has a type system that supports overloading and
sub-typing, and allows the detection of many erroneous expressions that could
render the specification trivially unsatisfiable [4]. This makes it more suitable

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 17–31, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

18 A. Cunha, N. Macedo, and T. Guimarães

for the interactive development of specifications, while Kodkod is more suitable
as an engine for automated analysis. This is particularly true because, unlike
Alloy, Kodkod allows the specification of partial instances – a priori partial
(but exact) knowledge about a problem’s solution. This enables, for example,
the specification of expected examples to validate the problem constraints, to
bound (and speed-up) model finding within a particular class of instances, or to
use Kodkod as a configuration solver, in which the goal is no longer to check the
consistency of the constraints but to find an extension of a partial configuration
to a full and valid instance of the problem.

Albeit extremely useful, such partial instances are not expressive enough to
specify an interesting class of software engineering problems in which the a priori
knowledge is not exact, but just a description of an idealized (in the sense that
it may be unsatisfiable) instance one wishes to approximate. One such applica-
tion is model repair. While interactively developing models, users often introduce
inconsistencies. Manually repairing them to meet meta-model constraints is te-
dious and many times unfeasible due to model size or the complexity of the
constraints. As such, tools for automatic model repair abound, and they all at-
tempt to produce minimal repairs that yield valid models that are as close as
possible to the original. Closely related is data repair. Programs typically as-
sume the consistency of their data, but it can sometimes be corrupted by bugs
or erroneous/malicious inputs, leading to unpredictable behavior. A conservative
approach to tackle this problem is to regularly check data integrity and gracefully
terminate execution when problems are found. An alternative is to repair data on
the fly and allow the program to resume execution. Some data repair tools resort
to model finders to accommodate complex integrity constraints, needing ad hoc
procedures to achieve repair minimality. While model repair is concerned with
intra-model consistency, a bidirectional model transformation [3] tries to solve
the problem of inter-model consistency. Given a consistency relation between
two meta-models, the goal is to derive forward and backward transformations to
propagate updates between conforming models. Ideally they should satisfy the
principle of least change, meaning that the inconsistent target model must be
kept as intact as possible.

Model finders are excellent for scenario exploration, namely finding concrete
instances of a specification to help users understand and validate it. Any in-
teresting specification is likely to have many (or an infinite number of) possible
scenarios, and tools have been proposed to help users parameterize and guide the
search to yield interesting (namely, minimal) scenarios [12]. Even so, sometimes
it takes considerable manual work to produce an interesting and revealing sce-
nario, and it would be quite useful if such interesting scenarios could be reused
and automatically adjusted every time the specification is changed, to highlight
the consequences of such modifications. To do so, the model finder must have
the ability to specify a previous instance as a target to be approximated by the
next solving iteration.

The potential for such optimization extensions to solvers has long been recog-
nized in the SAT solving community, with a plethora of solvers now supporting

Target Oriented Relational Model Finding 19

some sort of maximum satisfiability problem (Max-SAT). However, as argued
above, SAT solvers are not the ideal target for the described applications. The
contribution of this paper is precisely to show how such optimization features
can be seamlessly integrated in a higher-level model finder. In particular, we will
show how Kodkod partial instances can be extended to support the specification
of target instances, and how the analysis of Kodkod problems can be adapted to
effectively yield instances that are as close as possible to the specified targets.
With this extension, Kodkod can be used to directly implement the above appli-
cations, without having to resort to ad hoc procedures to constrain the desirable
optimal solutions.

In the next section, we present a brief overview of Kodkod. In Sect. 3 we
show how it can be extended to support targets in partial instances. Section 4
evaluates the effectiveness of the proposed extension, by resorting to two case
studies illustrative of the above applications. Section 5 presents some related
work and Sect. 6 points some conclusions and ideas for future work.

2 An Overview of Kodkod

A Kodkod problem P consists of:

– A universe declaration U , which consists of a set of atoms.
– A set of relation declarations: given a relation r, its declaration r :k [rL, rU]

consists of its arity k and two relational constants rL and rU , denoting its
lower- and upper-bounds, respectively. A relational constant of arity k is just
a set of tuples of size k, that is, sequences of atoms of length k drawn from
U .

– A relational logic formula whose free relational variables are part of the above
declarations. Relational logic is essentially first order logic with transitive
closure, extended with relational algebra operators (such as composition,
converse or union), allowing us to build complex relational expressions out
of simpler ones. These operators enable a navigational (OO-like) style that
simplifies property specification for non-logic experts, and transitive closure
is key to specify common reachability properties.

A solution to a problem is a model, or instance, of its formula – a binding to the
declared relations that makes the formula true. The lower-bounds specify tuples
that must be present in every solution, and thus can be used to express a priori
knowledge about the problem (with the positive side-effect of speeding up model
finding). The union of the lower-bounds is known as a partial instance.

Figure 1 presents a Kodkod problem, that will later be adapted to a simple
case study illustrative of data repair. Suppose we are given a directed graph with
nodes A, B, C, and D and edges A→ B,B→ C, and C→ B. Imagine that this is a
dependency graph between software services, and we wish to color the different
strongly connected components (SCCs) with different colors (Red,Green,Blue,
and Yellow), denoting for example the nodes in a distributed network on which
to deploy the services – the idea would be to map services in the same SCC to

20 A. Cunha, N. Macedo, and T. Guimarães

{A,B,C,D,Red,Green,Blue,Yellow}

Node :1 [{A,B,C,D}, {A,B,C,D}]
adj :2 [{〈A,B〉, 〈B,C〉, 〈C,B〉}, {〈A,B〉, 〈B,C〉, 〈C,B〉}]
color :2 [∅, {〈A,Red〉, 〈A,Green〉, 〈A,Blue〉, 〈A,Yellow〉, 〈B,Red〉, . . .}]

all n : Node | one n.color
all n,m : Node | (n in m.∗adj and m in n.∗adj) iff (n.color = m.color)

Fig. 1. A Kodkod problem to color SCCs

the same node in order to minimize the communication overload between them.
Of course, we could run Tarjan’s algorithm [17] to find such components in linear
time, but here we’ll resort to Kodkod instead, as this is a simple example that
illustrates well the need for partial instances and the usefulness of transitive
closure.

In the universe of the problem we declare atoms to represent each of the
nodes and the available colors. We then declare three relations: the set Node (in
Kodkod sets are just relations with arity 1) containing all the nodes of the graph,
the binary relation adj describing its vertices, and a binary relation color whose
value is unknown but is restricted by the upper bound to be a valid assignment
from nodes to colors. The value of Node and adj is known a priori (as signaled by
the equal lower- and upper-bounds). The problem does not declare a relation for
the available colors since there is no need to mention that set in the constraints.
The model finder will in this case act as a configuration solver, that is, extend
this partial instance to a complete one satisfying the problem constraints:

– The first states that every node must be assigned a color. Notice how rela-
tional composition is used to navigate the model structure: n.color is a set
containing all colors associated with node n. Kodkod syntax also provides
handy keywords to check the cardinality of sets. Here we use one to force
the set of colors associated with each node to be a singleton.

– The second states that nodes share the same color iff they are accessible
from each other (that is, they are in the same SCC). To compute the set of
all nodes accessible from n we compose it with the transitive and reflexive
closure of the relation adj, determined with the unary operator ∗.

Expressing this problem directly at the SAT level would be very cumbersome,
and it exposes very well the elegance and compactness provided by relational
algebra operators and transitive closure.

Kodkod problems are analyzed by translation to off-the-shelf SAT solvers.
Each relation r of arity k is represented by a k-dimensional matrix with capacity
for |U|k propositional variables. Given the relation declaration each entry of the
matrix is filled as follows:

r[i1, . . . , ik] =

⎧⎨⎩� if 〈Ai1 , . . . , Aik〉 ∈ rL
ri1,...,ık if 〈Ai1 , . . . , Aik〉 ∈ rU \ rL
⊥ otherwise

Target Oriented Relational Model Finding 21

Entries corresponding to tuples in the lower-bound are set to true; a propositional
variable is created for each entry denoting a tuple whose membership to the re-
lation is still unknown; the others are just set to false. Relational formulas are
translated to propositional formulas by interpreting relational operators as ma-
trix operations. For example, composition is the product, union is the sum, and
intersection is the Hadamard product. Existential quantifiers are skolemized to
yield witnesses to the quantified variables, and universal quantifiers are expanded
(note that every relational expression is bounded). Kodkod performs several op-
timizations to decrease SAT complexity. The most significant is symmetry break-
ing – since atoms are uninterpreted, many instances are isomorphic, and it is very
unlikely that the user wants to retrieve them all. For example, in the above prob-
lem a possible solution is to assign {〈A,Red〉, 〈B,Green〉, 〈C,Green〉, 〈D,Blue〉} to
color, and any permutation of the colors will yield another solution that is es-
sentially the same.

3 Extending Partial Instances with Targets

We propose to extend Kodkod partial instances by allowing targets in the dec-
laration of relations. More specifically, a declaration can also take the form
r :k [rL, rU , rT], where rT is a constant stating an a priori known goal for the
value of r. Obviously, such declarations must satisfy the constraint rL ⊆ rT ⊆ rU .
Besides making the respective formula true, a model of a problem with targets
is a binding that must also be as close as possible to the specified targets, that
is, that requires the fewest mutations (tuple deletions or insertions) to make the
target a satisfying binding. When seeing instances as graphs, a valid instance
should then minimize the graph edit distance (GED) to the target. Formally, a
binding B is an instance of a problem P with targets (denoted by B |= P) if it
satisfies the declared lower- and upper-bounds, makes its formula true, and, for
all possible bindings B′ that also satisfy the bounds and the formula, we have∑

r∈T
|B(r) � rT | ≤

∑
r∈T

|B′(r) � rT |

Here T denotes the set of relations that have targets declared, and B(r) � rT
denotes the symmetric difference between sets B(r) (the value of relation r
according to B) and rT , i.e., (B(r) − rT) ∪ (rT − B(r)). This summation just
counts the number of mutations in all relations.

Going back to the example of the previous section, suppose that services
A,B,C and D were previously assigned to nodes Red,Green,Blue and Yellow, re-
spectively, and that we wish to reassign services to nodes taking into account
the problem constraints and minimizing node transfers. Such (re-)configuration
can be done using Kodkod with targets, by changing the declaration of color to1

color :2 [∅, {〈A,Red〉, 〈A,Green〉, 〈A,Blue〉, 〈A,Yellow〉, 〈B,Red〉, . . .},
{〈A,Red〉, 〈B,Green〉, 〈C,Blue〉, 〈D,Yellow〉}]

1 Bold type will be used to highlight targets in relation declarations.

22 A. Cunha, N. Macedo, and T. Guimarães

According to the above semantics, the only two valid instances of this prob-
lem bind color to either {〈A,Red〉, 〈B,Green〉, 〈C,Green〉, 〈D,Yellow〉} or {〈A,Red〉,
〈B,Blue〉, 〈C,Blue〉, 〈D,Yellow〉}. Both these instances are at distance 2 from the
specified target, requiring one tuple deletion and one tuple insertion (to change
the color of either B or C, respectively). The next sections present two different
approaches to the analysis of a Kodkod problem with targets.

3.1 Analysis via Cardinality Constraints

Some SAT solvers allow the specification of cardinality constraints, a bound on
the number of literals within a given set that can be assigned true. Given a set
of literals {l1, . . . , ln} a cardinality constraint takes the form l1 + . . . + ln ≷ k,
where ≷ is any of the comparisons in {≤,=,≥}, to specify atmost, exactly, and
atleast bounds, respectively.

Cardinality constraints can be encoded with standard CNF boolean formulas
and thus handled by standard SAT solvers. The best known encoding for atmost
constraints requires n log2 k extra clauses [1]. They can also be handled natively
by the solver by tweaking the standard unit propagation and conflict analysis
procedures [9]: the former is updated to keep track of how many literals in the
set have been assigned true and propagates the negation of the remaining when
the limit is reached; when a conflict is detected, the latter adds a conflict clause
with the literals that were assigned true and rewinds those assignments.

The analysis of a Kodkod problem with targets can be done by creating an
atleast constraint describing the structure of the ideal instance (i.e., containing
a positive literal for each tuple in the targets and a negative one for each allowed
tuple not in the targets), and then solving with decreasing bounds starting from
the total size of the targets until SAT or reaching 0 (or dually using atmost
constraints, negating all literals, and starting from 0). Formally, the CNF formula
generated by Kodkod is repeatedly extended with the cardinality constraint∑

r∈T ,〈Ai1 ,...,Aik
〉∈rT

ri1,...,ik +
∑

r∈T ,〈Ai1 ,...,Aik
〉∈rU\rL\rT

¬ri1,...,ik ≥ n

with n starting with value
∑

r∈T |rU−rL| (the number of propositional variables
created by Kodkod for the relations with targets), and iteratively decreased until
SAT or reaching 0. If the result is UNSAT for n = 0 then the Kodkod problem has
no valid instance. Notice that this iterative process is performed after all Kodkod
simplifications are done, and thus they can be reused in every incremental call of
the SAT solver. As detailed in Sect. 4, one of the consequences of this approach
is that the performance of the analysis will decrease as the number of mutations
required to make the target a valid instance increases.

3.2 Analysis via PMax-SAT Solvers

Max-SAT is an optimization extension to SAT where, instead of finding an
assignment that satisfies all the clauses, one tries to find an assignment that

Target Oriented Relational Model Finding 23

maximizes the number of clauses that can be satisfied. Unfortunately, in real
world optimization-like problems, there are constraints that are mandatory and
whose unsatisfaction deems the solution meaningless. The partial maximum sat-
isfiability problem (PMax-SAT) was introduced [11,2] precisely to address such
scenarios: clauses can either be soft or hard, and the goal is to find an assignment
that satisfies all hard clauses and that maximizes the number of satisfied soft
clauses. A typical approach to this problem takes advantage of the UNSAT core
extraction feature already present in many SAT solvers [5]: an UNSAT core is a
subset of the original clauses whose conjunction is still unsatisfiable, and with an
iterative procedure it is possible, by introducing extra variables and clauses, to
relax one soft clause in the UNSAT core at a time until a satisfying assignment
is found.

To analyze an extended Kodkod problem with targets using PMAX-SAT
solvers it suffices to generate, besides the normal hard clauses originating from
the problem formula, a set of soft clauses containing:

– One soft clause for each 〈Ai1 , . . . , Aik〉 ∈ rT and r ∈ T , containing a single
literal ri1,...,ik .

– One soft clause for each 〈Ai1 , . . . , Aik〉 ∈ rU \ rL \ rT and r ∈ T , containing
a single literal ¬ri1,...,ik .

Likewise to the implementation with cardinality constraints, these soft clauses
describe the ideal solution specified in the targets. If the hard clauses are satis-
fiable, maximization of the satisfied soft clauses will yield a binding that is as
close as possible to the target.

3.3 Symmetry Breaking

One of the optimizations performed by Kodkod is symmetry breaking. A per-
mutation l of the atoms in U is a symmetry of the problem iff, for all bindings
B, we have B |= P ⇐⇒ l(B) |= P . Here l(B) is the binding that results from
applying l to all atoms in B. A symmetry induces an equivalence relation in the
bindings, and the goal of symmetry breaking is to restrict model finding to yield
only one witness of each equivalence class. One of the main results in [19] states
that l is a symmetry iff it fixes all relational constants in the lower- and upper-
bounds of the problem (i.e., maps each constant to itself). Based on this result,
an efficient algorithm is proposed to compute such permutations: this algorithm
is not complete, in the sense that it does not always generates all permutations
that fix all constants in the bounds, but in practice succeeds in doing so for most
problems.

The above result is no longer true when considering targets: namely, there are
symmetries that may not fix the constants in the targets. Consider for exam-
ple our running example: the permutation {Red → Red,Green → Blue,Blue →
Green,Yellow → Yellow} is a symmetry of the problem (note that the two in-
stances of the problem are not truly different – the essence of the solution is
that both B and C should have the same color and it should be one of their

24 A. Cunha, N. Macedo, and T. Guimarães

original colors) but it does not fix the target of the relation color. However, it
can be shown that any permutation that fixes the lower- and upper-bounds and
the targets is still a symmetry of the problem2, and as such we can still reuse
Kodkod algorithm for symmetry breaking, provided it is adapted to take targets
into account. In practice, when targets are present, the algorithm will be less
complete, in the sense that it will miss more symmetries than when no targets
are specified. For example, the above symmetry will not be detected. As an ex-
ample of a symmetry that would be detected, consider the case of adding to the
problem a new (unconnected) node and two new colors: in this case only one
instance will be produced, assigning one of the new colors to the new node.

4 Evaluation

We have implemented the proposed extension in Kodkod 2.0, and added support
for the following solvers: Sat4J 2.3.5 (http://www.sat4j.org), a pure Java SAT
solver that handles both native cardinality constraints and PMax-SAT problems,
and Yices 1.0.39 (http://yices.csl.sri.com), a SMT solver claimed to be
competitive as a standard SAT and PMax-SAT solver.

4.1 Case-Study 1: Data Repair

To evaluate our approach we developed two case studies. The first illustrates the
usage of targets in data (and model) repair, and builds on our running example of
coloring the SCCs of a graph. To assess the scalability of the proposed analysis
techniques, we will resort to a parametrized version of this problem. Suppose
we have a directed graph of size n (n nodes named N1 to Nn) organized as a
chain, i.e., with n − 1 arcs connecting node Ni with node Ni+1 for every i < n.
Obviously, in this graph there are n SCCs, each containing exactly 1 node. These
SCCs are currently colored with colors C1 to Cn. Suppose now that the graph
is updated and a new arc is added, between node Nn and node Nn−Δ, where
Δ < n. The updated graph is depicted in Fig. 2. This change puts the last
Δ + 1 nodes together in the same SCC, and will (at least) require the color
of Δ nodes to also change, in order for the problem constraints to be satisfied
(requiring 2Δ mutations to the original color). Figure 3 shows how this problem
can be specified in Kodkod with targets. Note how the adj relation is set to the
updated graph configuration, and the target of color is set to the previous color
assignment.

2 In addition to Lemmas 1 and 2 in [18], that prove that a permutation l that fixes all
constants in declarations preserves the validity of bounds and formulas, respectively,
it suffices to show that it also preserves the distance to the targets: for all r ∈ T ,
since l(rT) = rT , then, by applying standard equational laws relating permutations
with set operations, we have |l(B(r)) 	 rT | = |l(B(r)) 	 l(rT)| = |l(B(r) 	 rT)| =
|B(r)	 rT |.

http://www.sat4j.org
http://yices.csl.sri.com

Target Oriented Relational Model Finding 25

2 3 n-Δ n1

Fig. 2. Adding a backlink to a chain with n nodes

{N1, . . . ,Nn,C1, . . . ,Cn}

Node :1 [{N1, . . . ,Nn}]
adj :2 [{〈N1,N2〉, 〈N2,N3〉, . . . , 〈Nn,Nn−Δ〉}, {〈N1,N2〉, 〈N2,N3〉, . . . , 〈Nn,Nn−Δ〉}]
color :2 [∅, {〈N1,C1〉, 〈N1,C2〉, 〈N1,C3〉 . . .}, {〈N1,C1〉, 〈N2,C2〉, . . .}]

all n : Node | one n.color
all n,m : Node | (n in m.∗adj and m in n.∗adj) iff (n.color = m.color)

Fig. 3. Kodkod problem to update the color of SCCs

4.2 Case-Study 2: Bidirectional Transformation

The second case study illustrates the potential of targets in bidirectional model
transformation. This case study is a very simplified version of the mapping be-
tween class diagrams and relational database schemas [3]. The basic idea of the
forward transformation is to map a class marked as persistent to a table with the
same name, mapping also its attributes (including inherited ones) to columns. If
the schema is updated, the backwards transformation can be used to propagate
the changes back to the class diagram. Since the forward transformation loses
information (namely about non-persistent classes) the backward transformation
must consider not only the updated schema but also the original class diagram.

Figure 4 depicts a (parametrized) example of a simplified class diagram with
n persistent classes. There are 2n classes in total, denoted C1, . . . ,C2n. Class Ci

is named Ni, class Ci+1 extends class Ci for i < n, and Ci+n extend class Ci for
i ≤ n. Classes C1, . . . ,Cn are marked as persistent (grey shade) and each of these
has an attribute with the same name as the class (whose type will be ignored
in this example). Applying the forward transformation to this class diagram
produces a schema with n tables T1, . . . ,Tn, named N1, . . . ,Nn respectively,
with each Ti, for i ≤ n, containing i columns named N1, . . . ,Ni. Suppose that
the name of the first Δ tables is changed from Ni to Ni+n and we would like to
propagate this update back to the source model. A backwards transformation
that follows the principle of least change should simply move the persistent flag
from class Ci to class Ci+n for every i ≤ Δ (requiring 2Δ mutations).

Using Kodkod extended with targets such least change backwards transforma-
tion can be easily implemented, as shown in Fig. 5. First we declare relations to
represent both models. Sets Class, Table and Name capture the model elements.
Relations nameC and nameT capture the association between classes and tables
and their names, respectively. Similarly, attributes and columns map classes to
their attributes and tables to columns, respectively. Finally, persistent denotes
the set of persistent classes and parent the inheritance relationship. The values of

26 A. Cunha, N. Macedo, and T. Guimarães

Fig. 4. Simple class diagram example

{C1, . . . ,C2n,N1, . . . ,N2n,T1, . . . ,Tn}

Class :1 [∅, {C1, . . . ,C2n},{C1, . . . ,C2n}]
Table :1 [{T1, . . . ,Tn}, {T1, . . . ,Tn}]
Name :1 [∅, {N1, . . . ,N2n}, {N1, . . . ,N2n}]
nameC :2 [∅, {〈C1,N1〉, 〈C1,N2〉, . . .}, {〈C1,N1〉, 〈C2,N2〉, . . .}]
nameT :2 [{〈T1,Nn+1〉, . . . , 〈TΔ+1,NΔ+1〉 . . .}, {〈T1,Nn+1〉, . . . , 〈TΔ+1,NΔ+1〉 . . .}]
attributes :2 [∅, {〈C1,N1〉, 〈C1,N2〉, . . .}, {〈C1,N1〉, 〈C2,N2〉, . . .}]
columns :2 [{〈T1,N1〉, 〈T2,N1〉, 〈T2,N2〉, . . .}, {〈T1,N1〉, 〈T2,N1〉, 〈T2,N2〉, . . .}]
persistent :1 [∅, {C1, . . . ,C2n},{C1, . . . ,Cn}]
parent :2 [∅, {〈C1,C1〉, 〈C1,C2〉, . . . , },{〈C2,C1〉, 〈C3,C2〉, . . . 〈Cn+1,C1〉, . . .}]

persistent in Class all c : Class | one c.nameC
attributes in Class → Name all n : Name | lone nameC.n
nameC in Class → Name all c : Class | lone c.parent
parent in Class → Class all c : Class | c not in c.ˆparent

all c : persistent | some t : Table | c.nameC= t.nameT and c.∗parent.attributes= t.columns
all t : Table | some c : persistent | c.nameC= t.nameT and c.∗parent.attributes= t.columns

Fig. 5. Kodkod problem specifying a bidirectional object to relational mapping

the relations that represent the updated schema are fixed in the partial instance
(by setting the lower- and upper-bounds equal). To ensure the principle of least
change, targets are used to capture the original class diagram, whose update is
to be determined by model finding. The first set of constraints specifies the class
diagram meta-model constraints, such as, uniqueness of class names (note how
relational composition is used in nameC.n to determine all classes that have name
n), or non circularity of the inheritance relationship (expression c.ˆparent uses
the transitive closure of relation parent to determine all ancestors of c). The last
two constraints specify the desired consistency relation, in a style similar to the
bidirectional model transformation language QVT-R standardized by OMG [13].
Using the forall-there-exists pattern, every persistent class is required to have
a matching table and vice-versa. By matching we mean a table with the same
name and columns for every declared and inherited attribute of the class. Again
(reflexive) transitive closure is key to specify this constraint.

Target Oriented Relational Model Finding 27

20 40 60 80 100
101
102
103
104
105
106

Size (n)

T
im

e
(m

s)

Card. constraints (Sat4J)

20 40 60 80 100

Size (n)

PMax-SAT (Sat4J)

20 40 60 80 100

Size (n)

PMax-SAT (Yices)

Δ
0
1
2
3
4
5

Fig. 6. Results for the graph SCC coloring problem

6 8 10 12 14 16 18 20
101

102

103

104

105

106

Size (n)

T
im

e
(m

s)

Card. constraints (Sat4J)

6 8 10 12 14 16 18 20

Size (n)

PMax-SAT (Yices)

Δ
0
1
2
3
4
5

Fig. 7. Results for the bidirectional object to relational mapping problem

4.3 Discussion

The first case study was tested with size 10 ≤ n ≤ 100 (with increments of 10),
and for 0 ≤ Δ ≤ 5. The results can be seen in Fig. 6. The vertical axis shows
solving time in milliseconds and log-scale; the horizontal axis shows the problem
size; and in different line styles we have the timings for different values of Δ.
The second case study was tested with sizes 6 ≤ n ≤ 20, and for 0 ≤ Δ ≤ 5.
The results can be seen in Fig. 7. The tests were conducted on an Intel CORE
i7 3517U with 4Gb of memory and the Ubuntu 13.4 operating system.

In both problems the total time to find a solution grows exponentially with
the size of the problem. For the first one, the analysis using PMax-SAT clearly
outperforms the one with cardinality constraints for values of Δ > 3, and is only
slightly worst in the remaining cases. For example, using Sat4J, for n = 100
and Δ = 5 the former is around 5.8× faster than the latter. This is due to
the iterative nature of the analysis with cardinality constraints, that requires
as many calls to the solver as the number of mutations required to recover
consistency. The analysis with PMax-SAT is more insensitive to Δ, as confirmed
also in the bidirectional transformation example. In Fig. 7 we present no results
for Sat4J with PMax-SAT because this solver failed to handle the problem in
question for most values of Δ > 0. In fact, PMax-SAT solvers tend to exhibit a

28 A. Cunha, N. Macedo, and T. Guimarães

more unpredictable behavior: they can be surprisingly fast for some problems,
but fail miserably in others. In fact we did some preliminary tests with other
PMax-SAT solvers but they failed even in our simpler graph problem, so we
chose not to support them. So far, Yices proved to be the more stable, and
in the bidirectional transformation case study it also outperformed significantly
Sat4J with cardinality constraints for bigger values of Δ: for n = 20 and Δ = 5
it is around 12.6× faster. In short, the analysis based on cardinality constraints
is more stable and performs better if few mutations are required to recover
consistency. When more mutations may be required, PMax-SAT is much more
efficient, but may for some problems just fail to produce a solution.

In absolute terms, for the data repair problem with n = 100 and Δ = 5 the
best solver was Sat4J with PMax-SAT, taking around 17s to yield a solution. In
this problem we have a total of 200 atoms and 100 edges in the targets. In the
bidirectional transformation case study, for n = 20 and Δ = 5 the best solver was
Yices with PMax-SAT, taking 93s to yield a solution. Here we have a total of 100
atoms and 200 edges in the targets. For applications like scenario exploration,
where instances are typical small, this performance suffices. For model repair and
bidirectional transformation, the proposed approach will only be able to tackle
realistic models of medium size, within the hundreds of model elements. Finally,
we also checked if the specification of targets induced performance gains, when
compared to normal solving without targets. Obviously, in the latter case the
returned instance can differ substantially from the target. In the first case study
the analysis with targets using Yices is roughly 3.8× faster in average for n = 100,
being 6.7× faster for the case of Sat4J with PMax-SAT. In the other case study,
for n = 20 it is in average 1.8× slower using Yices and 12× slower using Sat4J
with cardinality constraints. Although inconclusive, this suggests that targets
may sometimes considerably speed-up solving, and using PMax-SAT does not
impose a big penalty, besides, of course, yielding optimum solutions.

5 Related Work

This research was mainly motivated by our previous work on Echo [7,8], a tool for
bidirectional model transformation obeying the principle of least change. Echo
works by embedding both QVT-R transformations and the meta-models they re-
late into Alloy [6]. One of the least change criteria supported by Echo is precisely
to minimize GED. To do so, Echo uses an analysis technique similar to cardi-
nality constraints, but encodes them directly in Alloy (using a relational logic
formula) using the size of the symmetric difference of relations. To avoid prob-
lems with overflows this encoding requires the usage of the Forbid Overflow

option, that is currently supported by a modified Kodkod version [10]. Moreover,
for each iteration of the search algorithm (starting at GED 0 and with successive
increments until SAT) a new Kodkod problem must be generated, preventing
incremental solving, namely the reuse of simplifications performed in previous
iterations. We implemented our first case study with this ad hoc approach and
compared the results to the ones presented in Sect. 4. The implementation with

Target Oriented Relational Model Finding 29

targets and analysis via native cardinality constraints outperformed the previ-
ous technique by 4.3× in average for n = 100. The gains with PMax-SAT would
be even higher. Given these promising results, we are currently reimplementing
Echo on top of the extended Kodkod proposed in this paper.

Most of the existing model repair tools are not fully automatic, in the sense
that the suggested fixes consist of sequences of abstract edit operations (which
the user must manually instantiate to actually repair the models). The work of
Egyed et al. is a prime example of this approach [14]. Fully automatic model
repair tools usually rely on solvers and use ad hoc non-optimal procedures to
minimize repairs. Some of them already target Kodkod (or Alloy) due to the
effectiveness of relational logic in specifying rich constraints. For example, Van
Der Straeten et al. [16] assessed the viability of using Kodkod to perform model
repair. To minimize repairs, they first use an external (non specified) procedure
to identify tuples suspect of causing the inconsistency, which are then removed
from the lower-bound of the respective relations. The upper-bound of those
relations is also relaxed to allow tuple insertions. This technique does not ensure
minimality of the repairs, only handles one inconsistency at a time, and is still not
fully automatized (e.g., the relaxation of upper-bounds is performed manually).
This study concluded that, performance wise, Kodkod is not viable for model
repair of large size models. Our evaluation does not invalidate this conclusion,
but as shown in Sect. 4, by resorting to specialized SAT solving procedures
(namely PMax-SAT) substantial performance gains can be obtained, somehow
alleviating this problem, without having to resort to approximate solutions.

Zaeem and Khurshid proposed an Alloy/Kodkod based data repair framework
that attempts to keep the perturbation to the faulty data structure to a min-
imum [21]. To do so, they try to find a minimal subset of relations that needs
to be relaxed (that is, allowed to contain any possible tuple) in order to recover
consistency. Several algorithms are proposed to find such minimal subset, for
example exhaustive search (first relax one relation at a time, then two relations,
and so on). Likewise to [16] this heuristic method is not guaranteed to yield a
minimal repair, and its implementation using the standard version of Kodkod is
far from trivial, unlike with targets.

Xiong el at. [20] propose a technique for generating minimal fixes for software
configuration, based on Reiter’s theory of diagnosis [15]. This theory is quite
similar to PMax-SAT, in that it tries to find a minimal subset of soft clauses that
can be removed to restore satisfiability (and to do so also resorts to the UNSAT
core extraction). To be able to handle constraints over integers and strings,
this fix generation technique is implemented using a SMT solver. Although the
support for primitive types is very convenient, the logic supported by this tool
is quite limited, namely lacking the expressiveness afforded by the relational
logic (and closures), that makes Kodkod so useful for many software engineering
applications. The ideal would be to combine both, namely analyze relational
specifications using SMT solvers, a technique we intend to explore in the future.

30 A. Cunha, N. Macedo, and T. Guimarães

Minimality is also key in scenario exploration. Aluminum [12] is a modification
of the Alloy Analyzer that allows the visualization of minimal scenarios, i.e,
instances from which no tuple can be removed without becoming UNSAT. The
algorithm proposed to find such minimal instances can be adapted to handle
targets, provided the closest instance can be found just by resorting to tuple
insertions (or dually just deletions). For example it could not handle any of our
case studies, which required both insertions and deletions to recover satisfiability.

6 Conclusion

In this paper we have shown how the Kodkod model finder can be extended
with targets, allowing the specification of a priori knowledge about the ideal
solution for a problem. We have also shown how the analysis of such extended
Kodkod problems can be performed (to yield instances that are as close as possi-
ble to the specified targets), by resorting to two different techniques: SAT solvers
with native cardinality constraints and PMax-SAT solvers. As illustrated by our
case studies, this extension simplifies considerably the implementation of many
software engineering applications where such targets were needed: Kodkod’s re-
lational logic allows a very direct encoding of constraints, and the native support
for targets renders obsolete ad hoc techniques previously implemented in tools
that used model finders (in particular Kodkod) to implement such applications.
The proposed analysis techniques deem the approach viable for problems of
medium size. Native cardinality constraints are more stable and efficient when
the optimum solution is very close to the target, but PMax-SAT solvers can
largely outperform them when reaching the optimum requires several mutations.

In the future we intend to implement some optimizations to our analysis pro-
cedure, namely trying to apply some of the techniques described in [21] to infer
which relations can be given exact bounds instead of targets. For example, in
our bidirectional transformation case study, if we could somehow infer that only
the persistent relation needs to be changed, solving would be substantially faster.
We also intend to implement a larger set of case studies and real applications in
order to validate our conclusions. In particular, we are currently reimplementing
our Echo [8] bidirectional model transformation tool using the proposed Kod-
kod extension. We also intend to implement a scenario exploration feature in the
Alloy Analyzer, to allow the automatic readjustment of a previously calculated
instance in order to accommodate changes in the specification.

Acknowledgments. This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (operational programme
for competitiveness) and by national funds through the FCT - Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FATBIT with reference FCOMP-01-0124-FEDER-020532. The
second author is also sponsored by FCT grant SFRH/BD/69585/2010.

Target Oriented Relational Model Finding 31

References

1. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

2. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for
partial MAXSAT. In: AAAI 1997, pp. 263–268. AAAI (1997)

3. Czarnecki, K., Foster, J., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirec-
tional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

4. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: FSE
2004, pp. 189–199. ACM (2004)

5. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, revised edn.
MIT Press (2012)

7. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using Alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 297–311. Springer, Heidelberg (2013)

8. Macedo, N., Guimarães, T., Cunha, A.: Model repair and transformation with
Echo. In: ASE 2013, pp. 694–697. IEEE (2013)

9. Maglalang, J.C.: Native cardinality constraints: More expressive, more efficient
constraints. Honors Projects, Paper 19. Illinois Wesleyan University (2012)

10. Milicevic, A., Jackson, D.: Preventing arithmetic overflows in Alloy. In: Derrick,
J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 108–121. Springer, Heidelberg (2012)

11. Miyazaki, S., Iwama, K., Kambayashi, Y.: Database queries as combinatorial op-
timization problems. In: CODAS 1996, pp. 448–454 (1996)

12. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: ICSE 2013, pp. 232–241.
IEEE (2013)

13. OMG: MOF 2.0 Query/View/Transformation specification (QVT), version 1.1
(January 2011), http://www.omg.org/spec/QVT/1.1/

14. Reder, A., Egyed, A.: Computing repair trees for resolving inconsistencies in design
models. In: ASE 2012, pp. 220–229. ACM (2012)

15. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

16. Van Der Straeten, R., Pinna Puissant, J., Mens, T.: Assessing the Kodkod Model
Finder for Resolving Model Inconsistencies. In: France, R.B., Kuester, J.M., Bor-
dbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer,
Heidelberg (2011)

17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

18. Torlak, E., Jackson, D.: The design of a relational engine. Tech. Rep. MIT-CSAIL-
TR-2006-068, MIT (2006)

19. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

20. Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range fixes for software
configuration. In: ICSE 2012, pp. 58–68. IEEE (2012)

21. Nokhbeh Zaeem, R., Khurshid, S.: Contract-based data structure repair using Al-
loy. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer,
Heidelberg (2010)

http://www.omg.org/spec/QVT/1.1/

Bidirectionally Tolerating Inconsistency:

Partial Transformations

Perdita Stevens

School of Informatics
University of Edinburgh

Abstract. A foundational property of bidirectional transformations is
that they should be correct: that is, the transformation should succeed
in restoring consistency between any models it is given. In practice, how-
ever, transformation engines sometimes fail to restore consistency, e.g.
because there is no consistent model to return, or because the tool is
unable to select a best model to return from among equally good candi-
dates. In this paper, we formalise properties that may nevertheless hold
in such circumstances and discuss relationships and implications.

1 Introduction

In software engineering, it has long been understood that data involved in the
development of a software system will, at least at certain points, be inconsistent,
and that it can be unproductive – or even counterproductive – to try to maintain
consistency at all times. Rather, mechanisms are needed to tolerate, manage
and understand inconsistency so that it does not threaten the overall aim of
the project [3,13,12]. Although consistency is a central notion for bidirectional
transformations, tolerating inconsistency has so far not been studied in this
context. This paper aims to rectify the situation.

In model-driven development, a bidirectional transformation (abbreviated bx)
has two jobs. First, it has to be able to say when two models (or more: but in
this paper, for clarity of exposition, we will treat only the case of two) are
consistent according to the definition embodied in the transformation. Second,
it has to be able to take a pair of models and modify a specified one of them so
as to restore consistency. The question of what properties are desirable in such a
transformation is an interesting one on which there is a growing literature. Most
of it, however, does not allow the bx ever to fail, or to put it more positively, to
succeed only partially. Consistency is all-or-nothing, and consistency restoration
must always succeed for the bx to be considered correct.

Practical model transformation engines, by contrast, frequently fail to restore
consistency between models when asked to do so. Although it is useful to try to
develop languages and tools that will allow this to happen seldom, we suggest
that there is also a need for a formal framework which recognises the inevitabil-
ity of such failure. Without one, we cannot discuss and reason about the good
properties that such “imperfect” bx may still have. Since a bx is usually as-
sumed/required to restore perfect consistency, we could think of a bx that does

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 32–46, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Bidirectionally Tolerating Inconsistency: Partial Transformations 33

not as partial, its domain being the pairs of models on which it succeeds in
restoring consistency. We shall, in fact, set up a more informative framework
than this idea suggests, but, to motivate it, let us first consider three reasons
why a bx engine may fail to restore consistency.

Let us assume that we are trying to check and, if necessary, restore consistency
between a model m in a model space M and a model n in a model space N (for
present purposes a model space may be thought of as just a set of models). In
this paper we will consider state-based bx that modify just one of the two models,
regarding the other as authoritative, so the bx has access to the two models, but
not to information about what edits have been performed, traceability links, etc.
(But see Section 6 for comment about ongoing work.)

First, it may be that the consistency relation itself is partial. For example,
perhaps m and n are not fully consistent, we are asked to modify n to restore
consistency, but there is no model n′ ∈ N that is fully consistent with m. This
may happen for a number of reasons. For example, it may be that the notion of
consistency being used imposes a condition on m which is currently not satisfied
(say, “m and n are consistent if they both satisfy all their metamodel constraints,
and ...” where m fails a metamodel constraint). In this case, since the bx has
been asked to modify only n, regarding m as authoritative, it will not be able to
succeed. What, then, should the tool do? Should it simply make no changes and
report failure? This may be the only reasonable course (corresponding to a simple
admission that (m,n) is not in the domain of this partial bx). On the other hand,
perhaps there are certain changes that, even though they cannot completely
restore consistency, bring the models closer to being consistent. We might prefer
that the tool make these changes, leaving a “smaller” (in an appropriate sense)
inconsistency that must be tolerated.

Second, it may be that there is a fully consistent model n′, but the trans-
formation engine, for some reason, may fail to return it. Perhaps we know as a
matter of theory that a fully consistent model always exists, but finding it may
require an infeasible amount of exploration and backtracking, so that a “quick
and dirty” tool that achieves some improvement, leaving human intelligence to
do the rest, is preferable. Another reason might be a desire to limit the kind of
changes that the bx engine is allowed to make to a model. We see such a case
in practice where the “models” are file systems and the “bx engine” is a file
synchroniser. Typically, users are quite happy for the file synchroniser to propa-
gate “non-conflicting” changes. However, where “conflicting” changes have been
made to files on each side, users typically prefer to resolve conflicts manually. In
this case, the consistency restoration that does not restore perfect consistency is
actually preferred to one that did, because it is considered more trustworthy. A
bx that does not have to resolve every problem and restore consistency perfectly
may be faster, more understandable, easier to verify and generally safer than
one that restores perfect consistency at all costs.

Third, it may be that there is more than one consistent model that the bx tool
could return, but the transformation does not provide information that would
allow the tool to choose between them, either through oversight or because the

34 P. Stevens

best choice depends on factors that are not formalisable. There are then three
options, any of which may be preferred depending on the circumstances. The
first two are variants of non-deterministic (but total) transformations. The tool
might make an arbitrary (or heuristically guided) choice of consistent model,
e.g., by returning the first one that is found by some search algorithm. This
may be fine if the differences between the different consistent models are really
arbitrary, i.e. of no interest to users of either model. The tool may find all
consistent models, and return them, or a concise description of them, to the user
for the user to pick one, with the transformation not being considered complete
until the choice has been made. This is difficult to make practical, tending to be
expensive both in computational and human effort terms. In this paper we wish
to consider a third option: that the tool returns a model n′ which is not fully
consistent with m, but which is, in a sense to be formalised, more consistent with
m than n was, incorporating only “uncontroversial” modifications. For example,
n′ may add model elements that are common to all fully consistent models, but
not those that are present in only some fully consistent models. The user may
modify n′ further to make it fully consistent at a later date, but need not do so
immediately. (Perhaps, even, a later change to m and a later application of a bx
may obviate the need to edit the model on the N side manually at all.)

In each case, it is desirable to have a framework in which we can unam-
biguously state the properties that a bx has or should have, so that ultimately
these properties can be verified and guaranteed, granting the developer greater
confidence about what applying the bx will do.

Such a framework also facilitates modular development of, and reasoning
about, total bx, which can now be built by chaining partial bx. This lets us
separate concerns, e.g., let different partial bxes fix different parts of a model, if
these are sufficiently independent. Or we may let one partial bx delete elements,
and another add. We say more about this in Section 4. To talk about the prop-
erties of the parts and about their composition, we need to make explicit the
existence of situations that are in-between perfect consistency and “all bets are
off” inconsistency.

The remainder of this paper is structured as follows. In Section 2 we discuss
related work. In Section 3 we introduce some fundamental definitions. In Sec-
tion 4 we illustrate these with examples. Section 5 discusses how different partial
bidirectional transformations, involving the same or different model spaces, may
be related. In Section 6 we conclude and briefly discuss further work to be done.

2 Related Work

Much of the work on bx is done with the special kind of bidirectional trans-
formations that are lenses[4], in which one model space (the view) is a strict

abstraction of the other (the source). In this case1
−→
R is replaced by get, a

one-argument function from concrete source to abstract view, and
←−
R by put, a

1 Forward reference to notation defined in Sect 3.

Bidirectionally Tolerating Inconsistency: Partial Transformations 35

two-argument function which, given an updated view and a source, produces an
updated source.

Diskin’s seminal paper [7], which is not limited to the lens case, already briefly
considered partial bidirectional transformations. He points out that in the lens
setting, partiality of put follows from the lens laws if get is allowed to be non-
surjective. This paper did not, however, model different levels of consistency; as
far as the author is aware, that is being done for the first time here.

Indeed, the lens approach to bidirectionality described in e.g. [9,4] arose, his-
torically, from earlier work relating to file synchronisation [2]. This gave a precise
semantics to a file synchroniser, in the process discussing properties that a syn-
chroniser should have. It made a clean separation between update detection and
conflict resolution, formalising the slogan “non-conflicting updates are propa-
gated”. Propagating non-conflicting updates, while leaving conflicts for a user
to resolve manually, is an example of the kind of scenario we deal with here.

Another, more recently active, strand of related work is that in bidirectional-
ization [17]. This, too, applies in the lens special case of bidirectional transfor-
mations. Its premise is that a get function is given, and a put function must be
inferred from it. Of course, sometimes it is not possible to determine a reasonable
put function, while sometimes many different put functions are possible; part of
the interest of this problem area is to investigate the situation. The work aims
to determine under what circumstances it is possible – and then how – either to
determine the “best” put function in an appropriate sense, or to give a choice
of good put functions to the transformation developer in a reasonable way.

The connection between bidirectionalization and the present work is as fol-
lows. In the lens scenario, giving a get function is equivalent to giving a consis-
tency relation; m is consistent with n iff n = get(m). Key to [17] is a distinction
between shape-preserving and shape-changing updates to a model. In the list
case considered, the shape of a model is its length, while its content is the actual
list elements. The bx is assumed to respect the division into shape and content in
that, for example, the results of applying get to two lists having the same shape
will be two lists that also have the same shape (as one another, not necessarily
as the inputs). This enables syntactic bidirectionalization to be used as a plug-
in for semantic bidirectionalization: the bidirectionalization problem is factored
into how to deal with shape and how to deal with content. One can, for exam-
ple, produce a put function that works only in the case that the shapes of its
arguments are appropriately related. This has the same flavour as our concerns
here: we wish to support bx tools that can do the right thing in straightforward
cases, with a clear specification of what that means, even if they cannot succeed
in all cases. More formally, we may model the bidirectionalization case using a
consistency structure with three possible values: inconsistent < shape-consistent
< perfectly consistent. Then we may separate two actions: first, the process of
making an update that increases consistency to shape-consistent; second, the
process of making an update that achieves perfect consistency, provided that
shape-consistency is given to begin with. This separation of concerns may make
it easier to identify the design choices. It may also allow us to build a bx out of

36 P. Stevens

components, each able to do one of these two actions. Even if this is not possible,
there may be value in automating one of the actions.

In the database literature, consideration of one aspect of partial bidirectional
transformation goes back at least to [10,11]. This is the issue of how the user
of a view may limit updates on the view to the admissible ones, that is, may
stay within the domain of an automatically definable put function. More recently,
study of related problems has been driven by the need to query, update and repair
databases that contain errors or omissions, leading them to violate integrity
constraints. A seminal paper in this area was [1], which discusses how to produce,
in response to a query, all the tuples that would have to be present in a response
to its being made against any repair of the actual database to one that satisfied
its integrity constraints. One may normally see a query answer as a model which
is consistent with a database, with respect to a particular query, when it is
the answer to that query on the database. In this case, however, the ideally
desired query answer is actually what would be returned from the ideal repaired
database (which does not, in fact, exist). Because it does not exist, the best that
can be done is an approximation; the answer set here can be seen as one that is
partially consistent, having made (to the empty model) only the uncontroversial
changes (adding the tuples that will definitely be present).

We note in passing that the promisingly named [8] is not about partial (model
transformations) but about (partial model) transformations and though inter-
esting is not closely related.

3 Basic Definitions

We begin by presenting a framework in which we generalise the possible results
of a consistency check from true/false to a more nuanced judgement.

Let (Λ,≤Λ) (which we will normally refer to just as Λ) be a partially ordered
set, the consistency structure, having a top element � (“perfectly consistent”;
all λ ≤Λ �). This will often be a lattice.

Let a partial bidirectional transformation R : M ↔ N over Λ be defined by
specifying

– a consistency indicator R : M × N → Λ that says how consistent a given
pair of models is

– consistency restoration functions
−→
R : M ×N → N and

←−
R : M ×N →M .

From now on this is what we shall mean by a bidirectional transformation (bx)
– when we want to use the usual definition in which the consistency indicator is a
relation, we shall talk about total bx. A total bx may be represented as a special
case of a partial bx, over the two element lattice with elements � (consistent)
and ⊥ < � (inconsistent).

Note that the restoration functions of a partial bx are still total, but, as
we shall see, they may not succeed in restoring consistency. In the worst case
(corresponding intuitively to a partial bx being invoked outside its domain) it
is always open to the function to return the argument with appropriate type,

Bidirectionally Tolerating Inconsistency: Partial Transformations 37

i.e. to propose no change. Thus making these total functions is no restriction. Of
course, those definitions of properties of bxs that refer only to the consistency
restoration functions do not need to be altered in this setting, though they may
need reinvestigation. An example (following the terminology of [7]) is

Definition 1. A bx R : M ↔ N is history ignorant if for all m,m′ ∈ M and

n ∈ N , we have
−→
R (m,

−→
R (m′, n)) =

−→
R (m,n) and dually.

Other standard definitions need minor adjustments to their notation, to make
them apply to partial bx:

Definition 2. A bx R is consistency-total if for any m there is some n such
that R(m,n) = �, and dually.

Definition 3. A bx R is correct if for all m ∈ M and n ∈ N we have

R(m,
−→
R (m,n)) = �, and dually.

Definition 4. A bx R is hippocratic if for all m ∈ M and n ∈ N we have

R(m,n) = � ⇒ −→
R (m,n) = n, and dually.

We can now define

Definition 5. A bx R is improving if it always returns a model that is at least

as consistent as its argument was. That is, R(m,
−→
R (m,n)) ≥Λ R(m,n), and

dually.

An improving bx is allowed to return something that is no more consistent
than its argument, but yet is not identical to it. Whether it is desirable to
permit this depends on circumstance. If a model is an XML file, not intended for
human reading, then changing things that are not important to consistency may
be perfectly acceptable. Modelling tools often silently change the identifiers of
model elements, for example. On the other hand, at times it is essential that users
can be confident their models are not changed unnecessarily. For example, the
layout of a diagram is typically irrelevant to consistency and indeed semantics,
yet users of diagrams intensely dislike their layouts being changed. So that we
can talk about this, we define

Definition 6. A bx R is as hippocratic as possible (AHAP) if its consistency
restoration functions return exactly their argument of appropriate type, unless
returning something strictly more consistent. That is,

−→
R (m,n) = n ∨ R(m,

−→
R (m,n)) > R(m,n)

and dually.

Note the need for this definition to make use of strict increase in Λ. Intuitively,
properties that do this tend to be harder to work with than those that can be
expressed just with the partial order’s ≤.

This begins to let us specify what damage a partial bx satisfying certain
properties may not do; next we turn to how to ensure that it does achieve what
it should.

38 P. Stevens

Definition 7. Given m ∈ M , the set of
−→
R candidates with respect to m is

{n′ ∈ N : R(m,n′) is maximal}. That is, n′ is a candidate iff R(m,n′) = λ ∈ Λ
such that there does not exist any n′′ ∈ N with R(m,n′′) >Λ λ. If a candidate
n′ further satisfies ∀n′′ ∈ N.R(m,n′) ≥Λ R(m,n′′) then it is dominant. Dually

for
←−
R .

We normally abbreviate and say n is a (dominant) candidate wrt m. Notice
that n being a candidate wrt m does not in general imply that m is a candidate
wrt n. It turns out to be theoretically convenient if it does, though:

Definition 8. A bx is balanced if for all m ∈M and n ∈ N , m is a candidate
wrt n iff n is a candidate wrt m.

In particular this will be the case if the bx is consistency-total. Otherwise, we
obviously cannot expect a bx to be correct, but the next best thing is:

Definition 9. A bx R is as correct as possible (ACAP) if it always returns a
candidate.

An ACAP bx must not return something if there is something strictly better

it could have returned instead. In particular if, for given m ∈M , a dominant
−→
R

candidate exists, an ACAP bx must return one. If the consistency structure is a
total order, all candidates are dominant. Then the consistency level λ achieved

when
−→
R or

←−
R is applied to (m,n) is determined by (m,n) and the consistency

indicator R, even though R does not determine
−→
R ,
←−
R .

Let us collect some immediate consequences of the definitions.

Proposition 1. 1. If R is correct, then it is consistency-total and ACAP.

2. If R is AHAP, then it is hippocratic.
3. If R is correct, then it is hippocratic if and only if it is AHAP.

4. If R is consistency-total, then it is correct if and only if it is ACAP.

5. If R is consistency-total then R is balanced; the candidates and the dominant
candidates (wrt m) are both just the set of perfectly-consistent elements (wrt
m).

6. If R is either AHAP or ACAP, then it is improving.

3.1 Subspaces and Subspace Pairs

A natural partner of the idea that some model pairs are more consistent than
others is the idea that some regions of a pair of model spaces are more compatible
than others. It turns out that the connection is more than just intuitive.

Definition 10. Let M ′ ⊆ M and N ′ ⊆ N and let R : M ↔ N be a bx (partial

or total). We say (M ′, N ′) is a subspace pair if ∀m ∈ M ′.∀n ∈ N ′.
−→
R (m,n) ∈

N ′ ∧←−R (m,n) ∈ M ′. We say M ′ is a subspace, and write M ′ � M , if (M ′, N)
is a subspace pair. (We define N ′ �N dually.)

Bidirectionally Tolerating Inconsistency: Partial Transformations 39

A subspace pair is a place where two teams of developers, each modifying a
model that may be synchronised by a bx, may agree to stay. If (M ′, N ′) is a
subspace pair with respect to R, then provided neither team moves their model
outside M ′, N ′ respectively, the transformation will never move them outside.
A subspace is a place where one team may unilaterally decide to stay.

It often happens, in MDD, that there are properties of a model that are
ultimately desirable, but not enforced by the tool in which the model is developed
– maybe not even desired at some stages of development. Strict compliance with
metamodel constraints is an example. During development we may need the bx
to propagate changes even though the models are not metamodel-compliant, say;
the most helpful bx may also guarantee that, provided the human developers do
not break compliance, the transformation will not. The tool may do what it can
on non-compliant models, but it is natural to think that models that are also
compliant are more consistent than those that are not. That is, the metamodel-
compliant model pairs form a subspace pair within which a higher consistency
value is obtainable than outside. In Section 5 we shall see how to relate bx on a
subspace pair to bx on the whole model spaces. For now:

Lemma 1. Let R : M ↔ N be a partial bx over Λ.

1. M , N are subspaces. Unions and intersections of subspaces are subspaces.
2. If M1 and N1 are subspaces, then (M1, N1) is a subspace pair. For example,

(M,N) is a subspace pair.
3. If (Mi, Ni) is a subspace pair for each i ∈ I an index set (of any cardinality),

then
(
⋂

i∈I Mi,
⋂

i∈I Ni) is a subspace pair.
4. If R is AHAP, then for any m ∈M and n ∈ N such that each is a candidate

with respect to the other (e.g., R(m,n) = �), ({m}, {n}) is a subspace pair.
5. Let M� = {m ∈ M : ∃n ∈ Ns.t.R(m,n) = �} and define N� similarly. If

R is ACAP, then (M�, N�) is a subspace pair.
6. If R is ACAP and the consistency structure Λ is a total order, then for

each λ ∈ Λ we define Mλ = {m ∈ M : ∃n ∈ Ns.t.R(m,n) ≥Λ λ} and Nλ

similarly. Then (Mλ, Nλ) is a subspace pair.

Of course, in general the component-wise union of two subspace pairs is not one.

4 Examples

In this section we set up a collection of examples, briefly described, to illustrate
the definitions already given and what follows.

4.1 Families of Trivial Examples to Illustrate Definitions

1. Let Λ be the one-point lattice whose only point is �. Then any bx over Λ
is consistency-total, balanced, correct, ACAP and improving, but generally
not AHAP or hippocratic.

40 P. Stevens

2. Let M and N be any sets, let Λ be any partial order, and let R : M×N → Λ
be any function, serving as consistency indicator.

(a) Let
−→
R be the second projection, that is,

−→
R (m,n) = n for any m and n,

and let
←−
R be first projection. Then this bx – which makes no attempt

ever to restore consistency – is hippocratic, AHAP and improving. In
general it will not, of course, be correct or ACAP.

(b) Alternatively, let
−→
R be defined by

−→
R (m,n) = n if R(m,n) = �, oth-

erwise
−→
R (m,n) = ΩN , the special “no information” or empty model,

which is perfectly consistent with the corresponding empty model in M ,

ΩM , only. That is, suppose that
−→
R deletes everything if it finds anything

other than perfect consistency. Then R is hippocratic, but does not in
general have any of our other properties.

4.2 Composer Examples

For ease of presentation, our remaining examples of partial bx will be variants
on the (total) Composers example [16,6], illustrated in Fig. 1. Until we intro-
duce a slight variation later, our bxes will use the same pair of model spaces as
Composer. A model m ∈ M comprises a set of (unrelated) Composer objects,
each with a name, dates and nationality. A model n ∈ N is an ordered list of
pairs each giving a name and a nationality.

Now we consider different ways to define consistency and consistency restora-
tion. We will refer to the consistency partial orders shown in Fig. 2.

Consistency as a Conjunction. To be perfectly consistent, models may have
to satisfy several conditions, which need not be ranked. In QVT-R [14], for exam-
ple, consistency is specified as a conjunction of two directional checks. That is,
to check whether m is consistent with n, we must check whether m is acceptable
from the point of view of n, and vice versa; m and n are considered consistent
iff both of these checks succeed. The most faithful QVT-R tool, TATA’s Model-
Morf, actually requires the two directions to be checked separately by the user,
even though the QVT-R standard’s notion of consistency is the conjunction of
the two results.

We may model such a situation using the consistency structure ΛLR from
Fig. 2. FollowingComposers [16], our composer models (say (m,n)) are deemed
to be perfectly consistent (R(m,n) = �) iff both: for every composer in m,
there is at least one entry in the table comprising n with the same name and
nationality; and, for every composer in n, there is at least one entry in m with the
same name and nationality. If only the first condition holds, let R(m,n) = λL,
if only the second, let R(m,n) = λR, if neither holds, let R(m,n) = ⊥.

Given this notion of consistency as part of a partial bx over ΛLR, we still
have a choice about the consistency restoration functions. One user might be
happy with automatically deleting composers, but dislike the “kludge” of mak-
ing dates “????-????” and prefer manually inserting new composers to making
the bx, in effect, choose among consistent models (the dates being irrelevant

Bidirectionally Tolerating Inconsistency: Partial Transformations 41

American

Aaron Copland

American

1910−1990

Jean Sibelius

Finnish

????−????

Aaron Copland
1910−1990

Benjamin Britten

English

1913−1976
Benjamin Britten

Jean Sibelius

Aaron Copland

Aaron Copland

pairs on both sides

same (name, nationality)

(name, nationality) pairs from LHS
order by name from RHS
newly−named composers at end in
alphabetical order by name

user changes
Britten’s nationality
to English

and adds Sibelius

(name, nationality) pairs from RHS

default dates ????−???? for newly−named composers

dates by name from LHS

Benjamin Britten

English

Finnish

American

British

American

Benjamin Britten

British

1913−1976

Fig. 1. Two kinds of composer model, illustrating a total bx

to consistency). Another user might be happier about elements being automati-

cally added than about them being deleted. Then a suitable option is to make
−→
R

add to n any missing composers – thus ensuring that consistency reaches at least
λL – but not to make it delete any composers who do not occur in m. Together

with the dual behaviour for
←−
R , this gives a partial bx that improves consistency,

and will not make any change except to do so, but does not guarantee to make
the models completely consistent. That is, it is improving, indeed AHAP, but
not correct or ACAP. (The same can be made true of the first user’s preferred
partial bx.)

The discipline for using such a bx manually must be considered carefully.

Suppose the
−→
R just discussed is applied, and does not restore perfect consistency

because there is a composer in n but not m. Now if
←−
R is immediately applied

– without the extra composer being manually deleted – this composer will be
re-added to m.

A different scenario is where such a bx is used as a phase within a total bx;
then this discipline is in effect provided automatically. In QVT-R, which does not
discuss partial consistency, ensuring that both checks succeed while modifying
only one of the models motivates the two-phase enforce process. When n must
be modified so that it is consistent with fixed m, the first phase adds model

42 P. Stevens

(a) ΛLR

�

λL λR

⊥ (b) Λmid

�

μ

⊥ (c) Λnat

�

1

2

... (d) Λbool

�

⊥

Fig. 2. A few consistency partial orders

elements that are required to exist in order for n to become acceptable from the
point of view of m; the second, delete, phase removes model elements from n
that cannot be present if m is to be acceptable from the point of view of n. In
fact, making this work is far from trivial and is the source of some confusion
concerning the semantics of QVT-R [5]. Separating the semantics of such bx
explicitly into phases each described by a partial bx may be useful.

Consistency Levels as Diagnostics. Even if we have an ordinary total bx that
is correct and hippocratic, we may prefer something that gives more information,
for engineering reasons. That is, we might like to be told not only that a given
pair of models is inconsistent, but something about why they are inconsistent. If
we want our framework to model this, it can do so by means of a partial bx that
corresponds to the original in the sense that the perfectly-consistent pairs are
the same in both cases, but the partial bx has, instead of a single judgement ⊥,
“inconsistent”, a collection of possible consistency levels. Both bx may have the
same consistency restoration functions, so the partial bx will, like the original it
is based on, be correct and hippocratic (hence ACAP, AHAP and improving).

To give a simple example, we might use the natural numbers as consistency
levels to indicate the number of errors counted in some way. In our example,
this could be the number of composers who occur on one side but not the other.
We could define a bx whose consistency restoration was just like the total bx
illustrated in Fig. 1, but over the consistency structure Λnat from Fig. 2.

Separation of Consistency Concerns. An example somewhat reminiscent of
those used in the bidirectionalization work discussed in Section 2 is the following.

Consider bx between M and N over consistency structure Λmid from Fig. 2.
Let the middle consistency element, μ, indicate that the same names occur
in each model. Let perfect consistency, �, as before indicate that the same
(name,nationality) pairs occur on both sides. This allows us to separate the
task of designing consistency restoration functions, if we like, into the two parts
of making sure the right names are present, and making sure the right national-
ity/ies also occur with each name.

A Non-consistency-Total Example. So far all our examples have been
consistency-total. Now suppose we have the usual “same (name, nationality)

Bidirectionally Tolerating Inconsistency: Partial Transformations 43

pairs” requirement for consistency, but we also have a constraint (not enforced,
but desirable) that composer names in a table in n ∈ N must be no more than
16 characters long (while those in m are still unrestricted). We may model this
using a bx over ΛLR from Fig. 2. Suppose λL means both models comply with
their constraints, λR means the same (name, nationality) pairs occur in both
models, ⊥ means neither holds and � means both hold.

The models illustrated in Fig. 1 are unaffected, but now consider m ∈ M
that includes a composer with name Pyotr Ilyich Tchaikovsky (and no other
composers, for simplicity). Now there is no model n ∈ N which is perfectly
consistent with m. A bx that is asked to modify n must choose: either it can
include this name, which will allow it to achieve consistency level λR, or it can
comply with its constraints, achieving λL, but it cannot do both.

Suppose the bx writer settles on preferring metamodel compliance, and writes
a bx that we shall call T as we shall refer to it again in Section 5.

Note that T is not balanced. Say we have m as above and a model n whose
single row reads PI Tchaikovsky. Because n cannot be modified so that its com-
poser name matches m’s without violating the constraint, n is a candidate with
respect to m. (It is not a dominant candidate, because the alternative choice
of making the names the same but violating the constraint would have given
an incomparable consistency value.) On the other hand, m could if we wish be
modified so that its composer name matched n’s, which would restore perfect
consistency, so m is not a candidate with respect to n.

5 Relating Partial Bx

A major motivation for studying bx that tolerate inconsistency is to support the
use of bx during development. At some stages we may have a well-developed
notion of perfect consistency, yet not be in a position to enforce it immediately
(e.g. because a model is currently incomplete, awaiting more information; it
might even be syntactically incorrect). We do not want the inability to enforce
perfect consistency to stop us synchronising models at all; we would like to be
able to run bx and get some guarantees about what a bx will do. We also want to
be able to give more information about the nature of the inconsistency discovered
by a check. Later in development, a total bx may be usable, and we would like
to know it is compatible in an appropriate sense with the partial bx used earlier.

This motivates the study of relationships between different partial bx. Many
interesting examples relate bx that relate the same sets of models (perhaps re-
stricting to a subset) but we start with a more general notion:

Proposition 2. Let R1 : M1 ↔ N1 be a partial bx on Λ1. Let fΛ : Λ1 → Λ2 be
a total function preserving the partial order, that is, satisfying x ≤ y ⇒ fΛx ≤
fΛy. Let fM : M1 → M2 and fN : N1 → N2 be surjective partial functions
satisfying the following coherence condition: if fMm = fMm′ and fNn = fNn′

(in particular, m,m′, n, n′ are in the appropriate domains) then

44 P. Stevens

– fΛR1(m,n) = fΛR1(m
′, n′);

– fN is defined on
−→
R1(m,n), and dually;

– fN
−→
R1(m,n) = fN

−→
R1(m

′, n′), and dually.

Then the following gives a well-defined partial bx R2 : M2 ↔ N2 on Λ2, which
by slight abuse of notation we will denote f(R1):

– R2(fMm, fNn) = fΛR1(m,n)

–
−→
R2(fMm, fNn) = fN

−→
R1(m,n) and dually.

In particular, notice that if M1 = M2 and N1 = N2, with fM and fN being total
identity functions, the coherence conditions become trivial. That is, given a bx
R : M ↔ N over Λ1, and a partial order preserving function fΛ : Λ1 → Λ2, we
can always build a bx f(R) : M ↔ N over Λ2.

Of course the proof of Prop. 2 is easy: the coherence conditions are exactly
what is needed. More interesting is to see what happens to properties of R1.

Proposition 3. If R1 is improving then so is f(R1).

To go further we need to impose further conditions on fΛ, involving when one
consistency value is strictly greater than another:

Proposition 4. If R1 is ACAP and, in addition to the conditions of Prop. 2,
fΛ satisfies fΛx > fΛy ⇒ x > y, then f(R1) is ACAP.

The condition is necessary in order to handle situations like the composer ex-
ample T on ΛLR, in which consistency means the conjunction of two properties
that are considered incomparable and cannot always both be achieved. Now sup-
pose that fΛ privileges one property over the other, so that ensuring that one
is “better”. In our example, suppose we consider fΛ : ΛLR → Λmid sending λL

to ⊥ and λR to μ; that is, fΛ models that we now consider having the same
(name, nationality) pairs to be better than obeying the constraints, in cases
where it’s not possible to do both. Our bx T over ΛLR was ACAP, but f(T)
over Λmid is not. The condition captures the idea that turning incomparability
into dominance in the consistency structure may break ACAP.

The next result might be considered dual:

Proposition 5. If R1 is AHAP and, in addition to the conditions of Prop. 2,
fΛ satisfies x > y ⇒ fΛx > fΛy, then f(R1) is AHAP.

The condition is necessary because without it, R1 may make a consistency im-

provement that is “erased” by fΛ. That is, we may have R1(m,
−→
R1(m,n)) >

R1(m,n), but fΛ(R1(m,
−→
R1(m,n))) = fΛ(R1(m,n)). Unless the difference be-

tween n and
−→
R1(m,n) is likewise erased by fN , f(R1) will fail AHAP.

5.1 Example: Restricting to a Subspace Pair

Let (M2, N2) be a subspace pair in (M1, N1) and let fM , fN be the identity on
M2, N2, undefined elsewhere. Then as these are also injective where defined, the

Bidirectionally Tolerating Inconsistency: Partial Transformations 45

coherence conditions in Prop. 2 hold for any fΛ preserving the partial order. If
we take fΛ to be the identity, what we get is just the restriction of a bx to a
subspace pair. The conditions of Prop. 4 and Prop. 5 both hold, so we see that
the restriction will be ACAP and AHAP if the original was.

Next, let us use Prop. 1 to consider the subspace pair (M�, N�) in (M1, N1),
and consider fΛ : Λ1 → {�,⊥} given by fΛ(λ) = � if λ = �, otherwise ⊥. We
see that we can construct a total bx from any ACAP partial bx by, intuitively,
throwing out all the elements on which consistency cannot be restored. The
Prop. 4 condition holds, and since the consistency relation is, by construction,
total on (M�, N�) our restricted bx is correct. The Prop. 5 condition fails, but
in this particular case we have thrown out all potential counterexamples, so:

Proposition 6. Let R : M ↔ N be a partial bx which is ACAP and AHAP.
Define R� : M� ↔ N� by:

– M� = {m ∈M : ∃n ∈ N.R(m,n) = �}, and N� dually;
– R�(m,n) holds iff R(m,n) = �;
–
−→
R�(m,n) =

−→
R (m,n) and dually.

Then R� is a correct and hippocratic total bx.

6 Conclusions and Future Work

In this paper we have begun a study of partial bidirectional transformations,
being a generalisation of bidirectional transformations in which the consistency
definition, rather than being a relation, is a function taking values in a partially
ordered structure. We have given examples to show the practical potential of
such bx, and have established a framework in which to discuss their properties
and to understand the relationships between them and their properties.

Beyond this paper, we have begun a study of the implication, for this frame-
work, of considering the edit monoid on each model space. This is promising
from the point of view of least change: intuitively, difficulties arise when the edit
path towards a candidate must involve going via a model that is less consistent
than the original. It is good if edit paths in the model spaces project onto paths
in the consistency structure.

More generally, we are studying the many ways in which bx formalisms go be-
yond the state-based approach we work with here, to include extra information
e.g. edits, traces or an archive [9]. We are also studying the properties of bidirec-
tional transformations that are related for total bidirectional transformations in
[15], to see what happens when we transfer them to the partial setting. Do the
same relationships hold between the notions? Are other special properties more
important in this setting? Balanced bx are much more tractable than others, as
they allow foundational results about the equivalences used in [15] to carry over.

Acknowledgements. I thank James McKinna for very helpful conversations. I
thank the referees for their constructive suggestions, including some that could
not be implemented in this version for space reasons. The work is partly sup-
ported by EPSRC grant EP/K020218/1.

46 P. Stevens

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. PODS, pp. 68–79. ACM Press (1999)

2. Balasubramaniam, S., Pierce, B.C.: What is a file synchronizer? In: Proceedings of
MobiCom 1998 (October 1998)

3. Balzer, R.: Tolerating inconsistency. In: Proceedings of ICSE 1991, pp. 158–165.
IEEE Computer Society/ACM Press (1991)

4. Bohannon, A., Nathan Foster, J., Pierce, B.C., Pilkiewicz, A., Schmitt, A.:
Boomerang: Resourceful lenses for string data. In: Proceedings of POPL 2008 (Jan-
uary 2008)

5. Bradfield, J., Stevens, P.: Enforcing QVT-R with mu-calculus and games. In:
Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 282–296.
Springer, Heidelberg (2013)

6. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Towards a repository of bx
examples. In: Proceedings of Bx 2014 (2014)

7. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 21–36. Springer, Heidelberg (2008)

8. Famelis, M., Salay, R., Chechik, M.: The semantics of partial model transforma-
tions. In: Proceedings of ICSE Workshop on Modeling in Software Engineering,
pp. 64–69 (June 2012)

9. Nathan Foster, J., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.:
Schema-directed data synchronization. Technical Report MS-CIS-05-02, University
of Pennsylvania (March 2005)

10. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Trans. Database Syst. 13(4), 486–524 (1988)

11. Hegner, S.J.: Foundations of canonical update support for closed database views.
In: Kanellakis, P.C., Abiteboul, S. (eds.) ICDT 1990. LNCS, vol. 470, pp. 422–436.
Springer, Heidelberg (1990)

12. Nöhrer, A., Biere, A., Egyed, A.: A comparison of strategies for tolerating incon-
sistencies during decision-making. In: 16th International Software Product Line
Conference, SPLC 2012, pp. 11–20. ACM (2012)

13. Nuseibeh, B., Easterbrook, S.M., Russo, A.: Leveraging inconsistency in software
development. IEEE Computer 33(4), 24–29 (2000)

14. OMG. MOF2.0 query/view/transformation (QVT) version 1.1. OMG document
formal/2009-12-05 (2009), www.omg.org

15. Stevens, P.: Observations relating to the equivalences induced on model sets by
bidirectional transformations. In: EC-EASST, vol. 49 (2012)

16. Stevens, P., McKinna, J., Cheney, J.: Composers v0.1 in Bx Examples Repository,
http://bx-community.wikidot.com/examples:home (retrieved January 16, 2014)

17. Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Combining syntactic and semantic
bidirectionalization. In: Proc. ICFP, pp. 181–192. ACM (2010)

www.omg.org
http://bx-community.wikidot.com/examples:home

Splitting Models Using Information Retrieval
and Model Crawling Techniques

Daniel Strüber1, Julia Rubin2,3, Gabriele Taentzer1, and Marsha Chechik3

1 Philipps-Universität Marburg, Germany
2 IBM Research – Haifa, Israel
3 University of Toronto, Canada

{strueber,taentzer}@mathematik.uni-marburg.de,
mjulia@il.ibm.com, chechik@cs.toronto.edu

Abstract. In team environments, models are often shared and edited by multiple
developers. To allow modularity and facilitate developer independence,
we consider the problem of splitting a large monolithic model into sub-models.
We propose an approach that assists users in incrementally discovering the set
of desired sub-models. Our approach is supported by an automated tool that per-
forms model splitting using information retrieval and model crawling techniques.
We demonstrate the effectiveness of our approach on a set of real-life case studies,
involving UML class models and EMF meta-models.

Keywords: model management, model splitting, feature location.

1 Introduction

Model-based engineering – the use of models as the core artifacts of the development
process – has gained increased popularity across various engineering disciplines, and
already became an industrially accepted best practice in many application domains. For
example, models are used in automotive and aerospace domains to capture the structure
and behavior of complex systems, and, in several cases, to generate fully functional im-
plementations. Modeling frameworks themselves, such as UML and EMF, are defined
using models – an approach known as meta-modeling.

Together with the increased popularity of modeling, models of practical use grow in
size and complexity to the point where large monolithic models are difficult to com-
prehend and maintain. There is a need to split such large models into a set of depen-
dent modules (a.k.a. sub-models), increasing the overall comprehensibility and allowing
multiple distributed teams to focus on each sub-model separately.

Most existing works, e.g., [3], suggest approaches for splitting models based on an
analysis of strongly connected components, largely ignoring the semantics of the split
and the user intention for performing it. In our work, we propose an alternative, heuristic
approach that allows splitting a model into functional modules that are explicitly speci-
fied by the user using natural-language descriptions. It is inspired by code-level feature
location techniques [2,10], which discover implementation artifacts corresponding to a
particular, user-defined, functionality.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 47–62, 2014.
© Springer-Verlag Berlin Heidelberg 2014

48 D. Strüber et al.

Schedule

Medical Member

Technician

Nurse

ID-card

PhysicianAssistant

VisitRecordPrescription

InVisit Record OutVisit Record Outpatient Inpatient

Ward Stay Record Intra Ward Record

Wristband

Patient Health Card Display Scanner

Ward

General Storage

Unit

Room

Bed Stationary Equipment

Equipment

Mobile Equipment

Booking

1

1
1

1

1*

1

1

1

*

*

1

*1

1

1

1

*1

3

2

4

6 7

5

8 12

1513

9 11

10

14

1716

2625

28 29

18

2322

19 20 21

24 *

1

* *
*

*

*

*

1** 1

1
1*

1*

*

*
1

*
*

1
1

*
*

*
* 1

1

1 1

*

*
**

**

Medical Procedure
27

*

*

Medical team Physical structure

Patient care

*

Fig. 1. A UML Class Model of a Hospital System

In the core of our approach is an automated technique that employs information
retrieval (IR) and model crawling. Given an input model and a set of its sub-model
descriptions, the technique assigns each element to one of the specified sub-models,
effectively producing a partitioning. The technique is applicable to any model for which
a split results in sub-models that satisfy the well-formedness constraints of the original
one, e.g., UML Class models, EMF models and MOF-based meta-models.

Motivating Example. Consider the UML Class Model of a Hospital System (HSM)
[7, p. 125] shown in Fig. 1. It describes the organization of the hospital in terms of
its medical team (elements #1-7), physical structure (elements #8-17), and patient care
(elements #18-29). Each of these concepts corresponds to a desired sub-model, visually
encircled by a dashed line for presentation purposes. The goal of our work is to assist
the user in determining elements that comprise each sub-model. The user describes the
desired sub-models using natural-language text, e.g., using parts of the system docu-
mentation. For example, the medical team sub-model in Fig. 1 is described in [7]. A
fragment of the description is: “Nurses are affiliated with a single ward, while physi-
cians and technicians can be affiliated with several different wards. All personnel have
access to a calendar detailing the hours that they need to be present at the various
wards. Nurses record physicians’ decisions. These are written on paper and handed
to an administrative assistant to enter. The administrative assistant needs to figure out
who needs to be at a particular procedure before they enter it in the system.” The tech-
nique uses such descriptions in order to map model elements to desired sub-models.
The labels for the sub-models, e.g., “Medical Team”, are assigned manually.

The user can decide whether the list of sub-models describes a complete or a par-
tial split of the input model. In the former case, each input model element is assigned
to exactly one sub-model, like in the example in Fig. 1, where the three sub-models
“cover” the entire input model. In the latter case, when the complete set of the desired

Splitting Models Using Information Retrieval and Model Crawling Techniques 49

Information Retrieval Model Crawling
Model Element Assignment Set of sub modelsCompleteness condition

Set of textual descriptions
Model Splitting

Fig. 2. An overview of the approach

sub-models is unknown upfront, the technique produces assignments to known sub-
models only. The remaining elements are placed in a sub-model called “rest”. The user
can inspect the “rest” sub-model in order to discover remaining sub-models in an incre-
mental and iterative fashion, until the desired level of completeness is achieved.

Contributions and Organization. This paper makes the following contributions: (1)
we describe an automated model splitting technique which combines information re-
trieval and model crawling; (2) we propose a computer-supported iterative process for
model splitting; (3) we evaluate our approach on a set of benchmark case studies, in-
cluding real-life UML and EMF models. Our results demonstrate that the proposed ap-
proach achieves high accuracy compared to the manually produced results and is able
to assist the user in the iterative discovery of the desired sub-models.

The rest of the paper is structured as follows. Sec. 2 gives the high-level overview of
our approach. We describe the necessary preliminaries in Sec. 3 and present the auto-
mated splitting algorithm in Sec. 4. We report on the results of evaluating our approach
in Sec. 5-6. In Sec. 7, we put our contribution in the context of related work, and con-
clude in Sec. 8 with the summary and an outline of future research directions.

2 Overview of the Approach

The high-level overview of our approach is given in Fig. 2. The user provides as input
a model that requires splitting, a set of textual descriptions of the desired sub-models,
and the completeness configuration parameter that declares whether this set of sub-
models is complete or partial. For the example in Fig. 1, the complete set would contain
descriptions of all three sub-models – medical team, physical structure, and patient care,
while a partial set would contain only some of these descriptions.

Automated Technique. In the core of our approach is an automated technique that
scores the model elements w.r.t. their relevance to each of the desired sub-models. The
scoring is done in two phases. The first one is based on Information Retrieval (IR)
and uses sub-model descriptions: it builds a textual query for each model element, e.g.,
based on its name, measures its relevance to each of the descriptions and identifies those
elements that are deemed to be most relevant for each of the descriptions.

The identified elements are used as seeds for the second phase, Model Crawling.
In this phase, structural relationships between model elements are explored in order to
identify additional relevant elements that were missed by the IR phase. The additional

50 D. Strüber et al.

elements are scored based on their structural proximity to the already scored elements.
In HSM, when identifying elements relevant to the medical team sub-model using the
description fragment shown in Sec. 1, the IR phase correctly identifies elements #2,4,6,7
as seeds. It misses element #3 though, which is assigned a high score in the first iteration
of crawling as it is closely related to the seeds. Once element #3 is scored, it impacts
the scoring of elements identified during later iterations of crawling. Eventually, each
model element’s relevance to each sub-model is scored.

The third phase, Element Assignment, assigns elements to sub-models based on their
score. If a complete set of sub-models is given, each element is assigned to a sub-
model for which it has the highest score1. In this case, the assignment results in a model
partition. If a partial set of sub-models in given as an input, some model elements might
not belong to any of these sub-models. Hence, we apply a threshold-based approach
and assign elements to sub-models only if their scores are above a certain threshold.

Iterative Process. A partial set of sub-model descriptions can be further refined in an
iterative manner, by focusing user attention on the set of remaining elements – those
that were not assigned to any of the input sub-models. Additional sub-models identified
by the user, as well as the completeness parameter assessing the user’s satisfaction with
the set of known sub-models are used as input to the next iteration of the algorithm,
until the desired level of completeness is achieved.

Clearly, as additional sub-models are identified, element assignments might change.
For example, when only the description of the medical team sub-model is used during
a split, element #8 is assigned to that sub-model due to the high similarity between its
name and the description: the term ward is used in the description multiple times. Yet,
when the same input model is split w.r.t. the sub-model descriptions of both the medical
team and the physical structure, this element is placed in the latter sub-model: Both
its IR score and its structural relevance to that sub-model are higher. In fact, the more
detailed information about sub-models and their description is given, the more accurate
the results produced by our technique become, as we demonstrate in Sec. 6.

3 Preliminaries

In this section, we describe our representation of models and model elements and cap-
ture the notion of model splitting. We also introduce IR concepts used in the remainder
of the paper and briefly describe the feature-location techniques that we used as an
inspiration for our splitting approach.

3.1 Models and Model Splitting

Definition 1. A model M = (E,R, T, src, tgt, type) is a tuple consisting of a set E of
model elements, a set R of relationships, a set T of relationship types, functions src and
tgt : R→ E assigning source and target elements to relationships, and a function type :
R → T assigning types to relationships. Model elements x, y ∈ E are related, written

1 An element that has the highest score for two or more sub-models is assigned to one of them
randomly.

Splitting Models Using Information Retrieval and Model Crawling Techniques 51

related(x, y), iff ∃r ∈ R s.t. either src(r) = x ∧ trg(r) = y, or src(r) = y ∧ trg(r) = x. If
type(r) = t, we further say that x and y are related through t, written relatedt(x, y).

For example, the HSM in Fig. 1 has three relationship types: an association, a compo-
sition, and an inheritance. Further, element #7 is related to elements #3, #8 and #20.

Definition 2. Let a model M = (E,R, T, src, tgt, type) be given. S =
(ES , RS , T, srcS , tgtS , typeS) is a sub-model of M , written S ⊆ M , iff ES ⊆ E,
RS ⊆ R, srcS = src|RS

with srcS(RS) ⊆ ES , tgtS = tgt|RS
, and typeS = type|RS

2.

That is, while sources of all of a sub-model’s relationship are elements within the model,
it does not have to be true about the targets. For example, each dashed frame in the ex-
ample in Fig. 1 denotes a valid sub-model of HSM. All elements inside each frame form
the element set of the corresponding sub-model. There are two types of relationships
between these elements: those with the source and the target within the sub-model, e.g.,
all inheritance relations within the medical team sub-model, and those spanning two
different sub-models (often, these are association relationships).

Definition 3. Given a model M , a model split Split(M) = {S|S ⊆ M} is a set of
sub-models s.t. ∀S1, S2 ∈ Split(M) : (S1
= S2)⇒ (ES1 ∩ES2 = ∅).

By Def. 2, if
⋃

S∈Split(M) ES = E, then
⋃

S∈Split(M) RS = R. The split of HSM,
consisting of three sub-models, is shown in Fig. 1.

Definition 4. A model M satisfying a constraint ϕ is splittable iff every sub-model of
M satisfies ϕ.

All UML class models (without packages) are splittable since we can take any set of
classes with their relationships and obtain a class model. Models with packages have a
constraint “every class belongs to some package”. To make them splittable, we either
relax the constraint or remove the packages first and then reintroduce them after the
splitting is performed, in a new form.

3.2 Relevant Information Retrieval Techniques

Below, we introduce the basic IR techniques used by our approach.
Term Frequency - Inverse Document Frequency Metric (TF-IDF) [8]. Tf-idf is a
statistical measure often used by IR techniques to evaluate how important a term is to
a specific document in the context of a set of documents (corpus). It is calculated by
combining two metrics: term frequency and inverse document frequency. The first one
measures the relevance of a specific document d to a term t (tf (t, d)) by calculating the
number of occurrences of t in d. Intuitively, the more frequently a term occurs in the
document, the more relevant the document is. For the HSM example where documents
are descriptions of the desired sub-models, the term nurse appears in the description d
of the medical team sub-model in Sec. 1 twice, so tf (nurse, d) = 2.

2 For a function f : M → M ′ with S ⊆ M , f|S : S → M ′ denotes the restriction of f to S.

52 D. Strüber et al.

The drawback of term frequency is that uninformative terms appearing through-
out the set D of all documents can distract from less frequent, but relevant, terms.
Intuitively, the more documents include a term, the less this term discriminates be-
tween documents. The inverse document frequency, idf(t), is calculated as follows:
idf (t) = log(|D|

|{d∈D | t∈d}|). This metric is higher for terms that are included in a smaller
number of documents.

The total tf-idf score for a term t and a document d is calculated by multiplying
its tf and idf scores: tf-idf (t, d) = tf (t, d) × idf (t). In our example, since the term
nurse appears neither in the description of the physical structure nor in patient care,
idf (nurse) = log(31) = 0.47 and tf-idf (nurse, d) = 2× 0.47 = 0.94.

Given a query which contains multiple terms, the tf-idf score of a document w.r.t.
the query is commonly calculated by adding the tf-idf scores of all query terms. For
example, the tf-idf score of the query “medical member” w.r.t. the description of the
medical team sub-model is 0+0 = 0 as none of the terms appear in the description and
thus their tf score is 0. The latent semantic analysis (LSA) technique described below
is used to “normalize” scores produced by tf-idf.

Latent Semantic Analysis (LSA) [4]. LSA is an automatic mathematical/statistical
technique that analyzes the relationships between queries and passages in large bodies
of text. It constructs vector representations of both a user query and a corpus of text
documents by encoding them as a term-by-document co-occurrence matrix. It is a sparse
matrix whose rows correspond to terms and whose columns correspond to documents
and the query. The weighing of the elements of the matrix is typically done using the
tf-idf metric.

Vector representations of the documents and the query are obtained by normalizing
and decomposing the term-by-document co-occurrence matrix using a matrix factor-
ization technique called singular value decomposition [4]. The similarity between a
document and a query is then measured by calculating the cosine between their cor-
responding vectors, yielding a value between 0 and 1. The similarity increases as the
vectors point “in the same general direction”, i.e., as more terms are shared between
the documents. For example, the queries “assistant”, “nurse” and “physician” result in
the highest score w.r.t. the description of the medical team sub-model. Intuitively, this
happens because all these queries only have a single term, and each of the terms has the
highest tf-idf score w.r.t. the description. The query “medical member” results in the
lowest score: none of the terms comprising that query appear in the description.

3.3 Feature Location Techniques

Feature location techniques aim at locating pieces of code that implement a specific pro-
gram functionality, a.k.a. a feature. A number of feature location techniques for code
have been proposed and extensively studied in the literature [2,10]. The techniques are
based on static or dynamic program analysis, IR, change set analysis, or some combi-
nation of the above.

While the IR phase of our technique is fairly standard and is used by several existing
feature location techniques, e.g., SNIAFL [17], our model crawling phase is heavily
inspired by a code crawling approach proposed by Suade [9]. Suade leverages static
program analysis to find elements that are related to an initial set of interest provided by

Splitting Models Using Information Retrieval and Model Crawling Techniques 53

Score

M

Score

SugSubDocs

Model Splitting

Score

weight

Fig. 3. An outline of the algorithm for creating a splitting suggestion

the user – a set of functions and data fields that the user considers relevant to the feature
of interest. Given that set, the system explores the program dependance graph whose
nodes are functions or data fields and edges are function calls or data access links,
to find all neighbors of the elements in the set of interest. The discovered neighbors
are scored based on their specificity – an element is specific if it relates to few other
elements, and reinforcement – an element is reinforced if it is related to other elements
of interest. The set of all elements related to those in the initial set of interest is scored
and returned to the user as a sorted suggestion set. The user browses the result, adds
additional elements to the set of interest and reiterates.

Our modifications to this algorithm, including those that allow it to operate on mod-
els rather than code and automatically perform multiple iterations until a certain “fixed
point” is achieved, are described in Sec. 4.

4 Splitting Algorithm

Fig. 3 shows a refined outline of the algorithm introduced in Fig. 2. The algorithm
receives a model M to be split, a set of textual descriptions of desired sub-models Sub-
Docs, and a completeness condition φ which is true if the set of descriptions represents
a desired partitioning of M and false if this set is partial. The algorithm is based on
scoring the relevance of model elements for each target sub-model (steps 1-2), and then
assigning each element to the most relevant sub-model (step 3). The relevance scoring
is done by first applying the IR technique and then using the scored sets of elements as
seeds for model crawling. The latter scores the relevance of all model elements w.r.t.
specificity, reinforcement, and cohesiveness of their relations. The algorithm also uses
parameters w, α and π which can be user adjusted for the models being analyzed. Our
experience adjusting them for class model splitting is given in Sec. 5.

Step 1a: Retrieve Initial Scores Using LSA. The user provides the input model M
and natural-language sub-model descriptions SubDocs as unrelated artifacts. They need
to be preprocessed before LSA can establish connections between them. SubDocs are
textual and can be used as input documents directly. Textual queries are retrieved from
elements of M by extracting a description – in class models, the element’s name. LSA
then scores the relevance of each sub-model description to each model element descrip-
tion. The resulting scores are stored in Score, a data structure that maintains a map from
(sub-model number, element) pairs to scores between 0 and 1.

54 D. Strüber et al.

Step 1b: Refine Initial Scores to Seed Scores. Some scored elements may not be suited
as starting points for model crawling. If a model element description occurred in many
different sub-model descriptions, its score might be too low. In this step, we use the
technique proposed in [17] which involves inspecting the scores in descending order.
The first gap greater than the previous is determined to be a separation point and all
scores below it are discarded. The remaining scores are normalized for each sub-model
to take the entire (0, 1] range.

Step 2: Model Crawling. The aim of model crawling is to score the relevance of each
model element for each target sub-model. Intuitively, model crawling is a breadth-first
search: beginning with a set of seeds, it scores the neighbors of the seeds, then the
neighbors’ neighbors, et cetera.

This step is outlined in Fig. 4: An exhaustive crawl is performed for each target sub-
model. While there exists a scored element with unscored neighbors, we determine for
each of these elements x and each relationship type t the set of directly related elements,
calling it OneHop (lines 5-7). To score each unscored element in OneHop, the TwoHop
set comprising their related elements is obtained (lines 8-9). The score is computed at
line 10 as a product of x’s score, a fraction quantifying specificity and reinforcement,
and a weighting factor. A constant exponent α is applied to fine-tune the scoring dis-
tribution. Finally, we use a special operator, proposed by [9], to account for elements
related to already scored elements through multiple relations. The operator, denoted
by the underlined put command, merges the scores obtained for each relationship. It
assigns a value higher than the maximum of these scores, but lower than 1.

This procedure adjusts the feature location algorithm proposed in [9] in three re-
spects: (A1) We perceive neighborhood as being undirected; relations are navigated in
both directions. Not considering directionality is powerful: It allows to eventually ac-
cess and score all model elements, provided the model is connected. (A2) The weight-
ing factor embodies the intuition that some relations imply a stronger coherence than
others. An example is composition in UML, which binds the life cycles of elements
together. (A3) We modified the scoring formula to reflect our intuition of reinforcement
and specificity. The enumerator rewards a large overlap of the set of scored elements
and those related to the element being scored, promoting high specificity and high re-
inforcement. The denominator punishes high connectivity of elements being analyzed,
i.e., low specificity, and elements being scored, i.e., low reinforcement.

Step 3: Element Assignment. A splitting suggestion Sug is constructed by assigning
suggested model elements to sub-models. When the complete split is desired, i.e., φ =
true, each element is put into the sub-model for which it has the highest score. Ties
are broken by selecting one at random. This guarantees that each element is assigned
to exactly one sub-model. For a partial split, i.e., φ = false, an element is assigned to
a sub-model only if its score exceeds the user-provided threshold value π. As a result,
each element is assigned to zero or one sub-models.

Proposition 1. For a splittable model M , the algorithm described in this section com-
putes a model split Split(M) as defined in Def. 3.

Splitting Models Using Information Retrieval and Model Crawling Techniques 55

Input: M = (E,R, T, src, trg, type) : Model
Input: SubDocs: A set of i target sub-model descriptions
Input: Score : ((1..i) × E)→ [0, 1]: Map of (sub-model number, element) pairs to scores
Constant: w : T → (0, 1]: Weighting parameters for relationship types
Constant: α ∈ (0, 1]: Calibration parameter
Output: Score : ((1..i) × E)→ [0, 1]

1 function CRAWLMODEL(M , SubDocs, Score)
2 for each 1 ≤ j ≤ i do
3 while ∃x, y ∈ E s.t. related(x, y) ∧ (Score(j, x) > 0) ∧ (Score(j, y) = 0) do
4 for each t ∈ T do
5 Var Scored ← {x ∈ E | Score(j, x) > 0}
6 for each x ∈ Scored do
7 Var OneHop ← {y ∈ E | relatedt(x, y)}
8 for y ∈ OneHop \ Scored do
9 Var TwoHop ← {z ∈ E | relatedt(z, y)}

10 Score.put((j, y),(Score(j,x) ∗ |TwoHop ∩ Scored|
|OneHop| ∗ |TwoHop| ∗ w(t))α)

11 return Score

Fig. 4. Algorithm 1: Crawl model

Table 1. Subject models

Example Decomposition Type Sub- Classes, Assoc. Comp. Aggr. Gener. Interf.
Models Interfaces Real.

HSM Diagram split 3 28 10 5 4 16 0
GMF Sub-model decomposition 4 156 62 101 0 70 65
UML Package decomposition 14 242 283 213 0 205 0
WASL Package decomposition 4 30 18 13 0 14 0
WebML Package decomposition 2 23 11 13 0 12 0
R2ML Package decomposition 6 104 96 27 0 76 0

Proof sketch: In step 3, each model element is assigned to at most one sub-model.
Thus, all pairs of sub-models eventually have disjoint sets of model elements, as re-
quired by Def. 3. The resulting sub-models satisfy all constraints satisfied by M because
M is splittable (Def. 4).

5 Experimental Settings

Our goal is to study the applicability and the accuracy of model splitting techniques
when applied to real-life models. In this section, we describe our experimental setting.
We focus the evaluation on two research questions: RQ1: How useful is the incremental
approach for model splitting? and RQ2: How accurate is the automatic splitting?

5.1 Subjects
We chose subject models for our evaluation based on the following criteria: (1) the
models should be splittable, as per Def. 4, modulo trivial pre- and post-processing; (2)

56 D. Strüber et al.

we have access to an existing, hand-made splitting of the model which can be used
for assessing our results; and (3) the splitting is documented, so that we can extract
descriptions of the desired sub-models without introducing evaluator bias.

We selected six models that satisfy these criteria. The first four of these were known
to the authors (convenience sampling); the last two were obtained by scanning the At-
lanMod Zoo on-line collection of meta-models3. All models were either initially cap-
tured in UML or transformed from EMF to UML. The subjects are shown in
Table 1 along with their particular decomposition types and metrics: The number of
sub-models, classes and interfaces, associations, compositions, aggregations, general-
izations, and interface realizations.

The first model, HSM [7], comprises three different diagrams and was already de-
scribed in Sec. 1. Textual descriptions of the sub-models were extracted from [7]. The
second, GMF4, is a meta-model for the specification of graphical editors, consisting of
four viewpoint-specific sub-models. Three out of four textual descriptions of the sub-
models were obtained from the user documentation on the GMF website. One miss-
ing description was taken from a tutorial web site for Eclipse developers5. The UML
meta-model6 is organized into 14 packages. The descriptions of these packages were ex-
tracted from the overview sections in the UML specification. The description of the four
WASL packages was extracted from [16]. The description of the two WebML packages
was obtained from the online documentation. Finally, R2ML is a markup language de-
signed for rule interchange between systems and tools. It comprises six packages, each
documented in [15].

The second and the third columns in Table 1 list the decomposition type and the
number of target sub-models for each of the subjects. The last four columns present the
size of the subject models in terms of the number of classes and relationships.

5.2 Methodology and Measurement

To investigate RQ1, we performed a qualitative analysis using a case study (Sec. 6.1)
while for RQ2, we performed a set of quantitative experiments (Sec. 6.2). To evaluate
the accuracy of our splitting technique, we used the following metrics:

1. Expected: the number of elements in the predetermined result, i.e., sub-model.
2. Reported: the number of elements assigned to the sub-model.
3. Correct: the number of elements correctly assigned to the sub-model.
4. Precision: the fraction of relevant elements among those reported, calculated as

Correct
Reported .

5. Recall: the fraction of all relevant elements reported, calculated as Correct
Expected .

6. F-measure: a harmonized measure combining precision and recall, whose value
is high if both precision and recall are high, calculated as 2×Precision×Recall

Precision+Recall . This
measure is usually used to evaluate the accuracy of a technique as it does not allow
trading-off precision for recall and vice versa.

3 http://www.emn.fr/z-info/atlanmod/index.php/Zoos
4 http://www.eclipse.org/modeling/gmp/
5 http://www.vogella.com/articles/EclipseEMF/article.html
6 http://www.omg.org/spec/UML/2.5/Beta1/

Splitting Models Using Information Retrieval and Model Crawling Techniques 57

Table 2. Parameter assignment for class models

Association Aggregation Composition Generalization
Interface

α
Realization

0.04 0.13 0.26 0.44 0.13 0.86

5.3 Implementation

We implemented the proposed splitting algorithm for UML class models, considering
the relationship kinds shown in table 1. Our prototype implementation is written in Java.
As input, it receives an input model and text files providing the sub-model descriptions
and configuration parameters.

For the IR phase, we used the LSA implementation from the open-source Seman-
ticVectors library7, treating class and interface names as queries, and sub-model de-
scriptions as documents. The crawling phase is performed using a model-type agnostic
graph-based representation allowing us to analyze models of different types. We thus
transformed the input UML models into that internal representation, focusing only on
the elements of interest described above. We disregarded existing package structures
in order to compare our results against them. The output sub-models were then trans-
formed back to UML by creating a designated package for each.

Our technique relies on a number of configuration parameters described in Sec. 4:
the calibration parameter α shaping the distribution of scores and the weight map w
balancing weights of specific relationship types. We fine-tuned these parameters using
the hill climbing optimization technique [6]. Our goal was to find a single combination
of parameter values yielding the best average accuracy for all cases. The motivation
for doing so was the premise that a configuration that achieved good results on most
members of a set of unrelated class models might produce good results on other class
models, too. The results are summarized in Table 2.

6 Results

In this section, we discuss our evaluation results, individually addressing each of the
research questions.

6.1 RQ1: How Useful is the Incremental Approach for Model Splitting?

We evaluate this research question on a case study based on the Graphical Modeling
Framework (GMF). GMF comprises four sub-models: Domain, Graphical, Tooling,
and Mapping. While the sub-models of GMF are already known, they may not neces-
sarily be explicitly present in historically grown meta-models comparable to GMF. We
assume that the person in charge of splitting the model is aware of two major view-
points, Domain and Graphical, and wants to discover the remaining ones. She provides
the meta-model and describes the sub-models as follows: “Sub-model Domain contains

7 http://code.google.com/p/semanticvectors/

58 D. Strüber et al.

the information about the defined classes. It shows a root object representing the whole
model. This model has children which represent the packages, whose children represent
the classes, while the children of the classes represent the attributes of these classes.
Sub-model Graphical is used to describe composition of figures forming diagram ele-
ments: node, connection, compartment and label.”

The user decides to begin with an incomplete splitting, since her goal is discovery of
potential candidates for new sub-models. An incomplete splitting creates suggestions
for sub-models Domain, Graphical as well as a “Rest” – for elements that were not as-
signed to either of the first two because they did not score above a predefined threshold
value. The user can control the size of the Rest part by adjusting the threshold value ac-
cording to her understanding of the model. After a suitable splitting is obtained, the Rest
part contains the following elements: ContributionItem, AuditedMetricTarget, DomainEle-
mentTarget, Image, Palette, BundleImage, DefaultImage, ToolGroup, MenuAction, MetricRule,
NotationElementTarget, ToolRegistry. From the inspection of these, the user concludes that
a portion of the monolithic model seems to be concerned with tooling aspects of graph-
ical editors comprising different kinds of toolbars, menu items, and palettes aligned
around the graphical canvas. She describes this intuition: “Sub-model Tooling includes
the definitions of a Palette, MenuActions, and other UI actions. The palette consists of
basic tools being organized in ToolGroups and assigned to a ToolRegistry.”

A next iteration of splitting is performed. This time, the Rest comprises only four
items: MetricRule, DomainElementTarget, NotationElementTarget, AuditedMetricTarget. Three
out of these four elements signify a notion of defining relationships between elements
of already known sub-models. She concludes that a separate sub-model is required for
defining the integration and interrelation of individual sub-models. She performs a third
and last splitting after providing a final sub-model description: “Sub-model Mapping
binds the aspects of editor specification together. To define a mapping, the user cre-
ates elements such as NotationElementTarget and DomainElementTarget establishing
an assignment between domain and notational elements.”

To investigate RQ1 we further split it into two research questions: RQ1.1: Does the
accuracy of splitting improve with each iteration? and RQ1.2: Does the approach assist
the user in identifying missing sub-models?

RQ1.1: This question can be explored by considering the delta of each sub-model’s F-
measure during multiple incremental splitting steps. As shown in Table 3, the increase
of accuracy is monotonic in all sub-models! The same threshold value was used for
all splits. The discovery process not only helped the user to discover the desired sub-
models but also to create short sub-model descriptions which can later be used for
documentation.

RQ1.2: In the first query, the Rest part has 12 elements, whereas in the original model,
its size was 139. All 12 elements actually belong to the yet undiscovered sub-models,
Tooling and Mapping. Thus, we are able to conclude that the user was successfully
guided to concentrate on discovering these sub-models without being distracted by con-
tents of those sub-models she knew about upfront.

Splitting Models Using Information Retrieval and Model Crawling Techniques 59

Table 3. F-Measure during three runs of incremental splitting

Run Domain Graphical Tooling Mapping
1 80% 77% – –
2 80% 84% 90% –
3 86% 94% 90% 68%

Table 4. Accuracy of model splitting

1: IR Only 2: IR + Plain 3: IR + Undirected 4: Overall
Prec. Recall F-M. Prec. Recall F-M. Prec. Recall F-M. Prec. Recall F-M.

HSM 93% 42% 56% 93% 53% 67% 78% 78% 75% 90% 92% 89%
GMF 100% 9% 17% 99% 30% 38% 68% 72% 68% 86% 87% 86%
UML 57% 21% 24% 37% 20% 22% 34% 38% 30% 50% 58% 48%
WASL 88% 48% 61% 72% 29% 38% 68% 64% 63% 92% 91% 89%
WebML 100% 37% 52% 100% 40% 56% 88% 94% 90% 93% 97% 95%
R2ML 81% 22% 32% 74% 30% 30% 46% 49% 42% 75% 77% 74%
UMLfunct 67% 22% 30% 76% 24% 33% 64% 66% 61% 84% 80% 80%

6.2 RQ2: How Accurate is the Automatic Splitting?

We investigate RQ2 by answering two research questions: RQ2.1: What is the overall
accuracy of the splitting approach? and RQ2.2: What is the relative contribution of
individual aspects of the splitting algorithm on the overall quality of the results?

RQ2.1: Column 4 in Table 4 presents average precision, recall and F-measure of our
automated technique for each of the subject models. For five out of the six models, the
achieved level of accuracy in terms of F-measure was good to excellent (74%-95%).
However, the result for UML was not as good (48%). Detailed inspection of this model
revealed that package organization of UML has a special, centralized structure: it is
based on a set of global hub packages such as CommonStructure or CommonBehavior
that provide basic elements to packages with more specific functionality such as Use-
Case or StateMachine. Hub packages are strongly coupled with most other packages,
i.e., they have a low ratio of inter- to intra-relations. For example, the class Element is a
transitive superclass for all model elements. This violation of the software engineering
principle of low coupling hinders our topology-based approach for splitting.

To evaluate whether our algorithm produces meaningful results except for hubs, we
derived a sub-model of UML which is restricted only to the functional packages. This
sub-model, umlfunct, comprises 10 out of 14 packages and 188 out of 242 model ele-
ments of UML. As shown in Table 4, the accuracy results of umlfunctwere similar to the
five successful case studies (80%).

RQ2.2: Columns 1, 2 and 3 of Table 4 list contributions of individual steps of the
algorithm and of the adjustments (A1-3) described in Sec. 4. The results after the IR
phase are shown in column 1. Compared to the overall quality of the algorithm (column
4), the results are constantly worse in terms of the F-measure, due to low recall values.
That is, IR alone is unable to find a sufficient number of relevant elements.

60 D. Strüber et al.

In column 2, we present the results of IR augmented with basic crawling which
respects directionality, i.e., does not navigate relations from their inverse end. This ver-
sion is similar to the crawling technique proposed by Suade but adjusted to operate on
models rather than on code-level artifacts. The results are again worse than those of the
overall technique due to low recall values. Interestingly, in some cases, e.g., WASL, the
results are also worse than those of the plain IR technique in terms of both precision and
recall, making the scoring schema related to this crawling strategy really inefficient.

Column 3 shows the results when crawling discards directionality, i.e., applies A1.
This strategy results in a significant improvement in recall and the overall F-measure
compared to the previous approach, but comes together with some decrease in precision.

Column 4 shows the results when the previous approach is extended with scoring
modifications (A2-A3). This approach is clearly superior to the previous ones in terms
of both precision and recall, and, as a consequence, of the overall F-measure.

We conclude that the basic crawling technique that worked well for code in case
of Suade is not directly applicable to models, while our improvements allowed the
algorithm to reach high accuracy in terms of both precision and recall.

6.3 Threats to Validity

Threats to external validity are most significant for our work: the results of our study
might not generalize to other cases. Moreover, because we used a limited number of
subjects, the configuration parameters might not generalize without an appropriate tun-
ing. We attempted to mitigate this threat by using real-life case studies of consider-
able size from various application domains. The ability to select appropriate sub-model
descriptions also influences the general applicability of our results. We attempted to
mitigate this threat by using descriptions publicly available in online documentation.

7 Related Work

In this section, we compare our approach with related work.

Formal Approaches to Model Decomposition. A formally founded approach to model
splitting was investigated in [3]. This approach uses strongly connected components
(SCCs) to calculate the space of possible decompositions. The user of the technique
may either examine the set of all SCCs or try to find reasonable unions of SCCs ac-
cording to her needs. In a recent publication [5], the same authors rule out invalid de-
compositions by providing precise conditions for the splitting of models conforming to
arbitrary meta-models. This work is orthogonal to ours: Our technique requires a basic
notion of a model being splittable, mostly motivated by the need to split class models
and meta-models.

Another formal approach to model splitting is discussed in [13]: The authors show
that a split of a monolithic meta-model into a set of model components with export and
import interfaces can be propagated for the automatic split of instances of the meta-
model. However, this technique does not automate the meta-model splitting; the user
has to assign model elements to target components by hand.

Graph Clustering for Meta-models and Architecture Models. Graph clustering is the
activity of finding a partition of a given graph into a set of sub-graphs based on a given

Splitting Models Using Information Retrieval and Model Crawling Techniques 61

objective. Voigt [14] uses graph clustering to provide a divide-and-conquerapproach for
the matching of meta-models of 1 million elements. Of the different graph clustering
algorithms, the author chose Planar Edge Separator (PES) for its run-time performance,
and then adapted it to meta-model matching. Like us, he provides weighting constants
for specific relationships kinds; yet [14] only presents the values of these constants and
does not evaluate their impact on the quality of the match. From a software engineering
perspective, the main drawback of this approach is that the user cannot influence the
decomposition in terms of the concepts represented in the resulting sub-models. The
same objection may be raised for the meta-model splitting tool proposed in [12]. Our
approach bases the decomposition on user description of the desired sub-models, thus
avoiding the need for the user to comprehend and classify the resulting components.

The architecture restructuring technique by Streekmann [11] is most similar to our
approach. This technique assumes a legacy architecture that is to be replaced by an im-
proved one. Similar to our technique, the starting point for the new organization is a
set of target components together with a set of seeds ([11] calls them initial mappings)
from which the content is derived. Yet, unlike in our approach, these seeds are speci-
fied manually by the developer. The clustering is performed by applying a traditional
hierarchical clustering algorithm assigning model elements to components. The algo-
rithm supports the weighting of different types of relationships; tuning these strongly
impacts the quality of the decomposition. For the scenarios given in [11], the weight-
ing differs from case to case significantly. In this work, in turn, we were able to find
a specific setting of values that produced good results for an (albeit small) selection
of unrelated class models. Streekmann also discusses algorithm stability w.r.t. arbitrary
decisions made by it. During hierarchical clustering, once two elements are assigned to
the same cluster (which, in the case of multiple assignment options, may be an arbitrary
choice), this decision is not reversible. Arbitrary decisions in this style do not occur in
our approach since we calculate relevance scorings for each sub-model individually.

Model Slicing. Model slicing is a technique that computes a fragment of the model
specified by a property. In the approach in [1], slicing of a UML class model results in
a sub-model which is either strict, i.e., it satisfies all structural constraints imposed by
the meta-model, or soft, if conformity constraints are relaxed in exchange of additional
features. For example, slicing a class model can select a class and all of its subclasses,
or a class and its supertypes within radius 1, etc. Compared to model splitting, model
slicing concentrates on computing a sub-model of interest, ignoring the remainder of
the model. In contrast, we use textual descriptions as input to IR to identify sub-models.
The techniques are orthogonal and can be combined, as we plan to do in the future.

8 Conclusions and Future Work

Splitting large monolithic models into disjoint sub-models can improve comprehensi-
bility and facilitate distributed development. In this paper, we proposed an incremental
approach for model splitting, supported by an automated technique that relies on infor-
mation retrieval and model crawling. Our technique was inspired by code-level feature
location approaches which we extended and adapted to operate on model-level artifacts.
We demonstrated the feasibility of our approach and a high accuracy of the automated
model splitting technique on a number of real-life case studies.

62 D. Strüber et al.

As part of future work, we intend to enhance our technique with additional types of
analysis, e.g., considering cohesion and coupling metrics when building sub-models.
We also plan to extend our approach to consider information obtained by analyzing
additional model elements such as class attributes, methods and their behavior.

In addition, we are interested in further investigating the impact of sub-model de-
scriptions on the overall accuracy of our approach and in suggesting strategies both for
identifying good descriptions and for improving existing ones. Further involving the
user in the splitting process, e.g., allowing her to provide partial lists of elements to be
present (absent) in particular sub-models, might improve the results of the automated
analysis significantly. We aim to explore this direction in the future.

Acknowledgements. We wish to thank Martin Robillard for making the source code
of Suade available to us and the anonymous reviewers for their valuable comments.

References
1. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Modeling Model Slicers. In: Whit-

tle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 62–76. Springer,
Heidelberg (2011)

2. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature Location in Source Code: A
Taxonomy and Survey. Journal of Software: Evolution and Process 25(1), 53–95 (2013)

3. Kelsen, P., Ma, Q., Glodt, C.: Models Within Models: Taming Model Complexity Using the
Sub-Model Lattice. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603,
pp. 171–185. Springer, Heidelberg (2011)

4. Landauer, T.K., Foltz, P.W., Laham, D.: An Introduction to Latent Semantic Analysis. Dis-
course Processes (25), 259–284 (1998)

5. Ma, Q., Kelsen, P., Glodt, C.: A Generic Model Decomposition Technique and Its Applica-
tion to the Eclipse Modeling Framework. J. Soft. & Sys. Modeling, 1–32 (2013)

6. Pitsoulis, L., Resende, M.: Handbook of Applied Optimization. Oxford Univ. Press (2002)
7. Rad, Y.T., Jabbari, R.: Use of Global Consistency Checking for Exploring and Refining Re-

lationships between Distributed Models: A Case Study. Master’s thesis, Blekinge Institute of
Technology, School of Computing (January 2012)

8. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge Univ. Press (2011)
9. Robillard, M.P.: Automatic Generation of Suggestions for Program Investigation. In: Proc.

of ESEC/FSE 2013, pp. 11–20 (2005)
10. Rubin, J., Chechik, M.: A Survey of Feature Location Techniques. In: Reinhartz-Berger, I., et

al. (eds.) Domain Engineering: Product Lines, Conceptual Models, and Languages. Springer
(2013)

11. Streekmann, N.: Clustering-Based Support for Software Architecture Restructuring. Springer
(2011)

12. Strüber, D., Selter, M., Taentzer, G.: Tool Support for Clustering Large Meta-models. In:
Proc. of BigMDE 2013 (2013)

13. Strüber, D., Taentzer, G., Jurack, S., Schäfer, T.: Towards a Distributed Modeling Process
Based on Composite Models. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013).
LNCS, vol. 7793, pp. 6–20. Springer, Heidelberg (2013)

14. Voigt, K.: Structural Graph-based Metamodel Matching. PhD thesis, Univ. of Dresden (2011)
15. Wagner, G., Giurca, A., Lukichev, S.: A Usable Interchange Format for Rich Syntax Rules

Integrating OCL, RuleML and SWRL. In: Proc. of WSh. Reasoning on the Web (2006)
16. Wolffgang, U.: Multi-platform Model-driven Software Development of Web Applications.

In: ICSOFT 2011, vol. 2, pp. 162–171 (2011)
17. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: SNIAFL: Towards a Static Noninteractive

Approach to Feature Location. ACM TOSEM 15, 195–226 (2006)

Sound Merging and Differencing
for Class Diagrams

Uli Fahrenberg1, Mathieu Acher1,2, Axel Legay1, and Andrzej Wąsowski3,�

1 IRISA / Inria Rennes, France
2 University of Rennes 1, France

3 IT University of Copenhagen, Denmark

Abstract. Class diagrams are among the most popular modeling lan-
guages in industrial use. In a model-driven development process, class di-
agrams evolve, so it is important to be able to assess differences between
revisions, as well as to propagate differences using suitable merge oper-
ations. Existing differencing and merging methods are mainly syntactic,
concentrating on edit operations applied to model elements, or they are
based on sampling: enumerating some examples of instances which char-
acterize the difference between two diagrams. This paper presents the
first known (to the best of our knowledge) automatic model merging and
differencing operators supported by a formal semantic theory guaran-
teeing that they are semantically sound. All instances of the merge of a
model and its difference with another model are automatically instances
of the second model. The differences we synthesize are represented using
class diagram notation (not edits, or instances), which allows creation of
a simple yet flexible algebra for diffing and merging. It also allows pre-
senting changes comprehensively, in a notation already known to users.

1 Introduction

Model management is an essential activity in a model-driven development pro-
cess. Numerous tools exist to visualize, validate, transform, refactor, compute
differences, or merge models and structured data. The basic management op-
erations can be combined to realize complex maintenance and design tasks. In
this paper, we consider merging and differencing of models—two crucial manage-
ment operations—for class diagrams, the most popular modeling language used
in the industry [12]. Class diagrams are used to create domain models, struc-
tural system models, and lower level design models. Class diagrams also serve
as meta-models, or abstract syntax types, in implementation of domain specific
languages (DSLs).

Merging. When a single model is not sufficient to capture all the aspects of
a problem or a system, engineers have to merge several models to produce a
single integrated model [11, 13, 19, 20, 23, 25]. Model merging also arises when
factoring out commonalities of different variant models, e.g., following a product
line approach (e.g., see [1, 21, 22]).
� Supported by The Danish Council for Independent Research under Sapere Aude

project VARIETE.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 63–78, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

64 U. Fahrenberg et al.

Employee

Manager Car

manages

managedBy 0..1

1..7

1 1

Employee

Manager

Task

manages

managedBy 0..2

*

1 0..2

Employee

Manager

Task

Car

manages

managedBy 0..1

1..7

1 0..2

1 1

Fig. 1. Two simple class diagrams (above) and their merge (below). Note that the
object models of the merge are precisely the ones which model both individual aspects:
here, the merge is both sound and complete.

Differencing. Models naturally evolve through editing operations (e.g., adding an
inheritance relationship in a class diagram) for refactoring or extending a system.
Computing differences of two revised models has applications in comprehension
of an evolution, identification of instances not supported by the two models [6,
14], etc. Merging and differencing operations can be combined when engineers
have to propagate differences from one version of the model to another, as in the
case of revision control systems.

Key requirements. We highlight two requirements that arise when merging or
differencing models. In many engineering scenarios, the result of a merge or dif-
ference is subject to analysis : automated tools can ensure that certain instances
are still present in the composed diagram; engineers (humans) can visualize the
result and therefore understand the evolution of the system. Another important
requirement is that the result of a merge (resp. difference) advances the design
of a system, so it produces a new model that can later be used in construction.
Again, both automated tools and manual activities can operate over this model.
For instance, code can be generated from a class diagram; engineers can relate
the class diagram to other modeling artefacts or specify a transformation.

The two requirements impact the design of merging and differencing opera-
tions. First, it is beneficial that a merge (resp. difference) of two class diagrams
should be a class diagram—in line with the vision exposed in [10] that a dif-
ference between models should be a model. This allows engineers to visualize
the difference and to manipulate it using the usual tools for working with mod-
els. Second, merge (resp. difference) operations should be ideally both sound
and complete, to enable further precise analysis by automated tools. In partic-
ular, an unsound merge operator can authorize objects (instances) actually not

Sound Merging and Differencing for Class Diagrams 65

conformant to the merged diagrams. Figure 1 introduces a simple example of a
merge between two class diagrams. The result (below) is a class diagram, and
the merge is both sound and complete. (Note that we assume an open-world
semantics, which is consistent with the view semantics used by most modeling
tools, i.e. it attempts to compute a minimal model such that the two original
models can be derived as its views.)

As further discussed in Sect. 2, existing merging or differencing methods,
though extremely useful in practice, do not meet the two requirements. First,
syntactic methods suffer from possible lack of soundness, since they do not take
the semantics into account. Second, enumerative semantic methods (e.g., [15–17])
only synthesize a finite set of instance and are thus not complete. In both meth-
ods, the result is no longer a class diagram, precluding an algebraic combination
of operations or a direct manipulation by tools and engineers.

We follow the methodology presented by us in an earlier work [10]—we develop
the difference operator systematically, via a number of well-defined formal defini-
tion steps. We believe that these steps yield a substantial understanding of what
the differences between diagrams can be (unlike methods that simply encode a
lot of knowledge in a large constraint system solved by an external solver). This
knowledge can later be used to advance language design for structural modeling.

The contributions of the paper include:

– A concise formal semantics for the core language of class diagrams (con-
cise and mathematically mature definitions of such are surprising hard to
find). The semantics relies purely on set theory, which is crucial for avoiding
dependencies on description logics, reasoners and proof systems.

– A formalisation of the standard (conjunctive) merge operator used to com-
pute the conjunction of class diagrams (by “putting them on the same page”).
To the best of our knowledge, no previous such formalisations exist; using
our formalization, we can show that merge is always, automatically, sound.

– An intuitive notion of subtyping which is closely related to the merge oper-
ator (which is the greatest lower bound for subtyping), and a corresponding
notion of a disjunctive merge, which computes disjunctions of class diagrams
(and is the lowest upper bound for subtyping). Using our formalization, we
show that disjunctive merge is semantically complete.

– A compositional algebra for class diagrams: We can show that using only
(conjunctive) merge, all class diagrams can be constructed from a few el-
ementary class diagrams. Together with subtyping, this gives an algebra
which allows for high-level computations with class diagrams.

– A difference operator which computes, in a precise sense, the best possible
approximation to an inverse to conjunctive merge. Our difference operator is
semantically sound, computable entirely automatically, and produces finite
syntactic descriptions of infinite (semantic) differences.

The intended audience are researchers interested in semantics of structural mod-
eling, evolution of meta-models and builders of differencing or merging tools.

We proceed by discussing related work in Sect. 2. Section 3 introduces a sim-
ple abstract syntax for class diagrams, along with subtyping and compositions.

66 U. Fahrenberg et al.

Sect. 4 defines differencing. Both sections work at syntactic level. In Sect. 5, we
justify these constructions by showing that they are semantically sound. We intro-
duce a concise, set-based semantics for class diagrams and show that our operators
respect it. We conclude in Sect. 6, indicating possible variants and extensions.

2 Related Work

Our objective is to represent merges and differences of two class diagrams as a
class diagram, overcoming limitations of enumerative and syntactical methods
in terms of soundness, completeness, and further exploitation by engineers. We
achieve this by developing syntactic methods (with sound theoretical basis),
which guarantee representation of difference in one description as a diagram.

Limitations of existing syntactic approaches. A syntactic approach to differ-
encing operates purely by manipulating syntactic elements of diagrams, mostly
without paying attention whether these manipulations are sound with respect to
semantics of the language (for example that they do not ignore some instances).

Syntactic differencing methods are extremely useful in practice, for exam-
ple, users can visualize a set of syntactic edit operations (e.g., create, modify,
delete [3]) and easily understand the evolution of two models. Most of the stud-
ies in the field of model differencing (see, e.g., [6]) present syntactic differencing
at either the concrete or the abstract syntax level. However, syntactic meth-
ods are inherently incomplete and unsound. They may not be able to expose
and represent the semantic (meaningful) differences between two versions of a
class diagram. They can also report false positives by operating at the syntac-
tical level. The incompleteness and unsoundness can both disturb automated
analysis and a further exploitation by an engineer.

Limitations of enumerative approaches. As argued in some papers and illustrated
for some formalisms [2, 7, 10, 15–17], models that are syntactically very similar
may induce very different semantics, and a list of differences should be best ad-
dressed semantically. Recently, semantic approaches have been proposed which
enumerate some examples of instances of one model that are not instances of the
other [17]. For instance, Maoz et al. tackle the problem of semantic model differ-
encing, specifically for class and activity diagrams [15, 16]. The cddiff operator
for class diagrams [16] computes diff witnesses using the Alloy Analyzer, a solver
for relational logic with transitive closure. For the addiff operator for activity
diagrams, they present algorithms that take as input activity diagrams [15]. The
advantage of enumerative methods is that they operate at the semantic level
and are sound by construction: no false positives can be reported. However they
are clearly incomplete since only a small, finite number of examples can be syn-
thesized. In fact, the set of instances in the difference might well be infinite. A
related problem is that engineers cannot visualize and manipulate the (infinite)
set of witnesses—a concrete and compact representation is missing. It also pre-
cludes an algebraic combination of merging and differencing operations, as in
the case of versioning control systems (see Fig. 3, page 72 for more details).

Sound Merging and Differencing for Class Diagrams 67

Other approaches and existing tools. Model matching is another important
related problem [6, 7, 9]. Numerous algorithms and techniques are already in-
tegrated in model-based tools (e.g., see [14, 19, 23]). For simplicity the theoret-
ical framework we develop assume a basic matching strategy (based on names,
see next section). Numerous “diff” or merging tools (e.g., EMF Diff1, Kom-
pose [11,20], Epsilon [13], UMLDiff [25], TReMer+ [19,23], etc.) offer the means
to specify user directives (using a specific language or an API). Users can over-
ride (customize) the default behaviour of the merging or differencing algorithm
and thus handle the semantics of the models. However, the manual specification,
if not properly defined, does not guarantee semantic properties and can lead to
unsound or incomplete merging (resp. differencing). The objective of the paper
is precisely to study the soundness and completeness of operations that can be
incorporated into modeling tools. Our approach is both algebraically and seman-
tically justified: to the best of our knowledge, no previous effort guarantees such
properties of merging and differencing of class diagrams. Any matching strat-
egy that defines an equivalence on the space of class names could be naturally
incorporated in our framework.

3 Compositional Algebra of Class Diagrams

We start by introducing an abstract syntax for class diagrams. We remark that
the operators defined in this section are entirely syntactical; no reference to the
semantics of class diagrams is made. The same holds for the properties we expose:
they are proven at the syntactic level. In Sect. 5 we will introduce a semantics for
class diagrams and show that our operators are semantically sound, but their
properties as shown in the present section are completely independent of any
semantics one wishes to give to class diagrams.

Let N be the set of all finite unions of finite or unbounded intervals of nat-
ural numbers (including the empty set of intervals). N is closed under union,
intersection and complementation; let ¬A = �\A be the complement of A∈N .

3.1 Abstract Syntax

Let Σc, Σa and Σe be disjoint infinite sets of names, for classes, associations and
association ends, respectively.

Definition 1. A class diagram is a tuple C = (cla, asc, gen, disj, ccard, aends,
acards) consisting of

(i) A finite set cla ⊆ Σc of classes,
(ii) A finite set asc ⊆ Σa of associations,
(iii) A reflexive transitive relation gen ⊆ cla× cla∪ asc× asc capturing general-

izations between classes and between associations,
(iv) An irreflexive symmetric relation disj ⊆ cla × cla representing class dis-

jointness constraints,
1 http://eclipse.org/diffmerge/

http://eclipse.org/diffmerge/

68 U. Fahrenberg et al.

(v) A mapping ccard : cla→ N encoding class cardinality constraints,
(vi) A partial function aends : asc→ Σe ⇀ cla mapping each association to its

endpoints, and
(vii) A partial function acards : asc→ Σe ⇀ N mapping each association to its

endpoint cardinality constraints.

Also |dom(aends(a))|=2 and dom(acards(a))=dom(aends(a)) for all a∈asc.

Note that we handle generalizations of both classes and associations; this
is common in modern modeling approaches. In the usual concrete syntax of
class diagrams, the generalization relation is essentially transitively reduced, but
in (iii) we require it to be transitively closed, in order to simplify presentation.
Given that the sets of classes and associations are finite, switching between both
viewpoints is just a technicality. Another common assumption in class modeling
is that two classes which do not share a common subclass are disjoint. This
default assumption does not work well with the open-world semantics that we
will build up in this paper. It would make the semantics non-monotonic—adding
a shared subclass would relax constraints on instances. To prevent this, we prefer
to add, in (iv), an explicit representation of binary disjointness constraints in
the abstract syntax. Again, switching between explicit and implicit disjointness
constraints is just a technicality, but it will allow us to simplify presentation
later on. The last condition means that we only consider binary associations.
With this in mind, the function aends (vi) maps the two association ends (or,
more precisely, their names) of each association to their classes. Similarly, the
function acards (vii) associates cardinality constraints to association ends.

As mentioned we will use an open-world semantics, which can be summarized
by the slogan that anything which is not forbidden is allowed. So, intuitively,
there will be no semantic difference between a class c that does not appear
in a given class diagram, and one which does, but has unrestricted cardinality.
Formally, we call a class c ∈ cla in some class diagram C restricted if ccard(c)
= �,
and let rcla ⊆ cla denote the subset of restricted classes.

3.2 Merge

Ultimately, we want to create class diagrams by composing smaller chunks of
them. This reflects the practice of modeling with views, as supported by many
modeling tools (for example Eclipse Modeling Framework, Papyrus, or IBM Ra-
tional Modeler). Users of such tools work with projections of one large single
model represented implicitly in a unified syntax tree. From the users’ perspec-
tive it may often appear that they work with a number of diagrams that are
unified (composed) as if they were put together on the same page, merging en-
tities (e.g., classes) that have the same name. In the following, we propose a
conjunctive merge operator, written �, that composes two diagrams, as if they
were put on the same page, interpreted as views of the same underlying model.

Due to syntactic restrictions, it is not possible for us to merge diagrams that
have the same association with different association ends. Since we only allow

Sound Merging and Differencing for Class Diagrams 69

one name per endpoint in abstract syntax, there is no way to merge different
names. This is consistent with the behavior of common modeling tools, where
different views of the same association always maintain the same end points.

Definition 2. Two class diagrams C1, C2 are said to be composable if it holds
for all a ∈ asc1 ∩ asc2 that aends1(a) = aends2(a).

Definition 3. The (conjunctive) merge of two composable class diagrams C1,
C2 is C� = C1 � C2 defined as follows:

– cla� = cla1 ∪ cla2, asc� = asc1 ∪ asc2, gen� = (gen1 ∪ gen2)∗, disj� =
disj1 ∪ disj2,

– aends� = aends1 ∪ aends2, and

ccard�(c) =

⎧⎪⎨⎪⎩
ccard1(c) if c ∈ cla1 \ cla2,
ccard2(c) if c ∈ cla2 \ cla1,
ccard1(c) ∩ ccard2(c) if c ∈ cla1 ∩ cla2,

acards�(a)(e) =

⎧⎪⎨⎪⎩
acards1(a)(e) if a ∈ asc1 \ asc2,
acards2(a)(e) if a ∈ asc2 \ asc1,
acards1(a)(e) ∩ acards2(a)(e) if a ∈ asc1 ∩ asc2

for all c ∈ cla�, a ∈ asc�, and e ∈ dom(aends(a)).

Intuitively, the above merging attempts to approximate conjunction of class
diagrams. Due to our open-world semantics (“anything which is not mentioned is
unrestricted”), we have to apply a disjunction to the syntactic elements (classes,
associations, etc.) to get a conjunctive merge. The merge in Fig. 1 in the intro-
duction gives a simple example of the operation.

3.3 Subtyping

With the above definitions we have gathered enough structure to propose a
definition of subtyping between two class diagrams:

Definition 4. For class diagrams C1, C2, we say that C1 (syntactically) refines
C2, denoted C1 ≤ C2, if all the following conditions hold:

(i) cla1 ⊇ rcla2, asc1 ⊇ asc2
(C1 is an extension of C2)

(ii) gen1 ⊇ gen2, disj1 ⊇ disj2
(generalization and disjointness constraints are inherited)

(iii) ccard1(c) ⊆ ccard2(c) for all c ∈ rcla2
(class cardinalities are restricted)

(iv) aends1(a) = aends2(a) for all a ∈ asc2
(association ends are preserved)

(v) acards1(a)(e) ⊆ acards2(a)(e) for all a ∈ asc2 and all e ∈ dom(acards2(a))
(association cardinalities are restricted)

70 U. Fahrenberg et al.

Due to the open-world semantics, subtyping on syntactic elements becomes re-
versed subset inclusion. Also, we have to use restricted classes in the inclusion
cla1 ⊇ rcla2 above; otherwise one could easily find subtypings which were not
sound, i.e., where the subtype admits models which the supertype does not.

Our selections of subtyping and merging are strongly related, in the sense that
� is the greatest lower bound for ≤. In practice, this means that the merge does
indeed “behave like a conjunction”.

Theorem 1. For all class diagrams C1, C2, D with C1 and C2 composable, D ≤
C1 � C2 iff D ≤ C1 and D ≤ C2.

We believe that this compatibility of subtyping and merging is of fundamental
importance. Subtyping captures the intuitive notion of constraining the set of
instances during modeling. A merge operator considered without subtyping can
create merges that admit far fewer, or many more, instances than the user would
expect. Introducing the above subtyping preorder on diagrams will later allow us
to follow the method presented in [10] for defining differences. Intuitively, we need
an order because notions of difference, distance and order are intimately related.
It is surprising that so few works on merging and differencing structural models
consider subtypes or other orderings (unlike for behavioral models, e.g. [8]).

Theorem 1 immediately entails that the merge operator has the core properties
expected of composition, viz. commutativity and associativity. Also, merge is
monotonic with respect to the subtyping order, or, in other words, subtyping is
compositional. This is a highly desirable property that introduces some regularity
in the framework.

Theorem 2. The � operator is commutative and associative, and for all class
diagrams C1, C2, D2, D2 with C1 and D1 composable and C2 and D2 composable,
C1 ≤ C2 and D1 ≤ D2 imply C1 �D1 ≤ C2 �D2.

3.4 Class Diagram Algebra

Compositionality allows us to develop an algebra for class diagrams, using a
few elementary diagrams and the composition operator �. What we obtain is a
small structural modeling calculus that is of interest by itself — class diagrams
can be written concisely, in a manner that is friendly to a linear mathematically
oriented text, unlike the concrete syntax representation of class diagrams, and
unlike the rather unwieldy abstract syntax presented in Def. 1.

The calculus is built around a set of elementary class diagrams which are
merged to obtain bigger structures. The elementary diagrams are as follows:

– � = (∅, ∅, ∅, ∅, ∅, ∅, ∅): the empty class diagram that admits all object models;
– 〈cn〉, for c ∈ Σc and n ∈ N : the class diagram with cla = {c}, asc = ∅,

gen = {(c, c)}, disj = ∅, ccard(c) = n, and aends = acards = ∅;
– 〈c1 a

e1 e2

n1 n2
c2〉, for c1, c2 ∈ Σc, e1, e2 ∈ Σe and n1, n2 ∈ N : the class

diagram with cla = {c1, c2}, asc = {a}, gen = {(c1, c1), (c2, c2)}, disj = ∅,
ccard(c1) = ccard(c2) = �, dom(aends(a)) = {e1, e2}, aends(a)(e1) = c1,
aends(a)(e2) = c2, acards(a)(e1) = n1, and acards(a)(e2) = n2;

Sound Merging and Differencing for Class Diagrams 71

� 〈cn〉 〈c1 a
e1 e2

n1 n2
c2〉 〈c1 � �� c2〉 〈c1 // c2〉

Employee

Manager

Task

manages

managedBy 0..1

*

1 0..2
〈E�〉 � 〈T�〉 � 〈M�〉�
〈E

{1} {0,1,2}
T〉 � 〈E ms mB

� {0,1}
M〉

�〈M � �� E〉
�〈E // T〉 � 〈M // T〉

Fig. 2. The five types of elementary class diagrams (above), a simple class diagram
in concrete syntax (below left), and its decomposition into elementary class diagrams
(below right, where we have abbreviated names)

– 〈c1 � �� c2〉, for c1, c2 ∈ Σc: the class diagram with cla = {c1, c2}, asc = ∅,
gen = {(c1, c1), (c2, c2), (c1, c2)}, disj = ∅, ccard(c1) = ccard(c2) = �, and
aends = acards = ∅;

– 〈c1 // c2〉, for c1, c2 ∈ Σc: the class diagram with cla = {c1, c2}, asc = ∅,
gen = {(c1, c1), (c2, c2)}, disj = {(c1, c2), (c2, c1)}, ccard(c1) = ccard(c2) = �,
and aends = acards = ∅.

However simple, the above language of class diagrams is quite powerful—it is
fully expressive in the sense that it can express every finite diagram as a finite
composition; see also Fig. 2 for an example:

Theorem 3. Every class diagram can be written as a finite conjunctive merge
of elementary class diagrams.

4 Difference and Disjunctive Merge

We enrich our algebra with two more operators, difference and disjunctive merge.
The difference operator, which is a formal adjoint to the conjunctive merge, will
have the property that merging a class diagram C1 with a difference C2 � C1
is semantically sound, i.e., the composition C1 � (C2 � C1) is a subtyping of
C2. Later this will translate to a perhaps more intuitive semantic property that
the difference does not admit too many instances; adding them to instances of
diagram C1 still obeys the constraints of C2.

Definition 5. The difference of two composable class diagrams C1, C2 is C� =
C2 � C1 defined as follows:

– cla� = cla2, asc� = asc2 \ asc1, disj� = disj2 \ disj1, and

gen� =
(⋂

{r ⊆ cla2 × cla2 | (gen1 ∪ r)∗ ⊇ gen2}
)∗

,

72 U. Fahrenberg et al.

C

��

≤ D

��

D′ � D �� D′ � D��

C � (D′ � D) ≤ D′

Fig. 3. Use of difference for automatic evolving of subtypes: If C is a subtype of D,
then C merged with the difference D′ � D is a subtype of D′

– aends� = aends2 \ aends1, and

ccard�(c) =

{
ccard2(c) if c /∈ cla1,
ccard2(c) ∪ ¬ccard1(c) otherwise,

acards�(a)(e) =

{
acards2(a)(e) if a /∈ asc1,
acards2(a)(e) ∪ ¬acards1(a)(e) otherwise

for all c ∈ cla�, a ∈ asc�, and e ∈ dom(aends(a)).

Let us give some intuition about the rather complicated formula for gen�:
Like ordinary set difference, e.g. in asc� = asc2 \ asc1, is an adjoint to set union,
what is on the right-hand side of the gen� formula is an adjoint to transitive
union of transitive relations. That is, gen� is the smallest transitive relation for
which (gen�∪gen1)∗ ⊇ gen2. The next theorem states the fundamental property
of the difference operator.

Theorem 4. For all class diagrams C1, C2, C3, C1 � C2 ≤ C3 iff C1 ≤ C3 � C2.
This means that C3 � C2 is the most permissive class diagram for which (C3 �
C2) � C2 ≤ C3 still holds; in that sense, � is the natural diff operator induced
by �. In this sense, � is the most precise difference operator which can be
soundly represented using the class diagram syntax defined in this paper. Since
the language elements that we omit do not deal with restricting those that we
include, there is no hope that using a richer selection of language elements from
the standard set can lead to a better operator. One could, instead, resort to
using Object Constraint Language to obtain more precise differencing.

Example 1. Consider a situation as presented in Fig. 3. We have a class diagram
C which is a subtype of another, D. Now the diagram D is evolved, e.g. by
adding more classes or streamlining its associations, into a new class diagram,
D′. Our abstract properties of composition and difference now ensure that C can
be evolved to a subtyping of D′, automatically, by merging it with D′ �D:

C � (D′ �D) ≤ D � (D′ �D) ≤ D′ ��

Sound Merging and Differencing for Class Diagrams 73

Employee

Manager

Task

manages

managedBy 0..1

*

1 * Employee

Manager

Task

Car

manages

managedBy 0..2

*

1 0..2

1 1

Employee

Manager

Task

manages

managedBy 0..2

*

1 *

〈E�〉 � 〈T�〉 � 〈M�〉�
〈E {1} �

T〉 � 〈E ms mB

� {0,1} M〉
�〈E // T〉 � 〈M // T〉

Fig. 4. A disjunctive merge of two diagrams (top) presented in concrete syntax (bottom
left) and as a composition of elementary diagrams (bottom right). The overlap between
“Manager” and “Employee” seen in the abstract syntax to the right (no disjointness
constraint) is not visible in the concrete syntax on the left. The classes can overlap due
to the generalization in the rightmost input diagram.

We turn now to another kind of merge operator that can also be induced by
subtyping: a “merge in union mode”, the least upper bound for subtyping:

Definition 6. The disjunctive merge of two composable class diagrams C1, C2
is C� = C1 � C2 defined as follows:

cla� = cla1 ∩ cla2, asc� = asc1 ∩ asc2, gen� = gen1 ∩ gen2
disj� = disj1 ∩ disj2, ccard�(c) = ccard1(c) ∪ ccard2(c)

aends� = aends1 ∩ aends2, acards�(a)(e) = acards1(a)(e) ∪ acards2(a)(e)

for all c ∈ cla�, a ∈ asc�, and e ∈ dom(aends(a)).

Note the “contravariance” again: disjunctive merge becomes a conjunction of
syntactic elements. As expected, � is least upper bound for ≤:

Theorem 5. For all class diagrams C1, C2, D with C1 and C2 composable, C1 �
C2 ≤ D iff C1 ≤ D and C2 ≤ D.

Example 2. Figure 4 shows two variants of the simple class diagram from Fig. 2
together with their disjunctive merge. We see that � extracts precisely the com-
mon features of the two diagrams. Hence disjunctive merge can be used for
factoring out common features in diagrams. ��

5 Semantic Soundness

In this section we give a precise semantics to class diagrams and use this to
show that our constructions of subtyping ≤, composition �, and difference �

74 U. Fahrenberg et al.

are semantically sound. That is, subtypings of a class diagram C have fewer
implementations than C, the implementations of a merge C � D are all also
implementations of both C and D, and the implementations of a difference D�C
merged with C are also implementations of D.

The semantics of a class diagram is given by a set of instance diagrams, or
object models, which implement the class diagram. An instance diagram essen-
tially consists of objects and links which are typed by classes and associations:

Definition 7. An instance diagram is a tuple M = (obj, lnk, oty, lty, lends) of

– A finite set obj of objects,
– A finite set lnk of links,
– A total relation oty ⊆ obj×Σc associating objects with their object types,
– A total relation lty ⊆ lnk×Σa associating links with their link types,
– A partial function lends : lnk→ Σe ⇀ obj mapping each link to its endpoints.

We require that |dom(lends(�))| = 2 for each � ∈ lnk.

We use the common notation “a : A” for object and link typing, instead of
the more cumbersome “(a,A)”. An object type relation specifying one object a
of type A and another, b, of type B, will thus be denoted by oty = {a : A, b : B}.

Definition 8. An instance model M is said to implement a class diagram C,
denoted M |= C, if there exist extended typing relations Oty ⊇ oty, Lty ⊇ lty
such that the following hold:

1. |{o ∈ obj | Oty(o, c)}| ∈ ccard(c) for all c ∈ cla
(class cardinalities are respected)

2. For all o ∈ obj and all c, c′ ∈ cla with Oty(o, c) and gen(c, c′), also Oty(o, c′)
(object types are consistent with generalizations)

3. For all � ∈ lnk and all a, a′ ∈ asc with Lty(�, a) and gen(a, a′), also Lty(�, a′)
(link types are consistent with generalizations)

4. For all � ∈ lnk and all a ∈ asc with Oty(�, a), dom(lends(�)) = dom(aends(a))
(link endpoints inherit their names from their type)

5. For all � ∈ lnk and all a ∈ asc with Lty(�, a), it holds for all e ∈ dom(lends(�))
that Oty(lends(�)(e), aends(a)(e))

(link endpoints are well-typed)
6. For all o ∈ obj, a ∈ asc and e ∈ dom(aends(a)) with Oty(o, aends(a)(e)), we

have |{� ∈ lnk | Lty(�, a) & lends(�)(e) = o}| ∈ acards(a)(e)
(association end cardinalities are respected)

7. There are no o ∈ obj, c, c′ ∈ cla for which disj(c, c′), Oty(o, c) and Oty(o, c′)
(disjointness constraints are respected)

The set of implementations of C is �C� = {M | M |= C}.
The first, and most important, theorem in this section shows that subtyping is

semantically sound. The proof is basically a careful inspection of the conditions
for subtyping and implementation.

Theorem 6. For all class diagrams C1, C2, C1 ≤ C2 implies �C1� ⊆ �C2�.

Sound Merging and Differencing for Class Diagrams 75

We sum up the semantic properties of our operators; all follow easily from
their syntactic properties and Theorem 6. Note that � and � are semantically
sound, i.e., under-approximations, whereas � is semantically complete.

Theorem 7. For all pairs of class diagrams C1, C2: �C1 � C2� ⊆ �C1� ∩ �C2�,�C1 � (C2 � C1)� ⊆ �C2�, and �C1 � C2� ⊇ �C1� ∪ �C2�
Intuitively, Thm. 7 states that our operators behave as expected not only with
respect to the syntactic subtyping, as shown in Sections 3–4, but also with
respect to the semantics (our ultimate goal). Crucially, Thm. 7 follows almost
directly from the theorems of those sections, once we have Thm. 6. So the main
work required to transfer the results of this paper to another semantic variation
for class diagrams, is to obtain the equivalent of Thm. 6 for the new semantics.

Using simple examples, we can show that subtyping and composition are not
semantically complete. For subtyping, we use inconsistency: Let C1 = 〈A∅〉 and
C2 = 〈B∅〉. Then �C1� = �C2� = ∅, but C1
≤ C2, because C2 contains a restricted
class which is not in C1; for the same reason, C2
≤ C1.

This also exposes the fact that ≤ does not have a unique bottom element;
there is no class diagram B such that B ≤ C for all class diagrams C.

For incompleteness of composition, we observe that generalizations can im-
plicitly force object typing in one diagram which is forbidden in another: Let

C1 = 〈A � �� B〉, C2 = 〈B1〉,

then C1 � C2 = 〈A � �� B1〉. Now let M = {a : A, b : B}, the instance model
with one object a of type A and another, b, of type B. ThenM |= C1, as witnessed
by the extended object typing Oty1 = {a : A, a : B, b : B}, andM |= C2, witness
by Oty2 = otyM = {a : A, b : B}. However,M
|= C1 � C2, as any witness to this
would have to include the typing {a : A, a : B, b : B} with two objects of type B.

6 Conclusion and Final Remarks

We have presented a compositional algebra of class diagrams with subtyping,
conjunctive and disjunctive merge and difference. All operators are described by
means of manipulations of minimal syntactic elements of the diagrams, which are
also basic terms of our class diagram algebra. To the best of our knowledge, this is
the first attempt to define these syntactic operations in a provably sound manner.
The operations are all efficiently computable and thus can be automated. The
results of operations are represented in the syntax of the input language (they
are class diagrams themselves), so that they can later be further processed using
regular tooling for class diagrams.

We have worked with a simple core part of the class diagram language, which
has allowed us to include all the technical constructions in the paper. Some
extensions to other language elements are straightforward, some others require
more extensive work. From the point of view of differencing, treating attributes is
relatively simple, e.g. by boxing these as classes and treat them in the same way

76 U. Fahrenberg et al.

as classes. This is somewhat unsatisfactory though, as treating attributes spe-
cially would allow presenting the differences in a more concise and clear manner.
Operations would require also computing differences between their signatures—
we have decided not to discuss this, as it is not specific to structural modeling,
but can be done using techniques for textual programming languages. To han-
dle n-ary associations, one could introduce association classes and treat them
in the same way as we treat regular classes. Allowing association classes to
be evolved into regular classes (and vice-versa) would require more extensive
changes though. Handling abstract classes is not much different from handling
concrete ones, and the same goes for directed associations (vs. undirected ones).
However, computing differences between diagrams where classes are changed
from concrete to abstract, or associations from directed to undirected, or where
association endpoints are moved, seems more challenging. Finally, note that we
have used element identities to match them for the purpose of merging and dif-
ferencing. Clearly, in a real application one should use an externally computed
mapping, using for instance existing matching heuristics.

We have chosen to work with sound approximations for simplicity and clarity.
Experience with building theories for behavioral models shows that a search for
precise (i.e., both sound and complete) refinements and compositions leads to
complex constructions with high computational complexity [4, 5], so it should
only be done once the overall structure and properties of the design space are
well understood on simpler cases. We speculate that more precise operators could
be expressed in our algebra if we had a complementation for class diagrams. Un-
fortunately, in our current framework, complements of class diagrams will need
infinitely many classes, hence are outside the syntax. Alternatively, to overcome
the limitations of the class diagram notation, one can consider using Object
Constraint Language to specify more precise differences and merges. We intend
to investigate these possibilities in future work.

We remark that the semantics we give to class diagrams in this paper is only
one out of a plethora of different existing class diagram semantics which are being
used, c.f. [18]. We have shown that our constructions are semantically sound for
our particular semantics, but this soundness may break if other semantics are
used. However, to check that the constructions are sound, one only needs to see
that subtyping is semantically sound, i.e. that the semantics is monotonic with
respect to subtyping; if this is in place, then all other semantic properties follow.
Hence our work lends itself easily to different semantics configurations [18], a
point we intend to elaborate in the future. The work reported here is part of
a larger project on model management. Our long term objective is to develop
semantically sound (and reasonably complete) model management operations
for other formalisms, beyond class diagrams and feature models [1, 2, 10].

References
1. Acher, M., Combemale, B., Collet, P., Barais, O., Lahire, P., France, R.B.: Com-

posing your compositions of variability models. In: Moreira, A., Schätz, B., Gray,
J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 352–369.
Springer, Heidelberg (2013)

Sound Merging and Differencing for Class Diagrams 77

2. Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P., Merle, P.: Feature
model differences. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.)
CAiSE 2012. LNCS, vol. 7328, pp. 629–645. Springer, Heidelberg (2012)

3. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

4. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: EXPTIME-
complete decision problems for modal and mixed specifications. Electr. Notes
Theor. Comput. Sci. 242(1), 19–33 (2009)

5. Beneš, N., Křetínský, J., Larsen, K.G., Srba, J.: EXPTIME-completeness of thor-
ough refinement on modal transition systems. Inf. Comput. 218, 54–68 (2012)

6. Bibliography on comparison and versioning of software models,
http://pi.informatik.uni-siegen.de/CVSM

7. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: GaMMa 2006, pp. 5–12. ACM (2006)

8. Brunet, G., Chechik, M., Uchitel, S.: Properties of behavioural model merging. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 98–114.
Springer, Heidelberg (2006)

9. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
10. Fahrenberg, U., Legay, A., Wąsowski, A.: Vision paper: Make a difference (seman-

tically). In: Whittle, et al. (eds.) [24], pp. 490–500
11. France, R.B., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing support for

model composition in metamodels. In: EDOC, pp. 253–266. IEEE (2007)
12. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment

of MDE in industry. In: ICSE 2011. ACM (2011)
13. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with the epsilon merg-

ing language (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

14. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: An analysis of approaches to support model differencing. In:
CVSM/ICSE, pp. 1–6. IEEE (2009)

15. Maoz, S., Ringert, J.O., Rumpe, B.: ADDiff: semantic differencing for activity
diagrams. In: ESEC/FSE, pp. 179–189. ACM (2011)

16. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: Semantic differencing for class dia-
grams. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer,
Heidelberg (2011)

17. Maoz, S., Ringert, J.O., Rumpe, B.: A manifesto for semantic model differencing.
In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 194–203.
Springer, Heidelberg (2011)

18. Maoz, S., Ringert, J.O., Rumpe, B.: Semantically configurable consistency analysis
for class and object diagrams. In: Whittle, et al. (eds.) [24], pp. 153–167

19. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: ICSE, pp. 54–64. IEEE (2007)

20. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class mod-
els. In: Rashid, A., Akşit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880,
pp. 75–105. Springer, Heidelberg (2006)

http://pi.informatik.uni-siegen.de/CVSM

78 U. Fahrenberg et al.

21. Rubin, J., Chechik, M.: Combining related products into product lines. In: de
Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 285–300. Springer,
Heidelberg (2012)

22. Rubin, J., Chechik, M.: Quality of merge-refactorings for product lines. In: Cortel-
lessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 83–98. Springer, Hei-
delberg (2013)

23. Sabetzadeh, M., Nejati, S., Easterbrook, S.M., Chechik, M.: Global consistency
checking of distributed models with TReMer+. In: ICSE, pp. 815–818 (2008)

24. Whittle, J., Clark, T., Kühne, T. (eds.): MODELS 2011. LNCS, vol. 6981. Springer,
Heidelberg (2011)

25. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-
ing. In: ASE, pp. 54–65. ACM (2005)

Heterogeneous and Asynchronous Networks
of Timed Systems

José Luis Fiadeiro1 and Antónia Lopes2

1 Dep. of Computer Science, Royal Holloway University of London, UK
jose.fiadeiro@rhul.ac.uk

2 Dep. of Informatics, Faculty of Sciences, University of Lisbon, Portugal
mal@di.fc.ul.pt

Abstract. We present a component algebra and an associated logic for heteroge-
nous timed systems. The components of the algebra are asynchronous networks
of processes that abstract the behaviour of machines that execute according to the
clock granularity of the network node in which they are placed and communicate
asynchronously with machines at other nodes. The main novelty of our theory is
that not all network nodes need to have the same clock granularity: we investi-
gate conditions under which we can guarantee, a priori, that any interconnections
generated at run time through dynamic binding of machines with different clock
granularities leads to a consistent orchestration of the whole system. Finally, we
investigate which logics can support specifications for this component algebra.

1 Introduction

The software systems that are now operating in cyberspace are best modelled as net-
works of machines, where each machine performs local computations and can be inter-
connected dynamically (at run time) to other machines to achieve some goal. Because of
the distributed nature of such networks, it does not make sense to assume that all nodes
of the network, where machines execute, have the same clock granularity. This means
that interconnections can only be established asynchronously and through communica-
tion channels (other machines) that can orchestrate the interactions between machines
according to the clock granularities of the nodes in which they execute.

In this paper, we put forward a component algebra for such heterogeneous and asyn-
chronous networks of timed systems. Our algebra abstracts the behaviour of timed ma-
chines as processes whose traces are generated according to the clock granularity of the
network node in which they execute. We define a composition operator through which
networks can be interconnected and investigate properties of such networks, namely
conditions that guarantee consistency, i.e., that the interconnected processes collectively
generate a non-empty behaviour. Finally, we discuss how specifications for this compo-
nent algebra can be supported through a continuous-semantics metric temporal logic.

Contributions. In [6] we put forward a component and interface algebra for service-
oriented computing that is based on asynchronous networks of processes interconnected
through communication channels. A first extension of this model for timed systems was
presented in [4] based on a homogeneous notion of time – all processes execute accord-
ing to the same time granularity. The present extension to a heterogeneous setting is not

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 79–93, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

80 J.L. Fiadeiro and A. Lopes

trivial (which justifies this paper) because, where the algebraic properties of composi-
tion in an homogenous-time domain generalise those of the un-timed domain presented
in [6], interconnection in a heterogeneous setting is much more involved – indeed, not
even always admissible. The main challenges come from (a) the fact that the topological
properties of timed traces are more intricate than those of un-timed ones, which requires
the definition of a new time-related refinement relation and a new time-related closure
operator that does not reduce to the Cantor topology of trace-based domains; and (b) the
fact that, in a heterogeneous timed domain, different clock granularities interfere with
the way processes need to be coordinated in order to ensure that they can cooperate.

We have also generalised the notion of asynchronous relational network (ARN) pro-
posed in [6] so as to capture a larger class of systems where coordination of interactions
takes place among groups of processes, not just between pairs of processes. This exten-
sion requires a different algebraic structure for the networks, which is why we moved
from graphs to hypergraphs. From a software engineering point of view, this shift en-
ables us to provide a much richer mathematical model where, essential properties of
run-time interconnections (such as consistency) can still be formulated and analysed,
i.e., the ability for systems to work effectively when interconnected. We provide com-
positionality results for consistency through criteria that can be checked on processes at
design time that guarantee the consistency of interconnections when performed at run
time across different clock granularities.

In terms of logics through which the behaviour of machines can be specified or anal-
ysed, we abandoned the implicit-time model used in [6], which is not realistic for the
class of applications that need to run across heterogeneous time domains, in favour of a
metric temporal logic [10]. The challenges here concern the requirements of the com-
ponent model for topological notions of closure that go beyond the traditional safety-
related ones, which led us to adopt a continuous semantics with a new operator that
captures the required notion of closure.

Related Work. Several researchers have recently addressed discrete timed systems with
heterogeneous clock granularities but the focus has not been on the the development of
theories of composability for these systems as we do in this paper. An exception is [11],
which studies when the composition of heterogeneous tag machines [2] is sound and
complete. However, the notion of composition considered therein is more relaxed than
ours (allowing for the delay between events to be modified) and, as a consequence, not
appropriate for addressing global properties of systems interconnected at run time as
actually implemented, which we do by adopting instead a trace-based model in which
composition corresponds to intersection. A trace-based model has also the advantage of
abstracting from the specificities of the different classes of automata that can be chosen
as models of implementations. Because un-timed networks were investigated in [6] over
traces, adopting a similar model for timed ones also allows us to better appreciate the
differences between un-timed and timed domains.

Formal clock calculi have also been developed that address heterogeneity, for ex-
ample [7] in which a synchronous data-flow language is proposed that supports the
modelling of multi-periodic systems and the refinement of clock granularities in a way
that is similar to what we propose this paper. However, the main focus of such calculi

Heterogeneous and Asynchronous Networks of Timed System 81

has been on modelling and simulation, not so much on the challenges that heterogeneity
raises on run-time interconnection of systems and, therefore, they are too specific on
aspects that do not directly impact on system properties such as consistency. In fact, to
the best of our knowledge, ours is the first model that adopts networks as components
of systems and, therefore, addresses (run-time) compositionality at the network level.

Several frameworks have also been proposed for component/service-based software
systems that exhibit timed properties, although not in a heterogeneous-time context.
Algebraic frameworks such as [5,8,9,13] address global properties similar to consis-
tency, such as compatibility – whether the conversation protocols (modelled as timed
automata) followed by the peers in a choreography lead to deadlocks or time conflicts
that prevent them from completing (e.g., reaching final states). However, the focus in
this context is on the modelling of the (timed) conversation protocols that characterise
the global behaviour of a (fixed) number of peers. What we investigate in this paper
is, instead, conditions through which we can guarantee that the orchestrations of com-
ponents, whose interconnection is performed at run time, can work together. This has
implications on the properties that are required of networks in order to guarantee con-
sistency. An example is the way time is managed: in choreography, this is done globally
for the (fixed) set of peers; in our approach, this needs to be done locally at the level
of each process because composition is dynamic through run-time binding to machines
that may be executing in platforms where the clock granularity is different.

2 Preliminaries

We start by recalling a few concepts related to traces and their Cantor topology. Given a
set A, a trace λ over A is an element of Aω. We denote by λ(i) the (i+1)-th element of
λ. A segment π is an element of A∗, the length of which we denote by |π|. We use π < λ
to mean that the segment π is a prefix of λ. Given a ∈ A, we denote by π ·a the segment
obtained by extending π with a. A property Λ over A is a set of traces. For every
property Λ, we define Λf = {π : ∃λ ∈ Λ(π < λ)} — the segments that are prefixes of
traces in Λ, also called the downward closure of Λ — and Λ̄ = {λ : ∀π < λ(π ∈ Λf)}
— the traces whose prefixes are in Λf , also called the closure of Λ. A property Λ is said
to be closed iff Λ ⊇ Λ̄ (and, hence, Λ = Λ̄).

In our model, traces consist of an infinite sequence of pairs of an instant of time and a
set of actions — the actions that are observed at that instant. In order to model networks
of systems, we allow sets of actions to be empty: on the one hand, this allows us to
model finite behaviours, i.e., systems that stop executing actions after a certain point in
time while still part of a network; on the other hand, it allows us to model observations
that are triggered by actions performed by components outside the system.

Definition 1 (Timed traces). Let A be a set (of actions).

– A time sequence τ is a trace over R≥0 such that: τ(0) = 0; τ(i) < τ(i + 1)
for every i ∈ N; the set {τ(i) : i ∈ N} is unbounded, i.e., time progresses (the
‘non-Zeno’ condition). An action sequence σ is a trace over 2A such that σ(0) = ∅.

– A timed trace over A is a pair λ=〈σ, τ〉 of an action and a time sequence. We denote
the sets of timed traces and segments over A by Λ(A) and Π(A), respectively.

82 J.L. Fiadeiro and A. Lopes

– Given a timed property Λ ⊆ Λ(A) we define, for every time sequence τ , Λτ =
{σ∈(2A)ω : 〈σ, τ〉∈Λ} — the action property defined by Λ and τ , and Λtime =
{τ : ∃σ∈(2A)ω(〈σ, τ〉∈Λ)} — the time sequences of traces in Λ.

– Given δ ∈ R>0, the δ-time sequence τδ is defined by τδ(i) = i · δ for every i∈N. A
δ-timed trace over A is a timed trace 〈σ, τδ〉, the set of which is denoted by Λδ(A).
A δ-timed property is a timed property that consists of δ-timed traces.

Definition 2 (Time refinement). Let ρ : N → N be a monotonically increasing func-
tion that satisfies ρ(0) = 0.

– Let τ , τ ′ be two time sequences. We say that τ ′ refines τ through ρ, which we denote
by τ ′ ρ τ , iff, for every i ∈ N, τ(i) = τ ′(ρ(i)). We say that τ ′ refines τ , which we
denote by τ ′ τ , iff τ ′ ρ τ for some ρ.

– Let λ = 〈σ, τ〉, λ′ = 〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ through
ρ — which we denote by λ′ ρ λ — iff τ ′ ρ τ and, for every i ∈ N and ρ(i) <
j < ρ(i+1), σ(i) = σ′(ρ(i)) and σ′(j) = ∅. We also say that λ′ refines λ — which
we denote by λ′ λ — iff λ′ ρ λ for some ρ.

– The r-closure of a timed property Λ is Λr = {λ′ : ∃λ∈Λ(λ′ λ)}. We say that Λ
is closed under time refinement, or r-closed, iff Λr ⊆ Λ.

A time sequence refines another if the former interleaves time observations between
any two time observations of the latter. Refinement extends to traces by requiring that
no actions be observed in the finer trace between two consecutive times of the coarser.

It is not difficult to prove that the refinement relation makes the space of all time
sequences a complete meet semi-lattice, the meet of two time sequences ρ1 and ρ2 being
given by the recursion ρ(i+1) = min({ρ1(j) > ρ(i), j ∈ N}∪{ρ2(j) > ρ(i), j ∈ N})
together with the base ρ(0) = 0. However, if one considers the space of all δ-time
sequences {τδ : δ∈R>0}, it is easy to see that a meet of τδ1 and τδ2 exists iff δ1 and δ2
are commensurable, i.e., there are n,m∈N>0 such that δ1/n = δ2/m, in which case
the meet is τδ where δ is their greatest common divisor.

Functions between sets of actions (alphabet maps) are useful for defining relation-
ships between individual processes and the networks in which they operate.

Definition 3 (Projection and translation). Let f :A → B be a function (alphabet
map).

– For every σ∈(2B)ω, we define σ|f∈(2A)ω pointwise as σ|f (i) = f−1(σ(i)) — the
projection of σ over A. If f is an inclusion, then we tend to write |A instead of |f
(when applied to a trace, |A forgets the actions of B that are not in A).

– For every timed trace λ = 〈σ, τ〉 over B, we define its projection over A to be
λ|f = 〈σ|f , τ〉, and for every timed property Λ over B, Λ|f = {λ|f : λ ∈ Λ} —
the projection of Λ to A.

– For every timed property Λ over A, we define f(Λ) = {〈σ, τ〉 : 〈σ|f , τ〉 ∈ Λ} —
the translation of Λ to B.

We are particularly interested in translations defined by prefixing every element of a
set with a given symbol. Such translations are useful for identifying in a network the

Heterogeneous and Asynchronous Networks of Timed System 83

machine to which an action belongs — we do not assume that machines have mutually
disjoint alphabets. More precisely, given a set A and a symbol p, we denote by (p.) the
function that prefixes the elements of A with ‘p.’.

3 Heterogeneous Timed Asynchronous Relational Nets

We put forward a generalisation of the component algebra proposed in [6]. The main
differences are that (1) we address networks of processes that operate over heteroge-
neous time, and (2) we use hypergraphs instead of simple graphs in order to account
for multiple, not just peer-to-peer interactions. We start by detailing the communication
model and then proceed to defining networks and investigating some of their properties.

3.1 Processes and Connections

Our communication model is asynchronous, interactions being based on the exchange
of messages. We organise messages in sets that we call ports: a port is a finite set
(of messages). Ports are communication abstractions that are convenient for organising
networks of systems as formalised below. Every message belonging to a port has an
associated polarity: − if it is an outgoing message (published at the port) and + if it is
incoming (delivered at the port). Therefore, every port M has a partition M− ∪M+.
For every port M we define its dual Mop, which is obtained by swapping the polarities
of the messages in M , i.e., Mop−

= M+ and Mop+

= M−.
The actions of sending (publishing) or receiving (being delivered) a message m are

denoted by m! and m¡, respectively. More specifically, if M is a port, we define AM− =
{m! : m ∈ M−}, AM+ = {m¡ : m ∈ M+}, and AM = AM− ∪ AM+ — the set of
actions associated with M . Even if a process does not refuse the delivery of messages
it can decide to discard them, e.g., if they arrive outside the expected protocol, and not
all published messages can be guaranteed to be delivered to their destination.

Definition 4 (Process). A process is a triple P = 〈δ, γ, Λ〉 where: (1) δ ∈ R>0 is the
granularity of the clock of the process; (2) γ is a finite set of mutually disjoint ports;
(3) Λ is the r-closure of a non-empty δ-timed property over Aγ =

⋃
M∈γ AM defining

the behaviour of the process.

The fact that processes are r-closed means that they contain all possible interleavings of
empty observations, thus capturing their behaviour in any possible environment. This
notion of closure can be related to mechanisms that, such as stuttering [1], ensure that
components do not constrain their environment.

We designate the process 〈δ, {M}, Λδ(AM)r〉 by �δ
M . This is a process with a single

port M that, at any time that is a multiple of its clock granularity, accepts any set of
actions belonging to AM , which henceforth is named RUN.

Our model of interaction is based on orchestrating the joint behaviour of a collection
of parties, each of which defines a process; the same party may engage in different or-
chestrations. Each such orchestration is performed by another process – the orchestrator
– that coordinates the joint behaviour of the other parties. Each party is connected to
the orchestrator by what we call an attachment:

84 J.L. Fiadeiro and A. Lopes

Definition 5 (Attachment). An attachment is a triple 〈C, ξ, P 〉whereC = 〈δC , γC , ΛC〉
andP = 〈δP , γP , ΛP 〉 are processes and ξ is an injective map from MC∈γC to MP∈γP
that reverses polarities, i.e., ξ(M+

C) ⊆M−
P and ξ(M−

C) ⊆ M+
P . An attachment is well

formed iff δP is a multiple of δC. We often use ξ to designate the whole attachment (triple)
if the source and target processes are clear from the context.

Notice that ξ translates AMC to AMP by switching publications and deliveries, i.e.,
ξ(m¡) = ξ(m)! for m∈M+

C and ξ(m!) = ξ(m)¡ for m∈M−
C . The condition that δP is

a multiple of δC for the attachment to be ‘well formed’ reflects the fact that the source
needs to be able to ‘tick’ (deliver and receive messages) in a way that is compatible
with the target. Attachments are used for building connections:

Definition 6 (Connection). A connection is a triple Ξ = 〈C, γF , ξ〉 where: (1) C is a
process 〈δ, γ, Λ〉 – the orchestrator of the connection; (2) γF ⊆ γ consists of the ports
that are ‘free’; (3) ξ assigns to each Mi ∈ γ a well-formed attachment ξi : Mi →MPi

of C to a process Pi such that, (a) for every Mi
= Mj , MPi
= MPj , (b) for every
Mi ∈ γF , Pi = �δ

Mop
i

and ξi is the identity.

That is, a connection consists of a process that orchestrates interactions among a num-
ber of parties. Those parties are attached to the orchestrator, not directly to each other,
thus making communication between parties to be asynchronous. Some of the ports of
the orchestrator may be ‘free’, thus accounting for the ability of the connection to grow
at run time by accepting new parties, i.e., connections may be open. Those free ports
are attached to RUN. Each port of a party can only be used by at most one attachment,
i.e., if a party plays different roles in the same connection, it does so via different ports.
Because all the attachments in a connection need to be well formed, the clock granu-
larity of each party Pi needs to be a multiple of that of the orchestrator C. Therefore,
not all sets of processes can be interconnected: in order to be part of a connection, they
need to have a common divisor.

3.2 Networks

Definition 7 (HT-ARN). A heterogenous timed asynchronous relational net (HT-ARN)
α consists of:

– A finite hypergraph 〈N,E〉 where N is a non-empty finite set of nodes and E is a
finite set of hyperedges – each hyperedge is a non-empty set {pi | i=1..n} of nodes.

– A labelling function that assigns a process αp = 〈δp, γp,Ap〉 to every node p and
a connection Ξc = 〈αc, γcF , ξc〉 to every hyperedge c such that:

i) For every hyperedge c, Ξc defines an onto mapping from γc to c.
ii) Each ξci is an attachment of αc to αpi .

iii) If two hyperedges c and d share a node p, then the attachments ξc and ξd
associated with p have different codomains, i.e., attach to different ports of αp.

We also define the following sets and mappings:

– Aα is the alphabet associated with α – the union of the alphabets of the processes
that label the nodes translated by prefixing all actions with the corresponding node.

Heterogeneous and Asynchronous Networks of Timed System 85

iv) For every p ∈ N , we denote by ιp is the function that maps Aγp to Aα, which
prefixes the actions of Aγp with p.

iiv) For every c ∈ E, we denote by ιc is the function that maps Aγc to Aα. This
function is such that, for every p∈c, ιc(AM) = ιp(ξp(AM)) where M is the
source port of ξp. That is, actions of the orchestrator are translated through
ξp to the attached process p (reversing polarities) and then according to ιp.

– Λα = {λ ∈ Λ(Aα) : ∀p ∈ N ∪E (λ|ιp ∈ Λαp)}

Note that, for every p∈N , (|ιp) first removes the actions that are not in the language
p.Ap and then removes the prefix p, and similarly for every c∈E. Therefore, the set Λα

consists of all traces over the alphabet of the HT-ARN that are projected to traces of all
its processes and channels:

Λα =
⋂

p∈N∪E ιp(Λαp)

We take this set to represent the behaviour of α. That is, the behaviour of the HT-ARN is
given by the intersection of the behaviour of the processes at the nodes and the hyper-
edges (connections) translated to the language of the HT-ARN — this corresponds to
what one normally understands as a parallel composition in trace-based models. No-
tice that, because the free ports of connections are labelled with run processes, only the
non-free ports are relevant for the behaviour of the HT-ARN. Further notice that, when
applied to a set of traces, the translations effectively open the behaviour of the processes
to actions in which they are not involved.

As an example, consider a HT-ARN that models a heterogeneous system in which a
bank clerk orchestrates a process that receives credit-requests, a process that gets infor-
mation on risk from a database of clients, and a process that handles approved credit re-
quests. As depicted in Fig. 1, its hypergraph has nodes c:CreditRequest , d:ClientsDB ,
m:CreditMgr and r:RUN, and the hyperedge {c, d,m, r}:〈Clerk , {P 4

k }, id〉 where:

– CreditRequest is a process that has a single port through which it sends creditReq
and accept , and receives approved , denied and transferDate. This process starts
by sending a creditReq and waits ten time units for receiving approved or denied .
In the first case it sends accept and waits fifty time units for receiving transferDate.
The granularity δc of its clock is 0.5.

– ClientsDB is a process that has a single port through which it receives getClientRisk
and sends clientRiskValue and clientRiskUnknown . When the first getClientRisk
is delivered, it takes no more than seven time units to publish either clientRiskValue
or clientRiskUnknown . The granularity of its clock is 0.2.

– CreditMgr has a single port through which it receives processCredit and sends
expectedDate. When the first processCredit is delivered, it takes no more than
four time units to publish expectedDate. The granularity of its clock is 0.3.

– Clerk is a process with four ports: P 1
k , P

2
k , P

3
k , P

4
k . For instance, in port P 1

k , it re-
ceives messages creditReq and accept and sends the messages approved , denied
and transferDate. After the delivery of the first creditReq on P 1

k , it publishes
getClientRisk on P 2

k within five time units; then it waits ten time units for the de-
livery of clientRiskValue or clientRiskUnknown in the same port. If the risk of the
transaction is known, this is enough for making a decision and sending approved
or denied in port P 1

k ; if not, it publishes getRisk on P 4
k within five time units and

86 J.L. Fiadeiro and A. Lopes

waits twenty time units for the delivery of riskValue. After sending approved (if
ever), Clerk waits forty time units for the delivery of accept , upon which it sends
processCredit on P 3

k within two time units and waits for expectedDate; when this
happens, it sends transferDate within two time units on P 1

k . The granularity δk of
its clock is 0.1.

– RUN is �0.1
P 4

k
op and id is a set with four identity attachments (this is because, for ease

of presentation, we have picked the same names in every pair of connected ports).

The fact that the port P 4
k is free is represented in Fig. 1 by the grey shadow.

creditReq
approved

denied

transferDate
accept

k: Clerk

d: ClientsDB m: CreditMgr

getRisk
riskValue

r: RUNc: CreditRequest

getClientRisk

clientRiskValue
clientRiskUnknown

processCredit
expectedDate

P1
k

P2
k P3

k

P4
k

Fig. 1. A HT-ARN consisting of a connection with a free port and three processes

It is also important to note that, although the existence of a connection between two
processes implies that the clock of the orchestrator is a common divisor of those of the
processes, it is not necessary that a common divisor exists for all clock granularities
of a HT-ARN. However, a common divisor exists for all clock granularities of every
sub-net that is connected (i.e., one in which every pair of processes is linked via a path
of connections). In particular, if a HT-ARN is a connected hypergraph, this means that
it can be implemented over (or simulated by) a single processor.

As in [6], two HT-ARNs can be composed through the ports that are still available
for establishing further interconnections, i.e., not connected to any other port, which we
call interaction-points.

Definition 8 (Interaction-point). An interaction-point of a HT-ARN α is a pair 〈v,M〉
such that v∈Nα is a node and either (1) M∈γv is one of its ports and v is not attached
through M to any hyperedge — what we call a process interaction-point, or (2) v be-
longs to an hyperedge cv∈Eα, M is a free port of Ξcv and v is attached to M — what
we call a connection interaction-point. We denote by Jα the collection of interaction-
points of α.

We can interconnect two HT-ARNs by merging process interaction-points with connec-
tion interaction-points via attachments that are well-formed:

Heterogeneous and Asynchronous Networks of Timed System 87

Definition 9 (Composition of HT-ARNs). Let α and β be two HT-ARNs with disjoint
sets of nodes and θ be a family of wires between α and β, where a wire is a triple

θi = 〈〈vi,Mcvi
〉, ξi, 〈pi,Mpi〉〉

such that, either

1. 〈vi,Mcvi
〉 is a connection interaction-point of α, 〈pi,Mpi〉 is a process interaction-

point of β and 〈αcvi
, ξi : Mcvi

→Mpi , βpi〉 is a well-formed attachment, or
2. 〈vi,Mcvi

〉 is a connection interaction-point of β, 〈pi,Mpi〉 is a process interaction-
point of α and 〈βcvi

, ξi : Mcvi
→Mpi , αpi〉 is a well-formed attachment,

with mutually-disjoint sets of interaction points. We define the HT-ARN α‖θβ as follows:

– Its hypergraph is 〈N,E〉 where N is obtained from Nα ∪ Nβ by removing the
nodes corresponding to the connection interaction-points, and E is obtained from
Eα∪Eβ by replacing, for each attachment ξi:Mcvi

→Mpi , the node vi by pi in cvi .
– Its node-labelling function γ coincides with γα or γβ on the remaining nodes.
– Its hyperedge-labelling function Ξ is as Ξα ∪ Ξβ except that, for each attachment

ξi : Mcvi
→Mpi , the attachment of the run process at Mcv is replaced with ξi and

Mcvi
is removed from the set of free ports of Ξcvi

.

In order to illustrate composition of HT-ARNs, consider a HT-ARN that is obtained
from the HT-ARN depicted in Fig. 1 by replacing the node c:CreditRequest by r′:RUN′

and making free the port P 1
k , where RUN′ is the process �0.1

P 1
k
op . The HT-ARN pre-

sented in Fig. 1 is the composition of that HT-ARN and an atomic HT-ARN defined by
c:CreditRequest through a wire ξ that connects the interaction-point 〈r′, P 1

k 〉 of the first
HT-ARN to 〈c, P 1

k
op〉, the single interaction-point of the latter. The wire ξ is built over

the function between the two ports that keeps the names and only reverses polarities.
This defines a well-formed attachment because δc is a multiple of δk.

4 Consistency

The joint consistency of the processes and the orchestrators operating in a HT-ARN is
an important property because it ensures that their implementations can work together.

Definition 10 (Consistent HT-ARN). A HT-ARN α is said to be consistent if Λα
= ∅.

In [6], we defined a sub-algebra of (un-timed) ARNs that are consistent and closed un-
der composition. The characterisation of this sub-algebra relied on the closure operator
induced by the Cantor topology over action sequences. The same closure operator can
be defined over timed traces but, for the purpose of separating the properties required of
the action sequences from those of the time sequences and the way they can be checked
over automata (which we do in [3]), it is useful to consider other notions of closure.

We can use the Cantor topology over (2A)ω to define a notion of closure relative to
a fixed time sequence:

Definition 11 (Closure relative to time). A timed property Λ is closed relative to time
or, simply, t-closed, iff, for every τ ∈ Λtime, Λτ is closed. A t-closed HT-ARN is one in
which all processes that label nodes or hyperedges (connections) are t-closed.

88 J.L. Fiadeiro and A. Lopes

Processes that are closed relative to time define safety properties in the usual un-timed
sense: over a fixed time sequence, which cannot be controlled by the processes, the
violation of the property can be checked over a finite trace. It is also easy to prove that:

Proposition 12. Let α be a HT-ARN: (a) Λα is r-closed; (b) if α is t-closed, so is Λα.

The first follows from the fact that all processes are r-closed by construction. The second
follows from the fact that the intersection of t-closed properties is also t-closed.

A property that was found to be relevant in [6] for characterising consistent (un-
timed) asynchronous relational nets concerns the ability to make joint progress. In the
timed version, we need to take into account the way time itself progresses.

Definition 13 (Progress-enabled). For every HT-ARN α and time sequence τ , let
Πατ = {π∈(2Aα)

∗
: ∀p∈N ∪ E (π|ιp∈Λf

αpτ
)}

We say that α is progress-enabled in relation to τ iff
ε ∈ Πατ and ∀π∈Πατ ∃A⊆Aα((π·A) ∈ Πατ)

We say that α is progress-enabled iff there is a time sequence τ such that α is progress-
enabled in relation to every τ ′ τ .

The set Πατ consists of all the segments that the processes can jointly engage in across
the time sequence τ . Notice that if Πατ is not empty, τ is a refinement of a δαp -time
sequence for every node or edge p of α. Furthermore, because the intersection of A
with the alphabet of any process can be empty, being progress-enabled does not require
all parties to actually perform an action.

By itself, being progress-enabled does not guarantee that a HT-ARN is consistent:
moving from finite to infinite behaviours requires the analysis of what happens ‘at the
limit’. However, if we work with t-closed properties, the limit behaviour will remain
within the HT-ARN:

Theorem 14. A HT-ARN is consistent if it is t-closed and progress-enabled.

We now show how HT-ARNs can be guaranteed to be progress-enabled by construc-
tion: we identify atomic HT-ARNs that are progress-enabled and prove that the class
of progress-enabled HT-ARNs is closed under composition. We start by remarking
that, given a process P , the HT-ARN that consists of a single node labelled with P
is progress-enabled in relation to at least a δ-time sequence and all its refinements, and
therefore is progress-enabled. The same applies to any HT-ARN that consists of a fi-
nite set of unconnected processes — in fact, this generalises to any finite juxtaposition
of progressed-enabled HT-ARNs (or, indeed, consistent HT-ARNs); the challenge is in
checking that progress-enabled HT-ARNs are closed under composition because com-
position connects HT-ARNs, i.e., it creates connected components.

In [6], we gave criteria for the composition of two (un-timed) progress-enabled
ARNs to be progress-enabled based on the ability of processes to buffer incoming mes-
sages – being ‘delivery-enabled’. In a timed domain, it becomes necessary to iden-
tify time sequences across which all parties can work together. Given a HT-ARN and
one of its interaction-points 〈v,M〉, we define the set D〈v,M〉 of deliveries that can be
made at that point — D〈v,M〉={v.m¡ :m∈M+} if 〈v,M〉 is a process interaction-point
and {v.m! : m∈M+} otherwise. Notice that in the latter case 〈v,M〉 is a connection
interaction-point and deliveries to that point (in M) are publications by v.

Heterogeneous and Asynchronous Networks of Timed System 89

Definition 15 (Delivery-enabled HT-ARN). A HT-ARNα = 〈P,C, δ, γ, Λ〉 is delivery-
enabled in relation to one of its interaction-points 〈v,M〉∈Iα if, for every B ⊆ D〈v,M〉,
τ∈Λtime and (π·A)∈Πατ such that τ(|π|) is a multiple of δv (i.e., the process at v makes
a step), (π · B ∪ (A \D〈v,M〉)) ∈ Πατ (i.e., the process at v accepts the deliveries in
B instead of those in A.)

That is, being delivery-enabled at an interaction point requires any joint segment of
the HT-ARN over a time sequence to be extensible with any set of messages delivered
at that interaction-point. Note that in the case of a connection interaction-point, being
delivery-enabled means that the orchestrator of the connection is ready to accept publi-
cations at the node v. Also note that being delivery-enabled does not interfere with the
decision to publish messages: B ∪ (A\D〈v,M〉) retains all the publications in A.

Finally, we need to make sure that the processes that orchestrate connections can
work together with the processes that they interconnect, i.e., that they do not force the
delivery of messages when the processes cannot receive them:

Definition 16 (Cooperative connections). Let Ξ = 〈C, γF , ξ〉 be a connection with
C = 〈δ, γ, Λ〉 and, for every attachment ξi : Mi → MPi of C to a process Pi, let
Ei = {m! : m ∈M−

i }. The connection is said to be cooperative if, for every τ∈Λtime

and for every ξi, if (π·A)∈Λf
τ and τ(|π|) is not a multiple of δPi then π · (A\Ei) ∈ Λf

τ .

That is, if after π the connection wants to make a delivery when a process is not in
sync, there is an alternative path from π where no delivery is made at that time. Notice
that, because δPi is a multiple of δ, publications are always made in sync with the
orchestrator. Therefore, in the context of a delivery-enabled HT-ARN, if τ(|π|) is not a
multiple of δPi , π·∅ ∈ Λf

τ .

Theorem 17. Let α be a composition of progress-enabled HT-ARNs through a family
of wires with mutually-disjoint sets of interaction points i.e.,

α = (α1

�i=1...n

〈〈vi,Mcvi
〉,ξi,〈pi,Mpi

〉〉
α2)

where each 〈〈vi,Mcvi
〉, ξi, 〈pi,Mpi〉〉 is a wire between α1 and α2. If the connec-

tions involved in θ (those that label the hyperedges cvi) are cooperative and the HT-
ARNs are delivery-enabled in relation to the interaction-points being connected, then
α is progress-enabled.

Therefore, the proof that a HT-ARN is progress-enabled can be reduced to checking
that individual processes and orchestrators are delivery-enabled in relation to their in-
teraction points. To guarantee that the HT-ARN is consistent, it is sufficient to choose
processes and orchestrators that are t-closed (implement safety properties). All the
checking can be done at design time, not at composition time.

5 A Compositional Theory for HT-ARNs

In this section, we discuss a logic that supports the specification of timed properties as
defined in Section 2 and defines a specification theory for our component algebra.

90 J.L. Fiadeiro and A. Lopes

Several extensions of LTL have been proposed to express and reason about real time,
among which Metric Temporal Logic (MTL)[10]. MTL works over timed traces and
has been studied extensively in relation to important properties such as decidability.
The formulas of MTL are built from a set of atomic propositions A using Boolean
connectives and time-constrained versions of the until operator of the form UI where
I ⊆ [0,∞) is an interval with endpoints in Q≥0∪{∞}.

φ ::= a | ¬φ | φ ⊃ φ | φ UI φ

Our purpose is to be able to use such a logic to define a process through a collection Φ of
sentences over the language Aγ of the actions defined by the set γ of process ports, such
that the behaviour of the process can be defined as {λ : λ 	 Φ}, i.e., the set of timed
traces that satisfy all the sentences in Φ. We then want to use the inference mechanisms
of the logic to be able to derive properties of processes and of HT-ARNs.

Because the behaviour of a process is the r-closure of a non-empty δ-timed prop-
erty (Def. 4), where δ is a clock granularity, we need to be able to define the process
semantics of a collection Φ of sentences in such a way that it meets those require-
ments. In addition, because only t-closed processes can guarantee good properties of
HT-ARNs such as consistency, we should restrict ourselves to a safety fragment.

Fragments of MTL have been characterised in which only safety properties can be
expressed such as SAFETY-MTL[12], which requires that sentences are in negation nor-
mal form and all eventualities to be time-bounded:

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | φ UI φ | φRI φ | φR φ

where I is bounded andRI (resp.R) is the dual of UI (resp. U[0,∞)) operator. In a time
context, a safety property Λ is one that is divergent safe, i.e., for any timed trace λ, if
for all π<λ there is λ′∈Λ such that π<λ′, then λ∈Λ. It is easy to see that divergent-safe
properties are also t-closed, showing that SAFETY-MTL is adequate for our purposes.

However, the need to specify and reason about r-closed sets of timed traces requires
the characterisation of an appropriate fragment of SAFETY-MTL. An alternative, which
we take in this paper, is to adopt instead the continuous semantics of MTL. Although
the continuous semantics renders MTL and SAFETY-MTL undecidable, it provides a
much simpler specification logic for HT-ARNs. We are currently working on the iden-
tification of a suitable fragment of SAFETY-MTL with the pointwise semantics.

The models of a continuous semantics are expressed in terms of signals:

Definition 18 (Signal). A signal for an alphabet A is a function f : R>0 → 2A with
finite variability, that is, with only finitely many discontinuities in any finite amount of
time. The semantics of MTL over signals is as follows:

– f, t 	 a iff a∈f(t)
– f, t 	 ¬φ iff f, t � φ
– f, t 	 φ1 ⊃ φ2 iff if f, t 	 φ1 then f, t 	 φ2

– f, t 	 φ1 UI φ2 iff there exists u ≥ t s.t. (u − t) ∈ I , f, u 	 φ2 and, for all
t < r < u, f, r 	 φ1

– f 	 φ iff f, 0 	 φ

Definition 19 (Signals vs timed traces). Given an alphabet A: (1) a timed-trace λ =
〈σ, τ〉 defines the signal fλ where, for every i, fλ(τ(i)) = σ(i) and fλ(t) = ∅

Heterogeneous and Asynchronous Networks of Timed System 91

everywhere else; (2) a signal f and a time sequence τ define a timed trace λτ
f = 〈σ, τ〉

where σ(i) = f(τ(i)). We use λδ
f to denote the δ-timed trace defined by f and τδ .

An important result is that all refinements of a given trace define the same signal:

Proposition 20. Given timed-traces λ and λ′, λ′ λ implies fλ′ = fλ. It follows that,
for every Φ, ΛΦ = {λ : fλ 	 Φ} is r-closed.

This is why the continuous semantics provides a ‘natural’ specification logic for HT-
ARNs: only r-closed properties can be specified.

Definition 21 (Process specification). A specification of a process 〈δ, γ, Λ〉 is 〈Aγ , Φ〉
such that Φ is in SAFETY-MTL and Λ 	 Φ, i.e., for every λ ∈ Λ, fλ 	 Φ.

As an example consider again the process CreditMgr and suppose that its set of timed
traces Λm is the r-closure of the set of 0.3-timed traces 〈σ, τ〉 satisfying

∀i∈N (processCredit ¡∈σ(i) ∧ ∀j<i processCredit ¡/∈σ(j))⇒
∃k>i (expectedDate!∈σ(k) ∧ τ(k)−τ(i)<4 ∧ ∀j =kexpectedDate!/∈σ(j))

It is not difficult to prove that, for every λ∈Λm,

fλ 	 processCredit ¡R(¬processCredit ¡ ∨�<4expectedDate!)

where �<t φ abbreviates (true U[0,t) φ). This sentence specifies that expectedDate is
published within four time units from the first delivery of processCredit .

Given now a clock granularity δ and a specification 〈Aγ , Φ〉, we are interested to
know if there is actually a process 〈δ, γ, Λ〉 that it specifies, i.e., if 〈Aγ , Φ〉 is ‘δ-
satisfiable’. Note that, because the set of processes that 〈Aγ , Φ〉 specifies is closed under
union, if the set is not empty it will admit a biggest process.

Consider ΛΦ={λ : fλ 	 Φ}. By Prop. 20, ΛΦ is r-closed. However, ΛΦ is not neces-
sarily the r-closure of a set of δ-timed traces. Consider instead the set {λ : λ∈Λδ(Aγ)
and fλ 	 Φ}r. To determine if the set is not empty, we would have to find a δ-timed
trace λ such that fλ 	 Φ. For that purpose, we could consider the δ-timed trace λδ

g for
some g 	 Φ (assuming that Φ is logically satisfiable). However, it is not immediate that
fλδ

g
	 Φ. This is because g and fλδ

g
are not necessarily the same signal: λδ

g retains only
the observations made at multiples of δ and fλδ

g
then constructs a signal that observes

the empty set of actions at all other instants, which g may fail to do. Our approach is
to construct a sentence Axδ such that g 	 Axδ implies g = fλδ

g
. We can then take the

set Λδ
Φ = {λδ

f : f 	 Φ and f 	 Axδ}r and reduce the δ-consistency of 〈Aγ , Φ〉 to the
satisfiability of Φ ∪ {Axδ}.

Proposition 22. Λδ
Φ 	 Φ.

Hence, if Φ ∪ {Axδ} is satisfiable, 〈δ, γ, Λδ
Φ〉 is a process, actually the biggest process

that is specified by 〈Aγ , Φ〉, which we take as its denotation.
We detail now the construction of Axδ . We introduce a new class of unary operators

�δ where δ∈Q>0, which allow us to express that a sentence holds at all multiples of δ:

f, t 	 �δ φ iff for all n ∈ N, f, t+ n · δ 	 φ

92 J.L. Fiadeiro and A. Lopes

Notice that restricting δ to Q>0 is not a real limitation. On the one hand, a connected
HT-ARN is such that all the clock granularities are commensurate, which means that we
can convert them to rational numbers by dividing them by a common divisor. On the
other hand, reasoning about HT-ARNs that are not connected is not relevant because
disconnected components do not interfere with each other. Notice that, for r-closure,
one simply needs a dense set of time granularities.

In the extended language, the sentence �δ (�<δ ∧a∈A ¬a) — where �<t φ is an
abbreviation of ¬(true U[0,t) ¬φ) — expresses a key property of δ-timed traces: empty
observations occur at all time instants that are not multiple of δ. We denote this sentence
by Axδ and, more generally, given B ⊆ A, we use AxB

δ to denote �δ (�<δ ∧a∈B ¬a).

Proposition 23. fλ 	 Axδ if λ refines a δ-timed trace.

Note that, because Axδ is a safety property, we can conclude that Λδ
Φ is safe if we

restrict Φ to SAFETY-MTL.
We are now interested in reasoning about properties of HT-ARNs. That is, given a

HT-ARN α and a sentence φ in the language of Aα, we are interested in determining
whether Λα 	 φ, i.e., fλ 	 φ for every λ ∈ Λα.

Theorem 24. Let α be a HT-ARN and, for every node (resp. hyperedge) p, let Φαp be
a specification of the process (resp. orchestrator) at p. Let

Φα =
⋃

p∈N∪E

ιp(Φαp ∪Ax
Aαp

δαp
)

We have that Λα 	 φ if Φα # φ.

That is, to prove that φ expresses a property of α, it is sufficient to derive φ from
specifications of the processes and orchestrators of α enriched with the corresponding
Axδ axioms.

6 Concluding Remarks

In this paper, we have proposed a component algebra that extends the notion of asyn-
chronous relational net developed in [6] to a wider class of systems that operate in a
heterogeneous time domain: a HT-ARN is a multigraph of nodes, each with its own
clock granularity, where processes execute, and hyperedges where interactions among
sets of such processes are orchestrated. Every hyperedge also has its one clock granular-
ity, which needs to be a divisor of the clock granularities of the nodes that it connects so
that they can interact. This is important for modelling the software systems that are now
starting to operate in cyberspace, where they can connect dynamically, i.e., at run time,
to other systems. We provided compositionality results for ensuring the consistency of
interconnections when performed at run time across different clock granularities. Con-
trarily to techniques that operate at design time (e.g., [2]), our results do not require
changes to be performed on the processes that execute in such systems so that they can
be interconnected, which would defeat the purpose of supporting dynamic binding.

Heterogeneous and Asynchronous Networks of Timed System 93

Our algebra is based on timed traces, which allows us to abstract from the speci-
ficities of the different classes of automata that can be chosen as models of implemen-
tations and characterise at a higher level the topological properties of the languages
generated by such automata that support our compositionality results. In a companion
paper [3] we investigate a specific automata-based model of machines, which we intend
to extend to networks of automata. Another area of further work concerns the logics
that can support an interface algebra for HT-ARNs. Although we provided a version of
SAFETY-MTL that can support the specification of HT-ARNs, we had to rely on a con-
tinuous semantics to enforce the required closure properties. The problem here is that
MTL with a continuous semantics is undecidable; better decidability properties can be
obtained by choosing instead a pointwise semantics (i.e., where the logic is interpreted
directly over timed traces) [12]. Initial results suggest that a pointwise semantics can
be developed for HT-ARNs, though at the cost of restricting the syntax. This is an area
in which we are currently working, also capitalising on the automata-based models of
processes that we have developed in [3].

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82(2),
253–284 (1991)

2. Benveniste, A., Caillaud, B., Carloni, L.P., Sangiovanni-Vincentelli, A.L.: Tag machines. In:
EMSOFT, pp. 255–263. ACM (2005)

3. Delahaye, B., Fiadeiro, J.L., Legay, A., Lopes, A.: Heterogeneous timed machines. Technical
report (October 2013) (submitted)

4. Delahaye, B., Fiadeiro, J.L., Legay, A., Lopes, A.: A timed component algebra for services.
In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE 2013. LNCS, vol. 7892, pp. 242–257.
Springer, Heidelberg (2013)

5. Dı́az, G., Pardo, J.J., Cambronero, M.-E., Valero, V., Cuartero, F.: Verification of web ser-
vices with timed automata. Electr. Notes Theor. Comput. Sci. 157(2), 19–34 (2006)

6. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theor. Comput.
Sci. 503, 1–30 (2013)

7. Forget, J., Boniol, F., Lesens, D., Pagetti, C.: A multi-periodic synchronous data-flow lan-
guage. In: HASE, pp. 251–260. IEEE Computer Society (2008)

8. Guermouche, N., Godart, C.: Timed model checking based approach for web services anal-
ysis. In: ICWS, pp. 213–221. IEEE (2009)

9. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and computation of
timed properties in web. In: ICWS, pp. 497–504. IEEE Computer Society (2006)

10. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

11. Le, T.T.H., Passerone, R., Fahrenberg, U., Legay, A.: Tag machines for modeling heteroge-
neous systems. In: ACSD, pp. 186–195. IEEE Computer Society (2013)

12. Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In: Hermanns, H.,
Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)

13. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service
protocols. ACM Trans. Softw. Eng. Methodol. 19(4) (2010)

Family-Based Performance Analysis

of Variant-Rich Software Systems

Matthias Kowal1, Ina Schaefer1, and Mirco Tribastone2

1 Technische Universität Braunschweig, Germany
2 University of Southampton, United Kingdom

Abstract. We study models of software systems with variants that stem
from a specific choice of configuration parameters with a direct impact on
performance properties. Using UML activity diagrams with quantitative
annotations, we model such systems as a product line. The efficiency of
a product-based evaluation is typically low because each product must be
analyzed in isolation, making difficult the re-use of computations across
variants. Here, we propose a family-based approach based on symbolic
computation. A numerical assessment on large activity diagrams shows
that this approach can be up to three orders of magnitude faster than
product-based analysis in large models, thus enabling computationally
efficient explorations of large parameter spaces.

1 Introduction

User-configurable parameters of software systems often have a critical impact
on non-functional properties such as performance and energy consumption. For
example, an elastic cloud-based application may dynamically change the number
of active virtual machines depending on the current workload conditions, by
setting appropriate threshold-based rules in the virtualization framework. In
embedded systems, such as those employed in automation, there may be a trade-
off between energy consumption due to increasing speeds and the capability to
process jobs with given time constraints (e.g., [1]).

Run-time analysis can be conveniently employed to find the optimal con-
figuration of parameters to automatically adapt to changing conditions. For
instance, workloads on a web server may be subjected to day/night or week-
day/weekend patterns. In this case, the availability of a software model can be
particularly beneficial: When a new operating condition is detected in the sys-
tem, a mathematical problem can be defined, whose solution gives the values
of the user-tunable parameters that satisfy certain given criteria of optimality
with respect to the current situation, for instance a performace/cost trade off.
Typical solution methods essentially involve repeated analyses using different
feasible configurations. This makes the analysis difficult when the evaluation of
a single configuration is expensive and/or when the parameter space is large. In
particular, applicability of the approach at run-time may be severely hindered if
the time constraints for re-configurations and adaptations are stringent enough.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 94–108, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Family-Based Performance Analysis of Variant-Rich Software Systems 95

This paper proposes a framework for the efficient evaluation of software de-
signs with large parameter spaces. We consider a class of UML activity diagrams
(ADs) to model systems which can be reasonably described as workflow pro-
cesses, such as real-world data-centers [2], service-oriented architectures (e.g.,
[3]), and automation systems [4]. To capture non-functional properties, ADs are
augmented with performance-related annotations (such as the duration to exe-
cute an activity of an activity node) and interpreted as continuous-time Markov
chains, along the lines of established routes in model-driven software performance
engineering; see, for instance, [5] for a review and [6], [7], and [8], for related
work about the automatic extraction of performance models from ADs. Our
performance-annotated ADs (PAADs) are integrated with software product-line
techniques to precisely capture variability aspects. More specifically, we consider
a delta-oriented approach, where possibly many variants can be generated as
a result of applying changes (i.e., deltas) to a core PAAD [9]. This is a novel
application of delta modeling, which has so far been used to represent static
variability of software architectures [10] and Java programs [11].

A straightforward solution technique requires a separate analysis of each
variant—the so-called product-based (PB) evaluation. In this paper, we consider
a family-based (FB) approach [12]. The configurable parameters of the model
under study, inferred by the kinds of delta operations defined on the AD, are
used for obtaining a solution in symbolic form. In this way, performance indices
can be simply obtained by evaluating a polynomial expression that explicitly de-
pends on the configurable parameters. The evaluation may become faster than
the PB analysis, which is based on the numerical inversion of a matrix of size
equal to the number of nodes in the PAAD. By numerical experimentation we
show that our FB approach is up to three orders of magnitude faster than PB
analysis, with a tendency to become increasingly more convenient as the model
size grows. Although family-based product line analyses have been introduced
for type checking [13–15] and model checking [16–18], for the first time this
approach is considered for the efficient performance modeling of product lines.

Related work. This paper is most closely related to [19], where an approach based
on parametric probabilistic model checking of software product lines models as
annotated UML sequence diagrams is proposed. This leads to a symbolic expres-
sion that encodes the dependence of certain properties of interest from variables,
in a manner which is analogous to ours. However, our work is different in that
we consider properties of performance as opposed to reliability/energy. While, in
principle, the model checking algorithm of [19] is also applicable to performance-
related properties, it may not be efficient. This is due to the potentially massive
state space size involved in typical performance models, which generally consider
contention for resources by many users, unlike the single-user model in [19]. Un-
der these conditions, the state space size grows (at worst) exponentially with the
number of users, which can make symbolic computation infeasible. In our work,
instead, this problem is basically circumvented by observing that the classes
of models of our interest admit an efficient solution technique that does not
necessitate state-space enumeration altogether.

96 M. Kowal, I, Schaefer, and M, Tribastone

In [20, 21], UML-annotated software product line designs are translated into
layered queueing networks [22] and solved with a PB analysis. While layered
networks are more expressive than our model, as, e.g. they capture simultaneous
resource possession, they do not admit an efficient FB analysis.

Paper outline. Section 2 introduces Performance Annotated Activity Diagrams
(PAADs). In Section 3, PAADs are integrated with the delta modeling approach
to handle variability. In Section 4, we present our FB analysis. The experimental
comparison between the FB and PB evaluation is reported in Section 5, followed
by concluding remarks in Section 6.

2 Foundations

Graphically, a UML AD is visualized as a multipartite directed graph. The ele-
ments of interest in our modeling framework are categorized into three different
groups: action nodes essentially describe the smallest possible event in an ac-
tivity; activity edges connect the nodes, expressing possible paths of execution;
and control flow nodes are used to model, for instance, conditional behavior.
Throughout the paper, we shall use the neutral name of job to indicate an el-
ement (i.e., a token) that circulates through the nodes of an activity diagram.
This is to be interpreted, e.g., as a user, service request, or a physical item,
depending on the context of the specific model under consideration.

The following provides a formal definition of performance-annotated activity
diagrams in a manner that is independent from the actual annotation mechanism
that may be used in an implementation. A concrete realization is feasible, for
instance with the MARTE profile (see [23]) and its PaStep stereotype (e.g., [24]).

Definition 1 (Performance-Annotated Activity Diagram). Let V be the
set of all nodes. A performance-annotated activity diagram (PAAD) is a tuple

PAAD = (V,E, λ, μ),

where V ⊆ V, E ⊆ V × R≥0 × V , λ : V → R≥0, and μ : V → R>0.

This definition specifies a directed graph annotated with three distinct pieces
of information. Each edge e ∈ E has a non-negative real, giving the probability
with which that path is taken by a job in the source node. Each node v ∈ V
is associated with a rate, μ(v), denoting the average speed at which a job is
processed in v; λ(v), instead, denotes the workload, the speed at which jobs
arrive from the external world. This may model, for instance, users that issue
invocations to the service described by the AD.

We wish to point out that Definition 1 does not explicitly consider initial,
final, and merge nodes. Similarly to previous work [24], we argue that these are
not necessary when an AD is to be interpreted as a performance model. For
instance, Figure 1 shows a sample AD (left diagram), and its representation
in our annotated PAAD format (right diagram), removing the nodes that are
not supported and redirecting the edges appropriately. For instance, the initial

Family-Based Performance Analysis of Variant-Rich Software Systems 97

2

1

3

4

(a) Sample Activity Diagram

2

1

3

4

0.0

1.5

0.0

2.0

3.0

0.1

0.5

1.0

1.00.7

0.3

0.2 3.5

(b) Annotated PAAD

Fig. 1. Running example

node, which models the start of the activity, is replaced by a nonzero workload
into node 1. This PAAD will be used as a running example throughout this
paper. For each action node v, the top-left label gives λ(v), the top-right label
is μ(v), whereas the label in the middle indicates the node itself. The edges are
instead labeled with their associated probabilities. For example, after an element
is processed in node 4, it will return to node 1 with probability 0.5. Thus, with
probability 0.5 it will leave the system. This captures the intended design in the
AD diagram, where one outgoing edge of the decision node leads to a final state.

Of all the elements of UML ADs that are not used in Definition 1, we remark
the absence of fork/join nodes. Unfortunately, their performance interpretation
leads to models that do not enjoy efficient FB solutions. Although we leave
further investigation of this matter to future work, we observe that Definition 1
allows us to capture models considered in the literature such as service-oriented
systems (e.g., [25–27]) and manufacturing job-shops [1, 28].

We now provide conditions to be enjoyed by a PAAD to yield a meaningful
performance model.

Definition 2 (Well-formedness). A PAAD is well-formed if and only if the
following conditions hold:

i) There exists at least one v ∈ V such that λ(v) > 0;
ii) For all v ∈ V it holds that

∑
(v,p,v′)∈E p ≤ 1;

iii) For all v, v′ ∈ V , for any (v, p, v′), (v, q, v′) ∈ E it holds that p = q;
iv) There exists at least one v ∈ V such that

∑
(v,p,v′)∈E p < 1.

Assumption i) is required to ensure that the model receives requests starting
at least from one node. Assumption ii) corresponds to the natural interpretation
of edge labels as probabilities. Assumption iii) requires that there is at most
one directed edge between any two nodes, so that the probability with which
node v′ is visited after v is not ambiguously defined. Finally, iv) requires that,
eventually, jobs leave the workflow. This is a necessary condition for a steady-
state behaviour. Otherwise, the system would keep accumulating jobs.

The following definition permits the analysis of a (well-formed) PAAD. We
call this product-based evaluation as it concerns a given, concrete PAAD, unlike
family-based evaluation, which will be introduced later in the paper.

98 M. Kowal, I, Schaefer, and M, Tribastone

Definition 3 (Product-based evaluation). The product-based evaluation of
a PAAD is given by the following system of linear equations

(I − PT)γ = λ, (1)

where I is the identity matrix, λ is the (column) vector with elements λ(v). This
is ordered in the same way as nodes appear in the matrix P , which is defined as
P = (pv,v′), for all v, v′ ∈ V with

pv,v′ =

{
p if (v, p, v′) ∈ E,

0 otherwise.

Finally, γ is the vector of unknowns, with elements denoted by γ(v).

In essence, we are interpreting a PAAD as a continuous-time Markov chain
that underlies a Jackson-type queueing network [28], by giving the following
semantics. λ(v) is the rate of arrival of jobs at the node v, which is assumed
to be a Poisson process. Thus, for λ(v) > 0, 1/λ(v) is the inter-arrival time
between two jobs, which is exponentially distributed. If λ(v) = 0, node v does
not have exogenous arrivals and may only process jobs arriving from other nodes,
according to the topology of the workflow. Jobs at action node v are served by
a processing unit with rate μ(v) > 0. Therefore, 1/μ(v) is the average service
demand of a job at node v. When the node is busy serving a job, the other jobs
accumulate in an unbounded queue and are scheduled according to a first-in first-
out discipline. P is the routing probability matrix, defining with which probability
a job in node v, after being serviced, moves to any other node v′. Finally, γ gives
the effective arrival rates, which take into account the actual traffic incoming at
node v due to the exogenous arrival as well as to the feedback from other nodes.
With obvious ordering, in our running example we have

P =

⎡⎢⎢⎣
0.0 0.3 0.7 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 1.0
0.5 0.0 0.0 0.0

⎤⎥⎥⎦ λ =

⎡⎢⎢⎣
0.2
0.0
0.0
0.1

⎤⎥⎥⎦ μ =

⎡⎢⎢⎣
1.5
2.0
3.0
3.5

⎤⎥⎥⎦ (2)

Once the system (1) is solved for γ, the steady-state behavior of the network
is completely characterized (e.g., [29]). Specifically, the following indices can be
computed for any v ∈ V .

– γ(v) is the throughput, i.e., the rate at which jobs are served at node v.
– The utilization of node v, denoted by ρ(v), i.e., the probability that the node

is busy serving jobs, is given by:

ρ(v) = γ(v)/μ(v).

– The queue length at node v, denoted by L(v), i.e., the number of jobs at
node v including those in service, is given by

L(v) = ρ(v)/(1 − ρ(v)). (3)

Family-Based Performance Analysis of Variant-Rich Software Systems 99

– Using Little’s law, the average response time of jobs at node v, denoted by
W (v), is given by

W (v) = L(v)/γ(v).

Response times along paths of the PAAD can be computed similarly using
the same law.

In our numerical evaluation in Section 5, we will consider the average queue
length in the network as the metric of interest. This is simply obtained by com-
puting

∑
v∈V L(v)/|v|. For instance, solving (2) yields

γ =
[
0.50 0.15 0.35 0.60

]T
which leads to an average queue length of 0.23 customers in the steady state.

3 Variability of PAADs

In this section, we discuss how to model variability aspects of PAADs using
delta modeling. Delta modeling is a modular, yet flexible variability modeling
approach on the artifact level (in contrast to feature models which live on the
requirements level) and allows capturing closed as well as open variant spaces.We
consider a core PAAD and an associated set of deltas [9]. Each delta contains a
set of basic operations to be performed on a PAAD, such as the addition and the
removal of a node, or the modification of parameters such as the probabilities
of an edge. Thus, applying a delta to the core yields a new PAAD variant,
which has performance characteristics that can be numerically analyzed using
the product-based evaluation in Definition 3.

In addition, from a core model with an associated set of deltas we generate
a 150%-model. This is an over-saturated variant representing the whole product
line which, in general, does not correspond to a concrete variant of interest to the
modeler. However, we define a solution method based on symbolic computation
yielding an expression that directly relates a performance index (such as the
average queue length) to all the model parameters that are at least altered once
by any of the deltas. When such a symbolic expression is evaluated for the
parameters of a specific variant, it returns the actual performance index for that
variant. This allows the re-use of the same symbolic expression for all variants,
unlike the numerical solution with product-based evaluation.

We start with defining all possible atomic delta operations on a PAAD.

Definition 4 (PAAD deltas). A PAAD delta is a set of delta operations δ ⊆
Op, where

Op = {add (vi, λi, μi) | vi ∈ V , λi ≥ 0, μi ≥ 0}
∪ {add (vi, pij , vj) | vi, vj ∈ V , pij > 0} ∪ {rem v | v ∈ V} ∪ {rem e | e ∈ E}
∪ {mod λ(vi) by λj | vi ∈ V , λj ≥ 0} ∪ {mod μ(vi) by μj | vi ∈ V , μj > 0}
∪ {mod (vi, pij , vj) by qij | (vi, pij , vj) ∈ E , qij > 0}.

100 M. Kowal, I, Schaefer, and M, Tribastone

When an edge is added, its associated probability must be strictly positive. This
is without loss of generality because an edge with probability zero essentially
corresponds to the case where no edge at all is connecting two nodes. For the
same reason, when a service rate or a probability are modified we require strictly
positive values. This is not the case for arrival rates, so long as there exists at least
a node with a positive arrival rate. The modification of values is a simplification
since it can also be encoded by removing node or edge and adding it with the
desired rate or probability, respectively.

For simplicity, in this paper we only consider a single delta to generate a
PAAD variant. This is without loss of generality, since the effect of a set of
deltas can be combined into a single composite delta by defining an appropriate
delta composition operation. In order to ensure that the application of such a
delta leads to a well-formed PAAD variant, we require that the delta is applicable
and consistent. A delta is applicable to a PAAD if all elements (node, edge, rate
or probability) which should be removed or modified exist and if all elements
which are added do not exist. A delta is consistent if it adds, removes or modifies
each element at most once [9]. Furthermore, a consistent delta ensures that are
no dangling edges in the resulting PAAD. This means that removing a node also
causes the removal of all resulting edges. Edges are never added between nodes
that are removed in the delta. If a node of an added edge does not exist in the
core PAAD, the necessary source and/or target edges are also added in the delta.
However, there may be unreachable nodes in the resulting PAAD variant. This
is not an issue for the well-formedness of the result.

As an example of delta modeling on PAADs, we consider deltas δ1 and δ2,
defined as follows:

δ1 = {rem (4, 0.5, 1), add (5, 0.1, 1.0), add (4, 0.5, 5), add (5, 1.0, 1)},
δ2 = {rem (1, 0.3, 2), rem (2, 1.0, 4), rem 2,mod (1, 0.7, 3) by 1.0}.

The following definition formalizes, in a straightforward way, how to obtain a
variant by applying a delta to a PAAD. Figure 2 illustrates the application of
δ1 and δ2 to the core model in Fig. 1.

2

1

3

4
1.5

5

0.0 2.0

3.00.0

0.1

0.5

1.0

1.0

1.0 0.1 1.0

0.3

0.7

0.2 3.5

(a) δ1 application

1

3

4

1.0

0.5

1.5

0.0 3.0

0.1

1.0

0.2 3.5

(b) δ2 application

Fig. 2. Deltas applied to the core model in Figure 1

Family-Based Performance Analysis of Variant-Rich Software Systems 101

Definition 5 (PAAD delta application). The application of an applicable
and consistent delta δ ⊆ Op to a PAAD = (V,E, λ, μ) is defined by the func-
tion PAAD′ = apply(PAAD, δ), where PAAD′ = (V ′, E′, λ′, μ′). It is recursively
defined as follows.

1. Case δ = ∅: PAAD′ = PAAD.
2. Case: δ = δ′ ∪ δ′′ ∧ δ′, δ′′ ∈ Op: PAAD′ = apply (apply(PAAD, δ′), δ′′).
3. Case: δ = add (vi, λi, μi):

V ′ = V ∪ {vi} λ′(v) =

{
λ(v) if v
= vi,

λi if v = vi,
μ′(v) =

{
μ(v) if v
= vi,

μi if v = vi.

4. Case: δ = add (vi, pij , vj): E′ = E ∪ {(vi, pij , vj)}.
5. Case: δ = rem v: V ′ = V \ {v}.
6. Case: δ = rem e: E′ = E \ {e}.

7. Case: δ = mod λ(vi) by λj : λ′(v) =

{
λ(v) if v
= vi,

λj if v = vi,

8. Case: δ = mod μ(vi) by μj: μ′(v) =

{
μ(v) if v
= vi,

μj if v = vi,

9. Case: δ = mod (vi, pij , vj) by qij : E′ =
(
E \ {(vi, pij , vj)}

)
∪ {(vi, qij , vj)}.

We now consider a core PAAD and a set of deltas Δ. We define the 150%-
model as a special kind of PAAD which has all nodes and transitions that are
introduced or modified by each δ ∈ Δ. As discussed, in general the 150%-model
is not a valid PAAD variant, but it contains all the information to retrieve a
variant resulting from the application of any δ ∈ Δ. The origin of a node or
transition from the core model or a specific delta, where it is added, modified or
removed, is traced by means of a labeling function L, defined as follows.

Definition 6 (150%-model). Let PAADc = (Vc, Ec, λc, μc) be the core model
and Δ be a set of consistent and applicable deltas. Let L = {C} ∪ {δ, !δ |
δ ∈ Δ}, with C
∈ Δ, be the set of labels. The 150%-model is PAAD150 =
(V150, E150, λ150, μ150,L), where:

V150 = Vc ∪ {v | ∃δ ∈ Δ : add (v, λi, μi) ∈ δ},
E150 = Ec ∪ {(vi, pij , vj) | ∃δ : add (vi, pij , vj) ∈ δ ∨mod (vi, qij , vj) by pij ∈ δ},
λ150 and μ150 are partial functions of V150 × L defined as

λ150 : V150 × L→ R≥0, λ150(v, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λc(v) if l = C ∧ v ∈ Vc,

λi if l = δ ∧ add (v, λi, μi) ∈ δ,

λj if l = δ ∧mod λ(vi) by λj ∈ δ,

0 if l = !δ ∧ rem v ∈ δ,

μ150 : V150 × L→ R≥0, μ150(v, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μc(v) if l = C ∧ v ∈ Vc,

μi if l = δ ∧ add (v, λi, μi) ∈ δ,

μj if l = δ ∧mod μ(vi) by μj ∈ δ,

0 if l = !δ ∧ rem v ∈ δ,

102 M. Kowal, I, Schaefer, and M, Tribastone

2

1

3

4
1.5

5

c

c

c

c

δ1

0.0 2.0

0.1

0.0 3.0

0.5

0.50.1 1.0 δ1

δ1!δ1

δ2

!δ2 !δ2

!δ2

1.0

1.0

!δ2

1.0
0.7

0.3

0.2 3.5

Fig. 3. 150%-model of the running example

and L is the labeling function defined as

L : V150 ∪E150 → 2L,

L(v) =
{
C if v ∈ Vc,

∅ otherwise,
∪ {δ | add (v, λi, μi) ∈ δ} ∪ {!δ | rem v ∈ δ}.

L(e) =
{
C if e ∈ Ec,

∅ otherwise,
∪ {δ | add e ∈ δ} ∪ {!δ | rem e ∈ δ}

∪ {δ | mod (vi, qij , vj) by pij ∈ δ ∧ e = (vi, pij , vj)}
∪ {!δ | mod (vi, qij , vj) by pij ∈ δ ∧ e = (vi, qij , vj)}.

In order to construct the 150%-model, we consider all nodes V150 which are either
part of the core PAAD or are added in a delta. The set of edges E150 contains
all edges from the core and all edges added by a delta. Since the probability
of an existing edge can be modified by a delta, we add an edge with the new
probability to the 150%-model. As a result, we have an edge with the previous
probability and an edge with the modified one in the 150%-model. The domain
of the functions λ150 and μ150 are pairs, where the first element indicates the
node or edge that is labelled and the second pair specifies a delta label. The
functions map onto the concrete value of the rate that the element has in that
specific delta. Finally, the labeling function L is necessary in order to identify
the core and the original PAAD variants in order to map the results of the FB
analysis to the PAAD variants. Nodes have three possible labels: C means that
the node is part of the core PAAD. Since deltas add or remove nodes, we use δ
to denote addition, and !δ for removal. The labeling of edges is done in a similar
way. The 150%-model of the running example is shown in Fig. 3. Nodes and
edges occur only in the core model, e.g., L(v) = {C}, are marked with solid
lines; otherwise, dashed lines are used. The labels of the nodes are shown within
the nodes in the bottom-left part.

Family-Based Performance Analysis of Variant-Rich Software Systems 103

4 Family-Based Evaluation

We now discuss the symbolic evaluation of the 150%model. This is accomplished,
in essence, by taking a 150% model and associating a symbolic variable to each
element that is varied in at least one delta. We use the following convention. We
let S denote the set of all symbolic variables, whose elements are indicated by a
superscript ‘∗’.

Definition 7 (Family-based evaluation). Let PAAD150 be a 150% model.
The FB evaluation is given by the solution of

(I − PT
s)γs = λs, (4)

where:

λs : V150 → R ∪ S, λs(v)=

{
λ150(v, C) if
 ∃l ∈ L \ {C} : λ150(v, l) is defined.

λ∗
v otherwise,

μs : V150 → R ∪ S, μs(v)=

{
μ150(v, C) if
 ∃l ∈ L \ {C} : μ150(v, l) is defined.

μ∗
v otherwise,

Ps = (psv,v′)v,v′∈V150 , psv,v′ =

⎧⎪⎨⎪⎩
q if ∃e = (v, q, v′) ∈ E150 ∧ L(e) = {C},
0 if
 ∃e = (v, q, v′) ∈ E150,

p∗v,v′ otherwise.

Informally, λs(v) (and similarly, μs(v)) treats as symbolic all the parameters
that are changed by at least one delta operation. Else, the parameter is simply
the concrete value assigned in the core model. Concrete probabilities pv,v′ are
assigned when two nodes are associated only in the core model, or when they are
not associated at all. Otherwise, the symbolic variable p∗v,v′ is used.

For an illustrative explanation, let us consider again our running example in
Fig. 1 as core model and let us take Δ = {δa, δb, δc}, with

δa = {mod (1, 0.3, 2) by 0.4, mod (1, 0.7, 3) by 0.6},
δb = {mod λ(1) by 0.1}, δc = {mod μ(4) by 4.0}.

For conciseness, we do not show the actual variants obtained through these
deltas (which will have the same topology, but different concrete labels). By
Definition 7, the FB evaluation is

Ps =

⎡⎢⎢⎣
0.0 p∗1,2 p∗1,3 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 1.0
0.5 0.0 0.0 0.0

⎤⎥⎥⎦ λs =

⎡⎢⎢⎣
λ∗
1

0.0
0.0
0.1

⎤⎥⎥⎦ μs =

⎡⎢⎢⎣
1.5
2.0
3.0
μ∗
4

⎤⎥⎥⎦ (5)

where S = {p∗1,2, p∗1,3, λ∗
1, μ

∗
4}. As discussed in Section 2, Ps, λs, and μs charac-

terize the performance of a PAAD. For instance, by using the formula (3), the

104 M. Kowal, I, Schaefer, and M, Tribastone

average queue length (AQL) will be given by the following symbolic expression:

AQL = − 20λ∗
1 + 1

80λ∗
1 + 60p∗1,2 + 60p∗1,3 − 116

−
p∗1,2(20λ

∗
1 + 1)

4(21p∗1,2 + 20p∗1,3 + 20λ∗
1p

∗
1,2 − 40)

−
10λ∗

1p
∗
1,2 + 10λ∗

1p
∗
1,3 + 1

20μ∗
4p

∗
1,2 − 40μ∗

4 + 20μ∗
4p

∗
1,3 + 40λ∗

1p
∗
1,2 + 40λ∗

1p
∗
1,3 + 4

−
p∗1,3(20λ

∗
1 + 1)

4(30p∗1,2 + 31p∗1,3 + 20λ∗
1p

∗
1,2 − 60)

. (6)

Let us observe that assigning p∗1,2 = 0.3, p∗1,3 = 0.7, λ∗
1 = 0.2, and μ∗

4 = 3.5
in the 150% model (5) corresponds to the model in (2), which is the product-
based evaluation of a specific variant. Now, it holds that evaluating the symbolic
expression (6) with such specific values yields 0.23, consistently with the product-
based evaluation. The average queue lengths for the variants obtained by each
of the deltas δa, δb, and δc, can be computed by evaluating the same symbolic
expression, plugging in the appropriate concrete values related to each variant.
Instead, as discussed, product-based evaluation does not allow the re-use of any
computation because the solution based on matrix inversion is done numerically.

We are now left with showing that the symbolic evaluation with the appropri-
ate concrete parameters of a variant always corresponds to the PB evaluation,
i.e., the non-symbolic numerical analysis of a single variant in isolation. The
following definition concretizes a 150% model with respect to a delta δ, i.e., it
isolates the elements of the 150% model that are relevant for δ.

Definition 8 (Concretization). Let PAAD150 be a 150% model from a core
PAADc with a set of deltas Δ and with symbolic FB evaluation (4). A con-
cretization of PAAD150 for δ ∈ Δ is given by (I − PT

k)γk = λk, where

λk = (λk(v))v∈V150 , λk(v) =

⎧⎪⎨⎪⎩
λ150(v, δ) if defined,

λ150(v, C) if defined and λ150(v, δ) is not defined,

0 otherwise,

Pk = (pkv,v′)v,v′∈V150
, pkv,v′ =

⎧⎪⎨⎪⎩
psv,v′ if psv,v′ �∈ S ,
p if ∃e = (v, p, v′) ∈ E150 ∧ δ ∈ L(e),
0 otherwise.

The concretization yields a system of equations of the size of the 150% model.
The next theorem is the desired, crucial result of consistency of this paper.
It states that the FB symbolic solution, restricted to those nodes that are in
the variant given by apply(PAADc, δ), corresponds to the PB evaluation of
apply(PAADc, δ) itself.

Theorem 1 (Consistency). Let (I−PT
a)γa = λa denote the PB evaluation of

(Va, Ea, λa, μa) = apply(PAADc, δ), for δ ∈ Δ, and let (I − PT
k)γk = λk be the

concretization of the 150% model PAAD150 for δ. Furthermore, we define

V δ =
{
v ∈ V150 :

(
C ∈ L(v) ∧ !δ
∈ L(v)

)
∨ δ ∈ L(v)

}
.

It holds that i) V δ = V a and ii) γa(v) = γk(v) and μa(v) = μk(v), for all v ∈ V δ.

Family-Based Performance Analysis of Variant-Rich Software Systems 105

5 Numerical Experiments

We compared the FB symbolic analysis against the PB approach, where each
configuration is solved numerically for a given concrete set of parameter values.

Our experimental set-up was as follows. We considered randomly generated
150% PAAD models with different numbers of nodes and different number of
variables (i.e., the set of elements from S) for their symbolic evaluation. This
is motivated by the fact that, while PB evaluation has a cost which is at best
quadratic with the number of nodes [29], the FB approach requires the evalua-
tion of a polynomial expression. Thus, we wish to test the hypothesis that FB
analysis is increasingly more convenient with larger networks, and to assess the
impact of the number of variables on the length of such polynomials and thus
on their evaluation time. Clearly, a trade-off must be struck between the degrees
of freedom and the effectiveness of the FB approach, as the cost of such form
of symbolic computation is clearly dependent on the number of variables [30].
Notice, however, that each symbol represents a parameter that takes values in
the reals. Thus, even a single variable may represent infinitely many variants.

Let n denote the total number of nodes in the FB evaluation, i.e., n = |V150|,
p be the number of variables in the routing probability matrix (i.e., the number
of symbols in Ps), m the number of variables in the service rates (the symbols
in the range of the function in μs), and g the number of variables in the ex-
ogenous arrival rates (the symbols in the range of λs). For any given choice of
(n, p,m, g), all the other parameters were randomly generated, with the service
rates drawn uniformly at random in [1.0; 20.0], and the arrival rates in the range
[0.0; 3.0]. For instance, the symbolic evaluation (5) corresponds to a configura-
tion (n, p,m, g) = (4, 2, 1, 1), where the remaining concrete values shown in Ps,
λs and μs would be generated randomly. In particular, the routing probability
matrices generated in this way led to network topologies with densely connected
nodes.

For each tuple (n, p,m, g), we considered 200 randomly generated variants
which we analyzed with both the FB and the PB approach. We did so by ran-
domly generating 200 tuples, each of length p+m+g, corresponding to a specific
instantiation of the symbolic parameters. For the FB approach, each tuple was
used to evaluate a symbolic expression of the average queue length such as (6);
for the PB approach instead, the parameters were used to numerically solve the
system of equations (1) for each variant.

We measured the wall-clock execution times for both FB and PB evaluation,
repeated 5 times in order to reduce the noise in the measurements. The tests were
implemented in Matlab version 7.9.0 (R2009b) using the Symbolic Math Toolbox
for the FB evaluation, and the built-in functions for the solutions of systems of
linear equations for the PB evaluation. The measurements were conducted on a
machine with an Intel Core i7 2.66 GHz with 8 GB RAM.

Each line in Table 1 shows the overall execution times, averaged over the 5
tests, of both FB and PB across the 200 random variants, which represent the
whole family for each configuration (n, p,m, g). We report the average speedup

106 M. Kowal, I, Schaefer, and M, Tribastone

Table 1. Numerical results

Variables Runtimes (s)

n p m g FB PB PB/FB PC

4 1 0 0 0.011 0.049 4.47 0.545
4 0 1 0 0.004 0.043 10.78 0.185
4 0 0 1 0.009 0.045 4.92 0.190
4 1 1 1 0.011 0.046 4.13 0.214
4 2 2 2 0.014 0.049 3.60 0.319
4 4 4 4 0.020 0.049 2.43 0.310

24 1 0 0 0.011 0.066 5.96 1.141
24 0 1 0 0.004 0.063 14.60 1.124
24 0 0 1 0.011 0.067 6.29 1.152
24 1 1 1 0.013 0.068 5.04 1.244
24 2 2 2 0.016 0.068 4.31 1.100
24 0 6 0 0.007 0.065 9.94 1.004
24 4 4 4 0.099 0.070 0.70 1.904

Variables Runtimes (s)

n p m g FB PB PB/FB PC

142 1 0 0 0.016 6.540 397.34 5.425
142 0 1 0 0.005 8.107 1664.28 4.908
142 0 0 1 0.015 10.808 726.41 4.836
142 1 1 1 0.017 10.069 601.51 5.113
142 2 2 2 0.019 10.052 526.50 4.936
142 0 6 0 0.007 7.802 1191.79 5.137
142 4 4 4 0.026 10.985 429.83 4.942

302 1 0 0 0.019 19.186 1007.95 11.026
302 0 1 0 0.006 13.680 2292.46 11.192
302 0 0 1 0.018 13.399 728.73 11.050
302 1 1 1 0.021 19.520 909.12 11.591
302 2 2 2 0.024 19.459 820.30 11.214
302 0 6 0 0.006 13.896 2258.21 11.089
302 4 4 4 0.030 14.879 495.06 11.718

PB/FB. The last column shows the pre-computation (PC) time taken to sym-
bolically solve (4). These results allow us to make the following observations.

– We confirm that for any fixed choice of p, m, and g that we considered,
larger values of n make FB increasingly more convenient, with speedups
up to over 2000; see, for instance, the configurations (4, 0, 1, 0), (24, 0, 1, 0),
(142, 0, 1, 0), (4, 1, 0, 0), and (302, 1, 0, 0). This is because of the increasing
cost of the solution of the system of linear equations for PB, while FB solves
it symbolically only once and off-line.

– For fixed n, varying p, m, and g has an impact on speedup, since the higher
the number of variables the larger the closed-form polynomial expression
derived by the FB approach.

– For fixed n, not all other parameters affect the speedup in the same manner.
In particular, compare the two cases p = m = g = 2 and p = g = 0, m = 6,
for every given n. Both have the same number of variables (i.e., six), but
the latter case consistently enjoys a better speedup. This is because the m
variables do not appear in (1), thus for m = 6 the symbolic expressions of
the solution (1) can be greatly simplified because it consists of only scalars.
(The m variables will appear in the calculation for the queue lengths Lv.)

– FB evaluation is not always more effective than PB evaluation. In our study,
this has occurred in smaller models (i.e., n = 24) with relatively high number
of variables. In these cases, the polynomial expression turned out to be more
difficult to analyze than the linear system of equations (for which Matlab is
well-known to be optimized).

– The pre-computation time behaves well with the number of variables, in
particular with respect to the p variables that are used in the solution of (1).

Family-Based Performance Analysis of Variant-Rich Software Systems 107

6 Conclusion

We have presented an efficient technique for model-based performance analysis
of software product lines using a class of UML activity diagrams annotated with
quantitative information. Our approach enables a family-based evaluation by
means of symbolic computation, which has been shown to be up to three orders
of magnitude faster than product-based analysis in large models.

Regarding future work, this paper can be extended in two directions. From
a theoretical viewpoint, we will study extensions to other kinds of performance
models that are amenable to analogous closed-form symbolic solutions. From
a practical viewpoint, we plan an implementation integrated with UML CASE
tools and an experimentation with run-time optimization of automation
systems.

Acknowledgment. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design For Fu-
ture — Managed Software Evolution, and by the EU project QUANTICOL,
600708. The authors would like to thank Christian Prehofer for fruitful
discussions.

References

1. Govil, M.K., Fu, M.C.: Queueing theory in manufacturing: A survey. Journal of
Manufacturing Systems 18(3), 214–240 (1999)

2. Singh, R., Shenoy, P., Natu, M., Sadaphal, V., Vin, H.: Predico: A System for
What-if Analysis in Complex Data Center Applications. In: Kon, F., Kermarrec,
A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 123–142. Springer, Heidelberg
(2011)

3. Huhns, M., Singh, M.: Service-oriented computing: key concepts and principles.
IEEE Internet Computing 9(1), 75–81 (2005)

4. Vogel-Heuser, B., Witsch, D., Katzke, U.: Automatic code generation from a UML
model to IEC 61131-3 and system configuration tools. In: ICCA, pp. 1034–1039
(2005)

5. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. Software Eng. 30(5),
295–310 (2004)

6. Petriu, D.C., Shen, H.: Applying the UML performance profile: Graph grammar-
based derivation of LQN models from UML specifications. In: Field, T., Harrison,
P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177.
Springer, Heidelberg (2002)

7. Balsamo, S., Marzolla, M.: Performance evaluation of UML software architectures
with multiclass queueing network models. In: WOSP, pp. 37–42 (2005)

8. López-Grao, J.P., Merseguer, J., Campos, J.: From UML activity diagrams to
stochastic Petri nets: application to software performance engineering. SIGSOFT
Softw. Eng. Notes 29(1), 25–36 (2004)

9. Schaefer, I.: Variability modelling for model-driven development of software prod-
uct lines. In: VaMoS, pp. 85–92 (2010)

108 M. Kowal, I, Schaefer, and M, Tribastone

10. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Delta-oriented architec-
tural variability using monticore. In: ECSA, pp. 6:1–6:10 (2011)

11. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

12. von Rhein, A., Apel, S., Kästner, C., Thüm, T., Schaefer, I.: The PLA model: on
the combination of product-line analyses. In: VaMoS, pp. 14:1–14:8 (2013)

13. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-
oriented product lines. ASE 17(3), 251–300 (2010)

14. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Composi-
tion. In: FOAL, pp. 31–35. ACM (2009)

15. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 193–207. Springer, Heidelberg (2012)

16. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: Efficient verification of temporal properties in software product
lines. In: ICSE. IEEE (2010)

17. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: ASE, 269–280 (2009)

18. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Deontic logics for modeling
behavioural variability. In: VaMoS, Essen, Germany, pp. 71–76 (January 2009)

19. Ghezzi, C., Sharifloo, A.M.: Verifying non-functional properties of software product
lines: Towards an efficient approach using parametric model checking. In: SPLC,
pp. 170–174 (2011)

20. Tawhid, R., Petriu, D.C.: Towards automatic derivation of a product performance
model from a UML software product line model. In: WOSP, pp. 91–102 (2008)

21. Tawhid, R., Petriu, D.C.: Automatic derivation of a product performance model
from a software product line model. In: SPLC, pp. 80–89 (2011)

22. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced model-
ing and solution of layered queueing networks. IEEE Trans. Software Eng. 35(2),
148–161 (2009)

23. Object Management Group: UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE). Beta 1. OMG, OMG document number ptc/07-
08-04 (2007)

24. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance mod-
els from UML activity diagrams annotated with the MARTE profile. In: WOSP,
pp. 67–78 (2008)

25. D’Ambrogio, A., Bocciarelli, P.: A model-driven approach to describe and predict
the performance of composite services. In: WOSP, pp. 78–89 (2007)

26. Menascé, D., Dubey, V.: Utility-based QoS brokering in service oriented architec-
tures. In: ICWS, pp. 422–430 (July 2007)

27. Marzolla, M., Mirandola, R.: Performance prediction of web service workflows. In:
Overhage, S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS,
vol. 4880, pp. 127–144. Springer, Heidelberg (2008)

28. Jackson, J.R.: Jobshop-like queueing systems. Management Science 10(1), 131–142
(1963)

29. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton
University Press (2009)

30. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: ICSE, pp. 341–350 (2011)

TouchCost: Cost Analysis
of TouchDevelop Scripts

Pietro Ferrara1,2, Daniel Schweizer2, and Lucas Brutschy2

1 IBM Thomas J. Watson Research Center, U.S.A.
2 ETH Zurich, Switzerland
pietroferrara@us.ibm.com,

{daschwei@student,lucas.brutschy@inf}.ethz.ch

Abstract. TouchDevelop is a novel programming environment and lan-
guage for mobile devices. These applications are typically developed by
non-expert users, rather small, and published on the cloud. In this paper,
we introduce TouchCost, a new static analysis that infers the cost of
loops in TouchDevelop programs. TouchCost (i) infers numerical in-
variants through an existing generic analyzer, (ii) extracts cost relation
systems, and (iii) solves them using an existing upper bound solver.

TouchCost has been applied to all TouchDevelop scripts that are
currently published on the cloud. Experimental results show that this
tool is both scalable and precise. Studying the outputs of TouchCost,
we glimpse two major applications: (i) establishing at runtime the cost
of a loop, and in case move its execution, and (ii) helping non-expert
developers to debug their programs.

1 Introduction

In 2012 more mobile devices than personal computers and laptops have been
sold [1,23]. The main characteristics of modern mobile devices are (i) an almost
continuous connection to the cloud, (ii) relatively limited resources (e.g., compu-
tational power and battery), and (iii) various sensors and capabilities (e.g., GPS
and camera). This technology shift has important consequences on programming
languages and execution environments. In particular, they should take into ac-
count (i) novel input devices (e.g., touchscreens) when developing programs, and
(ii) a runtime environment with limited local resources, but with (almost) con-
tinuous access to an extremely resourceful cloud infrastructure.

Microsoft TouchDevelop1 [24] is a novel development environment and program-
ming language for mobile applications. The main design principle of TouchDevelop
is to allow one to develop mobile applications directly on mobile devices. In addi-
tion, TouchDevelop applications can be shared through the cloud infrastructure.
Since its release in August 2011, more than 20.000 TouchDevelop scripts have been
shared. Some of them became quite popular, and they have been downloaded and
ran by thousands of users. Usually, TouchDevelop users are not expert developers,
and the most part of the scripts are small [20].
1 http://www.touchdevelop.com

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 109–124, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.touchdevelop.com

110 P. Ferrara, D. Schweizer, and L. Brutschy

Static cost analysis [3] has been deeply studied, and it achieved significant
results. The main goal of cost analysis is to compute statically (i.e., at compile
time) and automatically (i.e., without any user annotation or interaction) the
cost of a program. Its applications are extremely diverse.

Given this scenario, the main contribution of this work is TouchCost, the
application of static cost analysis to all existing TouchDevelop scripts to infer
the cost of loops. As far as we know, TouchCost is the first cost analysis
that has been applied to a huge set (several thousands) of real programs. Given
a TouchDevelop script, we apply an existing numerical domain [19] to infer
numerical invariants. We then build up cost relation systems and pass them to
PUBS [2], an up-to-date upper bound solver, obtaining loops’ bounds.

TouchDevelop represents an ideal target for cost analysis since (i) TouchDe-
velop scripts are usually written by non-professional developers , and therefore
debugging and optimizing them may improve significantly the quality and the
efficiency of these programs, and (ii) these scripts run on mobile devices with
limited resources and continuous access to an extremely resourceful cloud infras-
tructure, and therefore the information inferred by cost analysis may be adopted
at runtime to reduce the amount of local resources consumed by the execution.

The analysis has been implemented and applied to all TouchDevelop scripts
on the cloud containing loops. The experimental results show that the overall
analysis is both scalable and precise. TouchCost proves that existing engines
for cost analyses are mature enough to be applied to real programs on a large
scale. We have also investigated the results obtained by TouchCost to pro-
pose possible applications of the inferred information. First of all, since mobile
devices have limited local resources and often access to a resourceful cloud, the
costs inferred by TouchCost could be used to decide at runtime to move the
execution to the cloud if there is a shortage of some local resources. In addi-
tion, TouchDevelop scripts are developed by novices, and particularly high or
low costs expose bugs or possible misunderstandings of the developer. Therefore,
we found out several published programs in which TouchCost results can be
useful for debugging.

The rest of the paper is structured as follows. In the rest of this Section,
we will discuss some related work. Sections 2, 3, and 4 will recall the main
existing components adopted by TouchCost, that is, TouchDevelop, Sample,
and PUBS, respectively. Section 5 will present the technical core of TouchCost,
while Section 6 will discuss the experimental results.

1.1 Related Work

Various tools performing cost and termination analyses have been formalized
and developed. As far as we know, the COSTA system [3] represents the most
advanced tool in the field of automatic cost analysis for object-oriented program-
ming languages, and it includes the implementation of some recent research re-
sults on finding linear ranking functions [5]. This tool analyzes Java bytecode,
and it relies on PUBS [2] to solve cost relation systems produced by extracting
some numerical constraints from a Java bytecode program. TouchCost relies

TouchCost: Cost Analysis of TouchDevelop Scripts 111

on PUBS as well, but we deal with TouchDevelop code, and we apply a sound
and relatively precise heap abstraction to the program. Instead, COSTA ap-
proximates the heap with the maximal length of the paths reachable from local
variables. This approach is not precise enough for TouchDevelop programs since
these heavily rely on the mobile environment approximated by the heap analysis.
In particular, COSTA’s heap abstraction would approximate the length of all
the collections with their maximal length. For instance, it would not distinguish
between the number of songs and the number of pictures in the mobile device.

Worst case execution time analyses (WCET) have been widely studied, imple-
mented, and applied to industrial software [25]. WCET is focused on deriving
realistic, platform-dependent timing information, and usually loop bounds are
manually provided by the user [12]. Therefore, various analyses targeted the in-
ference of loop bounds [17], but they target a specific platform, or type of loops,
and in general they cannot straightforwardly applied to TouchDevelop scripts
that heavily interact with the mobile environment.

Other work has been focused on the analysis of memory consumption [8], and
on functional [6] and logic [11] programming. Instead, TouchCost is aimed at
targeting various types of costs, and it deals with TouchDevelop code, that is,
with a language that mixes imperative and object-oriented constructs.

As far as we know, TouchCost is the first automatic static cost analysis that
has been applied to a wide set of mobile programs. Therefore, it represents the
first extensive study on the application of cost analysis, and the experimental
results (i) show that existing engines for these analyses can be applied to real
programs on a large scale, and (ii) open new insights about possible applications
of static cost analysis for mobile programs.

2 TouchDevelop

The core of TouchDevelop is a structured programming language designed to
develop mobile applications directly on a mobile device. This language mainly
mixes imperative and object-oriented features. A TouchDevelop program consists
of a set of actions. Intuitively these correspond to methods in object-oriented
programming languages. One of the most important design principles is to al-
low the developer to access all the main components of the mobile device (e.g.,
GPS sensors) through some standard libraries. Therefore, the API offers various
predefined classes to access these components. The target audience of TouchDe-
velop is “everyone who might traditionally have been able to write a BASIC
program on a regular keyboard and ordinary PC. This includes students and
hobbyist programmers”[22]. In addition, TouchDevelop scripts can be shared
through the cloud infrastructure. Currently, more than 20.000 scripts developed
by more than 2.000 users have already been published.
Loops: The TouchDevelop programming language defines three distinct types
of loops: while expr do block, for 0 ≤ index < expr do block, and foreach l in coll
do block. The first type is a standard while loop. The for loop defines an index
variable, and it increments this variable from 0 to expr. expr is evaluated only once

112 P. Ferrara, D. Schweizer, and L. Brutschy

at the beginning of the execution of the loop. The index variable is modified only
by the implicit increment, and it cannot be changed in any other way. Finally,
the foreach loop iterates over all elements which are part of a collection before
starting the execution of the loop. Semantically, this is equivalent to taking a
snapshot of the collection just before the execution of the loop, and to iterate
over the elements of this snapshot.

action showPics() {
foreach pic in media→pictures do {

pic→post_to_wall;
time→sleep(1);

}
}

Fig. 1. The running example

Running Example: The program in Fig-
ure 1 is the running example we will adopt
to explain how TouchCost works. It con-
tains a simple foreach loop, that iterates over
all the pictures in the mobile device, prints
them on the screen, and waits 1 second be-
fore showing the next picture. The loop is
iterated n times, where n is the number of
pictures contained in the mobile device. Note
that we explicitly kept this example simple
and minimal, since it will be used to show
how TouchCost works step by step in details.

3 Sample

Sample (Static Analyzer of Multiple Programming LanguagEs) [13,14] is a generic
static analyzer based on the abstract interpretation theory [10]. Relying on com-
positional analyses, Sample combines various heap abstractions and value (e.g.,
numerical) domains. It has already been applied to various value analyses (e.g.,
strings [9], types [13], access permissions [15], and data leaking [26]). It supports
some common numerical analyses through Apron [18], which is a library dedicated
to the static analysis of the numerical variables. Additionally, some heap analyses
are already part of Sample. In particular, [15] adopts a standard abstraction that
binds each abstract reference to its allocation site, while [14] plugs a TVLA-based
shape analysis.

First of all, Sample compiles source code to Simple, the internal language based
on Control Flow Graphs (CFG). Sample contains compilers for Java, Scala, and
TouchDevelop. The Simple program is then passed to the fixpoint engine together
with a heap and a value analysis. This produces an abstract result over the CFG,
that is, an entry and exit state for each statement of the program. This result
is passed to a property checker that produces some alarms if the given property
is not statically proved, or to an inference engine that produces some invariants
(e.g., the access permissions required or guaranteed by a method [15]).

The TouchDevelop compiler was built both for TouchCost, and to apply var-
ious reliability analyses to TouchDevelop scripts.
Simple: Simple contains a minimal set of statements (mainly, variable’s and
field’s assignments and accesses, object instantiations, and method calls), while
conditional statements and loops are represented directly on the CFG. Each
node in a CFG contains a list of (concatenated) statements, while edges may be

TouchCost: Cost Analysis of TouchDevelop Scripts 113

weighted with a Boolean value or not. In particular, there is an edge from n1 to
n2 if the first statement in n2 may be executed directly after the last statement
in n1. We call an edge from n to some other node an out-edge of n. Weighted
edges represents a conditional jump: the edge is traversed only if the expression
evaluated by the last statement of the block is true or false depending on the
edge’s weight. Therefore, the out-edges of a block can be (i) one edge without
any weight, (ii) two weighted edges (one with weight true and the other one
false), or (iii) none to represent an exit point of the current action.
Loops: In Simple, the different TouchDevelop loops (namely, while, for, and
foreach) are translated into specific CFG structures.

A while expr do block loop is translated to (i) an initial block where expr is
evaluated with two out-edges, (ii) the true edge points to a node containing block,
and this points back to the block evaluating expr, (iii) the false edge points to
the block representing what is after the while loop.

for loops are translated in a similar way, initializing the counter to 0 before
entering the loop, evaluating once the bound of the for loop before entering it,
and incrementing the counter by one inside the loop body.

The foreach loop is equivalent to (i) taking a snapshot of the collection just
before the execution of the loop, and (ii) iterating over the elements of this

Fig. 2. The CFG of our running
example

snapshot. The iterations are performed by
incrementing a counter and accessing the
elements contained in the snapshot of the
collection.
Running Example: The code introduced in
Figure 1 is compiled to the CFG in Figure
2. In particular, we can see that (i) the first
block initializes i to zero and copies the col-
lection, (ii) the block in the middle contains
the loop guard, (iii) the block representing
the body of the loop extracts the i-th element
from the copy of the collection, execute the
body of the foreach loop (that is, it prints
the current picture), and increments i by one,
and (iv) the false evaluation of the Boolean
condition of the guard leads to exit of the
action.

4 PUBS

TouchCost adopts PUBS [2] to infer upper bounds on loops. In this Section,
we briefly recall the main ingredients of PUBS. PUBS takes as input a cost
relation system, and it returns an upper bound of the cost of this system.

Fist of all, we define the basic ingredients of cost relations. A linear expres-
sion has the form

∑n
i=1 ai ∗ xi + b. A linear constraint is defined as l1 ≤ l2

114 P. Ferrara, D. Schweizer, and L. Brutschy

where l1 and l2 are both linear expressions. A guard is a set of linear constraints,
and it represents their conjunction. Basic cost expression e are then defined as
follows:

e ::= r | nat(l) | e1 + e2 | e1 * e2 | logn(e) | ne | max(S) | e-r

where l is a linear expression, r is a real positive number, S is a set of basic cost
expressions, nat(l) returns max(0, l).

These expressions are the basic blocks to define cost relations. A cost relation
is a pair 〈C(x) = exp+

∑k
i=1 Di(yi), φ〉 where C and Di are cost relation symbols

(that is, symbols representing the costs of an action or a loop), exp is a basic
cost expression, x and yi are distinct variables, and φ is a guard. C(x) = exp +
∑k

i=1 Di(yi) will be called the cost body in the rest of this paper. Finally, a cost
relation system is a set of cost relations.
Running Example: Consider now the running example we introduced in Figure
1, and in particular its CFG in Figure 2. For the sake of simplicity, let us suppose
that the cost of one iteration of the loop body is 1. In addition, the cost relation
system about this block should represent the fact that i is incremented by one,
and in order to execute this block i < ccoll.count() must hold. All these facts are
represented by the following cost relation:〈

C(old_i, pics_count) = 1 + C(i, pics_count),
{i == old_i + 1, old_i < pics_count}

〉

where C represents the cost of the foreach loop in terms of the initial value of
i, pics_count the initial number of pictures in the mobile device, and old_i the
initial value of i and i its final value. Instead, if i < ccoll.count() does not hold,
the cost of the execution of the loop is zero: 〈C(old_i, pics_count) = 0, {old_i ≥
pics_count}〉. Finally, we represent that, before entering the loop, i is equal to
zero: 〈Cl(pics_count) = C(0, pics_count), {pics_count ≥ 0}〉 where Cl represents
the cost of the whole loop.

The goal of TouchCost is to apply Sample to infer automatically these cost
relations starting from the program in Figure 2. PUBS then solves these cost
relations leading to the cost nat(pics_count), that is exactly the cost of our loop.

5 TouchCost

This Section presents the components developed in TouchCost to effectively ap-
ply the approach presented in the previous sections to TouchDevelop scripts.

Given a TouchDevelop action, TouchCost (1) compiles it and augments its
CFG, (2) applies Sample to this augmented CFG, (3) extracts from the abstract
results a cost relation system for each loop, and (4) pass these cost relation
systems to PUBS, obtaining their upper bounds.

5.1 Augmented Control Flow Graph (1)

Identifying Loops: First of all, given a control flow graph we have to identify
the structures that represent loops. We traverse the control flow graph and we

TouchCost: Cost Analysis of TouchDevelop Scripts 115

consider the edges that have two deterministic (that is, non-weighted) in-edges
and two weighted out-edges (one true and one false). Such node is potentially
the initial node of the loop. Then, starting from the out-edge labeled true, we
check if there is a cyclic path coming back to this node. If this is the case, we
have found a loop.
Augmenting the CFG: We need to infer relations between the entry and
the exit values of variables. Unfortunately, a numerical domain usually does
not infer such information, since the old value of a variable once this has been
assigned. For instance, in the running example of Figure 1, once we increment
i by one, we do not know that the value at the end of the loop is equal to
the value at the beginning incremented by one. We have then to make a copy

Fig. 3. The augmented CFG

of all the variables modified inside a loop at the be-
ginning of the loop body. For instance, the running
example requires a cost relation that tells us that
i at the end of the loop is equal to its initial value
plus 1. So we introduce a variable old_i to represent
the value of i at the beginning of the loop’s body.

Therefore, for each loop in the CFG, we find all
variables V that are assigned inside the loop, and we
add a new assignment old_v := v at the beginning
of the loop for each variable v ∈ V.
Running Example: Figure 3 depicts the aug-
mented CFG we obtain for the CFG our running
example of Figure 2.

5.2 Sample’s Analysis (2)

In order to run Sample on the augmented control flow graph, we have to instan-
tiate the analysis with a heap and a numerical analysis.
Heap Analysis: Since TouchDevelop programs do not usually perform signif-
icant computation over the heap, and this rarely influences how many times
loops are iterated, we apply a standard and efficient allocation-site based heap
abstraction [4]. In addition, we build a precise model of the collections and the
mobile environment (e.g., to distinguish the number of elements in the songs’
collection from the pictures’ collection).
Numerical Analysis: Sample has already been applied to various value analy-
ses. Apron [18] is a library that provides a standard interface to various numerical
domains, and it is plugged into Sample. In our analysis, we apply Linear equal-
ities [19] to infer input-output relations that will be used to build up the cost
relation system that is passed to PUBS.
Running Example: Consider the running example introduced in Figure 1. The
heap analysis translates the method call ccoll.count() to the symbolic identifier
we use to represent the number of elements in ccoll (represented by ccoll_count).
This allows us to infer that the loop guard is i < ccoll_count. In addition, the
heap semantics infers that ccoll_count == pics_count (where pics_count rep-
resents the number of pictures in the mobile device at the beginning of the

116 P. Ferrara, D. Schweizer, and L. Brutschy

execution), since ccoll is a copy of media.pictures, and the linear equalities do-
main infers that, inside the loop body after the increment of i, the constraint
i == old_i + 1 holds.

Note that, even on this simple running example, we need a sound static anal-
ysis that defines the semantics of TouchDevelop APIs, and in particular of its
data structures. For instance, we need to semantically track that when we copy
media.pictures and we assign it to ccoll we have that ccoll_count == pics_count.

5.3 Extracting Cost Relation Systems (3)

At the end of the analysis, Sample returns an abstract entry and exit state
for each statement in the program. Using this information, we extract the cost
relation systems that will be passed to PUBS.

First of all, we identify all the loops in the CFG as described in Section 5.1.
Then for each loop we build up a cost relation system that is aimed at computing
how many times the loop is iterated.

Cost Relations of Loops: We introduce two cost relation symbols for each
loop: Cl represents the whole loop, while C represents the loop’s iterations start-
ing from a given state (e.g., after i iterations). The parameters of these two
symbols are the variables involved in the guard of the loop, or in its body.

For the cost symbol C, the cost body adds the cost of one iteration of the
loop body to the cost of the following iterations. The body of the loop could
contain four different patterns of CFG structures, and they will be discussed in
the following of this Section. For now, we suppose that the cost symbol repre-
senting block is provided by cost(block). Formally, the cost body is then defined
by C(old_x) = cost(block) + C(x), where old_x and x represent a sequence of
variables old_x and x, respectively. For all the variables that are not assigned
in the loop body, we have that old_x = x. For all the other variables, we try
to extract an update rule from the information inferred by the linear equality
domain after the last statement in the loop body.

Through the analysis introduced in Section 5.2 on the augmented CFG de-
scribed in Section 5.1, the state inferred by Sample after the last statement in
the loop body contains all the relations between the values of the variables at
the beginning and at the end of the execution of one iteration of the loop. Since
we have applied the linear equalities domain, we represent this state as a set of
linear equalities. We want to extract from this set only the constraints that in-
volve variables relevant to compute the cost of the loop. We also want to extract
information that is (i) strong enough to infer the cost of the loop, and (ii) as
little as possible to preserve the efficiency of the analysis. This means that we
consider only the variables that influence how many times a loop is iterated.

We start from all the variables appearing in the loop guard. Then, for each of
these variables, we try to find an update rule involving this variable. By update
rule of variable x we mean a constraint that contains both x and old_x. Then,
given a variable v, we consider all the equalities involving v and old_v. As a first
try, we consider only the linear constraints that are fully described by v and
old_v, that is, constraints of the form v == a ∗ old_v + b. Such constraints are

TouchCost: Cost Analysis of TouchDevelop Scripts 117

often strong enough to infer the cost of the loop. If PUBS fails to compute the
cost of the loop using these constraints, we consider all linear constraints of the
form v == expr, where expr is a linear expression containing old_v.

These update rules are plugged in the cost relation of C together with the loop
guard b. Formally, the cost relation for C is defined by 〈C(old_x) = cost(block)+
C(x),UR ∪ {b}〉 where UR represents the set of update rules we extracted, and
cost represents the cost symbol or variable of the loop body. This cost relation
represents one iteration of the while loop. We add then a cost relation to represent
when we exit from the loop. Formally, 〈C(x) = 0, {!b}〉.

Finally, we have to introduce a cost relation to represent the whole execution of
the loop. This is done by a cost relation that represents that the cost of the whole
loop Cl is equal to the cost of the loop C when the parameters are the values
of the variable before entering the loop for the first time. Therefore, for each
variable v involved in the loop, we look at all linear constraints IV containing v
that the numerical analysis inferred at the program point just before the loop.
We then build up a cost relation 〈Cl(x) = C(x), {IV}〉.
Cost Relations of Other CFG Structures: Inside the loop body, we could
have (i) one block, (ii) a sequence of blocks, (iii) a nested loop, or (iv) a
conditional.

In the first case, we represent the cost of a single block with a cost variable
(that is, the block at program point p is represented by a symbol cp). A sequence
of blocks is represented by the summation of the cost symbols of each block. For
a nested loop, we extract the cost relations of the inner loop, and we use the
cost symbol Cl to represent the whole inner loop in the body of the outer loop.

Finally, if we have a conditional, we introduce Ct to represent the true branch,
and Cf for the false branch. Then we add (i) 〈Ct(x) = cost(block1), {b}〉 to
represent the true branch, (ii) 〈Cf (x) = cost(block2), {!b}〉 to represent the false
branch, and (iii) 〈Ci(x) = Ct(x)+Cf (x), {}〉 to represent the whole if statement.
Boolean Conditions: Up to now, we have simplified the presentation by using
b and !b in the guards when dealing with loops and conditionals. Indeed, PUBS
allows only linear relations in these guards. Therefore, we consider only the
Boolean conditions of the following form:

c ::= true | false | e1 <op> e2 | ! c | c1 AND c2 | c1 OR c2

where e1 and e2 are linear expressions, and < op > ∈ {! =, ==, ≥, ≤}. All
these conditions have to be translated into linear integer expressions to fulfill
PUBS’ syntax. true is translated to 1 == 1, and false to 0 == 1. expr1 <op>
expr2 is already a linear expression, while ! c is translated to a positive form
by using the De Morgan’s laws if c is an AND or OR expression, by negating
true or false, or by modifying <op> if the condition is a comparison of linear
expressions. Linear integer conditions with < or > as comparison operators are
translated to equivalent conditions with ≥ or ≤ as operators.

AND and OR conditions lead to several cost relations, since we cannot represent
a conjunction or disjunction directly in PUBS guard. These are semantically
equivalent to translate the conditions into equivalent CFG structures, and the

118 P. Ferrara, D. Schweizer, and L. Brutschy

cost relations for these structures are obtained as described in this Section pre-
viously.

Note that we may not be able to translate the original Boolean condition to
integer linear relations that are supported by PUBS (e.g., if the original condition
was not linear). In these cases, we simply omit the Boolean condition and its
negation from the guards. In this way, we introduce some approximation (that
is, the fact that a particular part of the code is executed only if the condition
holds), but we preserve the soundness of the analysis.
Running Example: Consider now the running example of Figure 1. First of
all, we have 〈C(old_i, ccoll_count) = 0, {old_i ≥ ccoll_count}〉. This represents
the situation in which the execution exit the loop. Instead, one iteration of the
loop is represented by〈

C(old_i, ccoll_count) = cb + C(i, ccoll_count),
{i = old_i + 1, old_i ≤ ccoll_count − 1}

〉

In fact, the linear equalities domain infers that i = old_i + 1, and cb rep-
resents symbolically the cost of the loop body. In addition, the loop guard
old_i < ccoll_count is translated to old_i ≤ ccoll_count − 1. Finally, the cost
of the whole loop is〈

Cl(i, ccoll_count) = C(i, ccoll_count),
{i == 0, ccoll_count == pics_count}

〉

The numerical domain infers that initially i==0 and ccoll_count==pics_count.

5.4 Using PUBS (4)

The last step of TouchCost is to pass the cost relation systems we inferred for
each loop to PUBS. The output of PUBS could be: (i) a sound upper bound of
the given cost relation system, or (ii) a failure. In the second case, we do not
know if this failure was due to some information that is not precisely tracked by
PUBS, or if the analyzed loop may not terminate.
Running Example: PUBS returns nat(pics_count) when we apply it to the
cost relation system we inferred for our running example in Section 5.3. This is
the exact cost of the loop, since it is iterated a number of times equal to the
number of pictures we have in our mobile device (that is, pics_count).

6 Experimental Results

Table 1 reports the experimental results. We ran the experiments on an Intel
Core 2 2.83Ghz QUAD CPU with 4GB RAM running Ubuntu 12.04. Column
Type reports the script category we target. In particular, all denotes all the
scripts published on the cloud before May, 16th 2013 containing loops, while the
other categories refer to the scripts (always containing loops) that are tagged
with the given name. Tags are used to categorize different types of scripts, and
we used them to investigate how TouchCost behaves when dealing with dif-
ferent types of scripts. Column #scr. reports the number of scripts, LOC the
number of lines of code, #loops the number of loops, Comp. the number of

TouchCost: Cost Analysis of TouchDevelop Scripts 119

Table 1. Experimental results

Type #scr. LOC #loops Comp. Prec. St TCt Avg.LOC Avg.St Avg.TCt
all 5 405 1 222 250 19 035 13 403 70.4% 10 153 4 293 226 1.88 0.79
entertainment 164 42 485 553 419 75.8% 459 145 259 2.80 0.88
games 161 54 754 973 764 78.5% 749 274 340 4.65 1.70
libraries 129 23 548 405 236 58.3% 314 94 183 2.43 0.73
tools 82 22 460 374 132 35.3% 200 48 274 2.44 0.59
lifestyle 78 23 903 179 126 70.4% 135 55 306 1.73 0.70
music 59 9 163 149 100 67.1% 44 29 155 0.74 0.49
education 56 9 710 158 131 82.9% 71 25 173 1.27 0.45
gamelibraries 47 8 002 189 101 53.4% 237 47 170 5.04 1.00
Sample root 73 8 964 233 167 71.7% 94.4 56.9 123 1.29 0.78

loops for which TouchCost computed the cost, Prec. the precision rate (that
is, Comp./#loops), St the time spent by Sample to perform the heap and
numerical analysis, TCts the time spent by TouchCost to build up the cost
relation systems and use PUBS to solve them, Avg.LOC the average number of
lines of code per scripts, and Avg.St and Avg.TCt the average time of Sample
and TouchCost analysis per script, respectively. All the times are in seconds.

In this Section, we refer to the ratio Comp./#loops as the precision of the
analysis. We have manually inspected the cost estimation inferred on the sample
scripts (167 estimations on 230 loops, see Section 6.2), and we found out that we
always inferred the most precise estimation for the loop. Therefore, we believe
that this ratio is a good estimation of the precision of our analysis.

6.1 Global Performances and Precision

We first perform a quantitative analysis considering row all in Table 1. This
benchmark consists of 5 405 scripts, and more than 1 million LOC. In terms of
performances, the overall analysis (that is, S t.+TC t.) took 4h00’06" to analyze
1.222 KLOC (about 2.5 seconds per script). In terms of precision, TouchCost
inferred the cost of about 70% of the existing loops. On the one hand, this
result underlines that, on average, TouchCost automatically infers the cost
of the most part of existing loops. On the other hand, different categories of
scripts expose different levels of precision. For instance, games scripts are usually
relatively big, and TouchCost compute the cost of almost the 80% of the loops
in these scripts. Instead, tools scripts seem to be more challenging, since the
precision rate for this category is around 35%. In addition, one could expect
that bigger scripts contain more complex code, and therefore TouchCost is less
precise on such scripts. Indeed, our experimental results show that there is no
correlation between the length of the script and the precision of TouchCost. For
instance, gamelibraries scripts are smaller than the average, but the precision
of TouchCost is around 50%.

6.2 Precision on TouchDevelop Sample Scripts

We now inspect manually the precision of TouchCost when dealing with
TouchDevelop sample root scripts containing loops. TouchDevelop samples

120 P. Ferrara, D. Schweizer, and L. Brutschy

action main() {
// Initialize the board
while true do {
// Update the board
time→sleep(0.01);

}
}

(a) Script iuks

data _board : Board
data _bubbles : Sprite Set
data _touch : Sprite
action pop bubbles () {

var p := _board→touch current
_touch→set pos(p→x, p→y)
foreach bubble in _touch→overlap

with(_bubbles) do
...

}

(b) Script uigca

action TouchList (...) {
var count := 0
var b := true
while b do {
//Perform some computation
count := count + 1
if count = 5 then

b := false
}

}

(c) Script vrgt

action show(board: Board) {
duration := 5;
dt := time→now;
while time→now→subtract(dt) < duration do {
//Show something to the user

}
}

(d) Script jhyg

action getConfCalls (s : DateTime, e : DateTime) {
app := social →

search_appointments(s, e);
foreach a1 in app
do {
//Extracts information

}
//Build up the conference call
//Call the people

}

(e) Script mpuj

action main() {
b := true ;
while b do {

code→play_round;
b := wall→
ask_boolean("Try␣again?", " ... ");

}
}

(f) Script avpm

action b () {
for 0 ≤ i < 999999 do {

if i / 2 = math → floor(i / 2) then {
wall →

set background(colors → white)
time → sleep(1) }

else {
wall →

set background(colors → black)
time → sleep(1) }

}
}

(g) Script lypy

var len := 0
while len ≥ 0 do {

...
len := len − 1

}

(h) Script hyax

Fig. 4. Case studies

(https://www.touchdevelop.com/pboj) contain a significant set of scripts de-
veloped by the TouchDevelop team to show the main features of this language.
Row sample root in Table 1 reports the experimental results we obtained on
these scripts. We analyzed 73 scripts (about 9.000 LOC). All together, these
scripts contain 233 loops, and we failed to compute the cost of 66 loops.
Non-terminating Loops: First of all, we noticed that some of the loops are
not necessarily terminating, and therefore the results of TouchCost are precise.
We have identified three main reasons of non-terminating loops.
User inputs: Some loops are iterated until the user provides a “good” input.
Consider for instance script avpm2 in Figure 4f. Action main iterates a while
loop until the user says that he wants to stop. Statically, this loop may be non-
terminating, since we do not know when the user will decide to stop.
while true loops: Another type of loops for which TouchCost cannot compute
their cost is represented by script iuks in Figure 4a. TouchDevelop provides a
specific gameloop action that “is triggered by a timer approximately every 50
2 The code of <script> is available at https://www.touchdevelop.com/<script>

https://www.touchdevelop.com/pboj
https://www.touchdevelop.com/<script>

TouchCost: Cost Analysis of TouchDevelop Scripts 121

milliseconds”3. Nevertheless, several users prefer to implement their own game
loop iterators. In this way, they can establish exactly the triggering rate by
adding a time→sleep statement inside the while loop.
Time constraints: Another recurrent pattern is exposed by script jhyg in Figure
4d. In this case, a loop is iterated during a given amount of time (e.g., 5 seconds).
This is obtained by (i) recording the time just before entering the loop (variable
dt), (ii) checking how much time is passed each time the loop is iterated, and
(iii) exiting the loop if this subtraction exposes that that enough time (that is,
at least duration seconds) has passed. Even though in this case we know that the
loop will eventually terminate (since the time is always strictly increasing), we
cannot know statically how many times the loop is iterated.
Approximation: There are some cases in which we fail to infer an upper bound
on the number of iterations because of a too rough approximation. In particular,
we identified two main sources of imprecision.
Collections: Figure 4b reports an excerpt of action popbubble of script uigca.
This action is aimed at popping a bubble that is touched by the user. There-
fore, it contains a foreach loop that iterates over the bubbles that overlaps with
the existing bubbles. Unfortunately, the abstract semantics of Sprite.overlap in
Sample is too imprecise, and we fail to infer any upper bound on this loop. Our
experience shows that this situation is common to various scripts, and it is the
main source of imprecision of TouchCost. Therefore, we are currently working
on more refined analyses for TouchDevelop analyses [7], and we expect it will
fix this issue. Nevertheless, it will slow down the analysis, and we will have to
study in which cases it is worth to apply more refined analysis.
Disjunctive information: In few cases TouchCost fails to compute the cost of
a loop because of complicated disjunctive invariants. One of these cases is the
action TouchList of script vrgt sketched in Figure 4c. The loop is iterated 5
times, but this is obtained by (i) a Boolean flag b as loop guard, (ii) counting
the number of iterations through a variable count, and (iii) setting b to true when
count = 5. In order to compute that this loop is iterated 5 times, we would need
to track disjunctive information through trace partitioning [21] that is already
supported by Sample[16], and translate this information to a cost relation system.

6.3 Applications of TouchCost

Finally, we inspect the results of the analysis investigating some particular cases
to study possible applications of TouchCost. In particular, since TouchDevelop
scripts are executed on mobile devices usually connected to the cloud, this in-
formation can be used at runtime to decide to move the execution to the cloud
if the application is too expensive w.r.t. the available resources. In addition,
TouchCost provides useful information to debug programs of novice users.
Moving the Execution: We start by considering script mpuj in Figure 4e. This
is the most popular script on the cloud: on May, 2013 it counted more than 2300
users and 40.000 runs. In addition, it is the evolution of slji, that counted more
3 https://www.touchdevelop.com/help/events

https://www.touchdevelop.com/help/events

122 P. Ferrara, D. Schweizer, and L. Brutschy

than 450 users and 10.000 runs. This script extracts the conference calls from the
calendar of the mobile device, and on request it dials the numbers of the people
involved in the conference calls. It consists of 15 actions, and only getConfCalls
contains a loop. Figure 4e sketches the main components of this action. The body
of the loop extracts the subject and the location of the conference calls, and it
builds up some strings to represent this information. TouchCost infers that the
loop is iterated a number of times equal to the number of elements contained
in the collection returned by social→search_appointments(start, end). At compile
time, the number of elements depends on start and end, two parameters of the
action whose value is unknown. Instead, at runtime, when the action is called, we
know the actual values of these two parameters. Then we can use this information
to establish exactly how many times the loop is iterated when the action is called.
So the runtime environment could decide to move the computation to the cloud
if the loop requires (e.g., computational) resources that are not locally available.
Wrong Implementations and Bugs: We then investigate some extreme costs.
Since many TouchDevelop users are novices, they sometimes implement a func-
tionality in the wrong way. A quite common example is a loop that is iterated an
enormous number of times. Consider for instance the snippet of code in Figure
4g of lypy. This script is relatively popular, with more than 1000 runs and 100
users. Action b iterates 999 999 times a loop that changes the color of the back-
ground, and put the device to sleep for 1 second. The user intended to write an
endless loop, and the cost analysis infers that the loop is iterated 999 999 times.

Finally, the cost information can expose some bugs as well. Script hyax con-
tains three actions (Generate, Generate2, Generate3) that follow the pattern
sketched in Figure 4h. TouchCost correctly infers that the loop is iterated only
once. This is definitely a bug, and even the various versions of this script (see
scripts fosieeps, nlqo, and lwnlb) are all bugged. Generally, when TouchCost
infers that the loop is iterated only once, we may issue an alarm and ask the
developer to check if this behavior is intended, or if it is a bug.

7 Conclusion

In this paper we presented TouchCost, an automatic tool that combines a
generic static analyzer (Sample) and an upper bound solver (PUBS) to automat-
ically compute the cost of loops in TouchDevelop scripts. TouchCost represents
the first extensive application of automatic static cost analysis to real programs.
The experimental results show that TouchCost is both scalable and precise,
and we envision possible applications of the inferred cost information. Mobile
programs are a particularly appealing target for cost analysis, since they run on
devices with limited local resources, but with a continuous access to the cloud.

Acknowledgments. Special thanks go to Samir Genaim for his support with
PUBS, and Manuel Fähndrich and Nikolai Tillmann for their support with
TouchDevelop.

TouchCost: Cost Analysis of TouchDevelop Scripts 123

References

1. http://www.businessinsider.com/the-future-of-mobile-slide-deck-2013-3
2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static

cost analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)
3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of

object-oriented bytecode programs. TCS 413(1), 142–159 (2012)
4. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-

guage. PhD thesis, DIKU, University of Copenhagen (1994)
5. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-

constraint loops. In: Proceedings of POPL 2013. ACM (2013)
6. Benzinger, R.: Automated higher-order complexity analysis. TCS 318, 79–103

(2004)
7. Bonjour, Y.: Must analysis of collection elements. Master’s thesis, ETH Zurich

(September 2013)
8. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric prediction

of heap memory requirements. In: Proceedings of ISMM 2008. ACM (2008)
9. Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S.,

Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505–521. Springer, Heidelberg
(2011)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977. ACM (1977)

11. Debray, S.K., Lin, N.-W.: Cost analysis of logic programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

12. Ferdinand, C., Heckmann, R., Theiling, H., Wilhelm, R.: Convenient user annota-
tions for a wcet tool. In: Proceedings of WCET 2003 (2003)

13. Ferrara, P.: Static type analysis of pattern matching by abstract interpretation. In:
Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2 2010, Part II. LNCS, vol. 6117,
pp. 186–200. Springer, Heidelberg (2010)

14. Ferrara, P., Fuchs, R., Juhasz, U.: TVAL+: TVLA and value analyses together. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504,
pp. 63–77. Springer, Heidelberg (2012)

15. Ferrara, P., Müller, P.: Automatic inference of access permissions. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 202–218. Springer,
Heidelberg (2012)

16. Gabi, D.: Disjunction on demand. Master’s thesis, ETH Zurich (2011)
17. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of

loop bounds and infeasible paths for wcet analysis using abstract execution. In:
Proceedings of RTSS 2006. IEEE Computer Society (2006)

18. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

19. Karr, M.: On affine relationships among variables of a program. Acta Informat-
ica 6(2), 133–151 (1976)

20. Li, S., Xie, T., Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M., Burck-
hardt, S.: A comprehensive field study of end-user programming on mobile devices.
Technical Report TR-2013-3, Microsoft Research (2013)

21. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)

http://www.businessinsider.com/the-future-of-mobile-slide-deck-2013-3

124 P. Ferrara, D. Schweizer, and L. Brutschy

22. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M.: Touchdevelop - program-
ming cloud-connected mobile devices via touchscreen. Technical Report TR-2011-
49, Microsoft Research (2011)

23. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M., Bishop, J., Samuel, A.,
Xie, T.: Touchdevelop - app development on mobile devices. In: Proceedings of
ITiCSE 2012. ACM (2012)

24. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M., Burckhardt, S.: Touchde-
velop - app development on mobile devices. In: Proceedings of FSE 2012, Demon-
stration. ACM (2012)

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem. overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7(3) (2008)

26. Zanioli, M., Ferrara, P., Cortesi, A.: SAILS: static analysis of information leakage
with Sample. In: Proceedings of SAC 2012. ACM (2012)

Efficient Incremental Static Analysis

Using Path Abstraction

Rashmi Mudduluru and Murali Krishna Ramanathan

Indian Institute of Science, Bangalore, India
{mudduluru.rashmi,muralikrishna}@csa.iisc.ernet.in

Abstract. Incremental static analysis involves analyzing changes to a
version of a source code along with analyzing code regions that are se-
mantically affected by the changes. Existing analysis tools that attempt
to perform incremental analysis can perform redundant computations
due to poor abstraction. In this paper, we design a novel and efficient
incremental analysis algorithm for reducing the overall analysis time. We
use a path abstraction that encodes different paths in the program as a set
of constraints. The constraints encoded as boolean formulas are input to
a SAT solver and the (un)satisfiability of the formulas drives the analysis
further. While a majority of boolean formulas are similar across multiple
versions, the problem of finding their equivalence is graph isomorphism
complete. We address a relaxed version of the problem by designing effi-
cient memoization techniques to identify equivalence of boolean formulas
to improve the performance of the static analysis engine. Our experi-
mental results on a number of large codebases (upto 87 KLoC) show a
performance gain of upto 32% when incremental analysis is used. The
overhead associated with identifying equivalence of boolean formulas is
less (not more than 8.4%) than the overall reduction in analysis time.

1 Introduction

The adoption of static analysis tools for bug detection [4,20] in the software
development cycle has increased significantly in the past decade [5]. These tools
typically analyze the source code to find different kinds of bugs including null
pointer dereferences [9,12], resource leaks [18], concurrency bugs [5] and secu-
rity flaws [19]. Software testing can be ineffective because it requires significant
manual effort to write good test cases to detect complex bugs. In contrast, static
analysis tools [13,20] can detect deep interprocedural defects on even rare exe-
cution paths automatically resulting in their increased use in software organiza-
tions. However, the time taken for static analysis to analyze the entire codebase
can be quite high. This has resulted in the design of a number of techniques to
reduce the analysis time [13,2].

In many organizations, each build goes through an automated software testing
process. If static analysis is integrated into the build system and the process is
time consuming, it can result in the unavailability of fresh testable binaries.
To address this, if the analysis is decoupled with the build process, the defects

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 125–139, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

126 R. Mudduluru and M.K. Ramanathan

eventually found by the static analysis will anyway invalidate the automated
testing. This is because the defects detected by the analysis need to be fixed and
automated testing needs to happen subsequently. Therefore, a practical mode of
using static analysis is to integrate them into the nightly build [13]. As a result,
the problem of improving the efficiency of static analysis has gained significance.
Many approaches for improving the efficiency of static analyses [20,13,2] exploit
the underlying parallelism in analyzing the code. For example, some functions
can be analyzed concurrently to reduce the overall analysis time.

A state of the art static analysis tool that is based on the above paradigm is
SATURN [20]. It is a path sensitive, interprocedural and a highly scalable static
analysis tool that has its foundations on boolean satisfiability and models the
programs being analyzed as a set of boolean constraints where the entire pro-
gram behaviour including path information is encoded by the constraints. Each
program point is represented as a boolean combination of these constraints. To
check a property at a given program point, SATURN converts the boolean formula
representing the program point into its conjunctive normal form and invokes
a SAT solver on the formula. Thus, the problem of detecting bugs is reduced
to that of checking the satisfiability of the boolean constraints at various pro-
gram points. SATURN also has a parallel implementation of their analysis which
distributes independent functions across multiple cores.

While parallelization of static analysis is a necessary first step in improving
its scalability, there are other avenues for reducing the analysis time. An un-
exploited avenue of improvement is the reanalysis of unchanged source code.
Programmers typically make only a few source code changes for every revision.
Incremental analysis involves analyzing the modified parts of the source code
and its dependencies. In practice, McPeak et al [13] show that incremental anal-
ysis is very effective in reducing the overall analysis time on revisions of the
codebase.

We observe that the constraints, generated by SATURN, across successive
versions are mostly the same because a majority of the codebase is unchanged.
A minor change in a function only results in modification to a subset of these
constraints. Because these constraints are not necessarily coupled to a function,
many boolean constraints solved by the SAT solver are common across multiple
functions within the same version of the codebase.

Recently, incremental static analysis techniques have been proposed for dif-
ferent applications [22,17,11,21,13]. For example, McPeak et al [13] propose an
incremental static analysis tool for bug detection that abstracts a function in
terms of a work unit. If the work unit is unchanged, then the result of ana-
lyzing the work unit from the previous run of the static analysis is used. We
believe that this abstraction is coarse-grained and has many limitations. Firstly,
a minor change in the work unit which does not necessarily affect the static anal-
ysis results can indeed cause a reanalysis of the work unit. Secondly, the work
unit abstraction results in all paths within a function (including semantically
independent paths) being coupled together and therefore prevents reusability of
analysis results on unaffected paths. Finally, this abstraction does not leverage

Efficient Incremental Static Analysis Using Path Abstraction 127

the potential reusability of results within the same version of the codebase. In
this paper, we explore the possibility of using a path abstraction for designing
incremental analysis which is fine grained and does not suffer from the above
limitations.

We leverage the path abstraction properties of SATURN to build an incremen-
tal static analysis tool, named iSATURN, which addresses the limitations of work
unit abstraction for performing incremental analysis. When iSATURN analyzes
the source code initially, it memoizes the boolean constraints that are input
to the SAT solver and the associated results from the solver. The number of
symbols in a boolean formula can be significantly high. To reduce the overhead
with hashing the entire boolean formula, we pick a subset of the symbols deter-
ministically, hash it and use it as a key to identify the formula and its results.
We store the memoized results in a highly efficient key-value database. In any
subsequent analysis, the solver is not invoked if the database lookup for the
boolean formula succeeds. The reduction in the number of invocations to the
solver reduces the overall analysis time. Moreover, as these formulas are func-
tion agnostic, memoized results of boolean formulas solved earlier in the run can
be reused appropriately.

We have implemented our approach on top of the SATURN analysis framework.
We use BerkeleyDB [16] for storing the memoized results. Our experiments on
multiple versions of large codebases show that the path based abstraction for
performing incremental analysis reduces the overall analysis time upto 32%.
More importantly, the results observed with the incremental static analysis is
exactly the same as the results obtained using a full analysis.

We make the following technical contributions in this paper:

1. We leverage the path based abstraction of static analysis tools to design a
novel and scalable incremental static analysis.

2. We implement our approach on top of the SATURN analysis framework to
analyze C programs.

3. We analyze multiple versions of large (upto 87 KLoC) open source codebases
showing upto 32% reduction in analysis time when compared to the overall
analysis time of SATURN.

2 Motivation

In this section, we motivate our problem by using examples to illustrate the in-
efficiencies with existing static analysis engines. Figure 1 shows the implementa-
tion of function gunzip file in two successive versions of busybox. Assume the
application of a static analysis tool (e.g., SATURN) to identify null pointer deref-
erences [1]. Consider the program point corresponding to line number 135 in
busybox v0.60.4. At this point, SATURN generates boolean constraints to check
the satisfiability of conditions, unzip(in file, out file) == 0 and path ==

NULL. The first condition is a conditional that is present in the code and the sec-
ond condition corresponds to the static analysis check to identify the feasibility
of a null pointer at that point. Now, consider the program point corresponding to

128 R. Mudduluru and M.K. Ramanathan

 133 if (unzip(in_file, out_file) == 0) {
 134 /* Success, remove .gz file */

 137 if (flags & gunzip_verbose) {
 138 fprintf(stderr, "OK\n");
 139 }

 135 if (!(flags & gunzip_to_stdout))
 136 delete_path = path;

 133 if (unzip(in_file, out_file) == 0) {
 134 /* Success, remove .gz file */
 135 delete_path = path;
 136 if (flags & gunzip_verbose) {
 137 fprintf(stderr, "OK\n");
 138 }

 }

 74 static int gunzip_file (const char *path, int flags)
 75 {

busybox v0.60.4

 74 static int gunzip_file (const char *path, int flags)
 75 {

busybox v0.60.5

 }

Fig. 1. Illustrative Example: Function gunzip file in two versions of busybox

line number 136 in busybox v0.60.5 (right side of Figure 1). For this version,
the boolean constraints generated to check the satisfiability of the conditions
include unzip(in file, out file) == 0, !(flags & gunzip to stdout) and
path == NULL. Obviously, the boolean constraints at the program point under
consideration will differ for these two versions. Interestingly, the boolean con-
straints will only differ on paths that have either changed syntactically or are
semantically dependent on the changed syntactic paths. In the above example,
out of the 94 boolean formulas in the function that are checked for satisfiabil-
ity, only 39 (40%) boolean formulas in the newer version differ from the original
set. We observe that eliminating the redundant computation of checking boolean
satisfiability can improve the performance of static analysis. Existing static anal-
ysis tools [13,20] will reanalyze the entire function. Our design of a more fine
grained incremental analysis technique enables our tool, iSATURN, to effectively
eliminate redundant computations.

Not surprisingly, our mechanism for improving the performance of static anal-
ysis also benefits analyzing the same version. Consider the code fragments for
the functions md5 get result and md5 init from bftpd v3.1 shown in Fig-
ure 2. In line 244 of md5 get result, the first parameter, md5 p to the function
is dereferenced and there is a corresponding boolean formula associated with this

 }

 283 {
 284 md5_p−>md_A = 0x67452301;
 285 md5_p−>md_B = 0xefcdab89;

 282 void md5_init(md5_t *md5_p)
 240 {
 241 md5_uint32 hold;

 243
 244 hold = SWAP(md5_p−>md_A);
 245 memcpy(res_p, &hold, sizeof(md5_uint32));
 246 res_p = (char *)res_p + sizeof(md5_uint32);

 }

 239 static void md5_get_result(const md5_t *md5_p, void *result)

 242 void *res_p = result;

Fig. 2. Illustrative Example: Commonality across two functions in the same version
(v3.1) of bftpd

Efficient Incremental Static Analysis Using Path Abstraction 129

program point. Similarly, there is a boolean formula associated with dereferenc-
ing the first parameter md5 p of function md5 init at line 284. In our analysis,
we observe that these two boolean formulas are exactly the same as these deref-
erences happen unconditionally and therefore the SAT solver need not be invoked
twice unnecessarily. We observe similar collisions of boolean formulas within the
same version of the program across multiple benchmarks.

3 Background

For completeness, we provide a brief overview of SATURN [20]. The framework
provided by SATURN translates a C program into a set of boolean constraints. It
has rules for modelling common C constructs like integers, pointers, conditionals,
etc. For example, integers are encoded as their binary representations. Consider
the statement: (c == 10)? s1 : s2; Here, statement s1 is executed if c has the
value 10. So the boolean constraint that encodes the condition under which s1
is executed is (B(c) == 1010), where B(c) is the binary representation of the
integer c. For s2, the constraint will be ¬(B(c) == 1010).

Any property checker (e.g., null pointer analyzer, leak detector, etc.) is en-
coded as a set of finite state properties and plugged into this framework. This is
accomplished by expressing the property checkers as a set of inference rules. For
example, one such inference rule could state that given the premises (i) a pointer
variable X points to another variable Y and (ii) at program point P, expression E
evaluates to X hold, the conclusion ”E evaluates to Y” holds [1]. If the property
being checked is aliasing, then the function summary is inferred by checking the
satisfiability of constraints obtained in conjunction with these properties and
the primitive constraints generated by SATURN. Consequently, bug detection is
reduced to checking if the error state is reachable. This checking is done with
the help of SAT queries [1].

Interprocedural analysis is achieved by using function summaries. Function
summaries represent the state of the function at its exit with respect to the
property being checked. For example, if an argument is dereferenced within a
function, and the property that is under consideration is null pointer dereference,
then the function summary corresponding to the function will carry the fact that
the argument to the function is dereferenced. For a more detailed exposition of
SATURN, we refer the reader to [20].

To illustrate the working of how the null analysis in SATURN detects bugs,
consider the example shown in Figure 3. SATURN performs bottom up analy-
sis [13] by default. In this example, the function bar is analyzed before main.
The boolean formulas generated by the null analysis for the function bar encode
the constraints shown in Figure 4. The constraints on the left correspond to
the true branch of the if condition and those on the right correspond to the
else branch. When the function bar is analyzed, all these boolean formulas are
satisfiable. Eventually, when main is analyzed, the function summary for bar

is available. Among other facts, this summary contains the fact that if flag is
not equal to 0, then the variable var is certainly dereferenced. This information

130 R. Mudduluru and M.K. Ramanathan

char ∗p1 , ∗p2 ;
void bar (i n t f l a g)
{

char var ;
var = (! f l a g ? ∗p1 : ∗p2) ;

}

void main (i n t args)
{

p2 = 0 ;
bar (1) ;

}

Fig. 3. Illustrative example to describe bug detection in SATURN

1. arg(0) == 0 & p1 == 0
2. arg(0) == 0 & p1 != 0
3. arg(0) == 0 & p2 != 0

1. arg(0) != 0 & p1 != 0
2. arg(0) != 0 & p2 == 0
3. arg(0) != 0 & p2 != 0

Fig. 4. Boolean constraints for function bar() from Figure 3

along with the currently known facts, p2 = 0 and flag = 1 results in the null
dereference bug being detected.

4 Design

In this section, we describe the overall architecture of our approach and subse-
quently describe the incremental analysis in detail.

4.1 Architecture

Figure 5 shows the overall architecture of iSATURN. CIL [15], the frontend C

parser, parses the program and generates abstract syntax trees (ASTs) [13].
These ASTs are encoded as a set of predicates representing program relations.
A database is created for each function that stores these predicates as a key
value pair. These databases are known as syntax databases [1].

SATURN [20] consults the syntax databases and generates boolean constraints
depending on the property being checked. In doing so, the path information is
also encoded in the boolean constraints. While generating constraints, SATURN
uses the predicates in the syntax databases to infer conditions under which a

ASTs
 SAT solver C Program

formula formula

DB lookup

CIL
preprocessor

boolean boolean

Memoization
Handler

Memoization
DB

SATURN

Fig. 5. Architecture of iSATURN

Efficient Incremental Static Analysis Using Path Abstraction 131

program point is reachable, thereby generating precise path information. SATURN
thus performs an analysis of the memory model to generate path sensitive
boolean formulas. These formulas are passed to a SAT solver [8] in their conjunc-
tive normal forms. The results from the SAT solver help SATURN in generating the
function summaries and error reports. The summary of a function represents all
the states of the function at its exit with respect to the property being checked.
Based on the results from the SAT solver, SATURN infers the predicates that are
feasible for a function and generates function summaries [1].

In our tool, iSATURN, we introduce a memoization database before the invoca-
tion of the SAT solver. We choose BerkeleyDB [16], a high performance key value
store for this purpose. The memoization database tracks the boolean formulas
solved by the SAT solver and the corresponding results. Therefore, in iSATURN,
we first check whether the results for a boolean formula are already present in
the memoization database. We define the presence of the boolean formula as a
hit and the absence as miss. In case of a hit, the SAT solver is not invoked and the
results from the database are returned rightaway. Otherwise, the SAT solver is
invoked as usual. We find that across successive versions, the number of calls to
the SAT solver decreases significantly due to the repetitive nature of the boolean
formulas being generated.

4.2 Equivalence of Boolean Formulas

We hypothesize that elimination of redundant invocations of the SAT solver to
check the satisfiability of the boolean formulas can help improve the performance
of the static analysis engine. By reusing the results of the solved boolean formu-
las, the analysis time can be decreased significantly. While stated simply, there
are significant challenges to bringing this idea to fruition. To reuse the results,
we need to identify the equivalence of boolean formulas.

Boolean Formula Structural Equivalence Problem: For two boolean
formulas,

1. φ1 = (a11 ∨ a12 ∨a1i) ∧ (a21 ∨ a22 ∨a2j) ∧ ∧ (an1 ∨ an2 ∨ank)
2. φ2 = (b11 ∨ b12 ∨b1l) ∧ (b21 ∨ b22 ∨b2m) ∧ ∧ (bn1 ∨ bn2 ∨bnp)

ideally the two CNF formulas are equivalent, if there exists some permutation of
the clauses and some permutation of the literals within these clauses resulting
in a one to one mapping of variables in these formulas. More specifically, let
the clauses of φ1 be denoted as cl1, cl2, ..., cln. Now consider the following
transformations on φ1:

1. φ′
1 = cl′1 ∧ cl′2 ∧ ... ∧ cl′n, where (cl′1, cl

′
2..., cl

′
n) is a permutation of

(cl1, cl2, ..., cln)
2. φ′′

1 = (a′′11 ∨ a′′12 ∨a′′1l) ∧ (a′′21 ∨ a′′22 ∨a′′2m) ∧ ... ∧ (a′′n1 ∨ a′′n2 ∨a′′np),
where (a′′i1, a

′′
i2, ..., a

′′
ik) is a permutation of literals in cl′i

If the variables in φ′′
1 can be renamed such that the resulting formula be-

comes equal to φ2, then the two formulas φ1 and φ2 are structurally equivalent.

132 R. Mudduluru and M.K. Ramanathan

Any truth assignment to the variables of φ1 can also be applied to the corre-
sponding variables in φ2. For example, the following two boolean CNF formulas
are structurally equivalent:

1. ψ1 = (a ∨ ¬b ∨ c) ∧ (d ∨ a ∨ b)
2. ψ2 = (z ∨ w ∨ x) ∧ (w ∨ y ∨ ¬x)

Permuting the clauses of ψ1, we get ψ′
1 = (d ∨ a ∨ b) ∧ (a ∨ ¬b ∨ c). Further,

permuting the literals of the second clause in ψ′
1 results in ψ′′

1 = (d∨a∨ b)∧ (a∨
c ∨ ¬b). There is a one to one correspondence between the variables of ψ′′

1 and
ψ2 (i.e) (a, b, c, d) corresponds to (w, x, y, z). Any satisfying truth assignment
of (a, b, c, d) for ψ1 can also be applied to (w, x, y, z) in ψ2 respectively.

Theorem 1. The boolean CNF formula structural equivalence problem is graph
isomorphism complete [3].

Proof. The problem of determining equivalence of CNF formulas is reducible to
that of graph isomorphism in polynomial time [3].

If we make the approach of considering equivalence of formulas more con-
servative by foregoing the permutation of clauses and literals in defining the
equivalence of CNF formulas, then the approach has a polynomial time com-
plexity. More specifically, for two CNF formulas,

1. φ3 = (a11 ∨ a12 ∨a1i) ∧ (a21 ∨ a22 ∨a2j) ∧ ∧ (an1 ∨ an2 ∨ank)
2. φ4 = (b11 ∨ b12 ∨b1i) ∧ (b21 ∨ b22 ∨b2j) ∧ ∧ (bn1 ∨ bn1 ∨bnk)

the formulas are said to be equivalent if there exists a one to one mapping of
variables such that the literals in φ3 can be renamed as those in φ4 at their
corresponding positions. This conservative technique gives fewer number of hits
than the original boolean CNF formula equivalence problem. In other words, it
may miss some formulas that are actually equivalent because of the permutations
of the clauses and the literals within. As a result, ψ1 and ψ2 given above would
not be considered equivalent in this approach. However, in this approach, the
following two boolean formulas are considered equal:

1. ψ3 = (a ∨ ¬b ∨ c) ∧ (d ∨ a ∨ b)
2. ψ4 = (w ∨ ¬x ∨ y) ∧ (z ∨ w ∨ x)

ψ3 and ψ4 are considered equivalent in this approach because there is a one to
one correspondence between their clauses, and within each clause, each variable
of ψ3 can be mapped to the variable at the corresponding position in ψ4.

Nevertheless, even this conservative approach does not necessarily scale be-
cause it involves canonical renaming of variables and their comparison. In order
to rename a variable, we need to maintain a mapping of the variables’ names
and their new names. For each variable, we check if it has already been renamed.
If not, we assign it a new name in a canonical manner. This has to be done for
every literal in every clause. This results in a quadratic complexity in the total
number of literals in the formula.

Efficient Incremental Static Analysis Using Path Abstraction 133

Therefore, we consider the most practical approach to compare the formulas.
Here, two formulas are considered equivalent only if they are exactly the same.
This approach reduces the number of formulas that are syntactically equivalent
and results in more invocations of the SAT solver than is necessary. Surprisingly,
our experimental results shows that the number of hits even with this technique
is significantly high and helps improve the performance of static analysis.

5 Implementation

Algorithm 1. Memoization Handler

Input: φ = (c11 ∨ c12 ∨c1i) ∧ (c21 ∨ c22 ∨c2j) ∧ ∧ (cn1 ∨ cn2 ∨cnk)
Output: SAT or UNSAT
1: Numc(φ) : number of clauses in φ
2: Numl(ψ) : number of literals in ψ
3: H(i1, i2, .., im) : MD5 hash of concatenation of i1, i2, ..., im
4: if Numc(φ) < K then
5: key ← H(...H(H(c11, c12,, c1i),(c21, c22,, c2j)),....,(cn1, cn2,, cnk))
6: else
7: key ← ””
8: index ← 1
9: for each clause ψ in φ do
10: pos ← index mod (Numl(ψ))
11: key ← H(key,H(literal at position pos in ψ))
12: index ← index + 1
13: end for
14: value ← memdb lookup(key)
15: if value is found then
16: return the value
17: else
18: result ← SAT solver(φ)
19: memdb store(key,result)
20: return result
21: end if
22: end if

In our implementation, we use BerkeleyDB [16], a highly efficient key value
store to memoize the formulas and their results. If the formulas include a lot
of literals, memoizing the boolean formulas as strings is highly inefficient. In
practice, because SATURN encodes programs as boolean constraints and main-
tains precise path information down to the level of bits, these boolean formulas
tend to be very large. For example, in our experimental setup, for benchmarks
of about 7 KLoC, we observe that the maximum number of clauses is 7000 and
the maximum number of literals within each clause is 100 approximately.

We address the above problem by employing an efficient hashing technique to
store the formulas. Given a boolean formula (c11∨c12∨....c1i)∧(c21∨c22∨....c2j)∧
....∧(cn1∨cn2∨....cnk), we store H(..H(H(c11, .., c1i), (c21, .., c2j)), .., (cn1, .., cnk))

134 R. Mudduluru and M.K. Ramanathan

as the key, whereH(a, b) denotes the hash of concatenation of a and b. We employ
the MD5 algorithm [7] for hashing which ensures that every key is 128 bits long.

To optimize the implementation further and to leverage the large size of the
boolean formulas, we also employ a deterministic sampling approach to generate
the key for every boolean formula. Instead of using the complete formula to
generate the hash, the hash is based on picking a predetermined literal from
each clause. The hash function used is H(...H(H(c1a), c2b),, cnk), where n is
the number of clauses in the formula, cij denotes the jth literal of ith clause,
where j = i mod f(i) and f(i) is the number of literals in ith clause. The
complete algorithm is shown in Algorithm 1.

In Algorithm 1, for formulas with number of clauses less than K, lines 4 and
5 generate the key for database lookup by hashing the entire SAT formula. For
the remaining formulas, lines 9 to 13 generate the key by hashing the sampled
literals from each clause in the SAT formula. The rest of the algorithm describes
how the generated key is used in database lookup. Upon a hit, the result stored
in the DB is returned. Otherwise, the SAT solver is invoked and the result is
returned after storing it against the generated key in the memoization DB.

Though the deterministic sampling may result in two unequal formulas being
matched, the probability of such a scenario is very low. More specifically, the
probability of two distinct formulas being considered equivalent due to sampling
will happen if the sampled literal from each clause matches. The probability of
two distinct formulas matching because of deterministic sampling is Πn

i=11/f(i).
For sufficiently large n and f(i), we deploy the sampling technique and for smaller
values, we use the complete approach. In our experimental results, we also em-
pirically verify across a number of benchmarks that deterministic sampling does
not result in two distinct formulas being considered equivalent.

6 Experimental Results

We conduct our experiments on an Ubuntu 12.04 desktop equipped with 3.5
GHz Intel core i7 processor and 16 GB RAM. We use BerkeleyDB version 5.3.21
to store the SAT formulas and their results. We use the null pointer dereference
analysis to show the scalability of our approach. We believe that the conclusions
drawn from the experiments can be extended to other interprocedural analyses
as well. We use five open source benchmarks for our experiments. busybox is
a collection of utilities for embedded systems, openssh uses the SSH protocol
to provide secure communication sessions over a network, gzip is used for com-
pression and decompression of files and bftpd is a flexible FTP server. We use
two different versions of gzip (gzip(A) and gzip(B)) to show that the perfor-
mance of our approach is also dependent on the kinds of changes made across
the versions.

Table 1 provides the list of benchmarks used and the statistics associated with
the benchmarks including the number of lines of code and the number of formulas
that need to be solved by the static analysis engine. The number of lines of code
varies from 5 KLoC to 88 KLoC approximately. The number of formulas varies

Efficient Incremental Static Analysis Using Path Abstraction 135

Table 1. Benchmarks used in our experiments and associated statistics

Benchmark Version 1 Version 2 KLoC Number of formulas
version 1 version 2 version 1 version 2

busybox 0.60.4 0.60.5 75.5 75.8 48198 48388

openssh 20130823 20130830 87.7 87.9 106305 106305

bftpd 3.1 3.2 5.2 5.2 9638 9704

gzip(A) 1.2.4 1.2.4a 8.0 8.0 51363 51363

gzip(B) 1.3.2 1.3.3 9.2 9.2 56210 56210

Table 2. Comparison of performance between SATURN and iSATURN

Benchmark version 1 version 2 Memory
overhead
percentage*

TS

(secs)
TI

(secs)
Overhead
percentage

TS

(secs)
TI

(secs)
Improvement
percentage

busybox 333 358 7.5 337 228 32 0.83

openssh 661 717 8.4 664 455 31.4 1.11

bftpd 65 66 1.5 65 58 10.7 0.22

gzip(A) 2811 2987 6.2 2891 2069 28.4 0.66

gzip(B) 7071 7309 3.3 7212 6734 6.6 0.7

Ts : Analysis time with SATURN.
TI : Analysis time with iSATURN.

*Memory overhead of iSATURN over SATURN.

from 9638 for bftpd to 106305 for openssh. In scenarios where the number of
formulas is the same across versions (Example: openssh, gzip(A), gzip(B)), we
will show later that they are not necessarily the same set of formulas.

Table 2 presents a comparison of iSATURN and SATURN in analyzing the five
benchmarks. For each version of the benchmark, we analyze it using both the
tools. The choice of SAT formulas that are sampled and not cached completely by
iSATURN depends on the structure of the formula being considered. Specifically,
while converting the SAT formulas into their CNF forms and simplifying them,
SATURN has a way of putting the clauses into either one group or two groups.
Typically, when the clauses are put into two groups, the number of clauses in the
first group is very large and we sample the literals from the clauses of this group.
We run the analysis to fixpoint or 20 iterations, whichever completes earlier. We
also do not consider analyzing functions1 that timeout due to implementation
issues in SATURN itself. In the first version, there will be overhead associated with
iSATURN because the results pertaining to the boolean formulas are being stored
in the database. This overhead varies from 1.5 to 8.4%. Subsequently, when the
second version of the benchmark is analyzed by both the tools, iSATURN shows
a performance improvement of upto 32% for busybox. This performance gain
can be obtained across multiple runs of the program on the same version or
any subsequent version. We also observe that in bftpd, the size of the SAT

1 The number of formulas that timeout is less than 3.5%.

136 R. Mudduluru and M.K. Ramanathan

 0

 20

 40

 60

 80

 100

 120

busybox openssh bftpd gzip(A) gzip(B)

Pe
rc

en
ta

ge
 o

f h
its

Benchmarks

version1
Version2

251 1263 295 1615
3248

43845

104030

8605

50905

18294

Fig. 6. Percentage of hits across versions. The number on top of the bars represents
the actual number of hits.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

busybox openssh bftpd gzip(A) gzip(B)

No
rm

al
iz

ed
 s

to
re

 ti
m

e

Benchmarks

version1
Version2

Fig. 7. Normalized store time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

busybox openssh bftpd gzip(A) gzip(B)

No
rm

al
iz

ed
 lo

ok
up

 ti
m

e

Benchmarks

version1
Version2

Fig. 8. Normalized lookup time

formulas does not exceed 2502 clauses and it has the least overhead during
the analysis in the first version (1.5%). On the other hand, analysis of openssh
generates formulas with the number of clauses as high as 22839 but the overhead
is relatively small (8.4%). The last column in table 2 shows that the memory
overhead incurred by iSATURN over SATURN is negligible.

Figure 6 shows the benchmarks on the X axis and number of hits on the Y
axis. Recall that a hit happens whenever the formula that needs to be solved
has its results stored in the database. While analyzing successive versions of the
codebase, the number of hits increases significantly. With increase in the number
of hits, the reduction in the overall analysis time is prominent. Furthermore, we
also observe that the database lookup succeeds even when analyzing the same
version. For example, while analyzing the first version of gzip(B), we notice a
non trivial (3248) number of hits.

Figure 7 compares the normalized time of storing the SAT formulas and their
results across versions. The time to store the formulas and the results does
not exceed 15% of the overall analysis time and is negligible in many cases.

Efficient Incremental Static Analysis Using Path Abstraction 137

Figure 8 shows the normalized lookup time across versions. The lookup time
also does not exceed 20% of the overall analysis time. Using a more efficient key
value store can reduce these overheads even further.

The results show that the techniques used here can be employed to improve
efficiency of applications where a number of SAT formulas need to be solved and
many of them are equivalent as described here. However, in applications where
the precise equivalence of SAT formulas is essential, the sampling technique
should not be employed.

7 Related Work

McPeak et al [13] propose a solution for the problem of incremental static analy-
sis and provide a solution. One of the fundamental limitations of their approach
is that the incremental analysis is based on a coarse grained work unit. There-
fore, even a minor modification to a function which does not necessarily change
the outcome of static analysis can result in the function being re-analyzed. In
other words, their approach does not fully exploit semantically equivalent paths.
Furthermore, even while analyzing the same version, the avenues for reducing
redundancy is not explored comprehensively. Our approach is complementary to
their approach. For functions where the approach of [13] suggests a reanalysis,
iSATURN can be used to reduce the redundancy.

Recently, memoization has been applied to improve efficiency of symbolic exe-
cution and model checking. Yang et al [22] propose memoized symbolic execution,
where a trie data structure is used to represent symbolic paths generated during
a symbolic run. Subsequent symbolic runs of the program use the information
stored in the trie to avoid re-execution of unaffected paths. Person et al [17] de-
scribe techniques to direct the symbolic execution using changes across different
versions of a program. Path conditions affected by code changes are computed
and are used to explore execution paths in the affected parts of the program.
Lauterburg et al [11], show how state space exploration can be made incremen-
tal by memoizing information about states that are unaffected by changes across
program versions. Similarly, Yang et al [21] propose regression model checking
where data from previous versions helps to avoid checking some state spaces that
are safe in the current version. It uses test suites to identify paths in a CFG that
are modified in the current version and thereby prunes states that are safe. Our
approach differs from these techniques as it aims at improving the efficiency of
static analysis approaches that depend on solving SAT queries to detect bugs.

In approaches that attempt to improve performance of static analysis, paral-
lelism in the code being analyzed is exploited to achieve speedup [2,14]. These
approaches bank upon additional cores to achieve speedup and are agnostic per-
taining to the incremental nature of the source code. In contrast, our approach
gives performance benefits with the existing resources alone.

There are a variety of static analysis tools available that target specific kinds
of bugs [18,19]. Techniques based on model checking [4,6] may find more bugs ac-
curately but are not scalable for large programs. These approaches focus mainly

138 R. Mudduluru and M.K. Ramanathan

on finding bugs more precisely but do not attempt to address the incremental
nature of software.

Incremental analysis requires that the tool identify parts of the code that have
been syntactically and semantically affected by code changes. Impact analysis
identifies the impact of a change on a program [10]. It has been used in the
context of testing to identify tests that need to be executed after a code change.
Static analysis requires the identification of parts of code that need to be rean-
alyzed in the incremental setting. In our approach, we analyze only the paths
that are affected by code changes in the context of the property being checked.

8 Conclusions

In this paper, we identify the problem of redundant computations performed by
existing state of the art static analysis engines. The redundancy exists due to
the incremental nature of software development. We leverage this characteristic
of software development to build a scalable static analysis that stores and uses
previous analysis results effectively. We have implemented a tool, iSATURN, on
top of SATURN, a state of the art static analysis engine. Our experimental re-
sults on large codebases (upto 87 KLoC) show that iSATURN reduces the overall
analysis time upto 32%.

Acknowledgements. We thank Alex Aiken and Isig Dillig for answering our
questions related to SATURN. We also thank Ananth Grama, Mehmet Koyuturk
and Deepak D’Souza for providing useful pointers.

References

1. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the saturn project. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, pp. 43–48. ACM
(2007)

2. Albarghouthi, A., Kumar, R., Nori, A., Rajamani, S.: Parallelizing top-down inter-
procedural analyses. In: Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 217–228. ACM (2012)

3. Ausiello, G., Cristiano, F., Laura, L.: Syntactic isomorphism of cnf boolean formu-
las is graph isomorphism complete. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 19, p. 122 (2012)

4. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of in-
terfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122. Springer,
Heidelberg (2001)

5. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. International Journal on Software Tools for Technology Transfer 9(5-6),
505–525 (2007)

Efficient Incremental Static Analysis Using Path Abstraction 139

7. Deepakumara, J., Heys, H.M., Venkatesan, R.: Fpga implementation of md5 hash
algorithm. In: Canadian Conference on Electrical and Computer Engineering,
vol. 2, pp. 919–924. IEEE (2001)

8. Een, N., Sörensson, N.: Minisat: A sat solver with conflict-clause minimization.
Sat, 5 (2005)

9. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In:
Proceedings of the 7th ACM SIGPLAN-SIGSOFTWorkshop on Program Analysis
for Software Tools and Engineering, pp. 9–14. ACM (2007)

10. Jashki, M.-A., Zafarani, R., Bagheri, E.: Towards a more efficient static soft-
ware change impact analysis method. In: Proceedings of the 8th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE 2008, pp. 84–90. ACM (2008)

11. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: Proceedings of the
30th International Conference on Software Engineering, pp. 291–300. ACM (2008)

12. Livshits, V.B., Lam, M.S.: Tracking pointers with path and context sensitivity
for bug detection in c programs. In: ACM SIGSOFT Software Engineering Notes,
vol. 28, pp. 317–326. ACM (2003)

13. McPeak, S., Gros, C.-H., Ramanathan, M.K.: Scalable and incremental software
bug detection. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pp. 554–564 (2013)

14. Mendez-Lojo, M., Mathew, A., Pingali, K.: Parallel inclusion-based points-to anal-
ysis. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA 2010, pp. 428–443
(2010)

15. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language
and tools for analysis and transformation of c programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

16. Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley db. In: USENIX Annual Technical
Conference, FREENIX Track, pp. 183–191 (1999)

17. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. ACM SIGPLAN Notices 47(6), 504–515 (2012)

18. Torlak, E., Chandra, S.: Effective interprocedural resource leak detection. In:
2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1,
pp. 535–544. IEEE (2010)

19. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2007, pp. 32–41 (2007)

20. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: POPL
2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 351–363 (2005)

21. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: IEEE In-
ternational Conference on Software Maintenance, ICSM 2009, pp. 115–124. IEEE
(2009)

22. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 144–154. ACM (2012)

Type-Based Taint Analysis for Java

Web Applications

Wei Huang, Yao Dong, and Ana Milanova

Rensselaer Polytechnic Institute

Abstract. Static taint analysis detects information flow vulnerabilities.
It has gained considerable importance in the last decade, with the ma-
jority of work focusing on dataflow and points-to-based approaches.

In this paper, we advocate type-based taint analysis. We present SFlow,
a context-sensitive type system for secure information flow, and SFlow-
Infer, a corresponding worst-case cubic inference analysis. Our approach
effectively handles reflection, libraries and frameworks, features notori-
ously difficult for dataflow and points-to-based taint analysis.

We implemented SFlow and SFlowInfer. Empirical results on 13 real-
world Java web applications show that our approach is scalable and also
precise, achieving false positive rate of 15%.

1 Introduction

Information flow vulnerabilities are one of the most common security problems
according to OWASP [14]. A common information flow vulnerability is SQL
injection, shown in the example in Fig. 1 (adapted from [9]).

1 HttpServletRequest request = ...;
2 Statement stat = ...;
3 String user = request.getParameter(‘‘user’’);
4 StringBuffer sb = ...;
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 String query = sb.toString();
8 stat.executeQuery(query);

Fig. 1. SQL Injection Example

In this example, the user parameter of the HTTP request is obtained through
request.getParameter(“user”) and stored in variable user, which is later appended
to an SQL query string and sent to a database for execution: stat.executeQuery
(query). At a first glance, this code snippet is unremarkable. However, if a ma-
licious end-user supplies the user parameter with the value of “John OR 1 =
1”, the unauthorized end-user can gain access to the information of all other
users, because the WHERE clause always evaluates to true. Other information
flow vulnerabilities include cross-site scripting (XXS), HTTP response splitting,
path traversal and command injection [9].

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 140–154, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Type-Based Taint Analysis for Java Web Applications 141

Static taint analysis detects information flow vulnerabilities. It automatically
detects flow from untrusted sources to security-sensitive sinks. In the example
in Fig. 1, the return value of HttpServletRequest.getParameter() is a source, and
the parameter p of Statement.executeQuery(String p) is a sink.

Research on static taint analysis for Java web applications has largely focused
on dataflow and points-to-based approaches [5, 9, 18–20]. One issue with these
approaches is that they usually rely on context-sensitive points-to analysis, which
is expensive and non-modular (i.e., it requires a whole program). Arguably the
toughest issue is dealing with reflection, libraries (JDK and third-party), and
frameworks (Struts, Spring, Hibernate, etc.), features notoriously difficult for
dataflow and points-to analysis and yet ubiquitous in Java web applications.

In this paper, we advocate type-based taint analysis. Specifically, we present
SFlow, a context-sensitive type system for secure information flow, and SFlow-
Infer, a corresponding worst-case cubic inference analysis. We leverage the infer-
ence and checking framework we built in previous work [6], which we have used
to infer and check object ownership [6] and reference immutability [8].

Our inference is modular and compositional. It is modular in the sense that it
can analyze any given set of classes L. Unknown callees in L are handled using
appropriate defaults. Callers of L can be analyzed separately and composed with
L without reanalysis of L. The inference requires annotations only on sources
and sinks. Once the sources and sinks are built into annotated libraries, web ap-
plications are analyzed without any input from the user. The modularity of the
inference allows for the effective handling of libraries and frameworks. Our ap-
proach handles reflective object creation as well. This is possible because SFlow
does not require abstraction of heap objects; instead, it models flow from one
variable to another through subtyping. To the best of our knowledge, this is
the first type-based taint analysis for Java web applications, as well as the first
analysis that is low polynomial and yet precise.

The paper makes the following contributions:

– SFlow, a context-sensitive type system for secure information flow.
– SFlowInfer, a novel, cubic inference analysis for SFlow.
– Effective handling of reflective object creation, libraries and frameworks.
– An empirical evaluation on Java web applications of up to 126kLOC, com-

prising 473kLOC in total.

The rest of the paper is organized as follows. Sect. 2 describes the SFlow type
system and Sect. 3 describes the inference analysis. Sect. 4 describes techniques
for handling of reflection, libraries and frameworks. Sect. 5 presents the empirical
evaluations. Sect. 6 discusses the related work, and Sect. 7 concludes the paper.

2 SFlow Type System

This section first describes the basic type qualifiers in SFlow (Sect. 2.1) followed
by the extension for context sensitivity (Sect. 2.2). It proceeds to formalize SFlow
(Sect. 2.3), and combine SFlow with reference immutability (Sect. 2.4).

142 W. Huang, Y. Dong, and A. Milanova

2.1 SFlow Qualifiers

There are two basic type qualifiers in SFlow: tainted and safe.

– tainted: A variable x is tainted, if there is flow from a source to x. Sources, e.g.,
the return value of ServletRequest.getParameter(), are annotated as tainted.

– safe: A variable x is safe if there is flow from x to a sensitive sink. Sinks, e.g.,
the parameter p of Statement.executeQuery(String p), are annotated as safe.

SFlow disallows flow from tainted sources to safe sinks. Therefore, we define
the following subtyping hierarchy1:

safe <: tainted

where q1 <: q2 denotes q1 is a subtype of q2 (q is also a subtype of itself: q <: q).
Thus, assigning a safe variable to a tainted one is allowed:

safe int s = ...; tainted int t = s;

but assigning a tainted variable to a safe one is disallowed:
tainted int t = ...; safe int s = t; // type error!

In the SQL injection example in Fig. 1, the return value of getParameter() is
annotated as tainted, and the parameter of executeQuery(String p) is annotated
as safe, as they are a source and a sink, respectively. The other variables are
tainted:
2 ...
3 tainted String user = request.getParameter(‘‘user’’);
4 tainted StringBuffer sb = ...; // it includes the tainted user
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 tainted String query = sb.toString();
8 stat.executeQuery(query); // type error!

Since it is not allowed to assign the tainted query to the safe parameter of exe-
cuteQuery(String p), statement 8 does not type-check, resulting in a type error.
The type error signals an information flow violation.

2.2 Context Sensitivity

Context sensitivity is crucial to the typing precision of SFlow. Note that in the
context-insensitive typing above, methods append and toString must be typed as
follows (code throughout the paper makes parameter this explicit):

tainted StringBuffer append(tainted StringBuffer this, tainted String s) {...}
tainted String toString(tainted StringBuffer this) {...}
Such context-insensitive typing is imprecise, because it types the return value

of toString as tainted. Consider the example in Fig. 2. query at line 7 is not
tainted by any input, but it is typed tainted because the return value of toString
is of type tainted. Therefore, the program is rejected, even though it is safe.

SFlow achieves context sensitivity by making use of a polymorphic type qual-
ifier, poly, and viewpoint adaptation.

1 Note that this is the desired subtyping. Unfortunately, this subtyping is not always
safe, as we discuss in detail in Sect. 2.4.

Type-Based Taint Analysis for Java Web Applications 143

1 String user = request.getParameter(‘‘user’’);
2 StringBuffer sb1 = ...; StringBuffer sb2 = ...;
3 sb1.append(”SELECT ∗ FROM Users WHERE name = ”);
4 sb2.append(”SELECT ∗ FROM Users WHERE name = ”);
5 sb1.append(user);
6 sb2.append(‘‘John’’);
7 String query = sb2.toString();
8 stat.executeQuery(query);

Fig. 2. Context sensitivity example

– poly: The poly qualifier expresses context sensitivity. poly is interpreted as
tainted in some invocation contexts and as safe in other contexts.

The subtyping hierarchy becomes

safe <: poly <: tainted

and append and toString are typed as follows:
poly StringBuffer append(poly StringBuffer this, poly String s) {...}
poly String toString(poly StringBuffer this) {...}
The poly qualifiers must be interpreted according to invocation context. Intu-

itively, the role of viewpoint adaptation (which we elaborate upon shortly), is to
interpret the poly qualifiers according to the invocation context. In Fig. 2, poly
is interpreted as tainted at call sb1.append(user), and as safe at call sb2.append
(”John”). As a result, the tainted argument in the call through sb1 does not
propagate to sb2; thus, query at line 7 is typed safe, and the type error at line 8
is avoided.

The type of a poly field f is interpreted in the context of the receiver at the
field access. If the receiver x is tainted, then x.f is tainted. If the receiver x is safe,
then x.f is safe. An instance field can be tainted or poly, but it cannot be safe;
this is necessary to ensure soundness.

Viewpoint adaptation is a concept from Universe Types [3]. Viewpoint adap-
tation of a type q′ from the viewpoint of another type q, results in the adapted
type q′′. This is written as q
 q′ = q′′. Viewpoint adaptation adapts fields, for-
mal parameters, and method return values from the viewpoint of the receiver at
the field access or method call.

The viewpoint adaptation operation is as follows:

 tainted = tainted
 safe = safe q
 poly = q

The underscore denotes a “don’t care” value. Qualifiers tainted and safe do not
depend on the viewpoint (context). Qualifier poly depends on the viewpoint; in
fact, it adapts to that viewpoint (context).

2.3 Typing Rules

Fig. 3 shows the typing rules over a syntax in “named form”, where the results
of field accesses, method calls, and instantiations are immediately stored in a
variable. Without loss of generality, we assume that methods have parameter this,

144 W. Huang, Y. Dong, and A. Milanova

(tnew)

Γ (x) = qx q <: qx

Γ � x = new q C

(twrite)

Γ (y) = qy typeof (f) = qf Γ (x) = qx qx <: qy
 qf

Γ � y.f = x

(tassign)

Γ (x) = qx Γ (y) = qy qy <: qx

Γ � x = y

(tread)

Γ (y) = qy typeof (f) = qf Γ (x) = qx qy
 qf <: qx

Γ � x = y.f
(tcall)

Γ (y) = qy typeof (m) = qthis, qp → qret Γ (x) = qx Γ (z) = qz
qy <: qy
 qthis qz <: qy
 qp qy
 qret <: qx

Γ � x = y.m(z)

Fig. 3. Typing rules. Function typeof retrieves the SFlow types of fields and methods,
Γ is a type environment that maps variables to SFlow qualifiers.

and exactly one other formal parameter. The SFlow type system is orthogonal
to (i.e., independent of) the Java type system, which allows us to specify typing
rules over type qualifiers q alone.

The rules create subtyping constraints at explicit assignments (e.g., x = y, x
= y.f) and at implicit assignments (e.g., assignments from actual arguments to
formal parameters). The rules for field access, (tread) and (twrite), adapt the field
f from the viewpoint of the receiver y, and create the expected subtyping con-
straints. The rule for method call, (tcall), adapts formal parameters this and p
and return value ret from the viewpoint of the receiver y, and creates the subtyp-
ing constraints that capture flows from actual arguments to formal parameters,
and from return value to the left-hand-side of the call assignment.

Let us return to the example in Fig. 2. Method append is polymorphic, i.e., it
is typed as follows:

poly StringBuffer append(poly StringBuffer this, poly String s) {...}
Let sb1 be typed tainted. The call at line 5, namely sb1.append(user), accounts
for the following constraint (for brevity, for the rest of the paper, we typically
use only the variable, e.g., user, instead of the more verbose quser):

user <: s1
 s ≡ user <: s1
 poly ≡ user <: s1
Since user and s1 are tainted, the call at line 5 type-checks. Now let sb2 be typed
safe. The call at line 6, sb2.append(”John”), accounts for constraint:

“John” <: s2
 s ≡ “John” <: s2
 poly ≡ “John” <: s2
Since string constant “John” and s2 are both safe, this type-checks as well. In
the first context of invocation of append we interpreted poly s as tainted, while
in the second context, we interpreted it as safe.

Method overriding is handled by the standard constraints for function sub-
typing. If m′ overrides m we require typeof (m′) <: typeof (m) and thus,

(qthism′ , qpm′ → qretm′) <: (qthism , qpm → qretm)

This entails qthism <: qthism′ , qpm <: qpm′ , and qretm′ <: qretm .
As it is evident from these typing rules, we consider only explicit flows (i.e.,

data dependences). To the best of our knowledge, all effective static taint anal-
yses [1, 2, 5, 9, 18–20] forgo implicit flows.

Type-Based Taint Analysis for Java Web Applications 145

2.4 Composition with Reference Immutability

The reader has likely noticed that subtyping safe <: poly <: tainted is not always
sound. Suppose the field f of class A is poly in the following example:

tainted B tf = ...; safe A s = ...;
tainted A t = s; // because of safe <: tainted
t.f = tf; // t.f is tainted
safe B sf = s.f; // s.f is safe, unsafe flow!

The program type-checks, but the tainted variable tf flows to safe variable sf.
This is the known problem of subtyping in the presence of mutable references,
also known as the issue with Java’s covariant arrays [13].

The standard solution is to disallow subtyping for references [16]. This solution
demands two sets of qualifiers, safe <: poly <: tainted for simple types (e.g.,
int,char), and Safe,Poly,Tainted for reference types. While subtyping is allowed
for simple types, it is disallowed for reference types. Unfortunately, disallowing
subtyping for reference types leads to imprecision, i.e., the type system rejects
valid programs. It amounts to using equality constraints as opposed to subtyping
constraints, and thus, propagating safe and tainted qualifiers bi-directionally,
resulting in often unnecessary propagation [11].

We propose a solution using reference immutability, which allows limited sub-
typing and improves precision. It is a theorem that subtyping is safe when the
reference on the left-hand-side of the assignment is an immutable reference, that
is, the state of the referenced object, including its transitively reachable state,
cannot be mutated through this reference.

We compose SFlow with ReIm, a reference immutability type system we de-
veloped in previous work [8]. We run ReImInfer [8], ReIm’s inference tool, and
obtain ReIm types for all variables. If the ReIm type of the left-hand-side of
an assignment is readonly, i.e., it is guaranteed that this left-hand-side is im-
mutable, we use a subtyping constraint in SFlow. Otherwise, i.e., if the ReIm
type is not readonly, we use an equality constraint. For example, at (tread) x =
y.f, if x is readonly, we use constraint qy
 qf <: qx; otherwise, we use constraint
qy
 qf = qx. Due to space constraints, we do not describe the details of the
type system. The dynamic semantics and soundness proof can be found in the
accompanying technical report [7]. This composition approach achieves at least
20% precision improvement over the standard approach as shown in our previous
work [11].

3 Type Inference

Type inference derives a valid typing, i.e., an assignment of qualifiers to program
variables that type-checks with the rules in Fig. 3. If inference succeeds, then
the program is safe, i.e., it is guaranteed that there is no flow from a source to a
sink. If it fails, then a valid typing does not exist, meaning that there could be
unsafe flow from a source to a sink.

Type inference leverages the framework we developed in [6]. It first computes
a set-based solution S, which maps variables to sets of potential type qualifiers.

146 W. Huang, Y. Dong, and A. Milanova

The key novelty over [6] is the use of method summary constraints, which refine
the set-based solution, and help derive a valid typing.

3.1 Set-Based Solution

The set-based solution is a mapping S from variables to sets of qualifiers. The
variables in the mapping can be (1) local variables, (2) parameters (including
this), (3) fields, and (4) method returns. For example, S(x) = {poly, safe} de-
notes the type of variable x can be poly, or safe, but not tainted. Programmer-
annotated variables, including annotated library variables, are initialized to the
singleton set that contains the programmer-provided qualifier. In SFlow, all
sources and sinks are programmer-provided, i.e., sources and sinks are annotated
as tainted and safe, respectively. Fields are initialized to S(f) = {tainted, poly}.
All other variables are initialized to the maximal set of qualifiers, i.e., S(x) =
{tainted, poly, safe}.

The inference creates constraints for all program statements according to the
typing rules in Fig. 3. It takes into account ReIm: if the left-hand-side of the
assignment is readonly, the inference creates a subtyping constraint; otherwise, it
creates an equality constraint. Consider (tread) x = y.f. If x is readonly, the infer-
ence creates constraint qy
 qf <: qx; otherwise, it creates an equality constraint
qy
 qf = qx. In the latter case, the inference actually creates two subtyping
constraints that are equivalent to the equality constraint. In the above example,
it creates qy
 qf <: qx and qx <: qy
 qf .

Subsequently, the set-based solver iterates over these constraints, and runs
SolveConstraint(c) for each constraint c. SolveConstraint(c) removes in-
feasible qualifiers from the set of variables that participate in c. It works as
follows (for a more formal description, see [6]). Consider x = y.f again, and
suppose x is readonly, thus creating the sole subtyping constraint qy
 qf <:
qx. Suppose that before processing this constraint, we have S(x) = {poly},
S(y) = {tainted, poly, safe}, and S(f) = {tainted, poly}. The solver removes
tainted from S(y) because there do not exist qf ∈ S(f) and qx ∈ S(x) that satisfy
qy
 tainted <: qx. Similarly, tainted is removed from S(f). After processing the
constraint, S is updated to S(x) = {poly}, S(y) = {poly, safe}, and S(f) = {poly}.
If the infeasible qualifier is the last element in S(x), SolveConstraint(c) keeps
this qualifier in S(x), and reports a type error at c (we keep the qualifier in or-
der to produce better error reports: a type error x{tainted} <: y{safe} is more
informative than x{} <: y{safe}).

The set-based solver iterates over the constraints and refines the sets until
it reaches a fixpoint. There are two possible outcomes: (1) there are no type
errors, and (2) there are one or more type errors. If the set-based solver arrives
at type errors, this means that the programmer-provided sources and sinks are
inconsistent, and the program cannot be typed. In other words, a type error
indicates that there could be unsafe flow from a source to a sink.

Consider the Aliasing5 example from Ben Livshits’ Stanford SecuriBench Mi-
cro benchmarks2 in Fig. 4. foo is safe when b1 and b2 refer to distinct StringBuffer

2 http://suif.stanford.edu/~livshits/work/securibench-micro/

http://suif.stanford.edu/~livshits/work/securibench-micro/

Type-Based Taint Analysis for Java Web Applications 147

1 void doGet(A this, ServletRequest request, ServletResponse response) {
2 StringBuffer buf = ...;
3 this.foo(buf,buf,request,response); buf = thisdoGet � b1

�
�

�
�S(buf) = {tainted}

4 } buf <: thisdoGet � b2
�
�

�
�S(b2) = {tainted, poly}

5 void foo(A this, StringBuffer b1, StringBuffer b2,
6 ServletRequest req, ServletResponse resp) {
7 String url = req.getParameter(”url”); req � tainted <: url

�
�

�
�S(url) = {tainted}

8 b1.append(url); url <: b1 � poly
�
�

�
�S(b1) = {tainted}

9 String str = b2.toString(); b2� poly <: str
�
�

�
�S(str) = {tainted, poly}

10 PrintWriter writer = resp.getWriter();
11 writer.print(str); str <: writer � safe

�
�

�
�TYPE ERROR!

12 }

Fig. 4. Aliasing5 example from Stanford SecuriBench Micro. The frame box beside
each statement shows the corresponding constraints the statement generates. The oval
boxes show propagation during the set-based solution. The constraint at 7 forces url to
be tainted, and the constraint at 8 forces b1 to be tainted. The constraint at 3 forces
buf to be tainted and the one at 4 forces b2 to be tainted or poly (i.e., the set-based
solver removes safe from b2’s set). The constraint at 9 then forces str to be tainted or
poly. There is a TYPE ERROR at writer.print(str).

objects. However, when b1 and b2 are aliased, foo creates dangerous flow from
source req.getParameter to a sink, the parameter of PrintWriter.print. Note that
the constraint at line 3 is an equality constraint: b1 is mutated at b1.append(url),
ReIm infers b1 as mutable, and hence the equality constraint. The set-based
solver reports a type error at statement 11; the constraint at 11 is unsatisfiable as
it requires that str is safe, which contradicts the finding that str is {tainted, poly}.

3.2 Valid Typing

The set-based solver removes many infeasible qualifiers and in many cases, it
discovers type errors. In our experience, the set-based solver, which is worst-
case quadratic and linear in practice, discovers the vast majority of type errors,
and therefore it is useful on its own. Unfortunately, when the set-based solver
terminates without type errors, it is unclear if a valid typing exists or not, and
therefore, there is no guarantee of safety. The question is, how do we extract a
valid typing, or conversely, show that a valid typing does not exist?

The key idea is to compute what we call method summary constraints, which
remove additional qualifiers from the set-based solution. These constraints reflect
the relations (subtyping or equality) between formal parameters (including this)
and return values (ret). Such references are usually “connected” indirectly, e.g.
this and ret can be connected through two constraints this <: x and x <: ret. Note
that intuitively, the subtyping relation reflects flow: there is flow from this to x,
there is flow from x to ret, and due to transitivity, there is flow from this to ret.
Once we have computed the relations between formal parameters and return val-
ues of a method m, we connect the actual arguments to the left hand sides of the
call assignment at calls to m. The computation of method summary constraints

148 W. Huang, Y. Dong, and A. Milanova

1: procedure RunSolver

2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy
 qf and S(f) is {poly} then � Case 1
6: Add qx <: qy into C
7: else if c is qx
 qf <: qy and S(f) is {poly} then � Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then � Case 3
10: for each qy <: qz in C do add qx <: qz to C end for
11: for each qw <: qx in C do add qw <: qy to C end for
12: for each qw <: qa
 qx and qa
 qy <: qz in C do � Case 4
13: Add qw <: qz to C
14: end for
15: end if
16: end for
17: until S remains unchanged
18: end procedure

Fig. 5. Computation of method summary constraints. C is the set of constraints,
it is initialized to the set of constraints for program statements, derived as described
in Sect. 3.1 (recall that each equality constraint is written as two subtyping constraints).
S is initialized to the result of the set-based solver. Cases 1 and 2 add qx <: qy into C
because qy
poly always yields qy. Case 3 adds constraints due to transitivity; this case
discovers constraints from formals to return values. Case 4 adds constraints between
actual(s) and left-hand-side(s) at calls: if there are constraints qw <: qa
 qx (flow from
actual to formal) and qa
 qy <: qz (flow from return value to left-hand-side), and also
qx <: qy (flow from formal to return value, usually discovered by Case 3), Case 4 adds
qw <: qz. Note that line 4 calls SolveConstraint(c): the solver infers new constraints,
which remove additional infeasible qualifiers from S. This process repeats until S stays
unchanged.

is presented in Fig. 5. As an example, consider the following code snippet:

class A {
String f;
String get()

{return this.f;} this
 f <: ret
}

A y = ...;
PrintWriter writer = ...;

String x = y.get(); y <: y
 this y
 ret <: x

writer.print(x); x <: writer
 safe

where generated constraints are shown in the frame boxes beside statements.
The set-based solver yields S(x) = {safe}, S(y) = {tainted, poly, safe}, S(this) =
{poly, safe}, S(ret) = {poly, safe}, and S(f) = {poly}. Case 2 in Fig. 5 creates
this <: ret. This entails y
 this <: y
 ret since viewpoint adaptation preserves
subtyping [11]. Case 3 combines this with constraints y <: y
this and y
ret <: x,
yielding a new constraint y <: x. Because tainted and poly are not subtypes of
safe, SolveConstraint removes them from S(y), and S(y) becomes {safe}.

RunSolver terminates either (1) with type errors, or (2) without type er-
rors, just as the set-based solver. When it terminates without errors, SFlow-
Infer types each variable x by picking the maximal element of S(x), accord-
ing to the following preference ranking: tainted > poly > safe. This maximal

Type-Based Taint Analysis for Java Web Applications 149

typing almost always type-checks. In the above example, typing Γ (x) = Γ (y) =
safe, Γ (this) = Γ (ret) = Γ (f) = poly type-checks; in contrast, the maximal typing
extracted from the set-based solution, does not type-check. In our experiments,
the maximal typing always type-checks, except for 2 constraints in one bench-
mark, jugjobs. It is a theorem that even if it does not type-check, the program
is still safe, i.e., there is no flow from sources to sinks. We confirmed this for the
2 constraints in jugjobs.

The inference is dominated by the algorithm in Fig. 5, which has worst-case
complexity of O(n3), where n is the size of the program (see [7] for details).

4 Handling of Reflection, Libraries and Frameworks

Reflection, libraries (standard and third-party) and frameworks (e.g., Struts,
Spring, Hibernate) are the bane of static taint analysis. Yet they are ubiquitous
in Java web applications. The type-based approach we espouse, handles these
features safely and effortlessly.

Reflective Object Creation. Use of reflective object creation in web appli-
cations is widespread. Ignoring it, as some static analyses do, renders a static
analysis useless. Consider the use of newInstance():

X x = (X) Class.forName(”someInput”).newInstance();
x.f = a; // a is tainted, comes from source
y = x;
b = y.f; // b is safe, flows to sink

If a points-to-based static analysis fails to handle newInstance(), the points-to
sets of x and y will be empty, and the flow from a to b will be missed. On the
other hand, handling of reflective object creation is difficult, expensive and often
unsound.

We handle reflective object creation with newInstance() safely and effortlessly.
The key is that SFlow tracks dependences between variables through subtyping,
which obviates the need to abstract heap objects. It can be shown that, roughly
speaking, if x flows to y, then x <: y holds. In the above example, x <: y holds
and subsequently a <: b holds. SFlowInfer reports a type error caused by the
flow from tainted a to safe b.

Libraries. Our inference analysis is modular. Thus, it can analyze any given
set of classes L. If there is an unknown callee in L, e.g. a library method whose
source code is unavailable, the analysis assumes typing poly, poly→ poly for the
callee. This typing conservatively propagates tainted arguments to the receiver
and left-hand-side of the call assignment. Similarly, it propagates a safe left-
hand-side to the receiver and arguments at the call. E.g., String.toUpperCase()
is typed as

poly String toUpperCase(poly String this)

At call s2 = s1.toUpperCase() we have constraint s1
 poly <: s2 or equivalently
s1 <: s2. Thus, a tainted s1 propagates to s2, and a safe s2 propagates to s1.

We apply the poly, poly→ poly typing to all methods in the standard library,
third-party libraries (e.g., apache-tomcat, xalan) and frameworks, with several
exceptions described in the next section.

150 W. Huang, Y. Dong, and A. Milanova

Frameworks. Most Java web applications are built on top of one or more frame-
works such as Struts, Spring, Hibernate, and etc. The problem with these frame-
works is twofold. First, they contain “hidden” sources and sinks, i.e., sources and
sinks deep in framework code that affect the public API. For example, Hiber-
nate (version 2.1) contains a public method Session.find(String s), where s flows
to query at sink prepareStatement(query). This happens deep in the code of Hi-
bernate. We run a version of our inference analysis and “lift” such hidden sources
and sinks to the return values and parameters of the public methods they affect.
In the above example, Session.find() is typed as

poly List find(poly Session this, safe String s)

Callers to find() in application code must handle the argument of find() as safe,
otherwise it may lead to an SQL injection vulnerability as described by Livshits
and Lam [9]. To the best of our knowledge, no other taint analysis attempts to
“lift” these “hidden” sources and sinks in the frameworks.

Second, these frameworks rely heavily on reflection and callbacks, which must
be handled in the analysis. These are notorious issues for dataflow and points-
to based analysis, which usually relies on reachability analysis. Our type-based
analysis handles these features with the method overriding constraints.

As an illustrating example, Struts defines framework classes ActionForm and
Action and method Action.execute(ActionForm form). The application built on
top of Struts defines numerous xxxForm classes extending ActionForm, and nu-
merous xxxAction classes extending Action. Framework code performs the follow-
ing (roughly):

1. Action a = (Action) Class.forName(”inputClass”).newInstance(); a instantiates
one user-defined xxxAction class.

2. ActionForm f = (ActionForm) Class.forName(”inputForm”).newInstance(); sim-
ilarly, this instantiates one user-defined xxxForm class.

3. Framework populates the xxxForm object with tainted values from sources.
4. Framework calls a.execute(f), a callback to user-defined xxxAction.execute.

In our type-based analysis Action.execute() is typed as
execute(poly Action this, tainted ActionForm form)

The method overriding constraints (recall Sect. 2.3) propagate tainted to the
form parameter of each executemethod in user-defined subclasses. As a result, all
values retrieved through get methods from forms in user code are tainted, which
accurately reflects that the xxxForm object is populated with tainted values.

5 Empirical Results

SFlow and SFlowInfer are implemented within our type inference framework [6,
8], which is built on top of the Checker Framework (CF) [15]. The type in-
ference framework, including SFlow and SFlowInfer, is publicly available at
http://code.google.com/p/type-inference/.

The implementation is evaluated on 13 relatively large Java web applications,
used in previous work [9, 18, 20]. We run SFlowInfer on these benchmarks on a

http://code.google.com/p/type-inference/

Type-Based Taint Analysis for Java Web Applications 151

[Parameter,SQL] [Parameter,XSS]
Benchmark #Line Time (s) Type-1 Type-2 FP Type-1 Type-2 FP

blojsom 12830 15.1 0 0 0 (0%) 0 0 0 (0%)

blueblog 4139 7.5 0 0 0 (0%) 0 0 0 (0%)

friki 1843 4.5 0 0 0 (0%) 0 0 0 (0%)

gestcv 7422 10.1 1 0 0 (0%) 0 8 2 (20%)

jboard 17405 22.2 3 0 0 (0%) 0 0 0 (0%)

jspwiki 83329 126.9 0 0 25 (100%) 73 12 20 (19%)

jugjobs 4044 18.7 0 0 0 (0%) 0 0 0 (0%)

pebble 42542 50.3 0 0 0 (0%) 2 0 0 (0%)

personalblog 9943 17.6 6 0 0 (0%) 3 21 2 (8%)

photov 126886 640.2 46 0 0 (0%) 0 0 0 (0%)

roller 81171 213.4 0 0 0 (0%) 21 2 0 (0%)

snipsnap 73295 87.3 0 0 3 (100%) 1 0 0 (0%)

webgoat 8474 9.6 10 0 0 (0%) 0 0 0 (0%)

Average (15%) (4%)

Fig. 6. Inference results for [Parameter, SQL] and [Parameter, XSS]. Time shows the
running times of SFlowInfer for [Parameter, SQL] in seconds; running times for other
configurations are essentially the same. The multicolumns show numbers of Type-1,
Type-2, and False-positive (FP) type errors for the two configurations; note that a
large number of benchmarks have 0 type errors, i.e., they are proven safe.

server with IntelR© XeonR© CPU X3460 @2.80GHz and 8 GB RAM (the maximal
heap size is set to 2 GB). The software environment consists of Oracle JDK 1.6
and the Checker Framework 1.1.5 on GNU/Linux 3.2.0.

Experiments. We use the sources and sinks described in detail in Livshits and
Lam [9,10]. In addition, we use 59 sources and sinks in API methods of Struts,
Spring, and Hibernate, discovered as described in Sect. 4. There are 3 categories
of sources [9]: Parameter manipulation, Header manipulation, and Cookie poison-
ing. There are 4 categories of sinks [9]: SQL injection, HTTP splitting, Cross-site
scripting (XSS), and Path traversal. These sources and sinks are added to the
annotated JDK, Struts, Spring, and Hibernate, which is easily done with the
CF. Once these annotated libraries are created, individual web applications are
analyzed without any input from the user. We run the benchmarks with all 12
configurations. However, for space reasons, we report only on 2 configurations:
[Parameter manipulation, SQL] and [Parameter manipulation, XSS].

Fig. 6 presents the sizes of the benchmarks as well as the running times of
SFlowInfer in seconds. The running times attest to efficiency — for all but 1
benchmark, the analysis completes in less than 4 minutes; we believe that these
running times can be improved.

We examined the type errors reported by SFlowInfer, and classified them as
Type-1, Type-2, or False-positive (FP). Type-1 errors reflect direct flow from
a source to a sink. The following code, adapted from webgoat, is a Type-1 error:

String u = request.getParameter(‘‘user”);
String s = ‘‘SELECT ∗ FROM users WHERE name = ’’ + u;
stat.executeQuery(s);

152 W. Huang, Y. Dong, and A. Milanova

Tool Name AppScan Source Fortify SCA FlowDroid SFlowInfer√
, higher is better 14 17 26 28

×, lower is better 5 4 4 9
©, lower is better 14 11 2 0
Precision p =

√
/(
√

+×) 74% 81% 86% 76%
Recall r =

√
/(
√

+©) 50% 61% 93% 100%
F-measure 2pr/(p+ r) 0.60 0.70 0.89 0.86

Fig. 7. Summary of comparison with other taint analysis tools (
√

= correct warning,
× = false warning, © = missed flow)

Type-2 errors reflect key-value dependences. The following code, adapted
from personalblog, is a Type-2 error:

HashMap map = ...; PrintWriter out = ...;
String id = request.getParameter(‘‘id’’);
User user = (User) map.get(id);
out.print(user.getName());

The tainted id is used as a key to retrieve the user from themap, then user.getName()
is sent to a safe sink (the parameter ofPrintWriter.print()). This is a dangerous flow
according to the semantics of noninterference, because the tainted value of the key
affects the value of the safe sink. We classified as FP all errors that would not
lead to flow violations. Most false positives are due to our conservative assump-
tion about unknown libraries, e.g., that a tainted argument always propagate to
the left-hand-side (see Sect. 4). The results are presented in Fig. 6. Additional re-
sults and nontrivial examples of type errors can be found in [7].

Comparison. Direct comparison with TAJ [20], F4F [18], and ANDROMEDA
[19] is impossible because the analysis tools are proprietary, and therefore unavail-
able. Instead, we run SFlowInfer on DroidBench [5], which is a suit of 39 Android
apps, and compare with three other taint analysis tools – AppScan Source [2], For-
tify SCA [1], and FlowDroid [5], using the results presented by Fritz et al. [5]. The
comparison with AppScan Source is an indirect comparison with TAJ, F4F, and
ANDROMEDA, because these analyses are built into AppScan Source.

For space reasons, Fig. 7, which borrows the format from Fritz et al. [5], only
presents the summary of the comparison. Detailed comparison results can be
found in our technical report [7]. Although SFlowInfer performs slightly worse
in terms of precision (due to the conservativeness of the type system), it out-
performs all other tools in terms of recall, i.e. it detects more vulnerabilities
than all other tools. Commercial tools AppScan Source and Fortify SCA detect
less than 61% of all vulnerabilities, while SFlowInfer detects 100%. FlowDroid,
which targets Android apps, not Java web applications, is more precise than
SFlowInfer. This is because it uses a flow-sensitive analysis, which unfortunately
can be costly.

6 Related Work

Unfortunately, we cannot include all related work on information flow control.
More related work is discussed in the accompanying technical report [7].

Type-Based Taint Analysis for Java Web Applications 153

The most closely related to ours is the work by Shankar et al. [17]. They
present a type system for detecting string format vulnerabilities in C programs.
The type system has two type qualifiers, tainted and untainted; polymorphism is
not part of the core system. They include a type inference engine built on top of
CQual [4]. CQual relies on dependence graphs built using points-to analysis. In
contrast, SFlow and SFlowInfer handle polymorphism naturally, as it is built into
the type system using the poly qualifier and viewpoint adaptation. In addition,
we compose with reference immutability, thus improving precision significantly.
SFlow and SFlowInfer handle reflection and frameworks seamlessly.

Tripp et al. [20] present TAJ, a points-to-based taint analysis for industrial
applications. In order to handle Struts, TAJ treats all Action classes as entry
points. In addition, it simulates the passing of all subclasses of ActionForm to
Action.execute, by generating a constructor, which assigns tainted values to all
fields of the subclasses. In contrast, our inference analysis handles Struts by
annotating the ActionForm parameter of Action.execute as tainted. Our handling
is simpler and equally precise. Finally, according to Sridharan et al. [18], TAJ’s
reflection modeling is not scalable. In contrast, our type-based analysis does not
need abstract objects, and handles reflection seamlessly and safely.

Livshits and Lam [9] present a static analysis based on a scalable and precise
points-to analysis. In contrast, our inference analysis is type-based and modular.
Similarly to TAJ, they handle reflection by trying to infer the value of string s
at forName(s).newInstance() calls. In addition, Livshits and Lam’s analysis does
not handle frameworks, which are essential for web applications.

Sridharan et al. [18] present F4F, a system for taint analysis of framework-
based web applications. In order to handle frameworks, F4F analyzes the ap-
plication code and XML configuration files to construct a specification, which
summarizes reflection and callback-driven behavior. In contrast, our analysis
handles frameworks by inferring or adding annotations to sources and sinks in
the frameworks, which propagate to user code through subtyping. Tripp et al. [19]
present ANDROMEDA, a demand-driven analysis that improves on F4F.

Volpano et al. [21] and Myers [12] present type systems for secure information
flow. These systems are substantially more complex and powerful than SFlow.
They focus on type checking and do not include type inference, or include only
local type inference. In contrast, SFlowInfer handles large web applications.

7 Conclusions

We have presented SFlow, a context-sensitive type system for secure information
flow, and SFlowInfer, the corresponding cubic inference analysis. Our approach
handled reflective object creation, libraries and frameworks safely and effectively.
Experiments on 13 Java web applications showed that SFlowInfer is scalable and
precise.

Acknowledgements. We thank the anonymous reviewers for their helpful
feedback. This work was supported by NSF Career Award CCF-0642811 and
a Google Faculty Research Award (February 2013).

154 W. Huang, Y. Dong, and A. Milanova

References

1. HP fortify static code analyzer (2013),
http://www8.hp.com/us/en/software-solutions/

software.html?compURI=1338812#.Uk4YZWRhsyk
2. IBM security AppScan (2013),

http://www-03.ibm.com/software/products/us/en/appscan/
3. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object

Technology 4(8), 5–32 (2005)
4. Foster, J.S., Fähndrich, M., Aiken, A.: A theory of type qualifiers. In: PLDI,

pp. 192–203 (May 1999)
5. Fritz, C., Arzt, S., Rasthofer, S., Bodden, E., Bartel, A., Klein, J., le Traon, Y.,

Octeau, D., McDaniel, P.: Highly precise taint analysis for Android applications.
EC SPRIDE Technical Report TUD-CS-2013-0113 (2013),
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf

6. Huang, W., Dietl, W., Milanova, A., Ernst, M.D.: Inference and checking of ob-
ject ownership. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 181–206.
Springer, Heidelberg (2012)

7. Huang, W., Dong, Y., Milanova, A.: Type-based taint analysis for Java web appli-
cations. Rensselaer Polytechnic Institute Technical Report RPI-CS-13-02 (2013),
http://www.cs.rpi.edu/~huangw5/docs/RPI-CS-13-02.pdf

8. Huang, W., Milanova, A., Dietl, W., Ernst, M.D.: ReIm & ReImInfer: Checking and
inference of reference immutability and method purity. In: OOPSLA, pp. 879–896
(2012)

9. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: USENIX Security (2005)

10. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. Technical Report. Stanford University (2005),
http://suif.stanford.edu/~livshits/papers/tr/webappsec_tr.pdf

11. Milanova, A., Huang, W.: Composing information flow type systems with reference
immutability. In: FTfJP (2013)

12. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: POPL,
pp. 228–241 (1999)

13. Myers, A.C., Bank, J.A., Liskov, B.: Parameterized types for Java. In: POPL (1997)
14. OWASP. Top ten project (2013),

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
15. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-

gable types for Java. In: ISSTA, pp. 201–212 (2008)
16. Sampson, A., Dietl, W., Fortuna, E.: EnerJ: Approximate data types for safe and

general low-power computation. In: PLDI, pp. 164–174 (2011)
17. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vulner-

abilities with type qualifiers. In: USENIX Security (2001)
18. Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.: F4F: Taint

analysis of framework-based web applications. In: OOPSLA, pp. 1053–1068 (2011)
19. Tripp, O., Pistoia, M., Cousot, P., Cousot, R., Guarnieri, S.: ANDROMEDA: Ac-

curate and scalable security analysis of web applications. In: Cortellessa, V., Varró,
D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 210–225. Springer, Heidelberg (2013)

20. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: Effective taint
analysis of web applications. In: PLDI, pp. 87–97 (2009)

21. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
Journal of Computer Security, 167–187 (1996)

http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812#.Uk4YZWRhsyk
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812#.Uk4YZWRhsyk
http://www-03.ibm.com/software/products/us/en/appscan/
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://www.cs.rpi.edu/~huangw5/docs/RPI-CS-13-02.pdf
http://suif.stanford.edu/~livshits/papers/tr/webappsec_tr.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Mining the Categorized Software Repositories

to Improve the Analysis of Security
Vulnerabilities

Alireza Sadeghi, Naeem Esfahani, and Sam Malek

Department of Computer Science
George Mason University

{asadeghi,nesfaha2,smalek}@gmu.edu

Abstract. Security has become the Achilles’ heel of most modern soft-
ware systems. Techniques ranging from the manual inspection to auto-
mated static and dynamic analyses are commonly employed to identify
security vulnerabilities prior to the release of the software. However, these
techniques are time consuming and cannot keep up with the complexity
of ever-growing software repositories (e.g., Google Play and Apple App
Store). In this paper, we aim to improve the status quo and increase
the efficiency of static analysis by mining relevant information from vul-
nerabilities found in the categorized software repositories. The approach
relies on the fact that many modern software systems are developed us-
ing rich application development frameworks (ADF), allowing us to raise
the level of abstraction for detecting vulnerabilities and thereby making
it possible to classify the types of vulnerabilities that are encountered
in a given category of application. We used open-source software reposi-
tories comprising more than 7 million lines of code to demonstrate how
our approach can improve the efficiency of static analysis, and in turn,
vulnerability detection.

Keywords: Security Vulnerability, Mining Software Repositories,
Software Analysis.

1 Introduction

According to the Symantec’s Norton report [1], in 2012 the annual financial loss
due to cybercrime exceeded $110 billion globally. An equally ominous report from
Gartner [2] predicts 10 percent yearly growth in cybercrime-related financial loss
through 2016. This growth is partly driven by the new security threats targeted
at emerging platforms, such as Google Android and Apple iPhone, that provision
vibrant open-access software repositories, often referred to as app markets.

By providing a medium for reaching a large consumer market at a nomi-
nal cost, app markets have leveled the software industry, allowing small en-
trepreneurs to compete head-to-head against prominent software development
companies. The result has been a highly vibrant ecosystem of application soft-
ware, but the paradigm shift has also given rise to a whole host of security

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 155–169, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

156 A. Sadeghi, N. Esfahani, and S. Malek

issues [1]. Numerous culprits are at play here, and some are not even technical,
such as the general lack of an overseeing authority in the case of open markets
and inconsequential punishment for those caught provisioning applications with
vulnerabilities or malicious capabilities.

From the standpoint of application security, the state-of-the-practice needs
to move away from the reactive model of patching the security vulnerabilities to
proactive model of catching them prior to product release [3]. One approach is to
manually inspect the security of application software prior to its release, which is
an expensive and error-prone process. Alternatively, as a step toward addressing
the above issues, static code analysis is gaining popularity for automatically
finding security problems in application software [4].

While more efficient than manual inspection, the ability to improve the ef-
ficiency of static code analysis is gaining prominence for two reasons: (1) App
market operators and overseeing authorities need to employ source code analysis
techniques in large scale. On September 26, 2012 Android team unveiled that
Google Play hosts 675,000 apps [5]. In less than 10 months, the number of apps
in Google Play hit 1,000,000, meaning that more than 1,000 apps were added per
day during that time period. On top of this, thousands of apps are updated every
day that also need to be analyzed. (2) Recent research [6] has shown the benefit
of continuously running static analysis tools in real-time and as programmers
are developing the code, thereby helping them catch vulnerabilities earlier in the
development phase. In such settings, even a slight improvement in efficiency is
highly desirable and sought-after.

An opportunity to tackle this issue is presented by the fact that software
products are increasingly organized into categorized repositories, where each
item is mapped to a flat or hierarchical category. Some examples are SourceForge
for open source and Google Play for Android applications. Other than facilitating
the users in searching and browsing, categorized repositories have shown to be
good predictors of the common features found within software of a particular
category [7].

In this paper, we explore the utility of categorized repositories in inform-
ing the security inspection and analysis of software applications. The fact that
the majority of apps provisioned on such repositories are built using a common
application development framework (ADF) presents us with an additional op-
portunity. The information encoded in the source code of software developed on
top of an ADF (e.g., Android) is richer than information encoded in the source
code of traditional software (e.g., one developed from scratch in Java or C++).
The reason for this is that an app developed on top of an ADF leverages li-
braries, services, and APIs provisioned by the ADF that disclose a significant
amount of information about the app’s behavior/functionality. This information
can be used for various purposes, including security assessment, since many of
the security issues encountered in modern software are due to the wrong usage
of ADF [1]. In this paper, we show how this information can be used to build
a predictor for vulnerabilities one may find in the app of a particular category.

Mining the Categorized Software Repositories 157

This result is important, as it allows us to improve the efficiency of static analysis
techniques for security assessment of software.

Running all possible static analysis rules, which encode patterns of vulnera-
bility one may find in the code, on an application software is a time consuming
and resource intensive process. For instance, in our experiments, in some cases
it took up to 5.4 hours and 1.3 hours to statically analyze a single Java and
Android application, respectively. Given an app belonging to a given category,
we are able to use our predictor to focus the analysis on the vulnerabilities that
are commonly encountered in that category. The predictor helps us pick and
apply the static analysis rules that are empirically shown to be effective for the
different categories of apps.

Our experimental results for Android apps that make extensive use of a par-
ticular ADF have been very positive. Our approach improved the efficiency of
static analysis in the case of Android apps by 68%, while keeping the vulnerabil-
ity detection rate at 100%. The results are useful, although not as significant, for
plain Java applications that do not make use of any ADF, leading to efficiency
improvement of 37%, while 4% of vulnerabilities are missed.

The remainder of this paper is organized as follows. Section 2 provides the
required background as well as motivation for this work. Section 3 outlines the
overview of our approach, while Section 4 describes the details. Sections 5 and 6
describe the research experimental setup, results, and analysis. Section 7 outlines
the threats to validity of our experiments. Finally, the paper concludes with a
discussion of related research and our future work.

2 Background and Motivation

Static analysis entails analysis of computer software without actually executing
the software. While static analysis techniques originated in the compiler commu-
nity for optimization of source code [8], they have found new applications in the
past decade, as they have also shown to be effective for finding vulnerabilities in
the source code [4]. Due to the complexity of statically reasoning about source
code, static analysis is usually performed on an abstract model of code, such
as control flow or data flow. The type of analysis done depends on the types of
vulnerabilities that one aims to find. In this research, we have used three static
analysis techniques for detecting vulnerabilities in Android apps: content, data
flow, and control flow analysis

Content analysis deals with the pre-specified values that are known to cre-
ate vulnerabilities in a program. By detecting “bad” content, the vulnerability
can be discovered and prevented. For instance, a well-known attack against any
phone app with communication capabilities is to trick that app to communicate
(e.g., call, text message, etc.) with premium-rate numbers, which can be pre-
vented by detecting the pattern of premium-rate numbers.

Data flow analysis considers the flow of information in the system tracking how
data from input sources, such as phone identification, user input, and network
interface lead to to output sinks. Data flow analysis is an effective approach

158 A. Sadeghi, N. Esfahani, and S. Malek

Fig. 1. An example of a sequence pattern used by control flow analysis to detect
privilege escalation vulnerability: (a) state model representing the pattern and (b)
realization of the pattern as a rule in Fortify

for detection of information leak or malicious input injection vulnerabilities by
identifying unsafe sinks and input values respectively. Android apps have plenty
of vulnerabilities that can be detected by this approach. In a recent study, Enck
et al. [9] found that about 17% of the top free Android apps on the Google Play
market transmit private user information, such as the phone’s ID or location
information over the web. They also reported that some apps log this private
information to the phone’s shared log stream, which is accessible to other apps
running on the phone.

Control flow analysis entails processing the sequence of program execution,
such as method calls. When a vulnerability can be modeled as a sequence of
actions, we use control flow analysis. In this case, static analysis determines
whether program execution can follow a certain sequence of actions that lead
to a vulnerable status. For instance, control flow analysis can be used to detect
privilege escalation in Android apps. Privilege escalation occurs when a malicious
app exploits a second app to access resources that it does not have permission.

Fig. 1a depicts a control flow sequence pattern that we have developed for de-
tecting privilege escalation vulnerability. Control flow sequence patterns model
the transition of the system from a start state to two final states (one for er-
ror and one for success) through several possible intermediate states. The error
state in Fig. 1a is a result of a flow in the program, where startActivity occurs
without checking the permission of the calling application (by calling checkCall-
ingPermission method). Fig. 1b shows the realization of this pattern as a rule
in Fortify Static Code Analysis environment [10].

Fortify is a powerful static analysis tool, however, there are plenty of analysis
tools that could reveal different kinds of vulnerabilities. Ware and Fox [11], used
eight different static analysis tools (namely Checkstyle [12], Eclipse TPTP [13],
FindBugs [14], Fortify [10], Jlint [15], Lint4j [16], PMD [17], and QJ-Pro [18])
to identify the vulnerabilities in Java projects. Then they compared the result
of using these tools side-by-side. Among 50 distinct vulnerabilities detected by
combination of eight tools, no individual tool could detect more than 27 dis-
tinct items. This implies that using a single tool increases the chance of missing
vulnerabilities (i.e., having false negatives). Therefore, one should apply various

Mining the Categorized Software Repositories 159

Fig. 2. Overview of the approach: (a) rank rules and (b) efficient vulnerability analysis

tools with many detection rules. However, this affects the analysis time and ham-
pers the efficiency. This is exactly the challenge that we are aiming to resolve in
this paper. In the next section, we provide an overview of our approach, which
prioritizes the rules based on the likelihood of detecting vulnerabilities. Applying
rules based on their priorities improves the efficiency of static analysis.

3 Approach Overview

Fig. 2 depicts an overview of our approach. Categorized Repository of software
applications is the first input to our framework. In this repository, each ap-
plication is labeled with a predefined class or category. Here, we assume such
categorized applications can be gathered from on-line repositories (e.g., F-Droid
and SourceForge) without any classification effort. Otherwise, machine learning
techniques could be used to find the category of each application [7].

The second input to our framework is Vulnerability Detection Rules, which
define the interesting patterns in the source code. Since our research focus is on
security issues, we are interested in the rules that define patterns of vulnerability
in the code.

Static Analysis Tool Set inspects the code repository and looks for any in-
stance that matches the patterns defined in the rules. The result is an Analysis
Report. Analysis Report consists of all locations in the code that are detected
as potential vulnerabilities. Static analysis recurs for each application in the
repository and generates the corresponding report.

The generated list of latent vulnerabilities for a categorized repository of ap-
plications serves as our training data set. Given this data, the Probabilistic Rule
Classifier ranks each vulnerability based on its frequency in the Analysis Re-
port. In this regard, Probabilistic Rule Classifier applies conditional probabil-
ity to find the likelihood of occurrence of each vulnerability in each category.

160 A. Sadeghi, N. Esfahani, and S. Malek

The result of this is Rule Ranking. In this ranking, a frequency score is assigned
to each security rule for a given category. Higher score means that it is more
likely for the corresponding rule to detect a vulnerability in that category.

Fig. 2b depicts the application of Rule Ranking in improving the analysis
of vulnerabilities. Rule Selector uses the category of a given Categorized App
and picks the most efficient rules from Vulnerability Detection Rules for that
category based on Rule Ranking. Static Analysis Tool Set uses Selected Rules
to efficiently analyze the Categorized App and detect its possible vulnerabilities,
which are reported as Detected Vulnerabilities.

4 Probabilistic Rule Classification and Selection

As depicted in Fig. 2, the result of running Static Analysis Tool Set is the Anal-
ysis Report. This report contains the application’s source code locations that
match the predefined vulnerability patterns specified in Vulnerability Detection
Rules. The tool set tries all the rules and finds all matches in the source code.
However, some of the rules may not match at all. We depict the set of all Vul-
nerability Detection Rules as R and the set of rules where at least one match has
been found for them as M . If we know these rules upfront, we can improve the
efficiency of static analysis by removing the irrelevant rules (i.e., M = R −M).
We call this rule reduction.

We can extend our definition by considering the categorical information. Ap-
plications categorized in the same class have some common features implemented
by similar source code patterns and API calls to common libraries [7]. Conse-
quently, it is more likely for a set of applications in a given category c ∈ C
(where C is the set of all categories) to have common vulnerabilities. We use
this insight and extend our definition as follows: Mc is the set of rules that are
matched at least once inside an application with category c.

It takes only one false positive to include the corresponding rule r in Mc. As
the number of projects in the category and the number of files in the projects
increases, it becomes more likely for all the rules to be included in Mc due to
false positives, hence Mc converges to R. In other words, for each rule some
kind of matching (which may be a false positive) is found. This is the problem
with simply checking the membership of rule r in Mc as the binary measure of
relevance of rule r to category c. We need a measure that expresses the likelihood
of rule r being relevant to a given category c. This is the classical definition
of conditional probability of P (r|c). Calculating this value helps us to confine
the static analysis rules for each application category to the rules that detect
widespread vulnerability in that category.

By applying Bayes Theorem [19] to the Analysis Reports (recall Fig. 2), we
can calculate P (r|c), indicating the probability of a given rule matching an
application from a category:

P (r|c) = P (c|r)× P (r)

P (c)
(1)

Mining the Categorized Software Repositories 161

Here, P (c) is the probability of an application belonging to a category c, cal-
culated via dividing the number of applications belonging to category c by the
total number of applications under study. P (r) is the probability of a rule r
matching, calculated via dividing the number of matches for rule r by the total
number of matches for all rules on all applications. Finally, P (c|r) is the prob-
ability that a given application category c have the rule r matching, calculated
via dividing the total number of times applications of category c were matched
with rule r by the total number of matches for applications of that category.

As we described earlier P (r|c) is used by the Rule Selector to reduce the
number of rules used in static analysis. We can exclude a rule r from the static
analysis of an application belonging to category c, when P (r|c) ≤ ε, where ε is a
user-defined threshold indicating the desired level of rule reduction. We indicate
the set of excluded rules for category c as Ec, and in turn, assess the reduction
in the number of rules for category c as following:

Reductionc = (|Ec|/|R|)× 100 (2)

The value selected for the threshold presents a trade-off between the reduction
of rules (i.e., the improvement in efficiency) and the coverage of static analysis.
As more rules are removed, the static analysis is done faster, but the coverage
decreases, increasing the chances of missing a vulnerability in the code. We will
discuss the selection of threshold in Section 6.

5 Experiment Setup

The first step for using our approach is to populate Categorized Repository and
Vulnerability Detection Rules (depicted as the two inputs in Fig. 2) with a set
of application (denoted as set App) and a set of rules (recall R from Section 4),
respectively. In this section, we describe how we collected App and R for our
evaluation purposes and set up the experiments. We evaluated our approach on
applications developed using Java and Android (as a representative ADF).1

We considered applications with two characteristics in the evaluation process:
categorized and open-source. The first characteristic is the basis of our hypothesis
and almost all App repositories (e.g., F-Droid and Google Play) support it. The
second characteristic is based on the requirements of some static analysis tools
(e.g., Fortify) and manual inspection. Among the available repositories, the best
candidates for Java and Android are Source Forge and F-Droid, respectively. The
additional benefit of using Source Forge and F-Droid together is that they have
categorized the applications very similarly, allowing us to compare the results
from these repositories. Table 1 shows the number of applications gathered from
each category. We depict the set of applications in the same category c as Appc.
Categories with two labels (one in parentheses) indicate alternative category

1 Research artifacts and experimental data are available at
http://www.sdalab.com/projects/infovul

http://www.sdalab.com/projects/infovul

162 A. Sadeghi, N. Esfahani, and S. Malek

Table 1. Number of application in each category

C ID Category Java Android

c1 Business-Enterprise 47 -
c2 Communications (Phone) 55 14
c3 Development 54 17
c4 Game 30 51
c5 Graphics 29 -
c6 Home-Education 51 21
c7 Internet 30 53
c8 Multimedia (Audio-Video) 51 51
c9 Navigation - 32
c10 Office - 101
c11 Reading - 17
c12 Science-Engineering 42 -
c13 Security-Utilities 17 -
c14 System 35 95
c15 Wallpaper - 8

Total Number of Applications 441 460

Table 2. Experiment environment statistics

Experiment Stats Java Android

Total Lines of Code 6,166,755 1,360,881
Number of Categories 11 11
Number of Exclusive Rules 156 50
Total Number of Vulnerabilities 38,312 2,633

names used in the two repositories. For instance, the Multimedia category in
Android, is called Audio/Video category in Java.

We used HP Fortify [10] as the main static analysis tool (recall Static Analysis
Tool Set from Fig. 2). While Fortify provides a set of built-in rules for various
programming languages, it also supports customized rules, which are composed
by third-parties for specific purposes. For Java we utilized built-in rules provided
by Fortify, while for Android we used rules provided by Enck et al. [9]. However,
as we mentioned in Section 2, a single tool has a high chance of missing some of
the vulnerabilities. Hence, we also used FindBugs [14], Jlint [15], and PMD [17]
to reinforce the static analysis and reduce the false negative rate.

We ran Static Analysis Tool Set with the inputs discussed above to detect
vulnerabilities in the experiments and prepare Analysis Report. The results are
summarized in Table 2. We then fed the Analysis Report to Probabilistic Rule
Classifier to calculate the Rule Ranking for each category. Before delving into
the effects of this ranking on the static analysis, which is presented in Section 6,
we provide some additional insights about the generated Analysis Report in
this section. To that end, we extracted the detected vulnerabilities in each cat-
egory from Analysis Reports to profile the applications in our study. However,
since the number of applications under study in each category (i.e., |Appc|) are

Mining the Categorized Software Repositories 163

Fig. 3. Normalized Density of Vulnerabilities (NDoV) based on application categories
for different domains: (a) Android and (b) Java

different, the raw measurements are misleading. Therefore, we define the Density
of Vulnerability (DoVc) metric for a given category c as follows:

DoVc =

∑
r∈R

∑
a∈Appc

|Vr,a|
|Appc|

(3)

Here, Vr,a is the set of vulnerabilities in the application a, which are detected
by applying rule r. Since the total number of vulnerabilities may be different
for Android and Java, the DoVc is not comparable between the two domains.
Therefore, we define Normalized Density of Vulnerability (NDoVc) for a given
category c as follows:

NDoVc =
DoVc∑
c∈C DoVc

(4)

Fig. 3, which is practically the probability distribution of the vulnerabili-
ties in the two experiments, presents NDoVc values for Android and Java do-
mains. In Android domain, Communication (c2) and Game (c4) are the most
vulnerable and safest categories respectively. This result is reasonable, as the
applications in the Communication category call many security-relevant APIs
(e.g., Telephony), while applications in the Game category mostly call benign
APIs (e.g., Graphic). We observe similar trends for Java domain, where Security-
Utilities (c13) and Science-Engineering (c12) have the highest and lowest vul-
nerability rates, respectively. The results show that the different categories have
starkly different levels of vulnerability.

6 Evaluation

The ultimate contribution of our research is to improve the efficiency of soft-
ware security analysis. Therefore, evaluation of our approach entails measuring
the efficiency improvement from using the suggested ranking. Additionally, we
want to investigate our hypothesis that the abstractions afforded by ADF indeed
enable further efficiency gains.

As you may recall from Section 4, the value of ε presents a trade-off between
the reduction of rules and the coverage of static analysis. If ε is too low, reduc-
tion, and in turn, improvement in efficiency would be insignificant. On the other

164 A. Sadeghi, N. Esfahani, and S. Malek

Fig. 4. The overall reduction vs. the overall coverage of the remaining rules for: (a)
Android and (b) Java

hand, if ε is too high, the chance of missing detectable vulnerabilities in static
analysis increases. We have already described how we exclude rules (recall Ec

from Section 4) and assess rule reduction for a given category c (recall Equa-
tion 2). Coverage of the remaining rules (i.e., Ec = R−Ec) for a given category
c represents the percentage of the vulnerabilities detected in that category by
only using the rules that are not excluded and is defined as follows:

Coveragec =

∑
r∈Ec

∑
a∈Appc

|Vr,a|∑
r∈R

∑
a∈Appc

|Vr,a|
× 100 (5)

Fig. 4 shows the overall reduction and coverage of all categories for various ε
values in Android and Java domains. We calculated these values using 10-Fold
Cross Validation technique [20]. We partitioned the set of apps under study into
10 subsets with equal size and used them to conduct 10 independent experiments.
In each experiment, we treated 9 subsets as the training set and the remaining
subset as the test set. Recall from Table 2 that our data set comprised of 441 Java
and 460 Android applications. We calculated Reductionc and Coveragec values
for each test set based on the P (r|c) values learned from the corresponding
training set. Then, we calculated the intermediate reduction and coverage for
each experiment as the weighted average of Reductionc and Coveragec values;
the weights were assigned proportional to the number of applications fallen in
category c for that experiment. Finally, we calculated the overall reduction and
coverage as the average of intermediate reduction and coverage values obtained
from the 10 experiments.

According to Fig. 4, in Android domain, with ε = 0 (i.e., when only the
rules with learned detection probability of 0 are excluded), reduction is 68%,
while coverage is at 100%, meaning that all vulnerabilities that are detectable
using all of the rules in our experiment are indeed detected. In other words, the
remaining 32% of the rules are as powerful as all of the rules in detecting all of
the vulnerabilities and achieving 100% coverage. However, in Java domain, the
results are significantly different as reduction with ε = 0 is 37%. Additionally,
the remaining 63% of rules can only provide 96% coverage. In other words, they
are not as powerful as all of the rules in detecting Java vulnerabilities.

These results support our hypotheses. They emphasize the effectiveness of our
probabilistic ranking as we could achieve full coverage of Android vulnerabilities

Mining the Categorized Software Repositories 165

with 68% reduction of unnecessary rules. In our experiments, no rule was excluded
from all categories. This implies that every rule is useful, but, may be unnecessary
in some categories. Moreover, as we expected, the use of ADF has a positive in-
fluence on the effectiveness of our approach. This is because the rules specified in
terms of ADF are at a level of abstraction that lend themselves naturally to pos-
itive or negative correlation with a particular application category. The results
show that in the domains where ADFs are heavily used, our approach could be
used to significantly improve the performance of static analysis by removing the
irrelevant rules.

The divergence of coverage and reduction in Java domain is very high com-
pared to Android domain. The loss of coverage with ε = 0.04 for Android is 16%,
while for Java the loss is 93%. This clearly shows that our approach is most ef-
fective in domains where an ADF is used for the implementation of application
software. As a result, in the remainder of evaluation, we focus on the results
obtained in Android domain.

Table 3 provides the detailed results of experiments for Android apps when ε =
0. The number of excluded rules (i.e., |Ec|) in the categories varies between 24 to
43 rules out of total 50 vulnerability detection rules. In other words, Reductionc

is between 48% to 86% for different categories that leads to the average reduction
of 68%, as shown before in Fig. 4a.

Table 3 presents the average and 95% confidence interval for the analysis time
of an Android app in each category. Here, Uninformed column corresponds to
the time spent for source code analysis if all vulnerability detection rules (i.e.,
R) are applied, while Informed is when unnecessary rules (i.e., Ec) are excluded
from the analysis procedure. The last column in Table 3 shows the significant
time savings by pruning the useless rules from source code analysis. From the
last row of the table, we can see that our approach on average achieves a 67%
speed up compared to the uninformed approach of simply analyzing the source
code for all types of vulnerability.

Table 3. Analysis time for Android apps for ε = 0

Android Rule Exclusion Analysis Time (mins) Saved Analysis
Category |Ec| Reductionc Uninformed Informed Time (mins)

Development 43 86 43.48±8.3 6.09±1.16 37.39±7.14
Education 35 70 59.29±17.76 17.79±5.33 41.5±12.43
Game 39 78 48.92±4.94 10.76±1.09 38.16±3.85
Internet 33 66 49.83±6.65 16.94±2.26 32.89±4.39
Multimedia 29 58 60.47±11.22 25.4±4.71 35.07±6.51
Navigation 31 62 44.61±8.25 16.95±3.14 27.66±5.12
Office 30 60 44.25±4.11 17.7±1.64 26.55±2.46
Phone 30 60 70.36±22.47 28.14±8.99 42.21±13.48
Reading 40 80 62.4±18.25 12.48±3.65 49.92±14.6
System 24 48 47.17±11.93 24.53±6.2 22.64±5.73
Wallpaper 42 84 44.27±12.04 7.08±1.93 37.19±10.12
All categories 34 68 52.28±11.45 16.54±3.62 35.74±7.83

166 A. Sadeghi, N. Esfahani, and S. Malek

7 Threats to Validity

With regard to the internal threats, there is one issue. Since we needed access
to open source applications for our experiments, the training set was limited
to 460 open-source Android apps, which is small in comparison to 700,000 (not
necessarily open source) apps currently available on Google Play. However, since
we have covered almost all available categories that exist in Google Play with
a similar app distribution, our experimental app set could be considered as an
admissible representation of the global Android app market. Extending our study
to a larger set of applications is likely to improve the accuracy of our approach.

An external threat is related to our non-overlapping decisive app categoriza-
tion method. In this research, we have assumed each app belongs to a single
prespecified category. This is a reasonable assumption as many app markets
(e.g., F-Droid as well as Google Play) assign an app to one category. But when
software repositories allow an application to belong to multiple categories, an
app may possess the features, and thus vulnerabilities of more than one category.
Our approach in its current form is not applicable to such settings. For this we
would need to precede our approach with a preprocessing step in which we first
determine the category that best matches the characteristics of an application,
or alternatively provide a probabilistic measure of confidence with which the
application belongs to a particular category.

8 Related Work

Prior research could be classified into two thrusts: (1) security vulnerability
prediction and (2) Android security threats and analysis techniques. In this
section, we review the prior literature in light of our approach.

The goal of the first thrust of research is to inform the process of security
inspection by helping the security analyst to focus on the parts of the system
that are likely to harbor vulnerabilities. While most prior approaches on vulner-
ability prediction are platform-independent and try to predict the occurrence
of vulnerability regardless of the application domain [21–23], some have focused
on a specific platform or domain, such as Android [24] or Microsoft Windows
vulnerabilities [25].

An Important distinction between our work and the prior research is the
features of application software that are selected for prediction. Some vulnera-
bility prediction approaches are based on various software metrics. For example
Scandariato and Walden [24] have considered a variety of source code metrics,
including size, complexity and object-oriented metrics, Shin et al. [23] have ap-
plied complexity, code churn, and developer activity metrics, and Zimmermann
et al. [25] have used the same metrics together with coverage and dependency
measures. Some other vulnerability prediction approaches have considered the
raw source code and applied text retrieval techniques to extract the features.
For example, Hovsepyan et al. [21] have transferred Java files into feature vec-
tors, where each feature represents a word of the source code, while Neuhaus

Mining the Categorized Software Repositories 167

et al. [22] have not included all of the words in the source code in the analy-
sis, and instead established a correlation between vulnerabilities, imports, and
function calls.

In our research, we took advantage of categorized software repositories to pre-
dict the potential vulnerabilities of an application. In contrast to the prior work,
we have used meta-data of apps (i.e., category), which is predefined and does
not require any preprocessing techniques, together with the information obtained
through static analysis of the code. We believe our approach complements the
prior research, as it presents an alternative method of detecting and classifying
presence of vulnerabilities.

The second thrust of research has studied Android security threats and analy-
sis techniques at different levels of system stack, from operating system level [26,
27] to application level [9, 27–29]. However, in most cases, Android architecture
and its security model have been the main focus of the study [26–28], as op-
posed to the vulnerabilities that arise in the application logic. Shabtai et al. [26]
have clustered security threats based on their risk, described the available se-
curity mechanism(s) to address each threat, and assessed the mitigation level
of described solutions. Enck et al. [27] have enumerated security enforcement of
Android at two levels: system level and inter-component communication level.
They have developed a tool, named Kirin, to check the compliance of described
security mechanism with Android apps. Enck et al. [9] have also investigated
vulnerabilities of 1,100 Android apps by using static analysis. In this regard,
they have provided a set of vulnerability detection rules, which we have used in
our research.

A body of prior research has tried to automate the security testing of Android
apps. Mahmood et al. [28] suggested a whitebox approach for testing Android
apps on the cloud, where test cases are generated through lightweight program
analysis. In another research, Gilbert at el. [29] suggested AppInspector, which
tracks and logs sensitive information flows throughout app’s possible execution
paths and identifies security or privacy violations. Unlike our work, all prior
research has implicitly assumed that various vulnerabilities have the same like-
lihood, and consequently tackled them with equal priority. Our research com-
plements prior research by prioritizing the order in which vulnerabilities are
analyzed and tested.

9 Conclusion

The ability to streamline the security analysis and assessment of software is gain-
ing prominence, partly due to the evolving nature of the way in which software
is provisioned to the users. We identified two new sources of information that
when mined properly present us with a unique opportunity to improve the state-
of-the-art (1) meta-data available in the form of application category on such
repositories, and (2) vulnerabilities specific to the wrong usage of application
development framework (ADF).

In summary, the contributions of our work are as follows: (1) We were
able to derive a strong correlation between software categories and security

168 A. Sadeghi, N. Esfahani, and S. Malek

vulnerabilities, in turn allowing us to eliminate the vulnerabilities that are irrel-
evant for a given category. Most notably, we showed that we can achieve 68%
reduction in the vulnerability detection rules, while maintaining 100% coverage
of the detectable vulnerabilities in Android. (2) We developed a probabilistic
method of ranking the rules to improve the efficiency and enable prioritization
of static analysis for finding security vulnerabilities. (3) We empirically demon-
strated the benefits of ADF in the security vulnerability assessment process. An
app developed on top of an ADF leverages libraries, services, and APIs provi-
sioned by the ADF that disclose a significant amount of information about the
app’s behavior/functionality. We showed how this information can be used to
predict vulnerabilities one may find in the app of a particular category.

As part of our future work, we are interested to extend the research to situa-
tions in which an app belongs to more than one category. In addition, in this re-
search we focused on vulnerabilities, which are unintentional mistakes providing
exploitable conditions that an adversary may use to attack a system. However,
another important factor in security analysis is malicious capabilities, which are
intentionally designed by attackers and embedded in an app. Hence, as a com-
plement of this research, we plan to mine the categorized software repositories
to improve the malware analysis techniques.

Acknowledgements. This work was supported in part by awards W911NF-
09-1-0273 from the US Army Research Office, D11AP00282 from the US Defense
Advanced Research Projects Agency, and CCF-1252644 and CCF-1217503 from
the US National Science Foundation.

References

1. Symantec Corp.: 2012 norton study (2012)
2. Gartner Inc.: Gartner reveals top predictions for IT organizations and users for

2012 and beyond (2011)
3. McGraw, G.: Testing for security during development: why we should scrap

penetrate-and-patch. In: Are We Making Progress Towards Computer Assurance?
Proceedings of the 12th Annual Conference on Computer Assurance, COMPASS
1997, pp. 117–119 (1997)

4. McGraw, G.: Automated code review tools for security. Computer 41, 108–111
(2008)

5. Android: Official blog (officialandroid.blogspot.com)
6. Muslu, K., et al.: Making offline analyses continuous. In: Int’l Symp. on the Foun-

dations of Software Engineering, Saint Petersburg, Russia, pp. 323–333 (2013)
7. Linares-Vsquez, M., et al.: On using machine learning to automatically classify

software applications into domain categories. Empirical Software Engineering,
1–37 (2012)

8. Binkley, D.: Source code analysis: A road map. In: Int’l Conf. on Software Engi-
neering, Minneapolis, Minnesota, pp. 104–119 (2007)

9. Enck, W., et al.: A study of android application security. In: Proceedings of the
20th USENIX Security Symposium, vol. 2011 (2011)

Mining the Categorized Software Repositories 169

10. HP Enterprise Security: (Static application security testing)
11. Ware, M.S., Fox, C.J.: Securing java code: heuristics and an evaluation of static

analysis tools. In: Proceedings of the 2008 Workshop on Static Analysis, SAW 2008,
Tucson, Arizona, pp. 12–21. ACM (2008)

12. Checkstyle: Enforce coding standards (checkstyle.sourceforge.net)
13. Eclipse: Eclipse test & performance tools platform project,

http://www.eclipse.org/tptp

14. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM Sigplan Notices 39, 92–106
(2004)

15. Jlint: Find bugs in java programs (jlint.sourceforge.net)
16. Lint4j: Lint4j overview, http://www.jutils.com
17. PMD: Source code analyzer (pmd.sourceforge.net)
18. QJ-Pro: Code analyzer for java (qjpro.sourceforge.net)
19. Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to Probability, 2nd edn. Athena Sci-

entific (2008)
20. Tan, P.N., et al.: Introduction to Data Mining, 1st edn. Addison Wesley (2005)
21. Hovsepyan, A., et al.: Software vulnerability prediction using text analysis tech-

niques. In: Proceedings of the 4th International Workshop on Security Measure-
ments and Metrics, pp. 7–10 (2012)

22. Neuhaus, S., et al.: Predicting vulnerable software components. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
pp. 529–540 (2007)

23. Shin, Y., et al.: Evaluating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities. IEEE Transactions on Software Engineer-
ing 37, 772–787 (2011)

24. Scandariato, R., Walden, J.: Predicting vulnerable classes in an android applica-
tion. In: Proceedings of the 4th International Workshop on Security Measurements
and Metrics, pp. 11–16 (2012)

25. Zimmermann, T., et al.: Searching for a needle in a haystack: Predicting secu-
rity vulnerabilities for windows vista. In: 2010 Third International Conference on
Software Testing, Verification and Validation (ICST), pp. 421–428 (2010)

26. Shabtai, A., et al.: Google android: A comprehensive security assessment. IEEE
Security & Privacy 8, 35–44 (2010)

27. Enck, W., et al.: Understanding android security. IEEE Security & Privacy 7, 50–57
(2009)

28. Mahmood, R., et al.: A whitebox approach for automated security testing of an-
droid applications on the cloud. In: 2012 7th International Workshop on Automa-
tion of Software Test (AST), pp. 22–28 (2012)

29. Gilbert, P., et al.: Vision: automated security validation of mobile apps at app
markets. In: Proceedings of the Second International Workshop on Mobile Cloud
Computing and Services, pp. 21–26 (2011)

http://www.eclipse.org/tptp
http://www.jutils.com

Modularizing Early Architectural Assumptions

in Scenario-Based Requirements

Dimitri Van Landuyt and Wouter Joosen

iMinds-DistriNet, KU Leuven
Celestijnenlaan 200A,

B-3001 Leuven, Belgium
{dimitri.vanlanduyt,wouter.joosen}@cs.kuleuven.be

Abstract. Early architectural assumptions (EAAs) are initial assump-
tions about the architectural solution that are made already during re-
quirements elicitation. Such EAAs are inherently present when applying
requirements engineering methods and techniques situated at the transi-
tion to architecture, for example those adhering to the Twin Peaks model
to software engineering.

In the current state-of-the-art, early architectural assumptions (EAAs)
are documented implicitly, and they are tangled within and scattered across
heterogeneous requirement artifacts. This makes it hard to distinguish
EAAs from actual requirements, analyze their relevance, and bring them
in relation to architectural decisions taken in later development stages. As
a consequence, early development activities in the transition to architec-
ture are hindered by the lack of explicit support for EAAs.

In this paper, we address this problem in the context of scenario-based
requirements (use cases and quality attribute scenarios). We present a
system meta-model for EAAs, and provide an aspect-oriented require-
ments language that allows the instantiation of EAAs in terms of use
case-level pointcuts. We employ our prototype implementation of above-
mentioned techniques to evaluate and illustrate the benefits of making
EAAs explicit in the early stages of development, specifically in terms of
modularity and requirements navigability.

1 Introduction

It is widely accepted that in practical software development, there is seldomly a
clear-cut dichotomy between requirements engineering and architectural design,
but that, in order to achieve an easier transition and faster convergence to the
final architecture, these activities are often intertwined. This is called the Twin
Peaks model to software engineering [18].

One consequence of this is that requirements —which exist in the problem
space– are inherently affected or based upon initial architectural assumptions —
solution-space elements. These early assumptions are architectural in nature, in
the sense that they exist in different architectural views: some assumptions are
about the structural decomposition of the architecture, some about the system’s
behavior, some about the deployment configuration, etc. It is in the intrinsic

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 170–184, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Modularizing Early Architectural Assumptions 171

nature of software engineering activities in the transition to architecture that
they rely on some early-defined, pre-assumed system abstractions. We call these
early architectural assumptions (EAAs). In earlier work [29], we have argued
that making such early assumptions is indeed an effective technique to converge
more quickly to a suitable architectural solution.

In the current state-of-the-art, early architectural assumptions (EAAs) are
documented implicitly. Specifically in the context of scenario-based require-
ments, they are embedded in natural language descriptions, and it takes sub-
stantial analytic effort to (i) identify and understand them, (ii) distinguish them
from actual stakeholder requirements or technical constraints, and (iii) under-
stand their often subtle interactions. Furthermore, we have seen that EAAs have
a crosscutting impact on the different requirements: they are scattered across sce-
narios and tangled with each other within these scenarios. This inherent charac-
teristic of EAAs has been pointed out by Nusebeih who argues that crosscutting
influences between requirements can mostly be observed “when elements of a
solution also begin to be explored” [19].

For these reasons, implicit early architectural assumptions have a negative
impact on the development activities at the transition from requirements to
architecture. Specifically, activities involving change impact analysis and trade-
off analysis such as the Architecture Trade-off Analysis Method (ATAM) [12])
and Attribute-Driven Design (ADD) [32,2] are hindered by badly modularized
and implicit EAAs [30] as they increase the required analytic effort to understand
and manipulate the requirement body.

In this paper, we address these problems in the context of scenario-based re-
quirements (use cases [9] and quality attribute scenarios [2]). Specifically, we cre-
ate an EAA model which acts as a knowledge repository of explicit early-defined
system abstractions. This EAA model is promoted as a key enabler to achieve
a smooth transition to architecture. To increase the robustness and expressivity
of EAA definitions and to address their crosscutting nature, we introduce and
employ an expressive use case-level pointcut language called AspectU+.

Additionally, we present prototype implementation of these techniques, and
we leverage this prototype to evaluate the presented solutions. Specifically, we
present detailed development scenarios from a realistic case study, a car crash
management system (CMS) [13,11], and we focus on illustrating the benefits of
having an explicit EAA model in the transition to architecture.

This paper is structured as follows: Sect. 2 presents the problem statement.
Subsequently, Sect. 3 presents a set of techniques for modularizing EAAs in
the context of scenario-based requirements. Then, Sect. 4 evaluates our results.
Sect. 5 discusses related work and finally, Sect. 6 concludes this paper.

2 Problem Statement

We motivate our work in the context of a realistic case study, a crisis manage-
ment system (CMS) for resolving car crashes (e.g. by dispatching tow trucks,
ambulance, rescue workers, . . .), the requirements of which are scenario-based in

172 D. Van Landuyt and W. Joosen

nature. QAS 1 presents a (shortened) performance quality attribute scenario re-
lated to the calculation or revision of car crash resolution strategies. Specifically,
it prescribes how the system should react in the case when too much new infor-
mation arrives, giving rise to many strategy (re-)calculations in parallel; i.e. by
shifting some of the calculation requests to a replica instance of the strategy
calculation component.

QAS 1 Performance. Strategy calculation and revision

[..] the rate of newly-arriving information exceeds the throughput of strategy revisions and initial
strategy calculations, especially in the case that many strategy calculations are executed in parallel,
for example in case of multiple related accidents (e.g. a pile-up).

– Source: Witness, Service Provider or Information Service
– Stimulus: New car crashes reported by Witness, new information received from the Information

Service or Service Provider.
– Artifact: (sub-)system responsible for strategy (re-)calculation
– Environment: Normal execution mode.
– Response: ’Overload’ mode: requests are forwarded to a next instance of the sub-system:

• when processing new information, the CMS assesses whether this new information gives
rise to a strategy revision. In overload mode, the request is sent to the replica instance.

• when entering a new dossier, the initial strategy is selected by the Coordinator. In overload
mode, the request is sent to the replica instance.

– Response Measure:

• the system goes into ’overload’ mode when the response time > 500 ms for a given strategy

(re-)calculation job.

Upon analysis, it is clear that this scenario has been written with a number
of early architectural assumptions (EAAs) in mind: (i) the algorithms used to
calculate strategies will not be light-weight (and thus it is realistic to imagine
a situation of system overload); (ii) initial strategy calculation and strategy
revision will be done by one and the same component; (iii) this component will
be easily replicated, and there will at least be two replicas in total; and (iv) the
system or its middleware will have the ability to monitor the throughput of
strategy calculation jobs, and redirect requests dynamically.

These assumptions are fundamentally different from other requirement arti-
facts such as use cases, domain models, glossaries, and most importantly, they
are architectural in nature: the first assumption is about the performance char-
acteristics of the selected algorithms while the second is an assumption about
the structural decomposition of the system. The third is an assumption about
the deployment configuration of the CMS, while the fourth is about the selected
technologies and platforms on which the CMS is to be built.

Due to the inherently implicit nature of these EAAs (embedded in require-
ments), it is hard to assess (without additional analysis) (i) that these are in fact
assumptions and not constraints or requirements imposed by the stakeholders,
(ii) whether or not these EAAs are made after thoughtful (architectural) anal-
ysis, and if so, (iii) what the underlying rationale was, and (iv) whether these

Modularizing Early Architectural Assumptions 173

EAAs are contradicted or reinforced by other assumptions (perhaps documented
in different scenarios).

The software architect —when handed these requirements— must assess
whether these EAAs are desirable, realistic and technically feasible. Perhaps
the architect decides to reject some assumptions, and this in turn might lead to
consistency problems, as it is unclear what the impact of that decision might be
on the other requirements, on the other architectural assumptions and decisions.
This is worsened by the large number of inherent yet subtle interdependencies
between (the EAAs and) the different architectural drivers, often crosscutting
in nature. To illustrate this, we extend the example of QAS 1 with the “Revise
current strategy” use case, which involves the revision of a currently executing
car crash resolution strategy (presented in Use Case 1). When comparing the de-
scription of the strategy revision algorithm in step 2 of Use Case 1 with QAS 1, it
becomes clear that some of the assumptions made during the creation of QAS 1
have been influenced directly by this use case (e.g. the first EAA highlighted
above about the complexity of the strategy calculation and revision algorithms).

Use Case 1. The ‘Revise current strategy’ use case
– Id/name: Revise current strategy
– Primary actor: Coordinator, CMS
– Basic Flow:

1. The Coordinator indicates that he wants to revise the current strategy for an ongoing car
crash [..] by selecting an ongoing car crash dossier.

2. The CMS calculates and proposes a number of car crash resolution strategies and indicates
for each of these strategies, the price, the expected time duration and the risks associated
with these. The CMS takes into account possible dependencies between individual missions,
missions that have already been executed, the availability of the external service providers
and emergency services already at the scene.

3. The Coordinator selects the desired strategy.
4. The CMS registers the revised strategy in the car crash dossier.
5. The CMS informs the involved external service providers [..] about their new or updated

missions.

– Alternative Scenario:

3B. The CMS only comes up with one strategy, continue with step 4.

Problem Statement. A more detailed problem statement has been derived and
presented in earlier work [29]. This problem statement is summarized below:

1. EAAs are documented implicitly in scenario-based requirements;
2. EAA definitions are scattered across scenario-based requirements and tan-

gled with other EAA definitions: bad modularity of EAAs;
3. EAAs typically have a crosscutting influence on other requirements.

3 Modularizing EAAs in Scenario-Based Requirements

In this section, we provide a set of techniques to modularize early architectural
assumptions (EAAs) in the context of scenario-based requirements (use cases

174 D. Van Landuyt and W. Joosen

and quality attribute scenarios). Sect. 3.1 presents our system meta-model for
expressing EAAs. Then, Sect. 3.2 discusses our technique to instantiate EAAs
in terms of use-case level pointcuts. Subsequently, Sect. 3.3 describes the role of
EAAs in the quality attribute scenario authoring process.

3.1 System Meta-model for EAAs

As the goal is to define a system meta-model suitable for documenting EAAs
in quality attribute scenarios, we have analyzed the quality attribute scenario
creation guidelines presented in [2]. Specifically, we selected the most common
system concepts used in quality attribute scenarios and we removed synonyms,
in order to keep the resulting meta-model minimal and light-weight. The result
is presented in Fig. 1.

EAAs in quality attribute scenarios typically refer to functional requirements
and fragments of functionality, which are in our case described as use cases. To
capture and document these semantic interdependencies, we instantiate EAAs
in terms of use case steps (or collections thereof). As use case modeling in
general aligns best to a behavioral architectural view, the key behavioral con-
cepts (Message, Request, Response and Event) are instantiated directly from
use case steps. Based on these elements, the remaining concepts (Interaction,
Function, Subsystem, Channel and Node) can be derived. Table 1 below pro-
vides a detailed description of the meta-model concepts and provides syntax to
instantiate EAAs in terms of use case (fragments).

Message
- to:Node
- from:Node

Node

Actor
Subsystem

Event Channel

ResponseRequest
Function

System

receives

issues*

*

offers

*generates
observes

*

is
decomposed
into

*

communicates over

interacts with

offers

is deployed onto

answers to

Fig. 1. The meta-model for expressing early architectural assumptions (EAAs)

Modularizing Early Architectural Assumptions 175

Table 1. Detailed description of the meta-model concepts and Java-like constructor
syntax for instantiating EAAs

Message. In general, every use case step corresponds to a message. It represents a trigger or an
action relevant to the system. A message is always directed, from a one Subsystem to another. The
following syntax is used to instantiate messages:

Message(UseCaseStep step);

Request and Response. Conceptually, requests and responses are refinements of the more generic
message. The messages sent by any actor other than the system are considered requests, while the
use case steps directed from the system are called responses. The constructor syntax to instantiate
these elements is as follows:

Request(UseCaseStep step); // pre: (!step.getActor().getName().equals("System"))

Response(UseCaseStep step); // pre: (step.getActor().getName().equals("System"))

Event. In essence, an event is a certain path through a use case, or a subset thereof. The necessary
precondition is that an event consists of consecutive use case steps. The constructor syntax for
instantiating an Event is presented below:

Event(UseCaseStep[] steps); // pre: (steps.size()>1 and steps are subsequent)

Interaction. An interaction is defined as a single couple of consecutive Request-Responses instances.
Therefore, the constructor for an Interaction is as follows:

Interaction(Request req, Response resp); // pre: resp.answersTo(req)

Function. The concept of a function overlaps slightly with that of an Event, in the sense that a
function realizes or executes a certain Event path. It represents how the system reacts or behaves,
given a certain trigger or request. To instantiate a concrete function, the following syntax is used:

Function(Event event); // pre: event starts with a Request, and the consecutive steps

conceptually belong together

Subsystem. Similarly, a subsystem is defined by referring to the Function(s) offered by it. It is pos-
sible to formulate the assumption that several related Functions are offered by one single Subsystem,
and therefore to instantiate a specific subsystem, the following syntax is offered:

Subsystem(Function[] functions);

Channel. Channels are defined by one or more interactions between the system and one or more
actors. Potentially, many different interactions may occur over a single channel, or separate channels
(e.g. a control channel or a data channel). It is possible to merge several interactions over one
channel. To instantiate a Channel, the following syntax is offered:

Channel(Interaction[] interaction); // pre: the same actors are involved in each

interaction

Node. Finally, a node represents a physical machine. We refer to a node by referring to one or more
subsystems deployed to it. Nodes are instantiated as follows:

Node(Subsystem[] subsystems); // pre: subsystems.size >=1

3.2 EAA Instantiation in Terms of Use Case-Level Pointcuts

A straightforward strategy to instantiate the early architectural assumptions
(EAAs) would involve referring directly to specific use case steps. However, as
this would introduce tight coupling between the EAA model and the use case

176 D. Van Landuyt and W. Joosen

model (due to their often crosscutting interrelations), this strategy would not
adequately address Problem #3 defined in Sect. 2. Therefore, we present an
alternative instantiation strategy that involves referring to use case steps (or
collections thereof) by means of pointcut expressions.

First, we introduce a use case-level pointcut specification language (PSL)
called AspectU+. This PSL allows capturing the crosscutting nature of the EAAs
in a more expressive manner. Then, we define some EAAs from the running
example of Sect. 2 in terms of AspectU+ pointcuts.

AspectU+. Sillito et al. [24] have already proposed a use case-level PSL called
AspectU, which is primarily meant for composition of functional aspects to use
case models. However, this PSL is limited in the sense that it does not fully
exploit the semantics and structural conventions behind use case modeling. For
example, in AspectU it is not possible to match all steps in which a certain actor
is involved, or the set of responses to a certain step (which includes main steps
and steps from alternative scenarios). Nonetheless, these are useful constructs
for defining EAAs.

Table 2. AspectU+ primitive pointcuts

Primitive pointcut description

usecase(ucname) selects all use case steps from the use cases whose names
match ucname (incl. alternate scenarios)

main(ucname) selects only the use case steps from the main scenario of
the use cases whose names match ucname

extension(ucname) selects only the use case steps from the alternate or
extension scenarios of the use cases whose names match
ucname)

steps(id) selects specific steps that match the id expression
actorsteps(id) selects the use case steps that are performed by the

actors whose names match id

responses(steps) selects the use case steps in response to the steps in steps

operators: and (&&),
or (||), not (!)

(prefix notation)

define: name := expression

Therefore, we have extended the AspectU PSL to serve our needs1, and we
call the resulting language AspectU+. Note that pointcut expressions specified
in AspectU remain fully compatible to pointcut expressions in AspectU+, but
not vice versa. Table 2 presents the syntax of the AspectU+ language. The rows
of this table that are colored in grey present our extension to AspectU [24].
String matching in AspectU+ is done by means of regular expressions.

1 This is a minimal extension, as we only extend AspectU for pragmatic reasons; i.e. to
illustrate the feasibility of the method presented in this paper.

Modularizing Early Architectural Assumptions 177

Below, we present one EAA from the motivating example of Sect. 2. Specif-
ically, we model the strategyRevision event using the Java-like constructor
syntax introduced in Sect. 3.1. To refer to use case steps or collections thereof,
we provide an AspectU+ pointcut expression as the parameter to the Event

constructor (placed between curly brackets). This pointcut refers to the use case
whose name matches to the ‘.*Revise.*strategy.*’ regular expression, and
more specifically, the steps in the main flow of this use case (main(‘‘.*’’))).
In the CMS use cases, this matches to steps 1–5 of the “Revise current strategy”
use case (Use Case 1).

1strategyRevision := Event(

2{ &&(usecase(".* Revise.* strategy .*"),

3main(".*")) });

3.3 Authoring Quality Attribute Scenarios with EAAs

During the quality attribute scenario elicitation and authoring process, the re-
quirements engineer has to be aware of the centrally defined EAA model. This
model will aid him in making explicit key assumptions about the system. When-
ever such an assumption has to be made (for example, initial strategy calcu-
lation and strategy revision will be done by one and the same component), he
first has to verify whether these assumed system elements —for example, the
strategyRevision event— have already been defined in the EAA model. If so,
he can simply refer to these elements. If not, he first has to introduce them in
the EAA model, possibly by reusing or building upon already-existing model
elements or pointcuts.

QAS 2 Performance. Strategy calculation

– [..] Response: ’Overload’ mode: requests are forwarded to a next instance of the sub-system:

• when processing new information (processingNewData), the CMS assesses whether this new
information gives rise to a strategy revision (strategyRevision). In overload mode, the
request is sent to the replica instance.

• when entering a new dossier (newDossierEntered), the initial strategy is selected by the

Coordinator (strategyCalculation). In overload mode, the request is sent to the replica

instance.

QAS 2 presents the Response part of QAS 1 from Sect. 2 after re-factoring.
We have introduced annotations (presented in a typewriter font and between
brackets) that refer to the EAAs. For example, we introduced a direct reference
to the strategyRevision event defined in Sect. 3.2. In our experience, EAAs
are most common in the “Stimulus”, “Response”, and “Response Measure” fields
of a quality attribute scenario.

Clearly, the main goal of our approach is not to re-factor existing quality
attribute scenarios after the fact, but to support the authoring process itself.
This is in line with the view that the EAA model will act as a central knowledge

178 D. Van Landuyt and W. Joosen

repository during requirements engineering, in which and from which the relevant
interrelations between the different requirement artifacts can be documented and
derived.

4 Evaluation and Discussion

We have evaluated the presented approach in the context of the Crisis Manage-
ment System (CMS) case study. In total, the case study requirements comprise
(i) 13 detailed use cases, and (ii) in total, eighteen quality attribute scenarios,
specifically 6 availability, 6 performance and 6 modifiability scenarios. While the
use cases originate from the original case study [13], the quality attribute scenar-
ios have been derived from textual software quality descriptions in [13]. Further
details on the followed process to obtain these requirements can be found in [28].
Throughout Sect. 3, we have illustrated the method over a very small subset of
this case study. Note that the requirements presented in this paper are in fact
highly simplified versions of those from the case study.

First, Sect. 4.1 discusses our prototype implementation. Then, Sect. 4.2 eval-
uates our results in terms of the modularity of early architectural assumptions
(EAAs). Finally, Sect. 4.3 discusses how the existence of an explicit EAA model
improves the navigability of the requirements body.

4.1 Prototype Implementation

We have developed a prototype implementing the proposed techniques2 for mod-
ularizing EAAs in scenario-based requirements. The tool can be used for query-
ing the EAA model and navigating the interdependencies between the different
requirement artifacts. To this end, it provides a web front-end and the interrela-
tions between EAAs and quality attribute scenarios (which we represented earlier
as annotations) are shown by the prototype as hyperlinks. The prototype evalu-
ates the pointcut expressions on demand. It offers a fully implemented pointcut
parser and evaluator for the AspectU+ pointcut language. An EAA is presented
by showing its AspectU+ pointcut expression, the concrete use case steps which
are the concrete join points for that pointcut (as hyperlinks) and the quality
attribute scenarios referring to the EAA (also as hyperlinks). The screenshot in
Fig. 2(a) illustrates this for the running example of the strategyCalculation

EAA. When displaying a specific use case, the tool automatically adds hyperlinks
referring to the EAAs for which that use case offers join points.

In addition, the tool offers an environment to create and test AspectU+ point-
cut expressions, of which Fig. 2(b) presents a screenshot. During the construction
of an AspectU+ expression, the expression is evaluated over the use case model
and the matching use case-level join points are presented.

In future work, we plan to refine and integrate this tool into requirements
engineering tools such as the UCEd [26] which offer a more rigorous approach

2 The source code of this prototype and further implementation details can be found
on http://people.cs.kuleuven.be/~dimitri.vanlanduyt/eaa/

http://people.cs.kuleuven.be/~dimitri.vanlanduyt/eaa/

Modularizing Early Architectural Assumptions 179

(a) Screenshot of browsing the
AspectU+ definition of the
strategyCalculation EAA

(b) Screenshot of creating
and testing AspectU+
expressions

to use case and domain modeling, and architecture creation tools such as the
SEI’s ArchE [25] to impose EAAs as actual architectural constraints during
architectural design.

4.2 Modularity of EAAs

In this part of the evaluation, we focus on the modularity of early architec-
tural assumptions (EAAs). Specifically, we have applied scattering metrics [7]
(i.e. based of the number of recurring EAA definitions) on the requirements of
the CMS, and we compare the cases with and without an explicit EAA model.

To ensure comparability of both sets of quality attribute scenarios, we started
with the 18 existing quality attribute scenarios of the CMS, and re-factored
these incrementally by moving the EAAs one by one to the EAA model, reusing
already-existing definitions wherever possible. Fig. 2 depicts this process. The
X-axis shows the order in which quality attribute scenarios are selected and re-
factored, while the Y -axis shows the number of distinct EAA definitions. The
grey curve represents the case without an EAA model —thus scattering and

Number of assumptions
de ned (with explicit model)
Number of assumptions
de ned (without explicit model)

Fig. 2. The number of EAAs defined over time, with and without creating an EAA
model

180 D. Van Landuyt and W. Joosen

tangling EAAs within and across quality attribute scenarios— and the black
curve represents the case with an explicitly defined EAA model, or in other
words, the black curve plots the size of the EAA model.

The main observation from this graph is that the number of EAAs grows
linearly with the number of quality attribute scenarios. However, when specify-
ing the EAAs in a central EAA model, the number of EAAs definitions grows
sub-linearly. Initially, when covering only one quality attribute scenario (Av1),
both approaches introduce the same amount of EAAs. However, as more quality
attribute scenarios are covered, there is clearly a higher reuse of already-defined
EAAs. This is an indication that duplication of the EAA definitions (scattering
and tangling) is avoided and this is a consequence of the fact that many of the
system-level assumptions suitable for one quality attribute scenario also proved
suitable for others. In total, this reduction of duplication has led to the definition
of 29 EAAs in the centrally defined model, as opposed to 62 EAA definitions
scattered across and hard-coded within the 18 quality attribute scenarios, a
reduction of 53%.

4.3 Requirement Navigability and the Transition to Architecture

We now illustrate how an explicit EAA model facilitates the navigation3 of
requirement bodies in the transition to architecture. Fig. 3(a) presents a depen-
dency graph that has been derived directly from the EAA definitions. In addition
to the requirements already presented in Sect. 2, it depicts three additional use
cases and a second quality attribute scenario (P3) (about to the performance
of the back-end system in the CMS). It shows the (otherwise implicit) relations
between these requirements, made explicit on the one hand by means of explicit
annotations, and on the other hand by means of AspectU+ pointcuts.

From this dependency graph, we have defined a distance function between
two requirements that measures how closely related they are in terms of shared
EAA references. These distance measurements can then be used to cluster the
set of requirements. An example hierarchical clustering of the CMS requirements
is presented in Fig. 3(b). This clustering is based on the most straightforward
distance function counting the number of shared interdependencies between the
requirements (the arrows in Fig. 3(a)). For example, P1 and P3 are clustered
together because they share multiple EAA definitions.

Such a clustering can then serve as an important input for architecture cre-
ation and analysis approaches that rely on grouping requirements and architec-
tural trade-offs, such as the Architecture Trade-offAnalysisMethod (ATAM) [12])
and the Attribute-Driven Design (ADD) [32,2] process. For example, when
selecting P1 as a key driver for the architecture, the architect can automatically
be informed about its close relation to P3, and both drivers could be addressed
together (for example, in a single ADD iteration).

3 And as a direct consequence, the consistency management and traceability of
requirements.

Modularizing Early Architectural Assumptions 181

strategy
Calculation

strategy
Revision

newDossier
Entered

process
NewData

(a) Dependency graph of the CMS requirements (b) Hierarchical clustering

Fig. 3. Illustration of how explicit EAAs improve the navigability of the CMS
requirements

5 Related Work

First, we discuss related work in the domain of Early Aspects (Aspect-Oriented
Requirement and Architecture approaches). Then, we zoom in specifically on
existing methods and techniques that involve documenting EAAs within use
cases. Finally, we discuss related work in the domain of architectural knowledge
management.

Early Aspects. Chitchyan et al. have presented their semantics-based compo-
sition approach of [4,31] which enables annotating requirements with semantic
information obtained with natural language processing techniques. COMPASS
further elaborates upon this approach by mapping the semantic compositions
to initial AO architecture diagrams [3]. As such, this work traces key concepts
in requirements specification towards architecture, facilitating consistency man-
agement between architecture and requirements.

The generic AORE model presented by Rashid et al. [20] supports the separa-
tion of crosscutting requirements and the identification of crosscutting influences
between requirement-level aspects. As such, this enables the identification of crit-
ical trade-offs well before architectural design. In addition to this work, Moreira
et al. [17] advocate a multi-dimensional approach to separation of concerns in
requirements engineering that supports architectural trade-off analysis based on
the notion of the compositional intersection between the stakeholder concerns.

Many additional AORE approaches focus on identifying and representing the
crosscutting influences of non-functional requirements on system functionali-
ties [16,23,27].

Although these approaches are related in terms of the techniques used, the
key difference is that these do not explicitly disambiguate between requirements
and assumptions. In future work, we will further explore the instantiation of our
techniques in the context of these AORE approaches.

182 D. Van Landuyt and W. Joosen

Documenting EAAs in Use Cases. Many use case templates have been
proposed in literature, some of which explicitly propose fields for referring to re-
lated non-functional requirements [15,6]. This is generally considered bad prac-
tice among use case modeling experts [5] as it leads to scattered and confusing
cross-references between heterogeneous requirements.

In Jacobson’s use case-driven approach to AOSD [10], non-functional require-
ments are addressed by introducing infrastructure use cases which are functional
realizations of the non-functional requirement (e.g. log-in use cases for authen-
tication). As a consequence, the higher-level representation of this requirement
is lost and the requirements engineer is forced to commit to a certain realization
of the non-functional requirement.

Another common technique involves defining project glossaries of key concepts
(which might correspond to EAAs). The main disadvantage of these techniques
is a consequence of their disconnect from the other requirement artifacts.

Architectural Assumptions. In their seminal work about architectural mis-
match [8], Garlan et al. have demonstrated that implicit architectural assump-
tions are one major factor impeding effective reuse and evolution of code- and
architecture-level artifacts. This is related to architectural decay [21]. Roeller
et al. [22] propose an approach for retro-actively discovering such architectural
assumptions in existing software systems and documenting them. Zschaler et
al. [33] have extensively studied aspect assumptions. These are all instances of
architectural assumptions. However, the main difference to the assumptions tar-
geted in this paper is that we focus on early architectural assumptions; i.e. those
assumptions made about the system during requirement elicitation and in the
transition phases to architecture.
Architectural knowledge management [1,14] focuses on making explicit key ar-
chitectural assumptions. Again, these approaches focus on late architectural as-
sumptions (solution-space assumptions). Given the potentially large impact of
EAAs on the architecture and its creation processes, it is nonetheless important
to also investigate architectural knowledge management in the context of EAAs.
To our knowledge, no other approaches exist with this explicit focus.

6 Conclusion

In the development activities at the transition from requirements to architecture,
the requirements engineer often makes early architectural assumptions (EAAs);
i.e. initial assumptions about key properties or characteristics of the envisioned
architectural solution. The inherently implicit nature of EAAs and the lack
of modularization thereof has been shown to hinder key architectural design
activities [29].

To address this, we have presented a set of techniques to modularize EAAs in
the context of scenario-based requirements. These EAAs are stored in a central
knowledge repository —the EAA model— which we consider to be a missing
link in the transition from requirements to architecture. The crosscutting nature

Modularizing Early Architectural Assumptions 183

of EAAs is tackled by employing aspect-oriented requirements engineering tech-
niques and we define EAAs in terms of requirement-level pointcut expressions.

This work addresses some of the research challenges in the domain of archi-
tectural knowledge management. As a general trend, the focus shifts from purely
documenting the architectural solutions (end products) to documenting the ar-
chitectural creation processes themselves (i.e., the intermediate results, design
decisions, design rationale, etc), and this well before actual architectural design
decisions may have been taken.

Acknowledgements. This research is partially funded by the Research Fund
KU Leuven.

References

1. Ali Babar, M., Dingsyr, T., Lago, P., Van Vliet, H.: Software Architecture Knowl-
edge Management: Theory and Practice. Springer (2009)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley (2003)

3. Chitchyan, R., Pinto, M., Rashid, A., Fuentes, L.: Compass: Composition-centric
mapping of aspectual requirements to architecture. In: Rashid, A., Akşit, M. (eds.)
Transactions on AOSD IV. LNCS, vol. 4640, pp. 3–53. Springer, Heidelberg (2007)

4. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based composition
for aspect-oriented requirements engineering. In: Barry, B.M., de Moor, O. (eds.)
AOSD. ACM ICPS, vol. 208, pp. 36–48. ACM (2007)

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional (January
2000)

6. Coleman, D.: A use case template: Draft for discussion (1998)
7. Eaddy, M., Aho, A., Murphy, G.C.: Identifying, assigning, and quantifying crosscut-

ting concerns. In: Proceedings of the First International ACoM Workshop, ACoM
2007, p. 2 (2007)

8. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch, or, why it’s hard to
build systems out of existing parts. In: Proceedings of the 17th ICSE Conference,
pp. 179–185 (April 1995)

9. Jacobson, I., Griss, M., Jonssson, P.: Software Reuse: Architecture, Process and
Organization for Business Success. Addison-Wesley (1997)

10. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases,
1st edn. Addison-Wesley (December 2004)

11. Katz, S., Mezini, M., Kienzle, J. (eds.): Transactions on Aspect-Oriented Software
Development VII. LNCS, vol. 6210. Springer, Heidelberg (2010)

12. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
architecture tradeoff analysis method. In: Proceedings of the Fourth IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, ICECCS 1998,
pp. 68–78 (1998)

13. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis Management Systems: A Case Study
for Aspect-Oriented Modeling. Transactions on Aspect-Oriented Software Devel-
opment 7, 1–22 (2010)

14. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

184 D. Van Landuyt and W. Joosen

15. Malan, R., Bredemeyer, D.: Functional requirements and use cases: System has
properties (2005)

16. Moreira, A., Araújo, J.A., Brito, I.: Crosscutting quality attributes for requirements
engineering. In: Proceedings of the 14th International Conference on Software En-
gineering and Knowledge Engineering, SEKE 2002, pp. 167–174. ACM, New York
(2002)

17. Moreira, A., Rashid, A., Araújo, J.: Multi-dimensional separation of concerns in
requirements engineering. In: RE, pp. 285–296. IEEE Computer Society (2005)

18. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Com-
puter 34(3), 115–117 (2001)

19. Nuseibeh, B.: Crosscutting requirements. In: Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development, AOSD 2004, pp. 3–4. ACM,
New York (2004)

20. Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual
requirements. In: AOSD 2003: Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, pp. 11–20. ACM, New York (2003)

21. Riaz, M., Sulayman, M., Naqvi, H.: Architectural decay during continuous software
evolution and impact of ‘design for change’ on software architecture. In: Śl ↪ezak,
D., Kim, T.-h., Kiumi, A., Jiang, T., Verner, J., Abrahão, S. (eds.) ASEA 2009.
CCIS, vol. 59, pp. 119–126. Springer, Heidelberg (2009)

22. Roeller, R., Lago, P., van Vliet, H.: Recovering architectural assumptions. Journal
of Systems and Software 79(4), 552–573 (2006)

23. Rosenhainer, L.: Identifying crosscutting concerns in requirements specifications
(2004)

24. Sillito, J., Dutchyn, C., Eisenberg, A.D., De Volder, K.: Use case level pointcuts.
In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 246–268. Springer, Hei-
delberg (2004)

25. U. Software Engineering Institute (SEI) (Carnegie Mellon). Arche, architecture
expert design assistant, http://www.sei.cmu.edu/architecture/tools/arche/

26. Some, S.S.: Use cases based requirements validation with scenarios. In: IEEE In-
ternational Conference on Requirements Engineering, pp. 465–466 (2005)

27. Tekinerdogan, B., Moreira, A., Araujo, J., Clements, P.: Presented papers: finding
aspects in requirements with theme/doc (2004)

28. Van Landuyt, D., Truyen, E., Joosen, W.: Discovery of stable abstractions for
aspect-oriented composition in the car crash management domain. In: Katz, S.,
Mezini, M., Kienzle, J. (eds.) Transactions on AOSD VII. LNCS, vol. 6210,
pp. 375–422. Springer, Heidelberg (2010)

29. Van Landuyt, D., Truyen, E., Joosen, W.: Documenting early architectural assump-
tions in scenario-based requirements. In: Proceedings of the Joint 10th Working
IEEE/IFIP Conference on Software Architecture & 6th European Conference on
Software Architecture (2012)

30. Van Landuyt, D., Truyen, E., Joosen, W.: On the modularity impact of architec-
tural assumptions. In: Proceedings of the 2012 NEMARA Workshop, NEMARA
2012, pp. 13–16 (2012)

31. Weston, N., Chitchyan, R., Rashid, A.: Formal semantic conflict detection in
aspect-oriented requirements. Requir. Eng. 14, 247–268 (2009)

32. Wojcik, R., Bachmann, F., Bass, L., Clements, P.C., Merson, P., Nord, R., Wood,
W.G.: Attribute-driven design (add), version 2.0. Technical report, Software Engi-
neering Institute (November 2006)

33. Zschaler, S., Rashid, A.: Aspect assumptions: a retrospective study of aspectj devel-
opers’ assumptions about aspect usage. In: Proceedings of the Tenth International
Conference on AOSD 2011, pp. 93–104. ACM (2011)

http://www.sei.cmu.edu/architecture/tools/arche/

Semantically Configurable Analysis

of Scenario-Based Specifications

Barak Cohen and Shahar Maoz

School of Computer Science, Tel Aviv University, Israel

Abstract. Scenarios, represented using variants of sequence diagrams,
are popular means to specify systems requirements. Live sequence charts
(LSC), is a formal and expressive scenario-based specification language,
which has been extensively studied over the last decade. Careful reading
of the LSC literature, however, reveals many variations and ambiguities
in the semantics of LSC, as it is used by different authors in differ-
ent contexts. Moreover, different works define their semantics of LSC
using different means. This variability, in both language features and
means of semantics definition, creates a challenge for researchers and tool
developers.

In this paper we address this challenge by investigating semantically
configurable analysis. We define and formalize the variability in the se-
mantics of LSC using a feature model and develop an analysis technique
that can be instantiated to comply with each of its legal configurations.
Thus, the analysis is semantically configured and its results change ac-
cording to the semantics induced by the selected feature configuration.
The work is implemented and demonstrated using examples. It advances
the state-of-the-art in the area of scenario-based specifications and pro-
vides an example for a formal and automated approach to handling se-
mantic variability in modeling languages.

“. . . the world don’t move to the beat of just one drum. . . ”
Diff’rent Strokes (1978)

1 Introduction

Scenarios, represented using variants of sequence diagrams, are popular means
to specify systems requirements. A scenario tells a ‘short story’ of interaction be-
tween system and environment entities. Live sequence charts (LSC), originally
presented by Damm and Harel [4], is a formal and expressive scenario-based
specification language. LSC has been extensively studied over the last decade in
the context of execution and synthesis (e.g., [9,12,17,24,29,31,38]), in the con-
text of consistency checking and formal verification (e.g., [6,11,22,25]), speci-
fication mining and testing (e.g., [26]), expressive power and standardization
(e.g., [5,13,14,23,28,39]). Moreover, several tools which support various analy-
ses that involve the LSC language have been developed by different research

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 185–199, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

186 B. Cohen and S. Maoz

groups, including, e.g, PlayGo [15], the Modal Transition System Analyzer [7],
and ScenarioTools [10,37].

Careful reading of the LSC literature, however, reveals many variations and
ambiguities in the semantics of LSC, as it is used by different authors in different
contexts, for different purposes and in different tools. Moreover, different works
define their semantics of LSC using different means, e.g., by transformation to
temporal logic formulas, by describing an execution mechanism (play-out), by
translation into various types of automata, etc. This variability, in both language
features and means of semantics definition, creates a challenge for researchers
and tool developers.

In this paper we address this challenge by investigating semantically con-
figurable analysis of LSC. First, we define and formalize the variability in the
semantics of LSC, as it is found in the literature, using a feature model: each con-
figuration that the feature model permits, induces a different semantics mapping
(over the same domain). Second, we develop a parametrized analysis technique
that can be instantiated to comply with every legal configuration of the feature
model. Thus, the resulting analysis, e.g., verification or synthesis, is semanti-
cally configured and its results change according to the semantics induced by
the selected feature configuration.

There are several advantages to using a feature model to describe a language’s
semantic variability. First, the feature model provides a means to formally struc-
ture the various semantic choices; this supports human comprehension of the
semantics, allows comparison of different variants, and, significantly, enables
the parsing required in order to support an automatically configurable analy-
sis. Second, the use of a feature model provides a formal means to define logical
dependencies between the semantic choices, e.g., mutual exclusion, implication
etc. This is indeed necessary, because not all theoretically possible combinations
induce well-defined and useful semantics that are found in the literature.

To present the semantics of LSC in our work, we chose a single, uniform
semantic domain — traces of events — and a uniform formalism — alternating
one pair Streett automata (see e.g., [8]), which is expressive enough to faithfully
support the representation of all variants we have found in the literature. This
uniform representation enables human comprehension and comparison between
variants, and serves as a basis for building semantically configurable automated
analysis tools.

Our feature model for the semantics of LSC consists of 19 features. One fea-
ture, for example, relates to whether the LSC should be interpreted universally
or existentially. Another feature relates to the question of whether the chart’s
semantics is tolerant or strict with regard to partial-order violations by events
that appear in it. One feature relates to the semantics of pre-charts in existential
charts, a set of features differentiates between invariant, and iterative modes of
interpretation, a set of features relates to the use of environment assumptions,
and another set of features differentiates between true and interleaving modes
of concurrency. Each feature is formally defined as part of the LSC semantics

Semantically Configurable Analysis of Scenario-Based Specifications 187

Fig. 1. The architecture of our solution to semantically configurable analysis of LSC

definition. The feature model organizes the different features so that each of its
configurations induces a specific overall semantics.

The semantic mapping itself is realized using a model-to-model (M2M) trans-
formation. The input for the transformation consists of (1) an LSC and (2) a
valid configuration of the feature model. The output is an automaton, which can
be used as input for downstream analysis tools. An overview of the architecture
of our solution is shown in Fig. 1.

Our work is fully automated and implemented in a prototype Eclipse plug-in,
where one can edit an LSC, select a semantic configuration, and generate an
automaton corresponding to the LSC semantics according to the chosen con-
figuration. For LSC editing we use components from PlayGo [15]. For feature
model definitions and implementation of feature selection we use components
from FeatureIDE [20]. The M2M transformation is implemented in ATL [19].

The remainder of the paper is organized as follows. Sect. 2 discusses related
work. Sect. 3 provides an overview and an example. Sect. 4 describes the LSC
language and the feature model of its semantics. Sect. 5 presents our technique
for semantically configurable analysis. Sect. 6 presents the implementation and
a discussion. Sect. 7 concludes.

2 Related Work

The question of how to deal with semantic variability in a modeling language has
been investigated before. Several works by Atlee et al., e.g., [35,36], used template
semantics to configure the semantics of state machines, and demonstrated con-
figured translations of state machines into SMV and into Java. Different from
these works, we use a feature model to model semantic variability. Moreover,
these works relate to state machine models while our present work focuses on
scenario-based models.

Cengarle et al. [2] have presented a taxonomy of variability mechanisms in
language definitions syntax and semantics, and demonstrated the use of feature
diagrams to model possible variants. The present work builds on these previous
ideas while focusing on semantic variability, specifically, semantic mapping vari-
ability (rather than syntactic variability) and on its application to semantically

188 B. Cohen and S. Maoz

configurable analysis, specifically demonstrated and implemented in the context
of live sequence charts.

A recent survey [34] has explored the many meanings of UML 2 sequence
diagrams. Indeed, we share similar concerns about the challenges set by the ex-
istence of many different semantics for sequence diagrams. The survey, however,
does not formalize the various semantics mathematically and under a single, uni-
form formalism as a semantic domain. Thus, unlike our work, it cannot provide
a basis for a semantically configurable automated analysis. Moreover, the survey
does not focus on LSC and ignores many LSC-related works (e.g., [24,39]), whose
semantics we do cover in this paper.

Many previous works provide various analyses for LSC, e.g., formal verifica-
tion, specification mining, and synthesis (e.g., [9,24,26,32,39]). To the best of our
knowledge, none of the works in the LSC literature supports variability-based
semantically configurable analysis.

Most recently, the second listed author et al. [30] presented semantically con-
figurable consistency checking of class and object diagrams. The work motivates
the use of feature models to support semantically configurable analysis. It uses a
feature model to specify variations in the semantics of CDs and ODs, and a pa-
rameterized translation of CDs and ODs to Alloy, which is expressive enough to
support all the considered variants. This work has inspired us to apply a similar
solution to address the challenge of variability in the semantics of LSC.

3 Example and Overview

We use a simple example as an overview of our work. The description is partial
and semi-formal. We refer back to this example later in the paper.

We consider a single small LSC, related to the vending machine specification
presented in [31,32]. The LSC OnHeatRequest (Fig. 2, left) consists of one en-
vironment lifeline (heater) and two system lifelines, representing the system’s
panel and thermometer. The minimal event of the LSC is a cold heat message
that is sent from the panel to the heater. It is followed by two hot messages,
with no particular order between them: (1) the panel’s own lockPanelmessage,
and (2) the heater’s reachMax message to the thermometer.

We define the semantics of an LSC by translation to an automaton. The
language accepted by the automaton consists of the runs that satisfy the LSC.

The construction of the automaton consists of a common part and a variable
part. The common part (marked in black in Fig. 2, right) includes the states
(one for each LSC cut) and the transitions induced by the unwinding of the
LSC’s partial order. The variable part, marked in several colors according to
the corresponding semantic features, consists of (1) additional transitions, (2)
a reject state, (3) a quantification on the initial state, and (4) an acceptance
condition.

For example, for a universal semantics, the red transitions and reject state are
added on top of the common construction. For the choice between a strict and a
tolerant interpretation, the purple or the orange transitions are added. To sup-
port true concurrency rather than interleaving semantics, the green transitions

Semantically Configurable Analysis of Scenario-Based Specifications 189

Fig. 2. An example LSC and a sketch of a corresponding automaton. The automaton
sketch is color-coded based on the LSC semantics feature model: the common parts
are black while the parts corresponding to selected semantic features are marked in
different colors, one color per feature.

are added. The choice of whether to consider environment assumptions changes
the acceptance condition (not shown in Fig. 2).

Characterizing and formalizing the required variability, and showing how it
is implemented in a single, configurable analysis solution, are the challenges we
address in this paper.

4 LSC Semantics Variability

We start off with an overview of LSC’s common syntax and semantics. We then
describe the feature model that organizes LSC’s semantic variability.

4.1 Live Sequence Charts Common Syntax and Semantics

A live sequence chart consists of a set of lifelines and messages, depicted in the
concrete syntax using vertical lines and arrows between them. Message send
and receive events are placed in the intersection of messages and lifelines. On
each lifeline, events are fully ordered from top to bottom. Events appearing on
different lifelines are not ordered, except that a receive event cannot happen
before its corresponding send event. Thus, the LSC syntax induces a partial
order over events. This partial order is common to all LSC variants found in the

190 B. Cohen and S. Maoz

Fig. 3. The LSC semantics feature model, presented using a feature diagram

literature (and in fact also to all message sequence charts and UML sequence
diagrams variants).

Another common syntactic feature of all LSC variants is message temperature,
which can be either hot or cold. In the concrete syntax, the temperature is
reflected by the message’s color, red or blue.

These syntax and semantics are common to all LSC variants found in the
literature. Next we discuss the semantic variants found in the literature and the
feature model we use to formalize and structure them.

4.2 The LSC Semantic Variability Feature Model

A feature model describes a structured set of features and their logical depen-
dencies [1,3]. Feature models are commonly used in the area of software product
lines. They may be visually represented using feature diagrams, which are basi-
cally and-or trees, extended with textual cross-tree logical constraints. Here we
use a feature model to formalize variability in the semantics of LSC. The model
includes several cross-tree logical constrains. In the feature diagrams we use the
standard notation: for mandatory features, a line ending with a filled circle; for
alternative features of which exactly one must be selected (xor), an empty slice
covering the lines leading to the different alternatives.

Our feature model consists of 19 features, as shown in the feature diagram
in Fig. 3. Roughly, a valid feature configuration of this model specifies whether
the semantics is universal or existential (with the kind of pre-chart specified),
invariant or iterative, of true concurrency or interleaving, using strict or toler-
ant sequencing, and whether the semantics includes environment assumptions.

Semantically Configurable Analysis of Scenario-Based Specifications 191

Some of these features have sub-features. Each of the features and sub-features
represents a semantic choice used in one or more works from the LSC literature,
as we detail next.

The Universal vs. Existential semantic choice was first presented in [4] and
appeared in almost all works (although many works support only the universal
variant). An existential LSC specifies an interaction example and requires that
at least one system run exhibits the events appearing in it (in compliance with
the partial order specified by the chart). A universal LSC specifies a rule that all
system runs are expected to satisfy. A run satisfies a universal LSC iff each time
the LSC is activated its hot enabled messages eventually occur, or an enabled
cold message is violated.

A pre-chart appeared already in [4]. Many works use an LSC variant with pre-
chart, but not all (e.g., [9,31]). When a pre-chart is used in an existential LSC,
two variants are found: one variant, introduced in [4] and called in our feature
model existential conditional pre-chart (ExistCondPrechart), states that there
should be at least one system run in which if the pre-chart is traversed success-
fully, then the main chart is fulfilled as well. Another variant with a stronger
interpretation requires that whenever the pre-chart is fulfilled there is at least
one execution from that point on that satisfies the main chart. This semantic
variant is defined in [39] and called in our feature model universal conditional
pre-chart (UnivCondPrechart)

The model of concurrency assumed by an LSC may vary. Almost all works
use an Interleaving interpretation, where no two events happen at the same
point in time. Some works, e.g., [4,22], however, do allow true concurrency
(TrueConcurrency).

The kind of sequencing is another distinction found in the literature. Two
sequencing kinds are considered: Strict and Tolerant. According to the strict
interpretation, events that appear in the chart but are not currently enabled
cause a violation. According to the tolerant interpretation, these events do not
cause a violation. In all variants, the chart’s sequencing ignores events not ap-
pearing in the chart. Almost all works use strict sequencing. Tolerant sequencing
is formalized and investigated in [16].

The mode of activation is another variation found in the literature. We con-
sider two activation modes from the literature: Invariant and Iterative. In
invariant activation mode, every occurrence of a minimal event activates the
chart. In iterative mode, a chart is not activated if it is currently active (so at
most one instance of the chart may be active at each point in time). The invari-
ant mode is used in many works, e.g., [4,6,13,22,39]. The iterative mode is used
in other works, e.g., [10,22,24].

Finally, the use of liveness environment assumptions is another variation point
in the LSC literature. Some works make a distinction between environment and
system lifelines, which is reflected in the LSC semantics; when the environment
violates its assumptions, the system is no longer required to fulfill its guaran-
tees. An integrated variant, which allows to specify environment assumptions
and system guarantees in a single LSC, is presented in [31] and used in [15].

192 B. Cohen and S. Maoz

A variant where assumptions must appear in separate LSCs is presented in [9,22]
and used in [10]. However, while most works do make a syntactic distinction be-
tween environment and system lifelines, many of them, e.g., [13,17,39], do not
support liveness environment assumptions.

Cross-Tree Constraints. To complete the feature model, we add to the fea-
ture diagram cross-tree logical constraints that define dependencies between the
different features, for us, the semantic choices, e.g., mutual exclusion, implica-
tion etc. This is indeed necessary, because, as we have found, not all theoretically
possible combinations (feature configurations) induce well-defined and useful se-
mantics (which appeared in the literature). Specifically, we use two cross-tree
constraints:

EnvAssump implies Universal (1)

not (UnivCondPrechart and ExistCondPrechart) (2)

We add constraint 1 because the provisional behavior specified by an existen-
tial semantics is too weak to be useful as an assumption on the environment’s
behavior (“The quantification is always universal, because assumptions express
universal constraints on the behavior of the environment”, [21, p. 196]). Indeed,
in the literature all works that support environment assumptions (e.g., [9,31])
support only universal LSCs. We add constraint 2 because a pre-chart in an ex-
istential LSC may have either a universal conditional semantics or an existential
conditional semantics, but not both.

Overall, our feature model contains 19 features, 5 of which are core features,
i.e., features that are included in all configurations. The model has 56 valid
configurations. The complete feature model we have defined is available in [27],
in formats compliant with S.P.L.O.T [33] and with FeatureIDE [20], to allow
others to inspect it and use it.

5 Semantically Configurable Analysis

We start with a short overview of the target formalism we use as the semantic
domain for LSC. We then describe the model-to-model transformation we have
defined to support semantically configurable analysis.

5.1 Alternating One Pair Streett Automata

The key to the semantically configurable analysis is a transformation to a single,
uniform formalism, in our case, an alternating one pair Streett automaton [8].

Roughly, an alternating automaton’s transition function maps a state and
an alphabet symbol to a positive Boolean expression over states. It thus allows
expressing both non-determinism (disjunction) and concurrency (conjunction).
A Streett acceptance condition consists of a set of pairs of bad and good sets of
states; a run is accepted iff for each pair, if it visits the bad set infinitely often
it also visits the good set infinitely often.

Semantically Configurable Analysis of Scenario-Based Specifications 193

For our purposes of representing the semantics of all LSC variants found in the
literature, a simpler automaton is sufficient. Specifically, we need only one pair
(F,E) ⊆ Q2 of bad and good sets of states for the Streett acceptance condition,
and we can limit quantification to the automaton’s initial state (and in the case
of pre-chart to at most one more state).

In addition to an LSC, the input for the transformation includes one valid
configuration of the LSC semantics feature model described in Sect. 4. We now
describe the transformation as it is implemented in ATL [19]. We use the LSC
presented earlier in Sect. 3 as a running example.

5.2 Overview of the Transformation

The ATL transformation uses three meta models: (1) for LSC (input), (2) for
a semantics configuration (input), and (3) for an alternating one pair Streett
automaton (output). As the transformation is quite complex we use many ATL
helpers, to define required data structures and functions.

Most importantly, the transformation uses two kinds of rules: common rules,
which are invoked based on the LSC input model only and apply to all variants
(e.g., construct the unwinding structure based on the partial order), and feature
specific rules, which are invoked based on the input feature model configuration
(rule per feature, see details below).

The notions of unwinding structure, cut and the events it induces, etc. are
common to all LSC variants, see, e.g., [13]. For lack of space we do not repeat
their definition here and do not show the common transformation rules. The
complete transformation is available from [27]. Here we focus only on the feature
specific rules.

5.3 Handling Semantic Variability: Feature Specific Rules

Handling variability is technically realized using feature specific rules. Below we
show how some of the features are handled and demonstrate the application of
the rules to the example LSC shown in Sect. 3.

Universal vs. Existential. List. 1.1 shows two rules. The rule universal (lines
1-13) matches the feature Universal in the configuration Conf. It stores the
universal quantification enumerator in a global variable and if a pre-chart exists
it connects its unwinding structure to the main chart’s unwinding structure. In
addition, it generates transitions that represent the LSC’s successful traversal.
Next, it creates a reject state, turns it into a sink vertex and adds it to the set F
of the acceptance condition. Finally, it sets the set E of the acceptance condition
to include all cold states. The rule is applied iff the input configuration includes
the feature Universal.

For example, in Fig. 2, the resulting contribution of the rule universal is
marked in red: it consists of the transitions going from states q2 and q3 to state
q0 as well as the additional state qreject and its self-transition. With this con-
struction, a run that starts (heat, reachMax, lockPanel) returns to the initial
state q0, ready for another activation of the LSC.

194 B. Cohen and S. Maoz

1 rule universal {

2 from f : Conf!Universal

3 do {

4 self .initialStateQuant <- #Universal ;

5 if (self .isPrechartSet)

6 self .joinCharts ();

7 self .generateBackTransitions();

8 self .generateRejectState ();

9 self .selfTrans (self .mappedSymbols , self .rejectState);

10 self .addToFstates (self .rejectState);

11 for (state in self .unwindingStructureStates) {

12 if (self .isCold(state))

13 self .addToEstates (state);}}}

14 rule existential {

15 from f : Conf!Existential

16 do {

17 self .initialStateQuant <- #Existential ;

18 self .ignoreTemperature <- true ;

19 self .connectAcceptingSinkState();}}

Listing 1.1. ATL rules to support existential and universal semantics

The rule existential (lines 14-19) matches the feature Existential in the
configuration Conf. It stores the existential quantification enumerator in a global
variable and instructs the transformation to ignore message temperature. It is
applied iff the input configuration includes the feature Existential.

As an example, in Fig. 2, the resulting contribution of the rule existential
is marked in blue: it consists of the transitions going from states q2 and q3 to
state q4. After applying this rule, a run that starts (heat, reachMax, lockPanel)
reaches the state q4 and stays there forever.

Invariant vs. Iterative. List. 1.2 shows two rules. The rule invariant (List. 1.2
lines 1-9) matches the feature Invariant in the configuration Conf. It creates a
self-transition (loop) on the initial state, labeled with all used alphabet symbols,
and sets the quantification on the transitions outgoing the initial state to the
quantification stored by the universal / existential rules. If a pre-chart is
present, it sets the quantification on transitions outgoing the initial state of the
main chart in a similiar manner. It is applied iff the input configuration includes
the feature Invariant.

Fig. 2 demonstrates the contribution of the rule invariant: a self-transition
on q0 and a quantification on q0’s outgoing transitions (marked in light blue).
For instance, in combination with universal strict semantics, a run that starts
(heat, heat) branches out to three states: q0, q1 and qreject, representing three
copies of the LSC.

The rule iterative (List. 1.2 lines 10-13) matches the feature Iterative

in the configuration Conf. It creates self-transitions on the initial state, for all
symbols that do not yet appear on any outgoing transition from the initial state.
It is applied iff the input configuration includes the feature Iterative.

Semantically Configurable Analysis of Scenario-Based Specifications 195

1 rule invariant {

2 from f: Conf!Invariant

3 do {

4 self .selfTransMappedSymbols(self .initialState);

5 self .initialState .quantification <-

6 self .initialStateQuant ;

7 if (self .isPrechartSet)

8 self .prechartToMainState .quantification <-

9 self .prechartToMainStateQuant;}}

10 rule iterative {

11 from f: Conf!Iterative

12 do {

13 self .selfTransUnboundedSymbols(self .initialState);}}

Listing 1.2. ATL rules to support invariant and iterative semantics

Strict vs. Tolerant. List. 1.3 shows two rules. The rule strict (lines 1-7)
matches the feature Strict in the configuration Conf. It iterates over the states
in the unwinding structure and for each state creates outgoing transitions either
to the initial state or to the reject state, in correspondence to the messages
causing violations in it. It is applied iff the input configuration includes the
feature Strict.

Fig. 2 shows the contribution of the rule strict in the context of universal se-
mantics. It includes three transitions going from q1, q2 and q3 to qreject (marked
in purple). For instance, all the runs that start (heat, heat) visit qreject and stay
there forever.

The rule tolerant (lines 8-12) matches the feature Tolerant in the configu-
ration Conf. It iterates over the states in the unwinding structure and for each
state generates a self-transition that carries all the symbols that are included
in any outgoing transition. It is applied iff the input configuration includes the
feature Tolerant.

The contribution of the rule tolerant is depicted in Fig. 2: three self-transitions
on the states q1, q2 and q3 (marked in orange). For instance, in this case the infinite
word (heat, heat, reachMax, lockPanel)

ω
is accepted by both in universal and

existential semantics.

EnvironmentAssumptions.List. 1.4 shows two rules. The rule assumptionLsc
(lines 1-5) matches the feature AssumptionLsc in the configuration Conf. It sets
the setE of the acceptance condition to include all states. It is applied iff the input
configuration includes the feature AssumptionLsc.

The rule envAssumpIntegrated (lines 6-16) matches the feature EnvAssump-
Integrated in the configuration Conf. It sets the set F of the acceptance con-
dition to include all cold-environment-hot-system states and the set E of the
acceptance condition to include all cold-system states. It is applied iff the in-
put configuration includes the feature EnvAssumpIntegrated. In the example
shown in Fig. 2, in the context of universal semantics and in the case where
the feature EnvAssump is not selected, the acceptance condition is set to F = Q

196 B. Cohen and S. Maoz

1 rule strict {

2 from f: Conf!Strict

3 do {

4 for (state in self .unwindingStructureStates) {

5 if (state <> self .initialState and

6 state <> self .acceptingSinkState)

7 self .violatingTrans (state);}}}

8 rule tolerant {

9 from f: Conf!Tolerant

10 do {

11 for (state in self .unwindingStructureStates) {

12 self .addUnboundedSymbolsToSelfTrans(state);}}}

Listing 1.3. ATL rules to support tolerant and strict semantics

1 rule assumptionLSC {

2 from f: Conf!assumptionLSC

3 do {

4 for (state in Automaton !State.allInstances ()) {

5 self .E_states <- self .E_states.including (state);}}}

6 rule envAssumpIntegrated {

7 from f: Conf!envAssumpIntegrated

8 do {

9 self .F_states <- Set{}; self .E_states <- Set{};

10 if (not self .rejectState .oclIsUndefined ())

11 self .F_states <- Set{self .rejectState };

12 for (state in self .unwindingStructureStates) {

13 if (self .isCEHS(self .matchingCut (state)))

14 self .F_states <- self .F_states.including (state);

15 else if (self .isCS(self .matchingCut (state)))

16 self .E_states <- self .E_states.including (state);}}}

Listing 1.4. ATL rules to support assumptions

(the complete set of states) and E = {q0, q4}. In the case where the features
EnvAssump and EnvAssumpIntegrated are selected, the acceptance condition is
set to F = {q3, qreject} and E = {q0, q2, q4}.

6 Implementation, Validation, and Discussion

Implementation. We have created a prototype implementation of our work,
packaged as an Eclipse plug-in. For the representation of the LSC semantics
feature model and the selection of valid configurations we use components from
FeatureIDE [20]. For editing LSCs we use the UI and APIs of PlayGo [15]. The
M2M transformation is implemented in ATL [19]. The prototype plug-in together
with several examples is available from [27].

Validation. We validated our solution as follows. First, we implemented tests
that iterate and apply all possible configurations of the feature model to a set of

Semantically Configurable Analysis of Scenario-Based Specifications 197

non-trivial LSCs, and check various properties of the resulting automata (e.g.,
the existence of a specific self-transition etc.). The tests are available from [27].

Second, we used the output of our solution as input for GOAL [40] (a Graphi-
cal Tool for ω-Automata and Logics), and thus executed several usage scenarios,
including (1) verifying an automaton against a property LSC, (2) checking the
consistency of an LSC specification, while applying several, different seman-
tic configurations. Details of these examples of usage scenarios are available
from [27].

Choice of Variability Modeling Language. Our choice of feature diagrams
as a variability modeling language was motivated by its wide use in the literature,
its tool support (we use FeatureIDE [20]) and its expressive power, which is good
enough for our purposes. Considering other means to model variability in our
context, e.g., the Common Variability Language (CVL) [18], is outside the scope
of this paper.

Choice of Target Formalism. Our choice of alternating one pair Streett au-
tomata as the target formalism for the semantics definition was motivated by its
expressive power, which covers all variants found in the literature. Alternatively,
one may use a Buchi acceptance condition, however, we consider this to be less
intuitive for the variants involving environment assumptions.

Choice of Transformation Language. Our choice of ATL for the imple-
mentation of the model-to-model transformation was motivated by its tool and
standard support. It allowed us to create a rather high-level readable code that
reflects the one-to-one mapping between features and rules.

Set of Supported LSC Language Constructs. Our current work supports
a limited set of LSC constructs, which excludes, e.g., asynchronous messages,
conditions, and various interaction fragments (alternatives, loops). The seman-
tics of some of these constructs does not seem to vary in the literature, but they
are defined and used so they are necessary for a more comprehensive solution.

7 Conclusion

In this paper we have investigated the idea of semantically configurable analysis
in the context of live sequence charts. We formalized semantic variability in LSC
using a feature model and presented a semantically configurable fully automated
analysis solution based on a transformation to an alternating one pair Streett au-
tomaton, capable of expressing all semantic variants found in the literature. The
work was implemented in an Eclipse plug-in and demonstrated with examples.

We consider the following possible future work. First, our current work fo-
cuses on semantic variability and thus considers a set of LSC variants that share
a core syntax. One may extend our work to also explore and model syntactic
variability for LSC. Second, we consider integrating our semantically config-
urable analysis with existing tools that are using LSC, such as PlayGo [15] and
ScenarioTools [10,37].

198 B. Cohen and S. Maoz

The paper continues our previous work on semantically configurable analy-
sis [30] and is part of our larger project on investigating formal and automated
ways to handling variability in modeling languages syntax and semantics.

References

1. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

2. Cengarle, M.V., Grönniger, H., Rumpe, B.: Variability within modeling language
definitions. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 670–684. Springer, Heidelberg (2009)

3. Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools, and Ap-
plications. Addison-Wesley (2000)

4. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001)

5. Damm, W., Toben, T., Westphal, B.: On the expressive power of live sequence
charts. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS,
vol. 4444, pp. 225–246. Springer, Heidelberg (2007)

6. Damm, W., Westphal, B.: Live and let die: LSC-based verification of UML-models.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002.
LNCS, vol. 2852, pp. 99–135. Springer, Heidelberg (2003)

7. Fischbein, D., D’Ippolito, N., Sibay, G., Uchitel, S.: Modal Transition System An-
alyzer (MTSA), http://sourceforge.net/projects/mtsa/ (accessed September
2013)

8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

9. Greenyer, J., Brenner, C., Cordy, M., Heymans, P., Gressi, E.: Incrementally
synthesizing controllers from scenario-based product line specifications. In: ES-
EC/SIGSOFT FSE, pp. 433–443. ACM (2013)

10. Greenyer, J., Brenner, C., Manna, V.P.L.: The ScenarioTools Play-Out of Modal
Sequence Diagram Specifications with Environment Assumptions. ECEASST 58
(2013)

11. Greenyer, J., Sharifloo, A.M., Cordy, M., Heymans, P.: Efficient consistency check-
ing of scenario-based product-line specifications. In: RE, pp. 161–170. IEEE (2012)

12. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifica-
tions. Int. J. Found. Comput. Sci. 13(1), 5–51 (2002)

13. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling 7(2), 237–252 (2008)

14. Harel, D., Maoz, S., Segall, I.: Some results on the expressive power and com-
plexity of LSCs. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Trakhten-
brot/Festschrift. LNCS, vol. 4800, pp. 351–366. Springer, Heidelberg (2008)

15. Harel, D., Maoz, S., Szekely, S., Barkan, D.: PlayGo: towards a comprehensive tool
for scenario based programming. In: ASE, pp. 359–360. ACM (2010)

16. Harel, D., Marelly, R.: Come, let’s play - scenario-based programming using LSCs
and the play-engine. Springer (2003)

17. Harel, D., Segall, I.: Synthesis from scenario-based specifications. J. Comput. Syst.
Sci. 78(3), 970–980 (2012)

18. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
standardized variability to domain specific languages. In: SPLC, pp. 139–148. IEEE
Computer Society (2008)

http://sourceforge.net/projects/mtsa/

Semantically Configurable Analysis of Scenario-Based Specifications 199

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.
Sci. Comput. Program. 72(1-2), 31–39 (2008)

20. Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel,
S.: FeatureIDE: A tool framework for feature-oriented software development. In:
ICSE, pp. 611–614 (2009)

21. Klose, J.: Live sequence charts: a graphical formalism for the specification of com-
munication behavior. PhD thesis, University of Oldenburg (2003)

22. Klose, J., Toben, T., Westphal, B., Wittke, H.: Check it out: On the efficient formal
verification of live sequence charts. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 219–233. Springer, Heidelberg (2006)

23. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal logic for scenario-
based specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 445–460. Springer, Heidelberg (2005)

24. Larsen, K.G., Li, S., Nielsen, B., Pusinskas, S.: Scenario-based analysis and syn-
thesis of real-time systems using Uppaal. In: DATE, pp. 447–452. IEEE (2010)

25. Li, S., Balaguer, S., David, A., Larsen, K.G., Nielsen, B., Pusinskas, S.: Scenario-
based verification of real-time systems using Uppaal. Formal Methods in System
Design 37(2-3), 200–264 (2010)

26. Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better to-
gether. Autom. Softw. Eng. 19(4), 423–458 (2012)

27. LSC semantic variability supporting materials,
http://smlab.cs.tau.ac.il/lscvar/

28. Maoz, S.: Polymorphic scenario-based specification models: semantics and applica-
tions. Software and Systems Modeling 11(3), 327–345 (2012)

29. Maoz, S., Harel, D., Kleinbort, A.: A compiler for multimodal scenarios: Trans-
forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol. 20(4), 18 (2011)

30. Maoz, S., Ringert, J.O., Rumpe, B.: Semantically configurable consistency analysis
for class and object diagrams. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 153–167. Springer, Heidelberg (2011)

31. Maoz, S., Sa’ar, Y.: Assume-guarantee scenarios: Semantics and synthesis. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 335–351. Springer, Heidelberg (2012)

32. Maoz, S., Sa’ar, Y.: Counter play-out: executing unrealizable scenario-based spec-
ifications. In: ICSE, pp. 242–251. IEEE / ACM (2013)

33. Mendonça, M., Branco, M., Cowan, D.D.: S.P.L.O.T.: software product lines online
tools. In: OOPSLA Companion, pp. 761–762 (2009)

34. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 Sequence Diagrams: a
survey. Software and Systems Modeling (SoSyM) 10(4), 489–514 (2011)

35. Niu, J., Atlee, J.M., Day, N.A.: Template semantics for model-based notations.
IEEE Trans. Software Eng. 29(10), 866–882 (2003)

36. Prout, A., Atlee, J.M., Day, N.A., Shaker, P.: Code generation for a family of exe-
cutable modelling notations. Software and Systems Modeling 11(2), 251–272 (2012)

37. ScenarioTools, http://www.scenariotools.org/ (accessed September 2013)
38. Sibay, G.E., Braberman, V.A., Uchitel, S., Kramer, J.: Synthesizing modal transi-

tion systems from triggered scenarios. IEEE Trans. Software Eng. 39(7), 975–1001
(2013)

39. Sibay, G.E., Uchitel, S., Braberman, V.A.: Existential live sequence charts revisited.
In: ICSE, pp. 41–50. ACM (2008)

40. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: A Graphi-
cal Tool for Manipulating Büchi Automata and Temporal Formulae. In: Grumberg,
O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidel-
berg (2007)

http://smlab.cs.tau.ac.il/lscvar/
http://www.scenariotools.org/

Formal Verification of Medical Device

User Interfaces Using PVS�

Paolo Masci1,��, Yi Zhang2, Paul Jones2,
Paul Curzon1, and Harold Thimbleby3

1 School of Electronic Engineering and Computer Science
Queen Mary University of London, United Kingdom

{paolo.masci,pc}@eecs.qmul.ac.uk
2 Center for Device and Radiological Health,

U.S. Food and Drug Administration, Silver Spring, Maryland, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 FIT Lab, Future Interaction Technology Laboratory
Swansea University, United Kingdom

harold@thimbleby.net

Abstract. We present a formal verification approach for detecting de-
sign issues related to user interaction, with a focus on user interface of
medical devices. The approach makes a novel use of configuration dia-
grams proposed by Rushby to formally verify important human factors
properties of user interface implementation. In particular, it first trans-
lates the software implementation of user interface into an equivalent
formal specification, from which a behavioral model is constructed using
theorem proving; human factors properties are then verified against the
behavioral model; lastly, a comprehensive set of test inputs are produced
by exploring the behavioral model, which can be used to challenge the
real interface implementation and to ensure that the issues detected in
the behavior model do apply to the implementation.

We have prototyped the approach based on the PVS proof system,
and applied it to analyze the user interface of a real medical device. The
analysis detected several interaction design issues in the device, which
may potentially lead to severe consequences.

Keywords: Software verification, Medical devices, User interfaces.

1 Introduction

In many countries, manufacturers of medical devices are required to assure rea-
sonable safety and effectiveness of software in their devices; they have to provide
adequate evidence to support this before their device can be placed on the mar-
ket [1]. When considering the safety of a medical device, human factors issues

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

�� Corresponding author.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 200–214, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Formal Verification of Medical Device User Interfaces Using PVS 201

that include the human-device interface are critical. We refer to the part of a
device that the user receives information from and provides information to as the
user interface. Software in the device that contributes to the behavior of this in-
terface we refer to as user interface software. User interface software defines the
way in which a device supports user actions (e.g., the effect of clicking a

� �
Start� �

button) and provides feedback (e.g., rendering error messages on the device’s
display) in response to events.

The development of user interface software, or more generally, the interaction
design of medical devices, is not standardized in the industry. Instead, each
device manufacturer crafts its own device interaction design. A number of reports
(such as [27]) have asserted that manufacturers typically address human factors
issues within their user interface software in an ad hoc manner, rather than
using rigorous design and evaluation techniques. Part of the reason lies in the
fact that human factors specialists are usually involved too late in the software
development process, if at all. These specialists typically base their analysis
upon methods like heuristic evaluation [10], which require the availability of a
fairly complete user interface prototype. As a result, it is often too late and too
expensive to find and correct an interaction design flaw. Software engineers, on
the other hand, do not have effective means to identify human factors related
flaws in a software implementation, if such flaws are inherited from system-level
design and defined in software requirements and design specifications.

The reality described above, as well as the fact that many manufactures reuse
legacy code to develop new devices, makes it necessary to verify interaction
design flaws after a user interface is implemented. However, dosing so can be
expensive and time-consuming. It is more desirable and cost-effective if such
flaws can be detected and weeded out early on (e.g. at the design stage). Rigorous
development techniques, such as model-based design [13,22], can help to achieve
this objective, if integrated into the development life-cycle.

In this paper,we focus onuser interface software inmedical devices, andpresent a
formal approach for detecting design issues in such software. The approach
translates the source-code implementation of user interface software into a formal
specification. Theorem proving is then used to generate from this specification a
behavioral model of the software. This model captures the control structure and
behavior of the software related to handling user interactions. During this process,
theorem proving is also used to prove that important human factors principles are
satisfied by (all reachable states of) the model, or otherwise to detect potential
interaction design issues. The behavioral model generated is also exhaustively ex-
plored to derive a suite of test input sequences that can expose the detected inter-
action design issues, if any, in the implementation of the user interface software.

The contributions of the paper are as follows. (i) We present a formal approach
to generate and verify behavioral models of user interface software. The approach
is based on a novel use of configuration diagrams [23]. (ii) We describe a case study
based on a real medical infusion pump. The presented approach is demonstrated
within PVS [20] for a C++ implementation of the device user interface software.
Our approach was successful in detecting multiple interaction design issues from

202 P. Masci et al.

the implementation of the user interface software of the subject pump, many of
which could potentially cause severe consequences.

The reason that we chose infusion pumps as a representative class of medical
devices for study is because many infusion pumps suffer from poor human fac-
tors design. In fact, 87 models of infusion pumps were recalled in the US alone
between 2005 and 2009. Human factors issues were among the primary causes
for these recalls [6].

The present work builds on our previous research on the verification of medical
device user interfaces [11,14–16,22] and on user interface prototyping [19]. These
previous efforts have demonstrated that formal methods can be used to identify
human factors issues in reverse-engineered models of medical devices. This paper
presents an approach that continues our previous work, and extends rigorous
analysis to source code implementations of real user interfaces.

2 Example Results from Formal Source Code Analysis

To better illustrate the usefulness of our approach, we first explain the results of
applying it to analyze the user interface implementation of a real infusion pump.
In this case study, the details of which are introduced in section 4, our approach
detected four interaction issues listed below. These issues cause the pump to
either overlook user errors or interpret input numbers in an erroneous way. In
either situation, unexpected numbers may be used to configure the pump, which
can potentially cause serious clinical consequences (e.g., a lethal dose of drug is
infused to the patient, because the amount of drug to be infused is mistakenly
configured as an extremely large number).

Valid Input Key Sequences Are Incorrectly Registered without the
User’s Awareness. The pump mistakenly discards the decimal point in input
key sequences for fractional numbers between [100.1, 1200). For example, the

input key sequence
� �
1� �
� �
0� �
� �
0� �
� �
•� �
� �
1� �is registered as 1001 without any warning or

error message. This issue arises because of a constraint imposed in a routine of
the pump’s software: numbers above or equal to 100 cannot have a fractional
part. Due to this constraint, the pump erroneously ignores the decimal point in
the key sequence

� �
1� �
� �
0� �
� �
0� �
� �
•� �
� �
1� �, and registers it as 1001. This issue opens the

possibility that a user commits a missing decimal point error and accidentally
inputs a value ten times larger than the intended one (an out-by-ten error).

Inappropriate Feedback is Given to the User for Error Conditions. The
pump produces an inappropriate error message for fractional numbers between
[120.1, 1200). For example, the pump rejects the input key sequence

� �
2� �
� �
0� �
� �
0� �� �

•� �
� �
1� �with the error message “HIGH” even if the range of accepted values is

(0, 1200]. The reason for this issue is because the pump erroneously ignores the
decimal point in the key sequence and registers the number as 2001, which is
beyond the permitted range. What the pump should have reported is a message
like “The input value 200.1 should not have a fractional part”. Even though the

Formal Verification of Medical Device User Interfaces Using PVS 203

pump rejects the key sequence for
� �
2� �
� �
0� �
� �
0� �
� �
•� �
� �
1� �, it accepts key sequences for

integers on either side of 200.1. Without appropriate feedback, the user might
not understand why keying a number within the range limits supported by the
device is rejected, and could erroneously reach the conclusion that the device is
malfunctioning.

Ill-Formed Input Key Sequences Are Silently Accepted without the
User’s Awareness. For instance, the sequence

� �
9� �
� �
•� �
� �
9� �
� �
•� �
� �
1� �is accepted and

registered as 9.91 with the second decimal point silently discarded. This invalid
input sequence might be the result of a user error in reality. For example, the user
intends to input the value of 99.1, but due to issues like inattention, he/she presses

an unnecessary
� �
•� �between two

� �
9� �keys. Accepting such invalid key sequences

could allow user errors to go undetected. The safe and correct way of handling
such invalid sequences is to halt user interaction and return a warning message.

Digits after Decimal Point Silently Discarded without the User’s
Awareness. For instance, the pump mistakenly registers the input key sequence
� �
1� �
� �
0� �
� �
•� �
� �
0� �
� �
9� �as 10, as opposed to the intended 10.09. The reason for this issue

is because the pump software automatically limits the accuracy of numbers to
one decimal digit for values between [10, 100).

Notably, we used input sequences like the above to challenge another infusion
pump from a different manufacturer. Similar design issues were observed for the
same input sequences. This suggests that such design flaws may be common
to different implementations of user interface software. Therefore, fixing defects
presented in this paper can result in significant improvement in the safety of
infusion pumps [29], and possibly other devices that incorporate interactive data
entry software (such as ventilators and radiation therapy systems).

3 The Approach

Our approach, as depicted in figure 1, starts with translating the source code of
user interface software of medical devices into a formal specification acceptable to
the PVS theorem prover. A behavioral model is then extracted, in a mechanized
manner, from the formal specification using PVS and configuration diagrams.
Theorem proving is also applied to the behavioral model to verify its compliance
to human factor design principles. Lastly, the behavioral model is exhaustively
explored to generate a suite of test key sequences that expose interaction design
issues of the original device.

3.1 From C++ Code to PVS Specifications

PVS is a well known industrial-level theorem prover that enables mechanized
verification of potentially infinite-state systems. It is based on a typed higher-
order logic, and its specification language has many features similar to those
of C++. These similarities between the two languages make it possible to de-
vise a set of guidelines for translating (a subset of) C++ programs into PVS
specifications, with the semantics of the original C++ programs preserved.

204 P. Masci et al.

Fig. 1. Overview of our approach for verifying user interface software

Our approach adopts the following guidelines to manually translate C++ pro-
grams into PVS specifications. These guidelines provide a systematic approach
for the translation:

– Conditional and iterative statements in C++ are straightforwardly trans-
lated to their counterparts in the PVS specification language;

– Computation in C++, which is typically defined as instructions modifying
the values of variables of objects, is emulated in PVS with the assistance of a
record type, namely state. In type state, each field is defined to record the
value of a member variable in C++. Thus, computation over C++ variables
can be translated as updating the fields of state accordingly. Type state
is then passed to all PVS functions for reference and update;

– C++ functions are emulated in PVS as higher-order functions with the same
function arguments, while local variables in C++ functions are emulated
using the PVS LET-IN construct that binds expressions to local names;

– Class inheritance in C++ is translated by introducing a field in the structure
that translates (the state variables of) the base class.

Data types in C++, such as float and integer, can be mimicked in PVS
using subtyping [25], a PVS language mechanism that restricts the data do-
main of types. For instance, the subtype {x: real | x >= FLOAT MIN AND
x <= FLOAT MAX} checks if a real-typed variable has value within the range
from FLOAT MIN to FLOAT MAX. In many cases, subtyping is sufficient to check
whether a behavioral model correctly captures all boundary conditions encoun-
tered by the C++ implementation. Furthermore, PVS includes a standard li-
brary that emulates C++ data types such as lists and strings, as well as common
C++ library functions such as strcmp.

It is worth pointing out that, the translation of C++ programs benefits from
the strong type-checking mechanism in PVS. That is, if data types declared in
the PVS specifications are consistent with those in the C++ code, PVS can
assist in detecting type errors in the C++ code. With appropriate subtypes, it
is also possible to conduct more sophisticated type checking using PVS to detect
common coding errors in C++, such as null pointer dereferences, use-before-def
errors, and out-of-bound array accesses.

Currently, the translation of C++ programs in our approach considers only
basic C++ constructs. The translation of complex C++ features, such as passing
function parameters by reference, is left for future work, as it is not needed for
our case study.

Formal Verification of Medical Device User Interfaces Using PVS 205

3.2 Generation of Behavioral Models from PVS Specifications

Safe user interface design for medical devices needs to comply with important
human factors principles, such as consistency of actions, feedback, mode clarity,
and ability to undo. As shown in [12], such principles can be formalized as
properties that must always be satisfied by a device. Our approach formalizes
such principles as invariants that the behavioral model of user interface software
in medical devices must satisfy.

We use in a novel way configuration diagrams, first proposed in [23], to ex-
tract the behavioral model from the PVS specification of user interface software,
and to prove invariants of interest against the model. The intuition of config-
uration diagrams is that, proving an invariant G can be facilitated by using
a strengthening invariant A, where A is given as a disjunction of properties
A = A1 ∨ · · · ∨ Ak. Then, instead of proving G, the proof is done on G ∧ A, or,
equivalently, (G ∧A1) ∨ · · · ∨ (G ∧Ak). Properties Ai need not to be invariants,
which makes them easier to define. Sub-properties Ci = G ∧ Ai are referred to
as configurations.

All configurations encountered during the analysis can be organized as a con-
figuration diagram, which is a labeled graph where each node corresponds to a
configuration, each edge represents a possible transition between configurations,
and the labels marked on the edges denote conditions that enable transitions.

Our approach follows the following mechanized process, also presented in [23],
to construct configuration diagrams for PVS specifications:

1. Invent a configuration C1; Use the theorem prover to verify that C1 is
reachable from the initial state and C1 satisfies the property being verified.

2. Identify the conditions that trigger outgoing transitions from C1, and use
the theorem prover to check if the disjunction of these conditions is true.
This ensures that all possible cases are covered.

3. For each condition identified in (2), use the theorem prover to perform a
symbolic execution for one step from C1. This returns a new configuration
C2, an already existing configuration, or a variant of an existing one. If new
configurations are obtained, check them against the property being verified.

4. Repeat steps (2) and (3) until no new configuration is encountered.

An example of using configuration diagrams to extract and verify behavioral
models can be found in sub-sections 4.3 and 4.4.

3.3 Generation of Test Input Sequences

In many modern medical devices user interaction is carried out by clicking but-
tons. Test cases to (the user interface of) these devices can therefore be given
in the form of a sequence of key presses that the user performs to operate the
devices. The effectiveness of using input key sequences to analyze the user in-
terface of medical devices has been demonstrated in [5], where key sequences
reflecting arbitrary user strategies were generated to assess the sensitivity of
infusion pumps to unnoticed key slip errors.

206 P. Masci et al.

In our approach, however, key sequences are generated from configuration
diagrams, and used as test cases to challenge the real implementation of user
interface software. That is, an analyst can watch the execution of the implemen-
tation based on the generated key sequences, so as to confirm whether or not it
actually possesses the design issues detected in its behavioral model.

To generate key sequences from a configuration diagram, our approach tra-
verses the diagram and identifies user actions associated with its transitions.
Formally, a walk in a configuration diagram is a sequence n0

e01−→ n1
e12−→ n2 . . .,

where ni is a node in the diagram, and eij is an edge connecting node ni to nj .
By collecting user actions (key presses in our case) marked on each edge eij in a
walk, one can produce a sequence of key presses that can be used as a test case.

3.4 Discussion

Most of the model construction and proof tasks in our approach are automated
by PVS and grind, a powerful decision procedure included in PVS, which re-
peatedly applies definition expansion, propositional simplification, and decision
support to assist the analysis [26]. Human intervention is required only for two
purposes: 1) guide PVS to prune irrelevant details away from the analysis, in
order to avoid case-explosion and keep the generated configuration diagram com-
pact; and 2) guide PVS to decompose theorems into sub-theorems. More specif-
ically, the analyst needs to select or modify control conditions of the behavioral
model suggested by PVS. PVS then checks if the selected or modified ones cover
all possible model execution paths.

It should be noted that, even though human intervention demands skills and
expertise with PVS, the level of human involvement required by our approach
does promote active thinking for the analyst, giving her/him deep insights into
the software’s control structure and behavior. Because of this active involvement,
it is possible to identify (the root cause of) issues and their fixes before the
analysis is complete [23].

Lastly, the key point of generating useful key sequences, as in traditional
software test generation, is to ensure that the key sequences derived from the
configuration diagram achieve full coverage of the diagram. This ensures that
the generated key sequences represent all possible user interactions that user
interface software may encounter. Our approach currently realizes the generation
of test sequences based on manual browsing of configuration diagrams. But it
can certainly be extended with effective model based test generation techniques
(e.g. [28]), to automate the exploration of (large-scale) configuration diagrams
and the generation of comprehensive test key sequences from them.

4 Case Study: Analyzing a Real-World Infusion Pump

To evaluate the effectiveness of our approach, we applied it to the user interface
implementation of a real infusion pump1. It should be noted that, in the study

1 The identity of the pump is concealed for confidentiality reasons, even though it is no
longer marketed in US. Also, the information presented in this section is obfuscated.

Formal Verification of Medical Device User Interfaces Using PVS 207

Fig. 2. Layout of the infusion pump user interface under study

we had access to the source code of the user interface software, but we did not
have access to the design documentation of the pump, nor the library objects its
implementation referenced. Admittedly, the absence of library code may cause
inaccuracy of verification (e.g., design issues are falsely detected or omitted).
Fortunately, the design issues detected in this study, as reported in section 2,
were confirmed as genuine and caused by the subject implementation.

4.1 Overview of the User Interface under Study

Figure 2 illustrates the general layout of the user interface considered in the
study. Keys relating to the data entry system are labeled, while the others are
left blank for simplicity. By understanding the pump implementation, we com-
prehended its behavior, which is summarized as follows.

Digit Keys. During data entry, the software accepts one key press at a time and
calculates new values to be rendered on the display according to the following
rules: (i) if a decimal point key has not been registered, then the new value is
obtained by adding ten times the current displayed value and the value associated
with the digit key clicked. For instance, if the display is 1 and a click on

� �
7� �is

registered, then the new value is 10 × 1 + 7 = 17; (ii) if a decimal point key
has been registered, the value is obtained by adding the current displayed value

and the value associated with the clicked digit times 10−(decimalDigits + 1),
where decimalDigits is the current number of decimals of the displayed value.
Thus if the display is 17. and a click on

� �
2� � is registered, the new value is

17+ 2× 10−1 = 17.2; (iii) the display is updated to the calculated value only if:

– The new value is in the range 0–1200;
– The maximum decimal precision of the new value does not exceed

• 2 decimal digits if the new value is less than 10; or
• 1 decimal digit if the new value is within [10, 100); or
• 0 decimal digits if the new value is equal to or greater than 100.

A key that causes the calculated value to violate the above constraints puts the
software into an error mode, in which user interaction is halted, and a warning
message is displayed.

Decimal Point Key. The pump registers decimal points only when the current
displayed value is less than 100 and a decimal point has not been previously
registered. Otherwise, the decimal point key click is discarded.

208 P. Masci et al.

Clear Key. If the software is not in the error mode, the initial state is restored
(i.e., the displayed value is reset to 0); otherwise, the error mode is cleared and
the most recent valid state is restored.

4.2 Translation of the C++ Implementation

The portion of the implementation under study was a C++ class, the body
of which consists of approximately 2,000 lines of code. This class defines the
pump’s behavior of handling key presses on the number pad, and managing
feedback rendered on its display.

The first step of analysis was to translate the C++ class into PVS specifica-
tions, in which the guidelines given in section 3.2 were followed.

Listing 1.1. PVS specification of the software’s state variables

1 state: TYPE = [# display: {s: string | s‘length < DISP_BUFF_SIZE},
2 dispval: float,
3 pointRegistered: bool,
4 decimalDigits : {i: int | i >= 0 AND i <= 2}
5 errorMode : bool #]

State Variables. A record type, state, is defined to correspond to (the structure
of) the C++ class in the implementation. Listing 1.1 illustrates the definition of
state, in which every field is defined for one member variable of the C++ class.
In particular, the display field stores the string to be rendered on the display;
the dispval field is a float number that stores the current legal value registered
by the pump; pointRegistered is a Boolean field that indicates whether or not the
decimal point has been registered; the decimalDigits field records the number
of decimal digits of the currently registered value; and errorMode is a Boolean
that is set to true when the software is in the error mode. The predicate subtype
associated with the display field is used to restrict the string length, while the
subtype for decimalDigits is to enforce constraints on the number of decimal
digits. Both of these subtypes are consistent with the constraints imposed by
the original code.

Listing 1.2. PVS specification of decimal point

1 pointClicked(st: state): state =
2 if(NOT errorMode(st) & NOT pointRegistered(st) & dispval(st) < 100)
3 then st WITH [pointRegistered := TRUE,
4 display := strcat(display(st), ".")] else st endif

Decimal Point. Function pointClicked, as shown in listing 1.2, translates the
code that handles decimal point clicks. It takes the software’s current state (st)
as parameter, and updates the device’s display by invoking strcat (a simulation
of the counterpart C++ function) to concatenate the pieces to be displayed. A
PVS’s WITH construct is used to update two fields of st when it is not in the
error mode; or leave st unchanged otherwise.

Formal Verification of Medical Device User Interfaces Using PVS 209

Digit Keys. Function digitClicked translates the code that handles digit keys.
The parameter key of type KEY CODE specifies the identifier of the key (each
key is given a unique identifier whose value corresponds to the key label). Listing
1.3 provides the definition of digitClicked, where a LET-IN construct is used to
create local bindings to simulate local variables used in the implementation.
When a digit key is clicked, the new display value is computed and stored in
variable tmp (line 3 in Listing 1.3). If the new value meets the range and precision
constraints, the display and other relevant state variables are updated with this
value (lines 5-12 and 16-18); otherwise a warning message is displayed (lines 14-
15). Function sprintf is called to reproduce the behavior of the corresponding
C++ function, which outputs the string to be displayed.

Listing 1.3. PVS specification of digit keys

1 digitClicked(key: KEY_CODE)(st: state): state =
2 if(NOT errorMode(st)) then LET
3 tmp: double = dispval(st),
4 (tmp, st) = if(dotRegistered(st)) then
5 if(decimalDigits(st) < MAX_DECIMAL_DIGITS
6 & ((tmp < 100 & decimalDigits(st) = 0)
7 OR (tmp < 10 & decimalDigits(st) = 1))) then LET
8 PPdecimalDigits = decimalDigits(st) + 1,
9 tmp = tmp + key * pow10(-1 * PPdecimalDigits) IN

10 (tmp, st WITH [decimalDigits := PPdecimalDigits])
11 else (tmp, st) endif
12 else (tmp * 10 + key, st) endif IN
13 if(tmp > MAX_VALUE)
14 then st WITH [errorMode := true,
15 display := strcpy(display(st),message(TOO_HIGH))]
16 else st WITH [dispval := tmp,
17 display := sprintf(display(st), "%*.*f", 0,
18 decimalDigits(st),tmp)] endif else st endif

Clear Key. Function clearClicked, shown in Listing 1.4, translates the code
segment that handles the Clear key clicks. When a click on the Clear key is
detected and the software is not in the error mode, clearClicked restores the
initial state. Otherwise, it clears the error by setting errorMode to false, and
updates the display with the last legal value stored in dispval.

Listing 1.4. PVS specification of clear key

1 clearClicked(st: state): state =
2 if(NOT errorMode(st))
3 then st WITH [dispval := 0, display := "0",
4 pointRegistered := false, decimalDigits := 0]
5 else st WITH [errorMode := false,
6 display := sprintf(display(st), "%*.*f", 0,
7 decimalDigits(st),dispval(st))] endif

4.3 Verification Using Configuration Diagrams

The human factors principles that we attempted to verify against the pump
implementation included: consistency, asserting that the same user actions

210 P. Masci et al.

Fig. 3. Configuration diagram regarding the consistency of decimal point clicks

(in this case, key clicks) should produce the same results in logically equivalent
situations; and feedback, which ensures that the user is provided with sufficient
information on what actions have been done and what result has been achieved.

Given different aspects of the pump’s behavior, these two principles can be
instantiated differently. Take the handling of decimal point clicks for example. We
instantiated these two principles, for this specific aspect of the pump’s behavior,
as predicate decimal point pred (see Listing 1.5)2. This predicate essentially
asserts that, no matter what current state (st) the pump has, when the decimal
point key is clicked, the pump should enter into a new state st prime, in which
either the decimal point is registered (variable pointRegistered is set true), or
the error mode is triggered (errorMode is true).

Listing 1.5. Predicate decimal point pred in PVS

1 decimal_point_pred(st: state): bool =
2 LET st_prime = pointClicked(st)
3 IN (pointRegistered(st_prime) OR errorMode(st_prime))

Predicate decimal point pred defines a safe way to manipulate decimal
point clicks. Based on this predicate, a behavioral model was constructed for
the infusion pump under study, by applying the procedure presented in section
3.2 to the PVS translation of its implementation. Simultaneously, the proof that
the pump satisfies decimal point pred was accomplished within the PVS
theorem prover by checking this predicate against all reachable states of the
behavioral model under all possible input key sequences.

The behavioral model illustrated in figure 3, in the form of a configuration di-
agram, was constructed as the result of our analysis effort. After proving twenty

2 Instantiation of the principles with respect to other aspects of the pump’s behavior
can be carried out similarly.

Formal Verification of Medical Device User Interfaces Using PVS 211

theorems during the model construction process, we verified that the infusion
pump violates predicate decimal point pred (an example of such violation
is shown in section 4.4). Please refer to section 2 for an explanation of the verifi-
cation results, and to [17] for more details on the generation of the configuration
diagram and the proof process.

4.4 Generation of Test Input Sequences

As discussed in section 3.3, a comprehensive set of key sequences can be gen-
erated as test cases to the device implementation by exploring all walks in its
configuration diagram.

Consider generating test cases from the configuration diagram in figure 3. At
the beginning, the pump satisfies C1: the decimal point is not registered; its user
interface is not in the error mode; the display value is less than 100. This is
visualized in the diagram as an edge from a default node Initiality to C1.

Outgoing edges from C1 are labeled with the combination of conditions and
user actions that can lead the pump into a new configuration. Note that only
conditions and user actions related to the verification of desired properties are
considered. For example, only the following combinations can trigger the pump
to exit from configuration C1: a decimal point is pressed (E12 in figure 3); or, a
digit key is pressed when COND1 holds (E13 in figure 3), where COND1 asserts
that the new display value is greater than or equal to 100.

The trace C1
E13−→ C3

E33−→ C3
E33−→ C3 represents a walk in this configuration

diagram. This walk stands for a class of possible user interaction scenarios, one
of which can be: start from C1 when the display value is 10; key

� �
0� �is pressed,

and the model moves to C3 as a digit key is pressed and COND1 is satisfied; key
� �
•� �is pressed, and the model stays in C3. Lastly, key

� �
1� �is pressed.

An example of sequence of key presses that can be extracted from the above
example walk is

� �
1� �
� �
0� �
� �
0� �
� �
•� �
� �
1� �, which exposes an interaction design flaw: the

pump silently discards the decimal point. In particular, when the prefix
� �
1� �
� �
0� �
� �
0� �� �

•� �of this sequence is fed to the pump, the model will stay in configuration C3,
in which predicate pointRegistered is false indicating that the decimal point is
not registered, and predicate errorMode is also false indicating that no warning
message is provided to the user.

Following the above process, we generated test cases that exposed the inter-
action design flaws presented in section 2. These test cases were used to check
the infusion pump under study, and confirmed that the detected design flaws
did exist in its implementation.

5 Related Work

The work presented in the paper is based on configuration diagrams, originally
introduced by Rushby to verify safety properties of potentially infinite-state sys-
tems [23]. For such systems, formal verification requires either a direct proof
through deductive mechanized methods (e.g., theorem proving), or justification
of an abstraction that downscales the system so that it can be verified through

212 P. Masci et al.

exhaustive state exploration (using model checking for example). In contrast,
our approach uses configuration diagrams in a novel way to identify interaction
design issues in software. In particular, we use configuration diagrams to ex-
tract and verify a behavioral model of the software specifying how the software
manages the interactions with the user.

Several approaches have been proposed to use model checking to verify user
interface implementations3. For example, Rushby [24] used model checkers Murφ
and SAL to verify mode confusion in a cockpit; Rukšėnas et al [21] used SAL to
identify post-completion errors in infusion pumps; Campos and Harrison used
IVY/NuSMV to analyze infusion pumps against properties such as consistency,
visibility, and feedback [4, 11]; and in our own work, we used SAL and Event-
B/Rodin to analyze the data entry system of infusion pumps for their predictabil-
ity [15, 16] and other safety properties identified by FDA [22].

The main limitation of using model checking to analyze user interface de-
sign/implementations lies in that, one has to wisely balance the complexity of
the models constructed for user interface and the fidelity of these models to the
original design/implementation. On one hand, the constructed models cannot
be too complex to be analyzable (within reasonable time cost) [3, 9, 12]. This
is why abstraction has to be used to eliminate irrelevant details away from the
models. On the other hand, it is often difficult to find appropriate types of ab-
straction, so as to preserve necessary details of the user interface for verification.
Therefore, model checkers often use too coarse abstraction to extract models
from the real design/implementation, resulting in excessive spurious counterex-
amples (i.e., counterexamples representing behaviors that do not exist in the real
design/implementation) to be reported.

Even though counterexample guided techniques, such as [2,7,8], can be used to
guide model checkers to refine and optimize the abstraction, such techniques still
demand significant effort from the analysts to first decide if a counterexample
is genuine or spurious. Unfortunately, with respect to analyzing user interface
software for its human factors properties, no general solution has been proposed
to assist analysts in making such decisions.

In contrast to model checking driven approaches, our approach defines a gen-
eral method for model construction based on theorem proving and configuration
diagrams. It avoids the difficulty of finding an appropriate level of abstraction
that ensures the accuracy and fidelity of the constructed behavioral models. How-
ever, the behavioral models constructed by our approach can also be verified by
model checkers for their human factors properties.

6 Conclusions

A rigorous and effective approach for formally verifying the source code im-
plementation of user interface software in medical devices has been presented.

3 It is worth noting that model-checking can be used in the design phase as a “high-
level debugger” of designs. However, this requires a different approach to modeling,
such as that illustrated in [22].

Formal Verification of Medical Device User Interfaces Using PVS 213

The case study shows that this approach can detect interaction design issues
in real implementations that might lead to critical safety consequences. These
issues exist because of a combination of design features in user interface soft-
ware, each of which is not problematic individually. Interestingly, we fed the test
cases generated by the approach to another infusion pump made by a different
manufacturer, and observed similar design issues.

The case study presented only formally analyzed a portion of the software
implementation of the subject infusion pump. As a result, only part of the con-
figuration diagram was developed, and only part of the proofs generated by PVS
were formally proved. However, even with this partially completed formal analy-
sis, real issues were identified. This suggests that our approach has the potential
to assess and improve the quality and safety of user interface software in medical
devices even before their complete implementation is available.

Once human factors properties are assured using PVS, the specification can
be used to rapidly prototype a new user interface design in which the identified
interaction design issues have been addressed. In fact, PVS provides a compo-
nent called PVSio-web [19] that helps developers to define the layout of a user
interface; and a component called PVSio [18] that enables interactive execu-
tion of specifications defining the behavior of the user interface, and a ground
evaluator that automatically compiles these specifications into executable code.

Acknowledgments. We thank Michael Harrison for his invaluable suggestions
and comments on the paper and the support of CHI+MED (Computer-Human
Interaction for Medical Devices, EPSRC research grant [EP/G059063/1]).

References

1. AAMI Medical Device Software Committee. Medical device software risk manage-
ment. AAMI Tech. Rep. TIR32:2004 (2004)

2. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software
predicate abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 388–403. Springer, Heidelberg (2004)

3. Bolton, M.L., Bass, E.J.: Formally verifying human-automation interaction as part
of a system model: Limitations and tradeoffs. Innovations in Systems and Software
Engineering 6(3), 219–231 (2010)

4. Campos, J.C., Harrison, M.D.: Modelling and analysing the interactive behaviour
of an infusion pump. Electronic Communications of the EASST (2011)

5. Cauchi, A., Gimblett, A., Thimbleby, H., Curzon, P., Masci, P.: Safer 5-key number
entry user interfaces using differential formal analysis. In: BCS-HCI (2012)

6. Center for Devices and Radiological Health, US Food and Drug Administration.
White Paper: Infusion Pump Improvement Initiative (2010)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

8. Dwyer, M.B., Tkachuk, O., Visser, W., et al.: Analyzing interaction orderings with
model checking. In: ASE 2004, pp. 154–163. IEEE Computer Society (2004)

9. Gelman, G.E., Feigh, K.M., Rushby, J.: Example of a complementary use of model
checking and agent-based simulation. In: SMC 2013. IEEE (2013)

214 P. Masci et al.

10. Ginsburg, G.: Human factors engineering: A tool for medical device evaluation in
hospital procurement decision-making. Journal of Bio. Informatics 38(3) (2005)

11. Harrison, M.D., Campos, J.C., Masci, P.: Reusing models and properties in the
analysis of similar interactive devices. Innovations in Systems and Software Engi-
neering, 1–17 (2013)

12. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Automated theorem proving
for the systematic analysis of interactive systems. In: FMIS 2013 (2013)

13. Jetley, R., Purushothaman Iyer, S., Jones, P.L.: A formal methods approach to
medical device review. Computer 39(4), 61–67 (2006)

14. Masci, P., Curzon, P., Harrison, M.D., Ayoub, A., Lee, I., Thimbleby, H.: Verifi-
cation of interactive software for medical devices: PCA infusion pumps and FDA
regulation as an example. In: EICS 2013. ACM Digital Library (2013)

15. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: On formalising interactive number entry on infusion pumps.
Electronic Communications of the EASST 45 (2011)

16. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: The benefits of formalising design guidelines: a case study on
the predictability of drug infusion pumps. Innovations in Systems and Software
Engineering, 1–21 (2013)

17. Masci, P., Zhang, Y., Curzon, P., Harrison, M.D., Jones, P., Thimbleby, H.: Veri-
fication of software for medical devices in PVS. CHI+MED Tech. Rep. (2013),
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=656

18. Munoz, C.: Rapid prototyping in PVS. National Institute of Aerospace, Hampton,
VA, USA, Tech. Rep. NIA, 3 (2003)

19. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: A tool for rapid
prototyping device user interfaces in PVS. In: FMIS 2013 (2013)

20. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining speci-
fication, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

21. Rukšėnas, R., Curzon, P., Blandford, A.E., Back, J.: Combining human error ver-
ification and timing analysis: A case study on an infusion pump. Formal Aspects
of Computing (2013) (in press)

22. Rukšėnas, R., Masci, P., Harrison, M.D., Curzon, P.: Developing and verifying user
interface requirements for infusion pumps: A refinement approach. In: FMIS 2013
(2013)

23. Rushby, J.: Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 508–520. Springer, Heidelberg (2000)

24. Rushby, J.: Using model checking to help discover mode confusions and other au-
tomation surprises. Reliability Engineering & System Safety 75(2), 167–177 (2002)

25. Shankar, N., Owre, S.: Principles and pragmatics of subtyping in PVS. In: Bert,
D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 37–52.
Springer, Heidelberg (2000)

26. Shankar, N., Owre, S., Rushby, J., Stringer-Calvert, D.: PVS prover guide. Com-
puter Science Laboratory, vol. 1, pp. 11–12. SRI International, Menlo Park (2001)

27. Story, M.F.: The FDA perspective on human factors in medical device software
Development. In: IQPC Software Design for Medical Devices Europe (2012)

28. Thimbleby, H.: Press on: Principles of Interaction Programming. Mit Press (2007)
29. Thimbleby, H., Cairns, P.: Reducing number entry errors: solving a widespread,

serious problem. Journal of the Royal Society Interface 7(51), 1429–1439 (2010)

http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=656

Sound Control Flow Graph Extraction

from Incomplete Java Bytecode Programs

Pedro de Carvalho Gomes, Attilio Picoco, and Dilian Gurov

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. The modular analysis of control flow of incomplete Java byte-
code programs is challenging, mainly because of the complex semantics
of the language, and the unknown inter-dependencies between the avail-
able and unavailable components. In this paper we describe a technique
for incremental, modular extraction of control flow graphs that are prov-
ably sound w.r.t. sequences of method invocations and exceptions. The
extracted models are suitable for various program analyses, in particu-
lar model-checking of temporal control flow safety properties. Soundness
comes at the price of over-approximation, potentially giving rise to false
positives reports during verification. Still, our technique supports incre-
mental refinement of the already extracted models, as more components
code becomes available. The extraction has been implemented as the
ConFlEx tool, and test-cases show its utility and efficiency.

1 Introduction

The main obstacle to the formal verification of software is the size of its state
space. A standard approach to address this problem is to construct an abstract
model of manageable size and to perform the verification over the model. Ide-
ally, the abstraction should come with a formal argument that it is property-
preserving for the class of properties of interest, otherwise the verification results
cannot be trusted. Control flow graphs (CFGs) are among the most commonly
used software models, where nodes represent the program’s control points, while
edges represent the transfer of control between the points.

In this paper we present a framework for the extraction of CFGs from the
available components of incomplete Java bytecode (JBC) programs. That is, pro-
grams where the implementation of some components is not yet available. Typi-
cal situations when one has to deal with incomplete programs are systems under
development, or systems depending on third-party software. In the latter case,
it is common that the source code of the third-party software never becomes
available, which motivates our choice to analyze Java bytecode.

We extract CFGs that are sound w.r.t sequences of method invocations and
exceptions. Such models are useful for many static analyses, especially for the
formal verification of temporal control flow safety properties. Previous techniques
have been proposed to analyze incomplete JBC programs [6,16]; however they
are admittedly unsound. To the best of our knowledge, our framework is the first
to soundly analyze the control flow of incomplete programs.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 215–229, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

216 P. de Carvalho Gomes, A. Picoco, and D. Gurov

The challenges to soundly analyze control flow from incomplete JBC programs
are twofold. The first are the object-oriented features of JBC. For instance, vir-
tual method calls (VMC) and exceptions impose difficulties. The second are the
unknown inter-dependencies between available and yet unavailable software com-
ponents. For instance, it is hard to estimate the control flow caused by exception
propagation, or to determine precisely the possible receivers of a VMC.

We define our framework by generalizing a previous algorithm from Amighi
et al. [2] for complete JBC programs that uses a transformation into an interme-
diate bytecode representation (BIR) [12]. The transformation into BIR allows
the precise estimation of a significant subset of the implicit (e.g., division by
zero) exceptions, and of explicit (with athrow instruction) exceptions.

The inter-dependencies involving yet unavailable components are captured by
means of user-provided interfaces. Our approach is conservative, and assumes
that unavailable methods may propagate any exception. This results in signif-
icant over-approximation, but the user may alleviate it by specifying in the
method’s interface the exceptions it should never propagate.

Still, valid global properties may fail to be established, giving rise to so-called
false positives. The algorithm mitigates this by allowing the incremental re-
finement of previously extracted CFGs, as more code becomes available. This
is accomplished by decoupling the intra- and inter-procedural exceptional flow
analysis. So, properties that could not be verified in the more abstract CFGs
may be established over the refined CFGs.

The framework defines formally the constraints to instantiating yet unavail-
able code, needed to ensure the soundness of the already generated CFGs w.r.t.
sequences of method invocations and exceptions. Further, we prove the correct-
ness of our extraction. First, we show that the extracted CFGs from the available
components are supergraphs of the ones extracted from the same components
by the algorithm for complete programs. Then, we connect this with previously
established results to conclude that the CFGs extracted with the present algo-
rithm are also sound w.r.t. the JBC behavior (as defined by the JVM), as long as
the specified constraints are respected. Therefore, already established behavioral
or structural properties are thus guaranteed to still hold.

We have implemented our technique as the ConFlEx tool. It features caching
of previous analyses, necessary for the incremental refinement, and matching
of newly arriving code against their interface specifications. Our experimental
results confirm the intuitive expectation that the over-approximations impact
significantly the size of the CFGs. Also, the results show that ConFlEx is
efficient, and performs a light-weight extraction of CFGs.

Organization. Section 2 describes the program models on which we base our
technique, and the transformation into the BIR. Section 3 motivates our work
by presenting a compositional verification technique that benefits directly from
our results. Section 4 describes our framework to analyze incomplete programs,
and outlines a correctness argument. Section 5 describes the implementation
of our approach, and presents experimental results. Section 6 discusses related
work, while Section 7 draws conclusions and outlines directions for future work.

Sound CFG Extraction from Incomplete Java Bytecode Programs 217

2 Preliminaries

In this section we briefly present the program model, and give an overview of
the BIR language, both necessary to define our CFG extraction algorithm.

2.1 Program Model

We define CFGs, following Huisman et al. [13], as Kripke structures with transi-
tion labels, where nodes represent program control points, and the edges repre-
sent how instructions shift control between the points. The atomic propositions
associated with nodes contain information about the control address, possible
exceptions, and returns. We use the following notational convention: ◦pm denotes
a normal non-return control node in the address p of method m, •p,xm an excep-
tional non-return control node with exception x, while ◦p,rm and •p,x,rm a normal
and an exceptional return node, respectively.

Edge labels are either method signatures m corresponding to invocation in-
structions, or the special label ε signifying any other type of instruction. This
choice is made here because of our interest in the possible sequences of method
invocations (expressed as temporal safety properties), but the program model
can be adapted to other needs as well. API methods are not considered a part
of the program, and are thus labeled by ε. However, the propagated exceptions
declared in the signature with throws are taken into account.

Let Meth and Excp be the sets of all method signatures and exceptions,
respectively. We now define formally CFGs as a collection of method graphs.

Definition 1 (Method Graph). A method graph for method m ∈ M over
sets M ⊆ Meth and E ⊆ Excp is a pair Gm = (Mm,Em), where Mm =
(Vm, Lm,→m, Am, λm) is a labeled Kripke structure, with Vm the set of control
nodes of m, Am = {m, r}∪E the set of atomic propositions, and Lm = M ∪{ε}
the set of transition labels. We require that m ∈ λm(v) for all v ∈ Vm, and for all
x, x′ ∈ E, if {x, x′} ⊆ λm(v) then x = x′ (i.e., every control node is tagged with
the method signature it belongs to and with at most one exception). Em ⊆ VM is
the (non-empty) set of entry control points of m.

Every control flow graph G is equipped with an interface I = (I+, I−, Ie),
written G : I, specifying the (disjoint) sets of provided and (externally) required
methods, and the set Ie ⊆ I+ × E of potentially propagated exceptions by
the provided methods. We say a CFG is closed if there are no (externally)
required methods; we say it is open otherwise. CFG composition is defined as
the disjoint union & of their method graphs. Interface composition is defined as
I1 ∪ I2 = (I+1 ∪ I+2 , (I−1 ∪ I−2)\(I+1 ∪ I+2), Ie1 ∪ Ie2).

Example 1 (CFG). Figure 1a shows a simple program to check the parity of an
integer. It is presented in Java source (rather than bytecode), to help the compre-
hension. The program has three methods. The method main calls parseInt to
convert the input string into an integer, then calls even. Notice that parseInt is

218 P. de Carvalho Gomes, A. Picoco, and D. Gurov

a method from the Java API, and is not considered a part of the program. How-
ever, its signature declares that it may propagate a NumberFormatException,
and this must be taken into account in the analysis. The method odd potentially
throws an ArithmeticException.

The implementation of method even is not available. We specify it with the
interface Ieven = ({even}, {odd}, {}). It declares that the method may call itself
or odd, and does not propagate any exceptions. It is represented in the code by
the empty-bodied method, and the Java annotation GhostComponent.

public class EvenOdd{

public static void main(String[] argv){
EvenOdd obj = new EvenOdd();
obj.even(Integer.parseInt(argv[0]));

}

public boolean odd(int n){
if (n < 0)

throw new ArithmeticException();
else if (n == 0)

return false;
else

return even(n-1);
}

/*** Unavailable method ***/
@GhostComponent(handlers={"any"},
req_meths={"odd(int)"})
public boolean even(int n) {};

}

(a) Program source (b) CFGs for available methods

Fig. 1. Example of Incomplete Java program

Figure 1b shows the CFGs for the available methods main and odd. The nodes
are tagged with the method’s signature and a control address. Entry nodes are
depicted as usual by incoming edges without source. There are three exceptional
nodes in the CFG, which represent points in which program control is taken
over by the JVM to take care of the exception. These three are also return nodes
(i.e., tagged with the atomic proposition r), and indicate the propagation of
the respective exception by the method. The invocations of methods even and
odd are represented by call edges. The invocation of parseInt, however, which
is a method from the Java API, is not represented by a call edge. Further, the
method’s signature declares that a NumberFormatException (NFE) is potentially
propagated, and this is reflected by an edge to •0,NFE,rmain .

2.2 Bytecode Intermediate Representation

The BIR language is an intermediate representation of Java bytecode developed
at INRIA Rennes [12]. The main difference with JBC is that BIR instructions are

Sound CFG Extraction from Incomplete Java Bytecode Programs 219

stack-less. That is, instructions do not operate over values stored on the operand
stack. Instead, a JBC method is translated into BIR by symbolically executing
the bytecode, using an abstract stack. This stack is used to reconstruct expression
trees and to connect instructions to its operands. We give a brief overview of the
BIR language. However, we omit the details of the transformation from JBC to
BIR; for a full account we refer to [12]. Figure 2a shows the BIR syntax.

lvar ::= x | x1 | . . .
this

target ::= lvar
| tvar
| expr.f

tvar ::= t | t1 | . . .
expr ::= c | null

| expr ⊕ expr
| tvar | lvar
| expr.f

Assignment ::= target := expr

Return ::= return expr | return
MethodCall ::= expr.ns(expr,...)

| target := expr.ns(expr,...)

NewObject ::= target := new C(expr,...)

Assertion ::= notnull expr | notnegsize expr

| notzero expr | checkbound expr

Instruction ::= nop | if expr pc | goto pc

| throw expr | mayinit C

| Assignment | Return

| MethodCall | NewObject

| Assertion

(a) Syntax

public boolean odd(int x)
Java bytecode BIR

0: iload x
1: ifge 12 0: if (x >= 0) goto 5
4: new 1: mayinit

ArithmeticException ArithmeticException
7: dup
8: invokespecial 2: t0 := new

ArithmeticException() ArithmeticException()
3: notnull tO

11: athrow 4: throw tO
12: iload x
13: ifne 18 5: if (x != 0) goto 7
16: iconst 0
17: ireturn 6: return 0
18: aload 0
19: iload x
20: iconst 1
21: isub 7: notnull this
22: invokevirtual 8: t0 :=

even(int) this.even(x - 1)
25: ireturn 9: return t0

(b) Comparison with JBC

Fig. 2. The BIR language

The transformation into BIR simplifies the analysis of exceptional control
flow. It identifies implicit exceptions by inserting special assertions before the
instructions that can potentially raise the exception, as defined by the JVM
specification [18]. For example, the transformation inserts a [notnegsize expr]
assertion before instructions that might raise a NegativeArraySizeException.
If the assertion holds, meaning that expr does not evaluate to negative a num-
ber, it behaves as a [nop], and control flow passes to the next instruction. If
the assertion fails, control flow is passed to the exception handling mechanism.
Moreover, the BIR transformation connects the explicit exceptions, raised by
athrow, to their types in the [throw target] instruction. Now, data-flow analy-
sis can estimate the possible types of the target variable.

Example 2 (JBC and BIR Comparison). Figure 2b shows the JBC and BIR
versions of method odd() from Figure 1a. The different shades indicate the re-
construction of expression trees, and the collapsing of instructions by the trans-
formation. The BIR method has a local variable (x), which is also present in the
JBC, and a newly introduced variable (t0). Notice that the argument for the
method invocation and the operand to the [if] instruction are reconstructed ex-
pression trees. The [notnull] instruction asserts that NullPointerException
can potentially be raised at this program point.

220 P. de Carvalho Gomes, A. Picoco, and D. Gurov

3 Motivation

The motivation for the present work is to support the formal verification of in-
complete JBC programs. Typical scenarios of incomplete programs are systems
under development, or systems that depend on third-party software. Two exam-
ples are an ATM system that depends on the code from users’ smart-cards, or
ERP systems, which are typically modular. It is desirable that the available com-
ponents are checked against global properties in advance. Then, the only pending
task is the verification of the missing code, which should be light-weight, and
can be delayed until the user inserts the smart-card into the ATM, or a module
of the ERP system is provided.

One technique that enables the verification of incomplete programs is the com-
positional principle developed by Gurov et al. [11]. There, unavailable software
components are represented with an interface and a local temporal specification.
Both are used to compute a so-called maximal model, i.e., a model that simu-
lates the behavior of any model that respects the interface and satisfies the local
specification, and can thus represent the unavailable component when checking
global temporal safety properties. Once the missing code becomes available, it is
checked to match the interface and the local specification. If it does, this entails
the global properties.

The correctness of the verified temporal safety properties is only guaran-
teed for models that soundly over-approximate the actual program behavior.
Soundness, however, comes at the price of excessive over-approximations. Thus,
potentially giving rise to false positives. To alleviate this problem, we aim to a
model extraction strategy that is incremental : whenever more code arrives, the
existing model can be refined, and the false positive may now be provable.

Example 3 (Compositional Verification). Suppose we want to verify two global
properties over the available code from the incomplete program in Figure 1.
Let φ1 be defined informally as ”if an ArithmeticException is raised within a
method, it must be either caught locally, or by the immediate caller method”,
and φ2 be the same property, but for an ArrayStoreException.

We define the local property ψeven for the missing method even informally as
“after calling odd, even must terminate normally”, and construct the maximal
CFG for ψeven and Ieven. Also, we extract the CFGs from the available methods
main and odd, and compose them with the maximal CFG for even.

The global property φ1 is checked against the composed model, and it turns
out to hold. Thus, once the implementation of even is provided, we simply ex-
tract its CFG, and check it against the local property ψeven. If it holds, the cor-
rectness of the program is established w.r.t. φ1. Also the property φ2 is checked
over the same composed model. However, φ2 does not hold since neither the
interface, nor the local property restrict an ArrayStoreException from being
raised by even. Still, it may be a false positive: once the code of even becomes
available, we may extract its CFG, refine the previously extracted CFGs, com-
pose them, and re-check the property.

Sound CFG Extraction from Incomplete Java Bytecode Programs 221

4 CFG Extraction Framework

In this section we outline the theoretical definitions of the framework for ex-
traction of CFGs from incomplete JBC programs, and summarize the soundness
argument. For the complete definitions and results we refer to [4].

4.1 Incomplete JBC Programs and Extraction Algorithm

We model incomplete JBC programs as open environments, following Freund
and Mitchell’s definition of closed environment for complete JBC programs [10].
An open environment Γo is defined in Figure 3 as the union of partial mappings
from method references, class names and interface names to their respective
definitions. We write interfaces (in typewrite font) to distinguish it from the
CFG interfaces introduced in Section 2.1. An important aspect of the definition is
that it contains all information about the type hierarchy. Thus, we can enumerate
the set of exception types from a given open environment.

The difference from the modeling of complete programs is that in open envi-
ronments a method body (i.e., code) may be empty. Also, entries in the handlers
have a special meaning for empty methods. They represent the exception types
that cannot be propagated by the method’s implementation, once provided.

Γ I : IFace-Name ⇀

〈
interfaces : set of IFace-Name

method : set of IFace-Method-Ref

〉

ΓC : Class-Name ⇀

〈
super : Class-Name

interfaces : set of IFace-Name
fields : set of Field-Ref

〉

ΓM : Method-Ref ⇀

〈
code : Instruction∗

handlers : Handler∗

〉 Γo=Γ I∪ΓC ∪ ΓM

Fig. 3. Open environment of a JBC/BIR program

Open environments also model the BIR version of incomplete programs. The
differences to the JBC version is the code array, translated syntactically to BIR
instructions, and handlers, which has the addresses of the exception handlers
mapped to the respective BIR addresses. We use the common modeling as open
environments to define the CFG extraction indirectly. First we transform JBC
into BIR; then extract CFGs from the intermediate representation. Here we focus
on the latter transformation; for the former, we refer again to [12].

The oG algorithm extracts CFGs from the available methods of an open envi-
ronment. It iterates over the instructions array of a method m and produces, for
every program counter pc and corresponding instruction i, a set of edges oGpc,i

m to-
gether with the associated nodes. Figure 4 shows the necessary auxiliary
functions, and the extraction rules for oG, grouped by their BIR instruction type.

222 P. de Carvalho Gomes, A. Picoco, and D. Gurov

MCA(C.ns) =

⎧
⎪⎪⎨
⎪⎪⎩

{ c′.ns | c′ is the closest super-type s.t. c′.ns ∈ dom(ΓM)}
∪ { c.ns | c <: C ∧ c.ns ∈ dom(ΓM) } if call is virtual

{ C.ns } otherwise

Hpc,x,l
m =

⎧
⎨
⎩

{ (◦pc,x
m , l, •pc,x,r

m) } if hpc,x
m = undef

{ (◦pc’
m , l, •pc,x

m), (•pc,x
m , ε, ◦pc’

m) } if hpc,x
m = pc’

N pc,n
m =

⎧
⎨
⎩

⋃
{x|•pc’,x,r

n ∈G(n)} Hpc,x,n
m if ΓM [m] is available

⋃
x∈EΓo

−Γm
o [n].handlers H

pc,x,n
m otherwise

oGpc,i
m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(◦pc
m, ε, ◦pc+1

m)} if i ∈ Assignment ∪ {[nop],[mayinit]}
{(◦pc

m, ε, ◦pc+1
m), (◦pc

m, ε, ◦pc’
m)} if i = [if expr pc’]

{(◦pc
m, ε, ◦pc’

m)} if i = [goto pc’]

{(◦pc
m, ε, ◦pc,r

m)} if i ∈ Return
⋃

{x|x<:X} Hpc,x,ε
m if i = [throw X]

{(◦pc
m, ε, ◦pc+1

m)} ∪ Hpc,χi,ε
m if i ∈ Assertion

{(◦pc
m, C, ◦pc+1

m)} ∪ Hpc,NPE,C
m ∪ N pc,C

m if i ∈ NewObject
⋃

n∈MCA(n){(◦
pc
m, n, ◦pc+1

m)} ∪ N pc,n
m if i ∈ MethodCall

Fig. 4. CFG extraction from incomplete BIR

Let h
pc,x
m denote the first handler (if any) in the exception table of method m

(with the same entries as the JBC table, but with control points relating to
BIR instructions) for the exception of type (or subtype of) x at position pc.

The function Hpc,x,l
m produces edges related to exception handling, determined

by the value of h
pc,x
m . If there is a handler for x at pc in m, it returns two

edges: one from a normal node to an exceptional node, and another one from
the exceptional node to the normal node tagged with the handler’s initial control
point pc’; otherwise, it returns an edge to an exceptional return node. The label l
is either the signature of a callee method that propagates the exception, or ε, if
the exception is raised within the method. The function χi simply returns the
exception type associated to a BIR assertion i.

The definition of oGpc,i
m is sub-divided into two parts. The intra-procedural

analysis extracts for every method an initial CFG, based solely on its instruction
array and its exception table. Based on these CFGs, the inter-procedural analysis
computes the functions N pc,n

m , which return exceptional edges for exceptions
propagated by calls to method n. The functions for inter-dependent methods
are thus mutually recursive, and are computed in a fixed-point manner.

The oG algorithm is a generalization from the G algorithm, proposed by Amighi
et al. [2] for complete programs. It introduces two significant modifications. The
first one is w.r.t. virtual method call resolution. The G algorithm is parametrized
by a sound VMC resolution algorithm. However, standard VMC algorithms,
such as the Rapid Type Analysis (RTA) [3], are defined for complete programs
only, and may provide unsound estimation in the absence of code. We therefore
fix the VMC resolution algorithm to our Modular Class Analysis (MCA), which

Sound CFG Extraction from Incomplete Java Bytecode Programs 223

is a generalization of the Class Hierarchy Analysis (CHA) [7].MCA soundly over-
approximates the possible receivers to methods with the same signature (ns) from
sub-types and from the closest super-type of the static type (C) that are either pro-
vided or declared to be missing (given by function dom). The second modification
concerns the functionN that computes the control flow caused by exception prop-
agation. In this case, when the callee method is unavailable, the set of exceptions
that are propagated is defined as all exception types, excluding those annotated
by the user in handlers to be never propagated.

4.2 Correctness of oG
The main purpose of the transformation above is to extract CFGs from the
available components of incomplete JBC programs that are sound for any in-
stantiation of the missing code. CFGs that preserve this property entails the
verification of global temporal safety properties, as explained in Section 3. Fur-
ther, the transformation allows the extracted CFGs to be refined incrementally
as more component code becomes available, until completion of the system.

Theoretically, both purposes are supported through a refinement pre-order
on open environments, as defined below. Notice that closed environments for
complete programs are simply open environments where all method bodies are
provided, and are thus minimal w.r.t. the pre-order.

Definition 2 (Environment Refinement). Let Γo and Γ ′
o be open environ-

ments. We say that environment Γo refines environment Γ ′
o, written Γo Γ ′

o, if
the following conditions hold:

(i) method references, class names and interface names defined in Γ ′
o must

also be in Γo;
(ii) an interface in Γ I contain the same methods, and extend a subset of the

interfaces in Γ I′
;

(iii) classes in ΓC have the same super-class, implement a subset of the
interfaces in of the same classes in ΓC′

;
(iv) a method in Γ ′

o must have a superset of the handlers of Γ ′
o if it is unavailable

in both environments, it must have the same code and handlers if it is im-
plemented in both environments, or the method implementation Γo cannot
propagate exceptions declared in Γ ′

o.handlers, where it was unavailable.

We say that Γ implements Γo whenever Γ Γo and Γ is closed.

The refinement of a method which is unavailable in both environments entails
that in Γo it propagates at most the same set of exceptions as in Γ ′

o. Thus, a
CFG extraction from Γ ′

o must have over-approximated the set of propagated
exceptions involving the method. In the refinement which a method is imple-
mented in both environments, there cannot be changes; otherwise, the method
graph extracted from Γ ′

o would not soundly over-approximate the method graph
from Γo. The refinement of a missing method in Γ ′

o, which is implemented in Γo,
simply guarantees that it respects its interface w.r.t. propagated exceptions.

224 P. de Carvalho Gomes, A. Picoco, and D. Gurov

The following result states that, when applied to closed environments, the
algorithm for open environments reduces to the one for closed environments
with MCA as the virtual method call resolution algorithm.

Theorem 1. Let Γ be a closed environment, and GMCA be the instantiation of G
with MCA. Then GMCA(Γ) = oG(Γ).

The next result establishes monotonicity of CFG extraction w.r.t. refinement.

Theorem 2. Let Γo and Γ ′
o be open environments, and m be the signature of a

method available on both. Then Γo Γ ′
o implies oG(m,Γo) ⊆ oG(m,Γ ′

o).

The proofs of the above theorems are available in [4], due to space limitation.
These results ensure soundness of the CFG extraction w.r.t. temporal safety
properties, by virtue of several results established earlier. Here we briefly outline
the soundness argument; for the full account the reader is referred to [2,11]. First,
subgraph inclusion of CFGs entails structural simulation between CFGs in terms
of a simulation relation between the nodes of the two graphs. Next, structural
simulation in turn entails behavioral simulation in terms of a simulation relation
between the behavioral configurations induced by the two graphs by means of
pushdown systems ([11, Th. 36]). Third, temporal safety properties are preserved
(backwards) under behavioral simulation ([11, Cor. 17]). These three results
guarantee preservation of temporal safety properties under refinement of open
environments. Together with the soundness result for G established in [2] and
Theorem 1 above, we obtain soundness of oG.

As more code becomes available, not only the temporal safety properties that
were already verified over the previously extracted CFGs are guaranteed to still
hold if the CFGs are re-extracted (and so, refined), but new properties can be
established. The problem of potential false positives, intrinsic to sound over-
approximation, can thus be alleviated through CFG re-extraction. We have de-
signed our framework in a way that the intra-procedural analysis is preserved, as
long as the implementation is not changed. Therefore, the incremental analysis
upon the arrival of previously unavailable code produces a refined model due to
the fewer over-approximations w.r.t. exceptional flow.

5 The ConFlEx Tool

In this section we describe the implementation of the CFG extraction algorithms
described in Section 4. First we describe some practical aspects of the implemen-
tation, and then provide experimental data that validate our tool.

5.1 Implementation

We have implemented both the algorithm for complete and for incomplete pro-
grams as the Control Flow Extractor tool (ConFlEx). It is based on Sawja [12],

Sound CFG Extraction from Incomplete Java Bytecode Programs 225

a library for the static analysis of Java bytecode. We have tailored Sawja to ad-
dress our needs. First, we have instrumented the BIR transformation to soundly
provide the possible exceptions raised explicitly by throw instructions.

Moreover, Sawja supports only the analysis of complete programs. Thus, we
have lifted it to support open environments. On top of it, we have implemented
the check of the refinement relation. Missing methods and their interfaces are
provided as dummy methods with annotations. We have defined a template in
Java annotation, named GhostComponent, to represent the interface of missing
methods. Figure 1a shows the source code of an annotated missing method. It
declares that the method even may call odd, or itself, and may not propagate
exceptions. Here the keyword any denotes the set of all exception types. After
compiling, the annotation is accessible as meta-data in the JBC .class file.

Finally, we have implemented the extraction rules from the BIR representa-
tion, as in defined in Figure 4. As described in Section 4.2, the intra-procedural
analysis always produces the same set of triples if a method’s implementation
is not altered. Thus, we have implemented the caching of edges produced in the
intra-procedural analysis. The caching allows us to perform the incremental ex-
traction of the newly arrived component. Still, the inter-procedural analysis has
to be recomputed.

5.2 Experimental Results

We validate our tool by using real-world Java applications to emulate incomplete
Java bytecode systems. We choose three large, existing complete JBC applica-
tions, and replace the implementation of some of the classes with annotated
methods. Then, we re-introduce the implementations incrementally, to mimic
the arrival of code.

In the initial configuration, we replace the implementations of the methods of
four classes with annotated methods. We perform the analysis of the resulting
incomplete environment and cache the intra-procedural analysis. Next, we refine
the incomplete program by re-inserting three of the four classes removed in con-
figurations 2 and 3. For the former we reuse the cached results from configuration
1, while for the latter we perform a completely new analysis, for the purposes of
assessing the impact of caching intra- results. Then, configuration 4 represents
the completion of the incomplete system from set 2. The next two configurations
5 and 6 are performed over the original closed programs, with MCA, and RTA
to investigate the impact of the chosen VMC resolution algorithm on the size of
the resulting CFGs. Table 1 shows the experimental data. All tests have been
made on an Intel i3 2.27 GHz with 4GB of RAM.

We can draw several conclusions from the experimental results. First, we
observe that the number of unavailable components has a significant impact on
the size of the over-approximations. For instance, configuration 1, where four
classes are missing and thus has fewer instructions, produces larger CFGs than
configurations 2 and 3, where a single class is missing. This can be explained
partially by the excessive over-approximation of the exceptional control flow.

226 P. de Carvalho Gomes, A. Picoco, and D. Gurov

Table 1. Experimental results for ConFlEx

Configuration VMC

Reused Missing # of JBC # of # of Time (ms)

results classes instructions Nodes Edges Intra Inter

Jasmin

1

MCA

no 4 25440 53467 54285 1256 339

2 yes 1 30377 35684 36228 291 109

3 no 1 30377 35684 36228 1540 104

4 yes 0 32223 34411 35052 49 104

5 no 0 32223 34411 35052 1554 85

6 RTA no 0 30930 27267 27717 690 35

Java-Cup

1

MCA

no 4 30042 76511 77345 1799 512

2 yes 1 33354 76798 77649 567 427

3 no 1 33354 76798 77649 2098 518

4 yes 0 35422 45455 46328 66 151

5 no 0 35422 45455 46328 2126 141

6 RTA no 0 32049 32097 32509 983 45

JFlex

1

MCA

no 4 52336 118414 119868 6396 877

2 yes 1 55972 77174 78678 960 631

3 no 1 55972 77174 78678 7227 407

4 yes 0 60417 72154 73175 115 181

5 no 0 60417 72154 73175 7219 177

6 RTA no 0 53474 53956 54777 1676 76

Next, we see that the choice of VMC resolution algorithm has a serious impact
on the CFG size. For example, in the analysis of the complete JFlex,MCA (con-
figuration 5) produces 43% more nodes as compared to RTA (configuration 6).
One reason is that RTA performs reachability analysis and eliminates dead code,
and thus, the extraction is performed over fewer instructions. Further, a more
precise estimation of receivers to virtual calls results in fewer call edges. Conse-
quently, fewer nodes and edges relate to potentially propagated exceptions.

The caching of intra-procedural analysis, and consequent incremental extrac-
tion, leads to significant speed-up when compared to a whole new analysis. Also,
the fixed-point computation in the inter-procedural analysis proves to be light-
weight in practice, and contributes to a small fraction of the total time. This
makesConFlEx suitable for extracting CFGs in a context where the verification
must be light-weight, such as in the ATM example mentioned in Section 3.

We do not provide comparative data with other extraction tools, such as
Soot [16] or Wala [14] because this would demand the implementation of similar
extraction rules from their intermediate representations. However, experimental
results from Sawja [12] show that it outperforms Soot in all tests w.r.t. the
transformation into their respective intermediate representations, and outper-
forms Wala w.r.t. virtual method call algorithms. Thus, ConFlEx clearly ben-
efits from using Sawja and BIR. Also, to the best of our knowledge, ConFlEx

is the first control flow analysis tool that supports incremental CFG extraction.

Sound CFG Extraction from Incomplete Java Bytecode Programs 227

6 Related Work

The present work combines several aspects of program analysis, namely sound-
ness w.r.t. sequences of method invocations and exceptions, precision w.r.t ex-
ceptional flow, and modularity and incrementally of the analysis of JBC. To the
best of our knowledge, no previous work has addressed all these aspects together.

The present algorithm is modular in its essence. It analyzes components in-
dividually, as long as the interfaces for the missing components are provided.
This strategy is described by Cousot and Cousot [5], and called separate anal-
ysis. However, a “pure” modular analysis, in the sense that each component is
analyzed in isolation, would not take advantage of the inter-dependencies among
the available components, and can lead to excessive over-approximation of the
exceptional flow. In our case, we take inter-dependencies into account, and the
isolated analyses are made incrementally.

Bandera [9] is a pioneering tool to generate abstract models from Java source
programs. It is built on top of the Soot framework [16], and uses its intermedi-
ate language Jimple, in a similar fashion as ConFlEx uses Sawja and BIR. It
provides several features, such as output for multiple model checkers, and some
static analyses. In comparison to ConFlEx, Bandera is a versatile tool, which
provides an integrated framework to program checking. However, it cannot an-
alyze incomplete programs, and it does not address exceptional flows.

Dagenais and Hendren [6] present partial program analysis (PPA), a technique
to build a typed intermediate representation from an incomplete program. It
has been implemented in Soot, and also uses Jimple as its IR. The technique
performs other analysis than control flow. Also, it is less restrictive and does
not constrain the class hierarchy. However, it is admittedly unsound. Wala [14],
another framework for the analysis of JBC, can also analyze partial programs.
However, it ignores any side-effects from calls to unavailable methods. Thus, it
is also unsound.

Ali and Lhotk [1] present a modular algorithm to generate call graphs from
applications, without analyzing the API for possible call-backs. They assume
that the API was coded in separation, and does not have knowledge about the
application. Thus, call-backs are only possible to the application methods that
overwrite a method from the API. Unfortunately this assumption is not valid for
unavailable components, since developers have full knowledge of the application.
The authors validate their algorithm empirically over a set of benchmarks. Thus,
there is no formal argument about the soundness of their approach.

Several works propose different exception analyses. Our algorithm follows the
approach of Jo and Chang [15] to extract CFGs by decoupling the intra- and
inter-procedural analyses of exceptional control flow. However, they do not dis-
cuss implicit exceptions, nor address virtual method calls. Li et al. [17] present
a framework for the extraction of CFGs and the model-checking of exceptional
safety properties. The CFG extraction does not compute inter-procedural ex-
ceptional flow; instead, it uses a model checker to traverse the state-space. This
approach requires exploration to be bounded, and is thus unsound.

228 P. de Carvalho Gomes, A. Picoco, and D. Gurov

7 Conclusion

We have presented a framework to extract control flow graphs from the avail-
able components of incomplete Java bytecode programs. It generalizes a previous
algorithm for complete JBC programs that is defined through a transforma-
tion into an intermediate representation, and has been proven to produce sound
CFGs, simulating the JVM behavior of the original programs. Our algorithm is
modular in its essence. However, for higher precision, we perform the analysis of
all available components together, and support the incremental refinement of the
extracted CFGs as more components become available. The extracted CFGs are
proven to be sound w.r.t. sequences of method invocations and exceptions. The
extracted models are thus suitable for several program analyses, in particular
model-checking of temporal control flow safety properties.

We have implemented the framework as the ConFlEx tool. The experimental
results show that the over-approximations necessary to generate sound models
(in the presence of unavailable components) have a considerable impact on the
size of the extracted control flow graphs. Moreover, the over-approximations may
give rise to false positive reports. ConFlEx alleviates this by providing support
for the incremental refinement of the extracted models, as soon as more code
becomes available. This shows the utility of ConFlEx to generate sound CFGs
for incomplete programs with few missing components.

Future Work. Our framework constrains the components and how they relate
w.r.t. the class hierarchy, and is limited to programs for which we know all
components in advance. Our goal is to extend our analysis to truly open Java
bytecode programs, where any number of components may be added in some
regulated fashion. One idea is to follow the idea of lazy parsing, as introduced
in [8]. There, instead of bounding a priori the unavailable components of a
system, the analysis generates the constraints that the unavailable components
have to fulfill to guarantee the soundness of any previous analyses.

Acknowledgments. We thank Musard Balliu, Roberto Guanciale and Siavash
Soleimanifard for their valuable comments.

References

1. Ali, K., Lhoták, O.: Application-only call graph construction. In: Noble, J. (ed.)
ECOOP 2012. LNCS, vol. 7313, pp. 688–712. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31057-7_30

2. Amighi, A., de Carvalho Gomes, P., Gurov, D., Huisman, M.: Sound control-flow
graph extraction for java programs with exceptions. In: Eleftherakis, G., Hinchey,
M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 33–47. Springer, Hei-
delberg (2012)

3. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
OOPSLA, pp. 324–341 (1996)

http://dx.doi.org/10.1007/978-3-642-31057-7_30

Sound CFG Extraction from Incomplete Java Bytecode Programs 229

4. de Carvalho Gomes, P., Picoco, A.: Sound extraction of control-flow graphs from
open java bytecode systems. Tech. rep., KTH Royal Institute of Technology (2012),
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104076

5. Cousot, P., Cousot, R.: Modular static program analysis. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 159–178. Springer, Heidelberg (2002)

6. Dagenais, B., Hendren, L.: Enabling static analysis for partial java programs. SIG-
PLAN Not. 43(10), 313–328 (2008)

7. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 77–101. Springer, Heidelberg (1995)

8. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. The
Journal of Logic and Algebraic Programming 79(7), 578–607 (2010), The 20th
Nordic Workshop on Programming Theory (NWPT 2008)

9. Dwyer, M.B., Hatcliff, J., Joehanes, R., Laubach, S., Păsăreanu, C.S., Zheng, H.,
Visser, W.: Tool-supported program abstraction for finite-state verification. In:
Proceedings of the 23rd International Conference on Software Engineering, ICSE
2001, pp. 177–187. IEEE Computer Society, Washington, DC (2001)

10. Freund, S.N., Mitchell, J.C.: A type system for the Java bytecode language and
verifier. J. Autom. Reason. 30, 271–321 (2003)

11. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

12. Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Monfort, V., Pichardie,
D., Turpin, T.: Sawja: Static Analysis Workshop for Java. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 92–106. Springer, Heidelberg (2011)

13. Huisman, M., Aktug, I., Gurov, D.: Program models for compositional verification.
In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 147–166. Springer,
Heidelberg (2008)

14. IBM: T.J. Watson Libraries for Analysis (2012), http://wala.sourceforge.net/
15. Jo, J.-W., Chang, B.-M.: Constructing control flow graph for java by decoupling

exception flow from normal flow. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun,
Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 106–113.
Springer, Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-24707-4_14

16. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop, Galveston Island, TX (October 2011)

17. Li, X., Hoover, H.J., Rudnicki, P.: Towards automatic exception safety verifica-
tion. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 396–411. Springer, Heidelberg (2006)

18. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The java virtual machine speci-
fication. java se 7 edition. Tech. Rep. JSR-000924, Oracle (2012)

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104076
http://wala.sourceforge.net/
http://dx.doi.org/10.1007/978-3-540-24707-4_14

Verifying Class Invariants in Concurrent

Programs

Marina Zaharieva-Stojanovski and Marieke Huisman

University of Twente, the Netherlands

Abstract. Class invariants are a highly useful feature for the verification
of object-oriented programs, because they can be used to capture all
valid object states. In a sequential program setting, the validity of class
invariants is typically described in terms of a visible state semantics,
i.e., invariants only have to hold whenever a method begins or ends
execution, and they may be broken inside a method body. However, in
a concurrent setting, this restriction is no longer usable, because due to
thread interleavings, any program state is potentially a visible state.

In this paper we present a new approach for reasoning about class
invariants in multithreaded programs. We allow a thread to explicitly
break an invariant at specific program locations, while ensuring that no
other thread can observe the broken invariant. We develop our technique
in a permission-based separation logic environment. However, we deviate
from separation logic’s standard rules and allow a class invariant to ex-
press properties over shared memory locations (the invariant footprint),
independently of the permissions on these locations. In this way, a thread
may break or reestablish an invariant without holding permissions to all
locations in its footprint. To enable modular verification, we adopt the
restrictions of Müller’s ownership-based type system.

1 Introduction

In object-oriented programs, class invariants are typically used to express prop-
erties about the object’s state that should hold throughout the object’s life cycle.
However, in practice it is often impossible to maintain the invariant continuously.
For example, for an invariant that expresses a relation between fields x and y,
x == y, when x is updated, y must also be updated, and both updates can not
be done atomically. Therefore, invariant theory should provide for the possibility
that a class invariant is temporarily broken at specific program parts.

In the sequential setting, the theory about invariant validity is well-developed;
in essence, class invariants only have to hold in the program’s visible states, i.e.,
in pre- and poststates of public methods [17]. In particular, if a class invariant
I holds in a method’s prestate, the method must end in a state satisfying I.

However, in the setting of multithreading programs, this approach can not
be carried over directly. Due to possible interference between parallel threads,
any program state may be visible. For example, when the field x in the invariant
above is updated, any other thread might observe this change and the broken
invariant. This problem is sometimes called a high-level data race [2].

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 230–245, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Verifying Class Invariants in Concurrent Programs 231

Therefore, this paper defines an approach to define validity of class invariants
in a multithreaded setting. Our approach supports explicit breaking of invariants,
under the condition that other threads can not see that the invariant is broken.
We build our technique on permission-based separation logic [4], using a Java-like
language. However, in contrast to standard separation logic, we explicitly make
a distinction between state formulas, which describe a property about the shared
state, and resource formulas, which describe when a thread holds a permission to
access a certain location. We ensure modular verification using the restrictions
from ownership-based type systems [7].

Our approach works as follows. A class invariant is specified as a condition on
the shared memory. For each class invariant, we maintain a token that indicates
whether the class invariant can be inspected. This token can be split and com-
bined: if a thread has the complete token, it can break the invariant; otherwise
it can only use it. Breaking the invariant is done by executing a (specification-
only) unpack statement. When a thread reestablishes the invariant, the token
to inspect the invariant becomes available again for other threads to break or
inspect the invariant. This behaviour is modeled by a (specification-only) pack
statement. Thus, within the unpacked segment, a thread is free to do whatever
it wants with the class invariant, as our verification approach ensures that no
other thread can observe the invariant in parallel.

To guarantee that class invariants can be verified in a modular way, when a
class invariant is broken, a thread is not allowed to obtain any new permissions
anymore. In particular, if a thread requires a lock to change any of the fields
associated to the invariant, it should obtain this lock before breaking the invari-
ant. This requirement shows that there is close connection between the locking
strategy and the functional invariant properties that can be maintained in an
application. Further, it is important that with our approach, a thread does not
need to have all access permissions that are associated with the invariant, but
only the access permissions needed to break the invariant; all other variables are
implicitly assumed to be unchanged. Moreover, our technique does allow creat-
ing new (helper) threads when an invariant is broken; however, these threads
need to be finished and joined before the invariant is reestablished again.

The main contribution of this paper is a sound modular technique for verifi-
cation of class invariants in multithreaded programs, which:

– is flexible and permissive, because it allows a thread to break an invariant
without holding all permissions associated to the invariant property; and

– reveals the connection between locking policy and invariant properties that
can be maintained.

The motivation and applicability of our approach is illustrated on several exam-
ples. Its implementation as part of the VerCors tool set is under development.

Outline. We begin by introducing a short overview of permissions in separation
logic, Sec. 2. Next, in Sec. 3 we present the main concepts of our approach, which
is further formalised in Sec. 4. Sec. 5 reviews others approaches that tie in with
our work. Finally, in Sec. 6 we summarise our work and discuss our future plans.

232 M. Zaharieva-Stojanovski and M. Huisman

2 Background

This paper builds on Parkinson’s work on separation logic for Java-like pro-
grams [21], and its extension by Haack et al. [11] for concurrency.

Separation logic [23] is an extension of Hoare Logic [12] for reasoning about
separate parts of the heap. The base of this logic is the binary separating con-
junction operation: P*Q describes that P and Q hold for disjoint parts of the
heap. O’Hearn shows that separation logic is also convenient for reasoning about
multithreaded programs [19]. To allow parallel reads of the same data, basic sep-
aration logic is extended with fractional permissions [4]. Permission π is a value
in the domain (0, 1]. At any point in time, a thread holds a number of permissions
on locations. If a thread has a write permission for a certain location, i.e., the
value 1, it is allowed to change this location. If a thread has a fractional permis-
sion, i.e., a fraction less than 1, then it may only read this location. Permissions
can be split and combined, to change between read and write permissions. The
soundness of this logic ensures that the sum of all threads’ permissions for a cer-
tain location never exceeds 1, which guarantees data-race freedom. The predicate
Perm(x.f , π) indicates that x.f points to a location for which the actual thread
has a permission π. Permission expressions are combined with the separating
conjunction operation.

Parkinson adapts separation logic for object-oriented concepts in a Java-like
language [21]. He proposes abstract predicates [20] to provide abstraction. Later,
Haack et al. extended this logic to show how to reason about multithreaded Java-
like programs [11] that include reentrant locks and dynamic thread creation. For
each lock, a resource invariant is specified, i.e., an abstract predicate describing
which permissions are stored in the lock. A newly created lock is still fresh and
not ready to be acquired. The thread must first execute the commit command
on the lock, which transfers the permissions from the thread to the lock and
changes the lock’s state to initialized. Any thread then may acquire the initialized
lock to get the resource invariant (except for reentrant acquiring). Upon final
release of the lock, the thread returns the resource invariant back to the lock.

3 Verification Methodology for Class Invariants

This section gives a conceptual understanding of our methodology, presented
from two different aspects. First, we discuss how we model the invariant pro-
tocol, i.e., when an invariant may be assumed, and how it can be broken and
reestablished. Then, we describe how our method supports modular verification.

3.1 Class Invariant Protocol

We assume that class invariants express properties over non-static class fields.
Thus, a class invariant I defined in a classC is always associated with a particular
object v of class C, we write v.I. We call the set of locations referred to by an
invariant v.I the footprint of v.I, denoted fp(v.I) (formally defined in Sec. 4).

Verifying Class Invariants in Concurrent Programs 233

Assuming a Class Invariant. Our technique should guarantee absence of high-
level data races; therefore, it should control access to the invariant’s footprint.
To provide this control, to every invariant v.I, we associate a special abstract
predicate holds(v.I, 1), distributed as a token among the threads. The intuitive
meaning of this predicate is the following: when a thread holds a predicate
holds(v.I, π), π > 0, it may assume that the invariant v.I holds; if π = 1, the
running thread may additionally break the invariant. The predicate might be
divided among different threads by using the following equivalence:

holds(v.I, π) ∗ − ∗ holds(v.I, π/2) ∗ holds(v.I, π/2)

This approach guarantees that: 1) a class invariant v.I is stable and all threads
that hold a token holds(v.I, π) may rely on v.I’s correctness; or 2) at most one
thread has the token holds(v.I, 1) and no other thread may assume v.I.

Breaking a Class Invariant. Inspired by the work of Leino et al. [14], we explic-
itly specify the segment in the program where an invariant property might be
violated: for an invariant v.I, specification command unpack(v.I) must be exe-
cuted at the beginning of such a segment, and pack(v.I) at its end. The segment
between both commands is called an unpacked segment of v.I. A special case is
object initialisation: the program segment between the end of v’s construction
and the first execution of the pack(v.I) command is also v.I’s unpacked segment.

The unpack(v.I) command consumes the token holds(v.I, 1), and issues a
predicate unpacked(v.I, 1) (breaking token). This token serves as a license for the
thread to break the invariant v.I. Once all updates are done, the running thread
must reestablish the validity of v.I and call the pack(v.I) command, which
trades the unpacked(v.I, 1) token for the holds(v.I, 1) token. The unpack(v.I)
command is always followed by pack(v.I) within the same method and executed
by the same thread. This thread is called a holder of the unpacked segment.

Lst. 1 illustrates the use of an unpacked segment: a class Point, represents
a point lying on or above the line y = −x. Since method move() updates the
fields x and y to which invariant I refers, these updates must happen within an
unpacked segment of I. (The annotation safe at line 7 is discussed next.)

Restrictions to Unpacked Segments. We showed how a thread obtains permission
to modify an invariant footprint location p.f . Once p.f is assigned, we say that
p.f is in a critical state until the end of the unpacked segment. More precisely:

Definition 1. (Critical state of a location) Let v.I be an invariant, p.f a loca-
tion, such that p.f ∈ fp(v.I), and let p.f be assigned inside an unpacked segment
of v.I. Then, any program execution state between the assignment and the end
of the unpacked segment is a critical state for p.f .

To prevent a thread to observe a broken invariant, a location in a critical
state must not be publicly exposed. Therefore, within an unpacked segment
we forbid the running thread to release permissions and make them accessible
to other threads. Concretely, within an unpacked segment, we allow only safe

234 M. Zaharieva-Stojanovski and M. Huisman

class Point {
2 int x; int y;

//@ invariant I : this.x + this.y >= 0;
4 //...constructors

//@ requires holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1);
6 //@ ensures holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1);

/∗@ safe @∗/ void move() {
8 // the invariant I may now be assumed because of the holds token

{holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1) ∗ this.I}
10 //@ unpack(this.I); // trades holds token for unpacked token

{unpacked(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1) ∗ this.I}
12 this.x = this.x − 1; // the invariant I is broken

this.y = this.y + 1; // the invariant I can now be reestablished
14 {unpacked(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1) ∗ this.I}

//@ pack(this.I); // trades unpacked token for holds token
16 {holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1)}

}}

Lst. 1. Unpacked segment of a class invariant

commands, i.e., commands that exclude any lock-related operation (acquiring,
releasing or committing a lock). This means that all permissions used in the
unpacked segment must be obtained before the segment begins. A safe command
may call only safemethods, i.e., methods composed of safe commands only. These
methods are specified with the optional modifier safe (see Lst. 1, line 7).

We allow forking a safe thread, i.e., threads with a safe run() method, under
the condition that the thread must be joined within the unpacked segment. We
call these threads local to the segment. A safe thread may further fork other
safe threads. The breaking token might be shared among all local threads of the
unpacked segment, and thus, they might all update different locations of the
invariant footprint in parallel. For this purpose, we define the following axiom:

unpacked(v.I, π) ∗ − ∗ unpacked(v.I, π/2) ∗ unpacked(v.I, π/2)

Lst. 2 shows a modified version of the move method (from Lst. 1) that can not
be verified since acquiring/releasing a lock is used within the unpacked segment.

Object Initialisation. In our language, object initialisation (the object construc-
tor) is divided into two steps: 1) object construction creates an empty object v
(all v’s fields get a default value), and gives the running thread write permission
for each of v’s fields and a token unpacked(v.I, 1) for each invariant v.I. 2) the
init method follows obligatorily after object construction, where object fields are
initialised. Additionally, for every invariant v.I, the pack(v.I) is called by de-
fault at the end of the init method. Hence, at the end of v’s initialisation, all v’s
invariants hold, and therefore, v is a valid object.

Verifying Class Invariants in Concurrent Programs 235

Lock lock; // resource invariant: Perm(x, 1) ∗ Perm(y,1);
2 //@ requires holds(this.I,1);

//@ ensures holds(this.I,1);
4 void move(){

//@ unpack(this.I); //trades holds token for unpacked (breaking) token
6 lock.lock(); //invalid call (permissions to x and y must be gained before unpacking)

t.fork(); //another thread t may get half of the breaking token to modify x
8 updateY(); //for updating y another method is called, which must be safe

lock.unlock(); // invalid call, must happen after packing
10 t.join(); //t is a safe thread, thus joining must be before packing

//@ pack(this.I);
12 }

Lst. 2. Restrictions to unpacked segments

A verified program with our approach is free of high-level data races. This is
expressed by the following theorem:

Theorem 1. (High-level data race freedom) If a value p.f is in a critical state
s of an unpacked segment S of an invariant v.I, then any thread that is neither
holder nor a local thread of S can not access p.f .

Proof. See [25].

As discussed initially, a thread that holds a token holds(v.I, π), π > 0 may
use the invariant v.I. This is justified by the following theorem:

Theorem 2. (Use of a class invariant) An invariant v.I holds in a program
state in which the running thread t holds the predicate holds(v.I, π), π > 0.

Proof. See [25].

Lst. 3 extends the program with the Point class (see Lst. 1) to show how a
class invariant may be used for verifying a client class. The main thread creates
initially a valid Point object s for which the invariant s.I holds (s.x+s.y >= 0)
and obtains the token holds(s.I, 1) (lines 3,4). The thread then forks a set of
new threads (lines 5-9), passing each of them a reference to s and part of the
holds token. Each forked thread has a task to create a sequence of new points at
specific locations calculated from the location of s (line 21). To prove that each
new Point p is a valid object (p.x + p.y >= 0) (line 24), each thread uses the
class invariant s.I, which is guaranteed by the token holds(s.I, π).

To conclude, we summarise the rules that define the invariant protocol:

R1 (Assuming). A thread t may assume (use) a class invariant v.I if t holds
the predicate holds(v.I, π), π > 0.
R2 (Breaking). A thread t may write on a location p.f if apart from holding
a write permission to p.f , it holds a breaking token unpacked(v.I, π), π > 0
for each invariant v.I that refers to p.f , i.e., p.f ∈ fp(v.I).

236 M. Zaharieva-Stojanovski and M. Huisman

class DrawPoints {
2 void create(){

Point s = new Point (0, 0);
4 //holds(s.I,1) is produced

for (int k = 1; k<=10; k++){
6 Task t = new Task(s, k);

//each t gets part of holds token
8 t.fork();

}
10 //join Task threads

} }
12

14 class Task {
Point s; int k;

16 // ... constructors
//@ requires holds(s.I. π) ∗ ... ;

18 //@ ensures holds(s.I. π) ∗ ... ;
void run(){

20 for (int i = 1; i < 10; i ++) {
int x = s.x+i; int y = s.y+ki;

22 //s.I holds(because of the holds token)
//use s.I to validate p.I

24 Point p = new Point(x, y);
draw(p);

26 } } }

Lst. 3. Using a class invariant for verifying a client class

R3 (Reestablishing). An invariant v.I must have been reestablished when
pack(v.I) is executed.
R4 (Exchanging tokens). The token unpacked(v.I, 1) is produced at v’s con-
struction; commands unpack(v.I) and pack(v.I) exchange the holds(v.I, 1)
token for the unpacked(v.I, 1) token, and vice versa.

3.2 Modular Verification

As a second step, we discuss the additional properties needed to support modular
verification. In the prestate of the assignment to a location p.f , rule R2 requires
a breaking token for all invariants that refer to p.f . However, in the context
(class) where the assignment happens, not all invariants in the program are
known. To support modularity, the breaking token is only explicitly checked for
the invariants of the object p. Additionally, it is guaranteed that this token is
implicitly held for all other invariants. We use Müller’s ownership type system [7],
which is strongly connected to modular verification of invariants [18,3,16,8].

Ownership-Based Types. The ownership type system organises the objects in
the heap in an ownership tree, where each object has one owner (either the root
of the tree, or another object in the heap). We say that each ancestor of an
object p in the tree is p’s transitive owner. The position of the object p in the
tree is determined on p’s creation, with an attached required modifier from the
set {rep, peer, rd} where: peer indicates that r has the same owner as the object
this; rep specifies that r is owned by this, and rd(readonly) is any other relation.
Additionally, the self modifier is used for references that point to the this object.
An array a of object references has an additional modifier to define the relation
of each element a[i] with the this reference (see Lst. 4, line 2). When an object
changes its context, for example, via transfer as a method parameter, the type of
the new reference is determined by applying the viewpoint adaptation function
� (see [25]). For example, if the this reference owns r, while r owns x, the type
of the reference r.x in the context of this is rep � rep = rd.

Verifying Class Invariants in Concurrent Programs 237

Additionally, the following discipline is imposed in the program: writing to a
field p.f or a call to a non-pure method (i.e. with side-effects) with a receiver p is
forbidden when p has a modifier rd. In this way, each object controls all updates
that happen in its transitively owned objects. This guarantees the following:

RO. If a field p.f is modified in a method m, for each transitive owner o of
p, the call stack contains a method invocation where o is a receiver.

We require that all class invariants in the program are ownership admissible:

Definition 2. A class invariant v.I is ownership admissible if it expresses prop-
erties over fields p1.p2...pn.f , where n ≥ 1, v == p1 and pi is a rep field in the
class of pi−1 (i = 2..n).

Verification Technique via Ownership Types. Based on Def. 2, we observe the
following: for a location p.f , an invariant v.I may refer to p.f only if v == p
or v is a transitive owner of p. Our verification technique suggests that before
assigning to a location p.f , it is enough to require a breaking token only for the
invariants of the object p (p.I) that refer to p.f . If an invariant v.I, where v is
a transitive owner of p, refers to p.f , then the rule RO ensures that assignment
of p.f is preceded by a method call where v is a receiver. To support modular
verification, the check that the actual thread holds a breaking token for v.I
should therefore be a requirement of the method call where object v is a receiver.
More precisely, we replace the rule R2 listed above with the following two rules:

R2’A precondition for assigning a field p.f requires a token unpacked(p.I, π)
(π > 0) for each invariant I of the object p that refers to p.f .
R2” A precondition for invoking a method m that assigns a field p.f requires
the token unpacked(this.I, π)(π > 0) for each invariant I of the this object
that refers to p.f .

To establish R2”, the contract of the called method m should provide in-
formation to the caller about the locations it assigns to. In permission-based
separation logic, assigning to a location p.f in m requires a write permission
π = 1 for p.f . The caller can identify the locations assignable by m from the
precondition formula Prem: this is the set of locations for which Prem requires
a write permission, denoted wrt(Prem) (see [25]). However, π might also be
obtained by acquiring a lock during the execution of m. We ensure that this
scenario is not possible. In particular, if a location p.f is in the footprint of an
invariant v.I, p.f should not be protected by a lock object that is transitively
owned by v, because this would mean that other threads might observe a broken
invariant (see the example below). This restriction is imposed by the following
rule (the used functions are defined in [25]):

RL ∀I ∈ inv(C); ∀f ∈ relFld(C); fld(I) ∩ fldResInv(classOf(f)) = ∅

The rule is translated as: for any invariant I defined in a class C, and a field
f relevant to C, the set of fields that appear in I is disjoint from the set of fields

238 M. Zaharieva-Stojanovski and M. Huisman

class PointsSet {
2 rep rep Point[] points = new rep rep Point[100];

//@ Invariant I1: (∀int i: 0 <=i<100) (points[i].x <= 10) ∗ (points[i].y <= 10);
4 //@ requires holds(this.I1, 1) ∗ Perm(points[i].x, 1) ∗ Perm(points[i].y, 1)

//@ ensures holds(this.I1, 1) ∗ Perm(points[i].x, 1) ∗ Perm(points[i].y, 1)
6 void moveAt(int i) {

//@ unpack(this.I1); // trades the holds token for unpacked token
8 if (points[i].y <= 9) {

//required unpacked token for I1 (as points[i].x, points[i].y ∈ wrt(Premove)∩fp(I1))
10 points[i].move(); }

//@ pack(this.I1); // trades the unpacked token for holds token
12 } }

Lst. 4. Modular verification

that appear in the resource invariant definition in the class of f . A field f is
relevant to a class C if it may be expressed as a p1.p2., ...pn.f , where p1 is a rep
field defined in C, and pi is a rep or peer field in the class of pi−1, i = 2..n, n >= 1.

In Lst. 4, we extend our program (from Lst. 1) to illustrate modular verifica-
tion. Class PointsSet represents a set of points that lie within a predefined area.
When calling the method move()(line 10), the caller provides a breaking token
for its own invariants that move() might break (in this case invariant I1). After
the call to move(), invariant I1 is reestablished (line 11), even though the actual
thread has permissions to the ith array element only; our approach ensures that
the other locations in fp(I1) are stable until the end of the unpacked segment.

Fields x and y from class Point are relevant to the PointsSet class and used
in I1; hence, Rule RL forbids a lock that protects x and/or y to be transitively
owned by a PointsSet object. This is necessary: if permissions to x and y could
be obtained by a lock in Point, other threads might observe that I1 is broken.
To avoid this, the lock would have to be already acquired before the unpacked
segments for I1, but this would violate modularity. The example shows that the
invariants that can be maintained strongly depend on the locking strategy used.

4 Formalisation

We formalise our approach using a Java-like concurrent language. The formal-
isation is mainly inspired by Haack et al. [11]. We concentrate on those points
that are relevant for class invariants. For other concepts, e.g., those associated
to locks, we only provide some basic intuition to make the paper self-contained.

4.1 Language

Fig. 1 shows the grammar of our language. With x we define sequences of x,
while x? represents an optional x. A class is composed of fields, methods, predi-
cates, and class invariants. The special predicate res inv is associated to a lock

Verifying Class Invariants in Concurrent Programs 239

cl ∈ Class ::= class C {fd ∗ md ∗ inv ∗ pd∗}
fd ∈ Field ::= Tf

md ∈ Method ::= spec T m(V x){c}
spec ∈ MethSpec ::= requires F ensures F pure? safe?
pd ∈ Predicate ::= pred P = Fres(P �= res inv) | pred res inv = Fres

inv ∈ Invariant ::= Invariant I : Finv

c ∈ Command ::= v (return value or null in case of type void)
| T x; c | x = v; c | x = op(v); c | x = v.f ; c
| x = new rtype C; c | (x = v.m(v); c | if v then c else c; c
| v.f = v; c | v.lock(); c | v.commit(); c | v.unlock(); c
| v.fork(); c | v.join(); c | unpack(v.I); c | pack(v.I); c

F ∈ Formula ::= e | Perm(v.f , π) | π.P | F ⊕ F | (qt T α)F
| holds(v.I, π) | unpacked(v.I, π) | e.fresh() | e.initialized()

Fres ∈ Formulares ::= e | Perm(v.f , π) | π.P | Fres ⊕ Fres | (qt T α)(Fres) | holds(v.I, π)
Finv ∈ Formulainv ::= einv | (qt T α)(Finv) | Finv ⊕ Finv

e ∈ Exp ::= π | v.f | v | op(e)
einv ∈ Expinv ::= v1.v2...vn.f | op(einv)
T,U, V ∈ Type ::= void | int | bool | perm | (rtype, C)
rtype ∈ RefType ::= rep | peer | self | rd
π ∈ SpecVal ::= α | v | 1 | split(π) (1/2 of a fractional permission π)
u, v, w ∈ Val ::= null | n | b | o | x

⊕ ∈ {∗,∧,∨} op ∈ Op ⊇ {==, !,∧,∨,⇒} qt ∈ {∃,∀}
n ∈ int b ∈ {true, false} x, y, z ∈ Variables o, p ∈ ObjectId

Fig. 1. Language Syntax

object, and is used to describe the resources that the lock protects. Methods
may be declared as pure and/or safe, as explained below. The set of commands
is extended with the specification commands pack(v.I) and unpack(v.I).

Specification Formulas. We distinguish three types of specification formulas:
i) Standard formulas F , expressed in permission-based separation logic and used
to specify methods. Predicates holds and unpacked, and fresh and initialized are
special tokens that describe the state of a class invariant or a lock, respectively.
ii) Resource invariant formulas Fres, used to express the res inv predicate. They
are more restrictive than F : Fres must not use the special tokens unpacked, fresh
and initialized.

iii) State formulas Finv, first-order logic formulas, used to specify class in-
variants and describe properties over shared memory locations only. Thus, their
syntax does not include the predicate Perm(v.f , π) or any of the special tokens.

We define the invariant footprint fp(v.I) by induction of the structure of v.I:

fp(v1.v2..vn.f) = {v1, v1.v2, ..., v1...vn.f} fp(op(einv)) =
⋃

e∈einv
fp(e)

fp(Finv1 ⊕ Finv2)=fp(Finv1) ∪ fp(Finv2) fp((qt αT)(Finv)) =
⋃

v∈T\{α} fp(Finv[v/α])

Types. A type of an object reference in our language is represented as a tu-
ple T = (rtype, C). The first component, T 1, is a type modifier from the set

240 M. Zaharieva-Stojanovski and M. Huisman

RefType = {rep, peer, self, rd}, while the second, T 2, represents the object’s class.
Consequently, two references pointing to the same object might have different
reference types if they are in a different context. In this paper we do not present
the typing rules of the language; rules that represent constraints imposed by the
ownership type system are listed in [25].

Safe and Pure Commands. Above, we introduced the notion of safe commands.
For a safe command c the predicate safe(c, V) holds, where V is a set that keeps
track of all identifiers of threads that are forked and expected to be joined. The
V parameter is used to capture that threads forked within a safe command c,
must also be joined within c. For a method m defined as safe T m(V i) {c}, the
relation safe(m) holds iff safe(c, []) holds. A safe method is annotated with the
optional modifier safe. We define inductively the set of safe commands.

safe(v, V) ⇔ true
safe(c, V) ⇔ false, if c ∈ {v.lock(), v.unlock(), v.commit()}
safe(c; c1, V) ⇔ safe(c1, V), if c ∈ {T x, x = v, x = v.f, v.f = v,

x = op(v), new rtype C, unpack(v.I), pack(v.I)}
safe(x = v.m(v); c, V) ⇔ safe(m) ∧ safe(c, V)

safe(v.fork(); c, V) ⇔ safe(c, V ∪ {v})
safe(v.join(); c, V) ⇔ safe(c, V \ {v})
safe(if v then c1 else c2; c, V) ⇔ safe(c1, []) ∧ safe(c2, []) ∧ safe(c, V)

Our method uses also the notion of pure commands, i.e., commands that do
not make any changes to the shared state (defined in [25]). Pure methods are
composed of pure commands and specified with the optional modifier pure.

4.2 Hoare Triples

Fig. 2 shows the Hoare triples relevant to our approach (for the complete list of
rules see [11]). We use: �iFi to abbreviate a separation conjunction of all for-
mulas Fi; PointsTo(v.f , π, w) to abbreviate Perm(v.f , π)∧ v.f == w; functions
fld(C) and inv(C) to represent respectively the set of fields and invariants in
the class C; df(T) for the default value of type T ; wrt(F) for the set of locations
for which F expresses a write permission (all defined formally in [25]).

The rule (New) shows that construction of object v produces an unpacked
token for each invariant of v, and a write permission for each field of v. Rules
(Set) and (MethCall) encode R2’ and R2” (see Sec. 3.2); they ensure that the
breaking token is a condition for breaking the invariant v.I. Rules (Pack) and
(Unpack) describe the invariant protocol and encode R3 and R4 (see Sec. 3.1).
Finally, the rule (RuleInv) shows that the token holds(v.I, π) provides the actual
thread the right to use the invariant v.I (as justified by Theorem 2 in Sec 3.1).

4.3 Semantics

We define a program state as: st ∈ State = Heap × ThreadPool× LockTable. A
Heap models the shared memory: h ∈ Heap = ObjId �→ Type×(FieldId �→ Value).

Verifying Class Invariants in Concurrent Programs 241

(New) {true}
v = new rtype C

{�Tf∈fld(C)PointsTo(v.f, 1, df(T
1)) ∗ �I∈inv(C)unpacked(v.I, 1)}

(Set)
v : V

{v �= null ∗ PointsTo(v.f, 1, u) ∗ �I∈inv(V 2),v.f∈fp(v.I)unpacked(v.I, π)}
v.f = w;

{PointsTo(v.f, 1, w) ∗ �I∈inv(V 2),v.f∈fp(v.I)unpacked(v.I, π)}

(MethCall)
md ::= requires F ensures F ′ safe? pure? T m(U u){c} this : V

{u �= null ∗ F ∗ �I∈inv(V 2),wrt(F)∩fp(this.I)�=∅unpacked(this.I, π)}
x = u.m(i){

∃ Tα)(α == x ∗ F ′) ∗�I∈inv(V 2),wrt(F)∩fp(this.I) �=∅unpacked(this.I, π)
}

(Unpack) {holds(v.I, 1)} unpack(v.I){unpacked(v.I, 1) ∗ v.I}

(Pack) {unpacked(v.I, 1) ∗ v.I} pack(v.I) {holds(v.I, 1)}

(RuleInv)
{holds(v.I, π) ∗ v.I} c {F}

{holds(v.I, π)} c {F}

Fig. 2. Hoare triples

The ThreadPool component describes all threads that operate on the heap:
ts ∈ ThreadPool = ObjId �→ Thread, where each thread contains its own local
memory and a command to execute, t ∈ Thread = Stack× Cmd. The LockTable
expresses for every lock whether it is free, or it is acquired by a thread a certain
number of times: l ∈ LockTable = ObjId �→ free&(ObjId×N). Operationally, the
two specification commands unpack(v.I) and pack(v.I) are no operations. The
small-step operational semantics of the other commands is standard, see [11].

Semantics of Formulas. The specification formulas are interpreted using the
semantics relation Γ # E ,R, s |= F , which expresses validity of the formula F in
a type environment Γ , a predicate environment E and a stack s, given a resource
R. Type environment Γ is a partial function of type ObjId ∪ Var �→ Type that
maps each object or variable to its type, while E maps each predicate symbol to
an appropriate relation that represents its definition. For details see [11].

The resourceR is an abstraction of a program state represented by an 8-tuple,
R = (h,P ,J ,L,F , I,U , T), where each component describes part of the state:
i) h represents the heap: ObjId �→ Type×(FieldId �→ Val) ii) P is a permission table
that stores permissions to object fields from the heap (ObjId × FieldId �→ [0, 1]);
iii) J is a join table (ObjId �→ [0, 1]), where J (t) represents how much of the
postcondition of a thread t is given to other forked threads; iv) L is an abstraction
of the lock table, which maps each thread to the set of locks that it holds; v) F
keeps a set of fresh locks; vi) I keeps a set of initialized locks; vii) U keeps the parts
of the unpacked tokens for each invariant; and analogously viii) T keeps the holds
tokens. Both components U and T are defined as functions ObjId× InvId �→ [0, 1].

242 M. Zaharieva-Stojanovski and M. Huisman

We define a compatibility binary relation (#) and a resource joining opera-
tion (∗) over resources. Compatibility ensures that two different threads always
observe the abstract state as two compatible resources, R#R′: the object fields
that are common for the heaps in R and R′ are mapped to the same value; the
sum of permissions for a location in R andR′, or the sum of the parts of the spe-
cial tokens (holds and unpacked) for an invariant in both resources never exceeds
1; etc. The intuitive meaning of the operation R∗R′ is joining (summing) both
resources. For example, R ∗ R′ contains all permissions from both resources or
all tokens from both resources. The definition of the # and ∗ is component-wise.
We give the formal definitions for the structure (#, ∗) for the components U and
T , while for the others we refer to [11].

U#U ′ ⇔ ∀i ∈ dom(U) ∩ dom(U ′). U(i) + U ′(i) ≤ 1 (U ∗ U ′)(i) = U(i) + U ′(i)
T #T ′ ⇔ ∀i ∈ dom(T) ∩ dom(T ′). T (i) + T ′(i) ≤ 1 (T ∗ T ′)(i) = T (i) + T ′(i)

Below we define that the specification formula holds(v.I, π) holds for a re-
source R if the part of the holds token for the invariant v.I in R is at least
π. The validity of the unpacked(v.I, π) formula is defined analogously. The se-
mantics of a class invariant v.I is expressed as a validity of the representation
formula of v.I, i.e., Finv.

Γ � E , (h,P ,J ,L,F , I,U , T), s |= holds(v.I, π) ⇔ T (v.I) ≥ π
Γ � E , (h,P ,J ,L,F , I,U , T), s |= unpacked(v.I, π) ⇔ U(v.I) ≥ π
Γ � R = E , (h,P ,J ,L,F , I,U , T), s |= v.I(I = Finv) ⇔ Γ � E ,R, s |= Finv

As our language contains state formulas, not all locations in the partial heap
must be ’framed’ by a positive permission (unlike in standard permission-based
separation logic). For a sound resource R = (h,P ,J ,L,F , I,U , T) we require:

∀p ∈ dom(h), f ∈ dom(h(p)2),P(p, f) > 0 ∨
(∃v.I ∈ dom(T) p.f ∈ fp(v.I) ∧ (T (v.I) > 0 ∨ U(v.I) > 0)

The rule states that if a location p.f is not protected by a read permission
(P(p, f) = 0), then it must be protected by (a part of) the holds or unpacked to-
ken (T (v.I) > 0∨U(v.I) > 0), for an invariant v.I that refers to p.f . This ensures
that the location p.f is stable and might not be modified by other threads.

5 Related Work

The early work on verification of class invariants in sequential programs [17,15]
is unsound for more complex data structure, for example if an invariant captures
properties over different objects. Later, Poetzsch-Heffter [22] and Huizing et al.
[13] presented sound techniques that do not restrict the invariant definition or
the program itself; however, both approaches are not modular.

Müller et al. [18] propose two sound techniques for modular reasoning: the
ownership technique and the less restrictive visibility technique. Both concepts,
as well as Lu et al.’s modular technique [16], are designed for ownership-based

Verifying Class Invariants in Concurrent Programs 243

type systems. These techniques are captured in Drossopoulou et al.’s abstract
unified framework [9]. Although it is stated that this abstract framework should
be suitable to model class invariants in a concurrent setting, the framework has
never been applied on a concrete verification technique for concurrent programs.

Weiß models class invariants with a boolean model field inv [24]. Their validity
is checked only on demand. Specifications use inv explicitly where needed, while
this.inv is implicitly generated in each method pre- and postcondition.

We are not aware of much work done on verification of class invariants for
multithreaded programs. Comparable to our approach is Jacobs et al.’s tech-
nique [14] for verifying multithreaded programs with class invariants, using the
Boogie methodology [3] for sequential programs. However, this technique allows
a thread to break an invariant of an object only if it completely owns this object.
Instead, with our technique, breaking a class invariant is independent of permis-
sions on heap memory. This ensures a broader applicability of our technique.

A different approach for modular verification of object invariants in concur-
rent programs is proposed by Cohen [6], implemented in VCC [5]. Each object
is assigned a two-state invariant expressing the required relation between any
two consecutive states of execution that has to be respected by every state up-
date in the program. Modular verification of multithreaded programs with class
invariants is also supported by the static checker Calvin [10]. However, both
methodologies do not allow breaking of a class invariant in the program.

6 Conclusion and Future Work

We introduced a sound and modular approach for verifying class invariants in
multithreaded Java-like programs in a permission-based separation logic setting.
We do, however, deviate from the standard rules in separation logic: we impose
that class invariants may express properties only over state and thus, their defi-
nition is free of permission expressions. We allow a thread to explicitly break an
invariant, and we ensure that no other thread can observe the invalidated object’s
state. Moreover, breaking and reestablishing an invariant is allowed without hold-
ing all permissions associated to the invariant. This makes our technique broadly
applicable. To achieve modularity, we restrict our technique to ownership-based
type systems only. The method requires simple specifications support.

For future work, we plan to integrate our technique in the VerCors tool [1], and
to use it to verify data structures from the java.util.concurrency package. We
plan to extend the concept to support class inheritance, to allow more permissive
invariants with model methods and/or abstract predicates, to allow more fine-
grained permission handling. as well as to support history constraints.

Acknowledgments. We thank Christian Haack and Stefan Blom for their use-
ful feedback. This work was supported by ERC grant 258405 for the VerCors
project.

244 M. Zaharieva-Stojanovski and M. Huisman

References

1. Amighi, A., Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: The VerCors
project: setting up basecamp. In: PLPV, pp. 71–82 (2012)

2. Artho, C., Havelund, K., Biere, A.: High-level data races. Softw. Test., Verif. Re-
liab. 13(4), 207–227 (2003)

3. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6),
27–56 (2004)

4. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 259–270. ACM (2005)

5. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

6. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-
ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010)

7. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object
Technology 4(8), 5–32 (2005)

8. Dietl, W., Müller, P.: Object ownership in program verification. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. LNCS,
vol. 7850, pp. 289–318. Springer, Heidelberg (2013)

9. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework
for verification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

10. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verification of mul-
tithreaded programs. Theor. Comput. Sci. 338(1-3), 153–183 (2005)

11. Haack, C., Huisman, M., Hurlin, C., Amighi, A.: Permission-based separation logic
for Java, 201x. Conditionally accepted for LMCS

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

13. Huizing, K., Kuiper, R.: Verification of object oriented programs using class invari-
ants. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 208–221. Springer,
Heidelberg (2000)

14. Jacobs, B., Piessens, F., Leino, K.R.M., Schulte, W.: Safe concurrency for aggregate
objects with invariants. In: SEFM, pp. 137–147 (2005)

15. Liskov, B., Guttag, J.: Abstraction and specification in program development. MIT
Press, Cambridge (1986)

16. Lu, Y., Xue, J.: Validity invariants and effects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 202–226. Springer, Heidelberg (2007)

17. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)
18. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered

object structures. Sci. Comput. Program. 62(3), 253–286 (2006)
19. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput.

Sci. 375(1-3), 271–307 (2007)
20. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In: Prin-

ciples of programming languages (POPL 2008), pp. 75–86. ACM (2008)
21. Parkinson, M.J.: Local reasoning for Java. Technical Report UCAM-CL-TR-654,

University of Cambridge, Computer Laboratory (November 2005)

Verifying Class Invariants in Concurrent Programs 245

22. Poetzsch-Heffter, A.: Specification and Verification of Object-Oriented Programs.
PhD thesis, Habilitation thesis, Technical University of Munich (1997)

23. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: 17th
IEEE Symposium on LICS 2002, pp. 55–74. IEEE Computer Society (2002)

24. Weiß, B.: Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Tech-
nology (2011)

25. Zaharieva-Stojanovski, M., Huisman, M.: Verifying class invariants in concurrent
programs. Technical Report TR-CTIT-13-10, Centre for Telematics and Informa-
tion Technology, University of Twente (2014)

Automatic Program Repair by Fixing Contracts�

Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. While most debugging techniques focus on patching implementations,
there are bugs whose most appropriate corrections consist in fixing the specifica-
tion to prevent invalid executions—such as to define the correct input domain of
a function. In this paper, we present a fully automatic technique that fixes bugs by
proposing changes to contracts (simple executable specification elements such as
pre- and postconditions). The technique relies on dynamic analysis to understand
the source of buggy behavior, to infer changes to the contracts that emend the
bugs, and to validate the changes against general usage. We have implemented
the technique in a tool called SpeciFix, which works on programs written in Eif-
fel, and evaluated it on 44 bugs found in standard data-structure libraries. Manual
analysis by human programmers found that SpeciFix suggested repairs that are
deployable for 25% of the faults; in most cases, these contract repairs were pre-
ferred over fixes for the same bugs that change the implementation.

1 Introduction

A software bug is the manifestation of a discrepancy between specification and im-
plementation: program behavior (implementation) deviates from expectations (specifi-
cation). Correcting a bug may thus require changing implementation, specification, or
both. In fact, there is a significant number of bugs [3] whose most appropriate correc-
tion is changing the specification to rectify the expectations about what the implemen-
tation ought to do. For example, a function max computing the maximum value of a set
of integers is undefined if the set is empty; we could change max’s implementation to
return a special value when called on an empty set, but the best thing to do is disallow-
ing such calls altogether by specifying them invalid. However, since specifications are
often informal or implicit at best, debugging techniques normally modify implementa-
tions rather than specifications. In particular, fully automatic fixing—which has made
substantial progress in recent years [13, 20, 21] (see Section 5 for more references)—
has focused on suggesting repairs to implementations, thus failing to provide the best
corrections in cases where the ultimate source of failure is incorrect specification.

This paper presents a fully automatic technique that fixes bugs by rectifying specifi-
cations. Our technique targets programs with contracts—simple specification elements
in the form of executable assertions. A program execution that violates some contract
reveals a bug; to fix it, the technique suggests changes to the contracts that prevent
the violation from being triggered. We have prototyped the technique in a tool called

� Work partially supported by ERC grant CME/291389; by SNF grants LSAT/200020-134974
and ASII/200021-134976; and by Hasler-Stiftung grant #2327.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 246–260, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Automatic Program Repair by Fixing Contracts 247

SpeciFix, which works on programs with contracts written in Eiffel. (However, the same
technique is implementable in any language supporting some form of contracts.) Speci-
Fix is completely automatic: its only required input are programs with simple contracts.
In an experimental evaluation, we applied SpeciFix to 44 bugs of Eiffel’s standard data-
structure libraries. SpeciFix suggested repairs for 42 of these bugs; more significant,
11 of the bug repairs are genuine corrections of quality sufficient to be deployable. A
small trial with human programmers confirmed this assessment and often found the
fixes produced by SpeciFix preferable to fixes for the same bugs that modified the im-
plementation rather than the contracts.

Fixing contracts relies on extracting specification elements based on the actual be-
havior of the implementation. This is superficially similar to the problem of inferring
(or mining) specifications—a well-established research area that produced numerous
landmark results (e.g., [4, 8]; see Section 5 for more references). While SpeciFix uses
inference techniques as one of its components, suggesting changes to an existing spec-
ification to correct a bug is more delicate business than just inferring specifications.
Changing contracts is changing the design of an API as experienced by its clients. In
the example of max, adding a precondition that requires that the set be non empty makes
all client code of max responsible for satisfying the requirement upon calling max. There-
fore, we must make sure that the suggested contract changes have a limited impact on
a potentially infinite number of clients.

The SpeciFix technique presented in this paper uses a combination of heuristics to
validate possible specification fixes with respect to their impact on client code. It dis-
cards fixes that invalidate previously passing test cases; to avoid overfitting, it runs every
candidate fix through a regression testing session that generates (completely automati-
cally, using our testing framework AutoTest) new executions; and it ranks all fixes that
pass regression by preferring those that are the least restrictive. The empirical evalua-
tion in Section 4 indicates that these heuristics work well in practice for the bugs we
considered. Notably, there is a significant fraction of bugs whose appropriate fix is a
change to the specification; in those cases, SpeciFix can often generate useful fixes.

Section 2 demonstrates the idea of fixing specifications by means of an actual ex-
ample from the standard Eiffel implementation of array-based circular lists. Section 3
presents the technique implemented in SpeciFix, starting with an overview of its com-
ponents (Figure 3) followed by a detailed description of each of them. For brevity, we
use the name “SpeciFix” to denote both the fixing technique presented in this paper and
its prototype implementation. The evaluation in Section 4 presents experiments where
we applied SpeciFix to 44 faults in standard data-structure libraries. Section 5 discusses
the essential related work; and Section 6 concludes and outlines future work.

2 SpeciFix in Action

Let us briefly demonstrate how SpeciFix works using an example from the experimental
evaluation of Section 4. The example targets a bug of routine (method) duplicate in
class CIRCULAR, which is the standard Eiffel library implementation of circular array-
based lists.

To understand the bug, Figure 1 illustrates a few details of CIRCULAR’s API. Lists
are numbered from index 1 to index count (an attribute denoting the list length), and

248 Y. Pei et al.

A

1

list: B

2

C

3

cursor

D

4

count

(a) A circular list of class CIRCULAR:
the internal cursor points to the ele-
ment C at index 3.

1 class CIRCULAR [G]
2

3 make (m: INTEGER)
4 require m ≥ 1
5 do ... end

6

7 duplicate (n: INTEGER): CIRCULAR [G]
8 do

9 create Result.make (count)
10 ...
11 end

12

13 count: INTEGER -- Length of list

(b) Some implementation details of CIRCULAR.

Fig. 1. Example and some API details of circular lists in Eiffel

include an internal cursor that may point to any element of the list. Routine duplicate

takes a single integer argument n, which denotes the number of elements to be copied;
called on a list object list, it returns a new instance of CIRCULAR with at most n ele-
ments copied from list starting from the position pointed to by cursor. Since we are
dealing with circular lists, the copy wraps over to the first element. For example, calling
duplicate (3) on the list in Figure 1a returns a fresh list with elements 〈C,D,A〉 in
this order.

The implementation of duplicate is straightforward: it creates a fresh CIRCULAR

object Result (line 9 in Figure 1b); it iteratively copies n elements from the current list
into Result; and it finally returns the list attached to Result. The call to the creation
procedure (constructor) make on line 9 allocates space for a list with count elements;
this is certainly sufficient, since Result cannot contain more elements than the list that
is duplicated. However, CIRCULAR’s creation procedure make includes a precondition
(line 4 in Figure 1b) that only allows allocating lists with space for at least one element
(require m ≥ 1). This sets off a bug when duplicate is called on an empty list: count
is 0, and hence the call on line 9 triggers a violation of make’s precondition. Testing
tools such as AutoTest detect this bug automatically by providing a concrete test case
that exposes the discrepancy between implementation and specification.

How should we fix this bug? Figure 2 shows three different possible repairs, all
of which we can generate completely automatically. An obvious choice is patching
duplicate’s implementation as shown in Figure 2a: if count is 0 when duplicate is
invoked, allocate Result with space for one element; this satisfies make’s precondition
in all cases. Our AutoFix tool [17, 20] targets fixes of implementations and in fact sug-
gests the patch in Figure 2a.

The fix that changes the implementation is acceptable, since it makes duplicate run
correctly, but it is not entirely satisfactory: CIRCULAR’s implementation looks perfectly
adequate, whereas the ultimate source of failure seems to be incorrect or inadequate
specification. A straightforward fix is then adding a precondition to duplicate that

Automatic Program Repair by Fixing Contracts 249

make (m: INTEGER)
require m ≥ 1

duplicate (n: INTEGER):
CIRCULAR [G]

do

if count > 0 then

create Result.make (count)

else

create Result.make (1)

end

(a) Patching the implementa-
tion.

make (m: INTEGER)
require m ≥ 1

duplicate (n: INTEGER):
CIRCULAR [G]

require count > 0

do

create Result.make (count)

(b) Strengthening the specifi-
cation.

make (m: INTEGER)

require m ≥ 0

duplicate (n: INTEGER):
CIRCULAR [G]

do

create Result.make (count)

(c) Weakening the specifica-
tion.

Fig. 2. Three different fixes for the bug of Figure 1. Changed or added lines are highlighted.

only allows calling it on non-empty lists. Figure 2b shows such a fix, which strength-
ens duplicate’s precondition thus invalidating the test case exposing the bug. The
strengthening fix has the advantage of being textually simpler than the implementation
fix, and hence also probably simpler for programmers to understand. However, both
fixes in Figures 2a and 2b are partial, in that they remove the source of faulty behavior
in duplicate but they do not prevent similar faults—deriving from calling make with
m = 0—from happening. A more critical issue with the specification-strengthening fix
in Figure 2b is that it may break clients of CIRCULAR that rely on the previous weaker
precondition.1 There are cases—such as when computing the maximum of an empty
list—where strengthening produces the most appropriate fixes; in the running example,
however, strengthening arguably is not the optimal strategy.

A look at make’s implementation (not shown in Figure 1b) would reveal that the cre-
ation procedure’s precondition m ≥ 1 is unnecessarily restrictive, since the routine body
works as expected also when executed with m = 0. This suggests a fix that weakens
make’s precondition as shown in Figure 2c. This is arguably the most appropriate cor-
rection to the bug of duplicate: it is very simple, it fixes the specific bug as well as
similar ones originating in creating an empty list, and it does not invalidate any clients
of CIRCULAR’s API. The SpeciFix tool described in this paper generates both specifica-
tion fixes in Figures 2b and 2c but ranks the weakening fix higher than the strengthening
one. More generally, SpeciFix outputs specification-strengthening fixes only when they
do not introduce bugs in available tests, and it always prefers the least restrictive fixes
among those that are applicable.

3 How SpeciFix Works

SpeciFix works completely automatically: its only input is an Eiffel program annotated
with simple contracts (pre- and postconditions and class invariants) which constitute its

1 Note that this strengthening does not introduce new bugs; it just shifts the responsibility for
the fault from duplicate to its clients.

250 Y. Pei et al.

specification. After going through the steps described in the rest of this section, Speci-
Fix’s final output is a list of fix suggestions for the bugs in the input program.

Figure 3 gives an overview of the components of the SpeciFix technique. SpeciFix
is based on dynamic analysis, and hence it characterizes correct and incorrect behavior
by means of passing and failing test cases (Sections 3.1 and 3.2). To provide full au-
tomation, we use the random testing framework AutoTest to generate the tests used by
SpeciFix. The core of the fix generation algorithm applies two complementary strate-
gies (Section 3.3): weaken (i.e., relax) a violated contract if it is needlessly restrictive;
or strengthen an existing contract to rule out failure-inducing inputs. SpeciFix produces
candidate fixes using both strategies, possibly in combination (Section 3.4). To deter-
mine whether the weaker or stronger contracts remove all faulty behavior in the pro-
gram, SpeciFix runs candidate fixes through a validation phase (Section 3.5) based on
all available tests. To avoid overfitting, some tests are generated initially but used only
in the validation phase (and not directly to generate fixes). If multiple fixes for the same
fault survive the validation phase, SpeciFix outputs them to the user ordered according
to the strength of their new contracts: weaker contracts are more widely applicable, and
hence are ranked higher than more restrictive stronger contracts (Section 3.5).

Program
with

Contracts

Test
Cases

Weakening
Fixes

Strengthening
Fixes

Valid Fixes
AutoTest Fix

Generation
Validation
& Ranking

Fig. 3. An overview of how SpeciFix works. Running AutoTest on an input Eiffel program with
contracts produces a collection of test cases that characterize correct and incorrect behavior. With
the goal of correcting faulty behavior, the fix generation algorithm builds candidate fixes using
two strategies: weakening and strengthening the existing contracts. The candidate fixes enter a
validation phase where they must pass all valid test cases; valid fixes are ranked—the weaker the
new contracts the higher the ranking—and presented as output.

3.1 Test Cases

A test case (or just “test”) t consists of a call of some routine r with actual arguments
a1, . . . , an on a target object a0, written t : a0.r(a1, . . . , am); we refer to r as t’s
outermost routine. For instance, if list is the list of Figure 1a and emp is an instance of
empty CIRCULAR list, list.duplicate(3) and emp.duplicate(1) are two tests.

Let S be a set of program states. The execution of a test t starts with routine r’s body
executing from an initial state s0 ∈ S. In general, r’s body may call another routine r1
from a state s1, which in turn calls another r2 from a state s2, and so on until the test
terminates.2 Therefore, a test t uniquely defines a trace ρt as the sequence

ρt = s0 r0 s1 r1 · · · sn−1 rn−1 sn rn (1)

2 To avoid dealing with nonterminating programs, we forcibly terminate tests that are still run-
ning after a timeout.

Automatic Program Repair by Fixing Contracts 251

of state snapshots when nested routines are called or return. Precisely, for j = 0, . . . , n,
a pair sjrj denotes either that routine rj begins execution from state sj , that is sj is
the pre-state of a nested call; or that routine rj returns to the caller from state sj , that
is sj is the post-state of a nested call. Since t is a call to r at the outermost level,
r0 = r; call traces ignore intermediate states other than pre- and post-states. The
sequence κt = r0 r1 · · · rn−1 rn containing only routine names in ρt is the call se-
quence determined by t. For example, the test emp.duplicate(1) determines the trace
x0 duplicate x1 make where x0 is the initial state and x1 is the state when calling make

on line 9 in Figure 1b; the test terminates then with a contract violation. The other test
list.duplicate(3) determines the trace y0 duplicate y1 make y2 make y3 duplicate

where y0 is the initial state, y1 is the state when calling make, y2 is the state when
make returns, and y3 is the state when duplicate and the whole test terminates.

In SpeciFix, we generate test cases automatically using AutoTest—Eiffel’s random
test generator. However, if manually-written test cases are available, they can also be
supplied to SpeciFix to supplement the automatically generated tests; the extra input
may improve the quality of the final output.

3.2 Contracts, Correctness, and Faults

Contracts are simple specification elements made of assertions including preconditions
(require), postconditions (ensure), and class invariants (invariant). We denote by
Pr and Qr the pre- and postcondition of a routine r. In this work, we focus on changing
pre- and postconditions only; thus, we use the term specification to collectively denote
pre- and postconditions, and use the terms “specification” and “contracts” as synonyms.

Given an assertion A (pre- or postcondition) and a program state s ∈ S, we say that
A holds at s (or, equivalently, that s satisfies A) if A evaluates to True under state s; if
this is the case, we write s |= A. Since contracts are executable, we can evaluate any
assertion at any program state reached during a concrete execution.

Contracts provide an operational criterion to classify test cases into invalid, passing,
and failing. A test case t is valid if the initial state s0 of the trace ρt is such that it
satisfies r’s precondition, that is s0 |= Pr; otherwise t is invalid. An invalid test case
for routine r does not tell us anything about r’s correctness, since every invocation
of r should satisfy r’s precondition to be acceptable. A valid test case t is passing
if, for every j = 1, . . . , n, state sj in t’s trace ρt satisfies the following: if sj is the
pre-state of a call to rj then sj |= Prj ; and if sj is the post-state of a call to rj then
sj |= Qrj . In words, every nested call performed during the computation of r starts
in a state that satisfies the called routine’s precondition and terminates in a state that
satisfies the called routine’s postcondition when it returns. A valid test case is failing
if it is not passing, that is if it eventually reaches a state that violates some pre- or
postcondition; the violation terminates test case execution. The test list.duplicate(3)
is passing because the call to duplicate terminates without violating any contract (and
produces the correct result). The other test emp.duplicate(1) is valid but failing: the
nested call to make does not satisfy make’s precondition m ≥ 1 on line 4 in Figure 1b
because count = 0 <1 in an empty list.

A failing test case t reveals a fault (informally called bug in the introduction) in
routine r, namely a discrepancy between implementation and specification (the violated

252 Y. Pei et al.

contract). Conversely, a passing test case documents a legitimate usage of routine r with
respect to its specification. Two failing test cases t1, t2 identify the same fault if their
call sequences κ1, κ2 are the same (and hence they violate the same assertion).

3.3 Weakening vs. Strengthening

Let t be a failing test case with trace ρt as in (1); r = r0 is the outermost routine
of t, and rn is the routine whose contract violation triggers the fault. Assuming the
implementation of all routines r0, . . . , rn is correct, we should change the contracts of
r0, r1, . . . , rn to fix the fault exposed by t. There are two ways to do that:

Strengthening: strengthen r’s precondition to disallow t’s input. Strengthening makes
t invalid and thus prevents the call sequence that led to the violation of rn’s contract.

Weakening: weaken rn’s contract to allow t’s execution to continue past rn. If the
execution can continue without triggering other errors, weakening makes t passing.

If applicable, weakening is in principle preferable to strengthening, because the for-
mer does not risk breaking clients by introducing more stringent conditions for cor-
rectly calling r. Strengthening is, however, always applicable, whereas weakening may
not work if rn’s correct execution depends on the weakened contract. Even in the cases
where weakening makes t passing without triggering any new fault, it may be that the
absence of new faults is just a result of the rest of the specification being inaccurate
or incomplete. For example, weakening the precondition of a function max to work on
lists of any size (including empty lists) may not trigger any faults simply because max

has no postcondition, and hence there is no automatic way of finding out that the value
returned for empty lists is inconsistent.

In practice, SpeciFix prefers the least restrictive fixes (i.e., weakening) but always
tries both weakening and strengthening in combination. Another observation is that
strengthening only the outermost routine’s precondition often is too ad hoc, since it
corresponds to a partial change of API assumptions which may be inconsistent with
the way other routines are used. Therefore, SpeciFix tries to collectively strengthen
all routines r0, . . . , rn−1 to disallow fault-inducing input at every call site. Indeed, the
experiments of Section 4 show that strengthening leads to many useful and correct fixes
in practice.

3.4 Fix Generation

A run of SpeciFix targets a specific fault of some routine r. This is characterized by
a set Fr of failing test cases all of which have r as outermost routine and identify
the same fault—the violation of contract An (pre- or postcondition) of routine rn. To
characterize correct behavior, SpeciFix also inputs a set Pr of passing test cases which
have r as outermost routine. Based on this, SpeciFix builds a set Φ of candidate fixes
through the following steps, illustrated on the running example.

Build weakening assertions Ω for rn. Let r̃n be rn with An relaxed to True.
Generate fresh sets P̃ and F̃ of passing and failing test cases for r̃n. Based on them,
determine the sets IP̃ and IF̃ of dynamic invariants respectively holding in all passing

Automatic Program Repair by Fixing Contracts 253

tests P̃ and in all failing tests F̃ (Section 3.6 describes the dynamic invariant detection
process). Let Ω = {ω | ω ∈ IP̃ and ¬ω ∈ IF̃} be a set of weakening assertions, which
characterize the minimal requirements for a test of r̃n to be passing and not failing. In
the example, make works without errors when m ≥ 0, whereas it fails when m < 0; thus
Ω = {m ≥ 0}.

Build weakening fixes W . For each ω ∈ Ω ∪ {False}, build the weakening fix f
obtained by replacing An with An ∨ w in rn. Add f to the set W of weakening fixes.
Adding False to Ω determines a dummy fix which is used to build purely strengthening
fixes in the next step. In the example, W contains a weakening fix fw corresponding to
the one in Figure 2c, and a dummy fix f0 where make’s precondition has been “weak-
ened” with False (hence it is unchanged).

Validate weakening fixes. For each f ∈W , if f passes all tests in Pr∪Fr then add
f to the set Φ of candidate fixes without modifications, and remove it from W . In the
example, fw passes validation and is added to Φ. f0 is instead the unchanged program
in Figure 1b, and hence it stays in W .

Build strengthening assertions Σk for rk . For each f ∈ W that did not pass
validation, determine the sets IPk and IFk of dynamic invariants currently holding in all
pre-states of the calls to rk respectively in the passing tests Pr and in the failing tests
Fr; k ranges over the subset of {0, . . . , n− 1} for which sk is a pre-state (skrk appears
in the traces). Let Σk = {σ | σ ∈ IPk and ¬σ ∈ IFk } be the corresponding sets of
strengthening assertions, which characterize the minimal additional requirements for a
test to pass through rk without failing. In the example, duplicate correctly calls make

precisely when count > 0; thus, Σ0 = {count > 0}.
Build strengthening fixes. For each combination 〈σ0, . . . , σn−1〉 ⊆ Σ0 × · · · ×

Σn−1 of strengthening assertions, build the strengthening fix φ obtained by replacing
each precondition Prk of routine rk with Prk ∧ σk, for all applicable k. Add φ to the
set Φ of candidate fixes. In the example, the dummy fix f0 is turned into a valid fix φ0

by strengthening duplicate’s precondition as count > 0.
Candidates. The output of the fix generation phase is a set Φ of fix candidates. The

candidates are filtered and ranked as explained in the following section.

3.5 Fix Validation and Ranking

Validation. The purpose of the validation phase is to ascertain which of the candidate
fixes in Φ remove the fault under analysis. To this end, SpeciFix runs every fix candidate
f ∈ Φ through all available tests for r; f is valid if it still passes all originally passing
tests, and it also passes all originally failing tests that have not become invalid.

The dual risk of unsoundness for validation based on a finite number of test cases
is overfitting: a fix may pass validation but be unusable in a general context, because
it introduces specification changes that harm usages of the API different from those
exercised by the test cases used to generate the fix. To reduce the risk of overfitting,
SpeciFix uses only half of the originally generated test cases to generate the candidate
fixes. Then, the validation phase uses all available tests for the routine under analysis,
not only those in Pr and Fr used to generate fixes. This increases the likelihood that
the validated fixes are applicable beyond the specific cases that drove fix generation.

254 Y. Pei et al.

Ranking. Not all valid fixes are equally desirable: all else being equal, we prefer
those that introduce the least changes to the specification, and that make invalid the
fewest test cases. SpeciFix ranks valid fixes to reflect these criteria, and only reports the
top five fixes for each fault. This approach is a good compromise between the contrast-
ing needs of exposing programmers to a limited number of fixes—which they have to
understand and validate—and of retaining fixes that fall behind in the ranking even if
they are of high quality, due to the imperfect precision of the ranking heuristics.

The ranking heuristics is based on two elements: number of invalidated tests and
the strength of the new contracts. A fix f consists of a collection 〈A0, . . . , An〉 of new
contracts for the routines r0, . . . , rn; each Ak (0 ≤ k ≤ n) is either a pre- or a postcon-
dition and may be weaker, stronger, or unchanged with respect to the original program.
Given two valid fixes f1, f2, let A1

k, A
2
k be their new contracts for the same routine

rk. We say that A1
k is not stronger than A2

k, written A1
k A2

k, if A1
k holds whenever

A2
k holds; precisely, we determine strength based on executing all available tests for r:

A1
k A2

k iff every test that is valid for A1
k (i.e., a test that leads to executions where

A1
k is evaluated and holds) is also valid for A2

k (i.e., A2
k is evaluated and holds). This

generalizes to an ordering between fixes by lexicographic generalization of on tuples
〈A0, . . . , An〉. The ordering is partial because the sets of valid test cases for f1 and for
f2 may be non-comparable. The final ranking orders fixes according to the relation
and, for incomparable fixes, ranks higher those that determine the higher number of
valid (and hence passing) tests.

In the running example, the weakening fix in Figure 2c ranks higher than the
strengthening fix in Figure 2b: all test cases with count >0 are equivalent for the two
fixes, but the test cases with count = 0 are valid only for the weakening fix.

3.6 Dynamic Invariants and State Abstraction

SpeciFix infers invariants at program states dynamically by observing the behavior dur-
ing concrete executions. Dynamic invariant inference (see Section 5) has become a
standard technique of dynamic analysis. Using the notation of Section 3.1, we can de-
fine an invariant at the entry of routine rk as an assertion I such that sk |= I for every
test t whose trace ρt includes the snapshot sk rk where sk is a pre-state; the invariant at
routine exit is defined similarly with respect to post-states.

Invariant inference in SpeciFix must cater to the specific needs of fixing contracts. To
this end, we abstract the concrete program state by a number of predicates that include
public queries (i.e., routines or attributes giving a value characterizing object state) as
well as any subexpressions of the available contracts.

4 Experimental Evaluation

We performed a preliminary evaluation of the behavior of SpeciFix by applying it to 44
bugs of production software. The overall goal of the evaluation is corroborating the ex-
pectation that, for bugs whose “most appropriate” correction is fixing the specification,
SpeciFix can produce repair suggestions of good quality. A more detailed evaluation
taking into account aspects such as robustness and readability of the produced fixes
belongs to future work.

Automatic Program Repair by Fixing Contracts 255

4.1 Experimental Setup
We selected 10 of the most widely used data-structure classes of the EiffelBase
(rev. 92914) and Gobo (rev. 91005) libraries—the two major Eiffel standard libraries.
While these are the same classes used in the experimental evaluation of AutoFix [20],
we did not attempt a direct comparison for different reasons. First, some of the bugs
used in AutoFix have been fixed in the latest library versions, and hence they are not
reproducible. Second, AutoFix and SpeciFix are complementary approaches: our expe-
rience with AutoFix suggested that there is a substantial fraction of bugs whose most
appropriate correction is fixing the specification, and it is precisely on those that we
expect SpeciFix to work successfully. Third, running SpeciFix on the very same input
as AutoFix would limit the generalizability of the evaluation results; instead, we want
to evaluate the behavior of SpeciFix in standard conditions and avoid overfitting.

All the experiments ran on a Windows 7 machine with a 2.6 GHz Intel 4-core CPU
and 16 GB of memory. We ran AutoTest for one hour on each of the 10 classes in
Table 4. This automatic testing session found 44 unique faults consisting of pre- or
postcondition violations. We ran SpeciFix on each of these faults individually, using
only half of the test cases (randomly picked among those generated for each fault in
the one-hour session) to generate the fixes and all of them in the validation phase (Sec-
tion 3.5). The right-hand side of Table 4 reports, for each class, the total number of
test cases used by SpeciFix, and the total time for testing (the initial one-hour sessions
plus additional calls to AutoTest to generate tests for relaxed routines used to infer the
weakening assertions Ω, as described in Section 3.4) and fixing. The average figures
per fault are: 106.4 minutes of testing time and 7.2 minutes of fixing time (minimum:
4.1 minutes, maximum: 30 minutes, median 6.2 minutes). The testing time dominates
since AutoTest operates randomly and thus generates many test cases that will not be
used (such as passing tests of routines without faults).

Table 4. Classes used in the experiments; for each class we report: lines of code LOC, number #R
of routines, number #P of assertions in preconditions, number #Q of assertions in postconditions,
and number #C of assertions in the class invariant. In the right-hand side, we report the number
#F of faults targeted by the experiments, the total number of test cases (passing #P and #F
failing) used by SpeciFix, the Tt minutes spent running AutoTest on routines of the class, and the
Tf minutes spent running SpeciFix (net of testing time) on faults of the class.

CLASS LOC #R #P #Q #C #F #P #F Tt Tf

ACTIVE_LIST 2165 139 91 121 25 2 212 210 240 23
ARRAY 1474 101 70 110 10 9 850 555 900 72
ARRAYED_CIRCULAR3 1907 133 80 92 23 3 320 234 360 17
ARRAYED_SET 2346 146 118 131 26 6 554 432 720 34
DS_ARRAYED_LIST 2862 168 219 173 15 3 132 89 240 15
DS_HASH_SET 3159 171 154 140 20 1 14 60 120 5
DS_LINKED_LIST 3497 162 207 166 13 3 360 25 360 25
LINKED_LIST 1995 109 70 91 23 0 – – 60 –
LINKED_SET 2347 122 99 101 26 4 416 70 480 22
TWO_WAY_SORTED_SET 2856 141 118 118 31 13 1260 655 1260 106
TOTAL 24608 1392 1226 1243 212 44 4118 2330 4680 319

3 Shortened to CIRCULAR in Section 2.

256 Y. Pei et al.

4.2 Results

Evaluating the effectiveness of repairs that modify contracts is a somewhat subtle issue,
since it ultimately involves what is a design choice: changing API specification. Related
work on automatic repair (see Section 5) has rarely, if ever,4 assessed the quality and
acceptability for human programmers of the produced fixes beyond running standard
regression test suites. To this end, in previous work [17,20] we introduced the notions of
valid and proper fix: any fix that passes all the available tests is valid (and hence every
fix output by SpeciFix is valid), but only those that manual inspection reveals to satis-
factorily remove the real source of failure without introducing other bugs are classified
as proper. Even if the line between proper and improper might be fuzzy in some corner
cases, we could normally confidently classify fixes into proper and improper based on
our familiarity with the code base under analysis.

We use the same classification criterion in the evaluation of fixes produced by Speci-
Fix: Table 5 lists the total number of faults for which SpeciFix generated valid or
proper fixes (and ranked them in the top 5 positions: we ignore fixes that rank lower).

For 25% of the faults, SpeciFix produced fixes that manual inspection revealed
to satisfactorily remove the real source of failure.

Table 5. Fixes built by SpeciFix. For each TYPE of fault, the left-hand side of the table reports
the number #F of faults of that type input to SpeciFix, and for how many of those faults Speci-
Fix built (at least one) VALID or PROPER fixes. The right-hand side reports the total number of
fixes produced in each category; the same fault may have multiple valid or proper fixes. Columns
ALL list all fixes in each category, followed by a breakdown into purely weakening (WEAK),
purely strengthening (STRONG), and mixed (involving BOTH strengthening of some contract and
weakening of some other).

TYPE OF FAULT #F VALID PROPER VALID FIXES PROPER FIXES

ALL WEAK STRONG BOTH ALL WEAK STRONG BOTH

Precondition violation 22 22 7 77 23 30 24 13 1 12 0

Postcondition violation 22 20 4 71 56 13 2 7 3 4 0

TOTAL 44 42 11 148 79 43 26 20 4 16 0

The percentage of proper fixes (25% of faults) is similar to that obtained in the
work with AutoFix; but the high percentage of valid fixes (over 90%) requires some
explanation. Obtaining valid contract fixes is easy if only poor-quality tests are avail-
able. One can always strengthen preconditions to invalidate failing test cases (or, con-
versely, weaken failing postconditions to trivially pass tests): since SpeciFix validates
fixes based on the available test cases, which in turn are only as good as the contracts
of the class (beyond those directly targeted by the fix), such straightforward fixes yield
valid repairs for classes equipped with very weak and incomplete contracts. This does
not mean that such fixes are always improper; in fact, 80% of all proper fixes strengthen
preconditions: it is only when it is combined with very poor specification (especially
class invariants) that fixing may lead to improper fixes. Furthermore, despite being not

4 The only exception we are aware of is [13].

Automatic Program Repair by Fixing Contracts 257

directly deployable, the valid but improper fixes produced by SpeciFix are still very
valuable as debugging aids, since they clearly highlight the failure-inducing inputs.

Acceptability Trial. In order to get more confidence in the capability of SpeciFix
to produce proper, acceptable fixes from a programmer’s perspective, we conducted
a small trial involving 4 PhD students (henceforth, the “subjects”) in our group. The
subjects were quite familiar with the Eiffel language and its standard libraries, but had
not been involved in the work on SpeciFix or AutoFix. To keep the workload small,
we randomly selected only 8 out of the 11 faults for which SpeciFix produced proper
fixes, and submitted them to the subjects: for each fault, we produced one failing test
case (randomly picked among those produced by AutoTest) and up to 3 fixes produced
by SpeciFix. In order to compare the acceptability of specification and implementation
fixes, we also included up to 2 proper implementation fixes for each of 5 faults (out of
8) produced using AutoFix. For each fault, the subjects: (1) declared which fixes they
considered acceptable (i.e., they “correct the fault while not introducing new faults”, as
in our definition of “proper”); and (2) ordered the fixes in decreasing order of quality.

See the extended version of this paper for detailed results. The highlights: all subjects
but one agreed with our assessment of proper fixes; the subjects unanimously preferred
a contract fix over an implementation fix for 3 of the 5 faults that had both kinds of fix.
The subject who disagreed about proper fixes still agreed that the contract fixes for 6 out
of 8 faults are proper. With the proviso that its small scale does not warrant arbitrary
generalizations, the trial demonstrates substantial agreement with our assessment of
proper fixes; and suggests that, if a fault can be fixed with a contract fix, SpeciFix has a
chance of building a high-quality one.

Programmers found most proper fixes produced by SpeciFix acceptable and often
preferable to fixes for the same bugs that change the implementation.

4.3 Limitations and Threats to Validity

Limitations. The main limitation to the applicability of SpeciFix is that it requires con-
tracts. On the one hand, it requires a language where contracts are expressible; this is an
obvious consequence of the technique’s goals and is not severely restrictive since many
languages support some form of notation for contracts (e.g., JML for Java and Code-
Contracts for C#). On the other hand, SpeciFix works well only on classes that come
already equipped with some contracts of decent quality. Class invariants (which Speci-
Fix does not change but only assumes) are particularly useful to ensure that the test
cases generated represent reasonable usage, so that validation (Section 3.5) is precise.
Despite being often weak and largely incomplete, the kinds of contracts Eiffel pro-
grammer write have been sufficient to get good experimental results; but in future work
we will investigate how SpeciFix performance improves if it is given more expressive
contracts [18].

Threats to Validity. The most significant threat to external validity—concerning the
generalizability of our experimental results—comes from limiting the experiments to
data-structure classes. This is a limitation partly inherited from the usage of AutoTest to

258 Y. Pei et al.

generate test cases; AutoTest is meant for unit testing and hence works more easily with
classes with a clearly defined interface such as data structures. In future work, we plan
to experiment with other kinds of program (as we already did successfully with Auto-
Fix [17]) and possibly with manually-written test cases. Another threat comes from the
small number of subjects used in the trial (Section 4.2), and the fact that they all were
graduate students. We acknowledge that the trial only gives a preliminary assessment,
and more user studies are needed to ensure generalizability.

Threats to internal validity—concerning the proper execution of our experiments—
include repeatability. Since SpeciFix uses AutoTest to generate test cases, and the per-
formance of AutoTest is affected by chance, different runs may yield different results.
Based on our previous extensive experience with using AutoTest’s test cases for dy-
namic analysis [17–20], we expect AutoTest behavior to be predictable over the testing
time allotted in our experiments; therefore, this threat is unlikely to be significant. Since
SpeciFix produces many valid but not proper fixes, an issue is how much effort is re-
quired to identify the improper fixes. While we have no hard evidence about this, even
improper fixes succinctly characterize the failure-inducing inputs, and hence they are
still useful as debugging aids. Furthermore, contract fixes are normally quite simple, ar-
guably easier to read than implementation fixes; all subjects in the trial spent on average
around two minutes to classify each contract fix, which seems to indicate an acceptable
overhead. More experiments are also needed to determine the sensitivity of SpeciFix to
what fraction of the tests are used for generation vs. validation.

5 Related Work

SpeciFix is a novel technique in the recently emerging area of automatic program repair,
whose most important contributions we briefly review below. Dynamic invariant infer-
ence is one of the specific techniques used in SpeciFix; we also discuss fundamental
related work in this area.

Automatic Program Repair. Source-code repair aims to remove buggy behavior
from a program by changing its implementation. GenProg [21] is one of the first and
most successful techniques for source-code repair. It uses genetic programming to mu-
tate a faulty program into one that satisfies a given set of test cases. GenProg has been
evaluated [14] using various open-source programs, showing that it can produce many
non-trivial fixes. GenProg works on programs without annotations; however, it requires
a regression test suite as part of its input.

Other work has applied different techniques to the problem of source-code repair,
with the goal of improving the applicability and acceptability of the produced repairs;
for example, by deploying machine-learning techniques [2, 12, 13], constraint-based
approaches [10, 16], and finite-state abstractions [7]. These techniques also normally
require a regression test suite as part of their input.

In previous work, we developed AutoFix [17, 20], an automatic tool that suggests
fixes of implementations written in Eiffel and annotated with simple contracts. Con-
tracts dispense with the need for a regression test suite, as one can be generated as
needed through automatic testing. SpeciFix’s technique can be seen as the dual to Au-
toFix’s: the latter assumes contracts correct to fix implementations, whereas the former
assumes implementations correct to fix contracts.

Automatic Program Repair by Fixing Contracts 259

Invariant Inference. Invariant inference techniques learn assertions that hold for a
given implementation. These techniques are naturally classified in static and dynamic.
Static techniques analyze the source code to infer specification elements. Since inferring
all but the simplest classes of properties is undecidable, static techniques are usually
sound but incomplete. Abstract interpretation is a fundamental framework for static
invariant inference [4], which has been applied in many different contexts.

SpeciFix relies instead on dynamic techniques for invariant inference. These summa-
rize properties that are invariant over multiple runs of a program; their advantage over
static techniques is that dynamic approaches do not require a sophisticated analytical
framework and are applicable to the whole programming language: they work on any-
thing that can be executed. While dynamic techniques provide no guarantees of sound-
ness or completeness, they work quite well in practice. Dynamic invariant inference
has been pioneered by the Daikon tool [8]. Daikon uses a pre-defined set of templates
describing common relations among program variables. Much work has been done to
extend and improve the Daikon approach; for example to support object-oriented fea-
tures [5], and to infer complex and often complete postconditions [19]. The dynamic
approach has also been applied to other kinds of specifications such as finite-state be-
havioral specifications [1, 6, 15, 22] and algebraic specifications [9, 11].

6 Conclusions and Future Work

We presented an automatic technique that fixes programming bugs by rectifying spec-
ifications in the form of simple contracts (pre- and postconditions). In an experimental
evaluation, we ran SpeciFix on 44 bugs of Eiffel standard data-structure libraries. An
evaluation by human programmers indicates that SpeciFix produced fixes of quality
sufficient to be deployed for 25% of the bugs.

We now have complementary techniques to fix bugs either by changing the imple-
mentation (such as in our previous work on AutoFix [17, 20]) or by changing the spec-
ification (using SpeciFix presented in this paper). Therefore, the main goal of future
work is to apply both fixing approaches in combination, and in particular to develop
automatic heuristics to decide whether the “best” fix for a given bug involves changing
implementation, specification, or both.

Availability. The SpeciFix source code, and all data and results cited in this article,
are available at: http://se.inf.ethz.ch/research/specifix/ .

Acknowledgments. Thanks to Alexey Kolesnichenko, Nadia Polikarpova, Andrey
Rusakov, and Julian Tschannen for participating in the trial (Section 4.2).

References

1. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16 (2002)
2. Arcuri, A.: Evolutionary repair of faulty software. Applied Soft Computing 11(4),

3494–3514 (2011)
3. Ciupa, I., Pretschner, A., Oriol, M., Leitner, A., Meyer, B.: On the number and nature of

faults found by random testing. Softw. Test., Verif. Reliab. 21(1), 3–28 (2011)

http://se.inf.ethz.ch/research/specifix/

260 Y. Pei et al.

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL, pp. 84–96 (1978)

5. Csallner, C., Smaragdakis, Y.: Dynamically discovering likely interface invariants. In: ICSE,
pp. 861–864 (2006)

6. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with ADABU.
In: WODA, pp. 17–24 (2006)

7. Dallmeier, V., Zeller, A., Meyer, B.: Generating fixes from object behavior anomalies. In:
ASE, pp. 550–554. IEEE (2009)

8. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE TSE 27(2), 99–123 (2001)

9. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by graph trans-
formation. In: ICSE, pp. 430–440 (2009)

10. Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program repair using SAT. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 173–188. Springer,
Heidelberg (2011)

11. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container
classes. IEEE TSE 33(8), 526–543 (2007)

12. Jeffrey, D., Feng, M., Gupta, N., Gupta, R.: BugFix: a learning-based tool to assist developers
in fixing bugs. In: ICPC, pp. 70–79. IEEE (2009)

13. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written
patches. In: ICSE, pp. 802–811. IEEE (2013)

14. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In: ICSE, pp. 3–13. IEEE (2012)

15. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models.
In: ICSE, pp. 501–510 (2008)

16. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair via seman-
tic analysis. In: ICSE, pp. 772–781. IEEE (2013)

17. Pei, Y., Wei, Y., Furia, C.A., Nordio, M., Meyer, B.: Code-based automated program fixing.
In: ASE, pp. 392–395. ACM (2011)

18. Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What good are strong specifications?
In: ICSE, pp. 257–266. ACM (2013)

19. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE,
pp. 191–200. ACM (2011)

20. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated
fixing of programs with contracts. In: ISSTA, pp. 61–72. ACM (2010)

21. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using
genetic programming. In: ICSE, pp. 364–374. IEEE (2009)

22. Xie, T., Martin, E., Yuan, H.: Automatic extraction of abstract-object-state machines from
unit-test executions. In: ICSE, pp. 835–838. IEEE (2006)

Dynamic Package Interfaces

Shahram Esmaeilsabzali1,�, Rupak Majumdar2, Thomas Wies3,
and Damien Zufferey4,��

1 University of Waterloo
2 MPI-SWS

3 NYU
4 MIT CSAIL

Abstract. A hallmark of object-oriented programming is the ability to perform
computation through a set of interacting objects. A common manifestation of this
style is the notion of a package, which groups a set of commonly used classes
together. A challenge in using a package is to ensure that a client follows the
implicit protocol of the package when calling its methods. Violations of the pro-
tocol can cause a runtime error or latent invariant violations. These protocols can
extend across different, potentially unboundedly many, objects, and are specified
informally in the documentation. As a result, ensuring that a client does not vio-
late the protocol is hard.

We introduce dynamic package interfaces (DPI), a formalism to explicitly
capture the protocol of a package. The DPI of a package is a finite set of rules
that together specify how any set of interacting objects of the package can evolve
through method calls and under what conditions an error can happen. We have
developed a dynamic tool that automatically computes an approximation of the
DPI of a package, given a set of abstraction predicates. A key property of DPI is
that the unbounded number of configurations of objects of a package are summa-
rized finitely in an abstract domain. This uses the observation that many packages
behave monotonically: the semantics of a method call over a configuration does
not essentially change if more objects are added to the configuration. We have
exploited monotonicity and have devised heuristics to obtain succinct yet general
DPIs. We have used our tool to compute DPIs for several commonly used Java
packages with complex protocols, such as JDBC, HashSet, and ArrayList.

1 Introduction

Modern object-oriented programming practice uses packages to encapsulate compo-
nents, allowing programmers to use these packages through well-defined application
programming interfaces (APIs). While programming languages such as Java and C#
provide a clear specification of the static APIs of a package in terms of classes and their
(typed) methods, there is usually no specification of the implicit protocol that constrains
the temporal ordering of method calls on different objects. If the protocol is limited to
a single object of a single class, it can be specified in form of a state machine whose
states are the abstract states of the object and whose edges are the invocations of its

� Shahram Esmaeilsabzali was at MPI-SWS when this work was done.
�� Damien Zufferey was at IST Austria when this work was done.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 261–275, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

262 S. Esmaeilsabzali et al.

methods [2, 14, 16]. For example, a lock object has two states: locked and unlocked.
While in the unlocked (resp. locked) state, a call to the lock (resp. unlock) method takes
it to the locked (resp. unlocked) state. Any other method call results in an error. The no-
tion of state-machine interfaces has been studied extensively, and there are many tools
to generate interfaces using static or dynamic techniques [2, 9, 13, 15]. However, exist-
ing notions of state machines on object states must be generalized when considering a
package. First, the internal state of an object should be considered in the context of the
internal states of other objects; e.g., in the Java Database Connectivity (JDBC) package,
a Statement object can execute safely only if its corresponding Connection object is
open. Second, the execution of a method on an object can change the internal state of
other objects in the environment; e.g., calling the executeQuery method on a JDBC
Statement object closes its corresponding open ResultSet object. Finally, the pro-
tocol can constrain the states and transitions of unboundedly many interacting objects;
e.g., considering a collection object and its iterators, modifying the collection directly
invalidates all of its iterators.

The problem of generalizing interfaces from single to multiple objects has been stud-
ied recently [10–12]. However, what is missing is a clear definition of what constitutes
an interface in the presence of unboundedly many objects on the heap. Our first contri-
bution is the introduction of dynamic package interface (DPI), which allows to capture
the protocol of a package in a succinct manner. The DPI of a package is a set of rules,
each of which specifies the effect of a method call on an object within an abstract config-
uration of objects. An abstract configuration denotes an unbounded number of concrete
configurations of objects from a package. A rule has a source and a destination config-
uration, together with a mapping that specifies how the objects in the source change to
the objects in the destination.

Our first technical ingredient is a representation of abstract configurations using
nested graphs [17]. In a nested graph, a subgraph can be marked to be repeatable, and
repetitions can be nested. Nested graphs naturally represent unbounded heap configu-
rations. For example, Figure 1 shows a (two-level) nested graph representing an open
JDBC Connection object with its many corresponding closed Statement objects,
each with many closed ResultSet objects.

Our second ingredient is an abstract semantics of Java-like languages over the do-
main of nested graphs that is monotonic (in fact, the abstract transition system is well-
structured [1]): if a method can be called in a “smaller” configuration, it can be also
called in a “larger” configuration, with the resulting configurations maintaining the re-
lationship. Monotonicity enables us to define the DPI rules of a package only over
its maximal abstract configurations, letting each rule subsume infinitely many similar
“smaller” rules. We prove that the set of maximal configurations has a finite represen-
tation, and thus the DPI of a package has a finite number of rules [6].

Our second contribution is a dynamic analysis technique to compute an approxima-
tion of the DPI of a package directly from the source code. Our tool explores the usage
scenarios of a package by running a universal client that in each of its finite number of
steps, nondeterministically, either creates a new object or invokes a method of an exist-
ing object. Each step of the universal client results in a rule. The universal client can end
up computing hundreds or thousands of distinct rules, which makes the resulting DPI

Dynamic Package Interfaces 263

practically not useful. The challenge is to generalize these rules to obtain a compact
DPI by exploiting similarity. Often, a pair of rules for the same method are incompa-
rable only because their sources and destinations are slightly different. For example,
in one rule for the close method of the Statement class, the source configuration
has closed ResultSet objects but not an open one, and vice versa, another rule might
have an open ResultSet object but not closed ones. It makes sense, however, to com-
bine these two rules because the effect of the two rules are essentially the same: the
Statement object and its open ResultSet object are closed.

We have devised three heuristics that generalize a set of explored rules into a smaller,
more general set. Our extrapolation heuristic compares the configurations of different
rules and deduces whether the configuration of a certain rule can be expanded by re-
peating part of it based on the repetitions observed in the configurations of other rules.
Our merge heuristic combines two rules that are based on similar method invocations
into one rule. Our exception isolation heuristic combines two similar exception rules
into one. While merging is similar to the union of the two rules, exception isolation is
closer to an intersection that isolates the root cause of an exception. Our heuristics are
all grounded in the monotonicity property of our abstract semantics.

We have used our tool to compute the DPIs of Java packages such as JDBC (26
rules), HashSet (16 rules), and ArrayList (15 rules). The rules of these DPIs can be
traced to their documentation, as well as to the programming errors discussed in on-
line discussion groups. Our tool more often than not computes the expected number
of rules for these packages, but not all these rules are the most general ones. Our tool
never computes a rule that is not consistent with the behaviour of a package. This is an
indication that our heuristics are effective.

A more formal treatment of our work can be found in the technical reports [5, 6].

2 Overview and Outline

We now explain the notion of DPI, and describe the main steps that our tool carries
out to compute the DPI of a package. We use Java Database Connectivity (JDBC), a
package that provides database connectivity, as our running example.

We consider four commonly-used classes of JDBC and their methods. The Driver-
Manager class allows to create a new connection to a database by invoking its static
getConnection method. The string parameter of the method specifies the type of
database, its address, and the needed credentials to access it. A Connection object
can serve multiple Statement objects, each of which can be used to read or change
the content of the database. The createStatement method of the Connection class
creates a new Statement object. SQL commands and queries are executed through the
execute and executeQuery methods of the Statement class. Both methods accept
a string argument that is an SQL statement. The executeQuery method returns a new
ResultSet object, which is a collection of rows retrieved from the database; the next
method can be used to traverse these rows. A Connection, Statement, or ResultSet
object is open initially, but can be closed via their corresponding close methods. In-
voking the executeQuerymethod on a Statement object causes an open ResultSet

object that references it to be closed, while creating a new open ResultSet object. If an

264 S. Esmaeilsabzali et al.

object, or one of the objects that it references directly or transitively, is closed, invoking
a non-close method on it would raise an exception.

2.1 System Input

Besides the names of classes and the signatures of their methods, our tool receives
a set of abstraction predicates over the attributes of the classes. A predicate is either
scalar, defined over the simple, non-reference attributes of the classes, or reference,
determining which objects of a class are related to which objects of another class via a
certain reference attribute. For simplicity, we assume these predicates are input by the
user, but standard techniques based on Boolean methods and reference-valued fields in
classes can be used to identify these predicates [15].

For example, in JDBC, the Statement class has an active attribute that deter-
mines whether it is open or not. This attribute is a unary scalar predicate, but in general
a scalar predicate may read multiple fields from referenced objects. We also use the
applicationConnection field of the Statement class to define a reference predi-
cate that determines which Statement object points to which Connection object. We
define similar scalar predicates for the Connection and ResultSet classes, which de-
termine whether their objects are open or closed. We also define a reference predicate
that determines which ResultSet objects reference which Statement objects.

We require that the set of reference attributes do not create a cycle when evalu-
ated over objects: i.e., when objects are considered as nodes and the true valuations of
reference attributes as directed edges, the resulting graph is acyclic. This is necessary
as some of our algorithms rely on computing the topological ordering of heap-related
graphs. This requirement can be relaxed: it is possible to allow the more general class
of the depth-bounded graphs [6].

2.2 Nested Object Graphs

The enabling technique that allows us to compute a succinct, general DPI for a package
is the ability to model a heap configuration, i.e., a set of concrete (e.g., Java) objects in
the heap that reference each other, as a nested object graph.

conn

Connection[A]
c open

Statement[B]
¬s open

ResultSet[C]
¬r open

∗

∗stmt

Fig. 1. A nested object graph

A nested object graph is a labeled, directed graph whose
subgraphs can be marked as repeatable. The nodes of a
nested object graph represent objects and its directed edges
represent references between the objects. The nodes and
edges of the graph are labelled according to the input scalar
and reference abstraction predicates, respectively. When a
subgraph of a nested object graph is marked as repeatable,
it denotes that arbitrary-many sets of objects similar to the
objects in the subgraph can exist in the heap. Repetition
can be nested, and hence the name “nested object graph.”
As an example, the nested object graph in Figure 1 repre-
sents all possible heap configurations consisting of an open
Connection object with zero or more (in fact, possibly unboundedly many) closed
Statement objects, each of which has zero or more closed ResultSet objects. Rep-
etitions are specified via “*” next to nodes or subgraphs. Node C, for example, which

Dynamic Package Interfaces 265

represents the ResultSet objects, is marked repeatable in a nested manner: each group
of repeatable ResultSet objects is associated with a Statement object, which itself
is marked as repeatable via the “*” next to the subgraph specified by the dotted line.
The repetition structure of a nested object graph is captured by assigning nesting levels
to the nodes of the graph. The larger the nesting level is, the more levels of repetition it
belongs to [6]. For example, the nesting levels of nodes A, B, and C in Figure 1 are 0,
1, and 2, respectively.

2.3 DPI Rules

The dynamic package interface (DPI) of a package is a set of rules, each of which
represents a family of method calls. A rule for a method call essentially specifies how
a certain family of similar method calls change the shape of their corresponding heaps.
A rule consists of:

– A source and a destination nested object graph, which represent all possible con-
crete heap configurations before and after the method call;

– A source and a destination cast nested object graph, each of which is a nested object
graph some of whose nodes are labelled with roles, such as “callee”, “parameter 0”,
and “new”; these graphs represent the heap configurations that are directly, in the
sense that we will make clear, involved in the method call;

– An object mapping, which maps the nodes of the source nested object graph to the
nodes of the destination nested object graph, possibly non-deterministically; and

– A role mapping, which maps the nodes of the source cast nested object graph to the
nodes of the destination cast nested object graph; a node that is labelled by a role is
mapped deterministically, but other nodes could be mapped non-deterministically.

Each tuple in the object mapping or the role mapping is annotated with multiplicity
information that specifies how many of the concrete objects represented by the source
node are transferred to the destination node: one or many. The semantics of the compu-
tation of object mapping and role mapping of a rule should ensure that a concrete object
is either mapped via the role mapping or the object mapping, but not both.

As an example, Figure 2 shows the rule that our system computes for executeQuery
method calls that raise no exceptions. The rule specifies that an open ResultSet is
closed when its corresponding Statement object performs executeQuery; instead, a
new ResultSet object is created. Figure 2(a) specifies the role mapping of the rule, via
dotted arrows that connect the nodes in the source cast nested object graph to the nodes
in the destination cast nested object graph. The “callee” and “new” labels determine
the callee and the newly created objects, respectively. Figure 2(b) specifies the object
mapping of the rule via dotted arrows that, for the sake of brevity, connect the subgraphs
of the nested object graphs. While in this rule the object mapping does not specify any
change in its corresponding objects, in general that is not the case. Both nested object
graphs and cast nested object graphs of the rule exhibit repetitions. It is this ability to
express unbounded number of concrete heap configurations that allows us to compute
general, yet concise rules.

Exception Rules. When a method call does not raise any exception, we are looking for
general rules with the largest possible nested object graphs (because it captures more

266 S. Esmaeilsabzali et al.

ResultSet[K]

Connection[A]
c open

Statement[C]
s open

Connection[G]
c open

Statement[I]
s open

ResultSet[F]
r open

ResultSet[L]
r open¬r open

conn conn

∗stmt stmt stmt stmt∗

one

one

many

new

callee

ResultSet[E]
¬r open

one

(a) Role mappings.

connConnection[A]
c open

Statement[B]
¬s open

ResultSet[D]
¬r open

ResultSet[F]
r open

Connection[G]
c open

Statement[C]
s open

Statement[H]
¬s open

Statement[I]
s open

ResultSet[J]
¬r open

ResultSet[L]
r open¬r open

conn

∗

conn

¬r open

∗stmtstmt stmt stmt stmt

∗ ∗ ∗ ∗
many

many

∗stmt∗
ResultSet[E] ResultSet[K]

conn

(b) Object mappings. An arrow over a nested subgraph denotes that the nodes of its source are
mapped to their isomorphic nodes in the destination.

Fig. 2. The most general rule for executeQuery, with no exception

one

Statement[Y]
s open = ∗

Connection[U]
c open = ∗

Connection[X]
c open = ∗

Statement[V]
s open = ∗

ResultSet[W]
¬r open

ResultSet[Z]
¬r open

stmt stmt

connconn

one

one

callee

(a) Closed ResultSet.

∗

Connection[A]
¬c open

Statement[C]
s open

Connection[A]
¬c open

Statement[C]
s open

ResultSet[F]
¬r open

conn conn

stmt

r open

ResultSet[F] one

callee

one

one

stmt

(b) Closed Connection.

Fig. 3. The two most general rules for next with ResultSet not open exception

Dynamic Package Interfaces 267

Algorithm 1. ComputeDPI
Input: A set of classes and methods and a set of abstraction predicates
Result: A set of general rules, Rules, each of which represents a family of method calls

1 Rules = ∅;
2 while ¬Threshold do
3 Pick a snapshot, a concrete Java object, execute one of its methods;
4 Compute, r, the corresponding rule of the method call;
5 if there is no r′ ∈ Rules that “covers” r then Rules = Rules ∪ {r};
6 end
7 Remove any r ∈ Rules that is “covered” by another rule;
8 Extrapolate r ∈ Rules using r′ ∈ Rules, when possible; prune rules that are covered by r;
9 Merge all pairs of mergeable rules in Rules;

10 Isolate all pairs of similar exception rules in Rules;

concrete cases). On the other hand, when a call raises an exception, it is desirable to have
the smallest rule that isolates the cause of the exception. Furthermore, for exception
rules, we use a ternary logic that assigns an unknown value “*” to a predicate of an
object when the evaluation of the predicate does not affect whether the exception will
be raised or not. These characterizations of the most general rules for a method call
are inspired by the monotonic semantics that we have developed for object-oriented
programs [6]. For a safe method call, it should be possible to replicate its result in a
context with more objects. For a method call with an exception, there is no context with
more objects that can avoid the exception.

Figure 3 shows the two rules that our tool computes for the next method when
it raises the ResultSet not open exception. In Figure 3(a), the “*” values for the
s open and c open predicates denote that regardless of whether the corresponding state-
ment or connection objects of a Resultset object are open or not, the method call over
the Resultset raises the exception when it is closed. Figure 3(b) shows the case when
the Resultset is actually open, but its corresponding Connection is not. These rules
point out succinctly the root cause of a bug discussed in an Apache forum.1

2.4 Computation Stages

Creating a rule from a specific method call is only the first step to compute a DPI.
Algorithm 1 outlines the main steps that our tool takes to compute succinct DPIs.

The first stage of the algorithm (lines 1-7) is the exploration stage, in which a univer-
sal client non-deterministically explores the behaviour of the package. Each step of the
universal client is recorded using a source and a destination snapshot, each of which is
a set of Java objects in the heap. The result of each step of the universal client is a rule.
If a new rule is covered by another already-explored rule, it is considered redundant and
discarded (line 5). Intuitively, a rule r′ covers rule r if r′ subsumes the behaviour of r
by having “larger” elements. The exploration stage continues until a maximum number

1 https://issues.apache.org/jira/browse/DERBY-5545

https://issues.apache.org/jira/browse/DERBY-5545

268 S. Esmaeilsabzali et al.

of redundant rules are encountered. After this threshold is reached, the redundant rules
in the set of explored rules are removed (line 7).

After the exploration stage, we apply three heuristics to the set of explored rules. Our
extrapolation heuristic generalizes a rule by expanding its (cast) nested object graphs
into more general graphs that represent more heap configurations. Our merge heuristic
combines a pair of similar rules into one. Similarly, the exception isolation heuristic
combines a pair of similar exception rules. These heuristics decrease the number of
distinct explored rules of a DPI substantially; e.g., in the case of JDBC, from about
2000 distinct rules to 26 final rules.

3 Method Calls and Rules

From a Method Call to a Rule. A key step in computing a rule from a method call is to
derive the source and destination nested object graphs and cast nested object graphs of a
rule from the source and destination snapshots of the method call. The object mapping
and role mapping of a rule are simply computed by tracking how objects change from
the source to the destination snapshot, and ensuring that if an object is mapped by
the role mapping it is not mapped by the object mapping. The computation of nested
object graphs is the same for source and destination snapshots, except that a destination
snapshot can have newly created objects. For the sake of brevity, at below, we assume
that we deal with the source (cast) nested object graph of a rule.

The corresponding snapshot of a cast nested object graph consists of the callee ob-
ject, actual parameter objects, and all other objects that transitively reach these objects
through their references, as well as all objects that are transitively reached from these
objects through their references. The corresponding snapshot of a nested object graph
consists of all objects in the cast nested object graph plus all objects that can reach these
objects transitively. To compute these snapshots, we use the input reference predicates.
Next, we describe how to compute a nested object graph.

The first step is to turn the snapshot into a directed labelled graph by using the input
scalar and reference predicates. We call such a graph a heap graph. Figure 4(a) shows a
heap graph corresponding to 9 JDBC objects, using the predicates described in Section
2. Each node of the graph is labelled with the name of its class, the evaluations of
its scalar predicates, as well as a unique id that is enclosed inside a pair of brackets.
Each edge of the heap graph is labelled with the name of its corresponding reference
predicate. Figure 4(b) is another heap graph resulting from the invocation of method
executeQuery on the Java object that the node with id 4 in Figure 4(a) represents. The
nodes with the same identifiers in the two graphs represent the same Java objects.

The second step is to reduce a heap graph to a nested object graph. The idea is that if
an object or a pattern for a set of interconnected objects appears more than once, then it
is marked as repeatable. The reduction from a heap graph to a nested object graph can be
considered as a bisimulation reduction: two nodes in a heap graph are equivalent iff they
have the same evaluations for their scalar predicates, and furthermore, they mimic one
another by reaching equivalent nodes following their similar reference edges. Figure 5
shows two nested object graphs that our tool computes for the heap graphs in Figure 4.
Repetition of a single node is denoted just by a “*” next to it. Repetition of a subgraph

Dynamic Package Interfaces 269

ResultSet[8]

stmt stmt stmt stmt

Connection[1]
c open

conn
conn

conn

¬r open ¬r open¬r open

Statement[2] Statement[3]
¬s open s open

stmt

ResultSet[5]
¬r open r open

Statement[4]
s open

ResultSet[9]ResultSet[6] ResultSet[7]

(a) Heap graph before method call.

ResultSet[8] ResultSet[9]
¬r open

ResultSet[10]
r open

stmt stmt stmt stmt

Connection[1]
c open

conn
conn

conn

¬r open ¬r open¬r open

Statement[2] Statement[3]
¬s open s open s open

stmt

ResultSet[5] ResultSet[6] ResultSet[7]
¬r open

Statement[4] stmt

(b) Heap graph after method call.

Fig. 4. Two heap graphs for invocation of executeQuery on object 4

ResultSet[f]

Connection[a]
c open

Statement[b]
¬s open

Statement[c]
s open

Statement[d]
s open

ResultSet[e]
¬r open

ResultSet[g]
r open

conn

stmtstmt

¬r open

conn conn

∗

(a) Nested object graph corresponding to
heap graph in Figure 4(a).

ResultSet[m]

Connection[h]
c open

Statement[i]
¬s open

Statement[j]
s open

Statement[k]
s open

ResultSet[l]
¬r open

ResultSet[n]
r open

conn

stmtstmt

conn conn

¬r open

∗ ∗

(b) Nested object graph corresponding to
heap graph in Figure 4(b).

Fig. 5. Two nested object graphs

(not shown in this figure) is denoted by a dotted line around the subgraph together with a
“*”; e.g., as in Figure 2(b). The nodes of the nested object graphs are graphically similar
to heap graphs except that they are shown by solid rectangles and they are labelled with
alphabetic ids. As examples of repetition, node e in Figure 5(a) is the equivalence class
for the nodes 5, 6, and 7 in Figure 4(a), and node m in Figure 5(b) is the equivalence
class for the nodes 8 and 9 in Figure 4(b).

The computation of a cast nested object graph is similar. The difference is that two
objects of the snapshot that have roles cannot be mapped to the same equivalence class.

Rule Coverage Relation. In order to determine whether a rule covers another rule, we
need to compare their corresponding (cast) nested object graphs. A nested object graph,

270 S. Esmaeilsabzali et al.

ng, is subgraph isomorphic to nested object graph, ng′ if: (i) ng is subgraph isomorphic
to ng′ when their repetition structures are not considered; (ii) the isomorphism relation
relates only nodes that have same predicate valuations; and (iii) it is not the case that a
node v′ of ng′ is not part of a repetition pattern that its corresponding node v of ng is;
i.e., ng does not represent a heap configuration that its corresponding subgraph in ng′
cannot represent. We extend this definition to cast nested object graphs by additionally
requiring that only nodes with same role labels can be related by isomorphism.

A rule, r, is then covered by a rule, r′, if: (i) they are both over the same method; (ii)
both raise either no exceptions, or the same exception; (iii) the corresponding graphs of
r are pairwise subgraph isomorphic to the ones of r′; and (iv) for each tuple (u, v) of the
object mapping of r there is a tuple (u′, v′) in the object mapping of r′ such that u and
u′, as well as v and v′ are isomorphic; furthermore, it is not the case that the multiplicity
of the former tuple is “many” while the multiplicity of the latter tuple is “one”; and (v)
similar constraints as iv between the tuples of the role mappings of r and r′.

4 Generalization Heuristics

4.1 Extrapolation

Sometimes a rule could have covered many other rules if certain nodes in its source
and/or destination (cast) nested graphs were marked as repeatable. Our extrapolation
heuristic could mark such nodes as repeatable using the information in the graphs of
other rules.

To identify opportunities for extrapolation, our tool looks for deficient nodes in a
(cast) nested object graph. A node is deficient if it is not repeated and either the role
mapping or the object mapping takes it to a repeated node. Our hypothesis is that a de-
ficient node is not repeated because the exploration did not manage to produce enough
objects of that type. For instance, if we consider the graphs in Figure 5 as the source and
destination graphs of a rule , f and g, which are both mapped to m, are both deficient
nodes. Given a deficient node, our system explores all other rules to find a source or
a destination nested object graph into which the corresponding nested object graph of
the deficient node can be embedded w.r.t. the subgraph isomorphism relation. If accord-
ing to the embedding the node corresponding to the deficient node in the other graph
is repeated, then the deficient node will be marked as repeatable too. In our example,
our tool can find an embedding relation that leads to the extrapolation of f . However, g
cannot be extrapolated. Indeed, each JDBC Statement object cannot have more than
one open ResultSet object.

Repetition is propagated to all nodes pointing to the extrapolated node, in order to
ensure that there is no non-repeated node pointing to a node that is marked as repeatable.
Lastly, the multiplicities of mappings might need to be adjusted to ensure that a node
that is marked as repeatable is not mapped only once via a “one” multiplicity. The
extrapolation heuristic is applied to all rules after the exploration stage, and then all
redundant rules are removed.

Dynamic Package Interfaces 271

4.2 Merging

While the extrapolation stage prunes a substantial number of rules, there may still be
a large number of rules in a DPI, e.g., thousands of rules for JDBC. The reason is that
different rules for the same method might have explored different instances of heaps
that have incomparable sets of objects, and there are various exception cases. To fur-
ther reduce the number of the rules, we have developed the merging heuristic, which
combine sets of related rules into one.

To check whether two rules can be merged, we compare a part of their cast nested
object graphs that we call the upward part. The upward part of a cast nested object
graph is its subgraph that consists of the set of nodes that are labelled by roles plus
the nodes that are reached from these nodes. A pair of rules are mergeable if: (i) the
upward parts of their source and destination cast nested object graphs are pairwise iso-
morphic; and (ii) their role mappings restricted to the upward parts are similar and over
isomorphic nodes. For a mergeable pair of rules, the merge heuristic essentially first
computes their union and then performs a reduction over the resulting source and desti-
nation nested object graphs of the resulting rule. The reduction replaces a nested object
graph with its smallest subgraph that simulates all other subgraphs of the original graph.
This reduction is in the spirit of downward closed graphs where a nested object graph
not only represents all heap instances arising from the repetition of its repeatable sub-
graphs, but also represents any graph which is a subgraph of those – hence the term
“downward closed” [5]. Finally, the role mapping and object mapping of the resulting
rule are adjusted according to the reduction. As an example, assuming that the nested
object graphs in Figure 5 belong to a rule, then node c in Figure 5(a), for instance,
would be mapped to node C in Figure 2(b) during the merge operation. Similar to the
extrapolation heuristic, the multiplicities of mappings might need to be adjusted.

4.3 Exception Isolation

While the merge heuristic corresponds to the union of a set of rules, the exception iso-
lation heuristic corresponds to the intersection of a set of exception rules. This heuristic
deals only with the cast nested object graphs; the nested object graphs are discarded.
For a pair of rules that raise the same exception and whose cast nested object graphs are
isomorphic when their scalar abstraction predicates are not considered, this heuristic es-
sentially combines the corresponding nodes of the cast nested object graphs of the two
rules via a ternary logic. If the values of a predicate are different, the unknown value,
denote by “*”, is chosen. Nested object graphs of the rules are not useful because often
when an exception is raised the states of the corresponding objects of these graph do
not change. Furthermore, we are interested in identifying the smallest contexts in which
an exception can raise.

5 System

Figure 6 shows the high-level architecture of our system, implemented in Java.The ar-
rows specify the high-level information communicated between the components.

272 S. Esmaeilsabzali et al.

Information

Package

Rules

Explored

Abstraction Explorer

Package
Heuristics

Package

Fig. 6. The main components of the system

The Package Abstraction component provides the information about the input pack-
age. It consists of a set of classes whose methods provide the names of classes of the
package under study, their methods, and predicate abstractions. These classes use Java
reflection to obtain these information. Furthermore, there are classes that provide the
actual parameters for the method calls of the universal client; these parameters have
random values.

The Package Explorer component implements the exploration stage of Algorithm 1.
To implement the snapshots whose objects can be accessed throughout the exploration,
our tool maintains the corresponding trace of method calls that resulted in the snapshot.
To call a method of an object of a snapshot, our tool recreates the entire snapshot by
replaying its corresponding trace. Cloning or saving an object, in general, would not
work, as not all classes implement these methods. A recreated snapshot has similar
objects as the original snapshot, assuming that, as far as the abstraction predicates are
concerned, method calls are deterministic. To relate the objects in a snapshot to the
objects in its replayed copy, we use a notion of logical id for each of the objects of the
snapshots; objects that have the same logical ids are treated as copy of one another.

To ensure that our exploration does not prematurely identify objects as non-repeatable
in a rule, we use a repetitive object creation scheme in our exploration: if a creator
method is chosen to be executed, we invoke the method n > 1 number of times con-
secutively, and only after that compute the rule with respect to the snapshot before
consecutive method calls and the snapshot after that. Also, after the initial exploration
stage, to achieve a good coverage, similar to other approaches [3], our system ensures
that all possible method calls on all objects of all rules in the repository are executed
and their corresponding rules are stored in the repository.

The Heuristics component implements the algorithms in Section 4. We use the graph
data structures in the JGraphT library to implement our graph algorithms.

Limitations. While we expect our tool to work in a straightforward manner on pack-
ages that solely work on the heap (e.g., Java collections), for packages that work with
external components, the Package Abstraction part is more complex, because an en-
vironment needs to be set up. Also, the feasibility of the replay mechanism should be
considered. These limitations are inherent to dynamic approaches.

6 Experiences

We have used our tool to compute the DPI of three Java packages: JDBC, ArrayList,
and HashSet. While our tool usually identifies the expected set of rules for the DPI,
some of these rules could, in principle, be more general. The converse, however, has
never happened in our experiments. A rule computed by our tool always corresponded
to an actual behaviour of the package.

Dynamic Package Interfaces 273

Table 1. Duration and number of rules after different stages in computing DPIs of three packages.
Information, except for the last column, correspond to average values of five runs.

Exp
lor

ati
on

Extr
ap

ola
tio

n

M
erg

ing

Iso
lat

ion

Exp
lor

ati
on

Extr
ap

ola
tio

n

M
erg

ing

Iso
lat

ion

Package Threshold # Time (min:sec) #Rules
ArrayList 200000 010:37 000:03 000:00 000:00 572 299 29 15 (once 14)
HashSet 200000 168:26 000:23 000:01 000:00 1140 503 34 16
JDBC 1200 032:01 000:57 000:05 000:00 2465 2370 29 26 (twice 25)

Table 1 shows the results of our experiments for each of these packages. The mea-
surements for each package are for the average of five runs on a dual-core CPU Win-
dows 7 desktop machine with 8 GB of RAM. In all our experiments, we have set JVM
options to use 5GB of physical memory. For each package, Table 1 presents the time
taken and the number of rules after each stage of the computation, namely after the
exploration, extrapolation, merge, and exception isolation phases.

JDBC. In Section 2, we already presented some of the rules of the DPI of JDBC. In
our experiments, the universal client connects to a local Apache Derby database. We
use a key-value table that is manipulated through INSERT, DELETE, and SELECT
SQL commands with random values, via JDBC. We are thus assuming that the DPI
of the JDBC package is independent of the schema of databases to which it connects.
This is justified by our interest in determining the relationship of interacting objects of
a package, and not its interaction with external components. Increasing the threshold
value to larger than 1200 would cause out-of-memory exceptions. Our tool computed
26 rules in three out of five runs; in the other two runs, it computes 25 rules. The
missing rule in both cases was the rule for the close method when called over an open
ResultSet that is connected to a closed Statement and a closed Connection.

ArrayList. We consider two classes of ArrayList: Array and its internal class Itr,
which implements Java Iterator. Besides the methods of these classes that create
objects, we consider the Add method of Array, and the next and remove methods
of Itr. We provide a reference predicate, iter o f , to the system, denoting which Itr

object belongs to which Array object. We provide four scalar predicates to the sys-
tem: empty ≡ size > 0, which determines whether an Array object is empty or not,
nextCalled ≡ lastRet � −1, which determines whether the remove method of an Itr

object can be called (i.e., if next has been called), mover ≡ size > cursor, which de-
termines whether an Itr has traversed all members of its corresponding Array or not,
and sync ≡ modCount = expectedModCount, which determines whether an Array ob-
ject and an Itr object agree on their version numbers (i.e., if the Array object has been
modified by another Itr object). Lastly, we use integers as the domain of Array.

Our tool computed 15 rules that cover all possible behaviour of ArrayList. It once
missed computing the rule for next when called on an iterator whose all predicates are
true and remain true after the method call. Figure 7 shows the object mapping of one of
the three rules that our tool computes for the removemethod in one of our experiments.

274 S. Esmaeilsabzali et al.

ArrayList[A]

∗

nextCalled = F
mover = T
sync = F

Itr[B]

∗

nextCalled = T
mover = T
sync = F

Itr[G]

∗

nextCalled = T
mover = F
sync = F

Itr[L]

∗

nextCalled = T
mover = T
sync = F

Itr[M]

∗

nextCalled = T
mover = F
sync = F

Itr[E]

∗

nextCalled = F
mover = T
sync = T

Itr[D]

∗

mover = T
nextCalled = T

sync = Tsync = T

nextCalled = F
mover = T

∗

mover = T
sync = F

nextCalled = F
mover = F
sync = F

∗

nextCalled = F

many ∗ many many many

empty = F

one many manymanymany many

Itr[C] Itr[H]

Itr[J] Itr[K]

ArrayList[I]

empty = F

∗

nextCalled = T
mover = F
sync = T

Itr[F]

Fig. 7. The object mapping of a rule for remove method of ArrayList. “T ” and “F” represent
true and f alse, respectively. For clarity, the reference edges are not labelled with iter of .

The role mapping, not shown here, changes only the nextCalled predicate of the callee
iterator object whose all scalar predicates are true. This rule is interesting because it
demonstrates that the object mapping of a rule can be non-deterministic. The rule could
have been more general, however. First, in the source nested object graph, the object
with nextCalled = false, mover = false, and sync = false is missing. Second, the object
mapping from B to J could have had multiplicity “many”. And lastly, there could have
been an object mapping from D to L with multiplicity “many” denoting that some of
the mover, sync objects whose nextCalled is false become non-movers.

HashSet. The DPIs of HashSet and ArrayList are computed using similar predicates,
but HashSet uses a HashMap class internally, instead of a resizable array. The DPIs of
two package are also somewhat different. The main difference is that the add method
of HashSet does not change the heap if its input parameter is duplicate; thus, there is
an extra rule that captures this behaviour. Another difference is that the mover predicate
of an Iterator object of a HashSet only correctly denotes whether it has traversed
all elements of its corresponding HashSet if its sync predicate is true. This is because
unlike an ArrayList object, whose iterator objects maintain an index of the underlying
array of the ArrayList object, the iterators of a HashSet objects needs to traverse the
underlying hash table of its internal HashMap object. Lastly, computing the DPI of
HashSet takes significantly longer than ArrayList’s, both because of their different
underlying data structures and because significantly more reflections are needed when
evaluating the abstraction predicates of HashSet.

7 Conclusion

We have introduced the notion of dynamic package interfaces (DPI). DPIs provide a
succinct way to describe valid usage patterns for a package. The DPI of a package is
a set of rules, each of which specifies the effect of a method call over a general con-
figuration of a set of objects. We have developed a dynamic tool that computes an

Dynamic Package Interfaces 275

approximation of the DPI of a Java package automatically, given a set of abstraction
predicates. The rules of such a DPI generalize the usual examples used in the documen-
tation of the Java package and can be traced to problems discussed in online forums.

A DPI captures both the inter-object aspects of the dynamic behaviour of the classes
of a package, as well as the intra-object aspects of individual classes of the package,
relative to a set of scalar and reference predicates, even when unboundedly many objects
interact.2 In contrast, previous dynamic techniques primarily focus on either deriving
intra-object specifications for one object or deriving finite state machines that capture
the interaction pattern of a finite number of objects [3, 7, 8, 11–13].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS ’96. pp. 313–321. IEEE (1996)

2. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java
classes. In: POPL’05. pp. 98–109. ACM (2005)

3. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases for specifi-
cation mining. In: ISSTA. pp. 85–96. ACM (2010)

4. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal Methods
in System Design 19(1), 45–80 (2001)

5. Esmaeilsabzali, S., Majumdar, R., Wies, T., Zufferey, D.: Dynamic package interfaces - ex-
tended version. CoRR abs/1311.4934 (2013)

6. Esmaeilsabzali, S., Majumdar, R., Wies, T., Zufferey, D.: A notion of dynamic interface for
depth-bounded object-oriented packages. CoRR abs/1311.4615 (2013)

7. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by graph trans-
formation. In: ICSE. pp. 430–440. IEEE (2009)

8. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for java container
classes. IEEE Trans. Software Eng 33(8), 526–543 (2007)

9. Henzinger, T., Jhala, R., Majumdar, R.: Permissive interfaces. In: Wermelinger, M., Gall, H.
(eds.) ESEC/SIGSOFT FSE. pp. 31–40. ACM (2005)

10. Nanda, M., Grothoff, C., Chandra, S.: Deriving object typestates in the presence of inter-
object references. In: OOPSLA. pp. 77–96. ACM (2005)

11. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-based min-
ing of multiple object usage patterns. In: ESEC/SIGSOFT FSE. pp. 383–392. ACM (2009)

12. Pradel, M., Jaspan, C., Aldrich, J., Gross, T.: Statically checking API protocol conformance
with mined multi-object specifications. In: ICSE’12. pp. 925–935. IEEE (2012)

13. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from large
method traces. In: ASE. pp. 371–382. IEEE Computer Society (2009)

14. Strom, R.E., Yemini, S.A.: Typestate: A programming language concept for enhancing soft-
ware reliability. IEEE Transactions on Software Engineering 12(1), 157–171 (Jan 1986)

15. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. 18(3-4), 263–292 (2011)

16. Whaley, J., Martin, M., Lam, M.: Automatic extraction of object-oriented component inter-
faces. In: ISSTA. pp. 218–228 (2002)

17. Wies, T., Zufferey, D., Henzinger, T.: Forward analysis of depth-bounded processes. In: FOS-
SACS. LNCS, vol. 6014, pp. 94–108. Springer (2010)

2 We use the terms “inter-object” and “intra-object” in a similar sense as in OO design [4].

SMT-Based Checking of SOLOIST
over Sparse Traces

Marcello Maria Bersani1, Domenico Bianculli2, Carlo Ghezzi1, Srd̄an Krstić1,
and Pierluigi San Pietro1

1 DEEP-SE group - DEIB - Politecnico di Milano, Italy
{bersani,ghezzi,krstic,sanpietr}@elet.polimi.it

2 SnT Centre - University of Luxembourg, Luxembourg
domenico.bianculli@uni.lu

Abstract. SMT solvers have been recently applied to bounded model checking
and satisfiability checking of metric temporal logic. In this paper we consider
SOLOIST, an extension of metric temporal logic with aggregate temporal modal-
ities; it has been defined based on a field study on the use of specification pat-
terns in the context of the provisioning of service-based applications. We apply
bounded satisfiability checking to perform trace checking of service execution
traces against requirements expressed in SOLOIST. In particular, we focus on
sparse traces, i.e., traces in which the number of time instants when events occur
is very low with respect to the length of the trace.

The main contribution of this paper is an encoding of SOLOIST formulae into
formulae of the theory of quantifier-free integer difference logic with uninter-
preted function and predicate symbols. This encoding paves the way for efficient
checking of SOLOIST formulae over sparse traces using an SMT-based verifica-
tion toolkit. We report on the evaluation of the proposed encoding, commenting
on its scalability and its effectiveness.

1 Introduction

Bounded satisfiability checking [23] (BSC) is a verification technique that complements
bounded model checking [9] (BMC): instead of a customary operational model (e.g.,
a state-transition system) used in BMC, BSC supports the analysis of a descriptive
model, denoted by a set of temporal logic formulae. With BSC, verification tasks be-
come suitable instances of the satisfiability problem for quite large formulae (written
in a certain logic), which comprehend the model of the system to analyze as well as
the requirement(s) to verify. BSC has been successfully applied in the context of metric
temporal logics and implemented in ZOT [23], a verification toolset based on SAT- and
SMT-solvers, developed within our group.

In this paper we apply BSC to trace checking for the language SOLOIST (Specifica-
tiOn Language fOr servIce compoSitions inTeractions) [8], a metric temporal logic with
new, additional temporal modalities that support aggregate operations on events occur-
ring in a given time window. SOLOIST has been defined based on the results of a field
study [7] on the type of property specification patterns used to express requirements
in the context of service-based applications. The study—performed by some of the au-
thors in collaboration with an industrial partner—analyzed more than 900 requirements

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 276–290, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

SMT-Based Checking of SOLOIST over Sparse Traces 277

specifications, extracted both from research papers and industrial data, and led to the
identification of a new class of specification patterns, in addition to the ones already
known in literature [13,17]. The new class of patterns is specific to the domain of ser-
vice provisioning and contains seven patterns, among which there are: average response
time (hereafter referred to as S1), count of the number of events (S2), average/maximum
number of events (S3/S4).

SOLOIST can be used to specify both functional and quality-of-service requirements
of the interactions of a composite service with its partner services. As for the verifi-
cation of properties expressed in SOLOIST, in [8] we first presented a translation of
SOLOIST into LTL that, under certain assumptions, guaranteed its decidability based
on well-known results in temporal logic. Nevertheless, this translation was only a proof
of concept and was not meant to be used for implementing efficient verification pro-
cedures. In subsequent work [18], some of the authors described an approach for per-
forming trace checking1 of service execution traces against requirements expressed in
SOLOIST. The approach in [18] defined the trace checking problem in terms of the BSC
problem for metric temporal logic, where the descriptive model of system executions
is represented by traces, while properties are expressed in SOLOIST; in particular, it
translates SOLOIST into CLTLB(D) [4], an extension of PLTLB (Propositional Linear
Temporal Logic with both future and past modalities) augmented with atomic formulae
over a constraint system D ; the resulting CLTLB(D) formula is then checked by ZOT.
The main limitation of the approach presented in [18] is that it does not scale well when
the trace to check is sparse, i.e., when the number of time instants in which events oc-
cur is very low with respect to the length of the trace. Notice that the case of sparse
traces is not rare in the logs of service-based applications. For example, the log used
for the Business Process Intelligence Challenge 2012 (BPIC 2012) [12] was taken from
a Dutch Financial Institute; it contains 13087 traces, whose average number of time
instants in which events occur is 20.0347: this represents (on average) the 0.003% of
the total number of time instants.

The main contribution of this paper is a new encoding of SOLOIST, targeting for-
mulae of quantifier-free difference logic with uninterpreted function and predicate sym-
bols (QF-EUFIDL), for which there exist efficient decision procedures to be used with
SMT solvers. As confirmed by the experimental evaluation we detail in the paper, this
new encoding targeting QF-EUFIDL proves to be scalable and effective for checking
SOLOIST formulae over sparse traces.

Related Work. There are only few approaches that deal with the verification of prop-
erties involving aggregate modalities. Basin et al. [2] define an extension of metric
first-order temporal logic that supports aggregation. The language can express aggre-
gate properties over the values of the parameters of relations (corresponding to sys-
tem events), while SOLOIST expresses aggregate properties on the occurrences of the
events. Finkbeiner et al. [15] describe an approach to collect statistics over run-time ex-
ecutions. They use LTL extended with the capability to compute aggregate properties of
the trace. However, this specification language provides only limited support for timing
information; unlike SOLOIST, it cannot express properties on a certain subset of an

1 Trace checking is also called trace validation [20] or history checking [14].

278 M.M. Bersani et al.

execution trace. This work is also related to approaches for SAT/SMT-based trace
checking and bounded model checking, which is usually done over properties expressed
in conventional temporal logics. For example, the SAT-based approach for bounded
model checking proposed in [24] verifies Metric Temporal Logic (MTL) properties of
discrete timed automata. SMT-based techniques like those proposed in [5,6,16] deal
with verification of MTL over real-valued words.

The rest of the paper is structured as follows. Section 2 provides a brief introduc-
tion to SOLOIST and QF-EUFIDL. The main contribution of the paper is presented
in Sect. 3, where we present the encoding of SOLOIST into QF-EUFIDL over a fi-
nite temporal structure and assess its complexity. Section 4 reports on the evaluation
of an implementation of the proposed encoding, performed to assess its scalability and
effectiveness. Section 5 gives some concluding remarks.

2 Background

2.1 SOLOIST at a Glance

In this section we provide a brief overview of SOLOIST; for the rationale behind the
language and a detailed explanation of its semantics see [8].

The syntax of SOLOIST is defined by the following grammar:
φ ::= p | ¬φ | φ ∧φ | φUIφ | φSIφ | CK

�n(φ) | U
K,h
�n (φ) |MK,h

�n (φ) |DK
�n(φ ,φ)

where p ∈ Π , with Π being a finite set of atoms; I is a nonempty interval over N;
n,K,h range over N; � ∈ {<,≤,≥,>,=}. We restrict the arguments φ of modalities
C,U,M,D to atoms in Π .

The UI and SI modalities are, respectively, the metric “Until” and “Since” opera-
tors. Additional temporal modalities can be derived using the usual conventions; for
example “Always” is defined as GIφ ≡ ¬(�UI¬φ) and “Eventually in the Past” as
PIφ ≡ �SIφ , where � means “true”. The remaining modalities are called aggregate
modalities and are used to express the specification patterns S1–S4 mentioned above.
The CK

�n(φ) modality states a bound (represent by � n) on the number of occurrences
of an event φ in the previous K time instants: it expresses pattern S2. The UK,h

�n (φ)
(respectively, MK,h

�n (φ)) modality expresses a bound on the average (respectively, max-
imum) number of occurrences of an event φ , aggregated over the set of right-aligned
adjacent non-overlapping subintervals within a time window K; it corresponds to pat-
tern S3 (respectively, S4), as in “the average/maximum number of events per hour in
the last ten hours”. A subtle difference in the semantics of the U and M modalities is
that M considers events in the (possibly empty) tail interval, i.e., the leftmost observa-
tion subinterval whose length is less than h, while the U modality ignores them. The
DK

�n(φ ,ψ) modality expresses a bound on the average time elapsed between a pair of
specific adjacent events φ and ψ occurring in the previous K time instants; it can be
used to express pattern S1.

The formal semantics of SOLOIST is defined on timed ω-words [1] over 2Π ×N.
A timed sequence τ = τ1τ2 . . . is an infinite sequence of values τi ∈ N with τi > 0
satisfying τi < τi+1, for all i ≥ 1, i.e., the sequence increases strictly monotonically.

SMT-Based Checking of SOLOIST over Sparse Traces 279

(w, i) |= p iff p ∈ σi
(w, i) |= ¬φ iff (w, i)
|= φ
(w, i) |= φ ∧ψ iff (w, i) |= φ ∧ (w, i) |= ψ
(w, i) |= φSIψ iff for some j < i,τi− τ j ∈ I,(w, j) |= ψ and for all k, j < k < i,(w,k) |= φ
(w, i) |= φUIψ iff for some j > i,τ j− τi ∈ I,(w, j) |= ψ and for all k, i < k < j,(w,k) |= φ
(w, i) |= CK

�n(φ) iff c(τi−K,τi,φ) � n and τi ≥ K

(w, i) |= UK,h
�n (φ) iff

c(τi−' K
h (h,τi,φ)
' K

h (
� n and τi ≥ K

(w, i) |=MK,h
�n (φ) iff max

{⋃⌊ K
h

⌋
m=0 {c(lb(m),rb(m),φ)}

}
� n and τi ≥ K

(w, i) |=DK
�n(φ ,ψ) iff

∑(s,t)∈d(φ ,ψ,τi,K)(τt − τs)

|d(φ ,ψ ,τi,K)| � n and τi ≥ K

where c(τa,τb,φ) = |{s | τa < τs ≤ τb and (w,s) |= φ} |, lb(m) = max{τi−K,τi− (m+1)h}, rb(m) = τi−mh, and
d(φ ,ψ ,τi,K) = {(s, t) | τi−K < τs ≤ τi and (w,s) |= φ , t = min{u | τs < τu ≤ τi,(w,u) |= ψ}}

Fig. 1. Formal semantics of SOLOIST

A timed ω-word over alphabet 2Π is a pair (σ ,τ) where σ = σ1σ2 . . . is an infinite
word over 2Π and τ is a timed sequence. A timed language over 2Π is a set of timed
words over the same alphabet. Notice that there is a distinction between the integer
position i in the timed ω-word and the corresponding timestamp τi. Figure 1 defines
the satisfiability relation (w, i) |= φ for every timed ω-word w, every position i≥ 0 and
for every SOLOIST formula φ . For the sake of simplicity, hereafter we express the U

modality in terms of the C one, based on this definition: UK,h
�n (φ) ≡ C

'K
h (·h

�n·'K
h (
(φ), which

can be derived from the semantics in Fig. 1.
We remark that the version of SOLOIST presented here is a restriction of the original

one in [8]: to simplify the presentation in the next sections, we dropped first-order
quantification on finite domains and limited the argument of the D modality to only
one pair of events; as detailed in [8], these assumptions do not affect the expressiveness
of the language.

2.2 QF-EUFIDL

The target language of our encoding is a quantifier free integer difference logic formula
with uninterpreted function and predicate symbols (QF-EUFIDL). Since trace check-
ing only deals with finite traces, we require the outcome of the encoding to be a QF-
EUFIDL formula that is satisfiable if and only if there exists a finite timed word that
satisfies the translated SOLOIST formula. Such a logic combines decision procedures
from two theories, namely theory of equality and uninterpreted functions and theory of
integer difference logic. This combination is shown to be decidable, and the satisfiabil-
ity problem is NP-complete, according to Nelson-Oppen Theorem [21]. Well-formed
QF-EUFIDL formulae conform to the following grammar: φ ::= p | t = t | ¬φ | φ ∨φ ,
with t ::= v | f (t, . . . , t), where p is an atomic proposition, v is a variable and f is a
function. An example is f (x) = y∧ x = g(y)∧ (¬p∨ q), where x and y are variables
while p and q are atomic propositions. The decision procedure for this logic combines
SAT solving (for the propositional formulae) with an algorithm that checks equalities
by building a tree representation of their equivalence classes. Integer difference Logic is
a restriction of the theory of linear arithmetic and can be represented with the structure

280 M.M. Bersani et al.

(Z,=,(<d)d∈Z), for which decidability has been proven in [11]; each <d is a binary
relation defined as x <d y↔ x < y+d, and notations like x < y, x≤ y, x≥ y, x > y and
x = y+d are abbreviations for x <0 y, x <0 y∨x = y, ¬(x <0 y), ¬(x <0 y∨x = y) and
y <d−1 x∧ x <d+1 y, respectively.

Although LTL with arithmetical constraints is proved [11] undecidable over infinite
words, and QF-EUFIDL involves variables over discrete infinite domains, our particular
use is bounded, because we deal with finite words; hence, the decidability is retained.

3 Encoding SOLOIST into QF-EUFIDL

SOLOIST can be seen as MTL over discrete time, enriched with aggregate modalities.
MTL satisfiability checking over discrete time [23] can be efficiently performed by re-
ducing semantics of UI and SI to suitable propositional formulae which take advantage
from the information about the metric over time defined by I. In [23], however, authors
consider ω-words as models for MTL formulae without timestamps. Therefore, the
temporal structure required to translate the semantics of a formula such as �U[10,10]φ
is at least as long as ten discrete positions, because no timing information is available
from the model. In this paper, we devise a new way to represent information about tim-
ing constraints defined in metric temporal modalities (including the aggregate ones);
this is an improvement on the method proposed in [23]. The encoding presented af-
terwards is an extension of the one defined in [3], which allows one to capture timed
ω-words. As a consequence, models do not require as many discrete positions as needed
to build the discrete temporal structure in [23], because the measure of time distances is
realized through arithmetical variables that store how much time elapses among consec-
utive discrete positions. Intuitively, by adding an arithmetical variable τ ∈N measuring
the elapsed time, formula�U[10,10]φ holds at position i if, for instance, at position i+1,
φ holds and the time τ elapsed between position i and position i+ 1 is equal to 10. To
realize this counting mechanism with variables and arithmetical operators, we require
a language that incorporates arithmetics, hence our choice of QF-EUFIDL as the target
language of our encoding.

We use the following QF-EUFIDL structure (Z,F,P,V,=,<) where F contains func-
tions of the form f : Z+

0 → Z. Each function represents arithmetical variable used in the
encoding. Set P contains boolean functions of the form p : Z+

0 →{�,⊥}; each of them
represents a predicate whose value is defined over a nonnegative integer domain. Set
V is a subset of F containing nullary functions returning a value from Z. Using this
structure we can define a finite representation of models of SOLOIST formulae. Since
our structure is ordered, let 0,1,2, . . . ,H be a finite linear order, with H corresponding
to the length of the finite prefix of the timed ω-word satisfying a SOLOIST formula.
The linear order represents a temporal structure and since it is a subset of the domain of
both the predicates from P and the functions from F , we can interpret them as having
“time dependent” values. On the other hand, we can interpret elements of V as being
time invariant, i.e., have constant value over the linear order.

SMT-Based Checking of SOLOIST over Sparse Traces 281

In the encoding, we use the notation �X� to denote any additional predicate intro-
duced in P to represent an entity X . We denote with |X | an additional arithmetical
variable in F representing an arithmetical entity X . We use �X�i and |X |i as a shorthand
for �X�(i) and |X |(i), respectively. The truth of �X�i is interpreted as entity X holding
at time instant i in an execution trace (or, equivalently, a timed word).

We assume SOLOIST formulae to be in positive normal form (PNF). The PNF of a
formula is an equivalent formula where negation may only occur on atoms, i.e., atomic
propositions (see [22]). PNF can be obtained by propagating the negation towards the
atoms, by means of converting a negated operator into its dual version and negating its
operand(s). To do so, we introduce the connective ∨, dual of ∧, as well as the dual ver-
sions of all temporal modalities. The dual of UI is “Release” RI: φRIψ ≡¬(¬φUI¬ψ);
the dual of SI is “Trigger” TI : φTIψ ≡ ¬(¬φSI¬ψ)2. A negation in front of one of the
CK

�n,U
K,h
�n ,M

K,h
�n ,D

K
�n modalities becomes a negation of the relation denoted by the �

symbol, hence no dual version is needed for them.
Let Φ be a SOLOIST formula in PNF. Its encoding is a set of QF-EUFIDL con-

straints over the predicates from P and functions from F . We introduce a predicate �ϕ�
for each subformula ϕ of Φ .

We first define the constraints for timing information. As defined in Sect. 2, the
temporal structure contains an integer timestamp. An arithmetical variable |τ| denotes
the absolute time at positions i = 0 . . .H. Let Ctime be the conjunction of the following
constraints:

Position i Timing information Description
0 . . .H− 1 |τ|i < |τ|i+1 strict monotonicity

(1)

Next, we define constraints for atomic propositions and propositional operators; their
conjunction is denoted as Cprop (where↔ stands for a double implication):

Position i Propositional operators Description

0 . . .H �p�i ↔ p(i) atomic propositions

0 . . .H �¬p�i ↔¬p(i) negation

0 . . .H �φ ∧ψ�i ↔ �φ�i ∧ �ψ�i conjunction

(2)

Notice that for any sub-formula of the form φ ∧ψ in a SOLOIST formula Φ we add in
the resulting encoding, instances of formulae from the third row of (2). This encoding
completely conforms to the one in [9].

As for the modality UI , we add to the encoding, for any subformula of the form3

φU(a,b)ψ in Φ , the following formulae, denoted as Ctemp−until:

Position i Temporal operator Description

0 . . .H− 1 �φU(a,b)ψ�i ↔
∨H

k=i+1(�ψ�k∧ “Until”

a < |τ|k−|τ|i∧|τ|k−|τ|i < b∧∧k−1
p=i+1�φ�p)

H �φU(a,b)ψ�H ↔⊥ “Until” at position H

(3)

2 Note that the strict semantics of UI and SI preserve the duality of RI and TI also on finite
words.

3 A closed interval [a,b] over N can be expressed as an open one of the form (a−1,b+1).

282 M.M. Bersani et al.

This is a straightforward encoding of the semantics of the “Until” operator. The dis-
junction in the first row represents a case split on all possible future time instants with
respect to i. For each such time instant k a conjunction is created with �ψ�k stating
that ψ subformula has to hold at time instant k; moreover, φ needs to hold in all in-
stants from i+ 1 to k− 1, i.e.,

∧k−1
p=i+1�φ�p. Formula (a < |τ|k−|τ|i)∧ (|τ|k−|τ|i < b)

enforces the timing constraint of the U(a,b) modality, i.e., if τk− τi ∈ (a,b).
The case for the SI modality is similar to the above. For any sub-formula of the form

SI in Φ we add to the encoding the following formulae, denoted as Ctemp−since:

Position i Temporal operator Description

0 �φS(a,b)ψ�0 ↔⊥ “Since” at position 0

1 . . .H �φS(a,b)ψ�i ↔
∨i−1

k=0(�ψ�k∧ “Since”

a < |τ|i−|τ|k∧|τ|i−|τ|k < b∧∧i−1
p=k+1�φ�p)

(4)

The conjunction of all formulae from Ctemp−until and Ctemp−since is denoted as Ctemp.
The C modality expresses a bound on the number of occurrences of a certain event in

a given time window; in the encoding, it comes natural to use arithmetical variables as
counters of the events. For each subformula of the form CK

�n(φ), we add an arithmetical
variable |cφ | to F , constrained with the following formulae:

Position i C modality constraints Description

0 |cφ |0 = 0 initialization

0 . . .H− 1 �φ�i → (|cφ |i+1 = (|cφ |i + 1)) φ occurs at i

0 . . .H− 1 ¬�φ�i → (|cφ |i+1 = |cφ |i) φ does not occur at i

(5)

The constraint in the first row initializes the arithmetical variable to zero at time in-
stant 0. The following H constraints (in the second row) force |cφ | to increase by 1 at
time instant i+ 1, if φ occurs at time instant i. The last H constraints from the third
row refer to the opposite situation: when there is no occurrence of the event φ at time
instant i, the value of |cφ |i+1 is constrained to have the same value as |cφ |i. Let us de-
note, for a C modality that has φ as a sub-formula, the conjunction of these constraints
as Cc−cons(φ). Besides Cc−cons(φ), we add to the encoding, for each i = 0 . . .H, the
following constraints, denoted as Cc−form(φ):

�CK
�n(φ)�i ↔

min{i,K}∨
z=0

|cφ |i+1−|cφ |i−z � n∧|τ|i−|τ|i−z−1 > K∧|τ|i−|τ|i−z ≤ K

This formula characterizes each time instant i of the temporal structure in which the
C modality is true. The disjunction is a case split for each position z in the past with
respect to the current position i. Notice that, if K > i we need to consider all previous
positions in the temporal structure; otherwise, it is enough to consider K previous time
instants, since in the worst case all timestamps can increase by at least one. Each case is
a conjunction where sub-formula |τ|i−|τ|i−z−1 > K ∧|τ|i−|τ|i−z ≤ K determines the
correct position on the left side of the time window, while |cφ |i+1−|cφ |i−z � n checks
that the C modality holds in the considered time window.

SMT-Based Checking of SOLOIST over Sparse Traces 283

As for the M modality, for each subformula of the form MK,h
�n (φ), we introduce the

same arithmetical variable |cφ | and the constraintCc−cons(φ) (now denoted Cm−cons(φ))
as for the C modality. Additionally, we add arithmetical variables |p0| . . . |p'K

h (+1| to the

set F for each M modality sub-formula of Φ . The encoding of the M modality depends
on the operator �; for example, when the comparison operator is “<” we have the
following constraints, denoted Cm−form(φ):

�MK,h
<n (φ)�i ↔

'K
h (∧

y=0

(min{i,h·(y+1)}∨
z=0

(|py+1|i = |cφ |i+1−|cφ |i−z∧|py+1|i−|py|i < n∧

|τ|i−|τ|i−z−1 > (y+ 1) ·h∧|τ|i−|τ|i−z ≤ (y+ 1) ·h)
)
∧|p0|i = 0

In this formula, in each conjunct y we perform a case split, similar to the case of the C
modality, but with a different time window: (y+ 1) · h. We assign the result of count-
ing to the variable |py+1| in each conjunct. Therefore, values |p0|i . . . |p'K

h (+1|i contain

the number of occurrences of φ in time windows 0,h,2h, . . . ,'K
h (·h,K with respect to

position i, respectively. With subformula |py+1|i−|py|i < n, we check that in each ob-
servation subinterval with respect to i there is a bounded number of occurrences. The
other cases of � can be defined in a similar way.

The D modality expresses a bound on the average distance between the occurrences
of a pair of events in a given time window. Since events can occur multiple times in
the temporal structure, a pair of events (φ ,ψ) may have multiple instances. We call
a pair of the form (�φ�i,�ψ� j) an instance if there is an occurrence of event φ at time
instant i and an occurrence of event ψ at time instant j, with i < j. We call such instance
open at time instant q if i ≤ q < j. Otherwise, the instance is closed at time instant q.
The distance of a closed pair instance is j− i; for an open pair at time instant q, the
distance is q− i. A time window defined for a DK

�n(φ ,ψ) (sub-)formula evaluated at
time instant q is bounded by the time instants q+ 1 and q−K + 1. It has a left-open
(respectively, right-open) pair in position q of a temporal structure, if there is an open
instance of (φ ,ψ) at time instant q−K+1 (respectively, q+1). Depending on whether
a D modality (sub-)formula contains either (left- and/ or right-) open pairs or none,
there are four distinct cases to take into account for the encoding.

For each subformula of the form DK
�n(φ ,ψ), we add to F five arithmetical variables:

– |gφ ,ψ |: it assumes value 1 in the time instants following an occurrence of φ and is
reset to 0 after an occurrence of ψ . It acts as a flag denoting the time instants during
which the event pair instance is open.

– |hφ ,ψ |: in each time instant, it contains the number of previously seen closed pair
instances. It is increased after every occurrence of ψ .

– |sφ ,ψ |: At each time instant, its value corresponds to the sum of distances of all
previously occurred pair instances. It is increased after every time instant when
either |gφ ,ψ | is 1 or φ holds.

– |aφ ,ψ |: it keeps track of the sum of the distances of all previously occurred closed
pair instances.

– |bφ ,ψ |: it has the values that will be assumed by variable |sφ ,ψ | at the next occur-
rence of ψ (more details below).

284 M.M. Bersani et al.

τ

gφ ,ψ
hφ ,ψ
sφ ,ψ
aφ ,ψ
bφ ,ψ

0

0
0
0
0
3

0

0
0
0
0
3

φ
2

0
0
0
0
3

0

1
0
1
0
3

0

1
0
2
0
3

ψ
5

1
0
3
0
3

0

0
1
3
3
8

0

0
1
3
3
8

0

0
1
3
3
8

φ
9

0
1
3
3
8

0

1
1
4
3
8

0

1
1
5
3
8

ϕ
12

1
1
6
3
8

0

1
1
7
3
8

ψ
14

1
1
8
3
8

0

0
2
8
8
10

0

0
2
8
8

10

φ
17

0
2
8
8
10

0

1
2
9
8

10

ψ
19

1
2

10
8

10

0

0
3
10
10

Fig. 2. Example of trace for the D modality, with the corresponding arithmetical variables used
in the encoding

Variables |aφ ,ψ |, |bφ ,ψ |, and |hφ ,ψ | are directly used in the encoding of the D modality
(sub-)formulae, while variables |gφ ,ψ | and |sφ ,ψ | are helper variables, used to determine
the values of the other variables. Figure 2 shows a portion of a trace and the values
assumed by these variables: the uppermost row shows instants where atoms φ ,ψ , and
ϕ hold; the second row shows the value of |τ| at each time instant; the other rows show
the values of the variables at each time instant.

For each DK
�n(φ ,ψ) modality sub-formula we define the set of constraints

Cd−cons(φ ,ψ):

Position i D modality constraints Description

0 |gφ ,ψ |0 = 0∧|hφ ,ψ |0 = 0∧|aφ ,ψ |0 = 0∧|sφ ,ψ |0 = 0 variable
initialization

0 �Beq�0 |bφ ,ψ |
initialization

0 . . .H−1
�φ�i → (|gφ ,ψ |i+1 = 1∧|sφ ,ψ |i+1 = |sφ ,ψ |i +(|τ|i+1−|τ|i)∧

|hφ ,ψ |i+1 = |hφ ,ψ |i∧|aφ ,ψ |i+1 = |aφ ,ψ |i)
φ occurs at i

0 . . .H−1

�ψ�i → (|gφ ,ψ |i+1 = 0∧|hφ ,ψ |i+1 = |hφ ,ψ |i +1∧
|aφ ,ψ |i+1 = |sφ ,ψ |i∧|sφ ,ψ |i+1 = |sφ ,ψ |i∧
|bφ ,ψ |i = |sφ ,ψ |i∧ �Beq�i+1)

ψ occurs at i

0 . . .H−1

¬�φ�i∧¬�ψ�i → (|gφ ,ψ |i+1 = |gφ ,ψ |i∧|hφ ,ψ |i+1 = |hφ ,ψ |i∧
|aφ ,ψ |i+1 = |aφ ,ψ |i∧
(|gφ ,ψ |i = 1→|sφ ,ψ |i+1 =

|sφ ,ψ |i +(|τ|i+1−|τ|i))∧
|gφ ,ψ |i = 0→|sφ ,ψ |i+1 = |sφ ,ψ |i))

neither φ nor ψ
occurs at i

(6)

The formula in the first row of (6) initializes all variables at time instant 0 except |bφ ,ψ |.
In the second row we introduce a new predicate �Beq�; it has the following constraints:

Position i �Beq� predicate constraints Description

0 . . .H− 1 �Beq�i ↔ �ψ�i ∨ ((|bφ ,ψ |i+1 = |bφ ,ψ |i)∧ �Beq�i+1) propagation of
value of |bφ ,ψ |

H �Beq�H ↔� last state constraint

(7)

SMT-Based Checking of SOLOIST over Sparse Traces 285

These constraints force the values of the variables |bφ ,ψ |i to stay the same in all the
consecutive time instants until the first occurrence of ψ or until the end of the trace; the
second constraint in (7) deals with traces without occurrences of ψ .

The third constraint in (6) determines the value of variables in the next time instant,
upon occurrence of an event φ at time instant i. Variable |gφ ,ψ |i+1 is set to 1; variable
|sφ ,ψ |i+1 is incremented by |τ|i+1− |τ|i with respect to value of the variable |sφ ,ψ |i;
variables |hφ ,ψ |i+1 and |aφ ,ψ |i+1 are constrained not to change with respect to value of
their counterparts at time instant i. The fourth constraint determines how the variables
are updated when an event ψ occurs at time instant i: variable |gφ ,ψ |i+1 is set to 0; vari-
ables |bφ ,ψ |i, |aφ ,ψ |i+1, and |sφ ,ψ |i+1 are set to be equal to |sφ ,ψ |i. Moreover, �Beq�i+1

is constrained to hold, forcing values of |bφ ,ψ | j to stay the same in all the consecutive
time instants j > i, until the next occurrence of ψ . The constraints in the fifth row of (6)
cover the cases when neither φ nor ψ occur at time instant i. In these cases the values of
variables |gφ ,ψ |i+1, |hφ ,ψ |i+1, and |aφ ,ψ |i+1 are constrained to have the same value as in
their counterparts at i, variable |bφ ,ψ |i+1 is unconstrained, while for |sφ ,ψ |i+1 we need to
distinguish two separate cases. If the last event of the pair is φ (denoted by |gφ ,ψ |i = 1),
then value of |sφ ,ψ |i+1 is |sφ ,ψ |i incremented by |τ|i+1−|τ|i, otherwise it is just |sφ ,ψ |i.

For any sub-formula of the form DK
�n{(φ ,ψ)} evaluated at time instant i, we add to

the encoding the constraint Cd− f orm(φ ,ψ):

�DK
�n(φ ,ψ)�i ↔

∨min{i,K}
z=0

(
(if4(|gφ ,ψ |i−z = 1) then (

|aφ ,ψ |i+1−|bφ ,ψ |i−z
|hφ ,ψ |i+1−|hφ ,ψ |i−z−1 � n)

else (
|aφ ,ψ |i+1−|aφ ,ψ |i−z

|hφ ,ψ |i+1−|hφ ,ψ |i−z
� n))

∧|τ|i−|τ|i−z−1 > K ∧|τ|i−|τ|i−z ≤ K
)

In the above formula, the outer disjunction considers all positions that are z time
instants in the past with respect to i (i.e., i− z) and checks, for each of them, if they
fit into the time window using the |τ|i− |τ|i−z−1 > K ∧ |τ|i− |τ|i−z ≤ K formula. If
one position does, the rest of the formula considers whether there is an open (φ ,ψ)
pair instance at that position which is captured by the |gφ ,ψ |i−z = 1 formula. In such a
case, we compute the total delay between all pair instances within the time window by
subtracting variable |bφ ,ψ | from |aφ ,ψ | at the appropriate positions. Since the value of
|bφ ,ψ | at each position contains the value of |sφ ,ψ | at the position of the next occurrence
of ψ , we effectively ignore the delay of the left-open pair. Otherwise, we use variable
|aφ ,ψ |, since it contains the delay from the last closed pair instance. Fractions in this
formula are used for the sake of clarity, however the actual formula conforms to IDL
due to the fact that n is a constant and A

B = n can be written as A = B+B+ . . .+B︸ ︷︷ ︸
n times

.

The final QF-EUFIDL formula obtained from the encoding of the input SOLOIST
formula Φ is the following conjunction of (possibly empty) formulae, which is supplied
to the SMT solver: �Φ�0 ∧Ctime ∧Cprop∧Ctemp ∧Cc∧Cm ∧Cd , where Cc ↔ Cc−cons∧
Cc−form, Cm ↔ Cm−cons∧Cm−form and Cd ↔ Cd−cons∧Cd−form .

4 “if A then B else C” can be written as (A∧B)∨ (¬A∧C).

286 M.M. Bersani et al.

Complexity. We provide an estimation of the size of the QF-EUFIDL formula corre-
sponding to a temporal or aggregating modality of SOLOIST. Although the syntactic
complexity of the translation is already known in the case of standard LTL temporal
modalities (e.g., [9]), we still provide a measure for UI and SI , since we rely on an
ad-hoc encoding.

Let us consider first φUIψ ; the case for φSIψ is similar. At position 0 ≤ i≤ H, the
formula in (3) has size O(H− i)2. We have then ∑H

i=0O(H− i)2 < O(H3).
Let μ be the maximum constant occurring in the SOLOIST formula and in the trace.

One variable |cφ | is required for all formulae CK
�n(φ) with the same argument φ . In

the worst case, we introduce one variable for each one. At position 0 ≤ i ≤ H, for-
mula �CK

�n(φ)�i has size O(i). We have then ∑H
i=0O(log(μ)i) < O(log(μ)H2). The U

modality is defined through C and, therefore, inherits the same syntactic complexity.
Encoding of formula MK,h

�n (φ) requires one variable |cφ |. We can reuse variable
cφ if in the original SOLOIST formula there are M formulae or C formulae with
the same argument φ . Moreover, for each M we need also 'K

h (+ 1 arithmetical vari-
ables |p0| . . . |p K

h
|. In the worst case, we introduce 'K

h (+ 2 variables for each formula

MK,h
�n (φ). At position 0≤ i≤ H, formula �MK,h

�n (φ)�i has size O(log(μ)K
h · i). We have

then ∑H
i=0O(log(μ)K

h i) < O(log(μ)K
h H2).

The set of formulae translating D is defined by the conjunction of formulae in (6)
and (7) in addition to constraint Cd− f orm. For each formula D we introduce five vari-
ables related to the pair (φ ,ψ). The size of formulae in (6) and in (7) is O(H). Con-
straint Cd− f orm requires a more careful analysis; notice that its size depends on the
parameter n because of the way formula a

b < n is expanded. At position 0 ≤ i ≤ H,
formula �DK

�n(φ ,ψ)�i has size O(log(μ)in). Then, the complexity for D is obtained by
∑H

i=0O(log(μ)in) < O(log(μ)nH2).
The size of the QF-EUFIDL encoding of a SOLOIST formula of length λ is O(λ

log(μ)(H3+ K
h H2+nH2)), as the number of sub-formulae is polynomial in λ , whereas

the size of the encoding of a trace is O(log(μ)H). In the worst-case, K = H,h = 1,
hence the overall size of the QF-EUFIDL formula encoding a trace checking problem
is O(λ log(μ)H3). Finally, we notice that the complexity of trace checking SOLOIST
formulae is NP-complete. In fact, since size is polynomial and satisfiability of QF-
EUFIDL is NP-complete, then the complexity of solving one instance of the problem
is NP; NP-hardness may easily obtained by reducing SAT to trace checking SOLOIST
formulae.

4 Evaluation

We implemented the encoding as a Common Lisp plugin for the ZOT verification
toolset5. Before reporting the results of the evaluation of the implementation of the
proposed encoding, we first define a metric to characterize the degree of sparseness for
the execution traces to be checked. Let ξ be the number of valid time instants in a trace,
i.e., the instants in which at least one event occurs. This number corresponds to the
number of positions in a timed word modeling the trace. Let ν denote the number of

5 http://code.google.com/p/zot/

http://code.google.com/p/zot/

SMT-Based Checking of SOLOIST over Sparse Traces 287

non-valid time instants, i.e., those where no event occurs. Notice that, in timed words,
these events are abstracted away by using timestamps. We can use the total length of a
trace ξ +ν to compute the degree of sparseness as ς = ξ

ξ+ν .

Scalability. To show how scalable the proposed encoding is with respect to the parame-
ters mentioned in Sect. 3, we synthesized traces using the PLG (Process Log Generator)
tool [10]. This tool can generate traces that conform to the business logic of the process
given in input, varying the trace length and the number of valid time instants. We used
a variant of the ATMFrontEnd business process example from the JBoss jBPM distribu-
tion; this process provides customers with some operations to interact with their bank
account, such as query-balance,withdraw, and deposit. For space reasons we only
report the evaluation of checking properties expressed using the C and D modalities.
We considered the two properties P1: “The number of query-balance operations per-
formed in the last 10 minutes is less than 10” and P2: “The average response time of
the query-balance operation is less than n seconds in the last 6 hours”, which can be
expressed in SOLOIST as C600

<10(QBs) and D21600
<n (QBs,QBe), respectively. Notice that

we express time in seconds and use events QBs and QBe to denote, respectively, the
start and the end of operation query-balance.

For both modalities we consider as parameter the number of valid time instants ξ ,
i.e., the length H of the temporal structure; for the D modality we also consider the
varying bound n. The plots in Fig. 3a show quadratic increase in memory usage and time
with respect to the number of valid time instants, as anticipated in Sect. 3. In addition,
the plots in Fig. 3b show that parameter n does not affect the computational time and
space. Although in the complexity analysis we theoretically determined that the size of
the encoding for the D modality linearly depends on n, the evaluation showed that in
the actual implementation this does not happen, because the SMT decision procedure
supports natively the use of multiplication of terms by a constant. This allows us to
write a more concise encoding for D modality in O(H2).

Application to a Realistic Example. We have applied our approach also to a realistic
example, a sample service composition called ACME BOT [19], whose monitoring
data are available6 as part of the “S-Cube Use Case Repository”. We reconstructed 9796
execution traces, based on the monitoring data of the corresponding service composition
instances. On each of these traces, we performed trace checking with respect to two
simple properties, one containing the C modality, and the other the D modality. In the
first case, trace checking took on average 0.672s with a standard deviation of 0.035s and
used on average 125.7MB of memory with 0.476MB standard deviation; for the checks
with the D modality, it took on average 0.813s with 0.032s standard deviation and used
on average 127.7MB of memory with 0.476MB standard deviation. On average, each
trace had 31.5 valid time instants and a total length of 39341.3; the average degree of
sparseness was then 0.08%. This example shows that our approach can efficiently check
properties of realistic service compositions.

6 http://scube-casestudies.ws.dei.polimi.it/index.php/

http://scube-casestudies.ws.dei.polimi.it/index.php/

288 M.M. Bersani et al.

0 100 200 300

0

20

40

60

ξ number of valid events

Ti
m

e
(s

)
C modality
D modality

0 100 200 300
0

1,000

2,000

ξ number of valid events

M
em

or
y

(M
B

)

C modality
D modality

(a)

0 200 400 600 800 1,000 1,200
0

2

4

6

Bound n

Ti
m

e
(s

)

SMT time
Total time

0 200 400 600 800 1,000 1,200

200

220

240

260

280

Bound n

M
em

or
y

(M
B

)
Memory

(b)

Fig. 3. Scalability of the encoding with respect to: (a) the number of valid time instants ξ in the
trace, in the case of the C and D modalities; (b) bound n, in the case of the D modality

Discussion and Trade-Offs. As you can see from Fig. 3a, our approach can support
the checking of traces containing up to 300 valid time instants, using up to 2GB of
memory. The strength of the approach is that the number of non-valid time instants in
the trace does not affect its scalability. In principle, we can deal with traces of arbitrary
length, with varying degrees of sparseness, and still use up to 2GB of memory if the
trace contains at most 300 valid time instants. The realistic example described above
as well as the process log of the BPI challenge mentioned earlier show that execution
traces with a limited number of valid time instants and a low degree of sparseness can be
very common in enterprise service-based applications. We compared the performance
of the approach proposed in this paper with a previous, not-optimized implementa-
tion [18] based on CLTLB(D); for the evaluation, we varied the degree of sparseness in
the traces and their total length ξ +ν . The approach in [18] does not keep track of tim-
ing information and therefore has to enumerate both valid and non-valid time instants.
Figure 4 shows the results of this comparison, in terms of time and memory usage: the
black line shows the scalability of the approach based on CLTLB(D) from [18], while
the seven gray lines correspond to the QF-EUFIDL-based approach presented in this

SMT-Based Checking of SOLOIST over Sparse Traces 289

0 100 200 300 400 500 600

0

1

2

3

4

100% 50% 33% 25%

20%

16.6%

14.3%

Total trace length

Ti
m

e
(s

)

QF-EUFIDL
CLTLB(D)

0 100 200 300 400 500 600

0

0.5

1

1.5

2
·108

100% 50% 33% 25% 20%

16.6%

14.3%

Total trace length

M
em

or
y

(B
)

QF-EUFIDL
CLTLB(D)

Fig. 4. Tradeoff between the trace checking approach based on CLTLB(D) [18] and the one based
on the QF-EUFIDL encoding, with respect to the degree of sparseness of the trace

paper, applied to traces with different degrees of sparseness (100%, 50%, 33%, 25%,
20%, 16.6%, and 14.3%, from left to right, respectively). The results show that the ap-
proach presented in this paper is more efficient than the one presented in [18] when the
degree of sparseness of input traces is less than 25%.

5 Conclusions

We have shown how trace checking for SOLOIST can be reduced to an existential satis-
fiability problem for the QF-EUFIDL logic, which can be solved with efficient decision
procedures using SMT verifiers. We motivate our approach with two case studies and
provide complexity analysis as well as practical evaluation. In the future, we plan to
collaborate with an industrial partner, to apply our trace checking approach to more
examples of realistic execution traces.

Acknowledgments. This work has been supported by the European Community under
the IDEAS-ERC grant agreement no. 227977-SMScom and by the National Research
Fund, Luxembourg (FNR/P10/03).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoreotical Computer Science 126(2),
183–235 (1994)

2. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-order prop-
erties with aggregations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 40–58. Springer, Heidelberg (2013)

3. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., San Pietro, P.: Bounded
reachability for temporal logic over constraint systems. In: Proc. of TIME 2010, pp. 43–50.
IEEE Computer Society (2010)

4. Bersani, M.M., Frigeri, A., Rossi, M., San Pietro, P.: Completeness of the bounded satis-
fiability problem for constraint LTL. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS,
vol. 6945, pp. 58–71. Springer, Heidelberg (2011)

290 M.M. Bersani et al.

5. Bersani, M.M., Rossi, M., Pietro, P.S.: Deciding continuous-time metric temporal logic
with counting modalities. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169,
pp. 70–82. Springer, Heidelberg (2013)

6. Bersani, M.M., Rossi, M., San Pietro, P.: On the satisfiability of metric temporal logics over
the reals. In: Proc. of AVOCS 2013 (2013)

7. Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from research to in-
dustry: a case study in service-based applications. In: Proc. of ICSE 2012, pp. 968–976. IEEE
Computer Society (2012)

8. Bianculli, D., Ghezzi, C., San Pietro, P.: The tale of SOLOIST: a specification language for
service compositions interactions. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 55–72. Springer, Heidelberg (2013)

9. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings of
bounded LTL model checking. Logical Methods in Computer Science 2(15) (2006)

10. Burattin, A., Sperduti, A.: PLG: A framework for the generation of business process models
and their execution logs. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP,
vol. 66, pp. 214–219. Springer, Heidelberg (2011)

11. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf. Com-
put. 205(3), 380–415 (2007)

12. van Dongen, B.: BPI challenge 2012 (2012),
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state
verification. In: Proc. of FMSP 1998, pp. 7–15. ACM (1998)

14. Felder, M., Morzenti, A.: Validating real-time systems by history-checking TRIO specifica-
tions. ACM Trans. Softw. Eng. Methodol. 3(4), 308–339 (1994)

15. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime execu-
tions. Form. Method Syst. Des. 27, 253–274 (2005)

16. Kindermann, R., Junttila, T.A., Niemelä, I.: Bounded model checking of an MITL fragment
for timed automata. CoRR abs/1304.7209 (2013)

17. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proc. of ICSE 2005,
pp. 372–381. ACM (2005)

18. Krstić, S.: Verification of quantitative properties of service-based applications. Master’s the-
sis, Politecnico di Milano (December 2012)

19. Leitner, P., Hummer, W., Dustdar, S.: A Monitoring Data Set for Evaluating QoS-Aware
Service-Based Systems. In: Proc. of PESOS 2012, pp. 67–68 (2012)

20. Mrad, A., Ahmed, S., Hallé, S., Beaudet, É.: BabelTrace: A collection of transducers for
trace validation. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 126–130.
Springer, Heidelberg (2013)

21. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1(2), 245–257 (1979)

22. Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the future:
bi-infinite time in the verification of temporal properties. In: Proc. of ESEC-FSE 2007,
pp. 312–320. ACM (2007)

23. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability checking of metric temporal
logic specifications. ACM Trans. Softw. 20, 1–20 (2013)

24. Wozna-Szczesniak, B., Zbrzezny, A.: Checking MTL properties of discrete timed automata
via bounded model checking. In: CS&P, vol. 1032, pp. 469–477. CEUR-WS.org (2013)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

An Online Validator for Provenance:

Algorithmic Design, Testing, and API

Luc Moreau, Trung Dong Huynh, and Danius Michaelides

Electronics and Computer Science, University of Southampton

Abstract. Provenance is a record that describes the people, institu-
tions, entities, and activities involved in producing, influencing, or deliv-
ering a piece of data or a thing. The W3C Provenance Working group
has just published the prov family of specifications, which include a
data model for provenance on the Web. The working group introduces
a notion of valid prov document whose intent is to ensure that a prov

document represents a consistent history of objects and their interac-
tions that is safe to use for the purpose of reasoning and other kinds
of analysis. Valid prov documents satisfy certain definitions, inferences,
and constraints, specified in prov-constraints. This paper discusses
the design of ProvValidator, an online service for validating provenance
documents according to prov-constraints. It discusses the algorith-
mic design of the validator, the complexity of the algorithm, how we
demonstrated compliance with the standard, and its rest api.

Keywords: provenance, prov, validation.

1 Introduction

Provenance is a record that describes the people, institutions, entities, and ac-
tivities involved in producing, influencing, or delivering a piece of data or a
thing [1]. (Such a record is encoded in a provdocument [2].) The W3C Prove-
nance Working group has just published the prov family of specifications [3],
which include a data model for provenance on the Web (prov-dm [1]).

prov comprises a notion of valid document [2]. A valid prov document is
one that represents a consistent history of objects and their interactions that
is safe to use for the purpose of logical reasoning and other kinds of analysis.
Valid prov documents satisfy certain definitions, inferences, and constraints,
specified in prov-constraints [2]. There are several issues related to prov-

constraints that motivate this work: we discuss them now.
By design, prov-constraints provides a logic specification of what valid

provenance is. This gives implementors the opportunity to design their own
implementation, allowing them to meet the requirements set by their applica-
tions. To be compliant with prov-constraints, implementations are expected
to produce the same results. In essence, compliance with prov-constraints is
established by observational equivalence with the specification.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 291–305, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

292 L. Moreau, T.D. Huynh, and D. Michaelides

prov-constraints relies on inference rules that lend themselves to imple-
mentation by rule-based languages. However, such a paradigm is not an option
for some implementors (for instance, having to work with an imperative language
or having to control memory management). Furthermore, rule-based specifica-
tions do not make explicit the execution order and the type of data structures
that are required. Thus, an open research question is the formulation of an al-
gorithm for prov validation that could be readily adopted by implementors.

In prov-constraints, not all inferences are necessary for validating docu-
ments. Instead, some simply exist because they are considered useful. While this
goal helps understand what is meant by provenance, it does not help implemen-
tors determine what is essential to implement in a validator.

prov-constraints does not analyse the complexity of the problem of va-
lidity of provenance documents. Understanding this complexity would be useful
since provenance documents can become very big, especially those generated by
distributed applications with many nodes that run for a very long time.

prov-constraints is concerned with specifying whether a provenance doc-
ument is valid. Hence, from this perspective, the outcome of validity checking is
a simple yes/no answer. We argue that the validation procedure can also output
useful information, which can be exploited by other provenance-processing tools.
For instance, the order of events underpinning a provenance document may be
useful for Gantt chart plotting applications.

Finally, a question relevant to practitioners is how such validation-checking
facility can be accessed. In the context of the Web, exposing such a functionality
as a rest service, which can be exploited by browser-based user interfaces or
specific applications, would be desirable.

This paper provides answers to these questions, as summarized by its con-
tributions: (i) An algorithm to validate provenance; (ii) An analysis of its
complexity; (iii) A rest api for validating provenance graphs, but also ac-
cessing validation by-products. Doing so, the paper identifies those essential
inferences to save the effort of future validator implementors. Finally, we discuss
ProvValidator, an implementation of this algorithm, its exposition as a rest

service, and its testing.

Notation Convention. We refrain from copying the text of definitions, inference
rules, and constraints of prov-constraints; instead, we refer to them using
the following notations DEF 1, INF 5, CON 50, for definitions, inferences, and
constraints respectively. In the electronic version of this paper, they directly link
to the corresponding entries in the prov-constraints specification.

2 A Brief Introduction to PROV

prov is a family of specifications [3] for representing provenance on the Web.
It includes a conceptual data model, prov-dm [1], which can be mapped and
serialized to different technologies. There is an OWL2 ontology for prov, allow-
ing mapping of prov to rdf, an XML schema for provenance, and a textual
representation for prov.

http://www.w3.org/TR/prov-constraints/#optional-identifiers
http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference
http://www.w3.org/TR/prov-constraints/#typing

An Online Validator for Provenance 293

Entity Activity

Agent

Invalidation

End

Usage

Membership

Specialization

Start

Alternate

Delegation

Association

Attribution

Communication

Generation

Derivation

Fig. 1. prov-dm UML Classes and Associations (simplified view)

Figure 1 summarises prov-dm [1]. There are three classes: entities (the data
or things for which we want to express provenance), activities (representing what
happens in systems), and agents (bearing responsibility for things and activities).
These three classes can be related with some relations.

1. Derivation view: entities may be derived from others (Derivation).
2. Responsibility view: agents may be responsible for other entities (Attribu-

tion), for activities (Association), or for other agents (Delegation).
3. Process view: activities may have used entities (Usage), and vice-versa en-

tities may have been generated by activities (Generation). Furthermore, ac-
tivities can be informed by other activities (Communication). Activities can
be started and ended by entity triggers (Start and End).

4. Alternate and Membership views: entities may have alternates and special-
izations; entities may be collections with members.

In reality, relations are not necessarily binary, but may involve more instances
and may also contain attributes such as time information. Table 1 (in Section 3.1)
summarizes a textual notation for the model.

3 Validation Algorithm

The overall validation procedure is described in Algorithm 1. It consists of three
steps: (i) perform the inferences that are relevant to validation; (ii) merge
terms; (iii) finally, if successful, check constraints. We discuss these steps in
turn.

Our approach relies on a type system and well-formed terms to deal with illegal
situations (many of the so-called impossibility rules in prov-constraints).
First, we present the terms that are accepted by prov-dm.

294 L. Moreau, T.D. Huynh, and D. Michaelides

Algorithm 1. Validation Procedure

1: function validate(D : Document, T : TypeMap) ⇒ true|fail
2: D1, T1 ← PerformRelevantInferences(D,T)
3: res ← MergeTerms(D1, T1) � merge can succeed or fail
4: if res = D2, U2 then
5: return CheckConstraints(D2, U2)
6: else
7: return false
8: end if
9: end function

3.1 Terms

A document is a set of terms, whose definitions are summarized in Table 1. We
assume here that, prior to validation, each term has been expanded1 (DEF 3) and
has been put in a completed form, by introducing existential identifiers, where
appropriate, for optional term identifiers (DEF 1) and for optional placeholders
(DEF 4). For derivation and association, we consider two variants of these terms,
when placeholders are unknown; with these terms, CON 51 is enforced.

There are a few further points worth noting. First, identifiers occur in the first
position of terms. Second, entity, activity, and agent statements include a ground
identifier specified by the provenance asserter. For relations, their identifiers may
be grounded or existential variables (noted with the symbol ν). Finally, time is
not a prov term, but occurs in several of them; hence, its listing in Table 1.

prov allows for optional extra attributes to be added to terms (see DEF 2).
For the purpose of validation, they can simply be ignored, except for prov:type,
which affects type checking. So, in the interest of space, we have also dropped
them from Table 1. We assume a map of types T populated as follows: v ∈ T [α]
whenever the term with identifier α contains an attribute-value pair prov:type=v
(this caters for EmptyCollection in CON 50). Furthermore, we determine the
type of identifiers for entities, activities, and agents, as follows. For every occur-
rence of variable αe in a term, ent ∈ T [αe]; for every αa occurring in a term,
act ∈ T [αa]; for every αag occurring in a term, ag ∈ T [αa] (cf. CON 50).

We also support bundles [1], which are named sets of terms occurring at the
top-level of documents. Due to space limitation, we do not discuss them. Bundles
are treated by prov-constraints as mini-documents that can be validated
independently.

3.2 Relevant Inferences

prov-constraints specifies inferences that potentially affect the outcome of
the merging (Section 3.3) and constraint checking procedures (Section 3.4), but
also inferences that have no impact on the outcome of the validation procedure.
Algorithm 2 specifies the former, whereas Section 3.5 discusses the latter.

1 Expansion makes explicit optional arguments ommitted in PROV concise notation.

http://www.w3.org/TR/prov-constraints/#definition-short-forms
http://www.w3.org/TR/prov-constraints/#optional-identifiers
http://www.w3.org/TR/prov-constraints/#optional-placeholders
http://www.w3.org/TR/prov-constraints/#impossible-unspecified-derivation-generation-use
http://www.w3.org/TR/prov-constraints/#optional-attributes
http://www.w3.org/TR/prov-constraints/#typing
http://www.w3.org/TR/prov-constraints/#typing

An Online Validator for Provenance 295

Algorithm 2. Inference Procedure

1: function PerformRelevantInferences(D : Document, T : Type)
2: ⇒ Document× Type
3: for any α such that relation(α, . . .) ∈ D do � CON 50
4: T ← T [α → {typeof(relation)} ∪ T [α]]
5: end for
6: for any αe such that ent(αe) ∈ D do � INF 7
7: if � ∃ αg , αa, αt gen(αg, αe, αa, αt) ∈ D then
8: D ← D ∪ {gen(νg, αe, νa, νt)} with fresh νg, νa, νt

9: end if
10: if � ∃ αi, αa, αt inv(αi, αe, αa, αt) ∈ D then
11: D ← D ∪ {inv(νi, αe, νa, νt)} with fresh νi, νa, νt

12: end if
13: end for
14: for any αa, αt

1, α
t
2 such that act(αa, αt

1, α
t
2) ∈ D do � INF 8

15: if � ∃ αs, αe, αa
1 , α

t start(αs, αa, αe, αa
1 , α

t) ∈ D then
16: D ← D ∪ {start(νs, αa, νe, νa

1 , ν
t)} with fresh νs, νe, νa

1 , ν
t

17: end if
18: if � ∃ αn, αe, αa

1 , α
t end(αn, αa, αe, αa

1 , α
t) ∈ D then

19: D ← D ∪ {end(νn, αa, νe, νa
1 , ν

t)} with fresh νn, νe, νa
1 , ν

t

20: end if
21: end for
22: for anyαs

1, α
en
1 such that

(start(αs
1, α

a
1 , α

e
1, α

a
2 , α

t
1) ∈ D

or end(αen
1 , αa

1 , α
e
1, α

a
2 , α

t
1),∈ D)

and � ∃αg, αt, gen(αg, αe
1, α

a
2 , α

t) ∈ D

do � INF 9,INF 10

23: T ← T [νg → {gen}]; D ← D ∪ {gen(νg, αe
1, α

a
2 , ν

t)} with fresh νg, νt

24: end for
25: for any αd such that der(αd, αe

1, α
e
2, α

a, αg , αu) ∈ D do � INF 11
26: D ← D ∪ {gen(αg, αe

1, α
a, νt

1), use(α
u, αa, αe

2, ν
t
2)} with fresh νt

1, ν
t
2

27: end for
28: for any αdel such that del(αdel, αag

1 , αag
2 , αa) ∈ D do � INF 14

29: if assoc(αas
1 , αa, αag

1 , αe
1), assoc(α

as
2 , αa, αag

2 , αe
2) �∈ D

for some αas
1,2, α

e
1,2

then

30: D ← D ∪ {assoc(νas
1 , αa, αag

1 , νe
1), assoc(ν

as
2 , αa, αag

2 , νe
2)}

31: with fresh νas
1 , νe

1 , ν
as
2 , νe

2

32: T ← T [νe
1 → {ent}][νe

2 → {ent}][νas
1 → {assoc}][νas

2 → {assoc}]
33: end if
34: end for
35: for any αe

1, α
e
2, α

e
3 such that spec(αe

1, α
e
2), spec(α

e
2, α

e
3) ∈ D do � INF 19

36: D ← D ∪ {spec(αe
1, α

e
3)}

37: end for
38: for any αe

1, α
e
2 such that spec(αe

1, α
e
2), ent(α

e
2) ∈ D do � INF 21

39: D ← D ∪ {ent(αe
1)}; T ← T [αe

1 → T [αe
1] ∪ T [αe

2]]
40: end for
41: for any αe

1, α
e
2 such that mem(αe

1, α
e
2) ∈ D do

42: T ← T [αe
1 → T [αe

1] ∪ {nonEmptyCollection}]
43: end for
44: return D, T
45: end function

http://www.w3.org/TR/prov-constraints/#typing
http://www.w3.org/TR/prov-constraints/#entity-generation-invalidation-inference
http://www.w3.org/TR/prov-constraints/#activity-start-end-inference
http://www.w3.org/TR/prov-constraints/#wasStartedBy-inference
http://www.w3.org/TR/prov-constraints/#wasEndedBy-inference
http://www.w3.org/TR/prov-constraints/#derivation-generation-use-inference
http://www.w3.org/TR/prov-constraints/#delegation-inference
http://www.w3.org/TR/prov-constraints/#specialization-transitive
http://www.w3.org/TR/prov-constraints/#specialization-attributes-inference

296 L. Moreau, T.D. Huynh, and D. Michaelides

Table 1. Terms, Term Types, and Variable Types

identifier ground existential pattern term type
type identifier variable variable

Entity ide νe αe ent(ide) ent
Activity ida νa αa act(ida) act
Agent idag νag αag ag(idag) ag
Generation idg νg αg gen(αg, ide, αa, αt) gen
Usage idu νu αu use(αu, ide, αa, αt) use
Invalidation idi νi αi inv(αg , ide, αa, αt) inv
Start ids νs αs start(αs, ida, αe, αa, αt) start
End idn νn αn end(αe, ida, αe, αa, αt) end
Derivation idd νd αd der(αd, ide, ide, αa, αg , αu) der

der⊥(αd, ide, ide) der ⊥
Association idas νas αas assoc⊥(αas, ida, αag) assoc ⊥

assoc(αas, ida, αag, αe) assoc
Delegation idd νd αd del(αd, idag, idag, αa) del
Attribution idat νat αat attr(αat, ide, idag) attr
Communication idc νc αc comm(αc, ida, ide) comm

Influence idinf νinf αinf infl(αinf , id, id) infl
Specialization spec(ide, ide) spec
Alternate alt(ide, ide) alt
Membership mem(ide, ide) mem

time t νt αt

In Algorithm 2, lines 3–5, 23, 32, 39, and 42 update type information. Lines 6–
21 ensure that all events relevant to the graph are made explicit: each entity is
accompanied by generation and invalidation events, and each activity accompa-
nied by start and end events. INF 9 and INF 10 (lines 22–24) ensure the presence
of a generation event gen for every trigger αe

1 in start and end events. INF 11
(lines 25–27) links αg, αu in a derivation event der to corresponding genera-
tion and usage events, gen, use. INF 14 ensures that a delegation’s activity is
associated with both its agents (lines 28–34). INF 19 (lines 35–37) computes the
transitive closure of specialization spec. INF 21 (lines 38–40) propagates types
through specializations. Lines 41–43 infer the type nonEmptyCollection for any
collection that has members. This type is introduced by this algorithm to enforce
CON 56 by means of the type system (see Section 3.4).

These inferences are applied till saturation. The algorithm’s termination can
be explained as follows.

– Lines 6–21 process a finite set of ent(αe), act(αa) in a finite document D.
– Lines 22–24 process a finite set of start/end events.
– Lines 25–27 process a finite set of der events.
– Lines 28–34 process a finite set of del events.
– Lines 35– 37 compute a transitive closure over a finite set of spec relations.
– Lines 38–40 process a finite set of spec tuples.
– Lines 41–43 process a finite set of mem relations.

http://www.w3.org/TR/prov-constraints/#wasStartedBy-inference
http://www.w3.org/TR/prov-constraints/#wasEndedBy-inference
http://www.w3.org/TR/prov-constraints/#derivation-generation-use-inference
http://www.w3.org/TR/prov-constraints/#delegation-inference
http://www.w3.org/TR/prov-constraints/#specialization-transitive
http://www.w3.org/TR/prov-constraints/#specialization-attributes-inference
http://www.w3.org/TR/prov-constraints/#membership-entity-collection

An Online Validator for Provenance 297

So, the total number of iterations is bounded. We also note that at no point
in these inferences, we infer terms from which previous inferences could have
derived further terms.

3.3 Term Merging

MergeTerms (see Algorithm 3) ensures that events that must satisfy a unique-
ness constraint are merged (lines 4–28); to this end, merging requires unifica-
tion [4]. If successful, the resulting document is in a “quasi-normal form”. Such a
quasi-normal form is essentially equivalent to prov-constraints normal form,
except for some inferences that have not been carried out (see Section 3.5).

Algorithm 3. Term Merging Procedure

1: function MergeTerms(D : Document, T : TypeMap)
2: ⇒ Document× UObject | fail
3: U ← 〈∅, T 〉
4: repeat
5: Up ← U
6: if relation(α, α1,1, α1,2, . . .), relation(α, α2,1, α2,2, . . .) ∈ D then
7: U ← unify∗({α1,1 = α2,1, α1,2 = α2,2, . . .}, U) � CON 22,CON 23
8: end if
9: if gen(αg

1, α
e, αa

1 , α
t
1), gen(α

g
2, α

e, αa
2 , α

t
2) ∈ D then � CON 24

10: U ← unify∗({αg
1 = αg

2 , α
a
1 = αa

2 , α
t
1 = αt

2}, U)
11: end if
12: if inv(αi

1, α
e, αa

1 , α
t
1), inv(α

i
2, α

e, αa
2 , α

t
2) ∈ D then � CON 25

13: U ← unify∗({αi
1 = αi

2, α
a
1 = αa

2 , α
t
1 = αt

2}, U)
14: end if
15: if start(αs

1, α
a
1 , α

e
1, α

a
2 , α

t
1), start(α

s
2, α

a
1 , α

e
2, α

a
2 , α

t
2) ∈ D then � CON 26

16: U ← unify∗({αs
1 = αs

2, α
e
1 = αe

2, α
t
1 = αt

2}, U)
17: end if
18: if end(αn

1 , α
a
1 , α

e
1, α

a
2 , α

t
1), end(α

n
2 , α

a
1 , α

e
2, α

a
2 , α

t
2) ∈ D then � CON 27

19: U ← unify∗({αn
1 = αn

2 , α
e
1 = αe

2, α
t
1 = αt

2}, U)
20: end if
21: if start(αs

1, id
a
1 , α

e
1, α

a
2 , α

t
1), act(id

a
1 , α

t
2, α

t
3) ∈ D then � CON 28

22: U ← unify∗({αt
1 = αt

2}, U)
23: end if
24: if end(αs

1, id
a
1 , α

e
1, α

a
2 , α

t
1), act(id

a
1 , α

t
2, α

t
3) ∈ D then � CON 29

25: U ← unify∗({αt
1 = αt

3}, U)
26: end if
27: D ← applySubstitution(U,D)
28: until U = Up or U = fail
29: if U = fail then
30: return fail
31: else
32: return D,U
33: end if
34: end function

http://www.w3.org/TR/prov-constraints/#key-object
http://www.w3.org/TR/prov-constraints/#key-properties
http://www.w3.org/TR/prov-constraints/#unique-generation
http://www.w3.org/TR/prov-constraints/#unique-invalidation
http://www.w3.org/TR/prov-constraints/#unique-wasStartedBy
http://www.w3.org/TR/prov-constraints/#unique-wasEndedBy
http://www.w3.org/TR/prov-constraints/#unique-startTime
http://www.w3.org/TR/prov-constraints/#unique-endTime

298 L. Moreau, T.D. Huynh, and D. Michaelides

The algorithm’s termination can be explained as follows. Lines 4–28 can only
generate a finite number of different bindings α1 = α2, since α1, α2 have to occur
in a finite document D, and no new variable is generated by this algorithm. So,
the number of iterations is bounded.

Term merging relies on unification, where the existential variables are consid-
ered as logical variables; for the purpose of validation of provenance terms, we re-
quire full unification [4], except for the fact that variables only occur at the
top-level of prov terms and cannot be nested in expressions. In Algorithm 4, the
meaning of U ∈ UObject is now explicit: it pairs up bindingsB and a type map T .

3.4 Constraint Checking

Algorithm 5 is concerned with checking the applicable constraints. First, in
lines 4–5, reflexive cases of specialization are rejected. Second, leveraging all
the type inferences performed in previous steps, lines 6–10 detect type impos-
sibility cases. They are all encoded in Table 2, where the presence of a cross
in cell conflict(τ1, τ2) indicates that τ1 and τ2 are conflicting types to which
no variable is allowed to be simultaneously assigned. Finally, lines 11–14 detect
violations of ordering constraints.

prov-constraints defines an order between events, as opposed to an or-
der between time instants. Thus, Ordering constraints checking relies on a two-
dimensional matrix order indicating whether two events, identified by α1 and
α2, are ordered by a “strictly precede” (order[α1, α2] = 2) or by a “precede”
(order[α1, α2] = 1) relation, or unordered (order[α1, α2] = 0). The table order is
initialized with value 0. The following indicates how the order table is assigned
values, according to prov-constraints.

Constraint Ordering Relation
CON 30, CON 31, CON 32, CON 33, CON 34, CON 35,
CON 36, CON 37, CON 38, CON 39, CON 40, CON 41,
CON 43, CON 44, CON 45, CON 46, CON 47, CON 48,
CON 49

order[α1, α2] = 1

CON 42 order[α1, α2] = 2

Next, the transitive closure for the ordering relations is computed by a variant
of Floyd-Warshall algorithm [5], using the rule below.

if order[α1, α2] = x, for some x > 0

and order[α2, α3] = y, for some y > 0

then order[α1, α3]← max(order[α1 , α3], x, y)

This rule ensures that a strict precedence between two events is also recorded
between sequence of events involving these two. The algorithm is further adapted
to work on a sparse matrix representation suitable for provenance graphs.

3.5 Validation-Neutral Inferences

It is safe to ignore some inference rules, referred to as validation-neutral (VN)
inferences. VN inferences are such that, for any document D, MergeTerms

http://www.w3.org/TR/prov-constraints/#start-precedes-end
http://www.w3.org/TR/prov-constraints/#start-start-ordering
http://www.w3.org/TR/prov-constraints/#end-end-ordering
http://www.w3.org/TR/prov-constraints/#usage-within-activity
http://www.w3.org/TR/prov-constraints/#generation-within-activity
http://www.w3.org/TR/prov-constraints/#wasInformedBy-ordering
http://www.w3.org/TR/prov-constraints/#generation-precedes-invalidation
http://www.w3.org/TR/prov-constraints/#generation-precedes-usage
http://www.w3.org/TR/prov-constraints/#usage-precedes-invalidation
http://www.w3.org/TR/prov-constraints/#generation-generation-ordering
http://www.w3.org/TR/prov-constraints/#invalidation-invalidation-ordering
http://www.w3.org/TR/prov-constraints/#derivation-usage-generation-ordering
http://www.w3.org/TR/prov-constraints/#wasStartedBy-ordering
http://www.w3.org/TR/prov-constraints/#wasEndedBy-ordering
http://www.w3.org/TR/prov-constraints/#specialization-generation-ordering
http://www.w3.org/TR/prov-constraints/#specialization-invalidation-ordering
http://www.w3.org/TR/prov-constraints/#wasAssociatedWith-ordering
http://www.w3.org/TR/prov-constraints/#wasAttributedTo-ordering
http://www.w3.org/TR/prov-constraints/#actedOnBehalfOf-ordering
http://www.w3.org/TR/prov-constraints/#derivation-generation-generation-ordering

An Online Validator for Provenance 299

Algorithm 4. Unification Procedure

1: function unify
∗({αx = αy} ∪A,U)

2: return unify
∗(A,unify(αx, αy , U))

3: end function
4: function unify

∗(∅, U)
5: return U
6: end function
7: function unify(αx, αy, U)
8: if U = fail then return fail
9: end if
10: if αx = αy then return U
11: end if
12: if αx is an existential variable νx then
13: return unifyV ar(νx, αy , U)
14: end if
15: if αy is an existential variable νy then
16: return unifyV ar(νy, αx, U)
17: else
18: return fail � Two distinct ground value
19: end if
20: end function
21: function unifyVar(ν,αy , U))
22: if ν = αy then return U
23: end if
24: if bound(ν, U) then
25: return unifyVar(lookup(ν,U), αy, U)
26: end if
27: if αy is a variable νy and bound(νy, U) then
28: return unifyVar(ν, lookup(νy, U), U)
29: else
30: return extend(ν,αy , U) � αy is an unbound variable or a ground value
31: end if
32: end function
33: function extend(ν,αy , U)
34: 〈B,T 〉 ← U
35: B′ ← B[ν → αy]
36: if αy is a variable νy then
37: T ′ ← T [ν → T (ν) ∪ T (νy)][νy → T (ν) ∪ T (νy)]
38: else
39: T ′ ← T
40: end if
41: return 〈B′, T ′〉
42: end function

300 L. Moreau, T.D. Huynh, and D. Michaelides

Algorithm 5. Checking Constraints Procedure

1: function CheckConstraints(D : Document, U : UObject)
2: ⇒ true|fail
3: B, T ← U
4: if spec(αe, αe) ∈ D then return fail � CON 52
5: end if
6: if τ1, τ2 ∈ T [α] for some α in D then � CON 53,CON 54,CON 55, CON 56
7: if conflict(τ1, τ2) then
8: return fail
9: end if
10: end if
11: order ← inferOrderingRelation(D)
12: order ← transitiveClosure(order)
13: if order[α, α] = 2 for some α then return fail
14: end if
15: return true
16: end function

succeeds for D if and only if MergeTerms succeeds for the document obtained
by application of VN-inferences to D. Furthermore, application of VN-inferences
do not entail ordering constraints that cannot be found otherwise. Below, we list
the VN-inferences, and why they can be ignored.

INF 5: the new Generation and Usage events for a new entity always satisfy
all ordering constraints.

INF 6: ordering constraints CON 35 can be inferred from CON 33, CON 34,
and by transitivity of the ordering relation.

INF 13: the ordering constraints related to Attribution (CON 48) imply the
ordering constraints related to Association (CON 47).

INF 15: can be ignored since there is no ordering constraint on Influence.
Likewise, INF 12, INF 16, INF 17, INF 18, INF 20 can be ignored since there is

no ordering constraints on Alternate.

4 Complexity Analysis

In this section, we establish that the validation process is polynomial. Specifi-
cally, validate is O(N3), where N is the size of document D. To establish this
result, we analyze the complexity of the various steps of the algorithm. We use
the superscripts of Figure 1 to denote the number of terms of that type. For
instance, we write f = O(e) to say that f grows asymptotically no faster than
the number of entities e (itself bounded by N).

PerformRelevantInferences is O(N3) (see Algorithm 2).

Lines 3–5 O(N) by iterating over all elements and relations;
Lines 6–21 O(e) +O(a) = O(N) by iterating over entities and activities;
Lines 22–24 O(s) +O(en) = O(N) by iterating over all starts and ends;
Lines 25–27 O(d) = O(N) by iterating over all derivations;

http://www.w3.org/TR/prov-constraints/#impossible-specialization-reflexive
http://www.w3.org/TR/prov-constraints/#impossible-property-overlap
http://www.w3.org/TR/prov-constraints/#impossible-object-property-overlap
http://www.w3.org/TR/prov-constraints/#entity-activity-disjoint
http://www.w3.org/TR/prov-constraints/#membership-entity-collection
http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference
http://www.w3.org/TR/prov-constraints/#generation-use-communication-inference
http://www.w3.org/TR/prov-constraints/#wasInformedBy-ordering
http://www.w3.org/TR/prov-constraints/#usage-within-activity
http://www.w3.org/TR/prov-constraints/#generation-within-activity
http://www.w3.org/TR/prov-constraints/#attribution-inference
http://www.w3.org/TR/prov-constraints/#wasAttributedTo-ordering
http://www.w3.org/TR/prov-constraints/#wasAssociatedWith-ordering
http://www.w3.org/TR/prov-constraints/#influence-inference
http://www.w3.org/TR/prov-constraints/#revision-is-alternate-inference
http://www.w3.org/TR/prov-constraints/#alternate-reflexive
http://www.w3.org/TR/prov-constraints/#alternate-transitive
http://www.w3.org/TR/prov-constraints/#alternate-symmetric
http://www.w3.org/TR/prov-constraints/#specialization-alternate-inference

An Online Validator for Provenance 301

Table 2. Conflicting Types conflict(τ1, τ2)

e
n
ti
ty

a
c
ti
v
it
y

a
g
e
n
t

g
e
n
e
r
a
ti
o
n

u
s
a
g
e

c
o
m

m
u
n
ic
a
ti
o
n

s
ta

r
t

e
n
d

in
v
a
li
d
a
ti
o
n

d
e
r
iv
a
ti
o
n

d
e
r
iv
a
ti
o
n
⊥

r
e
v
is
io
n

q
u
o
ta

ti
o
n

p
r
im

a
r
y
S
o
u
r
c
e

a
tt
r
ib
u
ti
o
n

a
s
s
o
c
ia

ti
o
n

a
s
s
o
c
ia

ti
o
n
⊥

d
e
le
g
a
ti
o
n

in
f
lu

e
n
c
e

b
u
n
d
le

c
o
ll
e
c
ti
o
n

e
m

p
ty

C
o
ll
e
c
ti
o
n

p
e
r
s
o
n

o
r
g
a
n
iz
a
ti
o
n

s
o
f
tw

a
r
e
A
g
e
n
t

n
o
n
E
m

p
ty

C
o
ll
e
c
ti
o
n

entity × × × × × × × × × × × × × × × × ×
activity ×
agent × × × × × × × × × × × × × × × ×
generation ×
usage ×
communication ×
start ×
end ×
invalidation ×
derivation ×
derivation⊥ ×
revision ×
quotation ×
primarySource ×
attribution ×
association ×
association⊥ ×
delegation ×
influence × × × × × × × × × ×
bundle × × × × × × × × × × × × × × × × ×
collection × × × × × × × × × × × × × × × × ×
emptyCollection × × × × × × × × × × × × × × × × × ×
person × × × × × × × × × × × × × × × ×
organization × × × × × × × × × × × × × × × ×
softwareAgent × × × × × × × × × × × × × × × ×
nonEmptyCollection × × × × × × × × × × × × × × × × × ×

Lines 28–34 O(del) = O(N) by iterating over all delegations;
Lines 35–37 O(spec3) = O(N3) by computing a transitive closure over the

specialization edges;
Lines 38–40 O(spec2) = O(N2) by iterating over the transitive closure of spe-

cialization edges;
Lines 41–43 O(mem) = O(N) by iterating over membership edges.

Specialization-related inferences aside, each inference adds 2 terms at most to
the document; with O(N) inferences, the resulting document remains O(N). In
the worst case, a transitive closure over specialization can result in a quadratic
number of terms. In practice, we observe that specialization is relatively infre-
quently used, and that specializations do not form long chains2. So, assuming3

that spec << N , it is reasonable to conclude that the average inferred document
is O(N).

2 It is in fact revisions of entities that potentially create long derivation chains, each
entity in the chain being a specialization of one general entity.

3 This does not hold for the corner case consisting of a document of N specializations.

302 L. Moreau, T.D. Huynh, and D. Michaelides

The complexity of unify is bounded by the number of bindings (see Algo-
rithm 4).

Lines 21–32 O(|U |): worst case is proportional to the number of bindings;
Lines 33–42 O(1): constant time operation.

MergeTerms is O(N2) (see Algorithm 3). Worst case binding size is when
all variables are to be unified; binding size is proportional to document size.

Lines 6–8 O(edges×N): worst case scenario, all edges have the same identifier
and need to be merged;

Lines 9–11 O(g ×N): worst case scenario, all generation edges have the same
entity identifier and need to be merged;

Lines 12–14 O(i ×N): similar worst case scenario for invalidations;
Lines 15–17 O(s ×N): similar worst case scenario for starts;
Lines 18–20 O(en×N): similar worst case scenario for ends;
Lines 21–23 O(max(s, a) × N): similar worst case scenario for starts or

activities;
Lines 24–26 O(max(en, a) × N): similar worst case scenario for ends or

activities;
Line 27 O(N2) since applySubstitution applies O(N) substitutions, on aver-

age, each costing O(N), on average.

The cost of checking constraints is O(N3) (see Algorithm 5). Let γ be the
number of different types.

Lines 4–5 checking this impossibility constraint is O(spec);
Lines 6–10 identifying conflicting pairs of types for each statement is O(γ ×

γ ×N)=O(N);
Lines 11–14 The size of order is O(N2), the number of ordering constraints

directly inferred is O(N), and the transitive closure computation is O(N3).

5 Testing and Establishing Compliance with PR

ProvValidator is a Java-based implementation of the algorithm presented in this
paper. In order to make sure ProvValidator covers all the specified constraints,
we collated a test suite containing 168 unit test cases for specific constraints.4

A test case here is a provenance document that is expected to pass or fail a
validity check. Hence, the result from validating a test case can be either PASS
for a valid provenance document or FAIL for an invalid one. Out of 168 test
cases, there are 101 PASS cases and 67 FAIL cases, covering all constraints in
the prov-constraints specification (excluding the inferences). The test suite
was reviewed by the W3C Provenance working group and was adopted by the
group as the way to establish a validator implementation’s compliance with
prov-constraints.

As shown in the prov implementation report [6], ProvValidator fully covers
the prov-constraints specification by passing all the specified test cases.

4 The full test suite is available at
https://dvcs.w3.org/hg/prov/raw-file/default/testcases/process.html,
which also summarizes the coverage of various constraints by its test cases.

https://dvcs.w3.org/hg/prov/raw-file/default/testcases/process.html

An Online Validator for Provenance 303

6 Validator API

ProvValidator is deployed as a Web service accessible from
http://provenance.ecs.soton.ac.uk/. This section discusses how the
validation algorithm was exposed by means of a rest api.

In designing an api to expose the validator functionality, we wanted to tackle
a number of requirements. First, the api should be easy to use and accessible on
the Web. Second, we would be providing a web-based front-end but also expect
other tools to interact with the facility. Third, the validation-checking process
generates a number of by-products (e.g., ordering matrix, quasi-normal form)
that may be of use to other tools, and therefore need to be exposed. Thus, we
chose to expose the api as a restful web service. In such services, the api’s focus
is on exposing information as resources, how the information is represented, and
the use of the verbs of the http protocol to interact with the service [7].

The primary input to the validation process is a document containing prov

statements. The validator supports a variety of representations of prov: prov-
n, prov-xml, various formats of rdf, prov-json. Documents are submitted
to the service via the post http verb to the url: /documents/ . The body of
the post request is the prov document and the Content-type http header
is used to indicate which representation is being used. In addition, to facilitate
easy integration with web-pages, posting of standard html form data is also
supported; here provenance documents can be submitted inline, by a url or
using the html form file upload mechanism. If the document is syntactically
correct, a new resource for the document is created, with a url following the
schema /documents/{id} where {id} is an identifier. This resource represents
the provenance document loaded by the service. In a hierarchical fashion, we
further expose a number of other resources that are generated by the validation
process (see Table 3).

Our api makes use of content negotiation in situations where there are mul-
tiple representations of an information resource [8]; then, we issue http 303

See Other responses to redirect the client to the correct url for the repre-
sentation they requested. For example, a client’s request for /documents/{id}
with an Accept: text/provenance-notation header is redirected to
/documents/{id}.provn.

Table 3. Resources in the rest api. We use ∗ to indicate a resource that supports
content negotiation.

∗ /documents/ all the provenance documents
∗ /documents/{id} a provenance document
∗ /documents/{id}/validation/report a report generated by validate

/documents/{id}/validation/report/{part} a section of the validation report
∗ /documents/{id}/validation/matrix the order matrix
∗ /documents/{id}/validation/normalForm the quasi-normal form

http://provenance.ecs.soton.ac.uk/

304 L. Moreau, T.D. Huynh, and D. Michaelides

The validation report is a document in XML format that indicates whether
a prov document validated; if not, it also lists problematic statements to help
users identify and fix issues. The quasi-normal form and the order matrix are
the two by-products of the validation process that are made available.

7 Related Work

Two other validators for prov have been publicly reported in [6]. Paul Groth’s
prov-check5, and James Cheney and Stephen Cresswell’s checker.pl6. The first
is based on SPARQL queries, whereas the second is Prolog based. SPARQL
queries lend themselves to the implementation of rules, by means of insert state-
ment, however, it is challenging to implement merging of terms with SPARQL
only. On the other hand, Prolog comes with rules and unification and therefore
handles easily term merging. While their source code is publicly available, it
is not directly integrated in a software release that is readily installable. There
is also a commercial implementation which reportedly7 implements aspects of
provenance validation using some extensions to OWL-based reasoning.

The prov-constraints specification was designed with a view to deploying
services on the Web supporting this prov document validation. Several valida-
tors exist for other Web technologies. The W3C validator8 checks the markup
validity of Web documents in HTML, XHTML, SMIL, MathML. W3C Jigsaw9 is
a CSS validation service. The Manchester Validator 10 validates OWL ontologies.
Finally, W3C also hosts an RDFa validator11.

The prov-constraints specification builds upon [9] providing a semantics
for OPM [10], a precursor to and subset of prov.

8 Conclusion

In this paper, we have presented an algorithm for provenance validation. It relies
on a minimum set of inferences that have to be performed prior to validation, and
on type checking to detect most impossible situations. We expose the algorithm
functionality, and validation by-products such as the ordering matrix and quasi-
normal form of a document through a rest api.

In this paper, we have also investigated the complexity of the validation pro-
cess. Inferences are established to be linear in the size of the document to vali-
date. Merging terms is quadratic in its size. This is really a worst case situation:
it is indeed possible to generate provenance documents that do not require any

5 Prov-check: https://github.com/pgroth/prov-check
6 Checker: https://github.com/jamescheney/prov-constraints
7 http://semtechbizsf2013.semanticweb.com/

sessionPop.cfm?confid=70&proposalid=5118
8 http://validator.w3.org/
9 http://jigsaw.w3.org/css-validator/

10 http://owl.cs.manchester.ac.uk/validator/
11 http://www.w3.org/2012/pyRdfa/Validator.html

https://github.com/pgroth/prov-check
https://github.com/jamescheney/prov-constraints
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5118
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5118
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://owl.cs.manchester.ac.uk/validator/
http://www.w3.org/2012/pyRdfa/Validator.html

An Online Validator for Provenance 305

merging of terms. Finally, checking ordering constraints is cubic in the document
size, due to the computing of a transitive closure of some precedence relation;
however, it has been shown that it can be implemented efficiently.

Future work will investigate functionality that leverages the validation by-
products, including editors of valid provenance and visualization of (in)valid
provenance; the presented framework could also be extended with domain spe-
cific constraints capable of checking provenance even further.

Acknowledgements. Thanks to the Provenance Working Group members;
the co-authors of prov-constraints, James Cheney, Paolo Missier, Tom De
Nies; other implementors of prov-constraints Paul Groth, James Cheney,
and Stephen Cresswell. This work is funded in part by the EPSRC SOCIAM
(EP/J017728/1) and ORCHID Projects (EP/I011587/1), the FP7 SmartSociety
Project (600854), and the ESRC estat2 (ES/K007246/1).

References

1. Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cress-
well, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers, J.,
Sahoo, S., Tilmes, C. (eds.): PROV-DM: The PROV Data Model. W3C Recom-
mendation REC-prov-dm-20130430, World Wide Web Consortium (October 2013)

2. Cheney, J., Missier, P., Moreau, L., Nies, T.D. (eds.): Constraints of the PROV
Data Model. W3C Recommendation REC-prov-constraints-20130430, World Wide
Web Consortium (October 2013)

3. Groth, P., Moreau, L. (eds.): PROV-Overview. An Overview of the PROV Family
of Documents. W3C Working Group Note NOTE-prov-overview-20130430, World
Wide Web Consortium (April 2013)

4. Norvig, P.: Correcting a widespread error in unification algorithms. Softw. Pract.
Exper. 21(2), 231–233 (1991)

5. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education (2001)

6. Huynh, T.D., Groth, P., Zednik, S. (eds.): PROV Implementation Report. W3C
Working Group Note NOTE-prov-implementations-20130430, World Wide Web
Consortium (April 2013)

7. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext transfer
protocol – http/1.1. Rfc2068, World Wide Web Consortium (January 1997),
http://www.w3.org/Protocols/Specs.html

8. Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. Technical
report, World Wide Web Consortium (2004)

9. Kwasnikowska, N., Moreau, L., Van den Bussche, J.: A formal account of the open
provenance model (December 2010) (under review)

10. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van den
Bussche, J.: The open provenance model core specification (v1.1). Future Genera-
tion Computer Systems 27(6), 743–756 (2011)

http://www.w3.org/Protocols/Specs.html

Comparator: A Tool for Quantifying

Behavioural Compatibility

Meriem Ouederni1, Gwen Salaün2, Javier Cámara3, and Ernesto Pimentel4

1 Toulouse INP, IRIT, France
2 Grenoble INP, Inria, France

3 Institute for Software Research, Carnegie Mellon University, USA
4 Department of Computer Science, Universidad de Málaga, Spain

Abstract. We present Comparator, a tool that measures the compati-
bility between two behavioural interfaces. Comparator can be used as a
stand-alone Web application, and is also integrated into a model-based
adaptation toolbox.

1 Introduction

Context. Building new applications by composing existing software components
or Web services is now mainstream. However, this task remains error-prone, es-
pecially when reusing stateful components accessed through their behavioural
interfaces. Techniques and tools are therefore necessary to support this compo-
sition task, and to make sure that the new system will behave correctly, avoiding
undesired behaviours such as deadlocks.

Model. In this work, we assume that component interfaces are described using
their interaction protocols represented by Symbolic Transition Systems (STSs)
which are Labelled Transition Systems extended with value-passing (parameters
coming with messages). In particular, a STS is a tuple (A,S, I, F, T) where A is
an alphabet which corresponds to the set of labels, S is a set of states, I ∈ S is
the initial state, F ⊆ S is a nonempty set of final states, and T ⊆ S × A × S
is the transition relation. Note that a label is either the (internal) τ action or
a tuple (m, d, pl) where m is the message name, d indicates the communication
direction (either an emission ! or a reception ?), and pl is either a list of typed
data terms if the label corresponds to an emission, or a list of typed variables if
the label is a reception. STSs can be easily derived from higher-level description
languages such as Abstract BPEL for instance where such abstractions were used
for verification, composition or adaptation of Web services.

Contributions. In this tool paper, we present Comparator, a tool supporting the
composition task by analysing the behavioural interfaces of the components to
be composed. Comparator accepts as input two behavioural interfaces described
using STSs. We assume that both STSs interact wrt. a synchronous communica-
tion model. Our tool indicates whether the interfaces can interoperate correctly.
Otherwise, it provides three outputs: a detailed compatibility measure for all

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 306–309, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Comparator: A Tool for Quantifying Behavioural Compatibility 307

states in both STSs, a list of mismatches, and a global compatibility measure.
Comparator can be used as a stand-alone application through a Web interface.
It is also integrated into ITACA [2], a toolbox for model-based adaptation.

2 Quantifying Behavioural Compatibility

Interfaces are compatible if they interact successfully with no mismatch wrt. a
criterion set on their observable actions. This criterion is called compatibility
notion, e.g., unspecified receptions where all reachable emissions can be received
in the other STS, and unidirectional complementarity where all actions in one
STS have a matching in the other STS [3].

In this section, we overview the main ideas behind our measure computa-
tion. All the theoretical background for identifying possible mismatches and
measuring the compatibility of two STSs is presented in [4]. The computa-
tion process accepts as input two protocols STS1 = (A1, S1, I1, F1, T1) and
STS2 = (A2, S2, I2, F2, T2) and computes a compatibility degree for each global
state, i.e., each couple of states (s1, s2) with s1 ∈ S1 and s2 ∈ S2. All compati-
bility scores range between 0 and 1, where 1 means a perfect compatibility. Our
approach is parameterised by a compatibility notion, that is, we measure how
far the two interfaces are from being compatible wrt. this compatibility notion.

To measure the compatibility of two STSs, we compute the compatibility
degree for all possible global states in two steps. We first compute a static com-
patibility based on the comparison of state nature (i.e., initial, final, or none of
them), labels, and types of exchanged parameters. These measures are then used
to quantify the behavioural compatibility taking the label ordering into account
and the structure of both STSs. The second step returns the compatibility mea-
sure for all global states in both STSs. State compatibility is based on the fact
that two states are compatible if their preceding and succeeding neighbouring
states are compatible, where the preceding and succeeding neighbours of state s′

in transitions (s, l, s′) and (s′, l′, s′′) are respectively the states s and s′′. Hence,
in order to measure the compatibility degree of two protocols, we consider an
iterative approach which propagates the compatibility degree from one state to
all its neighbours. This process is called compatibility flooding and works using
a double propagation (forward and backward).

3 Online Comparator Tool

Our approach for measuring the protocol compatibility degree has been fully im-
plemented in a tool called Comparator. We encoded it in Python 2.6 using Eclipse
3.5.1 as programming IDE. The tool accepts as input two XML files correspond-
ing to the interfaces, and a compatibility notion used as comparison criterion.
Comparator returns the compatibility matrix, the mismatch list, and the global
compatibility degree, which indicates how compatible the two interfaces are. The
implementation of our proposal is highly modular, thus facilitating its extension
with other compatibility notions. In order to make our Comparator tool widely

308 M. Ouederni et al.

available to any potential users, we implemented a Web interface [1] so that
anyone can use and run it online (Fig. 1).

Experimental Results. We validated our tool on about 110 real-world exam-
ples, e.g., a car rental service, a travel booking system, a medical management
system, or an online email service. Some of these examples are available online [1]
to illustrate the results returned by our compatibility measure. Note that Com-
parator computes the compatibility degree of quite large systems (e.g., interfaces
with hundreds of states and transitions) in a reasonable time (a few minutes).

Evaluation.We evaluate our tool accuracy using precision and recall metrics [5],
which estimate how much our measure meets the expected result. Precision
measures the matching quality (number of false positive matches) and is defined
as the ratio of the number of correct state matches found out of the total of
state matches found. Recall is the coverage of the state matching results and
is defined as the ratio of the number of correct state matches found out of the
total of all correct state matches in the two protocols. An effective measure must
produce high precision and recall values. We have computed these metrics for
the examples of our database using both UC and UR notions. We assume (s1, s2)
is a correct match if the state s1 ∈ S1 has the highest compatibility degree with
s2 ∈ S2 among those in S2. Our measuring process yields a precision and recall
of 100% for compatible protocols. Our empirical analysis also showed the good
quality of our approach for comparing incompatible protocols. For instance, the
study of the car rental service [1] produces a precision and recall equal to 85% and
95%, respectively. We applied the same evaluation to a flight advice system [1]
which helps travellers to find flight information. This yields a precision and a
recall equal to 91% and 100%, respectively. We measured precision and recall
for the other examples of our dataset as well, and our study revealed very high
values for both metrics (more than 90% in average).

4 Application to Model-Based Adaptation of Web
Services

Our compatibility degree results have some straightforward applications for, e.g.,
service selection, ranking, and adaptation. We focus in the rest of this section
on software adaptation [6]. Adaptation aims at computing an intermediate com-
ponent or adaptor to resolve mismatches existing between services interacting
with each other. An adaptor is built from abstract descriptions, a.k.a adaptation
contracts, specifying how the involved services can successfully interact together
for fulfilling some specific requirements in spite of the mismatches existing in
their interfaces. The Comparator tool was integrated into a graphical environ-
ment, called ACIDE, for the interactive specification of adaptation contracts.
This module belongs to a complete framework, called ITACA, dedicated to the
design and synthesis of adaptors for Web services [2].

ACIDE includes a graphical representation of STSs and a visualization of their
ports. Each label on the STS corresponds to a port in the graphical description.

Comparator: A Tool for Quantifying Behavioural Compatibility 309

Ports include a data port for each parameter contained in the parameter list of
the label. Correspondences between STSs are represented as port bindings and
data port bindings. Starting from the graphical representation, the architect
can specify these bindings by successively connecting ports and data ports. The
resulting collection of bindings is the adaptation contract.

Our compatibility measure can be used in different ways to specify the adap-
tation contract in ACIDE. Firstly, it is possible to automatically generate port
bindings for labels that perfectly match. Secondly, the designer can also select a
state (label, resp.) in one protocol, and Comparator returns the best state (label,
resp.) matching in the other protocol. For instance, Fig. 2 shows the state-based
matching results when the designer selects state number 2 in the top left STS
and compares it with all the states in the client STS on the right.

Fig. 1. Online Comparator Fig. 2. State-based matching in ACIDE

References

1. Comparator Web Page,
http://ouederni.perso.enseeiht.fr/10-comparator-tool.html

2. Cámara, J., Antonio Mart́ın, J., Salaün, G., Cubo, J., Ouederni, M., Canal, C.,
Pimentel, E.: ITACA: An Integrated Toolbox for the Automatic Composition and
Adaptation of Web Services. In: Proc. of ICSE 2009, pp. 627–630. IEEE (2009)

3. Durán, F., Ouederni, M., Salaün, G.: A Generic Framework for N-Protocol Com-
patibility Checking. SCP 77(7-8), 870–886 (2012)

4. Ouederni, M., Salaün, G., Pimentel, E.: Measuring the Compatibility of Service
Interaction Protocols. In: Proc. of SAC 2011, pp. 1560–1567. ACM (2011)

5. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, New York (1983)

6. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

http://ouederni.perso.enseeiht.fr/10-comparator-tool.html

Transformation of Attributed

Structures with Cloning�

Dominique Duval1, Rachid Echahed2, Frederic Prost2, and Leila Ribeiro3

1 LJK - Université de Grenoble
2 LIG - Université de Grenoble

3 INF - Universidade Federal do Rio Grande do Sul

Abstract. Copying, or cloning, is a basic operation used in the specifi-
cation of many applications in computer science. However, when dealing
with complex structures, like graphs, cloning is not a straightforward op-
eration since a copy of a single vertex may involve (implicitly) copying
many edges. Therefore, most graph transformation approaches forbid the
possibility of cloning. We tackle this problem by providing a framework
for graph transformations with cloning. We use attributed graphs and
allow rules to change attributes. These two features (cloning/changing
attributes) together give rise to a powerful formal specification approach.
In order to handle different kinds of graphs and attributes, we first de-
fine the notion of attributed structures in an abstract way. Then we
generalise the sesqui-pushout approach of graph transformation in the
proposed general framework and give appropriate conditions under which
attributed structures can be transformed. Finally, we instantiate our gen-
eral framework with different examples, showing that many structures
can be handled and that the proposed framework allows one to specify
complex operations in a natural way.

1 Introduction

Graph structures and graph transformation have been successfully used as foun-
dational concepts of modelling languages in a wide range of areas related to
software engineering. Such a success mainly stems from the intuitive and pic-
torial features of graphs which ease the writing as well as the understanding of
specifications. Several ways to define graph transformation rules have been pro-
posed (see e.g., [22,12,14] for a survey). We can distinguish two main approaches:
The algorithmic approach which is rather pragmatic and defines graph transfor-
mation rules by means of the algorithms used to transform the graphs (e.g.[3])
and the algebraic approach which is more abstract (e.g. [15]). This latter bor-
rows notions from category theory to define graph transformation rules. The
most popular algebraic approaches are the double pushout (DPO) [15,7] and the
single pushout (SPO) [13].

� This work has been partially funded by projects CLIMT (ANR-11-BS02-016), TGV
(CNRS-INRIA-FAPERGS/156779 and 12/0997-7), VeriTeS (CNPq/FAPERGS
11/2016-2 and 485048/2012-4) and PLATUS (CNPq 306843/2010-2).

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 310–324, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Transformation of Attributed Structures with Cloning 311

Very often, graph structures are endowed with attributes. Such attributes,
which enrich nodes and edges with data values, have been proven very useful
to enhance the expressiveness of visual modelling frameworks (see, e.g., UML
diagrams). These attributes can be simple names of an alphabet (labels) or
elaborated expressions of a given language. Several investigations tackling at-
tributed graph transformations have been proposed in the literature, see e.g.
[19,18,4,11,20,16]. These proposals follow the so-called double pushout approach
to define graph transformation steps. This approach can be used in many appli-
cations (see e.g. [7]) but it forbids actions which consist in cloning nodes together
with their incident edges (merging of nodes is also usually forbidden). Moreover,
this approach also prevents the application of rules that erase a node when there
are edges connected to this node in the graph that represents the state (erasing
nodes is only possible if all connected arcs are explicitly deleted by the rule).
However, there are applications in which these restrictions of DPO would lead
to rather complex specifications. For instance, duplicating or erasing some com-
ponent may be very useful in the development process of an architecture, and
should be a simple operation. Also, making a security copy of a virtual machine
in a cloud (for fault-tolerance reasons) is a very reasonable operation, as well
as switching down a (physical) machine from the infrastructure of a cloud. To
model such situations we may profit from cloning/merging as basic operations in
a formalism. But we certainly need to use attributed structures to get a suitable
formalism for real applications. In this paper, we propose a framework that has
both the ability to model cloning/merging of entities in a natural way, and also
the feature of using attributes together with the graphs.

To develop our proposal, we follow a more recent approach of graph trans-
formation known as the sesqui-pushout approach (SqPO) [6]. This latter is a
conservative extension of DPO with some additional features such as deletion or
cloning.

A rule is defined, as in the DPO approach, by means of a span of the form
(l : L← K → R : r) where the morphisms l and r are not necessarily monos. The
fact that l is not mono allows one to duplicate some nodes and edges. Notice
that most proposals dealing with attributed graphs assume l to be mono. A
rewrite step can be depicted as follows where the left square is a final pullback
complement and the right square is a pushout. The intuition is analogous to
the DPO approach: the left square specifies what is removed (and also what is
cloned) by the rule application and the right square creates the new items. The
difference, besides allowing non injective rules, is that when applying the rule
the so called dangling condition does not need to be checked: if there are edges in
G connected to nodes in the image of m that is deleted by the rule, these edges
are automatically removed by the rule application. In DPO, in such a situation
a rule would not be applicable.

L

(FPBC)m
��

K

(PO)

l�� r ��

d
��

R

h
��

G D
l1��

r1 �� H

Sesqui-pushout: G
sqpo �� H

312 D. Duval et al.

In order to consider different kinds of graphs and attributes, we present our
approach in a general setting. That is to say, we consider structures of the form
Ĝ = (G,A, α) made of an object G whose elements may be attributed, an object
A defining attributes and a partial function α which assigns to some elements
of G attributes in A. The fact that α is partial turns out to be very useful
to write transformation rules that change the attributes of some elements of
G (see, e.g. [17,4]). We do not assume G to be necessarily a graph nor do we
assume A to be necessarily an algebra. We thus elaborate a framework which can
be instantiated with different kinds of structures and attributes fulfilling some
criteria we introduce in this paper. Therefore we can handle different graphs
with various kinds of attributes (algebras, lambda-terms, finite labels, syntactic
theories, etc.). Similar objectives, with different outcome, have been recently
investigated in [16] for the DPO approach.

The rest of the paper is organized as follows. The next section introduces the
category of attributed structures and provides some definitions which may help
the understanding of the paper. Section 3 recalls briefly the useful definitions
regarding the sesqui-pushout approach. Then, Section 4 shows how to lift SqPO
rewriting in the context of attributed structures. Sections 5 and 6 illustrate our
approach through some examples while related work are discussed in Section 7.
Concluding remarks are given in Section 8. The missing proofs may be found
in [10].

2 Attributed Structures

In this section we define the notion of attributed structures and set some
notations.

Structures. Let G be a category and S : G → Set a functor from G to the
category of sets. For instance, G may be the category of graphs Gr [22] and S
may be either the vertex functor V defined by V (G) = VG and V (g) = gV , or
the edge functor E defined by E(G) = EG and E(g) = gE, or the functor V +E
which maps each graph G to the disjoint union VG + EG and each morphism
g : G1 → G2 to the map gV + gE .

Attributes. Let A be a category and T : A → Set a functor from A to the
category of sets. For instance, A may be the category Alg(Σ) of Σ-algebras
[23] for some signature Σ = (S,Ω), or more generally the category Mod(Sp)
of models of an equational specification Sp = (Σ,E), made of a signature Σ
and a set of equations E. Then the functor T : A → Set may be such that
T (A) =

∑
s∈S As, i.e., T maps each Σ-algebra A to the disjoint union of its

carriers, or more generally T (A) =
∑

s∈S′ As for some fixed subset S′ of S.
In the following, we sometimes write Fx instead of F (x) when a functor F is
applied to an object or a morphism x.

Definition 1. The category of attributed structures AttG (with respect to the
functors S and T) is the comma category (S ↓ T). Thus, an attributed structure

is a triple Ĝ = (G,A, α) made of an object G in G, an object A in A and a

Transformation of Attributed Structures with Cloning 313

map α : S(G) → T (A) (in Set) ; and a morphism of attributed structures

ĝ : Ĝ→ Ĝ′, where Ĝ = (G,A, α) and Ĝ′ = (G′, A′, α′), is a pair ĝ = (g, a) made
of a morphism g : G → G′ in G and a morphism a : A → A′ in A such that
α′ ◦ Sg = Ta ◦ α (in Set).

Ĝ

ĝ
��

=

G

g
��

SG

Sg
��

α �� TA

Ta
��

A

a
��

Ĝ′ G′ SG′ α′
�� TA′

=

A′

Partial Maps. Let Part be the category of sets with partial maps, which
contains Set. A partial map f from X to Y is denoted f : X ⇀ Y and its
domain of definition is denoted D(f). The partial order between partial maps is
denoted ≤, it endows Part with a structure of 2-category. By composing S and
T with the inclusion of Set in Part we get two functors Sp : G → Part and
Tp : A→ Part.

Definition 2. The category of partially attributed structures PAttG (with re-
spect to the functors S and T) is defined as follows. A partially attributed struc-

ture is a triple Ĝ = (G,A, α) made of an object G in G, an object A in A
and a partial map α : Sp(G) ⇀ Tp(A) (in Part) ; and a morphism of partially

attributed structures ĝ : Ĝ → Ĝ′, where Ĝ = (G,A, α) and Ĝ′ = (G′, A′, α′),
is a pair ĝ = (g, a) made of a morphism g : G → G′ in G and a morphism
a : A→ A′ in A such that α′ ◦ Spg ≥ Tpa ◦ α (in Part).

Ĝ

ĝ
��

=

G

g

��

SpG

Spg

��

α � TpA

Tpa

��

A

a

��

Ĝ′ G′ SpG
′ α′

� TpA
′

≥

A′

Such a morphism of partially attributed structures is called strict when α′ ◦
Sp(g) = Tp(a) ◦ α.

Remark 1. Clearly, AttG is a full subcategory of PAttG and every morphism
in AttG is a strict morphism in PAttG. The subcategory AttG of PAttG is
called the subcategory of totally attributed structures.

Definition 3. A morphism of (partially) attributed structure ĝ : Ĝ → Ĝ′ pre-

serves attributes if Ĝ = (G,A, α), Ĝ′ = (G′, A, α′) and ĝ = (g, idA) for some
object A in A.

Notations. We will omit the subscript p in Sp and Tp. Let (G,A, α) be a
(partially) attributed structure, the notation x : t means that x ∈ S(G), t ∈ T (A)
and α(x) = t (i.e., x has t as attribute), and the notation x : ⊥ means that
x ∈ S(G), x
∈ D(α) (i.e., x has no attribute). Let (G,A, α) and (G′, A′, α′)
be attributed structures, let g : G → G′ in G and a : A → A′ in A, then

314 D. Duval et al.

(g, a) : (G,A, α) → (G′, A′, α′) is a morphism of attributed structures if and
only if for all x ∈ S(G) and t ∈ T (A) x : t =⇒ g(x) : a(t). Let (G,A, α) and
(G′, A′, α′) be partially attributed structures, let g : G→ G′ inG and a : A→ A′

in A, then (g, a) : (G,A, α) → (G′, A′, α′) is a morphism of partially attributed
structures if and only if for all x ∈ SG and t ∈ TA x ∈ D(α) =⇒ g(x) ∈
D(α′) and then x : t =⇒ g(x) : a(t), and (g, a) is strict if and only if for all x ∈
SG and t ∈ TA x ∈ D(α) ⇐⇒ g(x) ∈ D(α′), and then x : t =⇒ g(x) : a(t).
The notation x : ⊥ can be misleading: of course we can extend a : TA → TA′

as a : TA + {⊥} → TA′ + {⊥} by setting a(⊥) = ⊥, but then it is false that
x : t =⇒ g(x) : a(t) for each x ∈ SG and t ∈ TA + {⊥}. In fact, for each
morphism of partially attributed structures (g, a) we have g(x) : ⊥ =⇒ x : ⊥,
and it is only when g is strict that in addition x : ⊥ =⇒ g(x) : ⊥.

Definition 4. The underlying structure functor is the functor UG : PAttG→
G which maps an attributed structure (G,A, α) to the object G and (g, a) to the
morphism g. The underlying attributes functor is the functor UA : PAttG→ A
which maps an attributed structure (G,A, α) to the object A and (g, a) to the
morphism a.

3 Sesqui-Pushouts

In this section we briefly recall the definition of sesqui-pushout (SqPO) rewriting,
introduced in [6]. A sesqui-pushout rewriting step is made of a final pullback
complement (FPBC) followed by a pushout (PO). The definitions of FPBC and
SqPO are reminded here, in any category C. The initiality property of POs and
the finality property of FPBCs imply that POs, FPBCs and SqPOs are unique
up to isomorphism, when they exist.

Definition 5. The final pullback complement (FPBC) of a morphism mL :
L→ G along a morphism l : K → L is a pullback (PB) (below on the left) such
that for each pullback (below on the right)

L

mL

��

(PB)

K
l��

mK

��

G D
l1��

L

mL

��

(PB)

K ′l′��

m′

��

G D′l′1��

and each morphism f : K ′ → K such that l ◦ f = l′ there is a unique morphism
f1 : D′ → D such that l1 ◦ f1 = l′1 and f1 ◦m′ = mK ◦ f .

L

mL

��

(FPBC)

K
l

��

mK

��

K ′

l′

��

f
��

m′
��

G D
l1�� D′

l′1

��
f1��� � � � � � � �

Transformation of Attributed Structures with Cloning 315

Definition 6. The sesqui-pushout of a morphism mL : L→ G along a span of
morphisms (l : L← K → R : r) is the FPBC of mL along l followed by the PO
of mK along r (see diagram below).

L

(FPBC)mL

��

K

(PO)

l�� r ��

mK

��

R

mR

��

G D
l1��

r1 �� H

A comparison of SqPO with DPO and SPO approaches can be found in [6],
where it is stated that “Probably the most original and interesting feature of
sesqui-pushout rewriting is the fact that it can be applied to non-left-linear rules
as well, and in this case it models the cloning of structures.”

In the category of graphs, under the assumption that mL : L → G is an
inclusion, the result of the sesqui-pushout can be described as follows [6, Section
4.1], [9]. With respect to a rule (l : L← K → R : r), let us call tri-node a triple
(nL, nK , nR) where nL, nK and nR are nodes in L, K and R respectively and
where nL = l(nK) and nR = r(nK). Since mL is an inclusion, L is a subgraph
of G. Let L be the subgraph of G made of all the nodes outside L and all the
vertices between these nodes. Let L̃ be the set of edges outside L with at least
one endpoint in L (called the linking edges), so that G is the disjoint union of L,

L and L̃. Then, up to isomorphism, mR is an inclusion and H is obtained from
G by replacing L by R and by “gluing R and L in H according to the way L
and L are glued in G”, which means precisely that H is the disjoint union of R,
L and the following set R̃ of linking edges (see [9] for more details):

– if n is a node in R and p a node in L, there is an edge from n to p in R̃ for
each tri-node (nL, nK , nR) with nR = n and each edge from nL to p in L̃;

– if n is a node in L and p a node in R, there is an edge from n to p in R̃ for
each tri-node (pL, pK , pR) with pR = p and each edge from n to pL in L̃;

– if n and p are nodes in R, there is an edge from n to p in R̃ for each tri-node
(nL, nK , nR) with nR = n, each tri-node (pL, pK , pR) with pR = p and each

edge from nL to pL in L̃.

4 Attributed Sesqui-Pushout Rewriting

In this section we define rewriting of attributed structures based on sesqui-
pushouts, then we construct such SqPOs from SqPOs of the underlying (non-
attributed) structures.

Definition 7. Given an object A of A, a rewriting rule with attributes in A is
a span (l̂ : L̂ ← K̂ → R̂ : r̂), or simply (l̂, r̂), made of morphisms l̂ and r̂ in

PAttG which preserve attributes and such that L̂ and R̂ are totally attributed
structures. A match for a rule (l̂, r̂) in an attributed structure Ĝ is a morphism

m̂ = (m, a) : L̂ → Ĝ in AttG such that the map Sm is injective. The SqPO

rewriting step (or simply the rewriting step) applying a rule (l̂, r̂) to a match m̂

is the sesqui-pushout of m̂ along (l̂, r̂) in the category PAttG.

316 D. Duval et al.

From the definition above, a rewrite rule is characterised by (i) the object

A of attributes, (ii) the attributed structures L̂, K̂and R̂ and (iii) the span of
structures (l : L ← K → R : r). A match m̂ must have an injective underly-
ing morphism of structures but it may modify the attributes. In contrast, the
morphisms l̂ = (l, idA) and r̂ = (r, idA) in a rule have arbitrary underlying mor-
phisms of structures l and r, thus allowing items to be added, deleted, merged
or cloned, but they must preserve attributes since their underlying morphism
on attributes is the identity idA. However, since K̂ is only partially attributed,
any element x ∈ SK without attribute may be mapped to l(x) : a in L̂ and to

r(x) : a′ in R̂ with a
= a′. Thus the assignment of attributes to vertices/edges
may change in the transformation process.

In the following when (m, a) is a match we often assume that Sm is an in-
clusion, rather than any injection; in this way the notations are simpler while
the results are the same, since all constructions (PO, PB, FPBC) are up to
isomorphism.

The construction of a sesqui-pushout in PAttG can be made in two steps: first
a sesqui-pushout in G, which depends only on the properties of the category G,
then its lifting to PAttG, which does not depend any more on G. Moreover, this
lifting is quite simple: since the morphisms l and r do not modify the attributes,
it can be proved that mK and mR have the same underlying morphism on
attributes as mL. This is stated in Theorem 1.

Theorem 1. Let us assume that the functors UG : PAttG→G, UA : PAttG→
A, S : G→ Set and T : A→ Set preserve PBs and that the functor S preserves
POs. Let (l̂ : L̂ ← K̂ → R̂ : r̂) be a rewriting rule and m̂L = (mL, a) : L̂ → Ĝ
a match. If diagram Δ (below on the left) is a SqPO rewriting step in G then

diagram Δ̂ (below on the right) is a SqPO rewriting step in PAttG and (mR, a)
is a match.

Δ : Δ̂ :

L

(FPBC)
mL

��

K

(PO)

l�� r ��

mK

��

R
mR

��

G D
l1��

r1 �� H

L̂

(FPBC)
(mL,a)

��

K̂

(PO)

(l,idA)
��

(r,idA)
��

(mK ,a)

��

R̂
(mR,a)

��

Ĝ D̂
(l1,idA1)��

(r1,idA1) �� Ĥ

Proof. Since a sesqui-pushout is a FPBC followed by a PO, this proof relies on
similar results about the lifting of FPBCs and the lifting of POs (see [10]).

Let us summarize what may occur for an element x ∈ SD. If x
∈ SK then
only one case may occur:

l1(x) : t1 x : t1
��� � �� r1(x) : t1

If x ∈ SK then two cases may occur:
l(x) : t

�
��

x : t��� � ��
�

��

r(x) : t
�
��

l1(x) : a(t) x : a(t)
��� � �� r1(x) : a(t)

l()x : t
�
��

x :⊥��� � ��
�

��

r(x) : t′
�
��

l1(x) : a(t) x :⊥��� � �� r1(x) : a(t
′)

Transformation of Attributed Structures with Cloning 317

5 Graph Transformations with Simply Typed λ-terms as
Attributes

In this section we consider simply typed λ-terms as attributes. The choice of the
λ-calculus can be motivated by the possibility to perform higher-order compu-
tations (functions can be passed as parameters). We refer to [2] for more details
concerning the simply-typed λ-calculus, though basic notions of λ-calculus are
enough to understand the example provided in this section.

First, let us choose the categories G and A and the functors S and T . Let
G = Gr be the category of graphs. Let S : G→ Set be the functor which maps
each graph to the disjoint union of its set of vertices and its set of edges. We define
the category A as the category where objects are sets Λ(X) of simply typed λ-
terms, à la Church, built over variables in X . For the sake of simplicity we only
consider one base type ι. Simply typed λ-terms in Λ(X), noted t, and types, noted
τ , are defined inductively by: τ : : = ι | τ → τ and t : : = x | (t t) | λxτ .t with
x ∈ X . A morphism m from Λ(X) to Λ(X ′) is totally defined by a substitution
from X to Λ(X ′). The functor T : A → Set is such that T (Λ(X)) is the set of
normal forms of elements in Λ(X). Other choices for T are possible, for instance
T (Λ(X)) could be chosen to be Λ(X) itself. However in this case there would
be no reduction in the attributes while rewriting. With the definitions as above,
the functors UG : PAttG → Gr, UA : PAttG → A, S : Gr → Set and
T : A→ Set preserve pullbacks, and S preserves pushouts.

Graph transformations can be coupled with λ-term evaluation. For instance,
a vertex, n, of a right-hand side, R, of a rule may be attributed with a λ-term,
t, containing free variables which occur in the left-hand side L. A match, σ of
such a rule instantiates the free variables. Firing the rule will result in (i) the
computation of the normal form of the λ-term σ(t) and (ii) its attribution to the
image of vertex n in the resulting transformed graph. Below we give an example
of such a rule and illustrate it on the graph λG.

L K R
�

�

�

�n:x

��

�

�

�

�
m:y

�

�

�

	
p:f

�

�

�

�n:⊥
�

�

�

�
m:y

�

�

�

	
p:f

�

�

�

�m’:⊥

�

�

�

	
n:(f x y)

�

�

�

�
m:y

�

�

�

	
p:f

�

�

�

	
m’:f

λG λD λH
�

�

�

�n:w

��

�

�

�

�m:λuι.u��

�

�

�

	
p:λsι.λtι.s

��������

�

�

�

�n:⊥
�

�

�

�m:λuι.u��

�

�

�

	
p:λsι.λtι.s

��������
��
�

�

�

�m’:⊥

����������

�

�

�

�n:w
�

�

�

�m:λuι.u��

�

�

�

	
p:λsι.λtι.s

		�������
��
�

�

�

�m’:λsι.λtι.s

��������

Graph morphisms are represented via vertex name sharing, and UA can be
deduced from them (for instance attribute x in L is instantiated by attribute w
in λG because of the match on vertex n, likewise f is instantiated by λsι.λtι.s
and y is instantiated by λuι.u). In this example several features of our framework
are underlined. First, notice that vertex m in L is cloned, as a structure, into
m and m′. This cloning of structure implies that the edges incident to m in λG

318 D. Duval et al.

are to be duplicated for m and m′ in λH . As for attributes, the example shows
that the structure can be cloned while the attributes can be changed (this is the
case for the attribute of vertex m′). The edge between vertices n and p is erased
since it is matched and is not present in K nor in R. Furthermore, the attribute
of n in R shows a higher-order computation. Via the match, f is substituted
by the function λsι.λtι.s and is applied to the instances of x and y. In λH the
attribute of n is the normal form of (λsι.λtι.s w λuι.u) which is w. Attributes
can be easily copied, e.g., f occurs twice in R. Finally, attributes of a vertex can
be modified thanks to the partiality of the attribution in K. It is witnessed on
vertices n and even m′ which is a clone of m. In fact m′ clones only the incident
edges of m, one would have to write m′ : y to copy the attribute of m as well.
Free variables are used to provide arguments of lambda-terms. This allows us to
simulate the attribute dependency relation introduced in [5].

6 Graph Transformations with Attributes Defined
Equationally: Administration of Cloud Infrastructure

In this section we explore how our framework allows us to take into account
attributed graph transformations with attributes built over equational spec-
ifications. First we instantiate the definition with appropriate categories and
functors, and then model an example.

Let the category G and functor S : G → Set be defined as in section 5.
Let T : A → Set be the functor which maps each model of Sp = (Σ,E), with
Σ = (S,Ω), to the disjoint union of the carriers sets As for s in some given
set of sorts S. With the definitions as above, the functors UG : PAttG → Gr,
UA : PAttG → Mod(Sp), S : Gr → Set and T : Mod(Sp) → Set preserve
pullbacks, and S preserves pushouts.

Cloud Computing is very popular nowadays [1]. The general idea is that there
is a pool, called cloud, of resources (equipment, services, etc.) that may be re-
quested by users. A user may, for example, request a machine with some specific
configuration and services from the cloud. The cloud administrator chooses an
actual physical machine that is available and installs on it a virtual machine
(short VM) according to the user specification. The user does not have to know
neither where this machine is nor how the services are implemented, commu-
nication with his machine is done via the cloud. The cloud administrator has
many tasks to perform, besides communicating with the clients (users). Typ-
ical operations involve load balance among the machines, optimisation of the
use of machines, etc. In the following we provide the specification using graph
transformations of some operations of a cloud administrator. First we define the
static structure, defining data types and the states of the system (as attributed
graphs), and then we define the operations (as rules). Since the purpose of this
case study is to show the use of our framework, we will not describe a complete
set of attributes and rules needed to specify the behaviour of a cloud adminis-
trator, but concentrate on those parts that make explicit use of the features of
the approach.

Transformation of Attributed Structures with Cloning 319

6.1 Cloud Administration: Static Part

To model this scenario, we will use graphs with many attributes. The approach
presented in the previous sections could be easily extended to families of at-
tributes. Alternatively, one could use just one record attribute, but we prefer
the former representation since the specification becomes more readable. The
attributes that will be used are:

Vertex Attributes: nodeType, represent the different entities involved in this
system, that is, cloud administrator, users, machines and virtual machines.
In the graphical notation, this attribute will be denoted by a corresponding

image (, , and , resp.); ident, models the identifier of the vertex;
size, denotes the size of the machine and virtual machine; free, describes the
amount of unused space in a machine; type, describes the type of a virtual
machine (as a simplification, we assumed that there is a set of standard
virtual machines that may be requested by users, identified by their types);
config, this models the internal configuration of the cloud administrator,
probably this would be a set of tables and variables describing the current
state of machines and virtual machines;

Edge Attributes: edgeType, some arcs will represent physical relations (like
a cloud administrator is connected to all machines monitored by it) or
”knows”-relations (like a user may know a cloud administrator) and oth-
ers will represent messages that are sent in the system. Messages will be
denoted by dashed arrows, all other relations will be solid edges; type, anal-
ogous to the types of vertices; id, used in messages that require a parameter
(identifier of a virtual machine).

The data types used in the state graph are defined in specification Cloud Sp
(Figure 1). This specification includes sorts for booleans and natural numbers
with usual operations and equations, sort T for the different types of virtual
machines, and a sort C to describe configurations of a cloud administrator. Such
configurations are records containing the current status of the cloud. Due to
space limitations, we will not define details of configurations, just use some basic
operations (equations will be also omitted).

For example, the graph G1 depicted in Fig. 2 describes two users and one
cloud administrator that knows one machine, M1, and two types of virtual
machines, T 1 and T 2. Actually, the administrator stores the images of the cor-
responding virtual machines such that, when a request is done, it creates a copy
of this image in an available machine. Images are modelled by a special identifier
(0). There are also two request messages, one from each user.

6.2 Cloud Administration: Dynamic Part

Figure 2 also shows some rules that describe the behaviour of the cloud admin-
istrator. Rule CreateVM models the creation of a new virtual machine. This
may happen when there is a request from a user (dashed edge in L1) having as

320 D. Duval et al.

Cloud Sp :
sorts B, N, C,T
opns

. . . boolean operators...

. . . natural numbers operators...
newId: C × N → B checks whether an id is not used in a config
enoughSpace: C × N → B checks if there is enough space in a config
newVM: C × N × N × N × T → C includes a new virtual machine in a config
replVM: C × N × N → C replicates a virtual machine in a config
newMch: C × N × N ×Nat → C includes a new machine in a config
mergeMch: C × N × N → C merges two machines in a config
replicateAdm?: C → B checks whether a new administrator is needed

eqns
. . .

Fig. 1. Specification Cloud Sp

attribute the type of virtual machine that is created and the cloud administrator
has a corresponding image and a machine to install this VM. Some additional
constraints over the attributes are modelled by equations (written below the
rule): the identifier that will be used for the new VM is fresh (newId(c, idV M)),
there is enough free space in the chosen machine (nV M ≤ f)1. The remaining
equations describe the values that some attributes will receive when this rule is
applied: variable f ′ depicts the amount of free space in the machine after the
installation of the new VM, and c′ is the updated configuration of the could
administrator. Note that the two instances of the VM in K1 are copies of the
corresponding vertex in L1, just the identifier attribute in the second copy is left
undefined, the attributes config and free are also undefined, since their values
will change. Finally, in R1, this second copy is updated with the new identifier
(idV M) and it is installed in the machine and sent to the user, and the attributes
of the cloud administrator and machine are updated accordingly. Application of
this rule to graph G1 is given by the span G1← D → G2 on top of Fig. 2.

Rule replicateVM creates a copy (replica) of a VM in another physical
machine. This operation is important for fault tolerance reasons. When this rule
is applied, all references to the original VM will also point to the new VM.
The configuration of the cloud administrator is updated because any change in
one virtual machine must now be propagated to its copy. Rule replicateAdm
is used to replicate the cloud administrator itself. This kind of operation may
be necessary, for example, when the number of clients becomes too large or
for dependability reasons. The rule that specifies the operation has an equation
that checks whether this replication is needed (replicateAdm?(c)). In case this
is true in the current configuration, the administrator is copied and the two
configurations (the original and the copy) are updated (because now they must

1 To enhance readability, when working with boolean expressions in equations, we omit
the right side of the equation. For example, we write simply newId(c, Id) instead of
newId(c, Id) = true.

Transformation of Attributed Structures with Cloning 321

G1
size: 30
ident: M1
free: 20

ident: 1

config:C1ident: 2
type: “T2”
msg: Req

type: “T1”
msg: Req size: 10

ident : 0
type: “T1”

size: 40
ident : 0
type: “T2”

G2
size: 30
ident: M1
free: 20

ident: 1

config:C2ident: 2
type: “T2”
msg: Req

size: 10
ident : 10
type: “T1”

size: 10
ident : 0
type: “T1”

size: 40
ident : 0
type: “T2”

msg: newVM

D
size: 30
ident: M1
free: 20

ident: 1

config:⊥ident: 2
type: “T2”
msg: Req

size: 10
ident : ⊥
type: “T1”

size: 10
ident : 0
type: “T1”

size: 40
ident : 0
type: “T2”

L1

config: c
size: nVM
ident : 0
type: tVM

size: nM
ident : id
free: f

type: tVM

msg: Req

K1

config: ⊥
size: nVM
ident : 0
type: tVM

size: nM
ident : id
free: ⊥

size: nVM
ident : ⊥
type: tVM

1

2

R1

config: c’
size: nVM
ident : 0
type: tVM

size: nM
ident : id
free: f’

size: nVM
ident : idVM
type: tVM

1

2msg: newVM

rule CreateVM

ident: idU ident: idU ident: idU

eqns: newId(c,idVM) ; nVM ≤ f ; f’ = f - nVM ; c’= newVM(c,idU,idVM,nVM,tVM)

eqns: newId(c,id0) ; id1 ≠ id2; nVM ≤ f ; f’ = f - nVM ; c’= replVM(c,idU,id0)

L2

config: c
size: nVM
ident : idVM
type: tVM

ident: id1

id: idVM

msg: Repl

K2

config: ⊥

size: nM
ident : id2
free: ⊥

2

1

R2

config: c’
size: nVM
ident : idVM
type: tVM

size: nM
ident : id2
free: ’f

1

2
msg: newVM

rule ReplicateVM

size: nM
ident: id2
free: f

size: nVM
ident : ⊥
type: tVM

size: nVM
ident : idVM
type: tVM

ident: id1

size: nVM
ident : id0
type: tVM ident: id1

ident: idUident: idUident: idU

L3

config: c
size: nVM
ident : “img”
type: tVM

type: tVM

msg: Req

K3

config: ⊥
size: nVM
ident : “img”
type: tVM

1

config: c’
size: nVM
ident : “img”
type: tVM

size: nM
ident : id
free: f’

1

rule TurnOnMachine

eqns: not(enoughSpace(c,nVM)); newId(c,id) ; nVM ≤ nM ; f’= nM-nVM ; c’=newMch(c,id,nM,f’)

ident: idU ident: idU ident: idU

R3

type: tVM

msg: Req

type: tVM

msg: Req

eqns: nM1-f1 ≤ f2; f’ = f2 - (nM1-f1) ; c’= mergeMch(c,id1,id2)

L4

config: c

size: nM2
ident : id2
free: f2 K4

config: ⊥

1

R4

config: c’

rule TurnOffMachine

size: nM1
ident : id1
free: f1

1,22

size: nM2
ident : id2
free: f’

size: ⊥
ident : ⊥
free: ⊥

size: nM2
ident : id2
free: ⊥

21

L5
config: c

K5 R5

rule ReplicateAdm

1 2

config: ⊥ config: ⊥

1 2

config:c’ config: c’’’

eqns: replicateAdm?(c) ; updateRepl1(c) = c’ ; updateRepl2(c) = c’’

Fig. 2. Graph and Rules of the Cloud Administrator

322 D. Duval et al.

know that some synchronisation is needed to perform the operations). Since
these are copies, they manage the same machines and VMs, but now clients may
send requests to either of the administrators (when this rule is applied, all edges
that were connected to one administrator will also be connected to the copy).

RulesTurnOnMachine andTurnOffMachinemodel the creation and dele-
tion of machines in the system. We assumed that there is an unlimited number of
machines that may be connected to the system, and thus there is a need for more
capacity (not(enoughSpace(c, nVM) is true), a new machine may be added. We
specified a simple version of turning off a machine by merging the vertices that
correspond to two different machines. This can be done if the administrator no-
tices that there is enough free space in one machine to accommodate VMs that
are in another machines (nM1 − f1 ≤ f2 is true). When this rule is applied, all
VMs that were in both machines will end up in the machine with identifier id2.

7 Related Work

Various definitions of attributed graphs have been proposed in the literature.
Labelled graphs, e.g. [17], where attributes are limited to a simple set of a vo-
cabulary, could be considered as a first step towards attributed graphs. Such
a set of vocabulary can be replaced by a specific, possibly infinite, set (of at-
tributes) such as integers yielding particular definition of attributed graphs. This
approach has been proposed for instance in [21] and could be considered as a
particular case of the definition of attributed graphs we proposed in this paper.

The most popular way to define the data part in attributed graphs is based on
algebraic specifications, see e.g. [19,18,4,11]. E-Graphs [11] is one of the principal
contribution in this perspective, where an attributed graph gathers, in addition
to its own vertices and edges, additional vertices and edges corresponding to
the attribution part. The latter vertices correspond to possible attribution val-
ues. Such vertices might be infinite whenever the set of attributes is infinite. An
attribution edge goes from a vertex or an edge of the considered graph to an at-
tribution vertex. Attribution edges are used to represent graphically attribution
functions. Due to the representation of each attribute as a vertex, an E-graph is
infinite in general.

To overcome the infinite structures of E-graphs, Symbolic graphs [20] have
been proposed. They are E-graphs which have variables as attributes. Such vari-
ables can be constrained by means of first order logic formulae. Hence a symbolic
graph represents in concise way a (possibly infinite) set of (ground) E-graphs.

In this paper, we have proposed a general definition of attributed structures
where the data part is not necessarily specified as an algebra. Our approach is
very close to the recent paper by U. Golas [16] where an attributed graph is also
defined as a tuple (G,A, α) where G is a given structure, A consists of attribution
values and α is a family of partial attribution functions. The main difference
with our proposal lies in the consideration of attribution functions α. For sake
of simplicity, we considered simply partial functions for α. Generalization to
families of functions as in [16] is straightforward.

Transformation of Attributed Structures with Cloning 323

Besides the variety of definitions of attributed graphs as mentioned above,
attributed graph transformation rules have been based mainly on the double
pushout approach which departs from the sesquipushout approach we have used
in our framework. For a comparison of the double and the sesquipushout ap-
proaches we refer the reader to [6]. As far as we are aware of, the present paper
presents the first study of attributed graph transformations following the sesqui-
pushout approach and thus featuring the possibility of vertex and edge cloning
in presence of attributes. Thanks to partial morphisms, rules allow also deletion
and change of attributes.

8 Conclusion

In this paper we presented an approach to transformations of attributed struc-
tures that allows cloning and merging of items. This approach is based on the
SqPO approach to graph transformations, and thus also allows deletion in un-
known context. Concerning the attributes, our framework is general in the sense
that many different kinds of attributes can be used (not just algebras, as in most
attributed graph transformation definitions) and allows that rules change the at-
tributes associated to vertices/edges. The resulting formalism is very interesting
and we believe that it can be used to provide suitable specifications of many
classes of applications like cloud computing, adaptive systems, and other highly
dynamically changing systems.

As future work, we plan to develop more case studies to understand the
strengths and weaknesses of this formalism for practical applications. We also
want to study analysis methods. Since we are allowing non-injective rules, great
part of the theory of graph transformations can not be used directly and we need
to investigate which results may hold. Concerning verification of properties, we
intent to extend the analysis of graph transformations using theorem provers [8]
to attributed SqPO-rewriting.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Barendregt, H., Dekers, W., Statman, R.: Lambda Calculus with Types. Cambridge
University Press (2013)

3. Barendregt, H., van Eekelen, M., Glauert, J., Kenneway, R., Plasmeijer, M.J.,
Sleep, M.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven,
P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)

4. Berthold, M.R., Fischer, I., Koch, M.: Attributed graph transformation with partial
attribution (2002)

5. Boisvert, B., Féraud, L., Soloviev, S.: Typed lambda-terms in categorical attributed
graph transformation. In: Procs of AMMSE 2011. EPTCS, vol. 56, pp. 33–47 (2011)

6. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

324 D. Duval et al.

7. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: Basic concepts and double pushout
approach. In: Handbook of Graph Grammars, pp. 163–246 (1997)

8. da Costa, S.A., Ribeiro, L.: Verification of graph grammars using a logical ap-
proach. Sci. Comput. Program. 77(4), 480–504 (2012)

9. Duval, D., Echahed, R., Prost, F.: Graph transformation with focus on incident
edges. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012.
LNCS, vol. 7562, pp. 156–171. Springer, Heidelberg (2012)

10. Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed struc-
tures with cloning (extended version). CoRR, abs/1401.2751 (2014)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed at-
tributed graphs and graph transformation based on adhesive hlr categories. Fun-
dam. Inform. 74(1), 31–61 (2006)

12. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformations, vol. 2: Applications, Lan-
guages and Tools. World Scientific (1999)

13. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part ii: Single pushout approach
and comparison with double pushout approach. In: Handbook of Graph Grammars,
pp. 247–312 (1997)

14. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of
Graph Grammars and Computing by Graph Transformations, vol. 3: Concurrency,
Parallelism and Distribution. World Scientific (1999)

15. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach.
In: 14th Annual Symposium on Foundations of Computer Science (FOCS), The
University of Iowa, USA, October 15-17, pp. 167–180. IEEE (1973)

16. Golas, U.: A general attribution concept for models in M-adhesive transformation
systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2012. LNCS, vol. 7562, pp. 187–202. Springer, Heidelberg (2012)

17. Habel, A., Plump, D.: Relabelling in graph transformation. In: Corradini, A.,
Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505,
pp. 135–147. Springer, Heidelberg (2002)

18. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

19. Löwe, M., Korff, M., Wagner, A.: An algebraic framework for the transformation
of attributed graphs. In: Sleep, R., Plasmeijer, M., van Eekelen, M. (eds.) Term
Graph Rewriting: Theory and Practice, ch. 14, pp. 185–199. John Wiley & Sons
Ltd. (1993)

20. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. ECEASST 30 (2010)

21. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

22. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, vol. 1: Foundations. World Scientific (1997)

23. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. EATCS Monographs on theoretical computer science. Springer
(2012)

Implementing Graph Transformations
in the Bulk Synchronous Parallel Model

Christian Krause1, Matthias Tichy2, and Holger Giese3

1 SAP Innovation Center, Potsdam, Germany
christian.krause01@sap.com

2 Chalmers | University of Gothenburg, Sweden
matthias.tichy@cse.gu.se

3 Hasso Plattner Institute, University of Potsdam
holger.giese@hpi.uni-potsdam.de

Abstract. Big data becomes a challenge in more and more domains. In many
areas, such as in social networks, the entities of interest have relational refer-
ences to each other and thereby form large-scale graphs (in the order of billions
of vertices). At the same time, querying and updating these data structures is a
key requirement. Complex queries and updates demand expressive high-level lan-
guages which can still be efficiently executed on these large-scale graphs. In this
paper, we use the well-studied concepts of graph transformation rules and units
as a high-level modeling language with declarative and operational features for
transforming graph structures. In order to apply them to large-scale graphs, we
introduce an approach to distribute and parallelize graph transformations by map-
ping them to the Bulk Synchronous Parallel (BSP) model. Our tool support builds
on Henshin as modeling tool and consists of a code generator for the BSP frame-
work Apache Giraph. We evaluated the approach with the IMDB movie database
and a computation cluster with up to 48 processing nodes with 8 cores each.

1 Introduction

Graph-based modeling and analysis becomes relevant in an increasing number of do-
mains including traditional business applications such as supply chain management and
product lifecycle management, but also in non-traditional application areas such as so-
cial network analysis and context-aware search [1]. In many of these areas, there is a
trend towards collecting more data with the effect that the big-data dimension of the
graph processing problem becomes a limiting factor for existing modeling and analysis
approaches. On the one hand, there is a demand for high-level, declarative modeling
languages that abstract from the basic underlying graph operations such as traversals
and node and edge manipulations. On the other, these high-level, declarative modeling
languages must be executed efficiently also on large-scale graphs (in the size of billions
of vertices and edges).

In the last decades, the theory of graph transformations (see, e.g., [2]) evolved to
a very active field both on the foundational and the application side. Graph transfor-
mations provide high-level modeling concepts for graph processing with both declar-
ative and operational parts. However, most of their today’s applications are, e.g., in
model management, model transformation and software architectures where only

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 325–339, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

326 C. Krause, M. Tichy, and H. Giese

recently issues with big models have been started to get addressed (e.g., [3]).
Because of this and the fact that graph transformations are algorithmically challeng-
ing, little effort has been taken so far to make the concepts usable also for big data
problems. Specifically, the recent work on large-scale graph processing focuses on rela-
tively simple graph queries for vertex-labeled graphs [4,5,6,3]. While these approaches
support distribution of large-scale graphs on several compute nodes in a cluster and
parallelized execution of queries, the expressive power of these approaches is very lim-
ited (see the discussion of related work in Section 2). On the other hand, distribution of
graphs in the area of graph transformations is currently only considered for modeling
purposes [7], but not for physically distributing large-scale graphs on several machines.
Thus, the high expressive power of graph transformations can currently not be used to
solve big data problems which rely on truely parallel and distributed graph processing.

To make the high-level modeling concepts of graph transformations available for
processing of large-scale graphs, we map the concepts of (declarative) transformation
rules and (operational) transformation units [8] to the bridging model Bulk Synchronous
Parallel (BSP) [9] which provides an abstraction layer for implementing parallel al-
gorithms on distributed data. Thereby, we enable the use of the expressive language
concepts of graph transformations for solving big data problems. In our prototypical
tool suppport we use the Henshin [10] graph transformation language and tool to spec-
ify transformation rules and units. We have implemented a code generator which takes
Henshin models as input and generates code for the BSP-based framework Apache
Giraph [11]. Giraph builds on the infrastructure of Apache Hadoop [12] which imple-
ments the MapReduce [13] programming model. Our choice for BSP and Giraph was
driven by fact that they provide the required support and infrastructure for transparent
distribution and parallelization including load-balancing. We use a synthetic and a real-
data example to show the feasability and the scalability (horizontal and vertical) of our
approach. We also define modeling concepts tailored for parallel graph processing.

Organization. The rest of this paper is organized as follows. In Section 2 we compare
our approach to existing work in this area. In Section 3 we give an overview of the
relevant background. Section 4 describes our mapping of graph transformation to the
BSP model and run-time optimizations. Section 5 contains an experimental evaluation.
Section 6 discusses conclusions and future work.

2 Related Work

An algorithm for subgraph matching on large-scale graphs deployed on a distributed
memory store is introduced in [4]. The approach is limited to vertex-labeled graphs
without attributes and edge labels. More advanced matching conditions such as nega-
tive application conditions are not supported and transformations are also not consid-
ered. These restrictions apply also to the work on distributed graph pattern matching
in [5] and [6]. Moreover, only graph simulations (as opposed to subgraph-isomorphy
checking) are considered which are less powerful but can be checked in quadratic time.

The distributed graph transformation approach developed by Taentzer [7] focuses
on the modeling of distributed graphs and transformations, but not on physical distri-
bution on several machines. This is also the case for the parallel graph transformation
approach for modeling Timed Transition Petri Nets in [14]. Parallelizing (incremental)

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 327

graph pattern matching and graph transformations is discussed in [15]. Again, the ap-
proach does not consider distributing a large-scale graph on a cluster of compute nodes
and therefore also does not support horizontal scalability. Furthermore, all matches are
stored in memory and thus the approach does not scale for large graphs with a high
number of matches due to the memory restrictions. Large-scale graph processing based
on a mapping to an in-memory relational database is discussed in [1]. Scalability is not
investigated here. Early results on distributed and massive parallel execution of graph
transformations on similar sized graphs are shown in [3]. However, it is unclear which
type of matching conditions are supported and how the approach scales for rules with a
high number of partial matches as in our example.

Blom et al. present a distributed state space generation approach for graph transfor-
mations [16] based on LTSmin [17]. In contrast to our work, the framework does not
allow to distribute the graph over a cluster. Instead the clients store complete states and
send newly created states to itself or other clients for further subsequent generation.
This approach is not applicable to large-scale graphs targeted in our work. State space
generation for graphs of this size is neither our target nor reasonable.

Besides Giraph [11], Pregel [18] is another implementation of the Bulk Synchronous
Parallel model on graph data. An architectural difference is that Giraph builds upon the
MapReduce [13] framework Apache Hadoop [12] which is widely used and available.

3 Background

3.1 Graph Transformations with Transformation Units

Our modeling concepts build on the theory of algebraic graph transformations for typed,
attributed graphs [2]. Specifically, we consider directed graphs with vertex and edge
types, and primitive-typed vertex attributes. Transformations for these graphs are de-
fined using declarative transformation rules and procedural transformation units [8,10].

In our approach, we consider transformation rules as graphs extended with stereo-
types for vertices and edges, and conditions and calculations on attribute values. We use
the following vertex and edge stereotypes: 〈〈preserve〉〉, 〈〈delete〉〉, 〈〈create〉〉, 〈〈require〉〉
and 〈〈forbid〉〉. Applying a rule consists of finding a match of the rule in the host graph
and performing the operations indicated by the stereotypes. The stereotypes 〈〈require〉〉
and 〈〈forbid〉〉 have special meanings and are used for defining positive and negative ap-
plication conditions (PACs and NACs), respectively. For attributes, we use expressions
to constrain the allowed values and to calculate new values.

Transformation units are a means to define control-flows for transformations. We
consider here a subset of the transformation unit types supported by the Henshin [10]
model transformation tool. An iterated unit executes another unit or rule a fixed number
of times. A loop unit executes a rule as long as possible, i.e., until no match is found.
A sequential unit executes a list of units or rules in a fixed order. An independent unit
nondeterministically selects one rule or unit from a set of rules or units and executes it.

Parallel Execution Semantics

In this paper, all rule applications are maximum parallel, i.e., rules are by default applied
to all found matches in the host graph. The rationale behind this is to enforce parallelism

328 C. Krause, M. Tichy, and H. Giese

Fig. 1. Iterated unit and rule for constructing Sierpinski triangles of depth N

already at the modeling level. This is necessary in order to actually parallelize the exe-
cution of the transformations at run-time. Also, we assume that for any two overlapping
matches during the parallel application, the graph modifications are conflict-free, e.g.,
if a vertex is preserved in one match, it cannot be deleted in another match. Different
rules are applied in the order as specified in Henshin, e.g., sequentially in a sequential
unit. Regarding transformation units, we note that we do not consider any transactional
behavior, i.e., there is no rollback on unsuccessful execution of subunits.

Example 1 (Sierpinski triangle). Fig. 1 shows an example of a transformation unit and
a rule for constructing Sierpinski triangles modeled using Henshin. The transformation
unit on the left is an iterated unit which executes the rule AddTriangle on the right
N times. Since in our semantics in every iteration the rule is applied in parallel to all
matches, executing the transformation unit on a 3-vertex triangle generates the full Sier-
pinski triangle of depth N.

3.2 Bulk Synchronous Parallel (BSP) on Graphs

Bulk Synchronous Parallel (BSP) is a bridging model for implementing parallel algo-
rithms which was developed by Leslie Valiant in the 1980s [9]. Nowadays, BSP is a
popular approach for efficiently processing large-scale graph data. Implementations of
BSP for graph data include Apache Giraph [11] which is used at Facebook to analyze
social networks, and Pregel [18], a graph processing architecture developed at Google.
In both of these frameworks BSP is used as computational model for implementing
highly parallel algorithms on very large graphs distributed in a cluster, that supports
both horizontal and vertical scaling.1 Standard examples of BSP applications are com-

1 Horizontal scaling (scale-out) refers to adding nodes to a compute cluster. Vertical scaling
(scale-up) refers to adding resources, e.g., main memory or processing cores, to single nodes.

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 329

puting shortest paths and the well-known PageRank algorithm which is used to rank
websites in search results.

Algorithms following the BSP bridging model must adhere to a specific scheme.
In particular, any algorithm implemented in BSP is executed as a series of supersteps.
In a superstep, every vertex in the graph can be either active or inactive. A superstep
constitutes a unit of computation and interaction consisting of four components:

1. Master computation: Single computation executed centrally on a master node,
mainly used for bookkeeping and orchestrating the vertex computations.

2. Vertex computation: Concurrent computation executed locally for every active
vertex of the graph. This part can be highly parallelized.

3. Communication: During the vertex computation, vertices can send messages to
other vertices, which will be available in the next superstep.

4. Barrier synchronization: Before the next superstep is started, the vertex compu-
tation and communication of the current superstep must be finished for all vertices.

The master computation can be seen as an initialization phase for every supersteps. In
the parallel vertex computations, incoming messages are processed, local computations
for the current vertex are performed, messages can be sent to other vertices, and the
vertex can be requested to become inactive. Inactive vertices do not take part in the
vertex computations of the next supersteps. However, an inactive vertex becomes active
again if it receives a message. In a vertex computation, messages can be either send
to adjacent vertices or vertices with known IDs. For instance, a received message can
contain such a vertex ID. The final step of every superstep is a barrier synchronization.
Specifically, the next superstep can be started only when all vertex computations and
communications of the current superstep are finished. The BSP algorithm ends when
all vertices are inactive.

In addition to the computation and communication, vertices can mutate, i.e. change,
the graph during the vertex computation. It is important to note that –analogously to the
communication– the effects of graph mutations are visible only in the next superstep.

Example 2 (BSP computation). Fig. 2 illustrates the run of an example BSP algorithm.
In fact, is shows already an application of the graph transformation AddTriangle in Ex-
ample 1 realized as a BSP computation. The run consists in total of 5 supersteps. In
superstep I, vertex 0 sends the message [0] to vertex 1. In supersteps II and III this
message is extended and first forwarded to vertex 2 and then back to vertex 0. Note
that in I and II the messages are sent via the l- and r-edges, respectively, whereas in III
vertex 2 extracts the vertex ID from the message in order to send it back to vertex 0. In
superstep IV, no more messages are sent. Instead, a number of graph mutations are per-
formed, specifically: 3 edges are removed, 3 new vertices and 9 new edges are created.
The details of the mapping from transformations to BSP are explained in the Section 4.

In addition to the inter-vertex communication, vertices can also send data to dedicated,
centrally managed aggregators. Aggregators process all received data items using an
associative, commutative aggregation operation to produce a single value available to
all vertices in the next superstep. We distinguish between regular and persistent aggre-
gators, where the former are being reset in every superstep and the latter not. Using the

330 C. Krause, M. Tichy, and H. Giese

Fig. 2. Illustration of a BSP computation that realizes an application of the AddTriangle rule

sum of integers as aggregator operations, it is for instance possible to compute the total
number of exchanged messages – either only for the last superstep (using a regular ag-
gregator) or the total number for all previous supersteps (using a persistent aggregator).

4 Implementing Graph Transformations in BSP

Example 2 indicates already that the BSP model is generic and powerful enough to real-
ize graph transformations with it. In this section, we show that this is in fact the case for
arbitrary complex transformation rules and control-flows modeled using transformation
units. We identified three main challenges in implementing graph transformations in
BSP: 1) to realize the rule pattern matching with only local knowledge, 2) to coordinate
the distributed and parallel execution of rules and transformation units, and 3) to deal
with the complexity of the graph pattern matching problem. In addition, we propose
the new concept of attribute aggregators to benefit from the parallelism not only in the
execution phase, but also in the modeling. Finally, we discuss run-time optimizations
of the graph pattern matching.

4.1 Graph Pattern Matching and Rule Applications

To apply a rule requires to find all its matches in the distributed graph using a parallel
algorithm that is designed based on the BSP-principles. To this end, we propose to split
up the matching process into a series of local steps2. In each local step, local constraints
are checked and sets of partial matches are generated, extended or merged. After all
constraints have been checked and the final set of matches has been computed, the rule
can be applied by performing the required graph modifications in parallel.

The most performance-critical part of a rule is the pattern matching. For a given rule,
we statically construct a search plan which defines the operations for every local step

2 Local steps are relative to a specific rule; supersteps are defined for a complete transformation.

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 331

Listing 1.1. Simplified algorithm for search plan generation of connected graph patterns

1 /∗ Function for generating a search plan for a graph pattern.
2 ∗ Input ‘pattern’: a connected graph pattern to be searched.
3 ∗ Output: search plan as list of edges.
4 ∗/
5 generateSearchPlan(pattern) {
6 visited := ∅ // set of visited vertices
7 result := [] // search plan as list of edges
8 while (|visited| < |pattern.vertices|) {
9 traversals := ∅ // set of traversals as set of list of edges

10 for (start ∈ pattern.vertices)
11 if (start � visited) {
12 t := dfsTraversal(start, visited) // depth−first traversal stopping at visited vertices
13 traversals := traversals ∪ { t }
14 }
15 next := sup(traversals) // select longest traversal
16 result := result++ next // append to search plan
17 visited := visited ∪ next.vertices
18 }
19 return result
20 }

in the matching phase. A simplified version of the search plan generation algorithm is
shown in Listing 1.1. For simplicity, we consider here only connected graph patterns
with at least one edge. The algorithm generates a search plan in the form of a list of
edges along which the matches are constructed. The algorithm iteratively builds maxi-
mal, ordered subgraphs of the pattern until the complete pattern is covered. The gener-
ated search plan starts with a depth-first traversal of the largest traversable subgraph of
the pattern. The search plan continues with depth-first traversals of the remaining parts
of the pattern, until the search plan contains the complete pattern graph. For example,
the generated search plan for the AddTriangle rule in Fig. 1 is given by the following
list of edges: [(a −left→ b), (b −conn→ c), (a −right→ c)].

The list of edges generated by the search plan function is translated into a series of
local steps. In such a local step, local constraints of a vertex, such as type information,
attribute values, existence of edges and injectivity of matches are checked. During the
pattern matching, a set of local matches is maintained and step-wise extended. The
partial matches are forwarded as messages to either adjacent vertices (for extending a
partial match by new bindings of nodes) or vertices that have been matched already
(for checking an edge between bound objects or merging partial matches). When the
complete search plan has been processed, the final set of matches is used to perform
the rule modifications in parallel. Note that both the pattern matching as well as the
graph modifications are executed in parallel in this model. A simplified version of the
generated matching code for the AddTriangle rule is shown in Listing 1.2.

332 C. Krause, M. Tichy, and H. Giese

Listing 1.2. Simplified generated matching code for the AddTriangle rule

1 /∗
2 ∗ Generated matching function for the AddTriangle rule.
3 ∗ Input ‘vertex’: active vertex in the host graph.
4 ∗ Input ‘matches’: list of matches received in the current superstep.
5 ∗ Input ‘step’: currently executed local step.
6 ∗/
7 matchAddTriangle(vertex, matches, step) {
8 targets := ∅
9 switch (step) {

10 0: if (vertex.value = TYPE_VERTEX ∧ |vertex.edges| ≥ 2) { // matching vertex "a"
11 match := [vertex.id]
12 for (edge ∈ vertex.edges)
13 if (edge.value = TYPE_VERTEX_LEFT ∧ edge.target � targets) {
14 sendMessage(edge.target, match)
15 targets = targets ∪ {edge.target}
16 }
17 }
18 break
19 1: if (vertex.value = TYPE_VERTEX ∧ |vertex.edges| ≥ 1) // matching vertex "b"
20 for (match ∈ matches) {
21 if (vertex.id ∈ match) continue // injectivity check
22 match := match ++ [vertex.id]
23 for (edge ∈ vertex.edges)
24 if (edge.value = TYPE_VERTEX_CONN ∧ edge.target � targets) {
25 sendMessage(edge.target, match
26 targets = targets ∪ edge.target
27 }
28 }
29 break
30 2: if (vertex.value = TYPE_VERTEX) // matching vertex "c"
31 for (match ∈ matches) {
32 if (vertex.id ∈ match) continue // injectivity check
33 match := match ++ [vertex.id]
34 sendMessage(match[0], match)
35 }
36 break
37 3: for (match ∈ matches) // checking for "right" edge
38 for (edge : vertex.edges)
39 if (edge.value = TYPE_VERTEX_RIGHT ∧ edge.target = match[2]) {
40 applySierpinski(match) // apply the rule w.r.t. the found match
41 break
42 }
43 break
44 }
45 }

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 333

Graph pattern elements with the stereotype 〈〈require〉〉 take a special role in our par-
allel graph transformation approach. The difference to the 〈〈preserve〉〉 stereotype is
that the existence of the elements is checked, but they are not considered as part of the
match. This is a useful modeling feature to avoid overlapping and conflicting matches.
We give a specific example for this modeling concept in Section 5.

4.2 Transformation Units

Transformation units provide control-flow constructs to coordinate the execution of
rules. In our BSP-based approach, transformation units are managed during the mas-
ter computation. The master computation maintains a unit execution stack in the form
of a persistent aggregator. The elements on this stack are pairs of unit or rule IDs and
local step indizes. The unit ID is used to decide which unit or rule is active, and the
local step determines the current execution phase in this unit or rule. In a rule, the local
step defines the current stage in the matching phase. In a sequential unit, the local step
is used to store the index of the currently executed subunit, and similarly for other unit
types. In addition to the unit execution stack, we maintain a rule application counter
in the form of a regular aggregator. It stores the number of rule applications in the last
superstep and is required to decide when loop units should be terminated.

For an example of generated code for a transformation unit, we refer to the online
resources provided for the example in Section 5.2.

4.3 Attribute Aggregators

In many graph transformation approaches, attribute values of vertices can be set during
a rule application using an expression that takes as parameters other attribute values of
matched vertices. These expressions are usually limited to the scope of a single match.
In our approach, however, rule applications are always maximum parallel, i.e., always
applied to all found matches. Since during a rule application all matches are readily
available, we can define attribute calculations that are not limited to the scope of a
single match, but a set of matches, potentially all of them.

To facilitate global attribute calculations, we introduce the concept of attribute
aggregators, which are associative and commutative operations on attribute values (sim-
ilarly to aggregation functions in relational databases). Specifically, we consider the fol-
lowing set of pre-defined attribute aggregators: COUNT, MIN, MAX, SUM and AVG
which respectively count occurences, compute the minimum, the maximum, the sum
and the average of numerical attribute values. We distinguish between local and global
attribute aggregators. Global attribute aggregators use the attribute values of all found
matches. In local attribute aggregators, if the aggregator is used in an attribute calcula-
tion of a vertex v in the rule and v is matched to a vertex x, then all matches where v is
matched to x are used. We give an example of a local attribute aggregator in Section 5.2.

4.4 Run-Time Optimizations

The performance of the BSP-based graph transformations mainly depends on the effi-
ciency of the match finding. The most effective way to improve it is to reduce the num-
ber of partial matches generated during the matching. We realized two optimizations.

334 C. Krause, M. Tichy, and H. Giese

Number of workers 2 4 6 8 10 12

Execution time (seconds) for levels 1–15 281.8 195.7 166.3 133.7 114.9 112.6
Execution time (seconds) for level 16 559.1 376.8 295.6 197.9 172.1 158.2
Execution time (seconds) for level 17 – – 896.4 635.0 526.3 489.7

Fig. 3. Execution times of the iterated unit Sierpinski for different numbers of workers

To reduce the number of symmetric partial matches, we introduced a static analysis
that finds symmetries in PACs. During the matching phase, symmetric matches to the
PACs are automatically discarded. As a second approach to reduce the number of par-
tial matches during the matching, we consider segmentation. The idea is to partition the
vertices of the host graph into a set of disjoint segments. Each segment is individually
examined during the matching phase. Specifically, the matching process starts with ver-
tices from one of these segments and continues until all segments were used. Matches
from previous segments are kept during the matching. Thus, we partially sequentialize
the matching process to reduce the memory consumption for partial matches.

5 Evaluation

We used the Henshin [10] tool to model transformation rules and units and implemented
a code generator that takes Henshin models as input and produces Java code for the
BSP-framework Apache Giraph [11]. Except for the parallelism, the Giraph-based se-
mantics of rules is the same as in the Henshin interpreter. We tested this using a test suite
that currently consists of 15 non-trivial example transformations. We conducted our ex-
periments on a small cluster consisting of 6 slave nodes, each of them with 120GB main
memory and Intel Xeon R©CPU with 24 cores at 2.30GHz, connected via InfiniBand. To
investigate the horizontal and the vertical scalability, we varied the number of Giraph
workers between 2 and 12 where we used a maximum number of 6 compute threads
per worker. The speed improvements up to 6 workers are primarily horizontal scaling,
whereas the speed improvements between 6 and 12 workers are vertical scaling effects.

5.1 Synthetic Example: Sierpinski Triangles

We use the iterated unit in Fig. 1 to construct the Sierpinski triangle of depth N. Note
that the size of the result graph is exponential in N. Using our set-up of 6 slave nodes,

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 335

we built the Sierpinski triangle of depth N=17 which consists of ≈194 million vertices
and 387 million edges. One parallel rule application of the AddTriangle rule requires
4 local steps, totaling in 68 supersteps for the whole transformation for N=17, which
required 12 minutes. Fig. 3 shows a comparison of the aggregated run-times of the
transformation for different number of workers. The difference from 2 to 6 workers is a
horizontal scaling effect, which is a speed-up of factor 1.9. The difference from 6 to 12
workers is a vertical scaling effect, which is an additional speed-up of factor 2. Note that
for <6 workers we were only able to compute up to N=16 due to insufficient memory.

We also ran this example in the non-distributed, non-parallel interpreter of Henshin.
The Henshin solution was still 25% faster than the 12-worker version of Giraph. We
believe that this is due to the additional communication and coordination overhead of
Giraph. Due to the memory limitations of one machine, the Henshin solution worked
only up to N=16. Note that due to the exponential growth, the graph sizes and number
of matches for N=17 is 3 times, and for N=18 already 9 times larger than for N=16.

5.2 Real-Data Example: Movie Database

As a real-data example, we used the IMDB movie database3 dated July, 26th 2013.
The database contains 924, 054 movies (we consider only movies and not TV series),
1, 777, 656 actors, and 980, 396 actresses. We use the simplified metamodel / typegraph
shown in Fig. 4, which contains classes for movies, actors and actresses. Additionally,
we introduce the new class Couple, which references two persons. The goal of this
transformation is that for every pair of actors / actresses which played together in at
least three movies, we create a Couple object. This new couple object should contain
references to all movies that the couple occurred in. Moreover, the couple has a numer-
ical attribute to store the average rank of all movies the couple appeared in.

Fig. 4. Simplified and extended metamodel for IMDB movie dataset

We use the transformation rules and the sequential unit shown in Fig. 5 to solve this
task. First, the rule CreateCouple generates Couple vertices for every pair of persons
that played together in at least three movies. It is important to ensure that only one
Couple vertex is created for every such pair. Thus, the movie vertices are matched as
a PAC (using 〈〈require〉〉 stereotypes), i.e., their existence is checked but they are not

3 Obtained from http://www.imdb.com/interfaces

http://www.imdb.com/interfaces

336 C. Krause, M. Tichy, and H. Giese

Fig. 5. Sequential unit and rules for adding couple nodes

considered as part of the matches. To avoid symmetric couples, we use an additional
attribute condition that enforces a lexicographical order of the names of the two persons.

In the second part, the rule CreateOccurrence is used to add links between the
newly created couple vertices and the movies they played in. Moreover, we use the lo-
cal attribute aggregator LOC_AVG (see Section 4.3) to compute the average rank of
all movies the couple occurred in. The expression averageRank=?→LOC_AVG(x) de-
notes an assignment of the attribute averageRank with the new value LOC_AVG(x).
Note that since both rules are each applied in parallel to all possible matches, our solu-
tion to this example does not require any use of loops and can thus be fully parallelized.

We highlight here the main challenges in this example. First, the data set is too large
(in the order of millions of vertices) to solve the task using brute force, i.e., by naively
enumerating all possible solutions and checking the graph and attribute constraints of
the rules. Second, the fact that navigation is possible only from persons to movies, but
not vice versa (which is an instance of a performance bad smell as described in [19]),
makes it difficult to reduce the possible matches for the persons. Third, the matching of
the three movies is highly symmetrical and can cause an unnecessary high number of
partial matches during the matching.

We generated code for this example transformation.4 In this example, we benefit
from the optimizations described in Section 4.4. This reduced the number of symmetric
matches of the PACs by a factor of 6. However, the number of partial matches during the
matching was still too high. Therefore, we also used segmentation with 100 segments.

4 Models and generated source code available at
http://www.eclipse.org/henshin/examples.php?example=giraph-movies

http://www.eclipse.org/henshin/examples.php?example=giraph-movies

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 337

Number of workers 2 4 6 8 10 12

Execution time (seconds) for 60% graph size 939 327 162 172 125 113
Execution time (seconds) for 80% graph size 2,273 757 376 378 295 253

Execution time (seconds) for 100% graph size 5,254 1,499 762 751 561 479

Fig. 6. Execution times of the couples example (2-movie version) in seconds

We executed the transformation on our 6-slave node cluster. The graph before the
transformation had 3,635,741 vertices and 5,615,552 edges, and afterwards 5,328,961
vertices and 16,933,630 edges.5 Because of the relatively high number of segments, the
execution time was approx. 6 hours. In addition, we ran a variant of this transformation
with only two common movies per couple where we did not require segmentation.
Fig. 6 shows the execution times for this version. The overall performance improved by
a factor of 11 when switching from 2 to 12 workers.

In addition to the small 6-node cluster, we ran this example (with two common
movies) on a part of the Glenn cluster at Chalmers. In this set-up, each node uses 2 AMD
Opteron R© 6220 processors (8 cores each at 3GHz) with 32GB of main memory. For this
benchmark, we varied the number of nodes between 5 and 24. For each node, we used 3
Giraph workers with 6 threads each. The memory was restricted for each Giraph worker
to 10GB. Fig. 7 shows the resulting execution time averaged over 3 runs. On the left
y-axis of the plot, the execution time per node is shown whereas on the right y-axis of
the plot, the total execution time is shown. The latter is the product of the execution
time and the number of nodes used in order to see how much total time of the cluster
is used. Both figures show a good horizontal scalability until 14 nodes are used. Please
note that during each evaluation run, the rest of cluster was also used by other jobs and
thus could influence the results by network traffic. This is a possible explanation for
the spike in the execution time for 20 nodes. More nodes still benefit the execution, but
due to increasing fixed costs and communication overhead, the performance does not
increase at the same rate.

Finally, we used the standard Henshin interpreter (version 0.9.10) to compute all
matches of the CreateCouple rule on a single machine using dynamic EMF models.
Henshin was not able to compute a single match for the same movie database as used in
the other evaluations. This is because nested conditions, such as PACs and NACs, are

5 We validated our transformation 1) using a 25-vertices test input graph, 2) by taking samples
from the full output graph, and 3) using similar rules in our test suite.

338 C. Krause, M. Tichy, and H. Giese

Number of nodes 5 6 8 10 12 14 16 18 20 22 24

Execution time in seconds 1,220 866 666 587 518 453 430 401 440 387 373
Total node time in seconds 6,104 5,199 5,333 5,879 6,216 6,351 6,880 7,227 8,803 8,529 8,957

Fig. 7. Execution times of couples example (2-movie version) on the Glenn cluster at Chalmers

checked only after a match of the left-hand side of the rule has been found. Specifically,
Henshin first fixes matches for the two Person vertices, and then checks the PACs.
This matching approach boils down to a brute-force, which is only working for toy
input graphs. In our experiments, also alternative models, such as with bidirectional
references, nested rules or loop units, were not able to solve the task due to similar
problems. Please note that this is mostly an inefficiency of the matching strategy of
(this version of) the Henshin interpreter.

6 Conclusions and Future Work

Processing large-scale graph data becomes an important task in an increasing number
of application domains. On the one hand, there is a demand for high-level, declarative
query and transformation languages for graph data. On the other, the efficient process-
ing of the large-scale graphs is a limiting factor for existing approaches. In this paper,
we introduced an approach for the specification of graph querying and processing us-
ing graph transformation rules and units which provide a high-level modeling approach
with declarative and operational parts. In order to efficiently apply them to large-scale
graphs, we mapped graph transformation rules and units to the Bulk Synchronous Par-
allel model which allowed us to distribute the graphs and to parallelize their processing.
We showed using a synthetic and a real-data example that the approach 1) provides new
and high-level modeling features that are currently not available for large-scale graph
processing, and 2) that the BSP solution provides both horizontal and vertical scalability
for efficiently executing these models on large data graphs.

As future work, we plan to investigate more on new modeling features for parallel
graph transformations and to optimize the execution in BSP. Concrete next steps in-
volve more fine-tuning in the search plans and a dynamic segmentation approach which
chooses the number of segments on-the-fly based on the current workload. In a different

Implementing Graph Transformations in the Bulk Synchronous Parallel Model 339

line of research we plan to define automatic ways to detect and resolve conflicting par-
allel matches. Both run-time checks and static analysis, e.g., using a variation of critical
pair analysis seem to be relevant here. Finally, we plan to perform more benchmarks,
e.g., using the graph transformation benchmark suite described in [20].

References

1. Rudolf, M., Paradies, M., Bornhövd, C., Lehner, W.: The graph story of the SAP HANA
database. In: BTW 2013. LNI, vol. 214, pp. 403–420. GI (2013)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag
New York, Inc., Secaucus (2006)

3. Izsó, B., Szárnyas, G., Ráth, I., Varró, D.: Incquery-d: Incremental graph search in the cloud.
In: Proc. of BigMDE 2013. ACM (2013), doi:10.1145/2487766.2487772

4. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node
graphs. Proc. VLDB Endow. 5(9), 788–799 (2012)

5. Ma, S., Cao, Y., Huai, J., Wo, T.: Distributed graph pattern matching. In: Proc. WWW 2012,
pp. 949–958. ACM (2012), doi:10.1145/2187836.2187963

6. Fard, A., Abdolrashidi, A., Ramaswamy, L., Miller, J.A.: Towards efficient query processing
on massive time-evolving graphs. In: Proc. CollaborateCom 2012, pp. 567–574. IEEE (2012)

7. Taentzer, G.: Distributed graphs and graph transformation. Applied Categorical Struc-
tures 7(4), 431–462 (1999), doi:10.1023/A:1008683005045

8. Kreowski, H.J., Kuske, S.: Graph transformation units and modules. Handbook of Graph
Grammars and Computing by Graph Transformation 2, 607–638 (1999)

9. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111
(1990), doi:10.1145/79173.79181

10. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced concepts
and tools for in-place EMF model transformations. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)

11. Apache Software Foundation: Apache Giraph, http://giraph.apache.org
12. Apache Software Foundation: Apache Hadoop, http://hadoop.apache.org
13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.

ACM 51(1), 107–113 (2008), doi:10.1145/1327452.1327492
14. de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel graph transformation for model sim-

ulation applied to timed transition Petri nets. ENTCS 109, 17–29 (2004), Proc. GT-VMT
2004, doi:10.1016/j.entcs.2004.02.053

15. Bergmann, G., Ráth, I., Varró, D.: Parallelization of graph transformation based on incre-
mental pattern matching. ECEASST 18 (2009)

16. Blom, S., Kant, G., Rensink, A.: Distributed graph-based state space generation. ECE-
ASST 32 (2010)

17. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer, Heidel-
berg (2010)

18. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: Proc. SIGMOD 2010, pp. 135–146.
ACM (2010), doi:10.1145/1807167.1807184

19. Tichy, M., Krause, C., Liebel, G.: Detecting performance bad smells for Henshin model
transformations. In: Proc. AMT 2013. CEUR-WS.org (2013)

20. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: VL/HCC,
pp. 79–88. IEEE Computer Society (2005), doi:10.1109/VLHCC.2005.23

http://giraph.apache.org
http://hadoop.apache.org

Modularizing Triple Graph Grammars

Using Rule Refinement

Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab, Germany
surname@es.tu-darmstadt.de

Abstract. Model transformation plays a central role in Model-Driven
Engineering. In application scenarios such as tool integration or view
specification, bidirectionality is a crucial requirement. Triple Graph Gram-
mars (TGGs) are a formally founded, bidirectional transformation lan-
guage, which has been used successfully in various case studies from
different applications domains.

In practice, supporting the maintainability of TGGs is a current chal-
lenge and existing modularity concepts, e.g., to avoid pattern duplication
in TGG rules, are still inadequate. Existing TGG tools either provide no
support at all for modularity, or provide limited support with restrictions
that are often not applicable.

In this paper, we present and formalize a novel modularity concept
for TGGs: Rule refinement, which generalizes existing modularity con-
cepts, solves the problem of pattern duplication, and enables concise,
maintainable specifications.

Keywords: model transformation, triple graph grammars, modularity.

1 Introduction and Motivation

Model-Driven Engineering (MDE) is an established, viable means of coping with
the increasing complexity of modern software systems, promising an increase in
productivity, interoperability and a reduced gap between problem and solution
domains. Model transformation plays a central role in MDE and bidirectionality
is often a crucial requirement especially in application scenarios that require
model synchronization such as tool integration and view specification [3].

Triple Graph Grammars (TGGs) [9] are a rule-based, formally founded tech-
nique of specifying a consistency relation between models in a source and target
domain, which allows for bidirectional model transformation. TGG rules consist
of patterns representing the precondition and postcondition of a change to a
model and are fully declarative, i.e., no control flow or similar constructs can be
used to specify exactly how the change should be realized. In contrast to, e.g.,
programmed graph transformations, TGGs, therefore, require a rule structuring
mechanism to avoid redundancy, i.e., identical patterns in multiple rules. When
TGGs with a considerable number of rules are required, supporting productivity
and maintainability becomes crucial.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 340–354, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Modularizing Triple Graph Grammars Using Rule Refinement 341

As initially presented by Klar et al. [7], a viable means of addressing these
challenges is to avoid pattern duplication in TGG rules by reusing rule fragments.
Existing modularity concepts [7,5], however, pose strong restrictions on the way
rules can be reused. Examples for such restrictions include: (i) that the context
of a basis rule (the rule to be reused by refining it appropriately) can only be
extended but not changed, and (ii) a lack of support for multiple basis rules. Our
observation is that these restrictions are too strong and thus prevent reuse in
many cases, especially in combination with the limited support for modularity
on the metamodel level provided by EMF/Ecore.

Our contribution in this paper is to:
1. Present a novel flexible concept of rule refinement for TGG rules as a gen-

eralization of previous work by Klar et al. [7] and Greenyer et al. [5]. This
is done intuitively in Sect. 2 with a running example.

2. Compare our approach with [7,5] and explain in detail why the generaliza-
tions we suggest are necessary. This is done in Sect. 3, where we discuss
related existing modularity concepts for TGGs and graph transformations.

3. Provide a comprehensive formalization of rule refinement in Sect. 4.

We conclude with a summary and an overview of areas of future work in Sect. 5.

2 Rule Refinements for TGGs

Our running example is inspired by the families to persons transformation ex-
ample in the ATL transformation zoo1. It represents a tool integration scenario,
e.g., between the residents registration office and the tax office of a city.

Figure 1 depicts the triple of source, correspondence, and target metamodels
for the transformation, referred to as a TGG schema. The source metamodel (left
of Fig. 1) comprises a FamilyRegister, which contains multiple Families. A Family
consists of Members, which play the role of a son, father, mother, or daughter
in the family as indicated by the references connecting Family with Member.

FamilyRegister PersonsRegisterFamilyToPersons

Family

Member

Person Adult

isResp :EBoolean

Child

MotherFather

FamilyToPerson

MemberToPerson

Source Correspondence Target

Fig. 1. TGG schema for the running example

1 http://www.eclipse.org/atl/atlTransformations/#Families2Persons

http://www.eclipse.org/atl/atlTransformations/#Families2Persons

342 A. Anjorin et al.

The target metamodel (right of Fig. 1) comprises a PersonsRegister containing
Persons. A Person is either a Child, or an Adult, i.e., a Father or Mother. Although
the concept of a family is not explicitly present in the target metamodel, an Adult
can be responsible for a number of children (isResp attribute in Adult and wards
reference to Child) as this is relevant for tax calculation. The source and target
metamodels are connected by a correspondence metamodel (hexagonal elements
in Fig. 1) specifying which source and target types correspond to each other.

In addition to a TGG schema, a TGG consists of TGG rules that describe how
triples of source, correspondence and target models are built-up simultaneously.
Figure 2 depicts three of the seven rules implementing the families to persons
transformation. A TGG rule consists of elements (nodes and edges). Nodes are
depicted as label:Type, e.g., family:Family, while edges are depicted as Type with-
out labels. Elements created by a TGG rule are depicted as green nodes/edges
with a “++” markup, while context elements are depicted as black nodes/edges
without any markup and must be present for the rule to be applied.

The TGG rule r1: FamilyToPersonsRule creates a family register and a persons
register simultaneously and connects them appropriately with a correspondence
link. The TGG rules r2: FamilyToFatherRule and r3: MemberToFatherRule spec-
ify how fathers are handled: According to r2, a family with a father Member
corresponds to a Father in a PersonsRegister, if the Father is responsible for chil-
dren (isResp := true in the node person:Father). Note that the created father
and family are connected with a FamilyToPerson correspondence. In contrast, r3
creates a Father that is not responsible for any children and requires, therefore,
an adult who corresponds to the family as context.
The remaining rules of the TGG for the running example are:
r4: FamilyToMotherRule, which is identical to r2 but creates a Mother instead of
a Father in the target model and connects the created Member via the mother
reference instead of father.
r5: MemberToMotherRule, identical to r3 in an analogous manner as r4 to r2.
r6/7: MemberToSonRule and MemberToDaughterRule, which are both identical
to r3 but connect the created Member to the Family via the son/daughter refer-
ence instead of the father reference in the source model. Furthermore, the rules
create a Child instead of a Father in the target model, connecting the Child to
the responsible adult via the wards reference.

Looking closer at the rules r2 and r3, one can observe that r3 is a copy of
r2 with an additional element in the target domain and a few changes (some
elements are required as context instead of being created and the attribute as-
signment is adjusted). Similar to code duplication in programs, such pattern
duplication in the rules of a TGG has an averse effect on productivity and
maintainability. For our running example, pattern duplication increases for the
remaining rules r4− r7 turning the rule specification process into an error-prone
copy-and-paste task. Changing the transformations now implies multiple changes
in different rules resulting in a maintenance nightmare, which gets worse with
time as the relationships between rules is not explicit, i.e., new developers cannot
know what must be adjusted. To avoid pattern duplication, a means of reusing

Modularizing Triple Graph Grammars Using Rule Refinement 343

familyRegister :
FamilyRegister

++
personsRegister :
PersonsRegister

++
familyToPersons :
FamilyToPersons

++

r1: FamilyToPersonsRule

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

family : Family
++

member :
Member

++

person : Father
isResp := true

++

familyToPersons :
FamilyToPersons

familyToPerson :
FamilyToPerson

++

memberToPerson :
MemberToPerson

++

r2: FamilyToFatherRule

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

family : Family

member :
Member

++
person : Father
isResp := false

++

familyToPersons :
FamilyToPersons

familyToPerson :
FamilyToPerson

memberToPerson :
MemberToPerson

++

adult : Adult
isResp == true

r3: MemberToFatherRule

persons

++

target

++
father

source target

++

source

++

target

++
source

++

target

++

source

++

persons

++persons

++
father

source target

source target

++

source

++

target

++
family family

Fig. 2. TGG rules for handling fathers without rule refinements

common patterns in multiple rules is required. In addition, the reuse mechanism
must be flexible enough to handle cases where the common pattern is not exactly
the same but is only slightly changed. Our concept of rule refinements addresses
this challenge by providing a concise pattern language with which higher-order
transformations (using rule patterns to transform rule patterns) can be specified.

Figure 3 depicts the complete TGG for the running example using rule refine-
ments. The TGG is now represented as an acyclic network of rules, with a

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

familyToPersons :
FamilyToPersons

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

familyToPersons :
FamilyToPersons

family : Family adult : Adult
isResp == true

familyToPerson :
FamilyToPerson

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

familyToPersons :
FamilyToPersons

family : Family

member :
Member

person : Father
isResp := false

memberToPerson :
MemberToPerson

family : Family

person : Father
isResp := true

familyToPerson :
FamilyToPerson

family : Family

member :
Member

person : Mother
isResp := true

family : Family

member :
Member

person : Mother
isResp := false

family : Family

member :
Member

family : Family

member :
Member

r1: FamilyToPersonsRule

r8: AbstractFamilyToAdultRule r9: AbstractFamilyToFatherRule

r3: MemberToFatherRule

r2: FamilyToFatherRule

r4: FamilyToMotherRule

r5: MemberToMotherRule

r6: MemberToSonRule

r7: MemberToDaughterRule

person : Child

adult : Adult
isResp == true

familyToPerson :
FamilyToPerson

memberToPerson :
MemberToPerson

familyToPerson :
FamilyToPerson

memberToPerson :
MemberToPerson

Fig. 3. Refinement network for complete TGG from running example

344 A. Anjorin et al.

refinement relation depicted as dashed arrows between rules, e.g., from r2 to r9.
The rule r9 is referred to as the basis rule of r2, which in turn refines r9. The refine-
ment network depicted in Fig. 3 is resolved to a TGG as follows. A rule r without
a basis rule is trivially resolved to r() with exactly the same elements as r. Paren-
theses indicate that the rule is “resolved” by refining its basis rules. This is the
case for r1, r8 and r9, which are resolved to r1(), r8() and r9() in this manner.

The rule r2 now has a resolved basis r9() and is further resolved to r2(r9())
by adding all elements from r2 to r9(), replacing nodes with the same label.
In a similar manner, r4 is resolved to r4(r9()). The following three points are
to be noted here: Firstly, person: Father in r9() is replaced by person: Mother,
showing that types of elements can be changed when refining, if all edges in the
resolved basis rule can be reconnected to the new element. Secondly, the father
edge between family and member in r9() is deleted as it is not in r4. Finally, a
mother edge between family and member is created as it is in r4 but not in r9().

Resolving r3 involves multiple refinement as it refines both r8 and r9. This is
accomplished bymerging all resolved basis rules to a single basis rule, which is then
refined as usual. In this case,⊕(r8(), r9()) is constructed bymerging elements with
the same label together, e.g., familyRegister from r8() is mergedwith familyRegister
in r9() to form the same element in ⊕(r8(), r9()). Note that infix notation is not
used here as the merge operator is n-ary. Elements such as adult and person that
cannot be identified with a counterpart are added directly to ⊕(r8(), r9()) as new
elements. Note that (i) merging is only possible if the types of identified elements
are exactly the same and (ii) context elements have priority over created elements,
i.e., family in r8() and family in r9() are identified with each other and merged to a
context variable family in⊕(r8(), r9()). This means that the stronger precondition
is taken for the merged rule. The resolved rule r3(⊕(r8(), r9())) is then constructed
as usual with r3 as refining rule and ⊕(r8(), r9()) as its resolved basis rule. As r3
contains no elements, there is nothing else to be done.

Rules r5, r6, and r7 are resolved to r5(r3(⊕(r8(), r9()))), r6(r3(⊕(r8(), r9()))),
and r7(r6(r3(⊕(r8(), r9())))) by replacing and creating elements as already de-
scribed above. The final TGG consists of resolved rules r1(), r2(r9()), . . . , r7(. . .),
excluding the abstract rules r8 : AbstractFamilyToAdultRule and r9 : AbstractFam-
ilyToFatherRule (italicized in Fig. 3).

Our concept of rule refinement helps to avoid pattern duplication in rules
by enabling a flexible composition and reuse of (sub)patterns. For our running
example, although 9 rules are now required instead of 7, due to 2 extra abstract
rules (r8 and r9), the total sum of elements in the rules is reduced from 117 to
65, i.e., almost a 50% reduction of the required number of elements. Current
industrial projects with 50 – 100 TGG rules and an average of 15 – 20 elements
per rule would hardly be tractable without using refinements.

3 Related Work

In the following, we compare our approach to existing modularity concepts for
TGGs in particular and graph transformation in general. We refer to [11] for a
broad survey of modularity concepts for model transformation languages.

Modularizing Triple Graph Grammars Using Rule Refinement 345

Modularity Concepts for TGGs: Klar et al. [7] introduce a reuse mechanism for
TGGs, which avoids pattern duplication by allowing rules to refine a basis rule.
Greenyer et al. [5] extend this idea by introducing reusable nodes, i.e., nodes in
TGG rules that can be created or parsed as context as required. As this can be
simulated with our rule refinement concept, our approach can be viewed as a
generalization of [7,5] with the following extensions:

1. We support and formalize multiple basis rules, i.e., multiple refinement,
which is crucial for a flexible composition of modular TGG rules.

2. In the approach of [7], every rule can only create a single distinct correspon-
dence type. This leads to a confusing mix of two different and orthogonal
concepts: (i) Support for inheritance and abstract types in the metamodels
(especially the correspondence metamodel) according to [4], and (ii) Refine-
ment of TGG rules. In our approach, this restriction is removed completely;
both reuse concepts are clearly separated and can be combined freely.

3. Rather strong restrictions are posed in [7,5] to guarantee the property that
a basis TGG rule is always applicable when its refining rules are. We have
decided to lift these restrictions as: (i) TGGs are usually operationalized to
derive, e.g., forward and backward transformations. The mentioned prop-
erty does not apply to these operational scenarios in general and is thus of
questionable use in practice. (ii) The approach in [7] is formulated for MOF2
which supports advanced modularity concepts such as inheritance on edge
types. The de facto standard EMF/Ecore is simpler in this respect and, as
a consequence, requires a more flexible modularity concept for rules.

4. Both approaches use some form of rule priorities to resolve ambiguities
caused by conflicts between basis and refining rules. As neither approach
employs backtracking due to efficiency reasons, this can either lead to wrong
decisions [5], or requires the user to constantly adjust priorities as rules are
added and changed [7]. To resolve such conflicts, we utilize instead a look-
ahead [8] as a form of application condition, which simulates rule application
to detect obvious dead-ends in the transformation. We are thus able to han-
dle a well-defined class of TGGs without backtracking or user intervention.

Modularity Concepts for Graph Transformations: There are numerous modular-
ity concepts in the mature field of graph transformation. The concept of variable
nodes in rules [6], which can be expanded to instantiate concrete rules, leads to
“template” rules and requires separate, explicit expansion rules. Compared to
our approach, this increases flexibility but also complexity. A related approach
is amalgamation [2], where fragments of a rule can be denoted as being allowed
to be matched arbitrarily many times. In this manner, a single rule can be also
expanded at runtime by matching such fragments as often as necessary.

4 Formalization of Rule Refinements

The basic idea is to establish a suitable and compact language for describing
rule refinements, i.e., the changes required to produce a new rule from a set of
basic rules. We first of all define the syntax of the language, which is chosen to

346 A. Anjorin et al.

fit to the existing TGG syntax for rules, and specify how a rule refinement is
decomposed into a set of primitive transformation steps. The semantics of rule
refinement is then given by executing these primitive (atomic) transformations
in a certain sequence to yield the corresponding higher-order (refinement can be
seen as rewriting of triple rules) model transformation. Furthermore, refinements
can be composed into complex networks with support for multiple refinement
and abstract rules. For presentation purposes and due to space limitations, we
focus in the following discussion on formal details necessary for rule refinement
for TGGs, omitting details concerning, e.g., attribute manipulation, inheritance,
and negative application conditions. We refer to [1,4,8] for further details.

4.1 Preliminaries: Models, Metamodels and Model Transformation

Models and metamodels are formalized as graphs, with a conforms to relation-
ship between a model and its metamodel represented by a structure preserving
map, i.e., a graph morphism type from a typed graph to its type graph.

Definition 1 (Typed Graph and Typed Graph Morphism)
A graph G = (V,E, s, t) consists of a finite set V of nodes and a finite set E of
edges, and two functions s, t : E → V that assign to each edge source and target
nodes, respectively.

A graph morphism f : G → G′, with G′ = (V ′, E′, s′, t′), is defined as a pair of
functions f := (fV , fE) where fV : V → V ′, fE : E → E′ and
∀e ∈ E : fV (s(e)) = s′(fE(e)) ∧ fV (t(e)) = t′(fE(e)).

A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG).
A typed graph is a pair (G, type) of a graph G and a graph morphism
type: G→ TG.

Given (G, type) and (G′, type′), f : G → G′ is a typed graph morphism iff
type = type′ ◦ f .2 The set of all graphs of type TG is denoted as L(TG).

The following definition provides a rule-based, declarative formalization for model
transformation. Changes to a model are represented as a rule, i.e., a pair of
graphs representing the state of the model before and after the transformation.

Definition 2 (Monotonic Creating Rule, Graph Grammar). Given a
type graph TG, a monotonic creating rule r = (L,R) consists of a pair of typed
graphs L,R ∈ L(TG), with L ⊆ R.3 A graph grammar GG := (TG,R) consists
of a type graph TG and a set R of monotonic creating rules.

As TGG rules describe the simultaneous evolution of triples of typed graphs, all
concepts are generalized accordingly. In the following, plain letters such as G
denote typed triple graphs, whereas letters with a subscript such as GS denote
single typed graphs.

2 f ◦ g denotes the morphism obtained by composing f and g and reads “f after g”.
3 L ⊆ R denotes L

r−→ R, where r is an injective typed graph morphism.

Modularizing Triple Graph Grammars Using Rule Refinement 347

Definition 3 (Typed Triple Graph, Typed Triple Graph Morphism)

A triple graph G := GS
γS←− GC

γT−→ GT consists of typed graphs GX ∈ L(TGX),
X ∈ {S,C, T }, and morphisms γS : GC → GS and γT : GC → GT .

Given a triple graph H = HS
γ′
S←− HC

γ′
T−→ HT , a triple morphism

f := (fS , fC , fT) : G→ H, is a triple of typed morphisms fX : GX → HX ,
X ∈ {S,C, T }, s.t. fS ◦ γS = γ′

S ◦ fC and fT ◦ γT = γ′
T ◦ fC .

A type triple graph is a triple graph TG = TGS
ΓS←− TGC

ΓT−→ TGT .
A typed triple graph is a pair (G, type) of a triple graph G and triple morphism
type : G→ TG.
Given (G, type) and (G′, type′), f : G → G′ is a typed triple graph morphism
iff type = type′ ◦ f . L(TG) denotes the set of all triple graphs of type TG.

Definition 4 (Triple Rules, Triple Graph Grammar (TGG))
Given a type triple graph TG, a triple rule r = (L,R) is a monotonic creating
rule, where L,R ∈ L(TG), and L ⊆ R.

A triple graph grammar TGG := (TG,R) is a pair consisting of a type triple
graph TG and a finite set R of triple rules.

Example 1. The TGG schema for our running example depicted in Fig. 1 is,
according to our formalization, a type triple graph. The TGG rule r2 depicted
in Fig. 2 is a triple rule, i.e., a pair of typed triple graphs (Lr2 , Rr2) where Lr2

consists of all black elements and Rr2 of all black and green (“++”) elements.

Although TGGs can be used directly to generate triples of consistent models,
e.g., for test generation, TGGs are often operationalized in practice to derive
a pair of unidirectional forward and backward transformations for bidirectional
model transformation. As our concept of rule refinement is completely resolved at
compile time, details of TGG operationalization are not necessary to understand
our formalization and are omitted. We refer to [8] for further details.

4.2 Syntax of Refinements

We now formalize the syntactic structure of a refinement, which consists of two
triple rules connected in such a manner that it is clear which elements are to be
deleted, replaced, or newly created. We take a compositional approach and define
a series of refinement primitives, representing executable atomic modifications to
the basis rule. Complex refinements are composed by combining these primitives.

L R

L∗ R∗

ΔL ΔR

δL

δL∗

δR

δR∗

Definition 5 (Refinement). A refinement Δ(r∗, r) con-
sists of two triple rules r∗ = (L∗, R∗) and r = (L,R), con-
nected by triple morphisms δL, δL∗ , δR, δR∗ and typed triple
graphs ΔL, ΔR, with ΔL ⊆ ΔR, such that the diagram de-
picted on the right commutes. The rule r∗ refines its basis
rule r. Note that δL, δL∗ , δR, δR∗ are not necessarily typed.

348 A. Anjorin et al.

Definition 6 (Refinement Network). A Refinement Network is an acyclic
graph N (V,E, s, t) where each node n ∈ V in the network is a triple rule and
each edge e ∈ E indicates that s(e) refines t(e) in the sense of Def. 5.

Definition 7 (DeleteEdge). A DeleteEdge source refinement is a refinement
Δ(r∗, r), which is isomorphic to one of the five diagrams depicted in Fig. 4
below. DeleteEdge target refinements are defined analogously, i.e., with non-
trivial components only in the target components of L,R,ΔL, ΔR, L∗, and R∗.

δL δR

δL∗ δR∗

L R

L∗ R∗

ΔL ΔR

a : A ∅ ∅

a : A ∅ ∅

a : A ∅ ∅

a : A
∅ ∅

b : B
e:E

a : A
∅ ∅

b : B

a : A
∅ ∅

b : B

a : A b : Be:E ++
++

a : A b : B
++

a : A b : Be:E
++

a : A b : B

a : A b : Be:E

a : A b : B

b : Ba : A e:E++
++

b : Ba : A
++

a : A e:E++
++

a : A
++

b : B
++

b : B
++

⇔

Fig. 4. DeleteEdge source refinements

The first DeleteEdge diagram is depicted in both a detailed syntax to the left,
and an equivalent compact syntax to the right. In the detailed syntax, elements
in the typed graphs are denoted by label:type giving a label for the element and
its type. The graph morphisms δLS , δL∗

S
, δRS , δR∗

S
, depicted as arrows, are given

by requiring all element labels to be unique in each graph and mapping equally
labelled nodes (not necessarily of the same type) to each other, and equally
labelled edges of the same type to each other. In the compact syntax, only non-
trivial graphs are shown (in this case only the source components). The basis
rule is placed above the black horizontal line, while the refining rule is placed
below. Elements in RS \LS are annotated with a “++” markup4 to differentiate
them from elements in LS. This allows for a compact notation, which is used for
all other cases. Fig. 4 depicts in sum five different diagrams for DeleteEdge.

Definition 8 (CreateEdge). A CreateEdge source refinement is a refinement
Δ(r∗, r), which is isomorphic to one of the five diagrams depicted in Fig. 4 but
with the roles of L/L∗ and R/R∗ exchanged. CreateEdge target refinements are
defined analogously.

4 Additionally emphasized by depicting them in green instead of black.

Modularizing Triple Graph Grammars Using Rule Refinement 349

Example 2. Consider the refinement Δ(r4, r9()) in Fig. 3. In this case, the edge
father in r9 is removed via a DeleteEdge primitive, while the edge mother in r4
is added via a CreateEdge. We denote this in the following as DeleteEdge(father)
and CreateEdge(mother), respectively.

a : A' a : A'
++

a : A'
++

a : A
++

a : A

a : A'

a : Aa : A
++

Definition 9 (ReplaceNode)
A ReplaceNode source refinement is a refinement
Δ(r∗, r), which is isomorphic to one of the four
diagrams depicted to the right. ReplaceNode target
refinements are defined analogously.

Note that the type of the replaced node can be changed in general, i.e., the graph
morphisms δLS , δL∗

S
, δRS , δR∗

S
are not necessarily type preserving (cf. Def. 5).

a : A a : A
++

Definition 10 (CreateNode). A CreateNode source refine-
ment is a refinement Δ(r∗, r), which is isomorphic to one of
the two diagrams depicted to the right. CreateNode target re-
finements are defined analogously.

Definition 11 (DeleteCorr).ADeleteCorr refinement is a refinementΔ(r∗, r),
which is isomorphic to one of the five diagrams in Fig. 5.

δL δR

δL∗ δR∗

L R

L∗ R∗

ΔL ΔR

a : A ∅ ∅

a : A ∅ ∅

a : A ∅ ∅

a : A

a : A b : B
++++

a : A b : B
++

a : A b : B

a : A b : B

a : A b : B

a : A b : B

b : Ba : A
++

b : Ba : A
++

a : A
++

a : A
++

b : B
++

b : B
++

⇔
b : B

a : A ∅ b : B

a : A ∅ b : B

c : C

c : C

c : C

++
c : C

++
c : C

++
c : C

Fig. 5. DeleteCorr refinements

Note that, analogously to Fig. 4, the first DeleteCorr refinement is depicted
in a detailed formal syntax to the left and a compact syntax to the right. Due
to space limitations, the latter is used for the rest of the refinements.

350 A. Anjorin et al.

Definition 12 (CreateCorr)
A CreateCorr refinement is a refinement Δ(r∗, r), which is isomorphic to one
of the five diagrams in Fig. 5 but with the role of L/L∗ and R/R∗ exchanged.

Definition 13 (Refinement Primitive)
A refinement primitive is a DeleteEdge, ReplaceNode, CreateNode, CreateEdge,
CreateCorr or DeleteCorr refinement.

4.3 Semantics of Refinement

To formalize the semantics of our rule refinement concept, we start by defining
how a given refinement can be decomposed into primitives:

Algorithm 1. Refinement Decomposition

A refinement Δ(r∗ = (L∗, R∗), r = (L,R)) can be decomposed into sets PS , PC , PT of
refinement primitives as follows:
(i) For all nodes n in VR∗

S
, if n �∈ range(δR∗

S
,V) then add a corresponding CreateNode

to PS , else add a ReplaceNode to PS.
(ii) For all edges e∗ in ER∗

S
, if e∗ �∈ range(δR∗

S
,E) then add a CreateEdge to PS.

(iii) For all edges e in ERS , if e �∈ range(δRS,E) and s(e) ∈ range(δRS,V) and
t(e) ∈ range(δRS,V), then add a DeleteEdge to PS .

(iv) Perform steps (i) - (iii) for target components VR∗
T
, ER∗

S
, ERT , and PT .

(v) For all correspondence nodes c∗ in VR∗
C
, if c∗ �∈ range(δR∗

C
,V), then add a

CreateCorr to PC .
(vi) For all correspondence nodes c in VRC , if c �∈ range(δRC,V) and

γS(c) ∈ range(δRS,V) and γT (c) ∈ range(δRT ,V), then add a DeleteCorr to PC .

Example 3. From our running example, using the same notation to represent
primitives as introduced in Ex. 2, Δ(r4, r9()) is decomposed (Alg. 1) to:
PS = {ReplaceNode(family), ReplaceNode(member), DeleteEdge(father),
CreateEdge(mother)}, PC = {CreateCorr(familyT oPerson)},
PT = {ReplaceNode(person)}.

Theorem 1 (Completeness of Refinement Decomposition). Given an
arbitrary refinement Δ(r∗, r), decomposition in sets of refinement primitives
PS , PC , PT according to Alg. 1 is possible and unique.

Proof. (Sketch) Algorithm 1 and induction over sets of nodes/edges in Δ(r∗, r).

Note that Def. 5 only fixes the syntax for Δ(r∗, r), which is then interpreted
(i.e., assigned semantics) according to Alg. 1. This is the reason why omitting
a node n in r∗ does not mean it should be deleted, but rather that it is not to
be refined in any way and does not induce any refinement primitive.

Algorithm 2 specifies the executable, atomic higher-order transformation each
primitive represents. Based on this, we are now able to define the transformation
a refinement represents via decomposition in primitives and execution of the
primitives in a fixed order (given by the dependencies between primitives).

Modularizing Triple Graph Grammars Using Rule Refinement 351

Algorithm 2. Refinement Primitive Resolution

Given a triple rule r = (L,R), a refinement primitive Δ(r∗, r) is resolved to yield a new
rule r∗(r) from r by executing the corresponding higher-order model transformation
given in pseudo code as follows (target primitives are handled analogously):
DeleteEdge(e): Remove e from ERS and, if e ∈ EL∗

S
, from ELS . Adjust source and

target functions appropriately by removing entries for e.
CreateEdge(e): Add e to ERS and, if e ∈ EL∗

S
, also to ELS . Adjust source and target

functions appropriately by adding entries for e.
ReplaceNode(n, m): If all incident edges to n can be transferred to m whilst retain-

ing type conformity, remove n from and add m to VRS (repeat for VLS if m ∈ VL∗
S
).

Transfer all incident edges. If this violates type conformity abort (primitive can
not be resolved).

DeleteCorr(c): Remove c from VRC and, if c ∈ VL∗
C
, from VLC . Adjust graph mor-

phisms between source/target and correspondence components appropriately by
removing entries for c.

CreateCorr(c): Add c to VRC and, if c ∈ VL∗
C
, also to VLC . Adjust graph morphisms

between source/target and correspondence components appropriately by adding
entries for c.

Definition 14 (Refinement Resolution). A refinement Δ(r∗, r) is resolved
to yield a new rule r∗(r) by decomposing it into sets of primitives PS , PC , PT

according to Alg. 1 and resolving the primitives (Alg. 2) in the following order:
(i) All DeleteCorrs in PC , (ii) all DeleteEdges in PS and PT ,
(iii) all ReplaceNodes in PS and PT , (iv) all CreateNodes in PS and PT ,
(v) all CreateEdges in PS and PT , and finally, (vi) all CreateCorrs in PC .

The next step on the way to formalizing a network of refinements is to specify
how multiple refinement is handled via a merge operator defined on rules.

L

R

L1 L2 · · · Ln

R1 R2 · · · Rn

L1,2,··· ,n

R1,2,··· ,n
μR

μLe

μLm

ρL1 ρL2 ρLn

ρR1 ρR2 ρRn

Definition 15 (Merge Operator ⊕)
Given a finite set {r1, r2, . . . , rn} of rules ri = (Li, Ri),
r = (L,R) = ⊕(r1, r2, . . . , rn) can be constructed as de-
picted in the diagram to the right.
{L1,2,...,n, ρl1 , ρl2 , . . . , ρln} and {R1,2,...,n, ρr1 , ρr2 , . . . , ρrn}
are constructed as the co-products of L1, L2, . . . , Ln and
R1, R2, . . . , Rn, respectively. The typed triple morphism
μR : R1,2,...,n → R must be provided (e.g., via a labelling
function) and represents the decision which elements are
to be regarded as equal and, therefore, merged in R. L, μLe

and μLm are uniquely fixed by the choice of μR.

Example 4. From our running example, ⊕(r8(), r9()) is constructed by building
the co-product (disjoint union of edges and nodes) of the left-hand sides of the
rules (the black elements). This means L8,9 consists of all elements in r8() (of
interest is the node family!) and all black elements from r9(). R8,9 is constructed
analogously and consists of all elements in both rules. The merging morphism
μR (and thus L, μLe and μLm) is given implicitly by merging all elements with

352 A. Anjorin et al.

the same label together. Note that both family nodes are glued together to a
single family node, i.e., family is now a node in L as well as R and is, therefore,
a context node in the merged rule.

Theorem 2 (Merge Operator is Sound). The merge operator is commuta-
tive w.r.t. its arguments and uniquely defined for a given μR (Def. 15).

Proof. (Sketch) The co-product construction is basically a disjoint union defined
for graphs and is commutative. As Li ⊆ Ri for all rules ri, it is also easy to show
that the choice of μR fixes L, μLe and μLm with standard arguments.

Using the merge operator and refinement resolution, we can now provide an
algorithm for resolving a refinement network to a TGG (without refinements):

Algorithm 3. Refinement Network Resolution

A refinement network N (V,E, s, t) is resolved as follows:

1. Every node r without outgoing edges is regarded as a resolved triple rule r().
2. Every node r∗ with a single outgoing edge e to a resolved rule r() is regarded as a

refinement: Δ(s(e), t(e)).
3. Every node r∗ with multiple outgoing edges e1, e2, . . . , ek to resolved rules

r1(), r2(), . . . , rk() respectively, is regarded as a refinement over the result of merg-
ing all rules: Δ(r∗, r = ⊕(r1, r2, . . . , rk)).

4. Every refinement Δ(r∗, r(. . .)) is resolved according to Def. 14, transforming the
refinement network N in N ′ by removing all from r∗ outgoing edges e1, e2, . . . , ek,
and replacing r∗ with the resolved rule r∗(r(. . .)) in the network.

5. As N is acyclic, there exists a partial order k0, k1, . . . , kl in which the network can

be transformed with steps (1) – (4) until there are no edges left, i.e., N k1⇒ N1
k2⇒

. . .
kl⇒ Nl = (VNl , ∅).

6. A refinement network without any edges is resolved and consists only of TGG rules.
The final TGG is constructed from a resolved refinement network by excluding all
rules that are tagged by the user as being abstract.

Theorem 3 (Completeness of Refinement). A refinement network
N (V,E, s, t) can be resolved to a TGG if all induced ReplaceNode primitives
are restricted to using type preserving morphisms. If the refinement network can
be resolved, the resulting TGG is unique up to isomorphism.

Proof. The refinement network is acyclic so there exists at least one linearization
in which the network can be resolved according to Alg. 3 (decomposition is always
possible by Thm. 1). Demanding that all ReplaceNode primitives are restricted
to using type preserving morphisms ensures that all refinement primitives can
be resolved. There might be multiple sortings of the network but the resolution
process for a rule r only depends on its transitive dependencies, which are before
r in any valid sorting. The merge operator is commutative (Thm. 2), so the
resulting TGG is independent of the order in which basis rules are resolved.

Modularizing Triple Graph Grammars Using Rule Refinement 353

Example 5. A valid sorting for the refinement network of our running example is:
r1, r8, r9, r2, r4, r3, r5, r6, r7. The rules r1, r8 and r9 can be resolved to r1(), r8(), r9()
with Alg. 3.1. Resulting refinements are Δ(r2, r9()), and Δ(r4, r9()) according to
Alg. 3.2, and Δ(r3,⊕(r8(), r9())) according to Alg. 3.3. With Alg. 3.4, these four
refinements can be resolved to yield the new nodes r2(r9()),
r4(r9()), and r3(⊕(r8(), r9())) removing all outgoing edges from r2, r4 and r3 and
replacing r2, r4 and r3 with their resolved versions (Alg. 3.4). The remaining net-
work r3, r5, r6, r7 is resolved analogously.

4.4 Design Choices vs. Simplifications

In practice, correspondence graphs are often constructed as simple sets of corre-
spondence nodes without any edges. To simplify the discussion in this paper, this
common simplification is assumed, i.e., there are no CreateCorrEdge primitives.
DeleteNode and ReplaceEdge primitives, however, are omitted on purpose as
one could construct confusing refinement networks by introducing and removing
nodes arbitrarily in the refinement network via CreateNode and DeleteNode.

The merge operator requires a typed triple morphism μR that decides which
elements in the basis rules are to be merged together to result in a single ele-
ment in the resulting rule. There are different ways to specify this morphism in
practice. A user could provide the mapping explicitly by choosing the elements
to be merged (in a dialogue or with a textual specification), or the mapping can
be indicated implicitly by using equal labels for elements to be merged.

The readability of refinement networks has a considerable effect on usability.
Although tool support can provide a “preview” of the complete rules, experience
indicates that users actually appreciate the focus on a small section of the rule
that is changed with respect to the basis rule. Concerning debugging of refine-
ments, the resulting TGG can already be pretty printed in our textual concrete
syntax and an import in our visual modelling environment is in development.

According to the classification of modularization concepts according to [11],
our rule refinement is flattened, i.e., resolved at compile time. This means that
the dynamic semantics of TGGs with respect to the resulting TGG is neither
changed nor affected by using refinements. At first sight this might seem inef-
ficient, why not use the information concerning rule similarities to control the
choice of rules and possibly reduce unnecessary pattern matching? A similar
challenge is also relevant in the context of incremental pattern matching and
has already been analyzed in detail. We plan to employ the algorithm of [10] to
detect rule similarities and enable efficient pattern matching even in cases where
the extra information from refinements is not available or is insufficient (e.g., for
weakly typed metamodels).

5 Conclusion and Future Work

In this paper we have introduced and formalized rule refinement as a pragmatic
modularization concept for TGGs. Our approach generalizes existing work pro-
viding support for multiple refinement and increased flexibility as required for

354 A. Anjorin et al.

EMF/Ecore. Although we focus in this paper on TGGs, our approach can be
transferred to (transformation) languages with rules consisting of graph patterns.

An implementation of rule refinement as proposed in this paper is integrated
in the current version of our metamodelling and model transformation tool
eMoflon.5 As future work we plan to improve readability by providing a vi-
sualization of the flattened TGG, which can be produced on demand. We plan
to analyze our existing collection of TGGs to develop a catalogue of bad smells,
and a set of systematic refactorings, which can be used to introduce refinement
and reduce pattern duplication in existing TGG rules. A further important ex-
tension is to generalize our concept to refinement between complete TGGs, i.e.,
with primitives such as AddRule or ReplaceRule.

References

1. Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs with
Constraint-Based Programming Techniques. In: Hermann, F., Voigtländer, J. (eds.)
BX 2012. ECEASST, vol. 49. EASST (2012)

2. Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel Independence
of Amalgamated Graph Transformations Applied to Model Transformation. In:
Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl
Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010)

3. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidi-
rectional Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.)
ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

5. Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transfor-
mation of Sequence Diagram Specifications to Timed Game Automata. In: Schürr,
A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 222–237.
Springer, Heidelberg (2012)

6. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and Expanding Graph
Transformation Rules for Refactoring. In: ENTCS, vol. 152, pp. 53–67 (2006)

7. Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Crnkovic,
I., Bertolino, A. (eds.) FSE 2007, pp. 285–294, No. 594074. ACM (2007)

8. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765,
pp. 141–174. Springer, Heidelberg (2010)

9. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars.
In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903,
pp. 151–163. Springer, Heidelberg (1995)

10. Varró, G., Deckwerth, F.: A Rete Network Construction Algorithm for Incremental
Pattern Matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 125–140. Springer, Heidelberg (2013)

11. Wimmer, M., et al.: A Comparison of Rule Inheritance in Model-to-Model Trans-
formation Languages. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707,
pp. 31–46. Springer, Heidelberg (2011)

5 www.emoflon.org

Polymorphic Single-Pushout Graph
Transformation

Michael Löwe, Harald König, and Christoph Schulz

FHDW Hannover, Freundallee 15, 30173 Hannover

Abstract. The paper extends single-pushout graph transformation by
polymorphism, a key concept in object-oriented design. The notions sub-
rule and remainder, well-known in single-pushout rewriting, are applied
in order to model dynamic rule extension and type dependent rule ap-
plication. This extension mechanism qualifies graph transformation as a
modelling technique for extendable frameworks. Therefore, it contributes
to the applicability of graph transformation in software engineering.

1 Introduction

Algebraic graph transformation has been extended by many object-oriented
modelling concepts, for example types and attributes, compare [2]. However, the
central structure of object-orientation, namely inheritance with polymorphism,
has not been completely integrated yet. We propose a concept for polymorphism
in the single pushout approach [13].

Object-oriented polymorphism is a concept that allows several methods for
the same operation. The late-binding mechanism of the corresponding runtime
system selects the “best” method dependent on the types of the involved objects.
Typically the most special of all fitting methods is selected and executed. We
transfer this concept to typed algebraic graph transformation systems without
attributes. Here, transformation rules play the role of methods. In order to mimic
the late binding mechanism of object-orientation, we need a specialisation hier-
archy on types and on methods, i. e. on transformation rules.

In contrast to [2], we model the specialisation hierarchy on types by a partial
order in the type graph and do not allow cycles in the specialisation relation.
Again in contrast to [2], we do not get rid of the specialisation relation by a
flattening process. Instead, we use it to design a category GT of ordinary directed
graphs typed in the type graph T where morphisms are allowed to map up to
specialisation: A morphism can map a vertex v to any vertex the type of which
is a specialisation of the type of v, compare Section 3 and [16].

The hierarchy on transformation rules is modelled by subrule relations, i. e. a
rule t is more special than t′, if t′ is a subrule of t. The subrule concept is
borrowed from the theory of single-pushout rewriting, compare Section 2. It
perfectly models polymorphism, since general results guarantee that the beha-
viour of t extends the behaviour of t′, if t′ is a subrule of t, in the following sense:

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 355–369, 2014.
© Springer-Verlag Berlin Heidelberg 2014

356 M. Löwe, H. König, and C. Schulz

Every transformation with t can be decomposed into a transformation with t′

followed by a transformation with a uniquely determined remainder t− t′.
The paper is organised as follows. Section 2 recapitulates the theory of single-

pushout graph transformation [9,11,13,14], especially the concepts sub-rule, re-
mainder, and amalgamated rule. Section 3 summarises the results of [16]. It
introduces the basic category GT of graphs typed in a type graph T with inher-
itance hierarchy. In Section 4, Theorem 25 shows the sufficient conditions for GT

to admit single-pushout rewriting presented in Section 2. Section 4 also intro-
duces the new concept of a polymorphic graph transformation system. It allows
type dependent rule selection and application. The increase in the expressive
power is demonstrated by some examples. Section 6 discusses topics of future
research. We assume that the reader has basic knowledge of category theory.

2 Single-Pushout Transformation Framework

Single-pushout graph transformation simplifies the classical double-pushout ap-
proach [2,3] with the help of a category that represents double-pushout rules

(L
l� K

r R) as partial morphisms.
A span base (C,M) consists of a category C and a subclass M of the morph-

isms of C such that:

1. M contains all isomorphisms of C.
2. M is closed under composition.
3. M is prefix-closed: q ◦ p ∈ M and q ∈M =⇒ p ∈M.
4. C has all pullbacks for all pairs of morphisms (p, q) with p ∈ M.
5. Pullbacks in C areM-closed: (p∗, q∗) pullback of (p, q), p ∈ M =⇒ p∗ ∈M.

Given an object A ∈ C, C ↓M A denotes the restriction of the comma category
C ↓ A to M-morphisms.1 The conditions 1, 2, and 3 guarantee that C ↓M A is
a category. The conditions 4 and 5 provide a pullback functor h∗ : C ↓M B →
C ↓M A for every morphism h : A→ B in C.

A concrete M-span is a pair of C-morphisms (p, q) such that p ∈ M and
domain(p) = domain(q). Two M-spans (p1, q1) and (p2, q2) are equivalent and
denote the same abstract span if there is an isomorphism i such that p1 ◦ i = p2
and q1 ◦ i = q2; in this case we write (p1, q1) ≡ (p2, q2) and [(p, q)]≡ for the
class of spans that are equivalent to (p, q). The category of abstract M-spans
M(C) over C has the same objects as C and equivalence classes of spans wrt. ≡
as arrows. The identities are defined by idM(C)

A = [(idA, idA)]≡ and composition
of two spans [(p, q)]≡ and [(r, s)]≡ such that codomain(q) = codomain(r) is
given by [(r, s)]≡ ◦M(C) [(p, q)]≡ = [(p ◦ r′, s ◦ q′)]≡ where (r′, q′) is a pullback
of (q, r).

1 The M-morphisms are the objects of C ↓M A and, due to condition 3, each C ↓M
A-morphism is an M-morphism.

Polymorphic Single-Pushout Graph Transformation 357

Fig. 1. Pushout/pullback cube

Note that there is the natural embedding faithful functor ι : C → M(C)
defined by identity on objects and (f : A→ B) �→ [A

idA� A
f→ B]≡ on morph-

isms. By a slight abuse of notation, we write [A
d← A′ f→ B]≡ ∈ C if d is

an isomorphism. From now on, we write A
f← B

g→ C for the abstract span[
A

f← B
g→ C
]
≡

.
M(C) is called a category of partial morphisms over C, if M is a subclass of

all monomorphisms of C. The following property guarantees that pushouts in C
are pushouts in a category of partial morphisms M(C).

Definition 1. (M-Hereditary Pushout2) A pushout (q′, p′) of (p, q) in C is M-
hereditary if for each commutative cube as in Figure 1, which has pullbacks
(pi, i0) and (qi, i0) of (i2, p) resp. (i1, q) as back faces such that i1 and i2 are
in M, in the top square (q′i, p

′
i) is pushout of (pi, qi), if and only if in the front

faces (p′i, i1) and (q′i, i2) are pullbacks of (i3, p′) resp. (i3, q′) and i3 is in M.

The following fact reformulates the sufficient criterion of [14] for a category
of partial morphisms to possess not only hereditary but all pushouts.

Fact 2. (Pushout of Partial Morphisms) A category of partial morphisms M(C)
has all pushouts, if (i) C has all pushouts and all small limits, (ii) pushouts
in C are M-hereditary, (iii) for every h : A → B in C, the pullback functor
h∗ : C ↓M B → C ↓M A has a right adjoint h∗ : C ↓M A→ C ↓M B.

The theory of single-pushout transformation is built on a category C and a
classM of monomorphisms such that M(C) has all pushouts. An example is the
category M(G) of graphs where M is the class of all monomorphisms:

Definition 3. (Category of Graphs G) A graph G = (V,E, src : E → V, tgt :
E → V) consists of a set of vertices V , a set of edges E, and two mappings
src, tgt : E → V , which provide a source resp. target vertex for each edge. A
graph morphism f : G1 → G2 from a graph G1 = (V1, E1, src1, tgt1) to a graph
G2 = (V2, E2, src2, tgt2) is a pair (fV : V1 → V2, fE : E1 → E2) of mappings
such that fV ◦ src1 = src2 ◦ fE and fV ◦ tgt1 = tgt2 ◦ fE.

2 For details on hereditary pushouts see [9,11].

358 M. Löwe, H. König, and C. Schulz

Fig. 2. Substitution and Partial Co-Match

Further examples are hyper-graphs or graph structures as in [13] where M is
again the class of all monomorphisms.

Definition 4. (Rule, Pre-Match, and Substitution) A rule t : L → R is a
morphism in M(C). A pre-match for t in a host graph G is a morphism m :
L → G ∈ C. A substitution t@m of a rule t along a pre-match m is given by
the M(C)-pushout (t 〈m〉 : G → t@m,m 〈t〉 : R → t@m) of (t,m). The object
t@m is the substitution result. The partial morphism t 〈m〉 is called the trace,
the partial morphism m 〈t〉 the co-match, compare left part of Figure 2.

Note that the co-match need not be total, i. e. need not be in C. An example in
M(G) is depicted in the right part of Figure 2. It shows the substitution of a rule
t : L → R at a pre-match m : L → G. The left-hand side L of t consists of two
vertices, namely ➀ and ➁. The rule deletes ➀ and preserves ➁. The pre-match
maps both vertices in L to the same and only vertex in the host graph G.

Definition 5. (Conflict- and Confusion-Free Pre-Match) A pre-match m for
rule t is conflict-free,3 if its co-match is in C. It is confusion-free, if it is conflict-
free for every prefix of t, i. e. m 〈p〉 ∈ C for each p ∈ M(C) such that x ◦ p = t.

In [13], conflict- and confusion-freeness have been characterised for M(G).

Fact 6. (Conflict and Confusion inM(G)) A pre-match m for a rule t : L→ R,

which is a span t = L
tl� Dt tr→ R, in M(G) is (i) conflict-free, if and only if

∀x, y ∈ L : m(x) = m(y) =⇒ x, y∈ tl(Dt) ∨ x, y /∈ tl(Dt),

and it is (ii) confusion-free, if and only if

∀x, y ∈ L : m(x) = m(y) =⇒ x, y∈ tl(Dt) ∨ x = y.

Confusion-free pre-matches induce decompositions of substitutions for each
rule decomposition:

3 Single-pushout derivations at conflict-free matches coincide with sesqui-pushout
rewritings [1] with monic left-hand sides in rules.

Polymorphic Single-Pushout Graph Transformation 359

Fact 7. (Substitution at Confusion-Free Pre-Match) If t@m is a substitution of
rule t at confusion-free pre-match m and t = t2 ◦M(C) t1 is an
arbitrary decomposition of the rule, then t 〈m〉 = t2 〈m 〈t1〉〉 ◦ t1 〈m〉 and m 〈t〉 =
m 〈t1〉 〈t2〉.

Fact 7 shows that every transformation at a confusion-free pre-match can be
decomposed in elementary actions, namely (i) the addition of a single object
(vertex or edge), the deletion of a single object, and the identification of two
objects. Due to these positive properties, it is reasonable to allow only confusion-
free pre-matches in direct derivations:

Definition 8. (Match and Direct Derivation) The matches for a rule are its
confusion-free pre-matches. Direct derivations are substitutions along matches.

The compact notion of direct derivation allows for a straightforward and simple
theory of single-pushout rewriting.4 We repeat some results of [13] which are
used below when we add inheritance.

Definition 9. (Parallel Independence) Direct derivations t1@m1 and t2@m2

starting from the same host graph are parallel independent if t2 〈m2〉 ◦ m1 is
a match for t1 and t1 〈m1〉 ◦m2 is a match for t2.

Derivations at independent matches lead to the same trace in any application
order:

Fact 10. (Parallel Independence) If direct derivations t1@m1 and t2@m2 are
parallel independent, then t2 〈t1 〈m1〉 ◦m2〉◦t1 〈m1〉 = t1 〈t2 〈m2〉 ◦m1〉◦t2 〈m2〉.

Definition 11. (Sub-rule and Remainder) A rule t : L→ R is an (i, j)-sub-rule
of another rule t′ : L′ → R′, written t ⊆i,j t′, if i : L → L′, j : R → R′ are two
total morphisms (i. e. i, j ∈ C) such that (i) j ◦ t = t′ ◦ i and (ii) i is a match5 for
t. The (i, j)-remainder of t′ wrt. t is the universal morphism t′ −i,j t : t@i→ R′

that satisfies (a) (t′ −i,j t) ◦ t 〈i〉 = t′ and (b) (t′ −i,j t) ◦ i 〈t〉 = j.

Fact 12. (Composition of Matches) If t : L→ R ⊆i,j t′ : L′ → R′ and m : L′ →
G is match for t′, then m ◦ i is match for t.

This fact together with property (a) of Definition 11 immediately provides:

Corollary 13. (Sub-Rule) Direct derivations with sub-rule-structured rules can
be decomposed into a derivation with the sub-rule followed by a derivation with
the remainder, i. e. if t : L→ R ⊆i,j t′ : L′ → R′ and m : L′ → G is a match for
t′, then t′ 〈m〉 = t′ −i,j t 〈m 〈t 〈i〉〉〉 ◦ t 〈m ◦ i〉 and m 〈t′〉 = m 〈t 〈i〉〉 〈t′ −i,j t〉.

Definition 14. (Amalgamation) If t0 : L0 → R0 is a (i1, j1)-sub-rule of t1 :
L1 → R1 as well as a (i2, j2)-sub-rule of t2 : L2 → R2, the amalgamation of t1

4 All necessary proofs can be performed just by using well-known general composition
and decomposition results for pushouts.

5 Remember, that, due to Definition 8, all matches are confusion-free!

360 M. Löwe, H. König, and C. Schulz

and t2 along6 t0 is the universal morphism t3 : L3 → R3 from the pushout (i∗1 :
L2 → L3, i

∗
2 : L1 → L3) of (i1, i2) to the pushout (j∗1 : R2 → R3, j

∗
2 : R1 → R3)

of (j1, j2) that satisfies t3 ◦ i∗1 = j∗1 ◦ t2 and t3 ◦ i∗2 = j∗2 ◦ t1.

Fact 15. (Induced Matches) The morphisms i∗1 and i∗2 constructed in Defini-
tion 14 are matches7 for t2 and t1 resp.

Lemma 16. If m is match for rule t, then it is match for j ◦ t, if j ∈ C.

The derivation with an amalgamated rule results in the same trace as applying
the common sub-rule followed by the two remainders in any order.8 This is an
immediate consequence of the following fact:

Proposition 17. (Amalgamation) Let t1 +t0 t2 be the amalgamation of t1 and
t2 along t0, where t0 is a (i1, j1)-subrule of t1 and a (i2, j2)-subrule of t2. Let
i0 = i∗1 ◦ i2 = i∗2 ◦ i1, mR

1 = i∗2 〈t0 〈i1〉〉, tR1 = (t1 − t0)
〈
mR

1

〉
, mR

2 = i∗1 〈t0 〈i2〉〉,
and tR2 = (t2 − t0)

〈
mR

2

〉
, then we obtain the following two properties:

t1 +t0 t2 = (t2 − t0)
〈
tR1 ◦mR

2

〉
◦ (t1 − t0)

〈
mR

1

〉
◦ t0 〈i0〉

t1 +t0 t2 = (t1 − t0)
〈
tR2 ◦mR

1

〉
◦ (t2 − t0)

〈
mR

2

〉
◦ t0 〈i0〉 .

Proof. Direct consequence of Facts 12 and 15, Lemma 16, and the observation
that all quadrangles in Figure 3 are pushouts due to general pushout properties.

3 The Category of Typed Graphs with Inheritance

In this section, we recapitulate definitions and results from [16].

Definition 18. (Type Graph) A type graph T = (GT ,≤) consists of a graph
GT = (V,E, src, tgt) and a partial order ≤ ⊆ V × V , which has least upper
bounds

∨
S and greatest lower bounds

∧
S for every subset S ⊆ V . ��

The interpretation of type graphs from a software engineering perspective is the
following: Vertices stand for types and edges model associations between types.
The partial order ≤ on types represents the inheritance relation, i. e. x ≤ y
means that x is a sub-type of y.

Note that the vertex set of a type graph cannot be empty, since the least ele-
ment

∨
∅ and the greatest element

∧
∅ must be vertices. Therefore, the simplest

type graph consists of a single type vertex and no edges.
From a practical point of view, the existence of all greatest lower bounds and

all least upper bounds seems to be a very strong and restrictive requirement.
But it can easily be satisfied:

6 More precisely, along (i1, j1) and (i2, j2).
7 Confusion-free.
8 I. e. the remainders are parallel independent.

Polymorphic Single-Pushout Graph Transformation 361

Fig. 3. Decomposition of Amalgamated Rule

For example any graph without inheritance relation can be turned into a type
graph by adding the diagonal (reflexive vertex pairs), the greatest type

∧
∅,

an abstraction of all types, and the least type
∨
∅, a type that specialises all

types, with the induced ordering. Any single-inheritance type hierarchy H can
be turned into a type graph in our sense the same way: Add

∧
∅ =̂ Anything if

H has more than one root and add
∨
∅ =̂ Everything as a type for objects of

every shape.
For an arbitrary type hierarchyH , there is the Dedekind/MacNeille-completion

[17], which provides the smallest partial order closed under least upper and greatest
lower bounds containing the original H . In the completion, any added element is
a missing bound. In the finite case, the bounds in the completion coincide with
the original bounds if they already existed in H .

If we are given an arbitrary type hierarchy H , which does not satisfy the type
graph requirements of Definition 18, we calculate the type graph T (H) by the
Dedekind/MacNeille-completion. If, in any rewriting computation, added types,
i. e. types in T (H) −H , occur, they can be interpreted as follows: Everything
almost always indicates an error and all other added types indicate “uncertainty”
in the sense that the concrete type in H cannot be computed on the basis of the
given information.

362 M. Löwe, H. König, and C. Schulz

Definition 19. (Typed Graph) Given a type graph T , a graph G becomes a T -
typed graph by a typing i : G → T which is a pair (iV : GV → TV , iE : GE →
TE) of mappings such that9

iV ◦ srcG ≤ srcT ◦ iE (1)

iV ◦ tgtG ≤ tgtT ◦ iE (2)

The interpretation of typed graphs from a software engineering perspective is
the following: Vertices of G stand for objects, which are assigned a type by the
instance-of mapping iV . Edges og G are links between objects. The type of a
link is an association: The instance-of mapping iE provides the corresponding
assignment.

Conditions (1) and (2) specify that the source and target assignments of a link
must be consistent with the source and target prescriptions of its type iE(l): The
pair (iV , iE) is only required to be a homomorphism up to inheritance. Condi-
tion (1) means that sub-types inherit all associations of all their super-types.
Condition (2) formalises the fact that associations may appear polymorphic at
run-time in the type of their target.
Definition 20. (Type-Compatible Morphism) If i : G → T and j : H → T
are two typings into the same type graph T , a graph morphism m : G → H is
type-compatible, written m : i→ j, if

jV ◦mV ≤ iV (3)

jE ◦mE = iE (4)
A morphism is called strong, if ≤ in (3) can be replaced by =, i. e. jV ◦mV =

iV .
The typings in T together with the type-compatible graph morphisms between

them constitute the category of T -typed graphs GT .
There is a functor ω : GT → G which forgets the typing, i. e. maps a GT -

morphism m : (i : G→ T)→ (j : H → T) to the G-morphism m : G→ H.
A type-compatible morphism can map an object of type c to an object the type
of which is a sub-type of c. Strong morphisms do not use this flexibility.

Fact 21. (Strong Morphisms) (a) Isomorphisms are strong. (b) The composition
of two strong morphisms is strong. (c) Strongness is prefix-closed, i. e. if f ◦ g is
strong, then g is strong.

Proposition 22. (Limits and Co-Limits) For every small diagram α : D → GT ,
there is a limit (lo : L→ α(o))o∈D and co-limit (co : α(o)→ C)o∈D, such that
ω (lo)o∈D and ω (co)o∈D are the limit and co-limit of the diagram ω ◦ α : D → G
resp. The typings l : ω(L)→ T and c : ω(C)→ T map x ∈ ω (L)V to

∨
{α(o)(y) :

y = lo(x), o ∈ D} and x ∈ ω (C)V to
∧
{α(o)(y) : x = co(y), o ∈ D} resp.10

9 If f, g : X → G are two mappings into a partially ordered set G = (G,≤), we write
f ≤ g if f(x) ≤ g(x) for all x ∈ X.

10 The notation o ∈ D stands here for o ∈ ObjectD.

Polymorphic Single-Pushout Graph Transformation 363

Fig. 4. Type Graph for Typed Object-Oriented Systems

Proof. Direct consequence of the results in [16] and the fact that all least upper
bounds and greatest lower bounds exist in T .

To apply the single pushout transformation framework of Section 4, strong mono-
morphisms are of special interest:

Fact 23. Pushouts and pullbacks preserve strong morphisms in GT , i. e. if
(p∗, q∗) is pushout or pullback of (p, q) and p is strong, then p∗ is strong.

4 Single Pushout Transformation with Polymorphism

In this section, we instantiate the single-pushout framework of Section 2 for the
categoryGT of typed graphs presented in the last section. The span base category
is (GT ,S) where S is the class of all strong monomorphisms. Thus, S(GT) is a
category of (strong) partial morphisms. (GT ,S) satisfies the requirements (1) –
(5) on page 356 of a span base, compare section 3.

Since GT has all small limits and co-limits,11 it remains to show the require-
ments (ii) and (iii) of Fact 2 for S(GT) to be a suitable category for single-
pushout rewriting.12

Proposition 24. (Pushout Conditions) (a) Pushouts in GT are S-hereditary.
(b) Given a morphism b : (h : H → T) → (k : K → T) in GT , the pullback
functor b∗ : GT ↓S k → GT ↓S h has a right-adjoint.

Theorem 25. S(GT) has all pushouts.

Proof. Direct consequence of Propositions 22 and 24 and Fact 2.

These results provide the fundament on which a concept of inheritance for
single-pushout graph transformation can be built. We are already able to write
generic rules. This is illustrated by the example depicted in Figures 4, 5,
and 6.

11 Compare Proposition 22.
12 A detailed proof for the following proposition can be found in [15].

364 M. Löwe, H. König, and C. Schulz

Fig. 5. Object Creation

Figure 4 depicts a type graph in the sense of Definition 18 for a small model
for typed object-oriented systems. The partial order on vertices is generated by
the given inheritance relations in UML notation.13 There are only two types
missing for the vertex order to possess all limits, namely

∨
∅ (Everything)

and
∧
∅ (Anything). We assume that these types are always implicitly added.

The type graph specifies a type level and an instance level connected by the
instanceOf-edges.

The most prominent type on the type level is Type. Types are orthogonally
classified two times, namely in concrete versus not concrete (i. e. abstract) types
on the one hand and in mutable versus immutable types on the other hand.
Type-objects represent abstract and immutable types. Concrete-objects stand
for concrete (i. e. not abstract) and immutable types, i. e. these objects can be
target of instanceOf-edges. Mutable-objects model mutable and abstract types,
i. e. these objects can be target of port-edges from Out-Objects. The type Class
is derived from Concrete and Mutable. Therefore classes inherit the properties
of both direct super-classes, i. e. objects of type Class (or more special) can be
target of instanceOf-edges and can be owner of Associations. Singleton-
types [4] are modelled as a specialisation of Class. The edges of type extends

model specialisation. We assume that the set of these edges represents a hier-
archy, i. e. includes edges for all paths (reflexive and transitive), and does not
contain cyclic paths of length greater than zero (anti-symmetric). Association-
objects connect Out- with In-ports. The specialisations of these port classes,
i. e. OutUnique and InUnique, will be used later to model multiplicity specific-
ations for associations.

The instance level is very simple. There are Object-objects which obtain a
type (Concrete-object) on the type level by an instanceOf-edge. And there
are Link-objects representing instances of Association-objects. Link-objects
can connect Object-objects the instanceOf-target of which has type14 Class

(owner)15 with Object-objects the instanceOf-target of which has type
Concrete (target).16

Figure 5 depicts the method CO for the operation createObject(¢:Concrete).
17 The method is generic because it can be applied to objects of all sub-types of
Concrete, namely Concrete, Class, and Singleton.

13 http://www.uml.org/
14 A t′-object is of type t, if t′ is equal to a direct or indirect sub-type of t.
15 Note that the owner of a link must be concrete and mutable.
16 The owner- and target-relations on the instance level must be consistent with the

corresponding relations on the model level. We model this constraint by the link
creation rule, compare Figure 6.

17 We use the UML notation for object diagrams.

Polymorphic Single-Pushout Graph Transformation 365

Fig. 6. Link Creation

The operation createLink(¢: Object,a : Association,v : Object) is im-
plemented by the method CL which is depicted in Figure 6. It allows the creation
of a link only if the types of the receiver (¢) and the given value (v) are special-
isations of the owner- and target-type of the given association parameter (a)
resp. This method is also generic, since the object 1:Class for example can be
matched with Class- or Singleton-objects and there are 5 type choices for the
object 5:Type. Without specialisation, we would have to write 90 concrete rules
for the type variations of the objects 1, 2, 5, and 6.

But generic methods are not the end of the game. Now, we introduce a mech-
anism that allows to extend rules. This is equivalent to method redefinition or
polymorphism in object-oriented programming. A good example is the object
creation rule CO in Figure 5. It does not always work right: The rule can create
several instances for a Singleton-object.

Figure 7 shows the redefinition of createObject(¢:Concrete) in Figure 5
by a more special method COS, namely createObject(¢:Singleton). The re-
definition does not create an Object, if there is already one instance for the
Singleton-class.18 Note that CO has been made a sub-rule of COS by the morph-
ism pair (i, j).

Figure 7 also shows the application CO@i which provides the remainder COS−
CO, compare Definition 11. Note, that every direct derivation COs@m with the
redefinition coincides with the derivation sequence that applies the sub-rule CO

at the match m◦ i followed by the remainder application (COS − CO)@m 〈CO 〈i〉〉,
compare Corollary 13. Thus, the application of a sub-rule-structured rule cor-
responds to a super-call in object-oriented programming. We can think of the
sub-rule as “shared code” that is always executed, in the example “adding an
instance”, and the remainder as the set of additional actions specified by the
redefinition, in the example “identification of the new and the old instance”.

Before we look at more complex examples, we formalise the presented feature
of rule-extension and “application of the most specific rule”.

Definition 26. (Polymorphic Graph Transformation System) A polymorphic
graph transformation system (T, P,≤P ,MP) consists of a type graph T, a finite
set of partial morphisms P ⊆ GT , representing the rules, a partial rule order
≤P ⊆ P ×P , representing the specialisation relation on rules, and a family MP

18 Note that the redefinition is the identity morphism.

366 M. Löwe, H. König, and C. Schulz

Fig. 7. Singleton Creation

of sub-rule specifications19 (lt,t′ : L→ L′, rt,t′ : R→ R′) for every pair t′ : L′ →
R′ ≤P t : L→ R satisfying:

(a) Every rule has a unique most general rule, i. e.

t3 ≤P t1 ∧ t3 ≤P t2 =⇒ ∃t : t1 ≤P t ∧ t2 ≤P t (5)

(b) The sub-rule specifications are consistent with the sub-rule order, i. e.

(lt,t, rt,t) = (idL, idR) for each t : L→ R ∈ P (6)

(lt,t′′ , rt,t′′) = (lt′,t′′ ◦ lt,t′ , rt′,t′′ ◦ rt,t′) for each triple t′′ ≤P t′ ≤P t (7)

Note that t′ is a sub-rule of t, if t is a specialisation of t′, since specialisation
on rules means extension.20 The analogy to Condition (a) in object-orientated
programming is the fact that each method implements a unique operation.

From object orientation, we inherit the idea that the most specific method
has to be chosen, if several methods for the same operation are applicable. This
concept translates to our approach as follows:

Definition 27. (Match and Derivation in Polymorphic System) A match m
for a rule t in a system PGT = (T, P,≤P ,MP) is a most specific match, if
for all rules t′, t̂ ∈ P with t′ ≤P t̂, t ≤P t̂ and all matches m′ for t′ we have:
m′ ◦ lt̂,t′ = m ◦ lt̂,t =⇒ t ≤P t′ ∧m ◦ lt′t = m′. A direct derivation in PGT is a
direct derivation at a most specific match.21

The specialisation OutUnique of Out-ports stands for the multiplicity 0 . . .1.
Figure 8 depicts an extension CLO of the rule CL in Figure 6 which guarantees the
19 Compare Definition 11.
20 Thus, the partial orders on types and rules are consistent: “less than” means “more

special”.
21 Note that rule redefinition formulates a negative application condition in the sense

of [8]: A rule is not applicable if a more special rule is.

Polymorphic Single-Pushout Graph Transformation 367

Fig. 8. Extension of Link Creation

corresponding uniqueness property for outgoing edges. The rule CL is redrawn
in Figure 8 in black, the additional parts of CLO − CL are drawn in grey: CLO
removes an existing link, when a new link is added.

Symmetrically, we can extend CL by a rule CLI that removes an existing In-link
of an object o, when a new In-link of the same association with a InUnique-
port is added to o. Now, we have the situation CLO ≤ CL ≥ CLI which makes it
possible that there is no most specific match, namely if a link shall be added
the Association of which is unique at the In- and the Out-end between two
objects that both possess such a link on the owner resp. target side. We need a
special rule for this situation. It can be automatically generated, namely by the
computation of the amalgamated rule CLO+CLCLI, compare Definition 14. Due to
Proposition 17, it provides the correct effect. Thus, the automatic addition of all
amalgamated rule extensions can help to solve the “method selection problem”
in multiple redefinition situations.

The example demonstrates a maximum of code sharing: CLO and CLI reuse
CL and CLO +CL CLI reuses CLO and CLI and, indirectly, also CL. Every extension
adds behaviour and does not change behaviour of the more general rules. These
properties are guaranteed by Corollary 13 and Proposition 17. Therefore, we
obtain a predictable system behaviour although we admit specialisation of rules.

5 Related Work

Most related theoretical research lines do not admit polymorphism. H. Ehrig et
al. [2] introduce inheritance as an additional set of inheritance edges between
vertices in the type graph. It is not required that this structure is hierarchical.
Cycle-freeness is not necessary, since they do not work with the original type
graph. Instead they use a canonically flattened type structure, in which inher-
itance edges are removed and some of the other edges are copied to the “more
special” vertices. By this reduction, they get rid of inheritance and are able to
reestablish their theoretical results. E. Guerra and J. de Lara [7] extend this
approach to inheritance between vertices and edges.

F. Hermann et al. [10] avoid this flattening and define a weak adhesive category
based on the original type graph with inheritance structure. The rule morphisms
are required to reflect the sub-type structure: If an image of a morphism possesses

368 M. Löwe, H. König, and C. Schulz

sub-types, all these sub-types have pre-images under the morphism. This feature
considerably restricts the applicability of the approach in situations like those
in Section 4.

U. Golas et al. [6] also avoid flattening. They require that the paths along
inheritance edges are cycle-free (hierarchy) and that every vertex has at most
one abstraction. For this set-up, they devise an adhesive category comparable
to our approach in [16] but restricted to single-inheritance.

The above mentioned concepts do not address redefinition of rules and “code
sharing” by using rule specialisation and polymorphism. One approach in this
direction is the model of object-oriented programming by A. P. Lüdtke Ferreira
and L. Ribeiro [5], which is based on single-pushout rewriting. They allow vertex
and edge specialisations in the type graph and show that suitably restricted
situations admit pushouts of partial morphisms. Their framework is shown to
be adequate as a model for object-oriented systems. They do not address further
categorical properties. The work in [5] aims at modelling object-oriented concepts
like inheritance and polymorphism by single-pushout graph grammars. It does
not equip general single-pushout rewriting with polymorphism.

There are some practical approaches that allow rule extension. One example
is [12] which is based on triple graph grammars. The operational effects are
comparable to ours, but the devised mechanisms are described informally only.

6 Conclusions and Future Research

In this paper, we extended single-pushout graph transformation by inheritance
and polymorphism. The introduced polymorphism is controlled, since it allows
to add behaviour by rule extension but forbids changes of behaviour. This ex-
tension mechanism qualifies graph transformation as a modelling technique for
extendable frameworks. Since non-monic rules are possible, effects of negative
application conditions [8] can be modelled, compare for example Figure 7.

There are two directions for future theoretical research. After having handled
inheritance for the double- and the single-pushout approach in [16] resp. in this
paper, the concepts have to be generalised to the sesqui-pushout approach [1].
And theoretical results of the algebraic approach, e. g. the critical pair analysis,
have to be generalised to polymorphic systems.

From the practical point of view, future research has to investigate the gained
increase in expressiveness. Besides addition, deletion and identification of ob-
jects, the application of a single-pushout rule L ←l D →r R with inheritance
at match m can also specialise the types of objects, namely for those x ∈ D for
which (i) r is not strong, i. e. R(r(x)) � D(x), or (ii) which are identified by r
with an item y
= x such that the types of m(l(x)) and m(l(y)) are different.

Another interesting practical issue is the invention of a methodology for the
development of message-based object-oriented systems, for example in the sense
of [5], starting from arbitrary polymorphic graph transformation systems.

Polymorphic Single-Pushout Graph Transformation 369

References

1. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

3. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach.
In: FOCS, pp. 167–180. IEEE (1973)

4. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley (1994)

5. Lüdtke Ferreira, A.P., Ribeiro, L.: Derivations in object-oriented graph grammars.
In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 416–430. Springer, Heidelberg (2004)

6. Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theor. Comput. Sci. 424, 46–68 (2012)

7. Guerra, E., de Lara, J.: Attributed typed triple graph transformation with in-
heritance in the double pushout approach. Technical Report UC3M-TR-CS-06-01.
Technical Report Universidad Carlos III de Madrid (2006)

8. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

9. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 250–265. Springer,
Heidelberg (2010)

10. Hermann, F., Ehrig, H., Ermel, C.: Transformation of type graphs with inheritance
for ensuring security in e-government networks. In: Chechik, M., Wirsing, M. (eds.)
FASE 2009. LNCS, vol. 5503, pp. 325–339. Springer, Heidelberg (2009)

11. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 490–504. Springer, Heidelberg (1991)

12. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: Crnkovic,
I., Bertolino, A. (eds.) ESEC/SIGSOFT FSE, pp. 285–294. ACM (2007)

13. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

14. Löwe, M.: A unifying framework for algebraic graph transformation. Technical
Report 2012/03, FHDW-Hannover (2012)

15. Löwe, M., König, H., Schulz, C.: Polymorphic single-pushout graph transformation.
Technical Report 2013/04, FHDW-Hannover (2013)

16. Löwe, M., König, H., Schulz, C., Schultchen, M.: Algebraic graph transformations
with inheritance. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195,
pp. 211–226. Springer, Heidelberg (2013)

17. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42(3), 416–460
(1937)

Causal-Consistent Reversible Debugging�

Elena Giachino1, Ivan Lanese1, and Claudio Antares Mezzina2

1 Focus Team, University of Bologna/INRIA, Italy
2 SOA Unit, FBK Trento, Italy

{giachino,lanese}@cs.unibo.it, mezzina@fbk.eu

Abstract. Reversible debugging provides developers with a way to ex-
ecute their applications both forward and backward, seeking the cause
of an unexpected or undesired event. In a concurrent setting, reversing
actions in the exact reverse order in which they have been executed may
lead to undo many actions that were not related to the bug under analy-
sis. On the other hand, undoing actions in some order that violates causal
dependencies may lead to states that could not be reached in a forward
execution. We propose an approach based on causal-consistent reversibil-
ity: each action can be reversed if all its consequences have already been
reversed. The main feature of the approach is that it allows the pro-
grammer to easily individuate and undo exactly the actions that caused
a given misbehavior till the corresponding bug is reached. This paper
major contribution is the individuation of the appropriate primitives for
causal-consistent reversible debugging and their prototype implementa-
tion in the CaReDeb tool. We also show how to apply CaReDeb to
individuate common real-world concurrent bugs.

1 Introduction

Reversible debugging has been known for the last 40 years [8,22], and gets all its
interest and motivation from assisting the programmer in the search of possible
bugs by exploring the computation both forward and backward. Retracing back
the steps is very useful when investigating a misbehavior. In a sequential setting
it is also very natural: steps are simply undone in the reverse order of execution.

In a concurrent world, where multiple threads execute concurrently, there
may not be a unique “last” action. Thus, the concept of reversibility has been
interpreted and implemented in different ways, depending on the answer to the
following question: When a misbehavior is encountered, how can one proceed in
order to retrace the steps towards the bug?

We will describe the different approaches on a simple scenario. Train passen-
gers are taking their seats on a train. Some of them have reserved a seat, some
others have not. Those without reservation pick randomly a free seat. Those
with reservation take their assigned seat unless they find it has been occupied
by someone else, in which case they pick a free one. What should not happen is

� This work has been partially supported by the French National Research Agency
(ANR), project REVER n. ANR 11 INSE 007.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 370–384, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Causal-Consistent Reversible Debugging 371

that some passenger X with a reservation finds himself standing without a seat.
If this happens, how do we find the problem and fix it? Following the approaches
in the literature, we could:

Non-deterministic replay debugging [20,1,19]: send everyone out of the
train and start again the sitting algorithm. But this time passengers may
choose seats in different orders, thus the problemmay not occur, or a different
passenger may be left without the seat he is entitled to.

Deterministic replay/reverse-execute debugging [9,4]: start asking peo-
ple to stand up in the exact reverse order they occupied the seats. Then we
risk making many innocent people leave their seats before finding the one
who is occupying the seat of passenger X.

What one would like to do is to undo the sitting of the “causal predecessor” of
passenger X: the one who took his seat. If, in turn, he had another reservation,
then one would undo the sitting of his causal predecessor and so on. In this way,
one can possibly find a place for the passenger with reservation by undoing a
limited number of seat actions.

This form of reversibility, called causal-consistent, is quite natural in practice
as the example above shows, but has never been applied to debugging as far
as we know. The term causal-consistent highlights that actions are reversed by
respecting causes: only actions that have caused no successive actions can be
undone. In other words, concurrent actions can be reversed in any order, while
dependent actions are reversed starting from the consequences. Causal-consistent
reversibility has been studied mainly in the field of process calculi [6,17,12,5].
The key contribution of this paper is to individuate the primitives allowing to
apply the abstract theory of causal-consistent reversibility to help programmers
to debug concurrent applications. In general, one finds a misbehavior in a con-
current program and has to find the instruction in the code that caused it. This
instruction may be in any of possibly many threads, and far back in the code. We
provide new primitives allowing the programmer to go back in the computation
following the causes of the misbehavior till the bug is reached. For instance, if
the fault is a wrong value of a variable, we provide a primitive to find and undo
the (last) assignment to this variable. We show how this and similar primitives
can be applied to various categories of common bugs found in real-world con-
current applications. We also present CaReDeb, a prototype implementation
of our approach.

In principle, causal-consistent reversibility can be applied to debugging for
any concurrent language, and the primitives needed to implement this idea do
not change much from one language to the other. However, their actual imple-
mentation relies on the definition of a causal-consistent reversible semantics for
the language. As far as we know, the only programming language equipped with
a causal-consistent reversible semantics is μOz [15]. Thus, we have chosen μOz
for our studies.

372 E. Giachino, I. Lanese, and C.A. Mezzina

S ::= Statements
skip Empty statement

| S1 S2 Sequential composition

| let x = v in S end Variable declaration

| if x then S1 else S2 end Conditional statement

| thread S end Thread creation

| let x = c in S end Procedure declaration

| { x x1 . . . xn } Procedure call

| let x = NewPort in S end Port creation

| { Send x y } Send on a port

| let x = { Receive y } in S end Receive from a port

v ::= true | false | 0 | 1 . . . Simple values
c ::= proc { x1 . . . xn } S end Procedure

Fig. 1. μOz Syntax

2 The μOz Language

In this section we informally present μOz, a fragment of the Oz language, whose
complete theoretical treatment can be found in [15]. Some details relevant for
debugging are summarized in Section 6. μOz is a higher-order language featuring
thread-based concurrency and asynchronous communication via ports.

The syntax of μOz is in Figure 1. Values in μOz are booleans, natural numbers,
(communication) ports and procedures. Variables are immutable, i.e. read-only
variables that are initialized at the time of their declaration. Communication is
asynchronous and is realized by means of send and receive actions on a port, to
which a FIFO queue is associated. Variable declaration, procedure declaration,
port creation and reception are binders. Specifically, x is bound in S in let x =
v in S end, let x = c in S end, let x = NewPort in S end, and let x =
{ Receive y } in S end.

3 Causal-Consistent Debugging

In this section we describe the commands enabling causal-consistent reversible
debugging, which are also implemented in our causal-consistent reversible debug-
ger prototype CaReDeb [2]. Clearly, some of the available commands are stan-
dard for (reversible) debuggers, while others are peculiar of our causal-consistent
approach. We give more emphasis to the last ones. For simplicity, we also distin-
guish commands for controlling the execution (labeled with “control” in Table 1)
from those for exploring the configuration of the program under debugging (la-
beled with “explore” in Table 1). Most of the commands can be abbreviated:
abbreviations are in parenthesis after the command name in Table 1.

Causal-Consistent Reversible Debugging 373

Table 1. CaReDeb main commands
co
n
tr
o
l

forth (f) t (forward execution of one step of thread t)
run (runs the program)
rollvariable (rv) id (causal-consistent undo of the creation of variable id)
rollsend (rs) id n (causal-consistent undo of last n send to port id)
rollreceive (rr) id n (causal-consistent undo of last n receive from port id)
rollthread (rt) t (causal-consistent undo of the creation of thread t)
roll (r) t n (causal-consistent undo of n steps of thread t)
back (b) t (backward execution of one step of thread t (if possible))

ex
p
lo
re

list (l) (displays all the available threads)
store (s) (displays all the ids contained in the store)
print (p) id (shows the state of a thread, channel, or variable)
history (h) id (shows thread/channel computational history)

Commands for forward execution are standard: command forth t executes a
single step in a given thread t, while command run executes the program under
a round-robin scheduler (breakpoints may be used to stop the execution).

Commands for backward execution are more peculiar. The main feature of
our debugger is a suite of commands that undo the last action that produced
some unexpected behavior (visible by analyzing the state of the application).
We present these commands by listing the possible visible bad behaviors:

Wrong value in a variable: if a variable id has an unexpected value, com-
mand rollvariable id allows the programmer to go to the state just before
the creation of variable id;

Wrong value in a queue element: if an element of the queue associated to
port id has an unexpected value, command rollsend id n allows the pro-
grammer to undo the last n sends to this port. If n is unspecified, the last
send is undone;

Thread blocked on a receive: if a thread is blocked on a receive on an empty
queue, it may be the case that the desired message has been read by another
thread. This can be checked by looking at the history of the queue, which
contains the messages that were in the queue in the past. In this case, com-
mand rollreceive id n allows the programmer to undo the last n receives
on the port id. If n is unspecified, the last receive is undone;

Unexpected thread: if an unexpected thread t is found, command rollthread
t allows the programmer to undo the creation of the thread.

All these commands are causal-consistent, i.e. they undo all the actions that
depend on the target action, while not undoing concurrent actions. For instance,
undoing the send of a value requires to undo the receive of the same value, if per-
formed and not yet undone. Similarly, undoing the creation of a thread requires
to undo all the actions performed by the created thread. This is fundamental to
ensure causal consistency: on one side this ensures we go back to a past state
that could have been reached by a forward execution, on the other side we undo

374 E. Giachino, I. Lanese, and C.A. Mezzina

the minimal number of actions needed to reach this aim. These commands also
print information on which actions have been undone, and in which order.

While these commands are the ones more in line with our philosophy of going
back following the causes of misbehavior, other commands can be used by the
programmer to go back following his intuition. In particular, we provide com-
mand roll t n which undoes (in a causal-consistent way) the last n steps done
by thread t. Command back t is the symmetric of forth t, and undoes a single
step of thread t. Notably, this command is enabled only if all the consequences
of the step (if any) have already been undone.

Commands for exploring the configuration can be divided in two categories:
commands for exploring the standard information (state, code, ports), and com-
mands for exploring the history of the computation and of ports. Note that
variables have no associated history information, since their values never change.

Standard commands include the command list, to display the list of threads
(including whether they are active or terminated), and the command store to
display the identifiers in the store. The content of a given identifier id can be
printed by command print id. According to what id is, it may print the value
of a variable (possibly a procedure), the queue associated to a port, or the code
still to be executed by a thread. History information is displayed by command
history id. Here id may refer to a thread, and in this case the history is the
list of the past actions executed by the thread, or to a queue, and in this case
the history is the list of messages that were in the queue and have been read.

4 Assessment: Real-World Concurrency Bugs

In this section we evaluate our debugging techniques against real world con-
currency bugs as described in [16]. Amazingly, all real world concurrency bugs
reported have a simple pattern, involving a small number of variables, threads,
and resources. They are however small snippets immersed in thousands of lines
of code of huge applications such as Mozilla, Apache, MySQL and OpenOffice.
This tells us that it is not necessary to find complex bug examples in order to
reason about real world.

According to [16], real world concurrency bugs are mainly of three kinds: order
violation, atomicity violation, or deadlock. We show below an example for each
class of bug, and apply our debugging primitives to isolate them. The bugs were
originally in C/C++ programs, but we recast them here in μOz.

An order violation bug occurs when the programmer assumes a given order
among two actions, but those actions may actually occur also in a different order.
A simple example of order violation bug in μOz follows:

let one = 1 in

let two = 2 in

let k = port in

thread {send k one} end; // t 1
thread {send k two} end; // t 2
thread let x = {receive k} in skip end end // t 3
end end end

Causal-Consistent Reversible Debugging 375

Here the programmer assumed that value one would be sent before value two, but
did not enforce this property. In fact, even if thread t 2 is created after thread
t 1, it may run faster and execute its sending of value two before the sending of
value one from thread t 1. When this happens, the programmer may note two
possible misbehaviors: (i) variable x is 2, while 1 was expected, or (ii) the port
k contains value 1, while 2 was expected.

In the first case, the most natural thing to do is to execute rollvariable x.
This would put back the variable in the queue. Notice that one can do this
without knowing where, in a possibly huge code, the receive was. One can see
by inspecting the queue that the two values are not in the expected order. Using
the command rollsend k twice one can put back the two messages, thus finding
the send which caused the misbehavior. Also, the fact that, when undoing the
send of one, the send of two is not undone by the causal-consistent mechanism
confirms that the expected dependency was not enforced.

In the second case one can inspect the history of port k using command
history k and see that value two was indeed put in the queue by t 2, but has
been already read by t 3. Using command rollreceive k the value is put back
in the queue. From here the same technique used above can be applied.

We stress here the fact that it may seem easy to catch this kind of bugs in this
simple example, but actually these threads may not be so much distinguishable
when immersed in the whole program, and our debugging techniques can be
applied in the exact same way, since they require only to know the misbehavior,
not of being aware of the involved instructions: these are highlighted by the
debugging commands.

An atomicity violation bug occurs when the programmer assumes that two
actions are executed in an atomic way, but does not enforce this atomicity con-
straint. A simple example of atomicity violation bug in μOz follows:

let t = true in

let f = false in

let k = port in

thread {send k t};let x = {receive k} in skip end end; // t 4
thread {send k f};let y = {receive k} in skip end end // t 5
end end end

Here the programmer assumed the pairs of send and receive on channel k in
threads t 4 and t 5 to be atomic, but did not enforce this property. In fact, it is
possible that thread t 5 receives the value intended for thread t 4 and vice versa.
One can see as misbehavior the fact that x and y have not the expected value.
Without knowing where this value has been assigned, one can use commands
rollvariable x and rollvariable y to undo the corresponding assignments.
From the output of the debugger one immediately discovers which thread is
responsible of the assignment. When the two values are back in the queue of
port k one can use command rollsend k and immediately discover that the
send has not been performed by the expected thread, thus finding the bug.

376 E. Giachino, I. Lanese, and C.A. Mezzina

Fig. 2. The purchase workflow

A simple example of deadlock in μOz is the following:

let t = true in

let k = port in

thread {send k t} end; // t 7
thread let x = {receive k} in {send k t} end end; // t 8
thread let y = {receive k} in skip end end// t 9
end end end

Here, if the send from thread t 7 is received by thread t 9 instead of t 8, then
the execution of thread t 8 blocks indefinitely because its receive precedes its
send. By looking at the list of threads using command list, one can see that
thread t 8 has not terminated its computation. One can look at the code of the
thread using command print t8 and see that it is waiting on a receive on port
k. The first thing that one can do is to look into the history of the port in order
to see if some message was ever put into the queue. By executing command
history k one finds that a message was actually inside the queue in the past,
and was picked up by another thread. Then, by means of command rollreceive
k, one can undo the receive of the message. One can see from the output of the
debugger that this requires to undo actions of thread t 9. This highlights the fact
that thread t 9 is also involved in the deadlock. Even more, one has discovered
exactly which are the two receive actions and the unique send action critical for
the deadlock to occur, and has all the needed information to fix the bug.

An interesting fact reported in [16] is that most of the bugs (101 out of the
105 reported) involve no more than 2 threads. This highlights the importance
of the fact that the techniques above allow the programmer to immediately find
the involved threads starting from the unexpected behaviors, and to avoid to
undo all the actions of the many unrelated threads.

5 Debugging a Concurrent Application

In this section we describe a use case for CaReDeb [2], more complex than
the paradigmatic examples discussed in the previous section. Differently from
those bugs, the bug considered here is not concurrent per se. Nevertheless, the
concurrent nature of the application makes it more difficult to individuate.

Our sample program (inspired by [18]) implements a procedure for handling
purchase orders. Figure 2 (without the dashed part) depicts its intended behav-
ior. Before an order is placed, two conditions must be verified: the availability

Causal-Consistent Reversible Debugging 377

of the customer’s credit, and the completeness of the delivery details. The two
independent checks CheckCredit and CheckAddress are performed concurrently.
If the credit is insufficient, CheckCredit invokes the procedure ProposeLoan that
offers to the client a loan of 20% of his credit for the purchase. A positive answer
is sent as a result if the updated credit is enough to match the price, a negative
response otherwise. The results of the checks are sent to the asynchAnd procedure
as soon as they are available. The asynchAnd procedure performs a short-circuit
evaluation of n-ary AND: if it receives the value false, then it immediately pro-
duces false as a result, otherwise it waits for another value. If no more values
are expected, then it sends the value true as a result.

The definition of the procedure asynchAnd is as follows, where n, inp and out

are the formal parameters corresponding to the number of expected operands,
the input and the output ports, respectively.

Listing 1.1. The asynchronous AND procedure

let asynchAnd = proc {n inp out}

if (n>0) then let k={ receive inp} in //"inp" is the input port of t

let v={ receive k} in //k is the port for receiving th

let m = n-1 in

if v then {asynchAnd m inp out} //if v is true , the ne

else {send out false} end //else the AND is false

end end end // closing "let m=..", "let v=..", "let k=

else {send out true } end //if n=0 all the operands have been process

end in ... // closing of procedure "asynchAnd "

Since the operands are computed independently, they are sent to different ports.
The statement k={receive inp} receives the id of the port k on which to wait
for the operand v. If v is true, then the procedure is recursively called waiting
for the n-1 values left. Otherwise, the conjunction fails and false is sent over
the result port out. When all the expected values have been gathered (n=0) the
item can be delivered (i.e., true is sent over out).

The program defines three concurrent threads:

thread {asynchAnd 2 input result} end; // t 1
thread {send input outCr};{ checkCredit outCr inCr} end;// t 2
thread {send input outAdd };{ checkAddress outAdd} end; // t 3

The first thread invokes the asynchronous AND on two values expected on ports
whose names are sent over port input. The result is sent on port result. The
other two threads send on input the ports outCr and outAdd, respectively, on
which the value will be communicated, and then invoke the corresponding check
procedure.

Assumeweperformperfectivemaintenance on this software: to avoid that clients
wait for long periods of time, we make sure that the item is actually in stock before
concluding the purchase. Thus, a new procedure checkItem implementing such a
check is incorporated in the system (as shown in the dashed part of Figure 2). A
new port outIt and a new parallel thread are created:

thread {send input outIt}; {checkItem outIt} end // t 4

378 E. Giachino, I. Lanese, and C.A. Mezzina

Hence we have three concurrent sends over port input. The order in which
asynchAnd is going to process the results of the checks depends on the scheduling
order of those sends.

Before putting the upgraded version of the program to work (the code is
available on CaReDeb web site [2]), we want to test its behavior. We consider
a test case where the price of the item is 15 euros and the credit amount is 10
euros. We also assume that the item is in stock and that the delivery details are
fine. We execute the test using the run command of CaReDeb, which executes
the program till the end. We know that, in this test case, the purchase should
be rejected. Instead, within our test run, the procedure asynchAnd returns true.
A bug is somewhere in our program and we need to find it. The problem may
lie either in a wrong assessment of the credit, or in a wrong assessment of the
loan, or in a bug within the asynchronous AND. Even in this simple example we
cannot say a priori where the bug can be found.

Since something is clearly wrong with the value received on port result, we
jump back just before that value was sent, by performing rollsend result. This
points us back to thread t 1 executing the else branch in the body of asynchAnd.
Unfortunately, in this case, we do not get much insight on the source of the bug,
because it happens to roll back of one step only thread t 1. Anyway, we are now
sure that the problem was not related to conflicting sends to port result.

At this point, following the intuition that something wrong may be within the
control of the credit performed by the procedures in thread t 2, we execute roll
t 2 1 and we cause the reversing of the last action within procedure proposeLoan,
namely the sending of the result to asynchAnd. Somehow surprisingly, this does
not cause the undo of other actions. The fact that no receive inside the asynchAnd
procedure needed to be undone means that the result of proposeLoan has not been
considered by asynchAnd. By looking at the send just undone we also notice that
the sent value is correct. Therefore we can exclude that the problem is in the
check of the credit availability, which is performed properly.

Notably, if we would have undone the execution of thread t 4, managing the
checking of the item availability, we would have seen a very different behavior.
This could have been done, for instance, by using command rollthread t 4. As a
result, also part of the computation of thread t 1 performing the asynchAnd would
have been undone, showing an actual dependency between the two threads.

Let us go back to our debugging strategy. Since we now think that the problem
is due to the asynchAnd procedure, we can undo its execution step by step looking
for the bug, using command back t 1. When we reach the beginning of the
thread we notice that asynchAnd was invoked with 2 as number of operands,
while we would have expected 3 operands. This is the bug we were looking for.
This was due to the fact that the invocation was not updated after the check of
the item had been introduced.

The commands roll and back allowed us to check the guesses about the
location of the bug, independently from the possible interleavings of thread exe-
cution. With the non-deterministic replay debugging one could have experienced
a different scheduling of the threads at every attempt of action reversing, thus

Causal-Consistent Reversible Debugging 379

the bug could have showed or hidden itself in an unpredictable way. With the
deterministic replay/reverse-execute debugging, instead, one would have needed
to reverse the actions following a strict chronological order, possibly needing to
reverse many unrelated actions before finding the bug.

6 Underlying Theory

We summarize here a few theoretical notions, mainly adapted from [15], which
ensure the soundness of our debugging strategy.

6.1 Causality Relation

Causal consistency is defined for μOz relying on the notion of causality below.

Definition 1 (Dependent actions). We define below when two (forward) ac-
tions are causally dependent:

1. an action of a thread depends on the previous actions of the same thread;
2. all the actions of a thread depend on the thread creation;
3. all the uses of a variable depend on its creation;
4. a receive of an element from a queue depends on the send of this element;
5. a send on a queue depends on the previous sends to the same queue;
6. a receive from a queue depends on the previous receives from the same queue.

Remark 1. The conditions 1 −4 above correspond to the conditions defining the
well-known Lamport’s happens-before relation [11]. Conditions 5 and 6 above in-
stead have no correspondence in the happens-before, and formalize the fact that
queues are order preserving. Thus our causality model is stricter than Lamport’s.

6.2 μOz Semantics

The debugger relies on the definition of a causal-consistent semantics for μOz,
whose main features are described below.

The operational semantics of μOz is defined in [15] by a simple stack-based
abstract machine. It exploits an extended syntax featuring also tasks and threads
(used for statement execution), port queues (for communication), and the store.
Tasks are a parallel composition of threads. Threads are stacks of statements.
The store is a conjunction of bindings, procedures, and ports (essentially imple-
mented as named FIFO queues). The standard μOz semantics is defined as a
reduction relation, denoted→, between configurations of the form (U, ζ), where
U is a task and ζ is a store (0 is the empty store).

Let us comment a few sample reduction rules. Rule R:npt creates a new port
x′, by putting a new binding x′ = π in the store. Also, x′ is substituted for x in
the scope S to avoid variable capture. A queue is associated to π and initialized
to ⊥ (the empty queue). Task T is the continuation of task S.

[R:npt](〈let x = NewPort in S end T 〉, 0)→ (〈S{x
′
/x} T 〉, x′ = π ‖ π : ⊥),

380 E. Giachino, I. Lanese, and C.A. Mezzina

with x′, π fresh.
Rule R:snd performs a send, by enqueuing variable y in the queue of port x.

[R:snd](〈{ Send x y } T 〉, x = π ‖ π : Q)→ (T, x = π ‖ π : y;Q)

Rule R:rcv performs a receive, dequeuing the corresponding element z and
fetching its value w. The value w is assigned to the fresh variable x′ that sub-
stitutes the formal variable x.

[R:rcv](〈let x = { Receive y } in S end T 〉, y = π ‖ π : Q; z ‖ z = w)

→ (〈S{x′
/x} T 〉, y = π ‖ π : Q ‖ z = w ‖ x′ = w)

with x′ fresh. The reduction relation→ is closed under evaluation contexts (and
structural congruence). We refer to [15] for further details.

Debug-mode semantics. The debugger relies on a causal-consistent reversible se-
mantics, which keeps track of history and causality information. This semantics
is proved to be a conservative extension of μOz semantics, i.e. forward computa-
tions during debugging are indeed a decorated version of the μOz reductions [15].

In the reversible semantics, threads have a name t (which is unique) and
a history H , and execute an extended statement stack C. The history stores
information about executed statements. Sent variables are stored in the queue,
not in the history. Also, for an if statement just the discarded branch has to be
stored, since the other one is available in the thread code. History is needed also
inside ports, to remember the order of communications.

The semantics is defined by means of two reduction relations, a forward re-
lation � and a backward relation �. Let us see, as an example, how the in-
strumented forward reduction rules for communication and the corresponding
backward rules are defined. Rule R:fw:npt stores ∗x′ in the history, meaning
that x′ has been used as fresh port, and uses the scope delimiter esc to recall
the scope of the binding. The created queue comes with an empty history ⊥.

[R:fw:npt] (t[H]〈let x = NewPort in S end C〉, 0)

� (t[H ∗ x′]〈S{x′
/x} 〈esc C〉〉, x′ = π ‖ π : ⊥|⊥) x′, π fresh

Rule R:fw:snd stores ↑ x in the history, to record the sending on port x. Also,
the name t of the thread sending the value is stored in the queue together with
the variable y, to avoid that a different thread takes the value when rolling back.

[R:fw:snd] (t[H]〈{ Send x y } C〉, x = π ‖ π : K|Kh)
� (t[H ↑ x]C, x = π ‖ π : t :y;K|Kh)

Rule R:fw:rcv stores ↓ x(y′) in the history, to record that y′ has been received
from port x. The read value is also kept in the queue history, with information
on which thread read it.

[R:fw:rcv] (t[H]〈let y = { Receive x } in S end C〉, ϕ ‖ π : K; t′ :z|Kh)

� (t[H ↓ x(y′)]〈S{y′
/y} 〈esc C〉〉, ϕ ‖ π : K|t′ :z, t;Kh ‖ y′ = w)

if y′ fresh ∧ ϕ � x = π ‖ z = w

Causal-Consistent Reversible Debugging 381

The backward rules are in one to one correspondence with the forward ones,
and use the stored information to get back to the original state. Notably, rules
R:bk:npt and R:bk:rcv below go back to a term which is not the starting one,
but which is equivalent up to χ-conversion. Also, they exploit the scope delimiter
esc to identify the scope of the statement to be reversed. The occurrence of esc
in the rule is always matched by the nearest occurrence in the term. In rule
R:bk:npt the ⊥ in the history ensures that the actions on the port are rolled
back before its creation is rolled back.

[R:bk:npt] (t[H ∗ x]〈S 〈esc C〉〉, x = π ‖ π : ⊥|⊥)
� (t[H]〈let x = NewPort in S end C〉, 0)

[R:bk:rcv] (t[H ↓ x(z)]〈S 〈esc C〉〉, z = w ‖ x = π ‖ π : K|t′ :y, t;Kh)
� (t[H]〈let z = { Receive x } in S end C〉, x = π ‖ π : K; t′ :y|Kh)

6.3 Properties of Debugging

The soundness of our debugging follows from two results from the theory of
causal-consistent reversibility [6]. Without going into the technical details, we
just want to emphasize their relation with the debugging.

Proposition 1 (Debugging Soundness)

1. Every reduction step can be reversed.
2. Every state reached during debugging could have been reached by a forward-

only execution from the initial state.

The first item ensures that the debugger can undo every forward step, and,
viceversa, it can re-execute every step previously undone. This property is known
as Loop Lemma [6, Lemma 6], and has been proved for μOz in [15, Lemma 3].
The second item ensures that any sequence of forward and backward debugging
commands can only reach states which are part of normal forward-only com-
putations. This property is known as Parabolic Lemma [6, Lemma 10], and its
proof for μOz is analogous to the one in [6].

7 Implementation Aspects

We have implemented in Java a prototype of our causal-consistent debugger,
CaReDeb [2], to test it in practice. It provides all the primitives presented
in Section 3. The most interesting aspects of the implementation lie in the
treatment of the roll command, and its variants rollvariable, rollsend, roll-
receive, and rollthread. In fact, the step-by-step backward command back
follows strictly the semantics presented in Section 6, and it is guaranteed to be
correct by Proposition 1.

The command roll undoes actions in the target thread following the semantics
in Section 6, and thus the correctness result holds also for it. However, if one

382 E. Giachino, I. Lanese, and C.A. Mezzina

such action has dependencies, these dependencies must be retrieved and rolled
back beforehand, including their own dependencies. This requires to find both
the dependent thread and the dependent action inside it. One could in principle
find these actions by inspecting the histories of the threads in the system, but
for efficiency reasons we explicitly annotate the action having the dependency
with a pair (thread id,n), where n is a natural number pointing to a specific
action of thread thread id. Note that only communication actions and thread
creation actions may have dependencies.

When reversing a thread creation action, if the child thread memory is not
empty, then a ChildMissingException is thrown containing the name of the
child thread: this thread will be fully reversed before continuing.

When a send operation on some port k is reversed, the corresponding mes-
sage must be removed from the queue of k. However, this can be done immedi-
ately only if the message has not been read yet, and it is the last one sent on
port k. If the first condition fails also the receive of the message must be re-
versed. If the second condition fails, the send of successive messages to the same
queue have to be reversed to maintain causal consistency. In both the cases a
WrongElementChannel exception is raised with a list of pairs (thread id,n)
pointing to the instructions of the receiving and/or sending threads to be re-
versed as argument.

The same approach is used for receive actions, to ensure that successive
receives from the same port are undone beforehand.

One may think that also port creation should check for dependencies, but
this is not the case. In fact, assume that some other thread interacted on the
port. Then, it must know the name of the port, either by receiving it via com-
munication from the port creator, or by being its child. In both the cases, these
actions are undone before the port creation can be undone, thus undoing all the
communications on the port.

A last issue is to find the target of commands rollvariable, rollsend, roll-
receive, and rollthread. For rollsend and rollreceive this is done using the
same pointers above. For rollvariable and rollthread this is done by associat-
ing a similar pointer to each variable and each thread, respectively.

8 Related Work and Conclusion

We presented a debugging technique allowing the programmer to look for bugs
in a concurrent program by following backward causal dependencies from the
misbehavior to the bug. We also presented CaReDeb [2], a prototype debugger
for μOz, a fragment of the Oz language, enabling such an approach. The approach
relies on storing history and causality information, and is based on the solid
theory of causal-consistent reversibility.

Reversibility for debugging of sequential programs has been quite extensively
explored [14,7,10,3]. The interplay between reversibility and concurrency makes
things more complex: concurrent reversible debugging is a less explored world.
All the approaches to concurrent reversible debugging we are aware of fall in the
two categories below:

Causal-Consistent Reversible Debugging 383

Non-deterministic replay debugging [20,1,19]: in order to go back to a
previous step, the execution is replayed non-deterministically from the start
(or from a previous checkpoint) until that step.

Deterministic replay/reverse-execute debugging [9,4]: a log is kept whi-
le executing, and when going back thread activities are either undone in the
exact reverse order they were executed, or the execution is replayed from a
previous checkpoint following the particular interleaving in the log.

Both approaches present drawbacks. In the first case, actions could get sched-
uled in a different order at every replay, and the error may not get reproduced.
Even if it does, one may not get any insight on the causes of the error. Following
the second approach, if the error was due to one among a million of indepen-
dent parallel threads, and that one was the first one to execute, one needs to
undo all the program execution before finding the bug. Even more, one does not
understand which threads are related to a given misbehavior, since there is no
information on the relations among them.

Causality in the context of non-reversible concurrent debugging has been
addressed in different works [13,23,21], which mainly rely on the Lamport’s
happens-before causality relation [11] (we sketched a comparison between our
causality notion and Lamport’s in Section 6.1). In all these works causality is
used to support determinism in replaying techniques and to define efficient dy-
namic slicing. In contrast, we use causality as a support for rollback primitives
allowing the programmer to find the causes of a misbehavior.

As far as we know, the only work that addresses reversibility and causality
together is about Causeway [18]. However, Causeway is not a full-fledged debug-
ger, but just a post-mortem traces analyzer. It exploits a causality notion, based
on the Lamport’s happens-before, more liberal than ours.

Up to now, we mainly focused on the design of the right primitives to support
our causal-consistent reversible debugging strategy. We are aware that causality
can be exploited also for efficiency reasons [23]. As future work, we plan to exploit
the causality information we have also for improving the efficiency, possibly
integrating our techniques with others from the literature.

The debugger CaReDeb we presented is just a prototype. The interaction
with it is console-based, but we are in the process of upgrading it to an Eclipse
plugin. Moreover, it targets the toy language μOz. Our long term goal is to
develop a causal-consistent reversible semantics and a causal-consistent debugger
for a mainstream language, such as Java, Erlang or C++.

We also plan to test in practice the impact of causal-consistent primitives on
the efficiency of the debugging process.

References

1. Arya, K., Denniston, T., Visan, A.M., Cooperman, G.: Fred: Automated debugging
via binary search through a process lifetime. CoRR, abs/1212.5204 (2012)

2. CaReDeb 0.5.0, a causal-consistent reversible debugger (2013),
http://www.cs.unibo.it/caredeb

http://www.cs.unibo.it/caredeb

384 E. Giachino, I. Lanese, and C.A. Mezzina

3. Chen, S.-K., Fuchs, W.K., Chung, J.-Y.: Reversible debugging using program in-
strumentation. IEEE Trans. Software Eng. 27(8), 715–727 (2001)

4. Chronon Systems. Commercial reversible debugger, http://chrononsystems.com/
5. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible

pi-calculus. In: LICS, pp. 388–397. IEEE Computer Society (2013)
6. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,

Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

7. Feldman, S.I., Brown, C.B.: Igor: A system for program debugging via reversible ex-
ecution. In: Workshop on Parallel and Distributed Debugging, pp. 112–123 (1988)

8. Grishman, R.: The debugging system AIDS. In: AFIPS 1970 (Spring), pp. 59–64.
ACM (1970)

9. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-
traveling virtual machines. In: USENIX Annual Technical Conference, General
Track, pp. 1–15 (2005)

10. Koju, T., Takada, S., Doi, N.: An efficient and generic reversible debugger using
the virtual machine based approach. In: VEE, pp. 79–88. ACM (2005)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

12. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

13. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant
replay. IEEE Trans. Comput. 36(4), 471–482 (1987)

14. Lewis, B.: Debugging backwards in time. CoRR, cs.SE/0310016 (2003)
15. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract ma-

chine and its space overhead. In: Giese, H., Rosu, G. (eds.) FORTE 2012/FMOODS
2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012)

16. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS, pp. 329–339. ACM
(2008)

17. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1-2) (2007)

18. Stanley, T., Close, T., Miller, M.S.: Causeway: a message-oriented distributed de-
bugger. Technical report, HPL-2009-78 (2009),
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html

19. Undo Software. Commercial reversible debugger, http://undo-software.com/
20. Visan, A.M., et al.: Temporal debugging using urdb. CoRR, abs/0910.5046 (2009)
21. Xu, G., Rountev, A., Tang, Y., Qin, F.: Efficient checkpointing of java soft-

ware using context-sensitive capture and replay. In: ESEC/SIGSOFT FSE 2007,
pp. 85–94. ACM (2007)

22. Zelkowitz, M.V.: Reversible execution. Commun. ACM 16(9), 566 (1973)
23. Zhang, X., Tallam, S., Gupta, R.: Dynamic slicing long running programs through

execution fast forwarding. In: SIGSOFT FSE, pp. 81–91. ACM (2006)

http://chrononsystems.com/
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html
http://undo-software.com/

An Expressive Semantics of Mocking

Josef Svenningsson1, Hans Svensson2, Nicholas Smallbone1,
Thomas Arts2, Ulf Norell1,2, and John Hughes1,2

1 Chalmers University of Technology, Gothenburg, Sweden
2 Quviq, Gothenburg, Sweden

Abstract. We present a semantics of mocking, based on a process
calculus-like formalism, and an associated mocking framework. We can
build expressive mocking specifications from a small, orthogonal set of
operators. Our framework detects and rejects ambiguous specifications as
a validation measure. We report our experience testing software compo-
nents for the car industry, which needed the full power of our framework.

1 Introduction

Software components rarely exist in isolation; most components not only provide
an API, but depend on the APIs of other components. When a component is
tested in isolation, then these other APIs must be replaced by a suitable simula-
tion. Nowadays “mocks” are often used for this purpose, which not only simulate
the other components, but also help to check that they are used correctly.

There are many mocking frameworks available to support mocking, such as
Google Mock [9] for C++, or jMock [11] or Mockito [12] for Java. Yet we devel-
oped a new framework of our own—why?

We recently designed conformance tests for parts of the AUTOSAR automo-
tive software standard [3]. The goal was to test different vendors’ implementa-
tions of AUTOSAR components for compliance with the standard. We needed
mocks in order to test each component in isolation. We had three main require-
ments which ruled out existing mocking frameworks.

Expressive. AUTOSAR does not completely specify how a compliant component
must behave, and different vendors interpret the standard differently. Therefore,
the system under test might invoke the mocks in a variety of very different ways.
As we cannot tailor our tests to the vendor’s implementation, our mocks must
handle this diversity instead. To allow diverse behaviour without making the
mocks too permissive, we need an expressive mocking framework.

Orthogonal. Many mocking frameworks have a non-orthogonal feature set. For
example, mocking frameworks support optional calls, which the system under
test may call or ignore, but it is often not possible to mark a sequence of calls
as optional, so that either the whole sequence must be called or none at all.

In the AUTOSAR project we used QuickCheck [6,2] to model the software
components. From the model we can generate test cases and corresponding

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 385–399, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

386 J. Svenningsson et al.

mocks; generating the mocks is extremely painful if the mocking framework
imposes arbitrary restrictions on what we can write. We want the freedom to
combine the features of the mocking framework however we like.

Clear and unambiguous specifications. In most mocking frameworks, the mean-
ing of a specification can be quite subtle, a point we illustrate in Section 2. For
example, these frameworks have rules for resolving ambiguity, and the user can
exploit these rules in writing specifications. This is convenient but makes it hard
to say what a given specification means.

Our AUTOSAR mocking specifications are, by necessity, sometimes long and
complex. They are tricky to get right. The last thing we want from our frame-
work is a subtle semantics! We want each mocking specification to have a simple,
declarative meaning. Likewise, we want the mocking framework to reject ambigu-
ous specifications, rather than make arbitrary choices: this reduces the number
of potential pitfalls.

One might expect that we could use an ambiguous specification to mock a
nondeterministic component, if the framework resolves ambiguity randomly. We
believe this is the wrong approach, because it makes tests unrepeatable. Instead,
the test suite itself should choose a particular deterministic interpretation.

This paper presents a new mocking framework which is expressive, is built
from a small core of orthogonal features, has a simple, compositional semantics
where every specification has a clear meaning, and which avoids making arbitrary
choices during test execution by rejecting ambiguous specifications. Although
our requirements came from the AUTOSAR testing project, we believe these
features are compelling in their own right, and are especially important when
testing large components. The contributions of the paper are as follows:

– We present a new framework for mocking (Sections 3–4). The framework
is given two semantics, a simple, compositional denotational semantics and
a small-step operational semantics. The two semantics have been proved
equivalent (see the accompanying technical report [13]).

– We avoid making arbitrary choices during test execution by ruling out
ambiguous mocking specifications. Specifically, we provide a procedure to
validate specifications (Section 5) which rules out specifications which are
ambiguous. The validation is sound with respect to the semantics. Perhaps
surprisingly, it is also complete, which means that if we reject a specification,
it must be ambiguous, and we can moreover find a trace that demonstrates
the ambiguity. The soundness proof, a sketch of the completeness proof, and
a link to the full formalization are found in the tech. report [13]

– We extend our basic framework to make it practical and describe how to
implement it in a memory-efficient way (Section 6).

– We report on our experience using an earlier version of this framework in a
large industrial case study writing specifications for, and then testing imple-
mentations of, automotive software (Section 7).

An Expressive Semantics of Mocking 387

2 Why a Mocking Semantics?

Before going into the details of our new mocking framework, we will explain
why we are dissatisfied with the non-compositional semantics of conventional
mocking frameworks. We use Google Mock [9] (and Google Test [10]) purely as
a representative for existing mocking frameworks.

Consider a small test for a Dashboard component. The dashboard is con-
nected to a speed sensor and a display, and is supposed to read the speed and
update the display appropriately. In this example, the dashboard has a correct
C implementation which we want to test. In order to test it, we mock the sensor
and display component.

TEST(Dashboard, Test1) {

MockSensor mSensor;

MockDisplay mDisplay;

EXPECT_CALL(mSensor, readSpeed()).WillOnce(Return(10));

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _));

Dashboard dashboard(&mSensor, &mDisplay);

dashboard.main(); // Actual test

}

The test creates a mock sensor and a mock display, and a concrete
Dashboard object containing the mock objects. Thereafter, the mock ob-
jects are prepared to expect a call of readSpeed() (returning 10) and
updateDisplay(Display::SPEED, _) respectively (where _ matches any argu-
ment). The test finally calls the main function of Dashboard. When a mocked
object is destroyed, the framework checks that all and only the expected calls
have been made. This test will pass provided that dashboard.main() calls the
mocked functions exactly as specified.

Let us enrich the example test by adding two more calls of dashboard.main()
and having the mocked function readSpeed return a different value each time.
We tell updateDisplay that it will be called three times (by adding Times(3)

to the specification), and call the main function three times:

MockSensor mSensor;

MockDisplay mDisplay;

EXPECT_CALL(mSensor, readSpeed())

.WillOnce(Return(10))

.WillOnce(Return(6.7))

.WillOnce(Return(12.5));

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)).Times(3);

Dashboard dashboard(&mSensor, &mDisplay);

dashboard.main();

dashboard.main();

dashboard.main(); // main x3

388 J. Svenningsson et al.

This test will pass for correct implementations of the dashboard. Next, sup-
pose we want to be a little bit more precise. It so happens that the Dashboard

should convert the sensor speed, given in m/s, to km/h; i.e. if readSpeed returns
10, updateDisplay should be called with 36 as its second argument. We change
the expected calls to:

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, 36)).Times(1);

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);

Surprisingly, this test fails even if the implementation does the correct thing.
It turns out that expectations are put on a stack, so are tested in the reverse
order that they are defined. Thus, the correct way to specify this would be

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, 36)).Times(1);

even though the call returning 36 happens first. And indeed, this test passes.
Now suppose that we change the specification so that the final call to

readSpeed returns 10 instead of 12.5:

EXPECT_CALL(mSensor, readSpeed())

.WillOnce(Return(10))

.WillOnce(Return(6.7))

.WillOnce(Return(10));

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, 36)).Times(1);

We might expect this test to pass, but it does not! The reason is that (by
default) expectations are not removed from the stack once they are fulfilled. Thus
as soon as the function updateDisplay is called with argument 36 it remains
on the stack as being called once. The second time it is called it increases the
call count of the updateDisplay with argument 36 instead of increasing the call
count of updateDisplay with arbitrary argument.

The above mocking specification looks ambiguous, since a second call with
argument 36 can be handled in two ways: it can be accepted by the first clause
or rejected by the second. The mocking framework has arbitrarily chosen the
second way.

The way to fix this test in Google Mock is either to expect 36 twice, or
to tell the second expectation to retire once it is fulfilled with the feature
RetiresOnSaturation(). We choose the second option and the test now passes:

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, 36)).Times(1)

.RetiresOnSaturation();

While conventional mocking frameworks have a precise semantics, it is quite
complicated. There are subtle interactions between features because the seman-
tics is not compositional and ambiguous specifications are given an arbitrary,
though documented, semantics.

An Expressive Semantics of Mocking 389

In this case, the test failed and therefore we found out that the mocking
specification was ambiguous. More worrying is that, by resolving an ambiguity
the wrong way, the framework might allow a test to pass that should fail. We
would like to be alerted to such problems.

A complex semantics also places a mental burden on the user. We believe
that this burden becomes worse as the mocking specifications become bigger. We
will now present our approach to mocking, which brings a simple, surprise-free
semantics, and ambiguity checking to avoid having to make arbitrary choices.

3 Introduction to the Mocking Language

Our running example will be a dashboard similar to that of Section 2. The
dashboard executes a main loop 25 times per second. Each time round, it reads
a number of signals, such as the speed, battery status, outside temperature, etc.,
and updates a display accordingly. The display is a different software component
and is mocked by an update display function.

We start with a simple main loop that only reads the speed and then updates
the display. It will first call the mocked function read_speed, which returns a
value in m/s ; let’s say that it should return 5.833 m/s. The mocking specification
read speed �→5.833 says that the software under test must call read_speed, and
the mocked function will return 5.833. We refer to a single call and return as an
event ; by combining events we can build more complex mocking specifications.

Next, the dashboard must make the display show 21 km/h. It does this
by calling update_display(speed,21); as before, we model this call with an
event update display(speed, 21) �→().1 To say that the dashboard must call
read_speed and update_display in that order, we combine the two events
with the sequential composition operator “ . ”. The resulting specification is:

read speed �→5.833 . update display(speed, 21) �→()

Now we turn to the battery level. This display only needs to be updated once
a second, though it may be updated more often. Since our mocking specifica-
tion only captures 1/25 of a second, we cannot check this directly; instead, we
allow the dashboard optionally to update the display, and will check in the test
suite itself that the display is updated often enough by counting the calls to
update_display. To express optional behaviour we add two new constructs to
the mocking language. The + operator allows the software under test to behave
according to either of two specifications, while the empty specification φ forbids
any calls. We may then express an optional behaviour by giving the software
under test the option of having that behaviour or not doing anything:

(read battery �→234 . update display(battery, 70) �→()) + φ

Another feature of the dashboard is that when driving in bright sunlight, the
display may light up. Not all cars have this feature. Moreover, some dashboards

1 If a function’s return type is void, we use () for the return value.

390 J. Svenningsson et al.

read the light sensor each time they update a part of the display, while others
only read it once per loop. But whenever the dashboard reads the light sensor,
it must then update the display brightness. The dashboard may read the light
sensor any number of times per loop, which we can model using the ∗ operator:

(read light �→6 . light display �→())∗

The three specifications above capture three aspects of the dashboard. To
mock the dashboard as a whole, we combine the three specifications with the
parallel composition operator “ || ”. This says that the dashboard may interleave
the execution of the three specifications, but must respect the order of events
within each single specification. For example, the dashboard may read the speed,
then the light sensor, then set the display brightness, then update the display:

(read speed �→5.833 . update display(speed, 21) �→())

|| (read light �→6 . light display �→())∗

|| ((read battery �→234 . update display(battery, 70) �→()) + φ)

From this specification we can automatically generate mocks. Our mocks check
that the calls made by the dashboard precisely match the calls in the specifica-
tion: no extra calls, no missing calls, and all calls in the right order.

4 A Process Calculus for Mocking

We have now seen all of the features of our mocking language, and begin a formal
treatment of its semantics. Mocking specifications resemble terms in a process
calculus, and their syntax is summarised below. An event a �→z denotes calling
the function a to get result z. For now we treat a and z abstractly; in Section 6
we will breathe life into the calculus by allowing events to be real function calls.

p ::= φ | a �→z | p . q | p || q | p + q | p∗

We want to assign meaning to mocking specifications. We therefore define a
denotational semantics in terms of traces; a trace is a sequence of events. The
language L(p) of a process is the set of traces that the process accepts, i.e. that
satisfy the mocking specification, and is defined as follows:

L(p . q) = {st | s ∈ L(p) ∧ t ∈ L(q)}
L(p + q) = L(p) ∪ L(q)
L(p || q) = {u | s ∈ L(p) ∧ t ∈ L(q) ∧ u is an interleaving of s and t}
L(p∗) = {s1s2 · · · sn | n ∈ N and for all i, si ∈ L(p)}

L(a �→z) = {a �→ z}
L(φ) = {φ}

This semantics is compact and easy to understand, and ideal for understanding
the behaviour of a mocking specification. However, it is of little use for imple-
menting the mocking framework. It accepts or rejects whole execution traces,

An Expressive Semantics of Mocking 391

but during test execution we are given a single call at a time and have to return
a single result. Therefore, we also provide a small-step semantics. The small-
step semantics is more complicated than the denotational one. In order to make
sure that we have not made a mistake, we have proved that both semantics are
equivalent: see the accompanying tech. report [13].

The small-step semantics is based on two judgements: reduction p→a,z q
means that on a call to a, the process p will return z and behave as q thereafter,
while “p is accepting” means that p accepts the empty trace: the test case may
finish without calling any mocked functions. We design both judgements so that
they coincide with the denotational semantics.

A process p should be accepting if φ ∈ L(p). Looking at the denotational
semantics, we get the following rules: p . q is accepting if both p and q are
accepting (likewise p || q), p + q is accepting if either p or q are accepting, p∗ is
accepting, φ is accepting and a �→z isn’t.

The most interesting case for reduction is sequential composition. To reduce
p . q, we can either reduce p or, if p is accepting, remove it and reduce q. This
gives the following rules:

p →a,z q

p . r →a,z q . r
(ThenL)

p is accepting q→a,z r

p . q →a,z r
(ThenR)

We can also derive these rules from the denotational semantics. Suppose we
have a trace st ∈ L(p . q), where s ∈ L(p) and t ∈ L(q). ThenL: If s is non-
empty, the first event in st is from L(p), hence we should reduce p to, say, p′.
The remainder of st is a trace from p′ . q, so we should reduce to that. ThenR:
If s is empty, which can only occur if φ ∈ L(p), the trace is simply t ∈ L(q),
hence we should reduce q to, say, q′. The remainder of st is a trace from q′, so
we should reduce to that.

Reasoning either informally or from the denotational semantics, we find the
other reduction rules. To reduce a parallel composition p || q, reduce either p or
q; to reduce a choice p + q, remove one of the choices and reduce the one that’s
left. To reduce p∗, expand it to p . p∗ and then reduce p; finally, an event a �→z
reduces to φ. This is captured in the rules below.

p→a,z q

p || r →a,z q || r
(||L)

q→a,z r

p || q →a,z p || r
(||R)

p→a,z q

p∗ →a,z q . p∗
(∗)

p→a,z q

p + r →a,z q
(+L)

q→a,z r

p + q →a,z r
(+R)

a �→z →a,z φ
(Event)

If we are not interested in the result of the call, we write p→a q, and say
that p a-reduces (or just reduces) to q; if we are not interested in the resulting
process q either, we just write p→a, and say that p can consume a. We lift the
terminology from single events to whole traces in the natural way.

392 J. Svenningsson et al.

5 Ambiguity Detection

As argued in the Introduction and Section 2, we want to forbid ambiguous
specifications, because they lead to complex semantics, or to unrepeatable tests
if resolved at random. An example of an ambiguous specification in our language
is a �→z1 + a �→z2: if the program calls a, we do not know whether to return z1
or z2. We will see in Section 6.1 that the user does not decide what value an event
will return until that event is called, so we must also reject a �→z + a �→z—we
have no way of knowing that both events will always return the same value.

This suggests the following definition of ambiguity: p is ambiguous if for some
call a, there are two applicable reduction rules for p→a. A process is also am-
biguous if it reduces to an ambiguous process. Our process a �→z + a �→z is
ambiguous because, for the call a, the rules +L and +R both apply.

Here are some examples of ambiguous processes:

– a �→z1 + a �→z2 is ambiguous, as above. In general, if p→a and q→a, then
p + q is ambiguous.

– (a �→z1 . b �→z2) || b �→z3 is ambiguous: after a call to a, it reduces to
b �→z2 || b �→z3, in which there are two b-reductions. In general, if p and
q have overlapping alphabets, then p || q is ambiguous.

– (a �→z1 + φ) . a �→z2 is ambiguous: calling a, we could return either z1 or z2.
– Along the same lines, a �→z1 . (a �→z2 + φ) . a �→z3 is ambiguous: after a call

to a, we are left with (a �→z2 + φ) . a �→z3, essentially the previous example.

The examples above tell us how to detect ambiguity. We will start with +
and || . Note that the two constructs need different rules: the second example
is ambiguous, but replacing || by + it becomes unambiguous. With +, the first
call needs to tell us which alternative to choose, but with || every call needs to
have this property.

– If p→a and q→a, then p + q is ambiguous because rules +L and +R both
apply.

– If a ∈ alphabet(p) ∩ alphabet(q) then p || q is ambiguous because we can
reach a process p′ || q′ where p′→a and q′→a; rules ||L and ||R then both
apply. (The alphabet of a process is simply the set of events that appear
syntactically in it.)

We will define a function p� that checks that p is unambiguous. For now we
only define the easy cases:

p + q �= p� ∧ q � ∧ ¬∃a (p→a ∧ q→a)

p || q �= p� ∧ q � ∧ alphabet(p) ∩ alphabet(q) = ∅
a �→z �= true

φ �= true

Sequential composition is trickier. Looking at (a �→z1 + φ) . a �→z2, we see
that the reduction rules ThenL and ThenR both apply, the first because
a �→z1 + φ can consume a and the second because a �→z1 + φ is accepting and
a �→z2 can consume a. Generalising to an arbitrary sequential composition p . q:

An Expressive Semantics of Mocking 393

– If p→a, then rule ThenL applies.
– If p is accepting and q→a, then rule ThenR applies.

If both conditions are true, p . q is ambiguous. The final example above,
a �→z1 . (a �→z2 + φ) . a �→z3, does not satisfy the above conditions, but is still
ambiguous because it a-reduces to a process that does. Let us say that a overlaps
p, or p ?a, if there is a trace under which p reduces to a process p′, such that
p′→a and p′ is accepting. Then we may generalise our remarks above: if p ? a
and q→a, then by our argument above, p′ . q is ambiguous; hence p . q is too.

p . q �= p� ∧ q � ∧ ¬∃a (p ? a ∧ q→a)

Finally, we take replication p∗. Informally, p∗ is a sequence p . p . · · · . p of
ps, so it should be enough to check that p . p is unambiguous. This, though, is
slightly too restrictive: the process (a �→z + φ)∗ is unambiguous (only rule ∗ can
ever apply) but we would reject it. The first reduction of p∗ must be rule ∗, so
it cannot be ambiguous unless p is ambiguous. Therefore, we find all one-step
reductions q . p∗ of p∗, and check that for all of those, q . p is unambiguous:

p∗ �= p� ∧ ¬∃a∃b∃q (p→a q ∧ q ? b ∧ p→b)

We must also be able to say whether a overlaps p, according to the definition
of overlapping that we gave earlier. We have a number of simple structural rules:

p ? a

p || q ? a
(||L)

q ? a

p || q ? a
(||R)

p ?a

p∗ ? a
(∗-inner)

p ?a

p + q ? a
(+L)

q ? a

p + q ? a
(+R)

q ? a

p . q ? a
(ThenR)

We also have a couple of “nearly” structural rules. Since p∗ is always accepting,
if p→a then p∗ ? a. And if q is accepting, then L(p) ⊆ L(p . q), so if p ? a then
p . q ? a:

p ?a q is accepting

p . q ? a
(ThenL)

p→a

p∗ ? a
(∗-outer)

Finally, p + q can introduce an overlap, if p is accepting and q→a or vice
versa:

p→a q is accepting

p + q ? a
(+LR)

p is accepting q→a

p + q ? a
(+RL)

Our ambiguity detection is both sound and complete. Because of soundness,
we never accept an ambiguous specification; because of completeness, when we
reject a specification we can give a trace showing that it is ambiguous. The proof
of soundness and a sketch of completeness are found in the tech. report [13].

394 J. Svenningsson et al.

6 From Process Calculus to Mocking Framework

The goal of this section is to turn the process calculus into a fully-fledged mocking
framework. A basic implementation is simple. We first check that the mocking
specification p is unambiguous. To execute p, we wait for the system under test
to make a call a. We check if p→a,z q for some q; if not, the call is erroneous.
Otherwise, we return the result z to the caller, and continue by executing q.
Finally, when the test finishes, we check that the final process is accepting.

6.1 Matching

In our examples so far, an event specifies a single concrete call such as
update display(speed, 21) and a concrete result like 5.833. In reality, we do not
always know the function arguments so precisely, and need a richer event lan-
guage. In our framework, an event specifies a pattern of function calls. For ex-
ample, we may write update display(speed,), where the “ ” is a wildcard; this
matches any call to update display where the first argument is speed. A pattern
simply stands for any of the concrete calls which it matches.

We also allow the event’s return value to depend on the call arguments. The
user can associate an evaluation function with each event, which is given the
call’s concrete arguments and computes the return value.2 Note that each oc-
currence of an event in the mocking specification can have a different evaluation
function: the same call need not always return the same result. An event that re-
turns a constant result is a degenerate case where the evaluation function ignores
its arguments.

We need to be careful that we can still execute mocking specifications that
use pattern matching, and check them for ambiguity. Executing the specification
is not a problem: we only need to be able to check if a concrete call matches a
particular event. Given a process p and a call c, we check if there is an event
that p can consume and which matches c. Finally, we use the evaluation function
associated with the event to calculate the return value, and reduce p.

We can also check the specification for ambiguity, as long as we can tell
whether any two events intersect. (Two events intersect if there is a single con-
crete call that matches both of them.) It will help to write out the existing rules,
using equality explicitly whenever we compare the events of two processes:

p + q �= p� ∧ q � ∧ ¬∃a∃b (p→a ∧ q→b ∧ a = b)

p || q �= p� ∧ q � ∧ ¬∃a∃b (a ∈ alphabet(p) ∧ b ∈ alphabet(q) ∧ a = b)

a �→z �= true

φ�= true

p . q �= p� ∧ q � ∧ ¬∃a∃b (p ? a ∧ q→b ∧ a = b)

p∗ �= p� ∧ ¬∃a∃b∃c∃q (p→a q ∧ q ? b ∧ p→c ∧ b = c)

2 This is why we could not tell if two events have the same return value in Section 5.

An Expressive Semantics of Mocking 395

Now, instead of checking if two events are equal, we need to check if they in-
tersect. All we have to do is replace each occurrence of “a = b” above with
“a and b intersect”! This gives a sound and complete ambiguity detection algo-
rithm for our mocking language with patterns. We will, for example, consider
update display(speed, 36) �→() + update display(speed,) �→() to be ambiguous.

For now we have only implemented quite basic matching. In particular, we
can match each argument against either a constant or the wildcard “ ”; these
were all that we needed for the AUTOSAR testing. However, it is easy to add
more powerful patterns, provided they meet the two requirements above. For
example, we could easily add value ranges (“x must be between 0 and 200”).

6.2 Efficient Implementation

For our AUTOSAR testing we implemented the mocking framework in C. We
could simply have implemented the reduction rules of the process algebra, but
then reduction would need to allocate memory. We wanted to allocate all memory
before running the test, and to avoid heavy term manipulation while testing.

An obvious choice is to translate the mocking specification to a finite-state
automaton. Unfortunately, the || operator suffers from exponential blowup: an
automaton that implements p || q needs to remember “how far” it has got in
both p and q, so the number of states it needs is the product of the number of
states in p’s automaton and q’s automaton.

Instead, we keep the terms of the process calculus but augment them with
flags that record how far execution has got. During test execution we need only
update the flags and not modify the structure of the terms.

For example, we annotate the sequential composition p . q with the flag “left”.
This indicates that we are reducing p. When we apply rule ThenR to start
reducing q, we change the flag to “right”, and from then on we ignore p and
treat the composition as if it were just q. This gives us the following rules for
the augmented “ . ” operator:

p →a,z q

(p . r)left →a,z (q . r)left
(ThenL)

p is accepting q→a,z r

(p . q)left →a,z (p . r)right
(ThenR)

q →a,z r

(p . q)right →a,z (p . r)right
(ThenR2)

Notice that we no longer change the structure of the term, we only change
the flag. The first two rules correspond exactly to the rules we had before; the
third one is an extra structural rule that arises because we can no longer get rid
of p once we have finished reducing it.

Here is how we augment the other constructs:

– For alternation, p + q, we add a flag that records which alternative, p or q,
we have chosen. It is initially “neither”. If we make a p-transition it becomes
“left”, and we ignore q from then on, and vice versa.

396 J. Svenningsson et al.

– We do not need to augment p || q, though p and q themselves are augmented.
The reduction rules are the same as before.

– We augment a single event, a �→z, with a flag that indicates whether we have
performed the event. If the flag shows that we have already performed the
event, we may no longer perform it.

Replication is the trickiest case, because in executing p∗ we may execute p an
unlimited number of times. To handle this we need to be able to reset a term,
which sets its flags back to their initial state. Whenever p in p∗ does not accept
an event a �→z, but does accept the empty trace, we reset p and feed a �→z to it;
this corresponds to unrolling p∗ in the original semantics. We also augment p∗

with a flag that records whether we have performed any reductions on it; this
flag is set after the very first reduction, and allows us to model the fact that p∗

always accepts the empty trace.

6.3 Extensions

The mocking language we have presented so far is quite minimal. When writing
mocking specifications in practice we use a larger repertoire of constructs. Con-
structs we’ve found useful include permutations, optional behaviours and finite
repetition. The permutation construct operates on a list of behaviours and is
similar to parallel composition but doesn’t allow interleaving of behaviours: the
behaviours must execute one after another, but in an arbitrary order.

Constructs like these are definable in the language we’ve already presented.
For example, an optional p is simply p + φ. However, in our implementation
we’ve added them as primitives for reasons of efficiency. It is particularly impor-
tant to have permutations be a primitive in the implementation since its encoding
into our calculus causes an exponential blow-up in the size of the process.

As an example of using permutations consider the example with parallel com-
position from Section 3:

(read speed �→5.833 . update display(speed, 21) �→())

|| (read light �→6 . light display �→())∗

|| ((read battery �→234 . update display(battery, 70) �→()) + φ)

This specification allows all values to be read before any updates are performed.
This might be exactly the freedom one wishes to express. However, suppose that
we wish to ensure that the calls to read speed and update display should happen
in immediate sequence without being interrupted by any of the other calls, and
likewise with the calls to read battery and update display. We can achieve this
by using permutations instead of parallel composition, writing the permutation
of p, q and r as perm[p, q, r], as follows:

perm[read speed �→5.833 . update display(speed, 21) �→(),

(read light �→6 . light display �→())∗,

(read battery �→234 . update display(battery, 70) �→()) + φ]

An Expressive Semantics of Mocking 397

The components we are testing are currently single-threaded, but provided
our implementation of mocking is thread-safe then there is no reason not to use
it with multi-threaded code—we would synchronise on each mocked call, thus
establishing a sequential order of calls. It is likely that multi-threaded code would
require mocking specifications to use the || operator to handle the inevitable
non-determinism in the order of mocked calls, but our framework supports this.

7 Mocking in the AUTOSAR Testing Project

Our mocking semantics arose out of a recent project testing AUTOSAR Basic
Software components [3] for Volvo Cars [14]. We modelled around twenty AU-
TOSAR components using an earlier version of the mocking framework. These
included the layers of protocol stacks for CAN, LIN, and FlexRay, a router and
some diagnostic components. Each component corresponded to an approximately
150-page written specification. Our testsuite has been used to check a handful
of implementations from Volvo Cars’ subcontractors.

We modelled the AUTOSAR software components in QuickCheck [2], a model-
based testing tool that can automatically create random test cases from state
machine specifications written in a domain-specific functional language. Dur-
ing the project we developed our mocking framework and integrated it with
QuickCheck so that for each generated test case appropriate mocks were also
generated. The complexity of the mocking generators varied wildly: from a sin-
gle line of code to several hundred for the most complicated function we tested.
To be able to write these complex mocking generators it was absolutely essential
to have a compositional mocking framework where specifications can easily be
combined. The simple and clear semantics is also crucial to be able to understand
complex mocking generators.

One of the particular challenges with modelling AUTOSAR is that it does
not always completely specify the behaviour of the software. Not only may the
mocked functions behave in a number of ways, components also have some free-
dom in which mocked functions to call and how often they are called. And sure
enough, whenever the specification allowed for some leeway we found that im-
plementations typically differed in behaviour. The expressiveness of our mocking
framework proved invaluable for developing mocking specifications which could
handle all legal behaviours mandated by the standard.

8 Related Work

It would be natural to compare our work to existing C mocking frameworks.
However, there does not seem to be very many, and the few that exist (like
CMock [7] and Cgreen [5]) have very limited functionality. Instead, we compare
to Google Mock. Google Mock provides mocking functionality for C++ and is
feature-wise close to jMock [11] and EasyMock [8] for Java. Thus it should, to
the best of our knowledge, be representative of modern mocking frameworks.

398 J. Svenningsson et al.

Since C has no objects, we will simply compare the expressiveness of the two
approaches.

The main difference is that Google Mock provides lots of default behaviour:
expectations are put in parallel by default, there are default return values, etc.
The language we define has no default behaviour—everything is explicit. Both
approaches have their merits, but hidden defaults require a well-educated user.
In terms of expressiveness, we have observed three key differences:

– Google Mock has state, i.e. one action may set a variable that can be read
by a later action. This is not included in our language since we have not
had the need for it. It would be possible to extend our language with state,
but the more interesting question is why we haven’t had the need for it. We
believe the reason is the compositionality and expressiveness of our mock-
ing language. Compare to writing a regular expression and implementing
an equivalent state machine. Regular expressions provide a declarative and
compositional interface without the need for state which is much simpler to
use than having to maintain the state of the state machine explicitly.

– Google Mock only does replication of single events; it is not possible to
repeat, for example, a sequence of calls. In our particular use case, L∗ is a
central ingredient, thus not having it would have presented a problem to us.

– Finally, there does not seem to be a way to express p + q in Google Mock.
One could say atMost(1) for both p and q, but that would not catch the
case when neither or both are called. Again this is central to our use case,
but perhaps one often manages without it in ordinary unit testing.

An area closely related to mocking is runtime monitoring. In particular, Jass
[4] allows monitoring of ”trace assertions” expressed in a CSP-like language; if
the monitored code performs an event in the alphabet of the process that is not
part of any trace, then an exception is raised. The trace assertion language is
described by example and formal properties are not stated or proven. In gen-
eral, run-time monitors can allow non-determinism in the monitor, because this
cannot lead to non-determinism in the test outcome. Because mocking supplies
return values to the code under test, then non-deterministic mocking will lead
to non-deterministic test outcomes. Similarly, model checkers can allow non-
deterministic environments since they can explore branching executions, collect
constraints, and use solvers to find interesting cases: since each test execution
can follow only one branch then we do not enjoy the same freedom.

Our mocking language shares many similarities with the language PSL [1],
used by the hardware community for specifying and verifying circuits. PSL is
divided into several layers and one of these layers is a modelling layer, used for
specifying parts of the design which are not yet implemented. Although similar
in spirit to our language, PSL’s mocking language naturally differs on many
details as it targets hardware, not software.

An Expressive Semantics of Mocking 399

9 Conclusions

This paper provides a fresh look at mocking and presents a new expressive
and compositional semantics. It is the first such semantics we are aware of;
other mocking frameworks have a precise semantics, but only defined by their
implementation. The expressiveness is inspired by a large use case of mocking
in a model-based testing project in the automotive software domain, but the
solution is generally applicable in other domains as well.

Since we have a formal semantics for mocking, we can check mocking speci-
fications for ambiguity. We prove that this verification is sound and complete.
Thus, whenever we accept a user-defined mocking specification, the result is un-
ambiguous and if the specification is unambiguous, we accept it. Unambiguous
specifications are important because a mocking framework must either make
arbitrary choices or random choices in the face of ambiguity; the first leads to
surprising behaviour and the second to unrepeatable tests. The formal semantics
also makes it clear that our feature set is orthogonal.

Acknowledgements. This research was sponsored by EU FP7 Collaborative
project PROWESS, grant number 317820.

References

1. Property specification language. IEEE Standard 1850 (2005)
2. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with

Quviq QuickCheck. In: Proceedings of the ACM SIGPLAN Workshop on Erlang.
ACM Press, New York (2006)

3. AUTOSAR consortium. AUTomotive Open System ARchitecture specifications,
http://www.autosar.org

4. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass – java with assertions.
Electronic Notes in Theoretical Computer Science 55(2), 103–117 (2001)

5. Cgreen, http://www.lastcraft.com/cgreen.php
6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of

haskell programs. In: Proceedings of ACM SIGPLAN International Conference on
Functional Programming, pp. 268–279 (2000)

7. CMock, https://github.com/ThrowTheSwitch/CMock
8. EasyMock, http://www.easymock.org
9. Google C++ mocking framework, http://code.google.com/p/googlemock

10. Google C++ testing framework, http://code.google.com/p/googletest
11. jMock, http://jmock.org/index.html
12. Mockito - simpler & better mocking, http://code.google.com/p/mockito
13. Svenningsson, J., Svensson, H., Smallbone, N., Arts, T., Norell, U., Hughes, J.: An

expressive semantics of mocking. Technical Report 2014:01, Computer Science and
Engineering, Chalmers University of Technology (2014) ISSN 1652-926X

14. Svenningsson, R., Johansson, R., Arts, T., Norell, U., Svenningsson, J., Svensson,
H.: Testing AUTOSAR software components with QuickCheck. In: Proceedings of
IXe Conf. on AMCTM. SP, Sweden (2011)

http://www.autosar.org
http://www.lastcraft.com/cgreen.php
https://github.com/ThrowTheSwitch/CMock
http://www.easymock.org
http://code.google.com/p/googlemock
http://code.google.com/p/googletest
http://jmock.org/index.html
http://code.google.com/p/mockito

Integration Testing in the Test Template

Framework

Maximiliano Cristiá1, Joaqúın Mesuro1, and Claudia Frydman2

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar, joaquin.mesuro@gmail.com

2 LSIS-CIFASIS, Marseille, France
claudia.frydman@lsis.org

Abstract. The Test Template Framework (TTF) is a model-based test-
ing method for the Z notation, originally proposed for unit testing. In
this paper we analyze how the TTF can be extended to integration test-
ing. Since integration testing is related to software design, we decided to
investigate the relation between the TTF and the uses relation, a key el-
ement in David Parnas’ design theory. We propose how a Z specification
should be structured for the TTF to be able to generate integration tests
by following the uses relation. The problem of stub generation and the
kinds of errors that these integration tests can discover are also discussed.

1 Introduction

The Test Template Framework (TTF) is a model-based testing (MBT) method
proposed for the Z notation [25]. In the TTF each Z operation schema is analyzed
to generate (abstract) test cases. Each operation schema in a Z model is the
specification of a piece of code in the implementation that sometimes corresponds
to a unit of implementation. This is why we say that the TTF generates unit
tests. Recently the TTF was automated roughly to the same degree of other
MBT methods by a tool called Fastest [8]. This makes the TTF and Fastest
appealing options for unit testing within the Z community.

According to the accepted practice of Software Engineering, after each unit of
implementation has been tested in isolation, they should be incrementally inte-
grated and tested [14,24]. This phase or level of testing is known as integration
testing. On the other hand, software design is defined as the decomposition of a
system into software elements, the description of what each element is intended
to do (i.e. its specification) and the relations among these elements [14]. There-
fore, integration testing is influenced by the software design of the system under
test. Furthermore, the design and the structure of the (functional) specification
influence a MBT method when is applied during integration testing because test
cases are derived from the specification and executed on the elements of the
design. On the other hand, if software elements are related to each other, then
errors in one of them may cause errors in the others. The accepted solution is
to build so-called stubs units which mimic the behavior of the real units but

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 400–414, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Integration Testing in the Test Template Framework 401

only for a few inputs. Manually crafting such stubs is a source of costs and er-
rors. Building the minimum number of stubs avoiding as much manual work as
possible can be considered as the stub generation problem. Stubs are necessary
because, in general, units are tested correct (and not proven correct), so these
units cannot be used while other units are tested (because the formers can induce
errors in the latter).

The contributions of this paper are the following: a) a set of guidelines for
writing Z specifications that will simplify (TTF-based) test case generation dur-
ing integration testing; b) an integration strategy based on Parnas’ uses relation
that reduces the number of manually crafted stubs; c) a set of conditions that
guarantee that a unit can be used as stub of itself without inducing errors (in
other units) during integration testing; and d) an analysis of the types of (inte-
gration) errors this method can discover.

An example motivating the issues discussed in this paper is given in Sect. 2.
After introducing the TTF in Sect. 3, three main problems are addressed: a) how
a Z specification should be structured and linked with the design to best serve
for integration testing, in Sect. 4; b) what is the best strategy in the TTF to
incrementally integrate units so integration testing can benefit from unit testing,
in Sect. 5; and c) the stub generation problem, in Sect. 6. The kinds of errors
that the extended TTF can find are analyzed in Sect. 7. Section 8 discusses all
the results obtained in this paper. A comparison with similar approaches can be
found in Sect. 9 and our conclusions in Sect. 10.

In this paper “unit” means “subroutine” which in turn includes “function”,
“procedure” and “method”. Our work aims at integrating units for which the
source code is available. All the units that are integrated belong to the same
executable but can belong to different modules. This work does assumes any
particular implementation technology. A general theory of software design and
first-order logic over a set theory (i.e. Z) are the fundamentals.

This paper is a summary of an unpublished paper available on-line [10]. We
assume the reader is familiar with the Z notation.

2 Motivating Example

In this section we show some of the issues that MBT faces when integration
testing is considered. We will do it by means of a simple example. Assume we
need to implement the following functionality: receive an integer number, check
whether it belongs to a list and, if it does not, then add it to the list and sort
the list. A possible Z specification for this requirements is as follows.

S =̂ [list : seqZ]
InList =̂ [ψS ; x? : Z | x? ∈ ran list]

InsertOk =̂
[ϑS ; x? : Z | x? /∈ ran list ∧ ran list ′ = ran list ∪ {x?}

∧ (∀ i , j : dom list ′ • i < j ⇒ list ′ i < list ′ j)]
InsertAndSort =̂ InsertOk ∨ InList

402 M. Cristiá, J. Mesuro, and C. Frydman

Clearly, a first design could be to implement InsertAndSort with a single
subroutine. However, since InsertAndSort includes the specification of a sorting
algorithm, it is reasonable to decompose (i.e. design) its implementation into
two subroutines, insert and sort, with the following functionality: insert reads the
element to be inserted, checks whether it belongs to the list and, if not, calls sort,
which inserts the element in the list and sorts it1. Then, a possible Z specification
reflecting this design is as follows.

Sort1
ϑS
x? : Z

#list ′ = #list + 1

list ′ � {x?} = (list � {x?})� 〈x?〉
∀ y : (ran list) \ {x?} • list � {y} = list ′ � {y}
∀ i , j : dom list ′ • i < j ⇒ list ′ i ≤ list ′ j

Input1 =̂ [ϑS ; x? : Z | x? /∈ ran list]
InsertAndSort1 =̂ (Input1 ∧ Sort1) ∨ InList

where S and InList are the same as above. In this case, sort implements Sort1
whereas insert implements InsertAndSort1 replacing Sort1 by a call to sort. Sort1
is more complex than InsertOk because it can sort lists with or without du-
plicates. In other words, Sort1 is more general than InsertOk , although in this
example it is called only when a new element is to be inserted.

In summary, we have two designs with different subroutines for the same
requirements. Given that the specification of each unit is different in each design,
test cases generated by a MBT method should be different when applied to each
design. Furthermore, the specification is saying that the correctness of insert
depends upon the correctness of sort because Sort1 is part of InsertAndSort1.
This dependency should impose an order for testing these units that should be
taken into account by the MBT method. If, on the contrary, insert is tested
before sort has passed all of its test, errors in insert may be difficult to track
down because they may come from itself or from sort. However, even if sort has
passed all of its test, an error found while insert is tested cannot be blamed
just to itself because sort has not been proven correct, it was just tested. Then,
we either build a (correct) stub of sort for testing insert, or we prove that test
cases run on insert always call sort as it was called when it was tested—and
since it passed all its test then errors found while insert is tested can be blamed
just to itself. Finally, if, for instance, insert calls an error reporting routine, say
err, when x? ∈ ran list , should err be tested before insert? We believe it should
not necessarily be the case because err is not part of insert’s specification (i.e.
InsertAndSort1). In other words, the correctness of insert does not depend on

1 In this paper, we use math text to represent the specification of subroutines written
in sans serif. For example, InsertAndSort1 is the specification of insert.

Integration Testing in the Test Template Framework 403

err. This implies, in turn, that any stub of err will do during insert’s testing. In
summary, a convenient adaptation of a MBT method can help in many ways
during integration testing as we will show in the rest of this paper.

3 Introduction to the TTF and Fastest

In this section we present just the main concepts of the TTF and Fastest; for
deeper presentations consult [25,8,9]. Fastest generates test cases for each oper-
ation schema selected by the user in a Z model. If A is an operation schema then
its valid input space (VIS) is defined as the following Z schema:

AVIS =̂ [x1 : X1; . . . ; xn : Xn | pre A]

where x1 : X1; . . . ; xn : Xn are all the input and state variables declared in A
after full schema expansion, and pre A is the precondition of A.

The goal of the TTF is to partition AVIS by applying so-called testing tactics.
A testing tactic is a systematic way of dividing the VIS of a Z operation. Some
tactics are: disjunctive normal form (DNF), standard partitions (SP), free types
(FT), etc. [8,9]. After a testing tactic is applied to AVIS a family of test condi-
tions2 is obtained. These test conditions usually form a partition of the VIS . In
Fastest they are formalized as Z schemas as follows:

AT1
1 =̂ [AVIS | PT1

1 (x1, . . . , xn)] . . . AT1
m1

=̂ [AVIS | PT1
m1

(x1, . . . , xn)]

where T1 is the name of the tactic and PT1

i (x1, . . . , xn) for i ∈ 1 . . m1 are
predicates generated by T1. These predicates are called characteristic predicates
of the test conditions. PT1

i defines the conditions for a test case. In other words,
a test condition is a set of test cases satisfying a given condition or predicate.

Perhaps the most important feature of the TTF is that it proposes to apply
other tactics to one or more of the test conditions already generated, thereby
getting progressively more detailed test conditions. For example, if testing tactic
T2 is applied to AT1

1 the following test conditions are generated:

AT2
1 =̂ [AT1

1 | PT2
1 (x1, . . . , xn)] . . . AT2

m2
=̂ [AT1

1 | PT2
m2

(x1, . . . , xn)]

Observe how schema inclusion is used to link test conditions between them
and with the VIS . Note, also, that schema inclusion adds more predicates to a
test condition. In effect, if AT1

1 is expanded, for instance, inside AT2
2 we have:

AT2
2 =̂ [AVIS | PT1

1 (x1, . . . , xn) ∧ PT2
2 (x1, . . . , xn)]

Schema inclusion organizes test conditions in a so-called testing tree which has
the VIS in the root, the first test conditions in the first level, and so forth.

In the TTF a test case is a Z schema where each variable declared in the
VIS is equal to a constant value such that the corresponding test condition is
satisfied. For example, a test case for AT1

2 is:

ATC
2 =̂ [AT1

2 | x1 = c1 ∧ . . . ∧ xn = cn]

2 Also called test templates, test specifications, test classes, etc.

404 M. Cristiá, J. Mesuro, and C. Frydman

4 Structuring a Z Specification for Integration Testing

As we have said in the introduction, integration testing is strongly related to
software design. The approach to integration testing based on a MBT method
proposed in this paper is based on what David L. Parnas calls “uses relation” or
“uses structure” [22], a key concept of his seminal work on software design. The
uses relation is a binary relation between subroutines. If P and Q are two sub-
routines, then PusesQ if “there exist situations in which the correct functioning
of P depends upon the availability of a correct implementation of Q” [22]. Note
that the uses relation differs from the calls (or invokes) relation3 because: (a)
if P’s specification requires only that P calls Q then it is enough for P to call
Q when its specification says so, from P’s perspective Q can be correct or not;
and (b) P may use Q by sharing some data structures although P never calls
Q. According to Parnas, “the design of the uses hierarchy should be one of the
major milestones in a design effort”.

The uses relation is relevant to MBT methods since it is based on the specifi-
cation of a subroutine. In effect, P uses Q means that the specification of P says
that it needs a correct version of Q. From a functional perspective P and Q could
be implemented in a single unit whose specification is, roughly, the conjunction
of P’s and Q’s specifications. However, from a design perspective it is better to
split this unit into two in such a way that one uses the other. We have shown an
example of this situation in Sect. 2. Given that the TTF uses Z specifications,
it is worth to study how to write them so it is easy to find the uses relation.

We propose the following guidelines for writing Z specifications that will be
used during integration testing.

– Each subroutine is specified by a schema. More precisely, for each subroutine
P there must be a named schema A which is its specification.

– Users must generate test cases only for those schemas that are the spec-
ifications of subroutines. For example, users must generate test cases for
InsertAndSort1 and Sort1 but not for Input1 and InList . In fact, test cases
covering the functionality specified in Input1 and InList will be generated as
part of the test cases generated from InsertAndSort1 [8].

– Let A and B be Z schemas describing the specification of subroutines P
and Q, respectively—we will use this naming convention across the paper. If
P uses Q and P calls Q, then A must be written as follows:

A =̂ SE(B ,A1, . . . ,An) (†)

where SE is some schema expression depending on schemasB andA1, . . . ,An .
That is, Q’s specification is part of P’s which is completed by the Ai schemas.
An example of (†) is InsertAndSort1 given in Sect. 2. If P uses other subrou-
tines besidesQ, then their corresponding Z schemas will also participate in (†)
like B . For the remaining of this paper we will use (†) but all the results can be
extended to the more complex case where P uses more than one subroutine.

3 P calls Q includes the case where P calls Q indirectly by a chain of calls through
some intermediate subroutines. uses is also a transitive relation.

Integration Testing in the Test Template Framework 405

– If PcallsQ but P
uses Q, then B must not be part of A because P
uses Qmeans
that P’s specification says that it does not depend on Q. So including B in
A would be an error because this would indicate a functional dependency
of P on Q. An example of this second scenario is when insert calls err, also
discussed in Sect. 2.

– If P uses Q but P
calls Q, then B must not be part of A, at least concerning
integration testing. This case is further discussed in Global errors in Sect. 7.

Since the case P uses Q ∧ P calls Q is analyzed several times in this paper, we
will write P uses Q as a shorthand for it. Furthermore, we will write uses as a
synonym of “use and call”.

Capturing the differences between the uses and calls relations in the specifica-
tion has important consequences for integration testing. Assume that P calls Q.
Then, a stub of Q will be necessary when P is unit-tested. In general, this stub
should verify B (i.e. Q’s specification) because otherwise P might look erro-
neous when, actually, the errors may come from Q’s stub. Now, also assume that
P
uses Q. Then, Q’s stub can be anything complying with Q’s signature (even
Q itself) because P’s correctness does not depend on Q’s. Therefore, if P calls Q
but P
uses Q we can conclude that when P is tested: (a) Q’s stub can be au-
tomatically generated or Q can be used if it is available; and (b) if integration
testing shows errors in P they cannot be due to the presence of an incorrect Q.

5 Integration Testing within the TTF

Guiding integration testing by the uses relation has a number of benefits. If
PusesQ the very nature of testing impedes to restrict the search for the cause of
an error exposed during the testing of P just to itself because it depends at least
on Q which, at best, was already tested, but not proven correct. This is one of
the greatest difficulties during integration testing as testing of subroutines who
use dozens of others tend to exacerbate that problem. If integration testing is
guided by the uses relation this problem is minimized, as we will show below.

Parnas restricts the uses relation to a hierarchy because otherwise “one may
end up with a system in which nothing works until everything works” [22]. If
uses is a hierarchy, there is a set of subroutines, U0, which do not use other
subroutines. These should be the first to be tested because the cause of an error
in one of them should be located only in itself. Then, there is another set of
subroutines, U1, whose members only uses subroutines in U0. These should be
the second to be tested, right after those in U0 have passed all of their tests.
Moreover, in general, there will be a family of sets U0

1(i) ⊆ U1, for i ∈ 1 . . #U0,
whose subroutines use exactly i subroutines (of U0)

4. Then, it would be better to
test the subroutines of U1 according to the following order: U0

1(1), . . . ,U
0
1(#U0).

In this way subroutines using less subroutines are tested before those using more,
which is helpful when searching for the cause of an error.

4 In general, some of the U0
1(i) will be empty.

406 M. Cristiá, J. Mesuro, and C. Frydman

Clearly, a family of sets Ui , with i ∈ 2 . . n for some n, whose subroutines
uses one or more subroutines in U0 ∪ · · · ∪ Ui−1 should be defined to organize
integration testing as was just explained for U0 and U1. This is what we call
integration testing guided by the uses relation. Note that all these sets can be
computed automatically from the Z specification if our guidelines are followed
(cf. Sect. 4). See [10] for more details, examples and formal definitions of sets Uk

and Uj
k (i).

Test Case Generation during Integration Testing. If P and Q are going
to be tested using a MBT method then their specifications, A and B , must be
analyzed in order to generate their abstract test cases. The question is whether
the relation P uses Q, and thus the fact that A includes B , would change the
standard way in which the MBT method is applied. If the MBT method analyses
the inner details of formulas A and B then some adaptation is required because
otherwise it will expand B inside A meaning that test cases generated for P will
be influenced by Q as well. However, Q was already tested as a unit and has
passed all of its tests, so, in principle, there is no point in considering it again.
Moreover, if the transitive closure of uses includes a long chain of subroutines
starting from P, then fully expanding A will result in a huge formula which
will be hard to analyze by any implementation of the MBT method. This is in
line with the idea that during integration testing units already tested should be
treated as black boxes. On the other hand, if B is not expanded inside A it might
be the case that Q is not tested as thoroughly as it would if the expansion had
been performed. This point will be discussed in Sect. 7.

Adapting the TTF to Integration Testing. The TTF is applied to el-
ements belonging to U0 as it is [8]. If P ∈ U1, then its specification is A =̂
SE(B ,A1, . . . ,An) for some B such that it is the specification of some Q ∈ U0.
In this case, when the TTF is applied to A, B is not fully expanded, contradicting
the original presentation of both the TTF and Fastest. Only variables declared
in B and referenced by some Ai are exported from B to A, for consistency rea-
sons. This implies that test cases for A are generated solely by analyzing P’s
own functionality, i.e. the structure of SE and the predicates in A1, . . . ,An . In
other words, B influences A’s test case generation only as a whole and by its
place in SE . This means that the TTF will generate, at least, test cases that are
going to make P to call Q from different places and with different parameters.
For example, if the DNF tactic [8] is applied to InsertAndSort1 there will be
test cases that are going to test insert with an element belonging to the list and
with one that does not. That is, these test cases will test whether or not insert
correctly implements x? ∈ ran list and if it calls sort when it should. In a sense,
this is all that it is worth to be tested of insert given that the correctness of the
sorting algorithm implemented by sort was already tested. Indeed, for example,
if tactics SP [8] and UQ [9] are applied to InsertSort1, then sort will be tested
with empty and non-empty lists of several lengths and where x? belongs and
does not belong to them.

Integration Testing in the Test Template Framework 407

6 Subroutines as Stubs of Themselves

The distinction between the uses and calls relations reduces the need for man-
ually crafted stubs (cf. last paragraph in Sect. 4). However, a stub of Q is still
needed when Puses Q. One way to avoid building a stub of Q would be to use Q
itself, but it cannot be done because Q is not proven correct, it was just tested.
Nevertheless, if Q has passed some tests then we can be sure that it is correct for
those inputs. Now, if P is tested in such a way that Q is always called as when
it was tested, then Q itself can be used as stub. Furthermore, the cause of an
error found during P’s testing can only be blamed to P since Q has been tested
correct for those inputs. We have made an attempt to formalize these ideas, thus
yielding the basis for the mechanization of the search of those subroutines that
can be stubs of themselves.

We have proved a theorem that gives conditions for a subroutine to be used
as stub. Before stating the theorem 1 we need a little bit of notation. Consider
schemas A,A1, . . . ,An and B like in (†). According to Sect. 5 only A1, . . . ,An are
unfolded in A. Let vars(A) be the set of the variables declared in schema AVIS

that are declared in at least one Ai . That is, vars(A) does not include variables
declared only in B . If a is a test case derived from schema A and B is another
schema, then BA(a) means the substitution of variables in vars(B)∩vars(A) by
the values of the same variables in a (recall, from Sect. 3, that a test case in the
TTF is a conjunction of equalities between variables in the VIS and constant
values). We will note AA(a) simply as A(a).

Theorem 1 assumes that A performs only one state change. This is the case,
for instance, of InsertAndSort1 in Sect. 2. See [10] for a theorem dealing with two
state changes (one for P and one for Q). This theorem relies on the uniformity
hypothesis as stated in [16, page 17].

Theorem 1. Let P and Q be two subroutines such that P uses Q and let A and
B be their Z specifications, which in turn comply with (†). Assume there is just
one state change in A. Let B1, . . . ,Bn be the leaves of the testing tree generated
by applying the TTF to B . Assume Q has passed all the tests derived from all
these test specifications. Let a be a test case for P derived from A. If there is a
Bj such that BA

j (a)
= ∅, then Q can be used as a stub when P is tested on a.

Proof. If there is one state change in A then Q executes with the same values
than P for variables in vars(A) ∩ vars(B). If BA

j (a)
= ∅, then there is b ∈ Bj

such that a and b are equal on variables in vars(A)∩vars(B). Since Q has passed
all its tests then it has passed a test from Bj . By the uniformity hypothesis Q is
also correct on b ∈ Bj . Therefore, when P is executed on a, Q will be executed
on b, thereby returning a correct answer to P. So Q can be used as a stub when
P is tested on a. �

This theorem will be further discussed in Sect. 8.

408 M. Cristiá, J. Mesuro, and C. Frydman

7 Errors Detected during Integration Testing

Leung and White give a classification of errors that can be detected during
integration testing [19,20]. They try to make a distinction between those errors
that could have been detected during unit testing and those that are specific to
integration testing. Below we briefly explain each of these errors and show that
the TTF extended to integration testing can detect them.

Interpretation errors. There are three subclasses of these errors.

– Wrong function errors (WFE). Q does not provide the functionality indicated
by its specification and P does not know that.

Given that the TTF (and other MBT methods) generates test cases for Q
from its specification, then WFEs will be detected when Q is tested as a unit.
In other words, if a test case for Q, generated by the TTF, finds an error in
Q this is an indication that it does not provide the functionality indicated
by its specification

– Extra function errors (EFE). Q provides more functionality than P needs.
P’s developers know this but they wrongly implement P making it to call
these extra functions.

The TTF will generate at least one test case for each of the functionalities in
the specification of Q. For instance, testing tactics such as DNF and FT will
be very useful [8]. If P is tested in such a way that Q is called as to exercise
all these functionalities, then P’s problems will surface (because these extra
functions will be called). In other words, it is necessary to apply the TTF to
A in such a way that it generates enough test cases for P which will make it
call Q in such a way that executes all its functionalities. In turn, this will be
achieved if test cases derived from A verify the following theorem (the proof
is omitted for brevity).

Theorem 2. Let a1, . . . , am be the test cases for P; and B1, . . . ,Bn be the
leaves of the testing tree of Q. Assume these leaves represent all the function-
alities provided by Q. The TTF will detect all EFE in P if for each j ∈ 1 . .n
there exists i ∈ 1 . .m such that BA

j (ai)
= ∅.

– Missing function errors (MFE). Inputs used by P to call Q are outside the
domain of Q making it to behave unexpectedly.

If B is total then P cannot make Q behave unexpectedly because there is a
specified behavior for each input expected by Q. If B is partial then P should
call Q with b /∈ BVIS to execute it outside its input domain. But from b the
input for P, a, must be found. It is easier to calculate a if A performs only
one state change. For this case, we define a new testing tactic, called MF,
that should be applied to operations whose corresponding subroutines are
in the domain of the uses relation. The test specifications generated by MF
are: AMF

1 =̂ [AVIS | ∃ x1, . . . , xn • pre B] and AMF
2 =̂ [AVIS | ∃ x1, . . . , xn •

¬ pre B], where x1, . . . , xn are the variables declared in B but not in A. Note

Integration Testing in the Test Template Framework 409

that MF is applied to A, not to B but B is part of A as in (†). The TTF
then encourages to further partition these test specifications by applying
more testing tactics. Certainly MF will help to discover MFE because it will
force P to call Q outside its domain due to AMF

2 .

Miscoded Call errors. P calls Q from wrong places. There are three subclasses.

– Extra call instruction (ECI). The calling instruction is placed on a path that
should not contain such invocation.

– Wrong call instruction placement (WCI). The call is located on the right
path, but in a wrong place.

– Missing instruction (MIC). Missing call on a path that should contain it.

Detecting these errors is one of the reasons for defining A as in (†). If A spec-
ifies exactly all the calls that P should make to Q, then the TTF will help to
discover all of these errors. In effect, DNF applied to SE(B ,A1, . . . ,An) will gen-
erate test specifications for all the situations where Q is called and those where it
is not; other tactics, such as FT and UQ, will generate more detailed conditions
under which Q is called. For example, when DNF is applied to InsertAndSort1 it
will generate a test specification characterized by the precondition under which
Sort1 is called and another characterized by its negation. Then, if insert does
not call sort in the first case (MIC) the result will be list ′ = list when it should
be #list ′ = #list + 1; if it calls sort in the second case (ECI), the result will be
#list ′ = #list + 1, when it should be list ′ = list .

Global errors (GER). These are errors related to the wrong use of global vari-
ables [19]. If PusesQ but P
calls Q, it means that they interact through a shared
resource that can be thought of as a global variable, g. In this case Q defines a
value for g that is later used by P. If this value is not what P expects, then P
may fail. There are two causes that can make P to find an unexpected value in
g: (a) Q does not verify B ; or (b) Q does verify B but P assumes Q implements

a different specification, say B̂ .
In analyzing how the TTF can detect GER we will assume that P uses Q but

P
calls Q, because when also PcallsQ, all the previous results apply. If (a) causes
the error, then it reduces to WFE because it means to see whether Q verifies its
specification. Therefore, the true problem of integration testing regarding global
variables is given under the following conditions: P uses Q but P
calls Q and Q
verifies B but P assumes Q implements a different specification, B̂ . One possible
way of detecting these errors is by executing Q before P while testing P. This
way, however, complicates P’s testing because now it is necessary to run other
units before it, and they must be run in such a way as to make P fail.

Hence, we propose a different approach based on specification verification
rather than on testing. In effect, the problem is a mismatch at the specification
level, causing errors at the implementation level. That is, A assumes B̂ rather
than B , so the problem is to find out this wrong assumption. If the involved
operations are proven to verify some properties (state invariants, for instance)

410 M. Cristiá, J. Mesuro, and C. Frydman

then these wrong assumptions will be detected. In this way, B will be changed
for B̂ and it will become Q’s specification. Therefore, B̂ cannot be wrong with
respect to A, because the proven properties act as a common consistency ground
for them. Then, if Q verifies B̂ it cannot set a wrong value for g from P’s
perspective. From here, all reduces to ensure that P and Q implement their
specifications which means performing a thorough unit testing of each of them
in isolation from each other. This is why in Sect. 4 we proposed not to include
B in A when P uses Q but P
calls Q.

8 Discussion

Although we are interested in extending the TTF to integration testing, our
results use only some of its details. Therefore, they can be used in other speci-
fication languages and MBT methods. Most of the results are based on funda-
mental concepts of Software Engineering like the uses relation, first-order logic
and MBT in general.

Describing operations as in (†) is not a severe restriction on the use of the
language and it has a non negligible impact on the application of the TTF to
integration testing. The form of (†) makes it possible to automatically calculate
all the ordered pairs belonging to uses. In turn, organizing integration testing
around the uses relation provides several places for optimizing this process. The
first one is given by the definition of the family of sets Ui . If integration is based
on these sets then many errors can be caught with as less units already integrated
as possible. The definition of the families of sets Uk

i (j) provides a finer level for
guiding integration testing. All this aims at making the search for the cause of
an error as simple as possible, discarding errors as earlier as possible.

The fact that uses would have an important impact on reducing the costs of
testing and that it can be automatically computed from a Z specification, might
turn Z and uses more cost-effective. In this way they will be used not only as
essential documents but they will be reused during testing as well.

Testing a unit in isolation is a rather ambiguous statement. In effect, if Puses
Q, what it means testing P in isolation? If it means not using Q but a stub of it,
then unit testing is faced with the problem of building stubs. Manually-crafted
stubs are not only error prone but costly [15,4,18]. The approach presented
here also aims at reducing the costs of stub generation and at making them
reliable enough as not introducing errors. If integration follows the uses relation
and each unit is certified at least for the inputs used during its testing, then
they can be used as stubs for themselves, provided they are always called as
when they were tested. Furthermore, those stubs implied by the calls relation
can be automatically built, as was discussed in Sect. 4. Theorem 1 gives rather
simple conditions under which a subroutine can be used as a stub for itself—
although they are probabilistic given that the proofs depend upon the uniformity
hypothesis. In this way, we are trading the cost and risk of building stubs for
the cost of describing the uses relation and applying Theorem 1, which is almost
automatic in many cases—see below. Finally, if this theorem cannot be proved

Integration Testing in the Test Template Framework 411

for a given test case of P, i.e. this test case satisfies no leaf used to test Q, it is
an indication that Q was poorly tested because one of its callers will call it in a
functional situation not covered during its testing.

The use of subroutines as stubs for themselves somewhat blurs the distinction
between unit and integration testing. However, integration testing may find new
errors that are difficult or impossible to find during unit testing, as was shown
in Sect. 7. In fact, the TTF extended to integration testing can cope with almost
all the errors classified by Leung and White. Z and the TTF enable a formal
analysis of some of these classes of errors. Theorem 2 and testing tactic MF
show that the TTF can be further extended to deal with particular issues of
integration testing.

A case study applying all these results can be found in [10].

More Detailed Issues. In Theorem 1, proving that BA
j (x)
= ∅ involves either

the evaluation of a constant Z predicate or solving a satisfiability problem. In
effect, if vars(B) ⊆ vars(A) then all the free variables in Bj will be replaced by
constant values when BA

j (x) is calculated; otherwise, there will be free variables

in BA
j (x). In the first case BA

j (x)
= ∅ can always be automatically solved; in

the second case it is necessary to decided whether BA
j (x) is satisfiable or not.

This problem is undecidable because BA
j (x) can be a first-order predicate over

the set theory. However, Fastest uses advanced Constraint Logic Programming
techniques (the {log} tool) for solving these predicates with very good results
for real specifications [11,8]. Then, even when BA

j (x) has free variables Theorem
1 can be automatically applied in many situations.

9 Related Work

There is a lot of research on integration testing, from a MBT perspective
[1,23,5,3,13,15] or not [12,2,6,21,18,17,20], but we could not find articles ana-
lyzing in detail how Parnas’s uses relation and the Z notation can be used for
integration testing. Clements and others [7, pages 68–71] pay attention to the
uses relation and remark its importance in integration testing. In particular they
say it can be used to narrow the search for the cause of an error found during
integration testing but they do not go any deeper.

Leung and White [19,20] study integration testing in the context of regression
testing. Although they use the calls relation, they define sets of test cases to test
subroutines during integration testing that have some similarities to those pre-
sented here. Apparently they are not interested in the stub generation problem,
but in reducing the number of tests during regression.

Benz [5] acknowledges the fact that critical relationships for integration test-
ing are not explicitly modeled and that MBT methods applied to integration
testing may yield large state spaces. In his work Benz uses task models for spec-
ifying the interaction between components. Ali et al. [3] use UML collaboration
diagrams to model interactions among classes and Statecharts for specifying
their behavior. They propose a list of mutation operators that can be used to

412 M. Cristiá, J. Mesuro, and C. Frydman

assess the effectiveness of integration testing methods. Since this list is aimed
at object-oriented programs we preferred the taxonomy of errors proposed by
Leung and White, also used by Orso [21]. Class State Machines (CSTM) are
used by Gallagher, Offutt and Cincotta as the specification method for classes
of object-oriented programs. These CSM are then combined into a component
flow graph which is used to derive integration tests.

Testing components that can only be accessed through a system interface is
the goal of the work by Schätz and Pfaller [23]. They use transition systems to
model the behavior of components and hierarchical transition systems to model
component interactions. The authors define the notion of Satisfied Integrated
Test Case which plays a similar role as Theorem 1 in the present work. Another
work that focuses on a specific problem, carving and replay based integration
testing, is that of Elbaum and his colleagues [12]. However, the four steps of unit
testing they use are the same used in Fastest: identify a program state, set it,
execute the unit from it and evaluate the results.

Hartmann, Imoberdorf and Meisinger [15] use a method based on category
partition to generate test cases from UML Statecharts specifying the behavior
of components whose interactions are described be means of concepts borrowed
from CSP. Category partition is essentially what the TTF does with the VIS of
a Z operation. The authors aim at the stub generation problem but is not clear
to us how their method reduces the number of manually-crafted stubs.

Labiche et al. [18] define an integration strategy based on class diagrams with
the goal of minimizing the stub generation problem. Essentially they test a class
after the classes it depends on. Labiche’s integration order is an extension of
Kung’s [17] when dynamic dependencies and abstract classes are present. How-
ever, class or similar diagrams seldom include the functional specification of
classes. In fact, these methods make a syntactic analysis of these diagrams re-
sulting in a larger number of dependencies because they include not only “used”
classes but also “called” classes.

10 Conclusions and Future Work

The TTF has been extended to integration testing providing, in principle, a
good coverage during this level of testing because it covers almost all the errors
in Leung and White’s classification. Organizing integration testing around the
uses relation shows several advantages that should be further investigated. The
favorable impact that uses has on testing may make developers to describe it
thereby reusing a key design document. Moreover, if a logical specification is
cleverly structured, uses can be computed automatically. The extension mini-
mizes the need for manually-crafted stubs by giving simple conditions that say
when a stub can be automatically generated or when a subroutine can be used
as a stub of itself.

However, it should be investigated what testing tactics should be applied to
two subroutines belonging to the uses relation to prove Theorem 1 for all test
cases, while still providing good unit coverage for both of them. Another issue

Integration Testing in the Test Template Framework 413

that should be studied is the relation of Z’s ϕ operator and operation promotion
with integration testing.

Acknowledgments. Ana Cavalcanti made a number of corrections and sug-
gestions to an early version of this paper. We thank her a lot for that.

References

1. Aiguier, M., Boulanger, F., Kanso, B.: A formal abstract framework for modelling
and testing complex software systems. Theor. Comput. Sci. 455, 66–97 (2012),
http://dx.doi.org/10.1016/j.tcs.2011.12.072

2. Alexander, R.T., Offutt, A.J.: Criteria for testing polymorphic relationships. In:
Proceedings of the 11th International Symposium on Software Reliability Engi-
neering, ISSRE 2000. IEEE Computer Society, Washington, DC (2000),
http://dl.acm.org/citation.cfm?id=851024.856208

3. Ali, S., Briand, L.C., Rehman, M.J.U., Asghar, H., Iqbal, M.Z.Z., Nadeem, A.:
A state-based approach to integration testing based on UML models. Inf. Softw.
Technol. 49(11-12), 1087–1106 (2007),
http://dx.doi.org/10.1016/j.infsof.2006.11.002

4. Baresi, L., Pezzè, M.: An introduction to software testing. Electron. Notes Theor.
Comput. Sci. 148(1), 89–111 (2006),
http://dx.doi.org/10.1016/j.entcs.2005.12.014

5. Benz, S.: Combining test case generation for component and integration testing.
In: Proceedings of the 3rd International Workshop on Advances in Model-Based
Testing, A-MOST 2007, pp. 23–33. ACM, New York (2007),
http://doi.acm.org/10.1145/1291535.1291538

6. Buy, U., Orso, A., Pezze, M.: Automated testing of classes. In: Proceedings of the
2000 ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2000, pp. 39–48. ACM, New York (2000),
http://doi.acm.org/10.1145/347324.348870

7. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Doc-
umenting Software Architectures: Views and Beyond. Pearson Education (2002)

8. Cristiá, M., Albertengo, P., Frydman, C., Plüss, B., Monetti, P.R.: Tool support for
the Test Template Framework. Software Testing, Verification and Reliability 24(1),
3–37 (2014), http://dx.doi.org/10.1002/stvr.1477

9. Cristiá, M., Frydman, C.: Extending the Test Template Framework to Deal with
Axiomatic Descriptions, Quantifiers and Set Comprehensions. In: Derrick, J.,
Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 280–293. Springer, Heidelberg (2012)

10. Cristiá, M., Mesuro, J., Frydman, C.: Extending the Test Template Framework to
integration testing,
https://www.dropbox.com/s/8dlyu2mctmzw57m/ttf-integration-testing.pdf

11. Cristiá, M., Rossi, G., Frydman, C.: {log} as a test case generator for the Test
Template Framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM
2013. LNCS, vol. 8137, pp. 229–243. Springer, Heidelberg (2013)

12. Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J.: Carving differential unit test
cases from system test cases. In: Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, SIGSOFT 2006/FSE-
14, pp. 253–264. ACM, New York (2006),
http://doi.acm.org/10.1145/1181775.1181806

http://dx.doi.org/10.1016/j.tcs.2011.12.072
http://dl.acm.org/citation.cfm?id=851024.856208
http://dx.doi.org/10.1016/j.infsof.2006.11.002
http://dx.doi.org/10.1016/j.entcs.2005.12.014
http://doi.acm.org/10.1145/1291535.1291538
http://doi.acm.org/10.1145/347324.348870
http://dx.doi.org/10.1002/stvr.1477
https://www.dropbox.com/s/8dlyu2mctmzw57m/ttf-integration-testing.pdf
http://doi.acm.org/10.1145/1181775.1181806

414 M. Cristiá, J. Mesuro, and C. Frydman

13. Gallagher, L., Offutt, J., Cincotta, A.: Integration testing of object-oriented com-
ponents using finite state machines: Research articles. Softw. Test. Verif. Re-
liab. 16(4), 215–266 (2006), http://dx.doi.org/10.1002/stvr.v16:4

14. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of software engineering, 2nd
edn. Prentice Hall (2003)

15. Hartmann, J., Imoberdorf, C., Meisinger, M.: UML-based integration testing. In:
Proceedings of the 2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2000, pp. 60–70. ACM, New York (2000),
http://doi.acm.org/10.1145/347324.348872

16. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H.,
Vilkomir, S., Woodward, M.R., Zedan, H.: Using formal specifications to support
testing. ACM Comput. Surv. 41(2), 1–76 (2009)

17. Kung, D.C., Gao, J., Hsia, P., Lin, J., Toyoshima, Y.: Class firewall, test order,
and regression testing of object-oriented programs. JOOP 8(2), 51–65 (1995)

18. Labiche, Y., Thévenod-Fosse, P., Waeselynck, H., Durand, M.H.: Testing levels for
object-oriented software. In: Proceedings of the 22nd International Conference on
Software Engineering, ICSE 2000, pp. 136–145. ACM, New York (2000),
http://doi.acm.org/10.1145/337180.337197

19. Leung, H.K.N., White, L.: Insights into testing and regression testing global vari-
ables. Journal of Software Maintenance 2(4), 209–222 (1990)

20. Leung, H.K.N., White, L.: A study of integration testing and software regression
at the integration level. In: Conference on Software Maintenance 1990, San Diego,
CA, pp. 290–301 (1990)

21. Orso, A.: Integration Testing of Object-Oriented Software. Ph.D. thesis, Politecnico
di Milano, Milan, Italy (February 1999)

22. Parnas, D.L.: Designing software for ease of extension and contraction. In: ICSE
1978: Proceedings of the 3rd International Conference on Software Engineering,
pp. 264–277. IEEE Press, Piscataway (1978)

23. Schätz, B., Pfaller, C.: Integrating component tests to system tests. Electron. Notes
Theor. Comput. Sci. 260, 225–241 (2010),
http://dx.doi.org/10.1016/j.entcs.2009.12.040

24. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Harlow (2010)
25. Stocks, P., Carrington, D.: A Framework for Specification-Based Testing. IEEE

Transactions on Software Engineering 22(11), 777–793 (1996)

http://dx.doi.org/10.1002/stvr.v16:4
http://doi.acm.org/10.1145/347324.348872
http://doi.acm.org/10.1145/337180.337197
http://dx.doi.org/10.1016/j.entcs.2009.12.040

Data Flow Coverage for Circus-Based Testing

Ana Cavalcanti1 and Marie-Claude Gaudel2

1 University of York, Department of Computer Science, York YO10 5GH, UK
2 LRI, Université de Paris-Sud and CNRS, Orsay 91405, France

Abstract. Circus is a state-rich process algebra based on Z and CSP
that can be used for testing. In this paper, we consider data-flow cover-
age. In adapting the classical results on coverage of programs to Circus
models, we define a notion of specification traces, consider models with
data-flow anomalies, and cater for the internal nature of state. Our re-
sults are a framework for data-flow coverage of such abstract models,
a novel data-flow criterion suited to state-rich process models, and the
conversion of specification traces into symbolic traces.

1 Introduction

The use of formal models, especially those underlying process algebra, as a basis
for testing is now widely studied. Circus [5] is a very expressive and feature-rich
algebra; it belongs to the important family of notations that combine the advan-
tages of operational calculi like CSP [14] with specification languages like Z [17],
thus comprising abstract data types at their core. For testing from such nota-
tions, it is appealing and natural to guide selection of test data from symbolically
derived test traces using data-oriented criteria [13] that have been demonstrated
to be good at detecting faults on data dependencies.

In previous work, we have defined a testing theory for Circus [2]. Following
its operational semantics, this theory uses constrained symbolic traces: pairs
formed by a symbolic trace and a constraint over the symbolic variables in the
trace. Tests are built from such traces, enriched by observations (that is, refusals
or acceptance) and verdict events; test sets that are exhaustive with respect to
refinement in Circus have been defined. The constrained symbolic traces, how-
ever, capture the constraints raised by data operations and guards, but not
their structure. We have, therefore, so far defined test-selection criteria based on
notions like coverage of bounded symbolic traces or synchronisation coverage;
information is missing to address data-flow coverage.

Here, we introduce specification traces, which include, besides communication
events, internal data operations and guards. Based on these traces, we formalise
notions of definitions, uses, and definition-clear paths for Circus. We define the
conventional data-flow coverage criteria, and formalise a novel criteria inspired
by [15] to cater for internal data flows. Finally, we consider how to construct con-
strained symbolic traces, and thus, symbolic tests from the specification traces,
providing the link to the operational semantics. This result is relevant for all
selection criteria based on specification traces (and not only data-flow criteria).

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 415–429, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

416 A. Cavalcanti and M.-C. Gaudel

In summary, we present here the first collection of coverage criteria for Circus
based on the structure of models. It is the first technique that takes advantage
of the data model itself, rather than its semantics, in selecting tests. We prove
unbias of the selected tests. This means that they cannot reject correct systems.

Data-flow coverage in the context of Circus requires adjustments. Firstly, data-
flow anomalies must be accepted, because repeated definitions and definitions
without use are routinely used in Circus abstract models. Second, due to the rich
predicative data language of Circus, a concrete flow graph is likely much too big
to be explicitly considered. Thus, tests are not based on paths of a flow graph,
but on specification traces. Finally, the state of a Circus process is hidden, and
so not all definitions and uses, and, therefore, not all data flows, are visible.

In the next section, we give an overview of the notations and definitions
used in our work. Section 3 presents our framework, and Section 4, our new
criterion. Section 5 addresses the general issue of constructing tests from selected
specification traces. Finally, we consider related works in Section 6 and conclude
in Section 7, where we also indicate lines for further work.

2 Background Material

This section describes Circus, its operational semantics, and data-flow coverage.

2.1 Circus Notation

A Circus model defines channels and processes like in CSP. Figure 1 presents an
extract from the model of a cash machine. It uses a given set CARD of valid
cards, a set Note of the kinds of notes available (10, 20, and 50), and a set
Cash == bagNote to represent cash. The definitions of these sets are omitted.

The first paragraph in Figure 1 declares four channels: inc is used to request
the withdrawal using a card of some cash, outc to return a card, cash to provide
cash, and refill to refill the note bank in the machine. The second paragraph is
an explicit definition for a process called CashMachine.

The first paragraph of the CashMachine definition is a Z schema CMState
marked as the state definition. Circus processes have a private state, and interact
with each other and their environment using channels. The state of CashMachine
includes just one component: nBank , which is a function that records the avail-
able number of notes of each type: at most cap.

State operations can be defined by Z schemas. For instance, DispenseNotes
specifies an operation that takes an amount a? of money as input, and outputs
a bag notes ! of Notes, if there are enough available to make up the required
amount. DispenseNotes includes the schema ϑCMState to bring into scope the
names of the state components defined in CMState and their dashed counterparts
to represent the state after the execution of DispenseNotes. To specify notes !,
we require that the sum of its elements (Σ notes !) is a?, and that, for each kind
n of Note, the number of notes in notes ! is available in the bank. DispenseNotes
also updates nBank , by decreasing its number of notes accordingly.

Data Flow Coverage for Circus-Based Testing 417

channel inc : CARD × N1; outc : CARD ; cash : Cash; refill

process CashMachine =̂ begin

state CMState == [nBank : Note → 0 . . cap]

DispenseNotes
ΔCMState
a? : N1; notes! : Cash

Σ notes! = a?
∀n : Note • (notes! � n) ≤ nBank n ∧ nBank ′ n = (nBank n)− (notes! � n)

DispenseError
ΞCMState
a? : N1; notes! : Cash

¬ ∃ ns : Cash • Σ ns = a? ∧ ∀n : Note • (ns � n) ≤ nBank n
notes! = [[]]

Dispense == DispenseNotes ∨ DispenseError

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
µ X •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

inc?c?a→
X
! outc!c → X

!

⎛⎜⎜⎜⎜⎝
var notes : Cash •
Dispense;⎛⎝(notes �= [[]])� cash!notes → Skip

�

(notes = [[]])� Skip

⎞⎠
⎞⎟⎟⎟⎟⎠ ; outc!c → X

�
refill → (nBank := { 10 "→ cap, 20 "→ cap, 50 "→ cap } ; X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
end

Fig. 1. Cash machine model

Another schema DispenseError defines the behaviour of the operation when
there are not enough notes in the bank to provide the requested amount a?; the
result is the empty bag [[]] . The Z schema calculus is used to define the total
operation Dispense as the disjunction of DispenseNotes and DispenseError .

State operations are called actions in Circus, and can also be defined using
Morgan’s specification statements [11] or guarded commands from Dijkstra’s
language. CSP constructs can also be used to specify actions.

For instance, the behaviour of the process CashMachine is defined by a re-
cursive action at the end after the ‘•’. A recursion µ X • F (X) has a body
given by F (X), where occurrences of X are recursive calls. In our example, the
recursion first offers a choice between an input inc?c?a, which accepts a card
c and a request to withdraw the amount a, and a synchronisation on refill , which

418 A. Cavalcanti and M.-C. Gaudel

is a request to fill the nBank . The actions that offer these communications are
combined in an external choice () to be exercised by the environment.

If refill is chosen, an assignment changes the value of nBank to record a
number cap of notes of all kinds. If inc?c?a is chosen, then we have an inter-
nal (nondeterministic) choice of possible follow-on actions: recursing immedi-
ately (without returning the card or producing the money), returning the card
via an output outc!c before recursing, or considering the dispensation of cash
before returning the card and recursing. In the dispensation, a local variable
notes is declared, the operation Dispense is called, and then an external choice
of two guarded actions is offered. If there is some cash available (notes
= [[]]),
then it can dispensed via cash!notes . Otherwise the action terminates (Skip).
Here, nondeterminism comes from the fact that the specification does not go
into details of bank management (stolen cards, bank accounts, and so on).

This example shows how Z and CSP constructs can be intermixed freely. A
full account of Circus and its semantics is given in [12]. The Circus operational
semantics is briefly discussed and illustrated in the next section.

2.2 Circus Operational Semantics and Tests

The Circus operational semantics [2] is distinctive in its symbolic account of state
updates. As usual, it is based on a transition relation that associates configura-
tions and a label. For processes, the configurations are processes themselves; for
actions A, they are triples of the form (c | s |= A).

The first component c of those triples is a constraint over symbolic variables
used to define labels and the state. These are texts that denote Circus predicates
(over symbolic variables). We use typewriter font for pieces of text. The second
component s is a total assignment x := w of symbolic variables w to all state
components x in scope. State assignments can also include declarations and
undeclarations of variables using the constructs var x := e and end x. The state
assignments define a specific value (represented by a symbolic variable) for all
variables in scope. The last component of a configuration is an action A.

The labels are either empty, represented by ε, or symbolic communications of
the form c?w or c!w, where c is a channel name and w is a symbolic variable that
represents an input (?) or an output (!) value.

We define traces in the usual way. Due to the symbolic nature of configurations
and labels, we obtain constrained symbolic traces, or cstraces, for short.

Example 1. Some of the cstraces of the process CashMachine are as follows.

(〈 〉, True) and (〈 refill, inc.χ0.χ1, outc.χ2〉, χ0 ∈ CARD ∧ χ1 ∈ N1 ∧ χ2 = χ0)

The first is the empty cstrace (empty symbolic trace with no constraint). The
second records a sequence of interactions where a request for a refill is followed
by a request for a withdraw of an amount χ1 using card χ0, followed by the
return of a card χ2. The constraint captures those arising from the declaration
of inc, namely, χ0 is a CARD and χ1, a positive number. It also captures the
fact that the returned card is exactly that input (χ2 = χ0). �

Data Flow Coverage for Circus-Based Testing 419

As usual for process-algebra, tests of the Circus theory are constructed from
traces. A cstrace defines a set of traces: those that can be obtained by instan-
tiating the symbolic variables so as to satisfy the constraint. Accordingly, we
have symbolic tests constructed from cstraces, and a notion of instantiation to
construct concrete tests involving specific data. This approach is driven by the
operational semantics of the language and led to the definition of symbolic ex-
haustive test sets and to proofs of their exhaustivity.

We observe that cstraces capture the constraints raised by data operations
and guards, but not their structure.

Example 2. The following is a cstrace of CashMachine that captures a withdraw
request followed by cash dispensation.

(〈 inc.χ0.χ1, cash.χ2〉,
χ0 ∈ CARD ∧ χ1 ∈ N1 ∧ Σχ2 = χ1 ∧ ∀ n : Note • (χ2 Δ n) ≤ cap)

The constraint defines the essential properties of the cash χ2 dispensed, but not
the fact that these properties are established by a variable declaration followed
by a schema action call, and a guarded action. �

So, while cstraces are useful for trace-selection based on constraints, they do not
support selection based on the structure of the Circus model. To this end, in [1]
we have presented a collection of transition systems whose labels are pieces of
the model: guards (predicates), communications, or simple Circus actions. The
operational semantics for Circus defined by these transition systems is entirely
compatible with the Circus original operational and denotational semantics, al-
though it records information about the text of the model.

Thus, we use the transition relation =⇒RP from [1], written =⇒ here, to define
a notion of specification traces, used to consider data-flow coverage criteria.

2.3 Data-Flow Coverage

Normally, the application of data-flow coverage criteria requires the absence of
anomalies in the data-flow graph; this is not required or adequate here.

Data-flow coverage criteria were originally developed for sequential impera-
tive languages based on the notion of definition-use associations [13]. They are
traditionally defined in terms of a data-flow graph as triples (d , u, v), where d
is a node in which the variable v is defined, that is, some value is assigned to it,
u is a node in which the value of v is used, and there is a definition-clear path
with respect to v from d to u. The strongest data-flow criterion, all definition-
use paths, requires that, for each variable, every definition-clear path (with at
most one iteration by loop) is executed. In order to reduce the number of tests
required, weaker strategies such as all-definitions and all-uses have been defined.

When using these criteria, it is often assumed that there is no data-flow
anomaly: on every path there is no use of a variable v not preceded by some
node with a definition of v , and that after such a node, there is always some
other node with a use of v [6]. These restrictions require preliminary checks and

420 A. Cavalcanti and M.-C. Gaudel

facilitate the comparison of the criteria; they also ensure that there is always
some test set satisfying the criteria. In Circus, anomalies lead to empty test sets.

Data-flow based testing in the case of abstract specifications with concur-
rency and communications requires adjustments (see, for instance [15] and Sec-
tion 6) even if the notion of data-flow and the motivation are the same: to check
dynamically data-flow dependencies via the execution of selected tests.

3 Data-Flow Coverage in Circus

Here, we define specification traces resulting from the transition relation =⇒,
state the notions of definition and use of Circus variables, discuss anomalies, and
present the definition of one of the classical coverage criteria.

3.1 Specification Traces

The main distinctive feature of the specification transition system in [1] is its
labels. They record not only events, like in the operational semantics, but also
guards and state changes. Moreover, they are expressed in terms of terms of the
model, rather than symbolic variables. For example, for the CashMachine, we
have labels inc?c?a, varnotes, and Dispense. Finally, the specification-oriented
system has no silent transitions, since they correspond to evolutions that are not
guarded, and do not entail any communication or state change. These transitions
do not capture observable behaviour, and so are not interesting for testing.

Like in the operational semantics, we have a transition relation =⇒ between
texts of process. It is defined in terms of the corresponding relation for actions.

For actions, a transition (c1 | s1 |= A1)
g

=⇒ (c2 | s2 |= A2) establishes that in the
state characterised by (c1 | s1), if the guard g holds, then the next step in the
execution of A1 is the execution of A2 in the state (c2 | s2). Similarly, a transition

(c1 | s1 |= A1)
e

=⇒ (c2 | s2 |= A2) establishes that in the execution of A1 the event
e takes place and then again the next step is the execution of A2 in (c2 | s2).
Finally, (c1 | s1 |= A1)

A
=⇒ (c2 | s2 |= A2) establishes that the first step is the

action A, followed by A2 in (c2 | s2) and the remaining action to execute is A2.
It is simple to define sequences of specification labels based on =⇒ and its

associated transition relation⇒⇒ annotated with traces and defined as usual [3].

Example 3. For CashMachine, for instance, the following traces of specification
labels, as well as their prefixes, are reachable according to ⇒⇒.

〈inc?c?a, outc!c, inc?c?a, var notes〉
〈inc?c?a, var notes, Dispense, notes
= [[]] , cash!notes, outc!c)〉 �

We need, however, to consider enriched labels that include a tag to distinguish
their various occurrences in the specification.

Example 4. In the traces in Example 3, the two occurrences of outc!c correspond
to different occurrences of this piece of syntax in the model. Since we cannot
consider repeated occurrences of labels to correspond to a single definition or
use of a variable, we use tags to distinguish them. �

Data Flow Coverage for Circus-Based Testing 421

The tag can, for instance, be is related to the position of the labels in the model.
We need a simple generalisation of the definition of =⇒, where a label is a pair
containing a label (in the sense of Section 2.2) and a tag. We take the type Tag
of tags as a given set, and do not specify a particular representation of tags.

For a process P , we define the set sptraces(P) of sptraces of P : specification
traces whose last label is observable, that is, a non-silent communication. This
excludes traces that do not lead to new tests with respect to their prefixes.

Definition 1. If we define obs(l, t)⇔ l ∈ Comm ∧ l
= ε, then we have

sptraces(begin state[x : T] • A end) = sptraces(w0 ∈ T, x := w0, A)

sptraces(c1, s1, A1) = {spt, c2, s2, A2 |
(c1 | s1 |= A1)

spt⇒⇒ (c2 | s2 |= A2) ∧ spt
= 〈 〉 ∧ obs(last spt) • spt}

Without loss of generality, we consider a process begin state[x : T] • A end,
with state components x of type T and a main action A. Its sptraces are those
of A, when considered in the state in which x has some value identified by the
symbolic variable w0, which is constrained to satisfy w0 ∈ T . For actions A1,
the set sptraces(c1, s1, A1) of its sptraces from the state characterised by the
assignment s1 and constraint c1 is defined as those that can be constructed using
⇒⇒ from the configuration (c1 | s1 |= A1) and whose last label is observable.

Example 5. Some sptraces of CashMachine are as follows. (In examples, we omit
tags when they are not needed, and below we distinguish the two occurrences of
outc!c by the tags tag1 and tag2.)

〈inc?c?a, (outc!c, tag1)〉 〈inc?c?a, (outc!c, tag1), inc?c?a〉
〈inc?c?a, var notes, Dispense, notes
= [[]] , cash!notes〉
〈inc?c?a, var notes, Dispense, notes
= [[]] , cash!notes, (outc!c, tag2)〉

We note that the first specification trace in Example 3 is not an sptrace. �

3.2 Definitions and Uses

In an sptrace, a definition is a tagged label, where the label is a communication
or an action that may assign a new value to a Circus variable, that is, an input
communication, a specification statement, a Z schema where some variables are
written, an assignment, or a var declaration, which, in Circus causes an initial-
isation. The set defs(x, P) of definitions of a variable x in a process P is defined
in terms of the set defs(x, spt) of definitions of x in a particular sptrace spt.

Definition 2. defs(x, P) =
⋃
{ spt : sptraces(P) • defs(x, spt) }

The set defs(x, spt) can be specified inductively as follows.

Definition 3. defs(x, 〈 〉) = ∅

defs(x, tl� spt) = ({tl} ∩ defs(x)) ∪ defs(x, spt)

422 A. Cavalcanti and M.-C. Gaudel

The empty trace has no definitions. If the trace is a sequence formed by a tagged
label tl followed by the trace spt, we include tl if it is a definition of x as char-
acterised by defs(x). The definitions of spt are themselves given by defs(x, spt).

The tagged labels in which x is written (defined) can be specified as follows.

Definition 4. defs(x) = { tl : TLabel | x ∈ defV(tl) }

The set defV(tl) of such variables for a label tl is specified inductively; g stands
for a guard, d for a channel, e an expression. The tags play no role here, and we
ignore them in the definition below.

Definition 5

defV(g) = defV(ε) = defV(d) = defV(d!e) = defV(end y) = ∅
defV(d?x) = defV(d?x : c) = { x } defV(f : [pre, post]) = { f }
defV(Op) = wrtV (Op) defV(x := e) = { x }
defV(var x : T) = { x } defV(var x := e) = { x }

A Morgan specification statement f : [pre, post] is a pre-post specification that
can only modify the variables explicitly listed in the frame f .

The set wrtV (Op) of written variables of a schema Op is defined in [5, page 161]
as those that are potentially modified by Op, and their identification is not a
purely syntactic issue. This set includes the state components v of Op that are
not constrained by an equality v ′ = v . Following the usual over-approximation
in data-flow analysis, we can take the pessimistic, but conservative, view that
Op potentially writes to all variables in scope and avoid theorem proving.

We note that we are interested in variables, not channels. In an input d?x , the
variable x is defined, but the particular channel d is not of interest. This reflects
the fact that we are interested in the data flow, not the interaction specification.

Example 6. Coming back to the CashMachine (and ignoring tags) we have:

defs(c, CashMachine) = {inc?c?a}
defs(a, CashMachine) = {inc?c?a}
defs(notes, CashMachine) = {var notes : Cash, Dispense}
defs(nBank, CashMachine) = {Dispense,

nBank := { 10 �→ cap, 20 �→ cap, 50 �→ cap }}

�

The notion of (externally visible) use is simpler: a tagged label with an output
communication. Formally, the set e-uses(x, P) of uses of a variable x in a process
P can be identified from its set of sptraces.

Definition 6. e-uses(x, P) =
⋃
{ spt : sptraces(P) • e-uses(x, spt) }

The set e-uses(x, spt) of uses of x in a trace spt can be specified as follows.

Definition 7. e-uses(x, 〈 〉) = ∅

e-uses(x, tl� spt) = ({tl} ∩ e-uses(x)) ∪ e-uses(x, spt)

Data Flow Coverage for Circus-Based Testing 423

Finally, uses of a variable x are labels (d!e, t) where x occurs free in the expression
e. FV (e) denotes the set of free variables of an expression e.

Definition 8. e-uses(x) = {d : CName; e : Exp; t : Tag | x ∈ FV (e) • (d!e, t)}

At this point, we consider e-uses, but not the classical notion of p-uses, which
relates to uses in predicates and, in the context of Circus, are not observable. We
introduce a notion of internal uses (i-uses) later on in Section 4.1.

Example 7. We have e-uses(c, CashMachine) = {(outc!c, tag1), (outc!c, tag2) }
and e-uses(notes, CashMachine) = {cash!notes}. There are no other externally
visible uses in CashMachine. �

We observe that a label cannot be both a definition and a use of a variable,
because a use is an output communication, which does not define any variable.
Besides, a label can be neither a definition nor a use (this is the case for refill)
and then not considered for data-flow coverage.

The property clear-path(spt, df, u, x) characterises the fact that the trace spt
has a subsequence that starts with the label df, finishes with the label u, and
has no definition of the variable x . (We consider subsequences of a trace, but,
for consistency with classical terminology, we use the term path anyway.)

Definition 9

clear-path(spt, df, u, x)⇔ ∃ i : 1 . .# spt • spt i = df ∧
∃ j : (i + 1) . . # spt • spt j = u ∧
∀ k : (i + 1) . . (j − 1) • spt k
∈ defs(x, P)

A e-use u of a variable x is said to be reachable by a definition df of x if there
is a trace spt such that clear-path(spt, df, u, x).

3.3 Data-Flow Anomalies and Circus

Three data-flow anomalies are usually identified: (1) a use of a variable without
a previous definition; (2) two definitions without an intermediate use; and (3) a
definition without use. While these all raise concerns in a program, it is not the
case in a Circus model. Because a variable declaration is a variable definition
that assigns an arbitrary value to a variable, it is common to follow it up with
a second definition that restricts that value.

In addition, it is not rare to use a communication d?x to define just that the
value x to be input via the channel d is not restricted (and also later not used).
In an abstract specification, a process involving such a communication might,
for example, be combined in parallel with another process that captures another
requirement concerned with restricting these values x , while the requirement
captured by the process that defines d?x is not concerned with such values.

For the data-coverage criteria that we consider, when a definition involved in
any of the above anomalies is considered, it imposes no restriction on the set of
tests under consideration for coverage. In practical terms, no tests are required.

424 A. Cavalcanti and M.-C. Gaudel

3.4 All-Defs

The data-coverage criterion that we present here, all-defs, requires that all def-
initions are covered, and followed by one (reachable) use, via any (clear) path.
We formalise coverage criterion by identifying the sets of sptraces SSPT that
satisfy that criterion. For all-defs, the formal definition is as follows.

Definition 10. For every variable name x and process P, a set SSPT of sp-
traces of P provides all-defs coverage if, and only if,

∀ df : defs(x, P) •
(∃ spt : sptraces(P); u : e-uses(x, P) • clear-path(spt, df, u, x))⇒

(∃ spt : SSPT ; u : e-uses(x, P) • clear-path(spt, df, u, x))

If there is an sptrace that can contribute to coverage, then at least one is included.

Example 8. As previously explained, in CashMachine, inc?c?a is the only defi-
nition of c, and its two uses are (outc!c, tag1) and (outc!c, tag2). Examples of
sets of sptraces that provide all-defs coverage are the three singletons below.

{〈inc?c?a, (outc!c, tag1)〉 }
{〈inc?c?a, var notes, Dispense, notes = [[]] , (outc!c, tag2)〉}
{〈inc?c?a, var notes, Dispense, notes
= [[]] , cash!notes, (outc!c, tag2)〉}

Other sets that provide all-defs coverage are the supersets of the above sets, and
the sets that include any of the extensions of the sptraces above. �

In [3] we define the classical all-uses and all-du-paths criteria.
The CashMachine variables nBank and a are used internally only. There is no

clear path from their definition to an external use, and so every set of sptraces
provides coverage (according to all-defs and the other classical criteria) with
respect to these variables. They contribute, however, to our next criterion.

4 sel-var-df-chain-Trace

This criterion is based on the notion of a var-df-chain. The idea is to identify
sptraces that include chains of definition and associated internal uses of variables,
such that each variable affects the next one in the chain. Given the characteristics
of Circus, it is very likely that most specifications contain a number of such chains.

4.1 var-df-chain

A suffix of an sptrace spt starting at position i (that is, (i . . # spt) � spt) is in
the set var-df-chain(x, P) of var-df-chains of P for x if it starts with a label spt i
that defines x and subsequently has a clear path to a label spt j . This label must
either be a use of x , and in this case it must be the last label of spt, or affect
the definition of another variable y, and in this case spt must continue with a
var-df-chain for y. The continuation is (j . .# spt) � spt , the suffix of spt from j .

Data Flow Coverage for Circus-Based Testing 425

Definition 11

var-df-chain(x, P) =
{ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt |⎛⎝ spt i ∈ defs(x, P) ∧ (∀ k : (i + 1) . . (j − 1) • spt k
∈ defs(x, P)) ∧(

(spt j ∈ e-uses(x, P) ∧ j = # spt) ∨
(∃ y • affects(x, y, spt j) ∧ (j . . # spt) � spt ∈ var-df-chain(y, P))

)⎞⎠
• (i . . # spt) � spt

}

A variable x affects the definition of another variable y in a tagged label tl if it
is an internal use of x and a definition of y.

Definition 12. affects(x, y, tl) = x ∈ i-useV(tl) ∧ y ∈ defs(tl)

The set i-useV(tl) of variables used internally in tl is defined as follows.

Definition 13

i-useV(g) = FV (g) i-useV(ε) = i-useV(d) = ∅
i-useV(d!e) = i-useV(d?x) = ∅ i-useV(d?x : c) = FV (c) \ {x}
i-useV(f : [pre, pos]) = FV (pre) ∪ FV (pos)
i-useV(Op) = FV (Op) i-useV(x := e) = FV (e)
i-useV(varx : T) = ∅ i-useV(var x := e) = FV (e)
i-useV(endy) = ∅

This notion of internal use subsumes the classical notion of p-uses.

4.2 The Criterion

We observe that var-df-chains are not sptraces, but suffixes of sptraces. So,
coverage is provided by sptraces that have such suffixes, rather than by the
var-df-chains themselves. In particular, sel-var-df-chain-trace coverage requires
that every chain in a model is covered by at least one sptrace.

Definition 14. For every variable name x and process P, a set SSPT of sp-
traces of P provides sel-var-df-chain-trace coverage if, and only if,

∀ spt1 : var-df-chain(x, P) •
∃ spt2 : SSPT ; spt3 : seqTLabel • spt2 = spt3 � spt1

The specification trace spt3 is an initialisation trace that leads to the chain.
This criterion is the most demanding of the data-flow criteria defined in [3]

where a formal proof of this result is available.

Example 9. The very basic var-df-chains, where the same variable is consid-
ered as the starting definition and the final use, with a clear path with respect
to this variable in between, are covered by the classical all-du-paths criterion.

426 A. Cavalcanti and M.-C. Gaudel

Table 1. Operational semantics of sptraces; w0 stand for fresh symbolic variables

c ∧ (s; g)

(c | s |= 〈g〉� spt)
ε−→ST (c ∧ (s; g) | s |= spt)

c ∧ T �= ∅

(c | s |= 〈d?x : T〉� spt)
d?w0−→ST (c ∧ w0 ∈ T | s; var x := w0 |= spt)

c

(c | s |= 〈d!e〉� spt)
d!w0−→ST (c ∧ (s; w0 = e) | s |= spt)

(c1 | s1 |= A1)
ε−→ (c2 | s2 |= Skip)

(c1 | s1 |= 〈A1〉� spt)
ε−→ST (c2 | s2 |= spt)

The label nBank := { 10 �→ cap, 20 �→ cap, 50 �→ cap } is such a definition, and
nBank is used in Dispense. Moreover, notes is externally used in the label
cash!notes. This leads to the following var-df-chain.

〈nBank := { 10 �→ cap, 20 �→ cap, 50 �→ cap },
inc?c?a, var notes, Dispense, notes
= [[]] , cash!notes〉

Its coverage leads to coverage of the effect of a refill , after which the value of
nBank is updated. An initialisation trace for the above var-df-chain is 〈refill〉.

5 Conversion of Specification Traces to Symbolic Traces

Converting an sptrace to a symbolic trace requires an operational semantics for
sptraces, which we provide in Table 1. It defines a transition relation −→ST

using four rules: one for when the first label is a guard, two for when it is either
an input or an output, and one for an action label A. In this last case, the rules of
the operational semantics transition rule −→ define the new transition relation.

Like in the operational semantics, the configuration is a triple, but here, we
have an sptrace associated with a constraint and a state assignment. From a

configuration (c | s |= 〈l〉� spt) we have a transition to a configuration with
spt. The new constraint and state depend on the label l.

For a guard, a transition requires that c is satisfiable and g holds in the current
state (s ; g). In this case, the transition is silent: it has label ε.

Input and output communications give rise to non-silent transitions with la-
bels that are symbolic inputs and outputs. Inputs d?x: T are annotated with
the type T of channel d . The new constraint records that the input value rep-
resented by the fresh symbolic variable w0 has type T and the state is enriched
with a declaration of x whose initial value is set to w0.

Finally, we have a transition relation
st→→ that defines a symbolic trace st that

captures the interactions corresponding to an sptrace. It is defined from −→ST

Data Flow Coverage for Circus-Based Testing 427

in the usual way [3], and used below to define the function cstraceSPT
a(P) that

characterises the set of cstraces of P in terms of sptraces(P). The parameter a
is an alphabet: a sequence of fresh symbolic variables. The cstraces defined by
cstraceSPT

a(P) use these variables in the order determined by a.

Definition 15

cstraceSPT
a(begin state[x : T] • A end) =

convSPTa(w0 ∈ T, x := w0)
 sptraces(begin state[x : T] • A end) �
As before, we consider a process begin state[x : T] • A end and define its
cstraces by applying a conversion function convSPTa(c, s) to each of its sptraces.

Definition 16. For every alphabet a, constraint c, state assignment s and sp-
trace spt, we have that convSPTa(c, s) spt = (st, ∃(χc \ χst) • c1) where st

and c1 are characterised by χst ≤ a ∧ ∃ s1 • (c | s |= spt)
st→→ (c1 | s1 |= 〈 〉).

Each sptrace gives rise to exactly one cstrace, since any nondeterminism in the
actions is captured by the constraint on the symbolic variables. The alphabet
χst of the symbolic trace st is a prefix of a: χst ≤ a. We note that convSPT is a
linear translation and can be implemented with a good computational complexity
compared to the test cases generation itself.

Example 10. The following cstraces correspond to the sptraces in Example 8.

(〈inc?χ0?χ1, outc!χ2〉, χ0 ∈ CARD ∧ χ1 ∈ N1 ∧ χ2 = χ0)
(〈inc?χ0?χ1, cash!χ2, outc!χ3〉, χ0 ∈ CARD ∧ χ1 ∈ N1 ∧
Σχ2 = χ1 ∧ (∃ w0 : Note→N • (∀ n : Note • χ2 Δ n) ≤ w0 n)) ∧ χ3 = χ0)

We take the alphabet to be 〈χ0, χ1, . . .〉. The first cstrace comes from both the
first and the second sptrace. The second cstrace comes from the last sptrace. The
symbolic variable w0 denotes the internal value of nBank , which is not observable
in the trace, but contributes to the specification of the observable value χ2.

Two sptraces give rise to the same cstrace because after a withdraw request,
the card may be returned immediately for one of two reasons: a problem with
the card account (like insufficient funds) or no money in the cash machine. Since
the model abstracts away the existence of accounts, they cannot be distinguished
by tests from this model. This is reflected in the fact that the two sptraces have
different tags associated with outc!c. This indicates that they correspond to two
different occurrences in the model. �

Contrary to the cstraces defined by the operational semantics, which capture
just observable labels, sptraces are defined specifically to capture the structure
of the model, and thus guards and data operations that may not be visible in the
interface of the SUT. So, it is not surprising that there are sptraces that lead to
the same cstrace. They come from paths in the model that are not distinguishable
by observing the SUT. Requiring their absence in programs is reasonable, but
abstract specifications may lead to such situations. It is not an issue for test

428 A. Cavalcanti and M.-C. Gaudel

generation, but it may be a problem for understanding or observing the SUT
when running the tests. A test generation tool might, for example, warn that a
distinction may need to be introduced, or instrumented, in the SUT.

The next theorem establishes that tests identified by sptraces are unbiased
with respect to the operational semantics because they specify valid cstraces of
the process. Construction of unbiased tests from cstraces was addressed in [2].

Theorem 1. cstraceSPT
a(P) ⊆ cstracesa(P)

We do not have equality: there is no empty sptrace, for instance. A proof is in [3].
The main lemma is proved by induction on the specification traces of P .

6 Related Works

Data-flow based testing for state-based specification languages has been applied
to Lotos [15], to SDL and Estelle (that is, EFSM) [16], and extended with con-
trol dependencies in [8]. Our sel-var-df-chain-trace selection criterion is inspired
from [15], but different, due to the notion of internal state in Circus and to the
forms of symbolic tests considered in the Circus testing theory (see [3] for de-
tails). These differences, however, should not prevent its extension to control
dependencies, possibly by some slight enrichment of our tagged labels.

In another context, Tse et al. have adapted data-flow testing to service or-
chestrations specified in WS-BPEL in [9], and to service choreographies in [10].
From the specifications, they build an XPath Rewriting Graph, which captures
the specificities of the underlying process algebra, which is very different from Cir-
cus, with loose coupling between processes, XML messages, and XPath queries.

Testing tools based on symbolic input-output transition systems, and a sym-
bolic version of the ioco conformance relation have been presented by Clarke et
al. in [4] and by Frantzen et al. [7]. The models and relations are different from
ours, since there is a semantic distinction between inputs and outputs, no data
structures, and no hidden state. In both [4] and [7], test selection is based on
test purposes. In [7], there is a similar notion of symbolic traces, with a formula
constraining the interaction variables of the trace, and another constraint on the
update of the state variables. Data-flow coverage, however, was not addressed
and is less relevant than for Circus given the limited operations on data.

7 Conclusions

We have presented a framework for test selection from Circus models based
on data-flow coverage criteria for specification traces, which record sequences of
guards, communications and actions of a model. Using these definitions, we have
formalised some coverage criteria, including a new criterion that takes into ac-
count internal definitions and uses. Proof of unbias of the selected tests is possible
due to formal nature of our setting. We have formalised also the construction of
cstraces (used to construct tests) from specification traces.

Data Flow Coverage for Circus-Based Testing 429

The specification traces defined in this paper can be used for other selection
criteria, data-flow based and other ones as well, since most features of the models
are kept. On these bases, it is our plan to consider a number of selection criteria
for Circus tests, and to explore criteria that consider a variety of Circus constructs
in an integrated way, to include, for instance, notions of Z schema coverage,
case splitting in the pre and postcondition of specification statements, control
dependencies and test purposes expressed in Circus. We plan also to address in
a formal framework the problem of monitoring such tests.

Acknowledgments. We warmly thank Frédéric Voisin and referees for several
pertinent comments. We are grateful to the Royal Society and the CNRS for
funding our collaboration.

References

1. Cavalcanti, A., Gaudel, M.-C.: Specification Coverage for Testing in Circus. In:
Qin, S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 1–45. Springer, Heidelberg (2010)

2. Cavalcanti, A.L.C., Gaudel, M.-C.: Testing for Refinement in Circus. Acta Infor-
matica 48(2), 97–147 (2011)

3. Cavalcanti, A.L.C., Gaudel, M.-C.: Data Flow Coverage of Circus Specifica-
tions - extended version. RR 1567, LRI, Univ. Paris-Sud XI (December 2013),
https://www.lri.fr/ bibli/Rapports-internes/2013/RR1567.pdf

4. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: A Symbolic Test Genera-
tion Tool. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 470–475. Springer, Heidelberg (2002)

5. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strategy
for Circus. FACJ 15(2-3), 146–181 (2003)

6. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A Comparison of Data
Flow Path Selection Criteria. In: ICSE, pp. 244–251 (1985)

7. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES
2006/RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

8. Hong, H.S., Ural, H.: Dependence testing: Extending data flow testing with control
dependence. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502,
pp. 23–39. Springer, Heidelberg (2005)

9. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service-oriented workflow
applications. In: ICSE, pp. 371–380 (2008)

10. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service choreography. In:
ESEC/FSE, pp. 151–160 (2009)

11. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)
12. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for

Circus. FACJ 21(1-2), 3–32 (2009)
13. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.

IEEE TSE 11(4), 367–375 (1985)
14. Roscoe, A.W.: Understanding Concurrent Systems. Springer (2011)
15. Schoot, H.V.D., Ural, H.: Data flow analysis of system specifications in LOTOS.

Int. Journal of Software Engineering and Knowledge Engineering 7, 43–68 (1997)
16. Ural, H., Saleh, K., Williams, A.W.: Test generation based on control and data

dependencies. Computer Communications 23(7), 609–627 (2000)
17. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.

Prentice-Hall (1996)

Author Index

Acher, Mathieu 63
Anjorin, Anthony 340
Arts, Thomas 385

Baier, Christel 1
Bersani, Marcello Maria 276
Bianculli, Domenico 276
Brutschy, Lucas 109

Cámara, Javier 306
Cavalcanti, Ana 415
Chechik, Marsha 47
Cohen, Barak 185
Cristiá, Maximiliano 400
Cunha, Alcino 17
Curzon, Paul 200

Daum, Marcus 1
Dong, Yao 140
Dubslaff, Clemens 1
Duval, Dominique 310

Echahed, Rachid 310
Esfahani, Naeem 155
Esmaeilsabzali, Shahram 261

Fahrenberg, Uli 63
Ferrara, Pietro 109
Fiadeiro, José Luis 79
Frydman, Claudia 400
Furia, Carlo A. 246

Gaudel, Marie-Claude 415
Ghezzi, Carlo 276
Giachino, Elena 370
Giese, Holger 325
Gomes, Pedro de Carvalho 215
Guimarães, Tiago 17
Gurov, Dilian 215

Huang, Wei 140
Hughes, John 385
Huisman, Marieke 230
Huynh, Trung Dong 291

Jones, Paul 200
Joosen, Wouter 170

Klein, Joachim 1
Klüppelholz, Sascha 1
König, Harald 355
Kowal, Matthias 94
Krause, Christian 325
Krstić, Srd̄an 276

Lanese, Ivan 370
Legay, Axel 63
Lochau, Malte 340
Lopes, Antónia 79
Löwe, Michael 355

Macedo, Nuno 17
Majumdar, Rupak 261
Malek, Sam 155
Maoz, Shahar 185
Märcker, Steffen 1
Masci, Paolo 200
Mesuro, Joaqúın 400
Meyer, Bertrand 246
Mezzina, Claudio Antares 370
Michaelides, Danius 291
Milanova, Ana 140
Moreau, Luc 291
Mudduluru, Rashmi 125

Nordio, Martin 246
Norell, Ulf 385

Ouederni, Meriem 306

Pei, Yu 246
Picoco, Attilio 215
Pimentel, Ernesto 306
Prost, Frederic 310

Ramanathan, Murali Krishna 125
Ribeiro, Leila 310
Rubin, Julia 47

432 Author Index

Sadeghi, Alireza 155

Salaün, Gwen 306

Saller, Karsten 340

San Pietro, Pierluigi 276

Schaefer, Ina 94

Schulz, Christoph 355

Schürr, Andy 340

Schweizer, Daniel 109

Smallbone, Nicholas 385

Stevens, Perdita 32

Strüber, Daniel 47

Svenningsson, Josef 385

Svensson, Hans 385

Taentzer, Gabriele 47
Thimbleby, Harold 200
Tichy, Matthias 325
Tribastone, Mirco 94

Van Landuyt, Dimitri 170

W ↪asowski, Andrzej 63
Wies, Thomas 261
Wunderlich, Sascha 1

Zaharieva-Stojanovski, Marina 230
Zhang, Yi 200
Zufferey, Damien 261

	Foreword
	Preface
	Organization
	Table of Contents
	Invited Paper
	Modelling and Model Transformation
	Time and Performance
	Static Analysis
	Scenario-Based Specification
	Software Verification
	Analysis and Repair
	Verification and Validation
	Graph Transformation
	Debugging and Testing
	Author Index

	Probabilistic Model Checkingand Non-standard Multi-objective Reasoning�
	1 Introduction
	2 Theoretical Foundations
	3 Quantiles
	4 Conditional Probabilities and Expectations
	5 Reasoning about the Energy-Utility Ratio
	6 Multi-objective Analysis of Software Product Lines
	References

	Target Oriented Relational Model Finding
	1 Introduction
	2 An Overview of Kodkod
	3 Extending Partial Instances with Targets
	3.1 Analysis via Cardinality Constraints
	3.2 Analysis via PMax-SAT Solvers
	3.3 Symmetry Breaking

	4 Evaluation
	4.1 Case-Study 1: Data Repair
	4.2 Case-Study 2: Bidirectional Transformation
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Bidirectionally Tolerating Inconsistency:Partial Transformations
	1 Introduction
	2 Related Work
	3 Basic Definitions
	3.1 Subspaces and Subspace Pairs

	4 Examples
	4.1 Families of Trivial Examples to Illustrate Definitions
	4.2 Composer Examples

	5 Relating Partial Bx
	5.1 Example: Restricting to a Subspace Pair

	6 Conclusions and Future Work
	References

	Splitting Models Using Information Retrievaland Model Crawling Techniques
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries
	3.1 Models and Model Splitting
	3.2 Relevant Information Retrieval Techniques
	3.3 Feature Location Techniques

	4 Splitting Algorithm
	5 Experimental Settings
	5.1 Subjects
	5.2 Methodology and Measurement
	5.3 Implementation

	6 Results
	6.1 RQ1: How Useful is the Incremental Approach for Model Splitting?
	6.2 RQ2: How Accurate is the Automatic Splitting?
	6.3 Threats to Validity

	7 Related Work
	8 Conclusions and Future Work
	References

	Sound Merging and Differencingfor Class Diagrams
	1 Introduction
	2 Related Work
	3 Compositional Algebra of Class Diagrams
	3.1 Abstract Syntax
	3.2 Merge
	3.3 Subtyping
	3.4 Class Diagram Algebra

	4 Difference and Disjunctive Merge
	5 Semantic Soundness
	6 Conclusion and Final Remarks
	References

	Heterogeneous and Asynchronous Networksof Timed Systems
	1 Introduction
	2 Preliminaries
	3 Heterogeneous Timed Asynchronous Relational Nets
	3.1 Processes and Connections
	3.2 Networks

	4 Consistency
	5 A Compositional Theory for HT-ARNs
	6 Concluding Remarks
	References

	Family-Based Performance Analysisof Variant-Rich Software Systems
	1 Introduction
	2 Foundations
	3 Variability of PAADs
	4 Family-Based Evaluation
	5 NumericalExperiments
	6 Conclusion
	References

	TouchCost: Cost Analysisof TouchDevelop Scripts
	1 Introduction
	1.1 Related Work

	2 TouchDevelop
	3 Sample
	4 PUBS
	5 TouchCost
	5.1 Augmented Control Flow Graph (1)
	5.2 Sample’s Analysis (2)
	5.3 Extracting Cost Relation Systems (3)
	5.4 Using PUBS (4)

	6 Experimental Results
	6.1 Global Performances and Precision
	6.2 Precision on TouchDevelop Sample Scripts
	6.3 Applications of TouchCost

	7 Conclusion
	References

	Efficient Incremental Static AnalysisUsing Path Abstraction
	1 Introduction
	2 Motivation
	3 Background
	4 Design
	4.1 Architecture
	4.2 Equivalence of Boolean Formulas

	5 Implementation
	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

	Type-Based Taint Analysis for JavaWeb Applications
	1 Introduction
	2 SFlowTypeSystem
	2.1 SFlow Qualifiers
	2.2 Context Sensitivity
	2.3 Typing Rules
	2.4 Composition with Reference Immutability

	3 Type Inference
	3.1 Set-Based Solution
	3.2 Valid Typing

	4 Handling of Reflection, Libraries and Frameworks
	5 Empirical Results
	6 Related Work
	7 Conclusions
	References

	Mining the Categorized Software Repositoriesto Improve the Analysis of SecurityVulnerabilities
	1 Introduction
	2 Background and Motivation
	3 Approach Overview
	4 Probabilistic Rule Classification and Selection
	5 Experiment Setup
	6 Evaluation
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

	Modularizing Early Architectural Assumptionsin Scenario-Based Requirements
	1 Introduction
	2 Problem Statement
	3 Modularizing EAAs in Scenario-Based Requirements
	3.1 System Meta-model for EAAs
	3.2 EAA Instantiation in Terms of Use Case-Level Pointcuts
	3.3 Authoring Quality Attribute Scenarios with EAAs

	4 Evaluation and Discussion
	4.1 Prototype Implementation
	4.2 Modularity of EAAs
	4.3 Requirement Navigability and the Transition to Architecture

	5 Related Work
	6 Conclusion
	References

	Semantically Configurable Analysisof Scenario-Based Specifications
	1 Introduction
	2 Related Work
	3 Example and Overview
	4 LSC Semantics Variability
	4.1 Live Sequence Charts Common Syntax and Semantics
	4.2 The LSC Semantic Variability Feature Model

	5 Semantically Configurable Analysis
	5.1 Alternating One Pair Streett Automata
	5.2 Overview of the Transformation
	5.3 Handling Semantic Variability: Feature Specific Rules

	6 Implementation, Validation, and Discussion
	7 Conclusion
	References

	Formal Verification of Medical DeviceUser Interfaces Using PVS�
	1 Introduction
	2 Example Results from Formal Source Code Analysis
	3 The Approach
	3.1 From C++ Code to PVS Specifications
	3.2 Generation of Behavioral Models from PVS Specifications
	3.3 Generation of Test Input Sequences
	3.4 Discussion

	4 Case Study: Analyzing a Real-World Infusion Pump
	4.1 Overview of the User Interface under Study
	4.2 Translation of the C++ Implementation
	4.3 Verification Using Configuration Diagrams
	4.4 Generation of Test Input Sequences

	5 Related Work
	6 Conclusions
	References

	Sound Control Flow Graph Extractionfrom Incomplete Java Bytecode Programs
	1 Introduction
	2 Preliminaries
	2.1 Program Model
	2.2 Bytecode Intermediate Representation

	3 Motivation
	4 CFG Extraction Framework
	4.1 Incomplete JBC Programs and Extraction Algorithm
	4.2 Correctness of

	5 The ConFlEx Tool
	5.1 Implementation
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

	Verifying Class Invariants in ConcurrentPrograms
	1 Introduction
	2 Background
	3 Verification Methodology for Class Invariants
	3.1 Class Invariant Protocol
	3.2 Modular Verification

	4 Formalisation
	4.1 Language
	4.2 Hoare Triples
	4.3 Semantics

	5 Related Work
	6 Conclusion and Future Work
	References

	Automatic Program Repair by Fixing Contracts�
	1 Introduction
	2 SpeciFix in Action
	3 How SpeciFix Works
	3.1 Test Cases
	3.2 Contracts, Correctness, and Faults
	3.3 Weakening vs. Strengthening
	3.4 Fix Generation
	3.5 Fix Validation and Ranking
	3.6 Dynamic Invariants and State Abstraction

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Limitations and Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Dynamic Package Interfaces
	1 Introduction
	2 Overview and Outline
	2.1 System Input
	2.2 Nested Object Graphs
	2.3 DPI Rules
	2.4 Computation Stages

	3 Method Calls and Rules
	4 Generalization Heuristics
	4.1 Extrapolation
	4.2 Merging
	4.3 Exception Isolation

	5 System
	6 Experiences
	7 Conclusion
	References

	SMT-Based Checking of SOLOISTover Sparse Traces
	1 Introduction
	2 Background
	2.1 SOLOIST at a Glance
	2.2 QF-EUFIDL

	3 Encoding SOLOIST into QF-EUFIDL
	4 Evaluation
	5 Conclusions
	References

	An Online Validator for Provenance:Algorithmic Design, Testing, and API
	1 Introduction
	2 A Brief Introduction to PROV
	3 Validation Algorithm
	3.1 Terms
	3.2 Relevant Inferences
	3.3 Term Merging
	3.4 Constraint Checking
	3.5 Validation-Neutral Inferences

	4 Complexity Analysis
	5 Testing and Establishing Compliance with PR
	6 Validator API
	7 Related Work
	8 Conclusion
	References

	Comparator: A Tool for QuantifyingBehavioural Compatibility
	1 Introduction
	2 Quantifying Behavioural Compatibility
	3 Online Comparator Tool
	4 Application to Model-Based Adaptation of Web Services
	References

	Transformation of AttributedStructures with Cloning�
	1 Introduction
	2 Attributed Structures
	3 Sesqui-Pushouts
	4 Attributed Sesqui-Pushout Rewriting
	5 Graph Transformations with Simply Typed λ-terms asAttributes
	6 Graph Transformations with Attributes Defined Equationally: Administration of Cloud Infrastructure
	6.1 Cloud Administration: Static Part
	6.2 Cloud Administration: Dynamic Part

	7 Related Work
	8 Conclusion
	References

	Implementing Graph Transformationsin the Bulk Synchronous Parallel Model
	1 Introduction
	2 Related Work
	3 Background
	3.1 Graph Transformations with Transformation Units
	3.2 Bulk Synchronous Parallel (BSP) on Graphs

	4 Implementing Graph Transformations in BSP
	4.1 Graph Pattern Matching and Rule Applications
	4.2 Transformation Units
	4.3 Attribute Aggregators
	4.4 Run-Time Optimizations

	5 Evaluation
	5.1 Synthetic Example: Sierpinski Triangles
	5.2 Real-Data Example: Movie Database

	6 Conclusions and Future Work
	References

	Modularizing Triple Graph GrammarsUsing Rule Refinement
	1 Introduction and Motivation
	2 Rule Refinements for TGGs
	3 Related Work
	4 Formalization of Rule Refinements
	4.1 Preliminaries: Models, Metamodels and Model Transformation
	4.2 Syntax of Refinements
	4.3 Semantics of Refinement
	4.4 Design Choices vs. Simplifications

	5 Conclusion and Future Work
	References

	Polymorphic Single-Pushout GraphTransformation
	1 Introduction
	2 Single-Pushout Transformation Framework
	3 The Category of Typed Graphs with Inheritance
	4 Single Pushout Transformation with Polymorphism
	5 Related Work
	6 Conclusions and Future Research
	References

	Causal-Consistent Reversible Debugging
	1 Introduction
	2 TheμOz Language
	3 Causal-Consistent Debugging
	4 Assessment: Real-World Concurrency Bugs
	5 Debugging a Concurrent Application
	6 Underlying Theory
	6.1 Causality Relation
	6.2 μOz Semantics
	6.3 Properties of Debugging

	7 Implementation Aspects
	8 Related Work and Conclusion
	References

	An Expressive Semantics of Mocking
	1 Introduction
	2 Why a Mocking Semantics?
	3 Introduction to the Mocking Language
	4 A Process Calculus for Mocking
	5 Ambiguity Detection
	6 From Process Calculus to Mocking Framework
	6.1 Matching
	6.2 Efficient Implementation
	6.3 Extensions

	7 Mocking in the AUTOSAR Testing Project
	8 Related Work
	9 Conclusions
	References

	Integration Testing in the Test TemplateFramework
	1 Introduction
	2 Motivating Example
	3 Introduction to the TTF and Fastest
	4 Structuring a Z Specification for Integration Testing
	5 Integration Testing within the TTF
	6 Subroutines as Stubs of Themselves
	7 Errors Detected during Integration Testing
	8 Discussion
	9 Related Work
	10 Conclusions and Future Work
	References

	Data Flow Coverage for Circus-Based Testing
	1 Introduction
	2 Background Material
	2.1 Circus Notation
	2.2 Circus Operational Semantics and Tests
	2.3 Data-Flow Coverage

	3 Data-Flow Coverage in
	3.1 Specification Traces
	3.2 Definitions and Uses
	3.3 Data-Flow Anomalies and
	3.4 All-Defs

	4 sel-var-df-chain-Trace
	4.1 var-df-chain
	4.2 The Criterion

	5 Conversion of Specification Traces to Symbolic Traces
	6 Related Works
	7 Conclusions
	References

	Author Index

