
Bridging Information Retrieval and Databases

Norbert Fuhr

University of Duisburg-Essen, Germany
norbert.fuhr@uni-due.de

Abstract. For bridging the gap between information retrieval (IR) and
databases (DB), this article focuses on the logical view. We claim that
IR should adopt three major concepts from DB, namely inference, vague
predicates and expressive query languages. By regarding IR as uncertain
inference, probabilistic versions of relational algebra and Datalog yield
very powerful inference mechanisms for IR as well as allowing for more
flexible systems. For dealing with various media and data types, vague
predicates form a natural extension of text retrieval methods to attribute
values, thus switching from propositional to predicate logic. A more ex-
pressive IR query language should support joins, be able to compute
aggregated results, and allow for restructuring of the result objects.

1 Introduction

For several decades, information retrieval (IR) and databases (DB) have evolved
as separate subfields of computer science (see e.g. the juxtaposition in [18, ch.
1]). However, in recent years, there have been increasing research activities to
bridge the gap between these two areas and develop approaches integrating IR
and DB features. There are various levels where such an integration can take
place, namely at the physical, the logical or the conceptual level of information
systems. In this article, we will focus on the logical level, mainly due to the fact
that there is a nice theoretical framework that supports the integration of IR
and DB at this level.

In the logical view on DB, the (retrieval) task of the system can be described as
follows: given a query q, find objects o which imply the query, i. e. o → q. On the
other hand,, Rijsbergen defines IR as being based on uncertain inference where
for a given query q, the IR system should compute the probability P (d → q)
for each document d. By comparing the two definitions, we can see that IR
can be regarded as a generalization of the DB approach here, since it replaces
deterministic by uncertain inference.

Based on this interpretation, this article discusses how three major DB con-
cepts can be adopted and extended in order to enhance current IR systems. In
the next section, we will focus on inference, showing how probabilistic versions
of relational algebra and Datalog increase the inferential capabilities of IR sys-
tems. Section 3 introduces vague predicates as a method for extending classical
IR methods for dealing with attribute values and multimedia data. Query lan-
guage expressiveness is discussed in Section 4, pointing out potential benefits
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from more expressive IR query languages. Two further concepts are briefly ad-
dressed in Section 5, namely four-valued logic and the architecture of future IR
systems. Section 6 concludes this contribution.

2 Inference

Following Rijsbergen’s interpretation of IR as uncertain inference, this section will
demonstrate the close connectionbetween IRand the logical viewondatabases.For
that,we start from relational algebra.As uniformnotation,wewill useDatalog (see
e.g. [17], [3]).

First we show how document retrieval can be formulated in Datalog. For that,
we assume that there is a predicate (a database relation) docTerm(D,T), where
each ground fact gives for a document D a term T the document is indexed with,
e.g.:
docTerm(d1,ir). docTerm(d2,ir).

docTerm(d1,db). docTerm(d2,oop).

In our notation of Datalog formulas, constants start with lowercase letters
and variables with capitals. A query now can be formulated as a logical formula
involving the predicate docTerm, e.g.
?- docTerm(D,ir) searches for documents about IR, and
?- docTerm(D,ir) & docTerm(D,db) for documents both about IR and DB.

For demonstrating the close connection between relational algebra and IR, we
also use the notation of database relations in tabular form. Our running example
consists of the two relations shown in Figure 1. Now we discuss the five basic
operations of relational algebra.

docTerm
DOCNO TERM

1 ir
1 db
2 ir
3 db
3 oop
4 ir
4 ai
5 db
5 oop

author
DOCNO NAME

1 smith
2 miller
3 johnson
4 firefly
4 bradford
5 bates

Fig. 1. Relations in our example database

Projection. As an example for projection, let us ask what the collection is about:
topic(T) :- docTerm(D,T), which results in the following four tuples:

topic(ir). topic(db). topic(oop). topic(ai).
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Selection. If we want to know which documents are about IR, we would ask
aboutir(D) :- docTerm(D,ir), which returns the tuples
aboutir(1). aboutir(2). aboutir(4).

Join. This operation allows for the combination of two relations (which is an
unusual concept in standard IR, where we mostly assume that all the necessary
data is within one document or object). As an example, we want to know authors
writing about IR:
irauthor(A):- docTerm(D,ir) & author(D,A), resulting in the four tuples
irauthor(smith). irauthor(miller).

irauthor(firefly). irauthor(bradford).

Union. If we want to know documents about IR or DB, this can be expressed
via the union operator, which we map onto disjunction in Datalog:
irordb(D) :- docTerm(D,ir). irordb(D) :- docTerm(D,db), giving us
irordb(1). irordb(2). irordb(3). irordb(4). irordb(5).

Difference. The last of the five basic relational algebra operators is (set) differ-
ence, which we can use e.g. for finding documents about IR, but not about DB:
irnotdb(D) :- docTerm(D,ir) & not(docTerm(D,db)), leading to the answer
irnotdb(2). irnotdb(4).

2.1 The Probabilistic Relational Model

Since IR is about uncertain inference, we have to add probabilities to the rela-
tional model [10,16], and switch from deterministic to probabilistic Datalog (pD)
[8]. For that, let us assume, that we attach a probability value to each tuple,
which gives a probability that this specific tuple belongs to the relation under
consideration (see the example relation in Figure 2).

docTerm
β DOCNO TERM

0.9 1 IR
0.5 1 DB
0.6 2 IR
0.7 3 DB
0.8 3 OOP
0.9 4 IR
0.4 4 AI
0.8 5 DB
0.3 5 OOP

Fig. 2. Example probabilistic relation
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Asking now for documents about DB via
aboutdb(D) :- docTerm(D,db). selects the following three tuples with their
corresponding probabilistic weights:
0.5 aboutdb(1). 0.7 aboutdb(3). 0.8 aboutdb(5).

In contrast, when we ask for documents about both IR and DB
aboutirdb(D) :- docTerm(D,ir) & docTerm(D,db),
the weights of the tuples have to be combined. Assuming probabilistic indepen-
dence (as is standard in most IR applications), we get
0.45 aboutirdb(1).

Extensional vs. intensional semantics. For more complex queries, however, we
have to be careful in order to get the probabilities right. For illustrating this
point, let us look at the following example:
0.9 docterm(d1,ir). 0.5 docterm(d1,db). 0.7 link(d2,d1)

about(D,T) :- docTerm(D,T).

about(D,T) :- link(D,D1) & about(D1,T)

q(D) :- about(D,ir) & about(D,db).

Obviously, the correct result cannot be computed in a straightforward way,
like

P (q(d2)) =

=P (about(d2,ir))·P (about(d2,db))

=P (link(d2,d1))·P (docterm(d1,ir))·P (link(d2,d1))·P (docterm(d1,db))

= (0.7 · 0.9) · (0.7 · 0.5).
The problem is that the probability associated with the link is multiplied twice

into the result. This approach of combining the weights without paying attention
to the associated probabilistic events is also called extensional semantics, where
we suffer from “improper treatment of correlated sources of evidence” [13].

Instead, we have to use intensional semantics, where the weight of any derived
fact is computed as a function of weights of underlying ground facts.

In [10] the concept of event keys and event expressions is introduced for han-
dling intensional semantics. Here each tuple in a base relation of our database
is associated with a unique identifier, a so-called event key, which denotes the
corresponding probabilistic event (for didactic reasons, here we use event keys
denoting the original tuple in abbreviated form), as in the following example

docterm
β κ DOC TERM

0.9 dT(d1,ir) d1 ir
0.5 dT(d1,db) d1 db

link
β κ S T

0.7 l(d2,d1) d2 d1

Fig. 3. Probabilistic relations with event keys

For any derived fact, we now compute an event expression as Boolean combi-
nation of the underlying event keys, like e.g.



Bridging IR and DBs 101

?- docTerm(D,ir) & docTerm(D,db).

resulting in
d1 [dT(d1,ir) & dT(d1,db)] 0.9 · 0.5 = 0.45

For the more complex query from above ?- about(D,ir) & about(D,db),
we get
d1 [dT(d1,ir) & dT(d1,db)] 0.9 · 0.5 = 0.45
d2 [l(d2,d1) & dT(d1,ir) & l(d2,d1) & dT(d1,db)] 0.7 · 0.9 · 0.5 = 0.315

Recursion. Probabilistic Datalog can also deal with recursive rules, without
running into problems. As an example, consider the probabilistic facts illustrated
in Figure 4.

d3

docterm

link
d1 d2

0.5

0.40.8

0.9

0.5

ir

db

Fig. 4. An example for probabilistic rules with recursion

Using the same rules as before
about(D,T) :- docTerm(D,T).

about(D,T) :- link(D,D1) & about(D1,T).

the query ?- about(D,ir) would result in the following derived facts:

d1 [dT(d1,ir) | l(d1,d2) & l(d2,d3) & l(d3,d1) &

dT(d1,ir) | ...] 0.900

d3 [l(d3,d1) & dT(d1,ir)] 0.720

d2 [l(d2,d3) & l(d3,d1) & dT(d1,ir)] 0.288

Obviously, a naive evaluation algorithm would run into an infinite loop, as
indicated in the event expression for d1. However, the underlying evaluation
algorithm of probabilistic Datalog can handle these cases correctly [14] (by stop-
ping when a fixpoint is reached).

Likewise, ?- about(D,ir) & about(D,db) would produce
d1 [dT(d1,ir) & dT(d1,db)] 0.450

d3 [l(d3,d1) & dT(d1,ir) & l(d3,d1) & dT(d1,db)] 0.360

d2 [l(d2,d3) & l(d3,d1) & dT(d1,ir) & dT(d1,db)] 0.144

Computation of probabilities for event expressions. Since event expressions can
become rather complex, we need a method for computing the corresponding
probability for any Boolean combination of event keys in a correct way. For
that, we can apply the following method:
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1. Transformation of the event expression into disjunctive normal form

2. Application of the inclusion-exclusion (’sieve’) formula.

The latter is a generalization of the method for handling two conjuncts: P (a∨
b) = P (a) + P (b) − P (a ∧ b). In the general case, where ci denotes a conjunct
of event keys (as a result of the first step), we have to compute the following
alternating sum:

P (c1 ∨ . . . ∨ cn) =
n∑

i=1

(−1)i−1
∑

1≤j1<...<ji≤n

P (cj1 ∧ . . . ∧ cji).

Unfortunately, this formula has exponential complexity. However, there are meth-
ods for identifying the cases where extensional semantics computes the correct
result [4], thus the sieve formula is used only when necessary.

2.2 Interpretation of Probabilistic Weights

The interpretation of the probabilities is based on a possible worlds semantics.
Here we have a set of worlds W = {W1, . . . ,Wn}, where each world Wj has a so-
called probability of accessibility P (Wj), such that

∑n
i=1 P (Wi) = 1. Each world

contains a deterministic relational database. For computing the probability with
which a formula (tuple) is true, we have to sum up the probabilities of those
words in which the formula holds.

As a simple example, the probabilistic database containing the single tuple
0.9 docTerm(d1,ir).

has as possible interpretation
P (W1) = 0.9: {docTerm(d1,ir)}
P (W2) = 0.1: {}

When we have more than one tuple, then there are different possible inter-
pretations. For the example

0.6 docTerm(d1,ir). 0.5 docTerm(d1,db).

there are, among others, the following interpretations:

I1: P (W1) = 0.3: {docTerm(d1,ir)}
P (W2) = 0.3: {docTerm(d1,ir), docTerm(d1,db)}
P (W3) = 0.2: {docTerm(d1,db)}
P (W4) = 0.2: {}

I2: P (W1) = 0.5: {docTerm(d1,ir)}
P (W2) = 0.1: {docTerm(d1,ir), docTerm(d1,db)}
P (W3) = 0.4: {docTerm(d1,db)}

I3: P (W1) = 0.1: {docTerm(d1,ir)}
P (W2) = 0.5: {docTerm(d1,ir), docTerm(d1,db)}
P (W3) = 0.4: {}
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Here probabilistic logic would take a cautious approach and allow all these
interpretations (and many others); by considering the extreme cases I2 and I3,
we can infer that

P (docTerm(d1, ir)&docTerm(d1, db)) ∈ [0.1, 0.5].
In contrast, probabilistic Datalog assumes that the underlying probabilistic events
are all independent (unless specified otherwise), which is only true for interpre-
tation I1 here, and so we get a point estimate of 0.3 for the cooccurrence of the
two events.

2.3 Extensions

Disjoint Events. In some IR applications, we need disjoint probabilistic events.
As an example, assume that we are performing information extraction on a text
talking about Paris, and we have no further clue which city is referred to here.
We only have general knowledge that in 70% of all cases, Paris refers to the
French capital, in 20% to the city in Texas and in 10% to Paris, Idaho. This
knowledge could be mapped by the following relation of tuples with disjoint
events; thus, in the corresponding interpretation, in each world, only one tuple
belongs to the relation CiSt:

CiSt
β City State
0.7 Paris France
0.2 Paris Texas
0.1 Paris Idaho

P (W1) = 0.7: {CiSt(paris, france)}
P (W2) = 0.2: {CiSt(paris, texas)}
P (W3) = 0.1: {CiSt(paris, idaho)}

As a consequence, we have to consider the disjointness of events when comput-
ing the final probability from the event expression, like e.g. P (CiSt(paris, france)
& CiSt(paris, texas)) = 0

Relational Bayes. In some IR applications, the probabilistic weights are not
given beforehand, they have to be derived from deterministic facts. Actually, all
probabilistic indexing methods start from some deterministic facts (like e.g. tf·idf
weighting). Thus it would be nice if we could formulate these weighting methods
also as Datalog rules. The Relational Bayes described in [15] does exactly this
job.

As a starting point, we regard an example similar to the previous one, where
we now have a deterministic database of cities and their nationality observed in
a text corpus.
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nationality and city

Nationality City

”British” ”London”
”British” ”London”
”British” ”London”
”Scottish” ”London”
”French” ”London”
”German” ”Hamburg”
”German” ”Hamburg”
”Danish” ”Hamburg”
”British” ”Hamburg”
”German” ”Dortmund”
”German” ”Dortmund”
”Turkish” ”Dortmund”
”Scottish” ”Glasgow”

=⇒

nationality city

P(Nationality|City) Nationality City

0.600 ”British” ”London”
0.200 ”Scottish” ”London”
0.200 ”French” ”London”
0.500 ”German” ”Hamburg”
0.250 ”Danish” ”Hamburg”
0.250 ”British” ”Hamburg”
0.667 ”German” ”Dortmund”
0.333 ”Turkish” ”Dortmund”
1.000 ”Scottish” ”Glasgow”

The mapping onto probabilities is performed by computing the conditional
probabilities of nationalities conditioned on cities, which we express in proba-
bilistic Datalog as follows:

1 # P(Nationality | City):
2 nationality city SUM(Nat, City) :−
3 nationality and city (Nat, City) | (City);

Here the conditioning operator | generates a uniform probabilistic distribution
over all the tuples having the same value for the attribute we condition on (here:
City), then the SUM operator groups by the attributes specified as argument
(here: (Nat, City)), summing up the probabilities of tuples having the same
values for these attributes.

As an application to IR, we can use this method for computing a simple form
of tf weights, as shown in the following example:

term

Term DocId

sailing doc1
boats doc1
sailing doc2
boats doc2
sailing doc2
east doc3
coast doc3
sailing doc3
sailing doc4
boats doc5

p t d space(Term, DocId) :-
term(Term, DocId) | (DocId);

P (t|d) Term DocId

0.50 sailing doc1
0.50 boats doc1
0.33 sailing doc2
0.33 boats doc2
0.33 sailing doc2
0.33 east doc3
0.33 coast doc3
0.33 sailing doc3
1.00 sailing doc4
1.00 boats doc5

p t d SUM(Term, DocId) :-
term(Term, DocId) | (DocId);

P (t|d) Term DocId

0.50 sailing doc1
0.50 boats doc1
0.67 sailing doc2
0.33 boats doc2
0.33 east doc3
0.33 coast doc3
0.33 sailing doc3
1.00 sailing doc4
1.00 boats doc5

Probabilistic Rules. Another useful extension of probabilistic Datalog are
probabilistic rules. We start with rules for deterministic facts, stating that 70%
of all men like sports, but only 40% of all women:
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0.7 likes-sports(X) :- man(X). 0.4 likes-sports(X) :- woman(X).

man(peter).

Knowing for certain that peter is a man, the corresponding interpretation is as
follows:
P (W1) = 0.7: {man(peter), likes-sports(peter)}
P (W2) = 0.3: {man(peter)}

Things get more complex when we apply probabilistic rules on uncertain facts,
e.g. when we don’t know jo’s gender:
# gender is disjoint on the first attribute

0.7 l-sports(X) :- gender(X,male).

0.4 l-sports(X) :- gender(X,female).

0.5 gender(X,male) :- human(X).

0.5 gender(X,female) :- human(X).

human(jo).

In probabilistic Datalog, the correct interpretation in this case is (see [8]):
P (W1) = 0.35: {gender(jo,male), l-sports(jo)}
P (W2) = 0.15: {gender(jo,male)}
P (W3) = 0.20: {gender(jo,female), l-sports(jo)}
P (W4) = 0.30: {gender(jo,female)}
Thus, for l-sports(jo), we have to sum the probabilities of the two worlds
where this fact holds: P (W1) + P (W3) = 0.55

Another problem with probabilistic rules occurs when multiple rules derive
the same fact, like in the following example:
sameauthor(D1,D2) :-

author(D1,X) & author(D2,X). 0.5 link(D1,D2) :- refer(D1,D2).

0.2 link(D1,D2) :- sameauthor(D1,D2).

In case we have two documents written by the same author and referring to each
other, we might wonder about the probabilistic weight of link:

?? link(D1,D2) :- refer(D1,D2) & sameauthor(D1,D2).

The problem is that given P (l|r) and P (l|s), this does not yield enough infor-
mation on how to compute P (l|r ∧ s). Thus, this probability has to be specified
explicitly, like in the following form:

0.7 link(D1,D2) :- refer(D1,D2) & sameauthor(D1,D2).

0.5 link(D1,D2) :- refer(D1,D2) & not(sameauthor(D1,D2)).

0.2 link(D1,D2) :- sameauthor(D1,D2) & not(refer(D1,D2)).

In fact, this form corresponds to probabilistic inference networks [13], where
our rules define a so-called link matrix.

3 Vague Predicates

Vague Predicates play an important role when users are searching for objects
with certain attributes (e.g. in online shops), but have only soft constraints on
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these facts, like e.g. searching for an LCD TV with high contrast and wide view-
ing angle, but for a reasonable price. Also, if the user does not know about stan-
dard sizes (e.g. asking for a 45 inch screen), this calls for a vague interpretation
of this specification, instead of returning an empty answer set. In the following,
we first discuss the underlying logical issue, and then present a solution that
extends pD.

The Logical View on Vague Predicates. Current IR systems are based
on proposition logic—a query term is present or absent in document, and thus
either true or false (with a certain probability) in a document. Usually, similarity
of values (e.g. similar terms) is not considered in standard text retrieval. On the
other hand, multimedia IR deals with similarity already, like e.g. similarity of
images, music or video (i. e. features thereof). In order to deal with these issues
from a logical point of view, the transition from propositional to predicate logic
becomes necessary.

In the previous sections of this article, we talked about (probabilistic)
databases and Datalog, which are already based on predicate logic. So it seems
quite natural to extend these formalisms to deal with similarity of values and
vague predicates. The underlying ideas have been described in [9,8].

To illustrate these ideas, let us go back to the search for a 45 inch LCD TV.
We assume that vague predicates are implemented as builtin predicates, e.g. in
the form ≈ (X,Y ). Then our query could be formulated as
query(D):- category(D,tv) & type(D,lcd) & size(D,X) & ≈(X,45)

For illustration purposes, here we represent the builtin predicate as a table shown
below. With this interpretation, the system would be able to return the existing
devices with sizes of 46 and 42 inches, although with a reduced certainty.

X ≈ Y
β . . . 0.7 0.8 0.9 1.0 0.9 0.8 . . .
X . . . 42 43 44 45 46 47 . . .
Y . . . 45 45 45 45 45 45 . . .

Vague Predicates in IR and Databases. There are many applications where
the concept of vague predicates may be helpful. From a more formal point of
view, we have various data types in a database, with a set of vague predicates
for each data type. Here are some examples: When we have texts in various
languages, then each language may be regarded as a specific data type, where
language-specific stemming methods can be regarded as vague predicates. When
we are searching for proper names (e.g. persons, companies or products) then
phonetic similarity as well as spelling-tolerant search may be useful. For dates
(e.g. ”the email I received about a month ago”), a vague date condition might
often be useful, as well as for amounts (”a TV set for up to 500 Euros”). Similar
statements can be made for technical measurements (”at room temperature”),
and the search for chemical formulas also involves certain concepts of similarity.

Overall, we see that vague criteria are very frequent in end-user querying of
fact databases. However, as there is no appropriate support for them in SQL,
this calls for the integration of IR methods.
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Probabilistic Modeling of Vague Predicates. Once we want to use vague
predicates, there is the problem of estimating the corresponding probabilistic
weights. In the very beginning, one can define them in an ad-hoc way; but once
we have a running system, we can use feedback data (e.g. clickthrough data) in
order to derive better estimates. In [7], an approach based on machine learning
has been proposed for this purpose. The basic idea is to construct a feature
vector x(qi, di) from the query value qi and document value di for each query-
document pair; a simple feature could e.g. be the relative difference between qi
and di. Once we have collected enough training samples, we can apply some
probabilistic classification method, like e.g. logistic regression. Figure 5 shows
two examples of logistic functions, where the symmetric one could be used for
vague equality, and the other one as a vague interpretation of ’greater than’.

Fig. 5. Logistic functions

4 Expressiveness

The third major area where IR can benefit from DB concepts is expressiveness
of the query language. Traditionally, IR has been focusing on the retrieval of
relevant documents, where each document is regarded as a kind of independent,
atomic unit. For this reason, there was hardly any need for an expressive query
language. With the applications we are facing nowadays, however, there is a need
for formulating more expressive queries. 1

4.1 Retrieval Rules, Joins, Aggregations and Restructuring

In comparison to classical text retrieval as sketched above, pD already gives us
a significant improvement in terms of expressiveness. Starting form logic rules
like e.g. about(D,T) :- docTerm(D,T), we are now able to consider document
linking or anchor text (like in Web retrieval):
about(D,T) :- link(D1,D),about(D1,T).

1 In many of today’s IR applications, the required expressiveness is hard-coded in
the application program; this approach corresponds to the very early days of DB
development.
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In case we have a thesaurus or an ontology, we can consider term hierarchy
about(D,T) :- subconcept(T,T1) & about(D,T1).

Also, it is possible to perform field-specific term weighting:
0.9 docTerm(D,T) :- occurs(D,T,title).

0.5 docTerm(D,T) :- occurs(D,T,body).

While these examples are just rules for methods provided by most of today’s
IR systems, more database oriented queries can also be formulated in pD, es-
pecially when we want to consider relationships between documents and other
kinds of objects in the database. As shown above, joins allow for searching for
authors writing about certain topics, like e.g.
irauthor(N):- about(D,ir) & author(D,N).

We can also ask more complex queries, e.g. Smith’s IR papers cited by Miller:
?- author(D,smith) & about(D,ir) & author(D1,miller) & cites(D,D1).

docTerm
β DNO TERM

0.9 1 ir
0.8 1 db
0.6 2 ir
0.8 3 ir
0.7 3 ai

author
DNO NAME

1 smith
2 miller
3 smith

irauths

1.7 smith
0.6 miller

Fig. 6. Example of probabilistic aggregation with summing

Another important element of query expressiveness is aggregation. If we want
to know the names of the major IR authors, this could be formulated as
irauthor(A):- docTerm(D,ir) & author(D,A).

However, this form of aggregation through projection is not very meaningful,
since a person with a single paper certainly about IR would get the same weight
as another person with dozens of IR papers. Thus, we need some form of (prob-
abilistic) counting, for which the relational Bayes mentioned above provides the
necessary functions. Figure 6 shows the evaluation of the query
irauth(D,A):- docTerm(D,ir) & author(D,A).

irauths SUM(Name) :- irdbauth(Doc,Name) | (Name)

4.2 Expressiveness in XML Retrieval

So far, we have hardly talked about document structure (only about links be-
tween documents). In many IR applications, document structure plays an impor-
tant role, and the documents of a (sub)collection have a quite regular structure
(in contrast to Web documents). As XML is the most popular standard for repre-
senting document structure, here we discuss how we can exploit this structure for
increasing precision in retrieval. Figure 7 gives a survey over the possible views
on XML documents, which can also be regarded as a design space for XML IR
systems. Here we distinguish two dimensions, namely the structure and content
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type. The former deals with the structural aspects of XML documents, starting
from a simple view as a tree (nested) structure up to the database-oriented view
as implemented in the XQuery language. The second dimension deals with the
types of content we may find in XML documents. In most cases, we assume all
content to be text only. However, markup of an element may indicate a spe-
cific data type (e. g. a date) or even complex object types. In the following, we
describe each of the two design dimensions in more detail.

Fig. 7. Views on XML

XML Structure

Nested Structure. Whereas classical retrieval regards documents as atomic units,
the XML markup of a document immediately implies a nested, tree-like struc-
ture. Following this view, a retrieval method should be able to retrieve subtrees
(i. e. complete elements) instead of complete documents only. Typical query lan-
guages for this kind of retrieval provide no specific means for specifying struc-
tural constraints, in most cases they only allow for the specification of a set
of terms. The corresponding retrieval method aims at performing a relevance-
oriented selection of answer elements, i. e. the system should return the most
specific relevant elements.

Named Fields. This view is somewhat orthogonal to the nested structure view:
Here, we only regard the element names, without considering their structural
relationships. Thus, a document can be seen as a set of named fields (sometimes
also called a linear data model). Here we can refer to elements through field
names only, whereas the context of an element is ignored (e. g., in a document,
we may not be able to distinguish between the author of the document and that
of a referenced paper). Another problem is that of false coordination: e. g., for
a document with two authors from different institutions, our retrieval method
may not be able to coordinate author names and affiliations correctly.
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XPath. XPath provides full expressiveness for navigating through the document
tree, by parent/child and ancestor/descendant relationships, whereas horizontal
navigation is supported via operators like following/preceding, following-sibling
and preceding-sibling; in addition, there are the attribute and the namespace
axis. With these operators — in combination with the specification of element
names — XPath allows for the selection of arbitrary elements.

XQuery. XQuery offers an even higher expressiveness than XPath, due to the
fact that it was developed especially for database-like applications. Thus, in
addition to XPath, it supports typical database operators like joins, aggregations
and constructors for restructuring results.

As a simple example, assume a list of book titles with prices and publisher
names stored in a file named ‘bib.xml’ ; then the following query would produce
a list of publishers, each along with the average price of its books:

FOR $p IN distinct(document("bib.xml")//publisher)

LET $a := avg(document("bib.xml")//book[publisher = $p]/price)

RETURN

<publisher>

<name> {$p/text()} </name>

<avgprice> {$$a} </avgprice>

</publisher>

Here the FOR construct loops over all publishers, whereas the following LET

retrieves all corresponding book prices and then computes their average. In the
RETURN clause, the XML structure of the result is specified.

XML Content Typing. Now we regard the content dimension of XML
retrieval.

Text. Most of today’s XML retrieval systems assume that an XML document
contains only text. In some sense, they still follow the traditional view of a
document as a text block, which is now structured via XML tags.

Data Types. Different XML elements may contain different types of text, and
this information could be exploited in retrieval. As discussed above, advanced
IR system should support the notion of data types, where each such type is
accompanied by a set of (vague) predicates.

Object Types. One can even go one step further and regard objects occurring
in XML documents, like for example persons, locations or companies. Objects
may have several attributes (of different data types), and queries may refer to
any of these attributes. As an example, regard the following text excerpt from
Wikipedia:

Pablo Picasso (October 25, 1881 – April 8, 1973) was a Spanish painter
and sculptor..... In Paris, Picasso entertained a distinguished coterie of
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friends in the Montmartre and Montparnasse quarters, including André
Breton, Guillaume Apollinaire, and writer Gertrude Stein.

If this text were marked up appropriately, a retrieval system should be able to
answer queries like e. g. “To which other artists did Picasso have close relation-
ships?”or “Where did he meet Gertrude Stein?”. There is substantial work on
named entity recognition methods, which allow for automatic markup of object
types.

Overall, with data and object types, precision of XML retrieval can be
increased.

Fig. 8. OWL modeling

Towards Semantic Retrieval of XML Documents. In the discussion from
above, we have not regarded the semantics of XML element names. In fact, some
XML applications use rather cryptic element names. However, for new XML ap-
plications, the effort for using meaningful element names would be only marginal.
Based on this information, the semantics of tag names could be exploited. In
Figure 8, we have used OWL [12] for an example modelling of descriptions of
artists and scientists (e. g. in Wikipedia). A first benefit would be the possibility
to search for generalizations or specializations of concepts. (e. g. searching for
artists would retrieve poets, actors and singers). In a similar way, also hierarchies
on properties would be supported2, and the domain and range of such properties
can be considered

Readers familiar with XQuery and XPath Full Text [2] may have noticed that
some of the features discussed here are already available in XQuery. However,
weighting in XQuery is restricted to the text search part. Thus, probabilistic
inference involving joins, rules or aggregations is missing.

2 However, hierarchies of properties cannot be expressed in OWL.
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5 Further Concepts

Here we want to point out two directions of ongoing research in the integration
of IR and DB.

5.1 4-Valued (Probabilistic) Logics

In Section 2, we have demonstrated how we can enhance the inference capabil-
ities of today’s IR systems by using pD. Like in most logic-based approaches,
this is only feasible if we have a consistent knowledge base. In IR, however,
when dealing with large collections (from possibly heterogenous sources), it is
inevitable that we introduce inconsistencies due to conflicting statements orig-
inating from different documents (e.g., there are many documents on the Web
claiming that Barack Obama is a Muslim). Since we can derive anything from
an inconsistent knowledge base, our standard logic-based approach is doomed
to fail in such settings. The only way out is to use a different logical formalism,
like e. g. four-valued logic [1]. In addition to the truth values true and false,
there are also the values unknown and inconsistent. Then, for each statement,
the probabilities for the four truth values add up to 1. In the Obama-Muslim
example from above, a summarization over all relevant Web documents would
yield a certain probability for inconsistent, besides a high probability for false.

Another benefit from 4-valued logic is that it allows for both open and closed
world assumptions: Standard Datalog is based on the closed world assumption,
i. e., if the system cannot infer a certain statement, then this statement is as-
sumed to be false. For example, if we cannot derive author(smith,doc123),
then smith is not an author of the paper in question. For classical DB appli-
cations, this approach is very reasonable, assuming that a database is always
complete and correct. On the other hand, for IR-oriented applications, a closed
world assumption is often inappropriate. For example, if we are unable to in-
fer about(d123,ir), this does not mean that we are sure that this paper is not
about IR. In fact, language models solve this problem by using a collection-based
prior: if a term does not occur in a document, then a small default probability
for the document being about the term is assumed (which is derived from the
relative collection frequency of the term). From a logical point of view,3 this
situation should be modeled via an open world assumption, meaning that we
cannot make a statement whether or not the document is about the term in
question, represented as unkown in our four-valued logic. Further research will
show if we can achieve reasonable benefits from an enhanced logical modeling.

4-valued probabilistic Datalog (with open and closed world assumptions) was
introduced in [10], showing that the computational effort is roughly doubled
in comparison to the two-valued case. In [11], this was extended towards an
object-oriented logic, which allowed for the explicit modeling of contexts (e.g.
documents) with accessibility probabilities. This idea was taken further in [6] for
dealing with annotations, and in [5] for modeling summarization.

3 Of course, the language model approach can be easily represented in pD, as shown
in [15].
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5.2 IR vs. DB Systems

Figure 9 shows a comparison between standard IR and DB systems. In the DB
world, there is a clear separation between the DBMS and the application it-
self, while in the IR world, no such separation exists—the user interacts directly
with the IR system. Besides the different architecture, this figure also highlights
a major difference between IR- and DB-oriented research: In IR research, the
pragmatic aspects of the application play an important role (which is, e.g., re-
flected in the central concept of relevance). On the other hand, in DB settings, all
pragmatic aspects are delegated to the application component, which is mostly
beyond the scope of DB research.

Fig. 9. Pragmatics in IR vs. DB Fig. 10. Towards an IRMS

This figure might also stimulate another idea: Why should IR not switch
to the DB-like architecture and introduce a separation between applications
and IR management system? Given the broad variety of IR applications we are
dealing with nowadays, building separate systems for each type of task is not
very reasonable. Instead, it might be more effective to have a standardized IR
management system (IRMS). On top this system, we can implement various
applications (see Figure 10). Then of course, there is the question of the design
of the interface between application and IRMS. In the DB world, SQL plays
this role. In parallel, we would need an IR query language with comparable
capabilities—the basic concepts of such a language have been described in this
article.

6 Conclusion

In this article, we have focused on the logical view for bridging the gap between
IR and DB. From this perspective, there are three major concepts that should
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become part of IR, namely inference, vague predicates and expressive query
languages.

Concerning inference, the logical view interprets IR as being based on uncer-
tain inference, which is a generalization of the traditional DB approach. We have
seen that the probabilistic relational model supports the integration of IR and
DB, while pD yields more powerful inference mechanism; especially, pD allows
for formulating retrieval strategies as logical rules, thus making IR systems much
more flexible than the current approaches.

For dealing with various media and data types, vague predicates form a natu-
ral extension of IR methods to attribute values, thus switching from propositional
to predicate logic. The probabilistic weights of vague predicates can be learned
from feedback data.

Finally, a more expressive query language would allow for joins, for computing
aggregated results, and for restructuring the result objects.
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