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Abstract. Dolev-Yao models of cryptographic operations constitute the
foundation of many successful verification tools for security protocols,
such as the protocol verifier ProVerif. Research over the past decade
has shown that many of these symbolic abstractions are computationally
sound, i.e., the absence of attacks against the abstraction entails the secu-
rity of suitable cryptographic realizations. Most of these computational
soundness (CS) results, however, are restricted to trace properties such
as authentication, and the few promising results that strive for CS for
the more comprehensive class of equivalence properties, such as strong
secrecy or anonymity, either only consider a limited class of protocols or
are not amenable to fully automated verification.

In this work, we identify a general condition under which CS for trace
properties implies CS for uniformity of bi-processes, i.e., the class of
equivalence properties that ProVerif is able to verify for the applied -
calculus. As a case study, we show that this general condition holds
for a Dolev-Yao model that contains signatures, public-key encryption,
and corresponding length functions. We prove this result in the CoSP
framework (a general framework for establishing CS results). To this
end, we extend the CoSP framework to equivalence properties, and we
show that an existing embedding of the applied 7-calculus to CoSP can
be re-used for uniform bi-processes. On the verification side, as analyses
in ProVerif with symbolic length functions often do not terminate, we
show how to combine the recent protocol verifier APTE with ProVerif.
As a result, we establish a computationally sound automated verification
chain for uniformity of bi-processes in the applied 7w-calculus that use
public-key encryption, signatures, and length functions.

1 Introduction

Manual security analyses of protocols that rely on cryptographic operations are
complex and error-prone. As a consequence, research has strived for the automa-
tion of such proofs soon after the first protocols were developed. To eliminate
the inherent complexity of cryptographic operations that verification tools are
struggling to deal with, cryptographic operations have been abstracted as sym-
bolic terms that obey simple cancelation rules, so-called Dolev-Yao models [1,2].
A variety of automated verification tools have been developed based on this
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abstraction, and they have been successfully used for reasoning about various
security protocols [3,4,5,6,7,8,9,10]. In particular, a wide range of these tools is
capable of reasoning about the more comprehensive class of equivalence proper-
ties, such as strong secrecy and anonymity, which arguably is the most important
class of security properties for privacy-preserving protocols.

Research over the past decade has shown that many of these Dolev-Yao models
are computationally sound, i.e., the absence of attacks against the symbolic ab-
straction entails the security of suitable cryptographic realizations. Most of these
computational soundness (CS) results against active attacks, however, have been
specific to the class of trace properties [11,12,13,14,15,16,17,18,19,20,21], which
is only sufficient as long as strong notions of privacy are not considered, e.g., in
particular for establishing various authentication properties. Only few CS results
are known for the class of equivalence properties against active attackers, which
are restricted in of the following three ways: either they are restricted to a small
class of simple processes, e.g., processes that do not contain private channels and
abort if a conditional fails [22,23,24], or they rely on non-standard abstractions
for which it is not clear how to formalize any equivalence property beyond the
secrecy of payloads [25,26,27], such as anonymity properties in protocols that
encrypt different signatures, or existing automated tool support is not applica-
ble [28,29]. We are thus facing a situation where CS results, despite tremendous
progress in the last decade, still fall short in comprehensively addressing the class
of equivalence properties and protocols that state-of-the-art verification tools are
capable to deal with. Moreover, it is unknown to which extent existing results
on CS for trace properties can be extended to achieve more comprehensive CS
results for equivalence properties.

Our Contribution. In this work, we close this gap by providing the first result
that allows to leverage existing CS results for trace properties to CS results for
an expressive class of equivalence properties: the uniformity of bi-processes in
the applied m-calculus. Bi-processes are pairs of processes that differ only in the
messages they operate on but not in their structure; a bi-process is uniform if
for all surrounding contexts, i.e., all interacting attackers, both processes take
the same branches. Blanchet, Abadi, and Fournet [7] have shown that uniformity
already implies observational equivalence. Moreover, uniformity of bi-processes
corresponds precisely to the class of properties that the state-of-the-art verifi-
cation tool ProVerif [30] is capable to analyze, based on a Dolev-Yao model in
the applied m-calculus. In contrast to previous work dealing with equivalence
properties, we consider bi-protocols that use the fully fledged applied m-calculus,
in particular including private channels and non-determinate processes.

To establish this main result of our paper, we first identify the following
general condition for Dolev-Yao models: “whenever a computational attacker can
distinguish a bi-process, there is a test in the Dolev-Yao model that allows to
successfully distinguish the bi-process.” We say that Dolev-Yao models with this
property allow for self-monitoring. We show that if a specific Dolev-Yao model
fulfills this property, then there is for every bi-process a so-called self~-monitor,
i.e., a process that performs all relevant tests that the attacker could perform
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on the two processes of the bi-process, and that raises an exception if of these
tests in the symbolic model distinguishes the bi-process. We finally show that
whenever a Dolev-Yao model allows for self-monitoring, CS for uniformity of bi-
processes automatically holds whenever CS for trace properties has already been
established. This result in particular allows for leveraging existing CS results for
trace properties to more comprehensive CS results for uniformity of bi-processes,
provided that the Dolev-Yao model can be proven to allow for self-monitoring.

We exemplarily show how to construct a self-monitor for a symbolic model
that has been recently introduced and proven to be computationally sound for
trace properties by Backes, Malik, and Unruh [31]. This symbolic model con-
tains signatures and public-key encryption and allows to freely send and receive
decryption keys. To establish that the model allows for self-monitoring, we first
extend it using the common concept of a length function (without a length func-
tion, CS for uniformity of bi-processes and hence the existence of self-monitors
trivially cannot hold, since encryptions of different lengths are distinguishable in
general), and we show that this extension preserves the existing proof of CS for
trace properties. Our main result in this paper then immediately implies that
this extended model satisfies CS for uniformity of bi-processes.

We moreover investigate how computationally sound automated analyses can
still be achieved in those frequent situations in which ProVerif does not man-
age to terminate whenever the Dolev-Yao model supports a length function.
We proceed in two steps: first, we feed a stripped-down version of the protocol
without length functions in ProVerif; ProVerif then yields a result concerning
the uniformity of bi-processes, but only for this stripped-down protocol. Second,
we analyze the original protocol using the APTE tool by Cheval, Cortier, and
Plet [32], which is specifically tailored to length functions. This yields a result for
the original protocol but only concerning trace equivalences. We show that both
results can be combined to achieve uniformity of bi-processes for the original
protocol, and thus a corresponding CS result for uniformity of bi-processes.

We present the first general framework for CS for equivalence properties, by
extending the CoSP framework: a general framework for symbolic analysis and
CS results for trace properties [15]. CoSP decouples the CS of Dolev-Yao models
from the calculi, such as the applied m-calculus or RCF: proving x cryptographic
Dolev-Yao models sound for y calculi only requires x +y proofs (instead of x - y).
We consider this extension to be of independent interest. Moreover, we prove the
existence of an embedding from the applied m-calculus to the extended CoSP
framework that preserves the uniformity of bi-processes, using a slight variation
of the already existing embedding for trace properties.

2 Equivalence Properties in the CoSP Framework

The results in this work are formulated within CoSP [15], a framework for
conceptually modular CS proofs that decouples the treatment of the crypto-
graphic primitives from the treatment of the calculi. Several calculi such as the
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applied m-calculus [15] and RCF [33] (a core calculus of F#) can be embedded
into CoSP and combined with CS results for cryptographic primitives.

The original CoSP framework is only capable of handling CS with respect to
trace properties, i.e., properties that can be formulated in terms of a single trace.
Typical examples include the non-reachability of a certain “bad” protocol state,
in that the attacker is assumed to have succeeded (e.g., the protocol never reveals
a secret)7 or correspondence properties such as authentication (e.g., a user can
access a resource only after proving a credential). However, many interesting
protocol properties cannot be expressed in terms of a single trace. For instance,
strong secrecy or anonymity are properties that are, in the computational setting,
usually formulated by means of a game in which the attacker has to distinguish
between several scenarios.

To be able to handle the class of equivalence properties, we extend the CoSP
framework to support equivalence properties. First, we recall the basic definitions
of the original framework. Dolev-Yao models are formalized as follows in CoSP.

Definition 1 (Symbolic Model). A symbolic model M = (C,N, T, D) con-
sists of a set of constructors C, a set of nonces N, a message type T over C and
N (with N C T), a set of destructors D over T. We require that N = Ng & Np
for countable infinite sets Np of protocol nonces and attacker nonces Ng.

We write ¢ for a list ¢1,...,t, if n is clear from the context. A constructor C/n
is a symbol with (possibly zero) arity. A nonce N is a symbol with zero arity. A
message type T over C and N is a set of terms over constructors C and nonces
N. A destructor D /n of arity n, over a message type T is a partial map T™ — T.
If D is undefined on ¢, we write D(t) = L.

To unify notation, we define for every constructor or destructor F/n € DUC

and every nonce ' € N the partial function evalp : T" — T, where n = 0
for a nonce, as follows: If F' is a constructor, evalp(t) := F(t) if F(t) € T and
evalp(t) := L otherwise. If F' is a nonce, evalp() := F. If F is a destructor,
evalp(t) := F(¢t) if F(t) # L and evalp(t) := L otherwise.
Protocols. In CoSP, a protocol is represented as a tree. Each node in this tree
corresponds to an action in the protocol: computation nodes are used for drawing
fresh nonces, applying constructors, and applying destructors; input and output
nodes are used to send and receive messages; control nodes are used for allowing
the attacker to schedule the protocol.

Definition 2 (CoSP Protocol). A CoSP protocol I is a tree of infinite depth
with a distinguished root and labels on both edges and nodes. Each node has a
unique identifier v and one of the following types:

— Computation nodes are annotated with a constructor, nonce or destructor
F/n together with the identifiers of n (not necessarily distinct) nodes; we call
these annotations references, and we call the referenced nodes arguments.
Computation nodes have exactly two successors; the corresponding edges are
labeled with yes and no, respectively.

— Input nodes have no annotations. They have exactly one successor.
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— Output nodes have a reference to exactly one node in their annotations. They
have exactly one successor.

— Control nodes are annotated with a bitstring l. They have at least one and
up to countably many successors; the corresponding edges are labeled with
distinct bitstrings I'. (We call | the out-metadata and I’ the in-metadata.)

We assume that the annotations are part of the node identifier. A node v can
only reference other nodes V' on the path from the root to v; in this case V' must
be a computation node or input node. If V' is a computation node, the path from
V' to v has additionally to go through the outgoing edge of v' with label yes.

Bi-protocols. To compare two variants of a protocol, we consider bi-protocols,
which rely on the same idea as bi-processes in the applied m-calculus [7]. Bi-
protocols are pairs of protocols that only differ in the messages they operate on.

Definition 3 (CoSP Bi-protocol). A CoSP bi-protocol IT is defined like a
protocol but uses bi-references instead of references. A bi-reference is a pair
(Vieft, Vright) of nmode identifiers of two (not necessarily distinct) nodes in the pro-
tocol tree. In the left protocol left(II) the bi-references are replaced by their left
components; the right protocol right(II) is defined analogously.

2.1 Symbolic Indistinguishability

In this section, we define a symbolic notion of indistinguishability. First, we
model the capabilities of the symbolic attacker. Operations that the symbolic
attacker can perform on terms are defined as follows, including the destruction
of already known terms and the creation of new terms.!

Definition 4 (Symbolic Operation). Let M = (C,N, T, D) be a symbolic
model. A symbolic operation O/n (of arity n) on M is a finite tree whose nodes
are labeled with constructors from C, destructors from D, nonces from N, and
formal parameters x; with i € {1,...,n}. For constructors and destructors, the
children of a node represent its arguments (if any). Formal parameters x; and
nonces do not have children.

We extend the evaluation function to symbolic operations. Given a list of terms
t € T™, the evaluation function evalp : T" — T recursively evaluates the tree
O starting at the root as follows: The formal parameter x; evaluates to t;. A
node with FF € CUNEgUD evaluates according to evalp. If there is a node that
evaluates to 1, the whole tree evaluates to 1.

A symbolic execution of a protocol is basically a valid path through the protocol
tree. It induces a view, which contains the communication with the attacker.

! We deviate from the definition in the original CoSP framework [15], where a deduc-
tion relation describes which terms the attacker can deduce from the already seen
terms. This modification is not essential; all results for trace properties that have
been established in the original framework so far are compatible with our definition.
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Definition 5 (Symbolic Execution). Let a symbolic model M = (C,N, T, D)
and a CoSP protocol I be given. A symbolic view of the protocol I is a (finite)
list of triples (Vi, v, f;) with the following conditions:

For the first triple, we have Vi = €, vy is the root of I, and f1 is an empty
partial function, mapping node identifiers to terms. For every two consecutive
tuples (V v, f) and (V' v/, f') in the list, let U be the nodes referenced by v and
define t through fj == f(7;). We conduct a case distinction on v.

— v 18 a computation node with constructor, destructor or nonce F.
Let V! = V. If m = evalp(t) # L, V' is the yes-successor of v in I, and
f'=fw:=m). If m= L, then v’ is the no-successor of v, and f' = f.

— v is an input node. If there exists a term t € T and a symbolic operation
O on M with evalo(Vour) = t, let V' be the successor of v in I, V' =V =
(in, (¢,0)), and f' = f(v :=1).

— v is an output node. Let V' =V :: (out,t1), V' is the successor of v in I,
and ' = f.

— v is a control node with out-metadata . Let V' be the successor of v
with the in-metadata I (or the lexicographically smallest edge if there is no
edge with label '), f' = f, and V! =V :: (control, (I,1')).

Here, Vou denotes the list of terms in V' that have been sent at output nodes, i.e.,
the terms t contained in entries of the form (out,t) in V. Analogously, Vour-meta
denotes the list of out-metadata in V' that has been sent at control nodes.

The set of all symbolic views of I is denoted by SViews(I). Furthermore, Vi,
denotes the partial list of V' that contains only entries of the form (in, (x,0)) or
(control, (x,1") for some symbolic operation O and some in-metadata l', where
the input term and the out-metadata have been masked with the symbol x. The
list Vi, is called attacker strategy. We write [Vin]sviews(r) to denote the class of
all views U € SViews(I) with Up, = Vi,

The knowledge of the attacker are the results of all the symbolic tests the attacker
can perform on the messages output by the protocol. To define the attacker
knowledge formally, we have to pay attention to two important details. First, we
concentrate on whether a symbolic operation fails or not, i.e., if it evaluates to L
or not; we are not interested in the resulting term in case the operation succeeds.
The following example illustrates why: suppose the left protocol of a bi-protocol
does nothing more than sending a ciphertext ¢ to the attacker, whereas the right
protocol sends a different ciphertext ¢’ (with the same plaintext length) to the
attacker. Assume that the decryption key is kept secret. This bi-protocol should
be symbolically indistinguishable. More precisely, the attacker knowledge in the
left protocol should be statically indistinguishable from the attacker knowledge
in the right protocol. Recall that O = x; is the symbolic operation that just
returns the first message received by the attacker. If the result of O were part of
the attacker knowledge, the knowledge in the left protocol (containing ¢) would
differ from the knowledge in the right protocol (containing ¢’), which is not
what we would like to express. On the other hand, our definition, which only
cares about the failure or success of a operation, requires that the symbolic
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model contains an operation equals to be reasonable. This operation equals allows
the attacker to test equality between terms: consider the case where the right
protocol sends a publicly known term ¢ instead of ¢/, but still of the same length
as c¢. In that case the attacker can distinguish the bi-protocol with the help of
the symbolic operation equals(t, z1).

The second observation is that the definition should cover the fact that the
attacker knows which symbolic operation leads to which result. This is essential
to reason about indistinguishability: consider a bi-protocol such that the left
protocol sends the pair (n,t), but the right protocol sends the pair (¢,n), where ¢
is again a publicly known term and n is a fresh protocol nonce. The two protocols
do not differ in the terms that the attacker can deduce after their execution; the
deducible terms are all publicly known terms as well as n. Still, the protocols are
trivially distinguishable by the symbolic operation equals(Oy, snd(z1)) because
equals(Oy, snd((n,t))) # L but equals(t, snd((t,n))) = L, where snd returns the
second component of a pair and O, is a symbolic operation that constructs t.

Definition 6 (Symbolic Knowledge). Let M be a symbolic model. Given a
view V' with |Vout| = n, the full symbolic knowledge function Ky is a function
from symbolic operations on M (see Definition 4) of arity n to {T, L}, defined
by Ky (O) := L if evalo(Vout) = L and Ky (O) := T otherwise.

Intuitively, we would like to consider two views equivalent if they look the same
for a symbolic attacker. Despite the requirement that they have the same order of
output, input and control nodes, this is the case if they agree on the out-metadata
(the control data sent by the protocol) as well as the symbolic knowledge that
can be gained out of the terms sent by the protocol.

Definition 7 (Equivalent Views). Let two views V,V' of the same length
be given. We denote their ith entry by Vi and V/, respectively. V and V' are
equivalent (V' ~ V'), if the following three conditions hold:

1. (Same structure) V; is of the form (s,-) if and only if V/ is of the form (s, )
for some s € {out, in, control}.

2. (Same out-metadata) Vour-mMeta = Vs mreta-

3. (Same symbolic knowledge) Ky = Ky.

Finally, we define a bi-protocol to be symbolically indistinguishable if they lead
to equivalent views when faced with the same attacker strategy.?

Definition 8 (Symbolic Indistinguishability). Let M be a symbolic model
and P be a class of bi-protocols on M. Given an attacker strategy Vi, (in the
sense of Definition 5), a bi-protocol II € P is symbolically indistinguishable
under Vi, if for all views Viege € [Vin]sviews(iefe(m)) 0f the left protocol under Vi,
there is a view Vight € [Vin|sviews(right(1r)) of the right protocol under Vi, such
that Viest ~ Viight, and vice versa.

2 For the sake of convenience, we define CS for bi-protocols. However, our definition
can be easily generalized to arbitrary pairs of protocols.
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A bi-protocol II € P is symbolically indistinguishable, if IT is indistinguishable
under all attacker strategies. We write left(IT) =5 right(II) for the symbolic
indistinguishability of II.

2.2 Computational Indistinguishability

On the computational side, the constructors and destructors in a symbolic model
are realized with cryptographic algorithms, formalized as follows.

Definition 9 (Computational Implementation). Let M = (C,N, T, D) be
a symbolic model. A computational implementation of M is a family of functions
A = (Ay)zecubpun such that Ap for F/n € CUD is a partial deterministic
function N x ({0,1}")" — {0,1}", and An for N € N is a total probabilistic
function with domain N and range {0,1}". The first argument of Ar and Ay
represents the security parameter.

All functions Agr have to be computable in deterministic polynomial time, and
all Ay have to be computable in probabilistic polynomial time (ppt).

The computational execution of a protocol is a randomized interactive ma-
chine that runs against a ppt attacker A. The transcript of the execution contains
essentially the computational counterparts of a symbolic view.

Definition 10 (Computational Challenger). Let A be a computational im-
plementation of the symbolic model M = (C,N, T, D) and I be a CoSP protocol.
Let A be a ppt machine and p be a polynomial. For a security parameter k, the
computational challenger Execm a 1,,(k) is the following interactive machine:

Initially, let v be the root of I. Let f and n be empty partial functions from
node identifiers to bitstrings and from N to bitstrings, respectively. Enter a loop
and proceed depending on the type of v:

— v is a computation node with nonce N € N. If n(N) # L, let m’ :=
n(N); otherwise sample m' according to An (k). Let v’ be the yes-successor
ofv. Let f = f(v:=m/), n:=n(N:=m'), and v :=1'.

— v 18 a computation node with constructor or destructor F. Let U be
the nodes referenced by v and mj := f(0;). Then, m' := Ap(k,m). If m' # L,
then V' is the yes-successor of v, if m' = 1, then V' is the no-successor of
v. Let f:= f(v:=m') and v :=V'.

— v is an input node. Ask the adversary A for a bitstring m. Let v be the
successor of v. Let f := f(v:=m) and v :=1'".

— v 1s an output node. Send my to A. Let V' be the successor of v, and let
vi=1v.

— v 18 a control node with out-metadata [. Send l to A. Upon receiving
in-metadata l', let V' be the successor of v along the edge labeled I (or the
lezicographically smallest edge if there is no edge with label ). Let v :=1/'.

Let len be the number of nodes from the root to v plus the total length of all
bitstrings in the range of f. Stop if len > p(k); otherwise continue the loop. We
call V' the computational view of a run.



50 M. Backes, E. Mohammadi, and T. Ruffing

Definition 11 (Computational Execution). The interaction between the
challenger Execm,a, i p(k) and the adversary A(k) is called the computational
execution, denoted by (Execn A, ir,p(k)|A(k)). It stops whenever one of the two
machines stops, and the output of (Execm A, m.p(k)|A(k)) is the output of A(k).

Given these definitions, computational indistinguishability for bi-protocols is
naturally defined. A bi-protocol is indistinguishable if its challengers are compu-
tationally indistinguishable for every ppt attacker A.

Definition 12 (Computational Indistinguishability). Let IT be an efficient’
CoSP bi-protocol and let A be a computational implementation of M. I is compu-
tationally indistinguishable if for all ppt attackers A and for all polynomials p, we
have that <EXeCA7M7|eft(H)7p(k)|A(k)> Re <ExecA7M7,ight(n)7p(k)|A(k)> , where =,
denotes computational indistinguishability of distribution ensembles.

Computational Soundness. Having defined symbolic and computational in-
distinguishability, we are finally able to relate them. The previous definitions
culminate in the definition of CS for equivalence properties. It states that the
symbolic indistinguishability of a bi-protocol implies its computational indistin-
guishability. In other words, it suffices to check the security of the symbolic
bi-protocol, e.g., using mechanized protocol verifiers such as ProVerif.

Definition 13 (Computational Soundness for Equivalence Properties).
Let a symbolic model M and a class P of efficient bi-protocols be given. An
implementation A of M is computationally sound for M if for every II € P,
we have that I is computationally indistinguishable whenever I1 is symbolically
indistinguishable.

3 Self-monitoring

In this section, we identify a sufficient condition for symbolic models under
which CS for trace properties implies CS for equivalence properties for a class
of uniformity-enforcing protocols, which correspond to uniform bi-processes in
the applied w-calculus. We say that a symbolic model that satisfies this condi-
tion allows for self-monitoring. The main idea behind self-monitoring is that a
symbolic model is sufficiently expressive (and its implementation is sufficiently
strong) such that the following holds: whenever a computational attacker can
distinguish a bi-process, there is a test in the symbolic model that allows to
successfully distinguish the bi-process.

CS for Trace Properties. We first review CS for trace properties. A trace
property is a prefix-closed set of node identifiers. We refer to [15] for the precise
definition of computational and symbolic satisfiability. CS for trace properties
states that all attacks (against trace properties) that can be excluded for the

3 A (bi-)protocol is efficient if the size of every node identifier v is polynomially bounded
in the length of the path to the root, and v is computable in deterministic polynomial
time given all node and edge identifiers on this path.
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symbolic abstraction can be excluded for the computational implementation as
well. Hence, if all the symbolic traces satisfy a certain trace property, then all
computational traces satisfy this property as well.

Definition 14 (Computational Soundness for Trace Properties [15]). A
symbolic model (C,N, T, D) is computationally sound for trace properties with
respect to an implementation A for a class P of efficient protocols if the following
holds: for each protocol I € P and each trace property P, if I symbolically satisfies
P then I computationally satisfies P.

Uniformity-enforcing. A bi-protocol is uniform if for each symbolic attacker
strategy, both its variants reach the same nodes in the CoSP tree, i.e., they never
branch differently.* Formally, we require that the bi-protocols are uniformity-
enforcing, i.e., when the left and the right protocol of the bi-protocol IT take
different branches, the attacker is informed. Since taking different branches is
only visible after a control node is reached, we additionally require that compu-
tation nodes are immediately followed by control nodes.

Definition 15 (Uniformity-enforcing). A class P of CoSP bi-protocols is
uniformity-enforcing if for all bi-protocols II € P:

1. Every control node in Il has unique out-metadata.
2. For every computation node v in II and for every path rooted at v, a control
node is reached before an output node.

All embeddings of calculi the CoSP framework described so far, namely those
of the applied m-calculus [15] and RCF [33], are formalized such that protocols
written in these calculi fulfill both properties: these embeddings give the attacker
a scheduling decision, using a control node, basically after every execution step.

3.1 Bridging the Gap from Trace Properties to Uniformity

The key observation for the connection to trace properties is that, given a bi-
protocol 1T, some computationally sound symbolic models allow to construct a
self-monitor protocol Mon(II) (not a bi-protocol!) that has essentially the same
interface to the attacker as the bi-protocol IT and checks at run-time whether IT
would behave uniformly. In other words, non-uniformity of bi-protocols can be
formulated as a trace property bad, which the protocol Mon(IT) detects.

The self-monitor Mon(II) of a bi-protocol II behaves like one of the two
variants of the bi-protocol I, while additionally simulating the opposite variant
such that Mon(IT) itself is able to detect whether IT would be distinguishable.
(For instance, one approach to detect whether IT is distinguishable could consist
of reconstructing the symbolic view of the attacker in the variant of IT that is not
executed by Mon(II).) At the beginning of the execution of the self-monitor, the
attacker chooses if Mon(IT) should basically behave like left(IT) or like right(IT).

4 We show in Lemma 1 that uniformity of bi-protocols in CoSP corresponds to unifor-
mity of bi-processes in the applied m-calculus.
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We denote the chosen variant as b € {left, right} and the opposite variant as b.
After this decision, Mon(IT) executes the the b-variant b(II) of the bi-protocol
11, however, enriched with the computation nodes and the corresponding output
nodes of the opposite variant b(IT).?

The goal of the self-monitor Mon(IT) is to detect whether the execution of
b(II) would be distinguishable from b(IT) at the current state. If this is the case,
Mon(IT) raises the event bad, which is the disjunction of two events bad-branch
and bad-knowledge.

The event bad-branch corresponds to the case that the left and the right
protocol of the bi-protocol IT take different branches. Since uniformity-enforcing
protocols have a control node immediately after every computation node (see Def-
inition 15), the attacker can always check whether b(IT) and b(IT) take the same
branch. We require (in Definition 17) the existence of a so-called distinguishing
subprotocol fead-vrancn, ;7 that checks whether each destructor application in b(IT)
succeeds if and only if it succeeds in b(IT); if not, the distinguishing subprotocol
foad-brancn, 17 raises bad-branch.

The event bad-knowledge captures that the messages sent by b(IT) and b(IT)
(via output nodes, i.e., not the out-metadata) are distinguishable. This distin-
guishability is only detectable by a protocol if the constructors and destructors,
which are available to both the protocol and the symbolic attacker, capture all
possible tests. We require (in Definition 17) the existence of a distinguishing
subprotocol fyad-xnowledge, ;7 that raises bad-knowledge in Mon(II) whenever a
message, sent in IT, would allow the attacker to distinguish b(I7) and b(IT).

Parameterized CoSP Protocols. For a bi-protocol IT, we formalize the dis-
tinguishing subprotocols frad-knowiedge,;7 aNd foad-brance, ;7 With the help of pa-
rameterized CoSP protocols, which have the following properties: Nodes in such
protocols are not required to have successors and instead of other nodes, also for-
mal parameters can be referenced. A parameterized CoSP protocol is intended
to be plugged into another protocol; in that case the parameters references must
be changed to references to nodes.

Definition 16 (Self-monitor). Let IT be a CoSP bi-protocol. Let foaa-know1edge, T
and foad-branch, i1 be functions that map execution traces to parameterized CoSP pro-
tocols® whose leaves are either ok, in which case they have open edges, or nodes
that raise the event bad-knowledge, or bad-branch respectively. Let I a CoSP
bi-protocol.

® This leads to the fact that whenever there is an output node in I7, there are two cor-
responding output nodes in Mon(IT), which contradicts the goal that the interface of
IT and Mon(IT) should be the same towards the attacker. However, this technicality
can be dealt with easily when applying our method. For example, in the compu-
tational proof for our case study, we use the self-monitor in an interaction with a
filter machine that hides the results of the output nodes of b(II) to create a good
simulation towards the computational attacker, whose goal is to distinguish 1. The
filter machine is then used as a computational attacker against Mon(IT).

5 These functions are candidates for distinguishing subprotocols for bad-knowledge and
bad-branch, respectively, for the bi-protocol I1, as defined in Definition 17.



Computational Soundness Results for ProVerif 53

, symbolic self-monitoring
IT" (symb.) - IT (symb.)

! CS for equivalence of
! uniformity-enforcing
y bi-protocols

CS for trace
properties

IT'" (comp.) - ——— [I (comp.)
computational self-monitoring

Fig. 1. Symbolic and computational self-monitoring

Recall that nodes v of IT have bi-references (as defined in Definition 3) con-
sisting of a left reference (to be used in the left protocol) and a right reference.
We write left(v) for the node with only the left reference and right(v) analogously.
Let tr be the execution trace so far, i.e., the list of node identifiers on the path
from v to the root of IT. The self-monitor Mon(IT) protocol is defined as follows:

Insert before the root node a control node with two copies of I, called the left
branch (with b := left) and the right branch (with b := right). Apply the following
modifications recursively for each node v, starting at the root of II :

1. If v is a computation node of IT, replace v with foad-brancn,17(b, 7). Append
two copies left(v) and right(v) of the the computation node v to each open
edge of an ok-leaf. All left references that pointed to v point in Mon(IT) to
left(v), and all right references that pointed to v point in Mon(II) to right(v).
The successor of right(v) is the subtree rooted at the successor of v.

2. If v is an output node of II, replace v with fraa-knowieage,7(b,tr). Append
the sequence of the two output nodes left(v) (labeled with 1eft) and right(v)
(labeled with right) to each open edge of an ok-leaf. All left references that
pointed to v point in Mon(IT) to left(v), and all right references that pointed
to v point in Mon(II) to right(v). The successor of right(v) is the subtree
rooted at the successor of v.

Theorem 1 follows from two properties of the distinguishing subprotocols:
symbolic monitoring and computational monitoring (see Figure 1). Symbolic
monitoring states that whenever a bi-protocol I is indistinguishable, the cor-
responding distinguishing subprotocol in Mon(IT) does not raise the event bad.
Computational Monitoring, in turn, states that whenever the distinguishing sub-
protocol in Mon(IT) does not raises the event bad, then IT is indistinguishable.

Shortened Protocols II;. Since we prove Theorem 1 by induction over the
nodes in a bi-protocol, we introduce a notion of shortened protocols in the def-
inition of distinguishing subprotocols. For a (bi-)protocol I1, the shortened (bi-
Jprotocol IT; is for the first ¢ nodes exactly like IT but that stops after the ith
node that is either a control node or an output node.”

Definition 17 (Distinguishing Subprotocols). Let M be a symbolic model
and A a computational implementation of M. Let IT be a bi-protocol and Mon(IT)

" Formally, the protocol only has an infinite chain of control nodes with single succes-
sors after this node.
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its self-monitor. Let e € {bad-knowledge, bad-branch} and Tbad-knowledge d€TN0TE
the node type output node and Nyag-branch denote the node type control node. Then
the function fe (b, tr), which takes as input b € {left, right} and the path to the
root node, including all node and edge identifiers, is a distinguishing subprotocol
for e for IT and M if it is computable in deterministic polynomial time, and if
the following conditions hold for every i € N:

1. symbolic self-monitoring: If II; is symbolically indistinguishable, bad does
symbolically not occur in Mon(II;_1), and the ith node in II; is of type n.,
then the event e does not occur symbolically in Mon(I1;).

2. computational self-monitoring: The event e in Mon(I1;) occurs computation-
ally with negligible probability, II;_1 is computationally indistinguishable, and
the ith node in II; is of type n., then II; is computationally indistinguishable.

We say that a M and a protocol class allows for self-monitoring if there are distin-
guishing subprotocols for bad-branch and bad-knowledge for every bi-protocol
in the protocol class.

Finally, we are ready to state our main theorem.

Theorem 1. Let M be a symbolic model and P be a uniformity-enforcing class
of bi-protocols. If M and P allow for self-monitoring (in the sense of Defini-
tion 17), then the following holds: If A is a computationally sound implemen-
tation of a symbolic model M with respect to trace properties then A is also a
computationally sound implementation with respect to equivalence properties.

4 The Applied w-calculus

In this section, we present the connection of uniform bi-processes in the ap-
plied 7-calculus and our CS result in CoSP, namely that the applied w-calculus
can be embedded into the extended CoSP framework. In contrast to previous
work [22,23,24], we consider CS for bi-protocols from the full applied 7-calculus.
In particular, we also consider private channels and non-determinate processes.

We consider the variant of the applied m-calculus also used for the original
CoSP embedding [15]. The operational semantics of the applied 7-calculus is
defined in terms of structural equivalence (=) and internal reduction (—); for a
precise definition of the applied m-calculus, we refer to [7].

A uniform bi-process [30] in the applied m-calculus is the counterpart of a
uniform bi-protocol in CoSP. A bi-process is a pair of processes that only differ
in the terms they operate on. Formally, they contain expressions of the form
choice[a, b], where a is used in the left process and b is used in the right one. A
bi-process @ can only reduce if both its processes can reduce in the same way.

Definition 18 (Uniform Bi-process). A bi-process Q in the applied w-calculus
is uniform if left(Q) — Riese tmplies that Q — R for some bi-process R with
left(R) = Rieft, and symmetrically for right(Q) — Ruight with right(R) = Riight-
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The following lemma connects uniformity in the applied 7-calculus to unifor-
mity in CoSP. (See [34] for a proof.)

Lemma 1 (Uniformity in CoSP and the Applied 7-calculus). There is
an embedding e from bi-processes in the applied w-calculus to CoSP uniformity-
enforcing bi-protocols such that for every bi-process Q in the applied 7-calculus,
the following holds: If Q is uniform, then left(e(Q)) =~ right(e(Q)).

5 Case Study: Encryption and Signatures with Lengths

We exemplify our method by proving a CS result for equivalence properties,
which captures protocols that use public-key encryption and signatures. We use
the CS result in [31] for trace properties, which we extend by a length function,
realized as a destructor. Since encryptions of plaintexts of different length can
typically be distinguished, we must reflect that fact in the symbolic model.

5.1 The Symbolic Model

Lengths in the Symbolic Model. In order to express lengths in the symbolic
model, we introduce length specifications, which are the result of applying a
special destructor length /1. We assume that the bitlength of every computational
message m, is of the form |m.| = rk for some natural number r, where k is the
security parameter, i.e., the length of a nonce. This assumption will be made
precise. With this simplification, length specifications only encode r; this can be
done using Peano numbers, i.e., the constructors O (zero) and S (successor).

Even though this approach leads admittedly to rather inefficient realizations
from a practical point of view,® the aforementioned assumption can be realized
using a suitable padding. Essentially, this assumption is similar to the one in-
troduced by Cortier and Comon-Lundh [22] for a symbolic model for symmetric
encryption. The underlying problem is exactly the same: while the length of mes-
sages in the computational model, in particular the length of ciphertexts, may
depend on the security parameter, there is no equivalent concept in the symbolic
model. For instance, let n and m be nonces, and let ek be an encryption key.
For certain security parameters in the computational model, the computational
message pair(n,m) may have the same length as the message enc(ek,n); for
other security parameters this may not be the case. Thus it is not clear if the
corresponding symbolic messages should be of equal symbolic length. Comon-
Lundh et al. [28] propose a different approach towards this problem, by labeling
messages symbolically with an expected length and checking the correctness of
these length computationally. However, it is not clear whether such a symbolic
model can be handled by current automated verification tools.

Automated Verification: Combinding ProVerif and APTE. ProVerif is
not able to handle recursive destructors such as length, e.g., length(pair(t1,t2)) =

8 Consider, e.g., a payload string that should convey n bits. This message must be
encoded using at least kn bits.



56 M. Backes, E. Mohammadi, and T. Ruffing

length(t1)+length(t2). Recent work by Cheval and Cortier [32] extends the proto-
col verifier APTE, which is capable of proving trace equivalence of two processes
in the applied 7-calculus, to support such length functions. Since however trace
equivalence is a weaker notion than uniformity, i.e., there are bi-processes that
are trace equivalent but not uniform, our CS result does not carry over to APTE.
Due to the lack of a tool that is able to check uniformity as well as to handle
length functions properly, we elaborate and prove in [34] how APTE can be com-
bined with ProVerif to make protocols on the symbolic model of our case study
amenable to automated verification.
We consider the following symbolical model M = (C,N, T, D).

Constructors and Nonces. We define C := {enc/3, ek/1, dk/1, sig/3, vk/1,
sk/1, stringg /1, string; /1, emp/0, pair/2, 0 /0, S /1, garbageEnc/3, garbageSig/3,
garbage /2, garbagelnvalidLength/1} and N := Ng W Ng for countably infinite
sets of protocol nonces Np and attacker nonces Ng. Encryption, decryption,
verification, and signing keys are represented as ek(r), dk(r), vk(r), sk(r)
with a nonce r (the randomness used when generating the keys). The term
enc(ek(r'), m,r) encrypts m using the encryption key ek(r’) and randomness r.
sig(sk(r'), m,r) is a signature of m using the signing key sk(r’) and randomness
r. The constructors stringg, string;, and emp are used to model arbitrary
strings used as payload in a protocol, e.g., a bitstring 010 would be encoded as
stringo (string; (stringg (emp()))). Length specifications can be constructed using
O representing zero and S representing the successor of a number. garbage,
garbagelnvalidLength, garbageEnc, and garbageSig are not used by the protocol;
they express invalid terms the attacker may send.

Message Type. We define T as the set of terms M according to this grammar:

M ::=enc(ek(N),M,N) | ek(N) | dk(N) |
sig(sk(N), M,N) | vk(N) | sk(N) | pair(M,M)|S | N | L |
garbage(N, L) | garbageInvalidLength(N)
garbageEnc(M, N, L) | garbageSig(M, N, L)

S = emp() | stringy(S) | string,(S) L:=0()]|S(L)

The nonterminals N and L represent nonces and length specifications, respec-
tively. Note that the garbage terms carry an explicit length specification to enable
the attacker to send invalid terms of a certain length.

Destructors. We define D := {dec/2, isenc/1,isek/1,isdk/1, ekof /1, ekofdk /1,
verify/2,isvk /1, issk /1, issig/1, vkofsk /1, vkof /1, unstringy/1, unstring, /1, fst/1,
snd/1, equals/2, length/1, unS/1}. The destructors isek, isdk, isvk, issk, isenc,
and issig realize predicates to test whether a term is an encryption key, decryp-
tion key, verification key, signing key, ciphertext, or signature, respectively. ekof
extracts the encryption key from a ciphertext, vkof extracts the verification key
from a signature. dec(dk(r), c) decrypts the ciphertext c. verify(vk(r), s) verifies
the signature s with respect to the verification key vk(r) and returns the signed
message if successful. ekofdk and vkofsk compute the encryption/verification key
corresponding to a decryption/signing key. The destructors fst and snd are used
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to destruct pairs, and the destructors unstringg and unstring; allow to parse
payload-strings. The destructor length returns a the length of message, where
the unit is the length of a nonce. The purpose of unsS is destruct numbers that
represent lengths. (The full description of all destructor rules is given in [34].)

Length Destructor. Our result is parametrized over the destructor length
that must adhere to the following restrictions:

1. Each message except for garbagelnvalidLength is assigned a length:
length(t) # L for all terms t € T \ {garbageInvalidLength(t') | t' € T}.
2. The length of garbage terms (constructed by the attacker) is consistent:

length(garbage(t,1)) =1, length(garbageEnc(t1,t2,1)) =1,
length(garbageSig(t1,t2,1)) =1, length(garbagelnvalidLength(t,)) = L

3. Let [] be the canonical interpretation of Peano numbers, given by [O] = 0 and
[S(1)] = [I] + 1. We require the length destructor to be linear: For each con-
structor C/n € C\ {garbage, garbageInvalidLength, garbageEnc, garbageSig }
there are a; € N (where ¢ = 0,...,n) such that length(t;) =, fori=1,...,n
and length(C(t)) = I together imply [I] = > | a; - [I;] + ao.

5.2 Computational Soundness

Protocol Conditions and Implementation Conditions. For establishing
CS, we require the protocols to fulfill several natural conditions regarding their
use of randomness, e.g., that fresh randomness is used for key generation. Proto-
cols that adhere to these protocol conditions are called randomness-safe. For the
full protocol and implementation conditions, we refer to the extended
version [34].

Additionally, the computational implementation needs to fulfill certain con-
ditions, e.g., that the encryption scheme is PROG-KDM secure [35], and the
signature scheme is SUF-CMA. Both protocol conditions and implementation
conditions are similar to those in [31]. Requiring PROG-KDM [35] is only needed
to handle protocols that send and receive decryption keys.”

For lengths in the computational model, we require that the computational
implementation Ajengen of the destructor length computes the bitlength of the
corresponding bitstring. To connect the symbolic result of the destructor length
to bit-lengths in the computational world, we require length consistency.

Definition 19 (Length Consistency). Let M = (C,N, T, D) be a symbolic
model such that there is a constructor length/1 in D, and let [-] be an interpre-
tation mapping length specifications to natural numbers.

9 In principle, our proofs do not rely on this particular security definition. For example,
it would be possible to obtain a CS result for uniformity using weaker implementation
conditions (IND-CCA secure public-key encryption) but a restricted protocol class,
by applying our proof technique to the CS result for trace properties in [15].
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Given a security parameter k, a computational variant of a message m € T
1s obtained by implementing each constructor C' and nonce N in m by the corre-
sponding algorithm Ac or Ay, respectively. For example, for all random choices
of AN(K), Apair(k, Astring, (k, Aemp(k), Ack(k, AN (K))) is a computational vari-
ant of the message pair(string,(emp(), ek(N)), where N € N.

We say that a computational implementation A of M is length-consistent
with respect to the interpretation [-] if for each message m € T and all of its
computational variants my under security parameter k, we have that length(m) #
L implies |my| = [length(m)] - k.

Length specifications are ordinary messages that the protocol can process,
send and receive. We require length specifications to have a length itself. More-
over, we require that the decryption algorithm A .. expects a length description
of the plaintext and fails if the length of the plaintexts do not match.

CS for Trace Properties with Length Functions. We extend the CS result
for trace properties by Backes, Unruh, and Malik [31], which holds for signatures
and public-key encryption, to lengths functions.

Theorem 2. Let A be a computational implementation fulfilling the implemen-
tation conditions from above, i.e., in particular A is length-consistent. Then, A
18 a computationally sound implementation of the symbolic model M for the class
of randomness-safe protocols.

Distinguishing Subprotocols for the Symbolic Model M. In this section,
we discuss the distinguishing subprotocols for the symbolic model M. The full
descriptions and proofs can be found in the extended version [34].

We construct a distinguishing subprotocol foaa-brancn,7(b, tr) for a computa-
tion node v that investigates each message that has been received at an input
node (in the execution trace tr of Mon(II)) by parsing the message using com-
putation nodes. The distinguishing subprotocol then reconstructs an attacker
strategy by reconstructing a possible symbolic operation for every input mes-
sage. In more detail, in the symbolic execution, foaa-brancn,iz(b,tr) parses the
input message with all symbolic operations in the model M that the attacker
could have performed as well, i.e., with all tests from the shared knowledge. This
enables foadg-brancn, 17 (D, tr) to simulate the symbolic execution of b(IT) on the con-
structed attacker strategy. In the computational execution of the self-monitor,
the distinguishing subprotocol constructs the symbolic operations (i.e., the sym-
bolic inputs) by parsing the input messages with the implementations of all tests
in the shared knowledge (i.e., lookups on output messages and implementations
of the destructors). With this reconstructed symbolic inputs (i.e., symbolic op-
erations, from messages that were intended for b(II), foad-brancn, 17 (D, tr) is able
to simulate the symbolic execution of b(IT) even in the computational execu-
tion. The distinguishing subprotocol foadg-brancn, 17 (b, t7") then checks whether this
simulated symbolic execution of b(IT) takes in the same branch as b(II) would
take, for the computation node v in question. If this is not the case, the event
bad-branch is raised.
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Symbolic monitoring follows by construction because the distinguishing subpro-
tocol reconstructs a correct attacker strategy and correctly simulates a symbolic
execution. Hence, fyad-brancn,17(D, tr) found a distinguishing attacker strategy for
b(II) and b(IT). We show computational monitoring by applying the CS result for
trace properties to conclude that the symbolic simulation of b(IT) suffices to check
whether b(IT) computationally branches differently from b(IT).

The distinguishing subprotocol fuag-knowiedge, (b tr) for an output node v
starts like foaq-brancn,i7(b,tr) by reconstructing a (symbolic) attacker strategy
and simulating a symbolic execution of b(II). However, instead of testing the
branching behavior of b(IT), the distinguishing subprotocol foaa-knowiedge,7 (b, t7)
characterizes the message m that is output in b(IT) at the output node v in
question, and then furag-xnowiedge, 11(b, tr) compares m to the message that would
be output in b(I7). This characterization must honor that ciphertexts generated
by the protocol are indistinguishable if the corresponding decryption key has not
been revealed to the attacker so far. If a difference in the output of b(II) and
b(IT) is detected, the event bad-knowledge is raised.

Symbolic monitoring for the distinguishing subprotocol foag-xnowieage, 7 (b, tr)
follows by the same arguments as for fyag-brancn,7 (D, tr). We show computational
monitoring by first applying the PROG-KDM property to prove that the com-
putational execution of b(IT) is indistinguishable from a faking setting: in the
faking setting, all ciphertexts generated by the protocol do not carry any infor-
mation about their plaintexts (as long as the corresponding decryption key has
not been leaked). The same holds analogously for b(IT). We then consider all
remaining real messages, i.e., all messages except ciphertexts generated by the
protocol with unleaked decryption keys. We conclude the proof by showing that
in the faking setting, foad-knowieage,i7(b, ") is able to sufficiently characterize all
real messages to raise the event bad-knowledge whenever the bi-protocol I is
distinguishable.

Lemma 2. Let P be a uniformity-enforcing class of randomness-safe bi-protocols
and A a computationally sound implementation of the symbolic model M. For
each bi-protocol II, fraa-xnowredge, ;T 0N@ foaa-vrancn, 7 as described above are dis-
tinguishing subprotocols (see Definition 17) for M and P.

CS for Uniform Bi-processes in the Applied 7-calculus. Combining our
results, we conclude CS for protocols in the applied m-calculus that use signatures,
public-key encryption, and corresponding length functions.

Theorem 3 (CS for Enc. and Signatures in the Applied 7-calculus).
Let M be as defined in Section 5. Let QQ be a randomness-safe bi-process in
the applied w-calculus, and let A of M be an implementation that satisfies the
conditions from above. Let e be the embedding from bi-processes in the applied
m-calculus to CoSP bi-protocols. If Q is uniform, then left(e(Q)) ~. right(e(Q)).

Proof. By Lemma 2, there are for each bi-protocol IT distinguishing subprotocols
foad-knowredge, IT AN fpaa-brancn, i1 for M. The class of the embedding of the applied
m-calculus is uniformity-enforcing by Lemma 1; thus, Theorem 1 entails the
claim.
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6 Conclusion

In this work, we provided the first result that allows to leverage existing CS
results for trace properties to CS results for uniformity of bi-processes in the
applied m-calculus. Our result, which is formulated in an extension of the CoSP
framework to equivalence properties, holds for Dolev-Yao models that fulfill the
property that all distinguishing computational tests are expressible as a process
on the model. We exemplified the usefulness of our method by applying it to a
Dolev-Yao model that captures signatures and public-key encryption.

We moreover discussed how computationally sound, automated analyses can
still be achieved in those frequent situations in which ProVerif does not manage
to terminate whenever the Dolev-Yao model supports a length function. We
propose to combine ProVerif with the recently introduced tool APTE [32].

We leave as a future work to prove for more comprehensive Dolev-Yao models
(e.g., for zero-knowledge proofs) the sufficient conditions for deducing from CS
results for trace properties the CS of uniformity. Another interesting direction for
future work is the extension of our result to observational equivalence properties
that go beyond uniformity.
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