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Abstract. We extend the applied pi calculus with state cells, which are used to
reason about protocols that store persistent information. Examples are protocols
involving databases or hardware modules with internal state. We distinguish be-
tween private state cells, which are not available to the attacker, and public state
cells, which arise when a private state cell is compromised by the attacker. For
processes involving only private state cells we define observational equivalence
and labelled bisimilarity in the same way as in the original applied pi calculus, and
show that they coincide. Our result implies Abadi-Fournet’s theorem – the coinci-
dence of observational equivalence and labelled bisimilarity – in a revised version
of the applied pi calculus. For processes involving public state cells, we can es-
sentially keep the definition of observational equivalence, but need to strengthen
the definition of labelled bisimulation in order to show that observational equiva-
lence and labelled bisimilarity coincide in this case as well.
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1 Introduction

Security protocols are small distributed programs that use cryptography in order to
achieve a security goal. The complexity that arises from their distributed nature moti-
vates formal analysis in order to prove logical properties of their behaviour; fortunately,
they are often small enough to make this kind of analysis feasible. Various logical meth-
ods have been used to model security protocols; process calculi have been particularly
successful [3, 5, 31]. For example, the TLS protocol used by billions of users every day
was analysed using ProVerif [11].

More recently, protocol analysis methods have been applied to stateful protocols
– that is, protocols which involve persistent state information that can affect and be
changed by protocol runs. Hardware devices that have some internal memory can be
described by such protocols. For example, Yubikey is a USB device which generates
one-time passwords based on encryptions of a secret ID, a running counter and some
random values using a unique AES-128 key contained in the device. The trusted plat-
form module (TPM) is another hardware chip that has a variety of registers which rep-
resent its state, and protocols for updating them. Radio-frequency identification (RFID)
is a wireless technology for automatic identification and is currently deployed in elec-
tronic passports, tags for consumer goods, livestock and pets tracking, etc. An RFID-tag
has a small area for storing secrets, which may be modified.

A process calculus can be made to work with such stateful protocols either by ex-
tension or by encoding. Extension means adding to the calculus explicit constructs for
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working with the stateful aspects, while encoding means using combinations of the
primitives that already exist. Encodings have the advantage that they keep the calculus
simple and elegant, but (as argued in [3]) there may not be encodings for all the aspects
we want, and in cases that encodings exist they may not be suitable for the analysis of
security properties. StatVerif [7] demonstrates this: a natural way of encoding state us-
ing restricted channels prevents ProVerif from proving security. ProVerif also provides
some built-in features, such as tables and phases, which provide only limited ways for
modelling states. In particular, tables are defined as predicates which allow processes to
store data by extending a predicate for the data. Hence there is no notion of the “current”
state, and values cannot be deleted from tables. Phases are used to model the protocols
with several stages. But there can be only finitely many phases, which can only be run
in sequence, whereas a state may have infinitely many arbitrary values. Since our start-
ing point is the applied pi calculus [3], we follow the philosophy adopted by its authors,
which is to design a calculus that has the right primitives built in.

Our Contributions. We present an extension of the applied pi calculus by adding state
cells, which are used to reason about protocols that store persistent information. We dis-
tinguish between private state cells, which are not available to the attacker, and public
state cells, which arise when a private state cell is compromised by the attacker. In our
stateful language, a private state cell is guarded by the scope restriction; its access is lim-
ited to some designated processes. When a private state cell gets compromised, the cell
becomes public and this scenario is modelled by removing the scope restriction of that
cell. We first define observational equivalence and labelled bisimilarity for processes
having only private state cells, and we prove that two notions coincide as expected.
By encoding the private state cells with restricted channels while keeping observational
equivalence, our coincidence result can be seen to imply Abadi-Fournet’s theorem [3,
Theorem 1], in a revised version of applied pi calculus. As far as we can see, the only
available proof for this theorem is [28] which is an unpublished manuscript. Despite
having no published proof, this theorem has been widely used in many publications, for
example [19, 8, 4, 18, 20].

We also discuss an extension of our language with public state cells. The obvious
notion of labelled bisimilarity does not capture observational equivalence on public
state cells. Designing a labelled bisimilarity on public state cells turns out to be un-
expectedly difficult. Public state cells introduce many special language features which
are significantly different from private state cells. Moreover, the addition of public state
cells increases the capabilities of the attacker significantly. Hence we strengthen the
definition of labelled bisimilarity to show that observational equivalence and labelled
bisimulation coincide.

As an illustration, we analyse the OSK protocol [26] for RFID tags. We model its
untraceability by private state cells and model its forward privacy by public state cells.

Related Work. StatVerif [7] is an extension of ProVerif process language [13] with
private state cells. The main contribution there is to extend the ProVerif compiler to
a compiler for StatVerif. The security property of interest there is secrecy which is
modelled by reachability on the traces. This paper is a fundamental generalisation of the
previous StatVerif work. The focus in this paper is to build a stateful language based
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on applied pi calculus, explore its language features and discuss indistinguishability,
which is modelled by observational equivalence and analysed by labelled bisimilarity.

There are other languages that have been used to model protocols involving persistent
state, but they are lower-level languages that are further away than our process language
from the protocol design. Strand spaces have been generalised to work with the global
state required by a trusted party charged with enforcing fair exchange [25]. The verifier
Tamarin [33] uses multi-set rewriting (in which antecedents of applied rules are with-
drawn from the knowledge set in order to represent state changes); it has been used to
analyse hardware password tokens [27]. Multi-set rewriting is also used in [30], where
state changes are important to represent revocation of cryptographic keys. Horn clauses
rather than multiset rewriting are used in [22], in order to represent state changes made
to registers of the TPM hardware module.

Reasoning about programming languages involving states has been extensively stud-
ied (e.g. [34, 23]). There are very strong interactions between programing language
features and state, hence the reasoning principles are very specific to the precise com-
bination of features. In this work we build on the work on reasoning principles for
process calculi using bisimulation and show how to extend these principles to handle
global state.

Outline. The next section defines syntax and semantics for the stateful applied pi cal-
culus. Section 3 discusses the process equivalences and encoding for private state cells,
and derives Abadi-Fournet’s theorem. Section 4 extends our stateful language with pub-
lic state cells. The paper concludes in Section 5.

2 Stateful Applied Pi Calculus

In this section, we extend the applied pi calculus [3] with constructs for states, and
define its operational semantics. In fact, we do not directly build the stateful language
on top of applied pi calculus, because we want to avoid working with the structural
equivalence relation. More precisely, reasoning about the equivalent classes induced
by structural equivalence turns out to be difficult and normally results in long tedious
proofs [21, 18, 29, 17]. Our language inherits constructs for scope restriction, com-
munication and active substitutions from applied pi calculus while having multisets of
processes and active substitutions makes it possible to specify an operational semantics
which does not involve any structural equivalence.

2.1 Syntax

We assume two disjoint, infinite sets N and V of names and variables, respectively.
We rely on a sort system including a universal base sort, a cell sort and a channel sort.
The sort system splits N into channel names Nch, base names Nb and cell names Ns;
similarly, V is split into channel variables Vch and base variables Vb. Unless otherwise
stated, we use a, b, c as channel names, s, t as cell names, and x, y, z as variables. Meta
variables u, v, w are used to range over both names and variables.

A signature Σ consists of a finite set of function symbols, each with an arity. A func-
tion symbol with arity 0 is a constant. Function symbols are required to take arguments
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and produce results of the base sort only. Terms, ranged over by M,N , are built up from
variables and names by function application:

M,N ::= terms
a, b, c, k,m, n, s names
x, y, z variables
f(M1, . . . ,M�) function application

We write var (M) and name(M) for the variables and names in M , respectively. Tuples
such as u1 · · ·u� and M1 · · ·M� will be denoted by ũ and ˜M , respectively. Terms are
equipped with an equational theory =Σ that is an equivalence relation closed under
substitutions of terms for variables, one-to-one renamings and function applications.

The grammar for the plain process is given below. The operators for nil process 0,
parallel composition |, replication !, scope restriction νn, conditionalif - then - else ,
input u(x) and output u〈M〉 are the same as the ones in applied pi calculus [3]. A state
cell is a special process of the form [s �→ M ] where s is the cell name and M is the
current value of s. The process lock s.P locks the cell s for the subsequent process
P . When the cell s is locked, another process that intends to access the cell has to wait
until the cell is unlocked by a primitive unlock s. The process read s as x.P reads
the value in the cell and stores it in x in P . The process s := M.P assigns the value M
to the cell and continues as P .

P,Q,R ::= plain process
0 nil process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
u(x).P input
u〈M〉.P output
[s �→ M ] cell s, containing term M
s := M.P writing a cell
read s as x.P reading a cell
lock s.P locking a cell
unlock s.P unlocking a cell

subject to the following requirements:

– x,M,N are not of cell sort; u ∈ Nch ∪Vch and s ∈ Ns; additionally, M is of base
sort in both [s �→ M ] and s := M.P ;

– for every lock s. P , the part P of the process must not include parallel or replica-
tion unless it is after an unlock s.

– for a given cell name s, the replication operator ! must not occur between νs and
[s �→ M ].

These side conditions rule out some nonsense processes, such as lock s. !P , lock s.
(P | Q), νs.![s �→ M ] and νs.([s �→ M ] | [s �→ N ]), while keep some reasonable
processes, such as lock s.unlock s. !P , lock s.unlock s. (P | Q) and !νs.[s �→ M ].
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An extended process, ranged over by A,B,C, is an expression of the form
νñ. (σ, S,P) where

– νñ is a set of name restrictions;
– σ is a substitution {M1/x1, . . . ,Mn/xn} which replaces variables of base sort

with terms of base sort; the domain dom(σ) of σ is {x1, . . . , xn}; the domain
dom(νñ.(σ, S,P)) of the extended process νñ.(σ, S,P) is also dom(σ); we re-
quire that dom(σ) ∩ fv (M1, . . . ,Mn,P , S) = ∅;

– S = {s1 �→ M1, . . . , sm �→ Mm} is a set of state cells such that s1, . . . , sm are
pairwise-distinct cell names and terms M1, . . . ,Mm are of base sort; we write
dom(S) for {s1, . . . , sm} and S(si) for Mi (1 ≤ i ≤ m);

– [s �→ M ] can only occur at most once for a given cell name s, and if a cell name s
is not restricted by any νs, a state cell s �→ M can only occur in S;

– P = {(P1, L1), . . . , (Pk, Lk)} is a multiset of pairs where Pi is a plain process and
Li is a set of cell names; Li ∩ Lj = ∅ for any 1 ≤ i, j ≤ k and i �= j; for each
s ∈ Li, the part of the process Pi must not include parallel or replication unless it
is after a unlock s; we write locks(P) for the set L1∪ · · · ∪Lk, namely the locked
cells in P .

In an extended process νñ.(σ, S,P), the substitution σ is similar to the active sub-
stitutions in applied pi calculus [3] which denote the static knowledge that the process
exposes to the environment. A minor difference with [3] is that substitutions here are
only defined on terms of base sort which will be explained later. State cells are mutable
and the value of a cell may be changed during the running of processes. If a process
P locks a cell s, then this status information will be kept as (P, {s} ∪ L) in P . At any
time, the cell s can be locked at most once in P .

The variable x in “u(x)” and “read s as x” are bound, as well as the name n
in νn. This leads to the usual notions of bound and free names and variables. We
shall use fn(A) for free names, use fs(A) for free cell names, use fv(A) for free
variables, use bn(A) for bound names, and use bv(A) for bound variables of A. Let
fnv(A) = fn(A)∪ fv (A) and bnv(A) = bn(A)∪ bv (A). Following the conventions in
[32], we shall identify processes which are α-convertible. We write “=” for both syntac-
tical equality and equivalence under α-conversion. Captures of bound names and bound
variables are avoided by implicit α-conversion.

An extended process νñ.(σ, S,P) is called closed if each variable is either defined
by σ or bound, each cell name s is defined by exactly one “s �→ M” (either in S or
in P), and locks(P) ⊆ dom(S). We may write (σ, S,P) for ν∅.(σ, S,P), and write
νñ, m̃.(σ, S,P) for ν(ñ ∪ m̃).(σ, S,P).

When we write σ = σ1 ∪ σ2 for some substitution σ or S = S1 ∪ S2 for some state
cells S, we assume that dom(σ1)∩ dom(σ2) = ∅ as well as dom(S1)∩ dom(S2) = ∅.
For variables x̃, we define σ\x̃ to be the substitution { zσ/z | z ∈ dom(σ) and z /∈ x̃ }.
If A = νñ.(σ, S,P), we write A\x̃ for νñ.(σ\x̃, S,P).

An evaluation context νñ.(σ-, S-,P-) is an extended process with holes “-” for
substitution, state cells and plain processes. Let C = νñ.(σ-, S-,P-) be an evalua-
tion context and A = νm̃.(σa, Sa,Pa) be a closed extended process with m̃ ∩ (ñ ∪
fn(σ, S,P)) = dom(σ)∩dom(σa) = dom(S)∩dom(Sa) = ∅. The result of applying
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νñ. (σ, S,P ∪ {( !P, ∅)}) τ−−−−→ νñ. (σ, S,P ∪ {( !P, ∅), (P, ∅)})

νñ.(σ, S,P ∪ {(P | Q, ∅)}) τ−−−−→ νñ.(σ, S,P ∪ {(P, ∅), (Q, ∅)})

νñ.(σ, S,P ∪ {(νm.P, L)}) τ−−−−→ νñ, m.(σ, S,P ∪ {(P, L)}) if m /∈ fn(ñ, σ, S,P, L)

νñ.(σ, S,P ∪ {([s �→ M], ∅)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P) if s ∈ ñ and s /∈ dom(S)

νñ.(σ, S,P ∪ {(a(x).P, L1)} ∪ {(a〈M〉.Q, L2)}) τ−−−−→ νñ.(σ, S,P ∪ {(P {M/x} , L1), (Q, L2)}))

νñ.(σ, S,P ∪ {(if M = N then P else Q,L)}) τ−−−−→ νñ.(σ, S,P ∪ {(P, L)}) if M =Σ N

νñ.(σ, S,P ∪ {(if M = N then P else Q,L)}) τ−−−−→ νñ.(σ, S,P ∪ {(Q, L)}) if M 	=Σ N and var(M, N) = ∅

νñ.(σ, S ∪ {s �→ M} , P ∪ {(read s as x.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P {M/x} , L)})

if s ∈ ñ ∪ L and s 	∈ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(s := N.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ N} ,P ∪ {(P, L)})

if s ∈ ñ ∪ L and s 	∈ locks(P)

νñ.(σ, S ∪ {s �→ M} , P ∪ {(lock s.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L ∪ {s})})

if s ∈ ñ and s 	∈ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} , P ∪ {(unlock s.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L \ {s})}) if s ∈ ñ ∩ L

νñ.(σ, S,P ∪ {(a(x).P, L)}) a(M)−−−−−−→ νñ.(σ, S,P ∪ {(P {Mσ/x} , L)}) if name(a,M) ∩ ñ = ∅

νñ.(σ, S,P ∪ {(a〈c〉.P, L)}) a〈c〉−−−−−→ νñ.(σ, S,P ∪ {(P, L)}) if a, c 	∈ ñ

νñ, c.(σ, S,P ∪ {(a〈c〉.P, L)}) νc.a〈c〉−−−−−−→ νñ.(σ, S,P ∪ {(P, L)}) if a, c 	∈ ñ and a 	= c

νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) νx.a〈x〉−−−−−−−→ νñ.(σ ∪ {M/x} , S,P ∪ {(P, L)})

if a 	∈ ñ and M is of base sort and x is fresh

Fig. 1. Operational Semantics

C to A is an extended process defined by:

C[A] = νñ, m̃.(σσa ∪ σa, Sσa ∪ Sa,Pσa ∪ Pa)

An evaluation context C closes A when C[A] is a closed extended process.

2.2 Operational Semantics

The transition relation A
α−→ A′ is the smallest relation on extended processes defined

by the rules in Figure 1. The action α is either an internal action τ , an input a(x), an
output of channel name a〈c〉, an output of bound channel name νc.a〈c〉, or an output
of terms of base sort νx.a〈x〉. The transitions for conditional branch, communication,
sending and receiving channel names and complex messages are typical and essentially
the same as the ones in applied pi calculus. In particular, the output νx.a〈x〉 for term
M generates an “alias” x for M which is kept in the substitution part of the extended
process. As mentioned before, state cells are used to model the hardware or the database
to which the access is usually mutually-exclusive. When a state cell is locked, the other
process that intends to access the cell must wait until the cell is released.
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3 Private State Cells

3.1 Equivalences for Private State Cells

We first discuss observational equivalence and labelled bisimilarity on the extended pro-
cesses with only private state cells, that is, each cell name s occurring in the processes
is within the scope of a restriction νs. We will discuss an extension of the language with
public state cells in Section 4.

Observational equivalence [3] has been widely used to model properties of security
protocols. It captures the intuition of indistinguishability from the attacker’s point of
view. Security properties such as anonymity [4], privacy [20, 6] and strong secrecy [12]
are usually formalised by observational equivalence.

We write =⇒ for the reflexive and transitive closure of
τ−→; we define

α
=⇒ to be

=⇒ α−→=⇒; we write
α̂

=⇒ for
α

=⇒ if α is not τ and =⇒ otherwise. We write A ⇓a when
A =⇒ νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) with a /∈ ñ.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R on
pairs of closed extended processes with only private state cells, such thatA R B implies

(i) dom(A) = dom(B);
(ii) if A ⇓a then B ⇓a;

(iii) if A =⇒ A′ then B =⇒ B′ and A′ R B′ for some B′;
(iv) for all closing evaluation contexts C with only private cells, C[A] R C[B].

Observational equivalence is a contextual equivalence where the contexts model the
active attackers who can intercept and forge messages. In the following examples, we
illustrate the use of observational equivalence in the stateful language by analysing the
untraceability of the RFID tags.

Example 1. We start by analysing a naive protocol for RFID tag identification. The tag
simply reads its id and sends it to the reader. We assume the attacker can eavesdrop on
the radio frequency signals between the tag and the reader. In other words, all the com-
munications between the tag and the reader are visible to the attacker. The operations
on the tag can be modelled by: P (s) = read s as x. a〈x〉. One security concern for
RFID tags is to avoid third-party attacker tracking. The attacker is not supposed to trace
the tag according to its outputs. Using the definition in [6], the untraceability can be
modelled by observational equivalence:

(∅, ∅, {( ! νs, id .([s �→ id ] | P (s)), ∅)}) ≈ (∅, ∅, {( ! νs, id .([s �→ id ] | !P (s)), ∅)})

In the left process, each tag s can be used at most once. In the right process, each tag
s can be used an unbounded number of times. The above equivalence does not hold,
which means this protocol is traceable. By eavesdropping on channel a of the right
process, the attacker can get a data sequence: “id , id , id · · · ”, while a particular id can
occur at most once in the first process.

Example 2. The OSK protocol [26] is a simple identification protocol for RFID tags
which aims to satisfy third-party untraceability. The tag can perform two independent
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one-way functions g and h. An initial secret is stored in the tag and is known to the
back-end database. On each run of the protocol, the tag computes the hash g of its
current value and sends the result to the reader. The reader forwards the message to the
back-end database for identification. The tag then updates its value with the hash h of
its current value. The operations related to a tag s can be modelled by:

T (s) = lock s. read s as x. a〈g(x)〉. s := h(x). unlock s

Let RD be process modelling the reader and back-end database. Similar to Example 1,
the untraceability can be represented by

(∅, ∅, {( ! νs, k.([s �→ k] | T (s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, k.([s �→ k] | !T (s) | RD), ∅)})

In the second process, for a particular tag s which contains value k, the data sequence
observed by the attacker on channel a is “g(k), g(h(k)), g(h(h(k))) · · · ”. Without
knowing the secret k, these appear just random data to the attacker and so the attacker
cannot link these data to the same tag. The observational equivalence between these
two processes means the attacker cannot identify the multiple runnings of a particular
tag. The “lock s · · ·unlock s” ensures exclusive access to the tag. After the reader
reads the tag, the tag must be renewed before the next access to the tag; otherwise the
tag would be traceable.

The universal quantifier over the contexts makes it difficult to prove observational
equivalence. Hence labelled bisimilarity is introduced in [3] to capture observational
equivalence. Labelled bisimilarity consists of static equivalence and behavioural
equivalence.

Definition 2. Two processes A and B are statically equivalent, written as A ≈s B,
if dom(A) = dom(B), and for any terms M and N with var (M,N) ⊆ dom(A),
Mσ1 =Σ Nσ1 iff Mσ2 =Σ Nσ2 where A = νñ1.(σ1, S1,P1) and B = νñ2.(σ2, S2,
P2) for some ñ1, ñ2 such that (ñ1 ∪ ñ2) ∩ name(M,N) = ∅.

Our definition of static equivalence is essentially the same as the one in [3], as the
definition in [3] is invariant under structural equivalence already. Although static equiv-
alence is in general undecidable, there are well established ways, including tools, for
verifying static equivalence [2, 15, 16, 9, 14]. Static equivalence defines the indistin-
guishability between the environmental knowledge exposed by two processes. The en-
vironmental knowledge is modelled by the substitutions in the extended processes. For
example, let A = νk,m.({k/x,m/y} , ∅, ∅) and B = νk.({k/x, h(k)/y} , ∅, ∅). The
test h(x) = y fails under the application of A’s substitution {k/x,m/y}, while suc-
ceeds under the application of B’s substitution {k/x, h(k)/y}. Hence A �≈s B.

Definition 3. Labelled bisimilarity (≈l) is the largest symmetric relation R between
pairs of closed extended processes with only private state cells such that A R B implies

1. A ≈s B;

2. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B

α̂
=⇒ B′ such

that A′ R B′ for some B′.
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�0�S = 0 �P | Q�S = �P �S | �Q�S �νn.P �S = νn. �P �S if n /∈ Ns

�!P �S = ! �P �S �u(x).P �S = u(x). �P �S �u〈M〉.P �S = u〈M〉. �P �S
�if M = N then P else Q�S = if M = N then �P �S else �Q�S
�s �→ M�S = cs〈M〉 �νs.P �S = νcs. �P �S if s ∈ Ns

�lock s.P �S =

{
cs(x). �P �S∪{s�→x} if s /∈ dom(S) and x is fresh
0 otherwise

�unlock s.P �S =

{
cs〈M〉 | �P �T if S = T ∪ {s �→ M}
0 otherwise

�read s as x.P �S =

{ �P {M/x}�S if S = T ∪ {s �→ M}
cs(x).(cs〈x〉 | �P �S) otherwise

�s := M.P �S =

{ �P �T∪{s�→M} if S = T ∪ {s �→ N}
cs(x).(cs〈M〉 | �P �S) otherwise select fresh variable x

Fig. 2. Encoding private state cells with restricted channels

Instead of using arbitrary contexts, labelled bisimilarity relies on the direct compar-
ison of the transitions. The following theorem states that labelled bisimilarity can fully
capture observational equivalence:

Theorem 1. On closed extended processes with only private state cells, it holds that
≈=≈l.

3.2 Encoding Private State Cells with Restricted Channels

Private state cells can be encoded by restricted channels. This is an important obser-
vation; moreover, we will use this to prove Abadi-Fournet’s theorem in the following
Section 3.3. However, when modelling security protocols, the drawback of represent-
ing private state cells by restricted channels is that it may introduce false attacks when
using the automatic tool ProVerif as argued in [7]. The reason is that some features of
restricted channels are abstracted away when ProVerif translates process calculus into
Horn clauses [13]. To solve this problem, we introduce the primitives for lock, read,
write and unlock which will help us design better translations for stateful protocols in
ProVerif. This has been demonstrated by the verification of reachability [7], and will be
useful in future for verifying observational equivalence.

We encode the extended processes with only private state cells into a subset of the
extended processes which do not contain any cell name. Since the target language
of the encoding does not have any cell name, we abbreviate extended processes νñ.
(σ, ∅, {(Pi, ∅)}i∈I) with no cell name to νñ.(σ, {Pi}i∈I).

First we define encoding �P �S in Figure 2 for the plain process P under a given set
of state cells S = {s1 �→ M1, . . . , sn �→ Mn}. For each cell s, we select a fresh channel
name cs. The encoding in Figure 2 only affects the part related to cell names, leaving
other parts like input and output unchanged. The state cell s �→ M and unlock s are
both encoded by an output cs〈M〉 on the restricted channel cs. The lock s is repre-
sented by an input cs(x) on the same channel cs. To read the cell read s as x, we



Stateful Applied Pi Calculus 31

use the input cs(x) to get the value from the cell and then put the value back cs〈x〉,
which enables the other operations on cell s in future. To write a new value into the
cell s := N , we need to first consume the existing cs〈M〉 by an input cs(x) and then
generate a new output cs〈N〉. Our encoding ensures that there is only one output cs〈M〉
available on a specified restricted channel cs at each moment. When the cell is locked,
namely cs〈M〉 is consumed by some cs(x), the other processes that intend to access the
cell have to wait until an output cs〈N〉 is available.

Let A = νs̃, ñ.
(

σ, {si �→ Mi}i∈I , {(Pj , Lj)}j∈J

)

be an extended process 1 where

s̃ ⊂ Ns and ñ ∩ Ns = ∅. We define the encoding �A� as:

�A� = νc̃s, ñ.

(

σ, {csi〈Mi〉}i∈U ∪
{

�Pj�Sj

}

j∈J

)

where U = { i | si /∈
⋃

j∈J Lj and i ∈ I } and Sj = { si �→ Mi | si ∈ Lj and i ∈ I }.
Intuitively, U is the indices of the unlocked state cells in {si �→ Mi}i∈I , and Sj is the
set of state cells locked by Lj .

Example 3. Let A = νs.(∅, {s �→ 0} , {(T (s), ∅)}) where T (s) is defined in Exam-
ple 2. Then �A� = νcs.(∅,

{

cs〈0〉, �T (s)�∅
}

) with �T (s)�∅ = cs(z).a〈g(z)〉.cs〈h(z)〉
obtained by:

�T (s)�∅ = �lock s.read s as x.a〈g(x)〉.s := h(x).unlock s�∅
= cs(z). �read s as x.a〈g(x)〉.s := h(x).unlock s�{s�→z}
= cs(z). �a〈g(z)〉.s := h(z).unlock s�{s�→z}
= cs(z).a〈g(z)〉. �s := h(z).unlock s�{s�→z}
= cs(z).a〈g(z)〉. �unlock s�{s�→h(z)}
= cs(z).a〈g(z)〉.cs〈h(z)〉

Theorem 2. For two closed extended processes A,B with only private state cells, we
have A ≈ B iff �A� ≈e �B� where ≈e is an equivalence defined exactly the same as
Definition 1 except the context C does not contain any cell names.

3.3 Overview of the Proof of Abadi-Fournet’s Theorem

We shall use our Theorem 1 and Theorem 2 to derive Abadi-Fournet’s theorem, namely
Theorem 1 in [3]. We revise the original applied pi calculus [3] slightly: active sub-
stitutions are only defined on terms of base sort; otherwise Theorem 1 in [3] does not
hold [10].2 Since the active substitutions in applied pi calculus float everywhere in the
extended processes, in order to prove Abadi-Fournet’s theorem, we need to normalise

1 We abbreviate the set { si �→ Mi | i ∈ I } as {si �→ Mi}i∈I .
2 Here is a counter example: let Ar = νc.(c.a | {c/x}) and Br = νc.(0 | {c/x}). Ob-

viously Ar and Br are labelled bisimilar since their frames are the same and both have no
transitions. However, they are not observationally equivalent. Consider the context x(y), then
Ar | x(y) ⇓a but Br | x(y) �⇓a.
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the extended processes first. We can transform the extended processes in the applied pi
calculus – denoted by Ar, Br, Cr to avoid confusion – into the extended processes in
stateful applied pi calculus by function T (assume bound names are pairwise-distinct
and different from free names): 3

T (0) = (∅, ∅) T ({M/x}) = ({M/x} , ∅) T (νn.Ar) = νn.T (Ar)

T (νx.Ar) = νñ.(σ,P) if T (Ar) = νñ.(σ ∪ {M/x} ,P)

T (A1
r | A2

r) = νñ1, ñ2.((σ1 ∪ σ2)
∗, (P1 ∪ P2)(σ1 ∪ σ2)

∗)
if T (Ai

r) = νñi.(σi,Pi) for i = 1, 2
T (Ar) = (∅, {Ar}) in all other cases of Ar

Intuitively, T pulls out name restrictions, applies active substitutions and separates
them from the plain processes, and eliminates variable restrictions. For instance,
T (a〈x〉.νn.a〈n〉 | νk. {k/x}) = νk.({k/x} , {a〈k〉.νn.a〈n〉}). This normalisation T
preserves both observational equivalence and labelled bisimilarity:

Theorem 3. For two closed extended processes Ar and Br in applied pi calculus,

1. Ar and Br are labelled bisimilar in applied pi iff T (Ar) ≈l T (Br);
2. Ar and Br are observationally equivalent in applied pi iff T (Ar) ≈e T (Br);

With all the theorems ready, now we can prove Abadi-Fournet’s theorem:

Corollary 1. Observational equivalence coincides with labelled bisimilarity in applied
pi calculus.

4 Extending the Language with Public State Cells

4.1 Public State Cells

Hardware modules like TPMs and smart cards are intended to be secure, but an at-
tacker might succeed in finding ways of compromising their tamper-resistant features.
Similarly, attackers can potentially hack into databases [1]. We model these attacks by
considering that the attacker compromises the private state cells, after which they are
public. Protocols may provide some security properties that hold even under such com-
promises of the hardware or database. A typical example is forward privacy [24] which
requires the past events remain secure even if the attacker compromises the device. This
will be further discussed in the following Example 8 and Example 9. A cell s not in the
scope of νs is public, which enables the attacker to lock the cell, read its contents or
overwrite it.

We now give the details of the syntactic additions for public cells and the definition of
observational equivalence. To let a private state cell become public, we extend the plain
processes in Section 2 with a new primitive open s.P Extended processes are defined

as before. We extend the transitions in Fig. 1 by a new transition relation
τ(s)−−→ defined

3 We write σ∗ for the result of composing the substitution σ with itself repeatedly until an
idempotent substitution is reached.
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νñ.(σ, S ∪ {s �→ M} ,P ∪ {(read s as x.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P {M/x} , L)})

if s 	∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(s := N.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ N} ,P ∪ {(P, L)})

if s 	∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(lock s.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L ∪ {s})})

if s 	∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(unlock s.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L \ {s})})

if s 	∈ ñ ∪ locks(P) and s ∈ L

νñ, s.(σ, S ∪ {s �→ M} ,P ∪ {(open s.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L)}) if s /∈ ñ

Fig. 3. Internal transitions for public state cells

in Fig. 3 for reasoning about public state cells. These internal transitions specify on
which public state cell the operations are performed. The label τ(s) is necessary when
we later define labelled bisimilarity. Note that when a public state cell is locked, we still
use the rule

τ−−→ defined in Fig. 1 for reading and writing on that cell.
Let A = νñ.(σ, S,P) and we write locks(A) for the set locks(P) \ ñ. We write

ε
=⇒

for the reflexive and transitive closure of
τ−−→ and

τ(s)−−→ for any cell s. We write A ⇓a

when A
ε

=⇒ νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) with a /∈ ñ.

Definition 4. Observational equivalence (≈) is the largest symmetric relation R on
pairs of closed extended processes (which may contain public state cells) such that
A R B implies

(i) locks(A) = locks(B), fs(A) = fs(B) and dom(A) = dom(B);
(ii) if A ⇓a then B ⇓a;

(iii) if A
ε

=⇒ A′ then B
ε

=⇒ B′ and A′ R B′ for some B′;
(iv) for all closing evaluation contexts C, C[A] R C[B].

We stick to the original definition of observational equivalence [3] as much as pos-
sible in order to capture the intuition of indistinguishability from the attacker’s point of
view. The definition of observational equivalence on public state cells is similar to the
one for private state cells, but the language features of public state cells are significantly
different from private state cells. Moreover, the addition of public state cells increases
the power of the attacker significantly, as without the name restriction νs for a state cell
s, when s is unlocked, the attacker can lock the cell, read its content and overwrite it.
To illustrate this point, we start by analysing several examples.

Example 4. The attacker can lock the unlocked public state cells. Assume

A = (∅, {s �→ 0} , {(c〈b〉, ∅)})
B = (∅, {s �→ 0} , {(read s as x. c〈b〉, ∅)})

A and B are not observationally equivalent. Let C = (-, -, {(0, {s})} -). The context C
does nothing but holds the lock on cell s and it will never release the lock. So we have
C[A] ⇓c but C[B] �⇓c because reading cell s in B is blocked forever by context C.
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Example 5. The attacker can read an unlocked public state cell. Assume

A = (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅)})
B = (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅)})

Cell s is unlocked in both A and B. Both A and B can write 0 or 1 to the cell s arbitrary
number of times. The only difference between A and B is the initial values in cell s. A
and B are not observationally equivalent because the context

C = (-, -, {(read s as x. if x = 0 then c〈b〉, {s})} -)

can distinguish them. The context C holds the lock of cell s, thus no one can change the
value in s when C reads the value. We have C[A] ⇓c but C[B] �⇓c.

In comparison, the following processes are observationally equivalent:

A′ = (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (unlock s, {s})})
B′ = (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), (unlock s, {s})})

Cell s is locked in both A′ and B′. When a cell is locked, the attacker cannot see its
value until it is unlocked. Both A′ and B′ can adjust the value of cell s after unlock s.
Assume

A′ τ(s)−−→ (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})
Then B′ can match this transition by first unlocking the cell s and then doing a writing
s := 0 and evolving to exactly the same process:

B′ τ(s)−−→ (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})
τ(s)
=⇒ (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})

Intuitively, the locked or unlocked status of a public state cell is observable by the
environment. Therefore, we require locks(A) = locks(B) and fs(A) = fs(B) in the
definition of observational equivalence. Furthermore, without this condition, this defi-
nition would not yield an equivalence relation, as transitivity does not hold in general.
For example, consider the following extended processes,

A = (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅)})
B = (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅), (unlock s, {s})})
C = (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅)})

Without the condition, then A and B would be equivalent, as well as B and C, because
the value in s can always be adjusted to be exactly the same after unlock s. But A and
C are not equivalent as analysed in Example 5.

Example 6. The value in an unlocked public state cell is a part of the attacker’s knowl-
edge. Assume

A = νk.(∅, {s �→ k} , {(s := 0.a(x).if x = k then c〈b〉, ∅)})
B = νk.(∅, {s �→ k} , {(s := 0.a(x), ∅)})



Stateful Applied Pi Calculus 35

A and B are not observationally equivalent. Let C = (-, -, {(read s as y. a〈y〉, ∅)} -).
Then C[A] ⇓c but C[B] �⇓c because

C[A] τ(s)−−→ νk. (∅, {s �→ k} , {(a〈k〉, ∅), (s := 0.a(x).if x = k then c〈b〉, ∅)})
τ(s)−−→ νk. (∅, {s �→ 0} , {(a〈k〉, ∅), (a(x).if x = k then c〈b〉, ∅)})
=⇒ νk. (∅, {s �→ 0} , {(c〈b〉, ∅)})

But there is no output on channel c in C[B]. Hence A � ≈ B.

Example 7. The attacker can write an arbitrary value into an unlocked public cell. As-
sume two extended processes

A = (∅, {s �→ 0} , {(s := 0. s := 0, ∅)})
B = (∅, {s �→ 0} , {(s := 0, ∅)})

A and B are not observationally equivalent. Applying C = (-, -, {(s := 1.s := 1, ∅)} -)
to both A andB, the interleaving of s := 0 and s := 1 can generate a sequence of values
0, 1, 0, 1, 0 in cell s in C[A], while the closest sequence generated by C[B] should be
0, 1, 0, 1, 1. So when the attacker keeps on reading the value in cell s, he would be able
to notice the difference.

Instead of using the primitive open s, an alternative way for making a private
state cell become public is to send cell name s on a free channel c〈s〉.P . The reason
we choose the primitive open s.P here is because sending and receiving cell names
through channels is too powerful, and will lead to soundness problems when we define
labelled bisimilarity later. For example, let

A = (∅, ∅, {(c(x).read x as z.a〈z〉, ∅)})
B = (∅, ∅, {(c(x), ∅)})

In the presence of input and output for cell names, A and B are not observationally
equivalent. Let C = (-, {t �→ 0} -, {(c〈t〉, ∅)} -). The context C brings his own state cell
t �→ 0 and we have C[A] ⇓a but C[B] �⇓a. That is to say, in order to define a sound
labelled bisimilarity, we have to allow a process like (∅, ∅, {(read t as z. a〈z〉, ∅)}) to
perform the reading even without a state cell t �→ 0. This requires a rather complex
definition of labelled bisimilarity, while what we want is to simply free a cell which can
be achieved by open s.P .

Now we give examples of the use of public state cells for modelling protocols and
security properties. Another security concern for RFID tags is forward privacy [26].
In the following Example 8 and Example 9, we shall illustrate how to model forward
privacy by public state cells. Forward privacy requires that even the attacker breaks the
tag, the past events should still be untraceable. Public state cells enable us to model the
compromised tags.

Example 8. We consider an improved version of the naive protocol in Example 1. In-
stead of simply outputting the tag’s id, the tag generates a random number r, hashes its
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id concatenated with r and then sends both r and h(id, r) to the reader for identification.
This can be modelled by:

Q(s) = read s as x. νr. a〈(r, h(x, r))〉

Upon receiving the value, the reader identifies the tag by performing a brute-force
search of its known ids. By observing on channel a, the attacker can get the data
pairs from a particular tag s: (r1, h(id , r1)), (r2, h(id , r2)), (r3, h(id , r3)) · · · . Since
the hash function is not invertible, without knowing the value of id, these data appear as
just random data to the attacker. Hence this improved version satisfies the untraceabil-
ity defined in Example 1. But it does not have the forward privacy. Let RD be process
modelling the reader and back-end database. The forward privacy can be characterised
by the observational equivalence

(∅, ∅, {( ! νs, id .([s �→ id ] | Q(s) | open s. !Q(s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, id .([s �→ id ] | !Q(s) | open s | RD), ∅)})

The primitive open s makes the private state cell s become public. Before the cell s is
broken, the attacker cannot decide how the system runs. In other words, whether the tag
s is used for only once, namely Q(s), or is used for arbitrary number of times, namely
!Q(s), it is out of the control of the attacker. But after the tag is broken, the attacker
fully controls the tag, so he knows when and where the tag is used. Despite knowing the
events that happen after the tag is broken, the attacker should still not be able to trace
the past events. Therefore, in the first process, we add !Q(s) after open s to model this
scenario. Intuitively, only the events before the tag is broken may be different while
the events after the tag is broken are exactly the same. Hence the above observational
equivalence can capture forward privacy.

However the above equivalence does not hold which means there is no forward pri-
vacy in this protocol. The attacker can obtain the id from the broken tag and then ver-
ify whether the previously gathered data (r1, h(id , r1)) and (r2, h(id , r2)) refer to the
same tag id by hashing id with r1 (or r2) and then comparing the result with h(id , r1)
(or h(id , r2)).

Example 9. Continuing with the OSK protocol in Example 2, we model the forward
privacy by the observational equivalence:

(∅, ∅, {( ! νs, k.([s �→ k] | T (s) | open s. !T (s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, k.([s �→ k] | !T (s) | open s | RD), ∅)})

Before the tag is broken, the attacker can obtain the data sequence g(k), g(h(k)),
g(h(h(k))) · · · by eavesdropping on channel a. Right after each reading, the value in
the tag will be updated to the hash of previous value: h(k), h(h(k)), h(h(h(k))) · · · .
When the tag is broken, the attacker will get from the tag a value hi(k) for some integer
i. This value is not helpful for the attacker to infer whether the data g(k), g(h(k)), · · · ,
g(hi−1(k)) are from the same tag. Hence the OSK protocol can ensure the forward
privacy.
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In order to ease the verification of observational equivalence which is defined us-
ing the universal quantifier over contexts, we shall define labelled bisimilarity which
replaces quantification over contexts by suitably labelled transitions. The traditional
definition for labelled bisimilarity is neither sound nor complete w.r.t. observational
equivalence in the presence of public state cells. We propose a novel definition for la-
belled bisimilarity and show how it solves all the problems caused by public state cells.

For a given cell s, we define
τ(s)
=⇒ to be the reflexive and transitive closure of

τ−−→ and
τ(s)−−→. We still use α to range over τ, a(M), a〈c〉, νc.a〈c〉 and νx.a〈x〉, and use =⇒ for

the reflexive and transitive closure of
τ−−→, and use

α̂
=⇒ for

α
=⇒ if α is not τ and =⇒

otherwise.
To define labelled bisimilarity, we need an auxiliary transition relation

s:=N−−−→ for
setting the values of public state cells:

νñ.(σ, S ∪ {s �→ M} ,P)
s:=N−−−→ νñ.(σ, S ∪ {s �→ Nσ} ,P)

if s �∈ ñ ∪ locks(P) and name(N) ∩ ñ = ∅
νñ.(σ, S,P)

s:=N−−−→ νñ.(σ, S,P) if s ∈ ñ ∪ locks(P)

The first rule of
s:=N−−−→ represents the attacker’s ability to overwrite the public state cells.

The second rule does not change the value of the cell s and is just for compatibility with

unlock s and open s in Definition 5. We write A
s:=N−−−→τ(s)

=⇒ A′ for the combination of

transitions A
s:=N−−−→ B and B

τ(s)
=⇒ A′ for some B.

Definition 5. Labelled bisimilarity (≈l) is the largest symmetric relation R between
pairs of closed extended processes Ai = νñi.(σi, Si,Pi) with i = 1, 2 such that
A1 RA2 implies

1. locks(A1) = locks(A2), fs(A1) = fs(A2) and dom(A1) = dom(A2);
2. Let U be the set of unlocked public state cells whose value is not already given in

the substitutions of A1 and A2, that is

U = { s | s ∈ fs(A1) \ locks(A1), �x ∈ dom(σ1) s.t. S1(s) = xσ1 and S2(s) = xσ2 }

Select a fresh base variable xs for each s ∈ U . Let

Ae
i = νñi.(σi ∪ {Si(s)/xs}s∈U , Si,Pi) for i = 1, 2

Then
(a) Ae

1 ≈s A
e
2;

(b) if Ae
1

s:=N−−−→ τ(s)−−→ B1 with var (N) ⊆ dom(Ae
1), then there exists B2 such that

Ae
2

s:=N−−−→τ(s)
=⇒ B2 and B1 RB2;

(c) if Ae
1

α−−→ B1 and fv (α) ⊆ dom(Ae
1) and bnv(α) ∩ fnv(Ae

2) = ∅, then there

exists B2 such that Ae
2

α̂
=⇒ B2 and B1 R B2.
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The static equivalence Ae
1 ≈s Ae

2 in Definition 5 is exactly the same as the one
defined in Definition 2. Before we compare the static equivalence and the transitions in
labelled bisimilarity, we extend Ai to Ae

i with values from unlocked public state cells.
This is to reflect the fact that attacker’s ability to read values from these cells.

Example 10. Consider the extended processes A and B in Example 5. As we have al-
ready shown, A and B are not observationally equivalent. Hence they are not supposed
to be labelled bisimilar. We first extend A and B to Ae and Be respectively:

Ae = ({0/z} , {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅)})
Be = ({1/z} , {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅)})

Clearly the static equivalence between Ae and Be does not hold, namely Ae �≈s Be,
because the test z = 0 can distinguish them. Thus we have A � ≈l B.

The extension is not only for comparing the static equivalence, but also for compar-
ing the transitions. In labelled bisimilarity, we compare the transitions starting from the
extensions Ae and Be, rather than the original processes A and B. The reason is that
we need to keep a copy of the cell values, otherwise we would lose the values when
someone overwrites the cells.

Example 11. Consider the extended processes A and B in Example 6. The extension
Ae of A can perform the following transition:

Ae = νk.({k/z} , {s �→ k} , {(s := 0.a(x).if x = k then c〈b〉, ∅)})
τ(s)−−→ νk.({k/z} , {s �→ 0} , {(a(x).if x = k then c〈b〉, ∅)})
a(z)
=⇒ νk.({k/z} , {s �→ 0} , {(c〈b〉, ∅)})
c〈b〉−−→ νk.({k/z} , {s �→ 0} , {(0, ∅)})

But it is impossible for B’s extension Be = νk.({k/z} , {s �→ k} , {(s := 0. a(x), ∅)})
to perform an output on channel c. Hence A � ≈l B.

We use
s:=N−−−→ τ(s)−−→ rather than

τ(s)−−→ in labelled bisimilarity because the attacker can
set any unlocked public state cell to an arbitrary value. We shall illustrate this point by
the following two examples.

Example 12. Assume

A = ({0/y, 1/z} , {s �→ 0} , {(read s as x. if x = 1 then c〈0〉, ∅)})
B = ({0/y, 1/z} , {s �→ 0} , ∅)

A and B are not observationally equivalent. Applying context C = (∅, ∅, {(s := 1, ∅)})
to A and B, we can see that C[A] ⇓c but C[B] �⇓c.

Now we shall distinguish them in labelled bisimilarity. Since the current value in cell
s is 0 which has already been stored in variable y, we don’t need to extend A and B.
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Then A can perform the following transition

A
s:=1−−−→ τ(s)−−→ ({0/y, 1/z} , {s �→ 1} , {(if 1 = 1 then c〈a〉, ∅)})

c〈a〉−−→ ({0/y, 1/z} , {s �→ 1} , {0, ∅})

But there is no way for B to perform an output action. Hence A � ≈l B.

Example 13. As illustrated in Example 7, A and B are not observationally equivalent.

In labelled bisimilarity, we extend A and perform the transitions
s:=1−−−→ τ(s)−−→ twice, then

we will reach a process A′ = ({0/x, 0/z} , {s �→ 0} , {(0, ∅)}), while the best B can do
to match A is to reach a process B′ = ({0/x, 1/z} , {s �→ 0} , {(0, ∅)}) and A′ �≈s B

′.

Note that the transition
s:=N−−−→ is not included in

α−→. We only need to use
s:=N−−−→ to

change the value of the unlocked public state cell s when the processes perform some

actions related to s. Comparing the combination of two transitions together (
s:=N−−−→ τ(s)−−→)

in Definition 5 optimises the definition to be better suited as an assisted tool for analysing
observational equivalence. Otherwise, if we follow the traditional way to define la-

belled bisimilarity, i.e. comparing Ae
1

s:=N−−−→ Be
1 and Ae

1

τ(s)−−→ Be
1 separately, the ac-

tion
s:=N−−−→ would generate infinitely many unnecessary branches. For example, let A =

(∅, {s �→ 0} , ∅). Even there is no action, A could keep on performing
s:=N−−−→ and would

never stop: A
s:=1−−−→ (∅, {s �→ 1} , ∅) s:=2−−−→ (∅, {s �→ 2} , ∅) s:=3−−−→ (∅, {s �→ 3} , ∅) · · ·

We require Ae
1

s:=N−−−→ τ(s)−−→ B1 to be matched by Ae
2

s:=N−−−→τ(s)
=⇒ B2 with the same s

in the action in labelled bisimilarity. In other words, Ae
2 can only match the transition

of Ae
1 by at most operating on the same cell s. This is equal to say the attacker holds the

locks of all the unlocked public cell except cell s in Ae
1. If Ae

1 does not do act on cell s,
then Ae

2 are not allowed to match Ae
1 by operating on s.

Example 14. Extend A and B in Example 4 to Ae = ({0/z} , {s �→ 0} , {(c〈b〉, ∅)})
and Be = ({0/z} , {s �→ 0} , {(read s as x. c〈b〉, ∅)}). We can see that Ae c〈b〉−−→
(∅, {s �→ 0} , {(0, ∅)}), but there is no way for Be to do the same output action c〈b〉
without going through the reading on cell s. Hence A �≈l B.

In the presence of public state cells, labelled bisimilarity is both sound and complete
with respect to observational equivalence.

Theorem 4. In the presence of public state cells, ≈l =≈.

5 Conclusion

We present a stateful language which is a general extension of applied pi calculus with
state cells. We stick to the original definition of observational equivalence [3] as much
as possible to capture the intuition of indistinguishability from the attacker’s point of
view, while design the labelled bisimilarity to furthest abstract observational equiva-
lence. When all the state cells are private, we prove that observational equivalence co-
incides with labelled bisimilarity, which implies Abadi-Fournet’s theorem in a revised
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version of applied pi calculus. In the presence of public state cells, we devise a labelled
bisimilarity which is proved to coincide with observational equivalence. In future, we
plan to develop a compiler for bi-processes with state cells to automatically verify the
observational equivalence, extending the techniques of ProVerif.
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