
A Reduced Semantics for Deciding Trace

Equivalence Using Constraint Systems�

David Baelde1, Stéphanie Delaune1, and Lucca Hirschi1,2

1 LSV, ENS Cachan & CNRS & Inria Saclay Île-de-France
2 ENS Lyon, France

Abstract. Many privacy-type properties of security protocols can be
modelled using trace equivalence properties in suitable process algebras.
It has been shown that such properties can be decided for interesting
classes of finite processes (i.e., without replication) by means of symbolic
execution and constraint solving. However, this does not suffice to obtain
practical tools. Current prototypes suffer from a classical combinatorial
explosion problem caused by the exploration of many interleavings in the
behaviour of processes. Mödersheim et al. [18] have tackled this problem
for reachability properties using partial order reduction techniques. We
revisit their work, generalize it and adapt it for equivalence checking. We
obtain an optimization in the form of a reduced symbolic semantics that
eliminates redundant interleavings on the fly.

1 Introduction

Security protocols are widely used today to secure transactions that rely on
public channels like the Internet, where dishonest users may listen to communi-
cations and interfere with them. A secure communication has a different meaning
depending on the underlying application. It ranges from the confidentiality of
data (medical files, secret keys, etc.) to, e.g., verifiability in electronic voting sys-
tems. Another example is the notion of privacy that appears in many contexts
such as vote-privacy in electronic voting or untraceability in RFID technologies.

Formal methods have proved their usefulness for precisely analyzing the secu-
rity of protocols. In particular, a wide variety of model-checking approaches have
been developed to analyse protocols against an attacker who entirely controls
the communication network, and several tools are now available to automat-
ically verify cryptographic protocols [8,15,5]. A major challenge faced here is
that one has to account for infinitely many behaviours of the attacker, who can
generate arbitrary messages. In order to cope with this prolific attacker problem
and obtain decision procedures, approaches based on symbolic semantics and
constraint resolution have been proposed [17,20]. This has lead to tools for veri-
fying reachability-based security properties such as confidentiality [17] or, more
recently, equivalence-based properties such as privacy [22,12,10].

� This work has been partially supported by the project JCJC VIP ANR-11-JS02-006,
and the Inria large scale initiative CAPPRIS.

M. Abadi and S. Kremer (Eds.): POST 2014, LNCS 8414, pp. 1–21, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 D. Baelde, S. Delaune, and L. Hirschi

In both cases, the practical impact of most of these tools is limited by a
typical state explosion problem caused by the exploration of the large number of
interleavings in the protocol’s behaviour. In standard model-checking approaches
for concurrent systems, the interleaving problem is handled using partial order
reduction techniques [19]. For instance, the order of execution of two independent
(parallel) actions is typically irrelevant for checking reachability. Things become
more complex when working with a symbolic semantics: the states obtained from
the interleaving of parallel actions will differ, but the sets of concrete states that
they represent will have a significant overlap. Earlier work has shown how to limit
this overlap [18] in the context of reachability properties for security protocols,
leading to high efficiency gains in the OFMC tool of the AVISPA platform [5].

In this paper, we revisit the work of [18] to obtain a partial order reduction
technique for the verification of equivalence properties. Specifically, we focus on
trace equivalence, requiring that two processes have the same sets of observable
traces and perform indistinguishable sequences of outputs. This notion is well-
studied and several algorithms and tools support it [9,14,22,12,10]. Contrary to
what happens for reachability-based properties, trace equivalence cannot be de-
cided relying only on the reachable states. The sequence of actions that leads to
this state plays a role. Hence, extra precautions have to be taken before discard-
ing a particular interleaving: we have to ensure that this is done in both sides
of the equivalence in a similar fashion. Our main contribution is an optimized
form of equivalence that discards a lot of interleavings, and a proof that this
reduced equivalence coincides with trace equivalence. Furthermore, our study
brings an improvement of the original technique [18] that would apply equally
well for reachability checking. Detailed proofs of our results can be found in [6].

Outline. In Section 2, we introduce our model for security processes. We con-
sider the class of simple processes introduced in [13], with else branches and no
replication. Then we present two successive optimizations in the form of refined
semantics and associated trace equivalences. Section 3 presents a compressed
semantics that limits interleavings by executing blocks of actions. Then, this is
lifted to a symbolic semantics in Section 4. Finally, Section 5 presents the reduced
semantics which makes use of dependency constraints to remove more interleav-
ings. We conclude in Section 6, mentioning a preliminary implementation that
shows efficiency gains in practice and some directions for future work.

2 Model for Security Protocols

In this section, we introduce the cryptographic process calculus that we will use
to describe security protocols. This calculus is close to the applied pi calculus [1].

2.1 Messages

A protocol consists of some agents communicating on a network. Messages sent
by agents are modeled using a term algebra. We assume two infinite and disjoint
sets of variables, X and W . Members of X are denoted x, y, z, whereas members



A Reduced Semantics for Deciding Trace Equivalence 3

of W are denoted w and used as handles for previously output terms. We also
assume a set N of names, which are used for representing keys or nonces, and a
signature Σ consisting of a finite set of function symbols. Terms are generated
inductively from names, variables, and function symbols applied to other terms.
For S ⊆ X ∪W ∪N , the set of terms built from S by applying function symbols
in Σ is denoted by T (S). Terms in T (N∪X ) represent messages and are denoted
by u, v, etc. while terms in T (W) represent recipes (describing how the attacker
built a term from the available outputs) and are written M , N , R. We write
fv(t) for the set of variables (from X or W) occurring in a term t. A term is
ground if it does not contain any variable, i.e., it belongs to T (N ). We may rely
on a sort system for terms, but its details are unimportant for this paper.

To model algebraic properties of cryptographic primitives, we consider an
equational theory E. The theory will usually be generated for finite axioms and
enjoy nice properties, but these aspects are irrelevant for the present work.

Example 1. In order to model asymmetric encryption and pairing, we consider:

Σ = {aenc(·, ·), adec(·, ·), pk(·), 〈·, ·〉, π1(·), π2(·)}.
To take into account the properties of these operators, we consider the equa-

tional theory Eaenc generated by the three following equations:

adec(aenc(x, pk(y)), y) = x, π1(〈x1, x2〉) = x1, and π2(〈x1, x2〉) = x2.

For instance, we have π2(adec(aenc(〈n, pk(ska)〉, pk(skb)), skb)) =Eaenc pk(ska).

2.2 Processes

We do not need the full applied pi calculus to represent security protocols. Here,
we only consider public channels and we assume that each process communicates
on a dedicated channel.

Formally, we assume a set C of channels and we consider the fragment of
simple processes without replication built on basic processes as defined in [13].
A basic process represents a party in a protocol, which may sequentially perform
actions such as waiting for a message, checking that a message has a certain form,
or outputting a message. Then, a simple process is a parallel composition of such
basic processes playing on distinct channels.

Definition 1 (basic/simple process). The set of basic processes on c ∈ C is
defined using the following grammar (below u, v ∈ T (N ∪ X ) and x ∈ X ):

P,Q := 0 null
| if u = v then P else Q conditional
| in(c, x).P input
| out(c, u).P output

A simple process P = {P1, . . . , Pn} is a multiset of basic processes Pi on
pairwise distinct channels ci. We assume that null processes are removed.

For conciseness, we often omit brackets, null processes, and even “else 0”.
Basic processes are denoted by the letters P and Q, whereas simple processes
are denoted using P and Q.



4 D. Baelde, S. Delaune, and L. Hirschi

During an execution, the attacker learns the messages that have been sent on
the different public channels. Those messages are organized into a frame.

Definition 2 (frame). A frame Φ is a substitution whose domain is included
in W and image is included in T (N ∪ X ). It is written {w � u, . . .}. A frame is
closed when its image only contains ground terms.

An extended simple proces (denoted A or B) is a pair made of a simple process
and a frame. Similarly, we define extended basic processes. Note that we do not
have an explicit set of restricted names. Actually, all names are restricted and
public ones are explicitly given to the attacker through a frame.

Example 2. We consider the protocol given in [2] designed for transmitting a
secret without revealing its identity to other participants. In this protocol, A is
willing to engage in communication with B and wants to reveal its identity to B.
However, A does not want to compromise its privacy by revealing its identity or
the identity of B more broadly. The participants A and B proceed as follows:

A → B : {Na, pubA}pubB
B → A : {Na, Nb, pubB}pubA

Moreover, if the message received by B is not of the expected form then B
sends out a “decoy” message: {Nb}pubB . This message should basically look
like B’s other message from the point of view of an outsider.

Relying on the signature and equational theory introduced in Example 1, a
session of role A played by agent a (with private key ska) with b (whose public
key is pkb) can be modeled as follows:

P (ska, pkb)
def
= out(cA, aenc(〈na, pk(ska)〉, pkb)).

in(cA, x).
if 〈π1(adec(x, ska)), π2(π2(adec(x, ska)))〉 = 〈na, pkb〉 then 0

Here, we are only considering the authentication protocol. A more comprehensive
model should include the access to an application in case of a success. Similarly,
a session of role B played by agent b with a can be modeled by the following
basic proces where N = adec(y, skb).

Q(skb, pka)
def
= in(cB, y).

if π2(N) = pka then out(cB, aenc(〈π1(N), 〈nb, pk(skb)〉〉, pka))
else out(cB, aenc(nb, pk(skb)))

To model a scenario with one session of each role (played by the agents a
and b), we may consider the extended process (P ;Φ0) where:

– P = {P (ska, pk(skb)), Q(skb, pk(ska))}, and
– Φ0 = {w0 � pk(ska

′), w1 � pk(ska), w2 � pk(skb)}.

The purpose of pk(ska ′) will be clear later on. It allows us to consider the exis-
tence of another agent a′ whose public key pk(ska′) is known by the attacker.



A Reduced Semantics for Deciding Trace Equivalence 5

2.3 Semantics

We first define a standard concrete semantics. Thus, in this section, we work
only with closed extended processes, i.e., processes (P ;Φ) where fv (P) = ∅.

Then ({if u = v then Q1 else Q2} 	 P ;Φ)
τ−→ ({Q1} 	 P ;Φ) if u =E v

Else ({if u = v then Q1 else Q2} 	 P ;Φ)
τ−→ ({Q2} 	 P ;Φ) if u 
=E v

In ({in(c, x).Q} 	 P ;Φ)
in(c,M)−−−−−→ ({Q{x �→ u}} 	 P ;Φ)

if M ∈ T (dom(Φ)) and MΦ = u

Out ({out(c, u).Q} 	 P ;Φ)
out(c,w)−−−−−→ ({Q} 	 P ;Φ ∪ {w � u})

if w is a fresh variable
where c ∈ C, w ∈ W and x ∈ X .

A process may input any term that an attacker can build (rule In): {x �→ u}
is a substitution that replaces any occurrence of x with u. In the Out rule, we
enrich the attacker’s knowledge by adding the newly output term u, with a fresh
handle w, to the frame. The two remaining rules are unobservable (τ action)
from the point of view of the attacker.

The relation A
a1...ak−−−−→ B between extended simple processes, where k ≥ 0

and each ai is an observable or a τ action, is defined in the usual way. We also

consider the relation
tr
==⇒ defined as follows: A

tr
==⇒ B if, and only if, there exists

a1 . . . ak such that A
a1...ak−−−−→ B, and tr is obtained from a1 . . . ak by erasing all

occurrences of τ .

Example 3. Consider the process (P ;Φ0) introduced in Example 2. We have:

(P ;Φ0)
out(cA,w3)·in(cB ,w3)·τ ·out(cB ,w4)·in(cA,w4)·τ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (∅;Φ).

This trace corresponds to the normal execution of one instance of the protocol.
The two silent actions have been triggered using the Then rule. The resulting
frame Φ is as follows:

Φ0 	 {w3 � aenc(〈na, pk(ska)〉, pk(skb)), w4 � aenc(〈na, 〈nb, pk(skb)〉〉, pk(ska))}.

2.4 Trace Equivalence

Many interesting security properties, such as privacy-type properties studied
e.g., in [4], are formalized using the notion of trace equivalence. We first introduce
the notion of static equivalence that compares sequences of messages.

Definition 3 (static equivalence). Two frames Φ and Φ′ are in static equiv-
alence, Φ ∼ Φ′, when we have that dom(Φ) = dom(Φ′), and:

MΦ =E NΦ ⇔ MΦ′ =E NΦ′ for any terms M,N ∈ T (dom(Φ)).

Intuitively, two frames are equivalent if an attacker cannot see the difference
between the two situations they represent, i.e., they satisfy the same equalities.



6 D. Baelde, S. Delaune, and L. Hirschi

Example 4. Consider the frame Φ given in Example 3 and the frame Φ′ below:

Φ′ def
= Φ0 	 {w3 � aenc(〈na, pk(ska

′)〉, pk(skb)), w4 � aenc(nb, pk(skb))}.
Actually, we have that Φ ∼ Φ′. Intuitively, the equivalence holds since the at-
tacker is not able to decrypt any of the ciphertexts, and each ciphertext con-
tains a nonce that prevents him to build it from its components. Now, if we
decide to give access to na to the attacker, i.e., considering Φ+ = Φ 	 {w5 � na}
and Φ′

+ = Φ′ 	 {w5 � na}, then the two frames Φ+ and Φ′
+ are not in static

equivalence anymore. Let M = aenc(〈w5, w1〉, w2) and N = w3. We have that
MΦ+ =Eaenc NΦ+ whereas MΦ′

+ 
=Eaenc NΦ′
+.

Definition 4 (trace equivalence). Let A and B be two simple processes. We

have that A � B if, for every sequence of actions tr such that A
tr
==⇒ (P ;Φ),

there exists (P ′;Φ′) such that B
tr
==⇒ (P ′;Φ′) and Φ ∼ Φ′. The processes A and B

are trace equivalent, denoted by A ≈ B, if A � B and B � A.

Example 5. Intuitively, the private authentication protocol presented in Exam-
ple 2 preserves anonymity if an attacker cannot distinguish whether b is willing
to talk to a (represented by the process Q(skb, pk(ska))) or willing to talk to a′

(represented by the process Q(skb, pk(ska ′))), provided a, a′ and b are honest
participants. This can be expressed relying on the following equivalence:

(Q(skb, pk(ska));Φ0)
?≈ (Q(skb, pk(ska ′));Φ0).

For illustration purposes, we also consider a variant of the process Q, de-
noted Q0, where its else branch has been replaced by else 0. We will see that
the “decoy” message plays a crucial role to ensure privacy. We have that:

(Q0(skb, pk(ska));Φ0)
in(cB,aenc(〈w1,w1〉,w2))·τ ·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→ (∅;Φ)

where Φ = Φ0 	 {w3 � aenc(〈pk(ska), 〈nb, pk(skb)〉〉, pk(ska))}.
This trace has no counterpart in (Q0(skb, pk(ska

′));Φ0). Indeed, we have that:

(Q0(skb, pk(ska
′));Φ0)

in(cB,aenc(〈w1,w1〉,w2))·τ−−−−−−−−−−−−−−−−−→ (∅;Φ0).

Hence, we have that (Q0(skb, pk(ska));Φ0) 
≈ (Q0(skb, pk(ska
′));Φ0). Actu-

ally, it can been shown that (Q(skb, pk(ska));Φ0) ≈ (Q(skb, pk(ska ′));Φ0). This
is a non trivial equivalence that can be checked using the tool APTE [11] within
few seconds for a simple scenario as the one considered here, and that takes few
minutes/days as soon as we want to consider 2/3 sessions of each role.

3 Reduction Based on Grouping Actions

A large number of possible interleavings results into multiple occurrences of
identical states. The compression step lifts a common optimization that partly
tackles this issue in the case of reachability properties to trace equivalence. The
key idea is to force processes to perform all enabled output actions as soon as
possible. In our setting, we can even safely force them to perform a complete
block of input actions followed by ouput actions.



A Reduced Semantics for Deciding Trace Equivalence 7

Example 6. Consider the process (P ;Φ) with P = {in(c1, x).P1, out(c2, b).P2}.
In order to reach ({P1{x �→ u}, P2};Φ∪ {w � b}), we have to execute the action
in(c1, x) (using a recipeM that allows one to deduce u) and the action out(c2, b)
(giving us a label of the form out(c2, w)). In case of reachability properties, the
execution order of these actions only matters if M uses w. Thus we can safely
perform the outputs in priority.

The situation is more complex when considering trace equivalence. In that
case, we are concerned not only with reachable states, but also with how those
states are reached. Quite simply, traces matter. Thus, if we want to discard the
trace in(c1,M).out(c2, w) when studying process P and consider only its per-
mutation out(c2, w).in(c1,M), we have to make sure that the same permutation
is available on the other process. The key to ensure that identical permutations
will be available on both sides of the equivalence is our restriction to the class
of simple processes.

3.1 Compressed Semantics

We now introduce the compressed semantics. Compression is an optimization,
since it removes some interleavings. But it also gives rise to convenient “macro-
actions”, called blocks, that combine a sequence of inputs followed by some out-
puts, potentially hiding silent actions. Manipulating those blocks rather than
indiviual actions makes it easier to define our second optimization.

For sake of simplicity, we consider initial simple processes. A simple process
A = (P ;Φ) is initial if for any P ∈ P , we have that P = in(c, x).P ′ for some
channel c, i.e., each basic process composing A starts with an input action.

Example 7. Continuing Example 2, ({P (ska, pk(skb)), Q(skb, pk(ska))};Φ0) is
not initial. Instead, we may consider ({Pinit, Q(skb, pk(ska))};Φ0) where:

Pinit
def
= in(cA, z).if z = start then P (ska, pk(skb))

assuming that start is a (public) constant in our signature.

The main idea of the compressed semantics is to ensure that when a basic
process starts executing some actions, it actually executes a maximal block of
actions. In analogy with focusing in sequent calculus, we say that the basic
process takes the focus, and can only release it under particular conditions. We
define in Figure 1 how blocks can be executed by extended basic processes. In
that semantics, the label � denotes the stage of the execution, starting with i+,
then i∗ after the first input and o∗ after the first output.

Example 8. Going back to Example 5, we have that:

(Q0(skb, pk(ska));Φ0)
in(cB ,aenc(〈w1,w1〉,w2))·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→→i+ (0;Φ)

where Φ is as given in Example 5. As illustrated by the prooftree below, we have

also (Q0(skb, pk(ska));Φ0)
tr−→→i+ (⊥;Φ0) with tr = in(cB, aenc(〈w1, w1〉, w2)).



8 D. Baelde, S. Delaune, and L. Hirschi

In

(P ;Φ)
in(c,M)−−−−−→ (P ′;Φ′) (P ′;Φ′) tr−−→→i∗ (P ′′;Φ′′)

(P ;Φ)
in(c,M).tr−−−−−−−→→� (P

′′;Φ′′)
with � ∈ {i∗; i+}

Out

(P ;Φ)
out(c,w)−−−−−→ (P ′;Φ′) (P ′;Φ′) tr−−→→o∗ (P ′′;Φ′′)

(P ;Φ)
out(c,w).tr−−−−−−−→→� (P

′′;Φ′′)
with � ∈ {i∗; o∗}

Tau

(P ;Φ)
τ−−→ (P ′;Φ′) (P ′;Φ′) tr−−→→� (P

′′;Φ′′)

(P ;Φ)
tr−−→→� (P

′′;Φ′′)
with � ∈ {o∗; i+; i∗}

Proper (0;Φ)
ε−−→→o∗ (0;Φ) (in(c, x).P ;Φ)

ε−−→→o∗ (in(c, x).P ;Φ)

Improper (0;Φ)
ε−−→→i∗ (⊥;Φ)

Fig. 1. Focused semantics on extended basic processes

(Q0(skb, pk(ska));Φ0)
tr−→ (Q′;Φ0)

(Q′;Φ0)
τ−→ (0;Φ0)

Improper
(0;Φ0)

ε−→→i∗ (⊥;Φ0)
Tau

(Q′;Φ0)
ε−→→i∗ (⊥;Φ0)

In
(Q0(skb, pk(ska));Φ0)

tr−→→i+ (⊥;Φ0)

where Q′ def
= if pk(ska) = pk(ska) then out(cB , u) for some message u.

Then we define the compressed reduction −→c between extended simple pro-
cesses as the least reflexive transitive relation satisfying the following rules:

Block

(Q;Φ)
tr−−→→i+ (Q′;Φ′) Q′ 
= ⊥

({Q} 	 P ;Φ)
tr−−→c ({Q′} 	 P ;Φ′) Failure

(Q;Φ)
tr−−→→i+ (Q′;Φ′) Q′ = ⊥

({Q} 	 P ;Φ)
tr−−→c (∅;Φ′)

A basic process is allowed to properly end a block execution when it has per-
formed outputs and it cannot perform any more. Accordingly, we call proper block
a non-empty sequence of inputs followed by a non-empty sequence of outputs, all
on the same channel. For completeness, we also allow improper termination of a
block, when the basic process that is currently executing is not able to perform
any visible action (input or output) and it has not yet performed an output.

Example 9. Continuing Example 8, using the rule block, we can derive that:

({Pinit, Q0(skb, pk(ska))};Φ0)
in(cB ,aenc(〈w1,w1〉,w2))·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→c (Pinit;Φ).

We can also derive ({Pinit, Q0(skb, pk(ska
′))};Φ0)

in(cB ,aenc(〈w1,w1〉,w2))−−−−−−−−−−−−−−−−−→c (∅;Φ0)
(using the rule Improper). Note that the resulting simple process is reduced
to ∅ even though Pinit has never been executed.

At first sight, killing the whole process when applying the rule Improper
may seem too strong. Actually, even if this kind of scenario is observable by the



A Reduced Semantics for Deciding Trace Equivalence 9

attacker, it does not bring him any new knowledge, hence it plays only a limited
role: it is in fact sufficient to consider such improper blocks at the end of traces.

Example 10. Consider P = {in(c, x).in(c, y), in(c′, x′)}. Its compressed traces
are of the form in(c,M).in(c,N) and in(c′,M ′). The concatenation of those two
improper traces cannot be executed in the compressed semantics. Intuitively, we
do not loose anything for trace equivalence, because if a process can exhibit
those two improper blocks they must be in parallel and hence considering their
combination is redundant.

We define the notion of compressed trace equivalence (resp. inclusion) accord-
ingly relying on −→c instead of =⇒, and we denote them ≈c (resp. �c).

3.2 Soundness and Completeness

The purpose of this section is to establish the soundness and completeness of the
compressed semantics. More precisely, we show that the two relations ≈ and ≈c

coincide on initial simple processes.
Intuitively, we can always permute output (resp. input) actions occurring

on distinct channels, and we can also permute an output with an input if the
outputted message is not used to build the inputted term. More formally, we
define an independence relation Ia over actions as the least symmetric relation
satisfying:

– out(ci, wi) Ia out(cj , wj) and in(ci,Mi) Ia in(cj ,Mj) as soon as ci 
= cj ,
– out(ci, wi) Ia in(cj ,Mj) when in addition wi 
∈ fv(Mj).

Then, we consider =Ia to be the least congruence (w.r.t. concatenation) satisfy-
ing act · act′ =Ia act′ · act for all act and act′ with act Ia act′, and we show that
processes are equally able to execute equivalent (w.r.t. =Ia) traces.

Lemma 1. Let A, A′ be two simple extended processes and tr, tr′ be such that

tr =Ia tr′. We have that A
tr
==⇒ A′ if, and only if, A

tr′
==⇒ A′.

Now, considering traces that are only made of proper blocks, a strong rela-
tionship can be established between the two semantics.

Proposition 1. Let A, A′ be two simple extended processes, and tr be a trace

made of proper blocks such that A
tr−−→c A

′. Then we have that A
tr
==⇒ A′.

Proposition 2. Let A, A′ be two initial simple processes, and tr be a trace made

of proper blocks such that A
tr
==⇒ A′. Then, we have that A

tr−−→c A
′.

Theorem 1. Let A and B be two initial simple processes. We have that:

A ≈ B ⇐⇒ A ≈c B.



10 D. Baelde, S. Delaune, and L. Hirschi

Proof. (Sketch) The main difficulty is that Proposition 2 only considers traces
composed of proper blocks whereas we have to consider all traces. To prove the
⇒ implication, we have to pay attention to the last block of the compressed trace
that can be an improper one (composed of several inputs on a channel c). The
⇐ implication is more difficult since we have to consider a trace tr of a process A
that is an interleaving of some prefix of proper and improper blocks. We will first
complete it to obtain an interleaving of complete blocks and improper blocks. We
then reorganize the actions providing an equivalent trace tr′ w.r.t. =Ia such that
tr′ = trio · trin where trio is made of proper blocks and trin is made of improper
blocks. For each improper block b of trin, we show by applying Lemma 1 and
Proposition 2 that A is able to perform trio · b in the compressed semantics and
thus B as well. Finally, we show that the executions of all those (concurrent)
blocks b can be put together, obtaining that B can perform tr′. ��

Note that, as illustrated by the following example, the two underlying notions
of trace inclusion do not coincide.

Example 11. Let P = in(c, x) and Q = in(c, x).out(c, n). Actually, we have that
(P ; ∅) � (Q; ∅) whereas (P ; ∅) 
�c (Q; ∅) since in the compressed semantics Q is
not allowed to stop its execution after its first input.

4 Deciding Trace Equivalence via Constraint Solving

In this section, we propose a symbolic semantics for our compressed semantics
following, e.g., [17,7]. Such a semantics avoids potentially infinite branching of
our reduction semantics due to inputs from the environment. Correctness is
maintained by associating with each process a set of constraints on terms.

4.1 Constraint Systems

Following the notations of [7], we consider a new set X 2 of second-order variables,
denoted by X , Y , etc. We shall use those variables to abstract over recipes. We
denote by fv2(o) the set of free second-order variables of an object o, typically a
constraint system. To prevent ambiguities, we shall use fv1 instead of fv for free
first-order variables.

Definition 5 (constraint system). A constraint system C = (Φ;S) consists
of a frame Φ, and a set of constraints S. We consider three kinds of constraints:

D �?
X x u=? v u 
=? v

where D ⊆ W, X ∈ X 2, x ∈ X and u, v ∈ T (N ∪ X ).

The first kind of constraint expresses that a recipe X has to use only variables
from a certain set D, and that the obtained term should be x. The handles in D
represent terms that have been previously outputted by the process.

We are not interested in general constraint systems, but only consider con-
straint systems that are well-formed. Given C, we define a dependency order on



A Reduced Semantics for Deciding Trace Equivalence 11

fv1(C)∩X by declaring that x depends on y if, and only if, S contains a deduc-
tion constraint D �?

X x with y ∈ fv1(Φ(D)). For C to be a well-formed constraint
system, we require that the dependency relationship is acyclic and that for every
x ∈ fv1(C) ∩X (resp. X ∈ fv2(C)) there is a unique constraint D �?

X x in S. For
X ∈ fv2(C), we write DC(X) for the domain D ⊆ W of the deduction constraint
D �?

X x associated to X in C.

Example 12. Let Φ = Φ0	{w3�aenc(〈π2(N), 〈nb, pk(skb)〉〉, pk(ska))} with N =
adec(y, skb), and S be a set containing two constraints:

{w0, w1, w2} �?
Y y and π2(N)=? pk(ska).

We have that C = (Φ;S) is a well-formed constraint system. There is only one
first-order variable y ∈ fv1(C)∩X , and it does not occur in fv1(Φ({w0, w1, w2})),
which is empty. Moreover, there is indeed a unique constraint that introduces y.

Our notion of well-formed constraint systems is in line with what is used e.g.,
in [17,7]. We use a simpler and (slightly) more permissive variant because we are
not concerned with constraint solving procedures in this work.

Definition 6 (solution). A solution of a constraint system C = (Φ;S) is
a substitution θ such that dom(θ) = fv2(C), and Xθ ∈ T (DC(X)) for any
X ∈ dom(θ). Moreover, we require that there exists a ground substitution λ
with dom(λ) = fv1(C) such that:

– for every D �?
X x in S, we have that (Xθ)(Φλ) =E xλ;

– for every u=? v in S, we have that uλ =E vλ; and

– for every u 
=? v in S, we have that uλ 
=E vλ.

The set of solutions of a constraint system C is denoted Sol(C). Since we consider
constraint systems that are well-formed, the substitution λ is unique modulo E
given θ ∈ Sol(C). We denote it by λθ when C is clear from the context.

Example 13. Consider again the constraint system C given in Example 12. We
have that θ = {Y �→ aenc(〈w1, w1〉, w2)} is a solution of C. Its associated first-
order solution is λθ = {y �→ aenc(〈pk(ska), pk(ska)〉, pk(skb))}.

4.2 Symbolic Processes: Syntax and Semantics

From a simple process (P ;Φ), we compute the constraint systems capturing its
possible executions, starting from the symbolic process (P ;Φ; ∅). Note that we
are now manipulating processes that rely on free variables.

Definition 7 (symbolic process). A symbolic process is a tuple (P ;Φ;S)
where (Φ;S) is a constraint system and fv1(P) ⊆ (fv1(S) ∩ X ).

We give below a standard symbolic semantics for our symbolic processes.



12 D. Baelde, S. Delaune, and L. Hirschi

In (in(c, y).P ;Φ;S) in(c,X)�−−−−−→ (P{y �→ x};Φ;S ∪ {dom(Φ)�?
X x})

where X (resp. x) is a fresh second-order (resp. first-order) variable

Out (out(c, u).P ;Φ;S) out(c,w)�−−−−−→ (P ;Φ ∪ {w � u};S)
where w is a fresh first-order variable

Then (if u = v then P else Q;Φ;S) τ�−−→ (P ;Φ;S ∪ {u=? v})
Else (if u = v then P else Q;Φ;S) τ�−−→ (Q;Φ;S ∪ {u 
=? v})

From this semantics, we derive our compressed symbolic semantics
tr�−−→c fol-

lowing the same pattern as for the concrete semantics. We consider interleavings
that execute maximal blocks of actions, and we allow improper termination of a
block only at the end of a trace.

Example 14. We have that (Q0(b, a);Φ0; ∅) tr�−−→c (∅;Φ;S) where:
– tr = in(cB , Y ) · out(cB , w3), and
– C = (Φ;S) is the constraint system defined in Example 12.

We are now able to define our notion of (symbolic) trace equivalence.

Definition 8 (trace equivalence w.r.t.
tr�−→c). Let A = (P ;Φ) and B = (Q;Ψ)

be two simple processes. We have that A �s B when, for every sequence tr such

that (P ;Φ; ∅) tr�−→c (P ′;Φ′;SA), for every θ ∈ Sol(Φ′;SA), we have that:

– (Q;Ψ ; ∅) tr�−→c (Q′;Ψ ′;SB) with θ ∈ Sol(Ψ ′;SB), and
– ΦλA

θ ∼ ΨλB
θ where λA

θ (resp. λB
θ ) is the substitution associated to θ w.r.t.

(Φ′;SA) (resp. (Ψ
′;SB)).

We have that A and B are in trace equivalence w.r.t.
tr�−→c if A �s B and B �s A.

Example 15. We have that (Q0(b, a);Φ0) 
�s (Q0(b, a
′);Φ0). Continuing Exam-

ple 14, we have seen that (Q0(b, a);Φ0; ∅) tr�−−→c (∅;Φ;S), and θ ∈ Sol(Φ;S) (see
Example 12). The only symbolic process that is reachable from (Q0(b, a

′);Φ0; ∅)
using tr is (∅;Φ′;S ′) with:

– Φ′ = Φ0 	 {w3 � aenc(〈π2(N), 〈nb, pk(skb)〉〉, pk(ska′))}, and
– S ′ =

{
{w0, w1, w2} �?

Y y; π2(N)=? pk(ska′)
}
.

We can check that θ is not a solution of (Φ′;S ′).

For processes without replication, the symbolic transition system is finite.
Thus, deciding (symbolic) trace equivalence between processes boils down to the
problem of deciding a notion of equivalence between sets of constraint systems.
This problem is well-studied and several procedures already exist [7,14,12].

4.3 Soundness and Completeness

Using the usual approach, such as the one developed in [7,13], we can show
soundness and completeness of our symbolic compressed semantics w.r.t. our
concrete compressed semantics. We have:



A Reduced Semantics for Deciding Trace Equivalence 13

– Soundness : each transition in the compressed symbolic semantics represents
a set of transitions that can be done in the concrete compressed semantics.

– Completeness : each transition in the compressed semantics can be matched
by a transition in the compressed symbolic semantics.

Finally, relying on these two results, we can establish that symbolic trace
equivalence (≈s) exactly captures compressed trace equivalence (≈c).

Theorem 2. For any extended simple processes A and B, we have that:

A �c B ⇐⇒ A �s B.

5 Reduction Using Dependency Constraints

Unlike compression, which is based only on the input/output nature of actions,
our second optimization takes into account the exchanged messages.

Let us first illustrate one simple instance of our optimization and how de-
pendency constraints [18] may be used to incorporate it in symbolic semantics.
Let Pi = in(ci, xi).out(ci, ui).P

′
i with i ∈ {1, 2}, and Φ0 = {w0 � n} be a closed

frame. We consider the simple process A = ({P1, P2};Φ0), and the two symbolic
interleavings depicted below.

•

•

•

•

•

•

•

•

•

in(c1, X1)

out(c1, w1)

in(c2, X2)

out(c2, w2)

in(c2, X2)

out(c2, w2)

in(c1, X1)

out(c1, w1)

The two resulting symbolic processes
are of the form ({P ′

1, P
′
2};Φ;Si) where:

– Φ = Φ0 	 {w1 � u1, w2 � u2},
– S1 =

{
w0 �?

X1
x1; w0, w1 �?

X2
x2

}
,

– S2 =
{
w0 �?

X2
x2; w0, w2 �?

X1
x1

}
.

The sets of concrete processes that
these two symbolic processes represent
are different, which means that we can-
not discard any of those interleavings.

However, these sets have a significant overlap corresponding to concrete instances
of the interleaved blocks that are actually independent, i.e., where the output of
one block is not necessary to obtain the input of the next block. In order to avoid
considering such concrete processes twice, we may add a dependency constraint
X1�w2 in C2, whose purpose is to discard all solutions θ such that the message
x1λθ can be derived without using w2 � u2λθ. For instance, the concrete trace
in(c2, w0) ·out(c2, w2) ·in(c1, w0) ·out(c1, w1) would be discarded thanks to this
new constraint.

The idea of [18] is to accumulate dependency constraints generated whenever
such a pattern is detected in an execution, and use an adapted constraint resolu-
tion procedure to narrow and eventually discard the constrained symbolic states.
We seek to exploit similar ideas for optimizing the verification of trace equiva-
lence rather than reachability. This requires extra care, since pruning traces as
described above may break completeness when considering trace equivalence. As
before, the key to obtain a valid optimization will be to discard traces in a similar



14 D. Baelde, S. Delaune, and L. Hirschi

way on the two processes being compared. In addition to handling this neces-
sary subtlety, we also propose a new proof technique for justifying dependency
constraints. The generality of that technique allows us to add more dependency
constraints, taking into account more patterns than the simple diamond shape
from the previous example.

There are at least two natural semantics for dependency constraints. The
simplest semantics focuses on the second-order notion of recipe. In the above
example, it would require that recipe X1θ contains the variable w2. That is
weaker than a first-order semantics requiring that any recipe derivinig x1λθ

would involve w2 since spurious dependencies may easily be introduced. Our
ultimate goal in this section is to show that trace equivalence w.r.t. the first-
order reduced semantics coincides with the regular symbolic semantics. However,
we first establish this result for the second-order semantics, which is more easily
analysed and provides a useful stepping stone.

5.1 Second-Order Reduced Semantics

We start by introducing dependency constraints, in a more general form than
the one used above, and give them a second-order semantics.

Definition 9 (dependency constraint). A dependency constraint is a con-

straint of the form
−→
X�

−→w where
−→
X is a vector of variables in X 2, and −→w is a

vector of handles, i.e. variables in W.
Given a substitution θ with dom(θ) ⊆ X 2, and Xθ ∈ T (W) for any X ∈

dom(θ). We say that θ satisfies
−→
X�

−→w , denoted θ |= −→
X�

−→w , if either −→w = ∅ or

there exist Xi ∈
−→
X and wj ∈ −→w such that wj ∈ fv1(Xiθ).

A constraint system with dependency constraints is called a dependency con-
straint system. We denote by C◦ the regular constraint system obtained by re-
moving all dependency constraints from C. We only consider well-formed depen-
dency constraint systems, that is those C such that C◦ is well-formed. A solution

of C is a substitution θ such that θ ∈ Sol(C◦) and θ |= −→
X�

−→w for each dependency

constraint
−→
X�

−→w ∈ C. We denote this set Sol2(C).
We shall now define how dependency constraints will be added to our con-

straint systems. For this, we fix an arbitrary total order ≺ on channels. Intu-
itively, this order expresses which executions should be favored, and which should
be allowed only under dependency constraints. To simplify the presentation, we

use the notation ioc(
−→
X,−→w ) as a shortcut for in(c,X1) · . . . ·in(c,X�).out(c, w1) ·

. . . · out(c, wk) assuming that
−→
X = (X1, . . . , X�) and −→w = (w1, . . . , wk). Note

that
−→
X and/or −→w may be empty.

Definition 10 (generation of dependency constraints). Let c be a channel,

and tr = ioc1 (
−→
X1,

−→w1) · . . . · iocn (
−→
Xn,

−→wn) be a trace. If there exists a rank k ≤ n
such that ci ≺ c ≺ ck for all k < i ≤ n, then we define

dep (tr, c) = { w | w ∈ −→wi with k ≤ i ≤ n}



A Reduced Semantics for Deciding Trace Equivalence 15

Otherwise, we have that dep (tr, c) = ∅.

We obtain our reduced semantics by integrating those dependency constraints
into the symbolic compressed semantics. We define �−→d as the least reflexive
relation satisying the following rule:

(P ;Φ; ∅) tr�−−→d (P ′;Φ′;S ′) (P ′;Φ′;S ′)
ioc(

−→
X,−→w )�−−−−−−→c (P ′′;Φ′′;S ′′)

(P ;Φ; ∅) tr·ioc(−→X,−→w )�−−−−−−−−→d (P ′′;Φ′′;S ′′ ∪ {−→X�dep (tr, c)})

Given a proper trace, we define Deps (tr) to be the accumulation of the gener-
ated constraints as defined above for all prefixes of tr (where each proper block
is considered as an atomic action). We may observe that:

– if A
tr�−−→d (P ;Φ;S) then S = S◦ ∪Deps (tr) and A

tr�−−→c (P ;Φ;S◦);
– if A

tr�−−→c (P ;Φ;S) then S = S ′◦ and A
tr�−−→d (P ;Φ;S ′).

Example 16. Let a, b, and c be channels in C such that a ≺ b ≺ c. The depen-
dency constraints generated during the symbolic execution of a simple process of
the form ({in(a, xa).out(a, ua), in(b, xb).out(b, ub), in(c, xc).out(c, uc)};Φ) are
depicted below.

•

• • •

• • • • • •

• • • • • •

ioa iob ioc

iob ioc ioa ioc
ioa

iob

ioc iob ioc ioa iob ioa

We use ioi as a shortcut for in(i,Xi) ·out(i, wi) and we represent dependency
constraints using arrows. For instance, on the trace ioa · ioc · iob, a dependency
constraint of the form Xb�wc (represented by the left-most arrow) is generated.
Now, on the trace ioc · ioa · iob we add Xa�wc after the second transition, and
Xb�{wc, wa} (represented by the dashed 2-arrow) after the third transition.
Intuitively, the latter constraint expresses that iob is only allowed to come after
ioc if it depends on it, possibly indirectly through ioa.

This reduced semantics gives rise to a notion of trace equivalence. It is defined
as in Definition 8, relying on �−→d instead of �−→c and on Sol2 instead of Sol. We
denote it ≈2

d, and the associated notion of inclusion is denoted �2
d

5.2 Soundness and Completeness

In order to establish that ≈s and ≈2
d coincide, we are going to study more

carefully concrete traces made of (not necessarily proper) blocks. We denote by B



16 D. Baelde, S. Delaune, and L. Hirschi

the set of blocks ioc(
−→
M,−→w ) such that c ∈ C, Mi ∈ T (W) for each Mi ∈ −→

M ,
and wj ∈ W for each wj ∈ −→w . In this section, a concrete trace is necessarily
made of blocks, i.e., it belongs to B∗. Note that all traces from executions in
the compressed semantics are concrete traces in this sense. We show that we can
view B∗ as a partially commutative monoid in a meaningful way. This allows us
to lift a classic result in which we ground our reduced semantics.

We lift the ordering on channels to blocks: ioc(
−→
M,−→w ) ≺ ioc′(

−→
M ′,

−→
w′) if, and

only if, c ≺ c′. Finally, we define ≺ on concrete traces as the lexicographic
extension of the order on blocks. We define similarly ≺ on symbolic traces.

Partially commutative monoid. We define an independence relation Ib over B:
we say that ioc(

−→
M,−→w ) Ib ioc′(

−→
M ′,

−→
w′) when c 
= c′, none of the variables of −→w ′

occurs in
−→
M , and none of the variables of −→w occurs in

−→
M ′. Then we define =Ib

as the least congruence satisfying

ioc(
−→
M,−→w ) · ioc′(

−→
M ′,

−→
w′) =Ib

ioc′(
−→
M ′,

−→
w′) · ioc(

−→
M,−→w )

for all ioc(
−→
M,−→w ) and ioc′(

−→
M ′,

−→
w′) with ioc(

−→
M,−→w ) Ib ioc′(

−→
M ′,

−→
w′). The set of

concrete traces, quotiented by this equivalence relation, is the partially commu-
tative monoid obtained from Ib. Given a concrete trace tr, we denote by min(tr)
the minimum for ≺ among all the traces that are equal to tr modulo =Ib

.

First, we prove that the symbolic semantics is equally able to execute equiv-
alent (w.r.t. =Ib

) traces. Second we prove that the reduced semantics generates
dependency constraints that are (only) satisfied by minimal traces.

Lemma 2. Let (P0;Φ0; ∅) tr�−→c (P ;Φ;S) with tr made of proper blocks, and θ ∈
Sol(Φ;S). For any concrete trace trc =Ib

trθ there exists a symbolic trace tr′ such

that trc = tr′θ, (P0;Φ0; ∅) tr′�−→c (P ;Φ;S ′) and θ ∈ Sol(Φ;S ′).

Lemma 3. Let A
tr�−→c (P ;Φ;S) and θ ∈ Sol(Φ;S). We have that θ |= Deps (tr)

if, and only if, trθ = min(trθ).

Proof (Sketch). Let A
tr�−→c (P ;Φ;S) and θ ∈ Sol(Φ;S). We need a characteriza-

tion of minimal traces. We exploit the following one, which is equivalent to the
characterization of Anisimov and Knuth [3]:

The trace t is minimal if, and only if, for all factors aub of t such that
(1) a, b ∈ B, u ∈ B∗ and d ≺ b ≺ a for all d ∈ u, we have (2) some c ∈ au
such that c Ib b does not hold.

We remark that condition (1) characterizes the factors of (symbolic) traces for
which we generate a dependency constraint. Here, that constraint would be

−→
X b� ∪d∈au

−→w d

where α ∈ B is also written iocα(
−→
Xα,

−→wα) to have an access to its components.
Then we note that (2) corresponds to the satisfaction of that dependency

constraint in a concrete instance of the trace. ��



A Reduced Semantics for Deciding Trace Equivalence 17

Finally, relying on these results, we can establish that trace equivalence (≈d)
w.r.t. the reduced semantics exactly captures symbolic trace equivalence (≈s).

Theorem 3. For any extended simple processes A and B, we have that:

A �s B ⇐⇒ A �2
d B.

Proof (Sketch). Implication (⇒) is straightforward and only relies on the fact
that dependency constraints generated by the reduced semantics only depend
on the trace that is executed. The other direction (⇐) is more interesting. Here,
we only outline the main idea, in the case of a trace made of proper blocks.
We show that a concrete trace trθ which is not captured when considering �−→d

(i.e., a trace trθ that does not satisfy the generated dependency constraints)
can be mapped to another trace, namely min(trθ), which manipulates the same
recipes/messages but where blocks are executed in a different order. Lemma 2
is used to obtain an execution of the minimal trace, and Lemma 3 ensures that
dependency constraints are satisfied in that execution. Thus the minimal trace
can also be executed by the other process. We go back to trθ using Lemma 2. ��

5.3 First-Order Reduced Semantics

We finally introduce the stronger, first-order semantics for dependency con-
straints, and we prove soundness and completeness for the corresponding equiv-
alence property by building on the previous theorem.

Definition 11. Let C = (Φ;S) be a dependency constraint system. We define

Sol1(C) to be the set of substitutions θ ∈ Sol(C◦) such that, for each
−→
X�

−→w in C
with non-empty −→w there is some Xi ∈

−→
X such that for all recipes M ∈ T (DC(X))

satisfying M(Φλθ)=E(Xθ)(Φλθ), we have fv1(M) ∩ −→w 
= ∅.

We define the notion of trace equivalence accordingly, as it has been done at
the end of Section 5.1, relying on Sol1 instead of Sol2. We denote it ≈1

d, and the
associated notion of inclusion is denoted �1

d.

Theorem 4. For any extended simple processes A and B, we have that:

A �2
d B ⇐⇒ A �1

d B.

Proof (Sketch). (⇒) This implication is relatively easy to establish. It actually
relies on the fact that Sol1(C) ⊆ Sol2(C) for any dependency constraint system C.
This allows us to use our hypothesis A �2

d B. Then, in order to come back to our
more constrainted first-order reduced semantics, we may notice that as soon as θ
is a solution of C and C′ (w.r.t. Sol2) with static equivalence of their associated
frames, we have that: θ ∈ Sol1(C) if, and only if, θ ∈ Sol1(C′). (⇐) In order to
exploit our hypothesis A �1

d B, given a trace

A
tr�−→d (P ;Φ;S) with θ ∈ Sol2(Φ;S),

we build tr′ and θ′ such that A
tr′�−→d (P ;Φ;S ′) with “tr =Ib

tr′”, and θ′ ∈
Sol1(Φ;S ′). Actually, we do this without changing the underlying first-order



18 D. Baelde, S. Delaune, and L. Hirschi

substitution, i.e., λθ = λθ′ . This is done by a sub-induction; iteratively modifying
θ and tr. Whenever θ is not already a first-order solution, we slightly modify it.
We obtain a new substitution θ′ that is not a second-order solution anymore
w.r.t. tr, and we use Lemmas 2 and 3 to obtain a new trace tr′ ≺ tr for which θ′

is a second-order solution. By induction hypothesis on tr′ we obtain a first-order
solution. We finally go back to the original trace tr, using an argument similar
to the one in the first direction to handle static equivalence. ��

Example 17. We illustrate the construction of tr′, which is at the core of the
above proof. Consider A = ({P1, P2, P3};Φ) where Pi = in(ci, xi).out(ci, ni),
and Φ0 = {w0 � n0}, and ni ∈ N for 0 ≤ i ≤ 3. We assume that c1 ≺ c2 ≺ c3,
and we consider the situation where the nonces n0 and n2 (resp. n1 and n3) are
the same.

Let tr = ioc3(X3, w3).ioc2(X2, w2).ioc1(X1, w1) and (Φ;S) the dependency

constraint system such that A
tr�−→d (∅;Φ;S). We consider the substitution θ =

{X3 �→ start, X2 �→ w3, X1 �→ w2}. We note that θ ∈ Sol2(Φ;S) but we have
that θ 
∈ Sol1(Φ;S) due to the presence of X1�w2 in S. We could try to fix
this problem by building a “better” solution θ′ that yields the same first-order
solution: θ′ = {X3 �→ start, X2 �→ w3, X1 �→ w0} is such a candidate. Applying
Lemmas 2 and 3, we obtain a smaller symbolic trace:

tr′ = ioc1(X1, w1) · ioc3(X3, w3) · ioc2(X2, w2).

Let (Φ;S ′) be the constraint system obtained from the execution of tr′. We have
that θ′ ∈ Sol2(Φ;S ′) but again θ′ 
∈ Sol1(Φ;S ′). This is due to the presence
of X2�w3 in S ′ — which was initially satisfied by θ in the first-order sense.
With one more iteration of this transformation, we obtain a third candidate:
θ′′ = {X3 �→ start, X2 �→ w1, X1 �→ w0} and

tr′′ = ioc1(X1, w1) · ioc2(X2, w2) · ioc3(X3, w3).

The associated constraint system does not contain any dependency constraint,
and thus θ′′ is trivially a first-order solution.

5.4 Applications

We first describe two situations showing that our reduced semantics can yield
an exponential benefit. Then, we illustrate the effect of our reduced semantics
on our running example, i.e., the private authentication protocol.

Consider first the simple process P = {P1, P2, . . . , Pn} where each Pi denotes
the basic process in(ci, x).if x = ok then out(ci, ni) with ni ∈ N . There are
(2n)!/2n different traces of size 2n (i.e., containing 2n visible actions) in the
concrete semantics. This number is actually the same in the standard symbolic
semantics. In the compressed semantics (as well as the symbolic compressed
semantics) this number goes down to n!. Finally, in the reduced semantics, there
is only one trace such that the resulting constraint system admits a solution.
Assuming that c1 ≺ . . . ≺ cn, that trace is simply:

tr = ioc1 (
−→
X1,

−→w1) · . . . · iocn (
−→
Xn,

−→wn).



A Reduced Semantics for Deciding Trace Equivalence 19

Next, we consider the simple process P = {Pn
1 , P

n
2 } where P 0

i = 0, and
Pn+1
i denotes the basic process in(ci, xj).if xj = ok then out(ci, nj).P

n
i . We

consider traces of size 4n. In the concrete semantics, there are
(
4n
2n

)
different

traces, whereas the number of such traces is reduced to
(
2n
n

)
in the compressed

semantics. Again, there is only one trace left in the reduced semantics.

Going back to our running example (see Examples 2 and 7), we represent
some symbolic traces obtained using our reduced semantics. We consider:

({Pinit, Q0(skb, pk(ska))};Φ0; ∅)
and we assume that cA ≺ cB. We consider all symbolic traces obtained without
considering the Else rule.

•

• •

• • •

• •

io1a iob

io2a iob
io1a

io2a io2a

Those executions are represented in the diagram
on the left, where

– io1a to denote iocA(X
1
a , wa),

– io2a to denote iocA(X
2
a , ∅), and

– iob to denote iocB(Xb, wb).

The block io2a is an improper block since it only con-
tains an input action. First, we may note that many
interleavings are not taken into account thanks to

compression. Now, consider the symbolic trace io1a · iob · io2a. A dependency
constraint of the form X2

a�wb is generated. Thus, a concrete trace that satisfies
this dependency constraint must use the output of the role Q0(b, a) to build the
second input of the role Pinit.

Second, consider the rightmost branch. A dependency constraint of the form
X1

a�wb is generated, and since X1
a has to be instantiated by a recipe that gives

the public constant start (due of the constraint x1
a =? start present in the system),

the reduced semantics makes it possible to prune all executions starting with
iob · io1a.

6 Conclusion

We have proposed two refinements of the symbolic semantics for simple pro-
cesses. The first refinement groups actions in blocks, while the second one uses
dependency constraints to restrict to minimal interleavings among a class of per-
mutations. In both cases, the refined semantics has less traces, yet we show that
the associated trace equivalence coincides with the standard one. In theory, this
yields a potentially exponential algorithmic optimization.

In order to validate our approach, an experimental implementation has been
developed1. This tool is based on SPEC [21] (which does not support else
branches) and implements our modified semantics as well as an adapted con-
straint resolution procedure that takes (first-order) dependency constraints into
account. The latter procedure is quite preliminary and far from optimal. Yet,

1 Available at <http://perso.ens-lyon.fr/lucca.hirschi/spec_en.html> .

<http://perso.ens-lyon.fr/lucca.hirschi/spec_en.html>


20 D. Baelde, S. Delaune, and L. Hirschi

the modified checker already shows significant improvements over the original
version on various benchmarks ([16], Figure 9).

We are considering several directions for future work. Constraint solving pro-
cedures should be studied in depth: we may optimize the one we already devel-
oped [16] and we are also interested in studying the problem in other frameworks,
e.g., [11]. We also believe that stronger reductions can be achieved: for instance,
exploiting symmetries should be very useful for dealing with multiple sessions.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proc. 28th Symposium on Principles of Programming Languages (POPL 2001),
pp. 104–115. ACM Press (2001)

2. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Sci-
ence 322(3), 427–476 (2004)

3. Anisimov, A., Knuth, D.: Inhomogeneous sorting. International Journal of Com-
puter & Information Sciences 8(4), 255–260 (1979)

4. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proc. 23rd Computer Security Foun-
dations Symposium (CSF 2010), pp. 107–121. IEEE Comp. Soc. Press (2010)

5. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

6. Baelde, D., Delaune, S., Hirschi, L.: A reduced semantics for deciding trace equiv-
alence using constraint systems. ArXiv e-prints (January 2014)

7. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proc. 12th Conference on Computer and Communications Security. ACM (2005)

8. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: Proc. 14th Computer Security Foundations Workshop (CSFW 2001), pp. 82–96.
IEEE Comp. Soc. Press (2001)

9. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming (2008)

10. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence prop-
erties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 108–127. Springer, Heidelberg (2012)

11. Cheval, V.: APTE (2011), http://projects.lsv.ens-cachan.fr/APTE/
12. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative

tests and non-determinism. In: Proc. 18th Conference on Computer and Commu-
nications Security (CCS 2011). ACM Press (2011)

13. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theoretical Computer Science 492, 1–39 (2013)

14. Chevalier, Y., Rusinowitch, M.: Decidability of symbolic equivalence of derivations.
Journal of Automated Reasoning 48(2) (2012)

15. Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and fnalysis of se-
curity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008)

16. Hirschi, L.: Réduction d’entrelacements pour l’équivalence de traces. RR LSV-
13-13, Laboratoire Spécification et Vérification, ENS Cachan, France (September
2013)

http://projects.lsv.ens-cachan.fr/APTE/


A Reduced Semantics for Deciding Trace Equivalence 21

17. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proc. 8th ACM Conference on Computer and Communica-
tions Security (CCS 2001). ACM Press (2001)

18. Mödersheim, S., Viganò, L., Basin, D.A.: Constraint differentiation: Search-space
reduction for the constraint-based analysis of security protocols. Journal of Com-
puter Security 18(4), 575–618 (2010)

19. Peled, D.: Ten years of partial order reduction. In: Vardi, M.Y. (ed.) CAV 1998.
LNCS, vol. 1427, pp. 7–28. Springer, Heidelberg (1998)

20. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: Proc. 14th Computer Security Foundations Workshop (CSFW
2001), pp. 174–190. IEEE Comp. Soc. Press (2001)

21. Tiu, A.: Spec (2010), http://users.cecs.anu.edu.au/~tiu/spec/
22. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.

In: Proc. 23rd IEEE Computer Security Foundations Symposium (CSF 2010), pp.
307–321. IEEE Computer Society Press (2010)

http://users.cecs.anu.edu.au/~tiu/spec/

	A Reduced Semantics for Deciding Trace
Equivalence Using Constraint Systems�

	1 Introduction
	2 Model for Security Protocols
	2.1 Messages
	2.2 Processes
	2.3 Semantics
	2.4 Trace Equivalence

	3 Reduction Based on Grouping Actions
	3.1 Compressed Semantics
	3.2 Soundness and Completeness

	4 Deciding Trace Equivalence via Constraint Solving
	4.1 Constraint Systems
	4.2 Symbolic Processes: Syntax and Semantics
	4.3 Soundness and Completeness

	5 Reduction Using Dependency Constraints
	5.1 Second-Order Reduced Semantics
	5.2 Soundness and Completeness
	5.3 First-Order Reduced Semantics
	5.4 Applications

	6 Conclusion
	References




