
Martín Abadi
Steve Kremer (Eds.)

 123

Third International Conference, POST 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5–13, 2014, Proceedings

Principles of Security
and TrustLN

CS
 8

41
4

AR
Co

SS



Lecture Notes in Computer Science 8414
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



Martín Abadi Steve Kremer (Eds.)

Principles of Security
and Trust

Third International Conference, POST 2014
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5-13, 2014
Proceedings

13



Volume Editors

Martín Abadi
Microsoft Research
Mountain View, CA, USA
E-mail: abadi@microsoft.com

Steve Kremer
Inria Nancy - Grand’Est
Villers-lès-Nancy, France
E-mail: steve.kremer@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54791-1 e-ISBN 978-3-642-54792-8
DOI 10.1007/978-3-642-54792-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933674

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

ETAPS 2014 was the 17th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998, and this year consisted of six constituting conferences
(CC, ESOP, FASE, FoSSaCS, TACAS, and POST) including eight invited speak-
ers and two tutorial speakers. Before and after the main conference, numerous
satellite workshops took place and attracted many researchers from all over the
globe.

ETAPS is a confederation of several conferences, each with its own Program
Committee (PC) and its own Steering Committee (if any). The conferences cover
various aspects of software systems, ranging from theoretical foundations to pro-
gramming language developments, compiler advancements, analysis tools, formal
approaches to software engineering, and security. Organizing these conferences
in a coherent, highly synchronized conference program, enables the participation
in an exciting event, having the possibility to meet many researchers working
in different directions in the field, and to easily attend the talks of different
conferences.

The six main conferences together received 606 submissions this year, 155 of
which were accepted (including 12 tool demonstration papers), yielding an overall
acceptance rate of 25.6%. I thank all authors for their interest in ETAPS, all
reviewers for the peer reviewing process, the PC members for their involvement,
and in particular the PC co-chairs for running this entire intensive process. Last
but not least, my congratulations to all authors of the accepted papers!

ETAPS 2014 was greatly enriched by the invited talks of Geoffrey Smith
(Florida International University, USA) and John Launchbury (Galois, USA),
both unifying speakers, and the conference-specific invited speakers (CC) Benôıt
Dupont de Dinechin (Kalray, France), (ESOP) Maurice Herlihy (Brown
University, USA), (FASE) Christel Baier (Technical University of Dresden, Ger-
many), (FoSSaCS) Petr Jančar (Technical University of Ostrava, Czech Repub-
lic), (POST) David Mazières (Stanford University, USA), and finally (TACAS)
Orna Kupferman (Hebrew University Jerusalem, Israel). Invited tutorials were
provided by Bernd Finkbeiner (Saarland University, Germany) and Andy Gor-
don (Microsoft Research, Cambridge, UK). My sincere thanks to all these speak-
ers for their great contributions.

For the first time in its history, ETAPS returned to a city where it had been
organized before: Grenoble, France. ETAPS 2014 was organized by the Univer-
sité Joseph Fourier in cooperation with the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and
EASST (European Association of Software Science and Technology). It had
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support from the following sponsors: CNRS, Inria, Grenoble INP, PERSYVAL-
Lab and Université Joseph Fourier, and Springer-Verlag.

The organization team comprised:

General Chair: Saddek Bensalem
Conferences Chair: Alain Girault and Yassine Lakhnech
Workshops Chair: Axel Legay
Publicity Chair: Yliès Falcone
Treasurer: Nicolas Halbwachs
Webmaster: Marius Bozga

The overall planning for ETAPS is the responsibility of the Steering Commit-
tee (SC). The ETAPS SC consists of an executive board (EB) and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board comprises Gilles Barthe (satellite
events, Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (chair,
Aachen and Twente), Gerald Lüttgen (treasurer, Bamberg), and Tarmo Uustalu
(publicity, Tallinn). Other current SC members are: Mart́ın Abadi (Santa Cruz

and Mountain View), Erika Ábráham (Aachen), Roberto Amadio (Paris), Chris-
tel Baier (Dresden), Saddek Bensalem (Grenoble), Giuseppe Castagna (Paris),
Albert Cohen (Paris), Alexander Egyed (Linz), Riccardo Focardi (Venice), Björn
Franke (Edinburgh), Stefania Gnesi (Pisa), Klaus Havelund (Pasadena), Reiko
Heckel (Leicester), Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kre-
mer (Nancy), Pasquale Malacaria (London), Tiziana Margaria (Potsdam), Fabio
Martinelli (Pisa), Andrew Myers (Boston), Anca Muscholl (Bordeaux), Catuscia
Palamidessi (Palaiseau), Andrew Pitts (Cambridge), Arend Rensink (Twente),
Don Sanella (Edinburgh), Vladimiro Sassone (Southampton), Ina Schäfer (Braun-
schweig), Zhong Shao (New Haven), Gabriele Taentzer (Marburg), Cesare Tinelli
(Iowa), Jan Vitek (West Lafayette), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work in making the
17th ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. Finally, many thanks
to Saddek Bensalem and his local organization team for all their efforts enabling
ETAPS to return to the French Alps in Grenoble!

January 2014 Joost-Pieter Katoen



Preface

This volume contains the papers presented at POST 2014, the Third Conference
on Principles of Security and Trust. The conference was held as part of ETAPS
2014, in Grenoble, France, during April 6–7, 2014.

POST 2014 attracted 55 submissions in response to the call for papers. The
submissions included 54 research papers and one tool-demonstration paper. Each
of them was assigned to at least three members of the Program Committee; in
many cases, reviews were solicited from outside experts. The Program Commit-
tee discussed the submissions electronically, judging them on their originality,
importance, appropriateness, and clarity.

As a result of these discussions, the Program Committee decided to accept
15 research papers and the tool-demonstration paper. The papers that appear
in this volume may differ from the initial submissions; it is expected that some
of them will be further revised and submitted for publication in refereed archival
journals.

In addition to these papers, the volume contains contributions that corre-
spond to two invited lectures: one given by David Mazières, as the POST invited
speaker, and one given by Geoffrey Smith, as an ETAPS unifying speaker.

We would like to thank the members of the Program Committee, the external
reviewers, the POST Steering Committee, and the ETAPS Steering Committee
and local Organizing Committee, who all contributed to the success of POST
2014. Finally, we gratefully acknowledge the use of EasyChair for organizing the
submission process, the Program Committee’s work, and the preparation of this
volume.

January 2014 Mart́ın Abadi
Steve Kremer
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Davidson, Drew
De Carli, Lorenzo



X Organization

De Groef, Willem
Delignat-Lavaud, Antoine
Deyoung, Henry
Ferrara, Anna Lisa
Filaretti, Daniele
Fredrikson, Matt
Garg, Deepak
Goessler, Gregor
Harris, Bill
Harris, William
Hirschi, Lucca
Hritcu, Catalin
Jaggard, Aaron D.
Joaquim, Rui
Johnson, Aaron
Kaynar, Dilsun
Kordy, Barbara
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Security and the Average Programmer�

(Invited Contribution)

Daniel Giffin, Stefan Heule, Amit Levy, David Mazières,
John Mitchell, Alejandro Russo*, Amy Shen, Deian Stefan,

David Terei, and Edward Yang

Stanford and *Chalmers

Software security research spans a broad spectrum of approaches. At one end,
experts attempt to build systems that are secure by construction. At the other
end, people deploy faulty software and leave it to security practitioners to clean
up the mess. But cleaning up the mess isn’t working: experience shows that
post-hoc fixes can’t be deployed in time to prevent damage. Moreover, fixing
faulty software is an arms race, and the security community shows no signs of
winning it. Worse, the war is spreading to new fronts: even cars [5], televisions
and refrigerators [2] are now vulnerable to network attack.

How can we make software secure from the start? For most software to be
secure, the median programmer will have to produce secure code. Attempts to
achieve this by building a culture of good security practices have met with lim-
ited success. For example, despite attempts to educate them, web programmers
continue to misuse postMessage authentication [8]. Even Linux kernel developers
have committed vulnerable code three times in a row for a single bug [9].

Rather than focus on the abstract notion of security culture, we argue it is
more effective to change programmer behavior through APIs and programming
languages. Designing APIs and programming languages with security in mind
allows us to make common operations less error-prone, and, more importantly,
to restrict the damage that leads from inevitable mistakes. This requires secu-
rity mechanisms that, within the context of a single application, can protect
programmers from themselves as well as from each other. What should such
mechanisms look like?

To provide maximum benefit, any security mechanism must be objective: it
should provide concrete, formally specifiable, and (in the event of a design error)
falsifiable guarantees. Security mechanisms that evolve with systems tend not to
have this property. For example, enforcement of the same-origin policy is split
across multiple locations in Firefox—permission to load a resource is checked in a
completely different place from iframe DOM access. Without a suitable security
mechanism, the same-origin policy had to be expressed and enforced in a series

* This work was funded by the DARPA Clean-Slate Design of Resilient, Adaptive,
Secure Hosts (CRASH) program, BAA-10-70, under under contract #N66001-10-2-
4088 (Bridging the Security Gap with Decentralized Information Flow Control), as
well as multiple gifts from Google.
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of conditional statements. As software evolves with new features, extending such
a regime in a consistent way becomes a subjective exercise.

An equally important property for a security mechanism is to capture real-
world security concerns in a direct, declarative way. The issues people actually
care about tend to be high-level questions—e.g., Who can see this photograph?—
rather than low-level details—e.g., Does this image filter access the network?
Ideally, the security mechanism can capture such policy concerns in a manner
substantially divorced from the complex inner workings of an application.

One promising family of mechanisms is those based on decentralized infor-
mation flow control, or DIFC [7]. DIFC allows one to specify policy in terms of
who can read and write various data, and enforces these constraints throughout
an application or system regardless of its structure or the sequence of operations
performed. Specifying policy on data naturally captures high-level concerns in a
direct and declarative way, fulfilling one of our criteria. (Indeed, the generality
of DIFC is demonstrated by its ability to enforce policies uniformly across hard-
ware [14, 1], operating systems [3, 12], programming languages [7], distributed
systems [13, 6], and browsers [11, 10].) Moreover, DIFC guarantees can be for-
mally specified (for example, as non-interference), fulfilling the other criterion.

Historically, two weak points of DIFC have been, first, the discrepancy be-
tween formal models and actual implementations (notably, where covert channels
violate non-interference) and, second, limited adoption by non-experts. However,
we have made progress on both fronts in recent years. This talk will report on our
experience with Hails [4], a DIFC framework for building extensible web appli-
cations. Hails structures a web application as a collection of mutually distrustful
“apps” and database policies. Hails has been used to build production web sites
with minimal trusted code, making it one of the largest real-world examples
of DIFC. Moreover, the system has been used by novices, giving us invaluable
insight into the obstacles DIFC faces for adoption by average programmers.

References
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Operational Significance and Robustness

in Quantitative Information Flow
(Invited Contribution)

Geoffrey Smith

Florida International University

smithg@cis.fiu.edu

Protecting sensitive information from improper disclosure is a fundamental se-
curity goal, but one that is clearly not being achieved well in today’s cyber
infrastructure. The issue is complicated by the realization that some leakage of
sensitive information is often unavoidable in practice, due either to system func-
tionality (e.g. a statistical database must by design reveal information derived
from the database entries, even if those entries should be confidential) or due to
side channels (e.g. it is difficult to prevent running time or power consumption
from depending on secrets). For this reason, the last decade has seen growing
interest in quantitative theories of information flow, which let us talk about“how
much” information is leaked and perhaps allow us to tolerate “small” leaks.

One major theme has been the development of leakage measures with strong
operational significance, so that the amount of information leaked is associated
with strong security guarantees. In this respect, notable measures include min-
entropy leakage [1], which measures leakage based on the secret’s vulnerability
to be guessed correctly in one try by the adversary, and g-leakage [2], which
generalizes vulnerability with a gain function, which can model diverse opera-
tional scenarios, including those where the adversary gains from guessing the
secret approximately, partially, or within k tries, or where there is a penalty for
incorrect guesses.

A second major theme aims at robustness, trying to minimize sensitivity to
(perhaps questionable) assumptions about the adversary’s prior knowledge and
goals, as modeled by the secret’s prior distribution and by the gain function.
One important approach is to focus on capacity, the maximum leakage over all
prior distributions. Of particular interest are capacity relationships between dif-
ferent leakage measures—for instance, the Miracle Theorem of [2] shows that
min-capacity (the maximum min-entropy leakage over all priors) is an upper
bound on g-leakage for every prior and every gain function. A second approach
to robustness concerns comparisons between channels, aimed at showing that
one channel never leaks more than another, regardless of the prior and gain
function. The Coriaceous Theorem of [3] shows that this strong g-leakage order-
ing is equivalent to a structural ordering called composition refinement, which
says that the first channel is equivalent to the second followed by some “post-
processing”. This means that it is safe to replace channel B with A (e.g. in a
stepwise refinement methodology) if and only if A is composition refined by B.
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This talk will survey these and other recent developments in quantitative
information flow, and will also discuss directions for future research.

References
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A Reduced Semantics for Deciding Trace

Equivalence Using Constraint Systems�

David Baelde1, Stéphanie Delaune1, and Lucca Hirschi1,2

1 LSV, ENS Cachan & CNRS & Inria Saclay Île-de-France
2 ENS Lyon, France

Abstract. Many privacy-type properties of security protocols can be
modelled using trace equivalence properties in suitable process algebras.
It has been shown that such properties can be decided for interesting
classes of finite processes (i.e., without replication) by means of symbolic
execution and constraint solving. However, this does not suffice to obtain
practical tools. Current prototypes suffer from a classical combinatorial
explosion problem caused by the exploration of many interleavings in the
behaviour of processes. Mödersheim et al. [18] have tackled this problem
for reachability properties using partial order reduction techniques. We
revisit their work, generalize it and adapt it for equivalence checking. We
obtain an optimization in the form of a reduced symbolic semantics that
eliminates redundant interleavings on the fly.

1 Introduction

Security protocols are widely used today to secure transactions that rely on
public channels like the Internet, where dishonest users may listen to communi-
cations and interfere with them. A secure communication has a different meaning
depending on the underlying application. It ranges from the confidentiality of
data (medical files, secret keys, etc.) to, e.g., verifiability in electronic voting sys-
tems. Another example is the notion of privacy that appears in many contexts
such as vote-privacy in electronic voting or untraceability in RFID technologies.

Formal methods have proved their usefulness for precisely analyzing the secu-
rity of protocols. In particular, a wide variety of model-checking approaches have
been developed to analyse protocols against an attacker who entirely controls
the communication network, and several tools are now available to automat-
ically verify cryptographic protocols [8,15,5]. A major challenge faced here is
that one has to account for infinitely many behaviours of the attacker, who can
generate arbitrary messages. In order to cope with this prolific attacker problem
and obtain decision procedures, approaches based on symbolic semantics and
constraint resolution have been proposed [17,20]. This has lead to tools for veri-
fying reachability-based security properties such as confidentiality [17] or, more
recently, equivalence-based properties such as privacy [22,12,10].
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In both cases, the practical impact of most of these tools is limited by a
typical state explosion problem caused by the exploration of the large number of
interleavings in the protocol’s behaviour. In standard model-checking approaches
for concurrent systems, the interleaving problem is handled using partial order
reduction techniques [19]. For instance, the order of execution of two independent
(parallel) actions is typically irrelevant for checking reachability. Things become
more complex when working with a symbolic semantics: the states obtained from
the interleaving of parallel actions will differ, but the sets of concrete states that
they represent will have a significant overlap. Earlier work has shown how to limit
this overlap [18] in the context of reachability properties for security protocols,
leading to high efficiency gains in the OFMC tool of the AVISPA platform [5].

In this paper, we revisit the work of [18] to obtain a partial order reduction
technique for the verification of equivalence properties. Specifically, we focus on
trace equivalence, requiring that two processes have the same sets of observable
traces and perform indistinguishable sequences of outputs. This notion is well-
studied and several algorithms and tools support it [9,14,22,12,10]. Contrary to
what happens for reachability-based properties, trace equivalence cannot be de-
cided relying only on the reachable states. The sequence of actions that leads to
this state plays a role. Hence, extra precautions have to be taken before discard-
ing a particular interleaving: we have to ensure that this is done in both sides
of the equivalence in a similar fashion. Our main contribution is an optimized
form of equivalence that discards a lot of interleavings, and a proof that this
reduced equivalence coincides with trace equivalence. Furthermore, our study
brings an improvement of the original technique [18] that would apply equally
well for reachability checking. Detailed proofs of our results can be found in [6].

Outline. In Section 2, we introduce our model for security processes. We con-
sider the class of simple processes introduced in [13], with else branches and no
replication. Then we present two successive optimizations in the form of refined
semantics and associated trace equivalences. Section 3 presents a compressed
semantics that limits interleavings by executing blocks of actions. Then, this is
lifted to a symbolic semantics in Section 4. Finally, Section 5 presents the reduced
semantics which makes use of dependency constraints to remove more interleav-
ings. We conclude in Section 6, mentioning a preliminary implementation that
shows efficiency gains in practice and some directions for future work.

2 Model for Security Protocols

In this section, we introduce the cryptographic process calculus that we will use
to describe security protocols. This calculus is close to the applied pi calculus [1].

2.1 Messages

A protocol consists of some agents communicating on a network. Messages sent
by agents are modeled using a term algebra. We assume two infinite and disjoint
sets of variables, X andW . Members of X are denoted x, y, z, whereas members
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of W are denoted w and used as handles for previously output terms. We also
assume a set N of names, which are used for representing keys or nonces, and a
signature Σ consisting of a finite set of function symbols. Terms are generated
inductively from names, variables, and function symbols applied to other terms.
For S ⊆ X ∪W ∪N , the set of terms built from S by applying function symbols
in Σ is denoted by T (S). Terms in T (N∪X ) represent messages and are denoted
by u, v, etc. while terms in T (W) represent recipes (describing how the attacker
built a term from the available outputs) and are written M , N , R. We write
fv(t) for the set of variables (from X or W) occurring in a term t. A term is
ground if it does not contain any variable, i.e., it belongs to T (N ). We may rely
on a sort system for terms, but its details are unimportant for this paper.

To model algebraic properties of cryptographic primitives, we consider an
equational theory E. The theory will usually be generated for finite axioms and
enjoy nice properties, but these aspects are irrelevant for the present work.

Example 1. In order to model asymmetric encryption and pairing, we consider:

Σ = {aenc(·, ·), adec(·, ·), pk(·), 〈·, ·〉, π1(·), π2(·)}.
To take into account the properties of these operators, we consider the equa-

tional theory Eaenc generated by the three following equations:

adec(aenc(x, pk(y)), y) = x, π1(〈x1, x2〉) = x1, and π2(〈x1, x2〉) = x2.

For instance, we have π2(adec(aenc(〈n, pk(ska)〉, pk(skb)), skb)) =Eaenc pk(ska).

2.2 Processes

We do not need the full applied pi calculus to represent security protocols. Here,
we only consider public channels and we assume that each process communicates
on a dedicated channel.

Formally, we assume a set C of channels and we consider the fragment of
simple processes without replication built on basic processes as defined in [13].
A basic process represents a party in a protocol, which may sequentially perform
actions such as waiting for a message, checking that a message has a certain form,
or outputting a message. Then, a simple process is a parallel composition of such
basic processes playing on distinct channels.

Definition 1 (basic/simple process). The set of basic processes on c ∈ C is
defined using the following grammar (below u, v ∈ T (N ∪ X ) and x ∈ X ):

P,Q := 0 null
| if u = v then P else Q conditional
| in(c, x).P input
| out(c, u).P output

A simple process P = {P1, . . . , Pn} is a multiset of basic processes Pi on
pairwise distinct channels ci. We assume that null processes are removed.

For conciseness, we often omit brackets, null processes, and even “else 0”.
Basic processes are denoted by the letters P and Q, whereas simple processes
are denoted using P and Q.
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During an execution, the attacker learns the messages that have been sent on
the different public channels. Those messages are organized into a frame.

Definition 2 (frame). A frame Φ is a substitution whose domain is included
in W and image is included in T (N ∪ X ). It is written {w � u, . . .}. A frame is
closed when its image only contains ground terms.

An extended simple proces (denoted A or B) is a pair made of a simple process
and a frame. Similarly, we define extended basic processes. Note that we do not
have an explicit set of restricted names. Actually, all names are restricted and
public ones are explicitly given to the attacker through a frame.

Example 2. We consider the protocol given in [2] designed for transmitting a
secret without revealing its identity to other participants. In this protocol, A is
willing to engage in communication with B and wants to reveal its identity to B.
However, A does not want to compromise its privacy by revealing its identity or
the identity of B more broadly. The participants A and B proceed as follows:

A→ B : {Na, pubA}pubB
B → A : {Na, Nb, pubB}pubA

Moreover, if the message received by B is not of the expected form then B
sends out a “decoy” message: {Nb}pubB . This message should basically look
like B’s other message from the point of view of an outsider.

Relying on the signature and equational theory introduced in Example 1, a
session of role A played by agent a (with private key ska) with b (whose public
key is pkb) can be modeled as follows:

P (ska, pkb)
def
= out(cA, aenc(〈na, pk(ska)〉, pkb)).

in(cA, x).
if 〈π1(adec(x, ska)), π2(π2(adec(x, ska)))〉 = 〈na, pkb〉 then 0

Here, we are only considering the authentication protocol. A more comprehensive
model should include the access to an application in case of a success. Similarly,
a session of role B played by agent b with a can be modeled by the following
basic proces where N = adec(y, skb).

Q(skb, pka)
def
= in(cB, y).

if π2(N) = pka then out(cB, aenc(〈π1(N), 〈nb, pk(skb)〉〉, pka))
else out(cB, aenc(nb, pk(skb)))

To model a scenario with one session of each role (played by the agents a
and b), we may consider the extended process (P ;Φ0) where:

– P = {P (ska, pk(skb)), Q(skb, pk(ska))}, and
– Φ0 = {w0 � pk(ska

′), w1 � pk(ska), w2 � pk(skb)}.

The purpose of pk(ska ′) will be clear later on. It allows us to consider the exis-
tence of another agent a′ whose public key pk(ska′) is known by the attacker.
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2.3 Semantics

We first define a standard concrete semantics. Thus, in this section, we work
only with closed extended processes, i.e., processes (P ;Φ) where fv (P) = ∅.

Then ({if u = v then Q1 else Q2} 	 P ;Φ) τ−→ ({Q1} 	 P ;Φ) if u =E v

Else ({if u = v then Q1 else Q2} 	 P ;Φ) τ−→ ({Q2} 	 P ;Φ) if u 
=E v

In ({in(c, x).Q} 	 P ;Φ) in(c,M)−−−−−→ ({Q{x �→ u}} 	 P ;Φ)
if M ∈ T (dom(Φ)) and MΦ = u

Out ({out(c, u).Q} 	 P ;Φ) out(c,w)−−−−−→ ({Q} 	 P ;Φ ∪ {w � u})
if w is a fresh variable

where c ∈ C, w ∈ W and x ∈ X .

A process may input any term that an attacker can build (rule In): {x �→ u}
is a substitution that replaces any occurrence of x with u. In the Out rule, we
enrich the attacker’s knowledge by adding the newly output term u, with a fresh
handle w, to the frame. The two remaining rules are unobservable (τ action)
from the point of view of the attacker.

The relation A
a1...ak−−−−→ B between extended simple processes, where k ≥ 0

and each ai is an observable or a τ action, is defined in the usual way. We also

consider the relation
tr
==⇒ defined as follows: A

tr
==⇒ B if, and only if, there exists

a1 . . . ak such that A
a1...ak−−−−→ B, and tr is obtained from a1 . . . ak by erasing all

occurrences of τ .

Example 3. Consider the process (P ;Φ0) introduced in Example 2. We have:

(P ;Φ0)
out(cA,w3)·in(cB ,w3)·τ ·out(cB ,w4)·in(cA,w4)·τ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (∅;Φ).

This trace corresponds to the normal execution of one instance of the protocol.
The two silent actions have been triggered using the Then rule. The resulting
frame Φ is as follows:

Φ0 	 {w3 � aenc(〈na, pk(ska)〉, pk(skb)), w4 � aenc(〈na, 〈nb, pk(skb)〉〉, pk(ska))}.

2.4 Trace Equivalence

Many interesting security properties, such as privacy-type properties studied
e.g., in [4], are formalized using the notion of trace equivalence. We first introduce
the notion of static equivalence that compares sequences of messages.

Definition 3 (static equivalence). Two frames Φ and Φ′ are in static equiv-
alence, Φ ∼ Φ′, when we have that dom(Φ) = dom(Φ′), and:

MΦ =E NΦ ⇔ MΦ′ =E NΦ′ for any terms M,N ∈ T (dom(Φ)).

Intuitively, two frames are equivalent if an attacker cannot see the difference
between the two situations they represent, i.e., they satisfy the same equalities.
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Example 4. Consider the frame Φ given in Example 3 and the frame Φ′ below:

Φ′ def
= Φ0 	 {w3 � aenc(〈na, pk(ska

′)〉, pk(skb)), w4 � aenc(nb, pk(skb))}.
Actually, we have that Φ ∼ Φ′. Intuitively, the equivalence holds since the at-
tacker is not able to decrypt any of the ciphertexts, and each ciphertext con-
tains a nonce that prevents him to build it from its components. Now, if we
decide to give access to na to the attacker, i.e., considering Φ+ = Φ 	 {w5 � na}
and Φ′

+ = Φ′ 	 {w5 � na}, then the two frames Φ+ and Φ′
+ are not in static

equivalence anymore. Let M = aenc(〈w5, w1〉, w2) and N = w3. We have that
MΦ+ =Eaenc NΦ+ whereas MΦ′

+ 
=Eaenc NΦ′
+.

Definition 4 (trace equivalence). Let A and B be two simple processes. We

have that A � B if, for every sequence of actions tr such that A
tr
==⇒ (P ;Φ),

there exists (P ′;Φ′) such that B
tr
==⇒ (P ′;Φ′) and Φ ∼ Φ′. The processes A and B

are trace equivalent, denoted by A ≈ B, if A � B and B � A.

Example 5. Intuitively, the private authentication protocol presented in Exam-
ple 2 preserves anonymity if an attacker cannot distinguish whether b is willing
to talk to a (represented by the process Q(skb, pk(ska))) or willing to talk to a′

(represented by the process Q(skb, pk(ska ′))), provided a, a′ and b are honest
participants. This can be expressed relying on the following equivalence:

(Q(skb, pk(ska));Φ0)
?≈ (Q(skb, pk(ska ′));Φ0).

For illustration purposes, we also consider a variant of the process Q, de-
noted Q0, where its else branch has been replaced by else 0. We will see that
the “decoy” message plays a crucial role to ensure privacy. We have that:

(Q0(skb, pk(ska));Φ0)
in(cB,aenc(〈w1,w1〉,w2))·τ ·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→ (∅;Φ)

where Φ = Φ0 	 {w3 � aenc(〈pk(ska), 〈nb, pk(skb)〉〉, pk(ska))}.
This trace has no counterpart in (Q0(skb, pk(ska

′));Φ0). Indeed, we have that:

(Q0(skb, pk(ska
′));Φ0)

in(cB,aenc(〈w1,w1〉,w2))·τ−−−−−−−−−−−−−−−−−→ (∅;Φ0).

Hence, we have that (Q0(skb, pk(ska));Φ0) 
≈ (Q0(skb, pk(ska
′));Φ0). Actu-

ally, it can been shown that (Q(skb, pk(ska));Φ0) ≈ (Q(skb, pk(ska ′));Φ0). This
is a non trivial equivalence that can be checked using the tool APTE [11] within
few seconds for a simple scenario as the one considered here, and that takes few
minutes/days as soon as we want to consider 2/3 sessions of each role.

3 Reduction Based on Grouping Actions

A large number of possible interleavings results into multiple occurrences of
identical states. The compression step lifts a common optimization that partly
tackles this issue in the case of reachability properties to trace equivalence. The
key idea is to force processes to perform all enabled output actions as soon as
possible. In our setting, we can even safely force them to perform a complete
block of input actions followed by ouput actions.
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Example 6. Consider the process (P ;Φ) with P = {in(c1, x).P1, out(c2, b).P2}.
In order to reach ({P1{x �→ u}, P2};Φ∪ {w � b}), we have to execute the action
in(c1, x) (using a recipeM that allows one to deduce u) and the action out(c2, b)
(giving us a label of the form out(c2, w)). In case of reachability properties, the
execution order of these actions only matters if M uses w. Thus we can safely
perform the outputs in priority.

The situation is more complex when considering trace equivalence. In that
case, we are concerned not only with reachable states, but also with how those
states are reached. Quite simply, traces matter. Thus, if we want to discard the
trace in(c1,M).out(c2, w) when studying process P and consider only its per-
mutation out(c2, w).in(c1,M), we have to make sure that the same permutation
is available on the other process. The key to ensure that identical permutations
will be available on both sides of the equivalence is our restriction to the class
of simple processes.

3.1 Compressed Semantics

We now introduce the compressed semantics. Compression is an optimization,
since it removes some interleavings. But it also gives rise to convenient “macro-
actions”, called blocks, that combine a sequence of inputs followed by some out-
puts, potentially hiding silent actions. Manipulating those blocks rather than
indiviual actions makes it easier to define our second optimization.

For sake of simplicity, we consider initial simple processes. A simple process
A = (P ;Φ) is initial if for any P ∈ P , we have that P = in(c, x).P ′ for some
channel c, i.e., each basic process composing A starts with an input action.

Example 7. Continuing Example 2, ({P (ska, pk(skb)), Q(skb, pk(ska))};Φ0) is
not initial. Instead, we may consider ({Pinit, Q(skb, pk(ska))};Φ0) where:

Pinit
def
= in(cA, z).if z = start then P (ska, pk(skb))

assuming that start is a (public) constant in our signature.

The main idea of the compressed semantics is to ensure that when a basic
process starts executing some actions, it actually executes a maximal block of
actions. In analogy with focusing in sequent calculus, we say that the basic
process takes the focus, and can only release it under particular conditions. We
define in Figure 1 how blocks can be executed by extended basic processes. In
that semantics, the label � denotes the stage of the execution, starting with i+,
then i∗ after the first input and o∗ after the first output.

Example 8. Going back to Example 5, we have that:

(Q0(skb, pk(ska));Φ0)
in(cB ,aenc(〈w1,w1〉,w2))·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→→i+ (0;Φ)

where Φ is as given in Example 5. As illustrated by the prooftree below, we have

also (Q0(skb, pk(ska));Φ0)
tr−→→i+ (⊥;Φ0) with tr = in(cB, aenc(〈w1, w1〉, w2)).
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In

(P ;Φ)
in(c,M)−−−−−→ (P ′;Φ′) (P ′;Φ′) tr−−→→i∗ (P ′′;Φ′′)

(P ;Φ)
in(c,M).tr−−−−−−−→→� (P

′′;Φ′′)
with � ∈ {i∗; i+}

Out

(P ;Φ)
out(c,w)−−−−−→ (P ′;Φ′) (P ′;Φ′) tr−−→→o∗ (P ′′;Φ′′)

(P ;Φ)
out(c,w).tr−−−−−−−→→� (P

′′;Φ′′)
with � ∈ {i∗; o∗}

Tau

(P ;Φ)
τ−−→ (P ′;Φ′) (P ′;Φ′) tr−−→→� (P

′′;Φ′′)

(P ;Φ)
tr−−→→� (P

′′;Φ′′)
with � ∈ {o∗; i+; i∗}

Proper (0;Φ)
ε−−→→o∗ (0;Φ) (in(c, x).P ;Φ)

ε−−→→o∗ (in(c, x).P ;Φ)

Improper (0;Φ)
ε−−→→i∗ (⊥;Φ)

Fig. 1. Focused semantics on extended basic processes

(Q0(skb, pk(ska));Φ0)
tr−→ (Q′;Φ0)

(Q′;Φ0)
τ−→ (0;Φ0)

Improper
(0;Φ0)

ε−→→i∗ (⊥;Φ0)
Tau

(Q′;Φ0)
ε−→→i∗ (⊥;Φ0)

In
(Q0(skb, pk(ska));Φ0)

tr−→→i+ (⊥;Φ0)

where Q′ def
= if pk(ska) = pk(ska) then out(cB , u) for some message u.

Then we define the compressed reduction −→c between extended simple pro-
cesses as the least reflexive transitive relation satisfying the following rules:

Block

(Q;Φ)
tr−−→→i+ (Q′;Φ′) Q′ 
= ⊥

({Q} 	 P ;Φ) tr−−→c ({Q′} 	 P ;Φ′) Failure

(Q;Φ)
tr−−→→i+ (Q′;Φ′) Q′ = ⊥

({Q} 	 P ;Φ) tr−−→c (∅;Φ′)

A basic process is allowed to properly end a block execution when it has per-
formed outputs and it cannot perform any more. Accordingly, we call proper block
a non-empty sequence of inputs followed by a non-empty sequence of outputs, all
on the same channel. For completeness, we also allow improper termination of a
block, when the basic process that is currently executing is not able to perform
any visible action (input or output) and it has not yet performed an output.

Example 9. Continuing Example 8, using the rule block, we can derive that:

({Pinit, Q0(skb, pk(ska))};Φ0)
in(cB ,aenc(〈w1,w1〉,w2))·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→c (Pinit;Φ).

We can also derive ({Pinit, Q0(skb, pk(ska
′))};Φ0)

in(cB ,aenc(〈w1,w1〉,w2))−−−−−−−−−−−−−−−−−→c (∅;Φ0)
(using the rule Improper). Note that the resulting simple process is reduced
to ∅ even though Pinit has never been executed.

At first sight, killing the whole process when applying the rule Improper
may seem too strong. Actually, even if this kind of scenario is observable by the



A Reduced Semantics for Deciding Trace Equivalence 9

attacker, it does not bring him any new knowledge, hence it plays only a limited
role: it is in fact sufficient to consider such improper blocks at the end of traces.

Example 10. Consider P = {in(c, x).in(c, y), in(c′, x′)}. Its compressed traces
are of the form in(c,M).in(c,N) and in(c′,M ′). The concatenation of those two
improper traces cannot be executed in the compressed semantics. Intuitively, we
do not loose anything for trace equivalence, because if a process can exhibit
those two improper blocks they must be in parallel and hence considering their
combination is redundant.

We define the notion of compressed trace equivalence (resp. inclusion) accord-
ingly relying on −→c instead of =⇒, and we denote them ≈c (resp. �c).

3.2 Soundness and Completeness

The purpose of this section is to establish the soundness and completeness of the
compressed semantics. More precisely, we show that the two relations ≈ and ≈c

coincide on initial simple processes.
Intuitively, we can always permute output (resp. input) actions occurring

on distinct channels, and we can also permute an output with an input if the
outputted message is not used to build the inputted term. More formally, we
define an independence relation Ia over actions as the least symmetric relation
satisfying:

– out(ci, wi) Ia out(cj , wj) and in(ci,Mi) Ia in(cj ,Mj) as soon as ci 
= cj ,
– out(ci, wi) Ia in(cj ,Mj) when in addition wi 
∈ fv(Mj).

Then, we consider =Ia to be the least congruence (w.r.t. concatenation) satisfy-
ing act · act′ =Ia act′ · act for all act and act′ with act Ia act′, and we show that
processes are equally able to execute equivalent (w.r.t. =Ia) traces.

Lemma 1. Let A, A′ be two simple extended processes and tr, tr′ be such that

tr =Ia tr′. We have that A
tr
==⇒ A′ if, and only if, A

tr′
==⇒ A′.

Now, considering traces that are only made of proper blocks, a strong rela-
tionship can be established between the two semantics.

Proposition 1. Let A, A′ be two simple extended processes, and tr be a trace

made of proper blocks such that A
tr−−→c A

′. Then we have that A
tr
==⇒ A′.

Proposition 2. Let A, A′ be two initial simple processes, and tr be a trace made

of proper blocks such that A
tr
==⇒ A′. Then, we have that A

tr−−→c A
′.

Theorem 1. Let A and B be two initial simple processes. We have that:

A ≈ B ⇐⇒ A ≈c B.
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Proof. (Sketch) The main difficulty is that Proposition 2 only considers traces
composed of proper blocks whereas we have to consider all traces. To prove the
⇒ implication, we have to pay attention to the last block of the compressed trace
that can be an improper one (composed of several inputs on a channel c). The
⇐ implication is more difficult since we have to consider a trace tr of a process A
that is an interleaving of some prefix of proper and improper blocks. We will first
complete it to obtain an interleaving of complete blocks and improper blocks. We
then reorganize the actions providing an equivalent trace tr′ w.r.t. =Ia such that
tr′ = trio · trin where trio is made of proper blocks and trin is made of improper
blocks. For each improper block b of trin, we show by applying Lemma 1 and
Proposition 2 that A is able to perform trio · b in the compressed semantics and
thus B as well. Finally, we show that the executions of all those (concurrent)
blocks b can be put together, obtaining that B can perform tr′. ��

Note that, as illustrated by the following example, the two underlying notions
of trace inclusion do not coincide.

Example 11. Let P = in(c, x) and Q = in(c, x).out(c, n). Actually, we have that
(P ; ∅) � (Q; ∅) whereas (P ; ∅) 
�c (Q; ∅) since in the compressed semantics Q is
not allowed to stop its execution after its first input.

4 Deciding Trace Equivalence via Constraint Solving

In this section, we propose a symbolic semantics for our compressed semantics
following, e.g., [17,7]. Such a semantics avoids potentially infinite branching of
our reduction semantics due to inputs from the environment. Correctness is
maintained by associating with each process a set of constraints on terms.

4.1 Constraint Systems

Following the notations of [7], we consider a new set X 2 of second-order variables,
denoted by X , Y , etc. We shall use those variables to abstract over recipes. We
denote by fv2(o) the set of free second-order variables of an object o, typically a
constraint system. To prevent ambiguities, we shall use fv1 instead of fv for free
first-order variables.

Definition 5 (constraint system). A constraint system C = (Φ;S) consists
of a frame Φ, and a set of constraints S. We consider three kinds of constraints:

D �?X x u=? v u 
=? v

where D ⊆ W, X ∈ X 2, x ∈ X and u, v ∈ T (N ∪ X ).

The first kind of constraint expresses that a recipe X has to use only variables
from a certain set D, and that the obtained term should be x. The handles in D
represent terms that have been previously outputted by the process.

We are not interested in general constraint systems, but only consider con-
straint systems that are well-formed. Given C, we define a dependency order on
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fv1(C)∩X by declaring that x depends on y if, and only if, S contains a deduc-
tion constraint D �?X x with y ∈ fv1(Φ(D)). For C to be a well-formed constraint
system, we require that the dependency relationship is acyclic and that for every
x ∈ fv1(C) ∩X (resp. X ∈ fv2(C)) there is a unique constraint D �?X x in S. For
X ∈ fv2(C), we write DC(X) for the domain D ⊆ W of the deduction constraint
D �?X x associated to X in C.

Example 12. Let Φ = Φ0	{w3�aenc(〈π2(N), 〈nb, pk(skb)〉〉, pk(ska))} with N =
adec(y, skb), and S be a set containing two constraints:

{w0, w1, w2} �?Y y and π2(N)=? pk(ska).

We have that C = (Φ;S) is a well-formed constraint system. There is only one
first-order variable y ∈ fv1(C)∩X , and it does not occur in fv1(Φ({w0, w1, w2})),
which is empty. Moreover, there is indeed a unique constraint that introduces y.

Our notion of well-formed constraint systems is in line with what is used e.g.,
in [17,7]. We use a simpler and (slightly) more permissive variant because we are
not concerned with constraint solving procedures in this work.

Definition 6 (solution). A solution of a constraint system C = (Φ;S) is
a substitution θ such that dom(θ) = fv2(C), and Xθ ∈ T (DC(X)) for any
X ∈ dom(θ). Moreover, we require that there exists a ground substitution λ
with dom(λ) = fv1(C) such that:

– for every D �?X x in S, we have that (Xθ)(Φλ) =E xλ;

– for every u=? v in S, we have that uλ =E vλ; and

– for every u 
=? v in S, we have that uλ 
=E vλ.

The set of solutions of a constraint system C is denoted Sol(C). Since we consider
constraint systems that are well-formed, the substitution λ is unique modulo E
given θ ∈ Sol(C). We denote it by λθ when C is clear from the context.

Example 13. Consider again the constraint system C given in Example 12. We
have that θ = {Y �→ aenc(〈w1, w1〉, w2)} is a solution of C. Its associated first-
order solution is λθ = {y �→ aenc(〈pk(ska), pk(ska)〉, pk(skb))}.

4.2 Symbolic Processes: Syntax and Semantics

From a simple process (P ;Φ), we compute the constraint systems capturing its
possible executions, starting from the symbolic process (P ;Φ; ∅). Note that we
are now manipulating processes that rely on free variables.

Definition 7 (symbolic process). A symbolic process is a tuple (P ;Φ;S)
where (Φ;S) is a constraint system and fv1(P) ⊆ (fv1(S) ∩ X ).

We give below a standard symbolic semantics for our symbolic processes.
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In (in(c, y).P ;Φ;S) in(c,X)�−−−−−→ (P{y �→ x};Φ;S ∪ {dom(Φ)�?X x})
where X (resp. x) is a fresh second-order (resp. first-order) variable

Out (out(c, u).P ;Φ;S) out(c,w)�−−−−−→ (P ;Φ ∪ {w � u};S)
where w is a fresh first-order variable

Then (if u = v then P else Q;Φ;S) τ�−−→ (P ;Φ;S ∪ {u=? v})
Else (if u = v then P else Q;Φ;S) τ�−−→ (Q;Φ;S ∪ {u 
=? v})

From this semantics, we derive our compressed symbolic semantics
tr�−−→c fol-

lowing the same pattern as for the concrete semantics. We consider interleavings
that execute maximal blocks of actions, and we allow improper termination of a
block only at the end of a trace.

Example 14. We have that (Q0(b, a);Φ0; ∅) tr�−−→c (∅;Φ;S) where:
– tr = in(cB , Y ) · out(cB , w3), and
– C = (Φ;S) is the constraint system defined in Example 12.

We are now able to define our notion of (symbolic) trace equivalence.

Definition 8 (trace equivalence w.r.t.
tr�−→c). Let A = (P ;Φ) and B = (Q;Ψ)

be two simple processes. We have that A �s B when, for every sequence tr such

that (P ;Φ; ∅) tr�−→c (P ′;Φ′;SA), for every θ ∈ Sol(Φ′;SA), we have that:

– (Q;Ψ ; ∅) tr�−→c (Q′;Ψ ′;SB) with θ ∈ Sol(Ψ ′;SB), and
– ΦλA

θ ∼ ΨλB
θ where λA

θ (resp. λB
θ ) is the substitution associated to θ w.r.t.

(Φ′;SA) (resp. (Ψ ′;SB)).

We have that A and B are in trace equivalence w.r.t.
tr�−→c if A �s B and B �s A.

Example 15. We have that (Q0(b, a);Φ0) 
�s (Q0(b, a
′);Φ0). Continuing Exam-

ple 14, we have seen that (Q0(b, a);Φ0; ∅) tr�−−→c (∅;Φ;S), and θ ∈ Sol(Φ;S) (see
Example 12). The only symbolic process that is reachable from (Q0(b, a

′);Φ0; ∅)
using tr is (∅;Φ′;S ′) with:

– Φ′ = Φ0 	 {w3 � aenc(〈π2(N), 〈nb, pk(skb)〉〉, pk(ska′))}, and
– S ′ =

{
{w0, w1, w2} �?Y y; π2(N)=? pk(ska′)

}
.

We can check that θ is not a solution of (Φ′;S ′).

For processes without replication, the symbolic transition system is finite.
Thus, deciding (symbolic) trace equivalence between processes boils down to the
problem of deciding a notion of equivalence between sets of constraint systems.
This problem is well-studied and several procedures already exist [7,14,12].

4.3 Soundness and Completeness

Using the usual approach, such as the one developed in [7,13], we can show
soundness and completeness of our symbolic compressed semantics w.r.t. our
concrete compressed semantics. We have:
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– Soundness : each transition in the compressed symbolic semantics represents
a set of transitions that can be done in the concrete compressed semantics.

– Completeness : each transition in the compressed semantics can be matched
by a transition in the compressed symbolic semantics.

Finally, relying on these two results, we can establish that symbolic trace
equivalence (≈s) exactly captures compressed trace equivalence (≈c).

Theorem 2. For any extended simple processes A and B, we have that:

A �c B ⇐⇒ A �s B.

5 Reduction Using Dependency Constraints

Unlike compression, which is based only on the input/output nature of actions,
our second optimization takes into account the exchanged messages.

Let us first illustrate one simple instance of our optimization and how de-
pendency constraints [18] may be used to incorporate it in symbolic semantics.
Let Pi = in(ci, xi).out(ci, ui).P

′
i with i ∈ {1, 2}, and Φ0 = {w0 � n} be a closed

frame. We consider the simple process A = ({P1, P2};Φ0), and the two symbolic
interleavings depicted below.

•

•

•

•

•

•

•

•

•

in(c1, X1)

out(c1, w1)

in(c2, X2)

out(c2, w2)

in(c2, X2)

out(c2, w2)

in(c1, X1)

out(c1, w1)

The two resulting symbolic processes
are of the form ({P ′

1, P
′
2};Φ;Si) where:

– Φ = Φ0 	 {w1 � u1, w2 � u2},
– S1 =

{
w0 �?X1

x1; w0, w1 �?X2
x2

}
,

– S2 =
{
w0 �?X2

x2; w0, w2 �?X1
x1

}
.

The sets of concrete processes that
these two symbolic processes represent
are different, which means that we can-
not discard any of those interleavings.

However, these sets have a significant overlap corresponding to concrete instances
of the interleaved blocks that are actually independent, i.e., where the output of
one block is not necessary to obtain the input of the next block. In order to avoid
considering such concrete processes twice, we may add a dependency constraint
X1�w2 in C2, whose purpose is to discard all solutions θ such that the message
x1λθ can be derived without using w2 � u2λθ. For instance, the concrete trace
in(c2, w0) ·out(c2, w2) ·in(c1, w0) ·out(c1, w1) would be discarded thanks to this
new constraint.

The idea of [18] is to accumulate dependency constraints generated whenever
such a pattern is detected in an execution, and use an adapted constraint resolu-
tion procedure to narrow and eventually discard the constrained symbolic states.
We seek to exploit similar ideas for optimizing the verification of trace equiva-
lence rather than reachability. This requires extra care, since pruning traces as
described above may break completeness when considering trace equivalence. As
before, the key to obtain a valid optimization will be to discard traces in a similar
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way on the two processes being compared. In addition to handling this neces-
sary subtlety, we also propose a new proof technique for justifying dependency
constraints. The generality of that technique allows us to add more dependency
constraints, taking into account more patterns than the simple diamond shape
from the previous example.

There are at least two natural semantics for dependency constraints. The
simplest semantics focuses on the second-order notion of recipe. In the above
example, it would require that recipe X1θ contains the variable w2. That is
weaker than a first-order semantics requiring that any recipe derivinig x1λθ

would involve w2 since spurious dependencies may easily be introduced. Our
ultimate goal in this section is to show that trace equivalence w.r.t. the first-
order reduced semantics coincides with the regular symbolic semantics. However,
we first establish this result for the second-order semantics, which is more easily
analysed and provides a useful stepping stone.

5.1 Second-Order Reduced Semantics

We start by introducing dependency constraints, in a more general form than
the one used above, and give them a second-order semantics.

Definition 9 (dependency constraint). A dependency constraint is a con-

straint of the form
−→
X�−→w where

−→
X is a vector of variables in X 2, and −→w is a

vector of handles, i.e. variables in W.
Given a substitution θ with dom(θ) ⊆ X 2, and Xθ ∈ T (W) for any X ∈

dom(θ). We say that θ satisfies
−→
X�−→w , denoted θ |= −→X�−→w , if either −→w = ∅ or

there exist Xi ∈
−→
X and wj ∈ −→w such that wj ∈ fv1(Xiθ).

A constraint system with dependency constraints is called a dependency con-
straint system. We denote by C◦ the regular constraint system obtained by re-
moving all dependency constraints from C. We only consider well-formed depen-
dency constraint systems, that is those C such that C◦ is well-formed. A solution

of C is a substitution θ such that θ ∈ Sol(C◦) and θ |= −→X�−→w for each dependency

constraint
−→
X�−→w ∈ C. We denote this set Sol2(C).

We shall now define how dependency constraints will be added to our con-
straint systems. For this, we fix an arbitrary total order ≺ on channels. Intu-
itively, this order expresses which executions should be favored, and which should
be allowed only under dependency constraints. To simplify the presentation, we

use the notation ioc(
−→
X,−→w ) as a shortcut for in(c,X1) · . . . ·in(c,X�).out(c, w1) ·

. . . · out(c, wk) assuming that
−→
X = (X1, . . . , X�) and −→w = (w1, . . . , wk). Note

that
−→
X and/or −→w may be empty.

Definition 10 (generation of dependency constraints). Let c be a channel,

and tr = ioc1 (
−→
X1,

−→w1) · . . . · iocn (
−→
Xn,

−→wn) be a trace. If there exists a rank k ≤ n
such that ci ≺ c ≺ ck for all k < i ≤ n, then we define

dep (tr, c) = { w | w ∈ −→wi with k ≤ i ≤ n}
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Otherwise, we have that dep (tr, c) = ∅.

We obtain our reduced semantics by integrating those dependency constraints
into the symbolic compressed semantics. We define �−→d as the least reflexive
relation satisying the following rule:

(P ;Φ; ∅) tr�−−→d (P ′;Φ′;S ′) (P ′;Φ′;S ′)
ioc(

−→
X,−→w )�−−−−−−→c (P ′′;Φ′′;S ′′)

(P ;Φ; ∅) tr·ioc(
−→
X,−→w )�−−−−−−−−→d (P ′′;Φ′′;S ′′ ∪ {−→X�dep (tr, c)})

Given a proper trace, we define Deps (tr) to be the accumulation of the gener-
ated constraints as defined above for all prefixes of tr (where each proper block
is considered as an atomic action). We may observe that:

– if A
tr�−−→d (P ;Φ;S) then S = S◦ ∪Deps (tr) and A

tr�−−→c (P ;Φ;S◦);

– if A
tr�−−→c (P ;Φ;S) then S = S ′◦ and A

tr�−−→d (P ;Φ;S ′).

Example 16. Let a, b, and c be channels in C such that a ≺ b ≺ c. The depen-
dency constraints generated during the symbolic execution of a simple process of
the form ({in(a, xa).out(a, ua), in(b, xb).out(b, ub), in(c, xc).out(c, uc)};Φ) are
depicted below.

•

• • •

• • • • • •

• • • • • •

ioa iob ioc

iob ioc ioa ioc
ioa

iob

ioc iob ioc ioa iob ioa

We use ioi as a shortcut for in(i,Xi) ·out(i, wi) and we represent dependency
constraints using arrows. For instance, on the trace ioa · ioc · iob, a dependency
constraint of the form Xb�wc (represented by the left-most arrow) is generated.
Now, on the trace ioc · ioa · iob we add Xa�wc after the second transition, and
Xb�{wc, wa} (represented by the dashed 2-arrow) after the third transition.
Intuitively, the latter constraint expresses that iob is only allowed to come after
ioc if it depends on it, possibly indirectly through ioa.

This reduced semantics gives rise to a notion of trace equivalence. It is defined
as in Definition 8, relying on �−→d instead of �−→c and on Sol2 instead of Sol. We
denote it ≈2

d, and the associated notion of inclusion is denoted �2
d

5.2 Soundness and Completeness

In order to establish that ≈s and ≈2
d coincide, we are going to study more

carefully concrete traces made of (not necessarily proper) blocks. We denote by B
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the set of blocks ioc(
−→
M,−→w ) such that c ∈ C, Mi ∈ T (W) for each Mi ∈

−→
M ,

and wj ∈ W for each wj ∈ −→w . In this section, a concrete trace is necessarily
made of blocks, i.e., it belongs to B∗. Note that all traces from executions in
the compressed semantics are concrete traces in this sense. We show that we can
view B∗ as a partially commutative monoid in a meaningful way. This allows us
to lift a classic result in which we ground our reduced semantics.

We lift the ordering on channels to blocks: ioc(
−→
M,−→w ) ≺ ioc′(

−→
M ′,

−→
w′) if, and

only if, c ≺ c′. Finally, we define ≺ on concrete traces as the lexicographic
extension of the order on blocks. We define similarly ≺ on symbolic traces.

Partially commutative monoid. We define an independence relation Ib over B:
we say that ioc(

−→
M,−→w ) Ib ioc′(

−→
M ′,

−→
w′) when c 
= c′, none of the variables of −→w ′

occurs in
−→
M , and none of the variables of −→w occurs in

−→
M ′. Then we define =Ib

as the least congruence satisfying

ioc(
−→
M,−→w ) · ioc′(

−→
M ′,

−→
w′) =Ib

ioc′(
−→
M ′,

−→
w′) · ioc(

−→
M,−→w )

for all ioc(
−→
M,−→w ) and ioc′(

−→
M ′,

−→
w′) with ioc(

−→
M,−→w ) Ib ioc′(

−→
M ′,

−→
w′). The set of

concrete traces, quotiented by this equivalence relation, is the partially commu-
tative monoid obtained from Ib. Given a concrete trace tr, we denote by min(tr)
the minimum for ≺ among all the traces that are equal to tr modulo =Ib

.

First, we prove that the symbolic semantics is equally able to execute equiv-
alent (w.r.t. =Ib

) traces. Second we prove that the reduced semantics generates
dependency constraints that are (only) satisfied by minimal traces.

Lemma 2. Let (P0;Φ0; ∅) tr�−→c (P ;Φ;S) with tr made of proper blocks, and θ ∈
Sol(Φ;S). For any concrete trace trc =Ib

trθ there exists a symbolic trace tr′ such

that trc = tr′θ, (P0;Φ0; ∅) tr′�−→c (P ;Φ;S ′) and θ ∈ Sol(Φ;S ′).

Lemma 3. Let A
tr�−→c (P ;Φ;S) and θ ∈ Sol(Φ;S). We have that θ |= Deps (tr)

if, and only if, trθ = min(trθ).

Proof (Sketch). Let A
tr�−→c (P ;Φ;S) and θ ∈ Sol(Φ;S). We need a characteriza-

tion of minimal traces. We exploit the following one, which is equivalent to the
characterization of Anisimov and Knuth [3]:

The trace t is minimal if, and only if, for all factors aub of t such that
(1) a, b ∈ B, u ∈ B∗ and d ≺ b ≺ a for all d ∈ u, we have (2) some c ∈ au
such that c Ib b does not hold.

We remark that condition (1) characterizes the factors of (symbolic) traces for
which we generate a dependency constraint. Here, that constraint would be

−→
X b� ∪d∈au

−→w d

where α ∈ B is also written iocα(
−→
Xα,

−→wα) to have an access to its components.
Then we note that (2) corresponds to the satisfaction of that dependency

constraint in a concrete instance of the trace. ��
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Finally, relying on these results, we can establish that trace equivalence (≈d)
w.r.t. the reduced semantics exactly captures symbolic trace equivalence (≈s).

Theorem 3. For any extended simple processes A and B, we have that:

A �s B ⇐⇒ A �2
d B.

Proof (Sketch). Implication (⇒) is straightforward and only relies on the fact
that dependency constraints generated by the reduced semantics only depend
on the trace that is executed. The other direction (⇐) is more interesting. Here,
we only outline the main idea, in the case of a trace made of proper blocks.
We show that a concrete trace trθ which is not captured when considering �−→d

(i.e., a trace trθ that does not satisfy the generated dependency constraints)
can be mapped to another trace, namely min(trθ), which manipulates the same
recipes/messages but where blocks are executed in a different order. Lemma 2
is used to obtain an execution of the minimal trace, and Lemma 3 ensures that
dependency constraints are satisfied in that execution. Thus the minimal trace
can also be executed by the other process. We go back to trθ using Lemma 2. ��

5.3 First-Order Reduced Semantics

We finally introduce the stronger, first-order semantics for dependency con-
straints, and we prove soundness and completeness for the corresponding equiv-
alence property by building on the previous theorem.

Definition 11. Let C = (Φ;S) be a dependency constraint system. We define

Sol1(C) to be the set of substitutions θ ∈ Sol(C◦) such that, for each
−→
X�−→w in C

with non-empty −→w there is some Xi ∈
−→
X such that for all recipes M ∈ T (DC(X))

satisfying M(Φλθ)=E(Xθ)(Φλθ), we have fv1(M) ∩ −→w 
= ∅.

We define the notion of trace equivalence accordingly, as it has been done at
the end of Section 5.1, relying on Sol1 instead of Sol2. We denote it ≈1

d, and the
associated notion of inclusion is denoted �1

d.

Theorem 4. For any extended simple processes A and B, we have that:

A �2
d B ⇐⇒ A �1

d B.

Proof (Sketch). (⇒) This implication is relatively easy to establish. It actually
relies on the fact that Sol1(C) ⊆ Sol2(C) for any dependency constraint system C.
This allows us to use our hypothesis A �2

d B. Then, in order to come back to our
more constrainted first-order reduced semantics, we may notice that as soon as θ
is a solution of C and C′ (w.r.t. Sol2) with static equivalence of their associated
frames, we have that: θ ∈ Sol1(C) if, and only if, θ ∈ Sol1(C′). (⇐) In order to
exploit our hypothesis A �1

d B, given a trace

A
tr�−→d (P ;Φ;S) with θ ∈ Sol2(Φ;S),

we build tr′ and θ′ such that A
tr′�−→d (P ;Φ;S ′) with “tr =Ib

tr′”, and θ′ ∈
Sol1(Φ;S ′). Actually, we do this without changing the underlying first-order
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substitution, i.e., λθ = λθ′ . This is done by a sub-induction; iteratively modifying
θ and tr. Whenever θ is not already a first-order solution, we slightly modify it.
We obtain a new substitution θ′ that is not a second-order solution anymore
w.r.t. tr, and we use Lemmas 2 and 3 to obtain a new trace tr′ ≺ tr for which θ′

is a second-order solution. By induction hypothesis on tr′ we obtain a first-order
solution. We finally go back to the original trace tr, using an argument similar
to the one in the first direction to handle static equivalence. ��

Example 17. We illustrate the construction of tr′, which is at the core of the
above proof. Consider A = ({P1, P2, P3};Φ) where Pi = in(ci, xi).out(ci, ni),
and Φ0 = {w0 � n0}, and ni ∈ N for 0 ≤ i ≤ 3. We assume that c1 ≺ c2 ≺ c3,
and we consider the situation where the nonces n0 and n2 (resp. n1 and n3) are
the same.

Let tr = ioc3(X3, w3).ioc2(X2, w2).ioc1(X1, w1) and (Φ;S) the dependency

constraint system such that A
tr�−→d (∅;Φ;S). We consider the substitution θ =

{X3 �→ start, X2 �→ w3, X1 �→ w2}. We note that θ ∈ Sol2(Φ;S) but we have
that θ 
∈ Sol1(Φ;S) due to the presence of X1�w2 in S. We could try to fix
this problem by building a “better” solution θ′ that yields the same first-order
solution: θ′ = {X3 �→ start, X2 �→ w3, X1 �→ w0} is such a candidate. Applying
Lemmas 2 and 3, we obtain a smaller symbolic trace:

tr′ = ioc1(X1, w1) · ioc3(X3, w3) · ioc2(X2, w2).

Let (Φ;S ′) be the constraint system obtained from the execution of tr′. We have
that θ′ ∈ Sol2(Φ;S ′) but again θ′ 
∈ Sol1(Φ;S ′). This is due to the presence
of X2�w3 in S ′ — which was initially satisfied by θ in the first-order sense.
With one more iteration of this transformation, we obtain a third candidate:
θ′′ = {X3 �→ start, X2 �→ w1, X1 �→ w0} and

tr′′ = ioc1(X1, w1) · ioc2(X2, w2) · ioc3(X3, w3).

The associated constraint system does not contain any dependency constraint,
and thus θ′′ is trivially a first-order solution.

5.4 Applications

We first describe two situations showing that our reduced semantics can yield
an exponential benefit. Then, we illustrate the effect of our reduced semantics
on our running example, i.e., the private authentication protocol.

Consider first the simple process P = {P1, P2, . . . , Pn} where each Pi denotes
the basic process in(ci, x).if x = ok then out(ci, ni) with ni ∈ N . There are
(2n)!/2n different traces of size 2n (i.e., containing 2n visible actions) in the
concrete semantics. This number is actually the same in the standard symbolic
semantics. In the compressed semantics (as well as the symbolic compressed
semantics) this number goes down to n!. Finally, in the reduced semantics, there
is only one trace such that the resulting constraint system admits a solution.
Assuming that c1 ≺ . . . ≺ cn, that trace is simply:

tr = ioc1 (
−→
X1,

−→w1) · . . . · iocn (
−→
Xn,

−→wn).
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Next, we consider the simple process P = {Pn
1 , P

n
2 } where P 0

i = 0, and
Pn+1
i denotes the basic process in(ci, xj).if xj = ok then out(ci, nj).P

n
i . We

consider traces of size 4n. In the concrete semantics, there are
(
4n
2n

)
different

traces, whereas the number of such traces is reduced to
(
2n
n

)
in the compressed

semantics. Again, there is only one trace left in the reduced semantics.

Going back to our running example (see Examples 2 and 7), we represent
some symbolic traces obtained using our reduced semantics. We consider:

({Pinit, Q0(skb, pk(ska))};Φ0; ∅)
and we assume that cA ≺ cB. We consider all symbolic traces obtained without
considering the Else rule.

•

• •

• • •

• •

io1a iob

io2a iob
io1a

io2a io2a

Those executions are represented in the diagram
on the left, where

– io1a to denote iocA(X
1
a , wa),

– io2a to denote iocA(X
2
a , ∅), and

– iob to denote iocB(Xb, wb).

The block io2a is an improper block since it only con-
tains an input action. First, we may note that many
interleavings are not taken into account thanks to

compression. Now, consider the symbolic trace io1a · iob · io2a. A dependency
constraint of the form X2

a�wb is generated. Thus, a concrete trace that satisfies
this dependency constraint must use the output of the role Q0(b, a) to build the
second input of the role Pinit.

Second, consider the rightmost branch. A dependency constraint of the form
X1

a�wb is generated, and since X1
a has to be instantiated by a recipe that gives

the public constant start (due of the constraint x1
a =? start present in the system),

the reduced semantics makes it possible to prune all executions starting with
iob · io1a.

6 Conclusion

We have proposed two refinements of the symbolic semantics for simple pro-
cesses. The first refinement groups actions in blocks, while the second one uses
dependency constraints to restrict to minimal interleavings among a class of per-
mutations. In both cases, the refined semantics has less traces, yet we show that
the associated trace equivalence coincides with the standard one. In theory, this
yields a potentially exponential algorithmic optimization.

In order to validate our approach, an experimental implementation has been
developed1. This tool is based on SPEC [21] (which does not support else
branches) and implements our modified semantics as well as an adapted con-
straint resolution procedure that takes (first-order) dependency constraints into
account. The latter procedure is quite preliminary and far from optimal. Yet,

1 Available at <http://perso.ens-lyon.fr/lucca.hirschi/spec_en.html> .

<http://perso.ens-lyon.fr/lucca.hirschi/spec_en.html>
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the modified checker already shows significant improvements over the original
version on various benchmarks ([16], Figure 9).

We are considering several directions for future work. Constraint solving pro-
cedures should be studied in depth: we may optimize the one we already devel-
oped [16] and we are also interested in studying the problem in other frameworks,
e.g., [11]. We also believe that stronger reductions can be achieved: for instance,
exploiting symmetries should be very useful for dealing with multiple sessions.
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Stateful Applied Pi Calculus
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Abstract. We extend the applied pi calculus with state cells, which are used to
reason about protocols that store persistent information. Examples are protocols
involving databases or hardware modules with internal state. We distinguish be-
tween private state cells, which are not available to the attacker, and public state
cells, which arise when a private state cell is compromised by the attacker. For
processes involving only private state cells we define observational equivalence
and labelled bisimilarity in the same way as in the original applied pi calculus, and
show that they coincide. Our result implies Abadi-Fournet’s theorem – the coinci-
dence of observational equivalence and labelled bisimilarity – in a revised version
of the applied pi calculus. For processes involving public state cells, we can es-
sentially keep the definition of observational equivalence, but need to strengthen
the definition of labelled bisimulation in order to show that observational equiva-
lence and labelled bisimilarity coincide in this case as well.

Keywords: applied pi calculus, global state, bisimulation, security protocols.

1 Introduction

Security protocols are small distributed programs that use cryptography in order to
achieve a security goal. The complexity that arises from their distributed nature moti-
vates formal analysis in order to prove logical properties of their behaviour; fortunately,
they are often small enough to make this kind of analysis feasible. Various logical meth-
ods have been used to model security protocols; process calculi have been particularly
successful [3, 5, 31]. For example, the TLS protocol used by billions of users every day
was analysed using ProVerif [11].

More recently, protocol analysis methods have been applied to stateful protocols
– that is, protocols which involve persistent state information that can affect and be
changed by protocol runs. Hardware devices that have some internal memory can be
described by such protocols. For example, Yubikey is a USB device which generates
one-time passwords based on encryptions of a secret ID, a running counter and some
random values using a unique AES-128 key contained in the device. The trusted plat-
form module (TPM) is another hardware chip that has a variety of registers which rep-
resent its state, and protocols for updating them. Radio-frequency identification (RFID)
is a wireless technology for automatic identification and is currently deployed in elec-
tronic passports, tags for consumer goods, livestock and pets tracking, etc. An RFID-tag
has a small area for storing secrets, which may be modified.

A process calculus can be made to work with such stateful protocols either by ex-
tension or by encoding. Extension means adding to the calculus explicit constructs for
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working with the stateful aspects, while encoding means using combinations of the
primitives that already exist. Encodings have the advantage that they keep the calculus
simple and elegant, but (as argued in [3]) there may not be encodings for all the aspects
we want, and in cases that encodings exist they may not be suitable for the analysis of
security properties. StatVerif [7] demonstrates this: a natural way of encoding state us-
ing restricted channels prevents ProVerif from proving security. ProVerif also provides
some built-in features, such as tables and phases, which provide only limited ways for
modelling states. In particular, tables are defined as predicates which allow processes to
store data by extending a predicate for the data. Hence there is no notion of the “current”
state, and values cannot be deleted from tables. Phases are used to model the protocols
with several stages. But there can be only finitely many phases, which can only be run
in sequence, whereas a state may have infinitely many arbitrary values. Since our start-
ing point is the applied pi calculus [3], we follow the philosophy adopted by its authors,
which is to design a calculus that has the right primitives built in.

Our Contributions. We present an extension of the applied pi calculus by adding state
cells, which are used to reason about protocols that store persistent information. We dis-
tinguish between private state cells, which are not available to the attacker, and public
state cells, which arise when a private state cell is compromised by the attacker. In our
stateful language, a private state cell is guarded by the scope restriction; its access is lim-
ited to some designated processes. When a private state cell gets compromised, the cell
becomes public and this scenario is modelled by removing the scope restriction of that
cell. We first define observational equivalence and labelled bisimilarity for processes
having only private state cells, and we prove that two notions coincide as expected.
By encoding the private state cells with restricted channels while keeping observational
equivalence, our coincidence result can be seen to imply Abadi-Fournet’s theorem [3,
Theorem 1], in a revised version of applied pi calculus. As far as we can see, the only
available proof for this theorem is [28] which is an unpublished manuscript. Despite
having no published proof, this theorem has been widely used in many publications, for
example [19, 8, 4, 18, 20].

We also discuss an extension of our language with public state cells. The obvious
notion of labelled bisimilarity does not capture observational equivalence on public
state cells. Designing a labelled bisimilarity on public state cells turns out to be un-
expectedly difficult. Public state cells introduce many special language features which
are significantly different from private state cells. Moreover, the addition of public state
cells increases the capabilities of the attacker significantly. Hence we strengthen the
definition of labelled bisimilarity to show that observational equivalence and labelled
bisimulation coincide.

As an illustration, we analyse the OSK protocol [26] for RFID tags. We model its
untraceability by private state cells and model its forward privacy by public state cells.

Related Work. StatVerif [7] is an extension of ProVerif process language [13] with
private state cells. The main contribution there is to extend the ProVerif compiler to
a compiler for StatVerif. The security property of interest there is secrecy which is
modelled by reachability on the traces. This paper is a fundamental generalisation of the
previous StatVerif work. The focus in this paper is to build a stateful language based
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on applied pi calculus, explore its language features and discuss indistinguishability,
which is modelled by observational equivalence and analysed by labelled bisimilarity.

There are other languages that have been used to model protocols involving persistent
state, but they are lower-level languages that are further away than our process language
from the protocol design. Strand spaces have been generalised to work with the global
state required by a trusted party charged with enforcing fair exchange [25]. The verifier
Tamarin [33] uses multi-set rewriting (in which antecedents of applied rules are with-
drawn from the knowledge set in order to represent state changes); it has been used to
analyse hardware password tokens [27]. Multi-set rewriting is also used in [30], where
state changes are important to represent revocation of cryptographic keys. Horn clauses
rather than multiset rewriting are used in [22], in order to represent state changes made
to registers of the TPM hardware module.

Reasoning about programming languages involving states has been extensively stud-
ied (e.g. [34, 23]). There are very strong interactions between programing language
features and state, hence the reasoning principles are very specific to the precise com-
bination of features. In this work we build on the work on reasoning principles for
process calculi using bisimulation and show how to extend these principles to handle
global state.

Outline. The next section defines syntax and semantics for the stateful applied pi cal-
culus. Section 3 discusses the process equivalences and encoding for private state cells,
and derives Abadi-Fournet’s theorem. Section 4 extends our stateful language with pub-
lic state cells. The paper concludes in Section 5.

2 Stateful Applied Pi Calculus

In this section, we extend the applied pi calculus [3] with constructs for states, and
define its operational semantics. In fact, we do not directly build the stateful language
on top of applied pi calculus, because we want to avoid working with the structural
equivalence relation. More precisely, reasoning about the equivalent classes induced
by structural equivalence turns out to be difficult and normally results in long tedious
proofs [21, 18, 29, 17]. Our language inherits constructs for scope restriction, com-
munication and active substitutions from applied pi calculus while having multisets of
processes and active substitutions makes it possible to specify an operational semantics
which does not involve any structural equivalence.

2.1 Syntax

We assume two disjoint, infinite sets N and V of names and variables, respectively.
We rely on a sort system including a universal base sort, a cell sort and a channel sort.
The sort system splits N into channel names Nch, base names Nb and cell names Ns;
similarly, V is split into channel variables Vch and base variables Vb. Unless otherwise
stated, we use a, b, c as channel names, s, t as cell names, and x, y, z as variables. Meta
variables u, v, w are used to range over both names and variables.

A signature Σ consists of a finite set of function symbols, each with an arity. A func-
tion symbol with arity 0 is a constant. Function symbols are required to take arguments
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and produce results of the base sort only. Terms, ranged over by M,N , are built up from
variables and names by function application:

M,N ::= terms
a, b, c, k,m, n, s names
x, y, z variables
f(M1, . . . ,M�) function application

We write var (M) and name(M) for the variables and names in M , respectively. Tuples
such as u1 · · ·u� and M1 · · ·M� will be denoted by ũ and M̃ , respectively. Terms are
equipped with an equational theory =Σ that is an equivalence relation closed under
substitutions of terms for variables, one-to-one renamings and function applications.

The grammar for the plain process is given below. The operators for nil process 0,
parallel composition |, replication !, scope restriction νn, conditionalif - then - else ,
input u(x) and output u〈M〉 are the same as the ones in applied pi calculus [3]. A state
cell is a special process of the form [s �→ M ] where s is the cell name and M is the
current value of s. The process lock s.P locks the cell s for the subsequent process
P . When the cell s is locked, another process that intends to access the cell has to wait
until the cell is unlocked by a primitive unlock s. The process read s as x.P reads
the value in the cell and stores it in x in P . The process s := M.P assigns the value M
to the cell and continues as P .

P,Q,R ::= plain process
0 nil process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
u(x).P input
u〈M〉.P output
[s �→M ] cell s, containing term M
s := M.P writing a cell
read s as x.P reading a cell
lock s.P locking a cell
unlock s.P unlocking a cell

subject to the following requirements:

– x,M,N are not of cell sort; u ∈ Nch ∪Vch and s ∈ Ns; additionally, M is of base
sort in both [s �→M ] and s := M.P ;

– for every lock s. P , the part P of the process must not include parallel or replica-
tion unless it is after an unlock s.

– for a given cell name s, the replication operator ! must not occur between νs and
[s �→M ].

These side conditions rule out some nonsense processes, such as lock s. !P , lock s.
(P | Q), νs.![s �→ M ] and νs.([s �→ M ] | [s �→ N ]), while keep some reasonable
processes, such as lock s.unlock s. !P , lock s.unlock s. (P | Q) and !νs.[s �→M ].
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An extended process, ranged over by A,B,C, is an expression of the form
νñ. (σ, S,P) where

– νñ is a set of name restrictions;
– σ is a substitution {M1/x1, . . . ,Mn/xn} which replaces variables of base sort

with terms of base sort; the domain dom(σ) of σ is {x1, . . . , xn}; the domain
dom(νñ.(σ, S,P)) of the extended process νñ.(σ, S,P) is also dom(σ); we re-
quire that dom(σ) ∩ fv (M1, . . . ,Mn,P , S) = ∅;

– S = {s1 �→M1, . . . , sm �→Mm} is a set of state cells such that s1, . . . , sm are
pairwise-distinct cell names and terms M1, . . . ,Mm are of base sort; we write
dom(S) for {s1, . . . , sm} and S(si) for Mi (1 ≤ i ≤ m);

– [s �→M ] can only occur at most once for a given cell name s, and if a cell name s
is not restricted by any νs, a state cell s �→M can only occur in S;

– P = {(P1, L1), . . . , (Pk, Lk)} is a multiset of pairs where Pi is a plain process and
Li is a set of cell names; Li ∩ Lj = ∅ for any 1 ≤ i, j ≤ k and i 
= j; for each
s ∈ Li, the part of the process Pi must not include parallel or replication unless it
is after a unlock s; we write locks(P) for the set L1∪ · · · ∪Lk, namely the locked
cells in P .

In an extended process νñ.(σ, S,P), the substitution σ is similar to the active sub-
stitutions in applied pi calculus [3] which denote the static knowledge that the process
exposes to the environment. A minor difference with [3] is that substitutions here are
only defined on terms of base sort which will be explained later. State cells are mutable
and the value of a cell may be changed during the running of processes. If a process
P locks a cell s, then this status information will be kept as (P, {s} ∪ L) in P . At any
time, the cell s can be locked at most once in P .

The variable x in “u(x)” and “read s as x” are bound, as well as the name n
in νn. This leads to the usual notions of bound and free names and variables. We
shall use fn(A) for free names, use fs(A) for free cell names, use fv(A) for free
variables, use bn(A) for bound names, and use bv(A) for bound variables of A. Let
fnv(A) = fn(A)∪ fv (A) and bnv(A) = bn(A)∪ bv (A). Following the conventions in
[32], we shall identify processes which are α-convertible. We write “=” for both syntac-
tical equality and equivalence under α-conversion. Captures of bound names and bound
variables are avoided by implicit α-conversion.

An extended process νñ.(σ, S,P) is called closed if each variable is either defined
by σ or bound, each cell name s is defined by exactly one “s �→ M” (either in S or
in P), and locks(P) ⊆ dom(S). We may write (σ, S,P) for ν∅.(σ, S,P), and write
νñ, m̃.(σ, S,P) for ν(ñ ∪ m̃).(σ, S,P).

When we write σ = σ1 ∪ σ2 for some substitution σ or S = S1 ∪ S2 for some state
cells S, we assume that dom(σ1)∩ dom(σ2) = ∅ as well as dom(S1)∩ dom(S2) = ∅.
For variables x̃, we define σ\x̃ to be the substitution { zσ/z | z ∈ dom(σ) and z /∈ x̃ }.
If A = νñ.(σ, S,P), we write A\x̃ for νñ.(σ\x̃, S,P).

An evaluation context νñ.(σ-, S-,P-) is an extended process with holes “-” for
substitution, state cells and plain processes. Let C = νñ.(σ-, S-,P-) be an evalua-
tion context and A = νm̃.(σa, Sa,Pa) be a closed extended process with m̃ ∩ (ñ ∪
fn(σ, S,P)) = dom(σ)∩dom(σa) = dom(S)∩dom(Sa) = ∅. The result of applying
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νñ. (σ, S,P ∪ {( !P, ∅)}) τ−−−−→ νñ. (σ, S,P ∪ {( !P, ∅), (P, ∅)})

νñ.(σ, S,P ∪ {(P | Q, ∅)}) τ−−−−→ νñ.(σ, S,P ∪ {(P, ∅), (Q, ∅)})

νñ.(σ, S,P ∪ {(νm.P, L)}) τ−−−−→ νñ, m.(σ, S,P ∪ {(P, L)}) if m /∈ fn(ñ, σ, S,P, L)

νñ.(σ, S,P ∪ {([s �→ M], ∅)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P) if s ∈ ñ and s /∈ dom(S)

νñ.(σ, S,P ∪ {(a(x).P, L1)} ∪ {(a〈M〉.Q, L2)}) τ−−−−→ νñ.(σ, S,P ∪ {(P {M/x} , L1), (Q, L2)}))

νñ.(σ, S,P ∪ {(if M = N then P else Q,L)}) τ−−−−→ νñ.(σ, S,P ∪ {(P, L)}) if M =Σ N

νñ.(σ, S,P ∪ {(if M = N then P else Q,L)}) τ−−−−→ νñ.(σ, S,P ∪ {(Q, L)}) if M �=Σ N and var(M, N) = ∅

νñ.(σ, S ∪ {s �→ M} , P ∪ {(read s as x.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P {M/x} , L)})

if s ∈ ñ ∪ L and s �∈ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(s := N.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ N} ,P ∪ {(P, L)})

if s ∈ ñ ∪ L and s �∈ locks(P)

νñ.(σ, S ∪ {s �→ M} , P ∪ {(lock s.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L ∪ {s})})

if s ∈ ñ and s �∈ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} , P ∪ {(unlock s.P, L)}) τ−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L \ {s})}) if s ∈ ñ ∩ L

νñ.(σ, S,P ∪ {(a(x).P, L)}) a(M)−−−−−−→ νñ.(σ, S,P ∪ {(P {Mσ/x} , L)}) if name(a,M) ∩ ñ = ∅

νñ.(σ, S,P ∪ {(a〈c〉.P, L)}) a〈c〉−−−−−→ νñ.(σ, S,P ∪ {(P, L)}) if a, c �∈ ñ

νñ, c.(σ, S,P ∪ {(a〈c〉.P, L)}) νc.a〈c〉−−−−−−→ νñ.(σ, S,P ∪ {(P, L)}) if a, c �∈ ñ and a �= c

νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) νx.a〈x〉−−−−−−−→ νñ.(σ ∪ {M/x} , S,P ∪ {(P, L)})

if a �∈ ñ and M is of base sort and x is fresh

Fig. 1. Operational Semantics

C to A is an extended process defined by:

C[A] = νñ, m̃.(σσa ∪ σa, Sσa ∪ Sa,Pσa ∪ Pa)

An evaluation context C closes A when C[A] is a closed extended process.

2.2 Operational Semantics

The transition relation A
α−→ A′ is the smallest relation on extended processes defined

by the rules in Figure 1. The action α is either an internal action τ , an input a(x), an
output of channel name a〈c〉, an output of bound channel name νc.a〈c〉, or an output
of terms of base sort νx.a〈x〉. The transitions for conditional branch, communication,
sending and receiving channel names and complex messages are typical and essentially
the same as the ones in applied pi calculus. In particular, the output νx.a〈x〉 for term
M generates an “alias” x for M which is kept in the substitution part of the extended
process. As mentioned before, state cells are used to model the hardware or the database
to which the access is usually mutually-exclusive. When a state cell is locked, the other
process that intends to access the cell must wait until the cell is released.
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3 Private State Cells

3.1 Equivalences for Private State Cells

We first discuss observational equivalence and labelled bisimilarity on the extended pro-
cesses with only private state cells, that is, each cell name s occurring in the processes
is within the scope of a restriction νs. We will discuss an extension of the language with
public state cells in Section 4.

Observational equivalence [3] has been widely used to model properties of security
protocols. It captures the intuition of indistinguishability from the attacker’s point of
view. Security properties such as anonymity [4], privacy [20, 6] and strong secrecy [12]
are usually formalised by observational equivalence.

We write =⇒ for the reflexive and transitive closure of
τ−→; we define

α
=⇒ to be

=⇒ α−→=⇒; we write
α̂

=⇒ for
α

=⇒ if α is not τ and =⇒ otherwise. We write A ⇓a when
A =⇒ νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) with a /∈ ñ.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R on
pairs of closed extended processes with only private state cells, such thatA R B implies

(i) dom(A) = dom(B);
(ii) if A ⇓a then B ⇓a;

(iii) if A =⇒ A′ then B =⇒ B′ and A′ R B′ for some B′;
(iv) for all closing evaluation contexts C with only private cells, C[A] R C[B].

Observational equivalence is a contextual equivalence where the contexts model the
active attackers who can intercept and forge messages. In the following examples, we
illustrate the use of observational equivalence in the stateful language by analysing the
untraceability of the RFID tags.

Example 1. We start by analysing a naive protocol for RFID tag identification. The tag
simply reads its id and sends it to the reader. We assume the attacker can eavesdrop on
the radio frequency signals between the tag and the reader. In other words, all the com-
munications between the tag and the reader are visible to the attacker. The operations
on the tag can be modelled by: P (s) = read s as x. a〈x〉. One security concern for
RFID tags is to avoid third-party attacker tracking. The attacker is not supposed to trace
the tag according to its outputs. Using the definition in [6], the untraceability can be
modelled by observational equivalence:

(∅, ∅, {( ! νs, id .([s �→ id ] | P (s)), ∅)}) ≈ (∅, ∅, {( ! νs, id .([s �→ id ] | !P (s)), ∅)})

In the left process, each tag s can be used at most once. In the right process, each tag
s can be used an unbounded number of times. The above equivalence does not hold,
which means this protocol is traceable. By eavesdropping on channel a of the right
process, the attacker can get a data sequence: “id , id , id · · · ”, while a particular id can
occur at most once in the first process.

Example 2. The OSK protocol [26] is a simple identification protocol for RFID tags
which aims to satisfy third-party untraceability. The tag can perform two independent
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one-way functions g and h. An initial secret is stored in the tag and is known to the
back-end database. On each run of the protocol, the tag computes the hash g of its
current value and sends the result to the reader. The reader forwards the message to the
back-end database for identification. The tag then updates its value with the hash h of
its current value. The operations related to a tag s can be modelled by:

T (s) = lock s. read s as x. a〈g(x)〉. s := h(x). unlock s

Let RD be process modelling the reader and back-end database. Similar to Example 1,
the untraceability can be represented by

(∅, ∅, {( ! νs, k.([s �→ k] | T (s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, k.([s �→ k] | !T (s) | RD), ∅)})

In the second process, for a particular tag s which contains value k, the data sequence
observed by the attacker on channel a is “g(k), g(h(k)), g(h(h(k))) · · · ”. Without
knowing the secret k, these appear just random data to the attacker and so the attacker
cannot link these data to the same tag. The observational equivalence between these
two processes means the attacker cannot identify the multiple runnings of a particular
tag. The “lock s · · ·unlock s” ensures exclusive access to the tag. After the reader
reads the tag, the tag must be renewed before the next access to the tag; otherwise the
tag would be traceable.

The universal quantifier over the contexts makes it difficult to prove observational
equivalence. Hence labelled bisimilarity is introduced in [3] to capture observational
equivalence. Labelled bisimilarity consists of static equivalence and behavioural
equivalence.

Definition 2. Two processes A and B are statically equivalent, written as A ≈s B,
if dom(A) = dom(B), and for any terms M and N with var (M,N) ⊆ dom(A),
Mσ1 =Σ Nσ1 iff Mσ2 =Σ Nσ2 where A = νñ1.(σ1, S1,P1) and B = νñ2.(σ2, S2,
P2) for some ñ1, ñ2 such that (ñ1 ∪ ñ2) ∩ name(M,N) = ∅.

Our definition of static equivalence is essentially the same as the one in [3], as the
definition in [3] is invariant under structural equivalence already. Although static equiv-
alence is in general undecidable, there are well established ways, including tools, for
verifying static equivalence [2, 15, 16, 9, 14]. Static equivalence defines the indistin-
guishability between the environmental knowledge exposed by two processes. The en-
vironmental knowledge is modelled by the substitutions in the extended processes. For
example, let A = νk,m.({k/x,m/y} , ∅, ∅) and B = νk.({k/x, h(k)/y} , ∅, ∅). The
test h(x) = y fails under the application of A’s substitution {k/x,m/y}, while suc-
ceeds under the application of B’s substitution {k/x, h(k)/y}. Hence A 
≈s B.

Definition 3. Labelled bisimilarity (≈l) is the largest symmetric relation R between
pairs of closed extended processes with only private state cells such that A R B implies

1. A ≈s B;

2. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B

α̂
=⇒ B′ such

that A′ R B′ for some B′.
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�0�S = 0 �P | Q�S = �P �S | �Q�S �νn.P �S = νn. �P �S if n /∈ Ns

�!P �S = ! �P �S �u(x).P �S = u(x). �P �S �u〈M〉.P �S = u〈M〉. �P �S
�if M = N then P else Q�S = if M = N then �P �S else �Q�S
�s 	→M�S = cs〈M〉 �νs.P �S = νcs. �P �S if s ∈ Ns

�lock s.P �S =

{
cs(x). �P �S∪{s�→x} if s /∈ dom(S) and x is fresh
0 otherwise

�unlock s.P �S =

{
cs〈M〉 | �P �T if S = T ∪ {s 	→M}
0 otherwise

�read s as x.P �S =

{
�P {M/x}�S if S = T ∪ {s 	→M}
cs(x).(cs〈x〉 | �P �S) otherwise

�s := M.P �S =

{
�P �T∪{s�→M} if S = T ∪ {s 	→ N}
cs(x).(cs〈M〉 | �P �S) otherwise select fresh variable x

Fig. 2. Encoding private state cells with restricted channels

Instead of using arbitrary contexts, labelled bisimilarity relies on the direct compar-
ison of the transitions. The following theorem states that labelled bisimilarity can fully
capture observational equivalence:

Theorem 1. On closed extended processes with only private state cells, it holds that
≈=≈l.

3.2 Encoding Private State Cells with Restricted Channels

Private state cells can be encoded by restricted channels. This is an important obser-
vation; moreover, we will use this to prove Abadi-Fournet’s theorem in the following
Section 3.3. However, when modelling security protocols, the drawback of represent-
ing private state cells by restricted channels is that it may introduce false attacks when
using the automatic tool ProVerif as argued in [7]. The reason is that some features of
restricted channels are abstracted away when ProVerif translates process calculus into
Horn clauses [13]. To solve this problem, we introduce the primitives for lock, read,
write and unlock which will help us design better translations for stateful protocols in
ProVerif. This has been demonstrated by the verification of reachability [7], and will be
useful in future for verifying observational equivalence.

We encode the extended processes with only private state cells into a subset of the
extended processes which do not contain any cell name. Since the target language
of the encoding does not have any cell name, we abbreviate extended processes νñ.
(σ, ∅, {(Pi, ∅)}i∈I) with no cell name to νñ.(σ, {Pi}i∈I).

First we define encoding �P �S in Figure 2 for the plain process P under a given set
of state cells S = {s1 �→M1, . . . , sn �→Mn}. For each cell s, we select a fresh channel
name cs. The encoding in Figure 2 only affects the part related to cell names, leaving
other parts like input and output unchanged. The state cell s �→ M and unlock s are
both encoded by an output cs〈M〉 on the restricted channel cs. The lock s is repre-
sented by an input cs(x) on the same channel cs. To read the cell read s as x, we
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use the input cs(x) to get the value from the cell and then put the value back cs〈x〉,
which enables the other operations on cell s in future. To write a new value into the
cell s := N , we need to first consume the existing cs〈M〉 by an input cs(x) and then
generate a new output cs〈N〉. Our encoding ensures that there is only one output cs〈M〉
available on a specified restricted channel cs at each moment. When the cell is locked,
namely cs〈M〉 is consumed by some cs(x), the other processes that intend to access the
cell have to wait until an output cs〈N〉 is available.

Let A = νs̃, ñ.
(
σ, {si �→Mi}i∈I , {(Pj , Lj)}j∈J

)
be an extended process 1 where

s̃ ⊂ Ns and ñ ∩ Ns = ∅. We define the encoding �A� as:

�A� = νc̃s, ñ.

(
σ, {csi〈Mi〉}i∈U ∪

{
�Pj�Sj

}
j∈J

)
where U = { i | si /∈

⋃
j∈J Lj and i ∈ I } and Sj = { si �→Mi | si ∈ Lj and i ∈ I }.

Intuitively, U is the indices of the unlocked state cells in {si �→Mi}i∈I , and Sj is the
set of state cells locked by Lj .

Example 3. Let A = νs.(∅, {s �→ 0} , {(T (s), ∅)}) where T (s) is defined in Exam-
ple 2. Then �A� = νcs.(∅,

{
cs〈0〉, �T (s)�∅

}
) with �T (s)�∅ = cs(z).a〈g(z)〉.cs〈h(z)〉

obtained by:

�T (s)�∅ = �lock s.read s as x.a〈g(x)〉.s := h(x).unlock s�∅
= cs(z). �read s as x.a〈g(x)〉.s := h(x).unlock s�{s�→z}

= cs(z). �a〈g(z)〉.s := h(z).unlock s�{s�→z}

= cs(z).a〈g(z)〉. �s := h(z).unlock s�{s�→z}

= cs(z).a〈g(z)〉. �unlock s�{s�→h(z)}

= cs(z).a〈g(z)〉.cs〈h(z)〉

Theorem 2. For two closed extended processes A,B with only private state cells, we
have A ≈ B iff �A� ≈e �B� where ≈e is an equivalence defined exactly the same as
Definition 1 except the context C does not contain any cell names.

3.3 Overview of the Proof of Abadi-Fournet’s Theorem

We shall use our Theorem 1 and Theorem 2 to derive Abadi-Fournet’s theorem, namely
Theorem 1 in [3]. We revise the original applied pi calculus [3] slightly: active sub-
stitutions are only defined on terms of base sort; otherwise Theorem 1 in [3] does not
hold [10].2 Since the active substitutions in applied pi calculus float everywhere in the
extended processes, in order to prove Abadi-Fournet’s theorem, we need to normalise

1 We abbreviate the set { si 	→Mi | i ∈ I } as {si 	→Mi}i∈I .
2 Here is a counter example: let Ar = νc.(c.a | {c/x}) and Br = νc.(0 | {c/x}). Ob-

viously Ar and Br are labelled bisimilar since their frames are the same and both have no
transitions. However, they are not observationally equivalent. Consider the context x(y), then
Ar | x(y) ⇓a but Br | x(y) �⇓a.
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the extended processes first. We can transform the extended processes in the applied pi
calculus – denoted by Ar, Br, Cr to avoid confusion – into the extended processes in
stateful applied pi calculus by function T (assume bound names are pairwise-distinct
and different from free names): 3

T (0) = (∅, ∅) T ({M/x}) = ({M/x} , ∅) T (νn.Ar) = νn.T (Ar)

T (νx.Ar) = νñ.(σ,P) if T (Ar) = νñ.(σ ∪ {M/x} ,P)
T (A1

r | A2
r) = νñ1, ñ2.((σ1 ∪ σ2)

∗, (P1 ∪ P2)(σ1 ∪ σ2)
∗)

if T (Ai
r) = νñi.(σi,Pi) for i = 1, 2

T (Ar) = (∅, {Ar}) in all other cases of Ar

Intuitively, T pulls out name restrictions, applies active substitutions and separates
them from the plain processes, and eliminates variable restrictions. For instance,
T (a〈x〉.νn.a〈n〉 | νk. {k/x}) = νk.({k/x} , {a〈k〉.νn.a〈n〉}). This normalisation T
preserves both observational equivalence and labelled bisimilarity:

Theorem 3. For two closed extended processes Ar and Br in applied pi calculus,

1. Ar and Br are labelled bisimilar in applied pi iff T (Ar) ≈l T (Br);
2. Ar and Br are observationally equivalent in applied pi iff T (Ar) ≈e T (Br);

With all the theorems ready, now we can prove Abadi-Fournet’s theorem:

Corollary 1. Observational equivalence coincides with labelled bisimilarity in applied
pi calculus.

4 Extending the Language with Public State Cells

4.1 Public State Cells

Hardware modules like TPMs and smart cards are intended to be secure, but an at-
tacker might succeed in finding ways of compromising their tamper-resistant features.
Similarly, attackers can potentially hack into databases [1]. We model these attacks by
considering that the attacker compromises the private state cells, after which they are
public. Protocols may provide some security properties that hold even under such com-
promises of the hardware or database. A typical example is forward privacy [24] which
requires the past events remain secure even if the attacker compromises the device. This
will be further discussed in the following Example 8 and Example 9. A cell s not in the
scope of νs is public, which enables the attacker to lock the cell, read its contents or
overwrite it.

We now give the details of the syntactic additions for public cells and the definition of
observational equivalence. To let a private state cell become public, we extend the plain
processes in Section 2 with a new primitive open s.P Extended processes are defined

as before. We extend the transitions in Fig. 1 by a new transition relation
τ(s)−−→ defined

3 We write σ∗ for the result of composing the substitution σ with itself repeatedly until an
idempotent substitution is reached.
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νñ.(σ, S ∪ {s �→ M} ,P ∪ {(read s as x.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P {M/x} , L)})

if s �∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(s := N.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ N} ,P ∪ {(P, L)})

if s �∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(lock s.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L ∪ {s})})

if s �∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s �→ M} ,P ∪ {(unlock s.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L \ {s})})

if s �∈ ñ ∪ locks(P) and s ∈ L

νñ, s.(σ, S ∪ {s �→ M} ,P ∪ {(open s.P, L)}) τ(s)−−−−→ νñ.(σ, S ∪ {s �→ M} ,P ∪ {(P, L)}) if s /∈ ñ

Fig. 3. Internal transitions for public state cells

in Fig. 3 for reasoning about public state cells. These internal transitions specify on
which public state cell the operations are performed. The label τ(s) is necessary when
we later define labelled bisimilarity. Note that when a public state cell is locked, we still
use the rule

τ−−→ defined in Fig. 1 for reading and writing on that cell.
Let A = νñ.(σ, S,P) and we write locks(A) for the set locks(P) \ ñ. We write

ε
=⇒

for the reflexive and transitive closure of
τ−−→ and

τ(s)−−→ for any cell s. We write A ⇓a
when A

ε
=⇒ νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) with a /∈ ñ.

Definition 4. Observational equivalence (≈) is the largest symmetric relation R on
pairs of closed extended processes (which may contain public state cells) such that
A R B implies

(i) locks(A) = locks(B), fs(A) = fs(B) and dom(A) = dom(B);
(ii) if A ⇓a then B ⇓a;

(iii) if A
ε

=⇒ A′ then B
ε

=⇒ B′ and A′ R B′ for some B′;
(iv) for all closing evaluation contexts C, C[A] R C[B].

We stick to the original definition of observational equivalence [3] as much as pos-
sible in order to capture the intuition of indistinguishability from the attacker’s point of
view. The definition of observational equivalence on public state cells is similar to the
one for private state cells, but the language features of public state cells are significantly
different from private state cells. Moreover, the addition of public state cells increases
the power of the attacker significantly, as without the name restriction νs for a state cell
s, when s is unlocked, the attacker can lock the cell, read its content and overwrite it.
To illustrate this point, we start by analysing several examples.

Example 4. The attacker can lock the unlocked public state cells. Assume

A = (∅, {s �→ 0} , {(c〈b〉, ∅)})
B = (∅, {s �→ 0} , {(read s as x. c〈b〉, ∅)})

A and B are not observationally equivalent. Let C = (-, -, {(0, {s})} -). The context C
does nothing but holds the lock on cell s and it will never release the lock. So we have
C[A] ⇓c but C[B] 
⇓c because reading cell s in B is blocked forever by context C.
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Example 5. The attacker can read an unlocked public state cell. Assume

A = (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅)})
B = (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅)})

Cell s is unlocked in both A and B. Both A and B can write 0 or 1 to the cell s arbitrary
number of times. The only difference between A and B is the initial values in cell s. A
and B are not observationally equivalent because the context

C = (-, -, {(read s as x. if x = 0 then c〈b〉, {s})} -)

can distinguish them. The context C holds the lock of cell s, thus no one can change the
value in s when C reads the value. We have C[A] ⇓c but C[B] 
⇓c.

In comparison, the following processes are observationally equivalent:

A′ = (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (unlock s, {s})})
B′ = (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), (unlock s, {s})})

Cell s is locked in both A′ and B′. When a cell is locked, the attacker cannot see its
value until it is unlocked. Both A′ and B′ can adjust the value of cell s after unlock s.
Assume

A′ τ(s)−−→ (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})
Then B′ can match this transition by first unlocking the cell s and then doing a writing
s := 0 and evolving to exactly the same process:

B′ τ(s)−−→ (∅, {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})
τ(s)
=⇒ (∅, {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})

Intuitively, the locked or unlocked status of a public state cell is observable by the
environment. Therefore, we require locks(A) = locks(B) and fs(A) = fs(B) in the
definition of observational equivalence. Furthermore, without this condition, this defi-
nition would not yield an equivalence relation, as transitivity does not hold in general.
For example, consider the following extended processes,

A = (∅, {s 	→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅)})
B = (∅, {s 	→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅), (unlock s, {s})})
C = (∅, {s 	→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅)})

Without the condition, then A and B would be equivalent, as well as B and C, because
the value in s can always be adjusted to be exactly the same after unlock s. But A and
C are not equivalent as analysed in Example 5.

Example 6. The value in an unlocked public state cell is a part of the attacker’s knowl-
edge. Assume

A = νk.(∅, {s �→ k} , {(s := 0.a(x).if x = k then c〈b〉, ∅)})
B = νk.(∅, {s �→ k} , {(s := 0.a(x), ∅)})
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A and B are not observationally equivalent. Let C = (-, -, {(read s as y. a〈y〉, ∅)} -).
Then C[A] ⇓c but C[B] 
⇓c because

C[A] τ(s)−−→ νk. (∅, {s �→ k} , {(a〈k〉, ∅), (s := 0.a(x).if x = k then c〈b〉, ∅)})
τ(s)−−→ νk. (∅, {s �→ 0} , {(a〈k〉, ∅), (a(x).if x = k then c〈b〉, ∅)})
=⇒ νk. (∅, {s �→ 0} , {(c〈b〉, ∅)})

But there is no output on channel c in C[B]. Hence A 
 ≈ B.

Example 7. The attacker can write an arbitrary value into an unlocked public cell. As-
sume two extended processes

A = (∅, {s �→ 0} , {(s := 0. s := 0, ∅)})
B = (∅, {s �→ 0} , {(s := 0, ∅)})

A and B are not observationally equivalent. Applying C = (-, -, {(s := 1.s := 1, ∅)} -)
to both A andB, the interleaving of s := 0 and s := 1 can generate a sequence of values
0, 1, 0, 1, 0 in cell s in C[A], while the closest sequence generated by C[B] should be
0, 1, 0, 1, 1. So when the attacker keeps on reading the value in cell s, he would be able
to notice the difference.

Instead of using the primitive open s, an alternative way for making a private
state cell become public is to send cell name s on a free channel c〈s〉.P . The reason
we choose the primitive open s.P here is because sending and receiving cell names
through channels is too powerful, and will lead to soundness problems when we define
labelled bisimilarity later. For example, let

A = (∅, ∅, {(c(x).read x as z.a〈z〉, ∅)})
B = (∅, ∅, {(c(x), ∅)})

In the presence of input and output for cell names, A and B are not observationally
equivalent. Let C = (-, {t �→ 0} -, {(c〈t〉, ∅)} -). The context C brings his own state cell
t �→ 0 and we have C[A] ⇓a but C[B] 
⇓a. That is to say, in order to define a sound
labelled bisimilarity, we have to allow a process like (∅, ∅, {(read t as z. a〈z〉, ∅)}) to
perform the reading even without a state cell t �→ 0. This requires a rather complex
definition of labelled bisimilarity, while what we want is to simply free a cell which can
be achieved by open s.P .

Now we give examples of the use of public state cells for modelling protocols and
security properties. Another security concern for RFID tags is forward privacy [26].
In the following Example 8 and Example 9, we shall illustrate how to model forward
privacy by public state cells. Forward privacy requires that even the attacker breaks the
tag, the past events should still be untraceable. Public state cells enable us to model the
compromised tags.

Example 8. We consider an improved version of the naive protocol in Example 1. In-
stead of simply outputting the tag’s id, the tag generates a random number r, hashes its
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id concatenated with r and then sends both r and h(id, r) to the reader for identification.
This can be modelled by:

Q(s) = read s as x. νr. a〈(r, h(x, r))〉

Upon receiving the value, the reader identifies the tag by performing a brute-force
search of its known ids. By observing on channel a, the attacker can get the data
pairs from a particular tag s: (r1, h(id , r1)), (r2, h(id , r2)), (r3, h(id , r3)) · · · . Since
the hash function is not invertible, without knowing the value of id, these data appear as
just random data to the attacker. Hence this improved version satisfies the untraceabil-
ity defined in Example 1. But it does not have the forward privacy. Let RD be process
modelling the reader and back-end database. The forward privacy can be characterised
by the observational equivalence

(∅, ∅, {( ! νs, id .([s �→ id ] | Q(s) | open s. !Q(s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, id .([s �→ id ] | !Q(s) | open s | RD), ∅)})

The primitive open s makes the private state cell s become public. Before the cell s is
broken, the attacker cannot decide how the system runs. In other words, whether the tag
s is used for only once, namely Q(s), or is used for arbitrary number of times, namely
!Q(s), it is out of the control of the attacker. But after the tag is broken, the attacker
fully controls the tag, so he knows when and where the tag is used. Despite knowing the
events that happen after the tag is broken, the attacker should still not be able to trace
the past events. Therefore, in the first process, we add !Q(s) after open s to model this
scenario. Intuitively, only the events before the tag is broken may be different while
the events after the tag is broken are exactly the same. Hence the above observational
equivalence can capture forward privacy.

However the above equivalence does not hold which means there is no forward pri-
vacy in this protocol. The attacker can obtain the id from the broken tag and then ver-
ify whether the previously gathered data (r1, h(id , r1)) and (r2, h(id , r2)) refer to the
same tag id by hashing id with r1 (or r2) and then comparing the result with h(id , r1)
(or h(id , r2)).

Example 9. Continuing with the OSK protocol in Example 2, we model the forward
privacy by the observational equivalence:

(∅, ∅, {( ! νs, k.([s �→ k] | T (s) | open s. !T (s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, k.([s �→ k] | !T (s) | open s | RD), ∅)})

Before the tag is broken, the attacker can obtain the data sequence g(k), g(h(k)),
g(h(h(k))) · · · by eavesdropping on channel a. Right after each reading, the value in
the tag will be updated to the hash of previous value: h(k), h(h(k)), h(h(h(k))) · · · .
When the tag is broken, the attacker will get from the tag a value hi(k) for some integer
i. This value is not helpful for the attacker to infer whether the data g(k), g(h(k)), · · · ,
g(hi−1(k)) are from the same tag. Hence the OSK protocol can ensure the forward
privacy.
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In order to ease the verification of observational equivalence which is defined us-
ing the universal quantifier over contexts, we shall define labelled bisimilarity which
replaces quantification over contexts by suitably labelled transitions. The traditional
definition for labelled bisimilarity is neither sound nor complete w.r.t. observational
equivalence in the presence of public state cells. We propose a novel definition for la-
belled bisimilarity and show how it solves all the problems caused by public state cells.

For a given cell s, we define
τ(s)
=⇒ to be the reflexive and transitive closure of

τ−−→ and
τ(s)−−→. We still use α to range over τ, a(M), a〈c〉, νc.a〈c〉 and νx.a〈x〉, and use =⇒ for

the reflexive and transitive closure of
τ−−→, and use

α̂
=⇒ for

α
=⇒ if α is not τ and =⇒

otherwise.
To define labelled bisimilarity, we need an auxiliary transition relation

s:=N−−−→ for
setting the values of public state cells:

νñ.(σ, S ∪ {s �→M} ,P) s:=N−−−→ νñ.(σ, S ∪ {s �→ Nσ} ,P)
if s 
∈ ñ ∪ locks(P) and name(N) ∩ ñ = ∅

νñ.(σ, S,P) s:=N−−−→ νñ.(σ, S,P) if s ∈ ñ ∪ locks(P)

The first rule of
s:=N−−−→ represents the attacker’s ability to overwrite the public state cells.

The second rule does not change the value of the cell s and is just for compatibility with

unlock s and open s in Definition 5. We write A
s:=N−−−→τ(s)

=⇒ A′ for the combination of

transitions A
s:=N−−−→ B and B

τ(s)
=⇒ A′ for some B.

Definition 5. Labelled bisimilarity (≈l) is the largest symmetric relation R between
pairs of closed extended processes Ai = νñi.(σi, Si,Pi) with i = 1, 2 such that
A1RA2 implies

1. locks(A1) = locks(A2), fs(A1) = fs(A2) and dom(A1) = dom(A2);
2. Let U be the set of unlocked public state cells whose value is not already given in

the substitutions of A1 and A2, that is

U = { s | s ∈ fs(A1) \ locks(A1), �x ∈ dom(σ1) s.t. S1(s) = xσ1 and S2(s) = xσ2 }

Select a fresh base variable xs for each s ∈ U . Let

Ae
i = νñi.(σi ∪ {Si(s)/xs}s∈U , Si,Pi) for i = 1, 2

Then
(a) Ae

1 ≈s A
e
2;

(b) if Ae
1

s:=N−−−→ τ(s)−−→ B1 with var (N) ⊆ dom(Ae
1), then there exists B2 such that

Ae
2

s:=N−−−→τ(s)
=⇒ B2 and B1RB2;

(c) if Ae
1

α−−→ B1 and fv (α) ⊆ dom(Ae
1) and bnv(α) ∩ fnv(Ae

2) = ∅, then there

exists B2 such that Ae
2

α̂
=⇒ B2 and B1 R B2.
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The static equivalence Ae
1 ≈s Ae

2 in Definition 5 is exactly the same as the one
defined in Definition 2. Before we compare the static equivalence and the transitions in
labelled bisimilarity, we extend Ai to Ae

i with values from unlocked public state cells.
This is to reflect the fact that attacker’s ability to read values from these cells.

Example 10. Consider the extended processes A and B in Example 5. As we have al-
ready shown, A and B are not observationally equivalent. Hence they are not supposed
to be labelled bisimilar. We first extend A and B to Ae and Be respectively:

Ae = ({0/z} , {s �→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅)})
Be = ({1/z} , {s �→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅)})

Clearly the static equivalence between Ae and Be does not hold, namely Ae 
≈s Be,
because the test z = 0 can distinguish them. Thus we have A 
 ≈l B.

The extension is not only for comparing the static equivalence, but also for compar-
ing the transitions. In labelled bisimilarity, we compare the transitions starting from the
extensions Ae and Be, rather than the original processes A and B. The reason is that
we need to keep a copy of the cell values, otherwise we would lose the values when
someone overwrites the cells.

Example 11. Consider the extended processes A and B in Example 6. The extension
Ae of A can perform the following transition:

Ae = νk.({k/z} , {s �→ k} , {(s := 0.a(x).if x = k then c〈b〉, ∅)})
τ(s)−−→ νk.({k/z} , {s �→ 0} , {(a(x).if x = k then c〈b〉, ∅)})
a(z)
=⇒ νk.({k/z} , {s �→ 0} , {(c〈b〉, ∅)})
c〈b〉−−→ νk.({k/z} , {s �→ 0} , {(0, ∅)})

But it is impossible for B’s extension Be = νk.({k/z} , {s �→ k} , {(s := 0. a(x), ∅)})
to perform an output on channel c. Hence A 
 ≈l B.

We use
s:=N−−−→ τ(s)−−→ rather than

τ(s)−−→ in labelled bisimilarity because the attacker can
set any unlocked public state cell to an arbitrary value. We shall illustrate this point by
the following two examples.

Example 12. Assume

A = ({0/y, 1/z} , {s �→ 0} , {(read s as x. if x = 1 then c〈0〉, ∅)})
B = ({0/y, 1/z} , {s �→ 0} , ∅)

A and B are not observationally equivalent. Applying context C = (∅, ∅, {(s := 1, ∅)})
to A and B, we can see that C[A] ⇓c but C[B] 
⇓c.

Now we shall distinguish them in labelled bisimilarity. Since the current value in cell
s is 0 which has already been stored in variable y, we don’t need to extend A and B.
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Then A can perform the following transition

A
s:=1−−−→ τ(s)−−→ ({0/y, 1/z} , {s �→ 1} , {(if 1 = 1 then c〈a〉, ∅)})

c〈a〉−−→ ({0/y, 1/z} , {s �→ 1} , {0, ∅})

But there is no way for B to perform an output action. Hence A 
 ≈l B.

Example 13. As illustrated in Example 7, A and B are not observationally equivalent.

In labelled bisimilarity, we extend A and perform the transitions
s:=1−−−→ τ(s)−−→ twice, then

we will reach a process A′ = ({0/x, 0/z} , {s �→ 0} , {(0, ∅)}), while the best B can do
to match A is to reach a process B′ = ({0/x, 1/z} , {s �→ 0} , {(0, ∅)}) and A′ 
≈s B

′.

Note that the transition
s:=N−−−→ is not included in

α−→. We only need to use
s:=N−−−→ to

change the value of the unlocked public state cell s when the processes perform some

actions related to s. Comparing the combination of two transitions together (
s:=N−−−→ τ(s)−−→)

in Definition 5 optimises the definition to be better suited as an assisted tool for analysing
observational equivalence. Otherwise, if we follow the traditional way to define la-

belled bisimilarity, i.e. comparing Ae
1

s:=N−−−→ Be
1 and Ae

1

τ(s)−−→ Be
1 separately, the ac-

tion
s:=N−−−→would generate infinitely many unnecessary branches. For example, let A =

(∅, {s �→ 0} , ∅). Even there is no action, A could keep on performing
s:=N−−−→ and would

never stop: A
s:=1−−−→ (∅, {s �→ 1} , ∅) s:=2−−−→ (∅, {s �→ 2} , ∅) s:=3−−−→ (∅, {s �→ 3} , ∅) · · ·

We require Ae
1

s:=N−−−→ τ(s)−−→ B1 to be matched by Ae
2

s:=N−−−→τ(s)
=⇒ B2 with the same s

in the action in labelled bisimilarity. In other words, Ae
2 can only match the transition

of Ae
1 by at most operating on the same cell s. This is equal to say the attacker holds the

locks of all the unlocked public cell except cell s in Ae
1. If Ae

1 does not do act on cell s,
then Ae

2 are not allowed to match Ae
1 by operating on s.

Example 14. Extend A and B in Example 4 to Ae = ({0/z} , {s �→ 0} , {(c〈b〉, ∅)})
and Be = ({0/z} , {s �→ 0} , {(read s as x. c〈b〉, ∅)}). We can see that Ae c〈b〉−−→
(∅, {s �→ 0} , {(0, ∅)}), but there is no way for Be to do the same output action c〈b〉
without going through the reading on cell s. Hence A 
≈l B.

In the presence of public state cells, labelled bisimilarity is both sound and complete
with respect to observational equivalence.

Theorem 4. In the presence of public state cells, ≈l =≈.

5 Conclusion

We present a stateful language which is a general extension of applied pi calculus with
state cells. We stick to the original definition of observational equivalence [3] as much
as possible to capture the intuition of indistinguishability from the attacker’s point of
view, while design the labelled bisimilarity to furthest abstract observational equiva-
lence. When all the state cells are private, we prove that observational equivalence co-
incides with labelled bisimilarity, which implies Abadi-Fournet’s theorem in a revised
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version of applied pi calculus. In the presence of public state cells, we devise a labelled
bisimilarity which is proved to coincide with observational equivalence. In future, we
plan to develop a compiler for bi-processes with state cells to automatically verify the
observational equivalence, extending the techniques of ProVerif.
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Abstract. Dolev-Yao models of cryptographic operations constitute the
foundation of many successful verification tools for security protocols,
such as the protocol verifier ProVerif. Research over the past decade
has shown that many of these symbolic abstractions are computationally
sound, i.e., the absence of attacks against the abstraction entails the secu-
rity of suitable cryptographic realizations. Most of these computational
soundness (CS) results, however, are restricted to trace properties such
as authentication, and the few promising results that strive for CS for
the more comprehensive class of equivalence properties, such as strong
secrecy or anonymity, either only consider a limited class of protocols or
are not amenable to fully automated verification.

In this work, we identify a general condition under which CS for trace
properties implies CS for uniformity of bi-processes, i.e., the class of
equivalence properties that ProVerif is able to verify for the applied π-
calculus. As a case study, we show that this general condition holds
for a Dolev-Yao model that contains signatures, public-key encryption,
and corresponding length functions. We prove this result in the CoSP
framework (a general framework for establishing CS results). To this
end, we extend the CoSP framework to equivalence properties, and we
show that an existing embedding of the applied π-calculus to CoSP can
be re-used for uniform bi-processes. On the verification side, as analyses
in ProVerif with symbolic length functions often do not terminate, we
show how to combine the recent protocol verifier APTE with ProVerif.
As a result, we establish a computationally sound automated verification
chain for uniformity of bi-processes in the applied π-calculus that use
public-key encryption, signatures, and length functions.

1 Introduction

Manual security analyses of protocols that rely on cryptographic operations are
complex and error-prone. As a consequence, research has strived for the automa-
tion of such proofs soon after the first protocols were developed. To eliminate
the inherent complexity of cryptographic operations that verification tools are
struggling to deal with, cryptographic operations have been abstracted as sym-
bolic terms that obey simple cancelation rules, so-called Dolev-Yao models [1,2].
A variety of automated verification tools have been developed based on this
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abstraction, and they have been successfully used for reasoning about various
security protocols [3,4,5,6,7,8,9,10]. In particular, a wide range of these tools is
capable of reasoning about the more comprehensive class of equivalence proper-
ties, such as strong secrecy and anonymity, which arguably is the most important
class of security properties for privacy-preserving protocols.

Research over the past decade has shown that many of these Dolev-Yao models
are computationally sound, i.e., the absence of attacks against the symbolic ab-
straction entails the security of suitable cryptographic realizations. Most of these
computational soundness (CS) results against active attacks, however, have been
specific to the class of trace properties [11,12,13,14,15,16,17,18,19,20,21], which
is only sufficient as long as strong notions of privacy are not considered, e.g., in
particular for establishing various authentication properties. Only few CS results
are known for the class of equivalence properties against active attackers, which
are restricted in of the following three ways: either they are restricted to a small
class of simple processes, e.g., processes that do not contain private channels and
abort if a conditional fails [22,23,24], or they rely on non-standard abstractions
for which it is not clear how to formalize any equivalence property beyond the
secrecy of payloads [25,26,27], such as anonymity properties in protocols that
encrypt different signatures, or existing automated tool support is not applica-
ble [28,29]. We are thus facing a situation where CS results, despite tremendous
progress in the last decade, still fall short in comprehensively addressing the class
of equivalence properties and protocols that state-of-the-art verification tools are
capable to deal with. Moreover, it is unknown to which extent existing results
on CS for trace properties can be extended to achieve more comprehensive CS
results for equivalence properties.

Our Contribution. In this work, we close this gap by providing the first result
that allows to leverage existing CS results for trace properties to CS results for
an expressive class of equivalence properties: the uniformity of bi-processes in
the applied π-calculus. Bi-processes are pairs of processes that differ only in the
messages they operate on but not in their structure; a bi-process is uniform if
for all surrounding contexts, i.e., all interacting attackers, both processes take
the same branches. Blanchet, Abadi, and Fournet [7] have shown that uniformity
already implies observational equivalence. Moreover, uniformity of bi-processes
corresponds precisely to the class of properties that the state-of-the-art verifi-
cation tool ProVerif [30] is capable to analyze, based on a Dolev-Yao model in
the applied π-calculus. In contrast to previous work dealing with equivalence
properties, we consider bi-protocols that use the fully fledged applied π-calculus,
in particular including private channels and non-determinate processes.

To establish this main result of our paper, we first identify the following
general condition for Dolev-Yao models: “whenever a computational attacker can
distinguish a bi-process, there is a test in the Dolev-Yao model that allows to
successfully distinguish the bi-process.”We say that Dolev-Yao models with this
property allow for self-monitoring. We show that if a specific Dolev-Yao model
fulfills this property, then there is for every bi-process a so-called self-monitor,
i.e., a process that performs all relevant tests that the attacker could perform
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on the two processes of the bi-process, and that raises an exception if of these
tests in the symbolic model distinguishes the bi-process. We finally show that
whenever a Dolev-Yao model allows for self-monitoring, CS for uniformity of bi-
processes automatically holds whenever CS for trace properties has already been
established. This result in particular allows for leveraging existing CS results for
trace properties to more comprehensive CS results for uniformity of bi-processes,
provided that the Dolev-Yao model can be proven to allow for self-monitoring.

We exemplarily show how to construct a self-monitor for a symbolic model
that has been recently introduced and proven to be computationally sound for
trace properties by Backes, Malik, and Unruh [31]. This symbolic model con-
tains signatures and public-key encryption and allows to freely send and receive
decryption keys. To establish that the model allows for self-monitoring, we first
extend it using the common concept of a length function (without a length func-
tion, CS for uniformity of bi-processes and hence the existence of self-monitors
trivially cannot hold, since encryptions of different lengths are distinguishable in
general), and we show that this extension preserves the existing proof of CS for
trace properties. Our main result in this paper then immediately implies that
this extended model satisfies CS for uniformity of bi-processes.

We moreover investigate how computationally sound automated analyses can
still be achieved in those frequent situations in which ProVerif does not man-
age to terminate whenever the Dolev-Yao model supports a length function.
We proceed in two steps: first, we feed a stripped-down version of the protocol
without length functions in ProVerif; ProVerif then yields a result concerning
the uniformity of bi-processes, but only for this stripped-down protocol. Second,
we analyze the original protocol using the APTE tool by Cheval, Cortier, and
Plet [32], which is specifically tailored to length functions. This yields a result for
the original protocol but only concerning trace equivalences. We show that both
results can be combined to achieve uniformity of bi-processes for the original
protocol, and thus a corresponding CS result for uniformity of bi-processes.

We present the first general framework for CS for equivalence properties, by
extending the CoSP framework: a general framework for symbolic analysis and
CS results for trace properties [15]. CoSP decouples the CS of Dolev-Yao models
from the calculi, such as the applied π-calculus or RCF: proving x cryptographic
Dolev-Yao models sound for y calculi only requires x+ y proofs (instead of x ·y).
We consider this extension to be of independent interest. Moreover, we prove the
existence of an embedding from the applied π-calculus to the extended CoSP
framework that preserves the uniformity of bi-processes, using a slight variation
of the already existing embedding for trace properties.

2 Equivalence Properties in the CoSP Framework

The results in this work are formulated within CoSP [15], a framework for
conceptually modular CS proofs that decouples the treatment of the crypto-
graphic primitives from the treatment of the calculi. Several calculi such as the
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applied π-calculus [15] and RCF [33] (a core calculus of F#) can be embedded
into CoSP and combined with CS results for cryptographic primitives.

The original CoSP framework is only capable of handling CS with respect to
trace properties, i.e., properties that can be formulated in terms of a single trace.
Typical examples include the non-reachability of a certain “bad” protocol state,
in that the attacker is assumed to have succeeded (e.g., the protocol never reveals
a secret), or correspondence properties such as authentication (e.g., a user can
access a resource only after proving a credential). However, many interesting
protocol properties cannot be expressed in terms of a single trace. For instance,
strong secrecy or anonymity are properties that are, in the computational setting,
usually formulated by means of a game in which the attacker has to distinguish
between several scenarios.

To be able to handle the class of equivalence properties, we extend the CoSP
framework to support equivalence properties. First, we recall the basic definitions
of the original framework. Dolev-Yao models are formalized as follows in CoSP.

Definition 1 (Symbolic Model). A symbolic model M = (C,N,T,D) con-
sists of a set of constructors C, a set of nonces N, a message type T over C and
N (with N ⊆ T), a set of destructors D over T. We require that N = NE 	NP

for countable infinite sets NP of protocol nonces and attacker nonces NE.

We write t for a list t1, . . . , tn if n is clear from the context. A constructor C/n
is a symbol with (possibly zero) arity. A nonce N is a symbol with zero arity. A
message type T over C and N is a set of terms over constructors C and nonces
N. A destructor D/n of arity n, over a message type T is a partial map Tn → T.
If D is undefined on t, we write D(t) = ⊥.

To unify notation, we define for every constructor or destructor F/n ∈ D∪C
and every nonce F ∈ N the partial function evalF : Tn → T, where n = 0
for a nonce, as follows: If F is a constructor, evalF (t) ··= F (t) if F (t) ∈ T and
evalF (t) ··= ⊥ otherwise. If F is a nonce, evalF () ··= F . If F is a destructor,
evalF (t) ··= F (t) if F (t) 
= ⊥ and evalF (t) ··= ⊥ otherwise.

Protocols. In CoSP, a protocol is represented as a tree. Each node in this tree
corresponds to an action in the protocol: computation nodes are used for drawing
fresh nonces, applying constructors, and applying destructors; input and output
nodes are used to send and receive messages; control nodes are used for allowing
the attacker to schedule the protocol.

Definition 2 (CoSP Protocol). A CoSP protocol I is a tree of infinite depth
with a distinguished root and labels on both edges and nodes. Each node has a
unique identifier ν and one of the following types:

– Computation nodes are annotated with a constructor, nonce or destructor
F/n together with the identifiers of n (not necessarily distinct) nodes; we call
these annotations references, and we call the referenced nodes arguments.
Computation nodes have exactly two successors; the corresponding edges are
labeled with yes and no, respectively.

– Input nodes have no annotations. They have exactly one successor.
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– Output nodes have a reference to exactly one node in their annotations. They
have exactly one successor.

– Control nodes are annotated with a bitstring l. They have at least one and
up to countably many successors; the corresponding edges are labeled with
distinct bitstrings l′. (We call l the out-metadata and l′ the in-metadata.)

We assume that the annotations are part of the node identifier. A node ν can
only reference other nodes ν′ on the path from the root to ν; in this case ν′ must
be a computation node or input node. If ν′ is a computation node, the path from
ν′ to ν has additionally to go through the outgoing edge of ν′ with label yes.

Bi-protocols. To compare two variants of a protocol, we consider bi-protocols,
which rely on the same idea as bi-processes in the applied π-calculus [7]. Bi-
protocols are pairs of protocols that only differ in the messages they operate on.

Definition 3 (CoSP Bi-protocol). A CoSP bi-protocol Π is defined like a
protocol but uses bi-references instead of references. A bi-reference is a pair
(νleft, νright) of node identifiers of two (not necessarily distinct) nodes in the pro-
tocol tree. In the left protocol left(Π) the bi-references are replaced by their left
components; the right protocol right(Π) is defined analogously.

2.1 Symbolic Indistinguishability

In this section, we define a symbolic notion of indistinguishability. First, we
model the capabilities of the symbolic attacker. Operations that the symbolic
attacker can perform on terms are defined as follows, including the destruction
of already known terms and the creation of new terms.1

Definition 4 (Symbolic Operation). Let M = (C,N,T,D) be a symbolic
model. A symbolic operation O/n (of arity n) on M is a finite tree whose nodes
are labeled with constructors from C, destructors from D, nonces from N, and
formal parameters xi with i ∈ {1, . . . , n}. For constructors and destructors, the
children of a node represent its arguments (if any). Formal parameters xi and
nonces do not have children.

We extend the evaluation function to symbolic operations. Given a list of terms
t ∈ Tn, the evaluation function evalO : Tn → T recursively evaluates the tree
O starting at the root as follows: The formal parameter xi evaluates to ti. A
node with F ∈ C ∪NE ∪D evaluates according to evalF . If there is a node that
evaluates to ⊥, the whole tree evaluates to ⊥.

A symbolic execution of a protocol is basically a valid path through the protocol
tree. It induces a view, which contains the communication with the attacker.

1 We deviate from the definition in the original CoSP framework [15], where a deduc-
tion relation describes which terms the attacker can deduce from the already seen
terms. This modification is not essential; all results for trace properties that have
been established in the original framework so far are compatible with our definition.
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Definition 5 (Symbolic Execution). Let a symbolic model M = (C,N,T,D)
and a CoSP protocol I be given. A symbolic view of the protocol I is a (finite)
list of triples (Vi, νi, fi) with the following conditions:

For the first triple, we have V1 = ε, ν1 is the root of I, and f1 is an empty
partial function, mapping node identifiers to terms. For every two consecutive
tuples (V, ν, f) and (V ′, ν′, f ′) in the list, let ν̃ be the nodes referenced by ν and
define t̃ through t̃j ··= f(ν̃j). We conduct a case distinction on ν.

– ν is a computation node with constructor, destructor or nonce F .
Let V ′ = V . If m ··= evalF (t̃) 
= ⊥, ν′ is the yes-successor of ν in I, and
f ′ = f(ν ··= m). If m = ⊥, then ν′ is the no-successor of ν, and f ′ = f .

– ν is an input node. If there exists a term t ∈ T and a symbolic operation
O on M with evalO(VOut ) = t, let ν′ be the successor of ν in I, V ′ = V ::
(in, (t, O)), and f ′ = f(ν ··= t).

– ν is an output node. Let V ′ = V :: (out, t̃1), ν
′ is the successor of ν in I,

and f ′ = f .
– ν is a control node with out-metadata l. Let ν′ be the successor of ν

with the in-metadata l′ (or the lexicographically smallest edge if there is no
edge with label l′), f ′ = f , and V ′ = V :: (control, (l, l′)).

Here, VOut denotes the list of terms in V that have been sent at output nodes, i.e.,
the terms t contained in entries of the form (out, t) in V . Analogously, VOut-Meta

denotes the list of out-metadata in V that has been sent at control nodes.
The set of all symbolic views of I is denoted by SViews(I). Furthermore, VIn

denotes the partial list of V that contains only entries of the form (in, (∗, O)) or
(control, (∗, l′)) for some symbolic operation O and some in-metadata l′, where
the input term and the out-metadata have been masked with the symbol ∗. The
list VIn is called attacker strategy. We write [VIn ]SViews(I) to denote the class of
all views U ∈ SViews(I) with UIn = VIn .

The knowledge of the attacker are the results of all the symbolic tests the attacker
can perform on the messages output by the protocol. To define the attacker
knowledge formally, we have to pay attention to two important details. First, we
concentrate on whether a symbolic operation fails or not, i.e., if it evaluates to ⊥
or not; we are not interested in the resulting term in case the operation succeeds.
The following example illustrates why: suppose the left protocol of a bi-protocol
does nothing more than sending a ciphertext c to the attacker, whereas the right
protocol sends a different ciphertext c′ (with the same plaintext length) to the
attacker. Assume that the decryption key is kept secret. This bi-protocol should
be symbolically indistinguishable. More precisely, the attacker knowledge in the
left protocol should be statically indistinguishable from the attacker knowledge
in the right protocol. Recall that O = x1 is the symbolic operation that just
returns the first message received by the attacker. If the result of O were part of
the attacker knowledge, the knowledge in the left protocol (containing c) would
differ from the knowledge in the right protocol (containing c′), which is not
what we would like to express. On the other hand, our definition, which only
cares about the failure or success of a operation, requires that the symbolic
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model contains an operation equals to be reasonable. This operation equals allows
the attacker to test equality between terms: consider the case where the right
protocol sends a publicly known term t instead of c′, but still of the same length
as c. In that case the attacker can distinguish the bi-protocol with the help of
the symbolic operation equals(t, x1).

The second observation is that the definition should cover the fact that the
attacker knows which symbolic operation leads to which result. This is essential
to reason about indistinguishability: consider a bi-protocol such that the left
protocol sends the pair (n, t), but the right protocol sends the pair (t, n), where t
is again a publicly known term and n is a fresh protocol nonce. The two protocols
do not differ in the terms that the attacker can deduce after their execution; the
deducible terms are all publicly known terms as well as n. Still, the protocols are
trivially distinguishable by the symbolic operation equals(Ot, snd(x1)) because
equals(Ot, snd((n, t))) 
= ⊥ but equals(t, snd((t, n))) = ⊥, where snd returns the
second component of a pair and Ot is a symbolic operation that constructs t.

Definition 6 (Symbolic Knowledge). Let M be a symbolic model. Given a
view V with |VOut | = n, the full symbolic knowledge function KV is a function
from symbolic operations on M (see Definition 4) of arity n to {�,⊥}, defined
by KV (O) ··= ⊥ if evalO(VOut ) = ⊥ and KV (O) ··= � otherwise.

Intuitively, we would like to consider two views equivalent if they look the same
for a symbolic attacker. Despite the requirement that they have the same order of
output, input and control nodes, this is the case if they agree on the out-metadata
(the control data sent by the protocol) as well as the symbolic knowledge that
can be gained out of the terms sent by the protocol.

Definition 7 (Equivalent Views). Let two views V, V ′ of the same length
be given. We denote their ith entry by Vi and V ′

i , respectively. V and V ′ are
equivalent (V ∼ V ′), if the following three conditions hold:

1. (Same structure) Vi is of the form (s, ·) if and only if V ′
i is of the form (s, ·)

for some s ∈ {out, in, control}.
2. (Same out-metadata) VOut-Meta = V ′

Out-Meta .
3. (Same symbolic knowledge) KV = KV ′ .

Finally, we define a bi-protocol to be symbolically indistinguishable if they lead
to equivalent views when faced with the same attacker strategy.2

Definition 8 (Symbolic Indistinguishability). Let M be a symbolic model
and P be a class of bi-protocols on M. Given an attacker strategy VIn (in the
sense of Definition 5), a bi-protocol Π ∈ P is symbolically indistinguishable
under VIn if for all views Vleft ∈ [VIn ]SViews(left(Π)) of the left protocol under VIn ,
there is a view Vright ∈ [VIn ]SViews(right(Π)) of the right protocol under VIn such
that Vleft ∼ Vright, and vice versa.

2 For the sake of convenience, we define CS for bi-protocols. However, our definition
can be easily generalized to arbitrary pairs of protocols.
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A bi-protocol Π ∈ P is symbolically indistinguishable, if Π is indistinguishable
under all attacker strategies. We write left(Π) ≈s right(Π) for the symbolic
indistinguishability of Π.

2.2 Computational Indistinguishability

On the computational side, the constructors and destructors in a symbolic model
are realized with cryptographic algorithms, formalized as follows.

Definition 9 (Computational Implementation). Let M = (C,N,T,D) be
a symbolic model. A computational implementation ofM is a family of functions
A = (Ax)x∈C∪D∪N such that AF for F/n ∈ C ∪ D is a partial deterministic
function N × ({0, 1}∗)n → {0, 1}∗, and AN for N ∈ N is a total probabilistic
function with domain N and range {0, 1}∗. The first argument of AF and AN

represents the security parameter.
All functions AF have to be computable in deterministic polynomial time, and

all AN have to be computable in probabilistic polynomial time (ppt).

The computational execution of a protocol is a randomized interactive ma-
chine that runs against a ppt attackerA. The transcript of the execution contains
essentially the computational counterparts of a symbolic view.

Definition 10 (Computational Challenger). Let A be a computational im-
plementation of the symbolic model M = (C,N,T,D) and I be a CoSP protocol.
Let A be a ppt machine and p be a polynomial. For a security parameter k, the
computational challenger ExecM,A,I,p(k) is the following interactive machine:

Initially, let ν be the root of I. Let f and n be empty partial functions from
node identifiers to bitstrings and from N to bitstrings, respectively. Enter a loop
and proceed depending on the type of ν:

– ν is a computation node with nonce N ∈ N. If n(N) 
= ⊥, let m′ ··=
n(N); otherwise sample m′ according to AN (k). Let ν′ be the yes-successor
of ν. Let f ··= f(ν ··= m′), n ··= n(N ··= m′), and ν ··= ν′.

– ν is a computation node with constructor or destructor F . Let ν̃ be
the nodes referenced by ν and m̃j ··= f(ν̃j). Then, m

′ ··= AF (k, m̃). If m′ 
= ⊥,
then ν′ is the yes-successor of ν, if m′ = ⊥, then ν′ is the no-successor of
ν. Let f ··= f(ν ··= m′) and ν ··= ν′.

– ν is an input node. Ask the adversary A for a bitstring m. Let ν′ be the
successor of ν. Let f ··= f(ν ··= m) and ν ··= ν′.

– ν is an output node. Send m̃1 to A. Let ν′ be the successor of ν, and let
ν ··= ν′.

– ν is a control node with out-metadata l. Send l to A. Upon receiving
in-metadata l′, let ν′ be the successor of ν along the edge labeled l′ (or the
lexicographically smallest edge if there is no edge with label l′). Let ν ··= ν′.

Let len be the number of nodes from the root to ν plus the total length of all
bitstrings in the range of f . Stop if len > p(k); otherwise continue the loop. We
call V the computational view of a run.
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Definition 11 (Computational Execution). The interaction between the
challenger ExecM,A,Π,p(k) and the adversary A(k) is called the computational
execution, denoted by 〈ExecM,A,Π,p(k)|A(k)〉. It stops whenever one of the two
machines stops, and the output of 〈ExecM,A,Π,p(k)|A(k)〉 is the output of A(k).

Given these definitions, computational indistinguishability for bi-protocols is
naturally defined. A bi-protocol is indistinguishable if its challengers are compu-
tationally indistinguishable for every ppt attacker A.

Definition 12 (Computational Indistinguishability). LetΠ be an efficient3

CoSP bi-protocol and letA be a computational implementation ofM.Π is compu-
tationally indistinguishable if for all ppt attackers A and for all polynomials p, we
have that

〈
ExecA,M,left(Π),p(k)

∣∣A(k)〉 ≈c

〈
ExecA,M,right(Π),p(k)

∣∣A(k)〉 , where ≈c

denotes computational indistinguishability of distribution ensembles.

Computational Soundness. Having defined symbolic and computational in-
distinguishability, we are finally able to relate them. The previous definitions
culminate in the definition of CS for equivalence properties. It states that the
symbolic indistinguishability of a bi-protocol implies its computational indistin-
guishability. In other words, it suffices to check the security of the symbolic
bi-protocol, e.g., using mechanized protocol verifiers such as ProVerif.

Definition 13 (Computational Soundness for Equivalence Properties).
Let a symbolic model M and a class P of efficient bi-protocols be given. An
implementation A of M is computationally sound for M if for every Π ∈ P,
we have that Π is computationally indistinguishable whenever Π is symbolically
indistinguishable.

3 Self-monitoring

In this section, we identify a sufficient condition for symbolic models under
which CS for trace properties implies CS for equivalence properties for a class
of uniformity-enforcing protocols, which correspond to uniform bi-processes in
the applied π-calculus. We say that a symbolic model that satisfies this condi-
tion allows for self-monitoring. The main idea behind self-monitoring is that a
symbolic model is sufficiently expressive (and its implementation is sufficiently
strong) such that the following holds: whenever a computational attacker can
distinguish a bi-process, there is a test in the symbolic model that allows to
successfully distinguish the bi-process.

CS for Trace Properties. We first review CS for trace properties. A trace
property is a prefix-closed set of node identifiers. We refer to [15] for the precise
definition of computational and symbolic satisfiability. CS for trace properties
states that all attacks (against trace properties) that can be excluded for the

3 A (bi-)protocol is efficient if the size of every node identifier ν is polynomially bounded
in the length of the path to the root, and ν is computable in deterministic polynomial
time given all node and edge identifiers on this path.
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symbolic abstraction can be excluded for the computational implementation as
well. Hence, if all the symbolic traces satisfy a certain trace property, then all
computational traces satisfy this property as well.

Definition 14 (Computational Soundness for Trace Properties [15]). A
symbolic model (C,N,T,D) is computationally sound for trace properties with
respect to an implementation A for a class P of efficient protocols if the following
holds: for each protocol I ∈ P and each trace property P, if I symbolically satisfies
P then I computationally satisfies P.

Uniformity-enforcing. A bi-protocol is uniform if for each symbolic attacker
strategy, both its variants reach the same nodes in the CoSP tree, i.e., they never
branch differently.4 Formally, we require that the bi-protocols are uniformity-
enforcing, i.e., when the left and the right protocol of the bi-protocol Π take
different branches, the attacker is informed. Since taking different branches is
only visible after a control node is reached, we additionally require that compu-
tation nodes are immediately followed by control nodes.

Definition 15 (Uniformity-enforcing). A class P of CoSP bi-protocols is
uniformity-enforcing if for all bi-protocols Π ∈ P:

1. Every control node in Π has unique out-metadata.
2. For every computation node ν in Π and for every path rooted at ν, a control

node is reached before an output node.

All embeddings of calculi the CoSP framework described so far, namely those
of the applied π-calculus [15] and RCF [33], are formalized such that protocols
written in these calculi fulfill both properties: these embeddings give the attacker
a scheduling decision, using a control node, basically after every execution step.

3.1 Bridging the Gap from Trace Properties to Uniformity

The key observation for the connection to trace properties is that, given a bi-
protocol Π , some computationally sound symbolic models allow to construct a
self-monitor protocol Mon(Π) (not a bi-protocol!) that has essentially the same
interface to the attacker as the bi-protocol Π and checks at run-time whether Π
would behave uniformly. In other words, non-uniformity of bi-protocols can be
formulated as a trace property bad, which the protocol Mon(Π) detects.

The self-monitor Mon(Π) of a bi-protocol Π behaves like one of the two
variants of the bi-protocol Π , while additionally simulating the opposite variant
such that Mon(Π) itself is able to detect whether Π would be distinguishable.
(For instance, one approach to detect whether Π is distinguishable could consist
of reconstructing the symbolic view of the attacker in the variant ofΠ that is not
executed by Mon(Π).) At the beginning of the execution of the self-monitor, the
attacker chooses if Mon(Π) should basically behave like left(Π) or like right(Π).

4 We show in Lemma 1 that uniformity of bi-protocols in CoSP corresponds to unifor-
mity of bi-processes in the applied π-calculus.
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We denote the chosen variant as b ∈ {left, right} and the opposite variant as b.
After this decision, Mon(Π) executes the the b-variant b(Π) of the bi-protocol
Π , however, enriched with the computation nodes and the corresponding output
nodes of the opposite variant b(Π).5

The goal of the self-monitor Mon(Π) is to detect whether the execution of
b(Π) would be distinguishable from b(Π) at the current state. If this is the case,
Mon(Π) raises the event bad, which is the disjunction of two events bad-branch
and bad-knowledge.

The event bad-branch corresponds to the case that the left and the right
protocol of the bi-protocol Π take different branches. Since uniformity-enforcing
protocols have a control node immediately after every computation node (see Def-
inition 15), the attacker can always check whether b(Π) and b(Π) take the same
branch. We require (in Definition 17) the existence of a so-called distinguishing
subprotocol fbad-branch,Π that checks whether each destructor application in b(Π)
succeeds if and only if it succeeds in b(Π); if not, the distinguishing subprotocol
fbad-branch,Π raises bad-branch.

The event bad-knowledge captures that the messages sent by b(Π) and b(Π)
(via output nodes, i.e., not the out-metadata) are distinguishable. This distin-
guishability is only detectable by a protocol if the constructors and destructors,
which are available to both the protocol and the symbolic attacker, capture all
possible tests. We require (in Definition 17) the existence of a distinguishing
subprotocol fbad-knowledge,Π that raises bad-knowledge in Mon(Π) whenever a
message, sent in Π , would allow the attacker to distinguish b(Π) and b(Π).

Parameterized CoSP Protocols. For a bi-protocol Π , we formalize the dis-
tinguishing subprotocols fbad-knowledge,Π and fbad-branch,Π with the help of pa-
rameterized CoSP protocols, which have the following properties: Nodes in such
protocols are not required to have successors and instead of other nodes, also for-
mal parameters can be referenced. A parameterized CoSP protocol is intended
to be plugged into another protocol; in that case the parameters references must
be changed to references to nodes.

Definition 16 (Self-monitor). LetΠ be a CoSP bi-protocol. Let fbad-knowledge,Π
and fbad-branch,Π be functions that map execution traces to parameterized CoSP pro-
tocols6 whose leaves are either ok, in which case they have open edges, or nodes
that raise the event bad-knowledge, or bad-branch respectively. Let Π a CoSP
bi-protocol.

5 This leads to the fact that whenever there is an output node in Π , there are two cor-
responding output nodes in Mon(Π), which contradicts the goal that the interface of
Π and Mon(Π) should be the same towards the attacker. However, this technicality
can be dealt with easily when applying our method. For example, in the compu-
tational proof for our case study, we use the self-monitor in an interaction with a
filter machine that hides the results of the output nodes of b(Π) to create a good
simulation towards the computational attacker, whose goal is to distinguish Π . The
filter machine is then used as a computational attacker against Mon(Π).

6 These functions are candidates for distinguishing subprotocols for bad-knowledge and
bad-branch, respectively, for the bi-protocol Π , as defined in Definition 17.
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Π ′ (symb.) Π (symb.)
symbolic self-monitoring

Π ′ (comp.)

CS for trace
properties

Π (comp.)
computational self-monitoring

CS for equivalence of
uniformity-enforcing
bi-protocols

Fig. 1. Symbolic and computational self-monitoring

Recall that nodes ν of Π have bi-references (as defined in Definition 3) con-
sisting of a left reference (to be used in the left protocol) and a right reference.
We write left(ν) for the node with only the left reference and right(ν) analogously.
Let tr be the execution trace so far, i.e., the list of node identifiers on the path
from ν to the root of Π. The self-monitor Mon(Π) protocol is defined as follows:

Insert before the root node a control node with two copies of Π, called the left
branch (with b := left) and the right branch (with b := right). Apply the following
modifications recursively for each node ν, starting at the root of Π:

1. If ν is a computation node of Π, replace ν with fbad-branch,Π(b, tr). Append
two copies left(ν) and right(ν) of the the computation node ν to each open
edge of an ok-leaf. All left references that pointed to ν point in Mon(Π) to
left(ν), and all right references that pointed to ν point in Mon(Π) to right(ν).
The successor of right(ν) is the subtree rooted at the successor of ν.

2. If ν is an output node of Π, replace ν with fbad-knowledge,Π(b, tr). Append
the sequence of the two output nodes left(ν) (labeled with left) and right(ν)
(labeled with right) to each open edge of an ok-leaf. All left references that
pointed to ν point in Mon(Π) to left(ν), and all right references that pointed
to ν point in Mon(Π) to right(ν). The successor of right(ν) is the subtree
rooted at the successor of ν.

Theorem 1 follows from two properties of the distinguishing subprotocols:
symbolic monitoring and computational monitoring (see Figure 1). Symbolic
monitoring states that whenever a bi-protocol Π is indistinguishable, the cor-
responding distinguishing subprotocol in Mon(Π) does not raise the event bad.
Computational Monitoring, in turn, states that whenever the distinguishing sub-
protocol in Mon(Π) does not raises the event bad, then Π is indistinguishable.

Shortened Protocols Πi. Since we prove Theorem 1 by induction over the
nodes in a bi-protocol, we introduce a notion of shortened protocols in the def-
inition of distinguishing subprotocols. For a (bi-)protocol Π , the shortened (bi-
)protocol Πi is for the first i nodes exactly like Π but that stops after the ith
node that is either a control node or an output node.7

Definition 17 (Distinguishing Subprotocols). Let M be a symbolic model
and A a computational implementation of M. Let Π be a bi-protocol and Mon(Π)

7 Formally, the protocol only has an infinite chain of control nodes with single succes-
sors after this node.
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its self-monitor. Let e ∈ {bad-knowledge, bad-branch} and nbad-knowledge denote
the node type output node and nbad-branch denote the node type control node. Then
the function fe,Π(b, tr), which takes as input b ∈ {left, right} and the path to the
root node, including all node and edge identifiers, is a distinguishing subprotocol
for e for Π and M if it is computable in deterministic polynomial time, and if
the following conditions hold for every i ∈ N:

1. symbolic self-monitoring: If Πi is symbolically indistinguishable, bad does
symbolically not occur in Mon(Πi−1), and the ith node in Πi is of type ne,
then the event e does not occur symbolically in Mon(Πi).

2. computational self-monitoring: The event e in Mon(Πi) occurs computation-
ally with negligible probability, Πi−1 is computationally indistinguishable, and
the ith node in Πi is of type ne, then Πi is computationally indistinguishable.

We say that a M and a protocol class allows for self-monitoring if there are distin-
guishing subprotocols for bad-branch and bad-knowledge for every bi-protocol
in the protocol class.

Finally, we are ready to state our main theorem.

Theorem 1. Let M be a symbolic model and P be a uniformity-enforcing class
of bi-protocols. If M and P allow for self-monitoring (in the sense of Defini-
tion 17), then the following holds: If A is a computationally sound implemen-
tation of a symbolic model M with respect to trace properties then A is also a
computationally sound implementation with respect to equivalence properties.

4 The Applied π-calculus

In this section, we present the connection of uniform bi-processes in the ap-
plied π-calculus and our CS result in CoSP, namely that the applied π-calculus
can be embedded into the extended CoSP framework. In contrast to previous
work [22,23,24], we consider CS for bi-protocols from the full applied π-calculus.
In particular, we also consider private channels and non-determinate processes.

We consider the variant of the applied π-calculus also used for the original
CoSP embedding [15]. The operational semantics of the applied π-calculus is
defined in terms of structural equivalence (≡) and internal reduction (→); for a
precise definition of the applied π-calculus, we refer to [7].

A uniform bi-process [30] in the applied π-calculus is the counterpart of a
uniform bi-protocol in CoSP. A bi-process is a pair of processes that only differ
in the terms they operate on. Formally, they contain expressions of the form
choice [a, b], where a is used in the left process and b is used in the right one. A
bi-process Q can only reduce if both its processes can reduce in the same way.

Definition 18 (Uniform Bi-process). A bi-process Q in the applied π-calculus
is uniform if left(Q) → Rleft implies that Q → R for some bi-process R with
left(R) ≡ Rleft, and symmetrically for right(Q)→ Rright with right(R) ≡ Rright.
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The following lemma connects uniformity in the applied π-calculus to unifor-
mity in CoSP. (See [34] for a proof.)

Lemma 1 (Uniformity in CoSP and the Applied π-calculus). There is
an embedding e from bi-processes in the applied π-calculus to CoSP uniformity-
enforcing bi-protocols such that for every bi-process Q in the applied π-calculus,
the following holds: If Q is uniform, then left(e(Q)) ≈s right(e(Q)).

5 Case Study: Encryption and Signatures with Lengths

We exemplify our method by proving a CS result for equivalence properties,
which captures protocols that use public-key encryption and signatures. We use
the CS result in [31] for trace properties, which we extend by a length function,
realized as a destructor. Since encryptions of plaintexts of different length can
typically be distinguished, we must reflect that fact in the symbolic model.

5.1 The Symbolic Model

Lengths in the Symbolic Model. In order to express lengths in the symbolic
model, we introduce length specifications, which are the result of applying a
special destructor length/1. We assume that the bitlength of every computational
message mc is of the form |mc| = rk for some natural number r, where k is the
security parameter, i.e., the length of a nonce. This assumption will be made
precise. With this simplification, length specifications only encode r; this can be
done using Peano numbers, i.e., the constructors O (zero) and S (successor).

Even though this approach leads admittedly to rather inefficient realizations
from a practical point of view,8 the aforementioned assumption can be realized
using a suitable padding. Essentially, this assumption is similar to the one in-
troduced by Cortier and Comon-Lundh [22] for a symbolic model for symmetric
encryption. The underlying problem is exactly the same: while the length of mes-
sages in the computational model, in particular the length of ciphertexts, may
depend on the security parameter, there is no equivalent concept in the symbolic
model. For instance, let n and m be nonces, and let ek be an encryption key.
For certain security parameters in the computational model, the computational
message pair(n,m) may have the same length as the message enc(ek , n); for
other security parameters this may not be the case. Thus it is not clear if the
corresponding symbolic messages should be of equal symbolic length. Comon-
Lundh et al. [28] propose a different approach towards this problem, by labeling
messages symbolically with an expected length and checking the correctness of
these length computationally. However, it is not clear whether such a symbolic
model can be handled by current automated verification tools.

Automated Verification: Combinding ProVerif and APTE. ProVerif is
not able to handle recursive destructors such as length, e.g., length(pair(t1, t2)) =

8 Consider, e.g., a payload string that should convey n bits. This message must be
encoded using at least kn bits.
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length(t1)+length(t2). Recent work by Cheval and Cortier [32] extends the proto-
col verifier APTE, which is capable of proving trace equivalence of two processes
in the applied π-calculus, to support such length functions. Since however trace
equivalence is a weaker notion than uniformity, i.e., there are bi-processes that
are trace equivalent but not uniform, our CS result does not carry over to APTE.
Due to the lack of a tool that is able to check uniformity as well as to handle
length functions properly, we elaborate and prove in [34] how APTE can be com-
bined with ProVerif to make protocols on the symbolic model of our case study
amenable to automated verification.

We consider the following symbolical model M = (C,N,T,D).

Constructors and Nonces. We define C ··= {enc/3, ek/1, dk/1, sig/3, vk/1,
sk/1, string0/1, string1/1, emp/0, pair/2,O/0, S/1, garbageEnc/3, garbageSig/3,
garbage/2, garbageInvalidLength/1} and N ··= NE 	 NE for countably infinite
sets of protocol nonces NP and attacker nonces NE. Encryption, decryption,
verification, and signing keys are represented as ek(r), dk (r), vk (r), sk (r)
with a nonce r (the randomness used when generating the keys). The term
enc(ek(r′),m, r) encrypts m using the encryption key ek (r′) and randomness r.
sig(sk(r′),m, r) is a signature of m using the signing key sk(r′) and randomness
r. The constructors string0 , string1 , and emp are used to model arbitrary
strings used as payload in a protocol, e.g., a bitstring 010 would be encoded as
string0 (string1 (string0 (emp()))). Length specifications can be constructed using
O representing zero and S representing the successor of a number. garbage,
garbageInvalidLength , garbageEnc, and garbageSig are not used by the protocol;
they express invalid terms the attacker may send.

Message Type. We define T as the set of terms M according to this grammar:

M ::= enc(ek (N),M,N) | ek (N) | dk (N) |
sig(sk(N),M,N) | vk (N) | sk(N) | pair(M,M) | S | N | L |
garbage(N,L) | garbageInvalidLength(N)

garbageEnc(M,N,L) | garbageSig(M,N,L)

S ::= emp() | string0(S) | string1(S) L ::= O() | S (L)

The nonterminals N and L represent nonces and length specifications, respec-
tively. Note that the garbage terms carry an explicit length specification to enable
the attacker to send invalid terms of a certain length.

Destructors. We defineD ··= {dec/2, isenc/1, isek/1, isdk/1, ekof /1, ekofdk/1,
verify/2, isvk/1, issk/1, issig/1, vkofsk/1, vkof /1, unstring0/1, unstring1/1, fst/1,
snd/1, equals/2, length/1, unS/1}. The destructors isek , isdk , isvk , issk , isenc,
and issig realize predicates to test whether a term is an encryption key, decryp-
tion key, verification key, signing key, ciphertext, or signature, respectively. ekof
extracts the encryption key from a ciphertext, vkof extracts the verification key
from a signature. dec(dk (r), c) decrypts the ciphertext c. verify(vk(r), s) verifies
the signature s with respect to the verification key vk(r) and returns the signed
message if successful. ekofdk and vkofsk compute the encryption/verification key
corresponding to a decryption/signing key. The destructors fst and snd are used
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to destruct pairs, and the destructors unstring0 and unstring1 allow to parse
payload-strings. The destructor length returns a the length of message, where
the unit is the length of a nonce. The purpose of unS is destruct numbers that
represent lengths. (The full description of all destructor rules is given in [34].)

Length Destructor. Our result is parametrized over the destructor length
that must adhere to the following restrictions:

1. Each message except for garbageInvalidLength is assigned a length:
length(t) 
= ⊥ for all terms t ∈ T \ {garbageInvalidLength(t′) | t′ ∈ T}.

2. The length of garbage terms (constructed by the attacker) is consistent:

length(garbage(t, l)) = l, length(garbageEnc(t1, t2, l)) = l,

length(garbageSig(t1, t2, l)) = l, length(garbageInvalidLength(t1)) = ⊥

3. Let [·] be the canonical interpretation of Peano numbers, given by [O] = 0 and
[S(l)] = [l] + 1. We require the length destructor to be linear: For each con-
structor C/n ∈ C \ {garbage, garbageInvalidLength , garbageEnc, garbageSig}
there are ai ∈ N (where i = 0, . . . , n) such that length(ti) = li for i = 1, . . . , n
and length(C(t)) = l together imply [l] =

∑n
i=1 ai · [li] + a0.

5.2 Computational Soundness

Protocol Conditions and Implementation Conditions. For establishing
CS, we require the protocols to fulfill several natural conditions regarding their
use of randomness, e.g., that fresh randomness is used for key generation. Proto-
cols that adhere to these protocol conditions are called randomness-safe. For the
full protocol and implementation conditions, we refer to the extended
version [34].

Additionally, the computational implementation needs to fulfill certain con-
ditions, e.g., that the encryption scheme is PROG-KDM secure [35], and the
signature scheme is SUF-CMA. Both protocol conditions and implementation
conditions are similar to those in [31]. Requiring PROG-KDM [35] is only needed
to handle protocols that send and receive decryption keys.9

For lengths in the computational model, we require that the computational
implementation Alength of the destructor length computes the bitlength of the
corresponding bitstring. To connect the symbolic result of the destructor length
to bit-lengths in the computational world, we require length consistency.

Definition 19 (Length Consistency). Let M = (C,N,T,D) be a symbolic
model such that there is a constructor length/1 in D, and let [·] be an interpre-
tation mapping length specifications to natural numbers.

9 In principle, our proofs do not rely on this particular security definition. For example,
it would be possible to obtain a CS result for uniformity using weaker implementation
conditions (IND-CCA secure public-key encryption) but a restricted protocol class,
by applying our proof technique to the CS result for trace properties in [15].
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Given a security parameter k, a computational variant of a message m ∈ T
is obtained by implementing each constructor C and nonce N in m by the corre-
sponding algorithm AC or AN , respectively. For example, for all random choices
of AN (k), Apair(k,Astring0

(k,Aemp(k), Aek (k,AN (k))) is a computational vari-
ant of the message pair(string0(emp(), ek(N)), where N ∈ N.

We say that a computational implementation A of M is length-consistent
with respect to the interpretation [·] if for each message m ∈ T and all of its
computational variants mk under security parameter k, we have that length(m) 
=
⊥ implies |mk| = [length(m)] · k.

Length specifications are ordinary messages that the protocol can process,
send and receive. We require length specifications to have a length itself. More-
over, we require that the decryption algorithm Adec expects a length description
of the plaintext and fails if the length of the plaintexts do not match.

CS for Trace Properties with Length Functions. We extend the CS result
for trace properties by Backes, Unruh, and Malik [31], which holds for signatures
and public-key encryption, to lengths functions.

Theorem 2. Let A be a computational implementation fulfilling the implemen-
tation conditions from above, i.e., in particular A is length-consistent. Then, A
is a computationally sound implementation of the symbolic model M for the class
of randomness-safe protocols.

Distinguishing Subprotocols for the Symbolic Model M. In this section,
we discuss the distinguishing subprotocols for the symbolic model M. The full
descriptions and proofs can be found in the extended version [34].

We construct a distinguishing subprotocol fbad-branch,Π(b, tr) for a computa-
tion node ν that investigates each message that has been received at an input
node (in the execution trace tr of Mon(Π)) by parsing the message using com-
putation nodes. The distinguishing subprotocol then reconstructs an attacker
strategy by reconstructing a possible symbolic operation for every input mes-
sage. In more detail, in the symbolic execution, fbad-branch,Π(b, tr) parses the
input message with all symbolic operations in the model M that the attacker
could have performed as well, i.e., with all tests from the shared knowledge. This
enables fbad-branch,Π(b, tr) to simulate the symbolic execution of b(Π) on the con-
structed attacker strategy. In the computational execution of the self-monitor,
the distinguishing subprotocol constructs the symbolic operations (i.e., the sym-
bolic inputs) by parsing the input messages with the implementations of all tests
in the shared knowledge (i.e., lookups on output messages and implementations
of the destructors). With this reconstructed symbolic inputs (i.e., symbolic op-
erations, from messages that were intended for b(Π), fbad-branch,Π(b, tr) is able
to simulate the symbolic execution of b(Π) even in the computational execu-
tion. The distinguishing subprotocol fbad-branch,Π(b, tr) then checks whether this
simulated symbolic execution of b(Π) takes in the same branch as b(Π) would
take, for the computation node ν in question. If this is not the case, the event
bad-branch is raised.
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Symbolicmonitoring follows by construction because the distinguishing subpro-
tocol reconstructs a correct attacker strategy and correctly simulates a symbolic
execution. Hence, fbad-branch,Π(b, tr) found a distinguishing attacker strategy for
b(Π) and b(Π). We show computational monitoring by applying the CS result for
trace properties to conclude that the symbolic simulation of b(Π) suffices to check
whether b(Π) computationally branches differently from b(Π).

The distinguishing subprotocol fbad-knowledge,Π(b, tr) for an output node ν
starts like fbad-branch,Π(b, tr) by reconstructing a (symbolic) attacker strategy
and simulating a symbolic execution of b(Π). However, instead of testing the
branching behavior of b(Π), the distinguishing subprotocol fbad-knowledge,Π(b, tr)
characterizes the message m that is output in b(Π) at the output node ν in
question, and then fbad-knowledge,Π(b, tr) compares m to the message that would
be output in b(Π). This characterization must honor that ciphertexts generated
by the protocol are indistinguishable if the corresponding decryption key has not
been revealed to the attacker so far. If a difference in the output of b(Π) and
b(Π) is detected, the event bad-knowledge is raised.

Symbolic monitoring for the distinguishing subprotocol fbad-knowledge,Π(b, tr)
follows by the same arguments as for fbad-branch,Π(b, tr). We show computational
monitoring by first applying the PROG-KDM property to prove that the com-
putational execution of b(Π) is indistinguishable from a faking setting: in the
faking setting, all ciphertexts generated by the protocol do not carry any infor-
mation about their plaintexts (as long as the corresponding decryption key has
not been leaked). The same holds analogously for b(Π). We then consider all
remaining real messages, i.e., all messages except ciphertexts generated by the
protocol with unleaked decryption keys. We conclude the proof by showing that
in the faking setting, fbad-knowledge,Π(b, tr) is able to sufficiently characterize all
real messages to raise the event bad-knowledge whenever the bi-protocol Π is
distinguishable.

Lemma 2. Let P be a uniformity-enforcing class of randomness-safe bi-protocols
and A a computationally sound implementation of the symbolic model M. For
each bi-protocol Π, fbad-knowledge,Π and fbad-branch,Π as described above are dis-
tinguishing subprotocols (see Definition 17) for M and P.

CS for Uniform Bi-processes in the Applied π-calculus. Combining our
results, we conclude CS for protocols in the applied π-calculus that use signatures,
public-key encryption, and corresponding length functions.

Theorem 3 (CS for Enc. and Signatures in the Applied π-calculus).
Let M be as defined in Section 5. Let Q be a randomness-safe bi-process in
the applied π-calculus, and let A of M be an implementation that satisfies the
conditions from above. Let e be the embedding from bi-processes in the applied
π-calculus to CoSP bi-protocols. If Q is uniform, then left(e(Q)) ≈c right(e(Q)).

Proof. By Lemma 2, there are for each bi-protocolΠ distinguishing subprotocols
fbad-knowledge,Π and fbad-branch,Π forM. The class of the embedding of the applied
π-calculus is uniformity-enforcing by Lemma 1; thus, Theorem 1 entails the
claim.
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6 Conclusion

In this work, we provided the first result that allows to leverage existing CS
results for trace properties to CS results for uniformity of bi-processes in the
applied π-calculus. Our result, which is formulated in an extension of the CoSP
framework to equivalence properties, holds for Dolev-Yao models that fulfill the
property that all distinguishing computational tests are expressible as a process
on the model. We exemplified the usefulness of our method by applying it to a
Dolev-Yao model that captures signatures and public-key encryption.

We moreover discussed how computationally sound, automated analyses can
still be achieved in those frequent situations in which ProVerif does not manage
to terminate whenever the Dolev-Yao model supports a length function. We
propose to combine ProVerif with the recently introduced tool APTE [32].

We leave as a future work to prove for more comprehensive Dolev-Yao models
(e.g., for zero-knowledge proofs) the sufficient conditions for deducing from CS
results for trace properties the CS of uniformity. Another interesting direction for
future work is the extension of our result to observational equivalence properties
that go beyond uniformity.
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Abstract. Cryptographic devices such as Hardware Security Modules
are only as secure as their application programming interfaces (APIs)
that offer cryptographic functionality to the outside world. Design flaws
and implementation errors in security APIs have been shown to cause
vulnerabilities that may leak secrets such as keys and PINs. Ideally, we
would like to design such interfaces in such a way that we can formally
prove security properties, even in the presence of some corrupted keys. In
this work, we propose the first such provably secure interface to support
asymmetric key operations for key management: Cachin and Chandran’s
secure token interface supports asymmetric key operations only for en-
crypting and signing data, but not for managing keys, while Cortier and
Steel handle only symmetric keys. Due to the fact that anyone can en-
crypt under a public key, in order to secure integrity of the keys under
management, we must consider confidentiality and integrity properties
separately and provide support for classical operations of public key in-
frastructure (e.g. certification of public keys).

1 Introduction

In a context of constant security threats combined with increasing heterogeneity
of platforms and applications, developers are turning more and more to solutions
based on secure hardware, whether it be a smartcard, Trusted Platform Module
(TPM), or Hardware Security Module (HSM). In a typical architecture, the
secure hardware contains cryptographic keys and the ability to perform some
basic crypto operations which can be leveraged to ensure security for the whole
system. However, designing the application programming interface (API) of such
a device is difficult: it must allow the user to manage the keys on the device and
access the crypto while preventing an attacker, who may in the worst case be
able to make arbitrary calls to the API, from obtaining secrets. Many attacks
have been found on the APIs of contemporary devices [2,3,5]. One promising
approach to solving this problem is to design APIs such that one can formally
prove security properties in the presence of a suitably powerful intruder. Such
an approach has been applied both in the standard cryptographic model [4] and
the symbolic or Dolev-Yao model [7]. However, neither of these designs present a
scheme for managing keys using asymmetric cryptography, which is widely used
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in practice since it provides a convenient way to bootstrap security without any
pre-shared secrets. This shortcoming restricts applicability of the results. The
contribution of this paper is to relax this restriction by presenting the design for
an API that permits key management using asymmetric keys with security proofs
in the symbolic model. For the symmetric key part of the API, we adapt slightly
the API designed by Cortier and Steel [7]. For the asymmetric key part, since
anyone can encrypt under a public key, we have to add an explicit mechanism
for assuring the integrity of keys to be imported to prevent so-called “Trojan
key” attacks [6]. We add signature keys for signing encryption under public keys
and also separate certification keys, the latter used to manage the public key
infrastructure (PKI) of keys and certificates. We show how to adapt the security
labels given to keys by Cortier and Steel to this new scenario, with separate
labels for confidentiality of the private key and integrity of the corresponding
public key. This allows us to account for corruption in our proof. As far as we
are aware, this is the first such design to be proposed with security proofs.

In the rest of the paper, we first introduce our symbolic model and explain
the features of our API design in Section 2. We describe the API rules formally
in Section 3, and then give the security properties and sketch proofs in Section 4.
We describe some experiments implementing protocols with the API in Section 5
and draw conclusions in Section 6. Full proofs are given in a technical report [9].

Related Work. Cortier and Steel (CS) [7] proposed an API that supports only
symmetric key cryptography, but can nonetheless be used to implement any
secure symmetric key exchange protocol from the Clark-Jacob corpus. The main
principle is that keys are arranged in a hierarchy of levels. Each key is associated
to its level and the set of agents who are allowed to use it. This association is
made when storing the key on the device, by including it as metadata stored with
the key, and when encrypting the key for transfer, by tagging the encrypted key
with exactly this information. The API rules are designed such that keys may
only be encrypted by other keys which are higher in the hierarchy, i.e. they are
at least one level higher and assigned to a set of agents that is equal to or smaller
than the payload key. We generalise this notion slightly in our API. The CS API
includes a notion of freshness for imported keys enforced by nonces. It has also
recently been extended to accommodate key revocation [8]. Although we do not
include these mechanisms in our API, we do not foresee any obstacle to these
generalizations if needed.

Cachin and Chandran proposed an API with a quite different design [4]. They
rely on the fact that all keys are stored on a central key server. Instead of as-
signing security attributes such as levels and agent identifiers to keys at creation
time, they allow the key’s role to evolve over time by logging all operations, and
then disallowing operations that would be insecure by observing the log. They
allow asymmetric keys to be managed by symmetric key cryptography, but do
not allow asymmetric keys to be used for key management operations like export
and import.

Other work has investigated the foundations of models for secure key manage-
ment APIs: Kremer, Steel and Warinschi give a model that can be interpreted in
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the symbolic and computational cryptography worlds [12]. They show that the
possibility of key corruption requires strong assumptions to be made on the key
wrapping primitives in the computational model. Recent work by Künnemann,
Kremer and Steel investigates composable notions of security for key manage-
ment [11]. This is an appealing idea because it allows (almost) arbitrary secure
cryptographic primitives to be used with the keys under management without
having to repeat the security proofs, but currently only management with sym-
metric keys is supported.

2 Design of the API

We present the design of our API in an abstract ‘Dolev-Yao’ style symbolic
model. We first describe the roles assigned to keys in our API. We then give the
syntax and informal semantics for the message algebra and introduce our notion
of key handles which extends previous designs.

2.1 Key Types

In order to limit the number of key roles in the API we consider that the asym-
metric keys are double keys, with one part for encryption/decryption, and one
for signature/verification. This means that the same key can be used as an
input of both an encryption and a signature scheme. Thus, we have encryp-
tion/verification public keys and decryption/signature private keys. It is clear
that in practice a double key can simply be obtained by the concatenation of
a signature and encryption key pair and that a simple key can be simulated
by a double key. Thus, we do not lose generality with this simplification. Sig-
nature keys are used to sign encryptions of other keys or messages. Asymmet-
ric public keys are certified by certification keys (with a signature algorithm).
The list of key roles that we are going to manipulate is: symmetric encryp-
tion/decryption keys, encryption/verification of signature double public keys,
decryption/signature double private keys, verification of certificates public keys,
certification private keys.

It is possible that the algorithm used to sign the certificates is the same as
the one used to sign the encrypted messages. Nonetheless, it is important to
distinguish the key roles to prevent a signature algorithm from being used as a
certification oracle by an adversary. The different key roles and their associated
types are summarised in the table 1. T denotes the set of key types.

2.2 Security Levels

The set of key security levels I is a finite set together with a partial strict order
relation denoted <. We suppose that there is a minimal element in I denoted by
0. By definition, for all x ∈ I \ 0, we have 0 < x. The 0 element represents the
security level of public information. We are given a partition of I in two subsets:
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Key Role Type
Priv Double decryption/signature private key privDecSign
Pub Double encryption/verification of signature public key pubEncVerif
Sym symmetric encryption key symEncDec
Pub Certif certificate verification key pubCertVerif
Priv Certif certificate signature key privCertSign

Fig. 1. Table of the set of key roles and types (T )

– the levels I1 ⊂ I which correspond to the keys which can only deal with
regular messages;

– the levels I2 ⊂ I which correspond to the keys which can be used to transport
keys of level I1.

Note that for x ∈ I1 and y ∈ I2, if x and y are comparable with the relation <
then we have necessarily x < y. We set I>0 = I1�I2 = I−{0} (where � denotes
a disjoint union).

2.3 Message Algebra

Messages are represented by a term algebra. We suppose a given set of agents
Agent, a set of nonces Nonce and a set of keys Key. We are also given a set of
variables Var in which we distinguish a set of key variables VarKey and a set of
nonce variables VarNonce. All these sets are countably infinite. The term algebra
is given by:

Keyv ::= Key | VarKey | inv(Keyv)
Noncev ::= Nonce | VarNonce

Msg ::= Agent | Keyv | Noncev | I | T | {|Msg|}Keyv | {Msg}Keyv
| Σ(Msg,Keyv) | nhdl(Msg)| < Msg,Msg >

Handle ::= hα
Agent(Noncev,Noncev,Msg, T , I,S ,S ) | hAgent(Noncev,Msg)

where S is the set of subsets of Agent.
The set Keyv represents the set of keys and variable of keys. A term of the

form inv(k) with k ∈ Key represents the private key associated to the public key
k. The set Noncev is the set of nonces and variable of nonces. The terms of type
Msg are made of elements of Agent, Keyv, Noncev together with constructors
representing encryption, signature together with sets needed to represent the
attributes of the handles. More precisely,

– the term {|m|}k represents the symmetric encryption of the message m with
the key k;

– the term {m}k represents the asymmetric encryption of the message m with
the double key k;

– the term Σ(m, k) represents the signature of the message m with the double
key k;
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– the term nhdl() allows one to encapsulate a regular message which does not
correspond to the transportation of a handle (see below);

– the term < m1,m2 > represents the pair of the two messages m1,m2 ∈ Msg.

For n > 0, < m1, < m2, < . . . ,mn >>> is shortened as m1, . . . ,mn.

2.4 Handles

The purpose of a key management API is to give access to cryptographic func-
tionalities without giving direct access to sensitive keys stored on the device.
Instead, an agent can manipulate the data by calling the API commands and
referring to the keys by identifiers called handles, of which we define two types
in our API:

– key handles used to protect integrity and confidentiality of the data on the
device. They are typically used for keys and secret nonces.

– integrity handles used to protect the integrity of data on the device. They
are typically used for certificates that have been verified.

Identifiers are meant to be a public way of referring to keys without revealing
their values. Thus, knowing an identifier does not mean knowing the crypto-
graphic value of a key. Then, to represent that an agent can use a key, we write
that she owns a handle referring to that key. Intuitively, it means that there is a
part of the memory of a secure device that the agent can make use of, and that
contains such a data structure. In our framework, much as in that of [7], there is
no mapping between memory owned by agents and secure devices; this is totally
abstracted away and translates only in the ownership of handles. As a result,
if two agents a and b share a key to communicate with one another, they each
own a handle referring to this key, but nothing in our model represents whether
they use different physical devices. Neither do we capture that one agent has all
its handles on the same physical device. It might be the case that an agent has
handles spread over multiple devices. Even then, our abstraction is sound from
a security point of view in the sense that we consider operations that may not
be functionally possible, but do not overlook any feasible call.

Let us now formally describe the handles that we use. Key handles are terms
of the form hα

a (N1, N2,m, T, i, S1, S2), with:

– the agent a ∈ Agent who owns the handle;
– the identifier N1 ∈ Nonce (unique in the whole system) of the handle;
– if m is a double private key, then N2 is the identifier of the associated cer-

tificate of the double public key, else N2 = Null;
– the message m ∈ Msg (usually m is a key or a nonce) associated to the

handle;
– the type T ∈ T of the message (see table 1 for a list of possible types);
– the triple (i, S1, S2) ∈ I × S × S is the security level of the handle (the

security policy of the API is based on this structure); the first element i
gives the role of the key (data encryption or key transport) while the second
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(respectively third) element gives a set of agents who must be uncorrupted
for this key’s confidentiality (respectively integrity) to hold - this is explained
in details below.

– the label α ∈ {r, g} allows to distinguish the keys which have been generated
by a (α = g) from the keys which have been received and imported (α = r).

Integrity handles are terms of the form ha(N1,m) with an identifier N1 and a
message m ∈ Msg. They are meant to model the preservation of the integrity of
data by a signature : given as input a valid signature of a message m, the API
produces an integrity handle containing the message m. Public key certificates
usually refer to some signed public information. We are more precise than this
and distinguish two elements, the pre-certificate and the certificate which is a
signed pre-certificate. Indeed, the outcome of the certificate verification operation
is a new pre-certificate stored under an integrity handle in the device.

In the following, for clarity, we use the notation C(N1, N2, N3, k, T, i, S1, S2),
which is a synonym of the concatenation of the terms N1, N2, N3, k, T, i, S1, S2 ∈
Msg, to represent a pre-certificate of double public key. We emphasize that the
notation C(N1, N2, N3, k, T, i, S1, S2) does not imply requirements on the type
of the fields. Nonetheless, we say that a pre-certificate is well-formed if its fields
correspond to the following terms and types (we also give their semantics):

– the identifier N1 ∈ Nonce of the certificate;
– the identifier N2 ∈ Nonce of the associated private key;
– the identifier N3 ∈ Nonce of the certification public key which allows to

verify the certificate;
– a double public key k ∈ Key;
– the type T ∈ T of k ;
– the associated private key handle security level (i, S1, S2) ∈ I ×S ×S .

Thus, matching asymmetric double keys stored in a physical device are typi-
cally formalized as:

– a key handle hα
. (N1, N2, k, privDecSign, i, S1, S2) for the secret part,

– an integrity handle h.(N2, C(N2, N1, N3, k, pubEncVerif, i, S1, S2)) for the
certificate of the public part.

We remark that we choose to trace the association of public and private part
of asymmetric key pairs via their identifiers. This requires us to have system-wide
identifiers for handles, in the sense that identifiers are independent of the secure
hardware they are stored in. As a result, when importing a pre-certificate, the
identifier cannot be generated at random. This explains why the pre-certificate
contains a field corresponding to its identifier.

It seems important to underline that we follow a "static" approach in the sense
that we do not compute the sets of agents S1 and S2 dynamically, but these are
imposed once and for all when the cryptographic material is generated. The
reasons why we need two sets are clarified in 3.1.
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2.5 API Rules

The model that we present is a transition system inspired by [7]. It represents
the evolution of the knowledge of the adversary and agents with the API calls.
We use a set of knowledge predicates P = {Pa|a ∈ Agent ∪ {int}}, where int is
a particular element representing the attacker. For term t, Pa(t) means that a
knows term t.

The system is formalized as a set of rules of the general form:

Pb1(u1), . . . , Pbk(uk)
N1,...,Nm
=⇒ Pbk+1

(uk+1), . . . , Pbl(ul),

where ui are terms, Ni are variables, bi ∈ Agent for i = 1, . . . , l and the Pbi

are predicates. The rules define how to derive knowledge predicates. They are
instantiated by substituting the variables by terms of the same type. In order
to explain that, let x1, . . . , xn be elements of Var and let t1, . . . , tn be a set of
terms. We denote by {x1 → t1, . . . , xn → tn} the substitution σ which replaces
the variables xi by the terms ti for i = 1, . . . , n. We say that σ is well-typed if
the variables xi and the terms ti have the same types. In the sequel, we only
consider well-typed substitutions. The application of the substitution σ on the
term t is denoted by tσ. Classically, given a set of rules, we say that a state S ′

is reachable from a state S if there exists an instantiated rule in the set allowing
to transition from S to S ′. The state therefore represents the set of terms known
to each agent (including the intruder) at a moment in time. We then generalize
this reachability definition to the transitive closure of a set of rules, which we
denote ⇒∗.

We let Sb be the part of a state indexed by b. Then, the state of the system is
given by the family {Sb|b ∈ Agent ∪ {int}}. The notations Pb(t) and t ∈ Sb are
equivalent. In the sequel, we provide two kinds of rules. Firstly, API rules only
deal with knowledge of a given agent. As a result, such a rule has the form :
Pa(u1), . . . , Pa(uk)

N1,...,Nm
=⇒ Pa(uk+1), . . . , Pa(ul) for some agent a different from

the intruder int. It models that the inputs provided by an agent to an API call,
i.e. u1, . . . , uk, result in the output of new terms uk+1, . . . , ul, which are added
to the agent’s knowledge. Secondly, other rules involve the adversary : they are
rules with at least one predicate Pint(.).

2.6 Adversarial Model

As is usual in Dolev-Yao style models, the adversary is assumed to have complete
control of the network. We further assume that the host machines (such as a
desktop computer) in which the secure device might be embedded is also under
the adversary’s control. Therefore the interface between our trusted platform
and the attacker controlled network is just our API. It can be argued as over-
pessimistic, but it is sound from a security point of view to rely only on the trust
we place in the tamper-resistant devices. This modeling choice results in rules
translating direct transfers from the agent knowledge to the adversary knowledge
and vice versa. A consequence is that the intruder can execute any command he
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likes on any device and use the result (or part of it) to form a command call to
any other device.

On top of network control, we empower the adversary with the ability to
statically corrupt agents. Formally, the set of agents is partitioned once and for
all into honest and dishonest agents, and every key referred to by a handle owned
at some point by a dishonest agent is leaked to the adversary. This models that
some keys stored on secure hardware might be lost, perhaps due to side channel
attacks or other abstracted events.

These choices are illustrated in Figure 3, in which the perimeter of control of
the attacker encompasses all the knowledge of honest agents, the network, and
dishonest agent devices. To simplify Figure 3, we have represented one agent per
device, which need not be the case in practice. However, all keys of a dishonest
agent are indifferently leaked to the adversary. This quite strong corruption
model could be relaxed to a key-by-key corruption model.

Our corruption model defines an order relation on the set of keys. To a key k
we can associate the set Sk of devices, the corruption of which implies that of
a key. A key k1 is more secure than k2 if Sk1 ⊆ Sk2 . In other words, a key that
relies on the integrity of just a few agents is considered more secure than one
that depends on the integrity of a large number of agents.

With such adversary capabilities, we stress that the only elements on which
we can state security results are those stored in the secure devices which we
have formalized. Indeed, these devices are our only source of trust and the whole
point of this security API is to protect the elements stored in these secure areas
from unwanted interaction with an adversary. Concretely, this means that the
elements on which we can prove security results are elements under handles, and
only them, i.e. key or certificate values. Of course, regular data can be encrypted
and decrypted using our API, but it is never hosted on a secure device : no handle
is created to refer to them. In our framework, regular data is thus modeled in
the form of messages coming unfettered from the network, on which we do not
aim to provide security guarantees. This choice to ’only’ protect keys makes
total sense. Firstly, there is only a limited amount of space in tamper-resistant
devices so that priorities have to be attributed. Secondly, if keys are suitably
protected, then so is the data that they in turn protect, because there usually
are intermediate workstations in which data is treated and hosted.

3 Symbolic Security of the API

3.1 Security Ordering

This order relation may look complex but is in fact quite natural. The security
level of a handle is given by a set of agents S such that the corruption of any
member of S = S1 ∪ S2 would imply the corruption of the handle. In the API,
we want to guarantee that if a particular set S = S1 ∪ S2 of agents are honest,
then a handle cannot be corrupted. In the case of a public key API, the keys
are split into a public part (the certificate), whose value is known to everyone
but the integrity of which must be guaranteed, and the private part which must
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Fig. 2. Corruption model

be protected in confidentiality and integrity. The security of a key depends on
both parts, but still it is important to be able to distinguish between these two
aspects of security because we want to control the diffusion of the private key,
while the integrity of the public part may depend on a long chain of certification.

For asymmetric keys, it may well be the case that S1 is a rather large set (e.g.
tracing a certification chain back to a root certificate) and yet we still want S2 to
be as small as possible (possibly just the agent who generated the key). Finally,
it should be remarked that a key k which is wrapped by another asymmetric key
k′ should inherit from k′ the control sets S1 and S2 even if k is symmetric.

Dividing the agent sets into public key and private key parts also affects our
security properties. In the Cortier-Steel API, a secret key cannot be sent to an
agent a ∈ Agent outside of the control set S: indeed, it would be a violation of the
security property in the case that a is a corrupt agent. In our setting, the security
property guarantees the secrecy of a private key k if none of the agents of S1∪S2

are corrupted. We also want to ensure that no agent in S1−S2 actually obtains
the value of k, which they should not since they are not legitimate holders of
the key. Both these security requirements appear in the statement of the main
result of this paper (see Theorem 1). Identifying legitimate agents constitutes
another important motivation for dividing the control set into two parts.

We emphasize that control sets are not to be computed dynamically, but that
they are decided upon at key generation. Hence, the idea is not that a device
should check integrity and secrecy of a key before using it to protect another key
- that would not be possible anyway - but rather that our use of keys respect a
particular security ordering, which in turn allows us to deduce which keys are
impacted by the corruption of others.
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Note that agent identifiers do not need to be known in advance. If identifiers
come from a big enough space of possible values, one can always generate a
new key referring to an agent identifier that has not been used before. The only
restriction is that one cannot add the name of a new agent to the sets S of an
existing key, for obvious security reasons.

3.2 The Rules of the Generic Asymmetric API

We describe the transition rules defining the security API. We recall that agents
are not supposed to know key values and instead use identifiers to refer to them.
However, as explained in 2.4, knowledge of an identifier N differs from ownership
of a data structure pointing to a key identified by N . An agent a should not be
able to use the value of a key if he does not own a handle h(N, . . . ) referring
to it, a fact we denote as Pa(ha(N, . . . )). In other words, writing Pa(ha(N, . . . ))
on the left-hand side of an API rule formalizes two things : the fact that agent
a performs the corresponding API call with input N and the fact that there
exists a handle ha(N, . . . ) owned by agent a and identified by N . Symmetrically,
writing Pa(ha(N, . . . )) on the right-hand side of an API rule means that a new
handle is created, owned by a and with identifier N .

When an agent wants to export a key to which he owns a handle, he provides
its identifier as an input to the corresponding API function, which replaces this
latter by the value of the key and its attributes when computing the real pay-
load value to encrypt. Reciprocally, the injection functions must identify these
patterns and create the appropriate handle rather than output the key value as
a plaintext. Thus, we emphasize that there has to exist a distinction between
handle translations and regular messages, which we materialize by the message
container nhdl. Respect of the security ordering is enforced by appropriate checks
when encrypting and decrypting payloads.

In the following rules, Ni ∈ Noncev, Xk, inv(Xk), Yk, inv(Yk) ∈ Keyv, Si ⊆
Agent and i (possibly indexed by an agent name) denotes an element in I.

Symmetric Key Generation. This rule allows the generation of key Xk of
level i and control sets containing (S1, S2) by the agent e for the set of agents
S2, which is modeled by the following handle creation:

Pe(i), Pe(S1), Pe(S2)
N,Xk
=⇒ Pe(h

g
e(N,Null, Xk, symEncDec, i, S1, S2 ∪{e}))

(Sym Gen)

Symmetric Encryption. This rule allows agent b to encrypt with the key
Xk (to which he has a handle), a payload consisting of messages and handles
m1, . . . ,mn, where handles are translated into key values and attributes.

Pb(h
α
b (N,Null, Xk, symEncDec, i, S1, S2)), Pb(m1), . . . , Pb(mn)

=⇒Pb({|m′
1, . . . ,m

′
n|}Xk

), (Sym Encrypt)

with b ∈ S2, mj ,m
′
j ∈ Msg and for j = 1, . . . , n :
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– if mj = hα
b (Nj , N

′
j, Xk,j , Tj , ij, Sj,1, Sj,2) with Xk,j = Keyv ∪ Noncev then

• if i ∈ I2, b ∈ Agent and (ij, Sj,1, Sj,2) ≺ (i, S1, S2) then we let
m′

j = Nj, N
′
j , Xk,j , Tj, ij , Sj,1, Sj,2 ;

• else m′
j = ∅.

– else m′
j = nhdl(mj).

Symmetric Decryption. The following rule lets agent b, provided he knows a
handle pointing to key Xk, decrypt a ciphertext. Whenever a pattern consisting
of a key and attributes is identified, it results in a suitable handle creation.
Otherwise, the plaintext is output.

Pb(h
α
b (N,Null, Xk, symEncDec, i, S1, S2)), Pb({|m1, . . . ,mn|}Xk

)

=⇒Pb(m
′
1), . . . , Pb(m

′
n), (Sym Decrypt)

with b ∈ S2, mj ,m
′
j ∈ Msg and moreover for j = 1, . . . , n :

– if mj = Nj, N
′
j , Xk,j , Tj, ij , Sj,1, Sj,2, then

• if i ∈ I2, (ij , Sj,1, Sj,2) ≺ (i, S1, S2) then we set
m′

j = hr
b(Nj , N

′
j , Xk,j , Tj, ij , Sj,1, Sj,2);

• else m′
j = ∅.

– else
• if mj = nhdl(tj) with tj ∈ Msg then m′

j = tj ;
• else m′

j = ∅.

Asymmetric Encryption/Signature Double Key Generation. The fol-
lowing rule allows agent e, given a certification key pair under handles1, to
generate (Xk, inv(Xk)) of level i2 and control sets containing (S1, S2) for agent
b. Note that we impose that generation and certificate issue are part of a single
rule. The other possible choice is to output a handle on the public parts of the
double key, and then have it certified in some certification rule. In any case, we
must ensure that we only certify public keys whose integrity is ensured; in other
words, we cannot write a command where the public keys are output in plaintext
and resubmitted later for cetification without any integrity check.

Pe(h
α
e (N1, N2, inv(Yk),privCertSign, i1, Se,1, Se,2)),

Pe(he(N2, C(N2, N1, Ncert, Yk, pubCertVerif, i1, Se,1, Se,2))),

Pe(i2), Pe(S1), Pe(S2), Pe(b)
N3,N4,Xk=⇒

Pe(h
g
e(N3, N4, inv(Xk),privDecSign, i2, Se,1 ∪ Se,2 ∪ S1 ∪ {e}, {b, e} ∪ S2)),

Pe(Σ(C(N4, N3, N2, Xk,pubEncVerif, i2, Se,1 ∪ Se,2 ∪ S1 ∪ {e}, {b, e} ∪ S2), inv(Yk))),

(Asym Gen)

with e ∈ Se,2, i1, i2 ∈ I>0, α ∈ {r, g} on condition that i2 < i1.
1 We require that both parts of the certification key exist in the creating agent’s

secure hardware. This is not a compulsory security constraint, in the sense that a
few modifications can be performed in the rules and proof to get rid of it. However,
it seems reasonable in practice to perform such a verification.
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Asymmetric Encryption with Signature. This API command enables an
agent b, owner of a handle pointing to an asymmetric key Yk, to encrypt and sign
a payload for agents in Sc,2, provided b has an integrity handle for a public key
Xk of agents in Sc,2. As in the symmetric case, handles in payload m1, . . . ,mn

are translated into real values and attributes. Encryption and signature needs
to be an atomic command to enable the device to control what can be signed.

Pb(h
α
b (N1, N2, inv(Yk), privDecSign, ib, Sb,1, Sb,2),

Pb(hb(N3, C(N3, N4, N5, Xk, pubEncVerif, ic, Sc,1, Sc,2))),

Pb(m1), . . . , Pb(mn)=⇒Pb({m′
1, . . . ,m

′
n}Xk

), Pb(Σ({m′
1, . . . ,m

′
n}Xk

, inv(Yk))),

(Asym SignEncrypt)

with ib, ic ∈ I>0, b ∈ Sb,2, mj ,m
′
j ∈ Msg and for j = 1, . . . , n :

– if mj = hα
b (Nj , N

′
j, Xk,j , Tj , ij, Sj,1, Sj,2) with Xk,j ∈ Keyv ∪ Noncev then :

• if ib, ic ∈ I2, (ij , Sj,1, Sj,2) ≺ (ib, Sb,1, Sb,2) and (ij, Sj,1, Sj,2)
≺ (ic, Sc,1, Sc,2) then m′

j = Nj , N
′
j, Xk,j , Tj , ij, Sj,1, Sj,2;

• else m′
j = ∅.

– else m′
j = nhdl(mj).

Asymmetric Decryption with Signature Verification. The following rule
allows for decryption by the agent b of an authenticated ciphertext, using an
integrity handle pointing to a public key Yk to verify the signature and a handle
pointing to a key inv(Xk) to decrypt the ciphertext.

Pb(hb(N1, C(N1, N2, N3, Yk, pubEncVerif, ic, Sc,1, Sc,2))),

Pb(h
α
b (N4, N5, inv(Xk), privDecSign, ib, Sb,1, Sb,2)),

Pb({m1, . . . ,mn}Xk
), Pb(Σ({m1, . . . ,mn}Xk

, inv(Yk)))

=⇒Pb(m
′
1), . . . , Pb(m

′
n), (Asym VerifDecrypt)

with ib, ic ∈ I>0, b ∈ Sb,2, mj ,m
′
j ∈ Msg and for j = 1, . . . , n:

– if mj = Nj, N
′
j , Xk,j , Tj, ij , Sj,1, Sj,2 then

• if ib, ic ∈ I2, (ij , Sj,2, Sj,2) ≺ (ib, Sb,1, Sb,2) and (ij, Sj,2, Sj,2)
≺ (ic, Sc,1, Sc,2) then m′

j = hr
b(Nj , N

′
j, Xk,j , Tj , ij, Sj,1, Sj,2);

• else m′
j = ∅.

– if mj = nhdl(tj) for tj ∈ Msg then m′
j = tj .

Certification Key Generation. Given a certification key pair under handles,
this rule allows agent e to generate a certification key pair (Xk, inv(Xk)) for
agent b. As for asymmetric generation, generation and certificate issue are part
of an atomic call. It eliminates the need for a certification command, for which
deciding the key integrity could raise a problem.
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Pe(h
α
e (N1, N2, inv(Yk),privCertSign, ie, Se,1, Se,2)),

Pe(he(N2, C(N2, N1, Ncert, Yk,pubCertVerif, ie, Se,1, Se,2))),

Pe(ib), Pe(S1), Pe(S2)
N3,N4,Xk=⇒

Pe(h
g
e(N3, N4, inv(Xk),privCertSign, ib, Se,1 ∪ Se,2 ∪ S1 ∪ {e}, {e, b} ∪ S2)),

Pe(Σ(C(N4, N3, N2, Xk,pubCertVerif, ib, Se,1∪Se,2∪S1∪{e}, {e, b}∪S2), inv(Yk))),

(Cert Gen)

with e ∈ Se,2 and ib < ie.

Verification of a Certificate This rule allows an agent b, given an integrity
handle pointing to a verification key and a pre-certificate signed by the matching
certification key, to create the suitable integrity handle. More precisely, for Θ ∈
{EncVerif,CertVerif}

Pb(Σ(C(N1, N2, N3, Xk, pubΘ, ic, Sc,1, Sc,2), inv(Yk))),

Pb(hb(N3, C(N3, N4, N5, Yk, pubCertVerif, ie, Se,1, Se,2)))=⇒
Pb(hb(N1, C(N1, N2, N3, Xk, pubΘ, ic, Sc,1, Sc,2))), (Cert Verif)

with ic, ie ∈ I>0 and (ic, Sc,1,∅) ≺ (ie, Se,1 ∪ Se,2,∅).

3.3 Security Rationale

Below we will formally prove security properties for our design, but first we
discuss the design features that prevent it from suffering from the kinds of attacks
seen in the literature [2,3,5]. First, we maintain consistent attribute values: the
attributes of a key are set once and for all when it is generated or imported onto
a device, and when transporting keys, we export all attributes along with the
value of the key and protect their integrity.

Second, we prevent ‘Wrap and Decrypt’ attacks [6, Alg.2] by the distinction
between the way keys and data are tagged for encryption: either as a concate-
nation of key and attributes or encapsulated in a container nhdl. In an imple-
mentation of our design, a suitable tagging scheme should be used to ensure this
distinction.

Key conjuring, i.e. the ability of the adversary to generate any number of
(possibly related) keys on the device, is critical to a number of attacks [2]. Care-
ful design of the decrypt command prevents this. The security proof includes an
enumeration of the terms which the adversary can successfully submit to a de-
cryption request (see (Sign) and (SymEnc)). Roughly, suitable terms are either
wrapped under compromised keys or result from an honest use of the encrypt
command.

Example. In Figure 3 we show the ‘before’ and ‘after’ states for three agents
using the API in a typical configuration. In the ‘before’ state, there are no
shared secrets. Alice and Bob both have accepted a copy of the CA’s public
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CA

Alice

Bob

hCA(id1, id2, inv(KCA),privCertSign, 3, {CA}, {CA})
hCA(id2, C(id2, id1, ., KCA, pubCertVerif, 3, {CA}, {CA}))
hCA(id3, C(id3, id4, ., KA,pubCertVerif, 3, {A,CA}, {A}))
hCA(id5, C(id5, id6, ., KB ,pubCertVerif, 3, {B,CA}, {B}))

hA(id2, C(id2, id1, .,KCA,pubCertVerif, 3, {CA}, {CA}))
hA(id3, C(id3, id4, .,KA,pubCertVerif, 3, {A,CA}, {A}))
hA(id4, id3, inv(KA),privCertSign, 3, {A,CA}, {A})

hB(id2, C(id2, id1, ., KCA,pubCertVerif, 3, {CA}, {CA}))
hB(id5, C(id5, id6, ., KA,pubCertVerif, 3, {B,CA}, {A}))
hB(id6, id5, inv(KA),privCertSign, 3, {B,CA}, {A})

Before

After

CA

Alice

Bob

hCA(id1, id2, inv(KCA),privCertSign, 3, {CA}, {CA})
hCA(id2, C(id2, id1, ., KCA, pubCertVerif, 3, {CA}, {CA}))
hCA(id3, C(id3, id4, ., KA,pubCertVerif, 3, {A,CA}, {A}))
hCA(id5, C(id5, id6, ., KB ,pubCertVerif, 3, {B,CA}, {B}))

hA(id2, C(id2, id1, .,KCA,pubCertVerif, 3, {CA}, {CA}))
hA(id3, C(id3, id4, .,KA,pubCertVerif, 3, {A,CA}, {A}))
hA(id4, id3, inv(KA),privCertSign, 3, {A,CA}, {A})
hA(id5, C(id5, id6, .,KA,pubCertVerif, 3, {B,CA}, {A}))
hA(id7,Null, inv(KAB), symEncDec, 2, {A,B,CA}, {A,B})

hB(id2, C(id2, id1, ., KCA,pubCertVerif, 3, {CA}, {CA}))
hB(id5, C(id5, id6, ., KA,pubCertVerif, 3, {B,CA}, {A}))
hB(id6, id5, inv(KA),privCertSign, 3, {B,CA}, {A})
hB(id3, C(id3, id4, ., KA,pubCertVerif, 3, {A,CA}, {A}))
hB(id7,Null, inv(KAB), symEncDec, 2, {A,B,CA}, {A,B})

Fig. 3. Operation of the API. See 3.3 for narration.
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key certificate and placed it under an integrity handle and they have generated
their own public-private keypairs. The CA has accepted public key certificates
for each of these pairs. Here we are using integers to label key levels, arbitrarily
assigning the long term keys the level 3.

To establish a shared secret, Alice and Bob first need to accept each others
public key certificates. This can be done by requesting them from the CA. The
CA uses the AsymEncryptSign command to sign the (public) message containing
the certificate. Now Alice and Bob can use the certificate verification command
to accept the certificates, generating new handles for them.

Now either Alice can generate a symmetric key (handle identified by id7) and
send it to Bob using AsymEncryptSign. Bob will use AsymDecryptVerify and
accept the key. Alice and Bob can then exchange messages using the new sym-
metric key. Note that the new symmetric key is confidential between Alice and
Bob, hence has a confidentiality control set S2 containing only these identifiers,
but for integrity it has inherited the dependence on the CA, hence S1 contains
the set of agents CA, Alice and Bob.

4 Security of the API in the Symbolic Model

4.1 Model of Security

In this section, we describe the capacity of the attacker in the spirit of Dolev
and Yao [10], as formalized in [1].

Computation of new terms We denote by INTRUDER the set of rules which allow
the attacker to build new terms from the ones that it has already. See figure 4
for a description of the rules.

The transitive reflexive closure of the preceding rules can be interpreted as the
set of terms that an attacker can deduce from its knowledge at a certain state. In
the following, we say that m is deducible from a set of terms T , which we denote
by T � m, if starting from the state S such that Sint = T and for all a ∈ Agent,
Sa = ∅, there exists a state S ′ such that S =⇒∗

INTRUDER S ′ and m ∈ S ′
int. In the

sequel, we slightly abuse notations as follows. If t is a term and S is a state, we
write t ∈ S (resp. S � t) if t ∈ ∪b∈Agent∪{int}Sb (resp. if ∪b∈Agent∪{int}Sb � t).

Control of the network and corruption A couple of rules allows the intruder to
control the network (see figure 4). He can intercept and forward or redirect at
will messages sent over network channels. Moreover, to formalize corruption of
agents (see beginning of Section 2.6), we suppose a given set H of honest agents.
The device corruption rule (in figure 4) models the possibility for an adversary
to open a device and retrieve all its information. A key-by-key corruption model
can also be considered, as is done in [8].

4.2 Initial States

We impose a few requirements on the initial state of a device assuming they are
set up in a secure environment. These requirements seem realistic in practice and
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INTRUDER set of rules:
• Pair rules • Message container

Pint(m1), Pint(m2)⇒ Pint(< m1,m2 >) Pint(m)⇒ Pint(nhdl(m))
Pint(< m1,m2 >)⇒ Pint(m1), Pint(m2) Pint(nhdl(m))⇒ Pint(m)

• Symmetric cryptography • Signature
Pint(Xk), Pint(m1), ..., Pint(mn)⇒ Pint({|m1, ..., mn|}Xk ) Pint(Σ(m,Xk))⇒ Pint(m)
Pint(Xk), Pint({|m1, ..., mn|}Xk )⇒ Pint(m1), ..., Pint(mn) Pint(Xk), Pint(m)

• Asymmetric encryption ⇒ Pint(Σ(m,Xk))
Pint(Xk), Pint(m1), ..., Pint(mn)⇒ Pint({m1, ..., mn}Xk)
Pint(inv(Xk)), Pint({m1, ..., mn}Xk )

⇒ Pint(m1), ..., Pint(mn)

CONTROL set of rules:
• Control of the network • Device corruption

Pa(m)⇒ Pint(m) Pa(h
α
a (N1, N2,m, T, i, S1, S2))

Pint(m)⇒ Pa(m) ⇒ Pint(m), where a /∈ H
In the above rules, m,mi ∈ Msg, Xk ∈ Keyv and H is the set of honest agents.

Fig. 4. Rules modeling the adversary abilities

allow us to start from states compatible with the security policy. In the initial
states, we assume that the attacker knows some public information like the set
of key levels and the set of agents.

Definition 1. A state S0 is said to be initial if it satisfies the following hypothe-
ses :

1. the set of terms known by the agents and the intruder are atomic : for all
a ∈ Agent ∪ {int}, Sa ⊆ Handle ∪ Key ∪ Nonce ∪ Agent ∪ T ∪ I ∪ S and
moreover T ∪ I ∪S ⊆ Sint.

2. all terms stored under handles are secret : for a ∈ Agent,
if hα

a (N1, N2,m, T, i, S1, S2) ∈ Sa then for b ∈ Agent ∪ {int}, m /∈ Sb.
3. all key handles known by an agent point to an atomic element : for a ∈ Agent,

if hα
a (N1, N2,m, T, i, S1, S2) ∈ Sa then m ∈ Key ∪ Nonce.

4. the owner of a key handle is in the set of legitimate agents for this handle.
More precisely, we impose that for all a ∈ Agent, if hα

a (N1, N2,m, T, i, S1, S2)
∈ Sa then a ∈ S2.

5. any public key certificate under handle corresponds to a private key stored by
a rightful agent: ∀b ∈ Agent, if hb(N1, C(N1, N2, N3, Xk, pubΘ, i, S1, S2)) ∈
Sb, then there exists a ∈ S2 so that

hα
a (N2, N1, inv(Xk), privΘ

′, i, S1, S2) ∈ Sa,

with (Θ,Θ′) ∈ {(EncVerif,DecSign), (CertVerif,CertSign)}.
6. the key handles form a coherent set: for all a, a′ ∈ Agent, hα

a (N1, N2,m, T, i,
S1, S2) ∈ Sa and hα′

a′ (N ′
1, N

′
2,m, T ′, i′, S′

1, S
′
2) ∈ Sa′ we have N1 = N ′

1, N2 =
N ′

2, T = T ′, i = i′, S1 = S′
1 and S2 = S′

2.

We can now define the set of states for which we can prove a security property.
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Definition 2. We say that a state S is accessible from an initial state S0 if
it is reachable by applying a finite number of times the rules of the set API,
INTRUDER and CONTROL to S0, i.e. if S0 ⇒∗

API∪CONTROL∪INTRUDER S.

4.3 Security Properties and Sketch of Proof

The security of the API should entail that given a state S, secret key values of
honest agents should not be known to the intruder. But we would also like to
ensure that these values are only used by rightful agents. Secret key values of
honest agents are messages m ∈ Msg for which there exists a handle of the form
hα
a (., .,m, ., ., S1, S2) with a ∈ H and S1, S2 ⊆ H . As the set of legitimate users

of m is S2, the property that we want to prove is formalized as:

∀a ∈ H, ∀m ∈ Msg, ∀i ∈ I>0, ∀α ∈ {r, g}, ∀S1, S2 ⊆ H,

S � hα
a (., .,m, ., i, S1, S2) ⇒ S � m and a ∈ S2 (Sec)

If this property is clearly something we want from a security API, it seems le-
gitimate to discuss whether we should require some other security results. Other
than confidentiality, security usually also comprises integrity or authenticity as-
pects. In our framework, this can translate into two different requirements. On
one hand, integrity of the attribute values amongst various handles owned by
honest agents pointing to the same key seems highly desirable. It can be formal-
ized as :

∀a ∈ H, ∀b ∈ Agent, ∀m ∈ Msg,

∀i, i′ ∈ I>0, ∀α, α′ ∈ {r, g}, ∀S1, S2 ⊆ H, ∀S′
1, S

′
2 ⊆ Agent,

S � hα
a (N1, N2,m, T, i, S1, S2) ∧ S � hα

a (N
′
1, N

′
2,m, T ′, i′, S′

1, S
′
2) ⇒

N1 = N ′
1 ∧ N2 = N ′

2 ∧ T = T ′ ∧ i = i′ ∧ S1 = S′
1 ∧ S2 = S′

2 (Intg)

On the other hand, since we consider an asymmetric cryptography setting,
an agent should be able to trust the value of an integrity handle he owns, on
condition it points to a public key certificate whose control sets S1 and S2 consist
of honest agents. More precisely, if S1, S2 contain only honest agents, then there
exists a private key handle associated to this certificate the attributes of which
are coherent with that of the certificate. This in turn is the meaning of the
following property :

∀a ∈ H, ∀N1, N2, N3 ∈ Nonce, ∀i ∈ I>0, ∀S1, S2 ⊆ H with
S �∗ ha(N1, C(N1, N2, N3, Xk, pubΘ, i, S1, S2)) ⇒ ∃b ∈ S2 such that

S �∗ hα
b (N2, N1, inv(Xk), privΘ

′, i, S1, S2). (Cert)

where (Θ,Θ′) ∈ {(EncVerif,DecSign), (CertVerif,CertSign)}.
We can now give the principal result of this paper, stating the security of our

API if it is correctly initialised.



80 M. Daubignard, D. Lubicz, and G. Steel

Theorem 1 (Security of the API) Let S0 be an initial state and S be an
accessible state from S0. Then S satisfies the properties Sec, Intg and Cert.

Proof. We present a sketch of proof (details can be found in [9]). First we
consider a more powerful attacker with access to all values stored in compro-
mised hardware as well as to all messages m associated to handles of the form
hα
a (., .,m, ., ., S1, S2) where S1, S2 � H even if a is honest. The classic adversary

can learn these terms anyway, and this extension ensures stability of intruder
knowledge when applying rules from INTRUDER ∪ CONTROL.

It yields a generalized deduction definition: we write that S �∗ t when
∪b∈Agent∪{int}Sb ∪ {m,N1, N2|hα

a (N1, N2,m, ., ., S1, S2) ∈ S, S1 � H or S2 �
H, a ∈ Agent} ∪ {m,N1, N2|hα

a (N1, N2,m, ., ., ., .) ∈ S, a /∈ H} ∪ {m|ha(.,m) ∈
S} � t.

We then consider a stronger version of the property (Sec):

∀a ∈ H, ∀m ∈ Msg, ∀i ∈ I>0, ∀α ∈ {r, g}, ∀S1, S2 ⊆ H,

S �∗ hα
a (., .,m, ., i, S1, S2) ⇒ S �∗ m, a ∈ S2 and m ∈ Key ∪ Nonce.

(Sec∗)

Intuitively, the property (Sec∗) means that the values stored in the handles of
honest agents are always of type Key or Nonce and are not deducible even with
the extended deduction rule �∗. It is clear that in order to prove the theorem, it
is enough to prove the same statement with the stronger version of the property
(Sec). In the technical report [9], we prove by induction that the property (Sec∗)
is invariant under the API rules. To prove this, we introduce four invariants : the
first, (SymEnc), states that the only well-formed symmetric encryption terms
that an adversary can build are either encrypted under a compromised key, or
results from an honest and well-formed request to the symmetric encryption
command:

∀ u, k ∈ Msg,S �∗ {|u|}k ⇒ S �∗ k

OR ∃S1, S2 ⊆ H , a ∈ S2 such that S �∗ h.
a(., ., k, ., i, S1, S2) and u = u′

1, . . . , u
′
p

with • either u′
j = nhdl(mj)

• or u′
j = Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2, (ij , Sj,1, Sj,2) ≺ (i, S1, S2)

and S �∗ h.
a(Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2) (SymEnc)

The next invariant states that all asymmetric encryption terms deducible
from a reachable state have a payload deducible by the attacker or result from
an honest request to the asymmetric encryption command.
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∀u, K ∈ Msg,S �∗ {u}K ⇒ S �∗ u

OR ∃Sc,1, Sc,2 ⊆ H, b ∈ Sc,2 such that
S �∗ hb(., C(., ., .,K, pubEncVerif, ic, Sc,1, Sc,2)) and u = u′

1, . . . , u
′
p

with • either u′
j = nhdl(mj)

• or u′
j = Nj,1, Nj,2,mj , Tj, ij , Sj,1, Sj,2,

(ij , Sj,1, Sj,2) ≺ (i, Sc,1, Sc,2) and S �∗ h.
b(Nj,1, Nj,2,mj , Tj, ij , Sj,1, Sj,2)

(AsymEnc)

We need a similar invariant for signed terms the adversary is able to obtain
(Sign). The invariant here is slightly more involved since we have to deal with
both the issue of certificates when generating asymmetric keys and asymmetric
wrapping commands:

∀ u, k ∈ Msg,S �∗ Σ(u, k)⇒ S �∗ k

OR ∃S′
1, S

′
2 ⊆ H, e ∈ S′

2 such that
S �∗ h.

e(., ., k, privCertSign, i1, S
′
1, S

′
2)

and u = C(N4, N3, N2, Xk, pubΘ, i2, S1 ∪ {e}, S2 ∪ {b, e})
with S′

1 ∪ S′
2 ⊂ S1, e ∈ S′

2, i2 < i1, Θ ∈ {EncVerif,CertSign}
OR ∃Sc,1, Sc,2 ⊆ H, b ∈ Sc,2 such that

S �∗ hb(., C(., ., .,K, pubEncVerif, ic, Sc,1, Sc,2)) and u = {u′
1, . . . , u

′
p}K

with • either u′
j = nhdl(mj)

• or u′
j = Nj,1, Nj,2,mj, Tj , ij, Sj,1, Sj,2,

(ij , Sj,1, Sj,2) ≺ (i, Sc,1, Sc,2) and S �∗ h.
b(Nj,1, Nj,2,mj, Tj , ij, Sj,1, Sj,2)

(Sign)

To conclude, we remark moreover that from its definition, an initial state
satisfies the properties (Sec∗), (Cert), (SymEnc), (AsymEnc), (Sign).

5 Experiments

We have used our API to implement some asymmetric key protocols based on
well-known examples from the Clark-Jacob corpus. Since we impose a secure
encryption and signature scheme, our versions of protocols are secure even when
the original is not. For example, our implementation of Needham-Schroeder pub-
lic key avoids Lowe’s attack because all messages are signed. Full details together
with a Prolog script for generating API commands from protocols are available
at http://www.lsv.ens-cachan.fr/~steel/genericapi/asym.

6 Conclusion

We have given the design for a key management API for cryptographic devices
that allows the use of asymmetric keys for managing keys, together with security

http://www.lsv.ens-cachan.fr/~steel/genericapi/asym
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properties and proofs in the Dolev Yao model. This is the first such design with
security proofs as far as we are aware. In future work we will add more flexibility
to the API. In particular it should be easy to adapt the design to other security
orderings not necessarily based on agent identifiers.
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Abstract. The observable output of a probabilistic system that processes a secret
input might reveal some information about that input. The system can be mod-
elled as an information-theoretic channel that specifies the probability of each
output, given each input. Given a prior distribution on those inputs, entropy-like
measures can then quantify the amount of information leakage caused by the
channel. But it turns out that the conventional channel representation, as a ma-
trix, contains structure that is redundant with respect to that leakage, such as the
labeling of columns, and columns that are scalar multiples of each other. We
therefore introduce abstract channels by quotienting over those redundancies.

A fundamental question for channels is whether one is worse than another,
from a leakage point of view. But it is difficult to answer this question robustly,
given the multitude of possible prior distributions and leakage measures. Indeed,
there is growing recognition that different leakage measures are appropriate in
different circumstances, leading to the recently proposed g-leakage measures,
which use gain functions g to model the operational scenario in which a chan-
nel operates: the strong g-leakage pre-order requires that channel A never leak
more than channel B, for any prior and any gain function. Here we show that, on
abstract channels, the strong g-leakage pre-order is antisymmetric, and therefore
a partial order.

It was previously shown [1] that the strong g-leakage ordering is implied by a
structural ordering called composition refinement, which requires that A = BR, for
some channel R; but the converse was not established in full generality, left open
as the so-called Coriaceous Conjecture. Using ideas from [2], we here confirm
the Coriaceous Conjecture. Hence the strong g-leakage ordering and composition
refinement coincide, giving our partial order both structural- and leakage-testing
significance.
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1 Introduction

A fundamental goal in computer security is the protection of confidential information
from improper disclosure. Yet this goal often cannot be achieved perfectly, because cer-
tain leaks of confidential information are unavoidable. The importance of quantitative
information flow is therefore that it enables us to say that certain information leaks are
“small” and hence tolerable.

Consider a channel C that takes as input a secret X with prior probability distribu-
tion π, and produces (perhaps probabilistically) an observable output Y. If an adversary
knows π and C, then its initial uncertainty about X will depend on π. But each separate
output value y then allows it to update its knowledge about X’s prior π to a posterior dis-
tribution pX |y via Bayesian reasoning. Hence its expected remaining uncertainty about
X, after seeing the output of C, will depend on the set of possible posterior distributions
on X and their probabilities. The leakage is the difference between the initial and final
uncertainties.

This general quantitative framework is clear enough; but there is of course more
than one way to measure the “uncertainty” associated with a probability distribution:
popular choices include Shannon entropy [3], guessing entropy [4], min-entropy [5],
and the family of g-entropies [1] each determined by its own gain function g. Each of
those leakage measures has its own operational significance, which might or might not
suit the operational scenario. Moreover, the leakage caused by some C will also depend
on its prior π. As a result, if we consider the leakage ordering of two channels A and
B (both taking X as input), it is difficult to give an answer that is robust, i.e. that does
not depend on the particular prior and leakage measure. But such a robust ordering
is indispensable if we aim to develop software through stepwise refinement, based on
general laws that hold in all contexts.

There is such a robust order for deterministic channels, provided by the Lattice of
Information [6]. Any deterministic channel from X to Y induces a partition onX, where
x1 and x2 belong to the same block iff they map to the same output.1 That is, each block
of the partition is the pre-image of some output y.

Definition 1 (Partition refinement). Two deterministic channels A, B on input X are
said to be in the partition refinement relation, written A � B, just when the partition
induced by A on X is refined (as a partition) by the partition induced by B: the blocks
of B are formed by subdividing blocks of A.

For example a deterministic channel A taking a secret person X to her country of
birth would induce the partition in Fig. 1(a); the channel B that in some cases gives the
state as well leads to Fig. 1(b).

It is intuitively clear that an adversary will always prefer B to A, whatever the input
prior π; and this is supported by the following theorem due to Yasuoka & Terauchi, and
Malacaria [7,8].

Theorem 1. If A, B are deterministic, then A � B iff A never leaks more than B, on any
prior π and under Shannon-entropy, min-entropy, or guessing-entropy leakage.

1 We use X for the set of inputs, with x being a value in X and X being a random variable on X.
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(a) Less refined A (b) More refined B

Fig. 1. Partition refinement

The “only if” direction of this theorem can be seen as expressing the partition refine-
ment order’s soundness with respect to the leakage order. More interestingly, the “if”
direction can be seen as expressing its completeness, for it says that the only way for
A to never leak more than B is for A’s partition to be refined by B’s.2 Another way of
understanding this result is to say that partition refinement is an order on deterministic
channels with both a structural- and a leakage-testing characterization.

The main goal of this paper is to generalize these nice properties from determinis-
tic to probabilistic channels. A first issue, however, is that the story for deterministic
channels is not quite as nice as it appears, in that partition refinement is not in fact a
partial order on deterministic channels, but only a pre-order. Because distinct deter-
ministic channels can induce the same partition on X (since the particular names of the
outputs do not matter), partition refinement is not antisymmetric. While this problem is
rather obvious in the case of deterministic channels, we will see that it is more subtle
for probabilistic channels, and this will lead us to introduce abstract channels formed
by quotienting away the redundant structure of classical channel matrices.

We explore the fundamental properties of abstract channels, including their canonical
representation by reduced matrices and by hyper-distributions. Turning to their robust
leakage ordering, we consider a generalization of partition refinement called composi-
tion refinement (�◦) [2,1], where A �◦ B holds if A can be expressed as B followed
by “post-processing”. In our first major result, we show that composition refinement is
antisymmetric, and therefore a partial order, on abstract channels. Next we consider the
soundness and completeness of composition refinement with respect to leakage orders.
It was proved in [1,9] that composition refinement implies the strong g-leakage order-
ing (≤G), where A ≤G B holds if A never leaks more than B, on any prior distribution
and any gain function. The converse, however, was not proved in full generality, and
was left as the Coriaceous Conjecture. In our second major result, we use ideas from
[2] to prove the Coriaceous Conjecture. Hence composition refinement and the strong
g-leakage ordering coincide, giving us a partial order on abstract channels that has both
structural- and leakage-testing significance.

2 The “if” direction is actually easy to see—for if A’s partition is not refined by B’s, then there
must exist x1 and x2 that belong to the same block of B, but to different blocks of A. On a
prior that gives non-zero probability only to x1 and x2, B leaks nothing about X, while A leaks
everything.
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In summary, our principal contributions are (1) the concept of abstract channels,
which we argue to be the fundamental mathematical space for information-theoretic
leakage; (2) the proof that composition refinement is a partial order on this space;
and (3) the proof that composition refinement is complete with respect to the strong
g-leakage ordering.

The rest of the paper is structured as follows: Section 2 presents preliminaries; Sec-
tion 3 introduces abstract channels; Section 4 presents composition refinement and
proves that it is a partial order on abstract channels; Section 5 proves that composi-
tion refinement implies the strong g-leakage ordering; Section 6 proves the converse,
resolving the Coriaceous Conjecture; Section 7 gives a monadic presentation of com-
position refinement; Section 8 discusses limits of the information-theoretic perspective
with respect to computationally-bounded adversaries; Section 9 discusses related work;
and Section 10 concludes.

2 Preliminaries: Channels and Leakage Measures

We begin by recalling the basic definitions of information-theoretic channels [10]. A
channel is a triple (X,Y,C), where X and Y are finite sets (of secret input values and
observable output values) and C is an |X|×|Y| channel matrix whose entries are be-
tween 0 and 1 and whose rows each sum to 1; the intent is that Cx,y is the conditional
probability of output y given input x. Channel C is deterministic if each entry of C is
either 0 or 1, implying that each input row contains a single 1 which identifies its unique
corresponding output.

For prior distribution π on X, the joint distribution on X×Y is p(x, y) = π[x]Cx,y,
with jointly distributed random variables X, Y whose marginal probabilities are given by
p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y), and whose conditional probabilities are given

by p(y|x) = p(x,y)/p(x) (if p(x) is non-zero) and p(x|y) = p(x,y)/p(y) (if p(y) is non-zero).
Note that pXY is the unique joint distribution that recovers π and C, in that p(x) = π[x]
and p(y|x) = Cx,y (if p(x) is non-zero).3

For a given y (such that p(y) is non-zero), the conditional probabilities p(x|y) for each
x∈X form the posterior distribution pX |y, which is the knowledge that the adversary
learns about X by seeing output y.

Example 1. Given X = {x1, x2, x3}, and Y = {y1, y2, y3, y4}, and (the uniform) prior
π = (1/3, 1/3, 1/3), consider channel C and its associated joint matrix J as follows:

C y1 y2 y3 y4

x1 1 0 0 0
x2 0 1/2 1/4 1/4
x3 1/2 1/3 1/6 0

leads via π to the joint matrix

J y1 y2 y3 y4

x1 1/3 0 0 0
x2 0 1/6 1/12 1/12

x3 1/6 1/9 1/18 0

.

By summing J’s columns we get the (marginal) distribution pY = (1/2, 5/18, 5/36, 1/12)
and by normalizing the columns we get the posterior distributions pX |y1 = (2/3, 0, 1/3),
pX |y2 = (0, 3/5, 2/5), pX |y3 = (0, 3/5, 2/5) and pX |y4 = (0, 1, 0). �

3 When necessary to avoid ambiguity, we write distributions with subscripts, e.g. pXY or pY .
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Leakage measures are defined based on various entropy-like measures of the prior
distribution π and the posterior distributions pX |y, together with their probabilities p(y).

Shannon leakage is based on the Shannon entropy [3] of the prior distribution,
H(π) = −∑x π[x] logπ[x], and the expected Shannon entropy of the posterior distribu-
tions, H(π,C) =

∑
y p(y)H(pX |y). The Shannon leakage is the difference H(π)−H(π,C),

which is equal to the mutual information I(π,C).4

Guessing entropy leakage is based on the guessing entropy [4] of the prior distribu-
tion, G(π) =

∑
i i π[xi], with X indexed in non-increasing probability order, and on the

expected guessing entropy of the posterior distributions G(π,C) =
∑

y p(y)G(pX |y). The
guessing entropy leakage is the difference G(π) −G(π,C).

The operational significance of both Shannon entropy and guessing entropy can be
stated in terms of the expected number of brute-force guesses that the adversary would
need to find the secret.5 But this is not really satisfactory for confidentiality, because the
expected number of brute-force guesses needed to find the secret can be high even if
the adversary has a high probability of guessing the secret successfully in just one try.
For this reason we consider min-entropy leakage [5], which is based on the prior vul-
nerability of the secret to be guessed in one try V(π) = maxx π[x], and on the expected
vulnerability of the posterior distributions V(π,C) =

∑
y p(y)V(pX |y). The prior- and

posterior min-entropies are obtained by taking the negative logarithm of the vulnera-
bility: H∞(π) = − log V(π) and H∞(π,C) = − log V(π,C). The min-entropy leakage
L(π,C) is the difference H∞(π) − H∞(π,C) or, equivalently, the logarithm of the ratio
of the posterior- and prior vulnerabilities, that is log V(π,C)/V(π).

While vulnerability is clearly important for confidentiality, it implicitly assumes an
operational scenario in which the adversary gains only by guessing the secret exactly,
and in one try. For this reason, g-leakage [1] generalizes vulnerability to incorporate
a gain function g, the choice of which allows the modelling of differing operational
scenarios. In each scenario, there will be some set W of guesses that the adversary
could make about the secret, and for any guess w and secret value x, there will be some
gain g(w, x) that the adversary gets by having chosen w when the secret’s actual value
was x; gains are assumed to range from 0 (when w has no value at all) to 1 (when w is
ideal). Formally, g:W×X→ [0, 1], whereW is a finite, non-empty set. Given a gain
function g, the prior g-vulnerability is defined as the maximum expected gain over all
possible guesses: that is Vg(π) = maxw

∑
x π[x]g(w, x). The posterior g-vulnerability,

the g-entropy and the g-leakage are then defined as for min-entropy leakage: we have
Vg(π,C) =

∑
y p(y)Vg(pX |y), and Hg(π) = − log Vg(π), and Hg(π,C) = − log V(π,C) and

Lg(π,C) = Hg(π) − Hg(π,C) = log Vg(π,C)/Vg(π).
In particular, a gain function g that gives gain 1 for guessing the secret correctly and

0 otherwise makes g-leakage coincide with min-entropy leakage: it is thus a special
case. But gain functions can do much more. As explained in [1], they can model a wide
variety of practical operational scenarios, including those where the adversary benefits
from guessing a value close to the secret, guessing a part of the secret, guessing a
property of the secret or guessing the secret within some bounded number of tries.
They can also model scenarios where there is a penalty for incorrect guesses.

4 The more usual notation for these quantities is H(X), H(X|Y), and I(X; Y).
5 For Shannon entropy, this follows from a result by Massey [4].
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3 Abstract Channels Capture the Essence of Leakage

For a fixed channel and prior, it can easily happen that distinct output values y, y′ in Y
give rise to the same posterior distribution on X. In that case there is actually no benefit
to the adversary from distinguishing outputs y, y′, since each gives the same knowledge
about X. Furthermore, the output values y make no difference either: all that matters for
any output y is its associated posterior distribution pX |y. This implies that the result of
a channel, as far as leakage is concerned, should simply be a distribution on posterior
distributions; following [2] we call this a hyper-distribution.

Example 2. Returning to channel C from Ex. 1, we notice that its outputs y2,3 produce
the same posterior distribution, i.e. that pX |y2 = pX |y3 . Hence the hyper-distribution pro-
duced by C on π has only three columns rather than four:6

C 1/2 15/36 1/12

x1 2/3 0 0
x2 0 3/5 1
x3 1/3 2/5 0

In this representation the columns are normalised, and are labelled
by their associated marginal probabilities: theY-values have been
removed. Note that the probability 15/36 of the middle posterior
distribution is found by adding p(y2) + p(y3), that is 5/18 + 5/36.

�

We capture these two abstractions in the following definition:

Definition 2 (Abstract channel). The leakage semantics of a channel matrix is the
mapping that it gives from priors to hyper-distributions.

We call such a mapping an abstract channel.

The following theorem reassures us that we have not abstracted too much.

Theorem 2. The usual leakage measures are well defined on abstract channels.

Proof. As we saw in §2, under min-entropy leakage vulnerability is V(π) = maxx π[x],
and posterior vulnerability is V(π,C) =

∑
y p(y)V(pX |y). Hence the column labels y

make no difference. Moreover, if pX |y = pX |y′ then the posterior vulnerability is unaf-
fected by merging outputs y and y′, since then

p(y)V(pX |y) + p(y′)V(pX |y′) = p(y ∨ y′)V(pX |y).

Other leakage measures, such as Shannon-based mutual information, behave similarly.
��

Taking this abstracted, semantic viewpoint makes us realise that the conventional,
channel-matrix representation can contain redundant information as far as leakage is
concerned, namely (1) labels on columns, (2) columns that are all zero, representing
outputs that can never occur, and (3) similar columns, which are columns that are scalar
multiples of each other and therefore yield the same posterior distributions.7 By elimi-
nating this redundant information, we obtain a well defined reduced matrix:

6 The block representation of a hyper-distribution has probabilities in its top row, rather than
Y-values.

7 These can be seen as analogous to redundant information in computer programs, like the names
of local variables, dead code, and if-statements with identical branches. Case (2) could be seen
as an instance of Case (3) with a scaling factor of zero; but then similarity would not be
symmetric.
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Definition 3. The reduced matrix Cr of a channel matrix C is formed by deleting output
labels and all-zero columns, then adding similar columns together, and finally ordering
the resulting columns lexicographically.

Theorem 3. Any channel matrix C has the same leakage semantics as its reduction Cr.

Proof. Output labels, all-zero columns, and column ordering all have no effect on the
hyper-distribution. And similar columns each contribute weight to the same posterior
distribution; hence merging them leaves the hyper-distribution unchanged. ��

A reduced matrix hence serves as a canonical representation of an abstract channel.

Corollary 1. Channels C,D represent the same abstract channel just when Cr = Dr.

Example 3. Given X = {x1, x2, x3} we consider the following two channels C,D:

C y1 y2 y3

x1 1 0 0
x2 1/4 1/2 1/4
x3 1/2 1/3 1/6

D z1 z2 z3

x1 2/5 0 3/5
x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

.

These channels as matrices are different — but as abstract channels they are the same.
Indeed both map prior distribution π = (p1, p2, p3) to the same hyper-distribution:

(4p1 + p2 + 2p3)/4 (3p2 + 2p3)/4

x1
4p1

4p1+p2+2p3
0

x2
p2

4p1+p2+2p3

3p2

3p2+2p3

x3
2p3

4p1+p2+2p3

2p3

3p2+2p3

To understand this, note that the second and third columns of C are similar (indeed
column 2 is two times column 3). In the same way, columns
1 and 3 of D are similar (indeed column 1 is two-thirds times
column 3). Hence A, B have the same reduced matrix, as shown
here at right:

Cr = Dr =

x1 1 0
x2 1/4 3/4
x3 1/2 1/2

�

While we have said that an abstract channel is a mapping from priors to hyper-
distributions, in fact the mappings that come from channel matrices are highly con-
strained. Write π� for the support of distribution π, that is those elements (of X) to
which it assigns non-zero probability. Then we have

Theorem 4. An abstract channel C with input X is completely determined by its be-
haviour on any full-support prior π, that is one with π�=X.

Proof. If full-support π yields a certain hyper-distribution then, by scaling each of the
posterior distributions with its probability, we recover the joint matrix of Cr under π.
And normalizing the rows of the joint matrix gives Cr . ��
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It follows that we can also canonically represent an abstract channel by the hyper-
distribution that it produces on (for instance) the uniform prior πu — indeed we showed
such a hyper-distribution in Ex. 2.8

4 Generalizing Partition Refinement to Composition Refinement

We now return our attention to the question of whether we can generalize the partition
refinement A � B of Def. 1 in §1 from deterministic to probabilistic channels. Our
criteria for success will include an investigation (in §5) of the situations in which the
generalisation is sound in the sense that A � B implies that A’s leakage does not exceed
B’s, and complete in that the generalisation fails only if there really is such a situation
in which A leaks more than B.

In the deterministic case, A’s partition is refined by B’s just if we can convert from
B to A by doing a “post-processing” step in which certain of B’s outputs are merged
— this corresponds to “anti-refinement” of partitions achieved by merging regions (just
as federating the states of Australia takes us from Fig. 1(b) back to Fig. 1(a)). That is,
we can express A as the cascade [12] of B and a channel Rmerge, so that A is the matrix
product of B and Rmerge.9 And, unlike partition refinement, this new formulation applies
to probabilistic as well as deterministic channels.

Definition 4. For channels A, B we say that A is composition refined by B, written
A �◦ B, just when there exists a channel R such that A = BR.

(Note that this definition appears in [1,9].)
On channel matrices, the composition-refinement relation is easily seen to be reflex-

ive (since C = CI) and transitive (since A = BR1 and B = CR2 implies A = (CR2)R1 =

C(R2R1)) — and so it is a preorder. But it is not antisymmetric, as can be seen from
C,D in Ex. 3, where we have both C �◦ D and D �◦ C:

C y1 y2 y3

x1 1 0 0
x2 1/4 1/2 1/4
x3 1/2 1/3 1/6

=

D z1 z2 z3

x1 2/5 0 3/5
x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

R1 y1 y2 y3

z1 1 0 0
z2 0 2/3 1/3
z3 1 0 0

and
D z1 z2 z3

x1 2/5 0 3/5
x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

=

C y1 y2 y3

x1 1 0 0
x2 1/4 1/2 1/4
x3 1/2 1/3 1/6

R2 z1 z2 z3

y1 2/5 0 3/5
y2 0 1 0
y3 0 1 0

However, if we restrict to abstract channels, we find that composition refinement is
better behaved: it becomes a true partial order (Thm. 6 below). We now prove that fact,
our first major result.

8 In the more general setting of Hidden Markov Models [11], however, such functions from
priors to hyper-distributions do not have the property of Thm. 4 — they are strictly more
general.

9 Indeed this equivalence was noted in Theorem 1 of [6].



Abstract Channels and Their Robust Information-Leakage Ordering 91

Lemma 1 (Jensen’s inequality for abstract channels). LetA andB be abstract chan-
nels, with (A,X,Z) and (B,X,Y) their presentation as reduced matrices, and let F be
a concave (�) function from distributions on X to the reals. If A=BR for some channel
matrix R then, for any full-support prior π, we have F(π, A) ≥ F(π, B) where as usual
F(π, A) =

∑
z p(z)F(pX |z).

Furthermore, ifA�B and F is strictly concave, then the inequality is strict.

Proof. Our proof relies on Jensen’s inequality [10], that if λ1, λ2, . . . λN are coefficients
in [0, 1] that sum to one, and F is concave, then

∑
n λnF(xn) ≤ F(

∑
n λnxn).

We use the following matrix notation. Given matrix M with row labels X and col-
umn labels Y, we write Mx,y to denote the (x, y) entry and M−,y to denote column y.
A fundamental property of matrix multiplication is that (MN)−,z = M(N−,z), i.e. that
column z of MN is a linear combination of the columns of M, with column z of N as
the coefficients, and thus that in fact the parentheses above are not necessary.10

We write Dπ to denote the diagonal matrix with prior π on its diagonal, so that DπA
is the joint matrix giving pXZ. Note that because A is reduced and π is full support, the
columns of DπA are all non-zero and non-similar; hence normalizing these columns is
well defined and gives the distinct posterior distributions pX |z = 1/p(z) DπA−,z where p(z)
is the (necessarily nonzero) sum of column z. For B, similarly, the posterior distributions
pX |y are distinct, and pX |y = 1/p(y) DπB−,y.

We now show that F(π, A) ≥ F(π, B) under the conditions given: first we have

F(π, A)
=
∑

z p(z) F(pX |z) “defn. F(π, A)”
=
∑

z p(z) F(1/p(z) DπA−,z) “pX|z = 1/p(z) DπA−,z”
=
∑

z p(z) F(1/p(z) DπBR−,z) “A=BR”
=
∑

z p(z) F(1/p(z) Dπ (
∑

y B−,yRy,z) ) “BR−,z =
∑

y B−,yRy,z”
=
∑

z p(z) F(
∑

y(Ry,z p(y)/p(z))(1/p(y) DπB−,y) ) “reorganising”
=
∑

z p(z) F(
∑

y(Ry,z p(y)/p(z))(pX |y) ) , “pX|y = 1/p(y) DπB−,y”

which contains F applied to a convex combination (
∑

y) whose coefficients Ry,z p(y)/p(z)
we now show are suitable for the use of Jensen. They sum to one because
∑

y Ry,z p(y)
=
∑

y Ry,z
∑

x(DπB)x,y “p(y) =
∑

x(DπB)x,y”
=
∑

x,y Ry,z (DπB)x,y “distributive law”
=
∑

x (DπBR)x,z “defn. matrix multiplication”
=
∑

x (DπA)x,z “A = BR”
= p(z) . “defn. p(z)”

With that done, we continue

. . . =
∑

z p(z) F(
∑

y(Ry,z p(y)/p(z))(pX |y) ) “from above”
≥∑z p(z)

∑
y(Ry,z p(y)/p(z)) F(pX |y) “(∗) Jensen wrt concave F”

=
∑

y p(y) F(pX |y)
∑

z Ry,z “simplify”

10 This is just associativity wrt post-multiplication by a column vector with one at row z and
zeroes elsewhere.
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=
∑

y p(y) F(pX |y) “
∑

z Ry,z = 1”
=F(π, B) , “defn. F(π, B)”

so that F(π, A) ≥ F(π, B) as claimed.
Now we suppose thatA�B and F is strictly concave.
A strict form of Jensen’s inequality is that if λ1, λ2, . . . λN are coefficients in [0, 1]

that sum to one, with at least one λn�1, and F is strictly concave, and the xn’s are all
distinct, then

∑
n λnF(xn) < F(

∑
n λnxn). This will give strict inequality at (∗) above.

Because B is reduced, the distributions pX |y (the normalised columns of DπB) are
distinct; otherwise B would have similar columns. Those are the distinct xn’s for strict
Jensen.

We now consider the λn’s, showing that at least one of them is not one. No two
columns of R can have a single non-zero entry in the same row, since those two columns
would generate similar columns in A, contradicting A’s being reduced. Thus if all
columns of R have exactly one non-zero value, since those values are alone in their
rows and R is a channel matrix, in fact R must be be a permutation of the identity. But
that makes A a column permutation of B, impossible if A, B are reduced and distinct.

Thus channel matrix R must have some column R−,ẑ in which at least two entries
are non-zero. But from

∑
y Ry,ẑ p(y) = p(ẑ), proved just above, plus the fact that p(y) is

nowhere zero, we have at least one ŷ (in fact, two) with Rŷ,ẑ p(ŷ)/p(ẑ) � 1. This ŷ (as n)
gives the λn�1 for that ẑ, as application of strict Jensen to that ẑ requires.

Those facts taken all together allow us to make step (∗) above strict, since for all z’s
(the nonstrict) Jensen applies, and for ẑ it applies strictly. ��

A consequence of Lem. 1 is the following theorem, which is itself of interest.

Theorem 5 (Strict data-processing inequality). Let A and B be abstract channels,
and write A �◦ B when A �◦ B but A�B. If A �◦ B then, for any full-support
prior π, the mutual information leakage ofA is strictly less than than that of B: that is
I(π,A) < I(π,B).11

Proof. We appeal to the strict concavity (�) of Shannon entropy H [13, p. 85], using H
for F in Lem. 1, to conclude that H(π,A) > H(π,B). Hence I(π,A) = H(π)−H(π,A) <
H(π) − H(π,B) = I(π,B). ��

A second consequence of Lem. 1 is the partial-order property we seek.

Theorem 6 (Partial order). Composition refinement (�◦) is a partial order on abstract
channels.

Proof. Since (�◦) is reflexive and transitive, we need only antisymmetry. Suppose that
A �◦ B �◦ A but A�B. Then in fact A �◦ B �◦ A whence, from Thm. 5, we have
I(π,A) < I(π,B) < I(π,A) for any full-support prior π— which is impossible. ��
11 To see that this theorem is indeed a strict version of the classic data-processing inequality [10],

note that if A = BR, where A goes from X to Z, B goes from X to Y, and R goes from Y to
Z, then for any prior π we have a Markov chain X → Y → Z. The (non-strict) data-processing
inequality says that in this case I(X; Z) ≤ I(X; Y), which in our notation is I(π, A) ≤ I(π, B).
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We conclude this section by completing the link with reduced channels. For channels
A, B write A ≈◦ B to mean A �◦ B �◦ A.

Lemma 2. For any channel C (not necessarily reduced) we have C ≈◦ Cr.

Proof. The reduced form Cr of channel C is defined in Def. 3 via a series of opera-
tions: deleting all-zero columns,12 summing (similar) columns together, and reorder-
ing columns (lexicographically). Each of those can be effected via post-multiplication
with a simple channel matrix; and so their overall effect is achieved via multiplication
with the (matrix) product of all those channel matrices, again a channel matrix. Hence
Cr �◦ C.

For the reverse direction the operations are adding an all-zero column, splitting a
column into several similar columns,13 and reordering columns. Again all of these can
be achieved by post-multiplication. Hence C �◦ Cr, and so C ≈◦ Cr as required. ��
Theorem 7 (Quotienting). The equivalence classes induced by the preorder (�◦) on
channels are the same as induced by the kernel of reduction (−r): that is for any chan-
nels A, B we have A ≈◦ B just when Ar = Br.

Proof. If A ≈◦ B then Ar ≈◦ A ≈◦ B ≈◦ Br (Lem. 2), whence Ar ≈◦ Br by transitivity
and finally Ar = Br by antisymmetry on reduced channels (Thm. 6).

If Ar = Br then Ar ≈◦ Br (reflexivity) whence A ≈◦ B (Lem. 2 and transitivity). ��

5 Composition Refinement and Leakage Orderings

In this section we address whether (�◦) is a reasonable information order to impose; as
mentioned at the beginning of §4, this is related to what we have called soundness and
completeness. In §5.3 we briefly discuss compositionality.

5.1 Soundness of (�◦)
The soundness condition for (�◦) concerns the situations in which A �◦ B implies that A
leaks no more than B. That is, given a situation in which (limiting) leakage is important,
according to some leakage measure, in what sense is it sound to use (�◦) to reason about
that system?

In fact we can argue informally that using (�◦) for our reasoning ought to be sound
for any reasonable situation and associated leakage measure: if A = BR for some R,
then an adversary should never prefer channel A to channel B, because given channel B
the adversary can always simulate channel A by simply post-processing the output from
channel B according to channel R.

12 This is where we depend on deleting only all-zero columns to proceed from C to Cr: although
post-multiplication with a channel matrix can add an all-zero column, it cannot delete a column
unless that column is all zero.

13 This is where we depend on summing only similar columns to proceed from C to Cr: although
post-multiplication with a channel matrix can sum any two columns, similar or not, it cannot
in general decompose a column into a sum of dissimilar columns.
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And indeed this property does hold for Shannon-entropy leakage, min-entropy leak-
age, and g-leakage. It is a generalized data-processing inequality, proved here14 for the
case of g-leakage.15

Theorem 8. If A �◦ B then the g-leakage of A never exceeds that of B, for any prior π
and any gain function g. (We denote this by A ≤G B.)

Proof. Note first that because Lg(π,C) = log Vg(π,C)/Vg(π) and Vg(π,C) and Vg(π) are
positive, we have Lg(π, A) ≤ Lg(π, B) iff Vg(π, A) ≤ Vg(π, B).

Now
Vg(π,C) =

∑

y∈Y
max
w∈W

∑

x∈X
π[x]Cx,yg(w, x) ,

and as noted in Section 4.C of [1], we can reify the choice of w, given y, as a probabilistic
channel S fromY toW that represents the adversary’s strategy.16 Hence we have

Vg(π,C) = max
S

∑

x,y,w

π[x]Cx,yS y,w g(w, x) = max
S

∑

x,w

π[x](CS )x,w g(w, x). (1)

(It might appear that the “max” in equation (1) should actually be “sup,” since there are
infinitely many possible strategies. But this is not so, because the supremum is in fact
realized on any strategy S such that S y,w > 0 only if w is a best guess given output y.)

Now notice that in the case where A = BR, any optimal strategy S for A is equivalent
to a strategy for B, namely RS ; but of course RS might not be optimal for B — there
might be a better strategy S ′. This allows us to calculate

Vg(π, A)
= maxS

∑
x,w π[x](AS )x,wg(w, x) “Eqn. (1)”

= maxS
∑

x,w π[x](BRS )x,wg(w, x) “A = BR”
≤ maxS ′

∑
x,w π[x](BS ′)x,wg(w, x) “S ′ can be RS ”

= Vg(π, B) , “Eqn. (1)”

which gives the inequality Vg(π, A) ≤ Vg(π, B) that we seek. ��

5.2 Completeness of (�◦)
The completeness condition we establish for (�◦) is that if A ��◦ B then there exists
a gain function g and a prior π for which A g-leaks strictly more than B does; this
depends on a theorem we prove in §6 below. Put informally, this completeness means
that if using our order (�◦) we criticise a channel A because it does not satisfy A �◦ B,
then we can justify our criticism by giving a π and g that shows A’s inferiority in a more
operational setting.

14 This result first appeared as Theorem 6.2 of [1], though with a slightly different proof.
15 Proofs for other leakage measures are similar, and indeed since min-entropy leakage is a spe-

cial case of g-leakage (end §2), that in particular is a trivial corollary.
16 This reification is reminiscent of Skolemization. Notice that it is reasonable for S to be proba-

bilistic, since there could be more than one w that is optimal for a given y.
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Surprisingly, that completeness criterion for (�◦) does not hold wrt min-entropy leak-
age, even though Thm. 1 suggests that it might. This failure is shown by the following
example:

A =
x1 2/3 1/3
x2 2/3 1/3
x3 1/4 3/4

B =
x1 1/2 1/2 0
x2 1/2 0 1/2
x3 0 1/2 1/2

Although it turns out that the min-entropy leakage of A never exceeds that of B on any
prior, still A ��◦ B.17

5.3 Compositionality

A more formal approach to soundness and completeness would be via compositionality,
asking given A �◦ B, for what contexts C can we be sure that also C(A) �◦ C(B)?

In [2] a simple probabilistic programming language with hidden state is treated, with
a relation (�) there that specialises to (�◦) here when those programs simulate channels.
It is shown there that (�) is the (unique) relation with the properties (soundness) that
A � B implies that the min-entropy leakage of C(A) never exceeds the min-entropy
leakage of C(B) for any context C in that programming language and any prior, and
(completeness) that A � B implies that the min-entropy leakage of C(A) does strictly
exceed the min-entropy leakage of C(B) for some context C and some prior. In this way
the legitimacy of (�) for programs, and hence of (�◦) for channels, could be argued
based on the utility of (the more restricted) min-entropy leakage, and compositionality.

The techniques for proving completeness in [2] led to the proof of Thm. 9 below.

6 The Coriaceous Property and Its Proof

We now present our second major result, the converse to Theorem 8. It says that the
strong g-leakage order implies composition refinement, which intuitively means that
composition refinement is not too strong: that is, whenever A ��◦ B, there exists a prior
π and a gain function g that causes A to leak more than B. This implication was stud-
ied in [1], but not proved in full generality—it was shown only in the case when the
columns of B are linearly independent—and the general result was left as the Coria-
ceous Conjecture, which we now resolve.18

Theorem 9. For any channel matrices A and B, if A ≤G B then A �◦ B.

Proof. We argue the contrapositive, showing that if A ��◦ B, then we can construct a
gain function g and a prior π such that Vg(π, A) > Vg(π, B); note that this implies that
Lg(π, A) > Lg(π, B) and hence that A �≤G B.

17 The min-entropy leakage bound can be verified using the linear-programming-based algorithm
given in Section 6.F of [1]. To see that A ��◦ B, note that because B is invertible we have A = BR
implies R = B−1A—but this calculation gives an R containing negative entries.

18 The proof is based on [14], itself extracted from the completeness proof in [2] which was, in
turn, a specialisation of McIver’s original proof in terms of probabilistic imperative-program
fragments and their weakest preconditions [15].
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Let A go from X to Z, and B from X to Y. If A ��◦ B, then there exists no channel
matrix R fromY toZ such that A = BR. If we use the abbreviation B↑ for the matrices
{BR | R is a channel matrix fromY toZ}, then our assumption becomes A � B↑.

Because matrix A and the matrices in B↑ go fromX toZ, they can be embedded into
Euclidean space of dimension N = |X|×|Z| by gluing their columns together in order.
Then B↑ becomes a set of points in N-space which, we observe by linearity of matrix
multiplication, is both convex and closed. And A is a point in N-space that does not
belong to B↑.

By the Separating Hyperplane Lemma [16] there is thus a hyperplane in N-space
with point A strictly on one side, and all of the set B↑ strictly on the other side. If G is
the normal of the hyperplane, also an N-vector thus, we have that A ·G > B′ ·G for all
B′ ∈ B↑.19 Note that we can assume a (>)-separation without loss of generality, because
we can negate G if necessary. Moreover we can assume without loss of generality that
the elements of G are in [0, 1]. First, we can eliminate negative elements of G by adding
a constant k to each entry; this has the effect of increasing both sides of the inequalities
above by exactly k|X|, because with A and each B′ derived from “glued” channel ma-
trices, as vectors they all sum to the same value |X|. Second, we can eliminate elements
of G that are greater than 1 by scaling, which simply scales both sides of (<) equally.

Now by “ungluing” we can view G, a vector in N-space, as a matrix (though not
necessarily a channel matrix) from X to Z. Thus we can view G as a gain function
g : Z×X → [0, 1], usingZ as the set of guesses and defined by g(z, x) = Gx,z.20

It turns out that this g is precisely the gain function that causes A to leak more than
B under the uniform prior πu. For by Eqn. (1) we have

Vg(πu, A) = maxSA

∑
x,z πu[x](ASA)x,zg(z, x)

and Vg(πu, B) = maxSB

∑
x,z πu[x](BSB)x,zg(z, x) ,

where strategies SA for A are channel matrices fromZ toZ, and strategies SB for B are
channels matrices from Y to Z. Note then that the identity matrix I is a strategy for A,
and that each BSB ∈ B↑. Hence, letting So

B denote any optimal strategy for B, we have

Vg(πu, B)
=
∑

x,z πu[x](BSo
B)x,zg(z, x) “So

B is optimal”
= 1/|X|

∑
x,z(BSo

B)x,zGx,z “πu is uniform over X”
= 1/|X| (BSo

B) ·G “taking dot-product in vector form”
< 1/|X| A ·G “separation; BSo

B ∈ B↑”
=
∑

x,z πu[x](AI)x,zg(z, x) “I is identity”
≤ maxSA

∑
x,z πu[x](ASA)x,zg(z, x) “SA can be I”

= Vg(πu, A) . “definition Vg”

��
While Theorem 9 shows that composition refinement is no stronger than the strong

g-leakage order, one might nonetheless wonder whether the gain function g constructed
in the proof (using the Hyperplane Separating Lemma) represents a “practical” leakage

19 We are using the vector forms here, and (·) is used for their dot-products.
20 Note that this is the transpose of the matrix representation of gain functions used in [1].
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threat, in that a “real” adversary would ever care about it. That is, perhaps the strong
g-leakage ordering is itself too strong. Three comments seem relevant here. First, it
seems generally prudent to make as few assumptions about the adversary as possible.
Second, the partial proofs21 in [1] show that, in the special case when A ��◦ B and the
columns of B are linearly independent, there is a quite intuitive gain function g and
prior π that causes A to leak more than B; g can then be a two-block gain function,
which corresponds to the adversary wanting to guess some property of the secret. And
finally (§5.3), with suitable definition of context it could be possible to reduce (�◦) to
the strong min-entropy leakage order.

7 The Mathematical Structure of Hyper-distributions

In this section, we give a monadic presentation of composition refinement which, while
not necessary for the results in this paper, supports generalisation to richer settings.

7.1 Use of the Giry Monad

In Def. 2 we defined abstract channels as mappings from priors to hyper-distributions.
Recall that our (finite) input space is X, and write DX, with typical element lower-
case Greek (e.g. δ, π), for the (discrete) distributions over X; in that case (discrete)
hyper-distributions have type D2X, with typical element upper-case Greek (e.g. Δ), and
abstract channels have type DX→D

2X.22 We now look at D2X specifically, from a
monadic perspective [17].23

The functor G of the Giry monad [19] (G, μ, η) takes a measure space to another
space of measures, on the measures of that first space: this is the general technique
that allows us to construct distributions D() “on top of” another set of distributions
DX, as in D

2X (and even D
3X as in §7.3 below). As part of the monad structure we

have a “multiply” natural transformation μ that averages a distribution of distributions
to create a single distribution again. (We see an example of this below.) Here we call
it avg for “average.” The “unit” natural transformation η makes a point distribution on
a distribution; but we will not need it here. The functor G itself, acting on a mapping
f e.g. from X to Y, constructs a “lifted” mapping G f from GX to GY, that is in our
simple setting from DX to DY. We call it map here.24 Finally, we have a function exp
that takes the expected value of a function from a measure space to a weighted sum
based on a particular measure in that space; we see an example of that immediately
below (§7.2).

21 See the proofs of Lemma 6.4 and Theorems 6.5 and 6.6 of [1].
22 Since DX is uncountable even for finite X, hyper-distributions are at least potentially proper

measures: but when derived from matrices, as they are here, they are discrete distributions.
The proper-measure case is treated in [11,17] as mentioned in §7.3 below.

23 We keep this treatment very light: more details are found in [17], where the Kantorovich monad
[18] is used in a similar style.

24 In elementary probability it is called “push forward.” Calling it map is by analogy with the use
of monads in functional programming, where map “lifts” a function f between elements to a
function map f between structures on those elements.
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7.2 Applying g-vulnerability to Hyper-distributions Directly

We recall from §2 that a gain function g:W×X→ [0, 1] gives rise to two derived func-
tions: the prior vulnerability Vg takes one argument, having type DX→[0, 1]. The ex-
pected vulnerability (again) Vg of the posterior distributions takes two arguments, a
prior and a channel; but in the mathematical presentation we consider that to be of
type D2X→[0, 1], i.e. to have as its single argument the hyper-distribution that the prior
and channel jointly determine.25 That is, with this overloading of the name “Vg” it is
type-correct to write both Vg(δ) and Vg(Δ) for δ:DX and Δ:D2X.

The second form of Vg, applied to a particular hyper-distribution Δ:D2X, is then the
expected value expVg

(Δ) over Δ of the first form of Vg as a random variable on DX.26

7.3 Applying Composition Refinement (�◦) to Hyper-distributions Directly

We now introduce bi-hypers on X, that is hyper-distributions on DX (rather than on X
directly), that thus have type D3X with typical element bold upper-case Greek (e.g. Δ).
The definition of composition refinement (�◦) on hyper-distributions is then as follows:

Definition 5. Given two hyper-distributions ΔA,B:D2X, we say that ΔA �◦ ΔB just when
there is a bi-hyper Δ:D3X such that

ΔA = map (avg)(Δ) and avg (Δ) = ΔB .
27

The bi-hyper Δ is thus a witness of the relationship (�◦), just as R is a witness in the
matrix setting.

This more general, abstract construction of Def. 5 is not necessary for the material
(elsewhere) in this paper; but its being expressed purely in monadic terms means it ap-
plies without change to proper measures (rather than only discrete distributions). These
can arise naturally in a context more general than channels, for example imperative
looping programs with hidden state [11], and probabilistic- and demonic nondetermin-
ism together [17]. In this way, the channel model can be seen to fit into this very general
mathematical framework, possibly giving access to more general mathematical tools in
the analysis of channels.

8 Limits of the Information-Theoretic Perspective

The perspective of abstract channels is information theoretic, concerned only with a
channel’s mapping from priors to hyper-distributions, and abstracting from details like
the names of outputs. These choices are appropriate if we are interested only in the

25 In [17] the prior vulnerability function is abstracted from any g, presented simply as a “disor-
der test” that is by definition some continuous, concave function in DX→[0, 1]. Continuity re-
quires a metric, or a topology, and that is part of what the general Giry- or Kantorovich monad
structure supplies. Thus disorder tests are concave (by definition), while g-vulnerabilities are
convex (by construction based on g). The latter is a just special case of the former, negated.

26 That expected value would be written
∫

Vg dΔ or
∫

δ∈DX Vg(δ) dΔ in a more mathematical setting.
27 In the usual notation of the Giry monad that would be ΔA=GμXΔ and μ

GXΔ=ΔB .
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information that a channel provides to the adversary, and not in the amount of compu-
tation that might be required in order to exploit that information.

But if we wish to consider computationally-bounded adversaries, then we need to
move to a more concrete model, one where outputs come as strings of bits. Also, we
need to constrain the strategy-based formulation of g-vulnerability that we used in the
proof of Theorem 8. For simplicity, let us restrict our attention to min-entropy leakage
and (ordinary) vulnerability, whose strategy-based formulation is

V(π,C) = max
S

∑

x,y

π[x]Cx,yS y,x .

In a computational setting, we can no longer allow S to be an arbitrary probabilistic
mapping from outputs Y to guesses X, but instead must require it to be efficiently
computable. This in turn requires that we consider families of channels with respect
to a “security parameter” n, so that we can consider the growth of running time as a
function of n. Let us write Vc to denote the computational version of vulnerability.28

We can illustrate the effect of this definition by considering two channels whose
input is an n-bit prime p, assumed uniformly distributed. Channel A outputs p2, while
channel B outputs pq, where q is a uniformly-distributed (n+1)-bit prime. Note that
A and B represent the same abstract channel, since the reduced matrix of both is the
identity matrix. Hence in the non-computational setting we have V(π, A) = V(π, B) = 1.

Turning next to Vc, we find that Vc(π, A) = 1, since there is an efficient strategy
that maps p2 to p by calculating the square root via binary search. In contrast, Vc(π, B)
should be smaller, since the existence of an efficient strategy that maps pq to p would
contradict the standard assumptions about the difficulty of the factorization problem.
Indeed, it would appear that Vc(π, B) ≈ Vc(π), since an efficient probabilistic strategy is
believed to have a negligible probability of recovering p from pq.

Here we also have A �◦ B, which implies by Theorem 8 that V(π, A) ≤ V(π, B).
Why does the same inequality not hold for Vc? Recall that the proof of Theorem 8 is
based on the fact that if A = BR, then any strategy S for A gives rise to an equivalent
strategy for B, namely RS . But notice that RS need not be efficiently computable, even
if S is. Since here R is a channel that maps pq to p2, it indeed does not give rise to an
efficiently computable strategy for B. In the computational setting, however, we should
be able to get a weaker version of Theorem 8 saying that if A = BR, where R is efficiently
computable, then A never out-leaks B.

9 Related Work

Given the multitude of plausible ways to measure the “uncertainty” of a probability
distribution and the “amount” of information leakage caused by a channel, there has
long been interest in the robustness of such measures and the leakage orderings on
channels that they give.

28 There is also a technical issue that arises with prior vulnerability. Since now we have a family
π(n) of priors, parameterized by n, it is not clear that an adversary can efficiently compute an
x with maximum probability in π(n). In the example that follows, this is not in fact a prob-
lem, since there are standard techniques for efficiently generating uniformly-distributed n-bit
primes. But in general, we might wish to impose constraints on π(n).



100 A. McIver et al.

Such studies can both establish and refute relationships among measures. For in-
stance, Massey [4] compares Shannon entropy H and guessing entropy G, showing
that G(π) > 2H(π)−2, but that there is no interesting upper bound on G(π) in terms
of H(π). Another negative result is given by Pliam [20], who shows the incompara-
bility of Shannon entropy and marginal guesswork, which is the minimum number
of brute-force guesses required to guess a secret with some specified probability of
success. With respect to vulnerability and min-entropy, Santhi and Vardy [21] prove
a bound between posterior Shannon entropy and Bayes risk, which is the comple-
ment of posterior vulnerability; in our notation their bound can equivalently be written
as H(π,C) ≥ − log V(π,C) = H∞(π,C). Further study of similar bounds is done by
Chatzikoklakis, Palamidessi, and Panangaden [22].

Turning to comparisons between channels, we have the results of Yasuoka and Ter-
auchi [7] and Malacaria [8] described in Section 1 that establish the robustness of parti-
tion refinement in comparing deterministic channels. For probabilistic channels, Braun,
Chatzikokolakis, and Palamidessi [23] compare the leakage ordering resulting from
multiplicative and additive versions of min-entropy leakage—multiplicative leakage is
based on the ratio of the posterior- and prior vulnerabilities (as in min-entropy leak-
age, which is just the logarithm of this ratio), while additive leakage is based on their
difference. They show that when comparing two channels on a given prior, it makes no
difference whether multiplicative or additive leakage is used. But when channels are
compared with respect to their capacity (i.e. maximum leakage over all priors) then
multiplicative and additive leakage can produce inconsistent results.

Finally, Sabelfeld and Sands [24] describe a “PER” model of security specifications,
based on partitions of the hidden-value space; and there are some similarities between
their treatment of partitions and ours: in particular, refining a PER that specifies a pro-
gram’s input could be construed as allowing the program to be less secure; and refining
an output PER would require the program to be more secure. Their extension to prob-
ability, however, does not seem to lead to the same relation between channels as our
does.

10 Conclusion

This paper can be seen as an exploration of the mathematical foundations of quantita-
tive information flow. We have argued that, from the information-theoretic perspective,
it is abstract channels that are the fundamental objects of study: for when we consider
the information-theoretic leakage caused by a channel C, the essential fact is precisely
the mapping that C gives from priors to hyper-distributions—and any of the multitude
of possible leakage measures can be seen as simply summarizing this mapping. Con-
cretely, then, we have seen that classical channel matrices contain structural redundan-
cies which ought to be quotiented away, leading to reduced matrices. The utility of the
abstract-channel framework is further clarified by our study of composition refinement,
which is only a pre-order on channel matrices, but which we have proved is a partial or-
der on abstract channels. And, by our proof that composition refinement coincides with
the strong g-leakage ordering, it is a partial order with both structural- and leakage-
testing significance—and is therefore a compelling generalization (from deterministic



Abstract Channels and Their Robust Information-Leakage Ordering 101

to probabilistic channels) of partition refinement in the Lattice of Information. Finally,
we have discussed the limits of the information-theoretic perspective, pointing out that
the abstract channels framework is not suitable for addressing computationally-bounded
adversaries.

We have shown that channels can be regarded as functions from priors to hyper-
distributions and sketched in §7 how they can be formalised using general mathematical
machinery; in future work we will investigate this abstraction further in its relation to
channels. The characterisation of hypers within the general type of functions would
be the first step towards determining which program contexts preserve the order. For
example, the Coriaceous result establishes how to show that two channels are not related
by (�◦) by finding a refuting gain function g; an interesting result would be to determine
whether this g can be used to produce the precise conditions under which e.g. min-
entropy testing would fail, in the style of program testing “in context” [2]. Another
interesting question is whether two programs with an abstract channel denotation can
be proved to be in the (�◦) relation based on examining the way in which they were
constructed. Similar ideas have been discussed in [25] for the specific case of preserving
a particular threshold of leakage with respect to a single entropy measurement.

More generally, since particular leakage measures are appropriate for particular ap-
plications, we can define a family of weaker pre-orders on abstract channels for a fixed
leakage measure m: we say A ≤m B iff the m-leakage of A never exceeds that of B,
for any prior π. What we do not know is whether these are partial orders for important
choices of m, such as Shannon-, guessing-, or min-entropy leakage. Nor do we know
whether they are strictly weaker than (�◦), though we do know this for ≤min−entropy by
the example in §5.2.

Finally, our preliminary investigations suggest that (�◦) is not a lattice [26]; future
work will reveal other general properties and how to exploit them in channel analysis.
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Abstract. The quantitative information flow bounding problem asks,
given a program P and threshold q, whether the information leaked by
P is bounded by q. When the amount of information is measured us-
ing mutual information, the problem is known to be PSPACE-hard and
decidable in EXPTIME. We show that the problem is in fact decidable
in PSPACE, thus establishing the exact complexity of the quantitative
information flow bounding problem. Thus, the complexity of bounding
quantitative information flow in programs has the same complexity as
safety verification of programs. We also show that the same bounds apply
when comparing information leaked by two programs.

1 Introduction

Anon-interferent program [13,20] ensures that low-security observations by an ad-
versary of an execution of the program is independent of its high-security inputs,
thus preserving confidentiality of its inputs.While non-interference is desirable, ex-
plicit outputs of a programoftenviolatenon-interference.For example, thewinning
bid in an anonymous auction reveals information about all other bids, namely an
upper bound on other bids. Therefore, others (e.g [12,14,19,22]) propose to quan-
tify the amount of information leaked by a program in order to evaluate security of
programs. In these quantitative approaches, a program is seen as a transformation
of a randomvariable taking values from the set of inputs into a randomvariable tak-
ing values from the set of observations. The amount of information leaked by the
program is modeled as the difference between the initial uncertainty and the un-
certainty remaining in the secret inputs given the observations an adversarymakes
about the execution of the program. In order to measure uncertainty, information-
theoretic measures such as Shannon’s entropy [12,14,19] and min-entropy [22] are
employed.The appropriatemeasure of informationusually depends on the applica-
tion.Min-entropy, for example, is used tomeasure vulnerability to being guessed in
one try and is useful for measuring information leaked by password-checkers.How-
ever, note that this is inappropriate for voting protocols which publish vote tal-
lies as an unanimous election always reveals how each voter voted andmin-entropy
basedmeasurewill say that all information is leaked for such protocols. Thus,min-
entropywill not be able to distinguish a secure electronic protocol from an insecure
protocol protocol such as one which outputs a list of voters along with their voting

M. Abadi and S. Kremer (Eds.): POST 2014, LNCS 8414, pp. 103–119, 2014.
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preferences. Using Shannon entropy to measure information leaked is more appro-
priate for such protocols.

We consider the complexity of evaluating the amount of information leaked
by a program when the uncertainty is measured using Shannon’s entropy [21] as
has been proposed in [12,14,19]. In this case, the amount of information leaked
by a program is mutual information between the inputs and outputs. We start
by considering the complexity of quantitative information flow bounding prob-
lem [25,27]: given a program P with uniformly distributed inputs, and a rational
number q, check if the information leaked by the program does not exceed q.1 The
quantitative information flow bounding problem was first considered in [25,27]
who study complexity of the quantitative information flow problem for (deter-
ministic) imperative Boolean programs. They show that the problem is PP-hard
for loop-free Boolean programs. The class PP is the class of decision problems
solvable by a probabilistic Turing machine in polynomial time, with an error
probability of less than 1

2 . This implies, in particular, that the quantitative in-
formation flow bounding problem is harder than reachability in loop-free Boolean
programs as the latter is NP-complete and the complexity class PP contains the
complexity class NP. Intuitively, the hardness of problem comes from the fact
that one has to compute, for each possible output, how many inputs lead to that
particular output. For reachability, we only have to guess one input which leads
to the reachable state.

For Boolean programs (with loops), the quantitative information flow problem
was shown to PSPACE-hard in [25,27]. However, no upper bounds are given
in [25,27]. The problem was shown to be in EXPTIME in [5]. They also show that
the problem is PSPACE-complete when the number of outputs is logarithmic in
the size of the program.

We briefly recall the strategy used in [5] to establish that the quantitative
information flow bounding problem is in PSPACE when the number of outputs
is logarithmic in the size of the program. The proof therein relies on a recent
result on straight-line programs (SLPs). An SLP is a sequence of assignments
to integer variables in which the operations allowed are addition, subtraction
and multiplication (no division). The value of the variable last assigned to is
said to be the number defined by SLP. A recent result shows that the problem
of checking whether an SLP defines a strictly positive number is decidable in
counting hierarchy [2], which is contained in PSPACE. Now, [5] show that for
each program P and rational number q there is an SLP prog(P,q) such that
the information leaked by the program by program P does not exceed q iff
the number defined by prog(P,q) is strictly positive. The program prog(P,q) is
polynomial in a size of P and q if the number of outputs of P is logarithmic in
the size of the program (and can be constructed in polynomial time). However,
if there is no restriction on number of outputs then the size of prog(P,q) can
be exponential in the size of P. Therefore, they have to restrict the number of
outputs to achieve the PSPACE upper bound.

1 Uniformly distributed inputs is a commonly used assumption. For arbitrary input
distributions, the same complexity bounds will apply for Boolean programs.
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Contributions. Our first contribution is to show that the quantitative infor-
mation flow bounding problem is in PSPACE which matches the PSPACE lower
bound without any restrictions on the number of outputs, thus establishing the
exact complexity of quantitative information flow. This is surprising since check-
ing safety of Boolean programs (or reachability in Boolean programs) is also
PSPACE-complete. This shows that the problem of bounding quantitative infor-
mation flow is (complexity-theoretically) as easy as safety verification of Boolean
programs.

For the upper bound, we cannot directly use the construction of the SLP
prog(P,q) outlined in [5] as the size of prog(P,q) is exponential in the size of P.
Instead, we establish a new result about PSPACE-SLP generators. A PSPACE-
SLP generator F is an algorithm that outputs an SLP on its input w, using only
a polynomially-bounded work-tape (note the output can still be exponential in
|w|, the length of w). We give sufficient conditions that ensure that the problem
of checking whether, given w, the number defined by the SLP F (w) is strictly
positive can be decided in PSPACE (even when the output F (w) is exponential
in length of w). We then show that there is a PSPACE-SLP generator f that a)
satisfies the above conditions and b) given a program P and a rational number
q computes the SLP prog(P,q).

We then consider the quantitative information flow comparison problem: given
programs P1 and P2 check if information leaked by program P1 is less than the
information leaked by P2. The quantitative information flow comparison problem
was first studied in [26], where they show that the comparison problem is #P-
hard for loop-free Boolean programs.2 We show that the quantitative information
flow comparison problem is also PSPACE-complete by using methods similar to
the quantitative information flow bounding problem.

Finally, we are able to conclude PSPACE-completeness for quantitative infor-
mation flow bounding problem and the quantitative information flow compari-
son problem when the observations of the adversary are not explicit outputs, but
implicitly derived from the timing behavior of an execution of a program. Follow-
ing [5], we abstract the timing behavior as the number of steps of the execution
of a program. The conclusion follows from the observation that a Boolean pro-
gram takes at most an exponential number of steps3 and hence can be encoded
by a binary counter.

The rest of the paper is organized as follows. We introduce relevant nota-
tion and definitions in Section 2. We establish our result on SLP-generators in
Section 4. The results on quantitative information flow bounding problem and
quantitative information flow comparison problem are presented in Section 5.
We conclude in Section 6.

2 Note #P is a class of function problems and not decision problems. The precise
statement of #P-hardness in [26] is that the function class #P is as hard as the
class of function problems solvable in polynomial time with an oracle for comparing
quantitative information flow in loop-free Boolean programs.

3 We only consider terminating programs.
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Related Work. In the recent years, several automated approaches from model-
checking [3,18,7,8], static analysis [9,10,11,3] and statistical analysis [18,6] have
been employed to compute the information leaked by a program. The complexity
of computing the amount of leakage was only considered recently [26,25,27,24,5].
The problem was first tackled in [26], where quantitative information flow com-
parison problem is studied. The PSPACE lower bound for non-interference was
shown in [27] which implies the lower bound for both the quantitative informa-
tion flow bounding problem and for the quantitative information flow comparison
problem. A PSPACE upper and lower bound for programs for measures based
on min-entropy and guessing entropy was established in [27]. However, an exact
upper bound was not known for the case when the information is measured using
Shannon’s entropy.

Non-interference and quantitative information flow bounding problem when
programs are modeled abstractly as nondeterministic transition systems are con-
sidered in [23] and [24] respectively. In this setting, the problems are shown to
be PSPACE-complete.4 However, this only implies an EXPSPACE-upper bound
because the translation into an explicit state description causes an exponential
blowup. For example, the following program with three variables x, y, z:

x := x ∨ (y ∧ z); end

is represented in [24] as a state machine with 16 states. (The factor of 2 is due
to the program counter).

As discussed above, the best known upper bound for quantitative informa-
tion flow bounding problem was EXPTIME [5] which follows from EXPTIME-
completeness of quantitative information flow problem in recursive Boolean
programs [5]. The EXPTIME upper bound improves to PSPACE when the number
of outputs variables are logarithmic in the size of the program [5].

The proof of the PSPACE-upper bound in [5] is established by reducing the
quantitative information flow bounding problem in PSPACE to checking whether
an SLP defines a positive integer. The restriction on the number of outputs
ensures that the constructed program is polynomial in length. Then the recent
result of [2] is invoked which shows that the problem of checking whether an
SLP defines a positive integer is in counting hierarchy and hence in PSPACE.
Since we are not restricting the number of outputs, the reduction yields an SLP
which is exponential in input size. Thus, we cannot use [2] and have to establish
our result on SLP generators.

Attacks based on implicit observations of program execution, such as timing
behavior, are hard to protect against and can lead to serious breaches of confi-
dentiality (see for example, [4] which exhibits a practical timing attack against
OpenSSL which allows the adversary to obtain private RSA keys.) Hence, sev-
eral approaches have been proposed in the literature to counteract timing leaks
(see [1,17] for example).

4 Even though the partial program model defined in [24] is a Boolean program, the
complexity results are reported in terms of the size of the explicit nondeterministic
transition system, which is exponentially larger than the size of partial program.
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2 Preliminaries

We recall some standard definitions and establish some notations. Note that for
a set X, the set of all boolean valued functions with domain X shall be denoted
as 2X . Please note that our notations closely follow [5].

2.1 Boolean Programs

Syntax: The programs that we consider have input variables, output variables
and local variables. Input variables can be either high-security input variables,
meaning that the adversary cannot observe their values, or low-security input
variables, meaning that their values are known to the adversary. The output
variables will be low-security variables, i.e., their values shall be observable to the
adversary. The values of local variables will not be observable to the adversary.5

Formally, we assume a countable set Vars of variables which can take Boolean
values � (true) and ⊥ (false). The set Exps of Boolean expressions is generated
by the following BNF grammar (x ∈ Vars):

φ ::= � | ⊥ | x | ¬φ | (φ ∨ φ) | (φ ∧ φ) .

A program can manipulate its variables using statements. The set of state-
ments, Stmts, is defined by the following BN F grammar (x ∈ Vars, φ ∈ Exps):

s ::= skip (Skip)

| x← φ (Assignment)

| if φ then s else s end (Conditional)

| while φ do s end (Iteration)

| s; s (Sequential composition)

As usual we say that Vars(s) is the set of variables occurring in s.
A program P is of the form

high
−→
h ; low

−→
l ; out −→o ; local −→z ; s

where s is a statement and
−→
h ,
−→
l ,−→o ,−→z are vectors of variables such that

Vars(s) ⊆ −→h ∪−→l ∪ −→o ∪ −→z .

Semantics: Recall that a transition system, T , is a tuple (Q,→) where the set Q
is a finite set of configurations and→⊆ Q×Q is a set of transitions. T is said to
be deterministic if c→ c1 and c→ c2 implies that c1 = c2. A computation from
a configuration c0 is a sequence c0 → · · · c−→m. We say that c

m
=⇒ c′ if there exists

a computation c0 → · · · → cm with c0 = c and cm = c′, and we write c ⇒ c′ if
c

m
=⇒ c′ for some m ∈ N.

5 Note that high-security output variables can always be modeled as local variables.
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We give an informal description of the semantics of programs. The operational
semantics of a program P can be given in terms of a deterministic transition
system (ConfP ,→P , c0) of size exponential in the size of P . A configuration
c ∈ ConfP keeps track of the “current line number” and the “values” of the
variables of the program P. A transition in →P represents one execution step

of P. The program P terminates on inputs
−→
h 0,

−→
l 0 if there is a computation

from a configuration in which the “current line number” is the line of the first

statement of P, the input variables are set to
−→
h 0,

−→
l 0, and the local and out-

put variables are set to ⊥ that reaches the configuration with the “current line
number” corresponding to line number of the last statement of the program. If
P terminates, we define the output of P to be the values of the output variables
upon termination.

Therefore, P can be seen as a partial function FP : H × L → O where H =

2
−→
h , L = 2

−→
l and O = 2

−→o . FP (
−→
h0,
−→
l0 ) is defined iff P terminates on

−→
h0,
−→
l0 , and

is the value output by P on
−→
h0,
−→
l0 . From now on, we will confuse P with the

function FP . We will only consider terminating programs. One could possibly
model non-termination as an explicit observation and our complexity results
will not change in that case. This is because nontermination on an input can be
decided for while programs in PSPACE.

3 Mutual Information

We recall some standard definitions. Let X be a discrete random variable with
values taken from a finite set X . If μ is the probability distribution of X , the
Shannon entropy of μ, written Hμ(X ), is defined as

Hμ(X ) = −
∑
x∈X

μ(X = x) · logμ(X = x).

If X and Y are discrete random variables taking values from finite sets X and Y
with joint probability distribution μ, the conditional entropy of X given Y, writ-
ten Hμ(X | Y), is defined as

Hμ(X | Y) =
∑
y∈Y

μ(Y = y) · Hμ(X | Y = y).

The mutual information of X and Y, written Iμ(X ;Y), is defined as

Iμ(X ;Y) = Hμ(X )−Hμ(X | Y).

We have Iμ(X ;Y) ≥ 0.

3.1 Quantitative Information Flow in Programs

We use conditional mutual information to quantify the amount of information
leaked by the program as has been proposed in [12,14,19]. We assume that the
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reader is familiar with information theory and in particular conditional mutual
information. As discussed above, the semantics of a Boolean program P is a
function P : H × L → O. Assume now that the inputs are sampled from a
distribution μ. Let H be the random variable taking values in H and L be the
random variable taking values in L according to the distribution μ. μ can be
extended to a joint probability distribution on H , L and O as follows

μ(O = o | H = h,L = l) =

{
1 if P (h, l) = o

0 otherwise
.

The information leaked by the program P is then defined to be

SEμ(P ) := Iμ(H;O | L).

In case there are no low-security inputs, the information leaked by the function F
is just the mutual information between H and O:

SEμ(P ) = Iμ(H;O).

A program P is non-interferent iff SEμ(P ) = 0 for all μ.6

We now recall a result proved in [5] that will allow us to restrict our at-
tention to programs that have only high-security inputs. Given a program P

with high-security input variables
−→
h , low-security input variables

−→
l and low-

security output variables −→o , let the program Pnolowinp be defined as follows.

For each variable l ∈ −→l , pick a new variable lnew. Pnolowinp has high-security

input variables
−→
h ,
−→
l and no low-security input variables. The output variables

of Pnolowinp are −→o and
−−→
lnew. The program Pnolowinp initially copies the values

−→
l into

−−→
lnew and then behaves exactly like P. The following is shown in [5]:

Proposition 1. SEμ(Pnolowinp) = SEμ(P ) + Hμ(L).

Note that when μ is U, the uniform distribution on H×L, we have that Hμ(L) =
log |L|. Thus, it follows that if P has r low-security input variables, we get that

Proposition 2. SEU(Pnolowinp) = SEU(P ) + r.

Thus, for uniformly distributed inputs, we shall only need to consider pro-
grams with no low-security inputs. We shall make use of the following theorem
proved in [3,16]:

Theorem 1. Let FP : H → O be the semantics of a program P with no low-
security inputs. Then

SEU(P ) = log |H | − 1

|H |
∑
o∈O

|F−1(o)| log |F−1(o)|.

6 It can be shown that this definition is equivalent to the standard definition of non-
interference: for any low-input l ∈ L and high inputs h, h′ ∈ H , we have that
P (h, l) = P (h′, l).
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3.2 Decision Problems for Quantitative Information Flow

The quantitative information flow bounding problem: The quantitative informa-
tion flow bounding problem asks, given a program P and a rational number
q ≥ 0, whether the information leaked by P does not exceed q, i.e., whether
SEU(P ) ≤ q. The input to the decision problem is the program P and q (with
numerator and denominator given in binary). The size of input problem is the
size of P and the size of numerator and denominator q.

The quantitative information flow comparison problem: The quantitative infor-
mation flow comparison problem asks, given programs P and P ′, whether the
information leaked by P exceeds the information leaked by P ′, i.e., whether
SEU(P

′) < SEU(P ). The input to the decision problem are the programs P
and P ′.

3.3 Straight-line Programs (SLP)s

Let V ar be a countable set of variables. A (division-free) straight-line program
(SLP) is a finite sequence of statements of the form x← 0 or x← 1 or x← Y &Z,
where & ∈ {+,−, ·}, x ∈ V ar and Y, Z ∈ V ar ∪ {0, 1}. are taken from a
countable set of variables.

An SLP p is said to be closed if each variable that appears on the right-hand
side of a statement also appears on the left-hand side of a preceding statement.
The semantics for any such program is the usual where ← corresponds to as-
signment and the operators +,−,· are addition, subtraction and multiplication
over the set of integers, Z. The value of a closed SLP p denoted by val(p) is the
value of the last variable assigned in its last statement. The problem PosSLP
is to decide, given a closed SLP p, whether val(p) > 0. It is shown in [2] that
PosSLP is in counting hierarchy.

The standard square-and-multiply algorithm for exponentiation gives us the
following.

Proposition 3. Given a natural number N > 0 in binary with k bits, there is
a closed SLP pN of length O(k) using only one variable such that val(pN ) = N.
Given numbers N1, N2 > 0 in binary with k1 and k2 bits respectively, there is
a closed SLP p

N
N2
1

of length O(k1 + k2) and using only 2 variables such that

val(p
N

N2
1

) = NN2
1 .

4 SLP Generators

Given a finite set of variables V , we will say that a SLP generator compatible
with V is an algorithm that outputs a closed SLP which uses variables in V. We
shall be interested in special kinds of SLP generators:

Definition 1. An SLP generator f compatible with V is said to be a good SLP-
generator if:
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– f is a function computable in PSPACE, i.e., for any input w, f(w) is com-
puted using polynomially bounded workspace.

– For any input w, if the SLP f(w) were to be executed then for each x ∈ V

at any point, the value of the variable x is ≥ −22|w|
and is < 22

|w|
, where

|w| is the length of w.

Please note that the output f(w) generated using a good SLP-generator f can
be exponentially long (in terms of |w|), as will be the case when we apply our
results in Theorem 2. We will be interested in deciding whether for a given w,
the value of the program f(w) > 0. Since, f(w) is exponentially long, we cannot
directly apply result of [2] which says that PosSLP is in counting hierarchy and
hence in PSPACE. However, the conditions of being a good SLP generator will
allow us to adapt the proof of PosSLP being in counting hierarchy to establish
the following result, whose proof has been moved to the Appendix for the sake
of the flow of the paper.

Lemma 1. Given a good SLP generator f compatible with V , the following lan-
guage is PSPACE:

{w | val(f(w)) > 0}.

5 Complexity of Quantitative Information Flow

We will now consider the quantitative information flow bounding problem and
the quantitative information flow comparison problem, showing both of them to
be PSPACE-complete. Since non-interference in Boolean programs is PSPACE-
hard [27], these two problems are easily seen to be PSPACE-hard. We only need
to show the upper bounds.

We start by first considering the quantitative information flow bounding prob-
lem. We shall need one Lemma.

Lemma 2. Let P be a program with
−→
h as high-security input variables, no low-

security input variables and −→o as the output variables. If n is the number of
high-security input variables and O = 2

−→o then∏
o∈O

|P−1(o)||P
−1(o)| ≤ 2n·2

n

.

Proof. Since mutual information is always positive, we have that SEU(P ) ≥ 0.
Thus, by Theorem 1, we get that

n− 1

2n
log

∏
o∈O

|P−1(o)||P
−1(o)| ≥ 0.

Therefore,

log
∏
o∈O

|P−1(o)||P−1(o)| ≤ n2n.

The claim follows by exponentiating both sides. ��
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Theorem 2. The quantitative information flow bounding problem is PSPACE-
complete for Boolean programs.

Proof. We only need to prove the upper bound. Thanks to Proposition 2, we
only need to consider programs with no low-security inputs.

Let P be a program with high input variables
−→
h and low-security output

variables −→o . Let the number of input variables be n and the number of output

variables be m. Let H = 2
−→
h and O = 2

−→o . Let q be a rational number. We have
|H | = 2n.

Theorem 1 implies that SEU(P ), the information leaked by P , is

n− 1

2n
log

∏
o∈O

|P−1(o)||P
−1(o)|.

Thus,

SEU(P ) ≤ q ⇔ log
∏
o∈O

|P−1(o)||P
−1(o)| ≥ 2n(n− q).

Observe that the number 2n(n − q) is polynomial in the size of the program P
and rational number q and can be computed in polynomial time. Thus it suffices
to show that for any given positive rational number r

s , we can decide if

log
∏
o∈O

|P−1(o)| log |P−1(o)| ≥ r

s

in polynomial space (r can be taken to be positive as a program never leaks
more than n bits). Note that since

log
∏
o∈O

|P−1(o)||P
−1(o)| ≥ r

s
⇔
∏
o∈O

|P−1(o)||P
−1(o)|·s ≥ 2r,

it suffices to show that we can decide if∏
o∈O

|P−1(o)||P−1(o)|·s − 2r ≥ 0

in polynomial space.
In order to show this, we will construct a good SLP generator f that given

a program P and natural numbers r and s, constructs a SLP program with 6
variables7 S such that

val(S) =
∏
o∈O

|P−1(o)||P−1(o)|·s − 2r + 1.

The result will then follow from Lemma 1.
Let k be the size of s. We make a few observations before we show how to

construct f.

7 Since there are exponentially many outputs, program S itself will turn out to be
exponential in length.
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(a) |P−1(o)| ≤ 2n. Hence |P−1(o)| can be represented as a binary number of
size n + 1. The number |P−1(o)|s can be represented as a number of size
n+ k + 1 and computed in polynomial time given |P−1(o)| and s.

(b) Given |P−1(o)| and |P−1(o)|s, we can construct in polynomial time (and

hence in polynomial space) a SLP So whose value is |P−1(o)||P−1(o)|·s using
two variables (See Proposition 3).

(c) By Lemma 2, ∏
o∈O

|P−1(o)||P−1(o)|·s ≤ 2s·n·2
n

and hence ∏
o∈O

|P−1(o)||P−1(o)|·s ≤ 2n·2
n+k

.

(d) P has m output variables. Let us fix an enumeration o1, . . . , om of these
variables. Hence each possible output o ∈ O can be uniquely identified with a
m-bit binary natural number whose �-th bit is 1 iff o� is 1. We will henceforth
confuse elements of O with the m-bit binary numbers representing them.
We will use j to range over the m-bit binary natural numbers representing
elements of O. Similarly, each input of P can be identified with a n-bit
natural number.

(e) For any output j, |P−1(j)| can be computed using a work-tape polynomial
in the size of P as follows. We initialize |P−1(j)| as 0. Recall that every
input can be represented as a n-bit integer. We utilize this to iterate over all
inputs as follows. We initialize a n-bit integer k as 0. At the 1-st iteration,
we take all inputs to be zero, run the program P on this (which can be
done in polynomial space) and check whether the output of P is j or not.
If the output is j then we increment |P−1(j)| otherwise we leave |P−1(j)|
unchanged. In either case, we increment k. At k + 1-st iteration, we take
the input corresponding to k, run the program P on this input and check
whether the output of P is j or not. Once again, if the output is j we
increment |P−1(j)| otherwise we leave |P−1(j)|. In either case, we increment
k. The iterations stop when k becomes 2n.

Now, we describe how the good SLP generator f is constructed. f will use
six variables {z, x0, y0, x1, y1, res} and its input tape will have a definition of P
along with natural numbers r and s written on it. We give the psuedo-code for
f in Figure 1 and describe f in detail. The PSLP f uses two integers j and k.
j is used to iterate over outputs. In each iteration, the integer count is used to
compute the number of inputs that lead to the output j. The computation of
count is done by iterating over all inputs (k is used for this iteration).

At the first step f will output the assignment z ← 1. Now, f will do 2m

iterations numbered 0, 1, . . . , 2m−1. At iteration j, f first computes |P−1(j)|.
Note that as observed above in (e), |P−1(j)| can be computed using polynomial
workspace by iterating over all possible inputs, running program P for each
input. After computing |P−1(j)|, f computes |P−1(j)|s and f outputs the SLP

computing |P−1(j)||P−1(j)|·s using variables x0 and y0. Without loss of generality,
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Input: P, r, s where
P is a program, r and s are natural numbers.
Let h0, h1, · · · , hn be the input variables of P and
o0, o1, · · · , om be the output variables of P.

{
int k,j,count,power;
Output(“z ← 1”);
for (j := 0, j < 2m, j ++)
{

count := 0;
for (k := 0, k < 2n, k ++)

{
h0 := k[0]; h1 := k[1]; · · · ; hn := k[n];

P (
−→
h );

if (o0 = j[0]) ∧ (o1 = j[1]) ∧ · · · ∧ (om = j[m])
then count := count+ 1

}
power := count × s;
Output(expSLP (count, power, x0, y0));
Output(“z ← z · y0”);

}
Output(expSLP (2, r, x1, y1));
Output(“y1 ← y1 − 1”);
Output(“res← z − y1”);
}

Fig. 1. Psuedo-code for the good SLP generator f . The �-th bit of j (k, respectively) is
represented by j[�] (k[�], respectively). The command Output(str) outputs the string
str. expSLP (t, u, x, y) is the SLP computing tu using variables x, y with result being
stored in y (See Proposition 3).

we can assume that the variable assigned to in the last statement of the program
for |P−1(j)||P−1(j)|s is y0. After outputting the SLP defining |P−1(j)||P−1(j)|s,
f outputs the assignment z ← z · y0. Using observations (a) and (b) above, it
is easy to see all these 2m iterations can be done using polynomially bounded
space.

After the 2m iterations are over, it is easy to see the SLP output thus far
has value

∏
o∈O|P−1(o)||P−1(o)|·s and that the variable last assigned to is z. f

next outputs the SLP for 2r using variables x1 and y1 with y1 being the variable
assigned to in the last statement of the SLP for 2r. f then outputs the assignment
y1 ← y1 − 1.

Next, f outputs the statement res = z− y1 and then terminates. It is easy to
see using observation (c) above that f is a good SLP generator. and that if S is

the SLP output by f then val(S) =
∏

o∈O|P−1(o)||P−1(o)|·s − 2r + 1. The result
follows from Lemma 1. ��
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Similarly we can show that the quantitative information flow comparison prob-
lem is PSPACE-complete.

Corollary 1. The quantitative information flow comparison problem is PSPACE-
complete for Boolean programs.

Proof. First, we make an observation that we will allow us to assume that the
programs being compared have the same number of input variables. If P is a
program with n inputs, let Pmoreinputs be the program with n+ k inputs which
is constructed from P as follows. Pmoreinputs has exactly the same set of low-
security input variables and the same set of output variables as P . Pmoreinputs

also has each high-security input variable that has P has. In addition P has k new
high security inputs o1new , o

2
new, . . . , o

k
new. The body of the program Pmoreinputs

is exactly the body of the program P (in other words, o1new, o
2
new , . . . , o

k
new are

never utilized in the program). Then using Theorem 1 and Proposition 2, it
follows that SEU(P ) = SEU(Pmoreinputs).

As observed above, we only need to show the upper bound. Now, let P and
P ′ be two programs with the same number of input variables m and with O and
O′ as the set of outputs respectively. If r1 and r2 are the number of low-security
input variables of P1 and P2 respectively then it is easy to see using Theorem 1
and Proposition 2 that

SEU(P ) < SEU(P
′)

iff
m− 1

2m log(
∏

o∈O|P−1(o)||P−1(o)|)− r1 <

m− 1
2m log(

∏
o′∈O′ |P ′−1(o′)||P ′−1(o′)|)− r2

iff
log(

∏
o∈O|P−1(o)||P−1(o)|) >

log(
∏

o′∈O′ |P ′−1(o′)||P ′−1(o′)|) + (r2 − r1)2
m

iff ∏
o∈O

|P−1(o)||P−1(o)| > 2(r2−r1)2
m ∏

o′∈O′
|P ′−1(o′)||P ′−1(o′)|.

Note that 2m is representable by a m-bit integer. The result follows by observing
that we can check if∏

o∈O

|P−1(o)||P−1(o)| > 2(r2−r1)2
m ∏

o′∈O′
|P ′−1(o′)||P ′−1(o′)|.

in PSPACE in a fashion similar to the proof of Theorem 2. ��

5.1 Information Leaked from Timing Behavior

We now turn our attention to the problem of estimating the information leaked
by a program by its timing behavior. [5] propose using the number of steps taken
by a program as an abstraction of timing behavior. Thus, in order to measure
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the information leaked by a program by its timing behavior, we can consider
P as function from its inputs to natural numbers and define the amount of
information leaked by the timing behavior as in Section 3.1. More precisely,

given a program P , with high input variables
−→
h and low input variables

−→
l , let

StepsP : 2
−→
h ×2

−→
l → N be the function such that StepsP (

−→
h 0,

−→
l 0) is the number

of steps in the computation of P (
−→
h 0,

−→
l 0). Now, we can define SEμ(StepsP ) in

a manner analogous to the definition of SEμ(P ).

Definition 2. SEU(StepsP ) is the information leaked by the timing behavior
of P .

A terminating while program takes at most c2t steps, where c is the number of
statements in the program and t is the total number of variables of the program.
The number of steps can be represented as a natural number whose (binary)
size is polynomial in the size of program. It is easy to see that the proofs of
Theorem 2 and Corollary 1 can be modified to show the following (the lower
bounds follow from [5]):

Corollary 2. The problem of bounding information leaked by the timing be-
havior of a Boolean program is PSPACE-complete. The problem of comparing
information leaked by timing behavior of Boolean programs is PSPACE-complete.

6 Conclusions and Future Work

We have shown that the quantitative information flow bounding problem and
the quantitative information flow comparison problem for Boolean programs are
PSPACE-complete. Surprisingly, this matches the PSPACE-completeness of safety
verification of Boolean programs. The same bounds apply when the adversary
observes the number of executions steps and not explicit outputs.

The PSPACE-upper bound result implies that the quantitative information
flow bounding problem is reducible to safety verification of Boolean programs.
While we have not given this direct reduction, one can be obtained by composing
the reductions in the proofs of Lemma 1 and Theorem 2. Thus, in order to check
if the information leaked by a program is less than q we can reduce the problem
to the safety verification problem of Boolean programs and then use an off-the-
shelf verification tool. We are currently investigating this approach.

In order to establish the upper bound, we establish a new result on SLP gener-
ators. In particular, we give sufficient restrictions that ensures that the problem
of checking whether the number defined by the output of an SLP generator F
on input w is strictly positive can be decided in PSPACE. This result may be of
independent interest.
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A Proof of Lemma 1

We recall a couple of definitions before we give the proof of the lemma.

Chinese Remainders: First we recall the the idea of Chinese Remainder Rep-
resentation, CRR, of a number: An m-bit number can be uniquely represented
using its residue modulo polynomially many primes each of which is O(logm)
bits.8. More precisely, if we are given the residues of a number modulo all primes
p < m2 then there is a unique such number among those with less than m-bits.
By the (p, j)-th bit of a CRR of a number N , we will mean the jth bit of the
residue with respect to prime p.

Dlogtime-uniform threshold circuits: A majority gate is one which outputs the
value which occurs in most of its inputs. Boolean Circuits built using majority
gates in addition to the boolean gates are called threshold circuits. The unifor-
mity condition of Dlogtime essentially says that the connection between gates of
the circuit can be determined in logarithmic time.

Let f be a good SLP-generator and let w be an input word of length n. Now,
for SLP f(w), we know that the integers to which the variables evaluate to are
always between −22n to 22

n − 1. So if we define an SLP Xw which computes
22

n

+ val(f(w)) then val(Xw) ≥ 0. Furthermore, val(f(w)) > 0 iff the most
significant bit of val(Xw) and some other bit of val(Xw) is 1. Also note that Xw

uses 2 extra variables (first compute 22
n

using two new variables, then follow it
by the SLP f(w), and finally add the result of 22

n

to f(w)). We can of course fix
the two extra variables (i.e., the same extra two variables will work for all w).

Now we are ready to state the crucial result from [15] which we shall use in
the proof:

Theorem 3. There are Dlogtime-uniform threshold circuits Dm of polynomial
size and constant depth that compute the following transformation:

Input: A number Y , between 0 and 2m in Chinese Remainder Representation
(CRR) using all primes p < m2.

8 A residue of a number N modulo a prime p is the remainder when N is divided by p
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Output: The m bits in the binary representation of Y.

We will apply the Theorem for the case m = 2n + 1. Thus m2 = (2n + 1)2.
First, we observe any bit of the CRR of val(Xw) can be computed in space

polynomial in n. To obtain the bit (p, j) we maintain for each variable in Xw its
residue modulo p and update it according to the statements of Xw. The residue
is a number less than 22n+2 and hence requires O(n) space, and the calculation
for each statement can be done in O(n) time. We also know that the statements
of f(w) can be generated in polynomial space. So altogether any bit in the CRR
of val(Xw) can be computed in PSPACE.

The idea now is to use the circuit D2n+1 to translate the CRR of val(Xw) to
its binary representation and show that any bit in the binary representation of
val(Xw) can be calculated in polynomial space. We show this by showing that
the output of any gate of D2n+1 (when the input is CRR of val(Xw)) can be
computed in polynomial space. This is done by inducting on the height of the
gates present in the circuit. For the base case, we have seen that the input gates
can be computed in PSPACE. For the inductive step, consider any gate G at
height h + 1. We can iterate over all gates G′ of D2n+1 and identify if G′ is a
child of G in polynomial space because the circuit D2n+1 is from a Dlogtime-
uniform family. The children (of which there can be exponentially many) are all
at height h or less and hence output of each one can be computed in PSPACE.
If G is a NOT gate, output of G can be easily computed from its child. If G is a
majority gate, we need only compare the number of children which evaluate to 1
against the number of those that evaluate to 0 which can be done in polynomial
space by maintaining these numbers in binary counters.

In summary, to determine if val(f(w)) > 0 ∈ L(f) we need to identify the
value of two bits in the binary representation of val(Xw) (one most significant
bit and some other guessed bit). Even though f(w) (and hence Xw) can be
exponentially long, the good SLP conditions ensure that we can calculate the
residues of the result in polynomial space. Using this along with Theorem 3 as
above gives us the complete proof of our lemma.
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Abstract. Only recently have approaches to quantitative information
flow started to challenge the presumption that all leaks involving a given
number of bits are equally harmful. This paper proposes a framework to
capture the semantics of information, making quantification of leakage
independent of the syntactic representation of secrets. Secrets are defined
in terms of fields, which are combined to form structures; and a worth as-
signment is introduced to associate each structure with a worth (perhaps
in proportion to the harm that would result from disclosure). We show
how worth assignments can capture inter-dependence among structures
within a secret, modeling: (i) secret sharing, (ii) information-theoretic
predictors, and (iii) computational (as opposed to information-theoretic)
guarantees for security. Using non-trivial worth assignments, we general-
ize Shannon entropy, guessing entropy, and probability of guessing. For
deterministic systems, we give a lattice of information to provide an un-
derlying algebraic structure for the composition of attacks. Finally, we
outline a design technique to capture into worth assignments relevant
aspects of a scenario of interest.

1 Introduction

Quantitative information flow (QIF) is concerned with measuring how much
secret information leaks to an adversary through a system. The adversary is
presumed to have a priori information about the secrets before execution starts
and to access public observables as execution proceeds. By combining a priori
information and public observables, the adversary achieves a posteriori informa-
tion about the secrets. The leakage from an execution is the difference between
a posteriori and a priori information.

This definition of leakage depends on how information is measured. Cachin [1]
advocates that information measures not only include a way to calculate some
numeric value but also offer an operational interpretation, which describes what
aspect of interest is being quantified. Popular information measures include:
Shannon entropy [2–8], which measures how much information is leaked per
guess; guessing entropy [9, 10], which measures how many tries are required
before the secret is correctly guessed; and probability of guessing [11, 12], which
measures how likely it is that a secret is correctly inferred in a certain number
of tries.
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These measures are best suited to sets of monolithic and equally valuable
secrets, so researchers have recently begun to consider richer scenarios. The g-
leakage framework [13] of Alvim et al. makes use of gain functions to quantify
the benefit of different guesses for the secret. However, identifying sufficiently
expressive yet not over-complicated gain-functions is often a challenge. Moreover,
that framework generalizes probability of guessing, but not Shannon entropy or
guessing entropy. Finally, it is not suitable to infinitely risk-averse adversaries.
In this paper we propose an approach that addresses these limitations; a detailed
comparison with g-leakage is given in Section 6.

We model a secret as being partitioned into fields, which are combined to form
structures. Since disclosure of different structures might cause different harms,
a worth assignment is introduced to associate a worth with each structure. For
instance, the secret corresponding to a client’s bank account might comprise two
10-digit structures: a pincode and a telephone number. Leaking the pincode has
the potential to cause considerable harm, so that structure would be assigned
high worth; the telephone number is public information, so this structure would
be assigned low worth.

Assuming that all structures have equal worth can lead to misleading compar-
isons between systems that leak structures with different worths but the same
numbers of bits. Conversely, ignoring the structure of secrets may lead to a
deceptive estimate of the harm from leaking different numbers of bits. Consider
two systems that differ in the way they represent a house address. In system C1,
standard postal addresses are used (i.e., a number, street name, and zip-code);
system C2 uses GPS coordinates (i.e., a latitude and a longtitude, each a signed
10-digit number). Under Shannon entropy with plausible sizes1 for address fields,
C1 requires 129 bits to represent a location that C2 represents using 69 bits. Yet
the same content is revealed whether C1 leaks its 129 bits or C2 leaks its 69 bits.
(The a priori information for addresses in C1 is not zero, since certain values
for a house number, street name, and zip-code can be ruled out. And a similar
argument can be made for C2, given knowledge of habitable terrain. Accounting
for idiosyncrasies in the syntactic representation of secrets, however, can be a
complicated task, hence an opportunity for error. Worth assignments avoid some
of that complexity.)

When secrets are not modeled as monolithic, distinct structures within a
given secret may be correlated. A clever adversary, thus, might infer information
about a structure with more worth (and presumably better protected) by attack-
ing a correlated structure with less worth (and presumably less well protected).
For instance, the location of a neighborhood is often correlated to the polit-
ical preferences of its residents, so an adversary may target a person’s house
address to infer information about what political party they support. Worth
assignments can model such correlations and adjust the relative worth of struc-
tures. Moreover, they can capture the computational complexity of inferring one
structure from the other, which is a common limitation of information theoretical

1 Specifically, assume a 5-digit house number, a 20-character alphabetic street name,
and a 5-digit zip-code.
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approaches to QIF. As an example, a public RSA key is a perfect predictor, in
an information theoretical sense, for the corresponding private key. In practice,
however, the public key should not be assigned the same worth as the private
key because a realistic adversary is not expected to retrieve the latter from the
former in viable time.

In this paper, we propose measures of information worth that incorporate the
structure and worth of secrets. As in other QIF literature, we assume the adver-
sary performs attacks, controlling the low input to a probabilistic system execu-
tion and observing the low outputs. An attack induces a probability distribution
on the space of secrets according to what the adversary observes. This charac-
terization admits measures of information worth for the information contained
in each distribution; leakage is then defined as the difference in information be-
tween distributions. Our approach generalizes probability of guessing, guessing
entropy, and Shannon entropy to admit non-trivial worth assignments. Yet our
work remains consistent with the Lattice of Information [14] for deterministic
systems, which is an underlying algebraic structure for sets of system executions.

The main contributions of this paper are:

– We propose a framework of structures and worth assignments to capture the
semantics of information, making the quantification of leakage independent
of the particular representation chosen for secrets.

– We show how to use worth assignments to model the inter-dependence among
structures within a given secret, capturing practical scenarios including: (i)
secret sharing, (ii) information-theoretic predictors, and (iii) computational
(as opposed to information-theoretic) guarantees for security.

– We generalize Shannon entropy and guessing entropy to incorporate worth
explicitly, and we introduce other measures without traditional equivalents.
We show that our theory of measures of information worth and the g-leakage
framework are not comparable in general, although they do overlap.

– We prove that our measures of information worth are consistent with the
Lattice of Information for deterministic systems, which allows sound reason-
ing about the composition of attacks in such systems.

– We outline a design technique for worth assignments that capture the follow-
ing aspects of the scenario of interest: (i) secrecy requirements that determine
what structures are intrinsically sensitive, and by how much, (ii) consistency
requirements that ensure the adequacy of the worth assignment, and (iii) the
adversarial knowledge that may be of help in attacks.

The paper is organized as follows. Section 2 describes our model for the struc-
ture and worth of secrets in probabilistic systems. Section 3 uses worth as-
signments to propose measures of information worth. Section 4 shows that the
proposed measures are consistent with respect to the Lattice of Information for
deterministic systems under composite attacks. Section 5 outlines a technique
for designing adequate worth assignments for a scenario of interest. Finally, Sec-
tion 6 discusses related work, and Section 7 concludes the paper. Full proofs can
be found in the Appendix of the corresponding technical report [15].
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2 Modeling the Structure and Worth of Secrets

We decompose secrets into elementary units called fields, each a piece of infor-
mation with a domain. Let F = {f1, . . . , fm} denote the (finite) set of fields in
some scenario of interest, and for 1 ≤ i ≤ m, let domain(fi) be the domain of
values for field fi. A structure is a subset f ⊆ F , and if f = {fi1 , · · · , fik}, its
domain is given by domain(f) = domain(fi1) × · · · × domain(fik). The set of
all possible structures is the power set P(F) of fields, and the structure f = F
containing all fields is called the maximal structure.

A secret s is a mapping from the maximal structure to values, i.e., s =
〈s[f1], . . . , s[fm]〉, where s[fi] ∈ domain(fi) is the value assumed by field fi.
Hence the set S of possible secrets is S = domain(F). Given a secret s and a
(not necessarily maximal) structure f ⊆ F , we call a sub-secret s[f] the projection
of s on the domain of f, and the set of all possible sub-secrets associated with
that structure is S[f] = domain(f).

Structures may carry some valuable piece of information on their own. A worth
assignment attributes to each structure a non-negative, real number. Worth may
be seen as the utility obtained by an adversary who learns the contents of the
structure, or it may be seen as the damage suffered should the contents of the
structure become known to that adversary.

Definition 1 (Worth assignment). A worth assignment is a function ω :
P(F)→ R from the set of structures to reals, satisfying for all f, f′ ∈ P(F): (i)
non-negativity: ω(f) ≥ 0, and (ii) monotonicity: f ⊆ f′ =⇒ ω(f) ≤ ω(f′).

We require non-negativity of ω because the knowledge of the contents of a struc-
ture should not carry a negative amount of information, and we require mono-
tonicity because every structure should be at least as sensitive as any of its parts.
Note that monotonicity implies that the worth of the maximal structure, ω(F),
is an upper bound for the worth of every structure.

Expressiveness of Worth Assignments. The worth of a structure should
appropriately represent the sensitivity of that structure in a scenario of inter-
est. Consider a medical database where a secret is a patient’s entire record,
and structures are sub-sets of that record (e.g., a patient’s name, age, smoking
habits). The worth assigned to an individual’s smoking habits should reflect:
(i) how much the protector (i.e., the party interested in keeping the secret con-
cealed) cares about hiding whether an individual is a smoker, (ii) how much an
adversary would benefit from learning whether an individual is a smoker, and,
more subtly, (iii) how effective (information-theoretically and/or computation-
ally) a predictor an individual’s smoking habits are for other sensitive structures
(for instance, heavy smokers are more likely to develop lung cancer, and insur-
ance companies may deny them coverage based on that). Worth assignments can
capture these aspects, modeling also:

a) Semantic-based leakage. Worth assignments provide a natural means to
abstract from syntactic idiosyncrasies and treat structures according to mean-
ing. In the bank system of Section 1, for instance, we would assign higher
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worth to the 10-digit pincode than to the 10-digit telephone number, thus
distinguishing among eventual 10-digit leaks according to relevance:

ω({pin-code}) > ω({telephone number}).

Conversely, structures with equivalent meanings should be assigned the same
worth, regardless of representation. For instance, the worth of all structures
corresponding to an address should be the same, whether it is represented in
GPS coordinates or in the standard postal address format:

ω({GPS address}) = ω({postal address}).

b) Secret sharing. The combination of two structures may convey more worth
than the sum of their individual worths. In secret sharing, for instance, dif-
ferent persons retain distinct partial secrets (i.e., structures) that in isolation
give no information about the secret as a whole (i.e., the maximal struc-
ture), but that reveal the entire secret when combined. As another example,
a decryption key without any accompanying ciphertext is of little worth, so
each corresponding structure should have, in isolation, a worth close to zero.
When combined, however, the benefit to the adversary exceeds the sum of
their individual worths:

ω({ciphertext, decryption key})' ω({ciphertext}) + ω({decryption key}).

c) Correlation of structures. Knowledge of a particular structure may imply
knowledge of another (e.g., if the adversary has access to tax files, learning
someone’s tax identification number implies learning their name as well), or
it may increase the probability of learning another structure (recall the corre-
lation between smoking habits and lung cancer). An adversary might exploit
correlations between different structures within a given secret to obtain infor-
mation about a more important (and presumably better protected) structure
through a less important (and presumably less well protected) structure. By
considering the distribution on secrets and the capabilities of the adversary,
we can adjust the relative worth of one structure with respect to any other,
thus avoiding potentially harmful loopholes. In particular, worth assignments
can model:

(i) Information-theoretic predictors. The worth of a structure should
reflect the worth it carries, via correlation, from other structures. For
instance, when an individual’s identity can be recovered with 60% prob-
ability from the combination of the zip-code, date of birth, and gen-
der [16], we might enforce ω({zip-code, date of birth, gender}) to be at
least as great as 60% of the worth ω({identity}). More generally, given
any two structures f, f′ ∈ P(F), the requirement

ω(f) ≥ correlation(f, f′) · ω(f′)

might be imposed on a worth assignment ω. Here correlation(f, f′) is a
function representing how well f predicts f′.
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(ii) Computational effort. Even perfect information-theoretic correla-
tions among structures may not be of practical use for the adversary
(e.g., the correlation of public and private RSA keys). Worth assign-
ments can reflect this. We can impose, on any two structures f, f′ ∈
P(F), the requirement

ω(f) > ω(f′)/cost(f, f′),

where cost(f, f′) is a function of the computational effort needed to ob-
tain f′ from f.

2.1 A Worth-Based Approach to QIF

s

(secret)

a

(attack)

C
(System)

o

(observable)

Fig. 1. A system with one
high input, one low input, and
one low output

We adopt a probabilistic version of the model
of deterministic systems and attacks proposed by
Köpf and Basin [17]. Let S be a finite set of secrets,
A be a finite set of adversary-controlled inputs or
attacks, and O be a finite set of observables. A
(probabilistic computational) system is a family
C = {(S,O, Ca)}a∈A of (information-theoretic)
channels parametrized by the adversary-chosen
input a ∈ A. Each (S,O, Ca) is a channel in which S is the channel input,
O is the channel output, and Ca is a |S| × |O| matrix of conditional probability
distributions called the channel matrix. Each entry Ca(s, o) in the matrix repre-
sents the probability of the system producing observable o when the secret is s
and the adversary-chosen low input is a. Given a probability distribution pS on
S, the behavior of the system under attack a is described by the joint distribution
pa(s, o) = pS(s) · Ca(s, o), with marginal pa(o) =

∑
s pa(s, o), and conditional

distribution pa(s|o) = pa(s, o)/pa(o) whenever pa(o) > 0 (and similarly for pa(s)
and pa(o|s)).

As is usual in QIF, assume that the adversary knows the probability distri-
bution pS on the set of secrets and the family of channel matrices C describing
the system’s behavior. By controlling the low input, the adversary can launch
an attack as follows: pick a ∈ A so the channel matrix is set to Ca, thereby ma-
nipulating the behavior of the system. The adversary’s goal is to infer as much
information as possible from the secret, given knowledge about how the system
works, the attack fed to the system, and the observations made as the system
executes.

Let Ω be the set of all possible worth assignments for the structures of S,
Pr(S) be the set of all probability distributions on S, and CA be the set of channel
matrices induced by attacks a ∈ A. A measure of information worth is a function
ν : Ω×Pr(S)×CA → R+. The quantity ν(ω, pS , Ca) represents the a posteriori
information with respect to S revealed by attack Ca ∈ CA, given probability
distribution pS ∈ Pr(S) on secrets and worth assignment ω ∈ Ω. Before any
attack is performed, the adversary has some a priori information about the
secret due to knowledge of pS and ω only, and we represent this information by
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ν(ω, pS). Because the attack is expected to disclose secret information to the
adversary, the leakage from an attack Ca is defined as the difference2, between
the a posteriori and a priori information associated with Ca.

Before discussing measures of information, we will fix some additional no-
tation. For any S ′ ⊆ S we denote by pS(·|S ′) the normalization of pS with
respect to S ′, i.e., for every s ∈ S, pS(s|S ′) = pS(s)/pS(S ′) if s ∈ S ′, and
pS(s|S ′) = 0 otherwise. The support of a distribution pS is denoted supp(pS).
A set P = {S1, . . . ,Sn} is a partition on S iff: (i)

⋃
Si∈P Si = S, and (ii) for

1 ≤ i 
= j ≤ n, Si ∩ Sj = ∅. Each Si ∈ P is called a block in the par-
tition. We denote the set of all partitions in S by LoI(S) 3. Following [10],
any partition Pa = {So1 , . . . ,Son} on S induced by the attack a can be seen
as a random variable with carrier {So1 , . . . ,Son} and probability distribution
pS(Soi) =

∑
s∈Soi

pS(s).

3 Measures of Information Worth

3.1 Operational Interpretation of Measures Revisited

One of Shannon’s greatest insights, which ultimately led to the creation of the
field of information theory, can be formulated as: information is describable in
terms of answers to questions. The more information the adversary has about
a random variable, the fewer questions of a certain type that must be asked in
order to infer its value, and the smaller the Shannon entropy of this random
variable.

Formally, the Shannon entropy of a probability distribution pS is defined as
SE(pS) = −

∑
s pS(s) log pS(s), and the conditional Shannon entropy of pS given

a channel Ca is defined as SE(pS , Ca) =
∑

o∈O pa(o)SE(pa(·|o)). A possible
operational interpretation of this measure is: The adversary can pose questions
Does S ∈ S ′?, for some S ′ ⊆ S, to an oracle, and Shannon entropy quantifies
the expected minimum number of guesses needed to infer the entire secret with
certainty. A decrease in the Shannon entropy of the secret space caused by a
system can be seen as the leakage from the system. This question-and-answer
interpretation has an algorithmic equivalent: S is seen as a search space, and by
repeatedly asking questions Does S ∈ S ′?, the adversary is performing a binary
search on the space of secrets. Now, Shannon entropy corresponds to the average
height of the optimal binary search tree.

However, Shannon entropy is not the unique meaningful measure of informa-
tion. Guessing entropy allows the adversary to pose a different type of question;
whereas probability of guessing quantifies a different aspect of the scenario of

2 Braun et al. [12] make a distinction between this definition of leakage, called additive
leakage, and multiplicative leakage, where the ratio (rather than the difference) of the
a posteriori and a priori information is taken. Divisions by zero avoided, the results
of this paper apply to both definitions. For simplicity, we adopt the first.

3 LoI stands for Lattice of Information. The reason for this nomenclature is clarified
in Section 4.1.
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Table 1. Operational interpretation for three traditional information-flow measures,
and a new measure. The question mark indicates the value of measure.

Measure
d1: Type of

question
d2: Num.
questions
in attack

d3: Prob.
of attack
successful

Shannon entropy Does S ∈ S ′? ? S is inferred
SE(pS) with prob. 1

Guessing entropy Is S = s? ? S is inferred
NG(pS) with prob. 1

Prob. of guessing Is S = s? n guesses ?
PGn(pS) allowed

Prob. of guessing under ∈ Does S ∈ S ′? n guesses ?
PG∈

n(pS) allowed

interest. Yet, the operational interpretation of these measures also can be de-
scribed in terms of questions and answers as follows.

For simplicity, assume that elements of S are ordered by decreasing probabil-
ities, i.e., if 1 ≤ i < j ≤ |S| then pS(si) ≥ pS(sj). The guessing entropy of pS
is defined as NG(pS) =

∑|S|
i=1 i · pS(si), and the conditional guessing entropy of

pS given a channel Ca is defined as NG(pS , Ca) =
∑

o∈O pa(o)NG(pa(·|o)). An
operational interpretation of guessing entropy is: The adversary can pose ques-
tions Is S = s?, for some s ∈ S, to an oracle, and guessing entropy quantifies the
expected number of guesses needed to learn the entire secret. Algorithmically,
guessing entropy is the expected number of steps needed for the adversary to
find the secret using linear search on the space of secrets.

Still assuming that the elements of S are in decreasing order of probabili-
ties, the probability of guessing the secret in n tries is defined as PGn(pS) =∑n

i=1 pS(si). The conditional probability of guessing of pS in n tries given a
channel Ca is defined as PGn(pS , Ca) =

∑
o∈O pa(o)PGn(pa(·|o)). An opera-

tional interpretation of probability of guessing in n tries is: The adversary can
pose questions Is S = s?, for some s ∈ S, and the measure quantifies the proba-
bility of guessing the entire secret in n tries. Algorithmically, the probability of
guessing is the chance of success by an adversary performing a linear search on
the space of secrets, after n steps.

Note that the landscape of these measures is covered by varying three dimen-
sions of their operational interpretation:
d1: the type of question the adversary is allowed to pose;
d2: the number of questions (guesses) the adversary is allowed to pose;
d3: the probability of success, i.e., that of the adversary inferring the secret.

Table 1 summarizes the operational interpretation of Shannon entropy, guess-
ing entropy and probability of guessing in terms of dimensions d1, d2, and d3.
The type of question is fixed for each measure; the other two dimensions have a
dual behavior: one is fixed and the other one is quantified. In particular, Shannon
entropy and guessing entropy fix the probability of guessing the secret to be 1
and quantify the number of questions necessary to do so; probability of guessing
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fixes the number of guesses to be n and quantifies the probability of the secret
being guessed.

We add a fourth row to Table 1 for a measure whose operational interpreta-
tion is: The adversary can pose questions Does S ∈ S ′?, for some S ′ ⊆ S, to an
oracle, and the measure quantifies the probability of guessing the entire secret in
n tries. Algorithmically, this measure is analogous to the probability of guessing
but allowing the adversary to perform a binary (rather than linear) search on
the space of secrets. The probability of guessing under ∈, in n tries, of a distri-
bution pS is defined as PG∈

n(pS) = maxP∈LoI(S),|P|≤2n
∑

S′∈P,|S′|=1 pS(·|S ′). The
conditional probability of guessing under ∈, in n tries, of pS given a channel Ca

is defined as PG∈
n(pS , Ca) =

∑
o∈O pa(o)PG∈

n(pa(·|o)).

Worth as a New Dimension. The traditional measures in Table 1 presume
secrets are monolithic and equally sensitive. We relax this restriction by intro-
ducing a new dimension to the operational interpretation of measures:

d4: the worth the adversary extracts from a guess.

We can enrich the landscape of measures of information with new definitions
that exploit the extra freedom allowed by the new dimension d4. As with the
traditional case, for each measure we fix the type of question the adversary is
allowed to pose and vary the role played by the other three dimensions. Hence
we classify the measures into three groups:

– W -measures quantify the worth extracted from an attack when the follow-
ing dimensions are fixed: (i) the number of questions that can be posed, and
(ii) the required probability of success.

– N -measures quantify the number of guesses the adversary needs in order
to succeed when the following dimensions are fixed: (i) the required proba-
bility of success, and (ii) a minimum worth-threshold to extract as measured
according to a W -measure ν modeling the adversary’s preferences.

– P-measures quantify the probability of an attack being successful when
the following dimensions are fixed: (i) the number of questions that can be
posed, and (ii) a minimum worth-threshold to extract as measured according
to a W -measure ν modeling the adversary’s preferences.

According to this classification, Shannon entropy and guessing entropy are
N -measures, and probability of guessing is a P -measure (all of them implicitly
using a trivial worth assignment). Table 2 organizes the measures of information
worth we propose in this paper. The new table subsumes Table 1 of traditional
measures.

W -measures are used to specify the fixed worth-threshold necessary to fully
define P -measures and N -measures, and hence we will start our discussion with
them. First we introduce a few conventions.

Assume that the set S of secrets follows a probability distribution pS , and that
its fields are given by set F . Assume also that an appropriate worth assignment
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Table 2. Operational interpretation for measures of information worth. The question
mark indicates the value of the measure.

W -measures:
quantifying worth

d1: Type of
question

d2: Num.
questions
in attack

d3: Prob.
of attack
successful

d4: Worth of
payoff to attacker

Worth of certainty Does S ∈ S ′? 1 guess success with ?
WCER(ω, pS) allowed prob. 1

W -vulnerability Does S ∈ S ′? 1 guess ?
WV (ω, pS) allowed (product prob. × worth)

Worth of exp. = Is S = s? n guesses success with ?
WEXP=

n,ν(ω, pS) allowed prob. 1 (using W -measure ν)

N -measures:
quantifying number

of guesses

d1: Type of
question

d2: Num.
questions
in attack

d3: Prob.
of attack
successful

d4: Worth of
payoff to attacker

W -guessing entropy Is S = s? ? success with extracted worth w
WNGw,ν(ω, pS) prob. 1 (using W -measure ν)

W -Shannon entropy Does S ∈ S ′? ? success with extracted worth w
WSEw,ν(ω, pS) prob. 1 (using W -measure ν)

P-measures:
quantifying prob. of

success

d1: Type of
question

d2: Num.
questions
in attack

d3: Prob.
of attack
successful

d4: Worth of
payoff to attacker

W -prob. of guessing Does S ∈ S ′? n guesses ? extracted worth w
WPG∈

w,n,ν(ω, pS) allowed (using W -measure ν)

ω is provided. For an attack Ca producing observables in a set O, the infor-
mation conveyed by each o ∈ O is the information contained in the probability
distribution pa(·|o) that o induces on secrets. A measure of information worth is
composable if the value of an attack can be calculated as a function of informa-
tion conveyed by each observable: ν(ω, pS , Ca) =

∑
o∈O pa(o)ν(ω, pS(·|o)). All

measures we propose in this paper are composable, but they easily extend to
worst-case versions. Finally, define the worth of a secret s ∈ S to be the worth
of learning all of its fields, i.e., ω(s) = ω(F).

3.2 W -measures

Worth of Certainty. Consider a risk-averse adversary who is allowed to guess
any part of the secret—as opposed to the secret as a whole—but who will do so
only when absolutely certain the guess will succeed. To model this scenario, we
note that a field is deducible with certainty from pS if its contents is the same in
every secret in the support of the distribution. Formally, the deducible fields from
pS are defined as ded(pS) = F \ {f ∈ F | ∃s′, s′′ ∈ supp(pS) : s′[f ] 
= s′′[f ]}.
For an attack Ca producing observables in a set O, the deducible fields from
each o ∈ O are those that can be inferred from the probability distribution
ded(pa(·|o)) that o induces on secrets. The information contained in a probability
distribution is defined as the worth of its deducible fields.
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Definition 2 (Worth of certainty). The worth of certainty of pS is defined
as WCER(ω, pS) = ω(ded(pS)). The worth of certainty of an attack Ca is a
W -measure defined as WCER(ω, pS, Ca) =

∑
o∈O pa(o)WCER(ω, pa(·|o)).

W -vulnerability. Consider an adversary who can guess a less likely struc-
ture, provided that this structure is worth enough to yield a higher overall
expected gain. Formally, for every structure f ⊆ F , we define pS(f) to be the
probability that f can be deduced by an adversary knowing the distribution pS :
pS(f) = maxx∈S[f]

∑
s∈S,s[f]=x pS(s). A rational adversary maximizes the product

of probability and worth, so we define W -vulnerability as follows.

Definition 3 (W -vulnerability). The W -vulnerability of pS is defined as
WV (ω, pS) = maxf⊆F (pS(f)ω(f)). The W -vulnerability of an attack Ca is a
W -measure defined as WV (ω, pS , Ca) =

∑
o∈O pa(o)WV (ω, pa(·|o)).

Worth of expectation under =. Consider an adversary who can explore the
space of secrets using brute force, i.e., by guessing the possible values of the
secret, one by one. Assume that this adversary is allowed n ≥ 0 tries. The aim is
to extract as much worth as possible according to some W -measure ν modeling
the adversary’s preferences. This leads to the following measure.

Definition 4 (Worth of expectation under =). Let n ≥ 0 be the maximum
number of tries allowed for the adversary. The worth of expectation under = of
pS is WEXP=

n,ν(ω, pS) = maxS′⊆S,|S′|≤n

(
pS(S ′)ω(F) + pS(S̄ ′)ν(ω, pS(·|S̄ ′))

)
,

where S̄ ′ = S\S ′. The worth of expectation under = of an attack Ca is a W -
measure defined as WEXP=

n,ν(ω, pS , Ca) =
∑

o∈O pa(o)WEXP=
n,ν(ω, pa(·|o)).

3.3 N -measures

W -guessing entropy. Consider an adversary who can ask questions Is S = s?
but who, instead of having to guess the secret as a whole, can fix a minimum
worth 0 ≤ w ≤ ω(F) to obtain according to some W -measure ν modeling the
adversary’s preferences. A generalized version of guessing entropy quantifies the
expected number of questions to obtain a minimum worth w from such attacks.

Definition 5 (W -guessing entropy). Let 0 ≤ w ≤ ω(F) be a worth thresh-
old quantified according to a W -measure ν. The W -guessing entropy of pS is
WNGw,ν(ω, pS)=minS′⊆S,ν(ω,pS(·|S′))≥w

(
pS(S̄ ′)NG(pS(·|S̄ ′))+pS(S ′)(|S̄ ′|+ 1)

)
,

where S̄ ′ = S\S ′. The W -guessing entropy of an attack Ca is a N -measure de-
fined as WNGw,ν(ω, pS , Ca) =

∑
o∈O pa(o)WNGw,ν(ω, pa(·|o)).

W -Shannon entropy. Consider an adversary who is allowed to ask questions
of the type Does S ∈ S ′? but who, instead of having to guess the entire secret,
can fix a minimum worth-threshold 0 ≤ w ≤ ω(F) to extract according to a
W -measure ν. A generalized version of Shannon entropy quantifies the expected
number of questions necessary to obtain worth w from the attacks.
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Definition 6 (W -Shannon entropy). Let 0 ≤ w ≤ ω(F) be a worth threshold
quantified according to a W -measure ν. The W -Shannon entropy of pS is defined
asWSEw,ν(ω, pS) = minP∈LoI(S),∀S′∈P ν(ω,pS(·|S′))≥w SE(pP). The W -Shannon
entropy of the distribution pS, given an attack Ca, is a N -measure defined as
WSEw,ν(ω, pS , Ca) =

∑
o∈O pa(o)WSEw,ν(ω, pa(·|o)).

3.4 P-measures

W -Probability of Guessing. Consider an adversary allowed to pose n ques-
tions of the type Does S ∈ S ′?. The following measure quantifies the chances of
extracting worth 0 ≤ w ≤ ω(F), as measured by some W -measure ν, from an
attack. Given n questions, at most 2n blocks can be inspected, which leads to
the following mathematical definition.

Definition 7 (W -probability of Guessing). Let 0 ≤ w ≤ ω(F) be a worth
threshold quantified according to a W -measure ν, and n ≥ 0 be the maximum
number of tries allowed for the adversary. The W -probability of guessing of
pS is WPG∈

w,n,ν(ω, pS) = maxP∈LoI(S),|P|≤2n
∑

S′∈P,ν(ω,pS(·|S′))≥w pS(S ′). The
W -probability of guessing of an attack Ca is a P-measure defined as follows:
WPG∈

w,n,ν(ω, pS , Ca) =
∑

o∈O pa(o)WPG∈
w,n,ν(ω, pa(·|o)).

3.5 Mathematical Properties of Measures of Information Worth

The proposed measures of information worth by definition always yield non-
negative values. It is a subtler matter, however, to show that they also always
yield non-negative values for leakage. Theorem 1 below shows that non-negativity
of leakage holds for our measures of information worth under certain conditions.
Because N -measures and P -measures have a W -measure as an input parame-
ter to model the preferences of the adversary, we restrict consideration to W -
measures presenting a consistent behavior with respect to the number of possible
values for the secret. Intuitively, whenever some secret value is ruled out from
the search space, the adversary’s information about the secret, according to the
measure, does not decrease. Formally:

Definition 8 (Monotonicity with respect to blocks). Given a set S of
secrets, a W -measure ν is said to be monotonic with respect to blocks if, for
every worth assignment ω, every probability distribution pS on S, and all subsets
(i.e., blocks) S ′,S ′′ of S such that S ′ ⊆ S ′′, it is the case that ν(ω, pS(·|S ′)) ≥
ν(ω, pS(·|S ′′)). When ν quantifies uncertainty, the inequality is reversed.

At first it might seem that monotonicity with respect to blocks would hold for
every W -measure. But this is not the case. It does hold for worth of certainty,
for instance, but it does not hold for W -vulnerability, as shown in the following
example.

Example 1. The vulnerability of a probability distribution pS is calculated as
V (pS) = maxs p(s). Consider the block S′ = {s1, s2, s3, s4} of secrets, where
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p(s1) = 1/2 and p(s2) = p(s3) = p(s4) = 1/6. Then V (S′) = 1/2. Suppose that
S′ is split into blocks S′′ = {s1} and S′′′ = {s2, s3, s4}. Hence, even if S′′′ ⊆ S′,
we have V (S′′′) = 1/3 < V (S′). Since traditional vulnerability is a particular
case of W -vulnerability (Theorem 2), the example is also valid for the former.

In probabilistic systems, the adversary’s knowledge is not tied to blocks of
secrets but to probability distributions induced by observations. The concept of
monotonicity is generalized accordingly.

Definition 9 (Monotonicity with respect to observations). Given a set S
of secrets, a measure of information worth ν is said to be monotonic with respect
to observations if for every worth assignment ω, every probability distribution pS
on S, and all observables o ∈ O: ν(ω, pS(·|o)) ≥ ν(ω, pS(·)). When ν quantifies
uncertainty, then the inequality is reversed.

From Example 1 it follows that W -vulnerability is not monotonic with respect
to observations. It is easy to see, however, that worth of uncertainty is.

The following theorem establishes the non-negativity of leakage by showing
that the adversary’s information after an attack is never smaller than the a priori
information.

Theorem 1. Let S be a set of secrets composed by the fields in F and let Ca be
an attack. Let ν be a W -measure that is monotonic with respect to observations,
n ≥ 0 be the number of guesses allowed for the adversary, and 0 ≤ w ≤ ω(F).
For every distribution pS on S and every worth assignment ω:

WCER(ω, pS , Ca) ≥WCER(ω, pS) (1)
WV (ω, pS , Ca) ≥WV (ω, pS) (2)

WEXP=
n,ν(ω, pS , Ca) ≥WEXP=

n,ν(ω, pS) (3)

WNGw,ν(ω, pS , Ca) ≤WNGw,ν(ω, pS) (4)
WSEw,ν(ω, pS , Ca) ≤WSEw,ν(ω, pS) (5)

WPG∈
w,n,ν(ω, pS , Ca) ≥WPG∈

w,n,ν(ω, pS) (6)

3.6 Relation with Traditional Measures

We now substantiate our claim that Shannon entropy, guessing entropy, and
probability of guessing (and, in particular, vulnerability) are measures of infor-
mation that ignore the worth of structures. Define the binary worth assignment
ωbin that attributes zero worth to any proper structure, i.e., ωbin(f) = 1 if f = F ,
ωbin(f) = 0 if f ⊂ F . Theorem 2 asserts that the traditional measures implicitly
use ωbin as a worth assignment, which means that only the maximal structure is
deemed to be conveying relevant information. For instance, the theorem states
that Shannon entropy is the particular case of W -Shannon entropy in which the
adversary must perform a binary search to the maximum level of granularity,
i.e., until the secret is unequivocally identified.
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Theorem 2. Let S be a set of secrets distributed according to pS, and let Ca be
an attack. Then the following hold:

SE(pS , Ca) =WSE1,WCER(ωbin , pS , Ca) (7)
NG(pS , Ca) =WNG1,WCER(ωbin , pS , Ca) (8)
PGn(pS , Ca) =WEXP=

n,νnull
(ωbin , pS , Ca) (∀n ≥ 0) (9)

V (pS |Ca) =WV (ωbin , pS , Ca) (10)

where νnull is a W -measure such that νnull (ω, pS) = 0 for every ω and pS.

4 Algebraic Structure for Measures of Information Worth
in Deterministic Systems

4.1 Deterministic Systems and Attack Sequences

In a deterministic system C, for each pair of high input s ∈ S and and low
input a ∈ A, a single output o ∈ O is produced with probability 1. Therefore
each attack a ∈ A induces a partition Pa on the set of secrets, where each
block Sa,o ∈ Pa contains all secrets mapped to o when the low input to the
system is a, i.e., Sa,o = {s ∈ S|C(s, a) = o}. When the attack is clear from the
context, we write So for Sa,o. An attack step can be described mathematically as
C(s, a) ∈ Pa, which is a two-phase process: (i) the adversary chooses a partition
Pa on S, corresponding to attack a ∈ A, and (ii) the system responds with the
block So ∈ Pa that contains the secret.

The adversary may perform multiple attack steps for the same secret. The
adversary combines information acquired in an attack sequence â = at1 , . . . , atk
of k steps by intersecting the partitions corresponding to each step in the se-
quence, thereby obtaining a refined partition4 Pâ =

⋂
a∈â Pa. Hence an attack

sequence â can be modeled as a single attack where the adversary chooses the
partition Pâ as the low input to the system and obtains as an observable the
block to which the secret s belongs. Formally, C(s, â) ∈ Pâ holds.

4.2 The Lattice of Information and the Leakage from Attack
Sequences

The set of all partitions on a finite set S forms a complete lattice called the Lattice
of Information (LoI) [14]. The order on lattice elements is the refinement order
� on partitions: P � P′ iff for every Sj ∈ P′ there exists Si ∈ P such that
Sj ⊆ Si. The relation � is a partial order on the set of all partitions on S. The
join � of two elements in the LoI is the intersection of partitions, and their meet
� is the transitive closure union of partitions. Given two partitions P and P′,
both P � P′ and P � P′ are partitions as well. We fix the deterministic system
and let the elements in the LoI model possible executions. By controlling the
4 The intersection of partitions is defined as P ∩ P′ =

⋃
So∈P,So′∈P′ So ∩ So′ .
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low input to the system, the adversary chooses among executions, so the LoI
serves as an algebraic representation of the partial order on the attack sequences
the adversary can perform. Each attack sequence â corresponds to one element
Pâ—i.e., the partition it induces—in the LoI for S.

An attack sequence can be seen as a path in the LoI. Each attack sequence
is mapped to an element in the lattice, and by performing an attack step the
adversary may obtain a finer partition on the space of secrets, therefore moving
up in the lattice to a state with more information. The leakage of information
from an attack sequence is, thus, the difference in the measures of information
worth between the initial and final partition in the path. This definition of
leakage encompasses the traditional definitions for Shannon entropy, guessing
entropy, and probability of guessing.

4.3 Consistency with Respect to the LoI

The Lattice of Information has been used as an underlying algebraic structure
for deterministic systems, and it provides an elegant way to reason about leakage
under composition of attacks. Yasuoka and Terauchi [18] showed that orderings
based on probability of guessing, guessing entropy, and Shannon entropy are all
equivalent, and Malacaria [10] showed that they coincide with the refinement
order in the LoI. These results establish that the traditional measures behave
well with respect to the LoI: the finer a partition is, the more information (or
the less uncertainty) the measures attribute to it.

All measures of information worth proposed in Section 3 behave in a simi-
lar way. That is, they are consistent with respect to the LoI. This is formally
established in the following theorem.

Theorem 3. Let S be a set of secrets composed by the fields in F . For all P
and P′ in the LoI for S, the following are equivalent:

P �P′ (11)
∀ω ∀pS WCER(ω, pS ,P) ≤WCER(ω, pS ,P

′) (12)
∀ω ∀pSWV (ω, pS ,P) ≤WV (ω, pS ,P

′) (13)
∀n ∀ν ∀ω ∀pS WEXP=

n,ν(ω, pS ,P) ≤WEXP=
n,ν(ω, pS ,P

′) (14)

∀w ∀ν ∀ω ∀pS WNGw,ν(ω, pS ,P) ≥WNGw,ν(ω, pS ,P
′) (15)

∀w ∀ν ∀ω ∀pS WSEw,ν(ω, pS ,P) ≥WSEw,ν(ω, pS ,P
′) (16)

∀w ∀n ∀ν ∀ω ∀pSWPG∈
w,n,ν(ω, pS ,P) ≤WPG∈

w,n,ν(ω, pS ,P
′) (17)

where n ≥ 0; 0 ≤ w ≤ ω(f), and ν ranges over all composable W -measures
that are consistent with respect to the LoI plus the worth of certainty measure
WCER. In (15) and (16) ν is restricted to be monotonic with respect to blocks.

5 A Design Technique for Worth Assignments

We now outline a general technique to capture into worth assignments relevant
aspects of some given scenario of interest.
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Fig. 2. Scheme of a design technique
for worth assignments

The domain of worth assignments is the
power set P(F) of the set F of fields. By
endowing P(F) with the set-inclusion or-
dering, we obtain a (complete) lattice of
structures LF . For every structure f ∈
P(F) there is a partition Pf, belonging
to the LoI, distinguishing structure f. For-
mally, Pf = {Ss[f]=x | x ∈ S[f]} where
to every x ∈ S[f] corresponds the block
Ss[f]=x = {s ∈ S | s[f] = x}. Proposition 1
shows that the set-inclusion ordering on structures coincides with the refinement
relation on the corresponding partitions, thereby establishing that the space of
structures is a sub-lattice of the LoI.

Proposition 1. For every f, f′ ∈ P(F): f ⊆ f′ iff Pf � Pf′ .

Hence, the space of structures LF is isomorphic to the complete lattice formed
by all partitions Pf for f ⊆ F , ordered by the refinement relation �.

Figure 2 depicts our design technique, which constructs a worth assignment
having as input the following three parameters describing a scenario of interest.

a) Adversarial knowledge is any relevant information the adversary knows
from sources external to the system (e.g., newspapers, common-sense, other
systems). As usual in QIF and privacy, adversarial knowledge is modeled as
a probability distribution on the space of secrets [19–21].

b) Secrecy requirements reflect the protector’s (i.e., the party interested in
hiding the secret) interests, specifying which structures are intrinsically sen-
sitive and which are only contingently sensitive, that is, sensitive only to
the extent they possibly reveal information about other intrinsically sensitive
structures. (E.g., a patient’s lung cancer status may be considered intrinsi-
cally sensitive, whereas smoking habits may be considered sensitive only to
the extent that they reveal information about the patient’s cancer status.)
Secrecy requirements are represented as a partial function from the space of
structures to non-negative reals that associates every intrinsically sensitive
structures with an appropriate, a priori, worth.

c) Consistency requirements are mathematical properties imposed on worth
assignments. Non-negativity and monotonicity are considered syntactic con-
sistency requirements—they depend only on the representation of secrets,
not on their meaning. Syntactic requirements alone are not sufficient to guar-
antee the consistency of worth assignments. Often semantic requirements
also need to be considered, such as the adjustments for information-theoretic
predictors and computational cost from Section 2. Other examples are (i)
inclusion-exclusion consistency: the worth of the composition of two struc-
tures is equal to the sum of their individual worths, minus the worth they
share: ω(f � f′) = ω(f) + ω(f′) − ω(f � f′), and (ii) independence: statistically
independent structures add their worth; so if Pf′ and Pf′ are independent
then ω(f � f′) = ω(f) + ω(f′).
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Once the inputs are provided, a design proceeds as follows:

1. Construct the complete lattice LF of structures.
2. Use secrecy requirements to annotate each element Pf in LF , where f ∈ P(F)

is a intrinsically sensitive structure, with the appropriate a priori worth in
accordance to the protector’s interests.

3. Using the adversarial knowledge, derive a probability distribution pS . Par-
titions in the LoI can be seen as random variables, so use pS to derive the
probability distribution in the elements of LF .

4. Take some well established measure of information ν (e.g., guessing en-
tropy), and for every structure f′ ∈ P(F), update its worth according to
ω(f′) = maxf∈P(F) ν(Pf′ |Pf). Repeat until all structures respect the consis-
tency requirements.

This design technique captures the adversarial knowledge into the worth as-
signment, and the worth of structures will inherit the operational interpretation
of the measure ν chosen in step 4. However, because the procedure depends on
the probability distribution on the elements of LF , certain semantic requirements
only can be approximated. An example is the inclusion-exclusion principle: if it
were to be preserved for all probability distributions pS , then it would be a
valuation on the lattice, which is known not to exist [22].

6 Related Work

Relation with g-leakage. We start by reviewing g-leakage [13]. Given a
set S of possible secrets and a finite, nonempty set Z of allowable guesses,
a gain function is a function g : Z × S → [0, 1]. Given a gain function g,
the prior g-vulnerability of a probability distribution pS is defined as Vg(pS) =
maxz∈Z

∑
s∈S pS(s)g(z, s). Given also a channel Ca from secrets in S to observ-

ables in O, the posterior g-vulnerability is Vg(pS , Ca) =
∑

o∈O p(o)Vg(pa(·|o)).
The g-vulnerability is converted into g-entropy by taking its logarithm: Hg(pS) =
− logVg(pS) and Hg(pS , Ca) = − logVg(pS , Ca). Finally, g-leakage is the differ-
ence between prior and posterior g-entropies: Lg(pS , Ca) = Hg(pS)−Hg(pS , Ca).

Comparing our work with g-leakage, two main points are noteworthy:

(i) g-leakage as defined in [13] cannot capture scenarios where the worth of
a structure depends on the probability of that structure. Hence worth of
certainty and W -Shannon entropy cannot be modeled using g-leakage.

Proposition 2. Given a set of secrets S and a set of guesses Z, there
is no gain function g : Z × S → R+ such that, for all priors pS on S,
and all partitions P on the LoI for S, it is the case that: (i) Vg(pS) =
WCER(ω, pS), or (ii) Vg(pS) = SE(pS), or (iii) Hg(pS) = SE(pS).

(ii) g-leakage and measures of information worth coincide in some scenarios,
and when it happens, our approach can give practical operational inter-
pretations to gain functions—in fact, a common criticism of the g-leakage
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framework concerns the challenge of identifying adequate functions for a
scenario of interest. Take guessing entropy, as an example. Take an al-
lowable guess z to be an ordered list Λ(S ′) of the secret elements of a
subset S ′ ⊆ S of secrets. A guess Λ(S ′) means that the adversary believes
that the secret belongs to the set S ′. Moreover, in a brute-force attack
the adversary would guess secrets in that same order they appear in that
list. Then, for the binary worth assignment ωbin

5, define a gain function
gωbin

(Λ(S ′), s) = −Λ(S ′)(s) if s ∈ S ′, and gωbin
(Λ(S ′), s) = −(|S̄ ′| + 1)

otherwise. It can be shown that the W -guessing entropy captures the g-
vulnerability of an adversary guided by the gain function gωbin

, i.e., that
WNG1,WCER(ωbin , pS) = Vgωbin

(pS). However, gωbin
ranges over negative

values, which is not allowed by the original g-vulnerability framework.6
Fortunately we do not run into the same type of problem when using W -
vulnerability, worth of expectation under =, and W -probability of guessing
to provide operational interpretations for g-functions.

Other Related Work. Köpf and Basin [17] proposed the model for determin-
istic systems we extended in this paper. Shannon [23] points out the indepen-
dence of the information contents with respect to its representation, and gives
the first steps in trying to understand how Shannon entropy would behave in
a lattice of partitions. The Lattice of Information is introduced by Landauer
and Redmond [14]. Yasuoka and Terauchi [18] show the equivalence of the or-
dering on traditional measures, and Malacaria [10] uses the LoI as an algegraic
foundation to unify all these orderings. Backes, Köpf and Rybalchenko [24],
and Heusser and Malacaria [25] use model checkers and sat-solvers to deter-
mine the partitions induced by deterministic programs. Adão et al. [26] relax
the assumption of perfect cryptography by allowing the adversary to infer a key
at some (possibly computational) cost, and introduce a quantitative extension
of the usual Dolev-Yao intruder model to analyze implementations of security
protocols. Their work focuses on cryptography, whereas ours is applied to QIF.
Askarov et al. [27] show that the possibly unbouded leakage of termination-
insensitive noninterference can be mitigated by making the secret sufficiently
random and large. Demange and Sands [28] point out that secrets can not al-
ways be chosen to fulfill such requirements, and they develop a framework in
which “small” secrets are handled more carefully than “big” ones. They focus on
preventing leakage, whereas we aim at providing rigorous information-theoretic
measures for quantifying leakage.

7 Conclusion and Future Work

This paper proposed a framework to incorporate the worth of structures—
possibly representing their sensitivity—into information-flow measures. We
5 The procedure can be generalized to worth assignments other than ωbin .
6 If we try to capture W -guessing entropy using g-entropy instead of g-vulnerability,

the situation becomes even worse: no gain function exists, even with negative values.
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generalized Shannon entropy, guessing entropy and probability of guessing, and
we proved that the generalizations are consistent with respect to the Lattice of
Information for deterministic systems. We also outlined a design technique for
worth assignments that captures important aspects of a scenario of interest.

We are currently refining the design technique for worth assignments to make
it fully automated. We are also investigating scenarios where every attack incurs
some cost . The resulting theory would enable the study of the trade-off between
the information yielded by an attack versus cost.
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Abstract. In this paper we show how to engineer proofs of security for
software implementations of leakage-resilient cryptosystems on execution
platforms with concurrency and caches. The proofs we derive are based
on binary executables of the cryptosystem and on simple but realistic
models of microprocessors.

1 Introduction

The sharing of hardware resources is fundamental for the cost-effective imple-
mentation of concurrency in processors, operating systems, and the cloud. Unfor-
tunately, sharing of hardware between conflicting parties introduces side channels
that breach the isolation between processes and virtual machines. Typical goals
of side-channel attacks are the recovery of cryptographic keys [20] and private
information about users [22]; shared resources that have been exploited to this
end are processor caches [7], branch prediction units [3], and main memory [14].

Leakage resilient cryptosystems [10, 26] offer formal security guarantees even
if the underlying hardware reveals partial information about the internal state
of the computation. In today’s leakage resilient cryptosystems, the modeling of
leakage focuses on physical characteristics such as power consumption or elec-
tromagnetic radiation. So far, there has been little focus on applying leakage
resilient cryptography to other forms of leakage that arise in the setting of mod-
ern computing platforms, and in particular to leakage through cache.

In this paper we show how to engineer proofs of security for software im-
plementations of leakage-resilient cryptosystems on execution platforms with
concurrency and caches. Our proofs are based on binary executables of the cryp-
tosystem and on simple but realistic models of microprocessors. We obtain them
by tackling the following technical challenges:

– We propose a novel notion of leakage that caters for concurrent access-based
adversaries [13, 20]. This notion of leakage characterizes an adversary that can
choose an inital cache state and observe the final cache state, for each time slice
of a concurrently running computation. We specialize this notion of leakage to
pseudorandom generators, and propose a new security definition in which the
adversary can freely interleave request queries, that leak information about keys,
with test queries, that output a real or random output according to a secret bit b.
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Then, we prove leakage-resilience of a PRF-based PRG in this model. Our proof
goes beyond the one from [26] in that it allows leakage functions to be adaptively
chosen and makes weaker assumptions on locality of leakage. These relaxations
are essential for dealing with concurrent access-based adversaries as considered
in this paper. We cast our proof in terms of games, for future certification using
automated tools [5].

– We propose a novel program analysis technique that allows us to statically
derive upper bounds on the range of all leakage functions that a concurrent
access-based adversary can apply to the state of the cipher. These upper bounds
can be used for instantiating the parameters of the cryptographic proof. Our
technique is based on an algorithm that efficiently maintains a compact rep-
resentation of a superset of the set of observations that any concurrent cache
adversary can make. We cast this algorithm as an abstract domain [8], which
we plug into CacheAudit [9], a framework for the automatic, static analysis of
cache side-channels of binary executables.

We perform a case study where we use our analysis techniques for certifying
the security of a binary executable of a leakage-resilient pseudorandom gener-
ator that is based on a library implementation of the AES block cipher. Using
our novel abstract domain, we derive bounds for the side-channel leakage of this
implementation to concurrent cache adversaries, which we use to instantiate the
cryptographic proof. For example, we can show that the advantage of an adver-
sary for distinguishing the output of the PRG from random is upper-bounded
by 1

294 for an 8KB cache with 128B line size for AES-256. We stress that on
several modern CPUs, AES is either implemented in hardware [1] or can be im-
plemented in software without cache side channels [15]. Here, we use AES as a
simple yet realistic example for demonstrating the feasibility of platform-based
security proofs.

In summary, our contributions are to show how existing cryptosystems can be
connected to a notion of leakage that captures caches and concurrency, and to
develop program analysis techniques that enable us to statically deliver leakage
bounds based on executable code.

Related Work. Leakage resilient cryptography (e.g. [10,19]) provides models for
expressing the security of cryptosystems against adversaries that can obtain par-
tial information about the internal state of the computation. Yu et al. [26] spe-
cialize these models to match engineering experience in power analysis attacks.
In particular, they account for an adversary who chooses the leakage functions
a priori, i.e. before the attack. Moreover, their model requires that each leak-
age function is applied only to the inputs and outputs of a particular round.
Based on these assumptions, they prove the security of a simple pseudorandom
generator.

Our leakage model is inspired by that of Yu et al. [26], but it differs in the
following two aspects. First, we allow the adversary to adaptively choose leakage
functions between rounds, from a fixed set of leakage functions. This accounts for
the fact that, in concurrent cache attacks, the adversary can partially influence
the leakage during the attack by interacting with the cache and the scheduler.
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Second, instead of applying a leakage function to the inputs and outputs of a
round, we apply it to all previously sampled keys. This accounts for the fact
that, in cache attacks, keys might persist in the cache beyond the rounds in
which they are used.

On the static analysis side, we base our work on CacheAudit [9], a frame-
work for the automatic, static analysis of cache-based side-channels. CacheAu-
dit makes use of the fact that one can obtain upper bounds for the information
leaked through the cache by abstract interpretation and model counting [17,18].

An alternative, language-based approach by Zhang et al. [27] is to mitigate
timing side channels based on systematic addition of delays. Another approach
by Stefan et al. [24] uses typing and restrictive scheduling to close cache timing
leaks. Our adversary model differs from theirs in that we consider access-based
adversaries, i.e. those that can probe the cache. Finally, two recent approaches
rely on the operating system making sure that caches are flushed upon context
switches [4] or that security-relevant blocks are never evicted from the cache [16].
In contrast, our approach focuses on the security of the client program and makes
only weak assumptions on the operating system.

Organization of this paper. In Section 2 we formalize a leakage model for con-
current cache adversaries and in Section 3 we present a proof of cryptographic
security against this leakage model. In Section 4 we present algorithms to com-
pute bounds on the leakage based on binary code, which we put to work in a
case study in Section 5. We conclude in Section 6.

2 Leakage to Concurrent Cache Adversaries

In this section we express the information that is leaked to a cache side-channel
adversary in terms of program semantics, where we consider a scenario in which
the adversary and the victim are concurrent processes that share the same pro-
cessor cache. Upon a context switch the adversary partially observes the final
cache state of the victim’s computation.1 The adversary can further choose the
initial state of the cache of the victim’s subsequent time slice. Early instances of
this kind of attack against AES can be found in [7,20], a more recent and highly
effective one is [13].

2.1 Programs, Computations, Caches

A program P = (Σ, I, T ) consists of the following components

– Σ - a set of states
– I ⊆ Σ - a set of initial states
– T ⊆ Σ ×Σ - a transition relation

1 In practice, the adversary performs memory accesses and measures the corresponding
latencies, thereby learning which memory blocks are loaded in, or have been evicted
from, the cache (but not their content).
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For reasoning about cache side channels, we consider a program state that
consists of logical memories (representing values of memory locations and reg-
isters) in M and a cache state in C (representing the memory blocks that are
currently loaded, but not their content), i.e., Σ = M× C. The memory update
updM is a function updM : M→M that is determined by the instruction set se-
mantics. The cache update is a function updC : M×C → C that is determined by
the cache replacement strategy. For a formal description of the LRU replacement
strategy, see Appendix A.1. We obtain the global transition relation T ⊆ Σ×Σ
as

T = {((m1, c1), (m2, c2)) | m2 = updM(m1) ∧ c2 = updC(c1,m1)}

which formally captures the asymmetric relationship between logical memories
and caches.

A computation of P is a sequence of states and σ0σ1 . . . σn ∈ Σ∗ such that σ0 ∈
I and that for all i ∈ {0, . . . , n− 1}, (σi, σi+1) ∈ T . The set of all computations
is the trace collecting semantics Col (P ). We further denote the projection of all
computations to logical memories by ColM(P ).

2.2 Leakage to Concurrent Adversaries

We assume that our program runs concurrently with the adversary, where we
make the worst-case assumption that the adversary can probe and set the cache
state at each context switch. For formalizing this adversary we assume a given
set of context switches A ⊆ N. A concurrent computation for A is a sequence of
states (m0, c0), . . . , (mn, cn) ∈ Σ∗ such that
1. for all i ∈ {0, . . . , n − 1} : mi+1 = updM(mi), i.e. the logical memory is

always updated according to the program semantics;
2. for all i ∈ {0, . . . , n − 1} \ A : ci+1 = updC(ci,mi), i.e. without a context

switch the cache is updated according to the program semantics;
3. for all i ∈ A ∪ {0} : ci+1 = updC(c

∗
i ,mi), i.e. at each context switch and

initially, the cache can be set to an arbitrary state c∗i by the adversary.
That is, the adversary’s choices can be expressed as a tuple a ∈ CA∪{0} of cache
states. They define a mapping

advA,a : Col
M(P )→ ColA (P )

where ColA (P ) denotes the set of all concurrent computations for A.
Likewise, we can express the observations an adversary can make at context

switches in A as a function πA : ColA (P ) → CA that projects concurrent com-
putations to sub-sequences of cache states with indices in A. The composition
of both functions defines a leakage function

ΛA,a = πA ◦ advA,a

that maps internal states of the computation to cache observations at A. Notice
that cache states in our model only track which memory blocks are loaded,
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but not their content. Observing a cache state models leakage about accesses
to memory space that is shared between victim and adversary, as in [13]. For
modeling disjoint memory spaces, we consider observations that only reveal how
many memory blocks are loaded in each cache set [17].

Leakage about a Key. For expressing the leakage about keys in round-based con-
structions, we assume that the key of round j can only affect the cache between
positions α(j) and ω(j) of each computation. As a consequence, information
about the key is observable at context switches between those positions. More-
over, information about the key may also persist in the cache state beyond ω(j)
and be observable at the subsequent context switch. We account for this by
defining Aα(j),ω(j) = A ∩ {α(j), . . . , ω(j)} ∪ min{i ∈ A | i ≥ ω(j)}. For given
(A, a), the leakage about the key of round j can then be over-approximated by
the following function:

ΛA,a
j = πAα(j),ω(j)

◦ advA,a

Schedulers. Without any restrictions on when context switches can occur, we
cannot hope to obtain meaningful security guarantees.2 To model such restric-
tions, we introduce the notion of a scheduler S ⊂ P(N) that describes all per-
mitted sets of context switches A. For a given scheduler, we can completely
characterize the set of functions Lj the adversary can apply to a round key by

Lj =
⋃
A∈S
a

ΛA,a
j

This class of leakage function will provide the interface between the crypto-
graphic proofs and the guarantees derived by the static analysis.

3 Leakage Resilient PRG

Stateful pseudo-random number generators (PRGs) that depend on a secret
key can be used as the basis for stream ciphers. Such constructions have been
proposed as a means to provide leakage resilient cryptographic primitives [10,
21, 25, 26]. In this section, we prove the security of a stateful pseudo-random
number generator based on a pseudo-random function (PRF), assuming partial
leakages Lj on round keys as discussed in the previous section. Our proof is
given in terms of bounds on the advantage of distinguishing the PRG from a
truly random generator, depending on the computational power of the adversary
and the maximal leakage per key.

2 This is demonstrated by an attack that successfully recovers the secret key in such
a setting [13].
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2PRF
k0 k1 k2

x0 x1
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i
1(k1) · · ·λi

i+1(ki+1)

xi

2PRF 2PRF

Fig. 1. Stateful PRG. Leakage is depicted by dotted arrows.

3.1 A Leakage Resilient PRG

The construction is depicted in Figure 1, and is based on a pseudorandom func-
tion 2PRF : {0, 1}n → {0, 1}n+m that takes as input a round key ki of n bits and
returns as output a pseudorandom string of n+m bits 3. The first n bits of this
string are used as a key ki+1 for the next round, and the last m bits are output.
The sequence x0x1 . . . is the output of the pseudorandom generator.

Our security proof is inspired from [26], and follows the spirit of so-called
practical leakage-resilient cryptography, where bounds are obtained assuming
leakage functions that match engineering practice. In particular, we make the
assumption that leakage does not reveal information about future computations;
for concurrent access-based cache attacks, this assumption is perfectly natural,
since caches only hold information about past computations made by the victim.
Our proof is based on the random oracle model; extending the proof to the
standard model as done e.g. in [26] is left for further work.

The security of the pseudorandom generator is expressed in terms of a crypto-
graphic game where, in each round i, the adversary can do one of the following:

– choose a list of leakage functions λi
0, . . . , λ

i
i+1 and observe the values of

λi
0(k0), . . . , λ

i
i+1(ki+1) together with the legitimate output xi of the 2PRF

at round i. This is called a request query.
– test the round, and get the legitimate output xi or a random output, ac-

cording to a secret bit b sampled uniformly at the onset of the game. This
is called a test query.

Moreover, the adversary has access to an oracle 2PRFadv which he can query
for the output of the 2PRF, for a chosen key. After p rounds of this game, the
adversary is asked to guess the bit b. The adversary wins if his guess b̄ is correct,
i.e. b = b̄. In summary, this game captures the notion that outputs of the 2PRF
should be indistinguishable from random.

The game is formally defined in Figure 2. We use Kadv to store the keys
queried by the adversary to the 2PRFadv oracle and Kreqtest to store the round

3 Such a function can be constructed for instance by choosing an IV ∈ {0, 1}n−1 and
defining 2PRF(k) = (BCk(0||IV ),BCk(1||IV )) given an n-bit block-cipher BC as we
will do in Sect. 5.
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Game Greal :
S ← [];
Kadv ← ε;
i← 0;
k0 $← {0, 1}n;
Kreqtest ← [k0];
b $← {0, 1};
b̄← A();
return b = b̄;

Proc 2PRF(k : {0, 1}n) :
if k �∈ dom S then

k′ $← {0, 1}n;
x′ $← {0, 1}m;
S[k]← (k′, x′);

return S[k];

Oracle 2PRFadv(k : {0, 1}n) :
Kadv ← k :: Kadv;
return 2PRF(k);

Oracle request(λi
0 : Li

0, . . . ,
λi
i+1 : Li

i+1) :
(ki+1, x)← 2PRF(ki);
Kreqtest ← ki+1 :: Kreqtest;
�← (λi

0(k0), . . . , λ
i
i+1(ki+1));

i← i+ 1;
return (x, �);

Oracle test :
(ki+1, x)← 2PRF(ki);
Kreqtest ← ki+1 :: Kreqtest;
if b then x $← {0, 1}m;
i← i+ 1;
return x;

Fig. 2. Initial game Greal

keys of the stateful PRG. We store the values sampled by 2PRF in the ar-
ray S. Note that, at each round i, the leakage functions are chosen from sets
Li
0, . . . ,Li

i+1. Then Lj =
∏

i Li
j is the set of functions that the adversary can

apply to the key of round j.
We now present the main theorem of this section, which quantifies the advan-

tage of any adversary from distinguishing the PRG from a truly random number
generator, given that he makes at most q queries to the 2PRFadv oracle, sees at
most p outputs of the PRG and that the total leakage per key is bounded by a
constant d.

Theorem 1. Let A be an adversary that makes at most p queries to request or
test, and at most q queries to 2PRFadv. If for all Λi ∈ Li, 0 ≤ i < p, it holds
|ran(Λi)| ≤ d then:

Pr[Greal : b = b̄] ≤ 1

2
+

p (p− 1) + q p (d+ 1)

2n

Proof. The idea of the proof is to bound the adversary’s advantage by the prob-
ability of the following events: 1) there is a cycle in the PRG, due to a repetition
of a round key, 2) the adversary guesses a round key that was already used in
a previous round and 3) the adversary guesses a round key before it is used.
These are precisely the cases in which an adversary could distinguish the PRG
from a truly random generator, as we show using a game reduction and Shoup’s
Lemma [23]: Starting from the original game as depicted in Figure 2, we defined
a transformed version G1, where we modify the oracles 2PRF and 2PRFadv so
that only adversary queries are stored in the map S, whereas queries originating
from request and test are always answered with fresh random values. This only
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makes a difference if there is a collision between secret keys, i.e. ki = ki′ for
distinct i and i′ (we call this event badRR), or if the adversary calls the 2PRFadv
oracle with a secret key, i.e. ki ∈ Kadv for some i; we distinguish the case where
the adversary queries 2PRFadv with ki before the ith round (we call this event
badAR) from the case where the adversary query occurs after the ith round (and
call this event badRA). We introduce bad flags to capture these events and modify
the code of the oracles as follows:

Proc 2PRF(k : {0, 1}n) :
if k ∈ Kreqtest then

badRR ← true;
if k ∈ Kadv then

badAR ← true;
k′ $← {0, 1}n;
x′ $← {0, 1}m;
return (k′, x′);

Oracle 2PRFadv(k : {0, 1}n) :
if k ∈ Kreqtest then

badRA ← true;
Kadv ← k :: Kadv;
if k �∈ dom S then

k′ $← {0, 1}n;
x′ $← {0, 1}m;
S[k]← (k′, x′);

return S[k];

Oracle test :
ki+1

$← {0, 1}n;
x $← {0, 1}m;
Kreqtest ← ki+1 :: Kreqtest;
i← i+ 1;
return x;

The two games are equivalent up to bad. It follows from Shoup’s Lemma [23]
that ∣∣Pr[Greal : b = b̄]− Pr[G1 : b = b̄]

∣∣ ≤ Pr[G1 : badRR] + Pr[G1 : badAR]

+ Pr[G1 : badRA]

Moreover, the key ki is always a freshly sampled value and |Kreqtest| ≤ p, there-
fore the event ki ∈ Kreqtest (badRR) is a standard birthday event and has a

probability of at most p (p−1)
2n . Also, the probability of the event ki ∈ Kadv

(badAR) for a given freshly uniformly sampled ki key is upper bounded by q
2n .

There are at most p rounds, i.e. 0 ≤ i < p, thus the probability of a collision
between ki and a key in Kadv is upper bounded by q p

2n . Finally, the value x
output by the test oracle is a fresh uniformly sampled value for each round, and
hence the probability of the adversary A guessing the bit b correctly in G1 is 1

2 .
Summarizing, we have∣∣∣∣Pr[Greal : b = b̄]− 1

2

∣∣∣∣ ≤ p (p− 1)

2n
+

q p

2n
+ Pr[G1 : badRA]

Next, we introduce a game G2 in which a fresh key k is sampled uniformly
at the onset of the game, and an adversary A′ can observe at each round i the
value of λi(k), for a leakage function λi drawn from a set Li. The adversary wins
if he guesses correctly the key. The game is formalized as follows:

Game G2 :
i← 0;
k $← {0, 1}n;
k̄← A′();
return k = k̄;

Oracle leak(λi : Li) :
�← λi(k);
i← i+ 1;
return �;
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One can prove that for every adversaryA against G1 making at most p queries to
the request oracle and q queries to the 2PRFadv oracle, there exists an adversary
A′ against G2 such that Pr[G1 : badRA] ≤ q p Pr[G2 : k = k].

Finally, Pr[G2 : k = k] is upper-bounded by d
2n , given the assumption that the

total range of his observations is upper bounded by d, i.e.
∏p

i=0 |ran(λi)| ≤ d.
This last step follows from Theorem 1 of [9], which we reproduce in Appendix
A.3.

4 Computing Bounds on the Leakage

For computing the range of the leakage functions that a concurrent cache-based
adversary can apply to the internal state of a concrete program, one needs to
consider all possible computations, which is infeasible in most cases. Abstract
interpretation [8] overcomes this fundamental problem by resorting to an ap-
proximation of the state space and the transition relation. In this section, we
present corresponding approximations for concurrent cache-based adversaries.
We proceed by reducing the problem in two steps to the problem of comput-
ing numbers of reachable cache states, for which static analysis techniques are
in place [9, 17]. Throughout the section we rely on the notation introduced in
Section 2.

4.1 Reduction to Empty Initial Cache States

In the first reduction step, we show how to soundly abstract from the adversary’s
choices of cache states. The result is a generalization of a result from [9] to
concurrent computations.

Let a∅ ∈ CA∪{0} be the mapping that takes each i ∈ A ∪ {0} to the empty
cache state.

Lemma 1. For the LRU replacement strategy and all A and a ∈ CA∪{0},∣∣ran(ΛA,a)
∣∣ ≤ ∣∣ran(ΛA,a∅)

∣∣
Proof. With LRU replacement, each cache set (seen as a list of memory blocks)
of the final cache state of the time slice of a computation with initial cache
state a∅(i) is a prefix of the corresponding cache set of the same computation,
performed with initial cache state a(i). The remaining lines of each set are de-
termined by a(i). This correspondence defines, for each a, a surjective mapping
from ran(ΛA,a∅) to ran(ΛA,a), from which the assertion follows.

4.2 Abstract Interpretation

Reachability problems on programs can be cast as finding fixpoints of the tran-
sition relation, because reaching a fixpoint means that no new states can be
discovered. Abstract interpretation [8] computes such fixpoints based on approx-
imations of the statespace and the transition relation. The relationship between
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the abstract and the concrete statespace is given by a concretization function γ
that maps abstract states to sets of concrete states. A static analysis is (globally)
sound if the concretization of an abstract fixpoint contains a concrete fixpoint.

In our case, the goal is to define such an abstract domain T 
 whose fixpoints
t∗ ∈ T 
 satisfy

ColCS(P ) ⊆ γT (t
∗) (1)

CacheAudit [9] is an abstract interpretation framework that enables computing
such abstract fixpoints t∗ based on binary executables and concrete cache models.
For framing a sound cache analysis within CacheAudit, an abstract domain needs
to satisfy the following local soundness condition, where B denotes the set of all
memory blocks:

∀t
 ∈ T 
,M ⊆ B : updT (γT (t

),M) ⊆ γT (updT �(t
,M)) , (2)

This statement captures that the abstract cache update function updT � com-
putes a superset of the concrete cache update function updT . Computing the set
of reachable observations w.r.t. updT � is hence necessarily a superset of updT .
The global soundness then follows from the fact that CacheAudit updates the
abstract cache with a superset of the set of possible memory blocks that are
accessed at each program point.

Theorem 2. Local soundness implies global soundness, i.e. (2)⇒ (1)

This theorem from [9] is a specialization of a result of [8] to the way in which
abstract domains are combined in CacheAudit.

We present our new abstract domain in two steps: in the first step we abstract
sets of cache traces by traces of sets of cache states, while keeping enough infor-
mation about the history of computation to obtain reasonably precise bounds. In
the second step we further abstract to obtain finite representations. Since in ab-
stract interpretation, abstract domains compose, it is enough to prove soundness
of each step to have the soundness of the whole abstraction process.

4.3 An Abstract Domain for Concurrent Computations

One of the main reason for the intractability of computing leakage functions is
the need to keep track of sets of traces. The first step we propose is to abstract
such sets into a single (possibly infinite) trace of abstract states abstracting sets
of caches and possible interruption choices of the adversary. For that purpose,
we assume a given abstract domain for cache states such as the one from [11],
whose elements we denote by c
. The concretization of an abstract cache is a set
of caches, i.e.

γC(c

) ⊆ C .

In addition, we assume that this abstract domain is equipped with a join � that
soundly over-approximates unions of sets of caches.

We define the abstract domain T 
 that groups together cache states with the
same concurrent access history as follows: Each element t
 ∈ T 
 consists of a



150 G. Barthe et al.

partial map of pairs of nonnegative integers to abstract cache states. We denote
this map by t
 = (c
i,j). Here (c
i,j) represents the set of possible cache states at
position j when the last context switch happened i steps ago. During the analysis
we will maintain (c
i,j) for 1 ≤ i ≤ j ≤ n, where n is the current program point.
That is, our abstract state is of the form

c
1,1 c
1,2 · · · c


1,n

c
2,2 · · · c


2,n

. . .
...

c
n,n

For convenience of notation we further define c
0,j = c
∅ (with γC(c


∅) = {c∅}) for

all j ≥ 0.

Concretization Function We first define the concretization of an abstract state
(c
i,j), with 0 ≤ i ≤ j ≤ n, w.r.t. given (ordered) set of context switches A =
{i1, . . . , ik} with ik ≤ n by:

γA(c


i,j) = γC(c



0,0) · · · γC(c
i1,i1)

· γC(c
1,i1+1) · · · γC(c


i2−i1,i2

)
...

...

· γC(c
1,ik+1) · · · γC(c


n−ik,n

)

The result is a set of traces built from a trace of sets using the Cartesian product
·, where the end of each line corresponds to the states that can be observed at
a context switch.

For a scheduler S, we then define the concretization of an abstract state as
the union of the concretizations w.r.t. all sets of context switches in S, i.e.

γT (c


i,j) =

⋃
A∈Sn

γA(c


i,j)

where Sn = {A ∩ {1, . . . n} | A ∈ S} denotes the sets of context switches that
are truncated at position n.

Abstract Transition Function We define an abstract transition function
updT �(c



0≤i≤j≤n,M) = (c
0≤i≤j≤n+1) that maps a set of memory blocks M and

a state representing traces of length n to a state representing traces of length
n+ 1, where

c
i+1,n+1 = updC�(c


i,n,M) for 0 ≤ i ≤ n

The case i > 1 describes the scenario in which no context switch happens at
position n. The case i = 0 describes the scenario in which a context switch
happens, where we only need to consider the empty initial state due to Lemma 1
(recall that c
0,n = c
∅). The entries c
i,j with j ≤ n remain unchanged.

The following lemma states the local soundness of our abstract domain. To-
gether with Theorem 2, it ensures the global soundness of our analysis.
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Lemma 2. updT (γT (t

),M) ⊆ γT (updT �(t
,M))

The proof of Lemma 2 is given in Appendix A.2; it proceeds by a simple unfolding
of definitions and a reduction to the soundness of updC� .

4.4 Compact Representations of Infinite Computations

With the abstraction described above we can represent cache observations up to
a moment n in time. We now propose a further abstraction that enables us to
finitely represent and compute cache observations for all points in time, using
fixpoint techniques of abstract interpretation.

Our current abstract domain for concurrent computations grows in two direc-
tions, both of which have to be bounded in a meaningful way: (1) the number
of instructions since the beginning of the computation, and (2) the number of
instructions since the last context switch happenend.

For bounding (1) we assume that the computation of the individual rounds
of the PRG is performed in one main loop whose body takes exactly � steps to
execute. We leverage this knowledge to fold the abstract states corresponding
to the same number of instructions inside the loop body. Technically, we will
abstract each program point n ∈ N with the unique j ∈ {0, . . . � − 1} such
that j ≡ n mod �, and we write j = [n]. In this way we only need to maintain

elements c
i,[n] instead of all c
i,n.

For bounding (2), we impose a threshold s on the length of the history we
track about the last context switch. To achieve soundness, we modify the update
function such that the last element c
s,j aggregates all possible cache states c
i,j
with i ≥ s.

Our new abstract state, which we denote by (d
i,j), for 0 ≤ i ≤ s and 0 ≤ j < �
is updated using the following transition function

d
i+1,[n+1] = updC�

(
d
i,[n],M

)
if 0 ≤ i < s− 1

d
s,[n+1] = updC�

(
d
s,[n],M

)
� d
s−1,[n+1]

Since the second subscript is an equivalence class, the update functions define
a set of fixpoint equations. The transfer function for this set of equations is ob-
viously monotonic, so we can iterate from a matrix entirely filled with empty
caches to compute this fixpoint. In addition, we can use program points to store
columns of this matrix and use the fixpoint iteration techniques already devel-
oped for CacheAudit.

Even though c
i,j with i > s of the abstract state defined in Section 4.3 are
not explicitly represented in the above state, we define their concretization by

γT (c


i,n) = γT (d



min{i,s},[n]) (3)

The definition of (d
i,j) and the corresponding update function ensures that

the thus defined γT (c


i,n) is always a superset of the concretization of the explicit
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representation. We obtain the following corollary for the compactly represented
abstract state.

Corollary 1. updT (γT (t

),M) ⊆ γT (updT �(t
,M))

Proof. Follows from the proof of the previous lemma and by monotonicity of the
new update function.

4.5 Computing Bounds on the Leakage

We now present an algorithm for upper-bounding counting the range of the
leakage function based on a fixpoint (d
i,j) with i ≤ s and j ≤ �−1 of the abstract
domain described above. For convenience of notation we describe the algorithm
in terms of (c
i,j) and explicit indices, which can be immediately translated using
Equation (3).

Recall from Section 2 thatAα,ω = A∩{α, . . . , ω}∪min{i ∈ A | i ≥ ω} is the set
of context switches at which the adversary can make observations about a secret
that is present in logical memory from position α to position ω. The leakage
about such secrets can hence be described by the function ΛA,a

α,ω = πAα,ω ◦advA,a.

We obtain an upper bound on the size of the range of ΛA,a
α,ω as follows∣∣∣ΛA,a

α,ω(Col
M(P ))

∣∣∣ (∗)≤ ∣∣∣ΛA,c∅
α,ω (ColM(P ))

∣∣∣
=
∣∣∣πAα,ω (advA,c∅(Col

M(P ))
∣∣∣

(∗∗)
≤
∣∣∣πAα,ω (γA(c



i,j))

∣∣∣
=
∣∣∣γC(c
i1−α,i1

)
∣∣∣ ∣∣∣γC(c
i2−i1,i2

)
∣∣∣ . . . ∣∣∣γC(c
ik+1−ik,ik+1

)
∣∣∣

where (∗) follows from Lemma 1, (∗∗) follows from Theorem 2, and Aα,ω =
{i1, . . . ik+1}. We can instantiate this upper bound by applying existing proce-
dures for counting concretizations of abstract cache states [17] to the elements

of (c
i,j).
For upper-bounding the leakage for a given scheduler S, we need to maximize

the above expression over all A ∈ S. We show how this can be done for a very
general class of schedulers, whose only requirement is a lower bound f on the
number of instructions processed by the victim between two interruptions by the
adversary.

Sf = {A ⊆ N | i = j ∨ |i− j| ≥ f} (4)

For bounding the leakage w.r.t. to Sf , we first give a recursive formula that
expresses the maximal number of observation that an adversary can make at
and between context switches at positions x and y

Rx,y = max
x≤j≤y−f

Rx,j

∣∣∣γC (c
y−j,y

)∣∣∣ if y ≥ x+ f (5)

where we adopt the convention that Rx,y = 1 whenever y < x+ f .
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Observe that it is not sufficient to use Rα,ω for upper-bounding the leakage of
a secret that is present in logical memory between positions α and ω because (1)
α does not necessarily coincide with a context switch, and (2) the final context
switch may happen an indefinite number of steps after ω. To account for this
fact we define

Lα,ω = max

⎧⎨⎩max
r≤α
ω≤t

∣∣∣γC(c
t−r,t)
∣∣∣ , max

r≤α<x
y<ω≤t

∣∣∣γC(c
x−r,x)
∣∣∣Rx,y

∣∣∣γC(c
t−y,t)
∣∣∣
⎫⎬⎭

The left term in the definition of Lα,ω captures the case where no context switch
happens between α and ω. The second term captures the case where at least
one context switch happens; in this case x is the position of the first, and y
is the position of the last context switch between α and ω. For readability we
omit further constraints on the minimal distance f between each two context
switches.

The following lemma states that Lα,ω describes an upper bound on the in-
formation that is leaked about the logical memory between positions α and ω.

Lemma 3
max
A⊆S

∣∣ran(ΛA,a
α,ω)

∣∣ ≤ Lα,ω

The correctness of Rx,y follows by a simple induction on y using the bound
on ΛA,a

α,ω described above. The correctness of Lα,ω follows by construction. Equa-
tion (5) immediately suggests an implementation of the algorithm using dynamic
programming.

4.6 Leakage Per Key

For deriving bounds on the leakage per key for the PRG described in Section 3,
we also assume that ki is part of the internal state of rounds i and i+1. If each
round can be computed in � commands, the leakage about ki is hence upper-
bounded by Li�,(i+2)�−1 As we identify all i modulo � in (5), we immediately
obtain that L0,2�−1 is an upper bound for the leakage about each round key.

Corollary 2. For all j ∈ N we have

∀Λ ∈ Lj : |ran(Λ)| ≤ L0,2�−1

5 Case Study

In this section we report on a case study where we use our techniques to derive
formal security guarantees against concurrent cache-based adversaries for binary
executable of the leakage-resilient pseudorandom number generator from [26].
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Implementation of Abstract Domain and Counting. We implement a spe-
cial case of the abstract domain presented in Section 4. Namely, we use a fixed
history threshold of s = 1, thereby trading precision for efficiency of the analysis.
We connect this abstract domain to the CacheAudit platform [9]. CacheAudit
takes as input a (32 bit) x86 binary executable, reconstructs the control flow,
and uses abstract interpretation to compute an over-approximation of the set of
program states (which comprise the cache) that are reachable. The local sound-
ness of our novel domain (stated in Lemma 2), together with the correctness
of CacheAudit (stated in Theorem 2) ensures that our analysis soundly over-
approximates the set of all concurrent computations.

We further choose f such that the scheduler interrupts at most once per round
of the pseudorandom number generator. With Corollary 2 we see that the leak-
age per key exceeds the leakage per round by a factor of at most three. We can
hence obtain a leakage bound by maximising over the number of concretiza-
tions of abstract cache states that appear in the fixpoint, which is how we avoid
implementing the concurrent counting procedure from Section 4.5 in full gener-
ality. We perform the counting of individual cache states using the techniques
described in [17].

Implementation of the PRG. We implement the 2PRF by concatenating
two blocks produced by a block cipher BC : {0, 1}n × {0, 1}n → {0, 1}n. More
precisely, for an initialization vector IV ∈ {0, 1}n−1 we compute

2PRF(k) = (BCk(0||IV ),BCk(1||IV )) .

For our implementation, we instantiate BC with the AES implementation from
the PolarSSL library [2], where we use a keylength of 256 bits. We put the key
schedule and the two calls to the block cipher in an infinite loop and use gcc to
compile this program to a 32-bit x86 executable, which is the artifact we analyze
using the techniques developed in this paper.

Experimental Results. We perform the analysis of the executable on a set-
associative cache with LRU replacement strategy, where we consider different
cache sizes, line sizes, and associativities. The results of our analysis are given
in Table 1.

Columns 5 and 6, respectively, present bounds on the leakage to an concurrent
cache adversary per round and per key. Our data show that leakage increases
with the cache size and decreases with the line size. The first effect occurs be-
cause a larger cache size means that the table is spread out into more cache
sets, which increases the resolution with which the adversary can observe the
memory accesses of the victim. The second effect occurs because a larger line
size decreases the adversary’s resolution. Finally, our data shows that greater
associativities lead to better bounds.

The entries of Column 6 can be used to instantiate the parameters in The-
orem 1, where we consider an adversary with q = 250 and set the amount of
observable data with the same IV to be 1GB, thus p ≤ 225. The cryptographic



Leakage Resilience against Concurrent Cache Attacks 155

Table 1. Leakage about the 2PRF based on the PolarSSL AES 256 implementation,
for different cache sizes, line sizes, and associativities. The entries of columns 5 and 6
represent the range of the leakage functions per round and per key, respectively. The
entries of column 7 represent bits of security computed using Theorem 1.

Cache
size

Line
size

Ways

Possible cache
observations

(bits)

Leakage
per round

(bits)

Leakage
per key

(bits)

Security

(bits)

2KB 64B 4 18.6 18.3 54.9 126.1
4KB 64B 4 37.2 36.8 110.4 70.6
8KB 64B 4 74.3 55.2 165.6 15.4
16KB 64B 4 148.6 70.2 210.6 0
32KB 64B 4 297.2 73.1 219.3 0
64KB 64B 4 594.41 75.0 225 0

8KB 32B 4 148.6 109.5 328.5 0
8KB 64B 4 74.3 55.2 165.5 15.4
8KB 128B 4 37.2 28.8 86.4 94.6

8KB 64B 2 101.4 68.1 204.3 0
8KB 64B 4 74.3 55.2 165.6 15.4
8KB 64B 8 50.7 39.9 119.7 61.3

security guarantees we obtain with these parameters are given in column 7; they
range from very strong (e.g. 126.1 bits for a 2KB cache with 64B line size) to
non-existent (e.g. 8KB cache with 32B line size).

Discussion. Column 4 presents an absolute, program-independent bound on
the number of cache states an adversary can observe in each context switch.
Throughout the case study, we consider an adversary whose memory space is
disjoint from the victim’s, i.e. one who can observe how many memory blocks are
loaded in each cache set, but not which. For the example of an 8KB cache with 4
ways and lines of 64B, this number amounts to (4+1)8192/(4∗64), where the basis
denotes the number of observations per set (0-4 blocks have been loaded into
that set by the victim) and the exponent denotes the number of (independent)
cache sets.

A comparison between columns 4 and 5 sheds light on the scope of our tech-
nique. For caches up to 4KB, the entries in both columns almost coincide. This
is due to the fact that the 4KB+256B of tables in the PolarSSL AES imple-
mentation entirely fill such small caches, and that the static analysis can only
predict that each of the corresponding memory blocks can either be loaded or
not. The small difference in leakage stems from the fact that the static analysis
can predict that the memory blocks containing local variables will be loaded.
For caches of 8KB or more the static analysis can moreover determine that the
memory access patterns of the executable only affect the memory blocks in which
the tables and the local variables reside, hence the bounds obtained by static
analysis are significantly better than those obtained by pure combinatorics.

Finally, we remark that there are several timing-relevant features of hard-
ware our approach does not cover (and make assertions about) yet, including
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out-of-order execution, pipelines, TLBs, and multiple levels of caches. Likewise,
implementations of instruction-based scheduling [24] are not yet widely deployed.
From a practical perspective, it is currently still wise to rely on implementations
that entirely avoid secret-dependent memory lookups, e.g. [1, 6, 15].

6 Conclusions

We have presented the first proof of resilience against side-channel attacks by
concurrent cache-based adversaries. To achieve this, we extended existing leakage-
resilient cryptosystems to a notion of leakage that captures caches and con-
currency, and we developed program analysis techniques for statically deriving
formal security guarantees based on executable code.
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A Appendix

A.1 Example Formalization Cache Update Function

We formally describe updC only for the LRU strategy and a single cache set;
see [12] for formalizations of other replacement strategies. Upon a cache miss,
LRU replaces the least-recently-used memory block. To this end, it tracks the
ages of memory blocks within the cache, where the youngest block has age 0
and the oldest cached block has age k − 1. Thus, the state of the cache can be
modeled as a function that assigns an age to each memory block b ∈ B, where
non-cached blocks are assigned age k:

C := {c ∈ B → A | ∀a, b ∈ B : c(a) 
= c(b) ∨ c(a) = c(b) = k},
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where A := {0, ..., k−1, k} is the set of ages. The constraint encodes that no two
blocks can have the same age. For readability we omit the additional constraint
that blocks of non-zero age are preceded by other blocks, i.e. that caches do not
contain “holes”. The cache update for LRU is then given by

updC(c, b) := λb′ ∈ B.

⎧⎪⎨⎪⎩
0 : b′ = b

c(b′) + 1 : c(b′) < c(b)

c(b′) : c(b′) > c(b)

A.2 Local Soundness of Cache Trace Domain

Lemma 2
updT (γT (t
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where (∗) follows from the local soundness of the cache state abstract domain
C
.

A.3 Bounded Range Leakage and Guessing

We recall the following result (see [9] for a proof):

Lemma 4. Let X → Y → X̂ be a Markov Chain. Then

Pr[X = X̂] ≤ max
x

Pr[X = x] |ran(Y )|

In particular, if X returns uniformly random n-bit strings, Pr[X = X̂ ] ≤
1
2n |ran(Y )|

In the context of G2 in Theorem 1, the key k is a uniformly chosen random
n-bit string, and Λ(k) the vector of observations of k given to the adversary,
corresponding to the variable Y . Therefore, the probability of an adversary of
outputting k′ such that k = k′ is upper bounded by 1

2n |ran(Λ)| ≤
d
2n .
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Abstract. Websites today routinely combine JavaScript from multi-
ple sources, both trusted and untrusted. Hence, JavaScript security is
of paramount importance. A specific interesting problem is information
flow control (IFC) for JavaScript. In this paper, we develop, formalize
and implement a dynamic IFC mechanism for the JavaScript engine of a
production Web browser (specifically, Safari’s WebKit engine). Our IFC
mechanism works at the level of JavaScript bytecode and hence lever-
ages years of industrial effort on optimizing both the source to bytecode
compiler and the bytecode interpreter. We track both explicit and im-
plicit flows and observe only moderate overhead. Working with bytecode
results in new challenges including the extensive use of unstructured
control flow in bytecode (which complicates lowering of program context
taints), unstructured exceptions (which complicate the matter further)
and the need to make IFC analysis permissive. We explain how we ad-
dress these challenges, formally model the JavaScript bytecode semantics
and our instrumentation, prove the standard property of termination-
insensitive non-interference, and present experimental results on an op-
timized prototype.

Keywords: Dynamic information flow control, JavaScript bytecode,
taint tracking, control flow graphs, immediate post-dominator analysis.

1 Introduction

JavaScript (JS) is an indispensable part of the modern Web. More than 95% of
all websites use JS for browser-side computation in Web applications [1]. Ag-
gregator websites (e.g., news portals) integrate content from various mutually
untrusted sources. Online mailboxes display context-sensitive advertisements.
All these components are glued together with JS. The dynamic nature of JS
permits easy inclusion of external libraries and third-party code, and encourages
a variety of code injection attacks, which may lead to integrity violations. Con-
fidentiality violations like information stealing are possible wherever third-party
code is loaded directly into another web page [2]. Loading third-party code into
separate iframes protects the main frame by the same-origin policy, but hinders
interaction that mashup pages crucially rely on and does not guarantee absence
of attacks [3]. Information flow control (IFC) is an elegant solution for such
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problems. It ensures security even in the presence of untrusted and buggy code.
IFC for JS differs from traditional IFC as JS is extremely dynamic [3,1], which
makes sound static analysis difficult.

Therefore, research on IFC for JS has focused on dynamic techniques. These
techniques may be grouped into four broad categories. First, one may build
an IFC-enabled, custom interpreter for JS source [4,5]. This turns out to be ex-
tremely slow and requires additional code annotations to handle semi-structured
control flow like exceptions, return-in-the-middle, break and continue. Second,
we could use a black-box technique, wherein an off-the-shelf JS interpreter is
wrapped in a monitor. This is nontrivial, but doable with only moderate over-
head and has been implemented in secure multi-execution (SME)[6,7]. However,
because SME is a black-box technique, it is not clear how it can be generalized
beyond non-interference [8] to handle declassification [9,10]. Third, some variant
of inline reference monitoring (IRM) might inline taint tracking with the client
code. Existing security systems for JS with IRM require subsetting the language
in order to prevent dynamic features that can invalidate the monitoring process.
Finally, it is possible to instrument the runtime system of an existing JS engine,
either an interpreter or a just-in-time compiler (JIT), to monitor the program
on-the-fly. While this requires adapting the respective runtime, it incurs only
moderate overhead because it retains other optimizations within the runtime
and is resilient to subversion attacks.

In this work, we opt for the last approach. We instrument a production JS
engine to track taints dynamically and enforce termination-insensitive non-inter-
ference [11]. Specifically, we instrument the bytecode interpreter in WebKit, the
JS engine used in Safari and other open-source browsers. The major benefit
of working in the bytecode interpreter as opposed to source is that we retain
the benefits of these years of engineering efforts in optimizing the production
interpreter and the source to bytecode compiler.

We describe the key challenges that arise in dynamic IFC for JS bytecode (as
opposed to JS source), present our formal model of the bytecode, the WebKit JS
interpreter and our instrumentation, present our correctness theorem, and list
experimental results from a preliminary evaluation with an optimized prototype
running in Safari. In doing so, our work significantly advances the state-of-the-art
in IFC for JS. Our main contributions are:

– We formally model WebKit’s bytecode syntax and semantics, our instrumen-
tation for IFC analysis and prove non-interference. As far as we are aware,
this is the first formal model of bytecode of an in-production JS engine. This
is a nontrivial task because WebKit’s bytecode language is large (147 byte-
codes) and we built the model through a careful and thorough understanding
of approximately 20,000 lines of actual interpreter code.1

1 Unlike some prior work, we are not interested in modeling semantics of JS specified
by the ECMAScript standard. Our goal is to remain faithful to the production
bytecode interpreter. Our formalization is based on WebKit build #r122160, which
was the last build when we started our work.
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– Using ideas from prior work [12], we use on-the-fly intra-procedural static
analysis of immediate post-dominators to restrict overtainting, even with
bytecode’s pervasive unstructured conditional jumps. We extend the prior
work to deal with exceptions. Our technique covers all unstructured control
flow in JS (including break and continue), without requiring additional code
annotations of prior work [5] and improves permissiveness.

– To make IFC execution more permissive, we propose and implement a byte-
code-specific variant of the permissive-upgrade check [13].

– We implement our complete IFC mechanism in WebKit and observe moder-
ate overheads.

Limitations. We list some limitations of our work to clarify its scope. Although
our instrumentation covers all WebKit bytecodes, we have not yet instrumented
or modeled native JS methods, including those that manipulate the Document
Object Model (DOM). This is ongoing work, beyond the scope of this paper.
Like some prior work [4], our sequential non-interference theorem covers only
single invocations of the JS interpreter. In reality, JS is reactive. The interpreter
is invoked every time an event (like a mouse click) with a handler occurs and
these invocations share state through the DOM. We expect that generalizing to
reactive non-interference [14] will not require any instrumentation beyond what
we already plan to do for the DOM. Finally, we do not handle JIT-compilation
as it is considerably more engineering effort. JIT can be handled by inlining our
IFC mechanism through a bytecode transformation.

Due to lack of space, several proofs and details of the model have been omitted
from this paper. They can be found in a technical appendix available from the
authors’ homepages.

2 Related Work

Three classes of research are closely related to our work: formalization of JS se-
mantics, IFC for dynamic languages, and formal models of Web browsers. Maffeis
et al. [15] present a formal semantics for the entire ECMA-262 specification, the
foundation for JS 3.0. Guha et al. [16] present the semantics of a core language
which models the essence of JS and argue that all of JS 3.0 can be translated to
that core. S5 [17] extends [16] to include accessors and eval. Our work goes one
step further and formalizes the core language of a production JS engine (Web-
Kit), which is generated by the source-to-bytecode compiler included in WebKit.
Recent work by Bodin et al. [18] presents a Coq formalization of ECMAScript
Edition 5 along with an extracted executable interpreter for it. This is a formal-
ization of the English ECMAScript specification whereas we formalize the JS
bytecode implemented in a real Web browser.

Information flow control is an active area of security research. With the
widespread use of JS, research in dynamic techniques for IFC has regained mo-
mentum. Nonetheless, static analyses are not completely futile. Guarnieri et
al. [19] present a static abstract interpretation for tracking taints in JS. How-
ever, the omnipresent eval construct is not supported and this approach does
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not take implicit flows into account. Chugh et al. propose a staged information
flow approach for JS [20]. They perform server-side static policy checks on stat-
ically available code and generate residual policy-checks that must be applied
to dynamically loaded code. This approach is limited to certain JS constructs
excluding dynamic features like dynamic field access or the with construct.

Austin and Flanagan [21] propose purely dynamic IFC for dynamically-typed
languages like JS. They use the no-sensitive-upgrade (NSU) check [22] to han-
dle implicit flows. Their permissive-upgrade strategy [13] is more permissive
than NSU but retains termination-insensitive non-interference. We build on the
permissive-upgrade strategy. Just et al. [12] present dynamic IFC for JS bytecode
with static analysis to determine implicit flows precisely even in the presence of
semi-unstructured control flow like break and continue. Again, NSU is lever-
aged to prevent implicit flows. Our overall ideas for dealing with unstructured
control flow are based on this work. In contrast to this paper, there was no for-
malization of the bytecodes, no proof of correctness, and implicit flow due to
exceptions was ignored.

Hedin and Sabelfeld propose a dynamic IFC approach for a language which
models the core features of JS [4], but they ignore JS’s constructs for semi-struc-
tured control flow like break and continue. Their approach leverages a dynamic
type system for JS source. To improve permissiveness, their subsequent work [23]
uses testing. It detects security violations due to branches that have not been
executed and injects annotations to prevent these in subsequent runs. A further
extension introduces annotations to deal with semi-structured control flow [5].
Our approach relies on analyzing CFGs and does not require annotations.

Secure multi-execution (SME) [6] is another approach to enforcing
non-interference at runtime. Conceptually, one executes the same code once for
each security level (like low and high) with the following constraints: high inputs
are replaced by default values for the low execution, and low outputs are per-
mitted only in the low execution. This modification of the semantics forces even
unsafe scripts to adhere to non-interference. FlowFox [7] demonstrates SME in
the context of Web browsers. Executing a script multiple times can be prohibitive
for a security lattice with multiple levels. Further, all writes to the DOM are con-
sidered publicly visible output, while tainting allows persisting a security label
on DOM elements. It is also unclear how declassification may be integrated into
SME. Austin and Flanagan [24] introduce a notion of faceted values to simulate
multiple executions in one run. They keep n values for every variable correspond-
ing to n security levels. All the values are used for computation as the program
proceeds but the mechanism enforces non-interference by restricting the leak of
high values to low observers.

Browsers work reactively; input is fed to an event queue that is processed
over time. Input to one event can produce output that influences the input to
a subsequent event. Bohannon et al. [14] present a formalization of a reactive
system and compare several definitions of reactive non-interference. Bielova et
al. [25] extend reactive non-interference to a browser model based on SME. This
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is currently the only approach that supports reactive non-interference for JS. We
will extend our work to the reactive setting as the next step.

Finally, Featherweight Firefox [26] presents a formal model of a browser based
on a reactive model that resembles that of Bohannon et al. [14]. It instantiates
the consumer and producer states in the model with actual browser objects like
window, page, cookie store, mode, connection, etc. Our current work entirely
focuses on the formalization of the JS engine and taint tracking to monitor
information leaks. We believe these two approaches complement each other and
plan to integrate such a model into our future holistic enforcement mechanism
spanning JS, the DOM and other browser components.

3 Background

We provide a brief overview of basic concepts in dynamic enforcement of infor-
mation flow control (IFC). In dynamic IFC, a language runtime is instrumented
to carry a security label or taint with every value. The taint is an element of a
pre-determined lattice and is an upper bound on the security levels of all entities
that have influenced the computation that led to the value. For simplicity of ex-
position, we use throughout this paper a three-point lattice {L, H, �} (L = low
or public, H = high or secret, � = partially leaked secret), with L � H � � [13].
For now, readers may ignore �. Our instrumentation works over a more general
powerset lattice, whose individual elements are Web domains. We write r� for a
value r tagged with label �.

Information flows can be categorized as explicit and implicit [27]. Explicit
flows arise as a result of variables being assigned to others, or through primitive
operations. For instance, the statement x = y + z causes an explicit flow from
values in both z and y to x. Explicit flows are handled in the runtime by updating
the label of the computed value (x in our example) with the least upper bound
of the labels of the operands in the computation (y, z in our example).

Implicit flows arise from control dependencies. For example, in the program
l = 0; if (h) {l = 1;}, there is an implicit flow from h to the final value
of l (that value is 1 iff h is 1). To handle implicit flows, dynamic IFC systems
maintain the so-called pc label (program-context label), which is an upper bound
on the labels of values that have influenced the control flow thus far. In our last
example, if the value in h has label H , then pc will be H within the if branch.
After l = 1 is executed, the final value of l inherits not only the label of 1
(which is L), but also of the pc; hence, that label is also H . This alone does not
prevent information leaks: When h = 0, l ends with 0L; when h = 1, l ends
with 1H . Since 0L and 1H can be distinguished by a public attacker, this program
leaks the value of h despite correct propagation of implicit taints. Formally, the
instrumented semantics so far fail the standard property of non-interference [8].

This problem can be resolved through the well-known no-sensitive-upgrade
(NSU) check [22,21], which prohibits assignment to a low-labeled variable when
pc is high. This recovers non-interference if the adversary cannot observe program
termination (termination-insensitive non-interference). In our example, when
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h = 0, the program terminates with l = 0L. When h = 1, the instruction l =
1 gets stuck due to NSU. These two outcomes are deemed observationally equiv-
alent for the low adversary, who cannot determine whether or not the program
has terminated in the second case. Hence, the program is deemed secure.

Roughly, a program is termination-insensitive non-interferent if any two ter-
minating runs of the program starting from low-equivalent heaps (i.e., heaps
that look equivalent to the adversary) end in low-equivalent heaps. Like all
sound dynamic IFC approaches, our instrumentation renders any JS program
termination-insensitive non-interferent, at the cost of modifying semantics of
programs that leak information.

4 Design, Challenges, Insights and Solutions

We implement dynamic IFC for JS in the widely used WebKit engine by instru-
menting WebKit’s bytecode interpreter. In WebKit, bytecode is generated by a
source-code compiler. Our goal is to not modify the compiler, but we are forced
to make slight changes to it to make it compliant with our instrumentation. The
modification is explained in Section 6. Nonetheless, almost all our work is limited
to the bytecode interpreter.

WebKit’s bytecode interpreter is a rather standard stack machine, with sev-
eral additional data structures for JS-specific features like scope chains, variable
environments, prototype chains and function objects. Local variables are held in
registers on the call stack. Our instrumentation adds a label to all data struc-
tures, including registers, object properties and scope chain pointers, adds code
to propagate explicit and implicit taints and implements a more permissive vari-
ant of the NSU check. Our label is a word size bit-set (currently 64 bits); each
bit in the bit-set represents taint from a distinct domain (like google.com). Join
on labels is simply bitwise or.

Unlike the ECMAScript specification of JS semantics, the actual implementa-
tion does not treat scope chains or variable environments like ordinary objects.
Consequently, we model and instrument taint propagation on all these data
structures separately. Working at the low-level of the bytecode also leads to sev-
eral interesting conceptual and implementation issues in taint propagation as
well as interesting questions about the threat model, all of which we explain
in this section. Some of the issues are quite general and apply beyond JS. For
example, we combine our dynamic analysis with a bit of static analysis to handle
unstructured control flow and exceptions.

Threat model and compiler assumptions. We explain our high-level threat model.
Following standard practice, our adversary may observe all low-labeled values
in the heap (more generally, an adversary at level � in a lattice can observe
all heap values with labels ≤ �). However, we do not allow the adversary to
directly observe internal data structures like the call stack or scope chains. This
is consistent with actual interfaces in a browser that third-party scripts can
access. In our non-interference proofs we must also show low-equivalence of these
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internal data structures across two runs to get the right induction invariants,
but assuming that they are inaccessible to the adversary allows more permissive
program execution, which we explain in Section 4.1.

The bytecode interpreter executes in a shared space with other browser com-
ponents, so we assume that those components do not leak information over side
channels, e.g., they do not copy heap data from secret to public locations. This
also applies to the compiler, but we do not assume that the compiler is func-
tionally correct. Trivial errors in the compiler, e.g., omitting a bytecode could
result in a leaky program even when the source code has no information leaks.
Because our IFC works on the compiler’s output, such compiler errors are not a
concern. Formally, we assume that the compiler is an unspecified deterministic
function of the program to compile and of the call stack, but not of the heap.
This assumption also matches how the compiler works within WebKit: It needs
access to the call stack and scope chain to optimize generated bytecode. How-
ever, the compiler never needs access to the heap. We ignore information leaks
due to other side channels like timing.

4.1 Challenges and Solutions

IFC for JS is known to be difficult due to JS’s highly dynamic nature. Working
with bytecode instead of source code makes IFC harder. Nonetheless, solutions
to many JS-specific IFC concerns proposed in earlier work [4] also apply to
our instrumentation, sometimes in slightly modified form. For example, in JS,
every object has a fixed parent, called a prototype, which is looked up when a
property does not exist in the child. This can lead to implicit flows: If an object
is created in a high context (when the pc is high) and a field missing from it,
but present in the prototype, is accessed later in a low context, then there is
an implicit leak from the high pc. This problem is avoided in both source- and
bytecode-level analysis in the same way: The “prototype” pointer from the child
to the parent is labeled with the pc where the child is created, and the label
of any value read from the parent after traversing the pointer is joined with
this label. Other potential information flow problems whose solutions remain
unchanged between source- and bytecode-level analysis include implicit leaks
through function pointers and handling of eval [12,4].

Working with bytecode both leads to some interesting insights, which are, in
some cases, even applicable to source code analysis and other languages, and
poses new challenges. We discuss some of these challenges and insights.

Unstructured control flow and CFGs. To avoid overtainting pc labels, an impor-
tant goal in implicit flow tracking is to determine when the influence of a control
construct has ended. For block-structured control flow limited to if and while
commands, this is straightforward: The effect of a control construct ends with
its lexical scope, e.g., in (if (h) {l = 1;}; l = 2), h influences the control
flow at l = 1 but not at l = 2. This leads to a straightforward pc upgrading
and downgrading strategy: One maintains a stack of pc labels [22]; the effective
pc is the top one. When entering a control flow construct like if or while, a new
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pc label, equal to the join of labels of all values on which the construct’s guard
depends with the previous effective pc, is pushed. When exiting the construct,
the label is popped.

Unfortunately, it is unclear how to extend this simple strategy to non-block-
structured control flow constructs such as exceptions, break, continue and
return-in-the-middle for functions, all of which occur in JS. For example, con-
sider the program l = 1; while(1) {... if (h) {break;}; l = 0; break;} with
h labeled H . This program leaks the value of h into l, but no assignment to l ap-
pears in a block-scope guarded by h. Indeed, the pc upgrading and downgrading
strategy just described is ineffective for this program. Prior work on source code
IFC either omits some of these constructs [4,28], or introduces additional classes
of labels to address these problems — a label for exceptions [4], a label for each
loop containing break or continue and a label for each function [5]. These labels
are more restrictive than needed, e.g., the code indicated by dots in the example
above is executed irrespective of the condition h in the first iteration, and thus
there is no need to raise the pc before checking that condition. Further, these la-
bels are programmer annotations, which we cannot support as we do not wish to
modify the compiler.

Importantly, unstructured control flow is a very serious concern for us, be-
cause WebKit’s bytecode has completely unstructured branches like jump-if-
false. In fact, all control flow, except function calls, is unstructured in bytecode.

To solve this problem, we adopt a solution based on static analysis of generated
bytecode [29,12]. We maintain a control flow graph (CFG) of known bytecodes
and for each branch node, compute its immediate post-dominator (IPD). The
IPD of a node is the first instruction that will definitely be executed, no matter
which branch is taken. Our pc upgrading and downgrading strategy now extends
to arbitrary control flow: When executing a branch node, we push a new pc label
on the stack along with the node’s IPD. When we actually reach the IPD, we
pop the pc label. In [30,31], the authors prove that the IPD marks the end of
the scope of an operation and hence the security context of the operation, so
our strategy is sound. In our earlier example, the IPD of if(h) ... is the end
of the while loop because of the first break statement, so when h == 0, the
assignment l = 1 fails due to the NSU check and the program is termination-
insensitive non-interference secure.

JS requires dynamic code compilation. We are forced to extend the CFG and to
compute IPDs whenever code for either a function or an eval is compiled. Fortu-
nately, the IPD of a node in the CFG lies either in the same function as the node or
some function earlier in the call-chain (the latter may happen due to exceptions),
so extending the CFG does not affect computation of IPDs of earlier nodes. This
also relies on the fact that code generated from eval cannot alter the CFG of ear-
lier functions in the call stack [12]. In the actual implementation, we optimize the
calculation of IPDs further by working only intra-procedurally, as explained be-
low. At the end, our IPD-based solution works for all forms of unstructured control
flow, including unstructured branches in the bytecode, and semi-structured break,
continue, return-in-the-middle and exceptions in the source code.



Information Flow Control in WebKit’s JavaScript Bytecode 167

Exceptions and synthetic exit nodes. Maintaining a CFG in the presence of
exceptions is expensive. An exception-throwing node in a function that does
not catch that exception should have an outgoing control flow edge to the next
exception handler in the call-stack. This means that (a) the CFG is, in general,
inter-procedural, and (b) edges going out of a function depend on its calling
context, so IPDs of nodes in the function must be computed every time the
function is called. Moreover, in the case of recursive functions, the nodes must
be replicated for every call. This is rather expensive. Ideally, we would like to
build the function’s CFG once when the function is compiled and work intra-
procedurally (as we would had there been no exceptions). We explain how we
attain this goal in the sequel.2

In our design, every function that may throw an unhandled exception has
a special, synthetic exit node (SEN), which is placed after the regular return
node(s) of the function. Every exception-throwing node, whose exception will
not be caught within the function, has an outgoing edge to the SEN, which is
traversed when the exception is thrown. The semantics of SEN (described below)
correctly transfer control to the appropriate exception handler. By doing this, we
eliminate all cross-function edges and our CFGs become intra-procedural. The
CFG of a function can be computed when the function is compiled and is never
updated. (In our implementation, we build two variants of the CFG, depending
on whether or not there is an exception handler in the call stack. This improves
efficiency, as we explain later.)

Control flows to the SEN when the function returns normally or when an
exception is thrown but not handled within the function. If no unhandled excep-
tion occurred within the function, then the SEN transfers control to the caller
(we record whether or not an unhandled exception occurred). If an unhandled
exception occurred, then the SEN triggers a special mechanism that searches
the call stack backward for the first appropriate exception handler and transfers
control to it. (In JS, exceptions are indistinguishable, so we need to find only the
first exception handler.) Importantly, we pop the call-stack up to the frame that
contains the first exception handler but do not pop the pc-stack, which ensures
that all code up to the exception handler’s IPD executes with the same pc as
the SEN, which is indeed the semantics one would expect if we had a CFG with
cross-function edges for exceptions. This prevents information leaks.

If a function does not handle a possible exception but there is an exception
handler on the call stack, then all bytecodes that could potentially throw an
exception have the SEN as one successor in the CFG. Any branching bytecode
will thus need to push to the pc-stack according to the security label of its
condition. However, we do not push a new pc-stack entry if the IPD of the
current node is the same as the IPD on the top of the pc-stack (this is just
an optimization) or if the IPD of the current node is the SEN, as in this case
the real IPD, which is outside of this method, is already on the pc-stack. These
semantics emulate the effect of having cross-function exception edges.

2 This problem and our solution are not particular to JS; they apply to dynamic IFC
analysis in all languages with exceptions and functions.



168 A. Bichhawat et al.

For illustration, consider the following two functions f and g. The � at the
end of g denotes its SEN. Note that there is an edge from throw 9 to � because
throw 9 is not handled within g. � denotes the IPD of the handler catch(e)
{ l = 1; }.
function f() = {
l = 0;
try { g(); } catch(e) { l = 1; }
� return l;

}

function g() = {
if (h) {throw 9;}
return 7;

} �

It should be clear that in the absence of instrumentation, when f is invoked
with pc = L, the two functions together leak the value of h (which is assumed to
have label H) into the return value of f. We show how our SEN mechanism pre-
vents this leak. When invoking g() we do not know if there will be an exception
in this function. Depending on the outcome of this method call, we will either
jump to the exception handler or continue at �. Based on that branch, we push
the current pc and IPD (L,�) on the pc-stack. When executing the condition
if (h) we do not push again, but merely update the top element to (H,�). If h
== 0, control reaches � without an exception but with pc = H because the IPD
of if (h) is �. At this point, � returns control to f, thus pc = H , but at �, pc
is lowered to L, so f ends with the return value 0L. If h == 1, control reaches �
with an unhandled exception. At this point, following the semantics of SEN, we
find the exception handler catch(e) { l = 1; } and invoke it with the same
pc as the point of exception, i.e., H . Consequently, NSU prevents the assignment
l = 1, which makes the program termination-insensitive non-interferent.

Because we do not wish to replicate the CFG of a function every time it is
called recursively, we need a method to distinguish the same node corresponding
to two different recursive calls on the pc-stack. For this, when pushing an IPD
onto the pc-stack, we pair it with a pointer to the current call-frame. Since the
call-frame pointer is unique for each recursive call, the CFG node paired with
the call-frame identifies a unique merge point in the real control flow graph.

In practice, even the intra-procedural CFG is quite dense because many JS
bytecodes can potentially throw exceptions and, hence, have edges to the SEN.
To avoid overtainting, we perform a crucial common-case optimization: When
there is no exception handler on the call stack we do not create the SEN and
the corresponding edges from potentially exception-throwing bytecodes at all.
This is safe as a potentially thrown exception can only terminate the program
instantly, which satisfies termination-insensitive non-interference if we ensure
that the exception message is not visible to the attacker. Whether or not an
exception handler exists is easily tracked using a stack of Booleans that mirrors
the call-stack; in our design we overlay this stack on the pc-stack by adding an
extra Boolean field to each entry of the pc-stack. In summary, each entry of our
pc-stack is a quadruple containing a security label, a node in the intraprocedural
CFG, a call-frame pointer and a Boolean value. In combination with SENs, this
design allows us to work only with intraprocedural CFGs that are computed
when a function is compiled. This improves efficiency.
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Permissive-upgrade check, with changes. The standard NSU check halts program
execution whenever an attempt is made to assign a variable with a low-labeled
value in a high pc. In our earlier example, l = 0; if (h) {l = 1;}, assuming
that h stores a H-labeled value, program execution is halted at the command
l = 1. As Austin and Flanagan (AF in the sequel) observe [13], this may be
overly restrictive when l will not, in fact, have observable effects (e.g., l may
be overwritten by a constant immediately after if (h) {l = 1;}). So, they
propose propagating a special taint called � into l at the instruction l = 1 and
halting a program when it tries to use a value labeled � in a way that will be
observable (AF call this special taint P for “partially leaked”). This idea, called
the permissive-upgrade check, allows more program execution than NSU would,
so we adopt it. In fact, this additional permissiveness is absolutely essential for us
because the WebKit compiler often generates dead assignments within branches,
so execution would pointlessly halt if standard NSU were used.

We differ from AF in what constitutes a use of a value labeled �. As expected,
AF treat occurrence of � in the guard of a branch as a use. Thus, the program l
= 0; if (h) {l = 1;}; if (l) {l’ = 2} is halted at the command if (l)
when h == 1 because l obtains taint � at the assignment l = 1 (if the program
is not halted, it leaks h through l’). However, they allow �-tainted values to
flow into the heap. Consider the program l = 0; if (h) {l = 1;}; obj.a =
l. This program is insecure in our model: The heap location obj.a, which is
accessible to the adversary, ends with 0L when h == 0 and with 1� when h
== 1. AF deem the program secure by assuming that any value with label � is
low-equivalent to any other value (in particular, 0L and 1� are low-equivalent).
However, this definition of low-equivalence for dynamic analysis is virtually im-
possible to enforce if the adversary has access to the heap outside the language:
After writing 0L to obj.a (for h == 0), a dynamic analysis cannot determine
that the alternate execution of the program (for h == 1) would have written a
�-labeled value and, hence, cannot prevent the adversary from seeing 0L.

Consequently, in our design, we use a modified permissive-upgrade check,
which we call the deferred NSU check, wherein a program is halted at any con-
struct that may potentially flow a �-labeled value into the heap. This includes
all branches whose guard contains a �-labeled value and any assignments whose
target is a heap location and whose source is �-labeled. However, we do not
constrain flow of �-labeled values in data structures that are invisible to the ad-
versary in our model, e.g., local registers and variable environments. This design
critically relies on treating internal data structures differently from ordinary JS
objects, which is not the case, for instance, in the ECMAScript specification.

5 Formal Model and IFC

We formally model WebKit’s JS bytecode and the semantics of its bytecode
interpreter with our instrumentation of dynamic IFC. We prove termination-
insensitive non-interference for programs executed through our instrumented
interpreter. We do not model the construction of the CFG or computation of
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ins := prim-ins | obj-ins
| func-ins | scope-ins | exc-ins

prim-ins := prim dst:r src1:r src2:r
| mov dst:r src:r
| jfalse cond:r target:offset
| loop-if-less src1:r src2:r target:offset
| typeof dst:r src:r
| instanceof dst:r value:r cProt:r

func-ins := enter
| ret result:r
| end result:r
| call func:r args:n
| call-put-result res:r
| call-eval func:r args:n
| create-arguments dst:r
| new-func dst:r func:f
| create-activation dst:r
| construct func:r args:n
| create-this dst:r

obj-ins := new-object dst:r
| get-by-id dst:r base:r prop:id
| put-by-id base:r prop:id value:r direct:b
| del-by-id dst:r base:r prop:id
| get-pnames dst:r base:r i:n size:n breaktarget:offset
| next-pname dst:r base:r i:n size:n iter:n target:offset
| put-getter-setter base:r prop:id getter:r setter:r

scope-ins := resolve dst:r prop:id
| resolve-skip dst:r prop:id skip:n
| resolve-global dst:r prop:id
| resolve-base dst:r prop:id isStrict:bool
| resolve-with-base bDst:r pDst:r prop:id
| get-scoped-var dst:r index:n skip:n
| put-scoped-var index:n skip:n value:r
| push-scope scope:r
| pop-scope
| jmp-scope count:n target:offset

exc-ins := throw ex:r
| catch ex:r

Fig. 1. Instructions

IPDs; these are standard. To keep presentation accessible, we present our for-
mal model at a somewhat high-level of abstraction. Details are resolved in our
technical appendix.

5.1 Bytecode and Data Structures

The version of WebKit we model uses a total of 147 bytecodes or instructions,
of which we model 69. The remaining 78 bytecodes are redundant from the
perspective of formal modeling because they are specializations or wrappers on
other bytecodes to improve efficiency. The syntax of the 69 bytecodes we model
is shown in Fig. 1. The bytecode prim abstractly represents 34 primitive binary
and unary (with just the first two arguments) operations, all of which behave
similarly. For convenience, we divide the bytecodes into primitive instructions
(prim-ins), instructions related to objects and prototype chains (obj-ins), in-
structions related to functions (func-ins), instructions related to scope chains
(scope-ins) and instructions related to exceptions (exc-ins). A bytecode has the
form 〈inst_name list_of _args〉. The arguments to the instruction are of the
form 〈var〉:〈type〉, where var is the variable name and type is one of the following:
r, n, bool, id, prop and offset for register, constant integer, constant Boolean,
identifier, property name and jump offset value, respectively.

In WebKit, bytecode is organized into code blocks. Each code block is a se-
quence of bytecodes with line numbers and corresponds to the instructions for
a function or an eval statement. A code block is generated when a function
is created or an eval is executed. In our instrumentation, we perform control
flow analysis on a code block when it is created and in our formal model we
abstractly represent a code block as a CFG, written ζ. Formally, a CFG is a
directed graph, whose nodes are bytecodes and whose edges represent possible
control flows. There are no cross-function edges. A CFG also records the IPD of
each node. IPDs are computed using an algorithm by Lengauer and Tarjan [32]
when the CFG is created. If the CFG contains uncaught exceptions, we also cre-
ate a SEN. For a CFG ζ and a non-branching node ι ∈ ζ, Succ(ζ, ι) denotes ι’s
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unique successor. For a conditional branching node ι, Left(ζ, ι) and Right(ζ, ι)
denote successors when the condition is true and false, respectively.

The bytecode interpreter is a standard stack machine, with support for JS
features like scope chains and prototype chains. The state of the machine (with
our instrumentation) is a quadruple 〈ι, θ, σ, ρ〉, where ι represents the current
node that is being executed, θ represents the heap, σ represents the call-stack
and ρ is the pc-stack.

We assume an abstract, countable set A = {a, b, . . .} of heap locations, which
are references to objects. The heap θ is a partial map from locations to objects.
An object O may be:

– An ordinary JS object N = ({pi �→ vi}n
i=0, __proto__ �→ a�p , �s), con-

taining properties named p0, . . . , pn that map to labeled values v0, . . . , vn, a
prototype field that points to a parent at heap location a, and two labels �p

and �s. �p records the pc where the object was created. �s is the so-called
structure label, which is an upper bound on all pcs that have influenced
which fields exist in the object.3

– A function object F = (N, ζ, Σ), where N is an ordinary object, ζ is a CFG,
which corresponds to the the function stored in the object, and Σ is the
scope chain (closing context) of the function.

A labeled value v = r� is a value r paired with a security label �. A value r in
our model may be a heap location a or a JS primitive value n, which includes
integers, Booleans, regular expressions, arrays, strings and the special JS values
undefined and null.

The call-stack σ contains one call-frame for each incomplete function call. A
call-frame μ contains an array of registers for local variables, a CFG ζ for the
function represented by the call-frame, the return address (a node in the CFG of
the previous frame), and a pointer to a scope-chain that allows access to variables
in outer scopes. Additionally, each call-frame has an exception table which maps
each potentially exception-throwing bytecode in the function to the exception
handler within the function that surrounds the bytecode; when no such exception
handler exists, it points to the SEN of the function (we conservatively assume
that any unknown code may throw an exception, so bytecodes call and eval
are exception-throwing for this purpose). |σ| denotes the size of the call-stack
and !σ its top frame. Each register contains a labeled value.

A scope chain, Σ, is a sequence of scope chain nodes (SCNs), denoted S,
paired with labels. In WebKit, a scope chain node S may either be an object
or a variable environment V , which is an array of labeled values. Thus, Σ ::=
(S1, �1) : . . . : (Sn, �n) and S ::= O | V and V ::= v1 : . . . : vn.

Each entry of the pc-stack ρ is a triple (�, ι, p), where � is a security label,
ι is a node in a CFG, and p is a pointer to some call-frame on the call stack

3 The __proto__ field is the parent of the object; it is not the same as the prototype
field of a function object, which is an ordinary property. Also, in our actual model,
fields pi map to more general property descriptors that also contain attributes along
with labeled values. We elide attributes here to keep the presentation simple.
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σ. (For simplicity, we ignore a fourth Boolean field described in Section 4.1 in
this presentation.) When we enter a new control context, we push the new pc �
together with the IPD ι of the entry point of the control context and a pointer
p to current call-frame. The pair (ι, p) uniquely identifies where the control of
the context ends; p is necessary to distinguish the same branch point in different
recursive calls of the function [12]. In our semantics, we use the meta-function
isIPD to pop the stack. It takes the current instruction, the current pc-stack and
the call stack σ, and returns a new pc-stack.

isIPD(ι, ρ, σ) :=

{
ρ.pop() if !ρ = (_, ι, !σ)
ρ otherwise

As explained in Section 4.1, as an optimization, we push a new node (�, ι, σ)
onto ρ only when (ι, σ) (the IPD) differs from the corresponding pair on the top
of the stack and, to handle exceptions correctly, we also require that ι not be
the SEN. Otherwise, we just join � with the label on the top of the stack. This
is formalized in the function ρ.push(�, ι, σ), whose obvious definition we elide.

If x is a pair of any syntactic entity and a security label, we write Υ (x) for the
entity and Γ (x) for the label. In particular, for v = r�, Υ (v) = r and Γ (v) = �.

5.2 Semantics and IFC with Intra-procedural CFGs

We now present the semantics, which faithfully models our implementation us-
ing intra-procedural CFGs with SENs. The semantics is defined as a set of state
transition rules that define the judgment: 〈ι, θ, σ, ρ〉 � 〈ι′, θ′, σ′, ρ′〉. Fig. 2 shows
rules for selected bytecodes. For reasons of space we omit rules for other byte-
codes and formal descriptions of some meta-function like opCall that are used
in the rules. C ⇒ A � B is shorthand for a meta-level (if (C) then A else B).

prim reads the values from two registers src1 and src2, performs a binary
operation generically denoted by ⊕ on the values and writes the result into the
register dst. dst is assigned the join of the labels in src1, src2 and the head of
the pc-stack (!ρ). To implement deferred NSU (Section 4.1), the existing label
in dst is compared with the current pc. If the label is lower than the pc, then
the label of dst is joined with �. Note that the premise ρ′ = isIPD(ι′, ρ, σ) pops
an entry from the pc-stack if its IPD matches the new program node ι′. This
premise occurs in all semantic rules.

jfalse is a conditional jump. It skips offset number of successive nodes in
the CFG if the register cond contains false, else it falls-through to the next
node. Formally, the node it branches to is either Right(ζ, ι) or Left(ζ, ι), where ζ
is the CFG in !σ. In accordance with deferred NSU, the operation is performed
only if cond is not labeled �. jfalse also starts a new control context, so a new
node is pushed on the top of the pc-stack with a label that is the join of Γ (cond)
and the current label on the top of the stack (unless the IPD of the branch point
is already on top of the stack or it is the SEN, in which case we join the new
label with the previous). Traversed from bottom to top, the pc-stack always has
monotonically non-decreasing labels.
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prim:

ι = “op-prim dst:r src1:r src2:r”,
L := Γ (!σ(src1)) � Γ (!σ(src2)) � Γ (!ρ),

V := Υ (!σ(src1)) ⊕ Υ (!σ(src2))
(Γ (!σ(dst)) ≥ Γ (!ρ)) =⇒ (L := L) � (L := �)

σ′ := σ
[

Υ (!σ(dst)):=V
Γ (!σ(dst)):=L

]
,

ι′ := Succ(!σ′.CFG, ι), ρ′ := isIPD(ι′, ρ, σ′)
ι, θ, σ, ρ � ι′, θ, σ′, ρ′

jfalse:

ι = “op-jfalse cond:r target:offset”,
Γ (!σ(cond)) �= �, L := Γ (!σ(cond)) � Γ (!ρ),

Υ (!σ(cond)) = false =⇒ ι′ := Left(!σ.CFG , ι)
�ι′ := Right(!σ.CFG , ι),

ρ′′ := ρ.push(L, IPD(ι), CF (ι)), ρ′ := isIPD(ι′, ρ′′, σ)
ι, θ, σ, ρ � ι′, θ, σ, ρ′

put-by-id:

ι = “op-put-by-id base:r prop:id value:r direct:b”,
Γ (!σ(value)) �= �, direct = true =⇒

θ′ := putDirect(Γ (!ρ), σ, θ, base, prop, value) �
θ′ := putIndirect(Γ (!ρ), σ, θ, base, prop, value),

ι′ := Succ(!σ.CFG, ι), ρ′ := isIPD(ι′, ρ, σ)
ι, θ, σ, ρ � ι′, θ′, σ, ρ′

push-scope:

ι = “op-push-scope scope:r”,
σ′ := pushScope(Γ(!ρ), σ, scope),

ι′ := Succ(!σ′.CFG, ι), ρ′ := isIPD(ι′, ρ, σ′)
ι, θ, σ, ρ � ι′, θ, σ′, ρ′

call:

ι = “op-call func:r args:n”,
Γ (func) �= �, (ι′, σ′, �f) := opCall(σ, ι, func, args),

L = �f � Γ (!σ(func)) � Γ (!ρ),
ρ′′ := ρ.push(L, IPD(ι), CF (ι)), ρ′ := isIPD(ι′, ρ′′, σ′)

ι, θ, σ, ρ � ι′, θ, σ′, ρ′

ret:

ι = “op-ret res:r”,
(ι′, σ′, γ) := opRet(σ, res), ρ′ := isIPD(ι′, ρ, σ′)

ι, θ, σ, ρ � ι′, θ, σ′, ρ′

throw:

ι = “op-throw ex:r”, excValue := Υ (!σ(ex)),
(σ′, ι′) := throwException(σ, ι), ρ′ := isIPD(ι′, ρ, σ′)

ι, θ, σ, ρ � ι′, θ, σ′, ρ′

Fig. 2. Semantics, selected rules

put-by-id updates the property prop in the object pointed to by register
base. As explained in Section 4.1, we allow this only if the value to be written is
not labeled �. The flag direct states whether or not to traverse the prototype
chain in finding the property; it is set by the compiler as an optimization. If the
flag is true, then the chain is not traversed (meta-function putDirect handles this
case). If direct is false, then the chain is traversed (meta-function putIndirect).
Importantly, when the chain is traversed, the resulting value is labeled with the
join of prototype labels �p and structure labels �s of all traversed objects. This
is standard and necessary to prevent implicit leaks through the __proto__
pointers and structure changes to objects.

push-scope, which corresponds to the start of the JS construct with(obj),
pushes the object pointed to by the register scope into the scope chain. Because
pushing an object into the scope chain can implicitly leak information from the
program context later, we also label all nodes in the scope-chain with the pc’s at
which they were added to the chain. Further, deferred NSU applies to the scope
chain pointer in the call-frame as it does to all other registers.

call invokes a function of the target object stored in the register func. Due to
deferred NSU, the call proceeds only if Γ (func) is not �. The call creates a new
call-frame and initializes arguments, the scope chain pointer (initialized with the
function object’s Σ field), CFG and the return node in the new frame. The CFG
in the call-frame is copied from the function object pointed to by func. All this
is formalized in the meta-function opCall, whose details we omit here. Call is a
branch instruction and it pushes a new label on the pc-stack which is the join of
the current pc, Γ (func) and the structure label �f of the function object (unless
the IPD of the current node is the SEN or already on the top of the pc-stack, in
which case we join the new pc-label with the previous). call also initializes the
new registers’ labels to the new pc. A separate bytecode, not shown here and
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executed first in the called function, sets register values to undefined. eval is
similar to call but the code to be executed is also compiled.

ret exits a function. It returns control to the caller, as formalized in the
meta-function opRet. The return value is written to an interpreter variable (γ).

throw throws an exception, passing the value in register ex as argument to
the exception handler. Our pc-stack push semantics ensure that the exception
handler, if any, is present in the call-frame pointed to by the top of the pc-stack.
The meta-function throwException pops the call-stack up to this call-frame and
transfers control to the exception handler, by looking it up in the exception
table of the call-frame. The exception value in the register ex is transferred to
the handler through an interpreter variable.

Correctness of IFC. We prove that our IFC analysis guarantees termination-
insensitive non-interference [11]. Intuitively, this means that if a program is run
twice from two states that are observationally equivalent for the adversary and
both executions terminate, then the two final states are also equivalent for the
adversary. To state the theorem formally, we formalize equivalence for various
data structures in our model. The only nonstandard data structure we use is the
CFG, but graph equality suffices for it. A well-known complication is that low
heap locations allocated in the two runs need not be identical. We adopt the
standard solution of parametrizing our definitions of equivalence with a partial
bijection β between heap locations. The idea is that two heap locations are
related in the partial bijection if they were created by corresponding allocations
in the two runs. We then define a rather standard relation 〈ι1, θ1, σ1, ρ1〉 ∼β

�

〈ι2, θ2, σ2, ρ2〉, which means that the states on the left and right are equivalent
to an observer at level �, up to the bijection β on heap locations. We defer details
to the appendix.

Theorem 1 (Termination-insensitive non-interference) Suppose:
(1) 〈ι1, θ1, σ1, ρ1〉 ∼β

� 〈ι2, θ2, σ2, ρ2〉, (2) 〈ι1, θ1, σ1, ρ1〉 �∗ 〈end, θ′
1, [], []〉, and

(3) 〈ι2, θ2, σ2, ρ2〉 �∗ 〈end, θ′
2, [], []〉. Then, ∃β′ ⊇ β such that θ′

1 ∼β′
� θ′

2.

6 Implementation

We instrumented WebKit’s JS engine (JavaScriptCore) to implement the IFC
semantics of the previous section. Before a function starts executing, we generate
its CFG and calculate IPDs of its nodes by static analysis of its bytecode. We
modify the source-to-bytecode compiler to emit a slightly different, but function-
ally equivalent bytecode sequence for finally blocks; this is needed for accurate
computation of IPDs. For evaluation purposes, we label each source script with
the script’s domain of origin; each seen domain is dynamically allocated a bit in
our bit-set label. In general, our instrumentation terminates a script that violates
IFC. However, for the purpose of evaluating overhead of our instrumentation,
we ignore IFC violations in all experiments described here.

We also implement and evaluate a variant of sparse labeling [21] which opti-
mizes the common case of computations that mostly use local variables (registers
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Fig. 3. Overheads of basic and optimized IFC in SunSpider benchmarks

in the bytecode). Until a function reads a value from the heap with a label differ-
ent from the pc, we propagate taints only on heap-writes, but not on in-register
computations. Until that point, all registers are assumed to be implicitly tainted
with pc. This simple optimization reduces the overhead incurred by taint track-
ing significantly in microbenchmarks. For both the basic and optimized version,
our instrumentation adds approximately 4,500 lines of code to WebKit.

Our baseline for evaluation is the uninstrumented interpreter with JIT dis-
abled. For comparison, we also include measurements with JIT enabled. Our
experiments are based on WebKit build #r122160 running in Safari 6.0. The
machine has a 3.2GHz Quad-core Intel Xeon processor with 8GB RAM and
runs Mac OS X version 10.7.4.

Microbenchmark. We executed the standard SunSpider 1.0.1 JS benchmark suite
on the uninstrumented interpreter with JIT disabled and JIT enabled, and on
the basic and the optimized IFC instrumentations with JIT disabled. Results are
shown in Figure 3. The x-axis ranges over SunSpider tests and the y-axis shows
the average execution time, normalized to our baseline (uninstrumented inter-
preter with JIT disabled) and averaged across 100 runs. Error bars are standard
deviations. Although the overheads of IFC vary from test to test, the average
overheads over our baseline are 121% and 45% for basic IFC and optimized
IFC, respectively. The test regexp has almost zero overhead because it spends
most time in native code, which we have not yet instrumented. We also note
that, as expected, the JIT-enabled configuration performs extremely well on the
SunSpider benchmarks.

Macrobenchmarks. We measured the execution time of the intial JS on 9 popu-
lar English language Websites. We load each Website in Safari and measure the
total time taken to execute the JS code without user interaction. This excludes
time for network communication and internal browser events and establishes a
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Fig. 4. Overheads of basic and optimized IFC in real websites

very conservative baseline. The results, normalized to our baseline, are shown in
Fig. 4. Our overheads are all less than 42% (with an average of around 29% in
both instrumentations). Interestingly, we observe that our optimization is less
effective on real websites indicating that real JS accesses the heap more often
than the SunSpider tests. When compared to the amount of time it takes to
fetch a page over the network and to render it, these overheads are negligible.
Enabling JIT worsens performance compared to our baseline indicating that,
for the code executed here, JIT is not useful. We also experimented with JS-
Bench [33], a sophisticated benchmark derived from JS code in the wild. The
average overhead on all JSBench tests (a total 23 iterations) is approximately
38% for both instrumentations. Details are present in our technical appendix.

7 Conclusion and Future Work

We have explored dynamic information flow control for JS bytecode in WebKit,
a production JS engine. We formally model the bytecode, its semantics, our
instrumentation and prove the latter correct. We identify challenges, largely
arising from pervasive use of unstructured control flow in bytecode, and resolve
them using very limited static analysis. Our evaluation indicates only moderate
overheads in practice.

In ongoing work, we are instrumenting the DOM and other native JS methods.
We also plan to generalize our model and non-interference theorem to take into
account the reactive nature of Web browsers. Going beyond non-interference,
the design and implementation of a policy language for representing allowed
information flows looks necessary.
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A Separation Logic for Enforcing Declarative

Information Flow Control Policies
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Abstract. In this paper, we present a program logic for proving that a
program does not release information about sensitive data in an unin-
tended way. The most important feature of the logic is that it provides
a formal security guarantee while supporting “declassification policies”
that describe precise conditions under which a piece of sensitive data
can be released. We leverage the power of Hoare Logic to express the
policies and security guarantee in terms of state predicates. This allows
our system to be far more specific regarding declassification conditions
than most other information flow systems.

The logic is designed for reasoning about a C-like, imperative language
with pointer manipulation and aliasing. We therefore make use of ideas
from Separation Logic to reason about data in the heap.

1 Introduction

Information Flow Control (IFC) is a field of computer security concerned with
tracking the propagation of information through a system. A primary goal of
IFC reasoning is to formally prove that a system does not inadvertently leak
high-security data to a low-security observer. A major challenge is to precisely
define what ”inadvertently” should mean here.

A simple solution to this challenge, taken by many IFC systems (e.g.,
[7,8,14,19,23]), is to define an information-release policy using a lattice of se-
curity labels. A noninterference property is imposed: information cannot flow
down the lattice. Put another way, any data that the observer sees can only have
been influenced by data with label less than or equal to the observer’s label in
the lattice. This property is sometimes called pure noninterference.

Purely-noninterfering systems are unfortunately not very useful. Almost all
real-world systems need to violate noninterference sometimes. For example, con-
sider one of the most standard security-sensitive situations: password authen-
tication. In order for a password to be useful, there must be a way for a user
to submit a guess at the password. If the guess is incorrect, then the user will
be informed as such. However, the information that the guess was incorrect is
dependent on the password itself; the user (who might be a malicious attacker)
learns that the password is definitely not the one that was guessed. This repre-
sents a flow of information (albeit a minor one) from the high-security password
to the low-security user, thus violating noninterference. In a purely noninterfer-
ing system, sensitive data has no way whatsoever of affecting the outcome of a
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computation, and so the situation is essentially equivalent to the data not being
present in the system at all.

There have been numerous attempts at refining the notion of inadvertent
information release beyond the rules of a strict lattice structure. IFC systems
commonly allow for some method of declassification, a term used to describe an
information leak (i.e., an information flow moving down the security lattice) that
is understood to be in some way “acceptable” or “purposeful” (as opposed to
“inadvertent”). These declassifications violate the pure noninterference property
described above. Ideally, an IFC system should still provide some sort of security
guarantee even in the presence of declassification. It is quite rare, however, for a
system to have a satisfactory formal guarantee. Those that do usually must make
significant concessions that limit the generality or practicality of the system.

Our primary goal is to leverage the strengths of a program logic to devise a
powerful IFC system that provides formal security guarantees even in the pres-
ence of declassification. A secondary goal is to avoid relational reasoning, which
is usually required for the more expressive IFC reasoning systems (e.g., [15]) due
to the nature of noninterference, but can be very difficult to use in practice.

We achieve these goals by using unary state predicates to refine the pure
noninterference property into one that cleanly describes exactly how a piece
of high-security data could affect observable output. Instead of simply saying
that an observer cannot distinguish between any values of the high-security
data, we say that the observer cannot distinguish between any values among a
particular set — the set described by the state predicate. This method of refining
pure noninterference to express a semantic notion of declassification appears in
many previous IFC reasoning systems (e.g., [3],[15],[20]), though we take a rather
unique approach toward designing a system that establishes the property. Our
contributions in this paper are as follows:

– We define a novel, security-aware semantics for a simple imperative language
with pointer arithmetic and aliasing. The semantics instruments state with
security labels, and tracks information flow through propagation of these
labels. We show that this semantics is sensible and overhead-free by relating
its executions back to a standard small-step operational semantics without
labels.

– We present a program logic for formally verifying the safety of a program
under the security-aware semantics. The logic builds upon Hoare Logic [9]
and Separation Logic [16,17], and uses a unary predicate language syntax
that has the ability to refer to security labels in the program state. Note that
our choice of Separation Logic is somewhat arbitrary — we need to reason
about low-level pointer manipulation, but a different pointer-analysis logic
may be just as suitable.

– We prove a strong, termination-insensitive security guarantee for any pro-
gram that is verified using our program logic. This guarantee generalizes
traditional pure noninterference to account for semantic declassification.

– All of the technical work in this paper is fully formalized and proved in the
Coq proof assistant. The Coq development can be found at [6].
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The remainder of this paper is organized as follows: Section 2 informally
discusses how our system works and highlights contributions; Section 3 defines
our language, state model, and operational semantics; Section 4 describes the
program logic and its soundness theorem relative to the operational semantics;
Section 5 describes the noninterference-based security guarantee provided by the
program logic; Section 6 describes related work; and Section 7 concludes.

2 Informal Discussion

In this section, we will describe our system informally in order to provide some
high-level motivation. We pick a starting point of a C-like, imperative language
with pointer arithmetic and aliasing, as we would like our logic to be applicable
to low-level systems code. The main operations of our language are variable
assignment x := E, heap dereference/load x := [E], and heap dereference/store
[E] := E′. The expressions E can be any standard mathematical expressions
on program variables, so pointer arithmetic is allowed. Aliasing is also clearly
allowed since [x] and [y] refer to the same heap location if x and y contain the
same value.

2.1 Security Labels

Our instrumented language semantics will track information flow by attaching a
security label to every value in the program state. For simplicity of presentation,
we will assume that the only labels are Lo and Hi (a more general version of
our system allows labels to be any set of elements that form a lattice structure).
Unlike many static IFC reasoning systems, we attach the label to the value
rather than the location. This means that a program is allowed to, for example,
overwrite some Lo data stored in variable x with some other Hi data. Many other
systems would instead label the location x as Lo, meaning that Hi data could
never be written into it. Supporting label overwrites allows our system to verify
a wider variety of programs.

Label propagation is done in a mostly obvious way. If we have a direct as-
signment such as x := y, then the label of y’s data propagates into x along
with the data itself. We compute the composite label of an expression such as
2∗x+z to be the least upper bound of the labels of its constituent parts (for the
two-element lattice of Lo and Hi, this will be Lo if and only if each constituent
label is Lo). For the heap-read command x := [E], we must propagate both the
label of E and the label of the data located at heap address E into x. In other
words, if we read some low-security data from the heap using a high-security
pointer, the result must be tainted as high security in order for our information
flow tracking to be accurate. Similarly, the heap-write command [E] := E′ must
propagate both the label of E′ and the label of pointer E into the location E in
the heap. As a general rule for any of these atomic commands, we compute the
composite label of the entire read-set, and propagate that into all locations in
the write-set.
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2.2 Noninterference

As discussed in Section 1, the ultimate goal of our IFC system is to prove a formal
security guarantee that holds for any verified program. The standard security
guarantee is noninterference, which says that the initial values of Hi data have
no effect on the “observable behavior” of a program’s execution. We choose to
define observable behavior in terms of a special output channel. We include an
output command in our language, and an execution’s observable behavior is
defined to be exactly the sequence of values that the execution outputs.

The standard way to express this noninterference property formally is in terms
of two executions: a program is deemed to be noninterfering if two executions
of the program from observably equivalent initial states always yield identical
outputs. Two states are defined to be observably equivalent when only their
high-security values differ. Thus this property describes what one would expect:
changing the value of any high-security data in the initial state will cause no
change in the program’s output.

We refine this noninterference property by requiring a precondition to hold on
the initial state of an execution. That is, we alter the property to say that two ex-
ecutions will yield identical outputs if they start from two observably equivalent
states that both satisfy some state predicate P . This weakening of noninterfer-
ence is interesting for two reasons. First, it provides a link between information
flow security and Hoare Logic (a program logic that derives pre/postconditions
as state predicates). Second, this property describes a certain level of dependency
between high-security inputs and low-security outputs, rather than the complete
independence of pure noninterference. This means that a program that satisfies
this weaker noninterference may be semantically declassifying data. In this sense,
we can use this property as an interesting security guarantee for a program that
may declassify some data. To better understand this weaker version of noninter-
ference, let us consider a few examples.

Public Parity. Suppose we have a variable x that contains some high-security
data. We wish to specify a declassification policy which says that only the parity
of the Hi value can be released to the public. We will accomplish this by verifying
the security of some program with a precondition P that says “x contains high
data, y contains low data, and y = x%2”. Our security property then says that
if we have an execution from some state satisfying P , then changing the value of
x will not affect the output as long as the new state also satisfies P . Since y is
the parity of x and is unchanged in the two executions, this means that as long
as we change x to some other value that has the same parity, the output will be
unchanged. Indeed, this is exactly the property that one would expect to have
with a policy that releases only the parity of a secret value: only the secret’s
parity can influence the observable behavior.

Public Average. Suppose we have three secrets stored in x, y, and z, and we
are only willing to release their average as public (e.g., the secrets are employee
salaries at a particular company). This is similar to the previous example, except
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that we now have multiple secrets. The precondition P will say that x, y, and z
all contain Hi data, a contains Lo data, and a = (x+ y+ z)/3. In this situation,
noninterference will say that we can change the value of the set of secrets from
any triple to any other triple, and the output will be unaffected as long as the
average of the three values is unchanged.

Public Zero. Suppose we have a secret stored in x, and we are only willing to
release it if it is zero. We could take the approach of the previous two examples
and store a public boolean in another variable which is true if and only if x is 0.
However, there is an even simpler way to represent the desired policy without
using an extra variable. Our precondition P will say that either x is 0 and
its label is Lo, or x is nonzero and its label is Hi. This is an example of a
conditional label : a label whose value depends on some state predicate. If x is
0, then noninterference says nothing since there is no high-security data in the
state. If x is nonzero, then noninterference says that changing its value (but not
its label) will have no effect on the output as long as P still holds; in order for
P to still hold, we must be changing x to some other nonzero value. Hence all
nonzero values of x will look the same to an observer. Conditional labels are a
novelty of our system; we will see in Section 4 how they can be a powerful tool
for verifying the security of a program.

3 Language and Semantics

Our programming language is defined as follows:

(Exp) E ::= x | c | E + E | · · ·
(BExp) B ::= false | E = E | B ∧B | · · ·
(Cmd) C ::= skip | outputE | x := E | x := [E] | [E] := E | C;C

| ifB thenC elseC | whileB doC

Valid code includes variable assignment, heap load/store, if statements, while
loops, and output. Our model of a program state, consisting of a variable store
and a heap, is given by:

(Lbl) L ::= Lo | Hi
(Val) V ::= Z× Lbl

(Store) s ::= Var→ option Val
(Heap) h ::= N→ option Val
(State) σ ::= Store×Heap

Given a variable store s, we define a denotational semantics �E�s that evaluates
an expression to a pair of integer and label, with the label being the least upper
bound of the labels of the constituent parts. The denotation of an expression
also may evaluate to None, indicating that the program state does not contain
the necessary resources to evaluate. We have a similar denotational semantics for
boolean expressions. The formal definitions of these semantics are omitted here
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�E�s = Some (n, l)

〈(s, h), x := E, K〉 −→
l′
〈(s[x 	→ (n, l � l′)], h), skip, K〉

(ASSGN)

�E�s = Some (n1, l1) h(n1) = Some (n2, l2)

〈(s, h), x := [E], K〉 −→
l′
〈(s[x 	→ (n2, l1 � l2 � l′)], h), skip, K〉

(READ)

�E�s = Some (n1, l1) h(n1) �= None �E′�s = Some (n2, l2)

〈(s, h), [E] := E′, K〉 −→
l′
〈(s, h[n1 	→ (n2, l1 � l2 � l′)]), skip, K〉

(WRITE)

�E�σ = Some (n, Lo)

〈σ, outputE, K〉 [n]−→
Lo
〈σ, skip, K〉

(OUTPUT)

�B�σ = Some (true, l) l � l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C1, K〉

(IF-TRUE)

�B�σ = Some (false, l) l � l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C2, K〉

(IF-FALSE)

�B�σ = Some ( , Hi)
〈mark vars(σ, ifB thenC1 elseC2), ifB thenC1 elseC2, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, ifB thenC1 elseC2, K〉 −→
Lo
〈σ′, skip, K〉

(IF-HI)

�B�σ = Some (true, l) l � l′

〈σ, whileB doC, K〉 −→
l′
〈σ, C; whileB doC, K〉

(WHILE-TRUE)

�B�σ = Some (false, l) l � l′

〈σ, whileB doC, K〉 −→
l′
〈σ, skip, K〉

(WHILE-FALSE)

�B�σ = Some ( , Hi)
〈mark vars(σ, whileB doC), whileB doC, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, whileB doC, K〉 −→
Lo
〈σ′, skip, K〉

(WHILE-HI)

〈σ, C1;C2, K〉 −→
l
〈σ, C1, C2 :: K〉

(SEQ)

〈σ, skip, C :: K〉 −→
l
〈σ, C, K〉

(SKIP) 〈σ, C, K〉 −→0
l

〈σ, C, K〉
(ZERO)

〈σ, C, K〉 o−→
l
〈σ′, C′, K′〉 〈σ′, C′, K′〉 o′−→n

l
〈σ′′, C′′, K′′〉 n > 0

〈σ, C, K〉 o++o′−→n+1
l

〈σ′′, C′′, K′′〉
(SUCC)

Fig. 1. Security-Aware Operational Semantics
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as they are standard and straightforward. Note that we will sometimes write
�E�σ as shorthand for �E� applied to the store of state σ.

Figure 1 defines our operational semantics. The semantics is security-aware,
meaning that it keeps track of security labels on data and propagates these labels
throughout execution in order to track which values might have been influenced
by some high-security data. The semantics operates on machine configurations,
which consist of program state, code, and a list of commands called the con-
tinuation stack (we use a continuation-stack approach solely for the purpose of
simplifying some proofs). The transition arrow of the semantics is annotated with
a program counter label, which is a standard IFC construct used to keep track of
information flow resulting from the control flow of the execution. Whenever an
execution enters a conditional construct, it raises the pc label by the label of the
boolean expression evaluated; the pc label then taints any assignments that are
made within the conditional construct. The transition arrow is also annotated
with a list of outputs (equal to the empty list when not explicitly written) and
the number of steps (equal to 1 when not explicitly written).

Note. Two rules of our semantics are omitted here, but can be found in the Coq
development [6]. These rules make sure that a low-context execution will diverge
safely (rather than get stuck) when it attempts to run a high-context execution
that diverges. These rules are necessary for technical reasons, but they ultimately
have no significant bearing on our end-to-end noninterference guarantee, since
that guarantee only ever mentions terminating executions.

Two of the rules for conditional constructs make use of a function called
mark vars. The function mark vars(σ,C) alters σ by setting the label of each
variable in modifies(C) to Hi, where modifies(C) is a standard syntactic func-
tion returning an overapproximation of the store variables that may be modified
by C. Thus, whenever we raise the pc label to Hi, our semantics taints all store
variables that appear on the left-hand side of an assignment or heap-read com-
mand within the conditional construct, even if some of these commands do not
actually get executed. Note that regardless of which branch of an if statement
is taken, the semantics taints all the variables in both branches. This is required
for noninterference, due to the well-known fact that the lack of assignment in a
branch of an if statement can leak information about the branching expression.
Consider, for example, the following program:

1 y := 1;

2 if (x = 0) then y := 0 else skip;

3 if (y = 0) then skip else output 1;

Suppose x contains Hi data initially, while y contains Lo data. If x is 0, then y
will be assigned 0 at line 2 and tainted with a Hi label (by the pc label). Then
nothing happens at line 3, and the program produces no output. If x is nonzero,
however, nothing happens at line 2, so y still has a Lo label at line 3. Thus the
output command at line 3 executes without issue. Therefore the output of this
program depends on the Hi data in x, even though our instrumented semantics
executes safely. We choose to resolve this issue by using the mark vars function
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in the semantics. Then y will be tainted at line 2 regardless of the value of x,
and so the semantics will get stuck at line 3 when x is nonzero. In other words,
we would only be able to verify this program with a precondition saying that
x = 0 — the program is indeed noninterfering with respect to this precondition
(according to our generalized noninterference definition described in Section 2).

The operational semantics presented here is mixed-step and manipulates se-
curity labels directly. In order to make sense of such a non-standard semantics,
we relate it to a standard one that erases labels. We omit the formal definition of
this erasure semantics here since it is exactly the expected small-step operational
semantics for a simple imperative language. The definition can be found in the
technical report and Coq development [6].

The erasure semantics operates on states without labels, and it does not use
continuation stacks. Given a state σ with labels, we write σ̄ to represent the
same state with all labels erased from both the store and heap. We will also use
τ to range over states without labels. Then the following two theorems hold:

Theorem 1. Suppose 〈σ, C, []〉 o−→∗ 〈σ′, skip, []〉 in the instrumented seman-

tics. Then, for some τ , 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics.

Theorem 2. Suppose 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics, and

suppose 〈σ, C, []〉 never gets stuck when executed in the instrumented semantics.

Then, for some σ′, 〈σ, C, []〉 o−→∗ 〈σ′, skip, []〉 in the instrumented semantics.

These theorems together guarantee that the two semantics produce identical
observable behaviors (outputs) on terminating executions, as long as the instru-
mented semantics does not get stuck. Our program logic will of course guarantee
that the instrumented semantics does not get stuck in any execution satisfying
the precondition.

4 The Program Logic

In this section, we will present the logic that we use for verifying the security of
a program. A logic judgment takes the form l � {P}C {Q}. P and Q are the
pre- and postconditions, C is the program to be executed, and l is the pc label
under which the program is verified. P and Q are state assertions, whose syntax
and semantics are given in Figure 2.

Note. We allow assertions to contain logical variables, but we elide the details
here to avoid complicating the presentation. In Figure 2, we claim that the type
of �P � is a set of states — in reality, the type is a function from logical variable
environments to sets of states. In an assertion like E �→ (n, l), the n and l may be
logical variables rather than constants, and E may itself contain logical variables.
The full details of logical variables can be found in the technical report and Coq
development [6].
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P,Q ::= emps | emph | E 	→ | E 	→ (n, l) | B | x.lbl = l
| x.lbl � l | lbl(E) = l | ∃X . P | P ∧Q | P ∨Q | P ∗Q

�P � : P(state)
(s, h) ∈ �emp� ⇐⇒ h = ∅

(s, h) ∈ �E 	→ � ⇐⇒ ∃a, n, l . �E�s = Some a ∧ h = [a 	→ (n, l)]

(s, h) ∈ �E 	→ (E′, l)� ⇐⇒ ∃a, b . �E�s = Some a ∧ �E′�s = Some b ∧ h = [a 	→ (b, l)]

(s, h) ∈ �B� ⇐⇒ �B�s = Some true

(s, h) ∈ �x.lbl = l� ⇐⇒ ∃n . s(x) = Some (n, l)

(s, h) ∈ �x.lbl � l� ⇐⇒ ∃n, l′ . s(x) = Some (n, l′) and l′ � l

(s, h) ∈ �lbl(E) = l� ⇐⇒
⊔

x∈vars(E)

snd(s(x)) = l

(s, h) ∈ �∃X . P � ⇐⇒ ∃v ∈ Z+ Lbl . (s, h) ∈ �P [v/X]�

(s, h) ∈ �P ∧Q� ⇐⇒ (s, h) ∈ �P � ∩ �Q�

(s, h) ∈ �P ∨Q� ⇐⇒ (s, h) ∈ �P � ∪ �Q�

(s, h) ∈ �P ∗Q� ⇐⇒

⎛
⎜⎝
∃h0, h1 . h0 � h1 = h

and (s, h0) ∈ �P �

and (s, h1) ∈ �Q�

⎞
⎟⎠

Fig. 2. Assertion Syntax and Semantics

Definition 1 (Sound judgment). We say that a judgment l � {P}C {Q} is
sound if, for any state σ ∈ �P �, the following two properties hold:

1. The operational semantics cannot get stuck when executed from initial con-
figuration 〈σ, C, []〉 under context l.

2. If the operational semantics executes from initial configuration 〈σ, C, []〉 un-
der context l and terminates at state σ′, then σ′ ∈ �Q�.

Selected inference rules for our logic are shown in Figure 3. The rules make
use of two auxiliary syntactic functions, vars(P ) and no lbls(P, S) (S is a set
of store variables). The first function returns the set of all store variables that
appear somewhere in P , while the second checks that for each variable x ∈ S,
x.lbl does not appear anywhere in P .

The (IF)/(WHILE) rules may look rather complex, but almost all of that is
just describing how to reason about the mark vars function that gets applied
at the beginning of a conditional construct when the pc label increases. An
additional complexity present in the (IF) rule involves the labels lt and lf . In
fact, these labels describe a novel and interesting feature of our system: when
verifying an if statement, it might be possible to reason that the pc label gets
raised by lt in one branch and by lf in the other, based on the fact that B holds
in one branch but not in the other. This is interesting if lt and lf are different
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mark vars(P, S, l, l′)
�
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P , if l � l′

P ∧
(∧

x∈S

l � l′ � x.lbl

)
, otherwise

l � {emp} skip {emp}
(SKIP)

Lo � {lbl(E) = Lo ∧ emp} outputE {lbl(E) = Lo ∧ emp}
(OUTPUT)

x /∈ vars(E′)

l � {E = E′ ∧ lbl(E) = l′ ∧ emp}x := E {x = E′ ∧ x.lbl = l′ � l ∧ emp}
(ASSIGN)

x /∈ vars(E1) ∪ vars(E2)

l � {x = E1 ∧ lbl(E) = l1 ∧E 	→ (E2, l2)}x := [E] {x = E2 ∧ x.lbl = l1 � l2 � l ∧ E[E1/x] 	→ (E2, l2)}
(READ)

l � {lbl(E) = l1 ∧ lbl(E′) = l2 ∧ E 	→ } [E] := E′ {E 	→ (E′, l1 � l2 � l)}
(WRITE)

P ⇒ B ∨ ¬B B ∧ P ⇒ lbl(B) = lt
¬B ∧ P ⇒ lbl(B) = lf S = modifies(ifB thenC1 elseC2)

lt � lf �� l ⇒ no lbls(P, S) lt � l � {B ∧ mark vars(P, S, lt, l)}C1 {Q}
lf � l � {¬B ∧ mark vars(P, S, lf , l)}C2 {Q}

l � {P} ifB thenC1 elseC2 {Q}
(IF)

P ⇒ lbl(B) = l′

S = modifies(whileB doC) l′ �� l⇒ no lbls(P, S)
l′ � l � {B ∧ mark vars(P, S, l′, l)}C {mark vars(P, S, l′, l)}

l � {P} whileB doC {¬B ∧ mark vars(P, S, l′, l)}
(WHILE)

l � {P}C1 {Q} l � {Q}C2 {R}
l � {P}C1;C2 {R}

(SEQ)

P ′ ⇒ P Q⇒ Q′ l � {P}C {Q}
l � {P ′}C {Q′}

(CONSEQ)

l � {P1}C {Q1} l � {P2}C {Q2}
l � {P1 ∧ P2}C {Q1 ∧Q2}

(CONJ)

l � {P}C {Q} modifies(C) ∩ vars(R) = ∅
l � {P ∗R}C {Q ∗ R}

(FRAME)

Fig. 3. Selected Inference Rules for the Logic
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1 i := 0;

2 while (i < 64) do

3 x := [A+i];

4 if (x = 0)

5 then

6 output i

7 else

8 skip;

9 i := i+1

Fig. 4. Example: Alice’s Private Calendar

labels. In every other static-analysis IFC system we are aware of, a particular pc
label must be determined at the entrance to the conditional, and this pc label
will propagate to both branches. We will provide an example program later in
this section that illustrates this novelty.

Given our logic inference rules, we can prove the following theorem:

Theorem 3 (Soundness). If l � {P}C {Q} is derivable according to our in-
ference rules, then it is a sound judgment, as defined in Definition 1.

We will not go over the proof of this theorem here since there is not really any-
thing novel about it in regards to security. The proof is relatively straightforward
and not significantly different from soundness proofs in other Hoare/separation
logics. The primary theorem in this work is the one that says that any verified
program satisfies our noninterference property — this will be discussed in detail
in Section 5.

4.1 Example: Alice’s Calendar

In the remainder of this section, we will show how our logic can be used to verify
an interesting example. Figure 4 shows a program that we would like to prove
is secure. Alice owns a calendar with 64 time slots beginning at some location
designated by constant A. Each time slot is either 0 if she is free at that time,
or some nonzero value representing an event if she is busy. Alice decides that all
free time slots in her calendar should be considered low security, while the time
slots with events should be secret. This policy allows for others to schedule a
meeting time with her, as they can determine when she is available. Indeed, the
example program shown here prints out all free time slots.

Figure 5 gives an overview of the verification, omitting a few trivial details. In
between each line of code, we show the current pc label and a state predicate that
currently holds. The program is verified with respect to Alice’s policy, described
by the precondition P defined in the figure. This precondition is the iterated
separating conjunction of 64 calendar slots; each slot’s label is Lo if its value is
0 and Hi otherwise. A major novelty of this verification regards the conditional
statement at lines 4-8. As mentioned earlier, in other IFC systems, the label of
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P
�
=

63∗
i=0

(A+ i 	→ (ni, li) ∧ ni = 0 ⇐⇒ li = Lo)

Lo � {P}
1 i := 0;

Lo � {P ∧ 0 ≤ i ∧ i.lbl = Lo}
2 while (i < 64) do

Lo � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

3 x := [A+i];

Lo � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
(x = 0 ⇐⇒ x.lbl = Lo)}

4 if (x = 0)

5 then

Lo � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

6 output i

Lo � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

Lo � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
7 else

Hi � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x �= 0 ∧ x.lbl = Hi}

8 skip;

Hi � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x �= 0 ∧ x.lbl = Hi}

Hi � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

Lo � {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
9 i := i+1

Lo � {P ∧ 0 ≤ i ∧ i.lbl = Lo}

Lo � {P ∧ i ≥ 64 ∧ 0 ≤ i ∧ i.lbl = Lo}

Fig. 5. Calendar Example Verification
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the boolean expression “x = 0” would have to be determined at the time of
entering the conditional, and its label would then propagate into both branches
via the pc label. In our system, however, we can reason that the expression’s
label (and hence the resulting pc label) will be different depending on which
branch is taken. If the “true” branch is taken, then we know that x is 0, and
hence we know from the state assertion that its label is Lo. This means that
the pc label is Lo, and so the output statement within this branch will not leak
high-security data. If the “false” branch is taken, however, then we can reason
that the pc label will be Hi, meaning that an output statement could result in
a leaky program (e.g., if the value of x were printed). This program does not
attempt to output anything within this branch, so it is still valid.

Since the program is verified with respect to precondition P , the noninterfer-
ence guarantee for this example says that if we change any high-security event
in Alice’s calendar to any other high-security event (i.e., nonzero value), then
the output will be unaffected. In other words, an observer cannot distinguish be-
tween any two events occurring at a particular time slot. This seems like exactly
the property Alice would want to have, given that her policy specifies that all
free slots are Lo and all events are Hi.

5 Noninterference

In this section, we will discuss the method for formally proving our system’s
security guarantee. Much of the work has already been done through careful
design of the security-aware semantics and the program logic. The fundamental
idea is that we can find a bisimulation relation for our Lo-context instrumented
semantics. This relation will guarantee that two executions operate in lock-step,
always producing the same program continuation and output.

The bisimulation relation we will use is called observable equivalence. It intu-
itively says that the low-security portions of two states are identical; the relation
is commonly used in many IFC systems as a tool for proving noninterference.
In our system, states σ1 and σ2 are observably equivalent if: (1) they contain
equal values at all locations that are present and Lo in both states; and (2) the
presence and labels of all store variables are the same in both states. This may
seem like a rather odd notion of equivalence (in fact, it is not even transitive,
so “equivalence” is a misnomer here) — two states can be observably equivalent
even if some heap location contains Hi data in one state and Lo data in the
other. To see why we need to define observable equivalence in this way, consider
a heap-write command [x] := E where x is a Hi pointer. If we vary the value of
x, then we will end up writing to two different locations in the heap. Suppose
we write to location 100 in one execution and location 200 in the other. Then
location 100 will contain Hi data in the first execution (as the Hi pointer taints
the value written), but it may contain Lo data in the second since we never wrote
to it. Thus we design observable equivalence so that this situation is allowed.
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The following definitions describe observable equivalence formally:

Definition 2 (Observable Equivalence of Stores). Suppose s1 and s2 are
variable stores. We say that they are observably equivalent, written s1 ∼ s2, if,
for all program variables x:

– If s1(x) = None, then s2(x) = None.
– If s1(x) = Some (v1, Hi), then s2(x) = Some (v2, Hi) for some v2.
– If s1(x) = Some (v, Lo), then s2(x) = Some (v, Lo).

Definition 3 (Observable Equivalence of Heaps). Suppose h1 and h2 are
heaps. We say that they are observably equivalent, written h1 ∼ h2, if, for all
natural numbers n:

– If h1(n) = Some (v1, Lo) and h2(n) = Some (v2, Lo), then v1 = v2.

We say that two states are observably equivalent (written σ1 ∼ σ2) when both
their stores and heaps are observably equivalent. Given this definition, we define
a convenient relational denotational semantics for state assertions as:

(σ1, σ2) ∈ �P �2 ⇐⇒ σ1 ∈ �P � ∧ σ2 ∈ �P � ∧ σ1 ∼ σ2

In order to state noninterference cleanly, it helps to define a “bisimulation
semantics” consisting of the following single rule (the side condition will be
discussed below):

〈σ1, C, K〉 o−→
Lo
〈σ′

1, C
′, K ′〉

〈σ2, C, K〉 o−→
Lo
〈σ′

2, C
′, K ′〉 (side condition)

〈σ1, σ2, C, K〉 −→ 〈σ′
1, σ

′
2, C

′, K ′〉

This bisimulation semantics operates on configurations consisting of a pair of
states and a program. As two executions progress step-by-step, the bisimulation
semantics makes sure that the executions continue to produce identical outputs
and step to identical programs. The semantics requires a Lo program counter
label because two executions from observably equivalent states may in fact step
to different programs when the program counter label is Hi.

With this definition of a bisimulation semantics, we can split noninterference
into the following progress and preservation properties.

Theorem 4 (Progress). Suppose we derive Lo � {P}C {Q} using our pro-
gram logic. For any (σ1, σ2) ∈ �P �2, suppose we have

〈σ1, σ2, C, K〉 −→∗ 〈σ′
1, σ

′
2, C

′, K ′〉,

where σ′
1 ∼ σ′

2 and (C′,K ′) 
= (skip, []). Then there exist σ′′
1 , σ

′′
2 , C

′′, K ′′ such
that

〈σ′
1, σ

′
2, C

′, K ′〉 −→ 〈σ′′
1 , σ

′′
2 , C

′′, K ′′〉
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Theorem 5 (Preservation). Suppose we have σ1 ∼ σ2 and 〈σ1, σ2, C, K〉 −→
〈σ′

1, σ
′
2, C

′, K ′〉. Then σ′
1 ∼ σ′

2.

For the most part, the proofs of these theorems are relatively straightforward.
Preservation requires proving the following two simple lemmas about Hi-context
executions:

1. Hi-context executions never produce output.
2. If the initial and final values of some location differ across a Hi-context

execution, then the location’s final value must have a Hi label.

There is one significant difficulty in the proof that requires discussion. If C
is a heap-read command x := [E], then Preservation does not obviously hold.
The reason for this comes from our odd definition of observable equivalence; in
particular, the requirements for a heap location to be observably equivalent are
weaker than those for a store variable. Yet the heap-read command is copying
directly from the heap to the store. In more concrete terms, the heap location
pointed to by E might have a Hi label in one state and Lo label in the other;
but this means x will now have different labels in the two states, violating the
definition of observable equivalence for the store.

We resolve this difficulty via the side condition in the bisimulation semantics.
The side condition says that the situation we just described does not happen.
More formally, it says that if C has the form x := [E], then the heap location
pointed to by E in σ1 has the same label as the location pointed to by E in σ2.

This side condition is sufficient for proving Preservation. However, we still
need to show that the side condition holds in order to prove Progress. This fact
comes from induction over the specific inference rules of our logic. For example,
consider the (READ) rule from Section 4. In order to use this rule, the precodi-
tion requires us to show that E �→ (n, l2). Since both states σ1 and σ2 satisfy
the precondition, we see that the heap locations pointed to by E both have label
l2, and so the side condition holds. Note that the side condition holds even if l2
is a logical variable rather than a constant.

In order to prove that the side condition holds for every verified program, we
need to show it holds for all inference rules involving a heap-read command. In
particular, this means that no heap-read rule in our logic can have a precondition
that only implies E �→ .

Now that we have the Progress and Preservation theorems, we can easily com-
bine them to prove the overall noninterference theorem for our instrumented se-
mantics:

Theorem 6 (Noninterference, Instrumented Semantics). Suppose we de-
rive Lo � {P}C {Q} using our program logic. Pick any state σ1 ∈ �P �, and
consider changing the values of any Hi data in σ1 to obtain some σ2 ∈ �P �.
Suppose, in the instrumented semantics, we have

〈σ1, C, []〉
o1−→∗
Lo

〈σ′
1, skip, []〉 and 〈σ2, C, []〉

o2−→∗
Lo

〈σ′
2, skip, []〉.

Then o1 = o2.
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Finally, we can use the results from Section 3 along with the safety guaranteed
by our logic to prove the final, end-to-end noninterference theorem:

Theorem 7 (Noninterference, Erasure Semantics). Suppose we derive
Lo � {P}C {Q} using our program logic. Pick any state σ1 ∈ �P �, and consider
changing the values of any Hi data in σ1 to obtain some σ2 ∈ �P �. Suppose, in
the erasure semantics, we have

〈σ̄1, C〉
o1−→∗ 〈τ1, skip〉 and 〈σ̄2, C〉

o2−→∗ 〈τ2, skip〉.

Then o1 = o2.

6 Related Work

There are many different systems for reasoning about information flow. We will
briefly discuss some of the more closely-related ones here.

Some IFC systems with declassification, such as HiStar [26], Flume [11], and
RESIN [25], reason at the operating system or process level, rather than the
language level. These systems can support complex security policies, but their
formal guarantees suffer due to how coarse-grained they are.

On the language-level side of IFC [18], there are many type systems and
program logics that share similarities with our logic.

Amtoft et al. [1] develop a program logic for proving noninterference of a
program written in a simple object-oriented language. They use relational asser-
tions of the form “x is independent from high-security data.” Such an assertion is
equivalent to saying that x contains Lo data in our system. Thus their logic can
be used to prove that the final values of low-security data are independent from
initial values of high-security data — this is pure noninterference. Note that, un-
like our system, theirs does not attempt to reason about declassification. Some
other differences between these IFC systems are:

– We allow pointer arithmetic, while they disallow it by using an object-oriented
language. Pointer arithmetic adds significant complexity to information flow
reasoning. In particular, their systemuses a technique similar to our mark vars

function for reasoning about conditional constructs, except that they syntac-
tically check for all locations in both the store and heap thatmight bemodified
within the conditional. With the arbitrary pointer arithmetic of our system,
it is not possible to syntactically bound which heap locations will be written
to, so we require the additional semantic technique described in Section 5 that
involves enforcing a side condition on the bisimulation semantics.

– Ourmodel of observable behavior provides some extra leniency in verification.
Our system allows bad leaks to happen within the program state, so long as
these leaks are not made observable via an output command. In their system
(andmost other IFC systems), the enforcementmechanismmust prevent those
leaks within program state from happening in the first place.

Banerjee et al. [3] develop an IFC system that specifies declassification policies
through state predicates in basically the same way that we do. For example, they
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might have a (relational) precondition of “A(x ≥ y),” saying that two states
agree on the truth value of x ≥ y. This corresponds directly to a precondition
of “x ≥ y” in our system, and security guarantees for the two systems are both
stated relative to the precondition. The two systems have very similar goals, but
there are a number of significant differences in the basic setup that make the
systems quite distinct:

– Their system does not attempt to reason about the program heap at all. They
have some high-level discussions about how one might support pointers in
their setup, but there is nothing formal.

– Their system enforces noninterference primarily through a type system
(rather than a program logic). The declassification policies, specified by
something similar to a Hoare triple, are only used at specific points in the
program where explicit “declassify” commands are executed. A type sys-
tem enforces pure noninterference for the rest of the program besides the
declassify commands. Their end-to-end security guarantee then talks about
how the knowledge of an observer can only increase at those points where
a declassify command is executed (a property known in the literature as
“gradual release”). Thus their security guarantee for individual declassifica-
tion commands looks very similar to our version of noninterference, but their
end-to-end security guarantee looks quite different. We do not believe that
there is any comparable notion of gradual release in our system, as we do
not have explicit program points where declassification occurs.

– Because they use a type system, their system must statically pick security
labels for each program variable. This means that there is no notion of
dynamically propagating labels during execution, nor is there any way to
express our novel concept of conditional labels. As a result, the calendar
example program of Section 4 would not be verifiable in their system.

Delimited Release [19] is an IFC system that allows certain prespecified ex-
pressions (called escape hatches) to be declassified. For example, a declassifica-
tion policy for high-security variable h might say that the expression h%2 should
be considered low security. Relaxed Noninterference [12] uses a similar idea, but
builds a lattice of semantic declassification policies, rather than syntactic es-
cape hatches — e.g., h would have a policy of λx . x%2. Our system can easily
express any policy from these systems, using a precondition saying that some
low-security data is equal to the escape hatch function applied to the secret data.
Our strong security guarantee is identical to the formal guarantees of both of
these systems, saying that the high-security value will not affect the observable
behavior as long as the escape hatch valuation is unchanged.

Relational Hoare Type Theory (RHTT) [15] is a logic framework for verifying
information-flow properties. It is based on a highly general relational logic. The
system can be used to reason about a wide variety of security-related notions, in-
cluding declassification, information erasure, and state-dependent access control.
While RHTT can be extremely expressive, it seems to achieve different goals than
our system. We began with a desire to formally reason about the propagation of
security labels through a system, and to specify declassification policies in terms
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of these labels. Thus the natural choice for us was to use a syntactic representa-
tion for labels and explicitly add them into program state. Ideally, we could use
these labels to represent different principals, and thus be able to specify interest-
ing policies in a decentralized setting. RHTT, on the other hand, is built around a
semantic notion of security labels. Instead of saying that x is Lo, one says that in
two corresponding states, x has the same value. This allows policies to be highly
expressive, but also can make it quite difficult to understand what a given policy is
saying. It is unclear how one should go about representing a decentralized setting
in RHTT, where there is interaction between the data of various principals.

Intransitive noninterference [13] is a declassification mechanism whereby cer-
tain specific downward flows are allowed in the label lattice. The system formally
verifies that a program obeys the explicitly-allowed flows. These special flows are
intransitive — e.g., we might allow Alice to declassify data to Bob and Bob to
declassify to Charlie, but that does not imply that Alice is allowed to declas-
sify to Charlie. The intransitive noninterference system is used to verify simple
imperative programs; their language is basically the same as ours, except with-
out the heap-related commands. One idea for future work is to generalize our
state predicate P into an action G that precisely describes the transformation
that a program is allowed to make on the state. If we implemented this idea,
it would be easy to embed the intransitive noninterference system. The action
G would specify exactly which special flows are allowed (e.g., the data’s label
can be changed from Alice to Bob or from Bob to Charlie, but not from Alice
to Charlie directly). Ideally, we would have a formal noninterference theorem in
terms of G that would give the same result as the formal guarantee in [13].

Another related system is Chong and Myers’ lambda calculus with down-
grading policies [5]. This system shares a similar goal to ours: to provide an
end-to-end security guarantee relative to declassification policies. In their sys-
tem, the language contains explicit declassify commands, and certain conditions
(specified via the policy syntax) must be verified at the point of declassification.
The actual method for verifying these conditions is left as a parameter of the
system. While both of our systems prove an end-to-end guarantee, these guar-
antees seem to be rather different. Theirs provides a road map describing how a
Hi piece of data may end up affecting observable behavior, while ours specifies
which values that piece of data could have in order to affect observable behavior.
It is unclear how either guarantee would be described in the other system.

Self-composition [4] is an approach to noninterference reasoning that essen-
tially converts relational predicates into unary ones. The fundamental idea is
that we can prove a program C is noninterfering by making a copy of it, C′, giv-
ing all variables in C′ a fresh name, and then executing the composed program
C;C′. A pre/postcondition for C;C′ of x = x′, for example, will then effectively
say that x is a low-security location. Our system, just like the self-composition
approach, is based on the desire to deal with unary predicates rather than
relational ones. Unlike the self-composition approach, however, we use a syn-
tactic notion of labels, and we do not perform any syntactic translations on the
program. Additionally, it is unclear whether the self-composition approach can
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be used for programs that do odd things with pointer arithmetic and aliasing.
Indeed, in [4], there is an explicitly-stated assumption that the address values of
pointers do not affect the control flow of programs.

All of the language-based IFC systems mentioned so far, including our own
system, use static reasoning. There are also many dynamic IFC systems (e.g.,
[2,10,22,24]) that attempt to enforce security of a program during execution.
Because dynamic systems are analyzing information flow at runtime, they will
incur some overhead cost in execution time. Static IFC systems need not nec-
essarily incur extra costs. Indeed, our final noninterference theorem uses the
erasure semantics, meaning that there is no overhead whatsoever.

Finally, Sabelfeld and Sands [21] define a road map for analyzing declassi-
fication policies in terms of four dimensions: who can declassify, what can be
declassified, when can declassification occur, and where can it occur. Our notion
of declassification can talk about any of these dimensions if we construct the
precondition in the right way. The who dimension is most naturally handled via
the label lattice, but one could also imagine representing principals explicitly in
the program state and reasoning about them in the logic. The what dimension is
handled by default, as the program state contains all of the data to be declassi-
fied. The when dimension can easily be reasoned about by including a time field
in the state. Similarly, the where dimension can be reasoned about by including
an explicit program counter in the state.

7 Conclusion

In this paper, we described a novel program logic for reasoning about informa-
tion flow in a low-level language with pointer arithmetic. Our system uses an
instrumented operational semantics to statically reason about the propagation
of syntactic labels. Our logic can reason about labels conditioned on state pred-
icates — as far as we are aware, the example program of Section 4 cannot be
verified in any other IFC system that uses syntactic labels.

In the future, we hope to extend our work to handle termination-sensitivity,
dynamic memory allocation, nondeterminism, and concurrency. We also plan to
develop some automation and apply our logic to actual operating system code.
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Abstract. Referential integrity, which guarantees that named resources can be
accessed when referenced, is an important property for reliability and security.
In distributed systems, however, the attempt to provide referential integrity can
itself lead to security vulnerabilities that are not currently well understood. This
paper identifies three kinds of referential security vulnerabilities related to the ref-
erential integrity of distributed, persistent information. Security conditions cor-
responding to the absence of these vulnerabilities are formalized. A language
model is used to capture the key aspects of programming distributed systems
with named, persistent resources in the presence of an adversary. The referential
security of distributed systems is proved to be enforced by a new type system.

1 Introduction

To make programming manageable, distributed systems are increasingly being imple-
mented using high-level languages and libraries that present distributed resources as
language-level objects. This approach goes back to research platforms such as Ar-
gus [14], Emerald [4], and Network Objects [3], but is now applied widely in commer-
cial programming using middleware platforms such as CORBA [19], in more recent
object-relational mapping (ORM) systems such as Hibernate [10] and other Java Per-
sistence API (JPA) [6] implementations, and in modern JavaScript ORM libraries [5].

Distributed systems naturally cross trust domains; it is often why they are distributed
in the first place. Running a program on a federated platform composed of differently
trusted distributed nodes creates security vulnerabilities that are not immediately appar-
ent at the high level of abstraction at which the programmer is operating. Some of these
vulnerabilities have been addressed by prior work; for example, the Fabric system [15]
provides a high-level, Java-like abstraction for distributed programming, while using
information-flow control to enforce both confidentiality and integrity properties.

In this paper, we identify three new security goals relating to the security of refer-
ences that cross trust domains. Cross-domain references are a common feature not only
of high-level distributed programming models, but of distributed systems in general.
For example, web pages hyperlink to other pages, and relational-database tuples can
contain foreign keys referring to other tuples. Regardless of the kind of system, secu-
rity and reliability vulnerabilities are created when references cross trust boundaries,
because they introduce dependencies between different parts of the system. This pa-
per identifies some of these referential vulnerabilities, formally characterizes them, and
explores a language-based approach to modeling, analyzing, and preventing them.
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© Springer-Verlag Berlin Heidelberg 2014
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The first goal is referential integrity. A system has referential integrity if a refer-
ence can be relied upon to continue pointing to the same object. Referential integrity
fails when that object is deleted while the reference still exists, resulting in a dangling
reference, or when the reference points to a different object altogether.

Referential integrity appears in many guises. We use the term in a more general sense
than in the database literature, where referential integrity is an important aspect of the
relational model [7]. For example, the web lacks referential integrity: the referent of
a hyperlink can be deleted, leading to the familiar “404” error. Referential integrity is
also an important property for programming languages. In languages such as C that
lack referential integrity, dangling pointers are a serious problem. In other languages,
automatic garbage collection reclaims memory while preserving referential integrity.

While absolute referential integrity sounds ideal, it cannot be achieved in a federated
system: referential integrity is necessarily limited by the trustworthiness of the node (or
nodes) storing the referent object. Therefore, this paper generalizes referential integrity
to systems where nodes are partially trusted.

Our second goal is intentional persistence. With referential integrity, a reference to
an object is a promise that the object will not move or disappear: it must be persistent.
Therefore, reachability implies persistence, as in various object-oriented databases (e.g.,
[1,17]) and in marshaling mechanisms such as Java serialization. However, if all reach-
able objects are persistent, objects can become accidentally persistent because they are
unexpectedly reachable. This can inflate resource consumption, leading to poor per-
formance and system failure. This problem is familiar to those who have used Java
serialization. Intentional persistence entails the absence of accidental persistence.

The third goal of this paper is immunity against storage attacks. Referential integrity
prevents discarding reachable objects. But this gives an adversary a means to mount
a denial-of-service attack. The adversary creates references to objects intended to be
discarded, preventing reclamation and perhaps exhausting available storage space.

This paper formalizes these three goals as referential security properties, correspond-
ing to the absence of referential vulnerabilities. This is done in the context of a simple
programming language that captures the key elements of distributed programming in
a federated system with persistent information and pointers. A novel type system is
defined and is proved to enforce these security properties. Details of these proofs are
found in an accompanying technical report [16].

The rest of this paper is structured as follows. Section 2 describes the language
model. Section 3 presents security policies for reasoning about the three vulnerabili-
ties. Section 4 introduces the programming language λpersist, which abstractly describes
distributed programming with persistence and distrust. The language is defined formally
in Sections 5 and 6. Section 7 defines the adversary model. Section 8 formalizes the de-
sired security conditions, and sketches the proofs that the type system of λpersist soundly
enforces them. Related work is discussed in Section 9, and Section 10 concludes.
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Fig. 1. Directory example

2 Language Model

2.1 Modeling Distributed Computing as a Language

We model distributed computing using a core programming language that we call
λpersist. In λpersist, persistence, distribution, and communication are implicit but are con-
strained by policy annotations. Programs in λpersist are assumed to be mapped onto dis-
tributed host nodes in some way that agrees with these annotations. This mapping could
be done manually by the programmer, or automatically by a compiler, à la Jif/split [23].

This implicit translation to a distributed implementation means that some apparently
ordinary source-level operations may be implemented using distributed communication
and computation. For example, function application may be implemented as a remote
procedure call. Similarly, following references at the language level may involve com-
munication between nodes to fetch referenced objects.

Although the concrete mapping from source-level constructs onto host nodes is left
implicit, we can nevertheless faithfully evaluate the security of source-level computa-
tions. The key is to ensure that the system is secure under any possible concrete mapping
that is consistent with the policy annotations in the source program. That is, any given
computation or information might be located on any host that satisfies the source-level
security constraints. A technical contribution of this paper is to develop an effective
system of such source-level constraints, expressed as a type system.

Although we refer to λpersist as a source language, little attempt is made to make it
congenial to actual programming. In particular, the type annotations introduced would
be onerous in practice. They could be inferred automatically using standard constraint-
solving techniques for inequations over L, but we leave this to future work. One can
view the type system as describing a program (or system) analysis, and the formal
results of this paper as a demonstration that this analysis achieves its security goals.
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2.2 Objects and References

Persistent objects are modeled in λpersist as records with mutable fields. The fields of an
object can point to other objects through references. References contain the names of
these mutable objects. References are not assignable as in ML [18]; imperative updates
are achieved by assigning to mutable fields.

The language has two types of references: hard and soft. A hard reference is one
with referential integrity: a promise that the referenced object will not be destroyed
if its host is trustworthy. A soft reference does not create an obligation to maintain
the referenced object. Hard links in Unix and references in Java are examples of hard
references. URLs, Unix symbolic links, and Java SoftReference objects are examples
of soft references. The language models a garbage collector that may destroy objects
reachable only via soft references. When following a soft reference or an untrusted hard
reference, a program must be prepared to handle a failure in case the referenced object
no longer exists.

This simple data model can represent many different kinds of systems, such as dis-
tributed objects, databases, and the web. The shared directory structure shown in Fig-
ure 1 serves as a running example. Alice and Bob are traveling together and are using
the system to share photos and itineraries. The root directory is kept on a host R. Alice
and Bob keep their directory objects on their own hosts, A and B, respectively. To share
sightseeing ideas, they use a common scratchpad stored on host U. Solid arrows in the
figure represent hard references, and dashed arrows are soft references. The a and p
annotations are policies, which we now explain.

3 Policies for Persistent Programming

3.1 Persistence Policies

In a federated system, referential integrity cannot be absolute, because the referenced
object may be located on an untrusted, perhaps maliciously controlled, host machine.
Therefore, referential integrity must be constrained by the degree of trust in the refer-
enced host. This constraint is expressed by assigning each object a persistence policy
describing how much it can be trusted to remain in existence.

The precise form of the persistence policy is left abstract in this paper. Persistence
policies p are assumed to be drawn from a bounded lattice (L,≼,�,⊺) of policy levels.
If p1 ≼ p2 for two persistence policies p1 and p2, then p2 describes objects that are at
least as persistent as those described by p1.

Persistence policies have a simple, concrete interpretation. Absent replication, ob-
jects are located only on host nodes that are trusted to enforce their persistence policies,
so a persistence policy p corresponds to a set of sufficiently trusted host nodes Hp.
Therefore, if p1 ≼ p2, then p2 must be enforceable by a smaller set of hosts: Hp1 ⊇Hp2 .
In fact, it is reasonable to think of a policy p as simply a set of hosts.

In Figure 1, the root directory has persistence policy ⊺, which only host R is trusted
to enforce. Alice has a user directory and a persistence policy alice. While R is trusted
to enforce this policy, she has chosen to use her own host A. Similarly, Bob’s directory
is on host B. The shared scratchpad is kept on an untrusted host U, which can only
enforce the persistence policy �.
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Persistence policies are integrated into the type system of λpersist. The type of an
object reference includes a lower bound on the persistence policy of its referent; the
type system ensures that the persistence of an object is always at least as high as that of
any reference pointing to it. Programs can therefore use the persistence of a reference
to determine whether the reference can be trusted to be intact. This rule enables sound
reasoning about persistence and referential integrity as the graph of objects is traversed.

For example, in Figure 1, while Alice and Bob both have a hard reference to the
scratchpad, they must be prepared for a persistence failure when using the references.
The type system of λpersist will ensure their code handles such a failure. Any reference
to the scratchpad must have a type with � persistence, because it can be no higher than
the � persistence of the scratchpad itself.

Whether a hard reference can be trusted to be intact depends on context. In Figure 1,
Alice and Bob both have a hard reference to the itinerary. Because Alice trusts her own
persistence level, if either reference is typed with alice persistence, then she can use
it without worrying about a persistence failure. However, unless Bob trusts Alice, he
would need to be prepared for such a failure when using the references.

Soft references also have types with persistence levels, and hence might be trusted.
Trusted soft references can be promoted to trusted hard references. Therefore, soft ref-
erences are distinct from untrusted hard references.

In λpersist, persistence is defined not by reachability, but by policy. This resolves by
fiat one of the three problems identified earlier: accidental persistence. Accidents are
avoided by allowing programmers to express their intention explicitly. An object that is
not intended to be persistent is prevented from being treated as a persistent object.

3.2 Characterizing the Adversary

Security involves an adversary, and is always predicated on assumptions about the
power of the adversary. In the kind of decentralized, federated system under consid-
eration, the adversary is assumed to control some of the nodes in the system.

Different participants in a distributed system may have their own viewpoints about
who the adversary is, yet all participants need security assurance. Therefore, a given
adversary is modeled as a point α in the lattice of persistence policy levels. In the
host-set interpretation of persistence policies, α defines the set of trusted hosts that the
adversary does not control. The adversary is assumed to have the power to delete (i.e.,
violate the persistence of) an object if its persistence is not α or higher (i.e., α /≼ p),
because the object might be stored at a host node controlled by the adversary. Other
actions by the adversary are modeled by special evaluation rules (see Section 7).

The formal results for the security properties enforced by λpersist treat the adversary
as an arbitrary parameter. Therefore, these properties hold for any adversary.

3.3 Storage Attacks and Authority Policies

We introduce the idea of storage attacks, in which a malicious adversary tries to prevent
reclamation of object storage by exploiting the enforcement of referential integrity. For
example, in Figure 1, Bob has shared with Alice an album containing the photos he
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has so far taken during their trip. Bob does not consider the album to be private, so
others may create references to his album, as Alice has done. However, an adversary
that creates a hard reference to this album can prevent Bob from reclaiming its storage.

To prevent such storage attacks, we ensure that hard references can be created only in
sufficiently trusted code. We introduce creation authority to abstractly define this power
to create new references. This is the only action requiring some form of authority in this
paper, so for brevity, we refer to creation authority simply as authority.

Like persistence policies, authority policies a are assumed to be drawn from a bounded
lattice (L,≼) of policy levels. Without loss of expressive power, they are assumed to be
drawn from the same lattice as persistence policies. Authority prevents storage attacks
because hard references can only be created to objects whose authority policy a is less
than or equal to the authority ap of the process; that is, a ≼ ap.

A hard reference is a reference that should have referential integrity, so creating hard
references requires authority. The adversary is assumed to have some ability to create
hard references, described by its authority level α. Soft references do not keep an object
alive, so no creation authority is required to create a soft reference.

In Figure 1, the root directory has the authority policy �, so anyone can create a hard
reference to it. Bob’s philly album is large, so he has given it the authority policy bob;
only he can create hard references that prevent the album from being deleted. Therefore,
Alice’s reference to the album must be soft. Alice has drafted an itinerary, giving it the
authority policy {alice,bob} to indicate she will persist the document for as long as Bob
requires. Bob’s reference to the itinerary, therefore, can be hard.

It may sound odd to posit control over creation of references. But a reference with
referential integrity is a contract between the referrer and the referent. For example,
the node containing the referent is obligated to notify the referrer if the object moves.
Entering into a contract requires agreement by both parties, so it is reasonable for the
node containing the referent to refuse the creation of a reference.

3.4 Integrity

Thus far, the powers of the adversary include creating references to low-authority ob-
jects and destroying objects with low persistence. Because the adversary may control
some nodes, the adversary can also change the state of objects located at these nodes.
This may in turn affect code running on nodes not controlled by the adversary, if the
adversary supplies inputs to that code, or if it affects the decision to run that code.

Integrity policies describe limitations on these effects of the adversary. Integrity poli-
cies w are drawn from a bounded lattice (L,≼) of policy levels; without loss of expres-
sive power, it is assumed to be the same lattice as for persistence and authority policies.
In fact, we can think of the persistence and authority levels of an object as the integrity
of other, implicit attributes of the object. For persistence, this implicit attribute is the ex-
istence of the object itself. For authority, the attribute is the set of incoming references
to the object. This unifying view of different policies as different aspects of integrity
explains why all three kinds of policies can come from the same lattice.

The ordering ≼ corresponds to increasing integrity. If w1 ≼ w2, an information flow
from level w2 to w1 would be secure: more-trusted information would be affecting



Defining and Enforcing Referential Security 205

Integrity Authority Persistence Set of hosts

⊺

“High”

Trusted, Untainted: “superuser”: Persistent:
No host nodesNo one No one can make No one can

can affect data a hard reference delete object

�

“Low”

Untrusted, Tainted: “anyone”: Transient:
All host nodesAnyone Anyone can make Anyone can

can affect data a hard reference delete object

Fig. 2. Interpretations of the extremal policy labels

(a) (b)

Fig. 3. Authority affects integrity of dereferences. Alice is following her soft reference to the
lyon album. An adversary can affect the outcome of the dereference, because the album has low
authority. (a) The untrusted host U has a hard reference preventing lyon from being garbage
collected; Alice’s dereference succeeds. (b) Host U has removed its hard reference, allowing lyon
to be garbage collected; Alice’s dereference fails.

less-trusted information.1 In λpersist, each variable and each field of an object has an
associated integrity level describing how trusted it is, and hence how powerful an ad-
versary must be to damage it. The integrity of a reference is the integrity of the field or
variable it was read from.

Figure 2 summarizes the interpretation of the three kinds of policies.

3.5 Integrity of Dereferences and Garbage Collection

An adversary can directly affect the result of a dereference in two ways. First, if the ref-
erence has low integrity, the adversary can alter it to point to a different object. Second,
if the referent has low persistence, the adversary can delete it. Therefore, the integrity
of any dereference can be no higher than the integrity and persistence annotations on
the reference. In Figure 1, if Alice follows the reference from her docs directory to the
scratchpad, she obtains an untrusted result; the untrusted host U influences the result
by choosing whether to delete the scratchpad object.

More subtly, the adversary can manipulate hard references to influence the garbage
collector, and thereby indirectly affect the result of a dereference. For example, in Fig-
ure 3a, Alice is following her soft reference to Bob’s lyon album. Bob has marked lyon
as only requiring low authority, allowing the untrusted, adversarial host U to create a

1 This ordering is the opposite of the “upside-down” ordering typically seen in work on
information-flow security [2].



206 J. Liu and A.C. Myers

Variables x,y ∈ Var Policy levels w,a, p, � ∈ L
Memory locations m ∈ Mem PC labels pc ∶∶= w

Labeled record types S ∶∶= {��⇀xi ∶ τi}s Storage labels s ∶∶= (a, p)
Labeled ref types R ∶∶= {��⇀xi ∶ τi}r Reference labels r ∶∶= (a+,a−, p)

Base types b ∶∶= bool ∣ τ1
pc
�→ τ2 ∣ R ∣ soft R Types τ ∶∶= bw ∣ 1

Values v,u ∶∶= x ∣ true ∣ false ∣ ∗ ∣ mS
∣ soft mS

∣ λ(x ∶ τ)[pc].e (∣ �p)

Terms e ∶∶= v ∣ v1 v2 ∣ if v1 then e2 else e3 ∣ {
���⇀xi = vi}

S
∣ v.x

∣ v1.x ∶= v2 ∣ soft e ∣ e1∥e2 ∣ exists v as x ∶ e1 else e2 ∣ let x = e1 in e2

Fig. 4. Syntax of λ0
persist. Parenthesized productions only appear at run time.

hard reference, and thereby preventing lyon from being garbage-collected. Therefore,
Alice’s dereference must succeed.

However, in Figure 3b, the adversaryU has removed its reference. Subsequently, lyon
has been garbage-collected, and Alice’s dereference fails. The adversary has indirectly
affected the outcome of the dereference. To account for this, the integrity of Alice’s
dereference must be no higher than the authority required by lyon.

4 Types for Persistent Programming

To formalize the ideas presented in the previous section, we introduce the λpersist lan-
guage, an extension to the simply typed lambda calculus. Figure 4 gives part of the
formal syntax of λpersist. Its type system prevents referential vulnerabilities by integrat-
ing policies for persistence, authority, and integrity into types. Accidental persistence is
prevented because persistence is determined by policies expressing the programmer’s
intent, rather than by reachability. Referential integrity is maintained by a λpersist pro-
gram with respect to a particular adversary if following hard references whose persis-
tence and integrity are above the level of the adversary never leads to an object that has
been destroyed by the adversary or garbage-collected. Storage attacks are prevented if
the adversary is unable to change the set of high-authority objects that are reachable
through hard references.

4.1 Labels

We assume a bounded lattice (L,≼,�,⊺) of policy levels, from which integrity (w),
authority (a), and persistence policies (p) are drawn.

Objects and reference values are annotated with storage labels consisting of a cre-
ation authority policy and a persistence policy. All non-unit types τ consist of a base
type b along with an integrity policy annotation w; fields and variables thereby acquire
integrity policies, because they are part of their types. Objects do not have their own
integrity labels because all of their state is in their fields, which do have labels.

The program-counter label pc [9] is an integrity level indicating the degree to which
the program’s control flow has been tainted by untrusted data. This label restricts the
side effects of code.



Defining and Enforcing Referential Security 207

4.2 Example

Suppose we want to create a hierarchical, distributed directory structure, such as in
Figure 1. Each directory maps names to either strings, representing ordinary files, or to
other directories, and contains a reference to its parent directory (elided in the figure).
To faithfully model ordinary filesystems, directories higher in the hierarchy should be
more persistent: if they are destroyed, so is everything below.

A fully general directory structure would require augmenting λpersist with recursive
and dependent types; for simplicity, these features have been omitted from λpersist be-
cause they do not appear to add interesting issues. However, we can capture the security
of a general directory structure by using λpersist records to build a fixed-depth directory
structure with a fixed set of entry names for each directory.

4.3 Modeling Objects and References

The security policies of λpersist are about objects and references to them. Therefore,
λpersist extends the lambda calculus with records that represent the content of objects.
The record {���⇀xi = vi} comprises a set of fields�⇀xi with corresponding values�⇀vi . Records
are not values in the language; instead, they are accessed via references mS, where m is
the identity of the object and S = {��⇀xi ∶ τi}s gives its base record type. The storage label
s is a pair (a, p). The authority label a is an upper bound on the authority required to
create a new reference to the referent object.

References to objects have labeled reference types {��⇀xi ∶ τi}r. A reference label r is
a triple (a+,a−, p) that gives upper and lower bounds on the authority required by the
referent, and a lower bound on the persistence of the referent. The upper authority la-
bel a+ restricts reference copying to prevent storage attacks. The lower authority label
a− prevents the adversary from exploiting garbage collection to damage integrity (Sec-
tion 3.5), by tainting the integrity of dereferencing soft references.

4.4 Modeling Distributed Systems

The goal of the λpersist language is to model a distributed system in which code is run-
ning at different host nodes. A single program written in λpersist is intended to represent
such a system. The key to modeling distributed, federated computation faithfully is that
different parts of the program can be annotated with different integrity labels, repre-
senting the trust that has been placed in that part of the code. To model a set of compu-
tations (subprograms�⇀ei ) executing at different nodes, the individual computations are
composed in parallel (e1∥⋯∥en) into a single λpersist program.

From the viewpoint of a given principal in the system, code with a low integrity
label, relative to that principal, can be replaced by any code at all. For the purposes of
evaluating the security of the system, this code is in effect erased and replaced by the
adversary. Therefore the single-program representation faithfully models a distributed
system containing an adversary.
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5 Accidental Persistence and Storage Attacks

We present λpersist in two phases. In this section, we present λ0
persist, a simplified subset

of λpersist that prevents accidental persistence and storage attacks.

5.1 Syntax of λ0
persist

Figure 4 gives the syntax of λ0
persist. The names x and y range over variable names Var;

m ranges over a space of memory addresses Mem; w, a, p, and � range over the lattice
L of policy levels; and s and r range over the space of storage labels L2 and reference
labels L3, respectively.

Types in λ0
persist consist of base types with an integrity label (bw), and the unit type 1.

Base types include booleans, functions, and two kinds of references to mutable records:
hard (R) and soft (soft R). The metavariable R denotes a labeled reference type.

The type τ1
pc
�→ τ2 is a function type with a pc annotation that is a lower bound on

the pc label of the caller. It gives an upper bound on the authority level of references the
function creates and on the authority level of references held in the closure environment.

Values include variables x, booleans true and false, the unit value ∗, record-typed
memory locations (references) mS, soft references soft mS, and functions λ(x ∶τ)[pc].e.
The pc component of a function λ(x ∶τ)[pc].e has the same meaning as that in function
types. At run time, p-persistence failures �p can also appear as values.

Most terms are standard. The unusual features are record constructors {���⇀xi = vi}
S,

soft references soft e, parallel composition e1∥e2, and soft-reference tests exists v as x ∶
e1 else e2.

5.2 Example

Returning to the directory example in Figure 1, Bob can add to the itinerary with the
code below. It starts at the root of the directory structure, traverses down to the itinerary,
and invokes an add method to add a museum.

let home = root.bob

in exists home as bob:

let docs = bob.docs

in docs.itinerary.add "Rodin Museum"

else: ...

The garbage collector may have snapped the soft reference home to Bob’s home di-
rectory, so exists is used to determine whether the reference is still valid. If so, the body
of the exists is evaluated with bob bound to a hard reference to the home directory.2

(This reference can be created because the pc label at this point has sufficient creation
authority.) The second select expression, bob.docs, dereferences the hard reference.

2 To avoid a race with the garbage collector, an implementation of exists should first optimisti-
cally create the hard reference, then check its validity before exposing it to the program.
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[LET]
∀p. v ≠ �p

⟨let x = v in e,M⟩
e
�→ ⟨e{v/x},M⟩

[CREATE]
m = newloc(M)

⟨{
���⇀xi = vi}

S,M⟩
e
�→ ⟨mS,M[mS

↦{
���⇀xi = vi}]⟩

[
PARALLEL-

RESULT
] ⟨v1∥v2,M⟩

e
�→ ⟨∗,M⟩ [SELECT]

M(mS
) = {

���⇀xi = vi}

⟨mS.xc,M⟩
e
�→ ⟨vc,M⟩

[ASSIGN]
M(mS

) ≠ � ∀p. v ≠ �p

⟨mS.xc ∶= v,M⟩
e
�→ ⟨∗,M[mS.xc↦ v]⟩

[
DANGLE-
SELECT

]

M(mS
) = � p = persist(mS

)

⟨mS
.xc,M⟩

e
�→ ⟨�p,M⟩

[
DANGLE-
ASSIGN

]

M(mS
) = � p = persist(mS

)

⟨mS
.xc ∶= v,M⟩

e
�→ ⟨�p,M⟩

[
EXISTS-

TRUE
]

M(mS
) ≠ �

⟨exists soft mS as x ∶ e1 else e2,M⟩
e
�→ ⟨e1{m

S
/x},M⟩

[
EXISTS-
FALSE

]

M(mS
) = �

⟨exists soft mS as x ∶ e1 else e2,M⟩
e
�→ ⟨e2,M⟩

Evaluation contexts
E ∶∶= soft [ ⋅] ∣ let x = [⋅] in e ∣ [ ⋅ ]∥e ∣ e∥[⋅]

[
FAIL-
PROP

]
⟨F [�p] ,M⟩

e
�→ ⟨�p,M⟩

F ∶∶= soft [ ⋅] ∣ let x = [⋅] in e

[PROG-STEP]
⟨e,M⟩

e
�→ ⟨e′,M′⟩

⟨e,M⟩ → ⟨e′,M′⟩
[GC]

gc(G,⟨e,M⟩)

⟨e,M⟩ → ⟨e,M[G↦�]⟩

Fig. 5. Small-step operational semantics for nonadversarial execution of λ0
persist. Rules that are

standard have been elided.

[S1]
n >m

⊢ {x1 ∶τ1, . . .,xn ∶τn}r ≤ {x1 ∶τ1, . . . ,xm ∶τm}r
[S2]

⊢ R1 ≤ R2

⊢ soft R1 ≤ soft R2

[S3]
⊢ b1 ≤ b2 ⊢w2 ≼w1

⊢ (b1)w1 ≤ (b2)w2

[S4]
⊢ τ2 ≤ τ1 ⊢ τ′1 ≤ τ′2 ⊢ pc1 ≼ pc2

⊢ τ1
pc1
��→ τ′1 ≤ τ2

pc2
��→ τ′2

[S5]
⊢ a+1 ≼ a+2 ⊢ a−2 ≼ a−1 ⊢ p2 ≼ p1

⊢ {
��⇀xi ∶ τi}(a+1 ,a

−

1 ,p1)
≤ {
��⇀xi ∶ τi}(a+2 ,a

−

2 ,p2)

Fig. 6. Subtyping rules for λ0
persist

5.3 Operational Semantics of λ0
persist

Figure 5 gives the small-step operational semantics of λ0
persist, omitting standard rules.

The notation e{v/x} denotes capture-avoiding substitution of value v for variable x in
expression e. A failed or garbage-collected memory location contains value �. Most of
the operational semantics rules are straightforward, but a few deserve more explanation.

Let M represent a memory: a finite partial map from typed memory locations mS to
closed record values. Let ⟨e,M⟩ be a system configuration. A small evaluation step is a
transition from ⟨e,M⟩ to another configuration ⟨e′,M′⟩, written ⟨e,M⟩ → ⟨e′,M′⟩.
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Let locs(e) represent the set of locations appearing explicitly in e. A memory M is
well-formed only if every address m appears at most once in dom(M), and for any lo-
cation mS in dom(M), locs(M(mS

)) ⊆ dom(M). A configuration ⟨e,M⟩ is well-formed
only if M is well-formed, locs(e) ⊆ dom(M), and e has no free variables.

Though the operational semantics refer to complete record types, only their per-
sistence labels are needed at run time. These labels are only used to determine the
level of persistence failure that occurs when dereferencing a dangling reference (rules
DANGLE-SELECT and DANGLE-ASSIGN), so run-time overhead should be small.

The record constructor {���⇀xi = vi}
S (rule CREATE) creates a new memory location mS

to hold the record. The component S specifies the base type and storage label of the
record. The storage label governs at what nodes the object can be created. The function
newloc(M) deterministically generates a fresh memory location.

The field-selection expression v.x (rules SELECT and DANGLE-SELECT) evaluates
v to a memory location mS. If the location has not failed, the result of the selection is
the value of the field x of the record at that location. Otherwise, a p-persistence failure
occurs, where p is the persistence level of mS, written p = persist(mS

).
The field-assignment expression v1.x ∶= v2 evaluates v1 to a memory location mS

(rules ASSIGN and DANGLE-ASSIGN) If the location has not failed, v2 is assigned
into the field x of the record at that location; otherwise, a p-persistence failure occurs
(where p=persist(mS

)). The notation M[mS.xc↦ v] denotes the memory resulting from
updating with value v the field xc of the record at location mS.

Persistence failures propagate outward dynamically (FAIL-PROP) until the whole
program fails. The production F gives the contexts from which persistence failures
propagate. The full λpersist language, defined in Section 6, can handle these failures.

The soft-reference expression soft e evaluates e to a hard reference and turns it into
a soft reference. The soft-reference test (exists v as x ∶ e1 else e2) promotes the soft
reference v (if valid) to a hard reference bound to x and evaluates e1. If the reference is
invalid, e2 is evaluated instead.

In rule GC, the notation gc(G,⟨e,M⟩) means that G is a set of locations that is
collectible. G is considered collectible if it has no GC roots (i.e., hard references in e),
and no location outside G has a hard reference into G.

5.4 Subtyping in λ0
persist

The subtyping judgment ⊢ τ1 ≤ τ2 states that any value of type τ1 can be treated as a
value of type τ2. Subtyping in λ0

persist is the least reflexive and transitive relation consis-
tent with the rules given in Figure 6.

Subtyping on soft references is covariant (rule S2). While hard references may be
soundly used as soft references, this is omitted for simplicity. Rule S3 gives contravari-
ant subtyping on integrity labels. Rule S4 gives standard subtyping on functions; the
additional pc component is covariant. Rule S5 gives subtyping for labeled reference
types. It ensures the bounds specified by the reference label of the subtype are at least
as precise as those of the supertype.
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[T-BOOL]
b ∈ {true, false}

Γ;pc ⊢ b ∶ bool⊺
[T-UNIT] Γ;pc ⊢ ∗ ∶ 1

[T-VAR]
Γ(x) = τ

Γ;pc ⊢ x ∶ τ
[T-BOT]

p ≠ ⊺

Γ;pc ⊢ �p ∶ τ

[T-LOC]
⊢wf S ∶ rectype S = {��⇀xi ∶ τi}(a,p)

Γ;pc ⊢mS
∶ ({
��⇀xi ∶ τi}(a,a,p))⊺

[T-SOFT]
Γ;pc ⊢ e ∶ Rw

Γ;pc ⊢ soft e ∶ (soft R)w

[T-IF]

Γ;pc ⊢ v ∶ boolw
Γ;pc⊓w ⊢ ei ∶ τ

(∀i)

⊢ auth+(τ) ≼ pc⊓w

Γ;pc ⊢ if v then e1 else e2 ∶ τ⊓w
[T-PLL]

Γ;pc ⊢ ei ∶ τi
(∀i)

⊢ auth+(τi) ≼ pc (∀i)

Γ;pc ⊢ e1∥e2 ∶ 1

[T-ABS]

Γ,x ∶τ′;pc′ ⊢ e ∶ τ

⊢wf (τ
′ pc′
�→ τ)⊺ ∶ type ⊢ pc′ ≼ pc

Γ;pc ⊢ λ(x ∶τ′)[pc′].e ∶ (τ′
pc′
�→ τ)⊺

[T-APP]

Γ;pc ⊢ v1 ∶ (τ
′ pc′
�→ τ)w

Γ;pc ⊢ v2 ∶ τ
′

⊢ pc′ ≼ pc⊓w

Γ;pc ⊢ v1 v2 ∶ τ⊓w

[T-REC]

⊢wf S ∶ rectype S = {��⇀xi ∶ τi}(a,p) Γ;pc ⊢ vi ∶ τ
′

i
(∀i)

⊢ τ′i ≤ τi
(∀i)

⊢ auth+(τ′i) ≼ pc (∀i)
⊢ integ(τi) ≼ pc (∀i)

⊢ p ≼ pc

Γ;pc ⊢ {���⇀xi = vi}
S
∶ ({
��⇀xi ∶ τi}(a,a,p))⊺

[T-SEL]

Γ;pc ⊢ v ∶ ({��⇀xi ∶ τi}r)w

⊢ auth
+
(r) ≼ pc

w′ =w⊓persist(r)

Γ;pc ⊢ v.xc ∶ τc⊓w′
[T-ASGN]

Γ;pc ⊢ v1 ∶ ({
��⇀xi ∶ τi}r)w

⊢ auth+(r) ≼ pc
Γ;pc ⊢ v2 ∶ τ
⊢ τ⊓pc⊓w ≤ τc

⊢ auth+(τ) ≼ pc⊓w

Γ;pc ⊢ v1.xc ∶= v2 ∶ 1

[T-EXISTS]

Γ;pc ⊢ v ∶ (soft {��⇀xi ∶ τi}r)w ⊢ auth+(r) ≼ pc⊓w
w′ = auth−(r)⊓persist(r)⊓w Γ,x ∶ ({��⇀xi ∶ τi}r)w;pc⊓w′ ⊢ e1 ∶ τ

Γ;pc⊓w′ ⊢ e2 ∶ τ ⊢ auth
+
(τ) ≼ pc⊓w′

Γ;pc ⊢ exists v as x ∶ e1 else e2 ∶ τ⊓w′

[T-LET]

Γ;pc ⊢ e1 ∶ τ
′

⊢ auth+(τ′) ≼ pc
w = integ(τ′) pc′ = pc⊓w

Γ,x ∶τ′;pc′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc′

Γ;pc ⊢ let x = e1 in e2 ∶ τ⊓w
[T-SUB]

Γ;pc ⊢ e ∶ τ′ ⊢ τ′ ≤ τ
Γ;pc ⊢ e ∶ τ

Fig. 7. Typing rules for λ0
persist
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[WT1] ⊢wf boolw ∶ type [WT2]

⊢ pc ≼w ⊢wf τ1 ∶ type ⊢wf τ2 ∶ type

⊢ auth
+
(τ1)⊔auth

+
(τ2) ≼ pc

⊢wf (τ1
pc
�→ τ2)w ∶ type

[WT3] ⊢wf 1 ∶ type [WT4]
⊢wf ({

��⇀xi ∶ τi}(a,a,p))⊺ ∶ type ⊢ integ(τi) ≼ p (∀i)

⊢wf {
��⇀xi ∶ τi}(a,p) ∶ rectype

[WT5]
⊢wf R⊺ ∶ type

⊢wf (soft R)w ∶ type
[WT6]

⊢wf τi ∶ type
(∀i)

⊢ auth+(τi) ≼ a+ (∀i)

⊢ a+ ≼w⊓ p ⊢ a− ≼ a+

⊢wf ({
��⇀xi ∶ τi}(a+,a−,p))w ∶ type

Fig. 8. Well-formedness of types

5.5 Static Semantics of λ0
persist

Typing rules for λ0
persist are given in Figure 7. The notation auth+(r) and auth−(r) give

the upper (a+) and lower (a−) authority component of a reference label r, respectively.
The notation auth+(τ), defined below, gives the authority level needed to create a hard
reference to a value of type τ. The integrity of τ is written integ(τ), and τ⊓ � denotes
the type obtained by tainting (meeting) the integrity of τ with �.

auth+(bool) = auth+(1) = auth+(soft R) = �

auth+(τ1
pc
�→ τ2) = pc auth+({��⇀xi ∶ τi}s) = auth

+
(s)

The typing context includes a type assignment Γ and the program-counter label pc.
We write x ∶τ ∈ Γ and Γ(x) = τ interchangeably. The typing assertion Γ;pc ⊢ e ∶ τ means
that the expression e has type τ under type assignment Γ with program-counter label pc.

Most of the typing rules are standard rules, extended to ensure that the pc is suffi-
ciently high to obtain any hard references that may result from evaluating subexpres-
sions (e.g., premise ⊢ auth+(τ) ≼ pc in Rule T-IF), and that the pc is suitably tainted.

Rule T-REC checks the creation of records. The pc must be high enough to create
any hard references that appear in the fields, and to write to the fields themselves.

When using a hard reference v1, the pc must have sufficient authority to possess
v1 (premise ⊢ auth+(r) ≼ pc in rules T-SEL and T-ASGN). When assigning through
v1, hard references contained in the assigned value v2 also require authority. Since the
integrity and persistence of v1 can affect whether the assignment succeeds, we taint the
pc with these labels before comparing with the authority requirement of v2.

Rule T-EXISTS checks soft-reference validity tests. It ensures that the pc has the
authority to promote the reference from soft to hard (premise ⊢ auth+(r) ≼ pc).

The rules for determining the well-formedness of types are given in Figure 8. In
rule WT6, a reference type ({��⇀xi ∶ τi}(a+,a−,p))w is well-formed only if the upper author-
ity label a+ is an upper bound on the authority levels of the field types τi. This ensures
that the upper authority label is an accurate summary of the authority required by the
fields. We also require a+ be bounded from above by the integrity w of the reference,
since low-integrity data should not influence the creation of high-authority references.
To ensure hosts are able to create hard references to the objects they store, we also
require auth+(r) to be bounded from above by the persistence level p of the record.
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6 Ensuring Referential Integrity

In a distributed system, references can span trust domains, so to be secure and reliable,
program code must in general be ready to encounter a dangling reference, one perhaps
created by the adversary. Therefore, we extend λ0

persist with persistence-failure handlers
to obtain the full λpersist language (see [16] for its full syntax). The type system of λpersist

forces the programmer to be aware of and to handle all potential failures.
We might consider an approach in which failures must be handled immediately upon

encountering a broken reference. However, because low-persistence references may be
used frequently, this would likely result in much duplication of failure-handling code.

Instead, λpersist factors out failure-handling code from ordinary code by treating fail-
ures as a kind of exception. The value of (try e1 catch p∶ e2) is the value of evaluating
e1. If a dangling reference at persistence level p or higher is encountered, the failure
handler e2 is evaluated instead. A try expression creates a context (e1) in which the pro-
grammer can write simpler code under the assumption that certain persistence failures
are impossible, yet without sacrificing the property that all failures are handled.

6.1 Persistence Handler Levels

To track the failures that the current context can handle, a set of persistence levels H
is used.3 It provides lower bounds on the persistence levels of hard references that may

be directly dereferenced. Functions λ(x ∶τ)[pc;H].e and function types τ1
pc,H
��→ τ2 are

extended with an H component, which is an upper bound on the H levels of the caller.

6.2 Example

Returning to the directory example in Figure 1, Alice can add a place to the list of sight-
seeing ideas with the code below. This code starts at Alice’s docs directory, traverses
the reference to the scratchpad, and invokes an add method to add a museum.

let pad = docs.scratchpad

in try pad.add "Rodin Museum" catch �: ...

The expression pad.add follows a hard reference to the scratchpad. Despite the hard
reference, a try is needed because Alice does not trust host U to persist the scratchpad.

6.3 Static and Dynamic Semantics of λpersist

The small-step operational semantics of λpersist extends that of λ0
persist with the rules at

the top of Figure 9. Failures propagate outward dynamically (TRY-ESC) until either they
are handled by a failure handler (TRY-CATCH), or the whole program fails. See [16] for
the full operational semantics for λpersist.

The subtyping rules are the same as for λ0
persist, except that function subtyping is also

contravariant on theH component. Full subtyping rules are also in [16].

3 Formally,H is drawn from the upper powerdomain [22] of persistence levels.
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[
TRY-
VAL

]

∀p′. v ≠ �p′

⟨try v catch p∶ e,M⟩
e
�→ ⟨v,M⟩

[
TRY-

CATCH
]

p ≼ p′

⟨try �p′ catch p∶ e,M⟩
e
�→ ⟨e,M⟩

[
TRY-
ESC

]

p /≼ p′

⟨try �p′ catch p∶ e,M⟩
e
�→ ⟨�p′ ,M⟩

E ∶∶= . . . ∣ try [ ⋅] catch p∶ e

[
T-SOFT-
SELECT

]

Γ;pc;H⊢ v ∶ (soft {��⇀xi ∶ τi}r)w,⊺ ⊢ auth
+
(τc) ≼ pc

p = auth−(r)⊓persist(r)⊓w ⊢H ≼ p

Γ;pc;H⊢ v.xc ∶ τc⊓ p, p

[
T-SOFT-
ASSIGN

]

Γ;pc;H⊢ v1 ∶ (soft {
��⇀xi ∶ τi}r)w,⊺ p = auth−(r)⊓persist(r)⊓w

Γ;pc;H⊢ v2 ∶ τ,⊺ ⊢ τ⊓pc⊓ p ≤ τc ⊢ auth
+
(τ) ≼ pc⊓ p ⊢H ≼ p

Γ;pc;H⊢ v1.xc ∶= v2 ∶ 1, p

[T-TRY]

Γ;pc;H, p⊢ e1 ∶ τ,X1 w = ⊓

p′∈X1

(p⊔ p′)

Γ;pc⊓w⊓ integ(τ);H⊢ e2 ∶ τ,X2 ⊢ auth
+
(τ) ≼ pc

Γ;pc;H⊢ try e1 catch p∶ e2 ∶ τ⊓w,(X1/p)⊓X2

Fig. 9. Additional small-step evaluation and typing rules for λpersist

The typing rules for λpersist extend those for λ0
persist. They augment the typing context

with a handler environment H, indicating the set of persistence failures the evaluation
context can handle. Typing judgments additionally produce an effect X , which is a set
indicating the persistence failures that can occur during evaluation.

The typing rules for λ0
persist are converted straightforwardly to threadH andX through

typing judgments. Rules T-SEL and T-ASGN gain premises to ensure the context has a
suitable handler in case dereferences fail. See [16] for the converted rules.

The bottom of Figure 9 gives three new typing rules. T-SOFT-SELECT and
T-SOFT-ASSIGN check direct uses of soft references. They taint the integrity of the
dereference with auth−(r) because the result of the dereference is affected by those
able to pin the referent in memory by creating a hard reference (Section 3.5). Rule
T-TRY checks try expressions. To reflect the installation of a p-persistence handler, p is
added to the handler environmentH when checking e1. The value w in the typing rule
is a conservative summary of the persistence errors that can occur while evaluating e1

and are not handled by the p-persistence handler. Because evaluation of e2 depends on
the result of e1, the pc label for evaluating e2 is tainted by w. In this rule, the notation
X/p denotes the subset of persistence errors X not handled by p.

7 The Power of the Adversary

Possible actions of the adversary are modeled by extending the operational semantics of
Figure 5 with more transitions. To support reasoning about what an adversary may have
affected in a partially evaluated program, λpersist is also augmented to include bracketed
expressions, resulting in the language [λpersist]. The term [e] represents an expression
e that may have been influenced by the adversary, and [v] is an influenced value. The
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[α-CREATE]

m = newloc(M) ∅;⊺;⊺⊢ {
����⇀

xi = [vi]}
S
∶ R⊺,⊺

⊢
α
[wf] M[mS

↦{

����⇀

xi = [vi]}] α /≼ persist(S)

⟨e,M⟩ ↝α ⟨e,M[m
S
↦ {

����⇀

xi = [vi]}]⟩

[α-ASSIGN]

mS
∈ dom(M) M(mS

) ≠ �

S = {��⇀xi ∶ τi}s ∅;⊺;⊺⊢ [v] ∶ τc,⊺

⊢
α
[wf] M[mS.xc↦ [v]]

⟨e,M⟩ ↝α ⟨e,M[m
S
.xc↦ [v]]⟩

[α-FORGET]

mS
∈ dom(M)

α /≼ persist(S)

⟨e,M⟩ ↝α ⟨e,M[m
S
↦�]⟩

Fig. 10. Effects caused by the α-adversary

operational semantics is extended by adding rules that propagate these brackets in the
obvious manner. (Doubly bracketed values are considered expressions, not values.)

The rule for typing bracketed expressions is as follows:

[T-BRACKET]
Γ;pc⊓�;H⊢ e ∶ τ,X α /≼ � ⊢ auth+(τ) ≼ pc⊓�

Γ;pc;H⊢ [e] ∶ τ⊓�,X

The adversary is powerful, as shown by the transitions defined in Figure 10. Adver-
saries may create new records (rule α-CREATE), modify existing records
(rule α-ASSIGN), or remove records from memory altogether (rule α-FORGET), but
their ability is bounded by an integrity label α ∈ L. Such an α-adversary has all cre-
ation authority except α and higher, can modify any record field except those with α
(or higher) integrity, and can delete any record except those with α (or higher) per-
sistence. A small evaluation step taken in the presence of an α-adversary is written
⟨e,M⟩ →α ⟨e′,M′⟩.

It is important to know that any evaluation of a program in the original language can
be simulated in the augmented language, which amounts to showing that the rules cover
all the ways that brackets can appear. This is proved straightforwardly by induction on
the evaluation rules.

The adversary’s transitions embody a simplifying assumption that the adversary can
only create well-typed values. While it is reasonable to allow the adversary to create ill-
typed values, an implementation with run-time type checking can catch ill-typed values
when they cross between hosts and replace them with well-typed default values.

8 Results

The goal of λpersist is to prevent accidental persistence and to ensure that the adversary
cannot damage referential integrity or cause storage attacks. Accidental persistence is
prevented by the use of persistence policies. We now show how to formalize the other
security properties and sketch the proof that they are enforced.

8.1 Soundness and Well-Formedness

We have proved [16] the [λpersist] type system sound with the usual method, via preser-
vation and progress. A well-formed λpersist memory M, written ⊢wf M, maps typed
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locations to record values with the same type. In a λpersist configuration that is well-
formed with respect to an α-adversary (written ⊢α

wf ⟨e,M⟩), no noncollectible high-
persistence location is deleted. λpersist configurations are well-formed in a nonadver-
sarial setting (⊢wf ⟨e,M⟩) if they are well-formed with respect to the �-adversary.

Corresponding well-formedness conditions are defined similarly for [λpersist] and is
written with brackets around the wf subscript. Well-formed [λpersist] memories addi-
tionally require that values appearing in low-integrity record fields must be bracketed.

8.2 Security Relation

The key to proving both referential integrity and immunity to storage attacks is to show
that the adversary cannot meaningfully influence the high-integrity parts of the program
and memory. To do this, we define a security relation and show that each configuration
⟨e1,M1⟩ reached via the language augmented by adversarial transitions must be related
to some configuration ⟨e2,M2⟩ reachable by purely nonadversarial execution. This se-
curity property is possibilistic, which is problematic for confidentiality properties [21]
but is acceptable for integrity.

Because the two executions being compared operate on different heaps, with the ad-
versary behaving differently in the two executions, the addresses chosen during record
allocation may differ. However, the structure of the high-integrity part of the heap
should still correspond. A high-integrity homomorphism φ is used to relate correspond-
ing locations in the two heaps that are high-integrity or high-persistence. High-integrity
homomorphisms are injective, preserve location types, and are isomorphisms on both
high-integrity and high-persistence locations. This is defined formally in [16].

An expression e1 is considered to be related to e2 via a high-integrity homomorphism
φ, written e1 ≈

φ
α e2, if e1 is equal to e2 (modulo bracketed expressions) when the memory

locations in e1 are transformed via φ.
We also define a security relation on memories: M1 and M2 are related via φ, written

M1 ≈
φ
α M2, if two conditions hold for each location mS

∈ dom(φ). If mS is not deleted,
then φ(mS

) maps to a related record. Otherwise, if mS is deleted, high-authority, and
high-persistence, then so is φ(mS

). The formal definition is given in [16]. These two
security relations induce a security relation on configurations:

⟨e1,M1⟩ ≈
φ
α ⟨e2,M2⟩

def.
⇐⇒ e1 ≈

φ
α e2∧M1 ≈

φ
α M2.

A [λpersist] program has limited adversary influence if related initial configurations pro-
duce related final configurations. We now see that the language [λpersist] enforces secu-
rity, because all well-formed programs do have limited adversary influence.

8.3 Referential Integrity

Theorem 1 formalizes the referential integrity result, showing that the adversary has
limited influence on program execution: execution in the presence of an adversary is
φ-related to a nonadversarial execution.
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For the remainder of this paper, assume ⟨e1,M1⟩ is a well-formed configuration and
⟨e2,M2⟩ is a well-formed, nonadversarial, φ-related configuration, such that e1 and e2

have type τ and M2 is well-formed:

⊢
α
[wf] ⟨e1,M1⟩ ∧ ⊢[wf] ⟨e2,M2⟩ ∧ ⟨e1,M1⟩ ≈

φ
α ⟨e2,M2⟩

∧ ∅;pc;H⊢ e1 ∶ τ,X ∧ ∅;pc;H⊢ e2 ∶ τ,X ∧ ⊢α
[wf]M2

Theorem 1 (Referential integrity). Suppose ⟨e1,M1⟩ takes some number of steps in
the presence of an adversary to another configuration ⟨e′1,M

′

1⟩. Then either ⟨e2,M2⟩

diverges, or it can take some number of steps in the absence of an adversary to another
configuration ⟨e′2,M

′

2⟩ and there exists a high-integrity homomorphism φ′ from M′1 to
M′2 that extends φ, such that ⟨e′1,M

′

1⟩ is related to ⟨e′2,M
′

2⟩ via φ′:

⟨e1,M1⟩ →
∗

α ⟨e
′

1,M
′

1⟩∧¬⟨e2,M2⟩ ⇑

⇒ ∃e′2,M
′

2,φ
′. ⟨e2,M2⟩ →

∗
⟨e′2,M

′

2⟩∧⟨e
′

1,M
′

1⟩ ≈
φ′
α ⟨e

′

2,M
′

2⟩∧φ = φ′∣
dom(φ)

Proof: Induction on the derivation of ⟨e1,M1⟩ →α ⟨e′1,M
′

1⟩.

8.4 Storage Attacks

To formalize immunity to storage attacks, we first show that the adversary cannot cause
more high-persistence locations to be allocated. Theorem 1 captures this via the security
relation, since all high-persistence locations are mapped by the homomorphism.

We now show that the adversary cannot cause more high-authority locations to be-
come noncollectible; that is, reachable through hard references. Lemma 1 says that this
is also implied by Theorem 1. (We write nc(mS,⟨e,M⟩) to mean mS is noncollectible in
⟨e,M⟩. The formal, inductive definition is in [16].)

Lemma 1. If mS is a high-authority, noncollectible location in ⟨e1,M1⟩, then φ(mS
) is

also noncollectible in ⟨e2,M2⟩.

⊢ α ≼ auth+(S)∧nc(mS,⟨e1,M1⟩)⇒ nc(φ(mS
),⟨e2,M2⟩)

Proof: By induction on the derivation of nc(mS,⟨e1,M1⟩).

9 Related Work

This paper identifies and addresses a new problem, referential security. As a result, little
prior work is closely related.

Some prior work has tried to improve referential integrity through system mecha-
nisms, for example improving the referential integrity of web hyperlinks [8, 11]. Sys-
tems mechanisms for improving referential integrity (and other aspects of trustworthi-
ness) are orthogonal to the language model presented here, but could be used to justify
assigning persistence, integrity, and authority levels to nodes.
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Liblit and Aiken [12] develop a type system for distributed data structures. Its explicit
two-level hierarchy distinguishes between local pointers that are meaningful only to a
single processor, and global pointers that are valid everywhere. The type system ensures
that local pointers do not leak into a global context. This work was extended in [13] to
add types for dealing with private vs. shared data. However, this line of work does not
consider security properties that require defense against an adversary.

Riely and Hennessey study type safety in a distributed system of partially trusted
mobile agents [20] but do not consider referential security.

This paper builds on prior work on language-based information-flow security, much
of which is summarized by [21]. The Fabric system [15] is programmed in a high-level
language that includes integrity annotations and abstracts away the locations of objects,
as λpersist does. Its type system does not enforce referential security, however, so adding
the features described here is an obvious next step.

10 Conclusions

Complex distributed information systems are being integrated across different organi-
zations with only partial trust, often in the context of cloud computing. But the security
properties that are desirable in distributed computing are poorly understood, and the
options for enforcing security are murkier still. In fact, the desirable referential security
properties are actually in tension with each other. The result is that programmers have
little guidance in designing distributed systems to be secure and reliable.

This paper makes several contributions that aid in resolving this situation. The paper
newly identifies and formalizes some important referential security properties. It in-
troduces a high-level language for modeling referential security issues in a distributed
system. The language introduces a way to express referential security requirements
through label annotations for persistence and creation authority, which can be viewed
as different aspects of integrity. The paper demonstrates how to enforce referential secu-
rity, through static analysis expressed as a type system in the language. The type system
is validated by formal proofs that λpersist programs enforce the new security properties.

While this paper is a useful first step, clearly there is more to be done. The type sys-
tem could be enriched with more features such as parametric polymorphism, recursive
and dependent types. With such extensions, an implementation would then help evalu-
ate how well these types guide programmers designing distributed computing systems.
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Abstract. In our previous work, we have proposed a framework which allows
tools that can check standard noninterference properties but a priori cannot deal
with cryptography to establish cryptographic indistinguishability properties, such
as privacy properties, for Java programs. We refer to this framework as the CVJ
framework (Cryptographic Verification of Java Programs) in this paper.

While so far the CVJ framework directly supports public-key encryption
(without corruption and without a public-key infrastructure) only, in this work
we further instantiate the framework to support, among others, public-key encryp-
tion and digital signatures, both with corruption and a public-key infrastructure,
as well as (private) symmetric encryption. Since these cryptographic primitives
are very common in security-critical applications, our extensions make the frame-
work much more widely applicable.

To illustrate the usefulness and applicability of the extensions proposed in this
paper, we apply the framework along with the tool Joana, which allows for the
fully automatic verification of noninterference properties of Java programs, to
establish cryptographic privacy properties of a (non-trivial) cloud storage appli-
cation, where clients can store private information on a remote server.

1 Introduction

In [24], a framework has been proposed which allows tools that can check standard
noninterference properties but cannot deal with cryptography directly, in particular
probabilities and polynomially bounded adversaries, to establish cryptographic indis-
tinguishability properties, such as privacy properties, for Java programs. In this paper,
we refer to this framework as the CVJ framework (Cryptographic Verification of Java
programs). The framework combines techniques from program analysis and cryptogra-
phy, more specifically, universal composability [9,19,27,29], a well-established concept
in cryptography. The idea is to first check noninterference properties for the Java pro-
gram to be analyzed where cryptographic operations (such as encryption) are performed
within so-called ideal functionalities. Such functionalities typically provide guarantees
even in the face of unbounded adversaries and can often be formulated without prob-
abilistic operations. Therefore, such analysis can be carried out by tools that a priori
cannot deal with cryptography (probabilities, polynomially bounded adversaries). The-
orems shown within the framework now imply that the Java program enjoys strong
cryptographic indistinguishability properties when the ideal functionalities are replaced
by their realizations, i.e., the actual cryptographic operations.

M. Abadi and S. Kremer (Eds.): POST 2014, LNCS 8414, pp. 220–239, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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The theorems proved within the CVJ framework are very general in that they guar-
antee that any ideal functionality can be replaced by its realization. In particular, they
are not tailored to specific cryptographic operations. However, to make the framework
directly applicable to a wide range of cryptographic software, i.e., software that uses
cryptographic operations (such as asymmetric and symmetric encryption, digital signa-
tures, MACs, etc.), it is necessary to provide a rich set of ideal functionalities along with
their realizations written in Java. So far, in [24] only an ideal functionality for public-
key encryption has been proposed and it has been shown that this functionality can be
realized by any IND-CCA2-secure public-key encryption scheme, a standard security
notion for such schemes (see, e.g., [4]). This functionality does not support reasoning
about corruption and also it does not support a public-key infrastructure (PKI).

Contribution of This Paper. The main goal and the main contribution of this work is
therefore to instantiate the CVJ framework with further (and more suitable) ideal func-
tionalities which commonly occur in cryptographic applications, and to provide realiza-
tions of such functionalities based on standard cryptographic assumptions. We note that
similar functionalities as the once introduced in this work have been considered in the
cryptographic literature based on Turing machine models (see, e.g., [9,26,29]) before.
The new contribution here is that we provide formulations in Java (more precisely, in a
rich fragment of Java) such that these functionalities can actually be used to analyze Java
programs. Designing such functionalities and carrying out the proofs (w.r.t. program-
ming language semantics) is non-trivial and requires some care since the interaction
between different classes is much more complex than between Turing machines, where
in the former case we have to deal, for example, with exceptions, inheritance, references
to potential complex objects that can be exchanged, and hence, the manipulation of one
object can affect many other objects. Also, since the ideal functionalities we propose
will be part of the (Java) programs to be analyzed, they should be formulated in a “tool
friendly” way. For example, for this reason, in our functionalities corruption is modeled
in a quite different way than it is typically done in the Turing machine models.

More concretely, in this work we propose ideal functionalities, written in Java, for
public-key encryption, digital signatures, (private) symmetric encryption, and nonce
generation.

The functionalities for public-key encryption and digital signatures support static
corruption and a public-key infrastructure. The latter means that parties can register
their public encryption and verification keys using the functionalities. Other parties
can then use the functionalities to encrypt messages and verify signatures by sim-
ply providing the name of the intended recipient of the message/the alleged signer
of the message. The functionality then guarantees that the correct public-key is used
for encryption/verification. As for static corruption, the adversary can register his own
(possibly dishonestly generated) public keys which then can be used by other (honest)
parties just like honestly generated and registered keys. We show that both functionali-
ties, public-key encryption and digital signatures, can be realized using standard crypto-
graphic schemes and assumptions (IND-CCA2-secure public-key encryption schemes
and UF-CMA-secure digital signature schemes).

The functionality for private symmetric encryption allows a user to encrypt messages
(using a symmetric encryption scheme) for herself. She does not share the symmetric
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key with other parties. This is useful, for example, to store confidential information
on an untrusted medium. Again, this functionality is realized using a standard sym-
metric encryption scheme, based on standard cryptographic assumptions (IND-CCA2
security).

Finally, the ideal functionality for nonce generation that we propose guarantees that
nonces are always fresh. That is, this functionality prevents collisions of nonces. It is
realized in the obvious way, by choosing nonces (of the length of the security parameter)
uniformly at random.

We illustrate the usefulness and applicability of these functionalities in a case study.
We apply the CVJ framework, along with the tool Joana [16, 17], which allows for the
fully automatic verification of noninterference properties of Java programs, to estab-
lish cryptographic privacy properties of a non-trivial cloud storage application, where
clients can store private information on a remote server. The cloud storage system makes
use of all cryptographic primitives considered in this paper, and hence, the code of these
functionalities is included in the verified program. We note that, except for a much
simpler Java program analyzed in [24], there has been no other verification effort that
establishes cryptographic security guarantees of Java programs.

Related Work. Obtaining cryptographic guarantees for programs written in real-world
programming languages is a challenging and quite recent research field (see also [24]
for a discussion of related work). Many approaches in this field carry out symbolic
(Dolev-Yao style) analysis, without computational/cryptographic guarantees (see, e.g.,
[5,11,15]). Most, of the very few, approaches that aim at cryptographic guarantees fol-
low one of the following approaches: i) They rely on symbolic analysis and then apply
computational soundness results (see, e.g., [1]), ii) they derive formal models from the
source code and analyze these models using specialized tools for cryptographic verifica-
tion, such as the tool CryptoVerif [7] (see, e.g., [2]), or iii) they derive source code from
formal specifications (see, e.g., [8]). The CVJ framework, in contrast, aims at using
existing program analysis tools and techniques to directly obtain cryptographic secu-
rity guarantees. It is the only approach for the cryptographic analysis of Java programs,
other approaches aim at C or F# code. Also, unlike most other approaches, it considers
cryptographic indistinguishability properties, rather than trace properties, such as au-
thentication and weak secrecy. An approach similar to the approach taken in the CVJ
framework is the one by Fournet et al. [6, 12]. However, they consider F# and focus on
the use of refinement types.

Structure of This Paper. In Section 2, we first briefly recall the CVJ framework. In the
four subsequent sections, we present the ideal functionalities for public-key encryption,
digital signatures, private symmetric encryption, and nonce generation, respectively,
including their realizations. In Section 7, we turn to the case study. Further details are
provided in the extended version of this paper [22].

2 The CVJ Framework

We briefly recall the framework from [24]. The definitions and theorems stated here are
somewhat simplified and informal, but should suffice to follow the rest of the paper. We
refer the reader to [24] for full details.



Extending and Applying a Framework for the Cryptographic Verification 223

As already mentioned in the introduction, in order to establish cryptographic indis-
tinguishability properties for a Java program, by the CVJ framework it suffices to prove
that the program enjoys a (standard) noninterference property when the cryptographic
operations are replaced by so-called ideal functionalities, which in our case will model
cryptographic primitives, such as encryption and digital signatures. The CVJ framework
then ensures that the Java program enjoys the desired cryptographic indistinguishabil-
ity properties when the ideal functionalities are replaced by their realizations, i.e., the
actual cryptographic operations. Since ideal functionalities often do not involve proba-
bilistic operations and are secure even for unbounded adversaries, the noninterference
properties can be verified by tools that a priori cannot deal with cryptography (proba-
bilities, polynomially bounded adversaries). Without the ideal functionalities, the tools
would, for example, consider a secret message that is sent encrypted over a network
controlled by the adversary to be an information leakage, because an unbounded adver-
sary can break the encryption.

Jinja+. The CVJ framework is stated and proven for a Java-like language called Jinja+.
Jinja+ is based on Jinja [18] and extends this language with some useful additional fea-
tures, such as arrays and randomness. Jinja+ covers a rich subset of Java, including
classes, inheritance, (static and non-static) fields and methods, the primitive types int,
boolean, and byte (with the usual operators for these types), arrays, exceptions, and
field/method access modifiers, such as public, private, and protected. It also in-
cludes the primitive randomBit() which returns a random bit each time it is called.

A (Jinja+) program/system is a set of class declarations. A class declaration consists
of the name of the class, the name of its direct superclass, a list of field declarations,
and a list of method declarations. A program/system is complete if it uses only class-
es/methods/fields declared in the program itself.

All Java programs considered in this paper, including the systems considered in our
case study as well as the functionalities fall into the Jinja+ fragment. While the syntax
of Jinja+ and Java differ, their is a straightforward translation from Jinja+ to Java, which
is why we use Java syntax throughout this paper.

Indistinguishability. An interface I is defined like a (Jinja+) system but where (i) all
private fields and private methods are dropped and (ii) method bodies as well as static
field initializers are dropped. A system S implements an interface I, written S : I, if I is a
subinterface of the public interface of S, i.e. the interface obtained from S by dropping
method bodies, initializers of static fields, private fields, and private methods. We say
that a system S uses an interface I, written I � S, if, besides its own classes, S uses
at most classes/methods/fields declared in I. We write I0 � S : I1 for I0 � S and S : I1.
We also say that two interfaces are disjoint if the sets of class names declared in these
interfaces are disjoint.

For two systems S and T we denote by S · T the composition of S and T which,
formally, is the union of (declarations in) S and T . Clearly, for the composition to make
sense, we require that there are no name clashes in the declarations of S and T . Of
course, S may use classes/methods/fields provided in the public interface of T , and vice
versa.

A system E is called an environment if it declares a distinct private static variable
result of type boolean with initial value false. Given a system S : I, we call E an
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I-environment for S if there exists an interface IE disjoint from I such that IE � S : I and
I � E : IE . Note that E ·S is a complete program. The value of the variable result at the
end of the run of E ·S is called the output of the program E ·S; the output is false for
infinite runs. If E ·S is a deterministic program, we write E ·S � true if the output of
E ·S is true. If E ·S is a randomized program, we write Prob{E ·S � true} to denote
the probability that the output of E ·S is true.

We assume that all systems have access to a security parameter (modeled as a public
static variable of a class SP). We denote by P(η) a program P running with security
parameter η.

To define computational equivalence and computational indistinguishability between
(probabilistic) systems, we consider systems that run in (probabilistic) polynomial time
in the security parameter. We omit the details of the runtime notions used in the CVJ
framework here, but note that the runtimes of systems and environments are defined in
such a way that their composition results in polynomially bounded programs.

Let P1 and P2 be (complete, possibly probabilistic) programs. We say that P1 and
P2 are computationally equivalent, written P1 ≡comp P2, if |Prob{P1(η) � true}−
Prob{P2(η)� true}| is a negligible function in the security parameter η.1

Let S1 and S2 be probabilistic polynomially bounded systems. Then S1 and S2 are
computationally indistinguishable w.r.t. I, written S1 ≈I

comp S2, if S1 : I, S2 : I, both
systems use the same interface, and for every polynomially bounded I-environment E
for S1 (and hence, S2) we have that E ·S1 ≡comp E ·S2.

Simulatability and Universal Composition. We now define what it means for a sys-
tem to realize another system, in the spirit of universal composability, a well-established
approach in cryptography. Security is defined by an ideal system F (also called an ideal
functionality), which, for instance, models ideal encryption, signatures, MACs, key ex-
change, or secure message transmission. A real system R (also called a real protocol)
realizes F if there exists a simulator S such that no polynomially bounded environment
can distinguish between R and S ·F . The simulator tries to make S ·F look like R for the
environment (see the subsequent sections for examples).

More formally, let F and R be probabilistic polynomially bounded systems which
implement the same interface Iout and use the same interface IE , except that in addition
F may use some interface IS provided by a simulator. Then, we say that R realizes F
w.r.t. Iout , written R≤Iout F or simply R≤ F , if there exists a probabilistic polynomially
bounded system S (the simulator) such that R ≈Iout

comp S ·F . As shown in [24], ≤ is
reflexive and transitive.

A main advantage of defining security of real systems by the realization relation ≤
is that systems can be analyzed and designed in a modular way: The following theorem
implies that it suffices to prove security for the systems R0 and R1 separately in order to
obtain security of the composed system R0 ·R1.

Theorem 1 (Composition Theorem (simplified) [24]). Let I0 and I1 be disjoint inter-
faces and let R0, F0, R1, and F1 be probabilistic polynomially bounded systems such

1 As usual, a function f from the natural numbers to the real numbers is negligible, if for every
c > 0 there exists η0 such that f (η)≤ 1

ηc for all η > η0.
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that R0 ≤I0 F0 and R1 ≤I1 F1. Then, R0 ·R1 ≤I0∪I1 F0 ·F1, where I0 ∪ I1 is the union of
the class, method and field names declared in I0 and I1.

Noninterference. The (standard) noninterference notion for confidentiality [13] re-
quires the absence of information flow from high to low variables within a program.
Here, we define noninterference for a deterministic (Jinja+) program P with some static
variables�x of primitive types that are labeled as high. Also, some other static variables
of primitive types are labeled as low. We say that P[�x] is a program with high variables
�x (and low variables). By P[�a] we denote the program P where the high variables�x are
initialized with values�a and the low variables are initialized as specified in P.

Now, noninterference for a deterministic program is defined as follows: Let P[�x]
be a program with high variables. Then, P[�x] has the noninterference property if the
following holds: for all �a1 and �a2 (of appropriate type), if P[�a1] and P[�a2] terminate,
then at the end of their runs, the values of the low variables are the same. Note that this
defines termination-insensitive noninterference.

The above notion of noninterference deals with complete programs (closed systems).
This notion is generalized to open systems as follows: Let I be an interface and let S[�x]
be a (not necessarily closed) deterministic system with a security parameter and high
variables �x such that S : I. Then, S[�x] is I-noninterferent if for every deterministic I-
environment E for S[�x] and every security parameter η, noninterference holds for the
system E ·S[�x](η), where the variable result declared in E is considered to be the only
low variable. Note that here neither E nor S are required to be polynomially bounded.

Tools for checking noninterference often consider only a single closed program.
However, I-noninterference is a property of a potentially open system S[�x], which is
composed with an arbitrary I-environment. Therefore, in [24] a technique has been
developed which reduces the problem of checking I-noninterferent to checking nonin-
terference for a single (almost) closed system. More specifically, it was shown that to
prove I-noninterference for a system S[�x] with IE � S : I it suffices to consider a single
environment ẼI,IE

�u (or Ẽ�u, for short) only, which is parameterized by a sequence �u of
values. The output produced by Ẽ�u to S[�x] is determined by �u and is independent of
the input it gets from S[�x]. To keep Ẽ�u simple, the analysis technique assumes some
restrictions on interfaces between S[�x] and E . In particular, S[�x] and E should interact
only through primitive types, arrays, exceptions, and simple objects. Moreover, E is not
allowed to call methods of S directly (formally, we require I to be /0). However, since S
can call methods of E , this is not an essential limitation.

Theorem 2 (simplified, [24]). Let S[�x] be a deterministic program with a restricted
interface to its environment, as mentioned above, and let I = /0. Then, I-noninterference
holds for S[�x] if and only if for all sequences�u noninterference holds for Ẽ�u ·S[�x].
Automatic analysis tools, such as Joana [16, 17], often ignore or can ignore specific
values encoded in a program, such as an input sequence �u. Hence, such an analysis of
E�u · S[�x] implies noninterference for all sequences �u, and by the theorem, this implies
I-noninterference for S[�x].

From I-Noninterference to Computational Indistinguishability. The central theo-
rem that immediately follows from (the more general) results proven within the CVJ
framework is the following.
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Theorem 3 (simplified, [24]). Let I and J be disjoint interfaces. Let F, R, P[�x] be
systems such that R≤J F, P[�x] ·F is deterministic, and P[�x] ·F : I (and hence, P[�x] ·R : I).
Now, if P[�x] ·F is I-noninterferent, then, for all�a1 and�a2 (of appropriate type), we have
that P[�a1] ·R ≈I

comp P[�a2] ·R.
The intuition and the typical use of this theorem is that the cryptographic operations
that P needs to perform are carried out using the system R (e.g., a cryptographic li-
brary). The theorem now says that to prove cryptographic privacy of the secret inputs
(∀ �a1, �a2: P[�a1] ·R ≈J

comp P[�a2] ·R) it suffices to prove I-noninterference for P[�x] ·F ,
i.e., the system where R is replaced by the ideal counterpart F (the ideal cryptographic
library). The ideal functionality F , which in our case will model cryptographic primi-
tives in an ideal way, can typically be formulated without probabilistic operations and
also the ideal primitives specified by F will be secure even in presence of unbounded
adversaries. Therefore, the system P[�x] ·F can be analyzed by standard tools that a priori
cannot deal with cryptography (probabilities and polynomially bounded adversaries).

As mentioned before, F relies on the interface IE ∪ IS (which, for example, might
include an interface to a network library) provided by the environment and the simula-
tor, respectively. This means that when checking noninterference for the system P[�x] ·F
the code implementing this library does not have to be analyzed. Being provided by
the environment/simulator, it is considered completely untrusted and the security of
P[�x] ·F does not depend on it. In other words, P[�x] ·F provides noninterference for all
implementations of the interface. Similarly, R relies on the interface IE provided by the
environment. Hence, P[�x] ·R enjoys computational indistinguishability for all imple-
mentations of IE . This has two advantages: i) one obtains very strong security guaran-
tees and ii) the code to be analyzed in order to establish noninterference/computational
indistinguishability is kept small, considering the fact that libraries tend to be very big.

3 Public-Key Encryption with a Public Key Infrastructure

We now propose an ideal functionality Ideal-PKIEnc, formulated in Java (Jinja+), for
public-key encryption with a public-key infrastructure (PKI). This functionality is an
extension of a more restricted public-key encryption functionality proposed in [24].
First, the functionality proposed here allows a user to encrypt messages for a given
party based on the identifier of this party. The functionality uses the included public key
infrastructure to obtain the public key of the party registered under the given identifier.
In contrast, to encrypt a message, the user of the functionality in [24] had to provide a
public-key herself, and hence, take care of the correct binding of public keys to parties
herself. Second, in the functionality proposed here, as opposed to the one in [24], we
model static corruption, including dishonestly generated keys. For this, special care was
needed to make sure that the resulting functionality is “tool-friendly”.

We also provide an implementation (realization) of this ideal functionality, denoted
by Real-PKIEnc, in Java (Jinja+) and prove, within the CVJ framework, that this im-
plementation realizes the ideal functionality Ideal-PKIEnc under standard cryptographic
assumptions.

As already mentioned in the introduction, the design of such functionalities and the
realization proofs pose additional challenges compared to the Turing machine based
formulations proposed in the cryptographic literature.
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In the rest of this section, we first provide the interface for Ideal-PKIEnc, and hence,
Real-PKIEnc. Then, the actual ideal functionality and its realization are presented, along
with a realization theorem.

3.1 The Interface for Public-Key Encryption

In this section, we present the interface IPKIEnc of the ideal functionality Ideal-PKIEnc and
its implementation Real-PKIEnc and discuss the intended way of using it. The interface
IPKIEnc is specified as follows:

1 public class Encryptor {

2 public Encryptor(byte[] publicKey);

3 public byte[] encrypt(byte[] message);

4 public byte[] getPublicKey();

5 }

6 public final class Decryptor {

7 public Decryptor();

8 public byte[] decrypt(byte[] message);

9 public Encryptor getEncryptor();

10 }

11 public class RegisterEnc {

12 public static void registerEncryptor(int id, Encryptor encryptor,

13 byte[] pki_domain) throws PKIError, NetworkError;

14 public static Encryptor getEncryptor(int id, byte[] pki_domain)

15 throws PKIError, NetworkError;

16 }

Typical Usage. The intended way for an honest user with identifier ID_A to create and
register her keys is the following:

17 Decryptor decryptor = new Decryptor();

18 Encryptor encryptor = decryptor.getEncryptor();

19 try {

20 RegisterEnc.registerEncryptor(ID_A, encryptor, PKI_DOMAIN);

21 }

22 catch (PKIError e) {} // registration failed: id already claimed

23 catch (NetworkError e) {} // network problems

Intuitively, an object of class Decryptor encapsulates a public/private key pair, generated
when the object is created (line 17 above). This object provides access to the method
decrypt. The owner of this object (that is, the party who has created it) is not supposed
to share it with any other parties. Instead, the owner of the decryptor shares an associ-
ated encryptor (obtained in line 18), which, intuitively, encapsulates only the public key.
More precisely, to make her public key available within a PKI to other parties, the user
registers the encryptor she has obtained (line 20). That is, she registers her encryptor
under her identifier (ID_A) and what we call a PKI domain (which is a publicly known
identifier used to distinguish keys registered for different purposes/applications). This
step may result in an error: i) if some key has been registered already under this identi-
fier and PKI domain (exception PKIError), or ii) if some network failure occurred, e.g.,
the registration server was unavailable (exception NetworkError). We emphasize that we
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do not require the party who wants to register a public key to provide a proof of posses-
sion (PoP) of the private key corresponding to the public key.2 After an encryptor has
been registered, it can be used by other parties as follows:

24 try {

25 Encryptor encryptor = RegisterEnc.getEncryptor(ID_A, PKI_DOMAIN);

26 encryptor.encrypt(message);

27 } catch(PKIError e) {} // id has not been successfully registered

28 catch(NetworkError e) {} // network problems

The encryptor of the party registered under ID_A and PKI_DOMAIN is obtained in line 25
and used in line 26 to encrypt a message. Note that a user can also obtain the public key
encapsulated in the encryptor, using the method getPublicKey.

Corruption. To model (static) corruption, we allow encryptors also to be created di-
rectly, without creating associated decryptors, simply by providing an arbitrary bitstring
pubk as the public key:

29 Encryptor enc = new Encryptor(pubk);

30 try {

31 RegisterEnc.registerEncryptor(ID, enc, PKI_DOMAIN);

32 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring pubk as a public
key, including dishonestly generated keys. This key can then be used by any other party
(honest and dishonest) to encrypt messages for the dishonest party, just like public keys
of honest parties. Note that since we do not require PoPs, a dishonest party can register
any public key of another (possibly honest) party under his identity. (As mentioned
before, the literature on PKIs recommends that applications should not rely on PoPs
being performed [3].)

An encryptor created in the above way is called corrupted. There is no corresponding
(corrupted) decryptor, because the adversary can run the decryption algorithm himself.
For messages encrypted with a corrupted encryptor (public key), no security guaran-
tees are provided. (Jumping ahead to Section 3.2, the functionality will hand the mes-
sage to be encrypted with a corrupted encryptor directly to the environment/adversary/
simulator.)

We note that, as expected, when some party obtains an encryptor by the method
RegisterEnc.getEncryptor, the party does not know a priori whether the obtained
encryptor is corrupted (it has been generated directly) or uncorrupted (it has been gen-
erated via Decryptor).

3.2 The Ideal Functionality for Public-Key Encryption

We now present the ideal functionality for public-key encryption, Ideal-PKIEnc. This
functionality provides the interface IPKIEnc, introduced above, to its users (parties, envi-
ronment) with ideal implementations of the methods declared in IPKIEnc.

2 In most applications, PoPs are not necessary and as argued in the literature (see, e.g., [3]),
applications should be designed in such a way that their security does not depend on the as-
sumption of such proofs being performed.
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The functionality Ideal-PKIEnc is defined on top of the interface ICryptoLibEnc which
contains methods for key generation, encryption, and decryption:

33 public class CryptoLib {

34 public static KeyPair pke_generateKeyPair();

35 public static byte[] pke_encrypt(byte[] message, byte[] publicKey);

36 public static byte[] pke_decrypt(byte[] ciphertext, byte[] privKey);

37 }

So Ideal-PKIEnc expects the above methods to be implemented outside of Ideal-PKIEnc.
In the analysis of a system P[�x] which uses Ideal-PKIEnc (i.e., in the analysis of the
system P[�x] · Ideal-PKIEnc), such methods have to be provided by the environment, and
thus, are completely untrusted. In particular, in the analysis of P[�x] · Ideal-PKIEnc the
code for CryptoLib, which would typically be very large, does not have to be analyzed.
This tremendously simplifies the analysis of P[�x] · Ideal-PKIEnc (see also the explanation
in Section 2 following Theorem 3).

The basic idea of the implementation of Ideal-PKIEnc is that if a message m is to
be encrypted with an (uncorrupted) public key, then not m but a sequence of zeros of
the same length as m is encrypted instead, using method pke_encrypt of CryptoLib. By
this, it is guaranteed that the resulting ciphertext c does not depend on m, except for
the length of m. The functionality stores the pair (m,c) for later decryption. If some
ciphertext c′ is to be decrypted, the functionality first checks whether there exists a
pair of the form (m′,c′) (the functionality guarantees that there is at most one such
pair). Then, m′ is returned as the plaintext. If no such pair exists (and hence, c′ was not
created using the functionality), c′ is decrypted using method pke_decrypt of CryptoLib,
and the resulting plaintext is returned. More specifically, Ideal-PKIEnc works as follows.

On initialization of an object of the class Decryptor, a public/private key pair is cre-
ated by calling the key generation method of the class CryptoLib. At this point, the
decryptor object also creates an (initially empty) list of message/ciphertext pairs. This
list is used as a look-up table for decryption by the method decrypt of class Decryptor

as sketched above.
Encryptors returned by the method getEncryptor of class Decryptor are objects of the

class UncorruptedEncryptor (which is a subclass of the class Encryptor). An encryptor
object contains the same public-key as the associated decryptor and shares (a reference
to) the list of message/ciphertext pairs with the associated decryptor. When method
encrypt of such an encryptor is called with a message m, the encryption method of class
CryptoLib is called to encrypt a sequence of zeros of the same length as m, resulting in
a ciphertext c (ciphertexts seen before are rejected). Then, the pair (m,c) is stored in the
list and the ciphertext c is returned as the result of the encryption.

In contrast, a corrupted encryptor (i.e., an encryptor object created directly as in line
29 above, rather than being derived from a decryptor) implements encryptions simply
by calling the encryption method of the class CryptoLib using the bitstring (the pub-
lic key) it has been provided with upon creation. Note that in this case, no security
guarantees are provided; the original message instead of zeros is encrypted.

The methods for registering and obtaining encryptors in class RegisterEnc are im-
plemented in a straightforward way by Ideal-PKIEnc, using a list of registered encryptors
along with associated identifiers and domains.
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The most important part of the code of Ideal-PKIEnc is listed in the extended version
of this paper [22]; for the full code see [23].

3.3 The Realization of Ideal-PKIEnc

We now provide the realization Real-PKIEnc of the ideal functionality Ideal-PKIEnc pre-
sented above.

The functionality Real-PKIEnc builds on a public key infrastructure. A public-key
infrastructure is a trusted public key registry, where i) users can register their public
keys under their identifiers and (PKI) domains (in the sense of Section 3.1) and ii) users
can obtain other users’ public keys by providing the identifiers and domains of these
users. The interface IPKI for the public key infrastructure used by Real-PKIEnc is the
following:

38 public class PKI {

39 static void register(int id, byte[] domain, byte[] pubKey)

40 throws PKIError, NetworkError;

41 static byte[] getKey(int id, byte[] domain)

42 throws PKIError, NetworkError;

43 }

The method register is supposed to throw PKIError if the provided user identifier and
domain pair has been claimed already, i.e., some other party has registered a key for the
same identifier and domain pair before. The same exception is supposed to be thrown
by the method getKey if the given identifier id has not been registered. Registering or
fetching a public key typically involves to contact a public-key server. If this fails, the
NetworkError is thrown. When proving that Real-PKIEnc realizes Ideal-PKIEnc we will
assume that IPKI is properly implemented (see Section 3.4 for details).

Now, based on IPKI, the different classes and methods provided by Real-PKIEnc are
implemented as presented next.

The methods registerEncryptor and getEncryptor of the class RegisterEnc work
as follows. When an encryptor is to be registered by the method registerEncryptor, its
public key is registered in the PKI using the method register. The method getEncryptor

uses the method getKey to fetch the corresponding public key and wraps it into an
encryptor which is then returned.

The classes Encryptor and Decryptor of Real-PKIEnc are implemented in a straight-
forward way using an encryption scheme: messages are simply encrypted/decrypted
directly using such a scheme. Note that whether an encryptor was obtained from a de-
cryptor (using the method getEncryptor) or whether it was created directly (as in line
29) leads to the same implementation, namely, invoking the encryption function of the
encryption scheme. The only difference is that in one case the public/private key pair
was created (honestely) within the class Decryptor of Real-PKIEnc and in the other case
the public key was created outside of Real-PKIEnc (possibly in some dishonest way).

The most important part of the code of Real-PKIEnc is listed in [22]; see [23] for the
full code.
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3.4 Realization Result

We now show that Real-PKIEnc realizes Ideal-PKIEnc, provided that i) the encryption
scheme used in the implementation of Real-PKIEnc is IND-CCA2-secure [4] and ii) that
the public-key infrastructure used by Real-PKIEnc works “properly”.

As for i), we note that IND-CCA2-security is a standard and widely used security
notion for public-key encryption schemes. Similarly to ideal functionality for public-
key encryption proposed in the cryptographic literature, it has been shown that IND-
CCA2-security is necessary to realize Ideal-PKIEnc (see, e.g., [9, 26]).

As for ii), the behavior of a “proper public-key infrastructure” is formalized by an
ideal functionality Ideal-PKI, which operates in the obvious way: It maintains a list of
registration records, each consisting of an identifier, a domain, and a key (the code is
given in [22]). The adversary (simulator) is informed about registration requests and re-
quests for obtaining public-keys and can schedule when these requests are answered by
Ideal-PKI (because in a realization such requests typically involve communication over a
network controlled by the adversary). We assume the existence of some public-key in-
frastructure Real-PKI that realizes Ideal-PKI. Note that there are various ways of realizing
Ideal-PKI and that all of them will require certain trust assumptions. For example, one
could assume the existence of one or more honest certificate authorities and that parties
are provided with the (authentic) public keys of these authorities. Typically, one would
use some existing public-key infrastructure (with appropriate assumptions) to realize
Ideal-PKI. However, this is not the focus of this work. (In fact, proving the security of
a full-fledged PKI would be a challenging task by itself.). In our case study (see Sec-
tion 7), we consider a simple realization which involves a single certificate authority,
the assumption being that it in fact realizes Ideal-PKI.

With this, we can now state our main theorem for public-key encryption.

Theorem 4. If Real-PKIEnc uses an IND-CCA2-secure public-key encryption scheme
and Real-PKI≤IPKI Ideal-PKI, then Real-PKIEnc ·Real-PKI≤IPKIEnc Ideal-PKIEnc.

The proof of Theorem 4 is given in [22]. The proof is highly modular and leverages
such properties of the realization relation as the composition theorem, reflexivity, and
transitivity. In the proof, we split Ideal-PKIEnc and Real-PKIEnc into two parts: one pro-
viding encryption and decryption and one providing key registration and retrieving. For
the former part, we generalize the result of [24] for public-key functionality without
corruption and without PKI to the case with corruption.

4 Digital Signatures with a Public Key Infrastructure

In this section, we propose an ideal functionality Ideal-Sig, formulated in Java (Jinja+),
for digital signatures with a public key infrastructure, where, again, we model cor-
ruption. We also provide a real implementation Real-Sig of this functionality in Java
(Jinja+) and prove, in the CVJ framework, that it realizes Ideal-Sig. Just as for public
key encryption, similar functionalities for digital signatures have been proposed in the
cryptographic literature before (see, e.g., [10,26]). But again, the new contribution here
is that we provide a formulation in Java, instead of the (simpler) Turing machine mod-
els, such that these functionalities can actually be used to analyze Java programs. This
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is non-trivial and needs some care. We first present the public interface of Ideal-Sig and
Real-Sig.

4.1 The Interface for Digital Signatures

The public interface IPKISig of Ideal-Sig and Real-Sig (both have the same public interface)
is as follows:

1 public final class Signer {

2 public Signer();

3 public byte[] sign(byte[] message);

4 public Verifier getVerifier();

5 }

6 public class Verifier {

7 public Verifier(byte[] verifKey);

8 public boolean verify(byte[] signature, byte[] message);

9 public byte[] getVerifKey();

10 }

11 public class RegisterSig {

12 public static void registerVerifier(int id, Verifier verifier,

13 byte[] pki_domain) throws PKIError, NetworkError;

14 public static Verifier getVerifier(int id, byte[] pki_domain)

15 throws PKIError, NetworkError;

16 }

Typical Usage. Similarly to public-key encryption, the intended way for an honest user
with identifier ID_A to create and register her keys is the following:

17 Signer sig = new Signer();

18 Verifier ver = sig.getVerifier();

19 try {

20 SigEnc.registerVerifier(ID_A, ver, PKI_DOMAIN);

21 } catch (PKIError e) {} // registration failed: id already claimed

22 catch (NetworkError e) {} // network problems

Intuitively, an object of the class Signer encapsulates a verification/signing key pair,
which is generated when the object is created (line 17). It allows a party who owns such
an object to sign messages (this requires the signing key), using the method sign (of the
class Signer). This party can also obtain a Verifier object (line 18), which encapsulates
the related verification key and can be used (by other parties) to verify signatures via
the method verify. Similarly to the case of public-key encryption, such a verifier can
be registered in the public-key infrastructure (line 20) in order to make the verification
key available to other parties. Again, we do not require a proof of possession of the
corresponding signing key.

After a verifier has been registered, it can be used by other parties to check whether
a signature signature is valid for a message message w.r.t. the verification key of (ID_A,
PKI_DOMAIN) encapsulated in verifier:
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23 try {

24 Verifier verifier = RegisterSig.getVerifier(ID_A, PKI_DOMAIN);

25 verifier.verify(signature, message);

26 } catch(PKIError e) {} // id has not been successfully registered

27 catch(NetworkError e) {} // network problems

Corruption. To model (static) corruption, analogously to the case of public-key encyrp-
tion we allow verifiers to be created directly, without creating associated signers, simply
by providing an arbitrary bitstring verif_key as the public key:

28 Verifier ver = new Verifier(verif_key);

29 try {

30 RegisterSig.registerVerifier(ID, ver, PKI_DOMAIN);

31 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring verif_key he wants
as a verification key, including dishonestly generated keys. This key can then be used by
any other party (honest and dishonest) to verify messages signed by the dishonest party,
just like with verification keys of honest parties. Note that since we do not require PoPs,
a dishonest party can register any verification key of another (possibly honest) party
under his identity. A verifier created in such a way is called corrupted. A corresponding
signing object is not necessary as the adversary can directly sign messages by himself
using the matching signing key (if this key is known to the adversary). Note that, given
a verifier object, other parties cannot tell a priori whether this verifier object is corrupted
or not.

4.2 The Ideal Functionality for Digital Signatures

We now present the ideal functionality for digital signatures, Ideal-Sig. This function-
ality provides the interface IPKISig , introduced above, to its users (parties, environment)
with ideal implementations of the methods declared in IPKISig .

The functionality is defined on top of the interface ICryptoLibSig which contains methods
for key generation, signing, and verification. Analogously to the interface ICryptoLibEnc for
public-key encryption, these methods are supposed to be provided by the environment,
and hence, are completely untrusted. In particular, in the analysis of a system that uses
Ideal-Sig, they do not have to be analyzed, which, again, greatly simplifies the analysis
task.

Now, Ideal-Sig works as follows. On initialization of an object of class Signer, a ver-
ification/signing key pair is created by calling the key generation operation of the inter-
face ICryptoLibSig. A signer object also creates an (initially empty) list of signed messages;
this list will be shared with all associated verifiers (objects returned by getVerifier).
When the method sign is called to sign a message m, the signing procedure of ICryptoLibSig

is called to sign m using the encapsulated signing key. Before this signature is returned,
the signed message m is added to the list of signed messages.

A verifier object returned by the method getVerifier belongs to the class Uncor-
ruptedVerifier (a subclass of the class Verifier) and it implements ideal verification as
follows: the method verify when called to verify a signature s on a message m first uses
the verification procedure of ICryptoLibSig to check if s is a valid signature on m w.r.t. the
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verification key encapsulated in the verifier object. If this is the case, it additionally
checks if m is in the list of signed messages (this list, as mentioned before, is shared
with the associated signer object). If this is true as well, the method returns ‘true’. The
idea behind this procedure is that, independently of how the signing and verification
algorithms work, the verification of a signature on some message succeeds only if this
message has been signed before (and hence, logged) using Ideal-Sig.

A (corrupted) verifier object created directly implements the verification procedure
simply by calling the verification method of ICryptoLibSig.

The methods for registering and obtaining verifiers in class RegisterSig are imple-
mented in a straightforward way by Ideal-PKIEnc, using a list of registered verifiers along
with associated identifiers and domains.

The most important part of the code of Ideal-Sig is listed in [22]; see [23] for the full
code.

4.3 The Realization of Ideal-Sig

The classes Verifier and Signer of the realization Real-Sig of the ideal functionality
Ideal-Sig are implemented in a straightforward way using a digital signature scheme:
messages are simply signed/verified directly using such a scheme. Analogously to the
methods in EncPKI, the methods registerVerifier and getVerifier of the class Reg-
isterSig are based on the interface IPKI introduced in Section 3.3.

The most important part of the code of Real-Sig is listed in [22]; see [23] for the full
code.

4.4 Realization Result

We prove that Real-PKISig realizes Ideal-PKISig, provided that i) the signature scheme
used in the implementation of Real-PKISig is UF-CMA-secure [14] and ii) that, anal-
ogously to the case of public-key encryption, the public-key infrastructure used by
Real-PKISig realizes the ideal functionality Ideal-PKI (see Section 3.4). Again, it has
been shown that UF-CMA-security is necessary to realize Ideal-PKIEnc (see, e.g., [26]).

Theorem 5. If Real-PKISig uses an UF-CMA-secure signature scheme and
Real-PKI≤IPKI Ideal-PKI, then Real-PKISig ·Real-PKI≤IPKIEnc Ideal-PKISig.

The proof of this theorem is again highly modular and leverages such properties of
the realization relation as the composition theorem, reflexivity, and transitivity. The ba-
sic structure of the proof is analogous to the one for public-key encryption. We split
Ideal-PKISig and Real-PKISig into two parts: i) signing and verification and ii) key reg-
istration and retrieving of verification keys. The most involved part is to show that the
real component for signing and verification realizes the corresponding ideal compo-
nent. Here we make use of an existing results in the cryptographic literature, in partic-
ular [26], and reduce the statement to a corresponding statement in the Turing machine
model. We refer to the extended version of this paper [22] for details.

5 Private Symmetric Encryption

In this section, we present an ideal functionality for what we call private symmetric
encryption and a realization of this functionality. Private symmetric encryption allows
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a user to encrypt messages (using a symmetric encryption scheme) just for herself. She
does not share the symmetric key with other parties. This is useful, for example, to store
confidential information on an untrusted medium. Since keys do not have to be shared
between parties, the functionality can be kept quite simple.

The public interface ISymEnc of this functionality and its realization consists of only
one class SymEnc with two methods: encrypt and decrypt. These methods use a sym-
metric key generated when an object of this class is created.

In the ideal functionality Ideal-SymEnc for private symmetric encryption, encryption
and decryption work analogously to the case of public-key encryption: a sequence of
zeros is encrypted instead of the given plaintext and the ciphertext obtained in this way
is logged along with the plaintext, which enables the functionality to recover this plain-
text when the ciphertext is to be decrypted. The realization Real-SymEnc simply uses
the encapsulated key to encrypt and decrypt messages using a symmetric encryption
scheme. Clearly, there is no need to model (static) corruption here: a dishonest party
can simply perform private symmetric encryption by himself. We refer the reader to the
extended version of this paper [22], as well as [23] for the full code of Ideal-SymEnc and
Real-SymEnc.

We obtain the following result. We omit the proof here because it closely follows the
one for public-key encryption only that it is much simpler now, as we neither need to
consider a public-key infrastructure nor corruption (see [21] for a corresponding result
in a Turing machine model).

Theorem 6. If Real-SymEnc uses an IND-CCA2-secure symmetric encryption scheme,
then Real-SymEnc≤IPKIEnc Ideal-SymEnc.

6 Nonce Generation

In this section, we propose an ideal functionality and its realization for nonce genera-
tion, formulated in Java (Jinja+). The property that the ideal functionality is supposed
to provide is nonce freshness, i.e., nonces returned by the functionality should always
be different to the nonce that have been returned so far (no collisions); unguessability
of nonces is not intended to be modeled by this functionality.

The public interface INonce for this functionality consists of one class NonceGen with
one method newNonce only, which is supposed to return a fresh nonce.

The ideal functionality Ideal-Nonce for nonce generation works as follows. The func-
tionality maintains an, initially empty, collection (formally, a static list) of nonces that
have been returned so far. When the method newNonce is called, the environment/simu-
lator is asked to provide a bitstring; more precisely, the method CryptoLib.newNonce(),
which is supposed to be provided by the environment is called. Then, the method
newNonce checks whether the returned bitstring is fresh, i.e., whether it does not already
belong to the collection of returned nonces. If the nonce is indeed fresh, the nonce is
added to the collection and returned to the caller of the method. Otherwise, the above
process is repeated until a fresh nonce is returned by the environment/simulator. This
guarantees that Ideal-Nonce always outputs a fresh nonce.

In the realization Real-Nonce of Ideal-Nonce, if the method newNonce is called, a bit-
string of the length of the security parameter is picked uniformly at random and then
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returned to the caller. More precisely, we assume the method CryptoLib.newNonce()

called by Real-Nonce to work in this way.
We refer the reader to the extended version [22] for the most important part of the

code of Ideal-Nonce and Real-Nonce; see [23] for the full code. Now, it is easy to prove
that Real-Nonce realizes Ideal-Nonce.

Theorem 7. Real-Nonce≤INonce Ideal-Nonce.

To prove this theorem, we let the simulator S work just like Real-Nonce, i.e., when
asked to provide a new nonce by Ideal-Nonce, it picks a bitstring of the length of the
security parameter uniformly at random and returns this bitstring to Ideal-Nonce. Now,
Real-Nonce cannot be distinguished by any (polynomial bounded) environment from
S · Ideal-Nonce unless Real-Nonce produces a collision, which, however, happens with
negligible probability only.

7 The Case Study

As a case study of the results obtained in this paper, we now describe the verification
of a cloud storage system implemented in Java. This system illustrates how the ideal
functionalities we have developed and presented in this paper can be used to analyze
an interesting and non-trivial Java program. As already mentioned in the introduction,
except for the work in [24], where only a much simpler Java program has been consid-
ered, there has been no other work on establishing cryptographic (indistinguishability)
properties for Java programs.

In what follows, we first provide a brief description of the cloud storage system pro-
gram. Then we state the (cryptographic) security property that we verify and, finally,
report on the verification process carried out using the tool Joana [16, 17], which, as
already mentioned, allows for the fully automatic verification of noninterference prop-
erties of Java programs.

Description of the Cloud Storage System. We have implemented a cloud storage
system that allows a user (through her client application) to store data on a remote
server such that confidentiality of the data stored on the server is guaranteed even if the
server is untrusted: data stored on the server is encrypted using a symmetric key known
only to the client.

More specifically, data is stored (encrypted with the symmetric key of a user) on the
server along with a label and a counter (a version number). When data is to be stored
under some label, a new (higher) counter is chosen and the data is stored under the
label and the new counter; old data is still preserved (under smaller counters). Different
users can have data repositories on one server. These repositories are strictly separated.
The system can be used to securely store any kind of data. A user may use our cloud
storage system, for example, to store her passwords remotely on a server such that she
has access to them on different devices.

Communication between a client and a server is secured and authenticated using
functionalities for public-key encryption and digital signatures. Moreover, the function-
ality for nonce generation is essential to prevent replay attacks (when the client and
the server run a sub-protocol to synchronize counter values for labels). The extended
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version of this paper [22] gives a more detailed description of our application; see [23]
for the full code of the system.

The Security Property. As mentioned, the most fundamental security property of the
cloud storage system is confidentiality of the stored data. This property is supposed to
be guaranteed even if the server and all clients of other users may be dishonest and
cooperate with an active adversary.

To formulate this confidentiality property, we provide (besides the code of the client
and the server) a setup class with the method main, which gets a secret bit secret_bit

as input. This method models the interaction between the program of an honest client
and the active adversary (the environment). The adversary has full control over the net-
work and subsumes the server and all dishonest clients. The adversary also controls the
actions taken by the honest client. In particular, he determines the label and data items
the honest client is supposed to store on the server. More precisely, in every request, the
adversary provides a pair of data items. The secret bit secret_bit determines which of
the two items the client actually asks the server to store (see [22] for a more detailed
explanation of the setup class and [23] for the full code).

The security property now requires that no (probabilistic polynomial-time) adversary
should be able to determine the secret bit secret_bit, and hence, whether the data items
in the first or in the second component of the item pairs provided by the adversary are
sent by the client. This specifies a strong cryptographic privacy property, common in
cryptography. Formally, this indistinguishability property is state as follows:

CSR[false] ≈ /0
comp CSR[true] (1)

where CSR[b] denotes the described system, consisting of the setup class and the client
class, with secret_bit set to b. The index R indicates that in this system the crypto-
graphic operations are carried out using the real cryptographic schemes (rather than
ideal functionalities).

We note that the computational indistinguishability relation in (1) uses the empty in-
terface I = /0. This means that the adversary (environment) cannot directly call methods
of the client object. As explained before, by the definition of the setup class, the envi-
ronment can nonetheless determine which actions are taken and when. We also point
out that CSR is an open system which uses some classes not defined within CSR, such
as a network library. These classes are provided by the environment and, therefore, are
untrusted. Thus, property (1) implies confidentiality of the stored messages no matter
how such untrusted libraries are implemented.

Verification of the Security Property. In order to prove (1), by Theorem 3 it suffices
to show that

CSI[b] is I-noninterferent, (2)

where CSI denotes the system which coincides with CSR except that the real cryp-
tographic schemes are replaced by their ideal counterparts (ideal functionalities), i.e.,
Ideal-PKEnc, Ideal-Sig, Ideal-SymEnc, and Ideal-Nonce. Since, as can easily been seen,
CSI[b] satisfies the conditions of Theorem 2, we can further reduce checking (2) to
checking the following property:

Ẽ�u ·CSI [b] is noninterferent for all �u, (3)
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where the family of systems Ẽ�u, parameterized by a finite sequence of integers �u, is as
described in Section 2. This system can be automatically generated from CSI[b]. Also
note that by “noninterference” we mean standard termination-insensitive noninterfer-
ence (see Section 2). Altogether it suffices to prove (3) in order to obtain (1).

Joana was easily able to establish property (3). It took about 17 seconds on a standard
PC (Core i5 2.3GHz, 8GB RAM) to finish the analysis of the program (with a size of
950 LoC). Note that the actual running code of the distributed system is much bigger
than what Joana needed to analyze, because the code of the distributed system includes
untrusted libraries, such as the standard Java library for networking, which do not need
to be analyzed, as already mentioned above.
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Abstract. We present a compiler for CAO, an imperative DSL for the
cryptographic domain. The tool takes high-level cryptographic algorithm
specifications and translates them into C implementations through a
series of security-aware transformations and optimizations. The compiler
back-end is highly configurable, allowing the targeting of very disparate
platforms in terms of memory requirements and computing power.

1 Introduction

The development of cryptographic software poses a set of challenges that dif-
fer from general-purpose software. Producing cryptographic code requires a set
of skills related to mathematics, electrical engineering and computer science.
Moreover, performance is usually critical and aggressive optimizations must be
performed without altering the security semantics. It is common to find crypto-
graphic software directly implemented in assembly because this permits a more
efficient implementation, whilst ensuring that low-level security policies are sat-
isfied. Hence, the development of cryptographic software is often an error-prone
and time consuming task that only experts can be trusted to carry out.

The CAO language [1] aims to change this. It is a domain specific language
(DSL) tailored for the implementation of cryptographic software. In this paper
we present a tool for compiling CAO programs into C libraries, i.e., cryptographic
components that can then be integrated into more complex software projects.
Although at the high-level it appears similar to that of a standard compiler, the
architecture of the CAO compiler has been tailored to cater for the widely differ-
ent scenarios for which cryptographic code may need to be produced, with two
main design goals: i. to create a compilation tool that is flexible and configurable
enough to permit targeting a wide range or computing platforms, from powerful
servers to embedded microcontrollers; and ii. to incorporate, whenever possible,
domain-specific transformations and optimizations early on in the compilation
process, avoiding platform-specific variants of these transformation stages. One
example of this is the generation of indistinguishable operations needed in the
deployment of countermeasures against side-channel attacks.
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CAO Language. CAO is an imperative language that supports high-level cryp-
tographic concepts as first-class features, allowing the programmer to focus on
implementation aspects that are critical for security and efficiency. In particular,
CAO has call-by-value semantics and does not provide any language construct
to dynamically allocate memory nor input/output support, as it is targeted at
implementing the core components of cryptographic libraries. The native types
and operators in the language are highly expressive. The CAO native types
are: booleans, arbitrary precision integers, machine integers, signed/unsigned
bit strings of a given length, rings or fields defined by an integer, extension fields
defined by a type and a polynomial, vectors of elements of a type and a given
length and matrices of elements of a type and a given size. There is a number
of built-in operators and expressions which deal with values of these types. The
operators include: arithmetic binary/unary operators, operators for comparing
elements, bitwise operators for bit-strings and shift, rotate and concatenation
operations on bit-strings. CAO is strongly typed, and the type system provides
a powerful mechanism for implementing templates of cryptographic programs
by using symbolic constants and a limited form of dependent types. A detailed
description of (an earlier version of) the CAO language, type checking rules and
a proof of their soundness can be found in [1].

In addition to the CAO compiler described in this paper, CAO is supported
by two other tools: the CAO interactive interpreter and the CAOVerif tool [3],
a deductive verification tool inspired by the Frama-C platform.

2 Compiler Architecture

The CAO compiler is logically divided in classical front-end, middle-end and
back-end structure. The front-end parses the input file and produces an abstract
representation, or Abstract Syntax Tree (AST), which is then checked against the
typing rules of the language. This results in an annotated AST which is used in
subsequent stages. The most distinctive parts of our compiler are the middle-end
and the back-end which we will describe in more detail in the following.

2.1 Middle-End

In addition to generating C code, the CAO compiler is also intended to perform
meaningful CAO-to-CAO transformations. The middle-end takes the annotated
AST and applies a sequence of such transformations towards a CAO format
suitable for easy translation to C. The most interesting steps are the following.

Expansion. This optional transformation follows from the fact that most cryp-
tographic algorithms use iterative structures with statically determined bounds.
The body of the iteration is unrolled and the loop variables are instantiated.

Evaluation. This transformation evaluates the statically computable expres-
sions, possibly instantiated in the previous step. Operator properties such as
idempotence and cancellation are also used to simplify expressions.
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Simplification. This transformation is in charge of reducing the mismatch be-
tween CAO and C. Compilers that generate assembly code traditionally use an
intermediate representation known as three-address code, in which every instruc-
tion is in its simpler form with two operand addresses and one result address.
Our format shares some of the same principles and, looking ahead, it is consistent
with the syntax adopted in the construction of the supporting static libraries.

Optimization. At this stage, the Control Flow Graph (CFG) of the CAO code
is inferred and transformations to and from Static Single Assignment (SSA) form
are implemented using adaptations of the algorithms described in [4] and [5]. We
provide a set of functions to manipulate the CFG (and CFG in SSA form), to
ease the task of implementing (domain-specific) optimization passes.

Side-Channel Countermeasures. The CAO compiler incorporates a popular
software countermeasure against side-channel attacks [2]. The compiler ensures
that the code generated for two potentially vulnerable functions (specified by the
user) is indistinguishable: both functions execute the same sequence of native
CAO operations. To this end, it reorders instructions and, if necessary, introduces
dummy operations. The resulting code is kept as efficient as possible by heuristic
optimization. This is done after the optimization stage, since optimization could
break this security-critical protection. We note that such countermeasures do
not guarantee security against side-channel attacks, but are commonly used to
increase the resilience of implementations.

2.2 Back-End

Targeting a language like C poses different challenges than translating code to
assembly. One of the reasons for this is that the design space is much larger
and the C code can be compiled to very disparate platforms. We tackle this
problem using a two-layer approach: the CAO code is translated to a specific C
format, which is then linked with a static library where the semantics of the CAO
operations is implemented and the data types are defined. This allows adjusting
the C data type definitions and the implementation of the operations to the
characteristics of the target platform. We identified the following variants of
static library implementations that may be preferable depending on the target:

– native variable declarations versus complex declarations using C macros;
– automatic static allocation of memory versus explicit dynamic allocation;
– implementing operations using C functions versus using C macros;
– returning results by value versus returning results by reference;
– calling a function by passing values versus passing references;
– translating literals to constants versus initializing auxiliary variables;
– implement operators so as to preserve the input values in arguments versus

unsafe implementations.

For each target platform, our back-end takes a configuration file that describes
the specific implementation choices adopted for the static library and generates
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the C code accordingly with the definitions. For example, in the case of variables
of a given type use explicit allocation, the compiler will know to call a memory
allocation routine. Similarly, if operations over a given type take parameters by
reference, then the code generator will make sure the routine receives a pointer
to the input parameter.

An important point is that the target platform specification also declares
which operations are defined in the static library allowing for incomplete imple-
mentations. Therefore, the compilation may fail with an error when the trans-
lation is not possible because an operation or data type is not supported.

3 Conclusions and Directions for Future Work

The CAO compiler has been successfully used to implement different crypto-
graphic functions and algorithms, targeting both powerful computational plat-
forms and constrained embedded devices. Example implementations include the
SHA family of hash functions, HMAC authentication algorithms, RSA-OAEP
encryption and Rabin-Williams signatures. The compiler code is reasonably sta-
ble and the current release can be used in real-world contexts. It is available
from http://crypto.di.uminho.pt/CAO and will soon be published as an open-
source project in the Hackage repository.

So far we have only preliminary results regarding a comparative analysis of
the tradeoff between the reduction in development time and the performance
penalty incurred by using the CAO compiler. Future work will include a more
detailed analysis of these trade-offs. Nevertheless, these results indicate that a
highly optimized CAO back-end can lead to C implementations with analogous
performance to those offered by open-source off-the-shelf cryptographic pack-
ages. This is because the output of the CAO compiler is essentially a sequence
of calls to an underlying static library, which can incorporate state-of-the-art
optimizations, with the extra advantage that these can be transparently reused
from one CAO program to another.

Additional directions for future work include improving the compiler effi-
ciency, supporting additional countermeasures against side-channel attacks, and
supporting novel cryptographic constructions, namely those based on lattices.
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Abstract. Formal foundations for access control policies with both
authority delegation and policy composition operators are partial and
limited. Correctness guarantees cannot therefore be formally stated and
verified for decentralized composite access control systems, such as those
based on XACML 3. To address this problem we develop a formal pol-
icy language BelLog that can express both delegation and composition
operators. We illustrate, through examples, how BelLog can be used to
specify practical policies. Moreover, we present an analysis framework for
reasoning about BelLog policies and we give decidability and complexity
results for policy entailment and policy containment in BelLog.

1 Introduction

We present the first formal language for specifying and reasoning about decen-
tralized composite access control policies, which are policies that require both
authority delegation and policy compositions. Below, we illustrate these con-
cepts, and motivate the need for their formal study.

Consider a simple grid system. The grid owner allows privileged clients to issue
access control policies for the grid’s storage space by delegating the authority
over the storage resources to them. Privileged clients issue policies, and may
also further delegate this authority. To decide who can access storage resources,
the grid owner composes the collected policies using different composition op-
erators, such as permit-override (permit if at least one client grants access),
majority voting (permit if most clients grant access), etc. This example demon-
strates how modern access control systems require both authority delegation and
policy composition features, hence going beyond composition-only systems, e.g.
those based on XACML 2, and delegation-only systems, such as KeyNote 2 [1].
Real-world examples include grid resource sharing systems [2], electronic health
record management [3] and highly distributed Web services [4]. To cater for
such decentralized composite access control systems, the industry has recently
released the XACML 3 standard.

The need for a formal foundation is evident: Without it, one cannot precisely
define how existing and future decentralized composite access control systems
should behave (e.g. the ones built upon XACML 3 implementations). Further-
more, formal guarantees about the correctness of decentralized composite poli-
cies, e.g. by answering policy entailment and containment questions, cannot be
derived. The existing formal access control languages fall short in this regard.
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They either express authority delegation or policy composition, but not both
together; see the related work.

Contributions. We are the first to address the problem of formally specifying
and reasoning about decentralized composite policies. We develop a novel logic
programming language, dubbed BelLog, for constructing decentralized com-
posite policy languages. BelLog is an extension of Datalog [5], where the truth
values come from Belnap’s four-valued logic [6]. All delegation languages based
on Datalog can therefore be mapped to BelLog. Furthermore, BelLog is more
expressive than the existing multi-valued policy algebras, such as PBel [7] and
PTaCL [8].

Through examples, we illustrate how decentralized composite policies can
be encoded in BelLog. We also present syntactic extensions of BelLog that
ease the specification of common policy composition and authority delegation
idioms, for instance: permit-override, only-one-applicable, agreement, hand-off
trust application, transitive delegation, etc.

We present a policy analysis framework for verifying policies written in Bel-
Log, and demonstrate how different policy analysis questions are used to reason
about a policy’s behavior in some or all system configurations. We show that
verifying BelLog policies for a given system configuration is in ptime, and
verification for all possible system configurations of a finite domain of subjects
and objects is in co-np-complete. We furthermore identify a useful fragment
of BelLog where verification for all possible system configurations for infinitely
many subjects and objects belongs to co-nexp.

Finally, BelLog can be used as a four-valued logic programming language for
reasoning with inconsistent and incomplete knowledge. BelLog and its decision
procedures are therefore of independent interest.

Related Work. The closest related works to BelLog are policy algebras, for-
mal delegation languages, and XACML 3, which is an informal policy language.

Policy algebras—such as PBel [7], PTaCL [8], and D-Algebra [9]—are lan-
guages for composing a set of policies. A composite policy is a tree, where the
internal nodes are composition operators, and the leaf nodes are core policies.
Existing policy algebras cannot express arbitrarily long delegation chains and
therefore cannot be used for decentralized composite access control. Moreover,
they lack operators for composing intensionally defined policy sets, i.e. policy
sets that are not fixed at the policy specification time; see §4.

Delegation languages—such as KeyNote2 [1], DKAL [10], SecPAL [11], RT [12],
GP [13], and DCC [14]—allow a policy writer to delegate to other principals
authority over attributes and policy decisions. In contrast to BelLog, these
languages support only the permit-override operator for composing policies. Al-
though the permit-override operator is sufficient in their access control setup,
this is not the case for decentralized composite policies. Most existing delegation
languages are founded on logic programming. We remark that although many-
valued extensions for logic programming exist [15–17], they also cannot express
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PDP

SubjectsPrincipals

Policies, Request,
AttributesAttributes PEP

Attributes

Fig. 1. The system model with the Policy Enforcement Point (PEP), Policy Decision
Point (PDP), principals, subjects, requests, and attributes

all composition operators found in policy algebras, e.g. the only-one-applicable
operator; that is, they are functionally incomplete.

XACML 3 is currently the only access control language supporting decentral-
ized composite access control. Similarly to BelLog, XACML 3 has four policy
decisions and operators for encoding delegation and policy composition. In con-
trast to BelLog, XACML is informal and some aspects are underspecified; for
example, loop handling in delegation chains is left to implementations. More-
over, XACML 3 has a fixed set of composition operators and new operators
cannot be added as syntactic extensions. Kolovski et al. [18] give a formalization
of XACML 3 which focuses on delegations and supports only three composition
operators. BelLog, in contrast, supports all finitary composition operators.

Finally, we remark that BelLog is not meant to be an all-encompassing policy
specification language. For example, the constraint-based conditions of [11] are
not expressible in BelLog.

Organization. In §2, we introduce our system model. In §3, we define our
logic programming language BelLog and define the main decision problems
for BelLog programs. In §4, we illustrate the specification of decentralized
composite policies in BelLog. In §5, we present our policy analysis framework.
We conclude the paper in §6. Note that proofs and technical details can be found
in the extended version of the paper [19].

2 System Model and the Running Example

A Policy Decision Point (PDP) maps access requests to policy decisions and
a Policy Enforcement Point (PEP) enforces the policy decisions made by the
PDP. We consider an open distributed system, as illustrated in Figure 1, where
there are multiple principals that may issue policies and attributes and store
them at the PDP. One principal is designated as the PDP’s administrator. The
administrator writes the policy against which all requests are evaluated.

Subject and object attributes are issued and signed by principals. Authority
over attributes can be delegated to other principals. An attribute issued by a
principal is either stored at the PDP, or given to the subject, who may provide
it to the PDP together with a request. Attributes that are not explicitly commu-
nicated to the PDP are assumed not to have been issued, as is the case in other
decentralized systems [1]. A policy domain database contains the identifiers of
objects such as roles, file names, etc. Both the administrator and authorized
principals can extend this database.
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To illustrate our system model, consider a grid system that stores files for
multiple research projects. Each project has one or more project leaders. The
grid system has one PDP that decides access for all files. The PDP’s policy,
inspired by policies in the Swedish Grid Initiative (SweGrid) system [2], is:

R1: A project leader controls access to the project’s files and folders, and can
delegate these rights.

R2: If there is a conflicting decision among the project leaders for a given request,
then grant access only to requests made by the project leaders.

R3: If no policy applies to a given request, then grant the request if its target
is a public project folder, otherwise deny it.

R4: Access rights are recursively extended to sub-folders.

This policy exemplifies the tight coupling between the use of delegation and
composition in decentralized composite policies. The PDP must first compute
the delegations for each folder according to R1, then compose the access rights
for each folder according to R2 and R3, and finally extend the policy decisions
to sub-folders according to R4. Note that R4 can be encoded as delegation from
a parent folder to its children. Such couplings of delegation and composition
idioms prevent the decentralized composite policies from being split into and
evaluated as two independent, delegation and composition, parts.

3 BelLog

In this section, we define the syntax and semantics of BelLog and study the
time complexity of its decision problems. BelLog builds upon the syntax and
semantics of stratified Datalog [5], and extends it over a four-valued truth space.
We see BelLog as a foundation for constructing high-level access control lan-
guages, and we therefore present BelLog as a generic many-valued logic pro-
gramming language. In §4, we illustrate how BelLog can be used to specify
practical access control policies.

Syntax. We fix a finite set P of predicate symbols, where D4 = {f4,⊥4,�4, t4} ⊆
P , along with a countably infinite set C of constants, and a countably infinite
set V of variables. The sets P , C, and V are pairwise disjoint. Each predicate
symbol p ∈ P is associated with an arity and we may write pn to emphasize that
p’s arity is n. The predicate symbols in D4 have zero arity. As a convention, we
write P to denote a BelLog program and use the remaining uppercase letters
to denote variables. Predicate and constant symbols are written using lowercase
italic and sans font respectively.

A domain Σ is a nonempty finite set of constants. We associate a domain Σ
with a set of atoms AΣ(V) = {pn(t1, · · · , tn) | pn ∈ P , {t1, · · · , tn} ⊆ Σ ∪ V}.
A literal is either a, ¬a, or ∼a, for a ∈ AΣ(V), and LΣ(V) denotes the set of
literals over Σ. We refer to ¬a as negative literals and to a and ∼a as non-
negative literals. The function vars : AΣ(V) �→ 2V maps atoms to the set of
variables appearing in them. An atom a is ground iff vars(a) = ∅, and AΣ(∅)
denotes the set of ground atoms. We extend vars to literals in the standard way.
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Fig. 3. Truth tables of BelLog’s operators

A BelLog program, defined over the domain Σ, is a finite set of rules of the
form:

p← q1, . . . , qn ,

where n > 0, p ∈ AΣ(V), {q1, · · · , qn} ⊆ LΣ(V), and vars(p) ⊆
⋃

1≤i≤n vars(qi).
We refer to p as the rule’s head and to q1, . . . , qn as the rule’s body.

The predicate symbols in a BelLog program P are partitioned into inten-
sionally defined predicates, denoted idbP , and extensionally defined predicates,
denoted edbP . The set idbP contains all predicate symbols that appear in the
heads of P ’s rules, and the set edbP contains the remaining predicate symbols.
We write AedbP

Σ(V) (LedbP
Σ(V)) and AidbP

Σ(V) (LidbP
Σ(V)) to denote the sets of atoms (literals)

constructed from predicate symbols in edbP and idbP respectively.
A rule p← q1, · · · , qn is ground iff all the literals in its body are ground. The

grounding of a BelLog program P is the finite set of ground rules, denoted by
P ↓, obtained by substituting all variables in P ’s rules with constants from Σ in
all possible ways.

A BelLog program P is stratified iff the rules in P can be partitioned into
sets P0, · · · , Pn called strata, such that: (1) for every predicate symbol p, all rules
with p in their heads are in one stratum Pi; (2) if a predicate symbol p occurs as
a non-negative literal in a rule of Pi, then all rules with p in their heads are in
a stratum Pj with j ≤ i; (3) if a predicate symbol p occurs as a negative literal
in a rule’s body in Pi, then all rules with p in their heads are in a stratum Pj

with j < i. The given definition of stratified BelLog extends with non-negative
literals that of stratified Datalog [20].

Semantics. The truth space of BelLog is the lattice (D,*,∧,∨), where D =
{f,⊥,�, t}, * is the partial truth ordering on D, and ∧ and ∨ are the meet and
join operators. Figure 2 shows the lattice’s Hasse diagram, where * is depicted
upwards. We adopt the meaning of the non-classical truth values ⊥ and � from
Belnap’s four-valued logic [6]: ⊥ denotes missing information and � denotes
conflicting information. We define the partial knowledge ordering on D, denoted
with *k, and depict it in Figure 2 rightwards. We denote the meet and join
operators on the lattice (D,*k) by ⊗ and ⊕, respectively. The truth tables of
the unary operators ¬ and ∼ are given in Figure 3, where we also depict the
truth tables for the operators ∧ and ∨ for convenience.

An interpretation I, over a domain Σ, is a function I : AΣ(∅) → D, mapping
ground atoms to truth values, where I(f4) = f, I(⊥4) = ⊥, I(�4) = �, and
I(t4) = t. Fix a domain Σ, and let I be the set of all interpretations over Σ.
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We define a partial ordering � on interpretations: given I1, I2 ∈ I, I1 � I2 iff
∀a ∈ AΣ(∅). I1(a) * I2(a). We define the meet � and join � operators on I as:
I1 � I2 = λa. I1(a) ∧ I2(a) and I1 � I2 = λa. I1(a) ∨ I2(a). The structure (I,�
,�,�, If, It) is a complete lattice where If = λa.f is the least element and It = λa.t
is the greatest element. Given a continuous function Φ : I → I, we write -Φ. for
the least fixed point of Φ. The interpretation -Φ. is calculated, using the Kleene
fixed point theorem, as Mω where M0 = If, and M i+1 = Φ(M i) for i ≥ 0.

We extend interpretations over the operators ¬ and ∼ as I(¬a) = ¬I(a) and
I(∼a) = ∼I(a) respectively, where a ∈ AΣ(∅). We also extend interpretations
over vectors of literals as I(l) = I(l1) ∧ · · · ∧ I(ln) where l = l1, · · · , ln and
{l1, · · · , ln} ⊆ LΣ(∅). We write

∨
{v1, · · · vn} for v1 ∨ · · · ∨ vn. For the empty set

we put
∨
{} = f.

An interpretation I is a model of a given program P iff ∀(a← l) ∈ P ↓. I(a) /
I(l). A model therefore, for every rule, assigns to the head a truth value no
smaller, in *, than the truth value assigned to the body. A model I is supported
iff ∀a ∈ AΣ(∅). I(a) =

∨
{I(l) | (a ← l) ∈ P ↓}. Note that the definition

of supported models for BelLog programs extends that of stratified Datalog.
Intuitively, a model I is supported if it does not over-assign truth values to
head atoms. In contrast to stratified Datalog, BelLog’s truth values are not
totally ordered; therefore, a supported model I of a BelLog program P does
not guarantee that for an atom a there is a rule (a← l) ∈ P ↓ such that I(a) =
I(l). For example, for the program P = {a ← �4, a ← ⊥4} the interpretation
I = {a �→ t} is a supported model; note that {a �→ ⊥} and {a �→ �} are not
models of P .

We associate a BelLog program P with the operator TP : I �→ I:

TP (J)(a) =
∨
{J(l) | (a← l ) ∈ P ↓}

Lemma 1. Given a BelLog program P , an interpretation I is a supported
model iff TP (I) = I.

The proof follows immediately from the definition of TP .
In general, a program P may have multiple supported models. For instance,

any interpretation is a supported model for the program {p← p}. For BelLog’s
semantics we choose a minimal supported model: a supported model I is minimal
iff there does not exist another supported model I ′ such that I ′ � I. For a
program P where only non-negative literals are in its rules, TP is monotone,
hence continuous due to the finiteness of I, and has a unique minimal supported
model. In contrast, if a program P contains negative literals in its rules, then the
operator TP is not monotone, and there could be multiple minimal supported
models. For example, the program P = {a ← ¬b} has more than one minimal
supported models, e.g. {a �→ f, b �→ t} and {a �→ t, b �→ f}.

For a stratified BelLog program P , we construct one minimal supported
model by computing, for each strata of P , the minimal supported model that
contains the model of the previous stratum. This construction is analogous to
that of stratified Datalog given in [21]. To define the model construction, we
introduce the following notation. We write (P ↓) � I for the program obtained by
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replacing all literals in P ↓ constructed with edbP predicate symbols with their
truth values according to I. Formally,

(P ↓) � I = {p← q′1, · · · , q′n | (p← q1, · · · , qn) ∈ P ↓,

q′i = I(qi) if qi ∈ LedbP
Σ(∅), otherwise q′i = qi} .

Note that all negative literals in a stratum Pi of a stratified BelLog program
are constructed with predicate symbols in edbPi . Given an interpretation I, the
program P ↓

i � I therefore contains only non-negative literals, and the operator
TP↓

i I is monotone.
We now define the model semantics of a stratified BelLog program:

Definition 1. Given a stratified BelLog program P , with strata P0, · · · , Pn,
the model of P , denoted [[P ]], is the interpretation Mn, where M−1 = If, and
Mi = -TP↓

i Mi−1
. �Mi−1 for 0 ≤ i ≤ n.

Each Mi, for 0 ≤ i ≤ n, is well-defined because the operators TP↓
i Mi−1

are
monotone, and therefore continuous because the lattice (I,�,�,�) is finite.

Theorem 1. Given a stratified BelLog program P , [[P ]] is a minimal supported
model.

For the previous example P = {a ← ¬b}, the given construction results in
[[P ]] = {a �→ t, b �→ f}. For details on our choice of semantics see [19].

We remark that a BelLog program P that does not use the predicates �4,
⊥4, and the operator ∼ in its rules is a syntactically valid stratified Datalog
program. Furthermore, stratified BelLog subsumes stratified Datalog; see [19].
In particular, this means that BelLog can express all policy languages based
on stratified Datalog.

The input to a BelLog program P is an interpretation I ∈ I, where all
atoms from AidbP

Σ(∅) are mapped to f. For a program P and the input I, we write
[[P ]]I as a shorthand for [[P ∪ P ′]], where P ′ = {a← v4 | I(a) = v} and v ∈ D.

From the definition of stratification, it is immediate that given a stratified
program P with strata P0, · · · , Pn, and an input I, the program P ∪ P ′ can be
stratified into strata P ′, P0, · · · , Pn.

We finally remark that the semantics of a BelLog program is independent
of the given stratification. The proof can be found in [19].

Decision Problems. We define BelLog’s decision problems. In §5, we reduce
the decision problems within our policy analysis framework to BelLog’s decision
problems.

Let P be a stratified BelLog program, Σ be a domain of constants, and q
be a ground atom. For a given input I, the query entailment decision problem,
denoted P |=I

Σ q, asks whether [[P ]]I(q) = t. The general case of [[P ]]I(q) = v,
with v ∈ D, is immediately reducible to the query entailment problem. The
query validity decision problem, denoted P |=Σ q, asks whether for all inputs I
defined over Σ, P |=I

Σ q. Similarly to the data complexity of Datalog [22], we
study the complexity of the given decision problems when the maximum arity of
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predicates in P and the set of variables that appear in P are fixed. The input size
for BelLog’s decision problems is thus determined by the number of predicate
symbols in P , the number of rules in P , and the number of constants in the
domain Σ.

Theorem 2. The query entailment problem and the query validity problem be-
long, respectively, to the complexity classes ptime and co-np-complete.

We next consider a generalization of the query validity problem. Let ΣP de-
note the set of constants that appear in P . The all-domains query validity deci-
sion problem, denoted P |= q, asks whether P |=Σ′ q for all domains Σ′ ⊆ C that
contain ΣP and the constants in q; recall that C is the infinite set of constants.
The problem of all-domains query validity is in general undecidable for BelLog
programs, because the problem of query validity in Datalog, which is undecid-
able [23], can be reduced to this problem. We show, however, that all-domains
query validity is decidable for any stratified BelLog program P that has only
unary predicate symbols in edbP . We call those unary-edb programs. We show
in §5 that the unary-edb BelLog programs capture a useful class of policies.
Namely, those policies where the set of principals is finite.

Theorem 3. The all-domains query validity problem for a unary-edb BelLog
program belongs to the complexity class co-nexp.

Note that the input for the all-domains query validity problem is determined
only by the number of predicate symbols in P and the number of rules in the
program P .

Syntactic Extensions. We now present a set of syntactic extension to Bel-
Log to ease the specification of complex rules. In §4, we use them for writing
decentralized composite policies.

We extend the syntax for writing policy rules to

rule ::= p← body

body ::= q1, · · · , qn | ¬body | ∼body | body ∧ body ,

where n > 0, p ∈ AΣ(V), and {q1, · · · , qn} ⊆ LΣ(V). We call the rules of the form
p ← q1, · · · , qn basic rules and the remaining rules composite rules. Similarly
to basic rules, we require that for any composite rule p ← body , vars(p) ⊆
vars(body).

We define the translation function T that maps a basic rule r to the set {r}:
T (p← q1, · · · , qn) = {p← q1, · · · , qn} ,

and maps a composite rule p← body to a set of basic rules:

T (p← ¬body) = {p← ¬pfresh(X)} ∪ T (pfresh(X)← body)

T (p← ∼body) = {p← ∼pfresh(X)} ∪ T (pfresh(X)← body)

T (p← body1 ∧ body2) = {p← pfresh1(X1), pfresh2(X2)}
∪ T (pfresh1(X1)← body1) ∪ T (pfresh2(X2)← body2)
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p ∨ q := ¬(¬p ∧ ¬q) p⊗ q := (p ∧ ⊥) ∨ (q ∧ ⊥) ∨ (p ∧ q)

p⊕ q := (p ∧ �) ∨ (q ∧ �) ∨ (p ∧ q) p = t := p ∧ ∼p
p = f := ¬(p ∨ ∼p) p = ⊥ := (p �= f) ∧ (p �= t) ∧ ((p ∨ �) = t)

p = � := (p �= f) ∧ (p �= t) ∧ ((p ∨ ⊥) = t) p �= v := ¬(p = v)

Fig. 4. Derived connectives for combining composite rule bodies. Here p, q, and c denote
rule bodies and v ∈ D.

In these rules pfresh, pfresh1, pfresh2 are predicate symbols that do not appear in P ,
X = vars(body) and Xi = vars(body i) for i ∈ {1, 2}. Note that the recursive
function T terminates for any composite rule and yields a set of basic rules;
see [19]. The size of the set is linear in the number of nested bodies in the
composite rule.

The meaning of a BelLog program P with composite rules is that of the
BelLog program P ′ =

⋃
r∈P (T (r)). For example, consider the composite rule:

p(X )← ¬∼q(X,Y ) .

The function T translates this composite rule into a set of basic rules:

{p(X)← ¬pfresh(X,Y ), pfresh(X,Y )← ∼q(X,Y )} .

A BelLog program P with composite rules is well-formed iff its rules can
be partitioned into sets P0, · · · , Pn such that: (1) for every predicate symbol p,
all rules with p in their heads are in one stratum Pi; (2) if a predicate symbol
p occurs as a non-negative literal in a basic body in Pi, then all rules with p
in their heads are in a stratum Pj with j ≤ i; and (3) if a predicate symbol p
occurs in the body of a composite rule in Pi or as a negative literal in a basic
rule in Pi, then all rules with p in their heads are in a stratum Pj with j < i.
Note that well-formed BelLog extends stratified BelLog with the condition
that if a predicate symbol p occurs in the body of a composite rule in Pi, then
all rules with p in their heads are in a stratum Pj with j < i. This is a sufficient
but not necessary condition that any composite rule of a well-formed program
is translated into a stratified set of basic rules.

Theorem 4. The translation of a well-formed BelLog program with composite
rules is a stratified BelLog program.

In Figure 4, we derive additional connectives using syntactic combinations
of ¬, ∼, and ∧. The binary connective _ ∨ _ corresponds to the join operator
on the lattice (D,*), and the binary connectives _ ⊗_ and _⊕ _ correspond
to the meet and join operators on the lattice (D,*k), respectively; for details
see [6]. The unary connective _ = v, where v ∈ D, indicates whether the truth
value assigned to the atom is v. The result of p = v is t if p’s result is v, and f
otherwise. The composition p 
= v returns t only if p’s result is not v, otherwise
it returns f. Furthermore, we formally establish that BelLog can represent any
n-ary operator Dn → D:
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Theorem 5. Given an operator g : Dn → D and a list of n rule bodies q1, · · · , qn,
there exists a body expression φ for a BelLog composite rule p← φ such that

[[P ]]I(p) = g([[P ]]I(q1), . . . , [[P ]]I(qn)) ,

for all inputs I, and programs P where {p ← φ} ⊆ P and p is not the head of
any other rule.

4 Decentralized Composite Policies in BelLog

We first introduce the basic building blocks, namely attributes and delegations,
and then we demonstrate how to encode decentralized composite policies in Bel-
Log, including the grid policy from §2. We conclude with a discussion of Bel-
Log’s more intricate features for policy specifications.

We assume that the PDP’s domain database contains all constants that ap-
pear in the policies, attributes, and access requests, as well as any other addi-
tional constants which may denote roles, file names, etc.

Attributes and Delegations. We represent attributes with attribute_name(·)
predicate symbols. We take the first argument of an attribute as the issuing
principal’s identifier. For example, hr(ann, fred) denotes that, according to Ann,
Fred works in the Human Resources department. To highlight the attribute’s
issuer, we may write hr(fred)@ann instead of hr (ann, fred).

The truth value of an attribute a is t if it is either stored at the PDP or
provided by the subject; otherwise it is f. In short, the attributes are by default
assumed not to exist if they are not present. For some policies it may however
be more appropriate to assume that a given attribute (e.g. an attribute that is
provided by the subject) is missing (⊥) rather than non-existent (f). BelLog
can accommodate for such policies too. For example, given an attribute a, we
can define its assume-missing counterpart a⊥ with the rule a⊥ ← a ∨ ⊥.

Attribute delegations are specified with BelLog rules where the rule’s head
is the delegated attribute and the rule body is the delegation condition. For
example, with the rule

researcher (S)@ann← hr (S′)@ann, labcard(S)@S′ ,

Ann asserts that a subject S is a researcher if a subject S′ with the attribute hr
asserts that S is a researcher. That is, Ann delegates the attribute researcher to
subjects that have the attribute hr . For example, if Fred has the attribute hr
and issues labcard(dave)@fred, then the PDP derives researcher (dave)@ann.

Delegations may require non-monotonic operators. Imagine that Ann stores
at the PDP a list of revoked subjects, and she will not accept delegations of the
attribute researcher for revoked subjects. We extend her delegation rule as

researcher (S)@ann← hr(S′)@ann, labcard(S)@S′,¬revoked(S)@ann .

Non-monotonic operators must be used with caution when applied to the
attributes that subjects supply. This is because a subject may gain access if she
can withhold the attribute revoked from the PDP; cf. [8]. In §5, we return to this
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issue and show how one can verify whether a policy is monotone with respect to
the attributes provided by the subject.

BelLog’s composite rules can be used to express more complex delegation
conditions. In our grid example, the administrator may for instance require two
project leaders—Ann and Fred—to agree on the pub file attribute, denoting that
a file is public. This is written as

pub_agree(F )@admin← pub(F )@ann⊕ pub(F )@fred ,

where ⊕ is the maximal agreement operator. Note that the administrator derives
a conflict if the principals disagree whether a file is public, because f⊕ t = �.

As illustrated, BelLog can specify standard attribute delegations, as well as
non-monotonic delegation idioms which cannot be captured in existing Datalog-
based languages. There are other delegation idioms that BelLog can express,
but we omit their presentation due to space constraints. For example, the hand-
off idiom [14], where a principal delegates authority over all attributes, can be
expressed in BelLog by representing attributes with a predicate says where
one of the arguments denotes an attribute name.

Policy Decisions. We take the t, f,⊥, and � elements as, respectively, grant,
deny, gap, and conflict policy decisions. The gap decision indicates that a policy
neither grants nor denies a request, and conflict indicates that a policy can
both grant and deny a request. The partial ordering * in Figure 2 defines the
permissiveness of policy decisions. The meet ∧ and join ∨ operators on the
lattice (D,*) correspond to the standard deny-override and permit-override
operators for composing policy decisions. The meet ⊗ and join ⊕ operators on
the lattice (D,*k) correspond to the maximal agreement and minimal agreement
composition operators; see [15].

Policies. A principal can issue multiple policies for different subjects and re-
sources; we insist however that each principal has one designated root policy. A
root policy combines all of the principal’s sub-policies and possibly other princi-
pals’ policies. In our grid scenario, we use the atom pol_name(Sub,File)@Prin
to denote the decision of the policy name, issued by Prin , for Sub accessing File .
We fix the atom pol (Sub,File)@Prin to denote Prin ’s root policy. For example,
when the PDP derives t for the atom pol (fred, foo.txt)@piet, the PDP interprets
this as “Piet’s root policy grants Fred access to the file foo.txt”. Principals may
choose any other predicate symbols to denote decisions of their sub-policies.

Policies are encoded as BelLog rules where the head of a policy rule is a
policy name atom. For example, the project leader Piet may issue the policy

pol(S, F )@piet← researcher (S)@piet, prj_file(F )@piet ,

which grants his researchers S access to any project files F . Similarly, Ann, who
is a project leader, may issue the policy

pol (ann, F )@ann← prj_file(F )@ann

pol (S, F )@ann← pol (S′, F )@ann, give_access(S, F )@S′ ,
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p  c � q := ((c = t) ∧ p) ∨ ((c �= t) ∧ q) p
v	→ q := q  (p = v) � p

p � q := p  (q = ⊥) � (q  (p = ⊥) �⊥) p � q := q  (p = t) �⊥

Fig. 5. Conditional and override policy composition operators

where the first rule grants Ann access to any project file F , and the second
rule states that any subject S′ with access to F may delegate this access to
any subject S by issuing a give_access attribute. Then, Ann may provide
access to Fred by issuing give_access(fred, foo.txt)@ann; Fred too may issue
give_access(dave, foo.txt)@fred to further delegate to Dave access to foo.txt.

A policy can also combine the decisions of a set of sub-policies; we call these
composite policies. A composite policy encoded with a basic BelLog rule, for
example, implicitly combines the sub-policies’ decisions using the deny-override
∧ operator. Composite policies that combine their sub-policies’ decisions with
more complex composition operators, such as the gap- and conflict-override op-
erators, are encoded with BelLog composite rules.

In addition to ∧, BelLog’s operators ¬, ∼, ∨, ⊗, ⊕ can also be employed
as composition operators. To complement these operators, in Figure 5 we define
further conditional and override operators for composing policies. The ternary
operator _ � _ � _ is the if-then-else operator. The result of the composition
p � c � q is p’s decision only if c’s result is t, otherwise q’s decision is taken.

The binary operator _ v�→ _ represents the v-override operator, where v ∈ D.
The result of the composition p

v�→ q is q if p’s decision is v, otherwise it results in
p’s decision. The operators ⊥�→ and ��→ correspond to the gap-override and conflict-
override operators, respectively. Given a list of policies p1, · · · , pn, we encode the
operator first-applicable as p1

⊥�→ (p2
⊥�→ (· · · ⊥�→ pn)), i.e. the composition takes

the decision of the first policy in the list whose decision is not ⊥.
The binary operator _ �� _ is the only-one-applicable operator, i.e. the com-

position p �� q results in ⊥ if both policy decisions are not ⊥ or both decisions
are ⊥, otherwise the result is the policy decision that is not ⊥.

The binary operator _ � _ is the on-permit-apply-second1 operator. The
composition p � q returns q only if the decision of p is t, otherwise it returns
⊥. The operator � is useful for specifying policies that either (1) grant or pro-
vide no decision, or (2) deny or provide no decision. For example, the policy
researcher (Sub) � t grants access only if the subject Sub is a researcher; other-
wise, the policy returns ⊥. In contrast, the policy revoked(Sub) � f denies access
if the subject Sub is revoked, and provides no decision otherwise. We also use the
operator � for specifying policies with policy targets, which define the requests
that are applicable to a policy. Given a policy p and its target ptarget, ptarget � p
results in ⊥ if ptarget does not evaluate to t, otherwise it results in p’s decision.

1 The on-permit-apply-second operator has been recently proposed as an additional
operator for the XACML 3 standard. See [24] for full description.
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We finally remark that BelLog can express any four-valued policy composi-
tion language, such as PBel [7]. This is a corollary of Theorem 5.

Grid Policy. We now exercise these operators in our grid scenario. The admin-
istrator may compose the policies issued by the project leaders Piet and Ann
with the maximal agreement operator:

pol_leaders(S, F )@admin← pol (S, F )@piet⊕ pol(S, F )@ann .

For brevity, we have not specified the policies of Piet and Ann. The composition
of their policies may result in conflicts and gaps. According to requirements R2
and R3 (see §2), the administrator must resolve conflicts by granting requests
made by project leaders, and resolve gaps by granting access only to public
folders. The pol_root policy encodes these requirements:

pol_root(S, F )@admin←

(pol_leaders(S, F )@admin
��→ prj_leader (S)@admin)

⊥�→ pub(F )@admin .

The composite policy pol_leaders considers the decisions of Piet’s and Ann’s
policies for all requests. The administrator may, however, want to consider the
decisions of Piet’s policy only for the files contained in the folder prj1. This can
be encoded by defining a policy with an explicit policy target:

pol_piet(S, F )@admin← contains(prj1, F )@admin � pol(S, F )@piet ,

where the attribute contains(F1, F2)@admin indicates that the folder F1 contains
F2. The attribute is transitively assigned to sub-folders:

contains(F1, F2)@admin← subfolder (F1, F2)@fs ,

contains(F1, F3)@admin← contains(F1, F2)@admin, contains(F2, F3)@admin ,

where the attribute subfolder (F1, F2)@fs is provided by the file system fs and
indicates that F1 is directly contained in F2. Note that the policy pol_piet results
in ⊥ for any request to a file not contained in the folder prj1.

The administrator must also encode the requirement R4, which states that
any access right to a folder is transitively extended to sub-folders. Namely

pol_root(S, F )@admin← contains(F ′, F )@admin, pol_root(S, F ′)@admin .

Note that the policy decision for a folder is extended to sub-folders with the
permit-override operator. This is because instantiating the variable F ′ results in
multiple rules with the same head atom, which are combined with the operator ∨
according to BelLog’s semantics. To illustrate this, consider the folder f3, where
f3 is contained in f2, which in turn is contained in f1. Instantiating the variable
F ′ and simplifying the instantiated rules result in the following rule:

pol_root(S, f3)@admin← pol_root(S, f1)@admin ∨ pol_root(S, f2)@admin .

Alternatively, the administrator may want to combine the instantiated rule bod-
ies with deny-override, maximal agreement, or minimal agreement. We show how
this can be done with BelLog’s intensional operators, defined below.
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Intensional Compositions. So far, we have presented extensional policy com-
position operators that compose a fixed, explicitly given list of sub-policies. For
example, we used

pol_leaders(S, F )@admin← pol(S, F )@piet⊕ pol (S, F )@ann

to combine policies of two project leaders, one from Piet and one from Ann,
with the maximal agreement operator. Such extensional encodings are tediously
“static”, because if new project leaders are added to or removed from the PDP,
then the administrator must explicitly change the policy rule. Alternatively, the
administrator may write a rule that composes the policies that are issued by any
principal who is a project leader. One attempt to do this is:

pol_leaders(S, F )@admin← pol (S, F )@P, prj_leader (P )@admin ,

where the set of composed policies is intensionally defined as those issued by
project leaders. This attempt however fails because the project leaders’ policies
are implicitly combined with the permit-override operator, instead of the maxi-
mal agreement operator ⊕. This is because BelLog’s semantics, much like other
logic programs, uses the join operator ∨ when combining rule bodies with the
same head atom.

We extend BelLog’s syntax with additional operators to account for inten-
sional compositions:

rule ::= p← [
∨

|
∧

|
⊕

|
⊗

] body ,

where p ∈ AΣ(V ), body is a composite rule body, as defined in §3, and vars(p) ⊆
vars(body). We refer to the operators written in front of body as intensional com-
position operators. Intuitively, the intensional operator

⊕
combines all grounded

bodies of rules with the same head atom with the ⊕ operator. For example,
grounding the simple rule p(a) ←

⊕
q(X) over the domain Σ = {a, b} results

in two grounded bodies, q(a) and q(b), with the same head atom p(a). The
grounded bodies are combined with ⊕; the meaning of p(a)←

⊕
q(X) is there-

fore p(a) ← q(a) ⊕ q(b). Other operators behave similarly with respect to their
syntactic counterparts. The formal translation of the intensional operators to
BelLog’s core syntax is given in [19]. We remark that the intensional operators∧
,
⊕

, and
⊗

cannot have the head atom appear in the rule body because their
encoding uses composite rules.

We can now encode the intensional composition of the project leaders’ policies
with the maximal agreement operator as

pol_leaders(S, F )@admin←
⊕

(pol (S, F )@P � prj_leader (P )@admin � ⊥) .

Note that the policies that are not issued by a project leader are replaced with ⊥,
and the composition “ignores” such policies, because v ⊕⊥ = v for any v ∈ D.

Intensional compositions are also useful for specifying policies that propa-
gate policy decisions over hierarchically structured data, such as file systems,
role hierarchies, etc. To illustrate, we extend our grid example with Piet’s pol-
icy that by default permits a subject S to access a folder F , unless Piet issues
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the attribute deny(S, F ). In contrast to the requirement R4, he uses the deny-
override operator to propagate deny decisions over the sub-folders:

pol_fold(S, F )@piet← ¬deny(S, F )@piet

pol (S, F )@piet←
∧

(pol_fold(S, F ′)@piet � contains(F ′, F )@admin � t) .

The last rule replaces the policy decisions for folders F ′ that do not contain F
with t, since for any v ∈ D we have v ∧ t = v.

We summarize the key difference between intensional and extensional oper-
ators as follows. The intensional operators reflect changes in the domain (e.g.
addition and removal of principals, files, etc.) through changes in the policy in-
put. The extensional operators require explicit modification of the policy rules
to reflect such changes.

5 Analysis

Writing a correct policy, i.e. one that grants and denies requests as intended by
the policy writer, is often challenging in practice. This is both because policies are
often initially given informally and imprecisely and because the policy writer can
err in their formalization. In particular, a policy writer must foresee all possible
policy inputs, understand how the delegation rules, the sub-policies, and their
compositions influence the policy’s behavior, and verify that the policy does not
exhibit any unintended decisions. As a first step towards verifying the policy’s
behavior, the policy writer specifies the high-level requirements as formal policy
analysis questions. Second, a decision procedure is used to check, in an automated
manner, whether the analysis questions are answered positively, or not.

Below we present our framework for analyzing policies written in BelLog. A
policy set is a set of delegations and policies, which are encoded as BelLog rules
and collectively define a BelLog program. Every policy set has a designated
root policy. The decision of a policy set for a given request is the decision of
the policy set’s root policy. We fix the predicate pol (Subject ,Object) to denote
a root policy’s decisions. For brevity, we omit writing the issuer of policies and
attributes. We use the terms input and (policy) context interchangeably.

Policy Entailment. Policy entailment answers whether a policy set entails a
given permission in a given policy context.

Definition 2. (Policy Entailment) Given a policy set P and a policy context I,
P entails the request pol (S,O) iff P |=I

Σ pol (S,O).

Policy entailment analysis is akin to software testing in that the policy writer
checks the policy set for unintended grants and denies in specific policy contexts
(i.e. test scenarios). Although limited in its scope, since the policy writer must
give a specific context, determining policy entailment scales with the size of the
domain, unlike the policy containment problem which we define shortly. Note
that policy entailment can also be used for constructing PDPs.
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To illustrate policy entailment, consider the following policy set P :

{ pol(S,O)←(pol_leaders(S,O)
��→ prj_leader (S))

⊥�→ pub(O) } .

For simplicity we do not specify the policy pol_leaders . One requirement for P ,
which is derived from the requirement R2 given in §2, may be to deny access to
subjects who are not project leaders whenever the policy pol_leaders returns a
conflict. To check this property, we may ask whether the policy set entails the
permission pol(fred, foo.txt) in the context:

I = {pol_leaders(fred, foo.txt) �→ �, prj_leader (fred) �→ f} ,

where the remaining atoms are mapped to f. For this context the policy set does
not entail the permission, as expected.

Because the guarantees provided by entailment analysis are limited to the
context provided by the policy writer, the requirement may not hold for other
policy contexts. For example, the given policy set P violates its requirement for

I ′ = {pol_leaders(fred, foo.txt) �→ �, prj_leader (fred) �→ ⊥, pub(foo.txt) �→ t} ,

because the policy set entails pol (fred, foo.txt), although pol_leaders results in
a conflict and the PDP does not know whether Fred is a project leader.

Deciding policy entailment is reducible to query entailment; see §3. Policy
entailment can be therefore decided in time polynomial in the size of the context.

Policy Containment. Policy containment thoroughly analyzes a policy set
against all policy contexts. It can be used to answer questions such as: “Do all
requests in all policy contexts evaluate to a conclusive policy decision, i.e. grant
or deny? ” Containment analysis is done either for a particular policy domain or
for all possible policy domains. In more detail, the domain policy containment
answers whether a policy set P1 is more permissive than another policy set P2

for all policy contexts for a given domain. The all-domains policy containment
answers whether a policy set P1 is more permissive than another policy set P2 for
all policy contexts for all possible domains. Even though all-domains evaluations
imply those for one domain, checking for all domains is decidable only for a
fragment of BelLog, as we later show.

Many analysis questions require that only specific subsets of policy contexts
and requests are considered for comparisons. For example, to verify that the
policy set P correctly encodes our requirement derived from R2, the policy writer
may ask whether P denies all requests made by subjects who are not project
leaders, for all contexts where the policy pol_leaders results in a conflict. We
encode such analysis questions with a condition that constraints the contexts and
requests where the policy sets are compared. Formally, the syntax for writing
containment questions is

cond ⇒ P1 * P2 .

The symbols P1 and P2 are policy sets and cond is inductively defined as

cond ::= ∀X.cond | attr * v | v * attr | ¬cond | cond ∧ cond | t
v ::= ⊥ | � ,
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where X ∈ V , attr ∈ AedbP
Σ(V), i.e. attr is an input attribute. Note that the at-

tributes in a condition may contain variables. We write fv(cond) for the set of
variables in cond that are not in the scope of ∀. We fix the variables S and O to
denote the subject and the object in the request pol (S,O). A policy containment
question cond ⇒ P1 * P2 is well-formed iff fv(cond) ⊆ {S,O}.

We define the satisfaction relation �Σ between a policy context I, a condition
cond of a well-formed policy containment question, and a policy domain Σ:

I �Σ t
I �Σ q * v if I(q) * v

I �Σ v * q if v * I(q)

I �Σ ¬cond if I 
�Σ cond

I �Σ cond1 ∧ cond2 if I �Σ cond1 and I �Σ cond2

I �Σ ∀X.cond(X) if ∀X ∈ Σ. I �Σ cond(X)

As a shorthand, in the following we write q = v for (q * v) ∧ (v * q) where
v ∈ {⊥,�}, q = f for (q * ⊥) ∧ (q * �), and q = t for ¬(q * ⊥) ∧ ¬(q * �).
Given two conditions c1 and c2 we define their disjunction c1∨c2 in the standard
way as ¬(¬c1 ∧ ¬c2). To compare the truth values of any two attributes p and
q, we write p = q as a shorthand for (p = f ∧ q = f) ∨ (p = ⊥ ∧ q = ⊥) ∨ (p =
� ∧ q = �) ∨ (p = t ∧ q = t).

Definition 3. (Domain Policy Containment) Given a question cond ⇒ P1 *
P2, and a domain Σ, then P1 is contained in P2 for all policy contexts over Σ
that satisfy cond , denoted by �Σ cond ⇒ P1 * P2, iff

∀I ∈ I, ∀S,O ∈ Σ. (I �Σ cond)→ ([[P1]]I(pol (S,O)) * [[P2]]I(pol (S,O))) ,

where I is the set of all policy contexts defined over the domain Σ.

Note that we overload the relation �Σ .
In practice, the policy domain may change over time, e.g. subjects and objects

are added to and removed from the system. After changes to Σ, domain policy
containment may no longer hold. As mentioned, a stronger policy containment
guarantee is thus to verify that P1 is contained in P2 for all domains Σ′.

Definition 4. (All-domains Policy Containment) Given a question cond ⇒
P1 * P2, P1 is contained in P2 for all policy contexts in all policy domains,
denoted � cond ⇒ P1 * P2, iff �Σ cond ⇒ P1 * P2 holds for all domains Σ.

To illustrate how containment questions are specified and used, we start with
the previously given question: “Do all requests in all policy contexts evaluate to
a conclusive policy decision”. To encode this question for the policy set P , we
construct a policy set P ′ by first renaming the predicate symbol pol in P to pol ′

and then adding the rule

pol(S,O)← (pol ′(S,O)
��→ f) ⊥�→ f .

By construction, the policy set P ′ denies all requests that are evaluated to gap
or conflict by the policy set P . Therefore, |=Σ t ⇒ P * P ′ holds iff the policy
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set P is conclusive. We set the condition to t because we must check containment
for all requests and for all policy contexts.

As a second example, we use policy containment to encode the requirement
that the policy set P denies access to subjects who are not project leaders
whenever the policy pol_leaders results in a conflict:

(pol_leaders(S,O) = �) ∧ ¬(prj_leader (S) = t)⇒ P * Pf ,

where Pf is the policy set that denies all requests. This asks whether P denies
pol(S,O) in all contexts where the policy pol_leaders results in a conflict for the
request pol (S,O) (pol_leaders(S,O) = �) and the subject S is not a project
leader (¬(prj_leader (S) = t)). Both domain and all-domains containment eval-
uations give negative answers; see the counterexample above. The policy set,
however, satisfies the requirement if the attribute prj_leader is either t or f. We
can easily encode this assumption as

(pol_leaders(S,O) = �) ∧ (prj_leader (S) = f)⇒ P * Pf .

Domain and all-domains containment evaluations answer this question positively.
Policy containment is also useful for comparing a policy set’s behavior in one

context to its behavior in a different policy context. Consider a scenario where
a subject can push some attributes to the PDP. An important property for the
policy set is that a subject cannot influence the policy set to grant a request by
withholding attributes. We refer to such policy sets as push-monotonic: whenever
a subject provides fewer attributes to the PDP, the policy set results in a less
permissive decision. Consider the policy set P :

{ pol(S,O)← researcher (S), prj_file(O)

researcher(S)← hr(S′), labcard(S′, S),¬revoked(S) }
The policy writer may formulate the question: “Is the policy set more restrictive
when the subject provides fewer (pushed) attributes? ” To answer this question,
one must compare the policy set to itself in all policy contexts that are identical
except for the attributes pushed by the subject. To encode this question, we first
construct a policy set P ′ by renaming every predicate symbol p that appears in
edbP to p′, where edbP = {revoked(·), labcard(·, ·), hr (·), revoked(·), prj_file(·)}.
Suppose the attribute revoked is locally stored at the PDP and the remaining
attributes are pushed by the subject. The analysis question is encoded as

∀X. (revoked(X) = revoked ′(X)) ∧ ∀X,Y. (labcard(X,Y ) * labcard ′(X,Y ))

∧ ∀X. (hr (X) * hr ′(X)) ∧ ∀X. (prj_file(X) * prj_file ′(X))⇒ P * P ′ .

This analysis problem asks whether P is less permissive than P ′ in all policy
contexts that are identical for the stored attribute and all pushed attributes to
P are also pushed to P ′. The question indeed holds for the policy set P .

The problems of deciding domain and all-domains policy containment are
reducible to domain and all-domains query validity, respectively.

Theorem 6. Policy containment is polynomially reducible to query validity.
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Table 1. Complexity of BelLog’s policy analysis problems

Analysis problem Entailment Domain All-domains All-domains
containment containment containment�

Complexity ptime co-np-complete undecidable co-nexp

� For policies that belong to the unary-edb BelLog fragment.

Corollary 1. The problem of domain policy containment belongs to the com-
plexity class co-np-complete. The problem of all-domains policy containment
for unary-edb policy sets belongs to the complexity class co-nexp.

If a policy set has attributes associated to a single user, group, resource,
etc. and there are finitely many principals, then the policy set can be writ-
ten in the unary-edb fragment. This is because all attributes have the form
attr_name(Issuer ,Object) can be re-encoded as attr_nameIssuer (Object) since
there are finitely many principals.

6 Conclusions

In this paper we present BelLog, a formal language for specifying access con-
trol policies that require both authority delegation and policy composition. This
sets BelLog apart from the existing formal access control languages, which sup-
port either authority delegation or policy composition. BelLog can therefore
specify decentralized composite policies, which thus far have lacked formal seman-
tics; examples include policies based on the XACML 3 standard [25] and policies
for large-scale distributed systems, such as [2–4,26]. We present an analysis frame-
work for reasoning about BelLog policies and give complexity bounds for decid-
ing policy entailment and policy containment in BelLog, summarized in Table 1.

We see BelLog as a foundation for constructing high-level policy languages
for decentralized composite access control, much like Datalog is the foundation
for delegation languages such as RT [12] and SecPAL [11]. We plan to build
implementations of BelLog and apply them in practice. In particular we will
focus on algorithms for fast evaluation of practically-relevant policies, and sound
approximation techniques for deciding the policy analysis problems efficiently.
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Abstract. Two new logics for verification of hyperproperties are pro-
posed. Hyperproperties characterize security policies, such as noninter-
ference, as a property of sets of computation paths. Standard temporal
logics such as LTL, CTL, and CTL∗ can refer only to a single path at a
time, hence cannot express many hyperproperties of interest. The logics
proposed here, HyperLTL and HyperCTL∗, add explicit and simultane-
ous quantification over multiple paths to LTL and to CTL∗. This kind of
quantification enables expression of hyperproperties. A model checking
algorithm for the proposed logics is given. For a fragment of HyperLTL,
a prototype model checker has been implemented.

1 Introduction

Trace properties, which developed out of an interest in proving the correctness of
programs [32], characterize correct behavior as properties of individual execution
traces. Although early verification techniques specialized in proving individual
correctness properties of interest, such as mutual exclusion or termination, tem-
poral logics soon emerged as a general, unifying framework for expressing and
verifying trace properties. Practical model checking tools [11, 16, 28] based on
those logics now enable automated verification of program correctness.

Verification of security is not directly possible with such tools, because some
important security policies cannot be characterized as properties of individual
execution traces [38]. Rather, they are properties of sets of execution traces,
also known as hyperproperties [15]. Specialized verification techniques have been
developed for particular hyperproperties [5, 27, 41, 43], as well as for 2-safety
properties [52], which are properties of pairs of execution traces. But a unifying
program logic for expressing and verifying hyperproperties could enable auto-
mated verification of a wide range of security policies.

In this paper, we propose two such logics. Both are based, like hyperproperties,
on examining more than one execution trace at a time. Our first logic, HyperLTL,
generalizes linear-time temporal logic (LTL) [44]. LTL implicitly quantifies over
only a single execution trace of a system, but HyperLTL allows explicit quantifi-
cation over multiple execution traces simultaneously, as well as propositions that
stipulate relationships among those traces. For example, HyperLTL can express
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information-flow policies such as observational determinism [37,46,61], which re-
quires programs to behave as (deterministic) functions from low-security inputs
to low-security outputs. The following two programs do not satisfy observational
determinism, because they leak the value of high-security variable h through low-
security variable l, thus making the program behave nondeterministically from
a low-security user’s perspective:

(1) l := h (2) if h = 0 then l := 1 else l := 0

Other program logics could already express observational determinism or closely
related policies [7,30,41]. Milushev and Clarke [40–42] have even proposed other
logics for hyperproperties, which we discuss in Section 8. But HyperLTL provides
a simple and unifying logic in which many information-flow security policies can
be directly expressed.

Information-flow policies are not one-size-fits-all. Different policies might be
needed depending on the power of the adversary. For example, the following
program does not satisfy observational determinism, but the program might be
acceptable if nondeterministic choices, denoted �, are resolved such that the
probability distribution on output value l is uniform:

(3) l := h � l := 0 � l := 1

On the other hand, if the adversary can influence the resolution of nondeter-
ministic choices, program (3) could be exploited to leak information. Similarly,
the following program does satisfy observational determinism, but the program
might be unacceptable if adversaries can monitor execution time:

(4) while h > 0 do {h := h− 1}

In Section 3, we show how policies appropriate for the above programs, as well
as other security policies, can be formalized in HyperLTL.

Our second logic, HyperCTL∗, generalizes a branching-time temporal logic,
CTL∗ [18]. Although CTL∗ already has explicit trace quantifiers, only one trace
is ever in scope at a given point in a formula (see Section 5.1), so CTL∗ cannot di-
rectly express hyperproperties. But HyperCTL∗ can, because it permits quantifi-
cation over multiple execution traces simultaneously. HyperLTL and HyperCTL∗

enjoy a similar relationship to that of LTL and CTL∗: HyperLTL is the syntac-
tic fragment of HyperCTL∗ containing only formulas in prenex form—that is,
formulas that begin exclusively with quantifiers and end with a quantifier-free
formula. HyperCTL∗ is thus a strict generalization of HyperLTL. HyperCTL∗

also generalizes a related temporal logic, SecLTL [17], and subsumes epistemic
temporal logic [19, 54] (see Section 5).

Having defined logics for hyperproperties, we investigate model checking of
those logics. In Section 6, we show that for HyperCTL∗ the model checking
problem is decidable by reducing it to the satisfiability problem for quantified
propositional temporal logic (QPTL) [50]. Since HyperCTL∗ generalizes Hyper-
LTL, we immediately obtain that the HyperLTL model checking problem is also
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decidable. We present a hierarchy of fragments, which allows us to precisely char-
acterize the complexity of the model checking problem in the number quantifier
alternations. The lowest fragment, which disallows any quantifier alternation,
can be checked by a space-efficient polynomial-time algorithm (NLOGSPACE
in the number of states of the program).

We also prototype a model checker that can handle an important fragment of
HyperLTL, including all the examples from Section 3. The prototype implements
a new model checking algorithm based on a well-known LTL algorithm [58, 59]
and on a self-composition construction [7, 52]. The complexity of our algorithm
is exponential in the size of the program and doubly exponential in the size of
the formula—impractical for real-world programs, but at least a demonstration
that model checking of hyperproperties formulated in our logic is possible.

This paper contributes to theoretical and foundational aspects of security by:

– defining two new program logics for expressing hyperproperties,
– demonstrating that those logics are expressive enough to formulate impor-

tant information-flow policies,
– proving that the model checking problem is decidable, and
– prototyping a new model checking algorithm and using it to verify security

policies.

The rest of the paper is structured as follows. Section 2 defines the syntax
and semantics of HyperLTL. Section 3 provides several example formulations
of information-flow policies. Section 4 defines the syntax and semantics of
HyperCTL∗. Section 5 compares our two logics with other temporal and epistemic
logics. Section 6 obtains a model checking algorithm for HyperCTL∗. Section 7 de-
scribes our prototypemodel checker. Section 8 reviews related work, and Section 9
concludes.

2 HyperLTL

HyperLTL extends propositional linear-time temporal logic (LTL) [44] with
explicit quantification over traces. A trace is an infinite sequence of sets of atomic
propositions. Let AP denote the set of all atomic propositions. The set TR of all
traces is therefore (2AP)ω.

We first define some notation for manipulating traces. Let t ∈ TR be a trace.
We use t[i] to denote element i of t, where i ∈ N. Hence, t[0] is the first element
of t. We write t[0, i] to denote the prefix of t up to and including element i, and
t[i,∞] to denote the infinite suffix of t beginning with element i.

Syntax. Let π be a trace variable from an infinite supply V of trace variables.
Formulas of HyperLTL are defined by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Connectives ∃ and ∀ are universal and existential trace quantifiers, read as “along
some traces” and “along all traces.” For example, ∀π1. ∀π2. ∃π3. ψ means that
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for all traces π1 and π2, there exists another trace π3, such that ψ holds on those
three traces. (Since branching-time logics also have explicit path quantifiers, it
is natural to wonder why one of them does not suffice to formulate hyperprop-
erties. Section 5.1 addresses that question.) A HyperLTL formula is closed if all
occurrences of trace variables are bound by a trace quantifier.

An atomic proposition a, where a ∈ AP, expresses some fact about states.
Since formulas may refer to multiple traces, we need to disambiguate which
trace the proposition refers to. So we annotate each occurrence of an atomic
proposition with a trace variable π. Boolean connectives ¬ and ∨ have the usual
classical meanings. Implication, conjunction, and bi-implication are defined as
syntactic sugar: ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, and ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), and
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1). True and false, written true and false, are
defined as aπ ∨ ¬aπ and ¬true.

Temporal connective Xϕ means that ϕ holds on the next state of every
quantified trace. Likewise, ϕ1 U ϕ2 means that ϕ2 will eventually hold of the
states of all quantified traces that appear at the same index, and until then ϕ1

holds. The other standard temporal connectives are defined as syntactic sugar:
Fϕ ≡ true U ϕ, and Gϕ ≡ ¬F¬ϕ, and ϕ1 Wϕ2 ≡ (ϕ1 U ϕ2) ∨ Gϕ1, and
ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2).

We also introduce syntactic sugar for comparing traces. Given a set P of
atomic propositions, π[0]=P π′[0] ≡

∧
a∈P aπ↔aπ′ . That is, π[0]=P π′[0] holds

whenever the first state in both π and π′ agree on all the propositions in P . And
π=P π′ ≡ G(π[0]=P π′[0]), that is, all the positions of π and π′ agree on P . The
analogous definitions hold for 
=.

Semantics. The validity judgment for HyperLTL formulas is written Π |=T ψ,
where T is a set of traces, and Π : V → TR is a trace assignment (i.e., a
valuation), which is a partial function mapping trace variables to traces. Let
Π[π �→ t] denote the same function as Π, except that π is mapped to t. We write
trace set T as a subscript on |=, because T propagates unchanged through the
semantics; we omit T when it is clear from context. Validity is defined as follows:

Π |=T ∃π. ψ iff there exists t ∈ T : Π[π �→ t] |=T ψ
Π |=T ∀π. ψ iff for all t ∈ T : Π[π �→ t] |=T ψ
Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ϕ iff Π 
|=T ϕ
Π |=T ϕ1 ∨ ϕ2 iff Π |=T ϕ1 or Π |=T ϕ2

Π |=T Xϕ iff Π[1,∞] |=T ϕ
Π |=T ϕ1 U ϕ2 iff there exists i ≥ 0 : Π[i,∞] |=T ϕ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ϕ1

Trace assignment suffix Π[i,∞] denotes the trace assignment Π′(π) = Π(π)[i,∞]
for all π. If Π |=T ϕ holds for the empty assignment Π, then T satisfies ϕ.

We are interested in whether programs satisfy formulas, so we first derive
a set T of traces from a program, first using Kripke structures as a unified
representation of programs. A Kripke structure K is a tuple (S, s0, δ,AP, L)
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comprising a set of states S, an initial state s0 ∈ S, a transition function δ :
S → 2S, a set of atomic propositions AP, and a labeling function L : S → 2AP.
To ensure that all traces are infinite, we require that δ(s) is nonempty for every
state s.

The set Traces(K) of traces of K is the set of all sequences of labels produced
by the state transitions of K starting from initial state. Formally, Traces(K)
contains trace t iff there exists a sequence s0s1 . . . of states, such that s0 is the
initial state, and for all i ≥ 0, it holds that si+1 ∈ δ(si); and t[i] = L(si). A
Kripke structure K satisfies ϕ, denoted by K |= ϕ, if Traces(K) satisfies ϕ.

It will later be technically convenient to consider enlarging the set AP of
atomic propositions permitted by a Kripke structure to a set AP′, such that
AP ⊂ AP′. We extend Traces(K) into the set of traces Traces(K,AP′) that is
agnostic about whether each new proposition holds at each state. A trace (P0 ∪
P ′
0)(P1 ∪ P ′

1) . . . ∈ Traces(K,AP′) whenever P0P1 . . . ∈ Traces(K), and for all
i ≥ 0: P ′

i ⊆ AP′ \ AP. The final conjunct requires every possible set of new
atomic propositions to be included in the traces.

3 Security Policies in HyperLTL

We now put HyperLTL into action by formulating several information-flow se-
curity policies, which stipulate how information may propagate from inputs to
outputs. Information-flow is a very active field in security; see [20,48] for surveys.

Noninterference. A program satisfies noninterference [23] when the outputs ob-
served by low-security users are the same as they would be in the absence of
inputs submitted by high-security users. Since its original definition, many vari-
ants with different execution models have been named “noninterference.” For
clarity of our examples, we choose a simple state-based synchronous execution
model in which atomic propositions of the traces contain the values of program
variables, and in which progress of time corresponds to execution steps in the
model. We also assume that the variables are partitioned into input and output
variables, and into two security levels, high and low. (We could handle lattices
of security levels by conjoining several formulas that stipulate noninterference
between elements of the lattice.)

Noninference [38] is a variant of noninterference that can be stated in our sim-
ple system model. Noninference stipulates that, for all traces, the low-observable
behavior must not change when all high inputs are replaced by a dummy input
λ, that is, when the high input is removed. Noninference, a liveness hyperprop-
erty [15], can be expressed in HyperLTL as follows:

∀π.∃π′. (Gλπ′) ∧ π=Lπ
′ (5)

where λπ′ expresses that all of the high inputs in the current state of π′ are λ,
and π=Lπ

′ expresses that all low variables in π and π′ have the same values.
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Nondeterminism. Noninterference was introduced for use with deterministic pro-
grams.Nonetheless, nondeterminism naturally arises when programspecifications
abstract from implementation details, so many variants of noninterference have
been developed for nondeterministic programs. We formalize two variants here.

A (nondeterministic) program satisfies observational determinism [61] if ev-
ery pair of traces with the same initial low observation remain indistinguishable
for low users. That is, the program appears to be deterministic to low users.
Programs that satisfy observational determinism are immune to refinement at-
tacks [61], because observational determinism is preserved under refinement.
Observational determinism, a safety hyperproperty [15], can be expressed in Hy-
perLTL as follows:

∀π.∀π′. π[0]=L,inπ
′[0] → π=L,outπ

′ (6)

where π=L,inπ
′ and π=L,outπ

′ express that both traces agree on the low input
and low output variables, respectively.

Generalized noninterference (GNI) [35] permits nondeterminism in the low-
observable behavior, but stipulates that low-security outputs may not be altered
by the injection of high-security inputs. Like noninterference, GNI was original
formulated for event-based systems, but it can also be formulated for state-based
systems [38]. GNI is a liveness hyperproperty and can be expressed as follows:

∀π.∀π′.∃π′′. π=H,inπ
′′ ∧ π′=Lπ

′′ (7)

The trace π′′ in (7) is an interleaving of the high inputs of the first trace and
the low inputs and outputs of the second trace. Other security policies based
on interleavings, such as restrictiveness [36], separability [38], and forward cor-
rectability [39] can similarly be expressed in HyperLTL.

Declassification. Some programs need to reveal secret information to fulfill func-
tional requirements. For example, a password checker must reveal whether the
entered password is correct or not. The noninterference policies we have ex-
amined so far prohibit such behavior. More flexible security policies have been
designed to permit declassification of information; see [49] for a survey.

With HyperLTL, we easily specify customized declassification policies. For
example, suppose that a system inputs a password in its initial state, then de-
classifies whether that password is correct in the next state. The following policy
(a safety hyperproperty) stipulates that leaking the correctness of the password
is permitted, but that otherwise observational determinism must hold:

∀π.∀π′.(π[0]=L,inπ
′[0] ∧ X(pwπ↔ pwπ′))→ π=L,outπ

′ (8)

where atomic proposition pw expresses that the entered password is correct.

Quantitative noninterference. Quantitative information-flow policies [12, 14, 24,
31] permit leakage of information at restricted rates. One way to measure leak-
age is with min-entropy [51], which quantifies the amount of information an at-
tacker can gain given the answer to a single guess about the secret. The bounding
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problem [60] for min-entropy is to determine whether that amount is bounded
from above by a constant n. Assume that the program whose leakage is being
quantified is deterministic, and assume that the secret input to that program is
uniformly distributed. The bounding problem then reduces to determining that
there is no tuple of 2n+1 low-distinguishable traces [51,60] (a safety hyperprop-
erty). We can express that as follows:

¬∃π0. . . . . ∃π2n .
(∧

i

πi =L,in π0

)
∧
∧
i�=j

πi 
=L,out πj (9)

The initial negation can pushed inside to obtained a proper HyperLTL formula.
Quantitative flow and entropy naturally bring to mind probabilistic systems.

We haven’t yet explored extending our logics to enable specification of policies
that involve probabilities. Perhaps techniques previously used with epistemic
logic [25] could be adapted; we leave this as future work.

Event-based systems. Our examples above use a synchronous state-based ex-
ecution model. Many formulations of security policies, including the original
formulation of noninterference [23], instead use an event-based system model,
in which input and output events are not synchronized and have no relation
to time. HyperLTL can express policies for asynchronous execution models, too.
For example, HyperLTL can express the original definition of noninterference [23]
and observational determinism; the companion technical report [13] shows how.
The key idea is to allow the system to stutter and to quantify over all stut-
tered versions of the executions. We characterize the correct synchronization of
a pair of traces as having updates to low variables only at the same positions.
We then add an additional antecedent to the policy formula to require that only
those pairs of traces that are synchronized correctly need to fulfill the security
condition.

4 HyperCTL∗

HyperLTL was derived from LTL by extending the models of formulas from single
traces to sets of traces. However, like LTL, HyperLTL is restricted to linear time
and cannot express branching-time properties (e.g., all states that succeed the
current state satisfy some proposition). We show now that a branching-time
logic for hyperproperties could be derived from a branching-time logic for trace
properties, such as CTL∗ [18]. We call this logic HyperCTL∗. The key idea is
again to use sets instead of singletons as the models of formulas.

Syntax. HyperCTL∗ generalizes HyperLTL by allowing quantifiers to appear
anywhere within a formula. Quantification in HyperCTL∗ is over paths through
a Kripke structure. A path p is an infinite sequence of pairs of a state and a set
of atomic propositions. Hence, a path differs from a trace by including a state
of the Kripke structure in each element. Formally, p ∈ (S × 2AP)ω, where S is
the states of the Kripke structure. As with traces, p[i] denotes the element i of
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p, and p[i,∞] denotes the suffix of p beginning with element i. We also define a
new notation: let p(i) be the state in element i of p.

In HyperCTL∗, π is a path variable and ∃π is a path quantifier. Formulas of
HyperCTL∗ are defined by the following grammar:

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ| Xϕ | ϕ U ϕ | ∃π. ϕ

We introduce all the syntactic sugar for derived logical operators, as for Hy-
perLTL. The universal quantifier can now be defined as syntactic sugar, too:
∀π. ϕ ≡ ¬∃π. ¬ϕ. A HyperCTL∗ formula is closed if all occurrences of some
path variable π are in the scope of a path quantifier. A HyperCTL∗ specification
is a Boolean combination of closed HyperCTL∗ formulas each beginning with a
quantifier (or its negation).

Semantics. The validity judgment for HyperCTL∗ formulas is written Π |=K ϕ,
where K is a Kripke structure, and Π : V → (S × 2AP)ω is a path assignment,
which is a partial function mapping path variables to paths. We write K as a
subscript on |=, because K propagates unchanged through the semantics; we
omit K when it is clear from context. Validity is defined as follows:

Π |=K aπ iff a ∈ L
(
Π(π)(0)

)
Π |=K ¬ϕ iff Π 
|=K ϕ
Π |=K ϕ1 ∨ ϕ2 iff Π |=K ϕ1 or Π |= ϕ2

Π |=K Xϕ iff Π[1,∞] |=K ϕ
Π |=K ϕ1 U ϕ2 iff there exists i ≥ 0 :Π[i,∞] |=K ϕ2

and for all 0 ≤ j < i we have Π[j,∞] |=K ϕ1

Π |=K ∃π. ϕ iff there exists p ∈ Paths(K,Π(π′)(0)) : Π[π �→ p] |=K ϕ

In the clause for existential quantification, π′ denotes the path variable most
recently added to Π (i.e., closest in scope to π). If Π is empty, let Π(π′)(0) be the
initial state of K. It would be straightforward but tedious to further formalize
this notation, so we omit the details. That clause uses another new notation,
Paths(K, s), which is the set of paths produced by Kripke structure K beginning
from state s. Formally, Paths(K, s) contains path p, where p = (s0, P0)(s1, P1) . . .
and Pi ∈ 2AP, iff there exists a sequence s0s1 . . . of states, such that s0 is s, and
for all i ≥ 0, it holds that si+1 ∈ δ(si) and Pi = L(si).

Like with Traces in HyperLTL, we define Paths(K, s,AP′) as follows: We
have (s0, P0 ∪ P ′

0)(s1, P1 ∪ P ′
1) . . . ∈ Paths(K, s,AP′) iff (s0, P0)(s1, P1) . . . ∈

Paths(K, s), and for all i ≥ 0, it holds that P ′
i ⊆ AP′ \ AP.

We say that a Kripke structure K satisfies a HyperCTL∗ specification ϕ,
denoted by K |= ϕ, if Π |=K ϕ holds true for the empty assignment. The model
checking problem for HyperCTL∗ is to decide whether a given Kripke structure
satisfies a given HyperCTL∗ specification.

HyperCTL∗ vs. HyperLTL. LTL can be characterized as the fragment of CTL∗

containing formulas of the form Aϕ, where A is the CTL∗ universal path quan-
tifier and ϕ contains no quantifiers. Formula Aϕ is satisfied in CTL∗ by a Kripke
structure iff ϕ is satisfied in LTL by the traces of the Kripke structure.
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A similar relationship holds between HyperLTL and HyperCTL∗: HyperLTL
can be characterized as the fragment of HyperCTL∗ containing formulas in
prenex form—that is, a series of quantifiers followed by a quantifier-free formula.
A formula ϕ in prenex form is satisfied in HyperCTL∗ by a Kripke structure iff ϕ
is satisfied in HyperLTL by the traces of the Kripke structure. HyperCTL∗ is a
strict generalization of HyperLTL, which extends HyperLTL with the capability
to use quantified formulas as subformulas in the scope of temporal operators.
For example, consider the program (l := 0 � l := 0) � (l := 1 � l := 1). A
low-observer can infer which branch of the center-most nondeterministic choice
is taken, but not which branch is taken next. This is expressed by HyperCTL∗

formula ∀π. X ∀π′. X(lπ ↔ lπ′). There is no equivalent HyperLTL formula.
As we show in Subsection 5.3, the temporal logic SecLTL [17] can be encoded

in HyperCTL∗, but not in HyperLTL. This provides further examples that dis-
tinguish HyperLTL and HyperCTL∗.

5 Related Logics

We now examine the expressiveness of HyperLTL and HyperCTL∗ compared to
several existing temporal logics: LTL, CTL∗, QPTL, ETL, and SecLTL. There
are many other logics that we could compare to in future work; some of those
are discussed in Section 8.

5.1 Temporal Logics

HyperCTL∗ is an extension of CTL∗ and therefore subsumes LTL, CTL, and
CTL∗. Likewise, HyperLTL subsumes LTL. But temporal logics LTL, CTL, and
CTL∗ cannot express information-flow policies. LTL formulas express properties
of individual execution paths. All of the noninterference properties of Section 3
are properties of sets of execution paths [15, 38]. Explicit path quantification
does enable their formulation in HyperLTL.

Even though CTL and CTL∗ have explicit path quantifiers, information-flow
security policies, such as observational determinism (6), cannot be expressed
with them. Consider the following fragment of CTL∗ semantics:

s |= Aϕ iff for all p ∈ Paths(K, s) : p |= ϕ
p |= Φ iff p(0) |= Φ

Path formulas ϕ are modeled by paths p, and state formulas Φ are modeled
by states s. State formula Aϕ holds at state s when all paths proceeding from
s satisfy ϕ. Any state formula Φ can be treated as a path formula, in which
case Φ holds of the path iff Φ holds in the first state on that path. Using this
semantics, consider the meaning of AAϕ, which is the form of observational
determinism (6):

s |= AAϕ
= for all p ∈ Paths(K, s) : p |= Aϕ
= for all p ∈ Paths(K, s) and p′ ∈ Paths(K, s) : p′ |= ϕ
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Note how the meaning of AAϕ is ultimately determined by the meaning of ϕ,
where ϕ is modeled by the single path p′. Path p is ignored in determining
the meaning of ϕ; the second universal path quantifier causes p to “leave scope.”
Hence ϕ cannot express correlations between p and p′, as observational determin-
ism requires. So CTL∗ path quantifiers do not suffice to express information-flow
policies. Neither do CTL path quantifiers, because CTL is a sub-logic of CTL∗. In
fact, even the modal μ-calculus does not suffice to express some information-flow
properties [2].

By using the self-composition construction [7,52], it is possible to express re-
lational noninterference in CTL [7] and observational determinism in CTL∗ [30].
Those approaches resemble HyperCTL∗, but HyperCTL∗ formulas express poli-
cies directly over the original system, rather than over a self-composed system.
Furthermore, the self-composition approach does not seem capable of expressing
policies that require both universal and existential quantifiers over infinite exe-
cutions, like noninference (5) and generalized noninterference (7). It is straight-
forward to express such policies in our logics.

QPTL. Quantified propositional temporal logic (QPTL) [50] extends LTL with
quantification over propositions, whereas HyperLTL extends LTL with quantifi-
cation over traces. Quantification over traces is more powerful than quantifica-
tion over propositions, as we now show.

QPTL formulas are generated by the following grammar, where a ∈ AP:

ψ ::= a | ¬ψ | ψ ∨ ψ | Xψ | Fψ | ∃a. ψ

All QPTL connectives have the same semantics as in LTL, except for proposi-
tional quantification:

p |= ∃a.ψ iff there exists p′ ∈ (2AP)ω : p =AP\a p′ and p′ |= ψ .

Theorem 1. HyperLTL subsumes QPTL, but QPTL does not subsume Hyper-
LTL.

Proof sketch. To express a QPTL formula in HyperLTL, rewrite the formula to
prenex form, and rename all bound propositions with unique fresh names from
a set AP′. These propositions act as free variables, which are unconstrained
because they do not occur in the Kripke structure. Replace each propositional
quantification ∃a in the QPTL formula by a path quantification ∃πa in the
HyperLTL formula. And replace each occurrence of a by aπa . The result is a
HyperLTL formula that holds iff the original QPTL formula holds.

But not all HyperLTL formulas can be expressed in QPTL. For example,
QPTL cannot express properties that require the existence of paths, such as
∃π.X aπ.

In Section 6, we exploit the relationship between HyperLTL and QPTL to obtain
a model checking algorithm for HyperLTL.
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5.2 Epistemic Logics

HyperLTL and HyperCTL∗ express information-flow policies by explicit quan-
tification over multiple traces or paths. Epistemic temporal logic has also been
used to express such policies [4, 10, 26, 55] by implicit quantification over traces
or paths with the knowledge connective K of epistemic logic [19]. We do not yet
know which is more powerful, particularly for information-flow policies. But we
do know that HyperLTL subsumes a common epistemic temporal logic.

Define ETL (epistemic temporal logic) to be LTL with the addition of K un-
der its perfect recall semantics [4, 19, 54]. The model of an ETL formula is a
pair (K,Agts) of a Kripke structure K and a set Agts of equivalence relations
on AP, called the agents ; each relation models the knowledge of an agent. (In-
terpreted systems, rather than Kripke structures, are often used to model ETL
formulas [19,54]. Interpreted systems differ in style but can be translated to our
formulation.) In the asynchronous semantics of ETL, KAψ holds on state i of
trace t ∈ Traces(K), denoted t, i |= KAϕ, iff

for all t′ ∈ Traces(K) : t[0, i]≈A t′[0, i] implies t′, i |= ϕ,

where ≈A denotes stutter-equivalence on finite traces with respect to A. In
the synchronous semantics of ETL, stutter-equivalence is replaced by stepwise-
equivalence.

The following two theorems show that HyperLTL subsumes ETL:

Theorem 2. In the synchronous semantics, for every ETL formula ψ and every
set Agts of agents, there exists a HyperLTL formula ϕ such that for all Kripke
structures K, we have (K,Agts) |= ψ iff K |= ϕ.

Theorem 3. In the asynchronous semantics, for every ETL formula ψ and
every set Agts of agents, there exists a HyperLTL formula ϕ such that for all
asynchronous Kripke structures K, we have (K,Agts) |= ψ iff K |= ϕ.

Proofs of both theorems appear in the companion technical report [13]. The-
orem 3 requires an additional assumption that K is an asynchronous Kripke
structure, i.e. that it can always stutter in its current state and that it is indi-
cated in an atomic proposition whether the last state was a stuttering step.

HyperLTL and ETL have the same worst-case complexity for model check-
ing, which is non-elementary. But, as we show in Section 6, the complexity of
our model checking algorithm on the information-flow policies of Section 3 is
much better—only NLOGSPACE (for observational determinism, declassifica-
tion, and quantitative noninterference for a fixed number of bits) or PSPACE
(for noninference and generalized noninterference) in the size of the system. For
those policies in NLOGSPACE, that complexity, unsurprisingly, is as good as
algorithms based on self-composition [7]. This ability to use a general-purpose,
efficient HyperLTL model checking algorithm for information flow seems to be
an improvement over encodings of information flow in ETL.
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5.3 SecLTL

SecLTL [17] extends temporal logic with the hide modality H , which allows to
express information flow properties such as noninterference [23]. The semantics
of SecLTL is defined in terms of labeled transition system, where the edges are
labeled with valuations of the set of variables. The formula HH,Oϕ specifies
that the current valuations of a subset H of the input variables I are kept secret
from an attacker who may observe variables in O until the release condition ϕ
becomes true. The semantics is formalized in terms of a set of alternative paths
to which the main path is compared:

AltPaths(p,H) = {p′ ∈ Paths(KM , p[0]) | p[1]=I\H p′[1] and p[2,∞]=I p
′[2,∞]}

where KM is the equivalent Kripke structure for the labeled transition system
M (we will explain the translation later in this section.) A path p satisfies the
SecLTL formula HH,Oϕ, denoted by p |= HH,Oϕ, iff

∀p′ ∈ AltPaths(p,H).
(
p=O p′, or there exists i ≥ 0 :

p[i,∞] |=K ϕ and p[1, i−1]=O p′[1, i−1]
)

A labeled transition system M satisfies a SecLTL formula ψ, denoted by M |= ψ,
if every path p starting in the initial state satisfies ψ.

SecLTL can express properties like the dynamic creation of secrets discussed
in Section 4, which cannot be expressed by HyperLTL. However, SecLTL is
subsumed by HyperCTL∗. To encode the hide modality in HyperCTL∗, we first
translate M into a Kripke structure KM , whose states are labeled with the
valuation of the variables on the edge leading into the state. The initial state is
labeled with the empty set. In the modified system, L(p[1]) corresponds to the
current labels. We encode HH,Oϕ as the following HyperCTL∗ formula:

∀π′. π[1]=I\H π′[1] ∧ X
(
π[1]=O π′[1] W (π[1] 
=I π

′[1] ∨ ϕ)
)

Theorem 4. For every SecLTL formula ψ and transition system M , there is a
HyperCTL∗ formula ϕ such that M |= ψ iff KM |= ϕ.

The model checking problem for SecLTL is PSPACE-hard in the size of the
Kripke structure [17]. The encoding of SecLTL specifications in HyperCTL∗

implies that the model checking problem for HyperCTL∗ is also PSPACE-hard
(for a fixed specification of alternation depth ≥ 1), as claimed in Theorem 6.

6 Model Checking and Satisfiability

In this section we exploit the connection between HyperCTL∗ and QPTL to
obtain a model checking algorithm for HyperCTL∗ and study its complexity. We
identify a hierarchy of fragments of HyperCTL∗ characterized by the number of
quantifier alternations. This hierarchy allows us to give a precise characterization
of the complexity of the model checking problem. The fragment of formulas with
quantifier alternation depth 0 includes already many formulas of interest and our
result provides an NLOGSPACE algorithm in the size of the Kripke structure.
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Definition 1 (Alternation Depth). A HyperCTL∗ formula ϕ in NNF has
alternation depth 0 plus the highest number of alternations from existential to
universal and universal to existential quantifiers along any of the paths of the
formula’s syntax tree starting in the root. Occurrences of U and R count as an
additional alternation.

Theorem 5. The model checking problem for HyperCTL∗ specifications ϕ with
alternation depth k on a Kripke structure K is complete for NSPACE(gc(k, |ϕ|))
and it is in NSPACE(gc(k − 1, |K|)) for some c > 0.

The function gc(x, y) denotes a tower of exponentials of height x with ar-
gument y: gc(0, y) = y and gc(x, y) = cg(x−1,y). NSPACE(gc(x, y)) denotes
the class of languages accepted by a Turing machine bounded in space by
O(gc(x, y)). Abusing notation, we define gc(−1, y) = log y and NSPACE(log y) =
NLOGSPACE in y.

Proof. Both directions, the lower bound and the upper bound, are based on the
complexity of the satisfiability problem for QPTL formulas ϕ in prenex normal
form and with alternation depth k, which is complete for NSPACE(g(k, |ϕ|)) [50].

For the upper bound on the HyperCTL∗ model checking complexity, we first
translate until operators ψ U ψ′ as ∃t. t ∧ G(t → ψ′ ∨ (ψ ∧ X t)) ∧ ¬G t. Let
ψ(K,AP′) encode a Kripke structure K, where K = (S, s0, δ,AP, L), as a QPTL
formula (cf. [33]) using the set of atomic propositions AP′, which must contain
atomic propositions replacing those of AP and additional atomic propositions
to describe the states S. The formula ψ(K,AP′) is linear in |K| and does not
require additional quantifiers.

HyperCTL∗ path quantifiers ∃π.ϕ and ∀π.ϕ are then encoded as ∃APπ . ψ
(K,APπ) ∧ ϕAPπ

and ∀APπ.ψ(K,APπ) → ϕAPπ
, where APπ is a set of fresh

atomic propositions including a copy of AP and additional atomic propositions
to describe the states S. The formula ϕAPπ is obtained from ϕ by replacing all
atomic propositions referring to path π by their copies in APπ. Atomic proposi-
tions in the formula that are not in AP (i.e. their interpretation is not fixed in
K) need to be added to the sets APπ accordingly.

For the lower bound, we reduce the satisfiability problem for a given QPTL
formula ϕ in prenex normal form to a model checking problem K |= ϕ′ of
HyperCTL∗. We assume, without loss of generality, that ϕ is closed (if a free
proposition occurs in ϕ, we bind it with an existential quantifier) and each
quantifier in ϕ introduces a different proposition.

The Kripke structure K consists of two states S = {s0, s1}, is fully connected
δ(s) = S for all s ∈ S, and has a single atomic proposition AP = {p}. The
states are labeled as follows: L(s0) = ∅ and L(s1) = {p}. Essentially, paths
in K can encode all sequences of valuations of a variable in QPTL. To obtain
the HyperCTL∗ formula, we now simply replace every quantifier in the QPTL
formula with a path quantifier. The only technical problem left is that quantifi-
cation in QPTL allows to choose freely the value of p in the current state, while
path quantification in HyperCTL∗ only allows the path to differ in the next
state. We solve the issue by shifting the propositions using a next operator.
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Lower bounds in |K|. An NLOGSPACE lower bound in the size of the Kripke
structure for fixed specifications with alternation depth 0 follows from the non-
emptiness problem of non-deterministic Büchi automata. For alternation depth
1 and more we can derive PSPACE hardness in the size of the Kripke structure
from the encoding of the logic SecLTL into HyperCTL∗ (see Subsection 5.3).

The result can easily be transferred to HyperLTL, since in the SecLTL formula
that is used to prove PSPACE hardness, the Hide operator does not occur in the
scope of temporal operators and hence the translation yields a HyperLTL formula.

Theorem 6. For HyperLTL formulas the model checking problem is hard for
PSPACE in the size of the system.

A Remark on Efficiency The use of the standard encoding of the until operator
in QPTL with an additional quantifier shown above is, in certain cases, wasteful.
The satisfiability of QPTL formulas can be checked with an automata-theoretic
construction, where we first transform the formula into prenex normal form, then
generate a nondeterministic Büchi automaton for the quantifier-free part of the
formula, and finally apply projection and complementation to handle the existen-
tial and universal quantifiers. In this way, each quantifier alternation, including
the alternation introduced by the encoding of the until operators, causes an
exponential blow-up. However, if an until operator occurs in the quantifier-free
part, the standard transformation of LTL formulas to nondeterministic Büchi
automata handle this until operator without requiring a quantifier elimination,
resulting in an exponential speedup.

Using this insight, the model checking complexity for many of the formulas
presented above and in Section 3 can be reduced by one exponent. Additionally,
the complexity with respect to the size of the system reduces to NLOGSPACE for
HyperCTL∗ formulas where the leading quantifiers are all of the same type and
are followed by some quantifier-free formula which may contain until operators
without restriction. Observational determinism and the declassification policy
discussed in Section 3 are examples for specifications in this fragment. This
insight was used for the prototype implementation described in Section 7 and it
avoids an additional complementation step for noninference (5).

Satisfiability. The positive result regarding the model checking problem for
HyperCTL∗ does not carry over to the satisfiability problem. The finite-state
satisfiability problem consists of the existence of a finite model, while the general
satisfiability problem asks for the existence of a possibly infinite model.

Theorem 7. For HyperCTL∗, finite-state satisfiability is hard for Σ0
1 and gen-

eral satisfiability is hard for Σ1
1 .

In the proof, located in the companion technical report [13], we reduce the LTL syn-
thesis problem of distributed systems to the satisfiability problem of HyperCTL∗.

7 Prototype Model Checker

The results of the previous section yield a model checking algorithm for all of
HyperCTL∗. But most of our information-flow policy examples do not require
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the full expressiveness of HyperCTL∗. In fact, we have been able implement a
prototype model checker for an expressive fragment of the logic mostly using
off-the-shelf components.

Define HyperLTL2 as the fragment of HyperLTL (and of HyperCTL∗) in which
the series of quantifiers at the beginning of a formula may involve at most one al-
ternation. Every formula in HyperLTL2 thus may begin with at most two (whence
the name) kinds of quantifiers—a sequence of ∀’s followed by a sequence of ∃’s, or
vice-versa. For example,∃π.ψ and∀π1.∀π2.∃π3.ψ are allowed, but∀π1.∃π2.∀π3.ψ is
not. HyperLTL2 suffices to express all the security policies formulated in Section 3.
(Another logic for hyperproperties, ILk

μ [41], similarly restricts fixpoint operator
alternations with no apparent loss in expressivity for security policies.)

Our model checking algorithm for HyperLTL2, detailed in the companion
technical report [13], is based on algorithms for LTL model checking [21,22,57].
Those LTL algorithms determine whether a Kripke structure satisfies an LTL
formula by performing various automata constructions and by checking language
containment. Our algorithm likewise uses automata constructions and language
containment, as well as self composition [7,52] and a new projection construction.

We prototyped this algorithm in about 3,000 lines of OCaml code. Our pro-
totype accepts as input a Kripke structure and a HyperLTL2 formula, then con-
structs the automata required by our algorithm, and outputs a countermodel if
the formula does not hold of the structure. For automata complementation, our
prototype outsources to GOAL [53], an interactive tool for manipulating Büchi
automata. We have used the prototype to verify noninference (5), observational
determinism (6), and generalized noninterference (7) for small Kripke structures
(up to 10 states); running times were about 10 seconds or less.

Since our algorithm uses automata complementation, the worst-case running
time is exponential in the size of the Kripke structure’s state space and doubly
exponential in the formula size. So as one might expect, our prototype currently
does not scale to medium-sized Kripke structures (up to 1,000 states). But our
purpose in building this prototype was to demonstrate a proof-of-concept for
model checking of hyperproperties. We conjecture that practical symbolic model
checking algorithms, such as BMC and IC3, could be used to scale up our ap-
proach to real-world systems.

8 Related Work

McLean [38] formalizes security policies as closure with respect to selective inter-
leaving functions. He shows that trace properties cannot express security policies
such as noninterference and average response time, because those are not proper-
ties of single execution traces. Mantel [34] formalizes security policies with basic
security predicates, which stipulate closure conditions for trace sets.

Clarkson and Schneider [15] introduce hyperproperties, a framework for ex-
pressing security policies. Hyperproperties are sets of trace sets, and are able
to formalize security properties such as noninterference, generalized noninter-
ference, observational determinism and average response time. Clarkson and
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Schneider use second-order logic to formulate hyperproperties. That logic isn’t
verifiable, in general, because it cannot be effectively and completely axioma-
tized. Fragments of it, such as HyperLTL and HyperCTL∗, can be verified.

Alur et al. [2] show that modal μ-calculus is insufficient to express all opacity
policies [9], which prohibit observers from discerning the truth of a predicate.
(Alur et al. [2] actually write “secrecy” rather than “opacity.”) Simplifying defi-
nitions slightly, a trace property P is opaque iff for all paths p of a system, there
exists another path p′ of that system, such that p and p′ are low-equivalent, and
exactly one of p and p′ satisfies P . Noninference (5) is an opacity policy [47] that
HyperLTL can express.

Huisman et al. reduce observational-determinism properties to properties in
CTL∗ [30] and in modal μ-calculus [29] on a self-composed system. Barthe et al.
use self composition to verify observational determinism [7] and noninterference [6]
on terminating programs. Van der Meyden and Zhang [56] reduce a broader class
of information-flow policies to safety properties on a self-composed system ex-
pressible in standard linear and branching time logics, and use model checking
to verify noninterference policies. Their methodology requires customized model
checking algorithms for each security policy, whereas this work proposes a single
algorithm for all policies.

Balliu et al. [4] use a linear-time temporal epistemic logic to specify many
declassification policies derived from noninterference. Their definition of nonin-
terference, however, seems to be that of observational determinism (6). They do
not consider any information-flow policies involving existential quantification,
such as noninference. They also do not consider systems that accept inputs after
execution has begun. Halpern and O’Neill [26] use a similar temporal epistemic
logic to specify secrecy policies, which subsume many definitions of noninterfer-
ence; they do not pursue model checking algorithms.

Alur et al. [1] discuss branching-time logics with path equivalences that are
also able to express certain security properties. The authors introduce operators
that resemble the knowledge operator of epistemic logics. As the logics build on
branching-time logics they are not subsumed by HyperLTL. The relationship to
HyperCTL∗ is still open.

Milushev and Clarke [40–42] propose three logics for hyperproperties:

– Holistic hyperproperty logic HL, which is based on coinductive predicates
over streams. Holistic hyperproperties “talk about whole traces at once; their
specifications tend to be straightforward, but they are difficult to reason
about, exemplified by the fact that no general approach to verifying such
hyperproperties exists” [40]. HyperLTL and HyperCTL∗ are logics that talk
about whole traces at once, too; and they have straightforward specifications
as well as a general approach to verification.

– Incremental hyperproperty logic IL is a fragment of least fixed-point logic [8].
There is a manual verification methodology for IL [40], but no automated
decision procedure.

– Another incremental hyperproperty logic ILk
μ, a fragment of polyadic modal

μ-calculus [3] that permits at most one quantifier alternation (a greatest
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fixed-point followed by a least fixed-point). There is an automated model
checking technique [41] for ILk

μ based on parity games. That technique has
been prototyped and applied to a few programs.

All these logics suffice to express security policies such as noninterference and
generalized noninterference. Like our logics, the exact expressive limitation is
still an open problem.

As the preceding discussion makes clear, the expressiveness of HyperLTL and
HyperCTL∗ versus several other logics is an open question. It’s possible that
some of those logics will turn out to be more expressive or more efficiently
verifiable than HyperLTL or HyperCTL∗. It’s also possible that it will turn
out to be simply a matter of taste which style of logic is more suitable for
hyperproperties. The purpose of this paper was to explore one design option: a
familiar syntax, based on widely-used temporal logics, that can straightforwardly
express well-known hyperproperties.

9 Concluding Remarks

In designing a logic for hyperproperties, starting with HyperLTL was natural,
because hyperproperties are sets of trace sets, and LTL uses trace sets to model
programs. From HyperLTL, the extension to HyperCTL∗ was also natural: we
simply removed the restrictions on where quantifiers could appear. The curtail-
ment to HyperLTL2 was also natural, because it was the fragment needed to
express information-flow security policies. HyperLTL2 permits up to one quanti-
fier alternation, but what about hyperproperties with more? We do not yet know
of any security policies that are examples. As Rogers [45] writes, “The human
mind seems limited in its ability to understand and visualize beyond four or
five alternations of quantifier. Indeed, it can be argued that the inventions. . . of
mathematics are devices for assisting the mind in dealing with one or two addi-
tional alternations of quantifier.” For practical purposes, we might not need to
go much higher than one quantifier alternation.
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Abstract. The success of a security attack crucially depends on time:
the more time available to the attacker, the higher the probability of a
successful attack; when given enough time, any system can be compro-
mised. Insight in time-dependent behaviors of attacks and the evolution
of the attacker’s success as time progresses is therefore a key for effective
countermeasures in securing systems.

This paper presents an efficient technique to analyze attack times for
an extension of the prominent formalism of attack trees. If each basic at-
tack step, i.e., each leaf in an attack tree, is annotated with a probability
distribution of the time needed for this step to be successful, we show
how this information can be propagated to an analysis of the entire tree.
In this way, we obtain the probability distribution for the entire system
to be attacked successfully as time progresses. For our approach to be
effective, we take great care to always work with the best possible com-
pression of the representations of the probability distributions arising.
This is achieved by an elegant calculus of acyclic phase type distribu-
tions, together with an effective compositional compression technique.
We demonstrate the effectiveness of this approach on three case studies,
exhibiting orders of magnitude of compression.

1 Introduction

Computer security attacks on traditional IT-systems as well as on modern IT-
enabled systems, such as cars, pacemakers, or power grid infrastructure, are on
the rise. Successful attacks have a certain structure and timing, and one of the
dominant problems in preventing attacks is that the security engineers fail to
properly predict the potential angle and timing of an attack.

In a recent article [1] Basin and Capkun argue that there is a lot to learn from
the study of successful attacks. In particular, it can help in refining the attacker
model, so as to understand the potential attack angles better, and thus arrive
at ever more effective countermeasures. In this context, security engineers and
product managers are facing the practical challenge of limited resources. In the
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end, decisions have to be made about how much to spend on security, and where
to invest their budget. Making well-informed choices requires insight in attacks:
which attacks seem more likely than others? How much time might they take to
succeed?

There is a growing awareness that the mathematical foundations of such quan-
titative aspects of security are worth to be better investigated [2]. Concretely,
the quantitative analysis of attacks can yield valuable insights in aspects like
(1) system parameters: which parameters influence attack times and probabili-
ties most? (2) what-if scenarios, e.g., what if attack probabilities increase with
two orders of magnitude? (3) design alternatives. This paper contributes to this
research strand, and it does so in the context of a prominent practical attack
modelling formalism, attack trees.

Attack trees (AT) were coined by Schneier [3], as a means to describe, doc-
ument, brainstorm, and analyze system security. Over the last decades indeed
a wide range of techniques have been developed to analyze costs, probability,
effort, etc., associated to a successful attack [4–7].

This paper studies the probability of a successful attack as time advances,
i.e., the probability distribution of attack times: given a time bound t, what is
the probability that the system is successfully compromised within time t? Our
probabilistic timed analysis of attacks is conservatively extending earlier time-
abstract analyses [3, 5, 7, 8]. The latter only considered the probability whether
or not an attack eventually could take place, while we evaluate the success prob-
ability as a function of time.

To represent probabilistic timed behaviour, we use acyclic phase-type (APH)
distributions. APH distributions are a distingushed class of probability distri-
butions, as they can be used to approximate any other probability distribution
with arbitrary precision; and—as we fruitfully exploit in this paper—allow for
very compact representations. Furthermore, effective fitting techniques exist to
derive APH distributions from statistical data [9,10]. We therefore assume that
each leaf of an attack tree is annotated with an APH distribution representing
the time needed for this step to be successful. Of course, one may argue that
it is difficult to get realistic data about the timing of these attack steps—apart
from the attacker anyway behaving notoriously unpredictably—and that there-
fore, the outcomes of this quantitative security analyses should not be trusted.
Still, the benefit of the approach we propose lies in the possibility to easily pose
and effectively evaluate ‘what if’ questions, understand system parameters, and
to study design alternatives at the push of a button. Especially the ‘what if’
approach gives a way to understand the sensitivity of the system with respect
to different leaf distributions.

At the core of the paper’s contribution lies a compositional attack tree seman-
tics that maps on APH distributions, together with a compositional compression
algorithm. Here, compositionality refers to the possibility to weave the compres-
sion into the compositional construction of the APH distribution associated with
the entire graph. This keeps the representations as small as possible. The com-
pression exploits Laplace domain properties in a symbolic and effective manner.
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Three case studies exemplify the effectiveness of this approach, among them a
study of the Stuxnet attack, and a novel and large industrial case. The case
studies are carried out with a full-fledged implementation of the approach we
present.

Related Work. Weiss’s threat logic trees [11] and Amoroso’s threat trees [12]
were the first formal models to represent attacks for security analysis. In 1999,
Schneier introduced the notion of attack trees [3]. Since then a colorful variety of
new formalisms has evolved. These variations can be classified in static models,
which do not take the evolution of time into account, and dynamic models which
can express timed behavior such as sequencing. A more detailed overview and
classification can be found in [13].

Static models have been rigorously formalized by Mauw and Oostdijk [14].
Multi-parameter attack trees [4] were introduced to process different parameters
in parallel. The idea to shift the focus from the attacker’s to the defender’s
point of view was captured by the introduction of defense trees [15], [16] and
attack-countermeasure trees [6]. While these tree-based models are evaluated
by a bottom-up analysis [5], graph-based formalisms suggested by Sheyner et
al. [17] can be analyzed with model checking.

In the field of dynamic attack models, most formalisms are graph-based, for
instance compromise graphs developed by McQueen [18]. Distinct attacker pref-
erences were introduced in [19]. More expressive approaches use Petri nets to
model intrusion detection as attack nets [20]. A tree-based formalism has only
recently been introduced by Piètre-Cambacédès and Bouissou [21,22] which en-
ables the modeling of sequences within complex attack scenarios.

2 Preliminaries

Random Variables. A real-valued random variable is a function X : Ω → R
that assigns a real value to each outcome of a stochastic experiment; in our
case, X describes the time it takes until a system is successfully attacked. Then
P(X ≤ t) denotes the probability that X has a value less than or equal to t;
in our case the probability that a successful attack occurs within time t. The
function F : R→ [0, 1] given by

F (t) = P(X ≤ t)

is called the cumulative distribution function (CDF) of X ; and X ∼ F denotes
that X has CDF F . (Note that, in many cases, P(X = t) = 0. Therefore one
considers the cumulative probability P(X ≤ t).) We denote by F the class of all
cumulative distribution functions.

Well-known examples are the (negative) exponential distribution whose CDF
is given by

P(X ≤ t) = 1− e−λt, for any t ∈ R+.

This distribution has a parameter λ > 0, called rate, which determines the
“speed” with which the probability grows. We write X ∼ exp(λ) if X has an
exponential distribution.
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Apart from its CDF, a random variable can also be characterized by its prob-
ability density function (PDF, or density for short) f , which is the derivative of
the CDF

P(X ≤ t) =

∫ t

−∞
f(x)dx.

Thus, the PDF of the exponential distribution is given by f(t) = λe−λt.
Furthermore, it is important to realize that, given a real-valued random vari-

able X , and a real-valued function f : R→ R, f(X) is again a random variable.
Given several random variables X1, X2, . . . Xn and a function g : R2 → R, we
have by repetitive application that g(X1, g(X2, . . . , g(Xn−1, Xn))) is a random
variable. Below, we will heavily consider random variables X1 +X2 + . . .+Xn,
max(X1, X2, . . .Xn), and min(X1, X2, . . .Xn). If we take the sum of k indepen-
dent random variables each governed by an exponential distribution with param-
eter λ, then we obtain the Erlang distribution with parameters k, λ. Its density

f(x) = λk

(k−1)!x
k−1e−λx is the so-called convolution of the PDFs of exponential

distributions. We write X ∼ erl(k, λ) if X is Erlang-distributed.

Acyclic Phase-Type Distributions. Phase-type distributions are represented by
the time needed to reach a final state in a continuous-time Markov chain (CTMC).
If this Markov chain is acyclic, then we speak about an acyclic phase-type dis-
tribution (APH). APHs consitute a very prominent class of probability distri-
butions: they subsume the exponential and Erlang distributions. Notably, APH
distributions are topologically dense [23]. This implies that any continuous dis-
tribution can be approximated arbitrarily closely by an APH distribution or a
PH distribution. Very effective tools exist that compute tight approximations of
arbitrary distributions by small APH distributions or fit an APH distribution
to measurements, i.e., given a set of empirical data, they can compute the APH
distribution that matches most closely [9, 10, 24]. Moreover, as we show below,
APH distributions are closed under summation, maximum, and minimum and
allow for drastic compression techniques. All this makes the APH distributions
a suitable class to model time-dependent behavior of attack trees.

A CTMC is a tuple M = (S,Q,π), where S = {s1, s2, · · · , sn, sn+1} is a
countable set of states, Q : (S × S) → R is a so-called infinitesimal generator
matrix, and π : S → [0, 1] is the initial probability distribution on S. Intuitively,
for any two states s, s′ ∈ S, Q(s, s′) specifies the rate of the transition from s to
s′. This means that the probability that a state change occurs from s to s′ within
t time units is 1− exp(−Q(s, s′)t). By definition Q(s, s′) ≥ 0 for all s 
= s′, and
Q(s, s) = −

∑
s�=s′ Q(s, s′). The negative of the diagonal value, E(s) = −Q(s, s),

is called the exit rate of state s.
If state sn+1 is absorbing (i.e., E(sn+1) = 0) and all other states si, for

1 ≤ i ≤ n, are transient (i.e., there is a nonzero probability that si will never be
visited once it is left), the generator matrix of the CTMC can be written as

Q =

[
A A
0 0

]
.
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Fig. 1. An acyclic PH distribution
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Fig. 2. Graphical representation of (a) an exponential distribution and (b) an Erlang
distribution with 3 phases

In this paper we consider CTMCs with acyclic graph structure, or, from the
matrix perspective, with A being an upper triangular matrix. Fig. 1 shows an
example of such an acyclic CTMC. The probability distribution of the time until
the absorbing state is reached in such a CTMC is called an APH distribution [25].
Together with the initial probability vector at transient states α, matrix A
completely characterizes the APH distribution under consideration. The pair
(α,A) is called the representation of the APH distribution. The CDF of the
APH distribution, which represents the probability distribution of the time to
absorption mentioned above, is given by

F (t) = P(X ≤ t) = 1−αeAt1, (1)

where 1 is a vector of proper size whose components are all 1.
The simplest APH distributions are formed by the family of exponential and

Erlang distributions; see Fig. 2 for their graph-based APH representations.

Three Stochastic Operations. We consider three operations on continuous prob-
ability distributions, since they have very intuitive correspondences with the
operators on attack trees. Let X1 and X2 be two independent random variables
with distribution functions F1(t) and F2(t), respectively; and let the random vari-
ables Xcon = X1 +X2, Xmax = max{X1, X2}, and Xmin = min{X1, X2} be the
summation (convolution), maximum, and minimum, respectively, of X1 and X2.

The random variables Xcon, Xmax, and Xmin, have CDFs Fcon(t) =
∫ t

0 F1(t −
x)F2(x)dx, Fmax(t) = F1(t)F2(t), and Fmin(t) = 1 − (1 − F1(t))(1 − F2(t)),
respectively.

Acyclic phase-type distributions are closed under these three operations. Given
APH distributions PH1 and PH2, we use con(PH1,PH2), max(PH1,PH2), and
min(PH1,PH2) to denote the convolution, maximum, and respectively minimum
of the two APH distributions. The following theorem provides the recipe to ob-
tain the representation of the convolution, maximum, and minimum, given the
representations of the two constituent APH distributions.
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Theorem 1. [25, Theorem 2.2.9] Let (α,A) and (β,B) be the representations
of PH distributions F (t) and G(t) of size m and n, respectively. Then

(a) their convolution is a PH distribution with representation (δ,D) of size m+
n, where

δ = [α, αm+1β] and D =

[
A Aβ
0 B

]
.

(b) their maximum is a PH distribution with representation (δ,D) of size mn+
m+ n, where1

δ =
[
α⊗ β, βn+1α, αm+1β

]
and D =

⎡⎣A⊕B IA ⊗B A⊗ IB
0 A 0
0 0 B

⎤⎦ .

(c) their minimum is a PH distribution with representation (δ,D) of size mn,
where

δ = α⊗ β and D = A⊕B.

3 Attack Trees

Attack trees establish an intuitive model to systematically describe possible at-
tack scenarios on a system and thereby form the basis for a threat analysis.

Attack Tree Syntax. The graphical representation of an AT is a tree. The root
node of the tree identifies the goal of the attacker within the considered scenario.
This goal can be achieved by executing a series of basic attack steps (BAS) which
are encoded as leaves of the AT. A BAS describes one action of the attacker to
exploit the system’s vulnerabilities which can not be refined into finer steps.
Complex attack scenarios are described by composing the involved BASs. The
syntactic tool to express this composition in an AT are so-called gates. Most AT
formalisms use AND gates and OR gates to describe conjunctive and disjunctive
composition respectively [3,14]. Additionally, we introduce SEQ gates to model
time dependencies between BASs. This gate is described in more detail in the
sequel. We use the standard distinctive shapes to visualize AND gates and OR
gates. The graphical representation of an SEQ gate is an AND gate with a
horizontal arrow pointing in the direction of progressing time.

The syntax and semantics of ATs allow the leaves to be annotated with any
CDF in F , but our analysis techniques exploit the fact that we work with APH
distributions.

Definition 1 (AT gates and elements). An AT gate is one of AND, OR or
SEQ. We denote by G the set of gates. An AT element is either a gate, or a
CDF. The set of AT elements E is given by E = G ∪ F .
1 ⊗ and ⊕ denote the Kronecker product and sum operators, respectively. See for
instance [25].
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Fig. 3. Attack tree for the scenario ‘steal gold from a bank’

In the sequel, given a set X , we let X∗ denote the set of all sequences, also
called lists, over X . For a list x ∈ X∗, let |x| denote its length; (x)i is the i-th
element of x. Informally, an attack tree is a directed acyclic graph whose leaves
are labeled by an element of F ; all other nodes are gates, being either AND, OR
or SEQ.

Definition 2 (Attack tree syntax). An attack tree A is a graph (V, child, r, l),
where

– V is a finite set of vertices.

– child : V → V ∗ assigns to each vertex a list of input vertices.

– We define the set of edges of A by EA = {(v, w) ∈ V 2 | ∃i . w = (child(v))i}.
We require that (V,EA) is acyclic with a single root r ∈ V . All vertices have
to reach r.

– We denote by L the leaves of (V,EA), so that L = {v ∈ V | |child(v)| = 0}.
– � : V → E is a labeling function that assigns to each vertex an AT element

such that

• Each leaf in A is annotated with a CDF: �(v) ∈ F , for all v ∈ L;

• All other vertices are annotated with gates: �(v) ∈ G for all v ∈ V \L.

Example 1. The attack tree in Fig. 3 models the attack scenario to rob gold
from a bank. To do so, the attacker first has to get into the bank before he can
try to open the safe. This time dependency is modeled with a SEQ gate. The
attacker has two possible ways to open the safe; he can either unlock it or cut it
open; hence, the OR gate. To unlock the safe, the attacker needs to find a key
and obtain the access combo from an employee. As there is no time dependency
between these two steps, we compose them with an AND gate. After opening the
safe, the attacker has to make for a safe escape with his booty. The distribution of
the time to execute each BAS is modeled as exponential or Erlang distribution.
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Timed Probabilistic Semantics of Attack Trees. In this section we define the
semantics of the AT elements. We aggregate the CDFs of the BASs along the
gates to obtain a single CDF for an AT A, making use of the operators introduced
above. Therefore, the semantics of each AT element, denoted by �.�, is a CDF.
We aim to derive �r� for the root node r. We further define �A� = �r�. Let in
the following v ∈ V (A) be a node of A with inputs v1, . . . , vn.

BAS. Let v be a leaf, so �(v) ∈ F . It is then annotated with a CDF that
represents the distribution of the time to execute this attack step. We formalize
this interpretation by defining the semantics of a leaf node as its annotated CDF,
i.e., �v� = L(v).

AND gate. Let vertex v be labeled with AND, �(v) = AND. Then the at-
tack step represented by v is completed by the attacker, once each of the steps
represented by its input vertices are completed. This corresponds to the lat-
est time a step represented by the input vertices is completed which in turn
is expressed by the maximum over the CDFs of its inputs, in other words
�AND(v1, . . . , vn)� = max{�v1�, . . . , �vn�}.

OR gate. Let �(v) = OR. Then the attack step represented by vertex v
is completed, when at least one of the steps represented by its input vertices
is completed. This corresponds to the earliest time at which an attack step
represented by any of the input vertices is completed. Analogous to the AND gate
we thus define its semantics using the minimum of the CDFs: �OR(v1, . . . , vn)� =
min{�v1�, . . . , �vn�}.

SEQ gate. Finally, let �(v) = SEQ. The semantics of a SEQ gate is sim-
ilar to that of an AND gate in the sense that the attack step represented by
it is only achieved if all the steps represented by its input vertices are com-
pleted. In addition, it expresses a causal dependency of BASs that induces a
temporal order: attack steps can only be executed in succession: A step com-
mences at the moment another step is successfully completed. The time at which
the step represented by vertex v is achieved corresponds to the sum of the
times required to complete each of the attack steps represented by its input
vertices. As these times are random variables distributed according to CDFs,
we use the convolution operation to define the semantics of the SEQ gate as
�SEQ(v1, . . . , vn)� = con{�v1�, . . . , �vn�}. The SEQ gate is a novelty in attack
modeling, its semantics is inspired by the ‘trigger’ element in [21].

The CDF �A� corresponding to the entire attack tree A is derived by compos-
ing the CDFs in the leaves with maximum, minimum, and convolution operations
along the tree structure.

4 Efficient Analysis of Attack Trees

This section shows how we can efficiently analyze attack times for ATs whose
leaves are annotated with APH distributions, based on clever representations of
these. In general, the CTMC representation of an APH distribution is not unique,
and two representations of one APH distribution can differ drastically in size.
In practice, there is a need to have the smallest possible representation. This
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holds in particular when applying the minimum, maximum and sum operators,
since these yield exponential blow ups of the CTMC representations. To tackle
this problem, we discuss two important representations: the ordered bidiagonal
representation, and the Cox representation.

APH Representations. The size of an APH representation is the dimension of A.
Notably, any APH distribution has infinitely many representations of different
sizes. An (acyclic) minimal representation of an APH distribution is an APH
representation with the least possible number of states.

There are two different canonical forms of APH representations, ordered bidi-
agonal and Cox forms, each with a simple and easy-to-understand structure.
Each of them is “canonical” in the sense that it (if viewed as a graph) is unique
up to isomorphism. Every APH representation can be transformed into either of
them without altering its stochastic behavior, i.e., its distribution.
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Fig. 4. (a) An ordered bidiagonal and (b) a Cox representations of the APH represen-
tation from Fig. 1

Ordered Bidiagonal. Fig. 4(a) depicts an ordered bidiagonal representation. Such
representation has a simple structure: the states are ascendingly ordered by
their exit rates, each of them has only one transition to its neighbour, and
the initial distributions spans the entire state space. An efficient algorithm,
called the spectral polynomial algorithm (SPA) [26], can be used to construct
the ordered bidiagonal representation of any given APH representation. SPA
has complexity O(n3), where n is the size of the given APH representation.

Cox. A Dirac distribution is a probability distribution that assigns full proba-
bility to a single outcome. Consider the representation depicted in Fig. 4(b).
Here, every state, apart from the absorbing state, has a transition to the next
state, possibly a transition to the absorbing state, and no other transitions.
If the representation has descending exit rates and a Dirac initial distribu-
tion to the highest exit rate state, then it is called a Cox representation. The
name is due to David R. Cox [27], who coined this representation.
Once an ordered bidigonal representation is obtained, transforming it to the
associated Cox representation can be performed with complexity O(n) [28],
where n is the number of states in the resulting representation.

Size Compression. Given the three operations introduced in Section 2, Theo-
rem 1 is the basis for constructing complex APH representations from simpler
ones. However, in practice we often face an explosion in size, especially rooted
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in the fact that the maximum and minimum are basically cross-product con-
structions. Hence, they grow as the product of their component sizes, while the
convolution grows as their sum. This phenomenon is not uncommon especially
for concurrent system representations. Luckily, we have an effective means to
compress the resulting sizes considerably in almost all cases. This is rooted in
a polynomial-time algorithm [29] that compresses the size of any APH repre-
sentations. Due to space constraints, we only provide a brief summary of the
functioning of this algorithm below. For an exhaustive discussion of the algo-
rithm and its properties, the interested reader is referred to [29].

Given an arbitrary APH representation (α,A) as input, the algorithm returns
an ordered bidiagonal representation, denoted Red(α,A), having the same PH
distribution, with a representation size being at most the size of the original one.
The compression achievable goes beyond concepts like lumpability [30], since the
algorithm exploits properties of the Laplace-Stieltjes transform. In very brief
terms, the algorithm checks, for each matrix row and column certain dependen-
cies in the matrix of its ordered bidiagonal representation of the distribution
(obtained by running the SPA algorithm a priori). These dependencies are ex-
pressible in terms of linear equation systems. If satisfied, a state can be identified
as being removable, and is subsequently removed from the representation. This
process is then iterated until no further state is identified as being removable.

Overall, the algorithm has complexity O(n3), where n is the number of states
of the original representation. It can be applied to arbitrary APH distributions.
In fact, this can turn an exponential growth (in the number of composed compo-
nents) of the matrix size into a linear growth which is almost certainly a minimal
APH representation [29].

Implementation. We have implemented a tool to generate and manipulate APH
representations, together with the compression algorithm in a toolsuite called
APHzip. The tool accepts as input an expression written in a prefix notation
The expressions follow the grammar

P ::= exp(λ) | erl(k, λ) | con(P, P ) | max(P, P ) | min(P, P ) | cox(μ, λ, P ),

where λ ∈ R+ and μ ∈ R≥0 are rates, and k ∈ Z+. Here, exp(λ) and erl(k, λ)
represent exponential and Erlang distributions; these are the building blocks of
more complex APHs constructed by using operators convolution (con), maxi-
mum (max), and minimum (min). cox(μ, λ, P ) is an operator used to produce
Cox representations. This operator semantically works as follows: given an APH
P , cox(μ, λ, P ) is a new APH obtained by adding a new state having a transition
with rate μ to the absorbing state and a transition with rate λ to P . Repeated
application of this operator enables us to produce any Cox representation, and
hence represent any APH distribution (and hence approximate any distribution
with arbitrary precision) as APHzip expressions.

The user-perceived functionality of APHzip is simple. It takes an expression,
compresses it, and returns the resulting compressed APH representation, either
as a nested cox(·)-expression, or as a file containing the result as a simple list
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of transitions. For end users experimenting with attack trees and similar for-
malisms, APHzip is wrapped in a web-based interface accessible at the address
http://depend.cs.uni-saarland.de/tools/aphzip.

Phase-Type Fitting for a Basic Attack Step. Generally, there are two ways to
obtain the CDF for a BAS: 1) with historical data; or 2) on the basis of expert
opinion. If empirical data is available, that data is provided as input to a fitting
tool, preferably G-Fit [10]. G-Fit then produces the best matching CDF, rep-
resented by a hyper-Erlang distribution. Since hyper-Erlang distributions are a
subset of the family of APH, we already have a convenient input format for our
analysis. A second possibility is that experts estimate the mean time t to execute
this BAS and then use exp(1/t) as APH representation. This is justified by the
fact that the exponential distribution is the “most random” of all distributions
with a given mean, in the sense that it has maximal entropy. Indeed, other attack
models use the exponential distribution as a default choice [21, 31].

Time-Dependent Analysis. In this section we use the above concepts to evaluate
a given attack tree A with respect to the total time required by the attacker
to reach the root node. In a first step, the CDFs of the leaves are obtained as
APH distributions from fitting algorithms [9, 10]. We then compress the APH
distribution �A� of A with the tool APHzip. For this purpose, we need to trans-
form A into an expression which follows the grammar of APHzip. This can be
done by traversing A in a depth-first manner: the labels of all nodes are listed
in the order the nodes occur this traversal. Additionally, we have to take care of
nested brackets and the fact that con(·), max(·) and min(·) are binary operators
in APHzip (for efficiency reasons).

Example 2. Consider the AT in Fig. 3. Starting at the root, we order the nodes
according to their occurrence in a depth-first manner and put the corresponding
APH operations in place, keeping track of nested brackets. This yields

con(exp(1),min(max(exp(2), exp(1)), erl(2, 3)), exp(5)).

As con(·) above has three parameters, we need to nest another con(·) expression
with the latter two parameters to obtain a valid APHzip expression.

The CDF of such a compressed APH distribution can then be derived nu-
merically on the basis of Equation (1): Given a set of time-points T and a PH
representation (α,A), we compute the probabilities F (t) that the absorbing
state is hit within t time-units, for each t ∈ T . To calculate these probabilities,
we have implemented a postprocessing tool which uses the uniformization tech-
nique [32] and the Fox-Glynn algorithm [33]. Alternatively, several stochastic
model checkers such as PRISM [34] or MRMC [35] can be employed as postpro-
cessing tools.

The time-dependent analysis is a powerful tool since it basically performs a
static analysis for any point in time. As an example, we fix the time horizon t = 1
and calculate the probability to reach the root of the model in Fig.3 with a static
bottom-up evaluation. As there is no correspondence for the SEQ gate in static

http://depend.cs.uni-saarland.de/tools/aphzip
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models, we treat it as an AND gate. At first, we define random variableX1 which
corresponds to the BAS ‘break into bank’ and is distributed according to exp(1),
so X1 ∼ exp(1). Similarly, define X2 ∼ exp(2), X3 ∼ exp(5) and X4 ∼ erl(2, 3)
to represent the other BASs. We have P(X1 ≤ 1) = 0.63, P(X2 ≤ 1) = 0.87,
P(X1 ≤ 3) = 0.99 and P(X4 ≤ 1) = 0.8. In a static evaluation, the probability to
reach an AND gate is the product of the probabilities of its inputs. An OR gate
with input probabilities c1 and c2 is reached with probability 1−(1−v1)(1−v2).
The probability to steal the gold in this static interpretation is thus calculated
by

P(steal gold) = 0.63 · (1 − (1− 0.87 · 0.63) · (1 − 0.8)) · 0.99 = 0.57.

Evaluating the random variable C which is distributed according to the APH
distribution in Example 2 after one time unit yields the same result with our
tool chain: P(C ≤ 1) = 0.57.

Conservative Extension. The above example illustrates that time-dependent
analysis conservatively extends the conventional static and thus untimed in-
terpretation. To make this precise, we restrict to attack trees without SEQ gates
(which are dynamic in nature), and relate to the conventional static probabilistic
semantics [14].

We assume that each BAS vertex v has a probability pv associated to it.
Then the conventional static probabilistic semantics for a BAS is ��v�� = pv,
for an AND gate it is ��AND(v1, . . . , vn)�� =

∏n
1 ��vi��, and for an OR gate it

is ��OR(v1, . . . , vn)�� = 1 −
∏n

1 (1 − ��vi��). This induces a static probabilistic
semantics ��A�� of any attack tree A (without SEQ gates), provided each BAS
has a probability associated to it. It gives the probability to succesfully carry
out the attack represented by the tree.

For a given attack tree A and time t ∈ R+, we now use At to refer to the
attack tree where each BAS v gets the static probability pv = Fv(t) associated,
where Fv = L(v) is the CDF labelling vertex v. So we look at each BAS at
time t and ask for the probability that the basic attack step represented by it is
already completed. On the other hand, we can also take the timed interpretation
�A� of the entire tree, which by the semantics in Section 3 is some CDF FA and
look at the probability of successfully having completed the attack by time t by
evaluating FA(t). We refer to this value as �A�t in the theorem below.

Theorem 2. Let A be an attack tree without SEQ gates. For any time point
t ∈ R+, �A�t = ��At��.

Thus, the time-dependent analysis conservatively extends static attack tree
modelling. The proof uses the semantic interpretation of AND and OR gates as
maximum and minimum operations, respectively (Section 3), the definition of the
stochastic operations maximum and minimum (Section 2) and their properties,
and the fact that as long as the underlying model has a tree structure, all nodes
on the same level are stochastically independent.
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5 Implications for System Security

Our analysis technique describes a system’s vulnerabilities in a temporal con-
text, but the results still need to be interpreted in terms of security. Generally,
the analysis provides the user with a temporal dimension for possible attack
vectors and associated risks expressed by success probabilities—can attacks be
successfully executed in hours, days or rather months? More specific findings for
security practitioners can be generated by elaborating on the primary results.

Lower Bound Analysis. In some cases the attacker has only a little time frame
to execute an attack. An example for such a time-dependent vulnerability is
the roll-out or update of an operating system. Once it is on the market, many
hackers will try to find and exploit unknown vulnerabilities before they are
found and fixed by the developers. In this race, the starting point of an attack
is quite predictable. Thus, the analysis of P(0 < X < u) is of interest to answer
the question ‘How much time does the attacker need to succeed with a certain
percentage’. The result gives an idea about how fast one has to react to fix
vulnerabilities.

Cost-Benefit Analysis of Countermeasures. Security officers often face the prob-
lem to determine the benefits of investments into the existing security landscape.
If more than one countermeasure might be beneficial but the budget is limited,
a cost-benefit analysis is the classical tool to arrive at a decision. Our analysis
framework helps to argue from a temporal perspective: ‘Given countermeasures
A, B and C, which one is most effective in reducing the risk of a successful attack
within 1 day?’. This question can be answered by performing a separate analysis
for each countermeasure option. We adapt the original attack tree by removing
all subtrees and leaves that are prevented by the respective countermeasure and
analyze the resulting model. The results can then be compared with respect to
the desired properties.

Impact of Individual BASs. Naturally, one wants to identify the most serious
vulnerabilities in a system. Therefore, a typical question which follows from the
formation of an attack tree is the following: ‘Which BAS has the most impact
in the attack tree?’. In the context of our temporal analysis this question reads
as ‘The execution time of which BAS impacts the total execution time of the
whole attack scenario most significantly?’. We can answer this by performing a
sensitivity analysis. We perform k + 1 experiments, where k is the number of
BASs. Initially, we analyse the original attack tree, and in each subsequent anal-
ysis we change the input distribution of one BAS, leaving the others fixed; i.e.,
we adapt the parameters of the distribution of the considered BAS in such a way
that the expected execution time of this BAS doubles. We can then determine in
how far this change reflects in the execution time of the whole attack scenario.
By comparing the results we can rank the BASs with respect to their impact
on the total execution time of a successful attack. Moreover one can answer the
question ‘If the system is to be protected for one month, against which BAS it is
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Fig. 6. CDFs of the time to steal the exam with respect to different countermeasures

most important to protect?’. On the downside, this kind of sensitivity analysis
requires k + 1 times more resources.

6 Case Studies

In this section we highlight the effectiveness of our approach by means of sev-
eral case studies. They demonstrate that the algorithm implemented in APHzip
yields significant state space compressions so that even complex scenarios can
be analyzed efficiently, as presented in Table 2.

Steal Exam. This case study models a student who wants to get hold of a forth-
coming exam. Within this scenario we consider three different types of attacks:
social engineering, hacking and physical intrusion. Each attack type consists of
various possible attack paths. To obtain a digital version of the exam via hacking,
the student can, for instance, try to find a copy of the exam on either the mail-
box server or the repository. Both possible attack paths can be refined in several
BASs. For instance, the student could either hack the exchange server externally
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or try to acquire the account data by either using a keylogger or simply guessing
the password. To each BAS we assign an exponential or an Erlang-distibution as
estimates of the time required by the attacker to successfully execute this step.

The school wants to decrease the risk of such a theft, since it would heavily
damage its reputation. The school management has the options to either acquire
safe deposit boxes (countermeasure A) in which exams can be stored, or to
apply a policy which forbids to send exams via email (countermeasure B). The
first option would prevent the BAS ’steal key’, since the lockers are password-
protected. The second option would prevent the subtree ’mailbox’. We assume
that the countermeasures block the corresponding BAS in their entirety. The
school management wants to find the option which minimizes the risk of an
attack within the opening time of the school (12 hours). We evaluated the attack
scenario in the original set-up, and with respect to the two countermeasures. The
results are displayed in Fig. 6. The attack tree without countermeasures applied
is presented in Fig. 5.

The results clearly show that countermeasure B is more effective than coun-
termeasure A. It reduces the risk of a successful attack within the given time
by a third. The introduction of a policy is in this case more effective than an
investment into the physical infrastructure. Of course, the application of both
countermeasures would reduce the probability of a successful theft even more.
This example highlights the strength of a timed analysis. It allows the security
practitioner to evaluate the system security with respect to crucial time intervals.

Stuxnet. The second case study considers the Stuxnet attack, a sophisticated
cyber attack which targeted industrial installations in 2010 and arouse great
interest in media and among security experts. The model is based on [36]. To
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Table 1. Sensitivity analysis of the ’Stuxnet’ case study. The table shows the increase
in the probability of success of the whole attack after 20, 40 and 60 days, if the rate of
the respective step is doubled.

BAS after 20 days after 40 days after 60 days

Injection via USB +1.0 % +2.3 % +1.2 %
P2P Communication +0.2 % +0.3 % +0.1 %
C&C server communication +0.2 % +0.3 % +0.1 %
Removable media +0.1 % +0.2 % +0.1 %
Infection of control PC +7.4 % +17.6 % +17.6 %
Collect data +2.5 % +15.1 % +16.3 %
Intercept in/out signals +3.2 % +12.3 % +8.0 %
Modify out signals +0.5 % +0.7 % +0.3 %
Cascade centrifuges +0.8 % +1.5 % +0.7 %
other BASs +0.0 % +0.0 % +0.0 %

adapt the case study to our formalism, we left out the probabilistic nodes used
in this model.

The goal of Stuxnet in our scenario is to compromise supervisory, control and
data acquisition systems (SCADA) of Iranian nuclear enrichment facilities to
slow down the production of centrifugal machines. In the considered model, the
business corporate network is assumed to be isolated from the SCADA system.
Thus, the attack consists of the two phases; first the internal corporate network
is compromised and then the SCADA system attacked from there.

As the corporate network is not directly connected to the Internet, an attack
can be initiated by infecting an external device which is brought into the facilities
and connected to the control system. Once it has installed itself on one PC, the
malware tries to infect as many workstations as possible. It then waits until it can
reach the Process Control Network, for instance through an infected removable
drive. Within the SCADA system it can target modules with two specific CPU
types. After gathering data for a longer period of time it sends faked data to
the physical infrastructure which slows down and even damages the targeted
centrifuges. The attack tree is presented in Fig. 8.

We want to determine the BAS which has the most impact upon the total
execution of this attack and conduct a sensitivity analysis as explained above,
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i.e., we sequentially change the CDF of one BAS at a time such that its expected
execution time doubles. The results are compared to the original model to iden-
tify the BASs which are most sensitive with respect to the total execution time.
Table 1 highlights the results which suggest that the steps ‘Infection of control
PC’, ‘Intercept in/out signals’ and ‘Collect data’ have the greatest impact upon
the execution time of the whole attack and should be prioritized when it comes
to the application of countermeasures.

IPTV case study. This case study was conducted in the European TREsPASS
project [37] to gain insights into the modeling and analysis of socio-technical
attacks. It describes a home-payment system designed to support elderly people
or people with disabilities, who may have difficulty in leaving their home, in
managing their own money. This system is based on the delivery of payments
services to individuals via an IPTV set-top box in their own home. It allows
the user to order and pay for food and goods of the daily life from home. The
system is currently in the development phase and its potential attack vectors
are investigated with the help of the following scenario: Since the system is
specifically designed for elderly people, we assume that the attacker is a carer
who intends to abuse the set-top box to enrich himself. He can for instance try
to acquire the payment card and the password of the set-top box, either by
stealing it or using his social engineering skills. In total, this case study covers
eight major scenarios.

This case study is much more complex than the previous ones, the attack tree
contains 148 nodes which are located on up to 14 different levels. More than 90
of its nodes are leaves. Due to confidentiality reasons, we cannot disclose more
details about the tree.

The state space of the resulting APH model before compression has a size of
about 1010. To evaluate this model in a feasible time we used a shortcut that
accelerates the analysis process by orders of magnitudes. Instead of composing
the whole APH representation at once, we analyze the model in a compositional
manner. At first, we split the attack tree into 9 subtrees which are connected via
OR gates. We analyse these subtrees individually by computing the probability
of the attacker’s success for a set of time-points T . The results are recomposed
by using the static computation formula for the OR gate for each t ∈ T . This ap-
proach is possible because the subtrees do not share nodes and are thus stochas-
tically independent. This compositional analysis allowed us to evaluate the case



302 F. Arnold et al.

Table 2. Set-up and runtime performance of the case studies

#Leaves #Gates #States #States Runtime
before after in seconds

APHzip APHzip

Steal Exam 12 9 15121 160 9.37
Steal Exam A 12 9 3025 76 1.26
Steal Exam B 12 9 5041 157 5.32

Stuxnet 14 11 94 56 1.13
Stuxnet Sensitivity
Analysis

14 11 94 56 16.65

IPTV 92 56 647∗ 482∗ 551.62∗
∗ sum over all 9 models of the compositional analysis

study within minutes, whereas the compression and analysis of the entire model
at once would take several weeks. The result is presented in Fig.9.

Case Study Evaluation. Each attack tree in the case studies presented has a
distinctive structure with leaves on different levels being connected by a mixture
of gates. We analyzed each set-up with the APHzip toolchain. The results, as
presented in Table 2, were computed with the webservice which implements
APHzip, the CDFs were derived with the postprocessing tool on a meachine
with a 2.20 GHZ dual-core processor. #States gives the number of states in the
graphical representations of the APH of �r�. The runtime is calculated as the
sum of the runtime of both tools.

The smaller models in the first case study can be solved within seconds and
even a more involved sensitivity analysis can be performed quickly. Unfortu-
nately, previous work on time-dependent attacks does not offer any figures for
comparison. Nonetheless, the results suggest that our analysis technique is ex-
tremely efficient in deriving a probability distribution for the execution time of
an attack scenario expressed by an attack tree. With the IPTV attack scenario
also a more complex case study could be solved in a feasible time.

Another interesting observation is that the complexity of the considered attack
tree is not the most important factor when it comes to the computation time.
Complex input distributions, such as Erlang distributions with many phases,
cause a blow-up of the state space since they are rooted at the lowest level of
the composition; and thereby cause longer computation times. Therefore, the
computation time of the analysis of a model depends on both its scale as well as
the complexity of its input distributions.

7 Conclusion

In this paper we have formalized the semantics of attack trees so as to allow
their use for a probabilistic timed evaluation of attack scenarios. The semantics
used an effective framework based on acyclic phase-type distributions, and as
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such enables the derivation of the distribution of the time until the attack is
successfully executed. We highlighted that any input distribution at hand for
a basic attack step can be cast into the class of APH distributions. Its impact
is propagated along the tree, yielding a single monolithic APH distribution for
the entire tree. A key component for effective and efficient evaluation is a com-
pression algorithm for APH distributions. This compression can be weaved into
the construction process of the monolithic distribution, a feature that is espe-
cially interesting in light of the dynamic nature of attack trees: it allows the
preprocessing of often appearing attack paths.

We have reported on several distinct case studies demonstrating that this
approach can evaluate complex scenarios in a short time. These empirical studies
have been carried out with an implementation of the approach as part of a tool
chain. As future work we aim at merging and enriching the existing tool with a
state-of-the-art APH fitting algorithm [10] as well as a graphical interface. We
further aim at support for cost annotations of attack steps, and at support for
probabilistic gates, as they appear in the literature on attack trees [21, 22].
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