
Learning Lambek Grammars from Proof Frames

Roberto Bonato1,⋆ and Christian Retoré2,⋆⋆

1 Questel SAS, Sophia Antipolis, France
2 IRIT, Toulouse, France & Univ. Bordeaux, France

Abstract. In addition to their limpid interface with semantics, catego-
rial grammars enjoy another important property: learnability. This was
first noticed by Buszkowski and Penn and further studied by Kanazawa,
for Bar-Hillel categorial grammars.

What about Lambek categorial grammars? In a previous paper we
showed that product free Lambek grammars are learnable from struc-
tured sentences, the structures being incomplete natural deductions. Al-
though these grammars were shown to be unlearnable from strings by
Foret ad Le Nir, in the present paper, we show that Lambek grammars,
possibly with product, are learnable from proof frames i.e. incomplete
proof nets.

After a short reminder on grammatical inference à la Gold, we provide
an algorithm that learns Lambek grammars with product from proof
frames and we prove its convergence. We do so for 1-valued ”(also known
as rigid) Lambek grammars with product, since standard techniques can
extend our result to k-valued grammars. Because of the correspondence
between cut-free proof nets and normal natural deductions, our initial
result on product free Lambek grammars can be recovered.1

We are glad to dedicate the present paper to
Jim Lambek for his 90th birthday: he is the living proof that research is

an eternal learning process.

1 Presentation

Generative grammar exhibited two characteristic properties of the syntax of
human languages that distinguish them from other formal languages:

1. Sentences should be easily parsed and generated, since we speak and under-
stand each other in real time.

2. Any human language should be easily learnable, preferably from not so many
positive examples, as first language acquisition shows.

⋆ I am deeply indebted to my co-author for having taken up again after so many
years our early work on learnability for k-valued Lambek grammars, extended and
coherently integrated it into the framework of learnability from proof frames.

⋆⋆ Thanks to IRIT-CNRS for hosting me during my sabbatical, to the Loci ANR project
for its intellectual and financial support, to C. Casadio, M. Moortgat for their en-
couragement and to A. Foret for her helpful remarks.

1 At the turn of the millenium, our initial work benefited from a number of valuable
discussions with Philippe Darondeau. We are very sorry to learn of his premature
passing. Adieu, Philippe.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 108–135, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Learning Lambek Grammars from Proof Frames 109

Fig. 1. Human languages and the classes of the Chomsky hierarchy (with parsing
complexity)

Formally, the first point did receive a lot of attention, leading to the class of
mildly context sensitive languages [20]: they enjoy polynomial parsing but are
rich enough to describe natural language syntax. A formal account of learnability
was harder to find. Furthermore, as soon as a notion of formal learnability was
proposed, the first results seemed so negative that the learnability criterion was
left out of the design of syntactical formalisms. This negative result stated that
whenever a class of languages contains all the regular languages it cannot be
learnt.

By that time, languages were viewed through the Chomsky hierarchy (see
figure 1) and given that regular languages are the simplest and that human lan-
guages were known to include non regular languages, an algorithm that learns
the syntax of a human language from positive examples was considered as im-
possible. This pessimistic viewpoint was erroneous for at least two reasons:

– The class of human languages does not include all regular languages and it
is likely that it does to even include a single regular language, see on figure
1 the present hypothesis on human languages.

– The positive examples were thought to be sequences of words, while it has
been shown long ago that grammatical rules operate on structured sentences
and phrases (that are rather trees or graphs), see e.g. [8] for a recent account.

Gold’s notion of learning a class of languages generated by a class of gram-
mars G — that we shall recall in the first section of the present paper — is that
a learning function φ maps a sequence of sentences e1, . . . , en to a grammar Gn =

φ(e1, . . . , en) in the class in such a way that, when the examples enumerate a
language L(G) in the class G, there exists an integer N such that if n > N the Gn

are constantly equal toGN generating the same language i.e. L(Gn) = L(G). The
fundamental point is that the function learns a class of languages: the algorithm

110 R. Bonato and C. Retoré

eventually finds out that the enumerated language cannot be any other language
in the class. Therefore the very same language can be learnable as a member of
a learnable class of languages, and unlearnable as the member of another class of
languages. Although surprising at first sight, this notion according to which one
learns in a predefined class of languages is rather compatible with our knowledge
of first language acquisition.

Overtaking the pessimistic view of Gold’s theorem, Angluin established in
the 80s that some large but transversal classes of languages were learnable in
Gold’s sense. [4] Regarding categorial grammars, Buszkowski and Penn defined
in late 80s [12,11] an algorithm that learns basic categorical grammars from
structured sentences, functor-argument structures, and Kanazawa proved in 1994
that their algorithm converges: it actually learns categorial grammar in Gold’s
sense. [22,21]

The result in the present paper is much in the same vein as Buszkowski, Penn
and Kanazawa.

Section 2. We first recall the Gold learning paradigm, identification in the limit
from positive examples.

Sections 3, 4. Next we briefly present Lambek categorial grammars, and define
the parsing of Lambek categorial grammar with product as cut-free proof
nets construction and introduce the proof frames, that will be the structures
we shall learn from. Informally, proof frames are name free parse structures,
just like functor argument structures that are commonly used for learning
basic categorial grammars. Such grammars ought to be learnt from structured
sentences since Foret and Le Nir established that they cannot be learnt from
strings [14].

Sections 5,6,7. After a reminder on unification and categorial grammars, we
present our algorithm that learns rigid Lambek categorial grammars with
product from proof frames and perform it on sample data involving intro-
duction rules that are not in basic categorial grammars and product rules
that are not in Lambek grammars. We then prove the convergence of this
algorithm.

Section 8. We show that the present result strictly encompasses our initial
result [10] that learns rigid product-free Lambek grammars from name-free
natural deductions. To do so, we give the bijective correspondence between
cut-free proof nets for the product-free Lambek calculus and normal natural
deduction that are commonly used as parse structures.

In the conclusion, we discuss the merits and limits of the present work. We
briefly explain how it can generalise to k-valued Lambek grammars with
product and suggest direction for obtaining corpora with proof frame anno-
tations from dependency-annotated corpora.

2 Exact Learning à la Gold: A Brief Reminder

We shall just give a brief overview of the Gold learning model of [17], with some
comments, and explain why his famous unlearnability theorem of [17] (theorem
1 below) is not as negative as it may seem — as [4] or the present article shows.

Learning Lambek Grammars from Proof Frames 111

The principles of first language acquisition as advocated by Chomsky [31] and
more recently by Pinker [32,33] can be very roughly summarised as follows:

1. One learns from positive examples only: an argument says that in certain
civilisations children uttering ungrammatical sentences are never corrected
although they learn the grammar just as fast as ours — this can be discussed,
since the absence of reaction might be considered as negative evidence, as
well as the absence of some sentences in the input.

2. The target language is reached by specialisation more precisely by restricting
word order from languages with a freer word order: rare are the learning al-
gorithms for natural language that proceed by specialisation although, when
starting from semantics, there are some, like the work of Tellier [39]

3. Root meaning is known first, hence the argumental structure or valencies
are correct before the grammar learning process starts. This implies that
all needed words are there, possibly in a non correct order, hence enforcing
the idea of learning by specialisation — the afore mentioned work by Tellier
proceeds from argument structures [39]

4. The examples that the child is exposed to are not so many: this is known as
the Poverty Of Stimulus argument. It has been widely discussed since 2000
in particular for supporting quantitative methods. [31,34,35,8]

In his seminal 1967 paper, Gold introduced a formalisation of the process of
the acquisition of one’s first language grammar, which follows the first principle
stated above, which is the easiest to formalise: the formal question he addressed
could be more generally stated as grammatical inference from positive examples.
It also should be said that this notion of learning may be used for other purposes
every time one wants to extract some regularity out of sequences observations
other fields being genomics (what would be a grammar of strings issued from
ADN sequences) and diagnosis (what are the regular behaviours of system, what
would be a grammar generating the sequences of normal observations provided
by captors for detecting abnormal behaviours).

We shall provide only a minimum of information on formal languages and
grammars. Let us just say that a language is a subset of inductive class U . El-
ements of U usually are finite sequences (a.k.a. strings) of words, trees whose
leaves are labelled by words, or graphs whose vertices are words — we here say
“words” because they are linguistic words, while other say “letters” or “termi-
nals,” and we say “sentences” for sequences of words where others say “words”
for sequences of “letters” or “terminals”. A grammar G is a process generating
the objects of a language L(G) ⊂ U . The membership question is said to be
decidable for a grammar G when the characteristic function of L(G) in U is
computable. The most standard example of U is Σ∗ the set of finite sequences
over some set of symbols (e.g. words) Σ. The phrase structure grammars of
Chomsky-Schutzenberger are the most famous grammars producing languages
that are parts ofΣ∗. Lambek categorial grammars and basic categorial grammars
are an alternative way to generate sentences as elements of Σ∗: they produce the
same languages as context–free languages [7,30,26, chapters 2, 3]. Finite labeled

112 R. Bonato and C. Retoré

trees also are a possible class of object. A regular tree grammar produces such
a tree language, and the yields of the trees in L(G) define a context free string
language. In the formal study of human languages, U usually consists in strings
of words or in trees.

Definition 1 (Gold, 1967, [17]). A learning function for a class of grammars
G producing U-objects (L(G) ⊂ U) is a partial function φ that maps any finite
sequence of positive examples e1, e2, . . . , ek with ei ∈ U to a grammar in the class
φ(e1, e2, . . . , ek) ∈ G such that:

if (ei)i∈I is any enumeration of a language L(G) ⊂ U with G ∈ G,
then there exists an integer N such that, calling Gi = φ(e1, . . . , ei):

– GP = GN for all P ≥N .
– L(GN) = L(G).

Several interesting properties of learning functions have been considered:

Definition 2. A learning function φ is said to be

– effective or computable when φ is recursive. In this case one often speaks
of a learning algorithm. We shall only consider effective learning functions:
this is consistent both with language being viewed as a computational process
and with applications to computational linguistics. Observe that the learn-
ing function does not have to be a total recursive function: it may well be
undefined for some sequences of sentences and still be a learning function.

– conservative if φ(e1, . . . , ep, ep+1) = φ(e1, . . . , ep) whenever ep+1 ∈ L(φ(e1,
. . . , ep)).

– consistent if {e1, . . . , ep} ⊂ L(φ(e1, . . . , ep)) whenever φ(e1, . . . , ep) is defined.
– set driven if φ(e1, . . . , ep) = φ(e

′

1, . . . , e
′

q) whenever {e1, . . . , ep} = {e
′

1, . . . , e
′

q}

— neither the order of the examples nor their repetitions matters.
– incremental if there exists a binary function Ψ such that

φ(e1, . . . , ep, ep+1) = Ψ(φ(e1, . . . , ep), ep+1)
– responsive if the image φ(e1, . . . , ep) is defined whenever there exists L in

the class with {e1, . . . , ep} ⊂ L
– monotone increasing when φ(e1, . . . , ep, ep+1) ⊂ φ(e1, . . . , ep)

In this paper the algorithm for learning Lambek grammars enjoys all those
properties. They all seem to be sensible with respect to first language acquisition
but the last one: indeed, as said above, children rather learn by specialisation.

It should be observed that the learning algorithm applies to a class of lan-
guages. So it is fairly possible that a given language L which both belongs to
the classes G1 and G2 can be identified as a member of G1 and not as a member
of G2. Learning L in such a setting is nothing more than to be sure, given the
examples seen so far, that the language is not any other language in the class.

The classical result from the same 1967 paper by Gold [17] that has be over
interpreted see e.g. [5,19] can be stated as follows:

Learning Lambek Grammars from Proof Frames 113

Theorem 1 (Gold, 1967, [17]). If a class Gr of grammars generates

– languages (Li)i ∈ N with Li ∈ N which are strictly embedded that is Li ⊊ Li+1

for all i ∈ N

– together with the union of all these languages ∪i∈NLi ∈ Gr

then no function may learn Gr.

Proof. From the definition, we see that a learning function should have guessed
the grammar of a language L(G) with G ∈ G after a finite number of examples
in the enumeration of L(G). Consequently, for any enumeration of any language
in the class,

(1) the learning function may only change its mind finitely many times.

Assume that is a learning function φ for the class Gr. Since the Li are nested as
stated, we can provide an enumeration of L = ∪Li according to which we firstly
see examples x1

0,⋯, x
p0

0 from L0 until φ proposes G0 with LG0 = L0, then we see
examples x1

1,⋯, x
p
1 in L1 until φ proposesG1 with LG1 = L1, then we see examples

x1
2,⋯, x

p
2 in L2 until φ proposesG2 with LG2 = L2, etc. In such an enumeration of

L the learning function changes its mind infinitely many times, conflicting with
(1). Thus there cannot exists a learning function for the class Gr.

Gold’s theorem above has an easy consequence that was interpreted quite
negatively:

Corollary 1. No class containing the regular languages can be learnt.

Indeed, by that time the Chomsky hierarchy was so present that no one
thought that transverse classes could be of any interest let alone learnable.
Nowadays, it is assumed that the syntax of human languages contains no regular
languages and goes a bit beyond context free languages as can be seen in figure
1. It does not seem likely that human languages contain a series of strictly em-
bedded languages as well as their unions. Hence Gold’s theorem does not prevent
large and interesting classes of languages from being learnt. For instance Angluin
showed that pattern languages, a transversal class can be learnt by identification
in the limit [4] and she also provided a criterion for learnability base on telltale
sets:

Theorem 2 (Angluin, 1980, [5]). An enumerable family of languages Li with
a decidable membership problem is effectively learnable whenever for each i there
is a computable finite Ti ⊂f Li such that if Ti ⊂ Lj then there exists w ∈ (Lj ∖Li)

As a proof that some interesting classes are learnable, we shall define particu-
lar grammars, Lambek categorial grammars with product, and their associated
structure languages, before proving that they can be learnt from these structures,
named proof frames.

114 R. Bonato and C. Retoré

3 Categorial Grammars and the LCGp Class

Given a finite set of words Σ and an inductively defined set of categories C
including a special category s and an inductively defined set of derivable sequents
⊢ ⊂ (C∗ ×C) (each of them being written t1, . . . , tn ⊢ t) a categorial grammar G
is defined as a map lexG from words to finite sets of categories. An important
property, as far as learnability is concerned, is the maximal number of categories
per word i.e. maxw∈Σ ∣lexG(w)∣. When it is less than k, the categorial grammar
G is said to be k-valued and 1-valued categorial grammars are said to be rigid.

Some standard family of categorial grammars are:

1. Basic categorial grammars BCG also known as AB grammars have their
categories in C ∶∶= s ∣ B ∣ C / C ∣ C / C and the derivable sequents are the
ones that are derivable in the Lambek calculus with elimination rules only
Δ ⊢ A and Γ ⊢ B /A (respectively Γ ⊢ A /B) yields Γ,Δ ⊢ B (respectively
Δ,Γ ⊢ B) — in such a setting the empty sequence is naturally prohibited
even without saying so. [6]

2. The original Lambek grammars [23] also have their categories in the same
inductive set C ∶∶= s ∣ B ∣ C / C ∣ C / C and the derivable sequents are the ones
that are derivable in the Lambek calculus without empty antecedent, i.e. with
rules of figure 3 except ⊗i and ⊗h — a variant allows empty antecedents.

3. Lambek grammars with product (LCGp) have their categories in C⊗ ∶∶=s ∣B ∣C⊗/

C
⊗
∣ C
⊗/C⊗ ∣ C⊗⊗C⊗ and the derivable sequents are the ones that are derivable

in the Lambek calculus with product without empty antecedent i.e. with all
the rules of figure 3 — a variant allows empty antecedents.

A phrase, that is a sequence of words w1⋯wn, is said to be of category C
according to G when, for every i between 1 and p there exists ti ∈ lexG(wi)

such that t1, . . . , tn ⊢ C is a derivable sequent. When C is s the phrase is said
to be a sentence according to G. The string language generated by a categorial
grammar is the subset of Σ∗ consisting in strings that are of category s i.e.
sentences. Any language generated by a grammar in one of the aforementioned
classes of categorial grammars is context free.

In this paper we focus on Lambek grammarswith product (LCGp). The explicit
use of product categories in Lambek grammars is not so common. Category like
(a⊗ b) / c can be viewed as b / (a / c) so they do not really involve a product. The
comma in the left-hand side of the sequent, as well as the separation betweenwords
are implicit products, but grammar and parsing can be defined without explicitly
using the product. Nevertheless, there are cases when the product is appreciated.

– For analysing the French Treebank, Moot in [25] assigns the category ((np⊗
pp) / (np⊗ pp)) / (np⊗ pp) to “et” (“and”) for sentences like:

(2) Jean donne un livre à Marie et une fleur à Anne.

– According to Glyn Morrill [28,27] past participles like raced should be as-
signed the category ((CN /CN)/(N / (N / s−))⊗ (N / (N / s−)) where s− is
an untensed sentence in sentences like:

(3) The horse raced past the barn fell.

Learning Lambek Grammars from Proof Frames 115

The derivable sequents of the Lambek syntactic calculus with product are obtained
form the axiom C ⊢ C for any category C and the rules are given below, where A,B
are categories and Γ,Δ finite sequences of categories:

Γ,B,Γ
′

⊢ C Δ ⊢ A
/h

Γ,Δ,A /B,Γ ′ ⊢ C

A,Γ ⊢ C
/i Γ ≠ ∅

Γ ⊢ A /C

Γ,B,Γ ′ ⊢ C Δ ⊢ A
/h

Γ,B /A,Δ,Γ ′ ⊢ C

Γ,A ⊢ C
/i Γ ≠ ∅

Γ ⊢ C /A

Γ,A,B,Γ ′ ⊢ C
⊗h

Γ,A⊗B,Γ ′ ⊢ C

Δ ⊢ A Γ ⊢ B
⊗i

Δ,Γ ⊢ A⊗B

Fig. 2. Sequent calculus rule for the Lambek calculus

4 Categorial Grammars Generating Proof Frames

The classes of languages that we wish to learn include some proper context free
languages [7], hence they might be difficult to learn. So we shall learn them from
structured sentences, and this section is devoted to present the proof frames that
we shall use as structured sentences.

A neat natural deduction system for Lambek calculus with product is rather
intricate [3,1], mainly because the product elimination rules have to be carefully
commuted for having a unique normal form. Cut-free sequent calculus proofs are
also not so good structures because they are quite redundant and some of their
rules can be swapped. As explained in [26, chapter 6] proof nets provide perfect
parse structure for Lambek grammars even if they use the product. When the
product is not used, cut-free proof nets and normal natural deduction are iso-
morphic, as we shall show in subsection 8.1. Consequently the structures that
we used for learning will be proof frames that are proof nets with missing infor-
mations. Let us see how categorial grammars generate such structures, and first
let us recall the correspondence between polarised formulae of linear logic and
Lambek categories.

4.1 Polarised Linear Formulae and Lambek Categories

A Lambek grammar is better described with the usual Lambek categories, while
proof nets are better described with linear logic formulae. Hence we need to re-
call the correspondence between these two languages as done in [26, chapter 6].
Lambek categories (with product) are C⊗ defined in the previous section 3. Linear
formula L are defined by:

116 R. Bonato and C. Retoré

L ∶∶= P ∣ P⊥ ∣ (L⊗ L) ∣ (L ℘ L)

the negation of linear logic)⊥ is only used on propositional variables from P
as the De Morgan laws allow:

(A⊥)⊥ ≡ A (A ℘B)⊥ ≡ (B⊥ ⊗A⊥) (A⊗B)⊥ ≡ (B⊥ ℘A⊥)
To translate Lambek categories into linear logic formulae, one has to distin-

guish the polarised formulae, the output or positive ones L○ and the input or
negative ones from L● with F ∈ L○ ⇐⇒ F ⊥ ∈ L● and (L○ ∪ L●) ⊊ L:

{
L○ ∶∶= P ∣ (L○ ⊗ L○) ∣ (L● ℘ L○) ∣ (L○ ℘ L●)

L● ∶∶= P⊥ ∣ (L● ℘ L●) ∣ (L○ ⊗ L●) ∣ (L● ⊗ L○)

Any formula of the Lambek L calculus can be translated as an output formula
+L of multiplicative linear logic and its negation can be translated as an input
linear logic formulae −L as follows:

L α ∈ P L =M ⊗N L =M /N L = N /M

+L α +M ⊗ +N −M ℘ +N +N ℘ −M
−L α⊥ −N ℘ −M −N ⊗+M +M ⊗−N

Conversely any output formula of linear logic is the translation of a Lambek
formula and any input formula of linear logic is the negation of the translation
of a Lambek formula. Let (. . .)○Lp denotes the inverse bijection of “+”, from L○

to Lp and (. . .)●Lp denotes the inverse bijection of “−” from L● to Lp. These two
maps are inductively defined as follows:

F ∈L○ α∈P (G∈L○) ⊗ (H∈L○) (G∈L●) ℘ (H∈L○) (G∈L○) ℘ (H∈L●)
F ○Lp α G○Lp ⊗H○Lp G●Lp /H

○

Lp G○Lp /H
●

Lp

F ∈L● α⊥∈P⊥ (G∈L●) ℘ (H∈L●) (G∈L○) ⊗ (H∈L●) (G∈L●) ⊗ (H∈L○)
F ●Lp α H●Lp ⊗G●Lp H●Lp /G

○

Lp H○Lp /G
●

Lp

4.2 Proof Nets

A proof net is a graphical representation of a proof which identifies inessentially
different proofs. A cut-free proof net has several conclusions, and it consists of

– the subformula trees of its conclusions, that possibly stops on a sub formula
which is not necessarily a propositional variable (axioms involving complex
formulae simplify the learning process).

– a cyclic order on these sub formula trees
– axioms that links two dual leaves F and F ⊥ of these formula subtrees.

Such a structure can be represented by a sequence of terms — admittedly
easier to type than a graph — with indices for axioms. Each index appears
exactly twice, once on a formula F (not necessarily a propositional variable) and
one on F ⊥. Here are two proof nets with the same conclusions:

Learning Lambek Grammars from Proof Frames 117

(4) s⊥
1
⊗ (s2 ℘ np⊥

3
), np3 ⊗ (s⊥ ⊗ np)7, (np⊥ ℘ s)7 ⊗ s⊥

2
, s1

(5) s⊥
1
⊗ (s2 ℘ np⊥

3
), np3 ⊗ (s⊥

4
⊗ np5), (np⊥

5
℘ s4) ⊗ s⊥

2
, s1

The second one is obtained from the first one by expansing the complex axiom
(s⊥ ⊗ np)7, (np⊥ ℘ s)7 into two axioms: (s⊥

4
⊗np5), (np⊥

5
℘ s4). Complex axioms

always can be expansed into atomic axioms — this is known as η-expansion. This
is the reason why proof nets are often presented with atomic axioms. Nevertheless
as we shall substitute propositional variables with complex formula during the
learning process we need to consider complex axioms as well — see the processing
of example (9) in section 6.

No any such structure does correspond to a proof:

Definition 3. A proof structure with conclusions C1, I11 , . . . , I
1
n is said to be a

proof net of the Lambek calculus when it enjoys the correctness criterion defined
by the following properties:

1. Acyclic: any cycle contains the two branches of a ℘ link
2. Intuitionistic: exactly one conclusion is an output formula of L○, all other

conclusions are input formulae of L●

3. Non commutative: no two axioms cross each other
4. Without empty antecedent: there is no sub proof net with a single conclusion

The first point in this definition is not stated precisely but, given that we learn
from correct structured sentences, we shall not need a precise definition. The
reader interested in the details can read [26, chapter 6]. Some papers require a
form of connectedness but it is not actually needed since this connectedness is a
consequence of the first two points see [18] or [26, section 6.4.8 pages 225–227].

Definition 4. Proof nets for the Lambek calculus can be defined inductively as
follows (observe that they contain exactly one output conclusion):

– given an output formula F an axiom F,F ⊥ is a proof net with two conclusions
F and F ⊥ — we do no require that F is a propositional variable.

– given a proof net π1 with conclusions O1, I11 , . . . , I
1
n and a proof net π2 with

conclusions O2, I21 , . . . , I
2
p where O1 and O2 are the output conclusions, one

can add a ⊗-link between a conclusion of one and a conclusion of the other,
at least one of the two being an output conclusion. We thus can obtain a
proof net whose conclusions are:
● O1 ⊗ I2k , I

2
k+1, . . . , I

2
p ,O

2, I21 , I
2
k−1, I

1
1 , . . . , I

1
n — O2 being the output con-

clusion
● I1l ⊗ O2, I21 , . . . , I

2
p , I

1
l+1, . . . , I

1
n,O

1, I11 , . . . , I
1
l−1, — O1 being the output

conclusion
● O1 ⊗O2, I21 , . . . , I

2
p , I

1
1 , . . . , I

1
n — O1 ⊗O2 being the output conclusion.

– given a proof net π1 with conclusions O1, I11 , . . . , I
1
n one can add a ℘ link

between any two consecutive conclusions, thus obtaining a proof nets with
conclusions:

118 R. Bonato and C. Retoré

● O1, I11 , . . . , Ii ℘ Ii+1, . . . , I
1
n — O1 being the output conclusion

● O1 ℘ I11 , I
1
2 . . . , I

1
n — O1 ℘ I11 being the output conclusion

● I1n ℘O
1, I11 . . . , I

1
n−1 — O1 ℘ I11 being the output conclusion

A key result is that:

Theorem 3. The inductively defined proof nets of definition 4, i.e. proofs, ex-
actly correspond to the proof nets defined as graphs enjoying the universal prop-
erties of the criterion 3

A parse structure for a sentence w1, . . . ,wp generated by a Lambek grammar
G defined by a lexicon lexG is a proof net with conclusions (cn)−, . . . , (c1)−, s+

with ci ∈ lex(wi). This replaces the definition of parse structure as normal natural
deductions [40] which does not work well when the product is used [3,1].

4.3 Structured Sentences to Learn from: s Proof Frames

An s proof frame (sPF) is simple a parse structure of a Lambek grammar i.e. a proof
net whose formula names have been erased, except the s on the output conclusion.
Regarding axioms, their positive and negative tips are also kept. Such a structure
is the analogous of a functor argument structure for AB grammars or of a name
free normal natural deduction for Lambek grammars used in [12,11,10] and it can
be defined inductively as we did in 4, or by the conditions in definition 3.

Definition 5 (Proof frames, sPF). An s proof frame (sPF) is a normal
proof net π such that:

– The output of π is labelled with the propositional constant s — which is
necessarily the conclusion of an axiom, the input conclusion of this axiom
being labelled s⊥.

– The output conclusion of any other axiom in π is O its input conclusion
being O⊥ = I.

Given an s proof net π its associated s proof frame πf is obtained by replacing
in π the output of any axiom by O (and its dual by I = O⊥) except the s that is
the output of π itself which is left unchanged.

A given Lambek grammar G is said to generate an sPF ρ whenever there
exists a proof net π generated by G such that ρ = πIO. In such a case we write
ρ ∈ sPF(G).

The sPF associated with the two proof nets 4 and 5 above are:

(6) s⊥
1
⊗ (O2 ℘ I3),O3 ⊗ (I4 ⊗O5), (O5 ℘O4) ⊗ I2, s

(7) s⊥
1
⊗ (O2 ℘ I3),O3 ⊗ I7,O7 ⊗ I2, s

Learning Lambek Grammars from Proof Frames 119

5 Unification, Proof Frames and Categorial Grammars

Our learning algorithm makes a crucial use of category-unification, and this kind
of technique is quite common in grammatical inference [29], so let us briefly define
unification of categorial grammars.

As said in paragraph 3, a categorial grammar is defined from a lexicon that
maps every word w to a finite set of categories lexG(w). Categories are usually
defined from a finite set B of base categories that includes a special base category
s. Here we shall consider simultaneously many different categorial grammars and
to do so we shall have an infinite set B whose members will be s and infinitely
many category variables denoted by x, y, x1, x2, . . ., y1, y2, . . . In other words,
B = {s} ∪ V , s /∈ V , V being an infinite set of category variables. The categories
arising from B are defined as usual by V ∶∶= s ∣ V ∣ V / V ∣ V / V ∣ V ⊗ V . This
infinite set of base categories does not change much categorial grammars: since
there are finitely many words each of them being associated with finitely many
categories, the lexicon is finite and a given categorial grammar only makes use of
finitely many base categories. Choosing an infinite language is rather important,
as we shall substitute a category variable with a complex category using fresh
variables, thus turning a categorial grammar into another one, and considering
families of grammars over the same base categories.

A substitution σ is a function from categories V to categories V that is gen-
erated by a mapping σV of finitely many variables xi1 ,⋯, xip in V to categories
of V :

σ(s) = s

given x ∈ V, σ(x) = {
σV (x) if x = xik for some k
x otherwise

σ(A /B) = σ(A) / σ(B)
σ(B /A) = σ(B) / σ(A)

The substitution σ is said to be a renaming when σV is a bijective mapping from
V to V — otherwise stated σV is a permutation of the xi1 ,⋯, xip).

As usual, substitutions may be extended to sets of categories by stipulating
σ(A) = {σ(a)∣a ∈ A}. Observe that σ(A) can be a singleton while A is not:
{(a / (b / c)), (a /u)}[u↦ (b / c] = {a / (b / c)}. A substitution can also be applied
to a categorial grammar: σ(G) = G′ with lexG′(w) = σ(lexG(w)) for any word
w, and observe that a substation turns a k-valued categorical grammar into a
k′-valued categorial grammar with k′ ≤ k, and possibly into a rigid (or 1-valued)
categorial grammar (cf. section 3).

A substitution σ on Lambek categories (defined by mapping finitely many
category variables xi to Lambek categories Li, xi ↦ Li) clearly defines a substi-
tution on linear formulae σ� (by xi ↦ L+i), which preserves the polarities σ�(F)
is positive(respectively negative) if and only if F is. Conversely, a substitution
ρ on linear formulae defined by mapping variables to positive linear formulae
(xi ↦ Fi) defines a substitution on Lambek categories ρL with the mapping
xi ↦ F ○Lp. One has: σ(L) = (σ�(L+))○Lp and ρ(F) = (ρL(F ○Lp))+ if F ∈ L○ and

120 R. Bonato and C. Retoré

ρ(F) = (ρL(F ●Lp))−. Roughly speaking as far as we use only polarised linear for-
mulae and substitution that preserve polarities, it does not make any difference
to perform substitutions on linear formulae or on Lambek categories.

Substitution preserving polarities (or Lambek substitutions) can also be ap-
plied to proof nets: σ(π) is obtained by applying the substitution to any formula
in π, and they turn an s Lambek proof net into an s Lambek proof net – this is
a good reason for considering axioms on complex formulae.

Proposition 1. If σ is a substitution preserving polarities and π a proof net
generated by a Lambek grammar G, then σ(π) is generated by σ(G) and σ(π)
have the same associated s proof frame: σ(π)f = πf

Two grammars G1 and G2 with their categories in V are said to be equal
whenever there is renaming ν such that ν(G1) = G2.

A substitution σ is said to unify two categories A,B if one has σ(A) = σ(B).
A substitution is said to unify a set of categories T or to be a unifier for T if
for all categories A,B in T one has σ(A) = σ(B) — in other words, σ(T) is a
singleton.

A substitution σ is said to unify a categorial grammar G or to be a unifier of
G whenever, for every word in the lexicon σ unifies lexG(w), i.e. for any word w
in the lexicon lexσ(G)(w) has a unique category — in other words σ(G) is rigid.

A unifier does not necessarily exists, but when it does, there exists a most
general unifier (mgu) that is a unifier σu such for every unifier τ there exists a
substitution στ such that τ = στ ○ σu. This most general unifier is unique up to
renaming. This result also holds for unifiers that unify a set of categories and
even for unifiers that unify a categorial grammar. [22]

Definition 6. Let π be an s proof net whose associated sPF is πf . If all the
axioms in π but the s, s⊥ whose s is π’s main output are αi, α

⊥

i with αi ≠ αj when
i ≠ j, π is said to be a most general labelling of πf . If πf is the associated sPF of
an s proof net π and πv one of the most general labelling of πf , then πv is also
said to be a most general labelling of π. The most general labelling of an s proof
net is unique up to renaming.

We have the following obvious but important property:

Proposition 2. Let πv is a most general labelling of an s proof net π, then there
exists a substitution σ such that π = σ(πv).

6 An RG-Like Algorithm for Learning Lambek Categorial
Grammars from Proof Frames

Assume we are defining a consistent learning function from positive examples
for a class of categorial grammar (see definition 2). Assume that we already
mapped e1, . . . , en to a grammar Gn with e1, . . . , en ⊂ L(Gn) and en+1 /∈ L(Gn).
This means that for some word w in the sentence en+1 no category of lexGn(w)

Learning Lambek Grammars from Proof Frames 121

The algorithm for unifying two categories C1 and C2 can be done by processing a
finite multi-set E of potential equations on terms, until it fails or reaches a set of
equations whose left hand side are variables, each of which appears in a unique such
equation — a measure consisting in triple of integers ordered ensures that this algorithm
always stops. This set of equations xi = ti defines a substitution by setting ν(xi) = ti.
Initially E = {C1 = C2}. In the procedure below, upper case letters stand for categories,
whatever they might be, x for a variable, ∗ and ◇ stand for binary connectives among
/, /,⊗. Equivalently, unifications could be performed on linear formulae, as said in the
main text. The most general unifier of n categories can be performed by iterating
binary unification, the resulting most general unifier does not depend on the way one
proceeds.

E ∪ {C=C} �→ E
E ∪ {A1∗B1=A2∗B2} �→ E ∪ {A1=A2,B1=B2}

E ∪ {C=x} �→ E ∪ {x=C}
if x ∈ V ar(C) E ∪ {x=C} �→ �

if x /∈ V ar(C) ∧ x ∈ V ar(E) E ∪ {x=C} �→ E[x ∶ =C] ∪ {x=C}
if ◇ ≠ ∗ E ∪ {A1∗B1=A2 ◇B2} �→ �

E ∪ {s=A2∗B2} �→ �

E ∪ {A1∗B1=s} �→ �

Fig. 3. The unification algorithm for unifying two categories

is able to account for the behaviour of w in en+1. A natural but misleading idea
would be to say: if word wk needs category ckn+1 in example en+1, let us add ck to
lexGn(w

k) to define lexGn+1(w
k). Doing so for every occurrence of problematic

words in en+1 we will have e1, . . . , en, en+1 ⊂ L(Gn+1) and in the limit we obtained
the smallest grammar G∞ such that ∀i e1, . . . , ei ∈ LG∞ which should be reached
at some point. Doing so, there is little hope to identify a language in the limit
in Gold sense. Indeed, nothing guarantees that the process will stop, and a
categorial grammar with infinitely many types for some word is not even a
grammar, that is a finite description of a possibly infinite language. Thus, an
important guideline for learning categorial grammars is to bound the number
of categories per word. That is the reason why we introduced in section 3 the
notion of k-valued categorial grammars, which endow every word with at most
k categories, and we shall start by learning rigid (1-valued) categorial grammars
as the k-valued case derives from the rigid case.

Our algorithm can be viewed as an extension to Lambek grammars with prod-
uct of the RG algorithm (learning Rigid Grammars) introduced by Buszkowski
and Penn in [11,12] initially designed for rigid AB grammars. A difference from
their seminal work is that the data ones learns from were functor argument trees
while here they are proof frames (or natural deduction frames when the product
is not used [10], see section 8). Proof frames may seem less natural than natural
deduction, but we have two good reasons for using them:

122 R. Bonato and C. Retoré

– The first one is that product is of interest for some grammatical constructions
as examples 2 and 3 show while there is no fully satisfying natural deduction
for Lambek calculus with product. [3,1]

– The second one is that they resemble dependency structures, since an ax-
iom between the two conclusions corresponding to two words expresses a
dependency between these two words.

To illustrate our learning algorithm we shall proceed with the three examples
below, whose corresponding s proof frames are given in figure 4. As their sPF
structures shows, the middle one (9) involves a positive product in the (the I ℘ I
in the category of “and”) and the last one (10) involves an introduction rule
(the O ℘ I in the category of “that”).

(8) Sophie gave a kiss to Christian

(9) Christian gave a book to Anne and a kiss to Sophie

(10) Sophie liked a book that Christian liked.

Unfortunately the use for proof nets is to use a reverse word order, for having
conclusions only, and these conclusions are linear formulae, the dual of Lambek
categories as explained in section 4 — in some papers by Glynn Morrill e.g.
[28] the order is not reversed, but then the linear formulae and the proof net
structure are less visible. One solution that will make the supporters of either
notation happy is to write the sentences vertically as we do in figure 4.

Definition 7 (RG like algorithm for sPF). Let D = (πk
f)1≤k≤n be the s

proof frames associated with the examples (ekf)1 ≤ k ≤ n, and let (πk) be most

general labelings of the (πk
f)1≤k≤n. We can assume that they have no common

variables — this is possible because the set of variables is infinite and because
most general labelings are defined up to renaming. If example ek contains n words
wk

1 , . . . ,w
k
n then πk has n conclusions (ckn)−, . . . , (w

k
1)−, s, where all the cki are

Lambek categories.
Let GF (D) be the non necessarily rigid grammar defined by the assignments

wk
i ∶ c

k
i — observe that a for a given word w there may exist several i and k such

that w = wk
i .

Let RG(D) be the rigid grammar defined as the most general unifier of the
categories lex(w) for each word in the lexicon when such a most general unifier
exists.

Define φ(D) as RG(D). When unification fails, the grammar can be defined
by lex(w) = ∅ for those words whose categories do not unify.

With the sPF of our examples in sPF yields the following type assignments
where the variable xn corresponds to the axiom number n in the examples, they
are all different as expected — remember that s is not a category variable but a
constant.

Learning Lambek Grammars from Proof Frames 123

Example 1

11 I } Sophie

11

���� ���

��

O
⊗

00 s⊥
��

⊗

12
��

O
⊗

13 O
��

���� ���

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

gave

13
��

I
⊗

14 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

a

14 I } kiss

12
��

I
⊗

15 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

to

15 I } Christian

00 s} (sentence)

Example 2

21 I } Christian

21

���� ���

��

O
⊗

00 s⊥
��

⊗

22 O
��

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

gave

23
��

I
⊗

24 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

a

24 I } book

25
��

I
⊗

26 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

to

26 I } Anne

25

���� ���

��

��

O
⊗

23 O
��

⊗

22 I
��

⊗

27
��

O
⊗

28 O
��

���� ���

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

and

28
��

I
⊗

29 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

a

29 I } kiss

27
��

I
⊗

20 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

to

20 I } Sophie

00 s} (sentence)

Example 3

31 I } Sophie

31

���� ���

��

O
⊗

00 s⊥
��

⊗

32 O
��

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

liked

32
��

I
⊗

33 O
��

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎭

a

34 I } book

34

���� ���

��

O
⊗

33 I
��

⊗

35
��

I
℘

36 O
��

���� ���

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

that

37 I } Christian

37

���� ���

��

O
⊗

36 I
��

⊗

35 O
��

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

liked

00 s} (sentence)

Fig. 4. Three S proof frames: three structured sentences for our learning algorithm

124 R. Bonato and C. Retoré

word category (Lambek) category⊥ (linear logic)
and (((x23 ⊗ x25) / x22)... ((x28 ⊗ x27) ⊗ ...

... / (x28 ⊗ x27)) ...(x22 ⊗ (x23 ⊗ x25)))

that ((x34 / x33) / (x36 / x35)) ((x36 ℘ x
⊥

35) ⊗ (x
⊥

33 ⊗ x34))

liked (x31 / s) / x32 x32 ⊗ (s⊗ x31)

(x37 / x36) / x35 x35 ⊗ (x36 ⊗ x37)

gave ((x11 / s) / (x13 ⊗ x12)) (x13 ⊗ x12) ⊗ (s⊗ x11)

((x21 / s) / x22) x22 ⊗ (s⊗ x21)

to x12 / x15 x15 ⊗ x⊥12
x25 / x26 x26 ⊗ x⊥25
x27 / x20 x20 ⊗ x⊥27

a x13 / x14 x14 ⊗ x⊥13
x23 / x24 x24 ⊗ x⊥23
x28 / x29 x29 ⊗ x⊥28
x32 / x33 x33 ⊗ x⊥32

Anne x26 x⊥26
Sophie x11 x⊥11

x20 x⊥20
x31 x⊥31

Christian x15 x⊥15
x21 x⊥21
x37 x⊥37

book x24 x⊥24
x34 x⊥34

kiss x14 x⊥14
x29 x⊥29

Unifications either performed on Lambek categories cki or on the corresponding
linear formulae (the (cki)− that appear in the second column) yield the following
equations:

liked
x31 = x37

x36 = s
x32 = x35

gave
x11 = x21

x22 = x13 ⊗ x12

to
x12 = x25 = x27

x15 = x26 = x20

a
x13 = x23 = x28 = x32

x14 = x24 = x29 = x33

Sophie
x11 = x20 = x31

Christian
x15 = x21 = x37

kiss
x14 = x29

book
x24 = x34

Learning Lambek Grammars from Proof Frames 125

These unification equations can be solved by setting:

x36 = s
x22 = x13 ⊗ x12 = np⊗ pp
x12 = x25 = x27 = pp prepositional phrase introduced by “to”
x13 = x23 = x28 = x32 = x35 = np noun phrase
x14 = x24 = x29 = x33 = x34 = cn common noun
x11 = x20 = x31 = x15 = x21 = x37 = x15 = x26 = pn proper name

The grammar can be unified into a rigid grammar Gr , namely:

word category (Lambek) category⊥ (linearlogic)
and (((np⊗ pp) / (np⊗ pp)... ((np⊗ pp) ⊗ ...

... / (np⊗ pp)) ...((np⊗ pp)⊥ ⊗ (np⊗ pp)))
that ((n / n) / (s / np)) ((s ℘ np⊥) ⊗ (n⊥ ⊗ n))
liked (pp / s) / np np⊗ (s⊗ pn)
gave (pp / s) / (pp⊗ np)) (np⊗ pp) ⊗ (s⊗ pn)
to np / pn pn⊗ np⊥

a np / cn cn⊗ pp⊥

Anne pn pn⊥

Sophie pn pn⊥

Christian pn pn⊥

book cn cn⊥

kiss cn cn⊥

As stated in proposition 1, one easily observes that the sPF are indeed pro-
duced by the rigid grammar Gr.

Earlier on, in the definition of sPF , we allowed non atomic axioms, and we can
now precisely see why: the axiom 22 could be instantiated by the single variable
x22 but, when performing unification, it got finally instantiated with x13 ⊗ x12.
Thus, if we would have forced axioms to always be on propositional variables, the
sPF of example 2 would not have been generated by the Gr: instead, Gr would
not have generated exactly the example 2 but only the sPF with the axioms
x13, x

⊥

13 and x⊥12, x12 linked by an ⊗ link x⊥13 ⊗ x12 and by a ℘ link x⊥12 ℘ x
⊥

13.

7 Convergence of the Learning Algorithm

This algorithm converges in the sense defined by Gold [17], see definition 1.
The first proof of convergence of a learning algorithm for categorial grammars
is the proof by Kanazawa [21] of the algorithm of Buszkowki and Penn [12] for
learning rigid AB grammars from functor argument structures (name free proofs
os this calculus with elimination rules only). We shall do something similar, but
we learn a different class of grammars from different structures, and the proof
follows [9] that is a simplification of [22].

The proof of convergence makes use of the following notions and notations:

126 R. Bonato and C. Retoré

G ⊂ G′ This reflexive relation between G and G′ holds whenever every lexical
category assignment a ∶ T in G is in G′ as well — in particular when G′ is
rigid, so is G, and both grammars are identical. Note that this is just the
normal subset relation for each of the words in the lexicon G′: lexG(a) ⊂
lexG′(a) for every a in the lexicon of G′, with lexG(a) non-empty. Keep in
mind that in what follows we will also use the subset relation symbol to
signify inclusion of the generated languages ; the intended meaning should
always be clear from the context.

size of a grammar The size of a grammar is simply the sum of the sizes of the
occurrences of categories in the lexicon, where the size of a category is its
number of occurrences of base categories (variables or s).

G ⊏ G′ This reflexive relation between G and G′ holds when there exists a sub-
stitution σ such that σ(G) ⊂ G′ which does not identify different categories
of a given word, but this is always the case when the grammar is rigid.

sPF(G) As said earlier, sPF(G) is the the set of s proof structures generated
by a Lambek categorial grammar G.

GF (D) Given a set D of structured examples i.e. a set of s proof frames,
the grammar GF (D) is define as in the examples above: it is obtained by
collecting the categories of each word in the various examples of D.

RG(D) Given a set of sPF D, RG(D) is, whenever it exists, the rigid gram-
mar/lexicon obtained by applying the most general unifier to GF (D).

Proposition 3. Given a grammar G, the number of grammars H such that
H ⊏ G is finite.

Proof. There are only finitely many grammars which are included in G, since G
is a finite set of assignments. Whenever σ(H) = K for some substitution σ the
size of H is smaller or equal to the size of K, and, up to renaming, there are
only finitely many grammars smaller than a given grammar.

By definition, if H ⊏ G then there exist K ⊂ G and a substitution σ such that
σ(H) = K. Because there are only finitely many K such that K ⊂ G, and for
everyK there are only finitely many H for which there could exist a substitution
σ with σ(H) = K we conclude that there are only finitely many H such that
H ⊏ G. ⊓⊔

From the definition of ⊏ and from proposition 1 one immediately has:

Proposition 4. If G ⊏ G′ then sPF(G) ⊂ sPF(G′).

Proposition 5. If GF (D) ⊏ G then D ⊂ sPF(G).

Proof. By construction of GF (D), we have D ⊂ sPF(GF (D)). In addition, be-
cause of proposition 4, we have sPF(GF (D)) ⊂ sPF(G). ⊓⊔

Proposition 6. If RG(D) exists then D ⊂ sPF(RG(D)).

Proof. By definition RG(D) = σu(GF (D)) where σu is the most general unifier
of all the categories of each word. So we have GF (D) ⊏ RG(D), and applying
proposition 5 with G = RG(D) we obtain D ⊂ sPF(RG(D)). ⊓⊔

Learning Lambek Grammars from Proof Frames 127

Proposition 7. If D ⊂ sPF(G) then GF (D) ⊏ G.

Proof. By construction of GF (D), there is exactly one occurrence of a given
category variable x in an sPF of D categorised as done in the example. Now,
viewing the same sPF as an sPF of sPF(G) at the place corresponding to x there
is a category label, say T . Doing so for every category variable, we can define a
substitution by σ(x) = T for all category variables x: indeed because x occurs
once, such a substitution is well defined. When this substitution is applied to
GF (D) it yields a grammar which only contains assignments from G — by
applying the substitution to the whole sPF , it remains a well-categorised sPF ,
and in particular the categories on the conclusions corresponding to the words
must coincide — if it is the linear formula F then the corresponding Lambek
category is F ●, see subsection 4.1. ⊓⊔

Proposition 8. When D ⊂ sPF(G) with G a rigid grammar, the grammar
RG(D) exists and RG(D) ⊏ G.

Proof. By proposition 7 we have GF (D) ⊏ G, so there exists a substitution σ
such that σ(GF (D)) ⊂ G.

As G is rigid, σ unifies all the categories of each word. Hence there exists a
unifier of all the categories of each word, and RG(D) exists.

RG(D) is defined as the application of most general unifier σu to GF (D). By
the definition of a most general unifier, which works as usual even though we
unify sets of categories, there exists a substitution τ such that σ = τ ○ σu.

Hence τ(RG(D)) = τ(σu(GF (D))) = σ(GF (D)) ⊂ G;
thus τ(RG(D)) ⊂ G, hence RG(D) ⊏ G. ⊓⊔

Proposition 9. If D ⊂ D′ ⊂ sPF(G) with G a rigid grammar then RG(D) ⊏
RG(D′) ⊏ G.

Proof. Because of proposition 8 both RG(D) and RG(D′) exist. We haveD ⊂D′

and D′ ⊂ sPF(RG(D′)), so D ⊂ sPF(RG(D′)); hence, by proposition 8 applied
to D and G = RG(D′) (a rigid grammar) we have RG(D) ⊏ RG(D′). ⊓⊔

Theorem 4. The algorithm RG for learning rigid Lambek grammars converges
in the sense of Gold.

Proof. Take Di, i ∈ ω an increasing sequence of sets of examples in sPF(G)
enumerating sPF(G), in other words ∪i∈ωDi = sPF(G):

D1 ⊂D2 ⊂ ⋯Di ⊂Di+1⋯ ⊂ sPF(G)

Because of proposition 8 for every i ∈ ω RG(Di) exists and because of proposi-
tion 9 these grammars define an increasing sequence of grammars w.r.t. ⊏ which
by proposition 8 is bounded by G:

RG(D1) ⊏ RG(D2) ⊏ ⋯RG(Di) ⊏ RG(Di+1)⋯ ⊏ G

128 R. Bonato and C. Retoré

As they are only finitely many grammars below G w.r.t. ⊏ (proposition 3)
this sequence is stationary after a certain rank, say N , that is, for all n ≥ N
RG(Dn) = RG(DN).

Let us show that the langue generated is the one to be learnt, let us prove
that sPF(RG(DN)) = sPF(G) by proving the two inclusions:

1. Firstly, let us prove that sPF(RG(DN)) ⊃ sPF(G) Let πf be an sPF in
sPF(G). Since ∪i∈ωDi = sPF(G) there exists a p such that πf ∈ sPF(Dp).
– If p < N , because Dp ⊂ DN , πf ∈ DN , and by proposition 6 πf ∈

sPF(RG(DN)).
– If p ≥N , we have RG(Dp) = RG(DN) since the sequence of grammars is

stationary after N . By proposition 6 we have Dp ⊂ sPF(RG(Dp)) hence
πf ∈ sPF(RG(DN)) = sPF(RG(Dp)).

In all cases, πf ∈ sPF(RG(DN)).
2. Let us finally prove that sPF(RG(DN)) ⊂ sPF(G): Since RG(DN) ⊏ G, by

proposition 4 we have sPF(RG(DN)) ⊂ sPF(G) ⊓⊔

This exactly shows that the algorithm proposed in section 6 converges in the
sense of Gold’s definition (1).

8 Learning Product Free Lambek Grammars from
Natural Deduction Frames

The reader may well find that the structure of the positive examples that we
learn from, sorts of proofnets are rather sophisticated structures to learn from
and he could think that our learning process is a drastic simplification w.r.t.
standard work using functor argument structures.

Let us first see that normal natural deductions are quite a sensible structure
to learn Lambek grammars from. Tiede [40] observed that natural deductions
in the Lambek calculus (be they normal or not) are plain trees, defined by two
unary operators (/ and / introduction rules) and two binary operators (/ and
/ elimination rules), from formulae as leaves (hypotheses, cancelled or free). As
opposed to the intuitionistic case, there is no need to specify which hypothesis
are cancelled by the introduction rules, as they may be inferred inductively: a /
(respectively /) introduction rule cancels the left-most (respectively right-most)
free hypothesis. He also observed that normal natural deductions should be
considered as the proper parse structures, since otherwise any possible syntactic
structure (a binary tree) is possible. Therefore is is natural to learn Lambek
grammars from normal natural deduction frames — natural deductions from
which category names have been erased but the final s. Indeed, s natural de-
duction frames are to Lambek categorial grammars what the functor-argument
(FA) structures are to AB categorial grammars — these FA structures are the
standard structures used for learning AB grammars by Buszkowski, Penn and
Kanazawa [12,22].

The purpose of this section is to exhibit a one to one correspondence between
cut-free proof nets of the product free Lambek calculus and normal natural de-
ductions, thus justifying the use of proof frames for learning Lambek grammars.

Learning Lambek Grammars from Proof Frames 129

When there is no product, proof frames are the same as natural deduction frames
that we initially used in [10]. They generalise the standard FA structures, and
when the product is used, natural deduction become quite tricky [3,1] and there
are the only structures one can think about.

The correspondence between on one hand natural deduction or the isomorphic
λ-terms and on the other hand, proof nets, can be traced back to [36] (for
second order lambda calculus) but the the closest result is the one for linear
λ-calculus [13].

8.1 Proofnets and Natural Deduction: Climbing Principal Branches

As said in section 3, the formulae of product free Lambek calculus are defined
by C ∶∶= s ∣ B ∣ C / C ∣ C / C hence their linear counterpart are a strict subset of
the polarised linear formulae of subsection 4.1:

{
L○h ∶∶= P ∣ (L●h ℘ L

○

h) ∣ (L
○

h ℘ L
●

h)

L●h ∶∶= P⊥ ∣ (L○h ⊗ L●h) ∣ (L
●

h ⊗ L○h)

Let us call these formulae the heterogeneous polarised positive or negative for-
mulae. In these heterogeneous formulae the connectives ℘ and ⊗ only apply to a
pair of formulae with opposite polarity. The translation from Lambek categories
to linear formulae and vice versa from subsection 4.1 are the same.

One may think that a proof net corresponds to a sequent calculus proof which
itself corresponds to a natural deduction: as shown in our book [26], this is
correct, as far as one does not care about cuts — which are problematic in non
commutative calculi, see e.g.[24]. As it is well known in the case of intuitionnistic
logic, cut-free and normal are different notions [41], and proof net are closer to
sequent calculus in some respects. If one translate inductively, rule by rule, a
natural deduction into a sequent calculus or into a proof net, the elimination
rule from A and A /B yields a cut on the A /B formula, written A⊥℘B in linear
logic. We shall see how this can be avoided. .

From Normal Natural Deductions to Cut-Free Proof Nets. Let us briefly
recall some basic facts on natural deduction for the product free Lambek calculus,
from our book [26, section 2.6 pages 33-39]. In particular we shall need the
following notation a formula C, and a sequence of length p of pairs consisting of
a letter εi (where εi ∈ {l, r}) and a formula Gi we denote by

C[(ε1,G1), . . . , (εp,Gp)]

the formula defined as follows:

if p = 0 C[] = C
if εp = l C[(ε1,G1), . . . , (εp−1,Gp−1), (εp,Gp)] =

Gp /C[(ε1,G1), . . . , (εp−1,Gp−1)]

if εp = r C[(ε1,G1), . . . , (εp−1,Gp−1), (εp,Gp)] =

C[(ε1,G1), . . . , (εp−1,Gp−1)] /Gp

130 R. Bonato and C. Retoré

The rule below requires at least two free hyp.

A leftmost free hyp.
. . . [A]

⋅

⋅
⋅

B
/i binding A

A /B

Δ
⋅
⋅

⋅

A

Γ
⋅

⋅

⋅

A /B
/e

B

The rule below requires at least two free hyp.

A rightmost free hyp.
. [A] . . .

⋅

⋅
⋅

B
/i binding A

B /A

Γ
⋅

⋅

⋅

B /A

Δ
⋅
⋅

⋅

A
/e

B

Fig. 5. Natural deduction rule for product free Lambek calculus

An important property of normal natural deductions is that whenever the
last rule is an elimination rule, there is a principal branch leading from the
conclusion to a free hypothesis [26, proposition 2.10 page 35] When a rule /e
(resp. /e) is applied between a right premise A /X (resp. a left premise X /A)
and a formula A as its left (resp. right) premise, the premise A /X (resp. a left
premise X / A) is said to be the principal premise. In a proof ending with an
elimination rule, a principal branch is a path from the root C = X0 to a leaf
C[(ε1,G1), . . . , (εp,Gp)] = Xp such that one has Xi = C[(ε1,G1), . . . , (εi,Gi)]

and also Xi+1 = C[(ε1,G1), . . . , (εi+1,Gi+1)] and Xi is the conclusion of an elim-
ination rule, /e if εi+1 = l and /e if εi+1 = r, with principal premise Xi+1 and Gi+1

as the other premise.
Let d be a normal natural deduction with conclusion C and hypotheses

H1, . . . ,Hn. It is inductively turned into a proof net with conclusions Hn−, . . . ,
H1−,C+ as follows (we only consider / because / is symmetrical).

– If d is just an hypothesis A which is at the same time its conclusion the
corresponding proof net is the axiom A,A⊥.

– If d ends with a / intro, from A,H1, . . . ,Hn ⊢ B to H1, . . . ,Hn ⊢ A /B, by
induction hypothesis we have a proof net with conclusions (Hn)−, . . . , (H1)−,
A−,B+. The heterogeneous ℘ rule applies since B+ is heterogeneous positive
and A− heterogeneous negative. A ℘ rule yields a proof net with conclusions
(Hn)−, . . . , (H1)−,A − ℘B+, and A − ℘B+ is precisely (A /B)+

– The only interesting case is when d ends with an elimination rule, say /e.
In this case there is a principal branch, say with hypothesis C[(ε1,G1), . . . ,
(εp,Gp)] which is applied toGi’s. Let us call Γi =H

1
i , . . . ,H

ki

i the hypotheses
of Gi, and let di be the proof of Gi from Γi. By induction hypothesis we have
a proof net πi with conclusions (Γi)−, (Gi)+. Let us define the proof net πk

of conclusion Ck− = C[(ε1,G1), . . . , (εk,Gk)]−, Γi for i ≤ k and C+ by:

Learning Lambek Grammars from Proof Frames 131

● if k = 0 then it is an axiom C⊥,C (consistent with the translation of an
axiom)
● otherwise πk+1 is obtained by a times rule between the conclusions Ck−

of πk and Gk+1+ of πk+1 When εi = r then the conclusion chose the
conclusion of this link to Gk+1 +⊗C

k− that is Ck − /Gk+1+ = C
k+1− and

when εi = l the conclusion is Ck −⊗Gk+1+ that is Gk+1 + /C
k− = Ck+1−.

hence, in any case the conclusions of πk+1 are Ck+1+ C+ and the Γi for
i ≤ k + 1.

The translation of d is simply πp, which has the proper conclusions.

As there is no cut in any of the translation steps, the result is a cut-free proof
net.

From Cut-Free Proof Nets to Normal Natural Deductions. There is
an algorithm that performs the reverse translation, presented for multiplicative
linear logic and linear lambda terms in [13]. It strongly relies on the correctness
criterion, which makes sure that everything happens as indicated during the
algorithm and that it terminates. This algorithm always points at a sub formula
of the proof net. Going up means going to an immediate sub formula, and going
down means considering the immediate super formula.

1. Enter the proof net by its unique output conclusion.
2. Go up until you reach an axiom. Because of the polarities, during this up-

wards path, because of polarities, you only meet ℘-links, which correspond
to / and / introduction rules — λr and λl if one uses Lambek λ-terms. The
hypotheses that are cancelled (the variables that are abstracted) are the ones
on the non output premises — place a name on them.

3. Use the axiom link and go down with the input polarity. Hence you only
meet ⊗ links (*) until you reach a conclusion or a ℘ link. In both cases,
it is the head-variable of the λ-term. If it is the premise of a ℘-link, then
it is necessarily a ℘ link on the path of step 2 (because of the correctness
criterion) and the hypothesis of the principal branch is cancelled by / and
/ introduction rules that we met during step 2 (the head variable bound by
some of these λr or λl of the previous step). Otherwise it the hypothesis of
the principal branch is free (the head variable is free).

4. The deductions (λ-terms) that are the arguments of the hypothesis of the
principal branch (the head variable) are the ones on the output premises of
the ⊗ links (*) that we met at step 3. They should be translated as we just
did, going up from theses output formulae, starting again at step 2.

8.2 Learning Product Free Lambek Grammars from Natural
Deduction

Because of the bijective correspondence between cut free product free proof
nets and normal product free natural deduction we also have a correspondence
between such structure without names but the S main conclusion. Hence if one

132 R. Bonato and C. Retoré

wishes to it is possible to learn product free Lambek grammars from natural
deduction without names but the final S, as we did in [10] Such structures
are simply the generalisation to Lambek calculus of the FA structures that are
commonly used for AB-grammars by [12,22].

9 Conclusion and Possible Extensions

A first criticism that can be addressed to our learning algorithm is that the rigid
condition on Lambek grammars is too restrictive. One can say, as in [22] that
k-valued grammars can be learned by doing all the possible unification that lead
to less than k categories. Every successful unification of grammar with less than
k categories should be kept, because it can thereafter work with other types,
hence this approach is computationnally intractable. An alternative is to use a
precise part of speech tagger and to consider word with different categories as
distinct. This can be done and looks more sound and could be done partly with
statistical techniques. [37,25]

The principal weakness of identification in the limit is that too much structure
is required. Ideally, one would like to learn directly from strings, but in the case
of Lambek grammars it has been shown to be impossible in [14]. One may think
that it could be possible to try every possible structure on sentences as strings of
words as done in [22] for basic categorial grammars. Unfortunately, in the case
of Lambek grammars, with or without product, this cannot be done. Indeed,
there can be infinitely many structures corresponding to a sentence, because a
cancelled hypothesis does not have to be anchored in one the finitely many words
of the sentence. Hence we ought to learn from structured sentences.

From the point of view of first language acquisition we know that some struc-
ture is available, but it is unlikely that the structured sentences are proof frames
that are are partial categorial parse structure. The real input available to the
learner is a mixture of prosodic and semantic information, and no one knows how
to formalise these structures in order to simulate the natural data for language
learning. From a computational linguistic perspective, our result is not as bad
as one may think. Indeed, there exist tools that annotate corpora, and one may
implement other tools that turn standard annotations into other more accurate
annotations. These shallow processes may lead to structures from which one can
infer the proper structure for algorithm like the one we presented in this paper.
In the case of proof nets, as observed long ago, axioms express the consumption
of valency. This the reason why, apart from the structure of the formulae, the
structure of the proof frames is not so different from dependency annotations
and can be used to infer categorial structures see e.g. [37,25]. However, the au-
tomatic acquisition of wide-coverage grammars for natural language processing
applications, certainly requires a combination of machine learning techniques
and of identification in the limit à la Gold, although up to now there are not so
many such works.

Grammatical formalisms that can be represented in Lambek grammars can
also be learnt like we did in this paper. For instance categorial version of Stabler’s

Learning Lambek Grammars from Proof Frames 133

minimalist grammars [38] can be learnt that way as the attempts by Fulop or us
show [15,10] This should be even better with the so-called Categorial Minimalist
grammars of Lecomte, Amblard and us [1,2].

References

1. Amblard, M.: Calculs de représentations sémantiques et syntaxe générative: les
grammaires minimalistes catégorielles. PhD thesis, Université Sciences et Tech-
nologies - Bordeaux I (September 2007)

2. Amblard, M., Lecomte, A., Retoré, C.: Categorial minimalist grammars: From
generative grammar to logical form. Linguistic Analysis 36(1-4), 273–306 (2010)

3. Amblard, M., Retoré, C.: Natural deduction and normalisation for partially com-
mutative linear logic and lambek calculus with product. In: Cooper, S.B., Kent,
T.F., Löwe, B., Sorbi, A. (eds.) Computation and Logic in the Real World (Com-
puting in Europe 2007). Quaderni del Dipartimento di Scienze Matematiche e In-
formatiche Roberto Magari, vol. ID487, pp. 28–35. Università degli Studi di Siena
(September 2007)

4. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and Sytem Science 21(1), 46–62 (1980)

5. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

6. Bar-Hillel, Y.: A quasi arithmetical notation for syntactic description. Language 29,
47–58 (1953)

7. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase-structure gram-
mars. Bulletin of the Research Council of Israel F(9), 1–16 (1963)

8. Berwick, R.C., Pietroski, P., Yankama, B., Chomsky, N.: Poverty of the stimulus
revisited. Cognitive Science 35(5), 1207–1242 (2011)

9. Bonato, R.: Uno studio sull’apprendibilità delle grammatiche di Lambek rigide —
A study on learnability for rigid Lambek grammars. Tesi di Laurea & Mémoire de
D.E.A, Università di Verona & Université Rennes 1 (2000)

10. Bonato, R., Retoré, C.: Learning rigid Lambek grammars and minimalist grammars
from structured sentences. In: Popel̀ınskỳ, L., Nepil, M. (eds.) Proceedings of the
third workshop on Learning Language in Logic, LLL 2001. FI MU Report series,
vol. FI-MU-RS-2001-08, pp. 23–34. Faculty of Informatics – Masaryk University,
Strabourg (September 2001)

11. Buszkowski, W.: Discovery procedures for categorial grammars. In: van Benthem,
J., Klein, E. (eds.) Categories, Polymorphism and Unification. Universiteit van
Amsterdam (1987)

12. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49, 431–454 (1990)

13. de Groote, P., Retoré, C.: Semantic readings of proof nets. In: Kruijff, G.J., Mor-
rill, G., Oehrle, D. (eds.) Formal Grammar, pp. 57–70. FoLLI, Prague (1996),
http://hal.archives-ouvertes.fr/hal-00823554

14. Foret, A., Le Nir, Y.: Lambek rigid grammars are not learnable from strings.
In: COLING 2002, 19th International Conference on Computational Linguistics,
Taipei, Taiwan, vol. 1, pp. 274–279 (August 2002)

15. Fulop, S.: The Logic and Learning of Language. Trafford on Demand Pub. (2004)
16. Gleitman, L., Liberman, M. (eds.): An invitation to cognitive sciences, vol. 1.

Language. MIT Press (1995)

http://hal.archives-ouvertes.fr/hal-00823554

134 R. Bonato and C. Retoré

17. Gold, E.M.: Language identification in the limit. Information and control 10, 447–474
(1967)

18. Guerrini, S.: A linear algorithm for mll proof net correctness and sequentialization.
Theoretical Computer Science 412(20), 1958–1978 (2011)

19. Johnson, K.: Gold’s theorem and cognitive science. Philosophy of Science 71,
571–592 (2004)

20. Joshi, A., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive
grammar formalisms. In: Sells, P., Schieber, S., Wasow, T. (eds.) Fundational Issues
in Natural Language Processing. MIT Press (1991)

21. Kanazawa, M.: Learnable classes of categorial grammars. PhD thesis, Universiteit
van Amsterdam (1994)

22. Kanazawa, M.: Learnable classes of categorial grammars. Studies in Logic, Lan-
guage and Information. FoLLI & CSLI distributed by Cambridge University Press
(1998)

23. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly, 154–170 (1958)

24. Melliès, P.A.: A topological correctness criterion for multiplicative non commuta-
tive logic. In: Ehrhard, T., Girard, J.Y., Ruet, P., Scott, P. (eds.) Linear Logic
in Computer Science. London Mathematical Society Lecture Notes, vol. 316,
pp. 283–321. Cambridge University press (2004)

25. Moot, R.: Semi-automated extraction of a wide-coverage type-logical grammar
for French. In: Proceedings of Traitement Automatique des Langues Naturelles
(TALN), Montreal (2010)

26. Moot, R., Retoré, C.: The logic of categorial grammars: A deductive account of
natural language syntax and semantics. LNCS, vol. 6850. Springer, Heidelberg
(2012)

27. Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. OUP,
Oxford (2011)

28. Morrill, G.: Incremental processing and acceptability. Computational Linguis-
tics 26(3), 319–338 (2000); preliminary version: UPCReport de Recerca LSI-98-46-R
(1998)

29. Nicolas, J.: Grammatical inference as unification. Rapport de Recherche RR-3632.
INRIA (1999)

30. Pentus, M.: Lambek grammars are context-free. In: Logic in Computer Science.
IEEE Computer Society Press (1993)

31. Piattelli-Palmarini, M. (ed.): Théories du langage, théories de l’apprentissage —
le débat Chomsky Piaget. Editions du Seuil. Number 138 in Points (1975)

32. Pinker, S.: Language acquisition. In: [16], ch. 6, pp. 135–182
33. Pinker, S.: Why the child holded the baby rabbits. In: [16], ch. 5, pp. 107–133
34. Pullum, G.K., Scholz, B.C.: Empirical assessment of stimulus poverty arguments.

The Linguistic Review 19, 9–50 (2002)
35. Reali, F., Christiansen, M.H.: Uncovering the richness of the stimulus: Structure

dependence and indirect statistical evidence. Cognitive Science 29(6), 1007–1028
(2005)

36. Retoré, C.: Le système F en logique linéaire. Mémoire de D.E.A. (dir.: J.-Y. Girard),
Université Paris 7 (1987)

37. Sandillon-Rezer, N.-F., Moot, R.: Using tree transducers for grammatical infer-
ence. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736,
pp. 235–250. Springer, Heidelberg (2011)

38. Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

Learning Lambek Grammars from Proof Frames 135

39. Tellier, I.: How to split recursive automata. In: Clark, A., Coste, F., Miclet, L. (eds.)
ICGI 2008. LNCS (LNAI), vol. 5278, pp. 200–212. Springer, Heidelberg (2008)

40. Tiede, H.J.: Deductive Systems and Grammars: Proofs as Grammatical Structures.
PhD thesis, Illinois Wesleyan University (1999), http://www.iwu.edu/htiede/

41. Zucker, J.: The correspondence between cut-elimination and normalisation i, ii.
Annals of Mathematical Logic 7, 1–156 (1974)

http://www.iwu.edu/htiede/

	Learning Lambek Grammars from Proof Frames
	1 Presentation
	2 Exact Learning a `la Gold: A Brief Reminder
	3 Categorial Grammars and the LCGp Class
	4 Categorial Grammars Generating Proof Frames
	4.1 Polarised Linear Formulae and Lambek Categories
	4.2 Proof Nets
	4.3 Structured Sentences to Learn from: s Proof Frames

	5 Unification, Proof Frames and Categorial Grammars
	6 An RG-Like Algorithm for Learning Lambek Categorial Grammars from Proof Frames
	7 Convergence of the Learning Algorithm
	8 Learning Product Free Lambek Grammars from Natural Deduction Frames
	8.1 Proofnets and Natural Deduction: Climbing Principal Branches
	8.2 Learning Product Free Lambek Grammars from Natural Deduction

	9 Conclusion and Possible Extensions
	References

