
NP-Completeness of Grammars

Based Upon Products of Free Pregroups

Denis Béchet

LINA - UMR 6241,
Université de Nantes & CNRS

2, rue de la Houssiniére - BP 92208
44322 Nantes Cedex 03 - France
Denis.Bechet@univ-nantes.fr

Abstract. Pregroup grammars are context-free lexicalized grammars
based upon free pregroups which can describe parts of the syntax of
natural languages. Some extensions are useful to model special construc-
tions like agreements with complex features or non-projective relations
or dependencies. A simple solution for these problems is given by lexical-
ized grammars based upon the product of free pregroups rather than on
a single free pregroup. Such grammars are not necessarily context-free.
However, the membership problem is NP-complete. To prove this the-
orem, the article defines a particular grammar built on the product of
three free pregroups. This grammar is used to encode any SAT problem
as a membership problem in the language corresponding to the grammar.

Keywords: Lambek Categorial Grammar, Pregroup Grammar, Free
Pregroup, Product of Pregroups.

1 Introduction

Pregroup grammars [15] are a simplification of Lambek calculus [18] that can
model parts of several natural languages: English [15], Italian [8], French [1], Ger-
man [16,17], Japanese [7], Persian [19], etc. As with Lambek calculus, some exten-
sions have been proposed for various constructions. For instance, in [4,3], simple
type iterations are introduced into pregroup grammars for adjectival or adverbial
phrases. [11] presents other extensions based upon modalities, product pregroup
grammars and tupled pregroup grammars and applies these extensions to Polish.

In [12,13], the author proposes to use products of pregroups as a general con-
struction to extend the generative power of pregroup grammars based upon free
pregroups. For the author, this construction is interesting, for instance, for the
Italian nominal and adjectival paradigm with binary valued features (mascu-
line/feminine or singular/plural). With a product, every feature can be put in
its own space giving a very simple solution for agreement. In [14], grammars
based upon any pregroup (not only on a free pregroup) are proved to be Tur-
ing complete (the languages are all the ε-free recursively enumerable languages).
The construction uses a grammar based upon the product of two free pregroups
and its image through a string homomorphism.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 51–62, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



52 D. Béchet

Products can also be used for long distance dependencies, in particular when
the projective nature of free pregroup deductions limit axioms. For instance a
pregroup analysis of “quand il l’avait ramené” (when he took her at home) needs
a complex type for the clitic “ l’ ” (her).

“l’ ” is assigned πr
3so

llslπ3 rather than oll. A better analysis would be:

For this kind of constructions, we need non-projective axioms. The product
of free pregroups can be used for this purpose. The idea is used by Categorial
Dependency Grammars[9] for non-projective dependencies even if in this case
the polarities that define the ends of non-projective dependencies do not define
complete categorial components1.

Of course, we expect that such extensions preserve the interesting properties
of pregroup grammars. One of these properties is that the membership problem
is polynomial. This is no more the case with grammars based upon the products
of at least 3 free pregroups: Here, we present a grammar based upon the product
of 3 free pregroups that can code any SAT problem proving that the membership
problem for this grammar is NP-hard.

The rest of the article begins by presenting pregroups, free pregroups and
pregoup grammars (lexicalized grammars based on a free pregroup). Section 3
introduces the product of pregroups, pregroup product grammars (lexicalized
grammars based on the product of several free pregroups) and gives some prop-
erties of the associated class of languages. Section 4 proves that the membership
problem of the class of languages is NP-hard (in fact NP-complete). The last
section concludes.

2 Background

Definition 1 (Pregroup). A pregroup is a structure (P,≤, ◦, l, r, 1) such that
(P,≤, ◦, 1) is a partially ordered monoid 2 and l, r are two unary operations on
P that satisfy the inequalities xlx ≤ 1 ≤ xxl and xxr ≤ 1 ≤ xrx for all x ∈ P .

1 The types in a CDG can be defined as the set of the product of a categorial type
and a list of signed integers.

2 We briefly recall that a monoid is a structure < M, ◦, 1 >, such that ◦ is associative
and has a neutral element 1 (∀x ∈ M : 1◦x = x◦1 = x). A partially ordered monoid
is a monoid < M, ◦, 1 > with a partial order ≤ that satisfies ∀a, b, c: a ≤ b ⇒ c ◦ a ≤
c ◦ b and a ◦ c ≤ b ◦ c.



NP-Completeness of Grammars Based Upon Products of Free Pregroups 53

Definition 2 (Free Pregroup). Let (P,≤) be a partially ordered set of basic
types. We write Z for the set of signed integers. P (Z) = { p(i) | p ∈ P, i ∈ Z} is

the set of simple types and T(P,≤) =
(
P (Z)

)∗
= {p(i1)1 · · · p(in)n | 0 ≤ k ≤ n, pk ∈

P and ik ∈ Z} is the set of types. The empty sequence in T(P,≤) is denoted by
1. For X and Y ∈ T(P,≤), X ≤ Y iff this relation is derivable in the following
system where p, q ∈ P , n, k ∈ Z and X,Y, Z ∈ T(P,≤):

X ≤ X (Id)
X ≤ Y Y ≤ Z

(Cut)
X ≤ Z

XY ≤ Z
(AL)

Xp(n)p(n+1)Y ≤ Z

X ≤ Y Z
(AR)

X ≤ Y p(n+1)p(n)Z

Xp(k)Y ≤ Z
(INDL)

Xq(k)Y ≤ Z

X ≤ Y q(k)Z
(INDR)

X ≤ Y p(k)Z

(where q ≤ p if k is even, and p ≤ q if k is odd)

The construction, proposed by Buskowski [6], defines a pregroup that extends
≤ on basic types P to T(P,≤)

3,4.

Cut Elimination. On the one hand, the cut rule is useful for clear and com-
pact representation of derivations. On the other hand, it creates problems for
derivation search because, due to this rule, one cannot in general bound the
number of hypothetical premises needed in a derivation of a given inequality.
Fortunately, this rule can be eliminated in pregroups without loss of generality,
i.e. every derivable inequality has a cut-free derivation (see [5]) .

Definition 3 (Pregroup Grammar). Let (P,≤) be a finite partially ordered
set. A pregroup grammar based upon (P,≤) is a lexicalized 5 grammar G =
(Σ, I, s) on categories T(P,≤) such that s ∈ P . G assigns a type X to a string
v1 · · · vn of Σ∗ iff for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤ X in the free
pregroup T(P,≤). The language L(G) is the set of strings in Σ∗ that are assigned
s by G.

Example 1. Let us look at an analysis of a complete sentence from Marcel Proust
(a part of it is shown in the introduction). The basic types used in this analysis
are: π3, π3: third person (subject) with π3 ≤ π3, p2: past participle, ω: object,
s: sentence, s5: subjunctive clause, σ: complete subjunctive clause, τ : adverbial
phrase.

3 Left and right adjoints are defined by (p(n))l = p(n−1), (p(n))r = p(n+1), (XY )l =
Y lXl and (XY )r = Y rXr. p stands for p(0). The left and right adjoints of X ∈
T(P,≤) are defined recursively: X(0) = X, X(n+1) = (Xr)(n) and X(n−1) = (Xl)(n).

4 ≤ is only a preorder. Thus, in fact, the pregroup is the quotient of T(P,≤) under the
equivalence relation X ≤ Y & Y ≤ X.

5 A lexicalized grammar is a triple (Σ, I, s): Σ is a finite alphabet, I assigns a finite
set of categories (or types) to each c ∈ Σ, s is a category (or type) associated to
correct strings.



54 D. Béchet

τ

quand

sl π3

il

πr
3sω

ll

l’

slπ3 π3
rs

avait

pl2 p2

ramenée

ωlλl λ

chez-elle

π3

il

π3
rτ r

fallait

sσl σ

qu’

sl5 π3

il

π3
r

entrât

s5

Using only left rules (AL) and (INDL) and one (Id), we can prove that the
product of the assigned types is less than or equal to s. The proof is schematically
presented above. In this proof, each link corresponds to one application of (AL)
(eventually with a (INDL) when the corresponding basic types are different).

3 Product of Pregroups

A natural idea to combine pregroups is to define a structure over the product of
the corresponding monoids.

Definition 4 (Product of Pregroups). For N≥1, let Pi=(Mi,≤ i,◦i, li, ri, 1i),
1 ≤ i ≤ N , be N pregroups. We define P1 × · · · × PN as (M1 × · · · × MN ,≤
, ◦, l, r, (11, . . . , 1N )) where:
- (x1, . . . , xN ) ≤ (y1, . . . , yN ) iff ∀i, 1 ≤ i ≤ N , xi ≤i yi,
- (x1, . . . , xN ) ◦ (y1, . . . , yN) = (x1 ◦1 y1, . . . , xN ◦N yN ),
- (x1, . . . , xN )l = (xl1

1 , . . . , x
lN
N ) and (x1, . . . , xN )r = (xr1

1 , . . . , xrN
N ).

The product of several pregroups gives a structure that is also a pregroup6.

3.1 Pregroup Product Grammars

Pregroup grammars are defined over a free pregroup. We relax this definition
here and define grammars on any pregroup. In fact, we are interested only in
the product of free pregroups.

Definition 5 (Pregroup Product Grammar). Let (P1,≤1), . . . , (PN ,≤N)
be N ≥ 1 finite partially ordered sets. A pregroup product grammar based
upon (P1,≤1), . . . , (PN ,≤N ) is a lexicalized grammar G = (Σ, I, s) on cate-
gories T(P1,≤1)× · · ·×T(PN ,≤N ) such that s ∈ P1. G assigns a type X to a string
v1 · · · vn of Σ∗ iff for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 ◦ · · · ◦ Xn ≤ X
in the product of the free pregroups T(P1,≤1), . . . , T(PN ,≤N ) with ◦ as the binary
operation of the product and ≤ as its partial order. The language L(G) is the
set of strings in Σ∗ that are assigned (s, 1, . . . , 1) by G.

In the definition, when a string is assigned (s, 1, . . . , 1), the first component
of the product must be less than or equal to s, a special basic type of the first
free pregroup. The other components must be less than or equal to the unit of
the corresponding free pregroup. It is possible to have a different definition, for
instance by choosing that all components must be less than or equal to the unit

6 The definition can also be extended to the empty product (N = 0). In this case,
the resulting structure is the monoid with a unique element which is also the unit
element.



NP-Completeness of Grammars Based Upon Products of Free Pregroups 55

of this component and by adding a “wall” in Σ that is associated by the lexicon
to the type (sr, 1, . . . , 1).

3.2 Pregroup Product Grammars: Context Sensitive but NP
Membership Problem

The membership problem of a string into the language associated to a pregroup
grammar is polynomial in time either from the size of the string or from the size
of the string plus the size of the pregroup grammar. In fact, the languages of
pregroup grammars are the context-free languages [6,2].

For pregroup product grammars, the number N ≥ 1 of free pregroups for the
product is important. For N = 1, the product is equivalent to a free pregroup.
Thus the same result can be proved on the membership problem and the expres-
sive power (the membership problem is polynomial in time and the languages
are context-free). This is completely different if N > 1. With regard to the ex-
pressive power, the article proves that for k > 1, Lk = {ai1ai2 · · ·aik | i ≥ 1} is
generated by a pregroup product grammar based upon the product of k− 1 free
pregroups.

Definition 6 (Pregroup Product Grammar for {ai1ai2 · · · aik | i ≥ 1}). Let
P = ({x1, . . . , xk, z},=) a partially ordered set (the partial order on basic types is
equality). We consider the product of the k free pregroups based upon k copies of
P . Let Gk = ({a1, . . . , ak}, Ik, x1) be the pregroup product grammar based upon
the product and defined by the following lexicon:

Ik(a1) = { (x1zx
l
1, 1, . . . , 1) , (x1zx

l
2, 1, . . . , 1) }

Ik(a2) = { (x2z
lxl

2, z, 1, . . . , 1) , (x2z
lxl

3, z, 1, . . . , 1) }
Ik(a3) = { (x3x

l
3, z

l, z, 1, . . . , 1) , (x3x
l
4, z

l, z, 1, . . . , 1) }
· · ·
Ik(ak−1) = { (xk−1x

l
k−1, 1, . . . , 1, z

l, z) , (xk−1x
l
k, 1, . . . , 1, z

l, z) }
Ik(ak) = { (xkx

l
k, 1, . . . , 1, z) , (xk, . . . , 1, z) }

Theorem 1. For k > 1, Lk = {ai1ai2 · · · aik | i ≥ 1} = L(Gk).

Proof. Firstly, it is easy to find a derivation in Gk corresponding to the string
A = ai1a

i
2 · · ·aik for i > 0: Using the lexicon Ik, we can associate the following

expression to A:
(x1z

lxl
1, 1, . . . , 1) ◦ · · · ◦ (x1z

lxl
1, 1, . . . , 1)︸ ︷︷ ︸

i−1

◦(x1z
lxl

2, 1, . . . , 1) ◦

(x2zx
l
2, z

l, 1, . . . , 1) ◦ · · · ◦ (x2zx
l
2, z

l, 1, . . . , 1)
︸ ︷︷ ︸

i−1

◦(x2zx
l
3, z

l, 1, . . . , 1) ◦

· · ·
(xk−1x

l
k−1, 1, . . . , 1, z, z

l) ◦ · · · ◦ (xk−1x
l
k−1, 1, . . . , 1, z, z

l)
︸ ︷︷ ︸

i−1

◦ (xk−1x
l
k, 1, . . . , 1, z, z

l) ◦
(xkx

l
k, 1, . . . , 1, z) ◦ · · · ◦ (xkx

l
k, 1, . . . , 1, z)︸ ︷︷ ︸

i−1

◦(xk, 1, . . . , 1, z)



56 D. Béchet

For the first component:

(x1z
lxl

1) · · · (x1z
lxl

1)︸ ︷︷ ︸
i−1

x1z
lxl

2 (x2zx
l
2) · · · (x2zx

l
2)︸ ︷︷ ︸

i−1

x2zx
l
3

(x3x
l
3) · · · (x3x

l
3)︸ ︷︷ ︸

i−1

x3x
l
4 · · · (xkx

l
k) · · · (xkx

l
k)︸ ︷︷ ︸

i−1

xk ≤ x1

For the other components:
1 · · · 1 zl · · · zl︸ ︷︷ ︸

i

z · · · z︸ ︷︷ ︸
i

1 · · · 1 ≤ 1

Therefore Lk ⊆ L(Gk).
For the other direction, we prove that if A ∈ L(Gk) then for 1 ≤ i ≤ k − 1,

every occurrence of ai in Amust be before any occurrence of ai+1 and the number
of ai is the same as the number of ai+1. The first property is given by the basic
types x1, . . . xk of the first component of the derivation of A in Gk. Couples of
xl
i and xi form a list from left to right leaving only one basic type x1. For the

second property, the number of ai is the same as the number of ai+1, because in
the i-th component, basic type z is given by ai as zl and by ai+1 as z (each z
on the right corresponds exactly to one zl on the left).

In the Chomsky hierarchy, a pregroup product grammar can be simulated by
a context-sensitive grammar using contextual rules. Intuitively, in the context-
sensitive grammar, some contextual rules play the role of the free pregroup left
rules (AL) and (INDL) of Definition 2. A second set of contextual rules performs
local “permutations” of simple types that are not in the same component: A
simple type in the i-th component permutes with a simple type in the j-th
component if the first one is before the second one and if i > j.

In fact, the membership problem is clearly a NP problem because if we want to
check that a string is in the language associated to a pregroup product grammar
where the product has N components, we only have to produce an assignment
for each symbol and prove that the N concatenations of each component of the
types are less than or equal to s or 1 which are N polynomial problems.

The conclusion of this remark is that the languages of pregroup product gram-
mars are contextual but most probably several context-sensitive language are
not generated by a pregroup product grammar (the membership problem of the
context-sensitive languages is PSPACE-complete). The next section proves that
the membership problem is also NP-hard. Thus pregroup product grammars are
not mildly context-sensitive [10].

4 Pregroup Product Grammars: NP-Hard

The section presents the main result of the paper: The membership problem for
a particular pregroup product grammar is NP-hard. The proof is based upon
an encoding of any SAT problem. The grammar is based upon the product of 3
free pregroups. As a consequence, the membership problem of pregroup product
grammars is NP-complete at least for pregroup product grammars built with at
least 3 free pregroups.



NP-Completeness of Grammars Based Upon Products of Free Pregroups 57

The proof uses the product of three copies of the free pregroup on PSAT =
{t, f} with equality as the partial order on basic types. The set of elements of
the pregroup is TSAT = T(PSAT ,=) × T(PSAT ,=) × T(PSAT ,=). The first component
corresponds to the encoding of the formula that we want to satisfy. The two
other components are used to propagate the boolean values of variables.

The formula is transformed into a string and it can be satisfied iff the string is
included in the language generated by a fixed pregroup product grammar GSAT

based upon TSAT .

Definition 7 (Formula Transformation Tn(F )). A boolean formula F that
contains (at most) n variables v1, . . . , vn, operators ∧ (binary conjunction), ∨
(binary disjunction) and ¬ (negation) is transformed into a string Tn(F ) ∈
{a, b, c, d, e,∧,∨,¬}∗. Tn(F ) and [F ]n are defined as follows:

- Tn(F ) = a · · ·a︸ ︷︷ ︸
n

[F ]n e · · · e︸ ︷︷ ︸
n

- [vi]n = b · · · b︸ ︷︷ ︸
i−1

c b · · · b︸ ︷︷ ︸
n−i

d · · · d︸ ︷︷ ︸
n

- [F1 ∨ F2]n = ∨[F1]n[F2]n
- [F1 ∧ F2]n = ∧[F1]n[F2]n
- [¬F1]n = ¬[F1]n

Example 2. A boolean formula is transformed into a string using the prefix no-
tation for operators. The transformations of v1 ∧ v1 and v1 ∨ (v1 ∧ v2) are:

T1(v1 ∧ v1) = a ∧ cd︸︷︷︸
for v1

cd︸︷︷︸
for v1

e

T2(v1 ∨ (v1 ∧ v2)) = aa ∨ cbdd︸︷︷︸
for v1

∧ cbdd︸︷︷︸
for v1

bcdd︸︷︷︸
for v2

ee

Definition 8 (Pregroup Product Grammar GSAT ). The pregroup product
grammar GSAT = ({a, b, c, d, e,∧,∨,¬}, ISAT , t), based upon the product of three
copies of the free pregroup on (PSAT ,=) where PSAT = {t, f}, is defined by the
following lexicon:

ISAT (a) = { (1, tl, 1) , (1, f l, 1) }
ISAT (b) = { (1, t, tl) , (1, f, f l) }
ISAT (c) = { (t, t, tl) , (f, f, f l) }
ISAT (d) = { (1, tl, t) , (1, f l, f) }
ISAT (e) = { (1, t, 1) , (1, f, 1) }
ISAT (∧) = { (ttltl, 1, 1) , (ff ltl, 1, 1) , (ftlf l, 1, 1) , (ff lf l, 1, 1) }
ISAT (∨) = { (ttltl, 1, 1) , (tf ltl, 1, 1) , (ttlf l, 1, 1) , (ff lf l, 1, 1) }
ISAT (¬) = { (tf l, 1, 1) , (ftl, 1, 1) }

We write ≤T(PSAT ,=)
for the partial order of the free pregroup on (PSAT ,=) and

≤SAT for the partial order of the product of the three free pregroups based on
(PSAT ,=). The types assigned to the strings of L(GSAT ) are ≤SAT (t, 1, 1)



58 D. Béchet

Example 3. The formula v1 ∧ v1 can be satisfied for v1 = true. There exists a
type assignment of the symbols of T1(v1 ∧ v1) = a ∧ cd cd e by GSAT that is
≤SAT (t, 1, 1):

(1, tl, 1)
︸ ︷︷ ︸

for a

◦ (ttltl, 1, 1)
︸ ︷︷ ︸

for ∧

◦ (t, t, tl)
︸ ︷︷ ︸
for c

◦ (1, tl, t)
︸ ︷︷ ︸

for d

◦ (t, t, tl)
︸ ︷︷ ︸
for c

◦ (1, tl, t)
︸ ︷︷ ︸
for d

◦ (1, t, 1)
︸ ︷︷ ︸
for e

≤SAT (t, 1, 1)

The formula v1 ∧ ¬v2 can be satisfied for v1 = true and v2 = false. There
exists a type assignment of the symbols of T2(v1 ∧ ¬v2) = aa ∧ cbdd ¬ bcdd ee
by GSAT that is ≤SAT (t, 1, 1):

(1, f l, 1)
︸ ︷︷ ︸

for a

◦ (1, tl, 1)
︸ ︷︷ ︸

for a

◦ (ttltl, 1, 1)
︸ ︷︷ ︸

for ∧

◦ (t, t, tl)
︸ ︷︷ ︸
for c

◦ (1, f, f l)
︸ ︷︷ ︸

for b

◦ (1, f l, f)
︸ ︷︷ ︸

for d

◦ (1, tl, t)
︸ ︷︷ ︸
for d

◦

(tf l, 1, 1)
︸ ︷︷ ︸

for ¬

◦ (1, t, tl)
︸ ︷︷ ︸

for b

◦ (f, f, f l)
︸ ︷︷ ︸

for c

◦ (1, f l, f)
︸ ︷︷ ︸

for d

◦ (1, tl, t)
︸ ︷︷ ︸

for d

◦ (1, t, 1)
︸ ︷︷ ︸
for e

◦ (1, f, 1)
︸ ︷︷ ︸

for e

≤SAT (t, 1, 1)

Theorem 2. A boolean formula F that contains (at most) n variables v1, . . . , vn,
operators ∧ (binary conjunction), ∨ (binary disjunction) and ¬ (negation) can
be satisfied iff Tn(F ) ∈ L(GSAT )

Example 4. Example 3 shows two formulas that can be satisfied. Their trans-
formations using Tn are in L(GSAT ). The formula v1 ∧ ¬v1 cannot be satisfied.
A type assignment of T1(v1 ∧ ¬v1) = a ∧ cd ¬cd e by GSAT would produce the
following type where for 1 ≤ i ≤ 11, xi ∈ {t, f}, x2 = x3 ∧ x4 and x7 = ¬x8

(both equalities come from entries of ∧ and ¬ of the lexicon ISAT – we identify
here true with t and false with f):

(1, xl
1, 1)︸ ︷︷ ︸
a

◦ (x2x
l
3x

l
4, 1, 1)︸ ︷︷ ︸

∧

◦ (x5, x5, x
l
5)︸ ︷︷ ︸

c

◦ (1, xl
6, x6)︸ ︷︷ ︸
d

◦

(x7x
l
8, 1, 1)︸ ︷︷ ︸
¬

◦ (x9, x9, x
l
9)︸ ︷︷ ︸

c

◦ (1, xl
10, x10)︸ ︷︷ ︸
d

◦ (1, x11, 1)︸ ︷︷ ︸
e

The type must be ≤SAT (t, 1, 1). Therefore, x2x
l
3x

l
4x5x7x

l
8x9 ≤T(PSAT ,=)

t,

xl
1x5x

l
6x9x

l
10x11 ≤T(PSAT ,=)

1 and xl
5x6x

l
9x10 ≤T(PSAT ,=)

1. As a consequence,
x2 = t, x3 = x7, x4 = x5, x8 = x9, x1 = x5, x6 = x9, x10 = x11, x5 = x6 and
x9 = x10. There is no solution to all these equations: The transformation of the
formula v1 ∧ ¬v1 through T1 is not in L(GSAT ).

Proof. Firstly, we prove that if a formulaF on variables v1, . . . , vn can be satisfied,
then Tn(F ) is in L(GSAT ). Let (x1, . . . , xn) ∈ {true, false}n be an assignment of



NP-Completeness of Grammars Based Upon Products of Free Pregroups 59

variables v1, . . . , vn that satisfies F . Using the assignment, the occurrences of the
variables and the occurrences of the operators of F can be annotated by boolean
values that correspond to the value of the variable or the output value of the op-
erator plus the input value for ¬ or both input values for ∨ and ∧. Of course,
the boolean values associated to an operator follow the truth table of the corre-
sponding boolean operator. Now, we can assign a type in ISAT to each symbol of
Tn(F ):

– The assignment of the i-th a in Tn(F ) = a · · ·a︸ ︷︷ ︸
n

[F ] e · · · e︸ ︷︷ ︸
n

corresponds to the

value xn+1−i of the (n+1− i)-th boolean variable vn+1−i. If xn+1−i is true,
the occurrence is assigned to (1, tl, 1), otherwise, it is assigned to (1, f l, 1).

– The assignment of the i-th e in Tn(F ) = a · · · a︸ ︷︷ ︸
n

[F ] e · · · e︸ ︷︷ ︸
n

corresponds to the

value xi of the i-th variable. If xi is true, the occurrence is assigned to (1, t, 1)
otherwise to (1, f, 1)

– The i-th b or c in [vj ]n = b · · · b︸ ︷︷ ︸
j−1

c b · · · b︸ ︷︷ ︸
n−j

d · · · d︸ ︷︷ ︸
n

corresponds to the value xi of

the i-th variable. If i = j, we have c. Then, if xi is true, the occurrence is
assigned to (t, t, tl) otherwise to (f, f, f l). If i �= j, we have b. If xi is true,
the occurrence is assigned to (1, t, tl) otherwise to (1, f, f l).

– The i-th d in [vj ]n = b · · · b︸ ︷︷ ︸
j−1

c b · · · b︸ ︷︷ ︸
n−j

d · · · d︸ ︷︷ ︸
n

corresponds to the value xn+1−i of

the (n+ 1− i)-th boolean variable vn+1−i. If xn+1−i is true, the occurrence
is assigned to (1, tl, t), otherwise, it is assigned to (1, f l, f).

– For ¬ in [¬F1]n = ¬[F1]n, the assignment of variables v1, . . . , vn that satisfies
F induces a boolean value to the sub-formula F1 that is either true or false.
The output value of ¬F1 is the opposite value (false for true and true for
false). Thus, ¬ is assigned to (tf l, 1, 1) if the input is false and the output
is true or to (ftl, 1, 1) if the input is true and the output is false.

– For ∧ in [F1 ∧ F2]n = ∧[F1]n[F2]n, the assignment of variables v1, . . . , vn
that satisfies F , induces a boolean value to each sub-formula F1 and F2. The
output follows the truth table of the logical “and” operator. Following the
input values, the assignment of ∧ is given by the following table (the values
of the inputs are reverse in the type because they appeared as left adjoints
tl or f l):

F1(x1, . . . , xn) F2(x1, . . . , xn) ∧

true true (ttltl, 1, 1)
true false (ff ltl, 1, 1)
false true (ftlf l, 1, 1)
false false (ff lf l, 1, 1)

– ∨ is very similar to ∧ except that we follow the truth table of the logical
“or” operator:



60 D. Béchet

F1(x1, . . . , xn) F2(x1, . . . , xn) ∨

true true (ttltl, 1, 1)
true false (tf ltl, 1, 1)
false true (ttlf l, 1, 1)
false false (ff lf l, 1, 1)

Now, we create three derivations (one for each component) that prove that the
type assignment of Tn(F ) (with the values x1, . . . , xn for the boolean variables
v1, . . . , vn) is ≤SAT (t, 1, 1). The first component starts with s ≤T(PSAT ,=)

t,

the other components with 1 ≤T(PSAT ,=)
1. The applications of (AL) on the

first component follow the syntactic tree of F written with the prefix notation
for binary operators ∧ and ∨. For this component, only the assignments of c,
¬, ∧ and ∨ are important (the other symbols are assigned to 1 in the first
component). The application of rule (AL) between an occurrence of f l (on the
left) and an occurrence of f (on the right) corresponds to the link between the
output of a variable or an operator that is false and one of the inputs of an
operator. Similarly the application of rule (AL) between an occurrence of tl (on
the left) and an occurrence of t (on the right) corresponds to the propagation
of the true value. The basic type t that remains at the end is the value of the
main operator or variable. It is t because F is true in this case. The two other
components are used to synchronize the value given to each occurrence of the
variables v1, . . . , vn (each c in Tn(F )). For each occurrence of vi, this is done
on the complete vector of variables v1, . . . , vn but only one of the values (the
value that corresponds to vi) is copied into the first component. If we write
true = t and false = f and if we only look at the second and third components,
we have, for [vi]n, the type x1 · · ·xn xn

l · · ·x1
l for the second component and

the type x1
l · · ·xn

lxn · · ·x1 for the third component. The n occurrences of a in
Tn(F ) give the type xn

l · · ·x1
l for the second component and 1 for the third.

The n occurrences of e give the type x1 · · ·xn for the second component and
1 for the third. Obviously, if we write X = x1 · · ·xn, the global type of the
second component is X︸︷︷︸

for a

X lX︸ ︷︷ ︸
for vi1

· · · X lX︸ ︷︷ ︸
for vim

X l
︸︷︷︸
for e

which is ≤T(PSAT ,=)
1. For the

third component, each variable corresponds toX lX , which is ≤T(PSAT ,=)
1. Thus,

the type assigned to Tn(F ) using x1, . . . , xn for v1, . . . , vn is ≤SAT (t, 1, 1) and
Tn(F ) ∈ L(GSAT ).

The reverse inclusion proves that if F is a boolean function with n variables
v1, . . . , vn and if Tn(F ) ∈ L(GSAT ) then F can be satisfied. The derivations of
the three components that prove that a type assignment of Tn(F ) by ISAT is
≤SAT (t, 1, 1) only use rule (AL). The other rules (except for the applications of
(Id) giving t ≤T(PSAT ,=)

t for the first component and giving 1 ≤T(PSAT ,=)
1 for

the second and third components and the cut rule) are never used in the system



NP-Completeness of Grammars Based Upon Products of Free Pregroups 61

because the right part of the inequalities is either a basic type t for the first
component or the unit for the other components and because the partial order
on the simple types of the free pregroup is equality. Moreover, GSAT only uses
the four simple types t, tl, f , and f l and an assignment of each symbol of Tn(F )
gives always the same formula when basic types t and f are identified. Thus,
there exists at most one class of equivalent derivations of any type assignment of
Tn(F ) if we look at the set of applications of rule (AL) in the three components of
the type assignment. In a derivation, each application of (AL) corresponds to an
“axiom” between one tl on the left and one t on the right or between one f l on the
left and one f on the right (as it is shown in Example 1) and all the “axioms” form
a projective structure (like the couples of corresponding parentheses in a string
of the Dyck language). The class of equivalent derivations (some applications
of (AL) can commute) must correspond to the construction shown above: The
first component corresponds to the applications of rule (AL) that propagate the
output of variables and operators to the inputs of the corresponding operator
in F . The remaining basic type of the first component (f or t) is the output
of F . The second and the third components synchronize the variables in such
a way that all the occurrences of the same variable have the same value. Now,
if Tn(F ) ∈ L(GSAT ), the type assignment of the symbols of Tn(F ) is such that
the variable vi has the value corresponding to the second component of the type
assignment of the i-th e of Tn(F ): if it is (1, t, 1), vi is set to true, if it is (1, f, 1)
vi is set to false. For this set of values, the first component of the assignment of
Tn(F ) is ≤T(PSAT ,=)

t. This means that the value of F is true when the variables
v1, . . . , vn are set to the values above. Thus F can be satisfied.

Of course because the membership problem in L(GSAT ) is a NP problem, this
problem is NP-complete. As a consequence, the membership problem of L(G)
when G is a pregroup product grammar is also NP-complete. The problem is
still open for pregroup product grammar based of two free pregroups but this
problem is most probably NP-complete.

5 Conclusion

The article introduces pregroup product grammars, grammars based of the prod-
uct of free pregroups. It is shown that the class of languages is very expressive.
For instance, {xi

1 · · ·xi
N | i ≥ 1} for any N ≥ 1 can be generated. However, the

membership problem is NP-complete. Thus even if they are much more expres-
sive, pregroup product grammars are less interesting than pregroup grammars
with respect to the complexity of the membership problem.

References

1. Bargelli, D., Lambek, J.: An algebraic approach to french sentence structure. In:
de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099,
pp. 62–78. Springer, Heidelberg (2001)



62 D. Béchet

2. Béchet, D.: Parsing pregroup grammars and Lambek calculus using partial com-
position. Studia Logica 87(2/3) (2007)

3. Béchet, D., Dikovsky, A., Foret, A., Garel, E.: Introduction of option and iteration
into pregroup grammars. In: Casadio, C., Lambek, J. (eds.) Computational Al-
gebraic Approaches to Natural Language, pp. 85–107. Polimetrica, Monza, Milan
(2008), http://www.polimetrica.com

4. Béchet, D., Dikovsky, A., Foret, A., Garel, E.: Optional and iterated types
for pregroup grammars. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 88–100. Springer, Heidelberg (2008),
http://grammars.grlmc.com/LATA2008

5. Buszkowski, W.: Cut elimination for the lambek calculus of adjoints. In: Abrusci,
V., Casadio, C. (eds.) New Perspectives in Logic and Formal Linguisitics, Proceed-
ings Vth ROMA Workshop. Bulzoni Editore (2001)

6. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer,
Heidelberg (2001)

7. Cardinal, K.: An algebraic study of Japanese grammar. Master’s thesis, McGill
University, Montreal (2002)

8. Casadio, C., Lambek, J.: An algebraic analysis of clitic pronouns in italian. In: de
Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099,
pp. 110–124. Springer, Heidelberg (2001)

9. Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Moortgat, M.,
Prince, V. (eds.) Proc. of Intern. Conf. on Categorial Grammars, pp. 76–91. Mont-
pellier (2004)

10. Joshi, A., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive
grammar formalisms. In: Sells, P., Schieber, S., Wasow, T. (eds.) Fundational Issues
in Natural Language Processing. MIT Press (1991)

11. Kíslak-Malinowska, A.: Extended pregroup grammars applied to natural languages.
Logic and Logical Philosophy 21(3), 229–252 (2012)

12. Kobele, G.M.: Pregroups, products, and generative power. In: Proceedings of the
Workshop on Pregroups and Linear Logic 2005, Chieti, Italy (May 2005)

13. Kobele, G.M.: Agreement bottlenecks in Italian. In: Casadio, C., Lambek, J. (eds.)
Computational Algebraic Approaches to Natural Language, pp. 191–212. Polimet-
rica, Monza, Milan (2008), http://www.polimetrica.com

14. Kobele, G.M., Kracht, M.: On pregroups, freedom, and (virtual) conceptual ne-
cessity. In: Eilam, A., Scheffler, T., Tauberer, J. (eds.) Proceedings of the 29th
Pennsylvania Linguistics Colloquium, vol. 12(1), pp. 189–198. University of Penn-
sylvania Working Papers in Linguistics (2006)

15. Lambek, J.: Type grammars revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

16. Lambek, J.: Type grammar meets german word order. Theoretical Linguistics 26,
19–30 (2000)

17. Lambek, J., Preller, A.: An algebraic approach to the german noun phrase. Lin-
guistic Analysis 31, 3–4 (2003)

18. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

19. Sadrzadeh, M.: Pregroup analysis of persian sentences (2007),
http://eprints.ecs.soton.ac.uk/13970/

http://www.polimetrica.com
http://www.polimetrica.com
http://eprints.ecs.soton.ac.uk/13970/

	NP-Completeness of GrammarsBased Upon Products of Free Pregroups
	1 Introduction
	2 Background
	3 Product of Pregroups
	3.1 Pregroup Product Grammars
	3.2 Pregroup Product Grammars: Context Sensitive but NPMembership Problem

	4 Pregroup Product Grammars: NP-Hard
	5 Conclusion
	References




