
Type Similarity for the Lambek-Grishin

Calculus Revisited

Arno Bastenhof

Utrecht Institute of Linguistics⋆

1 Introduction

The topic of this paper concerns a particular extension of Lambek’s syntactic
calculus [5] that was proposed by Grishin [4]. Roughly, the usual residuated fam-
ily (�, /, /) is extended by a coresiduated triple (�,�,�) mirroring its behavior
in the inequality sign:

A�B ≤ C iff A ≤ C/B iff B ≤ A/C
C ≤ A�B iff C �B ≤ A iff A�C ≤ B

A survey of the various possible structural extensions reveals that besides same-
sort associativity and/or commutativity of � and � independently, there exist
as well interaction laws mixing the two vocabularies. We may categorize them
along two dimensions, depending on whether they encode mixed associativity or
-commutativity, and on whether they involve the tensor � and par � (type I, in
Grishin’s terminology) or the (co)implications (type IV):

Type I Type IV
Mixed (A�B)�C ≤ A� (B �C) (A/B)�C ≤ A/(B �C)

associativity A� (B �C) ≤ (A�B)�C A� (B/C) ≤ (A�B)/C
Mixed A� (B �C) ≤ B � (A�C) A� (B/C) ≤ B/(A�C)

commutativity (A�B)�C ≤ (A�C)�B (A/B)�C ≤ (A�C)/B

While our motivation for the classification into types I and IV may seem rather
ad-hoc, one finds that the combined strength of these two groups allows for the
either partial or whole collapse (depending on the presence of identity elements,
or units) into same-sort commutativity and -associativity. Given that this result
is hardly desirable from the linguistic standpoint, there is sufficient ground for
making the distinction. Moortgat [8] thus proposed a number of calculi, jointly
referred to by Lambek-Grishin (LG), which he considered of particular interest
to linguistics. While all reject same-sort associativity and -commutativity, they
adopt either one of the type I or IV groups of postulates, the results denoted LGI

and LGIV respectively. On occasion, one speaks as well of LG∅, in reference to
the minimal base logic with no structural assumptions.

⋆ This paper was written while the author was working on his thesis. See Bastenhof,
Categorial Symmetry, PhD Thesis, Utrecht University, 2013. [Editors’ note].
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Having explained the Lambek-Grishin calculi, we next discuss the concept of
type-similarity. Besides model-theoretic investigations into derivability, people
have sought to similarly characterize its symmetric-transitive closure under the
absence of additives. Thus, we consider A and B type similar, written ⊢ A ∼B,
iff there exists a sequence of formulae C1 . . . Cn s.t. C1 = A, Cn = B, and either
Ci ≤ Ci+1 or Ci+1 ≤ Ci for each 1 ≤ i < n.1 For the traditional Lambek hierarchy,
one finds their level of resource sensitivity reflected in the algebraic models for
the corresponding notions of ∼, as summarized in the following table:

Calculus Models Reference
NL quasigroup Foret [3]
L group Pentus [10]
LP Abelian group Pentus [10]

With LGIV , however, Moortgat and Pentus (henceforth M&P, [9]) found that,
while same-sort associativity and -commutativity remain underivable, the latter
principles do hold at the level of type similarity. More specifically, we find there
exist formulas serving as common ancestors or descendants (in terms of ≤):

D

A�B B �A

C

..........................................
....
............

.............................................. ........
....

.............................................. ........
....

..........................................
....
............

D

(A�B)�C A� (B �C)

C

..........................................
....
............

.............................................. ........
....

.............................................. ........
....

..........................................
....
............

In general, we may prove (cf. [10]) that type similarity coincides with the ex-
istence of such meets D or joins C, as referred to by M&P (though not to be
confused with terminology from lattice theory). With respect to linguistic appli-
cations, these findings suggest the possibility of tapping in on the flexibility of L
and LP without compromising overall resource-sensitivity, simply by assigning
the relevant joins or meets when specifying one’s lexicon.

The current article defines a class of models w.r.t. which we prove soundness
and completeness of type similarity in LG∅ extended by type I or IV inter-
actions, both with and without units. While M&P already provided analogous
results of LGIV inside Abelian groups, we here consider a notion of model better
reflecting the presence of dual (co)residuated families of connectives, allowing for
simpler proofs overall. Such results still leave open, however, the matter of de-
ciding the existence of joins or meets. We first solve this problem for the specific
case of LGI together with units 0 and 1, taking a hint from M&P’s Abelian
group interpretation for LGIV . Decidability for type similarity in the remaining
incarnations of LG is derived as a corollary.

We proceed as follows. First, §2 covers a general introduction to LG and to
our formalism for describing the corresponding concept of derivation. We next
illustrate type similarity in §3 with some typical instances in LGI and LGIV .

1 Our terminology is adapted from [9], revising that of Pentus [10], who previously
spoke of type conjoinability.
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Models for ∼ in the presence of type I or IV interactions are defined in §4, along
with proofs of soundness and completeness. Finally, an algorithm for generating
joins inside LGI in the precense of units is detailed in §5.

2 Lambek-Grishin Calculus

Lambek’s non-associative syntactic calculus ([5], NL) combines linguistic in-
quiry with the mathematical rigour of proof theory. Corresponding to multi-
plicative, non-associative, non-commutative intuitionistic linear logic, its logical
vocabulary includes a multiplicative conjunction (tensor) � with unit 1, along
with direction-sensitive implications / and /. Grishin [4] first proposed adding
DeMorgan-like duals (cf. remark 1 below), including multiplicative disjunction
� (the par) with unit 0, as well as subtractions � and �.

Definition 1. Given a set of atoms p, q, r, . . . , formulas are defined thus:

A..E ∶∶= p Atoms
∣ (A�B) ∣ (A�B) Tensor vs. par
∣ (A/B) ∣ (B �A) Right division vs. left subtraction
∣ (B/A) ∣ (A�B) Left division vs. right subtraction
∣ 1 ∣ 0 Units

The associated concept of duality ∞ is defined as follows:

p∞ ∶= p (A�B)∞ ∶= B∞ �A∞ (A�B)∞ ∶= B∞ �A∞

1∞ ∶= 0 (A/B)∞ ∶= B∞ �A∞ (B �A)∞ ∶= A∞/B∞

0∞ ∶= 1 (B/A)∞ ∶= A∞ �B∞ (A�B)∞ ∶= B∞/A∞

Remark 1. Note that if ∞ is interpreted as negation, its defining clauses for
the binary connectives read as De Morgan laws. That said, while ∞ is indeed
involutive, it is not, like negation, fixpoint-free, seeing as p∞ = p.

While derivability may be characterized algebraically using inequalities A ≤ B,
we here instead use a labelled deductive system [6], adding an extra label f to
further discriminate between different deductions.

Definition 2. Fig.1 defines judgements f ∶ A→ B, referred to by arrows.

While we shall use arrows merely as a means of encoding derivations, one should
note that, similar to λ-terms for intuitionistic logic, they may as well be consid-
ered amendable to computation (cf. [7]). The following is an easy observation:

Lemma 1. If f ∶ A→ B, then there exists g ∶ B∞ → A∞.

In practice, we use a more compact representation of derivations, compiling
away monotonicity and composition. To this end, we first require the notions of
positive and negative (formula) contexts.
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Preorder laws

iA ∶ A→ A
f ∶ A → B g ∶ B → C

(g ○ f) ∶ A→ C

Monotonicity

f ∶ A → B

(f �C) ∶ A�C → B �C
(f/C) ∶ A/C → B/C
(C/f) ∶ C/A → C/B

f ∶ A → B

(f �C) ∶ A�C → B �C
(f �C) ∶ A�C → B �C
(C � f) ∶ C �A→ C �B

f ∶ A → B

(C � f) ∶ C �A → C �B
(C/f) ∶ C/B → C/A
(f/C) ∶ B/C → A/C

f ∶ A → B

(C � f) ∶ C �A→ C �B
(C � f) ∶ C �B → C �A
(f �C) ∶ B �C → A�C

(Co)evaluation

e
/

A,B ∶ (A/B)�B → A

e
/

A,B ∶ B � (B/A) → A

h
/

A,B ∶ A → (A�B)/B

h/A,B ∶ A → B/(B �A)

e�

A,B ∶ A→ (A�B)�B

e�

A,B ∶ A→ B � (B �A)

h�

A,B ∶ (A�B)�B → A

h�

A,B ∶ B � (B �A) → A

Units

1A� ∶ A→ A� 1
1�A ∶ A→ 1 �A
1∗A� ∶ A� 1 → A
1∗�A ∶ 1�A → A

0A� ∶ A� 0→ A
0�A ∶ 0 �A → A
0∗A� ∶ A→ A� 0
0∗�A ∶ A→ 0 �A

Type I interactions Type IV interactions

a��

A,B,C ∶ (A�B)�C → A� (B �C) α/�A,B,C ∶ (A/B)�C → A/(B �C)

a��

A,B,C ∶ A� (B �C) → (A�B)�C α
�/

A,B,C ∶ A� (B/C) → (A�B)/C

c��

A,B,C ∶ A� (B �C) → B � (A�C) γ�/

A,B,C ∶ A� (B/C) → B/(A�C)

c��

A,B,C ∶ (A�B)�C → (A�C)�B γ
/�

A,B,C ∶ (A/B)�C → (A�C)/B

Fig. 1. Lambek-Grishin calculi presented using labelled deduction

Definition 3. Define, by mutual induction, positive and negative contexts:

X+[], Y +[] ∶∶= [] ∣ (X+[]�B) ∣ (A� Y +[]) ∣ (X+[]�B) ∣ (A� Y +[])
∣ (X+[]/B) ∣ (B/X+[]) ∣ (X+[]�B) ∣ (B �X+[])
∣ (A/Y −[]) ∣ (Y −[]/A) ∣ (A� Y −[]) ∣ (Y −[]�A)

X−[], Y −[] ∶∶= (X−[]�B) ∣ (A� Y −[]) ∣ (X−[]�B) ∣ (A� Y −[])
∣ (X−[]/B) ∣ (B/X−[]) ∣ (X−[]�B) ∣ (B �X−[])
∣ (A/Y +[]) ∣ (Y +[]/A) ∣ (A� Y +[]) ∣ (Y +[]�A)
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Evidently, given some X+[], Y −[] and f ∶ A → B, we have X+[f] ∶ X+[A] →
X+[B] and Y −[f] ∶ Y −[B] → Y −[A]. In practice, we often depict said arrows as
an inference step, using the following shorthand notation:

X+[A]

X+[A′]
f

Y −[A′]

Y −[A]
f

having avoided writing X+[f] (Y −[f]) by informally singling out the source of
f using a box, thus unambiguously identifying the surrounding context X+[]
(Y −[]). Composition of arrows is compiled away by chaining inference steps. In
practice, we often leave out subscripts in f , being easily inferable from context.

Our notation comes close to Brünnler and McKinley’s use of deep inference
for intuitionistic logic [1]. Contrary to their concept of derivability, however, our
inference steps need not be restricted to primitive arrows. We next survey several
definable arrows, proving useful in what is to follow.

Definition 4. Lifting is defined

l
/

A,B ∶= ((e
/

B,A/iA/B) ○ h
/

A,A/B
) : A→ B/(A/B)

l
/

A,B ∶= ((iB/A/e
/

B,A) ○ h
/

A,B/A
) : A→ (B/A)/A

l�A,B ∶= (h�

A,A�B ○ (e
�

B,A � iA�B)) : B � (A�B) → A

l�A,B ∶= (h�

A,B�A ○ (iB�A � e�

B,A)) : (B �A)�B → A

Using the notation introduced in our previous discussion:

A

(A� (A/B))/(A/B)
h/

B/(A/B) e/

A

(B/A)/((B/A)�A)
h/

(B/A)/B e/

(B �A)� B

(B �A)� ((B �A)�A)
e�

A h�

B � (A�B)

(A� (A�B))� (A�B)
e�

A h�

Definition 5. Grishin type I and IV interactions can alternatively be rendered

a�

A,B,C ∶ (A�B)�C → A� (B �C) α�

A,B,C ∶ A� (B �C) → (A�B)�C

a�

A,B,C ∶ A� (B �C) → (A�B)�C α�

A,B,C ∶ (A�B)�C → A� (B �C)

c�

A,B,C ∶ (A�B)�C → (A�C)�B γ�

A,B,C ∶ (A�B)�C → (A�C)�B

c�

A,B,C ∶ A� (B �C) → B � (A�C) γ�

A,B,C ∶ A� (B �C) → B � (A�C)

a
/

A,B,C ∶ A� (B/C) → (A�B)/C α
/

A,B,C ∶ (A�B)/C → A� (B/C)

a
/

A,B,C ∶ (A/B)�C → A/(B �C) α
/

A,B,C ∶ A/(B �C) → (A/B)�C

c
/

A,B,C ∶ (A/B)�C → (A�C)/B γ
/

A,B,C ∶ (A�B)/C → (A/C)�B

c
/

A,B,C ∶ A� (B/C) → B/(A�C) γ
/

A,B,C ∶ A/(B �C) → B � (A/C)
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For Type I, we have the following definitions:

a�

A,B,C ∶= h�

A�(B�C),C
○ ((a��

A,B�C,C ○ (iA � e�

B,C))� iC)

a�

A,B,C ∶= h�

(A�B)�C,A
○ (iA � (a��

A,A�B,C ○ (e
�

B,A � iC)))

c�

A,B,C ∶= h�

(A�C)�B,C
○ ((c��

A�C,C,B ○ (e
�

A,C � iB))� iC)

c�

A,B,C ∶= h�

B�(A�C),A
○ (iA � (c��

B,A,A�C ○ (iB � e�

C,A)))

a
/

A,B,C ∶= (((iA � e
/

B,C) ○ a
��

A,BC,C)/iC) ○ h
/

A�(B/C),C

a
/

A,B,C ∶= (iA/((e
/

B,A � iC) ○ a
��

A,A/B,C
)) ○ h

/

(A/B)�C,A

c
/

A,B,C ∶= (((e
/

A,B � iC) ○ c
��

A/B,C,B
)/iB) ○ h

/

(A/B)�C,B

c
/

A,B,C ∶= (iB/((iA � e
/

C,B) ○ c
��

B,A,B/C
)) ○ h

/

A�(B/C),B

While for LGIV , we have:

α�

A,B,C ∶= e
/

(A�B)�C,A
○ (iA � (α

/�

A,A�B,C ○ (h
/

B,A � iC)))

α�

A,B,C ∶= e
/

A�(B�C),C
○ ((α

�/

A,B�C,C ○ (iA � h
/

B,C))� iC)

γ�

A,B,C ∶= e
/

(A�C)�B,C
○ ((γ

/�

A�C,C,B ○ (h
/

A,C � iB))� iC)

γ�

A,B,C ∶= e
/

B�(A�C),A
○ (iA � (γ

�/

B,A,A�C ○ (iB � h
/

C,A)))

α
/

A,B,C ∶= (iA � ((h�

B,A/iC) ○ α
�/

A,A�B,C)) ○ e
�

(A�B)/C,A

α
/

A,B,C ∶= (((iA/h
�

B,C) ○ α
/�

A,B�C,C)� iC) ○ e
�

A/(B�C),C

γ
/

A,B,C ∶= (((h�

A,B/iC) ○ γ
/�

A�B,C,B)� iB) ○ e
�

(A�B)/C,B

γ
/

A,B,C ∶= (iB � ((iA/h
�

C,B) ○ γ
�/

B,A,B�C)) ○ e
�

A/(B�C),B

In practice, use of both type I and IV interactions may prove undesirable, given
that their combined strength licenses same-sort associativity and -commutativity.
To illustrate, we have the following arrow from B/(A/C) to A/(B/C):

(B � 0�(A/C)) ○ a
/

B,0,A/C
○ γ
/

A,B/0,C
○ (A/(α

/

B,0,C ○ (B/0
∗

�C)))

with similar problems arising in the absence of units as well. In addition, units
themselves are also suspect, sometimes inducing overgeneration where linguis-
tic applications are concerned. In light of these remarks, we shall restrict our
discussion to the following four calculi of interest:

GrI GrIV Units
LGI ✓
LGIV ✓

LG0,1
I ✓ ✓

LG0,1
IV ✓ ✓

We use the following notational convention:

T ⊢ A→ B iff ∃f, f ∶ A→ B in T, where T ∈ {LGI ,LGIV ,LG
0,1
I ,LG0,1

IV }

In the case of statements valid for arbitrary choice of T, or when the latter is
clear from context, we simply write ⊢ A→ B.



34 A. Bastenhof

3 Diamond Property and Examples

Definition 6. Given T ∈ {LGI ,LGIV ,LG
0,1
I ,LG0,1

IV }, we say A,B are type
similar in T, written T ⊢ A ∼B, iff ∃C,T ⊢ A→ C and T ⊢ B → C.

Following [10] and [9], we say that the C witnessing T ⊢ A ∼ B is a join for
A,B, not to be confused with the notion of joins familiar from lattice theory.
Keeping with tradition, we write ⊢ A ∼ B in case a statement is independent of
the particular choice of T. We have the following equivalent definition.

Lemma 2. Formulas A,B are type similar in T iff there exists D s.t. T ⊢D →
A and T ⊢D → B.

Proof. The following table provides for each choice of T the solution for D in
case the join C is known, and conversely. Note q refers to an arbitrary atom.

T Solution for C Solution for D
LGI ((B �B)� (B �A))/D C � ((A/B)� (B �B))
LGIV ((D/B)/q)� ((D/A)/(q �D)) ((C/q)� (A�C))� (q � (B �C))

LG0,1
I (1�D)� (A�B) (B �A)� (C/0)

LG0,1
IV (A�B)/(1� (D/0)) ((1�C)/0)� (B �A)

Fig.2 shows the derivations for the joins, assuming f ∶ D → A and g ∶ D → B,
those concerning the solutions for D being essentially dual under ∞.

Lem.2 is commonly referred to by the diamond property, in reference to the
following equivalent diagrammatic representation:

∃D

BA

C

.................................. ........
....

..............................
....
............

..........................................
....
............

.............................................. ........
....

iff

D

BA

∃C

.............................................. ........
....

..........................................
....
............

..............................
....
............

.................................. ........
....

The formula D is also referred to as a meet for A,B. If C is known, we write
A ⊓C B for the meet constructed in Lem.2, while conversely we write A ⊔D B for
the join obtained from D. Clearly, if ⊢ A ⊔D B → E (⊢ E → A ⊓C B), then also
⊢ A→ E (⊢ E → A), ⊢ B → E (⊢ E → B) and ⊢D → E (⊢ E → C).

Remark 2. M&P provide an alternative solution for LGIV , defining A ⊓C B =
(A/C)� (C � (B �C)) and A ⊔D B = ((D/B)/D)� (D/A). Though smaller in
size compared to ours, the latter allows for easier generalization. For example,
in the following event, suppose we wish to find a meet for A1 and A4:

A1

C1

A2

C2

A3

C3

A4
....................................... ........

....
...................................

....
............

....................................... ........
....

...................................
....
............

....................................... ........
....

...................................
....
............
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A

(A�B)/B
h/

((B � (B �A))�B)/B
e�

((B � (B �A))�B)/D
g

((B �B)� (B �A))/D
a��

B

(B � A)/A
h/

(B � (B � (B �A)))/A
e�

(B � (B � (B �A)))/D
f

((B �B)� (B �A))/D
a��

A

(B/A)/B
l/

(D/A)/B
g

(D/A)/((D/B)/D)
l/

(D/A)/((D/B)/(q � (q �D)))
e�

(D/A)/(((D/B)/q)� (q �D))
α/

((D/B)/q)� ((D/A)/(q �D))
γ/

B

(A/B)/A
l/

(D/B)/A
f

(D/B)/((D/A)/D)
l/

(D/B)/(q � (q � ((D/A)/D)))
e�

((D/B)/q)� (q � ((D/A)/D))
α/

((D/B)/q)� ((D/A)/(q �D))
γ�/

B

1 �B
1

((1�D)�D)�B
e�

(1 �D)� (D �B)
a��

(1�D)� (A�B)
g

A

A� 1
1

A� ((1 �D)�D)
e�

(1�D)� (A� D)
c��

(1 �D)� (A�B)
f

B

(B � (1 � (D/0)))/(1� (D/0))
h/

((B � 1)� (D/0))/(1 � (D/0))
α�

(B � (D/0))/(1 � (D/0))
1

((A/(A�B))� (D/0))/(1 � (D/0))
h/

((A/((A�B)� 0))� (D/0))/(1 � (D/0))
0

((D/((A�B)� 0))� (D/0))/(1 � (D/0))
f

(((A�B)� (D/0))� (D/0))/(1 � (D/0))
γ/

(A�B)/(1 � (D/0))
h�

A

(A�B)/B
h/

(A�B)/(1� (B � 1))
l�

(A�B)/(1� (B � (D/(D � 1))))
h/

(A�B)/(1� (D/(B � (D � 1))))
γ�/

(A�B)/(1 � (D/(B � D)))
1∗

(A�B)/(1 � (D/(B � B)))
g

(A�B)/(1� (D/(B � (B � 0))))
0

(A�B)/(1 � (D/0))
h�

Fig. 2. Derivations for the joins constructed in Lem.2
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Normally, we would suffice by repeated applications of the diamond property:

A1

C1

A2

C2

A3

C3

A4

D1 D2 D3

D4 D5

D6

....................................... ........
....

...................................
....
............

....................................... ........
....

...................................
....
............

....................................... ........
....

...................................
....
............

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

Note D6 derives each of A1,A2,A3,A4. Restricting to A1,A4, we have a shorter
solution obviously generalizing A ⊓C B = ((C/q)� (A�C))� (q � (B �C)):

((C2/q)�(A1 �C3))�(((q/q)�(A4 �C1))�(((q/q)�(A2 �C2))�(q�(A3 �C2))))

Lemma 3. [9] Already in the base logic LG∅, type similarity satisfies

1. Reflexivity. ⊢ A ∼A
2. Transitivity. ⊢ A ∼B and ⊢ B ∼C imply ⊢ A ∼C
3. Symmetry. ⊢ A ∼B implies ⊢ B ∼A
4. Congruence. ⊢ A1 ∼ A2 and ⊢ B1 ∼ B2 imply ⊢ A1 δ B1 ∼ A2 δ B2 for any

δ ∈ {�, /, /,�,�,�}.

We next illustrate ∼’s expressivity. While some examples were already considered
by M&P for LGIV , we here provide alternative (often shorter) solutions. For
reasons of space, we often omit the derivations witnessing our claims.

Lemma 4. Neutrals. ⊢ C/C ∼D/D

Proof. We have a join (((C/C)�D)� ((D�C)�C))/(C/C) for LGI , as well
as a meet (C � (C � (C �D)))� (D � (D � (C �D))) for LGIV .

The next few lemmas detail associativity and commutativity properties; under-
ivable, but still valid at the level of type similarity.

Lemma 5. Symmetry. ⊢ A/B ∼B/A

Proof. For LGI we have a join (((A/B)�A)�B)/(A/B),

A/B

((A/B)�A)� A
e�

((A/B)�A)� (B/(A/B))
h/

(((A/B)�A)�B)/(A/B)
a/

B/A

((B/A)� (A/B))/(A/B)
h/

((B/A)� (((A/B)�A)�A))/(A/B)
e�

(((A/B)�A)� ((B/A)�A))/(A/B)
c��

(((A/B)�A)�B)/(A/B) e/

while for LGIV , we have a meet A� (B � (A�A)).
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A� (B � (A�A))

(A/(A�A))� (B � (A�A))
h/

A/((A�A)� (B � (A�A))
α/�

A/B
l�

A � (B � (A�A))

((A�A/A)� (B � (A�A))
h/

((A�A)� (B � (A�A)))/A
γ/�

B/A
l�

Lemma 6. Rotations. ⊢ A/(C/B) ∼ (A/C)/B and ⊢ A/(B/C) ∼B/(A/C)

Proof. In LGI , we have A/(B/((B�A)�((A�B)�C))) as a join for A/(B/C)
and B/(A/C). To derive ⊢ A/(C/B) ∼ (A/C)/B, we proceed as follows:

1. LGI ⊢ A/(C/B) ∼ (C/B)/A (Lem.5)
2. LGI ⊢ (C/B)/A ∼ (C/A)/B (shown above)
3. LGI ⊢ (C/A)/B ∼ (A/C)/B (Lem.5 and L.3(4))
4. LGI ⊢ A/(C/B) ∼ (A/C)/B (Lem.3(2), 1,2,3)

For LGIV , we have a meet ((C�(C/B))�q)�((C�(A/C))�(q/C))witnessing
LGIV ⊢ A/(C/B)∼(A/C)/B, as well as LGIV ⊢ A/(B/C)∼B/(A/C) with meet
((C � (A/C))� q)� ((C � (B/C))� (q/C)).

Lemma 7. Distributivity. ⊢ A� (B/C) ∼ (A�B)/C

Proof. For LGI , note ⊢ A� (B/C) ∼A� (C/B) and ⊢ (A�B)/C ∼C/(A�B)
by Lem.5 and Lem.3(4). Thus, it suffices to show LGI ⊢ A�(C/B)∼C/(A�B),
fow which we have a join C/((A�C)� (C �B)).

A� (C/B)

C/(C � (A � (C/B)))
h/

C/(C � (((A�C)�C)� (C/B)))
e�

C/(C � ((A�C)� (C � (C/B))))
a��

C/((A�C)� (C � (C � (C/B))))
c��

C/((A�C)� (C �B)) e/

C/(A �B)

C/(((A�C)�C)�B)
e�

C/((A�C)� (C �B))
a��

In LGIV , we have meet A�((A�(B�(A�B)))�(B�(((A�B)/C)�(A�B)))).

Lemma 8. Commutativity. ⊢ A�B ∼B �A

Proof. We have a join (A�B)� (B �B) for LGI ,

A�B

((A�B)�B)�B
e�

(A�B)� (B �B)
a��

B � A

B � ((A�B)�B)
e�

(A�B)� (B �B)
c��

as well as a meet (B � B)� (B � ((B � A)� B)). For LGIV , we have a meet
(((A/B)� ((A�B)� (A�A)))� (B � (B � (A/(A�B)))))�A.

Lemma 9. Associativity. ⊢ (A�B)�C ∼A� (B �C)
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Proof. For LGI , we have meet (A�A)� (A� ((A� (A�B))�C)), and join
(B�((A/q)�(Q/C)))�(q�q). In LGIV , use the diamond property after getting
a meet D1 from Lem.7 for ((A� (B�C))/C)�C and (A� ((B�C)/C))�C:

D2

D1

((A� (B �C))/C)�C (A� ((B �C)/C))�C

(A�B)�C

A� (B �C)

..................................................
....
............

...................................................... ........
....

..................................................
....
............

........................................
.....
.......
.....

...................................................... ........
....

...........................................................................
....
............

Remark 3. While the above lemmas immediately extend to LG0,1
I and LG0,1

IV ,
the presence of units often allows for simpler joins and meets. For example, we
have the following joins (J) and meets (M) in LG0,1

I and LG0,1
IV :

Lemma LG0,1
I LG0,1

IV

Neutrals J. C/((1�D)� (C �D)) J. ((1�C)/0)/((C �D)/D)
Symmetry J. (1�A)�B M. 1� (B �A)
Commutativity J. (1� (1/A))�B M. ((1�A)/0)�B
Associativity J. (1� (1/A))� (B �C) M. A� (((1�B)/0)�C)

4 Completeness Results

We consider models built upon algebraic structures featuring two binary opera-
tions × and +, related by linear distributivity. Their definition derives from the
linear distributive categories of [2] by turning their arrows into equivalences.

Definition 7. A linearly distributive algebra is a 6-tuple A = ⟨A,×,+,� ,⊺,�⟩ of
type ⟨2,2,1,0,0⟩ satisfying

1. Associativity. (A ×B) ×C = A × (B ×C); (A +B) +C = A + (B +C)
2. Commutativity. A ×B = B ×A; A +B = B +A
3. Units. A × ⊺ = A; A + � = A
4. Inverses. A� ×A = �; A� +A = ⊺
5. Linear distributivity. A × (B +C) = (A ×B) +C

Definition 8. A model M for ∼ is a pair ⟨A , v⟩ extending A with a valuation
v mapping atoms into A , extended inductively to an interpretation �⋅�:

�p� ∶= v(p) �A�B� ∶= �A� × �B� �A�B� ∶= �A� + �B�

�1� ∶= ⊺ �A/B� ∶= �A� + �B�
�

�B �A� ∶= �B�
� × �A�

�0� ∶= � �B/A� ∶= �B�
� + �A� �A�B� ∶= �A� × �B�

�

Note that, for arbitrary A, �
1A� = �A1

� = �
0A� = �A0

� = �A�
�. E.g., �A1

� =
�A � 1� = �A�

� × ⊺ = �A�
�, and �

0A� = �0/A� = � + �A�
� = �A�

�. M&P as
well conducted model-theoretic investigations into type similarity for LGIV .



Type Similarity for the Lambek-Grishin Calculus 39

Their interpretation, however, takes as target the free Abelian group generated
by the atomic formulae and an additional element �,

�p�′ ∶= p �A�B�
′ ∶= �A�

′ ⋅ �B�
′

�A�B�
′ ∶= �A�

′ ⋅�−1 ⋅ �B�
′

�A/B�
′ ∶= �A�

′ ⋅ �B�
′−1

�B �A�
′ ∶= �B�

′−1 ⋅� ⋅ �A�
′

�B/A�
′ ∶= �B�

′−1 ⋅ �A�
′

�A�B�
′ ∶= �A�

′ ⋅� ⋅ �B�
′−1

writing 1 for unit and −1 for inverse. While not reconcilable with Def.8 in that
it does not offer a concrete instance of a linearly distributive algebra, the de-
cidability of the word problem in free Abelian groups implies the decidability of
type similarity as a corollary of completeness. The current investigation rather
aims at a concept of model that better reflects the coexistence of residuated
and coresiduated triples in the source language. While we can still prove type
similarity complete w.r.t. the freely generated such model, as shown in Lem.14,
the inference of decidability requires additional steps. Specifically, we will use
Moortgat and Pentus’ models in as inspiration in §5 to define, for each formula,
a ‘normal form’, possibly involving units, w.r.t. which it is found type similar.
We then decide type similarity at the level of such normal forms by providing an
algorithm for generating joins, settling the word problem in the freely generated
linear distributive algebra as a corollary, ensuring, in turn, the desired result.

Lemma 10. If ⊢ A→ B, then �A� = �B� in every model.

Proof. By induction on the arrow witnessing ⊢ A→ B.

Theorem 1. If A ∼ B, then �A� = �B� in every model.

Proof. If A ∼ B, we have a join C for A and B. By Lem.10, ⊢ A → C and
⊢ B → C imply �A� = �C� and �B� = �C�, and hence �A� = �B�.

To prove completeness, we define a syntactic model wherein the interpretations
of formulae are (constructively) shown to coincide with their equivalence classes
under ∼. In defining said model, we use the following lemmas.

Lemma 11. We have ⊢ (A/A)�A ∼ (A�A)/A.

Proof. Lem.5 gives meets D1,D2 for ⊢ (A/A)�A∼A�(A/A) and ⊢ (A�A)/A∼
A/(A� A). As such, we have a join C witnessing ⊢ A� (A/A) ∼A/(A�A), so
that another use of the diamond property provides the desired meet D3:

C

(A/A)�A A� (A/A) A/(A�A) A/(A�A)

D1 D2

D3

...................................
....
............

....................................... ........
....

....................................... ........
....

...................................
....
............

...................................
....
............

....................................... ........
....

.....................................................................
...
............

........................................................................ .........
...

Lemma 12. 1�A ∼A� 1 ∼ 0/A ∼A/0 in LG0,1
I and LG0,1

IV .
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Proof. That ⊢ 1 � A ∼ A � 1 and ⊢ 0/A ∼ A/0 are immediate consequences of
Lem.5. Furthermore, LG0,1

IV ⊢ 1�A→ A/0, as shown on the left, while for LGI

we apply the diamond property, as shown on the right,

1�A

A/(A� (1�A))
h/

A/((A� 1)�A)
α�

A/(A�A)
1∗

A/((0�A)�A)
0∗

A/0
h�

A/0 A/(A� (1�A))

A/((A� 1)�A) 1�A

D

..........................................................
.....
.......
.....

........................................................................................................ ........
....

....................................................................................................
....
............

................................................................
....
............

.................................................................... ........
....

Definition 9. We construct a syntactic model by building a linearly distributive
algebra upon the set of equivalence classes [A]∼ ∶= {B ∣ ⊢ A ∼ B} of formulae
w.r.t. ∼. The various operations of the algebra are defined as follows:

[A]∼ × [B]∼ ∶= [A�B]∼ ⊺ ∶= [A/A]∼ [A]�
∼
∶= [(A/A)�A]∼

[A]∼ + [B]∼ ∶= [A�B]∼ � ∶= [A�A]∼ = [(A�A)/A]∼

For LG0,1
I and LG0,1

IV , the following simpler definitions suffice:

[A]∼ × [B]∼ ∶= [A�B]∼ ⊺ ∶= [1]∼ [A]�
∼
∶= [1�A]∼ = [A� 1]∼

[A]∼ + [B]∼ ∶= [A�B]∼ � ∶= [0]∼ = [0/A]∼ = [A/0]∼

Finally, we define the valuation by v(p) ∶= [p]∼ for arbitrary atom p.

Lemma 13. The syntactic model is well-defined.

Proof. We check the equations of Def.7. Definition unfolding reduces (1) to
showing ⊢ (A � B) � C ∼ A � (B � C) and ⊢ (A � B) � C ∼ A � (B � C).
Both follow from Lem.9, noting that for the latter we can take the dual of a
meet (join) for ⊢ C∞ � (B∞ �A∞) ∼ (C∞ � B∞)�A∞ under ∞. Similarly, (2)
and (4) are immediate consequences of Lem.8 and Lem.11 (Lem.12 in the pres-
ence of units), while (3) is equally straightforward. This leaves (5), demanding
⊢ A� (B�C)∼(A�B)�C. We have LGI ⊢ A� (B�C) → (A�B)�C, while
for LGIV we use the diamond property:

A� ((A/(A�B))�C) (A�B)�C

A� (B �C) A� (A/((A�B)�C))

D
......................................

....
............

......................................................................... .........
...

.......................................................... ........
....

..............................................................................................................
...
............

.......................................................... ........
....

While we could proceed to prove �A� = [A]∼ in the syntactic model for arbitrary
A, we prove a slightly more involved statement, the increase in complexity paying
off when proving decidability of type similarity in Thm.4. Write A (Atom) for
the linear distributive algebra freely generated by the atoms.

Lemma 14. If �A� = �B� in A (Atom), then also ⊢ A ∼B.
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Proof. We follow the strategy pioneered by Pentus [10]. Consider the homo-
morphic extension h of p ↦ [p]∼ (cf. Def.9). We prove, for arbitrary A, that
h(�A�) = [A]∼, taking �A� to be the interpretation of A in A (Atom). Hence, if
�A� = �B� in A (Atom), then also h(�A�) = h(�B�), so that [A]∼ = [B]∼, and thus
⊢ A∼B. Proceeding by induction, the cases A = p, A = 1 and A = 0 follow by def-
inition, while simple definitional unfolding suffices if A = A1�A2 or A = A1�A2.
The cases A = A1/A2, A = A2/A1, A = A1 � A2 and A = A2 � A1 are all alike,
differing primarily in the number of applications of Lem.5. We demonstrate with
A = A1/A2. In LGI and LGIV , we have

h(�A1/A2�) = h(�A1�) + h(�A2�)
� = [A1]∼ + [A2]

�

∼
= [A1 � ((A2 �A2)/A2)]∼

Thus, we have to show ⊢ A1 � ((A2 �A2)/A2) ∼A1/A2:

1. ⊢ A2 �A2 ∼A1 �A1 (Lem.4)
2. ⊢ A1 �A1 ∼A1 �A1 (Lem.5)
3. ⊢ A2 �A2 ∼A1 �A1 (Transitivity, 1, 2)
4. ⊢ A1 � ((A2 �A2)/A2) ∼A1 � ((A1 �A1)/A2) (Congruence, 3)
5. ⊢ A1 � ((A1 �A1)/A2) ∼ (A1 � (A1 �A1))/A2

6. ⊢ (A1 � (A1 �A1))/A2 ← A1/A2

7. ⊢ A1 � ((A2 �A2)/A2) ∼A1/A2 (Transitivity, 4, 5, 6)

In the presence of units, we have to show instead ⊢ A1 � (0/A2) ∼A1/A2, the
desired proof being essentially a simplification of that found above.

Theorem 2. If �A� = �B� in every model, then ⊢ A ∼B.

Proof. If �A� = �B� in every model, then in particular in A (Atom), and hence
⊢ A ∼B by Lem.14.

5 Generating Joins

We next present an algorithm for generating joins and meets in LG0,1
I , deriving

decidability for the remaining incarnations of LG as a corollary. We proceed in
two steps. First, we define for each formula A a ‘normal form’ ∥A∥○ w.r.t. which
it is shown type similar by some join CA. Whether or not any A and B are type
similar is then decided for ∥A∥○ and ∥B∥○, an affirmative answer, witnessed by
some meet D, implying the existence of a join C for A and B by the diamond
property. The following figure summarizes the previous discussion.

D

C

CA CB

A ∥A∥○ ∥B∥○ B

................................
....
............

.................................... ........
....

.................................... ........
....

................................
....
............

.................................... ........
....

................................
....
............

.................................................................. .........
...

...............................................................
...
............
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Definition 10. We define the maps ∥ ⋅ ∥○ and ∥ ⋅ ∥● by mutual induction:

∥p∥○ ∶= p ∥p∥● ∶= 1/p
∥1∥○ ∶= 1 ∥1∥● ∶= 1
∥0∥○ ∶= 0 ∥0∥● ∶= 1/0

∥A�B∥○ ∶= ∥A∥○ � ∥B∥○ ∥A�B∥● ∶= ∥A∥● � ∥B∥●

∥A/B∥○ ∶= ∥A∥○ � ∥B∥● ∥A/B∥● ∶= ∥A∥● � ∥B∥○

∥B/A∥○ ∶= ∥A/B∥○ ∥B/A∥● ∶= ∥A/B∥●

∥A�B∥○ ∶= ∥A∥○ � ((1/0)� ∥B∥○) ∥A�B∥● ∶= ∥A∥● � (∥B∥● � 0)
∥A�B∥○ ∶= ∥A∥○ � (0� ∥B∥●) ∥A�B∥● ∶= ∥A∥● � ((1/0)� ∥B∥○)
∥B �A∥○ ∶= ∥A�B∥○ ∥B �A∥● ∶= ∥A�B∥●

Compare the above definition to the Abelian group interpretation of M&P: mul-
tiplications A ⋅ B and inverses A−1 are rendered as A � B and 1/A, while 0
replaces the special atom �. We now need only solve the problem of generating
joins for the formulas in the images of ∥⋅∥○ and ∥⋅∥●, relying on the result, proved
presently, that ⊢ A ∼ ∥A∥○ and ⊢ 1/A ∼ ∥A∥●.

Lemma 15. There exist maps f(⋅) and g(⋅) mapping any given A to joins wit-
nessing ⊢ A ∼ ∥A∥○ and ⊢ 1/A ∼ ∥A∥● respectively.

Proof. The (mutual) inductive definition of the desired maps is presented in
parallel with the proof of their correctness. In the base cases, we set

f(p) ∶= p
g(p) ∶= 1/p

f(1) ∶= 1
g(1) ∶= 1

f(0) ∶= 0
g(0) ∶= 1/0

Correctness is nigh immediate, noting ⊢ 1/1→ 1 for g(1). The diamond property
is used for most of the inductive cases. To illustrate, considerA = A1�A2 and A =
A2�A1, handled similarly. Starting with f(⋅), we have, by induction hypothesis,
joins f(A1) and g(A2) for ⊢ A1∼∥A1∥

○ and ⊢ (1/A2)∼∥A2∥
●. Hence, by Lem.3(4),

we have a join f(A1)�(0�g(A2)) for ⊢ (A1�(0�(1/A2))∼(∥A1∥
○
�(0�∥A2∥

●)).
In addition, we have joins

A1 �A2 A1 � (0� (1/A2))

((A1 �A2)�A2)� ((1�A2)� 1)

................................................................................................. ........
....

.............................................................................................
....
............

and

A2 �A1 A1 � (0� (1/A2))

(A2 � (A2 �A1))� ((A2 � 1)� 1)

............................................................................................................... ........
....

...........................................................................................................
....
............

We demonstrate the derivability claims found in the left diagram in Fig.3, those
found in the right diagram being shown similarly. With these findings, we may
now define f(A1 �A2) through the diamond property:

f(A1 �A2)

((A1 �A2)�A2)� ((1�A2)� 1) f(A1)� (0� g(A2))

A1 �A2 A1 � (0� (1/A2)) ∥A1∥
○
� (0� ∥A2∥

●)
.......................................................................................................................... ........

....

......................................................................................................................
....
............

.......................................................................................................................... ........
....

......................................................................................................................
....
............

.............................................................................. ........
....

..........................................................................
....
............
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A1 �A2

(A1 �A2)� 1
1

(A1 �A2)� ((1�A2)� ((1 �A2)� 1))
e�

((A1 �A2)� (1�A2))� ((1 �A2)� 1)
a��

(((A1 �A2)� 1)�A2)� ((1 �A2)� 1)
a��

((A1 �A2)�A2)� ((1 �A2)� 1)
1∗

A1 � (0 � (1/A2))

A1 � (0 � ((1/A2)� 1))
1

A1 � (0 � ((1/A2)� ((1 �A2)� ((1 �A2)� 1))))
e�

A1 � (0 � (((1/A2)� (1 �A2))� ((1 �A2)� 1)))
a��

A1 � (0 � ((1 � ((1/A2)�A2))� ((1 �A2)� 1)))
c��

A1 � (0� ((1� 1)� ((1 �A2)� 1)))
e/

A1 � ((0� (1� 1))� ((1�A2)� 1))
a��

A1 � (((0� 1)� 1)� ((1�A2)� 1))
a��

A1 � ((0� 1)� ((1 �A2)� 1))
1∗

A1 � (1� ((1 �A2)� 1))
0

(A� 1)� ((1 �A2)� 1)
a��

A1 � ((1�A2)� 1)
1∗

((A1 �A2)�A2)� ((1 �A2)� 1)
e�

Fig. 3. Showing LGI ⊢ A1 � A2 → ((A1 � A2) � A2) � ((1 � A2) � 1) and LGI ⊢

A1 � (0 � (1/A2)) → ((A1 �A2)�A2)� ((1 �A2)� 1)

while f(A2 �A1) is similarly defined

(A2 � (A2 �A1))� ((A2 � 1)� 1) ⊔A�(0�(1/A2))
(f(A1)� (0� g(A2)))

The same strategy is used to define g(A1 � A2) and g(A2 � A1), this time
employing joins (1�A1)�(1�(0�A2)) and (1�A1)�((A2�0)�1) witnessing
⊢ 1/(A1�A2)∼(1/A1)�((1/0)�A2) and ⊢ 1/(A2�A1)∼(1/A1)�((1/0)�A2).
In the same vein, we can handle a significant portion of the remaining cases:

g(A1 �A2) ∶= ((1� (A2 � 1))� (A1 � 1)) ⊔(1/A1)�(1/A2)
(g(A1)� g(A2))

g(A1/A2) ∶= (1� ((A1/A2)� 1)) ⊔(1/A1)�A2
(g(A1)� f(A2))

g(A2/A1) ∶= (1� ((A2/A1)� 1)) ⊔(1/A2)�A2
(g(A1)� f(A2))

f(A1 �A2) ∶= (A1 � (0�A2)) ⊔A1�((1/0)�A2)
f(A1)� ((1/0)� f(A2))

g(A1 �A2) ∶= (1� ((A1 �A2)� 1)) ⊔(1/A1)�((1/A2)�0) (g(A1)� (g(A2)� 0))

To show ⊢ (1/A1) � ((1/A2) � 0) → 1 � ((A1 � A2) � 1) for the definition of
g(A1 � A2) can be a bit tricky, so we give the derivation in Fig.4. We are left
with the following cases, handled without use of the diamond property:



44 A. Bastenhof

(1/A1)� ((1/A2)� 0)

(1/A1)� (((1/A2)� 1)� 0)
1

(1/A1)� (((1/A2)� ((A1 �A2)� ((A1 �A2)� 1)))� 0)
e�

(1/A1)� ((((1/A2)� (A1 �A2))� ((A1 �A2)� 1))� 0)
a��

(1/A1)� (((A1 � ((1/A2)�A2))� ((A1 �A2)� 1))� 0)
a��

(1/A1)� (((A1 � 1)� ((A1 �A2)� 1))� 0)
e/

(1/A1)� (((A1 � 1)� 0)� ((A1 �A2)� 1))
c��

(1/A1)� ((A1 � (1� 0))� ((A1 �A2)� 1))
a��

(1/A1)� ((A1 � 0)� ((A1 �A2)� 1))
1∗

(1/A1)� (A1 � ((A1 �A2)� 1))
0

((1/A1)�A1)� ((A1 �A2)� 1)
a��

1� ((A1 �A2)� 1)
e/

Fig. 4. Showing LGI ⊢ (1/A1)� ((1/A2)� 0)

f(A1 �A2) ∶= f(A1)� f(A2)
f(A1/A2) ∶= (f(A1)� (A2 � g(A2)))� ((1/A2)� 1)
f(A2/A1) ∶= (f(A1)� (A2 � g(A2)))� ((1/A2)� 1)

Fig.5 shows well-definedness of f(A1/A2), with f(A2/A1) handled similarly.

We shall decide type similarity by reference to the following invariants.

Definition 11. For arbitrary p, we define by mutual inductions the functions ∣⋅∣+p
and ∣ ⋅ ∣−p counting, respectively, the numbers of positive and negative occurrences
of p inside their arguments. First, the positive count:

∣r∣+p ∶= 1 iff r = p ∣A�B∣+p ∶= ∣A∣
+

p + ∣B∣
+

p ∣A�B∣+p ∶= ∣A∣
+

p + ∣B∣
+

p

∣1∣+p ∶= 0 ∣A/B∣+p ∶= ∣A∣
+

p + ∣B∣
−

p ∣B �A∣+p ∶= ∣A∣
+

p + ∣B∣
−

p

∣0∣+p ∶= 0 ∣B/A∣+p ∶= ∣A∣
+

p + ∣B∣
−

p ∣A�B∣+p ∶= ∣A∣
+

p + ∣B∣
−

p

and similarly, the negative count:

∣r∣p ∶= 0 ∣A�B∣−p ∶= ∣A∣
−

p + ∣B∣
−

p ∣A�B∣−p ∶= ∣A∣
−

p + ∣B∣
−

p

∣1∣p ∶= 0 ∣A/B∣−p ∶= ∣A∣
−

p + ∣B∣
+

p ∣B �A∣−p ∶= ∣A∣
−

p + ∣B∣
+

p

∣0∣p ∶= 0 ∣B/A∣−p ∶= ∣A∣
−

p + ∣B∣
+

p ∣A�B∣−p ∶= ∣A∣
−

p + ∣B∣
+

p

The atomic count ∣A∣p for p is defined ∣A∣+p −∣A∣
−

p . In a similar fashion, we define
positive and negative counts ∣A∣+0 and ∣A∣−0 for occurrences of the unit 0 inside A,
and set ∣A∣0 ∶= ∣A∣

+

0 − ∣A∣
−

0 .

In practice, the previously defined counts shall prove only of interest with argu-
ments of the form ∥A∥○. In the case of arbitrary formulas, we therefore define
(by mutual induction) the positive and negative operator counts ∣A∣+� and ∣A∣−�
(resembling, though slightly differing from, a concept of [9] bearing the same
name), recording the values of ∣∥A∥○∣+0 and ∣∥A∥○∣−0 respectively.
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∥A1∥
○

� ∥A2∥
●

∥A1∥
○

� (1 � ∥A2∥
●

)

1

∥A1∥
○

� (((1/A2)� ((1/A2)� 1))� ∥A2∥
●

)

e�

∥A1∥
○

� (((1/A2)� ∥A2∥
●

)� ((1/A2)� 1))
c��

∥A1∥
○

� (((1/A2)� g(A2))� ((1/A2)� 1))
IH

∥A1∥
○

� (((1/A2)� (A2 � (A2 � g(A2))))� ((1/A2)� 1))
e�

∥A1∥
○

� ((((1/A2)�A2)� (A2 � g(A2)))� ((1/A2)� 1))
a��

∥A1∥
○

� ((1� (A2 � g(A2)))� ((1/A2)� 1))
e/

(∥A1∥
○

� (1� (A2 � g(A2))))� ((1/A2)� 1)
a��

((∥A1∥
○

� 1)� (A2 � g(A2)))� ((1/A2)� 1)
a��

(∥A1∥
○

� (A2 � g(A2)))� ((1/A2)� 1)
1∗

(f(A1)� (A2 � g(A2)))� ((1/A2)� 1)
IH

A1/A2

(A1/A2)� 1
1

(A1/A2)� ((1/A2)� ((1/A2)� 1))
e�

((A1/A2)� (1/A2))� ((1/A2)� 1)
a��

((A1/A2)� g(A2))� ((1/A2)� 1)
IH

((A1/A2)� (A2 � (A2 � g(A2))))� ((1/A2)� 1)
e�

(((A1/A2)�A2)� (A2 � g(A2)))� ((1/A2)� 1)
a��

(A1 � (A2 � g(A2)))� ((1/A2)� 1)
e/

(f(A1)� (A2 � g(A2)))� ((1/A2)� 1)
IH

Fig. 5. Proving well-definedness of f(A1/A2)

Definition 12. For arbitrary A, define the positive and negative operator counts
∣A∣+� and ∣A∣−� are defined by induction over A, as follows:

∣p∣+� ∶= 0 ∣A�B∣+� ∶= ∣A∣
+

� + ∣B∣
+

� ∣A�B∣+� ∶= ∣A∣
+

� + ∣B∣
+

�

∣1∣+� ∶= 0 ∣A/B∣+� ∶= ∣A∣
+

� + ∣B∣
−

� ∣B �A∣+� ∶= ∣A∣
+

� + ∣B∣
−

� + 1
∣0∣+� ∶= 1 ∣B/A∣+� ∶= ∣A∣

+

� + ∣B∣
−

� ∣A�B∣+� ∶= ∣A∣
+

� + ∣B∣
−

� + 1

and

∣p∣−� ∶= 0 ∣A�B∣−� ∶= ∣A∣
−

� + ∣B∣
−

� ∣A�B∣−� ∶= ∣A∣
−

� + ∣B∣
−

� + 1
∣1∣−� ∶= 0 ∣A/B∣−� ∶= ∣A∣

−

� + ∣B∣
+

� ∣B �A∣−� ∶= ∣A∣
−

� + ∣B∣
+

�

∣0∣−� ∶= 0 ∣B/A∣−� ∶= ∣A∣
−

� + ∣B∣
+

� ∣A�B∣−� ∶= ∣A∣
−

� + ∣B∣
+

�

Finally, the operator count ∣A∣� is defined ∣A∣+� − ∣A∣
−

�.

Lemma 16. For any A, ∣A∣+� = ∣∥A∥
○∣+0 = ∣∥A∥

●∣−0 and ∣A∣−� = ∣∥A∥
●∣+0 = ∣∥A∥

○∣−0 .

Lemma 17. If ⊢ A→ B, then ∣A∣� = ∣B∣�, and ∣A∣p = ∣B∣p for all pi.
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Corollary 1. If ⊢ A ∼B, then ∣A∣� = ∣B∣�, and ∣A∣p = ∣B∣p for all pi.

We now prove the inverse of the above corollary. Our aim is to define a meet
for ∥A∥○ and ∥B∥○, entering into the construction of a join for A and B through
use of the diamond property along with f(A) and f(B). To this end, we first
require a few more definitions and lemmas. The following is an easy observation.

Lemma 18. Formulas ∥C∥○, ∥C∥● for any C are included in the proper subset
of F(Atom) generated by the following grammar:

φ ∶∶= 0 ∣ pi ∣ (1/0) ∣ (1/pi)
Anf,Bnf ∶∶= 1 ∣ φ ∣ (Anf

�Bnf)

Thus, positive and negative occurrences of 0 (pi) take the forms 0 (pi) and 1/0
(1/pi), being glued together through � only. We next detail the corresponding
notion of context. Through universal quantification over said concept in stating
derivability of certain rules pertaining to the Grishin interactions (cf. Lem.19),
we obtain the non-determinacy required for the construction of the desired meet.

Definition 13. A (tensor) context A�[] is a bracketing of a series of formulae
connected through �, containing a unique occurrence of a hole []:

A�[],B�[] ∶∶= [] ∣ (A�[]�B) ∣ (A�B�[])

Given A�[],B, let A�[B] denote the substitution of B for [] in A�[].

We next characterize (half of) the type I Grishin interaction using contexts.

Lemma 19. If ⊢ A�[B �C] → D, then ⊢ B �A�[C] →D.

Proof. Assuming f ∶ A�[B � C] → D, we proceed by induction on A�[]. The
base case being immediate, we check A�[] = A�

1 []�A2 and A�[] = A1 �A�

2 []:

B � (A�

1 [C]�A2)

(B �A�

1 [C])�A2
a�

A�

1 [B �C]�A2
IH

D
f

B � (A1 �A�

2 [C])

A1 � (B �A�

2 [C])
IH

A1 �A�

2 [B �C]
c�

D
f

The nondeterminacy required for the construction of our desired meet is obtained
through the liberty of choosing one’s context in instantiating the above rules. In
practice, we only require recourse to the following restricted form.

Corollary 2. If ⊢ A�[B] → C, then ⊢ (1�B)�A�[1] → C.

Proof. Suppose f ∶ (1�B)�A�[1] → C. We then proceed as follows:

(1�B)�A�[1]

A�[((1�B)� 1)]
Lem.19

A�[B]
l�

C
f
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Theorem 3. ⊢ A ∼B if ∣A∣� = ∣B∣� and ∣∥A∥○∣p = ∣∥B∥
○∣p for all p.

Proof. First, we require some notation. We shall write a (non-empty) list of for-
mulas [A1, . . . ,An,B] to denote the right-associative bracketing of A1� . . .An�

B. Further, given n ≥ 0, let An denote the list of n repetitions of A. Finally, we
write ++ for list concatenation. Now let there be given an enumeration

p1, p2, . . . pn

of all the atoms occurring in A and B. Define

k ∶= max(∣∥A∥○∣+0 , ∣∥B∥
○∣+0) = max(∣A∣+�, ∣B∣+�)

l ∶= max(∣∥A∥○∣−0 , ∣∥B∥
○∣−0) = max(∣A∣−�, ∣B∣−�)

k(i) ∶= max(∣∥A∥○∣+pi
, ∣∥B∥○∣+pi

) (1 ≤ i ≤ n)
l(i) ∶= max(∣∥A∥○∣−pi

, ∣∥B∥○∣−pi
) (1 ≤ i ≤ n)

We now witness ⊢ ∥A∥○ ∼ ∥B∥○ by a meet

D ∶= (1� p1)
k(1) ++ (1� (1/p1))

l(1)

++ . . .

++ (1� pn)
k(n) ++ (1� (1/pn))

l(n)

++ (1� 0)k ++ (1� (1/0))l ++ [1]

Since we know from Lem.15 that ⊢ A∼∥A∥○ and ⊢ B ∼∥B∥○ with joins f(A) and
f(B), we can construct a join f(A) ⊔D f(B) witnessing ⊢ A ∼ B. Suffice it to
show that D, as defined above, is indeed a meet for ∥A∥○ and ∥B∥○. W.l.o.g., we
show ⊢ D → ∥A∥○, dividing our proof in three steps. We shall a running example
for illustrating each step, considering the concrete case where A = p2 � (p1/p2)
and B = p3 � (p3 � p1). Then

∥A∥○ = p2 � (p1 � (1/p2))
∥B∥○ = p3 � (0� ((1/p3)� ((1/0)� p1)))

D = [1� p1,1� p2,1 � (1/p2),1� p3,1� (1/p3),1� 0,1� (1/0),1]

k(1) = 1 k(2) = 1 k(3) = 1 k = 1
l(1) = 0 l(2) = 1 l(3) = 1 l = 1

1. First, note that we have

If f ∶ E → F , also (f ○ (1∗
�E ○ (e

/

1,G � iE))) ∶ ((1/G)�G)�E → F (∗)

Starting with i∥A∥○ ∶ ∥A∥
○ → ∥A∥○, for i = 1 to n, recursively apply (∗)

k(i) − ∣∥A∥○∣+pi
(= l(i) − ∣∥A∥○∣−pi

, by ∣A∣pi = ∣B∣pi) times, instantiating G with
pi, followed by another k− ∣∥A∥○∣+� (= l− ∣∥A∥○∣−�, since ∣A∣� = ∣B∣�) recursive
applications, this time instantiating G by 0. In our example, we obtain the
following arrows:

(((1/0)� 0)� (((1/p3)� p3)� ∥A∥
○))

(1� (((1/p3)� p3)� ∥A∥
○))

e/

((1/p3)� p3)� ∥A∥
○

1∗

1 � ∥A∥○
e/

∥A∥○
1∗

((1/p2)� p2)� ∥B∥
○

1 � ∥B∥○
e/

∥B∥○
1∗
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Note that the antecedent of → now contains exactly k(i) (k) and l(i) (l)
occurrences of pi (0) and 1/pi (1/0) respectively.

2. For i = 1 to n, apply the following procedure. Starting with the arrow con-
structed in the previous step, recursively apply Cor.2 k(i) times, instantiat-
ing B with pi, followed by another l(i) applications where B is instantiated
with 1/pi. Finally, we repeat the above procedure one last time with the
positive and negative occurrences of 0. We continue with our example in
Fig.6.

3. From D, we can derive the antecedent of the arrow in the previous step
through repeated applications of 1, thus obtaining the desired result.

As a corollary of the above theorem, we can prove the decidability of the word
problem in A (Atom). Lem.14 in turn implies decidability of type similarity in
each of the variants of the Lambek-Grishin calculus discussed in this chapter.

Lemma 20. For any expression φ in A (Atom), there exists a formula A in
LG0,1

I s.t. �A� = φ.

Proof. We define the map �⋅�−1 taking φ to a formula, as follows:

�p�−1 ∶= p �φ��−1 ∶= 0/�φ�
−1

�⊺�−1 ∶= 1 ���−1 ∶= 0
�φ ×ψ�

−1 ∶= �φ�
−1

� �ψ�
−1

�φ + ψ�
−1 ∶= �φ�

−1
� �ψ�

−1

An easy induction ensures ��φ�
−1

� = φ. To illustrate, consider the case φ�:
��φ��−1� = �0/�φ�

−1
� = � + ��φ�

−1
�
� = � + φ� = φ�.

Lemma 21. For any φ,ψ ∈ A (Atom), we can decide whether or not φ = ψ.

Proof. By Thm.3, we can decide LG0,1
I ⊢ �φ�

−1 ∼ �ψ�
−1 through comparison

of atomic- and operator counts. If affirmative, then also ��φ�
−1

� = ��ψ�
−1

� by
Thm.1, i.e., φ = ψ by Lem.20. If instead LG0,1

I /⊢ �φ�
−1∼�ψ�

−1, then also ��φ�
−1

� /=
��ψ�

−1
�, i.e., φ /= ψ by Thm.2.

Theorem 4. For any A,B, it is decidable whether T ⊢ A ∼ B for any T ∈
{LGI ,LGIV ,LG

0,1
I ,LG0,1

IV }.

Proof. Use Lem.21 to decide whether or not �A� = �B� in A (Atom). If so, then
⊢ A ∼B by Lem.14. Otherwise, /⊢ A ∼B by Thm.1.
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