
Extended Lambek Calculi

and First-Order Linear Logic

Richard Moot

CNRS, LaBRI, University of Bordeaux
Richard.Moot@labri.fr

1 Introduction

The Syntactic Calculus [27] — often simply called the Lambek calculus, L, —
is a beautiful system in many ways: Lambek grammars give a satisfactory syn-
tactic analysis for the (context-free) core of natural language and, in addition,
it provides a simple and elegant syntax-semantics interface.

However, since Lambek grammars generate only context-free languages [49],
there are some well-know linguistic phenomena (Dutch verb clusters, at least if
we want to get the semantics right [21], Swiss-German verb clusters [54], etc.)
which cannot be treated by Lambek grammars.

In addition, though the syntax-semantics interface works for many of the stan-
dard examples, the Lambek calculus does not allow a non-peripheral quantifier
to take wide scope (as we would need for sentence (1) below if we want the
existential quantifier to have wide scope, the so-called “de re” reading) or non-
peripheral extraction (as illustrated by sentence (2) below); see [34, Section 2.3]
for discussion.

(1) John believes someone left.

(2) John will pick up the package which Mary left here yesterday.

To deal with these problems, several extensions of the Lambek calculus have
been proposed. Though this is not the time and place to review them — I
recommend [33,34] and the references cited therein for an up-to-date overview
of the most prominent extensions; they include multimodal categorial grammar
(MMCG,[31]), the Lambek-Grishin calculus (LG,[32]) and the Displacement cal-
culus (D,[46]) — I will begin by listing a number of properties which I consider
desirable for such an extension. In essence, these desiderata are all ways of keep-
ing as many of good points of the Lambek calculus as possible while at the same
time dealing with the inadequacies sketched above.1

1 To the reader who is justifiably skeptical of any author who writes down a list of
desiderata, followed by an argument by this same author arguing how well he scores
on his own list, I say only that, in my opinion, this list is uncontroversial and at
least implicitly shared by most of the work on extensions of the Lambek calculus
and that the list still allows for a considerable debate as to how well each extension
responds to each desideratum as well as discussion about the relative importance of
the different items.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 297–330, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

298 R. Moot

1. The logic should have a simple proof theory,
2. generate the mildly context-sensitive languages,
3. have a simple syntax-semantics interface giving a correct and simple account

of medial scope for quantifiers and of medial extraction,
4. have a reasonable computational complexity.

None of these desiderata is absolute: there are matters of degree for each of
them. First of all, it is often hard to distinguish familiarity from simplicity, but I
think that having multiple equivalent proof systems for a single calculus is a sign
that the calculus is a natural one: the Lambek calculus has a sequent calculus,
natural deduction, proof nets, etc. and we would like its extensions to have as
many of these as possible, each formulated in the simplest possible way.

The mildly context-sensitive languages [22] are a family of languages which
extend the context-free language in a limited way, and opinions vary as to which
of the members of this family is the most appropriate for the description of nat-
ural language. Throughout this article, I will only make the (rather conservative
and uncontroversial) claim that any extension of the Lambek calculus should at
least generate the tree adjoining languages, the multiple context-free languages
[53] (the well-nested 2-MCFLs [24] are weakly equivalent to the tree adjoining
languages) or the simple, positive range concatenation grammars (sRCG, weakly
equivalent to MCFG, [7]).

With respect to the semantics, it generally takes the form of a simple homo-
morphism from proofs in the source logic to proofs in the Lambek-van Benthem
calculus LP (which is multiplicative intuitionistic linear logic, MILL, for the lin-
ear logicians), though somewhat more elaborate continuation-based mappings
[5,35] have been used as well.

Finally, what counts as reasonable computational complexity is open to dis-
cussion as well: since theorem-proving for the Lambek calculus is NP complete
[50], I will consider NP-complete to be “reasonable”, though polynomial pars-
ing is generally considered a requirement for mildly context-sensitive formalisms
[22]. Since the complexity of the logic used corresponds to the universal recog-
nition problem in formal language theory, NP completeness is not as bad as it
may seem, as it corresponds to the complexity of the universal recognition prob-
lem for multiple context-free grammars, which is a prototypical mildly context-
sensitive formalism (NP completeness holds when we fix the maximum num-
ber of string tuples a non-terminal is allowed to have, non-deleting MCFGs
without this restriction are PSPACE complete [23]). In addition, many NP
hard grammar formalisms such as LFG and HPSG have very efficient parsers
[8,30]. Little is known about fragments of extended Lambek calculi with bet-
ter complexity (though some partial results can be found in [37,39]). Parsing
the Lambek calculus itself is known to be polynomial when we fix the order of
formulas [51].

Table 1 gives an overview of the Lambek calculus as well as several of its
prominent extensions with respect to the complexity of the universal recognition
problem, the class of languages generated and the facilities in the formalism for

Extended Lambek Calculi 299

Table 1. The Lambek calculus and several of its variants/extensions, together with
the complexity of the universal recognition problem, classes of languages generated and
the appropriateness of the formalism for handling medial quantifier scope and medial
extraction

Calculus Complexity Languages Scope Extraction
L NP complete CFL – –
MMCG PSPACE complete CSL + +
LG NP complete ⊇ MCFL + –
D NP complete ⊇ MCFL + +
MILL1 NP complete ⊇ MCFL + +

handling medial quantifier scope and medial extraction. Note that few exact
upper bounds for language classes are known.

In this paper, I will present an alternative extension of the Lambek calculus:
first-order multiplicative intuitionistic linear logic (MILL1) [15,40]. It generates
the right class of languages (MCFG are a subset of the Horn clause fragment, as
shown in Section 3.3), and embeds the Displacement calculus (D, as shown in
Section 4 and 5). As can be seen in Table 1, it has the lowest complexity class
among the different extensions, generates (at least) the right class of languages,
but also handles medial scope and medial extraction in a very simple way (as
shown already in [40]). In addition, as we will see in Section 2, MILL1 has a
very simple proof theory, essentially a resource-conscious version of first-order
logic, with a proof net calculus which is a simple extension of the proof nets
of multiplicative linear logic [10,15]. Finally, the homomorphism from MILL1 to
MILL for semantics consists simply of dropping the first-order quantifiers.

I will also look at the (deterministic, unit-free) Displacement calculus from
the perspective of MILL1 and give a translation of D into MILL1, indirectly
solving two open problems from [43] by providing a proof net calculus for D and
showing that D is NP complete. In addition it is also worth mentioning briefly
that the simpler proof theory of MILL1 (ie. proof nets) greatly simplifies the cut
elimination proofs of D [46,57]: as for the multiplicative case, cut elimination
for MILL1 consists of simple, local conversions with only three distinct cases to
verify (axiom, tensor/par and existential/universal).

The remainder of this paper is structured as follows. In the next section, I
will briefly introduce MILL1 and its proof theory, including a novel correctness
condition for first-order proof nets, which is a simple extension of the contraction
criterion from Danos [9]. Section 3 will introduce the Displacement calculus, D,
using a presentation of the calculus from [46] which emphasizes the operations
on string tuples and, equivalently, on string positions. Section 4 will present a
translation from D to MILL1, with a correctness proof in Section 5. Section 6
will briefly mention some other possible applications of MILL1, which include
agreement, non-associativity and island constraints, and quantifier scope. Fi-
nally, I will reflect on the implications of the results in this paper and give some
interesting open problems.

300 R. Moot

2 MILL1

First-order multiplicative intuitionistic linear logic (MILL1) extends (multiplica-
tive) intuitionistic linear logic with the first-order quantifiers ∃ and ∀. The
first-order multiplicative fragment shares many of the good properties of the
propositional fragment: the decision problem is NP complete [28] and it has a
simple proof net calculus which is an extension of the proof net calculus for
multiplicative linear logic.

Table 2 presents the natural deduction calculus for MILL1, which is without
surprises, though readers familiar with intuitionistic logic should note that the
⊗E, � I and ∃E rule discharge exactly one occurrence of each of the hypotheses
with which it is coindexed.

Table 2. Natural deduction rules for MILL1

A⊗B

[A]i[B]i
....
C

C
⊗Ei

A B
A⊗B

⊗I

A A � B
B

� E

[A]i
....
B

A � B
� I

∃x.A

[A]i
....
C

C
∃E∗

i

A[x := t]

∃x.A ∃I

∀x.A
A[x := t]

∀E A
∀x.A ∀I∗

∗ no free occurrences of x in any of the free hypotheses

The presentation of proof nets is (out of necessity) somewhat terse. A more
gentle introduction to proof nets can be found, for example in [16,42]. I will
present the proof net calculus in three steps, which also form a basic proof
search procedure: for a given statement Γ � C (with C a formula and Γ a
multiset of formulas) we form a proof frame by unfolding the formulas according
to the logical links shown in the bottom two rows of Table 3, using the negative
unfolding for the formulas in Γ and the positive unfolding for the formula C. We
then connect the atomic formulas using the axiom link (shown on the top left
of the table) until we have found a complete matching of the atomic formulas,
forming a proof structure. Finally, we check if the resulting proof structure is a

Extended Lambek Calculi 301

proof net (ie. we verify if Γ � C is derivable) by verifying it satisfies a correctness
condition.

As is usual, I will use the following conventions, which will make formulating
the proof net calculus simpler.
– dotted binary links are called par links, solid binary links are called tensor

links,
– dotted unary links are called universal links, solid unary links are called

existential links, the bound variables of these links are called universally
bound and existentially bound respectively.

– each occurrence of a quantifier link uses a distinct bound variable,
– the variable of a positive ∀ and a negative ∃ link (ie. the universal links and

universally quantified variables) are called its eigenvariable,
– following [4], I require eigenvariables of existential links to be used strictly,

meaning that replacing the eigenvariable throughout a proof with a special,
unused constant will not result in a proof (in other words, we never unneces-
sarily instantiate an existentially quantified variable with the eigenvariable
of a universal link).

The fact that both par links and universal links are drawn with dotted lines
is not a notational accident: one of the fundamental insights of focusing proofs
and ludics [2,17] is that these two types of links naturally group together, as do
the existential and tensor links, both drawn with solid lines. This property is
also what makes the correctness proof of Section 5 work. When it is convenient
to refer to the par and universal links together, I will call them asynchronous
links, similarly I will refer to the existential and tensor links as synchronous links
(following Andreoli [2]).

In Table 3, the formulas drawn below the link are its conclusions (the axiom
link, on the top left of the table, is the only multiple conclusion link, the cut
link, on the top right, does not have a conclusion, all logical links have a single
conclusion), the formulas drawn above the link are its premisses.

Definition 1. A proof structure is a set of polarized formulas connected by
instances of the links shown in Table 3 such that each formula is at most once
the premiss of a link and exactly once the conclusion of a link. Formulas which
are not the premiss of any link are called the conclusions of the proof structure.
We say a proof structure with negative conclusions Γ and positive conclusions
Δ is a proof structure of the statement Γ � Δ.

Definition 2. Given a proof structure Π a switching is
– for each of the par links a choice of one of its two premisses,
– for each of the universal links a choice either of a formula containing the

eigenvariable of the link or of the premiss of the link.

Definition 3. Given a proof structure Π and a switching s we obtain a correc-
tion graph G by
– replacing each par link by an edge connecting the conclusion of the link to

the premiss selected by s
– replacing each universal link by an edge connecting the conclusion of the link

to the formula selected by s

302 R. Moot

Table 3. Logical links for MILL1 proof structures

−
A

+

A
−
A

+

A

−
∀x.A

−
A[x := t]

+

∀x.A

+

A

−
∃x.A

−
A

−
A⊗B

−
A

−
B

+

A⊗B

+

A
+

B

+

∃x.A

+

A[x := t]

−
A � B

+

A
−
B

+

A � B

−
A

+

B

Whereas a proof structure is a graph with some additional structure (paired
edges, draw as connected dotted lines for the par links, and “universal” edges,
draw as dotted lines) a correction graph is a plain graph as used in graph the-
ory: both types of special edges are replaced by normal edges according to the
switching s.

Definition 4. A proof structure is a proof net iff for all switchings s the cor-
responding correction graph G is acyclic and connected.

Remarkably, the proof nets correspond exactly to the provable statements in
MILL1 [15].

The basic idea of [40] is very simple: instead of using the well-known trans-
lation of Lambek calculus formulas into first-order logic (used for model-theory,
see e.g. [11]), we use this same translation to obtain formulas of first-order mul-
tiplicative linear logic. In this paper, I extend this result to the discontinuous
Lambek calculus D, while at the same time sketching some novel applications of
the system which correspond more closely to analyses in multimodal categorial
grammars.

2.1 A Danos-Style Correctness Condition

Though the correctness condition is conceptually simple, a proof structure has a
number of correction graphs which is exponential in the number of asynchronous
links, making the correctness condition hard to verify directly (though linear-
time algorithms for checking the correctness condition exist in the quantifier-free
case, eg. [20,47]).

Here, I present an extension of the correctness condition of [9] to the
first-order case, which avoids this exponential complexity. Let G be a proof

Extended Lambek Calculi 303

structure, where each vertex of the proof structure is a assigned the set of eigen-
variables which occur in the corresponding formula. Then we have the following
contractions.

vi

vj

vi

vj

⇒p

vi

vj

vi

vj

⇒u

vi

vj

vi⇒c

There is one contraction for the par links (p), one contraction for the universal
links (u) and a final contraction which contracts components (connected sub-
graphs consisting only of synchronous, axiom and cut links) to a single vertex
(c). The u contraction has the condition that there are no occurrences of the
eigenvariable of the universal variable corresponding to the link outside of vj .
The c contraction has as condition that i �= j; it contracts the vertex connecting
i and j and the set of eigenvariables of vi on the right hand side of the contrac-
tion corresponds to the set union of the eigenvariables of vi and vj on the left
hand side of the contraction.

The following proposition is easy to prove using induction on the number of
asynchronous links in the proof structure, using a variant of the “splitting par”
sequentialization proof of Danos [9]:

Proposition 1. A proof structure is a proof net iff it contracts to a single vertex
using the contractions p, u and c.

It is also easy to verify that the contractions are confluent, and can therefore
be applied in any desired order.

To give an idea of how these contractions are applied, Figure 1 shows (on the
left) a proof structure for the underivable statement ∀x∃y.f(x, y) � ∃v∀w.f(w, v).
In the middle of the figure, we see the proof structure with each formula replaced
by the set of its free variables and before any contractions, with the eigenvari-
ables shown next to their universal links. On the right, we see the structure
after all c contractions have been applied. It is clear that we cannot apply the u
contraction for y, since y occurs at a vertex other than the top vertex. Similarly,
we cannot apply the u contraction for w either, meaning the proof structure is
not contractible and therefore not a proof net.

∀x∃y.f(x, y)

∃y.f(w, y)

f(w, y) f(w, y)

∀w.f(w, y)

∃v∀w.f(w, v) ∅

{w}

{w, y} {w, y}

{y}

∅

y w

{w, y}

{w} {y}
y w

Fig. 1. Proof structure and partial contraction sequence for the underivable statement
∀x∃y.f(x, y) � ∃v∀w.f(w, v)

304 R. Moot

Figure 2 shows the proof structure and part of the contraction sequence for the
derivable statement ∃x∀y.f(x, y) � ∀v∃w.f(w, v). In this case, the structure on
the right does allow us to perform the u contractions (in any order), producing
a single vertex and thereby showing the proof structure is a proof net.

∃x∀y.f(x, y)

∀y.f(x, y)

f(x, v) f(x, v)

∃w.f(w, v)

∀v∃w.f(w, v) ∅

{x}

{x, v} {x, v}

{v}

∅
x v

{x, v}

∅ ∅
x v

Fig. 2. Proof net and partial contraction sequence for the derivable statement
∃x∀y.f(x, y) � ∀v∃w.f(w, v)

2.2 Eager Application of the Contractions

Though the contraction condition can be efficiently implemented, when verifying
whether or not a given statement is a proof net it is often possible to disqualify
partial proof structures (that is, proof structures where only some of the ax-
iom links have been performed). Since the number of potential axiom links is
enormous (n! in the worst case), efficient methods for limiting the combinatorial
explosion as much as possible are a prerequisite for performing proof search on
realistic examples.

The contractions allow us to give a compact representation of the search
space by reducing the partial proof structure produced so far. When each ver-
tex is assigned a multiset of literals (in addition to the set of eigenvariables
already required for the contractions), the axiom rule corresponds to selecting,
if necessary, while unifying the existentially quantified variables, two conjugate
literals +A and −A from two different vertices (since the axiom rule corresponds
to an application of the c contraction), identifying the two vertices and taking
the multiset union of the remaining literals from the two vertices, in addition
to taking the set union of the eigenvariables of the vertices. When the input
consists of (curried) Horn clauses, each vertex will correspond to a Horn clause;
therefore this partial proof structure approach generalizes resolution theorem
proving. However, it allows for a lot of freedom in the strategy of literal selec-
tion, so we can apply “smart backtracking” strategies such as selecting the literal
which has the smallest number of conjugates [36,38]. The contraction condition
immediately suggest the following.

– never connect a literal to a descendant or an ancestor (generalizes “formulas
from different vertices” for the Horn clause case); failure to respect this
constraint will result in a cyclic proof structure,

Extended Lambek Calculi 305

– if the premiss of an asynchronous link is a leaf with the empty set of literals,
then we must be able to contract it immediately ; failure to respect this
constraint will result in a disconnected proof structure.

– similarly, if an isolated vertex which is not the only vertex in the graph has
the empty set of literals, then the proof structure is disconnected.

3 The Displacement Calculus

The Displacement calculus [46] is an extension of the Lambek calculus using
tuples of strings as their basic units. Unless otherwise noted, I will restrict myself
Displacement calculus without the identity elements, the synthetic connectives
(though see the discussion in Section 4.2 on how some of the synthetic connectives
can be included) or the non-deterministic connectives.

3.1 String Tuples

Whereas the Lambek calculus is the logic of strings, several formalisms are using
tuples of strings as their basic units (eg. MCFGs, RCGs).

In what follows I use s, s0, s1, . . . , s
′, s′′, . . . to refer to simple strings (ie. the

1-tuples) with the constant ε for the empty string. The letters t, u, v etc. refer to
i-tuples of strings for i ≥ 1. I will write a i-tuple of strings as s1, . . . , si, but also
(if i ≥ 2) as s1, t or t

′, si where t is understood to be the string tuple s2, . . . , si
and t′ the string tuple s1, . . . , si−1, both (i − 1)-tuples.

The basic operation for simple strings is concatenation. How does this opera-
tion extend to string tuples? For our current purposes, the natural extension of
concatenation to string tuples is the following

(s1, . . . , sm) ◦ (s′1, . . . , s
′
n) = s1, . . . , sms′1, . . . , s

′
n

where sms′1 is the string concatenation of the two simple strings sm and s′1. In
other words, the result of concatenating an m-tuple t and an n-tuple u is the
n+m− 1 tuple obtained by first taking the first m− 1 elements of t, then the
simple string concatenation of the last element of t with the first element of u
and finally the last n − 1 elements of u. When both t and u are simple strings,
then their concatenation is the string concatenation of their single element.2 In
what follows, I will simply write tu for the concatenation of two string tuples t
and u and u[t] to abbreviate u1tu2.

3.2 Position Pairs

As is common in computational linguistics, it is sometimes more convenient to
represent a simple string as a pair of string positions, the first element of the pair
representing the leftmost string position and the second element its rightmost

2 Another natural way to define concatenation is as point-wise concatenation of the
different elements of two (equal-sized) tuples, as done by Stabler [56].

306 R. Moot

position. These positions are commonly represented as integers (to make the
implicit linear precedence relation more easily visible). Likewise, we can represent
an n-tuple of strings as a 2n tuple of string positions. This representation has
the advantage that it makes string concatenation trivial: if x0, x1 is a string
starting at position x0 and ending at position x1 and x1, x2 is a string starting
at position x1 and ending at position x2 then the concatenation of these two
strings is simply x0, x2 (this is the familiar difference list concatenation from
Prolog [52]).

Definition 5. We say a grammar is simple in the input string if for each input
string w1, . . . , wn we have that wi spans positions i, i+ 1.

Much of the work in parsing presupposes grammars are simple in the input
string [48], since it makes the definition of the standard parsing algorithms much
neater. However, the original construction of Bar-Hillel et al. [3] on which it is
based is much more general: it computes the intersection of a context-free gram-
mar and a finite-state automaton (FSA), where each non-terminal is assigned an
input state and an output state of the FSA. For grammars which are not simple
in the input string, this FSA can have self-loops and complex cycles, whereas
the input string for a simple grammar is an FSA with a simple, deterministic
linear path as shown in the example below. With the exception of Section 4.2,
where I discusses the possibility of abandoning this constraint, the grammars I
use will be simple in the input string.

1 2 3 4 5 6 7 8 9
Jan Henk Cecilia de nijlpaarden zag helpen voeren

Suppose “nijlpaarden” (hippos) above is assigned the category n, for noun.
Incorporating its string positions produces n(5, 6). It gets more interesting with
the determiner “de” (the): we assign it the formula ∀x.n(5, x) � np(4, x), which
says that whenever it finds an n to its immediate right (starting at position 5
and ending at any position x) it will return an np from position 4 to this same
x (this is the MILL1 translation of np/n at position 4, 5). In a chart parser,
we would indicate this by adding an np arc from 4 to 6. There is an important
difference with a standard chart parser though: since we are operating in a
resource-conscious logic, we know that in a correct proof each rule is used exactly
once (though their order is only partially determined).

Figure 3 shows the three elementary string operations of the Displacement
calculus both in the form of operations of string tuples and in the form of oper-
ations of string position pairs.

Concatenation takes an i-tuple t (shown in the top of the figure as the
white blocks, with corresponding string positions x0, . . . , xn for n = 2i − 1)
and a j-tuple u (shown in the top of the figure as the gray blocks, with cor-
responding string positions xn, . . . , xn+m for m = 2j − 1) and the resulting
concatenation tu (with the last element of t concatenated to the first element
of u, indicated as the gray-white block xn−1, xn+1; xn is not a string posi-
tion in the resulting i + j − 1-tuple tu, which consists of the string positions
x0, . . . , xn−1, xn+1, . . . , xn+m.

Extended Lambek Calculi 307

Concatenation of t and u

t an i-tuple and u a j-tuple
· · · · · ·

︸ ︷︷ ︸

t

︸ ︷︷ ︸

u

tu
︷ ︸︸ ︷

x0 xn xn+m

n=2i−1,m=2j−1

Left wrap of s, t and u

t an i-tuple and u a j-tuple
· · · · · ·

︸ ︷︷ ︸

s

︸ ︷︷ ︸

t

︸ ︷︷ ︸

u

sut
︷ ︸︸ ︷

x0 x1 xn xn+m

n=2j,m=2i−1

Right wrap of t, s and u

t an i-tuple and u a j-tuple
· · ·· · ·

︸ ︷︷ ︸

s

︸ ︷︷ ︸

t

︸ ︷︷ ︸

u

tus
︷ ︸︸ ︷

x0 xn xn+m−1 xn+m

n=2i−1,m=2j

Fig. 3. String operations and their equivalent string positions operations

Left wrap takes an i + 1-tuple s, t (with s a simple string and t an i-tuple,
with string positions x0, x1, xn, . . . , xn+m) and a j-tuple u (with string positions
x1, . . . , xn) and wraps s, t around u producing and i+ j−1-tuple sut with string
positions x0, x2, . . . , xn−1, xn+1, . . . , xn+m, with positions x1 and xn removed
because of the two concatenations.

Symmetrically, right wrap takes an i+1-tuple t, s (with s a simple string and
t an i-tuple) and a j-tuple u and wraps t, s around u producing tus.

Given these operations, the proof rules for D are simple to state. I give a
notational variant of the natural deduction calculus of [46]. As usual, natural
deduction proofs start with a hypothesis t : A (for t : A an entry the lexicon of
the grammar, in which case t is a lexical constant, or for a hypothesis discharged
by the product elimination and implication introduction rules, in which case
t is an appropriate n-tuple). In each case the string tuple t is unique in the
proof.

For a given (sub-)proof, the active hypotheses are all hypotheses which have
not been discharged by a product elimination of implication introduction rule in
this (sub-)proof.

For the logical rules, we can see that the different families of connectives
correspond to the three basic string tuple operations: with concatenation for /,
• and \ (the rules are shown in Figure 4 and Figure 7 with the corresponding
string tuples), left wrap for ↑>, �> and ↓> (shown in Figure 5 and Figure 8)
and right wrap for ↑<, �< and ↓< (shown in Figure 6 and Figure 9).

In the discontinuous Lambek calculus, we define the sort of a formula F ,
written s(F) as the number of items in its string tuple minus 1. Given sorts
for the atomic formulas, we compute the sort of a complex formula as shown

308 R. Moot

t : A u : A \ C
tu : C

\E

[t : A]i
....

tu : C
u : A \ C \Ii

t : C / B u : B

tu : C
/E

[u : B]i
....

tu : C
t : C / B

/Ii

t : A •B

[t1 : A]i [t2 : B]i
....

u[t1t2] : C

u[t] : C
•Ei

t : A u : B
tu : A • B •I

Fig. 4. Proof rules – Lambek calculus

s, t : A u : A ↓> C

sut : C
↓> E

[s, t : A]i
....

sut : C
u : A ↓> C

↓> Ii

s, t : C ↑> B u : B

sut : C
↑> E

[u : B]i
....

sut : C
s, t : C ↑> B

↑> Ii

t : A
> B

[s, t2 : A]i [t1 : B]i
....

u[st1t2] : C

u[t] : C

>Ei

s, t : A u : B

sut : A
> B

>I

Fig. 5. Proof rules — leftmost infixation,extraction

in Table 4 (the distinction between the left wrap and right wrap connectives is
irrelevant for the sorts).

3.3 MILL1 and Multiple Context-Free Grammars

It is fairly easy to see that MILL1 generates (at least) the multiple context-free
languages (or equivalently, the languages generated by simple, positive range
concatenation grammars [7]) by using a lexicalized form of the grammars as
defined below.

Definition 6. A grammar is lexicalized if each grammar rule uses exactly one
non-terminal symbol.

Extended Lambek Calculi 309

Table 4. Computing the sort of a complex formula given the sort of its immediate
subformulas

s(A • B) = s(A) + s(B)

s(A \ C) = s(C)− s(A)

s(C / B) = s(C)− s(B)

s(A
B) = s(A) + s(B)− 1

s(A ↓ C) = s(C) + 1− s(A)

s(C ↑ B) = s(C) + 1− s(B)

t, s : A u : A ↓< C

tus : C
↓< E

[t, s : A]i
....

tus : C
u : A ↓< C

↓< Ii

t, s : C ↑< B u : B

tus : C
↑< E

[u : B]i
....

tus : C
t, s : C ↑< B

↑< Ii

t : A
< B

[t1, s : A]i [t2 : B]i
....

u[t1t2s] : C

u[t] : C

<Ei

t, s : A u : B

tus : A
< B

<I

Fig. 6. Proof rules — rightmost infixation,extraction

Lexicalization is one of the principal differences between traditional phrase
structure grammars and categorial grammars: categorial grammars generally
require a form of lexicalization, whereas phrase structure grammars do not.
The most well-known lexicalized form is the Greibach normal form for context-
free grammars [19]. Wijnholds [58] shows that any (ε-free) simple, positive
range concatenation grammar has a lexicalized grammar generating the same
language (see also [55])3. Since ranges are simply pairs of non-negative inte-
gers (see Section 3.2 and [7]) these translate directly to Horn clauses in MILL1.
The following rules are therefore both a notational variant of a (lexicalized)
MCFG/sRCG and an MILL1 lexicon (corresponding to the verbs of the
example on page 306).

3 Wijnholds [58] and Sorokin [55] also given translations between MCFG/sRCG and
D, to which we will return in Section 4.2.

310 R. Moot

∀x0x1x2x3.np(x0, x1)⊗ np(x1, x2)⊗ inf(x2, 6, 7, x3) � s(x0, x3) zag

∀x0x1x2x3.np(x0, x1)⊗ inf(x1, x2, 8, x3) � inf(x0, x2, 7, x3) helpen

∀x0x1.np(x0, x1) � inf(x0, x1, 8, 9) voeren

In Section 4.2, we will see how we can obtain (the Curried versions of) these
formulas via a translation of D and provide the corresponding MILL1 proof
net.

4 Translations

The proof rules and the corresponding string tuple operations (shown in Fig-
ures 7, 8 and 9) suggest the translation shown in Table 5 of D formulas into
MILL1 formulas. It is an extension of the translation of Lambek calculus formu-
las of [40], while at the same time extending the translation of [44,12] for the
simple displacement calculus (1-D, where all formulas are of sort ≤ 1). Fadda
[12] also gives a proof net calculus for the simple displacement calculus, which
is a special case of the one presented here.

The reader intimidated by the number variable indices in Table 5 is invited
to look at Figures 7, 8 and 9 for the correspondence between the string position
numbers and the string components of the different formulas in the translation.
Section 4.1 will illustrate the translation using some examples, whereas Section 5

· · · · · ·
︸ ︷︷ ︸

A

︸ ︷︷ ︸

B

A•B
︷ ︸︸ ︷

x0 xn xn+m

n=2s(A)+1,m=2s(B)+1

t : A • B

[t1 : A]i [t2 : B]i
....

u[t1t2] : C

u[t] : C
•Ei

t : A u : B
tu : A • B •I

· · · · · ·
︸ ︷︷ ︸

C/B

︸ ︷︷ ︸

B

C
︷ ︸︸ ︷

x0 xn xn+m

n=2s(C/B)+1,m=2s(B)+1

t : C / B u : B

tu : C
/E

[u : B]i
....

tu : C
t : C / B

/Ii

· · · · · ·
︸ ︷︷ ︸

A

︸ ︷︷ ︸

A\C

C
︷ ︸︸ ︷

x0 xn xn+m

n=2s(A)+1,m=2s(A\C)+1

t : A u : A \ C
tu : C

\E

[t : A]i
....

tu : C
u : A \ C \Ii

Fig. 7. String positions – Lambek calculus

Extended Lambek Calculi 311

· · · · · ·
︸ ︷︷ ︸

A

︸ ︷︷ ︸

A

︸ ︷︷ ︸

B

A�>B
︷ ︸︸ ︷

x0 x1 xn xn+m

n=2s(B)+2,m=2s(A)−1

t : A
> B

[s, t2 : A]i [t1 : B]i
....

u[st1t2] : C

u[t] : C

>Ei

s, t : A u : B

sut : A
> B

>I

· · · · · ·
︸ ︷︷ ︸

C↑>B

︸ ︷︷ ︸

C↑>B

︸ ︷︷ ︸

B

C
︷ ︸︸ ︷

x0 x1 xn xn+m

n=2s(B)+2,m=2s(C↑>B)−1

s, t : C ↑> B u : B

sut : C
↑> E

[u : B]i
....

sut : C
s, t : C ↑> B

↑> Ii

· · · · · ·
︸ ︷︷ ︸

A

︸ ︷︷ ︸

A

︸ ︷︷ ︸

A↓>C

C
︷ ︸︸ ︷

x0 x1 xn xn+m

n=2s(A↓>C)+2,m=2s(A)−1

s, t : A u : A ↓> C

sut : C
↓> E

[s, t : A]i
....

sut : C
u : A ↓> C

↓> Ii

Fig. 8. String positions – leftmost infix/extraction

· · ·· · ·
︸ ︷︷ ︸

A

︸ ︷︷ ︸

A

︸ ︷︷ ︸

B

A�<B
︷ ︸︸ ︷

x0 xn xn+m−1 xn+m

n=2s(A)−1,m=2s(B)+2

t : A
< B

[t1, s : A]i [t2 : B]i
....

u[t1t2s] : C

u[t] : C

<Ei

t, s : A u : B

tus : A
< B

<I

· · ·· · ·
︸ ︷︷ ︸

C↑<B

︸ ︷︷ ︸

C↑<B

︸ ︷︷ ︸

B

C
︷ ︸︸ ︷

x0 xn xn+m−1 xn+m

n=2s(C↑<B)−1,m=2s(B)+2

t, s : C ↑< B u : B

tus : C
↑< E

[u : B]i
....

tus : C
t, s : C ↑< B

↑< Ii

· · ·· · ·
︸ ︷︷ ︸

A

︸ ︷︷ ︸

A

︸ ︷︷ ︸

A↓<C

C
︷ ︸︸ ︷

x0 xn xn+m−1 xn+m

n=2s(A)−1,m=2s(A↓<C)+2

t, s : A u : A ↓< C

tus : C
↓< E

[t, s : A]i
....

tus : C
u : A ↓< C

↓< Ii

Fig. 9. String positions – rightmost infix/extraction

will make the correspondence with the rules from the Displacement calculus more
precise.

Note: the sequence xi, . . . , xi is of course simply the unit sequence xi whereas
the sequence xi, . . . , xi−1 is the empty sequence.

If there are at most two string tuples, both C ↑> B (Equation 5 with n = 2,
m = 1, remembering that x2, . . . , xn−1 ≡ x2, . . . , x1 which is equivalent to the
empty sequence of string positions and the empty sequence of quantifier prefixes,

312 R. Moot

Table 5. Translation of D formulas to MILL1 formulas

‖A •B‖x0,...,xn−1,xn+1,...,xn+m =

∃xn‖A‖x0,...,xn ⊗ ‖B‖xn,...,xn+m

}

n=2s(A)+1,m=2s(B)+1(1)

‖C / B‖x0,...,xn =

∀xn+1, . . . , xn+m‖B‖xn,...,xn+m �
‖C‖x0,...,xn−1,xn+1,...,xn+m

⎫

⎪
⎬

⎪
⎭

n=2s(C/B)+1,m=2s(B)+1(2)

‖A \ C‖xn,...,xn+m =

∀x0, . . . , xn−1‖A‖x0,...,xn �
‖C‖x0,...,xn−1,xn+1,...,xn+m

⎫

⎪
⎬

⎪
⎭

n=2s(A)+1,m=2s(A\C)+1(3)

‖A
> B‖x0,x2,...,xn−1,xn+1,...,xn+m =

∃x1, xn‖A‖x0,x1,xn,...,xn+m ⊗ ‖B‖x1,...,xn

}

n=2s(B)+2,m=2s(A)−1(4)

‖C ↑> B‖x0,x1,xn,...,xn+m =

∀x2, . . . , xn−1‖B‖x1,...,xn �
‖C‖x0,x2,...,xn−1,xn+1,...,xn+m

⎫

⎪
⎬

⎪
⎭

n=2s(B)+2,m=2s(C↑>B)−1(5)

‖A ↓> C‖x1,...,xn =

∀x0, xn+1, . . . , xn+m‖A‖x0,x1,xn,...,xn+m �
‖C‖x0,x2,...,xn−1,xn+1,...,xn+m

⎫

⎪
⎬

⎪
⎭

n=2s(A↓>C)+2,m=2s(A)−1(6)

‖A
< B‖x0,...,xn−1,xn+1,...,xn+m−2,xn+m =

∃xn, xn+m−1‖A‖x0,...,xn,xn+m−1,xn+m ⊗ ‖B‖xn,...,xn+m−1

}

n=2s(A)−1,m=2s(B)+2

(7)

‖C ↑< B‖x0,...,xn,xn+m−1,xn+m =

∀xn+1, . . . , xn+m−2‖B‖xn,...,xn+m−1 �
‖C‖x0,...,xn−1,xn+1,...,xn+m−2,xn+m

⎫

⎪
⎬

⎪
⎭

n=2s(C↑>B)−1,m=2s(B)+2(8)

‖A ↓< C‖xn,...,xn+m−1 =

∀x0, . . . , xn−1, xn+m‖A‖x0,...,xn,xn+m−1,xn+m �
‖C‖x0,...,xn−1,xn+1,...,xn+m−2,xn+m

⎫

⎪
⎬

⎪
⎭

n=2s(A)−1,m=2s(A↓>C)+2(9)

Extended Lambek Calculi 313

and that xn+1, . . . , xn+m ≡ x3, . . . , x3 ≡ x3) and C ↑< B (Equation 8 with
n = 1, m = 2) translate to the following

‖C ↑B‖x0,x1,x2,x3 = ‖B‖x1,x2 � ‖C‖x0,x3

Similarly, it is easy to verify that both A ↓> C (Equation 6 with n = 2,
m = 1, remember that x2, . . . xn−1 ≡ x2, . . . , x1 and therefore equal to the empty
sequence and that xn+1, . . . , xn+m ≡ x3, . . . , x3 ≡ x3) and A ↓< C (Equation 9
with n = 1, m = 2) produce the following translation for D formulas with at
most two string tuples.

‖A ↓ C‖x1,x2 = ∀x0, x3‖A‖x0,x1,x2,x3 � ‖C‖x0,x3

In the Lambek calculus, all sorts are zero, therefore instantiating Equation 3
with n=1, m=1 produces the following

‖A \ C‖x1,x2 = ∀x0‖A‖x0,x1 � ‖C‖x0,x2

and therefore has the translation of [40] as a special case.

4.1 Examples

As an illustration, let’s look at the formula unfolding of ((vp ↑ vp)/vp)\(vp ↑ vp),
which is the formula for “did” assigned to sentences like

(3) John slept before Mary did.

by [46]. This lexical entry for “did” is of sort 0 and therefore has two string
positions (I use 4 and 5) to start off its translation. However, since both direct
subformulas are of sort 1, these subformulas have four position variables each.
Applying the translation for \ shown in Equation 3 with n = 3 (= 2s((vp ↑
vp)/vp) + 1), m = 1 (the sort of the complete formula being 0) gives us the
following partial translation.

∀x0x1x2‖(vp ↑ vp)/vp‖x0,x1,x2,4 � ‖vp ↑ vp‖x0,x1,x2,5

I first translate the leftmost subformula, which is of sort 1, and apply the /
rule (Equation 2) with n = 3 (= 2s((vp ↑ vp)/vp)+1) and m = 1 (= 2s(vp)+1)
giving the following partial translation.

∀x0x1x2[∀x3[‖vp‖4,x3 � ‖vp ↑ vp‖x0,x1,x2,x3] � ‖vp ↑ vp‖x0,x1,x2,5]

Applying the translation rule for C ↑ B (Equation 5) twice produces.

∀x0x1x2[∀x3[‖vp‖4,x3 � ‖vp‖x1,x2 � ‖vp‖x0,x3] � ‖vp‖x1,x2 � ‖vp‖x0,5]

314 R. Moot

Figure 10 on the facing page shows a proof net for the complete sentence —
slightly abbreviated, in that not all vp’s have been expanded and that the exis-
tential links and the corresponding substitutions have not been included in the
figure.

The intelligent backtracking solution of Section 2.2 (and [38]) guarantees that
at each step of the computation we can make a deterministic choice for literal
selection, though the reader is invited to try and find a proof by hand to convince
himself that this is by no means a trivial example!

As a slightly more complicated example translation, which depends on the
distinction between left wrap and right wrap, Morrill et al. [46] give the following
formula for an object reflexive:

((vp ↑> np) ↑< np) ↓< (vp ↑> np)

Translating the ↓< connective, with input positions 3 and 4 using Equation 9
with n = 3 (since s((vp ↑> np) ↑< np) = 2) and m = 2 gives the following
partial translation.

∀x0, x1, x2, x5‖(vp ↑> np) ↑< np‖x0,x1,x2,3,4,x5 � ‖vp ↑> np‖x0,x1,x2,x5

Translating the ↑< connective using Equation 8 with n = 3 and m = 2
gives.

∀x0, x1, x2, x5[‖np‖3,4 � ‖vp ↑> np‖x0,x1,x2,x5] � ‖vp ↑> np‖x0,x1,x2,x5

Finally, unfolding the two ↑> connectives (using Equation 5) gives.

∀x0, x1, x2, x5[np(3, 4) � np(x1, x2) � ‖vp‖x0,x5] � np(x1, x2) � ‖vp‖x0,x5

Indicating that an object reflexive described by the given formula takes a
ditransitive verb (with a first object argument spanning the input positions 3−4
of the reflexive and a second without constraints on the position) to produce a
transitive verb, a vp still missing an np spanning the positions of the second np
of the ditransitive verb, which corresponds to the intuitive meaning of the lexical
entry.

4.2 Synthetic Connectives

Morrill et al. [46] introduce the synthetic connectives4 for the simple displace-
ment calculus 1-D (with formulas of sort ≤ 1), whereas Valent́ın [57] presents

4 Note that from the point of view of MILL1, all D-connectives are synthetic MILL1-
connectives, that is, combinations of a series of quantifiers and a binary connective,
as can already be seen from the translation in Table 5 on page 312; we will return to
this point in Section 5. The synthetic connectives of D are combinations of a binary
connective and an identity element. The idea for both is essentially the same: to
treat a combination of rules as a single rule, which can be added to the logic as a
conservative extension.

Extended Lambek Calculi 315

−
n
p
(0
,1
)

−
v
p
(1
,2
)

− �

− �
+

s(
3
,x

)

+

v
p
(1
,2
)

−
v
p
(1
,x

)

−
n
p
(3
,4
)

+ ∀x

−
v
p
(4
,x

)

+

n
p
(3
,4
)

−
s(
3
,x

)
−

v
p
(1
,2
)

+

v
p
(1
,x

)

+ �

+ �

+

n
p
(0
,1
)

−
s(
0
,5
)

+

v
p
(1
,2
)

−
v
p
(1
,5
)

− �

− �
+

s(
0
,5
)

J
o
h
n

le
ft

b
ef
o
re

M
a
ry

d
id

Fig. 10. Proof net for “John left before Mary did.”

316 R. Moot

their natural extension to D (as well as non-deterministic versions of these con-
nectives, which will not be treated here). The synthetic connectives can be seen
as abbreviations of combinations of a connective and an identity element (I de-
noting the empty string ε and J denoting the pair of empty strings ε, ε) as shown
in the list below.

Ǎ =def A ↑ I Split

Â =def A� I Bridge

�−1A =def J \A Right projection

�A =def J •A Right injection

�−1A =def A / J Left projection

�A =def A • J Left injection

Figures 11 and 12 show the proof rules for leftmost bridge/split and right
projection/injection (the proof rules for left projection and injection as well as
the proof rules for rightmost bridge and split are symmetric).

s, t : Ǎ

st : A
Ě

st : A
s, t : Ǎ

Ǐ

t : Â

s, t′ : A
....

u[st′] : C

u[t] : C
Ê

s, t : A

st : Â
Î

Fig. 11. Proof rules — leftmost split, bridge

t : �−1A
ε, t : A �−1E

t : A

ε, t : �−1A
�−1I

v : �A

t : A....
u, tu′ : C

uvu′ : C
�E t : A

ε, t : �A
�I

Fig. 12. Proof rules — right projection, injection

The synthetic connectives are translated as follows (only the leftmost split and
wedge are shown, the rightmost versions are symmetric in the variables):

Extended Lambek Calculi 317

‖ Ǎ‖x0,x1,x1,x2,...,xn = ‖A‖x0,x2,...,xn(10)

‖ Â‖x0,x2,...,xn = ∃x1.‖A‖x0,x1,x1,x2,...,xn(11)

‖ � A‖x0,x0,x1,...,xn = ‖A‖x1,...,xn(12)

‖ �−1 A‖x1,...,xn = ∀x0.‖A‖x0,x0,x1,...,xn(13)

‖ � A‖x0,...,xn,xn+1,xn+1 = ‖A‖x0,...,xn(14)

‖ �−1 A‖x0,...,xn = ∀xn+1.‖A‖x0,...,xn,xn+1,xn+1(15)

In [46], the bridge connective appears exclusively in (positive) contexts (̂A ↑
B) where it translates as.

‖ (̂A ↑ B)‖x0,x2 = ∃x1.‖A ↑ B‖x0,x1,x1,x2

= ∃x1.[‖B‖x1,x1 � ‖A‖x0,x2]

The resulting formula indicates that it takes aB argument spanning the empty
string (anywhere) to produce an A covering the original string position x0 and
x2. Intuitively, this formalizes (in positive contexts) an A constituent with a B
trace. The final translation is positive subformula of the extraction type used
in [40].

The split connective (,̌ but also � and �) is more delicate, since it identifies
string position variables. This can force the identification of variables, which
means that direct application of the translation above can produce formulas
which have “vacuous” quantifications, though this is not harmful (and these are
easily removed in a post-processing step if desired). However, this identification
of variables means that the grammars are no longer necessarily simple in the
input string as discussed in Section 3.2. As an example, unfolding the formula
below (which is patterned after the formula for “unfortunately” from [46]) with
input variables xi and xj forces us to identify xi and xj as shown below, hence
producing a self-loop in the input FSA.

‖ Ǎ ↓ B‖xi,xi = ∀x0, x2.‖ Ǎ‖x0,xi,xi,x2 � ‖B‖x0,x2

= ∀x0, x2.‖A‖x0,x2 � ‖B‖x0,x2

Intuitively, this translation indicates that a formula of the form Ǎ ↓ B takes
its A argument at any span of the string and produces a B at the same position,
with the complete formula spanning the empty string. It is, in essence, a transla-
tion of the (commutative) linear logic or LP implication into our current context.
The MIX language can easily be generated using this property [45].

It is easy to find complex formulas which, together with their arguments,
produce a complex cycle. The following formula spans the empty string after it
combines with its C argument.

318 R. Moot

‖(Ǎ ↓ B)/C‖xi,xj = ∀x1‖C‖xj,x1 � ‖ Ǎ ↓ B‖xi,x1

= ∀x1[‖C‖xj,x1 � ∀x0, x2.[‖ Ǎ‖x0,xi,x1,x2 � ‖B‖x0,x2]]

= ∀x1[‖C‖xj,xi � ∀x0, x2.[‖A‖x0,x2 � ‖B‖x0,x2]]

= ‖C‖xj,xi � ∀x0, x2.[‖A‖x0,x2 � ‖B‖x0,x2]

The final line in the equation simply removes the x1 quantifier. Since there
are no longer any occurrences of the x1 variable in the rest of the formula,
this produces the equivalent formula shown. The translation specifies that the
formula, which spans positions xi to xj takes an np argument spanning positions
xj to xi, ie. the rightmost position of the np argument is the leftmost position
of the complete formula.

If we want a displacement grammar to be simple in the input string, we
can restrict the synthetic connectives used for its lexical entries to ,̂ �−1 and
�−1; in addition, no formulas contain the units I and J except where these
occurrences are instances of the allowed synthetic connectives.5 The only lexical
entries proposed for D which are not simple in this sense are those of the MIX
grammar and the type for “supposedly” discussed above.

The �−1 and �−1 connectives, together with atomic formulas of sort greater
than 0, allow us to encode MCFG-style analyses, as we have seen them in Sec-
tion 3.3, into D 6. As an example, let’s look at the unfolding of “lezen” which
is assigned formula �−1np \ (np \ si) and assume “lezen” occupies the string
position 4,5.

∀x2‖np \ (np \ si)‖x2,x2,4,5

Given that s(np) = 0 this reduces further to.

∀x2∀x1‖np‖x1,x2 � ‖np \ si‖x1,x2,4,5

If we combine this entry with “boeken” from positions 1,2 (ie. the formula
np(1, 2), instantiating x1 to 1 and x2 to 2, this gives the following partial trans-
lation for “boeken lezen”

‖np \ si‖1,2,4,5

Similarly, “kunnen” with formula �−1(np \ si) ↓ (np \ si) reduces as follows
when occupying string position 3,4.

∀x2‖(np \ si) ↓ (np \ si)‖x2,x2,3,4

5 Alternatively, we can allow the ,̌ � and � connectives but restrict them to cases
where there is strict identity of the two string positions (disallowing instantiation of
variables to obtain identity). Note that this means that formulas of the form Ǎ ↓ B
are valid only in contexts spanning the empty string.

6 Wijnholds [58] and Sorokin [55] show that D of order 1 (ie. containing only the
synchronous rules, but also the bridge and projection connectives) generates the
well-nested multiple context-free languages.

Extended Lambek Calculi 319

Which unfolds further as.

∀x2∀x0∀x5‖np \ si‖x0,x2,4,x5 � ‖np \ si‖x0,x2,3,x5

This combines with the previous translation of “boeken lezen”, instantiating
x0 to 1, x2 to 2 and x5 to 5, giving “boeken kunnen lezen” with translation
‖np \ si‖1,2,3,5.

Finally, the tensed verb “wil” with formula (np \ si) ↓ (np \ s) unfolds at
position 2,3 as.

∀x0∀x3‖np \ si‖x0,2,3,x3 � ‖np \ s‖x0,x3

Instantiating x0 to 1 and x3 to 5 and combining this with the previously
computed translation of “boeken kunnen lezen” produces ‖np\s‖1,5 for “boeken
wil kunnen lezen”. Figure 13 on the next page shows a proof net derivation of
the slightly more complex “(dat) Jan Henk Cecilia de nijlpaarden zag helpen
voeren”. Note that the axiom linkings are again fully deterministic.

5 Correctness of the Translation

The basic idea of the correctness proof is again very simple: we use the property of
focused proof search and of ludics that combinations of synchronous connectives
can always be seen as instances of a synthetic synchronous connective, whereas
the same holds for the asynchronous connectives. Since the translations either
use a combination of ∃ and ⊗ (both synchronous) or a combination of ∀ and �
(both asynchronous), it follows immediately that we can treat these combinations
as synthetic connectives, giving a rule to (synthetic) rule translation.

We only prove the case for the binary continuous and discontinuous connec-
tives. As noted in Section 4.2, the extension to the bridge and projection con-
nectives is simple, whereas the split and injection are more complicated and will
be left for future research. In addition, none of the non-deterministic connectives
of [46,57] are considered: their obvious translation would use the additive con-
nectives from linear logic, which would complicate the proof nets and increase
the computational complexity [28,29]7.

Lemma 1. For every proof of t1 : A1, . . . , tn : An � t : C in D, there is a proof
of its translation in MILL1.

Proof. Refer back to Figure 8 to see the correspondence between pairs of string
positions and tuples of strings more clearly. The rules are simply the translation
of the natural deduction rules of D, where the string tuples have been replaced
by pairs of string positions.

For the case of \E we are in the following situation (let i = 1
2 (n − 1), j =

1
2 (m− 1), then x0, . . . , xn corresponds to a i-tuple t, xn, . . . , xn+m to a j-tuple
u and x0, . . . , xn−1, xn+1, . . . , xn+m to their concatenation tu). The translations

7 Though if the non-deterministic connectives occur only in negative contexts, we can
treat them by simply multiplying the lexical entries.

320 R. Moot

−
n
p
(1
,2
)

−
n
p
(2
,3
)

−
n
p
(3
,4
)

−
n
p
(4
,6
)

− �

+

in
f(
3
,6
,7
,9
)

− �

+

n
p
(2
,3
)

− �

+

n
p
(1
,2
)

−
s(
1
,9
)

− �

+

in
f(
4
,6
,8
,9
)

− �

+

n
p
(3
,4
)

−
in
f(
3
,6
,7
,9
)

− �

+

n
p
(4
,6
)

−
in
f(
4
,6
,8
,9
)

+

s(
1
,9
)

J
a
n

H
en

k
C
ec
il
ia

d
n

za
g

h
el
p
en

v
o
er
en

Fig. 13. Proof net for “(dat) Jan Henk Cecilia de nijlpaarden zag helpen voeren”

Extended Lambek Calculi 321

of A and A \C share point xn and we can instantiate the universally quantified
variables of the other points of A (x0 to xn−1) applying the ∀E rule n times (/
is symmetric).

‖A‖x0,...,xn

‖A \ C‖xn,...,xn+m

∀y0, . . . , yn−1‖A‖y0,...,yn−1,xn � ‖C‖y0,...,yn−1,xn+1,...,xn+m

=def

‖A‖x0,...,xn � ‖C‖x0,...,xn−1,xn+1,...,xn+m
∀E (n times)

‖C‖x0,...,xn−1,xn+1,...,xn+m
� E

For the introduction rule, we again set i to 1
2 (n − 1) and j to 1

2 (m − 1),
making x0, . . . , xn corresponds to a i-tuple t, xn, . . . , xn+m to a j-tuple u and
x0, . . . , xn−1, xn+1, . . . , xn+m to their concatenation tu. In this case, induction
hypothesis gives us a MILL1 proof corresponding to Γ, t : A � tu : C. To extend
this proof to a MILL1 proof corresponding to Γ � u : A\C (/ is again symmetric),
we can continue the translated proof of Γ, t : A � tu : C as follows.

[‖A‖x0,...,xn]i . . . Γ
....

‖C‖x0,...,xn−1,xn+1,...,xn+m

‖A‖x0,...,xn � ‖C‖x0,...,xn−1,xn+1,...,xn+m
� Ii

∀x0, . . . , xn−1‖A‖x0,...,xn � ‖C‖x0,...,xn−1,xn+1,...,xn+m
∀I (n times)

‖A \ C‖xn,...,xx+m

=def

The cases for ↑> are shown below (↓> is easily verified).

‖C ↑> B‖x0,x1,xn,...,xn+m

∀y2, . . . , yn−1‖B‖x1,y2,...,yn−1,xn � ‖C‖x0,y2,...,yn−1,xn+1,...,xn+m

=def

‖B‖x1,...,xn � ‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
∀E (n − 2 times) ‖B‖x1,...,xn

‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
� E

[‖B‖x1,...,xn]i . . . Γ
....

‖C‖x0,x2,...,xn−1,xn+1,...,xn+m

‖B‖x1,...,xn � ‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
� Ii

∀x2, . . . , xn−1‖B‖x1,...,xn � ‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
∀I (n − 2 times)

‖C ↑> B‖x0,x2,...,xn−1,xn+1,...,xx+m

=def

Finally, the cases for �> are as follows.

‖A�> B‖x0,x2,...,xn−1,xn+1,...,xn+m

∃x1∃xn‖A‖x0,...,xn ⊗ ‖B‖xn,...,xn+m

=def
[‖A‖x0,x1,xn,...,xn+m ⊗ ‖B‖x1,...,xn]i

[‖A‖x0,x1,xn,...,xn+m]j [‖B‖x1,...,xn]j
....
C

C
⊗Ej

C
∃Ei twice

‖A‖x0,x1,xn,...,xn+m ‖B‖x1,...,xn

‖A‖x0,x1,xn,...,xn+m ⊗ ‖B‖x1,...,xn
⊗I

∃xn‖A‖x0,x1,xn...,xn+m ⊗ ‖B‖x1,...,xn
∃I

∃x1∃xn‖A‖x0,x1,xn...,xn+m ⊗ ‖B‖x1,...,xn
∃I

‖A�> B‖x0,x2,...,xn−1,xn+1,...,xn+m

=def

��
Lemma 2. If the translation of a D sequent t1 : A1, . . . , tn : An � t : C is
provable, then there is a D proof of t1 : A1, . . . , tn : An � t : C.

322 R. Moot

Proof. This is most easily shown using proof nets, using induction on the number
of links while removing them in groups of synchronous or asynchronous links
corresponding to a D connective.

If there are terminal asynchronous links, then we proceed by case analysis
knowing that we are dealing the result of the translation of D formulas.

The case for C ↑> B looks as follows.

‖C ↑> B‖x0,x1,xn,...,xn+m

+

∀x2

. . .

+

∀xn−1

+
�

−
‖B‖x1,...,xn

+

‖C‖x0,x2,...,xn−1,xn+1,...,xn+mΓ

Π

Given that removing the portrayed links produces a proof net Π of Γ,B � C,
we can apply the induction hypothesis, which gives a proof δ of Γ, u : B � sut : C,
which we can extend as follows.

Γ u : B.... δ

C : sut
s, t : C ↑> B

↑> I

Similarly, the par case for �> looks as follows.

‖A�> B‖x0,x2,...,xn−1,xn+1,...,xn+m

−
∃x1

−
∃xn

−⊗

−
‖A‖x0,x1,xn,...,xn+m

−
‖B‖x1,...,xnΓ

+

C

Π

Extended Lambek Calculi 323

Again, we know by induction hypothesis that there is a proof δ of Γ, s, t : A, u :
B � v[sut] : C and we need to show that there is a proof of Γ, sut : A �> B �
v[sut] : C, which we do as follows.

sut : A�> B

Γ [s, t : A]i [u : B]i
.... δ

v[sut] : C

v[sut] : C
�>E

i

Suppose there are no terminal asynchronous links, then we know there must
be a group of splitting synchronous links corresponding to a D connective (a
series of universal links ended by a tensor link which splits the proof net into
two subnets, though the synthetic connectives of Section 4.2 allow for a single
universal link, which is splitting by definition, since after removal of the link, all
premisses of the link are the conclusion of disjoint subnets), using the standard
splitting tensor argument [14,10,4].

Suppose this group of splitting links is the translation of ↑>, then the proof
net is of the following form. Note that the translation of B corresponds to the
string tuple u (with i = 1

2n components), the translation of C ↑> B to the string
tuple sut and the translation of C to the string tuple s, t.

‖C ↑> B‖x0,x1,xn,...,xn+m

−
∀x2

. . .

−
∀xn−1

−
�

+

‖B‖x1,...,xn

−
‖C‖x0,x2,...,xn−1,xn+1,...,xn+m ΔΓ

+

D

Π1 Π2

Therefore, we know by induction hypothesis that there is a proof δ1 of Γ �
u : B and a proof δ2 of Δ, sut : C � D. We need to show that there is a proof
Γ,Δ, s, t : C ↑> B � D, which we can do as follows8.

8 The observant reader has surely noted that this step is just the standard sequential-
ization step followed by the translation of sequent calculus into natural deduction,
see for example [18,42].

324 R. Moot

Δ

Γ.... δ1
u : B s, t : C ↑> B

sut : C
↑> E

.... δ2
D

In case the splitting tensor link and associated existential quantifiers are the
translation of a �> formula, we are in the following case.

‖A�> B‖x0,x2,...,xn−1,xn+1,...,xn+m

+

∃x1

+

∃xn

+⊗

+

‖A‖x0,x1,xn,...,xn+m

+

‖B‖x1,...,xnΓ Δ

Π1 Π2

Induction hypothesis gives us a proof δ1 of Γ � s, t : A and a proof δ2 of
Δ � u : B, which we combine as follows.

Γ.... δ1
s, t : A

Δ.... δ2
u : B

sut : A�> B
�>I

Theorem 1. Derivability of a statement in D and derivability of the translation
of this statement into MILL1 coincide.

Proof. Immediate from Lemma 1 and 2.
The main theorem gives a simple solution to two of the main open problems

from [43].

Corollary 1. D is NP-complete.

Proof. We have that the derivability of L, D and MILL1 are related as follows
(given the translations of L and D into MILL1) L ⊂ D ⊂ MILL1. Therefore
NP-completeness of L and MILL1 gives us NP-completeness of D.

Corollary 2. MILL1 provides a proof net calculus for D.

Extended Lambek Calculi 325

Proof. This is immediate from the fact that the D connectives correspond to
synthetic MILL1 connectives. Therefore, adding these synthetic connectives to
MILL1 provides a conservative extension of MILL1, which contains a proof net
calculus of D. For the synchronous links, this possibility is already implicit in the
proof nets of Figures 10 and 13, where the existential links are not portrayed; the
combination of the asynchronous ∀ and the � link in Figure 10 can be similarly
replaced by a single link and a switch to either one of the premisses of the �
link or to one of the formulas containing the variable x.9

Corollary 3. D satisfies cut elimination.

Cut elimination for D, including the non-deterministic connectives and the
units, is already proved directly in [46,57]. However, using the translation into
MILL1 gives us a very easy cut elimination proof.

6 Agreement, Non-associativity and Scope
Restrictions

Though I have focused only on using the first-order terms for representing string
positions, I will sketch a number of other applications of the first-order terms
which are orthogonal to their use for string positions, for which other extension
of the Lambek calculus have introduced additional connectives and logical rules,
such as the unary modalities of multimodal categorial grammar [26].

The most obvious of these applications is for the use of linguistic features,
allowing us, for example, to distinguish between nominative and accusative noun
phrases np(nom) and np(acc) but also allowing a lexical entry to fill either role
by assigning it the formula ∀x.np(x).

Until now, we have only seen variables and constants as arguments of predi-
cate symbols. When we allow more complex terms, things get more interesting.
Let’s only consider complex terms of the form s(T) — the well-known successor
term from unary arithmetic not to be confused with the predicate symbol s for
sentence — where T is itself a term (complex, a variable or a constant). These
complex terms allow us to implement non-associativity when we need it, using
the following translation (remember that the string positions are orthogonal and
can be included if needed).

‖A •B‖x = ‖A‖s(x) ⊗ ‖B‖s(x)
‖C/B‖s(x) = ‖B‖s(x) � ‖C‖x
‖A\C‖s(x) = ‖A‖s(x) � ‖C‖x

The translation is parametric in a single variable x unique to the formula,
which can get partially instantiated during the translation, producing a formula
with a single free variable which is universally quantified to complete the trans-
lation. For example, a prototypical statement whose derivability presupposes
associativity

9 Another proof net calculus for D would be a direct adaptation of the results from
Section 7 of [41]. However, this footnote is too small to contain it.

326 R. Moot

a/b, b/c � a/c
translates as

∀x[b(s(x)) � a(x)], ∀y[c(s(y)) � b(y)] � ∀z[c(s(z)) � a(z)]

which the reader can easily verify to be underivable. This translation gener-
alizes both the translation of NL to MILL1 and the implementation of island
constraints of [40].

In addition, we can handle scope restrictions in the same spirit as [6], by
translating s1 as ∀x.s(x), s2 as ∀x.s(s(x)) and s3 as ∀x.s(s(s(x))), which are
easily verified to satisfy si � sj for i ≤ j and si � sj for i > j.

Scope restrictions and island constraints are some of the iconic applications
of the unary modalities of multimodal categorial grammars and I consider it
an attractive feature of MILL1 they permit a transparent translation of these
applications.

The use of complex terms moves us rather close to the indexed grammars [1],
where complex unary term symbols play the role of a stack of indices. The linear
indexed grammars [13] would then correspond to the restriction of quantified
variables to two occurrences of opposite polarity10 (or a single occurrence of any
polarity; for the string position variables, they occur twice: either once as a left
(resp. right) position of a positive atomic formula and once as a left (resp. right)
position of a negative atomic formula or once as a left position and once as a right
position of atomic formulas of the same polarity). If we restrict variables to at
most two occurrences of each variable, without any restriction on the polarities,
we are closer to an extension of linear indexed grammars proposed by [25],
which they call partially linear PATR, and thereby closer to unification-based
grammars such as LFG and HPSG. This restriction on quantified variables seems
very interesting and naturally encompasses the restriction on string position
variables.

These are of course only suggestions, which need to be studied in more detail
in future work.

7 Conclusions and Open Questions

First-order multiplicative intuitionistic linear logic includes several interesting
subsystems: multiple context-free grammars, the Lambek calculus and the Dis-
placement calculus. In spite of this, the computational complexity of MILL1 is
the same as the complexity of the universal recognition problem for each of these
individual systems. In addition, it gives a natural implementation of several ad-
ditional linguistic phenomena, which would require further machinery in each of
the other calculi.

MILL1 satisfies all conditions of extended Lambek calculi: it has a simple
proof theory, which includes a proof net calculus, it generates the mildly context-
free languages, it is NP-complete and the homomorphism for semantics consists

10 The encoding of non-associativity above is a clear violation of this constraint, since
the quantified variable will occur in all atomic subformulas.

Extended Lambek Calculi 327

of simply dropping the quantifiers to obtain an MILL proof — though it is
conceivable to use the first-order quantifiers for semantic features which would
have a reflection in the homomorphism.

Many important questions have been left open. Do MILL1 grammars without
complex terms (simple in the input string or not) generate exactly the MCFLs
or strictly more? Do MILL1 grammars with complex terms generate exactly
the indexed languages and can we get interesting subclasses (eg. partially linear
PATR) by restricting the variables to occur at most twice? Are there interesting
fragments of MILL1 grammars which have a polynomial recognition problem? I
hope these questions will receive definite answers in the future.

References

1. Aho, A.: Indexed grammars: An extension of context-free grammars. Journal of
the ACM 15(4), 647–671 (1968)

2. Andreoli, J.-M.: Logic programming with focussing proofs in linear logic. Journal
of Logic and Computation 2(3) (1992)

3. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. In: Bar-Hillel, Y. (ed.) Language and Information. Selected Essays
on their Theory and Application, pp. 116–150. Addison-Wesley, New York (1964)

4. Bellin, G., van de Wiele, J.: Empires and kingdoms in MLL. In: Girard, J.-Y.,
Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 249–270. Cambridge
University Press (1995)

5. Bernardi, R., Moortgat, M.: Continuation semantics for symmetric categorial gram-
mar. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp.
53–71. Springer, Heidelberg (2007)

6. Bernardi, R., Moot, R.: Generalized quantifiers in declarative and interrogative
sentences. Logic Journal of the IGPL 11(4), 419–434 (2003)

7. Boullier, P.: Proposal for a natural language processing syntactic backbone. Tech-
nical Report 3342, INRIA, Rocquencourt (1998)

8. Boullier, P., Sagot, B.: Efficient and robust LFG parsing: SxLfg. In: International
Workshop on Parsing Technologies (2005)

9. Danos, V.: La Logique Linéaire Appliquée à l’étude de Divers Processus de Nor-
malisation (Principalement du λ-Calcul). PhD thesis, University of Paris VII (June
1990)

10. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

11. Došen, K.: A brief survey of frames for the Lambek calculus. Zeitschrift für Math-
ematische Logic und Grundlagen der Mathematik 38, 179–187 (1992)

12. Fadda, M.: Geometry of Grammar: Exercises in Lambek Style. PhD thesis,
Universitat Politècnica de Catalunya (2010)

13. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U.,
Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69–94.
D. Reidel, Dordrecht (1988)

14. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
15. Girard, J.-Y.: Quantifiers in linear logic II. In: Corsi, G., Sambin, G. (eds.) Nuovi

Problemi Della Logica e Della Filosofia Della Scienza, Bologna, Italy, vol. II.
CLUEB (1991). Proceedings of the conference with the same name, Viareggio,
Italy (January 1990)

328 R. Moot

16. Girard, J.-Y.: Linear logic: Its syntax and semantics. In: Girard, J.-Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic, pp. 1–42. Cambridge University Press
(1995)

17. Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Mathe-
matical Structures in Computer Science 11, 301–506 (2001)

18. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science 7. Cambridge University Press (1988)

19. Greibach, S.A.: A new normal-form theorem for context-free phrase structure gram-
mars. Journal of the ACM 12(1), 42–52 (1965)

20. Guerrini, S.: Correctness of multiplicative proof nets is linear. In: Fourteenth An-
nual IEEE Symposium on Logic in Computer Science, pp. 454–263. IEEE Com-
puter Science Society (1999)

21. Huybregts, R.: The weak inadequacy of context-free phrase structure grammars.
In: de Haan, G., Trommelen, M., Zonneveld, W. (eds.) Van Periferie naar Kern.
Foris, Dordrecht (1984)

22. Joshi, A.: Tree-adjoining grammars: How much context sensitivity is required to
provide reasonable structural descriptions. In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Processing: Theoretical, Computational, and Psycho-
logical Perspectives. Cambridge University Press (1985)

23. Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The computational complexity of the
universal recognition problem for parallel multiple context-free grammars. Com-
putational Intelligence 10(4), 440–452 (1994)

24. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp.
312–325. Springer, Heidelberg (2009)

25. Keller, B., Weir, D.: A tractable extension of linear indexed grammars. In: Pro-
ceedings of the Seventh Meeting of the European Chapter of the Association for
Computational Linguistics, pp. 75–82 (1995)

26. Kurtonina, N., Moortgat, M.: Structural control. In: Blackburn, P., de Rijke, M.
(eds.) Specifying Syntactic Structures, pp. 75–113. CSLI, Stanford (1997)

27. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

28. Lincoln, P.: Deciding provability of linear logic formulas. In: Girard, Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic, pp. 109–122. Cambridge University
Press (1995)

29. Lincoln, P., Scedrov, A.: First order linear logic without modalities is NEXPTIME-
hard. Theoretical Computer Science 135(1), 139–154 (1994)

30. Matsuzaki, T., Miyao, Y., Tsujii, J.: Efficient HPSG parsing with supertagging
and CFG-filtering. In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence, pp. 1671–1676 (2007)

31. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and
Information 5(3-4), 349–385 (1996)

32. Moortgat, M.: Symmetries in natural language syntax and semantics: The Lambek-
Grishin calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS,
vol. 4576, pp. 264–284. Springer, Heidelberg (2007)

33. Moortgat, M.: Typelogical grammar. Stanford Encyclopedia of Philosophy Website
(2010), http://plato.stanford.edu/entries/typelogical-grammar/

http://plato.stanford.edu/entries/typelogical-grammar/

Extended Lambek Calculi 329

34. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A.
(eds.) Handbook of Logic and Language, ch. 2, pp. 95–179. Elsevier/MIT Press
(2011)

35. Moortgat, M., Moot, R.: Proof nets for the lambek-grishin calculus. In:
Grefenstette, E., Heunen, C., Sadrzadeh, M. (eds.) Compositional Methods in
Physics and Linguistics, pp. 283–320. Oxford University Press (2013)

36. Moot, R.: Proof nets and labeling for categorial grammar logics. Master’s thesis,
Utrecht University, Utrecht (1996)

37. Moot, R.: Proof Nets for Linguistic Analysis. PhD thesis, Utrecht Institute of
Linguistics OTS, Utrecht University (2002)

38. Moot, R.: Filtering axiom links for proof nets. In: Kallmeyer, L., Monachesi, P.,
Penn, G., Satta, G. (eds.) Proceedings of Formal Grammar 2007 (2007) (to appear
with CSLI)

39. Moot, R.: Lambek grammars, tree adjoining grammars and hyperedge replacement
grammars. In: Gardent, C., Sarkar, A. (eds.) Proceedings of TAG+9, The Ninth
International Workshop on Tree Adjoining Grammars and Related Formalisms,
pp. 65–72 (2008)

40. Moot, R., Piazza, M.: Linguistic applications of first order multiplicative linear
logic. Journal of Logic, Language and Information 10(2), 211–232 (2001)

41. Moot, R., Puite, Q.: Proof nets for the multimodal Lambek calculus. Studia Log-
ica 71(3), 415–442 (2002)

42. Moot, R., Retoré, C.: The Logic of Categorial Grammars. LNCS, vol. 6850.
Springer, Heidelberg (2012)

43. Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press (2011)

44. Morrill, G., Fadda, M.: Proof nets for basic discontinuous Lambek calculus. Journal
of Logic and Computation 18(2), 239–256 (2008)

45. Morrill, G., Valent́ın, O.: On calculus of displacement. In: Proceedings of
TAG+Related Formalisms. University of Yale (2010)

46. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,
Language and Information 20(1), 1–48 (2011)

47. Murawski, A.S., Ong, C.-H.L.: Dominator trees and fast verification of proof nets.
In: Logic in Computer Science, pp. 181–191 (2000)

48. Nederhof, M.-J., Satta, G.: Theory of parsing. In: Clark, A., Fox, C., Lappin, S.
(eds.) The Handbook of Computational Linguistics and Natural Language Pro-
cessing, pp. 105–130. Wiley-Blackwell (2010)

49. Pentus, M.: Product-free Lambek calculus and context-free grammars. Journal of
Symbolic Logic 62, 648–660 (1997)

50. Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Sci-
ence 357(1), 186–201 (2006)

51. Pentus, M.: A polynomial-time algorithm for Lambek grammars of bounded order.
Linguistic Analysis 36(1-4), 441–471 (2010)

52. Pereira, F., Shieber, S.: Prolog and Natural Language Analysis. CSLI, Stanford
(1987)

53. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88, 191–229 (1991)

54. Shieber, S.: Evidence against the context-freeness of natural language. Linguistics
& Philosophy 8, 333–343 (1985)

55. Sorokin, A.: Normal forms for multiple context-free languages and displacement
Lambek grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734,
pp. 319–334. Springer, Heidelberg (2013)

330 R. Moot

56. Stabler, E.: Tupled pregroup grammars. Technical report, University of California,
Los Angeles (2003)

57. Valent́ın, O.: Theory of Discontinuous Lambek Calculus. PhD thesis, Universitat
Autònoma de Catalunya (2012)

58. Wijnholds, G.: Investigations into categorial grammar: Symmetric pregroup gram-
mar and displacement calculus, Bachelor thesis, Utrecht University (2011)

	Extended Lambek Calculi
and First-Order Linear Logic

	1 Introduction
	2 MILL1
	2.1 A Danos-Style Correctness Condition
	2.2 Eager Application of the Contractions

	3 The Displacement Calculus
	3.1 String Tuples
	3.2 Position Pairs
	3.3 MILL1 and Multiple Context-Free Grammars

	4 Translations
	4.1 Examples
	4.2 Synthetic Connectives

	5 Correctness of the Translation
	6 Agreement, Non-associativity and Scope Restrictions
	7 Conclusions and Open Questions
	References

