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Abstract. The purpose of this article is to show that the associative
Lambek calculus extended with basic proper axioms can be simulated by
the usual associative Lambek calculus, with the same number of types per
word in a grammar. An analogue result had been shown for pregroups
grammars [1]. We consider Lambek calculus with product, as well as the
product-free version.

1 Introduction

The associative Lambek calculus (L) has been introduced in [6], we refer to [3,8]
for details on (L) and its non-associative variant (NL). The pregroup formalism
(PG) has been later introduced [7] as a simplification of Lambek calculus. These
formalisms are considered for the syntax modeling and parsing of various natural
languages. In contrast to (L), pregroups allow some kind of postulates ; we
discuss this point below.

Postulates in Pregroups. The order on primitive types has been introduced in
Pregroups (PG) to simplify the calculus for simple types. The consequence is
that PG is not fully lexicalized. From the results in [1], this restriction is not so
important because a PG using an order on primitive types can be transformed
into a PG based on a simple free pregroup using a pregroup morphism, s.t. : its
size is bound by the size of the initial PG times the number of primitive types
(times a constant which is approximatively 4), moreover, this transformation
does not change the number of types that are assigned to a word (a k-valued
PG is transformed into a k-valued PG).

Postulates in the Lambek Calculus. Postulates (non-logical axioms) in Lambek
calculus have also been considered. We know from [2,5], that :

(i) the associative version (L) with nonlogical axioms generate ε-free r.e. lan-
guages (the result also holds for L without product). The proof in the case
with product is based on binary grammars whose production are of the form :

p → q , p → q r , p q → r
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for which is constructed a language-equivalent categorial grammar L(Φ(G))
where Φ(G) is a finite set of non-logical axioms.

(ii) the non-associative version (NL) with nonlogical axioms generate context-
free languages [5].

This article adresses the associative version (L). It is organized as follows :
section 2 gives a short background on categorial grammars and on L extended
with proper axioms L(Φ) ; section 3 gives some preliminary facts on L(Φ), when
Φ corresponds to a preorder ≤ on primitive types (written Φ≤) ; section 4 defines
the simulation (written h) ; section 5 gives the main results on the h simulation ;
section 6 gives the lemmas and proof details. Section 7 concludes.

Such a result also aims at clarifying the properties of classes of rigid and
k-valued type logical grammars (TLG).

2 Categorial Grammars, their Languages and Systems

2.1 Categorial Grammars and their Languages

A categorial grammar is a structure G = (Σ, I, S) where: Σ is a finite al-
phabet (the words in the sentences); given a set of types Tp(Pr), where Pr
denotes a set of primitive types, I : Σ �→ Pf (Tp(Pr)) is a function that
maps a finite set of types from each element of Σ (the possible categories of
each word); S ∈ Tp(Pr) is the main type associated to correct sentences.

Language. Given a relation on Tp(Pr)∗ called the derivation relation on types :
a sentence v1 . . . vn then belongs to the language of G, written L(G), provided
its words vi can be assigned types Xi whose sequence X1 . . . Xn derives S
according to the derivation relation on types.

An AB-grammar is a categorial grammar G = (Σ, I, S), such that its set of
types Tp(Pr) is constructed from Pr (primitive), using two binary connectives
/ , \ , and its language is defined using two deduction rules:

A , A \ B � B (Backward elimination, written \ e)
B / A , A � B (Forward elimination, written / e)

For example, using \ e, the string of types (N,N \ S) associated to “John
swims” entails S, the type of sentences. Another typical example is
(N, ((N \ S) / N), N)) associated to “John likes Mary”, where the right part
is associated to “likes Mary”.

Lambek-grammars AB-grammars are the basis of a hierarchy of type-logical
grammars (TLG). The associative Lambek calculus (L) has been introduced
in [6], we refer to [3] for details on (L) and its non-associative variant (NL).
A sequent-style presentation of (L) is detailed after.
The above examples illustrating AB-grammars also hold for (L) and (NL).

The pregroup formalism has been introduced in [7] as a simplification of
Lambek calculus [6]. See [7] for a definition.
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2.2 Type Calculus for (L)

By a sequent we mean a pair written Γ � A, where Γ is a sequence of types of
Tp(Pr) and A is a type in Tp(Pr). We give a ”Gentzen style” sequent presenta-
tion, by means of introduction rules on the left or on the right of a sequent :

Lambek Calculus (associative) (Gentzen style)

Γ,A, Γ ′ � C Δ � A
Cut

Γ,Δ, Γ ′ � C
A � A

Γ � A Δ,B,Δ′ � C
/L

Δ,B / A, Γ,Δ′ � C

Γ,A � B
/R

Γ � B / A

Γ � A Δ,B,Δ′ � C \L
Δ,Γ,A \B,Δ′ � C

A, Γ � B \R
Γ � A \B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Δ,A,B,Δ′ � C •L
Δ,A •B,Δ′ � C

Γ � A Γ ′ � B •R
Γ, Γ ′ � A •B

The calculus denoted by L consists in this set of rules and has the extra
requirement when applying a rule : the left-handside of a sequent cannot be
empty. We may consider the system restricted to / and \ or its full version,
where the set of types has a product type constructor • (non-commutative). The
Cut rule can be eliminated from the type system (proving the same sequents).
This property with the subformula property entail the decidability of the system.

2.3 Type Calculus for (L) Enriched with Postulates

L(Φ). In the general setting (as in [5]) nonlogical axioms are of the form :
A � B, where A,B ∈ Tp(Pr)
and L(Φ) denotes the system L with all A � B from Φ as new axioms.

The calculus corresponds to adding a new rule of the form :
A � B ∈ Φ

AxΦ
A � B

L(Φ≤). In the following of the paper, we shall restrict to axioms of the form :
p � q, where p, q are primitive (elements of Pr). Moreover, to keep the parallel

with pregroups, we consider a preorder ≤ on a finite set of primitive types Pr
and consider : L(Φ≤) where Φ≤ is the set of axioms p � q whenever p ≤ q, for
p, q ∈ Pr.

The calculus corresponds to adding a new rule of the form :
p ≤ q

Ax≤
p � q
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Some Remarks and Known Facts

On Axioms. As in L, we get an equivalent version of L(Φ), where axioms A � A
in the type calculus are supposed basic (A primitive).

A Remark on Substitutions. In general L(Φ) is not substitution closed, see [4].

Facts on Models. [4] discusses several completeness results, in particular, L is
strongly complete with respect to residuated semigroups (RSG in short)1 : the
sequents provable in L(Φ) are those which are true in all RSG where all sequents
from Φ are true.

3 Some Preliminary Facts with Basic Postulates

3.1 Cut Elimination and the Subformula Property

Proposition 1. Let ≤ denote a preorder on the set of primitive types, and Φ≤
denote the corresponding set of axioms. The type calculus L(Φ≤) admits cut
elimination and the subformula property : every derivation of Γ � A in L(Φ≤)
can be transformed into a cut-free derivation in L(Φ≤) of the same sequent, such
that all formulas occurring in it are subformulas of this sequent.

Proof Sketch. The proof is standard (see [8]), on derivations, by induction on
(d, r) where r is the number of rules above the cut rule (to be eliminated) and
d is the depth (as a subformula tree) of the cut formula (that disappears by the
cut rule). The proof shows how to remove one cut having the smallest number
of rules above it, by a case analysis considering the subproof Dl which ends at
the left premise of the cut rule and the subproof Dr which ends at the right of
the cut rule.
The only new specific case is when Dl and Dr are both axioms :

Original derivation New derivation

pi ≤ pj

pi � pj

pj ≤ pk

pj � pk
cut

pi � pk

pi ≤ pk

pi � pk

Observe that the transitivity of ≤ on Pr is crucial here.

Corollary 1. Let ≤ denote a preorder on the set of primitive types, and Φ≤
denote the corresponding set of axioms. The type calculus L(Φ≤) is decidable.

These above propositions apply for full L and product-free L.

1 A residuated semigroup (RSG) is a structure (M, ≤ , . , \ , / ) such that (M,≤) is
a nonempty poset, ∀a, b, c ∈ M : a.b ≤ c iff b ≤ a \ c iff a ≤ c / b (residuation), . is
associative ; Γ � B is said true in a model (M,μ), where M is a RSG and μ from Pr
into M iff μ(Γ ) ≤ μ(B), where μ from Pr into M is extended as usual by μ(A \ B) =
μ(A) \ μ(B), μ(A / B) = μ(A) / μ(B), μ(A•B) = μ(A).μ(B), μ(Γ,Δ) = μ(Γ ).μ(Δ).
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3.2 Rule Reversibility

Proposition 2 (Reversibility of /R and \R).

In the type calculus L(Φ≤) :
{
Γ � B / A iff Γ,A � B
Γ � A \ B iff A,Γ � B

Proof (→) : easy by induction on the derivation, according to the last rule.
This proposition holds for the full calculus and its product-free version. In

the full calculus, the reversibility of rule •L also holds.

Main Type in the Product-Free Calculus. For a type-formula built over Pr / , \ ,
its main type is :

- the formula if it is primitive ;
- the main type of B if it is of the form B / A or the form A \ B.

In the product-free case, any type A can thus be written (ommitting paren-
thesis) as X1\ . . . \Xn\pA/Ym/ . . . /Y1 where pA is the main type of A. Re-
versibility then gives : Γ � A in L(Φ≤) iffX1, ..., Xn, Γ, Ym, ..., Y1 � pA in L(Φ≤).

3.3 Count Checks

This notion will be useful for proofs on the simulation defined in section 4.

Polarity. We first recall the notion of polarity of an occurrence of p ∈ Pr in a
formula : p is positive in p ; if p is positive in A, then p is positive in B \ A,
A / B, A • B, B • A, and p is negative in A \ B, B / A ; if p is negative in A,
then p is negative in B \ A, A / B, A • B, B • A, and p is positive in A \ B,
B / A.

For a sequent Γ � B, the polarity of an occurrence of p ∈ Pr in B is the same
as its polarity in B, but the polarity of an occurrence of p in Γ is the opposite
of its polarity in the formula of Γ .

In the presence of non-logical axioms Φ on primitive types, a count check
property can be given as follows :

Proposition 3 (Count check in L(Φ), on primitive types). If Γ � B is
provable in L(Φ), then for each primitive type p that is not involved in any axiom
p � q in L(Φ) where p �= q : the number of positive occurrences of p in Γ � B
equals the number of negative occurrences of p in Γ � B.

The proof is easy by induction on derivations.

3.4 A Duplication Method

As is the case for pregroups [1], we may propose to duplicate assignments for
each primitive type occurring in a basic postulate pi ≤ pj . We give more details
below.
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Definition 1 (polarized duplication sets).

1. We write (q)
↑
≤ = {pj | q ≤ pj} and (q)

↓
≤ = {pj | pj ≤ q} for primitive types.

2. We use the following operations on sets of types, that extend / , \ , • :

T1 // T2 = {X1 / X2 | X1 ∈ T1 and X2 ∈ T2}
T1 \\ T2 = {X1 \ X2 | X1 ∈ T1 and X2 ∈ T2}
T1

⊙
T2 = {X1 •X2 | t1 ∈ T1 and X2 ∈ T2}

T1◦T2◦...◦Tn = {X1, X2, ...Xn | X1 ∈ T1 X2 ∈ T2...Xn ∈ Tn} for sequences

3. We define the upper-duplication Dupl↑≤(.) and lower-duplication Dupl↓≤(.)
inductively on types, for δ ∈ {↑, ↓}, where we write op(↑) =↓, op(↓) =↑ :

Dupl↑≤(q) = (q)↑≤ and Dupl↓≤(q) = (q)↓≤ for primitive types.

Duplδ≤(X1 / X2) = Duplδ≤(X1) // Dupl
op(δ)
≤ (X2)

Duplδ≤(X1 \ X2) = Dupl
op(δ)
≤ (X1) \\ Duplδ≤(X2)

Duplδ≤(X1 •X2) = Duplδ≤(X1)
⊙

Duplδ≤(X2)

and Duplδ≤(X1, X2, . . . , Xn) = Duplδ≤(X1) ◦Duplδ≤(X2) ◦ ... ◦Duplδ≤(Xn)

This amounts to consider all replacements, according to ≤ and the two polarities.

Proposition 4 (Simulation 1). For p ∈ Pr (primitive) :

if X1, . . . Xn � p in L(Φ≤) then ∃X ′
1 ∈Dupl↑≤(X1) . . . ∃X ′

n ∈Dupl↑≤(Xn) such

that X ′
1, . . .X

′
n � p in L (without postulates).

Proof Sketch. See annex.

Drawbacks. However this transformation does not preserve the size of the lexicon
in general, nor the k-valued class of grammars to which the original lexicon
belongs.

4 Simulation over k-valued Classes

4.1 Basic Definitions

Using morphisms-based encodings will enable to stay in a k-valued class and to
keep a strong parse similarity (through the simulation).

Definition 2 (preorder-preserving mapping).
Let (P,≤) and (P ′,≤′) denote two sets of primitive types with a preorder. Let h
denote a mapping from types of Tp(P ) (with ≤ on P ) to types of Tp(P ′) (with
≤′ on P ′)

– h is a type-homomorphism iff
1. ∀X,Y ∈ Tp(P ) : h(X / Y ) = h(X) / h(Y )
2. ∀X,Y ∈ Tp(P ) : h(X \ Y ) = h(X) \ h(Y )
3. ∀X,Y ∈ Tp(P ) : h(X•Y ) = h(X)•h(Y )
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– h is said monotonic iff

4a. ∀X,Y ∈ Tp(P ) :

if X � Y in L(Φ≤) then h(X) � h(Y ) in L(Φ≤′) [Monotonicity]

– h is said preorder-preserving iff

4b. ∀pi, pj ∈ P : if pi ≤ pj then h(pi) � h(pj) in L(Φ≤′).

Condition (4b) ensures (4a) for a type-homomorphism. This can be shown by
induction on derivations. Next sections define and study a type-homomorphism
that fullfills all these conditions.

4.2 Construction on One Component

We consider the type calculus without empty sequents on the left, and with prod-
uct. The result also holds for the product-free calculus, because the constructed
simulation does not add any product.

In this presentation, we allow to simulate either a fragment (represented as
Pr below) or the whole set of primitive types ; for example, we may want not
to transform isolated primitive types, or to proceed incrementally.

Primitive Types. Let P = {p1, . . . , pn} and P = Pr ∪ Pr′, denote the set of
primitive types, in which Pr a connex component, where no element of Pr is
related by ≤ to an element of Pr′, and each element of Pr is related by ≤ to
another element of Pr.
We introduce new letters q0, q1 and βk for each pk of Pr (no new postulate) 2.
We take as preordered set P ′ = Pr′ ∪ {q0, q1} ∪ {βk | pk ∈ Pr},
≤′ denotes the restriction of ≤ on Pr′ (Pr′ may be empty).

Notation. We write X �≤′ Y for a sequent provable in the type calculus L(Φ≤′)
and we write X �≤ Y for a sequent provable in the type calculus L(Φ≤)

We now define the simulation-morphism h for Pr as follows:

Definition 3 (Simulation-morphism h for Pr).

h(X / Y ) = h(X) / h(Y )
h(X \ Y ) = h(X) \ h(Y )
h(X • Y ) = h(X) • h(Y )

for pi ∈ Pr
let Num↑(pi)= {k | pi ≤ pk} = {i1 . . . ik}
s. t. i1 < . . . < ik

h(pi) = q0 / exp(q1, βi1 . . . . .βik)

for pi ∈ Pr′

h(pi) = pi

where
exp(X, β) = β / (X \ β)

and the notation is extended to sequences on the right by :
exp(X, ε) = X
exp(X, βi1 . . . . .βik−1

.βik) = βik / (exp(X, βi1 . . . . .βik−1
) \ βik)

= exp(exp(X, βi1 . . . . .βik−1
), βik)

2 q0, q1 can also be written q0Pr, q1Pr if necessary w.r.t. Pr.
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Notation. In the following, in expressions of the form exp(X,Π), Π is assumed
to denote a sequence (possibly empty) βk1 . . . βkn (where βk is the new letter for
pk of Pr) ; we will then write Num(Π) = Num(βk1 . . . βkn) = {k1, . . . , kn}.

Fact. The h mapping of definition 3 is a type-homomorphism by construction.
Next sections will show that it is monotonic and a simulation (verifying the

converse of monotonicity).

5 Main Results

Proposition 5 (Preorder-preserving property). The homomorphism h of
definition 3 satisfies : (4b.) ∀pi, pj ∈ P : if pi ≤ pj then h(pi) �
h(pj) in L(Φ≤′).

Proof. This is a corollary of this type-raise property : A � B / (A \ B) ; we
have A � exp(A,Π) and more generally : if {k | βk ∈ Π} ⊆ {k | βk ∈ Π ′}
then exp(A,Π) � exp(A,Π ′) ; by construction, if pi ≤ pj then Num↑(pj) ⊆
Num↑(pi), hence the result.

Proposition 6 (Equivalence property). The homomorphism h of defini-
tion 3 satisfies :

∀X,Y ∈ Tp(P ) : h(X) � h(Y ) holds in L(Φ≤′) iff X � Y holds in L(Φ≤)

Proof. For the ← part, this is a corollary of the preorder-preserving property,
that entails monotonicity, for a type-homomorphism. For the → part, see lem-
mas in the next section.

Proposition 7 (Grammar Simulation). Given a grammar G = (Σ, I, S)
and a preorder ≤ on the primitive types P , we define h from types on (P,≤) to
types on (P ′,≤′) such that P = Pr ∪ Pr′, where Pr is a connex component, as
in definition 3. We construct a grammar on (P ′,≤′) and L(φ≤′) as follows :

G′ = (Σ, h(I), h(S))
where h(I) is the assignment of h(Xi) to ai for Xi ∈ I(ai),

as a result we have : L(G) = L(G′)

Note. This corresponds to the standard case of grammar, when h(S) is primitive.

This proposition can apply the transformation to the whole set of primitive
types, thus providing a fully lexicalized grammar G′ (no order postulate).
A similar result holds to a fragment Pr of P = Pr ∪ Pr′.
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A Remark on Constructions to Avoid. For other constructions based on the
same idea of chains of type-raise, we draw the attention on the fact that a
simplication such as h′ below would not be correct. Suppose Φ≤ consists in
p0 ≤ p1 as postulate, define h′ a type-morphism such that

h′(p0) = exp(q, β0) and h′(p1) = exp(q, β0.β1),
this is preorder-preserving : we have h′(p0) � h′(p1),
but this is not a correct simulation, because

h′(p1), h′(p0 \ p0) � h′(p1) whereas p1 (p0 \ p0) �� p1 (in L(Φ≤)).
In more details, the sequent on the left is proved by :

h′(p0), h′(p0) \ h′(p0), h′(p0) \ β1 � β1,
then by \R : h′(p0) \ h′(p0), h′(p0) \ β1 � h′(p0) \ β1,
then by /L : β1 / h′(p0) \ β1, h

′(p0) \ h′(p0), h′(p0) \ β1 � β1, then apply /R .

6 Lemmas

Fact (1) [count checks for new letters]

for X ∈ Tp+(P ) : if Y1, h(X), Y2 �≤′ Z and X is not empty, then :
(a) the number of positive occurrences of q0 or q1 in Y1, Y2 � Z equals the number
of negative occurrences of q0 or q1 in Y1, Y2 � Z
(b) the number of positive occurrences of α ∈ {βk | pk ∈ Pr} in Y1, Y2 � Z
equals the number of negative occurrences of α in Y1, Y2 � Z

Proof. (a) is a consequence of the count check property for q0 and for q1, and
of the following fact : by construction, in h(X) the number of positive occur-
rences of q0 equals the number of negative occurrences of q1, and the number
of negative occurrences of q0 equals the number of positive occurrences of q1.
(b) is a consequence of the count check property for α, and of the following
fact : by construction, h(X) has the same number of positive occurrences of
α ∈ {βk | pk ∈ Pr} as its number of negative occurrences.

Note. Thus by (a), the presence of a formula h(X) in a sequent imposes some
equality constraints on the counts of q0 and q1.

Fact (2) [interactions with new letters]

for X ∈ Tp∗(P ) and α, α′ ∈ {q0, q1} ∪ {βk | pk ∈ Pr} :
(a) h(X), α �≤′ α′ is impossible when X is not empty, unless (α, α′) = (q1, q0)
(b) h(X), α �≤′ exp(q1, Π) where Π �= ε implies X is empty and α = q1
(c) h(X), α, exp(q1, Π”) \ β �≤′ β, where β ∈ {βk | pk ∈ Pr} implies X is empty
and α = q1

Proof. The proof is technical, see Annex.
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Fact (3) [chains of type-raise]

if exp(q1, Π
′) �≤′ exp(q1, Π

′′) then Num(Π ′) ⊆ Num(Π ′′)

Proof. We show a simpler version when Π ′ = βk1 (the general case follows
from type-raise properties A �≤′ exp(A,Π) ; also if Π ′ is empty, the assertion is
obvious).

We proceed by induction on the length of Π ′′ and consider exp(q1, βk1) �≤′

exp(q1, Π
′′), that is βk1 / (q1 \ βk1) �≤′ exp(q1, Π

′′). The case Π ′′

empty is impossible ; we write Π ′′ = Π2.βk2 ; the sequent is
βk1 / (q1 \ βk1) , exp(q1, Π2) \ βk2 �≤′ βk2 ; the end of the derivation has two
possibilities:

–
βk1 / (q1 \ βk1) �≤′ exp(q1,Π2) βk2

�≤′βk2

βk1
/ (q1 \ βk1

), exp(q1,Π2) \ βk2
�≤′βk2

we get in this case the assertion by rec. : k1 ∈ Num(Π2) (⊆ Num(Π”))
or

–
exp(q1,Π2) \ βk2

�≤′ (q1 \ βk1
) βk1 �≤′ βk2

βk1
/ (q1 \ βk1

), exp(q1,Π2) \ βk2
�≤′βk2

From which we get the assertion : k1 = k2 (∈ Num(Π”)).

Main Lemma

(main) if h(X) �≤′ h(Y ) then X �≤ Y (where X and Y in Tp+(P )).

Sketch of Proof. We distinguish several cases, depending on the form of Y and
of h(Y ), and proceed by (joined) induction on the total number of connectives
in X,Y :

– for cases where Y is primitive, we recall that P = Pr ∪ Pr′, where Pr is a
connex component and ≤′ has no postulate on Pr ; there are two subcases
(detailed later) depending on pi ∈ Pr or pi ∈ Pr′ :
(o) for pi∈Pr′ and X∈Tp+(P ) : h(X) �≤′ pi implies X �≤ pi
(i) if h(X) �≤′ q0 / exp(q1, Π

′) then ∀k ∈ Num(Π ′) : X �≤ pk
where Π ′ is a sequence of βkj (this corresponds to Y = pi ∈ Pr)
we will show (ii) an equivalent version of (i) as follows :

(ii) if h(X), exp(q1, Π
′) �≤′ q0 then ∀k ∈ Num(Π ′) : X � pk

(see proof details after for (o) (i) (ii) )
– (iii) if h(Y ) is of the form h(D / C) and Y =D/C

h(X) �≤′ h(Y ) iff h(X), h(C) �≤′ h(D)
by induction X, C �≤ D hence X �≤ D / C by the /R right rule

– (iv) if h(Y ) of the form h(C \ D), Y =C\D, the case is similar to (iii)
– (v) if h(Y ) of the form h(C•D) (see proof details after, partly similar to (o))
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Main Lemma Part (o)
(o) for pi ∈ Pr′ and X ∈ Tp+(P ) : h(X) �≤′ pi implies X �≤ pi

Proof Details: we discuss on the derivation ending for h(X) �≤′ pi :

– if this is an axiom h(X) = pi = h(pi) = X
– if this is inferred from a postulate on Pr′, pj ≤ pi then also X = pj �≤ pi
– if /L is the last rule, there are two cases

• if the rule introduces h(B) / h(A), s. t. X has the form
X=Δ, B / A, Γ, Δ′
h(Γ )�≤′h(A) h(Δ) h(B) h(Δ′)�≤′pi

h(Δ), h(B) / h(A), h(Γ ), h(Δ′)�≤′pi

by rec. (main+(o)) : Γ�≤ A Δ, B, Δ′�≤ pi

by rule /L : Δ, B / A, Γ, Δ′�≤ pi

• if the rule introduces h(pi) = q0 / exp(q1, Π
′),

the end is of the form
h(Γ ) �≤′ exp(q1, Π

′) h(Δ), q0, h(Δ
′)�′pi

h(Δ), q0 / exp(q1,Π′), h(Γ ), h(Δ′)�≤′pi

which is impossible according to Fact (1)

– if \ L is the last rule, the case is similar to the first subcase for /L above
– if the last rule is •L introducing h(A)•h(B), we apply rec. (o) to the an-

tecedent, then •L
– the right rules are impossible

Main Lemma Part (v) for X ∈ Tp+(P ) : h(X) �≤′ h(C1•C2) implies X �≤
C1•C2

Proof Details: we discuss on the derivation ending for h(X) �≤′ h(Y ) where
Y = C1•C2 :

– this cannot be an axiom, a postulate, /R, or \R
– if /L is the last rule, there are two cases

• if the rule introduces h(B) / h(A), s. t. X has the form
X = Δ, B / A, Γ, Δ′
h(Γ )�≤′h(A) h(Δ) h(B) h(Δ′)�≤′h(Y )

h(Δ), h(B) / h(A), h(Γ ), h(Δ′)�≤′h(Y )

by rec. (main+(v)) : Γ�≤ A Δ B Δ′�≤ Y

by rule /L : Δ, B / A, Γ, Δ′�≤ Y

• if the rule introduces h(pi) = q0 / exp(q1, Π
′),

the end is of the form
h(Γ ) �≤′ exp(q1, Π

′) h(Δ), q0, h(Δ
′)�′h(Y )

h(Δ), q0 / exp(q1,Π′), h(Γ ), h(Δ′)�≤′h(Y )

which is impossible according to Fact (1)

– if \ L is the last rule, the case is similar to the first subcase for /L above
– if the last rule is •L introducing h(A)•h(B), we apply rec. (v) to the an-

tecedent, then •L
– if the last rule is •R introducing h(C1)•h(C2) then X has the form Δ,Δ′,

such that :

h(Δ)�≤′h(C1) h(Δ′)�≤′h(C2)

h(Δ), h(Δ′)�≤′h(Y )

by rec. (main) : Δ�≤ C1 Δ′�≤ C2

by rule •R : Δ, Δ′�≤ Y
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Main Lemma Part (ii) if h(X), exp(q1, Π
′) �≤′ q0 then ∀k ∈ Num(Π ′) : X � pk

Proof Details : we show a simpler version whenΠ ′ = βk1 (the general case follows
from type-raise properties A �≤′ exp(A,Π), and if Π ′ is empty, the assertion is
obvious). The sequent is h(X), βk1 / (q1 \ βk1) �≤′ q0 :

– if / L is the last rule, there are two cases (it cannot introduce exp(q1, Π
′)

being rightmost)

• if the rule introduces h(B) / h(A) , s. t. X has the form X =

Δ, B / A, Γ, Δ′ there are two subcases :

h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), exp(q1,Π′)�≤′q0
h(Δ), h(B) / h(A), h(Γ ), h(Δ′), exp(q1,Π′)�≤′q0

by global rec + rec (ii) :

Γ�A Δ, B, Δ′�pk1

by rule /L : Δ, B / A, Γ, Δ′�pk1or

h(Γ ),h(Δ′), exp(q1,Π′)�≤′h(A) h(Δ), h(B)�≤′q0

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), exp(q1,Π′)�≤′q0
impossible, see Fact (1) :

• if the rule introduces h(pi) = q0 / exp(q1, Π
′′) , in h(X) , s. t. X has

the form X = Δ, pi, Γ, Δ
′

- if
h(Γ )�≤′ exp(q1,Π′′) h(Δ), q0, h(Δ

′), exp(q1,Π′)�′q0

h(Δ), q0 / exp(q1,Π′′), h(Γ ), h(Δ′), exp(q1,Π′)�′q0
impossible, see Fact (1)

- if
h(Γ ),h(Δ′),exp(q1,Π′)�≤′exp(q1,Π′′) h(Δ),q0�≤′q0

h(Δ),q0 / exp(q1,Π′′),h(Γ ),h(Δ′),exp(q1,Π′)�≤′q0
Γ,Δ′, Δ are empty by Fact (2)

and Num(Π ′) = {βk1} ⊆ Num(Π”) by Fact (3),
we get X = pi ≤ pk1

– if \ L is the last rule, it introduces h(A) \ h(B), similar to the first subcase
for /L above

h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), exp(q1,Π′)�≤′q0
h(Δ), h(Γ ), h(A) \ h(B), h(Δ′), exp(q1,Π′)�≤′q0

by global rec + rec (ii) :

Γ�A Δ, B, Δ′�pk1

by rule \ L : Δ, Γ, A \ B, Δ′�pk1

– if the last rule is •L introducing h(A)•h(B), we apply rec. (ii) to the an-
tecedent, then •L

– the right rules and the axiom rule are impossible

7 Conclusion and Discussion

Former Work in Pregroups. The order on primitive types has been introduced
in PG to simplify the calculus for simple types. The consequence is that PG
is not fully lexicalized. We had proven in [1] that this restriction is not so
important because a PG using an order on primitive types can be transformed
into a PG based on a simple free pregroup using a pregroup morphism, s.t. :

– its size is bound by the size of the initial PG times the number of primitive
types (times a constant which is approximatively 4),

– moreover, this transformation does not change the number of types that are
assigned to a word (a k-valued PG is transformed into a k-valued PG).
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The AB case. In constrast to pregroups (and L) rigid AB-grammars with basic
postulates are more expressive than rigid AB-grammars as shown by the follow-
ing language ; let L = {a, ab}, and G = {a �→ x, b �→ y} where x, y ∈ Tp(Pr),
suppose T1, T2 are parse trees using G, for a and ab respectively

– in the absence of postulates, we have from T1 and T2 : y = x \ x in which
case abb should also belong to the language, contradiction;

– if basic postulates are allowed, we can take x = S1 and then y = S1 \ S,
with S1 ≤ S, generating L = {a, ab}.

L = {a, ab} cannot be handled by a rigid AB-grammar without postulate,
whereas it is with postulates.

A similar situation might hold for extensions based on AB, such as Categorial
Dependency Grammars (CDG).

In L and Related Formalisms. The work in this paper shows a result similar
to [1], for L extended with an order on primitive types. The result holds for
both versions with or without product. A similar result should hold for NL and
some other related calculi, but it does not hold for AB as shown above.

Such a simulation result aims at clarifying properties of the extended calcu-
lus, in particular in terms of generative capacity and hierarchies of grammars.
Another interest of the extended calculus is to allow some parallels in gram-
mar design (type assignments, acquisition methods) between both frameworks
(pregroups and (L)).
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Annex : Details of Proofs

Proof sketch for the Simulation based on Duplication. We write �≤ for
� in L(Φ≤), and we consider a version where axioms A � A are such that A is
primitive.

In full L. We show by induction on the length of derivation of Γ �≤ Z in L(Φ≤)
without cut, that more generally : if Γ �≤ Z and Γ = X1, . . . Xn then

(a) if Z is primitive then ∃X ′
1 ∈ Dupl↑≤(X1) . . . ∃X ′

n ∈ Dupl↑≤(Xn) X
′
1, . . . X

′
n �

Z in L (without postulates)

(b) ∃X ′
1 ∈ Dupl↑≤(X1) . . . ∃X ′

n ∈ Dupl↑≤(Xn) and ∃Z− ∈ Dupl↓≤(Z) such that :

X ′
1, . . .X

′
n � Z− in L (without postulates)

We first show (b) separately :
- in the axiom case p � p in L(Φ≤) : we take p � p in L
- in the non-logical axiom case p � q, where p ≤ q, in L(Φ≤) : we take q � q in L
- for a rule introducing / , \ or • on the right (b) is shown easily by rec.

on the antecedent then the same rule in L, because for A′ ∈ Dupl↑≤(A) and

B− ∈ Dupl↓≤(B), we getA′ \ B− ∈ Dupl↓≤(A \ B) and B− / A′ ∈ Dupl↓≤(B / A)

and for A− ∈ Dupl↓≤(A) and B− ∈ Dupl↓≤(B), we get A− •B− ∈ Dupl↓≤(A •B)
- we detail the /L case :

Γ �≤ A Δ1, B,Δ2 �≤ Z
/L

Δ1, B / A, Γ,Δ2 �≤ Z

by rec. ∃Γ ′ ∈ Dupl↑≤(Γ ),

∃A− ∈ Dupl↓≤(A), ∃Z− ∈ Dupl↓≤(Z)

∃Δ′
i ∈ Dupl↑≤(Δi), ∃B′ ∈ Dupl↑≤(B)

Γ ′ �≤ A− Δ′
1, B

′, Δ′
2 �≤ Z−

/L
Δ′

1, B
′ / A−, Γ,Δ′

2 �≤ Z−

where B′ / A− ∈ Dupl↑≤(B / A)

- the other cases follow similarly the rule and structure without difficulty.
We now show (a) using (b), we suppose Z is primitive :
- the axiom cases are similar to (b)
- a right rule is not possible
- we detail the /L case :

Γ �≤ A Δ1, B,Δ2 �≤ Z
/L

Δ1, B / A, Γ,Δ2 �≤ Z

by rec. (b)∃Γ ′ ∈ Dupl↑≤(Γ ), ∃A− ∈ Dupl↓≤(A)
by rec. (a)∃Δ′

i ∈ Dupl↑≤(Δi), ∃B′ ∈ Dupl↑≤(B)

Γ ′ �≤ A− Δ′
1, B

′, Δ′
2 �≤ Z

/L
Δ′

1, B
′ / A−, Γ,Δ′

2 �≤ Z

where B′ / A− ∈ Dupl↑≤(B / A)

- the other cases follow similarly the rule and structure without difficulty.
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Proof of Fact (2) by joined induction for (abc) on the derivation. We consider
(for (bc)) a version of the calculus where axioms are on primitives such that for a
deduction of Γ � Y / Z, there is a deduction of not greater length for Γ,Z � Y .
Part (2)(a) : we first consider h(X) α �≤′ α′ and the last rule in a derivation :

– if this is an axiom, then X is empty

– if /L is the last rule, there are two cases (with subcases)

• if the rule introduces h(B) / h(A) , s. t. X is Δ, B / A, Γ, Δ′

h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), α�≤′α′

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α�≤′α′
by rec. (a), h(B) being not empty

or

h(Γ,Δ′), α�≤′h(A) h(Δ), h(B)�≤′α′

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α�≤′α′
impossible, see Fact(1)

• if the rule introduces h(pi) = q0 / exp(q1, Π
′′) , in h(X) s. t. X is

Δ, pi, Γ, Δ
′

h(Γ )�≤′exp(q1,Π′′) h(Δ), q0, h(Δ
′), α�≤′α′

h(Δ), q0 / exp(q1,Π′′), h(Γ ), h(Δ′), α�≤′α′ impossible, see Fact (1)

or

h(Γ, Δ′), α�≤′exp(q1,Π′′) h(Δ),q0�≤′α′

h(Δ), q0 / exp(q1,Π′′), h(Γ Δ′), α�≤′α′ we get : α ∈ {q0, q1} by Fact (1)

but then by rec. (2)a Δ is empty and α′ = q0

also by (b) and rec. (2)a Γ,Δ′ is empty and α = q1, thus (a).

– if \ L is the last rule, it introduces h(A) \ h(B) , similar to the first subcase

for / L above
h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), α�≤′α′

h(Δ), h(Γ ), h(A) \ h(B), h(Δ′) α�≤′α′
by rec. (a), h(B) being not empty

– if •L is the last rule, it introduces h(A)•h(B) , we apply rec. (a) to the

antecedent
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Part (2)(bc) : we then consider (b) h(X), α �≤′ exp(q1, Π), suppose Π = β.Π”
and its equivalent form (c) if h(X), α, exp(q1, Π”) \ β �≤′ β (where Π” may be
ε) then X is empty and α = q1. We discuss the last rule in a derivation for (c).

– if this is an axiom, this is impossible. The right rules are also not possible
for (c).

– if /L is the last rule, there are two cases (with subcases)

• if the rule introduces h(B) / h(A) , s. t. X is Δ, B / A, Γ, Δ′

h(Γ )�≤′h(A)
h(Δ), h(B), h(Δ′), α, exp(q1,Π′′) \ β �≤′β

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β �≤′β

impossible by rec. (c), h(B) being not empty
or

h(Γ ), h(Δ′), α�≤′h(A) h(Δ), h(B), exp(q1,Π′′) \ β�≤′β

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

impossible, see Fact(1)
or

h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′h(A) h(Δ), h(B)�≤′β

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

impossible, see Fact(1)

• if the rule introduces h(pi) = q0 / exp(q1, Πi) , in h(X), where X =

Δ, pi, Γ,Δ
′

h(Γ )�≤′exp(q1,Πi) h(Δ), q0, h(Δ
′), α, exp(q1,Π′′) \ β�≤′β

h(Δ), q0 / exp(q1,Πi), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′β
impossible, see

Fact (1)
or

h(Γ,Δ′), α�≤′ exp(q1,Πi) h(Δ), q0,exp(q1,Π′′) \ β�≤′β

h(Δ), q0 / exp(q1,Πi), h(Γ,Δ′),α, exp(q1,Π′′) \ β�≤′β
impossible, by rec. (c)

or
h(Γ,Δ′), α, exp(q1,Π′′) \ β�≤′exp(q1,Πi) h(Δ), q0�≤′β

h(Δ), q0 / exp(q1,Πi), h(Γ,Δ′),α, exp(q1,Π′′) \ β�≤′β
impossible, see Fact (1)

– if \ L is the last rule,

• if it introduces h(A) \ h(B) in h(X) : similar to the first subcase for

/L
h(Γ )�≤′h(A)

h(Δ), h(B), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

h(Δ), h(Γ ), h(A) \ h(B), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

by rec. (c) ,

h(B) being not empty

• if the rule introduces exp(q1, Π
′′) \ β with X = Δ,Γ

h(Γ ), α�′exp(q1,Π′′) h(Δ), β�≤′β

h(Δ), h(Γ ), α, exp(q1,Π′′) \ β�≤′β

by rec.(2bc) Γ is empty, and α = q1

by rec (2a) , Δ is also empty

– if •L is the last rule, it introduces h(A)•h(B) , we apply rec. (c) to the

antecedent, the case is impossible
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