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Preface

We start with a little quiz. A maths book: Lectures on Rings and Modules, 1966.
A linguistics book: From Word to Sentence, 2008. And in the future a forth-
coming physics book with an as-yet undisclosed title. What do these books have
in common? The same question now for the following papers. A pioneering lin-
guistics paper: “The Mathematics of Sentence Structure,” 1958. A paper paving
the way for computational types: “Deductive Systems and Categories,” 1968. A
paper exposing connections between natural language and physics: “Compact
Monoidal Categories from Linguistics to Physics,” 2011 (written in 2006).

What they have in common is their author: Jim Lambek. What they also
have in common is their respective great impact on the relevant research area.
But what they definitely do not have in common is a research area! And what
they also do not have in common, is their date of publication! What we have
here are works in a wide variety of scientific disciplines, spanning an area of some
60 years, all with a sustained very high level of quality and innovation, extreme
clarity, and a unique humility and elegance in style.

This volume brings together a series of papers by leading researchers that span
the full spectrum of these diverse research areas. It is not the first celebratory
volume: limiting ourselves to the past decade, there were two journal special
issues, the Studia Logica issue The Lambek Calculus in Logic and Linguistics on
the occasion of Jim’s 80th birthday (Vol 71(3), 2002, Wojciech Buszkowski and
Michael Moortgat, editors) and the complete 2010 volume of Linguistic Analysis
(Vol 36(1–4), Johan van Benthem and Michael Moortgat, editors). In addition,
CSLI Publications in 2004 issued a collection, Language and Grammar, edited
by Claudia Casadio, Philip Scott, and Robert Seely.

These publications all have in-depth introductions discussing the significance
of Lambek’s work in its broader context. Rather than repeating this type of
information, we have opted here for some personal recollections, recalling the
different ways we have come to know Jim.

claudia casadio — My acquaintance with Jim Lambek goes back to 1985,
during the conference Categorial Grammars and Natural Language Structures
in Tucson, Arizona. At the time I was working on the developments of categorial
grammars and Lambek was one of the leading authors in the field, as were Aj-
dukiewicz and Bar-Hillel before him. Coming to know him directly, more than 20
years after his 1958 paper on the Syntactic Calculus, was a wonderful experience,
offering the opportunity of discussing the many dimensions of language from the
formal, and from the empirical and historical, point of view. From that time on, I
have always enjoyed the natural capacity of Jim Lambek to understand linguistic
problems and to find interesting answers to a variety of challenging questions.
In the following years our friendship and scientific cooperation have constantly
grown in connection with a number of conferences and events in Europe and
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particularly in Italy, during the meetings on logic and grammar known as the
“Rome Workshops.”

There is another event I would like to point out: my first visit to Montreal, in
1997, where I presented a paper on linguistic applications of non-commutative
linear logic at the McGill category theory seminar. Lambek traces back his intu-
itions about Pregroups to this event, although one can easily recognize that he
was thinking of a theoretical reworking of his Syntactic Calculus for many years,
particularly in connection with the developments of linear logic. Afterwards,
numerous papers were written by Jim Lambek, in cooperation with several col-
leagues, on the calculus of pregroups and their applications to a variety of human
languages; I had the pleasure of co-authoring three of them, and I greatly appre-
ciated his intelligent application of mathematical methods to linguistic problems
and his widespread historical and literary competence.

bob coecke — I first met Jim when I invited him in 1999 for a conference
in Brussels on quantum logic. At the time, people in the area were becoming
interested in quantales as well as linear logic, and both of these could be traced
back (at least in part) to Lambek’s 1958 pioneering linguistics paper that we
mentioned here. The conference consisted of two parts, one of which took place
in a somewhat unusual anarchistic setting: in a swimming pool in a squatted
building under a hand-made balloon and with a hand-crafted blackboard. A
bunch of artists were also attending the event. The balloon was supposed to keep
the heat in, but this plan did not work that well, so there was a cosy chill about.
To the organizers’ great surprise, there were complaints by several participants,
but not by Jim, the oldest participant, who loved that bit of anarchy!

The next year in a somewhat surprising turn of events I became a postdoc
at McGill in Lambek’s group, and lodged for a while in Lambek’s house. One
day there was an extreme snow storm, of the kind that makes one hesitate even
about leaving one’s house. We had planned to have lunch together, but it seemed
impossible that Jim, who had to come all the way from Westmount to McGill,
would be able to make it. He arrived, and did not really get what the problem
was.

A few years later, returning to McGill from a category theory seminar talk,
I spoke about the then freshly baked topic of categorical quantum mechanics.
Jim immediately realized and mentioned during the talk that the structures
underpinning quantum theory and natural language are in fact essentially the
same, which he wrote down in the paper mentioned before, and which inspired
the more recent quantum linguistics, which combines Lambek’s pregroups with
the Hilbert space categorical semantics.

michael moortgat — Although I had met him before at one of the Ams-
terdam Colloquium conferences, I really got to know Jim better at the legendary
1985 Tucson conference that Claudia mentioned already. This conference, which
was a turning point regarding the appreciation of Lambek’s logical view on cate-
gorial grammar, was organized by Dick Oehrle, together with Emmon Bach and
Deirdre Wheeler, in a quite pleasant resort, the Arizona Inn. After talks, one
could find Jim there relaxing on a sunbed under the arcades near the wonderful
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swimming pool (filled with water this time, unlike Bob’s Brussels specimen),
discussing the finer points of the distinction between categorical and categorial
grammars — a perfect modern incarnation of a Greek philosopher.

At that time, I was trying to make up my mind about a thesis subject, oscillat-
ing between Gazdar’s generalized phrase structure grammars and Lambek-style
categorial grammar. After the Tucson conference, the choice was clear. When Jim
reviewed the book edition of the thesis (in Journal of Symbolic Logic, Vol 57(3)),
with characteristic modesty he states that soon after his 1958 paper, he “de-
veloped a skeptical attitude towards the practicality of [this paper’s] program,”
although he admits I had almost (emphasis mine) succeeded in reconverting him
from his apostasy.

A few years later, again in Tucson, Dick Oehrle and I were coteaching a
course on the Lambek Calculus at the 1989 LSA Linguistic Institute. For me,
this was the first experience with teaching at an international summer school
of this type. One day, while I was presenting a session on the cut-elimination
algorithm, I spotted, high up in the back row of the auditorium, the author of the
Syntactic Calculus himself! Most of the time, Jim gave the impression of being
asleep (as I learned later, he had just returned from a conference in Moscow,
and was fighting jet lag). But then all of a sudden, he would open his eyes, and
ask a piercing question, which certainly helped to keep the lecturer alert.

philip scott — I first met Jim when I was a graduate student at the Uni-
versity of Waterloo in the early 1970s. Jim gave some beautiful lectures there on
categorical proof theory, and I was immediately struck both by the elegance of
his work and by the “Montreal school” of categorical logic that was developing
then. After I gave my first talk at a conference in 1976, I was awestruck when Jim
kindly invited me to become part of his extended troupe of “Lambek postdocs”
(which, by the way, became an important career step for many generations of
students in categorical logic). For a small-town boy like me, the city of Montreal
seemed like a far-off world of mathematical as well as cultural sophistication. Jim
introduced me to both. Jim and I worked intently in those days on categorical
proof theory and the higher-order internal logic of toposes, much of it becoming
the material that appeared in our book Introduction to Higher-Order Categor-
ical Logic. The ideas and viewpoints of this project have deeply influenced me
throughout my career.

But Jim has continued to work unabated on an extraordinarily large range of
projects, from mathematics to linguistics to physics. He has the uncanny ability
to discover original and deep insights in all these fields. Yet his approach is not
the way of a mere technician, nor of abstraction for its own sake. Rather, he
searches for something else: simplicity and elegance. And this is probably the
most difficult albeit enticing goal that Jim challenges us with.

While this Festschrift was being assembled, the Centre de Recherches Mathé-
matiques in Montreal hosted a workshop From Categories to Logic, Linguistics
and Physics: A Tribute for the 90th Birthday of Joachim Lambek. The workshop,
which was held on September 21, 2013, was organized by Prakash Panangaden
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(McGill University), Philip Scott (Université d’Ottawa), and Robert A.G. Seely
(John Abbott College) and featured the following talks.

- Michael Makkai (McGill University), Multicategories.
- Bob Coecke and Aleks Kissinger (University of Oxford), The Truth Unveiled
by Quantum Robots: Lambek Does Not Like Lambic!

- Peter Selinger (Dalhousie University), Control Categories and Duality.
- Michael Moortgat (Utrecht University), Multidimensional Dyck Languages.
- Claudia Casadio (Università degli Studi “G. d’Annunzio”, Chieti) and Mehr-
noosh Sadrzadeh (Queen Mary University of London), Cyclic Properties in
Linear Logic vs. Pregroups – Theoretical Insights and Linguistic Analysis.

- Wojciech Buszkowski (Adam Mickiewicz University, Poznan), Full Lambek
Calculus in Logic and Linguistics.

- Philip Scott (Université d’Ottawa), From Gödel to Lambek: Studies in the
Foundations of Mathematics.

The workshop, like the papers in this volume, amply demonstrated how Jim
Lambek has been a profoundly inspirational mathematician for more than 60
years, with groundbreaking contributions to algebra, category theory, linguistics,
theoretical physics, logic, and proof theory.

We hope that Jim will enjoy reading the papers collected here as much as we
enjoyed putting this volume together.

December 2013 Claudia Casadio
Bob Coecke

Michael Moortgat
Philip Scott
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Semantic Unification

A Sheaf Theoretic Approach to Natural Language

Samson Abramsky1 and Mehrnoosh Sadrzadeh2

1 Department of Computer Science, University of Oxford
2 School of Electronic Engineering and Computer Science,

Queen Mary University of London
samson.abramsky@cs.ox.ac.uk, mehrnoosh.sadrzadeh@qmul.ac.uk

Abstract. Language is contextual and sheaf theory provides a high level
mathematical framework to model contextuality. We show how sheaf the-
ory can model the contextual nature of natural language and how gluing
can be used to provide a global semantics for a discourse by putting to-
gether the local logical semantics of each sentence within the discourse.
We introduce a presheaf structure corresponding to a basic form of Dis-
course Representation Structures. Within this setting, we formulate a
notion of semantic unification — gluing meanings of parts of a discourse
into a coherent whole — as a form of sheaf-theoretic gluing. We illus-
trate this idea with a number of examples where it can used to represent
resolutions of anaphoric references. We also discuss multivalued gluing,
described using a distributions functor, which can be used to represent
situations where multiple gluings are possible, and where we may need
to rank them using quantitative measures.

Dedicated to Jim Lambek on the occasion of his 90th birthday.

1 Introduction

Contextual models of language originate from the work of Harris [12], who argued
that grammatical roles of words can be learnt from their linguistic contexts and
went on to test his theory on learning of morphemes. Later, contextual models
were also applied to learn meanings of words, based on the frequency of their
occurrence in document copora; these gave rise to the distributional models of
meaning [8]. Very recently, it was shown how one can combine the contextual
models of meaning with formal models of grammars, and in particular pregroup
grammars [15], to obtain a compositional distributional semantics for natural
language [6].

One can study the contextual nature of language from yet another perspective:
the inter-relationships between the meanings of the properties expressed by a
discourse. This allows for the local information expressed by individual properties
to be glued to each other and to form a global semantics for the whole discourse.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 1–13, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 S. Abramsky and M. Sadrzadeh

A very representative example is anaphora, where two language units that may
occur in different, possibly far apart, sentences, refer to one another and the
meaning of the whole discourse cannot be determined without resolving what
is referring to what. Such phenomena occur in plenty in everyday discourse, for
example there are four anaphoric pronouns in the following extract from a BBC
news article on 16th of May 2013:

One of Andoura’s earliest memories is making soap with his grand-
mother. She was from a family of traditional Aleppo soap-makers and
handed down a closely-guarded recipe [· · · ] to him. Made from mixing
oil from laurel trees [· · · ], it uses no chemicals or other additives.

Anaphoric phenomena are also to blame for the complications behind the in-
famous Donkey sentences ‘If a farmer owns a donkey, he beats it.’ [9], where the
usual Montague-style language to logic translations fail [18] . The first widely
accepted framework that provided a formal solution to these challenges was Dis-
course Representation Theory (DRT) [14]. DRT was later turned compositional
in the setting of Dynamic Predicate Logic (DPL) [11] and extended to polari-
ties to gain more expressive power, using actions of modules on monoids [19].
However, the problem with these solutions is the standard criticism made to
Montague-style semantics: they treat meanings of words as vacuous relations
over an indexical sets of variables.

The motivation behind this paper is two-fold. Firstly, the first author has
been working on sheaf theory to reason about contextual phenomena as sheaves
provide a natural way of gluing the information of local sections to obtain a
consistent global view of the whole situation. Originally introduced in algebraic
topology, recently they have been used to model the contextual phenomena in
other fields such as in quantum physics [3,5] and in database theory [2]. Based
on these and aware of the contextual nature of natural language, the first author
conjectured a possible application of sheaves to natural language. Independently,
during a research visit to McGill in summer of 2009, the second author was en-
couraged by Jim Lambek to look at DRT and DPL as alternatives to Montague
semantics and was in particular pointed to the capacities of these dynamic struc-
tures in providing a formal model of anaphoric reference in natural language.
In this paper, we bring these two ideas together and show how a sheaf theo-
retic interpretation of DRT allows us to unify semantics of individual discourses
via gluing and provide semantics for the whole discourse. We first use the sheaf
theoretic interpretation of the existing machinery of DRT and apply the setting
to resolve constraint-based anaphora. We then show how the composition of the
sheaf functor with a probability distribution functor can be used to resolve the
so called preferential anaphora. In such cases, more than one possible resolution
is possible and frequencies of occurrences of discourse units from document cor-
pora and the principle of maximal entropy will help choose the most common
solution.
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2 Sheaves

We recall some preliminary definitions. A category C has objects and morphisms.
We use A,B,C to denote the objects and f, g to denote the morphisms. Exam-
ples of morphisms are f : A→ B and g : B → C. Each object A has an identity
morphism, denoted by IdA : A → A. The morphisms are closed under compo-
sition: given f : A → B and g : B → C, there is a morphism g ◦ f : A → C.
Composition is associative, with identity morphisms as units.

A covariant functor F from a category C to a category D is a map F : C → D,
which assigns to each object A of C an object F (A) of D and to each morphism
f : A → B of C, a morphism F (f) : F (A) → F (B) of D. Moreover, it preserves
the identities and the compositions of C. That is, we have F (IdA) = IdF (A) and
F (g ◦f) = F (g)◦F (f). A contravariant functor reverses the order of morphisms,
that is, for F : C → D a contravariant functor and f : A → B in C, we have
F (f) : F (B)→ F (A) in D.

Two examples of a category are the category Set of sets and functions and
the category Pos of posets and monotone maps.

A presheaf is a contravariant functor from a small category C to the category
of sets and functions, which means that it is a functor on the opposite (or dual)
category of C:

F : Cop → Set

This functor assigns a set F (A) to each object A of C. To each morphism f : A →
B of C, it assigns a function F (f) : F (B) → F (A), usually referred to as a
restriction map. For each b ∈ F (B), these are denoted as follows:

F (f)(b) = b |f .

Since F is a functor, it follows that the restriction of an identity is an identity,
that is for a ∈ A we have:

F (IdA)(a) = a |IdA = a.

Moreover, the restriction of a composition F (g ◦ f) : F (C) → F (A) is the com-
position of the restrictions F (f) ◦ F (g) for f : A → B and g : B → C. That is
for c ∈ C we have:

F (g ◦ f)(c) = c |g◦f = (c |g) |f .

The original setting for sheaf theory was topology, where the domain category
C is the poset of open subsets of a topological spaceX under set inclusion. In this
case, the arrows of C are just the inclusion maps i : U ⊂ � V ; and restriction
along such a map can rewritten unambiguously by specifying the domain of i;
thus for U ⊆ V and s ∈ F (V ), we write s|U .

The elements of F (U) — ‘the presheaf at stage U ’ — are called sections. In
the topological case, a presheaf is a sheaf iff it satisfies the following condition:
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Suppose we are given a family of open subsets Ui ⊆ U such that
⋃

i Ui =
U , i.e. the family {Ui} covers U . Suppose moreover that we are given a
family of sections {si ∈ F (Ui)} that are compatible, that is for all i, j
the two sections si and sj agree on the intersection of two subsets Ui

and Uj , so that we have:

si |Ui∩Uj= sj |Ui∩Uj .

Then there exists a unique section s ∈ F (U) satisfying the following
gluing condition:

s |Ui= si for all i.

Thus in a sheaf, we can always unify or glue compatible local information to-
gether in a unique way to obtain a global section.

3 Discourse Representation Theory and Anaphora

We shall assume a background first-order language L of relation symbols. There
are no constants or function symbols in L.

In Discourse Representation Theory (DRT), every discourse K is represented
by a Discourse Representation Structure (DRS). Such a structure is a pair of a
set UK of discourse referents and a set CondK of DRS conditions:

(UK ,CondK).

Here we take UK to be simply a finite subset of Var, the set of first-order variables.
For the purpose of this paper, we can restrict this set to the set of referents.

A basic DRS is one in which the condition CondK is a set of first-order literals,
i.e. atomic sentences or their negations, over the set of variables UK and the
relation symbols in L.

The full class of DRS1 is defined by mutual recursion over DRS and DRS
conditions:

– If X is a finite set of variables and C is a finite set of DRS conditions, (X,C)
is a DRS.

– A literal is a DRS condition.
– If K and K ′ are DRS, then ¬K, K ⇒ K ′ and K ∨K ′ are DRS conditions.

– If K and K ′ are DRS and x is a variable, K(∀x)K ′ is a DRS condition.

Our discussion in the present paper will refer only to basic DRS. However,
we believe that our approach extends to the general class of DRS. Moreover,
our semantic unification construction to some extent obviates the need for the
extended forms of DRS conditions.

1 Note that we write DRS for the plural ‘Discourse representation Structures’, rather
than the clumsier ‘DRSs’.
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The structure corresponding to a discourse followed by another is obtained
by a merge and a unification of the structures of each discourse. The merge of
two DRS K and K ′ is defined as their disjoint union, defined below:

K ⊕K ′ := (UK 
 UK′ , CondK 
 CondK′)

A merge is followed by a unification (also called matching or presupposition reso-
lution), where certain referents are equated with each other. A unification is per-
formed according to a set of accessibility constraints, formalising various different
ways linguistics deal with endophora resolution. These include constraints such as
as c-commanding, gender agreement, syntactic and semantic consistency [17].

An example where anaphora is fully resolved is ‘John owns a donkey. He beats
it.’. The merge of the DRS of each discourse of this example is:(

{x, y}, {John(x), Donkey(y), Own(x, y)}
)

⊕
(
{v, w}, {Beat(v, w)}

)
=
(
{x, y, v, w}, {John(x), Donkey(y), Own(x, y), Beat(v, w)}

)
Here, v can access x and has agreement with it, hence we unify them by equating
v = x. Also w can access y and has agreement with it, hence we unify them as
well by equating w = y. As a result we obtain the following DRS:(

{x, y}, {John(x), Donkey(y), Own(x, y), Beat(x, y)}
)

An example where anaphora is partially resolved is ‘John does not own a donkey.
He beats it.’, the DRS of which is as follows:

({x}, {John(x),¬ ({y}, {Donkey(y), Own(x, y)})}) ⊕ ({v, w}, {Beat(v, w)})

Here v can be equated with x, but w cannot be equated with y, since y is in a
nested DRS and cannot be accessed by w. Hence, anaphora is not fully resolved.

The unification step enables the DRT to model and resolve contextual language
phenomena by going from local to global conditions: it will make certain properties
which held about a subset of referents, hold about the whole set of referents. This
is exactly the local to global passage modelled by gluing in sheaves.

4 From Sheaf Theory to Anaphora

4.1 A Presheaf for Basic DRS

We begin by defining a presheaf F which represents basic DRS.
We define the category C to have as objects pairs (L,X) where

– L ⊆ L is a finite vocabulary of relation symbols.
– X ⊆ Var is a finite set of variables.

A morphism ι, f : (L,X) −→ (L′, X ′) comprises

– An inclusion map ι : L ⊂ � L′

– A function f : X −→ X ′.
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Note that we can see such functions f as performing several rôles:

– They can witness the inclusion of one set of variables in another.
– They can describe relabellings of variables (this will become of use when

quantifiers are introduced).
– They can indicate where variables are being identified or merged; this hap-

pens when f(x) = z = f(y).

We shall generally omit the inclusion map, simply writing morphisms in C as
f : (L,X) −→ (L′, X ′), where it is understood that L ⊆ L′.

The functor F : Cop −→ Set is defined as follows:

– For each object (L,X) of C, F(L,X) will be the set of deductive closures of
consistent finite sets of literals over X with respect to the vocabulary L.

– For each morphism f : (L,X) → (L′, Y ), the restriction operation F(f) :
F(L′, Y )→ F(L,X) is defined as follows. For s ∈ F(Y ) and L-literal ±A(x)
over X :

F(f)(s) � ±A(x) ⇐⇒ s � ±A(f(x)).

The functoriality of F is easily verified. Note that deductive closures of finite
sets of literals are finite up to logical equivalence. Asking for deductive closure
is mathematically convenient, but could be finessed if necessary.

The idea is that a basic DRS (X, s) with relation symbols in L will correspond
to s ∈ F(L,X) in the presheaf — in fact, to an object of the total category
associated to the presheaf [16].

4.2 Gluing in F
Strictly speaking, to develop sheaf notions in F , we should make use of a
Grothendieck topology on C [16]. In the present, rather short and preliminary
account, we shall work with concrete definitions which will be adequate to our
purposes here.

We shall consider jointly surjective families of maps {fi : (Li, Xi) −→ (L,X)}
i∈I , i.e. such that

⋃
i Imfi = X ; and also L =

⋃
i Li.

We can think of such families as specifying coverings of X , allowing for rela-
bellings and identifications.

We are given a family of elements (sections) si ∈ F(Li, Xi), i ∈ I. Each
section si is giving information local to (Li, Xi). A gluing for this family, with
respect to the cover {fi}, is an element s ∈ F(L,X) — a section which is global
to the whole of (L,X) — such that F(fi)(s) = si for all i ∈ I.

We shall interpret this construction as a form of semantic unification. We
are making models of the meanings of parts of a discourse, represented by the
family {si}, and then we glue them together to obtain a representation of the
meaning of the whole discourse. The gluing condition provides a general and
mathematically robust way of specifying the adequacy of such a representation,
with respect to the local pieces of information, and the identifications prescribed
by the covering.

We have the following result for our presheaf F .
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Proposition 1. Suppose we are given a cover {fi : (Li, Xi) −→ (L,X)}. If a
gluing s ∈ F(X) exists for a family {si ∈ F(Li, Xi)}i∈I with respect to this
cover, it is unique.

Proof. We define s as the deductive closure of

{±A(fi(x)) | ±A(x) ∈ si, i ∈ I}.

If s is consistent and restricts to si along fi for each i, it is the unique gluing.

Discussion and Example. Note that, if the sets Li are pairwise disjoint, the
condition on restrictions will hold automatically if s as constructed in the above
proof is consistent. To see how the gluing condition may otherwise fail, consider
the following example. We have L1 = {R,S} = L2 = L, X1 = {x, u}, X2 =
{y, v}, and X = {z, w}. There is a cover fi : (Li, Xi) −→ (L,X), i = 1, 2, where
f1 : x → z, u → w, f2 : y → z, v → w. Then the sections s1 = {R(x), S(u)},
s2 = {S(y), R(v)} do not have a gluing. The section s constructed as in the proof
of Proposition 1 will e.g. restrict along f1 to {R(x), S(x), R(u), S(u)} �= s1.

4.3 Linguistic Applications

We shall now discuss a number of examples in which semantic unification ex-
pressed as gluing of sections can be used to represent resolutions of anaphoric
references.

In these examples, the rôle of merging of discourse referents in DRT terms
is represented by the specification of suitable cover; while the gluing represents
merging at the semantic level, with the gluing condition expressing the semantic
correctness of the merge.

Note that by Proposition 1, the ‘intelligence’ of the semantic unification oper-
ation is in the choice of cover; if the gluing exists relative to the specified cover, it
is unique. Moreover, the vocabularies in the covers we shall consider will always
be disjoint, so the only obstruction to existence is the consistency requirement.

Examples

1. Consider firstly the discourse ‘John sleeps. He snores.’ We have the local
sections

s1 = {John(x), sleeps(x)} ∈ F({John, sleeps}, {x}),
s2 = {snores(y)} ∈ F({snores}, {y}).

To represent the merging of these discourse referents, we have the cover

f1 : {x} −→ {z} ←− {y}.

A gluing of s1 and s2 with respect to this cover is given by

s = {John(z), sleeps(z), snores(z)}.
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2. In intersentential anaphora both the anaphor and antecedent occur in one
sentence. An example is ‘John beats his donkey’. We can express the infor-
mation conveyed in this sentence in three local sections:

s1 = {John(x)}, s2 = {donkey(y)}, s3 = {owns(u, v), beats(u, v)}

over X1 = {x}, X2 = {y} and X3 = {u, v} respectively.

We consider the cover fi : Xi −→ {a, b}, i = 1, 2, 3, given by

f1 : x → a, f2 : y → b, f3 : u → a, v → b.

The unique gluing s ∈ F({John, donkey, owns, beats}, {a, b}) with respect
to this cover is

s = {John(a), donkey(b), owns(a, b), beats(a, b)}.

3. We illustrate the use of negative information, as expressed with negative
literals, with the following example: ‘John owns a donkey. It is grey.’ The
resolution method for this example is agreement; we have to make it clear
that ‘it’ is a pronoun that does not refer to men. This is done using a negative
literal. Ignoring for the moment the ownership predicate (which would have
been dealt with in the same way as in the previous example), the local
sections are as follows:

s1 = {John(x),Man(x)}, s2 = {donkey(y),¬Man(y)}, s3 = {grey(z)}}.

Note that a cover which merged x and y would not have a gluing, since the
consistency condition would be violated. However, using the cover

f1 : x → a, f2 : y → b, f3 : z → b,

we do have a gluing:

s = {John(a),Man(a), donkey(b),¬Man(b), grey(b)}.

4. The following example illustrates the situation where we may have several
plausible choices for covers with respect to which to perform gluing. Consider
‘John put the cup on the plate. He broke it’. We can represent this by the
following local sections

s1 = {John(x), Cup(y), P late(z), PutOn(x, y, z)}, s2 = {Broke(u, v)}.

We can consider the cover given by the identity map on {x, y, z}, and u →
x, v → y; or alternatively, by u → x, v → z.

In the next section, we shall consider how such multiple possibilities can be
ranked using quantitative information within our framework.
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5 Probabilistic Anaphora

Examples where anaphora cannot be resolved by a constraint-based method are
plentiful, for instance in ‘John has a brother. He is happy’, or ‘John put a cd in
the computer and copied it’, or ‘John gave a donkey to Jim. James also gave him
a dog’, and so on. In such cases, although we are not sure which unit the anaphor
refers to, we have some preferences. For instance in the first example, it is more
likely that ‘he’ is referring to ‘John’. If instead we had ‘John has a brother.
He is nice.’, it would be more likely that ‘he’ would be referring to ‘brother’.
These considerations can be taken into account in a probabilistic setting.

To model degrees of likelihood of gluings, we compose our sheaf functor with
a distribution functor as follows:

Cop F−→ Set
DR−→ Set

The distribution functor is parameterized by a commutative semiring, that is a
structure (R,+, 0, ·, 1), where (R,+, 0) and (R, ·, 1) are commutative monoids,
and we have the following distributivity property, for x, y, z ∈ R:

x · (y + z) = (x · y) + (x · z).

Examples of semirings include the real numbers R, positive real numbers R+,
and the booleans 2. In the case of the reals and positive reals, + and · are
addition and multiplication. In the case of booleans, + is disjunction and · is
conjunction.

Given a set S, we define DR(S) to be the set of functions d : S → R of finite
support, such that ∑

x∈S
d(x) = 1.

For the distribution functor over the booleans, D(S) is the set of finite subsets
of S, hence D becomes the finite powerset functor. To model probabilities, we
work with the distribution functor over R+. In this case, DR(S) is the set of
finite-support probability measures over S.

The functorial action of DR is defined as follows. If f : X → Y is a function,
then for d ∈ DR(X):

DR(f)(y) =
∑

f(x)=y

d(x).

This is the direct image in the boolean case, and the image measure in the
probabilistic case.

5.1 Multivalued Gluing

If we now consider a family of probabilistic sections {di ∈ DRF(Li, Xi)}, we
can interpret the probability assigned by di to each s ∈ F(Li, Xi) as saying how
likely this condition is as the correct representation of the meaning of the part
of the discourse the local section is representing.
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When we consider this probabilistic case, there may be several possible glu-
ings d ∈ DRF(L,X) of a given family with respect to a cover {fi : Xi −→ X}.
We can use the principle of maximal entropy [13], that is maximizing over
−
∑

s∈F(L,X) d(s) log d(s), to find out which of these sections is most proba-
ble. We can also use maximum entropy considerations to compare the likelihood
of gluings arising from different coverings.

In the present paper, we shall study a more restricted situation, which
captures a class of linguistically relevant examples. We assume that, as before,
we have a family of deterministic sections {si ∈ F(Li, Xi)}, representing our
preferred candidates to model the meanings of parts of a discourse. We now
have a number of possible choices of cover, representing different possibilities
for resolving anaphoric references. Each of these choices c will give rise to a dif-
ferent deterministic gluing sc ∈ F(L,X). We furthermore assume that we have
a distribution d ∈ DRF(L,X). This distribution may for example have been
obtained by statistical analysis of corpus data.

We can then use this distribution to rank the candidate gluings according
to their degree of likelihood. We shall consider an example to illustrate this
procedure.

Example

As an example consider the discourse:

John gave the bananas to the monkeys. They were ripe. They were
cheeky.

The meanings of the three sentences are represented by the following local
sections:

s1 = {John(x), Banana(y),Monkey(z), Gave(x, y, z)},
s2 = {Ripe(u)},
s3 = {Cheeky(v)}.

There are four candidate coverings, represented by the following maps, which
extend the identity on {x, y, z} in the following ways:

c1 : u → y, v → y c2 : u → y, v → z c3 : u → z, v → y c4 : u → z, v → z.

These maps induce four candidate global sections, t1, . . . , t4. For example:

t1 = {John(x), Banana(y),Monkey(z), Gave(x, y, z), Ripe(y), Cheeky(y)}.

We obtain probability distributions for the coverings using the statistical
method of [7]. This method induces a grammatical relationship between the
possible antecedents and the anaphors and obtains patterns for their possible
instantiations by substituting the antecedents and anaphors into their assigned
roles. It then counts how many times the lemmatised versions of the patterns ob-
tained from these substitutions have occurred in a corpus. Each of these patterns
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correspond to a possible merging of referents. The events we wish to assign
probabilities to are certain combinations of mergings of referents. The probability
of each such event will be the ratio of the sum of occurrences of its mergings to
the total number of mergings in all events. Remarkably, these events correspond
to the coverings of the sheaf model.

In our example, the sentences that contain the anaphors are predicative.
Hence, the induced relationship corresponding to their anaphor-antecedent pairs
will be that of “adjective-noun”. This yields the following four patterns, each
corresponding to a merging map, which is presented underneath it:

‘ripe bananas’, ‘ripe monkeys’, ‘cheeky bananas’, ‘cheeky monkeys’
u → y u → z v → y v → z

We query the British News corpus to obtain frequencies of the occurrences of the
above patterns. This corpus is a collection of news stories from 2004 from each of
the four major British newspapers: Guardian/Observer, Independent, Telegraph
and Times. It contains 200 million words. The corresponding frequencies for these
patterns are presented below:

‘ripe banana’ 14
‘ripe monkey’ 0
‘cheeky banana’ 0
‘cheeky monkey’ 10

The events are certain pairwaise combinations of the above, namely exactly the
pairs whose mappings form a covering. These coverings and their probabilities
are as follows:

Event Covering Probability
‘ripe banana’ , ‘cheeky banana’ c1 : u → y, v → y 14/48
‘ripe banana’ , ‘cheeky monkey’ c2 : u → y, v → z (14+10)/ 48
‘ripe monkey’ , ‘cheeky banana’ c3 : u → z, v → y 0
‘ripe monkey’ , ‘cheeky monkey’ c4 : u → z, v → z 10/48

These probabilities result in a probability distribution d ∈ DRF(L,X) for the
gluings. The distribution for the case of our example is as follows:

i ti d(ti)
1 {John(x), Banana(y),Monkey(z), Gave(x, y, z), Ripe(y), Cheeky(y)} 0.29
2 {John(x), Banana(y),Monkey(z), Gave(x, y, z), Ripe(y), Cheeky(z)} 0.5
3 {John(x), Banana(y),Monkey(z), Gave(x, y, z), Ripe(z), Cheeky(y)} 0
4 {John(x), Banana(y),Monkey(z), Gave(x, y, z), Ripe(z), Cheeky(z)} 0.205

We can now select the candidate resolution t2 as the most likely with respect
to d.

6 Conclusions and Future Work

We have shown how sheaves and gluing can be used to model the contextual na-
ture of language, as represented by DRT and unification. We provided examples
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of the constraint-based anaphora resolution in this setting and showed how a
move to preference-based cases is possible by composing the sheaf functor with
a distribution functor, which enables one to choose between a number of possible
resolutions.

There are a number of interesting directions for future work:

– We aim to extend our sheaf-theoretic treatment of DRT to its logical oper-
ations. The model-theoretic semantics of DRS has an intuitionistic flavour,
and we aim to develop a sheaf-theoretic form of this semantics.

– The complexity of anaphora resolution has been a concern for linguistics; in
our setting we can approach this matter by characterizing the complexity of
finding a gluing. The recent work in [4] seems relevant here.

– We would like to experiment with different statistical ways of learning the
distributions of DRS conditions on large scale corpora and real linguistic
tasks, in the style of [10], and how this can be fed back into the sheaf-theoretic
approach, in order to combine the strengths of structural and statistical
methods in natural language semantics.
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Abstract. In this paper we explore the residuation laws that are at the
basis of the Lambek calculus, and more generally of categorial grammar.
We intend to show how such laws are characterized in the framework
of a purely non-commutative fragment of linear logic, known as Cyclic
Multiplicative Linear Logic.
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Introduction

In this paper we consider the residuation laws, that are at the basis of categorial
grammar, and particularly, of the Lambek calculus, in the framework of the
cyclic multiplicative proof-nets (CyM-PN).

In section 1 we show several presentations of residuation laws: under the most
usual presentation these rules are treated as equivalences between statements
concerning operations of categorial grammar, and under another presentation as
equivalences between sequents of a sequent calculus for categorial grammar.

In section 2 we deal with the concept of proof-net and cyclic multiplicative
proof-net. Proof-nets are proofs represented in a geometrical way, and indeed
they represent proofs in Linear Logic. Cyclic multiplicative proof-net (CyM-
PNs) represents proofs in Cyclic Multiplicative Linear Logic, a purely non-
commutative fragment of linear logic.

In section 3, we show how the conclusions of a CyM-PN may be described in
different ways which correspond to different sequents of CyMLL. In particular,
there are 15 possibile ways to read the conclusions of an arbitrary CyM-proof-net
with three conclusions.

In section 4 we consider a particular point of view on CyM-PNs and on
the format of the sequents which describe the conclusions of CyM-PNs, the
regular intuitionistic point of view. We shall show that the sequents considered
equivalent in the presentation of the residuation laws in the sequent calculus
style are exactly all the possible different ways to describe the conclusions of the
same CyM-proof-net with three conclusions, assuming a regular intuitionistic
point of view.
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1 Residuation Laws

Residuation laws are basic laws of categorial grammar, in particular the Lambek
Calculus and its variant called Non Associative Lambek Calculus [10,11,6,7,13].

Residuation laws may be presented in a pure algebraic style (and this is the
most usual presentation) and in a sequent calculus style.

In a pure algebraic style, the residuation laws involve

– a binary operation on a set M : · (the residuated operation, called product);
– two binary residual operations on the same set M : \ (the left residual oper-

ation of the product) and / (the right residual operation of the product);
– a partial ordering on the same set M : ≤ .

In this algebraic style, the residuation laws state the following equivalences
for every a, b, c ∈ M (where M is equiped with the binary operations ·, \, /, and
with a binary relation ≤):

(RES) a · b ≤ c iff b ≤ a\c iff a ≤ c/b

An ordered algebra (M,≤, ·, /, \) such that (M,≤) is a poset and ·, /, \ are
binary operations on M satisfying (RES) is called a residuated groupoid or, in
the case the product · is associative, a residuated semigroup (see e. g. [6, p. 17],
[12, pp. 670-71]) .

In a sequent calculus style, the residuation laws concern sequents of the form
E � F where E and F are formulas of a formal language where the following
binary connectives occur:

– the residuated connective, the conjuntion, denoted by · or by ⊗ in linear
logic;

– the left residual connective, the left implication, denoted by \ or by −◦ in
linear logic;

– the right residual connective, the right implication, denoted by / or by ◦−
in linear logic.

In a sequent calculus style, the residuation laws state the following equiva-
lences between contest-free sequents of such a formal language: for every formula
A,B,C

(RES) A ·B � C iff B � A\C iff A � C/B

or (using the linear logic symbols):

(RES) A⊗B � C iff B � A −◦ C iff A � C ◦− B

2 Cyclic Multiplicative Proof-Nets, CyM-PN

2.1 Multiplicative Proof-Nets and CyM-PN

A multiplicative proof-net is a graph such that:
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– the nodes are decorated by formulas of the fragment of Linear Logic which is
called multiplicative linear logic (without units), i.e. the nodes are decorated
by formulas constructed by starting with atoms by means of the binary con-
nectives ⊗ (multiplicative conjunction) and ` (multiplicative disjunction),
where

• for each atom X there is another atom which is the dual of X and is
denoted by X⊥, in a way such that, for every atom X , X⊥⊥ = X ;

• for each formula A the linear negation A⊥ is defined as follows, in order
to satisfy the principle A⊥⊥ = A:

- if A is an atom, A⊥ is the atom which is the dual of A,
- (B ⊗ C)⊥ = C⊥ `B⊥

- (B ` C)⊥ = C⊥ ⊗B⊥;
– edges are grouped by links and the links are:

• the axiom-link, a binary link (i.e. a link with two nodes and one edge)
with no premise, in which the two nodes are conclusions and each node
is decorated by the linear negation of the formula decorating the other
one; i.e. the conclusions of an axiom link are decorated by two formulas
A, A⊥

A A⊥

• the cut-link, another binary link (i.e. a link with two nodes and one edge)
where there is no conclusion and the two nodes are premises: each node
is decorated by the linear negation of the formula decorating the other
one, i.e. the premises of an axiom link are decorated by two formulas
A, A⊥

A A⊥

• the ⊗-link, a ternary link (i.e. a link with three nodes and two edges),
where two nodes are premises (the first premise and the second premise)
and the other node is the conclusion, there is an edge between the first
premise and the conclusion and another edge between the second premise
and the conclusion, and the conclusion is decorated by a formula A⊗B,
where A is the formula decorating the first premise and B is the formula
decorating the second premise

A B

�
��

�
��

A⊗B
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• the `-link, another ternary link (i.e. a link with three nodes and two
edges), where two nodes are premises (the first premise and the second
premise) and the other node is the conclusion, there is an edge between
the first premise and the conclusion and another edge between the second
premise and the conclusion, and the conclusion is decorated by a formula
A`B, where A is the formula decorating the first premise and B is the
formula decorating the second premise

A B

�
��

�
��

A`B

– each node is the premise of at most one link, and is the conclusion of exactly
one link; the nodes which are not premises of links are called the conclusions
of the proof-net ;

– for each “switching” the graph is acyclic and connected, where a “switching”
of the graph is the removal of one edge in each `-link of the graph.

We point out that left and right residual connectives may be defined as follows,
by means of the linear negation and the multiplicative disjunction:

A−◦C = A⊥ ` C C◦−A = C `A⊥

A cyclic multiplicative proof-net (CyM-PN) is a multiplicative proof-net s. t.

– the graph is planar, i. e. the graph may be drawn on the plane with no
crossing of edges,

– the conclusions are in a cyclic order, induced by the “trips” inside the proof-
net (as defined in [1]; trips are possibile ways to visit the graph); this cyclic
order of the conclusions corresponds to the order of the conclusions (from left
to right, when the graph is written on the plane as a planar graph, i.e. with
no crossing of edges) by adding that the “rightmost” conclusion is before the
”leftmost” one.

As shown in [1], we may represent a CyM-proof-net π as a planar graph as
follows:

A1 · · · An

where A1, . . . , An are the conclusions of π in their cyclic order (A2 is the im-
mediate successor of A1, . . . , An is the immediate successor of An−1, A1 is the
immediate successor of An). There are other representations of the same CyM-
proof-net π as a planar graph, i.e. for each conclusion A of π, we may represent
π as a planar graph in such a way that A is the first conclusion going from left to
right. For example, we may reprensent π in such a way that the first conclusion
(from the left to the right) is A2 and the last conclusion is A1, i.e. :
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A2 · · · An A1

A CyM-PN is cut-free iff it contains no cut-link.
An important theorem (cut-elimination theorem or normalization theorem for

proof-nets) states that every CyM-PN can be transformed in a cut-free CyM-PN
with the same conclusions. We may therefore restrict our attention to cut-free
CyM-PN.

2.2 Terminal Links in CyM-PN. Irreducible CyM-PN

A ternary link of a CyM-PN π is terminal iff the conclusion of the link is also a
conclusion of π.

It is immediate, from the definition of CyM-PN, to prove the following propo-
sitions on terminal `-links (see also [15]):

– if π is a CyM-PN and we remove from π a terminal `-link with conclusion
A ` B, by keeping the premises A and B which become conclusions of the
graph, then we obtain a CyM-PN where, in the cyclic order of its conclusions,
the conclusion A ` B is replaced by the two conclusions A,B, with B the
immediate successor of A;

– if π is a CyM-proof-net, A and B are two conclusions of π and A is the
immediate predecessor of B, in the cyclic order of the conclusions of π, then
by adding to π a terminal `-link with first premise A and second premise
B, we obtain a CyM-proof-net where, in the cyclic order of its conclusions,
the pair of consecutive conclusions A,B is replaced by the conclusion A`B.

Remark that this proposition does not hold for terminal ⊗-links, so that there
is a very strong geometrical difference between ⊗-links and `-links in CyM-PN.

Therefore we may remove one, more than one, or all the terminal `-links from
a CyM-PN π and we still obtain a CyM-PN ψ, and from ψ we may return back
to π. Similarly we may add to a CyM-PN ψ a new terminal `-link (where the
premises are two conclusions, and the conclusion which is the first premise is the
immediate predecessor of the conclusion which is the second premise), and we
still obtain a CyM-PN π, and from π we may return back to ψ.

It is important to realize that the act of adding a terminal `-link to a CyM-
PN, when the second premise is the immediate successor of the first one, and the
act of removing a terminal `-link, do not fundamentally modify the proof-net.

On the basis of these properties, we may introduce the following definitions.

– Two CyM-PN π and ψ are equivalent iff each CyM-PN can be obtained
from the other one by removing or by adding terminal `-links in the way
indicated above.

– A CyM-PN is irreducible, iff no terminal link is a `-link.
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We may then express the properties introduced above in the following way:

– every CyM-PN is equivalent to a unique irreducible CyM-PN.

Remark that if a CyM-PN π is equivalent to an irreducible CyM-PN ψ, then
the conclusions of π differ from the conclusions of ψ as follows: some consec-
utive conclusions of ψ are replaced - as a conclusion of π - by the formula
constructed from these conclusions by using the connective ` and by preserv-
ing the cyclic order of these conclusions. E.g. a CyM-PN π with conclusions
A,B ` (C ` D), E ` F,G, when A,B,C,D,E, F,G are formulas in which the
main connective is not `, is equivalent to the irreducible CyM-PN ψ with con-
clusions A,B,C,D,E, F,G.

We may limit ourself to only dealing with irreducible CyM-PN’s, consider-
ing every CyM-PN π as a different way to read the conclusions of the unique
irreducible CyM-PN ψ equivalent to π. In the above example, the addition of
terminal `-links to the irreducible CyM-PN ψ in order to get the CyM-PN π,
may be considered as a way of reading the conclusions A,B,C,D,E, F,G of ψ
in the form A,B ` (C `D), E ` F,G.

2.3 Focusing on Conclusions: Outputs and Inputs

When π is a CyM-PN, we may focus on one of the conclusions of π and consider
it as the output of π, whereas the other conclusions play the role of inputs ; i.e. we
may say that they are nodes waiting for something (waiting for some formulas)
in order to get the focused conclusion of π.

Let us denote by A⊥ the conclusion of a CyM-PN π, when this conclusion
is considered as waiting for the formula A. Remark that each conclusion of a
CyM-PN may be considered as waiting for a formula: this possibility is given by
the cut-rule that establishes the communication between two formulas, one of
which is the dual of the other, where each formula is waiting for its dual.

Except in the case of a CyM-PN with only one conclusion - the choice to focus
on a conclusion C is arbitrary and may be revised: i.e. each conclusion may be
focused! Indeed, if we focus on a conclusion C of a CyM-PN π, this conclusion
may be read as the output of π and, as a consequence, all the other conclusions
have to be considered as inputs of π. But the nature of a CyM-PN allows to
change the focus, i.e. to change the choice of the conclusion which is considered
as an output. Every conclusion of a CyM-proof-net may be considered as an
output, and the choice may be changed. This possibility corresponds also to
the logical nature of a proof. A proof of B from the hypothesis A is a proof
with conclusions B and A⊥: a proof with output B, waiting for an input A,
or a proof with ouput A⊥ (the negation of A), waiting for an input B⊥ (the
negation of B).

Moreover, when π is a CyM-PN and C is a conclusion of π, we get a CyM-PN
with just the unique conclusion C in the case in which, for each other conclusion
A⊥, there is a corresponding CyM-proof-net with conclusion A: it is enough to
apply the cut rule n times, where n+ 1 is the number of the conclusions of π:
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A1 · · · An A⊥n · · · A⊥1 C

Considering this example remark that, in the planar representation of π from
left to right, if the conclusion A⊥i occurs before the conclusion A⊥j , then the
proof-net with conclusion Aj occurs before the proof-net with conclusion Ai.

Given a CyM-PN π, we may also focus on more than one conclusion, in
particular on more than one consecutive conclusions; in this way the focused
conclusions of π are considered as outputs and the other conclusions of π as
inputs.

The focus on one conclusion or on more than one consecutive conclusions of
a CyM-PN does not modify the graph, but it is simply a way to consider the
graph, a way to describe the graph, in terms of some inputs and some outputs
(e.g. in the represntation of a CyM-PN by an intuitionistic sequent, as we shall
show in section 4).

2.4 Schematic CyM-PN

The schema of a cut-free CyM-PN π, with conclusions occurring in the cyclic
order A1, . . ., An, is what we get from π by removing all the decorations of the
nodes and by denoting the conclusions (in their cyclic order) by the integers
1, . . . , n.

A schematic CyM-PN is the schema of a cut-free CyM-PN.
Remark that - if π is a CyM-PN - then the decoration of the nodes is induced

from the decoration of the conclusions of the axiom links in the schema of π.
A schematic CyM-PN with n conclusions will be represented as

1 · · · n

where the order of the conclusions is the cyclic order 1, · · · , n (i.e. the conclusion
i+1 is the immediate successor of the conclusion i for i �= n and the conclusion
1 is the immediate successor of the conclusion n). Every decoration of the axiom
links in such a schematic cut-free CyM-PN produces a CyM-PN with conclusions
decorated by formulas, i.e.

A1 · · · An
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3 Sequents of CyMLL: Ways of Describing the
Conclusions of CyM-PNs

3.1 Sequents of CyMLL and Conclusions of CyM-PN

A sequent of CyMLL is an expression of the form

� Γ

where Γ is a finite sequence of formulas of the language of CyMLL.
A sequent � Γ of CyMLL is irreducible iff no formula in Γ is of the form

A`B.
An important theorem (the sequentialisation theorem, [1] ) states: in the se-

quent calculus for CyMLL one is able to prove a sequent � Γ iff there is a CyM-PN
where the conclusions are in the cyclic order induced by Γ , i.e. by taking the first
formula in Γ as the immediate successor of the last formula in Γ .

The above considerations are summarized in the following statement: each
sequent may be considered as the list of all the conclusions of a possible CyM-
PN, by starting with one of the conclusions and by listing all the conclusions
on the basis of their cyclic order, and each provable sequent is the list of all the
conclusions of a real CyM-PN.

A sequent � Γ is derivable from a sequent � Δ in CyMLL iff in the sequent
calculus for CyMLL one is able to derive � Δ from � Γ , i.e. iff from every CyM-
PN with conclusions in the cyclic order induced by Γ one gets also a CyM-PN
with conclusions in the cyclic order induced by Δ.

If Γ is a finite sequence of formulas, then we denote by Γ⊥ the finite sequence
of the linear negations of each formula of Γ in the reverse order; i.e., if Γ is the
sequence A1, . . . , An, then Γ⊥ is the sequence A⊥n , . . . , A⊥1 .

When π is a CyM-PN and we focus on the conclusion C of π as an output so
that all the other conclusions are expressed by the linear negations A⊥ of formu-
las A belonging to a finite sequence of formulas of CyMLL, the derivable sequent
corresponding to π is of the form � Γ⊥, C. It is usual to write this sequent also as
Γ � C, i.e. by putting the inputs before � and the output after �.

This means that, if a CyM-PN has two conclusions, then we may focus on a
conclusion B and consider the other conclusion as an input, i.e. as A⊥, therefore
writing A � B; or we may focus on the conclusion A⊥ and consider B as waiting
for B⊥, i.e. reading B as B⊥⊥, therefore writing B⊥ � A⊥.

The above considerations are summarized in the following statement: each
sequent of the form Γ � C may be considered as the reading of a possible CyM-
PN modulo the focalization on one of the conclusions (the conclusion C on the
right side of the sequent).

3.2 Equivalent Sequents

Two sequents � Γ and � Δ are equivalent in CyMLL iff � Γ is derivable from
� Δ, and viceversa, in the sequent calculus for CyMLL.
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In other terms, two sequents � Γ and � Δ are equivalent iff

– from every CyM-PN with conclusions in the cyclic order induced by Γ , we
get a CyM-PN with conclusions in the cyclic order induced by Δ;

– from every CyM-PN with conclusions in the cyclic order induced by Δ, we
get also a CyM-PN with conclusions in the cyclic order induced by Γ .

It is easy to verify that

– each sequent of the form � Γ,A`B,Δ is equivalent in CyMLL to the sequent
� Γ,A,B,Δ; therefore each sequent of CyMLL is equivalent to an irreducible
sequent;

Γ A`B Δ ∼= Γ A B Δ

– the elements of each equivalence class of sequents, under the equivalence
relation defined above, are

• irreducible sequents which induce the same cyclic order,

• all the sequents which are derivable from one of the irreducible sequents
of the same class, by replacing two or more consecutive conclusions by
a single conclusion which is obtained putting the connective ` between
these formulas - according to their order - under an arbitrary use of
brackets.

Let us consider a CyM-PN π. We may describe the cyclic order of its con-
clusions by means of a sequent � Γ , where Γ is a sequence of formulas which
contains exactly the conclusions of π and induces the cyclic order of the conclu-
sions of π; i.e. Γ is the sequence of the conclusions of π in a planar representation
of π (from left to right). Moreover, if Δ induces the same cyclic order as Γ , then
� Γ and � Δ are both descriptions of the cyclic order of the conclusions of π,
the difference between � Γ and � Δ being only a different way to consider (to
see) the conclusions of π, and no modification of π is performed when we prefer
the description � Δ instead of � Γ .

Therefore, the cyclic order of the conclusions of a CyM-PN may be described
in several ways which include all the sequents � Γ such that Γ induces the cyclic
order of the conclusions of π. So, if a CyM-PN π has n conclusions, there are at
least n sequents which are descriptions of the cyclic order of the conclusions of
π, and all these sequents are equivalent.

But there are other ways to describe the conclusions of a CyM-PN π: these
ways are all the other sequents which are equivalent to the sequents � Γ where Γ
induces the cyclic order of the conclusions of π. They are exactly all the sequents
obtained by putting the connective ` between these conclusions - according to
their order - under an arbitrary use of brackets.
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Therefore, two sequents � Γ and � Δ are equivalent in CyMLL iff � Γ and
� Δ are two different ways to describe the conclusions of the same possible
CyM-PN. Two different ways to describe the conclusions of a possible CyM-PN
by means of two different but equivalent sequents may have one of the following
features:

– both the sequents describe the same cyclic order of the conclusions, but in
two different ways, i.e. by starting with two different conclusions;

– two or more consecutive conclusions of one sequent are replaced in the other
sequent by a single conclusion which is obtained by putting the connective
` between these formulas - according to their order - under an arbitrary use
of brackets.

3.3 The Case of CyM-PNs with Three Conclusions

Let us consider a schematic CyM-PN π with three conclusions denoted by 1, 2, 3
and let us suppose that the cyclic order of the conclusions is that 2 comes after
1, 3 comes after 2, and 1 comes after 3, i.e.

1 2 3

Let us consider the equivalent sequents which are different ways to describe the
conclusions of such a schematic CyM-PN π.

– The following equivalent and irreducible sequents are descriptions of the
cyclic order of the conclusions of π:

� 1, 2, 3 � 3, 1, 2 � 2, 3, 1

– On this basis, all the possible descriptions of the conclusions of π are the
following equivalent sequents:

� 1, 2, 3 � 1 ` 2, 3 � 1, 2 ` 3 � (1 ` 2) ` 3 � 1 ` (2 ` 3)
� 3, 1, 2 � 3 ` 1, 2 � 3, 1 ` 2 � (3 ` 1) ` 2 � 3 ` (1 ` 2)
� 2, 3, 1 � 2 ` 3, 1 � 2, 3 ` 1 � (2 ` 3) ` 1 � 2 ` (3 ` 1)

where:

• the sequents in the first columm are irreducible and induce the same
cyclic order of the conclusions 1, 2, 3

• in each row there are the sequents obtained from the first sequent (an
irreducible sequent) by adding a ` between the first two conclusions
(second column), between the last two conclusions (third column), be-
tween the two conclusions of the second sequent, and between the two
conclusions of the third sequent;

• for each sequent of the second column there is a sequent in the third
column such that both the sequents induce the same cyclic order;



24 V.M. Abrusci

• the sequents in the fourth anf fifth colums are all the sequents which
allow to express the cyclic order of the conclusions of π by means of an
unique expression constructed by using twice the operation `.

Thus, there are 15 different ways of describing the conclusions of the graph π
represented above. Remark that the schematic CyM-PN is not really modified
when we prefer one of these ways, since the introduction of terminal ` links does
not really modify a schematic CyM-PN π.

4 Residuation Laws as Regular Intuitionistic Descriptions
of Conclusions of Intuitionistic CyM-PNs

4.1 Intuitionistic CyM-PNs

Let us call intuitionistic a CyM-PN π in which the focus is placed on only one
conclusion of π.

The denomination intuitionistic is approriate, since in an intutionistic CyM-
PN there is exactly one conclusion and an arbitrary finite number of inputs, as
required by the intuitionistic point of view of programs and proofs.

Therefore, in each intuitionistic CyM-PN π:

– we cannot focus on more than one conclusion;
– the change of the focus is the change to another intuitionistic CyM-PN;
– there is exactly one conclusion which is considered as output - i.e. the focused

conclusion - whereas all the other conclusions are considered as inputs.

Let us label with a formula C the unique focused conclusion of an intuitionistic
CyM-PN π, whereas any other conclusion of π is waiting for something and is
then labeled by A⊥ where A is a a formula (a type).

We wish to emphasize that an intuitionistic CyM-PN is simply the addition
of a fixed focus on one conclusion of a CyM-PN. As a result, each intuitionistic
CyM-PN is also a CyM-PN, and each CyM-PN may be considered (when we
add a focus on one conclusion) as an intuitionistic CyM-PN.

4.2 Regular Intuitionistic Description of CyM-PNs

Of course, the possible descriptions of the conclusions of an intuitionistic CyM-
PN π are the descriptions of π by means of equivalent sequents of CyMLL.

But the specific character of an intuitionistic CyM-PN, i.e. the focus on exactly
one conclusion, imposes to write under a special format, the intuitionistic format,
the sequents which describe the conclusions of the CyM-PN.

Let � Γ be a sequent which represents a way to describe the conclusions
of a intuitionistic CyM-PN π with focused conclusion C: � Γ is of the form
� Δ⊥, D, Λ⊥ where D is the formula C or a formula obtained from several
conclusions of π including the focused conclusion C by means of the connective
`. The intuitionistic format of � Γ is the expression Δ,Λ � D.
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An intuitionistic description of the conclusions of an intuitionistic CyM-PN
is the intuitionistic format of a sequent which is a description of the conclusions
of π.

An intuitionistic description of the conclusions of an intuitionistic CyM-PN
is regular iff it is of the form E � D where E and D are formulas.

4.3 The Case of Intuitionistic CyM-PNs with Three Conclusions

Every intuitionistic CyM-PN π with three conclusions may be represented as

B⊥ A⊥ C

where the conclusion denoted by C is the one that is treated as the output of π
and the other two conclusions are those considered as inputs of π.

Remark that we may represent π also as

A⊥ C B⊥

or as

C B⊥ A⊥

The 15 equivalent sequents which are the possible descriptions of the conclusions
of π are the following:

� B⊥, A⊥, C � B⊥ ` A⊥, C � B⊥, A⊥ ` C � (B⊥ ` A⊥) ` C � B⊥ ` (A⊥ ` C)

� C,B⊥, A⊥ � C ` B⊥, A⊥ � C,B⊥ ` A⊥ � (C ` B⊥) ` A⊥ � C ` (B⊥ ` A⊥)

� A⊥, C,B⊥ � A⊥ ` C,B⊥ � A⊥, C ` B⊥ � (A⊥ ` C) ` B⊥ � A⊥ ` (C ` B⊥)

The intuitionistic format of these sequents is as follows, representing each formula
(E⊥ ` F⊥) with its dual formula (F ⊗ E)⊥:

A,B � C A⊗B � C B � A⊥ `C � (A⊗B)⊥ ` C � B⊥ ` (A⊥ ` C)

A,B � C A � C `B⊥ A⊗B � C � (C `B⊥)`A⊥ � C ` (A⊗B)⊥

A,B � C B � A⊥ ` C A � C `B⊥ � (A⊥ `C)`B⊥ � A⊥ ` (C `B⊥)

Observe that all the sequents of the first column receive the same intuitionistic
format, and that the second and the third columns contain the same sequents
in the intuitionistic format. Thus, all the intuitionistic descriptions of the con-
clusions of the intuitionistic CyM-PN π are 10 (one in the first column, 3 in the
second and third column, 3 in the fourth column and 3 in the last column).
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Among these 10 intuitionistic descriptions of the intuitionistic CyM-NP π the
regular ones are the sequents occurring in the second column or, equivalently, in
the third column, i.e. there are only 3 regular intuitionistic descriptions of the
CyM-NP π :

A⊗B � C B � A⊥ ` C A � C `B⊥

If we replace every formula E⊥`F by E−◦ F and every formula E`F⊥ by
E ◦− F , then we obtain that all the possible regular intuitionistic representations
of an intuitionistic CyM-PN with three conclusions, in which the focus is on the
conclusion C, are the following equivalent sequents:

A⊗B � C B � A−◦C A � C ◦− B

i. e.

A •B � C B � A\C A � C/B

i.e. the sequents considered equivalent when the residuation laws of categorial
grammar are represented in the sequent calculus style.

Therefore, we may say that residuation laws - when presented in the sequent
calculus style - express the equivalence between the 3 sequents which are all
the possible regular intuitionistic descriptions of the conclusions of the same
CyMLL-PN with three conclusions:

A⊗B � C B � A−◦C A � C ◦− B

More generally, we may consider as general residuation laws the equivalence
between the 10 sequents which are all the possible intuitionistic descriptions of
the conclusions of the same CyMLL-PN with three conclusions:

A,B � C

A⊗B � C B � A−◦C A � C ◦− B

� A⊗B −◦ C � (A −◦ C) ◦− B � (C ◦− B) ◦−A

� C ◦− A⊗B � B −◦ (A −◦ C) � A −◦ (C ◦− B)

Conclusion

As a conclusion of our work, we would like to present the lines for further inves-
tigations as a generalization of the results obtained in this paper.

Residuation laws are the most simple examples of a large class of laws which
are considered in categorial grammars, the class containing e.g. the following
rules: monotonicity rules, application rules, expansion rules, transitivity rules,
composition rules [10,8,9].

It would be very interesting to extend the present investigation to the full set
of categorial grammar rules by adopting the same methodology presented here:
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one starts by representing these rules in a sequent calculus style, and then shows
that they correspond to properties or transformations of proof-nets (under a
particular point of view).

In this way, we will be able to discover and represent the geometrical properties
of the set of categorial grammar rules, having been facilitated in the investigation
of the logical properties of these rules by the techniques and results of the theory
of proof-nets (and viceversa).
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Type Similarity for the Lambek-Grishin

Calculus Revisited

Arno Bastenhof

Utrecht Institute of Linguistics⋆

1 Introduction

The topic of this paper concerns a particular extension of Lambek’s syntactic
calculus [5] that was proposed by Grishin [4]. Roughly, the usual residuated fam-
ily (�, /, /) is extended by a coresiduated triple (�,�,�) mirroring its behavior
in the inequality sign:

A �B ≤ C iff A ≤ C/B iff B ≤ A/C
C ≤ A �B iff C �B ≤ A iff A�C ≤ B

A survey of the various possible structural extensions reveals that besides same-
sort associativity and/or commutativity of � and � independently, there exist
as well interaction laws mixing the two vocabularies. We may categorize them
along two dimensions, depending on whether they encode mixed associativity or
-commutativity, and on whether they involve the tensor � and par � (type I, in
Grishin’s terminology) or the (co)implications (type IV):

Type I Type IV
Mixed (A �B)�C ≤ A� (B �C) (A/B)�C ≤ A/(B �C)

associativity A � (B �C) ≤ (A�B)�C A � (B/C) ≤ (A�B)/C
Mixed A � (B �C) ≤ B � (A �C) A � (B/C) ≤ B/(A�C)

commutativity (A �B)�C ≤ (A�C)�B (A/B)�C ≤ (A�C)/B
While our motivation for the classification into types I and IV may seem rather
ad-hoc, one finds that the combined strength of these two groups allows for the
either partial or whole collapse (depending on the presence of identity elements,
or units) into same-sort commutativity and -associativity. Given that this result
is hardly desirable from the linguistic standpoint, there is sufficient ground for
making the distinction. Moortgat [8] thus proposed a number of calculi, jointly
referred to by Lambek-Grishin (LG), which he considered of particular interest
to linguistics. While all reject same-sort associativity and -commutativity, they
adopt either one of the type I or IV groups of postulates, the results denoted LGI

and LGIV respectively. On occasion, one speaks as well of LG∅, in reference to
the minimal base logic with no structural assumptions.

⋆ This paper was written while the author was working on his thesis. See Bastenhof,
Categorial Symmetry, PhD Thesis, Utrecht University, 2013. [Editors’ note].

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 28–50, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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Having explained the Lambek-Grishin calculi, we next discuss the concept of
type-similarity. Besides model-theoretic investigations into derivability, people
have sought to similarly characterize its symmetric-transitive closure under the
absence of additives. Thus, we consider A and B type similar, written ⊢ A ∼B,
iff there exists a sequence of formulae C1 . . . Cn s.t. C1 = A, Cn = B, and either
Ci ≤ Ci+1 or Ci+1 ≤ Ci for each 1 ≤ i < n.1 For the traditional Lambek hierarchy,
one finds their level of resource sensitivity reflected in the algebraic models for
the corresponding notions of ∼, as summarized in the following table:

Calculus Models Reference
NL quasigroup Foret [3]
L group Pentus [10]
LP Abelian group Pentus [10]

With LGIV , however, Moortgat and Pentus (henceforth M&P, [9]) found that,
while same-sort associativity and -commutativity remain underivable, the latter
principles do hold at the level of type similarity. More specifically, we find there
exist formulas serving as common ancestors or descendants (in terms of ≤):

D

A �B B �A

C

..........................................
....
............

.............................................. ........
....

.............................................. ........
....

..........................................
....
............

D

(A�B)�C A � (B �C)
C

..........................................
....
............

.............................................. ........
....

.............................................. ........
....

..........................................
....
............

In general, we may prove (cf. [10]) that type similarity coincides with the ex-
istence of such meets D or joins C, as referred to by M&P (though not to be
confused with terminology from lattice theory). With respect to linguistic appli-
cations, these findings suggest the possibility of tapping in on the flexibility of L
and LP without compromising overall resource-sensitivity, simply by assigning
the relevant joins or meets when specifying one’s lexicon.

The current article defines a class of models w.r.t. which we prove soundness
and completeness of type similarity in LG∅ extended by type I or IV inter-
actions, both with and without units. While M&P already provided analogous
results of LGIV inside Abelian groups, we here consider a notion of model better
reflecting the presence of dual (co)residuated families of connectives, allowing for
simpler proofs overall. Such results still leave open, however, the matter of de-
ciding the existence of joins or meets. We first solve this problem for the specific
case of LGI together with units 0 and 1, taking a hint from M&P’s Abelian
group interpretation for LGIV . Decidability for type similarity in the remaining
incarnations of LG is derived as a corollary.

We proceed as follows. First, §2 covers a general introduction to LG and to
our formalism for describing the corresponding concept of derivation. We next
illustrate type similarity in §3 with some typical instances in LGI and LGIV .

1 Our terminology is adapted from [9], revising that of Pentus [10], who previously
spoke of type conjoinability.
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Models for ∼ in the presence of type I or IV interactions are defined in §4, along
with proofs of soundness and completeness. Finally, an algorithm for generating
joins inside LGI in the precense of units is detailed in §5.

2 Lambek-Grishin Calculus

Lambek’s non-associative syntactic calculus ([5], NL) combines linguistic in-
quiry with the mathematical rigour of proof theory. Corresponding to multi-
plicative, non-associative, non-commutative intuitionistic linear logic, its logical
vocabulary includes a multiplicative conjunction (tensor) � with unit 1, along
with direction-sensitive implications / and /. Grishin [4] first proposed adding
DeMorgan-like duals (cf. remark 1 below), including multiplicative disjunction
� (the par) with unit 0, as well as subtractions � and �.

Definition 1. Given a set of atoms p, q, r, . . . , formulas are defined thus:

A..E ∶∶= p Atoms∣ (A �B) ∣ (A�B) Tensor vs. par∣ (A/B) ∣ (B �A) Right division vs. left subtraction∣ (B/A) ∣ (A �B) Left division vs. right subtraction∣ 1 ∣ 0 Units

The associated concept of duality ∞ is defined as follows:

p∞ ∶= p (A�B)∞ ∶= B∞ �A∞ (A�B)∞ ∶= B∞ �A∞

1∞ ∶= 0 (A/B)∞ ∶= B∞ �A∞ (B �A)∞ ∶= A∞/B∞
0∞ ∶= 1 (B/A)∞ ∶= A∞ �B∞ (A�B)∞ ∶= B∞/A∞

Remark 1. Note that if ∞ is interpreted as negation, its defining clauses for
the binary connectives read as De Morgan laws. That said, while ∞ is indeed
involutive, it is not, like negation, fixpoint-free, seeing as p∞ = p.

While derivability may be characterized algebraically using inequalities A ≤ B,
we here instead use a labelled deductive system [6], adding an extra label f to
further discriminate between different deductions.

Definition 2. Fig.1 defines judgements f ∶ A→ B, referred to by arrows.

While we shall use arrows merely as a means of encoding derivations, one should
note that, similar to λ-terms for intuitionistic logic, they may as well be consid-
ered amendable to computation (cf. [7]). The following is an easy observation:

Lemma 1. If f ∶ A→ B, then there exists g ∶ B∞ → A∞.

In practice, we use a more compact representation of derivations, compiling
away monotonicity and composition. To this end, we first require the notions of
positive and negative (formula) contexts.
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Preorder laws

iA ∶ A→ A
f ∶ A → B g ∶ B → C

(g ○ f) ∶ A→ C

Monotonicity

f ∶ A → B

(f �C) ∶ A�C → B �C
(f/C) ∶ A/C → B/C
(C/f) ∶ C/A → C/B

f ∶ A → B

(f �C) ∶ A�C → B �C
(f �C) ∶ A�C → B �C
(C � f) ∶ C �A→ C �B

f ∶ A → B

(C � f) ∶ C �A → C �B
(C/f) ∶ C/B → C/A
(f/C) ∶ B/C → A/C

f ∶ A → B

(C � f) ∶ C �A→ C �B
(C � f) ∶ C �B → C �A
(f �C) ∶ B �C → A�C

(Co)evaluation

e
/

A,B ∶ (A/B)�B → A

e
/

A,B ∶ B � (B/A) → A

h
/

A,B ∶ A → (A�B)/B
h/A,B ∶ A → B/(B �A)

e�

A,B ∶ A→ (A�B)�B

e�

A,B ∶ A→ B � (B �A)
h�

A,B ∶ (A�B)�B → A

h�

A,B ∶ B � (B �A) → A

Units

1A� ∶ A→ A� 1
1�A ∶ A→ 1 �A
1∗A� ∶ A� 1 → A
1∗�A ∶ 1�A → A

0A� ∶ A� 0→ A
0�A ∶ 0 �A → A
0∗A� ∶ A→ A� 0
0∗�A ∶ A→ 0 �A

Type I interactions Type IV interactions

a��

A,B,C ∶ (A�B)�C → A� (B �C) α/�A,B,C ∶ (A/B)�C → A/(B �C)
a��

A,B,C ∶ A� (B �C) → (A�B)�C α
�/

A,B,C ∶ A� (B/C) → (A�B)/C
c��

A,B,C ∶ A� (B �C) → B � (A�C) γ�/

A,B,C ∶ A� (B/C) → B/(A�C)
c��

A,B,C ∶ (A�B)�C → (A�C)�B γ
/�

A,B,C ∶ (A/B)�C → (A�C)/B

Fig. 1. Lambek-Grishin calculi presented using labelled deduction

Definition 3. Define, by mutual induction, positive and negative contexts:

X+[], Y +[] ∶∶= [] ∣ (X+[]�B) ∣ (A� Y +[]) ∣ (X+[]�B) ∣ (A� Y +[])∣ (X+[]/B) ∣ (B/X+[]) ∣ (X+[]�B) ∣ (B �X+[])∣ (A/Y −[]) ∣ (Y −[]/A) ∣ (A � Y −[]) ∣ (Y −[]�A)
X−[], Y −[] ∶∶= (X−[]�B) ∣ (A � Y −[]) ∣ (X−[]�B) ∣ (A � Y −[])∣ (X−[]/B) ∣ (B/X−[]) ∣ (X−[]�B) ∣ (B �X−[])∣ (A/Y +[]) ∣ (Y +[]/A) ∣ (A � Y +[]) ∣ (Y +[]�A)
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Evidently, given some X+[], Y −[] and f ∶ A → B, we have X+[f] ∶ X+[A] →
X+[B] and Y −[f] ∶ Y −[B] → Y −[A]. In practice, we often depict said arrows as
an inference step, using the following shorthand notation:

X+[A]
X+[A′] f

Y −[A′]
Y −[A] f

having avoided writing X+[f] (Y −[f]) by informally singling out the source of
f using a box, thus unambiguously identifying the surrounding context X+[]
(Y −[]). Composition of arrows is compiled away by chaining inference steps. In
practice, we often leave out subscripts in f , being easily inferable from context.

Our notation comes close to Brünnler and McKinley’s use of deep inference
for intuitionistic logic [1]. Contrary to their concept of derivability, however, our
inference steps need not be restricted to primitive arrows. We next survey several
definable arrows, proving useful in what is to follow.

Definition 4. Lifting is defined

l
/

A,B ∶= ((e/B,A/iA/B) ○ h/A,A/B
) : A→ B/(A/B)

l
/

A,B ∶= ((iB/A/e/B,A) ○ h/A,B/A
) : A→ (B/A)/A

l�A,B ∶= (h�
A,A�B ○ (e�

B,A � iA�B)) : B � (A �B) → A

l�A,B ∶= (h�
A,B�A ○ (iB�A � e�

B,A)) : (B �A)�B → A

Using the notation introduced in our previous discussion:

A

(A� (A/B))/(A/B) h/

B/(A/B) e/

A

(B/A)/((B/A)�A) h/

(B/A)/B e/

(B �A)� B

(B �A)� ((B �A)�A) e�

A h�

B � (A �B)
(A� (A �B))� (A �B) e�

A h�

Definition 5. Grishin type I and IV interactions can alternatively be rendered

a�
A,B,C ∶ (A �B)�C → A � (B �C) α�

A,B,C ∶ A� (B �C) → (A �B)�C

a�
A,B,C ∶ A � (B �C) → (A �B)�C α�

A,B,C ∶ (A�B)�C → A � (B �C)
c�
A,B,C ∶ (A �B)�C → (A �C)�B γ�

A,B,C ∶ (A�B)�C → (A �C)�B

c�
A,B,C ∶ A � (B �C) → B � (A �C) γ�

A,B,C ∶ A� (B �C) → B � (A�C)
a
/

A,B,C ∶ A � (B/C) → (A�B)/C α
/

A,B,C ∶ (A�B)/C → A � (B/C)
a
/

A,B,C ∶ (A/B)�C → A/(B �C) α
/

A,B,C ∶ A/(B �C) → (A/B)�C

c
/

A,B,C ∶ (A/B)�C → (A�C)/B γ
/

A,B,C ∶ (A�B)/C → (A/C)�B

c
/

A,B,C ∶ A � (B/C) → B/(A�C) γ
/

A,B,C ∶ A/(B �C) → B � (A/C)
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For Type I, we have the following definitions:

a�
A,B,C ∶= h�

A�(B�C),C
○ ((a��

A,B�C,C ○ (iA � e�
B,C))� iC)

a�
A,B,C ∶= h�

(A�B)�C,A
○ (iA � (a��

A,A�B,C ○ (e�
B,A � iC)))

c�
A,B,C ∶= h�

(A�C)�B,C
○ ((c��

A�C,C,B ○ (e�
A,C � iB))� iC)

c�
A,B,C ∶= h�

B�(A�C),A
○ (iA � (c��

B,A,A�C ○ (iB � e�
C,A)))

a
/

A,B,C ∶= (((iA � e
/

B,C) ○ a��
A,BC,C)/iC) ○ h/A�(B/C),C

a
/

A,B,C ∶= (iA/((e/B,A � iC) ○ a��
A,A/B,C

)) ○ h/
(A/B)�C,A

c
/

A,B,C ∶= (((e/A,B � iC) ○ c��
A/B,C,B

)/iB) ○ h/(A/B)�C,B

c
/

A,B,C ∶= (iB/((iA � e
/

C,B) ○ c��
B,A,B/C

)) ○ h/
A�(B/C),B

While for LGIV , we have:

α�
A,B,C ∶= e

/

(A�B)�C,A
○ (iA � (α/�A,A�B,C ○ (h/B,A � iC)))

α�
A,B,C ∶= e

/

A�(B�C),C
○ ((α�/

A,B�C,C ○ (iA � h
/

B,C))� iC)
γ�
A,B,C ∶= e

/

(A�C)�B,C
○ ((γ/�A�C,C,B ○ (h/A,C � iB))� iC)

γ�
A,B,C ∶= e

/

B�(A�C),A
○ (iA � (γ�/

B,A,A�C ○ (iB � h
/

C,A)))
α
/

A,B,C ∶= (iA � ((h�
B,A/iC) ○ α�/

A,A�B,C)) ○ e�
(A�B)/C,A

α
/

A,B,C ∶= (((iA/h�
B,C) ○ α/�A,B�C,C)� iC) ○ e�

A/(B�C),C

γ
/

A,B,C ∶= (((h�
A,B/iC) ○ γ/�A�B,C,B)� iB) ○ e�

(A�B)/C,B

γ
/

A,B,C ∶= (iB � ((iA/h�
C,B) ○ γ�/

B,A,B�C)) ○ e�
A/(B�C),B

In practice, use of both type I and IV interactions may prove undesirable, given
that their combined strength licenses same-sort associativity and -commutativity.
To illustrate, we have the following arrow from B/(A/C) to A/(B/C):

(B � 0�(A/C)) ○ a/B,0,A/C
○ γ/

A,B/0,C
○ (A/(α/B,0,C ○ (B/0∗�C)))

with similar problems arising in the absence of units as well. In addition, units
themselves are also suspect, sometimes inducing overgeneration where linguis-
tic applications are concerned. In light of these remarks, we shall restrict our
discussion to the following four calculi of interest:

GrI GrIV Units
LGI ✓
LGIV ✓
LG0,1

I ✓ ✓
LG0,1

IV ✓ ✓
We use the following notational convention:

T ⊢ A→ B iff ∃f, f ∶ A→ B in T, where T ∈ {LGI ,LGIV ,LG0,1
I ,LG0,1

IV }
In the case of statements valid for arbitrary choice of T, or when the latter is
clear from context, we simply write ⊢ A→ B.
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3 Diamond Property and Examples

Definition 6. Given T ∈ {LGI ,LGIV ,LG0,1
I ,LG0,1

IV }, we say A,B are type
similar in T, written T ⊢ A ∼B, iff ∃C,T ⊢ A→ C and T ⊢ B → C.

Following [10] and [9], we say that the C witnessing T ⊢ A ∼ B is a join for
A,B, not to be confused with the notion of joins familiar from lattice theory.
Keeping with tradition, we write ⊢ A ∼ B in case a statement is independent of
the particular choice of T. We have the following equivalent definition.

Lemma 2. Formulas A,B are type similar in T iff there exists D s.t. T ⊢D →
A and T ⊢D → B.

Proof. The following table provides for each choice of T the solution for D in
case the join C is known, and conversely. Note q refers to an arbitrary atom.

T Solution for C Solution for D
LGI ((B �B)� (B �A))/D C � ((A/B)� (B �B))
LGIV ((D/B)/q)� ((D/A)/(q �D)) ((C/q)� (A �C))� (q � (B �C))
LG0,1

I (1�D)� (A�B) (B �A)� (C/0)
LG0,1

IV (A�B)/(1� (D/0)) ((1�C)/0)� (B �A)
Fig.2 shows the derivations for the joins, assuming f ∶ D → A and g ∶ D → B,
those concerning the solutions for D being essentially dual under ∞.

Lem.2 is commonly referred to by the diamond property, in reference to the
following equivalent diagrammatic representation:

∃D
BA

C

.................................. ........
....

..............................
....
............

..........................................
....
............

.............................................. ........
....

iff

D

BA

∃C

.............................................. ........
....

..........................................
....
............

..............................
....
............

.................................. ........
....

The formula D is also referred to as a meet for A,B. If C is known, we write
A ⊓C B for the meet constructed in Lem.2, while conversely we write A ⊔D B for
the join obtained from D. Clearly, if ⊢ A ⊔D B → E (⊢ E → A ⊓C B), then also⊢ A→ E (⊢ E → A), ⊢ B → E (⊢ E → B) and ⊢D → E (⊢ E → C).

Remark 2. M&P provide an alternative solution for LGIV , defining A ⊓C B =(A/C)� (C � (B �C)) and A ⊔D B = ((D/B)/D)� (D/A). Though smaller in
size compared to ours, the latter allows for easier generalization. For example,
in the following event, suppose we wish to find a meet for A1 and A4:

A1

C1

A2

C2

A3

C3

A4
....................................... ........

....
...................................

....
............

....................................... ........
....

...................................
....
............

....................................... ........
....

...................................
....
............
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A

(A�B)/B
h/

((B � (B �A))�B)/B
e�

((B � (B �A))�B)/D
g

((B �B)� (B �A))/D a��

B

(B � A)/A
h/

(B � (B � (B �A)))/A
e�

(B � (B � (B �A)))/D
f

((B �B)� (B �A))/D a��

A

(B/A)/B
l/

(D/A)/B
g

(D/A)/((D/B)/D)
l/

(D/A)/((D/B)/(q � (q �D)))
e�

(D/A)/(((D/B)/q)� (q �D)) α/

((D/B)/q)� ((D/A)/(q �D)) γ/

B

(A/B)/A
l/

(D/B)/A
f

(D/B)/((D/A)/D)
l/

(D/B)/(q � (q � ((D/A)/D))) e�

((D/B)/q)� (q � ((D/A)/D))
α/

((D/B)/q)� ((D/A)/(q �D)) γ�/

B

1 �B
1

((1�D)�D)�B
e�

(1 �D)� (D �B)
a��

(1�D)� (A�B)
g

A

A� 1
1

A� ((1 �D)�D) e�

(1�D)� (A� D)
c��

(1 �D)� (A�B)
f

B

(B � (1 � (D/0)))/(1� (D/0))
h/

((B � 1)� (D/0))/(1 � (D/0))
α�

(B � (D/0))/(1 � (D/0))
1

((A/(A�B))� (D/0))/(1 � (D/0))
h/

((A/((A�B)� 0))� (D/0))/(1 � (D/0))
0

((D/((A�B)� 0))� (D/0))/(1 � (D/0))
f

(((A�B)� (D/0))� (D/0))/(1 � (D/0))
γ/

(A�B)/(1 � (D/0)) h�

A

(A�B)/B
h/

(A�B)/(1� (B � 1))
l�

(A�B)/(1� (B � (D/(D � 1))))
h/

(A�B)/(1� (D/(B � (D � 1))))
γ�/

(A�B)/(1 � (D/(B � D)))
1∗

(A�B)/(1 � (D/(B � B)))
g

(A�B)/(1� (D/(B � (B � 0))))
0

(A�B)/(1 � (D/0)) h�

Fig. 2. Derivations for the joins constructed in Lem.2
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Normally, we would suffice by repeated applications of the diamond property:

A1

C1

A2

C2

A3

C3

A4

D1 D2 D3

D4 D5

D6

....................................... ........
....

...................................
....
............

....................................... ........
....

...................................
....
............

....................................... ........
....

...................................
....
............

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

..........................
....
............

.............................. ........
....

Note D6 derives each of A1,A2,A3,A4. Restricting to A1,A4, we have a shorter
solution obviously generalizing A ⊓C B = ((C/q)� (A �C))� (q � (B �C)):
((C2/q)�(A1 �C3))�(((q/q)�(A4 �C1))�(((q/q)�(A2 �C2))�(q�(A3 �C2))))

Lemma 3. [9] Already in the base logic LG∅, type similarity satisfies

1. Reflexivity. ⊢ A ∼A
2. Transitivity. ⊢ A ∼B and ⊢ B ∼C imply ⊢ A ∼C
3. Symmetry. ⊢ A ∼B implies ⊢ B ∼A
4. Congruence. ⊢ A1 ∼ A2 and ⊢ B1 ∼ B2 imply ⊢ A1 δ B1 ∼ A2 δ B2 for any

δ ∈ {�, /, /,�,�,�}.
We next illustrate ∼’s expressivity. While some examples were already considered
by M&P for LGIV , we here provide alternative (often shorter) solutions. For
reasons of space, we often omit the derivations witnessing our claims.

Lemma 4. Neutrals. ⊢ C/C ∼D/D
Proof. We have a join (((C/C)�D)� ((D�C)�C))/(C/C) for LGI , as well
as a meet (C � (C � (C �D)))� (D � (D � (C �D))) for LGIV .

The next few lemmas detail associativity and commutativity properties; under-
ivable, but still valid at the level of type similarity.

Lemma 5. Symmetry. ⊢ A/B ∼B/A
Proof. For LGI we have a join (((A/B)�A)�B)/(A/B),

A/B
((A/B)�A)� A

e�

((A/B)�A)� (B/(A/B)) h/

(((A/B)�A)�B)/(A/B) a/

B/A
((B/A)� (A/B))/(A/B) h/

((B/A)� (((A/B)�A)�A))/(A/B) e�

(((A/B)�A)� ((B/A)�A))/(A/B) c��

(((A/B)�A)�B)/(A/B) e/

while for LGIV , we have a meet A � (B � (A �A)).
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A � (B � (A�A))
(A/(A�A))� (B � (A �A)) h/

A/((A�A)� (B � (A�A)) α/�

A/B l�

A � (B � (A�A))
((A�A/A)� (B � (A�A)) h/

((A�A)� (B � (A�A)))/A γ/�

B/A l�

Lemma 6. Rotations. ⊢ A/(C/B) ∼ (A/C)/B and ⊢ A/(B/C) ∼B/(A/C)
Proof. In LGI , we have A/(B/((B�A)�((A�B)�C))) as a join for A/(B/C)
and B/(A/C). To derive ⊢ A/(C/B) ∼ (A/C)/B, we proceed as follows:

1. LGI ⊢ A/(C/B) ∼ (C/B)/A (Lem.5)
2. LGI ⊢ (C/B)/A ∼ (C/A)/B (shown above)
3. LGI ⊢ (C/A)/B ∼ (A/C)/B (Lem.5 and L.3(4))
4. LGI ⊢ A/(C/B) ∼ (A/C)/B (Lem.3(2), 1,2,3)

For LGIV , we have a meet ((C�(C/B))�q)�((C�(A/C))�(q/C))witnessing
LGIV ⊢ A/(C/B)∼(A/C)/B, as well as LGIV ⊢ A/(B/C)∼B/(A/C) with meet((C � (A/C))� q)� ((C � (B/C))� (q/C)).
Lemma 7. Distributivity. ⊢ A � (B/C) ∼ (A �B)/C
Proof. For LGI , note ⊢ A� (B/C) ∼A� (C/B) and ⊢ (A�B)/C ∼C/(A�B)
by Lem.5 and Lem.3(4). Thus, it suffices to show LGI ⊢ A�(C/B)∼C/(A�B),
fow which we have a join C/((A�C)� (C �B)).

A � (C/B)
C/(C � (A � (C/B))) h/

C/(C � (((A�C)�C)� (C/B))) e�

C/(C � ((A �C)� (C � (C/B)))) a��

C/((A �C)� (C � (C � (C/B)))) c��

C/((A�C)� (C �B)) e/

C/(A �B)
C/(((A�C)�C)�B) e�

C/((A�C)� (C �B)) a��

In LGIV , we have meet A�((A�(B�(A�B)))�(B�(((A�B)/C)�(A�B)))).
Lemma 8. Commutativity. ⊢ A �B ∼B �A

Proof. We have a join (A �B)� (B �B) for LGI ,

A �B

((A�B)�B)�B
e�

(A�B)� (B �B) a��

B � A

B � ((A�B)�B) e�

(A �B)� (B �B) c��

as well as a meet (B � B)� (B � ((B � A)� B)). For LGIV , we have a meet(((A/B)� ((A�B)� (A�A)))� (B � (B � (A/(A�B)))))�A.

Lemma 9. Associativity. ⊢ (A �B)�C ∼A � (B �C)
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Proof. For LGI , we have meet (A�A)� (A� ((A� (A�B))�C)), and join(B�((A/q)�(Q/C)))�(q�q). In LGIV , use the diamond property after getting
a meet D1 from Lem.7 for ((A� (B�C))/C)�C and (A� ((B�C)/C))�C:

D2

D1

((A � (B �C))/C)�C (A� ((B �C)/C))�C

(A �B)�C

A � (B �C)

..................................................
....
............

...................................................... ........
....

..................................................
....
............

........................................
.....
.......
.....

...................................................... ........
....

...........................................................................
....
............

Remark 3. While the above lemmas immediately extend to LG0,1
I and LG0,1

IV ,
the presence of units often allows for simpler joins and meets. For example, we
have the following joins (J) and meets (M) in LG0,1

I and LG0,1
IV :

Lemma LG0,1
I LG0,1

IV

Neutrals J. C/((1�D)� (C �D)) J. ((1�C)/0)/((C �D)/D)
Symmetry J. (1�A)�B M. 1� (B �A)
Commutativity J. (1� (1/A))�B M. ((1�A)/0)�B
Associativity J. (1� (1/A))� (B �C) M. A � (((1�B)/0)�C)

4 Completeness Results

We consider models built upon algebraic structures featuring two binary opera-
tions × and +, related by linear distributivity. Their definition derives from the
linear distributive categories of [2] by turning their arrows into equivalences.

Definition 7. A linearly distributive algebra is a 6-tuple A = ⟨A,×,+,� ,⊺,�⟩ of
type ⟨2,2,1,0,0⟩ satisfying
1. Associativity. (A ×B) ×C = A × (B ×C); (A +B) +C = A + (B +C)
2. Commutativity. A ×B = B ×A; A +B = B +A
3. Units. A × ⊺ = A; A + � = A
4. Inverses. A� ×A = �; A� +A = ⊺
5. Linear distributivity. A × (B +C) = (A ×B) +C

Definition 8. A model M for ∼ is a pair ⟨A , v⟩ extending A with a valuation
v mapping atoms into A , extended inductively to an interpretation �⋅�:

�p� ∶= v(p) �A �B� ∶= �A� × �B� �A �B� ∶= �A� + �B�

�1� ∶= ⊺ �A/B� ∶= �A� + �B�
�

�B �A� ∶= �B�
� × �A�

�0� ∶= � �B/A� ∶= �B�
� + �A� �A �B� ∶= �A� × �B�

�

Note that, for arbitrary A, �
1A� = �A1

� = �
0A� = �A0

� = �A�
�. E.g., �A1

� =
�A � 1� = �A�

� × ⊺ = �A�
�, and �

0A� = �0/A� = � + �A�
� = �A�

�. M&P as
well conducted model-theoretic investigations into type similarity for LGIV .
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Their interpretation, however, takes as target the free Abelian group generated
by the atomic formulae and an additional element �,

�p�′ ∶= p �A �B�
′ ∶= �A�

′ ⋅ �B�
′

�A �B�
′ ∶= �A�

′ ⋅�−1 ⋅ �B�
′

�A/B�
′ ∶= �A�

′ ⋅ �B�
′−1

�B �A�
′ ∶= �B�

′−1 ⋅� ⋅ �A�
′

�B/A�
′ ∶= �B�

′−1 ⋅ �A�
′

�A �B�
′ ∶= �A�

′ ⋅� ⋅ �B�
′−1

writing 1 for unit and −1 for inverse. While not reconcilable with Def.8 in that
it does not offer a concrete instance of a linearly distributive algebra, the de-
cidability of the word problem in free Abelian groups implies the decidability of
type similarity as a corollary of completeness. The current investigation rather
aims at a concept of model that better reflects the coexistence of residuated
and coresiduated triples in the source language. While we can still prove type
similarity complete w.r.t. the freely generated such model, as shown in Lem.14,
the inference of decidability requires additional steps. Specifically, we will use
Moortgat and Pentus’ models in as inspiration in §5 to define, for each formula,
a ‘normal form’, possibly involving units, w.r.t. which it is found type similar.
We then decide type similarity at the level of such normal forms by providing an
algorithm for generating joins, settling the word problem in the freely generated
linear distributive algebra as a corollary, ensuring, in turn, the desired result.

Lemma 10. If ⊢ A→ B, then �A� = �B� in every model.

Proof. By induction on the arrow witnessing ⊢ A→ B.

Theorem 1. If A ∼ B, then �A� = �B� in every model.

Proof. If A ∼ B, we have a join C for A and B. By Lem.10, ⊢ A → C and⊢ B → C imply �A� = �C� and �B� = �C�, and hence �A� = �B�.

To prove completeness, we define a syntactic model wherein the interpretations
of formulae are (constructively) shown to coincide with their equivalence classes
under ∼. In defining said model, we use the following lemmas.

Lemma 11. We have ⊢ (A/A)�A ∼ (A �A)/A.

Proof. Lem.5 gives meets D1,D2 for ⊢ (A/A)�A∼A�(A/A) and ⊢ (A�A)/A∼
A/(A� A). As such, we have a join C witnessing ⊢ A � (A/A) ∼A/(A�A), so
that another use of the diamond property provides the desired meet D3:

C

(A/A)�A A� (A/A) A/(A�A) A/(A�A)

D1 D2

D3

...................................
....
............

....................................... ........
....

....................................... ........
....

...................................
....
............

...................................
....
............

....................................... ........
....

.....................................................................
...
............

........................................................................ .........
...

Lemma 12. 1�A ∼A � 1 ∼ 0/A ∼A/0 in LG0,1
I and LG0,1

IV .
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Proof. That ⊢ 1 � A ∼ A � 1 and ⊢ 0/A ∼ A/0 are immediate consequences of
Lem.5. Furthermore, LG0,1

IV ⊢ 1�A→ A/0, as shown on the left, while for LGI

we apply the diamond property, as shown on the right,

1�A

A/(A� (1�A)) h/

A/((A� 1)�A) α�

A/(A �A) 1∗

A/((0�A)�A) 0∗

A/0 h�
A/0 A/(A� (1�A))

A/((A � 1)�A) 1�A

D

..........................................................
.....
.......
.....

........................................................................................................ ........
....

....................................................................................................
....
............

................................................................
....
............

.................................................................... ........
....

Definition 9. We construct a syntactic model by building a linearly distributive
algebra upon the set of equivalence classes [A]∼ ∶= {B ∣ ⊢ A ∼ B} of formulae
w.r.t. ∼. The various operations of the algebra are defined as follows:

[A]∼ × [B]∼ ∶= [A �B]∼ ⊺ ∶= [A/A]∼ [A]�
∼
∶= [(A/A)�A]∼[A]∼ + [B]∼ ∶= [A �B]∼ � ∶= [A �A]∼ = [(A �A)/A]∼

For LG0,1
I and LG0,1

IV , the following simpler definitions suffice:

[A]∼ × [B]∼ ∶= [A �B]∼ ⊺ ∶= [1]∼ [A]�
∼
∶= [1�A]∼ = [A� 1]∼[A]∼ + [B]∼ ∶= [A �B]∼ � ∶= [0]∼ = [0/A]∼ = [A/0]∼

Finally, we define the valuation by v(p) ∶= [p]∼ for arbitrary atom p.

Lemma 13. The syntactic model is well-defined.

Proof. We check the equations of Def.7. Definition unfolding reduces (1) to
showing ⊢ (A � B) � C ∼ A � (B � C) and ⊢ (A � B) � C ∼ A � (B � C).
Both follow from Lem.9, noting that for the latter we can take the dual of a
meet (join) for ⊢ C∞ � (B∞ �A∞) ∼ (C∞ � B∞)�A∞ under ∞. Similarly, (2)
and (4) are immediate consequences of Lem.8 and Lem.11 (Lem.12 in the pres-
ence of units), while (3) is equally straightforward. This leaves (5), demanding⊢ A� (B�C)∼(A�B)�C. We have LGI ⊢ A� (B�C) → (A�B)�C, while
for LGIV we use the diamond property:

A� ((A/(A�B))�C) (A�B)�C

A � (B �C) A� (A/((A�B)�C))
D

......................................
....
............

......................................................................... .........
...

.......................................................... ........
....

..............................................................................................................
...
............

.......................................................... ........
....

While we could proceed to prove �A� = [A]∼ in the syntactic model for arbitrary
A, we prove a slightly more involved statement, the increase in complexity paying
off when proving decidability of type similarity in Thm.4. Write A (Atom) for
the linear distributive algebra freely generated by the atoms.

Lemma 14. If �A� = �B� in A (Atom), then also ⊢ A ∼B.
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Proof. We follow the strategy pioneered by Pentus [10]. Consider the homo-
morphic extension h of p ↦ [p]∼ (cf. Def.9). We prove, for arbitrary A, that
h(�A�) = [A]∼, taking �A� to be the interpretation of A in A (Atom). Hence, if
�A� = �B� in A (Atom), then also h(�A�) = h(�B�), so that [A]∼ = [B]∼, and thus⊢ A∼B. Proceeding by induction, the cases A = p, A = 1 and A = 0 follow by def-
inition, while simple definitional unfolding suffices if A = A1�A2 or A = A1�A2.
The cases A = A1/A2, A = A2/A1, A = A1 � A2 and A = A2 � A1 are all alike,
differing primarily in the number of applications of Lem.5. We demonstrate with
A = A1/A2. In LGI and LGIV , we have

h(�A1/A2�) = h(�A1�) + h(�A2�)� = [A1]∼ + [A2]�∼ = [A1 � ((A2 �A2)/A2)]∼
Thus, we have to show ⊢ A1 � ((A2 �A2)/A2) ∼A1/A2:

1. ⊢ A2 �A2 ∼A1 �A1 (Lem.4)
2. ⊢ A1 �A1 ∼A1 �A1 (Lem.5)
3. ⊢ A2 �A2 ∼A1 �A1 (Transitivity, 1, 2)
4. ⊢ A1 � ((A2 �A2)/A2) ∼A1 � ((A1 �A1)/A2) (Congruence, 3)
5. ⊢ A1 � ((A1 �A1)/A2) ∼ (A1 � (A1 �A1))/A2

6. ⊢ (A1 � (A1 �A1))/A2 ← A1/A2

7. ⊢ A1 � ((A2 �A2)/A2) ∼A1/A2 (Transitivity, 4, 5, 6)

In the presence of units, we have to show instead ⊢ A1 � (0/A2) ∼A1/A2, the
desired proof being essentially a simplification of that found above.

Theorem 2. If �A� = �B� in every model, then ⊢ A ∼B.

Proof. If �A� = �B� in every model, then in particular in A (Atom), and hence⊢ A ∼B by Lem.14.

5 Generating Joins

We next present an algorithm for generating joins and meets in LG0,1
I , deriving

decidability for the remaining incarnations of LG as a corollary. We proceed in
two steps. First, we define for each formula A a ‘normal form’ ∥A∥○ w.r.t. which
it is shown type similar by some join CA. Whether or not any A and B are type
similar is then decided for ∥A∥○ and ∥B∥○, an affirmative answer, witnessed by
some meet D, implying the existence of a join C for A and B by the diamond
property. The following figure summarizes the previous discussion.

D

C

CA CB

A ∥A∥○ ∥B∥○ B

................................
....
............

.................................... ........
....

.................................... ........
....

................................
....
............

.................................... ........
....

................................
....
............

.................................................................. .........
...

...............................................................
...
............
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Definition 10. We define the maps ∥ ⋅ ∥○ and ∥ ⋅ ∥● by mutual induction:

∥p∥○ ∶= p ∥p∥● ∶= 1/p∥1∥○ ∶= 1 ∥1∥● ∶= 1∥0∥○ ∶= 0 ∥0∥● ∶= 1/0∥A�B∥○ ∶= ∥A∥○ � ∥B∥○ ∥A �B∥● ∶= ∥A∥● � ∥B∥●∥A/B∥○ ∶= ∥A∥○ � ∥B∥● ∥A/B∥● ∶= ∥A∥● � ∥B∥○∥B/A∥○ ∶= ∥A/B∥○ ∥B/A∥● ∶= ∥A/B∥●∥A�B∥○ ∶= ∥A∥○ � ((1/0)� ∥B∥○) ∥A �B∥● ∶= ∥A∥● � (∥B∥● � 0)∥A�B∥○ ∶= ∥A∥○ � (0� ∥B∥●) ∥A �B∥● ∶= ∥A∥● � ((1/0)� ∥B∥○)∥B �A∥○ ∶= ∥A�B∥○ ∥B �A∥● ∶= ∥A �B∥●
Compare the above definition to the Abelian group interpretation of M&P: mul-
tiplications A ⋅ B and inverses A−1 are rendered as A � B and 1/A, while 0
replaces the special atom �. We now need only solve the problem of generating
joins for the formulas in the images of ∥⋅∥○ and ∥⋅∥●, relying on the result, proved
presently, that ⊢ A ∼ ∥A∥○ and ⊢ 1/A ∼ ∥A∥●.
Lemma 15. There exist maps f(⋅) and g(⋅) mapping any given A to joins wit-
nessing ⊢ A ∼ ∥A∥○ and ⊢ 1/A ∼ ∥A∥● respectively.
Proof. The (mutual) inductive definition of the desired maps is presented in
parallel with the proof of their correctness. In the base cases, we set

f(p) ∶= p
g(p) ∶= 1/p f(1) ∶= 1

g(1) ∶= 1
f(0) ∶= 0
g(0) ∶= 1/0

Correctness is nigh immediate, noting ⊢ 1/1→ 1 for g(1). The diamond property
is used for most of the inductive cases. To illustrate, considerA = A1�A2 and A =
A2�A1, handled similarly. Starting with f(⋅), we have, by induction hypothesis,
joins f(A1) and g(A2) for ⊢ A1∼∥A1∥○ and ⊢ (1/A2)∼∥A2∥●. Hence, by Lem.3(4),
we have a join f(A1)�(0�g(A2)) for ⊢ (A1�(0�(1/A2))∼(∥A1∥○�(0�∥A2∥●)).
In addition, we have joins

A1 �A2 A1 � (0� (1/A2))

((A1 �A2)�A2)� ((1�A2)� 1)

................................................................................................. ........
....

.............................................................................................
....
............

and

A2 �A1 A1 � (0� (1/A2))

(A2 � (A2 �A1))� ((A2 � 1)� 1)

............................................................................................................... ........
....

...........................................................................................................
....
............

We demonstrate the derivability claims found in the left diagram in Fig.3, those
found in the right diagram being shown similarly. With these findings, we may
now define f(A1 �A2) through the diamond property:

f(A1 �A2)

((A1 �A2)�A2)� ((1�A2)� 1) f(A1)� (0� g(A2))

A1 �A2 A1 � (0� (1/A2)) ∥A1∥○ � (0� ∥A2∥●)
.......................................................................................................................... ........

....

......................................................................................................................
....
............

.......................................................................................................................... ........
....

......................................................................................................................
....
............

.............................................................................. ........
....

..........................................................................
....
............
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A1 �A2

(A1 �A2)� 1
1

(A1 �A2)� ((1�A2)� ((1 �A2)� 1)) e�

((A1 �A2)� (1�A2))� ((1 �A2)� 1)
a��

(((A1 �A2)� 1)�A2)� ((1 �A2)� 1)
a��

((A1 �A2)�A2)� ((1 �A2)� 1) 1∗

A1 � (0 � (1/A2))

A1 � (0 � ((1/A2)� 1))
1

A1 � (0 � ((1/A2)� ((1 �A2)� ((1 �A2)� 1))))
e�

A1 � (0 � (((1/A2)� (1 �A2))� ((1 �A2)� 1)))
a��

A1 � (0 � ((1 � ((1/A2)�A2))� ((1 �A2)� 1)))
c��

A1 � (0� ((1� 1)� ((1 �A2)� 1)))
e/

A1 � ((0� (1� 1))� ((1�A2)� 1))
a��

A1 � (((0� 1)� 1)� ((1�A2)� 1))
a��

A1 � ((0� 1)� ((1 �A2)� 1))
1∗

A1 � (1� ((1 �A2)� 1))
0

(A� 1)� ((1 �A2)� 1)
a��

A1 � ((1�A2)� 1)
1∗

((A1 �A2)�A2)� ((1 �A2)� 1) e�

Fig. 3. Showing LGI ⊢ A1 � A2 → ((A1 � A2) � A2) � ((1 � A2) � 1) and LGI ⊢
A1 � (0 � (1/A2)) → ((A1 �A2)�A2)� ((1 �A2)� 1)

while f(A2 �A1) is similarly defined

(A2 � (A2 �A1))� ((A2 � 1)� 1) ⊔A�(0�(1/A2))
(f(A1)� (0� g(A2)))

The same strategy is used to define g(A1 � A2) and g(A2 � A1), this time
employing joins (1�A1)�(1�(0�A2)) and (1�A1)�((A2�0)�1) witnessing⊢ 1/(A1�A2)∼(1/A1)�((1/0)�A2) and ⊢ 1/(A2�A1)∼(1/A1)�((1/0)�A2).
In the same vein, we can handle a significant portion of the remaining cases:

g(A1 �A2) ∶= ((1� (A2 � 1))� (A1 � 1)) ⊔(1/A1)�(1/A2)
(g(A1)� g(A2))

g(A1/A2) ∶= (1� ((A1/A2)� 1)) ⊔(1/A1)�A2
(g(A1)� f(A2))

g(A2/A1) ∶= (1� ((A2/A1)� 1)) ⊔(1/A2)�A2
(g(A1)� f(A2))

f(A1 �A2) ∶= (A1 � (0�A2)) ⊔A1�((1/0)�A2)
f(A1)� ((1/0)� f(A2))

g(A1 �A2) ∶= (1� ((A1 �A2)� 1)) ⊔(1/A1)�((1/A2)�0) (g(A1)� (g(A2)� 0))
To show ⊢ (1/A1) � ((1/A2) � 0) → 1 � ((A1 � A2) � 1) for the definition of
g(A1 � A2) can be a bit tricky, so we give the derivation in Fig.4. We are left
with the following cases, handled without use of the diamond property:
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(1/A1)� ((1/A2)� 0)

(1/A1)� (((1/A2)� 1)� 0)
1

(1/A1)� (((1/A2)� ((A1 �A2)� ((A1 �A2)� 1)))� 0)
e�

(1/A1)� ((((1/A2)� (A1 �A2))� ((A1 �A2)� 1))� 0)
a��

(1/A1)� (((A1 � ((1/A2)�A2))� ((A1 �A2)� 1))� 0)
a��

(1/A1)� (((A1 � 1)� ((A1 �A2)� 1))� 0)
e/

(1/A1)� (((A1 � 1)� 0)� ((A1 �A2)� 1))
c��

(1/A1)� ((A1 � (1� 0))� ((A1 �A2)� 1))
a��

(1/A1)� ((A1 � 0)� ((A1 �A2)� 1))
1∗

(1/A1)� (A1 � ((A1 �A2)� 1))
0

((1/A1)�A1)� ((A1 �A2)� 1)
a��

1� ((A1 �A2)� 1) e/

Fig. 4. Showing LGI ⊢ (1/A1)� ((1/A2)� 0)

f(A1 �A2) ∶= f(A1)� f(A2)
f(A1/A2) ∶= (f(A1)� (A2 � g(A2)))� ((1/A2)� 1)
f(A2/A1) ∶= (f(A1)� (A2 � g(A2)))� ((1/A2)� 1)

Fig.5 shows well-definedness of f(A1/A2), with f(A2/A1) handled similarly.

We shall decide type similarity by reference to the following invariants.

Definition 11. For arbitrary p, we define by mutual inductions the functions ∣⋅∣+p
and ∣ ⋅ ∣−p counting, respectively, the numbers of positive and negative occurrences
of p inside their arguments. First, the positive count:

∣r∣+p ∶= 1 iff r = p ∣A �B∣+p ∶= ∣A∣+p + ∣B∣+p ∣A �B∣+p ∶= ∣A∣+p + ∣B∣+p∣1∣+p ∶= 0 ∣A/B∣+p ∶= ∣A∣+p + ∣B∣−p ∣B �A∣+p ∶= ∣A∣+p + ∣B∣−p∣0∣+p ∶= 0 ∣B/A∣+p ∶= ∣A∣+p + ∣B∣−p ∣A �B∣+p ∶= ∣A∣+p + ∣B∣−p
and similarly, the negative count:

∣r∣p ∶= 0 ∣A �B∣−p ∶= ∣A∣−p + ∣B∣−p ∣A �B∣−p ∶= ∣A∣−p + ∣B∣−p∣1∣p ∶= 0 ∣A/B∣−p ∶= ∣A∣−p + ∣B∣+p ∣B �A∣−p ∶= ∣A∣−p + ∣B∣+p∣0∣p ∶= 0 ∣B/A∣−p ∶= ∣A∣−p + ∣B∣+p ∣A �B∣−p ∶= ∣A∣−p + ∣B∣+p
The atomic count ∣A∣p for p is defined ∣A∣+p −∣A∣−p . In a similar fashion, we define
positive and negative counts ∣A∣+0 and ∣A∣−0 for occurrences of the unit 0 inside A,
and set ∣A∣0 ∶= ∣A∣+0 − ∣A∣−0 .
In practice, the previously defined counts shall prove only of interest with argu-
ments of the form ∥A∥○. In the case of arbitrary formulas, we therefore define
(by mutual induction) the positive and negative operator counts ∣A∣+� and ∣A∣−�
(resembling, though slightly differing from, a concept of [9] bearing the same
name), recording the values of ∣∥A∥○∣+0 and ∣∥A∥○∣−0 respectively.
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∥A1∥○ � ∥A2∥●

∥A1∥○ � (1 � ∥A2∥●)
1

∥A1∥○ � (((1/A2)� ((1/A2)� 1))� ∥A2∥●)
e�

∥A1∥○ � (((1/A2)� ∥A2∥●)� ((1/A2)� 1))
c��

∥A1∥○ � (((1/A2)� g(A2))� ((1/A2)� 1))
IH

∥A1∥○ � (((1/A2)� (A2 � (A2 � g(A2))))� ((1/A2)� 1))
e�

∥A1∥○ � ((((1/A2)�A2)� (A2 � g(A2)))� ((1/A2)� 1))
a��

∥A1∥○ � ((1� (A2 � g(A2)))� ((1/A2)� 1)) e/

(∥A1∥○ � (1� (A2 � g(A2))))� ((1/A2)� 1)
a��

((∥A1∥○ � 1)� (A2 � g(A2)))� ((1/A2)� 1)
a��

(∥A1∥○ � (A2 � g(A2)))� ((1/A2)� 1)
1∗

(f(A1)� (A2 � g(A2)))� ((1/A2)� 1)
IH

A1/A2

(A1/A2)� 1
1

(A1/A2)� ((1/A2)� ((1/A2)� 1)) e�

((A1/A2)� (1/A2))� ((1/A2)� 1)
a��

((A1/A2)� g(A2))� ((1/A2)� 1)
IH

((A1/A2)� (A2 � (A2 � g(A2))))� ((1/A2)� 1)
e�

(((A1/A2)�A2)� (A2 � g(A2)))� ((1/A2)� 1)
a��

(A1 � (A2 � g(A2)))� ((1/A2)� 1)
e/

(f(A1)� (A2 � g(A2)))� ((1/A2)� 1)
IH

Fig. 5. Proving well-definedness of f(A1/A2)

Definition 12. For arbitrary A, define the positive and negative operator counts∣A∣+� and ∣A∣−� are defined by induction over A, as follows:

∣p∣+� ∶= 0 ∣A �B∣+� ∶= ∣A∣+� + ∣B∣+� ∣A �B∣+� ∶= ∣A∣+� + ∣B∣+�∣1∣+� ∶= 0 ∣A/B∣+� ∶= ∣A∣+� + ∣B∣−� ∣B �A∣+� ∶= ∣A∣+� + ∣B∣−� + 1∣0∣+� ∶= 1 ∣B/A∣+� ∶= ∣A∣+� + ∣B∣−� ∣A �B∣+� ∶= ∣A∣+� + ∣B∣−� + 1
and

∣p∣−� ∶= 0 ∣A �B∣−� ∶= ∣A∣−� + ∣B∣−� ∣A �B∣−� ∶= ∣A∣−� + ∣B∣−� + 1∣1∣−� ∶= 0 ∣A/B∣−� ∶= ∣A∣−� + ∣B∣+� ∣B �A∣−� ∶= ∣A∣−� + ∣B∣+�∣0∣−� ∶= 0 ∣B/A∣−� ∶= ∣A∣−� + ∣B∣+� ∣A �B∣−� ∶= ∣A∣−� + ∣B∣+�
Finally, the operator count ∣A∣� is defined ∣A∣+� − ∣A∣−�.

Lemma 16. For any A, ∣A∣+� = ∣∥A∥○∣+0 = ∣∥A∥●∣−0 and ∣A∣−� = ∣∥A∥●∣+0 = ∣∥A∥○∣−0 .
Lemma 17. If ⊢ A→ B, then ∣A∣� = ∣B∣�, and ∣A∣p = ∣B∣p for all pi.
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Corollary 1. If ⊢ A ∼B, then ∣A∣� = ∣B∣�, and ∣A∣p = ∣B∣p for all pi.

We now prove the inverse of the above corollary. Our aim is to define a meet
for ∥A∥○ and ∥B∥○, entering into the construction of a join for A and B through
use of the diamond property along with f(A) and f(B). To this end, we first
require a few more definitions and lemmas. The following is an easy observation.

Lemma 18. Formulas ∥C∥○, ∥C∥● for any C are included in the proper subset
of F(Atom) generated by the following grammar:

φ ∶∶= 0 ∣ pi ∣ (1/0) ∣ (1/pi)
Anf,Bnf ∶∶= 1 ∣ φ ∣ (Anf

�Bnf)
Thus, positive and negative occurrences of 0 (pi) take the forms 0 (pi) and 1/0(1/pi), being glued together through � only. We next detail the corresponding
notion of context. Through universal quantification over said concept in stating
derivability of certain rules pertaining to the Grishin interactions (cf. Lem.19),
we obtain the non-determinacy required for the construction of the desired meet.

Definition 13. A (tensor) context A�[] is a bracketing of a series of formulae
connected through �, containing a unique occurrence of a hole []:

A�[],B�[] ∶∶= [] ∣ (A�[]�B) ∣ (A �B�[])
Given A�[],B, let A�[B] denote the substitution of B for [] in A�[].
We next characterize (half of) the type I Grishin interaction using contexts.

Lemma 19. If ⊢ A�[B �C] → D, then ⊢ B �A�[C] →D.

Proof. Assuming f ∶ A�[B � C] → D, we proceed by induction on A�[]. The
base case being immediate, we check A�[] = A�

1 []�A2 and A�[] = A1 �A�
2 []:

B � (A�
1 [C]�A2)

(B �A�
1 [C])�A2

a�

A�
1 [B �C]�A2

IH

D
f

B � (A1 �A�
2 [C])

A1 � (B �A�
2 [C]) IH

A1 �A�
2 [B �C] c�

D
f

The nondeterminacy required for the construction of our desired meet is obtained
through the liberty of choosing one’s context in instantiating the above rules. In
practice, we only require recourse to the following restricted form.

Corollary 2. If ⊢ A�[B] → C, then ⊢ (1�B)�A�[1] → C.

Proof. Suppose f ∶ (1�B)�A�[1] → C. We then proceed as follows:

(1�B)�A�[1]
A�[((1�B)� 1)] Lem.19

A�[B] l�

C
f
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Theorem 3. ⊢ A ∼B if ∣A∣� = ∣B∣� and ∣∥A∥○∣p = ∣∥B∥○∣p for all p.

Proof. First, we require some notation. We shall write a (non-empty) list of for-
mulas [A1, . . . ,An,B] to denote the right-associative bracketing of A1� . . .An�

B. Further, given n ≥ 0, let An denote the list of n repetitions of A. Finally, we
write ++ for list concatenation. Now let there be given an enumeration

p1, p2, . . . pn

of all the atoms occurring in A and B. Define

k ∶= max(∣∥A∥○∣+0 , ∣∥B∥○∣+0) = max(∣A∣+�, ∣B∣+�)
l ∶= max(∣∥A∥○∣−0 , ∣∥B∥○∣−0) = max(∣A∣−�, ∣B∣−�)

k(i) ∶= max(∣∥A∥○∣+pi
, ∣∥B∥○∣+pi

) (1 ≤ i ≤ n)
l(i) ∶= max(∣∥A∥○∣−pi

, ∣∥B∥○∣−pi
) (1 ≤ i ≤ n)

We now witness ⊢ ∥A∥○ ∼ ∥B∥○ by a meet

D ∶= (1� p1)k(1) ++ (1� (1/p1))l(1)++ . . .

++ (1� pn)k(n) ++ (1� (1/pn))l(n)++ (1� 0)k ++ (1� (1/0))l ++ [1]
Since we know from Lem.15 that ⊢ A∼∥A∥○ and ⊢ B ∼∥B∥○ with joins f(A) and
f(B), we can construct a join f(A) ⊔D f(B) witnessing ⊢ A ∼ B. Suffice it to
show that D, as defined above, is indeed a meet for ∥A∥○ and ∥B∥○. W.l.o.g., we
show ⊢ D → ∥A∥○, dividing our proof in three steps. We shall a running example
for illustrating each step, considering the concrete case where A = p2 � (p1/p2)
and B = p3 � (p3 � p1). Then

∥A∥○ = p2 � (p1 � (1/p2))∥B∥○ = p3 � (0� ((1/p3)� ((1/0)� p1)))
D = [1� p1,1� p2,1 � (1/p2),1� p3,1� (1/p3),1� 0,1� (1/0),1]

k(1) = 1 k(2) = 1 k(3) = 1 k = 1
l(1) = 0 l(2) = 1 l(3) = 1 l = 1

1. First, note that we have

If f ∶ E → F , also (f ○ (1∗�E ○ (e/1,G � iE))) ∶ ((1/G)�G)�E → F (∗)

Starting with i∥A∥○ ∶ ∥A∥○ → ∥A∥○, for i = 1 to n, recursively apply (∗)
k(i) − ∣∥A∥○∣+pi

(= l(i) − ∣∥A∥○∣−pi
, by ∣A∣pi = ∣B∣pi) times, instantiating G with

pi, followed by another k− ∣∥A∥○∣+� (= l− ∣∥A∥○∣−�, since ∣A∣� = ∣B∣�) recursive
applications, this time instantiating G by 0. In our example, we obtain the
following arrows:

(((1/0)� 0)� (((1/p3)� p3)� ∥A∥○))
(1� (((1/p3)� p3)� ∥A∥○)) e/

((1/p3)� p3)� ∥A∥○ 1∗

1 � ∥A∥○ e/

∥A∥○ 1∗

((1/p2)� p2)� ∥B∥○
1 � ∥B∥○ e/

∥B∥○ 1∗
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Note that the antecedent of → now contains exactly k(i) (k) and l(i) (l)
occurrences of pi (0) and 1/pi (1/0) respectively.

2. For i = 1 to n, apply the following procedure. Starting with the arrow con-
structed in the previous step, recursively apply Cor.2 k(i) times, instantiat-
ing B with pi, followed by another l(i) applications where B is instantiated
with 1/pi. Finally, we repeat the above procedure one last time with the
positive and negative occurrences of 0. We continue with our example in
Fig.6.

3. From D, we can derive the antecedent of the arrow in the previous step
through repeated applications of 1, thus obtaining the desired result.

As a corollary of the above theorem, we can prove the decidability of the word
problem in A (Atom). Lem.14 in turn implies decidability of type similarity in
each of the variants of the Lambek-Grishin calculus discussed in this chapter.

Lemma 20. For any expression φ in A (Atom), there exists a formula A in
LG0,1

I s.t. �A� = φ.

Proof. We define the map �⋅�−1 taking φ to a formula, as follows:

�p�−1 ∶= p �φ��−1 ∶= 0/�φ�
−1

�⊺�−1 ∶= 1 ���−1 ∶= 0
�φ ×ψ�

−1 ∶= �φ�
−1

� �ψ�
−1

�φ + ψ�
−1 ∶= �φ�

−1
� �ψ�

−1

An easy induction ensures ��φ�
−1

� = φ. To illustrate, consider the case φ�:
��φ��−1� = �0/�φ�

−1
� = � + ��φ�

−1
�
� = � + φ� = φ�.

Lemma 21. For any φ,ψ ∈ A (Atom), we can decide whether or not φ = ψ.

Proof. By Thm.3, we can decide LG0,1
I ⊢ �φ�

−1 ∼ �ψ�
−1 through comparison

of atomic- and operator counts. If affirmative, then also ��φ�
−1

� = ��ψ�
−1

� by
Thm.1, i.e., φ = ψ by Lem.20. If instead LG0,1

I /⊢ �φ�
−1∼�ψ�

−1, then also ��φ�
−1

� /=
��ψ�

−1
�, i.e., φ /= ψ by Thm.2.

Theorem 4. For any A,B, it is decidable whether T ⊢ A ∼ B for any T ∈{LGI ,LGIV ,LG0,1
I ,LG0,1

IV }.
Proof. Use Lem.21 to decide whether or not �A� = �B� in A (Atom). If so, then⊢ A ∼B by Lem.14. Otherwise, /⊢ A ∼B by Thm.1.
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Abstract. Pregroup grammars are context-free lexicalized grammars
based upon free pregroups which can describe parts of the syntax of
natural languages. Some extensions are useful to model special construc-
tions like agreements with complex features or non-projective relations
or dependencies. A simple solution for these problems is given by lexical-
ized grammars based upon the product of free pregroups rather than on
a single free pregroup. Such grammars are not necessarily context-free.
However, the membership problem is NP-complete. To prove this the-
orem, the article defines a particular grammar built on the product of
three free pregroups. This grammar is used to encode any SAT problem
as a membership problem in the language corresponding to the grammar.

Keywords: Lambek Categorial Grammar, Pregroup Grammar, Free
Pregroup, Product of Pregroups.

1 Introduction

Pregroup grammars [15] are a simplification of Lambek calculus [18] that can
model parts of several natural languages: English [15], Italian [8], French [1], Ger-
man [16,17], Japanese [7], Persian [19], etc. As with Lambek calculus, some exten-
sions have been proposed for various constructions. For instance, in [4,3], simple
type iterations are introduced into pregroup grammars for adjectival or adverbial
phrases. [11] presents other extensions based upon modalities, product pregroup
grammars and tupled pregroup grammars and applies these extensions to Polish.

In [12,13], the author proposes to use products of pregroups as a general con-
struction to extend the generative power of pregroup grammars based upon free
pregroups. For the author, this construction is interesting, for instance, for the
Italian nominal and adjectival paradigm with binary valued features (mascu-
line/feminine or singular/plural). With a product, every feature can be put in
its own space giving a very simple solution for agreement. In [14], grammars
based upon any pregroup (not only on a free pregroup) are proved to be Tur-
ing complete (the languages are all the ε-free recursively enumerable languages).
The construction uses a grammar based upon the product of two free pregroups
and its image through a string homomorphism.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 51–62, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Products can also be used for long distance dependencies, in particular when
the projective nature of free pregroup deductions limit axioms. For instance a
pregroup analysis of “quand il l’avait ramené” (when he took her at home) needs
a complex type for the clitic “ l’ ” (her).

“l’ ” is assigned πr
3so

llslπ3 rather than oll. A better analysis would be:

For this kind of constructions, we need non-projective axioms. The product
of free pregroups can be used for this purpose. The idea is used by Categorial
Dependency Grammars[9] for non-projective dependencies even if in this case
the polarities that define the ends of non-projective dependencies do not define
complete categorial components1.

Of course, we expect that such extensions preserve the interesting properties
of pregroup grammars. One of these properties is that the membership problem
is polynomial. This is no more the case with grammars based upon the products
of at least 3 free pregroups: Here, we present a grammar based upon the product
of 3 free pregroups that can code any SAT problem proving that the membership
problem for this grammar is NP-hard.

The rest of the article begins by presenting pregroups, free pregroups and
pregoup grammars (lexicalized grammars based on a free pregroup). Section 3
introduces the product of pregroups, pregroup product grammars (lexicalized
grammars based on the product of several free pregroups) and gives some prop-
erties of the associated class of languages. Section 4 proves that the membership
problem of the class of languages is NP-hard (in fact NP-complete). The last
section concludes.

2 Background

Definition 1 (Pregroup). A pregroup is a structure (P,≤, ◦, l, r, 1) such that
(P,≤, ◦, 1) is a partially ordered monoid 2 and l, r are two unary operations on
P that satisfy the inequalities xlx ≤ 1 ≤ xxl and xxr ≤ 1 ≤ xrx for all x ∈ P .

1 The types in a CDG can be defined as the set of the product of a categorial type
and a list of signed integers.

2 We briefly recall that a monoid is a structure < M, ◦, 1 >, such that ◦ is associative
and has a neutral element 1 (∀x ∈ M : 1◦x = x◦1 = x). A partially ordered monoid
is a monoid < M, ◦, 1 > with a partial order ≤ that satisfies ∀a, b, c: a ≤ b ⇒ c ◦ a ≤
c ◦ b and a ◦ c ≤ b ◦ c.
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Definition 2 (Free Pregroup). Let (P,≤) be a partially ordered set of basic
types. We write Z for the set of signed integers. P (Z) = { p(i) | p ∈ P, i ∈ Z} is

the set of simple types and T(P,≤) =
(
P (Z)
)∗

= {p(i1)1 · · · p(in)n | 0 ≤ k ≤ n, pk ∈
P and ik ∈ Z} is the set of types. The empty sequence in T(P,≤) is denoted by
1. For X and Y ∈ T(P,≤), X ≤ Y iff this relation is derivable in the following
system where p, q ∈ P , n, k ∈ Z and X,Y, Z ∈ T(P,≤):

X ≤ X (Id)
X ≤ Y Y ≤ Z

(Cut)
X ≤ Z

XY ≤ Z
(AL)

Xp(n)p(n+1)Y ≤ Z

X ≤ Y Z
(AR)

X ≤ Y p(n+1)p(n)Z

Xp(k)Y ≤ Z
(INDL)

Xq(k)Y ≤ Z

X ≤ Y q(k)Z
(INDR)

X ≤ Y p(k)Z

(where q ≤ p if k is even, and p ≤ q if k is odd)

The construction, proposed by Buskowski [6], defines a pregroup that extends
≤ on basic types P to T(P,≤)

3,4.

Cut Elimination. On the one hand, the cut rule is useful for clear and com-
pact representation of derivations. On the other hand, it creates problems for
derivation search because, due to this rule, one cannot in general bound the
number of hypothetical premises needed in a derivation of a given inequality.
Fortunately, this rule can be eliminated in pregroups without loss of generality,
i.e. every derivable inequality has a cut-free derivation (see [5]) .

Definition 3 (Pregroup Grammar). Let (P,≤) be a finite partially ordered
set. A pregroup grammar based upon (P,≤) is a lexicalized 5 grammar G =
(Σ, I, s) on categories T(P,≤) such that s ∈ P . G assigns a type X to a string
v1 · · · vn of Σ∗ iff for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤ X in the free
pregroup T(P,≤). The language L(G) is the set of strings in Σ∗ that are assigned
s by G.

Example 1. Let us look at an analysis of a complete sentence from Marcel Proust
(a part of it is shown in the introduction). The basic types used in this analysis
are: π3, π3: third person (subject) with π3 ≤ π3, p2: past participle, ω: object,
s: sentence, s5: subjunctive clause, σ: complete subjunctive clause, τ : adverbial
phrase.

3 Left and right adjoints are defined by (p(n))l = p(n−1), (p(n))r = p(n+1), (XY )l =
Y lXl and (XY )r = Y rXr. p stands for p(0). The left and right adjoints of X ∈
T(P,≤) are defined recursively: X(0) = X, X(n+1) = (Xr)(n) and X(n−1) = (Xl)(n).

4 ≤ is only a preorder. Thus, in fact, the pregroup is the quotient of T(P,≤) under the
equivalence relation X ≤ Y & Y ≤ X.

5 A lexicalized grammar is a triple (Σ, I, s): Σ is a finite alphabet, I assigns a finite
set of categories (or types) to each c ∈ Σ, s is a category (or type) associated to
correct strings.
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Using only left rules (AL) and (INDL) and one (Id), we can prove that the
product of the assigned types is less than or equal to s. The proof is schematically
presented above. In this proof, each link corresponds to one application of (AL)
(eventually with a (INDL) when the corresponding basic types are different).

3 Product of Pregroups

A natural idea to combine pregroups is to define a structure over the product of
the corresponding monoids.

Definition 4 (Product of Pregroups). For N≥1, let Pi=(Mi,≤ i,◦i, li, ri, 1i),
1 ≤ i ≤ N , be N pregroups. We define P1 × · · · × PN as (M1 × · · · ×MN ,≤
, ◦, l, r, (11, . . . , 1N )) where:
- (x1, . . . , xN ) ≤ (y1, . . . , yN ) iff ∀i, 1 ≤ i ≤ N , xi ≤i yi,
- (x1, . . . , xN ) ◦ (y1, . . . , yN) = (x1 ◦1 y1, . . . , xN ◦N yN ),
- (x1, . . . , xN )l = (xl1

1 , . . . , xlN
N ) and (x1, . . . , xN )r = (xr1

1 , . . . , xrN
N ).

The product of several pregroups gives a structure that is also a pregroup6.

3.1 Pregroup Product Grammars

Pregroup grammars are defined over a free pregroup. We relax this definition
here and define grammars on any pregroup. In fact, we are interested only in
the product of free pregroups.

Definition 5 (Pregroup Product Grammar). Let (P1,≤1), . . . , (PN ,≤N)
be N ≥ 1 finite partially ordered sets. A pregroup product grammar based
upon (P1,≤1), . . . , (PN ,≤N ) is a lexicalized grammar G = (Σ, I, s) on cate-
gories T(P1,≤1)× · · ·×T(PN ,≤N ) such that s ∈ P1. G assigns a type X to a string
v1 · · · vn of Σ∗ iff for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 ◦ · · · ◦ Xn ≤ X
in the product of the free pregroups T(P1,≤1), . . . , T(PN ,≤N ) with ◦ as the binary
operation of the product and ≤ as its partial order. The language L(G) is the
set of strings in Σ∗ that are assigned (s, 1, . . . , 1) by G.

In the definition, when a string is assigned (s, 1, . . . , 1), the first component
of the product must be less than or equal to s, a special basic type of the first
free pregroup. The other components must be less than or equal to the unit of
the corresponding free pregroup. It is possible to have a different definition, for
instance by choosing that all components must be less than or equal to the unit

6 The definition can also be extended to the empty product (N = 0). In this case,
the resulting structure is the monoid with a unique element which is also the unit
element.
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of this component and by adding a “wall” in Σ that is associated by the lexicon
to the type (sr, 1, . . . , 1).

3.2 Pregroup Product Grammars: Context Sensitive but NP
Membership Problem

The membership problem of a string into the language associated to a pregroup
grammar is polynomial in time either from the size of the string or from the size
of the string plus the size of the pregroup grammar. In fact, the languages of
pregroup grammars are the context-free languages [6,2].

For pregroup product grammars, the number N ≥ 1 of free pregroups for the
product is important. For N = 1, the product is equivalent to a free pregroup.
Thus the same result can be proved on the membership problem and the expres-
sive power (the membership problem is polynomial in time and the languages
are context-free). This is completely different if N > 1. With regard to the ex-
pressive power, the article proves that for k > 1, Lk = {ai1ai2 · · ·aik | i ≥ 1} is
generated by a pregroup product grammar based upon the product of k− 1 free
pregroups.

Definition 6 (Pregroup Product Grammar for {ai1ai2 · · · aik | i ≥ 1}). Let
P = ({x1, . . . , xk, z},=) a partially ordered set (the partial order on basic types is
equality). We consider the product of the k free pregroups based upon k copies of
P . Let Gk = ({a1, . . . , ak}, Ik, x1) be the pregroup product grammar based upon
the product and defined by the following lexicon:

Ik(a1) = { (x1zx
l
1, 1, . . . , 1) , (x1zx

l
2, 1, . . . , 1) }

Ik(a2) = { (x2z
lxl

2, z, 1, . . . , 1) , (x2z
lxl

3, z, 1, . . . , 1) }
Ik(a3) = { (x3x

l
3, z

l, z, 1, . . . , 1) , (x3x
l
4, z

l, z, 1, . . . , 1) }
· · ·
Ik(ak−1) = { (xk−1x

l
k−1, 1, . . . , 1, z

l, z) , (xk−1x
l
k, 1, . . . , 1, z

l, z) }
Ik(ak) = { (xkx

l
k, 1, . . . , 1, z) , (xk, . . . , 1, z) }

Theorem 1. For k > 1, Lk = {ai1ai2 · · · aik | i ≥ 1} = L(Gk).

Proof. Firstly, it is easy to find a derivation in Gk corresponding to the string
A = ai1a

i
2 · · ·aik for i > 0: Using the lexicon Ik, we can associate the following

expression to A:
(x1z

lxl
1, 1, . . . , 1) ◦ · · · ◦ (x1z

lxl
1, 1, . . . , 1)︸ ︷︷ ︸

i−1

◦(x1z
lxl

2, 1, . . . , 1) ◦

(x2zx
l
2, z

l, 1, . . . , 1) ◦ · · · ◦ (x2zx
l
2, z

l, 1, . . . , 1)︸ ︷︷ ︸
i−1

◦(x2zx
l
3, z

l, 1, . . . , 1) ◦

· · ·
(xk−1x

l
k−1, 1, . . . , 1, z, z

l) ◦ · · · ◦ (xk−1x
l
k−1, 1, . . . , 1, z, z

l)︸ ︷︷ ︸
i−1

◦ (xk−1x
l
k, 1, . . . , 1, z, z

l) ◦
(xkx

l
k, 1, . . . , 1, z) ◦ · · · ◦ (xkx

l
k, 1, . . . , 1, z)︸ ︷︷ ︸

i−1

◦(xk, 1, . . . , 1, z)
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For the first component:

(x1z
lxl

1) · · · (x1z
lxl

1)︸ ︷︷ ︸
i−1

x1z
lxl

2 (x2zx
l
2) · · · (x2zx

l
2)︸ ︷︷ ︸

i−1

x2zx
l
3

(x3x
l
3) · · · (x3x

l
3)︸ ︷︷ ︸

i−1

x3x
l
4 · · · (xkx

l
k) · · · (xkx

l
k)︸ ︷︷ ︸

i−1

xk ≤ x1

For the other components:
1 · · · 1 zl · · · zl︸ ︷︷ ︸

i

z · · · z︸ ︷︷ ︸
i

1 · · · 1 ≤ 1

Therefore Lk ⊆ L(Gk).
For the other direction, we prove that if A ∈ L(Gk) then for 1 ≤ i ≤ k − 1,

every occurrence of ai in Amust be before any occurrence of ai+1 and the number
of ai is the same as the number of ai+1. The first property is given by the basic
types x1, . . . xk of the first component of the derivation of A in Gk. Couples of
xl
i and xi form a list from left to right leaving only one basic type x1. For the

second property, the number of ai is the same as the number of ai+1, because in
the i-th component, basic type z is given by ai as zl and by ai+1 as z (each z
on the right corresponds exactly to one zl on the left).

In the Chomsky hierarchy, a pregroup product grammar can be simulated by
a context-sensitive grammar using contextual rules. Intuitively, in the context-
sensitive grammar, some contextual rules play the role of the free pregroup left
rules (AL) and (INDL) of Definition 2. A second set of contextual rules performs
local “permutations” of simple types that are not in the same component: A
simple type in the i-th component permutes with a simple type in the j-th
component if the first one is before the second one and if i > j.

In fact, the membership problem is clearly a NP problem because if we want to
check that a string is in the language associated to a pregroup product grammar
where the product has N components, we only have to produce an assignment
for each symbol and prove that the N concatenations of each component of the
types are less than or equal to s or 1 which are N polynomial problems.

The conclusion of this remark is that the languages of pregroup product gram-
mars are contextual but most probably several context-sensitive language are
not generated by a pregroup product grammar (the membership problem of the
context-sensitive languages is PSPACE-complete). The next section proves that
the membership problem is also NP-hard. Thus pregroup product grammars are
not mildly context-sensitive [10].

4 Pregroup Product Grammars: NP-Hard

The section presents the main result of the paper: The membership problem for
a particular pregroup product grammar is NP-hard. The proof is based upon
an encoding of any SAT problem. The grammar is based upon the product of 3
free pregroups. As a consequence, the membership problem of pregroup product
grammars is NP-complete at least for pregroup product grammars built with at
least 3 free pregroups.
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The proof uses the product of three copies of the free pregroup on PSAT =
{t, f} with equality as the partial order on basic types. The set of elements of
the pregroup is TSAT = T(PSAT ,=) × T(PSAT ,=) × T(PSAT ,=). The first component
corresponds to the encoding of the formula that we want to satisfy. The two
other components are used to propagate the boolean values of variables.

The formula is transformed into a string and it can be satisfied iff the string is
included in the language generated by a fixed pregroup product grammar GSAT

based upon TSAT .

Definition 7 (Formula Transformation Tn(F )). A boolean formula F that
contains (at most) n variables v1, . . . , vn, operators ∧ (binary conjunction), ∨
(binary disjunction) and ¬ (negation) is transformed into a string Tn(F ) ∈
{a, b, c, d, e,∧,∨,¬}∗. Tn(F ) and [F ]n are defined as follows:

- Tn(F ) = a · · ·a︸ ︷︷ ︸
n

[F ]n e · · · e︸ ︷︷ ︸
n

- [vi]n = b · · · b︸ ︷︷ ︸
i−1

c b · · · b︸ ︷︷ ︸
n−i

d · · · d︸ ︷︷ ︸
n

- [F1 ∨ F2]n = ∨[F1]n[F2]n
- [F1 ∧ F2]n = ∧[F1]n[F2]n
- [¬F1]n = ¬[F1]n

Example 2. A boolean formula is transformed into a string using the prefix no-
tation for operators. The transformations of v1 ∧ v1 and v1 ∨ (v1 ∧ v2) are:

T1(v1 ∧ v1) = a ∧ cd︸︷︷︸
for v1

cd︸︷︷︸
for v1

e

T2(v1 ∨ (v1 ∧ v2)) = aa ∨ cbdd︸︷︷︸
for v1

∧ cbdd︸︷︷︸
for v1

bcdd︸︷︷︸
for v2

ee

Definition 8 (Pregroup Product Grammar GSAT ). The pregroup product
grammar GSAT = ({a, b, c, d, e,∧,∨,¬}, ISAT , t), based upon the product of three
copies of the free pregroup on (PSAT ,=) where PSAT = {t, f}, is defined by the
following lexicon:

ISAT (a) = { (1, tl, 1) , (1, f l, 1) }
ISAT (b) = { (1, t, tl) , (1, f, f l) }
ISAT (c) = { (t, t, tl) , (f, f, f l) }
ISAT (d) = { (1, tl, t) , (1, f l, f) }
ISAT (e) = { (1, t, 1) , (1, f, 1) }
ISAT (∧) = { (ttltl, 1, 1) , (ff ltl, 1, 1) , (ftlf l, 1, 1) , (ff lf l, 1, 1) }
ISAT (∨) = { (ttltl, 1, 1) , (tf ltl, 1, 1) , (ttlf l, 1, 1) , (ff lf l, 1, 1) }
ISAT (¬) = { (tf l, 1, 1) , (ftl, 1, 1) }

We write ≤T(PSAT ,=)
for the partial order of the free pregroup on (PSAT ,=) and

≤SAT for the partial order of the product of the three free pregroups based on
(PSAT ,=). The types assigned to the strings of L(GSAT ) are ≤SAT (t, 1, 1)
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Example 3. The formula v1 ∧ v1 can be satisfied for v1 = true. There exists a
type assignment of the symbols of T1(v1 ∧ v1) = a ∧ cd cd e by GSAT that is
≤SAT (t, 1, 1):

(1, tl, 1)︸ ︷︷ ︸
for a

◦ (ttltl, 1, 1)︸ ︷︷ ︸
for ∧

◦ (t, t, tl)︸ ︷︷ ︸
for c

◦ (1, tl, t)︸ ︷︷ ︸
for d

◦ (t, t, tl)︸ ︷︷ ︸
for c

◦ (1, tl, t)︸ ︷︷ ︸
for d

◦ (1, t, 1)︸ ︷︷ ︸
for e

≤SAT (t, 1, 1)

The formula v1 ∧ ¬v2 can be satisfied for v1 = true and v2 = false. There
exists a type assignment of the symbols of T2(v1 ∧ ¬v2) = aa ∧ cbdd ¬ bcdd ee
by GSAT that is ≤SAT (t, 1, 1):

(1, f l, 1)︸ ︷︷ ︸
for a

◦ (1, tl, 1)︸ ︷︷ ︸
for a

◦ (ttltl, 1, 1)︸ ︷︷ ︸
for ∧

◦ (t, t, tl)︸ ︷︷ ︸
for c

◦ (1, f, f l)︸ ︷︷ ︸
for b

◦ (1, f l, f)︸ ︷︷ ︸
for d

◦ (1, tl, t)︸ ︷︷ ︸
for d

◦

(tf l, 1, 1)︸ ︷︷ ︸
for ¬

◦ (1, t, tl)︸ ︷︷ ︸
for b

◦ (f, f, f l)︸ ︷︷ ︸
for c

◦ (1, f l, f)︸ ︷︷ ︸
for d

◦ (1, tl, t)︸ ︷︷ ︸
for d

◦ (1, t, 1)︸ ︷︷ ︸
for e

◦ (1, f, 1)︸ ︷︷ ︸
for e

≤SAT (t, 1, 1)

Theorem 2. A boolean formula F that contains (at most) n variables v1, . . . , vn,
operators ∧ (binary conjunction), ∨ (binary disjunction) and ¬ (negation) can
be satisfied iff Tn(F ) ∈ L(GSAT )

Example 4. Example 3 shows two formulas that can be satisfied. Their trans-
formations using Tn are in L(GSAT ). The formula v1 ∧ ¬v1 cannot be satisfied.
A type assignment of T1(v1 ∧ ¬v1) = a ∧ cd ¬cd e by GSAT would produce the
following type where for 1 ≤ i ≤ 11, xi ∈ {t, f}, x2 = x3 ∧ x4 and x7 = ¬x8

(both equalities come from entries of ∧ and ¬ of the lexicon ISAT – we identify
here true with t and false with f):

(1, xl
1, 1)︸ ︷︷ ︸
a

◦ (x2x
l
3x

l
4, 1, 1)︸ ︷︷ ︸
∧

◦ (x5, x5, x
l
5)︸ ︷︷ ︸

c

◦ (1, xl
6, x6)︸ ︷︷ ︸
d

◦

(x7x
l
8, 1, 1)︸ ︷︷ ︸
¬

◦ (x9, x9, x
l
9)︸ ︷︷ ︸

c

◦ (1, xl
10, x10)︸ ︷︷ ︸
d

◦ (1, x11, 1)︸ ︷︷ ︸
e

The type must be ≤SAT (t, 1, 1). Therefore, x2x
l
3x

l
4x5x7x

l
8x9 ≤T(PSAT ,=)

t,

xl
1x5x

l
6x9x

l
10x11 ≤T(PSAT ,=)

1 and xl
5x6x

l
9x10 ≤T(PSAT ,=)

1. As a consequence,
x2 = t, x3 = x7, x4 = x5, x8 = x9, x1 = x5, x6 = x9, x10 = x11, x5 = x6 and
x9 = x10. There is no solution to all these equations: The transformation of the
formula v1 ∧ ¬v1 through T1 is not in L(GSAT ).

Proof. Firstly, we prove that if a formulaF on variables v1, . . . , vn can be satisfied,
then Tn(F ) is in L(GSAT ). Let (x1, . . . , xn) ∈ {true, false}n be an assignment of
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variables v1, . . . , vn that satisfies F . Using the assignment, the occurrences of the
variables and the occurrences of the operators of F can be annotated by boolean
values that correspond to the value of the variable or the output value of the op-
erator plus the input value for ¬ or both input values for ∨ and ∧. Of course,
the boolean values associated to an operator follow the truth table of the corre-
sponding boolean operator. Now, we can assign a type in ISAT to each symbol of
Tn(F ):

– The assignment of the i-th a in Tn(F ) = a · · ·a︸ ︷︷ ︸
n

[F ] e · · · e︸ ︷︷ ︸
n

corresponds to the

value xn+1−i of the (n+1− i)-th boolean variable vn+1−i. If xn+1−i is true,
the occurrence is assigned to (1, tl, 1), otherwise, it is assigned to (1, f l, 1).

– The assignment of the i-th e in Tn(F ) = a · · · a︸ ︷︷ ︸
n

[F ] e · · · e︸ ︷︷ ︸
n

corresponds to the

value xi of the i-th variable. If xi is true, the occurrence is assigned to (1, t, 1)
otherwise to (1, f, 1)

– The i-th b or c in [vj ]n = b · · · b︸ ︷︷ ︸
j−1

c b · · · b︸ ︷︷ ︸
n−j

d · · · d︸ ︷︷ ︸
n

corresponds to the value xi of

the i-th variable. If i = j, we have c. Then, if xi is true, the occurrence is
assigned to (t, t, tl) otherwise to (f, f, f l). If i �= j, we have b. If xi is true,
the occurrence is assigned to (1, t, tl) otherwise to (1, f, f l).

– The i-th d in [vj ]n = b · · · b︸ ︷︷ ︸
j−1

c b · · · b︸ ︷︷ ︸
n−j

d · · · d︸ ︷︷ ︸
n

corresponds to the value xn+1−i of

the (n+ 1− i)-th boolean variable vn+1−i. If xn+1−i is true, the occurrence
is assigned to (1, tl, t), otherwise, it is assigned to (1, f l, f).

– For ¬ in [¬F1]n = ¬[F1]n, the assignment of variables v1, . . . , vn that satisfies
F induces a boolean value to the sub-formula F1 that is either true or false.
The output value of ¬F1 is the opposite value (false for true and true for
false). Thus, ¬ is assigned to (tf l, 1, 1) if the input is false and the output
is true or to (ftl, 1, 1) if the input is true and the output is false.

– For ∧ in [F1 ∧ F2]n = ∧[F1]n[F2]n, the assignment of variables v1, . . . , vn
that satisfies F , induces a boolean value to each sub-formula F1 and F2. The
output follows the truth table of the logical “and” operator. Following the
input values, the assignment of ∧ is given by the following table (the values
of the inputs are reverse in the type because they appeared as left adjoints
tl or f l):

F1(x1, . . . , xn) F2(x1, . . . , xn) ∧

true true (ttltl, 1, 1)
true false (ff ltl, 1, 1)
false true (ftlf l, 1, 1)
false false (ff lf l, 1, 1)

– ∨ is very similar to ∧ except that we follow the truth table of the logical
“or” operator:
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F1(x1, . . . , xn) F2(x1, . . . , xn) ∨

true true (ttltl, 1, 1)
true false (tf ltl, 1, 1)
false true (ttlf l, 1, 1)
false false (ff lf l, 1, 1)

Now, we create three derivations (one for each component) that prove that the
type assignment of Tn(F ) (with the values x1, . . . , xn for the boolean variables
v1, . . . , vn) is ≤SAT (t, 1, 1). The first component starts with s ≤T(PSAT ,=)

t,

the other components with 1 ≤T(PSAT ,=)
1. The applications of (AL) on the

first component follow the syntactic tree of F written with the prefix notation
for binary operators ∧ and ∨. For this component, only the assignments of c,
¬, ∧ and ∨ are important (the other symbols are assigned to 1 in the first
component). The application of rule (AL) between an occurrence of f l (on the
left) and an occurrence of f (on the right) corresponds to the link between the
output of a variable or an operator that is false and one of the inputs of an
operator. Similarly the application of rule (AL) between an occurrence of tl (on
the left) and an occurrence of t (on the right) corresponds to the propagation
of the true value. The basic type t that remains at the end is the value of the
main operator or variable. It is t because F is true in this case. The two other
components are used to synchronize the value given to each occurrence of the
variables v1, . . . , vn (each c in Tn(F )). For each occurrence of vi, this is done
on the complete vector of variables v1, . . . , vn but only one of the values (the
value that corresponds to vi) is copied into the first component. If we write
true = t and false = f and if we only look at the second and third components,
we have, for [vi]n, the type x1 · · ·xn xn

l · · ·x1
l for the second component and

the type x1
l · · ·xn

lxn · · ·x1 for the third component. The n occurrences of a in
Tn(F ) give the type xn

l · · ·x1
l for the second component and 1 for the third.

The n occurrences of e give the type x1 · · ·xn for the second component and
1 for the third. Obviously, if we write X = x1 · · ·xn, the global type of the
second component is X︸︷︷︸

for a

X lX︸ ︷︷ ︸
for vi1

· · · X lX︸ ︷︷ ︸
for vim

X l︸︷︷︸
for e

which is ≤T(PSAT ,=)
1. For the

third component, each variable corresponds to X lX , which is ≤T(PSAT ,=)
1. Thus,

the type assigned to Tn(F ) using x1, . . . , xn for v1, . . . , vn is ≤SAT (t, 1, 1) and
Tn(F ) ∈ L(GSAT ).

The reverse inclusion proves that if F is a boolean function with n variables
v1, . . . , vn and if Tn(F ) ∈ L(GSAT ) then F can be satisfied. The derivations of
the three components that prove that a type assignment of Tn(F ) by ISAT is
≤SAT (t, 1, 1) only use rule (AL). The other rules (except for the applications of
(Id) giving t ≤T(PSAT ,=)

t for the first component and giving 1 ≤T(PSAT ,=)
1 for

the second and third components and the cut rule) are never used in the system
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because the right part of the inequalities is either a basic type t for the first
component or the unit for the other components and because the partial order
on the simple types of the free pregroup is equality. Moreover, GSAT only uses
the four simple types t, tl, f , and f l and an assignment of each symbol of Tn(F )
gives always the same formula when basic types t and f are identified. Thus,
there exists at most one class of equivalent derivations of any type assignment of
Tn(F ) if we look at the set of applications of rule (AL) in the three components of
the type assignment. In a derivation, each application of (AL) corresponds to an
“axiom” between one tl on the left and one t on the right or between one f l on the
left and one f on the right (as it is shown in Example 1) and all the “axioms” form
a projective structure (like the couples of corresponding parentheses in a string
of the Dyck language). The class of equivalent derivations (some applications
of (AL) can commute) must correspond to the construction shown above: The
first component corresponds to the applications of rule (AL) that propagate the
output of variables and operators to the inputs of the corresponding operator
in F . The remaining basic type of the first component (f or t) is the output
of F . The second and the third components synchronize the variables in such
a way that all the occurrences of the same variable have the same value. Now,
if Tn(F ) ∈ L(GSAT ), the type assignment of the symbols of Tn(F ) is such that
the variable vi has the value corresponding to the second component of the type
assignment of the i-th e of Tn(F ): if it is (1, t, 1), vi is set to true, if it is (1, f, 1)
vi is set to false. For this set of values, the first component of the assignment of
Tn(F ) is ≤T(PSAT ,=)

t. This means that the value of F is true when the variables
v1, . . . , vn are set to the values above. Thus F can be satisfied.

Of course because the membership problem in L(GSAT ) is a NP problem, this
problem is NP-complete. As a consequence, the membership problem of L(G)
when G is a pregroup product grammar is also NP-complete. The problem is
still open for pregroup product grammar based of two free pregroups but this
problem is most probably NP-complete.

5 Conclusion

The article introduces pregroup product grammars, grammars based of the prod-
uct of free pregroups. It is shown that the class of languages is very expressive.
For instance, {xi

1 · · ·xi
N | i ≥ 1} for any N ≥ 1 can be generated. However, the

membership problem is NP-complete. Thus even if they are much more expres-
sive, pregroup product grammars are less interesting than pregroup grammars
with respect to the complexity of the membership problem.
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Distributional Semantics: A Montagovian View

Raffaella Bernardi

DISI, University of Trento

Abstract. This paper describes the current status of research in Distri-
butional Semantics looking at the results from the Montagovian tradi-
tion stand point. It considers the main aspects of the Montagovian view
as binoculars to observe those results, in particular: compositionality,
syntax-semantics interface, logical words and entailment. To this end, it
reviews some work that aims to tackle those issues within the Distri-
butional Semantics Models and tries to highlight some open questions
formal and distributional semanticists could address together.

Credits: Some of the material in the background section is based on
distributional semantics talks by Marco Baroni, Stefan Evert, Alessandro
Lenci and Roberto Zamparelli.

1 Introduction

This paper is not a research paper, no new results are reported. Its aim is to
bridge two research communities working on related questions using different but
compatible methods in order to profit of each other results. The main question
they share is how we can formally capture natural language semantics. In other
words, how can a computer processes linguistic expressions like “Two men play a
game”, “Some people play chess” and “Some people play music” and realize that
the second sentence is semantically similar to the first, but not to the last one
– e.g. the first two sentences can be the descriptions of the same image whereas
the last one describes a different event, even though it shares several words
with the other sentences. To answer this question, formal semanticists employ
a logic framework and exploit its reasoning apparatus, whereas distributional
semanticists look at how natural language is used by inducing statistical based
representations and exploiting vector semantic space tools. Of course, none of the
two communities has reached a final answer, but both have discovered interesting
aspects of natural language that can possibly converge within an integrated
enterprise. To reach our aim, we will first briefly introduce the core concepts
at the heart of the two approaches (Section 2) and then look at distributional
semantics with the eyes of formal semanticists (Section 3).

2 Background

In this section, we describe our standing point by briefly introducing the core
concepts of Logic and its application to natural language analysis. We will then
look at Distributional Semantics from these formal semantics pillars.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 63–89, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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2.1 From Logic to Language: The Montagovian Pillars

In Logic, the interpretation of a complex formula depends on the interpretation
of the parts and of the logical operators connecting them (compositionality).
The interpretation of the logical operators determines whether from a set of
propositions a given proposition follows: {ψ1, . . . ψn} |= φ. The entailment |=
is said to be satisfiable when there is at least one interpretation for which the
premises and the conclusion are true; falsifiable when there is at least one inter-
pretation for which the premises are true and the conclusion is false; and valid
when the set of interpretations for which the premises are true is included in
the set of interpretations for which the conclusion is true (logical entailment.)
These two aspects have been used to formalize natural language meaning too.
The starting point has been Frege’s solution to the following puzzle: There is the
star a called “venus”, “morning star” and “evening star” that are represented
in First Order Logic (FOL) by venus′, morningst′, eveningst′: [[venus′]] = a,
[[morningst′]] = a and [[eveningst′]] = a. a is the meaning (reference) of these
linguistic signs. Checking whether it is true that (i) “the morning star is the
morning star” or that (ii) “the morning star is the evening star” ends up check-
ing that (i) [[morningst′]] = [[morningst′]] and (ii) [[morningst′]] = [[eveningst′]],
both of which reduce to checking a = a. But checking whether (i) “the morning
star is the morning star” or that (ii) “the morning star is the evening star” can-
not amount to the same operation since (ii) is cognitively more difficult than (i).
Frege solved this puzzle by claiming that a linguistic sign consists of a Bedeutung
(reference), the object that the expression refers to, and a Sinn (sense), mode
of presentation of the reference. Moreover, he claimed that natural language
meaning can be represented by a logical language.

Following Frege, formal semanticists’ aim has been to obtain FOL representa-
tions of natural language expressions compositionaly. A crucial contribution to
this research line has come from Montague [36], hence we can refer to the general
framework as the Montagovian view. Formal semanticists have wondered what
the meaning representation of the lexical words is, and which operation(s) put
the lexical meaning representation together. The most largely shared view takes
syntax to drive the order of composition. In particular, to assemble the syntactic
structure Montague employed Categorial Grammar (CG) in which syntactic cat-
egories are seen as functions – A\B (or B/A), a function that wants an argument
A on the left (resp., on the right) to return an expression of category B – and
their composition as function application. The Categorial Grammar view has
been further elaborated into a Logical Grammar by [30], the general framework
is known as Type Logical Grammar [37,38]. In it the connection between syntax
and semantics has been tied up at both lexical and grammatical level as we
will better see in the sequel. In brief, the core components of the Montagovian
framework are:

Compositionality. The meaning representation of a phrase depends on the mean-
ing representation of its parts and the way they are put together.
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Syntax-semantics Interface. The meaning representation assembly is guided by
the derivational structure and a tight connection must be established between
domains of interpretation and syntactic categories. This connection can be cap-
tured by defining a mapping between semantic types and syntactic categories.

Logical words and Entailment. Entailment between phrases consisting only of
content words is model dependent (it corresponds to satisfiability), entailment
between phrases consisting also of logical (grammatical) words is model inde-
pendent (it corresponds to validity.)

In the following, first we introduce the general background at the heart of
Distributional Semantics Models (DSMs), then we zoom into those models that
account for compositionality in the light of the main issues summarized above

2.2 Distributional Semantics Models

As with any framework, in order to understand and appreciate the results
achieved, the main research questions of the people working on the framework
should be clear. For DSMs we can say the key questions have been the following
ones: 1.) What is the sense of a given word?; 2.) how can the sense be induced
and represented? and 3.) how do we relate word senses (synonyms, antonyms,
hyperonym etc.)?1 Well established answers supported by several evaluations are
1.) The sense of a word can be given by its use, viz. by the contexts in which
it occurs; 2.) it can be induced from (either raw or parsed) corpora and can be
represented by vectors (viz., tensors of order one); 3.) vector cosine similarity
captures synonyms (as well as other semantic relations).

Today DSMs found their inspiration in ideas of the Fifties: First of all, [50]
claims that word usage can reveal semantics flavor; [25] observed that words that
occur in similar (linguistic) context tend to have similar meanings, [47] looked
at the applied side of these ideas by considering co-occurrence frequency of the
context words near a given target word to be important for word sense disam-
biguation in machine translation tasks; and the famous slogan of the framework
“you shall know a word by the company it keeps” is due to [17]. Finally, [15]
put these intuitions at work. To easily capture the main intuition behind Firth’s
slogan, we can consider the example by [33] who show how everyone can get the
meaning of a made-up word like wampimuk by looking at the contexts in which
it is used, for instance “He filled the wampimuk with the substance, passed it
around and we all drunk some” and “We found a little, hairy wampimuk sleep-
ing behind the tree” would suggest that wampimuk is a liquid in the first case
and an animate thing in the second. Based on these kinds of observations, peo-
ple have developed formal DSMs, implemented and evaluated them on several
semantic tasks.

1 The use of “sense” (as in Frege terminology) is not standard and may found oppo-
nents, but we believe it’s useful to highlight the different perspective natural language
is looked at within distributional and formal semantics models.
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Definition. A Distributional Semantics Model is a quadruple 〈B,A, V, S〉, where:
B is the set of “basis elements” – the dimensions of the space; A is a lexical
association function that assigns co-occurrence frequency of target words to the
dimensions; V is an optional transformation that reduces the dimensionality of
the semantic space; and S is a similarity measure. The results of the model can
be depicted for instance by the picture below taken from [35].

Toy example. To better understand the main points, let us take as toy exam-
ple vectors in a 2 dimensional space, such that B = {shadow, shine}; A= co-
occurency frequency; and S the Euclidean distance. Let’s take as target words:
moon, sun, and dog and consider how often they co-occur with the basis elements:

The Euclidean distance shows that sun is “closer” to moon than to dog.
The two dimensional space representation give −−−→moon=(16,29), −−→sun= (15,45),−→
dog=(10,0) that live together in a space representation (a matrix, dimensions ×
target-words): [

16 15 10
29 45 0

]
The most commonly used representation is the transpose matrix: target-words

× dimensions:
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shine shadow
−−−→moon 16 29
−−→sun 15 45
−→
dog 10 0

The dimensions are also called “features” or “contexts”.

Standard DSMs. In standard DSMs, words are taken to be all in the same
space; the space dimensions are the most k frequent words, minus the “stop-
words”, viz. high-frequency words with relatively low information content, such
as grammatical words (e.g. of, the, and, them, . . . ). Hence, they may be around
2k-30K or even more; and they can be plain words, words with their part of
speech (PoS), words with their syntactic relation. Hence, a text needs to be:
tokenized, normalized (e.g., capitalization and stemming), annotated with PoS
tags (N, J, etc.), and if required also parsed (to extract the syntactic relations).
Instead of plain counts, the values can be more significant weights of the co-
occurrence frequency: tf-idf (term frequency (tf) × inverse document frequency
(idf)): an element gets a high weight when the corresponding term is frequent in
the corresponding document (tf is high), but the term is rare in other documents
of the corpus (df is low, idf is high.) [27]; or PMI (pointwise mutual information):
measure how often two events x and y occur, compared with what we would
expect if they were independent [7]. Finally, the many dimensions can be reduced
so to obtain a matrix of a lower dimensionality (a matrix with less – linearly
independent – dimensions) by either Singular Value Decomposition (SVD) that
generalizes over sparser surface dimension by capturing “latent dimensions” or
Random Indexing that improves efficiency by avoiding constructing too large
matrices when not necessary.

Observation I. We can say that formal semanticists focused on “meaning” as
Bedeutung, whereas distributional semanticists studied “meaning” as Sinn.

Observation II. We can say that formal semanticists have been interested in
entailment as validity (entailment driven by logical words), whereas distribu-
tional semanticists have looked more to entailment as satisfiability (ISA-relation
between content words).

2.3 Distributionality from the Montagavian View

Below we review some state-of-the art approaches to DSM beyond lexical mean-
ing in the light of the Montagavian pillars and the type-logical view that has
been developed based on it. In particular, we will briefly look at [35,12,43] and
more in depth at [3]. The reader interested in a complete overview of DSMs is
referred to [45].
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Compositionality. All the work under consideration tackle the issue of composi-
tionality and adopt the assumption that the meaning of the whole depends on the
meaning representation of its parts. [35] take all constituents to be represented
by vectors which combine together to produce a new vector and investigate
possible vector composition operations; they focus their evaluation of such op-
erations by looking at small phrases consisting of a head and a modifier or
complement, and consider the class of additive and multiplicative operations to
carry out the composition. As we will see below, the others instead use also ten-
sors of order higher than vectors for capturing how a word can act on the word
it composes with.

Syntax-Semantics Interface. The importance of taking the relation between the
semantic composition and the syntactic structure into account is also discussed
in all the work, though it is implemented in different ways and the strength of
the connection varies from the very soft relation presented in [35] and [43] to the
very tight one considered in [12,3].

[35] take syntax into account at least theoretically by presenting a flexible
framework that covers under its umbrella several proposals. They consider the
possibility of making the composition operation to depend on the syntactic rela-
tion. Formally, they define the result of the composition to be p = f(u,v, R,K)
where R and K stand for the syntactic relation and the background knowl-
edge, respectively. However, to simplify the implementation of the model, in
practice they ignore K as well as the variety of function compositions based on
the different syntactic relations. Moreover, they assume that the value vector
p lies in the same space as u and v. This essentially means that all syntactic
categories correspond to semantic space of the same dimensionality. As the au-
thors notice, the simplification may be too restrictive as it assumes that verbs,
nouns, and adjectives are substantially similar enough to be represented in the
same space, but it makes the implementation computationally simpler and the
approach more feasible. Theoretically, they mention the possibility of consider-
ing the composition function to be asymmetric, for instance, as the action of a
matrix, U, representing one constituent, on a vector, v, representing the other
constituent: p = Cuv = Uv – as the authors notice, this is essentially [5]’s ap-
proach to adjective-noun composition to which we return below. Similarly, [43]
take a softer approach to the syntax-semantics interface and consider all words
to have the same type of representation: a matrix and a vector. The matrix com-
ponent expresses the ability of (any) word to act on another when composing
with it, each matrix word is composed with the lexical vector of the other word,
the result of such composition is still a pair of a vector and a matrix; the vector
is obtained by projecting the two matrix product results to the lexical vector
space and the matrix is produced by projecting the pairing of matrices back to
the matrix space. Hence, the role of the syntax is reduced to the minimum, it
just provides the structure of the composition. We will look at how [12] and [3]
handle the syntax-semantics interface in Section 3.1
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Logical Words and Entailment. As emphasized by P. Bosch in his ESSLLI ’08
talk, research on DSMs has traditionally focused on content words (open word
class) whereas logical words (closed word class), like determiners, coordination,
modals, prepositions have been neglected. However, if we aim to reach a compo-
sitional DSM able to capture the distributional meaning of sentences, we might
need to encode the contribution of e.g. every and no in the sentences “few dogs
chase cats” vs. “no dog chases cats”. Ed Hovey in his IWCS ’11 talk discusses
his intuitions regarding logical words, like negation of content words (not hard)
and modal alteration of them (possibly hard) and claims that these expressions
cannot be represented by tensors harvested from corpora but that they should
be considered as operators: e.g. negation should negate the values of the tensors
it composes with. Like Bosch and Hovey, we believe that researchers working
on DSMs should go beyond lexical meaning and consider also phrases and sen-
tences (a challenge that has been taken up by several research groups in the
last few years), and we also believe that in this perspective it is time to consider
grammatical words too (a challenge that is mostly overlooked); however, we raise
doubts on Hovey’s claim that considers grammatical words as pre-defined oper-
ators. In our view, the new question the DSM community might have to answer
is whether from a distributional stand point there is a real distinction between
grammatical and content words and if so to what extend. Do we really need
to consider content words as given by their distribution and the grammatical
words as pre-defined or do we instead need to change the distributional contexts
to look at for capturing the meaning of the grammatical ones? We believe that a
correct way to think of the issue should come from the observation of what leads
a speaker to use for instance a determiner instead of another when expressing
similar quantities (for instance, few vs. a few, many vs. several.) In the sequel
(Section 3.2 and Section 3.3), we will review some preliminary work on this class
of words within DSM.

3 The Montagovian Pillars within DSM

3.1 Syntax-Semantics Interface

Following the type logical view to the syntax-semantics interface, the connec-
tion between the two natural language levels needs to be captured by both the
vocabulary and grammar rules; below we look at these two levels within DSMs.

Syntactic Categories and Semantic Types. In the type-logical view, a
first step to establish the tight formal connection between syntax and seman-
tics is achieved by defining a mapping between syntactic categories and se-
mantic types, based on the assumption that expressions belonging to the same
syntactic categories find their meaning in the same denotational domains and
hence receive meaning representations of the same types. For instance, if one
assumes that determiner phrases (category: DP) denote in the domain of enti-
ties (type: e), and sentences (category: S) denotes in the domain of truth values
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(type: t), viz. Type(DP )=e and Type(S) = t, and that Type(A\B) = Type(B/A)
= Type(A) → Type(B), then Type(DP\S) = e → t, and Type((DP\S)/DP ) =
e→ (e→ t).

This idea has been imported into the DSM realm in [9] (and in the extended
version in [12]) where the authors assign to a lexical entry the product between
the pregroup category and the vector in the tensor space, using a mathematical
structure that unifies syntax and semantics. The use of pre-groups as grammar
to analyse linguistic structure traces back again to Lambek [31,32]. [8] discusses
the same framework in terms of multi-linear algebra providing a more concrete
and intuitive view for those readers not familiar with category theory. At the
level of lexical and phrasal interpretation, [9,12,8] import Frege’s distinction
into DSMs by representing “complete” and “incomplete” expressions as vectors
and as higher-order tensors, respectively, and consider the syntax-semantics link
established between syntactic categories and semantic types. For instance, a
transitive verb has syntactic category DP r · S · DP l (that corresponds to the
functional CG category (DP\S)/DP ) and semantic type N ⊗ S ⊗ N , since
expressions in DP and S are taken to live in the semantic space of type N and
S, respectively, and the transitive verb relates these vector spaces via the tensor
product (⊗): its dimensions are combinations of those of the vectors it relates. As
clearly explained in [8], the verb vector can be thought of as encoding all the ways
in which the verb could interact with a subject and object in order to produce a
sentence, and the composition (via inner product) with a particular subject and
object reduces those possibilities to a single vector in the sentence space. Several
implementations of this framework have been proposed, e.g., [21,22,13,28], but
the connection between the syntactic categories and semantics types has been
maintained only in [20].

The mapping between syntactic categories and semantic type is fully em-
phasised and employed in [3]. In the remaining of the paper, we will focus on
this work. The authors generalize the distinction discussed in [5] between vec-
tors (atomic categories, e.g., nouns) and matrices (one-argument function, e.g.,
adjectives) starting, as in the type-logical view, from defining a mapping from
syntactic categories to semantic types, as specified below.2

Type(a) = Ca (for a atomic)
Type(A\B) = Type(B/A) = CA → CB

In denotational semantics the semantic types indicate the type of the domain
of denotation (for instance, john is of type e: it denotes in the domain of entities,
De, whereas walks is of type e → t and denotes in the corresponding domains
of functions from entities to truth values, De→t); in distributional semantics [3]
take types to stand for the semantics space in which the expression lives, namely
the contexts or context transformations. Words that live in the space of vectors
have an atomic type, whereas functional types are assigned to words that act
as space mappings (context transformations): matrices (that is, second order
tensors) have first order 1-argument functional types, third order tensors have

2 [3] adopt the alternative notation: Type(B\A) = Type(B/A) = CA → CB .
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first order 2-argument functional types, etc. In general, they assume that words
of different syntactic categories live in different semantic spaces. As it is the
case in formal semantics, where nouns and verb phrases are both functions from
entities to truth values, one could decide that two different syntactic categories
are mapped to the same semantic types – live in the same semantic space. [3]
take as atomic categories N (noun), DP (determiner phrase) and S (sentence);
their types are indexed to record the number of dimensions of the corresponding
semantic space: Type(N) = Cni , Type(DP ) = Cdpj , Type(S) = Csk – where C
stands for context – whereas the types of the complex categories are obtained
by the definition above.

Again following Montague, [3] consider a fragment of English that represents
the variety of tensor composition the DSM should be able to cover both the-
oretically and practically. As vocabulary, they consider words in the syntactic
categories listed in the table below. For sake of clarity, in the table next to the
syntactic category we indicate also the corresponding semantic type as well as
the order of the corresponding DS representation. In the sequel, following the
standard practice, we will be using boldface lowercase letters, e.g., a, to repre-
sent a vector, boldface capital letters, e.g., A, to represent a matrix and Euler
script letters, e.g., X , to represent tensors of order higher than two.

Relative pronouns (RelPr) in subject or object positions should ideally re-
ceive the same syntactic category in CG. This can be done using other con-
nectives besides the traditional functional ones (\ and /), but since the focus
is on the syntax-semantics interface rather than about syntactic issues per se,
the authors adopt the easiest CG solution and consider two syntactic categories:
(N\N)/(DP\S) for subject gap and (N\N)/(S/DP ) for object gap, both map-
ping to the same semantic type.

Before going to look at how the relation between syntax and semantics is cap-
tured at the grammar rules level, we will still report some observation regarding
CG categories within DSMs.

Table 1. Syntax-Semantics interface of an English Fragment

Lexicon

Syn Cat CG Cat Semantic Type Tensors

N N Cni I vector (1st ord.)
NNS DP Cdpj J vector (1st ord.)
ADJ N/N Cni → Cni I × I matrix (2nd ord.)
DET DP/N Cni → Cdpj J × I matrix (2nd ord.)
IV DP\S Cdpj → Csk K × J matrix (2nd ord.)
TV (DP\S)/DP Cdpj → (Cdpj → Csk ) (K × J)× J (3rd ord.)
Pre (N\N)/DP Cdpj → (Cni → Cni) (I × I)× J (3rd ord.)
CONJ (N\N)/N Cni → (Cni → Cni) (I × I)× I (3rd ord.)
CONJ (DP\DP )/DP Cdpj → (Cdpj → Cdpj ) (J × J)× J (3rd ord.)
RelPr (N\N)/(DP\S) (Cdpj → Csk) → (Cni → Cni) (I × I)× (K × J) (higher ord.)

(N\N)/(S/DP )
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Empirical Coverage. [39] has analysed two large corpora,Wikipedia and ukWaC3

parsed with a Combinatorial Categorial Grammar (CCG) parser [10,26] aiming
to understand which type of categories, hence tensors, are more frequent in nat-
ural language structures. From this analysis it results that in Wikipedia there
are around 902M (ukWaC: around 1.8M) tokens belonging to an atomic cate-
gory (vector); around 632M (ukWaC: around 1.4M) tokens belonging to a one-
argument function category (matrices); around 114M (ukWaC: around 282M)
tokens belonging to a two argument function category (3rd order tensor), and
around 189M (uKaWac: 469M) tokens belonging to a tensor higher than 3; hence
the large majority of tokens (around 90% in Wikipedia and 40% in ukaWaC)
would be represented by a tensor of the order discussed in [3] and reviewed
above.

Learning the Vocabulary. The vector representations of words belonging to
atomic categories are obtained as explained above by harvesting the
co-occurrence frequency and possibly converting them by means of some weight-
ing schema. For the distributional functions, [5] propose to use regression meth-
ods. They look at adjective noun phrases, ADJ N, which again belong to the
category of nouns and hence are represented by vectors as the modified noun. In
other words, the distributional function is learned from examples of its input and
output vectors extracted from the corpus; for instance, the matrices RED will
be learned from vector pairs like (army, RED army), (apple, RED apple),
etc. Standard machine learning methods are used to find the set of weights in
the matrix that produces the best approximations to the corpus-extracted ex-
ample output vectors when put together with4 the corresponding input vectors.
This method has been generalized to work with n-argument functions in [20].
In particular, when a function returns another function as output (e.g., it acts
on a vector and generates a matrix) we need to apply a multiple-step regres-
sion learning method, inducing representations of example matrices in a first
round of regressions, and then using regression again to learn the higher-order
function. [20] have worked on transitive verbs. A transitive verb such as eat is
a third-order tensor (e.g. (2 × 4)× 4 tensor, that takes an object, a DP repre-
sented by a 4-dimensional vector (e.g., cake) to return the corresponding V P
(“eat cake”, a 2 × 4 matrix). To learn the weights of such tensor, [20] first use
regression to obtain examples of matrices representing verb-object constructions
with a specific verb. These matrices are estimated from corpus-extracted exam-
ples of <subject, subject verb object> vector pairs (picking subject-verb-object
structures that occur with a certain frequency in the corpus, in order to be able
to extract meaningful distributional vectors for them). After estimating a suit-
able number of such matrices for a variety of objects of the same verb (e.g.,
“eat cake”, “eat meat”, “eat snacks”), they use pairs of corpus-derived object
vectors and the corresponding verb-object matrices estimated in the first step as

3 Wikipedia English articles: around 820 million words, and ukWaC: around 2 billion
words.

4 We will see that the composition operation used is the product.
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input-output examples in a second regression step, where the verb tensor com-
ponents are determined.

CG Category Based DSMs. As we have mentioned above, the dimensions of stan-
dard DSMs have been taken to be words tagged with PoS tags or words labeled
with dependency relations. Differently from this tradition, [39] exploits the rich-
ness of the CG categories to build a DSM model harvested from the large corpora
parsed with the CCG parser mentioned above. We briefly report the results ob-
tained. The model (CCG-DSM) has the 20K most frequent CG categories tagged
words as dimensions, and the 10K most frequent nouns, 5K most frequent verbs,
5K most frequent adjectives as target words. The co-occurrence matrix harvested
from the corpus has been converted by means of different weighting schema and
reduced to 300 dimension by SVD. The model has been evaluated against a
noun and verb clustering task as proposed in [4]. Interestingly, the CCG-DSM
model outperforms both the one based on plain PoS-tagging and the one based
on dependency relation-tagging in clustering verbs. The data-set, used for the
evaluation, contains 45 verbs divided into five classes/clusters, viz. cognition: 10,
motion: 15, body: 10, exchange: 5, change state: 5. The clustering has been done
using CLUTO and evaluated with the standard clustering measures of entropy
(clusters’ level of disorder) and purity (proportion of the most frequent class in
the cluster). The best performing results have been obtained with the Exponen-
tial Point-wise Mutual Information (epmi) weighting schema and the 2 window
context (the 2 words on the left and the 2 words on the right of the target word).
The measures are: entropy 0.305 (CCG-DSM) vs. 0.556 (dependency-DSM), pu-
rity 0.756 (CCG-DSM) vs. 0.667 (dependency-DSM). These results on the one
hand confirm that the syntactic structure (encoded in the CG categories) plays
a role in the distributional meaning of words, and on the other show that CG
categories do carry important semantic information too.

Lambek’s Lesson: Function Application and also Abstraction. As we
explained earlier natural language expressions can correspond to first order or
higher-order functions and can require one or more argument. Moreover, at the
syntactic level, functions are directional (A\B vs. B/A), since in natural lan-
guage function-argument order matters. Hence, CG and the type-logical gram-
mar based on it consist of two function application rules: backward (when the
argument is on the left of its function) and forward (when the argument is on
the right of its function.)

Function application has been the main focus of several work aiming at com-
bining CG-like syntax with DSMs. As mentioned above [9,12,5] have been among
the pioneers of such enterprise. As anticipated earlier, [5] look at how an adjec-
tive modifies a noun by employing the matrix-by-vector product (see below) that
allows a matrix (the adjectives, ADJ) to act on a vector (the noun, N) resulting
in a new vector (a new noun, ADJ N). Interestingly, the authors show a great
advantage of the DSM over the Formal Semantics one when dealing with com-
position of content words, namely they show that the same adjective modifies
their argument differently accordingly to which is the noun it composes with
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(for instance, “red apple” vs. “red army”.) However, the authors, by focusing
on the adjective-noun constructions, do not consider the variety of syntactic-
semantics constructions natural language exhibits. [3] extend the approach to
further cases generalizing the matrix-by-vector composition to handle n-argument
functions and follow the type-logical framework exploiting the correspondence
between Lambek and Lambda calculi. Again, we will report on this work and
refer the reader to the cited bibliography for related work.

One of the earlier contribution of Lambek mathematical view to the natu-
ral language parsing problem is the discovery of the inverse rule of function
application, namely abstraction. Lambek highlighted that if a structure can
be composed, it can also be de-composed, in other words if one knows that
w1 : B,w2 : B\A yields w1 w2 : A she also knows that e.g. w1 : A/(B\A).
Hence, the Lambek calculus, in the natural deduction format, consists of both
elimination (function application – composition) and introduction (abstraction –
de-composition) rules of the implicational operators (\ and /). A restricted ver-
sion of abstraction (type raising) is also present in the CG combinatory version,
CCG [44] together with other function composition rules.5

In the type-logical framework, the syntactic trees (derivations) are labelled
with lambda terms that record the operational steps and are therefore called
“proof terms”. Once the proof term of a parsed sentence is built, it can be
replaced with the corresponding semantic representation of the lexical bits in the
linguistic structure parsed. In a Montagovian view they will be replaced with
λ-terms standing for the denotation of the words, in Continuation Semantics
they would be replaced with λ-terms that take context into account (see [6,1]).
In DSM, [3] propose to replace them with the corresponding tensors. Below we
will see this system at work on some toy examples.

Function Application in DSM. [3] propose to use “generalized matrix-by-vector
multiplication” to account for function application defined as below and ex-
plained by means of examples in the sequel. Given input V with shape J1 ×
. . . × Jn and components denoted by Vj1...jn , and a linear transformation en-
coded in a tensorM with shape (I1× . . . ×Im)×(J1× . . . ×Jn) and components

5 From the empirical coverage study conducted in [39] it results that most of the
sentences in the Wikipedia and ukWaC need only forward application (Wikipedia:
around 3M and ukWaC: around 2.6M), backward application (Wikipedia: around
233K and ukWaC: around 391K), or combination of them: Wikipedia: 25M (uKWaC:
48M); hence totally around 28M sentences in Wikipedia (ukWaC: 51M) would re-
quire the generalized matrix-by-vector composition [3] in a rather straight-forward
way; around 2.5M (ukWaC: 4.7M) sentences are parsed also with function composi-
tion (forward or backward) and around 5.8M (ukWac: 15M) sentences require also
backward crossed composition. Furthermore, there are 18M sentences in Wikipedia
and 40M in ukWac that require the conjunction rule, 149K sentences in Wikipedia
and 494K sentences in ukWaC that require generalized backward crossed composi-
tion, and 800K sentences in Wikipedia and 3M sentences in ukWaC that require the
type-raising rule. Of course these numbers are subject to possible mistakes of the
parser.
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denoted by Mi1...imj1...jn , each component Wi1...im of the output tensor W (of
shape I1 × . . . × Im) is given by a weighted sum of all input components as
follows:

Wi1...im =

j1=J1∑
j1=1

. . .

jn=Jn∑
jn=1

Mi1...imj1...jnVj1...jn

The term of the operation is used by the authors to underline the fact that
the general product operation they assume is equivalent to unfolding both the
input and the output tensors into vectors, applying standard matrix-by-vector
multiplication, and then re-indexing the components of the output to give it the
appropriate shape. For example, to multiply a (I × J) × (K × L) fourth-order
tensor by a K × L matrix, they treat the first as a matrix with I × J rows
and K × L columns and the second as a vector with K × L components (e.g.,
a (2 × 3) × (3 × 3) tensor can be multiplied with a (3 × 3) matrix by treating
the latter as a 9 component vector and the former as a 6 × 9 matrix). They
perform matrix-by-vector multiplication and then rearrange the resulting I×J-
sized vector into a matrix of shape I × J (continuing the example, the values in
the 6 component output vector are re-arranged into a 2 × 3 matrix). This is a
straightforward way to apply linear transformations to tensors (indeed, there is
a precise sense in which all tensors with the same shape constitute a “vector”
space). The simple matrix-by-vector multiplication is used straight forwardly to
apply a first-order function to an argument:

f(a) =def F× a = b

where F is the matrix encoding function f as a linear transformation, a is the
vector denoting the argument a and b is the vector output to the composition
process. This is the rule used in [5] to account for the composition of an adjective
with a noun. Let us assume that nouns live in a 2-dimensional space. Hence the
adjective, as a function from nouns to nouns, is a 2 × 2 matrix (it multiplies
with a 2 component vector to return another 2 component vector). See the toy
example in Table 2: suppose old is associated to the toy matrix and applied to
the dog vector, it returns the vector for old dog:

Table 2. The adjective old as the distributional function encoded in the matrix on
the left. The function is applied to the noun dog via matrix-by-vector multiplication
to obtain a compositional distributional representation of old dog (right).

OLD runs barks

runs 0.5 0
barks 0.3 1

×
dog

runs 1
barks 5

=

OLD(dog)

runs (0.5× 1) + (0× 5) = 0.5
barks (0.3× 1) + (5× 1) = 5.3

As observed in [3], in the case of old, we can imagine the adjective having a
relatively small effect on the modified noun, not moving its vector too far from
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its original location (an old dog is still a barking creature). This will be reflected
in a matrix that has values close to 1 on the diagonal cells (the ones whose
weights govern the mapping between the same input and output components),
and values close to 0 in the other cells (reflecting little “interference” from other
features). On the other hand, an adjective such as dead that alters the nature
of the noun it modifies more radically could have 0 or even negative values on
the diagonal, and large negative or positive values in many non-diagonal cells,
reflecting the stronger effect it has on the noun.

We can now look at the function application cases required by the fragment
of English whose vocabulary is presented in Table 1.

(a) A matrix (2nd order tensor) composes with a vector (ADJ N e.g., red dog,
DET N e.g., the dog, DP IV e.g., the dog barks, dogs bark);

(b) A 3rd order tensor composes with two vectors (DP TV DP, dogs chase cats,
N Pre DP, dog with tails, DP CONJ DP dogs and cats)

(c) A higher-order tensor composes with a matrix ((c1) Rel IV, e.g., which barks,
Rel TV DP which chases cats, and (c2) Rel DP TV, which dogs chase)

For instance, when parsing the expressions dogs bark, dogs chase cats and
which chase cats, CG produces the structures and terms in the trees of Figure 1.
To help reading the proof term, we use the @ symbol to indicate the application
of a function to an argument (f@a).

(a) S : (X@Y )

DP : Y

dogs

DP\S : X

bark

(b) S : (X@Y )@Z

DP : Z

dogs

DP\S : X@Y

(DP\S)/DP : X

chase

DP : Y

cats
(c1) N\N : Z@(X@Y )

(N\N)/(DP\S) : Z

which

DP\S : X@Y

(DP\S)/DP : X

chase

DP : Y

cats

Fig. 1. Proof terms: Function application

[3] replace the variables with the corresponding DSM representations obtained
as described above and compute the vectors representing the sentences. In par-
ticular, in the (a) tree X and Y are replaced with the matrix BARK and
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the vector dogs, respectively, giving BARK × dogs; whereas in the (b) tree
X is replaced by the 3rd order tensor representing the meaning of chase, and
Y and Z are replaced with the vectors representing the meaning of dogs and
cats, respectively. Hence, we obtain (CHASE × cats)×dogs. Similarly, for (c1)
WHICH× (CHASE × cats). Once we have built the meaning representation of
the sentence, we can compute its meaning by means of generalized matrix-by-
vector multiplication introduced above.

Below, we simplify the problem by using a toy scenario in which sentences
live in a two dimensional space (Cs2), determiner phrases in a four dimensional
space (Cdp4), and nouns into a three dimensional space (Cn3). As said above, we
have three cases to consider.

(a) Matrix Vector Composition. Matrix vector composition can be exemplified
by the operation composing a determiner phrase and an intransitive verb, as in
the sentence before dogs bark. The CG labeled syntactic tree of this sentence
gives us BARK dogs. Since in our toy semantic space scenario the semantic
type of an intransitive verb is Cdp4 → Cs2 and of a determiner phrases is Cdp4 ,
we take BARK and dog to be a 2 × 4 matrix and a 4-dimensional vector,
respectively; these terms are composed simply by function application which
returns a 2-dimensional vector standing for the meaning of the whole sentence.

Below we represent the dp contexts as dp1, dp2, dp3, dp4 and similarly the
two s contexts as s1, s2.

DP\S : matrix

bark dp1 dp2 dp3 dp4
s1 n11 n12 n13 n14

s2 n21 n22 n23 n24

DP: vector

dogs
dp1 k1
dp2 k2
dp3 k3
dp4 k4

S: vector

dogs bark
s1 (n11, n12, n13, n14) · (k1, k2, k3, k4)
s2 (n21, n22, n23, n24) · (k1, k2, k3, k4)

=

S: vector

dogs bark
s1 (n11 × k1) + . . .+ (n14 × k4)
s2 (n21 × k1) + . . .+ (n24 × k4)

(b) 3rd Order Tensor Composed with Two Vectors. An example of this case is
provided by the composition of a transitive verb with its object and subject. For
instance, for the sentence dogs chase cats, CG produces the labeled syntactic
tree seen above which gives us the DS representation (CHASE × cats)× dogs.
Hence, we need to apply step-wise the 3rd order tensor, the transitive verb, to
two vectors, the object and the subject. In our toy example, the transitive verbs
have semantic type Cdp4 → (Cdp4 → Cs2). Hence, the DS meaning representation
of chase is a (2× 4)× 4 tensor; we can think of it as tensor of four slices of one
2× 4 matrix each.
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chase

slice 1:
dp1 dp2 dp3 dp4

s1 n1
11 n1

12 n1
13 n1

14

s2 n1
21 n1

22 n1
23 n1

24

. . .

slice 4:
dp1 dp2 dp3 dp4

s1 n4
11 n4

12 n4
13 n4

14

s2 n4
21 n4

22 n4
23 n4

24

The application of chase to cats gives the following 2× 4 matrix:

chase cats dp1 . . . dp4
s1 (n1

11, n
1
12, n

1
13, n

1
14) · (k1, k2, k3, k4) . . . (n4

11, n
4
12, n

4
13, n

4
14) · (k1, k2, k3, k4)

s2 (n1
21, n

1
22, n

1
23, n

1
24) · (k1, k2, k3, k4) . . . (n4

21, n
4
22, n

4
23, n

4
24) · (k1, k2, k3, k4)

which can then be applied to the 4 dimensional vector representing dogs yield-
ing a 2 dimensional vector representing the whole sentence.

(c) Higher Order-Tensor Matrix Composition. The only higher-order tensor in
Table 1 is the one representing a relative pronoun. From a formal semantic
point of view, a relative pronoun creates the intersection of two properties. e.g.
[[dog]]∩ [[chase cats]]; in distributional semantics, we can look at it as a 4th order
tensor whose first argument is a verb phrase, hence a matrix, and its second
argument is a noun, hence a vector, and it yields a modified noun, hence again
a vector. In our toy example, it lives in a (3× 3)× (2× 4) space, it is of semantic
type (Cdp4 → Cs2) → (Cn3 → Cn3) and can be applied to a 2 × 4 matrix.
For instance which can be applied to the matrix obtained above chase cats. As
explained in [3], this operation can be reduced to the simpler one considered
above, namely to the application of a 3rd order tensor to a vector. To this end,
[3] apply the unfolding method that transforms a tensor into one of lower order
by reordering its elements. There are several ways of reordering the elements,
for instance, a (2 × 3) × 4 tensor can be arranged as a 6 × 4 matrix. Which
mode is chosen is not important as far as across related calculations the same
mode is used. Going back to our linguistic example, the relative pronoun and
the VP-matrix could be unfolded into a (3 × 3)× 8 tensor and a 8 dimensional
vector, respectively. To understand the unfolding method, let us look at how
it could transform the 2 × 4 VP-matrix into a 8 dimensional vector and let us
take as unfolding mode the concatenation of its elements as illustrated below.
Let us assume the matrix representing chase cats represented abstractly above
is instantiated as below; by unfolding we obtain the corresponding vector as
following:

chase cats dp1 dp2 dp3 dp4
s1 1 3 5 7
s2 2 4 6 8

�unfolding (1, 2, 3, 4, 5, 6, 7, 8).

The evaluation carried out so far using generalized matrix-by-vector opera-
tion for function application has obtained encouraging results. See [46,20] for
the evaluation of the compositional distributional models for adjective-noun and
transitive verb-object composition, respectively and [41] for an evaluation of [3]’s



Distributional Semantics: A Montagovian View 79

approach at sentential level. No evaluation has been carried out yet on relative
sentences, these constructions are going to be object of investigation of the COM-
POSES project.6

Abstraction in DSMs. Abstraction is used mostly for two cases: long distance
dependency and inverse scope. The latter is more a challenge for the formal
grammar researchers than for the semanticists: once the grammar provides the
right representations of an ambiguous sentence the semantic operations should be
able to compute the proper meaning straight forwardly. Hence, in the following
we will look only at long distance dependencies as instances of abstraction, and in
particular at the case of relative pronoun that extracts the object of the relative
clause sentence.

As far as we know, the first attempt to handle cases of long distance depen-
dencies within the compositional distributional semantic framework is presented
in [3] where the authors discuss the dependency of a main sentence subject
from the transitive verb of a relative clause, e.g., “A cat which dogs chase runs
away”: the object of the relative clause is missing and its role is played by “A
cat” thanks to the presence of the relative pronoun which. The lack of the ob-
ject can be marked by a trace “(A cat (which dogs chase . . . )) runs away”.
The type-logical view on the composition of this sentence can be represented
by the tree below (Figure 2) that starts by assuming an hypothetical object
(hyp), builds the sentence dogs chase hyp (Figure 2, tree on the left) and then
withdraws the hypothesis building a tree without it (Figure 2, tree on the right)
using abstraction. The application of abstraction is governed by the presence of
the higher-order two-argument category (N\N)/(S/DP) assigned to the relative
pronoun; it requires a sentence missing a DP on the rightmost position to re-
turn the category N\N. Hence, the parser encounters a category mismatch: It
has the task of composing (N\N)/(S/DP) (which) with the tree of category S
corresponding to “dogs chase hyp”. The tree of category S, however, contains an
hypothesis of category DP—it would be a sentence if a DP had been provided.
The parser can now withdraw the hypothetical DP and build the tree of category
S/DP. The rule that allows this step is the one-branch rule encoding hypothetical
reasoning. The derivation can then proceed by function application. The lambda
calculus goes step by step with this hypothetical reasoning process. Besides the
function application rules we have used so far, it consists of the abstraction rule
that abstracts from the term (Z@X)@Y (namely the term assigned to the S
tree –hence, a term of type t), the variable X assigned to the hypothetical DP
(hence, a term of type e), building the lambda term λX.(Z@X)@Y (a term of
type (e → t)). The next step is again the application of a function (W of type
(e → t)→ ((e → t)→ t)) to an argument (the lambda term of type (e → t) we
have just built).

Syntactically, these constructions challenge any formal grammars, hence they
have attracted the attention of researchers and several solutions have been pro-
posed within the CG framework. [3] build the syntactic tree in the way more

6 http://clic.cimec.unitn.it/composes/

http://clic.cimec.unitn.it/composes/


80 R. Bernardi

S : (Z@X)@Y

DP : Y

dogs

DP\S : Z@X

(DP\S)/DP : Z

chase

DP : X

hyp

N\N : W@(λX.(Z@X)@Y )

(N\N)/(S/DP ) : W

which

S/DP : λX.(Z@X)@Y

S : (Z@X)@Y

DP : Y

dogs

DP\S : Z@X

(DP\S)/DP : Z

chase

. . .

Fig. 2. Proof terms: function application and abstraction: hypothetical reasoning

straightforwardly linked to the distributional semantics analysis even though
the rule employed (Figure 3), namely associativity, would cause over-generation
problems.7

N\N : Z@(XT@Y )

(N\N)/(S/DP ) : Z S/DP : XT@Y

DP : Y DP\(S/DP ) : XT

(DP\S)/DP : X

Fig. 3. Proof terms: associativity (syntax) and transformation (semantics)

The proof term consists of just function application of the kinds we have
discussed above. The only step here to introduce is the one that transforms
a transitive verb category from (DP\S)/DP into DP\(S/DP ). Syntactically,
this step corresponds to associativity, semantically it corresponds to the tensor
transformation rule which establishes in general terms how the elements of a
tensor can be switched:

(T × v)×w = (T T ×w)× v

7 Its application could be controlled by employing for instance the multi-modal version
of CG [37], but since our focus is on the composition of the distributional seman-
tic representations involved in such constructions, we will overlook the syntactic
issues. This semantic analysis or a variation of it could be connected to the different
syntactic proposals in the literature.
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This rule allows to transform a (pre-trained) transitive verb tensor that would
normally be multiplied by an object and then a subject into the transposed form,
that can take the subject first, and the object later, producing the same result.
In the tree, this semantic rule is presented as taking the term X and yielding
the term XT . Now the proof term can be replaced with the actual distributional
representation, obtainingWHICH×(CHASET ×dogs), which can later modify
the vector representing cat.

Let’s now assume as toy example that a transitive verb is a (3×2)×2 matrix;
for instance, chase consists of the two slice tensor below; it can be transformed by
switching the second and first column of the first and second slice, respectively.
This guarantees that (CHASE dogs) cats is equivalent to (CHASET cats) dogs
as the reader can test by herself.

CHASE
slice 1:
1 4
2 5
3 6

slice 2:
7 10
8 11
9 12

� CHASET
slice 1:
1 7
2 8
3 9

slice 2:
4 10
5 11
6 12

The use of the tensor transformation rule above avoid having to use the coun-
terpart of abstraction, and does not provide a way for handling structure de-
composition, as a more general solution might require. Hence, we wonder whether
as Lambek highlighted the possibility of extending CG with abstraction, DSM
framework can be extended with an equivalent rule.

We conjecture that a solution to long distance dependency could come from
the categorical view presented in [42], where the authors discuss the “eta maps”
showing that they create Bell states that produce an extra space allowing for
“teleportation”, in other words the eta maps enable the information to flow
between the quantum states that are not locally close. For instance, in the case
of a negative transitive sentence “John does not like Mary” does and not are
vectors that act as identity and as base swapper, respectively. The eta maps move
the subject vector john to be the argument of the transitive verb so that the
does and not vectors act on the representation of the positive transitive sentence
swapping its bases, namely making it true if it was false, and vice versa.

Alternative solutions could come from the regression method discussed above.
Following Montague’s intuition regarding type lifting, namely that an expression
like a personal name can be represented either as an object (a constant of type e)
or as a set of those properties that hold for that object (a second order function
of type ((e→ t)→ t)), we could assume that an expression of syntactic category
DP can be represented semantically either by a vector or by a higher order tensor
obtained from the corresponding vector by means of some tensor transformation
rule. This rule could be learned by regression: we could induce from the corpus
the vectors of a quantifier phrase (DET N, e.g., “some dog”), learn the tensor
representing the same expression by regression, e.g. given the input pair (runs,
“some dog runs”), learn the function representing “some dog”, and then learn
the transformation rule from the induced vector representing “some dog” to its
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higher order tensor representation learned by regression; or we could find ways
to exploit the CCG parsed corpus for learning the type-raising rule from those
structures in which it has been used.

Question. In short, the challenge we are posing to the compositional distri-
butional semantic community is to handle the semantic composition of not-
juxtaposed expressions.

3.2 From Logical Entailment to Entailment in DSM

In the brief review of the core logical concepts behind formal semantics we have
highlighted the difference between satisfiability (an entailment that holds in a
particular interpretation) and validity (an entailment that holds across all the
interpretation). The latter is due to the presence of logical words, like determin-
ers, whose meaning is independent from a specific interpretation. Hence, in the
following before reviewing the work on entailment within DSMs, we are going
to present DSMs views on logical (grammatical) words.

Grammatical Words as Predefined Logical Operators. [18] proposes an
interesting hybrid framework combining the complementary strengths of FOL
and DSM, namely the expressivity of the former and the flexibility of the lat-
ter. The authors use FOL for representing the logical structure of a sentence,
and DSM for capturing the content words meaning and project lexical infer-
ences from the vector space to logical form. In a nutshell, based on the idea
that distribution similarity between expressions A and B corresponds to substi-
tutability of B in the place of A, they generate inference projection rules like
∀x.Car(x) → Vehicle(x) using WordNet as a filter to validate such axioms.
Then, FOL sentence representations are obtained using Boxer [14]. Given a pair
of sentences (Prem, Hyp), they check whether Hyp could follow from Prem (Prem
→ Hyp) from a DS view by checking (i) if there are inference projection rules
between the words occurring in the two sentences and (ii) contextualising such
rules by assigning them a weight: given a rule that relates a word w1 in Hyp with
a word w2 in Prem, the weight is obtained by computing the similarity of w1 with
the sum of the vectors of the words co-occurring with w2 in Prem (the context
of w2.) In the simplified setting described in [18], the authors generate a poten-
tial alignment between any pair of words, within the two sentences, that are re-
lated (synonymous or hyponym/hypernym up to a certain distance) in WordNet,
which also means that they have to be of the same syntactic category. Moreover,
they currently only deal with single-word paraphrases. Finally, they use Markov
Logic Networks for reasoning on FOL weighted clauses. For instance, given the
projection rule (1) ∀x.Car(x) → Vehicle(x), by FOL they can infer that given
¬∃x.Vehicle(x)∧Own(x) and the rule (1) above, then ¬∃x.Car(x)∧Own(x). The
rule (1) receives a high weight in the given contexts since car is similar to own
(the context of vehicle). Following Natural Logic, to handle inferences involving
sentences containing nested propositions, they mark the polarity of the position
of the embedded proposition.
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The view of considering logical words, in particular negation, as pre-defined
and close to their truth-value meaning is present in other work too (see [9,49]
among others), though in a full vector space model approach. [9] take sentences
to be in the space spanned by a single vector (1), identified with “true” and the
origin to be “false” (0). So a sentence like “John likes Mary” is represented by
the vector 1 if the sentence is “true” and by 0 otherwise, moreover the authors
leave open the possibility of considering degree of sentence meaning instead of
just the two truth values. Within the DSM framework of [9], [42] takes negation
to be a base swapper operator. The details of this approach are further explained
in [12]. Similarly, [49] starts from the intuition that unrelated meanings should
be orthogonal to one another, which is to say that they should have no features
in common at all. Hence, he takes negation to generate a vector representation
that is completely orthogonal to the negated term. In the following, we will
report on some preliminary results carried out on grammatical words, more in
particular on determiners and determiner phrases, that suggest the possibility
of undertaking a truly distributional analysis of these words too.

Grammatical Words as Tensors Learned from Their Use. [34] studies the
distributional behavior of 50 determiners (articles, quantifiers, and cardinals).
First of all, the author aims to check how the distributional context changes if at
the same nouns are applied different determiners and if similar determiners occur
in similar contexts. To this end, he builds two DSMs using a large corpus:8 (a)
one with lemmatized content words as dimension (LDSM), and (b) a second one
with inflected content and grammatical words as dimensions (IDSM). For each
of the studied determiner, he extracts determiner phrases (DPs) from the cor-
pus choosing the most frequent 20K nouns and their vector representation in the
two DSMs mentioned above, and extract the closest neighbour of the DPs vec-
tors. The experiment shows that in the DP vector representations of LDSM the
meaning of the nouns emerges over the one of the determiner contrary to what
happens in IDSM. Moreover, the use of a noun seems to change according to the
determiner used: for instance, whereas every dog tends to co-occur with general
concepts, usually attributed to dogs in general – animal, tail, pet, love, cleaver
and friend – “that dog” occurs with more familiar words, usually associated
to a single dog, single episodes or everyday situation – bite, owner, bad, police,
kill or bloody. Interestingly, the author conjectures that the determiner that is
usually preferred for describing negative events, creating a distance between the
dog and the speaker, whereas other determiners like this are used in positive
contexts, occurring with words as rescue, show, wonderful, loving or companion.
All in all, the experiment brings evidence to the claim that using a determiner
rather than another affects the context in which the DP occurs. The result is
confirmed by a second experiment carried out in [34] based on clustering. In this
case, the vector representation of the determiner is computed out of the DPs by

8 ukWaC, a 2 billion word corpus crawled from the web, British National Corpus, a
100 million word corpus, Wikipedia, about 1.6 billion tokens. The three corpora have
been tokenzied and tagged with Treetagger.
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calculating their average vector representation. Interesting clusters have indeed
emerged (e.g. {too few, too many, too much}, and {four, three, two, several} etc.),
but further studies in this direction are necessary since no clustering method
alone has succeed in the task. The experiment shows that also determiners seem
to be characterized by their distributional context, but a DSM more suitable to
their role should be built for them.

Finally, [34] reports on a third experiment in which pairs of DPs are studied.
The attention is focused on nine determiners (all, every, four, that, these, this,
those, three and two.) A classifier is used for recognizing similar vs. dissimilar DP
pairs.9 The author has carried out the task using different classifiers, the best
results have been obtained with a polynomial super vector machine (SVM)10

that has obtained the following weighted average of the precision and recall (F-
measures): 0.8% (LDSM, with raw co-occurrence values) and 0.81 % (inflected
IDSM, with lmi weight.) The same experiment has also be tried against unseen
determiners, viz., the testing dataset contains one determiner more than the
training dataset, but the same nouns already used for the training. The SVM
was able to correctly classify up to 68.9% of the 1226 never seen instances.

Before concluding this section, we would like to draw the reader attention
on some interesting studies on determiner phrases carried out within the psy-
cholinguistic community. As it has been emphasized in [40] quantifiers have been
studied in details from the formal semantics angle, but they have been mostly
ignored by the empirical based community which has focused on content words.
Interestingly, they have been studied in Pragmatics and Psycholinguistics. In
Pragmatics, it has been claimed that quantifiers like no, few, some and all are
scalar expressions: they can be ordered on a scale with respect to the strengths
of the information that they convey. As it is well known, their use involves prag-
matic inferences called scalar implicature [23] (“the participants in a conversation
expect that each will tailor their contribution to be as informative as required
but no more informative than is required”). Though, in formal semantics, for
instance some has just one meaning, in practice it can be used in different ways,
see for instance the example below taken from [40]

– R: if you ate some of the cookies, then I won’t have enough for the party.
– M: I ate some of the cookies. In fact, I ate all of them. [Meaning: “some

and possibly all”]
– R: Where are the apples that I bought?
– M. I ate some of them [Meaning: “some but not all”)

9 Similar are DPs that share the determiners or the noun (e.g., four countries-four
states, or that have similar determiners and similar nouns (e.g., two boats-four boats)
or have similar determiners and similar nouns (e.g., this shirt-that coat); whereas
dissimilar DPs are such that they have different determiners and different nouns
(e.g., this village-every cat), or different determiners and similar noun (e.g., two
musicians-those painters) (or viceversa, e.g., two artists-four ducks)

10 The other classifiers used are Naive, J48, SVM Radial Kernel. Interestingly, the need
of a polynomial SVM classifier for classifying relations between DPs was shown in
an other internal project too on DP entailment.
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Moreover, [40] shows that quantifiers can have different “polarity” even when
denoting the same vague quantity: Quantifiers with positive (negative) polarity,
e.g., a few, quite a few, many, (resp. few, very few, not many) are used to en-
courage (resp., discourage) the speaker to do something. The distinction between
positive vs. negative polarity QPs is reinforced by their different behaviour with
respect to the set of discourse entities they refer to and they make accessible via
anaphora. To this end, the authors distinguish between the “reference set”, viz.
the set of entities the quantifier operates upon, and the “complement set”, viz.,
the complement of the reference set.11 Positive polarity QPs put the focus on
the reference set while negative polarity QPs put the focus on the complement
set. Moreover, the reference set is available for anaphora. Example:

“(a) A few/(b)Few of the students attended the lecture. They . . . .”

people continue (a) by speaking of properties of the reference set (e.g., “They
listen carefully and took notes”) and (b) by speaking of the complement set (e.g.,
“They decided to stay at home instead”)

Question. The psycholinguistics results on determiners reported above seem to
confirm the possibility of studying these words (and maybe the class of logical
words in general) from a distributional view. We wonder whether they also sug-
gest that the relevant part of the context of use could be of a different nature
than the one considered within DSMs for content words. For instance, instead
of just looking at co-occurency frequency within a sentence, we might need to
consider the discourse level (see the comment above on anaphora), or we might
need to consider instead of the words in isolation, the semantic relation holding
within the words in the observed context (see the comment on the choice of the
verb phrase above.)

3.3 Entailment in DSM

[11] studies the algebraic properties a vector space used for representing natural
language meaning needs to have and identifies possible directions to account for
degree of entailment between distributional representations proposing to use the
partial order of the defined algebraic structure. However, he does not describe
the idea in details and does not evaluate it on any empirical ground. Implemen-
tations and interesting evaluation results have been carried out at lexical level.
For instance, [16] suggests that it may not be possible to induce hyponymy in-
formation from a vector space representation, but it is possible to encode the
relation in this space after it has been obtained through some other means. On
the other hand, recent studies [19,29,48] have pursued the intuition that entail-
ment is the ability of one term to “substitute” for another. For example, baseball
contexts are also sport contexts but not vice versa, hence baseball is “narrower”

11 Example: “many of the students attended the lecture”. The reference set is the set
of all the students who were present at the lecture, the complement set is the set of
all the students who were absent.
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than sport (baseball |=sport). On this view, entailment between vectors corre-
sponds to inclusion of contexts or features, and can be captured by asymmetric
measures of distribution similarity. In particular, [29] carefully crafted the bal-
APinc measure for lexical entailment. In brief, the balAPinc score is higher if
many features are present and the included features are ranked high. [2] look at
a similar issue but from a different perspective and by going beyond lexical level.
The authors do not use a hand-crafted measure, but rather a machine learning
based classifier. They use a SVM and show that it can learn the entailment re-
lation between phrases of the same syntactic categories: from a training set of
noun pairs it learns the entailment relation between expressions of this category
(‖=N ) e.g., from training examples like big dog ‖= dog, it learns dog ‖= animal,
and from a training set of quantifier phrases, e.g. all dog ‖= some dog, it learns
the ‖=QP even when the testing data set contains QPs never seen in the train-
ing data set. The entailment is specific to the syntactic category and does not
generalize across the categories (if the SVM is trained on ‖=N it will obtain bad
performance on a ‖=QP test dataset, and viceversa if trained on ‖=QP it will
obtain bad performance on a ‖=N test dataset.)12 The results reported in [2]
had been obtained with a cubic polynomial kernel; interestingly, [24] shows that
a linear classifier will obtain worse results and that a two degree classifier (either
homogeneous or inhomogeneous) would perform equally well than the cubic one.
These latter results confirm the involvement of features interaction, rather than
purely inclusion, in the entailment relation of DSM representations.

4 Conclusions

By reviewing the core aspects of formal and distributional semantics models and
by presenting the more recent results obtained within DSMs beyond lexical level
adopting the formal semantics binoculars, we have highlighted some open issues.
First of all, we have underlined the importance of considering the correspondence
between syntax and semantic both as expressed between syntactic categories and
semantic types (types of semantic space) and as captured by the composition
rules. As for the latter, we have raised the question of how structures with gaps
can be handled with DSMs for which researchers so far have focused only on
function application of juxtaposed function-arguments. Moreover, by introducing
the concepts of satisfiability and validity, we have focused on the role the logical
(grammatical) words play in natural language reasoning from a logic view and
compared their role when observed from the language of use perspective. More
research needs to be carried out on this class of words to understand whether
there is the need of an hybrid system that combines logic and distributional
relations or whether the integration of the two approaches would be needed only
to take into account the two fregean aspects of meaning, reference and sense.

12 This second half of the experiment, training on QPs and testing on Ns has been
carried out by [24].
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Abstract. We reconsider discrete quantum causal dynamics where
quantum systems are viewed as discrete structures, namely directed
acyclic graphs. In such a graph, events are considered as vertices and
edges depict propagation between events. Evolution is described as hap-
pening between a special family of spacelike slices, which were referred
to as locative slices. Such slices are not so large as to result in acausal
influences, but large enough to capture nonlocal correlations.

In our logical interpretation, edges are assigned logical formulas in a
special logical system, called BV, an instance of a deep inference system.
We demonstrate that BV, with its mix of commutative and noncommu-
tative connectives, is precisely the right logic for such analysis. We show
that the commutative tensor encodes (possible) entanglement, and the
noncommutative seq encodes causal precedence. With this interpreta-
tion, the locative slices are precisely the derivable strings of formulas.
Several new technical results about BV are developed as part of this
analysis.

Dedicated to Jim Lambek on the occasion of his 90th birthday.

1 Introduction

The subject of this paper is the analysis of the evolution of quantum systems.
Such systems may be protocols such as quantum teleportation [1]. But we have
a more general notion of system in mind. Of course the key to the success of the
teleportation protocol is the possibility of entanglement of particles. Our analysis
will provide a syntactic way of describing and analyzing such entanglements, and
their evolution in time.

This subject started with the idea that since the monoidal structure of the
category of Hilbert spaces, i.e. the tensor product, provides a basis for under-
standing entanglement, the more general theory of monoidal categories could
provide a more abstract and general setting. The idea of using general monoidal
categories in place of the specific category of Hilbert spaces can be found in
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a number of sources, most notably [2], where it is shown that the notion of a
symmetric compact closed dagger monoidal category is the correct level of ab-
straction to encode and prove the correctness of protocols. Subsequent work in
this area can be found in [3], and the references therein.

A natural step in this program is to use the logic underlying monoidal cate-
gories as a syntactic framework for analyzing such quantum systems. But more
than that is possible. While a logic does come with a syntax, it also has a built-
in notion of dynamics, given by the cut-elimination procedure. In intuitionistic
logic, the syntax is given by simply-typed λ-calculus, and dynamics is then given
by β-reduction [4]. In linear logic, the syntax for specifying proofs is given by
proof nets [5]. Cut-elimination takes the form of a local graph rewriting system.

In [6], it is shown that causal evolution in a discrete system can be modelled
using monoidal categories. The details are given in the next section, but one
begins with a directed, acyclic graph, called a causal graph. The nodes of the
graph represent events, while the edges represent flow of particles between events.
The dynamics is represented by assigning to each edge an object in a monoidal
category and each vertex a morphism with domain the tensor of the incoming
edges and codomain the tensor of the outgoing edges. Evolution is described as
happening between a special family of spacelike slices, which were referred to as
locative slices. Locative slices differ from the maximal slices of Markopolou [7].
Locative slices are not so large as to result in acausal influences, but large enough
to capture nonlocal correlations.

In a longer unpublished version of [6], see [8], a first logical interpretation
of this semantics is given. We assign to each edge a (linear) logical formula,
typically an atomic formula. Then a vertex is assigned a sequent, saying that
the conjunction (linear tensor) of the incoming edges entails the disjunction
(linear par) of the outgoing edges. One uses logical deduction via the cut-rule to
model the evolution of the system. There are several advantages to this logical
approach. Having two connectives, as opposed to the single tensor, allows for
more subtle encoding. We can use the linear par to indicate that two particles are
(potentially) entangled, while linear tensor indicates two unentangled particles.
Application of the cut-rule is a purely local phenomenon, so this logical approach
seems to capture quite nicely the interaction between the local nature of events
and the nonlocal nature of entanglement. But the earlier work ran into the
problem that it could not handle all possible examples of evolution. Several
specific examples were given. The problem was that over the course of a system
evolving, two particles which had been unentangled can become entangled due
to an event that is nonlocal to either. The simple linear logic calculus had no
effective way to encode this situation. A solution was proposed, using something
the authors called entanglement update, but it was felt at the time that more
subtle encoding, using more connectives, should be possible.

Thus enters the new system of logics which go under the general name deep
inference. Deep inference is a new methodology in proof theory, introduced in [9]
for expressing the logic BV, and subsequently developed to the point that all
major logics can be expressed with deep-inference proof systems (see [10] for
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a complete overview). Deep inference is more general than traditional Gentzen
proof theory because proofs can be freely composed by the logical operators,
instead of having a rigid formula-directed tree structure. This induces a new
symmetry, which can be exploited for achieving locality of inference rules, and
which is not generally achievable with Gentzen methods. Locality, in turn, makes
it possible to use new methods, often with a geometric flavour, in the normali-
sation theory of proof systems.

Remarkably, the additional expressive power of deep inference turns out to be
precisely what is needed to fully encode the sort of discrete quantum evolution
that the first paper attempted to describe. The key is the noncommutativity of
the added connective seq. This gives a method of encoding causal precedence di-
rectly into the syntax in a way that the original encoding of [6] using only linear
logic lacked. This is the content of Theorem 4, which asserts that there is a precise
correspondence between locative slices and derivable strings of formulas in the BV
logic. This technical result is of independent interest beyond its use here.

2 Evolving Quantum Systems along Directed Acyclic
Graphs

In earlier work [6], the basis of the representation of quantum evolution was the
graph of events and causal links between them. An event could be one of the
following: a unitary evolution of some subsystem, an interaction of a subsystem
with a classical device (a measurement) or perhaps just the coming together or
splitting apart of several spatially separated subsystems. Events will be depicted
as vertices of a directed graph. The edges of the graph will represent a physical
flow between the different events. The vertices of the graph are then naturally
labelled with operators representing the corresponding events. We assume that
there are no causal cycles; the underlying graph has to be a directed acyclic
graph (DAG).

A typical dag is shown in Fig 1. The square boxes, the vertices of the dag,
are events where interaction occurs. The labelled edges represent fragments of
the system under scrutiny moving through spacetime. At vertex 3, for example,
the components c and d come together, interact and fly apart as g and h. Each
labelled edge has associated with it a Hilbert space and the state of the subsystem
is represented by some density matrix. Each edge thus corresponds to a density
matrix and each vertex to a physical interaction.

These dags of events could be thought of as causal graphs as they are an
evident generalization of the causal sets of Sorkin [11]. A causal set is simply
a poset, with the partial order representing causal precedence. A causal graph
encodes much richer structure. So in a causal graph, we ask: What are the allowed
physical effects? On physical grounds, the most general transformation of density
matrices is a completely positive, trace non-increasing map or superoperator for
short; see, for example, Chapter 8 of [1].

Density matrices are not just associated with edges, they are associated with
larger, more distributed, subsystems as well. We need some basic terminology
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a b

c d e

g h i

j k

f

Fig. 1. A dag of events

associated with dags which brings out the causal structure more explicitly. We
say that an edge e immediately precedes f if the target vertex of e is the source
vertex of f . We say that e precedes f , written e � f if there is a chain of imme-
diate precedence relations linking e and f , in short, “precedes” is the transitive
closure of “immediately precedes”. This is not quite a partial order, because we
have left out reflexivity, but concepts like chain (a totally ordered subset) and
antichain (a completely unordered subset) work as in partial orders.

We use the word “slice” for an antichain in the precedence order. The word
is supposed to be evocative of “spacelike slice” as used in relativity, and has
exactly the same significance.

A density matrix is a description of a part of a system. Thus it makes sense
to ask about the density matrix associated with a part of a system that is not
localized at a single event. In our dag of figure 1 we can, for example, ask about
the density matrix of the portion of the system associated with the edges d, e
and f . Thus density matrices can be associated with arbitrary slices. Note that
it makes no sense to ask for the density matrix associated with a subset of edges
that is not a slice.

The Hilbert space associated with a slice is the tensor product of the Hilbert
spaces associated with the edges. Given a density matrix, say ρ, associated with,
for example, the slice d, e, f , we get the density matrix for the subslice d, e by
taking the partial trace over the dimensions associated with the Hilbert space f .

One can now consider a framework for evolution. One possibility, considered
in [7], is to associate data with maximal slices and propagate from one slice
to the next. Here, maximal means that to add any other vertex would destroy
the antichain property. One then has to prove by examining the details of each
dynamical law that the evolution is indeed causal. For example, one would like
to show that the event at vertex 4 does not affect the density matrix at edge
j. With data being propagated on maximal slices this does not follow auto-
matically. One can instead work with local propagation; one keeps track of the
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density matrices on the individual edges only. This is indeed guaranteed to be
causal, unfortunately it loses some essential nonlocal correlations. For example,
the density matrices associated with the edges h and i will not reflect the fact
that there might be nonlocal correlation or “entanglement” due to their common
origin in the event at vertex 2. One needs to keep track of the density matrix on
the slice i, h and earlier on d, e.

The main contribution of [6] was to identify a class of slices, called locative
slices, that were large enough to keep track of all non-local correlations but
“small enough” to guarantee causality.

Definition 1. A locative slice is obtained as the result of taking any subset of the
initial edges (all of which are assumed to be independent) and then propagating
through edges without ever discarding an edge.

In our running example, the initial slices are {a}, {b} and {a, b},. Just choosing
for example the initial edge a as initial slice, and propagating from there gives
the locatives slices {a}, {c}, {g, h}, {j, h}, {g, k}, and {j, h}.

In fact, the following is a convenient way of presenting the locative slices and
their evolution1.

{a}

{c}

{g, h}

{j, h} {g, k}

{j, k}

{b}

{f, d, e}

{f, g, h, e} {f, d, i}

{f, g, h, i}

{j, h, i} {f, g, k}

{j, k}

{a, b}

{c, f, d, e}

{g, h, f, e} {c, f, d, i}

{f, g, h, i}{f, g, h, i}

{j, h, i} {f, g, k}

{j, k}

Examples of non-locative slices are c, d, e and g, h, i and g, k. The intuition
behind the concept of locativity is that one never discards information (by com-
puting partial traces) when tracking the density matrices on locative slices. This
is what allows them to capture all the non-local correlations.

The prescription for computing the density matrix on a given slice, say e,
given the density matrices on the incoming slices and the superoperators at
the vertices is to evolve from the minimal locative slice in the past of e to the
minimal locative slice containing e. Any choice of locative slices in between may
be used. The main results that we proved in [6] were that the density matrix
so computed is (a) independent of the choice of the slicing (covariance) and (b)
only events to the causal past can affect the density matrix at e (causality). Thus
the dag and the slices form the geometrical structure and the density matrices
and superoperators form the dynamics.

1 We thank an anonymous referee for this presentation.
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3 A First Logical View of Quantum Causal Evolution

3.1 The Logic of Directed Acyclic Graphs

One of the common interpretations of a dag is as generating a simple logic.
(For readers not familiar with the approach to logic discussed here, we recom-
mend [12].) The nodes of the dag are interpreted as logical sequents of the form:

A1, A2, . . . , An � B1, B2, . . . , Bm

Here � is the logical entailment relation. Our system will have only one infer-
ence rule, called the Cut rule, which states:

Γ � Δ,A A, Γ ′ � Δ′

Γ, Γ ′ � Δ,Δ′

Sequent rules should be interpreted as saying that if one has derived the two
sequents above the line, then one can infer the sequent below the line. Proofs in
the system always begin with axioms. Axioms are of the form A1, A2, . . . , An �
B1, B2, . . . , Bm, where A1, A2, . . . , An are the incoming edges of some vertex in
our dag, and B1, B2, . . . , Bm will be the outgoing edges. There will be one such
axiom for each vertex in our dag. For example, consider Figure 1. Then we will
have the following axioms:

a
1

� c b
2

� d, e, f c, d
3

� g, h e
4

� i f, g
5

� j h, i
6

� k

where we have labelled each entailment symbol with the name of the corre-
sponding vertex. The following is an example of a deduction in this system of
the sequent a, b � f, g, h, i.

b � d, e, f

a � c c, d � g, h

a, d � g, h

a, b � e, f, g, h e � i

a, b � f, g, h, i

Categorically, one can show that a dag canonically generates a free polycate-
gory [13], which can be used to present an alternative formulation of the struc-
tures considered here.

3.2 The Logic of Evolution

We need to make the link between derivability in our logic and locativity. This is
not completely trivial. One could, naively, define a set Δ of edges to be derivable
if there is a deduction in the logic generated by G of Γ � Δ where Γ is a set
of initial edges. But this fails to capture some crucial examples. For example,
consider the dag underlying the system in Figure 2. Corresponding to this dag,
we get the following basic morphisms (axioms):

a � b, c b � d c � e d, e � f.
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Fig. 2.

Evidently, the set {f} is a locative slice, and yet the sequent a � f is not
derivable. The sequent a � d, e is derivable, and one would like to cut it against
d, e � f , but one is only allowed to cut a single formula. Such “multicuts” are
expressly forbidden, as they lead to undesirable logical properties [14].

Physically, the reason for this problem is that the sequent d, e � f does not
encode the information that the two states at d and e are correlated. It is precisely
the fact that they are correlated that implies that one would need to use a
multicut. To avoid this problem, one must introduce some notation, specifically
a syntax for specifying such correlations. We will use the logical connectives
of the multiplicative fragment of linear logic to this end [5]. The multiplicative
disjunction of linear logic, denoted 	 and called the par connective, will express
such nonlocal correlations.

In our example, we will write the sequent corresponding to vertex 4 as d	e � f
to express the fact that the subsystems associated with these two edges are
possibly entangled through interactions in their common past.

Note that whenever two (or more) subsystems emerge from an interaction,
they are correlated. In linear logic, this is reflected by the following rule called
the (right) Par rule:

Γ � Δ,A,B

Γ � Δ,A 	 B

Thus we can always introduce the symbol for correlation in the right hand side
of the sequent.

Notice that we can cut along a compound formula without violating any
logical rules. So in the present setting, we would have the following deduction:
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a � b, c b � d

a � c, d c � e

a � d, e

a � d 	 e d 	 e � f

a � f

All the cuts in this deduction are legitimate; instead of a multicut we are cutting
along a compound formula in the last step. So the first step in modifying our
general prescription is to extend our dag logic, which originally contained only
the cut rule, to include the connective rules of linear logic.

The above logical rule determines how one introduces a par connective on the
righthand side of a sequent. For the lefthand side, one introduces pars in the
axioms by the following general prescription.

Given a vertex in a multigraph, we suppose that it has incoming edges
a1, a2, . . . , an and outgoing edges b1, b2, . . . , bm. In the previous formulation,
this vertex would have been labelled with the axiom Γ = a1, a2, . . . , an �
b1, b2, . . . , bm. We will now introduce several pars (	) on the lefthand side to
indicate entanglements of the sort described above. Begin by defining a relation
∼ by saying ai ∼ aj if there is an initial edge c and directed paths from c to ai
and from c to aj . This is not an equivalence relation, but one takes the equiva-
lence relation generated by the relation ∼. Call this new relation ∼=. This relation
partitions the set Γ into a set of equivalence classes. One then ”pars” together
the elements of each equivalence class, and this determines the structure of the
lefthand side of our axiom. For example, consider vertices 5 and 6 in Figure 1.
Vertex 5 would be labelled by f 	 g � j and vertex 6 would be labelled by
h 	 i � k. On the other hand, vertex 3 would be labelled by c, d � g, h.

Just as the par connective indicates the existence of past correlations, we use
the more familiar tensor symbol ⊗, which is also a connective of linear logic, to
indicate the lack of nonlocal correlation. This connective also has a logical rule:

Γ � Δ,A Γ ′ � Δ′, B
Γ, Γ ′ � Δ,Δ′, A⊗B

But we note that unlike in ordinary logic, this rule can only be applied in situ-
ations that are physically meaningful.

Definition 2. π : Γ � Δ and π′ : Γ ′ � Δ′ are spacelike separated if the following
two conditions are satisfied:

– Γ and Γ ′ are disjoint subsets of the set of initial edges.
– The edges which make up Δ and Δ′ are pairwise spacelike separated.

In our extended dag logic, we will only allow the tensor rule to be applied when
the two deductions are space like separated.

Summarizing, to every dag G we associate its “logic”, namely the edges are
considered as formulas and vertices are axioms. We have the usual linear logical
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connective rules, including the cut rule which in our setting is interpreted phys-
ically as propagation. The par connective denotes correlation, and the tensor
lack of correlation. Note that every deduction in our system will conclude with
a sequent of the form Γ � Δ, where Γ is a set of initial edges.

Now one would like to modify the definition of derivability to say that a set
of edges Δ is derivable if in our extended dag logic, one can derive a sequent
Γ � Δ̂ such that the list of edges appearing in Δ̂ was precisely Δ, and Γ is a set
of initial edges. However this is still not sufficient as an axiomatic approach to
capturing all locative slices. We note the example in Figure 3.

Evidently the slice {f, g} is locative, but we claim that it cannot be derived
even in our extended logic. To this directed graph, we would associate the fol-
lowing axioms:

a � c, h b � d, e c, d � f h, e � g

Note that there are no correlations between c and d or between h and e. Thus
no 	-combinations can be introduced. Now if one attempts to derive a, b � f, g,
we proceed as follows:

a � c, h b � d, e

a, b � c⊗ d, h, e

c, d � f

c⊗ d � f

a, b � h, e, f

At this point, we are unable to proceed. Had we attempted the symmetric ap-
proach tensoring h and e together, we would have encountered the same problem.

The problem is that our logical system is still missing one crucial aspect, and
that is that correlations develop dynamically as the system evolves, or equiv-
alently as the deduction proceeds. We note that this logical phenomenon is
reflected in physically occurring situations. But a consequence is that our ax-
ioms must change dynamically as well. This seems to be a genuinely new logical
principle.
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We give the following definition.

Definition 3. Suppose we have a deduction π of the sequent Γ � Δ in the logic
associated to the dag G, and that T is a vertex in G to the future or acausal
to the edges of the set Δ with a and b among the incoming edges of T . Then a
and b are correlated with respect to π if there exist outgoing edges c and d of the
proof π and directed paths from c to a and from d to b.

So the point here is that when performing a deduction, one does not assign
an axiom to a given vertex until it is necessary to use that axiom in the proof.
Then one assigns that axiom using this new notion of correlation and the equiv-
alence relation defined above. This prescription reflects the physical reality that
entanglement of local quantum subsystems could develop as a result of a distant
interaction between some other subsystems of the same quantum system. We
are finally able to give the following crucial definition:

Definition 4. A set Δ of edges in a dag G is said to be derivable if there is
a deduction in the logic associated to G of Γ � Δ̂ where Δ̂ is a sequence of
formulas whose underlying set of edges is precisely Δ and where Γ is a set of
initial edges, in fact the set of initial edges to the past of Δ.

Theorem 1. A set of edges is derivable if and only if it is locative. More specif-
ically, if there is a deduction of Γ � Δ̂ as described above, then Δ is necessarily
locative. Conversely, given any locative slice, one can find such a deduction.

Proof. Recall that a locative slice L is obtained from the set of initial edges in
its past by an inductive procedure. At each step, we choose arbitrarily a minimal
vertex u in the past of L, remove the incoming edges of u and add the outgoing
edges. This step corresponds to the application of a cut rule, and the method
we have used of assigning the par connective to the lefthand side of an axiom
ensures that it is always a legal cut. The tensor rule is necessary in order to
combine spacelike separated subsystems in order to prepare for the application
of the cut rule.

Thus we have successfully given an axiomatic logic-based approach to describ-
ing evolution. In summary, to find the density matrix associated to a locative
slice Δ, one finds a set of linear logic formulas whose underlying set of atoms is
Δ and a deduction of Γ � Δ̂ where Γ is as above.

4 Using Deep Inference to Capture Locativity

In the previous sections we explained the approach of [6], using as key unit of
deduction a sequent a1, . . . , ak � b1, . . . , bl meaning that the slice {b1, . . . , bl}
is reachable from {a1, . . . , ak} by firing a number of events (vertices). However,
this approach is not able to entirely capture the notion of locative slices, because
correlations develop dynamically as the system evolves, or equivalently, as the
deduction proceeds. Thus, we had to let axioms evolve dynamically.



100 R.F. Blute et al.

The deep reason behind this problem is that the underlying logic is multiplica-
tive linear logic (MLL): The sequent above represents the formula a1 � · · ·� ak �
b1 	 · · ·	 bl or equivalently a⊥1 	 · · ·	 a⊥k 	 b1 	 · · ·	 bl, i.e., the logic is not
able to see the aspect of time in the causality. For this reason we propose to use
the logic BV, which is essentially MLL (with mix) enhanced by a third binary
connective � (called seq or before) which is associative and non-commutative
and self-dual, i.e., the negation of A � B is A⊥ � B⊥. It is this non-commutative
connective, which allows us to properly capture quantum causality.

Of course, we are interested in expressing our logic in a deductive system that
admits a complete cut-free presentation. In this case, as we briefly argue in the
following, the adoption of deep inference is necessary to deal with a self-dual
non-commutative logical operator.

4.1 Review of BV and Deep Inference

The significance of deep inference systems was discussed in the introduction.
We note now that within the range of the deep-inference methodology, we can
define several formalisms, i.e. general prescriptions (like the sequent calculus or
natural deduction) on how to design proof systems. The first, and conceptually
simplest, formalism that has been defined in deep inference is called the calculus
of structures, or CoS, and this is what we adopt in this paper and call “deep in-
ference”. In fact, the fine proof-theoretic points about the various deep inference
formalisms are not relevant to this paper.

The proof theory of deep inference is now well developed for classical [15],
intuitionistic [16,17], linear [18,19] and modal [20,21] logics. More relevant to
us, there is an extensive literature on BV and commutative/non-commutative
linear logics containing BV. We cannot here provide a tutorial on BV, so we
refer to its literature. In particular, [9] provides the semantic motivation and
intuition behind BV, together with examples of its use. In [22], Tiu shows that
deep inference is necessary for giving a cut-free deductive system for the logic
BV. Kahramanoğulları proves that System BV is NP-complete [23].

We now proceed to define system BV, quickly and informally. The inference
rules are:

F{◦}
ai↓

F{a 	 a⊥}
F{A�[B 	 C]}

s
F{(A�B) 	 C}

F{a�a⊥}
ai↑

F{◦}

F{[A 	 C] � [B 	 D]}
q↓

F{〈A � B〉	 〈C � D〉}
F{〈A � B〉�〈C � D〉}

q↑
F{(A�C) � (B �D)}

They have to be read as ordinary rewrite rules acting on the formulas inside
arbitrary contexts F{ }. Note that we push negation via DeMorgan equalities
to the atoms, and thus, all contexts are positive. The letters A,B,C,D stand
for arbitrary formulas and a is an arbitrary atom. Formulas are considered equal
modulo the associativity of all three connectives 	, �, and �, the commutativity
of the two connectives 	 and �, and the unit laws for ◦, which is unit to all
three connectives, i.e., A = A 	 ◦ = A� ◦ = A � ◦ = ◦ � A.
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Since, in our experience, working modulo equality is a sticky point of deep
inference, we invite the reader to meditate on the following examples which are
some of the possible instances of the q↓ rule:

〈[a 	 c] � [b 	 d]〉	 e
q↓

〈a � b〉	 〈c � d〉	 e
,

[〈a � b〉	 c 	 e] � d
q↓
〈a � b〉	 〈c � d〉	 e

,
〈c � d � a � b〉	 e

q↓
〈a � b〉	 〈c � d〉	 e

.

By referring to the previously defined q↓ rule scheme, we can see that the second
instance above is produced by taking F{ } = { }, A = 〈a � b〉	 e, B = ◦, C = c
and D = d, and the third instance is produced by taking F{ } = { }	 e,
A = c � d, B = ◦, C = ◦ and D = a � b. The best way to understand the rules
of BV is to learn their intuitive meaning, which is explained by an intuitive
“space-temporal” metaphor in [9].

The set of rules {ai↓, ai↑, s, q↓, q↑} is called SBV, and the set {ai↓, s, q↓} is
called BV. We write

A

Δ
‖
‖ SBV

B

to denote a derivation Δ from premise A to conclusion B using SBV, and we do
analogously for BV.

Much like in the sequent calculus, we can consider BV a cut-free system,
while SBV is essentially BV plus a cut rule. The two are related by the following
theorem.

Theorem 2. For all formulas A and B, we have

A
‖
‖ SBV

B

if and only if

◦
‖
‖ BV

A⊥ 	 B

.

Again, all the details are explained in [9]. Let us here only mention that the
usual cut elimination is a special case of Theorem 2, for A = ◦. Then it says
that a formula B is provable in BV iff it is provable in SBV.

Observation 3. If a formula A is provable in BV, then every atom a occurs
as often in A as a⊥. This is easy to see: the only possibility for an atom a
to disappear is in an instance of ai↓; but then at the same time an atom a⊥

disappears.

Definition 5. A BV formula Q is called a negation cycle if there is a nonempty
set of atoms P = {a0, a2, . . . , an−1}, such that no two atoms in P are dual,
i �= j implies ai �= aj, and such that Q = Z0 	 · · ·	 Zn−1, where, for every
j = 0, . . . , n − 1, we have Zj = aj � a⊥j+1 (mod n) or Zj = aj � a⊥j+1 (mod n). We
say that a formula P contains a negation cycle if there is a negation cycle Q
such that
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– Q can be obtained from P by replacing some atoms in P by ◦, and
– all the atoms that occur in Q occur only once in P .

Example 1. The formula (a� c�[d⊥ 	 b]) 	 c⊥ 	 〈b⊥ � [a⊥ 	 d]〉 contains a nega-
tion cycle (a� b) 	 〈b⊥ � a⊥〉 = (a� ◦�[◦	 b]) 	 ◦	 〈b⊥ � [a⊥ 	 ◦]〉.
Proposition 1. Let A be a BV formula. If P contains a negation cycle, then P
is not provable in BV.

A proof of this propostion can be found in [24, Proposition 7.4.30]. A sym-
metric version of this proposition has been shown for SBV in [25, Lemma 5.20].

4.2 Locativity via BV

Let us now come back to dags. A vertex v ∈ V in such a graph G = (V , E ) is
now encoded by the formula

V = (a⊥1 � · · ·� a⊥k ) � [b1 	 · · ·	 bl]

where {a1, . . . , ak} = target−1(v) is the set of edges having their target in v, and
{b1, . . . , bl} = source−1(v) is the set of edges having their source in v. For a slice
S = {e1, . . . , en} ⊆ E we define its encoding to be the formula S = e1 	 · · ·	 en.

Lemma 1. Let (V , E ) be a dag, let S ⊆ E be a slice, let v ∈ V be such that
target−1(v) ⊆ S , and let S ′ be the propagation of S through v. Then there is
a derivation

S �V
‖
‖ SBV

S′
(1)

where V , S, and S′ are the encodings of v, S , and S ′, respectively.

Proof. Assume source−1(v) = {b1, . . . , bl} and target−1(v) = {a1, . . . , ak} and
S = {e1, . . . , em, a1, . . . , ak}. Then S ′ = {e1, . . . , em, b1, . . . , bl}. Now we can
construct

[e1 � · · · � em � a1 � · · · � ak]�〈(a⊥
1 � · · ·� a⊥

k ) 
 [b1 � · · · � bl]〉
s
e1 � · · · � em � ([a1 � · · · � ak]�〈(a⊥

1 � · · ·� a⊥
k ) 
 [b1 � · · · � bl]〉)

q↑
e1 � · · · � em � 〈([a1 � · · · � ak]� a⊥

1 � · · ·� a⊥
k ) 
 [b1 � · · · � bl]〉

s
e1 � · · · � em � 〈([(a1 � a⊥

1 ) � a2 � · · · � ak]� · · ·� a⊥
k ) 
 [b1 � · · · � bl]〉

ai↑
e1 � · · · � em � 〈([a2 � · · · � ak]� a⊥

2 � · · ·� a⊥
k ) 
 [b1 � · · · � bl]〉

s
...

ai↑
e1 � · · · � em � 〈([ak−1 � ak]� a⊥

k−1 � a⊥
k ) 
 [b1 � · · · � bl]〉

s
e1 � · · · � em � 〈([(ak−1 � a⊥

k−1) � ak]� a⊥
k ) 
 [b1 � · · · � bl]〉

ai↑
e1 � · · · � em � 〈(ak � a⊥

k ) 
 [b1 � · · · � bl]〉
ai↑

e1 � · · · � em � 〈◦ 
 [b1 � · · · � bl]〉
= ,

e1 � · · · � em � b1 � · · · � bl

as desired.
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Lemma 2. Let (V , E ) be a dag, let S ,S ′ ⊆ E be slices, such that S ′ is reach-
able from S by firing a number of events (vertices). Then there is a derivation

S �V1 � · · ·�Vn

‖
‖ SBV

S′
(2)

where V1, . . . , Vn encode v1, . . . , vn ∈ V (namely, the vertices through which the
slices are propagated), and S, S′ encode S , S ′.

Proof. If S ′ is reachable from S then there is an n ≥ 0 and slices S0, . . . ,Sn ⊆
E and vertices v1, . . . , vn ∈ V such that for all i ∈ {1, . . . , n} we have that Si is
the propagation of Si−1 through vi, and S = S0 and S ′ = Sn. Now we can
apply Lemma 1 n times to get the derivation (2).

Lemma 3. Let (V , E ) be a dag, let S and S′ be the encodings of S ,S ′ ⊆ E ,
where S is a slice. Further, let V1, . . . , Vn be the encodings of v1, . . . , vn ∈ V . If
there is a proof

−
Π
‖
‖ BV

V ⊥1 	 · · ·	 V ⊥n 	 S⊥ 	 S′

then S ′ is a slice reachable from S and v1, . . . , vn are the vertices through which
it is propagated.

Proof. By induction on n. If n = 0, we have a proof of S⊥ 	 S′. Since S⊥

contains only negated propositional variables, and S′ only non-negated ones,
we have that every atom in S′ has its killer in S⊥. Therefore S ′ = S . Let
now n ≥ 1. We can assume that S′ = e1 	 · · ·	 em, and that for every i ∈
{1, . . . , n} we have V ⊥i = [ai1 	 · · ·	 aiki ] � (b

⊥
i1 � · · ·� b⊥ili). i.e., target

−1(vi) =
{ai1, . . . , aiki} and source−1(vi) = bi1, . . . , bili . Now we claim that there is an
i ∈ {1, . . . , n} such that {bi1, . . . , bili} ⊆ {e1, . . . , em}. In other words, there is
a vertex among the v1, . . . , vn, such that all its outgoing edges are in S ′. For
showing this claim assume by way of contradiction that every vertex among
v1, . . . , vn has an outgoing edge that does not appear in S ′, i.e., for all i ∈
{1, . . . , n}, there is an si ∈ 1, . . . , li with bisi /∈ {e1, . . . , em}. By Observation 3,
we must have that for every i ∈ {1, . . . , n} there is a j ∈ {1, . . . , n} with bisi ∈
{aj1, . . . , ajkj}, i.e., the killer of b⊥isi occurs as incoming edge of some vertex vj .
Let jump : {1, . . . , n} → {1, . . . , n} be a function that assigns to every i such
a j (there might be many of them, but we pick just one). Now let i1 = 1,
i2 = jump(i1), i3 = jump(i2), and so on. Since there are only finitely many Vi,
we have an p and q with p ≤ q and iq+1 = ip. Let us take the minimal such q, i.e.,
ip, . . . , iq are all different. Inside the proof Π above, we now replace everywhere
all atoms by ◦, except for bip , b

⊥
ip
, . . . , biq , b

⊥
iq
. By this, the proof remains valid

and has conclusion

〈biq � b⊥ip〉	 〈bip � b⊥ip+1
〉	 · · ·	 〈biq−1 � b⊥iq 〉 ,

which is a contradiction to Proposition 1. This finishes the proof of the claim.
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Now we can, without loss of generality, assume that vn is the vertex with all
its outgoing edges in S ′, i.e., {bn1, . . . , bnln} ⊆ {e1, . . . , em}, and (again without
loss of generality) e1 = bn1, . . . , eln = bnln . Our proof Π looks therefore as
follows:

−
Π
‖
‖ BV

V ⊥1 	 · · ·	 V ⊥n−1 	 S⊥ 	 〈[an1 	 · · ·	 ankn ] � (b
⊥
n1 � · · ·� b⊥nln)〉︸ ︷︷ ︸

V ⊥
n

	S′

where S′ = bn1 	 · · ·	 bnln 	 eln+1 	 · · ·	 em. In Π we can now replace the
atoms bn1, b

⊥
n1, . . . , bnln , b

⊥
nln

everywhere by ◦. This yields a valid proof

−
Π′ ‖‖ BV

V ⊥1 	 · · ·	 V ⊥n−1 	 S⊥ 	 an1 	 · · ·	 ankn 	 eln+1 	 · · ·	 em

to which we can apply the induction hypothesis, from which we can conclude
that

S ′′ = {an1, . . . , ankn , eln+1, . . . , em}
is a slice that is reachable from S. Clearly S ′ is the propagation of S ′′ through
vn, and therefore it is a slice and reachable from S .

Theorem 4. Let G = (V , E ) be a dag. A subset S ⊆ E is a locative slice if
and only if there is a derivation

I �V1 � . . .�Vn

‖
‖ SBV

S

,

where S is the encoding of S , and I is the encoding of a subset of the initial
edges, and V1, . . . , Vn encode v1, . . . , vn ∈ V .

Proof. The “only if” direction follows immediately from Lemma 2. For the “if”
direction, we first apply Theorem 2, and then Lemma 3.

5 Conclusion

Having a logical syntax also leads to the possibility of discussing semantics; this
would be a mathematical universe in which the logical structure can be inter-
preted. This has the potential to be of great interest in the physical systems we
are considering here, where one would want to calculate such things as expecta-
tion values. As in any categorical interpretation of a logic, one needs a category
with appropriate structure to support the logical connectives and model the in-
ference rules. The additional logical connectives of BV allows for more subtle
encodings than can be expressed in a compact closed category.
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The structure of BV leads to interesting category-theoretic considerations [26].
One must find a category with the following structure:

– ∗-autonomous structure, i.e. the category must be symmetric, monoidal
closed and self-dual.

– an additional (noncommutative) monoidal structure commuting with the
above duality.

– coherence isomorphisms necessary to interpret the logic, describing the in-
teraction of the various tensors.

Such categories are called BV-categories in [26]. Of course, trivial examples
abound. One can take the category Rel of sets and relations, modelling all three
monoidal structures as one. Similarly the category of (finite-dimensional) Hilbert
spaces, or any symmetric compact closed category would suffice. But what is
wanted is a category in which the third monoidal structure is genuinely noncom-
mutative.

While this already poses a significant challenge, we are here faced with the
added difficulty that we would like the category to have some physical signifi-
cance, to be able to interpret the quantum events described in this paper. For-
tunately, work along these lines has already been done. See [26].

That paper considers the category of Girard’s probabilistic coherence spaces
PCS, introduced in [27]. While Girard demonstrates the ∗-autonomous structure,
the paper [26] shows that the category properly models the additional noncom-
mutative tensor of BV. We note that the paper [27] also has a notion of quantum
coherence space, where analogous structure can be found.

Roughly, a probabilistic coherence space is a set X equipped with a set of
generalized measures, i.e. functions to the set of nonnegative reals. These are
called the allowable generalized measures. The set must be closed with respect
to the double dual operation, where duality is determined by polarity, where we
say that two generalized measures on X are polar, written f ⊥ g, if∑

x∈X
f(x)g(x) ≤ 1

The noncommutative connective is then modelled by the formula:

A�B = {
∑n

i=1 fi ⊗ gi | fi is an allowable measure on A and∑n
i=1 gi is an allowable measure on B }

Note the lack of symmetry in the definition. Both the categories of probabilistic
and quantum coherence spaces will likely provide physically interesting semantics
of the discrete quantum dynamics presented here. We hope to explore this in
future work.

Acknowledgements. Research supported in part by NSERC, by the ANR
project “INFER” and the INRIA ARC “Redo”.
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Learning Lambek Grammars from Proof Frames
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Abstract. In addition to their limpid interface with semantics, catego-
rial grammars enjoy another important property: learnability. This was
first noticed by Buszkowski and Penn and further studied by Kanazawa,
for Bar-Hillel categorial grammars.

What about Lambek categorial grammars? In a previous paper we
showed that product free Lambek grammars are learnable from struc-
tured sentences, the structures being incomplete natural deductions. Al-
though these grammars were shown to be unlearnable from strings by
Foret ad Le Nir, in the present paper, we show that Lambek grammars,
possibly with product, are learnable from proof frames i.e. incomplete
proof nets.

After a short reminder on grammatical inference à la Gold, we provide
an algorithm that learns Lambek grammars with product from proof
frames and we prove its convergence. We do so for 1-valued ”(also known
as rigid) Lambek grammars with product, since standard techniques can
extend our result to k-valued grammars. Because of the correspondence
between cut-free proof nets and normal natural deductions, our initial
result on product free Lambek grammars can be recovered.1

We are glad to dedicate the present paper to
Jim Lambek for his 90th birthday: he is the living proof that research is

an eternal learning process.

1 Presentation

Generative grammar exhibited two characteristic properties of the syntax of
human languages that distinguish them from other formal languages:

1. Sentences should be easily parsed and generated, since we speak and under-
stand each other in real time.

2. Any human language should be easily learnable, preferably from not so many
positive examples, as first language acquisition shows.

⋆ I am deeply indebted to my co-author for having taken up again after so many
years our early work on learnability for k-valued Lambek grammars, extended and
coherently integrated it into the framework of learnability from proof frames.

⋆⋆ Thanks to IRIT-CNRS for hosting me during my sabbatical, to the Loci ANR project
for its intellectual and financial support, to C. Casadio, M. Moortgat for their en-
couragement and to A. Foret for her helpful remarks.

1 At the turn of the millenium, our initial work benefited from a number of valuable
discussions with Philippe Darondeau. We are very sorry to learn of his premature
passing. Adieu, Philippe.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 108–135, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Human languages and the classes of the Chomsky hierarchy (with parsing
complexity)

Formally, the first point did receive a lot of attention, leading to the class of
mildly context sensitive languages [20]: they enjoy polynomial parsing but are
rich enough to describe natural language syntax. A formal account of learnability
was harder to find. Furthermore, as soon as a notion of formal learnability was
proposed, the first results seemed so negative that the learnability criterion was
left out of the design of syntactical formalisms. This negative result stated that
whenever a class of languages contains all the regular languages it cannot be
learnt.

By that time, languages were viewed through the Chomsky hierarchy (see
figure 1) and given that regular languages are the simplest and that human lan-
guages were known to include non regular languages, an algorithm that learns
the syntax of a human language from positive examples was considered as im-
possible. This pessimistic viewpoint was erroneous for at least two reasons:

– The class of human languages does not include all regular languages and it
is likely that it does to even include a single regular language, see on figure
1 the present hypothesis on human languages.

– The positive examples were thought to be sequences of words, while it has
been shown long ago that grammatical rules operate on structured sentences
and phrases (that are rather trees or graphs), see e.g. [8] for a recent account.

Gold’s notion of learning a class of languages generated by a class of gram-
mars G — that we shall recall in the first section of the present paper — is that
a learning function φ maps a sequence of sentences e1, . . . , en to a grammar Gn =
φ(e1, . . . , en) in the class in such a way that, when the examples enumerate a
language L(G) in the class G, there exists an integer N such that if n > N the Gn

are constantly equal toGN generating the same language i.e. L(Gn) = L(G). The
fundamental point is that the function learns a class of languages: the algorithm
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eventually finds out that the enumerated language cannot be any other language
in the class. Therefore the very same language can be learnable as a member of
a learnable class of languages, and unlearnable as the member of another class of
languages. Although surprising at first sight, this notion according to which one
learns in a predefined class of languages is rather compatible with our knowledge
of first language acquisition.

Overtaking the pessimistic view of Gold’s theorem, Angluin established in
the 80s that some large but transversal classes of languages were learnable in
Gold’s sense. [4] Regarding categorial grammars, Buszkowski and Penn defined
in late 80s [12,11] an algorithm that learns basic categorical grammars from
structured sentences, functor-argument structures, and Kanazawa proved in 1994
that their algorithm converges: it actually learns categorial grammar in Gold’s
sense. [22,21]

The result in the present paper is much in the same vein as Buszkowski, Penn
and Kanazawa.

Section 2. We first recall the Gold learning paradigm, identification in the limit
from positive examples.

Sections 3, 4. Next we briefly present Lambek categorial grammars, and define
the parsing of Lambek categorial grammar with product as cut-free proof
nets construction and introduce the proof frames, that will be the structures
we shall learn from. Informally, proof frames are name free parse structures,
just like functor argument structures that are commonly used for learning
basic categorial grammars. Such grammars ought to be learnt from structured
sentences since Foret and Le Nir established that they cannot be learnt from
strings [14].

Sections 5,6,7. After a reminder on unification and categorial grammars, we
present our algorithm that learns rigid Lambek categorial grammars with
product from proof frames and perform it on sample data involving intro-
duction rules that are not in basic categorial grammars and product rules
that are not in Lambek grammars. We then prove the convergence of this
algorithm.

Section 8. We show that the present result strictly encompasses our initial
result [10] that learns rigid product-free Lambek grammars from name-free
natural deductions. To do so, we give the bijective correspondence between
cut-free proof nets for the product-free Lambek calculus and normal natural
deduction that are commonly used as parse structures.

In the conclusion, we discuss the merits and limits of the present work. We
briefly explain how it can generalise to k-valued Lambek grammars with
product and suggest direction for obtaining corpora with proof frame anno-
tations from dependency-annotated corpora.

2 Exact Learning à la Gold: A Brief Reminder

We shall just give a brief overview of the Gold learning model of [17], with some
comments, and explain why his famous unlearnability theorem of [17] (theorem
1 below) is not as negative as it may seem — as [4] or the present article shows.
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The principles of first language acquisition as advocated by Chomsky [31] and
more recently by Pinker [32,33] can be very roughly summarised as follows:

1. One learns from positive examples only: an argument says that in certain
civilisations children uttering ungrammatical sentences are never corrected
although they learn the grammar just as fast as ours — this can be discussed,
since the absence of reaction might be considered as negative evidence, as
well as the absence of some sentences in the input.

2. The target language is reached by specialisation more precisely by restricting
word order from languages with a freer word order: rare are the learning al-
gorithms for natural language that proceed by specialisation although, when
starting from semantics, there are some, like the work of Tellier [39]

3. Root meaning is known first, hence the argumental structure or valencies
are correct before the grammar learning process starts. This implies that
all needed words are there, possibly in a non correct order, hence enforcing
the idea of learning by specialisation — the afore mentioned work by Tellier
proceeds from argument structures [39]

4. The examples that the child is exposed to are not so many: this is known as
the Poverty Of Stimulus argument. It has been widely discussed since 2000
in particular for supporting quantitative methods. [31,34,35,8]

In his seminal 1967 paper, Gold introduced a formalisation of the process of
the acquisition of one’s first language grammar, which follows the first principle
stated above, which is the easiest to formalise: the formal question he addressed
could be more generally stated as grammatical inference from positive examples.
It also should be said that this notion of learning may be used for other purposes
every time one wants to extract some regularity out of sequences observations
other fields being genomics (what would be a grammar of strings issued from
ADN sequences) and diagnosis (what are the regular behaviours of system, what
would be a grammar generating the sequences of normal observations provided
by captors for detecting abnormal behaviours).

We shall provide only a minimum of information on formal languages and
grammars. Let us just say that a language is a subset of inductive class U . El-
ements of U usually are finite sequences (a.k.a. strings) of words, trees whose
leaves are labelled by words, or graphs whose vertices are words — we here say
“words” because they are linguistic words, while other say “letters” or “termi-
nals,” and we say “sentences” for sequences of words where others say “words”
for sequences of “letters” or “terminals”. A grammar G is a process generating
the objects of a language L(G) ⊂ U . The membership question is said to be
decidable for a grammar G when the characteristic function of L(G) in U is
computable. The most standard example of U is Σ∗ the set of finite sequences
over some set of symbols (e.g. words) Σ. The phrase structure grammars of
Chomsky-Schutzenberger are the most famous grammars producing languages
that are parts ofΣ∗. Lambek categorial grammars and basic categorial grammars
are an alternative way to generate sentences as elements of Σ∗: they produce the
same languages as context–free languages [7,30,26, chapters 2, 3]. Finite labeled
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trees also are a possible class of object. A regular tree grammar produces such
a tree language, and the yields of the trees in L(G) define a context free string
language. In the formal study of human languages, U usually consists in strings
of words or in trees.

Definition 1 (Gold, 1967, [17]). A learning function for a class of grammarsG producing U-objects (L(G) ⊂ U) is a partial function φ that maps any finite
sequence of positive examples e1, e2, . . . , ek with ei ∈ U to a grammar in the class
φ(e1, e2, . . . , ek) ∈ G such that:

if (ei)i∈I is any enumeration of a language L(G) ⊂ U with G ∈ G,
then there exists an integer N such that, calling Gi = φ(e1, . . . , ei):

– GP = GN for all P ≥N .
– L(GN ) = L(G).

Several interesting properties of learning functions have been considered:

Definition 2. A learning function φ is said to be

– effective or computable when φ is recursive. In this case one often speaks
of a learning algorithm. We shall only consider effective learning functions:
this is consistent both with language being viewed as a computational process
and with applications to computational linguistics. Observe that the learn-
ing function does not have to be a total recursive function: it may well be
undefined for some sequences of sentences and still be a learning function.

– conservative if φ(e1, . . . , ep, ep+1) = φ(e1, . . . , ep) whenever ep+1 ∈ L(φ(e1,
. . . , ep)).

– consistent if {e1, . . . , ep} ⊂ L(φ(e1, . . . , ep)) whenever φ(e1, . . . , ep) is defined.
– set driven if φ(e1, . . . , ep) = φ(e′1, . . . , e′q) whenever {e1, . . . , ep} = {e′1, . . . , e′q}

— neither the order of the examples nor their repetitions matters.
– incremental if there exists a binary function Ψ such that

φ(e1, . . . , ep, ep+1) = Ψ(φ(e1, . . . , ep), ep+1)
– responsive if the image φ(e1, . . . , ep) is defined whenever there exists L in

the class with {e1, . . . , ep} ⊂ L
– monotone increasing when φ(e1, . . . , ep, ep+1) ⊂ φ(e1, . . . , ep)
In this paper the algorithm for learning Lambek grammars enjoys all those

properties. They all seem to be sensible with respect to first language acquisition
but the last one: indeed, as said above, children rather learn by specialisation.

It should be observed that the learning algorithm applies to a class of lan-
guages. So it is fairly possible that a given language L which both belongs to
the classes G1 and G2 can be identified as a member of G1 and not as a member
of G2. Learning L in such a setting is nothing more than to be sure, given the
examples seen so far, that the language is not any other language in the class.

The classical result from the same 1967 paper by Gold [17] that has be over
interpreted see e.g. [5,19] can be stated as follows:
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Theorem 1 (Gold, 1967, [17]). If a class Gr of grammars generates

– languages (Li)i ∈ N with Li ∈ N which are strictly embedded that is Li ⊊ Li+1

for all i ∈ N
– together with the union of all these languages ∪i∈NLi ∈ Gr

then no function may learn Gr.
Proof. From the definition, we see that a learning function should have guessed
the grammar of a language L(G) with G ∈ G after a finite number of examples
in the enumeration of L(G). Consequently, for any enumeration of any language
in the class,

(1) the learning function may only change its mind finitely many times.

Assume that is a learning function φ for the class Gr. Since the Li are nested as
stated, we can provide an enumeration of L = ∪Li according to which we firstly
see examples x1

0,⋯, xp0

0 from L0 until φ proposes G0 with LG0 = L0, then we see
examples x1

1,⋯, xp
1 in L1 until φ proposesG1 with LG1 = L1, then we see examples

x1
2,⋯, xp

2 in L2 until φ proposesG2 with LG2 = L2, etc. In such an enumeration of
L the learning function changes its mind infinitely many times, conflicting with
(1). Thus there cannot exists a learning function for the class Gr.

Gold’s theorem above has an easy consequence that was interpreted quite
negatively:

Corollary 1. No class containing the regular languages can be learnt.

Indeed, by that time the Chomsky hierarchy was so present that no one
thought that transverse classes could be of any interest let alone learnable.
Nowadays, it is assumed that the syntax of human languages contains no regular
languages and goes a bit beyond context free languages as can be seen in figure
1. It does not seem likely that human languages contain a series of strictly em-
bedded languages as well as their unions. Hence Gold’s theorem does not prevent
large and interesting classes of languages from being learnt. For instance Angluin
showed that pattern languages, a transversal class can be learnt by identification
in the limit [4] and she also provided a criterion for learnability base on telltale
sets:

Theorem 2 (Angluin, 1980, [5]). An enumerable family of languages Li with
a decidable membership problem is effectively learnable whenever for each i there
is a computable finite Ti ⊂f Li such that if Ti ⊂ Lj then there exists w ∈ (Lj ∖Li)

As a proof that some interesting classes are learnable, we shall define particu-
lar grammars, Lambek categorial grammars with product, and their associated
structure languages, before proving that they can be learnt from these structures,
named proof frames.
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3 Categorial Grammars and the LCGp Class

Given a finite set of words Σ and an inductively defined set of categories C
including a special category s and an inductively defined set of derivable sequents⊢ ⊂ (C∗ ×C) (each of them being written t1, . . . , tn ⊢ t) a categorial grammar G
is defined as a map lexG from words to finite sets of categories. An important
property, as far as learnability is concerned, is the maximal number of categories
per word i.e. maxw∈Σ ∣lexG(w)∣. When it is less than k, the categorial grammar
G is said to be k-valued and 1-valued categorial grammars are said to be rigid.

Some standard family of categorial grammars are:

1. Basic categorial grammars BCG also known as AB grammars have their
categories in C ∶∶= s ∣ B ∣ C / C ∣ C / C and the derivable sequents are the
ones that are derivable in the Lambek calculus with elimination rules only
Δ ⊢ A and Γ ⊢ B /A (respectively Γ ⊢ A /B) yields Γ,Δ ⊢ B (respectively
Δ,Γ ⊢ B) — in such a setting the empty sequence is naturally prohibited
even without saying so. [6]

2. The original Lambek grammars [23] also have their categories in the same
inductive set C ∶∶= s ∣ B ∣ C / C ∣ C / C and the derivable sequents are the ones
that are derivable in the Lambek calculus without empty antecedent, i.e. with
rules of figure 3 except ⊗i and ⊗h — a variant allows empty antecedents.

3. Lambek grammars with product (LCGp) have their categories in C⊗ ∶∶=s ∣B ∣C⊗/C⊗ ∣ C⊗/C⊗ ∣ C⊗⊗C⊗ and the derivable sequents are the ones that are derivable
in the Lambek calculus with product without empty antecedent i.e. with all
the rules of figure 3 — a variant allows empty antecedents.

A phrase, that is a sequence of words w1⋯wn, is said to be of category C
according to G when, for every i between 1 and p there exists ti ∈ lexG(wi)
such that t1, . . . , tn ⊢ C is a derivable sequent. When C is s the phrase is said
to be a sentence according to G. The string language generated by a categorial
grammar is the subset of Σ∗ consisting in strings that are of category s i.e.
sentences. Any language generated by a grammar in one of the aforementioned
classes of categorial grammars is context free.

In this paper we focus on Lambek grammarswith product (LCGp). The explicit
use of product categories in Lambek grammars is not so common. Category like(a⊗ b) / c can be viewed as b / (a / c) so they do not really involve a product. The
comma in the left-hand side of the sequent, as well as the separation betweenwords
are implicit products, but grammar and parsing can be defined without explicitly
using the product. Nevertheless, there are cases when the product is appreciated.

– For analysing the French Treebank, Moot in [25] assigns the category ((np⊗
pp) / (np⊗ pp)) / (np⊗ pp) to “et” (“and”) for sentences like:

(2) Jean donne un livre à Marie et une fleur à Anne.

– According to Glyn Morrill [28,27] past participles like raced should be as-
signed the category ((CN /CN)/(N / (N / s−))⊗ (N / (N / s−)) where s− is
an untensed sentence in sentences like:

(3) The horse raced past the barn fell.
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The derivable sequents of the Lambek syntactic calculus with product are obtained
form the axiom C ⊢ C for any category C and the rules are given below, where A,B
are categories and Γ,Δ finite sequences of categories:

Γ,B,Γ
′ ⊢ C Δ ⊢ A

/h
Γ,Δ,A /B,Γ ′ ⊢ C

A,Γ ⊢ C
/i Γ ≠ ∅

Γ ⊢ A /C

Γ,B,Γ ′ ⊢ C Δ ⊢ A
/h

Γ,B /A,Δ,Γ ′ ⊢ C

Γ,A ⊢ C
/i Γ ≠ ∅

Γ ⊢ C /A

Γ,A,B,Γ ′ ⊢ C
⊗h

Γ,A⊗B,Γ ′ ⊢ C

Δ ⊢ A Γ ⊢ B
⊗i

Δ,Γ ⊢ A⊗B

Fig. 2. Sequent calculus rule for the Lambek calculus

4 Categorial Grammars Generating Proof Frames

The classes of languages that we wish to learn include some proper context free
languages [7], hence they might be difficult to learn. So we shall learn them from
structured sentences, and this section is devoted to present the proof frames that
we shall use as structured sentences.

A neat natural deduction system for Lambek calculus with product is rather
intricate [3,1], mainly because the product elimination rules have to be carefully
commuted for having a unique normal form. Cut-free sequent calculus proofs are
also not so good structures because they are quite redundant and some of their
rules can be swapped. As explained in [26, chapter 6] proof nets provide perfect
parse structure for Lambek grammars even if they use the product. When the
product is not used, cut-free proof nets and normal natural deduction are iso-
morphic, as we shall show in subsection 8.1. Consequently the structures that
we used for learning will be proof frames that are proof nets with missing infor-
mations. Let us see how categorial grammars generate such structures, and first
let us recall the correspondence between polarised formulae of linear logic and
Lambek categories.

4.1 Polarised Linear Formulae and Lambek Categories

A Lambek grammar is better described with the usual Lambek categories, while
proof nets are better described with linear logic formulae. Hence we need to re-
call the correspondence between these two languages as done in [26, chapter 6].
Lambek categories (with product) are C⊗ defined in the previous section 3. Linear
formula L are defined by:
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L ∶∶= P ∣ P⊥ ∣ (L⊗ L) ∣ (L ℘ L)
the negation of linear logic )⊥ is only used on propositional variables from P

as the De Morgan laws allow:(A⊥)⊥ ≡ A (A ℘B)⊥ ≡ (B⊥ ⊗A⊥) (A⊗B)⊥ ≡ (B⊥ ℘A⊥)
To translate Lambek categories into linear logic formulae, one has to distin-

guish the polarised formulae, the output or positive ones L○ and the input or
negative ones from L● with F ∈ L○ ⇐⇒ F ⊥ ∈ L● and (L○ ∪ L●) ⊊ L:

{L○ ∶∶= P ∣ (L○ ⊗ L○) ∣ (L● ℘ L○) ∣ (L○ ℘ L●)
L● ∶∶= P⊥ ∣ (L● ℘ L●) ∣ (L○ ⊗ L●) ∣ (L● ⊗ L○)

Any formula of the Lambek L calculus can be translated as an output formula+L of multiplicative linear logic and its negation can be translated as an input
linear logic formulae −L as follows:

L α ∈ P L =M ⊗N L =M /N L = N /M
+L α +M ⊗ +N −M ℘ +N +N ℘ −M−L α⊥ −N ℘ −M −N ⊗+M +M ⊗−N

Conversely any output formula of linear logic is the translation of a Lambek
formula and any input formula of linear logic is the negation of the translation
of a Lambek formula. Let (. . .)○Lp denotes the inverse bijection of “+”, from L○

to Lp and (. . .)●Lp denotes the inverse bijection of “−” from L● to Lp. These two
maps are inductively defined as follows:

F ∈L○ α∈P (G∈L○) ⊗ (H∈L○) (G∈L●) ℘ (H∈L○) (G∈L○) ℘ (H∈L●)
F ○Lp α G○Lp ⊗H○Lp G●Lp /H○Lp G○Lp /H●Lp
F ∈L● α⊥∈P⊥ (G∈L●) ℘ (H∈L●) (G∈L○) ⊗ (H∈L●) (G∈L●) ⊗ (H∈L○)
F ●Lp α H●Lp ⊗G●Lp H●Lp /G○Lp H○Lp /G●Lp

4.2 Proof Nets

A proof net is a graphical representation of a proof which identifies inessentially
different proofs. A cut-free proof net has several conclusions, and it consists of

– the subformula trees of its conclusions, that possibly stops on a sub formula
which is not necessarily a propositional variable (axioms involving complex
formulae simplify the learning process).

– a cyclic order on these sub formula trees
– axioms that links two dual leaves F and F ⊥ of these formula subtrees.

Such a structure can be represented by a sequence of terms — admittedly
easier to type than a graph — with indices for axioms. Each index appears
exactly twice, once on a formula F (not necessarily a propositional variable) and
one on F ⊥. Here are two proof nets with the same conclusions:
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(4) s⊥
1 ⊗ (s2 ℘ np⊥

3), np3 ⊗ (s⊥ ⊗ np)7, (np⊥ ℘ s)7 ⊗ s⊥
2
, s1

(5) s⊥
1 ⊗ (s2 ℘ np⊥

3), np3 ⊗ (s⊥4 ⊗ np5), (np⊥5 ℘ s4) ⊗ s⊥
2
, s1

The second one is obtained from the first one by expansing the complex axiom(s⊥ ⊗ np)7, (np⊥ ℘ s)7 into two axioms: (s⊥4 ⊗np5), (np⊥5 ℘ s4). Complex axioms
always can be expansed into atomic axioms — this is known as η-expansion. This
is the reason why proof nets are often presented with atomic axioms. Nevertheless
as we shall substitute propositional variables with complex formula during the
learning process we need to consider complex axioms as well — see the processing
of example (9) in section 6.

No any such structure does correspond to a proof:

Definition 3. A proof structure with conclusions C1, I11 , . . . , I
1
n is said to be a

proof net of the Lambek calculus when it enjoys the correctness criterion defined
by the following properties:

1. Acyclic: any cycle contains the two branches of a ℘ link
2. Intuitionistic: exactly one conclusion is an output formula of L○, all other

conclusions are input formulae of L●

3. Non commutative: no two axioms cross each other
4. Without empty antecedent: there is no sub proof net with a single conclusion

The first point in this definition is not stated precisely but, given that we learn
from correct structured sentences, we shall not need a precise definition. The
reader interested in the details can read [26, chapter 6]. Some papers require a
form of connectedness but it is not actually needed since this connectedness is a
consequence of the first two points see [18] or [26, section 6.4.8 pages 225–227].

Definition 4. Proof nets for the Lambek calculus can be defined inductively as
follows (observe that they contain exactly one output conclusion):

– given an output formula F an axiom F,F ⊥ is a proof net with two conclusions
F and F ⊥ — we do no require that F is a propositional variable.

– given a proof net π1 with conclusions O1, I11 , . . . , I
1
n and a proof net π2 with

conclusions O2, I21 , . . . , I
2
p where O1 and O2 are the output conclusions, one

can add a ⊗-link between a conclusion of one and a conclusion of the other,
at least one of the two being an output conclusion. We thus can obtain a
proof net whose conclusions are:● O1 ⊗ I2k , I

2
k+1, . . . , I

2
p ,O

2, I21 , I
2
k−1, I

1
1 , . . . , I

1
n — O2 being the output con-

clusion● I1l ⊗ O2, I21 , . . . , I
2
p , I

1
l+1, . . . , I

1
n,O

1, I11 , . . . , I
1
l−1, — O1 being the output

conclusion● O1 ⊗O2, I21 , . . . , I
2
p , I

1
1 , . . . , I

1
n — O1 ⊗O2 being the output conclusion.

– given a proof net π1 with conclusions O1, I11 , . . . , I
1
n one can add a ℘ link

between any two consecutive conclusions, thus obtaining a proof nets with
conclusions:



118 R. Bonato and C. Retoré

● O1, I11 , . . . , Ii ℘ Ii+1, . . . , I
1
n — O1 being the output conclusion

● O1 ℘ I11 , I
1
2 . . . , I1n — O1 ℘ I11 being the output conclusion

● I1n ℘O1, I11 . . . , I1n−1 — O1 ℘ I11 being the output conclusion

A key result is that:

Theorem 3. The inductively defined proof nets of definition 4, i.e. proofs, ex-
actly correspond to the proof nets defined as graphs enjoying the universal prop-
erties of the criterion 3

A parse structure for a sentence w1, . . . ,wp generated by a Lambek grammar
G defined by a lexicon lexG is a proof net with conclusions (cn)−, . . . , (c1)−, s+
with ci ∈ lex(wi). This replaces the definition of parse structure as normal natural
deductions [40] which does not work well when the product is used [3,1].

4.3 Structured Sentences to Learn from: s Proof Frames

An s proof frame (sPF ) is simple a parse structure of a Lambek grammar i.e. a proof
net whose formula names have been erased, except the s on the output conclusion.
Regarding axioms, their positive and negative tips are also kept. Such a structure
is the analogous of a functor argument structure for AB grammars or of a name
free normal natural deduction for Lambek grammars used in [12,11,10] and it can
be defined inductively as we did in 4, or by the conditions in definition 3.

Definition 5 (Proof frames, sPF ). An s proof frame (sPF ) is a normal
proof net π such that:

– The output of π is labelled with the propositional constant s — which is
necessarily the conclusion of an axiom, the input conclusion of this axiom
being labelled s⊥.

– The output conclusion of any other axiom in π is O its input conclusion
being O⊥ = I.

Given an s proof net π its associated s proof frame πf is obtained by replacing
in π the output of any axiom by O (and its dual by I = O⊥) except the s that is
the output of π itself which is left unchanged.

A given Lambek grammar G is said to generate an sPF ρ whenever there
exists a proof net π generated by G such that ρ = πIO. In such a case we write
ρ ∈ sPF(G).

The sPF associated with the two proof nets 4 and 5 above are:

(6) s⊥
1 ⊗ (O2 ℘ I3),O3 ⊗ (I4 ⊗O5), (O5 ℘O4) ⊗ I2, s

(7) s⊥
1 ⊗ (O2 ℘ I3),O3 ⊗ I7,O7 ⊗ I2, s
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5 Unification, Proof Frames and Categorial Grammars

Our learning algorithm makes a crucial use of category-unification, and this kind
of technique is quite common in grammatical inference [29], so let us briefly define
unification of categorial grammars.

As said in paragraph 3, a categorial grammar is defined from a lexicon that
maps every word w to a finite set of categories lexG(w). Categories are usually
defined from a finite set B of base categories that includes a special base category
s. Here we shall consider simultaneously many different categorial grammars and
to do so we shall have an infinite set B whose members will be s and infinitely
many category variables denoted by x, y, x1, x2, . . ., y1, y2, . . . In other words,
B = {s} ∪ V , s /∈ V , V being an infinite set of category variables. The categories
arising from B are defined as usual by V ∶∶= s ∣ V ∣ V / V ∣ V / V ∣ V ⊗ V . This
infinite set of base categories does not change much categorial grammars: since
there are finitely many words each of them being associated with finitely many
categories, the lexicon is finite and a given categorial grammar only makes use of
finitely many base categories. Choosing an infinite language is rather important,
as we shall substitute a category variable with a complex category using fresh
variables, thus turning a categorial grammar into another one, and considering
families of grammars over the same base categories.

A substitution σ is a function from categories V to categories V that is gen-
erated by a mapping σV of finitely many variables xi1 ,⋯, xip in V to categories
of V :

σ(s) = s

given x ∈ V, σ(x) = {σV (x) if x = xik for some k
x otherwise

σ(A /B) = σ(A) / σ(B)
σ(B /A) = σ(B) / σ(A)

The substitution σ is said to be a renaming when σV is a bijective mapping from
V to V — otherwise stated σV is a permutation of the xi1 ,⋯, xip ).

As usual, substitutions may be extended to sets of categories by stipulating
σ(A) = {σ(a)∣a ∈ A}. Observe that σ(A) can be a singleton while A is not:{(a / (b / c)), (a /u)}[u↦ (b / c] = {a / (b / c)}. A substitution can also be applied
to a categorial grammar: σ(G) = G′ with lexG′(w) = σ(lexG(w)) for any word
w, and observe that a substation turns a k-valued categorical grammar into a
k′-valued categorial grammar with k′ ≤ k, and possibly into a rigid (or 1-valued)
categorial grammar (cf. section 3).

A substitution σ on Lambek categories (defined by mapping finitely many
category variables xi to Lambek categories Li, xi ↦ Li) clearly defines a substi-
tution on linear formulae σ� (by xi ↦ L+i ), which preserves the polarities σ�(F )
is positive(respectively negative) if and only if F is. Conversely, a substitution
ρ on linear formulae defined by mapping variables to positive linear formulae
(xi ↦ Fi) defines a substitution on Lambek categories ρL with the mapping
xi ↦ F ○Lp. One has: σ(L) = (σ�(L+))○Lp and ρ(F ) = (ρL(F ○Lp))+ if F ∈ L○ and
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ρ(F ) = (ρL(F ●Lp))−. Roughly speaking as far as we use only polarised linear for-
mulae and substitution that preserve polarities, it does not make any difference
to perform substitutions on linear formulae or on Lambek categories.

Substitution preserving polarities (or Lambek substitutions) can also be ap-
plied to proof nets: σ(π) is obtained by applying the substitution to any formula
in π, and they turn an s Lambek proof net into an s Lambek proof net – this is
a good reason for considering axioms on complex formulae.

Proposition 1. If σ is a substitution preserving polarities and π a proof net
generated by a Lambek grammar G, then σ(π) is generated by σ(G) and σ(π)
have the same associated s proof frame: σ(π)f = πf

Two grammars G1 and G2 with their categories in V are said to be equal
whenever there is renaming ν such that ν(G1) = G2.

A substitution σ is said to unify two categories A,B if one has σ(A) = σ(B).
A substitution is said to unify a set of categories T or to be a unifier for T if
for all categories A,B in T one has σ(A) = σ(B) — in other words, σ(T ) is a
singleton.

A substitution σ is said to unify a categorial grammar G or to be a unifier of
G whenever, for every word in the lexicon σ unifies lexG(w), i.e. for any word w
in the lexicon lexσ(G)(w) has a unique category — in other words σ(G) is rigid.

A unifier does not necessarily exists, but when it does, there exists a most
general unifier (mgu) that is a unifier σu such for every unifier τ there exists a
substitution στ such that τ = στ ○ σu. This most general unifier is unique up to
renaming. This result also holds for unifiers that unify a set of categories and
even for unifiers that unify a categorial grammar. [22]

Definition 6. Let π be an s proof net whose associated sPF is πf . If all the
axioms in π but the s, s⊥ whose s is π’s main output are αi, α

⊥

i with αi ≠ αj when
i ≠ j, π is said to be a most general labelling of πf . If πf is the associated sPF of
an s proof net π and πv one of the most general labelling of πf , then πv is also
said to be a most general labelling of π. The most general labelling of an s proof
net is unique up to renaming.

We have the following obvious but important property:

Proposition 2. Let πv is a most general labelling of an s proof net π, then there
exists a substitution σ such that π = σ(πv).

6 An RG-Like Algorithm for Learning Lambek Categorial
Grammars from Proof Frames

Assume we are defining a consistent learning function from positive examples
for a class of categorial grammar (see definition 2). Assume that we already
mapped e1, . . . , en to a grammar Gn with e1, . . . , en ⊂ L(Gn) and en+1 /∈ L(Gn).
This means that for some word w in the sentence en+1 no category of lexGn(w)
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The algorithm for unifying two categories C1 and C2 can be done by processing a
finite multi-set E of potential equations on terms, until it fails or reaches a set of
equations whose left hand side are variables, each of which appears in a unique such
equation — a measure consisting in triple of integers ordered ensures that this algorithm
always stops. This set of equations xi = ti defines a substitution by setting ν(xi) = ti.
Initially E = {C1 = C2}. In the procedure below, upper case letters stand for categories,
whatever they might be, x for a variable, ∗ and ◇ stand for binary connectives among
/, /,⊗. Equivalently, unifications could be performed on linear formulae, as said in the
main text. The most general unifier of n categories can be performed by iterating
binary unification, the resulting most general unifier does not depend on the way one
proceeds.

E ∪ {C=C} �→ E
E ∪ {A1∗B1=A2∗B2} �→ E ∪ {A1=A2,B1=B2}

E ∪ {C=x} �→ E ∪ {x=C}
if x ∈ V ar(C) E ∪ {x=C} �→ �

if x /∈ V ar(C) ∧ x ∈ V ar(E) E ∪ {x=C} �→ E[x ∶ =C] ∪ {x=C}
if ◇ ≠ ∗ E ∪ {A1∗B1=A2 ◇B2} �→ �

E ∪ {s=A2∗B2} �→ �
E ∪ {A1∗B1=s} �→ �

Fig. 3. The unification algorithm for unifying two categories

is able to account for the behaviour of w in en+1. A natural but misleading idea
would be to say: if word wk needs category ckn+1 in example en+1, let us add ck to
lexGn(wk) to define lexGn+1(wk). Doing so for every occurrence of problematic
words in en+1 we will have e1, . . . , en, en+1 ⊂ L(Gn+1) and in the limit we obtained
the smallest grammar G∞ such that ∀i e1, . . . , ei ∈ LG∞ which should be reached
at some point. Doing so, there is little hope to identify a language in the limit
in Gold sense. Indeed, nothing guarantees that the process will stop, and a
categorial grammar with infinitely many types for some word is not even a
grammar, that is a finite description of a possibly infinite language. Thus, an
important guideline for learning categorial grammars is to bound the number
of categories per word. That is the reason why we introduced in section 3 the
notion of k-valued categorial grammars, which endow every word with at most
k categories, and we shall start by learning rigid (1-valued) categorial grammars
as the k-valued case derives from the rigid case.

Our algorithm can be viewed as an extension to Lambek grammars with prod-
uct of the RG algorithm (learning Rigid Grammars) introduced by Buszkowski
and Penn in [11,12] initially designed for rigid AB grammars. A difference from
their seminal work is that the data ones learns from were functor argument trees
while here they are proof frames (or natural deduction frames when the product
is not used [10], see section 8). Proof frames may seem less natural than natural
deduction, but we have two good reasons for using them:
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– The first one is that product is of interest for some grammatical constructions
as examples 2 and 3 show while there is no fully satisfying natural deduction
for Lambek calculus with product. [3,1]

– The second one is that they resemble dependency structures, since an ax-
iom between the two conclusions corresponding to two words expresses a
dependency between these two words.

To illustrate our learning algorithm we shall proceed with the three examples
below, whose corresponding s proof frames are given in figure 4. As their sPF
structures shows, the middle one (9) involves a positive product in the (the I ℘ I
in the category of “and”) and the last one (10) involves an introduction rule
(the O ℘ I in the category of “that”).

(8) Sophie gave a kiss to Christian

(9) Christian gave a book to Anne and a kiss to Sophie

(10) Sophie liked a book that Christian liked.

Unfortunately the use for proof nets is to use a reverse word order, for having
conclusions only, and these conclusions are linear formulae, the dual of Lambek
categories as explained in section 4 — in some papers by Glynn Morrill e.g.
[28] the order is not reversed, but then the linear formulae and the proof net
structure are less visible. One solution that will make the supporters of either
notation happy is to write the sentences vertically as we do in figure 4.

Definition 7 (RG like algorithm for sPF ). Let D = (πk
f )1≤k≤n be the s

proof frames associated with the examples (ekf)1 ≤ k ≤ n, and let (πk) be most

general labelings of the (πk
f )1≤k≤n. We can assume that they have no common

variables — this is possible because the set of variables is infinite and because
most general labelings are defined up to renaming. If example ek contains n words
wk

1 , . . . ,w
k
n then πk has n conclusions (ckn)−, . . . , (wk

1)−, s, where all the cki are
Lambek categories.

Let GF (D) be the non necessarily rigid grammar defined by the assignments
wk

i ∶ cki — observe that a for a given word w there may exist several i and k such
that w = wk

i .
Let RG(D) be the rigid grammar defined as the most general unifier of the

categories lex(w) for each word in the lexicon when such a most general unifier
exists.

Define φ(D) as RG(D). When unification fails, the grammar can be defined
by lex(w) = ∅ for those words whose categories do not unify.

With the sPF of our examples in sPF yields the following type assignments
where the variable xn corresponds to the axiom number n in the examples, they
are all different as expected — remember that s is not a category variable but a
constant.
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Example 1

11 I } Sophie

11

���� ���
��
O
⊗

00 s⊥
��
⊗

12
��
O
⊗

13 O
��
���� ���

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

gave

13
��
I
⊗

14 O
��

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

a

14 I } kiss

12
��
I
⊗

15 O
��

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

to

15 I } Christian

00 s} (sentence)

Example 2

21 I } Christian

21

���� ���
��
O
⊗

00 s⊥
��
⊗

22 O
��

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

gave

23
��
I
⊗

24 O
��

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

a

24 I } book

25
��
I
⊗

26 O
��

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

to

26 I } Anne

25

���� ���
��
��
O
⊗

23 O
��
⊗

22 I
��
⊗

27
��
O
⊗

28 O
��
���� ���

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

28
��
I
⊗

29 O
��

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

a

29 I } kiss

27
��
I
⊗

20 O
��

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

to

20 I } Sophie

00 s} (sentence)

Example 3

31 I } Sophie

31

���� ���
��
O
⊗

00 s⊥
��
⊗

32 O
��

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

liked

32
��
I
⊗

33 O
��

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

a

34 I } book

34

���� ���
��
O
⊗

33 I
��
⊗

35
��
I
℘

36 O
��
���� ���

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

that

37 I } Christian

37

���� ���
��
O
⊗

36 I
��
⊗

35 O
��

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

liked

00 s} (sentence)

Fig. 4. Three S proof frames: three structured sentences for our learning algorithm
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word category (Lambek) category⊥ (linear logic)
and (((x23 ⊗ x25) / x22)... ((x28 ⊗ x27) ⊗ ...

... / (x28 ⊗ x27)) ...(x22 ⊗ (x23 ⊗ x25)))
that ((x34 / x33) / (x36 / x35)) ((x36 ℘ x⊥35) ⊗ (x⊥33 ⊗ x34))
liked (x31 / s) / x32 x32 ⊗ (s⊗ x31)(x37 / x36) / x35 x35 ⊗ (x36 ⊗ x37)
gave ((x11 / s) / (x13 ⊗ x12)) (x13 ⊗ x12) ⊗ (s⊗ x11)((x21 / s) / x22) x22 ⊗ (s⊗ x21)
to x12 / x15 x15 ⊗ x⊥12

x25 / x26 x26 ⊗ x⊥25
x27 / x20 x20 ⊗ x⊥27

a x13 / x14 x14 ⊗ x⊥13
x23 / x24 x24 ⊗ x⊥23
x28 / x29 x29 ⊗ x⊥28
x32 / x33 x33 ⊗ x⊥32

Anne x26 x⊥26
Sophie x11 x⊥11

x20 x⊥20
x31 x⊥31

Christian x15 x⊥15
x21 x⊥21
x37 x⊥37

book x24 x⊥24
x34 x⊥34

kiss x14 x⊥14
x29 x⊥29

Unifications either performed on Lambek categories cki or on the corresponding
linear formulae (the (cki )− that appear in the second column) yield the following
equations:

liked
x31 = x37

x36 = s
x32 = x35

gave
x11 = x21

x22 = x13 ⊗ x12

to
x12 = x25 = x27

x15 = x26 = x20

a
x13 = x23 = x28 = x32

x14 = x24 = x29 = x33

Sophie
x11 = x20 = x31

Christian
x15 = x21 = x37

kiss
x14 = x29

book
x24 = x34
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These unification equations can be solved by setting:

x36 = s
x22 = x13 ⊗ x12 = np⊗ pp
x12 = x25 = x27 = pp prepositional phrase introduced by “to”
x13 = x23 = x28 = x32 = x35 = np noun phrase
x14 = x24 = x29 = x33 = x34 = cn common noun
x11 = x20 = x31 = x15 = x21 = x37 = x15 = x26 = pn proper name

The grammar can be unified into a rigid grammar Gr , namely:

word category (Lambek) category⊥ (linearlogic)
and (((np⊗ pp) / (np⊗ pp)... ((np⊗ pp) ⊗ ...

... / (np⊗ pp)) ...((np⊗ pp)⊥ ⊗ (np⊗ pp)))
that ((n / n) / (s / np)) ((s ℘ np⊥) ⊗ (n⊥ ⊗ n))
liked (pp / s) / np np⊗ (s⊗ pn)
gave (pp / s) / (pp⊗ np)) (np⊗ pp) ⊗ (s⊗ pn)
to np / pn pn⊗ np⊥

a np / cn cn⊗ pp⊥

Anne pn pn⊥

Sophie pn pn⊥

Christian pn pn⊥

book cn cn⊥

kiss cn cn⊥

As stated in proposition 1, one easily observes that the sPF are indeed pro-
duced by the rigid grammar Gr.

Earlier on, in the definition of sPF , we allowed non atomic axioms, and we can
now precisely see why: the axiom 22 could be instantiated by the single variable
x22 but, when performing unification, it got finally instantiated with x13 ⊗ x12.
Thus, if we would have forced axioms to always be on propositional variables, the
sPF of example 2 would not have been generated by the Gr: instead, Gr would
not have generated exactly the example 2 but only the sPF with the axioms
x13, x

⊥

13 and x⊥12, x12 linked by an ⊗ link x⊥13 ⊗ x12 and by a ℘ link x⊥12 ℘ x⊥13.

7 Convergence of the Learning Algorithm

This algorithm converges in the sense defined by Gold [17], see definition 1.
The first proof of convergence of a learning algorithm for categorial grammars
is the proof by Kanazawa [21] of the algorithm of Buszkowki and Penn [12] for
learning rigid AB grammars from functor argument structures (name free proofs
os this calculus with elimination rules only). We shall do something similar, but
we learn a different class of grammars from different structures, and the proof
follows [9] that is a simplification of [22].

The proof of convergence makes use of the following notions and notations:
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G ⊂ G′ This reflexive relation between G and G′ holds whenever every lexical
category assignment a ∶ T in G is in G′ as well — in particular when G′ is
rigid, so is G, and both grammars are identical. Note that this is just the
normal subset relation for each of the words in the lexicon G′: lexG(a) ⊂
lexG′(a) for every a in the lexicon of G′, with lexG(a) non-empty. Keep in
mind that in what follows we will also use the subset relation symbol to
signify inclusion of the generated languages ; the intended meaning should
always be clear from the context.

size of a grammar The size of a grammar is simply the sum of the sizes of the
occurrences of categories in the lexicon, where the size of a category is its
number of occurrences of base categories (variables or s).

G ⊏ G′ This reflexive relation between G and G′ holds when there exists a sub-
stitution σ such that σ(G) ⊂ G′ which does not identify different categories
of a given word, but this is always the case when the grammar is rigid.

sPF(G) As said earlier, sPF(G) is the the set of s proof structures generated
by a Lambek categorial grammar G.

GF (D) Given a set D of structured examples i.e. a set of s proof frames,
the grammar GF (D) is define as in the examples above: it is obtained by
collecting the categories of each word in the various examples of D.

RG(D) Given a set of sPF D, RG(D) is, whenever it exists, the rigid gram-
mar/lexicon obtained by applying the most general unifier to GF (D).

Proposition 3. Given a grammar G, the number of grammars H such that
H ⊏ G is finite.

Proof. There are only finitely many grammars which are included in G, since G
is a finite set of assignments. Whenever σ(H) = K for some substitution σ the
size of H is smaller or equal to the size of K, and, up to renaming, there are
only finitely many grammars smaller than a given grammar.

By definition, if H ⊏ G then there exist K ⊂ G and a substitution σ such that
σ(H) = K. Because there are only finitely many K such that K ⊂ G, and for
every K there are only finitely many H for which there could exist a substitution
σ with σ(H) = K we conclude that there are only finitely many H such that
H ⊏ G. ⊓⊔
From the definition of ⊏ and from proposition 1 one immediately has:

Proposition 4. If G ⊏ G′ then sPF(G) ⊂ sPF(G′).
Proposition 5. If GF (D) ⊏ G then D ⊂ sPF(G).
Proof. By construction of GF (D), we have D ⊂ sPF(GF (D)). In addition, be-
cause of proposition 4, we have sPF(GF (D)) ⊂ sPF(G). ⊓⊔
Proposition 6. If RG(D) exists then D ⊂ sPF(RG(D)).
Proof. By definition RG(D) = σu(GF (D)) where σu is the most general unifier
of all the categories of each word. So we have GF (D) ⊏ RG(D), and applying
proposition 5 with G = RG(D) we obtain D ⊂ sPF(RG(D)). ⊓⊔
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Proposition 7. If D ⊂ sPF(G) then GF (D) ⊏ G.

Proof. By construction of GF (D), there is exactly one occurrence of a given
category variable x in an sPF of D categorised as done in the example. Now,
viewing the same sPF as an sPF of sPF(G) at the place corresponding to x there
is a category label, say T . Doing so for every category variable, we can define a
substitution by σ(x) = T for all category variables x: indeed because x occurs
once, such a substitution is well defined. When this substitution is applied to
GF (D) it yields a grammar which only contains assignments from G — by
applying the substitution to the whole sPF , it remains a well-categorised sPF ,
and in particular the categories on the conclusions corresponding to the words
must coincide — if it is the linear formula F then the corresponding Lambek
category is F ●, see subsection 4.1. ⊓⊔
Proposition 8. When D ⊂ sPF(G) with G a rigid grammar, the grammar
RG(D) exists and RG(D) ⊏ G.

Proof. By proposition 7 we have GF (D) ⊏ G, so there exists a substitution σ
such that σ(GF (D)) ⊂ G.

As G is rigid, σ unifies all the categories of each word. Hence there exists a
unifier of all the categories of each word, and RG(D) exists.

RG(D) is defined as the application of most general unifier σu to GF (D). By
the definition of a most general unifier, which works as usual even though we
unify sets of categories, there exists a substitution τ such that σ = τ ○ σu.

Hence τ(RG(D)) = τ(σu(GF (D))) = σ(GF (D)) ⊂ G;
thus τ(RG(D)) ⊂ G, hence RG(D) ⊏ G. ⊓⊔
Proposition 9. If D ⊂ D′ ⊂ sPF(G) with G a rigid grammar then RG(D) ⊏
RG(D′) ⊏ G.

Proof. Because of proposition 8 both RG(D) and RG(D′) exist. We haveD ⊂D′

and D′ ⊂ sPF(RG(D′)), so D ⊂ sPF(RG(D′)); hence, by proposition 8 applied
to D and G = RG(D′) (a rigid grammar) we have RG(D) ⊏ RG(D′). ⊓⊔
Theorem 4. The algorithm RG for learning rigid Lambek grammars converges
in the sense of Gold.

Proof. Take Di, i ∈ ω an increasing sequence of sets of examples in sPF(G)
enumerating sPF(G), in other words ∪i∈ωDi = sPF(G):

D1 ⊂D2 ⊂ ⋯Di ⊂Di+1⋯ ⊂ sPF(G)
Because of proposition 8 for every i ∈ ω RG(Di) exists and because of proposi-

tion 9 these grammars define an increasing sequence of grammars w.r.t. ⊏ which
by proposition 8 is bounded by G:

RG(D1) ⊏ RG(D2) ⊏ ⋯RG(Di) ⊏ RG(Di+1)⋯ ⊏ G
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As they are only finitely many grammars below G w.r.t. ⊏ (proposition 3)
this sequence is stationary after a certain rank, say N , that is, for all n ≥ N
RG(Dn) = RG(DN).

Let us show that the langue generated is the one to be learnt, let us prove
that sPF(RG(DN)) = sPF(G) by proving the two inclusions:

1. Firstly, let us prove that sPF(RG(DN)) ⊃ sPF(G) Let πf be an sPF in
sPF(G). Since ∪i∈ωDi = sPF(G) there exists a p such that πf ∈ sPF(Dp).
– If p < N , because Dp ⊂ DN , πf ∈ DN , and by proposition 6 πf ∈

sPF(RG(DN)).
– If p ≥N , we have RG(Dp) = RG(DN) since the sequence of grammars is

stationary after N . By proposition 6 we have Dp ⊂ sPF(RG(Dp)) hence
πf ∈ sPF(RG(DN)) = sPF(RG(Dp)).

In all cases, πf ∈ sPF(RG(DN)).
2. Let us finally prove that sPF(RG(DN)) ⊂ sPF(G): Since RG(DN) ⊏ G, by

proposition 4 we have sPF(RG(DN)) ⊂ sPF(G) ⊓⊔
This exactly shows that the algorithm proposed in section 6 converges in the
sense of Gold’s definition (1).

8 Learning Product Free Lambek Grammars from
Natural Deduction Frames

The reader may well find that the structure of the positive examples that we
learn from, sorts of proofnets are rather sophisticated structures to learn from
and he could think that our learning process is a drastic simplification w.r.t.
standard work using functor argument structures.

Let us first see that normal natural deductions are quite a sensible structure
to learn Lambek grammars from. Tiede [40] observed that natural deductions
in the Lambek calculus (be they normal or not) are plain trees, defined by two
unary operators (/ and / introduction rules) and two binary operators (/ and/ elimination rules), from formulae as leaves (hypotheses, cancelled or free). As
opposed to the intuitionistic case, there is no need to specify which hypothesis
are cancelled by the introduction rules, as they may be inferred inductively: a /
(respectively /) introduction rule cancels the left-most (respectively right-most)
free hypothesis. He also observed that normal natural deductions should be
considered as the proper parse structures, since otherwise any possible syntactic
structure (a binary tree) is possible. Therefore is is natural to learn Lambek
grammars from normal natural deduction frames — natural deductions from
which category names have been erased but the final s. Indeed, s natural de-
duction frames are to Lambek categorial grammars what the functor-argument
(FA) structures are to AB categorial grammars — these FA structures are the
standard structures used for learning AB grammars by Buszkowski, Penn and
Kanazawa [12,22].

The purpose of this section is to exhibit a one to one correspondence between
cut-free proof nets of the product free Lambek calculus and normal natural de-
ductions, thus justifying the use of proof frames for learning Lambek grammars.



Learning Lambek Grammars from Proof Frames 129

When there is no product, proof frames are the same as natural deduction frames
that we initially used in [10]. They generalise the standard FA structures, and
when the product is used, natural deduction become quite tricky [3,1] and there
are the only structures one can think about.

The correspondence between on one hand natural deduction or the isomorphic
λ-terms and on the other hand, proof nets, can be traced back to [36] (for
second order lambda calculus) but the the closest result is the one for linear
λ-calculus [13].

8.1 Proofnets and Natural Deduction: Climbing Principal Branches

As said in section 3, the formulae of product free Lambek calculus are defined
by C ∶∶= s ∣ B ∣ C / C ∣ C / C hence their linear counterpart are a strict subset of
the polarised linear formulae of subsection 4.1:

{L○h ∶∶= P ∣ (L●h ℘ L○h) ∣ (L○h ℘ L●h)
L●h ∶∶= P⊥ ∣ (L○h ⊗ L●h) ∣ (L●h ⊗ L○h)

Let us call these formulae the heterogeneous polarised positive or negative for-
mulae. In these heterogeneous formulae the connectives ℘ and ⊗ only apply to a
pair of formulae with opposite polarity. The translation from Lambek categories
to linear formulae and vice versa from subsection 4.1 are the same.

One may think that a proof net corresponds to a sequent calculus proof which
itself corresponds to a natural deduction: as shown in our book [26], this is
correct, as far as one does not care about cuts — which are problematic in non
commutative calculi, see e.g.[24]. As it is well known in the case of intuitionnistic
logic, cut-free and normal are different notions [41], and proof net are closer to
sequent calculus in some respects. If one translate inductively, rule by rule, a
natural deduction into a sequent calculus or into a proof net, the elimination
rule from A and A /B yields a cut on the A /B formula, written A⊥℘B in linear
logic. We shall see how this can be avoided. .

From Normal Natural Deductions to Cut-Free Proof Nets. Let us briefly
recall some basic facts on natural deduction for the product free Lambek calculus,
from our book [26, section 2.6 pages 33-39]. In particular we shall need the
following notation a formula C, and a sequence of length p of pairs consisting of
a letter εi (where εi ∈ {l, r}) and a formula Gi we denote by

C[(ε1,G1), . . . , (εp,Gp)]
the formula defined as follows:

if p = 0 C[] = C
if εp = l C[(ε1,G1), . . . , (εp−1,Gp−1), (εp,Gp)] =

Gp /C[(ε1,G1), . . . , (εp−1,Gp−1)]
if εp = r C[(ε1,G1), . . . , (εp−1,Gp−1), (εp,Gp)] =

C[(ε1,G1), . . . , (εp−1,Gp−1)] /Gp
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The rule below requires at least two free hyp.

A leftmost free hyp.
. . . [A] . . . . . .

⋅⋅⋅
B
/i binding A

A /B

Δ⋅⋅⋅
A

Γ⋅⋅⋅
A /B

/e
B

The rule below requires at least two free hyp.

A rightmost free hyp.
. . . . . . [A] . . .

⋅⋅⋅
B
/i binding A

B /A

Γ⋅⋅⋅
B /A

Δ⋅⋅⋅
A
/e

B

Fig. 5. Natural deduction rule for product free Lambek calculus

An important property of normal natural deductions is that whenever the
last rule is an elimination rule, there is a principal branch leading from the
conclusion to a free hypothesis [26, proposition 2.10 page 35] When a rule /e
(resp. /e) is applied between a right premise A /X (resp. a left premise X /A)
and a formula A as its left (resp. right) premise, the premise A /X (resp. a left
premise X / A) is said to be the principal premise. In a proof ending with an
elimination rule, a principal branch is a path from the root C = X0 to a leaf
C[(ε1,G1), . . . , (εp,Gp)] = Xp such that one has Xi = C[(ε1,G1), . . . , (εi,Gi)]
and also Xi+1 = C[(ε1,G1), . . . , (εi+1,Gi+1)] and Xi is the conclusion of an elim-
ination rule, /e if εi+1 = l and /e if εi+1 = r, with principal premise Xi+1 and Gi+1

as the other premise.
Let d be a normal natural deduction with conclusion C and hypotheses

H1, . . . ,Hn. It is inductively turned into a proof net with conclusions Hn−, . . . ,
H1−,C+ as follows (we only consider / because / is symmetrical).

– If d is just an hypothesis A which is at the same time its conclusion the
corresponding proof net is the axiom A,A⊥.

– If d ends with a / intro, from A,H1, . . . ,Hn ⊢ B to H1, . . . ,Hn ⊢ A /B, by
induction hypothesis we have a proof net with conclusions (Hn)−, . . . , (H1)−,
A−,B+. The heterogeneous ℘ rule applies since B+ is heterogeneous positive
and A− heterogeneous negative. A ℘ rule yields a proof net with conclusions(Hn)−, . . . , (H1)−,A − ℘B+, and A − ℘B+ is precisely (A /B)+

– The only interesting case is when d ends with an elimination rule, say /e.
In this case there is a principal branch, say with hypothesis C[(ε1,G1), . . . ,(εp,Gp)] which is applied toGi’s. Let us call Γi =H1

i , . . . ,H
ki

i the hypotheses
of Gi, and let di be the proof of Gi from Γi. By induction hypothesis we have
a proof net πi with conclusions (Γi)−, (Gi)+. Let us define the proof net πk

of conclusion Ck− = C[(ε1,G1), . . . , (εk,Gk)]−, Γi for i ≤ k and C+ by:
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● if k = 0 then it is an axiom C⊥,C (consistent with the translation of an
axiom)● otherwise πk+1 is obtained by a times rule between the conclusions Ck−
of πk and Gk+1+ of πk+1 When εi = r then the conclusion chose the
conclusion of this link to Gk+1 +⊗Ck− that is Ck − /Gk+1+ = Ck+1− and
when εi = l the conclusion is Ck −⊗Gk+1+ that is Gk+1 + /Ck− = Ck+1−.
hence, in any case the conclusions of πk+1 are Ck+1+ C+ and the Γi for
i ≤ k + 1.

The translation of d is simply πp, which has the proper conclusions.

As there is no cut in any of the translation steps, the result is a cut-free proof
net.

From Cut-Free Proof Nets to Normal Natural Deductions. There is
an algorithm that performs the reverse translation, presented for multiplicative
linear logic and linear lambda terms in [13]. It strongly relies on the correctness
criterion, which makes sure that everything happens as indicated during the
algorithm and that it terminates. This algorithm always points at a sub formula
of the proof net. Going up means going to an immediate sub formula, and going
down means considering the immediate super formula.

1. Enter the proof net by its unique output conclusion.
2. Go up until you reach an axiom. Because of the polarities, during this up-

wards path, because of polarities, you only meet ℘-links, which correspond
to / and / introduction rules — λr and λl if one uses Lambek λ-terms. The
hypotheses that are cancelled (the variables that are abstracted) are the ones
on the non output premises — place a name on them.

3. Use the axiom link and go down with the input polarity. Hence you only
meet ⊗ links (*) until you reach a conclusion or a ℘ link. In both cases,
it is the head-variable of the λ-term. If it is the premise of a ℘-link, then
it is necessarily a ℘ link on the path of step 2 (because of the correctness
criterion) and the hypothesis of the principal branch is cancelled by / and/ introduction rules that we met during step 2 (the head variable bound by
some of these λr or λl of the previous step). Otherwise it the hypothesis of
the principal branch is free (the head variable is free).

4. The deductions (λ-terms) that are the arguments of the hypothesis of the
principal branch (the head variable) are the ones on the output premises of
the ⊗ links (*) that we met at step 3. They should be translated as we just
did, going up from theses output formulae, starting again at step 2.

8.2 Learning Product Free Lambek Grammars from Natural
Deduction

Because of the bijective correspondence between cut free product free proof
nets and normal product free natural deduction we also have a correspondence
between such structure without names but the S main conclusion. Hence if one
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wishes to it is possible to learn product free Lambek grammars from natural
deduction without names but the final S, as we did in [10] Such structures
are simply the generalisation to Lambek calculus of the FA structures that are
commonly used for AB-grammars by [12,22].

9 Conclusion and Possible Extensions

A first criticism that can be addressed to our learning algorithm is that the rigid
condition on Lambek grammars is too restrictive. One can say, as in [22] that
k-valued grammars can be learned by doing all the possible unification that lead
to less than k categories. Every successful unification of grammar with less than
k categories should be kept, because it can thereafter work with other types,
hence this approach is computationnally intractable. An alternative is to use a
precise part of speech tagger and to consider word with different categories as
distinct. This can be done and looks more sound and could be done partly with
statistical techniques. [37,25]

The principal weakness of identification in the limit is that too much structure
is required. Ideally, one would like to learn directly from strings, but in the case
of Lambek grammars it has been shown to be impossible in [14]. One may think
that it could be possible to try every possible structure on sentences as strings of
words as done in [22] for basic categorial grammars. Unfortunately, in the case
of Lambek grammars, with or without product, this cannot be done. Indeed,
there can be infinitely many structures corresponding to a sentence, because a
cancelled hypothesis does not have to be anchored in one the finitely many words
of the sentence. Hence we ought to learn from structured sentences.

From the point of view of first language acquisition we know that some struc-
ture is available, but it is unlikely that the structured sentences are proof frames
that are are partial categorial parse structure. The real input available to the
learner is a mixture of prosodic and semantic information, and no one knows how
to formalise these structures in order to simulate the natural data for language
learning. From a computational linguistic perspective, our result is not as bad
as one may think. Indeed, there exist tools that annotate corpora, and one may
implement other tools that turn standard annotations into other more accurate
annotations. These shallow processes may lead to structures from which one can
infer the proper structure for algorithm like the one we presented in this paper.
In the case of proof nets, as observed long ago, axioms express the consumption
of valency. This the reason why, apart from the structure of the formulae, the
structure of the proof frames is not so different from dependency annotations
and can be used to infer categorial structures see e.g. [37,25]. However, the au-
tomatic acquisition of wide-coverage grammars for natural language processing
applications, certainly requires a combination of machine learning techniques
and of identification in the limit à la Gold, although up to now there are not so
many such works.

Grammatical formalisms that can be represented in Lambek grammars can
also be learnt like we did in this paper. For instance categorial version of Stabler’s
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minimalist grammars [38] can be learnt that way as the attempts by Fulop or us
show [15,10] This should be even better with the so-called Categorial Minimalist
grammars of Lecomte, Amblard and us [1,2].

References

1. Amblard, M.: Calculs de représentations sémantiques et syntaxe générative: les
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Abstract. Nonassociative Lambek Calculus (NL) is a pure logic of
residuation, involving one binary operation (product) and its two resid-
ual operations defined on a poset [26]. Generalized Lambek Calculus GL
involves a finite number of basic operations (with an arbitrary number of
arguments) and their residual operations [7]. In this paper we study a fur-
ther generalization of GL which admits operations whose arguments and
values can be of different sorts. This logic is called Multi-Sorted Lambek
Calculus mL. We also consider its variants with lattice and boolean op-
erations. We discuss some basic properties of these logics (completeness,
decidability, complexity and others) and the corresponding algebras.

1 Introduction

Nonassociative Lambek Calculus (NL) was introduced in [26] as a weaker variant
of the Syntactic Calculus [25], the latter nowadays called (Associative) Lambek
Calculus (L). Lambek’s motivation for NL was linguistic: to block some over-
generation, appearing when sentences are parsed by means of L. For example,
John likes poor Jane and John likes him justify the following typing:

John, Jane: n, likes: (n\s)/n, poor: n/n, him: (s/n)\s ,

which yields type s of *John likes poor him in L, but not in NL.
Besides linguistic interpretations, usually related to type grammars, these cal-

culi became popular in some groups of logicians, as basic substructural logics.
L admitting Exchange and sequents ⇒ A (i.e. sequents with the empty an-
tecedent) is equivalent to the {⊗,→}−fragment of Linear Logic of Girard, and
without Exchange to an analogous fragment of Noncommutative Linear Logic
of Abrusci. Full Lambek Calculus (FL), i.e. L with 1, 0 (optionally) and lat-
tice connectives  ,!, and its nonassociative version FNL are treated as basic
substructural logics in the representative monograph [11] (FNL is denoted GL
from ‘groupoid logic’, but we use the latter symbol in a different meaning). Re-
call that substructural logics are nonclassical logics whose Gentzen-style sequent
systems omit some structural rules (Exchange, Weakening, Contraction). This
class contains (among others) relevant logics (omit Weakening) and multi-valued
logics (omit Contraction); they can be presented as axiomatic extensions of FL.

Studies in substructural logics typically focus on associative systems in which
product ⊗ is associative. Nonassociative systems are less popular among logi-
cians, although they are occasionally considered as a close companion of the

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 136–155, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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former. In the linguistic community, some work has been done in Nonassociative
Lambek Calculus, treated as a natural framework for parsing structured expres-
sions. This approach is dominating in Moortgat’s studies on type grammars;
besides nonassociative product and its residuals \, /, Moortgat considers differ-
ent unary modalities and their residuals which allow a controlled usage of cer-
tain structural rules [30]. Recently, Moortgat [31] also admits a dual residuation
triple, which leads to some Grishin-style nonassociative systems. Nonassocia-
tive Lambek Calculus was shown context-free in [5] (the product-free fragment)
and [20] (the full system). A different proof was given by Jäger [15], and its re-
finement yields the polynomial time complexity and the context-freeness of NL
augmented with (finitely many) assumptions [6].

A straightforward generalization of NL admits an arbitrary number of gener-
alized product operations of different arities together with their residuals. The
resulting system, called Generalized Lambek Calculus, was studied in the au-
thor’s book (Logical Foundations of Ajdukiewicz-Lambek Categorial Grammars,
in Polish, 1989) and later papers [6,9,7] (also with lattice and boolean opera-
tions). In this setting the associative law is not assumed, as not meaningful for
non-binary operations.

The present paper introduces a further generalization of this framework: differ-
ent product operations are not required to act on the same universe. For instance,
one may consider an operation f : A×B → C with residuals f r,1 : C ×B → A
and f r,2 : A × C → B and another operation g : A′ × B′ → C′ with residuals
gr,1, gr,2. Here A,B,C represent certain ordered algebras: posets, semi-lattices,
lattices, boolean algebras etc., and one assumes the residuation law: f(x, y) ≤C z
iff x ≤A f r,1(z, y) iff y ≤B f r,2(x, z).

This approach seems quite natural: in mathematics one often meets residu-
ated operations acting between different universes, and such operations can also
be used in linguistics (see section 2). The resulting multi-sorted residuation logic
extends NL, and we show here that it inherits many essential proof-theoretic,
model-theoretic and computational properties of NL. For instance, without lat-
tice operations it determines a polynomial consequence relation; with distribu-
tive lattice or boolean operations the consequence relation remains decidable in
opposition to the case of L.

The multi-sorted framework can further be generalized by considering categor-
ical notions, but this generalization is not the same as cartesian-closed categories,
studied by Lambek and others; see e.g. [28,27]. Instead of a single category with
object-constructors A×B,AB ,B A, corresponding to the algebraic a⊗b, a\b, b/a,
one should consider a multicategory whose morphisms are residuated maps. We
do not develop this approach here.

In section 2 we define basic notions, concerning residuated maps, and provide
several illustrations. In particular, we show how multi-sorted residuated maps
can be used in modal logics and linguistics.

In section 3 we consider multi-sorted (heterogeneous) residuation algebras:
abstract algebraic models of multi-sorted residuation logics. We discuss canonical
embeddings of such algebras into complex algebras of multi-sorted relational
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frames, which yield some completeness theorems for multi-sorted residuation
logics. The multi-sorted perspective enables one to find more uniform proofs of
embedding theorems even for the one-sort case.

The multi-sorted residuation logics are defined in section 4; the basic system
is Multi-Sorted Lambek Calculus mL, but we also consider some extensions of
it. In general, basic properties of one-sort residuation logics are preserved by
multi-sorted logics. Therefore we omit most proofs. Some events, however, only
appear in the multi-sorted world (e.g. classical paraconsistent theories).

Some ideas of this paper have been presented in the author’s talk ‘Many-
sorted gaggles’ at the conference Algebra and Coalgebra Meet Proof Theory,
Prague, 2012 [8].

2 Residuated Maps

Let (P1,≤1), (P2,≤2) be posets. A map f : P1 → P2 is said to be residuated, if
the co-image f−1[x↓] of any principal downset x↓ ⊆ P2 is a principal downset in
P1 [4]. Equivalently, there exists a residual map f r : P2 → P1 such that

(uRES) f(x) ≤2 y iff x ≤1 f r(y)

for all x ∈ P1, y ∈ P2.
NL is a logic of one binary operation ⊗ on a poset (P,≤) such that, for any

w ∈ P , the maps λx.x⊗w and λx.w⊗x from P to P are residuated. Equivalently,
the binary operation ⊗ admits two residual operations \, /, satisfying:

(bRES) x⊗ y ≤ z iff y ≤ x\z iff x ≤ z/y ,

for all x, y, z ∈ P .
It is natural to consider a more general situation. A map f : P1×· · ·×Pn → P ,

where (Pi,≤i), for i = 1, . . . , n, and (P,≤) are posets, is said to be residuated, if,
for any i = 1, . . . , n, the unary maps λx.f(w1, . . . , x : i, . . . , wn) are residuated,
for all w1 ∈ P1, . . . , wn ∈ Pn. (Here x : i means that x is the i−th argument
of f ; clearly wi ∈ Pi is dropped from the latter list.) Equivalently, the map f
admits n residual maps f r,i, for i = 1, . . . , n, satisfying:

(RES) f(x1, . . . , xn) ≤ z iff xi ≤i f
r,i(x1, . . . , z : i, . . . , xn) ,

for all x1 ∈ P1, . . . , xn ∈ Pn, z ∈ P , where:

f r,i : P1 × · · · × P : i× · · · × Pn → Pi .

Every identity map I(x) = x from P to P is residuated, and its residual is the
same map. We write P̄(n) for P1×· · ·×Pn. If f : P̄(n) → P and g : Q̄(m) → Pi are
residuated, then their composition h : P1× · · ·Pi−1 × Q̄(m)×Pi+1 · · · ×Pn → P
is residuated, where one sets:

h(. . . , y1, . . . , ym, . . .) = f(. . . , g(y1, . . . , ym), . . .) .
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Warning. The residuated maps are not closed under a stronger composition
operation which from f, g1, . . . , gk yields h(x̄) = f(g1(x̄), . . . , gk(x̄)), where x̄
stands for (x1, . . . , xn). This composition is considered in recursion theory.

Consequently, posets and residuated maps form a multicategory; posets and
unary residuated maps form a category. Notice that an n−ary residuated map
from P̄(n) to P need not be residuated, if considered as a unary map, defined
on the product poset. This can easily be seen, if one notices that an n−ary
residuated map must be completely additive in each argument, it means:

f(. . . ,
∨
t

xt
i, . . .) =

∨
t

f(. . . , xt
i, . . .) ,

if
∨

t x
t
i exists. (If P1, . . . , Pn, P are complete lattices, then f is residuated iff it

is completely additive in each argument.) Treated as a unary residuated map, it
should satisfy a stronger condition: preserve bounds with respect to the product
order:

f(
∨
t

(xt
1, . . . , x

t
n)) =

∨
t

f(xt
1, . . . , x

t
n) .

A more concrete example is as follows. Let (P,≤) be a bounded poset, and
let ⊗ be a binary residuated map from P 2 to P . We have ⊥ ⊗ " = ⊥ and
" ⊗ ⊥ = ⊥. Then ⊗−1[{⊥}] contains the pairs (⊥,"), (",⊥) whose l.u.b. (in
the product poset) is (","). But, in general, "⊗" �= ⊥, hence ⊗−1[{⊥}] need
not be a principal downset. If all universes are complete lattices, then every
unary residuated map from the product lattice is an n−ary residuated map in
the above sense.

If f is a residuated map from (P,≤P ) to (Q,≤Q), then f r is a residuated map
from (Q,≥Q) to (P,≥P ), and f is the residual of f r. For an n−ary residuated
map f : P1×· · ·×Pn → Q, f r,i is a residuated map from P1×· · ·×Qop×· · ·×Pn

to P op
i , where P op denotes the poset dual to P ; the i−th residual of f r,i is f , and

the j−th residual (j �= i) is g(x1, . . . , xn) = f r,j(x1, . . . , xj : i, . . . , xi : j, . . . , xn).
Accordingly there is a symmetry between all maps f, f r,1, . . . , f r,n, not explicit
in the basic definition. These symmetries will be exploited in section 3.

Residuated maps appear in many areas of mathematics, often defined as Ga-
lois connections. A Galois connection between posets (P1,≤1), (P2,≤2) is a pair
f : P1 → P2, g : P2 → P1 such that, for all x ∈ P1, y ∈ P2, x ≤1 g(y) iff
y ≤2 f(x). Clearly, f, g is a Galois connection iff g is the residual of f when
≤2 is replaced by its reversal. In opposition to residuated maps, the first (sec-
ond) components of Galois connections are not closed under composition (hence
residuated maps lead to a more elegant framework [4]).

Residuated maps in mathematics usually act between different universes, like
in the classical Galois example: between groups and fields. On the other hand,
the logical theory of residuation focused, as a rule, on the one-universe case,
and similarly for the algebraic theory. One considers different kinds of residu-
ation algebras, e.g. residuated semigroups (groupoids), (nonassociative) residu-
ated lattices, their expansions with unary operations, and so on, together with
the corresponding logics; see e.g. [4,11]. Typically all operations are (unary or bi-
nary) operations in the algebra. The situation is similar in linguistic approaches,
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traditionally developed in connection with type grammars based on different
variants of the Lambek calculus.

We provide some examples of residuated maps.
P(W ) is the powerset of W . A residuated map from P(V1) × · · · × P(Vn) to

P(W ) can be defined as follows. Let R ⊆W × V1 × · · · × Vn. For (X1, . . . , Xn),
where Xj ⊆ Vj , for j = 1, . . . , n, one defines:

fR(X1, . . . , Xn) = {y ∈ W : (∃x1 ∈ X1, . . . , xn ∈ Xn)R(y, x1, . . . , xn)} .

fR is residuated, and its residual maps are:

f r,i
R (X1, . . . , Y : i, . . . , Xn) = {x ∈ Vi : fR(X1, . . . , {x} : i, . . . , Xn) ⊆ Y } .

For n = 1 and V1 = W , fR is the ♦−modality determined by the Kripke frame
(W,R), R ⊆ W 2; see e.g. [3]. Precisely, it is the operation corresponding to ♦
in the complex algebra of the frame. Analogously, for Vi = W , i = 1, . . . , n, fR
corresponds to the ♦ determined by the multi-modal frame (W,R), R ⊆Wn+1.
To get the correspondence, the truth definition should be: y |= ♦ϕ iff, for some
x, R(y, x) and x |= ϕ, and similarly for the multi-modal case. If one defines:
‖ϕ‖ = {x ∈ W : x |= ϕ}, then ♦(‖ϕ‖) = ‖♦(ϕ)‖, where the first ♦ is the
operation fR, and the second one is the corresponding modal connective.

If R is not symmetric, then f r
R does not equal the �−modality corresponding

to ♦, namely �(X) = −♦(−X). One often writes �↓ for f r
R. Modal logics are

usually presented with the modal pair ♦,�, but without �↓. Some exceptions are
temporal logics with their residual pairs F,H and P,G, and some substructural
modal logics. Let us notice that every normal modal logic which is complete with
respect to a class of Kripke frames can conservatively be expanded by adding
�↓, the residual of ♦. Such expansions inherit basic properties of normal modal
logics, and they can be studied by certain methods of substructural logics.

Dynamic logics make the connection between R and ♦ explicit; one writes 〈R〉
for the ♦ determined by R, and [R] for its De Morgan dual; instead of R one
writes a program term interpreted as R.

A greater flexibility can be attained by treating ♦ as a binary map from
(P(W 2)) × P(W ) to P(W ): ♦(R,X) = {y ∈ W : (∃x ∈ X)R(y, x)}. In this
setting ♦ = fS , where S ⊆W ×W 2 ×W consists of all tuples (y, (y, x), x) such
that x, y ∈ W . Notice that S is a logical relation, since it is invariant under
permutations of W .

Consequently the binary ♦ is residuated. We have:

♦r,2(R,X) = [R]↓(X) = [R	](X) = {x ∈ W : ♦(R, {x}) ⊆ X}.

The other residual:

♦r,1(X,Y ) = {(x, y) ∈ W 2 : ♦({(x, y)}, Y ) ⊆ X} =

= {(x, y) ∈W 2 : x ∈ X  y �∈ Y }
yields the greatest relation R such that ♦(R, Y ) ⊆ X . It is not a standard
operation in dynamic logics, but it may be quite useful. If ϕ, ψ are formulas,
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♦r,1(‖ϕ‖, ‖ψ‖) is interpreted as the largest (nondeterministic) program R such
that, for any input satisfying the pre-condition ¬ϕ, every outcome of R satisfies
the post-condition ¬ψ. Besides known laws of dynamic logic, in the extended
language one can express new laws, e.g.:

♦r,1(‖ϕ ∧ ψ‖, ‖χ‖) = ♦r,1(‖ϕ‖, ‖χ‖) ∩ ♦r,1(‖ψ‖, ‖χ‖) ,

♦r,1(‖ϕ‖, ‖ψ ∨ χ‖) = ♦r,1(‖ϕ‖, ‖ψ‖) ∩ ♦r,1(‖ϕ‖, ‖χ‖) .
(In general, if f is residuated, then f r,i preserves all existing meets in the i−th
argument, and sends the existing joins to the corresponding meets in any other
argument.) Clearly the binary ♦ with its residuals is an example of a multi-sorted
residuation triple. They are logical operations in the above sense.

Other examples of logical multi-sorted residuated maps are the relative prod-
uct map ◦ : P(U × V ) × P(V ×W ) → P(U ×W ), the Cartesian product map
× : P(V )×P(W ) → P(V ×W ), and the disjoint union map 
 : P(V )×P(W ) →
P(V 
W ).

Given any map g : V1 × · · · × Vn → W , by R(g) we denote the relation:
R(g)(y, x1, . . . , xn) iff y = g(x1, . . . , xn) (the graph of g). The residuated map
fR(g) will be denoted by pg. This construction appears in numerous applications.
We mention some examples connected with linguistics.

A standard interpretation of NL involves binary skeletal trees, i.e. trees whose
leaves but no other nodes are labeled by certain symbols. Clearly skeletal trees
can be represented as bracketed strings over some set of symbols. Let Σ = {a, b}.
Then [a, [b, a]] represents the tree on Figure 1.

�
�

�
�

�

a �� ���
b a

Fig. 1. A binary skeletal tree

The formulas of NL are interpreted as sets of skeletal trees (over an alphabet
Σ), and the product connective ⊗ is interpreted as p∗, where ∗ is the concate-
nation of skeletal trees: t1 ∗ t2 = [t1, t2].

If skeletal trees are replaced with labeled trees whose internal nodes are labeled
by category symbols, then instead of one operation ∗ one must use a family of
operations ∗A, one for each category symbol A. One defines: t1 ∗A t2 = [t1, t2]A.
Often binary operations are not sufficient; one needs n−ary operations for n =
1, 2, 3, . . .. For instance, a ternary operation oA sends (t1, t2, t3) to [t1, t2, t3]A.
This leads to the formalism of Generalized Lambek Calculus.

In the above setting we admit that an n−ary operation is defined on all possi-
ble n−tuples of trees. As a result, we generate a huge universe of trees, many of
them being completely useless for syntactic analysis. This overgeneration can be
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eliminated, if one restricts the application of an operation to those tuples which
satisfy additional constraints. To formalize this idea we might admit partial op-
erations, which would essentially complicate the algebraic and logical details.

Here we describe another option, involving multi-sorted operations. Let G be
a context-free grammar (CFG) in a normal form: every production rule of G is
of the form A→ B1, . . . , Bn, where n ≥ 1 and A,Bi are nonterminals, or A → a,
where A is a nonterminal, a is a terminal symbol from Σ. The rules of the first
form are called tree rules, and those of the second form are called lexical rules.

Let TA denote the set of all labeled trees whose root is labeled by A. With
any tree rule r we associate an operation or; if r is A → B1, . . . , Bn, then
or : TB1 × · · ·TBn → TA is defined as follows: or(t1, . . . , tn) = [t1, . . . , tn]A.

LA denotes the set of all lexical trees [a]A such that A → a is a lexical rule.
DA denotes the set of all (complete) derivation trees of G whose root is labeled
by A.

The sets TA with the operations or form a multi-sorted algebra, and the sets
DA ⊆ TA with the same operations (naturally restricted) form a subalgebra of
this algebra; it is the subalgebra generated by the lexical trees. Precise definitions
of these notions will be given in section 3. Speaking less formally, if one starts
from lexical trees and applies operations or, then the generated trees are precisely
the derivation trees of G. For instance, let the rules of G be r1 : S → S,B;
r2 : S → A,B; A→ a; B → b. Figure 2 shows a tree in DS .

�
�

�
�

S

�� ��
S

A

a

B

b

B

b

�
�

�

�
�
�

S : S

�
�
�

�
��

S : S

A : A

a

B : A\S

b

B : S\S

b

Fig. 2. The tree or1(or2([a]A, [b]B), [b]B) and its typed version

A type grammar G′ equivalent to G assigns: a : A, b : A\S, S\S. To attain
a full coincidence of derivation trees we assign types to lexical trees: [a]A : A,
[b]B : A\S, S\S. Then, NL (actually the pure reduction calculus AB) yields
essentially the derivation trees of G; see Figure 2. The label A : α means that
the tree with root A is of type α.

The grammar G′ should be modified to be fully compatible with the multi-
sorted framework. One should take [b]B : A\2S, S\1S. Then, in the algebra of
sets of trees one interprets ori as the operation pi = pori , and \i is interpreted as
the 2-nd residual of pi. The typing of non-lexical subtrees of the above tree agrees
with basic reduction laws pi(X, pr,2i (X,Y )) ⊆ Y , which follow from (RES).



Multi-Sorted Residuation 143

The above example illustrates one of many possible applications of multi-
sorted operations in language description: a type grammar describes syntactic
trees generated by a CFG. The CFG may provide a preliminary syntactic anal-
ysis, while the type grammar gives a more subtle account, or the grammars may
focus on different features (like in applications of product pregroups [24,10]).

Another obvious option is a multi-level grammar, which handles both the
syntactic and the semantic level; a two-sorted meaning map m sends syntactic
trees into semantic descriptions (m need not be residuated, but the powerset
map pm certainly is). We can also imagine a joint description of strings (un-
structured expressions) and trees (structured expressions) with a forgetting map
from structures to strings; also expressions from two different languages with
translation maps. Other examples will be mentioned in section 4.

3 Multi-Sorted Residuation Algebras

According to [7], a residuated algebra (RA) is a poset (A,≤) with a family F
of residuated operations on A; each n−ary operation f ∈ F admits n residual
operations f r,i, 1 ≤ i ≤ n. (In [7], o, o/i are used instead of f, f r,i.) One also con-
siders residuated algebras with lattice operations  ,! and Boolean negation or
Heyting implication. The corresponding logics are Generalized Lambek Calculus
and its extensions. The term ‘residuated algebra’ was coined after ‘residuated
lattice’, used in the literature on substructural logics. Here we prefer ‘residuation
algebra’, since the operations (not the algebra) are residuated; also ‘residuated
lattice’ seems (even more) unlucky, since the residuals are not directly related
to the lattice operations.

A multi-sorted residuation algebra (mRA) is a family {As}s∈S of ordered
algebras with a family F of residuated maps; each map f ∈ F is assigned a
unique type s1, . . . , sn → s, where si, s ∈ S, and f : As1 × · · · ×Asn → As. S is
the set of sorts. So a map f of type s1, . . . , sn → s admits n residual maps:

f r,i : As1 × · · · ×As : i× · · · ×Asn → Asi .

The ordered algebras As are always posets, but some of them can also admit
semilattice, lattice, boolean or Heyting operations. A mRA is often denoted
A = ({As}s∈S , F ) (we also write FA for F ).

A subalgebra of A is a family {Bs}s∈S such that Bs ⊆ As and this family is
closed under the operations from FA and their residuals (dropping residuals, one
obtains a standard notion of a subalgebra of a multi-sorted algebra). Clearly a
subalgebra of a mRA is also a mRA with appropriately restricted operations.

Two mRAs A, B are said to be similar, if they have the same set of sorts S,
FA = {fi}i∈I , FB = {gi}i∈I , and fi, gi are of the same type, for any i ∈ I; we also
assume that As, Bs are of the same type, for any s ∈ S (it means: both are posets
or lattices, semilattices, etc.). A homomorphism from A to B, which are similar,
is a family {hs}s∈S such that hs : As → Bs is a homomorphism of ordered
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algebras, and the following equations hold, for any fj of type s1, . . . , sn → s and
all 1 ≤ i ≤ n:

(HOM1) hs(fj(a1, . . . , an)) = gj(hs1(a1), . . . , hsn(an)) ,

(HOM2) hsi(f
r,i
j (a1, . . . , an)) = gr,ij (hs1(a1), . . . , hs(ai) : i, . . . , hsn(an)) .

We assume (HOM1) for all a1 ∈ As1 , . . . , an ∈ Asn , and (HOM2) for all
ak ∈ Ask , for k �= i, and ai ∈ As. An embedding is a homomorphism {hs}s∈S
such that every hs is an embedding, it means: a ≤As b iff hs(a) ≤Bs hs(b), for
all a, b ∈ As.

Standard examples of mRAs are complex algebras of multi-sorted frames
({Vs}s∈S,R) such that every Vs is a set, and R is a family of relations, each
R ∈ R having a unique type s1, . . . , sn → s, and R ⊆ Vs × Vs1 × · · · × Vsn . The
given relation R determines a residuated map fR, as defined in section 2. The
complex mRA associated with the frame is defined as ({P(Vs)}s∈S , {fR}R∈R).
Clearly every P(Vs) is a boolean algebra of sets, and the ordering on P(Vs) is
inclusion.

If all algebras As in A are of the same type, say posets or distributive lat-
tices, admitting boolean algebras (we only consider these types; see the remarks
at the end of this section), then A can be embedded in the complex algebra of
some multi-sorted frame. This result generalizes known results on canonical em-
beddings of modal algebras, tracing back to [16,17]. Closely related results for
gaggles (restricted to one sort) have been presented in [2]. Below we sketch a
proof for many sorts, which seems more uniform than those in [2]: we make use
of some order dualities and antitone operators to reduce the case of residual
operations to that of basic (additive) operations.

Let A = ({As}s∈S , F ) be a mRA with all ordered algebras of the same type.
We define the canonical frame Ac as follows. Vs is defined as the set of:

– all proper upsets of As, if As is a poset,
– all prime filters of As, if As is a distributive lattice (a boolean algebra).

A proper upset is a nonempty upset, different from As. A filter is an upset
closed under meets, and a proper filter is a filter being a proper upset. A prime
filter of As is a proper filter X ⊆ As such that, for all a, b ∈ As, a  b ∈ X
entails a ∈ X or b ∈ X . The prime filters of a boolean algebra are precisely its
ultrafilters.

Let g ∈ F be of type s1, . . . , sn → s. The relation R[g] ⊆ Vs × Vs1 × · · · × Vsn

is defined as follows:

(CAN1) R[g](Y,X1, . . . , Xn) iff pg(X1, . . . , Xn) ⊆ Y ,

where pg is defined as in section 2. The complex mRA of Ac is defined as above.
The canonical embedding {hs}s∈S is defined as follows:

(CAN2) hs(a) = {X ∈ Vs : a ∈ X} .
Clearly hs : As → P(Vs). Also a ≤As b iff hs(a) ⊆ hs(b). The implication (⇒)

holds, since all elements of Vs are upsets. The implication (⇐) is obvious for
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posets. If As is a distributive lattice and a ≤As b is not true, then there exists a
prime filter X ⊆ As such that a ∈ X , b �∈ X .

hs preserves lattice operations. If As is a distributive lattice and X is a prime
filter of As, then a ! b ∈ X iff a ∈ X and b ∈ X , and a  b ∈ X iff a ∈ X
or b ∈ X , so hs(a ! b) = hs(a) ∩ hs(b) and hs(a  b) = hs(a) ∪ hs(b). If As

is a boolean algebra and X ⊆ As is an ultrafilter, then −a ∈ X iff a �∈ X , so
hs(−a) = −hs(a).

We show that {hs}s∈S preserves the operations in F and their residuals. Let
g ∈ F be of type s1, . . . , sn → s. We prove:

hs(g(a1, . . . , an)) = fR[g](hs1(a1), . . . , hsn(an)) . (1)

The proof of (1) is correct for any g which in every argument preserves all
finite joins, including the empty join, if it exists (this means: g(a1, . . . , an) = ⊥
whenever ai = ⊥, for some i). For the case of posets, one only assumes that g is
isotone in each argument and preserves the empty join.

We show ⊆; the converse inclusion is easy. Let X ∈ hs(g(a1, . . . , an)), hence
g(a1, . . . , an) ∈ X . Since g is isotone in each argument, and X is an upset, then
pg((a1)

↑, . . . , (an)↑) ⊆ X . One shows that for any 1 ≤ i ≤ n: (EXT) there exist
X1 ∈ hs1(a1), . . . , Xi ∈ hsi(ai) such that pg(X1, . . . , Xi, (ai+1)

↑, . . . , (an)↑) ⊆ X .
Consequently, for i = n, one obtains R[g](X,X1, . . . , Xn), for some Xi ∈ hsi(ai),
i = 1, . . . , n, which yields X ∈ fR[g](hs1(a1), . . . , hsn(an)).

(EXT) is proved by induction on i. Assume that it holds for all j < i.
If Asi is a poset, we set Xi = (ai)

↑; it is proper, since ai �= ⊥; otherwise
g(a1, . . . , an) = ⊥, hence ⊥ ∈ X , which is impossible. Let Asi be a distribu-
tive lattice. If pg(X1, . . . , Y : i, (ai+1)

↑, . . . , (an)↑) ⊆ X holds for Y = Asi ,
then Xi can be any prime filter containing ai (it exists, since ai �= ⊥). Oth-
erwise one considers the family F of all proper filters Y ⊆ Asi such that
pg(X1, . . . , Y : i, (ai+1)

↑, . . .) ⊆ X . F is nonempty, since (ai)
↑ ∈ F . By the

maximality principle, F has a maximal element Z. One shows that Z is prime
and sets Xi = Z.

Suppose that Z is not prime. Then there exist a, b �∈ Z such that a  b ∈ Z.
One defines Za = {y ∈ Asi : (∃x ∈ Z)a ! x ≤ y}, and similarly for Zb. Za, Zb

are proper filters (we have b �∈ Za and a �∈ Zb) containing Z and different from
Z (we have a ∈ Za and b ∈ Zb). Accordingly Za, Zb �∈ F . Then, for some x1 ∈
X1, . . . , xi−1 ∈ Xi−1, z1 ∈ Z, g(x1, . . . , xi−1, a ! z1, ai+1, . . . , an) �∈ X and, for
some y1 ∈ X1, . . . , yi−1 ∈ Xi−1, z2 ∈ Z, g(y1, . . . , yi−1, b ! z2, ai+1, . . . , an) �∈ X .
Define uj = xj ! yj , z = z1 ! z2. We have g(u1, . . . , ui−1, a! z, ai+1, . . . , an) �∈ X
and g(u1, . . . , ui−1, b ! z, ai+1, . . . , an) �∈ X . Since X is prime, the join of the
latter elements does not belong to X , but it equals g(u1, . . . , ui−1, (a  b) !
z, ai+1, . . . , an). This is impossible, since Z ∈ F .

For gr,i : As1 × · · · ×As : i× · · · ×Asn → Asi , we prove:

hsi(g
r,i(a1, . . . , an)) = f r,i

R[g](hs1(a1), . . . , hs(ai), . . . , hsn(an)) . (2)

While the proof of (1) follows routine lines, tracing back to [16] (also see [2]),
our proof of (2) is different. We reduce (2) to (1) by applying some dualities.
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By Aop
s , Aop

si we denote the algebras dual to As, Asi , respectively; the ordering
in the dual algebra is the reversal of the ordering in the initial algebra. Thus,
one interchanges ⊥ with ", and  with ! in lattices.

By g′ we denote the mapping from As1×· · ·×Aop
s : i×· · ·×Asn to Aop

si which
equals gr,i as a function. Since gr,i respects arbitrary meets in the i−th argument
and turns joins into meets in the other arguments, then g′ respects finite joins
in each argument. So g′ satisfies the requirements needed in the proof of (1).
We, however, must replace A by A′ in which As, Asi are replaced by Aop

s , Aop
si ,

respectively. Precisely, we assume that now s1, . . . , sn, s are different sorts, if
even they are not different in A. Actually our argument only depends on the
fixed operations g, gr,i, not on the whole frame A, so we may modify it for the
purposes of this argument.

In the canonical frame (A′)c, (Vs)
′ consists of all proper upsets of Aop

s , hence
all proper downsets of As, if As is a poset, and all prime filters of Aop

s , hence
all prime ideals of As, if As is a distributive lattice, and similarly for (Vsi )

′. The
homomorphism {ks}s∈S is defined as {hs}s∈S except that A is replaced by A′,
and similarly for the canonical frame. (1) yields:

ksi(g
′(a1, . . . , an)) = fR[g′](ks1(a1), . . . , ks(ai), . . . , ksn(an)) , (3)

where fR[g′] is defined in the complex algebra of (A′)c.
For any t ∈ S, X ⊆ At, we denote −X = At − X . For U ⊆ Vt, we denote

∼Vt U = Vt − U , U∼ = {−X : X ∈ U}. We define the auxiliary operations:
∗
t (−) : P((Vt)

′) → P(Vt) and (−)∗t : P(Vt) → P((Vt)
′), for t = s and t = si:

∗
t (U) =∼Vt (U

∼) , (V )∗t =∼(Vt)′ (V
∼) , (4)

for U ⊆ (Vt)
′, V ⊆ Vt. We write ∗U , V ∗ for ∗t (U), (V )∗t .

One easily shows ∗U = (∼(Vt)′ U)∼ and V ∗ = (∼Vt V )∼. The operations ∗(−)
and (−)∗ are antitone and (∗U)∗ = U , ∗(V ∗) = V . Also, for t = s and t = si, we
have ht(a) =

∗(kt(a)), for any a ∈ At. For t = sj , j �= i, we have kt = ht. Since
g and g′ are equal as functions, then (3) yields:

hsi(g(a1, . . . , an)) =
∗(fR[g′](hs1 (a1), . . . , (hs(ai))

∗, . . . , hs(an))) . (5)

To prove (2) it suffices to show:

∗(fR[g′](V1, . . . , (Vi)
∗, . . . , Vn)) = f r,i

R[g](V1, . . . , Vn) , (6)

for all V1 ⊆ Vs1 , . . . , Vi ⊆ Vs, . . . , Vn ⊆ Vsn .
One proves (6) by simple computations, using: X ∈ ∗U iff (−X) �∈ U , for all

X ∈ Vt, U ⊆ (Vt)
′ and X ∈ V ∗ iff (−X) �∈ V , for all X ∈ (Vt)

′, V ⊆ Vt. The
following formulas are equivalent.

1. X ∈ ∗(fR[g′](V1, . . . , (Vi)
∗, . . . , Vn)),

2. (−X) �∈ fR[g′](V1, . . . , (Vi)
∗, . . . , Vn),

3. ¬R[g′](−X,X1, . . . , Xn), for all Xj ∈ Vj , (j �= i), and Xi ∈ (Vi)
∗,

4. ¬R[g′](−X,X1, . . . , Xn), for all Xj ∈ Vj , (j �= i), (−Xi) �∈ Vi,
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5. for allXj ∈ Vj , (j �= i),Xi ∈ (Vs)
′, if −Xi �∈ Vi then ¬R[g′](−X,X1, . . . , Xn),

6. for all Xj ∈ Vj , (j �= i), Xi ∈ (Vs)
′, if R[g′](−X,X1, . . . , Xn) then (−Xi) ∈

Vi,
7. for all Xj ∈ Vj , (j �= i), Yi ∈ Vs, if R[g′](−X,X1, . . . ,−Yi, . . . , Xn) then

Yi ∈ Vi,
8. X ∈ f r,i

R[g](V1, . . . , Vn).

For the equivalence of formulas 7 and 8, we need further equivalences. The
equivalences of formulas 2-3 and 5-6 below use the fact that, if Y is an upset of
a poset (A,≤) and a ∈ A, then a ∈ Y iff, for all b ∈ A, if a ≤ b then b ∈ Y .

1. R[g′](−X,X1, . . . ,−Yi, . . . , Xn),
2. pg′(X1, . . . ,−Yi, . . . , Xn) ⊆ −X ,
3. for all aj ∈ Xj, (j �= i), ai ∈ As, b ∈ Asi , if ai �∈ Yi and gr,i(a1, . . . , an) ≤Aop

si
b

then b �∈ X ,
4. for all aj ∈ Xj, (j �= i), ai ∈ As, b ∈ Asi , if ai �∈ Yi and b ≤Asi

gr,i(a1, . . . , an)
then b �∈ X ,

5. for all aj ∈ Xj , (j �= i), ai ∈ As, b ∈ Asi , if b ∈ X and g(a1, . . . , b :
i, . . . , an) ≤As ai then ai ∈ Yi,

6. pg(X1, . . . , X : i, . . . , Xn) ⊆ Yi,
7. R[g](Yi, X1, . . . , X : i, . . . , Xn).

The proof is finished. As we point out in 4, the embedding results imply some
basic completeness theorems and conservation results for multi-sorted substruc-
tural logics. Even for the one-sort case, the above proof brings something new.
Even for a basic map g : An → A, hence also gr,i : An → A, the second part of
the proof introduces g′ : A× · · · ×Aop : i× · · ·A → Aop, which is a multi-sorted
map. This shows that multi-sorted algebras can be useful for studying standard
algebras.

The canonical embedding h preserves ⊥,"; we have hs(⊥) = ∅ and hs(") =
Vs. As shown in [21], it also preserves units for binary operations and some non-
classical negations; the complex algebra inherits such properties of basic oper-
ations as associativity and commutativity (but not idempotence) and preserves
the equations of linear logics. These results have been adapted for symmetric
residuation algebras (with one sort, but the proof also works for many sorts) in
[22], using the ∗ operators on Ac, after [8].

At this moment, the author does not know whether the embedding theorem
can be obtained for mRAs in which different As can have different types, e.g.
some of them are posets, and some others are distributive lattices. The proof of
(EXT) (see the proof of (1)) uses the fact that As is a lattice whenever Asi is a
lattice (so the converse is needed in the proof of (2)). Obviously, the distributive
law cannot be easily avoided; non-distributive lattices cannot be embedded in
the complete lattices of sets.

4 Multi-Sorted Residuation Logics

Generalized Lambek Calculus (GL) is a logic of RAs. Formulas are formed out
of variables by means of operation symbols (connectives) o, or,i (1 ≤ i ≤ n, if
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o is n−ary). The formal language contains a finite number of operation sym-
bols. These operation symbols are multiplicative (or: intensional, according to a
different tradition). One can also admit additive (or: extensional) symbols  ,!,
interpreted as lattice operations, and additive constants ⊥,".

The algebraic form of the multiplicative GL admits sequents of the form
A⇒ B such that A,B are formulas. The only axioms are

(Id) A⇒ A ,

and the inference rules strictly correspond to the residuation laws (RES): (R-
RES) from o(A1, . . . , An) ⇒ B infer Ai ⇒ or,i(A1, . . . , B : i, . . . , An), and con-
versely, (1-CUT) from A⇒ B and B ⇒ C infer A⇒ C.

An equivalent Gentzen-style system admits sequents of the form X ⇒ A such
that A is a formula, and X is a formula structure (tree). A formula structure
is a formula or an expression of the form (X1, . . . , Xn)o such that each Xi is a
formula structure. Here (−)o is the structural operation symbol corresponding
to the n−ary multiplicative symbol o.

The axioms are (Id) and (optionally):

(⊥ ⇒) X [⊥]⇒ A (⇒ ") X ⇒ "

and the inference rules are:

(o ⇒)
X [(A1, . . . , An)o]⇒ A

X [o(A1, . . . , An)]⇒ A
(⇒ o)

X1 ⇒ A1; . . . ;Xn ⇒ An

(X1, . . . , Xn)o ⇒ o(A1, . . . , An)

(or,i ⇒)
X [Ai]⇒ B; (Yj ⇒ Aj)j �=i

X [(Y1, . . . , or,i(A1, . . . , An), . . . , Yn)o]⇒ B

(⇒ or,i)
(A1, . . . , X : i, . . . , An)o ⇒ Ai

X ⇒ or,i(A1, . . . , An)

( ⇒)
X [A]⇒ C; X [B]⇒ C

X [A  B]⇒ C
(⇒  ) X ⇒ Ai

X ⇒ A1  A2

(! ⇒)
X [Ai]⇒ B

X [A1 ! A2]⇒ B
(⇒ !) X ⇒ A; X ⇒ B

X ⇒ A !B

(CUT)
X [A]⇒ B; Y ⇒ A

X [Y ]⇒ B

One can also admit constants, treated as nullary operation symbols; they do
not possess residuals. For a constant o, one admits rules (o⇒), (⇒ o) for n = 0
(the second one is an axiom):

(o⇒0)
X [()o]⇒ B

X [o]⇒ B
(⇒0 o) ()o ⇒ o .

If a constant has to play a special role, then one needs additional axioms
or rules. That 1 is the unit of o (binary) can be axiomatized by means of the
following structural rules and their reversals:
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(1’)
X [Y ]⇒ A

X [(()1, Y )o]⇒ A
(1”)

X [Y ]⇒ A

X [(Y, ()1)o]⇒ A
.

The above system with additives has been studied in [7] and called there Full
Generalized Lambek Calculus (FGL). Here we consider its multi-sorted version,
called Multi-Sorted Full Generalized Lambek Calculus or, simply, Multi-Sorted
Full Lambek Calculus (mFL). Its multiplicative fragment is referred to as Multi-
Sorted Lambek Calculus (mL).

We fix a nonempty set S whose elements are called sorts. Each variable is
assigned a unique sort; we write p : s. One admits a nonempty set O whose
elements are called operation symbols. Each symbol o ∈ O is assigned a unique
type of the form s1, . . . , sn → s, where s1, . . . , sn, s ∈ S, n ≥ 1. If o : s1, . . . , sn →
s, then the language also contains operation symbols or,i (1 ≤ i ≤ n) such that
or,i : s1, . . . , s : i, . . . , sn → si. One also admits a (possibly empty) set C whose
elements are called constants. Each constant o is assigned a unique sort.

One recursively defines sets Fs, for s ∈ S; the elements of Fs are called
formulas of sort s. All variables and constants of sort s belong to Fs; if f is an
operation symbol (basic o or residual or,i) of type s1, . . . , sn → s, (n ≥ 0), and
Ai is a formula of sort si, for any i = 1, . . . , n, then f(A1, . . . , An) is a formula
of sort s. In the presence of additives, if A,B ∈ Fs, then A  B,A ! B ∈ Fs;
optionally, also ⊥s,"s ∈ Fs. We write A : s for A ∈ Fs.

Each formula of sort s is a formula structure of sort s; ifXi : si for i = 1, . . . , n,
(n ≥ 0), and o ∈ O is of type s1, . . . , sn → s, then (X1, . . . , Xn)o is a formula
structure of sort s. FSs denotes the set of formula structures of sort s. We write
X : s for X ∈FSs. An expression X ⇒ A such that X ∈FSs, A ∈ Fs is called a
sequent of sort s.

The axioms and rules of mFL are the same as for FGL, but we require that
all formulas and sequents must have some sort. Clearly mFL is not a single
system; we have defined a class of systems, each determined by the particular
choice of S and O. Every system from this class admits cut elimination, which
was first shown for NL by Lambek [26].

As an example, we consider a system with one basic binary operation ⊗; we
write / and \ for ⊗r,1 and ⊗r,2, respectively. We assume ⊗ : s, t → u, where
s, t, u are different sorts. Hence / : u, t → s and \ : s, u → t. The following laws
of NL are provable in mL (we use the infix notation).

(NL1) (A/B)⊗B ⇒ A, A⊗ (A\B)⇒ B,
(NL2) A ⇒ (A⊗B)/B, A⇒ B\(B ⊗A),
(NL3) A ⇒ B/(A\B), A⇒ (B/A)\B,
(NL4) A/B ⇔ A/((A/B)\A), A\B ⇔ (B/(A\B))\B,
(NL5) A/B ⇔ ((A/B) ⊗B)/B, A\B ⇔ A\(A⊗ (A\B)).

We cannot build formulas of the form (A ⊗ B) ⊗ C, (A/B)/C due to sort
restrictions. As a consequence, not all laws ofNL are provable; e.g. (((A/B)/C)⊗
C) ⊗ B ⇒ A is not. With new operations one can prove a variant of this law
(((A/B)/′C) ⊗′ C) ⊗ B ⇒ A under an appropriate sort assignment. We have
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A : u, B : t, A/B : s. Assuming C : v, (A/B)/′C : x, we get ⊗′ : x, v → s, hence
/′ : s, v → x. Notice that both the type of ⊗ and that of ⊗′ consists of three
different sorts.

Applying cut elimination, one proves a general theorem: every sequent prov-
able in GL (hence every sequent provable in NL) results from some sequent
provable in mL in which the type of each operation symbol consists of different
sorts (in s1, . . . , sn → s all sorts are different), after one has identified all sorts
and some operation symbols and variables. This can be shown by a transfor-
mation of a cut-free proof of X ⇒ A with all axioms (Id) of the form p ⇒ p.
In the new proof different axioms contain different variables of different sorts;
then different premises of any rule have no common variable and no common
sort. Every instance of (⇒ o) and (or,i ⇒) introduces a new operation sym-
bol together with its structural companion and one new sort. Each sequent in
the new proof satisfies the above condition. Furthermore, in each sequent, every
residuation family is represented by 0 or 2 symbols (counting structural symbols).
Consequently, every sequent A ⇒ B provable in mL contains an even number
of operation symbols (this also holds for L).

Let us look at (NL5). A ⇔ B means that both A ⇒ B and B ⇒ A are
provable. The (⇒) part of (NL5) is A/B ⇒ ((A/B)⊗B)/B. In mL one proves
A/B ⇒ ((A/B)⊗′ B)/′B (the reader can find appropriate sorts); the symbol /
appears twice in the latter sequent, and the second residuation family is repre-
sented by ⊗′, /′. For the (⇐) part, the appropriate sequent is ((A/′B)⊗′B)/B ⇒
A/B. This transformation is impossible for FGL; e.g (A ! B)/C ⇒ (A/C) !
(B/C) contains 3 occurrences of /.

S may consist of one sort only, so GL is a limit system from the mL-class.
The above observations show that the apparently opposite case: each operation
symbol has a type consisting of different sorts, leads to essentially the same
(pure) logic provided that one admits infinite sets S,O.

Some possible applications of mL in linguistics have been mentioned in sec-
tion 2. Another one is subtyping. A ‘large’ type S (sentence) can be divided in
several subtypes, sensitive to Tense, Number, Mode etc.; these subtypes can be
represented by different variables (or: constants) of sort S. In NL this goal can
be accomplished by additional assumptions: Si ⇒ S, for any subtype Si. With
additives one can define S = S1 · · · Sk and apply types dependent on features,
e.g. ‘John’ is assigned ‘np! sing, ‘boys’ type ‘np!pl [19].

By routine methods, one can show thatmL is (strongly) complete with respect
to mRAs based on posets, and mFL is (strongly) complete with respect to mRAs
based on (optionally: bounded) lattices. The strong completeness means that, for
any set of sequents Φ (treated as nonlogical assumptions), the sequents derivable
from Φ in the system are precisely the sequents valid in all models satisfying all
sequents from Φ (a model is an algebra with a valuation of variables). In other
words, the strong completeness of a system (with respect to a class of algebras)
is equivalent to the completeness of the consequence relation of this system (with
respect to the class of algebras).
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To attain the completeness with respect to mRAs based on distributive lat-
tices, we add the distributive law as a new axiom:

(D) A ! (B  C)⇒ (A !B)  (A ! C)

for any formulas A,B,C of the same sort. The resulting system is denoted by
mDFL. (D) expresses one half of one distributive law; the other half is provable
(it holds in every lattice), and the second distributive law is derivable from the
first one and basic lattice laws.

This version of mDFL does not admit cut elimination. Another version, ad-
mitting cut elimination, can be axiomatized like DFL in [23] with a structural
operation symbol for ! and the corresponding structural rules (an idea origi-
nated by J.M. Dunn and G. Mints). We omit somewhat sophisticated details of
this approach.

mDFL is (strongly) complete with respect to mRAs based on distributive lat-
tices. Soundness is easy, and completeness can be proved, using the Lindenbaum-
Tarski algebra (its multi-sorted version). The results from section 3 imply that
mDFL is strongly complete with respect to the complex mRAs of multi-sorted
frames. Soundness is obvious. For completeness, assume that X ⇒ A is not
derivable from Φ. By the above, there exist a model (A, α) such that X ⇒ A is
not true in (A, α) (it means: α(X) ≤ α(A) is not true), but all sequents from Φ
are true in (A, α). Let {hs}s∈S be the canonical embedding of A in the complex
algebra of the frame Ac. The valuation α can be presented as {αs}s∈S, where
αs is the restriction of α to variables of sort s (the values of αs belong to As).
Then, {hs◦αs}s∈S is a valuation in the complex algebra, and the resulting model
satisfies all sequents from Φ, but X ⇒ A is not true in this model. Ignoring ad-
ditives, one can prove the same for mL. Consequently, the consequence relation
of mDFL is a conservative extension of the consequence relation of mL.

The same holds for Multi-Sorted Boolean Lambek Calculus (mBL), which
adds to mDFL a unary negation (complement) ‘−’ and axioms:

(N1) A ! −A⇒ ⊥ (N2) " ⇒ A  −A .

mBL is (strongly) complete with respect to boolean mRAs (all As are boolean
algebras) as well as the complex algebras of multi-sorted frames. (One can also
assume that −A can be formed for A of some sorts only.) These results obviously
entail the strong completeness of mBL and mDFL with respect to Kripke
frames with standard (classical) clauses for boolean (lattice) operations: x |= −A
iff x �|= A, x |= A !B iff x |= A and x |= B, and so on.

In mBL, for any operation o, one can define its De Morgan dual. This turns
any residuation family to a dual residuation family, which satisfies (RES) with
respect to dual orderings; in particular, it yields a faithful interpretation of
Moortgat’s Symmetric NL (without Grishin axioms; see [31]) in BNL, i.e. NL
with boolean operations.

The consequence relation for L is undecidable; see [6]. The consequence re-
lation for mBL (hence for mDFL, mL) is decidable (so the pure logics are
decidable, too). The proof is similar to that for DFGL, GL in [9,7]. One shows
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Strong Finite Model Property (SFMP): for any finite Φ, if Φ �� X ⇒ A, then
there exists a finite multi-sorted model (A, α) such that all sequents from Φ are
but X ⇒ A is not true in (A, α).

The proof of SFMP in [9,7] uses some interpolation property of sequent sys-
tems and a construction of algebras by means of nuclear completions. Different
proofs are due to [18] for BNL (presented as a Hilbert-style system), by the
method of filtration of Kripke frames, and [13] where FEP (see below) has been
proved directly for some classes of algebras. Each of them can be adapted for
multi-sorted logics.

SFMP yields the decidability of stronger logics: the universal theories of
the corresponding classes algebras. Here we refer to a standard translation of
substructural logics in first-order language: formulas of these logics correspond
to terms and sequents to atomic formulas t ≤ u. Multi-sorted logics require a
multi-sorted first-order language; in particular, A ⇒ B, where A,B are of sort
s, is translated into tA ≤s tB, where tA, tB are terms of sort s which correspond
to A,B.

A Horn formula is a first-order formula of the form ϕ1 ∧ · · · ∧ ϕn → ϕn+1,
where n ≥ 0, such that each ϕi is an atomic formula t ≤s u. An open formula
is a propositional (boolean) combination of atomic formulas (so Horn formulas
are open formulas). A universal sentence results from an open formula by the
universal quantification of all variables.

Let K be a class of algebras. The universal theory of K is the set of all universal
sentences valid in K. The Horn theory of K is the set of all universally quantified
Horn formulas valid in K.

Let a logic L be strongly complete with respect to K. Then the rules deriv-
able in L correspond to the Horn formulas belonging to the universal theory of
K. Hence the decidability of the universal theory of some class of mRAs (say,
boolean residuated groupoids) entails that the problem of derivability of rules
in the corresponding logic (here BNL) is decidable.

A general, model-theoretic theorem states: if K is closed under finite products
(admitting the empty product, which yields the trivial algebra), then FMP of the
Horn theory of K entails FMP of the universal theory of K. For finite languages,
FMP of the universal theory of K is equivalent to Finite Embeddability Property
(FEP) of K: every finite, partial subalgebra of an algebra from K can be embed-
ded in a finite algebra from K. In the literature (see e.g. [11]), the above theorem
is formulated for quasi-varieties (which are closed under arbitrary products) in
the following form: SFMP for the Horn theory of a quasi-variety K entails FEP
of K, and the proof provides the embedding. Below we sketch another proof,
which yields the general result, with arbitrary relation symbols in the language.
Also, the usual one-sort algebras can be replaced by multi-sorted algebras. If
{Ai}i∈I is a class of similar mRAs, then

∏
i∈I Ai is defined in a natural way:

its algebra of sort s equals
∏

i∈I A
i
s with point-wise defined relations and lattice

(boolean) operations; also the operations in F are defined point-wise. The ba-
sic classes of mRAs are closed under arbitrary products (they are multi-sorted
quasi-varieties), so this theorem can be applied to them.
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Let us sketch the proof. Let ψ = ∀x1 . . . xnϕ be a universal sentence (ϕ is
open). ϕ is logically equivalent to a CNF- formula ϕ1 ∧ · · · ∧ ϕm, each ϕi being
a disjunction of finitely many atomic formulas and negated atomic formulas. So
ψ is logically equivalent to the conjunction of ψi, i = 1, . . . ,m, where ψi is the
universally quantified ϕi. Clearly ψ is valid in an algebra A iff each ψi is valid
in A, and the same holds for the validity in K.

Assume that ψ is not valid in K. Then, some sentence ψi is not valid. Assuming
FMP of the Horn theory, we show that there is a finite algebra in K such that ψi

is not true in this algebra. If ϕi consists of negated atomic formulas only, then
ψi is not true in the trivial algebra, which is finite (an mRA is trivial iff all its
algebras As are one-element algebras). So assume that ϕi is of the form:

¬χ1 ∨ · · · ∨ ¬χk ∨ σ1 ∨ · · · ∨ σp

where k ≥ 0, p ≥ 1, and all χj , σl are atomic. It is logically equivalent to:

χ1 ∧ · · · ∧ χk → σ1 ∨ · · · ∨ σp .

Denote δj = χ1∧· · ·∧χk → σj . Since δj logically entails ϕi, then δj is not valid
in K, for j = 1, . . . , p. By FMP of the Horn theory, there exists a finite model
(Aj , αj) over K which falsifies δj . One easily shows that the product model (i.e.
the product of all Aj with the product valuation) falsifies ϕi. Therefore ψ is not
true in this product algebra, which finishes the proof.

Since SFMP of our logics is equivalent to FMP of the Horn theories of the
corresponding classes of mRAs, then we obtain FMP of the universal theories,
which yields their decidability.

The above proof yields: ψi is valid in K iff some δj is valid in K. Accordingly,
a decision method for the universal theory of K can be reduced to a decision
method for the Horn theory of K (equivalently: for the consequence relation of
the corresponding logic). Some proof-theoretic decision methods for the latter
can be designed like for DFGL [9,7], but we skip all details here. We note that
a Kripke frame falsifying Φ � X ⇒ A (if it exists) can be found of size at most
2n, where n is the number of subformulas occurring in this pattern (this was
essentially shown in the three proofs of SFMP, mentioned above).

Although mFL is decidable, since it admits cut elimination (also FMP holds),
the decidability of its consequence relation remains an open problem (even for
FNL).

The consequence relation of GL is polynomial [6]; for the pure NL it was
earlier shown in [12]. Associative systems FL, DFL and their various extensions
are PSPACE-complete [14]; the proof of PSPACE-hardness (by a reduction of
the validity of QBFs to the provability of sequents) essentially relies upon the
associative law. Without associativity, by a modification of this proof we can
prove the PSPACE-hardness of the consequence relation of FNL, FGL, DFGL,
mFL, mDFL (with at least one binary operation), but the precise complexity
of the pure logics is not known. BNL, BGL, mBL are PSPACE-hard, like the
modal logic K; see e.g. [3].
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In [6,9] it has been shown that the type grammars based on the multiplicative
systems and the systems with additives and distribution, also enriched with
finitely many assumptions, are equivalent to CFGs.

BGL (i.e. GL with boolean operations) is a conservative extension of K;
it follows from the fact that both K and BGL are complete with respect to
all Kripke frames. (This is obvious, if F contains a unary operation; otherwise,
one can reduce an n−ary operation to a unary one by fixing some arguments.)
A provable formula A of K is represented as the provable sequent " ⇒ A of
BGL; a provable sequent sequent A ⇒ B of BGL is represented as the provable
formula A → B of K. mBL can be treated as a multi-sorted classical modal
logic.

Interestingly, some theories based on multi-sorted classical modal logics are
paraconsistent: the inconsistency in one sort need not cause the total inconsis-
tency. In algebraic terms, it means that there exist mRAs A in which some, but
not all, algebras As are trivial (one-element). Let As = {a}, and let At be non-
trivial with ⊥t ∈ At. Then f(a) = ⊥t is the only residuated map f : As → At

(notice a = ⊥s), and f r is the constant map: f r(x) = a, for all x ∈ At.
There are many natural connections between substructural logics, studied

here, and (multi-)modal logics; an early discussion can be found in [1]. Some re-
sults, discussed above, have been adapted for one-sort systems admitting special
modal axioms (e.g. T, 4, 5) in [29] (FEP, polynomial complexity). This research
program seems promising.
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15. Jäger, G.: Residuation, structural rules and context-freeness. Journal of Logic,
Language and Information 13, 47–59 (2004)

16. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. American Journal
of Mathematics 73, 891–939 (1952)

17. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. American Journal
of Mathematics 74, 127–162 (1952)

18. Kaminski, M., Francez, N.: Relational semantics of the Lambek calculus extended
with classical propositional logic. Studia Logica (to appear)

19. Kanazawa, M.: The Lambek Calculus Enriched with Additional Connectives.
Journal of Logic, Language and Information 1(2), 141–171 (2002)

20. Kandulski, M.: The equivalence of nonassociative Lambek categorial grammars
and context-free grammars. Zeitschrift f. Math. Logik und Grundlagen der Math-
ematik 34, 41–52 (1988)

21. Ko�lowska-Gawiejnowicz, M.: On Canonical Embeddings of Residuated Groupoids.
In: Casadio, C., et al. (eds.) Lambek Festschrift. LNCS, vol. 8222, pp. 253–267.
Springer, Heidelberg (2014)

22. Ko�lowska-Gawiejnowicz, M.: Powerset Residuated Algebras. Logic and Logical Phi-
losophy (to appear)

23. Kozak, M.: Distributive Full Lambek Calculus has the Finite Model Property.
Studia Logica 91(2), 201–216 (2009)

24. Kusalik, T.: Product pregroups as an alternative to inflectors. In: Casadio, C.,
Lambek, J. (eds.) Computational Algebraic Approaches to Natural Language,
p. 173. Polimetrica, Monza (2002)

25. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

26. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and its Mathematical Aspects, pp. 166–178. AMS, Providence (1961)

27. Lambek, J.: From Categorial Grammar to Bilinear Logic. In: Schroeder-Heister,
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Abstract. Pregroup calculus and pregroup grammars are introduced
by Lambek as an algebraic tool for the grammatical analysis of natural
languages and the computation of strings of words and sentences. Some
interesting aspects of natural languages have been profitably handled by
means of pregroups. In the present paper we focus on a chosen aspect
of Italian grammar - clitic pronouns - and show how to tackle it by
means of different types of pregroup grammars. We start with classical
pregroup grammars, proceed to product pregroup grammars and then
introduce tupled pregroup grammars. Advantages and disadvantages of
the different approaches are discussed and compared.
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1 Introduction

In this paper we present a summary of the results obtained in the treatment of
Italian clitic patterns in terms of pregroup grammars (PG): classical PG, prod-
uct PG and tupled PG, respectively. Casadio and Lambek [6] have worked with
the first type of grammar obtaining the analysis of a rather large pattern of clitic
constructions; the second approach has been developed in some details in [8,9]
and [13], following ideas of Kusalik [14] and Lambek [20]; Kíslak–Malinowska
[12] has recently developed an approach in terms of tupled PG, then Casadio
and Kíslak–Malinowska [10] have extended it to Italian clitics showing the ad-
vantages both in terms of computability and of correct linguistic description
and generation. In the present paper we intend to briefly summarize these three
different PG approaches, and proceed at discussing some differences and some
interesting applications of tupled PG.

2 The Classical Approach

The calculus of pregroups is developed in [16,19] as an alternative to the Syntac-
tic Calculus [15], a well known model of categorial grammar [22]. Pregroups are a
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particular kind of substructural logic that is compact and non-commutative [3,4].
In fact the calculus is a non-conservative extension of classical non-commutative
multiplicative linear logic [1]: the left and right ‘iterable’ adjoints of pregroups
have as their counterparts the left and right ‘iterable’ negations of non-
commutative multiplicative linear logic; in principle formulas can occur with
n (left or right) adjoints (n ≥ 2), although 2 appears as being sufficient for
linguistic applications; see [20,7,5,11].

2.1 Basic Properties of Classical Pregroups

A pregroup {G, . , 1, �, r,→} is a partially ordered monoid in which each element
a has a left adjoint a�, and a right adjoint ar such that

a�a → 1 → a a�

a ar → 1 → ara

where the dot “.”, that is usually omitted, stands for the pregroup operation, the
compact conjunction or multiplication with unit 1, the arrow denotes the partial
order, the rules a�a→ 1 , a ar → 1 are called contractions, and the opposite rules
1 → a a�, 1 → ara are called expansions. From the point of view of linguistics,
the constant 1 represents the empty string of types, and the operation “.” is
interpreted as concatenation. The following principles state that the constant 1
is self-dual, adjoints are unique and contravariant, and iterated adjoints admit
a kind of De Morgan rule allowing a left (right) adjoint to distribute over a
formula, inverting the order of its constituents

1� = 1 = 1r ,

a→ b

b� → a� ,
a→ b
br → ar ,

b� → a�

a�� → b�� ,
br → ar

arr → brr

(a · b)� = b � · a � , (a · b)r = b r · a r ,

In the pregroup calculus the following equalities and rules are provable

ar� = a = a�r ,

a�� a� → 1 → a� a�� , ar arr → 1 → arr ar ,

the former expresses the property of cancellation of double opposite adjoints, the
latter the contraction and expansion of identical left and right double adjoints
respectively. Just contractions a� a → 1 and a ar → 1 are needed to determine
constituent analysis and grammaticality of linguistic expressions, and to prove
that a string of words is a sentence; on the other hand, expansions 1→ a a� , 1→
ara are useful for representing general structural properties of a given language
(see e.g. [7,19]).

At the syntactic level, a pregroup is freely generated by a partially ordered set
of basic types. From each basic type a we form simple types by taking single or
repeated adjoints: . . . a��, a�, a, ar , arr. . . . A compound type or just a type is
a string of simple types: a1 a2 . . . an. A basic type is a type (for n = 1).
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2.2 Pregroup Grammar for a Fragment of Italian

Assuming the rules and definitions given above we obtain what we shall call
a classical PG grammar, in which only type assignments to the elements of
the lexicon, adjoints cancellations and contractions are needed to determine the
grammaticality (or well formation) of strings of words and select, on this basis,
the set of strings that are (well formed) sentences of the given language.

In the classical approach, the free pregroup for a fragment of Italian is gener-
ated by the following partially ordered set of basic types (see [6]):

s declarative sentences

i, ı̃, ı, i∗, j, j, ı infinitive clauses

π subject

o direct object

ω indirect object

λ locative phrase

The type π is assigned to the subject, in nominative case, the types o, ω, λ, to
the arguments of the verb, in accusative, dative and locative case respectively;
the type ı is the maximal element of a set of types i, ı̃, ı, i∗, j, j, assigned to
verbal morphems and expressions introducing a variety of infinitival clauses.

From these basic types, appropriate types can be formed for different kinds
of verbal expressions. For example, the types given in the list below are assigned
to intransitive verbs like correre [to run], arrivare [to arrive] and transitive or
ditransitive verbs taking different kinds of complements like vedere [to see], obbe-
dire [to obey], dare [to give], mettere [to put]

(1) vedere : i , i o�

(2) obbedire : i , i ω�

(3) dare : i ω�o� , i o�ω�

(4) mettere : i λ�o� , i o�λ�

(5) correre : i , i λ�

(6) arrivare : i∗ , i∗λ� .

The star on i∗ is a reminder that the perfect tense of verbs like arrivare is to be
formed with the auxiliary essere [to be] rather than avere [to have], producing
infinitival phrases of type i∗, rather than of type i, like e.g. Io sono arrivato [I
have arrived] vs. Io ho corso [I have run]. The verbs in (3) and (4) receive two
types since their arguments in Italian can occurr in both orders.

The following examples show how the verb types combine via contraction with
the types of their arguments to give the expected infinitives of type i : simple
types are assigned to verbal complements such as the direct object phrases un
quadro, un libro, of type o, the indirect object phrase a Carla, of type ω, the
locative phrases sul tavolo, a Roma: of type λ.
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(1) vedere un quadro︸ ︷︷ ︸ [to see a picture]

(i o�) o → i

(2) obbedire a Mario︸ ︷︷ ︸ [to obey to Mario]

(i ω�) ω → i

(3) dare un libro︸ ︷︷ ︸ a Carla︸ ︷︷ ︸ [to give a book to Carla]

(i ω� o�) o ω → i

(4) mettere un libro︸ ︷︷ ︸ sul tavolo︸ ︷︷ ︸ [to put a book on the table]

(i λ� o�) o λ → i

(5) arrivare a Roma︸ ︷︷ ︸ [to arrive to Rome]

(i∗ λ�) λ → i∗

Italian, like Spanish and Portuguese, has both preverbal and postverbal clitic
pronouns. We list below the types assigned by the classical PG grammar to
preverbal clitics in the accusative and dative cases

mi, ti, ci, vi : j o�� i�

Accusative

lo, la, li, le : j o�� i�

mi, ti, ci, vi, gli, le : j ω�� i� , j ∗ ω�� i∗�

Dative
me, te, ce, ve, se, glie : j ω�� j �

se : j∗ ω�� j �

To type preverbal clitics we introduce four new basic types for infinitives j , j ∗,
j , j∗ and postulate their order conditions: j → j , j ∗ → j∗ , but i �→ j �→ i. It
follows that infinitives of type j cannot be preceded by any clitics and infinitives
of type j only by clitics such as me and ce. We also obtain clitic clusters such as

me . lo ,
(j ω�� j �) ( j o�� i�) → j ω�� o�� i� .

Here are some illustrations of preverbal clitics where the under-links show how
contractions apply to produce the calculation of the resulting type

me . lo dare , ce . lo mettere ,
(j ω�� o�� i�) (i o�ω�) → j (j λ�� o�� i�) (i o�λ�) → j
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lo vedere , ci arrivare .
(j o�� i�) (i o�) → j (j ∗ λ�� i∗�) (i∗λ�) → j∗

Partial cliticization can be obtained with double complements verbs

mi dare un libro , lo dare a Mario ,
(j ω�� i�) (i ω�o�) o → j (j o�� i�) (i o�ω�) ω → j

We conclude this section with two examples of declarative sentences in the
present tense involving pre-verbal cliticization, where C11 is a verb conjugation
matrix as explained below (for more details see [6])

(io) te . lo do (I give it to you)

= io C11 ( te . lo dare )

π1 (πr
1 s1 ı �) (j ω��o�� i�) (i o�ω�) → s1 ( j → ı )

Dario lo vuole vedere (Dario wants to see him)

= Dario C13 ( lo volere ) vedere

π3 (πr
3 s1 ı �) (j o�� i�) (i ı �)(i o�) → s1 ( j → j → ı )

3 Product Pregroup Grammars

To account for the rich morphological system of Romance languages such as
French or Italian, Lambek [17,19,20] proposed an analysis of inflected verbs
which consisted in two parts: the first one, called the inflector, the second one,
called the infinitive. In doing so, the verb and its inflectional morphology are
described by the communication of those two parts. The inflector is responsible
for the conjugated form of the verb, whereas the infinitive contains additional
information concerning specific verb features, like transitivity of the verb, possi-
ble complements of the verb etc. Essentially, the meaning of this decomposition
is that the inflector modifies the infinitive and as a result one gets a suitable
type of the verb in a certain grammatical form including tense and person.

Therefore, according to Lambek (e.g. [16,2]) to each verb V we associate a
matrix Cjk(V ), with j referring to the tense and k referring to the person. For
example, the matrix for the English verb be is given as follows

Cjk (be) →
(

am are is
was were was

)
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Taking single elements of the matrix we obtain the following forms, assuming
from the lexicon: i ≤ j, where j (as well as i, ī, j̄ etc.) stand for infinitive clauses,
the subscripts 1, 2, 3 in π stand for the first, second, third person, the subscripts
1 and 2 in s stand for the present tense and the past tense respectively

C13(go) = (he) goes
(πr

3s1j
l) i→ πr

3s1

C23(go) = (he) went
(πr

3s2j
l) i→ πr

3s2

C11(like) = (I) like and C11(like) the boy = (I) like the boy
(πr

1s1j
l)(iol)→ πr

1s1o
l (πr

1s1j
l)(iol) o → πr

1s1

An interesting approach is elaborated by Kusalik [14], who presented an al-
ternative analysis which replaced Lambek’s free pregroup with a system called
product pregroups, allowing for a separation between those two aspects of verbs.
This seems to work better for the cases which appeared to be problematic for
Lambek’s former approach. The product pregroup grammar is understood as
an intersection of two (or more) pregroup grammars. In the lexicon this time
one can find types belonging to the first and the second pregroup grammar (or
possibly more). The first can be seen as a usual pregroup grammar checking
sentencehood at the syntactic level. The second is introduced to account for fea-
ture checking and similar grammatical operations applying in parallel with the
syntactic ones. The calculations must end successfully on both (or more) levels
in order to accept the string of words as a sentence.

It has been shown, that if G1 and G2 are pregroup grammars, the language
defined by the pregroup G1×G2 is an intersection of two context-free languages,
and there is an algorithm of polynomial complexity for determining whether a
given string of types in G1 × G2 reduces to 1. (1 is understood as a vector of
coordinates such that each coordinate belongs to the given pregroup grammar.
It is usually s ∈ P1 for the first grammar and 1 ∈ Pi, 2 ≤ i ≤ k for the additional
grammars.) Given a product of k free pregroups, the language can be expressed
as the intersection of k context-free languages. The fact that the finite products
of free pregroups are computationally no more complex than a free pregroup
itself means that they can be used as a model of the grammatical structure of a
given natural language.

Product pregroup grammars are used by Lambek [20] while trying to analyze
feature agreement in French. He makes use of two pregroup grammars, one for
syntactic types and the other for the feature types. Kusalik [14] has used the
product of three pregroup grammars for analyzing English sentences. Let’s now
look at this approach on the basis of some Italian sentences, where the types
assigned to words come from Casadio [9]. Consider some examples first
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vedere il ragazzo [to see the boy]
vedere la ragazza [to see the girl]
vedere i ragazzi [to see the boys]
vedere le ragazze [to see the girls]
iol o → i

where the introduction of an inflector will justify for the Italian sentence Mario
vede la ragazza [Mario sees the girl], namely:

Mario vede la ragazza.
Mario C13(vedere) la ragazza
π3 (πr

3s1ı
l)(iol) o → s1

When the accusative objects il ragazzo, la ragazza, i ragazzi, le ragazze are
changed into personal pronouns in accusative case they become lo, la, li, le,
respectively. Then, in Italian, their position in the sentence changes, and it needs
to be preverbal. Thus one gets

lo vedere [to see him]
la vedere [to see her]
li vedere [to see them (masculine)]
le vedere [to see them (feminine)]
(jollil) (iol) → j

Here j (as well as i, ī, j̄ etc.) stand for infinitive clauses. All constraints and
partial order concerning them are at the moment irrelevant and we will not
bother the reader with too many details. Taking into consideration infinitive
clauses in present perfect tense, we get

avere visto il ragazzo [to have seen the boy]
avere visto la ragazza [to have seen the girl]
avere visto i ragazzi [to have seen the boys]
avere visto le ragazze [to have seen the girls]
(ipl2) (p2o

l) o → i

Here p2 stands for the past participle of the verb vedere [to see]. Now the nouns in
accusative case il ragazzo, la ragazza, i ragazzi, le ragazze are changed again into
personal pronouns in accusative case lo, la, li, le: and it causes problems. This is
due to some grammatical peculiarity of Italian: while using personal pronouns in
accusative case together with present perfect tense, the past participle endings
should be changed according to the pronoun’s gender and number. It looks as
below

lo avere visto [to have seen him]
la avere vista [to have seen her]
li avere visti [to have seen them (masculine)]
le avere viste [to have seen them (feminine)]
(jollil) (ipl2) (p2o

l)→ j
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From now on we face an over-generation. On the syntactic ground the wrong
word order can be blocked. For example avere visto lo cannot be accepted in
Italian. If the personal pronouns are got rid of and replaced by nouns as verbal
arguments no changes should be made, and avere visto will be proper in all
cases, irrespective of the gender and the number of the noun (e. g. avere visto
una ragazza [to have seen a girl]). Changing the past participle ending is only
needed while using a personal pronoun instead of the noun in present perfect
tense. One can say lo avere visto, but lo avere visti would not be correct, because
there is a lack of feature agreement. A similar problem arises while considering
intransitive verbs which form the present perfect tense with the verb essere [to
be]. In that case the past participle ending must agree with the personal pronoun
or the noun that is the sentential subject: Maria/Piero deve essere arrivata/o
[Maria/Piero has to be arrived].

Product pregroup grammars seem to be appropriate in similar cases. A new
pregroup for feature agreement can be introduced for that purpose and four
new types can be defined into the lexicon of this second PG: πms, πfs, πmp, πfp,
where m, f stand for masculine and feminine, whereas s, p stand for singular and
plural. Then each string of words from Italian can be typed on both levels (using
the product of the two PGs), and computations can be performed in parallel.
If both computations are successful, the sentence is accepted, otherwise it is
rejected. The first type assignment (syntactic level) should end with a single i or
j type (infinitive clause), while the second one should end with 1, corresponding
to feature matching. For example, making use of two free pregroups the following
result can be obtained

lo avere visto lo avere visti
jollil ipl2 p2o

l → j jollil ipl2 p2o
l → j

πms 1 πr
ms → 1 πms 1 πr

mp �→ 1

As it can be seen above, the second sentence is rejected at the level of feature
cheking and the string of words lo avere visti cannot be accepted.

4 Clitics in terms of Tupled Pregroup Grammars

Differently from classical and product PGs, tupled pregroup grammars are based
on a lexicon consisting of tuples of ordered pairs whose first element is a type
and the second one is a symbol from the alphabet. Elements of the lexicon are
also called lexical entries. The idea of taking certain elements of an alphabet
together in one tuple can be motivated and explained with the fact that in
natural languages certain words tend to occur together in the sentence, as for
example prepositions with nouns, pronouns with verbs, clitic pronouns with
certain verbs, etc. In formal languages one may wish to copy each item of an
alphabet (as in the copying language {xx | x ∈ {a, b}∗} ), to have the same
number of occurrences of certain elements, etc.

Let si be elements of a finite alphabet Σ ∪ ε (we can think of them as the
words of a natural language, ε being an empty string), and let P be a set of simple
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types, partially ordered by ≤. Types (TP) are of the form pr1 p
r
2...p

r
k v w

l
1 w

l
2...w

l
m,

for p1, p2, ...pk, v, w1, w2, ..., wm ∈ P, k,m ≥ 0, where pr and pl are called right
and left adjoints of p, respectively, for any p ∈ P 1. The latter fulfil the following
inequations2: plp ≤ 1 and ppr ≤ 1.

The lexical entries take the following form(
t1 t2 ... tk
s1 s2 ... sk

)
Here s1, ..., sk are elements of the alphabet and t1, ..., tk are types. (The reader

can consult the dictionary of a given fragment of Italian language, given in [10],
in order to see how they look like).

A merge operation applying to any pair of tuples is defined as follows(
t1 ... ti
s1 ... si

)
•
(

ti+1 ... tk
si+1 ... sk

)
=

(
t1 ... tk
s1 ... sk

)
An operation of deleting i-th coordinate, for any k-tuple k > 0 and any 1 ≤ i ≤ k

is defined as follows(
t1 ... ti−1 ti ti+1 ... tk
s1 ... si−1 si si+1 ... sk

)
−i

=

(
t1 ... ti−1 ti+1 ... tk
s1 ... si−1 si+1 ... sk

)
Let us define a binary relation on tupled pregroup expressions, denoted by ⇒
that holds in the following cases, for any tuples e1, e2 and sequence of tuples α, β

(Mrg) α e1 e2 β ⇒ α e1 • e2 β

(Move) α

(
t1 ... tk
s1 ... sk

)
β ⇒ α

(
titj
sisj

)
•
(
t1 ... tk
s1 ... sk

)
−i−j

β

(Move) applies to any k-tuple (k > 1), for any 1 ≤ i ≤ k and 1 ≤ j ≤ k.

The type in any coordinate can be contracted, for any a, b such that a ≤ b

(GCon) α

(
...

xblay
s

...

)
β ⇒ α

(
...

xy
s
...

)
β

(GCon) α

(
...

xabry
s

...

)
β ⇒ α

(
...

xy
s
...

)
β

1 Every type must contain exactly one simple type v (without the superscript r or
l) and may contain an arbitrary number (possibly equal to zero) of right and left
adjoints.

2 Presenting types in that form is a great simplification, but it is done on purpose for
our linguistic applications; for more details concerning tupled pregroup grammars
see [23].
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Additionally, (Mrg) can be applied to a pair of tuples only when in one tuple
all types are of the form v (without left and right adjoints) and (Move) takes
two items of a tuple if one of the types is of the form v.

A tupled pregroup grammar is G = (Σ,P,≤, I, S), where Σ is a finite alpha-
bet, P is a set partially ordered by ≤, I is a relation I ⊂ (TP × (Σ ∪ {ε})∗, S is
a designated type (in our applications the type of a sentence). The language of

the grammar is LG = {s|I∗ ∗⇒
(
S
s

)
}

In our analysis we will make use of the following types

s1 type of a sentence in a present tense

π3 third person subject
˜̃i infinitive of bitransitive verb without the ending e,

for example dar instead of dare

ĩ infinitive of a transitive verb without the ending e,
for example veder instead of vedere

We make use of the following partial order: ˜̃i ≤ ĩ

i infinitive of the verb, for example dare
ī infinitive form of the verb phrase with a clitic,
for example darla, darmi, darmela, poterla avere vista

¯̄i infinitive form of the verb phrase required by modal verb without e,
for example la avere vista
We make use of the following partial order: i ≤ ī.
It can be explained by the fact that a bitransitive verb may act as
a transitive one, as in darmi, darla, but it cannot be the other way around
- we cannot say vedermela.

We do not compare ¯̄i with ī.

o4 an accusative (direct) object (as i.e. una ragazza, una bella ragazza, etc.)
o3 a dative (indirect) object (as a me, a una ragazza, etc.)
ˆ̂o4 an accusative (direct) personal pronoun (mi, ti, lo, la, ci, vi, li, le, ne),

occurring in the sentence independently (as a single lexical entry)
ˆ̂o3 a dative (direct) personal pronoun (mi, ti, gli, le, ci, vi),

occurring in the sentence independently (as a single lexical entry)
ˇ̌o3 a dative (direct) personal pronoun (me, te, gli, ce, ve),

occurring in the sentence independently (as a single lexical entry)
together with an accusative object (for example te la, me li)

ô4 an accusative (direct) personal pronoun occurring within a tuple,

accompanied with the verb as in

(
i ô4

dare la

)
ô3 a dative(direct) personal pronoun occurring within a tuple,

accompanied with the verb as in

(
i ô3

dare mi

)
ǒ3 a dative (direct) personal pronoun occurring within a tuple, accompanied

with the verb and an accusative personal pronoun as in

(
i ǒ3 ô4

dare me la

)
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We make use of the following partial order: ô4 ≤ ˆ̂o4, ô3 ≤ ˆ̂o3, ǒ3 ≤ ˇ̌o3
Note: we do not compare either o4 with ô4 or o3 with ô3.

p̄2 the plain form of past participle (visto, dato) of the verb
which takes an auxiliary verb avere to form past participle

p2 the full form of past participle (visto una ragazza, dato una mela a me)
of the verb with an auxiliary verb avere

Let the dictionary (showing only tuples used in our examples) be as follows,
for more see [10]

I =

{(
π3

Mario

)(
ôr4π

r
3s1i

l

vuole

)(
i ô4

vedere la

)(
ĩ ô4

veder la

)(
ī¯̄il

poter

)(
i

avere

)

(
ĩ

aver

)(
p̄2 ô4

vista la

)(
p̄2 ǒ3 ô4
data me la

)(
p̄r2ô

r
4ô

r
3ĩ

r ī
ε

)(
ôr4ĩ

r ī
ε

)(
p̄r2i

r ôr4
¯̄i

ε

)
...

}

Single tuples are put together with those containing two or three coordinates
- the first word in the tuple being usually a verb in its inflected form (we wish
to remind the reader that the order of an ordered pair - type, word - within a
tuple is not important and it can be switched without any consequences). Empty
strings play the role of ordering words or strings of words in the sentence. The
idea behind the tuples is that some words are indispensable in the sentence and
have to occur together in order to fulfill certain features and peculiarities of the
grammar. In comparison with former approaches the types assigned to words
are less complicated and not so numerous, the proposed tupled PG ‘catches’
all acceptable clitic patterns and excludes those considered wrong by Italian
grammarians.

Italian clitics exhibit two basic patterns: clitic pronouns can occur both in pre-
verbal and post-verbal position, keeping the same relative order: locative/indirect
object/direct object. Subjects do not allow clitic counterparts and concerning
the other verbal arguments, clitic unstressed elements can be attached both to
the main verb or to auxiliaries and modal verbs. Therefore the set of clitic types
will include types for the direct object (accusative), types for the indirect object
(dative), and types for the locative object, for details see [21]. In our work we
consider transitive and ditransitive verbs. The general patterns for ditransitive
verbs with accusative and dative objects as well as their preverbal and postverbal
cliticization in Italian are as shown below. We consider the transitive verb vedere
[to see] and ditransitive verb dare [to give] in their inflected form or accompanied
by modal verbs in different tenses. Underlined particles are direct objects (noun
phrases or clitic pronouns) and those with double underline are indirect objects.
Clitics are in bold. The meaning of the sentences in English are Mario vede una
ragazza - Mario sees a girl and Mario da una mela a me - Mario gives an apple
to me, then we consider all their possible variations in different tenses and word
orders (also with clitic pronouns).
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1. Mario vede una ragazza. 2. Mario la vede.

3. Mario vuole vedere una ragazza. 4. Mario la vuole vedere.

5. Mario ha visto una ragazza. 6. Mario la ha vista∗. (Mario l’ha vista).

7. Mario ha voluto vedere una ragazza. 8. Mario la ha voluto vedere.

9. Mario ha voluto vederla. 10. Mario vuole potere vedere una ragazza.

11. Mario vuole potere averla vista∗. 12. Mario vuole poterla avere vista∗

13. Mario la ha voluto avere vista∗. 14. Mario ha voluto averla vista∗.
15. Mario la ha voluto potere avere vista∗. 16. Mario ha voluto potere averla vista∗.
....
17. Mario da una mela a me. 18. Mario da a me una mela.

19. Mario la da a me. 20. Mario mi da una mela.

21. Mario me la da. 22. Mario vuole dare una mela a me.

23. Mario vuole dare a me una mela. 24. Mario la vuole dare a me.

25. Mario mi vuole dare una mela. 26. Mario me la vuole dare.

27. Mario vuole darla a me. 28. Mario vuole darmi una mela.

29. Mario vuole darmela. 30. Mario ha dato una mela a me.

31. Mario ha dato a me una mela. 32. Mario mi ha dato una mela.

33. Mario la ha data∗ a me. 34. Mario me la ha data∗.
35. Mario ha voluto dare una mela a me. 36. Mario la ha voluto dare a me.

...
37. Mario vuole potere averla data a me. 38. Mario vuole poterla avere data a me.

39. Mario vuole avermi dato una mela. 40. Mario vuole averla data∗ a me.

41. Mario vuole avermela data∗. ...

* It is a peculiarity of Italian (also of other Romance languages) - that when
using the accusative clitic (femminine, singular) in Present Perfect tense we need
also to change the ending of the Past Participle (feature agreement). That posed
a problem in former approaches and led to overgeneration. For that purpose
Lambek [20] decided to use product pregroups for French.

On the basis of the types in the dictionary and of the rules transforming the
lexical entries, we can exclude a variety of non-sentences (marked with ¬) like
¬ Mario la ha voluto vederla.

¬ Mario la ha visto.

¬ Mario vuole la avere vista.

¬ Mario ha la voluto avere vista.

¬ La Mario ha voluto avere vista.

¬ Mario ha voluto la potere avere vista.

¬ Mario mi la da.

¬ Mario la me da.

¬ Mario la da me.

¬ Mario mi da la.

¬ Mario me da una mela.

¬ Mario mi ha voluto darla.

¬ Mario la ha voluto darmi.

¬ Mario ha voluto me la dare.
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Making use of lexical entries in the dictionary and transforming them according
to the rules of (Mrg), (Move) and (GCon) we can justify the correctness of the
sentence Mario la vuole vedere and proceed as follows(

π3

Mario

) (
ôr4π

r
3s1i

l

vuole

) (
i ô4

vedere la

)
⇒(

π3

Mario

) (
ôr4π

r
3s1i

l i ô4
vuole vedere la

)
⇒
(

π3

Mario

) (
ô4ô

r
4π

r
3s1i

l i
la vuole vedere

)
⇒(

π3

Mario

) (
πr
3s1i

l i
la vuole vedere

)
⇒
(

π3

Mario

) (
πr
3s1i

li
la vuole vedere

)
⇒(

π3

Mario

) (
πr
3s1

la vuole vedere

)
⇒
(

π3 πr
3s1

Mario la vuole vedere

)
⇒(

π3π
r
3s1

Mario la vuole vedere

)
⇒
(

s1
Mario la vuole vedere

)
In the sentence Mario vuole vederla beside the tuple with two coordinates

we also need a tuple with an empty string, and proceed in the following way(
π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ ô4

veder la

) (
ôr4ĩ

r ī
ε

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ ô4 ôr4ĩ

r ī
veder la ε

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ô4ô

r
4 ĩ

r ī ĩ
la veder

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩr ī ĩ
la veder

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ̃ir ī

vederla

)
⇒
(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī

vederla

)
⇒

Note that we can proceed with combining together the first and the second tu-
ple or the second and the third one (the first and the third contain only simple
types). The same situation might have been observed at the beginning, instead
of starting with (Mrg) on the third and the fourth tuple we could have chosen
the first and the second.(

π3

Mario

) (
πr
3s1ī

l ī
vuole vederla

)
⇒
(

π3

Mario

) (
πr
3s1ī

lī
vuole vederla

)
⇒(

π3

Mario

) (
πr
3s1

vuole vederla

)
⇒
(

π3 πr
3s1

Mario vuole vederla

)
⇒(

π3π
r
3s1

Mario vuole vederla

)
⇒
(

s1
Mario vuole vederla

)
A more complicated example could be Mario vuole poterla avere vista. Here
one should proceed as follows:
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π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
i

avere

) (
p̄2 ô4

vista la

) (
p̄r2i

rôr4
¯̄i

ε

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
i

avere

) (
p̄2 ô4 p̄r2i

rôr4
¯̄i

vista la ε

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
i

avere

) (
p̄2p̄

r
2i

r ôr4
¯̄i ô4

vista la

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
i

avere

) (
ir ôr4

¯̄i ô4
vista la

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
i irôr4

¯̄i ô4
avere vista la

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
iirôr4

¯̄i ô4
avere vista la

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
ôr4
¯̄i ô4

avere vista la

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) (
ô4ô

r
4
¯̄i

la avere vista

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il

poter

) ( ¯̄i
la avere vista

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il ¯̄i

poter la avere vista

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī¯̄il¯̄i

poterla avere vista

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī

poterla avere vista

)
⇒ ..... ⇒(

s1
Mario vuole poterla avere vista

)
Note that during the derivation process the types occurring within tuples are

consistent with our assumptions. We obtain the tuple

( ¯̄i
la avere vista

)
with the

type ¯̄i for la avere vista acting as a complement of a short form of the modal
verb (for example poter) and building together the expression of the form ī -
infinitive form of the verb phrase with a clitic - poterla avere vista.

To complete the examples we present one with the ditransitive verb Mario
vuole avermela data.(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
p̄2 ǒ3 ô4
data me la

) (
p̄r2ô

r
4ô

r
3ĩ

r ī
ε

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
p̄2 ǒ3 ô4 p̄r2ô

r
4ô

r
3ĩ

r ī
data me la ε

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
p̄2p̄

r
2ô

r
4ô

r
3 ĩ

r ī ǒ3 ô4
data me la

)
⇒
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π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
ôr4ô

r
3 ĩ

r ī ǒ3 ô4
data me la

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
ô4ô

r
4ô

r
3ĩ

r ī ǒ3
la data me

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
ôr3 ĩ

r ī ǒ3
la data me

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
ǒ3ô

r
3ĩ

r ī
me la data

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ

aver

) (
ĩr ī

me la data

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ ĩr ī

aver me la data

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ĩ̃ir ī

avermela data

)
⇒(

π3

Mario

) (
πr
3s1ī

l

vuole

) (
ī

avermela data

)
⇒ .... ⇒(

s1
Mario vuole avermela data

)

5 Conclusions

In this paper we have compared three different appoaches to pregroup grammar:
classical PG, product PG and tupled PG. By analysing a number of represen-
tative examples taken from Italian, with particular reference to the contexts in
which clitic pronouns occur, we have shown the undeniable advantages of tu-
pled PG with respect to the other two approaches. The analysis presented here
for Italian clitics can be extended without much difficulties to other Romance
languages such as French, Spanish and Portuguese. It will be interesting, on
this respect, to compare the different sets of tuples projected from the different
dictionaries defined by means of a tupled pregroup grammar.
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Abstract. The purpose of this article is to show that the associative
Lambek calculus extended with basic proper axioms can be simulated by
the usual associative Lambek calculus, with the same number of types per
word in a grammar. An analogue result had been shown for pregroups
grammars [1]. We consider Lambek calculus with product, as well as the
product-free version.

1 Introduction

The associative Lambek calculus (L) has been introduced in [6], we refer to [3,8]
for details on (L) and its non-associative variant (NL). The pregroup formalism
(PG) has been later introduced [7] as a simplification of Lambek calculus. These
formalisms are considered for the syntax modeling and parsing of various natural
languages. In contrast to (L), pregroups allow some kind of postulates ; we
discuss this point below.

Postulates in Pregroups. The order on primitive types has been introduced in
Pregroups (PG) to simplify the calculus for simple types. The consequence is
that PG is not fully lexicalized. From the results in [1], this restriction is not so
important because a PG using an order on primitive types can be transformed
into a PG based on a simple free pregroup using a pregroup morphism, s.t. : its
size is bound by the size of the initial PG times the number of primitive types
(times a constant which is approximatively 4), moreover, this transformation
does not change the number of types that are assigned to a word (a k-valued
PG is transformed into a k-valued PG).

Postulates in the Lambek Calculus. Postulates (non-logical axioms) in Lambek
calculus have also been considered. We know from [2,5], that :

(i) the associative version (L) with nonlogical axioms generate ε-free r.e. lan-
guages (the result also holds for L without product). The proof in the case
with product is based on binary grammars whose production are of the form :

p→ q , p→ q r , p q → r

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 172–187, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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for which is constructed a language-equivalent categorial grammar L(Φ(G))
where Φ(G) is a finite set of non-logical axioms.

(ii) the non-associative version (NL) with nonlogical axioms generate context-
free languages [5].

This article adresses the associative version (L). It is organized as follows :
section 2 gives a short background on categorial grammars and on L extended
with proper axioms L(Φ) ; section 3 gives some preliminary facts on L(Φ), when
Φ corresponds to a preorder ≤ on primitive types (written Φ≤) ; section 4 defines
the simulation (written h) ; section 5 gives the main results on the h simulation ;
section 6 gives the lemmas and proof details. Section 7 concludes.

Such a result also aims at clarifying the properties of classes of rigid and
k-valued type logical grammars (TLG).

2 Categorial Grammars, their Languages and Systems

2.1 Categorial Grammars and their Languages

A categorial grammar is a structure G = (Σ, I, S) where: Σ is a finite al-
phabet (the words in the sentences); given a set of types Tp(Pr), where Pr
denotes a set of primitive types, I : Σ → Pf (Tp(Pr)) is a function that
maps a finite set of types from each element of Σ (the possible categories of
each word); S ∈ Tp(Pr) is the main type associated to correct sentences.

Language. Given a relation on Tp(Pr)∗ called the derivation relation on types :
a sentence v1 . . . vn then belongs to the language of G, written L(G), provided
its words vi can be assigned types Xi whose sequence X1 . . . Xn derives S
according to the derivation relation on types.

An AB-grammar is a categorial grammar G = (Σ, I, S), such that its set of
types Tp(Pr) is constructed from Pr (primitive), using two binary connectives
/ , \ , and its language is defined using two deduction rules:

A , A \ B � B (Backward elimination, written \ e)
B / A , A � B (Forward elimination, written / e)

For example, using \ e, the string of types (N,N \ S) associated to “John
swims” entails S, the type of sentences. Another typical example is
(N, ((N \ S) / N), N)) associated to “John likes Mary”, where the right part
is associated to “likes Mary”.

Lambek-grammars AB-grammars are the basis of a hierarchy of type-logical
grammars (TLG). The associative Lambek calculus (L) has been introduced
in [6], we refer to [3] for details on (L) and its non-associative variant (NL).
A sequent-style presentation of (L) is detailed after.
The above examples illustrating AB-grammars also hold for (L) and (NL).

The pregroup formalism has been introduced in [7] as a simplification of
Lambek calculus [6]. See [7] for a definition.



174 A. Foret

2.2 Type Calculus for (L)

By a sequent we mean a pair written Γ � A, where Γ is a sequence of types of
Tp(Pr) and A is a type in Tp(Pr). We give a ”Gentzen style” sequent presenta-
tion, by means of introduction rules on the left or on the right of a sequent :

Lambek Calculus (associative) (Gentzen style)

Γ,A, Γ ′ � C Δ � A
Cut

Γ,Δ, Γ ′ � C
A � A

Γ � A Δ,B,Δ′ � C
/L

Δ,B / A, Γ,Δ′ � C

Γ,A � B
/R

Γ � B / A

Γ � A Δ,B,Δ′ � C
\L

Δ,Γ,A \B,Δ′ � C

A, Γ � B
\R

Γ � A \B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Δ,A,B,Δ′ � C
•L

Δ,A •B,Δ′ � C

Γ � A Γ ′ � B
•R

Γ, Γ ′ � A •B

The calculus denoted by L consists in this set of rules and has the extra
requirement when applying a rule : the left-handside of a sequent cannot be
empty. We may consider the system restricted to / and \ or its full version,
where the set of types has a product type constructor • (non-commutative). The
Cut rule can be eliminated from the type system (proving the same sequents).
This property with the subformula property entail the decidability of the system.

2.3 Type Calculus for (L) Enriched with Postulates

L(Φ). In the general setting (as in [5]) nonlogical axioms are of the form :
A � B, where A,B ∈ Tp(Pr)
and L(Φ) denotes the system L with all A � B from Φ as new axioms.

The calculus corresponds to adding a new rule of the form :
A � B ∈ Φ

AxΦ
A � B

L(Φ≤). In the following of the paper, we shall restrict to axioms of the form :
p � q, where p, q are primitive (elements of Pr). Moreover, to keep the parallel

with pregroups, we consider a preorder ≤ on a finite set of primitive types Pr
and consider : L(Φ≤) where Φ≤ is the set of axioms p � q whenever p ≤ q, for
p, q ∈ Pr.

The calculus corresponds to adding a new rule of the form :
p ≤ q

Ax≤
p � q
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Some Remarks and Known Facts

On Axioms. As in L, we get an equivalent version of L(Φ), where axioms A � A
in the type calculus are supposed basic (A primitive).

A Remark on Substitutions. In general L(Φ) is not substitution closed, see [4].

Facts on Models. [4] discusses several completeness results, in particular, L is
strongly complete with respect to residuated semigroups (RSG in short)1 : the
sequents provable in L(Φ) are those which are true in all RSG where all sequents
from Φ are true.

3 Some Preliminary Facts with Basic Postulates

3.1 Cut Elimination and the Subformula Property

Proposition 1. Let ≤ denote a preorder on the set of primitive types, and Φ≤
denote the corresponding set of axioms. The type calculus L(Φ≤) admits cut
elimination and the subformula property : every derivation of Γ � A in L(Φ≤)
can be transformed into a cut-free derivation in L(Φ≤) of the same sequent, such
that all formulas occurring in it are subformulas of this sequent.

Proof Sketch. The proof is standard (see [8]), on derivations, by induction on
(d, r) where r is the number of rules above the cut rule (to be eliminated) and
d is the depth (as a subformula tree) of the cut formula (that disappears by the
cut rule). The proof shows how to remove one cut having the smallest number
of rules above it, by a case analysis considering the subproof Dl which ends at
the left premise of the cut rule and the subproof Dr which ends at the right of
the cut rule.
The only new specific case is when Dl and Dr are both axioms :

Original derivation New derivation

pi ≤ pj

pi � pj

pj ≤ pk

pj � pk
cut

pi � pk

pi ≤ pk

pi � pk

Observe that the transitivity of ≤ on Pr is crucial here.

Corollary 1. Let ≤ denote a preorder on the set of primitive types, and Φ≤
denote the corresponding set of axioms. The type calculus L(Φ≤) is decidable.

These above propositions apply for full L and product-free L.

1 A residuated semigroup (RSG) is a structure (M, ≤ , . , \ , / ) such that (M,≤) is
a nonempty poset, ∀a, b, c ∈ M : a.b ≤ c iff b ≤ a \ c iff a ≤ c / b (residuation), . is
associative ; Γ � B is said true in a model (M,μ), where M is a RSG and μ from Pr
into M iff μ(Γ ) ≤ μ(B), where μ from Pr into M is extended as usual by μ(A \ B) =
μ(A) \ μ(B), μ(A / B) = μ(A) / μ(B), μ(A•B) = μ(A).μ(B), μ(Γ,Δ) = μ(Γ ).μ(Δ).
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3.2 Rule Reversibility

Proposition 2 (Reversibility of /R and \R).

In the type calculus L(Φ≤) :
{
Γ � B / A iff Γ,A � B
Γ � A \ B iff A,Γ � B

Proof (→) : easy by induction on the derivation, according to the last rule.
This proposition holds for the full calculus and its product-free version. In

the full calculus, the reversibility of rule •L also holds.

Main Type in the Product-Free Calculus. For a type-formula built over Pr / , \ ,
its main type is :

- the formula if it is primitive ;
- the main type of B if it is of the form B / A or the form A \ B.

In the product-free case, any type A can thus be written (ommitting paren-
thesis) as X1\ . . . \Xn\pA/Ym/ . . . /Y1 where pA is the main type of A. Re-
versibility then gives : Γ � A in L(Φ≤) iff X1, ..., Xn, Γ, Ym, ..., Y1 � pA in L(Φ≤).

3.3 Count Checks

This notion will be useful for proofs on the simulation defined in section 4.

Polarity. We first recall the notion of polarity of an occurrence of p ∈ Pr in a
formula : p is positive in p ; if p is positive in A, then p is positive in B \ A,
A / B, A • B, B • A, and p is negative in A \ B, B / A ; if p is negative in A,
then p is negative in B \ A, A / B, A • B, B • A, and p is positive in A \ B,
B / A.

For a sequent Γ � B, the polarity of an occurrence of p ∈ Pr in B is the same
as its polarity in B, but the polarity of an occurrence of p in Γ is the opposite
of its polarity in the formula of Γ .

In the presence of non-logical axioms Φ on primitive types, a count check
property can be given as follows :

Proposition 3 (Count check in L(Φ), on primitive types). If Γ � B is
provable in L(Φ), then for each primitive type p that is not involved in any axiom
p � q in L(Φ) where p �= q : the number of positive occurrences of p in Γ � B
equals the number of negative occurrences of p in Γ � B.

The proof is easy by induction on derivations.

3.4 A Duplication Method

As is the case for pregroups [1], we may propose to duplicate assignments for
each primitive type occurring in a basic postulate pi ≤ pj . We give more details
below.
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Definition 1 (polarized duplication sets).

1. We write (q)
↑
≤ = {pj | q ≤ pj} and (q)

↓
≤ = {pj | pj ≤ q} for primitive types.

2. We use the following operations on sets of types, that extend / , \ , • :

T1 // T2 = {X1 / X2 | X1 ∈ T1 and X2 ∈ T2}
T1 \\ T2 = {X1 \ X2 | X1 ∈ T1 and X2 ∈ T2}
T1

⊙
T2 = {X1 •X2 | t1 ∈ T1 and X2 ∈ T2}

T1◦T2◦...◦Tn = {X1, X2, ...Xn | X1 ∈ T1 X2 ∈ T2...Xn ∈ Tn} for sequences
3. We define the upper-duplication Dupl↑≤(.) and lower-duplication Dupl↓≤(.)

inductively on types, for δ ∈ {↑, ↓}, where we write op(↑) =↓, op(↓) =↑ :

Dupl↑≤(q) = (q)↑≤ and Dupl↓≤(q) = (q)↓≤ for primitive types.

Duplδ≤(X1 / X2) = Duplδ≤(X1) // Dupl
op(δ)
≤ (X2)

Duplδ≤(X1 \ X2) = Dupl
op(δ)
≤ (X1) \\ Duplδ≤(X2)

Duplδ≤(X1 •X2) = Duplδ≤(X1)
⊙

Duplδ≤(X2)

and Duplδ≤(X1, X2, . . . , Xn) = Duplδ≤(X1) ◦Duplδ≤(X2) ◦ ... ◦Duplδ≤(Xn)

This amounts to consider all replacements, according to ≤ and the two polarities.

Proposition 4 (Simulation 1). For p ∈ Pr (primitive) :

if X1, . . . Xn � p in L(Φ≤) then ∃X ′
1 ∈Dupl↑≤(X1) . . . ∃X ′

n ∈Dupl↑≤(Xn) such

that X ′
1, . . .X

′
n � p in L (without postulates).

Proof Sketch. See annex.

Drawbacks. However this transformation does not preserve the size of the lexicon
in general, nor the k-valued class of grammars to which the original lexicon
belongs.

4 Simulation over k-valued Classes

4.1 Basic Definitions

Using morphisms-based encodings will enable to stay in a k-valued class and to
keep a strong parse similarity (through the simulation).

Definition 2 (preorder-preserving mapping).
Let (P,≤) and (P ′,≤′) denote two sets of primitive types with a preorder. Let h
denote a mapping from types of Tp(P ) (with ≤ on P ) to types of Tp(P ′) (with
≤′ on P ′)

– h is a type-homomorphism iff
1. ∀X,Y ∈ Tp(P ) : h(X / Y ) = h(X) / h(Y )
2. ∀X,Y ∈ Tp(P ) : h(X \ Y ) = h(X) \ h(Y )
3. ∀X,Y ∈ Tp(P ) : h(X•Y ) = h(X)•h(Y )
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– h is said monotonic iff

4a. ∀X,Y ∈ Tp(P ) :

if X � Y in L(Φ≤) then h(X) � h(Y ) in L(Φ≤′) [Monotonicity]

– h is said preorder-preserving iff

4b. ∀pi, pj ∈ P : if pi ≤ pj then h(pi) � h(pj) in L(Φ≤′).

Condition (4b) ensures (4a) for a type-homomorphism. This can be shown by
induction on derivations. Next sections define and study a type-homomorphism
that fullfills all these conditions.

4.2 Construction on One Component

We consider the type calculus without empty sequents on the left, and with prod-
uct. The result also holds for the product-free calculus, because the constructed
simulation does not add any product.

In this presentation, we allow to simulate either a fragment (represented as
Pr below) or the whole set of primitive types ; for example, we may want not
to transform isolated primitive types, or to proceed incrementally.

Primitive Types. Let P = {p1, . . . , pn} and P = Pr ∪ Pr′, denote the set of
primitive types, in which Pr a connex component, where no element of Pr is
related by ≤ to an element of Pr′, and each element of Pr is related by ≤ to
another element of Pr.
We introduce new letters q0, q1 and βk for each pk of Pr (no new postulate) 2.
We take as preordered set P ′ = Pr′ ∪ {q0, q1} ∪ {βk | pk ∈ Pr},
≤′ denotes the restriction of ≤ on Pr′ (Pr′ may be empty).

Notation. We write X �≤′ Y for a sequent provable in the type calculus L(Φ≤′)
and we write X �≤ Y for a sequent provable in the type calculus L(Φ≤)

We now define the simulation-morphism h for Pr as follows:

Definition 3 (Simulation-morphism h for Pr).

h(X / Y ) = h(X) / h(Y )
h(X \ Y ) = h(X) \ h(Y )
h(X • Y ) = h(X) • h(Y )

for pi ∈ Pr
let Num↑(pi)= {k | pi ≤ pk} = {i1 . . . ik}
s. t. i1 < . . . < ik

h(pi) = q0 / exp(q1, βi1 . . . . .βik)

for pi ∈ Pr′

h(pi) = pi

where
exp(X, β) = β / (X \ β)

and the notation is extended to sequences on the right by :
exp(X, ε) = X
exp(X, βi1 . . . . .βik−1

.βik) = βik / (exp(X, βi1 . . . . .βik−1
) \ βik)

= exp(exp(X, βi1 . . . . .βik−1
), βik)

2 q0, q1 can also be written q0Pr, q1Pr if necessary w.r.t. Pr.
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Notation. In the following, in expressions of the form exp(X,Π), Π is assumed
to denote a sequence (possibly empty) βk1 . . . βkn (where βk is the new letter for
pk of Pr) ; we will then write Num(Π) = Num(βk1 . . . βkn) = {k1, . . . , kn}.

Fact. The h mapping of definition 3 is a type-homomorphism by construction.
Next sections will show that it is monotonic and a simulation (verifying the

converse of monotonicity).

5 Main Results

Proposition 5 (Preorder-preserving property). The homomorphism h of
definition 3 satisfies : (4b.) ∀pi, pj ∈ P : if pi ≤ pj then h(pi) �
h(pj) in L(Φ≤′).

Proof. This is a corollary of this type-raise property : A � B / (A \ B) ; we
have A � exp(A,Π) and more generally : if {k | βk ∈ Π} ⊆ {k | βk ∈ Π ′}
then exp(A,Π) � exp(A,Π ′) ; by construction, if pi ≤ pj then Num↑(pj) ⊆
Num↑(pi), hence the result.

Proposition 6 (Equivalence property). The homomorphism h of defini-
tion 3 satisfies :

∀X,Y ∈ Tp(P ) : h(X) � h(Y ) holds in L(Φ≤′) iff X � Y holds in L(Φ≤)

Proof. For the ← part, this is a corollary of the preorder-preserving property,
that entails monotonicity, for a type-homomorphism. For the → part, see lem-
mas in the next section.

Proposition 7 (Grammar Simulation). Given a grammar G = (Σ, I, S)
and a preorder ≤ on the primitive types P , we define h from types on (P,≤) to
types on (P ′,≤′) such that P = Pr ∪ Pr′, where Pr is a connex component, as
in definition 3. We construct a grammar on (P ′,≤′) and L(φ≤′) as follows :

G′ = (Σ, h(I), h(S))
where h(I) is the assignment of h(Xi) to ai for Xi ∈ I(ai),

as a result we have : L(G) = L(G′)

Note. This corresponds to the standard case of grammar, when h(S) is primitive.

This proposition can apply the transformation to the whole set of primitive
types, thus providing a fully lexicalized grammar G′ (no order postulate).
A similar result holds to a fragment Pr of P = Pr ∪ Pr′.
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A Remark on Constructions to Avoid. For other constructions based on the
same idea of chains of type-raise, we draw the attention on the fact that a
simplication such as h′ below would not be correct. Suppose Φ≤ consists in
p0 ≤ p1 as postulate, define h′ a type-morphism such that

h′(p0) = exp(q, β0) and h′(p1) = exp(q, β0.β1),
this is preorder-preserving : we have h′(p0) � h′(p1),
but this is not a correct simulation, because

h′(p1), h′(p0 \ p0) � h′(p1) whereas p1 (p0 \ p0) �� p1 (in L(Φ≤)).
In more details, the sequent on the left is proved by :

h′(p0), h′(p0) \ h′(p0), h′(p0) \ β1 � β1,
then by \R : h′(p0) \ h′(p0), h′(p0) \ β1 � h′(p0) \ β1,
then by /L : β1 / h′(p0) \ β1, h

′(p0) \ h′(p0), h′(p0) \ β1 � β1, then apply /R .

6 Lemmas

Fact (1) [count checks for new letters]

for X ∈ Tp+(P ) : if Y1, h(X), Y2 �≤′ Z and X is not empty, then :
(a) the number of positive occurrences of q0 or q1 in Y1, Y2 � Z equals the number
of negative occurrences of q0 or q1 in Y1, Y2 � Z
(b) the number of positive occurrences of α ∈ {βk | pk ∈ Pr} in Y1, Y2 � Z
equals the number of negative occurrences of α in Y1, Y2 � Z

Proof. (a) is a consequence of the count check property for q0 and for q1, and
of the following fact : by construction, in h(X) the number of positive occur-
rences of q0 equals the number of negative occurrences of q1, and the number
of negative occurrences of q0 equals the number of positive occurrences of q1.
(b) is a consequence of the count check property for α, and of the following
fact : by construction, h(X) has the same number of positive occurrences of
α ∈ {βk | pk ∈ Pr} as its number of negative occurrences.

Note. Thus by (a), the presence of a formula h(X) in a sequent imposes some
equality constraints on the counts of q0 and q1.

Fact (2) [interactions with new letters]

for X ∈ Tp∗(P ) and α, α′ ∈ {q0, q1} ∪ {βk | pk ∈ Pr} :
(a) h(X), α �≤′ α′ is impossible when X is not empty, unless (α, α′) = (q1, q0)
(b) h(X), α �≤′ exp(q1, Π) where Π �= ε implies X is empty and α = q1
(c) h(X), α, exp(q1, Π”) \ β �≤′ β, where β ∈ {βk | pk ∈ Pr} implies X is empty
and α = q1

Proof. The proof is technical, see Annex.
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Fact (3) [chains of type-raise]

if exp(q1, Π
′) �≤′ exp(q1, Π

′′) then Num(Π ′) ⊆ Num(Π ′′)

Proof. We show a simpler version when Π ′ = βk1 (the general case follows
from type-raise properties A �≤′ exp(A,Π) ; also if Π ′ is empty, the assertion is
obvious).

We proceed by induction on the length of Π ′′ and consider exp(q1, βk1) �≤′

exp(q1, Π
′′), that is βk1 / (q1 \ βk1) �≤′ exp(q1, Π

′′). The case Π ′′

empty is impossible ; we write Π ′′ = Π2.βk2 ; the sequent is
βk1 / (q1 \ βk1) , exp(q1, Π2) \ βk2 �≤′ βk2 ; the end of the derivation has two
possibilities:

–
βk1 / (q1 \ βk1) �≤′ exp(q1,Π2) βk2

�≤′βk2

βk1
/ (q1 \ βk1

), exp(q1,Π2) \ βk2
�≤′βk2

we get in this case the assertion by rec. : k1 ∈ Num(Π2) (⊆ Num(Π”))
or

–
exp(q1,Π2) \ βk2

�≤′ (q1 \ βk1
) βk1 �≤′ βk2

βk1
/ (q1 \ βk1

), exp(q1,Π2) \ βk2
�≤′βk2

From which we get the assertion : k1 = k2 (∈ Num(Π”)).

Main Lemma

(main) if h(X) �≤′ h(Y ) then X �≤ Y (where X and Y in Tp+(P )).

Sketch of Proof. We distinguish several cases, depending on the form of Y and
of h(Y ), and proceed by (joined) induction on the total number of connectives
in X,Y :

– for cases where Y is primitive, we recall that P = Pr ∪ Pr′, where Pr is a
connex component and ≤′ has no postulate on Pr ; there are two subcases
(detailed later) depending on pi ∈ Pr or pi ∈ Pr′ :
(o) for pi∈Pr′ and X∈Tp+(P ) : h(X) �≤′ pi implies X �≤ pi
(i) if h(X) �≤′ q0 / exp(q1, Π

′) then ∀k ∈ Num(Π ′) : X �≤ pk
where Π ′ is a sequence of βkj (this corresponds to Y = pi ∈ Pr)
we will show (ii) an equivalent version of (i) as follows :

(ii) if h(X), exp(q1, Π
′) �≤′ q0 then ∀k ∈ Num(Π ′) : X � pk

(see proof details after for (o) (i) (ii) )
– (iii) if h(Y ) is of the form h(D / C) and Y =D/C

h(X) �≤′ h(Y ) iff h(X), h(C) �≤′ h(D)
by induction X, C �≤ D hence X �≤ D / C by the /R right rule

– (iv) if h(Y ) of the form h(C \ D), Y =C\D, the case is similar to (iii)
– (v) if h(Y ) of the form h(C•D) (see proof details after, partly similar to (o))
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Main Lemma Part (o)
(o) for pi ∈ Pr′ and X ∈ Tp+(P ) : h(X) �≤′ pi implies X �≤ pi

Proof Details: we discuss on the derivation ending for h(X) �≤′ pi :

– if this is an axiom h(X) = pi = h(pi) = X
– if this is inferred from a postulate on Pr′, pj ≤ pi then also X = pj �≤ pi
– if /L is the last rule, there are two cases

• if the rule introduces h(B) / h(A), s. t. X has the form
X=Δ, B / A, Γ, Δ′
h(Γ )�≤′h(A) h(Δ) h(B) h(Δ′)�≤′pi

h(Δ), h(B) / h(A), h(Γ ), h(Δ′)�≤′pi

by rec. (main+(o)) : Γ�≤ A Δ, B, Δ′�≤ pi

by rule /L : Δ, B / A, Γ, Δ′�≤ pi

• if the rule introduces h(pi) = q0 / exp(q1, Π
′),

the end is of the form
h(Γ ) �≤′ exp(q1, Π

′) h(Δ), q0, h(Δ
′)�′pi

h(Δ), q0 / exp(q1,Π′), h(Γ ), h(Δ′)�≤′pi

which is impossible according to Fact (1)

– if \ L is the last rule, the case is similar to the first subcase for /L above
– if the last rule is •L introducing h(A)•h(B), we apply rec. (o) to the an-

tecedent, then •L
– the right rules are impossible

Main Lemma Part (v) for X ∈ Tp+(P ) : h(X) �≤′ h(C1•C2) implies X �≤
C1•C2

Proof Details: we discuss on the derivation ending for h(X) �≤′ h(Y ) where
Y = C1•C2 :

– this cannot be an axiom, a postulate, /R, or \R
– if /L is the last rule, there are two cases

• if the rule introduces h(B) / h(A), s. t. X has the form
X = Δ, B / A, Γ, Δ′
h(Γ )�≤′h(A) h(Δ) h(B) h(Δ′)�≤′h(Y )

h(Δ), h(B) / h(A), h(Γ ), h(Δ′)�≤′h(Y )

by rec. (main+(v)) : Γ�≤ A Δ B Δ′�≤ Y

by rule /L : Δ, B / A, Γ, Δ′�≤ Y

• if the rule introduces h(pi) = q0 / exp(q1, Π
′),

the end is of the form
h(Γ ) �≤′ exp(q1, Π

′) h(Δ), q0, h(Δ
′)�′h(Y )

h(Δ), q0 / exp(q1,Π′), h(Γ ), h(Δ′)�≤′h(Y )

which is impossible according to Fact (1)

– if \ L is the last rule, the case is similar to the first subcase for /L above
– if the last rule is •L introducing h(A)•h(B), we apply rec. (v) to the an-

tecedent, then •L
– if the last rule is •R introducing h(C1)•h(C2) then X has the form Δ,Δ′,

such that :

h(Δ)�≤′h(C1) h(Δ′)�≤′h(C2)

h(Δ), h(Δ′)�≤′h(Y )

by rec. (main) : Δ�≤ C1 Δ′�≤ C2

by rule •R : Δ, Δ′�≤ Y



On Associative Lambek Calculus 183

Main Lemma Part (ii) if h(X), exp(q1, Π
′) �≤′ q0 then ∀k ∈ Num(Π ′) : X � pk

Proof Details : we show a simpler version whenΠ ′ = βk1 (the general case follows
from type-raise properties A �≤′ exp(A,Π), and if Π ′ is empty, the assertion is
obvious). The sequent is h(X), βk1 / (q1 \ βk1) �≤′ q0 :

– if / L is the last rule, there are two cases (it cannot introduce exp(q1, Π
′)

being rightmost)

• if the rule introduces h(B) / h(A) , s. t. X has the form X =

Δ, B / A, Γ, Δ′ there are two subcases :

h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), exp(q1,Π′)�≤′q0
h(Δ), h(B) / h(A), h(Γ ), h(Δ′), exp(q1,Π′)�≤′q0

by global rec + rec (ii) :

Γ�A Δ, B, Δ′�pk1

by rule /L : Δ, B / A, Γ, Δ′�pk1or

h(Γ ),h(Δ′), exp(q1,Π′)�≤′h(A) h(Δ), h(B)�≤′q0

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), exp(q1,Π′)�≤′q0
impossible, see Fact (1) :

• if the rule introduces h(pi) = q0 / exp(q1, Π
′′) , in h(X) , s. t. X has

the form X = Δ, pi, Γ, Δ′

- if
h(Γ )�≤′ exp(q1,Π′′) h(Δ), q0, h(Δ

′), exp(q1,Π′)�′q0

h(Δ), q0 / exp(q1,Π′′), h(Γ ), h(Δ′), exp(q1,Π′)�′q0
impossible, see Fact (1)

- if
h(Γ ),h(Δ′),exp(q1,Π′)�≤′exp(q1,Π′′) h(Δ),q0�≤′q0

h(Δ),q0 / exp(q1,Π′′),h(Γ ),h(Δ′),exp(q1,Π′)�≤′q0
Γ,Δ′, Δ are empty by Fact (2)

and Num(Π ′) = {βk1} ⊆ Num(Π”) by Fact (3),
we get X = pi ≤ pk1

– if \ L is the last rule, it introduces h(A) \ h(B), similar to the first subcase
for /L above

h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), exp(q1,Π′)�≤′q0
h(Δ), h(Γ ), h(A) \ h(B), h(Δ′), exp(q1,Π′)�≤′q0

by global rec + rec (ii) :

Γ�A Δ, B, Δ′�pk1

by rule \ L : Δ, Γ, A \ B, Δ′�pk1

– if the last rule is •L introducing h(A)•h(B), we apply rec. (ii) to the an-
tecedent, then •L

– the right rules and the axiom rule are impossible

7 Conclusion and Discussion

Former Work in Pregroups. The order on primitive types has been introduced
in PG to simplify the calculus for simple types. The consequence is that PG
is not fully lexicalized. We had proven in [1] that this restriction is not so
important because a PG using an order on primitive types can be transformed
into a PG based on a simple free pregroup using a pregroup morphism, s.t. :

– its size is bound by the size of the initial PG times the number of primitive
types (times a constant which is approximatively 4),

– moreover, this transformation does not change the number of types that are
assigned to a word (a k-valued PG is transformed into a k-valued PG).
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The AB case. In constrast to pregroups (and L) rigid AB-grammars with basic
postulates are more expressive than rigid AB-grammars as shown by the follow-
ing language ; let L = {a, ab}, and G = {a → x, b → y} where x, y ∈ Tp(Pr),
suppose T1, T2 are parse trees using G, for a and ab respectively

– in the absence of postulates, we have from T1 and T2 : y = x \ x in which
case abb should also belong to the language, contradiction;

– if basic postulates are allowed, we can take x = S1 and then y = S1 \ S,
with S1 ≤ S, generating L = {a, ab}.

L = {a, ab} cannot be handled by a rigid AB-grammar without postulate,
whereas it is with postulates.

A similar situation might hold for extensions based on AB, such as Categorial
Dependency Grammars (CDG).

In L and Related Formalisms. The work in this paper shows a result similar
to [1], for L extended with an order on primitive types. The result holds for
both versions with or without product. A similar result should hold for NL and
some other related calculi, but it does not hold for AB as shown above.

Such a simulation result aims at clarifying properties of the extended calcu-
lus, in particular in terms of generative capacity and hierarchies of grammars.
Another interest of the extended calculus is to allow some parallels in gram-
mar design (type assignments, acquisition methods) between both frameworks
(pregroups and (L)).
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Annex : Details of Proofs

Proof sketch for the Simulation based on Duplication. We write �≤ for
� in L(Φ≤), and we consider a version where axioms A � A are such that A is
primitive.

In full L. We show by induction on the length of derivation of Γ �≤ Z in L(Φ≤)
without cut, that more generally : if Γ �≤ Z and Γ = X1, . . . Xn then

(a) if Z is primitive then ∃X ′
1 ∈ Dupl↑≤(X1) . . . ∃X ′

n ∈ Dupl↑≤(Xn) X ′
1, . . . X

′
n �

Z in L (without postulates)

(b) ∃X ′
1 ∈ Dupl↑≤(X1) . . . ∃X ′

n ∈ Dupl↑≤(Xn) and ∃Z− ∈ Dupl↓≤(Z) such that :

X ′
1, . . .X

′
n � Z− in L (without postulates)

We first show (b) separately :
- in the axiom case p � p in L(Φ≤) : we take p � p in L
- in the non-logical axiom case p � q, where p ≤ q, in L(Φ≤) : we take q � q in L
- for a rule introducing / , \ or • on the right (b) is shown easily by rec.

on the antecedent then the same rule in L, because for A′ ∈ Dupl↑≤(A) and

B− ∈ Dupl↓≤(B), we getA′ \ B− ∈ Dupl↓≤(A \ B) and B− / A′ ∈ Dupl↓≤(B / A)

and for A− ∈ Dupl↓≤(A) and B− ∈ Dupl↓≤(B), we get A− •B− ∈ Dupl↓≤(A •B)
- we detail the /L case :

Γ �≤ A Δ1, B,Δ2 �≤ Z
/L

Δ1, B / A, Γ,Δ2 �≤ Z

by rec. ∃Γ ′ ∈ Dupl↑≤(Γ ),

∃A− ∈ Dupl↓≤(A), ∃Z− ∈ Dupl↓≤(Z)

∃Δ′i ∈ Dupl↑≤(Δi), ∃B′ ∈ Dupl↑≤(B)

Γ ′ �≤ A− Δ′1, B
′, Δ′2 �≤ Z−

/L
Δ′1, B

′ / A−, Γ,Δ′2 �≤ Z−

where B′ / A− ∈ Dupl↑≤(B / A)

- the other cases follow similarly the rule and structure without difficulty.
We now show (a) using (b), we suppose Z is primitive :
- the axiom cases are similar to (b)
- a right rule is not possible
- we detail the /L case :

Γ �≤ A Δ1, B,Δ2 �≤ Z
/L

Δ1, B / A, Γ,Δ2 �≤ Z

by rec. (b)∃Γ ′ ∈ Dupl↑≤(Γ ), ∃A− ∈ Dupl↓≤(A)

by rec. (a)∃Δ′i ∈ Dupl↑≤(Δi), ∃B′ ∈ Dupl↑≤(B)

Γ ′ �≤ A− Δ′1, B
′, Δ′2 �≤ Z

/L
Δ′1, B

′ / A−, Γ,Δ′2 �≤ Z

where B′ / A− ∈ Dupl↑≤(B / A)

- the other cases follow similarly the rule and structure without difficulty.
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Proof of Fact (2) by joined induction for (abc) on the derivation. We consider
(for (bc)) a version of the calculus where axioms are on primitives such that for a
deduction of Γ � Y / Z, there is a deduction of not greater length for Γ,Z � Y .
Part (2)(a) : we first consider h(X) α �≤′ α′ and the last rule in a derivation :

– if this is an axiom, then X is empty

– if /L is the last rule, there are two cases (with subcases)

• if the rule introduces h(B) / h(A) , s. t. X is Δ, B / A, Γ, Δ′

h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), α�≤′α′

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α�≤′α′
by rec. (a), h(B) being not empty

or

h(Γ,Δ′), α�≤′h(A) h(Δ), h(B)�≤′α′

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α�≤′α′
impossible, see Fact(1)

• if the rule introduces h(pi) = q0 / exp(q1, Π
′′) , in h(X) s. t. X is

Δ, pi, Γ, Δ′

h(Γ )�≤′exp(q1,Π′′) h(Δ), q0, h(Δ
′), α�≤′α′

h(Δ), q0 / exp(q1,Π′′), h(Γ ), h(Δ′), α�≤′α′ impossible, see Fact (1)

or

h(Γ, Δ′), α�≤′exp(q1,Π′′) h(Δ),q0�≤′α′

h(Δ), q0 / exp(q1,Π′′), h(Γ Δ′), α�≤′α′ we get : α ∈ {q0, q1} by Fact (1)

but then by rec. (2)a Δ is empty and α′ = q0

also by (b) and rec. (2)a Γ,Δ′ is empty and α = q1, thus (a).

– if \ L is the last rule, it introduces h(A) \ h(B) , similar to the first subcase

for / L above
h(Γ )�≤′h(A) h(Δ), h(B), h(Δ′), α�≤′α′

h(Δ), h(Γ ), h(A) \ h(B), h(Δ′) α�≤′α′
by rec. (a), h(B) being not empty

– if •L is the last rule, it introduces h(A)•h(B) , we apply rec. (a) to the

antecedent
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Part (2)(bc) : we then consider (b) h(X), α �≤′ exp(q1, Π), suppose Π = β.Π”
and its equivalent form (c) if h(X), α, exp(q1, Π”) \ β �≤′ β (where Π” may be
ε) then X is empty and α = q1. We discuss the last rule in a derivation for (c).

– if this is an axiom, this is impossible. The right rules are also not possible
for (c).

– if /L is the last rule, there are two cases (with subcases)

• if the rule introduces h(B) / h(A) , s. t. X is Δ, B / A, Γ, Δ′

h(Γ )�≤′h(A)
h(Δ), h(B), h(Δ′), α, exp(q1,Π′′) \ β �≤′β

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β �≤′β

impossible by rec. (c), h(B) being not empty
or

h(Γ ), h(Δ′), α�≤′h(A) h(Δ), h(B), exp(q1,Π′′) \ β�≤′β

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

impossible, see Fact(1)
or

h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′h(A) h(Δ), h(B)�≤′β

h(Δ), h(B) / h(A), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

impossible, see Fact(1)

• if the rule introduces h(pi) = q0 / exp(q1, Πi) , in h(X), where X =

Δ, pi, Γ,Δ
′

h(Γ )�≤′exp(q1,Πi) h(Δ), q0, h(Δ
′), α, exp(q1,Π′′) \ β�≤′β

h(Δ), q0 / exp(q1,Πi), h(Γ ), h(Δ′), α, exp(q1,Π′′) \ β�≤′β
impossible, see

Fact (1)
or

h(Γ,Δ′), α�≤′ exp(q1,Πi) h(Δ), q0,exp(q1,Π′′) \ β�≤′β

h(Δ), q0 / exp(q1,Πi), h(Γ,Δ′),α, exp(q1,Π′′) \ β�≤′β
impossible, by rec. (c)

or
h(Γ,Δ′), α, exp(q1,Π′′) \ β�≤′exp(q1,Πi) h(Δ), q0�≤′β

h(Δ), q0 / exp(q1,Πi), h(Γ,Δ′),α, exp(q1,Π′′) \ β�≤′β
impossible, see Fact (1)

– if \ L is the last rule,

• if it introduces h(A) \ h(B) in h(X) : similar to the first subcase for

/L
h(Γ )�≤′h(A)

h(Δ), h(B), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

h(Δ), h(Γ ), h(A) \ h(B), h(Δ′), α, exp(q1,Π′′) \ β�≤′β

by rec. (c) ,

h(B) being not empty

• if the rule introduces exp(q1, Π
′′) \ β with X = Δ,Γ

h(Γ ), α�′exp(q1,Π′′) h(Δ), β�≤′β

h(Δ), h(Γ ), α, exp(q1,Π′′) \ β�≤′β

by rec.(2bc) Γ is empty, and α = q1

by rec (2a) , Δ is also empty

– if •L is the last rule, it introduces h(A)•h(B) , we apply rec. (c) to the

antecedent, the case is impossible
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Abstract. Starting from the observation that distinct notions of copy-
ing have arisen in different categorical fields (logic and computation,
contrasted with quantum mechanics ) this paper addresses the question
of when, or whether, they may coincide.

Provided all definitions are strict in the categorical sense, we show that
this can never be the case. However, allowing for the defining axioms to
be taken up to canonical isomorphism, a close connection between the
classical structures of categorical quantummechanics, and the categorical
property of self-similarity familiar from logical and computational models
becomes apparent.

The required canonical isomorphisms are non-trivial, and mix both
typed (multi-object) and untyped (single-object) tensors and structural
isomorphisms; we give coherence results that justify this approach.

We then give a class of examples where distinct self-similar struc-
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Keywords: Category theory, self-similarity, categorical quantum me-
chanics, classical structures, untyped systems.

Dedicated to J. Lambek, on the occasion of his 90th birthday.
I hope to be as productive as he currently is when I am half his age.

1 Introduction

1.1 Background

Analogies are often drawn between quantum mechanics and linear logic [8], sim-
ply based on shared structural properties. In both cases, the structural operation
of copying or cloning is forbidden [29], as is the structural operation of contrac-
tion or deletion [26] (this is deletion against a copy, and should be strongly
distinguished from erasure or the deletion of a single copy).

A deeper investigation reveals that the no-cloning and no-deleting principles
of quantum mechanics are about arbitrary quantum states, or states for which no
information is known. Indeed, when a quantum state is known to be a member
of some given orthonormal basis (usually taken to be the computation basis of
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quantum computing), limited forms of copying and deleting are possible — this
is via the fanout primitive that plays an important role in quantum algorithms
and protocols [30].

Similarly, in linear logic, the structural copying and contraction rules are
not completely discarded (leading to ‘substructural logics’), but are severely re-
stricted via a typing system based on two modalities, !( ) and ?( ), commonly
called ‘of course’ and ‘why not’. An interesting approach to concrete models of
these modalities was given in the Geometry of Interaction series of representa-
tions of linear logic [9,10], where they were derived, in an essentially untyped
setting, by iterating bijections exhibiting self-similarity (the categorical identity
S ∼= S⊗S). We refer to [14,18] for details of this construction from a categorical
viewpoint.

In [4], the restricted notion of copying available in quantum information was
used to give a new abstract characterisation of the notion of orthonormal basis
in quantum mechanics, via a special form of Frobenius algebra within a cate-
gory (see Section 3 for details). These are based on a paired monoid-comonoid
structures in categories, satisfying additional conditions.

In [19], an apparent structural similarity between the classical structures of
quantum mechanics, and the self-similar structures familiar from the Geometry
of Interaction (and indeed, untyped computing and logical systems generally)
was noted. Although the emphasis of [19] was primarily on models of meaning in
linguistics and natural language processing, it also raised the interesting question
of whether this correspondence is precise, or merely an analogy – this is the
question addressed in this paper.

1.2 The Results of This Paper

This paper addresses the question of whether the classical structures used in cat-
egorical quantum mechanics (based on monoid co-monoid pairs with additional
structure) can ever be built from unitary maps — can the monoid and co-monoid
arrows be mutually inverse unitaries? From a simplistic perspective, the answer
is negative (Corollary 2 and Corollary 3); however when we allow the defining
conditions of a classical structure to be taken up to canonical isomorphism, not
only is this possible, but the required conditions (at least, using the redefinition
of [2]) may be satisfied by any pair of mutually inverse unitaries (Theorem 2)
with the correct typing (i.e. exhibiting self-similarity) in a † monoidal category.

However, the required canonical isomorphisms are non-trivial, and mix ‘typed’
and ‘untyped’ (i.e. multi-object and single-object) monoidal tensors and canon-
ical isomorphisms. We study these, and refer to [17] for general techniques that
will reduce questions of coherence in this setting to the well-established coher-
ence results found in [23].

We illustrate this connection with a concrete example, and show how in this
setting, self-similar structures play an identical role to that played by classical
structures in finite-dimensional Hilbert space — that of specifying and manipu-
lating matrix representations. We also give analogues of notions such as ‘changes
of basis’ and ‘diagonalisation’ in this setting.
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2 Categorical Preliminaries

The general area of this paper is firmly within the field of † monoidal categories.
However, due to the extremal settings we consider, we will frequently require
monoidal categories without a unit object. We axiomatise these as follows:

Definition 1. Let C be a category. We say that C is semi-monoidal when there
exists a tensor ( ⊗ ) : C×C → C together with a natural indexed family of asso-
ciativity isomorphisms { τA,B,C : A⊗(B⊗C)→ (A⊗B)⊗C}A,B,C∈Ob(C) sat-
isfying MacLane’s pentagon condition (τA,B,C⊗1D)τA,B⊗C,D(1A⊗ τB,C,D) =
τA⊗B,C,DτA,B,C⊗D.

When there also exists a natural object-indexed natural family of symme-
try isomorphisms {σX,Y : X ⊗ Y → Y ⊗X}X,Y∈Ob(C) satisfying MacLane’s
hexagon condition τA,B,CσA⊗B,CτA,B,C = (σA,C ⊗ 1B)τA,C,B(1A ⊗ σB,C)
we say that (C,⊗, τ, σ) is a symmetric semi-monoidal category. A semi-
monoidal category (C,⊗, τ , , ) is called strictly associative when τA,B,C is an
identity arrow1, for all A,B,C ∈ Ob(C). A functor Γ : C → D between two semi-
monoidal categories (C,⊗C) and (D,⊗D) is called (strictly) semi-monoidal
when Γ (f ⊗C g) = Γ (f) ⊗D Γ (g). A semi-monoidal category (C,⊗) is called
monoidal when there exists a unit object I ∈ Ob(C), together with, for all ob-
jects A ∈ Ob(C), distinguished isomorphisms λA : I⊗A→ A and ρA : A⊗I → A
satisfying MacLane’s triangle condition 1U ⊗ λV = (ρU ⊗ 1V )τU,I,V for all
U, V ∈ Ob(C).

A dagger on a category C is simply a duality that is the identity on objects;
that is, a contravariant endofunctor ( )† : C → C satisfying (1A)

† = 1A and(
(f)†
)†

= f , for all A ∈ Ob(C) and f ∈ C(A,B). An arrow U ∈ C(X,Y ) is called
unitary when it is an isomorphism with inverse given by U−1 = U † ∈ C(Y,X).

When C has a (semi-) monoidal tensor ⊗ : C × C → C, we say that (C,⊗)
is † (semi-) monoidal when ( )† is a (semi-) monoidal functor, and all canonical
isomorphisms are unitary.

Remark 1. Coherence for semi-monoidal categories A close reading of [23]
will demonstrate that MacLane’s coherence theorems for associativity and com-
mutativity are equally applicable in the presence or absence of a unit object. The
theory of Saavedra units [20] also demonstrates that the properties of the unit
object are independent of other categorical properties (including associativity).
Motivated by this, we give a simple method of adjoining a strict unit object to
a semi-monoidal category that is left-inverse to the obvious forgetful functor.

Definition 2. Let (C,⊗) be a semi-monoidal category. We define its unit aug-
mentation to be the monoidal category given by the following procedure: We

1 This is not implied by equality of objects A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, for all
A,B,C ∈ Ob(C). Although MacLane’s pentagon condition is trivially satisfied by
identity arrows, naturality with respect to the tensor may fail. Examples we present
later in this paper illustrate this phenomenon.
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first take the coproduct of C with the trivial group {1I}, considered as a single-
object dagger category. We then extend the tensor of C to the whole of C

∐
I by

taking ⊗ I = IdC∐
I = I ⊗ .

It is straightforward that the unit augmentation of a semi-monoidal category is
a monoidal category; a full proof, should one be needed, is given as an appendix
to [17]. Similarly, it is a triviality that if (C,⊗) is † semi-monoidal, then its unit
augmentation is dagger monoidal.

The connection of the above procedure with MacLane’s coherence theorems
for associativity and commutativity should then be clear; any diagram that com-
mutes in C also commutes in the unit augmentation; conversely any diagram (not
containing the unit object) that commutes in the unit augmentation also com-
mutes in C. Thus MacLane’s coherence theorems (with the obvious exclusion of
the unit object) also hold in the semi-monoidal and unitless cases.

3 Classical Structures and Their Interpretation

Classical structures were introduced in [4] as an abstract categorical interpreta-
tion of orthonormal bases in Hilbert spaces and the special role that these play in
quantum mechanics (i.e. as sets of compatible disjoint measurement outcomes).
This intuition was validated in [5], where it is proved that in the category of
finite-dimensional Hilbert spaces, there is a bijective correspondence between
orthonormal bases and classical structures. Mathematically, classical structures
are symmetric † Frobenius algebras in † monoidal categories satisfying a simple
additional condition.

Definition 3. Let (C,⊗, I, ( )†) be a strictly associative monoidal category. A
Frobenius algebra consists of a co-monoid structure (Δ : S → S ⊗S," : S →
I) and a monoid structure (∇ : S⊗S → S,⊥ : I → S) at the same object, where
the monoid / comonoid pair satisfy the Frobenius condition

(1S ⊗∇)(Δ⊗ 1S) = Δ∇ = (∇⊗ 1S)(1S ⊗Δ)

Expanding out the definitions of a monoid and a comonoid structure gives:

– (associativity) ∇(1S ⊗∇) = ∇(∇⊗ 1S) ∈ C(S ⊗ S ⊗ S, S).
– (co-associativity) (Δ⊗ 1S)Δ = (1S ⊗Δ)Δ ∈ C(S, S ⊗ S ⊗ S).
– (unit) ∇(⊥⊗ 1S) = ∇(1S ⊗⊥).
– (co-unit) ("⊗S)Δ = 1X ⊗")Δ.

A Frobenius algebra (S,Δ,∇,",⊥) in a † monoidal category is called a dagger
Frobenius algebra when it satisfies Δ† = ∇ and "† = ⊥.

Let (C,⊗) be a symmetric † monoidal category, with symmetry isomorphisms
σX,Y ∈ C(X ⊗ Y, Y ⊗X). A † Frobenius algebra is called commutative when
σS,SΔ = Δ, and hence ∇ = ∇σS,S. A classical structure is then a commuta-
tive † Frobenius algebra satisfying the following additional condition:

– (The classical structure condition) Δ† is left-inverse to Δ, so ∇Δ = 1S.
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Remark 2. The intuition behind a classical structure is that it describes related
notions of copying and deleting (the comonoid and monoid structures). The
underlying intuition is that, although arbitrary quantum states are subject to the
no-cloning and no-deleting theorems [29,26], quantum states that are ‘classical’
(i.e. members of some fixed orthonormal basis – the ‘computational basis’ of
quantum computation) can indeed be both copied and deleted (against a copy)
using the fan-out maps and their inverses [30].

An aim of this paper is to compare such a notion of copying with a distinct
notion of copying that arose independently in models of resource-sensitive logi-
cal and computational systems [9,10], and to demonstrate connections, via the
theory of untyped categorical coherence, between these notions.

3.1 Classical Structures without Units

As noted in [2], when considering the theory of classical structures in arbitrary
separable Hilbert spaces, is often necessary to generalise Definition 3 to the
setting where unit objects are not considered – i.e. to lose the unit and co-unit
axioms. We refer to [2] for a study of how much of the theory of [4] carries over
to this more general setting, and give the following formal definition, which is a
key definition of [2] in the strict, semi-monoidal setting:

Definition 4. Let (C,⊗) be a strictly associative semi-monoidal category. An
Abramsky-Heunen (A.-H.) dagger Frobenius algebra consists of a triple
(S ∈ Ob(C), Δ : S → S ⊗ S,∇ = Δ† : S ⊗ S → S) satisfying

1. (associativity) ∇(1S ⊗∇) = (1⊗∇)∇ ∈ C(S ⊗ S ⊗ S, S).

2. (Frobenius condition) Δ∇ = (1S ⊗∇)(Δ ⊗ 1S) ∈ C(S ⊗ S, S ⊗ S)

An A-H † Frobenius algebra is an A-H classical structure when (C,⊗) is
symmetric, and the following two conditions are satisfied:

3. (Classical structure condition) ∇Δ = 1S,

4. (Commutativity) σS,SΔ = Δ.

3.2 Classical Structures, and Identities Up to Isomorphism

It is notable that the definitions of the previous sections are based on strictly
associative tensors. Consider the definition presented of a monoid within a cat-
egory, (1A ⊗∇)∇ = (∇⊗ 1A)∇. Drawing this as a commutative diagram

A⊗A

∇⊗1A
��

A
∇ ��∇�� A⊗A

1A⊗∇
��

(A⊗A)⊗A A⊗ (A⊗A)
Id.
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demonstrates that this definition relies on the identity of objects A⊗ (A⊗A) =
(A⊗A)⊗A required for strict associativity2 in an essential way. The definition
of a co-monoid requires the same identification of objects.

Similarly, the Frobenius condition (1A⊗∇)(Δ⊗ 1A) = Δ∇ may be drawn as

A⊗A
∇ ��

Δ⊗1A
��

A
Δ �� A⊗A

A⊗A⊗A
Id

�� A⊗A⊗A

1A⊗∇
��

Remark 3. A significant feature of this paper is the relaxation of these strict
identities, to allow the above definitions to be satisfied up to canonical isomor-
phisms. When making this generalisation, the choice of canonical isomorphisms
seems to be straightforward enough; however, there are other possibilities. We
take a more general view and allow the axioms above to be satisfied up to any
canonical isomorphisms for which there exists a suitable theory of coherence.

4 Self-similarity, and † Self-similar Structures

By contrast with the strongly physical intuition behind classical structures, self-
similar structures were introduced to study infinitary and type-free behaviour in
logical and computational systems. Their definition is deceptively simple – they
are simply a two-sided form of the ‘classical structure’ condition of Definition 3.
The following definition is based on [14,15]:

Definition 5. Let (C,⊗) be a semi-monoidal category. A self-similar struc-
ture (S,�,�) is an object S ∈ Ob(C), together with two mutually inverse arrows

– (code) � ∈ C(S ⊗ S, S).
– (decode) � ∈ C(S, S ⊗ S).

satisfying �� = 1S⊗S and �� = 1S. A dagger self-similar structure is a
self-similar structure in a † monoidal category with unitary code / decode arrows.

Remark 4. Recall from Remark 2 the intuition of the classical structures of cat-
egorical quantum mechanics as a (restricted form of) copying and deleting that
is applicable to computational basis states only. The very simple definition of a
self-similar structure above is also clearly describing a notion of copying, albeit
at the level of objects rather than arrows; simply, there are canonical arrows
that provide isomorphisms between one copy of an object, and two copies of an
object. A key theme of this paper is the relationship between these two notions
of copying: whether the monoid / comonoid structure of an A.H. classical struc-
ture can also be a † self-similar structure, and whether a classical structure can
also define a monoid / comonoid satisfying the Frobenius condition, &c.

2 We emphasise that such identities of objects are a necessary, but not sufficient,
condition for strict associativity of a tensor; see the footnote to Definition 1.
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Instead of a simple yes/no answer, we will observe a close connection with the
theory of categorical coherence and strictification. In the strict case, requiring
unitarity of the monoid / comonoid arrows implies a collapse to the unit object
(Corollaries 2 and 3), whereas, up to a certain set of (non-trivial) canonical
isomorphisms, † self-similar structures do indeed satisfy the conditions for an
A.-H. classical structure (Theorems 2 and 3).

We will first require many preliminary results on self-similar structures and
their relationship with the theory of monoidal categories; we start by demon-
strating that † self-similar structures are unique up to unique unitary:

Proposition 1. Let (S,�,�) be a † self-similar structure of a † semi-monoidal
category (C,⊗, ( )†). Then

1. Given an arbitrary unitary U ∈ C(S, S), then (S,U�,�U †) is also a † self-
similar structure.

2. Given † self-similar structures (S,�,�) and (S,�′,�′), there exists a unique
unitary U ∈ C(S, S) such that �′ = U� ∈ C(S ⊗ S, S) and �′ = �U † ∈
C(S, S ⊗ S).

Proof.

1. Since U is unitary, U � �U † = 1S and �U †U� = 1S⊗S . Thus, as the com-
posite of unitaries is itself unitary, (S,U�,�U †) is a † self-similar structure.

2. We define U = �′� ∈ C(S, S), giving its inverse as U−1 = ��′ = U †. The
following diagrams then commute:

S ⊗ S

�

��

�′

���
��

��
��

��
S ⊗ S

S
U

�� S S

�′
�����������

U†
�� S

�

��

and U = �′� is the unique unitary satisfying this condition.

4.1 The ‘Internal’ Monoidal Tensor of a Self-Similar Structure

We now demonstrate a close connection between self-similar structures and un-
typed (i.e. single-object) categorical properties:

Theorem 1. Let (S,�,�) be a self-similar structure of a semi-monoidal cat-
egory (C,⊗, τ , , ). Then the code / decode arrows determine a semi-monoidal
tensor

⊗�� : C(S, S)× C(S, S)→ C(S, S)

on the endomorphism monoid of S given by, for all a, b ∈ C(S, S),

a⊗�� b = �(a⊗ b)� ∈ C(S, S)
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The associativity isomorphism for this semi-monoidal structure is given by

τ�� = �(�⊗ 1S)τS,S,S(1S ⊗�)�

When (S,⊗) is symmetric, with symmetry isomorphisms σX,Y ∈ C(X⊗Y, Y ⊗X)
then ⊗�� : C(S, S)×C(S, S)→ C(S, S) is a symmetric semi-monoidal tensor,
with symmetry isomorphism σ�� ∈ C(S, S) given by σ�� = �σS,S�.

Proof. This is a standard result of the categorical theory of self-similarity; see
[14,15,19] for the general construction, and [14,21] for numerous examples based
on inverse monoids.

Definition 6. Let (S,�,�) be a self-similar structure of a semi-monoidal cat-
egory (C,⊗, τ , , ). We refer to the semi-monoidal tensor

⊗�� : C(S, S)× C(S, S)→ C(S, S)

given in Theorem 1 above as the internalisation of ( ⊗ ) by (S,�,�). We sim-
ilarly refer to the canonical associativity isomorphism τ�� ∈ C(S, S) (resp. sym-
metry isomorphism σ�� ∈ C(S, S) as the associativity isomorphism (resp.
symmetry isomorphism) induced by (S,�,�).

Remark 5. It is proved in [17] (See also Appendix B of [19]) that strict associa-
tivity for single-object semi-monoidal categories is equivalent to degeneracy (i.e.
the single object being a unit object for the tensor). Thus, even when (C,⊗) is
strictly associative, the associativity isomorphism induced by (S,�,�) given by
τ�� = �(� ⊗ 1S)(1S ⊗ �)� is not the identity (at least, provided S is not the
unit object for ⊗�� ).

The following simple corollary of Theorem 1 above is taken from [19].

Corollary 1. Let (S,�,�) be a † self-similar structure of a † semi-monoidal
category (C,⊗, τ , , ). Then ⊗�� : C(S, S)× C(S, S) → C(S, S), the internali-
sation of ⊗ by (S,�,�), is a † semi-monoidal tensor.

Proof. This is immediate from the property that �† = �, and the definition of
⊗�� and the canonical isomorphism τ�� ∈ C(S, S) in terms of unitaries.

5 † Self-similar Structures as Lax A-H Classical
Structures

We now demonstrate that, up to certain canonical coherence isomorphisms
a † self-similar structure (S,�,�) of a symmetric † semi-monoidal category
(C,⊗, τ , , , σ , ) satisfies the axioms for an A-H classical structure. The precise
coherence isomorphisms required are those generated by

– The semi-monoidal coherence isomorphisms {τ , , , σ , } of (C,⊗)
– The induced coherence isomorphisms {τ��, σ��} of (C(S, S),⊗��)
– The semi-monoidal tensors ⊗ and ⊗��
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Theorem 2. Let (S,�,�) be a † self-similar structure of a symmetric † semi-
monoidal category (C,⊗, τ , , , σ , ). Then the following conditions hold:

– (Lax associativity) �(�⊗ 1S)τS,S,S = τ�� � (1S ⊗�)
– (Lax Frobenius condition) �τ−1

��� = (1S ⊗�)τ−1
S,S,S(� ⊗ 1S)

– (Classical structure condition) �� = 1S
– (Lax symmetry) σS,S� = �σ��

Proof. The following proof is based on results of [19].
Conditions 1. and 2. above follow from the commutativity of the following

diagram

S
� ��

τ��

��

S ⊗ S
1S⊗� �� S ⊗ (S ⊗ S)

τS,S,S

��
S S ⊗ S

�
�� (S ⊗ S)⊗ S

�⊗1S
��

which is simply the definition of the induced associativity isomorphism. Condi-
tion 3. follows immediately from the definition of a † self-similar structure, and
condition 4. is simply the definition of the induced symmetry isomorphism.

Remark 6. For the above properties to be taken seriously as lax versions of
the axioms for an A-H classical structure, there needs to be some notion of
coherence relating the semi-monoidal tensor ⊗ : C × C → C and its canonical
isomorphisms, to the semi-monoidal tensor ⊗�� : C(S, S)×C(S, S)→ C(S, S)
and its canonical isomorphisms. A general theory of coherence for self-similarity
and associativity is given in [17]; a simple case of this is also applicable in the †
symmetric case.

It may be wondered whether the induced isomorphisms are necessary in the-
orem 2 above – can we not have a † self-similar structure satisfying analogous
conditions solely based on the canonical isomorphisms of (C,⊗)? The following
corollary demonstrates that this can only be the case when S is degenerate —
i.e. the unit object for some monoidal category.

Corollary 2. Let (S,�,�) be a self-similar structure of a semi-monoidal cate-
gory (C,⊗, τ , , ). Then the following condition

– (Overly restrictive Frobenius condition) �� = (1S⊗�)τ−1
S,S,S(�⊗ 1S)

implies that S is degenerate – i.e. the unit object for some monoidal category.

Proof. By definition, the associativity isomorphism for the internalisation of (⊗ )
is given by

τ�� = �(1S ⊗�)τ−1
S,S,S(� ⊗ 1S)�

Thus as � and � are mutually inverse unitaries, the overly restrictive Frobenius
condition implies that τ�� = 1S . However, as proved in [17] (see also Appendix
B of [19]), single-object semi-monoidal categories are strictly associative exactly
when their unique object is a unit object of some monoidal category.
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An alternative perspective of Corollary 2 is the following:

Corollary 3. Let (S,Δ,∇) be an A-H classical structure satisfying the precise
axioms3 of Definition 4. Unitarity of Δ implies that S is the unit object of a
monoidal category.

Despite Corollaries 2 and 3 above, it is certainly possible for a self-similar
structure to satisfy all the axioms for a Frobenius algebra up to a single associa-
tivity isomorphism; however, this must be the induced associativity isomorphism
of Definition 6, as we now demonstrate:

Theorem 3. Let (S,�,�) be a † self-similar structure of a strictly associative
† semi-monoidal category (C,⊗, ( )†). Then the defining conditions of an A.-
H. † Frobenius algebra are satisfied up to a single associativity isomorphism as
follows:

– �(�⊗ 1S) = τ�� � (1s ⊗�)
– (�⊗ 1S)(1S ⊗�) = �τ−1

���

Proof. This is simply the result of Theorem 2 in the special case where the
monoidal tensor ⊗ : C × C → C is strictly associative. Note that even though
⊗ : C × C → C is strictly associative, its internalisation ⊗�� : C(S, S) ×
C(S, S) → C(S, S) cannot be strictly associative; rather, from Theorem 1 the
required associativity isomorphism is given by τ�� = �(�⊗1S)(1S⊗�)� �= 1S .

6 An Illustrative Example

In the following sections, we will present the theory behind an example of a † self-
similar structure that determines matrix representations of arrows in a similar
manner to how classical structures in finite-dimensional Hilbert space determine
matrix representations of linear maps. Our example is deliberately chosen to be
as ‘non-quantum’ as possible, in order to explore the limits of the interpreta-
tions of pure category theory: it comes from a setting where all isomorphisms
are unitary, all idempotents commute, and the lattice of idempotents satisfies
distributivity rather than some orthomodularity condition. Many of these prop-
erties are determined by the particular form of dagger operation used; we will
work with inverse categories.

7 Inverse Categories as † Categories

Inverse categories arose from the algebraic theory of semigroups, but the ex-
tension to a categorical definition is straightforward and well-established. We
also refer to [3] for the more general restriction categories that generalise inverse
categories in the same way that restriction monoids generalise inverse monoids.

3 We strongly emphasise that this corollary does not hold if we allow the axioms of
Definition 4 to hold up to canonical isomorphism, as demonstrated in Theorems 2
and 3.
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Definition 7. Inverse categories
An inverse category is a category C where every arrow f ∈ C(X,Y ) has a
unique generalised inverse f ‡ ∈ C(Y,X) satisfying ff ‡f = f and f ‡ff ‡ = f ‡.
A single-object inverse category is called an inverse monoid.

Remark 7. Uniqueness of generalised inverse operations Inverse monoids
and semigroups were defined and studied long before inverse categories; the
definition of an inverse category is thus rather ‘algebraic’ in nature, given by
requiring the existence of unique arrows satisfying certain properties – this is in
contrast to a more functorial definition. However, uniqueness implies that there
can be at most one (object-indexed) operation ( )XY : C(X,Y )→ C(Y,X) that
takes each arrow to some generalised inverse satisfying the above axioms. We
will therefore treat ( )‡ as an (indexed) bijection of hom-sets, and ultimately (as
we demonstrate in Theorem 7 below) a contravariant functor.

The following result is standard, and relates generalised inverses and idempo-
tent structures of inverse monoids (see, for example [21]).

Lemma 1. Let M, ( )‡ be an inverse monoid. Then for all a ∈ M , the ele-
ment a‡a is idempotent, and the set of idempotents EM of M is a commutative
submonoid of M where every element is its own generalised inverse.

Proof. These are standard results of inverse semigroup theory, relying heavily
on the uniqueness of generalised inverses. The key equivalence between commu-
tativity of idempotents and uniqueness of generalised inverses is due to [24].

Based on the above, the following is folklore:

Theorem 4. Let C, ( )‡ be an inverse category. Then the operation ( )‡ is a
dagger operation, and all isomorphisms of C are unitary.

Proof. The technical results we require are straightforward generalisations of
well-established inverse semigroup theory, so are simply given in outline.
First observe that it is implicit from the definition that, on objects X‡ = X ∈
Ob(C). We now prove that ( )‡, with this straightforward extension to objects,
is a contravariant involution.

To demonstrate contravariant functoriality, observe that (gf)(gf)‡gf = gf for
all f ∈ C(X,Y ) and g ∈ C(Y, Z). However, ff ‡ and g‡g are both idempotents
of Y , and thus commute. Hence (gf)f ‡g‡(gf) = gg‡gff ‡f = gf and so (gf)‡ =
f ‡g‡ as required.

To see that ( )‡ is involutive, note that by definition f ‡
(
f ‡
)‡

f ‡ = f ‡, for
all f ∈ C(X,Y ). However, also from the definition, f ‡ff ‡ = f ‡ and again by

uniqueness,
(
f ‡
)‡

= f .
Thus ( )‡ is a contravariant involution that acts trivially on objects. To see that

all isomorphisms are unitary, consider an arbitrary isomorphism u ∈ C(X,Y ).
Then trivially, uu−1u = u ∈ C(X,Y ) and u−1uu−1 = u−1 ∈ C(Y,X). Uniqueness
of generalised inverses then implies that u−1 = u‡, and hence u is unitary.
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Corollary 4. Let C be an inverse category with a semi-monoidal tensor ( ⊗ ).
Then (C,⊗, ( )‡) is a dagger semi-monoidal category.

Proof. Given arbitrary f ∈ C(A,B) and g ∈ C(X,Y ), then by functoriality

(f ⊗ g)(f ‡ ⊗ g‡)(f ⊗ g) = (ff ‡f ⊗ gg‡g) = (f ⊗ g)

However, by definition

(f ⊗ g)(f ⊗ g)‡(f ⊗ g) = (ff ‡f ⊗ gg‡g) = (f ⊗ g)

and by uniqueness, (f ⊗ g)‡ = f ‡ ⊗ g‡. Also, since all isomorphisms are unitary,
all canonical isomorphisms are unitary.

7.1 The Natural Partial Order on Hom-Sets

All inverse categories have a naturally defined partial order on their hom-sets:

Definition 8. Let C, ( )‡ be an inverse category. For all A,B ∈ Ob(C), the
relation �A,B is defined on C(A,B), as follows:

f �A,B g iff ∃ e2 = e ∈ C(A,A) s.t. f = ge

It is immediate that, for all A,B ∈ Ob(C), the relation �A,B is a partial order
on C(A,B), called the natural partial order.

Convention: When it is clear from the context, we omit the subscript on �.

We may rewrite the above non-constructive definition more concretely:

Lemma 2. Given f � g ∈ C(X,Y ), in some inverse category, then f = gf ‡f .

Proof. By definition, f = ge, for some e2 = e ∈ C(X,X). Thus fe = f , since e
is idempotent. From the defining equation for generalised inverses, f = ff ‡f =
gef ‡f . As f ‡f is idempotent, and idempotents commute, f = gf ‡fe. However,
we have already seen that fe = f , and hence f = gf ‡f .

A very useful tool in dealing with the natural partial order is the following
lemma, which is again a classic result of inverse semigroup theory rewritten in a
categorical setting (see also [11] where it is rediscovered under the name ‘passing
a message through a channel’).

Lemma 3. Pushing an idempotent through an arrow Let C, ( )‡) be an
inverse category. Then for all f ∈ C(X,Y ), and e2 = e ∈ C(X,X), there exists
an idempotent e′2 = e′ ∈ C(Y, Y ) satisfying e′f = fe.

Proof. We define e′ = fef ‡ ∈ C(Y, Y ). By Lemma 1, e′2 = fef ‡fef ‡ = ff ‡feef ‡

= fef ‡ = e′. Further, e′f = fef ‡f = ff ‡fe = fe, as required.
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Proposition 2. The natural partial order is a congruence — that is, given f �

h ∈ C(X,Y ) and g � k ∈ C(Y, Z), then gf � kh ∈ C(X,Z).

Proof. By definition, there exists idempotents p2 = p ∈ C(X,X) and q2 =
q ∈ C(Y, Y ) such that f = hp ∈ C(X,Y ) and g = kq ∈ C(Y, Z), and hence
gf = hpkq ∈ C(X,Z). We now use the ‘passing an idempotent through an arrow’
technique of Lemma 3 to deduce the existence of an idempotent p′ ∈ C(X,X)
such that pk = kp′ ∈ C(X,Y ). Hence gf = khp′q. However, by Part 3. of Lemma
3, p′q is idempotent, and hence gf � kh, as required.

Corollary 5. Every locally small inverse category (C, ( )‡) is enriched over the
category Poset of partially ordered sets.

Proof. Expanding out the definition of categorical enrichment will demonstrate
that the crucial condition is that proved in Proposition 2 above.

7.2 A Representation Theorem for Inverse Categories

A classic result of inverse semigroup theory is the Wagner-Preston representation
theorem [27,28] which states that every inverse semigroup S is isomorphic to
some semigroup of partial isomorphisms on some set. This implies the usual
representation theorem for groups as subgroups of isomorphisms on sets. There
exists a natural generalisation of this theorem to inverse categories:

Definition 9. The inverse category pIso is defined as follows:

– (Objects) All sets.
– (Arrows) pIso(X,Y ) is the set of all partial isomorphisms from X to Y .

In terms of diagonal representations, it is the set of all subssets f ⊆ Y ×X
satisfying

b = y ⇔ y = a ∀ (b, a), (y, x) ∈ f

– (Composition) This is inherited from the category Rel of relations on sets
in the obvious way.

– (Generalised inverse) This is given by f ‡ = {(x, y) : (y, x) ∈ f ; the
obvious restriction of the relational converse.

The category pIso has zero arrows, given by 0XY = ∅ ⊆ Y ×X. This is commonly
used to define a notion of orthogonality by

f ⊥ g ∈ C(X,Y ) ⇔ g‡f = 0X and gf ‡ = 0Y

Remark 8. The category (pIso,
) is well-equipped with self-similar structures;
one of the most heavily-studied [14,21,15] is the natural numbers N, although
any countably infinite set will suffice. As demonstrated in an Appendix to [16],
there is a 1:1 correspondence between self-similar structures at N and points of
the Cantor set (excluding a subset of measure zero). Other examples include the
Cantor set itself [14,15] and other fractals [22].
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Theorem 5. Every locally small inverse category
(
C, ( )‡

)
is isomorphic to some

subcategory of (pIso, ( )‡).

Proof. This is proved in [13], and significantly prefigured (for small categories)
in [3].

The idempotent structure and natural partial ordering on pIso is particularly
well-behaved, as the following standard results demonstrate:

Proposition 3.

1. The natural partial order of pIso may be characterised in terms of diagonal
representations by f � g ∈ pIso(X,Y ) iff f ⊆ g ∈ Y ×X.

2. All idempotents e2 = e ∈ pIso(X,X) are simply partial identities 1X′ for
some X ′ ⊆ X, and thus pIso is isomorphic to its own Karoubi envelope.

3. The meet and join w.r.t. the natural partial order are given by, for all f, g ∈
pIso(X,Y )

f ∨ g = f ∪ g and f ∧ g = f ∩ g

when these exist. Therefore, set of idempotents at an object is a distributive
lattice.

4. Given an arbitrarily indexed set {fj ∈ pIso(X,Y )}j∈J of pairwise-orthogonal
elements, together with arbitrary a ∈ pIso(W,X) and b ∈ pIso(Y,Z), then∨

j∈J fj ∈ pIso(X,Y ) exists, as does
∨

j∈J bfja ∈ pIso(W,Z), and

b

⎛⎝∨
j∈J

fj

⎞⎠ a =
∨
j∈J

(bfja)

Proof. These are all standard results for the theory of inverse categories; 1. is a
straightforward consequence of the definition of the natural partial order, and
2.-4. follow as simple corollaries.

8 Monoidal Tensors and Self-similarity in pIso

We have seen that pIso is a † category; it is also a † monoidal category with
respect to two distinct monoidal tensors - the Cartesian product × and the
disjoint union 
 . For the purposes of this paper, we will study the disjoint
union. We make the following formal definition:

Definition 10. We define the disjoint union 
 : pIso × pIso → pIso to be
the following monoidal tensor:

– (Objects) A 
B = A× {0} ∪B × {1}, for all A,B ∈ Ob(pIso).
– Arrows) Given f ∈ pIso(A,B) and g ∈ pIso(X,Y), we define f 
 g =

inc00(f)∪ inc11(g) ⊆ (B
Y )× (A
X) where inc00 is the canonical (for the
Cartesian product) isomorphism B×A ∼= B×{0}×A×{0}, and similarly,
inc11 : Y ×X ∼= Y × {1} ×X × {1}.
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It is immediate that (pIso,
) is a †-monoidal tensor since, as a simple conse-
quence of the definition of generalised inverses, all isomorphisms are unitary.

By contrast with the behaviour of disjoint union in (for example) the category
of relations, it is neither a product nor a coproduct on pIso. Despite this, it has
analogues of projection & inclusion maps:

Definition 11. Given X,Y ∈ Ob(pIso), the arrows ιl ∈ pIso(X,X 
Y) and
ιr ∈ pIso(Y,X 
Y) are defined by ιl(x) = (x, 0) ∈ X 
 Y and ιr(y) = (y, 1) ∈
X 
 Y . By convention, we denote their generalised inverses by

πl :∈ pIso(X 
Y,X) and πr ∈ pIso(X 
Y,Y)

respectively, giving
X 
 Y

πl�� πl 		X

ιl




Y

ιr
��

Following [14] we refer to these arrows as the projection and inclusion arrows;
they are sometimes [12,1] called quasi-projections / injections, in order to
emphasise that they are not derived from categorical products / coproducts. By
construction, the projections / inclusions satisfy the following four identities:

πrιl = 0XY , πlιr = 0YX , πlιl = 1X , πrιr = 1Y

As noted in [14,15], the above arrows can be ‘internalised’ by a self-similar
structure (S,�,�), in a similar way to canonical isomorphisms (see Theorem 6).
Doing so will give an embedding of a well-studied inverse monoid into pIso(S,S).

Definition 12. Polycyclic monoids
The 2 generator polycyclic monoid P2 is defined in [25] to be the inverse
monoid given by the generating set {p, q}, together with the relations

pp−1 = 1 = qq−1 , pq−1 = 0 = qp−1

Remark 9. This inverse monoid is also familiar to logicians as the (multiplicative
part of) the dynamical algebra of [9,6]. It is also familiar from the theory of state
machines as the syntactic monoid of a pushdown automaton with a binary stack
[7], and to pure mathematicians as the monoid of partial homeomorphisms of
the Cantor set [14].

The following result on polycyclic monoids will prove useful:

Lemma 4. P2 is congruence-free; i.e. the only composition-preserving equiva-
lence relations on P2 are either the universal congruence r ∼ s for all r, s ∈ P2,
or the identity congruence r ∼ s ⇔ r = s for all r, s ∈ P2.

Proof. This is a special case of a general result of [25]. Congruence-freeness is an
example of Hilbert-Post completeness; categorically, it is closely related to the
‘no simultaneous strictification’ theorem of [17].
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The following result, generalising a preliminary result of [14,15], makes the
connection between embeddings of polycyclic monoids and internalisations of
projection/ injection arrows of pIso precise:

Theorem 6. Let S be a self-similar object (and hence a † self-similar object) of
pIso. We say that an inverse monoid homomorphism φ : P2 → pIso(S,S) is a
strong embedding when it satisfies the condition

φ(p†p) ∨ φ(q†q) = 1S

Then every strong embedding φ : P2 → pIso(S,S) uniquely determines, and is
uniquely determined by, a † self-similar structure at S.

Proof. Let πl, πr ∈ pIso(S 
 S,S and ιl, ιr ∈ pIso(S,S 
 S) be the projections
/ inclusions of Definition 11, and let (S,�,�) be a self-similar structure. We
define φ�� : P2 → pIso(S,S) by its action on the generators of P2, giving

φ��(p) = πl � and φ��(q) = πr�

Their generalised inverses are then φ��(p
‡) = �ιl and φ��(q

‡) = �ιr. Thus

φ��(p)φ��(p
‡) = πl ��ιl = 1S = πr ��ιr = φ��(q)φ��(q

‡)

Similarly, φ��(p)φ��(q
‡) = πl � �ιr = 0S = πr � �ιl = φ��(q)φ��(p

‡) and so
φ�� is a homomorphism. Since P2 is congruence-free it is also an embedding. To
demonstrate that it is also a strong embedding,

1S = �1S�S� = �(ιlπl ∨ ιrπr)�

= �ιlπl � ∨� ιrπr� = φ��(p
‡p) ∨ φ��(q

‡q)

as required. Further, given another self-similar structure (S, c, d) satisfying φdc =
φ��, then � = c ∈ pIso(S 
 S,S) and � = d ∈ pIso(S,S 
 S).

Conversely, let φ : P2 → pIso(S,S) be a strong embedding, and consider the
two arrows ιlφ(p) ∈ pIso(S,S 
 S) and ιrφ(q) ∈ pIso(S,S 
 S). it is straight-
forward that these are orthogonal; we thus define

�φ = ιlφ(p) ∨ ιrφ(q) ∈ pIso(S,S 
 S)

and take �φ = �
‡
��. The strong embedding condition implies that �φ�φ = 1S

and �φ�φ = 1S�S ; thus we have a self-similar structure, as required. Further,
given another strong embedding ψ : P2 → pIso(S,S), then �φ = �ψ iff φ = ψ.

8.1 Matrix Representations from Self-similar Structures

We are now in a position to demonstrate how self-similar structures in pIso
determine matrix representations of arrows.

Theorem 7. Let S ∈ Ob(pIso) be a self-similar object. Then every self-similar
structure (S,�,�) determines matrix representations of arrows of pIso(S,S).
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Proof. We use the correspondence between self-similar structures and strong
embeddings of polycyclic monoids given in Theorem 6. Given arbitrary f ∈
pIso(S,S), we define [f ]��, the matrix representation of f determined by
(S,�,�) to be the following matrix:

[f ]�� =

⎛⎝φ��(p)fφ��(p
‡) φ��(p)fφ��(q

‡)

φ��(q)fφ��(p
‡) φ��(q)fφ��(q

‡)

⎞⎠
Given two such matrices of this form, we interpret their matrix composition
as follows:(

g00 g01
g10 g11

)(
f00 f01
f10 f11

)
=

⎛⎝ g00f00 ∨ g01f10 g00f01 ∨ g01f11

g10f00 ∨ g11f10 g10f01 ∨ g11f11

⎞⎠
that is, the usual formula for matrix composition, with summation interpreted
by join in the natural partial order – provided that the required joins exist. We
prove that this composition is defined for matrix representations determined by
a fixed self-similar structure.

In what follows, we abuse notation, for clarity, and refer to p, q, p‡, q‡ ∈
pIso(S,S) instead of φ��(p), φ��(q), φ��(p

‡), φ��(q
‡) ∈ pIso(S,S). As this

proof is based on a single fixed self-similar structure at S, we may do this without
ambiguity.

Consider the entry in the top left hand corner of [g]��[f ]��. Expanding out the
definition will give this as pgp‡pfp‡ ∨ pgq‡qfp‡. To demonstrate that these two

terms are orthogonal,
(
pgp‡pfp‡

)‡ (
pgq‡qfp‡

)
= pf ‡p‡pg‡p‡pgq‡qfp‡. Appealing

to the ‘pushing an idempotent through an arrow’ technique of Proposition 3 gives
the existence of some idempotent e2 = e such that(

pgp‡pfp‡
)‡ (

pgq‡qfp‡
)
= pf ‡p‡peg‡gq‡qfp‡

Again appealing to this technique gives the existence of some idempotent E2 = E

such that
(
pgp‡pfp‡

)‡ (
pgq‡qfp‡

)
= pf ‡p‡Epq‡qfp‡. However, pq‡ = 0 and

hence
(
pgp‡pfp‡

)‡ (
pgq‡qfp‡

)
= 0. as required. An almost identical calculation

will give that
(
pgq‡qfp‡

)‡ (
pgp‡pfp‡

)
= 0 and thus these two terms are orthog-

onal, so the required join exists.
The proof of orthogonality for the other three matrix entries is almost iden-

tical; alternatively, it may be derived using the obvious isomorphism of P2 that
interchanges the roles of p and q.

It remains to show that composition of matrix repesentations of elements
coincides with composition of these elements; we now prove that [g]��[f ]�� =
[gf ]��. By definition,

[gf ]�� =

⎛⎝pgfp‡ pgfq‡

qgfp‡ qgfq‡

⎞⎠
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As the (implicit) embedding of P2 is strong, 1S = p‡p ∨ q‡q. We may then
substitute g(p‡p ∨ q‡q)f for gf in the above to get

[gf ]�� =

⎛⎝pg(p‡p ∨ q‡q)fp‡ pg(p‡p ∨ q‡q)fq‡

qg(p‡p ∨ q‡q)fp‡ qg(p‡p ∨ q‡q)fq‡

⎞⎠
Expanding this out using the distributivity of composition over joins gives the
definition of [g]��[f ]��, and hence [gf ]�� = [g]��[f ]��, as required.

Finally, we need to prove that the representation of arrows as matrices de-
termined by the self-similar structure (S,�,�) is faithful — that is, a = b ∈
pIso(S,S) iff [b]�� = [a]�� (where equality of matrices is taken as component-
wise equality).

The (⇒) implication is immediate from the definition. For the other direction,
[b]�� = [a]�� when the following four identities are satisfied:

pap‡ = pbp‡ paq‡ = pbq‡

qap‡ = qbp‡ qaq‡ = qbq‡

Prefixing/ suffixing each of these identities with the appropriate choice selection
taken from {p, q, p‡, q‡} will give the following identities:

p‡pap‡p = p‡pbp‡p p‡paq‡q = p‡pbq‡q

q‡qap‡p = q‡qbp‡p q‡qaq‡q = q‡qbq‡q

Now observe that these four elements are pairwise-orthogonal. We may take their
join, and appeal to distributivity of composition over join to get

(p‡p ∨ q‡q)a(p‡p ∨ q‡q) = (p‡p ∨ q‡q)a(p‡p ∨ q‡q)

However, as the implicit embedding of P2 is strong, (p‡p ∨ q‡q) = 1S and thus
a = b, as required.

Remark 10. It may seem somewhat disappointing that a self-similar structure
(S,�,�) simply determines (2 × 2) matrix representations of arrows of
pIso(S,S), rather than matrix representations of arbitrary orders. This is not
quite the case, but there is a subtlety to do with the behaviour of the inter-
nalisation of the tensor 
 : pIso × pIso → pIso. It is immediate from the
definition that the internalisation of this tensor by a self-similar structure has

the obvious matrix representation: [f 
�� g]�� =

(
f 0S
0S g

)
. However, recall

from Remark 5 that the internalisation ⊗�� of an arbitrary tensor ⊗ can
never be strictly associative, even when ⊗ itself is associative. Thus, in our
example in (pIso,
), arbitrary (n × n) matrices, in the absence of additional
bracketing information, cannot ambiguously represent arrows. It is of course pos-
sible to have unambiguous n× n matrix representations that are determined by
binary treeS whose leaves are labelled with a single formal symbol, and whose
nodes are labelled by self-similar structures at S – however, this is beyond the
scope of this paper!
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8.2 Isomorphisms of Self-similar Structures as ‘Changes of Matrix
Representation’

We have seen in Proposition 1 that † self-similar structures are unique up to
unique unitary. We now relate this to the correspondence in (pIso,
) between
† self-similar structures, strong embeddings of P2, and matrix representations.

Lemma 5. Let (S,�,�) and (S, c, d) be two † self-similar structures at the same
object of (pIso,
), and let U be the unique isomorphism (following Proposition
1) making the following diagram commute:

S ⊗ S

�

��

�′

���
��

��
��

��
S ⊗ S

S
U

�� S S

�′
�����������

U†
�� S

�

��

The two strong embeddings φ��, φ(c,d) : P2 → pIso(S,S) determined by these
self-similar structures (as in Theorem 6) are mutually determined by the follow-
ing identities:

φ(c,d)(p) = φ��(p)U
−1 φ(c,d)(q) = φ��(q)U

−1

φ(c,d)(p
‡) = Uφ��(p

‡) φ(c,d)(q
‡) = Uφ��(q

‡)

Proof. By construction, c = U� and d = �U−1. Thus φ(c,d)(p) = πld = πl �

U−1 = φ��(p)U
−1. Taking duals (generalised inverses) gives φ(c,d)(p

‡) = U�ιl =

Uφ��(p
‡). The other two identities follow similarly.

The above connection between the embeddings of P2 given by two self-similar
structures allows us to give the transformation between matrix representations
of arrows given by two self-similar structures:

Theorem 8. Let (S,�,�) and (S, c, d) be two self-similar structures at the
same object of (pIso,
), and let the matrix representations of some arrow f ∈
pIso(S,S) given by (S,�,�) and (S, c, d) respectively be

[f ]�� =

(
α β
γ δ

)
and [f ](c,d) =

(
α′ β′

γ′ δ′

)
Then [f ](c,d) is given in terms of [f ]�� by the following matrix composition:⎛⎝α′ β′

γ′ δ′

⎞⎠ =

⎛⎝u‡00 u‡10

u‡01 u‡11

⎞⎠⎛⎝α β

γ δ

⎞⎠⎛⎝u00 u01

u10 u11

⎞⎠
where ⎛⎝u00 u01

u10 u11

⎞⎠ =

⎛⎝φ��(p)φ(c,d)(p
‡) φ��(p)φ(c,d)(q

‡)

φ��(q)φ(c,d)(p
‡) φ��(q)φ(c,d)(q

‡)

⎞⎠
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Proof. Long direct calculation, expanding out the definition of the above matrix
representations, will demonstrate that⎛⎝α′ β′

γ′ δ′

⎞⎠ =

⎛⎝φ(c,d)(p)fφ(c,d)(p
‡) φ(c,d)(p)fφ(c,d)(q

‡)

φ(c,d)(q)fφ(c,d)(p
‡) φ(c,d)(q)fφ(c,d)(q

‡)

⎞⎠
as a consequence of the identities

φ��(p
‡p) ∨ φ��(q

‡q) = 1S = φ(c,d)(p
‡p) ∨ φ(c,d)(q

‡q)

8.3 Diagonalisations of Matrices via Isomorphisms of Self-similar
Structures

A useful application of basis changes in linear algebra is to construct diagonali-

sations of matrices. For a matrix M =

(
A B
C D

)
over a vector space V = V1⊕V2,

a diagonalisation is a linear isomorphism D satisfying D−1MD =

(
A′ 0
0 B′

)
, for

some elements A′, B′. We demonstrate how this notion of diagonalisation has a
direct analogue at self-similar objects of (pIso,
), and provide a necessary and
sufficient condition (and related construction) for an arrow to be diagonalised
by an isomorphism of self-similar structures.

Definition 13. Diagonalisation at self-similar objects of (pIso,
)
Let (S,�,�) be a self-similar structure of (pIso,
) and let ∈ pIso(S,S) be an

arrow with matrix representation [f ]�� =

(
α β
γ δ

)
. We define a diagonalisation

of this matrix representation to be a self-similar structure (S, c, d) such that

[f ](c,d) =

(
λ 0
0 μ

)
, so the matrix conjugation given in Theorem 8 satisfies⎛⎝λ 0

0 μ

⎞⎠ =

⎛⎝u‡00 u‡10

u‡01 u‡11

⎞⎠⎛⎝α β

γ δ

⎞⎠⎛⎝u00 u01

u10 u11

⎞⎠
We now characterise when the matrix representation of an arrow (w.r.t. a cer-

tain self-similar structure) may be diagonalised by another self-similar structure:

Theorem 9. Let (S,�,�) and (S, c, d) be self-similar structures of (pIso,
) at
the same object, giving rise to strong embeddings φ��, φ(c,d) : P2 → pIso(S,S)
and (equivalently) internalisations of the disjoint union


�� , 
(c,d) : pIso(S,S)× pIso(S,S)→ pIso(S,S)

The matrices representations that may be diagonalised by the unique isomor-
phism between (S,�,�) and (S, c, d) are exactly those of the form⎛⎝φ��(p)(X 
(c,d) Y )φ��(p

‡) φ��(p)(X 
(c,d) Y )φ��(q
‡)

φ��(q)(X 
(c,d) Y )φ��(p
‡) φ��(q)(X 
(c,d) Y )φ��(q

‡)

⎞⎠
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Proof. In the following proof, we abuse notation slightly for purposes of clarity.
We will denote

φ��(p), φ��(q), φ��(p
‡), φ��(q

‡) ∈ pIso(S,S)

by p, q, p‡, q‡ ∈ pIso(S,S), and similarly, denote

φ(c,d)(p), φ(c,d)(q), φ(c,d)(p
‡), φ(c,d)(q

‡) ∈ pIso(S,S)

by r, s, r‡, s‡ ∈ pIso(S,S).

Given arbitrary arrows X,Y ∈ pIso(S,S), then [X 
(c,d) Y ](c,d) =

(
X 0
0 Y

)
,

and all diagonal matrix representations (w.r.t. (S, c, d)) are of this form. Let us
now conjugate such a diagonal matrix by inverse of the matrix U derived from
Theorem 8; this gives U−1[X 
(c,d) Y ](c,d)U =⎛⎝pr−1Xrp−1 ∨ qr−1Y rq−1 pr−1Xrq−1 ∨ ps−1Y sq−1

qr−1Xrp−1 ∨ qs−1Y sp−1 qr−1Xrq−1 ∨ qs−1Y sq−1

⎞⎠
Comparing this with the explicit form of the internalisation of the disjoint union
by the self-similar structure (S, c, d) gives⎛⎝p(X 
(c,d) Y )p−1 p(X 
(c,d) Y )q−1

q(X 
(c,d) Y )p−1 q(X 
(c,d) Y )q−1

⎞⎠
Therefore all matrices of this form are diagonalised by the unique isomorphism
from (S,�,�) to (S, c, d). Conversely, as X,Y ∈ pIso(S,S) were chosen arbi-
trarily, all matrices diagonalised by this unique isomorphism are of this form.

Remark 11. It is worth emphasising that the above theorem characterises those
matrix representations that may be diagonalised by a particular self-similar
structure; it does not address the question of whether there exists a self-similar
structure that diagonalises a particular matrix representation. For the particular
example of N as a self-similar object, an arrow f ∈ pIso(N,N) is diagonalisable
iff there exists a partition of N into disjoint infinite subsets A∪B = N such that
f(A) ⊆ A and f(B) ⊆ B. Simple cardinality arguments will demonstrate that
this question is undecidable in general.

9 Conclusions

If nothing else, this paper has hopefully demonstrated that, although superfi-
cially dissimilar, the notions of copying derived from quantum mechanics and
from logic (and categorical linguistics) are nevertheless closely connected. How-
ever, these connections are not apparent unless we allow for the definitions in
both cases to be taken up to canonical isomorphisms.
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Abstract. One of the many results which makes Joachim Lambek fa-
mous is: an initial algebra of an endofunctor is an isomorphism. This
fixed point result is often referred to as “Lambek’s Lemma”. In this pa-
per, we illustrate the power of initiality by exploiting it in categories of
algebra-valued presheaves EM(T )N, for a monad T on Sets. The use of
presheaves to obtain certain calculi of expressions (with variable bind-
ing) was introduced by Fiore, Plotkin, and Turi. They used set-valued
presheaves, whereas here the presheaves take values in a category EM(T )
of Eilenberg-Moore algebras. This generalisation allows us to develop a
theory where more structured calculi can be obtained. The use of alge-
bras means also that we work in a linear context and need a separate
operation ! for replication, for instance to describe strength for an end-
ofunctor on EM(T ). We apply the resulting theory to give systematic
descriptions of non-trivial calculi: we introduce non-deterministic and
weighted lambda terms and expressions for automata as initial algebras,
and we formalise relevant equations diagrammatically.

Dedicated to Joachim Lambek on the occasion of his 90th birthday.

1 Introduction

In [22] Joachim Lambek proved a basic result that is now known as “Lambek’s
Lemma”. It says: an initial algebra F (A) → A of an endofunctor F : C → C is
an isomorphism. The proof is an elegant, elementary exercise in diagrammatic
reasoning. The functor F can be seen as an abstraction of a signature, describing
the arities of operations. The initial algebra, if it exists, is then the algebra whose
carrier is constructed inductively, using these operations for the formation of
terms. This “initial algebra semantics” forms the basis of the modern perspective
on expressions (terms, formulas) defined by operations, in logic and in computer
science. An early reference is [11]. A map going out of an initial algebra, obtained
by initiality, provides denotational semantics of expressions. By construction this
semantics is “compositional”, which is a way of saying that it is a homomorphism
of algebras.

A more recent development is to use the dual approach, involving coalgebras
X → G(X), see [28,17]; they capture the operational semantics of languages,

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 211–234, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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describing the behaviour in terms of elementary steps. By duality, Lambek’s
Lemma also applies in this setting: a final coalgebra is an isomorphism. One of
the highlights of the categorical approach to language semantics is the combined
description of both denotational and operational semantics in terms of algebras
and coalgebras of a functors (typically connected via distributive laws, see [19]
for an overview).

This paper contains the first part of a study elaborating such a combined
approach, using algebra-valued presheaves. It concentrates on obtaining struc-
tured terms as initial algebras. Historically, the first examples of initial algebras
appeared in the category Sets, of sets and functions. But soon it became clear
that initiality (or finality) in more complicated categories gives rise to a richer
theory, involving additional language structure or stronger initiality principles.

– Induction with parameters (also called recursion) can be captured via initial-
ity in “simple” slice categories, see e.g. [14]; similarly, initiality in (ordinary)
slice categories gives a dependent form of induction, see [1].

– Expressions with variable binding operations like λx. xx in the lambda cal-
culus can be described via initiality in presheaf categories, as shown in [8].

– This approach is extended to more complicated expressions, like in the π-
calculus process language, see [10,9].

– The basics of Zermelo-Fraenkel set theory can be developed in a category
with a suitably rich collection of map, see [18].

– Final coalgebras in Kleisli categories of a monad give rise to so-called trace
semantics, see [12].

This paper contains an extension of the second point: the theory developed in [8]
uses set-valued presheaves N → Sets. In contrast, here we use algebra-valued
presheaves N → EM(T ), where EM(T ) is the category of Eilenberg-Moore alge-
bras of a monad T on Sets. The concrete examples elaborated at the end of the
paper involve (1) the finite power set monad Pfin, with algebras EM(Pfin) = JSL,
the category of join semilattices, and (2) the multiset monad MS for a semiring
S, with semimodules over S as algebras. The initial algebras in the category
of presheaves over these Eilenberg-Moore categories have non-determinism and
resource-sensitivity built into the languages, see Section 5. Moreover, in the cur-
rent framework we can diagrammatically express relevant identifications, like the
(β)-rule for the lambda calculus and the “trace equation” of Rabinovich [27].

The use of a category of algebras EM(T ) instead of Sets requires a bit more
care. The first part of the paper is devoted to extending the theory developed
in [8] to this algebraic setting. The most important innovation that we need
is the replication operation !, known from linear logic. Since Eilenberg-Moore
categories are typically linear — with tensors ⊗ instead of cartesian products
× — we have to use replication ! explicitly if we need non-linear features. For
instance, substitution t[s/v], that is, replacing all occurrences of the variable v
in t by a term s, may require that we use s multiple times, namely if the variable
v occurs multiple times in t. Hence the type of s must be !Terms , involving
explicit replication !.
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Since substitution is defined by initiality (induction) with parameters, like
in [8], we need to adapt this approach. Specifically, we need to use replication !
in the so-called “strength” operation of a functor. It leads to a strength map of
the form:

F (A)⊗ !B
strength

�� F (A⊗ !B).

It turns out that such a strength map always exists, see Proposition 1.
In the end, in Section 5, we show how an initial algebra — of an endofunctor on

such a rich universe as given by algebra-valued presheaves — gives rise to a very
rich language in which many features are built-in and provided implicitly by the
categorical infrastructure. This forms an illustration of the desirable situation
where the formalism does the work for you. It shows the strength of the concepts
that Joachim Lambek already worked on, almost fifty years ago.

2 Monads and Their Eilenberg-Moore Categories

This section recalls the basics of the theory of monads, as needed here. For more
information, see e.g. [24,2,23,4]. A monad is a functor T : C→ C together with
two natural transformations: a unit η : idC ⇒ T and multiplication μ : T 2 ⇒ T .
These are required to make the following diagrams commute, for X ∈ C.

T (X)
ηT (X)

��

���
���

���
�

���
���

���
�

T 2(X)

μX

��

T (X)
T (ηX)

��

���
���

���
�

���
���

���
�

T 3(X)
μT (X)

��

T (μX )
��

T 2(X)

μX

��

T (X) T 2(X) μX

�� T (X)

A comonad on C is a monad on the opposite category Cop.
We briefly describe the examples of monads on Sets that we use in this paper.

– The lift monad 1 + (−) maps a set X to the set 1 + X containing an ex-
tra point, and a function f : X → Y to 1 + f : 1 + X → 1 + Y given by
(1 + f)(κ1(∗)) = κ1(∗) and (1 + f)(κ2(x)) = κ2(f(x)). Here we write the
coprojections of the coproduct as maps κi : Xi → X1 +X2. The unit of the
lift monad is the second injection η(x) = κ2(x) and multiplication is given
by μ = [κ1, id].

– The powerset monad P maps a set X to the set P(X) of subsets of X , and a
function f : X → Y to P(f) : P(X)→ P(Y ) given by direct image. Its unit is
given by singleton η(x) = {x} and multiplication by union μ({Xi ∈ PX | i ∈
I}) =

⋃
i∈I Xi. We also use the finite powerset monad Pfin which sends a set

X to the set of finite subsets of X .
– For a semiring S, the multiset monad M = MS is defined on a set X as:

M(X) = {ϕ : X → S | supp(ϕ) is finite }.
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This monad captures multisets ϕ ∈ M(X), where the value ϕ(x) ∈ S gives
the multiplicity of the element x ∈ X . When S = N, this is sometimes called
the bag monad. On functions f : X → Y , M is defined as

M(f)(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x).

The support set of a multiset ϕ ∈ M(X) is defined as supp(ϕ) = {x ∈
X | ϕ(x) �= 0}. The finite support requirement is necessary for M to be
a monad. The unit of M is given by η(x) = (x → 1) for x ∈ X and the
multiplication by

μ(Φ)(x) =
∑

ϕ∈supp(Φ)

Φ(ϕ) · ϕ(x), for Φ ∈MM(X).

Here, and later in the examples, we use the notation (x → s) to denote a
function ϕ : X → S assigning s to x and 0 to all other x′ ∈ X .

For an arbitrary monad T = (T, η, μ) we write EM(T ) for the category of
Eilenberg-Moore algebras. Its objects are maps of the form α : T (X)→ X satis-
fying α ◦ η = id and α ◦ μ = α ◦ T (α). A homomorphism

(
α : T (X)→ X

)
−→(

β : T (Y ) → Y
)
in EM(T ) is a map f : X → Y between the underlying objects

satisfying f ◦ α = β ◦ T (f). This yields a category, with obvious forgetful func-
tor U : EM(T ) → Sets. This functor U has a left adjoint F, mapping an object
X to the free algebra F(X) =

(
μ : T 2(X)→ T (X)

)
on X .

A category of algebras inherits all limits from the underlying category. In the
special case of a monad T on Sets, all colimits also exist in EM(T ), by a result of
Linton, see [2, §9.3, Prop. 4]. This category EM(T ) is also symmetric monoidal
closed, provided the monad T is commutative (i.e. monoidal), see [21,20]. We
write the tensors as ⊗, with tensor unit I, and exponential �. The free functor
F : Sets→ EM(T ) preserves the monoidal structure: F(X × Y ) ∼= F(X)⊗ F(Y )
and F(1) ∼= I, where 1 is a singleton set. As a result the set A � B, for
A,B ∈ EM(T ), contains the homomorphisms A→ B in EM(T ).

The free algebra adjunction F ( U induces a comonad FU : EM(T )→ EM(T )
that we write as !T , or simply as !. This comonad ! = FU is relevant in the context
of linear logic, see [13], whence the notation !; its Eilenberg-Moore coalgebras
can be understood as bases [16]. This comonad ! on EM(T ) also preserves the
monoidal structure: !(A×B) ∼= !A⊗ !B and !1 ∼= I. Via these isomorphisms one
sees that objects of the form !A carry a comonoid structure (ε,Δ) given by:

!A
!(〈〉)

��

ε ����
����

��� !1
∼=��

!A
!(〈id,id〉)

��

Δ
�����

����
� !(A×A)

∼=��
I !A⊗ !A.

(1)

These maps yield projection and diagonal operations for weakening and contrac-
tion. Also, they turn the functor (−)⊗ !A : EM(T )→ EM(T ) into a comonad.
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Typically this ! is used to introduce “classical” computation in the “linear”
setting EM(T ), since (linear) algebra maps !A → B in EM(T ) are in bijective
correspondence with (ordinary) functions U(A) → U(B). In a linear setting a
map A→ B consumes/uses the input/resource A exactly once. But maps of the
form !A → B can use A an arbitrary number of times.

In the sequel, we shall be using initial algebras of functors in Eilenberg-Moore
categories EM(T ). Initiality corresponds to induction. For “stronger” forms of
initiality, with parameters, one needs strong functors. We recall the basic fact
that each functor H : Sets→ Sets is strong, via a strength map st : H(X)×Y →
H(X × Y ), given by: st(u, y) = H

(
λx. 〈x, y〉

)
(u). For instance, for the powerset

functor P this yields: st(u, y) = {〈x, y〉 | x ∈ u}. In this set the element y is
used multiple times. In the next result, giving a strength in a linear setting, such
multiple use leads to an occurrence of the comonad !. This new result extends
the uniform set-theoretic definition of strength to an algebraic context.

Proposition 1. Let T be a commutative monad on Sets, and H : EM(T ) →
EM(T ) be an arbitrary functor. For algebras A,B there is a “non-linear” strength
map:

H(A)⊗ !B
st �� H(A⊗ !B). (2)

This strength map is natural in A and B, and makes the following unit and
associativity diagrams commute.

H(A)⊗ !1
st ��

∼= ������
�����

�����
H(A⊗ !1)

∼=
��

H(A)

(
H(A)⊗ !B

)
⊗ !C

st⊗id
��

∼=
��

H(A⊗ !B)⊗ !C
st �� H

(
(A⊗ !B)⊗ !C

)
∼=
��

H(A)⊗ (!B ⊗ !C)

∼=
��

H
(
A⊗ (!B ⊗ !C)

)
∼=
��

H(A)⊗ !(B × C)
st �� H

(
A⊗ !(B × C)

)
Proof. We recall from [21,20] that the tensor ⊗ of algebras comes with a special
map ⊗ : A × B → A ⊗ B which is bilinear (a homomorphism in each variable
separately), and also universal, in the following manner: for each bilinear map
f : A × B → C there is a unique algebra map f : A ⊗ B → C with f ◦ ⊗ = f .
Thus, there is a bijective correspondence:

bilinear maps A×B �� C
=========================
algebra maps A⊗B �� C
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For the definition of strength we use the following correspondences.

H(A)⊗ !B
st �� H(A⊗ !B)

========================
!B �� H(A) � H(A⊗ !B)

==============================

U(B) �� U
(
H(A) � H(A⊗ !B)

)
We shall construct this last map, and then obtain strength st via these corre-
spondences. For an element b ∈ U(B), applying the unit η = ηU(B) of the monad
yields an element η(b) ∈ U(F(U(B))) = U(!B). Since ⊗ is bilinear, the map
(−) ⊗ η(b) : A → A ⊗ !B is a homomorphism of algebras. Applying the functor
H yields another homomorphism:

H(A)
H
(
(−)⊗η(b)

)
�� H(A⊗ !B)

This algebra map is an element of the set U
(
H(A) � H(A ⊗ !B)

)
. Hence we

are done.
We prove naturality of strength, and leave the unit and associativity diagrams

to the interested reader. For algebra maps f : A→ C and g : B → D we wish to
show that the following diagram commutes.

H(A)⊗ !B

H(f)⊗!g
��

st �� H(A⊗ !B)

H(f⊗!g)
��

H(C)⊗ !D
st

�� H(C ⊗ !D)

Thus, we need to show for each b ∈ U(B) that the two algebra maps H(A) →
H(C ⊗ !D), obtained as:

H
(
f ⊗ !g

)
◦ H
(
(−) ⊗ η(b)

)
and H

(
(−) ⊗ η(g(b))

)
◦ H(f)

are the same. But this is obvious by naturality of η. �

It is not hard to see that an algebra of the form A⊗!B is isomorphic to a copower
U(B) · A =

∐
b∈B A, since for every algebra C,

A⊗ !B �� C
==================
U(B) �� (A � C)
==================

(A �� C)b∈B
==============∐

b∈B A �� C

Such tensors/copowersA⊗!B are used in [25] to model state-based computation,
where the state A can be used only linearly.



Initial Algebras of Terms with Binding and Algebraic Structure 217

Example 2. As illustration, and for future reference, we shall describe the strength
map (2) explicitly for several functors H : EM(T )→ EM(T ).

1. IfH is the identity functor, then obviously the strength map A⊗!B → A⊗!B
is the identity.

2. If H is the constant functor KC , sending everything to the algebra C, then
the strength map is defined via the projection ε obtained via (1):

KC(A)⊗ !B = C ⊗ !B
id⊗ε

�� C ⊗ I ∼= C = KC(A⊗ !B).

3. If H = H1 +H2, with strength maps sti for Hi we get a new strength map
st: (H1(A) +H2(A)) ⊗ !B → H1(A⊗ !B) +H2(A⊗ !B) determined by:

st(κ1s ⊗ t) = κ1st
1(s ⊗ t) st(κ2s ⊗ t) = κ2st

2(s ⊗ t).

This follows since the map st is defined via Currying in:

!B ��

(
H1(A) +H2(A)

)
�
(
H1(A⊗ !B) +H2(A⊗ !B)

)
The linear map on the right is clearly obtained via a sum + of the existing
strength maps sti.

4. Similarly, if H = H1 ×H2, then:

st(〈s1, s2〉 ⊗ t) = 〈st1(s1 ⊗ t), st2(s2 ⊗ t)〉.

5. For a tensor H = H1 ⊗H2 we need the duplication map Δ from (1) in:

st((s1 ⊗ s2) ⊗ t) = st1(s1 ⊗ t) ⊗ st2(s2 ⊗ t).

Diagrammatically this is:

(H1(A)⊗H2(A))⊗ !B

id⊗Δ
��

(H1(A)⊗H2(A))⊗ (!B ⊗ !B)
∼= �� (H1(A) ⊗ !B)⊗ (H2(A) ⊗ !B)

st1⊗st2 ��

H1(A⊗ !B)⊗H2(A⊗ !B).

6. Finally we look at functors of the form H = !H1. Then:

st(s ⊗ t) = !
(
st1((−) ⊗ t)

)
(s),

where ! is applied to the map st1((−) ⊗ t) : H1(A)→ H1(A⊗ !B).

With this strength map (2) we can now use the following strengthened for-
mulation of initiality, involving additional parameters. This version of initiality
is standard, see e.g. [14], except that it is formulated here in a linear setting
with !. In principle, such strengthened versions of induction can be formulated
more generally in terms of comonads and distributive laws, like in [32], but such
generality is not needed here.
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Lemma 3. Let H : EM(T ) → EM(T ) be an endofunctor on the category of
Eilenberg-Moore algebras of a commutative monad T on Sets. If this functor
H has an initial algebra a : H(A)

∼=→ A, then: for each c : H(C)⊗ !B → C there
is a unique map h : A⊗ !B → C in EM(T ) in a commuting diagram:

H(A)⊗ !B

a⊗id ∼=
��

id⊗Δ
�� H(A)⊗ !B ⊗ !B

st⊗id
�� H(A⊗ !B)⊗ !B

H(h)⊗id
�� H(C)⊗ !B

c
��

A⊗ !B
h

�� C

(3)

Proof. Use initiality of a wrt. the algebra H
(
!B � C

)
→ (!B � C) obtained

by abstraction Λ(−) in:

c′ = Λ
(
H
(
!B � C

)⊗ !B
id⊗Δ

�� H
(
!B � C

)⊗ !B ⊗ !B

st⊗id
��

H
(
(!B � C)⊗ !B

)⊗ !B
H(ev)⊗id

�� H(C)⊗ !B
c �� C

)
.

�

For future use we mention the following basic result. The proof is left as exercise
to the reader.

Lemma 4. Consider a situation:

AH ��

F
�� A

G

		 where F ( G.

In the presence of an isomorphism HF ∼= FH, if UX ∈ A is (carries) the free
H-algebra on X ∈ A, then F (UX) is the free H-algebra on F (X). �

2.1 Intermezzo: Strength for Endofunctors on Hilbert Spaces

In Proposition 1 we have seen that strength maps exist in an algebraic context
if we restrict ourselves to objects of the form !B, which, as we have seen in (1),
come equipped with a comonoid structure for weakening and contraction. In a
quantum context such comonoid structure is described in terms of Frobenius al-
gebras. In [5] it shown that on a finite-dimensional Hilbert space such a Frobenius
algebra structure corresponds to an orthonormal basis. The next result shows
that in this situation one also define strength maps, much like in the proof of
Proposition 1. (This will not be used in the sequel.)

Proposition 5. Let H : FdHilb→ FdHilb be an arbitrary endofunctor on the
category of finite-dimensional Hilbert spaces and (continuous) linear maps. For a
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space W ∈ FdHilb with orthonormal basis B = {b1, . . . , bn} there is a collection
of strength maps:

H(V )⊗W
stB �� H(V ⊗W )

natural in V . The unit and associativity diagrams commute for these strength
maps.

Proof. Each base vector bi ∈ W yields a (continuous) linear map (−) ⊗ bi : V →
V ⊗ W , and thus by applying the functor H we get H

(
(−) ⊗ bi

)
: H(V ) →

H(V ⊗W ). For an arbitrary vector w ∈ W we write w =
∑

i wibi and define
f(u,w) =

∑
i wiH
(
(−) ⊗ bi

)
(u) ∈ H(V ⊗W ). This yields a bilinear map H(V )×

W → H(V ⊗W ), and thus a unique linear map stB : H(V )⊗W → H(V ⊗W ),
with stB(u ⊗ w) = f(u,w). �

As already suggested above, this strengthmap inFdHilb really depends on the
basis. This can be illustrated in a simple example (using Hilbert spaces over C).
Take as endofunctor H(X) = X ⊗ X , with V = C and W = C2 = C ⊕ C in
FdHilb. The strength map H(C) ⊗ C2 → H(C ⊗ C2) then amounts to a map
C2 → C4, using that C is the tensor unit. But we shall not drop this C.

First we take the standard basis B = {(1, 0), (0, 1)} on C2. The resulting
strength map stB : H(C)⊗ C2 → H(C⊗ C2) is given by:

stB
(
(u ⊗ v) ⊗ (w1, w2)

)
= w1H

(
(−) ⊗ (1, 0)

)
(u ⊗ v) + w2H

(
(−) ⊗ (0, 1)

)
(u ⊗ v)

= w1

(
(u ⊗ (1, 0)) ⊗ (v ⊗ (1, 0))

)
+ w2

(
(u ⊗ (0, 1)) ⊗ (v ⊗ (0, 1))

)
= w1(uv, 0, 0, 0) + w2(0, 0, 0, uv)

= uv(w1, 0, 0, w2).

But if we take the basis C = {(1, 1), (1,−1)} we get a different strength map:

stC
(
(u ⊗ v) ⊗ (w1, w2)

)
= stC

(
(u ⊗ v) ⊗

(
w1+w2

2 (1, 1) + w1−w2

2 (1,−1)
))

= w1+w2

2 H
(
(−) ⊗ (1, 1)

)
(u ⊗ v) + w1−w2

2 H
(
(−) ⊗ (1,−1)

)
(u ⊗ v)

= w1+w2

2

(
(u ⊗ (1, 1)) ⊗ (v ⊗ (1, 1))

)
+ w1−w2

2

(
(u ⊗ (1,−1)) ⊗ (v ⊗ (1,−1))

)
= w1+w2

2

(
uv, uv, uv, uv

)
+ w1−w2

2

(
uv,−uv,−uv, uv

)
= uv(w1, w2, w2, w1).

3 Functor Categories and Presheaves

Later on in this paper we will be using presheaf categories of the form EM(T )N,
where T is a monad on Sets and N ↪→ Sets is the full subcategory with the
natural numbers n ∈ N as objects, considered as n-element set {0, 1, . . . , n− 1}.
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In this section we collect some basic facts about such functor categories. Some
of these results apply more generally.

For instance, if A is a (co)complete category, then so is the functor category
AC. Limits and colimits in this category are constructed elementwise. We write
Δ : A → AC for the functor that sends an object X ∈ A to the constant
functor Δ(X) : C → A that sends everything to X . This functor Δ should not
be confused with the natural transformation Δ from (1). Each functor F : A→
B yields a functor FC : AC → BC, also by an elementwise construction: on
objects FC(P )(Y ) = F (P (Y )), and on morphisms (natural transformations):
FC(σ)Y = F (σY ).

Lemma 6. An adjunction F ( G as on the left below yields an adjunction
FC ( GC as on the right.

A
F

��⊥ B
G



 AC
FC

��⊥ BC

GC



 �

In the sequel we extend the notion (−)C to bifunctors F : A×A→ A, yielding a
new bifunctors FC : AC×AC → AC, given by FC(P,Q)(X) = F (P (X), Q(X)).
In particular, this yields a tensor product ⊗C on AC, assuming a tensor product
⊗ on A. The tensor unit I ∈ A then yields a unit Δ(I) ∈ AC.

For an endofunctor like F we write Alg(F ) and CoAlg(F ) for the categories
of (functor) algebras and coalgebras of F .

Lemma 7. For an endofunctor F : A→ A there is an obvious functor
Δ : Alg(F ) → Alg(FC), sending an F -algebra a : F (X) → X to a “constant”
FC-algebra on Δ(X). We write this algebra as aΔ, which is a natural transfor-
mation FC(Δ(X))⇒ Δ(X), with components:

FC(Δ(X))(Y ) = F (X)
(aΔ)Y =a

�� X = Δ(X)(Y ).

This functor Δ : Alg(F )→ Alg(FC) has a left adjoint if C has a final object 1,
and a right adjoint if there is an initial object 0 ∈ C.

Similarly, there is a functor Δ : CoAlg(F ) → CoAlg(FC) which has a left
(resp. right) adjoint in presence of a final (resp. initial) object in C.

Proof. Assume a final object 1 ∈ C. The “evaluate at 1” functor (−)(1) : AC →
A yields a functorAlg(FC)→ Alg(F ). This gives a left adjoint toΔ : Alg(F )→
Alg(FC) since there is a bijective correspondence:⎛⎝FC(P )

P

β ��

⎞⎠ ϕ 	

⎛⎝FC(Δ(X))

Δ(X)
aΔ
��

⎞⎠
================================(

F (P (1))

P (1)
β1 ��

)
f

��

(
F (X)

X

a
��

)
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In this situation ϕ consists of a collection of maps ϕY : P (Y ) → X , forming a
map of algebras from βY to a, natural in Y—so that ϕZ ◦ P (g) = ϕY for each
g : Y → Z in C. The correspondence can be described as follows.

– Given ϕ as above we take ϕ = ϕ1 : P (1) → X . This is clearly an algebra
map β1 → a.

– Given f : P (1)→ X we define a natural transformation f with components
fY = f ◦ P (!Y ), where !Y : Y → 1 is the unique map. It is not hard to see
that f is natural and a map of algebras, as required.

One has ϕ=ϕ and f=f . The rest of the lemma is obtained in the samemanner. �

This result is useful to obtain preservation of initial algebra or final coalgebras
by the functor Δ.

In a similar manner an endofunctor F : C → C gives rise to a functor
AF : AC → AC, via AF (P )(Y ) = P (F (Y )). In this situation a natural transfor-
mation σ : F ⇒ G yields another natural transformation Aσ : AF ⇒ AG with
components (Aσ)P,Y = P (σY ) : P (F (Y )) → P (G(Y )). This is of interest when
F is a monad or comonad.

Lemma 8. Let T : C→ C be a (co)monad. Then so is AT : AC → AC.

Proof. In the obvious way: for instance if T = (T, η, μ) is a monad, then AT

is also a monad, where ηTP = Aη
P : P ⇒ AT (P ) and μT

P = Aμ
P :
(
AT
)2
(P ) =

AT 2

(P )⇒ AT (P ) have components:

P (Y )
P (ηY )

�� P (T (Y )) P (T 2(Y )).
P (μY )

�� �

We now restrict to functor categories of the form AN, where N ↪→ Sets is the
full subcategory with natural numbers n = {0, 1, . . . , n− 1} as objects. We shall
introduce a “weakening” monad W on this category, via the previous lemma.
This W comes from [8] where it is written as δ and where it is called context
extension. But it is called differentiation in [10] and dynamic allocation in [9].
Here we prefer to call it weakening to emphasise this aspect of context extension.
We write it as W and not as δ to avoid a conflict with the comultiplication
operation of the comonad !. Before we proceed we recall that in the category N

the number 0 is initial, and the number n+m is the coproduct of n,m ∈ N. In
any category with coproducts, the functor (−)+X is a monad. We apply this to
the category N and get the lift monad (−) + 1. The previous lemma now gives
the following result.

Lemma 9. For an arbitrary category A define a monad W = A(−)+1 : AN →
AN, so that:

W(P )(n) = P (n+ 1) W(P )(f) = P (f + id1) W(σ)n = σn+1.
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The unit up: id ⇒ W and multiplication ctt : W2 ⇒ W of this monad have
components upP : P ⇒W(P ) and cttP : W(W(P )) →W(P ) with:

P (n)
upP,n=P (κ1)

�� P (n+ 1) P (n+ 2).
cttP,n=P ([id,κ2])
�� �

The map up sends an item in P (n) to P (n+ 1), where the context n+ 1 has
an additional variable vn+1. The abbreviation ctt stands for “contract”; it can
be understood as substitution [vn+1/vn+2], removing the last variable. There is
also a “swap” map swp: W2 ⇒W2 defined, following [8], as:

W2(P )(n) = P (n+ 2)
swpP,n=P (id+[κ2,κ1])

�� P (n+ 2) = W2(P )(n). (4)

This swap map can be understood as simultaneous substitution
[vn+1/vn+2, vn+2/vn+1].

The following trivial observation will be useful later on (combined with
Lemma 4). It includes commutation with (co)limits, which are given in a point-
wise manner in functor categories.

Lemma 10. The weakening functor W : AN → AN commutes with functors FN

defined pointwise: WFN = FNW. This also holds when F is a bifunctor, covering
products ×, tensors ⊗ and coproducts +. �

In [8] it is shown, for the special case where A = Sets, that this functor W

has both a left and a right adjoint. In our more general situation basically the
same constructions can be used, but they require more care. We will describe
left and right adjoints separately.

Lemma 11. Assuming the category A has finite copowers n ·X = X + · · ·+X
(n times), the weakening functor W : AN → AN has a left adjoint, given by
Q → (−)·Q(−); this right-hand-side is the functor N→ A given by n → n·Q(n).

Proof. There is a bijective correspondence between components of natural trans-
formations:

Q(n)
σn 	 W(P )(n) = P (n+ 1)

=================
n ·Q(n) τn

	 P (n)

Given σn we take the cotuple:

σn =
(
n ·Q(n)

[
P ([id,i])◦σn

]
i∈n
�� P (n)
)
.

In the reverse direction, given τ , we take:

τn =
(
Q(n)

Q(κ1)
�� Q(n+ 1)

κ2 �� (n+ 1) ·Q(n+ 1)
τn+1

�� P (n+ 1)
)
.

It is not hard see that these (−) constructions yield natural transformations and
are each other’s inverses. �
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Remark 12. In the sequel we typically use A = EM(T ), the Eilenberg-Moore
category of a monad T on Sets. If we assume that the monad T is commutative,
then, the category EM(T ) is symmetric monodial closed (see [21,20]), with tensor
unit I = F(1), where F is the free monad functor and 1 is the terminal object
in the underlying category. In that case we can reorganise the left adjoint from
the previous lemma, since:

n ·Q(n) ∼= n · (I ⊗Q(n))

∼= (n · I)⊗Q(n) using that (−)⊗X is a left adjoint

∼= (n · F(1))⊗Q(n)

∼= F(n · 1)⊗Q(n) since free functors preserve coproducts

∼= F(n)⊗Q(n).

In this Eilenberg-Moore situation we can thus describe the adjunction from the
previous lemma as F ⊗N (−) (W, where ⊗N is the pointwise tensor on EM(T )N,
and where F ∈ EM(T )N is the restriction of the free functor F : Sets → EM(T )
to N ↪→ Sets. It corresponds to the free variable functor V from [8] — and will
be used as such later on.

The right adjoint to weakening is more complicated. In the set-theoretic set-
ting of [8] it is formulated in terms of sets of natural transformations. In the
current more general context this construction has to be done internally, via a
suitable equaliser.

Lemma 13. If a category A is complete, then the weakening functor W : AN →
AN has a right adjoint.

Proof. For a presheaf Q ∈ AN we define a new presheaf R(Q) ∈ AN, where
R(Q)(n) is obtained as equaliser in A:

R(Q)(n) ��
en ��

∏
m∈N

Q(m)((m+1)n)
ϕ

��

ψ
��

∏
g : m→m′

Q(m′)((m+1)n)

where the parallel maps ϕ, ψ are defined by:

ϕ = 〈 〈 Q(g + id) ◦ πf ◦ πm 〉f : n→m+1 〉g : m→m′

ψ = 〈 〈 π(g+id)◦f ◦ πm′ 〉f : n→m+1 〉g : m→m′ .

We sketch the adjunction W ( R. For a natural transformation σ : W(P ) ⇒ Q
we have maps σn : P (n+ 1)→ Q(n) in A, and define:

σ′n = 〈 〈 σm ◦ P (f) 〉f : n→m+1 〉m∈N : P (n) −→
∏
m∈N

Q(m)((m+1)n)

We leave it to the reader to verify that ϕ ◦ σ′n = ψ ◦ σ′n. This equation yields a
unique map σn : P (n)→ R(Q)(n).
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Conversely, given τ : P ⇒ R(Q) we get en ◦ τn : P (n)→
∏

m∈N Q(m)((m+1)n).
Hence we take:

τn = πidn+1
◦ πn ◦ en+1 ◦ τn+1 : P (n+ 1) −→ Q(n).

Remaining details are left to the reader. �

Along the same lines of the previous result one obtains the following standard
result.

Lemma 14. Let (I,⊗,�) be the monoidal closed structure of a complete cat-
egory A. The pointwise monoidal structure (Δ(I),⊗N) on the functor category
AN is then also closed. �

WhenA = EM(T ) like in Remark 12, we can thus write weakening as exponent
W ∼= [F,−], using the adjunction F ⊗N (−) (W.

What we still need is the following.

Lemma 15. For a commutative monad T on Sets, the weakening monad
W : EM(T )N → EM(T )N is a strong monad wrt. the pointwise monoidal structure
(Δ(I),⊗N ). The strength map is given by:

W(P ) ⊗N Q
st=id⊗up

�� W(P ⊗N Q). �

4 Substitution

By now we have collected enough material to transfer the definition of substitu-
tion used in [8] for set-valued presheaves to the algebra-valued presheaves used
in the present setting. Here we rely on Lemma 4, where in [8] a uniformity prin-
ciple of fixed points is used. Alternatively, free constructions can be used. But
we prefer the rather concrete approach followed below in order to have a good
handle on substitution.

Proposition 16. Let T be a commutative monad on Sets, and H : EM(T )N →
EM(T )N be a strong functor with:

– an isomorphism φ : HW
∼=→WH;

– for each P ∈ EM(T )N a free H-algebra H∗(P ) ∈ EM(T )N on P . This
H∗(P ) can equivalently be described as initial algebra of the functor P +
H(−) : EM(T )N → EM(T )N in:

P +H
(
H∗(P )

) [ηP ,θP ]

∼=
�� H∗(P ) (5)

In this situation one can define a substitution map:

WH∗(F)⊗ !H∗(F) sbs �� H∗(F),

where F ∈ EM(T )N is the “free variable” presheaf given by restricting the free
functor F : Sets→ EM(T ).
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One may read sbsn(s ⊗ U) = s[U/vn+1] where U is of !-type. The type
WH∗(F)⊗ !H∗(F)→ H∗(F) of the substitution map sbs is very rich and infor-
mative:

– The first argument s of type WH∗(F) describes the term s in an augmented
context; hence there is a variable vn+1 in which substitution is going to
happen;

– The second argument U of replication type !H∗(F) is going to be substituted
for the variable vn+1. Since this variable may occur multiple times (zero or
more) in s, we need to be able to use U multiple times. Hence the replica-
tion comonad ! is needed in its type. It does not occur in the set-theoretic
(cartesian) setting used in [8].

Proof. By Lemma 4 we know that WH∗(F) is the free H-algebra on W(F), and
thus an initial algebra of the functor W(F) +H(−) : EM(T )N → EM(T )N, via:

W(F) +H
(
WH∗(F)

) id+φ

∼=
�� W(F) +WH

(
H∗(F)

)
=

W
(
F +H

(
H∗(F)

)) W([ηF,θF])

∼=
�� WH∗(F).

The strong version of induction described in Lemma 3 implies that it suffices to
produce a map of the form:(

W(F) +H
(
H∗(F)

))
⊗ !H∗(F) �� H∗(F).

so that the substitution map sbs : WH∗(F) ⊗ !H∗(F) → H∗(F) arises like in
Diagram (3). Tensors ⊗ distribute over coproducts +, since EM(T )N is monoidal
closed by Lemma 14, and so it suffices to produce two maps:

W(F)⊗ !H∗(F) �� H∗(F) H
(
H∗(F)

)
⊗ !H∗(F) �� H∗(F). (6)

We get the second of these maps simply via projection and the initial algebra
in (5):

H
(
H∗(F)

)
⊗ !H∗(F) �� H

(
H∗(F)

) θF �� H∗(F).

For the first map in (6) we start with the isomorphisms:

W(F)(n) = F(n+ 1) ∼= F(n) + F(1) ∼= F(n) + I = (F +Δ(I))(n).

Again using that ⊗ distributes over +, and that Δ(I) is the tensor unit in
EM(T )N we see that the first map in (6) amounts to two maps:

F ⊗ !H∗(F) �� H∗(F) !H∗(F) �� H∗(F).
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In the second case we recall that ! is a comonad, to that there is a counit
ε : !H∗(F)→ H∗(F), and in the first case we project and use the unit η from (5):

F ⊗ !H∗(F) �� F
ηF �� H∗(F). �

In [8] it is shown that the substitution map satisfies certain equations. They
are not of immediate relevance here.

5 Examples

We apply the framework developed in the previous sections to describe some term
calculi as initial algebras in a category of algebra-valued presheaves EM(T )N. For
convenience, we no longer use explicit notation for the pointwise functors like
⊗N or !N on EM(T )N and simply write them as ⊗ and !. Hopefully this does not
lead to (too much) confusion.

5.1 Non-deterministic Lambda Calculus

We start with the finite powerset monad T = Pfin, so that EM(Pfin) is the
category JSL of join semilattices and maps preserving (⊥,∨). Let Λ ∈ JSLN be
the initial algebra of the endofunctor on EM(T )N = JSLN, given by:

P −→ F +W(P ) + (P ⊗ !P ),

where F(n) = Pfin(n) and !P (n) = Pfin(P (n)). Thus, Λ is the free algebra on F —
written as H∗(F) in Proposition 16 — for the functor H(P ) = W(P )+(P ⊗ !P ).

We describe this initial algebra as a co-triple of (join-preserving) maps:

F +W(Λ) + (Λ ⊗ !Λ)
[var,lam,app]

∼=
�� Λ

Elements of the set of terms Λ(n) ∈ JSL with variables from {v1, . . . , vn} are
inductively given by:

– varn(V ), where V ∈ F(n) = Pfin(n) = Pfin({v1, v2, . . . , vn});
– lamn(N) = λvn+1. N , where N ∈W(Λ)(n) = Λ(n+ 1);
– app(M, {N1, . . . , Nk}) = M · {N1, . . . , Nk}, where M,N1, . . . , Nk ∈ Λ(n);
– ⊥ ∈ Λ(n), and M ∨N ∈ Λ(n), for M,N ∈ Λ(n).

The join-preservation property that holds by construction for these maps yields:

varn(∅) = ⊥ varn(V ∪ V ′) = varn(V ) ∨ varn(V
′)

λvn+1.⊥ = ⊥ λvn+1. (M ∨N) = (λvn+1.M) ∨ (λvn+1. N)

⊥ · U = ⊥ (M ∨M ′) · U = (M · U) ∨ (M ′ · U)

M · ∅ = ⊥ M · (U ∪ U ′) = (M · U) ∨ (M · U ′).
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The non-standard features of this term calculus are the occurrences of sets of
variables V in varn(V ) and of sets of terms as second argument in applicationM ·
{N1, . . . , Nk}. But using these join preservation properties they can be described
also in terms of single variables/terms:

varn({v1, . . . , vk}) = varn({v1}) ∨ · · · ∨ varn({vk})
M · {N1, . . . , Nk} = M · {N1} ∨ · · · ∨M · {Nk}.

Following Proposition 16 — recall that Λ = H∗(F) — there is a substitution
map sbs in JSLN:

W(Λ)⊗ !Λ
sbs �� Λ.

The diagram that defines sbs, according to Lemma 3, can be split up in three
separate diagrams, for variables, abstraction and application.

W(F) ⊗ !Λ

W(var)⊗id ∼=
��

∼= �� F ⊗ !Λ+ !Λ

[var◦π1,
∨
]

��

W(Λ)⊗ !Λ
sbs �� Λ

(7)

W2(Λ)⊗ !Λ

swp⊗id ∼=
��

id⊗up
�� W2(Λ)⊗W(!Λ) W

(
W(Λ)⊗ !Λ

)W(sbs)
�� W(Λ)

lam

��

W2(Λ)⊗ !Λ

W(lam)⊗id
��

W(Λ)⊗ !Λ
sbs �� Λ

(8)

(W(Λ) ⊗ !W(Λ))⊗ !Λ
st �� (W(Λ)⊗ !Λ)⊗ !(W(Λ)⊗ !Λ)

sbs⊗!(sbs)
�� Λ⊗ !Λ

app

��

W(Λ ⊗ !Λ)⊗ !Λ

W(app)⊗id
��

W(Λ)⊗ !Λ
sbs �� Λ

(9)
In more conventional notation, reading sbsn(M ⊗ U) = M [U/vn+1] where

M ∈ Λ and U ⊆ Λ is finite, we can write these three diagrams (7) – (9) as:

varn+1(V )[U/vn+1] =

{
varn(V ) if vn+1 �∈ V

varn(V − vn+1) ∨
∨

U if vn+1 ∈ V

(λvn+2.M)[U/vn+1] = λvn+1.M [vn+1/vn+2, vn+2/vn+1][U/vn+2]

= λvn+1.M [vn+1/vn+2, U/vn+1]

(M · {N1, . . . , Nk})[U/vn+1] = M [U/vn+1] · {N1[U/vn+1], . . . , Nk[U/vn+1]}.
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By construction the substitution map sbs is bilinear, so that:

⊥[U/vn+1] = ⊥ (M ∨M ′)[U/vn+1] = (M [U/vn+1]) ∨ (M ′[U/vn+1])

M [∅/vn+1] = ⊥ M [(U ∪ U ′)/vn+1] = (M [U/vn+1]) ∨ (M [U ′/vn+1]).

We see that the mere initiality of Λ in the presheaf category EM(Pfin)
N gives

a lot of information about the term calculus involved. As usual, (initial) algebras
of functors do not involve any equations. If needed, they will have to be imposed
explicitly. For instance, in the current setting it makes sense to require the ana-
logue of the familiar (β)-rule (λx.M)N = M [N/x] for (ordinary) lambda terms.
Here it can be expressed diagrammatically as:

W(Λ)⊗ !Λ
lam⊗id

��

sbs
������

�����
�����

Λ⊗ !Λ
app
��

Λ

Another example is the (η)-rule: λx.Mx = M , if x is not a free variable in M .
In this setting it can be expressed as

Λ⊗ I
up⊗new

��

∼=

��			
				

				
				

				
				

				
		 W(Λ)⊗W(!Λ) W(Λ ⊗ !Λ)

W(app)
��

W(Λ)

lam��

Λ

Here, new : I →W(!Λ) denotes the generation of a free variable. It is defined as:

new=
(
I = !1

δ �� !!1=!I
!κ2 �� !(F + I) ∼= !W(F)

!W(var)
�� !W(Λ)! =W(!Λ)

)
.

5.2 Weighted Lambda Calculus

We now consider a weighted version of the lambda calculus, by changing the
monad in the above example. We fix a semiring S and consider the associated
multiset monad M = MS. Its Eilenberg-Moore algebras are semimodules over
S. We write SMod = EM(M), with morphism given by linear maps. Let Λ ∈
SModN be the initial algebra of the endofunctor on EM(M)N = SModN given
by:

P −→ F +W(P ) + (P ⊗ !P ),

where F(n) = M(n) and !P (n) = M(P (n)). Notice that this functor is formally
the same as for the non-deterministic lambda calculus (in the previous subsec-
tion).

As before, we describe this initial algebra as a co-triple of (linear) maps:

F +W(Λ) + (Λ ⊗ !Λ)
[var,lam,app]

∼=
�� Λ
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Elements of the set of terms Λ(n) ∈ SMod with variables from {v1, . . . , vn} are
inductively given by:

– varn(ϕ), where ϕ ∈ F(n) = M(n) = M({v1, v2, . . . , vn}); we will typically
write ϕ (and, in general, elements of M(X)) as a (finite) formal sum

∑
i sivi.

– lamn(N) = λvn+1. N , where N ∈ Λ(n+ 1);
– app

(
M,
∑

i siNi

)
= M ·

(∑
i siNi

)
, where M,Ni ∈ Λ(n);

– 0 ∈ Λ(n), and s • N ∈ Λ(n), for N ∈ Λ(n) and s ∈ S, and N +M ∈ Λ(n)
for N,M ∈ Λ(n). We write a fat dot • for scalar multiplication in order to
distinguish it from application.

Slightly generalising the previous example, the non-standard features of this term
calculus are the occurrences of linear combinations of variables ϕ in varn(ϕ) and
of linear combinations of terms as second argument in application M ·(

∑
i siNi).

But using the linearity properties of the maps, they can be described also in terms
of single variables/terms:

varn(
∑

i sivi) =
∑

i si • varn(1vi)
M · (
∑

i siNi) =
∑

i si • (M · 1Ni).

(Recall that 1x = η(x) ∈M(X) is the singleton multiset.)
The substitution operation can now be defined by similar diagrams as in (7)

– (9) above. For this example, we give it immediately in a more conventional
notation:

varn+1(
∑

i≤n+1 sivi)[ψ/vn+1] =

{
varn(
∑

i≤n sivi) if sn+1 = 0

varn(
∑

i≤n sivi) + sn+1 • ψ if sn+1 �= 0

(λvn+2.M)[ψ/vn+1] = λvn+1.M [vn+1/vn+2, vn+2/vn+1][ψ/vn+2]

= λvn+1.M [vn+1/vn+2, ψ/vn+1]

(M · (
∑

i siNi))[ψ/vn+1] = M [ψ/vn+1] · (
∑

i sk(Ni[ψ/vn+1])).

5.3 Non-deterministic Automata

In this section, we present expressions with a fixed point operator denoting
behaviours of non-deterministic automata. This formalises, using initial algebras,
the work in [29]. We work again, first in the category EM(Pfin)

N = JSLN.
The presheaf of expressions E ∈ JSLN is the initial algebra of the functor on

JSLN given by:

P −→ F +W(P ) + 2 +A · !P,

where 2 = {⊥,"} is the constant presheaf, F(n) = Pfin({v1, . . . , vn}), and !P =
Pfin(P ).

Coalgebraically, non-deterministic automata are modelled using the functor
F (X) = 2×Pfin(X)A (in Sets). Both functors are tightly connected but further
studying this connection is out of the scope of this paper.
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We can describe this initial algebra as the following map in JSLN.

F +W(E) + 2 +A · !E
[var,fix,ops,pre]

∼=
�� E

Elements of the set of expressions E(n) ∈ JSL with variables from {v1, . . . , vn}
are inductively given by:

– varn(V ) where V ⊆ {v1, . . . , vn};
– fixn(e) = μvn+1.e, where e ∈ E(n+ 1);
– 0 = ops(⊥);
– 1 = ops(");
– a({e1, . . . ek}) = pre(κa({e1, . . . ek})), for a ∈ A and ei ∈ E(n);
– ⊥ and e ∨ e′ for any e, e′ ∈ E(n).

The intuition behind these expressions is best explained operationally. Even
though we have not given at this stage any operational semantics to the above
expressions, and hence they are just syntax, we depict below several non-
deterministic automata and corresponding expressions.

e1 = b(1) e2 = μx.a({x}) ∨ 1

�� ���� �	e1
b ���� ���� �	
� ��� ��1

�� ���� �	e2

a

��

e3 = a({e1, e2}) e4 = μx.1 ∨ a(b(x))

�� ���� �	e3
a ��

a

��

�� ���� �	
� ��� ��e2

a

��

�� ���� �	e1
b ���� ���� �	
� ��� ��1

�� ���� ��e4

a
��
�� ���� ��b(e4)

b

		

The binder μ has a very similar role to the Kleene star (−)�. For instance,
it is the intended semantics that e2 = μx.a({x}) ∨ 1 = a�. Hence, semantically,
we want μ to be a (least) fixed point. The fixed point equation μx.e = e[μx.e/x]
can be represented in this setting by the diagram:

W(!E) ��

W(ε)

��

W(Δ)
�� W(!E⊗ !E) = W(!E)⊗W(!E)

W(ε)⊗id

��

W(E)⊗W(!E) = W(E)⊗ !W(E)
id⊗!fix

�� W(E)⊗ !E

sbs

��

W(E)
fix �� E
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Here the map sbs is defined in the same way as for the non-deterministic lambda
calculus. In order to obtain a (sound and) complete calculus of these expressions
with respect to bisimilarity, one would have to impose more equations, see [29].

In formal language theory, the prime equivalence used is language (or trace)
equivalence, which is coarser than bisimilarity. Rabinovich [27] showed that in
the case of a simple fixed point calculus like the one we derive here, it is enough
to add one axiom to the bisimilarity calculus, namely the axiom expressing
distributivity of prefixing over ∨, given as a({e ∨ e′}) = a({e}) ∨ a({e′}).

Here, we can express this diagrammatically as:

!!E
ε





























!ε

������
�����

�����
�����

���

!E κa

�� A · E pre
�� E A · !Epre

�� !Eκa

��

(10)

This diagram is actually a more general formulation of the Rabinovich distribu-
tivity rule, since the starting point !!E = P2

fin(E) at the top involves sets of
sets of expressions. To recover the binary version above one should start from
{{e1, e2}} ∈ !!E. The commutativity of the above diagram says that a({e1 ∨
e2}) = a({e1, e2}), and the right side of this equation rewrites to a({e1, e2}) =
a({e1})∨a({e2}), since pre is a JSL map. The relevance of capturing this law di-
agrammatically is that it provides a guideline to which law gives trace semantics
in other settings. For instance, we show in the next subsection that for weighted
automata, the same diagram can be used to axiomatise trace semantics.

5.4 Weighted Automata

We can obtain a syntax for weighted automata in a similar way by switching to
the multiset monad M, for a semiring S, and considering the initial algebra E of
the functor on SModN:

P −→ F +W(P ) + S +A · !P,

where S denotes the constant presheaf Δ(S), and F(n) = M({v1, . . . , vn}), and
!P = M(P ).

Again, coalgebraically, weighted automata are modelled using the functor
F (X) = S × M(X)A (in Sets). We can describe the above initial algebra as
the following isomorphism.

F +W(E) + S +A · !E
[var,fix,val,pre]

∼=
�� E

Elements of the set of expressions E(n) ∈ SMod with variables from {v1, . . . , vn}
are inductively given by:

– varn(V ) where V ⊆ {v1, . . . , vn};
– fixn(e) = μvn+1.e, where e ∈ E(n+ 1);
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– s = val(s), for any s ∈ S;
– a(
∑

i siei) = pre(κa(
∑

i siei));
– 0, s • e, and e+ e′ for any e, e′ ∈ E(n) and s ∈ S.

Intuitively, the expression s denotes that the output of a state is s and
a(
∑

k≤m skek) denotes a state with m transitions labelled by a, sk to the states
denoted by the expressions e1, . . . , em. We depict below two examples of ex-
pressions (over the semiring of integers) and the respective (intended) weighted
automata they represent.

e1 = b(2 • 1) e2 = μx.a(3x+ 2e1) + 1

�� ���� �	e1

��

b,2
���������	1

��
0 1

�� ���� �	e2

a,3

��
a,2

��

��

�� ���� �	e1

��

b,2
���������	1

��
1 0 1

Note that e1 above has output 0 because the expression only specifies the b
transition and no concrete output. Intuitively, the expression e1 specifies a state
which has a b transition with weight 2 to a state specified by the expression 1.
The latter specifies a state with no transitions and with output 1. The use of +
in e2 allows the combined specification of transitions and outputs and hence e2
has output 1.

Examples of equations one might want to impose in this calculus include
a(r0) = 0, which can be expressed using the diagram:

I = !1 = S 0

��
(−)•η(0)

��

!E
κa

�� A·!E
pre

�� E

Recent papers [3,7] on generalising the work of Rabinovich, have proposed, in a
rather ad hoc fashion, axiomatisations of trace semantics for weighted automata.
The very same diagram (10) capturing Rabinovich’s axiom for non-deterministic
automata can now be interpreted in this weighted setting and it will result
in the following axiom — which we present immediately a binary version, for
readability.

a(s(e1 + e2)) = a(se1) + a(se2).

(We write se for the singleton multiset s • 1e.)

Final Remarks

We have exploited initiality in categories of algebra-valued presheaves EM(T )N,
for a monad T on Sets, to modularly obtain a syntactic calculus of expressions
as initial algebra of a given functor. The theory involved provides a system-
atic description of several non-trivial examples: non-deterministic and weighted
lambda calculus and expressions for (weighted) automata.
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The use of presheaves to describe calculi with binding operators has first been
studied by Fiore, Plotkin and Turi. They used set-valued presheaves and did not
explore the formalisation of relevant equations for concrete calculi. They have
also not explored their theory to derive fixed point calculi. Non-deterministic
versions of the lambda calculus have appeared in, for instance, [6,26]. The version
we derive in this paper is however slightly different because we have linearity
also in the second argument of application.

As future work, we wish to explore the formalisation of equations that we pre-
sented for the concrete examples. This opens the door to developing a systematic
account of sound and complete axiomatisations for different equivalences (bisim-
ilarity, trace, failure, etc.). Preliminary work for (generalised) regular expressions
and bisimilarity has appeared in [15,31,30] and for trace semantics in [3].

Acknowledgments. Thanks to Sam Staton for suggesting several improve-
ments.
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Abstract Tensor Systems as Monoidal Categories

Aleks Kissinger

Department of Computer Science
University of Oxford

Abstract. The primary contribution of this paper is to give a formal,
categorical treatment to Penrose’s abstract tensor notation, in the con-
text of traced symmetric monoidal categories. To do so, we introduce a
typed, sum-free version of an abstract tensor system and demonstrate
the construction of its associated category. We then show that the as-
sociated category of the free abstract tensor system is in fact the free
traced symmetric monoidal category on a monoidal signature. A notable
consequence of this result is a simple proof for the soundness and com-
pleteness of the diagrammatic language for traced symmetric monoidal
categories.

Dedicated to Joachim Lambek on the occasion of his 90th birthday.

1 Introduction

This paper formalises the connection between monoidal categories and the ab-
stract index notation developed by Penrose in the 1970s, which has been used
by physicists directly, and category theorists implicitly, via the diagrammatic
languages for traced symmetric monoidal and compact closed categories. This
connection is given as a representation theorem for the free traced symmet-
ric monoidal category as a syntactically-defined strict monoidal category whose
morphisms are equivalence classes of certain kinds of terms called Einstein ex-
pressions. Representation theorems of this kind form a rich history of coherence
results for monoidal categories originating in the 1960s [17,6]. Lambek’s contri-
bution [15,16] plays an essential role in this history, providing some of the ear-
liest examples of syntactically-constructed free categories and most of the key
ingredients in Kelly and Mac Lane’s proof of the coherence theorem for closed
monoidal categories [11]. Recently, Lambek has again become interested in the
role of compact closed categories (a close relative of traced symmetric monoidal
categories) in linguistics and physics, both contributing [14] and inspiring [2,4]
ground-breaking new work there. The present work also aims to build a bridge
between monoidal categories and theoretical physics, by formalising the use of a
familiar language in physics within a categorical context. For these reasons, the
author would like to dedicate this exposition to Lambek, on the occasion of his
90th birthday.

Tensors are a fundamental mathematical tool used in many areas of physics
and mathematics with notable applications in differential geometry, relativity

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 235–252, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



236 A. Kissinger

theory, and high-energy physics. A (concrete) tensor is an indexed set of numbers
in some field (any field will do, but we’ll use C).

{ψj1,...,jn
i1,...,im

∈ C}ik,jk∈{1,...,D} (1)

One should think of the lower indices as inputs and the upper indices as
outputs. Notable special cases are column vectors vj , row vectors ξi, and matri-
ces M j

i . Tensors can be combined via the tensor product and contraction. The
product of two tensors is defined as a new tensor whose elements are defined
point-wise as products.

(ψφ)j,j
′

i,i′ := ψj
iφ

j′
i′

Contraction is a procedure by which a lower index is “plugged into” an upper
index by summing them together.

θji :=

D∑
k=1

ψk
i φ

j
k

Special cases of contraction are matrix composition, application of a matrix
to a vector, and the trace of a matrix. It is customary to employ the Einstein
summation convention, whereby repeated indices are assumed to be summed
over.

ψk
i,jφ

m
k,lξ

i
m :=

∑
i,k,m

ψk
i,jφ

m
k,lξ

i
m

In other words, indices occurring only once are considered free in the tensor
expression (and can be used in further contractions), whereas repeated indices
are implicitly bound by the sum.

Abstract tensor notation was defined by Penrose in 1971 [21] to give an elegant
way to describe various types of multi-linear maps without the encumbrance of
fixing bases. It allows one to reason about much more general processes with
many inputs and outputs as if they were just tensors. In that paper, he actu-
ally introduced two notations. He introduced a term-based notation, where the
objects of interest are abstract Einstein expressions, and an equivalent (more in-
teresting) notation that is diagrammatic. There, tensors are represented as string
diagrams. This diagrammatic notation, as an elegant way of expressing tensor
expressions, has appeared in popular science [20], theoretical physics [19], repre-
sentation theory [5], and (in its more abstract form) foundations of physics [7].

Twenty years after Penrose’s original paper, Joyal and Street formalised string
diagrams as topological objects and showed that certain kinds of these diagrams
can be used to form free monoidal categories [10]. From this work came a verita-
ble zoo of diagrammatic languages [22] for describing various flavours of monoidal
categories. These languages, as a calculational tool for monoidal categories, have
played a crucial role in the development of categorical quantum mechanics [1,3]
and the theory of quantum groups [24], as well as recently finding applications
in computational linguistics [2,4].

While categorical string diagrams were developed very much in the same spirit
as Penrose’s notation, little work has been done formally relating abstract tensor
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systems to monoidal categories. This is the first contribution of this paper. In
section 5, we show that it is possible to construct a traced symmetric monoidal
category from any abstract tensor system in a natural way. Furthermore, we
show that reasoning with abstract tensors is sound and complete with respect to
traced symmetric monoidal categories by showing that the associated category
of the free abstract tensor system is, in fact, the free traced SMC.

It is generally well known that string diagrams are sound an complete for
traced symmetric monoidal categories. This fact was alluded to in Joyal and
Street’s original paper, but the authors stopped short of providing a proof for
the case where string diagrams had “feedback” (i.e. traced structure). Subse-
quently, this fact is often stated without proof [22], sketched1, or restricted to
the case where the morphisms in the diagram have exactly one input and one
output [12,23]. Thus, the second contribution of this paper is a proof of sound-
ness and completeness of the diagrammatic language as a corollary to the main
theorem about freeness of the category generated by the free abstract tensor
system.

2 Abstract Tensor Systems

In this section, we shall define abstract tensor systems in a manner similar to
Penrose’s original definition in 1971 [21]. It will differ from the Penrose construc-
tion in two ways. First, we will not consider addition of tensors as a fundamental
operation, but rather as extra structure that one could put on top (c.f. enriched
category theory). Second, we will allow tensor inputs and outputs to have more
than one type. In the previous section, we assumed for simplicity that the dimen-
sion of all indices was some fixed number D. We could also allow this to vary,
as long as care is taken to only contract together indices of the same dimension.
This yields a very simple example of a typed tensor system. Many other ex-
amples occur when we use tensors to study categories and operational physical
theories.

For a set of types U = {A,B,C, . . .}, fix a set of labels:

L = {a1, a2, . . . , b1, b2, . . .}

and a typing function τ : L → U . We will always assume there are at least
countably many labels corresponding to each type in U . For finite subsets x,y ∈
Pf (L) and {x1, . . . , xN} ⊆ x let:

[x1 → y1, x2 → y2, . . . , xN → yN ] : x→ y (2)

be the function which sends each xi to yi and leaves all of the other elements of
x fixed.
1 The sketched proof of soundness/completeness for a diagrammatic language which
the authors call sharing graphs in [9] is actually a special case of a theorem in
Hasegawa’s thesis [8], characterising the free cartesian-center traced symmetric
monoidal category, which is proved in detail therein. Thanks to Masahito Hasegawa
and Gordon Plotkin for pointing this out.
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Definition 1. A (small) abstract tensor system consists of:

– A set T (x,y) for all x,y ∈ Pf (L) such that x ∩ y = ∅,
– a tensor product operation:

(− · −) : T (x,y) × T (x′,y′)→ T (x ∪ x′,y ∪ y′)

defined whenever (x ∪ y) ∩ (x′ ∪ y′) = ∅
– a contraction function for a ∈ x, b ∈ y such that τ(a) = τ(b):

Kb
a : T (x,y) → T (x− {a},y− {b})

– a bijection between sets of tensors, called a relabelling:

rf : T (x,y)
∼→ T (f(x), f(y))

for every bijection f : (x∪y) ∼→ z such that τ(f(x)) = τ(x) for all x ∈ x∪y,
– a chosen tensor called a δ-element δba ∈ T ({a}, {b}) for all a, b such that

τ(a) = τ(b), along with an “empty” δ-element 1 ∈ T (∅, ∅)

Before giving the axioms, we introduce some notation. Let ψφ := ψ · φ and
ψ[f ] := rf (ψ). For ψ ∈ T (x,y) let L(ψ) = x ∪ y. If a label a is in L(ψ), we say
a is free in ψ. If a label occurs in a contraction, we say it is bound. Using this
notation, the axioms of an abstract tensor system are as follows:

T1. Kb
a(Kb′

a′(ψ)) = Kb′
a′(Kb

a(ψ))
T2. (ψφ)ξ = ψ(φξ), ψ1 = ψ = 1ψ, and ψφ = φψ
T3. Kb

a(ψφ) = (Kb
a(ψ))φ for a, b /∈ L(φ)

T4. Kb
a(δ

c
aψ) = ψ[b → c] and Kc

b(δ
c
aψ) = ψ[b → a]

L1. ψ[f ][g] = ψ[g ◦ f ] and ψ[id] = ψ
L2. (ψ[f ])φ = (ψφ)[f ] where cod(f) ∩ L(φ) = ∅
L3. Kb

a(ψ)[f
′] = Kf(b)

f(a)(ψ[f ]) where f ′ is the restriction of f to L(ψ)− {a, b}
L4. δba[a → a′, b → b′] = δb

′
a′

Note that L3 implies in particular that the choice of bound labels in irrelevant
to the value of a contracted tensor.

Lemma 1. Let ψ be a tensor containing a lower label a and upper label b, and
let a′, b′ be distinct labels not occurring in L(ψ) such that τ(a) = τ(a′) and
τ(b) = τ(b′). Then

Kb
a(ψ) = Kb′

a′(ψ[a → a′, b → b′])

Proof. Let f = [a → a′, b → b′] and note that the restriction of f to L(ψ)−{a, b}
is the identity map. Then:

Kb′
a′(ψ[a → a′, b → b′]) = Kf(b)

f(a)(ψ[f ]) = Kb
a(ψ)[id] = Kb

a(ψ)
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2.1 Einstein Notation and Free Abstract Tensor Systems

T (x,y) is just an abstract set. Its elements should be thought of “black boxes”
whose inputs are labelled by the set x and whose outputs are labelled by the set
y. Despite this sparse setting, working with abstract tensors is no more difficult
than working with concrete tensors, with the help of some suggestive notation.

First, let a tensor symbol Ψ = (ψ,x,y) be a triple consisting of a tensor
ψ ∈ T (x,y) and lists x,y with no repetition such that the elements of x are
precisely x and the elements of y are precisely y. Equivalently, a tensor symbol
is a tensor along with a total ordering on input and output labels.

Notation 1. Let x = [x1, . . . , xm] and y = [y1, . . . , yn] be lists of labels. Then
we write the tensor symbol Ψ = (ψ,x,y) as:

ψy
x or ψy1,...,yn

x1,...,xm

If m = n and τ(xi) = τ(yi), then let:

δyx := δy1
x1

. . . δyn
xn

In particular, the above expression evaluates to 1 ∈ T (∅, ∅) when x = y = [].

An alphabet A for an abstract tensor system is a set of tensor symbols such
that for all x,y each element ψ ∈ T (x,y) occurs at most once.

The fact that labels in a tensor symbol are ordered may seem redundant, given
that the labels themselves identify inputs and outputs in ψ. However, it gives us
a convenient (and familiar) way to express relabellings. Given ψy1,...,yn

x1,...,xm
∈ A, we

can express a relabelled tensor as:

�ψb1,...,bn
a1,...,am

� = ψ[x1 → a1, . . . , xm → am, y1 → b1, . . . , yn → bn] (3)

It will often be convenient to refer to arbitrary tensors ψy1,...,yn
x1,...,xm

∈ T (x,y)
using tensor symbols. In this case, we treat subsequent references to ψ (possibly
with different labels) as tensors that have been relabelled according to (3).

Definition 2. An Einstein expression over an alphabet A is a list of δ-elements
and (possibly relabelled) tensor symbols, where each label is either distinct or
occurs as a repeated upper and lower label.

For an Einstein expression E, let E[a �→a′] and E[a �→a′] be the same expression,
but with a lower or upper label replaced. Einstein expressions are interpreted as
abstract tensors as follows. First, any repeated labels are replaced by new, fresh
labels of the same type, along with contractions.

�E� = Ka
a(�E

[a �→a]
�) where a is repeated and a is not in E

Once all labels are distinct, juxtaposition is treated as tensor product:

�EE′� = �E��E′� where EE′ has no repeated labels
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Single tensor symbols are evaluated as in equation (3), and empty expressions
evaluate to 1 ∈ T (∅, ∅). We will often suppress the semantic brackets �−� when
it is clear we are talking about equality of tensors rather than syntactic equality
of Einstein expressions.

Theorem 2. An Einstein expression unambiguously represents an element of
some set T (x,y). Furthermore, any expression involving constants taken from
the alphabet A, labellings, tensor products, and contractions can be expressed
this way.

Proof. First, we show that the expression E represents an abstract tensor
without ambiguity. In the above prescription, the choices we are free to make
are (1) the order in which contractions are performed, (2) the choice of fresh
labels a, and (3) the order in which tensor products are evaluated. However, (1)
is irrelevant by axiom T1 of an abstract tensor system, (2) by Lemma 1, and (3)
by axiom T2.

For the other direction, suppose e is an expression involving constants, rela-
bellings, tensor product, and contraction. Then, we can use the axioms of an
abstract tensor system to pull contractions to the outside and push labellings
down to the level of constants. Then, by the axioms of an abstract tensor system,
there is an equivalence of expressions:

e ≡ Kb1
a1
(Kb1

a1
(. . . (Kbn

an
(ψ1[f1]ψ2[f2] . . . ψm[fm]))) . . .)

Let Ψi be the tensor symbol corresponding to the relabelled constant ψi[fi].
Then, there is an equality of tensors: e = �(Ψ1Ψ2 . . . Ψm)[b1 �→a1,...,bn �→an]�

By Lemma 1, the particular choice of bound labels in an Einstein expression is

irrelevant. That is, �E� = �E
[x �→x]
[x �→x]�, for x a bound label and x a new fresh label

such that τ(x) = τ(x). Also note that, by axiom T4 of an abstract tensor system,
it is sometimes possible to eliminate δ elements from Einstein expressions.

�Eδba� = �E[a �→b]
� if E contains a as an upper label

and similarly:

�Eδba� = �E[b�→a]� if E contains b as a lower label

The only cases where such a reduction is impossible are (1) when neither label
on δ is repeated, or (2) when the repeated label is on δ itself: δaa . For reasons
that will become clear in the graphical notation, case (1) is called a bare wire
and case (2) is called a circle. If no δ-elimination is possible, an expression E is
called a reduced Einstein expression. Up to permutation of tensor symbols and
renaming of bound labels, this reduced form is unique.

We are now ready to define the free abstract tensor system over an alphabet
A. First, define an equivalence relation on Einstein expressions. Let E ≈ E′ if
E can be obtained from E′ by permuting tensor symbols, adding or removing
δ-elements as above, or renaming repeated labels. Let |E| be the ≈-equivalence
class of E. Then, the free abstract tensor system Free(A) is defined as follows.
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– T (x,y) is the set of |E| where x and y occur as non-repeated lower and
upper labels in E, respectively

– |E| · |E′| = |EE′|, with E and E′ chosen with no common labels
– Kb

a(|E|) = |E[b�→a]|
– |E|[f ] = |E[f ′]

[f ′] | where f ′ sends bound labels to new fresh labels (i.e. not in

cod(f)) of the correct type and acts as f otherwise

Since we assume infinitely many labels, it is always possible to find fresh
labels. Furthermore, the three tensor operations do not depend on the choice of
(suitable) representative. Note, it is also possible to define the free ATS in terms
of reduced Einstein expressions, in closer analogy with free groups. However,
it will be convenient in the proof of Theorem 7 to let |E| contain non-reduced
expressions as well.

3 Diagrammatic Notation

There is another, often more convenient, alternative to Einstein notation for
writing tensor expressions: string diagram notation. Tensor symbols are repre-
sented as boxes with one input for each lower index and one output for each
upper index.

ψc
a,b ⇒ ψ

a :A b :B

c :C

These inputs and outputs are marked with both a label and the type of the
label, but this data is often suppressed if it is irrelevant or clear from context.
A repeated label is indicated by connecting an input of one box to an output of
another. These connections are called wires.

ψc
a,bφ

b,e
d ⇒

ψ

φ

c :C

a :A
B

e :E

d :D
(4)

Repeated labels are not written, as they are irrelevant by Lemma 1. δ-elements
are written as bare wires, i.e. wires that are not connected to any boxes. In
particular, contracting the input and the output of a δ element together yields
a circle. Also, connecting a box to a bare wire has no effect, which is consistent
with axiom T4.

δba =

b

a

δaa = ψd
a,bδ

c
d = ψ

c

a b

= ψ

c

a b

= ψc
a,b
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The most important feature of the diagrammatic notation is that only the
connectivity of the diagram matters. Therefore, the value is invariant under
topological deformations. For example:

ψ

b

φ

a

ξ ξ

ψ

a

φ

b

=

Theorem 3. For an alphabet A, any tensor in Free(A) can be unambiguously
represented in the diagrammatic notation.

Proof. For a diagram D, form E as follows. First, chose a label that does not
already occur in D for every wire connecting two boxes and for every circle.
Then, let E = Ψ1 . . . Ψn, where each Ψi is a box from D, with labels taken from
the input and output wires. Then, D represents the ≈-equivalence class of E
defined in the previous section. By definition of |E|, the choice of labels for
previously unlabelled wires in D and the order of the Ψi are irrelevant. Thus, D
defines precisely one equivalence class |E| in this manner.

4 Traced Symmetric Monoidal Categories

A monoidal category (C,⊗, I, α, λ, ρ) is a category that has a horizontal composi-
tion operation ⊗ : C ×C → C called the monoidal product that is associative and
unital (up to isomorphism) and interacts well with the categorical (aka vertical)
composition. A strict monoidal category is a monoidal category such that the
natural isomorphisms α, λ, ρ are all identity maps. A symmetric monoidal cate-
gory has an additional swap map σA,B : A⊗B → B⊗A such that σA,B = σB,A,
and it interacts well with the rest of the monoidal structure. For full details, see
e.g. [18].

Definition 3. A traced symmetric monoidal category C is a symmetric monoidal
category with a function

TrX : homC(A⊗X,B ⊗X)→ homC(A,B)

defined for all objects A,B,X, satisfying the following five axioms:2

1. TrX((g ⊗X) ◦ f ◦ (h⊗X)) = g ◦ TrX(f) ◦ h
2. TrY (f ◦ (A⊗ g)) = TrX((B ⊗ g) ◦ f)
2 Note that some structure isomorphisms have been suppressed for clarity. The coher-
ence theorem for monoidal categories lets us do this without ambiguity.
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3. TrI(f) = f and TrX⊗Y (f) = TrX(TrY (f))
4. TrX(g ⊗ f) = g ⊗ TrX(f)
5. TrX(σX,X) = 1X

Just as monoidal categories have strict and non-strict versions, so too do
monoidal functors. Strict (traced, symmetric) monoidal functors preserve all of
the categorical structure up to equality, whereas strong functors preserve all of
the structure up to coherent natural isomorphism. The term “strong” is used by
way of contrast with lax monoidal functors, which preserve the structure only
up to (possibly non-invertible) natural transformations. Again, see [18] for full
definitions.

Let TSMC be the category of traced symmetric monoidal categories and
strong monoidal functors that preserve symmetry maps and the trace operation,
and let TSMCs be the strict version.

4.1 The Free Traced Symmetric Monoidal Category

Two morphisms are equal in a free (symmetric, traced, compact closed, etc.)
monoidal category if and only if their equality can be established only using the
axioms of that category. Thus free monoidal categories are a powerful tool for
proving theorems which hold in all categories of a particular kind. Free monoidal
categories are defined over a collection of generators called a monoidal signature.

Notation 4. For a set X, let X∗ be the free monoid over X, i.e. the set of lists
with elements taken from X where multiplication is concatenation and the unit
is the empty list. For a function f : X → Y , let f∗ : X∗ → Y ∗ be the lifting of
f to lists: f∗([x1, . . . , xn]) = [f(x1), . . . , f(xn)].

Definition 4. A (small, strict) monoidal signature T = (O,M, dom, cod) con-
sists of a set of objects O, a set of morphisms M , and a pair of functions
dom : M → O∗ and cod : M → O∗.

The maps dom and cod should be interpreted as giving input and output types
to a morphism m ∈ M . For instance, if dom(m) = [A,B,C] and cod(m) = [D],
then m represents a morphism m : A⊗B⊗C → D. The empty list is interpreted
as the tensor unit I.

There is also a notion of a non-strict monoidal signature. In that case,O∗ is re-
placed with the free (⊗, I)-algebra over O. However, by the coherence theorem of
monoidal categories, there is little difference between strict monoidal signatures
and non-strict monoidal signatures with some fixed choice of bracketing.

Definition 5. For monoidal signatures S, T , a monoidal signature homomor-
phism f consists of functions fO : OS → OT and fM : MS → MT such that
domT ◦ fM = f∗O ◦ domS and codT ◦ fM = f∗O ◦ codS. MonSig is the category
of monoidal signatures and monoidal signature homomorphisms.
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A monoidal signature is essentially a strict monoidal category without com-
position or identity maps. A monoidal signature homomorphism is thus a strict
monoidal functor, minus the condition that it respect composition and identity
maps.

There is an evident forgetful functor from TSMCs into MonSig, by throwing
away composition. If this forgetful functor has a left adjoint F , the image of a
signature T under F is called the free strict monoidal category over T .

However, when considering the free non-strict category, the issue becomes a
bit delicate. In particular, it is no longer reasonable to expect the lifted mor-
phism ṽ to be unique on the nose, but rather unique up to coherent natural iso-
morphism. Thus, the adjunction MonSig ( TSMCs should be replaced with a
pseudo-adjunction of some sort. To side-step such higher categorical issues, Joyal
and Street simply state the appropriate correspondence between valuations of a
signature and strong symmetric monoidal functors from the free category [10].
Here, we state the traced version of their definition. Let [T, C] be the category
of valuations of T in C and TSMC(C,D) be the category of strong traced sym-
metric monoidal functors from C to D and monoidal natural isomorphisms.

Definition 6. For a monoidal signature Sig(A), a traced symmetric monoidal
category F(T ) is called the free traced SMC when, for any traced SMC C, there
exists a valuation η ∈ ob([Sig(A), C]) such that:

(− ◦ η) : TSMC(F(T ), C)→ [T, C]

yields an equivalence of categories.

This equivalence of categories plays an analogous role to the isomorphism of
hom-sets characterising an adjunction. For brevity, we omit the definitions of
[T, C] and (− ◦ η). The first represents the category of valuations of a monoidal
signature T into a (possibly non-strict) monoidal category C and valuation mor-
phisms (i.e. the valuation analogue of natural transformations). The latter repre-
sents the natural way to “compose” a valuation η with a strong monoidal functor
to yield a new valuation. Details can be found in [10].

5 The Traced SMC of an Abstract Tensor System

In this section, we construct the associated traced symmetric monoidal category
of an abstract tensor system. We shall see that an abstract tensor system and a
traced SMC are essentially two pictures of the same thing. However, these two
pictures vary in how they refer to the inputs and outputs of maps. On the one
hand, traced SMCs take the input and output ordering to be fixed, and rely on
structural isomorphisms for shuffling inputs and outputs around. On the other,
abstract tensor systems refer to inputs and outputs by labels, but care must be
taken to make sure these labels are given in a consistent manner.

Let N be the natural numbers and B = {0, 1}. From hence forth, we will
assume that the set L of labels has a special subset Lc

∼= U × N× B called the
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canonical labels. We write the elements (X, i, 0) and (X, i, 1) as x
(0)
i and x

(1)
i ,

respectively. Then, let:

τ(x
(0)
i ) = τ(x

(1)
i ) = X

As we shall see in definition 7, using canonical labels allows us to impose input
and output ordering on a tensor in order to treat it as a morphism in a monoidal
category. It also yields a natural choice of free labels in the monoidal product
of two tensors, which is an important consideration when the labels of the two
tensors being combined are not disjoint.

Notation 5. For X = [X1, X2, . . . , XN ] a list of types, define the following list
of labels for 1 ≤ m < n ≤ N and i = 0, 1:

x(i)
m..n := [x(i)

m , x
(i)
m+1, . . . , x

(i)
n−1, x

(i)
n ]

The set containing the above elements is denoted x
(i)
m..n. In the case where m = 1

and n = length(X), we often omit the subscripts, writing simply x(i) and x(i).

Definition 7. Let S = (U ,L, T (−,−)) an abstract tensor system with a choice
of canonical labels Lc ⊆ L. Then C[S] is the traced symmetric monoidal category
defined as follows:

ob(C[S]) = U∗

homC[S](X,Y ) = T (x (0),y (1))

X ⊗ Y = XY (I = [ ])

For ψ : X → Y , φ : Y → Z, ψ̃ : U → V , and ξ : U ⊗X → V ⊗X, the rest of
the structure is defined as:

φz (1)

y (0) ◦ ψy (1)

x (0) = ψy′

x (0)φ
z (1)

y′

ψy (1)

x (0) ⊗ ψ̃ v (1)

u (0) = ψ
y

(1)
1..n

x
(0)
1..m

ψ̃
v

(1)

n+1..n+n′

u
(0)

m+1..m+m′

idX = δx
(1)

x (0)

σX,Y = δ
x

(1)
n+1..n+m

x
(0)
1..m

δ
y

(1)
1..n

y
(0)
m+1..m+n

TrX(ξ
v

(1)
1..nx

(1)
n+1..n+k

u
(0)
1..mx

(0)
m+1..m+k

) = ξ
v
(1)
1..nx

′

u
(0)
1..mx′

where x′ and y′ are chosen as fresh (possibly non-canonical) labels.

Theorem 6. C[S] is a strict, traced symmetric monoidal category.

Proof. Associativity follows from ATS axioms (used implicitly in the Einstein
notation):

(ξ ◦ φ) ◦ ψ = ψy′

x(0)φ
z′
y′ξw

(1)

z′ = ξ ◦ (φ ◦ ψ)
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and similarly for identity maps. Associativity and unit laws of the monoidal
product follow straightforwardly from associativity of (− · −). The interchange
law can be shown as:

(ψ̃z(1)

y(0) ⊗ φ̃w(1)

v(0) ) ◦ (ψy(1)

x(0) ⊗ φv(1)

u(0)) = ψw′

x
(0)
1..m

φx′

u
(0)

m+1..m+m′
ψ̃

y
(1)
1..n

w′ φ̃
z
(1)

n+1..n+n′
x′

= ψw′

x
(0)
1..m

ψ̃
y

(1)
1..n

w′ φx′

u
(0)

m+1..m+m′
φ̃

z
(1)

n+1..n+n′
x′

= (ψ̃ ◦ ψ)⊗ (φ̃ ◦ φ)

Verification of the symmetry and trace axioms is a routine application of the
ATS axioms.

6 The Free ATS and the Free Traced SMC

In this section, we will show that the free abstract tensor system over an alphabet
induces a free traced symmetric monoidal category. We assume for the remainder
of this section that tensor symbols in an alphabet A are canonically labelled.

That is, they are of the form ψy (1)

x (0) ∈ A. As the labels have no semantic content,
we can always replace an arbitrary alphabet with a canonically labelled one.

Also note that canonically labelled alphabets and monoidal signatures are
essentially the same thing. Let Sig(A) be the monoidal signature with morphisms

ψy (1)

x (0) ∈ A and the dom and cod maps defined by:

dom(ψy (1)

x (0) ) = X cod(ψy (1)

x (0) ) = Y

For any signature S = (O,M, dom, cod), it is always possible to define an al-
phabet A such that S = Sig(A). Thus, we will often use the designation Sig(A)
to refer to an arbitrary monoidal signature.

For Free(A) the free ATS over A, we will show that C[Free(A)] is the free
traced SMC over Sig(A). We will do this by first considering the strict case,
where we construct the unique strict traced symmetric monoidal functor ṽ that
completes the following diagram, for signature homomorphisms η, v:

Sig(A) C[Free(A)]

C

η

v
ṽ (5)

Before we get to the bulk of the proof, we introduce some notation. The first
thing we introduce is the notion of labelling a morphism.

Definition 8. For a set L of labels and a function μ : L → ob(C), an object is
called μ-labelled if it is equipped with a list i such that:

X = μ(i1)⊗ μ(i2)⊗ . . .⊗ μ(in)
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A morphism is called μ-labelled if its domain and codomain have μ-labellings for
disjoint lists i, j.

To simplify notation, we write μ labelled objects as follows:

X = Xi1 ⊗Xi2 ⊗ . . .⊗Xin

where Xik = μ(ik). For a μ-labelled object (X, i ) and a label i ∈ i, σX:i is the
(unique) symmetry map that permutes the object Xi to the end of the list and
leaves the other objects fixed.

σX:x =

Xi1 Xi XiM

...

...

...

Xi1 XiMXi

In any traced SMC, we can define a contraction operator Cj
i (−) which “traces

together” the i-th input with the j-th output on a labelled morphism.

Definition 9. Let f : Xi1 ⊗ . . .⊗XiM → Yj1 ⊗ . . .⊗YjN be a labelled morphism
in a traced symmetric monoidal category such that for labels i ∈ {i1, . . . , iM}
and j ∈ {j1, . . . , jN}, Xi = Yj. Then we define the trace contraction Cj

i (f) as
follows:

Cj
i (f) := TrXi=Yj (σY :j ◦ f ◦ σ−1

X:i)

Note that a contraction of a labelled morphism yields another labelled mor-
phism, by deleting the contracted objects from the label lists. Thus we can
contract many times, and the resulting morphism does not depend on the order
in which we perform contractions.

Lemma 2. Contractions are commutative. For a labelled morphism f distinct
indices i, i′ and j, j′:

Cj
i (C

j′
i′ (f)) = Cj′

i′ (C
j
i (f))

Definition 10. For a strict traced symmetric monoidal category C, define a set
M of atomic morphisms, such that any morphism in C can be obtained from
those morphisms and the traced symmetric structure. An labelled morphism is
called disconnected if it is of the form f = f1 ⊗ . . . ⊗ fK , where each fk is a
labelled morphism in M :

fk : Xik,1
⊗ . . .Xik,Mk

→ Yjk,1
⊗ . . .⊗ Yjk,Nk

Definition 11. Let f = f1⊗. . .⊗fM be a disconnected labelled morphism. For dis-
tinct indices {i1, . . . , iP } ⊆ {i1,1, . . . iK,MK} and {j1, . . . , jP } ⊆ {j1,1, . . . jK,NK},
a map f ′ is said to be in contraction normal form (CNF) if:

f ′ = Cj1
i1
(Cj2

i2
(. . . (CjP

iP
(f)) . . .))
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Definition 12. Let f and f ′ be given as in Definition 11. A component fk
of f is said to be totally contracted if the indices of all of its inputs occur in
{i1, . . . , iP } and the indices of all of its outputs occur in {j1, . . . , jP }.

Lemma 3. For f and f ′ from Definition 11, totally contracted components of
f can be re-ordered arbitrarily by relabelling.

Lemma 4. Let f, f ′ be Defined as in 11. If fk = 1Xik,1
= 1Yjk,1

is a totally

contracted identity map that is not a circle (i.e. it is not contracted to itself),
then it can be removed by relabelling.

For full proofs of lemmas 2, 3, and 4, see [13]. The final ingredient we need
for the main theorem is the correspondence between the operations Cj

i and Kj
i .

First, note that labelled morphisms in C[Free(A)] are in 1-to-1 correspondence

with tensors in Free(A). That is, a morphism ψy (1)

x (0) : X → Y labelled by (i, j)

defines the tensor ψj
i . By abuse of notation, we will write ψj

i for both the tensor
and the corresponding labelled morphism.

Lemma 5. For some fixed objects X ,Y ∈ C[Free(A)], a labelled morphism

ψj
i : X → Y in C[Free(A)], and labels i ∈ i, j ∈ j:

Cj
i (ψ

j
i ) = Kj

i (ψ
j
i )

With the help of these lemmas, we are now ready to prove the main theorem.

Theorem 7. C[Free(A)] is the free strict traced symmetric monoidal category
over Sig(A).

Proof. Let η be the monoidal signature homomorphism that is identity on ob-

jects and sends morphisms ψy (1)

x (0) ∈ A to themselves, considered as Einstein
expressions with one tensor symbol.

ψy (1)

x (0) ∈ T (x (0),y (1)) = homC[Free(A)](X,Y )

Now, supposing we are given another monoidal signature homomorphism v
from Sig(A) into a strict traced symmetric monoidal category C. Our goal is
to build a traced symmetric monoidal functor ṽ : C[Free(A)] → C such that
ṽη = v. On objects:

ṽ([X1, X2, . . . , Xn]) = v(X1)⊗ v(X2)⊗ . . .⊗ v(Xn)

Let |E| : X → Y be morphism in C[Free(A)]. In other words, it is an
equivalence class of Einstein expressions, up to permutation of tensor symbols,
renaming of bound labels, and δ-contraction. Choose some representative E of
|E| such that E is of the form:

E = δx
′

x (0)δ
y (1)

y′ Ψ1Ψ2 . . . ΨM (6)
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where Ψi are tensor symbols (or δ-elements) and E′ = Ψ1Ψ2 . . . ΨM is an Einstein
expression with upper labels x′ and lower labels y′. In other words, E′ contains
no free labels, and x′ and y′ are disjoint. Form an expression F from E by
choosing a fresh jk for each repeated label ik. Reading the repeated indices in
E from left to rewrite, the choice of E fixes a unique expression:

E = Kj1
i1
(Kj2

i2
(. . . (KjN

iN
(F )) . . .)

which, by Lemma 5 can be expressed:

E = Cj1
i1
(Cj2

i2
(. . . (CjN

iN
(F ) . . .)

up to bound labels jk. Since F contains no repeated labels,

E = Cj1
i1
(Cj2

i2
(. . . (CjN

iN
(1X ⊗ 1Y ⊗ Ψ1 ⊗ . . .⊗ Ψn) . . .)

Then, ṽ must respect v and preserve the traced symmetric monoidal structure.
In particular, it must preserve Cj

i . So, the only possible value for ṽ(Ê) is:

ṽ(Ê) = Cj1
i1
(Cj2

i2
(. . . (CjN

iN
(1v(X) ⊗ 1v(Y ) ⊗ v(Ψ1)⊗ . . .⊗ v(Ψn)) . . .)

where the labelling on the argument is inherited from the labelling on F .
Then, since all of the non-canonical labels in E are contracted, ṽ(Ê) is indeed

a morphism from ṽ(X) to ṽ(Y ). For this to be well-defined, we need to show
it does not depend on the choice of E. First, note that the choice of bound
labels is irrelevant because the operation Cj

i is defined in terms of (pairs of)
positions of labels, and does not depend on the choice of labels themselves.
Next, consider the form (6) we have fixed for E. The order of tensor symbols is
fixed except for in Ψ1Ψ2 . . . ΨM . But then, all of the symbols in Ψ1Ψ2 . . . ΨM must
be totally contracted, so by Lemma 3, the order of the corresponding v(Ψi) are

irrelevant. Furthermore, δ expansion or removal will not affect the value of ṽ(Ê)
by corollary 4. Thus ṽ is well-defined.

Next, we show that ṽ is a traced symmetric monoidal functor. It follows
immediately from the definition that ṽ preserves the Cj

i operation:

Cj
i (ṽ(f)) = ṽ(Cj

i (f))

where ṽ(f) inherits its labelling from f . The fact that ṽ preserves the monoidal
product follows from the definition of Cj

i and the trace axioms. Then, since all
of the rest of the traced symmetric monoidal structure can be defined in terms
of Cj

i and ⊗, ṽ must preserve it.

This suffices to establish that C[Free(A)] is the free strict traced symmetric
monoidal category. The extension to the non-strict case is now routine.

Corollary 1. C[Free(A)] is the free traced symmetric monoidal category over
Sig(A).

Proof. Theorem 7 establishes the correspondence between valuations and traced
symmetric monoidal functors when C is strict. The remainder of the proof is
similar to that of theorem 1.2 in [10].
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6.1 The Diagrammatic Free Category

In [10], Joyal and Street defined the free symmetric monoidal category in terms
of anchored diagrams with valuations.

Definition 13. A generalised topological graph is a topological space G and a
distinguished finite discrete subspace G0 such that G − G0 is isomorphic to a
disjoint union of finitely many copies of the open interval (0, 1) or circles S1.

The points in G0 are called nodes and the components of G − G0 are called
wires. An anchored diagram is then a generalised topological graph with three
extra pieces of data:

1. A choice of orientation for each wire.
2. For each n ∈ G0, a total ordering for the input and output wires of n, where

inputs and outputs are distinguished using the orientation of wires.
3. A total ordering on the inputs and outputs of G as a whole, i.e. the ends of

wires that are not connected to nodes.

A valuation v of G is then an assignment of objects to wires and morphisms
to the points in G0. The data (G, v) can be pictured as follows:

< <

ψ

φ

ξ
< <

Let Anchor(Sig(A)) be the category whose objects are lists of objects from
Sig(A) and whose morphisms are isomorphism classes of anchored diagrams
with valuations. Composition is defined by plugging the outputs of one diagram
into the inputs of another and monoidal product as diagram juxtaposition. Let
Anchorp(Sig(A)) be the restriction of morphisms to progressive diagrams, i.e.
diagrams with no feedback. For details on this construction, see [10].

Theorem 8 ([10]). Anchorp(Sig(A)) is the free symmetric monoidal category
on Sig(A).

If we drop the progressive constraint, Anchor(Sig(A)) admits a trace op-
eration in the obvious way. So, we can now state the above result for traced
symmetric monoidal categories as a corollary to Theorem 7. This is due to the
close relationship between Einstein expressions in diagrams demonstrated in
section 3.



Abstract Tensor Systems 251

Corollary 2. Anchor(Sig(A)) is the free traced symmetric monoidal category
on Sig(A).

Proof. We can prove this by demonstrating a (traced symmetric monoidal) iso-
morphism of categories between Anchor(Sig(A)) and C[Free(A)]. These cate-
gories have the same objects, so it suffices to show an isomorphism of hom-sets.
By a construction similar to that described in section 3, a tensor in C[Free(A)]
defines a unique anchored diagram, where the total ordering on inputs and out-
puts is defined using the partial ordering on canonical labels: xi ≤ yj ⇔ i ≤ j.
Furthermore, any anchored diagram can be expressed this way.
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Abstract. We prove that every symmetric residuated groupoid is em-
beddable in a boolean double residuated groupoid. Analogous results
are obtained for other classes of algebras, e.g. (commutative) symmetric
residuated semigroups, symmetric residuated unital groupoids, cyclic bi-
linear algebras. We also show that powerset algebras constructed in the
paper preserve some Grishin axioms.
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1 Introduction

Residuated groupoids with operations ⊗, \, / are models of Nonassociative Lam-
bek Calculus (NL) [11] and other weak substructural logics [7]. Symmetric resid-
uated groupoids with operations ⊗, \, / and dual operations ⊕,�,� are models
of certain symmetric substructural logics, as e.g. Grishin’s extensions of the
Lambek calculus [8]. In particular, Moortgat [16] studies a nonassociative sym-
metric substructural logic, called Lambek-Grishin calculus (LG), as a type logic
for Type-Logical Grammar. Let us recall the calculus LG. Types are formed out
of atomic types p, q, r, . . . by means of the following formation rule: if A,B are
types, then also A⊗B, A\B, A/B, A⊕B, A�B, A�B are types. The minimal
LG is given by the preorder axioms:

A → A; if A→ B and B → C then A→ C,
together with the residuation and dual residuation laws:

A→ C/B iff A⊗B → C iff B → A\C,
C �B → A iff C → A⊕B iff A � C → B.

Algebraic models of this calculus are symmetric residuated groupoids.
Interesting extensions of this calculus can be obtained by adding Grishin

axioms (see Section 5). Other well-known logics of that kind are Multiplicative
Linear Logics, corresponding to commutative involutive symmetric residuated
semigroups, and their noncommutative and nonassociative variants, e.g. InFL,
InGL (see e.g. [1,7]).
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There are many natural constructions of multiple residuated groupoids, i.e.
residuated groupoids with several residuation triples (see e.g. [5,9]). Dual resid-
uated groupoids (satisfying the residuation law with respect to dual ordering ≥)
can be constructed by using an involutive negation, e.g. set complementation ∼,
and defining the dual residuation triple:

X ⊕ Y = (X∼ ⊗ Y ∼)∼, X � Y = (X∼\Y ∼)∼, X � Y = (X∼/Y ∼)∼.

Bia�lynicki-Birula and Rasiowa [2] show that every quasi-boolean algebra (i.e.
a distributive lattice with an involutive negation, satisfying Double Negation and
Transposition, or equivalently: Double Negation and one of De Morgan laws) is
embeddable into a quasi-field of sets (i.e. a family of sets, closed under ∪, ∩ and
a quasi-complement ∼g X = g [X ]

∼
, where g is an involutive mapping).

In this paper we prove similar results for symmetric residuated groupoids
and related algebras. Our embedding preserves the residuated groupoid opera-
tions and negation(s). The target algebra is a field or a quasi-field of sets with
additional operations of a symmetric residuated groupoid.

We prove that every symmetric residuated groupoid is a subalgebra of an
algebra of the above form. As in [5], by a boolean residuated algebra one means a
residuated algebra with additional boolean operations ∼,∪,∩, and similarly for a
quasi-boolean residuated algebra. More precisely, we show that every symmetric
residuated groupoid can be embedded in a boolean double residuated groupoid,
which is a field of sets with additional operations ⊗1, \1, /1, ⊗2, \2, /2 and ∼

(dual operations are defined from ⊗2, \2, /2 as above). Analogous results are
obtained for (commutative) symmetric residuated semigroups and other algebras
of this kind. Furthermore, the target algebra always consists of subsets of some
set, and the involutive negation is set complementation. The results elaborate
final remarks of Buszkowski [5] who considers general residuated algebras, but
does not provide any details of the representation. Let us notice that in [5]
symmetric residuated algebras are called double residuated algebras.

We also show that the target algebra is a (commutative) semigroup, if the
source algebra is so. Units 1 and 0 (for ⊗ and ⊕, respectively) are preserved, if
the target algebra is restricted to a family of upsets. The latter is a quasi-field of
sets, if the source algebra admits an involutive negation ’−’, and the embedding
sends ’−’ to a quasi-complement. The target algebra is a cyclic bilinear algebra,
if the source algebra is so.

Some ideas of our proofs are similar to those of Kurtonina and Moortgat [10]
in their proof of the completeness of the minimal LG with respect to Kripke se-
mantics. Our algebraic approach, however, reveals more uniformity of the whole
construction, i.e. its two-level form where the first level is related to the ground
level in the same way as the second one to the first one.

The paper is organized as follows. In Section 2 we discuss some basic notions.
Section 3 contains some powerset constructions of residuated groupoids, dual
residuated groupoids and symmetric residuated groupoids. The main result, a
representation theorem for symmetric residuated groupoids, is proved in Sec-
tion 4. In Section 5 we provide similar representation theorems for symmetric
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residuated semigroups, symmetric residuated unital groupoids and cyclic bilinear
algebras. At the end of this section we consider some Grishin axioms.

2 Preliminaries

We begin this section with the definitions of some basic notions.
Let us recall that a structure (M,≤,⊗) is a partially ordered groupoid (p.o.

groupoid), if ≤ is a partial order and ⊗ is a binary operation monotone in both
arguments i.e. a ≤ b implies a⊗ c ≤ b⊗ c and c⊗ a ≤ c⊗ b, for a, b, c ∈M .

A residuated groupoid is a structure (M,≤,⊗, \, /) such that (M,≤) is a poset,
(M,⊗) is a groupoid, and ⊗, \, / satisfy the residuation law:

a ≤ c/b iff a⊗ b ≤ c iff b ≤ a\c,

for all a, b, c ∈ M . It is easy to show that if (M,≤,⊗, \, /) is a residuated
groupoid, then (M,≤,⊗) is a p.o. groupoid.

A dual residuated groupoid is defined as a structure (M,≤,⊕,�,�) such that
(M,≤) is a poset, (M,⊕) is a groupoid, and ⊕,�,� satisfy the dual residuation
law:

c� b ≤ a iff c ≤ a⊕ b iff a � c ≤ b

for all a, b, c ∈M . Again (M,≤,⊕) is a p.o. groupoid.
A structure M = (M,≤,⊗, \, /,⊕,�,�) is called a symmetric residuated

groupoid iff the (≤,⊗, \, /)-reduct of M and the (≤,⊕,�,�)-reduct of M are a
residuated groupoid and a dual residuated groupoid, respectively.

An involutive residuated groupoid is a structure which arises from a residuated
groupoid by adding a unary operation − (we call it an involutive negation) which
satisfies the following two conditions:

−− a = a (Double Negation)
a ≤ b⇒ −b ≤ −a (Transposition)

for all elements a, b. In a similar way we define involutive dual residuated
groupoids, involutive symmetric residuated groupoids etc. Given lattice ope-
rations ∨, ∧, the second condition is equivalent to −(a∨b) = (−a)∧ (−b). Hence
our involutive negation corresponds to a quasi-complement in the sense of [2]
and a De Morgan negation (assuming Double Negation) in the sense of [6]. It is
also called a cyclic negation in the literature on substructural logics (cf. [7]).

A multiple p.o. groupoid is an ordered algebraM = (M,≤, {⊗}i∈I) such that,
for any i ∈ I, (M,≤,⊗i) is a p.o. groupoid. By a multiple residuated groupoid
we mean a structure M = (M,≤, {+i, \i, /i}i=1,...,n) such that the (≤,+i, \i, /i)
-reducts of M for i = 1, 2, . . . n are residuated groupoids.

In this paper we only consider double residuated groupoids, i.e. multiple
residuated groupoids for i = 1, 2.
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Let M be an involutive residuated groupoid. We define the structure M � =
= (M,≤,⊕,�,�,−) such that

a⊕ b = −((−a)⊗ (−b)),

a� b = −((−a)/(−b)),

a � b = −((−a)\(−b)).

Now, letM denote a dual involutive residuated groupoid. We define the structure
M − = (M,≤,⊗, /, \,−) such that

a⊗ b = −((−a)⊕ (−b)),

a/b = −((−a)� (−b)),

a\b = −((−a) � (−b)).

Lemma 1. If M is an involutive residuated groupoid, then M � is an involutive
dual residuated groupoid. If M is an involutive dual residuated groupoid, then
M − is an involutive residuated groupoid.

Proof. Assume that M is an involutive residuated groupoid. We show

c� b ≤ a iff c ≤ a⊕ b iff a � c ≤ b.

We prove the first equivalence:
c ≤ a⊕ b iff c ≤ −((−a)⊗ (−b)) iff (−a)⊗ (−b) ≤ −c iff
−a ≤ (−c)/(−b) iff −((−c)/(−b)) ≤ a iff c� b ≤ a

The second equivalence can be proved in an analogous way.
Assuming that M is an involutive dual residuated groupoid, the equivalences

a ≤ c/b iff a ⊗ b ≤ c iff b ≤ a\c can be proved in an analogous way to the one
above. ! 

Observe that M �− = M and M −� = M.
It is easy to show that for symmetric residuated groupoids the following con-

ditions hold:

a⊗ (a\b) ≤ b, (b/a)⊗ a ≤ b,
b ≤ a⊕ (a � b), b ≤ (b � a)⊕ a,

a ≤ b ⇒ c\a ≤ c\b, a/c ≤ b/c, b\c ≤ a\c, c/b ≤ c/a;
a ≤ b ⇒ c � a ≤ c � b, a� c ≤ b � c, b � c ≤ a � c, c� b ≤ c� a.

3 A Powerset Construction

Concrete residuated groupoids can be constructed in various ways. A basic
construction is the powerset residuated groupoid.

Given a groupoid M = (M,⊗), we consider the powerset P(M) with opera-
tions defined as follows:

X ⊗ Y = {a⊗ b : a ∈ X, b ∈ Y },
X\Z = {c ∈ M : ∀a ∈ X a⊗ c ∈ Z},
Z/Y = {c ∈ M : ∀b ∈ Y c⊗ b ∈ Z}.
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Then, (P(M),⊂,⊗, \, /) is a residuated groupoid; we denote this algebra by
P(M). Every residuated groupoid can be embedded in a structure of this form
as shown in [9]. In this paper, we apply a more general construction.

Starting from a p.o. groupoid M = (M,≤,⊗) one can define another powerset
algebra which will be denoted by P≤(M). ForX,Y, Z ⊂M , we define operations:

X⊗̂Y = {c ∈ M : ∃a ∈ X ∃b ∈ Y a⊗ b ≤ c},
X \̂Z = {b ∈ M : ∀a ∈ X ∀c ∈ M (a⊗ b ≤ c⇒ c ∈ Z)},
Z/̂Y = {a ∈ M : ∀b ∈ Y ∀c ∈M (a⊗ b ≤ c⇒ c ∈ Z)}.

The following lemma holds.

Lemma 2. P≤(M) = (P(M),⊂, ⊗̂, \̂, /̂) is a residuated groupoid.

Proof. We prove that the residuation law holds, i.e.

Y ⊂ X \̂Z iff X⊗̂Y ⊂ Z iff X ⊂ Z/̂Y

for every X,Y, Z ∈ P(M).

Assume Y ⊂ X \̂Z. Let c ∈ X⊗̂Y . By the definition of operation ⊗̂, there
exist a ∈ X and b ∈ Y such that a⊗ b ≤ c. Since b ∈ Y , then b ∈ X \̂Z. Hence,

by the definition of operation \̂, c ∈ Z.
Assume X⊗̂Y ⊂ Z. Let b ∈ Y . Let a ∈ X , c ∈ M and a ⊗ b ≤ c. By the

definition of operation ⊗̂, we have c ∈ X⊗̂Y , so c ∈ Z. Finally, by the definition

of operation \̂, b ∈ X \̂Z.
The proof of the second equivalence is analogous. ! 

The same construction can be performed with the reverse ordering ≥. Starting
from a p.o. groupoid M = (M,≤,⊕), we define a dual powerset algebra P≥(M).
For X,Y, Z ⊂M , we define operations:

X⊕̄Y = {c ∈M : ∃a ∈ X ∃b ∈ Y c ≤ a⊕ b},
X�̄Z = {b ∈M : ∀a ∈ X ∀c ∈M (c ≤ a⊕ b⇒ c ∈ Z)},
Z�̄Y = {a ∈M : ∀b ∈ Y ∀c ∈ M (c ≤ a⊕ b⇒ c ∈ Z)}.

Lemma 3. P≥(M) = (P(M),⊂, ⊕̄, �̄, �̄) is a residuated groupoid.

Proof. Observe that M ′ = (M,≥,⊕) is a p.o. groupoid. P≥(M) is exactly the
algebra considered in Lemma 2 for M ′. ! 

In all cases we obtained some powerset residuated groupoids. Dual residuated
groupoids can be constructed from them in the way described in Lemma 1. Of
course, P≤(M) and P≥(M) can be expanded by the set complementation:

X∼ = {a ∈ M : a /∈ X}.
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Clearly, ∼ is an involutive negation on P(M). We can define dual operations
on P≥(M) as follows:

X⊕̂Y = (X∼⊕̄ Y ∼)∼,
X�̂Z = (X∼

�̄ Z∼)∼,
Z�̂Y = (Z∼�̄ Y ∼)∼.

Lemma 4. Pd
≥(M) = (P(M),⊂, ⊕̂, �̂, �̂) is a dual residuated groupoid.

Proof. It is an easy consequence of Lemma 1 and Lemma 3. ! 

The next lemma shows an alternative way of defining operations ⊕̂, �̂, �̂.

Lemma 5. The operations ⊕̂, �̂, �̂ can also be defined as follows:

X⊕̂Y = {c ∈ M : ∀a, b ∈M (c ≤ a⊕ b⇒ (a ∈ X ∨ b ∈ Y ))},
X�̂Z = {b ∈M : ∃a /∈ X ∃c ∈ Z c ≤ a⊕ b},
Z�̂Y = {a ∈ M : ∃b /∈ Y ∃c ∈ Z c ≤ a⊕ b}.

Let M = (M,≤,⊗, \, /,⊕,�,�) be a symmetric residuated groupoid. By

P≤(M) we denote the algebra (P(M),⊂, ⊗̂, \̂, /̂, ⊕̂, �̂, �̂), where ⊗̂, \̂, /̂ and ⊕̂,
�̂, �̂ are defined as for P≤(M) and for Pd

≥(M), respectively.

Lemma 6. For any symmetric residuated groupoid M, P≤(M) is a symmetric
residuated groupoid.

Proof. It is an immediate consequence of Lemma 2 and Lemma 4. ! 

Let (M,≤) be a poset. An upset is a set X ⊂M such that, if x ∈ X and x ≤ y,
then y ∈ X , for all x, y ∈M . A downset is a set X ⊂M such that, if x ∈ X and
y ≤ x, then y ∈ X , for all x, y ∈ M .

By a principal upset (downset) generated by a ∈ M we mean the set of all
b ∈M such that a ≤ b (b ≤ a). We denote it ,a- ( .a/ ).

Observe that for any X,Y ⊂ M , X⊗̂Y , X \̂Y , Y /̂X are upsets on (M,≤).
Similarly, X⊕̄Y , X�̄Y , Y �̄X are downsets. Consequently, X⊕̂Y , X�̂Y , Y �̂X
are upsets.

Let us denote by UM the set {X ⊂ M : X is an upset}. Let us denote by

UM the partially ordered algebra (UM,⊂, ⊗̂, \̂, /̂, ⊕̂, �̂, �̂). Observe that UM is
a subalgebra of P≤(M). Clearly, UM is a symmetric residuated groupoid. Let us
denote DM = {X ⊂ M : X is a downset} and DM = (DM,⊂, ⊕̄, �̄, �̄). Observe
that DM is a subalgebra of P≥(M), where M = (M,≤,⊕) is a p.o. groupoid.

Unfortunately, we know no embedding of the symmetric residuated groupoid
M into P≤(M). The values of such an embedding should be upsets. Neither
h(a) = ,a-, nor h(a) = .a/∼ satisfies the homomorphism conditions for all oper-

ations ⊗, \, /,⊕,�,�. For instance, the first does not satisfy h(a\b) = h(a)\̂h(b).
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We construct the higher-level algebra P≤(UM). In this algebra the operations
are denoted by ⊗, \, /,⊕,�,�. They can explicitly be defined as follows:

X ⊗ Y = {Z ∈ UM : ∃X ∈ X ∃Y ∈ Y X⊗̂Y ⊂ Z},
X\Z = {Y ∈ UM : ∀X ∈ X ∀Z ∈ UM (X⊗̂Y ⊂ Z ⇒ Z ∈ Z)},
Z/Y = {X ∈ UM : ∀Y ∈ Y ∀Z ∈ UM (X⊗̂Y ⊂ Z ⇒ Z ∈ Z)},
X ⊕ Y = {Z ∈ UM : ∀X ∈ UM ∀Y ∈ UM (Z ⊂ X⊕̂Y ⇒ (X ∈ X ∨ Y ∈ Y))},
X � Z = {Y ∈ UM : ∃X /∈ X ∃Z ∈ Z Z ⊂ X⊕̂Y },
Z � Y = {X ∈ UM : ∃Y /∈ Y ∃Z ∈ Z Z ⊂ X⊕̂Y },

for all X ,Y,Z ⊂ UM.

The following lemma holds.

Lemma 7. P≤(UM) = (P(UM),⊂,⊗, \, /,⊕,�,�) is a symmetric residuated
groupoid.

Proof. It is an immediate consequence of Lemma 6. ! 

Clearly, P≤(UM) with complementation ∼ is an involutive symmetric residuated
groupoid. Further, P≤(UM) is a boolean symmetric residuated groupoid, since
P(UM) is a boolean algebra (a field of all subsets of a set).

4 Main Theorem

In this section, we prove the main result of the paper.

Theorem 1. Every symmetric residuated groupoid M is embeddable into the
boolean symmetric residuated groupoid P≤(UM).

Proof. We define a function h :M→P(UM) by setting: h(a)={X ∈ UM : a ∈ X}.
First, we show that h preserves the order, i.e.

a ≤ b iff h(a) ⊂ h(b), for all a, b ∈ M.

(⇒) Suppose a ≤ b. Let X ∈ h(a). By the definition of h, a ∈ X . X is an
upset, hence a ∈ X and a ≤ b imply b ∈ X . Thus X ∈ h(b).

(⇐) Suppose h(a) ⊂ h(b). We have a ∈ ,a- ∈ h(a). Hence, ,a- ∈ h(b). By the
definition of h, b ∈ ,a-, it means that a ≤ b.

We show that h preserves all operations.

First, we show that h(a⊗ b) = h(a)⊗ h(b).
(⊆) Let Z ∈ h(a ⊗ b). We have then a ⊗ b ∈ Z. Since Z ∈ UM, then by the

definition of operation ⊗̂, ,a- ⊗̂ ,b- ⊂ Z. We have ,a- ∈ h(a), ,b- ∈ h(b). Then,
by the definition of operation ⊗, we obtain Z ∈ h(a)⊗ h(b).

(⊇) Let Z ∈ h(a)⊗h(b). By the definition of operation⊗, there exist X ∈ h(a)
and Y ∈ h(b) such that X⊗̂Y ⊂ Z. By the definition of h, a ∈ X and b ∈ Y .
Hence by the definition of operation ⊗̂, a ⊗ b ∈ X⊗̂Y . Thus, a ⊗ b ∈ Z, and
finally Z ∈ h(a⊗ b).
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Now, we show that h(a\b) = h(a)\h(b).
(⊆) Let Y ∈ h(a\b). We have then a\b ∈ Y . Take X ∈ h(a), Z ∈ UM such

that X⊗̂Y ⊂ Z. Since a ∈ X , a ⊗ (a\b) ≤ b, so b ∈ X⊗̂Y . Hence b ∈ Z. Thus
Z ∈ h(b) and Y ∈ h(a)\h(b).

(⊇) Let Y ∈ h(a)\h(b). We have ,a- ∈ h(a). By the definition of operation \,
for all Z ∈ UM the following implication holds: if ,a- ⊗̂Y ⊂ Z, then Z ∈ h(b). We
have then ,a- ⊗̂Y ∈ h(b), and hence b ∈ ,a- ⊗̂Y . By the definition of operation
⊗̂, there exist a′ ∈ ,a- and y ∈ Y such that a′ ⊗ y ≤ b. Hence y ≤ a′\b ≤ a\b,
so a\b ∈ Y . Thus Y ∈ h(a\b).

One proves h(a/b) = h(a)/h(b) in an analogous way.

Now, we show that h(a⊕ b) = h(a)⊕ h(b).
(⊆) Let Z ∈ h(a⊕ b). We have then a⊕ b ∈ Z. Let X ∈ UM, Y ∈ UM be such

that Z ⊂ X⊕̂Y . Then a⊕ b ∈ X⊕̂Y . By the definition of operation ⊕̂, we have
a ∈ X or b ∈ Y , so X ∈ h(a) or Y ∈ h(b). By the definition of operation ⊕, we
obtain Z ∈ h(a)⊕ h(b).

(⊇) Let Z ∈ h(a) ⊕ h(b). By the definition of operation ⊕, for all X ∈ UM,
Y ∈ UM, if Z ⊂ X⊕̂Y and X /∈ h(a), then Y ∈ h(b). Let X be .a/∼ and let Y
be .a/∼�̂Z. We have then Z ⊂ .a/∼⊕̂(.a/∼�̂Z). Since .a/∼ /∈ h(a), therefore
.a/∼�̂Z ∈ h(b), so b ∈ .a/∼�̂Z. By the definition of operation �̂, there exist
a′ /∈ .a/∼ and c ∈ Z such that c ≤ a′ ⊕ b. Since a′ ≤ a, so c ≤ a ⊕ b. Hence
a⊕ b ∈ Z and Z ∈ h(a⊕ b).

Finally, we show that h(a � b) = h(a) � h(b).
(⊆) Let Y ∈ h(a � b). We have then a � b ∈ Y . We know that .a/∼ /∈ h(a)

and ,b- ∈ h(b). We show ,b- ⊂ .a/∼⊕̂Y . Let d ∈ ,b-, so b ≤ d. Let d ≤ x⊕y and
x /∈ .a/∼. So x ≤ a, and then d ≤ a⊕y. We obtain a�d ≤ y, so a�b ≤ y. Hence
y ∈ Y . Consequently, d ∈ .a/∼⊕̂Y . Therefore, by the definition of operation �,
Y ∈ h(a) � h(b).

(⊇) Let Y ∈ h(a)�h(b). By the definition of operation �, there exist X /∈ h(a)
and Z ∈ h(b) such that Z ⊂ X⊕̂Y . We have then a /∈ X and b ∈ Z. Since X ∈
UM, X ⊂ .a/∼, so Z ⊂ .a/∼⊕̂Y , and hence b ∈ .a/∼⊕̂Y . Since b ≤ a⊕ (a � b)
and a /∈ .a/∼, then a � b ∈ Y . Thus Y ∈ h(a � b).

One proves h(a� b) = h(a)� h(b) in an analogous way. ! 

It is easy to deduce from Theorem 1 that the Lambek-Grishin calculus is a
conservative fragment of the Boolean Generalized Lambek Calculus from [5].

Representation theorems are studied by many authors. Bimbó and Dunn in [3]
prove representation theorems for some types of generalized Galois logics (gag-
gles) such as boolean, distributive and partial (multi-)gaggles. To preserve op-
erations, the set of upsets UM in our case is replaced by the set of ultrafilters
on M for boolean gaggles and by the set of prime filters on M for distributive
lattices in [3].
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5 Variants

In this section, based on the main result of the paper, we discuss certain variants
of the representation theorem.

Let M be a symmetric residuated groupoid.

Fact 1. If operation ⊗ (resp. ⊕) is associative in M, then operation ⊗̂ (resp.
⊕̂) is associative in P≤(M).

Proof. We show (X⊗̂Y )⊗̂Z ⊂ X⊗̂(Y ⊗̂Z). Let x ∈ (X⊗̂Y )⊗̂Z. Then there exist
a ∈ X⊗̂Y and b ∈ Z such that a ⊗ b ≤ x, and next, there exist c ∈ X , d ∈ Y
such that c ⊗ d ≤ a. Hence (c ⊗ d) ⊗ b ≤ x. By the associativity of ⊗ in M,
c ⊗ (d ⊗ b) ≤ x. Consequently, x ∈ X⊗̂(Y ⊗̂Z). The reverse inclusion can be
proved in an analogous way.

In order to prove the associativity of operation ⊕̂, let us observe that operation
⊕̄ is associative in the residuated groupoid P≥(M), where M = (M,≤,⊕).
The latter fact can be proved in a similar way as above. Thus, (X⊕̂Y )⊕̂Z =
= ((X⊕̂Y )∼⊕̄Z∼)∼ = ((X∼⊕̄Y ∼)⊕̄Z∼)∼ = (X∼⊕̄(Y ∼⊕̄Z∼))∼ = X⊕̂(Y ⊕̂Z).

! 

Observe that the associativity of operation ⊗̂ (resp. ⊕̂) implies the associativity
of operation ⊗ (resp. ⊕) in P≤(UM).

Fact 2. If operation ⊗ (resp. ⊕) is commutative in M, then operation ⊗̂ (resp.
⊕̂) is commutative in P≤(M).

Proof. Assume that operation ⊗ is commutative in M. Then X⊗̂Y = {c ∈ M :
∃a ∈ X ∃b ∈ Y a⊗ b ≤ c} = {c ∈M : ∃b ∈ Y ∃a ∈ X b⊗ a ≤ c} = Y ⊗̂X .

Assuming the commutativity of operation ⊕ in M, we can show in a similar
way that X⊕̄Y = Y ⊕̄X . Thus, X⊕̂Y = (X∼⊕̄ Y ∼)∼ = (Y ∼⊕̄ X∼)∼ = Y ⊕̂X .

! 

Observe that the commutativity of operation ⊗̂ (resp. ⊕̂) implies the commuta-
tivity of operation ⊗ (resp. ⊕) in P≤(UM).

The above facts and observations allow us to state the following representation
theorem for semigroups and commutative semigroups.

Theorem 2. Every (commutative) symmetric residuated semigroup can be em-
bedded into the (commutative) boolean symmetric residuated semigroup.

A unital groupoid is an algebra (M,⊗, 1) such that (M,⊗) is a groupoid and
1 is a unit element for ⊗. A symmetric residuated unital groupoid is a structure
M = (M,≤,⊗, \, /, 1,⊕,�,�, 0) such that the (≤,⊗, \, /, ⊕,�,�)-reduct of M
is a symmetric residuated groupoid, 1 is a unit element for ⊗ and 0 is a unit
element for ⊕. A monoid is a unital semigroup and a symmetric residuated
monoid is a symmetric residuated unital semigroup.

Let M be a symmetric residuated unital groupoid. In UM there exists a unit
element 1 satisfying X⊗̂ 1 = X = 1 ⊗̂X , namely 1 = ,1-. If X is an upset, then
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X⊗̂ ,1- = {c ∈ M : ∃a ∈ X ∃b ∈ ,1- a ⊗ b ≤ c} = {c ∈ M : ∃a ∈ X a ≤ c} =
X = ,1- ⊗̂X . In DM there exists a zero element 0 satisfying X⊕̄ 0 = X = 0 ⊕̄X ,
namely 0 = .0/. If X is a downset, then X⊕̄ .0/ = {c ∈ M : ∃a ∈ X ∃b ∈ .0/
c ≤ a⊕ b} = {c ∈ M : ∃a ∈ X c ≤ a} = X = .0/ ⊕̄ X .

The zero element O ∈ P≤(M) satisfying X⊕̂ O = X = O ⊕̂X is .0/∼. We
have X⊕̂.0/∼ = (X∼⊕̄ .0/)∼ = (X∼)∼ = X = .0/∼⊕̂X .

Now, we pass to P≤(UM). Notice that, for any X ,Y ⊂ UM, the sets X ⊗ Y,
X\Y, Y/X , X ⊕ Y, X � Y, Y � X are upsets with respect to ⊂ on P(UM).
Consequently, the set UP(UM), of all upsets on P(UM), is a subalgebra of P≤(UM).
The unit element and the zero element can be defined as follows:

1 = {X ∈ UM : 1 ∈ X} = h(1),
0 = {X ∈ UM : 0 ∈ X} = h(0).

We have X ⊗ 1 = {Z ∈ UM : ∃X ∈ X ∃Y ∈ 1 X⊗̂Y ⊂ Z} = {Z ∈ UM :
∃X ∈ X X⊗̂ ,1- ⊂ Z} = {Z ∈ UM : ∃X ∈ X X ⊂ Z} = X = X ⊗ 1.

We have for all Y ∈ UM, 0 /∈ Y if, and only if, Y ⊂ .0/∼. In other words, .0/∼
is the greatest upset Y such that 0 /∈ Y . We prove X = X⊕0 for any X ∈ UP(UM).

We show X ⊂ X ⊕0. Assume Z ∈ X . Let Z ⊂ X⊕̂Y . Hence X⊕̂Y ∈ X . Assume
Y /∈ 0, hence 0 /∈ Y . Since Y ⊂ .0/∼, then X⊕̂Y ⊂ X⊕̂.0/∼ = X . Consequently,
X ∈ X , which yields Z ∈ X ⊕ 0. Now, we show X ⊕ 0 ⊂ X . Assume Z ∈ X ⊕ 0.
We have Z ⊂ Z⊕̂.0/∼ and 0 /∈ .0/∼, so .0/∼ /∈ 0. It yields Z ∈ X . X = 0⊕X , for
X ∈ UP(UM), can be proved in a similar way. We have then, X ⊕0 = X = 0⊕X .
UP(UM) is a subalgebra of P≤(UM). We have shown above that h embeds

M = (M,≤,⊗, \, /, 1,⊕,�,�, 0) into the algebra UP(UM) and h(1) = 1, h(0) = 0.
Notice that UP(UM) is not closed under ∼, in general (similarly, UM is not closed
under ∼).

If M is an involutive symmetric residuated groupoid, then UM (resp. UP(UM))
is closed under an involutive negation (a quasi-complement in the sense of [2]).
We define g : P(M) → P(M) as follows:

g(X) = (−X)∼,

where −X = {−a : a ∈ X}. Clearly, (−X)∼ = −(X∼), hence g(g(X)) = X ,
and X ⊂ Y entails g(Y ) ⊂ g(X). Consequently, g is an involutive negation

on P(M). Further, UM is closed under g, so (UM,⊂, ⊗̂, \̂, /̂, ⊕̂, �̂, �̂, g) is an
involutive symmetric residuated groupoid.

We define an involutive negation ∼g on P(UM) as follows:

∼g (X ) = g [X ]
∼

.

Clearly, ∼g arises from g in the same way as g arises from −. Consequently, ∼g

is an involutive negation on P(UM), and UP(UM) is closed under ∼g. We show
that h(−a) = ∼g h(a) for all a ∈ X , for the mapping h defined above.

We have to show that X ∈ ∼g h(a) iff X ∈ h(−a). The following equiva-
lences hold: X ∈ ∼g h(a) iff X ∈ g [h(a)]∼ iff X /∈ g [h(a)] iff g(X) /∈ h(a) iff
(−X)∼ /∈ h(a) iff a /∈ (−X)∼ iff a ∈ −X iff −a ∈ X iff X ∈ h(−a).
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Buszkowski [4] proved that each residuated semigroup with De Morgan
negation is isomorphically embeddable into some residuated semigroup of cones
with quasi-boolean complement. The following theorem yields a related result.

Theorem 3. Every involutive symmetric residuated (unital) groupoid is embed-
dable into a quasi-boolean symmetric residuated (unital) groupoid, and similarly
for involutive residuated (commutative) semigroups and monoids.

A bilinear algebra can be defined as a symmetric residuated monoid with two
negations ∼, −, satisfying:

∼ −a = a = − ∼ a,
∼ (a⊗ b) = (∼ b)⊕ (∼ a),
−(a⊗ b) = (−b)⊕ (−a),

∼ a = a\0,
−a = 0/a,

for all elements a, b. An equivalent notion was defined in Lambek [14,15] as
an algebra corresponding to Bilinear Logic. Bilinear Logic is equivalent to the
multiplicative fragment of Noncommutative MALL of Abrusci [1]. Some lattice
models of this logic are discussed by Lambek in [13]. Cyclic Noncommutative
MALL of Yetter [17] gives rise to cyclic bilinear algebras.

A cyclic bilinear algebra is a bilinear algebra M such that ∼ a = −a; equiva-
lently M is an involutive symmetric residuated monoid, satisfying:

−(a⊗ b) = (−b)⊕ (−a),

−a = a\0 = 0/a,

for all a, b ∈M .
Let M = (M,≤,⊗, \, /, 1,⊕,�,�, 0,−) be a cyclic bilinear algebra. We show

that the involutive function g defined above satisfies:

g(X⊗̂Y ) = g(Y )⊕̂ g(X),

g(X) = X \̂ .0/∼ = .0/∼ /̂X ,

for all X,Y ∈ UM.
We show the first equation. Assume −(a ⊗ b) = (−b) ⊕ (−a). We have

g(X⊗̂Y ) = g(Y )⊕̂ g(X) iff −(X⊗̂Y )∼ = (−Y )∼⊕̂(−X)∼ iff −(X⊗̂Y ) =
(−Y )⊕̄(−X). The following equivalences hold: c ∈ −(X⊗̂Y ) iff −c ∈ X⊗̂Y iff
there exist a ∈ X and b ∈ Y such that a⊗b ≤ −c iff there exist a ∈ X and b ∈ Y
such that c ≤ −(a⊗ b) = (−b)⊕ (−a) iff there exist a′ ∈ −X and b′ ∈ −Y such
that c ≤ b′⊕a′ iff c ∈ (−Y )⊕̄(−X). So, we have shown g(X⊗̂Y ) = g(Y )⊕̂ g(X).

Now, we prove g(X) = X \̂ .0/∼ i.e. (−X)∼ = X \̂ .0/∼, or equivalently −X =

(X \̂ .0/∼)∼. We have b ∈ (X \̂ .0/∼)∼ iff b /∈ X \̂ .0/∼ iff there exist a ∈ X and
c ∈ M such that a⊗ b ≤ c and c /∈ .0/∼ (i.e. c ≤ 0) iff there exists a ∈ X such
that a ⊗ b ≤ 0 iff there exists a ∈ X such that a ≤ 0/b = −b iff −b ∈ X iff
b ∈ −X .

One proves g(X) = .0/∼ /̂X in an analogous way.



264 M. Ko�lowska-Gawiejnowicz

Since ∼g arises from g in the same way as g arises from −, one can analogously
show that the involutive negation ∼g satisfies:

∼g (X ⊗ Y) =∼g (Y) ⊕ ∼g (X ),

∼g (X ) = X\0 = 0/X ,

for all X ,Y ∈ UP(UM). We obtain the following theorem:

Theorem 4. Every cyclic bilinear algebraM is embeddable into the quasi-boolean
cyclic bilinear algebra UP(UM), which is a quasi-field of sets.

An analogous result can be proved for bilinear algebras, but then the target
algebra UP(UM) is a weak quasi-field of sets with two weak quasi-complements
∼g X = g [X ]

∼
, −fX = f [X ]

∼
, where g(X) = (∼ X)∼, f(X) = (−X)∼. We

also have h(∼ a) =∼g h(a), h(−a) = −fh(a). If the associativity of ⊗ and ⊕
is not assumed, then similar results can be obtained for cyclic InGL-algebras
(without lattice operations) in the sense of [7].

Grishin [8] considered a formal system whose algebraic models are symmetric
residuated monoids with 0 additionally satisfying the laws of mixed associativity:

1. a⊗ (b⊕ c) ≤ (a⊗ b)⊕ c
2. (a⊕ b)⊗ c ≤ a⊕ (b⊗ c)

We propose to call such structures associative Lambek-Grishin algebras (as-
sociative LG-algebras). Omitting the associativity of ⊗,⊕, one obtains a more
general class of LG-algebras.

Moortgat [16] and other authors consider systems admitting so-called Grishin
axioms. Some axioms of that kind are listed below.

Associativity Commutativity
Group I 1a. a⊗ (b ⊕ c) ≤ (a⊗ b)⊕ c 1c. a⊗ (b ⊕ c) ≤ b⊕ (a⊗ c)

2a. (a⊕ b)⊗ c ≤ a⊕ (b⊗ c) 2c. (a⊕ b)⊗ c ≤ (a⊗ c)⊕ b

Group II 1a. (a⊗ b)⊗ c ≤ a⊗ (b⊗ c) 1c. a⊗ (b ⊗ c) ≤ b⊗ (a⊗ c)
2a. a⊗ (b ⊗ c) ≤ (a⊗ b)⊗ c 2c. (a⊗ b)⊗ c ≤ (a⊗ c)⊗ b

Group III 1a. (a⊕ b)⊕ c ≤ a⊕ (b⊕ c) 1c. a⊕ (b ⊕ c) ≤ b⊕ (a⊕ c)
2a. a⊕ (b ⊕ c) ≤ (a⊕ b)⊕ c 2c. (a⊕ b)⊕ c ≤ (a⊕ c)⊕ b

Group IV 1a. (a\b)� c ≤ a\(b� c) 1c. a � (b\c) ≤ b\(a � c)
2a. a � (b/c) ≤ (a � b)/c 2c. (a/b)� c ≤ (a� c)/b

Some axiomatization of a bilinear algebra obtained by adding selected Grishin
axioms was described by Lambek in [12].

We show that the powerset algebras, defined above, preserve axioms from
Groups I-IV. We denote by I.1a the first axiom from Group I of Associativity,
and similarly for the other axioms.

Let A be a symmetric residuated groupoid.
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Proposition 1. If the axiom I.1a (resp. IV.1a, I.2a, IV.2a, I.1c, IV.1c, I.2c,
IV.2c) is valid in the basic algebra A, then the corresponding axiom IV.1a (resp.
I.1a, IV.2a, I.2a, IV.1c, I.1c, IV.2c, I.2c) is valid in the algebra P≤(A).

Proof. Assume that the mixed associativity law I.1a is valid in algebra A. We

show that the appropriate law IV.1a is valid in P≤(A): (A\̂B)�̂C ⊆ A\̂(B�̂C).

Let x ∈ (A\̂B)�̂C. By the definition of operation �̂ there exist c /∈ C and

b ∈ A\̂B such that b ≤ x ⊕ c. We fix a ∈ A. By monotonicity of ⊗ we obtain

a⊗ b ≤ a⊗ (x⊕ c). By assumption a⊗ b ≤ (a⊗x)⊕ c. Since a ∈ A and b ∈ A\̂B,

then a⊗ b ∈ B by the definition of operation \̂. Since c /∈ C and a ⊗ b ∈ B, so

a⊗ x ∈ B�̂C. Consequently, x ∈ A\̂(B�̂C).
Assume now that the mixed associativity law IV.1a is valid in A. We show

that the appropriate law I.1a is valid in P≤(A): A⊗̂(B⊕̂C) ⊆ (A⊗̂B)⊕̂C.
Let x ∈ A⊗̂(B⊕̂C). By the definition of operation ⊗̂ there exist a ∈ A and

b ∈ B⊕̂C such that a ⊗ b ≤ x. We claim that x ∈ (A⊗̂B)⊕̂C i.e. for all u, v:
if x ≤ u ⊕ v then u ∈ A⊗̂B or v ∈ C. Assume that x ≤ u ⊕ v. Suppose that
v /∈ C. We show that u ∈ A⊗̂B. By the residuation law we have x � v ≤ u.
Take a ∈ A. By monotonicity of \ we obtain a\(x�v) ≤ a\u and by assumption
(a\x) � v ≤ a\u. By the residuation we have a\x ≤ (a\u) ⊕ v. Since b ≤ a\x
then b ≤ (a\u) ⊕ v. Since b ∈ B⊕̂C and v /∈ C, so a\u ∈ (B⊕̂C)�̂C ⊆ B. We
have a ∈ A and a\u ∈ B. Consequently, u ∈ A⊗̂B.

Assume that the mixed (weak)-commutativity law I.1c is valid in A. We show

that the appropriate law IV.1c is valid in P≤(A): A�̂(B\̂C) ⊆ B\̂(A�̂C).

Let x ∈ A�̂(B\̂C). There exist a /∈ A and c ∈ B\̂C such that c ≤ a⊕ x. We
fix b ∈ B. By monotonicity of ⊗ we obtain b ⊗ c ≤ b ⊗ (a ⊕ x). By assumption

b ⊗ c ≤ a ⊕ (b ⊗ x). Since b ∈ B and c ∈ B\̂C, then b ⊗ c ∈ C. We have a /∈ A

and b⊗ c ∈ C, so b⊗ x ∈ A�̂C. Consequently, x ∈ B\̂(A�̂C).
Assume now that the mixed (weak)-commutativity law IV.1c is valid in A.

We show that the law I.1c is valid in P≤(A): A⊗̂(B⊕̂C) ⊆ B⊕̂(A⊗̂C).
Let x ∈ A⊗̂(B⊕̂C). There exist a ∈ A and b ∈ B⊕̂C such that a⊗ b ≤ x. We

claim that x ∈ B⊕̂(A⊗̂C) i.e. for all u, v: if x ≤ u⊕ v then u ∈ B or v ∈ A⊗̂C.
Assume that x ≤ u ⊕ v. Suppose that u /∈ B. We show that v ∈ A⊗̂C. By the
residuation law we have u� x ≤ v. Take a ∈ A. By monotonicity of \ we obtain
a\(u � x) ≤ a\v and by assumption u � (a\x) ≤ a\v. By the residuation we
have a\x ≤ u ⊕ (a\v). Since b ≤ a\x then b ≤ u ⊕ (a\v). Since b ∈ B⊕̂C and
u /∈ B, so a\v ∈ B�̂(B⊕̂C) ⊆ C. We have a ∈ A and a\v ∈ C. Consequently,
v ∈ A⊗̂C.

The cases for axioms I.2a, IV.2a, I.2c and IV.2c are proved in a similar way.
! 

Proposition 2. If the axiom II.1a (resp. II.2a, III.1a, III.2a, II.1c, II.2c, III.1c,
III.2c) is valid in the basic algebra A, then the corresponding axiom II.2a (resp.
II.1a, III.2a, III.1a, II.2c, II.1c, III.2c, III.1c) is valid in the algebra P≤(A).

We omit an easy proof of this proposition.
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Corollary 1. If A satisfies an axiom from the above list, then P≤(UA) satisfies
the same axiom.

This corollary yields the following proposition.

Proposition 3. If A is an (resp. associative) LG-algebra, then UP(UA) is an
(resp. associative) LG-algebra.

Acknowledgement. I thank Wojciech Buszkowski and two anonymous referees
for helpful comments.
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L-Completeness of the Lambek Calculus

with the Reversal Operation Allowing Empty
Antecedents

Stepan Kuznetsov
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Abstract. In this paper we prove that the Lambek calculus allowing
empty antecedents and enriched with a unary connective corresponding
to language reversal is complete with respect to the class of models on
subsets of free monoids (L-models).

1 The Lambek Calculus with the Reversal Operation

We consider the calculus L, introduced in [4]. The set Pr = {p1, p2, p3, . . . } is
called the set of primitive types. Types of L are built from primitive types using
three binary connectives: \ (left division), / (right division), and · (multiplica-
tion); we shall denote the set of all types by Tp. Capital letters (A,B, . . . ) range
over types. Capital Greek letters (except Σ) range over finite (possibly empty)
sequences of types; Λ stands for the empty sequence. Expressions of the form
Γ → C, where Γ �= Λ, are called sequents of L.

Axioms: A→ A.
Rules:

AΠ → B
Π → A \B (→ \), Π �= Λ Π → A ΓBΔ→ C

ΓΠ(A \B)Δ → C
(\ →)

ΠA→ B
Π → B /A

(→ /), Π �= Λ Π → A ΓBΔ→ C
Γ (B /A)ΠΔ→ C

(/→)

Π → A Δ→ B
ΠΔ→ A ·B (→ ·) ΓABΔ→ C

Γ (A · B)Δ→ C
(· →)

Π → A ΓAΔ→ C
ΓΠΔ→ C

(cut)

The (cut) rule is eliminable [4].
We also consider an extra unary connective R (written in the postfix form,

AR). The extended set of types is denoted by TpR. For a sequence of types
Γ = A1A2 . . . An let ΓR � AR

n . . . AR
2 A

R
1 (“�” here and further means “equal

by definition”).
The calculus LR is obtained from L by adding three rules for R:

Γ → C

ΓR → CR
(R → R) ΓARRΔ → C

ΓAΔ→ C
(RR →)E

Γ → CRR

Γ → C
(→ RR)E

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 268–278, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Dropping the Π �= Λ restriction on the (→ \) and (→ /) rules of L leads
to the Lambek calculus allowing empty antecedents called L∗. The calculus L∗R

is obtained from L∗ by changing the type set from Tp to TpR and adding the
(R → R), (RR →)E, and (→ RR)E rules.

Unfortunately, no cut elimination theorem is known for LR and L∗R. Never-
theless, LR is a conservative extension of L, and L∗R is a conservative extension
of L∗:

Lemma 1. A sequent formed of types from Tp is provable in LR (L∗R) if and
only if it is provable in L (resp., L∗).

This lemma will be proved later via a semantic argument.

2 Normal Form for Types

The R connective in the Lambek calculus and linear logic was first considered
in [5] (there it is denoted by )̆. In [5], this connective is axiomatised using
Hilbert-style axioms:

ARR ↔ A and (A · B)R ↔ BR ·AR.

Here F ↔ G (“F is equivalent to G”) is a shortcut for two sequents: F → G
and G → F . The relation ↔ is reflexive, symmetric, and transitive (due to the
rule (cut)). Using (cut) one can prove that if LR � F1 → G1, F1 ↔ F2, and
G1 ↔ G2, then LR � F2 → G2. Also,↔ is a congruence relation, in the following
sense: if A1 ↔ A2 and B1 ↔ B2, then A1 · B1 ↔ A2 · B2, A1 \B1 ↔ A2 \B2,
B1 /A1 ↔ B2 /A2, A

R
1 ↔ AR

2 .
These axioms are provable in LR and, vice versa, adding them to L yields a

calculus equivalent to LR. The same is true for L∗R and L∗ respectively.
Furthermore, the following two equivalences hold in LR and L∗R:

(A \B)R ↔ BR /AR and (B /A)R ↔ AR \BR.

Using the four equivalences above one can prove by induction that any type
A ∈ TpR is equivalent to its normal form tr(A), defined as follows:

1. tr(pi) � pi;
2. tr(pRi ) � pRi ;
3. tr(A · B) � tr(A) · tr(B);
4. tr(A \B) � tr(A) \ tr(B);
5. tr(B /A) � tr(B) / tr(A);
6. tr((A ·B)R) � tr(BR) · tr(AR);
7. tr((A \B)R) � tr(BR) / tr(AR);
8. tr((B /A)R) � tr(AR) \ tr(BR);
9. tr(ARR) � tr(A).

In the normal form, the R connective can appear only on occurrences of prim-
itive types. Obviously, tr(tr(A)) = tr(A) for every type A.
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We also consider variants of L and L∗ with Tp ∪ {pR | p ∈ Tp} instead of Tp
as the set of primitive types. These calculi will be called L′ and L∗′ respectively.
Obviously, if a sequent is provable in L′, then all its types are in normal form
and this sequent is provable in LR (and the same for L∗′ and L∗R). Later we shall
prove the converse statement:

Lemma 2. A sequent F1 . . . Fn → G is provable in LR (resp., L∗R) if and only
if the sequent tr(F1) . . . tr(Fn)→ tr(G) is provable in L′ (resp., L∗′).

3 L-Models

Now let Σ be an alphabet (an arbitrary nonempty set, finite or countable). By
Σ+ we denote the set of all nonempty words over Σ; the set of all words over
Σ, including the empty word, is denoted by Σ∗. The set Σ∗ with the operation
of word concatenation is the free monoid generated by Σ; the empty word ε is
the unit of this monoid. Subsets of Σ∗ are called languages over Σ. The set Σ+

with the same operation is the free semigroup generated by Σ. Its subsets are
languages without the empty word.

The set P(Σ∗) of all languages is also a monoid: if M,N ⊆ Σ∗, then let M ·N
be {uv | u ∈ M, v ∈ N}; the singleton {ε} is the unit. Likewise, the set P(Σ+)
is a semigroup with the same multiplication operation.

On these two structures one can also define two division operations: M \N �
{u ∈ Σ∗ | (∀v ∈M) vu ∈ N}, N /M � {u ∈ Σ∗ | (∀v ∈ M)uv ∈ N} for P(Σ∗),
and M \N � {u ∈ Σ∗ | (∀v ∈M) vu ∈ N}, N /M � {u ∈ Σ+ | (∀v ∈ M)uv ∈
N} for P(Σ+). Note that, unlike multiplication, the P(Σ∗) version of division
operations does not coincide with the P(Σ+) one even for languages without
the empty word. For example, if M = N = {a} (a ∈ Σ), then M \N is {ε} in
P(Σ∗) and empty in P(Σ+).

These three operations on languages naturally correspond to three connectives
of the Lambek calculus, thus giving an interpretation for Lambek types and
sequents. An L-model is a pair M = 〈Σ,w〉, where Σ is an alphabet and w is a
function that maps Lambek calculus types to languages over Σ, such that w(A ·
B) = w(A) · w(B), w(A \B) = w(A) \w(B), and w(B /A) = w(B) / w(A) for
all A,B ∈ Tp. One can consider models either with or without the empty word,
depending on what set of languages (P(Σ∗) or P(Σ+)), and, more importantly,
what version of the division operations is used. Models with and without the
empty word are similar but different (in particular, models with the empty word
are not a generalisation of models without it). Obviously, w can be defined on
primitive types in an arbitrary way, and then it is uniquely propagated to all
types.

A sequent F1 . . . Fn → G is considered true in a model M (M � F1 . . . Fn →
G) if w(F1) · . . . ·w(Fn) ⊆ w(G). If the sequent has an empty antecedent (n = 0),
i. e., is of the form→ G, then it is considered true if ε ∈ w(G). This implies that
such sequents are never true in L-models without the empty word. L-models give
sound and complete semantics for L and L∗, due to the following theorem:
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Theorem 1. A sequent is provable in L if and only if it is true in all L-models
without the empty word. A sequent is provable in L∗ if and only if it is true in
all L-models with the empty word.

This theorem is proved in [8] for L and in [9] for L∗; its special case for the
product-free fragment (where we keep only types without multiplication) is much
easier and appears in [1].

Note that for L and L-models without the empty word it is sufficient to
consider only sequents with one type in the antecedent, since L � F1F2 . . . Fn →
G if and only if L � F1 · F2 · . . . · Fn → G. For L∗ and L-models with the
empty word it is sufficient to consider only sequents with empty antecedent, since
L∗ � F1 . . . Fn−1Fn → G if and only if L∗ � → Fn \(Fn−1 \ . . . \(F1 \G) . . . )).

4 L-Models with the Reversal Operation

The new R connective corresponds to the language reversal operation. For u =
a1a2 . . . an (a1, . . . , an ∈ Σ, n ≥ 1) let uR � an . . . a2a1; ε

R � ε. For a language
M let MR � {uR | u ∈ M}. The notion of L-model is easily modified to deal
with the new connective by adding additional constraints on w: w(AR) = w(A)R

for every type A.
One can easily show that the calculi LR and L∗R are sound with respect to

L-models with the reversal operation (without and with the empty word respec-
tively). Now, using this soundness statement and Pentus’ completeness theorem
(Theorem 1), we can prove Lemma 1 (conservativity of LR over L and L∗R over
L∗): if a sequent is provable in LR (resp., L∗R) and does not contain the R con-
nective, then it is true in all L-models without the empty word (resp., with the
empty word). Moreover, in these L-models the language reversal operation is
never used. Therefore, the sequent involved is provable in L (resp., L∗) due to
the completeness theorem.

The completeness theorem for LR is proved in [3] (the product-free case is
again easy and is handled in [6] using Buszkowski’s argument [1]):

Theorem 2. A sequent is provable in LR if and only if it is true in all L-models
with the reversal operation and without the empty word.

In this paper we present a proof for the L∗R version of this theorem:

Theorem 3. A sequent is provable in L∗R if and only if it is true in all L-models
with the reversal operation and without the empty word.

The proof basically duplicates the proof of Theorem 2 from [3]; changes are
made to handle the empty word cases.

The main idea is as follows: if a sequent in normal form is not provable in
L∗R, then it is not provable in L∗′. Therefore, by Theorem 1, there exists a model
in which this sequent is not true, but this model does not necessarily satisfy all
of the conditions w(AR) = w(A)R. We want to modify our model by adding
w(AR)R to w(A). For LR [3], we can first make the sets w(AR)R and w(A)
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disjoint by replacing every letter a ∈ Σ by a long word a(1) . . . a(N) (a(i) are
symbols from a new alphabet); then the new interpretation for A is going to be
w(A)∪w(AR)R ∪T with an appropriate “trash heap” set T . For L∗R, we cannot
do this directly, because ε will still remain the same word after the substitution
of long words for letters. Fortunately, the model given by Theorem 1 enjoys a
sort of weak universal property: if a type A is a subtype of our sequent, then
ε ∈ w(A) if and only if L∗′ � → A. Hence, if ε ∈ w(A), then ε ∈ w(AR), and vice
versa, so the empty word does not do any harm here.

Note that essentially here we need only the fact that our sequent is not deriv-
able in L∗′, but not L∗R, and from this assumption we prove the existence of a
model falsifying it. Hence, the sequent is not provable in L∗R. Therefore, we have
proved Lemma 2.

5 L-Completeness of L∗R (Proof)

Let L∗R �� → G (as mentioned earlier, it is sufficient to consider sequents with
empty antecedent). Also let G be in normal form (otherwise replace it by tr(G)).

Since L∗R �� → G, L∗′ �� → G. The calculus L∗′ is essentially the same as L∗,
therefore Theorem 1 gives us a structure M = 〈Σ,w〉 such that ε /∈ w(G). The
structure M indeed falsifies → G, but it is not a model in the sense of our new
language: some of the conditions w(pRi ) = w(pi)

R might be not satisfied.
Let Φ be the set of all subtypes of G (including G itself; the notion of subtype

is understood in the sense of LR).
The construction of M (see [9]) guarantees that the following two statements

hold for every A ∈ Φ:

1. w(A) �= ∅;
2. ε ∈ w(A) ⇐⇒ L∗′ � → A.

We introduce an inductively defined counter f(A), A ∈ Φ: f(pi) � 1, f(pRi ) �
1, f(A · B) � f(A) + f(B) + 10, f(A \B) � f(B), f(B /A) � f(B). Let
K � max{f(A) | A ∈ Φ}, N � 2K + 25 (N should be odd, greater than K,
and big enough itself).

Let Σ1 � Σ × {1, . . . , N}. We shall denote the pair 〈a, j〉 ∈ Σ1 by a(j). El-
ements of Σ and Σ1 will be called letters and symbols respectively. A symbol
can be even or odd depending on the parity of the superscript. Consider a ho-
momorphism h : Σ∗ → Σ∗1 , defined as follows: h(a) � a(1)a(2) . . . a(N) (a ∈ Σ),
h(a1 . . . an) � h(a1) . . . h(an), h(ε) = ε. Let P � h(Σ+). Note that h is a
bijection between Σ∗ and P ∪ {ε} and between Σ+ and P .

Lemma 3. For all M,N ⊆ Σ∗ we have

1. h(M ·N) = h(M) · h(N);
2. if M �= ∅, then h(M \N) = h(M) \h(N) and h(N /M) = h(N) / h(M).

Proof

1. By the definition of a homomorphism.
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2. ⊆ Let u ∈ h(M \N). Then u = h(u′) for some u′ ∈ M \N . For all v′ ∈M

we have v′u′ ∈ N . Take an arbitrary v ∈ h(M), v = h(v′) for some v′ ∈ M .
Since u′ ∈ M \N , v′u′ ∈ N , whence vu = h(v′)h(u′) = h(v′u′) ∈ h(N).
Therefore u ∈ h(M) \ h(N).

⊇ Let u ∈ h(M) \h(N). First we claim that u ∈ P ∪ {ε}. Suppose the

contrary: u /∈ P ∪ {ε}. Take v′ ∈ M (M is nonempty by assumption). Since
v = h(v′) ∈ P ∪{ε}, vu /∈ P ∪{ε}. On the other hand, vu ∈ h(N) ⊆ P ∪{ε}.
Contradiction. Now, since u ∈ P ∪ {ε}, u = h(u′) for some u′ ∈ Σ+. For
an arbitrary v′ ∈ M and v � h(v′) we have h(v′u′) = vu ∈ h(N), whence
v′u′ ∈ N , whence u′ ∈M \N . Therefore, u = h(u′) ∈ h(M \N).
The / case is handled symmetrically.

We construct a new modelM1 = 〈Σ1, w1〉, where w1(z) � h(w(z)) (z ∈ Pr′).
Due to Lemma 3, w1(A) = h(w1(A)) for all A ∈ Φ, whence w1(F ) = h(w(F )) �⊆
h(w(G)) = w1(G) (M1 is also a countermodel in the language without R). Note
that w1(A) ⊆ P ∪ {ε} for any type A; moreover, if A ∈ Φ, then ε ∈ w1(A) if and
only if L∗′ � → A.

Now we introduce several auxiliary subsets of Σ+
1 (by Subw(M) we denote

the set of all nonempty subwords of words from M , i.e. Subw(M) � {u ∈ Σ+
1 |

(∃v1, v2 ∈ Σ∗1) v1uv2 ∈M}):
T1 � {u ∈ Σ+

1 | u /∈ Subw(P ∪ PR)};
T2 � {u ∈ Subw(P ∪ PR) | the first or the last symbol of u is even};
E � {u ∈ Subw(P ∪PR)− (P ∪PR) | both the first symbol and the last symbol
of u are odd}.

The sets P , PR, T1, T2, and E form a partition of Σ+
1 into nonintersecting

parts. The set Σ∗1 is now split into six disjoint subsets: P , PR, T1, T2, E, and
{ε}. For example, a(1)b(10)a(2) ∈ T1, a

(N)b(1) . . . b(N−1) ∈ T2, a
(7)a(6)a(5) ∈ E

(a, b ∈ Σ). Let T � T1 ∪ T2, Ti(k) � {u ∈ Ti | |u| ≥ k} (i = 1, 2, |u| is the
length of u), T (k) � T1(k) ∪ T2(k) = {u ∈ T | |u| ≥ k}. Note that if the first
or the last symbol of u is even, then u ∈ T , no matter whether it belongs to
Subw(P ∪ PR). The index k (possibly with subscripts) here and further ranges
from 1 to K. For all k we have T (k) ⊇ T (K).

Lemma 4

1. P · P ⊆ P , PR · PR ⊆ PR;
2. TR = T , T (k)R = T (k);
3. P · PR ⊆ T (K), PR · P ⊆ T (K);
4. P · T ⊆ T (K), T · P ⊆ T (K);
5. PR · T ⊆ T (K), T · PR ⊆ T (K);
6. T · T ⊆ T .

Proof

1. Obvious.
2. Directly follows from our definitions.
3. Any element of P · PR or PR · P does not belong to Subw(P ∪ PR) and its

length is at least 2N > K. Therefore it belongs to T1(K) ⊆ T (K).
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4. Let u ∈ P and v ∈ T . If v ∈ T1, then uv is also in T1. Let v ∈ T2. If the
last symbol of v is even, then uv ∈ T . If the last symbol of v is odd, then
uv /∈ Subw(P ∪ PR), whence uv ∈ T1 ⊆ T . Since |uv| > |u| ≥ N > K,
uv ∈ T (K).

The claim T · P ⊆ T is handled symmetrically.

5. PR · T = PR · TR = (T · P )R ⊆ T (K)R = T (K). T · PR = TR · PR =
(P · T )R ⊆ T (K)R = T (K).

6. Let u, v ∈ T . If at least one of these two words belongs to T1, then uv ∈ T1.
Let u, v ∈ T2. If the first symbol of u or the last symbol of v is even, then
uv ∈ T . In the other case u ends with an even symbol, and v starts with an
even symbol. But then we have two consecutive even symbols in uv, therefore
uv ∈ T1.

Let us call words of the form a(i)a(i+1)a(i+2), a(N−1)a(N)b(1), and a(N)b(1)b(2)

(a, b ∈ Σ, 1 ≤ i ≤ N − 2) valid triples of type I and their reversals (namely,
a(i+2)a(i+1)a(i), b(1)a(N)a(N−1), and b(2)b(1)a(N)) valid triples of type II. Note
that valid triples of type I (resp., of type II) are the only possible three-symbol
subwords of words from P (resp., PR).

Lemma 5. A word u of length at least three is a subword of a word from P ∪PR

if and only if any three-symbol subword of u is a valid triple of type I or II.

Proof. The nontrivial part is “if”. We proceed by induction on |u|. Induction base
(|u| = 3) is trivial. Let u be a word of length m+1 satisfying the condition and
let u = u′x (x ∈ Σ1). By induction hypothesis (|u′| = m), u′ ∈ Subw(P ∪ PR).
Let u′ ∈ Subw(P ) (the other case is handled symmetrically); u′ is a subword of
some word v ∈ P . Consider the last three symbols of u. Since the first two of
them also belong to u′, this three-symbol word is a valid triple of type I, not
type II. If it is of the form a(i)a(i+1)a(i+2) or a(N)b(1)b(2), then x coincides with
the symbol next to the occurrence of u′ in v, and therefore u = u′x is also a
subword of v. If it is of the form a(N−1)a(N)b(1), then, provided v = v1u

′v2, v1u′

is also an element of P , and so is the word v1u
′b(1)b(2) . . . b(N), which contains

u = u′b(1) as a subword. Thus, in all cases u ∈ Subw(P ).

Now we construct one more model M2 = 〈Σ1, w2〉, where w2(pi) � w1(pi) ∪
w1(p

R
i )

R ∪ T , w2(p
R
i ) � w1(pi)

R ∪ w1(p
R
i ) ∪ T . This model is a model even in

the sense of the enriched language. To finish the proof, we need to check that
M2 �� → G, e.g. w2(G) �2 ε.

Lemma 6. For any A ∈ Φ the following holds:

1. w2(A) ⊆ P ∪ PR ∪ {ε} ∪ T ;

2. w2(A) ⊇ T (f(A));

3. w2(A) ∩ (P ∪ {ε}) = w1(A) (in particular, w2(A) ∩ (P ∪ {ε}) �= ∅);

4. w2(A)∩ (PR ∪{ε}) = w1(tr(A
R))R (in particular, w2(A)∩ (PR ∪{ε}) �= ∅);

5. ε ∈ w2(A) ⇐⇒ L∗′ � → A.
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Proof. We prove statements 1–4 simultaneously by induction on type A.
The induction base is trivial. Further we shall refer to the i-th statement of

the induction hypothesis (i = 1, 2, 3, 4) as “IH-i”.
1. Consider three possible cases.
a) A = B ·C. Then w2(A) = w2(B) ·w2(C) ⊆ (P ∪PR ∪ {ε}∪ T ) · (P ∪PR ∪

{ε} ∪ T ) ⊆ P ∪ PR ∪ {ε} ∪ T (Lemma 4).
b) A = B \C. Suppose the contrary: in w2(A) there exists an element u ∈ E.

Then vu ∈ w2(C) for any v ∈ w2(B). We consider several subcases and show
that each of those leads to a contradiction.

i) u ∈ Subw(P ), and the superscript of the first symbol of u (as ε /∈ E, u
contains at least one symbol) is not 1. Let the first symbol of u be a(i). Note
that i is odd and i > 2. Take v = a(3) . . . a(N)a(1) . . . a(i−1). The word v has
length at least N ≥ K and ends with an even symbol, therefore v ∈ T (K) ⊆
T (f(B)) ⊆ w2(B) (IH-2). On the other hand, vu ∈ Subw(P ) and the first
symbol and the last symbol of vu are odd. Therefore, vu ∈ E and vu ∈ w2(C),
but w2(C) ∩ E = ∅ (IH-1). Contradiction.

ii) u ∈ Subw(P ), and the first symbol of u is a(1) (then the superscript of the
last symbol of u is not N , because otherwise u ∈ P ). Take v ∈ w2(B)∩ (P ∪{ε})
(this set is nonempty due to IH-3). If v = ε, then vu = u ∈ E. Otherwise the
first and the last symbol of vu are odd, and vu ∈ Subw(P ) − P , and again we
have vu ∈ E. Contradiction.

iii) u ∈ Subw(PR), and the superscript of the first symbol of u is not N
(the first symbol of u is a(i), i is odd). Take v = a(N−2) . . . a(1)a(N) . . . a(i+1) ∈
T (K) ⊆ w2(B). Again, vu ∈ E.

iv) u ∈ Subw(PR), and the first symbol of u is a(N). Take v ∈ w2(B)∩ (PR ∪
{ε}) (nonempty due to IH-4). vu ∈ E.

c) A = C /B. Proceed symmetrically.

2. Consider three possible cases.
a) A = B · C. Let k1 � f(B), k2 � f(C), k � k1 + k2 + 10 = f(A). Due

to IH-2, w2(B) ⊇ T (k1) and w2(C) ⊇ T (k2). Take u ∈ T (k). We have to prove
that u ∈ w2(A). Consider several subcases.

i) u ∈ T1(k). By Lemma 5 (|u| ≥ k > 3 and u /∈ Subw(P ∪ PR)) in u there is
a three-symbol subword xyz that is not a valid triple of type I or II. Divide the
word u into two parts, u = u1u2, such that |u1| ≥ k1+5, |u2| ≥ k2+5. If needed,
shift the border between parts by one symbol to the left or to the right, so that
the subword xyz lies entirely in one part. Let this part be u2 (the other case is
handled symmetrically). Then u2 ∈ T1(k2). If u1 is also in T1, then the proof
is finished. Consider the other case. Note that in any word from Subw(P ∪ PR)
among any three consecutive symbols at least one is even. Shift the border to the
left by at most 2 symbols to make the last symbol of u1 even. Then u1 ∈ T (k1),
and u2 remains in T1(k2). Thus u = u1u2 ∈ T (k1) · T (k2) ⊆ w2(B) · w2(C) =
w2(A).

ii) u ∈ T2(k). Let u end with an even symbol (the other case is symmetric).
Divide the word u into two parts, u = u1u2, |u1| ≥ k1+5, u2 ≥ k2+5, and shift
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the border (if needed), so that the last symbol of u1 is even. Then both u1 and
u2 end with an even symbol, and therefore u1 ∈ T (k1) and u2 ∈ T (k2).

b) A = B \C. Let k � f(C) = f(A). By IH-2, w2(C) ⊇ T (k). Take u ∈ T (k)
and an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ {ε} ∪ T . By Lemma 4, statements 4–6,
vu ∈ (P ∪ PR ∪ {ε} ∪ T ) · T ⊆ T , and since |vu| ≥ |u| ≥ k, vu ∈ T (k) ⊆ w2(C).
Thus u ∈ w2(A).

c) A = C /B. Symmetrically.

3. Consider three possible cases.
a) A = B · C.

⊇ u ∈ w1(A) = w1(B) ·w1(C) ⊆ w2(B) ·w2(C) = w2(A) (IH-3); u ∈ P ∪{ε}.
⊆ Suppose u ∈ P and u ∈ w2(A) = w2(B) · w2(C). Then u = u1u2, where

u1 ∈ w2(B) and u2 ∈ w2(C). First we claim that u1 ∈ P ∪ {ε}. Suppose the
contrary. By IH-1, u1 ∈ PR∪T , u2 ∈ P ∪PR∪{ε}∪T , and therefore u = u1u2 ∈
(PR ∪ T ) · (P ∪ PR ∪ {ε} ∪ T ) ⊆ PR ∪ T (Lemma 4, statements 1, 3–6). Hence
u /∈ P ∪ {ε}. Contradiction. Thus, u1 ∈ P ∪ {ε}. Similarly, u2 ∈ P ∪ {ε}, and by
IH-3 we obtain u1 ∈ w1(B) and u2 ∈ w1(C), whence u = u1u2 ∈ w1(A).

b) A = B \C.

⊇ Take u ∈ w1(B \C) ⊆ P ∪ {ε}. First we consider the case where u = ε.

Then we have L∗′ � → B \C, whence u = ε ∈ w2(B \C). Now let u ∈ P .
For any v ∈ w1(B) we have vu ∈ w1(C). We claim that u ∈ w2(B \C). Take
v ∈ w2(B) ⊆ P ∪ PR ∪ {ε} ∪ T (IH-1). If v ∈ P ∪ {ε}, then v ∈ w1(B) (IH-
3), and vu ∈ w1(C) ⊆ w2(C) (IH-3). If v ∈ PR ∪ T , then vu ∈ (PR ∪ T ) ·
P ⊆ T (K) ⊆ w2(C) (Lemma 4, statements 3 and 4, and IH-2). Therefore,
u ∈ w2(B) \w2(C) = w2(B \C).

⊆ If u ∈ w2(B \C) and u ∈ P ∪ {ε}, then for any v ∈ w1(B) ⊆ w2(B) we

have vu ∈ w2(C). Since v, u ∈ P ∪{ε}, vu ∈ P ∪{ε}. By IH-3, vu ∈ w1(C). Thus
u ∈ w1(B \C).

c) A = C /B. Symmetrically.

4. Consider three cases.
a) A = B · C. Then tr(AR) = tr(CR) · tr(BR).

⊇ u ∈ w1(tr(A
R))R = w1(tr(C

R)·tr(BR))R =
(
w1(tr(C

R))·w1(tr(B
R))
)R

=

w1(tr(B
R))R · w1(tr(C

R))R ⊆ w2(B) · w2(C) = w2(A) (IH-4); u ∈ PR.

⊆ Let u ∈ PR and u ∈ w2(A) = w2(B) · w2(C). Then u = u1u2, where

u1 ∈ w2(B), u2 ∈ w2(C). We claim that u1, u2 ∈ PR∪{ε}. Suppose the contrary.
By IH-1, u1 ∈ P ∪ T , u2 ∈ P ∪ PR ∪ {ε} ∪ T , whence u = u1u2 ∈ (P ∪ T ) ·
(P ∪ PR ∪ {ε} ∪ T ) ⊆ P ∪ T . Contradiction. Thus, u1 ∈ PR ∪ {ε}, and therefore
u2 ∈ PR∪{ε}, and, using IH-4, we obtain u1 ∈ w1(tr(B

R))R, u2 ∈ w1(tr(C
R))R.

Hence u = u1u2 ∈ w1(tr(B
R))R · w1(tr(C

R))R =
(
w1(tr(C

R)) · w1(tr(B
R))
)R

=
w1(tr(C

R) · tr(BR))R = w1(tr(A
R))R.

b) A = B \C. Then tr(AR) = tr(CR) / tr(BR).

⊇ Let u ∈ w1(tr(C
R) / tr(BR))R = w1(tr(B

R))R \w1(tr(C
R))R, First we

consider the case where u = ε. Then L∗′ � → tr(CR) / tr(BR), whence ε ∈
w2(tr(C

R) / tr(BR)) = w2(tr(A
R)). Therefore, u ∈ w2(tr(A

R))R. Now let u ∈
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PR. For every v ∈ w1(tr(B
R))R we have vu ∈ w1(tr(C

R))R. We claim that
u ∈ w2(B \C). Take an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ {ε} ∪ T (IH-1). If
v ∈ PR∪{ε}, then v ∈ w1(tr(B

R))R (IH-4), whence vu ∈ w1(tr(C
R))R ⊆ w2(C).

If v ∈ P ∪ T , then (since u ∈ PR) we have vu ∈ (P ∪ T ) · PR ⊆ T (K) ⊆ w2(C)
(Lemma 4 and IH-2).

⊆ If u ∈ w2(B \C) and u ∈ PR ∪ {ε}, then for any v ∈ w1(tr(B
R))R ⊆

w2(B) we have vu ∈ w2(C). Since v, u ∈ PR ∪ {ε}, vu ∈ PR ∪ {ε}, therefore
vu ∈ w1(tr(C

R))R (IH-4). Thus u ∈ w1(tr(B
R))R \w1(tr(C

R))R = w1(A
R)R.

c) A = C /B. Symmetrically.

This completes the proof of statements 1–4 of Lemma 6. Statement 5 follows
from statement 3 and immediately yields Theorem 3 (L∗′ �� → G, whence ε /∈
w2(G)).

6 Grammars and Complexity

The Lambek calculus and its variants are used for describing formal languages
via Lambek categorial grammars. An L∗-grammar is a triple G = 〈Σ,H,�〉,
where Σ is a finite alphabet, H ∈ Tp, and � is a finite correspondence between
Tp and Σ (� ⊂ Tp×Σ). The language generated by G is the set of all nonempty
words a1 . . . an over Σ for which there exist types B1, . . . , Bn such that L∗ �
B1 . . . Bn → H and Bi � ai for all i ≤ n. We denote this language by L(G).
The notion of L-grammar is defined in a similar way. These class of grammars
are weakly equivalent to the classes of context-free grammars with and without
ε-rules in the following sense:

Theorem 4. A formal language is context-free if and only if it is generated by
some L∗-grammar. A formal language without the empty word is context-free if
and only if it is generated by some L-grammar. [7] [2]

By modifying our definition in a natural way one can introduce the notion
of L∗R-grammar and LR-grammar. These grammars also generate precisely all
context-free languages (resp., context-free languages without the empty word):

Theorem 5. A formal language is context-free if and only if it is generated by
some L∗R-grammar. A formal language without the empty word is context-free if
and only if it is generated by some LR-grammar.

Proof. The “only if” part follows directly from Theorem 4 due to the conserva-
tivity of L∗R over L∗ and LR over L (Lemma 1).

The “if” part is proved by replacing all types in an L∗R-grammar (L∗-grammar)
by their normal forms and applying Lemma 2.

Since A/B is equivalent in LR and L∗R to (BR \AR)R, and the derivability
problem in Lambek calculus with two division operators is NP-complete [10]
(this holds both for L and L∗), the derivability problem is NP-complete even for
the fragment of LR (L∗R) with one division.
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A Note on Multidimensional Dyck Languages
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Abstract. Multidimensional Dyck languages generalize the language of
balanced brackets to alphabets of size > 2. Words contain each alphabet
symbol with the same multiplicity. In addition, reading a word from left
to right, there are always at least as many ai as a(i+1), where aj is the
jth alphabet symbol in the lexicographic ordering.

We compare the Dyck languages with MIX languages, where the mul-
tiplicity constraint is respected, but the order of the symbols is free.
To understand the combinatorics of the Dyck languages, we study the
bijection with standard Young tableaux of rectangular shape, and, for
the three-dimensional case, with planar webs for combinatorial spider
categories. We present a typelogical analysis of Dyck languages with an
alphabet of size d in terms of a construction that aligns (d−1) grammars
for the two-symbol case.

This paper is dedicated to Jim Lambek on the occasion of his 90th birth-
day. More than 50 years ago, the deductive method of his ‘Mathematics of
Sentence Structure’ raised the standards for doing computational linguis-
tics to a new level. His work has been a continuing source of inspiration.

1 Introduction

Typelogical grammar, ever since the rediscovery of Lambek’s Syntactic Calculus
in the 1980s, has been struggling to come to grips with discontinuity: informa-
tion flow between physically detached parts of an utterance. Emmon Bach, in
a number of papers [1,2], discussed generalizations of categorial grammar that
would be able to deal with ‘scramble’ languages: languages that are the free
permutations of arbitrary context-free languages. As an abstract example of a
language with total word order freedom, Bach proposed MIX: the words of this
language are strings over a three-letter alphabet with an equal number of occur-
rences of each letter but no constraints on their order. MIX, in other words, is
the scramble of context-free (actually, regular) (abc)+.

A natural generalization of MIX allows variation in the size of the alphabet,
keeping the multiplicity constraint on the letters. Let us call the size of the
alphabet the dimension of the language. For positive d and n, let us write Md

n

for the (finite) language consisting of words of length dn over an alphabet with
d symbols where each symbol occurs with multiplicity n.

Md
n = {w ∈ {a1, . . . , ad}+ | |w|a1 = . . . = |w|ad

= n}

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 279–296, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Dropping the subscript, we write Md for
⋃

0<n Md
n.

The restriction to positive multiplicity is characteristic of a categorial view on
these languages: categorial grammars, being fully lexicalized, do not recognize
the empty word. In the context of rewriting grammars, it is natural to also allow
n = 0. In the degenerate case of d = 1, the language consists of the nth powers
of the single alphabet symbol; there is nothing to scramble then.

I this paper, I consider a similar multidimensional generalization for Dyck lan-
guages. These are d-dimensional MIX languages with an extra prefix constraint:
reading a word from left to right, there are always at least as many letters ai as
ai+1, where aj is the j-th symbol in the lexicographic order of the alphabet1

Dd
n = {w ∈Md

n | for every prefix u of w, |u|ai ≥ |u|ai+1 , 1 ≤ i < d} (1)

As before, we write Dd for
⋃

0<n Dd
n. In the two-dimensional case D2, we have

the familiar language of well-balanced brackets consisting of words over an al-
phabet {a, b} (with a < b) reading a as the opening and b as the closing bracket
symbol. Whereas MIX stands for total word order freedom, the generalized Dyck
languages represent discontinuity of the interleaving type: words of Dd

n merge n
copies of the word a1 · · · ad in such a way that the order of the letters is respected.
Interleaving (or shuffling) has been proposed for the analysis of semifree word or-
der and bounded discontinuous constituency, for example in the ‘sequence union’
operation of [21]. Complexity of parsing of extended context-free formalisms with
interleaving and concatenation operations has been studied in [18]. For applica-
tions of interleaving in various areas of computer science, see [3].

As for the position of Md and Dd in the extended Chomsky hierarchy, much
remains to be settled. Both M2 and D2 are context-free. From d > 2 on, one
goes beyond the context-free languages. In the 3D case, for example, intersection
with regular a+b+c+ produces anbncn, which is not context-free. Recent work
by Salvati and Kanazawa [22,12] shows that M3 is a 2-MCFG (Multiple Context
Free Language [24]), but a non-wellnested one, which means M3 is not a TAL
(Tree Adjoining Language [10]). For higher dimensions, the challenge, for the
MIX and the Dyck languages alike, would be to relate the size of their alphabet
to the minimal degree (or fan-out) of the k-MCFG required for their recognition.
Similarly, from the categorial point of view, one would like to see a hierarchy of
stepwise generalizations of Lambek’s Syntactic Calculus in correspondence with
the rise in dimensionality.

This short note does not aim to answer these foundational questions in their
full generality. We do hope to clarify the nature of the discontinuity exhibited by
multidimensional Dyck languages by studying their correspondence with some
well-understood combinatorial objects (sections §3 to §5). In §6 we present a
typelogical anaysis of d-symbol Dyck languages in terms of an alignment of (d−1)
grammars for the two-symbol case. In §2, we set the stage with a comparison of
the cardinalities of the Dyck and MIX languages.

1 Dd should not be confused with the generalization that considers k different pairs
of opening/closing parentheses [1, ]1, . . . , [k, ]k.
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2 Counting Words

Table 1 compares the size of Md
n and Dd

n for small values of d ≥ 2, n ≥ 0, and
gives the identifiers of these number sequences inOEIS, the Online Encyclopedia
of Integer Sequences.

Table 1. Cardinality of Md
n and Dd

n (grayscale) for small values of d ≥ 2, n ≥ 0

d\n 0 1 2 3 4 5 6 OEIS

2 1 2 6 20 70 252 924 A000984
1 1 2 5 14 42 132 A000108

3 1 6 90 1680 34650 756756 17153136 A006480
1 1 5 42 462 6006 87516 A005789

4 1 24 2520 369600 63063000 11732745024 2308743493056 A008977
1 1 14 462 24024 1662804 140229804 A005790

A useful graphical representation highlighting the differences between Md
n and

Dd
n pictures the words of these languages as monotone paths along the edges of a

d-dimensional grid, with sides measuring n unit steps: these are paths starting at
the origin (0, . . . , 0) and ending at (n, . . . , n), and consisting entirely of forward
steps along one of the dimensions. All such paths are legitimate for the MIX
words. For Dyck words, the prefix constraint translates into the requirement that
the coordinates of the points visited are weakly decreasing x1 ≥ x2 ≥ · · · ≥ xd. In
the two-dimensional case, this means a path can touch but not cross the diagonal.
Compare the two words over the alphabet {a, b} with letter multiplicity 3 in (2).
Paths start at the lower left corner and end at the upper right corner. The letter
a is interpreted as a step to the right, the letter b as a step up. The path in (b)
respects the prefix constraint; the path in (a) does not.

(a) (b)

babbaa ∈M2
3 aababb ∈ D2

3

(2)

A comparable contrast for the 3-dimensional case is given in (3). All points
visited by the path in (3b) have coordinates x ≥ y ≥ z:

(0, 0, 0)
a−→ (1, 0, 0)

a−→ (2, 0, 0)
b−→ (2, 1, 0)

c−→ (2, 1, 1)
b−→ (2, 2, 1)

c−→ (2, 2, 2)

whereas the path in (3b) violates the Dyck prefix constraint at the first step.
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(a) (b)

caabcb ∈ M3
2 aabcbc ∈ D3

2

(3)

The cardinality of the MIX languages is easily determined, see (4). There are(
dn
n

)
possible choices for the position of the n copies of the first alphabet symbol

among dn candidate positions, then
(
(d−1)n

n

)
possibilities for the n copies of the

second alphabet symbol among the remaining (d−1)n positions, and so on until
one reaches the dth symbol for which no alternatives remain. In other words,
(4) counts the number of distinct permutations of a multiset with d distinct
elements each occurring with multiplicity n.

|Md
n | =

d∏
k=1

(
kn

n

)
=

(dn)!

(n!)d
(4)

The cardinality of the Dyck languages is given by the multidimensional Cata-
lan numbers Cd

n which are given with the formula (5) in [7]. We will present
an alternative formula with a direct combinatorial interpretation once we have
discussed the connection between Dyck words and rectangular standard Young
tableaux.

|Dd
n| = Cd

n = (dn)!×
d−1∏
k=0

k!

(n+ k)!
(5)

In the two-dimensional case, (5) gives the Catalan numbers 1, 1, 2, 5, 14, 42,
132, . . . Note also that |Dd

n| = |Dn
d |; the triangular arrangement for Dd

n brings
this out clearly. (Values for n ≤ 2, d ≤ 2. Multiplicity n increases along the ↘
diagonal, dimensionality d along the ↙ diagonal.)

2
5 5

14 42 14
42 462 462 42

132 6006 24024 6006 132

3 Dyck Words and Rectangular Standard Young
Tableaux

Young tableaux are rich combinatorial objects, widely used in representation
theory of the symmetric and general linear groups and in algebraic geometry.
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They are less known in computational linguistics, so let us start with some
definitions, following [5]. Let λ = (λ1, . . . , λk) be a partition of an integer n ,
i.e. a multiset of positive integers the sum of which is n, and let us list the k parts
in weakly decreasing order. With such a partition, we associate a Young diagram:
an arrangement of n boxes into left-aligned rows of length λ1 ≥ λ2 ≥ · · · ≥ λk. A
standard Young tableau of shape λ is obtained by placing the integers 1 through
n in these boxes in such a way that the entries are strictly increasing from left
to right in the rows and from top to bottom in the columns. Henceforth, when
we say tableau, we mean standard Young tableau.

Given a partition of n with a diagram of shape λ, the number of possible
tableaux with that shape is given by the Frame-Robinson-Thrall [4] hook length
formula, which is n! divided by the product of the hook lengths of the n boxes;
the hook length of a box is the number of boxes to the right in its row and below
it in its column, plus one for the box itself. Given a tableau T , let T ′ be the
tableau obtained from T by a reflection through the main diagonal, taking rows
to columns and columns to rows. The diagrams for T and T ′, clearly, produce
the same result for the hook length formula.

Given a standard Young tableau one can read off its Yamanouchi word. The
Yamanouchi word for a tableau T of shape λ = (λ1, . . . , λk) is a word w =
w1 · · ·wn over a k-symbol alphabet {1, 2, . . . , k} such that wi is the row that
contains the integer i in T . Conversely, given a word w = w1 · · ·wn over a
k-symbol alphabet {1, 2, . . . , k} with the property that, reading w from left to
right, there are never fewer letters i than letters (i+1), we can recover a standard
Young tableau with k rows.

We illustrate these definitions in (6) below. The partition (3, 3, 2, 1) of the
integer 9 has the Young diagram in (a). Distributing the integers 1, . . . , 9 over
the nine boxes as in (b) yields a well-formed standard Young tableau with strictly
increasing rows and columns. The Yamanouchi word for this tableau is given in
(c). The fifth letter of the word is 4, because the integer 5 appears on the fourth
row in the tableau. In (d), we give the hook lengths of the boxes of diagram (a).
The hook length formula then says there are 168 standard Young tableaux of
that shape: 9! divided by (6 · 4 · 2 · 5 · 3 · 1 · 3 · 1 · 1).

(a) (b) (c) (d)

1 2 8
3 6 9
4 7
5

1 2 8
3 6 9
4 7
5

112342312

6 4 2
5 3 1
3 1
1 (6)

The definitions above apply to standard Young tableaux in general. To obtain
the multidimensional Dyck words we are interested in, we restrict to rectangular
tableaux of shape d × n (d rows by n columns). These tableaux correspond
to balanced Yamanouchi words of length dn— words in which the constituting
letters appear with equal multiplicity. The prefix constraint of the generalized
Dyck languages is captured by the tableau constraint that the box entries are
strictly increasing from top to bottom in the columns; the restriction to rows
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of equal length corresponds to the letter multiplicity constraint on Dyck (and
MIX) words. Note that, in accordance with the practice in formal linguistics, we
use the alphabet a < b < c < · · · , rather than the alphabet 1 < 2 < 3 < · · · of
(6c).

For rectangular tableaux, the hook length formula takes on the simple form
of (7) below.

dn!∏n
k=1 k

d
(7)

(writing nm for rising factorial powers n(n+1) · · · (n+m−1)) which then counts
the words of Dd

n for positive n. We saw in Table 1 that Dd
n and Dn

d have the same
cardinality; indeed, the hook length formula for the Dd

n and for the Dn
d diagrams

produces the same result. On the level of individual words, we have a bijection
between words of Dd

n and words of Dn
d , reading them as the Yamanouchi words

of a d× n tableau T and of the transposed n× d tableau T ′ respectively.
We illustrate with D3

2, words over a three-letter alphabet with letter multiplic-
ity 2. On the left are the hook lengths of the boxes in a diagram of shape (3, 2).
By the hook length formula (7), there are 6!/(1 · 22 · 32 · 4) = 720/144 = 5 stan-
dard Young tableaux of that shape. They are listed in (a) through (e) together
with their Yamanouchi words y(T ). Finally, y(T ′) gives the words corresponding
to the transposed tableaux T ′. These are the five words of D2

3.

4 3
3 2
2 1

(a) (b) (c) (d) (e)

T :

1 4
2 5
3 6

1 3
2 4
5 6

1 2
3 5
4 6

1 3
2 5
4 6

1 2
3 4
5 6

y(T ) ∈ D3
2 : abcabc ababcc aabcbc abacbc aabbcc

y(T ′) ∈ D2
3 : aaabbb aabbab abaabb aababb ababab

(8)

4 Dyck Words as Iterated Shuffles

Can we give an algorithm that generates the words of Dd
n in a unique way, and

that provides the combinatorial raison d’être for the hook length formula for
rectangular tableaux?

We approach this question in two steps. First we model the interleaving of n
copies of the word a1 · · ·ad as an iterated shuffle [6], where for strings w1, w2

the shuffle operation gives all possibilities of interleaving them in such a way
that the order of the letters in w1 and in w2 is preserved. The operation takes
its name from the familiar way of shuffling a deck of cards: the deck is cut in
two packets, which are then merged by releasing the cards with the thumb of
the left and of the right hand.

When shuffling a deck of cards, all cards are distinct. When interleaving copies
of a Dyck word a1 · · · ad, there are multiple occurrences of the letters, hence
duplicate outcomes of their interleaving.
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As a second step, then, we break the symmetry, and introduce a biased
form of shuffling that generates the words of Dd

n without duplicates. We give
a redundancy-free representation of these unique outputs in the form of a de-
terministic acyclic word automaton; the size (number of states) of this automa-
ton directly correlates with the cardinality of Dd

n as given by the hook length
formula (7).

Formally, shuffling is an operation 
 : Σ∗ × Σ∗ → P(Σ∗) defined as in (9)
below (for α1, α2 ∈ Σ, and u, u1, u2 ∈ Σ∗):

(i) u 
 ε = ε 
 u = {u}
(ii) α1u1 
 α2u2 = {α1w | w ∈ u1 
 α2u2} ∪ {α2w | w ∈ α1u1 
 u2}

(9)

The 
 operation can be lifted to the level of languages in the usual way (we use
the same symbol for the lifted operation): for languages L1, L2,

L1 
 L2 =
⋃

w1∈L1
w2∈L2

w1 
 w2

Analogous to the Kleene star, we have the notion of the shuffle closure of a
language, L(∗), defined in terms of shuffle iteration L(n):

L(0) = {ε}, L(n) = L 
 L(n−1), L(∗) =
⋃
0≤i

L(i)

With these definitions in place, we see that Dd
n is the n-th shuffle interation

of the language that has the concatenation of the d alphabet symbols in their
lexicographic order as its single word. Dd is the shuffle closure of that language.

Dd
n = {a1 · · · ad}(n), Dd = {a1 · · · ad}(∗) (10)

As noted, (10) correctly describes Dd
n as a set of words. But if, in the definition

of shuffling in (9), we would substitute lists for sets and list concatenation for
set union, we unfortunately would not obtain the desired procedure to produce
the outcomes of shuffling in a repetition-free way.

To generate Dd
n without repetitions, we build a deterministic acyclic finite

state automaton (dafsa) representing the words of Dd
n in a redundancy-free

way. The construction adapts a technique used by Warmuth and Haussler to
prove that for any regular language R, its shuffle closure R(∗) can be recognized
in deterministic polynomial time [26, Theorem 5.1]. Informally, the idea is to
decorate the states of a finite automaton with ‘pebbles’; these pebbles control
when and how often a transition for a given alphabet symbol can be made.

The construction of dafsa(Dd
n) proceeds as follows. Let (11) below be the

(d + 1)-state finite automaton for {a1 · · · ad}, i.e. the singleton language that
has the concatenation of the alphabet symbols in their lexicographic order as its
single word.

q0 q1 qd
a1 a2 ad

(11)
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Then dafsa(Dd
n) = (Q,Σ, qstart, δ, {qf}) is the following machine.

- alphabet Σ = {a1, . . . , ad}
- states Q: all (d + 1)-tuples of non-negative integers (p0, . . . , pd) such that
p0 + · · ·+ pd = n.

- initial state qstart: the tuple that has p0 = n and pi = 0 for 0 < i ≤ d
- final state qf: the tuple that has pd = n and pi = 0 for 0 ≤ i < d
- transition function δ: for states q = (p0, . . . , pd) and q′ = (p′0, . . . , p

′
d)

and alphabet symbols ai (1 ≤ i ≤ d), we have a transition δ(q, ai) = q′

whenever pi−1 > 0, p′i−1 = pi−1 − 1, p′i = pi + 1, and p′j = pj for the other
elements of the state tuples.

Note that the size (number of states) of the constructed dafsa(Dd
n) is given by

the number of possible distributions of n pebbles over the (d+1) states of (11),
i.e. the number of weak compositions of n in d+ 1 parts which is

(
n+d
d

)
.

Allowing the case of n = 0, there is one state, qstart = qf = (0, . . . , 0), and no
transitions: this automaton accepts only the empty word.

The graph in (12) illustrates the construction with D3
2, Dyck words over a

three-letter alphabet with letter multiplicity 2. The diagram as a whole repre-
sents all ways of shuffling two copies of the word abc. An upward step releases
a card from the left hand packet, a step downward from the right hand packet.
There are twenty walks through this graph, enumerating the five words of D3

2 in
a non-unique way.

q2000start

q1100

q1010

q1001

q0101

q0011

q0002q0200

q0110

q0020

a

b

c
a

b

c

a

ba

b

c

c

a

b

c

b

c

c

a

b

c

a

ba

(12)

The state diagram for the constructed dafsa(D3
2) restricts the graph to the

lower half, with the ten named states for the weak compositions of 2 in 4 parts.
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One can picture this as a biased form of shuffling: the dealer releases a card/letter
from the packet in the left hand (move upwards) only if in the lexicographic order
it is strictly smaller than the competing card/letter in the right hand packet.

Under the above interpretation, a walk through the graph spells the Ya-
manouchi word of a rectangular tableau. The dafsa(Dd

n) word graph allows
another interpretation, discussed in [19], where a walk through the graph now
provides a recipe for constructing a tableau (rather than its Yamanouchi word).

start

q2000

q1100

q1010

q1001

q0101

q0011

∅

q0002

q0200

q0110

q0020a

b

c
a

b

c

a

ba

b

c

c

(13)

States, under this second interpretation, are Young diagrams for all possible
partitions of integers 1 to d×n into maximally d parts of maximal size n. There
is a directed edge from partition λ to λ′ if λ′ is the result of breaking off a corner
of λ. A corner is a box that appears at the end of a row and a column. We read
off the tableau from a walk in this graph as follows. Start at the d-part partition
λstart = (n, . . . , n) and finish at the empty partition λ∅. At each step, insert the
highest integer from d×n not yet inserted into the corner that is deleted at that
edge.

In (13), the Young diagrams corresponding to the states of dafsa(D3
2) have

been added. As an example, take the path for the word abacbc ∈ D3
2. The

corresponding tableau is obtained by successively inserting 6 in the corner of
the bottom row, 5 in the corner of the middle row, 4 in the corner of the first
column, etc, with as final result the tableau

1 3
2 5
4 6

We have the ingredients in place now for a combinatorial interpretation of the
hook-length formula (7) counting the rectangular standard Young tableaux of
shape d×n (n positive) or equivalently the words ofDd

n they are in bijection with.
It is convenient to model the situation with an n-handed card dealer. We can
then represent the shuffle of n copies of the word a1 · · ·ad as an n-dimensional
diagram with sides of length d; steps forward in each direction are labeled with
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the alphabet symbols a1, . . . , ad in order, as in the two-dimensional case depicted
in (12) above. Now consider the formula in (14) below.

n∏
k=1

[(
kd

d

)/(k + d− 1

d

)]
(14)

The product of the numerators counts all outcomes of shuffling, including dupli-
cates: in other words, all monotone paths from the origin (0, . . . , 0) to (n, . . . , n).
The product of the denominators divides this by the size (number of states) of
the successive dafsa(Dd

(k−1)) word graphs. The result of the division counts the

distinct outcomes of shuffling, i.e. gives the cardinality of Dd
n.

It is not hard to see that (14) is equivalent to (7). Indeed, expressing the
binomial coefficients

(
n
m

)
in factorial form nm

m! , with nm for the falling factorial

powers n(n− 1) · · · (n−m+ 1), and noticing that (k + d− 1)d = kd, we have

(14) =

n∏
k=1

kdd

(k + d− 1)d
=

n∏
k=1

kdd

kd
=

dn!∏n
k=1 k

d
= (7) (15)

The table below illustrates with the first iterations of the shuffle of the word
abc. For increasing k, the first row gives the number of possible positions for the
letters of the kth copy of abc among 3k available positions. The second row gives
the size of the word automaton for (k − 1) iterations (pebbles). In the bottom
row, the result of the divisions: (1× 20)/4 = 5, (5× 84)/10 = 42, etc, i.e. OEIS
sequence A005789 of Table 1.

k : 1 2 3 4 . . .(
3k
3

)
1 20 84 220 . . .

|dafsa3
(k−1)| 1 4 10 20 . . .

1 5 42 462 . . .

(16)

The diagram for the third iteration is given in (17). There is a general recipe
for obtaining these growing diagrams: draw the paths for (a1 · · · ad)n (no discon-
tinuity) and an1 · · · and (maximal discontinuity) and fill in the missing connections.

qf

(17)

The word graph construction discussed here gives a non-redundant represen-
tation of the finite sets of elements of Dd

n, given symbol multiplicity n. For the
infinite languages Dd, the transition function of the dafsa word graph suggests
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a natural automaton model in the form of Greibach’s [8] partially blind one-way
multicounter machines. In these automata (see [9] for discussion) the stack holds
a representation of a natural number, which can be incremented, decremented,
or tested for zero. A counter is blind if it cannot be tested for zero except at the
end of the computation as part of the acceptance condition. A partially blind
counter cannot hold a negative value: the machine blocks on decrementing zero.

Dd then is accepted by a partially blind (d− 1)-counter machine: on reading
symbol a1, the first counter is incremented; on reading symbol ad, the last counter
is decremented; on reading intermediate symbols ai (1 < i < d), the i-th counter
is incremented and the (i− 1)-th counter decremented. Failure on decrementing
zero captures the prefix constraint of Equation (1) on Dyck words.

5 Dyck Words and Irreducible Webs for sl3

In §3, we discussed the correspondence between multidimentional Dyck lan-
guages and rectangular standard Young tableaux for arbitrary dimension (num-
ber of rows) d. In the three-dimensional case, there is a further bijection between
3 × n tableaux (hence: D3

n Dyck words) and a class of combinatorial graphs
(‘webs’) underlying Khovanov and Kuperberg’s work [13] on combinatorial spi-
ders, planar categories describing the invariant space of a tensor product of
irreducible representations of a Lie algebra of given rank. The correspondence
between webs for rank 3 and D3

n Dyck words throws a surprising light on the
nature of the discontinuity involved: the sl3 webs are in fact planar graphs.

Our presentation essentially follows [25] except that where Tymoczko formu-
lates the bijection in terms of tableaux, we rely on §3 and phrase the map directly
in terms of the 3D Dyck words corresponding to these tableaux.

A web for the sl3 spider category is a planar directed graph embedded in a
disk where (i) internal vertices are of degree 3, boundary vertices are of degree
1; (ii) each vertex is either a source (all edges outgoing) or a sink (all edges
incoming). A web is irreducible (or non-elliptic) if all internal faces have at least
6 sides. For the webs considered here all boundary vertices are sources.

Let w be a word of D3
n, i.e. the Yamanouchi word of a 3×n tableau. To build

the web corresponding to w, take the following steps.

(i) Place the letters of w = w1, . . . , w3n counterclockwise on the boundary of
a disk.

(ii) Create n internal sink vertices; each of these has incoming edges from
boundary vertices labeled a, b and c. To determine how these triples are
grouped, read w from left to right; for each b, find the a that precedes it
most closely and that is not already linked, and direct the outgoing edges
for this a and b pair to the same internal sink; then match c’s and b’s in
the same way: for each c, find the b that precedes it most closely and that
is not already co-linked with a c and connect them to the same internal
sink.

(iii) Step (ii) may lead to crossing edges. If not, we are done. If there are crossing
edges, restore planarity by replacing the degree 4 vertex v at their inter-
section by two degree 3 vertices: a sink v1 and a source v2; v1 receives the
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two incoming arrows that meet at the intersection point v, v2 emits the
two outgoing edges and has an arrow to v1.

We refer the reader to [25] for proofs that the outcome of removing crossings
is uniquely determined, and independent of the order of their removal, in the
case of multiple crossings. Note that the grouping algorithm of step (ii) easily
generalizes to alphabets of cardinality greater than three, a point we will return
to in §6.

We illustrate with the word abacbc ∈ D3
2. To avoid a clutter of arrows, we

represent sources with dark, sinks with open circles. For step (a), start reading
at the one o’clock vertex. Step (ii) here leads to the crossing shown in (b): the
edge that connects the first c to the internal vertex that has an incoming edge
from the closest b preceding it intersects an edge that was created in linking the
second a and b to the same internal sink. Resolving the crossing with the recipe
in (iii) leads to the planar web in (c).

(a) (b) (c)

c

bc

a

b a

c

bc

a

b a

c

bc

a

b a

(18)

For the opposite direction, from web to 3D Dyck word or tableau, we cut the disk,
creating an unbounded face f∞. All faces f are associated with a depth, d(f),
defined as the minimal number of edges one has to cross to reach the unbounded
face, which then has d(f∞) = 0. Visit the boundary vertices counterclockwise and
calculate d(fl)−d(fr), the difference between the depth of the face to its left and
to its right, looking in the direction of the outgoing edge. These differences have
{1, 0,−1} as possible outcomes. Interpret these as the three alphabet symbols
of D3

n: read 1 as a, 0 as b and −1 as c.

0

1

1
12

1

(19)

In (19), we illustrate with the web we obtained in (18)(c). We have cut the
disk between the one o’clock and the three o’clock vertices, so that the one
o’clock vertex is the starting point for the computation of the corresponding
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Dyck word, as it was for (18)(c). Faces are annotated with the depth values
resulting from that cut. Visiting the vertices counterclockwise, starting from one
o’clock, and computing d(fl)− d(fr), gives rise to the sequence 1, 0, 1,−1, 0,−1,
which translates as abacbc.

In general, for a word of length dn, there are dn possibilities of cutting the
disk, with a maximum of dn distinct words to be read off from these cuts. In
(20a) below, the cut is between the vertices at 11 o’clock and one o’clock, making
the 11 o’clock vertex the starting point for the computation of the associated
Dyck word. Another way of picturing this is as a counterclockwise rotation of
the boundary vertices. The calculation of d(fl)−d(fr) for the boundary vertices
starting from 11 o’clock now gives rise to the sequence 1, 1, 0, 0,−1,−1, which
translates as the word aabbcc. We leave it to the reader to verify that the six
possible cuts of the web of (19)/(20a) give rise to the two words abacbc, aabbcc.
In the case of (20b), a web that doesn’t involve any crossing dependencies, the
six possible cuts give rise to three words: abcabc, ababcc, aabcbc. The five words
of D3

2 , then, are read off from the rotations of the two webs in (20).

(a) (b)

1

0

2
22

1
(20)

In [25,20] it is shown that web rotation corresponds to Schützenberger’s [23]
jeu de taquin promotion operation on tableaux. The promotion operation (web
rotation in the 3D case) induces an equivalence relation on multidimensional
Dyck words that further reduces the apparent diversity of surface forms.

6 Grammars

After this exploration of the combinatorics of multidimensional Dyck languages,
let us turn now to their analysis in terms of categorial grammar.

As we saw in the Introduction, D2, the Dyck language over a two-symbol
alphabet, is the language consisting of balanced strings of parentheses, one of
the archetypical examples of a context-free language. A grammar with start
symbol S and rules S −→ aS bS, S −→ ε generates D2 with the empty word
included in the language. A lexicalized version of this grammar excludes the
empty word; each rule is required to introduce a single terminal element, the
lexical anchor. The grammar with alphabet {a, b}, non-terminals {S,B}, start
symbol S and the set of productions P of (21)

P : S −→ aB | aS B | aB S | aS B S ; B −→ b (21)
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is in Greibach normal form (GNF), with the lexical anchor as the leftmost ele-
ment in a rule’s right-hand side. As is well-known, a grammar in GNF format
can be directly transformed in a categorial type lexicon associating each termi-
nal symbol with a finite number of types. For the resulting categorial grammar,
atomic types are the non-terminals of the rewrite grammar; the only type con-
structor is ’/’ which we read left-associatively to economize on parentheses; the
rules in P are turned into first-order type assignments for the lexical anchors
according to the recipe in (22).

lex(a) = {A0/An/ · · · /A1 | (A0 −→ aA1 . . . An) ∈ P} (22)

(or A0 A
l
n · · · Al

1, in the pregroup type format). In (23) one finds the lexicon
for D2 that results from the transformation of the rules in (21) into categorial
types.

lex(a) = {S/B, S/B/S, S/S/B, S/S/B/S} lex(b) = {B} (23)

For Dyck languages Dd with dimensionality d > 2, context-free expressivity is
no longer sufficient, so one has to turn to generalizations of Lambek’s Syntactic
Calculus or its simplified pregroup incarnation. There is a choice of options here.
The multimodal typelogical grammars of the Barcelona School (see Morrill and
Valent́ın, this volume) combine residuated families of concatenation operations
(/,⊗, \) with wrapping operations (↑,+, ↓) for the combination of discontinu-
ous expressions consisting of detached parts. Multimodal typelogical grammar,
Utrecht style, extends the language of the Syntactic Calculus with control fea-
tures ♦,�: a residuated pair of unary multiplicative operations licensing or
blocking structural rules of inference. Bi-Lambek (or Lambek-Grishin) calculus
(see [16]) adds duals for the /,⊗, \ operations: a multiplicative sum ⊕ together
with left and right difference operations �,�; discontinuous dependencies then
arise out of the linear distributivity principles relating the product and sum oper-
ations. Finally, one can move beyond the propositional language of the Syntactic
Calculus, and handle the composition of discontinuous expressions in terms of
structure variables and first-order quantification over them (as in [17] and Moot,
this volume).

The recipient of this volume has shown a certain reluctance to consider any
of these extended categorial formalisms (indeed, the title of [15] ‘Should Pre-
group Grammars be Adorned with Additional Operations?’ can be taken as a
rhetorical question), except for extensions of the formula language with meet
and/or join operations, and for grammars based on products of pregroups (see
for example Béchet, this volume). So let us here explore these strategies in the
case of generalized Dyck languages of higher dimension.

In §5 we discussed a method for grouping the (a,b,c) triples that are interleaved
to make up the words of D3 — a method that generalizes to alphabets of greater
cardinality. The crucial observation about these d-symbol alphabets is that for
each pair of successive symbols ai, ai+1 (1 ≤ i < d), the projections πai,ai+1(D

d)
constitute D2 Dyck languages over the two-letter alphabets {ai, ai+1}. As an
example, take the word w = aabacbbcc ∈ D3. The projection πa,b(w) removes
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all occurrences of c, producing aababb ∈ D2. Similarly, πb,c(w) = bcbbcc removes
all occurrences of a, resulting in a D2 Dyck word over the alphabet {b, c}.

a a b a c b b c c

(24)

The Dd (d > 2) languages, then, can be obtained through the intersection of
d − 1 context-free languages, where each of the constituting languages respects
well-nestedness for a pair of successive alphabet symbols and ignores intervening
symbols from the rest of the alphabet.

We work this out for d = 3; the generalization to alphabets of greater size is
straightforward. Consider G = ({a,b,c}, {S,B,C}, S, P ) with the productions P
in (25). It recognizes the same a,b patterns as the D2 grammar with productions
(21), but allows each occurrence of the letters a and b to be followed by an
arbitrary number of c’s.

P :

S −→ aB | aS B | aBS | aS B S
S → | aC B | aC S B | aC B S | aC S B S
B −→ b | bC
C −→ c | cC

(25)

Similarly, G′ = ({a,b,c}, {S′, B′, C′}, S′, P ′) with the productions P ′ in (26)
recognizes balanced subsequences of a bracket pair {b,c}, but allows occurrences
of the letters b and c to be preceded by an arbitrary number of a’s.

P ′ :

S′ −→ bC′ | bC′ S′ | bS′ C′ | bS′ C′ S′
S′ → | aB′ C′ | aB′ C′ S′ | aB′ S′ C′ | aB′ S′ C′ S′
B′ −→ b | aB′
C′ −→ c | aC′

(26)

We now have D3 = L(G) ∩ L(G′): the words of L(G) have a and b with equal
multiplicity, and at least as many a’s as b’s in every prefix; the words of L(G′)
have an equal number of occurrences of b and c, and every prefix counts at least
as many b’s as c’s.

The grammars G and G′ are in Greibach normal form, so again, the transfor-
mation to categorial lexica is immediate. Intersection of context-free languages
can be expressed categorially in a number of ways. One option, investigated
in [11], is to enrich the type language with an intersective conjunction ∩, as
originally proposed in [14]. Sequent rules for ∩ are given below.

Γ,A, Γ ′ ⇒ C

Γ,A ∩B,Γ ′ ⇒ C
∩L

Γ,A, Γ ′ ⇒ C

Γ,A ∩B,Γ ′ ⇒ C
∩L Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∩B
∩R

Under this approach, the lexicon for D3 assigns type A∩B to an alphabet symbol
a iff the lexicon obtained from G by the rule-to-type map (22) assigns A to a



294 M. Moortgat

and the lexicon obtained from G′ assigns B; the distinguished symbol for the
D3 categorial grammar then becomes S ∩ S′.

Alternatively, one can work in a product pregroup, where alphabet symbols
are associated with a pair of pregroup types 〈p, q〉, with p obtained from G and
q from G′, and distinguished symbol 〈S, S′〉. Below in (27) is the computation
that accepts aabacbbcc as a word of D3.

a a b a c b b c c(
SBlSl

S′S′lC′lB′l

)(
SSlBl

B′B′l

)(
B
B′

)(
SBlCl

C′C′l

)(
C
C′

)(
B

S′C′lS′l

)(
BCl

S′C′l

)(
CCl

C′

)(
C
C′

)

=

(
SBlSlSSlBlBSBlClCBBClCClC

S′S′lC′lB′lB′B′lB′C′C′lC′S′C′lS′lS′C′lC′C′

)
≤
(
S
S′

) (27)

An even simpler pregroup construction obtains if we use the multiplicative iden-
tity to handle the letters that have to be ignored in checking balance for pairs of
alphabet symbols. The type-assignment schema in (28) is the pregroup version
of (23), handling successive pairs of alphabet symbols {ai, ai+1} (1 ≤ i < d).
The non-terminals Bi here introduce the ‘closing bracket’ ai+1 matching the
‘opening bracket’ ai.

lexi(ai) = {Si B
l
i, Si B

l
i S

l
i, Si S

l
i B

l
i, Si S

l
i B

l
i S

l
i} lexi(ai+1) = {Bi} (28)

The construction for the D3 lexicon lex1,2 now associates alphabet symbols
with pairs of types. The first coordinate checks balance for the πa,b projection;
the letter that is to be ignored for this check (c) has the multiplicative identity
in this position. The second coordinate, similarly, checks balance for the πb,c

projection; the letter a can be ignored in this case.

lex1,2(a) = {〈p, 1〉 | p ∈ lex1(a)}
lex1,2(b) = {〈p, q〉 | p ∈ lex1(b) ∧ q ∈ lex2(b)}
lex1,2(c) = {〈1, q〉 | q ∈ lex2(c)}

(29)

The computation for aabacbbcc ∈ D3 now takes the form of (30) (distinguished
type: 〈S1, S2〉).

a a b a c b b c c(
S1 B

l
1 S

l
1

1

)(
S1 S

l
1 B

l
1

1

)(
B1

S2 S
l
2 B

l
2

)(
S1 B

l
1

1

)(
1
B2

)(
B1

S2 B
l
2 S

l
2

)(
B1

S2 B
l
2

)(
1
B2

)(
1
B2

)
(30)

Again, the generalization to alphabets {a1, . . . , ad} of size d > 3 will be clear.
Type assignments are d − 1 tuples. The symbol a1 has 1 in all coordinates
except the first, which has the lex1 values for a1 ; the symbol ad has 1 in all
coordinates except the last, which has the lexd−1 value for ad; intermediate
letters aj (1 < j < d) serve simultaneously as closing bracket for aj−1 and as
opening bracket for aj+1: they have lexj−1 and lexj values in the relevant
coordinates, and 1 elsewhere.
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Notice that with this construction, the first and the last alphabet symbols
commute. In the case of the lex1,2 type assignments, for example, we have
〈p, 1〉 ◦ 〈1, q〉 = 〈p, q〉 = 〈1, q〉 ◦ 〈p, 1〉, and indeed substrings ac of D3 words
commute: u ac v is in D3 iff u ca v is.

7 Discussion, Conclusion

For discontinuous dependencies of the interleaving type discussed here, Bach [1,2]
proposed action-at-a-distance function types A//B (B \\A): functions producing
a result of type A when provided with a B argument somewhere to their right
(left), ignoring material that might intervene. The constructions of the previous
section implement this idea of ‘delayed’ function application in a rather direct
way. They apply to multidimensional Dyck languages with alphabets of arbitrary
size, handling d-symbol alphabets by means of type tuples of size (d − 1) (or
(d−1) counter machines, if one prefers the automaton model discussed at the end
of §4).

In §5 we briefly discussed web rotations and the jeu de taquin promotion
operation on the 3 × n tableaux corresponding to these webs. The promotion
operation is not restricted to the three-dimensional case; it applies to tableaux of
arbitrary dimension. This opens up the possibility of viewing Dyck words related
by jeu de taquin promotion as different surface realisations that can be read off
from a more abstract underlying representation. We leave this as a subject for
further research.
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1 Introduction

The Syntactic Calculus [27] — often simply called the Lambek calculus, L, —
is a beautiful system in many ways: Lambek grammars give a satisfactory syn-
tactic analysis for the (context-free) core of natural language and, in addition,
it provides a simple and elegant syntax-semantics interface.

However, since Lambek grammars generate only context-free languages [49],
there are some well-know linguistic phenomena (Dutch verb clusters, at least if
we want to get the semantics right [21], Swiss-German verb clusters [54], etc.)
which cannot be treated by Lambek grammars.

In addition, though the syntax-semantics interface works for many of the stan-
dard examples, the Lambek calculus does not allow a non-peripheral quantifier
to take wide scope (as we would need for sentence (1) below if we want the
existential quantifier to have wide scope, the so-called “de re” reading) or non-
peripheral extraction (as illustrated by sentence (2) below); see [34, Section 2.3]
for discussion.

(1) John believes someone left.

(2) John will pick up the package which Mary left here yesterday.

To deal with these problems, several extensions of the Lambek calculus have
been proposed. Though this is not the time and place to review them — I
recommend [33,34] and the references cited therein for an up-to-date overview
of the most prominent extensions; they include multimodal categorial grammar
(MMCG,[31]), the Lambek-Grishin calculus (LG,[32]) and the Displacement cal-
culus (D,[46]) — I will begin by listing a number of properties which I consider
desirable for such an extension. In essence, these desiderata are all ways of keep-
ing as many of good points of the Lambek calculus as possible while at the same
time dealing with the inadequacies sketched above.1

1 To the reader who is justifiably skeptical of any author who writes down a list of
desiderata, followed by an argument by this same author arguing how well he scores
on his own list, I say only that, in my opinion, this list is uncontroversial and at
least implicitly shared by most of the work on extensions of the Lambek calculus
and that the list still allows for a considerable debate as to how well each extension
responds to each desideratum as well as discussion about the relative importance of
the different items.

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 297–330, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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1. The logic should have a simple proof theory,
2. generate the mildly context-sensitive languages,
3. have a simple syntax-semantics interface giving a correct and simple account

of medial scope for quantifiers and of medial extraction,
4. have a reasonable computational complexity.

None of these desiderata is absolute: there are matters of degree for each of
them. First of all, it is often hard to distinguish familiarity from simplicity, but I
think that having multiple equivalent proof systems for a single calculus is a sign
that the calculus is a natural one: the Lambek calculus has a sequent calculus,
natural deduction, proof nets, etc. and we would like its extensions to have as
many of these as possible, each formulated in the simplest possible way.

The mildly context-sensitive languages [22] are a family of languages which
extend the context-free language in a limited way, and opinions vary as to which
of the members of this family is the most appropriate for the description of nat-
ural language. Throughout this article, I will only make the (rather conservative
and uncontroversial) claim that any extension of the Lambek calculus should at
least generate the tree adjoining languages, the multiple context-free languages
[53] (the well-nested 2-MCFLs [24] are weakly equivalent to the tree adjoining
languages) or the simple, positive range concatenation grammars (sRCG, weakly
equivalent to MCFG, [7]).

With respect to the semantics, it generally takes the form of a simple homo-
morphism from proofs in the source logic to proofs in the Lambek-van Benthem
calculus LP (which is multiplicative intuitionistic linear logic, MILL, for the lin-
ear logicians), though somewhat more elaborate continuation-based mappings
[5,35] have been used as well.

Finally, what counts as reasonable computational complexity is open to dis-
cussion as well: since theorem-proving for the Lambek calculus is NP complete
[50], I will consider NP-complete to be “reasonable”, though polynomial pars-
ing is generally considered a requirement for mildly context-sensitive formalisms
[22]. Since the complexity of the logic used corresponds to the universal recog-
nition problem in formal language theory, NP completeness is not as bad as it
may seem, as it corresponds to the complexity of the universal recognition prob-
lem for multiple context-free grammars, which is a prototypical mildly context-
sensitive formalism (NP completeness holds when we fix the maximum num-
ber of string tuples a non-terminal is allowed to have, non-deleting MCFGs
without this restriction are PSPACE complete [23]). In addition, many NP
hard grammar formalisms such as LFG and HPSG have very efficient parsers
[8,30]. Little is known about fragments of extended Lambek calculi with bet-
ter complexity (though some partial results can be found in [37,39]). Parsing
the Lambek calculus itself is known to be polynomial when we fix the order of
formulas [51].

Table 1 gives an overview of the Lambek calculus as well as several of its
prominent extensions with respect to the complexity of the universal recognition
problem, the class of languages generated and the facilities in the formalism for
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Table 1. The Lambek calculus and several of its variants/extensions, together with
the complexity of the universal recognition problem, classes of languages generated and
the appropriateness of the formalism for handling medial quantifier scope and medial
extraction

Calculus Complexity Languages Scope Extraction
L NP complete CFL – –
MMCG PSPACE complete CSL + +
LG NP complete ⊇ MCFL + –
D NP complete ⊇ MCFL + +
MILL1 NP complete ⊇ MCFL + +

handling medial quantifier scope and medial extraction. Note that few exact
upper bounds for language classes are known.

In this paper, I will present an alternative extension of the Lambek calculus:
first-order multiplicative intuitionistic linear logic (MILL1) [15,40]. It generates
the right class of languages (MCFG are a subset of the Horn clause fragment, as
shown in Section 3.3), and embeds the Displacement calculus (D, as shown in
Section 4 and 5). As can be seen in Table 1, it has the lowest complexity class
among the different extensions, generates (at least) the right class of languages,
but also handles medial scope and medial extraction in a very simple way (as
shown already in [40]). In addition, as we will see in Section 2, MILL1 has a
very simple proof theory, essentially a resource-conscious version of first-order
logic, with a proof net calculus which is a simple extension of the proof nets
of multiplicative linear logic [10,15]. Finally, the homomorphism from MILL1 to
MILL for semantics consists simply of dropping the first-order quantifiers.

I will also look at the (deterministic, unit-free) Displacement calculus from
the perspective of MILL1 and give a translation of D into MILL1, indirectly
solving two open problems from [43] by providing a proof net calculus for D and
showing that D is NP complete. In addition it is also worth mentioning briefly
that the simpler proof theory of MILL1 (ie. proof nets) greatly simplifies the cut
elimination proofs of D [46,57]: as for the multiplicative case, cut elimination
for MILL1 consists of simple, local conversions with only three distinct cases to
verify (axiom, tensor/par and existential/universal).

The remainder of this paper is structured as follows. In the next section, I
will briefly introduce MILL1 and its proof theory, including a novel correctness
condition for first-order proof nets, which is a simple extension of the contraction
criterion from Danos [9]. Section 3 will introduce the Displacement calculus, D,
using a presentation of the calculus from [46] which emphasizes the operations
on string tuples and, equivalently, on string positions. Section 4 will present a
translation from D to MILL1, with a correctness proof in Section 5. Section 6
will briefly mention some other possible applications of MILL1, which include
agreement, non-associativity and island constraints, and quantifier scope. Fi-
nally, I will reflect on the implications of the results in this paper and give some
interesting open problems.
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2 MILL1

First-order multiplicative intuitionistic linear logic (MILL1) extends (multiplica-
tive) intuitionistic linear logic with the first-order quantifiers ∃ and ∀. The
first-order multiplicative fragment shares many of the good properties of the
propositional fragment: the decision problem is NP complete [28] and it has a
simple proof net calculus which is an extension of the proof net calculus for
multiplicative linear logic.

Table 2 presents the natural deduction calculus for MILL1, which is without
surprises, though readers familiar with intuitionistic logic should note that the
⊗E, � I and ∃E rule discharge exactly one occurrence of each of the hypotheses
with which it is coindexed.

Table 2. Natural deduction rules for MILL1

A⊗B

[A]i[B]i
....
C

C
⊗Ei

A B
A⊗B

⊗I

A A � B
B

� E

[A]i
....
B

A � B
� I

∃x.A

[A]i
....
C

C
∃E∗

i

A[x := t]

∃x.A ∃I

∀x.A
A[x := t]

∀E A
∀x.A ∀I∗

∗ no free occurrences of x in any of the free hypotheses

The presentation of proof nets is (out of necessity) somewhat terse. A more
gentle introduction to proof nets can be found, for example in [16,42]. I will
present the proof net calculus in three steps, which also form a basic proof
search procedure: for a given statement Γ � C (with C a formula and Γ a
multiset of formulas) we form a proof frame by unfolding the formulas according
to the logical links shown in the bottom two rows of Table 3, using the negative
unfolding for the formulas in Γ and the positive unfolding for the formula C. We
then connect the atomic formulas using the axiom link (shown on the top left
of the table) until we have found a complete matching of the atomic formulas,
forming a proof structure. Finally, we check if the resulting proof structure is a
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proof net (ie. we verify if Γ � C is derivable) by verifying it satisfies a correctness
condition.

As is usual, I will use the following conventions, which will make formulating
the proof net calculus simpler.
– dotted binary links are called par links, solid binary links are called tensor

links,
– dotted unary links are called universal links, solid unary links are called

existential links, the bound variables of these links are called universally
bound and existentially bound respectively.

– each occurrence of a quantifier link uses a distinct bound variable,
– the variable of a positive ∀ and a negative ∃ link (ie. the universal links and

universally quantified variables) are called its eigenvariable,
– following [4], I require eigenvariables of existential links to be used strictly,

meaning that replacing the eigenvariable throughout a proof with a special,
unused constant will not result in a proof (in other words, we never unneces-
sarily instantiate an existentially quantified variable with the eigenvariable
of a universal link).

The fact that both par links and universal links are drawn with dotted lines
is not a notational accident: one of the fundamental insights of focusing proofs
and ludics [2,17] is that these two types of links naturally group together, as do
the existential and tensor links, both drawn with solid lines. This property is
also what makes the correctness proof of Section 5 work. When it is convenient
to refer to the par and universal links together, I will call them asynchronous
links, similarly I will refer to the existential and tensor links as synchronous links
(following Andreoli [2]).

In Table 3, the formulas drawn below the link are its conclusions (the axiom
link, on the top left of the table, is the only multiple conclusion link, the cut
link, on the top right, does not have a conclusion, all logical links have a single
conclusion), the formulas drawn above the link are its premisses.

Definition 1. A proof structure is a set of polarized formulas connected by
instances of the links shown in Table 3 such that each formula is at most once
the premiss of a link and exactly once the conclusion of a link. Formulas which
are not the premiss of any link are called the conclusions of the proof structure.
We say a proof structure with negative conclusions Γ and positive conclusions
Δ is a proof structure of the statement Γ � Δ.

Definition 2. Given a proof structure Π a switching is
– for each of the par links a choice of one of its two premisses,
– for each of the universal links a choice either of a formula containing the

eigenvariable of the link or of the premiss of the link.

Definition 3. Given a proof structure Π and a switching s we obtain a correc-
tion graph G by
– replacing each par link by an edge connecting the conclusion of the link to

the premiss selected by s
– replacing each universal link by an edge connecting the conclusion of the link

to the formula selected by s
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Table 3. Logical links for MILL1 proof structures

−
A

+

A
−
A

+

A

−
∀x.A

−
A[x := t]

+

∀x.A

+

A

−
∃x.A

−
A

−
A⊗B

−
A

−
B

+

A⊗B

+

A
+

B

+

∃x.A

+

A[x := t]

−
A � B

+

A
−
B

+

A � B

−
A

+

B

Whereas a proof structure is a graph with some additional structure (paired
edges, draw as connected dotted lines for the par links, and “universal” edges,
draw as dotted lines) a correction graph is a plain graph as used in graph the-
ory: both types of special edges are replaced by normal edges according to the
switching s.

Definition 4. A proof structure is a proof net iff for all switchings s the cor-
responding correction graph G is acyclic and connected.

Remarkably, the proof nets correspond exactly to the provable statements in
MILL1 [15].

The basic idea of [40] is very simple: instead of using the well-known trans-
lation of Lambek calculus formulas into first-order logic (used for model-theory,
see e.g. [11]), we use this same translation to obtain formulas of first-order mul-
tiplicative linear logic. In this paper, I extend this result to the discontinuous
Lambek calculus D, while at the same time sketching some novel applications of
the system which correspond more closely to analyses in multimodal categorial
grammars.

2.1 A Danos-Style Correctness Condition

Though the correctness condition is conceptually simple, a proof structure has a
number of correction graphs which is exponential in the number of asynchronous
links, making the correctness condition hard to verify directly (though linear-
time algorithms for checking the correctness condition exist in the quantifier-free
case, eg. [20,47]).

Here, I present an extension of the correctness condition of [9] to the
first-order case, which avoids this exponential complexity. Let G be a proof
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structure, where each vertex of the proof structure is a assigned the set of eigen-
variables which occur in the corresponding formula. Then we have the following
contractions.

vi

vj

vi

vj

⇒p

vi

vj

vi

vj

⇒u

vi

vj

vi⇒c

There is one contraction for the par links (p), one contraction for the universal
links (u) and a final contraction which contracts components (connected sub-
graphs consisting only of synchronous, axiom and cut links) to a single vertex
(c). The u contraction has the condition that there are no occurrences of the
eigenvariable of the universal variable corresponding to the link outside of vj .
The c contraction has as condition that i �= j; it contracts the vertex connecting
i and j and the set of eigenvariables of vi on the right hand side of the contrac-
tion corresponds to the set union of the eigenvariables of vi and vj on the left
hand side of the contraction.

The following proposition is easy to prove using induction on the number of
asynchronous links in the proof structure, using a variant of the “splitting par”
sequentialization proof of Danos [9]:

Proposition 1. A proof structure is a proof net iff it contracts to a single vertex
using the contractions p, u and c.

It is also easy to verify that the contractions are confluent, and can therefore
be applied in any desired order.

To give an idea of how these contractions are applied, Figure 1 shows (on the
left) a proof structure for the underivable statement ∀x∃y.f(x, y) � ∃v∀w.f(w, v).
In the middle of the figure, we see the proof structure with each formula replaced
by the set of its free variables and before any contractions, with the eigenvari-
ables shown next to their universal links. On the right, we see the structure
after all c contractions have been applied. It is clear that we cannot apply the u
contraction for y, since y occurs at a vertex other than the top vertex. Similarly,
we cannot apply the u contraction for w either, meaning the proof structure is
not contractible and therefore not a proof net.

∀x∃y.f(x, y)

∃y.f(w, y)

f(w, y) f(w, y)

∀w.f(w, y)

∃v∀w.f(w, v) ∅

{w}

{w, y} {w, y}

{y}

∅

y w

{w, y}

{w} {y}
y w

Fig. 1. Proof structure and partial contraction sequence for the underivable statement
∀x∃y.f(x, y) � ∃v∀w.f(w, v)
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Figure 2 shows the proof structure and part of the contraction sequence for the
derivable statement ∃x∀y.f(x, y) � ∀v∃w.f(w, v). In this case, the structure on
the right does allow us to perform the u contractions (in any order), producing
a single vertex and thereby showing the proof structure is a proof net.

∃x∀y.f(x, y)

∀y.f(x, y)

f(x, v) f(x, v)

∃w.f(w, v)

∀v∃w.f(w, v) ∅

{x}

{x, v} {x, v}

{v}

∅
x v

{x, v}

∅ ∅
x v

Fig. 2. Proof net and partial contraction sequence for the derivable statement
∃x∀y.f(x, y) � ∀v∃w.f(w, v)

2.2 Eager Application of the Contractions

Though the contraction condition can be efficiently implemented, when verifying
whether or not a given statement is a proof net it is often possible to disqualify
partial proof structures (that is, proof structures where only some of the ax-
iom links have been performed). Since the number of potential axiom links is
enormous (n! in the worst case), efficient methods for limiting the combinatorial
explosion as much as possible are a prerequisite for performing proof search on
realistic examples.

The contractions allow us to give a compact representation of the search
space by reducing the partial proof structure produced so far. When each ver-
tex is assigned a multiset of literals (in addition to the set of eigenvariables
already required for the contractions), the axiom rule corresponds to selecting,
if necessary, while unifying the existentially quantified variables, two conjugate
literals +A and −A from two different vertices (since the axiom rule corresponds
to an application of the c contraction), identifying the two vertices and taking
the multiset union of the remaining literals from the two vertices, in addition
to taking the set union of the eigenvariables of the vertices. When the input
consists of (curried) Horn clauses, each vertex will correspond to a Horn clause;
therefore this partial proof structure approach generalizes resolution theorem
proving. However, it allows for a lot of freedom in the strategy of literal selec-
tion, so we can apply “smart backtracking” strategies such as selecting the literal
which has the smallest number of conjugates [36,38]. The contraction condition
immediately suggest the following.

– never connect a literal to a descendant or an ancestor (generalizes “formulas
from different vertices” for the Horn clause case); failure to respect this
constraint will result in a cyclic proof structure,
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– if the premiss of an asynchronous link is a leaf with the empty set of literals,
then we must be able to contract it immediately ; failure to respect this
constraint will result in a disconnected proof structure.

– similarly, if an isolated vertex which is not the only vertex in the graph has
the empty set of literals, then the proof structure is disconnected.

3 The Displacement Calculus

The Displacement calculus [46] is an extension of the Lambek calculus using
tuples of strings as their basic units. Unless otherwise noted, I will restrict myself
Displacement calculus without the identity elements, the synthetic connectives
(though see the discussion in Section 4.2 on how some of the synthetic connectives
can be included) or the non-deterministic connectives.

3.1 String Tuples

Whereas the Lambek calculus is the logic of strings, several formalisms are using
tuples of strings as their basic units (eg. MCFGs, RCGs).

In what follows I use s, s0, s1, . . . , s
′, s′′, . . . to refer to simple strings (ie. the

1-tuples) with the constant ε for the empty string. The letters t, u, v etc. refer to
i-tuples of strings for i ≥ 1. I will write a i-tuple of strings as s1, . . . , si, but also
(if i ≥ 2) as s1, t or t′, si where t is understood to be the string tuple s2, . . . , si
and t′ the string tuple s1, . . . , si−1, both (i − 1)-tuples.

The basic operation for simple strings is concatenation. How does this opera-
tion extend to string tuples? For our current purposes, the natural extension of
concatenation to string tuples is the following

(s1, . . . , sm) ◦ (s′1, . . . , s
′
n) = s1, . . . , sms′1, . . . , s

′
n

where sms′1 is the string concatenation of the two simple strings sm and s′1. In
other words, the result of concatenating an m-tuple t and an n-tuple u is the
n+m− 1 tuple obtained by first taking the first m− 1 elements of t, then the
simple string concatenation of the last element of t with the first element of u
and finally the last n − 1 elements of u. When both t and u are simple strings,
then their concatenation is the string concatenation of their single element.2 In
what follows, I will simply write tu for the concatenation of two string tuples t
and u and u[t] to abbreviate u1tu2.

3.2 Position Pairs

As is common in computational linguistics, it is sometimes more convenient to
represent a simple string as a pair of string positions, the first element of the pair
representing the leftmost string position and the second element its rightmost

2 Another natural way to define concatenation is as point-wise concatenation of the
different elements of two (equal-sized) tuples, as done by Stabler [56].
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position. These positions are commonly represented as integers (to make the
implicit linear precedence relation more easily visible). Likewise, we can represent
an n-tuple of strings as a 2n tuple of string positions. This representation has
the advantage that it makes string concatenation trivial: if x0, x1 is a string
starting at position x0 and ending at position x1 and x1, x2 is a string starting
at position x1 and ending at position x2 then the concatenation of these two
strings is simply x0, x2 (this is the familiar difference list concatenation from
Prolog [52]).

Definition 5. We say a grammar is simple in the input string if for each input
string w1, . . . , wn we have that wi spans positions i, i+ 1.

Much of the work in parsing presupposes grammars are simple in the input
string [48], since it makes the definition of the standard parsing algorithms much
neater. However, the original construction of Bar-Hillel et al. [3] on which it is
based is much more general: it computes the intersection of a context-free gram-
mar and a finite-state automaton (FSA), where each non-terminal is assigned an
input state and an output state of the FSA. For grammars which are not simple
in the input string, this FSA can have self-loops and complex cycles, whereas
the input string for a simple grammar is an FSA with a simple, deterministic
linear path as shown in the example below. With the exception of Section 4.2,
where I discusses the possibility of abandoning this constraint, the grammars I
use will be simple in the input string.

1 2 3 4 5 6 7 8 9
Jan Henk Cecilia de nijlpaarden zag helpen voeren

Suppose “nijlpaarden” (hippos) above is assigned the category n, for noun.
Incorporating its string positions produces n(5, 6). It gets more interesting with
the determiner “de” (the): we assign it the formula ∀x.n(5, x) � np(4, x), which
says that whenever it finds an n to its immediate right (starting at position 5
and ending at any position x) it will return an np from position 4 to this same
x (this is the MILL1 translation of np/n at position 4, 5). In a chart parser,
we would indicate this by adding an np arc from 4 to 6. There is an important
difference with a standard chart parser though: since we are operating in a
resource-conscious logic, we know that in a correct proof each rule is used exactly
once (though their order is only partially determined).

Figure 3 shows the three elementary string operations of the Displacement
calculus both in the form of operations of string tuples and in the form of oper-
ations of string position pairs.

Concatenation takes an i-tuple t (shown in the top of the figure as the
white blocks, with corresponding string positions x0, . . . , xn for n = 2i − 1)
and a j-tuple u (shown in the top of the figure as the gray blocks, with cor-
responding string positions xn, . . . , xn+m for m = 2j − 1) and the resulting
concatenation tu (with the last element of t concatenated to the first element
of u, indicated as the gray-white block xn−1, xn+1; xn is not a string posi-
tion in the resulting i + j − 1-tuple tu, which consists of the string positions
x0, . . . , xn−1, xn+1, . . . , xn+m.
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Concatenation of t and u

t an i-tuple and u a j-tuple
· · · · · ·︸ ︷︷ ︸
t

︸ ︷︷ ︸
u

tu︷ ︸︸ ︷
x0 xn xn+m

n=2i−1,m=2j−1

Left wrap of s, t and u

t an i-tuple and u a j-tuple
· · · · · ·︸ ︷︷ ︸

s

︸ ︷︷ ︸
t

︸ ︷︷ ︸
u

sut︷ ︸︸ ︷
x0 x1 xn xn+m

n=2j,m=2i−1

Right wrap of t, s and u

t an i-tuple and u a j-tuple
· · ·· · · ︸ ︷︷ ︸

s

︸ ︷︷ ︸
t

︸ ︷︷ ︸
u

tus︷ ︸︸ ︷
x0 xn xn+m−1 xn+m

n=2i−1,m=2j

Fig. 3. String operations and their equivalent string positions operations

Left wrap takes an i + 1-tuple s, t (with s a simple string and t an i-tuple,
with string positions x0, x1, xn, . . . , xn+m) and a j-tuple u (with string positions
x1, . . . , xn) and wraps s, t around u producing and i+ j−1-tuple sut with string
positions x0, x2, . . . , xn−1, xn+1, . . . , xn+m, with positions x1 and xn removed
because of the two concatenations.

Symmetrically, right wrap takes an i+1-tuple t, s (with s a simple string and
t an i-tuple) and a j-tuple u and wraps t, s around u producing tus.

Given these operations, the proof rules for D are simple to state. I give a
notational variant of the natural deduction calculus of [46]. As usual, natural
deduction proofs start with a hypothesis t : A (for t : A an entry the lexicon of
the grammar, in which case t is a lexical constant, or for a hypothesis discharged
by the product elimination and implication introduction rules, in which case
t is an appropriate n-tuple). In each case the string tuple t is unique in the
proof.

For a given (sub-)proof, the active hypotheses are all hypotheses which have
not been discharged by a product elimination of implication introduction rule in
this (sub-)proof.

For the logical rules, we can see that the different families of connectives
correspond to the three basic string tuple operations: with concatenation for /,
• and \ (the rules are shown in Figure 4 and Figure 7 with the corresponding
string tuples), left wrap for ↑>, +> and ↓> (shown in Figure 5 and Figure 8)
and right wrap for ↑<, +< and ↓< (shown in Figure 6 and Figure 9).

In the discontinuous Lambek calculus, we define the sort of a formula F ,
written s(F ) as the number of items in its string tuple minus 1. Given sorts
for the atomic formulas, we compute the sort of a complex formula as shown
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t : A u : A \ C
tu : C

\E

[t : A]i
....

tu : C
u : A \ C \Ii

t : C / B u : B

tu : C
/E

[u : B]i
....

tu : C
t : C / B

/Ii

t : A •B

[t1 : A]i [t2 : B]i
....

u[t1t2] : C

u[t] : C
•Ei

t : A u : B
tu : A • B •I

Fig. 4. Proof rules – Lambek calculus

s, t : A u : A ↓> C

sut : C
↓> E

[s, t : A]i
....

sut : C
u : A ↓> C

↓> Ii

s, t : C ↑> B u : B

sut : C
↑> E

[u : B]i
....

sut : C
s, t : C ↑> B

↑> Ii

t : A�> B

[s, t2 : A]i [t1 : B]i
....

u[st1t2] : C

u[t] : C
�>Ei

s, t : A u : B

sut : A�> B
�>I

Fig. 5. Proof rules — leftmost infixation,extraction

in Table 4 (the distinction between the left wrap and right wrap connectives is
irrelevant for the sorts).

3.3 MILL1 and Multiple Context-Free Grammars

It is fairly easy to see that MILL1 generates (at least) the multiple context-free
languages (or equivalently, the languages generated by simple, positive range
concatenation grammars [7]) by using a lexicalized form of the grammars as
defined below.

Definition 6. A grammar is lexicalized if each grammar rule uses exactly one
non-terminal symbol.
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Table 4. Computing the sort of a complex formula given the sort of its immediate
subformulas

s(A • B) = s(A) + s(B)

s(A \ C) = s(C)− s(A)

s(C / B) = s(C)− s(B)

s(A�B) = s(A) + s(B)− 1

s(A ↓ C) = s(C) + 1− s(A)

s(C ↑ B) = s(C) + 1− s(B)

t, s : A u : A ↓< C

tus : C
↓< E

[t, s : A]i
....

tus : C
u : A ↓< C

↓< Ii

t, s : C ↑< B u : B

tus : C
↑< E

[u : B]i
....

tus : C
t, s : C ↑< B

↑< Ii

t : A�< B

[t1, s : A]i [t2 : B]i
....

u[t1t2s] : C

u[t] : C
�<Ei

t, s : A u : B

tus : A�< B
�<I

Fig. 6. Proof rules — rightmost infixation,extraction

Lexicalization is one of the principal differences between traditional phrase
structure grammars and categorial grammars: categorial grammars generally
require a form of lexicalization, whereas phrase structure grammars do not.
The most well-known lexicalized form is the Greibach normal form for context-
free grammars [19]. Wijnholds [58] shows that any (ε-free) simple, positive
range concatenation grammar has a lexicalized grammar generating the same
language (see also [55])3. Since ranges are simply pairs of non-negative inte-
gers (see Section 3.2 and [7]) these translate directly to Horn clauses in MILL1.
The following rules are therefore both a notational variant of a (lexicalized)
MCFG/sRCG and an MILL1 lexicon (corresponding to the verbs of the
example on page 306).

3 Wijnholds [58] and Sorokin [55] also given translations between MCFG/sRCG and
D, to which we will return in Section 4.2.
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∀x0x1x2x3.np(x0, x1)⊗ np(x1, x2)⊗ inf(x2, 6, 7, x3) � s(x0, x3) zag

∀x0x1x2x3.np(x0, x1)⊗ inf(x1, x2, 8, x3) � inf(x0, x2, 7, x3) helpen

∀x0x1.np(x0, x1) � inf(x0, x1, 8, 9) voeren

In Section 4.2, we will see how we can obtain (the Curried versions of) these
formulas via a translation of D and provide the corresponding MILL1 proof
net.

4 Translations

The proof rules and the corresponding string tuple operations (shown in Fig-
ures 7, 8 and 9) suggest the translation shown in Table 5 of D formulas into
MILL1 formulas. It is an extension of the translation of Lambek calculus formu-
las of [40], while at the same time extending the translation of [44,12] for the
simple displacement calculus (1-D, where all formulas are of sort ≤ 1). Fadda
[12] also gives a proof net calculus for the simple displacement calculus, which
is a special case of the one presented here.

The reader intimidated by the number variable indices in Table 5 is invited
to look at Figures 7, 8 and 9 for the correspondence between the string position
numbers and the string components of the different formulas in the translation.
Section 4.1 will illustrate the translation using some examples, whereas Section 5

· · · · · ·︸ ︷︷ ︸
A

︸ ︷︷ ︸
B

A•B︷ ︸︸ ︷
x0 xn xn+m

n=2s(A)+1,m=2s(B)+1

t : A • B

[t1 : A]i [t2 : B]i
....

u[t1t2] : C

u[t] : C
•Ei

t : A u : B
tu : A • B •I

· · · · · ·︸ ︷︷ ︸
C/B

︸ ︷︷ ︸
B

C︷ ︸︸ ︷
x0 xn xn+m

n=2s(C/B)+1,m=2s(B)+1

t : C / B u : B

tu : C
/E

[u : B]i
....

tu : C
t : C / B

/Ii

· · · · · ·︸ ︷︷ ︸
A

︸ ︷︷ ︸
A\C

C︷ ︸︸ ︷
x0 xn xn+m

n=2s(A)+1,m=2s(A\C)+1

t : A u : A \ C
tu : C

\E

[t : A]i
....

tu : C
u : A \ C \Ii

Fig. 7. String positions – Lambek calculus
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· · · · · ·︸ ︷︷ ︸
A

︸ ︷︷ ︸
A

︸ ︷︷ ︸
B

A�>B︷ ︸︸ ︷
x0 x1 xn xn+m

n=2s(B)+2,m=2s(A)−1

t : A�> B

[s, t2 : A]i [t1 : B]i
....

u[st1t2] : C

u[t] : C
�>Ei

s, t : A u : B

sut : A�> B
�>I

· · · · · ·︸ ︷︷ ︸
C↑>B

︸ ︷︷ ︸
C↑>B

︸ ︷︷ ︸
B

C︷ ︸︸ ︷
x0 x1 xn xn+m

n=2s(B)+2,m=2s(C↑>B)−1

s, t : C ↑> B u : B

sut : C
↑> E

[u : B]i
....

sut : C
s, t : C ↑> B

↑> Ii

· · · · · ·︸ ︷︷ ︸
A

︸ ︷︷ ︸
A

︸ ︷︷ ︸
A↓>C

C︷ ︸︸ ︷
x0 x1 xn xn+m

n=2s(A↓>C)+2,m=2s(A)−1

s, t : A u : A ↓> C

sut : C
↓> E

[s, t : A]i
....

sut : C
u : A ↓> C

↓> Ii

Fig. 8. String positions – leftmost infix/extraction

· · ·· · · ︸ ︷︷ ︸
A

︸ ︷︷ ︸
A

︸ ︷︷ ︸
B

A�<B︷ ︸︸ ︷
x0 xn xn+m−1 xn+m

n=2s(A)−1,m=2s(B)+2

t : A�< B

[t1, s : A]i [t2 : B]i
....

u[t1t2s] : C

u[t] : C
�<Ei

t, s : A u : B

tus : A�< B
�<I

· · ·· · · ︸ ︷︷ ︸
C↑<B

︸ ︷︷ ︸
C↑<B

︸ ︷︷ ︸
B

C︷ ︸︸ ︷
x0 xn xn+m−1 xn+m

n=2s(C↑<B)−1,m=2s(B)+2

t, s : C ↑< B u : B

tus : C
↑< E

[u : B]i
....

tus : C
t, s : C ↑< B

↑< Ii

· · ·· · · ︸ ︷︷ ︸
A

︸ ︷︷ ︸
A

︸ ︷︷ ︸
A↓<C

C︷ ︸︸ ︷
x0 xn xn+m−1 xn+m

n=2s(A)−1,m=2s(A↓<C)+2

t, s : A u : A ↓< C

tus : C
↓< E

[t, s : A]i
....

tus : C
u : A ↓< C

↓< Ii

Fig. 9. String positions – rightmost infix/extraction

will make the correspondence with the rules from the Displacement calculus more
precise.

Note: the sequence xi, . . . , xi is of course simply the unit sequence xi whereas
the sequence xi, . . . , xi−1 is the empty sequence.

If there are at most two string tuples, both C ↑> B (Equation 5 with n = 2,
m = 1, remembering that x2, . . . , xn−1 ≡ x2, . . . , x1 which is equivalent to the
empty sequence of string positions and the empty sequence of quantifier prefixes,
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Table 5. Translation of D formulas to MILL1 formulas

‖A •B‖x0,...,xn−1,xn+1,...,xn+m =

∃xn‖A‖x0,...,xn ⊗ ‖B‖xn,...,xn+m

}
n=2s(A)+1,m=2s(B)+1(1)

‖C / B‖x0,...,xn =

∀xn+1, . . . , xn+m‖B‖xn,...,xn+m �
‖C‖x0,...,xn−1,xn+1,...,xn+m

⎫⎪⎬⎪⎭n=2s(C/B)+1,m=2s(B)+1(2)

‖A \ C‖xn,...,xn+m =

∀x0, . . . , xn−1‖A‖x0,...,xn �
‖C‖x0,...,xn−1,xn+1,...,xn+m

⎫⎪⎬⎪⎭n=2s(A)+1,m=2s(A\C)+1(3)

‖A�> B‖x0,x2,...,xn−1,xn+1,...,xn+m =

∃x1, xn‖A‖x0,x1,xn,...,xn+m ⊗ ‖B‖x1,...,xn

}
n=2s(B)+2,m=2s(A)−1(4)

‖C ↑> B‖x0,x1,xn,...,xn+m =

∀x2, . . . , xn−1‖B‖x1,...,xn �
‖C‖x0,x2,...,xn−1,xn+1,...,xn+m

⎫⎪⎬⎪⎭n=2s(B)+2,m=2s(C↑>B)−1(5)

‖A ↓> C‖x1,...,xn =

∀x0, xn+1, . . . , xn+m‖A‖x0,x1,xn,...,xn+m �
‖C‖x0,x2,...,xn−1,xn+1,...,xn+m

⎫⎪⎬⎪⎭n=2s(A↓>C)+2,m=2s(A)−1(6)

‖A�< B‖x0,...,xn−1,xn+1,...,xn+m−2,xn+m =

∃xn, xn+m−1‖A‖x0,...,xn,xn+m−1,xn+m ⊗ ‖B‖xn,...,xn+m−1

}
n=2s(A)−1,m=2s(B)+2

(7)

‖C ↑< B‖x0,...,xn,xn+m−1,xn+m =

∀xn+1, . . . , xn+m−2‖B‖xn,...,xn+m−1 �
‖C‖x0,...,xn−1,xn+1,...,xn+m−2,xn+m

⎫⎪⎬⎪⎭n=2s(C↑>B)−1,m=2s(B)+2(8)

‖A ↓< C‖xn,...,xn+m−1 =

∀x0, . . . , xn−1, xn+m‖A‖x0,...,xn,xn+m−1,xn+m �
‖C‖x0,...,xn−1,xn+1,...,xn+m−2,xn+m

⎫⎪⎬⎪⎭n=2s(A)−1,m=2s(A↓>C)+2(9)
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and that xn+1, . . . , xn+m ≡ x3, . . . , x3 ≡ x3) and C ↑< B (Equation 8 with
n = 1, m = 2) translate to the following

‖C ↑B‖x0,x1,x2,x3 = ‖B‖x1,x2 � ‖C‖x0,x3

Similarly, it is easy to verify that both A ↓> C (Equation 6 with n = 2,
m = 1, remember that x2, . . . xn−1 ≡ x2, . . . , x1 and therefore equal to the empty
sequence and that xn+1, . . . , xn+m ≡ x3, . . . , x3 ≡ x3) and A ↓< C (Equation 9
with n = 1, m = 2) produce the following translation for D formulas with at
most two string tuples.

‖A ↓ C‖x1,x2 = ∀x0, x3‖A‖x0,x1,x2,x3 � ‖C‖x0,x3

In the Lambek calculus, all sorts are zero, therefore instantiating Equation 3
with n=1, m=1 produces the following

‖A \ C‖x1,x2 = ∀x0‖A‖x0,x1 � ‖C‖x0,x2

and therefore has the translation of [40] as a special case.

4.1 Examples

As an illustration, let’s look at the formula unfolding of ((vp ↑ vp)/vp)\(vp ↑ vp),
which is the formula for “did” assigned to sentences like

(3) John slept before Mary did.

by [46]. This lexical entry for “did” is of sort 0 and therefore has two string
positions (I use 4 and 5) to start off its translation. However, since both direct
subformulas are of sort 1, these subformulas have four position variables each.
Applying the translation for \ shown in Equation 3 with n = 3 (= 2s((vp ↑
vp)/vp) + 1), m = 1 (the sort of the complete formula being 0) gives us the
following partial translation.

∀x0x1x2‖(vp ↑ vp)/vp‖x0,x1,x2,4 � ‖vp ↑ vp‖x0,x1,x2,5

I first translate the leftmost subformula, which is of sort 1, and apply the /
rule (Equation 2) with n = 3 (= 2s((vp ↑ vp)/vp)+1) and m = 1 (= 2s(vp)+1)
giving the following partial translation.

∀x0x1x2[∀x3[‖vp‖4,x3 � ‖vp ↑ vp‖x0,x1,x2,x3 ] � ‖vp ↑ vp‖x0,x1,x2,5]

Applying the translation rule for C ↑ B (Equation 5) twice produces.

∀x0x1x2[∀x3[‖vp‖4,x3 � ‖vp‖x1,x2 � ‖vp‖x0,x3 ] � ‖vp‖x1,x2 � ‖vp‖x0,5]



314 R. Moot

Figure 10 on the facing page shows a proof net for the complete sentence —
slightly abbreviated, in that not all vp’s have been expanded and that the exis-
tential links and the corresponding substitutions have not been included in the
figure.

The intelligent backtracking solution of Section 2.2 (and [38]) guarantees that
at each step of the computation we can make a deterministic choice for literal
selection, though the reader is invited to try and find a proof by hand to convince
himself that this is by no means a trivial example!

As a slightly more complicated example translation, which depends on the
distinction between left wrap and right wrap, Morrill et al. [46] give the following
formula for an object reflexive:

((vp ↑> np) ↑< np) ↓< (vp ↑> np)

Translating the ↓< connective, with input positions 3 and 4 using Equation 9
with n = 3 (since s((vp ↑> np) ↑< np) = 2) and m = 2 gives the following
partial translation.

∀x0, x1, x2, x5‖(vp ↑> np) ↑< np‖x0,x1,x2,3,4,x5 � ‖vp ↑> np‖x0,x1,x2,x5

Translating the ↑< connective using Equation 8 with n = 3 and m = 2
gives.

∀x0, x1, x2, x5[‖np‖3,4 � ‖vp ↑> np‖x0,x1,x2,x5 ] � ‖vp ↑> np‖x0,x1,x2,x5

Finally, unfolding the two ↑> connectives (using Equation 5) gives.

∀x0, x1, x2, x5[np(3, 4) � np(x1, x2) � ‖vp‖x0,x5 ] � np(x1, x2) � ‖vp‖x0,x5

Indicating that an object reflexive described by the given formula takes a
ditransitive verb (with a first object argument spanning the input positions 3−4
of the reflexive and a second without constraints on the position) to produce a
transitive verb, a vp still missing an np spanning the positions of the second np
of the ditransitive verb, which corresponds to the intuitive meaning of the lexical
entry.

4.2 Synthetic Connectives

Morrill et al. [46] introduce the synthetic connectives4 for the simple displace-
ment calculus 1-D (with formulas of sort ≤ 1), whereas Valent́ın [57] presents

4 Note that from the point of view of MILL1, all D-connectives are synthetic MILL1-
connectives, that is, combinations of a series of quantifiers and a binary connective,
as can already be seen from the translation in Table 5 on page 312; we will return to
this point in Section 5. The synthetic connectives of D are combinations of a binary
connective and an identity element. The idea for both is essentially the same: to
treat a combination of rules as a single rule, which can be added to the logic as a
conservative extension.
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Fig. 10. Proof net for “John left before Mary did.”



316 R. Moot

their natural extension to D (as well as non-deterministic versions of these con-
nectives, which will not be treated here). The synthetic connectives can be seen
as abbreviations of combinations of a connective and an identity element (I de-
noting the empty string ε and J denoting the pair of empty strings ε, ε) as shown
in the list below.

Ǎ =def A ↑ I Split

Â =def A+ I Bridge

!−1A =def J \A Right projection

!A =def J •A Right injection

�−1A =def A / J Left projection

�A =def A • J Left injection

Figures 11 and 12 show the proof rules for leftmost bridge/split and right
projection/injection (the proof rules for left projection and injection as well as
the proof rules for rightmost bridge and split are symmetric).

s, t : Ǎ

st : A
Ě

st : A
s, t : Ǎ

Ǐ

t : Â

s, t′ : A
....

u[st′] : C

u[t] : C
Ê

s, t : A

st : Â
Î

Fig. 11. Proof rules — leftmost split, bridge

t : �−1A
ε, t : A �−1E

t : A

ε, t : �−1A
�−1I

v : �A

t : A....
u, tu′ : C

uvu′ : C
�E t : A

ε, t : �A
�I

Fig. 12. Proof rules — right projection, injection

The synthetic connectives are translated as follows (only the leftmost split and
wedge are shown, the rightmost versions are symmetric in the variables):
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‖ Ǎ‖x0,x1,x1,x2,...,xn = ‖A‖x0,x2,...,xn(10)

‖ Â‖x0,x2,...,xn = ∃x1.‖A‖x0,x1,x1,x2,...,xn(11)

‖ ! A‖x0,x0,x1,...,xn = ‖A‖x1,...,xn(12)

‖ !−1 A‖x1,...,xn = ∀x0.‖A‖x0,x0,x1,...,xn(13)

‖ � A‖x0,...,xn,xn+1,xn+1 = ‖A‖x0,...,xn(14)

‖ �−1 A‖x0,...,xn = ∀xn+1.‖A‖x0,...,xn,xn+1,xn+1(15)

In [46], the bridge connective appears exclusively in (positive) contexts (̂A ↑
B) where it translates as.

‖ (̂A ↑ B)‖x0,x2 = ∃x1.‖A ↑ B‖x0,x1,x1,x2

= ∃x1.[‖B‖x1,x1 � ‖A‖x0,x2 ]

The resulting formula indicates that it takes aB argument spanning the empty
string (anywhere) to produce an A covering the original string position x0 and
x2. Intuitively, this formalizes (in positive contexts) an A constituent with a B
trace. The final translation is positive subformula of the extraction type used
in [40].

The split connective ( ,̌ but also � and !) is more delicate, since it identifies
string position variables. This can force the identification of variables, which
means that direct application of the translation above can produce formulas
which have “vacuous” quantifications, though this is not harmful (and these are
easily removed in a post-processing step if desired). However, this identification
of variables means that the grammars are no longer necessarily simple in the
input string as discussed in Section 3.2. As an example, unfolding the formula
below (which is patterned after the formula for “unfortunately” from [46]) with
input variables xi and xj forces us to identify xi and xj as shown below, hence
producing a self-loop in the input FSA.

‖ Ǎ ↓ B‖xi,xi = ∀x0, x2.‖ Ǎ‖x0,xi,xi,x2 � ‖B‖x0,x2

= ∀x0, x2.‖A‖x0,x2 � ‖B‖x0,x2

Intuitively, this translation indicates that a formula of the form Ǎ ↓ B takes
its A argument at any span of the string and produces a B at the same position,
with the complete formula spanning the empty string. It is, in essence, a transla-
tion of the (commutative) linear logic or LP implication into our current context.
The MIX language can easily be generated using this property [45].

It is easy to find complex formulas which, together with their arguments,
produce a complex cycle. The following formula spans the empty string after it
combines with its C argument.
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‖( Ǎ ↓ B)/C‖xi,xj = ∀x1‖C‖xj,x1 � ‖ Ǎ ↓ B‖xi,x1

= ∀x1[‖C‖xj,x1 � ∀x0, x2.[‖ Ǎ‖x0,xi,x1,x2 � ‖B‖x0,x2 ]]

= ∀x1[‖C‖xj,xi � ∀x0, x2.[‖A‖x0,x2 � ‖B‖x0,x2 ]]

= ‖C‖xj,xi � ∀x0, x2.[‖A‖x0,x2 � ‖B‖x0,x2 ]

The final line in the equation simply removes the x1 quantifier. Since there
are no longer any occurrences of the x1 variable in the rest of the formula,
this produces the equivalent formula shown. The translation specifies that the
formula, which spans positions xi to xj takes an np argument spanning positions
xj to xi, ie. the rightmost position of the np argument is the leftmost position
of the complete formula.

If we want a displacement grammar to be simple in the input string, we
can restrict the synthetic connectives used for its lexical entries to ,̂ !−1 and
�−1; in addition, no formulas contain the units I and J except where these
occurrences are instances of the allowed synthetic connectives.5 The only lexical
entries proposed for D which are not simple in this sense are those of the MIX
grammar and the type for “supposedly” discussed above.

The !−1 and �−1 connectives, together with atomic formulas of sort greater
than 0, allow us to encode MCFG-style analyses, as we have seen them in Sec-
tion 3.3, into D 6. As an example, let’s look at the unfolding of “lezen” which
is assigned formula !−1np \ (np \ si) and assume “lezen” occupies the string
position 4,5.

∀x2‖np \ (np \ si)‖x2,x2,4,5

Given that s(np) = 0 this reduces further to.

∀x2∀x1‖np‖x1,x2 � ‖np \ si‖x1,x2,4,5

If we combine this entry with “boeken” from positions 1,2 (ie. the formula
np(1, 2), instantiating x1 to 1 and x2 to 2, this gives the following partial trans-
lation for “boeken lezen”

‖np \ si‖1,2,4,5

Similarly, “kunnen” with formula !−1(np \ si) ↓ (np \ si) reduces as follows
when occupying string position 3,4.

∀x2‖(np \ si) ↓ (np \ si)‖x2,x2,3,4

5 Alternatively, we can allow the ,̌ � and 
 connectives but restrict them to cases
where there is strict identity of the two string positions (disallowing instantiation of
variables to obtain identity). Note that this means that formulas of the form Ǎ ↓ B
are valid only in contexts spanning the empty string.

6 Wijnholds [58] and Sorokin [55] show that D of order 1 (ie. containing only the
synchronous rules, but also the bridge and projection connectives) generates the
well-nested multiple context-free languages.
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Which unfolds further as.

∀x2∀x0∀x5‖np \ si‖x0,x2,4,x5 � ‖np \ si‖x0,x2,3,x5

This combines with the previous translation of “boeken lezen”, instantiating
x0 to 1, x2 to 2 and x5 to 5, giving “boeken kunnen lezen” with translation
‖np \ si‖1,2,3,5.

Finally, the tensed verb “wil” with formula (np \ si) ↓ (np \ s) unfolds at
position 2,3 as.

∀x0∀x3‖np \ si‖x0,2,3,x3 � ‖np \ s‖x0,x3

Instantiating x0 to 1 and x3 to 5 and combining this with the previously
computed translation of “boeken kunnen lezen” produces ‖np\s‖1,5 for “boeken
wil kunnen lezen”. Figure 13 on the next page shows a proof net derivation of
the slightly more complex “(dat) Jan Henk Cecilia de nijlpaarden zag helpen
voeren”. Note that the axiom linkings are again fully deterministic.

5 Correctness of the Translation

The basic idea of the correctness proof is again very simple: we use the property of
focused proof search and of ludics that combinations of synchronous connectives
can always be seen as instances of a synthetic synchronous connective, whereas
the same holds for the asynchronous connectives. Since the translations either
use a combination of ∃ and ⊗ (both synchronous) or a combination of ∀ and �
(both asynchronous), it follows immediately that we can treat these combinations
as synthetic connectives, giving a rule to (synthetic) rule translation.

We only prove the case for the binary continuous and discontinuous connec-
tives. As noted in Section 4.2, the extension to the bridge and projection con-
nectives is simple, whereas the split and injection are more complicated and will
be left for future research. In addition, none of the non-deterministic connectives
of [46,57] are considered: their obvious translation would use the additive con-
nectives from linear logic, which would complicate the proof nets and increase
the computational complexity [28,29]7.

Lemma 1. For every proof of t1 : A1, . . . , tn : An � t : C in D, there is a proof
of its translation in MILL1.

Proof. Refer back to Figure 8 to see the correspondence between pairs of string
positions and tuples of strings more clearly. The rules are simply the translation
of the natural deduction rules of D, where the string tuples have been replaced
by pairs of string positions.

For the case of \E we are in the following situation (let i = 1
2 (n − 1), j =

1
2 (m− 1), then x0, . . . , xn corresponds to a i-tuple t, xn, . . . , xn+m to a j-tuple
u and x0, . . . , xn−1, xn+1, . . . , xn+m to their concatenation tu). The translations

7 Though if the non-deterministic connectives occur only in negative contexts, we can
treat them by simply multiplying the lexical entries.
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Fig. 13. Proof net for “(dat) Jan Henk Cecilia de nijlpaarden zag helpen voeren”
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of A and A \C share point xn and we can instantiate the universally quantified
variables of the other points of A (x0 to xn−1) applying the ∀E rule n times (/
is symmetric).

‖A‖x0,...,xn

‖A \ C‖xn,...,xn+m

∀y0, . . . , yn−1‖A‖y0,...,yn−1,xn � ‖C‖y0,...,yn−1,xn+1,...,xn+m

=def

‖A‖x0,...,xn � ‖C‖x0,...,xn−1,xn+1,...,xn+m
∀E (n times)

‖C‖x0,...,xn−1,xn+1,...,xn+m
� E

For the introduction rule, we again set i to 1
2 (n − 1) and j to 1

2 (m − 1),
making x0, . . . , xn corresponds to a i-tuple t, xn, . . . , xn+m to a j-tuple u and
x0, . . . , xn−1, xn+1, . . . , xn+m to their concatenation tu. In this case, induction
hypothesis gives us a MILL1 proof corresponding to Γ, t : A � tu : C. To extend
this proof to a MILL1 proof corresponding to Γ � u : A\C (/ is again symmetric),
we can continue the translated proof of Γ, t : A � tu : C as follows.

[‖A‖x0,...,xn ]i . . . Γ
....

‖C‖x0,...,xn−1,xn+1,...,xn+m

‖A‖x0,...,xn � ‖C‖x0,...,xn−1,xn+1,...,xn+m
� Ii

∀x0, . . . , xn−1‖A‖x0,...,xn � ‖C‖x0,...,xn−1,xn+1,...,xn+m
∀I (n times)

‖A \ C‖xn,...,xx+m

=def

The cases for ↑> are shown below (↓> is easily verified).

‖C ↑> B‖x0,x1,xn,...,xn+m

∀y2, . . . , yn−1‖B‖x1,y2,...,yn−1,xn � ‖C‖x0,y2,...,yn−1,xn+1,...,xn+m

=def

‖B‖x1,...,xn � ‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
∀E (n− 2 times) ‖B‖x1,...,xn

‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
� E

[‖B‖x1,...,xn ]i . . . Γ
....

‖C‖x0,x2,...,xn−1,xn+1,...,xn+m

‖B‖x1,...,xn � ‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
� Ii

∀x2, . . . , xn−1‖B‖x1,...,xn � ‖C‖x0,x2,...,xn−1,xn+1,...,xn+m
∀I (n− 2 times)

‖C ↑> B‖x0,x2,...,xn−1,xn+1,...,xx+m

=def

Finally, the cases for +> are as follows.

‖A+> B‖x0,x2,...,xn−1,xn+1,...,xn+m

∃x1∃xn‖A‖x0,...,xn ⊗ ‖B‖xn,...,xn+m

=def
[‖A‖x0,x1,xn,...,xn+m ⊗ ‖B‖x1,...,xn ]i

[‖A‖x0,x1,xn,...,xn+m ]j [‖B‖x1,...,xn ]j
....
C

C
⊗Ej

C
∃Ei twice

‖A‖x0,x1,xn,...,xn+m ‖B‖x1,...,xn

‖A‖x0,x1,xn,...,xn+m ⊗ ‖B‖x1,...,xn
⊗I

∃xn‖A‖x0,x1,xn...,xn+m ⊗ ‖B‖x1,...,xn
∃I

∃x1∃xn‖A‖x0,x1,xn...,xn+m ⊗ ‖B‖x1,...,xn
∃I

‖A+> B‖x0,x2,...,xn−1,xn+1,...,xn+m

=def

! 

Lemma 2. If the translation of a D sequent t1 : A1, . . . , tn : An � t : C is
provable, then there is a D proof of t1 : A1, . . . , tn : An � t : C.
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Proof. This is most easily shown using proof nets, using induction on the number
of links while removing them in groups of synchronous or asynchronous links
corresponding to a D connective.

If there are terminal asynchronous links, then we proceed by case analysis
knowing that we are dealing the result of the translation of D formulas.

The case for C ↑> B looks as follows.

‖C ↑> B‖x0,x1,xn,...,xn+m

+

∀x2

. . .

+

∀xn−1

+
�

−
‖B‖x1,...,xn

+

‖C‖x0,x2,...,xn−1,xn+1,...,xn+mΓ

Π

Given that removing the portrayed links produces a proof net Π of Γ,B � C,
we can apply the induction hypothesis, which gives a proof δ of Γ, u : B � sut : C,
which we can extend as follows.

Γ u : B.... δ

C : sut
s, t : C ↑> B

↑> I

Similarly, the par case for +> looks as follows.

‖A+> B‖x0,x2,...,xn−1,xn+1,...,xn+m

−
∃x1

−
∃xn

−
⊗

−
‖A‖x0,x1,xn,...,xn+m

−
‖B‖x1,...,xnΓ

+

C

Π
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Again, we know by induction hypothesis that there is a proof δ of Γ, s, t : A, u :
B � v[sut] : C and we need to show that there is a proof of Γ, sut : A +> B �
v[sut] : C, which we do as follows.

sut : A+> B

Γ [s, t : A]i [u : B]i
.... δ

v[sut] : C

v[sut] : C
+>E

i

Suppose there are no terminal asynchronous links, then we know there must
be a group of splitting synchronous links corresponding to a D connective (a
series of universal links ended by a tensor link which splits the proof net into
two subnets, though the synthetic connectives of Section 4.2 allow for a single
universal link, which is splitting by definition, since after removal of the link, all
premisses of the link are the conclusion of disjoint subnets), using the standard
splitting tensor argument [14,10,4].

Suppose this group of splitting links is the translation of ↑>, then the proof
net is of the following form. Note that the translation of B corresponds to the
string tuple u (with i = 1

2n components), the translation of C ↑> B to the string
tuple sut and the translation of C to the string tuple s, t.

‖C ↑> B‖x0,x1,xn,...,xn+m

−
∀x2

. . .

−
∀xn−1

−
�

+

‖B‖x1,...,xn

−
‖C‖x0,x2,...,xn−1,xn+1,...,xn+m ΔΓ

+

D

Π1 Π2

Therefore, we know by induction hypothesis that there is a proof δ1 of Γ �
u : B and a proof δ2 of Δ, sut : C � D. We need to show that there is a proof
Γ,Δ, s, t : C ↑> B � D, which we can do as follows8.

8 The observant reader has surely noted that this step is just the standard sequential-
ization step followed by the translation of sequent calculus into natural deduction,
see for example [18,42].
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Δ

Γ.... δ1
u : B s, t : C ↑> B

sut : C
↑> E

.... δ2
D

In case the splitting tensor link and associated existential quantifiers are the
translation of a +> formula, we are in the following case.

‖A+> B‖x0,x2,...,xn−1,xn+1,...,xn+m

+

∃x1

+

∃xn

+
⊗

+

‖A‖x0,x1,xn,...,xn+m

+

‖B‖x1,...,xnΓ Δ

Π1 Π2

Induction hypothesis gives us a proof δ1 of Γ � s, t : A and a proof δ2 of
Δ � u : B, which we combine as follows.

Γ.... δ1
s, t : A

Δ.... δ2
u : B

sut : A+> B
+>I

Theorem 1. Derivability of a statement in D and derivability of the translation
of this statement into MILL1 coincide.

Proof. Immediate from Lemma 1 and 2.
The main theorem gives a simple solution to two of the main open problems

from [43].

Corollary 1. D is NP-complete.

Proof. We have that the derivability of L, D and MILL1 are related as follows
(given the translations of L and D into MILL1) L ⊂ D ⊂ MILL1. Therefore
NP-completeness of L and MILL1 gives us NP-completeness of D.

Corollary 2. MILL1 provides a proof net calculus for D.



Extended Lambek Calculi 325

Proof. This is immediate from the fact that the D connectives correspond to
synthetic MILL1 connectives. Therefore, adding these synthetic connectives to
MILL1 provides a conservative extension of MILL1, which contains a proof net
calculus of D. For the synchronous links, this possibility is already implicit in the
proof nets of Figures 10 and 13, where the existential links are not portrayed; the
combination of the asynchronous ∀ and the � link in Figure 10 can be similarly
replaced by a single link and a switch to either one of the premisses of the �
link or to one of the formulas containing the variable x.9

Corollary 3. D satisfies cut elimination.

Cut elimination for D, including the non-deterministic connectives and the
units, is already proved directly in [46,57]. However, using the translation into
MILL1 gives us a very easy cut elimination proof.

6 Agreement, Non-associativity and Scope
Restrictions

Though I have focused only on using the first-order terms for representing string
positions, I will sketch a number of other applications of the first-order terms
which are orthogonal to their use for string positions, for which other extension
of the Lambek calculus have introduced additional connectives and logical rules,
such as the unary modalities of multimodal categorial grammar [26].

The most obvious of these applications is for the use of linguistic features,
allowing us, for example, to distinguish between nominative and accusative noun
phrases np(nom) and np(acc) but also allowing a lexical entry to fill either role
by assigning it the formula ∀x.np(x).

Until now, we have only seen variables and constants as arguments of predi-
cate symbols. When we allow more complex terms, things get more interesting.
Let’s only consider complex terms of the form s(T ) — the well-known successor
term from unary arithmetic not to be confused with the predicate symbol s for
sentence — where T is itself a term (complex, a variable or a constant). These
complex terms allow us to implement non-associativity when we need it, using
the following translation (remember that the string positions are orthogonal and
can be included if needed).

‖A •B‖x = ‖A‖s(x) ⊗ ‖B‖s(x)
‖C/B‖s(x) = ‖B‖s(x) � ‖C‖x
‖A\C‖s(x) = ‖A‖s(x) � ‖C‖x

The translation is parametric in a single variable x unique to the formula,
which can get partially instantiated during the translation, producing a formula
with a single free variable which is universally quantified to complete the trans-
lation. For example, a prototypical statement whose derivability presupposes
associativity

9 Another proof net calculus for D would be a direct adaptation of the results from
Section 7 of [41]. However, this footnote is too small to contain it.
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a/b, b/c � a/c
translates as

∀x[b(s(x)) � a(x)], ∀y[c(s(y)) � b(y)] � ∀z[c(s(z)) � a(z)]

which the reader can easily verify to be underivable. This translation gener-
alizes both the translation of NL to MILL1 and the implementation of island
constraints of [40].

In addition, we can handle scope restrictions in the same spirit as [6], by
translating s1 as ∀x.s(x), s2 as ∀x.s(s(x)) and s3 as ∀x.s(s(s(x))), which are
easily verified to satisfy si � sj for i ≤ j and si � sj for i > j.

Scope restrictions and island constraints are some of the iconic applications
of the unary modalities of multimodal categorial grammars and I consider it
an attractive feature of MILL1 they permit a transparent translation of these
applications.

The use of complex terms moves us rather close to the indexed grammars [1],
where complex unary term symbols play the role of a stack of indices. The linear
indexed grammars [13] would then correspond to the restriction of quantified
variables to two occurrences of opposite polarity10 (or a single occurrence of any
polarity; for the string position variables, they occur twice: either once as a left
(resp. right) position of a positive atomic formula and once as a left (resp. right)
position of a negative atomic formula or once as a left position and once as a right
position of atomic formulas of the same polarity). If we restrict variables to at
most two occurrences of each variable, without any restriction on the polarities,
we are closer to an extension of linear indexed grammars proposed by [25],
which they call partially linear PATR, and thereby closer to unification-based
grammars such as LFG and HPSG. This restriction on quantified variables seems
very interesting and naturally encompasses the restriction on string position
variables.

These are of course only suggestions, which need to be studied in more detail
in future work.

7 Conclusions and Open Questions

First-order multiplicative intuitionistic linear logic includes several interesting
subsystems: multiple context-free grammars, the Lambek calculus and the Dis-
placement calculus. In spite of this, the computational complexity of MILL1 is
the same as the complexity of the universal recognition problem for each of these
individual systems. In addition, it gives a natural implementation of several ad-
ditional linguistic phenomena, which would require further machinery in each of
the other calculi.

MILL1 satisfies all conditions of extended Lambek calculi: it has a simple
proof theory, which includes a proof net calculus, it generates the mildly context-
free languages, it is NP-complete and the homomorphism for semantics consists

10 The encoding of non-associativity above is a clear violation of this constraint, since
the quantified variable will occur in all atomic subformulas.
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of simply dropping the quantifiers to obtain an MILL proof — though it is
conceivable to use the first-order quantifiers for semantic features which would
have a reflection in the homomorphism.

Many important questions have been left open. Do MILL1 grammars without
complex terms (simple in the input string or not) generate exactly the MCFLs
or strictly more? Do MILL1 grammars with complex terms generate exactly
the indexed languages and can we get interesting subclasses (eg. partially linear
PATR) by restricting the variables to occur at most twice? Are there interesting
fragments of MILL1 grammars which have a polynomial recognition problem? I
hope these questions will receive definite answers in the future.
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Universitat Politècnica de Catalunya (2010)

13. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U.,
Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69–94.
D. Reidel, Dordrecht (1988)

14. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
15. Girard, J.-Y.: Quantifiers in linear logic II. In: Corsi, G., Sambin, G. (eds.) Nuovi

Problemi Della Logica e Della Filosofia Della Scienza, Bologna, Italy, vol. II.
CLUEB (1991). Proceedings of the conference with the same name, Viareggio,
Italy (January 1990)



328 R. Moot

16. Girard, J.-Y.: Linear logic: Its syntax and semantics. In: Girard, J.-Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic, pp. 1–42. Cambridge University Press
(1995)

17. Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Mathe-
matical Structures in Computer Science 11, 301–506 (2001)

18. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science 7. Cambridge University Press (1988)

19. Greibach, S.A.: A new normal-form theorem for context-free phrase structure gram-
mars. Journal of the ACM 12(1), 42–52 (1965)

20. Guerrini, S.: Correctness of multiplicative proof nets is linear. In: Fourteenth An-
nual IEEE Symposium on Logic in Computer Science, pp. 454–263. IEEE Com-
puter Science Society (1999)

21. Huybregts, R.: The weak inadequacy of context-free phrase structure grammars.
In: de Haan, G., Trommelen, M., Zonneveld, W. (eds.) Van Periferie naar Kern.
Foris, Dordrecht (1984)

22. Joshi, A.: Tree-adjoining grammars: How much context sensitivity is required to
provide reasonable structural descriptions. In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Processing: Theoretical, Computational, and Psycho-
logical Perspectives. Cambridge University Press (1985)

23. Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The computational complexity of the
universal recognition problem for parallel multiple context-free grammars. Com-
putational Intelligence 10(4), 440–452 (1994)

24. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp.
312–325. Springer, Heidelberg (2009)

25. Keller, B., Weir, D.: A tractable extension of linear indexed grammars. In: Pro-
ceedings of the Seventh Meeting of the European Chapter of the Association for
Computational Linguistics, pp. 75–82 (1995)

26. Kurtonina, N., Moortgat, M.: Structural control. In: Blackburn, P., de Rijke, M.
(eds.) Specifying Syntactic Structures, pp. 75–113. CSLI, Stanford (1997)

27. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

28. Lincoln, P.: Deciding provability of linear logic formulas. In: Girard, Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic, pp. 109–122. Cambridge University
Press (1995)

29. Lincoln, P., Scedrov, A.: First order linear logic without modalities is NEXPTIME-
hard. Theoretical Computer Science 135(1), 139–154 (1994)

30. Matsuzaki, T., Miyao, Y., Tsujii, J.: Efficient HPSG parsing with supertagging
and CFG-filtering. In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence, pp. 1671–1676 (2007)

31. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and
Information 5(3-4), 349–385 (1996)

32. Moortgat, M.: Symmetries in natural language syntax and semantics: The Lambek-
Grishin calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS,
vol. 4576, pp. 264–284. Springer, Heidelberg (2007)

33. Moortgat, M.: Typelogical grammar. Stanford Encyclopedia of Philosophy Website
(2010), http://plato.stanford.edu/entries/typelogical-grammar/

http://plato.stanford.edu/entries/typelogical-grammar/


Extended Lambek Calculi 329

34. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A.
(eds.) Handbook of Logic and Language, ch. 2, pp. 95–179. Elsevier/MIT Press
(2011)

35. Moortgat, M., Moot, R.: Proof nets for the lambek-grishin calculus. In:
Grefenstette, E., Heunen, C., Sadrzadeh, M. (eds.) Compositional Methods in
Physics and Linguistics, pp. 283–320. Oxford University Press (2013)

36. Moot, R.: Proof nets and labeling for categorial grammar logics. Master’s thesis,
Utrecht University, Utrecht (1996)

37. Moot, R.: Proof Nets for Linguistic Analysis. PhD thesis, Utrecht Institute of
Linguistics OTS, Utrecht University (2002)

38. Moot, R.: Filtering axiom links for proof nets. In: Kallmeyer, L., Monachesi, P.,
Penn, G., Satta, G. (eds.) Proceedings of Formal Grammar 2007 (2007) (to appear
with CSLI)

39. Moot, R.: Lambek grammars, tree adjoining grammars and hyperedge replacement
grammars. In: Gardent, C., Sarkar, A. (eds.) Proceedings of TAG+9, The Ninth
International Workshop on Tree Adjoining Grammars and Related Formalisms,
pp. 65–72 (2008)

40. Moot, R., Piazza, M.: Linguistic applications of first order multiplicative linear
logic. Journal of Logic, Language and Information 10(2), 211–232 (2001)

41. Moot, R., Puite, Q.: Proof nets for the multimodal Lambek calculus. Studia Log-
ica 71(3), 415–442 (2002)
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Abstract. In logical categorial grammar [23,11] syntactic structures are
categorial proofs and semantic structures are intuitionistic proofs, and
the syntax-semantics interface comprises a homomorphism from syn-
tactic proofs to semantic proofs. Thereby, logical categorial grammar
embodies in a pure logical form the principles of compositionality, lex-
icalism, and parsing as deduction. Interest has focused on multimodal
versions but the advent of the (dis)placement calculus of Morrill, Va-
lent́ın and Fadda [21] suggests that the role of structural rules can be
reduced, and this facilitates computational implementation. In this pa-
per we specify a comprehensive formalism of (dis)placement logic for the
parser/theorem prover CatLog integrating categorial logic connectives
proposed to date and illustrate with a cover grammar of the Montague
fragment.

1 Introduction

According to the principle of compositionality of Frege the meaning of an expres-
sion is a function of the meanings of its parts and their mode of composition. This
is refined in Montague grammar where the syntax-semantics interface comprises
a homomorphism from a syntactic algebra to a semantic algebra. In logical cat-
egorial grammar [23,11] both syntactic structures and semantic structures are
proofs and the Montagovian rendering of Fregean compositionality is further
refined to a homomorphism from syntactic (categorial) proofs to semantic (in-
tuitionistic) proofs. Thus we see successive refinements of Frege’s principle in
theories of the syntax-semantics interface which are expressed first as algebra
and then further as algebraic logic. The present paper gathers together and inte-
grates categorial connectives proposed to date to specify a particular formalism
according to this design, one implemented in the parser/theorem-prover CatLog
[16,15] and illustrates with a cover grammar of the Montague fragment.

Multimodal categorial grammar [25,9,6,22,7,8,24] constitutes a methodology
rather than a particular categorial calculus, admitting an open class of residu-
ated connective families for multiple modes of composition related by structural
rules of interaction and inclusion. On the one hand, since no particular system is
identified, the problem of computational implementation is an open-ended one;
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and on the other hand, the structural rules add to the proof search-space. Moot
[10] and Moot and Retoré ([11], Ch. 7) provide a general-purpose implementa-
tion Grail. It supports the so-called Weak Sahlqvist structural inclusions and is
based on proof-net contraction criteria, with certain contractions according to
the structural rules. This seems to constitute the computational scope of the
potential of the multimodal framework.

The displacement calculus of Morrill et al. [21] creates another option. This
calculus provides a solution to the problem of discontinuous connectives in cate-
gorial grammar initiated in [1,2]. The calculus addresses a wide range of empirical
phenomena, and it does so without the use of structural rules since the rules ef-
fecting displacement are defined. This opens the possibility of categorial calculus
in which the role of structural rules is reduced. To accommodate discontinuity
of resources the calculus invokes sorting of types according to their syntactical
datatype (number of points of discontinuity), and this requires a novel kind of
sequent calculus which we call a hypersequent calculus. In this paper we consider
how displacement calculus and existing categorial logic can be integrated in a
uniform hypersequent displacement logic, which we call simply placement logic.1

We observe that this admits a relatively straightforward implementation which
we use to illustrate a Montague fragment and we define as a program the goal
of implementing increasing fragments of this logic with proof nets.

In the course of the present paper we shall specify the formalism and its
calculus. This incorporates connectives introduced over many years addressing
numerous linguistic phenomena, but the whole enterprise is characterized by the
features of the placement calculus which is extended: sorting for the types and
hypersequents for the calculus. In Section 2 we define the semantic representation
language; in Section 3 we define the types; in Section 4 we define the calculus.
In Section 5 we give a cover grammar of the Montague fragment of Dowty, Wall
and Peters ([4], Ch. 7). In Section 6 we give analyses of the examples from the
second half of that Chapter. We conclude in Section 7.

2 Semantic Representation Language

Recall the following operations on sets:

(1) a. Functional exponentiation: XY = the set of all total functions from Y
to X

b. Cartesian product: X × Y = {〈x, y〉| x ∈ X & y ∈ Y }
c. Disjoint union: X 
 Y = ({1} ×X) ∪ ({2} × Y )
d. i-th Cross product, i ≥ 0: X0 = {0}

X1+i = X × (X i)

The set T of semantic types of the semantic representation language is defined
on the basis of a set δ of basic semantic types as follows:

1 The prefix ‘dis-’ is dropped since reversing the line of reasoning which displaces
items places items.
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(2) T ::= δ | " | ⊥ | T + T | T &T | T → T | LT | T +

A semantic frame comprises a family {Dτ}τ∈δ of non-empty basic type domains
and a non-empty set W of worlds. This induces a type domain Dτ for each type
τ as follows:

(3)
D� = {∅}
D⊥ = {}

Dτ1+τ2 = Dτ2&τ1

Dτ1&τ2 = Dτ1&τ2

Dτ1→τ2 = D
Dτ1
τ2

DLτ = DW
τ

Dτ+ =
⋃

i>0(Dτ )
i

The sets Φτ of terms of type τ for each type τ are defined on the basis of sets
Cτ of constants of type τ and enumerably infinite sets Vτ of variables of type τ
for each type τ as follows:

(4)
Φτ ::= Cτ constants
Φτ ::= Vτ variables
Φτ ::= Φτ1+τ2 → Vτ1 .Φτ ; Vτ2 .Φτ case statement

Φτ+τ ′ ::= ι1Φτ first injection
Φτ ′+τ ::= ι2Φτ second injection

Φτ ::= π1Φτ&τ ′ first projection
Φτ ::= π2Φτ ′&τ second projection

Φτ&τ ′ ::= (Φτ , Φτ ′) ordered pair formation
Φτ ::= (Φτ ′→τ Φτ ′) functional application

Φτ→τ ′ ::= λVτΦτ ′ functional abstraction
Φτ ::= ∨ΦLτ extensionalization

ΦLτ ::= ∧Φτ intensionalization
Φτ+ ::= [Φτ ] | [Φτ |Φτ+ ] non-empty list construction

Given a semantic frame, a valuation f mapping each constant of type τ into an
element of Dτ , an assignment g mapping each variable of type τ into an element
of Dτ , and a world i ∈ W , each term φ of type τ receives an interpretation
[φ]g,i ∈ Dτ as shown in Figure 1.

An occurrence of a variable x in a term is called free if and only if it does
not fall within any part of the term of the form x.· or λx·; otherwise it is
bound (by the closest x. or λx within the scope of which it falls). The result
φ{ψ1/x1, . . . , ψn/xn} of substituting terms ψ1, . . . , ψn (of types τ1, . . . , τn) for
variables x1, . . . , xn (of types τ1, . . . , τn) respectively in a term φ is the result
of simultaneously replacing by ψi every free occurrence of xi in φ. We say that
ψ is free for x in φ if and only if no variable in ψ becomes bound in φ{ψ/x}.
We say that a term is modally closed if and only if every occurrence of ∨ oc-
curs within the scope of an ∧. A modally closed term is denotationally invariant
across worlds. We say that a term ψ is modally free for x in φ if and only if either



334 G. Morrill

[a]g,i = f(a) for constant a ∈ Cτ

[x]g,i = g(x) for variable x ∈ Vτ

[φ → x.ψ; y.χ]g,i =

{
[ψ](g−{(x,g(x))})∪{(x,snd([φ]g,i))},i if fst([φ]g,i) = 1

[χ](g−{(y,g(y))})∪{(y,snd([φ]g,i))},i if fst([φ]g,i) = 2

[ι1φ]
g,i = 〈1, [φ]g,i〉

[ι2φ]
g,i = 〈2, [φ]g,i〉

[π1φ]
g,i = fst([φ]g,i)

[π2φ]
g,i = snd([φ]g,i)

[(φ, ψ)]g,i = 〈[φ]g,i, [ψ]g,i〉
[(φ ψ)]g,i = [φ]g,i([ψ]g,i)

[λxφ]g,i = d �→ [φ](g−{(x,g(x))})∪{(x,d)},i

[∨φ]g,i = [φ]g,i(i)
[∧φ]g,i = j �→ [φ]g,j

[[φ]]g,i = 〈[φ]g,i, 0〉
[[φ|ψ]]g,i = 〈[φ]g,i, [ψ]g,i〉

Fig. 1. Interpretation of the semantic representation language

ψ is modally closed, or no free occurrence of x in φ is within the scope of an
∧. The laws of conversion in Figure 2 obtain; we omit the so-called commuting
conversions for the case statement.

3 Syntactic Types

The types in (dis)placement calculus and placement logic which extends it are
sorted according to the number of points of discontinuity (placeholders) their ex-
pressions contain. Each type predicate letter will have a sort and an arity which
are naturals, and a corresponding semantic type. Assuming ordinary terms to
be already given, where P is a type predicate letter of sort i and arity n and
t1, . . . , tn are terms, Pt1 . . . tn is an (atomic) type of sort i of the corresponding
semantic type. Compound types are formed by connectives given in the follow-
ing subsections, and the homomorphic semantic type map T associates these
with semantic types. In Subsection 3.1 we give relevant details of the multiplica-
tive (dis)placement calculus basis and in Subsection 3.2 we define types for all
connectives.

3.1 The Placement Calculus Connectives

Let a vocabulary V be a set which includes a distinguished placeholder symbol
1 called the separator. For i ∈ N we define Li as the set of strings over V
containing i separators:

(5) Li = {s ∈ V ∗| |s|1 = i}

V induces the placement algebra

({Li}i∈N ,+, {×k}k∈Z± , 0, 1)



A Categorial Type Logic 335

φ → y.ψ; z.χ = φ → x.(ψ{x/y}); z.χ
if x is not free in ψ and is free for y in ψ
φ → y.ψ; z.χ = φ → y.ψ;x.(χ{x/z})

if x is not free in χ and is free for z in χ
λyφ = λx(φ{x/y})

if x is not free in φ and is free for y in φ
α-conversion

ι1φ → y.ψ; z.χ = ψ{φ/y}
if φ is free for y in ψ and modally free for y in ψ
ι2φ → y.ψ; z.χ = χ{φ/z}
if φ is free for z in χ and modally free for z in χ

π1(φ, ψ) = φ
π2(φ, ψ) = ψ
(λxφ ψ) = φ{ψ/x}

if ψ is free for x in φ, and modally free for x in φ
∨∧φ = φ

β-conversion

(π1φ, π2φ) = φ
λx(φ x) = φ

if x is not free in φ
∧∨φ = φ

if φ is modally closed
η-conversion

Fig. 2. Semantic conversion laws

where + : Li, Lj → Li+j is concatenation, and k-th wrapping ×k : Li+|k|, Lj →
Li+|k|−1+j is defined as replacing by its second operand the |k|-th separator
in its first operand, counting from the left for positive k and from the right for
negative k.2 0 is the empty string. Note that 0 is a left and right identity element
for + and that 1 is a left and right identity element for ×:

(6)
0+s = s s = s+0
1×s = s s = s×1

Sorted types Fi, i ∈ N , are defined and interpreted sort-wise as shown in
Figure 3. Where A is a type, let sA denotes its sort. The sorting discipline ensures
that [A] ⊆ LsA. Note that {\, •, /} and {↓k,+k, ↑k} are residuated triples with
parents • and +k, and that as the canonical extensions of the operations of the
placement algebra, I is a left and right identity for • and J is a left and right
identity for +k.

2 In the version of Morrill and Valent́ın [18] wrapping is only counted from the left,
and in the “edge” version of Morrill et al. [21] there is only leftmost and rightmost
wrapping, hence these can be seen as subinstances of the general case given in this
paper where k > 0 and k ∈ {+1,−1} respectively.
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Fj ::= Fi\Fi+j [A\C] = {s2| ∀s1 ∈ [A], s1+s2 ∈ [C]} under
Fi ::= Fi+j/Fj [C/B] = {s1| ∀s2 ∈ [B], s1+s2 ∈ [C]} over

Fi+j ::= Fi•Fj [A•B] = {s1+s2| s1 ∈ [A] & s2 ∈ [B]} product
F0 ::= I [I ] = {0} product unit
Fj ::= Fi+1↓kFi+j [A↓kC] = {s2| ∀s1 ∈ [A], s1×ks2 ∈ [C]} infix

Fi+1 ::= Fi+j↑kFj [C↑kB] = {s1| ∀s2 ∈ [B], s1×ks2 ∈ [C]} circumfix
Fi+j ::= Fi+1�kFj [A�kB] = {s1×ks2| s1 ∈ [A] & s2 ∈ [B]} wrap
F1 ::= J [J ] = {1} wrap unit

Fig. 3. Types of the placement calculus D and their interpretation

3.2 All Connectives

We consider type-logical connectives in the context of the placement sorting
discipline. The connectives in types may surface as main connectives in either
the antecedent or the succedent of sequents and some connectives are restricted
with respect to which of these may occur. Hence we define sorted types of each
of two polarities: input (•) or antecedent and output (◦) or succedent; where p is
a polarity, p is the opposite polarity. The types formed by primitive connectives
together with the type map T are defined as shown in Figure 4. The structural

Fp
j ::= Fp

i \Fp
i+j T (A\C) = T (A) → T (C)

Fp
i ::= Fp

i+j/Fp
j T (C/B) = T (B) → T (C)

Fp
i+j ::= Fp

i •Fp
j T (A•B) = T (A)&T (B)

Fp
0 ::= I T (I) = �

Fp
j ::= Fp

i+1↓kFp
i+j T (A↓kC) = T (A) → T (C)

Fp
i+1 ::= Fp

i+j↑kFp
j T (C↑kB) = T (B) → T (C)

Fp
i+j ::= Fp

i+1�kFp
j T (A�kB) = T (A)&T (B)

Fp
1 ::= J T (J) = �

Fp
i ::= Fp

i &Fp
i T (A&B) = T (A)&T (B) additive conjunction [5,12]

Fp
i ::= Fp

i ⊕Fp
i T (A⊕B) = T (A) + T (B) additive disjunction [5,12]

Fp
i ::= Fp

i � Fp
i T (A �B) = T (A) = T (B) sem. inert additive conjunction [22]

Fp
i ::= Fp

i � Fp
i T (A �B) = T (A) = T (B) sem. inert additive disjunction [22]

Fp
i ::= �Fp

i T (�A) = LT (A) modality [13]
Fp

i ::= �Fp
i T (�A) = T (A) rigid designator modality

Fp
0 ::= !Fp

0 T (!A) = T (A) structural modality [3]
Fp

i ::= 〈 〉Fp
i T (〈 〉A) = T (A) exist. bracket modality [14,7]

Fp
i ::= [ ]−1Fp

i T ([ ]−1A) = T (A) univ. bracket modality [14,7]
Fp

i ::= ∀XFp
i T (∀xA) = T (A) 1st order univ. qu. [22]

Fp
i ::= ∃XFi T (∃xA) = T (A) 1st order exist. qu. [22]

F0
◦ ::= F0

◦+ T (A+) = list(T (A)) Kleene plus [22]
Fi

◦ ::= ¬Fi
◦ T (¬A) = ⊥ negation-as-failure [19]

Fig. 4. Primitive connectives
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�−1A =df J\A {s| 1+s ∈ A} T (�−1A) = T (A) right projection [20]

−1A =df A/J {s|s+1 ∈ A} T (
−1A) = T (A) left projection [20]

�A =df J•A {1+s| s ∈ A} T (�A) = T (A) right injection [20]

A =df A•J {s+1| s ∈ A} T (
A) = T (A) left injection [20]

ˇkA =df A↑kI {s| s×k0 ∈ A} T (ˇkA) = T (A) split [17]
ˆkA =df A�kI {s×k0| s ∈ A} T (ˆkA) = T (A) bridge [17]

Fig. 5. Unary derived connectives

modality and Kleene plus are limited to types of sort 0 because structural oper-
ations of contraction and expansion would not preserve other sorts. The Kleene
plus and negation-as-failure are restricted to succedent polarity occurrences.

In addition to the primitive connectives we may define derived connectives
which do not extend expressivity, but which permit abbreviations. Unary derived
connectives are given in Figure 5. Continuous and discontinuous nondetermin-
istic binary derived connectives are given in Figure 6, where +(s1, s2, s3) if and
only if s3 = s1+s2 or s3 = s2+s1, and ×(s1, s2, s3) if and only if s3 = s1 ×1 s2
or . . . or s3 = s1 ×n s2 where s1 is of sort n.

B
A

(A\B) � (B/A) {s| ∀s′ ∈ A, s3,+(s, s′, s3) ⇒ s3 ∈ B}
A⊗B (A•B) � (B•A) {s3| ∃s1 ∈ A, s2 ∈ B,+(s1, s2, s3)}
A⇓C (A↓1C) � · · · � (A↓σAC) {s2| ∀s1 ∈ A, s3,×(s1, s2, s3) ⇒ s3 ∈ C}
C⇑B (C↑1B) � · · · � (C↑σCB) {s1| ∀s2 ∈ B, s3,×(s1, s2, s3) ⇒ s3 ∈ C}
A	B (A�1B) � · · · � (A�σAB) {s3| ∃s1 ∈ A, s2 ∈ B,×(s1, s2, s3)}

T (B
A
) = T (A) → T (B) nondet. division

T (A⊗B) = T (A)&T (B) nondet. product
T (A⇓C) = T (A) → T (C) nondet. infix
T (C⇑B) = T (B) → T (C) nondet. circumfix
T (A	B) = T (A)&T (B) nondet. wrap

Fig. 6. Binary nondeterministic derived connectives

4 Calculus

The set O of configurations of hypersequent calculus for our categorial logic
is defined as follows, where Λ is the empty string and * is the metalinguistic
separator or hole:

(7) O ::= Λ | * | F0 | Fi+1{O : . . . : O︸ ︷︷ ︸
i+1 O’s

} | O,O | [O]

The sort of a configuration Γ is the number of holes it contains: |Γ |∗. Where Δ
is a configuration of sort k+i, k > 0 and Γ is a configuration, Δ|+kΓ (Δ|−kΓ )
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is the configuration resulting from replacing by Γ the k-th hole from the left

(right) in Δ. The figure
−→
A of a type A is defined by:

(8)
−→
A =

⎧⎨⎩
A if sA = 0
A{* : . . . : *︸ ︷︷ ︸

sA *’s

} if sA > 0

The usual configuration distinguished occurrence notation Δ(Γ ) signifies a
configuration Δ with a distinguished subconfiguration Γ , i.e. a configuration oc-
currence Γ with (external) context Δ. In the hypersequent calculus the distin-
guished hyperoccurrence notation Δ〈Γ 〉 signifies a configuration hyperoccurrence
Γ with external and internal context Δ as follows: where Γ is a configuration of
sort i and Δ1, . . . , Δi are configurations, the fold Γ⊗〈Δ1, . . . , Δi〉 is the result of
replacing the successive holes in Γ by Δ1, . . . , Δi respectively; the distinguished
hyperoccurrence notation Δ〈Γ 〉 represents Δ0(Γ ⊗ 〈Δ1, . . . , Δi〉).

A sequent Γ ⇒ A comprises an antecedent configuration Γ of sort i and a
succedent type A of sort i. The types which are allowed to enter into the an-
tecedent are the input (•) types and the types which are allowed to enter into the
succedent are the output (◦) types. The hypersequent calculus for the placement
categorial logic defined in the previous section has the following identity axiom:

(9) id−→
A ⇒ A

The logical rules for primitive multiplicatives, additives, exponentials,3 modali-
ties and quantifiers are given in Figures 7, 8, 9, 10 and 11 respectively.

The rules for the unary and binary derived connectives are shown in Figures 12
and 13.

5 Grammar

We give a grammar for the Montague fragment of Dowty, Wall and Peters ([4],
Ch. 7). We structure atomic types N for name or (referring) nominal and CN for
common noun or count noun with feature terms for gender for which there are
feature constants m (masculine), f (feminine) and n (neuter) and a denumerably
infinit supply of feature variables. Feature variables are understood as being

3 As given, the contraction rules, which are for parastic gaps ([23], Ch. 5), can be
applied only a finite number of times in backward-chaining proof search since they
are conditioned on brackets. Alternatively, the contraction rules may be given the
form:

Δ〈!A, [!A,Γ ]〉 ⇒ B
!C

Δ〈!A,Γ 〉 ⇒ B

Δ〈[Γ, !A], !A〉 ⇒ B
!C

Δ〈Γ, !A, 〉 ⇒ B

We think there would still be decidability if there were a bound on the number of
brackets it would be appropriate to introduce applying the rules from conclusion to
premise, but this needs to be examined in detail.
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Γ ⇒ A Δ〈−→C 〉 ⇒ D
\L

Δ〈Γ,−−→A\C〉 ⇒ D

−→
A,Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B Δ〈−→C 〉 ⇒ D
/L

Δ〈−−→C/B, Γ 〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Δ〈−→A,
−→
B 〉 ⇒ D

•L
Δ〈−−→A•B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
•R

Γ1, Γ2 ⇒ A•B

Δ〈Λ〉 ⇒ A
IL

Δ〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ A Δ〈−→C 〉 ⇒ D
↓kL

Δ〈Γ |k−−−→A↓kC〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B Δ〈−→C 〉 ⇒ D
↑kL

Δ〈−−−→C↑kB|kΓ 〉 ⇒ D

Γ |k−→B ⇒ C
↑kR

Γ ⇒ C↑kB

Δ〈−→A |k−→B 〉 ⇒ D
�kL

Δ〈−−−−→A�kB〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

Δ〈*〉 ⇒ A
JL

Δ〈−→J 〉 ⇒ A
JR

* ⇒ J

Fig. 7. Multiplicative rules

universally quantified outermost in types and thus undergo unification in the
usual way. Other atomic types are S for statement or (declarative) sentence and
CP for complementizer phrase. All these atomic types are of sort 0. Our lexicon
for the Montague fragment is as shown in Figure 14; henceforth we omit the
subscript (+)1 for first wrap on connectives and abbreviate as − the subscript
−1 for last wrap.

6 Analyses

We analyse the examples from the second half of Chapter 7 of Dowty, Wall and
Peters [4] — DWP; the example numbers of that source are included within
displays. The first examples involve the copula of identity. Minimally:

(10) (7-73) john+is+bill : S
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Γ 〈−→A〉 ⇒ C
&L1

Γ 〈−−−→A&B〉 ⇒ C

Γ 〈−→B 〉 ⇒ C
&L2

Γ 〈−−−→A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ 〈−→A 〉 ⇒ C Γ 〈−→B 〉 ⇒ C
⊕L

Γ 〈−−−→A⊕B〉 ⇒ C

Γ ⇒ A
⊕L1

Γ ⇒ A⊕B

Γ ⇒ B
⊕L2

Γ ⇒ A⊕B

Γ 〈−→A〉 ⇒ C
�L1

Γ 〈−−−→A �B〉 ⇒ C

Γ 〈−→B 〉 ⇒ C
�L2

Γ 〈−−−→A � B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
�R

Γ ⇒ A �B

Γ 〈−→A〉 ⇒ C Γ 〈−→B 〉 ⇒ C
�L

Γ 〈−−−→A �B〉 ⇒ C

Γ ⇒ A
�L1

Γ ⇒ A �B

Γ ⇒ B
�L2

Γ ⇒ A �B

Fig. 8. Additive rules

For this there is the semantically labelled sequent:

(11) �Nm : ˆj ,�((NA\S)/NB) : ˆλCλD[D = C ],�Nm : ˆb ⇒ S

This has the derivation given in Figure 15. It delivers semantics:

(12) [j = b]

More subtly:

(13) (7-76) john+is+a+man : S

Inserting the same lexical entry for the copula, lexical lookup yields the seman-
tically annotated sequent:

(14) �Nm : ˆj ,�((NA\S)/NB) : ˆλCλD[D = C ],�(((S↑�NE)↓S)/CNE ) :
ˆλFλG∃H [(F H ) ∧ (G ˆH )],�CNm : man ⇒ S

This has the derivation given in Figure 16. The derivation delivers the semantics:

(15) ∃C[(ˇman C ) ∧ [j = C ]]
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Γ (A) ⇒ B
!L

Γ (!A) ⇒ B

!A1, . . . , !An ⇒ A
!R

!A1, . . . , !An ⇒ !A

Δ〈!A,Γ 〉 ⇒ B
!P

Δ〈Γ, !A〉 ⇒ B

Δ〈Γ, !A〉 ⇒ B
!P

Δ〈!A,Γ 〉 ⇒ B

Δ〈!A, [!A,Γ ]〉 ⇒ B
!C

Δ〈!A, [[Γ ]]〉 ⇒ B

Δ〈[Γ, !A], !A〉 ⇒ B
!C

Δ〈[[Γ ]], !A, 〉 ⇒ B

Γ ⇒ A
+R

Γ ⇒ A+

Γ ⇒ A Δ ⇒ A+

+R
Γ,Δ ⇒ A+

Fig. 9. Exponential rules

Γ 〈−→A〉 ⇒ B
�L

Γ 〈−→�A〉 ⇒ B

�/�Γ ⇒ A
�R

�/�Γ ⇒ �A

Γ 〈−→A〉 ⇒ B
�L

Γ 〈−→�A〉 ⇒ B

�/�Γ ⇒ A
�R

�/�Γ ⇒ �A

Δ〈−→A 〉 ⇒ B
[ ]−1L

Δ〈[−−−→[ ]−1A]〉 ⇒ B

[Γ ] ⇒ A
[ ]−1R

Γ ⇒ [ ]−1A

Δ〈[−→A ]〉 ⇒ B
〈 〉L

Δ〈−−→〈 〉A〉 ⇒ B

Γ ⇒ A
〈 〉R

[Γ ] ⇒ 〈〉A

Fig. 10. Normal (semantic) and bracket (syntactic) modality rules, where �/�Γ
signifies a configuration all the types of which have main connective � or �

Γ 〈−−−−→A[t/x]〉 ⇒ B
∀L

Γ 〈−−→∀xA〉 ⇒ B

Γ ⇒ A[a/x]
∀R†

Γ ⇒ ∀xA

Γ 〈−−−−→A[a/x]〉 ⇒ B
∃L†

Γ 〈−−→∃xA〉 ⇒ B

Γ ⇒ A[t/x]
∃R

Γ ⇒ ∃xA

Fig. 11. Quantifier rules, where † indicates that there is no a in the conclusion
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Γ 〈−→A〉 ⇒ B

−1L

Γ 〈−−−→
−1A, *〉 ⇒ B

Γ, * ⇒ A

−1R

Γ ⇒ 
−1A

Γ 〈−→A, *〉 ⇒ B

L

Γ 〈−→
A〉 ⇒ B

Γ ⇒ A

R

Γ, * ⇒ 
A

Γ 〈−→A〉 ⇒ B
�−1L

Γ 〈*,−−−→�−1A〉 ⇒ B

*, Γ ⇒ A
�−1R

Γ ⇒ �−1A

Γ 〈*,−→A 〉 ⇒ B
�L

Γ 〈−→�A〉 ⇒ B

Γ ⇒ A
�R

*, Γ ⇒ �A

Δ〈−→B 〉 ⇒ C
ˇkL

Δ〈−−→ˇkB|kΛ〉 ⇒ C

Δ|kΛ ⇒ B
ˇkR

Δ ⇒ ˇkB

Δ〈−→B |kΛ〉 ⇒ C
ˆkL

Δ〈−−→ˆkB〉 ⇒ C

Δ ⇒ B
ˆkR

Δ|kΛ ⇒ ˆkB

Fig. 12. Unary derived connective rules

This is logically equivalent to (∨man j ), as required. This correct interaction of
the copula of identity with an indefinitely quantified complement is a nice pre-
diction of Montague grammar, conserved in type logical grammar, and simplified
by the lower type of the copula.

The next example involves an intensional adsentential modifier:

(16) (7-83) necessarily+john+walks : S

Lexical lookup yields the following semantically labelled sequent:

(17) �(S/�S) : ˆnec,�Nm : ˆj ,�(NA\S) : walk ⇒ S

This has the derivation given in Figure 17. The derivation delivers semantics:

(18) (nec ˆ(ˇwalk j ))

The following example involves an adverb:

(19) (7-86) john+walks+slowly : S

This is also assumed to create an intensional context. Lexical lookup yields:

(20) �Nm : ˆj ,�(NA\S) : walk ,�(�(NB\S)\(NB\S)) : slowly ⇒ S

This has the derivation given in Figure 18, which delivers semantics (in η-long
form):
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Γ ⇒ A Δ〈−→C 〉 ⇒ D
L1

Δ〈Γ,
−→
C

A
〉 ⇒ D

Γ ⇒ A Δ〈−→C 〉 ⇒ D
L2

Δ〈
−→
C

A
,Γ 〉 ⇒ D

−→
A,Γ ⇒ C Γ,

−→
A ⇒ C

R

Γ ⇒ C

A

Δ〈−→A,
−→
B 〉 ⇒ D Δ〈−→B,

−→
A 〉 ⇒ D

⊗L
Δ〈−−−−→A⊗B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
⊗R1

Γ1, Γ2 ⇒ A⊗B

Γ1 ⇒ B Γ2 ⇒ A
⊗R2

Γ1, Γ2 ⇒ A⊗B

Γ ⇒ A Δ〈−→C 〉 ⇒ D
⇓L

Δ〈Γ |k−−−→A⇓C〉 ⇒ D

−→
A |1Γ ⇒ C · · · −→

A |σAΓ ⇒ C
⇓R

Γ ⇒ A⇓C

Γ ⇒ B Δ〈−→C 〉 ⇒ D
⇑L

Δ〈−−−→C⇑B|kΓ 〉 ⇒ D

Γ |1−→B ⇒ C · · · Γ |σC
−→
B ⇒ C

⇑R
Γ ⇒ C⇑B

Δ〈−→A |1−→B 〉 ⇒ D · · · Δ〈−→A |σA
−→
B 〉 ⇒ D

	L
Δ〈−−−→A	B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
	R

Γ1|kΓ2 ⇒ A	B

Fig. 13. Binary derived connective rules

(21) ((ˇslowly ˆλA(ˇwalk A)) j )

The next example involves an equi control verb:

(22) (7-91) john+tries+to+walk : S

We lexically analyse the equi semantics as a relation of trying between the subject
and a proposition of which the subject is agent (something Montague did not
do). Lexical lookup yields:

(23) �Nm : ˆj ,�((NA\S)/�(NA\S)) : ˆλBλC((ˇtries ˆ(ˇB C )) C ),
�((ND\S)/(ND\S)) : ˆλEE ,�(NF\S) : walk ⇒ S

This has the derivation given in Figure 19, which delivers the semantics:

(24) ((ˇtries ˆ(ˇwalk j )) j )

I.e. that John tries to bring about the state of affairs that he (John) walks.
The next example involves control, quantification, coordination and also

anaphora:
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a : �(((S↑�NA)↓S)/CNA) : ˆλBλC∃D[(B D) ∧ (C ˆD)]
and : �((S\S)/S) : ˆλAλB[B ∧ A]
and : �(((NA\S)\(NA\S))/(NA\S)) : ˆλBλCλD[(C D) ∧ (B D)]
believes : �((NA\S)/CP) : believe
bill : �Nm : ˆb
catch : �((NA\S)/NB) : catch
doesnt : �((NA\S)/(NA\S)) : ˆλBλC¬(B C )
eat : �((NA\S)/NB) : eat
every : �(((S↑NA)↓S)/CNA) : ˆλBλC∀D[(B D)→ (C D)]
finds : �((NA\S)/NB) : finds
fish : �CNn : fish
he : �((�S|Nm)/�(Nm\S)) : ˆλAλBˆ(ˇA B)
her : �(�((S↑Nf)− (J•(Nf\S)))↓(�S|Nf)) : ˆλAλBˆ(ˇA B)
her : �(((((S↑Nf)− (J•(Nf\S)))↑�Nf)− (J•((Nf\S)↑Nf)))↓−(S↑�Nf)) : ˆλAλB((A B) ˇB)
in : �(((NA\S)\(NA\S))/NB) : ˆλCλDλE((ˇin C ) (D E))
is : �((NA\S)/NB) : ˆλCλD[D = C ]
it : �(�(S↑Nn)↓(�S|Nn)) : ˆλAλBˆ(ˇA B)
it : �(((((S↑Nn)− (J•(Nn\S)))↑�Nn)− (J•((Nn\S)↑Nn)))↓−(S↑�Nn)) : ˆλAλB((A B) ˇB)
john : �Nm : ˆj
loses : �((NA\S)/NB) : loses
loves : �((NA\S)/NB) : loves
man : �CNm : man
necessarily : �(S/�S) : ˆnec
or : �((S\S)/S) : ˆλAλB[B ∨ A]
or : �(((NA\S)\(NA\S))/(NA\S)) : ˆλBλCλD[(C D) ∨ (B D)]
park : �CNn : park
seeks : �((NA\S)/�(((NB\S)/NC)\(NB\S))) : ˆλDλE((tries ˆ((ˇD find) E)) E)
she : �((�S|Nf)/�(Nf\S)) : ˆλAλBˆ(ˇA B)
slowly : �(�(NA\S)\(NA\S)) : slowly
such+that : �((CNA\CNA)/(S|NA)) : ˆλBλCλD[(C D) ∧ (B D)]
talks : �(NA\S) : talk
that : �(CP/�S) : ˆλAA
the : �(NA/CNA) : the
to : �((NA\S)/(NA\S)) : ˆλBB
tries : �((NA\S)/�(NA\S)) : ˆλBλC((ˇtries ˆ(ˇB C )) C )
unicorn : �CNn : unicorn
walk : �(NA\S) : walk
walks : �(NA\S) : walk
woman : �CNf : woman

Fig. 14. The Montague fragment

Nm ⇒ Nm
�L

�Nm ⇒ Nm

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/Nm,�Nm ⇒ S
�L

�Nm,�((Nm\S)/Nm),�Nm ⇒ S

Fig. 15. Derivation for John is Bill



A Categorial Type Logic 345

CNm ⇒ CNm
�L

�CNm ⇒ CNm

Nm ⇒ Nm
�L

�Nm ⇒ Nm

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/Nm,�Nm ⇒ S
�L

�Nm,�((Nm\S)/Nm),�Nm ⇒ S
↑R

�Nm,�((Nm\S)/Nm), 1 ⇒ S↑�Nm S ⇒ S
↓L

�Nm,�((Nm\S)/Nm), (S↑�Nm)↓S ⇒ S
/L

�Nm,�((Nm\S)/Nm), ((S↑�Nm)↓S)/CNm,�CNm ⇒ S
�L

�Nm,�((Nm\S)/Nm),�(((S↑�Nm)↓S)/CNm),�CNm ⇒ S

Fig. 16. Derivation for John is a man

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
�L

�Nm,�(Nm\S) ⇒ S
�R

�Nm,�(Nm\S) ⇒ �S S ⇒ S
/L

S/�S,�Nm,�(Nm\S) ⇒ S
�L

�(S/�S),�Nm,�(Nm\S) ⇒ S

Fig. 17. Derivation for Necessarily John walks

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
�L

Nm,�(Nm\S) ⇒ S
\R

�(Nm\S) ⇒ Nm\S
�R

�(Nm\S) ⇒ �(Nm\S)

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
\L

�Nm,�(Nm\S),�(Nm\S)\(Nm\S) ⇒ S
�L

�Nm,�(Nm\S),�(�(Nm\S)\(Nm\S)) ⇒ S

Fig. 18. Derivation for John walks slowly
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Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
�L

Nm,�(Nm\S) ⇒ S
\R

�(Nm\S) ⇒ Nm\S

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
/L

Nm, (Nm\S)/(Nm\S),�(Nm\S) ⇒ S
�L

Nm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
\R

�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ Nm\S
�R

�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ �(Nm\S)

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/�(Nm\S),�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
�L

�Nm,�((Nm\S)/�(Nm\S)),�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S

Fig. 19. Derivation for John tries to walk

(25) (7-94) john+tries+to+catch+a+fish+and+eat+it : S

The sentence is ambiguous as to whether a fish is wide scope (with existential
commitment) or narrow scope (without existential commitment) with respect to
tries, but in both cases it must be the antecedent of it. Lexical lookup inserting
a sentential coordinator or the (clause) external anaphora pronoun assignment
has no derivation. Lexical lookup inserting the verb phrase coordinator and
the internal (clause local) anaphora pronoun assignment yields the semantically
labelled sequent:

(26) �Nm : ˆj ,�((NA\S)/�(NA\S)) : ˆλBλC((ˇtries ˆ(ˇB C )) C ),
�((ND\S)/(ND\S)) : ˆλEE ,�((NF\S)/NG) : catch,
�(((S↑�NH)↓S)/CNH ) : ˆλIλJ∃K[(I K ) ∧ (J ˆK )],�CNn : fish,
�(((NL\S)\(NL\S))/(NL\S)) : ˆλMλNλO[(N O) ∧ (M O)],
�((NP\S)/NQ) : eat ,
�(((((S↑Nn) − (J•(Nn\S)))↑�Nn) − (J•((Nn\S)↑Nn)))↓<(S↑�Nn)) :
ˆλRλS((R S ) ˇS ) ⇒ S

Because we do not have verb form features on S this has one derivation on the
pattern [tries to catch a fish] and [eat it] in which a finite verb phrase coordinates
with a base form verb phrase. This would be excluded as required by adding the
features. A wide scope existential derivation delivers semantics with existential
commitment as follows; the derivation is too large to fit on a page.

(27) ∃C[(ˇfish C ) ∧ ((ˇtries ˆ[((ˇcatch C ) j ) ∧ ((ˇeat C ) j )]) j )]

Also because of the absence of verb form features, there is an existential narrow
scope derivation on the pattern of [to catch a fish] and [eat it] in which an
infinitive verb phrase coordinates with a base form verb phrase. This would
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also be straightforwardly ruled out by including the relevant features on S. An
appropriate existential narrow scope derivation, which is too large to fit on the
page, delivers the semantics without existential commitment:

(28) ((ˇtries ˆ∃H [(ˇfish H ) ∧ [((ˇcatch H ) j ) ∧ ((ˇeat H ) j )]]) j )

The next example involves an extensional transitive verb:

(29) (7-98) john+finds+a+unicorn : S

This sentence cannot be true unless a unicorn exists. Our treatment of this is
simpler than Montague’s because while Montague had to raise the type of exten-
sional verbs to accommodate intensional verbs (“raising to the worst case”), and
then use meaning postulates to capture the existential commitment, type logical
grammar allows assignment of the lower types which capture it automatically.
Lexical lookup yields:

(30) �Nm : ˆj ,�((NA\S)/NB) : finds ,�(((S↑�NC)↓S)/CNC ) :
ˆλDλE∃F [(D F ) ∧ (E ˆF )],�CNn : unicorn ⇒ S

CNn ⇒ CNn
�L

�CNn ⇒ CNn

Nn ⇒ Nn
�L

�Nn ⇒ Nn

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/Nn,�Nn ⇒ S
�L

�Nm,�((Nm\S)/Nn),�Nn ⇒ S
↑R

�Nm,�((Nm\S)/Nn), 1 ⇒ S↑�Nn S ⇒ S
↓L

�Nm,�((Nm\S)/Nn), (S↑�Nn)↓S ⇒ S
/L

�Nm,�((Nm\S)/Nn), ((S↑�Nn)↓S)/CNn,�CNn ⇒ S
�L

�Nm,�((Nm\S)/Nn),�(((S↑�Nn)↓S)/CNn),�CNn ⇒ S

Fig. 20. Derivation for John finds a unicorn

This has the derivation given in Figure 20, which yields the semantics with
existential commitment:

(31) ∃C[(ˇunicorn C ) ∧ ((ˇfinds C ) j )]

DWP continue with a donkey sentence, for which of course Montague grammar
and our cover grammar make the wrong prediction:

(32) (7-105) every+man+such+that+he+loves+a+woman+loses+her : S
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There is a dominant reading in which a woman which is the donkey anaphora
antecedent is understood universally, but Montague semantics obtains only an
at best subordinate reading in which a woman is quantified existentially at the
matrix level. Lexical lookup inserting the external anaphora assignment to her
yields no derivation. Lexical insertion of the internal anaphora assignment yields:

(33) �(((S↑NA)↓S)/CNA) : ˆλBλC∀D[(B D)→ (C D)],�CNm : man,
�((CNE\CNE )/(S|NE)) : ˆλFλGλH [(G H ) ∧ (F H )],
�((�S|Nm)/�(Nm\S)) : ˆλIλJˆ(ˇI J ),�((NK\S)/NL) : loves ,
�(((S↑�NM)↓S)/CNM ) : ˆλNλO∃P [(N P) ∧ (O ˆP)],�CN f : woman ,
�((NQ\S)/NR) : loses ,
�(((((S↑Nf) − (J•(Nf\S)))↑�Nf) − (J•((Nf\S)↑Nf)))↓−(S↑�Nf)) :
ˆλSλT ((S T ) ˇT ) ⇒ S

The derivation of this is too large for the page, but it delivers semantics:

(34) ∃C[(ˇwoman C ) ∧ ∀K[[(ˇman K ) ∧ ((ˇloves C ) K )]→ ((ˇloses C ) K )]]

The assignment of lowest types in type logical grammar also means that ex-
istential commitment of a preposition comes without the need for devices such
as meaning postulates in Montague grammar:

(35) (7-110) john+walks+in+a+park : S

Lexical lookup for this example yields the semantically labelled sequent:

(36) �Nm : ˆj ,�(NA\S) : walk ,�(((NB\S)\(NB\S))/NC) :
ˆλDλEλF ((ˇin D) (E F )),�(((S↑�NG)↓S)/CNG) :
ˆλHλI∃J [(H J ) ∧ (I ˆJ )],�CNn : park ⇒ S

This sequent has the proof given in Figure 21, which delivers the semantics (with
existential commitment):

(37) ∃C[(ˇpark C ) ∧ ((ˇin C ) (ˇwalk j ))]

Finally, DWP analyse the ambiguous example:

(38) (7-116, 7-118) every+man+doesnt+walk : S

This has a dominant reading in which the universal has narrow scope with respect
to the negation, and a subordinate reading in which the universal has wide
scope with respect to the negation. Our grammar generates only the subordinate
reading. Lexical lookup yields:

(39) �(((S↑NA)↓S)/CNA) : ˆλBλC∀D[(B D)→ (C D)],�CNm : man,
�((NE\S)/(NE\S)) : ˆλFλG¬(F G),�(NH\S) : walk ⇒ S

This has the derivation given in Figure 22, which delivers semantics:

(40) ∀C[(ˇman C )→ ¬(ˇwalk C )]
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Fig. 21. Derivation for John walks in a park
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CNm ⇒ CNm
�L

�CNm ⇒ CNm

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
�L

Nm,�(Nm\S) ⇒ S
\R

�(Nm\S) ⇒ Nm\S

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
/L

Nm, (Nm\S)/(Nm\S),�(Nm\S) ⇒ S
�L

Nm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
↑R

1,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S↑Nm S ⇒ S
↓L

(S↑Nm)↓S,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
/L

((S↑Nm)↓S)/CNm,�CNm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
�L

�(((S↑Nm)↓S)/CNm),�CNm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S

Fig. 22. Derivation for Every man doesn’t walk

7 Conclusion

The negation-as-failure rule is as follows:

(41)
�� Γ ⇒ A

¬R
Γ ⇒ ¬A

The calculus is presented without the Cut rule:

(42)
Γ ⇒ A Δ〈−→A 〉 ⇒ B

Cut
Δ〈Γ 〉 ⇒ B

This is because transitivity of inference is unsuitable in the presence of the
negation-as-failure [19].We believe that the remaining rules enjoyCut-elimination.
Thus, Morrill et al. [21] appendix proves Cut-elimination for the displacement cal-
culus D; Moortgat [7] proves Cut-elimination for the bracket modalities in ordi-
nary sequent calculus, and the other rules follow patterns in standard logic
or linear logic for which there is Cut-elimination. Cut-free backward chaining hy-
persequent proof search operates in a finite space and so constitutes a terminating
procedure for parsing/theorem-proving. Cut-free categorial sequent proof search
still suffers from (finite) spurious ambiguity, but this can be treated by normal-
isation [16]. This is the basis of the implementation of the placement logic used
for this paper: the parser/theorem prover CatLog of Morrill [15]. Apart from the
shorter-term objective of refining the CatLog implementation of the current type
formalism in hypersequent calculus, we define as a longer times goal the imple-
mentation of the same logic in proof nets.
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Chasing Diagrams in Cryptography
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Abstract. Cryptography is a theory of secret functions. Category the-
ory is a general theory of functions. Cryptography has reached a stage
where its structures often take several pages to define, and its formulas
sometime run from page to page. Category theory has some complicated
definitions as well, but one of its specialties is taming the flood of struc-
ture. Cryptography seems to be in need of high level methods, whereas
category theory always needs concrete applications. So why is there no
categorical cryptography? One reason may be that the foundations of
modern cryptography are built from probabilistic polynomial-time Tur-
ing machines, and category theory does not have a good handle on such
things. On the other hand, such foundational problems might be the
very reason why cryptographic constructions often resemble low level
machine programming. I present some preliminary explorations towards
categorical cryptography. It turns out that some of the main security
concepts are easily characterized through diagram chasing, going back
to Lambek’s seminal ‘Lecture Notes on Rings and Modules’.

To Jim Lambek for his 90th birthday.

1 Introduction

Idea

For a long time, mathematics was subdivided into geometry and arithmetic, later
algebra. The obvious difference between the two was that the geometric reasoning
was supported by pictures and diagrams, whereas the algebraic reasoning relied
upon the equations and abstract text. For various reasons, the textual reasoning
seemed dominant in XX century mathematics: there were relatively few pictures
in the mathematical publications, and even the formal systems for geometry
were presented as lists of formulas. But as the algebraic constructions grew
more complex, the task to stratify and organize them grew into a mathematical
problem on its own. Category theory was proposed as a solution for this problem.
The earliest categorical diagrams expanded the textual reasoning from exact
sequences to matrices of exact exact sequences [22,7]. The technique of diagram
chasing seems to have emerged around the time of Lambek’s classic “Lectures on
Rings and Modules” [19], where it was used not just as a convenient visualization

� Recent primary affiliation: University of Hawaii at Menoa. dusko@hawaii.edu

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 353–367, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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of lists of equations, but also as a geometric view of universal constructions.
This unassuming idea then proceeded to form a germ of geometric reasoning
in category theory, uncovering the geometric patterns behind abstract logical
structures [23]. Other forms of geometric reasoning emerged in various forms of
categorical research [14,12,6, to mention just a few], providing some of the most
abstract algebraic structures with some of the most concrete geometric tools.

The present paper reports about the beginnings of an exploration towards ap-
plying categorical diagrams in a young and exciting area of mathematics: modern
cryptography. Initiated in the late 1970s [3] by introducing algorithmic hardness
as a tool of security, modern cryptography developed a rich conceptual and tech-
nical apparatus in a relatively short period of time. The increasing complexity
of its proofs and constructions, usually presented in a textual, “command line”
mode, akin to low-level programming, occasionally engendered doubts that its
formalisms may sometimes conceal as many errors as they prevent [16,15,17].
Would a high level categorical view help?

Background

Modern cryptography is a theory of effectively computable, randomized boolean
functions. A boolean function is a mapping over bitstrings, i.e. in the form f :
2M −→ 2N , where 2 = {0, 1} denotes the set of two elements, and M,N are
finite sets. So 2M denotes the set of M -tuples of 0 and 1; or equivalently of the
subsets of M . Which view of 2M is more convenietn depends on the application.
Formally, the algebraic structure of 2M is induced by the algebraic structure of
2, which is usually viewed as

– Boolean algebra (2,∧,∨,¬, 0, 1)
– Boolean ring (Z2,⊕, ·, 0, 1)
– submonoid {1,−1} ⊆ (Z3, ·)

A boolean function f is effectively computable, or feasible, and denoted by f :

2M
F−→ 2N , when it is implemented by a boolean circuit, a Turing machine

with suitable time and space bounds, or in some other model of computation.
Computations in general are, of course, generally expressed as effective boolean
functions over the representations of mathematical structures by bitstrings, all
the way up to the continuum [27].

A randomized boolean function g : 2M
R−→ 2N is in fact a boolean function of

two arguments, say g : 2R × 2M −→ 2N , where the first argument is interpreted
as a random seed. The output of a randomized function is viewed as a random
variable. The probability that a randomized boolean function g, given an input
x produces an output y is estimated by counting for how many values of the
random seed ρ it takes that value, i.e.

Pr(y � gx) =
#{ρ ∈ 2R | y = g(ρ, x)}

2R

where #S denotes the number of elements of the set S, and R is the length of
the random seeds ρ.
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An effective, randomized boolean function h : 2M
RF−−→ 2N is thus an effec-

tively computable boolean function h : 2R×2M
F−→ 2N . It is usually realized by a

Deterministic Polynomial-time Turing (DPT) machine, i.e. as h : 2R×2M
DPT−−−→

2N . A DPT with two input tapes, one of which is interpreted as providing the
random seeds, is called a Probabilistic Polynomial-time Turing (PPT) machine.

So for the same function h we would write h : 2M
PPT−−−→ 2N , leaving the random

seeds implicit. This is what cryptographers talk about in their formal proofs,
although they seldom specify any actual PPTs. Building a PPT is tedious work,
in fact an abstract form of low level machine programming. For a high level
view of cryptographic programming, an abstract theory of feasible functions is
needed.

Before we proceed in that direction, let us quickly summarize what cryptog-
raphers actually build from effective randomized boolean functions and PPTs.

A crypto system is a structure given over three finite sets

– M of plaintexts
– C of cyphertexts
– K of keys

plus a set of random seeds, that we leave implicit. They are all given with their
bitstring representations. The structure of the crypto-system consists of three
feasible functions

– key generation
〈
k, k
〉
: 1

PPT−−−→ K×K,
– encryption E : K ×M PPT−−−→ C, and
– decryption D : K × C DPT−−−→M,

that together provide

– unique decryption: D(k,E(r, k,m)) = m,
– and secrecy.

This secrecy is in fact what cryptography is all about. Even defining it took a
while.

The earliest formal definition of secrecy is due to Shannon [29]. His idea was
to require that the ciphertext discloses nothing about the plaintext. He viewed
the attacker as a statistician, equipped with the precise frequency distribution
of the language of the meaningful expressions in M, i.e. knowing exactly the
values of Pr(m � M), the probability that a randomly sampled string from
M is the plaintext m. Shannon’s requirement was that knowing the encryption
c = E(r, k,m) should not make it any easier for this attacker to guess m, or
formally

Pr (m � M | ∃rk. c = E(r, k,m)) = Pr (m � M) (1)

Shannon wrote this in a different, but equivalent form1, and called it perfect
security.

1 Except that the encryption was not randomized at the time.
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When the age of modern cryptography broke out, the concept of secrecy got
refined by considering the feasibility of the encryption and decryption operations,
and moreover strengthened by requiring that the attacker is unlikely to guess
not only the plaintext m, but even a single bit from it. Otherwise, the concept of
secrecy would miss the possibility that the plaintext is hard to guess as a whole,
but that it may be easy to guess bit by bit. The original formalization of this
requirement is due to Goldwasser and Micali [9,10] under the name semantic
security, but it was later somewhat simplified to the form of chosen plaintext
indistinguishability (IND-CPA), which looks something like this:

Pr
(
b � A1(m0,m1, c, s)

∣∣ c � E(k,mb), b � 2, m0,m1, s � A0

)
∼ 1

2
(2)

The attacker consists of two PPTs, A0 and A1, which communicate through a
tape. He tests the crypto system as follows. First A0 chooses and announces two
plaintexts m0 and m1. She may also convey to A1 a part of her state, by writing
s on their shared tape. Then the crypto system tosses a fair coin b, computes
the encryption c � E(k,mb) of one of the chosen plaintexts, and gives it to the
attacker. The attacker A1 is now supposed to guess which of the two plaintexts
was encrypted. The system is secure if knowing c does not give him any advantage
in this, i.e. if his chance to guess b is indistinguishable from Pr(b � 2) = 1

2 .
The point that I am trying to make is that this is mouthful of a definition.

Especially when we are defining secrecy, which is one of the most basic concepts
of cryptography. The upshot is that the most basic cryptographic proofs need
to show that some crypto system satisfies the above property.

It is, of course, not unheard of that the fundamental concepts tend to be
subtle, and require complicated formal definitions. In cryptography, however, this
phenomenon seems to be escalating. First of all, the above definition of secrecy as
chosen plaintext indistinguishability turns out to be too weak, and too simple. In
reality, the attacker can usually access a decryption oracle, which she can consult
before she chooses any plaintexts, and also after she receives back the encryption
of one of them, but before she attempts to guess which one it is. So the attacker
actually consists of four PPTs, A0, A1, A2 and A3, where A0 begins with choosing
some cyphertexts, which it submits to the decryption oracle, etc. A reader who is
not a cryptographer may enjoy decyphering the interactions between the crypto
system and the attacker from the formula below, describing the chosen cyphertext
indistinguishability (IND-CCA2), due to Rackoff and Simon [28]. The PPTs
again share a tape, which they can use to pass each other a part of the state,
denoted s0, s1 etc.

Pr

⎛
⎜⎝b � A3(c0,m,m0,m1, c, c1, m̃, s2)

∣∣∣∣∣
m = D(k, c0), c0, s0 � A0,

c � E(k,mb), b � 2, m0,m1, s1 � A1(c0, m, s0)

m̃ = D(k, c1), c1, s2 � A2(c0,m,m0,m1, c
�=, s1)

⎞
⎟⎠ ∼ 1

2

(3)



Chasing Diagrams in Cryptography 357

This formula is nowadays one of the centerpieces of cryptography. As verbose
as it may look, and as prohibitive as its requirements may be2, it came to be a
solid and useful concept. The problem is, however, that the story does not end
with it, and that the concepts of ever greater complexity and verbosity rapidly
proliferate. This makes cryptographic proofs fragile, with some errors surviving
extensive examination [30]. The argument that mandatory formal proofs, if they
are too complex, may decrease, rather than increase, the reliability of the proven
statements, by decreasing the expert scrutiny over the proven statements, while
concealing subtle errors, has been raised from within the cryptographic com-
munity [1,2,15,16,17]. At the same time, the efforts towards the formalization
have ostensibly consolidated the field and clarified some of its conceptual foun-
dations [8,13]. Maybe we have good reasons and enough insight to start looking
for better notations?

Outline of the Paper

Section 2 presents a symbolic model of a crypto system, and a very crude sym-
bolic definition of secrecy. These definitions can be stated in any relational calcu-
lus, and thus also in the category of relations. Section 3 presents an information
theoretic model of a crypto system. The symbolic definition of secrecy refines
here to Shannon’s familiar definition of perfect security. We formalize it all in the
category of sets and stochastic operators between them. And finally, Section 4
introduces a category where the modern cryptographic concepts can be formal-
ized, such as (IND-CPA) and (IND-CCA2). The upshot of this development is to
show how the incremental approach, refining the crude abstract concepts, while
enriching the categorical structures, motivates the conceptual development and
provides technical tools. Section 5 invites for further work.

2 Symbolic Cryptography

In [5,4], Dolev, Yao, Even and Karp describe public key cryptosystems using an
algebraic theory — roughly what mathematicians would call bicyclic semigroups
[11].

2.1 Dolev-Yao Crypto Systems

Definition 1. A message algebra A consists of three operations:

– encryption E : A×A −→ A,
– decryption D : A×A −→ A, and

2 The attacker may submit, e.g. two very large plaintexts, say video blocks, as m0 and
m1. After she receives the encryption c of one of them, she can then flip just one
bit of it, and make that into c1, which is submitted back for decryption. Although
c and c1 differ in a single bit, the decryption of c1 should not disclose even a single
bit of information about c0.
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– key pairing (−) : A −→ A,

and one equation:

D
(
k,E(k,m)

)
= m

called decryption condition. By convention, the first arguments of E and D are
called keys, the second arguments messages. A message that occurs in E is a
plaintext; a message that occurs in D is a cyphertext.

Definition 2. A Dolev-Yao crypto system is given by

– a message algebra
– a set M ⊆ A of well-formed plaintexts;
– the hiding condition: ”knowing E(k,m) does not reveal anything about m”

Remarks. The above definitions are close in spirit to Dolev and Yao’s definitions,
but deviate in details from their presentation. First of all, Dolev and Yao do not
present the encryption and decryption operations as binary operations, but as
families of unary operations indexed by the keys. More importantly, their results
also require the encryption equation

E
(
k,D(k, c)

)
= c

that should hold for all keys k and all ciphertexts c. Nowadays even toy crypto
systems do not satisfy this, so we allow that E(k,−) may not be surjective.
Restricted to its image, of course, the decryption equation implies the encryption
equation; but not generally. Finally, Dolev and Yao do not take M ⊆ A as a
part of the structure. Intuitively, if A is the set of character strings, then M may
be construed as the set of the meaningful words meaningful of some language.
For a cryptographer, the capability to distinguish the meaningful words, and
recognize a decryption when he finds it, is often critical. The set M ⊆ A is thus
a first, very crude step towards the concepts of source redundancy and frequency
distribution, which are of course crucial for cryptanalysis.

The main challenge left behind Dolev and Yao’s analysis is that the hiding
condition, which is clearly the heart of the matter, is left completely informal.
At the first sight, there seem to be many ways to make it precise. We present one
in the next section. Its conceptual analogy with the more familiar information
theoretic and computational notions of secrecy are clear, but its technical utility
seems limited.

2.2 Algebraic Perfect Security

An attacker sees a ciphertext c and wants to know the plaintext m, such that
E(k,m) = c. But since she does not know the key k, she can only form the set
of possible3 plaintexts m that may correspond to c

cD̃ = {m ∈M | ∃k. E(k,m) = c} (4)

3 I.e., this is the only thing that she can do in the possibilistic world of mere relations.
In the probabilistic world of stochastic relations, she can of course do more, and that
will be discussed in the next section.
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One way to formalize the hiding condition is to require that any well-formed
message m must be a candidate for a decryption of c, and thus lie in cD̃.

Definition 3. A Dolev-Yao crypto system A is algebraically perfectly secure
if every ciphertext can be an encryption of any well-formed message, i.e. if for
all c,m ∈ A holds

m ∈ M ∧ ∃k ∈ A. E(k,m) = c ⇐⇒ m ∈ M (5)

The following lemma says that this captures the intended requirement that
the set cD̃ does not tell anything about m.

Lemma 1. A Dolev-Yao crypto system A is algebraically perfectly secure if and
only if for all c,m ∈ A and the binary relation D̃ from (4) holds

cD̃m ⇐⇒ m ∈ M (6)

A convenient framework to work with algebraic security is the category Rel
of sets and binary relations

|Rel| = |Set|
Rel(A,B) = {0, 1}A×B

with the usual relational composition of A
R−→ B and B

S−→ C

a(R;S)c ⇐⇒ ∃b ∈ B. aRb ∧ bSc

and the equality aIb ⇐⇒ a = b as the identity relation A
I−→ A. Note that any

subset, say M ⊆ A, can be viewed as a relation M ∈ {0, 1}1×A, where 1 = {0},
and thus as an arrow 1

M−→ A in Rel with 0Mx ⇐⇒ x ∈ M .

Proposition 4. A Dolev-Yao crypto system A is algebraically perfectly secure
if and only if the following diagram commutes in the category of relations Rel

A ẼM
��

!

��

A×A

!×A

��
1

M
�� A

where

– A !−→ 1 denotes the total relation, i.e. x!0 holds for all x and 1 = {0}, and
– ẼM is by definition c ẼM (k,m) ⇐⇒ m ∈ M ∧ E(k,m) = c.
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3 Information Theoretic Cryptography

Shannon [29] brought cryptography to the solid ground of information theory,
recognizing the fact that an attacker has access not just to the set M ⊆ A of
possible plaintexts, but also to their probabilities μ : A −→ [0, 1]. And just like

we viewed the former one in the form M ∈ {0, 1}1×A as an arrow 1
M−→ A in

Rel, we shall now view the latter, in the form μ ∈ [0, 1]1×A as an arrow 1
μ−→ A

in the category Sto of stochastic matrices.

3.1 Shannon Crypto Systems

To begin, Shannon introduced into analysis mixed crypto systems, in the form
R = pS + (1 − p)T where S and T can be thought of as two Dolev-Yao crypto
systems, and p ∈ [0, 1]. The idea is that the system R behaves like S with
probability p, and like T with probability 1−p. In summary, Shannon considered
message algebras A

(a) given with a probability distribution μ : A −→ [0, 1] that assigns to each
plaintext m a frequency, μ(m), and moreover

(b) convex closed, in the sense that for any p ∈ [0, 1]

E (pk + (1 − p)h,m) = pE(k,m) + (1− p)E(h,m)

D (pk + (1 − p)h,m) = pD(k,m) + (1− p)D(h,m)

But (b) makes it convenient to draw the keys from the convex hull of A

ΔA =
{
κ : A −→ [0, 1]

∣∣ #ςκ <∞ ∧
∑
x∈ςκ

κ(x) = 1
}

where ςκ = {x ∈ A | κ(x) > 0} is the support. As a consequence, the encryption
and decryption maps are not functions any more, but stochastic matrices Eκ and
Dκ with the entries

Eκ
cm = Pr

κ
(c|m) =

∑
x∈ςκ

E(x,m)=c

κ(x)

Dκ
mc = Pr

κ
(m|c) =

∑
x∈ςκ

D(x,c)=m

κ(x)

Condition (a) similarly suggests that a plaintext, or the available partial infor-
mation about it, should also be viewed as a stochastic vector μ ∈ ΔA. A crypto
system is now an algebra in the category of sets and stochastic operators

|Sto| = |Set|

Sto(M,N) =
{
Φ ∈ [0, 1]M×N

∣∣ #ςΦ <∞ ∧
∑
i∈ςΦ

Φij = 1
}
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Indeed, the encryption and the decryption operations are now stochastic op-
erators Eκ,Dκ ∈ Sto(A,A); whereas the mixed plaintexts are the points μ ∈
Sto(1,A).

Definition 5. A Shannon crypto system is given by

– a message algebra in the category Sto, i.e. stochastic operators for
• encryption E : A×A −→ A,
• decryption D : A×A −→ A, and
• key pairing (−) : A −→ A,

– a frequency distribution of the plaintexts μ : A −→ [0, 1], and
– the hiding condition.

This time, the formal definition of the hiding condition available, and well known.

3.2 Perfect Security

Shannon [29] considers an attacker who makes a probabilistic model of the ob-
served crypto system. More precisely, when she observes a cyphtertext c, instead
of forming the set cD̃ ⊆M of possible decryptions, like in Sec. 2.2, she now tries
to compute the conditional distribution Pr(m|c) ≥ Pr(m) of the probable de-
cryptions of c.

But now the cyphertext c is a random variable γ = Pr(c), which can be viewed

as an arrow 1
Pr(c)−−−→ A in Sto. An observation of a cyphertext thus provides

knowledge about the distribution of Pr(c). We assume that the attacker knows
the distribution κ = Pr(k) of the keys, and the frequency distribution μ = Pr(m).

Definition 6. A Shannon crypto system is perfectly secure if the plaintexts
are statistically independent on the cyphertexts, i.e. if for all c,m ∈ A holds

Pr (m � μ | ∃k. c = E(k,m)) = Pr(m � μ) (7)

where the conditional probability on the left stands for

Pr (m � μ | ∃k. c = E(k,m)) =
∑
x∈ςκ

Pr (m � μ| c = E(x,m)) · κ(x)

Aligning definitions 3 and 6 shows that algebraic perfect security is an alge-
braic approximation of Shannon’s probabilistic perfect security [29, II.10]. The
following proposition shows that the connection extends to the categorical char-
acterizations.

Proposition 7. A Shannon crypto system A with finite support is perfectly se-
cure if and only if the following diagram commutes in the category of stochastic
operators Sto

A Ẽ ��

!

��

A×A

!×A

��
1 μ

�� A
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where

– A !−→ 1 is the row vector of 1
#ςA ,

– 1
μ−→ A is the distribution μ viewed as a column vector,

– A×A !×A−−−→ A is the stochastic matrix with the entries

(!×A)i(jk) =

{
1

#ςA if i = k

0 otheriwise

– Ẽ is the stochastic matrix with the entries

Ẽc(km) =

{
κ(k) · μ(m) if c = E(k,m)

0 otherwise

4 Computational Cryptography

Modern cryptography arose from the idea to use computational complexity as
a tool, and attacker’s computational limitations as the persistent assumptions
upon which the cryptographer can built the desired security guarantees. To rep-
resent modern crypto system, we need to lift the preceding considerations beyond
the mere frequency distributions and randomness, captured in the category Sto,
to a category suitable to represent randomized feasible computations, graded by
a security parameter.

4.1 Category of Effective Stochastic Ensembles up to
Indistinguishability

The category suitable to present cryptographic constructions will be build by
incremental refinement of the category of sets and functions, in three steps:
we first make functions feasible, then randomize them, and finally capture the
security parameter.

Effective Functions. Suppose that every set is given with an encoding: e.g.,
each element is encoded as a bitstring. A function between encoded sets can
then be considered feasible if it is realized by a feasible boolean function on the
codes.

Let us begin with a crude realization of this idea, just to get a feeling for it.
Let R = (2∗)2

∗
be the monoid of boolean functions and F ⊆ R a submonoid

of functions that we call feasible. For concreteness, we could assume that the
functions from F are just those realized by some suitable family of boolean
circuits or Turing-machines. The category SetF of F -computable functions is
then defined

|SetF | = |Set/2∗| =
∑

A∈|Set|
{�−�A : A −→ 2∗}

SetF (A,B) = {f ∈ Set(A,B) | ∃ϕ ∈ F ∀a ∈ A. �f(a)�B = ϕ�a�A}
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A
f ��

�−�A

��

B

�−�B

��
2∗ ϕ

�� 2∗

Effective Substochastic Operators. Now we want to refine the category SetF
effective functions to a category of randomized effective functions. The step is
analogous to the step from Set to Sto. So randomized effective functions will
actually be effective stochastic operators. But since feasible functions may not
be total, we will actually work with effective substochastic operators.

The first task is to define the monoid of randomized boolean functions that
will operate on the codes. Consider the set of partial functions

R = {γ : 2∗ × 2∗ ⇀ 2∗ | ∀x∀ρ1∀ρ2. γ(ρ1, x)↓ ∧ γ(ρ2, y)↓ ∧ |x| = |y|
=⇒ |ρ1| = |ρ2| ∧ |γ(ρ1, x)| = |γ(ρ2, y)|

}
where f(x) ↓ asserts that the partial function f is defined at x, and |ξ| denotes
the length of the bitstring ξ. The set R forms a monoid (R, ◦, ι) where

γ ◦ β(ρ2 :: ρ1, x) = γ(ρ2, β(ρ1, x)) (8)

and ι(〈〉, x) = x, where 〈〉 denotes the empty string. This monoid was previously
used in [26]. Let F ⊆ R be a submonoid of functions that we consider feasible.
An example are the functions realized by DPT machines. The category StoF of
effective substochastic operators is now defined as follows

|StoF | = |Set/2∗| =
∑

A∈|Set|
{�−�A : A −→ 2∗}

StoF (A,B) =
{
Φ ∈ [0, 1]A×B | ∃ϕ ∈ F ∀a ∈ A ∀b ∈ B. Φab = Pr (�b�B � ϕ�a�A)

}
Ensembles. In order to capture security parameters, we must expand ran-
domized functions to ensembles. A feasible ensemble is a sequence of feasible
functions

ψ =
{
ψ� : 2

r(�) × 2s(�)
F−→ 2t(�) | $ ∈ ω

}
where ω = {0, 1, 2, . . .}, and such that

k < $ =⇒ ψk = ψ� 
(2r(k)×2s(k)) ∧ r(k) < r($) ∧ s(k) < s($) ∧ t(k) < t($)

Write Fω for the set of feasible ensembles. A typical example of an ensamble is
the extensional (i.e. input-output) view of a PPT machine, which can consume
longer inputs, and then it produces longer outputs.

The monoid structure on Fω is induced by the monoid structure of F . The
composite ϑ ◦ ψ of

ϑ =
{
ϑk : 2u(�) × 2v(�)

F−→ 2w(�) | $ ∈ ω
}
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and
ψ =
{
ψ� : 2

r(�) × 2s(�)
F−→ 2t(�) | $ ∈ ω

}
consists of the components

(ϑ ◦ ψ)� = ϑ� ◦ ψ� : 2
u(�) × 2v(�)

F−→ 2t(�)

where

– $ is the smallest number such that w($) ≥ s($),
– ϑ� = ϑ� 
2s(�) ,
– ϑ� ◦ ψ� is defined by (8),

– u($) = u($) and v($) = v($).

The category StoωF of effective substochastic ensembles is now defined as follows

|EnsF | = |Set/2ω| =
∑

A∈|Set|
{�−�A : A −→ 2ω}

EnsF (A,B) ={
Ψ ∈ [0, 1]ω×A×B | ∃ψ ∈ Fω ∀$ ∈ ω ∀a ∈ A ∀b ∈ B. Ψ �

ab = Pr (�b� � ψ��a�)
}

where

Pr
(
�b� � ψ� (�a�)

)
=

#
{
ρ ∈ 2r(�) | �b�t(�) = ψ�

(
ρ, �a�s(�)

)}
2r(�)

In the special case when Fω consists of the actions of PPT machines, we get the
category EnsPPT, where the morphisms are the extensional views of PPTs. More
precisely, a morphism is a sequence of substochastic matrices Ψ = {Ψ �}�∈ω such
that there is a PPT Π and the ab-entry of Ψ � is Ψ �

ab = Pr(b � Π�a), where $ is
the security parameter.

So EnsF comes close to providing an abstract view of the universe in which
the cryptographers work. The view is abstract in the sense that F does not have
to be realized by PPTs, but can be any submonoid of R. By taking F to be
the PPT realized stochastic operations we get the usual probabilistic algorithms
— except that those that are indistinguishable, because their difference is a
negligible function still correspond to different morphisms in EnsPPT.

Indistinguishability. Note, first of all, that [0, 1] is not only a monoid, but an
ordered semiring4. The semiring structure lifts to [0, 1]ω. A semi-ideal in an or-
dered semiring is a lower closed subset closed under addition and multiplication.
Since it is lower closed, it contains 0, but generally not 1.

Let Υ ⊆ [0, 1]ω be a semi-ideal. The canonical example is the semi-ideal of
negligible functions [8]. A function ν : ω −→ [0, 1] is called negligible if ν(x) <

4 A semiring is a structure (R,+, ·, 0, 1) such that (R,+, 0) and (R, ·, 1) are commu-
tative monoids such that a(b+ c) = ab+ ac and a0 = 0.
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1
q(x) holds eventually, for every positive polynomial q. Any semi-ideal Υ induces

on [0, 1]ω the equivalence relation

σ ∼
Υ

τ ⇐⇒ ∃ν ∈ Υ. |σ� − τ�| < ν($)

and we define EnsΥF to be the category with the same objects as EnsF , but

EnsΥF (A,B) = EnsF(A,B)
/
∼
Υ

Unfolding this definition over the semiringJΥ = [0, 1]ω/ ∼
Υ
, we have EnsΥF(A,B) ={

Ψ ∈ J A×B
Υ | ∃ψ ∈ Fω ∀$ ∈ ω ∀a ∈ A ∀b ∈ B. Ψ �

ab = Pr (�b� � ψ��a�)
}

4.2 Characterizing Semantic Security

The usual definition of a crypto system from the Introduction can now be stated
abstractly, in a categorical form. While the definition follows the pattern of Def. 2
and Def. 5, this time we revert to the usual multi-sorted specification, where the
plaintexts, the cyphertexts and the keys are drawn from different sets.

Definition 8. An abstract crypto system, relative to a monoid F of feasible
functions, and a semi-ideal Υ of negligible functions is given by

– a multi-sorted message algebra in the category EnsΥF , such that
• encryption E : K×M −→ C, is a stochastic ensemble, whereas
• decryption D : K × C −→M, and
• key pairing (−) : K −→ K are deterministic functions5.

– a frequency distribution of the plaintexts μ :M−→ [0, 1], and
– the hiding condition.

The upshot of it all. The abstract versions of the hiding conditions, such as
(IND-CPA) and (IND-CCA2), described in the Introduction, boil down to com-
mutative diagrams in EnsΥF . We illustrate this fact for (IND-CPA).

Proposition 9. Let EnsνPPT be the category of ensembles of PPT-realized boolean
functions modulo negligible functions. A crypto system in the usual sense (as de-
scribed in the Introduction) is equivalent to an abstract crypto system in this cate-
gory. Such a crypto system is semantically secure, i.e. it satisfies (IND-CPA), as
defined by (2), if and only if the following diagram commutes for all arrows A0 and
A1 in EnsνPPT.

K
〈idK,A0〉 ��

!

��

K×M2×S
〈πK,πbπM2 ,πM2 ,πS〉�� K×M×M2×S E×M2×S �� C×M2×S

A1

��
1

b
�� 2

A similar proposition holds for (IND-CCA2).

5 Deterministic functions can be characterized intrinsically in StoF , EnsF and EnsΥF .



366 D. Pavlovic

5 Further Work

While the various notions of secrecy can thus be characterized by commutative
diagrams in suitable categories, the notions of one-way function and pseudo-
random generator correspond to the requirements that some diagrams do not
commute. This leads to interesting categorical structures, which seem to be best
expressed in terms of enriched categories, and the suitable convolution opera-
tions. This observation led to an different approach, through monoidal computer
[24,25], lifting the ideas from another strand of Lambek’s work, leading from
infinite abacus as an intensional model of computation [18], to the extensional
models [20], elaborated in the book with P.J. Scott [21].

But how useful might our categorical models of computation be for cryptogra-
phy? Can the categorical tools, developed for high level program semantics, really
be used to stratify cryptographic constructions? The preliminary evidence, some
of which was presented here, suggests that certain types of cryptographic proofs
and constructions can be significantly simplified by using categorical tools to
‘hide the implementation details’. The price to be paid, though, is that this hid-
ing requires some preliminary work. For instance, we have seen that the secrecy
conditions can be captured by simple diagrams, albeit in randomized categories.
This approach echoes the well established programming methodologies, where
complex structures are encapsulate into components that hide the irrelevant im-
plementation details, and only the fragments that need to be manipulated are
displayed at the interface. The categorical approach developed in Lambek’s work
has made such strategies available across a broad gamut of sciences.
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Abstract. We consider the Lambek calculus with the additional struc-
tural rule of monotonicity (weakening). We show that the derivability
problem for this calculus is NP-complete (both for the full calculus and
for the product-free fragment). The same holds for the variant that allows
empty antecedents. To prove NP-hardness of the product-free fragment,
we provide a mapping reduction from the classical satisfiability problem
SAT. This reduction is similar to the one used by Yury Savateev in 2008
to prove NP-hardness (and hence NP-completeness) of the product-free
Lambek calculus.

Keywords: Lambek calculus, complexity, structural rule.

Introduction

The Lambek syntactic calculus L (introduced in [4]) is one of the logical cal-
culi used in the paradigm of categorial grammar for deriving reduction laws of
syntactic types (also called categories) in natural and formal languages. In cat-
egorial grammars based on the Lambek calculus (or its variants) an expression
is assigned to category B / A (respectively, A \ B) if and only if the expression
produces an expression of category B whenever it is followed (respectively, pre-
ceded) by an expression of categoryA. An expression is assigned to categoryA·B
if and only if the expression can be obtained by concatenation of an expression
of category A and an expression of category B. The reduction laws derivable in
this calculus are of the form A→B (meaning “every expression of category A is
also assigned to category B”). In the sequent form of the calculus, a law of the
form A1 . . . An → B means the same as the law A1 · . . . ·An → B.

In this paper, we consider the Lambek calculus with the added rule of mono-
tonicity (also called weakening) and denote it by LM. It is known that LM is
sound and complete with respect to semiring models [6], where types are inter-
preted as two-sided ideals (given two ideals I and J , the product I · J is the
minimal ideal that contains all pairwise products of elements from I and J , the
right division is defined as I/J = {c | c ·J ⊆ I} and the left division is defined as
J \ I = {c | J · c ⊆ I}). The calculus LM is obviously also sound with respect to
ring models where types are interpreted as two-sided ideals (the division oper-
ations of ideals were considered, e.g., in [5]), but the completeness with respect
to ring models seems to be an open question.
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There is a natural modification of the original Lambek calculus, which we call
the Lambek calculus allowing empty premises and denote L∗ (see [11, p. 44]). In-
tuitively, the modified calculus assigns the empty expression to some categories.
A similar modification can also be considered in the presence of the monotonicity
(weakening) rule. Thus we obtain the calculus LM∗, which is sound with respect
to models on rings with unit.

In all these calculi, the cut rule can be eliminated and cut-free proofs are of
polynomial size. Thus, the derivability problem for these calculi is in NP.

We show that the classical satisfiability problem SAT is polynomial time re-
ducible to the derivability problem for the product-free fragment of LM and thus
this fragment and the full calculus LM are NP-complete. The same reduction
from SAT works also for the product-free fragment of LM∗.

In [7], it was proved that the fragment of LM∗ with only one connective, left
division, is decidable in polynomial time. The same holds for the fragment with
only right division and for the fragment with only product, as well as for the
one-connective fragments of LM. Thus, for all these fragments the complexity of
deciding derivability is in the same class as in the absence of the monotonicity
rule. A survey of complexity results for fragments of L and L∗ can be found
in [9].

This paper is organized as follows. The first section contains definitions of the
calculi LM and LM∗. In Section 2, we give the main construction that reduces
SAT to the derivability problem for the product-free fragment of LM (and also to
the derivability problem for the product-free fragment of LM∗). The correctness
of this reduction is proved in Section 3.

1 The Monotone Lambek Calculus

First we define the Lambek calculus allowing empty premises (denoted by L∗).
Assume that an enumerable set of variables Var is given. The types of L∗ are

built of variables (also called primitive types) and three binary connectives ·, /,
and \. The set of all types is denoted by Tp. The letters p, q, r, . . . range over the
set Var, capital letters A, B, . . . range over types, and capital Greek letters range
over finite (possibly empty) sequences of types. For notational convenience, we
assume that the product operator · associates to the left. We say that in B / A
and A \B the numerator is B and the denominator is A.

The sequents of L∗ are of the form Γ → A (note that Γ can be the empty
sequence). Here Γ is called the antecedent, and A is the succedent. The calculus L∗

has the following axioms and rules of inference:

A→ A,
Φ→ B ΓBΔ→ A

ΓΦΔ→A
(cut),

ΠA→ B
Π →B / A

(→/), Φ→ A ΓBΔ→ C
Γ (B / A)ΦΔ→ C

(/→),

AΠ → B
Π →A \B (→\), Φ→ A ΓBΔ→ C

ΓΦ(A \B)Δ→ C
(\→),
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Γ →A Δ→ B
ΓΔ→ A ·B (→ ·), ΓABΔ→ C

Γ (A ·B)Δ→ C
(·→).

As usual, we write L∗ � Γ →A to indicate that the sequent Γ →A is derivable
in L∗.

The calculus L has the same axioms and rules with the only exception that
in the rules (→\) and (→/) we require Π to be nonempty. The calculus L is the
original syntactic calculus introduced in [4]. In L, every derivable sequent has
non-empty antecedent. Evidently, if L � Γ → A, then L∗ � Γ →A.

It is known that dropping the rule (cut) from the calculus L (or L∗) does
not change the set of derivable sequents. The standard way to prove this is to
consider a derivation with only one instance of (cut) and proceed by induction
on the total size of its two premises (see [4]). Here the size of a sequent is
defined as the total number of primitive type occurrences and operation symbol
occurrences.

Example 1. The derivation

p1 → p1
→ p1 \ p1

(→\)
p2 → p2

(p1 \ p1) \ p2 → p2
(\→)

demonstrates that L∗ � (p1 \ p1) \ p2 → p2.
Note that L � (p1 \ p1) \ p2→ p2 (evidently, this sequent can have no cut-free

derivation in L).

The monotone Lambek calculus (we denote it by LM) is obtained from the
calculus L by adding the rule

ΓΔ→B
ΓAΔ→ B

(M).

Sometimes the rule (M) is called the monotonicity rule (see [11, p. 47]) or the
weakening rule (see [2, p. 359]). Similarly, the monotone Lambek calculus allow-
ing empty premises (we denote it by LM∗) is obtained from the calculus L∗ by
adding the rule (M).

Example 2. The derivation

p2 → p2
(p1 \ p1) p2 → p2

(M)

p2 → (p1 \ p1) \ p2
(→\)

demonstrates that LM � p2 → (p1 \ p1) \ p2.
Example 3. The derivation

p1 → p1
p1 p3 → p1

(M)

p3 → p1 \ p1
(→\)

p2 → p2

p3 ((p1 \ p1) \ p2)→ p2
(\→)

(p1 \ p1) \ p2 → p3 \ p2
(→\)



The Monotone Lambek Calculus Is NP-Complete 371

demonstrates that LM � (p1 \ p1) \ p2 → p3 \ p2.
Note that LM � (p1 \ p1) \ p2 → p2 (this follows from the cut-elimination

theorem below).

Theorem 1 (the cut-elimination theorem). Dropping the rule (cut) from
the calculus LM does not change the set of derivable sequents. The same holds
for LM∗.

This theorem can be proved similarly to the cut-elimination theorem for the
original Lambek calculus. The claim for LM∗ is also a particular case of Corol-
lary 4.8 from [3].

Corollary 1 (the subtype property). If a sequent is derivable in LM, then
there exists a derivation where each type is a subtype of a type in the final sequent.
The same holds for LM∗.

Corollary 2. For the calculi LM and LM∗ the derivability problem is decidable
in nondeterministic polynomial time.

Proof. In a bottom-up derivation search (for each rule, from the conclusion to
the premises), the size of sequents decreases provided we do not use the cut rule.
Here the size of a sequent means the total number of primitive type occurrences
and operation symbol occurrences.

Therefore, for a given sequent we can calculate an upper bound for the deriva-
tion size (which is defined as the total size of the sequents in the derivation). It

is easy to see that the derivation size is less than n2+n
2 , where n is the size of

the given sequent. ! 

For the calculi L, L∗, LM, and LM∗ we denote their product-free fragments by
L(\, /), L∗(\, /), LM(\, /), and LM∗(\, /), respectively. In view of the subformula
property, the rules (→ ·) and (·→) are not needed in these fragments.

2 Reduction from SAT

Let c1 ∧ . . . ∧ cm be a Boolean formula in conjunctive normal form with clauses
c1, . . . , cm and variables x1, . . . , xn. The reduction maps the formula to a se-
quent, which is derivable in LM∗ (and in LM) if and only if the formula c1∧. . .∧cm
is satisfiable.

For any Boolean variable xi let ¬0xi stand for the literal ¬xi and ¬1xi stand
for the literal xi. Note that 〈t1, . . . , tn〉 ∈ {0, 1}n is a satisfying assignment for
the Boolean formula c1∧ . . .∧cm if and only if for every index j ≤ m there exists
an index i ≤ n such that the literal ¬tixi appears in the clause cj (as usual,
1 stands for “true” and 0 stands for “false”).

Here we follow the notation from [10].
Let pji (where 0 ≤ i ≤ n and 0 ≤ j ≤ m) and qji (where 0 ≤ i ≤ n and

1 ≤ j ≤ m) be distinct primitive types from Var.
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We define the following types:

G0 = p00 \ p0n,
Gj = (qjn / ((qj0 \ p

j
0) \Gj−1)) \ pjn for 1 ≤ j ≤ m,

G = Gm

E0
i (t) = p0i−1 for 1 ≤ i ≤ n and t ∈ {0, 1},

Ej
i (t) =

{
qji / (((qji−1 / Ej−1

i (t)) \ pji−1) \ p
j−1
i ), if ¬txi occurs in cj ,

(qji−1 / (qji / (Ej−1
i (t) \ pj−1

i ))) \ pji−1, otherwise,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and t ∈ {0, 1},
Fi(t) = Em

i (t) \ pmi for 1 ≤ i ≤ n and t ∈ {0, 1}.

Let Θi denote the sequence of types (Fi(1) / Fi(0))Fi(0) (for each i, the
sequence Θi consists of two types).

Our aim is to prove that the sequent Θ1 . . . Θn → G is derivable in LM(\, /)
(and in LM∗(\, /)) if and only if the formula c1 ∧ . . . ∧ cm is satisfiable.

Example 4. Consider the Boolean formula x1∧¬x1. Here n = 1, m = 2, c1 = x1,
and c2 = ¬x1. By construction,

G = ((q21 / ((q20 \ p20) \ ((q11 / ((q10 \ p10) \ (p00 \ p01))) \ p11))) \ p21),
F1(0) = ((q21 / (((q20 / ((q10 / (q11 / (p00 \ p01))) \ p10)) \ p20) \ p11)) \ p21),
F1(1) = (((q20 / (q21 / ((q11 / (((q10 / p00) \ p10) \ p01)) \ p11))) \ p20) \ p21).

The reduction described in this section maps x1 ∧ ¬x1 to the sequent

(F1(1) / F1(0))F1(0)→G.

The Boolean formula x1 ∧ ¬x1 is not satisfiable, and indeed

LM∗
� (F1(1) / F1(0))F1(0)→G.

3 Correctness of the Reduction

The following lemma is proved in [10].

Lemma 1. Let 〈t1, . . . , tn〉 ∈ {0, 1}n. The following conditions are equivalent:

1. 〈t1, . . . , tn〉 is a satisfying assignment for the Boolean formula c1 ∧ . . . ∧ cm,
2. L(\, /) � F1(t1) . . . Fn(tn)→G,
3. L∗(\, /) � F1(t1) . . . Fn(tn)→G.

Lemma 2. If c1 ∧ . . . ∧ cm is satisfiable, then LM(\, /) � Θ1 . . . Θn →G.

Proof. First, we note that LM(\, /) � Θi → Fi(0) and LM(\, /) � Θi → Fi(1)
for all i. Let 〈t1, . . . , tn〉 be a satisfying assignment for the Boolean formula
c1 ∧ . . . ∧ cm. In view of Lemma 1, we have L(\, /) � F1(t1) . . . Fn(tn) → G,
whence LM(\, /) � F1(t1) . . . Fn(tn)→ G. Applying the cut rule m times, we
obtain LM(\, /) � Θ1 . . . Θn →G. ! 



The Monotone Lambek Calculus Is NP-Complete 373

It remains to prove that c1 ∧ . . . ∧ cm is satisfiable whenever

LM∗(\, /) � Θ1 . . . Θn →G

(this is slightly stronger than the converse of Lemma 2, because we use LM∗(\, /)
instead of LM(\, /)). We start with some auxiliary notions and results.

For every r ∈ Var we define a function #r that maps types to integers as
follows:

#r(s) =

{
1 if s = r,

0 if s ∈ Var and s �= r,

#r(A ·B) = #r(A) + #r(B),

#r(A \B) = #r(B)−#r(A),

#r(B / A) = #r(B)−#r(A).

This definition is extended to sequences of types as follows:

#r(A1 . . . An) = #r(A1) + . . .+#r(An).

We also define a function # that maps types to integers as follows:

#(A) =
∑

r∈Var

#r(A).

Example 5. Let A = (q10 \ p10) \ q10 . Then #p1
0
(A) = −1, #q10

(A) = 2, and
#(A) = 1.

Lemma 3. If L∗ � Π → C, then #(Π) = #(C) and #r(Π) = #r(C) for every
r ∈ Var.

Proof. Straightforward induction on derivations. ! 

Lemma 4. Let LM∗ � Π → C and r ∈ Var. Then the sum of #r(A) over all
instances of the rule

ΓΔ→B
ΓAΔ→B

(M)

in a given derivation of Π → C equals #r(Π) − #r(C). Similarly, the sum of
#(A) over all instances of the rule (M) in a given derivation of Π → C equals
#(Π)−#(C).

Proof. Induction on derivations. ! 

Example 6. Let us consider the derivation

p→ p

s→ s
q s→ s

(M)

q q s→ s
(M)

q s→ q \ s (→\)

p (p \ q) s→ q \ s (\→)
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in LM∗. For r = q Lemma 4 claims that #q(q) + #q(q) = #q(p (p \ q) s) −
#q(q \ s), i.e., 1+1 = 1− (−1). For r = s Lemma 4 claims that #s(q)+#s(q) =
#s(p (p \ q) s)−#s(q \ s), i.e., 0 + 0 = 1− 1.

Lemma 5. The type G contains only primitive types pj0, qj0, pjn, and qjn. For

any i and t the type Fi(t) contains only primitive types pji−1, q
j
i−1, p

j
i , and qji .

For any i, j, k, and t satisfying 1 ≤ i ≤ n, 0 ≤ j ≤ m, 1 ≤ k ≤ m, and
t ∈ {0, 1} we have #pj

0
(G) = −1, #qk0

(G) = 1, #pj
n
(G) = 1, #qkn

(G) = −1,
#pj

i−1
(Fi(t)) = −1, #qki−1

(Fi(t)) = 1, #pj
i
(Fi(t)) = 1, and #qki

(Fi(t)) = −1.

Lemma 6. Let 1 ≤ i ≤ n. For any r ∈ Var we have #r(Fi(1) / Fi(0)) = 0.
Hence, #(Fi(1) / Fi(0)) = 0.

Proof. Immediate from Lemma 5. ! 

Lemma 7. For any r ∈ Var we have #r(Θ1 . . . Θn) = #r(G). As a corollary,
we see that #(Θ1 . . . Θn) = #(G).

Proof. Immediate from Lemma 5. ! 

Following [1], we denote the set of all positive occurrences of subtypes of C
by Sub1(C) and the set of all negative occurrences of subtypes of C by Sub2(C).
Formally,

Sub1(s) = {s} if s ∈ Var,

Sub2(s) = ∅ if s ∈ Var,

Sub1(A ·B) = Sub1(A) ∪ Sub1(B) ∪ {A ·B},
Sub2(A ·B) = Sub2(A) ∪ Sub2(B),

Sub1(A \B) = Sub2(A) ∪ Sub1(B) ∪ {A \B},
Sub2(A \B) = Sub1(A) ∪ Sub2(B),

Sub1(A / B) = Sub1(A) ∪ Sub2(B) ∪ {B / A},
Sub2(A / B) = Sub2(A) ∪ Sub1(B).

We extend Sub1 and Sub2 to sequents as follows:

Sub1(D1 . . . Dk → C) = Sub2(D1) ∪ . . . ∪ Sub2(Dk) ∪ Sub1(C),

Sub2(D1 . . . Dk → C) = Sub1(D1) ∪ . . . ∪ Sub1(Dk) ∪ Sub2(C).

Given a derivation, we identify subtype occurrences of the conclusion of a rule
instance with the corresponding subtype occurrences in the premises.

In the sequel, when there is no danger of confusion, we denote an occurrence
of a type and the type itself by the same letter.

Lemma 8. Let LM∗(\, /) � Π → C. Then there exists a derivation of Π → C
where each subtype occurrence A introduced in an instance of the rule (M) is
either an element of Π (at the top level) or the denominator of a positive oc-
currence of a subtype in the sequent Π → C (i.e., D / A ∈ Sub1(Π → C) or
A \D ∈ Sub1(Π → C) for some D).
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Proof. We fix a derivation of Π→C with minimal total size of axiom instances.
Let us consider a subtype occurrence A introduced in an instance of the rule (M).
Evidently, the occurrence in the sequent Π → C identified with A is a negative
occurrence (i.e., A ∈ Sub2(Π → C)). It remains to prove that A can not be
the numerator of a subtype occurrence in the sequent Π → C. Suppose to the
contrary that we have a rule instance

Φ→B ΓAΔ→E
ΓΦ(B \A)Δ→ E

(\→),

where the subtype occurrence A in ΓAΔ→ E was introduced in an instance of
the rule (M). Then we can move this instance of (M) down (without changing
the total size of axiom instances) and obtain

Φ→B
ΓΔ→E
ΓAΔ→E

(M)

ΓΦ(B \A)Δ→ E
(\→).

This fragment can be replaced by

ΓΔ→E
Γ (B \A)Δ→E

(M)

...

(M)

ΓΦ(B \A)Δ→ E
(M),

which reduces the total size of axiom instances. This contradicts the choice of
the original derivation. The case of (/→) is similar. ! 

Example 7. The derivation from Example 6 does not have the property formu-
lated in Lemma 8. However, if we follow the proof of the lemma, then we obtain
the following simpler derivation of the same sequent:

s→ s
q s→ s

(M)

s→ q \ s (→\)

(p \ q) s→ q \ s (M)

p (p \ q) s→ q \ s (M).

Note that the derivations from Examples 2 and 3 do have the property for-
mulated in Lemma 8.

Lemma 9. If #pj
i
(Ej′

i′ (t
′)) < 0, then Ej′

i′ (t
′) contains an occurrence of Ej

i (t)

for some t. If #qji
(Ej′

i′ (t
′)) < 0, then Ej′

i′ (t
′) contains an occurrence of Ej−1

i+1 (t)

for some t.

Proof. Straightforward induction on j′. ! 
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Lemma 10. Let LM∗(\, /) � Θ1 . . . Θn → G. Then there is a sequence Ψ such
that L∗(\, /) � Ψ → G and Ψ is a subsequence of Θ1 . . . Θn (i.e., the sequent
Θ1 . . . Θn →G can be derived from Ψ →G using the rule (M) only).

Proof. We consider a derivation of Θ1 . . . Θn → G where each subtype occur-
rence A introduced in an instance of the rule (M) is either an element of Θ1 . . . Θn

(at the top level) or the denominator of a positive occurrence of a subtype
in Θ1 . . . Θn → G (such a derivation exists according to Lemma 8). We denote
by M the set of occurrences of subtypes in Θ1 . . . Θn→G that were introduced
by the rule (M).

We denote by N the subset of M where we exclude all types of the form
Fi(1)/Fi(0). If N = ∅, then we can move all instances of the rule (M) to the end
of the derivation and the “middle” sequent immediately above all the instances
of the rule (M) is the required sequent Ψ → G, where Ψ is a subsequence of
Θ1 . . . Θn.

It remains to consider the case where N �= ∅.
From the construction of G we see that denominators of positive occurrences

of subtypes of G can only be of the form p00, q
j
n / ((qj0 \ p

j
0) \ Gj−1), or qj0 \ p

j
0.

Denominators of negative occurrences of subtypes of Fi(0) and Fi(1) /Fi(0) can
only be of the form Ej

i (t), ((q
j
i−1 /E

j−1
i (t))\pji−1)\p

j−1
i , (qji−1 /E

j−1
i (t))\pji−1,

qji−1/E
j−1
i (t), qji−1/(q

j
i /(E

j−1
i (t)\pj−1

i )), qji /(E
j−1
i (t)\pj−1

i ), or Ej−1
i (t)\pj−1

i .
In addition to the above-listed types,M can only contain occurrences of types of
the form Fi(0) and Fi(1) / Fi(0). Note that for all types listed in this paragraph
the value of # is either 0 or 1.

In view of Lemma 4,∑
A∈M

#(A) = #(Θ1 . . . Θn)−#(G).

Using Lemma 7, we obtain ∑
A∈M

#(A) = 0.

We have seen that all addends in this sum are nonnegative. Thus, they are
all zero. This means that the set N can only contain occurrences of qj0 \ pj0,

((qji−1 / Ej−1
i (t)) \ pji−1) \ pj−1

i , qji−1 / Ej−1
i (t), qji−1 / (qji / (Ej−1

i (t) \ pj−1
i )),

Ej−1
i (t) \ pj−1

i , and Fi(0).
We define an auxiliary function

f : {pji | 0 ≤ i ≤ n and 0 ≤ j ≤ m} ∪ {qji | 0 ≤ i ≤ n and 1 ≤ j ≤ m} → N

as follows:

f(pji ) = 2i+ 2j,

f(qji ) = 2i+ 2j − 1.

Let s be the primitive type with the least value f(s) among all primitive types
that occur in elements of N .
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No element of N can contain more than one occurrence of s. Thus, there is
A ∈ N such that #s(A) �= 0. In view of Lemmas 4 and 7, the sum of #s(A)
over A ∈ M equals 0. According to Lemma 6, the sum of #s(A) over A ∈ N
equals 0. Thus, there is A ∈ N such that #s(A) > 0. We fix such a type A and
consider three cases.

Case 1. Assume that s = pj0. Then A = qj0 \ pj0. Obviously, f(qj0) < f(pj0),
which contradicts the choice of s.

Case 2. Assume that s = pji , where i > 0. It is easy to see that then Ej
i (t)

is a subtype of A for some t ∈ {0, 1} (here we use the list of possible forms
of A and Lemma 9). Note that Ej

i (t) contains p
j
i−1. Obviously, f(pji−1) < f(pji ),

which contradicts the choice of s.
Case 3. Assume that s = qji . It is easy to see that then j > 0 and Ej−1

i+1 (t) is
a subtype of A for some t ∈ {0, 1} (here we use the list of possible forms of A
and Lemma 9). Note that Ej−1

i+1 (t) contains pj−1
i . Obviously, f(pj−1

i ) < f(qji ),
which contradicts the choice of s.

Thus, we see that the case N �= ∅ is impossible. ! 

Lemma 11. Let s ∈ Var and L∗(\, /) � Θ (E1 \ s)Ξ → s. Let the sequent
Θ (E1 \ s)Ξ → s contain only one negative occurrence of s (the occurrence ex-
plicitly shown in E1 \ s). Then Ξ is empty.

Proof. Induction on cut-free derivations. ! 

Lemma 12. Let s ∈ Var. Let the sequent Θ ((E1 \ s) / (E2 \ s))Ξ→D contain
only one negative occurrence of s (the occurrence explicitly shown in E1 \ s).
Then L∗(\, /) � Θ ((E1 \ s) / (E2 \ s))Ξ →D.

Proof. Induction on cut-free derivations. ! 

Lemma 13. Let s ∈ Var and L∗(\, /) � Θ ((E1 \ s) / (E2 \ s)) (E3 \ s)Ξ →D.
Let the sequent Θ ((E1 \ s) / (E2 \ s)) (E3 \ s)Ξ →D contain only two negative
occurrences of s (the occurrences explicitly shown in E1 \ s and E3 \ s). Then
L∗(\, /) � Θ (E1 \ s)Ξ →D.

Proof. We generalize the claim by considering also similar sequents without E3,
i.e., sequents of the form Θ ((E1 \s)/(E2 \s)) sΞ→D, and proceed by induction
on cut-free derivations. Most cases in the induction step are straightforward. We
consider the nontrivial cases.

Case 1. Assume that the last rule is

→ (E2 \ s) Θ (E1 \ s)H Ξ →D

Θ ((E1 \ s) / (E2 \ s))H Ξ →D
(/→),

where H is either s or (E3 \s). Since the sequent→ (E2 \s) contains no negative
occurrences of s it is not derivable in L∗(\, /), a contradiction.

Case 2. Assume that the last rule is

H Ξ1 → (E2 \ s) Θ (E1 \ s)Ξ2 →D

Θ ((E1 \ s) / (E2 \ s))H Ξ1 Ξ2 →D
(/→),
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where H is either s or (E3 \ s) and Ξ1 Ξ2 = Ξ. It is well-known that the rule
(→\) is reversible in L∗ (the converse rule is easy to derive with the help of the
cut rule). Thus, from L∗(\, /) � H Ξ1→(E2\s) we obtain L∗(\, /) � E2 H Ξ1→s.
Lemma 11 yields that Ξ1 is empty, whence Ξ2 = Ξ. Thus, the right premise is
the required derivable sequent.

Case 3. Assume that the last rule is

→ E3 Θ ((E1 \ s) / (E2 \ s)) sΞ →D

Θ ((E1 \ s) / (E2 \ s)) (E3 \ s)Ξ →D
(\→).

Here we apply induction hypothesis to the right premise.
Case 4. Assume that the last rule is

Θ2 ((E1 \ s) / (E2 \ s))→ E3 Θ1 sΞ →D

Θ1 Θ2 ((E1 \ s) / (E2 \ s)) (E3 \ s)Ξ →D
(\→),

where Θ1 Θ2 = Θ. Here we apply Lemma 12 to the left premise. ! 

Remark 1. Lemma 13 can also be proved using the proof nets for L∗(\, /) de-
fined in [10] or the proof nets for the multiplicative noncommutative linear logic
introduced in [8]. In these proof nets, primitive type occurrences are divided into
pairs by connecting them to each other by axiom links. These axiom links show
which primitive type occurrences come from the same axiom in a derivation.
Below, we sketch an argument based on proof nets. In this argument, we do not
need Lemmas 11 and 12.

Using the derivability criteria associated with the above-mentioned proof nets,
it can be shown that the two occurrences of s in (E1 \ s) / (E2 \ s) can not be
connected to each other by an axiom link. Thus, the occurrence of s in E2 \ s
must be connected to the occurrence of s in E3\s. Due to the planarity condition
in the proof net criteria, we see that all primitive type occurrences in E2 \ s and
E3 \ s are connected to each other. This yields that we can remove E2 \ s and
E3 \ s from the sequent and obtain a proof net for the sequent Θ (E1 \ s)Ξ→D,
which means that this sequent is derivable in L∗(\, /).

Lemma 14. Let Ψ be a subsequence of Θ1 . . . Θn and L∗(\, /) � Ψ → G. Then
L∗(\, /) � F1(t1) . . . Fn(tn)→G for some 〈t1, . . . , tn〉 ∈ {0, 1}n.

Proof. According to the construction,

Θ1 . . . Θn = (F1(1) / F1(0))F1(0) (F2(1) / F2(0))F2(0) . . . (Fn(1) / Fn(0))Fn(0).

In view of Lemma 3, #r(Ψ) = #r(G) for every r ∈ Var. Evidently, Ψ = Ψ1 . . . Ψn,
where Ψi is a subsequence of Θi for each i. By induction on i one can prove that
either Ψi = Θi or Ψi = Fi(0) (this follows from #p0

i−1
(Ψ) = #p0

i−1
(G) in view of

Lemma 5).
By induction on i we prove that

L∗(\, /) � F1(t1) . . . Fi(ti)Ψi+1 . . . Ψn →G
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for some 〈t1, . . . , ti〉 ∈ {0, 1}i. In the induction step, we assume that

L∗(\, /) � F1(t1) . . . Fi−1(ti−1)Ψi Ψi+1 . . . Ψn →G.

If Ψi = Fi(0), then we put ti = 0. It remains to consider the case Ψi =
(Fi(1)/Fi(0))Fi(0). In this case, we put ti = 1 and apply Lemma 13 with s = pmi ,
E1 = Em

i (1), E2 = E3 = Em
i (0), Θ = F1(t1) . . . Fi−1(ti−1), Ξ = Ψi+1 . . . Ψn, and

D = G. ! 

Lemma 15. If LM∗(\, /) � Θ1 . . . Θn → G, then the formula c1 ∧ . . . ∧ cm is
satisfiable.

Proof. Immediate from Lemmas 10, 14, and 1. ! 

Theorem 2. The derivability problem for LM(\, /) is NP-complete. The deriv-
ability problem for LM∗(\, /) is NP-complete.

Proof. In Corollary 2, it was shown that these problems are in NP. To prove
their NP-hardness, we use the construction in Section 2. According to Lemmas
2 and 15, this construction provides a mapping reduction from the classical
satisfiability problem SAT to the derivability problem for LM(\, /) and also to
the derivability problem for LM∗(\, /). ! 

Corollary 3. The derivability problem for LM is NP-complete. The derivability
problem for LM∗ is NP-complete.

This research was partially supported by the Russian Foundation for Basic
Research (grants 14-01-00127-a, 11-01-00958-a, 12-01-00888-a, NSh-5593.2012.1)
and by the Scientific and Technological Cooperation Programme Switzerland–
Russia (STCP-CH-RU, project “Computational Proof Theory”).
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A Mathematical Analysis of Masaccio’s Trinity

Gonzalo E. Reyes

Université de Montréal
gonzalo@reyes-reyes.com

The florentine Tommaso Cassai (1401-c.1427)1 better known as Masaccio, has
been hailed as the first great painter of the Italian Renaissance and his fresco
Trinity (c.1425, Santa Maria Novella, Florence)2 as the first work of Western art
that used full perspective. It appears that the author was inspired and actually
helped by his friend Filippo Brunelleschi (1377-1446), the celebrated architect
of the cupola of Il Duomo di Firenzi (the cathedral of S. Maria del Fiore in
Florence). It is less well-known that Brunelleschi was a pioneer in perspective
and that he devised a method for representing objects in depth on a flat surface
by using a single vanishing point.

The aim of this note is to study several questions of a mathematical nature
suggested by this fresco:

(1) How accurate is the perspective of the fresco?
(2) What are the dimensions of the chapel?
(3) What are the dimensions of the coffers of the vaulted ceiling of the chapel?
(4) Where is the point of view situated with respect to the fresco?
(5) Where are the different characters situated inside the chapel?
(6) What are the “real” heights of the characters portrayed?

Questions (1)-(4) admit answers that may be computed starting from the
data of the fresco, by using some rules of perspective and simple mathematical
facts. This is not true for the others. Nevertheless, we will show that under some
reasonable hypotheses estimates may be made.

The mathematical methods used are elementary and were known to Euclid. So
they were accessible to Masaccio. To make the text more readable, mathematical
developments are relegated to the Appendix. All the figures are given in cm.

1 Checking the Data

We will check whether the data provided by [1] (page 100) fits the theoretical
criterion developed in the Appendix (Section 5.1 (3).) We let bn (n < 10) be the
distance from the line of the reclining figures to the intersection of the nth circle
(starting from the top) with the line of symmetry, i.e., the vertical line in the
painting going through the vanishing point.

To understand what is going on, we look at the simpler problem of the repre-
sentation of a plane, rather than cylindric vault.

1 Actually born near Florence, in San Giovanni Valdarno.
2 See http://www.kfki.hu/~arthp/html/m/masaccio/trinity/trinity.html

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 381–392, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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From this diagram, we just keep “its dorsal spine” (i.e. the bold line), which
is all what the data in [1] (page 100) is about and which is the same for both
vaults (plane and cylindric)

bn

b1

b2

b3

λ 2λ 3λ

x0

The following data (“empirical bn”) is either given explicitly in the above ref-
erence or follows from additions and subtractions from the data therein. We will
refer to these data as “robust” and use the term “fragile” to our own measures
on magnified copies of Xerox reproductions of pictures in books or WEB.

The values obtained from the criterion (“theoretical bn”) are computed in the
Appendix (Section 5.1.)



A Mathematical Analysis of Masaccio’s Trinity 383

n empirical bn theoretical bn error
1 416.80 416.80 0.00%
2 393.06 393.06 0.00%
3 371.95 371.88 0.02%
4 352.46 352.86 0.11%
5 335.67 335.70 0.01%
6 319.63 320.12 0.15%
7 305.95 305.93 0.01%
8 292.72 292.94 0.08%
9 280.92 281.01 0.03%

The fit is excellent. In all cases the error is less than two parts in a hundred.
This shows that Masaccio constructed a projection from a point on the line
situated on the horizontal plane of the reclining figures, perpendicular to the
horizon and going through the point of intersection of the horizon and the line
of symmetry in the fresco.

On the other hand the magnified copy [3] would lead us to think that the
“rays” of the vault do not converge to this point, but rather to a point below.
This is certainly wrong, as shown by the fit of the data with the theoretical
analysis. It is possible that the damage caused to the fresco by removing it
from the original place, putting it back again, covering by an altar (by Vasari)
and renovating it in a period when no sound scientific basis for this operation
was known, may account for this and other mismatches that we shall point out
later on.

In the Appendix (Section 5.1) it is shown that the distance from the point of
view to the entrance of the chapel is

x0 = 16.56λ

where λ is the length of an individual coffer. Similarly, the length of the interior
of the chapel, i.e., the space under the coffers, may be expressed in terms of λ:
since there are 7 rows of coffers, each of length λ,

length of the interior of chapel = 7λ

The other dimensions are given in the data [1]:

height of the chapel = 416.83

width of the chapel = 211.6

This solves the problem of the dimension of the chapel provided that λ may be
computed.

3 Measured from the horizon rather than from the floor of the chapel.
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2 Dimensions of the Chapel

As we pointed out in the remarks, we need only to compute the length of an
individual coffer. But first, we tackle the question of the width. The width of
an individual coffer may be computed quite easily. In fact, since the radius of
the “virtual” cylinder is given in the data of [1], namely 105.8, the total length
of the frontal arch is L = π × 105.8 = 332.38. Since there are 8 rows of coffers,
the width of each is w = 323.38/8 = 41.55. On the other hand, the length is
not so straightforward, The trouble is that although we can measure heights and
widths, we cannot measure depths. However, there is one object whose depth
may be computed on the base of the given data: the square abacus on top of the
columns. This gives the missing clue to compute depths.

To compute the length λ of an individual coffer we use both front and back
columns and make the following

Assumption 1. The abacus on top of the four columns under the arches (the
two in front and the two in the back) are squares. More precisely, the top of the
capital of each of the four columns is a square.

This supposition is natural, since the columns are cylindric. Now the idea is to
take the square abacus on top of a column as a “patron” or unit of measure for
the depth of the chapel. The (real) length of this abacus can be measured directly
from the fresco or rather inferred, since part of the horizontal side of the abacus
(the one that can be measured) is hidden. The trouble is that the apparent length
of the patron decreases as we take it along the “diagonal” between the top of
the front column to the top of the corresponding back column in the fresco.
But we can take averages. In details: if we imagine identical abacus between the
columns, their number n is

(app. distance between columns/average app. length of abacus) + (a− λ)/a.

(The term (a−λ)/a is due to the fact that the fraction 1/2((a−λ)/a) of the first
abacus and the same fraction of the last abacus are inside the chapel). Since the
apparent lengths of these abacus are known, the distance between the columns
is roughly n × real length of abacus. On the other hand, this distance is 7 × λ
and this allows us to compute λ. In what follows af is the apparent length of
the front top abacus and ab the apparent length of the back front abacus.

app. distance af ab average a λ
Left 5.5 1.2 0.9 1.05 42.16 32.87
Right 5.3 1.3 1.0 1.15 41.39 29.02

Without taking averages, we have the following inequalities corresponding to the
apparent lengths of the front abacus (af ) and the back abacus (ab) for left and
right columns, respectively {

29.42 < λ < 37.48
26.27 < λ < 32.60
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We notice that we have a “robust” lower bound, in contrast to our “fragile” ones
for λ, namely

λ > 23.74

To explain where this value comes from, look at the Appendix (Section 5.3).
Unfortunately, we don’t have a “robust” upper bound for λ.

It seems likely that nothing more precise may come out of these measures and
that the value of λ is between 26.27 and 37.48. Correspondingly, the length of
the interior of the chapel is between 183.89 and 262.36 and the distance x0 from
the viewpoint to the entrance of the chapel is between 435.03 and 620.67.

For definiteness sake we take λ = 31 (roughly the average of the values given
by the above table) as the length of an individual coffer. As a consequence, we
obtain {

distance from the viewpoint to the chapel = 513.36
length of the interior of the chapel = 217

From a “practical” point of view, the exact value of λ does not matter too much.
If λ were 33, for instance, the length of the interior of the chapel would be 231,
rather than 217, a difference of 14 cm. Now, we turn to problems (5) and (6).

3 Position of Characters on the Ground

The problem of finding the positions of the characters of the fresco on the ground
of the chapel can not be solved by studying the fresco only and the measures
therein and some external clues as well as some tinkering is needed to proceed.
The reason is that, grosso modo, figures of different heights and situated in
different places may have the same projection.

We have an historical clue: the height of Christ. According to J.A. Aiken,
“...four columns formerly in the aula del Concilio of the lateran in Rome were
believed in Masaccio’s time to establish the height of Christ at approximately
1.78 m.”( [1]). Thus, we make the following

Assumption 2. Masaccio took the real height of Christ to be 178 cm
This assumption allows us to find the position of Christ (and the cross) inside

the chapel. In fact, as shown in the Appendix (Section 5.2), the depth of Christ
(i.e., the distance from the entrance of the chapel) is

d = 3.36λ.

For λ = 31, we obtain that Christ depth is 104.16. Thus, all the scene of the
crucifixion with the Virgin and St. John as witnesses takes place in this rather
reduced space. (Recall that the figures are inside the chapel and this leaves a
space of 104.16-31=73.16 as the available space for the whole scene).

Had we taken the height of Christ to be three “braccia” (approximately 172),
as the canon of what an ideal man should measure in the Renaissance, its depth
would be 83.25, a figure that seems too small as a theater of the scene. We keep
the first figure, the one given by the historical clue.
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We next tackle the Father’s depth. Although the apparent height may be
measured directly on the fresco (155), some tinkering seems necessary to proceed
as the notion of real height does not make sense. We shall concentrate on the
distance between the Father and Christ. Notice that the Father is holding the
cross with his arms extended in such a way that his hands are approximately 95
apart and this suggests a distance between the two not far from 10 or 15 from
the cross. In fact, this seems to be a comfortable position to hold the cross. At
any rate, we present a table for his depth and real height with different choices
of separation between Christ and the Father around 10 or 15. Furthermore, we
tabulate the distance between his head and the vault and the length of the
support of the Father. Notice, however, that the height of the chapel is 416.8-
26.44=390.37, since the first figure is the height measured from the horizon, i.e.
the level of the kneeling figures, rather than the floor of the chapel. The step to
go from that level to the floor is 26.44 from the magnified copy. Details of these
calculations are in Appendix (Section 5.2).

separation d d/λ real height head/vault length support
0 104.16 3.36 186.46 52.38 174.84
5 109.16 3.52 187.97 49.65 169.84
10 114.16 3.68 189.48 46.91 164.84
15 119.16 3.84 190.99 44.18 159.84
20 124.16 4.01 192.50 41.44 154.84
25 129.16 4.17 194.01 38.71 149.84
30 134.16 4.33 195.52 35.98 144.84

For the separation 5, the Father would be directly in the middle of the chapel;
for the separation 15, his height would be three and a third bracia (florentine
measure=57.33cm). The majority of people I showed the picture chose a point
in the vault between the third and the fourth coffers and rather closer to the
fourth as lying directly above the Father. This choice corresponds to a separation
between 5 and 20 and closer to 20.

Now we tackle the depths of the Virgin and St. John. First, notice that they
seem to be approximately the same and both are standing just before Christ,
their separation to the cross being not far from 15, say. The following is a a table
for their depth and real heights around this figure

separation depth real height Virgin real height St. John
0 104.16 166.40 162.74
5 99.16 165.06 161.42
10 94.16 163.71 160.10
15 89.16 162.37 158.78
20 84.16 161.02 157.47
25 79.16 159.68 156.15
30 74.16 158.34 154.83
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Unfortunately, we don’t seem to have records of their believed heights, con-
trary to the case of Christ. On the other hand, the average height of a man in
the period was about 160.

4 Conclusions

The questions raised could be divided roughly into three types: those that can
be answered from measures performed on the fresco itself; those that can be
answered using historical clues and finally, those whose answers can only be
guessed from common sense. The question of the accuracy of the perspective
in so far as the apparent decreasing distances between the vault ribs may be
answered quite precisely and we have done so. The error between theory and
practice is less than two parts in one hundred. The question of the dimensions of
the chapel may be answered in principle from measures performed on the fresco.
The only problem is the accuracy of the measures. We should notice, however,
that there seem to be discrepancies between measures that in theory should be
the same. Such is the case with the heights of the front columns and the size
of the abacus on top of them. As we said before, it is likely that the fresco has
been badly damaged after the different transformations that it suffered: changes
of place in the church and renovations in a period when there was no sound
scientific base for this operation. (For the saga of the fresco, see [2]). Finally, the
question of the position of the characters inside the chapel require some external
clues, such as the historical clue on the height of Christ and some tinkering about
the relation between Christ and the rest of the figures.

We sum up our conclusions in the form of a diagram with 20 as the distance
between Christ (C) and the Father (F) who stands on the support (s), and as
the difference between the depths of Christ and the Virgin (V).

b1
λ 8λ

513.36 217
279

C

V

s

F

416.8
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One mystery remains: what is the length of the Father’s support? From the
assumption that the distance between Christ and the Father is about 20, it
follows that the length of the support inside the chapel is about 124 and the whole
support is 154.84, a figure that seems excessive. Most people I have asked the
question gave answers of the order of 80 for the whole support and, consequently,
about 40 for the part of the support inside the chapel, although one person, a
painter, suggested 150 for the length of the whole support. Given the precision
of the painting, we are inclined to think that Masaccio did this on purpose, as if
he would like to leave the mystery of the Trinity untouched at this visual level.

5 Mathematical Appendix

5.1 A Theoretical Criterion

To solve the first question, we first formulate a purely mathematical criterion
for the existence of a projection centered on the line situated on the horizontal
plane of the reclining figures, perpendicular to the horizon and going through
the point of intersection of the horizon and the line of symmetry in the fresco

Proposition 1. Let b1, b2, b3, . . . , bn, . . . be a strictly decreasing sequence of pos-
itive real numbers. Then the following are equivalent:

(1) For every λ > 0, there is a unique point (x0, 0) on the x-axis such that the
projection of the y-axis on the line y = b1 from this point projects (0, bn)
into (−(n− 1)λ, b1). In symbols: (0, bn)∧(−(n− 1)λ, b1).

(2) For every natural number n ≥ 1

bn = b1/[1 + (n− 1)ω]

where ω = (b1 − b2)/b2

Proof:
(1)⇒(2) : By similarity of triangles in the diagram below{

bn/x0 = (b1 − bn)/[(n− 1)λ]
b2/x0 = (b1 − b2)/λ

bn

b1

b2

b3

λ 2λ 3λ (n−1)λ

x0
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Dividing the first equation by the second and isolating bn we obtain the desired
formula.

(2)⇒(1) : Let λ be an arbitrary positive real number. We define

x0 = λ/ω.

We have to show that

(0, bn)∧(−(n− 1)α, b1)

In other words, we have to show that the intersection of the line ln joining (x0, 0)
and (0, bn) with the line y = b1 is the point (−(n − 1)α, b1). First notice that
the equation of ln is y = −(bn/x0)x+ bn. A simple computation shows that the
lines in question meet at the point ((bn − b1)x0/bn, b1). But it follows from (2)
that (b1− bn)/bn = (n− 1)ω. Replacing x0 by λ/ω, we obtain the desired result.
Uniqueness of x0 is obvious.

Notice that (2) implies that all the bn’s are known once that we know the first
two of them.

Remark. Although we don’t need them, we may add without proof the following
equivalent conditions to (1) and (2):

(3) If n1, n2, n3, n4 are natural numbers such that n1 �= n4 and n2 �= n3, the
cross-ratio of the corresponding b′s is given by

(bn1bn2bn3bn4) = (n1 − n3)/(n1 − n4)× (n2 − n4)/(n2 − n3)

Furthermore, limn→∞bn = 0
(4) For every m,n

(bn − bm)/bnbm = (m− n)(b1 − b2)/b1b2

5.2 Apparent vs. Real Lengths

Let us call the depth of A the distance from the front of the chapel to A. From
the figure

x0 d

δh

h
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we deduce (from similarity of triangles) the formula for the depth of a vertical
segment A

d = x0δh/h =
16.56λδh

h

where h the apparent height (measured on the painting) of A and δh the differ-
ence between the real height an the apparent height of A.

Since the apparent height of Christ is h = 148, δh = 30 and it follows from
this formula that the depth of Christ is 3.36λ. For λ = 25.68, we obtain that
Christ depth is 86.28.

5.3 A Robust Lower Bound

To fully explain this value and provide further information that may be useful,
we assume that the arches of the vault of the fresco are represented by the nine
circles C1, C2, C3, . . . , C9 shown in [1], page 100. The fact that the real arches
that we assume are circular are represented by circles follows from the fact that
the visual circular cone of the painter, whose directrix is the frontal arch, is cut
by the vertical fresco in a circle, an elementary fact known to Apolonius. To
compute the radius of these circles, let (0, kn) be the center of the circle Cn. By
similarity of triangles, rn/kn = r1/k1. Fortunately, r1 = 105.8 is given as data
and k1 is easily calculated from the data (by additions and subtractions) in [1]
(page 100). In fact, k1 = 311.2. Thus, rn/kn = 0.34. We may also notice that
bn − kn = rn. Thus, rn = bn − rn/0.34 and this formula may be rewritten as

rn = 0.34bn/1.34

Using this formula, r1 = 0.34× 416.8/1.34 = 105.76 which is very near the value
105.8 given in the data (error: 0.04%).

The apparent width of a coffer on the nth rib is wn = rn × π/8 and its
apparent length is λn = bn − bn+1 . The ratio between the apparent width and
the apparent length of a coffer on the same rib is φn = wn/ln. We organize these
values in the following table

n rn λn wn φn

1 105.76 23.74 41.55 1.75
2 99.73 21.11 39.16 1.86
3 94.38 19.49 37.06 1.90
4 89.43 16.79 35.12 2.09
5 85.17 16.04 33.45 2.09
6 81.10 13.68 31.85 2.33
7 77.63 13.23 30.49 2.31
8 74.27 11.80 29.17 2.47
9 71.28 - 28.00 -

Clearly, λ > λ1 = 23.74, the lower bound mentioned in the text. Furthermore,
φ < φ1 = 1.75.
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6 A Comparison with the Results of the crs4 Group

After finishing this paper, my attention was called to a WEB site ([5]) where
a reconstruction of Masaccio’s chapel is attempted. Unfortunately, there are no
details, no statement on their assumptions and the phrase “From the geometry
it is actually possible to work backwards to reconstruct the full volume in mea-
sured accuracy of the 3-dimensional space Masaccio depicts” gives the erroneous
impression that no further assumptions are needed for the reconstruction. The
final result is given by means of a drawing.4 The measures below are based ex-
clusively on this drawing and hence are very rough. I computed the scale using
the measures in [1]. In the column “this paper” I took 20 as the distance between
Christ and the Father and as the difference between the depths of Christ and
the Virgin and approximate to .5.

crs4 Group this paper
λ 32 31
x0 544 = 17λ 513.5 = 16.56λ

length chapel 224 = 7λ 217 = 7λ
height Christ 179 178
height Father 192 192.5
head/vault 32 41.5

height Virgin - 164
height St. John 166.5 160.5

length support Father 147 155
depth Christ 134.5 = 4.2λ 104 = 3.36λ
depth Father 160 = 5λ 124 = 4λ

There is considerable overall agreement, although with some important differ-
ences. It is interesting to note the coincidence on the real height of Christ and
I suspect that they took this figure, just as we did, as an assumption for their
reconstruction. Furthermore, there is no difference about λ since only a range
of values around 30 was determined by the fresco and I took 31 for definiteness
sake.

The main discrepancy is about x0, the distance from the viewpoint to the
chapel. This distance can be proved to be 16.56λ. (as we did in the Mathematical
Appendix), rather than 17λ as they suggest. This discrepancy accounts for the
difference of depths of Christ and the other figures. At the depth they suggest,
the height of Christ would be 185.51. A more precise comparison can only be
made when the details of their work will be available.

Acknowledgments. First, I would like to thank Prof. Kirsti Andersen for
her meticulous critical reading of this paper. She corrected several architectural
terms and pointed out wrong or incomplete formulations in the text. She also
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Conjoinability in 1-Discontinuous Lambek

Calculus
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Abstract. In the present work we prove a conjoinability criterion for
1-discontinuous Lambek calculus. It turns out that types of this calculus
are conjoinable if and only if they have the same sort and the same
interpretation in the free abelian group generated by the primitive types.

1 Introduction

Lambek calculus was introduced by Joachim Lambek in 1958 for modelling the
syntactic structure of natural languages. In 1994 M. Pentus proved that Lambek
grammars generate exactly context-free languages ([6]). Since context-free lan-
guages are well-known to be too weak for adequate representation of natural lan-
guages, G. Morrill introduced a generalization of Lambek calculus, the so-called
discontinuous Lambek calculus ([3], [4]). In our work we consider 1-discontinuous
Lambek calculus, which is sufficient for most linguistic applications (this calculus
was thoroughly studied in [7]).

Let A and B be types of a particular categorial calculus. A type C is called a
join for A and B (in this calculus) if both the sequents A→ C and B → C are
derivable. In this case the types A and B are called conjoinable. The conjoinabil-
ity problem is interesting both from the linguistic ([1]) and from the algebraic
point of view. For example, two types are conjoinable in Lambek calculus iff they
have the same interpretation in the free group generated by the primitive types
(this criterion was proved in [5]). If we replace the free group by the free abelian
group, then we obtain the criterion of conjoinability in commutative Lambek cal-
culus. It is worth noting that the criterion of conjoinability in Lambek-Grishin
calculus also uses the interpretation in a free abelian group ([2]), though this cal-
culus lacks commutativity (and even associativity). In our paper we prove that
the same conjoinability criterion holds for 1-discontinuous Lambek calculus. The
result is rather surprising because this calculus is not commutative either.

2 Discontinuous Lambek Calculus

Let Pr be a countable ranked set of primitive types and rk : Pr→ IN be a rank
function. Then the set Tp of 1-types is the smallest ranked set satisfying the
following conditions (s is a sort function which extends the rank function to the
set of types):

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 393–401, 2014.
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1. Pr ⊂ Tp, ∀A ∈ Pr s(A) = rk(A), I ∈ Tp, s(I) = 0, J ∈ Tp, s(J) = 1.
2. ∀A,B ∈ Tp ((s(A) ≥ s(B)) ⇒ (A/B), (B\A) ∈ Tp, s(A/B) = s(B\A) =

s(A)− s(B)).
3. ∀A,B ∈ Tp (A · B) ∈ Tp, s(A · B) = s(A) + s(B).
4. ∀A,B ∈ Tp((s(A) ≥ s(B)−1)⇒ (B ↓ A) ∈ Tp, s(B ↓ A) = s(A)−s(B)+1).
5. ∀A,B ∈ Tp ((s(A) ≥ s(B))⇒ (A ↑ B ∈ Tp), s(A ↑ B) = s(A)− s(B) + 1).
6. ∀A,B ∈ Tp ((s(A) ≥ 1)⇒ A+B ∈ Tp, s(A+B) = s(A) + s(B) − 1).

Below Fi denotes the set of all 1-types having the sort i, Λ denotes the empty
string, and [] is a metalinguistic separator. The set of 1-hyperconfigurations is
generated by the following grammar:

O ::== Λ|[]|F0|Fi{O : . . . : O︸ ︷︷ ︸
i times

}|O,O.

External brackets are often omitted when writing a type. We use capital
Latin letters A,B,C, . . . for types and capital Greek letters Γ,Δ,Π, . . . for hy-
perconfigurations. A sort of a hyperconfiguration s(Γ ) is defined inductively
and corresponds to the number of separators in Γ : s(Λ) = 0, s([]) = 1; s(A) =
i, A ∈ Fi; s(A{Γ1, . . . , Γs(A)} = s(Γ1) + . . . + s(Γs(A)); s(Γ,Δ) = s(Γ ) + s(Δ).
The sequents of 1-discontinuous Lambek calculus have the form Γ → A, where

s(Γ ) = s(A). For every 1-type A we define its vector representation
−→
A , which

equals A in the case sA = 0 and A{[] : . . . : []︸ ︷︷ ︸
sAtimes

} otherwise.

Let Γ,Δ be hyperconfigurations and k ≤ s(Γ ), then we denote by Γ |kΔ
the result of substituting Δ for the k-th separator in Γ . If Γ is of sort i, then
Γ ⊗ 〈Δ1, . . . , Δi〉 denotes the result of simultaneous replacement of all the sep-
arators in Γ by the hyperconfigurations Δ1, . . . , Δi. If Δ,Δ1, . . . , Δi are hyper-
configurations and Γ is a hyperconfiguration of sort i, then Δ〈Γ 〉 denotes the
hyperconfiguration Δ(Γ⊗〉Δ1, . . . , Δi〉) with the distinguished occurrence of Γ .
The standard occurrence notation Δ[Γ ] refers to a hyperconfiguration Γ in the
external context Δ, the notationΔ〈Γ 〉 refers to hyperconfiguration Γ with the
external context Δ and the internal context Δ1, . . . , Δi. For a more detailed
presentation see [4]. Now we formulate the discontinuous calculus D:

A → A
(ax)

Γ → A Δ〈−→A 〉 → B

Δ〈Γ 〉 → B
(cut)

−→
A,Γ → C

Γ → A\C (→ \) Γ → A Δ〈−→C 〉 → D

Δ〈Γ,
−−→
A\C〉 → D

(\ →)

Γ,
−→
A → C

Γ → C/A
(→ /)

Γ → A Δ〈−→C 〉 → D

Δ〈
−−→
C/A, Γ 〉 → D

(/→)

Γ → A Δ → B

Γ,Δ→ A ·B (→ ·) Δ〈−→A,
−→
B 〉 → D

Δ〈−−−→A · B〉 → D
(· →)

Λ→ I
(→ I)

Δ〈Λ〉 → A

Δ〈I〉 → A
(I →)

−→
A |kΓ → C

Γ → A ↓k C
(→↓) Γ → A Δ〈−→C 〉 → D

Δ〈Γ |k
−−−−→
A ↓k C〉 → D

(↓→)
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Γ |k
−→
A → C

Γ → C ↑k A
(→↑) Γ → A Δ〈−→C 〉 → D

Δ〈−−−−→C ↑k A|kΓ 〉 → D
(↑→)

Γ → A Δ→ B

Γ |kΔ→ A+k B
(→ +) Δ〈−→A |k

−→
B 〉 → D

Δ〈−−−−−→A +k B〉 → D
(+ →)

[]→ J
(→ J)

Δ〈[]〉 → A

Δ〈J〉 → A
(I →)

Note that the continuous product operation is explicitly associative, so we
omit the parentheses in the expressions A ·B ·C, B\A/C. Let Tp1 be the subset
of Tp satysfying the following condition: a type A belongs to Tp1 iff it is of sort 1
or less and all its subtypes are also of sort 1 or less. Analogously O1 denotes the
set of hyperconfigurations which do not involve subhyperconfigurations of sort
greater than 1. Then the calculus D1 under consideration has the same rules as
D but admits only hyperconfigurations from O1 and types from Tp1. We will
omit the subscript of the operations ↓1, ↑1,+1 writing down the sequents of D1.

3 Conjoinability in Discontinuous Lambek Calculus

In this section we study the conjoinability relation in the calculus D1. In what

follows we omit the vector sign in the sequents of the form
−→
A → B simply

writing A → B. We will write D1 � A → B if the sequent A → B is derivable
in D1.

Definition 1. The two types A,B ∈ Tp1 are called conjoinable if there exists
a type C such that the sequents A → C and B → C are both derivable in the
calculus D1.

Lemma 1. The following conditions are equivalent:
1)∃C (D1 � A→ C ∧D1 � B → C) 2)∃D (D1 � D → A ∧D1 � D → B).

Proof. This proof is due to [5]. 1)→ 2) We can take D = (A/C) · C · (C\B).
2)→1) We can take C = (A\D)\D/(D\B). ! 

This lemma implies that the conjoinability relation ∼ is an equivalence. To
formulate the conjoinability criterion we need some auxiliary notions. Note that
only types of the same sort can be conjoinable.

Let Pr1 be the set of primitive types of sort not greater than 1 and α /∈ Pr1.
Then FAG is a free abelian group generated by the set Pr1 ∪ {α}. For every
type A ∈ Tp1 we define its interpretation in the group FAG = 〈FAG, ◦〉 and
denote this interpretation by [A]: [pi] = pi, [I] = ε, [J ] = α, [A/B] = [B\A] =
[A] ◦ [B]−1 [B ↓ A] = [A ↑ B] = [A] ◦ α ◦ [B]−1, [A · B] = [A] ◦ [B], [A + B] =
[A] ◦ α−1 ◦ [B]

The introduction of an additional element α is a standard technique in the
calculi with multiple residual families of product operations; the same method
was used in [2] for characterizing the conjoinability relation in Lambek-Grishin
calculus.
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Lemma 2. The condition [A] = [B] is necessary for the types A and B to be
conjoinable.

Proof. Immediately follows from the fact that for every derivable sequent A → B
it holds that [A] = [B], which is proved by induction on derivation length in D1.

! 

We want to prove that this condition is also sufficient so it is a criterion.
We will use the following notation: |A| stands for the number of primitive type
occurrences in A and |A|p for the number of occurrences of a particular primitive
type p. |A|+p and |A|−p denote the number of positive and negative occurrences
of p in A where the positive and negative occurrences are defined below (in this
definition I and J are also considered to be primitive):

1. A primitive type p occurs positively in itself.
2. If p occurs positively/negatively in A, then it occurs positively/negatively in

A/B,B\A,A ↑ B,B ↓ A,A · B,B · A,A+B and B +A.
3. If p occurs positively/negatively in B, then it occurs negatively/positively

in A/B,B\A,A ↑ B and B ↓ A.

So the primitive type changes its polarity when it is placed under the continuous
or discontinuous division operation. The polarity of the connective occurrence is
defined in the same way. Let ∗ ∈ {/, \, ↑, ↓,+, ·}, then the following conditions
hold:

1. The main connective of the type A ∗B is positive in this type.
2. If an occurrence of the connective ∗ in A is positive/negative, then it is

positive/negative in the types A/B,B\A,A ↑ B,B ↓ A,A · B,B ·A,A+ B,
B +A for any type B.

3. If an occurrence of the connective ∗ in B is positive/negative, then it is
negative/positive in the types A/B,B\A,A ↑ B,B ↓ A.

The notation |A|∗, |A|+∗ , |A|−∗ , where ∗ is a binary connective, has the same mean-
ing as in the case of primitive types. Further we denote [A]p = |A|+p −|A|−p , [A]∗ =
|A|+∗ − |A|−∗ . The next lemma is proved by induction on type structure:

Lemma 3. Forany typeA ∈ Tp1 it holds that [A]=
∏

p∈Pr

p[A]p◦(α[A]J+[A]↑+[A]↓−[A]�).

In the proof of the conjoinability criterion we will use without mention the
following statements (we suppose that both sides of every statement belong to
Tp1): A ∼ (A/B)·B ∼ B ·(B\A), A ∼ (A·B)/B ∼ B\(B ·A), A ∼ B+(B ↓ A) ∼
(A ↑ B)+B, A·J ∼ (A·B) ↑ B, J ·A ∼ B ↑ (B·A), (A·J)+B ∼ A·B ∼ (J ·B)+A.
We refer to these conjoinability relations as the basic ones. Their validity follows
from the derivability of the sequents: (A/B) · B → A, B · (B\A) → A; A →
(A ·B)/B, A→ B\(B ·A); B+ (B ↓ A)→ A, (A ↑ B)+B; A ·J → (A ·B) ↑ B,
J · A→ B ↑ (B ·A); (A · J)+B → A · B, (J ·B)+A → A ·B.

The next lemma follows from the subformula property of the displacement
calculus.
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Lemma 4. Let A,B,C belong to Tp1 and ∗ be a connective in {\, /, ↑, ↓, ·,+}.
Let the types A and B be conjoinable. If one of the types A ∗ C and B ∗ C
belongs to Tp1, then the other also is in Tp1 and the types A ∗C and B ∗C are
conjoinable.

Below we give a series of technical lemmas concerning the properties of the
conjoinability relation in D1.

Lemma 5.

1. For every type A ∈ Tp1 it holds that A · I ∼ A ∼ I · A.
2. For any types A,B ∈ Tp1 it holds that A ·(B/B) ∼ A ·(B\B) ∼ (B/B) ·A ∼

(B\B) ·A.

Proof. 1) Follows from the fact that the sequents A → A · I and A → I · A
are derivable. 2) Follows from 1) and the derivability of the sequents I → B/B,
I → B\B. ! 

Lemma 6.

1. For any type A such that s(A) = 0 it holds that A · J ∼ J · A.
2. For any types A,B such that A · B ∈ Tp1 it holds that A ·B ∼ B ·A.
3. For any types A,B such that A/B ∈ Tp1 it holds that A/B ∼ B\A.
4. For any types A,B,C such that (A/B)/C ∈ Tp1 it holds that (A/B)/C ∼

(A/C)/B.

Proof.
1) A · J ∼ (A · A) ↑ A ∼ J · A.
2) Without loss of generality we suppose that s(A) = 0. Then A·B ∼ (A·J)+B ∼
(J ·A)+B ∼ B ·A.
3) Basing on 2) and the Lemma 5 we deduce from basic conjoinability relations
that A/B ∼ (B · (B\A))/B ∼ ((B\A) · B)/B ∼ (B\A) · (B/B) ∼ (B\A). We
used the fact that the sequent C · (D/E) → (C · D)/E is derivable in Lambek
calculus.
4) It is not difficult to see that (A/B)/C ∈ Tp1 implies that s(B) + s(C) ≤ 1
and s(B)+s(C) ≤ s(A), so C ·B ∈ Tp1 and A/(C ·B) ∈ Tp1. Then (A/B)/C ∼
A/(C ·B) ∼ A/(B · C) ∼ (A/C)/B.

! 

In fact we have proved that continuous product operation is commutative
with respect to conjoinability. To finish the proof of the main result we want to
reduce the conjoinability problem for the types containing discontinuous product
and its residuals to the case of continuous product. Namely, for every type A
from Tp1 we find a type B without the connectives +, ↑ and ↓ such that the
types A and B are conjoinable. Afterwards it remains to prove the criterion only
for “continuous” types (probably containing J). The next lemma allows us to
simplify the types with “nested” divisions.

Proposition 1. For any types A,B,C such that A/(B/C) and (A/B)·C belong
to Tp1, it holds that A/(B/C) ∼ (A/B) · C.
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Proof.
This chain of conjoinable types follows from Lemma 6 and basic conjoinabil-
ity relations: A/(B/C) ∼ A/(C\B) ∼ ((A/B) · B)/(C\B) ∼ (((A/B) · C) ·
(C\B))/(C\B) ∼ (A/B) · C. The fact that all the types in the chain belong to
Tp1 is verified by checking all possible sorts of the types A,B,C. ! 

The next lemma shows the connection between continuous and discontinuous
product families and plays the crucial role in the whole proof.

Lemma 7.

1. For any types A,B such that A ↑ B ∈ Tp1 it holds that A ↑ B ∼ (A/B) · J .
2. For any types A,B such that B ↓ A ∈ Tp1 it holds that B ↓ A ∼ A/(B/J).

Proof.
1) It is easy to see that (A/B) · J ∈ Tp1. Then A ↑ B ∼ ((A/B) · B) ↑ B ∼
(((A/B) · J)+B) ↑ B ∼ (A/B) · J .
2) Similarly to the previous case A/(B/J) ∈ Tp1. Then B ↓ A ∼ (B/J)\((B/J)·
(B ↓ A)) ∼ (B/J)\(((B/J) · J)+ (B ↓ A)) ∼ (B/J)\(B+ (B ↓ A)) ∼ (B/J)\A.

! 

Now we can prove the basic result of the paper. Let Pr0 = {p ∈ Pr |s(p) = 0},
Pr1 = {q ∈ Pr | s(q) = 1}. We denote the elements of Pr0 by p1, p2, . . . and the
elements of Pr1 by q1, q2, . . .. We suppose that the element p0 belongs to Pr0 but
is not used in constructing the types. The notation V ar(A1, . . . , Ak) denotes the
set of all primitive types in A1, . . . , Ak and #(A),#(A)+,#(A)− denotes the
number of different primitive types, occurring A (occurring positively, occurring
negatively, respectively). Also we introduce the two measures M1(A1, . . . , Ak) =
max (i | pi ∈ V ar(A1, . . . , Ak)) and M2 = max (i | qi ∈ V ar(A1, . . . , Ak)). If the
type A is of sort 0, then we denote by Ak the type A · A · . . . · A︸ ︷︷ ︸

n times

, A0 = I. For

any A∈Tp1 we introduce auxiliary types Â and Ã which are defined below:

Â =(((p0/p0) ·
M1(A)∏
i=1,

|A|+pi≥1

p
|A|+pi
i ·

M2(A)∏
i=1,

|A|+qi≥1

(qi/J)
|A|+qi )/((p0/p0) ·

M1(A)∏
i=1,

|A|−pi≥1

p
|A|−pi
i ·

M2∏
i=1,

|A|−qi≥1

(qi/J)
|A|−qi )) · Js(A)

Ã=(((p0/p0)·
M1(A)∏
i=1,

[A]pi>0

p
[A]pi
i ·

M2∏
i=1,

[A]qi>0

(qi/J)
[A]qi )/((p0/p0)·

M1(A)∏
i=1,

[A]pi<0

p
−[A]pi
i ·

M2∏
i=1,

[A]qi<0

(qi/J)
−[A]qi ))·Js(A)

Let us prove some important properties of the types introduced (in the proofs
we omit the symbol of the group operation ◦):

Lemma 8.

1. [Ã] = [Â].

2. [Ã] = [A].

3. If [A] = [B], then Ã = B̃.
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Proof.

1) [Ã] =
M1(A)∏
i=1

p
[A]pi
i

M2(A)∏
i=1

q
[A]qi
i α

s(A)−
M2(A)∑
i=1

[A]qi
=

M1(A)∏
i=1

p
|A|+pi−|A|

−
pi

i

M2(A)∏
i=1

(qiα
−1)|A|

+
qi
−|A|−qiαs(A) = [Â].

2) We use induction on the construction of A. The base case A ∈ Pr ∪ {I, J} is
directly verified. In the induction step we prove only the case A = B ↑ C (all

other variants are similar). Indeed, [Ã] =
M1(A)∏
i=1

p
[A]pi
i

M2(A)∏
i=1

q
[A]qi
i α

s(A)−
M2(A)∑
i=1

[A]qi
=

M1(A)∏
i=1

p
[B]pi
i p

−[C]pi
i

M2(A)∏
i=1

q
[B]qi
i q

−[C]qi
i α

(s(B)−s(C)+1−
M2(A)∑
i=1

[B]qi+
M2(A)∑
i=1

[C]qi )
= [B̃][C̃]−1α =

[B]α[C] = [B ↑ C].
3) The equality [A] = [B] implies that for every p ∈ Pr it holds that [A]p = [B]p
[A]J +[A]↑+[A]↓− [A] = [B]J +[B]↑+[B]↓− [B] . It is easy to show by induc-
tion that for every type C its sort equals

∑
q∈Pr1

[C]q + [C]J + [C]↑ + [C]↓ − [C] .

So s(A) = s(B) and it remains to use the definition of the type Ã. ! 

Proposition 2.

1. For any types A,B such that A↑B∈Tp1, it holds that [A ↑ B] = [(A/B) · J ].
2. For any types A,B such that B ↓A∈Tp1 it holds that [B ↓ A] = [A/(B/J)].

Proof. It is easy to see that ∀p ∈ Pr ∀ε ∈ {−,+} |(A ↑ B)|εp = |(A/B) · J |εp.
Also s(A ↑ B) = s(A)− s(B) + 1 = s((A/B) · J). Then by the definition of the
interpretation [A ↑ B] = [(A/B) · J ]. The second statement is analogous. ! 

Lemma 9. 1) For any two types A,B such that A · B ∈ Tp1 it holds that

Â ·B ∼ Â · B̂.
2) For any two types A,B such that A/B ∈ Tp1 it holds that Â/B ∼ Â · B̂.

3) For any two types A,B such that B\A ∈ Tp1 it holds that B̂\A ∼ B̂ · Â.

Proof. 1) Induction on the number of primitive types (except I and J) in C. In

the basic case this number equals 0, so Ĉ equals ((p0/p0)/(p0/p0)) · Js(C) and

B̂ · C = B̂ ·Js(B·C)=s(B) = B̂ ·Js(C) ∼ B̂ · ((p0/p0)/(p0/p0)) ·Js(C) = B̂ · Ĉ. The
base is proved.

Now let C contain some zero-sorted primitive type p. Then we can write
B̂ = ((E1 ·pd1 ·E2)/(F1 ·pd2 ·F2))·Js(B), Ĉ = ((G1 ·pe1 ·G2)/(H1 ·pe2 ·H2))·Js(C).
Here the types E1, E2, F1, F2, G1, G2, H1, H2 do not contain p, d1 equals |B|+p , d2
equals |B|−p and so on. For example, E2 contains all zero-ranked primitive types
with the index greater than the index of p and all the primitive types of rank 1
which occur in B (if there are no such primitive types, then we set B2 = I). Using
the properties of conjoinability (i.e. commutativity of product with respect to

this relation) we can prove that B̂ ·Ĉ = ((E1 ·pd1 ·E2)/(F1 ·pd2 ·F2))·Js(B) ·((G1 ·
pe1 ·G2)/(H1 ·pe2 ·H2)) ·Js(C) ∼ ((E1 ·pd1+e1 ·E2)/(F1 ·pd2+e2 ·F2)) ·Js(B) ·((G1 ·
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G2)/(H1 ·H2)) ·Js(C). We denote B′ = ((E1 ·pd1+e1 ·E2)/(F1 ·pd2+e2 ·F2)) ·Js(B)

and C′ = ((G1 · G2)/(H1 · H2)) · Js(C), it is easy to see that Ĉ′ = C′ and
B̂′ = B̂′. Note that C′ contains fewer primitive types than C. So B̂ · C =̂B′ · C′ ∼ B̂′ · Ĉ′ = B′ · C′. Using the properties of conjoinability it is easy to
prove that B′ ∼ B̂ ·(pd2/pe2). So we can deduce that B̂ · C ∼ B̂ ·((pd2/pe2)·C′) =
B̂·((pd2/pe2)·((G1·G2)/(H1·H2))·Js(C) ∼ B̂·((G1·pd2 ·G2)/(H1·pe2 ·H2))·Js(C) =

B̂ · Ĉ, which was required.
2, 3) The proof is analogous to case 1. ! 

Lemma 10. For any type A ∈ Tp1 the types A and Â are conjoinable.

Proof. Induction on the construction of the type A. The basic case A ∈ Pr ∪
{I, J} is easy to verify. In the induction step we should examine all the possible
basic connectives of the type A. Due to Proposition 2 it suffices to prove the
lemma for the types A = B/C,A = C\B and A = B · C.

In Lemma 9 we have proved that if A ∗B ∈ Tp1, then Â ∗B ∼ Â ∗ B̂, where
∗ is an arbitrary connective from the set {·, \, /}. Then for an arbitrary type A

where A = B ∗ C we have that Â = B̂ ∗ C ∼ B̂ ∗ Ĉ ∼ B ∗C = A. The lemma is
proved. ! 

Lemma 11. For any type A ∈ Tp1 the types Â and Ã are conjoinable.

Proof. It suffices to show that for every type B which has the form B = (B1 ·
Ak · B2)/(B3 ·Al ·B4) for some types B1, B2, B3, B4, A such that s(A) = 0 it is
conjoinable with the type C which equals (B1 ·Ak−l · B2)/(B3 ·B4) in the case
k > l, (B1 ·B2)/(B3 ·B4) — in the case k = l and equals (B1 ·B2)/(B3 ·Al−kB4)
in the case l > k.

Let us consider the first case. Then B = (B1 ·Ak ·B2)/(B3 ·Al ·B4) ∼ (Ak ·B1 ·
B2)/(A

l·B3·B4) ∼ (Ak·((B1·B2)/(B3·B4)))/A
l ∼ (Ak/Al)·((B1·B2)/(B3·B4)) ∼

Ak−l ·((B1 ·B2)/(B3 ·B4)) ∼ (Ak−l ·B1 ·B2)/(B3 ·B4) ∼ (B1 ·Ak−l ·B2)/(B3 ·B4).
The second case is analogous. In the third case we have B ∼ (((B1 · B2)/(B3 ·
B4))·Ak)/Al ∼ (Ak/Al)·((B1 ·B2)/(B3 ·B4))/A

l−k ∼ ((B1 ·B2)/(B3 ·Al−k ·B4)).
The lemma is proved. ! 

Now we can prove the main result of the paper.

Theorem 1. For any types A,B ∈ Tp1 the conditions [A] = [B] and A ∼ B
are equivalent.

Proof. The necessity of the condition of equal interpretations was proved in
Lemma 2. Let us prove the sufficiency. If [A] = [B], then by Lemma 8 it holds

that Ã = B̃, hence by Lemma 11 Â ∼ B̂, so by Lemma 10 we obtain A ∼ B.
The theorem is proved. ! 

In fact we can reformulate the criterion in a slightly different form. Note that
by the construction the number of α-s in the interpretation of a type equals
its sort. Since types of different sorts cannot be conjoinable, we can “contract”
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the additional α-s without changing the conjoinability property. Let FAGPr

denote the free abelian group generated by the primitive types. Let [·]Pr be the
interpretation in this group which is defined inductively (we omit the sign of the
free group operation): [pi]Pr = pi, [I]Pr = [J ]Pr = ε, [A/B]Pr = [B ↓ A]Pr =
[A ↑ B]Pr = [B\A]Pr = [A]Pr [B]−1

Pr , [A ·B]Pr = [A+B]Pr = [A]Pr [B]Pr. Then
the following statement holds (it is a direct consequence of the Theorem 1 and
the arguments above).

Corollary 1. For any types A,B ∈ Tp1 the condition A ∼ B holds if and only
if the conditions s(A) = s(B) and [A]Pr = [B]Pr hold simultaneously.

4 Conclusion

We have proved the conjoinability criterion in 1-discontinuous Lambek calculus.
The criterion requires the types to be conjoined to have equal interpretation in
the free abelian group generated by the primitive types. Practically the same
criterion was already known for the Lambek-Grishin calculus. It would be inter-
esting to formulate the conjoinability criterion in the full discontinuous Lambek
calculus without any bounds on the sort of types. The criterion from the present
work seems to hold in this case as well but the author does not know the com-
plete proof of this fact. It would be also interesting to study from the algebraic
point of view which properties should be possessed by a calculus with several
families of operations to have a particular characterization of conjoinability.

The author is grateful to Mati Pentus for his commentaries, which helped
to improve the paper. This research was partially supported by the Russian
Foundation for Basic Research (grant 11-01-00958-a).
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The Hidden Structural Rules of the

Discontinuous Lambek Calculus

Oriol Valent́ın

Universitat Politècnica de Catalunya

Abstract. The sequent calculus sL for the Lambek calculus L ([2]) has
no structural rules. Interestingly, sL is equivalent to a multimodal calcu-
lus mL, which consists of the nonassociative Lambek calculus with the
structural rule of associativity. This paper proves that the sequent calcu-
lus or hypersequent calculus hD of the discontinuous Lambek calculus1

([7], [4] and [8]), which like sL has no structural rules, is also equivalent
to an ω-sorted multimodal calculus mD. More concretely, we present a
faithful embedding translation (·)	 between mD and hD in such a way
that it can be said that hD absorbs the structural rules of mD.

1 The Discontinuous Lambek Calculus D and Its
Hypersequent Syntax

D is model-theoretically motivated, and the key to its conception is the class
FreeDisp of displacement algebras. We need some definitions:

(1) Definition (Syntactical Algebra)

A syntactical algebra is a free algebra (L,+, 0, 1) of arity (2, 0, 0) such that
(L,+, 0) is a monoid and 1 is a prime. I.e. L is a set, 0 ∈ L and + is a binary
operation on L such that for all s1, s2, s3, s ∈ L,

s1+(s2+s3) = (s1+s2)+s3 associativity
0+s = s = s+0 identity

The distinguished constant 1 is called a separator.

(2) Definition (Sorts)

The sorts of discontinuous Lambek calculus are the naturals 0, 1, . . .. The
sort S(s) of an element s of a syntactical algebra (L,+, 0, 1) is defined by
the morphism of monoids S to the additive monoid of naturals defined thus:

S(1) = 1
S(a) = 0 for a prime a �= 1

S(s1+s2) = S(s1) + S(s2)

1 In [5] and [8], the term displacement calculus is used instead of Discontinuous Lambek
Calculus as in [7] and [9].

C. Casadio et al. (Eds.): Lambek Festschrift, LNCS 8222, pp. 402–420, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Hidden Structural Rules of the Discontinuous Lambek Calculus 403

I.e. the sort of a syntactical element is simply the number of separators it con-
tains; we require the separator 1 to be a prime and the syntactical algebra to be
free in order to ensure that this induction is well-defined.

(3) Definition (Sort Domains)

Where (L,+, 0, 1) is a syntactical algebra, the sort domains Li of sort i
of generalized discontinuous Lambek calculus are defined as follows:

Li = {s|S(s) = i}, i ≥ 0

(4) Definition (Displacement Algebra)

The displacement algebra defined by a syntactical algebra (L,+, 0, 1) is the
ω-sorted algebra with the ω-sorted signature ΣD = (⊕, {⊗i+1}i∈ω, 0, 1) with
sort functionality ((i, j → i+ j)i,j∈ω , (i+ 1, j → i+ j)i,j∈ω , 0, 1):

({Li}i∈ω,+, {×i+1}i∈ω, 0, 1)
where:

operation is such that

+ : Li × Lj → Li+j as in the syntactical algebra

×k : Li+1 × Lj → Li+j
×k(s, t) is the result of replacing the k-th
separator in s by t

The sorted types of the discontinuous Lambek Calculus, D, which we will define
residuating with respect to the sorted operations in (4), are defined by mutual
recursion in Figure 1. D types are to be interpreted as subsets of L and satisfy
what we call the principle of well-sorted inhabitation:

Fi ::= Ai where Ai is the set of atomic types of sort i

F0 ::= I Continuous unit
F1 ::= J Discontinuous unit

Fi+j ::= Fi•Fj continuous product
Fj ::= Fi\Fi+j continuous under
Fi ::= Fi+j/Fj continuous over

Fi+j ::= Fi+1�kFj discontinuous product
Fj ::= Fi+1↓kFi+j discontinuous extract

Fi+1 ::= Fi+j↑kFj discontinuous infix

Fig. 1. The sorted types of D
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(5)
Principle of well-sorted inhabitation:
If A is a type of sort i, �A� ⊆ Li

Where � ·� is the syntactical interpretation in a given displacement algebra w.r.t.
a valuation v. I.e. every syntactical inhabitant of �A� has the same sort. The
connectives and their syntactical interpretations are shown in Figures 1 and 2.
This syntactical interpretation is called the standard syntactical interpretation.
Given the functionalities of the operations with respect to which the connectives
are defined, the grammar defining by mutual recursion the sets Fi of types of
sort i on the basis of sets Ai of atomic types, and the homomorphic syntactical
sort map S sending types to their sorts, are as shown in Figure 3. When A is an
arbitrary type, we will frequently write in latin lower-case the type in order to
refer to its sort S(A), i.e.:

a
def
= S(A)

The syntactical sort map is to syntax what the semantic type map is to se-
mantics: both homomorphisms mapping syntactic types to the datatypes of the
respective components of their inhabiting signs in the dimensions of language in
extension: form/signifier and meaning/signified.

�I� = {0} continuous unit
�J� = {1} discontinuous unit
�A� ⊆ Li for some i ∈ ω A ∈ Ai

�A•B� = {s1+s2| s1 ∈ �A� & s2 ∈ �B�} (continuous) product
�A\C� = {s2| ∀s1 ∈ �A�, s1+s2 ∈ �C�} under
�C/B� = {s1| ∀s2 ∈ �B�, s1+s2 ∈ �C�} over

�A kB� = {×k(s1, s2)| s1 ∈ �A� & s2 ∈ �B�} k > 0 deterministic discontinuous product
�A↓kC� = {s2| ∀s1 ∈ �A�,×k(s1, s2) ∈ �C�} k > 0 deterministic discontinuous infix
�C↑kB� = {s1| ∀s2 ∈ �B�,×k(s1, s2) ∈ �C�} k > 0 deterministic discontinuous extract

Fig. 2. Standard syntactical interpretation of D types

Observe also that (modulo sorting) (\, •, /;⊆) and (↓k,+k, ↑k;⊆) are residu-
ated triples:

(6) �B� ⊆ �A\C� iff �A•B� ⊆ �C� iff �A� ⊆ �C/B�

�B� ⊆ �A↓kC� iff �A+kB� ⊆ �C� iff �A� ⊆ �C↑kB�

The types of D are sorted into types Fi of sort i interpreted as sets of strings
of sort i as shown in Figure 4 where k ∈ ω+.

If one wants to absorb the structural rules of a Gentzen sequent system in
a substructural logic, one has to discover a convenient data structure for the
antecedent and the succedent of sequents. We will now consider the Hypersequent
syntax2 from [7]. The reason for using the prefix hyper in the term sequent is
that the data-structure proposed is quite nonstandard.

2 Term which must not be confused with Avron’s hypersequents ([1]).



Hidden Structural Rules of the Discontinuous Lambek Calculus 405

Fi ::= Ai S(A) = i for A ∈ Ai

F0 ::= I S(I) = 0
F1 ::= J S(J) = 1

Fi+j ::= Fi•Fj S(A•B) = S(A) + S(B)
Fj ::= Fi\Fi+j S(A\C) = S(C)− S(A)
Fi ::= Fi+j/Fj S(C/B) = S(C)− S(B)

Fi+j ::= Fi+1�kFj S(A�kB) = S(A) + S(B)− 1 1 ≤ k ≤ i+ 1
Fj ::= Fi+1↓kFi+j S(A↓kC) = S(C) + 1− S(A) 1 ≤ k ≤ i+ 1

Fi+1 ::= Fi+j↑kFj S(C↑kB) = S(C) + 1− S(B) 1 ≤ k ≤ i+ 1

Fig. 3. Sorted D types, and syntactical sort map for D

Fj := Fi\Fi+j [A\C] = {s2| ∀s1 ∈ [A], s1+s2 ∈ [C]} under
Fi := Fi+j/Fj [C/B] = {s1| ∀s2 ∈ [B], s1+s2 ∈ [C]} over

Fi+j := Fi•Fj [A•B] = {s1+s2| s1 ∈ [A] & s2 ∈ [B]} product
F0 := I [I ] = {0} product unit
Fj := Fi+1↓kFi+j [A↓kC] = {s2| ∀s1 ∈ [A], s1×ks2 ∈ [C]} infix

Fi+1 := Fi+j↑kFj [C↑kB] = {s1| ∀s2 ∈ [B], s1×ks2 ∈ [C]} extract
Fi+j := Fi+1�kFj [A�kB] = {s1×ks2| s1 ∈ [A] & s2 ∈ [B]} disc. product
F1 := J [J ] = {1} disc. prod. unit

Fig. 4. Types of the Discontinuous Lambek Calculus D and their interpretation

We define now what we call the set of types segments:

(7) Definition (Type Segments)

In hypersequent calculus we define the types segments SFk of sort k:

SF0 ::= A for A ∈ F0

SFa ::= i
√
A for A ∈ Fa and 0 ≤ i ≤ a = S(A)

Types segments of sort 0 are types. But, types segments of sort greater than 0 are
no longer types. Strings of types segments can form meaningful logical material
like the set of hyperconfigurations, which we now define. The hyperconfigurations
O are defined unambiguously by mutual recursion as follows, where Λ is the
empty string and [] is the metalinguistic separator::

O ::= Λ
O ::= A,O for S(A) = 0
O ::= [],O
O ::= 0

√
A,O, 1

√
A, . . . , a−1

√
A,O, a

√
A,O

for a = S(A) > 0
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The syntactical interpretation of 0
√
A,O, 1

√
A,O, . . . ,a−1

√
A,O, a

√
A consists of syn-

tactical elements α0+β1+α1+ · · ·+ αn−1+βn+αn where

α0+1+α1+ · · ·+αn−1+1+αn∈ �A�

and β1 ∈ �Δ1�, . . . , βn ∈ �Δn�. The syntax in which set O has been defined,
is called string-based hypersequent syntax. An equivalent syntax for O is called
tree-based hypersequent syntax which was defined in [4], [8].

In string-based notation the figure
−→
A of a type A is defined as follows:

(8)
−→
A =

{
A if s(A) = 0
0
√
A, [], 1

√
A, [], . . . ,a−1

√
A, [], a

√
A if s(A) > 0

The sort of a hyperconfiguration is the number of metalinguistic separators it
contains. Where Γ and Φ are hyperconfigurations and the sort of Γ is at least 1,
Γ |kΦ (k ∈ ω+) signifies the hyperconfiguration which is the result of replacing
the k-th separator in Γ by Φ. Where Γ is a hyperconfiguration of sort i and
Φ1, . . . , Φi are hyperconfigurations, the generalized wrap Γ ⊗ 〈Φ1, . . . , Φi〉 is the
result of simultaneously replacing the successive separators in Γ by Φ1, . . . , Φi

respectively. Δ〈Γ 〉 abbreviates Δ(Γ ⊗ 〈Δ1, . . . , Δi〉).
A hypersequent Γ ⇒ A comprises an antecedent hyperconfiguration in string-

based notation of sort i and a succedent type A of sort i. The hypersequent
calculus for D is as shown in Figure 5 where k ∈ ω+. Like L, hD has no
structural rules.

Morrill and Valent́ın (2010)[4] proves Cut-elimination for the k-ary discontin-
uous Lambek calculus, k > 0. As a consequence D, like L, enjoys in addition the
subformula property, decidability, and the finite reading property.

2 hD: Absorbing the Structural Rules of a Sorted
Multimodal Calculus

We consider now a sorted multimodal calculus mD with a set of structural rules
EqD we present in the following lines. Figure 6 shows the logical rules of mD
and Figure 7 shows the structural rules EqD integrated in mD. This sequent
calculus is non standard in two senses. Types and structural terms are sorted.
Moreover, there are two structural term constants which stand respectively for
the continuous unit and discontinuous unit. Structural term constructors are of
two kinds: ◦ (which stands for term concatenation) and ◦i (which stands for term
wrapping at the i-th position, i ∈ ω+). Again, as in the case of sorted types,
structural terms are defined by mutual recursion and the sort map is computed
in a similar way (see (10)).

X [Y ] denotes a structural term with a distinguished position occupied by the
structural term Y. If A, X are respectively a type and a structural term, then
a and x denote their sorts. We are interested in the cardinality of the set F of
types of D and their structure.
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id−→
A ⇒ A

Γ ⇒ A Δ〈−→A〉 ⇒ B
Cut

Δ〈Γ 〉 ⇒ B

Γ ⇒ A Δ〈−→C 〉 ⇒ D
\L

Δ〈Γ,−−→A\C〉 ⇒ D

−→
A,Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B Δ〈−→C 〉 ⇒ D
/L

Δ〈−−→C/B, Γ 〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Δ〈−→A,
−→
B 〉 ⇒ D

•L
Δ〈−−→A•B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
•R

Γ1, Γ2 ⇒ A•B

Δ〈Λ〉 ⇒ A
IL

Δ〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ A Δ〈−→C 〉 ⇒ D
↓kL

Δ〈Γ |k−−−→A↓kC〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B Δ〈−→C 〉 ⇒ D
↑kL

Δ〈−−−→C↑kB|kΓ 〉 ⇒ D

Γ |k−→B ⇒ C
↑kR

Γ ⇒ C↑kB

Δ〈−→A |k−→B 〉 ⇒ D
�kL

Δ〈−−−−→A�kB〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

Δ〈[]〉 ⇒ A
JL

Δ〈−→J 〉 ⇒ A

JR
[] ⇒ J

Fig. 5. Hypersequent calculus hD

Consider the following lemma:

(9) Lemma
The set of types F is countably infinite iff the set of atomic types is countable.
Moreover we have that:

F =
⋃
i∈ω

Fi

Fi = (Aij)j∈ω

Proof. The proof can be carried out by coding in a finite alphabet the set of
types F . Of course, it is crucial that the set of sorted atomic types forms a
denumerable set. �
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Let StructTermD[F ] be the ω-sorted algebra over the signatureΣD = ({◦}∪
(◦i+1)i∈ω , I, J). The sort functionality of ΣD is:

((i, j → i+ j)i,j∈ω , (i + 1, j → i+ j)i,j∈ω , 0, 1)

Observe that the operations ◦ and ◦i’s (with i > 0) are sort polymorphic. In
the following, we will abbreviate StructTermD[F ] by StructTerm. The set of
structural terms can be defined in BNF notation as follows:

(10)

StructTerm0 ::= I

StructTerm1 ::= J

StructTermi ::= Fi

StructTermi+j ::= StructTermi◦StructTermj

StructTermi+j ::= StructTermi+1◦kStructTermj

It is clear that the sort of StructTermi and the collections of set (Aij)j∈ω
(i ∈ ω) are such that:

S(StructTermi) = i
S(Aij) = i

We realize that StructTerm looks like an ω-sorted term algebra. This intuition
is correct for the ω-graduated set F with the collections (Aij)j∈ω plays the role
of an ω-graduated set of a variables of an ω-sorted term algebra TΣD [X ] with
signature ΣD.

We need to define some important relations between structural terms.

(11) Definition (Wrapping and Permutable Terms)

Given the term (T1 ◦i T2) ◦j T3, we say that:
(P1) T2 ≺T1 T3 iff i+ t2 − 1 < j.
(P2) T3 ≺T1 T2 iff j < i.
(O) T2 �T1 T3 iff i ≤ j ≤ i+ t2 − 1.

Observe that in a term like (T1 ◦i T2) ◦j T3, if (P1) or (P2) hold, (O) does not
apply. Conversely, if (O) is applicable, neither (P1) nor (P2) hold. If T2 ≺T1 T3

(respectively T3 ≺T1 T2), we say that T2 and T3 (respectively T3 and T2) permute
in T1. Otherwise, if (O) holds, we say that T2 wraps T3 in T1.

(12) Example
Supose that T1 = A where A is an arbitrary type of sort 3, and T2, T3 are
arbitrary structural terms. Let a0 + 1 + a1 + 1 + a2 + 1 + a3 be an element
of �A� in a displacement model M. Suppose S(T2) = 3. Consider now:

(A◦2T2)◦5T3

According to definition (11), T2 ≺A T3, for 2 + S(T2) − 1 = 4 < 5. The
intuition of this relation is the following. Interpreting in M we have that:

(13) �(A◦2T2)◦5T3� = a0 + 1 + a1 + �T2� + a2 + �T3� + a3
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We clearly see that the string �T2� precedes the occurrence of �T3�. Similarly,
if we have T3 ≺A T2 in (A◦iT2)◦jT3, the occurrence of �T3� precedes �T2�.
Finally, if T2 �A T3 then �T2� wraps �T3�, i.e. �T3� is intercalated in �T2�.

We define the following relation between structural terms ∼:
(14) T∼S iff S is the result of applying one structural rule to a subterm of T

∼∗ is defined to be the reflexive, symmetric and transitive closure of ∼.

2.1 The Faithful Embedding Translation (·)� between mD and hD

We consider the following embedding translation from mD to hD:

(·)� : mD = (F ,StructTerm, → ) −→ hD = (F ,O,⇒)
T → A → (T )� ⇒ (A)�

(·)� is such that:

A� =
−→
A if A is of sort strictly greater than 0

A� = A if A is of sort 0

(T1 ◦ T2)
� = T �

1 , T
�
2

(T1 ◦i T2)
� = T �

1 |iT
�
2

I� = Λ
J� = []

Collapsing the Structural Rules

Let us see how the structural rules are absorbed in hD. We show here that
structural postulates of mD collapse into the same textual form when they are
mapped through (·)�. Later we will see that:

If T∼∗S then T � = S�

Moreover will see that for every A,B,C ∈ F the following hypersequents are
provable in hD:

(15) – Continuous associativity

−−−−−−−−→
A • (B • C) ⇒ (A •B) • C and

−−−−−−−−→
(A •B) • C ⇒ A • (B • C)

– Mixed associativity If we have that B �A C:

−−−−−−−−−−→
A�i (B �j C) ⇒ (A�iB)�i+j−1C and

−−−−−−−−−−−−−−→
(A�i B)�i+j−1 C) ⇒ A�i(B�jC)

– Mixed permutation If we have that B ≺A C:

−−−−−−−−−−−→
(A�i B)�j C) ⇒ (A�j−b+1C)�iC and

−−−−−−−−−−−−−−→
(A�j−b+1 C)�i C ⇒ (A�iB)�jC)

If we have that C ≺A B:
−−−−−−−−−−−→
(A�i B)�j C) ⇒ (A�j C)�i+c−1 C

−−−−−−−−−−−−−−→
(A�j C)�i+c−1 C ⇒ (A�i B)�j C)
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A → A Id
S → A T [A] → B

Cut
T [S] → B

T [I] → A
IL

T [I ] → A
IR

I ⇒ I

T [J] → A
JL

T [J ] → A

JR
J ⇒ J

X → A Y [B] → C
\L

Y [X◦A\B] → C

A◦X → B
\R

X → A\B

X → A Y [B] → C
/L

Y [B/A◦X] → C

X◦A → B
/R

X → B/A

X → A Y [B] → C
↑i L

Y [B ↑i A◦iX] → C

X◦iA → B
↑iR

X → B ↑i A

X → A Y [B] → C
↓i L

Y [X◦iA ↓i B] → C

A◦iX → B
↓i R

X → A ↓i B

X[A◦B] → C
•L

X[A •B] → C

X → A Y → B
•R

X◦Y → A • B
X[A◦iB] → C

�iL
X[A�iB] → C

X → A Y → B
�iR

X◦iY → A�iB

Fig. 6. The Logical rules of mD

– Split wrap:

−−−→
A •B ⇒ (A • J)+a+1 B and

−−−−−−−−−−−→
(A • J)+a+1 B ⇒ A •B

and: −−−−−−−−−→
(J •B)+1 A ⇒ A •B and

−−−→
A •B ⇒ (J •B)+1 A

– Continuous unit and discontinuous unit:

−−−→
A • I ⇒ A and

−→
A ⇒ A • I and

−−−→
I •A ⇒ A and

−→
A ⇒ I •A

and:

−−−−→
A+i J ⇒ A and

−→
A ⇒ A+i J and

−−−−→
J +1 A ⇒ A and

−→
A ⇒ J +1 A
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That hD absorbs the rules is proved in the following theorem:

(16) Theorem (hD Absorption of EqD Structural Rules)

For any T, S ∈ StructTerm, if T∼∗S then (T )� = (S)�.

Proof. We define a useful notation for vectorial types which will help us to
prove the theorem. Where A is an arbitrary type of sort greater than 0:

(17)
−→
A

j

i =

{
i
√
A, if i = j

−→
A

j−1

i , [], j
√
A, if j − i > 0

Note that
−→
A =

−→
A

a

0 . Now, consider arbitrary types A,B and C. As usual we
denote their sorts respectively by a, b and c. We have then:

– Continuous associativity:{
((A◦B)◦C)� = (

−→
A,
−→
B ),

−→
C =

−→
A,
−→
B,

−→
C

(A◦(B)◦C))� =
−→
A, (

−→
B,

−→
C ) =

−→
A,
−→
B,

−→
C

– Discontinuous associativity: Suppose that B �A C

We have that:

−→
B |j

−→
C =

−→
B

i−1

0 ,
−→
C ,

−→
B

b

i
−→
A |i(

−→
B |j

−→
C ) =

−→
A

i−1

0 ,
−→
B

j−1

0 ,
−→
C ,

−→
B

b

j ,
−→
A

a

i

On the other hand, we have that:

−→
A |i

−→
B =

−→
A

i−1

0 ,
−→
B,

−→
A

a

i =
−→
A

i−1

0 ,
−→
B

j−1

0 , []︸︷︷︸
(i+j−1)-th []

,
−→
B

b

j ,
−→
A

a

i

It follows that:

(
−→
A |i

−→
B )|i+j−1

−→
C =

−→
A

i−1

0 ,
−→
B

j−1

0 ,
−→
C ,

−→
B

b

j ,
−→
A

a

i

Summarizing:{
(A◦i(B◦jC))� =

−→
A

i−1

0 ,
−→
B

j−1

0 ,
−→
C ,

−→
B

b

j ,
−→
A

a

i

((A◦iB)◦i+j−1C)� =
−→
A

i−1

0 ,
−→
B

j−1

0 ,
−→
C ,

−→
B

b

j ,
−→
A

a

i

Hence:

(A◦i(B◦jC))� = ((A◦iB)◦i+j−1C)�

For the case (A◦iB)◦kC, if one puts k = i + j − 1 one gets j = k − i + 1.
Therefore, changing indices: we have that:

((A◦iB)◦jC)� = (A◦i(B◦j−i+1C))�

This ends the case of discontinuous associativity.
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Structural rules for units

- Continuous unit:

T [X] → A

T [I◦X] → A

T [I◦X] → A

T [X] → A

T [X] → A

T [X◦I] → A

T [X◦I] → A

T [X] → A

- Discontinuous unit:

T [X] → A

T [J◦1X] → A

T [J◦1X] → A

T [X] → A

T [X] → A

T [X◦iJ] → A

T [X◦iJ] → A

T [X] → A

Continuous associativity

X[(T1◦T2)◦T3] → D
Asscc

X[T1◦(T2◦T3)] → D

X[T1◦(T2◦T3)] → D
Asscc

X[(T1◦T2)◦T3] → D

Split-wrap

T1[T2◦T3] → D
SW

T1[(J◦T3)◦1T2] → D

T1[(J◦T3)◦1T2] → D
SW

T1[T2◦T3] → D

T1[T2◦T3] → D
SW

T1[(T2◦J)◦t2+1T3] → D

T1[(T2◦J)◦t2+1T3] → D
SW

T1[T2◦T3] → D

Discontinuous associativity T2 �T1 T3

S[T1◦i(T2◦jT3)] → C
Asscd1

S[(T1◦iT2)◦i+j−1T3)] → C

S[(T1◦iT2)◦jT3] → C
Asscd2

S[T1◦i(T2◦j−i+1T3)] → C

Mixed permutation 1 case T2 ≺T1 T3

S[(T1◦iT2)◦jT3] → C
MixPerm1

S[(T1◦j−S(T2)+1T3)◦iT2] → C

S[(T1◦iT3)◦jT2] → C
MixPerm1

S[(T1◦jT2)◦i+S(T2)−1T3] → C

Mixed permutation 2 case T3 ≺T1 T2

S[(T1◦iT2)◦jT3] → C
MixPerm2

S[(T1◦jT3)◦i+S(T3)−1T2] → C

S[(T1◦iT3)◦jT2] → C
MixPerm2

S[(T1◦j−S(T3)+1T2)◦iT3] → C

Fig. 7. Structural Rules of mD
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– Mixed permutation:

There are two cases: B ≺A C or C ≺A B. We consider only the first case,
i.e. B ≺A C. The other case is analogous. Let us see ((A◦iB)◦jC)�:

−→
A |i

−→
B =

−→
A

i−1

0 ,
−→
B,

−→
A

k−1

i , []︸︷︷︸
j-th []

,
−→
A

a

k

We have therefore:

j = k − 1 + b iff k = j − b+ 1

((A◦iB)◦jC)� =
−→
A

i−1

0 ,
−→
B ,

−→
A

k−1

i ,
−→
C ,

−→
A

a

k

Hence:

(
−→
A◦j−b+1

−→
C )� =

−→
A

i−1

0 , [],
−→
A

k−1

i ,
−→
C ,

−→
A

a

k

It follows that:

((A◦j−b+1C)◦iB)� =
−→
A

i−1

0 ,
−→
B,

−→
A

k−1

i ,
−→
C ,

−→
A

a

k

Summarizing:{
((A◦iB)◦jC)� =

−→
A

i−1

0 ,
−→
B,

−→
A

k−1

i ,
−→
C ,

−→
A

a

k

((A◦j−b+1C)◦iB)� =
−→
A

i−1

0 ,
−→
B ,

−→
A

k−1

i ,
−→
C ,

−→
A

a

k

Hence

((A◦iB)◦jC)� = ((A◦j−b+1C)◦iB)�

Putting i = j − b+ 1 we have that j = i+ b− 1. Hence:

((A◦iC)◦jB)� = ((A◦jC)◦i+b−1B)�

This ends the case of mixed permutation.
– Split-wrap:

We have:

((A◦J)◦a+1B)� = (
−→
A, [])|a+1

−→
B =

−→
A,
−→
B

((J◦B)◦1A)� = ([],
−→
B )|1

−→
A =

−→
A,
−→
B

Hence:

((A◦J)◦a+1B)� = (A◦B)�

and
((J◦B)◦1A)� = (A◦B)�

This ends the case of split-wrap.
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– Units:

(I◦A)� =
−→
A = (A◦I)�

(J◦1A)� = ([]|1
−→
A ) =

−→
A =

−→
A |i[] = (A◦iJ)�

We recall that types play the role of variables of structural terms. Now, we
have seen that structural rules for arbitrary type variables collapse into the
same textual form. This result generalizes to arbitrary structural terms by
simply using type substitution.
More concretely, we have proved that: if T∼S (i.e. S is the result of applying
a single structural rule to T ) then T � = S�. Suppose we have T∼∗S (we omit
the trivial case T∼∗T ). We have then a chain:

T := T1∼T2∼ · · · ∼Ti−1∼Ti =: S for i ≥ 2

Applying (·)� to each Tk∼Tk+1 (1 ≤ k ≤ i− 1) we have proved that:

(Tk)
� = (Tk+1)

�

We have therefore a chain of identities:

(T )� = (T1)
� = (T2)

� = . . . = (Ti)
� = (S)�

This completes the proof.

�
We will now prove the associativity theorems of hD displayed in (15). Other
theorems corresponding to the structural postulates of mD have similar proofs.

– Continuous associativity is obvious as in the Lambek calculus. The only
difference is that types are sorted and in our notation the antecedent of
hypersequents have the vectorial notation.

– Discontinuous associativity: we suppose that B �A C. The following hyper-
sequents are provable:

−−−−−−−−−−−−−−→
(A+i B)+i+j−1 C ⇒ A+i (B +j C)

And:

−−−−−−−−−−→
A+i (B +j C) ⇒ (A+i B)+i+j−1 C

By the previous lemma the identity
−→
A |i(

−→
B |j

−→
C ) = (

−→
A |i

−→
B )|i+j−1

−→
C holds.

We have the two following hypersequent derivations:

−→
A ⇒ A

−→
B ⇒ B

−→
C ⇒ C

+jR−→
B |j

−→
C ⇒ B +j C

+iR−→
A |i(

−→
B |j

−→
C ) = (

−→
A |i

−→
B )|i+j−1

−→
C ⇒ A+i (B +j C)

(
−→
A |i

−→
B )|i+j−1

−→
C ⇒ A+i (B +j C)

+iL−−−−→
A+i B|i+j−1

−→
C ⇒ A+i (B +j C)

+i+j−1L−−−−−−−−−−−−−−→
(A+i B)+i+j−1 C ⇒ A+i (B +j C)

and
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−→
A ⇒ A

−→
B ⇒ B

+iR−→
A |i

−→
B ⇒ (A+i B)

−→
C ⇒ C

+i+j−1R
(
−→
A |i

−→
B )|i+j−1

−→
C =

−→
A |i(

−→
B |j

−→
C ) ⇒ (A+i B)+i+j−1 C

+jL−→
A |i(

−−−−−→
B +j C) ⇒ (A+i B)+i+j−1 C

+iL−−−−−−−−−−→
A+i (B +j C) ⇒ (A+i B)+i+j−1 C

(18) Theorem (Equivalence Theorem for StructTerm)

Let R and S be arbitrary structural terms. The following holds:

R∼∗S iff (R)� = (S)�

Proof. We have already seen in (16) the only if case, which is the fact that hD
absorbs the EqD structural rules. The if case is more difficult and needs some
technical machinery from sorted universal algebra. For details, see [9]. �

(19) Lemma ((·)� is an Epimorphism)

For every Δ ∈ O there exists a structural term3 TΔ such that:

(TΔ)
� = Δ

Proof. This can be proved by induction on the structure of hyperconfigurations.
We define recursively TΔ such that (TΔ)� = Δ:

– Case Δ = Λ (the empty tree): TΔ = I.
– Case where Δ = A,Γ : TΔ = A◦TΓ , where by induction hypothesis (i.h.)

(TΓ )
� = Γ .

– Case where Δ = [], Γ : TΔ = J◦TΓ , where by i.h. (TΓ )
� = Γ .

– Case Δ =
−→
A ⊗ 〈Δ1, · · · , Δa〉, Δa+1. By i.h. we have:

(TΔi)
� = Δi for 1 ≤ i ≤ a+ 1

TΔ = (A◦1TΔ1)◦TΔ2 if a = 1
TΔ = ((· · · ((A◦1TΔ1)◦1+d1TΔ2) · · ·)◦1+d1+···+da−1TΔa)◦TΔa+1 if a > 1

�

By induction on the structure of StructTerm, we have the following intuitive
result on the relationship between structural contexts and hypercontexts:

(20) (T [S])� = T �〈S�〉
3 In fact there exists an infinite set of such structural terms.
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These two technical results we have seen above are necessary for the proof of the
faithful embedding translation (·)� of theorem (24). We prove now an important
theorem which is crucial for the mentioned theorem (24).

(21) Theorem (Visibility for Extraction in StructTerm)

Let T [A] be a structural term with a distinguished occurrence of type A.
Suppose that:

(T [A])� = Δ|i
−→
A

where Δ ∈ O and A ∈ F . Then A is visible for extraction in T [A], i.e. there
exist a structural term T ′ and an index i such that:

T [A]∼∗ T ′◦iA

Proof. Let TΔ be a structural term such that (TΔ)� = Δ. This is possible by

lemma (19). We have (TΔ◦iA)� = Δ|i
−→
A . We have then (TΔ◦iA)� = (T [A])�. By

the equivalence theorem (18) it follows that T [A]∼∗TΔ◦iA. Put T ′ := TΔ. We
are done. �

(22) Theorem (Uniqueness of Extractability)

Suppose that T [A] ∼ S◦iA and T [A] ∼ S′◦jA, where A. Then:

S ∼∗ S′
i = j

Proof. We have that (S◦iA)� = Δ|i
−→
A = Δ|j

−→
A = (S′◦jA)�. Hence i = j and

(S)� = (S′)�. By theorem (18), S ∼∗ S′. We are done. �
Theorems (21) and (22) will be crucial for the proof of the (·)� embedding the-
orem (24).

Before proving theorem (24), it is worth seeing what is the intuition behind
the structural rules of EqD. This intuition is exemplified by a constructive proof
of theorem (21):

Proof. Constructive proof of theorem (21): By induction on the structural com-
plexity of T [A]: The cases are as follows:

i) T [A] = A.

We put T ′ = J and hence :

T [A] ∼∗ J◦1A

ii) T [A] = S[A]◦R.

By induction hypothesis (i.h.), S[A] ∼∗ S′◦kA for some k > 0. We have the
following equational derivation:
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T [A] ∼∗ (S′◦kA)◦R
∼∗ (J◦R)◦1(S′◦kA) by SW
∼∗ ((J◦R)◦1S′)◦kA) by Asscd
∼∗ (S′◦R)◦kA by SW

iii) T [A] = S◦R[A]

By i.h. R[A] ∼∗ R′◦kA for some term R′ and k > 0. It follows that:

T [A] ∼∗ S◦(R′◦kA)
∼∗ (S◦J)◦S(S)+1(R

′◦kA) by SW
∼∗ ((S◦J)◦S(S)+1R

′)◦S(S)+kA by Asscd
∼∗ (S◦R′)◦S(S)+kA by SW

iv) T [A] = S[A]◦iR for some term S[A], R and i > 0.

By i.h. S[A] ∼∗ S′◦kA for some S′ and i > 0. We derive the following
equation:

T [A] ∼∗ (S′◦kA)◦iR

If R = J we are done. Suppose that R �= J. In this case A must permute
with R in S′, i.e. A ≺S′ R or R ≺S′ A, for otherwise (T [A])� = Δ|i

−→
A would

not hold. Without loss of generality, let us suppose that A ≺S′ R. In that
case we have:

T [A] ∼∗ (S′◦i−S(A)+1R)◦kA by MixPerm1

Hence A is permutated to right periphery in T [A].
v) T [A] = S◦iR[A] for some terms S and R[A] and i > 0. By i.h.

R[A] ∼∗ R′◦kA. Then:

T [A] ∼∗ S◦i(R′◦kA)
∼∗ (S◦iR′)◦i+k−1A by Asscd

�

(23) Remark
Interestingly, the constructive proof for extractability does not use continu-
ous associativity. Therefore, a priori a non-associative discontinuous Lambek
calculus could be considered. This remark needs further study.

(24) Theorem (Faithfulness of (·)� Embedding Translation)

Let A, X and Δ be respectively a type, a structural term and a hyper-
configuration. The following statements hold:

i) If �mD X → A then �hD (X)� ⇒ A
ii) For any X such that (X)� = Δ, if �hD Δ ⇒ A then �mD X → A
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Proof.

i) Logical rules in mD translate without any problem to hD. We need recall
only that if X and Y are structural terms then (X◦Y )� = (X)�, (Y )� and
(X◦iY )� = (X)�|i(Y )�. Structural rules in mD collapse in the same textual
form as theorem (16) proves. Finally, the Cut rule has no surprise. This
proves i).

ii) This part of the theorem becomes easy if we use the following four facts:

• Lemma (19) which states that for any hyperconfiguration Δ there is a
structural term TΔ such that (TΔ)� = Δ.

• The fact (20) we stated before which gives the relationship between struc-

tural terms and hypercontexts (T [A])� = T �〈−→A 〉.
• Theorem (18).
• Theorem (21).

The proof is by induction on the length of hD derivations. The three first
facts prove the induction of all the rules but the right rule of the connectives
↑i. Suppose the last rule of a hD derivation is ↑iR:

Δ|i
−→
A ⇒ B

↑iR
Δ ⇒ B↑iA

Let T [A] be such that (T [A])� = Δ|i
−→
A . We know by induction hypothesis

that �mD T [A] ⇒ B. By the last fact of above, i.e. theorem (21) of visibility

of extraction, since (T [A])� = Δ|i
−→
A , we know there exist T ′ and i such that

T [A]∼∗T ′◦iA. It follows that in mD:

T [A] → B

... Sequence of structural rules

T ′◦iA → B
↑iR

T ′ → B↑iA

Hence, �mD T ′ → B↑iA. And T ′ is in fact TΔ, and therefore (T ′)� = Δ.
Moreover, for any S such that (S)�∼∗T ′, we have that applying a finite
number of structural rules we obtain the mD provable sequent S → B↑iA,
and of course (S)� = Δ. This completes the proof of ii).

�

(25) Example
Let B,D,E,C,A five arbitrary atomic types of sort respectively 2, 2, 1, 0
and 0. The following two derivations have the following end-sequent and
end-hypersequent:

�mD (((B↑2A◦1D)◦4E)◦3(J◦C\A)) → ((B �1 D) �3 E)↑3C
�hD

0
√

B↑2A,
−→
D, 1

√
B↑2A, [], C\A, 2

√
B↑2A,

−→
E , 3

√
B↑2A ⇒ ((B �1 D)�3 E)↑3C
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The above multimodal sequents are in correspondence through the map-
ping (·)�. Derivations (26) and (27)/(28) illustrate theorem (24). Notice the
sequence of structural rules in derivation (26) in order to extract type C.

(26)

C◦C\A → A B↑2A◦2A → B
↑2

B↑2A◦2(C◦C\A) → B D → D
�1

(B↑2A◦2(C◦C\A))◦1D → B �1 D E → E
�3

((B↑2A◦2(C◦C\A))◦1D)◦3E → (B �1 D) �3 E
MixPerm

((B↑2A◦1D)◦3(C◦C\A))◦3E → (B �1 D) �3 E
MixPerm

((B↑2A◦1D)◦4E)◦3(C◦C\A) → (B �1 D) �3 E
SW

((B↑2A◦1D)◦4E)◦3((J◦C\A)◦1C) → (B �1 D) �3 E
Asscd

(((B↑2A◦1D)◦4E)◦3(J◦C\A))◦3C → (B �1 D) �3 E ↑3
(((B↑2A◦1D)◦4E)◦3(J◦C\A)) → ((B �1 D) �3 E)↑3C

(27)

C,C\A ⇒ A 0
√

B↑2A, [], 1
√

B↑2A,A, 2
√

B↑2A, [], 3
√

B↑2A ⇒ B
↑2

0
√

B↑2A, [], 1
√

B↑2A,C,C\A, 2
√

B↑2A, [], 3
√

B↑2A ⇒ B
−→
D ⇒ D

 1
0
√

B↑2A,
−→
D, 1

√
B↑2A,C, C\A, 2

√
B↑2A, [], 3

√
B↑2A ⇒ B  1 D

(28)

0
√

B↑2A,
−→
D, 1

√
B↑2A,C,C\A, 2

√
B↑2A, [], 3

√
B↑2A ⇒ B  1 D E ⇒ E

 3
0
√

B↑2A,
−→
D, 1

√
B↑2A,C,C\A, 2

√
B↑2A,

−→
E , 3

√
B↑2A ⇒ (B  1 D)  3 E

↑3
0
√

B↑2A,
−→
D, 1

√
B↑2A, [], C\A, 2

√
B↑2A,

−→
E , 3

√
B↑2A ⇒ ((B  1 D) 3 E)↑3C

3 Conclusions

It is not a priori a trivial task to find out a set of structural rules E that makes
the hypersequent calculus hD equivalent to a multimodal calculus with the
structural rules of E . The faithful embedding translation (·)� between mD and
hD is then, we think, a remarkable discovery. The equivalent multimodal calculus
mD gives D the Moot’s powerful proof net machinery almost for free (see [3]). It
must be noticed that this proof net theory approach for D is completely different
from the one in [6]. Finally, the discovery of mD can be very useful to investigate
new soundness and completeness results for D (see [9]).
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