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Abstract. Computational Social Science (CSS) models are most commonly
used to articulate theories and explore their implications. As they become more
mature, they are also valuable in monitoring real-world situations. Such
applications require models to be linked to dynamic real-world data in real
time. This paper explores this distinction in a specific application that tracks
crowd violence in an urban setting.
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1 Introduction

On May 20, 2012, NATO held a summit in Chicago, IL. Protesters planned a dem-
onstration. They registered with the authorities for a permit, which specified a route
ending near the secure area where NATO delegates and heads of state would be
meeting. The Cook’s County Sheriff’s office invited NEK Advanced Security Group
to demonstrate the usefulness of social media in tracking unrest, and NEK invited us
to demonstrate how agent-based modeling could help monitor the demonstration in
real-time and give near-term forecasts of possible ‘‘hot spots’’ requiring additional
police attention. In response, we constructed and demonstrated a prototype of CAVE
(Crowd Analysis for Violence Estimation).

Crowd simulation is an important and fairly mature area of computational social
science (CSS). We do not offer any theoretical advances over previous research, from
which we borrow liberally. However, we do apply these techniques in a novel way. In
a research setting, CSS models serve to articulate a theory in a precise way, and
(calibrated with static input data) to test the theory against historical observations.
CAVE must continuously update itself with real-world data to provide an ongoing
estimate of the state of the world a short distance into the future. Our contribution is
demonstrating practical techniques for tracking the real world with a computational
model.
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Section 2 of this paper distinguishes three applications of CSS: theory articulation,
static prediction, and real-time monitoring and forecasting. Section 3 briefly reviews
the particular CSS model that we adapt, summarizes its structure and operation
(described more fully in a separate ODD specification [11]), and explains how we
interface it with the real world. Section 4 reports the behavior of CAVE during the
NATO summit, and Sect. 5 concludes.

2 CSS for Theory, Prediction, and Monitoring

CSS models can be applied in several different ways. We distinguish three.

2.1 Theory Articulation

A CSS model provides an unambiguous expression of the interaction of various causal
influences within and among actors in a social scenario. It is a detailed embodiment of
claims about factors and interactions that in a previous era could only be outlined
verbally. A number of different formalisms for such models have been demonstrated
[3]. We focus on agent-based models, which represent individuals (or small groups of
individuals) as software agents [14]. Valuable insights concerning social phenomena
can be gleaned from interview protocols (e.g., [15, 16]), but the resulting theories are
difficult to test. A computational model is not only more precise than a verbal theory,
but it also allows testing of hypotheses by executing the model. Even without external
data, it can demonstrate testable qualitative trends and emergent behaviors that are not
obvious from a verbal statement. For example, in the study on which CAVE is based
[7], the tendency of groups to form as a function of crowd size is markedly different
with two populations of different sizes than with balanced populations, and the
emergence of violence depends on the size of the overall crowd.

2.2 Static Prediction

Qualitative agreement between simulation and observation is good, but accurate
quantitative predictions (e.g., [1]) are even better, since their results are more directly
comparable with observations from the real world, and they can support decisions that
depend on a quantitative trade-off between cost and benefit. The first benefit is seen in
an implementation that ingests live data at one point in time, then compares model
outputs with subsequent observations. The second is clear in ‘‘what-if’’ exercises, in
which the user runs the model off-line, then examines its results to guide a decision.

2.3 Real-Time Monitoring

Like static prediction models, CAVE seeks to align itself with data from the real
world. However, it runs on-line, not off-line. It continuously ingests observed data and
adjusts its configuration to give the user a continuously updated short-horizon forecast
of the system being modeled.
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Our approach is motivated by a fundamental limitation of predicting complex non-
linear systems. The farther one seeks to project the dynamics of the system, the more
random the projection becomes, resulting in a ‘‘prediction horizon’’ beyond which
such a prediction is no better than random. We have demonstrated this horizon in
simple agent-based models [12]. The limitation is fundamental in nature, not due to
noise in the input data or shortcomings in model accuracy [17].

Abstractly, we can view the system as a vector differential equation,

d~x

dt
¼ f ~xð Þ

When f is nonlinear, long-range prediction is impossible. However, it is often
useful to anticipate the system’s behavior a short distance into the future. A common
technique is to fit a convenient low-order form for f to the system’s trajectory in the
recent past, and then extrapolate this fit into the future (Fig. 1, [8]). Iterating this
process provides the user with a limited look-ahead into the system’s future. The
process is like walking through the woods on a moonless night. The traveler cannot
see the other side of the forest, but her flashlight can show her the next few meters,
and when she has covered that distance, it can show her the next few meters beyond
that.

Realizing the program of Fig. 1 directly requires specifying the state space of the
system explicitly, writing a set of differential equations that characterize it, and fitting
an analytical function to recent observations. Agent-based modeling is attractive for
social systems just because it is difficult to define the complete state space and express
the system’s behavior in terms of analytical functions. Thus it is difficult to use this
technique to produce a fit. This paper shows how to approximate the strategy of Fig. 1
in an agent-based social simulation.

To motivate our approaches, let’s look in more detail at local approximations to
the system’s state trajectory (Fig. 2). At time t1, we fit a linear model a. At a sub-
sequent time t2 [ t1, we fit model b. These two models differ in two ways, each of
which leads to errors. We can use observational data to correct both kinds of error.

a

c

b

d
e

Fig. 1. Real-Time Monitoring of Complex Trajectories.—a: state space. b: system trajectory.
c: recent observed system state. d: model update. e: short-range forecast
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1. They differ in direction, which in this case corresponds to the internal structure
and parameters of the model. The direction of the later fit b differs from that of
a by h.

2. They differ in origin. Model a, an approximation, experiences an error d with
respect to the real system.

The simplest use of observational data is simply to restart the (original) model at
the new, observed location, yielding model c. If the model parameters are not com-
pletely off the mark, the model still moves in the same general direction as the system.

In addition to reinitializing the model, we can also retune its parameters. When
analytical approaches are not applicable, we use synthetic evolution. Figure 3 illus-
trates the polyagent approach [13], representing each real-world entity by a single
persistent avatar and a swarm of ghosts. The avatar continuously inserts a stream of
simple agents in a faster-than-real-time model of the environment, a short distance in
the past, and evolves their behavioral parameters until they correspond to observed
behavior, then lets them run into the future to generate a prediction. The ghosts are
apoptotic: they die after a specified period, so the system does not become clogged
with an increasing number of agents.

We have demonstrated this approach in combat modeling [10]. While effective, it
requires detailed observations of each entity being modeled in order to tune the
ghosts’ behaviors. In CAVE, we have aggregate observations of crowd size and
composition, but not individual observations. So we do not evolve agents’ behavioral
models, and do not maintain the multiple representations of the world at different
epochs required by the polyagent model. The CAVE approach resembles vector c in
Fig. 2. Agent execution provides a short-range look-ahead into the future, while
apoptosis (systematic removal of agents after a specified time limit) limits the depth of
the look-ahead and allows us to reinitialize agents based on real-world data, shifting
the origin (though not the parameters) of the agents.

a

b

t1

t2

c

Fig. 2. Two adjustments in real-time monitoring.—Correcting system location (d) and model
fit (h) at two time instances t1 \ t2.
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3 The CAVE Model

CAVE draws on existing models of crowd psychology, using apoptosis and real-time
data acquisition to adjust the model continuously.

3.1 Underlying CSS Theory

CAVE draws on two areas of research in crowd dynamics.
First, from the extensive literature on crowd psychology [21], we use the extended

social identity model (ESIM) [7, 15, 16]. Unlike many other models, it is extensively
supported by real-world evidence. While ESIM is not restricted to aggressiveness or
violence, it has lent itself to several previous agent-based models of these behaviors
[2, 7, 20] from which we draw inspiration. We adopt two conventions from [7].

1. Agents’ aggressive behavior is driven largely by an internal state variable ([7]’s
‘‘aggression motivation’’) that in turn is influenced by events around them. In
CAVE, this variable is called ‘‘Agitation.’’

2. Agents are not homogeneous, even within one side of a two-sided conflict, but
differ in their degree of commitment to the cause.

Second, there is increasing anecdotal evidence that agitators in public events use
network technology such as instant messaging and other social media in real-time to
coordinate their activities [19], and that the contents of such media can be analyzed to
track crowd sentiment [4].

An important feature of our work (like that of reference [7]) is that each agent is a
simple rule-based entity without an elaborate model of individual cognition.

Ghost time 

Avatar 

Insertion Horizon
Measure Ghost fitness

Prediction Horizon
Observe Ghost prediction

Ghosts 

t =
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)

Fig. 3. Polyagent mechanism for dynamically learning agent behavioral parameters
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3.2 Model Structure

Figure 4 summarizes the overall information flow in CAVE. The following sections
discuss the regions of the Figure. Further details about the implementation are pro-
vided in the standard ODD format [6] in a separate document [11].

The Environment.
The environment (bottom of Fig. 4) is a square lattice with cells 40 m on a side,
representing downtown Chicago, derived from a GIS map.1 We label each cell to
indicate whether it contains a road, the approved protest route, the security zone
within which the summit activities take place, and an extra-high security exclusion
zone. The shading in Fig. 5 shows the cells corresponding to each of these categories.
Agents are only created on roads. They can move off of roads, but their interactions
are limited to roads, and in no case can they enter the Security or Exclusion zones.

Fig. 4. Overall Information Flow in CAVE. The text discusses (in order) the environment
(bottom of the figure), the human agent behavioral loop (bottom loop), the human agent lifetime
loop (top loop), and real-time information (right side)

1 https://data.cityofchicago.org/browse?tags=shapefiles
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Human Agents: Behavioral Loop.
CAVE has two types of agents representing humans: protesters and police. These
agents execute two loops. This section discusses the behavioral loop (at the bottom of
Fig. 4), with a frequency x of once per simulation step. The next section discusses the
lifetime loop, which implements agent apoptosis.

Protesters are of three subtypes.

• Leaders aggressively seek to disrupt society, and energize their followers via social
media. They can often be identified visually: they often wear bulky clothing to
conceal hidden weapons, and also sometimes organize ‘‘black blocks,’’ wearing
black clothing and ski masks and moving cohesively to advertise their unified
strength. Black blocks are known for engaging in violence and inciting clashes with
the police.

• Followers accept the leader’s agenda, but are not leaders.
• Pacifists are following the protesters out of curiosity more than ideology.

Police are of two types.

• Patrol officers are the usual cadre of an urban police force.
• Riot police have special training in dealing with unruly crowds, as well as spe-

cialized equipment such as riot shields and heavier padded armor.

The user initializes the total number of protesters and police, and the subtypes are
allocated according to fixed proportions that are model parameters.

At the beginning of a run, the agents are distributed randomly on the roads in the
environment that are outside the Security and Exclusion zones. Each road cell has a
probability of receiving an agent that depends on how far the cell is from the protest
route. The initialization function for protester agents concentrates them on the protest
route, that for leaders lets them wander farther than pacifists, and that for police keeps
them near the protest route but on it (so that they do not block traffic).

Roads Protest Route Security Zone Exclusion Zone

Fig. 5. Coding of the CAVE environment
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Each agent’s behavior is determined by its level of Agitation, a variable that is
defined by its drivers and its consequences. The drivers of an agent’s Agitation are the
presence of fighting in its cell, and (in the case of protesters) the level of Social Media
Energy (SME) attested by tweets from the leaders. Increases in each of these lead to
an increase in agitation. In the bottom loop of Fig. 4, an agent’s input f(unction)
translates the environmental state that it senses into a level of A(gitation), which is
then translated via a r(ule) into one of three actions. The consequences of increased
Agitation are that the agent first moves toward other agents of its own type (Protester
or Police) for protection, then moves toward agents of the opposite type (in prepa-
ration for confrontation), and then engages in a fight.

Agents execute in random order, without replacement within a given simulation
step. A single step corresponds to one min of real-world time; the actual elapsed time
is much less, and depends on the speed of the processor.

Agents interact, not directly, but through a shared environment in which they are
localized. The environment is not passive, but executes some processes that support
the agent coordination. This pattern of coordination is called ‘‘stigmergy,’’ a bio-
logical term that recalls the use of chemical markers (pheromones) by social insects
[5, 9]. Agents interact only when they are on roads.

Each time an agent executes, it deposits digital pheromones on its cell in the
environment, indicating its type, its presence, its level of Agitation, and whether it is
engaged in Fight behavior. Similarly, agents sense a fight in the neighborhood by
monitoring Fight pheromone, and move toward other agents of a specified type by
climbing the gradient of the presence pheromone associated with agents of that type.

The environment supports pheromone-based interaction by evaporating all pher-
omones exponentially, thus removing obsolete information from the system. In AI
terms, it provides basic truth maintenance (maintaining the consistency of a database),
a task that is NP-complete in symbolic representations, with time complexity O(1).

Human Agents: Lifetime Loop.
Apoptotic agents are central to CAVE’s real-time updating. When an agent is created,
it is assigned a lifetime is assigned from a uniform distribution on [50, 150]. When its
lifetime is over, the agent is reinitialized to another location, based on real-time
observations of the distribution of protesters and police. The top loop of Fig. 4
summarizes this life-cycle, whose frequency x is on the order of 1/100.

Apoptotic agents address two challenges facing an agent model that seeks to be
aligned with the real world.

1. How does the model adjust its internal state to stay aligned with the real world
(Fig. 2)?

2. How do we manage the relation between the simulation’s internal clock (which
depends on processor speed) and the dynamics of the real world?

The reassignment of agents to new locations at the end of their life addresses the
first challenge, of state alignment. Each time CAVE receives an observation of a
concentration of protesters or police, it instantiates a special agent (a ‘‘location han-
dler’’) at the location of the observation. If the current population of agents at a
location is greater than the location handler desires (that is, greater than the
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observation), it inhibits the assignment of reinitialized agents to that location, and
apoptosis eventually reduces the population to the observed level. If the current
population is too low, the location handler attracts reinitialized agents to its location.
Thus, with a half-life of 100 min (the mean of the lifetime assignment distribution),
population levels in the model adjust to match observed levels.

Apoptosis also mitigates the problem of varying execution speed. The mean agent
lifetime is 100 min. Because lifetimes are randomized in [50, 100], agents are reborn
at different times. After a few hundred steps, the average agent has been active for
about 53 steps (Fig. 6), and the strength of the estimated violence reflects a lookahead
about this distance into the future. With a modern computer, a single simulation step
takes only a few milliseconds, so the view on the display is looking roughly 53 min
into the future. Agent apoptosis keeps them from running indefinitely into the future
and formulating an unjustified long-range forecast.

Data Sources.
CAVE is continuously updated with two real-world data sources, shown on the right-
hand side of Fig. 4: an estimate of SME from Twitter feeds (modulating the behavioral
loop), and estimates of crowd density from human observers (modulating the lifetime
loop).

Leaders use social media such as Twitter to communicate with their followers.
The effectiveness of this communication mechanism depends on their Twitter handles
and relevant Twitter hashtags being known, so police can monitor their tweets. CAVE
processes this stream of tweets through a simple natural language processor that
computes the frequency of profanity and other indications of unrest. The higher the
frequency of such traffic, the higher our estimate of SME.

Observers on the ground enter local observations of crowd density to CAVE via a
web or smartphone interface. Figure 7 shows the web interface, and Fig. 8 the
smartphone interface. The smartphone’s geolocation capability provides the location
of the observation automatically, allowing police and other observers to update
location estimates easily from the ground, and its display of violence estimates pro-
vides them with immediate awareness of likely trouble locations.

0 200 400 600 800 1000
0

10

20

30

40

50

60

Time Step

M
ea

n
Ag

en
tA

ge

Fig. 6. Mean agent age = average lookahead
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In the May 20 demonstration, SME estimates were entered by hand, based on
manual monitoring of the Twitter feed. The smartphone interface was not deployed to
observers on the ground, so crowd estimates were entered through the web interface
based on real-time police reports and several streaming video feeds of the event
recorded by protestors and journalists among the crowd.

4 Experience with the Model

The CAVE prototype shows the feasibility of integrating real-time data with an agent-
based crowd simulation. The Cook County Sheriff’s Department commented on the
contribution of NEK’s tool suite, ‘‘The intelligence we received from NEK was
relayed to various law enforcement entities, such as the FBI, during the NATO event.
The agencies were very appreciative of the information and it helped to enhance all of
the intelligence information’’ [18].

 

Fig. 7. CAVE interface. The operator enters estimated number of people of each type observed
at a location (a), clicks on the left-hand map to show the location of the observation (b), and
observes regions of high likelihood of violence on the right-hand map (c). In the prototype, SME
is entered through this same interface (d), though the framework supports a direct feed from a
NLP analysis program.
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Though the objective of our model is to integrate and present real-world infor-
mation rather than to study crowd theory, its emergent behavior does provide inter-
esting evidence for the impact of social media. Figure 9 shows distribution of the
violence estimate for the same distribution of protesters and police, but in two dif-
ferent conditions. High SME (middle map) leads to numerous regions of elevated risk
of violence, but with low SME (right map), only one location near the exclusion zone
anticipates high violence.

The nature of our engagement with the Cook County Sheriff’s Department did not
permit detailed assessment of CAVE’s accuracy in this prototype application. Such
validation is possible in principle; the main obstacles are social and bureaucratic, not
scientific. The purpose of the model is to give law enforcement personnel advance
notice of geospatial locations where violence may break out. If the model is valid, one
expects a higher than average correlation between outbreaks of violence and predicted
violence, with outbreaks tending to occur at locations where the model predicts high
violence, and at delays of 53 min or less after the prediction. Two details of imple-
menting this program require attention: collecting the data, and quantifying the
temporal dynamics.

Social and ethical considerations make it undesirable to stimulate riots in order to
validate agent-based models. In some social settings, ‘‘war games’’ can be staged to
evaluate predictive mechanisms (the approach we took in [10]), but the expense is

Fig. 8. Smartphone interface. The smartphone reports its location automatically.
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high, and questions remain about the fidelity of the reactions of actors who know that
they are only playing a game. A more promising approach is to collect crowd
observations and social media traffic during an actual event, then explore the corre-
lation of CAVE’s violence predictions with (say) the number of actual arrests for
disorderly conduct as a function of place and time, after correcting for the number of
officers available to conduct such arrests at each location in space-time. Government
units will be reluctant to release such information for publication because of legal and
privacy issues, but might conduct such an analysis in evaluating the technology for
operational use.

The temporal dynamics are also problematic. In the current form of the model, the
rates at which agitation builds up in the presence of violence or high SME, as well as
the rate of its decay in the absence of stimulation and the threshold at which agitation
turns into violence, are purely notional. They yield qualitatively coherent results. For
the purpose of estimating areas at risk of violence anywhere within the 53 min look-
ahead of the model (as opposed to the actual time at which violence breaks out), these
results may be very useful. But the lead time of our predictions depends on the actual
values of agitation growth and decay and the violence threshold. In fact, observation
of the time delay between prediction and the distribution of actual violence with
greatest spatial correlation with the prediction may enable us to obtain more realistic
estimates of these critical parameters.

5 Conclusion

Computational Social Science models have reached a level of maturity that allows
them to be used in practical applications. Many such applications, such as crowd
monitoring, require the simulation to be continually updated on the basis of real-time

Distribution of Protesters
(red) & Police (blue) Elevated SME Normal SME

Fig. 9. Dependence of violence on SME
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information from the domain. CAVE demonstrates how a stigmergic agent-based
simulation with apoptotic agents can achieve this objective.

Our objective in this paper has been to describe mechanisms for updating a model
continuously with real-world data, not to make claims about its predictive accuracy.
We have outlined one approach to such validation for future research, but note that it
is fraught with ethical and legal challenges.
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