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Abstract. Tsubame 2.0 is currently one of the largest installed GPU
clusters and number 5 in the Top 500 list ranking the fastest supercom-
puters in the world. In order to make use of Tsubame, there is a need
to adapt existing software design concepts to multi-GPU environments.
We have developed a modular and easily extensible software framework
called waLBerla that covers a wide range of applications ranging from
particulate flows over free surface flows to nano fluids coupled with tem-
perature simulations and medical imaging. In this article we report on
our experiences to extend waLBerla in order to support geometric multi-
grid algorithms for the numerical solution of partial differential equations
(PDEs) on multi-GPU clusters. We discuss the software and performance
engineering concepts necessary to integrate efficient compute kernels into
our waLBerla framework and show first weak and strong scaling results
on Tsubame for up to 1029 GPUs for our multigrid solver.
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1 Introduction

Many imaging applications exhibit high memory and compute power require-
ments, either due to the large amount of data being processed or runtime restric-
tions e.g. for real-time imaging. Graphics processing units (GPUs) typically offer
hundreds of specialized compute units operating on dedicated memory and reach
outstanding compute and memory performance in this way. Therefore, they are
more and more used for compute-intensive applications also in imaging. GPUs
are best suitable for massively-data parallel algorithms, inadequate problems,
that e. g. require a high degree of synchronization or provide only limited par-
allelism, are left to the host CPU. For high performance computing (HPC) het-
erogeneous multi-GPU clusters are built up consisting of thousands of GPUs. In
the Top 500 list1 from November 2011 of the fastest machines world-wide there
were three of these multi-GPU clusters in the Top 5.
1 http://www.top500.org, Nov. 2011.
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However, in order to achieve good performance on these clusters, software
development has to adapt to the new needs of the massively parallel hardware.
As a starting point, GPU vendors offer proprietary environments for general
purpose GPU computing. NVIDIA, e. g., provides the possibility to write single-
source programs that execute kernels written in a subset of C and C++ on their
Compute Unified Device Architecture (CUDA) [1]. An alternative would have
been to use the Open Compute Language (OpenCL)2. Within OpenCL one can
write code that runs in principle on many different hardware platforms, e. g. Intel
CPUs, ATI/AMD or NVIDIA GPUs, and even the ICM Cell processor, but to
achieve optimal performance the implementation has to be adapted to the spe-
cific features of the hardware. Since we are exclusively working on NVIDIA GPUs
in this article and we found no considerable difference in the kernel performance
if we tune OpenCL towards NVIDIA GPUs, we have done our implementations
in CUDA. Both CUDA and OpenCL are low-level languages. To make code
development more efficient, one either has to provide wrappers for high-level
languages like e.g. OpenMP [2] and PyCUDA [3] or easy to use frameworks,
where we follow the latter approach.

Our contributions in this article are specifically that

– we discuss the concepts necessary to integrate efficient GPU compute kernels
for a geometric multigrid solver into our software framework waLBerla that
is discussed in more detail in Sect. 3,

– and then show first weak and strong scaling results of our solver on Tsubame
2.0 located in Japan.

While waLBerla was at first developed for simulating fluid flow using the
Lattice Boltzmann method on 3D structured domains, it is now also capable of
solving elliptic PDEs like Poisson’s equation numerically via multigrid.

One possible imaging application for our multigrid solver is high dynamic
range (HDR) compression. HDR tries to allow a wide dynamic range of lumi-
nance between the lightest and darkest areas within an image. Often, HDR
compression is only one step within the image acquisition pipeline and there are
hard time constraints that have to be met in practical applications. In [4] one
finds a state-of-the-art HDR compression algorithm in the gradient space that
can be accelerated by our multigrid solver. In general, for gradient space imaging
one has to transform an input image I : Ω �→ R defined in the domain Ω ⊂ R

3

to gradient space and back. While the forward transformation to gradient space
is fast by using simple finite differences to obtain the image gradient ∇I, the
backward transformation requires the solution of Poisson’s equation

Δu = f in Ω (1a)
u = 0 on ∂Ω (1b)

typically assuming homogeneous Dirichlet boundary conditions. Here,

f = div (Φ∇I) , (2)
2 http://www.khronos.org/opencl/, Mai 2012.
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where Φ∇I are compressed dynamic range image derivatives and Φ : R3 �→ R is a
position-dependent attenuating function (see [4] for more details). The solution
u : Ω �→ R is the HDR compressed image.

Most of the overall runtime for HDR compression is spent in the numerical
solution of (1a, 1b), where we can apply a parallel, geometric multigrid solver.

Besides HDR compression there are a variety of applications in imaging and
computer vision, where multigrid methods are used. Especially for variational
models the arising Euler-Lagrange equations are often treated via efficient multi-
grid solvers. In this way, applications ranging from image denoising, image in-
painting, and image segmentation to optical flow and image registration are
found (see [5] for more details about different multigrid methods and for further
references).

There exists already also a variety of other implementations of different multi-
grid algorithms on GPU like in [6,7], conjugate gradients (CG) and multigrid
on NVIDIA GeForce FX [8], mixed-precision multigrid solvers [9], finite element
multigrid solvers on GPU clusters [10,11], or algebraic multigrid [12]. Parallel
multigrid methods on GPUs are incorporated in software packages like Open-
Current [13] or PETSc [14], and GPU multigrid is also used in imaging, e.g. for
nonlinear denoising or variational optical flow (see e.g. [15–17]).

In previous work, we have run a multi-GPU Lattice Boltzmann simulation
on Tsubame [18] and highly scalable multigrid solvers on CPU clusters [19–
21]. Furthermore, we optimized a 2D multigrid solver on GPU to do real-time
HDR compression [22] for a series of X-ray images. In addition to that, we show
weak and strong scaling results on an IBM Bluegene/P up to nearly 300.000
cores and an Intel CPU cluster in [23], where we used a 3D multigrid solver on a
block-structured tetrahedral finite element mesh. Now we integrate a multi-GPU
geometric multigrid solver in waLBerla. An alternative is to implement a finite
element based multigrid solver on GPU for gradient space imaging [24], however,
it is computationally more expensive than our finite difference based solver on a
regular grid. Note that our multigrid solver scales also on CPU-clusters [25] and
works also for more general elliptic PDEs with variable coefficients [26].

The paper is organized as follows: In Sect. 2 we briefly describe the multi-
grid algorithm and its parallelization on GPUs. Section 3 summarizes the MPI-
parallel waLBerla framework that easily enables us to extend our code to
multi-GPUs. The hardware details of the Tsubame 2.0 cluster and a simple
performance model for our multigrid solver to estimate the runtime of our soft-
ware are introduced in Sect. 4. In Sect. 5 we present weak and strong scaling
results on Tsubame 2.0 before concluding the paper in Sect. 6.

2 Parallel Multigrid

2.1 Multigrid Algorithm

Multigrid is not a single algorithm, but a general approach to solve problems
by using several levels or resolutions [27,28]. We restrict ourselves to geometric
multigrid (MG) in this article that identifies each level with a (structured) grid.
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Typically, multigrid is used as an iterative solver for large linear systems of
equations that have a certain structure, e.g. that arise from the discretization of
PDEs and lead to sparse and symmetric positive definite system matrices. The
main advantage of multigrid solvers compared to other solvers like CG is that
multigrid can reach an asymptotically optimal complexity of O(N), where N is
the number of unknowns or grid points in the system. For good introductions
and a comprehensive overview on multigrid methods, we, e.g., refer to [29,30],
for details on efficient multigrid implementations see [31–33].

We assume that we want to solve the PDE (1a, 1b) with solution u : R3 → R,
right hand side (RHS) f : R

3 → R, and Dirichlet boundary conditions on a
rectangular domain Ω ⊂ R

3. Equation (1a, 1b) is discretized by finite differences
on a structured grid. This results in a linear system

Ahuh = fh ,
∑

j∈Ωh

ah
iju

h
j = fh

i , i ∈ Ωh (3)

with system matrix Ah ∈ R
N×N , unknown vector uh ∈ R

N and right hand side
(RHS) vector fh ∈ R

N on a discrete grid Ωh with mesh size h.
In order to solve the above linear system, we note that during the iteration

the algebraic error eh = uh
∗ − uh is defined to be the difference between the

exact solution uh
∗ of Eq. (3) and the approximate solution uh. With the residual

equation rh = fh − Ahuh we obtain there so-called error equation

Aheh = rh. (4)

The multigrid idea is now based on two principles:

Smoothing Property: Classical iterative solvers like red-black Gauß-Seidel
(RBGS) are able to smooth the error after very few steps. That means the high
frequency components of the error are removed well by these methods. But they
have little effect on the low frequency components. Therefore, the convergence
rate of classical iterative methods is good in the first few steps and decreases
considerably afterward.

Coarse Grid Principle: A smooth function on a fine grid can be approximated
satisfactorily on a grid with less discretization points, whereas oscillating func-
tions would disappear. Furthermore, a procedure on a coarse grid is less expen-
sive than on a fine grid. The idea is now to approximate the low frequency error
components on a coarse grid.

Multigrid combines these two principles into one iterative solver. The
smoother reduces the high frequency error components first, and then the low
frequency error components are approximated on coarser grids, interpolated back
to the finer grids and eliminated there. In other words, on the finest grid Eq. (1a,
1b) first is solved approximately by a few smoothing steps and then an approx-
imation to the error equation is computed on the coarser grids. This leads to
recursive algorithms which traverse between fine and coarse grids in a grid hier-
archy. Two successive grid levels Ωh and ΩH typically have fine mesh size h and
coarse mesh size H = 2h.
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One multigrid iteration, here the so-called V-cycle, is summarized in Algo-
rithm 1. Note that in general the operator Ah has to be computed on each
grid level. This is either done by rediscretization of the PDE or by Galerkin
coarsening, where AH = RAhP .

Algorithm 1 Recursive V-cycle: u
(k+1)
h = Vh(u(k)

h , Ah, fh, ν1, ν2)

1: if coarsest level then
2: solve Ahuh = fh exactly or by several CG iterations
3: else
4: ū

(k)
h = Sν1

h (u
(k)
h , Ah, fh) {presmoothing}

5: rh = fh − Ahū
(k)
h {compute residual}

6: rH = Rrh {restrict residual}
7: eH = VH(0, AH , rH , ν1, ν2) {recursion}
8: eh = PeH {interpolate error}
9: ũ

(k)
h = ū

(k)
h + eh {coarse grid correction}

10: u
(k+1)
h = Sν2

h (ũ
(k)
h , Ah, fh) {postsmoothing}

11: end if

In our node-based multigrid solver we use the following components:

– A ω-RBGS (or red-black SOR) smoother Sν1
h ,Sν2

h with ν1 pre- and ν2

postsmoothing steps.
– The restriction operator R from fine to coarse grid is full weighting.
– We apply a trilinear interpolation operator P for the error.
– The coarse grid problem is solved by a sufficient number of CG iterations.
– The discretization of the Laplacian was done via the standard 7-point stencil

(cf. Eq. (1a, 1b)), on coarser grids we rediscretize the Laplacian.

Note that the required number of CG iterations on the coarsest grid is pro-
portional to the diameter of the computational domain (see e.g. [23,34]) and
thus increases linearly with growing diameter.

2.2 GPU Implementation

To implement the multigrid algorithm on GPU we have to parallelize it and write
kernels for smoothing, computation of the residual, restriction, and interpolation
together with coarse grid correction. In the following, we choose the ω-RBGS
kernel as an example and discuss it in more detail. Algorithm 2 shows the source
code of a straightforward, unoptimized CUDA RBGS kernel. Here, the solution
and rhs fields are stored in global GPU memory. Due to the splitting in red
and black points within the RBGS to enable parallelization, only every second
solution value is written back, whereas the whole solution vector is processed.
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Possible optimizations are e.g. to split the red and black points into separate
arrays in memory, or blocking techniques (see [22] for a detailed performance
analysis in 2D). Additionally, the thread block size depends on the number of
grid points in x-direction. Best performance can be achieved for larger thread
block sizes, e.g. 256 or 512, therefore the kernel becomes inefficient for a smaller
number of grid points in x-direction and 2D thread blocks become necessary.

For multi-GPU, the distributed memory parallelization is simply done by
decomposing each grid into several smaller sub-grids and introducing a layer of
ghost cells between them. Now the sub-grids can be distributed to different MPI
processes and only the ghost cells have to be communicated to neighboring sub-
grids. The function calling the kernel handles the ghost cell exchange. Buffers
are sent to neighboring processes via communication routines provided by the
waLBerla framework introduced in the next section. Within Algorithm 1 one
has to exchange the ghost layer of the solution resp. the error after smoothing
and interpolation (steps 4, 8, and 10), the ghost layer of the residual after step
5. On the coarsest level we have only a few grid points left per sub-grid and thus
we transfer the whole RHS from GPU to CPU and do the parallel CG iterations
on CPU. After that, the solution is transfered back from CPU to GPU.

3 Walberla

WaLBerla is a massively parallel software framework developed for HPC appli-
cations on block-structured domains [35]. It has been successfully used in many
multi-physics simulation tasks ranging from free surface flows [36] to particulate
flows [37] and fluctuating lattice Boltzmann [38] for nano fluids.
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Fig. 1. Patches and Blocks in waLBerla [39].

The main design goals of the waLBerla framework are to provide excellent
application performance across a wide range of computing platforms and the
easy integration of new algorithms. The current version waLBerla 2.0 is capa-
ble of running heterogeneous simulations on CPUs and GPUs with static load
balancing [39].

3.1 Patch, Block, and Sweep Concept

A fundamental design concept of waLBerla is to rely on block-structured grids,
what we call our Patch and Block data structure. We restrict ourselves to block-
structured grids in order to support efficient massively parallel simulations.

In our case a Patch denotes a cuboid describing a region in the simulation
that is discretized with the same resolution (see Fig. 1) . This Patch is further
subdivided into a Cartesian grid of Blocks consisting of cells. The actual simula-
tion data is located on these cells. In parallel one or more Blocks can be assigned
to each process in order to support load balancing strategies. Furthermore, we
may specify for each Block, on which hardware it is executed. Of course, this
requires also to be able to choose different implementations that run on a certain
Block, what is realized by our functionality management.

The functionality management in waLBerla 2.0 controls the program flow.
It allows to select different functionality (e.g. kernels, communication functions)
for different granularities, e.g. for the whole simulation, for individual processes,
and for individual Blocks.
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Fig. 2. Sweep concept in waLBerla [39].

When the simulation runs, all tasks are broken down into several basic steps,
so-called Sweeps. A Sweep consists of two parts as shown in Fig. 2: a communi-
cation step fulfilling the boundary conditions for parallel simulations by nearest
neighbor communication and a communication independent work step travers-
ing the process-local Blocks and performing operations on all cells. The work
step usually consists of a kernel call, which is realized for instance by a function
object or a function pointer. As for each work step there may exist a list of
possible (hardware dependent) kernels, the executed kernel is selected by our
functionality management.

3.2 MPI Parallelization

The parallelization of waLBerla can be broken down into three steps:

1. a data extraction step,
2. a MPI communication step, and
3. a data insertion step.

During the data extraction step, the data that has to be communicated is copied
from the simulation data structures of the corresponding Blocks. Therefore, we
distinguish between process-local communication for Blocks lying on the same
and MPI communication for those on different processes.

Local communication directly copies from the sending Block to the receiv-
ing Block, whereas for the MPI communication the data has first to be copied
into buffers. For each process to which data has to be sent, one buffer is allo-
cated. Thus, all messages from Blocks on the same process to another process
are serialized. To extract the data to be communicated from the simulation
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Fig. 3. Communication concept within WaLBerla [39]. Depicted is a process having
two Blocks. Communication between the process-local Blocks is realized by swapping
of the corresponding buffers, whereas MPI communication involves PCIe transfers of
the GPU buffers. GPU-GPU copy operations are required to extract and insert data
from the data fields to and from the buffers.

data, extraction function objects are used that are again selected via the func-
tionality management. The data insertion step is similar to the data extrac-
tion, besides that we traverse the block messages in the communication buffers
instead of the Blocks.

3.3 Multi-GPU Implementation

For parallel simulations on GPUs, the boundary data of the GPU has first to
be copied by a PCIe transfer to the CPU and then be communicated via MPI
routines. Therefore, we need buffers on GPU and CPU in order to achieve fast
PCIe transfers. In addition, on-GPU copy kernels are added to fill these buffers.
The whole communication concept is depicted in Fig. 3.

The only difference between parallel CPU and GPU implementation is that
we need to adapt the extraction and insertion functions. For the local communi-
cation they simply swap the GPU buffers, whereas for the MPI communication
we copy the data directly from the GPU buffers into the MPI buffers and vice
versa. To support heterogeneous simulations on GPUs and CPUs, we execute
different kernels on CPU and GPU and also define a common interface for the
communication buffers, so that an abstraction from the hardware is possible.
Additionally, the work load of the CPU and the GPU processes can be balanced
e.g. by allocating several Blocks on each GPU and only one on each CPU-only
process. In addition to that it is also possible to divide a Block into several
Sub-Blocks of different sizes to enable load balancing on heterogeneous compute
nodes containing e.g. GPUs and CPUs.
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Table 1. Specifications of the Tsubame 2.0 cluster.

Compute Nodes 1408
Processor Intel Xeon X5670
GPU NVIDIA Tesla M2050
GPUs per Compute Node 3
LINPACKa Performance 1192 TFLOPS
Power Consumption 1398.61 KW
Flops per Watt 852.27 FLOPS/W
Network Type Fat Tree
Interconnect QDR Infiniband
ahttp://www.netlib.org/linpack

4 Hardware and Performance Model

4.1 Tsubame 2.0

We perform all numerical tests in this article on Tsubame 2.03 that is currently
(Nov. 2011) number 5 in the TOP 500 list. The detailed hardware specifications
of this multi-GPU cluster are listed in Table 1.

All 1408 compute nodes are equipped with three NVIDIA Tesla M2050
GPU accelerators each having 3 GB of GPU memory. NVIDIA Tesla M2050
has a floating-point performance (single precision) of 1030 GFLOP/s and 515
GFLOP/s (double precision) coming from 448 CUDA streaming processors capa-
ble of doing 2 floating point operations per cycle and a processor frequency of
575 MHz. Thus, most of Tsubame’s 2.4 PFlops peak performance comes from
its 4224 GPUs. The GPU memory frequency is 1550 MHz with DDR5 (factor
2) RAM and a 384 Bit memory bus what results in 148 GB/s peak memory
bandwidth.

4.2 Performance Model

Next we derive a very simple performance model for our multigrid solver in
order to identify performance bottlenecks and to estimate the overall runtime
for a given problem size on Tsubame 2.0. In general, we can split the runtime t
into the time for the compute kernels, e.g. for the smoother, restriction or inter-
polation, and the time for communicating data between neighboring processes,
mainly exchanging ghost layers after smoothing, residual, and interpolation. An
important decision is, if one overlaps computation and communication. If we do
not overlap them, the runtime is just the sum

t = tkernel + tbuffer + tPCI + tMPI (5)

of runtime of all kernels tkernel, the time for copying data from ghost layers to
send and receive buffers tbuffer, the time for PCIe transfers tPCI, and the time
for MPI communication tMPI.
3 http://www.gsic.titech.ac.jp/en/tsubame2, Nov. 2011.

http://www.netlib.org/linpack
http://www.gsic.titech.ac.jp/en/tsubame2
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In order to enable overlapping, we have to split the kernels into inner ker-
nels and outer kernels, where the latter are just processing the points lying
near boundary layers. After the outer kernels are finished and the GPU buffers
are filled, we can communicate the ghost layers via several CUDA streams and
asynchronous PCIe transfers. In parallel run the inner kernels, i.e.

t = to,kernel + tbuffer + max(ti,kernel, tPCI + tMPI). (6)

Kernel Performance. First we take a closer look at the kernel performance on
a single GPU. From previous work we already know that our multigrid algorithm
is bounded by memory bandwidth (this also can be easily checked e.g. by a
profiler). For the most time consuming part, the smoother, where we basically
do a sparse matrix (stencil) vector product, we have to load per grid point one
value of the right hand side, seven values of the solution, and we store one value
of the solution. The loads of the solution can be partly cached (at least three rows
in one grid plane), such that we can assume to require only one load per plane
in the solution array, i.e. instead of seven we have three loads. Since we do not
split the red and black points of the solution into separate arrays in memory,
we assume that we must load and store the full array twice, once within the
update iteration of the red and once of the black points. Table 2 summarizes the
estimated load and store instructions for the different multigrid components. We
denote the number of grid points on the finest grid l = 0 by N = N0. On the
coarser grids we have Nl = Nl−1

8 grid points in 3D. Thus, the overall number of
grid points on L−1 grid levels is roughly Nmg = N0 ·(1+ 1

8 +. . .+ 1
8L ) ≈ N0 ·1.14.

Table 2. Number of load and store instructions for different multigrid components per
(fine) grid point. Additionally we list the required number of ghost layer exchanges in
the multi-GPU case.

Component Loads Stores Ghost layer exchanges

Smoothing 2 · (3 + 1) = 8 2 2
Residual 3 + 1 = 4 1 1
Restriction 3 1

8
0

ProlongationAdd 1 + 3
8

1 1

Table 3. Memory bandwidths on Tsubame 2.0 for data transfers within one GPU
(DDR5), between two GPUs on one compute node (PCIe), and between two compute
nodes (Infiniband).

Theoretical Attainable
Memory Bandwidth Memory Bandwidth
[GB/s] [GB/s]

DDR5 148 95
PCIe 8 6 (shared by 3 GPUs)
Infiniband (bidirectional) 5 5
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Since we know that our multigrid solver is bandwidth limited we can estimate
the kernel time and communication time from the maximum attainable memory
and network bandwidth that we measured in Table 3 via standard streaming
benchmarks. Note that we neglect the fact that the PCIe bandwidth for GPU
to CPU resp. GPU to CPU transfers differs and that the bandwidth depends on
the message size, i.e. for smaller message sizes the bandwidth is much lower and
the latency dominates.

As an example one ω-RBGS iteration for problem size N = 5122 × 256
takes 60.5 ms what corresponds to approximately 89 GB/s memory bandwidth
on one GPU. All our numerical tests run with double floating-point precision.
Our performance model with data from Tables 2 and 3 estimates

tRBGS =
8 · N · 10
95GB/s

≈ 56.5ms . (7)

Thus, our model is quite accurate for the RBGS smoother. However, this holds
only for larger problem sizes. In order to show the dependency of our smoother
on the problem size we depict the runtimes and bandwidth of one ω-RBGS
iteration with varying sizes in Fig. 4.

For smaller problems, the GPU overhead e.g. for CUDA kernel calls becomes
visible and there is not enough work to be done in parallel and thus most of the
compute cores idle.

For one multigrid V(2,2)-cycle with 6 grid levels we measure 364 ms on
one GPU (corresponding to approximately 85 GB/s memory bandwidth), our
performance model predicts 325 ms.

In order to give more insight in the runtime behavior of the different parts of
the multigrid solver, Fig. 5 shows the portions of predicted and measured runtime
spent in different components of a V(2,2)-cycle on one GPU. The problem size
shrinks by a factor of 8 for each grid level, thus one expects the coarse grid
(this includes all the previous components on all coarser grids plus solving the

Fig. 4. Single GPU ω-RBGS runtime and bandwidth for different problem sizes.
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(a) (b)

Fig. 5. Runtime percentage for different components predicted by our performance
model (a) and measured (b) on one GPU (problem size 5122 × 256).

problem on the coarsest grid with CG iterations) to require about 1/8 of the
runtime. The measurement lies a little bit higher especially for GPUs, because
the smaller sizes are not very efficient on GPU as seen before.

Summarizing, our predictions on one GPU are quite accurate and the model
error is typically below 10 %.

For overlapping computation and communication we split the smoother ker-
nel into an inner and outer kernel. This increases the runtime e.g. for one ω-
RBGS iteration for problem size 5122 × 256 by approximately 6 % on one GPU.
Therefore, we assume ti,kernel = tkernel and to,kernel = 0.06·tkernel in the following.
A simple bandwidth based runtime estimate for to,kernel is not feasible because of
the relatively small number of boundary points and the non-contiguous memory
accesses for four of the six boundary layers.

Communication Time. The same problems as for to,kernel we also have when
trying to estimate tbuffer for the multi-GPU case. Thus, we also fall back to
measured times here that depend on the number of neighboring processes. In
worst case, six ghost layers have to be copied into and from buffers. From this
we measure tbuffer ≈ 0.05 · tkernel. tPCI and tMPI we are able to predict using
information about the number of ghost layer exchanges from Table 2 and the
bandwidths from Table 3. Note that within one smoothing iteration we have two
ghost layer exchanges, one after updating the red points and one after updating
the black points. The PCIe transfer time is the sum of the transfer from GPU to
CPU and back (if more than one of the three GPUs on a compute node is used
the attainable PCIe bandwidth is shared and thus reduces to 3 resp. 2 GB/s).
We neglect that the MPI communication time differs from within one node and
between two nodes.

For problem size N = 5122 ×256 the number of ghost points on the six bound-
ary planes is 5122 + 4 · 256 · 512, i.e. the surface to volume ratio is 1 : 64. On the
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coarser grids the ratio goes down to 1 : 2 on grid level 6. In this setting we mea-
sure 89 ms on 48 GPUs for one ω-RBGS iteration on the finest grid level, if we do
not overlap computation and communication. Our communication model predicts
tPCI = 16.8 ms and tMPI = 3.4 ms, i.e. tRBGS = 56.5 + 16.8 + 3.4 + 5 = 81.7 ms.

To estimate the overall time for overlapping computation and communica-
tion, we observe that the sum tPCI + tMPI is much lower than the time for an
inner smoothing kernel, therefore the communication time should not be visible
for the parallel smoother, i.e. t = to,kernel + tbuffer + ti,kernel.

5 Scaling Experiments

Next we check the achievable parallel efficiency and speedup of our multigrid
multi-GPU implementation on Tsubame 2.0. Baseline is the performance on
one GPU.

We distinguish two types of experiments: Weak scaling relates to experiments
were the problem size is increased linearly with the number of involved GPUs,
whereas the term strong scaling implies that we have a constant global problem
size and vary only the number of processes. Assuming a perfect parallelization,
we expect the runtime to be constant in weak scaling experiments, while we
expect the runtime to be reciprocally proportional to the number of parallel
processes in strong scaling experiments. To estimate the quality of our paral-
lelization we compute speedup Sp = t1

tp
and parallel efficiency Ep = Sp

p given the
runtimes t1 and tp on one and on p GPUs.

We measure the runtime of one V(2,2)-cycle (i.e. V-cycles with two ω-RBGS
iterations for pre- and postsmoothing each) on six grid levels with parameters
from Sect. 2, if not stated otherwise. On the coarsest grid between 15 and 20
CG iterations are performed. All our experiments are done with double floating
point accuracy.

5.1 Weak Scaling

Figure 6 shows the weak scaling behavior of the code for problem size 5122 ×
256 for non-overlapping communication and computation and when overlapping
communication and computation within the smoother. Here, we measure the
time spent to do pre- and postsmoothing (step 4 and 10 in Algorithm 1) on
the finest grid level (Smoother fine), the time spent to solve the problem on all
coarser grid levels (Coarser Grids), and the overall time for one V(2,2)-cycle. In
addition to that the efficiency for one V-cycle is shown. In contrast to nearly
perfect weak scaling also on large CPU clusters (cf. [23]) the overall parallel
efficiency drops to 35 % in the first case and to 42 % in the second case on 1029
GPUs, what was the maximum number of GPUs available for us on Tsubame
2.0. This has mainly two reasons: first the effect of additional intra-node memory
transfers of ghost layers between CPU and GPU via the PCIe bus when using
GPUs, and second the CG iterations on the coarsest grid that are done on CPU
and require a global all-to-all communication. Overlapping of computation and
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(a)

(b)

Fig. 6. Weak scaling behavior and parallel efficiency for non-overlapping communica-
tion (a) and overlapping communication in the smoother (b) from one to 1029 GPUs
on Tsubame performing one multigrid V(2,2)-cycle.

communication within the smoother improves the parallel efficiency and the
overall runtime on 1029 GPUs is about 870 ms in this case, where 40 % of the
time are spent within the smoother and about 30 % on the coarsest grid doing
CG iterations.

5.2 Strong Scaling

Next, we scale the number of involved processing units, but leave the total
problem size, i.e. the number of grid points, constant. In this subsection we do
not overlap communication and computation. Figure 7 shows the runtimes for
5122 × 256 solved on up to 16 GPUs. The maximal speedup is just 2.3 achieved
on 8 GPUs, which is a result of different factors: on the one hand the problems
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Fig. 7. Strong scaling and speedups for one V(2,2)-cycle with 512 × 2562 grid points
per GPU.

Table 4. Runtimes of one V(2,2)-cycle for varying problem sizes and 5 or 6 grid levels
on 1029 GPUs

Unknowns (in million) No. of levels Runtime in ms

69055 6 1025
34528 6 583
17264 6 322
8632 5 461
4316 5 261
2158 5 171
1079 5 127
539 5 125
270 5 130

for small size mentioned when discussing the single-node performance and on
the other hand the communication overhead addressed within the weak scaling
experiments.

Table 4 shows runtime results for different problem sizes on 1029 GPUs in
order to determine the optimal problem size on this number of GPUs. For the
largest run taking 1025 ms our performance model predicts only 445 ms with
a ratio computation to communication of 2.7 : 1, the model error is mainly
caused by the coarse grid solver. The minimal runtime on 1029 GPUs we find for
539 million grid points, here one V(2,2)-cycle takes 125 ms and communications
dominates computation roughly 4 : 1 due to our performance model.

6 Conclusions and Future Work

We have implemented a geometric multigrid solver on GPU and integrated it into
the waLBerla framework. First results show acceptable scalability on Tsubame
2.0 up to 1029 GPUs.



A Geometric Multigrid Solver on Tsubame 2.0 171

One of the next steps is a performance optimization of our code. On one
GPU, one obvious improvement would be to use an optimized data layout by
splitting the red and black grid points into two separate arrays in memory.
In the multi-GPU case we next implement overlapping communication also for
the remaining multigrid components besides the smoother. We will also further
investigate the CG coarse grid solver and possible alternative parallel (direct)
solvers. It is possible to refine the performance model, e.g. to take into account
different bandwidths for each grid level like in [22] or to model the performance
of the CG solver as done in [23]. The next major change in waLBerla will be to
support local grid refinement within the computational domain. Besides adaptive
multigrid methods this allows us to reduce the number of processes on coarser
grids to achieve a better scalability.

Acknowledgment. We are grateful to have the opportunity to test our multigrid
solver on Tsubame 2.0.
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hybrid grids: a performance study on current high performance computing clusters.
Practice and Experience, Concurrency and Computation (2012)

24. Kazhdan, M., Hoppe, H.: Streaming multigrid for gradient-domain operations on
large images. ACM Trans. Graph. (TOG) 27, 21 (2008). (ACM Press, New York)
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grid. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of Partial Differential
Equations on Parallel Computers. Lecture Notes in Computational Science and
Engineering, vol. 51, pp. 165–208. Springer, Heidelberg (2005)

33. Stürmer, M., Wellein, G., Hager, G., Köstler, H., Rüde, U.: Challenges and poten-
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37. Götz, J., Iglberger, K., Feichtinger, C., Donath, S., Rüde, U.: Coupling multibody
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