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Abstract. This paper studies continuous image labeling problems with
an arbitrary data term and a total variation regularizer, where the labels
are constrained to a finite set of real numbers. Inspired by Ishikawa’s
multi-layered graph construction for the same labeling problem over a
discrete image domain, we propose a novel continuous max-flow model
and build up its duality to a convex relaxed formulation of image label-
ing under a new variational perspective. Via such continuous max-flow
formulations, we show that exact and global optimizers can be obtained
to the original non-convex labeling problem. We also extend the studies
to problems with continuous-valued labels and introduce a new theory to
this problem. Finally, we show the proposed continuous max-flow models
directly lead to new fast flow-maximization algorithmic schemes which
outperform previous approaches in terms of efficiency. Such continuous
max-flow based algorithms can be validated by convex optimization the-
ories and accelerated by modern parallel computational hardware.

1 Introduction

Many practical problems in image processing and computer vision can be mod-
eled as multilabel problems, where the task is to optimally assign the unknown
variable l, chosen from some finite set {l1, . . . , ln}, at each point of the image
domain Ω. It has become an important paradigm to formulate such labeling
problems as the optimization of an energy function/functional which mathemat-
ically encodes all the information needed for the specified imaging and vision
task. Such optimization problems can be formulated by either regarding the
image domain as discrete or continuous.

In the spatially discrete setting, graph cut has become one of the most impor-
tant and efficient techniques to tackle such problems, by computing max-flow
or min-cut on appropriately constructed graphs. Applications of max-flow/min-
cut in computer vision range from image segmentation or labeling [1,2], stereo
[3,4], 3D reconstruction [5] etc. Unfortunately, most minimization problems
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involving more than two labels are NP-hard, therefore only approximate algo-
rithms are available [1,4]. However, for a particular set of multilabeling problems
with convex interaction penalty, Ishikawa [6] showed that exact solutions can
be computed by max-flow and min-cut. Such energy functions are important
in e.g. stereo reconstruction. Despite the efficiencies of graph-based methods,
their computation results are often comparatively rough and biased by the dis-
crete graph setting, i.e. metrication errors occur. Reducing such visual artifacts
requires either considering more neighbour nodes, which increases memory bur-
den largely, or applying more complex schemes such as high-order potentials [7].

Recently, the variational approach has become more and more popular for
obtaining optimal labelings in the spatially continuous setting, where the prob-
lem is formulated as the minimization of a continuous energy functional. In
contrast to the graph-based model, there are many advantages of the variational
approach: the variational model perfectly avoids metrication errors due to its
crucial rotation invariance; moreover, its reduced continuous numerical scheme
is reliable, tractable, and can be easily implemented and accelerated in many
different ways, e.g. parallel, multigrid or GPU hardwares; last but not least, the
continuous models require far less memory in computation.

The application of variational methods to optimal labelings is often to relax
the combinatorial constraints to a proper convex set. It leads to a constrained
convex minimization problem such that global and exact optimums, in some
special cases, are available. For example, Chan et al. [8] showed that global
and exact binary optimizers can be obtained by thresholding the computation
result of the convex relaxed model; therefore, a sequence of so-called continuous
min-cuts can be obtained. [9,10] generalized Ishikawa’s work [6] to the spatially
continuous setting, where both the image domain and label values are contin-
uous, by representing the optimal labeling function as the discontinuity set of
a binary function in a one-dimensional higher space, i.e. a spatially continuous
min-cut. Such a lifting approach is related to earlier mathematical theories of
calibrations and Cartesian currents [11,12]. Optimal labeling functions could be
obtained by applying the result of Chan et al. in the higher dimensional space,
i.e. first solve the relaxed binary problem and then threshold the result.

Motivations and Contributions

For discrete graphs, it is well known that the minimum cut problem is dual to the
maximum flow problem by the max-flow and min-cut theorem [13]. Actually, the
fastest graph cut algorithms are based on maximizing flow instead of computing
the min-cut directly, e.g. the Ford-Fulkerson algorithm [14] and the push-relabel
algorithm [15]. The minimal ‘cut’ is finally recovered along edges with ’satu-
rated’ flows, i.e. cuts appear at the flow-bottlenecked edges [4,16]. In contrast,
max-flow models and algorithms in the spatially continuous setting have been
much less studied. Some work has appeared that deal with partitioning prob-
lems involving two regions: Strang [17] was the first to formulate max-flow and
min-cut problems over a continuous domain; In [18], edge based max-flow and
min-cut was formulated in which certain interior and exterior points must be
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specified in advance; Yuan et al. [19,20] proposed a direct continuous analogue
of the typical discrete max-flow and min-cut models that are used for solving
binary labeling problems in image processing and computer vision. Max-flow
and min-cut interpretations of recent convex relaxations for Potts model have
been made in [21]. However in these cases there is generally a duality gap and
the original problems can only be solved approximately.

To our knowledge, this is the first work to address continuous max-flow and
min-cut duality for problems where the labeling function can take several discrete
values. Motivated by Ishikawa [6] and Yuan et al. [19], we interpret the problem
as a continuous min-cut problem over a mixed continuous/discrete domain and
build up a novel continuous max-flow model in analogy with Ishikawa’s discrete
graph construction. The max-flow model can be used to produce global solutions
of the original non-convex problem with discrete label values. In particular, it
is shown that the max-flow model is dual to an exact convex relaxation of the
original problem. Strict duality is also established between the max-flow model
and the original problem, by extending the thresholding scheme of [8] from two
to several regions.

A new continuous max-flow based algorithm is proposed. Its efficiency and
convergence can be verified by standard convex optimization theories. The label-
ing function is updated as an unconstrained lagrange multiplier each iteration,
and does not need to be projected back onto any feasible set. Numerical experi-
ments show a significantly faster convergence rate than the primal-dual algorithm
in Pock et al. [9,10] and later [22], especially at high precisions.

A significantly extended version of this paper is available at [23], which con-
tains extensions to other regularizers and more experiments. This conference
paper contains some novelties which are not in [23], such as the discussion on
saturated/unsaturated edges in Sect. 3.5.

2 Preliminaries: Ishikawa’s Work

Ishikawa [6] studied image labeling problems over an image graph which can be
generally formulated as:

min
u∈U

∑

v∈P
ρ(uv, v) + α

∑

(v,w)∈N
g(uv − uw) , (1)

where P denotes a discrete image grid in 2-D or N-D; N ⊂ P ×P is a neighbor-
hood system on P; U = {u : P �→ L is the set of all feasible labeling functions,
where L = {�1, ..., �n}}. The potential prior g(x) in (1) is assumed to be convex
and ρ is any bounded function, but not necessarily convex. It was shown by [6]
that problems of the form (1) can be exactly optimized by finding the minimal
cut over a specially constructed multi-layered graph G = (V, E), where each layer
corresponds to one label.

We adopt Ishikawa’s notations [6] in this work and study the simplified graph
which uses n − 1 layers instead of n and avoids infinite capacities on the source
edges [24] (see Fig. 1 for a 1-D example). The vertex set V and the edge set E
are defined as follows:
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(a) (b)

Fig. 1. 1D illustration: (a) Legal cut, (b) Illegal cut. Severed edges are depicted as
dotted arrows. The gray curve visualizes the cut. Vertices interior to the curve belongs
to Vs while vertices exterior to the curve belongs to Vt.

V = P × L ∪ {s, t} = {uv,i |v ∈ P ; i = 1, ..., n − 1} ∪ {s, t} (2a)

E = ED ∪ EC ∪ EP (2b)

where the edge set E is composed of three types of edges

– Data edges ED =
⋃

v∈P Ev
D, where

Ev
D = (s, uv,1) ∪ {(uv,i, uv,i+1) | i = 1, . . . , n − 2} ∪ (uv,n−1, t) . (3)

– Penalty edges EP =
⋃

v∈P Ev
C , where

Ev
C = (uv,1, s) ∪ {(uv,i+1, uv,i) ∪ (t, uv,n−1) | i = 1, . . . , n − 2} . (4)

– Regularization edges ER:

ER = {(uv,i, uw,j) | (v, w) ∈ N , i, j = 1, ..., n} . (5)

2.1 Anisotropic Total-Variation Regularization

When a pairwise prior g(uv − uw) = C(v, w) |uv − uw| is given, (1) corresponds
to an anisotropic total-variation regularized image labeling problem, i.e.

min
u∈U

∑

v∈P
ρ(uv, v) + α

∑

(v,w)∈N
C(v, w) |uv − uw| (6)

which is a discrete counterpart of the total-variation regularizer.
Now we define flow configurations over the graph (2a) and (2b) such that its

max-flow corresponds to the minimizer of (6):
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– Capacity of source flows: the directed flow p1(v) along each edge from the
source s to the node uv,1 of the first layer, i.e. the edge (s, uv,1), is constrained
by

p1(v) ≤ ρ(�1, v) , ∀v ∈ P ; (7)

– Capacity of flows between layers: the directed flow pi(v) along each edge
(uv,i, uv,i+1) from the node uv,i of the i-th layer to the node uv,i+1 of the
i + 1-th layer is constrained by

pi(v) ≤ ρ(�i, v) , ∀v ∈ P i = 1, ..., n − 2 (8)

– Capacity of sink flows: the directed flow pn(v) along each edge from the node
uv,n−1 of the last layer to the sink t is constrained by

pn(v) ≤ ρ(�n, v) , ∀v ∈ P ; (9)

– Capacity of spatial flows at each layer: the undirected flow qi(v, w) of each
edge (v, w) ∈ N at the layer i, i = 1, . . . , n − 1, is constrained by

|qi(v, w)| ≤ C(v, w) ; (10)

this corresponds to the well-known anisotropic total-variation regularizer in
case of a 4 nearest neighborhood system N ;

– Conservation of flows: flow conservation means that in-coming flows should be
balanced by out-going flows at any node v ∈ P of each layer i = 1, ..., n−1, i.e.

( ∑

w:(w,v)∈N
qi(v, w) −

∑

w:(v,w)∈N
qi(v, w)

) − pi(v) + pi+1(v) = 0 . (11)

Since there is no lower bound on the flows (7)–(9), the flow on the penalty
edges (4) can become arbitrarily large. This implies that each edge in the set Ev

D

which links the source and sink can only be cut once, i.e. illegal cuts as shown
in Fig. 1(b) have infinite cost and are not allowed.

Therefore, the max-flow problem over the graph is to find the largest amount
of flow allowed to pass from the source s to sink t through the n − 1 graph
layers, i.e.

max
p,q

∑

v∈P
p1(v) (12)

subject to the flow constraints (7), (8), (9), (10) and (11).
Due to duality between the max-flow and min-cut problem [13], one can solve

the max-flow problem and then extract a solution to the min-cut problem (6).

3 Multilabeling by Continuous Max-Flow and Min-Cut

Define the feasible set of functions as U = {u : Ω �→ {�1, ..., �n} s.t.
∫

Ω
|∇u| ≤

∞}, where �1 < ... < �n are real numbers. The continuous counterpart of (1)
can be formulated as

min
u∈U

∫

Ω

ρ(u(x), x) dx +
∫

Ω

C(x)|∇u(x)| dx , (13)
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where ρ : R × Ω �→ R is any bounded function, not necessarily convex. The set
U is a non-convex set of discrete valued labeling functions. This is in contrast
to Pock et al. who considered a convex feasible set of continuous valued label-
ing functions. We show this problem can be regarded as a continuous min-cut
problem by following the ideas of Ishikawa.

We start by rewriting (13) in terms of the upper level sets of u ∈ U

λi(x) =
{

1 , if u(x) > �i

0 , if u(x) ≤ �i
,∀x ∈ Ω i = 1, . . . , n − 1 .

Let λ0(x) = 1 and λn(x) = 0, a.e. x ∈ Ω. Clearly, we have

1 = λ0(x) ≥ λ1(x) ≥ λ2(x) ≥ ... ≥ λn−1(x) ≥ λn(x) = 0 a.e. x ∈ Ω. (14)

By the coarea formula, we have for any function u ∈ U that

∫

Ω

C(x)|∇u| dx =
n−1∑

i=1

∫

Ω

Ci(x)|∇λi| dx ,

where Ci(x) = (�i+1−�i)C(x), i = 1, ..., n−1. In this work, we will mostly focus
on the case where C(x) = α is constant for simplicity.

Therefore, (13) can be equivalently rewritten as

min
{λi}n−1

i=1 ∈B

n∑

i=1

∫

Ω

(λi−1 − λi) ρ(�i, x) dx + α

n−1∑

i=1

(�i+1 − �i)
∫

Ω

|∇λi| dx (15)

subject to the constraint (14), where the binary constraint B is defined as

B = {φ : Ω �→ {0, 1}, s.t.
∫

Ω

|∇φ| < ∞} (16)

The problem (15) is obviously a nonconvex optimization problem due to the
binary constraints (16).

After solving (15), the labeling function u can be recovered from λi by
u =

∑n
i=1(λi−1 − λi)�i .

3.1 Primal Model: Continuous Max-Flow

In this section, we build up a max-flow model in continuous settings, which
simulates Ishikawa’s graph configuration. It will be shown that solutions of (15)
and (13) can be obtained by exploring the dual of this maximization problem.

To this end, we place n − 1 image domains Ωi, i = 1, . . . , n − 1 with Ωi = Ω,
layered in a sequential order between two terminals: the source s and the sink
t. The source s is linked to each image pixel x of the first layer Ω1 by an edge
e1(x); the same image pixel x between two sequential image layers Ωi−1 and Ωi,
i = 2, . . . , n−1, is linked by the edge ei(x); and the pixel x at the last layer Ωn−1

is also linked to the sink t by the edge en(x). Define flow functions pi : Ω �→ R
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corresponding to each edge function ei , i = 1, . . . , n. Within each image layer
Ωi, i = 1, . . . , n−1, the spatial flow functions are given by qi ∈ C∞(Ω)N , where
N is the dimension of the image domain.

As a generalization of the discrete constraints (7)–(11), we now give con-
straints on flow functions pi ∈ L1(Ω), i = 1, . . . , n, and qi ∈ C∞(Ω)N , i =
1, . . . , n − 1

|qi(x)| ≤ Ci(x) for x ∈ Ω , i = 1, . . . , n − 1 (17)
pi(x) ≤ ρ(�i, x) for x ∈ Ω , i = 1, . . . , n (18)
(
div qi − pi + pi+1

)
(x) = 0 for x ∈ Ω , i = 1, . . . , n − 1 (19)

qi · n = 0 on ∂Ω , i = 1, . . . , n − 1 . (20)

Therefore, the continuous max-flow model, in analogue with Ishikawa’s discrete
one (12), can be formulated by

sup
p,q

EP (p) =
∫

Ω

p1(x) dx (21)

subject to the constraints (17)–(20). In this work, we call (21) the primal model.
Observe the maximization problem (21) is bounded above by

∫
Ω

ρ(�1(x), x) dx
due to the constraint (18).

3.2 Primal-Dual Model

By introducing multiplier functions λi(x), i = 1, . . . , n−1, to the linear equality
constraints of flow conservation (19), we have the equivalent primal-dual model
of (21):

inf
λ

sup
p,q

E(p, q;λ) =
∫

Ω

{
p1 +

n−1∑

i=1

λi

(
div qi − pi + pi+1

)}
dx (22)

subject to (17), (18) and (20).
After rearrangement, the above primal-dual formulation (22) can be equiva-

lently written as

inf
λ

sup
p,q

E(p, q;λ) =
n∑

i=1

∫

Ω

(λi−1 − λi)pi dx +
n−1∑

i=1

∫

Ω

λi div qi dx (23)

subject to (17), (18) and (20).

3.3 Dual Model: Continuous Min-Cut

Now we show that optimizing the primal-dual model (23) over all the flow func-
tions p and q leads to the equivalent dual model, i.e. the continuous min-cut
model:

inf
λ

ED(λ) =
n∑

i=1

∫

Ω

(λi−1 − λi)ρ(�i, x) dx +
n−1∑

i=1

∫

Ω

Ci(x) |∇λi| dx (24)

s.t. 1 = λ0(x) ≥ λ1(x) ≥ . . . ≥ λn−1(x) ≥ λn(x) = 0 , ∀x ∈ Ω .
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Optimization of Flow Functions. In this regard, we consider the optimiza-
tion problem

f(v) = sup
w≤C

v · w , (25)

where v, w and C are scalars. When v < 0, w can be arbitrarily large in order
to maximize the value v · w, i.e. f(v) = +∞. Therefore, we must have v ≥ 0 so
as to make the function f(v) meaningful and

{
if v = 0 , then w < C and f(v) reaches its maximum 0
if v > 0 , then w = C and f(v) reaches its maximum v · C

.

Therefore, we have

f(v) =
{

v · C , v ≥ 0 ,
∞ v < 0 . (26)

The function f(v) given in (25) provides us with a prototype to maximize the
flow functions pi(x), i = 1, . . . , n, in the primal-dual model (23).

For each x ∈ Ω, consider

fi(x) = sup
pi(x)≤ρ(�i,x)

(λi−1(x) − λi(x)) pi(x) , i = 1, . . . , n .

In view of (26), we have

fi(x) =
{

(λi−1(x) − λi(x)) ρ(�i, x) , λi−1(x) ≥ λi(x)
∞ λi−1(x) < λi(x) , i = 1, . . . , n . (27)

On the other hand, it is well known that for any λi ∈ BV (Ω)

sup
qi

∫

Ω

λi(x) div qi(x) dx =
∫

Ω

Ci(x)|∇λi(x)| dx , (28)

when qi is optimized over the set (17) and (20). In view of (27) and (28), max-
imizing (23) over all the flow functions p and q leads directly to the equivalent
dual model (24). The constraints (14) must be satisfied for an optimal φ, oth-
erwise the energy would be infinite, contradicting boundedness of the max-flow
problem from above.

Note that a solution to the problem (24) exists since (24) is convex, lower
semi-continuous and bounded from below and the constraints (24) are convex.
Regarding existence of a solution to the max-flow problem (21), due to bound-
edness from above a maximizing sequence {pi, qi}∞

i=1 exists to the problem (21).
However, it may not admit a maximizing subsequence w.r.t. qi which converges
to a q∗ ∈ Cν because the supremum may be attained for a discontinuous q∗

which lies in the closure of the set of smooth vector fields C∞(Ω)N and not in
the set itself. In this paper we still speak of (p∗, q∗) as a primal-dual solution even
though q∗ may be discontinuous to ease readability. A more formal presentation
can be given if arguments involving (p∗, q∗) are replaced with limi→∞{pi, qi}∞

i=1

for the maximizing sequence {pi, qi}∞
i=1.
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3.4 Exact and Global Optimums

The functions λi, i = 1 . . . n − 1, of the convex model (24) are relaxed to take
values in the convex set [0, 1], which is in contrast to the binary constraints of
the original nonconvex formulation (15). The following proposition establishes
a primal-dual relationship between the max-flow problem (21) and the origi-
nal non-convex problem (15). By solving the max-flow problem (21) a set of
optimizers to the original binary constrained problem (15) can be obtained by
thresholding each layer function λ∗

i .

Proposition 1. Assume φ∗ is a minimizer of (24) and let {ti}n−1
i=1 be a sequence

such that 0 < t1 = t2 = ... = tn−1 ≤ 1. Define the level sets

Sti
i = {x : λ∗

i (x) ≥ ti} , i = 1 . . . n − 1 (29)

and let λti
i (x) be the characteristic function of Sti

i , i.e.

λti
i (x) :=

{
1 , λ∗

i (x) ≥ ti
0 , λ∗

i (x) < ti
.

then the set of binary functions λti
i (x), i = 1, . . . , n − 1, is a global optimum of

the original nonconvex multi-labeling problem (15). Furthermore, if (p∗, q∗;λ∗) is
any optimal primal-dual solution of (22), the cut given by λti

i (x), i = 1, . . . , n−1,
has an energy equal to the max flow energy in (21), i.e.

ED(λt) =
∫

Ω

p∗
1(x) dx = EP (p∗).

Proof. Since p∗
i , i = 1, ..., n and q∗

i , λ∗
i , i = 1, ..., n−1 is a global optimum of the

primal-dual problem (22), then p∗
i , q∗

i optimize the dual problem (21) and λ∗
i (x)

optimizes (24).
For simplification reasons, define t0 = 0 such that St0

0 = Ω. Since li is
increasing with i we must have

St0
0 ⊇ St1

1 ⊇ St2
2 ⊇ ... ⊇ S

tn−1
n−1

Since the variables are optimal, the flow conservation condition (19) must
hold, i.e

div q∗
i (x) − p∗

i (x) + p∗
i+1(x) = 0 , a.e. x ∈ Ω, i = 1, ..., n − 1.

The proof is given by induction in Sti
i . For any k ∈ {1, ..., n − 1} define the

function

Ek =
k∑

i=1

∫

S
�i−1
i−1 \S

ti
i

ρ(�i, x) dx +
∫

S
�k
k

p∗
k+1(x) dx + α

k∑

i=1

L
S

ti
i

where L
S

ti
i

is the length |∂Sti
i \(∂Sti

i ∩∂Ω)|. We will prove Ek = EP (p∗) for any
k ∈ {1, ..., n − 1} and start by considering k = 1. By the formula (27), it follows
that
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p∗
1(x) = ρ(�1, x), for any point x ∈ Ω\St1

1 = St0
0 \St1

1

This, together with the fact that

p∗
1(x) = p∗

2(x) + div q∗
1(x), a.e. x ∈ St1

1

implies that the total max-flow energy defined in (21) can be written

EP (p∗) =
∫

Ω\S
t1
1

ρ(�1, x) dx +
∫

S
t1
1

(
p∗
2(x) + div q∗

1(x)
)
dx

=
∫

Ω\S
t1
1

ρ(�1, x) dx +
∫

S
t1
1

p∗
2(x) dx +

∫

S
t1
1

div q∗
1(x) dx

=
∫

S
t0
0 \S

t1
1

ρ(�1, x) dx +
∫

S
t1
1

p∗
2(x) dx + αL

S
t1
1

= E1

The last term follows because
∫

S
�i
i

div q∗
i (x) dx =

∫

Ω

λ∗
i div q∗

i dx = α

∫

Ω

|∇λ�i
i | dx = α

∣∣∣∂S�i
i \(∂Sti

i ∩ ∂Ω)
∣∣∣ .

(30)
where the second equality is due to Prop. 4 of [25]. Note that the boundary length
L

S
t1
1

is necessarily finite, otherwise the energy would be infinite, contradicting
boundedness from above.

Assume now that Ek = EP (p∗) for some k ∈ {1, ..., n − 2}, we will show this
implies Ek+1 = EP (p∗)

EP (p∗) = Ek =
k−1∑

i=1

∫

S
�i−1
i−1 \S

ti
i

ρ(ti, x) dx +
∫

S
�k−1
k−1

p∗
k(x) dx + α

k−1∑

i=1

L
S

ti
i

.

By the definition (29) it follows that λk−1(x) − λk(x) > tk−1 − tk = 0 for
all x ∈ Stk−1

k−1 \Stk

k . Therefore, by formula (27), for any point x ∈ Stk−1
k−1 \Stk

k we
must have p∗

k(x) = ρ(�k, x). Combining this with the fact that

p∗
k(x) = p∗

k+1(x) + div q∗
k(x), a.e. x ∈ Ω

the above expression can be written

EP (p∗) = Ek =
k−1∑

i=1

∫

S
�i−1
i−1 \S

ti
i

ρ(ti, x) dx +
∫

S
�k−1
k−1 \S

�k
k

ρ(�k, x) dx (31)

+
∫

S
�k
k

p∗
k+1(x) dx + L

S
tk
k

+ α

k−1∑

i=1

L
S

ti
i

= Ek+1.

Hence, we can conclude that also En−1 = EP (p∗). By noting from (27) that for
all x ∈ S

tn−1
n−1 we must have p∗

n(x) = ρ(�n, x), the total max flow energy defined
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in (21) can be written

EP (p∗) = En−1 =
∫

Ω\S
t1
1

ρ(�1, x) dx +
n−1∑

i=2

∫

S
�i−1
i−1 \S

ti
i

ρ(ti, x) dx (32)

+
∫

S
tn−1
n−1

ρ(�n, x) dx + α
n−1∑

i=1

L
S

ti
i

By writing this expression in terms of the characteristic functions λti
i of each

region Sti
i , we get

EP (p∗) =
n∑

i=1

∫

Ω

(λ�i−1
i−1 (x) − λti

i (x)) ρ(ti, x) dx + α

n−1∑

i=1

∫

Ω

|∇λti
i | dx = ED(λ�)

which is exactly the primal model energy (24) of the set of binary functions λti
i .

Therefore, by duality between the max-flow problem (21) and the convex relaxed
problem (24), λti

i must be a global minimum of the min-cut problem (24) and
therefore also a global minimum of the original problem (15).

3.5 ‘Saturated’/‘Unsaturated’ Edges

In the discrete setting, it is well known that the minimum cut severs edges
that are saturated in the max-flow problem. This section attempts to give a
variational explanation to the phenomena for the continuous max-flow and min-
cut problems studied in this work. Let λ∗

1, ..., λ
∗
n−1 be optimal to the dual problem

(24). Assume that for some x ∈ Ω and i ∈ 1, ..., n λi(x) > t > λi+1(x), where t ∈
(0, 1). Thresholding at t will generate the binary solution λ0(x) = ... = λi(x) = 1
and λi+1(x), ..., λn(x) = 0. Therefore the cut generated by the binary function
‘severs’ the edge ei+1(x) between layer i and i+1. Since λi(x) > λi+1(x) it follows
by (27) that the optimal flow function must satisfy p∗

i (x) = ρ(�i, x), i.e. the edge
ei(x) is saturated. Assume on the contrary that for some x ∈ Ω and i ∈ 1, ..., n
p∗

i (x) < ρ(�i, x). In this case λ∗
i (x) = λ∗

i+1(x), otherwise p∗
i (x) would not be

optimal since increasing p∗
i (x) would also increase the energy. Consequently, for

any threshold level t ∈ (0, 1], λt
i(x) = λt

i+1(x), i.e. the edge ei(x) is not severed
by the cut.

Similar interpretations of the spatial flow can be made by using the identity
∫

Ω

λ div q dx =
∫

Ω

q · ∇λ dx (33)

If for some x ∈ Ω and a neighborhood Nε(x) = {y ∈ Ω : ||y − x|| < ε},
|q∗

i (y)| < α for all y ∈ Nε(x), we say the spatial flow is unsaturated in Nε(x).
Then λi is constant in Nε(x). Consequently, for any threshold t ∈ (0, 1], λt

i(y) is
either identically 0 or 1 in Nε(x) and the cut will not sever the spatial domain
Nε(x) at the i-th layer. Assume ∇λi �= 0 in some domain S ⊂ Ω, then by
(33) |q∗

i (x)| = |α∇λ∗
i /|∇λ∗

i || = α a.e. x ∈ S. Consequently, for any threshold
t ∈ (0, 1], |q∗

i | = α whenever ∇λt
i �= 0 in the distributional sense.
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3.6 Extension to Continuous Labelings

Assume now that the feasible label values are constrained to the continuous
interval [�min, �max]. As the number of labels goes to the limit of infinity, the
max-flow problem (21) with the flow constraints (17)–(19) turns into

sup
p,q

∫

Ω

p(�min, x) dx (34)

s.t. p(�, x) ≤ ρ(�, x) , |q(�, x)| ≤ α, ∀x ∈ Ω, ∀� ∈ [�min, �max] (35)
divx q(�, x) + ∂� p(�, x) = 0 , a.e. x ∈ Ω, � ∈ [�min, �max]. (36)

where � ∈ [�min, �max] is the set of all feasible continuous-valued labels. The
flow functions p(x) and q(x) are defined in the one dimensional higher space
[�min, �max]×Ω. By carrying out similar steps as in the last section, the following
dual problem can be derived

Proposition 2. The max-flow model (34) with continuous label-values is dual /
equivalent to the following min-cut model over [�min, �max] × Ω:

min
λ(�,x)∈[0,1]

∫ �max

�min

∫

Ω

{
α |∇xλ| − ρ(�, x)∂� λ(�, x)

}
dxd�

+
∫

Ω

(1 − λ(�min, x))ρ(�min, x) + λ(�max, x)ρ(�max, x) dx (37)

subject to

∂� λ(�, x) ≤ 0 , λ(�min, x) ≤ 1 , λ(�max, x) ≥ 0 , ∀x ∈ Ω, ∀� ∈ [�min, �max].
(38)

The proof can be found in [23].
The labeling function u(x) can finally be reconstructed from the binary func-

tion λ(�, x) by u(x) = �min +
∫ �max

�min
λ(�, x) d� .

In [9], Pock et al. gave a similar formulation of continuous labeling problems,
as the search for a binary function defined over [�min, �max]×Ω, which minimizes

min
λ(�,x)∈{0,1}

∫ �max

�min

∫

Ω

{
α |∇xλ| + ρ(�, x) |∂�λ(�, x)| } dxd� . (39)

subject to
λ(�min, x) = 1 , λ(�max, x) = 0 , x ∈ Ω (40)

In order to solve this non-convex binary problem, the convex relaxation of [8]
was adopted by minimizing over λ(x, �) ∈ [0, 1]. By applying the thresholding
result of [8], binary optimizers could be obtained by thresholding the computed
result.

Some differences can be observed between our formulation (37), (38) and
the formulation (39), (40): The constraint ∂�λ(�, x) ≤ 0 is not forced explicitly
in [9]. However, it turns out the presence of the absolute value of the term
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ρ(�, x) |∂�λ(�, x)| forces this constraint to hold. Observe that if ρ(�, x) < 0 is
negative, the formulation of (39) is non-convex, and can therefore not be solved
globally. This is in contrast to our formulation (37), which is convex also in this
case. The functional (39) could be made convex by adding a sufficiently large
number to the data term at every x ∈ Ω. In the more recent work of Pock et al.
[10], a more strict derivation resulted in a little different formulation. In this
formulation, the integrand of the energy functional is infinite if ∂�λ(�, x) ≤ 0,
hence this constraint is forced to hold. Their derivations rely heavily on results
from the theory of calibrations [12] and cartesian currents [26,27]. Label values
ranged over the whole real line R was assumed, which required to impose limits
at infinity: lim� �→+∞ λ(�, x) = 0 and lim� �→−∞ λ(�, x) = 1.

We eventually stick to a finite label value set in practice. After discretization,
the label space also becomes discrete in [10]. However, it has not been proven
if all properties, such at the thresholding scheme and monotonicity constraint
hold exactly after discretization. In contrast, these properties were proved to
hold exactly for our model with discrete label values developed in Sect. 3.

Last but not the least, a primal-dual algorithm was proposed in [10], which
consists of iteratively taking ascent steps over the dual variables p and q and
descent step over the primal variable λ, followed by projections of all the variables
onto the nearest points of the feasible sets iteratively until convergence.

4 Algorithms

4.1 Multiplier-Based Max-Flow Algorithm

In this section, it is assumed that the image domain Ω is discrete and the dif-
ferential operators are discretized, such that the optimization problems become
finite dimensional. We stick to the continuous notation, using

∫
,∇ and ÷ to ease

readability. As stated in the previous section, the energy formulation of (22) is
just the Lagrangian function of (21) and λi, i = 1, . . . , n − 1, are the multiplier
functions. To this end, we define its respective augmented Lagrangian function
as

Lc(p, q, λ) :=
∫

Ω

p1 +
n−1∑

i=1

λi(div pi +pi+1 −pi)− c

2
|div pi +pi+1 −pi|2 dx, (44)

where c > 0.
We propose an algorithm for the continuous maximal flow problem (21) based

on the augmented Lagrangian method [29] , see Algorithm 3.6. Algorithm 3.6
is an example of an alternating direction method of multipliers, where (44) is
maximized alternatively with respect to each variable pi, q, followed by an updat-
ing of the Lagrange multipliers λi, i = 1, . . . , n − 1 at each iteration. For the
two-label case, a similar flow-maximization scheme for the continuous min-cut
problem was proposed in [19,20].
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Algorithm 1 Multiplier-Based Maximal-Flow Algorithm
Choose some starting values for p1, q1 and λ1, let k, i = 1 and start k−th iteration,
which contains the following steps, until convergence:

– For each layer i = 1 . . . n solve
• Optimize pi by fixing other variables

p̃k+1
i := arg max

pi(x)≤ρ(�i,x) ∀x∈Ω
Lc((p

k+1
j<i , pi, p

k
j>i), (q

k+1
j<i , qk

j≥i), λ
k)

:= arg max
pi(x)≤ρ(�i,x)

− c

2

∥
∥
∥pi + div qk+1

i−1 − pk+1
i−1 − λk

i−1/c
∥
∥
∥

2

− c

2

∥
∥
∥pi − (pk

i+1 + div qk
i ) + λk

i /c
∥
∥
∥

2

which can be explicitly computed at each point x ∈ Ω; At the first and last
layer, i = 1 and i = n − 1 the update formulas are a little different and are
given in (42) and (43) below.

• Optimize qi, by introducing the new value of pk+1
i and fixing other variables

qk+1
i := arg max

‖q‖∞≤α
Lc((p̃

k+1
i≤j , pk

i>j), (q
k+1
j<i , qi, q

k
j>i), λ

k)

:= arg max
‖q‖∞≤α

− c

2

∥
∥
∥div qi + pk

i+1 − p̃k+1
i − λk

i /c
∥
∥
∥

2

, (41)

which can either be solved iteratively by the projected-gradient algorithm [28],
or approximately by one linearized step (45);

• Optimize pi again, by introducing the new values of qk+1
i and fixing others

pk+1
i := arg max

pi(x)≤ρ(�i,x) ∀x∈Ω
Lc((p

k+1
j<i , pi, p

k
j>i), (q

k+1
j≤i , qk

j>i), λ
k) ,

which can be explicitly computed at each point x ∈ Ω;
– Update multipliers λi, i = 1, . . . , n − 1, by

λk+1
i = λk

i − c (div qk+1
i − pk+1

i + pk+1
i+1 ) ;

– Set k ← k + 1 and repeat until convergence.

At the first and last layer i = 1 and i = n the update formulas for p1 and pn are:

pk+1
1 := arg max

p1(x)≤ρ(�1,x)
Lc(p1, p

k
2 , ..., pk

n, qk+1, λk)

:= arg max
p1(x)≤ρ(�1,x)

∫

Ω

p1 dx − c

2

∥
∥
∥p1 − (pk

2 + div qk+1
1 ) + λk

1/c
∥
∥
∥

2

, (42)

and

pk+1
n := arg max

pn(x)≤ρ(�n,x)
Lc(p

k+1
1 , ..., pk+1

n−1, pn, qk+1, λk)

:= arg max
pn(x)≤ρ(�1,x)

− c

2

∥
∥
∥pn + div qk+1

n−1 − pk+1
n−1 − λk

n−1/c
∥
∥
∥

2

. (43)

Both can be computed explicitly;
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Instead of solving the sub-problem (41) iteratively by the projected-gradient
algorithm [28], an inexact solution can be obtained by the linearization:

qk+1
i = Πα

(
qk
i + c∇(div qk

i + pk
i+1 − pk+1

i − λk
i /c).

)
(45)

where Πα is the projection onto the convex set Cα = {q |‖q‖∞ ≤ α}. There are
extended convergence results for such a linearization for closely related prob-
lems [30].

5 Numerical Experiments

In this work, we focus on applications to image segmentation and stereo recon-
struction. Comparisons are made to the discrete approach [6] and the primal-dual
algorithm of [9].

(a) (b) (c) (d)

Fig. 2. (a) Ground truth, (b) input, (c) Rescaled labeling function before threshold,
(d) Rescaled labeling function after thresholding each λi at 0.5.

(a) (b) (c) (d)

Fig. 3. (a) Input image damaged by impulse noise; (b) reconstructed labeling function
with non-convex data term (47) before threshold, (c) labeling function after threshold-
ing each λi at 0.5, (d) reconstructed labeling function with convex data term (46) and
β = 1.
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(a) (b) (c)

Fig. 4. (a) Input, (b) Labeling function before threshold (c) Labeling function after
thresholding each λi at 0.5.

In case of image segmentation we assume �i = i, i = 1, ..., n and n is the
number of regions. ρ(i, x) is the data cost of assigning pixel x to region i. One
possibility is

ρ(i, x) = |I(x) − ci|β , i = 1, ..., n (46)

where I is the input image and ci is the average intensity value of region i. They
are assumed to be fixed in this work. Such a data term is convex for β ≥ 1
and non-convex for β < 1. Results with β = 2 are shown in Figs. 2, 4. We
also demonstrate image segmentation with a non-convex data term in Fig. 3.
The ground truth image from Fig. 2(a) has been damaged by impulse noise in
Fig. 3(a). More specifically, 70% of the pixels have been randomly selected and
given a random number between 0 and 255 (max gray value). For this type of
noise, the convex data terms does not perform well, as shown in Fig. 3(d) where
we have selected (46) with β = 1. Instead the following non-convex data term
can be used

ρ(i, x) :=
{

0 , if i = argmink |I(x) − ck|
1 , else . (47)

In the stereo application we are given two color images IL and IR of a scene taken
from horizontally slightly different viewpoints and would like to reconstruct the
depth map u. The quality of the matching between IL and IR for a depth value
u is measured by using the following ρ in the data term of (13)

ρ(u, x) =
3∑

j=1

|Ij
L(x) − Ij

R(x + (u, 0)T )|. (48)

Here Ij(x) denotes the jth component of the color vector I(x). The above data
term (48) is obviously highly non-convex. The results on a standard example
are shown in Fig. 5, where comparison are also given [10] and graph cut with
a neighborhood system of 4 and 8. Graph cut produces a single non-unique
solution which is shown in Fig. 5(f) and (g) with 4 and 8 neighbors respectively.
As we see, such solutions suffer from metrication artifacts because of the discrete
grid bias.
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(a) input left (b) ground truth

(c) Pock et al. (d) graph cut 4 neighbors

(e) graph cut 8 neighbors (f) proposed after threshold

Fig. 5. Stereo depth estimation.

Iteration counts for all experiments are presented in Table 1 and CPU times
are shown in Table 2. The two variants of Algorithm 1 are evaluated against the
primal-dual method of Pock et al. [10]. The relative energy precision at iteration
i is given by

ε =
Ei − E∗

E∗ , (49)

where Ei is the energy at iteration i and E∗ is the final energy. A good esti-
mate of E∗ is obtained by using a huge amount of iterations of each method and



A Fast Continuous Max-Flow Approach for Multi-labeling Problems 151

Table 1. Iteration counts for each experiment. Number of iterations to reach an energy
precision of 10−3 and 10−4 are shown. PD = Primal-dual. Proposed 1 stands for Algo-
rithm 1 where the subproblem is solved by 5 iterations of Chambolle’s algorithm each
outer iteration (indicated by the number in the parenthesis). Proposed 2 stands for
Algorithm 1 with the subproblems solved inexactly in one step through the lineariza-
tion (45).

Energy precision ε < 10−3 Energy precision ε < 10−4

PD [10] Proposed 1 Proposed 2 PD [10] Proposed 1 Proposed 2

Brain 280 50 (× 5) 110 430 65 (× 5) 280
Figure 2 295 35 (× 5) 115 640 65 (× 5) 290
Stereo 4055 550 (× 5) 1070 14305 920 (× 5) 3905

Table 2. CPU time in seconds for each experiment for reaching an energy precision
of 10−3 and 10−4. PD = Primal-dual. Proposed 1 stands for Algorithm 1 where the
subproblem is solved by 5 iterations of Chambolle’s algorithm each outer iteration
(indicated by the number in the parenthesis). Proposed 2 stands for Algorithm 1 with
the subproblems solved inexactly in one step through the linearization (45).

Energy precision ε < 10−3 Energy precision ε < 10−4

PD [10] Proposed 1 Proposed 2 PD [10] Proposed 1 Proposed 2

Brain 86 68 38 132 89 96
Figure 2 1.34 0.64 0.47 2.61 1.18 1.32
Stereo 2027 1214 598 7153 2029 2182

each experiment. The table shows how many iterations are required to reach
an energy precision of 10−3 and 10−4. Our algorithms are implemented with
a mimetic finite difference spatial discretization [31,32]. In order to make the
comparison as accurate as possible, the primal-dual algorithm [10] is also imple-
mented with such a mimetic finite difference discretization, although a slightly
different forward scheme for the gradient and backward scheme for the diver-
gence was used in [10].

The first variant of Algorithm 3.6 solves the subproblem (41) iteratively by
Chambolle’s algorithm [28]. Since the previous solution is available as a good
initialization, not many iterations of this algorithm is required. In our experi-
ments, 5 inner iterations was used for each step. Increasing the number of inner
iterations beyond 5 did not seem to have any impact on the convergence rate in
our experience.

The primal-dual method of [10] avoids the inner problem, but as we see
requires significantly more iterations to reach the same energy precisions. Our
algorithm also requires less total number of iterations (inner times outer iter-
ations). The difference becomes progressively clearer with higher energy pre-
cision. For the stereo example, which is by far most difficult computationally,
our approach reached an energy precision of ε < 10−5 after 1310 iterations,
ε < 10−6 after 1635 iterations and ε < 10−7 after 2340 iteration. The primal-dual
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Table 3. Iteration counts for stereo experiment. Number of iterations to reach an
energy precision of 10−4, 10−5 and 10−6 are shown. PD = Primal-dual.

Energy prec. ε < 10−4 Energy prec. ε < 10−5 Energy prec. ε < 10−6

PD [10] Proposed 1 PD [10] Proposed 1 PD [10] Proposed 1

Stereo 14305 920 (× 5) > 30000 1310 (× 5) > 30000 1635 (× 5)

algorithm [10] failed to ever reach an energy precision of 10−5 or lower within
our predetermined number of maximum iterations (30000). We believe this dif-
ference is due to the fact that our approach avoids the iterative projections of
the labeling function and hence progresses in the exact steepest descent direction
every iteration.

The second variant of the Algorithm 1 instead computes an inexact solution
to (41) through the linearization (45) and hence avoids the inner iterations. How-
ever, the penalty parameter c must be set lower to maintain convergence, hence
more outer iterations are required. Overall it converges a little faster than the first
variant and outperforms the primal-dual algorithm [10] for all the experiments.

Comparison to discrete graph cut [33] is more complicated. Our algorithms
are implemented in matlab, in contrast to the optimized c++ discrete max-
flow implementation of [33]. Our algorithm consists mainly of floating point
matrix and vector arithmetic and is therefore highly suited for massive parallel
implementation on GPU. Traditional max-flow algorithms have a much more
serial nature, which makes them more dependent on an efficient serial CPU. In
the near future, hardware improvements are also expected to be largely of the
parallel aspect. Hence, we see our work as more suited for the current and future
generation of hardware.

6 Conclusions

In this paper we proposed and investigated a novel max-flow formulation of
multilabelings in the continuous setting. It is a direct mapping of Ishikawa’s
graph-based configuration to the continuous setting. We proved the maximiza-
tion problem is dual to an equivalent min-cut formulation by variational analysis.
In addition, we proposed a new and reliable multiplier-based max-flow algorithm
with convergence that can verified by optimization theories, which was demon-
strated to significantly outperform eariler approaches. Due to its continuous
formulation, the algorithm can easily be speeded up by a multigrid or parallel
implementation, in contrast to graph-based methods. The memory requirement
is also not as strict.
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