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Abstract. Recently, many variational models using high order deriva-
tives have been proposed to accomplish advanced tasks in image process-
ing. Even though these models are effective in fulfilling those tasks, it
is very challenging to minimize the associated high order functionals.
In [33], we focused on a recently proposed mean curvature based image
denoising model and developed an efficient algorithm to minimize it using
augmented Lagrangian method, where minimizers of the original high
order functional can be obtained by solving several low order functionals.
Specifically, these low order functionals either have closed form solutions
or can be solved using FFT. Since FFT yields exact solutions to the asso-
ciated equations, in this work, we consider to use only approximations to
replace these exact solutions in order to reduce the computational cost.
We thus employ the Gauss-Seidel method to solve those equations and
observe that the new strategy produces almost the same results as the
previous one but needs less computational time, and the reduction of the
computational time becomes salient for images of large sizes.

1 Introduction

Image denoising is to remove noise while keeping meaningful vision information
such as object edges and boundaries. It is a crucial step in image processing with
a wide range of applications in medical image analysis, video monitoring, and
others. During the last three decades, numerous models have been proposed to
deal with this problem [3,4,7,19–21,23–25,28]. One of the most popular varia-
tional models was proposed by Rudin, Osher, and Fatemi in their seminal work
(ROF model) [25], where the cleaned image corresponds to the minimizer of the
following functional

E(u) = λ

∫
Ω

|∇u| +
∫

Ω

(f − u)2, (1)
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where f : Ω → R is a given noisy image defined on Ω (always a rectangle in
R

2) and λ > 0 is a positive tuning parameter controlling how much noise will
be removed. The remarkable feature of the ROF model lies in its effectiveness
in preserving object edges while removing noise. This is due to the total vari-
ation based regularizer. In fact, the total variation has been widely employed
in accomplishing other image tasks such as deblurring, segmentation, and regis-
tration. However, as pointed out in [6], the ROF model has several unfavorable
features. The main caveat is the stair case effect, that is, the resulting clean
image would present blocks even though the desired image could be smooth,
such as human face. Other undesirable properties include corner smearing and
loss of image contrast. To remedy these drawbacks, quite a few high order vari-
ational models have been proposed [1,2,9,16–18,31]. Despite of the effectiveness
of these models in removing the staircase effect, it is often a challenging issue
to minimize the corresponding functionals. Note that the models contain sec-
ond order derivatives, the related Euler-Lagrange equations are fourth-order,
which raises a nontrivial problem of developing effective and efficient algorithms
to solve them. Indeed, as more and more high order models were used in image
processing [5,7,8,12–15,22,27,30,32], it is an imperative need to explore efficient
numerical algorithms for these models.

Recently, augmented Lagrangian methods have been successfully employed
in the minimization of nondifferentiable or high order functionals [26,29]. For
instance, the minimization of the ROF model suffers from the presence of its
nonlinear and nondifferentiable term. In [29], the authors proposed an efficient
and accurate algorithm using augmented Lagrangian method to minimize the
ROF functional. In [26], the technique was extended to functionals related to
Euler’s elastica with applications in image denoising, inpainting, and zooming
[1,2,8,17,18], where the original minimization problem was converted to several
subproblems of low order functionals. Therefore, augmented Lagrangian method
becomes a suitable technique to handle curvature related functionals.

Inspired by these works, in [33], we constructed an augmented Lagrangian
method based fast algorithm for the mean curvature based image denoising
model [31], whose functional can be expressed as follows:

E(u) = λ

∫ ∣∣∣∣∣∇ ·
(

∇u√
1 + |∇u|2

)∣∣∣∣∣ +
1
2

∫
(f − u)2, (2)

where λ is a tuning parameter and the term ∇ ·
(

∇u√
1+|∇u|2

)
is the mean cur-

vature of the surface φ(x, y, z) = u(x, y) − z = 0 (see [10]). The model tries
to fit the given noisy image surface (x, y, f(x, y)) with a surface (x, y, u(x, y))
that bears small magnitude of mean curvature. As demonstrated in [31], the
model is able to sweep noise while keeping object edges, and it also ameliorates
the staircase effect. More importantly, the model is also capable of preserving
image contrasts as well as geometry of object shapes, especially object corners.
As detailed in [33], by using augmented Lagrangian method, the original mini-
mization problem was reformulated as a constrained optimization, and with the



106 W. Zu et al.

specially designed constraints, the pursuit of saddle points of the optimization
problem amounts to minimizing several functionals alternatively, some of which
have closed form solutions while the other ones can be solved using FFT. Note
that FFT yields exact solutions to those equations, in this work, we want to
check whether these exact solutions in each iteration can be replaced by some
approximations in order to further reduce the computational cost.

This paper is organized as follows. In Sect. 2, we present a short review of the
mean curvature denoising model and recall the augmented Lagrangian method
developed for this model [33]. Section 3 presents the details of the minimization
of the associated subproblems. In Sect. 4, numerical results obtained using the
two methods as well as the efficiency will be compared, which is then followed
by a conclusion in Sect. 5.

2 The Image Denoising Model and the Augmented
Lagrangian Method

In this section, we first review the mean curvature based image denoising model
and then sketch the augmented Lagrangian method developed for this model [33].

2.1 The Mean Curvature Based Image Denoising Model

For a given image f : Ω → R defined on a domain Ω ⊂ R
2, one can regard it as a

surface (x, y, f(x, y)) in R
3. The denoising task amounts to finding a piecewisely

smooth surface that approximates that noisy surface while also keeping its sharp
gradients, since these sharp transitions determine important vision clues such as
edges and corners. To single out those piecewisely smooth surfaces, one needs to
choose an appropriate regularizer. In [31], the L1-norm of mean curvature of an
image surface was employed as the regularizer.

Specifically, let u : Ω → R be a function. Its image surface is just the zero
level set of the function φ(x, y, z) = u(x, y)− z. Then the mean curvature of this

surface can be expressed as ∇·
(

∇φ
|∇φ|

)
= ∇·

(
∇u√

1+|∇u|2

)
, denoted by κu. Using

the L1-norm of mean curvature as the regularizer, the mean curvature denoising
model can be written as the minimization of the following functional:

E(u) = λ

∫
|κu| +

1
2

∫
(f − u)2, (3)

which gives the Eq. (2).
Due to the non-differentiable term in this functional, numerically, one often

considers its regularized version [22,32]

E(u) = λ

∫
Φ(κu) +

1
2

∫
(f − u)2, (4)

with

Φ(x) =
{

x2, |x| ≤ 1
|x|, |x| > 1,

(5)
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and derives the following fourth order Euler-Lagrange equation:

λ∇ · [
1√

1 + |∇u|2 (I − P)∇Φ′(κu)] − (f − u) = 0, (6)

where I,P : R
2 → R

2 with I(x) = x and P(x) =
(
x · ∇u√

1+|∇u|2

)
∇u√

1+|∇u|2 .

This equation is often solved by considering the steady state of the following
time-dependent one:

∂u

∂t
= −λ∇ ·

[
1√

1 + |∇u|2 (I − P)∇Φ′(κu)

]
+ (f − u), (7)

with time t being an evolution parameter.
The above modification surely affects the outcome of the model. However, as

shown later, by using augmented Lagrangian method, the functional (2) can
be exactly treated. This is one of the most important merits of augmented
Lagrangian method, which has been shown in the treatment of the non-differenti-
able total variation norm of the ROF model in [29].

2.2 Augmented Lagrangian Method

In [33], following a similar idea for treating Euler’s elastica based functionals
[26], we converted the minimization of functional (Eq. 2) to be the following
constrained problem;

minu,q,n,p

[
λ

∫
Ω

|q| +
1
2

∫
(f − u)2

]
,

with q = ∇ · n, n =
p
|p| , p = 〈∇u, 1〉, (8)

and developed the associated augmented Lagrangian functional:

L(u, q,p,n,m; λ1, λ2, λ3, λ4) = λ

∫
|q| +

1

2

∫
(f − u)2

+ r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m)

+
r2
2

∫
|p − 〈∇u, 1〉|2 +

∫
λ2 · (p − 〈∇u, 1〉)

+
r3
2

∫
(q − ∂xn1 − ∂yn2)

2 +

∫
λ3(q − ∂xn1 − ∂yn2)

+
r4
2

∫
|n − m|2 +

∫
λ4 · (n − m) + δR(m), (9)

where n,m,p ∈ R
3 are auxiliary vectors and λ1, λ3 ∈ R, λ2,λ4 ∈ R

3 are
Lagrange multipliers. Note that in this Lagrangian functional, we used p =
〈∇u, 1〉 instead of p = ∇u as in [26]. This substitution was chosen purposely to
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treat the mean curvature term since it is nonhomogeneous in u. Just as in [26],
the introduction of the variable m is to relax the variable n that is supposed to
connect with the variable p in terms of n = p/|p|, and the variable m is required
to lie in the set R = {m ∈ L2(Ω) : |m| ≤ 1 a.e. in Ω} through the characteristic
function δR(·) defined as follows:

δR(m) =
{

0, m ∈ R;
+∞, otherwise,

so that the term |p| − p · m is always non-negative. The benefit of this
non-negativeness is that the L2 penalization is unnecessary and we just use
|p| − p · m as a penalization, which simplifies the associated subproblems when
finding saddle points of the above Lagrangian functional (Eq. 9).

Note that saddle points of the functional (9) correspond to minimizers of the
constrained minimization problem (8), and equivalently, minimizers of the mean
curvature model (2), one just needs to find saddle points of (9). To this end, as
in [26], we apply an iterative algorithm. Specifically, for each variable in (9), we
fix all the other variables and seek a critical point of the induced functional to
update this variable. Once all the variables are updated, the Lagrange multipliers
will then be advanced accordingly. Then we repeat this process until the variables
converge to steady state.

To find saddle points of the functional (9), we consider the following sub-
problems and need to obtain minimizers for all of them.

ε1(u) =
1
2

∫
(f − u)2 +

r2
2

∫
|p − 〈∇u, 1〉|2 +

∫
λ2 · (p − 〈∇u, 1〉), (10)

ε2(q) = λ

∫
|q| +

r3
2

∫
(q − ∂xn1 − ∂yn2)2 +

∫
λ3(q − ∂xn1 − ∂yn2), (11)

ε3(p) = r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m) +

r2
2

∫
|p − 〈∇u, 1〉|2

+
∫

λ2 · (p − 〈∇u, 1〉), (12)

ε4(n) =
r3
2

∫
(q − ∂xn1 − ∂yn2)2 +

∫
λ3(q − ∂xn1 − ∂yn2) +

r4
2

∫
|n − m|2

+
∫

λ4 · (n − m), (13)

ε5(m) = r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m) +

r4
2

∫
|n − m|2

+
∫

λ4 · (n − m) + δR(m). (14)

The functionals ε2(q), ε3(p), and ε5(m) have closed-form solutions for their
minimizers, while the minimizers of the functionals ε1(u) and ε4(n) are deter-
mined by the associated Euler-Lagrange equations. Specifically, as discussed
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in [33], the minimizers of ε2(q), ε3(p), and ε5(m) read

Argminqε2(q) = max
{

0, 1 − λ

r3|q̃|
}

q̃, q̃ = ∂xn1 + ∂yn2 − λ3

r3
, (15)

Argminpε3(p) = max
{

0, 1 − r1+λ1

r2|p̃|
}
p̃, p̃ = 〈∇u, 1〉 − λ2

r2
+

(r1+λ1)m
r2

,(16)

Argminmε5(m) =
{
m̃, |m̃| ≤ 1;
m̃/|m̃|, |m̃| > 1.

m̃ = n +
λ4

r4
+

(r1+λ1)p
r4

, (17)

and the Euler-Lagrange equations associated with ε1(u) and ε4(n) are given as
follows:

− r2Δu + u = f − ∂x(r2p1 + λ21) − ∂y(r2p2 + λ22), (18)

and

− r3∂x(∂xn1 + ∂yn2) + r4n1 = r4m1 − λ41 − (r3q + λ3)x,

−r3∂y(∂xn1 + ∂yn2) + r4n2 = r4m2 − λ42 − (r3q + λ3)y,

n3 = m3 − λ43/r4, (19)

where p = 〈p1, p2, p3〉, m = 〈m1,m2,m3〉, n = 〈n1, n2, n3〉, λ2 = 〈λ21, λ22, λ23〉,
and λ4 = 〈λ41, λ42, λ43〉. To update the variables u and n, one needs to solve
these Euler-Lagrange equations. In the subsequent section, we discuss how to
solve them using Gauss-Seidel method. Indeed, in [33], we employed FFT and
thus got the exact numerical solutions of the two equations for each iteration.
This is often expensive but may be unnecessary since it is enough to have some
good approximations of u and n for each iteration. To this end, in this work,
we apply the Gauss-Seidel method for the two equations. The later experiments
demonstrate that this numerical method yield very similar results but with much
less computational cost, especially for large size images. A related work can also
be found in [11].

Besides the above variables, the Lagrange multipliers λ1,λ2, λ3,λ4 also need
updates for each iteration:

λnew
1 = λold

1 + r1(|p| − p · m),
λnew
2 = λold

2 + r2(p − 〈∇u, 1〉),
λnew
3 = λold

3 + r3(q − ∂xn1 − ∂yn2),
λnew
4 = λold

4 + r4(n − m), (20)

where λold
1 denotes the value of λ1 at the previous iteration while λnew

1 represents
that of the current one.

3 Numerical Implementation

In this section, we present the details of solving Eqs. (18) and (19) using one
sweeping of the Gauss-Seidel method as well as updating the variables q, p, and
m for each iteration.
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As discussed in [33], we emphasize that the spatial mesh size is needed when
considering the discretization of derivatives. This is because the mean curvature
is not homogeneous in u, which is one of the most important features that
distinguishes this mean curvature denoising model from other ones such as the
ROF model [25] and the Euler’s elastica based model [1,2].

Let Ω = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N} be the discretized image domain and
each point (i, j) is called a pixel point. All the variables are defined on these pixel
points. We then introduce the discrete backward and forward differential oper-
ators with periodic boundary condition and the spatial mesh size h as follows:

∂−
1 u(i, j) =

{
(u(i, j) − u(i − 1, j))/h, 1 < i ≤ M ;
(u(1, j) − u(M, j))/h, i = 1.

∂+
1 u(i, j) =

{
(u(i + 1, j) − u(i, j))/h, 1 ≤ i < M − 1;
(u(1, j) − u(M, j))/h, i = M.

∂−
2 u(i, j) =

{
(u(i, j) − u(i, j − 1))/h, 1 < j ≤ N ;
(u(i, 1) − u(i,N))/h, j = 1.

∂+
2 u(i, j) =

{
(u(i, j + 1) − u(i, j))/h, 1 ≤ j < N ;
(u(i, 1) − u(i,N))/h, j = N.

For Eq. (18), a detailed discussion on how to solve it using FFT can be found
in [33], and we here employ one sweeping of the Gauss-Seidel method and get(

1 +
4r2
h2

)
unew(i, j) =

g(i, j) +
r2
h2

[unew(i − 1, j) + uold(i + 1, j) + unew(i, j − 1) + uold(i, j + 1)], (21)

where unew(i, j) denotes the updated value of u and g(i, j) represents the value
of the right-hand side of Eq. (18) at the pixel point (i, j). In the experiments, we
just use one sweeping of the Gauss-Seidel method. Moreover, periodic condition
is imposed. This boundary condition is often employed for the image denoising
problem. In fact, this condition won’t affect too much the result obtained by
the denoising model under consideration since it is able to preserve jumps and
image contrasts.

Similarly, for Eq. (19), one gets the following(
r4 +

2r3
h2

)
nnew
1 (i, j) = g1(i, j) +

r3
h2

[nnew
1 (i − 1, j) + nold

1 (i + 1, j)], (22)
(

r4 +
2r3
h2

)
nnew
2 (i, j) = g2(i, j) +

r3
h2

[nnew
2 (i, j − 1) + nold

2 (i, j + 1)], (23)

where g1 and g2 denote the right-hand side of Eq. (19).
We then discuss the update of the variables q, p, m as well as the Lagrange

multipliers. As q is a scalar defined on the pixel point (i, j), based on the formu-
lation (15), one gets

q(i, j) = max
{

0, 1 − λ

r3|q̃(i, j)|
}

q̃(i, j),

with q̃i,j = ∂−
1 n1(i, j) + ∂−

2 n2(i, j) − λ3/r3.
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As for the variable p, we first calculate the three components of p̃, the length
of p̃, and then the updated p. Specifically,

p̃(i, j) = 〈∂+
1 u, ∂+

2 u, 1〉(i, j) − 〈λ21, λ22, λ23〉 + (r1 + λ1)〈m1,m2,m3〉
r2

(i, j),

and based on the formulation (16)

p(i, j) = max
{

0, 1 − r1 + λ1(i, j)
r2|p̃(i, j)|

}
p̃(i, j).

Similarly, we calculate

m̃(i, j) = n(i, j) +
λ4(i, j)

r4
+

(r1 + λ1(i, j))p(i, j)
r4

,

and get the new m(i, j) using the formulation (17).
Moreover, based on the formulations (20), we may update all the Lagrange

multipliers:

λnew
1 (i, j) = λold

1 (i, j) + r1(|p|(i, j) − p(i, j) · m(i, j)),

with |p|(i, j) =
√

p21(i, j) + p22(i, j) + p23(i, j), and

λnew
21 (i, j) = λold

21 (i, j) + r2(p1(i, j) − ∂−
1 u(i, j)),

λnew
22 (i, j) = λold

22 (i, j) + r2(p2(i, j) − ∂−
2 u(i, j)),

λnew
23 (i, j) = λold

23 (i, j) + r2(p3(i, j) − 1),
λnew
3 (i, j) = λold

3 (i, j) + r3(q(i, j) − ∂−
1 n1(i, j) − ∂−

2 n2(i, j)),
λnew
41 (i, j) = λold

41 (i, j) + r4(n1(i, j) − m1(i, j)),
λnew
42 (i, j) = λold

42 (i, j) + r4(n2(i, j) − m2(i, j)),
λnew
43 (i, j) = λold

43 (i, j) + r4(n3(i, j) − m3(i, j)).

4 Numerical Experiments

In this section, we present numerical experiments to compare the results obtained
using Gauss-Seidel method and FFT respectively and also to illustrate the effi-
ciency of the proposed algorithm.

For each experiment, as in [33], we monitor the following relative residuals
in order to check whether the iteration converges to a saddle point:

(Rk
1 , R

k
2 , R

k
3 , R

k
4) =

1
|Ω| (‖R̃k

1‖L1 , ‖R̃k
2‖L1 , ‖R̃k

3‖L1 , ‖R̃k
4‖L1), (24)

with

R̃k
1 = |pk| − pk · mk,

R̃k
2 = pk − 〈∇uk, 1〉,

R̃k
3 = qk − ∂xnk

1 − ∂ynk
2 ,

R̃k
4 = nk − mk,
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and |Ω| is the domain area. We use these relative residuals (24) as the stopping
criterion, that is, for a given threshold εr, once Rk

i < εr for i = 1, ..., 4 and some
k, the iteration process will be terminated. To determine the convergence of the
iteration process, we also check the relative errors of Lagrange multipliers:

(Lk
1 , L

k
2 , L

k
3 , L

k
4)

=

(
‖λk

1 − λk−1
1 ‖L1

‖λk−1
1 ‖L1

,
‖λk

2 − λk−1
2 ‖L1

‖λk−1
2 ‖L1

,
‖λk

3 − λk−1
3 ‖L1

‖λk−1
3 ‖L1

,
‖λk

4 − λk−1
4 ‖L1

‖λk−1
4 ‖L1

)
, (25)

and the relative error of the solution uk

‖uk − uk−1‖L1

‖uk−1‖L1
. (26)

We also observe how the energy (2) is evolving during the iteration by track-
ing the amount E(uk). For the presentation purpose, all the above quantities are
shown in log-scale. Moreover, to illustrate what signals are removed as noise, we
present the associated residual image f −u, besides the given noisy image f and
the cleaned one u.

To compare the results using FFT and Gauss-Seidel method respectively,
we calculate the quantity ‖uGS − uFFT ‖L1/|Ω| and also present the iteration
numbers needed for a given threshold εr for these two methods.

Two numerical experiments are considered to test the effectiveness of the
proposed algorithm. The first example is a synthetic image inside which there are
several shapes with straight or curvy edges as well as sharp corners; the second
one is the real image “Lenna”. The original noisy images, denoised images, and
their differences f − u are presented in Fig. 4. The results for the synthetic
image demonstrate that besides removing noise and keeping edges, the model
also preserves sharp corners and image contrasts, which can be visualized from
the difference image in which there is almost no meaningful signals. For the real
image “Lenna”, the noise part is effectively removed while edges are kept. An
important feature worthy of emphasizing is the improvement of the staircase
effect. The cleaned image, especially at the face and shoulder, illustrates that
the model produces smooth patches instead of blocky ones.

Figure 4 lists the plots of the relative residuals (Eq. 24), relative errors of the
Lagrange multipliers (Eq. 25), relative error of the iterative uk (Eq. 26), and the
energy E(uk) versus iterations for the synthetic image “shape”. The first row

Table 1. The comparison of the iteration numbers needed for εr = 2.5 × 10−3 using
Gauss-Seidel and FFT respectively and the difference quantity ‖uGS − uFFT ‖L1/|Ω|.

Image Size Number of Number of ‖uGS − uFFT ‖L1/|Ω|
iterations (GS) iterations (FFT)

Figure 4-(a) 256 × 256 334 314 0.035
Figure 4-(b) 256 × 256 761 754 0.134
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Table 2. The image sizes, the SNRs, the iteration numbers needed for the given thresh-
old εr, and the computational times using Gauss-Seidel and FFT for the experiments.

Image Size SNR εr Number Time (sec) Time (sec)
of iterations using GS using FFT

Figure 4-(a) 256 × 256 10.75 2.5 × 10−3 334 16.30 20.81
Figure 4-(b) 256 × 256 13.65 2.5 × 10−3 761 37.70 47.82
Figure 4-(a) 256 × 400 10.70 4.0 × 10−3 786 65.05 84.80
Figure 4-(b) 256 × 320 8.97 2.0 × 10−3 466 33.38 41.71
Figure 4-(c) 320 × 320 11.88 4.0 × 10−3 700 57.56 75.02

(a)

(b)

Fig. 1. The denoising results for a synthetic image and a real image “Lenna”. The
noisy, denoised, and residual images are listed from the first row to the third row
respectively. For the synthetic image, we set the spatial step size h = 5.0, and choose
λ = 2 × 103, r1 = 40, r2 = 40, r3 = 105, r4 = 2.0 × 105, and εr = 2.5 × 10−3. For
the real image, we set the spatial step size h = 5.0, choose λ = 103, r1 = 40, r2 = 40,
r3 = 105, r4 = 105, and εr = 2.5 × 10−3.

presents the plots obtained using Gauss-Seidel method while the second row
shows those ones obtained using FFT. Firstly, these plots demonstrate the con-
vergence of iteration and therefore a saddle point of the augmented Lagrangian
functional (9) and thus a minimizer of the functional (2) is achieved for each
case. Secondly, the plots also illustrate the efficiency of the proposed augmented
Lagrangian method. In general, it only needs a few hundred of iterations to
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Fig. 2. The first row lists the plots of relative residuals (a1), relative errors in Lagrange
multipliers (b1), relative error in uk (c1), and energy (d1) versus iterations for the
example “shape” using Gauss-Seidel method; the second row presents the correspond-
ing plots when using FFT. The plot (e) shows the difference between the two cleaned
images uGS and uFFT .

approach minimizers with reasonable accuracy. In fact, in the experiments, for
each iteration, one needs to use two times of Gauss-Seidel sweeping and three
times of the application of closed-form solutions. Thirdly, the plots in these two
rows present almost no difference for each corresponding quantity versus itera-
tion, indicating that the substitution of FFT with one sweeping of Gauss-Seidel
for solving the equations of u and n is feasible. To further compare these two
methods, we present in the third row with the difference uGS − uFFT , each of
which is obtained with the same iteration number. This plot illustrates that the
two cleaned images only differ in small magnitudes around some parts on the
edges of the shapes.
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Fig. 3. The first row lists the plots of relative residuals (a1), relative errors in Lagrange
multipliers (b1), relative error in uk (c1), and energy (d1) versus iterations for the
example “Lenna” using Gauss-Seidel method; the second row presents the correspond-
ing plots when using FFT. The plot (e) shows the difference between the two cleaned
images uGS and uFFT .

Besides these, the iteration numbers needed for the stopping threshold and
the difference quantity ‖uGS −uFFT ‖L1/|Ω| are also compared for the two meth-
ods in Table 1. From this table, when the threshold εr is achieved, less iterations
are needed using FFT than Gauss-Seidel method, which is reasonable since FFT
gives exact solutions to those equations. However, as shown in Table 2, this
cannot save too much the computational cost for the utilization of FFT.

Figure 4 presents the comparison of the two methods for the example “Lenna”.
In summary, these two examples demonstrate that replacing FFT by Gauss-
Seidel method won’t affect the final results considerably and thus this replace-
ment is applicable when using the mean curvature denoising model.
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(a)

(b)

(c)

Fig. 4. The denoising results for real images. Each row presents the original image, the
cleaned one, and the difference image from the left to the right.

In Fig. 4, we consider more experiments for real images using Gauss-Seidel
method. These examples again demonstrate the features of the mean curvature
based denoising model, including the amelioration of the staircase effect and the
preservation of image contrasts. To show the efficiency of the proposed algorithm
as well as the comparison of the Gauss-Seidel method and FFT that are used for
solving Eqs. (18) and (19), we present in Table 2 for all the experiments with the
image sizes, the SNRs, the numbers of total iteration needed to satisfy the given
threshold εr, and the computational times using Gauss-Seidel and FFT respec-
tively. From this table, when compared with FFT, the utilization of Gauss-Seidel
method reduces the computational cost, and the larger the image size, the more
this reduction will be. Here, we omit the comparison of the proposed algorithm
with the standard gradient descent method that is used to solve Eq. (7), which
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can found in [33]. Moreover, all computations were done using Matlab R2011a
on an Intel Core I5 machine (Figs. 1, 2 and 3).

5 Conclusion

Recently, the augmented Lagrangian method has been successfully used to mini-
mize the classical ROF functional [29] and Euler’s elastica based functionals [26].
In [33], inspired by the idea in [26], we developed a special technique to treat the
mean curvature based image denoising model [31] using augmented Lagrangian
method, and thus converted the original challenging minimization problem to be
several tractable ones, some of which have closed form solutions while the other
of which can be solved using FFT. In this work, we consider to use Gauss-Seidel
method to substitute FFT for solving those equations in order to further reduce
the computational cost. The numerical experiments demonstrate that the sub-
stitution is feasible and saves considerable computational effort especially for
images of large sizes.
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