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Abstract. In this paper, we consider the �p-�q minimization problem
with 0 < p, q ≤ 2. The problem has been studied extensively in image
restoration and compressive sensing. In the paper, we first extend the
half-quadratic algorithm from �1-norm to �p-norm with 0 < p < 2. Based
on this, we develop a half-quadratic algorithm to solve the �p-�q problem.
We prove that our algorithm is indeed a majorize-minimize approach.
From that we derive some convergence results of our algorithm, e.g. the
objective function value is monotonically decreasing and convergent. We
apply the proposed approach to TV-�1 image restoration and compressive
sensing in magnetic resonance (MR) imaging applications. The numerical
results show that our algorithm is fast and efficient in restoring blurred
images that are corrupted by impulse noise, and also in reconstructing
MR images from very few k-space data.
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1 Introduction

In this paper, we consider the following �p-�q minimization problem

min
u

{λ

p
‖Ψu‖p

p +
1
q
‖Au − f‖q

q

}
(1)

where 0 < p, q ≤ 2 and u ∈ R
n is an image represented by a vector by con-

catenating the columns. Here, Ψ can be a sparsifying operator such as a wavelet
transform or a regularization operator such as the discrete gradient operator;
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and A can be a sampling operator or a blurring operator. Problem (1) has been
studied extensively in image processing and compressive sensing. For example,
if p = 1, q = 2, and Ψ is the discrete gradient operator, then (1) is the TV-
�2 minimization problem. It has been successfully applied to image restoration
[20,37,39] because of its good property in preserving edges. TV-�1 model (i.e.
q = 1) has also been successfully applied to applications such as impulse noise
removal [26,41], image cartoon-texture decomposition [45], feature selection [45],
multiscale decomposition [46], and computer vision [10].

When A is a sampling operator, model (1) with 0 ≤ p ≤ 1 and q = 2 has
received a lot of attention lately because of the introduction of compressive sens-
ing techniques (‖u‖0 is defined to be the number of nonzero entries in u). The
techniques allow high resolution images and signals to be reconstructed from
a small amount of data [6,7,17]. There, the linear constrained minimization
problems are considered. Unfortunately, as p = 0, the constrained minimiza-
tion problem is NP-hard [1]. For this reason, different approaches are used to
approximate the �0-norm [3,14,23,29,30,34], or alternatively one solves the �1-
norm [5,20,32,47] or the non-convex �p-norm [12–14] problem with 0 < p < 1.
The application of compressive sensing with p = 1 and q = 2 to magnetic res-
onance (MR) image reconstruction can be found in [7,27]. There it was shown
that perfect reconstruction of the Shepp-Logam phantom is possible from 22
radial lines or 9% of the k-space data. For real images which are less sparse
than the synthetic phantoms, one can obtain improved results by having both
a wavelet transform and a discrete gradient in the objective function. However,
the �1-norm regularized model can not get good results from fewer k-space data.
See [27].

Problem (1) with 0 < p < 1 is a non-convex optimization problem. Theoret-
ical work [15,38] has justified the non-convex approach as it guarantees perfect
reconstruction under a less restrictive condition than that would be needed by
�1 minimization. There are quite a few algorithms for solving the non-convex
problem, see [4,12–14,35]. The numerical results in [12,13] show that the per-
fect MR image can be recovered from 10 radial lines (i.e. 3.8 % of the k-space
data) for some 0 < p < 1. In [12], a fast algorithm based on the p-shrinkage
reduces the number of lines further to 9. For more details on p-shrinkage, one
may consult [43] where the 1/2-theresholding algorithm was studied. In [42], the
author analyzed the effectiveness of problem (1) in recovering sparse signals. The
results showed that if p ∈ [1/2, 1), then the smaller the p is, the sparser the �p-
norm regularization solution will be; and if p ∈ (0, 1/2], there are no significant
differences in the sparsity of the solution.

In this paper, we propose a half-quadratic algorithm (HQA) to solve (1)
for 0 < p, q ≤ 2. We prove that our algorithm is indeed a majorize-minimize
algorithm [11,24,25] for solving (1) and from that some convergence results can
be obtained immediately. For example, we show that the objective function value
is monotonically decreasing and convergent. We also give the convergence rate of
the method for 1 ≤ p, q ≤ 2. We test our algorithms on two applications: (i) TV-
�1 minimization problem, and (ii) non-convex �p-�2 compressive sensing. Problem
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(i) is for restoring blurred images that are corrupted by impulse noise, and our
algorithm can reach high SNR value in less CPU time than the augmented-
Lagrangian method (ALM) in [41] and the fast total variation deconvolution
method (FTVDM) in [44]. Problem (ii) is for reconstructing MR images from few
k-space data, and our algorithm can get better results with less computational
cost than the p-shrinkage algorithm in [12].

The outline of the paper is as follows: In Sect. 2, we first derive our HQA
for model (1) and then adapt it to solve the TV-�1 minimization problem and
non-convex �p-�2 compressive sensing problem. In Sect. 3, we prove that our
HQA is indeed a majorize-minimize algorithm, and hence we derive some con-
vergence results for the algorithm. Comparison with the ALM, FTVDM and
the p-shrinkage algorithm [12] are given in Sect. 4. Finally Sect. 5 is on some
concluding remarks.

2 The Half-Quadratic Approach for �p-�q Minimization
Problem

The half-quadratic regularization approach has been used in image processing
[11,19]. In [31], the authors showed the equivalence of the HQ minimization and
the gradient linearization iterations. The HQ technique is based on the fact that,
if 0 �= t ∈ R, then

|t| = min
v>0

{vt2 +
1
4v

} (2)

and the minimum value is reached at v = 1
2|t| . Note that the function vt2+1/(4v)

is quadratic in t but not in v and hence the name half-quadratic. In this section,
we first study the general form of (2) for 0 < p < 2. Then we derive our HQA
to solve (1) and adapt it to the TV-�1 minimization problem and compressive
sensing.

2.1 The Half-Quadratic Algorithm

The following lemma shows us the corresponding formula of (2) for | · |p with
0 < p < 2.

Lemma 1. For any 0 < p < 2, if 0 �= t ∈ R, then there exist positive constants
α and ξ such that

|t|p = min
v>0

{
vt2 +

1
ξvα

}
. (3)

Proof: Let us first assume that α, ξ > 0 and define

f(v, t) := vt2 +
1

ξvα
. (4)
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Then f(v, t) is convex with respect to v > 0 for any fixed t �= 0. In addition,
f(v, t) → ∞ as either v → 0 or v → ∞. The minimizer of f(v, t) with respect to
v is therefore given by solving f ′

v(v, t) = 0 and is equal to

v∗ =
(

α

ξt2

) 1
1+α

. (5)

Substituting (5) into (4), the minimum value is

f(v∗, t) =
[ (

α

ξ

) 1
1+α

+
1
ξ

(
ξ

α

) α
1+α ]

t
2α

1+α .

Since we want the minimum value to be |t|p for any t �= 0, we set
⎧
⎨
⎩

2α/(1 + α) = p,(
α
ξ

) 1
1+α

+ 1
ξ

(
ξ
α

) α
1+α

= 1.

Solving the system for α and ξ, we have

α =
p

2 − p
and ξ =

2
2

2−p

(2 − p) · p
p

2−p

. (6)

Clearly both α and ξ are positive for any fixed 0 < p < 2. �

Remarks

(a) As an example, for p = 1/2, we have ξ = 28/3/3 and α = 1/3. For p = 1, we
have α = 1 and ξ = 4, and hence (3) reduces to (2). Note that we would like
to have α > 0 so that the functional f(v, t) is convex with respect to v for
any fixed t �= 0. By (5) and (6), we have

v∗ =
p

2
|t|p−2. (7)

(b) From the above lemma, we know that for fixed α, ξ > 0 of (6) and any t �= 0,
the minimum of (3) is reached at the stationary point of f(v, t) w.r.t v, which
is an interior point of the open, convex, feasible set R

+.

Next we apply (3) to solve (1). To simplify the discussions, we first consider
the case where 0 < p, q < 2, and leave the case where p and/or q = 2 later.

Case 1: 0 < p, q < 2. Notice that Lemma 1 holds only for t �= 0 as negative
power of |t| appears in v∗, see (7). Hence in order to apply (3), we need to smooth
(1) first. In the following, we denote |ρ|ε :=

√
ρ2 + ε for any ρ ∈ R and ε > 0.

The smoothed �p-�q problem of (1) is

min
u

{λ

p
‖Ψu‖p

p,β +
1
q
‖Au − f‖q

q,γ

}
=: min

u
{Φβ,γ(u)} (8)



82 R.H. Chan and H.-X. Liang

where ‖Ψu‖p
p,β :=

∑n
i=1 |Ψiu|pβ and ‖Au − f‖q

q,γ =:
∑n

i=1 |Aiu − fi|qγ , with β
and γ being small positive numbers, and Ψi and Ai are the ith rows of Ψ and A
respectively. Applying (3) to (8), problem (8) becomes

min
u

{
n∑

i=1

[
λ

p
min
vi>0

(
vi|Ψiu|2β +

1
ξpv

αp

i

)
+

1
q

min
wi>0

(
wi|Aiu − fi|2γ +

1
ξqw

αq

i

)]}

= min
u,v>0,w>0

{
n∑

i=1

[
λ

p

(
vi|Ψiu|2β +

1
ξpv

αp

i

)
+

1
q

(
wi|Aiu − fi|2γ +

1
ξqw

αq

i

)]}

=: min
u,v>0,w>0

{L(u,v,w)}, (9)

where v,w > 0 mean that all the components of v,w are greater than 0. Here
ξi and αi, i = p, q are scalars given by (6).

To solve (9), we apply the alternating minimization procedure, namely,

vk+1 = arg min
v>0

L(uk,v,wk), (10)

wk+1 = arg min
w>0

L(uk,vk+1,w), (11)

uk+1 = arg min
u

L(u,vk+1,wk+1). (12)

By (7), we know that (10) and (11) have explicit component minimizers

vk+1
i =

p

2
|Ψiuk|p−2

β and wk+1
i =

q

2
|Aiuk − fi|q−2

γ . (13)

Note that L(u,vk+1,wk+1) is continuously differentiable in u. Hence uk+1 in
(12) is the solution of

0 = ∇uL(u,vk+1,wk+1) = λΨ�Dβ(uk)Ψu + A�Dγ(uk)(Au − f), (14)

where Dβ(uk) and Dγ(uk) are diagonal matrices with their ith diagonal entries
being

2
p
vk+1

i = |Ψiuk|p−2
β and

2
q
wk+1

i = |Aiuk − fi|q−2
γ (15)

respectively. Equation (14) provides us an iterative scheme for finding the mini-
mizer of (8).

Case 2: p and/or q = 2. In that case, the corresponding term in (1) is quadratic
and differentiable. So there is no need to apply the half-quadratic technique (3)
to the term. However, one can easily check by differentiation of (1) that (14)
and (15) are still valid. More precisely, if p = 2, then differentiation of the first
term in (1) gives λΨ�Ψu. But by (15), Dβ(uk) ≡ I, the identity matrix and
hence the first term of (14) also reduces to λΨ�Ψu. Similarly, if q = 2, then
Dγ(uk) ≡ I and (14) still holds. In particular, if p = q = 2, then (14) reduces
to the least-squares problem as expected, and the minimizer u can be obtained
in one iteration. In the following discussions, we will exclude this trivial case
p = q = 2.
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Thus combining Case 1 and Case 2, we see that (14) holds for 0 < p, q ≤ 2. We
summarize our half-quadratic algorithm (HQA) for the smoothed �p-�q problem
(8) below:

(1) Initialize u0;
(2) For l = 0, 1, · · · until convergence, find uk+1 by solving (cf (14))

(
λΨ�Dβ(uk)Ψ + A�Dγ(uk)A

)
u = A�Dγ(uk)f , (16)

where Dβ(·) and Dγ(·) are diagonal matrices given in (15).

To find the solution to the �p-�q problem (1), we can use a continuation
method and apply HQA to a sequence of {βl, γl} going to zero. We will dis-
cuss the implementation in more details in the section on numerical tests, see
Algorithm 1 in Sect. 4.

2.2 Half-Quadratic Algorithm for TV-�1 and Compressive Sensing

Let us consider HQA (16) for two specific examples: TV-�1 image restoration
and compressive sensing. The TV-�1 minimization problem is of the form:

min
u

{
λ‖∇u‖1 + ‖Au − f‖1

}
, (17)

where ‖∇u‖1 :=
∑n

i=1

√
[(G1)iu]2 + [(G2)iu]2 with (Gj)i representing the ith

row of the finite difference operator in the xj-coordinate. The smoothed version
of (17) is

min
u

{
n∑

i=1

[λ|∇ui|β + |Aiu − fi|γ ]

}
, (18)

where |∇ui|β :=
√

[(G1)iu]2 + [(G2)iu]2 + β and β, γ → 0. Letting p = q = 1,
Ψ = G in (15) and (16), we see that (16) should be replaced by:

{
λ

2∑
j=1

[G�
j Dβ(uk)Gj ] + A�Dγ(uk)A

}
u = A�Dγ(uk)f , (19)

where Dβ(uk) and Dγ(uk) are diagonal matrices with their ith diagonal entries
being |∇uk

i |−1
β and |Aiuk − fi|−1

γ respectively.
Next we consider HQA for MR image reconstruction problem. In [27], a

regularization term combining a discrete gradient ∇ and an orthogonal wavelet
W [8] is considered for 0 < p ≤ 1:

min
u

{
‖∇u‖p

p + δ‖Wu‖p
p : RFu = f

}
. (20)

Here R is a selection matrix (a diagonal matrix) and F is the Fourier transform.
As mentioned in [12], it is sufficient to use δ = 1 in (20); and for gradient-sparse
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images, we can simply take δ = 0. Problem (20) is related to the minimization
problem

min
u

{λ

p

(
‖∇u‖p

p + δ‖Wu‖p
p

)
+

1
2
‖RFu − f‖22

}
, (21)

where λ is the Lagrange multiplier. As before, since the data fitting term is
quadratic, we keep it intact, and we smooth only the p-norm terms. Hence we
have the following smoothed problem:

min
u

{λ

p

n∑
i=1

(
|∇ui|pβ + δ|Wiu|pγ

)
+

1
2
‖RFu − f‖22

}
,

with β, γ → 0. Correspondingly, Eq. (16) should be replaced by:

[
λ
( 2∑

j=1

[G�
j Dβ(uk)Gj ] + δW�Dγ(uk)W

)
+ F ∗RF

]
u = F ∗Rf , (22)

where F ∗ is inverse Fourier transform, Dβ(uk) and Dγ(uk) are diagonal matrices
with their ith diagonal entries being |∇uk

i |p−2
β and |Wiuk|p−2

γ respectively.

3 Convergence Analysis

In this section, we analyze the convergence of the HQA (16) based on the con-
vergence property of the majorize-minimize algorithm (MMA) in [11,24,25,40]
for fixed β, γ. We first show that Φβ,γ(uk) is monotonically decreasing and con-
vergent for 0 < p, q ≤ 2. Then we show that uk is convergent and linearly
convergent for 1 ≤ p, q ≤ 2.

3.1 Convergence of Φβ,γ(uk) for 0 < p, q ≤ 2

The MM optimization technique [11,24,25] is to solve a minimization problem
min
u

Φβ,γ(u) by

uk+1 = arg min
u

{Q(u,uk)}, (23)

where Q(u,uk), called a tangent majorant function of Φβ,γ(u) at uk, must satisfy

Q(u,uk) ≥ Φβ,γ(u), ∀ u ∈ R
n, (24)

Q(u,uk) = Φβ,γ(u), at u = uk, (25)
∇1Q(u,uk) = ∇Φβ,γ(u), at u = uk. (26)

Here, ∇1Q(u,uk) denotes the partial derivative with respect to the first vector
variable. Convergence analysis of the MMA can be found in [11,24,25].

For the smoothed �p-�q problem (8), if we define Q(u,uk) := L(u,vk+1,wk+1),
then our HQA (12) can be written as

uk+1 = arg min
u

L(u,vk+1,wk+1) = arg min
u

{Q(u,uk)}, (27)
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which is of the same form as (23). For 0 < p, q < 2, substituting (13) into (27),
we obtain the explicit form of Q(u,uk):

Q(u,uk) =
n∑

i=1

[
λ

p

(p

2
|Ψiuk|p−2

β |Ψiu|2β +
2 − p

2
|Ψiuk|pβ

)
+

1
q

(q

2
|Aiuk − fi|q−2

γ |Aiu − fi|2γ +
2 − q

2
|Aiuk − fi|pγ

)]
.(28)

We recall that when p or q is equal to 2, there is no need to smooth the corre-
sponding term as it is already differentiable. Hence if we use the convention that
β = 0 (or respectively γ = 0) whenever p = 2 (or respectively q = 2), then (28)
holds for all 0 < p, q ≤ 2.

Lemma 2. Let 0 < p, q ≤ 2. For any fixed β, γ > 0, the HQA for the smoothed
�p-�q problem (8) is the same as an MMA with tangent majorant function
Q(u,uk) defined by (28).

Proof: Since our HQA (12) is rewritten as (27) with Q(u,uk) given by (28), we
only need to prove that (24)–(26) holds for such Q. Substituting u = uk in (28)
and using the definition of Φβ,γ(u) in (8), we see that Q(uk,uk) = Φβ,γ(uk),
which is (25). To prove that Q satisfies (24), we use the Young inequality, which
states that (xa/a + yb/b) ≥ xy for all x, y ≥ 0, a, b ≥ 1 and 1/a + 1/b = 1. Let
us consider the case where 0 < p < 2 first, and set

x = |Ψiuk|
(p−2)p

2
β |Ψiu|pβ , y = |Ψiuk|

(2−p)p
2

β , a =
2
p
, b =

2
2 − p

.

Then Young’s inequality implies that

p

2
|Ψiuk|p−2

β |Ψiu|2β +
2 − p

2
|Ψiuk|pβ ≥ |Ψiu|pβ .

Clearly, the inequality becomes a trivial equality when p = 2. Similarly, we can
show that

q

2
|Aiuk − fi|q−2

γ |Aiu − fi|2γ +
2 − q

2
|Aiuk − fi|pγ ≥ |Aiu − fi|qγ ,

for all 0 < q ≤ 2. Then by taking the summation, we immediately have Q(u,uk)≥
Φβ,γ(u); and hence (24) holds. Finally by taking the derivatives of Φβ,γ(u) and
Q(u,uk) with respect to u, we have

∇Φβ,γ(u) = λΨ�Dβ(u)Ψu + A�Dγ(u)(Au − f), (29)
∇1Q(u,uk) = λΨDβ(uk)Ψu + A�Dγ(uk)(Au − f), (30)

where Dβ(·) and Dγ(·) are defined as in (14). Substituting u = uk into (29) and
(30), we immediately have (26). �

Based on Lemma 2, we can derive the following fundamental convergence
theorem.
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Theorem 1. Let 0 < p, q ≤ 2. For the sequence {uk} generated by the HQA,
we have that {Φβ,γ(uk)} is monotonically decreasing and convergent.

Proof: The theorem is a direct result of Lemma 2. First, {Φβ,γ(uk)} is bounded
from below by 0. In Lemma 2, we have shown that the HQA is an MMA, which
implies that

Φβ,γ(uk+1) ≤ Q(uk+1,uk) ≤ Q(uk,uk) = Φβ,γ(uk). (31)

Here the first inequality and the last equality follow from (24) and (25), while
the second inequality holds because uk+1 is a minimizer of Q(u,uk). �

3.2 Convergence of uk for 1 ≤ p, q ≤ 2

Note that if 0 < p, q < 1, the �p-�q minimization problem is non-convex. Hence,
in the following, we discuss the convergence of uk for 1 ≤ p, q ≤ 2 only. In order
that uk is solvable from (16) and hence our HQA will not break down, we need
the following assumption:

ker(Ψ�Ψ) ∩ ker(A�A) = {0}. (32)

We remark that this assumption is very general and usually satisfied. For exam-
ple, in regularization problems, Ψ is usually a difference operator, and hence
is a high-pass filter; whereas A is a blurring operator, and hence is a low-pass
filter. Therefore, (32) holds. For compressive sensing, Ψ is usually taken to be
an orthogonal transform and we have Ψ�Ψ = I. Hence, ker(Ψ�Ψ) = {0} which
implies (32) holds for any A.

In [11,40], the authors gave the convergence proof of general MMAs when the
objective function Φ and its corresponding tangent majorant function Q satisfy
Hypotheses 4.1 and 4.2 there. The convergence proof for our HQA will follow
closely the proofs there. More precisely, we will show that our Φβ,γ defined in (8)
and our Q defined in (27) do satisfy the hypotheses, and hence the convergence
follows immediately. Let us write out the hypotheses below.

Hypothesis 1. [Hypothesis 4.1 in [11]]

1. Φ is twice continuously differentiable and strictly convex.
2. Φ is coercive, i.e., lim

‖u‖2→∞
Φ(u) = ∞.

3. Φ is bounded from below.

Hypothesis 2. [Hypothesis 4.2 in [11]]

(a) There exists a properly defined function C : Rn → R
n×n such that

(i) Q(u,v) = Φ(v)+(u − v)�∇Φ(v)+ 1
2 (u − v)�C(v)(u − v) for all u,v ∈

R
n.

(ii) C is continuous.
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(iii) There exists a constant η such that, for the smallest eigenvalue λmin(C(v))
of C(v), the following inequality holds: λmin(C(v)) ≥ η > 0, for all v ∈
R

n.
(b) Φ(u) ≤ Q(u,v) for all u,v ∈ R

n.

Lemma 3. Let 1 ≤ p, q ≤ 2 and ker(Ψ�Ψ) ∩ ker(A�A) = {0}. Then Φβ,γ(u)
defined in (8) satisfies Hypothesis 1. In particular, Φβ,γ(u) has a unique mini-
mizer.

Proof: By the definition of Φβ,γ in (8), it is obvious that Φβ,γ is twice continu-
ously differentiable and bounded from below by 0. We thus only need to prove
the strict convexity and coercivity.

We start with the strict convexity. Taking derivatives on both sides of (29),
we have

∇2Φβ,γ(u) = λΨ�Pβ(u)Ψ + A�Pγ(u)A,

where Pβ(u) and Pγ(u) ∈ R
n×n are the diagonal matrices with their ith diagonal

entries being |Ψiu|p−4
β (β +(p−1)|Ψiu|2) and |Aiu−fi|q−4

γ (γ +(q−1)|Aiu−fi|2)
respectively. Here recall our convention that when p or q = 2, the corresponding
β or γ should be set to 0 because there is no need to smooth the term. Bounding
each diagonal entry from below, we have

∇2Φβ,γ(u)  c1Ψ
�Ψ + c2A

�A,

where

c1 =:

{
λβ

|‖Ψ‖∞‖u‖∞|4−p
β

, 1 ≤ p < 2,

λ, p = 2,
c2 =:

{
γ

|‖A‖∞‖u‖∞+‖f‖∞|4−q
γ

, 1 ≤ q < 2,

1, q = 2.

By the assumption (32), we have ∇2Φβ,γ(u) � 0, and the strict convexity of
Φβ,γ(u) is proven.

Next we show the coercivity. Note that f(·) = | · |p is convex for p ≥ 1, which
implies that

1
n

n∑
i=1

f(xi) ≥ f

(
1
n

n∑
i=1

xi

)
. (33)

We rewrite Φβ,γ in (8) into a summation form and then apply (33). Then we
have

Φβ,γ(u) =
λ

p

n∑
i=1

|Ψiu|pβ +
1
q

n∑
i+1

|Aiu − fi|qγ

≥ λn

p

( 1
n

n∑
i=1

|Ψiu|β
)p

+
n

q

( 1
n

n∑
i=1

|Aiu − fi|γ
)q

. (34)



88 R.H. Chan and H.-X. Liang

Next we apply the inequality
∑

i |ai| ≥ √∑
i |ai|2 to (34), then we have

Φβ,γ(u) ≥ λn1−p

p

(√
u�Ψ�Ψu + βn

)p

+
n1−q

q

(√
(Au − f)�(Au − f) + γn

)q

≥ c3

[(√
u�Ψ�Ψu + βn

)p

+
(√

(Au − f)�(Au − f) + γn
)q

]
, (35)

where c3 = min{λn1−p/p, n1−q/q}. Now, we prove the coercivity of Φβ,γ(u) by
contradiction. Define

φβ,γ(u) = u�(ΨT Ψ + A�A)u − 2f�Au + ‖f‖22 + (β + γ)n.

Since Ψ�Ψ + A�A � 0, σ2 =: λmin(Ψ�Ψ + A�A) > 0. Thus, if ‖u‖2 → ∞, we
see that lim‖u‖2→∞

φβ,γ(u)

‖u‖2
2

≥ σ2. Hence, φβ,γ(u) is coercive, i.e. for any M0 > 0,
there exists M1 > 0, for any ‖u‖2 ≥ M1, then we have φβ,γ(u) > M0. Suppose
that Φβ,γ(u) is non coercive, i.e.

lim
‖u‖2→∞

Φβ,γ(u) �= ∞.

Thus, for the above M0, for any M2 ≥ M1, there exists ‖u0‖2 ≥ M2, but yet
Φβ,γ(u0) ≤ c3 min{(M0/2)p, (M0/2)q}. Together with (35), we have

u�
0 Ψ�Ψu0 + βn ≤ M0

2
,

(Au0 − f)�(Au0 − f) + γn ≤ M0

2
.

Summing these two inequalities up, we have φβ,γ(u0) ≤ M0, which is a contra-
diction to the coercivity of φβ,γ(u). �

Regarding Hypothesis 2, in fact, we cannot show that Hypothesis 2 holds for
arbitrary vectors v. We can only show that it holds for v = uk, the sequence
generated by HQA. However, as we will see later in Theorem 2, it will be enough
for us to prove the convergence of HQA.

Lemma 4. Let 1 ≤ p, q ≤ 2 and ker(Ψ�Ψ) ∩ ker(A�A) = {0}. Then Φβ,γ(u)
defined in (8) and Q(u,uk) defined in (27) satisfy Hypothesis 2 at v = uk. In
particular, the coefficient matrix of the linear system (16) is invertible.

Proof: By definition of Q(u,uk) in (28), Q(u,uk) is quadratic in u and its
Hessian matrix is given by

∇2
1Q(u,uk) = λΨ�Dβ(uk)Ψ + A�Dγ(uk)A, (36)

which is independent of u. Taking the Taylor expansion for Q(u,uk) at uk, we
have

Q(u,uk) = Q(uk,uk) + 〈∇1Q(uk,uk),u − uk〉 +
1

2
(u − uk)�∇2

1Q(uk,uk)(u − uk).
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Since we have proven that the HQA is indeed an MMA in Lemma 2, we can
replace Q(uk,uk) and ∇1Q(uk,uk) by Φβ,γ(uk) and ∇Φβ,γ(uk) respectively in
the equality above and then we obtain

Q(u,uk) = Φβ,γ(uk)+ 〈∇Φβ,γ(uk),u − uk〉+
1
2
(u − uk)�∇2

1Q(uk,uk)(u − uk).

Notice that {Φβ,γ(uk)} is bounded from below by 0 from the definition in (8).
In addition, recalling that {Φβ,γ(uk)} is monotonically decreasing and bounded
from above by Φβ,γ(u0) by (31). Therefore, by coercivity, see Hypothesis 1(b),
{‖uk‖2} must be bounded from above. Denote the bound by M . Recalling the
definition of Dβ(uk),Dγ(uk) in (16), we have

λmin

(∇2
1Q1(uk,uk)

) ≥ λmin

(
c4Ψ

�Ψ + c5A
�A

)
:= η, (37)

where

c4 =
{ λ

|||Ψ ||∞M |β , 1 ≤ p < 2,

λ, p = 2,
c5 =

{ 1
|M‖A‖∞+‖f‖∞|γ , 1 ≤ q < 2,

1, q = 2.

By (32), η > 0. Hypothesis 2(a)(iii) holds.
Hypothesis 2(b) is just (24), and hence is true. Finally notice that the coef-

ficient matrix of the linear system in (16) is precisely ∇2
1Q(uk,uk) in (36) and

hence by (37), it is invertible. �

Since Hypothesis 2 is only valid for uk and not for arbitrary vectors v, we
cannot directly apply the convergence theorems in [11]. However, the proof in
[11] can easily be adapted to prove the following two convergence theorems for
HQA.

Theorem 2. Let 1 ≤ p, q ≤ 2 and ker(Ψ�Ψ) ∩ ker(A�A) = {0}. For the
sequence {uk} generated by HQA, we have

(a) lim
k→∞

‖uk − uk+1‖2 = 0;

(b) {uk} converges to the unique minimizer u∗ of Φβ,γ(u) from any initial guess
u0.

Proof:

(a) We see from (36) that Q(u,uk) is quadratic in u. Taking Taylor expansion
of Q(u,uk) at uk+1, we have

Q(u,uk) = Q(uk+1,uk) + 〈∇1Q(uk+1,uk),u − uk+1〉
+

1
2
(u − uk+1)�∇2

1Q(uk,uk)(u − uk+1). (38)

By (23), we have ∇1Q(uk+1,uk) = 0. By taking u = uk in (38) and using
(37), we thus have

Q(uk,uk) ≥ Q(uk+1,uk) +
η

2
‖uk − uk+1‖22,
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where η > 0. Together with (31), we obtain that

Φβ,γ(uk) − Φβ,γ(uk+1) ≥ Q(uk,uk) − Q(uk+1,uk) ≥ η

2
‖uk − uk+1‖22.(39)

By Theorem 1, the convergence of {Φβ,γ(u)} implies that

lim
k→0

Φβ,γ(uk) − Φβ,γ(uk+1) = 0

Together with (39) and η > 0, we have lim
k→∞

‖uk − uk+1‖2 = 0.

(b) By the proof for Lemma 4, we know that the sequence {‖uk‖2} is bounded
from above. Hence it converges to the unique minimizer u∗ if and only if all
convergent subsequences of {uk} converge to u∗. Let {ukj } be an arbitrary
convergence subsequence of {uk} that converges to ū. To finish the proof for
the theorem, we only need to prove that ū = u∗. Since Q(u,ukj ) is quadratic
in u, we have

Q(u,ukj ) = Q(ukj ,ukj ) + 〈∇1Q(ukj ,ukj ),u − ukj 〉
+

1
2
(u − ukj )�∇2

1Q(ukj ,ukj )(u − ukj ).

By taking the partial derivative with respect to u and substituting (26), we
then have

∇1Q(u,ukj ) = ∇Φβ,γ(ukj ) + ∇2
1Q(ukj ,ukj )(u − ukj ).

∇1Q(u,v) is continuous since Φβ,γ is twice continuously differentiable by
Hypothesis 1(a), and C(v) = ∇2

1Q(v,v) is continuous by Hypothesis 2(a)(ii).
Letting u = ukj+1 and using (23), we then have

0 = ∇1Q(ukj+1,ukj ) = ∇Φβ,γ(ukj ) + ∇2
1Q(ukj ,ukj )(ukj+1 − ukj ). (40)

By (a), we know that lim
j→∞

‖ukj+1−ukj ‖2 = 0. This implies that lim
j→∞

ukj+1 =

ū. Taking limits to the both sides of (40), we obtain

0 = lim
j→∞

∇1Q(ukj+1,ukj )

= ∇1Q( lim
j→∞

ukj+1, lim
j→∞

ukj )

= ∇1Q(ū, ū) = ∇Φβ,γ(ū) + ∇2
1Q(ū, ū)(ū − ū) = ∇Φβ,γ(ū).

By the uniqueness of the minimizer, see Lemma 3, we can conclude that
ū = u∗. �

Theorem 3. Let 1 ≤ p, q ≤ 2 and ker(Ψ�Ψ) ∩ ker(A�A) = {0}. Let u∗ be the
unique minimizer of Φβ,γ(u) and

Λ := 1 − λmin

(
∇2

1Q(u∗,u∗)−1∇2Φβ,γ(u∗)
)
.

Then Λ < 1 and the sequence {Φβ,γ(uk)} has a linear convergence rate of at
most Λ while the sequence {uk} is r-linearly convergent with a convergence rate
of at most

√
Λ.

To prove Theorem 3, we can follow the proof of Theorem 6.1 in [11].
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4 Numerical Results

In this section, we test our algorithm on deblurring images corrupted by impulse
noise and restoring MR images from few k-space data. Recall that the HQA given
in (16) is for solving the smoothed �p-�q problem (8) for a fixed pair of smoothing
parameters β and γ. To solve the original �p-�q problem (1), we apply the idea
of continuation method on HQA for a sequence of {βl, γl} going to zero. We
note that continuation methods has been used in solving TV problems before,
see [9,44]. We summarize the HQA for (1) in Algorithm 1.

Algorithm 1 The HQA for solving (1) with 0 < p, q ≤ 2:
(1) Initialize β0, γ0,u0;
(2) For l = 0, 1, · · · until stopping criteria are met, do:

(a) For k = 0, 1, · · · until stopping criteria are met, do:
(i) Initialize ul,0 = ul−1;
(ii) Get ul,k+1 by solving

(
λΨ�Dβl(u

l,k)Ψ + A�Dγl(u
l,k)A

)
u = A�Dγl(u

l,k)f , (41)

where Dβl(·) and Dγl(·) are diagonal matrices given as in (14) with β =

βl, γ = γl.
(b) Set ul to be the final solution from part (a).
(c) Update βl, γl to βl+1, γl+1.

In all the following tests, we take the stopping criteria for the inner loop as

τ := ‖∇Φβl,γl(ul,k)‖2 > 0.2,

where ∇Φβ,γ(u) has been given in (29).

4.1 Numerical Results on the TV-�1 Image Restoration

In this section, we apply Algorithm 1 to deblur images that are corrupted
by impulse noise. Here, (41) is replaced by (19) with ul,k replacing uk. The
deblurring problem has been discussed recently in many papers, see for examples
[16,41,44]. Among all these methods, the FTVDM and the ALM are the most
efficient linear algorithms; and according to the numerical results in [41], ALM
is the fastest one. Hence in this paper, we compare our HQA with FTVDM
and ALM only. The FTVDM and ALM codes we used here are provided by the
authors in [41] and we use the same parameters as in [41]. For more details on
the algorithms and the parameters, please consult [41,44].

We test three 256 × 256 images: Barbara, Bridge and Goldhill. The matrix
A is the blurring matrix corresponding to the Gaussian blur generated by the
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MATLAB command

fspecial(’Gaussian’, [7 , 7], 5).

Then salt-and-pepper noise is added to the blurred image to obtain the observed
image f . The noise levels are taken to be 30%, 40%, 50%, 60%. For all methods,
the regularization parameter λ is set to 1/13, 1/10, 1/8, 1/4 for noise level 30%,
40%, 50%, 60% respectively. In our algorithm, we initialize u0 = rand(size(f)).
As in the FTVDM, to speed up the convergence and improve the resolution qual-
ity, we take large β, γ at the beginning and reduce them gradually to smaller
ones respectively. We set βl to be 10−3, 10−4, · · · , 10−16 and γl = (βl)2. Equa-
tion (19) is solved by the conjugate gradient (CG) method. Considering that
more iterations for CG are needed with the decreasing of β, therefore we fix the
iteration number in the inner loop to be 10 × l at βl. In all tests, we consider
periodic boundary condition for the difference matrix A, as it is the boundary
conditions used in the tests in [41]. We compare the accuracy of the methods by
the signal-to-noise ratio (SNR) used in [41]. It is defined by

SNR := 10 log10
‖u − E(u)‖22

‖û − u‖22
(dB).

Here u and û denote the original image and the restored image respectively, and
E(u) is the mean gray-level value of the original image.

First we compare the speed of the three methods. Figures 1, 2 and 3 show
the timing comparison of the three algorithms. Each point in the figures show
the accumulated CPU time until that iteration and the corresponding SNR. The
results show that our method is the fastest amongst the three methods. It is also
the most accurate one.

Table 1. SNR of the restored images.

Image Method Salt-and-pepper noise
30 % 40 % 50 % 60 %

Barbara ALM 13.93 13.35 12.45 11.37
HQA 14.24 13.59 12.83 11.72

Bridge ALM 11.85 10.95 10.13 8.52
HQA 12.03 11.12 10.27 9.00

Goldhill ALM 16.08 15.03 13.78 12.05
HQA 16.50 15.32 14.10 12.72

From Figs. 1, 2 and 3, it is clear that FTVDM is the slowest amongst the
three. In order to compare the accuracy of the two faster methods ALM and
HQA more precisely, we list in Table 1 the average SNR of the recovered images
in five trials by the two methods. To compare the timing fairly, we first run ALM
until its stopping criteria [41] is satisfied, say with t0 CPU seconds. Then we let
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Fig. 1. SNR versus CPU time in seconds for “Barbara” with salt-and-pepper noise.
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Fig. 2. SNR versus CPU time in seconds for “Bridge” with salt-and-pepper noise.
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Fig. 3. SNR versus CPU time in seconds for “Goldhill” with salt-and-pepper noise.
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Fig. 4. The ratio Rk
Φ :=

Φβ,γ(uk+1)−Φβ,γ(uk)

Φβ,γ(uk)−Φβ,γ(uk−1)
versus iteration number for “Barbara”.

The ratios are less than 1, illustrating the linear convergence of {Φβ,γ(uk)}.

HQA run until the CPU time of the kth iteration is just greater than t0. Then
we record the SNR of the (k − 1)th iteration as our result for HQA. We see
from Table 1 that HQA is more accurate than ALM. Recovered images taking
Barbara for example are shown in Fig. 7 for “eyeball” illustration.

We illustrate the convergence rate of {Φβ,γ(uk)} and {uk} in our HQA as
mentioned in Theorem 3. We use the Barbara image as example. Since we do
not have the true minimizer, we use

Rk
Φ =: [Φβ,γ(uk+1) − Φβ,γ(uk)]/[Φβ,γ(uk) − Φβ,γ(uk−1)]

and
Rk

u =: [‖uk+1 − uk‖2/‖uk − uk−1‖2]
to estimate the convergence rate for {Φβ,γ(uk} and {uk} respectively. In Fig. 4,
we plot the ratio Rk

Φ against the iteration number. We see that the ratios are
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are less than 1, illustrating the linear convergence of {uk}.
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Fig. 6. The figure shows the comparison results of the FTVDM and the HQA for
Barbara image with salt-and-pepper noise removal at noise level 40 %. For HQA, in
(18), β = 10−1, 10−2, · · · , 10−17, and correspondingly γ = β2. For FTVDM, θw =
1, 22/3, · · · , 210, correspondingly, θz = 1, 2, · · · , 215. At each jump, βk, γk, θk

w, θk
z jump

to βk+1, γk+1, θ
k+1
w , θk+1

z in HQA and FTVDM.

all less than 1, indicating that {Φβ,γ(uk)} is linearly convergent as stated in
Theorem 3. In Fig. 5, we plot Rk

u against the iteration number. We see that Rk
u <

c (c is a positive constant less than 1), indicating that {uk} indeed is linearly
convergent.

In [44], the original energy functional (17) is a non-differentiable functional
of u, hence auxiliary variables w, z and regularization parameters θw, θz are
taken to approximate (17). The approximated problem is

min
w,z,u

{λ(‖|w|‖1 +
θw
2

‖w − ∇u‖22) + ‖z‖1 +
θz
2

‖z − (Bu − f)‖22}

The parameters θw and θz are upper limited to be θw = 210, θz = 215 in the
approximate problem. To speed up the convergence, θw and θz are both imple-
mented in a continuous scheme; that is, let θw and θz take small values at the
beginning and gradually increase their values to 210 and 215 respectively. Spe-
cially, a θw-sequence 20, 22/3, 24/3, · · · , 210 is tested. Accordingly, θz is set to be
20, 21, 22, · · · , 215.

A similar continuation scheme is also taken in our HQA. We take β =
10−1, 10−2, · · · , 10−17, correspondingly, γ = β2 and compare the FTVDM and
the HQA. Figure 6 shows their comparison results on the SNR versus CPU time
and SNR versus iteration number. The jump shows the improvements in SNR
as θk

w, θk
z , βk, γk change to θk+1

w , θk+1
z , βk+1, γk+1.
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30%, Salt & Pepper 40%, Salt & Pepper 50%, Salt & Pepper 60%, Salt & Pepper

By ALM, 
SNR = 13.9857dB,

Cputime=12.52s        

By ALM, 
SNR = 13.3577dB

     Cputime=11.07s       

By ALM,
SNR = 12.3986dB,

     Cputime=12.46s        

By ALM,
SNR = 11.4804dB

    Cputime=16.54s

By FTVDM, 
SNR = 13.9477dB,

Cputime=11.06s          

By FTVDM, 
SNR = 13.3776dB,

       Cputime=19.08s          

By FTVDM,
SNR = 12.376dB,

       Cputime=17.46s         

By FTVDM,
SNR = 11.3799dB,

      Cputime=16.19s 

By HQA, 
SNR = 14.2404dB,

Cputime=12.96s        

By HQA, 
SNR = 13.6344dB,

     Cputime=11.6s         

By HQA,
SNR = 12.8735dB,

     Cputime=12.82s        

By HQA,
SNR = 11.7274dB,

      Cputime=16.74s 

Fig. 7. Restored images.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=5.3374dB

By Chartrand, p = 0.5,λ = 0.0002, β
SNR = 47.8936dB, Cputime=94.26s

By Chartrand, p = 1,λ = 0.0002, β
SNR = 45.0594dB, Cputime=177.23s

By HQA, p = 0.5,λ
SNR = 68.5059dB, Cputime=28.25s

Fig. 8. The figure shows the reconstruction for the 256 × 256 Shepp-Logan phontom.
Top (left): the original Shepp-Logan image; Top (middle): the 30 radial lines on the
white pixels (11.32 % sampling); Top (right): the backprojection reconstruction with
30 views, which is poor; Bottom (left): the reconstruction from 30 views by p-shrinkage
algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage algo-
rithm with p = 1/2; Bottom (right): the reconstruction by HQA with p = 1/2.

4.2 Numerical Results on the MR Image Reconstruction

In this section, we apply Algorithm 1 to reconstruct MR image from few k-
space data. Here (41) is replaced by (22) with ul,k replacing uk. To test the
efficiency of our algorithm, we compare our algorithm and the p-shrinkage algo-
rithm by Chartrand in [12]. As in [12], we take p = 1/2. In addition, we also give
the numerical results by �1-norm regularized model for comparison. We test our
algorithm on the two images: 256 × 256 Shepp-Logan phantom and 224 × 224
Brain image. In all the tests, we set β to be 10−4, 10−5, · · · , 10−14, and γ = β
correspondingly. Moreover, we just use the simple CG method to solve the cor-
responding linear system (22).

We begin with the Shepp-Logan phantom. As in [12], because the phantom
has a very sparse gradient, we do not use the wavelet regularization, and let
δ = 0 in (20). We show the comparison results on the MR image reconstruction
from 10 radial lines (3.85% sampling), 22 radial lines (8.36% sampling), and
30 radial lines (11.32% sampling) respectively. In all the three tests, we take
λ = 0.0002. When p = 1, the p-shrinkage [12] is actually the soft-thresholding.
The results are shown in Figs. 8, 9 and 10. In all three figures, we see that
our HQA can reach better reconstruction (at least 13–16 dB better) using less
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=4.1622dB

By Chartrand, p = 0.5,λ = 0.0002, β
SNR = 44.523dB, Cputime=88.43s

By Chartrand, p = 1,λ = 0.0002, β
SNR = 42.0413dB, Cputime=270.22s

By HQA, p = 0.5,λ
SNR = 64.9791dB, Cputime=33.72s

Fig. 9. The figure shows the reconstruction for the 256 × 256 Shepp-Logan phontom.
Top (left): the original Shepp-Logan image; Top (middle): the 22 radial lines on the
white pixels (8.36 % sampling); Top (right): the backprojection reconstruction with 22
views, which is poor; Bottom (left): the reconstruction from 22 views by p-shrinkage
algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage algo-
rithm with p = 1/2; Bottom (right): the reconstruction by HQA with p = 1/2.

computational time (at least 1/2 of the time) than the p-shrinkage algorithm.
Among all the results, the �1-norm regularization model takes the most time
to obtain a suitable reconstruction image, especially when the k-space data are
very few.

Next, we apply our algorithm to recover the MR brain image in the presence
of noise. We set that the image is corrupted by the white Gaussian noise with
noise level σ = 5. Here, by error and trials, we take λ = 0.002. Our results
show that the recovered images have higher quality by the ‖∇u‖p

p regularization
model than by the ‖∇u‖p

p + ‖Wu‖p
p. Hence, here, we show the recovered results

from (22) with δ = 0. The comparison results are shown in Fig. 11. For the brain
image, we take 40 views (16.97% sampling). The results show that our HQA can
reach the best reconstruction with the clearest background in the least amount
of time.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=2.6279dB

By Chartrand, p = 0.5,λ = 0.0002, β
SNR = 30.8118dB, Cputime=395.75s

By Chartrand, p = 1,λ = 0.0002, β
SNR = 16.0182dB, Cputime=591.54s

By HQA, p = 0.5,λ
SNR = 43.7625dB, Cputime=209.1s

Fig. 10. The figure shows the reconstruction for the 256 × 256 Shepp-Logan phontom.
Top (left): the original Shepp-Logan image; Top (middle): the 10 radial lines on the
white pixels (3.85 % sampling); Top (right): the backprojection reconstruction with 10
views, which is poor; Bottom (left): the reconstruction from 10 views by p-shrinkage
algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage algo-
rithm with p = 1/2; Bottom (right): the reconstruction by HQA with with p = 1/2.
From the results, we find that it will take more time to reach a good reconstruction
from fewer k-space data. By �1-norm regularized model, it is still difficult to obtain a
good result even with much time, while the �p-norm regularized models (0 < p < 1)
do.

5 Conclusion

In this paper, we study the half-quadratic technique for �p-norm and propose an
algorithm for solving �p-�q (0 < p, q ≤ 2) minimization problem. We show that
the algorithm for the related minimization problem with regularization smooth-
ing parameters β and γ is equivalent to a majorize-minimize algorithm. Weak
convergence result for 0 < p or q < 1, and linear convergence rate for 1 ≤ p, q ≤ 2
are obtained immediately. We will consider the convergence of the original non-
smooth problems in our future work. We compare our algorithm with standard
ones in the TV-�1 minimization problem and the MR image reconstruction. The
results show that our algorithm can reach better reconstruction results with less
computational cost.
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Noisy Brain, SNR = 20.4391 Samlpling pattern Min energy, SNR=9.8788dB

By Chartrand, p = 0.5,λ = 0.002, β
SNR = 14.2263dB, Cputime=32.82s

By Chartrand, p = 1,λ = 0.002, β
SNR = 14.1887dB, Cputime=43.63s

By HQA, p = 0.5,λ
SNR = 14.4792dB, Cputime=21.42s

Fig. 11. The figure shows the reconstruction for the 224 × 224 real brain image. Top
(left): the noisy brain image with noise level σ = 5, which is generated with the
Matlab command: “imnoise(x,′ gaussian′, 0, σ2)”; Top (middle): the 40 radial lines
on the white pixels (16.97 % sampling); Top (right): the backprojection reconstruction
with 40 views, which is poor; Bottom (left): the reconstruction from 40 views by p-
shrinkage algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage
algorithm with p = 1/2; Bottom (right): the reconstruction by HQA with p = 1/2.
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