
Recovering Piecewise Smooth Multichannel
Images by Minimization of Convex Functionals

with Total Generalized Variation Penalty

Kristian Bredies(B)

Institute of Mathematics and Scientific Computing, University of Graz,
Heinrichstraße 36, 8010 Graz, Austria

kristian.bredies@uni-graz.at

http://www.uni-graz.at/~bredies

Abstract. We study and extend the recently introduced total general-
ized variation (TGV) functional for multichannel images. This functional
has already been established to constitute a well-suited convex model
for piecewise smooth scalar images. It comprises exactly the functions of
bounded variation but is, unlike purely total-variation based function-
als, also aware of higher-order smoothness. For the multichannel version
which is developed in this paper, basic properties and existence of mini-
mizers for associated variational problems regularized with second-order
TGV is shown. Furthermore, we address the design of numerical solu-
tion methods for the minimization of functionals with TGV2 penalty
and present, in particular, a class of primal-dual algorithms. Finally,
the concrete realization for various image processing problems, such as
image denoising, deblurring, zooming, dequantization and compressive
imaging, are discussed and numerical experiments are presented.

Keywords: Total generalized variation · Multichannel images · Primal-
dual algorithms · Image denoising · Image deblurring · Zooming · Dequan-
tization · Compressive imaging

1 Introduction

Many imaging problems are nowadays solved by variational methods, i.e., by
finding a minimizer of a functional which models the problem in terms of encour-
aging potential solutions of the problems by low values and penalizing unsuitable
images by high values. Typically, the variational problems are cast in the form

min
u

F (u) + Ψ(u)

where data term F models the fitness of the image u with respect to some given
data and the regularization functional Ψ represents an underlying image model
incorporating the essential features of the sought class of images. The latter func-
tional is responsible for the qualitative properties of the solutions, it is therefore
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important to choose it appropriately. As images often possess multiple channels
such as red, green, blue (RGB) or cyan, magenta, yellow, black (CYMK), such
a model should also account for multichannel data. Moreover, regarding the effi-
cient computation of numerical solutions, convexity of the objective functional
is of great significance. In terms of algorithms, it is therefore favorable to con-
sider convex models Ψ . This work is concerned with a multichannel version of the
total generalized variation (TGV), which has been introduced, in its scalar form,
in [4] and provides a well-suited convex model for piecewise smooth images. In
particular, we study methods for the efficient global minimization of associated
variational problems.

Let us discuss, along TGV, some existing regularization functionals for scalar
images which are well-known and used in mathematical image processing. The
most widely used is probably the total variation seminorm [28] which reads as

TV(u) =
∫

Ω

d|∇u| = sup
{∫

Ω

u div v dx
∣∣∣ v ∈ C1

c (Ω,Rd), ‖v‖∞ ≤ 1
}

.

where |∇u| denotes the variation-measure of the distributional derivative Du
which is a vector-valued Radon measure. Its main feature is the incorporation of
discontinuities along hypersurfaces making it a suitable model for images with
edges. Indeed, solutions of variational problems with total-variation regulariza-
tion admit many desirable properties, most notably the appearance of sharp
edges. Unfortunately, one can also observe typical artifacts which are associated
with the regularization with TV. The most prominent of these artifacts is the so-
called staircasing effect, i.e., the undesired appearance of edges [21,36]. This is a
side-effect of the model assumption that an image consists is piecewise constant
up to a discontinuity set. Natural images are, however, often piecewise smooth
due to shading, for instance. Several modified models have been suggested to
overcome this limitation. The most famous is the Mumford-Shah model [20]
which reads as

ΨMS(u) =
∫

Ω\Γ

|∇u|2 dx + βHd−1(Γ )

and measures piecewise smoothness on Ω up to the discontinuity set Γ whose
length (or surface measure) is also penalized. This functional can be well-defined
on the set of special functions of bounded variation SBV(Ω). However, ΨMS

is non-convex which implies considerable analytical and practical effort when
solving associated variational problems [1,24]. As we are interested in algorithms
which can efficiently and globally solve variational imaging problems, we focus,
in the following, on convex problems as their stationary points are always global
minimizers. An illustration of the effect for most of these models applied to the
image denoising problem with L2-discrepancy term can be found in Fig. 1.

A first approach to reduce staircasing artifacts in a convex way is to smooth
out the singularity at 0 for the penalization of the gradient [35]:

TVε(u) =
∫

Ω

dϕε(∇u), ϕε(t) =
√

|t|2 + ε2 − ε.
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Fig. 1. Comparison of different first- and second-order image models for variational
image denoising with L2-discrepancy. Left column: The original image (top) and noisy
input image (bottom). Columns 2–4: Results for variational denoising with different
regularization terms. The parameters were optimized for best PSNR.

Here, ϕε(d∇u) has to be interpreted in the sense of a function of a Radon
measure. It can also be expressed as a dual functional:

TVε(u) = sup
{∫

Ω

u div v − ϕ∗
ε(v) dx

∣∣∣ v ∈ C1
c (Ω,Rd)

}
,

with

ϕ∗
ε(t) =

{
ε
(
1 −

√
1 − |t|2) for |t| < 1,

∞ else.

This reduces the tendency towards piecewise constant solutions. However, as
ϕε still grows as fast as | · |, discontinuities and consequently, the staircasing
effect still appears. Such an observation can generally be made for first-order
functionals penalizing the measure-valued gradient with linear growth at ∞.

One approach to overcome these defects is to incorporate higher-order deriv-
atives into the image model. An obvious choice is taking the total variation of
second order [14,19] which can also be expressed in a dual formulation using
symmetric matrix fields v : Ω → Sd×d:

TV2(u) =
∫

Ω

d|∇2u| = sup
{∫

Ω

u div2v dx
∣∣∣ v ∈ C2

c (Ω,Sd×d), ‖v‖∞ ≤ 1
}

.

Here, the derivative ∇u is modeled to be piecewise constant which has the con-
sequence that it is itself a regular function and can thus not have any discon-
tinuities. Therefore, solutions of variational problems with TV2 penalty cannot
have jump discontinuities and object boundaries become inevitably blurry.
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These effects cannot be overcome by changing the underlying second-order
differentiation operator. For instance, taking the Laplacian

‖Δu‖M =
∫

Ω

d|Δu| = sup
{∫

Ω

uΔv dx
∣∣∣ v ∈ C2

c (Ω), ‖v‖∞ ≤ 1
}

leads to a significantly weaker smoothness measure whose kernel is the set of
harmonic functions on Ω which are arbitrarily smooth. Moreover, regularity
theory for elliptic equations [30] tells us that each function u ∈ L1(Ω) with
Δu ∈ M(Ω) also belongs to the Sobolev space W 1,q

loc (Ω) for each 1 ≤ q < d/(d−1)
and hence, u can also not contain jump discontinuities.

One approach to incorporate smoothness information on different scales is to
combine first- and second-order derivatives. This can, for instance, be realized
by considering the weighted sum of TV and TV2 [23]. Another possibility is to
interpret an image u = u1 + u2 as the sum of a piecewise constant function u1

and piecewise smooth function u2. This results in infimal convolution models,
for instance, with TV and TV2:

(TV � βTV2)(u) = inf
u=u1+u2

∫
Ω

d|∇u1| + β

∫
Ω

d|∇2u2|.

Indeed, this model yields piecewise smooth functions [8]. However, plugging this
functional into variational problems given solutions which still admit staircasing
artifacts in situations where they also appear for TV-model. It seems that the
tendency of TV2 to incorporate the smoothness information of u is not strong
enough such that the TV-term is still responsible for the overall impression of
the solution. Again, changing the second-order term in the infimal convolution
to ‖Δu‖M, for instance [10], leads to results which are comparable to TV-TV2

infimal convolution.
The total generalized variation model [4] can now be motivated by the dual

formulation of (TV � βTV2) which reads as

(TV � βTV2)(u) = sup
{∫

Ω

uw dx
∣∣∣ v1 ∈ C1

c (Ω,Rd), ‖v1‖∞ ≤ 1,

v2 ∈ C2
c (Ω,Sd×d), ‖v2‖∞ ≤ β,

w = div v1 = div2v2
}

.

The total generalized variation of second order now arises from the introduction
of the additional constraint v1 = div v2:

TGV2
(β,1)(u) = sup

{∫
Ω

u div2v dx
∣∣∣v ∈ C2

c (Ω,Sd×d), ‖v‖∞ ≤ β, ‖div v‖∞ ≤ 1
}

.

It is a special case of the total generalized variation of order k and positive
weights α = (α0, . . . , αk−1) which is defined as follows:

TGVk
α(u) = sup

{∫
Ω

u divkv dx
∣∣∣ v ∈ Ck

c (Ω,Symk(Rd)),

‖divκv‖∞ ≤ ακ, κ = 0, . . . , k − 1
}

. (1)
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For a detailed description of the notions utilized here, we ask for the reader’s
patience until Sect. 2. This functional can be interpreted to measure smooth
regions as well as jump discontinuities in a convex manner. In particular, it
leads to solutions which desirable properties when used as a regularization term
for variational imaging problems.

The models presented above also extend to the multichannel case. Among
the several choices which are possible, the most obvious is just summing up
the respective regularization functionals over each channel. In this situation, the
qualitative properties of the solutions of variational problems are comparable
to the scalar versions. However, there are other choices which realize coupling
between the channels, e.g. for TV, see [7,37]. Nevertheless, these models again
lead to results which are similar to the scalar case in particular, the typical
staircasing artifacts are also present. We can therefore expect that the qualitative
properties of scalar models are generally reflected in respective multichannel
versions. This motivates to define the total generalized variation functional also
for multichannel data.

The aim of the present paper is, on the one hand, to shortly review as well as
to extend the notion of total generalized variation to multichannel images and
thus to provide a framework for color images. This is done in Sect. 2. Moreover,
we present and discuss, in Sect. 3 a class of numerical methods which are easy
to implement and suitable to solve general convex variational imaging problems
with TGV2

α-penalty. These are applied in Sect. 4 to a variety of imaging prob-
lems: denoising, deblurring, zooming, dequantization and compressive imaging.
This includes in particular a specific numerical algorithm for each of these prob-
lems. Finally, conclusions are drawn in Sect. 5.

2 Total Generalized Variation

2.1 General Theory for Scalar Functions

Let us first review the concept of total generalized variation (1) for the scalar
case as introduced [4], starting with a more detailed explanation of the notions
involved in its definition.

Throughout this section, we assume that d ∈ N, d ≥ 1 is a fixed space dimen-
sion, usually, for images, we have d = 2. Moreover, let Ω ⊂ Rd be a domain, i.e.,
a non-empty, open and connected set. We need the space of symmetric tensors
on Rd, denoted by Symk(Rd). The latter is defined, for each k ∈ N, as

Symk(Rd) = {ξ : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R
∣∣ ξ multilinear and symmetric}.

It is, however, convenient to identify elements ξ ∈ Symk(Rd) with its coefficients
{ξβ}β∈Mk

where

Mk =
{

β ∈ Nd
∣∣∣ |β| =

d∑
i=1

βi = k
}

,
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is the set of multiindices of order k. This allows to define the spaces of compactly
supported symmetric tensor fields Cm

c (Ω,Symk(Rd)) for m, k ∈ N. For symmet-
ric k-tensor fields which are smooth enough, iterated divergence operators are
defined componentwise by

(divκv)β =
∑

γ∈Mκ

κ!
γ!

∂κvβ+γ

∂xγ
for each component β ∈ Mk−κ.

Here, γ! denotes the factorial for multiindices, i.e., γ! =
∏d

i=1 γi!. Moreover,
we define the supremum norm of a compactly supported continuous symmetric
tensor field v ∈ Cc(Ω,Symk(Rd)) as

‖v‖∞ = sup
x∈Ω

{( ∑
β∈Mk

k!
β!

vβ(x)2
)1/2}

which corresponds to the ∞-norm with respect to the pointwise Frobenius norm
for tensors.

With these prerequisites, TGVk
α according to (1) makes sense for any scalar

function u ∈ L1
loc(Ω), any order k ∈ N, k ≥ 1 and any set of weights α =

(α0, . . . , αk−1) satisfying ακ > 0 for κ = 0, . . . , k − 1.
As we will later focus on total generalized variation of second order, i.e.,

k = 2, let us elaborate on the above notions in this specific case. It turns out
that TGV2

α can equally be written as

TGV2
α(u) = sup

{∫
Ω

u div2v dx
∣∣∣ v ∈ C2

c (Ω,Sd×d), ‖v‖∞ ≤ α0, ‖div v‖∞ ≤ α1

}

with Sd×d denoting the space of symmetric d × d matrices. The first and sec-
ond divergences of a symmetric matrix field are then vector and scalar fields,
respectively, given by

(div v)i =
d∑

j=1

∂vij

∂xj
, (div2v) =

d∑
i=1

∂vii

∂x2
i

+ 2
2∑

i=1

∑
j<i

∂vij

∂xi∂xj
.

Likewise, the ∞-norms of matrix and vector fields v and w, respectively, used
here are given by

‖v‖∞ = sup
x∈Ω

{( d∑
i=1

vii(x)2 + 2
d∑

i=1

∑
j<i

vij(x)2
)1/2}

,

‖w‖∞ = sup
x∈Ω

{( d∑
i=1

wi(x)2
)1/2}

.

Let us now summarize some basic properties of the total generalized varia-
tion and discuss solvability of inverse problems with TGV-regularization for
the second-order case.
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First, observe that for k = 1, it follows from the definition (1) that the total
generalized variation coincides, up to a factor, with the total variation, i.e., we
have TGVk

α = α0TV. Hence, one can indeed speak of a generalization of the
total variation.

Having defined TGVk
α according to (1), one can show that it constitutes

a proper, convex and lower semi-continuous functional on each Lp(Ω) space
(1 ≤ p < ∞) which is moreover translation and rotation invariant. The space

BGVk(Ω) = {u ∈ L1(Ω) | TGVk
α(u) < ∞}, ‖u‖BGVk = ‖u‖1 + TGVk

α(u)

is a Banach space which is independent of the weights α0, . . . , αk−1 chosen in
the definition of TGVk

α. On this space, TGVk
α is a semi-norm which vanishes

exactly on Pk−1(Ω), the space of polynomials of degree less than or equal to
k−1. It can be interpreted as a model for piecewise smooth functions as follows.
Let u be piecewise polynomials of maximal degree k − 1, i.e.,

u =
n∑

i=1

χΩi
qi

where Ω1, . . . , Ωn ⊂ Ω are disjoint Lipschitz subdomains such that Ω =
⋃n

i=1 Ωi

and qi ∈ Pk−1(Ω) for i = 1, . . . , n. Then, we have that TGVk
α is finite and

measures the jump of the derivatives, from the zeroth to the (k − 1)-st order, of
these polynomials only at the interfaces Γi,j = ∂Ωi ∩ ∂Ωj ∩ Ω:

TGVk
α(u) ≤ 1

2

n∑
i,j=1

∫
Γi,j

k−1∑
κ=0

∣∣|||(∇k−1−κ(qi − qj) ⊗ νi

)∣∣ dHd−1(x)

where ||| denotes the symmetrization of a tensor and νi the outer normal of Ωi.
In some cases, the estimate can be proven to be sharp. Again, see [4] for the
proofs and more details.

For the second-order total generalized variation it has been shown in [5] that
for u ∈ L1(Ω),

TGV2
α(u) = min

p∈BD(Ω)
α1‖∇u − p‖M + α0‖E(p)‖M.

Here, BD(Ω) denotes the space of vector fields of bounded deformation [33], i.e.,
the set of vector fields whose weak symmetrized derivative E(p) = 1

2 (∇p + ∇pT)
is a matrix-valued Radon measure. Moreover, ‖ · ‖M denotes the Radon norm
for vector-valued and matrix-valued Radon measures, respectively.

Furthermore, for bounded Lipschitz domains Ω ⊂ Rd, BGV2(Ω) coincides
with BV(Ω), the space of functions of bounded variation, in the topological
sense, i.e., there exist 0 < c < C < ∞ such that for each u ∈ BV(Ω),

c
(‖u‖1 + TGV2

α(u)
) ≤ ‖u‖1 + TV(u) ≤ C

(‖u‖1 + TGV2
α(u)

)
.

We therefore have also the usual embeddings BGV2(Ω) ↪→ Lp(Ω) for 1 ≤ p ≤
d/(d−1) which are compact for p < d/(d−1). Finally, there is also a variant of the
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Poincaré-Friedrichs inequality available which states that for a linear projection
P : Ld/(d−1)(Ω) → P1(Ω) onto P1(Ω), we can find a constant C > 0, only
depending on Ω, P and α such that

‖u − Pu‖d/(d−1) ≤ CTGV2
α(u) for all u ∈ BV(Ω). (2)

This can be used to solve the linear inverse problem

Ku = f

with TGV2
α-regularization. Indeed, existence of solutions for the Tikhonov

functional

min
u∈Lp(Ω)

‖Ku − f‖2H
2

+ TGV2
α(u)

where p ∈ (1,∞), p ≤ d/(d − 1), K : Lp(Ω) → H is linear, continuous and H
is a Hilbert space can be shown under the assumption that K is injective on
ker(TGV2

α) = P1(Ω). Proofs and more details regarding these results can be
found in [5].

2.2 Extension to Multichannel Images

In order to deal with, e.g., color images, it is convenient to have a notion of
total generalized variation also for vector-valued images u : Ω → RL for some
L ≥ 1. Here, we assume that color information can be encoded by a linear space,
for instance R3 for the RGB or YUV color space and R4 for the CYMK color
space. The space RL is then equipped with a norm | · |◦ which provides a way
to compare colors allowing to incorporate the characteristics of different color
channels.

In order to define TGVk
α for vector-valued images, we need to know the dual

norm of | · |◦ which is given, for y ∈ RL, by

|y|∗ = sup
x∈RL, |x|◦≤1

x · y.

This dual norm can now be extended to L-tuples of symmetric tensors ξ ∈
Symk(Rd)L by setting

|ξ|∗,k =
∣∣|ξ|∣∣∗, where |ξ| ∈ RL, |ξ|l =

( ∑
β∈Mk

k!
β!

ξ2β

)1/2

. (3)

Consequently, the ∞-norms for compactly supported symmetric tensor fields of
order k read as

v ∈ Cc(Ω,Symk(Rd)L) : ‖v‖∞,∗,k = sup
x∈Ω

|v(x)|∗,k.

A vector-valued version of TGVk
α for a u ∈ L1

loc(Ω,RL) can then be defined as

TGVk
α(u) = sup

{∫
Ω

L∑
l=1

ul(divkvl) dx
∣∣∣ v ∈ Ck

c (Ω,Symk(Rd)L),

‖divκv‖∞,∗,κ ≤ ακ, κ = 0, . . . , k − 1
}

. (4)
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Slightly abusing notation and since in the scalar case, it coincides with (1) up
to a positive constant, TGVk

α will in the following always refer to this definition
unless it is explicitly stated otherwise.

Example 1. An obvious choice for | · |◦ is, of course, the Euclidean norm |x|◦ =(∑L
l=1 x2

l

)1/2. It is dual to itself, so

ξ ∈ Symk(Rd)L : |ξ|∗,k =
( L∑

l=1

∑
β∈Mk

k!
β!

ξ2l,β

)1/2

which is a generalization of the Frobenius norm to Symk(Rd)L and therefore
making this space a Hilbert space. The associated TGVk

α involves, consequently,
only Hilbert norms which can be exploited in numerical computations.

With more or less effort we can see that this functional possesses basically
the same properties as TGVk

α for the scalar case. As we will use them in the
sequel, we highlight some of these properties. We start with basic observations.

Proposition 1. The functional TGVk
α is non-negative on L1

loc(Ω,RL). For
each 1 ≤ p ≤ ∞, TGVk

α restricted to Lp(Ω,RL) is proper, convex and lower
semi-continuous.

Proof. Note that for each v ∈ Ck
c (Ω,Symk(Rd)L) which satisfies the constraints

‖divκ‖∞,κ ≤ ακ, we also have that −v satisfies the same constraints. Plugging in
both v and −v, we see that we can replace

∫
Ω

∑L
l=1 uldivkvl dx by its absolute

value in (4) without changing the supremum. Hence, TGVk
α(u) ≥ 0.

To see that TGVk
α is proper, observe that TGVk

α(0) = 0. Finally, for each
v ∈ Ck

c (Ω,Symk(Rd)L) which satisfies the constraints in (4), we have divkv ∈
Cc(Ω,RL) and hence, the mapping

u �→
∫

Ω

L∑
l=1

ul divkvl dx

is in the dual space of Lp(Ω,RL). Consequently, TGVk
α is a pointwise supremum

of convex and continuous functionals on Lp(Ω,RL) which implies the convexity
and lower semi-continuity. �

The next is the observation that each of the vector-valued TGVk
α are equiv-

alent in the following sense:

Proposition 2. There are constants 0 < c < C < ∞ such that for each u ∈
L1
loc(Ω,RL), we have

c

L∑
l=1

TGVk
α(ul) ≤ TGVk

α(u) ≤ C

L∑
l=1

TGVk
α(ul). (5)

Here, TGV k
α on the left- and right-hand side has to be understood in the sense

of (1).
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Proof. Denote by |x|1 =
∑L

l=1 |xl| the 1-norm on RL whose dual is the ∞-norm
|y|∞ = maxl=1,...,L |yl|. Note that by (3),

‖ξ‖∞,k = max
l=1,...,L

|ξ|l for all ξ ∈ Symk(Rd)L. (6)

For a fixed k and an arbitrary norm | · |◦ in RL, the corresponding tensor norms
| · |∗,κ are equivalent to | · |∞,κ, i.e., there exist 0 < c < C < ∞ such that

κ = 0, . . . , k − 1 and ξ ∈ Symκ(Rd)L : C−1|ξ|∞,κ ≤ |ξ|∗,κ ≤ c−1|ξ|∞,κ.

This implies for v ∈ Ck
c (Ω,Symk(Rd)L) that

‖divκv‖∞,∗,κ ≤ ακ ⇒ ‖divκv‖∞,∞,κ ≤ Cακ,

‖divκv‖∞,∞,κ ≤ cακ ⇒ ‖divκv‖∞,∗,κ ≤ ακ.

Denoting

Kk
α = {v ∈ Ck

c (Ω,Symk(Rd))
∣∣ ‖divκv‖∞ ≤ ακ for κ = 0, . . . , k − 1},

Kk
α,∗ = {v ∈ Ck

c (Ω,Symk(Rd)L)
∣∣ ‖divκv‖∞,∗,κ ≤ ακ for κ = 0, . . . , k − 1}

and Kk
α,∞ analogously to Kk

α,∗, the latter leads to cKk
α,∞ ⊂ Kk

α,∗ ⊂ CKk
α,∞ and,

consequently,

c sup
v∈Kk

α,∞

∫
Ω

L∑
l=1

uldivkvl dx ≤ TGVk
α(u) ≤ C sup

v∈Kk
α,∞

∫
Ω

L∑
l=1

uldivkvl dx. (7)

From (6) now follows that Kk
α,∞ = (Kk

α)L, hence

sup
v∈Kk

α,∞

∫
Ω

L∑
l=1

∫
Ω

ul(divkvl) dx =
L∑

l=1

sup
vl∈Kk

α

∫
Ω

uldivkvl dx =
L∑

l=1

TGVk
α(ul).

Together with (7), this gives (5). �
Corollary 1. The kernel of TGVk

α for multichannel data reads as

ker(TGVk
α) = {u ∈ L1

loc(Ω)L
∣∣ TGVk

α(u) = 0}
=
{

u(x) =
∑

|α|≤k−1

aαxα a.e. in Ω
∣∣∣ aα ∈ RL for α ∈ Nd, |α| ≤ k − 1

}

Proof. Observe that the norm equivalence (5) gives that TGVk
α(u) = 0 if and

only if TGVk
α(ul) = 0 for l = 1, . . . , L in the sense of (1). This is in turn

equivalent to ul(x) =
∑

|α|≤k−1 aα,lx
α a.e. in Ω for aα,l ∈ R and each α ∈ Nd

with |α| ≤ k−1 and each l = 1, . . . , L. Arranging each {aα,l} to a vector aα ∈ RL

yields the result. �
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Remark 1. For the case k = 2, the statement of Corollary 1 reads as

ker(TGV2
α) = {u(x) = Ax + b a.e. in Ω

∣∣ A ∈ RL×d, b ∈ RL}. (8)

Remark 2. An even more general definition for TGV for multichannel data would
arise from choosing, for each k = 0, 1, . . ., a norm | · |◦,k on Symk(Rd)L, setting
| · |∗,k its dual norm and defining again TGVk

α as in (4), utilizing the supremum
norms associated to | · |∗,k. However, this requires, besides a model how to mea-
sure the distance of colors in the respective representation in RL, also a model
for each Symk(Rd)L. In this view, setting the dual norm as in (3) seems quite
natural.

Nevertheless, such a model is, for example, given by choosing | · |◦ as above
and defining the dual norm | · |∗,k for Symk(Rd)L as

|ξ|∗,k = sup
|x|◦≤1, |y|∗≤1

x · ξ(y, . . . , y︸ ︷︷ ︸
k times

)

where each ξl ∈ Symk(Rd) is interpreted as a multilinear mapping. This can be
interpreted as a generalization of the spectral norm for tensors of arbitrary order
(which is also known as the least cross norm). It is, however, not clear how to
treat these norms in concrete numerical implementations.

2.3 Solution of Variational Problems

Let us now consider variational problems for recovering multichannel images
supported on the bounded Lipschitz domain Ω ⊂ Rd which are regularized with
a TGV2

α penalty. The general problem reads as

min
u∈Lp(Ω,RL)

F (u) + TGV2
α(u) (9)

where p ∈ (1,∞), p ≤ d/(d − 1) and F : Lp(Ω,RL) → (−∞,∞] is a proper,
convex and lower semi-continuous functional which is also bounded from below.

For the following, we choose projection operators which project on the kernel
of TGV2

α which is given as follows (recall (8)):

{u : Ω → RL
∣∣ u(x) = Ax + b a.e. for some A ∈ RL×d, b ∈ RL}.

A projection operator onto the kernel is then a mapping P which satisfies

P : Lp(Ω,RL) → ker(TGV2
α) linear, P |ker(TGV2

α) = id, P 2 = P.

To obtain existence of solutions for (9), the following coercivity assumption on
F is made: For any sequence {un} in Lp(Ω,RL) it follows that

‖Pun‖p → ∞ and {‖(id − P )un‖p} bounded ⇒ F (un) → ∞.
(10)

Under these prerequisites, there exists at least one minimizer.
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Theorem 1. If (10) is satisfied, then (9) possesses a minimizer.

Proof. The case where F + TGV2
α is constant ∞ is trivial, so let F + TGV2

α

be proper. Let {un} be a minimizing sequence in Lp(Ω)L, i.e., limn→∞(F +
TGV2

α)(un) = inf (F + TGV2
α). Then, {TGV2

α(un)} has to be bounded as
{F (un)} is bounded from below.

Now, for each l = 1, . . . , L, we have that Pl : u �→ (Pu)l is a projection
onto P1(Ω), so there exists a constant C1 > 0 such that ‖ul − Plu‖d/(d−1) ≤
C1TGVk

α(ul), for each u ∈ Ld/(d−1)(Ω,RL) see (2), hence, in view of Proposi-
tion 2 it follows that

‖un − Pun‖d/(d−1) ≤ C2

L∑
l=1

‖un
l − Plu

n‖d/(d−1)

≤ C1C2

L∑
l=1

TGV2
α(un

l ) ≤ c−1C1C2TGV2
α(un).

This implies, by continuous embedding Ld/(d−1)(Ω,RL) ↪→ Lp(Ω,RL), that
{‖(id − P )un‖p} is bounded. In addition, we can exclude that ‖Pun‖p is
unbounded: If there is an unbounded subsequence, then by restricting to that
subsequence without relabeling, we can achieve that {un} is still a minimiz-
ing sequence with ‖Pun‖p → ∞ and ‖(id − P )un‖p is bounded. By assump-
tion, F (un) → ∞ and (F + TGV2

α)(un) → ∞ which is a contradiction to
{un} being a minimizing sequence. Hence, ‖Pun‖p is bounded. As we have
un = Pun + (id − P )un for each n and each summand on the right-hand side
gives a bounded sequence, the boundedness of {un} follows. By reflexivity of
Lp(Ω,RL), a subsequence of {un} converges weakly to some u∗ ∈ Lp(Ω,RL).
The sum F + TGV2

α is convex and lower semi-continuous as its summands
are, according to the assumptions as well as Proposition 1, which implies weak
sequential lower semi-continuity and finally

(F + TGV2
α)(u∗) ≤ lim inf

n→∞ (F + TGV2
α)(un) = inf

u∈Lp(Ω,RL)
(F + TGV2

α)(u).

Therefore, u∗ is the sought minimizer. �

3 Numerical Approximation and Minimization

3.1 Discretization as a Convex-Concave Saddle-Point Problem

For the numerical solution, we first discretize the problem (9). For simplicity, we
assume that Ω = (0, N1) × (0, N2) ⊂ R2 for some positive N1, N2 ∈ N as it is
easy to generalize to arbitrary domains and dimensions.

Following essentially the presentation in [4], we first replace Ω by the
discretized grid

Ωh = {(i, j)
∣∣ i, j ∈ N, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}.
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The TGV2
α functional will be discretized by finite differences where we also

choose step-size 1, again for the sake of simplicity. For this purpose, we introduce
the respective forward and backward operators which are, up to the factor −1,
adjoint to each other:

(∂+
x u)i,j =

{
ui+1,j − ui,j for 1 ≤ i < N1,

0 for i = N1,

(∂+
y u)i,j =

{
ui,j+1 − ui,j for 1 ≤ j < N2,

0 for j = N2,

as well as

(∂−
x u)i,j =

⎧⎨
⎩

u1,j if i = 1
ui,j − ui−1,j for 1 < i < N1,
−uN1−1,j for i = N1,

(∂−
y u)i,j =

⎧⎨
⎩

ui,1 for j = 1,
ui,j − ui,j−1 for 1 < j < N2,
−ui,N2−1 for j = N2.

Let us further introduce the appropriate vector spaces of functions, vector and
tensor fields. For L ≥ 1, define

U = {u : Ωh → R}L, V = {u : Ωh → R2}L, W = {u : Ωh → Sym2(R2)}L.

We will denote v = (vl, . . . , vl) ∈ V and its components (vl)1 and (vl)2. Likewise
the components of w = (w1, . . . , wL) ∈ W are (wl)11, (wl)12 and (wl)22. For
convenience, we introduce

a, b : Ωh → R : 〈a, b〉 =
N1∑
i=1

N2∑
j=1

ai,jbi,j

The spaces U, V and W will be interpreted as Hilbert spaces with the scalar
products

u, r ∈ U : 〈u, r〉U =
L∑

l=1

〈ul, rl〉,

v, p ∈ V : 〈v, p〉V =
L∑

l=1

〈(vl)1, (pl)1〉 + 〈(vl)2, (pl)2〉,

w, q ∈ W : 〈w, q〉W =
L∑

l=1

〈(wl)11, (ql)11〉 + 〈(wl)22, (ql)22〉 + 2〈(wl)12, (ql)12〉.

The gradient, symmetrized gradient as well as the divergence operator for vector
and tensor fields can then be expressed as

∇h : U → V, (∇hu)l =
(

∂+
x ul

∂+
y ul

)
,

Eh : V → W, (Eh(v))l =
(

∂−
x (vl)1 1

2

(
∂−

y (vl)1 + ∂−
x (vl)2

)
1
2

(
∂−

y (vl)1 + ∂−
x (vl)2

)
∂−

y (vl)2

)
,
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and

divh : V → U, (divhv)l = ∂−
x (vl)1 + ∂−

y (vl)2,

divh : W → V, (divhw)l =
(

∂+
x (wl)11 + ∂+

y (wl)12

∂+
x (wl)12 + ∂+

y (wl)22

)
.

Note that with the scalar products introduced above, it holds that (∇h)∗ =
−divh as well as (Eh)∗ = −divh. In order to define a discrete version of TGV2

α,
we still need the norms

v ∈ V : ‖v‖∞ = max
(i,j)∈Ωh

( L∑
l=1

(
(vl)1i,j

)2 +
(
(vl)2i,j

)2)1/2

,

w ∈ W : ‖w‖∞ = max
(i,j)∈Ωh

( L∑
l=1

(
(wl)11i,j

)2 +
(
(wl)22i,j

)2 + 2
(
(wl)12i,j

)2)1/2

.

These norms correspond to discrete ∞-norms with respect to the norms accord-
ing to (3) where | · |◦ is the Euclidean norm on RL, also see Example 1. With
the constraint divhw = v, we can now deduce a discrete version of TGV2

α:

TGV2
α(u) = max {〈u, divhv〉U

∣∣ (v, w) ∈ V × W, divhw = v,

‖w‖∞ ≤ α0, ‖v‖∞ ≤ α1}.

Introducing indicator functionals, i.e.,

IK(x) =
{

0 if x ∈ K,
∞ else

and observing that

−I{0}(divhw − v) = min
p∈V

〈p, divhw − v〉V ,

the discrete functional can be rewritten to

TGV2
α(u) = max

(v,w)∈V ×W
min
p∈V

〈u, divhv〉U + 〈p, divhw − v〉V

−I{‖ · ‖∞≤α0}(w) − I{‖ · ‖∞≤α1}(v).

One can show that the maximum and minimum can be interchanged. Moreover,
the constraints are symmetric around 0, so the above can be rewritten to

TGV2
α(u) = min

p∈V
max

(v,w)∈V ×W
〈∇hu − p, v〉V + 〈Eh(p), w〉

−I{‖ · ‖∞≤α0}(w) − I{‖ · ‖∞≤α1}(v). (11)

Next, assume that Fh : Ωh → (−∞,∞] is proper, convex and lower semi-
continuous and corresponds to a discretized version of the data term F in (9).
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Then, a discretization of the variational problem (9) is given by the saddle-point
problem

min
(u,p)∈U×V

max
(v,w)∈V ×W

〈∇hu − p, v〉V + 〈Eh(p), w〉W + Fh(u)

−I{‖ · ‖∞≤α0}(w) − I{‖ · ‖∞≤α1}(v). (12)

We also like to consider the situation where Fh is also given by the solution of
a certain maximization problem:

Fh(u) = max
λ∈Λ

〈Ku, λ〉Λ + F̃h(u) − Gh(λ) (13)

where Λ is a finite-dimensional Hilbert space, K : U → Λ a linear mapping and
F̃h : U → (−∞,∞], Gh : Λ → (−∞,∞] are proper, convex and lower semi-
continuous functionals. In this case, we like to solve the saddle-point problem

min
(u,p)∈U×V

max
(v,w,λ)∈V ×W×Λ

〈∇hu − p, v〉V + 〈Eh(p), w〉W + 〈Ku, λ〉Λ + F̃h(u)

−I{‖ · ‖∞≤α0}(w) − I{‖ · ‖∞≤α1}(v) − Gh(λ). (14)

3.2 A Numerical Algorithm

For the solution of (12) and (14), any kind of numerical algorithm for the solution
of convex-concave saddle point problems can be used. Here, we chose to employ
the primal-dual ascent-descent method with primal extragradient according to
[9]. The main reason is its applicability for a wide range of problems as we will
see in Sect. 4. However, for the solution of specialized problems, other algorithms
might be suited and efficient as well. Basically, every convergent method which
finds a zero of a maximal monotone operator or the sum to two maximally
monotone operators may work [13,18,27]. In its general form, the method finds
a saddle point for the problem

min
x∈X

max
y∈Y

〈Kx, y〉Y + F(x) − G(y) (15)

where X , Y are Hilbert spaces, K : X → Y is a linear and continuous mapping,
and F : X → (−∞,∞], G : Y → (−∞,∞] are proper, convex and lower semi-
continuous functionals.

In order to state the algorithm, we need the notion of resolvent operators
(id + τ∂F)−1 and (id + σ∂G)−1 for the subgradients of F and G, respectively.
They can be characterized as the solutions of

x∗ = (id + τ∂F)−1(x̄) ⇔ x∗ = arg min
x∈X

‖x − x̄‖2X
2

+ τF(x),

y∗ = (id + σ∂G)−1(ȳ) ⇔ y∗ = arg min
y∈Y

‖y − ȳ‖2Y
2

+ σG(y)

where σ, τ > 0. These resolvent operators are assumed to be computationally
accessible. We will discuss some examples in Sect. 4.
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The iteration procedure for the solution of (15) can be written as follows.
Choose σ, τ > 0 such that στ‖K‖2 < 1. For initial values (x0, y0) ∈ X × Y and
x̄0 = x0, the iteration reads as⎧⎨

⎩
yn+1 = (id + σ∂G)−1(yn + σKx̄n),
xn+1 = (id + τ∂F)−1(xn − τK∗yn+1),
x̄n+1 = 2xn+1 − xn.

(16)

If X and Y are finite dimensional, this algorithm is known [9] to converge to a
saddle point (x∗, y∗) of (15) provided that a saddle point exists.

We like to apply this algorithm for the solution of (12) and (14). First, let
us address the problem (12) which admits the structure (15) if one chooses

X = U × V, Y = V × W, K =
[∇h −id

0 Eh

]
⇒ K∗ =

[−divh 0
−id −divh

]

as well as

F(x) = F(u, p) = Fh(u),
G(y) = G(v, w) = I{‖ · ‖∞≤α1}(v) + I{‖ · ‖∞≤α0}(w).

As the functionals F and G are the sum of functionals which only depend on one
component of x and y, respectively, the resolvent operators decouple meaning
that they can be performed componentwise. For G, they correspond to projection
operators on the respective constraint sets. They can be seen to correspond to

v∗ = arg min
‖v‖∞≤α1

‖v − v̄‖2V
2

⇔ v∗ = Pα1(v̄) =
v̄

max
(
1, |v̄|

α1

) ,

w∗ = arg min
‖w‖∞≤α0

‖w − w̄‖2V
2

⇔ w∗ = Pα0(w̄) =
w̄

max
(
1, |w̄|

α0

)

where the operations on the right-hand side have to be interpreted in the point-
wise sense with |v̄| and |w̄| according to

v̄ ∈ V : |v̄|i,j =
( L∑

l=1

(
(v̄l)1i,j

)2 +
(
(v̄l)2i,j

)2)1/2

,

w̄ ∈ W : |w̄|i,j =
( L∑

l=1

(
(w̄l)11i,j

)2 +
(
(w̄l)22i,j

)2 + 2
(
(w̄l)12i,j

)2)1/2

.

For F , the componentwise resolvents just correspond to (id + σ∂Fh)−1 and, as
the functional is independent of p, to the identity on V , respectively.

Finally, in order to choose the step sizes σ and τ , we need an estimate for
the norm of K. One can see that ‖∇h‖2 < 8 and ‖Eh‖2 < 8 which leads, after
some computations, to the estimate

‖K‖2 <
17 +

√
33

2
< 12.
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Algorithm 1 Solve minu∈U Fh(u) + TGV2
α(u)

1. Choose σ > 0, τ > 0 such that στ 1
2
(17 +

√
33) ≤ 1.

2. Choose (u0, p0) ∈ U × V , (v0, w0) ∈ V × W and set ū0 = u0, p̄0 = p0.
3. For n = 0, 1, 2, . . . iterate according to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vn+1 = Pα1

(
vn + σ(∇hūn − p̄n)

)
,

wn+1 = Pα0

(
wn + σEh(p̄n)

)
,

un+1 = (id + τ∂Fh)−1(un + τdivhvn+1),
pn+1 = pn + τ(vn+1 + divhwn+1),
ūn+1 = 2un+1 − un,
p̄n+1 = 2pn+1 − pn.

4. Return uN for some large N .

Hence, the primal-dual method for the saddle-point problem (12) reads as
follows.

Note that the problem of choosing N , i.e., finding an appropriate stopping
criterion, remains. However, as our major goal is to demonstrate the applicability
and efficiency of algorithms suitable for the minimization of TGV2

α, we do not
discuss this issue here. Let us nevertheless remark that it is possible to compute
estimates for the primal-dual gap for the underlying saddle-point problem which
allows to estimate the distance of the current iterate to the minimizer in terms
of the functional values. These estimates could be used to implement a stopping
criterion, see, for instance [3].

It can be seen in Algorithm 1 that the resolvent (id + τ∂Fh)−1 is needed in
order to perform the computational procedure. In some cases, this resolvent is
not computationally accessible or expensive to compute. It might, however, be
possible to write Fh in terms of (13) where the resolvents (id + τ∂F̃h)−1 and
(id+σ∂Gh)−1 are easy to compute. In such a case, the algorithm can be modified
in order to accommodate for this situation: Indeed, the associated saddle-point
problem (14) can be represented by (15) if one chooses

X = U × V, Y = V × W × Λ, K =

⎡
⎣∇h −id

0 Eh

K 0

⎤
⎦ ⇒ K∗ =

[−divh 0 K∗

−id −divh 0

]

as well as

F(x) = F(u, p) = F̃h(u),
G(y) = G(v, w, λ) = I{‖ · ‖∞≤α1}(v) + I{‖ · ‖∞≤α0}(w) + Gh(λ).

As in the previous case, all the resolvents decouple and each component of x and
y can be updated individually. However, one has be more careful when choosing
σ and τ as the norm of K can only be guaranteed to obey

‖K‖2 <

√
(‖K‖2 − 1)2 + 32 + ‖K‖2 + 17

2
< ‖K‖2 + 12.
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The primal-dual method then corresponds to the following.

Algorithm 2 Solve minu∈U Fh(u) + TGV2
α(u)

. with Fh(u) = maxλ∈Λ 〈Ku, λ〉Λ + F̃h(u) − Gh(λ)

1. Choose σ > 0, τ > 0 such that στ 1
2
(
√

(‖K‖2 − 1)2 + 32 + ‖K‖2 + 17) ≤ 1.
2. Choose (u0, p0) ∈ U × V , (v0, w0, λ0) ∈ V × W × Λ.

Set ū0 = u0, p̄0 = p0.
3. For n = 0, 1, 2, . . . iterate according to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn+1 = Pα1

(
vn + σ(∇hūn − p̄n)

)
,

wn+1 = Pα0

(
wn + σEh(p̄n)

)
,

λn+1 = (id + σ∂Gh)−1(λn + σKūn)

un+1 = (id + τ∂F̃h)−1
(
un + τ(divhvn+1 − K∗λn+1)

)
,

pn+1 = pn + τ(vn+1 + divhwn+1),
ūn+1 = 2un+1 − un,
p̄n+1 = 2pn+1 − pn.

4. Return uN for some large N .

Again, the procedure converges to a saddle-point, so uN for N large enough
is close to a solution of the original problem.

4 Application to Mathematical Imaging Problems

Now, we aim at applying the total generalized variation model to some well-
known variational problems. One the one hand, we show how existence in the
continuous setting can be ensured using the results of Sect. 2. On the other hand,
it is also discussed how the algorithms in Sect. 3 can be realized and how they
perform in numerical experiments.

4.1 Denoising

We first look at the TGV2
α-regularized multichannel denoising problem for a

noisy image f ∈ Lq(Ω,RL) where q ∈ [1,∞). Let the norm in Lq(Ω,RL) be
based on the vector norm | · |◦. Then, the variational denoising problem with
Lq-data term, is to solve

min
u∈Lq(Ω,RL)

F (u) + TGV2
α(u), F (u) =

1
q

∫
Ω

|u − f |q◦ dx =
‖u − f‖q

q

q
. (17)

We like to verify existence of a minimizer in Lp(Ω,RL) for some p ∈ (1,∞)
with p ≤ d/(d − 1). For this purpose, observe that it is easy to see that F is
non-negative, proper, convex and lower semi-continuous on Lp(Ω,RL), the latter
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with the help of Fatou’s lemma. To establish property (10), set r = min(p, q)
and choose P : Lr(Ω,RL) → ker(TGV2

α) as a linear and continuous projection.
If, for a sequence {un} in Lp(Ω,RL) it holds that ‖Pun‖p → ∞, then also
‖Pun‖q → ∞ since all norms are equivalent on the finite-dimensional space
ker(TGV2

α). Consequently, as P is continuous on Lq(Ω,RL),

‖un − f‖q ≥ ‖un‖q − ‖f‖q ≥ c‖Pun‖q − M

for some constants c > 0 and M > 0. Hence, F (un) → ∞ and (10) is satisfied.
By Theorem 1, there exists a minimizer.

Let us now discretize (17) according to Sect. 3. For this purpose, we choose
Fh for some data f ∈ U according to

Fh(u) =
1
q

N1∑
i=1

N2∑
j=1

|ui,j − fi,j |q◦

which is in accordance with a discretization step-size of 1. We like to use Algo-
rithm 1 which needs the resolvent (id + τ∂Fh)−1. For | · |◦ = | · | the Euclidean
norm on RL and q ∈ {1, 2}, this operator can be computed:

u∗ = (id + τ∂Fh)−1(ū) ⇔ u∗ =

⎧⎨
⎩

ū + τf

1 + τ
if q = 2,

f + Sτ (ū − f) if q = 1.

where Sτ is the pointwise shrinkage operator

Sτ (u) =
u

|u| max(0, |u| − τ)

where we agree to set u/|u| = 0 where u = 0. This leads to the following iteration
for {un} in Algorithm 1:

un+1 =

⎧⎨
⎩

un + τ(divhvn+1 + f)
1 + τ

if q = 2,

f + Sτ (un + τdivhvn − f) if q = 1.

The resulting algorithm was implemented in Python [25] using Scientific Tools
for Python (SciPy) [34] and graphics-processing unit (GPU) acceleration based
on NIVIDA’s CUDATM Toolkit [22] via the Python interface PyCUDA [16].
Computations where performed on a AMD PhenomTM 9950 Quad-Core Proces-
sor with a NVIDIA GeForce GTX 280 GPU with 1 Gigabyte of memory. The
outcome of the TGV2-based denoising procedure, for the L2-norm and L1-norm
as well as a comparison to the standard TV-based counterparts, are depicted in
the Figs. 2 and 3, respectively. In order to compare the models, the parameters
were chosen to give the best peak signal-to-noise ratio (PSNR). The actual val-
ues as well as the image size, noise level, iteration count and computation time
can be found in the respective captions. One can observe that the multichannel
TGV2 image model is able to recover smooth regions as well as discontinuities
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at object boundaries. In particular, artifacts which are typical for TV-based
denoising, do not appear when TGV2 is used. The improved image quality is
also reflected by a slightly higher PSNR value. However, since this distance
measure is essentially based on pointwise comparison and is not incorporating
neighborhood information, more accurate recovery of smooth regions does not
lead to an significantly higher PSNR, although the differences can noticeably
be visually perceived. Of course, usage of the TGV2 image model come with
higher computational effort. In the case of denoising, TV and TGV2 roughly
need the same number of iterations such that TGV2 needs about 2 to 3 times
more computation time. The absolute computation time is, however, still quite
low thanks to the parallelization provided by the GPU.

Fig. 2. Example for variational denoising according to (17) with L2 data fitting term
and TV/TGV2 image model. Top: The original image [31] (left, 640 × 480 pixels,
RGB) and a noise-perturbed version (right, additive Gaussian noise, standard deviation
σ = 0.2). Bottom: Result of TV-based denoising (left, PSNR=31.91 dB, 500 iterations,
computation time: 0.48 s), and TGV2-based denoising (right, PSNR=32.29 dB, 500
iterations, computation time: 1.29 s). Images licenced under CreativeCommons-by-sa-
2.0 (http://creativecommons.org/licenses/by-sa/2.0/).

http://creativecommons.org/licenses/by-sa/2.0/
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Fig. 3. Example for variational denoising with L1 data fitting term and TV/TGV2

image model. Top: The original image [29] (left, 512 × 512 pixels, RGB) and a noise-
perturbed version (right, 33.3 % of the pixels replaced by random values). Bottom:
Result of TV-based denoising (left, PSNR=33.23 dB, 1000 iterations, computation
time: 0.98 s), and TGV2-based denoising (right, PSNR=33.77 dB, 1000 iterations, com-
putation time: 2.46 s).

Additionally, the proposed primal-dual algorithm admits the convergence
behavior which is typical for first-order methods. In terms of the discrete energy
which arises by maximizing the saddle-point functional in (12), i.e.,

J(u, p) =
N1∑
i=1

N2∑
j=1

1
q
|ui,j − fi,j |q + α1|∇hu − pi,j |i,j + α0|Eh(p)|i,j ,

one can observe a quick decrease within the first 100 iterations which then
becomes slower (see Fig. 4). Note that the method is non-monotone which can
also seen in the behavior of J . However, in the denoising examples, this was only
noticeable in the first few iterations.
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Fig. 4. Convergence behavior for the L2-TGV2 (left) and the L1-TGV2 (right) denois-
ing examples of Figs. 2 and 3, respectively.

Remark 3. In order to preserve more details, one approach is to introduce a spa-
tially dependent parameter which serves as a weight for the L2-discrepancy, i.e.,

F (u) =
1
2

∫
Ω

λ|u − f |2 dx, λ ∈ L∞(Ω).

An appropriate choice of λ then leads, in conjunction with TV-regularization, to
denoised images which indeed admit more details [11]. Recently, this framework
has been extended to TGV2

α-regularization which yields further improvements,
see [2] for details.

4.2 Deblurring

Next, let us discuss the deblurring of a multichannel image. We model this
problem as the general linear inverse problem of finding a solution to

Ku = f

where, for some p ∈ (1,∞), p ≤ d/(d − 1) the operator K : Lp(Ω,RL) → H is a
linear and continuous mapping into a Hilbert space H in which the data f ∈ H
is also given. We like to regularize this generally ill-posed problem with TGV2

α

and solve the associated Tikhonov minimization problem, i.e.,

min
u∈Lp(Ω,RL)

F (u) + TGV2
α(u), F (u) =

‖Ku − f‖2H
2

. (18)

This problem turns out to have a solution as soon as K is injective on ker(TGV2
α):

Let us assume that

Ku = 0 for some u ∈ ker(TGV2
α) ⇒ u = 0,

which is, as ker(TGV2
α) is finite-dimensional, equivalent to the existence of a c >

0 such that ‖Ku‖H ≥ c‖u‖p for each u ∈ ker(TGV2
α). For an arbitrary projection

operator P : Lp(Ω,RL) → ker(TGV2
α) and a sequence {un} in Lp(Ω,RL) such

that ‖Pun‖p → ∞ and {‖(id − P )un‖p} is bounded, we then have

‖Ku − f‖H ≥ ‖KPun‖H − ‖K(id − P )un‖H − ‖f‖H ≥ c‖Pun‖H − M
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for some M > 0 and the above c > 0. Hence F (un) → ∞ as n → ∞. Together
with the observation that F is non-negative, proper, convex, continuous (and
hence, lower semi-continuous), this implies by Theorem 1 that there is always a
solution to (18).

In the concrete case of deblurring, we model the forward operator K as the
convolution with a kernel k ∈ L∞(Rd) with compact support Ω0. The data
space is H = L2(Ω′,RL) where Ω′ is a non-empty open set which models the
region on which the blurred image is measured. We assume that only data on Ω
is convolved which is satisfied if

Ω′ − Ω0 = {x − y
∣∣ x ∈ Ω′, y ∈ Ω0} ⊂ Ω.

Furthermore, let k ≥ 0 almost everywhere and such that
∫

Ω0
k dx = 1. The

operator K is then given by

Ku = u ∗ k, (u ∗ k)(x) =
∫

Ω0

u(x − y)k(y) dy for x ∈ Ω′. (19)

Note that ‖u ∗ k‖∞ ≤ ‖u‖1‖k‖∞, so K is in particular continuous between
Lp(Ω,RL) and H. It remains to verify that K is injective on ker(TGV2

α). For
this purpose, let u(x) = Ax + b for A ∈ RL×d, b ∈ RL such that Ku = 0. Then,
for m ∈ Rd, mi =

∫
Ω0

yi dy, we have
∫

Ω0

(
A(x − y) + b

)
k(y) dy = Ax + (b − Am) for all x ∈ Ω′

meaning that Ku is an affine linear function on Ω′. As Ω′ contains a non-empty
open set, Ku = 0 is only possible if A = 0 and b − Am = b = 0, implying
that u = 0. This shows the injectivity, hence (18) can always be solved for the
blurring operator according to (19).

Let us now discuss the numerical realization of the solution of (18) in the
framework of Sect. 3. Regarding the general problem, we assume that K can
be discretized to a Kh : U → Λ where the Hilbert space Λ corresponds to the
discretized data space H. The discrepancy functional for discrete data f ∈ Λ
then reads as

Fh(u) =
‖Khu − f‖2Λ

2
.

To describe Λ and Kh for the blurring operator (19), let k ∈ R(2M+1)×(2M+1) a
discrete convolution kernel which is indexed through −M, . . . , M . The data can
then be measured on the set

Ω′
h = {(i, j)

∣∣ i, j ∈ N,M + 1 ≤ i ≤ N1 − M, M + 1 ≤ j ≤ N2 − M}.

Consequently, we let Λ = {Ωh → R}L such that the discrete convolution oper-
ator becomes

Khu = u ∗ k, (u ∗ k)l
i,j =

M∑
i′=−M

M∑
j′=−M

ul
i−i′,j−j′ki′,j′ for (i, j) ∈ Ω′

h.
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One can easily see that if k is normalized, i.e., k ≥ 0 componentwise and∑M
i=−M

∑M
j=−M ki,j = 1, then ‖Kh‖ ≤ 1.

There is now the choice whether to take Algorithm 1 or 2 for the numerical
solution. Let us shortly discuss Algorithm 1. Here, one has again to evaluate the
resolvent operator which corresponds to

u∗ = (id + τ∂Fh)−1(ū) ⇔ u∗ = (id + τK∗
hKh)−1(ū + τK∗

hf).

Hence, the iteration step for un+1 reads as

un+1 = (id + τK∗
hKh)−1

(
un + τ(divhvn+1 + K∗

hf)
)

which involves the solution of a linear equation. As this might be quite costly,
in particular if it has to be done iteratively and the evaluation of Kh or K∗

h is
expensive, we also discuss Algorithm 2 which, as it turns out, does not involve
such an inversion step.

It bases on the observation that Fh can be written as

Fh(u) = max
λ∈Λ

〈Khu, λ〉Λ −
(‖λ‖2Λ

2
+ 〈f, λ〉Λ

)

which is of the form (13) with F̃h(u) = 0 and Gh(λ) = 1
2‖λ‖2Λ + 〈f, λ〉Λ. The

resolvent associated with the subgradient of F̃h again turns out to be the identity
while

λ∗ = (id + σ∂Gh)−1(λ̄) ⇔ λ∗ =
λ̄ − σf

1 + σ
.

Hence, the iteration steps for λ and u in Algorithm 2 read as
⎧⎨
⎩

λn+1 =
λn + σ(Khūn − f)

1 + σ
,

un+1 = un + τ(divhvn+1 − K∗
hλn+1).

This variant provides an alternative in which only one evaluation of Kh and
K∗

h is necessary in each iteration step. However, one needs to have an estimate
for ‖Kh‖ in order to choose step-sizes σ and τ such that convergence can be
ensured. In the case of the discrete convolution operator introduced above, one
obtains again the estimate ‖Kh‖ ≤ 1 for normalized kernels.

As in Subsect. 4.1, this method has again been implemented in Python using
PyCUDA. Computations have been performed to deconvolve a blurred image
which has additionally been contaminated by noise. The same configuration as
for the denoising experiments has been used, the outcome as well as the details
are shown in Fig. 5. Again, one can observe the ability of the TGV2-model to
nicely resolve smooth regions as well as sharp edges. One can also observe that
the computation time is only slightly higher compared to TV-based deblurring.
This is due to the fact that most of the time is spent in evaluating the forward
and adjoint operator Kh and K∗

h, respectively.
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Fig. 5. Example for variational deblurring according to (18) with L2 data fitting term
and TV/TGV2 image model. Top: The original image [15] (left, 512×384 pixels, RGB)
and a blurred, noise-perturbed version (right, out-of-focus kernel with 15 pixels diame-
ter, additive Gaussian noise, standard deviation σ = 0.05). Bottom: Result of TV-based
deblurring (left, PSNR=31.45 dB, 1000 iterations, computation time: 45.63 s), and
TGV2-based deblurring (right, PSNR=32.05 dB, 1000 iterations, computation time:
46.72 s).

4.3 Zooming

The following deals with the problem of recovering an image from a projected
version which can be interpreted as a zooming problem. In order to describe
the setting, let p ∈ (1,∞) with p ≤ d/(d − 1) and Z ⊂ Lp(Ω,RL) be a closed
subspace which is modelling images at a low-resolution in which a low-resolution
image f ∈ Z is given. Furthermore, let the operator PZ : Lp(Ω,RL) → Z be
a continuous projection onto Z which is modelling the way the resolution is
reduced. The corresponding zooming problem then reads as

min
u∈Lp(Ω,RL)

F (u) + TGV2
α(u), F (u) = I{0}(PZu − f). (20)

Let us discuss existence of solutions. As PZ is continuous and rg(PZ) = Z, it
is obvious that the indicator functional F is non-negative, proper, convex and
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lower semi-continuous. To establish the desired coercivity property, we need the
assumption

ker(PZ) ∩ ker(TGV2
α) = {0}.

Note that this implies that PZ is injective on ker(TGV2
α) as PZu = 0 and

u ∈ ker(TGV2
α) implies u = 0. Now, if P : Lp(Ω,RL) → ker(TGV2

α) is a linear,
continuous projection, then there is a constant c > 0 such that ‖PZPu‖p ≥
c‖Pu‖p for each u ∈ Lp(Ω,RL). Thus, for each sequence {un} in Lp(Ω,RL)
such that ‖Pun‖p → ∞ and {‖(id − P )un‖p} is bounded, it is impossible that
PZun − f = 0 for each n: If this is the case, then

PZPun + PZ(id − P )un = PZun = f

and consequently,

c‖Pun‖p ≤ ‖PZPun‖p = ‖PZ(P − id)un + f‖p ≤ C + ‖f‖p

which implies that ‖Pun‖p is bounded, a contradiction. Hence, F (un) → ∞ as
this argumentation also applies to each subsequence. This establishes (10) and,
by Theorem 1, existence of a minimizer.

Example 2. Let Ω = (0,M1) × (0,M2) with M1,M2 ≥ 2. Denote by Qi,j =
(i − 1, i) × (j − 1, j) and set

Z =
{M1∑

i=1

M2∑
j=1

ci,jχQi,j

∣∣∣ ci,j ∈ RL
}

which is modelling N × M pixel images. A projection onto Z is then given by

PZu =
M1∑
i=1

M2∑
j=1

(∫
Qi,j

u dx
)
χQi,j

.

A u ∈ ker(TGV2
α) can be expressed by u(x) = a1x1 + a2x2 + b where a1, a2, b ∈

RL. We then see that

ci,j =
∫

Qi,j

u dx =
2i − 1

2
a1 +

2j − 1
2

a2 + b

so a1 = c2,1 − c1,1, a2 = c1,2 − c1,1 and b = 2c1,1 − 1
2 (c1,2 + c2,1). Hence, if

PZu = 0, then c1,1 = c1,2 = c2,2 = 0 and consequently, u = 0. This shows
ker(PZ) ∩ ker(TGV2

α) = {0}, thus a solution for the zooming problem (20) with
averaging over squares exists.

Example 3. Let Ω = (0, π)2 and M1,M2 ≥ 2 and denote by

zi,j(x) = ζi(x1)ζj(x2), ζi(x) =

⎧⎪⎪⎨
⎪⎪⎩

√
1
π

if i = 0,√
2
π

cos(ix) if i > 0,
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which is corresponding to the cosine orthonormal basis of L2(Ω). The space Z
and a projection PZ is then given by

Z =
{M1−1∑

i=0

M2−1∑
j=0

ci,jzi,j

∣∣∣ ci,j ∈ RL
}

, PZu =
M1−1∑
i=0

M2−1∑
j=0

(∫
Ω

zi,ju dx
)
zi,j .

For a u ∈ ker(TGV2
α), i.e., u(x) = a1x1 + a2x2 + b, a1, a2, b ∈ RL we see that

c0,0 =
π2

2
(a1 + a2) + πb, c1,0 = −4a1, c0,1 = −4a2

which implies that if PZu = 0, then also u = 0. Again, we thus have ker(PZ) ∩
ker(TGV2

α) = {0} and consequently, a minimizer for the zooming problem (20)
with cosine low-pass filter exists.

For a numerical realization, we have to discretize the space Z. In case of
Example 3, a good choice is the corresponding two-dimensional discrete cosine
basis. For a discrete low-pass image f ∈ (RM1×M2)L, 2 ≤ M1 ≤ N1, 2 ≤ M2 ≤
N2, and with DCT denoting the associated parallel discrete cosine transform
operator, the discrete functional Fh reads as

Fh(u) =
{

0 if DCT(u)i,j = fi,j for 0 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2 − 1,
∞ else.

Consequently, since DCT is an orthonormal mapping, the resolvent reads as

(id + τ∂Fh)−1(u) = DCT−1(c̃),

c̃i,j =
{

fi,j if 0 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2 − 1,
DCT(u)i,j else.

The iteration step which computes un+1 in Algorithm 1 then reads as
⎧⎪⎪⎨
⎪⎪⎩

cn+1 = DCT(un + τdivhvn+1),

c̃n+1
i,j =

{
fi,j for 0 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2 − 1,
cn+1
i,j else,

un+1 = DCT−1(c̃n+1).

This procedure was again implemented in Python/PyCUDA and tested on
the same machine as for the experiments in the previous subsections. The out-
come of a zooming experiment with the factor 8 can be seen in Fig. 6. Compared
to TV-based zooming, it is interesting to observe that neither models lead to
pronounced staircasing artifacts. However, one sees that the TGV2 model nev-
ertheless leads to a solution which appears less blocky.

4.4 Dequantization

Although images are often modelled as functions which admit continuous values,
their digital representation is often quantized to a finite number of bins. The most
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Fig. 6. Example for variational zooming with the TV/TGV2 image model according
to 4.3. Top: The original image [17] (left, 512 × 512 pixels, RGB) and a low-resolution
representation (right, 64 × 64 pixels, DCT low-pass coefficients). Bottom: Result of
TV-based zooming (left, PSNR=36.60 dB, 2000 iterations, computation time: 4.44 s),
and TGV2-based zooming (right, PSNR=37.30 dB, 2000 iterations, computation time:
7.46 s). Images licenced under CreativeCommons-by-sa-2.0 (http://creativecommons.
org/licenses/by-sa/2.0/).

common case is the 256-level representation which corresponds to 8 bits per pixel
and color channel. In the case where significantly less bins are available, the
image representing the pixelwise centers of the respective bins appears blocky
and unnatural. Hence, one is interested in restoring a more natural image from
a quantized image. We assume that each bin has the form

[a, b] = {c ∈ RL
∣∣ al ≤ cl ≤ bl, l = 1, . . . , L} for some a, b ∈ RL.

The given data can then be represented by the respective lower and upper bound
functions flower, fupper ∈ Lp(Ω,RL) for some p ∈ (1,∞), p ≤ d/(d − 1) which
have to satisfy flower ≤ fupper (componentwise) almost everywhere in Ω. The
feasible images are then given by u ∈ Lp(Ω,RL) such that flower ≤ u ≤ fupper
almost everywhere in Ω. As the standard dequantization f̃ = 1

2 (flower+fupper) is

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
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the image which is most probable if for almost every pixel x ∈ Ω, the values are
uniformly distributed in [flower(x), fupper(x)], we like to minimize TGV2

α under
the above constraint penalizing also the distance to the standard dequantization.
This results in the minimization problem⎧⎪⎨

⎪⎩
min

u∈Lp(Ω,RL)
F (u) + TGV2

α(u),

F (u) = I{flower≤u≤fupper a.e.}(u) +
1
p

∫
Ω

|u − f̃ |p◦ dx.
(21)

The functional F : Lp(Ω,RL) → (−∞,∞] can easily seen to be non-negative,
proper, convex and lower semi-continuous, see also Subsect. 4.4. Moreover, as
we have F (u) ≥ 1

p‖u − f̃‖p
p for each u, the proof of (10) in Subsect. 4.1 directly

leads to (10) for the above F and, consequently, to the existence of minimizers
by virtue of Theorem 1.

The functional F can be discretized in a straightforward way:

Fh(u) =

⎧⎪⎨
⎪⎩

1
p

N1∑
i=1

N2∑
j=1

|ui,j − f̃i,j |
p

◦ if (flower) ≤ u ≤ (fupper),

∞ else.

The associated resolvent operator is explicitly computable in case | · |◦ is the
Euclidean norm and q = 2:

(id + τ∂Fh)−1(ū) = min
(
fupper,max

(
flower,

ū + τ f̃

1 + τ

))
,

hence, Algorithm 1 can be employed yielding an iteration step for un+1 which
reads as

un+1 = min
(
fupper,max

(
flower,

ū + τ(divhvn+1 + f̃)
1 + τ

))
.

This algorithm has again been implemented. A numerical test on an image show-
ing an oak leaf is depicted in Fig. 7. One observes that the TV-based dequantiza-
tion coincides in essential parts with either flower or fupper which cause the result
to appear blocky. In contrast to that, the TGV2

α-based model yields smooth tran-
sitions where necessary. In both cases, however, some of the small details in the
leaf are lost.

Remark 4. Let us remark that the need for appropriate dequantization also
arises in artifact-free JPEG decompression. In this situation, the blockwise DCT-
coefficients are only given in a quantized form. This problem can also be solved
with TV and TGV2

α regularization, see [3,6] for details.

4.5 Compressive Imaging

The last problem we like to discuss is the compressive imaging or ‘single-pixel
camera’ reconstruction of a one-channel image [12], a problem which is already
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Fig. 7. Example for variational dequantization with the TV/TGV2 image model
according to (21). Top: The original image [32] (left, 512 × 512 pixels, RGB)
and a quantized representation (right, 6 bins per color channel). Bottom: Result of
TV-based dequantization (left, PSNR=29.59 dB, 2000 iterations, computation time:
1.88 s), and TGV2-based dequantization (right, PSNR=29.87 dB, 2000 iterations, com-
putation time: 4.76 s). Images licenced under CreativeCommons-by-sa-2.0 (http://
creativecommons.org/licenses/by-sa/2.0/).

set in finite dimensions. Here, an image is not observed directly but only the
accumulated gray values over random pixel patterns are measured. One essen-
tial point is that the number of measurements is significantly smaller than the
number of pixels. For a discrete image of size N1 × N2, let M � N1N2 and
f ∈ RM represent the data. For each 1 ≤ m ≤ M , let km ∈ {0, 1}N1×N2 be
the random pixel pattern which is associated with the m-th measurement. The
sought image u ∈ U then obeys

Ku = f, where (Ku)m =
N1∑
i=1

N2∑
j=1

km
i,jui,j , 1 ≤ m ≤ M.

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
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Fig. 8. Example for TV/TGV2 compressive imaging reconstruction. Top: TV-based
reconstruction of a 64 × 64 image from 18.75 %, 9.375 %, 6.25 % and 4.6875 % of the
data (from left to right). Bottom: TGV2-based reconstruction obtained from the same
data.

As this constraint is highly ambiguous, the compressive imaging approach assumes
that the image u is sparse in a certain representation which is usually translated
into the discrete total variation TV(u) being small. A way to reconstruct u from
f is then to solve

min
u∈U

TV(u) + Fh(u), Fh(u) = I{0}(Ku − f).

We like to test the TGV2
α-model for this application and propose to solve, numer-

ically, the problem

min
u∈U

TGV2
α(u) + Fh(u), Fh(u) = I{0}(Ku − f). (22)

For this purpose, we rewrite Fh according to (13):

Fh(u) = sup
λ∈Λ

〈Ku, λ〉Λ − Gh(λ), Gh(u) = 〈f, λ〉Λ

where Λ = RM . Hence, one can employ Algorithm 2 where the iteration steps
for λn+1 and un+1 reads as

{
λn+1 = λn + σ(Kūn − f),
un+1 = un + τ(divhvn+1 − K∗λn+1).



Recovering Piecewise Smooth Multichannel Images 75

The norm of K can be estimated in terms of the Frobenius norm

‖K‖ ≤ ‖K‖F =
( M∑

m=1

|km|22
)1/2

which is easily computable from the given random pixel patterns km, 1 ≤ m ≤
M .

This method has also been implemented and tested. The utilized test data
was the compressed sensing camera ‘mug’ data set from Rice’s single-pixel cam-
era project [26]. In Fig. 8, the outcome of the computations is depicted. Com-
paring the results for TV and TGV2, one can see a noticeable increase in visual
quality as smooth regions are resolved better. Even a low number of samples,
rough features of the object is still perceptible in the TGV2

α reconstruction. One
has to note, however, that the current method is only suitable to study the effect
of the TGV2-model as it takes an extremely large number of iteration and, con-
sequently, much computation time, in order to obtain the results. The reason
seems to lie in the ill-posedness of the inversion of K, for which Algorithm 2 only
performs a Landweber-type iteration (‘perturbed’ by the TGV2

α regularization).
In this case, it might be more efficient to utilize Algorithm 1.

5 Conclusions

The framework of total generalized variation, which already constitutes a convex
model for piecewise smooth functions, can easily be extended to the multichannel
case. Compared to the scalar case, the same results hold with respect to basic
properties and existence of solutions for associated convex variational problems.
Furthermore, these problems can be discretized and solved numerically in a
unified way by realizing a primal-dual method for associated convex-concave
saddle point problems. This numerical framework is general enough to devise
efficient algorithms for the solution of common low-level image processing tasks
such as denoising, deblurring, zooming and dequantization. These algorithms can
be implemented, without greater effort, in parallel architecture such as GPUs.
Numerical experiments confirm that the multichannel version of TGV2

α is a
suitable model for natural-looking color images and that incorporating it in
variational problems leads to visually improved results in comparison to the
total-variation counterpart. Moreover, the proof-of-concept application of the
primal-dual algorithm to the single-pixel camera compressive imaging framework
indicates that TGV2

α might also be a suitable model for compressed sensing.
However, due to the ill-posedness in this situation, it seems that more effort has
to be made in order to solve the reconstruction problem efficiently. This could
be a topic of further studies.
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