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Abstract. Regularization of matrix-valued data is important in many
fields, such as medical imaging, motion analysis and scene understand-
ing, where accurate estimation of diffusion tensors or rigid motions is
crucial for higher-level computer vision tasks. In this chapter we describe
a novel method for efficient regularization of matrix- and group-valued
images. Using the augmented Lagrangian framework we separate the
total-variation regularization of matrix-valued images into a regulariza-
tion and projection steps, both of which are fast and parallelizable. Fur-
thermore we extend our method to a high-order regularization scheme for
matrix-valued functions. We demonstrate the effectiveness of our method
for denoising of several group-valued image types, with data in SO(n),
SE(n), and SPD(n), and discuss its convergence properties.

Keywords: Regularization · Matrix-manifolds · Lie-groups · Total-
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1 Introduction

Matrix-valued signals are an important part of computer vision and image
processing. Specific fields where matrix-valued data is especially important
include tracking and motion analysis [28,43,44,56], robotics [37,38,59,60], image
processing and computer vision [10,40,42,63], as well as more general optimiza-
tion research [63] and 3D reconstruction [10].

Developing efficient regularization schemes for matrix-valued images is an
important aspect of analysis and processing in these fields. These images have
been an integral part of various domains, such as image processing [4,11,15,25,
39,48,52,58,62], motion analysis [31,43,56], and surface segmentation [44].

We present an efficient method for augmented Lagrangian smoothing of maps
from a Cartesian domain into matrix manifolds such as SO(n), SE(n) and
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SPD(n), the manifolds of special-orthogonal, special-Euclidean, and symmet-
ric, positive-definite, matrices, respectively. Specifically, the data we regularize
can be represented as matrices with constraints on their singular values or eigen-
values. The augmented Lagrangian technique allows us in such cases to separate
the optimization process into a total-variation (TV, [45]) regularization step and
an eigenvalue or singular value projection step, both of which are fast and easily
parallelizable using consumer graphic processing units (GPUs).

Our method handles each constraint separately via an auxiliary variable.
Optimization with respect the separate variables results in a closed-form solu-
tion obtained via shrinkage or matrix decomposition, and is efficient to compute.
Specifically, the update rule associated with solving the Lie-group auxiliary vari-
able is similar for the case of SO(n), SE(n) and SPD(n), leading to a unified
framework which we describe in Sects. 3, 4. We briefly discuss convergence prop-
erties of the suggested algorithms in Sect. 5. In Sect. 6 we demonstrate a few
results of our method, including motion analysis from depth sensors, direction
diffusion, and DTI denoising and reconstruction. Section 7 concludes the paper.

2 A Short Introduction to Lie-Groups

Lie-groups are differentiable manifolds endows with an algebraic group structure,
with smooth generators. Lie-groups and their structure have been used exten-
sively in computer vision, and have been the subject of intense research efforts,
involving statistics of matrix-valued data [39], and regularization of matrix-
valued images [20,53], as well as describing the evolution of differential processes
with Lie-group data [12,24]. We give a short introduction to Lie-groups in this
section and refer the reader to the literature for an in-depth discussion [21,50].

Because of the group nature of Lie-groups, elements can be mapped via
multiplication with their inverse, to the origin. This provides us with a diffeo-
morphically mapping each points and its neighborhood onto a neighborhood of
the origin element, by group action with their inverse, to the identity element of
the group. The tangent space in the origin therefore defines a canonical way of
parameterizing small changes of the manifold elements via a vector space. Such
a vector space is known as the Lie-algebra corresponding to the Lie-group. Lie-
algebras are equipped with an anti-symmetric bilinear operator, the Lie-bracket,
that describes the non-commutative part of the group product. Lie-brackets are
used in tracking [6], robotics, and computer vision [35], among other applica-
tions.

We deal with two Lie-groups, and two related matrix manifolds in this work.
The Lie-groups mentioned are

The rotations group SO(n) - The group SO(n) describes all rotations of the
n-dimensional Euclidean space. Elements of this group can be described in a
matrix form

SO(n) =
{
R ∈ Rn×n,RTR = I,det(R) = 1

}
, (1)
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with the group product being matrix multiplication. The Lie-algebra of this
group is the space so(n), which can be described by the set of skew-symmetric
matrices,

so(n) =
{
A ∈ Rn×n,AT = −A

}
. (2)

Another manifolds which are of interest and are highly related to SO(n) are its
quotient manifolds, the Stiefel manifolds.

The special-Euclidean group SE(n) - This group represents rigid transfor-
mations of the n-dimensional Euclidean space. This group can be thought of as
the product manifold of SO(n) and the manifold R

n describing all translations
of the Euclidean space. In matrix form this group can be written as

SE(n) =
{(

R t
0 1

)
,R ∈ SO(n), t ∈ R

n

}
, (3)

with matrix multiplication as the group action.
The Lie-algebra of this group can be written as

se(n) =
{(

A t
0 0

)
,A ∈ so(n), t ∈ R

n

}
, (4)

We note that these groups have trivially-defined embeddings into Euclidean
spaces, and an easily computable projection operator from the embedding space
onto the group. Also, the embedding space we relate to is equipped with a
norm: ‖ · ‖ denote the Frobenius norm in this chapter. The inner product used
in this chapter is also the inner product corresponding to the Frobenius norm –
〈A,B〉 = trace{AT B}. Matrix manifolds for which there exists a simple projector
operator include

Symmetric positive definite matrices SPD(n) - This matrix set has been
studied extensively in control theory [18], as well as in the context of diffusion
tensor images [39], where the matrices are used to describe the diffusion coef-
ficients along each direction. By definition, this group is given in matrix form
as

SPD(n) = {A ∈ Rn×n,A � 0} , (5)

Stiefel manifolds - The Stiefel manifold Vk(Rn) is defined as the set of all k-
frames in R

n. This can be written as the set of all n×k matrices with orthonormal
columns. This set, too, has a projection operator similar to SO(n).

3 An Augmented Lagrangian Regularization Algorithm
for Matrix-Valued Images

The optimization problem we consider is the equivalent of the total-variation
regularization of a map from the image domain to the matrix-manifold or Lie-
group, G [20],

arg min
uG

∫
‖u−1∇u‖ + λ‖u − u0‖2dx. (6)
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The function u represents an element in an embedding of G into Euclidean
space, specifically for the manifolds SO(n), SE(n), SPD(n),Vk(Rn). Elements
of SO(n) and Vk(Rn) can be embedded into R

n2
and R

nk, respectively. Ele-
ments of SE(n) can similarly be embedded into R

(n+1)2 , or more precisely, an
n(n + 1)-dimensional linear subspace of R(n+1)2 . The elements of SPD(n) can
be embedded into R

n(n+1)/2. We note that different choice of effectively parame-
trizing the manifold are possible, simply by making the norm in Eq. 6 a weighted
one. Specific choices of metric has been discussed in [37,60], but currently no
single canonical choice prevails. Choosing an optimal parameterization is beyond
the scope of this work.

We first describe our method in the context of G = SO(n), and then detail
the differences required when G = SE(n) and G = SPD(n).

We use the same notation for representation of the manifold point, its matrix
representation, and its embedding into the embedding space, as specified in each
case we explore.

The term ‖u−1∇u‖ can be thought of as a regularization term placed on ele-
ments of the Lie-algebra about each pixel. In order to obtain a fast regularization
scheme, we look instead at regularization of an embedding of the Lie-group ele-
ments into Euclidean space,

arg min
u : Ω → G

∫

Ω

‖∇u‖ + λ‖u − u0‖2dx. (7)

The rationale behind the different regularization term ‖∇u‖ stems from the fact
that SO(n) and SE(n) are isometries of Euclidean space. In fact, denote by uj

vectors in R
n representing the columns of the matrix u(x). Since u(x) is approx-

imately an isometry of Rn, let Δλ(x) denote the maximal local perturbation of
the singular values of u−1(x). We assume Δλ < 1. In this case,
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∥
∥uj

xi

∥
∥2 = Δλ ‖uxi

‖2F
Hence, as long as the constraint u(x) ∈ G ∀x ∈ Ω is approximately fulfilled
for an isometry group G, ‖∇u‖2F ≈ ‖u−1∇u‖2F . Moreover, such a regularization
is possible whenever the data consists of nonsingular and rectangular matrices,
and has been used also for SPD matrices [57]. Next, instead of restricting u to G,
we add an auxiliary variable, v, at each point, such that u = v, and restrict v to
G. The equality constraint is enforced via augmented Lagrangian terms [22,41].
The suggested augmented Lagrangian optimization now reads

minv∈G,u∈Rm maxμ L(u, v;μ) (9)

= minv∈G,u∈Rm maxμ

∫ [ ‖∇u‖ + λ‖u − u0‖2+
r
2‖v − u‖2 + 〈μ, v − u〉

]
dx.
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Given a fixed Lagrange multiplier μ, the minimization w.r.t. u, v can be split into
alternating minimization steps as described in the following two subsections.

3.1 Minimization w.r.t. v

The minimization w.r.t. v is a projection problem per pixel,

arg minv∈G
r

2
‖v − u‖2 + 〈μ, u − v〉

= arg minv∈G
r

2

∥
∥
∥v −

(μ

r
+ u

)∥
∥
∥
2

(10)

= ProjG
(μ

r
+ u

)
, (11)

where ProjG (·) denotes a projection operator onto the specific matrix-group G,
and its concrete form for SO(n),SE(n) and SPD(n) will be given later on.

3.2 Minimization w.r.t. u

Minimization with respect to u is a vectorial TV denoising problem

arg min
u∈Rm

∫
‖∇u‖ + λ̃ ‖u − ũ (u0, v, μ, r)‖2 dx, (12)

with ũ = 2λu0+rv+2μ
2λ+r . This problem can be solved via fast minimization tech-

niques – specifically, we chose to use the augmented-Lagrangian TV denoising
algorithm [51], as we now describe. In order to obtain fast optimization of the
problem with respect to u, we add an auxiliary variable p, along with a constraint
that p = ∇u. Again, the constraint is enforced in an augmented Lagrangian man-
ner. The optimal u now becomes a saddle point of the optimization problem

min
u ∈ R

m

p ∈ R
2m

max
µ2

∫ [ ‖p‖ + λ̃ ‖u − ũ (u0, v, μ, r)‖2

+μT
2 (p − ∇u) + r2

2
‖p − ∇u‖2

]
dx, (13)

We solve for u using the Euler-Lagrange equation,

2λ̃(u − ũ) + (div μ2 + r2 div p) + r2Δu = 0, (14)

for example, in the Fourier domain, or by Gauss-Seidel iterations.
The auxiliary field p is updated by rewriting the minimization w.r.t. p as

arg min
p ∈ R

2m

∫
‖p‖ + μT

2 p +
r2
2

‖p − ∇u‖2, (15)

with the closed-form solution [51,61]

p =
1
r2

max
(

1 − 1
‖w‖ , 0

)
w,w = r2∇u − μ2. (16)
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Hence, the main part of the proposed algorithm is to iteratively update v, u,
and p respectively. Also, according to the optimality conditions, the Lagrange
multipliers μ and μ2 should be updated by taking

μk = μk−1 + r
(
vk − uk

)
(17)

μk
2 = μk−1

2 + r2
(
pk − ∇uk

)
.

Let

F(u, v, p;μ, μ2) =
∫ [

λ ‖u − u0‖2 + r2
2 ‖p − ∇u‖2 + r

2‖u − v‖2+
+μT (u − v) + μT

2 (p − ∇u) + ‖p‖
]

dx. (18)

the constrained minimization problem in Eq. 7 becomes the following saddle-
point problem

min
v ∈ G

u ∈ R
m

p ∈ R
2m

max
μ,μ2

F(u, v, p;μ, μ2) (19)

An algorithmic description is summarized as Algorithm 1, whose convergence
properties are discussed in Sect. 5.

Algorithm 1 Fast TV regularization of matrix-valued data

1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), pk(x), according to Eqs. (14, 16).
3: Update vk(x), by projection onto the matrix group,

– For SO(n) matrices, according to Eq. (20).
– For SE(n) matrices, according to Eq. (21).
– For SPD(n) matrices, according to Eq. (22).

4: Update μk(x), μk
2(x), according to Eq. (17).

5: end for

3.3 Regularization of Maps onto SO(n)

In the case of G = SO(n), although the embedding of SO(n) in Euclidean space
is not a convex set, the projection onto the matrix manifold is easily achieved
by means of the singular value decomposition [19]. Let USVT =

(
μ
r + uk

)
be

the SVD decomposition of μ
r + uk, we update v by

vk+1 = ProjSO(n)

(μ

r
+ uk

)
= U(x)VT (x), (20)

USVT =
(μ

r
+ uk

)
.
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Other possibilities include using the Euler-Rodrigues formula, quaternions, or
the polar decomposition [29]. We note that the non-convex domain SO(n) pre-
vents a global convergence proof of the type shown in Subsect. 5.2 for SPD(n).
Convergence properties of the algorithm, in the case of G = SO(n) and G =
SE(n), are discussed in Subsect. 5.1.

We also note that the projection via SVD can be used to project matrices
onto the Stiefel manifolds [33], themselves quotient groups of SO(n) [55]. Thus,
the same algorithm can be used for Stiefel manifolds as well.

3.4 Regularization of Maps onto SE(n)

In order to regularize images with values in SE(n), we use an embedding into
R

n(n+1) as our main optimization variable, u, per pixel.
The projection step w.r.t. v applies only for the n2 elements of v describing

the rotation matrix, leaving the translation component of SE(n) unconstrained.
Specifically, let v = (vR, vt), vR ∈ R

n2
, vt ∈ R

n denotes the rotation and
translation parts of the current solution. Updating v in step 3 of algorithm 1
assumes the form

vk+1
R = U(x)VT (x), USVT =

(μR

r
+ uk

R

)

vk+1
t =

(μt

r
+ uk

t

)
(21)

vk+1 = ProjSE(n)(v
k) = (vk+1

R , vk+1
t ).

3.5 Regularization of Maps onto SPD(n)

The technique described above can be used also for regularizing symmetric
positive-definite matrices. A most prominent example for such matrices is that
of diffusion tensor images [4,5,13,27,30,49,53]. This includes several attempts
to define efficient and physically meaningful regularization techniques for DTI
regularization [7,53,65]. Many papers dealing with the analysis of DTI rely on
the eigenvalue decomposition of the tensor as well, i.e. for tractography [14],
anisotropy measurements [64], and so forth. It is not surprising that the intuitive
choice of projecting the eigenvalues of the matrices onto the positive half-space
is shown to be optimal [9,23].

When using an augmented Lagrangian approach, the minimization problem
w.r.t. v in step 3 of algorithm 1 is therefore solved by projection of eigenvalues,

vk+1 = ProjSPD(n)(v
k) = U(x) diag

(
λ̃
)
UT (x), (22)

Udiag (λ)UT =
(μ

r
+ uk

)
,
(
λ̃
)

i
= max ((λ)i , 0) ,

where the matrix U is a unitary one, representing the eigenvectors of the matrix,
and the eigenvalues

(
λ̃
)

i
are the positive projection of the eigenvalues (λ)i. Opti-

mization w.r.t. u is done as in the previous cases, as described in Algorithm 1.



26 G. Rosman et al.

Furthermore, the optimization w.r.t. u, v is now over the domain R
m ×

SPD(n), and the cost function is convex, resulting in a convex optimization
problem. The convex domain of optimization allows us to formulate a conver-
gence proof for the algorithm similar to the proof by Tseng [54]. This is discussed
in Subsect. 5.2. An example of using the proposed method for DTI denoising and
reconstruction is shown in Sect. 6.

3.6 A Higher-Order Prior for Group-Valued Images

We note that the scheme we describe is susceptible to the staircasing effect, since
it minimizes the total variation of the map u. While one possibility to avoid such
artifacts is to incorporate a linear diffusion term into the functional, there exists a
much more elegant solution by incorporating a higher-order differential operator
into the regularization term. One such possibile higher-order term generalizes
the scheme presented by Wu and Tai [66], by replacing the per-element gradient
operator with a Hessian operator. The resulting equivalent of Eq. 7 becomes

arg min
u ∈ G

∫
‖Hu‖ + λ‖u − u0‖2dx, (23)

where Hu is the per-channel Hessian operator, defined (on two-dimensional
domains) by

(
Hu(k)

)

i,j
=

((
D−+

xx u(k)
)
i,j

(
D++

xy u(k)
)
i,j(

D++
yx u(k)

)
i,j

(
D−+

yy u(k)
)
i,j

)

(24)

The numerical scheme solves the saddle-point problem

min
u ∈ R

m

p ∈ R
4m,

v ∈ G

max
μ2

∫ [
‖p‖ + λ̃ ‖u − ũ (u0, v, μ, r)‖2

+μT
2 (p − Hu) + r2

2 ‖p − Hu‖2
]

dx, (25)

The update step w.r.t. u as in Eq. 14 is easy to modify, resulting in the
Euler-Lagrange equation

2λ̃(u − ũ) − (H∗μ2 + r2H
∗p) + r2H

∗Hu = 0, (26)

where H∗ is the adjoint operator of the Hessian,

H∗p(k) = D+−
xx

(
p(k)

)11

+ D−−
xy

(
p(k)

)12

+ D−−
yx

(
p(k)

)21

+ D+−
yy

(
p(k)

)22

.

(27)

The update step w.r.t. p remains similar to Eq. 16, and is given by

p =
1
r2

max
(

1 − 1
‖w‖ , 0

)
w,w = r2Hu − μ2. (28)

Updates of the variable v and the Lagrange multipliers μ, μ2 remain the same
as in Algorithm 1. As will be shown in Sect. 6, this regularization term prevents
formation of staircasing effects where these are inappropriate.
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4 Regularized DTI Reconstruction

There are several possibilities of using the proposed regularization scheme for
DTI reconstruction from diffusion-weighted measurements. Instead of adding a
fidelity term as in Eq. (7), we add a term for fitting the Stejskal-Tanner equations
[49], based on a set of measurements describing the diffusion in specific directions,
and reconstruct the full diffusion tensor at each voxel. The fitting term can be
written as

∑

i

∥
∥
∥
∥bigT

i ugi − log
(

Si

S0

)∥
∥
∥
∥

2

,

where bi and gi are the b-values and gradient vectors, u is the diffusion tensor
reconstructed at each voxel, and Si

S0
define the relative signal ratio for each

direction at each voxel. The complete minimization problem reads

arg min
v ∈ SPD(n)

u

∫ ∑

i

∥
∥
∥bigT

i ugi − log
(

Si

S0

)∥
∥
∥
2

+ λ‖∇u‖

+ r
2‖v − u‖2 + 〈μ, v − u〉dx. (29)

While the memory requirements seem less favorable for fast optimization,
looking closely at the quadratic penalty data term, we see it can be expressed
by looking at a fitting term for the Stejskal-Tanner equations,

∑

i

∥
∥
∥
∥bigT

i ugi − log
(

Si

S0

)∥
∥
∥
∥

2

= uTAu + bT u + c, (30)

where A is a constant matrix over the whole volume,

A =
∑

i

b2i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g41 2g31g2 2g31g3 g21g
2
2 2g21g2g3 g21g

2
3

2g31g2 4g21g
2
2 4g21g2g3 2g1g

3
2 4g1g

2
2g3 2g1g2g

2
3

2g31g3 4g21g2g3 4g21g
2
3 2g1g

2
2g3 4g1g2g

2
3 2g1g

3
3

g21g
2
2 2g1g

3
2 2g1g

2
2g3 g42 2g32g3 g22g

2
3

2g21g2g3 4g1g
2
2g3 4g1g2g

2
3 2g32g3 4g22g

2
3 2g2g

3
3

g21g
2
3 2g1g2g

2
3 2g1g

3
3 g22g

2
3 2g2g

3
3 g43

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(31)

and b is the vector

b =
∑

i

bi log
(

Si

S0

)
(
2g21 4g1g2 4g1g3 2g22 4g2g3 2g23

)T
, (32)

and c is the scalar image

c =
∑

i

(
log

(
Si

S0

))2

. (33)
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We note that, unlike the denoising case, in the reconstruction case it is the
data term that couples together the elements of the tensor together. Care must
be taken so as to handle this coupled data term.

Reconstruction with the new data term can be computed using several tech-
niques.

– Freezing all elements of the tensor but one, we obtain from the Euler-Lagrange
equations pertaining to Eq. 29 an update rule for the image, to be computed in
the Fourier domain, or via Gauss-Seidel iterations. While the coupling between
the tensor elements (expressed via the non-diagonal matrix A) prevents us
from treating each tensor element separately, the optimization w.r.t. each of
the elements converges quite rapidly.

– Another possibility is to take a block Gauss-Seidel approach, and optimize
each tensor separately, going over all the voxels one-by-one.

– Yet another possibility is to further decouple the TV and data term, using sep-
arate variables and constraining them using an augmented Lagrangian app-
roach.

Of the above techniques, we have tried the first one. The reconstruction
obtained is the spatially-regularized version of the linear-least-squares (LLS)
method. One can incorporate a weighted least-squares (WLS, [47]), or nonlinear-
least-squares (NLS) [27] data term instead. Combining such data terms and
exploring the interaction between the regularization and nonlinear terms is
beyond the scope of this work.

5 Convergence Properties of the Algorithm

We now turn to discuss the local convergence of Algorithm 1.

5.1 Local Convergence for SO(n),SE(n) Regularization

Looking at regularization of maps onto SO(n),SE(n), the non-convex nature of
the optimization domain in Eq. 9 makes it difficult to prove global convergence.
Furthermore, the nature of the projection operator into SO(n) and SE(n), makes
it difficult to ascertain that at some point the sequence of iterants will converge.
While showing there exists a converging subsequence of iterants is easy due
to the boundedness of the sub-levelsets [54], the discontinuous nature of the
projection unto non-convex spaces may cause the algorithm to oscillate, although
this behaviour does not appear in practice. In order to avoid such a possibility
and allow for an easy proof of convergence, we take a proximal step approach,
and slightly modify our algorithm, as suggested by Attouch et al. [3], changing
the first two steps of the algorithm into the minimization problems

uk = arg min
u

F(u, vk−1, μ) +
1
θk

‖u − uk−1‖2 (34)

vk = arg min
v∈G

F(uk, v, μ) +
1
θk

‖v − vk−1‖2.
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The proof of convergence becomes similar to the one shown by Attouch et al. [3].
Since F(u, v) > −∞ and {F(uk, vk)} is non-increasing, we have that F(uk, vk)
converges to some finite value. Furthermore, by induction we can show that
the residual converges to 0, providing us with a guarantee of the asympthotic
behavior of the process.

The optimization steps in the modified algorithm remain a projection step
and total-variation denoising, but with a change in their parameters. For exam-
ple, the optimal update rule for v becomes

arg min
v∈SO(n)

r

2
‖v − u‖2 + 〈μ, v − u〉 +

1
2θk

‖v − vk−1‖2 =

arg min
v∈SO(n)

(
r

2
+

1
2θk

)
‖v‖2 − 〈v, ru + μ +

vk−1

θk
〉

+
r

2
‖u‖2 − 〈μ, u〉 +

1
2θk

‖vk−1‖2 =

arg min
v∈SO(n)

(
r

2
+

1
2θk

) ∥
∥
∥
∥
∥
v − ru + μ + vk−1

θk

r + 1
θk

∥
∥
∥
∥
∥

2

,

where 1
2θk

denotes the coupling between each iterant and its previous value.
We stress, however, that in practice the algorithm converges without the above
modification quite well.

5.2 Global Convergence for SPD(n) Regularization

For SPD(n) regularization we basically do a coordinate descent on a convex
domain [54] and therefore can show global convergence of our method. At each
step of the inner iteration, we do a full minimization with respect to the selected
variables block u, v and p. Using the notation provided by [54], we can rewrite
our functional as

Fμ,μ2(u, v, p) = f0(u, v, p) + f1(u) + f2(v) + f3(p), (35)

where

1. f0 is a convex, smooth, function.

f0(u, v, p) =
r

2
‖v − u‖2 + 〈μ, v − u〉 +

r2
2

‖p − ∇u‖2 + 〈μ2, p − ∇u〉

2. f1, f2 and f3 are convex, lower-semicontinuous, continuous in their effective
domain,

f1(u) = ‖u − u0‖2 (36)
f2(v) = 0 (37)

f3(p) = ‖p‖. (38)
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By [54, Proposition 1], it can be shown that the alternating minimization
will converge to a minimizer of Fμ,μ2(u, v, p). Along the same proof in [67],
it can be proved the whole algorithm converges. For completeness we repeat
the proof here. The following characterization for the minimizers of functional
F(u, v, p;μ, μ2) will be used. Assume that (u∗, v∗, p∗) is one of the minimizers,
and for arbitrary (u′, v′, p′) we have,

λ‖u∗ − u0‖2 − λ‖u′ − u0‖2 + r2(p∗ − ∇u∗,−(∇u∗ − ∇u′))
+r(u∗ − v∗, u∗ − u′) + (μ∗, u∗ − u′) + (μ∗

2,−(∇u∗ − ∇u′)) ≤ 0 (39)
−r(u∗ − v∗, v∗ − v′) − (μ∗, v∗ − v′) ≤ 0 (40)

‖p∗‖ − ‖p′‖ + r2(p∗ − ∇u∗, p∗ − p′) + (μ∗
2, p

∗ − p′) ≤ 0 (41)

(see [17], p.38 Proposition 2.2)

Theorem 51. The sequence (uk, vk, pk;μk, μk
2) generated by Algorithm 1 con-

verges to the saddle-point (u∗, v∗, p∗;μ∗, μ∗
2) of the functional F(u, v, p;μ, μ2)

Proof. Let ūk = u∗−uk,v̄k = v∗−vk,p̄k = p∗−pk, μ̄k = μ∗−μk, and μ̄k
2 = μ∗

2−μk
2

Since (u∗, v∗, p∗;μ∗, μ∗
2) is the saddle point of F(u, v, p;μ, μ2), we have

F(u∗, v∗, p∗;μ∗, μ∗
2) ≤ F(u′, v′, p′;μ∗, μ∗

2),∀u, v, p (42)

In particular when u′ = uk (39) still holds

λ‖u∗ − u0‖2 − λ‖uk − u0‖2 + r2(p∗ − ∇u∗,−∇(u∗ − uk))
+r(u∗ − v∗, u∗ − uk) + (μ∗, u∗ − uk) + (μ∗

2,−∇(u∗ − uk)) ≤ 0 (43)

On the other hand, since (uk, vk, pk;μk, μk
2) is the minimizer of F(u, v, p;μk, μk

2),
uk will also satisfy (39) and after substituting u′ = u∗ we obtain

λ‖uk − u0‖2 − λ‖u∗ − u0‖2 + r2(pk − ∇uk,−∇(uk − u∗))
+r(uk − vk, uk − u∗) + (μk, uk − u∗) + (μk

2 ,−∇(uk − u∗)) ≤ 0. (44)

Adding the two inequalities yields

r2(p̄k − ∇ūk,−∇ūk) + r(ūk − v̄k, ūk) + (μ̄k, ūk) + (μ̄2
k,−∇ūk) ≤ 0 (45)

Similarly, w.r.t v∗, vk using the same argument to (40) we have

− r(u∗ − v∗, v∗ − vk) − (μ∗, v∗ − vk) ≤ 0 (46)
−r(uk − vk, vk − v∗) − (μk, vk − v∗) ≤ 0 (47)

adding two inequalities yields

− r(ūk − v̄k, v̄k) − (μ̄k, v̄k) ≤ 0 (48)

w.r.t p∗, pk, the same argument is applied to (41)

‖p∗‖ − ‖pk‖ + r2(p∗ − ∇u∗, p∗ − pk) + (μ∗
2, p

∗ − pk) ≤ 0 (49)
‖pk‖ − ‖p∗‖ + r2(pk − ∇uk, pk − p∗) + (μk

2 , p
k − p∗) ≤ 0 (50)
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thus

r2(p̄k − ∇ūk, p̄k) + (μ̄2
k, p̄k) ≤ 0 (51)

Adding (45), (48) and (51) we have

r2‖p̄k − ∇ūk‖2 + r‖ūk − v̄k‖2 + (μ̄2
k, p̄k − ∇ūk) + (μ̄k, ūk − v̄k) ≤ 0 (52)

By the way of updating multipliers, also note that u∗ = v∗ and p∗ = ∇u∗ we
obtain

μ̄k+1 = μ̄k + r(ūk − v̄k) (53)
μ̄k+1
2 = μ̄k

2 + r2(p̄k − ∇ūk) (54)

therefore by (52) we have

r2‖μ̄k+1‖2 + r‖μ̄k+1
2 ‖2 − r2‖μ̄k‖2 − r‖μ̄k

2‖2
= 2rr2(μ̄k, ūk − v̄k) + 2rr2(μ̄k

2 , p̄
k − ∇ūk) + r2r2‖ūk − v̄k‖2 + rr22‖p̄k − ∇ūk‖

≤ −r2r2‖ūk − v̄k‖2 − rr22‖p̄k − ∇ūk‖ ≤ 0 (55)

This actually implies μk and μk
2 are bounded, and

lim
k→∞

‖pk − ∇uk‖ = 0 (56)

lim
k→∞

‖uk − vk‖ = 0 (57)

With this in mind, it is not hard to show that (uk, vk, pk;μ∗, μ∗
2) converge to the

saddle-point of the functional

6 Numerical Results

As discussed above, the proposed algorithmic framework is quite general and is
suitable for various applications. In this section, several examples from differ-
ent applications are used to substantiate the effectiveness and efficiency of our
algorithm.

6.1 Directions Regularization

Analysis of principal directions in an image or video is an important aspect
of modern computer vision, in fields such as video surveillance [26,36, and ref-
erences therein], vehicle control [16], crowd behaviour analysis [34], and other
applications [40].

The input in this problem is a set of normalized/unnormalized direction
vectors located throughout the image domain, either in a dense or sparse set of
locations. The goal is to obtained a smoothed version of the underlying direction
field. Since SO(2) is isomorphic to S1, the proposed regularization scheme can be
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used for regularizing directions as well, as we demonstrate. A reasonable choice
for a data term would try to align the rotated first coordinate axis with the
motion directions in the area,

EPMD(U) =
∑

(xj ,yj)∈N (i)

(
U1,1 (vj)x + U1,2 (vj)y

)
, (58)

where
(
xj , yj , (vj)x , (vj)y

)
represent a sampled motion particle [34] in the video

sequence, and Ui,j represent elements of the solution u.
In Fig. 1 we demonstrate two sparsely sampled, noisy, motion fields, and a

dense reconstruction of the main direction of motion at each point. The data
for the direction estimation was corrupted by adding component-wise Gaussian
noise. In the first image, the motion field is comprised of 4 regions with a different
motion direction at each region. The second image contains a sparse sampling
of an expansion motion field of the form

v(x, y) =
(x, y)T

‖ (x, y) ‖ . (59)

Such an expansion field is often observed by forward-moving vehicles. Note that
despite the fact that a vanishing point of the flow is clearly not smooth in terms
of the motion directions, the estimation of the motion field is still correct.

An example of the higher order regularization term is shown in Fig. 2, using
the approach suggested in Subsect. 3.6. Note the smooth boundaries create due
to the sparsely sampled data term – while the TV solution forces staircasing in
the solution, the higher order regularization does not.

In Fig. 3 we used the algorithm to obtain a smooth field of principal motion
directions over a traffic sequence taken from the UCF crowd flow database [2].
Direction cues are obtained by initializing correlation-based trackers from arbi-
trary times and positions in the sequence, and observing all of the tracks simul-
tenaously. The result captures the main traffic lanes and shows the viability of
our regularization for real data sequences.

Yet another application for direction diffusion is in denoising of directions
in fingerprint images. An example for direction diffusion on a fingerprint image
taken from the Fingerprint Verification Competition datasets [1] can be seen in
Fig. 4. Adding a noise of σ = 0.05 to the image and estimating directions based
on the structure tensor, we smoothed the direction field and compared it to the
field obtained from the original image. We used our method with λ = 3, and the
modified method based on Eq. 26 with ε = 10, as well as the method suggested
by Sochen et al. [46] with β = 100, T = 425. The resulting MSE values of the
tensor field are 0.0317, 0.0270 and 0.0324, respectively, compared to an initial
noisy field with MSE = 0.0449. These results demonstrate the effectiveness of
our method for direction diffusion, even in cases where the staircasing effect may
cause unwanted artifacts.
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Fig. 1. TV regularization of SO(n) data. Left-to-right, top-to-bottom: the initial esti-
mated field for a 4-piece piecewise constant motion field, a concentric motion field, the
denoised images for the piecewise constant field and the concentric motion field. Differ-
ent colors mark different orientations of the initial/estimated dense field, black arrows
signify the measured motion vectors, and blue arrows demonstrate the estimated field
after sampling.

6.2 SE(n) Regularization

We now demonstrate a smoothing of SE(3) data obtained from locally matching
between two range scans obtained from a Kinect device. For each small surface
patch from the depth image we use an iterative closest point (ICP) algorithm
[8] to match the surface from the previous frame. For each point in the fore-
ground, an ICP algorithm is used to match the point’s neighborhood from frame
i to that of frame i − 1. The background is segmented by simple thresholding.
The results from this tracking process over raw range footage are an inher-
ently noisy measurements set in SE(3). We use our algorithm to smooth this
SE(3) image, as shown in Fig. 5. It can be seen that for a careful choice of the
regularization parameter, total variation in the group elements is seen to signif-
icantly reduce rigid motion estimation errors. Furthermore, it allows us to dis-
cern the main rigidly moving parts in the sequence by producing a scale-space of
rigid motions. Visualization is accomplished by projecting the embedded matrix
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Fig. 2. TV regularization of SO(n) data, based on the same data from Fig. 1, with
a higher-order regularity term. Different color mark different orientations of the esti-
mated motion field. Left: TV regularization result as demonstrated in Fig. 1. Right:
regularization results based on Eq. 23. The parameter λ was chosen to be 2 for the
upper example, and 0.2 for the lower example.

onto 3 different representative vectors in R
12. The regularization is implemented

using the CUDA framework, with computation times shown in Table 1. Using 15
outer iterations and 3 Gauss-Seidel iterations per inner iteration, practical con-
vergence is achieved in 63 milliseconds on an NVIDIA GTX-580 card for QVGA-
sized images, demonstrating the efficiency of our algorithm and its potential for
real-time applications. This is especially important for applications such as ges-
ture recognition where fast computation is important. A residual plot in the left
sub-figure of Fig. 6 demonstrates convergence of our method.

Furthermore, since the main constraint for SO(n) matrices (or the rotation
part of SE(n) matrices) is that of orthogonality, we measure during convergence

errorth(u) =
∥
∥UT U − I

∥
∥2

F
(60)

The plot of errorth as a function of the iterations is shown in the right
sub-figure of Fig. 6. The plot demonstrates the enforcement of the constraint
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Fig. 3. Regularization of principal motion directions. The red arrows demonstrate mea-
surements of motion cues based on a normalized cross-correlation tracker. Blue arrows
demonstrate the regularized directions fields.

u ∈ G by the augmented Lagrangian scheme for most of the convergence. The
close adherence to the isometry assumption validates in practice our usage of
the regularization proposed in Eq. 7 for isometry groups.

6.3 DTI Regularization

In Fig. 7 we demonstrate a smoothing of DTI data from [32], based on the
scheme suggested in Sect. 3.5, using the Slicer3D tool in order to visualize the
tensors via ellipsoid glyphs. Figure 8 demonstrates the convergence rate for the
regularization. MSE of the matrix representation was 0.0406 in the corrupted
image and 0.0248 in the regularized image.

In Figs. 9, 10 we demonstrate reconstruction of the DTI tensors, again based
data from Lundervold et al. [32], using a set of 30 directional measurements.
The measure ratios log

(
Si

S0

)
were added a Gaussian additive noise of standard

deviation 100. The reconstructed image obtained by regularized reconstruction
with λ = 1 × 10−3 had an MSE of 2.1 × 10−4, compared to 8.9 × 10−3 without
regularization.
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Fig. 4. TV regularization of SO(2) data based on fingerprint direction estimation. Left-
to-right, top-to-bottom: The fingerprint image with added Gaussian noise of σ = 0.05,
the detected direction angles, the detected directions displayed as arrows, the detected
directions after regularization with λ = 3, regularization results using Eq. 9, regulariza-
tion results based on higher-order diffusion term with λ = 6, the regularization result by
Sochen et al. [46].
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Fig. 5. Regularization of SE(3) images obtained from local ICP matching of the surface
patch between consecutive Kinect depth frames. Left-to-right: diffusion scale-space
obtained by different values of λ: 1.5, 1.2, 0.7, 0.2, 0.1, 0.05 , the foreground segmentation
based on the depth, and an intensity image of the scene.

Table 1. GPU processing times for various sizes of images, given in milliseconds.

Outer iterations 15 15 25 50
GS iterations 1 3 1 1

320 × 240 49 63 81 160
640 × 480 196 250 319 648
1920 × 1080 1745 2100 2960 5732
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Fig. 6. A residual plot (left), and orthogonality error norm plot (right) for SE(3)
denoising as demonstrated in Fig. 5, for λ = 0.2.
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Fig. 7. TV denoising of images with diffusion tensor data. Left-to-right: the origi-
nal image, an image with added component-wise Gaussian noise of σ = 0.1, and the
denoised image with λ = 30.
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Fig. 8. A residual plot for DTI denoising (left) and reconstruction (right) as demon-
strated in Figs. 7, 9, respectively.

Fig. 9. TV-regularized reconstruction of images with diffusion tensor data. Left-to-
right: the original image, an image with added component-wise Gaussian noise, and
the denoised image. Noise was of standard deviation 100, λ = 1 × 10−3.
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Fig. 10. TV-regularized reconstruction of diffusion tensor data. Left-to-right: the orig-
inal reconstruction without noise, the noisy least-squares fitting solution (used as ini-
tialization), and the regularized reconstruction result. Top-to-bottom: a visualization of
the principal directions, the fractional anisotropy, and the mean diffusivity. The noise
added to the field ratio logarithm was of strength 100, λ = 1 × 10−3.

7 Conclusions

In this chapter we demonstrate thed effectiveness of augmented Lagrangian reg-
ularization of matrix-valued maps. Specifically, we have shown the efficiency and
effectiveness of the resulting total-variation regularization of images with matrix-
valued data taken from SO(n), SE(n), and SPD(n). For the case of SPD(n) we
have shown the method’s usefulness for denoising and regularized reconstruction
of DTI data, as well as noted the convexity of the resulting optimization problem.

In future work we intend to explore the various ways of handling the matrix-
valued regularization problem and the coupling between matrix elements, as well
as extend our work into different data types and applications.
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