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Preface

Volume XVII of the Transactions on Rough Sets (TRS) is a continuation of a
number of research streams that have grown out of the seminal work of Zdzis�law
Pawlak1 during the first decade of the twenty-first century. The research streams
represented in the papers cover both the theory and applications of rough, fuzzy,
and near sets as well as their combinations.

Davide Ciucci and Didier Dubois present a comprehensive survey on the con-
nections between three-valued logics and rough sets from the point of view of
incomplete information management. Ivo Düntsch and Günther Gediga propose
procedures to compute confidence intervals for standard errors of indices such
as γ and α to measure quality of approximation in rough set data analysis.
Christopher Henry and Garrett Smith present an application to demonstrate
descriptive-based approaches to nearness and proximity within the context of
digital image analysis. Victor Marek and Andrzej Skowron explore properties of
rough sets related to one of the classic structures of combinatorics and computer
science, namely, matroid. Mariusz Podsiad�lo and Henryk Rybiński provide a de-
tailed review of the currently available literature covering applications of rough
sets in economy and finance. The classic rough set model and its important
extensions are applied to areas of risk management, financial market predic-
tion, valuation, and portfolio management. Sai Prasad and Raghavendra Rao
present reduct computation algortihm(s) using a fuzzy rough set approach and
the effectiveness of their algorithm(s) is empirically demonstrated by compara-
tive analysis with existing reduct approaches. This volume also includes a long
paper by Andrzej Janusz based on his PhD thesis on algorithms for similarity
relation learning from high-dimensional data.

The editors would like to express gratitude to the authors of all submitted
papers. Special thanks are due to the following reviewers: Jerzy Grzyma�la-Busse,
Chris Cornellis, Ivo Düntsch, Jouni Järvinen, Henryk Rybinski, Sheela Ramanna,
Dominik Ślȩzak, Marcin Wolski, JingTao Yao, and Yiyu Yao.

The editors and authors of this volume extend their gratitude to Alfred Hof-
mann and the LNCS staff at Springer for their support in making this volume
of the TRS possible.

The Editors-in-Chief were supported by the Polish National Science Centre
grants DEC-2011/01/B/ ST6/03867, DEC-2011/01/D/ST6/06981, and DEC-
2012/05/B/ST6/03215 as well as by the Polish National Centre for Research and

1 See, e.g., Pawlak, Z., A Treatise on Rough Sets, Transactions on Rough Sets IV,
(2006), 1-17. See, also, Pawlak, Z., Skowron, A.: Rudiments of rough sets, Informa-
tion Sciences 177 (2007) 3-27; Pawlak, Z., Skowron, A.: Rough sets: Some exten-
sions, Information Sciences 177 (2007) 28-40; Pawlak, Z., Skowron, A.: Rough sets
and Boolean reasoning, Information Sciences 177 (2007) 41-73.
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Development (NCBiR) under grant SYNAT No. SP/I/1/77065/10 in the frame-
work of the strategic scientific research and experimental development program:
“Interdisciplinary System for Interactive Scientific and Scientific-Technical Infor-
mation” and by grant No. O ROB/0010/03/001 in the framework of the Defence
and Security Programmes and Projects “Modern Engineering Tools for Deci-
sion Support for Commanders of the State Fire Service of Poland during Fire
and Rescue Operations in the Buildings” as well as by the Natural Sciences and
Engineering Research Council of Canada (NSERC) discovery grant 185986.

January 2014 James F. Peters
Andrzej Skowron
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Three-Valued Logics, Uncertainty Management

and Rough Sets

Davide Ciucci1 and Didier Dubois2

1 DISCo - Università di Milano – Bicocca,
Viale Sarca 336 – U14, 20126 Milano Italia

2 IRIT, Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse cedex 4 France

Abstract. This paper is a survey of the connections between three-
valued logics and rough sets from the point of view of incomplete infor-
mation management. Based on the fact that many three-valued logics
can be put under a unique algebraic umbrella, we show how to translate
three-valued conjunctions and implications into operations on ill-known
sets such as rough sets. We then show that while such translations may
provide mathematically elegant algebraic settings for rough sets, the in-
terpretability of these connectives in terms of an original set approxi-
mated via an equivalence relation is very limited, thus casting doubts
on the practical relevance of truth-functional logical renderings of rough
sets.

1 Introduction

Rough sets have often been studied under a three-valued logic framework and
different authors have tried to connect rough sets to different logics: �Lukasiewicz
[9, 11], Nelson [58, 59], Gödel, Gaines-Rescher three-valued logics [49, 41]. De-
spite the formal correctness of these approaches, little attention has been devoted
to the interpretation of these logics in the rough set context. Moreover, a com-
prehensive study on the three-valued connectives that can be defined on rough
sets is needed and, as we will see, it can be accomplished starting from known
results in three-valued logics.

Three-valued logics are apparently simple; they are straightforward general-
izations of Boolean logic based on the most simple bipolar scale {0, 12 , 1} where
1 (resp. 0) has a positive (resp. negative) flavor, and 1

2 is neutral. Further, they
are widely used in several applied contexts such as logic programming [43], elec-
tronic circuits [67], databases [27], and, of course, rough sets. However, there
have been several different meanings attached to the third value, some having
an epistemic nature. There is not a clear result on the definition of its connec-
tives in connection with this meaning. Here is a list of these interpretations of
the third truth-value, different from true and false : Possible (due to �Lukasiewicz
[17]), Unknown (Kleene [52]), Undefined (also Kleene), Half-true (in fuzzy logic
[48]), Borderline (in logics of vagueness, like in Shapiro [66]), Inconsistent (that
is both true and false, as in paraconsistent logics or the logic of paradox by Priest

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets XVII, LNCS 8375, pp. 1–32, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 D. Ciucci and D. Dubois

[63]), or yet Irrelevant as in relevance logics [2] or the logic of conditionals [38].
Sometimes, two of these notions are simultaneously used as Inconsistent and
Unknown in Belnap four-valued logic [14].

Three-valued logics go along with three-valued sets having central elements
and peripheral ones [46]. However the meaning of such central and peripheral
elements depends on the meaning of the third truth-value. It depends on whether
it has an epistemic flavor or not; a peripheral element can be understood in one
of the following ways:

1. either as an untypical element of a non-classical set,
2. or as an element that cannot be definitely classified as belonging or not to a

crisp set due to incomplete information,
3. or as an element that cannot be definitely classified as belonging or not to a

crisp set due to conflicting information,
4. or as an element for which membership or non membership makes no sense,

due to irrelevance or the dubious existence of such an element.

Case 2 is the one we are concerned with in this paper. Then the three truth-
values refer to the epistemic status of otherwise Boolean propositions (provably
true, provably false or unknown [39]). This is typically the case of ill-known or
interval sets [72], where the central elements are elements that certainly belong to
some ill-known set, the third truth-value is assimilated to {0, 1} and understood
as the hesitancy between membership and non-membership. They are special
cases of interval-valued fuzzy sets [77] or twofold fuzzy sets [37]. One of the
causes of a set being ill-known can be the lack of precision on the value of some
of the attributes that describe it (for instance, a set of single persons is ill-known
if the marital status of some of the persons is ill-known).

A rough set, viewed as a pair of nested approximations is a typical example
of ill-known set, where the lack of knowledge comes from an equivalence rela-
tion between possibly indistinguishable elements, this indistinguishability being
due to the use of a language that is not expressive enough (incomplete set of
attributes or attributes that are too coarsely defined). This situation contrasts
with the case of sets that are ill-known due to the lack of knowledge of attribute
values; see Couso and Dubois [28] when the two causes of partial ignorance
appear simultaneously.

In recent papers [23–26], we have studied various three-valued logics of partial
knowledge, where the third truth-value means unknown. It has been shown that
a large class of three-valued logics (including �Lukasiewicz L3) is compatible with
this understanding of the third truth-value, but their translations into a very
elementary modal logic indicate that such three-valued logics cannot account for
partial ignorance jointly affecting several Boolean variables: only states of partial
ignorance that can be described independently for each variable can be accounted
for in a three-valued logic. This is the price paid for truth-functionality.

In this paper, we examine the situation of three-valued logics of rough sets.
While the aforementioned limitation is still valid (since rough sets do not be-
have truth-functionally in general), there is an additional constraint in this
case. Namely, the approximation pairs are generated by an equivalence relation,
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which creates additional interpretive difficulties for truth-functional definitions of
conjunction and disjunction [22]. In this paper, we consider the situation of more
general three-valued connectives in connection with rough sets.

In the following, we review some results on three-valued logics, in particular we
give a list of reasonable connectives on three values that can apply to ill-known
sets. Then, these connectives are translated into the language of nested pairs or
orthopairs of sets, showing that, from a formal point of view, this translation is
correct. On the other hand, some considerations from the interpretation stand-
point are put forward casting some doubts on this truth-functional approach
to ill-known sets and rough sets. Especially, in the case of rough sets, it seems
impossible to interpret combinations of rough sets in terms of pure combinations
of the underlying ill-known sets (approximated via an equivalence relation). Fi-
nally, we discuss some modal and three-valued logics of rough sets in connection
with a recent translation of three-valued logics into a fragment of the KD logic.

2 Aggregation Functions on Three Valued Logics

We denote by 3 the set {0, 12 , 1} with the usual order: 0 < 1
2 < 1. Due to

the total order assumption, we can define the idempotent and commutative
Kleene conjunction and disjunction, that is, the minimum, denoted by � and
the maximum denoted by �: x � y = y � x = x if and only if x ≤ y if and only
if x � y = y � x = y. Moreover, Gödel implication is definable by residuation:

x � y ≤ z if and only if x ≤ y →G z.

It is such that y →G z = 1 if y ≤ z and z otherwise. Finally, the intuitionistic
negation is obtainable by Gödel implication as ∼x = x →G 0. We now report
some results [25] about three-valued logics: a list of possible connectives, the
logical systems they generate and the links among them.

2.1 Connectives

A maximal family of sensible conjunctions and implications on 3 is now recalled,
based on some intuitive properties, in the scope of modeling incomplete infor-
mation. Then, negation and disjunction can be derived respectively as a → 0
and by De Morgan properties.

Definition 2.1. A conjunction on 3 is a binary mapping ∗: 3× 3 �→ 3 that is
monotonically increasing in the wide sense, and extends the connective AND in
Boolean logic:

(C1) If x ≤ y then x ∗ z ≤ y ∗ z;
(C2) If x ≤ y then z ∗ x ≤ z ∗ y;
(C3) 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1.
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Bearing in mind our focus on the epistemic understanding of the third truth-
value as unknown, condition C3 is clearly natural if we notice that, in conse-
quence to this interpretive assumption, 1 must mean ”certainly true” and 0
“certainly false”, which justifies this requirement of coincidence with Boolean
conjunction for truth-values different from 1/2.

Due to (C3), the monotonicity properties (C1-C2) imply 1
2 ∗ 0 = 0 ∗ 1

2 = 0. It
goes along with the fact that a conjunction is false whenever one of the conjuncts
is false, regardless of whether the truth-value of the other conjunct is known or
not. If we consider all the possible cases, there are 14 conjunctions satisfying
Definition 2.1. Among them, only six are commutative and only five associative.
These five conjunctions are already known in the literature and precisely, they
have been studied in the following logics: Sette [65], Sobociński [68], �Lukasiewicz
[17], Kleene [52], Bochvar [15]. The complete list is given in Table 1.

Table 1. All conjunctions on 3 according to Definition 2.1

∗ 0 1
2

1

0 0 0 0
1
2

0

1 0 1

n. 1
2
∗ 1

2
1 ∗ 1

2
1
2
∗ 1

1 1 1 1 Sette

2 1
2

1 1 quasi conjunction/Sobociński

3 1
2

1 1
2

4 1
2

1
2

1

5 1
2

1
2

1
2

min/interval conjunction/Kleene

6 0 0 1

7 0 0 1
2

8 0 0 0 Bochvar external

9 0 1
2

0

10 0 1
2

1

11 0 1
2

1
2

�Lukasiewicz

12 0 1 0

13 0 1 1
2

14 0 1 1

Besides Definition 2.1 other possible definitions of conjunction can be found
in the literature:

– conjunction of conditional events due to Walker [71]. The required proper-
ties are the coincidence with Boolean conjunction on Boolean values {0, 1},
idempotence and commutativity. Only nine conjunctions satisfy these
axioms, among them Sobociński’s (it is also Adams quasi-conjunction of con-
ditionals [1]) and the two Kleene ones. The other six are all non-monotonic
and only one is associative. Moreover, three of them are such that 1

2 ∗ 0 = 1.
All these facts cast some doubts on the interpretability of these six conjunc-
tions on 3 outside the setting of conditional events.
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– t-norms, uninorms [54, 29]. A uninorm is a binary operator which is asso-
ciative, commutative, non-decreasing in each component and with a neutral
element e : ∀x, e∗x = x. A t-norm is a uninorm such that e = 1. Among con-
junctions on 3 we have only two t-norms: Gödel and �Lukasiewicz and only
one more uninorm: Sobociński. They already appear in the above Table 1.

– t-operators [54]: an associative, commutative binary operators such that 0 ∗
0 = 0, 1∗1 = 1 and satisfying 1-smoothness: xi∗xj−1 ≤ xi∗xj and if xi∗xj =
xk then {xi−1 ∗ xj , xi ∗ xj−1} ⊆ {xk, xk−1}. Besides Kleene and �Lukasiewicz
conjunctions and disjunctions, on three values we get one more operator: the
median med(x, y, 1

2 ), which, however, does not generalize Boolean logic.

In the case of implication, we can give a general definition, which extends
Boolean logic and supposes monotonicity (decreasing in the first argument, in-
creasing in the second).

Definition 2.2. An implication on 3 is a binary mapping →: 3× 3 �→ 3 such
that:

(I1) If x ≤ y then y → z ≤ x→ z;
(I2) If x ≤ y then z → x ≤ z → y;
(I3) 0→ 0 = 1→ 1 = 1 and 1→ 0 = 0.

From the above definition we derive x → 1 = 1, 0 → 1 = 1 and 1
2 →

1
2 ≥

{1 → 1
2 ,

1
2 → 0}. There are 14 implications satisfying this definition, listed in

Table 2.

Table 2. All implications according to Definition 2.2

→ 0 1
2

1

0 1 1 1
1
2

1

1 0 1

n. 1
2
→ 1

2
1 → 1

2
1
2
→ 0

1 0 0 0

2 1
2

0 0 Sobociński

3 1
2

0 1
2

4 1
2

1
2

0 Jaśkowski

5 1
2

1
2

1
2

(strong) Kleene

6 1 1 0 Sette

7 1 1 1
2

8 1 1 1

9 1 1
2

1 Nelson

10 1 1
2

0 Gödel

11 1 1
2

1
2

�Lukasiewicz

12 1 0 1 Bochvar external

13 1 0 1
2

14 1 0 0 Gaines–Rescher

Nine of them are known and have been studied. Besides those implications
named after the five logics mentioned above, there are also those named after
Jaśkowski [50], Gödel [47], Nelson [55], Gaines-Rescher [44].
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Finally, there are only three possible negations that extend the Boolean nega-
tion, namely, if 0′ = 1 and 1′ = 0:

1. ∼ 1
2 = 0. It corresponds to an intuitionistic negation, since it satisfies the law

of contradiction, and not the excluded middle. It is of the form a →i 0 for
implications 1, 2, 4, 6, 10, 14.

2. ¬1
2 = 1

2 . It is an involutive negation. It is of the form a→i 0 for implications
3, 5, 7, 11, 13.

3. − 1
2 = 1. It is called a paraconsistent negation, since it satisfies the law of

excluded middle, and not the one of contradiction. It is of the form a →i 0
for implications 8, 9, 12.

2.2 Logical Systems

As mentioned, some of these connectives have already been studied and they are
at the basis of known logical formalisms. Here is a (possibly not exhaustive) list:

– �Lukasiewicz logic (→11, ∗11,+11,¬), where the disjunction +11 definable by
de Morgan properties as a +11 b := ¬(¬a ∗11 ¬b) is the truncated sum. We
also recall that the interpretation given by �Lukasiewicz for the third value is
possible whereas, nowadays, �Lukasiewicz logic is mainly used in many valued
logics where the third value has a gradual truth meaning.

– Sobociński logic (→2, ∗2,+2,¬) where +2 can be defined as a+2b := ¬a→2 b
and designated values are 1, 1

2 . In this case, the third value means irrelevant
and it has been used in the context of relevance logics [2] and conditional
events [38]. We recall that conjunction ∗2 is a discrete uninorm with 1

2 as
neutral element and implication →2 its residuum [7].

– Gödel (intuitionistic) logic (→10, ∗5(min),max,∼) on three values, also known
as logic of here-and-there in logic programming [62].

– Jaśkowski logic (→4, ∗5(min),max,¬) has been studied by several authors in
the field of paraconsistent logic [32, 2, 4]. The designated values are 1

2 and
1 and the interpretation of the third value means inconsistent, paradoxical,
that is, both true and false.

– Bochvar logic (→12, ∗8,+8, �) where x +8 y is 1 if at least one of a and b is
equal to 1 and 0 in all other cases. Third value 1

2 stands for meaningless.
– Sette paraconsistent logic (→6, ∗1,−) where x +1 y takes the value 0 if x =

y = 0 and 1 otherwise and designated values are 1
2 and 1. We note that

Sette conjunction (n.1) and implication (n.6) correspond to the collapse of
the truth-values 1 and 1

2 . The author does not give a clear semantic to the
third value and he introduces the logic as a “not absolutely inconsistent”
formal system.

– Nelson logic (→9, ∗5,max,¬,−) where − is a paraconsistent negation and
→9 Nelson implication. It is the logic of constructible falsity, and in this sense
it is dual to intuitionistic logic. On five values it is also known as equilibrium
logic in the context of logic programming [62].
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The reader is referred to the work of Avron [5] for a reconstruction of some of
the above three-valued logics (said to be “natural”) where the third truth-value
is understood as unknown or contradictory, based on the inferential standpoint.

Fig. 1. Outline of all the relations among connectives

2.3 Connections among Logics

Some relations among the above systems are known. For instance, Sette logic has
been obtained in [32] from �Lukasiewicz logic in order to demonstrate a relation-
ship between many-valued and paraconsistent logics; likewise, it can be proved
that Jaśkowski and Sobociński logics are equivalent [5]. However, other connec-
tions can be put forward by a systematic study. As a result we can prove that
all these systems and more generally, all the 14 conjunctions and implications
are inter-definable. More precisely, we consider the following transformations of
a binary operator � on 3 [35, 36]:

a[A(�)]b = b� a (exchange) (1a)

a[V(�)]b = ¬b� ¬a (contraposition) (1b)

a[S(�)]b = ¬(a� ¬b) (material implication) (1c)

a[I(�)]b =
{
0 �s, a� s ≤ b ;

sup{s : a� s ≤ b}, otherwise.
(residuation) (1d)
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We also define relations among implications through some formulae which are
tautologies in Boolean logic:

a→new b = (a→ b) ∧ (¬b→ ¬a); (2a)

a→new b = b ∨ (a→ b); (2b)

a→new b = a→ (a→ b); (2c)

a→new b = (a→ b) ∨ (¬b→ ¬a); (2d)

a→new b = ¬a ∨ (a→ b) (2e)

In the graph of Figure 1, a representation of all these relationships is given: every
circle represents a group of conjunctions/implications related via transformations
defined in equations (1), whereas groups are linked by transformations defined
in equations (2). These transformations are instrumental to get the following
results [23, 25]:

Proposition 2.1. Let 3 be the three-element set with the usual order 0 < 1
2 < 1

or equivalently, 3 = (3,∧,∨), with 3 the set of three elements without the order
structure. All the 14 conjunctions and implications can be defined in any of the
following systems:

– (3,¬,→10) = (3,∧,¬,→10) (Gödel implication plus the involutive negation);
– (3,→i) = (3,∧,∨,→i) where i ∈ I = {3, 5, 7, 11, 13}, allowing residuation.

Further, we can also consider a set with three elements without a predefined order
(and so without min, max and residuation) and obtain the following proposition.

Proposition 2.2. We denote by 3 the set of three elements without any struc-
ture. All the 14 conjunctions and implications can be defined in any of the fol-
lowing systems:

– (3,→11, 0) where →11 is �Lukasiewicz implication;
– (3,→9,¬) where →9 is Nelson implication;
– (3,→5,∼, 0) where →5 is Kleene implication and ∼ the intuitionistic nega-

tion.
– (3,→5,−, 0) where →5 is Kleene implication and − the paraconsistent nega-

tion.

In the two arrays of Table 3 we report how to obtain all the conjunctions and
implications starting from the �Lukasiewicz implication→L=→11 and 0; of course
¬a = a →L 0. We denote by � �Lukasiewicz conjunction; moreover, ∇a is an
abbreviation for ¬a →L a, Δ(a) stands for a � a = ¬(a →L ¬a), and finally
J(a) is short for ¬a ∗1 ¬(¬a ∗1 a) = ∇(¬a ∧ ¬∇(¬a ∧ a)). Clearly ∼ a = ¬∇a
and −a = ¬Δa.

So, the differences among three-valued logics are just apparent. All of them
can be interpreted as a fragment of the same logic, such as �Lukasiewicz logic, or
sometimes a variant thereof with the same expressive power (like Nelson’s logic).
According to the purpose and to the desired interpretation, we can then choose
the proper fragment and connectives.
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Table 3. All connectives expressed using �Lukasiewicz logic operators

n a ∗n b

1 ∇(a ∧ b)

2 ∇(a ∧ b) ∧ (a ∨ b) Sobociński

3 ∇(a ∧ b) ∧ a

4 ∇(a ∧ b) ∧ b

5 a ∧ b (strong) Kleene

6 ¬J(a)� J(¬b)
7 ¬b� (¬b� a)

8 [¬b� (¬b� a)] ∧ [¬a� (¬a� ¬b)] Bochvar external

9 a� (a� ¬b)
10 b ∧ [(¬J(a)� J(¬b)) ∨ (J(¬a)�¬J(b))]
11 a� b = ¬(¬a →L b)

12 J(¬a)� ¬J(b)
13 a ∧ [(¬J(a)� J(¬b)) ∨ (J(¬a)� ¬J(b))]
14 (¬J(a)� J(¬b)) ∨ (J(¬a)� ¬J(b))

n a →n b

1 Δ(¬a) ∨Δ(b)

2 (b ∨ (a →1 b)) ∧ (¬a ∨ (¬b →1 ¬a)) Sobociński

3 ¬a ∨ [(b ∨ (a →1 b)) ∧ (¬a ∨ (¬b →1 ¬a))]
4 b ∨ (Δ(¬a) ∨Δ(b)) Jaśkowski

5 ¬a ∨ (Δ(¬a) ∨Δ(b)) (strong) Kleene

6 J(b) →L J(a) Sette

7 ¬b →L (¬b →L ¬a)
8 a →L (a →L b)) ∨ (¬b →L (¬b →L ¬a))
9 a →L (a →L b) Nelson

10 ¬Δ((α →L β) →L β)) Gödel

12 J(¬a) →L J(¬b) Bochvar external

13 ¬a ∨ [(J(¬a) →L J(¬b)) ∧ (J(b) →L J(a))]

14 (J(¬a) →L J(¬b)) ∧ (J(b) →L J(a)) Gaines–Rescher

2.4 Connectives on Nested Pairs and Orthopairs of Sets

Let f : X �→ 3 be a three-valued function that may be viewed as a special kind
of fuzzy set. Then, from each f , we can induce three (Boolean) subsets forming
a partition of the universe X :

A1 := {x : f(x) = 1} The truth domain;

A0 := {x : f(x) = 0} The falsity domain;

A1
2
:= {x : f(x) = 1

2} The neutral domain.

Formally, we can see any three-valued set f as a pair (A1, A0) of classical
sets satisfying the property A1 ∩ A0 = ∅, i.e., A1 and A0 are disjoint sets and
(A1, A0) is called an orthopair [21]. Conversely, given a pair of disjoint sets, we
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Table 4. Conjunctions on orthopairs

n (A1, A0) ∗ (B1, B0)

1 (Ac
0 ∩Bc

0, A0 ∪B0)

2 ((A1 ∪B1) ∩Ac
0 ∩ Bc

0, A0 ∪B0)

3 (A1 ∩Bc
0, A0 ∪B0)

4 (Ac
0 ∩B1, A0 ∪B0)

5 (A1 ∩B1, A0 ∪B0)

6 (Ac
0 ∩B1, A0 ∪Bc

1)

7 (A1 ∩B1, A0 ∪Bc
1)

8 (A1 ∩B1, A
c
1 ∪Bc

1)

9 (A1 ∩B1, A
c
1 ∪B0)

10 (Ac
0 ∩B1, (A

c
1 ∩Bc

1) ∪A0 ∪B0)

11 (A1 ∩B1, (A
c
1 ∩Bc

1) ∪A0 ∪B0)

12 (A1 ∩Bc
0, A

c
1 ∪B0)

13 (A1 ∩ Bc
0, (A

c
1 ∩Bc

1) ∪A0 ∪ B0)

14 ((A1 ∪B1) ∩Ac
0 ∩Bc

0, (A
c
1 ∩ Bc

1) ∪ A0 ∪B0)

can define a three-valued sets in an obvious way: f(x) = 1 if x ∈ A1; f(x) = 0 if
x ∈ A0 and f(x) = 1

2 otherwise. So, we have a bijection between the collection
of three-valued sets F 1

2
(X) := {f |f : X �→ 3} and the collection of orthopairs

of X , O(X) := {(A1, A0)|A1, A0 ∈ X ;A1 ∩ A0 = ∅}.
We note that from (A1, A0), another subset A

∗ := Ac
0 of the universe can be

defined as the negation of the falsity domain. In other words, renaming A1 as
A∗, an alternative representation of three-valued sets is obtained by means of
pairs of nested subsets (A∗, A∗) of X , where A∗ ⊆ A∗, which can be viewed as
upper and lower approximations of some unknown set. We denote by N (X) the
collection of nested pairs of subsets of X .

These constructions are known in the fuzzy set field: orthopairs can be viewed
as special cases of so-called “intuitionistic fuzzy sets”1 of Atanassov [3], and the
nested version can be generalized to interval-valued fuzzy sets. They can be
equipped with isomorphic structures [31].

Due to the bijection outlined above, we are able to translate all the operations
from F(X) to O(X), and in particular all the 14 implications and conjunctions
defined above. They are listed in Tables 4 and 6. Note that the operations are
often easier to understand using nested pairs as seen on Tables 5 and 7.

The three negations, respectively the involutive, intuitionistic and paracon-
sistent ones, take the following forms:

¬(A1, A0) = (A0, A1);

∼(A1, A0) = (A0, A
c
0);

−(A1, A0) = (Ac
1, A1).

1 Where the word intuitionistic does not have the usual meaning [34].
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Table 5. Conjunctions on nested pairs

n (A∗, A∗) ∗ (B∗, B∗)
1 (A∗ ∩B∗, A∗ ∩B∗)
2 ((A∗ ∪B∗) ∩A∗ ∩B∗, A∗ ∩B∗)
3 (A∗ ∩B∗, A∗ ∩B∗)
4 (A∗ ∩B∗, A∗ ∩B∗)
5 (A∗ ∩B∗, A∗ ∩B∗)
6 (A∗ ∩B∗, A∗ ∩B∗)
7 (A∗ ∩B∗, A∗ ∩B∗)
8 (A∗ ∩B∗, A∗ ∩B∗)
9 (A∗ ∩B∗, A∗ ∩B∗)
10 (A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)
11 (A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)
12 (A∗ ∩B∗, A∗ ∩B∗)
13 (A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)
14 ((A∗ ∪B∗) ∩A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)

So, in the case of orthopairs, the definition of connectives is just a matter of
translation from Tables 1 and 2. However, if these orthopairs are viewed as ill-
known sets some difficulties with truth-functionality occur. In the case of rough
sets, we encounter even more difficulties, as we are going to explain.

3 Three-Valued Connectives on Ill-Known Sets

Ill-known sets are sets whose boundaries are ill-known, namely it is not known
whether some elements belong to them or not. The neutral region is then an
uncertainty region. A typical situation where ill-known sets are obtained is as
follows [37, 28]. Consider X as a set of objects and f a feature (or attribute)
mapping : X → V where V is the domain of the corresponding attribute. So,
∀x ∈ X , f(x) is the attribute value of object x.

Suppose we want to describe the set of objects that satisfy a property rep-
resented by a subset C ⊂ V of values. For instance X is a set of persons, f is
the height, and C means taller than 1.70 m. The set of persons that satisfy the
criterion C is defined by f−1(C) ⊂ X .

Suppose for some reason f(x) is not always known precisely. Let a one-to-many
mapping F : X → ℘(V ) represent an imprecise observation of the attribute f .
Namely, for each object x ∈ X , all that is known about the attribute value f(x)
is that it belongs to the non-empty set F (x) ⊆ V . For instance, the heights of
some persons x are ill-known, and are described by the sets F (x) of (mutually
exclusive) heights. Because of the incompleteness of the information, the subset
A = f−1(C) ⊆ X of objects that satisfy the criterion C is an “ill-known set”
[37]. Let us first recall the following definition:

Definition 3.1. ([30]) Let X and V be two arbitrary sets and let F : X → ℘(V )
be a multi-valued mapping with non-empty images. Let C ⊆ V be an arbitrary
subset of V . The upper inverse of C is defined as F ∗(C) = {x ∈ X : F (x)∩C �=
∅}. The lower inverse of C is defined as F∗(C) = {x ∈ X : F (x) ⊆ C}.
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Table 6. Implications on orthopairs, where A → B = Ac ∪B

n (A1, A0) ⇒ (B1, B0)

1 (Ac
0 → B1, (A

c
0 → B1)

c) Sette

2 (Ac
0 → B1, [(A1 → B1) ∩ (Ac

0 → Bc
0)]

c) Sobociński

3 (Ac
0 → B1, (A1 → B1)

c)

4 (Ac
0 → B1, (A

c
0 → Bc

0)
c) Jaśkowski

5 (Ac
0 → B1, (A1 → Bc

0)
c) Kleene

6 (Ac
0 → Bc

0, (A
c
0 → Bc

0)
c)

7 (Ac
0 → Bc

0, (A1 → Bc
0)

c)

8 (A1 → Bc
0, (A1 → Bc

0)
c) Bochvar

9 (A1 → B1, (A1 → Bc
0)

c) Nelson

10 ((A1 → B1) ∩ (Ac
0 → Bc

0), (A
c
0 → Bc

0)
c) Gödel

11 ((A1 → B1) ∩ (Ac
0 → Bc

0), (A1 → Bc
0)

c) �Lukasiewicz

12 (A1 → B1, (A1 → B1)
c)

13 ((A1 → B1) ∩ (Ac
0 → Bc

0), (A1 → B1)
c)

14 ((A1 → B1) ∩ (Ac
0 → Bc

0), [(A1 → B1) ∩ (Ac
0 → Bc

0)]
c) Gaines-Rescher

According to this definition, A = f−1(C) can be approximated from above and
from below, respectively, by upper and lower inverses of C via F :

– A∗ = F ∗(C) is the set of objects that possibly belong to A = f−1(C).
– A∗ = F∗(C) is the set of objects that surely belong to A = f−1(C).

The interval [A∗, A∗] = {B,A∗ ⊆ B ⊆ A∗} in the Boolean algebra, called an
interval set by Yao [73], contains the ill-known set A. Alternatively, we can
consider orthopairs (A1, A0) such that [A∗, A∗] = {B : A1 ⊆ B,A0 ∩B = ∅}.

If pairs of sets represent constraints on ill-known sets, we would like to com-
pute the knowledge we may have on the result of combining two ill-known sets
A and B by means of a three-valued connective merging their approximations
(A1, A0) and (B1, B0). What is aimed at is, for any Boolean connective c, to find
the orthopair (c(A,B)1, c(A,B)0) representing our knowledge about c(A,B) in
the form c3((A1, A0), (B1, B0)) where c3 is a three-valued extension of c.

Consider 1
2 as the set {0, 1} (understood as an interval such that 0 < 1), the

other “intervals” being the singletons {0} and {1}. We can define connectives
on ill-known sets by extending the Boolean connectives to such three-valued
sets understood as interval-valued sets. Indeed this comes down to the following
computations [33, 53]:

– For conjunction : {0} ∧ {0, 1} = {0 ∧ 0, 0 ∧ 1} = {0};
{1} ∧ {0, 1} = {1 ∧ 0, 1 ∧ 1} = {0, 1}, etc.

– For disjunction : {0} ∨ {0, 1} = {0 ∨ 0, 0 ∨ 1} = {0, 1};
{1} ∨ {0, 1} = {1 ∨ 0, 1 ∨ 1} = {1}, etc.

– For negation: ¬{0, 1} = {¬0,¬1} = {0, 1}.

The set 3 of non-empty intervals on {0, 1}, equipped with the interval exten-
sion of classical connectives is isomorphic to a three-valued Kleene algebra.
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Table 7. Implications on nested pairs, where A → B = Ac ∪B

n (A∗, A∗) ⇒ (B∗, B∗)
1 (A∗ → B∗, A∗ → B∗) Sette

2 (A∗ → B∗, (A∗ → B∗) ∩ (A∗ → B∗)) Sobociński

3 (A∗ → B∗, A∗ → B∗)
4 (A∗ → B∗, A∗ → B∗) Jaśkowski

5 (A∗ → B∗, A∗ → B∗) Kleene

6 (A∗ → B∗, A∗ → B∗)
7 (A∗ → B∗, A∗ → B∗)
8 (A∗ → B∗, A∗ → B∗) Bochvar

9 (A∗ → B∗, A∗ → B∗) Nelson

10 ((A∗ → B∗) ∩ (A∗ → B∗), A∗ → B∗) Gödel

11 ((A∗ → B∗) ∩ (A∗ → B∗), A∗ → B∗) �Lukasiewicz

12 (A∗ → B∗, A∗ → B∗)
13 ((A∗ → B∗) ∩ (A∗ → B∗), A∗ → B∗)
14 ((A∗ → B∗) ∩ (A∗ → B∗), (A∗ → B∗) ∩ (A∗ → B∗)) Gaines-Rescher

However, using such connectives of Kleene logic to compute a combination of
ill-known sets only captures an approximation of the actual result. For instance,
even if A is ill-known, A ∩ Ac = ∅ ((∅, X) in terms of orthopairs). However, if
(A1, A0) are constraints on some unknown set A, the orthopair approximation
of Ac is (A0, A1), but, applying the Kleene conjunction (A1, A0) ∩5 (A0, A1) =
(A1 ∩ A0, A1 ∪ A0) is an imperfect approximation of the expected result (∅, X)
since the former is equal to (∅, A1 ∪A0).

So we should get (A1, A0) ∩ (A0, A1) = (∅, X) using an appropriate conjunc-
tion. This result can be obtained using conjunctions ∩i, i > 5 by checking Table
4 (or Table 5 in terms of nested pairs). But then note that while one expects
(A1, A0) ∩ (A1, A0) = (A1, A0) this is what is obtained on Table 4 (or Table 5
in terms of nested pairs) only for ∩i, i = 2, 3, 4, 5. So none of the 14 reasonable
conjunctions can provide the expected results.

In conclusion, the use of three-valued connectives to reason about ill-known
sets looks hopeless: it is not the same to reason truth-functionally on objects
made of pairs of sets, and to exploit pairs of sets viewed as constraints on a ill-
known set A ∈ {B : A1 ⊆ B,A0 ∩B = ∅} : the former is a coarse approximation
of the latter. Note that the same kind of critique applies to interval-valued fuzzy
sets where it is often proposed interval extensions of basic connectives [33, 40]
to handle uncertainty about gradual membership.

4 Three-Valued Connectives on Rough Sets

A rough set clearly defines a three-valued set, since it can be viewed as an
upper and a lower approximation of a set. It was tempting to search for an
algebra of rough sets from the three-valued logic literature. The problem of
defining a three-valued logic (and especially an implication) for rough sets has
been addressed by several authors. �Lukasiewicz and Gödel implications have
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been introduced in rough sets by Pagliani [59] and for abstract versions of rough
approximations in [18]. Pagliani also studied rough sets from the standpoint of
Nelson algebras [58] and used Nelson implication. �Lukasiewicz logic was also
considered as the proper setting for rough sets by Banerjee [9] and Iturrioz [49].
On the other hand, the Gaines-Rescher implication is the one adopted in [11] and
Kleene implication in [22]. I. Düntsch in [41] introduced a propositional logic for
rough set whose algebraic counterpart are double Stone algebras. The objects of
this logic are nested pairs of the form (A∗, A∗) and the implication considered
is the Gödel one. For a general overview of algebraic structures related to rough
sets we refer to [10].

A different and new approach is presented in [6], where the non-deterministic
behaviour of rough sets is brought directly into a logical calculus. Indeed, the
semantics of the implication is given by the non-deterministic matrix of Table 8.

Table 8. Non-deterministic implication

→ 0 1
2

1

0 1 1 1
1
2

1
2
{ 1
2
, 1} 1

1 0 1
2

1

Clearly, as the authors point out, the two “determinazations” of this situation
correspond to Kleene and �Lukasiewicz implication. Of course, the problem of
non-determinism still remains, it is just shifted on a different level. And while this
approach may look “less truth-functional” than the usual ones, its completeness
with respect to the calculus of rough sets is unclear.

In this section we study the compatibility between the calculus of rough sets
and three-valued connectives. We show that formally, it is possible to express
three-valued logic connectives in terms of combinations of rough sets. But our
results make it clear that the practical significance of these mathematical results
is questionable.

4.1 Some Basics of Rough Sets

In constrast with the scenario for ill-known sets, the starting point of rough sets
is usually a set of data about some objects gathered in a so-called Information
Table (see for instance [61]).

Definition 4.1. An Information Table is a structure K(X) = 〈X, A, val, f〉
where:

– the universe X is a non empty set of objects;
– A is a non empty set of attributes;
– val is the set of all possible values that can be observed for all attributes;
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– f (called the information map) is a mapping X×A→ val which associates to
any pair object x ∈ X and attribute a ∈ A, the value f(x, a) ∈ val assumed
by a for the object x.

On an Information Table, we define an Indiscernibility relation among objects
as

xRy iff ∀a ∈ A f(x, a) = f(y, a)

The indiscernibility relation is an equivalence relation (reflexive, symmetric,
transitive) that partitions the universe into equivalence classes:

[x]R = {y : xRy}

In the following, we abstract from the notion of Information Table and suppose
that an (equivalence) relation is available on a set of objects.

Definition 4.2. An approximation space is a pair (X,R) with X a set of objects
and R an equivalence relation on X.

On any approximation space, it is possible to define the lower and upper ap-
proximation of a given set.

Definition 4.3. Let (X,R) be an approximation space. The lower approxima-
tion of A ⊆ X is

lR(A) := {x ∈ X |[x]R ⊆ A}

and the upper approximation of A is

uR(A) := {x ∈ X |[x]R ∩ A �= ∅} ⊇ lR(A)

A rough set is the lower-upper pair r(A) := (lR(A), uR(A)) or equivalently the
lower-exterior pair re(A) := (lR(A), eR(A)) := (lR(A), u

c
R(A)).

A set A is said to be exact iff lR(A) = A or equivalently A = uR(A). We denote
by RS(X) the collection of all lower-upper approximations on X and by RSe(X)
the set of lower-exterior approximations. The lower and upper approximations
satisfy some interesting and useful properties. We list here some of them which
will be useful later on.

Lemma 4.1. Let (X,R) be an approximation space, and A,B ⊆ X. Then, the
following properties hold.

1. lR(A ∩B) = lR(A) ∩ lR(B); lR(A ∪B) ⊇ lR(A) ∪ lR(B)
2. uR(A ∪B) = uR(A) ∪ uR(B); uR(A ∩B) ⊆ uR(A) ∩ uR(B)
3. If one of A,B is exact then lR(A) ∪ lR(B) = lR(A ∪ B) and uR(A ∩ B) =

uR(A) ∩ uR(B);
4. lR(A) ⊆ A ⊆ uR(A);
5. lR(lR(A)) = lR(A), uR(uR(A)) = uR(A);
6. lRA = uc

R(A
c).
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Property 3 does not hold for two non-exact sets, that is lR(A)∪lR(B) �= lR(A∪B)
and uR(A∩B) �= uR(A)∩uR(B) in this case. Otherwise stated, l, u are not truth-
functional operators [74]; we can say we miss truth-functionality at the “internal
level”.

On the other hand, what we can try to do is to define truth-functional opera-
tors on rough sets viewed as upper-lower pairs (A∗, A∗) ∈ RS(X), irrespective of
the original underlying set. Then we say we have truth-functionality at the “ex-
ternal level”. As we will see, this is feasible. Indeed, the lower-upper pair is clearly
a nested pair and thus we can carry to this subcase the considerations on opera-
tions of the previous section. However, rough sets form a proper subset of nested
pairs in the sense that every rough set induces a nested pair of sets in X , gener-
ated by a subset H of X through operators lR, uR, as (lR(H), uR(H)) ∈ RS(X)
but not vice versa [16]. Noticeably, no singleton {x} can appear as an equivalence
class in the boundary of a rough set, since either x ∈ H and {x}R ⊂ lR(H) or
x �∈ H and {x}R ⊂ uR(H)c.

So a truth-functional operation on orthopairs cannot be simply applied to
rough sets. It must be shown that the operation is meaningful, that is:

– closed on the collection of all rough sets RS(X) (or equivalently RSe(X))

– related to a well-defined combination of the underlying (Boolean) approxi-
mated sets.

As we will see, in this process, some interpretability problems of the connec-
tives arise.

4.2 Rough Sets and External Truth-Functionality

Since RS(X) ⊂ N (X), the question is whether, once we restrict to RS(X), the
implications definable on N (X) are closed on RS(X). In other words:

If � is a three-valued binary operation on pairs (A∗, A∗), (B∗, B∗) ∈ RS(X),
and A∗ = lR(A), A

∗ = uR(A), B∗ = lR(B), B∗ = uR(B) for some A,B ⊂ X ,
does there exist an operation · on 2X such that
(lR(A · B), uR(A · B)) = (A∗, A∗)� (B∗, B∗)?

The answer is not straightforward, since first of all not all nested pairs (A,B) can
be generated by a subset H of the universe as (lR(H), uR(H)), as pointed out
before. Moreover it must be clear that the relation R, used to build the partition
and then to compute the approximation, is fixed in the above statement.

Let us start from already known results for basic operations [22]. First of all
the negation of a set. This case is simple, indeed we have in terms of orthopairs:

r(Ac) = (lR(A
c), uR(A

c)) = (uc
R(A), l

c
R(A)) = rc(A)

Thus, the approximation of Ac can be obtained by the approximation of A in a
truth-functional way.
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In case of intersection r(A∩B) and union r(A∪B), corresponding to the min
conjunction 5 in Table 4 and the dual disjunction, consider Kleene conjunction
and disjunction. Namely, we ask if there exist two sets C,D ⊆ X such that

r(C) = r(A) � r(B) := (lR(A) ∩ lR(B), uR(A) ∩ uR(B)) (3a)

r(D) = r(A) � r(B) := (lR(A) ∪ lR(B), uR(A) ∪ uR(B)) (3b)

At least three solutions were proposed in the literature. Bonikowski in [16]
showed that the set C can be built according to the following procedure:

1. If uR(A) ∩ uR(B) = ∅ then C = ∅, else uR(A) ∩ uR(B) is of the form
[x1] ∪ . . . ∪ [xk], where [xi] are equivalence classes of R.

2. Choose yi ∈ [xi] for all i such that [xi] �⊆ lR(A) ∩ lR(B) (in the boundary)
and build Y = {yi : yi ∈ [xi] �⊆ lR(A) ∩ lR(B)}

3. Finally, C = [lR(A) ∩ lR(B)] ∪ Y (disjoint union).

Note that lR(C) = lR(A ∩ B), since no equivalence class [xi] in the boundary
can be a singleton {yi}, any yi ∈ Y is an element of a larger equivalence class,
and so, lR(Y ) = ∅. The set D for disjunction in (3) is computed with the same
procedure applied to Ac and Bc.

In [45] we can find another definition of internal intersection and union

A ∩1 B = A ∩ [lR(B) ∪ (B ∩ uR(A)
c) ∪ (uR(B) ∩ lR(A)

c ∩ A) ∪ (lR(A) ∩B)]

A ∪1 B = A ∪ [lR(B) ∪ (B ∩ uR(A)
c) ∪ (uR(B) ∩ lR(A)

c ∩ A) ∪ (lR(A) ∩B)]

and again, r(A ∩1 B) = r(A) � r(B), r(A ∪1 B) = r(A) � r(B). Finally, in [11],
the following alternative solution has been proposed.

A ∩2 B = (A ∩B) ∪ ((A ∩ uR(B)) ∩ (uR(A ∩B)c))

A ∪2 B = (A ∪B) ∩ ((A ∪ lR(B)) ∪ (lR(A ∪B)c))

Note that A∩1B and A∩2B can be written as [lR(A)∩ lR(B)]∪Y ′, where Y ′ is
the union of proper subsets Yi of equivalence classes [xi] not in the intersection
of the lower images. So, they are very close to one of the possible solutions of
Bonikowski’s procedure. Moreover, any solution has this form.

Proposition 4.1. Any set C whose upper and lower approximations are respec-
tively the intersections of the upper and of the lower approximation of A and B
is of the form [lR(A) ∩ lR(B)] ∪ Y ′, where Y ′ = ∪n

i=1Yi and ∅ �= Yi ⊂ [xi], ∀i =
1, . . . , n.

Proof. Indeed, if Y ′ does not contain at least one element of each equivalence
class outside the intersection of the lower approximations and inside the inter-
section of their upper approximations, then the upper approximation of C is
not the intersection of the upper approximations of A and B. If Y ′ contains
one equivalence class outside the intersection of lower approximations and inside
their union, then its lower approximation is larger than the intersection of lower
approximations of A and B.
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Now, we want to extend these definability results to all other three-valued op-
erations introduced in the previous Section 2. Let us start from the negations
whose proof is straightforward.

Proposition 4.2

¬(lR(A), uR(A)) = (uc
R(A), l

c
R(A)) = r(Ac);

∼(lR(A), uR(A)) = (uc
R(A), u

c
R(A)) = r(lR(A

c));

−(lR(A), uR(A)) = (uR(A
c), uR(A

c)) = r(uR(A
c)).

Now, as far as implications are concerned, some of them have already been
studied in literature and it has been shown that they are closed on rough sets.
These results are summarized in the following proposition.

Proposition 4.3

r(A)⇒5 r(B) = r((A→ B) ∩ ((A→ lR(B)) ∪ (lR(A→ B)c)));

r(A)⇒9 r(B) = r(lR(A)→ B);

r(A)⇒10 r(B) = r((uR(A)→ B) ∪ [lR(A)→ uc
R(B)]c);

r(A)⇒11 r(B) = r((lR(A)→ B) ∩ (A→ uR(B)));

r(A)⇒14 r(B) = r(((uR(A)→ uR(B)) ∩ (lR(A)→ lR(B))).

Proof. The cases 5,10,11, respectively Kleene, Gödel and �Lukasiewicz implica-
tions, are proved in [22]. The Nelson (case 9) implication immediately follows by
its definition (and see also [59]). Finally, the Gaines-Rescher implication 14 has
been studied in [11], where it is defined as

r(A)⇒ r(B) = (¬�r(A) ∪�r(B)) ∩ (¬♦r(A) ∪ ♦r(B)), (4)

with �r(H) = (lR(H), lR(H)) and ♦r(H) = (uR(H), uR(H)). So, first of all,
let us note that equation 4 is equivalent to the one in Table 7, as can be easily
proven. Then, from the definition in [11], we have r(A)⇒14 r(B) = [r(lcR(A)) �
r(lR(B))] � [r(uc

R(A)) � r(uR(B))] from which we arrive at the thesis.

In order to study the other implications and conjunctions, the following result
concerning the application of the transformations (1) can be given.

Proposition 4.4. Let � be a closed operation on R(X). Then, also a[A(�)]b,
a[V(�)]b, a[S(�)]b are closed on R(X).

Proof. The case of A(�) is trivial since it is the same operation as � with
different arguments. Operations V(�) and S(�) are a composition of � and
involutive negation ¬ which is closed by proposition 4.2. So, we will have that
r(X)[V(�)]r(Y ) = r(Y c)� r(Xc) and r(X)[S(�)]r(Y ) = ¬[r(X) � r(Y c)].

By the above propositions, we immediately get that also other implications
and conjunctions are well defined, since as shown in [23, 25] they can be obtained
by equation system (1) from the above implications in Proposition 4.3.
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Corollary 4.1. Conjunctions 7, 9, 10, 11, 13, 14 are closed on R(X) and the fol-
lowing hold:

r(A) ∗7 r(B) = r(A ∩ lR(B));

r(A) ∗9 r(B) = r(lR(A) ∩B);

r(A) ∗10 r(B) = r([lR(A) ∪ lR(B)] ∩ uR(A) ∩B);

r(A) ∗11 r(B) = r([lR(A) ∪ lR(B)] ∩ A ∩B);

r(A) ∗13 r(B) = r([lR(A) ∪ lR(B)] ∩ A ∩ uR(B));

r(A) ∗14 r(B) = r((lR(A) ∪ lR(B)) ∩ uR(A) ∩ uR(B)).

Further, implications 7, 13 are closed on R(X) and we have:

r(A)⇒7 r(B) = r(A→ uR(B));

r(A)⇒13 r(B) = r(A→ lR(B) ∪ [lcR(A)→ uc
R(B)]c).

We now prove that all the remaining implications and conjunctions are closed
on RS(X).

Proposition 4.5

r(A)⇒1 r(B) = r(uR(A)→ lR(B));

r(A)⇒2 r(B) = r([A→ lR(B)] ∩ [uR(A)→ B]);

r(A)⇒3 r(B) = r(A→ lR(B));

r(A)⇒6 r(B) = r(uR(A)→ uR(B));

r(A)⇒8 r(B) = r(lR(A)→ uR(B)).

Proof. Only ⇒2 deserves some explanation, the others being trivial. By Ta-
ble 6, we get (lR(A), uR(A)) ⇒2 (lR(B), uR(B)) = (uc

R(A) ∪ lR(B), (uR(B) ∪
uc
R(A))∩(lcR(A)∪lR(B))), which can be re-written as ((uc

R(A)∪lR(B))∩(uc
R(A)∪

lR(B)), (uR(B) ∪ uc
R(A)) ∩ (lcR(A) ∪ lR(B))). Applying equations (3), we obtain

[r(Ac) � r(lR(B))] � [r(lR(A
c)) � r(B)] and by Lemma 4.1 we have the thesis.

Based on the implications in Proposition 4.5, it is possible to construct other
conjunctions and implications (see [23, 25]). So, due to Proposition 4.4 the fol-
lowing corollary holds.

Corollary 4.2. Conjunctions 1, 2, 3, 4, 6, 8, 12 are closed on R(X) and the fol-
lowing hold:

r(A) ∗1 r(B) = r(uR(A) ∩ uR(B));

r(A) ∗2 r(B) = r([A ∩ uR(B)] ∪ [uR(A) ∩B]);

r(A) ∗3 r(B) = r(A ∩ uR(B));

r(A) ∗4 r(B) = r(uR(A) ∩B);

r(A) ∗6 r(B) = r(uR(A) ∩ lR(B));

r(A) ∗8 r(B) = r(lR(A) ∩ lR(B));

r(A) ∗12 r(B) = r(lR(A) ∩ uR(B)).
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Implications 4, 12 are closed on R(X) and the following hold:

r(A)⇒4 r(B) = r(uR(A)→ B);

r(A)⇒12 r(B) = r(lR(A)→ lR(B)).

The above results show that the original question of finding subsets of X that
underlie all 14 three-valued conjunctions and implications applied to upper and
lower approximations of sets in the sense of rough sets can be answered in the
affirmative. However the reader may observe that the definition of such subsets,
the approximations of which are constructed by such connectives, always involve
lower and/or upper approximations of the two underlying sets to be combined.

4.3 The Interpretability of External Truth-Functional Operations
on Rough Sets

In [22], we started an investigation on the significance of existing truth-functional
three-valued logics of ill-known sets described by pairs of disjoint (or pairs of
nested) subsets. This work strongly suggested that while, from a mathematical
standpoint, such three-valued logics are consistent with a rough set view, their
interpretation with respect to reasoning about the original data tables is ques-
tionable. The operators analyzed in that work were Kleene conjunction and dis-
junction (min/max) on three values and three different implications: �Lukasiewicz,
Gödel and Kleene. However, the concerns already raised for these known con-
nectives seem to carry over to all the 28 three-valued connectives recalled in this
paper, as the results obtained here in the previous section indicate.

Let us consider two sets of items A,B defined in extension, the approximations
r(A) and r(B) of which we want to aggregate with one of the three-valued
connectives laid bare in this paper, say �. Concerning the existence of a set
C such that r(C) = r(A) � r(B), we have seen that such an underlying set C
always exists. However, C does not depend exclusively on A and B but strongly
depends on the partition chosen (that is on the equivalence relation R of the
approximation space and finally on the set of attributes of an Information Table)
because it depends on the lower and/or upper approximations of A and B as
well. Moreover, even inside the same partition, several choices of C are possible.

This difficulty is due, in some sense, to the presence of two languages: the
fine-grained one needed to distinguish elements of X and the (more restricted)
one based on the attributes of the information table, that only allows to describe
approximations of any subset of such elements. Combining approximations of ill-
known sets A and B truth-functionally yields well-behaved pairs of nested sets,
but the corresponding internal combination of A and B that makes the external
truth-functional combination meaningful is problematic.

Indeed, in the setting of rough sets, A and B are known in extension (they
are in some sense the actual entities referred to) whereas, using the coarser at-
tribute language instrumental to describe them, their intensions are available
only through their approximations. So, the intension depends on the coarse lan-
guage: the more (less) numerous the attributes, the finer (coarser) the descrip-
tion. Results in the previous section show that the set C = A · B displayed in
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the previous section for the 14 conjunctions and the 14 implications such that
r(A) � r(B) = r(A · B) laid bare in this paper always depends on the partition
induced by R and so on the attributes defining the coarser language. Changing
the coarser language (i.e., attributes in the Information Table) will alter the set
A · B but not A,B. So, while we can interpret the external truth-functionality
of operations on approximation pairs as providing approximation pairs of defin-
able combinations of subsets of X , these subsets are definable only if the coarser
language is fixed (in fact they need both languages, since A · B is potentially
a Boolean set-theoretic combination of A,B, lR(A), lR(B), uR(A), uR(B)). As a
consequence, we lose the interpretability of the results since these inner com-
binations are not intrinsic to A and B, and depend on the indistinguishability
relation.

5 Rough Sets: From Modal Logic to Three-Valued Logics

Apart from many-valued logics, a natural logical rendering of rough sets is
through modal logics. This possibility has been addressed by several authors tak-
ing into account different variants of rough sets [57, 42, 69, 70, 11, 75, 76, 8, 51].
This section provides some hints toward relating the three-valued and the modal
logic views of rough sets, in connection with recent works translating three-valued
logics into fragments of the modal logic KD.

5.1 The Standard Modal Approach to Rough Sets

We now recall a modal logic for handling approximations of sets generated by
an equivalence relation [56].

Its language LM is the usual one of propositional logic plus necessity � and
possibility ♦. That is, we have a set of propositional variables V = {a, b, c, . . .}
and the connectives ∧,′ ,�. As usual, disjunction α ∨ β stands for (α′ ∧ β′)′,
implication α → β stands for α′ ∨ β, tautology � for α ∨ α′ and ♦α = (�α′)′.
Well formed formulae are built in the standard way.

The axioms are those of propositional logic plus the axioms to characterize
the modal connectives.

1. φ→ (ψ → φ)
2. (ψ → (φ→ μ))→ ((ψ → φ)→ (ψ → μ))
3. (φ′ → ψ′)→ (ψ → φ)

(K) �(α→ β)→ (�α→ �β)
(T) �α→ α
(5) ♦α→ �♦α

Finally, rules are modus ponens and necessitation: If � α then � �α. The above
system is called S5, and its semantics is in terms of equivalence relations [20]. It
is thus the natural logical setting for rough sets [56].

The semantics is given through a model M = (X,R, v), where (X,R) is an
approximation space and v is a mapping from formulae to 2X . In standard modal
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logic terminology, X is the set of possible worlds, R the accessibility relation and
v(α) represents the set of possible worlds where α holds. The interpretation v is
recursively defined on propositional connectives as usual as:

v(α′) = v(α)c

v(α1 ∧ α2) = v(α1) ∩ v(α2)

v(α1 ∨ α2) = v(α1) ∪ v(α2)

and modal operators are mapped to lower and upper approximations:

v(�α) = LR(v(α)) = {x ∈ X : [x]R ⊆ v(α)} = {x ∈ X : ∀w, xRw, w ∈ v(α)}
v(♦α) = UR(v(α))={x ∈ X : [x]R ∩ v(α) �= ∅} = {x ∈ X : ∃w, xRw, w ∈ v(α)}

Note that, in the S5 approach, one can represent sets (“objective” formulae α)
and their lower (�α) and upper (♦α) approximations.

This approach can easily be extended to rough set models based on a relation
that is not necessarily an equivalence one [75, 76]. Indeed, it is well known in
modal logic [20] that, once fixed the basic axioms 1-3 and (K), then to any
additional modal axiom according to Table 9 corresponds a specific property of
the accessibility relation.

Table 9. Correspondence between modal axioms and relation properties

Name Axiom Property

T �α → α Reflexive
4 �α → ��(α) Transitive
5 ♦α → �(♦(α)) Euclidean
D �α → ♦α Serial
B α → �♦α Symmetric

Another extension of the basic approach is the logic DAL [42], meant to deal
with approximation spaces with more than one equivalence relation (X,Ri).
Each relation represents a different attribute, for instance “having the same
number of circles”, “having the same number of crosses”.

5.2 The Three-Valued Modal Approach

A different approach is given by the so-called Pre-Rough Logic (PRL) and its
corresponding algebra called pre-rough algebra [11], which is based on a 3-valued
logic. Atoms of the logic are three-valued entities, which represent nested approx-
imation pairs. They can be obtained from the S5 logic of the previous section by
considering a weaker notion of logical equivalence in S5. Namely, Banerjee and
Chakraborty speak of rough equivalence of two propositional formulae α and β
whenever �α is semantically equivalent to �β and ♦α is semantically equiva-
lent to ♦β. They consider the result of quotienting the language with the rough
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equivalence relation, and each equivalence class corresponds to an approxima-
tion pair, which becomes a formula of the pre-rough logic PRL. Note that by
doing so, the underlying set, the approximations of which are given by modal
formulae, is lost: we can no longer distinguish between propositional formulae
that are roughly equivalent.

For the sake of clarity, we denote by μ, ν, ρ the formulae of PRL. Primitive
connectives of the logic are negation, intersection and necessity, respectively
denoted by ¬,∧,�, from which we derive the disjunction ∨ through de Morgan
properties, the dual modality �μ = ¬�¬μ and the implication as μ → ν =
(¬�μ ∨�ν) ∧ (¬�μ ∨ �ν). The axioms of the logic are:

RL1 μ→ μ
RL2 ¬¬μ↔ μ
RL3 μ ∧ ν → μ
RL4 μ ∧ ν → ν ∧ μ
RL5 μ ∧ (ν ∨ ρ)↔ (μ ∧ ν) ∨ (μ ∧ ρ)
RL6 �μ→ μ
RL7 �(μ ∧ ν)↔ �μ ∧�ν
RL8 �μ→ ��μ
RL9 ��μ→ �μ
RL10 �(μ ∨ ν)↔ �μ ∨�ν

A sequent calculus for this logic is provided by Sen and Chakraborty [64].
The semantics is three-valued, and some connectives are based on Kleene

logic, using ternary valuations t such that [11]

t(¬μ) = ¬t(μ) (Kleene negation) (5)

t(μ ∧ ν) = t(μ) � t(ν) (Kleene conjunction) (6)

t(�μ) = ¬ − t(μ) (using the paraconsistent negation −) (7)

t(μ→ ν) = (t(¬�μ) ∪ t(�ν)) ∩ (t(¬�μ) ∪ t(�ν)) (8)

In connection with the S5-based rough set logic of the previous section, a non-
modal formula μ in PRL corresponds to an approximation pair (A(μ)∗, A(μ)∗)
over possible worlds in X (Boolean interpretations), both A(μ)∗ and A(μ)∗ being
exact sets of such valuations (formulae α such that v(�α) = v(♦α), whenever
v(α) = A(μ)∗ or A(μ)∗). The operator � corresponds to extracting the core
A(μ)∗ of the three-valued set over X induced by μ. In terms of fuzzy sets, �μ
corresponds to the core of μ and �μ correspond to its support. It can thus be
easily seen that

– t(�μ) is two-valued and �μ corresponds to the (exact) approximation pair
(A(μ)∗, A(μ)∗);

– t(�μ) is two-valued and �μ corresponds to the (exact) approximation pair
(A(μ)∗, A(μ)∗)

– t(μ → ν) is two-valued: it is Gaines-Rescher implication expressing the
double inclusion of upper and lower approximations A(μ)∗ ⊆ B(ν)∗ and
A(μ)∗ ⊆ B(ν)∗.
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In view of the above semantical considerations, RL6-RL10 are expected. RL6
and RL9 correspond to S5 axioms T, and 5 respectively, while RL7 and RL8 are
valid in S5. However, due to RL10, � and � are deviant modalities, that are not
trivial because the logic is 3-valued [19].

The connection between S5 and PRL is maintained by noticing that an ap-
proximation pair (A(μ)∗, A(μ)∗) underlies a crisp set A of X that is approxi-
mated by this pair. In order to maintain this view throughout all the formulae
in PRL, Banerjee and Chakraborty make it clear what is the set approximated
by for instance (C(μ∧ ν)∗, C(μ∧ ν)∗) when A and B are the sets approximated
by (A(μ)∗, A(μ)∗) and (B(ν)∗, B(ν)∗). They do it by introducing the intersec-
tion A∩2B already discussed in Subsection 4.2, and that does not depend solely
on A and B.

The fact that in the PRL syntax, we no longer explicitly refer to the approx-
imated set and maintain truth-functionality for evaluating formulae expressing
approximation pairs is thus paid by the fact that it is no longer possible to in-
trinsically define the approximated set referred to by a compound PRL formula
in terms of the approximated sets of its elementary sub-formulae. On the other
hand, while the S5 setting avoids this pitfall, one may find it unrealistic to repre-
sent at the same time the approximated pairs with the approximated set in the
language, as the point made by rough set theory is that sets are only described
in intension through the available attributes, while their precise extension is out
of reach. In this sense, while S5 seems to precisely capture the formal setting of
rough sets, the PRL logic looks more faithful to the way rough sets can be used
in practice, that is, it refers to the situation where we know the approximations,
but neither the underlying set nor the equivalence relation. Unfortunately, the
PRL rendering of rough set theory, and logical combinations of upper and lower
approximations, in terms of a three-valued logic looks like an approximation as
well.

Interestingly, connections between PRL and major three-valued logics have
been laid bare:

– In [11] it is shown that the algebra of PRL (a bounded lattice structure
(L, 0, 1) equipped with Kleene connectives (�,¬,�) the modality � and
Gaines-Rescher implication →14, is equivalent to semi-simple Nelson alge-
bras, that is, a bounded lattice structure (L, 0, 1) equipped with Kleene con-
nectives, the paraconsistent negation − and Nelson implication →9. Indeed
they notice that −μ = ¬�μ and μ→9 ν = ¬�μ�ν. Conversely, �μ = ¬−μ
and μ→14 ν = ¬ − (μ→9 ν).

– It has been proved in [9], that PRL is equivalent to three-valued �Lukasiewicz
logic. Especially, Banerjee points out that the �Lukasiewicz implication can
be written as (�¬μ � ν) � (¬μ � �ν). Conversely, PRL connectives ∧,∨,♦
are defined as usual μ � ν = ((μ →11 ν) →11 ν), μ � ν = ¬(¬μ � ¬ν) and
�μ = ¬(μ→11 ¬μ).

But these findings are not surprising at all given the results in [25] whereby
from Kleene connectives plus paraconsistent negation, one can reconstruct all
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28 monotonic three-valued conjunctions and implications that extend Boolean
ones (as per the last item of Proposition 2.2).

5.3 From Three-Valued Rough Set Logic to Modal Logic

We have seen two different modal approaches concerning rough sets: a Boolean
one based on S5 and a many-valued one, the PRL logic, the latter being based on
a clustering of roughly equivalent formulae of the former. Conversely, Banerjee
[9] proves that PRL is embeddable in S5 in the sense that PRL formulae can be
expressed as S5 formulae via a translation operation (·)τ such that �PRL μ iff
�S5 μτ .

Namely, the PRL negation ¬ becomes the classical negation ′, the PRL ne-
cessity operator � becomes the classical one �, and

(μ � ν)τ = (μτ ∧ ντ ) ∨ (μτ ∧ ♦ντ ∧ (♦(μτ ∧ ντ )). (9)

The latter encodes the set supposedly upper and lower approximated by the in-
tersection of upper and lower approximations of two sets, already met in previous
sections as ∩2. This translation can only yield a fragment of S5.

There is another way of capturing the semantics of three-valued logics in a
modal setting, whenever the third truth-value stands for unknown [24, 26]. It is
enough to use a fragment of KD (or of S5) called MEL [12]. In particular, we
can translate three-valued �Lukasiewicz logic L3 into MEL, while preserving L3
theorems. Since PRL is equivalent to L3, it is interesting to translate PRL into
MEL as well.

The language MEL [12, 13] is a very limited fragment of the modal logic S5.
It uses a sublanguage L� of S5 defined by encapsulating propositional formulae
from a modality-free propositional language L (using the same notations as in
Subsection 5.1):

L� = �α : α ∈ L|¬φ|φ ∧ ψ|φ ∨ ψ|φ→ ψ.

Note that L� ∩ L = ∅ and L� ⊂ LM (the set of all modal formulae, including
nested ones). MEL is equipped with the following axioms:

1. φ→ (ψ → φ).
2. (ψ → (φ→ μ))→ ((ψ → φ)→ (ψ → μ)).
3. (φ′ → ψ′)→ (ψ → φ)

(K) �(p→ q)→ (�p→ �q).
(D) �α→ ♦α.
(N) if �PL α then �α.

and the inference rule is modus ponens. As usual, the possible modality ♦ is
defined as ♦α ≡ (�α′)′. The first three axioms are those of PL and the other
those of modal logic KD. Axiom (N) is inspired from the necessitation rule that
cannot be written in MEL. The following axioms (M) and (C) are implied by
the above system:

(M)�(α ∧ β)→ (�α ∧�β);
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(C) (�α ∧�β)→ �(α ∧ β).

MEL is the subjective fragment of KD (or S5) without modality nesting.
The MEL semantics is very simple [12]. Let Ω be the set of L interpretations:

{ω : V → {0, 1}}. The set of models of α is [α] = {ω : ω |= α}. A (meta)-
interpretation of L� is a non-empty set E ⊆ Ω of interpretations of L interpreted
as an epistemic state. We define satisfiability as follows:

– E |= �α if E ⊆ [α] (α is certainly true in the epistemic state E)

– E |= φ ∧ ψ if E |= φ and E |= ψ;

– E |= φ′ if E |= φ is false.

MEL is sound and complete with respect to this semantics [13].
We remark that in this framework, uncertainty modeling is Boolean but pos-

sibilistic. The satisfiability E |= �α can be written as N([α]) = 1 in the sense
of a necessity measure computed with the possibility distribution given by the
characteristic function of E. Axioms (M) and (C) lay bare the connection with
possibility theory [39], as they state the equivalence between (�α ∧ �β) and
�(α ∧ β).

We can justify the choice of this minimal modal formalism. It is the most
simple logic to reason on incomplete propositional information. We only need to
express that a proposition in PL is certainly true, certainly false or unknown as
well as all the logical combinations of these assertions.

In [24, 26] we have proposed to translate three-valued logics of incomplete
information into MEL, provided that the third truth-value refers to the idea of
unknown Boolean truth-value. Let a be a Boolean variable and t(a) indicate the
knowledge we have about a, that is:

– 1 certainly true, the Boolean value of a is 1;

– 0 certainly false, the Boolean value of a is 0;

– 1
2 unknown, the Boolean value of a is 0 or 1.

For the sake of clarity, we have used different symbols 0,1, 12 for epistemic truth-
values with respect to ontic ones 0, 1. Under this understanding of the three
epistemic truth-values, we can naturally translate three-valued truth-assigments
to atomic propositions as follows:

T (t(a) = 1) = �a

T (t(a) = 0) = �a′

T (t(a) = 1
2 ) = ♦a ∧ ♦a′

T (t(a) ≥ 1
2 ) = ♦a

T (t(a) ≤ 1
2 ) = ♦a′
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Now, we want to map three-valued formulae to MEL formulae. Compound
formulae are managed recursively. In the case of �Lukasiewicz logic, we have:

T (t(α � β) ≥ i) = T (t(α) ≥ i) ∧ T (t(β) ≥ i), i ≥ 1
2

T (t(α � β) ≥ i) = T (t(α) ≥ i) ∨ T (t(β) ≥ i), i ≥ 1
2

T (t(¬α) = 1) = T (t(α) = 0) = (T (t(α) ≥ 1
2 ))

′

T (t(¬α) ≥ 1
2 ) = T (t(α) ≤

1
2 ) = (T (t(α) = 1))′

T (t(α→L β) = 1) = [T (t(α) = 1)→ T (t(β) = 1)]

∧ [T (t(α) ≥ 1
2 )→ T (t(β) ≥ 1

2 )]

T (t(α→L β) ≥ 1
2 ) = T (t(α) = 1)→ T (t(β) ≥ 1

2 )

Note that even if we use the same symbols for connectives in L3 and MEL, we are
moving from three-valued variables (formulae) to Boolean ones. In particular, in
the case of atoms, we have

T (t(a→L b) ≥ 1
2 ) = (�a)′ ∨ ♦b = �a→ ♦b

and

T (t(a→L b) = 1) = ((�a)′ ∨�b) ∧ ((♦a)′ ∨ ♦b) = �a′ ∨�b ∨ ((�a)′ ∧ ♦b))
= (�a→ �b) ∧ (♦a→ ♦b).

It can be easily shown that by this translation, only a fragment of MEL can be
captured by �Lukasiewicz logic. Namely, LL

� = �a|�a′|φ′|φ ∨ ψ|φ ∧ ψ. That is,
we can only have modalities in front of literals.

Finally, we note that this translation makes sense; that is tautologies are
preserved by the translation and we can reason in three-valued logic inside MEL.
More formally, the following two theorems hold [24, 26]:

Theorem 5.1. If α is an axiom of �Lukasiewicz (but also, Gödel, Nelson) logic,
then T (t(α)) is a tautology in MEL.

Theorem 5.2. Let α be a formula in �Lukasiewicz (but also, Nelson) logic L3

and BL a knowledge base in this logic. Then, BL � α in L3 iff T (BL) � T (t(α) =
1) in MEL.

Due to the equivalence between L3 and PRL, we can also translate PRL into
MEL. Let us start from the connectives: ∨,∧,¬ are the same as in �Lukasiewicz
logic, the only difference is the necessity which is not a primitive operator in L3
but can be derived as follows:

T (t(�μ)) = 1) = T (t(�μ) ≥ 1
2 )) = T (t(¬(μ→L ¬μ)) = 1) = T (t(μ) = 1)

which on atoms corresponds to T (t(�a) = 1)) = T (t(�a)) ≥ 1
2 )) = �a.

Consequently, PRL implication (i.e., Gaines-Rescher →14) becomes in MEL:

T (t(μ→14 ν) = 1) = T (t(μ→14 ν) ≥ 1
2 ) = (�μ→ �ν) ∧ (♦μ→ ♦ν)
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which, as expected corresponds to the translation of any residuated implication
into MEL.

Due to the above results, in particular Theorem 5.1, it is also possible to see
that most PRL axioms translate into MEL tautologies.

Corollary 5.1. If φ is an axiom of PRL logic (but for RL8 and RL9), then
T (t(φ) = 1) is a tautology in MEL.

Axioms RL8 and RL9, which involve nested modalities, are not directly express-
ible in MEL logic. However, in PRL, ��μ and ��μ are equivalent to �μ so that
they do not need to be translated.

It is interesting to comment on the difference between the two translations of
PRL into S5 and into MEL:

– The translation of PRL into MEL yields the L3-fragment of MEL, and we
know from [24, 26] that the two logics are equivalent. In particular, the MEL
translation does not involve at all the logical rendering of the approximated
set underlying the pair (�α,�α) in PRL. The lack of expressiveness of PRL
with respect to S5 for rough sets is highlighted by the small fragment of S5
attained by the exact translation of PRL into MEL.

– The translation of PRL into S5 highlights a possible logical expression of
the set approximated by the combination of approximation pairs, but this
expression involves modalities, and does not refer to a set expressible in the
pure propositional language L contained in the one of S5 (see equation (9)).
So, even if this translation reaches a language richer than MEL, it carries
over to the logical level the semantic difficulty of applying a truth-functional
view on approximation pairs, as pointed out in the previous section.

6 Conclusion

The main lesson of this paper is that there is a gap between rough sets and
three-valued calculi of approximation pairs regardless of the chosen rich enough
algebraic setting, since there are several equivalent ones in three-valued logics.
Whether we use �Lukasiewicz 3-valued MV algebra, Nelson semi-simple algebras
or the pre-rough setting, we can only imperfectly capture the modal logic of
rough sets, that is, S5, even if the three-valued approaches can be embedded in
the modal setting.

Our exploration of the 28 basic implications and conjunctions acting on or-
thopairs of sets show that there is no way to find binary connectives on orthopairs
that would correspond exactly to the approximation pair enclosing some appro-
priate Boolean combination of the two sets approximated by each orthopair.
This Boolean combination either does not exist, or must involve the chosen
equivalence relation in some way, and then it is not even unique. This result is
a generalisation of Bonikowski [16] old finding, systematized to all reasonable
three-valued conjunctions, disjunctions and implications. It also echoes early re-
marks on the impossibility of representing rough sets by three-valued fuzzy sets
put forward by Pawlak himself [60] and more recently by Yao [74].
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Among the perspectives of this paper, one may point out the potential of
the MEL language for representing and reasoning about information tables with
missing values. Information tables are often encoded in a logical format using
languages such as Datalog. In the case of missing values, the L3 fragment of MEL
with modalities in front of literals could typically represent information about
objects in intension, as an alternative to the use of Kleene logic proposed very
early by Codd [27]. It would be of interest to reconsider proposals for defining
rough sets under incomplete information in the light of this modal translation
of three-valued logics.
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Abstract. The sample variation of indices for approximation of sets in the con-
text of rough sets data analysis is considered. We consider the γ and α indices
and some other ones – lower and upper bound approximation of decision classes.
We derive confidence bounds for these indices as well as a two group comparison
procedure. Finally we present procedures to compare the approximation quality
of two sets within one sample.

1 Introduction

Rough sets were introduced by Pawlak [1] as a means to approximate sets relative to
a given granulation of knowledge: If U is a finite set, X ⊆ U , and θ an equivalence
relation on U , the lower approximation of X (with respect to θ ), denoted by Low(X),
is the union of all classes of θ contained in X , and the upper approximation of X ,
denoted by Upp(X), is the union of all classes whose intersection with X is not empty.
Intuitively, Low(X) is the set of elements which are certainly in X and Upp(X) is the
set of elements which are possibly in X with the knowledge given by the granularity
provided by the classes of θ . U \Upp(X) is the set of elements certainly not in X . The
boundary of X is the set Upp(X) \ Low(X). A rough set is a pair 〈Low(X),Upp(X)〉,
where X ⊆U .

The standard data structures of rough set data analysis (RSDA) are information
systems, a relative of relational databases: An information system is a structure I =
〈U,Ω ,{Vp : p ∈ Ω},{ fp : p ∈ Ω}〉 where U is a nonempty finite set of objects, Ω a
nonempty finite set of attributes, each Vp the set of values that attribute p can take, and
fp : U →Vp an information function. A decision system is a special kind of information
system, where one or more attributes are singled out as decision attributes; in this case,
we write I = 〈U,Ω ,d,{Vp : p ∈Ω},Vd,{ fp : p ∈Ω}, fd〉, and the attributes in Ω pre-
dictor (or independent) attributes, and d the decision attribute. It is one aim of RSDA
to find optimal attribute sets which explain – or approximate – the decision attribute,
in other words, with which accuracy membership in a prescribed decision class can be
predicted.
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Each set P of attributes induces an equivalence relation θP on U by

xθPy⇐⇒ (∀p ∈ P)[ fp(x) = fp(y)].

Similarly, the decision attribute induces the equivalence relation θd . An equivalence
class Xof θY is called deterministic if there is an equivalence class Y of θd such that
X ⊆ Y .

Two statistics are prevalent in RSDA to measure success (or failure): Suppose that
P⊆Ω and Y ⊆U .

γ(P) =
|⋃{X : X is a deterministic class of θP}|

|U | Approximation quality,

α(Y ) =
|Low(Y )|
|Upp(Y )| Accuracy.

Indices such as α and γ are used to measure the quality of approximation. One should
be aware, however, that these indices are point estimates of parameters based on one
specific sample, and a generalization to a second sample with exactly the same structure
is usually not valid. In the sequel we assume that the underlying structure remains the
same, but the sample generation is based on simple random sampling. In this way we
distinguish between the true index in the population (e.g. γ) and the estimated index in a
sample (e.g. γ̂). As we fix the structure of deterministic and indeterministic rules, only
the occurrence of the rules is based on random variation. In other words, the relative
frequencies of the elements (of e.g. the lower bounds) can be described by a multinomial
random process.

The basic assumption is that the estimated α or γ values are based on frequencies of
categories (like lower bound or the boundary of a set) which are sampled from a pop-
ulation. The frequencies of these categories are assumed to be multinomial distributed,
which simply means that the frequencies of elements which can be assigned to category
in a sample depends only on a constant probability.

Using this rather natural – and simplest – assumption, we can use standard methods
of statistics to estimate the errors of various indices connected to RSDA. In order to
keep to the spirit of the rough set model, such estimation will be done by nonparametric
methods, see e.g. [2].

2 Statistical Notation and Preliminaries

Suppose that U is a base set, and Y1, . . . ,Yi, . . . ,Yk, k≥ 2, is a partition P of U . We think
of the classes Yi as decision classes; they will also be called categories. We let |U |= n
and |Yi|= ni; furthermore, nli = |Low(Yi)| and nui = |Upp(Yi)|.

For each 1≤ i≤ k, Πi : P → {0,1} is a random variable which can take the values
0 or 1 such that Πi(x) = 1 ⇐⇒ x ∈ Yi randomly. πi is the expectation of Πi and π̂i

an estimator of πi, for example, the well known (and natural) Maximum Likelihood
estimator π̂i =

ni
n , which we shall use throughout the paper.

Suppose that f (Π1, ...Πk) is a real–valued function (“statistic”) of multinomially
distributed random variables; therefore, we assume that Πi = 1 implies Π j = 0 for
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all j �= i. The expectation of f is denoted by E( f ) = f (π1, ...πk), and f̂ (π1, ...πk) =
f (π̂1, ...π̂k) is an estimator of f (π1, ...πk). The variance of f̂ is denoted by Var( f̂ ), and

SE( f̂ ) =
√

Var( f̂ ) is the standard estimate error (deviation) of the expectation of f .

Note that Var( f̂ ) and SE( f̂ ) are functions of π1, ...,πk. V̂ar( f̂ ) is an estimator of the
variance of f̂ (π1, ...πk), and ŜE( f̂ ) is an estimator of the standard error of f̂ (π1, ...πk).
Both Var( f̂ ) and ŜE( f̂ ) are functions of π̂1, ..., π̂k, respectively, n1, ...,nk.

In the following we will use simple random sampling to simulate the composition
of different samples. Since we may consider the frequencies of more than two classes,
our method of choice is multinomial sampling. We shall use the Delta method ([3],
[4] p. 587-591) to find the variances of expectations of nonlinear functions of random
variables: Assuming that f (π1, ...,πk) is partially differentiable in all variables, we can
approximate the variance of the estimator f̂ = f (π̂1, . . . , π̂k) by the first order Taylor
series expansion around the observed empirical means for the estimation of πi as

f (π̂1, . . . , π̂k)≈ f (π̂1, . . . , π̂k)+
k

∑
i=1

∂ f
∂xi

(π̂1, . . . , π̂k) · (π̂i− π̂i),

Var( f (π̂1, . . . , π̂k))≈ E
[
( f (π̂1, . . . , π̂k)− f (π̂1, . . . , π̂k))

2
]

≈ E

[
(

k

∑
i=1

∂ f
∂πi

(π̂1, . . . , π̂k) · (π̂i− π̂i))
2

]
.

Note that ∂ f
∂πi

(π̂1, . . . , π̂k) is a constant as no random variable is included. From the basic
facts of probability theory that

Var[∑
i

Yi] = ∑
i

Var[Yi]+ 2 ∑
i> j

COV [Yi,Yj],

Var[cY ] = c2Y,

COV[cYi,dYj] = c ·d COV[Yi,Yj],

we arrive at

Var( f (π̂1, . . . , π̂k))≈
k

∑
i=1

Var(π̂i) ·
(

∂ f
∂πi

)2

+ 2 ∑
i> j

COV(π̂i, π̂ j) ·
∂ f
∂πi

· ∂ f
∂π j

=
k

∑
i=1

SE(π̂i)
2 ·
(

∂ f
∂πi

)2

+ 2 ∑
i> j

COV(π̂i, π̂ j) ·
∂ f
∂πi

· ∂ f
∂π j

.

If the sample size is n and the πi are the probabilities in the multinomial model, we
obtain

Var( f̂ )≈
k

∑
i=1

πi(1−πi)

n

(
∂ f
∂πi

)2

− 2 ∑
i> j

πiπ j

n
· ∂ f

∂πi
· ∂ f

∂π j
.

To estimate V̂ar( f̂ ) we substitute the estimates π̂i for πi. The estimator of the standard

error now is obtained – as usual – by ŜE( f̂ ) =
√

V̂ar( f̂ ).
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In this paper we are concerned with the estimator of the standard error ŜE( f̂ ). Since
in multinomial sampling we may assume that f̂ is approximately normally distributed
for moderately large n, we obtain the 95% confidence interval as [ f̂ − 1.96 · ŜE( f̂ ), f̂ +
1.96 · ŜE( f̂ )].

3 Simple Precision and the Approximation Quality

Throughout suppose that Y1, . . . ,Yi, . . . ,Yk are decision classes and that lower and upper
approximations are taken with respect to θP for a fixed attribute set P. We usually write
γ instead of γ(P).

3.1 Approximation Quality and Accuracy

Given a decision class Yi, the relative precision of deterministic membership in Yi is
defined by

pi :=
|Low(Yi)|
|Yi|

= 1− |Yi|− |Low(Yi)|
|Yi|

,

i.e. the percentage of correctly predicted elements of Yi, whereas 1− pi is the percentage
of elements of Yi which cannot be predicted by the deterministic rules. The classical
rough approximation quality is now the weighted sum

γ =
k

∑
i=1

|Yi|
|U | · pi,

see [5]. Similarly, one can define a precision index for the upper approximation by

pi =
|Yi|

|Upp(Yi)|
= 1− |Upp(Yi)|− |Yi|

|Upp(Yi)|
,

which is the percentage of elements possibly in Yi as captured by indeterministic rules.
Furthermore, 1− pi is the percentage of those elements certainly not in Yi. Since 0 �
|Yi| ≤ |Upp(Yi)| ≤ n, we see that always pi �= 0 unlike pi.

As mentioned in Section 1, the accuracy is usually defined by the index

αi =
|Low(Yi)|
|Upp(Yi)|

.

We note that αi is the product of pi and pi; therefore, the geometric mean
√

αi may be
a more adequate index for accuracy than αi.

Example 1. We will use the data of this example throughout the paper. Suppose we
have three decision classes with the frequencies shown in Table 1. Using these data we
obtain the values of the indices shown in Table 2. �
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Table 1. Results of a rough set analysis

Y1 Y2 Y3 Sum
ni = |Yi| 30 50 120 200
nli = |Low(Yi)| 15 40 90 145
nui = |Upp(Yi)| 45 60 150 irr.

Table 2. Indices for the results of a rough set
analysis

p1 = 0.5 p2 = 0.8 p3 = 0.75
p1 = 0.667 p2 = 0.833 p3 = 0.8
α1 = 0.333 α2 = 0.667 α3 = 0.6
γ = 0.725

3.2 Standard Error of One Index

Assuming a multinomial model for the cardinalities of the classes, the standard error of
(the estimation of) γ is easily seen to be the root of

V̂ar(γ̂) =
γ̂(1− γ̂)

n

Example 2. Continuing Example 1,

ŜE(γ̂) =
√

0.725(1− 0.725)
200

= 0.0326

with the 95% confidence interval [0.633,0.787].
With the given data and the point estimate γ̂ = 0.725 it is not plausible to assume

that γ will fall below 0.633 or rise above 0.787 in a comparable sample. The statement
“In this sample, 90% of cases can be predicted by deterministic rules” can be rejected
with a two–sided significance of 5%, since the confidence interval does not contain 0.9.
Similarly, the hypothesis “In this sample, 60% of cases can be predicted by determinis-
tic rules” can be rejected. In the first case the percentage is too high, while in the second
it is too low. �
We use the Delta method for determine the standard errors of the other indices. Starting
with pi we obtain

p̂i =
|low(Yi)|

|low(Yi)|+ |Yi \ low(Yi)|
=

nli
nli +(ni− nli)

(3.1)

and the parametrization

pi =
a

a+ b
= f (a,b)

with the expectations

â =
|Low(Yi)|

n
=

nli
n

b̂ =
|Yi \Low(Yi)|

n
=

(ni− nli)
n

.

Computing the derivatives

∂ pi

∂a
=

a+ b− a
(a+ b)2 =

b
(a+ b)2

∂ pi

∂b
=− a

(a+ b)2
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we obtain

Var(p̂i(a,b)) =
a · (1− a)

n
· b2

(a+ b)4 +
b · (1− b)

n
· a2

(a+ b)4 + 2 · a ·b
n
· a ·b
(a+ b)4

=
1

n(a+ b)4 ·
(
a · (1− a) ·b2+ b · (1− b·)a2+ 2 ·a2 ·b2)

=
a ·b2 + b ·a2

n · (a+ b)4

=
a ·b

n · (a+ b)3 .

Substituting the frequencies to find the estimation of V̂ar(p̂i) , we obtain â+ b̂ = ni
n and

therefore,

V̂ar(p̂i)≈
nli
n ·

(ni−nli)
n

n ·
(ni

n

)3

=
nli(ni− nli)

n3
i

.

Example 3. Continuing Example 1,

ŜE(p1) =

√
15 ·15

303 = 0.091 95% CI = [0.321,0.679],

ŜE(p2) =

√
40 ·10

503 = 0.057 95% CI = [0.689,0.911],

ŜE(p3) =

√
90 ·30
1203 = 0.040 95% CI = [0.673,0.827].

�

If c is a constant, it is well known that Var(p̂i−c)=Var(p̂i) holds. Given the hypothesis
pi = c, we observe that

p̂i− c
SE(p̂i)

∼ N(0,1)

is approximately standard normally distributed, and

(p̂i− c)2

Var(p̂i)
∼ χ2

1

is approximately χ2 distributed with one degree of freedom. Given k categories with
estimates p̂1, ..., p̂k and assuming that all pi = c, we observe

k

∑
i=1

(p̂i− c)2

Var(p̂i)
∼ χ2

k .
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Using ĉ = γ̂ instead of a constant c, we observe that γ̂ is a linear function of p̂1, ..., p̂k,
and thus the number of degrees of freedom of the χ2 is reduced by one. Therefore,

k

∑
i=1

(p̂i− γ̂)2

Var(p̂i)
∼ χ2

k−1.

Example 4. Continuing Example 1, we shall test whether the pi are approximately the
same – in other words, how well γ measures the approximation quality for a particular
decision class.

χ2 =

(
0.5− 0.725

0.091

)2

+

(
0.8− 0.725

0.057

)2

+

(
0.75− 0.725

0.040

)2

= (−2.473)2+ 1.3162+ 0.6252 = 8.23

Since the critical value χ2
2 (.95) = 5.99, we see that the approximation of the three sets

differ – and as the approximation of the first set differs by -2.473 standard deviations
from the mean value, we further conclude that the first class is not as well approximated
as the other classes.

Given this result it is problematic to state that γ is the approximation quality for the
classes of the decision attributes, as – obviously – the approximation differs among the
classes. �

Next, we turn to αi, and note that the structure of formula 3.1 is repeated in the
estimation of αi:

α̂i =
|Low(Yi)|
|Upp(Yi)|

=
|Low(Yi)|

|Low(Yi)|+ |Bnd(Yi)|
=

nli
nli + nbi

.

Therefore there is no need for further application of the Delta method – we simply
replace the frequencies for the estimation of V̂ar(α̂i) and obtain

V̂ar(α̂i) =
nli ·nbi

nu3
i

.

Example 5. Continuing Example 1,

ŜE(α1) =

√
15 ·30

453 = 0.070 95% CI = [0.196,0.471],

ŜE(α2) =

√
40 ·20

603 = 0.061 95% CI = [0.547,0.786],

ŜE(α3) =

√
90 ·60
1503 = 0.040 95% CI = [0.522,0.678].

�

Finally, the standard error of pi has to be estimated. Once again, we see that

p̂i =
|Yi|

|Upp(Yi)|
=

|Yi|
|Yi|+ |UppYi \Yi|
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has the same structure as formula 3.1, and we obtain

V̂ar(p̂i) =
ni(nui− ni)

(ni +(nui− ni))3

=
ni(nui− ni)

nu3
i

.

Example 6. Continuing Example 1,

ŜE(p̂1) =

√
30(45− 30)

453 = 0.07 95% CI = [0.529,0.804],

ŜE(p̂2) =

√
50(60− 50)

603 = 0.048 95% CI = [0.739,0.927],

ŜE(p̂3) =

√
120(150− 120)

1503 = 0.033 95% CI = [0.736,0.864]. �

4 Two Sample Comparisons

Having solved the problem of variation in one sample, it is straightforward to solve the
comparison of indices which arise from two different samples S1 and S2. For an index
f , we form the difference f (S1,S2) := f (S1)− f (S2). Assuming independent sampling,
the standard error of the difference estimator is

SE( f̂ (S1,S2)) =

√
Var( f̂ (S1))+Var( f̂ (S2)).

This result holds regardless which index is used. Note that SE( f̂ (S1,S2)) can be used to
test the difference to be zero (or any other value in [−1,1]), which allows us in particular
to test whether f (S1)> f (S2).

Example 7. A second data set using the same decision variable and the same rules
shows the following results:

Y1 Y2 Y3 sum
ni = |Yi| 40 40 100 180
nli = |Low(Yi)| 10 35 60 105
nui = |Upp(Yi)| 60 60 135 irr.

The results are shown in Table 3 on the facing page. �

5 Comparing Categories

The questions arise whether a category Yi is approximated better than a class Yj, or
whether a category Yi is better approximated by one sample than by another when the
rule system is the same. Furthermore, one needs to ask whether Yi is better approximated
by rule system A than by rule system B using the same sample.
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Table 3. Indices for two samples

Sample 1 Sample 2 Difference
p1 0.5 0.25 0.25
SE 0.070 0.068 0.114
95%-CI [.362, .638] [.116, .384] [.026, .474]
p2 0.8 0.875 -0.075
SE 0.048 0.052 0.077
95%-CI [.706, .894] [.773, .977] [−.226, .076]
p3 0.75 0.6 0.15
SE 0.033 0.049 0.063
95%-CI [.686, .814] [.504, .696] [.027, .273]

γ 0.725 0.583 0.142
SE 0.032 0.037 0.048
95%-CI [.663, .787] [.511, .655] [.048, .237]

α1 .333 .167 .167
SE 0.070 0.048 0.085
95%-CI [.196, .471] [.072, .261] [−.000, .334]
α2 .667 .583 .083
SE 0.061 0.064 0.088
95%-CI [.547, .786] [.459, .708] [−.089, .256]
α3 .6 .444 .156
SE 0.04 0.043 0.059
95%-CI [.522, .678] [.361, .528] [.041, .270]

A note on a technical detail in this section: As we deal with dependent random vari-
ates based on frequencies, it turns out that determining the variance of a fraction of
frequencies is most of the time more convenient than working with the differences.
Furthermore, taking the logarithm reduces variance heterogeneity between both vari-
ates and normalizes the resulting random variable. This is a valuable property because
the computation of the confidence intervals needs a good approximation by the standard
normal distribution. Note that this approach is similar to the treatment of odds and odds
ratios ([4], p. 70). As above, we shall use the Delta method.

5.1 Comparing pi

To compare pi and p j we use the ratio pi
p j

, and obtain

pi

p j
=
|Low(Yi)|/|Yi|
|Low(Yj)|/|Yj|

=
|Low(Yi)|/(|Low(Yi)|+ |Yi \Low(Yi)|)
|Low(Yj)|/(|Low(Yj)|+ |Yj \Low(Yj)|)

.

This leads to the parametrization

pi

p j
=

a/(a+ b)
c/(c+ d)

,
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and, linearizing by taking the logarithm,

f (a,b,c,d) = ln

(
pi

p j

)
= ln(a)− ln(a+ b)− ln(c)+ ln(c+ d)

Using the estimators

â =
|Low(Yi)|

n
b̂ =

|Yi|− |Low(Yi)|
n

ĉ =
|Low(Yj)|

n
d̂ =

|Yj|− |Low(Yj)|
n

and the partial derivatives

∂ f
∂a

=
1
a
− 1

a+ b
∂ f
∂c

=−1
c
+

1
c+ d

∂ f
∂b

=− 1
a+ b

∂ f
∂d

=
1

c+ d

we can compute the variance

Var( f̂ ) =
a · (1− a)

n

(
1
a
− 1

a+ b

)2

+
b · (1− b)

n

(
− 1

a+ b

)2

+
c · (1− c)

n

(
−1

c
+

1
c+ d

)2

+
d · (1− d)

n

(
1

c+ d

)2

−2
a · c
n

(
1
a
− 1

a+ b

)(
−1

c
+

1
c+ d

)
− 2

a ·b
n

(
1
a
− 1

a+ b

)(
− 1

a+ b

)
−2

a ·d
n

(
1
a
− 1

a+ b

)(
1

c+ d

)
− 2

c ·b
n

(
−1

c
+

1
c+ d

)(
− 1

a+ b

)
−2

c ·d
n

(
−1

c
+

1
c+ d

)(
1

c+ d

)
− 2

b ·d
n

(
− 1

a+ b

)(
1

c+ d

)
=

1
n

(
b

a · (a+ b)
+

d
c · (c+ d)

)
Substituting the estimators we obtain

V̂ar( f̂ ) =
ni− nli

nlini
+

n j− nl j

nl jn j

=
1

nli
− 1

ni
+

1
nl j
− 1

n j
.

The next task is to check how one category differs from the others. In terms of ac-
curacy the question is whether pi is different from the (weighted) mean of the accuracy
of the other categories, which is γ restricted to U \Yi. We first define the sum of the
cardinalities of the lower bounds of the other classes by

Nli = ∑
j �=i

nl j
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and then restrict γ to these classes:

γ̂i =
Nli

n− ni

The comparison
p̂i

γ̂i
=

nli/ni

Nli/(n− ni)

can be described by the parametrization

f (a,b,c) = ln(a)− ln(a+ b)− ln(c)+ ln(1− a−b)

with the estimates

â = nli/n

b̂ = (ni− nli)/n

ĉ = 1/n ∑
j �=i

nl j.

Once again the Delta method is used. First, we find the derivatives:

∂ f
∂a

=
1
a
− 1

a+ b
− 1

1− a− b
=

1
a
− 1

(a+ b)(1− a− b)

∂ f
∂b

= − 1
(a+ b)(1− a− b)

∂ f
∂c

= −1
c
,

and then obtain

Var( f̂ ) =
a · (1− a)

n
·
(

1
a
− 1

(a+ b) · (1− a− b)

)2

+
b · (1− b)

n

(
1

(a+ b) · (1− a−b)

)2

+
1− c
n · c

+
2 ·a ·b

n
·
(

1
a
− 1

(a+ b) · (1− a−b)

)
·
(

1
(a+ b) · (1− a−b)

)
+

2 ·a
n
·
(

1
a
− 1

(a+ b) · (1− a− b)

)
− 2 ·b

n
·
(

1
(a+ b) · (1− a−b)

)
=

1
n
· b · c · (1− b)+ a ·b · (1−b−2 ·c)+a2 · (1− 2 ·b− c)−a3

a · c · (1− a− b) · (a+b)
.

Example 8. In our example we compare p1 with p2 and p3:

Comparison Fraction Var(p1/p j) Standard error 95%CI
p̂1/ p̂2 0.625 0.038 0.196 [0.426,0.917]
p̂1/ p̂3 0.667 0.036 0.190 [0.459,0.968]
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We observe that the approximation quality of category Y1 is in fact lower than those
of the other categories.

γ̂i Comparison Fraction Var(pi/γi) Standard error 95%CI
0.765 p̂1/γ̂1 0.654 0.035 0.187 [0.453,0.944]
0.700 p̂2/γ̂2 1.143 0.008 0.089 [0.961,1.360]
0.688 p̂3/γ̂3 1.091 0.008 0.092 [0.911,1.306]

We conclude that p1 is smaller than the mean approximation quality of the other
categories, as the right border of the 95%CI is smaller than 1. �

5.2 Comparing αi

For the upper bounds of two different classes we find the following disjoint representa-
tion of the upper bounds; disjoint union is denoted by �. Observe that for i �= j we have
Low(Yi)∩Upp(Yi) = /0.

Upp(Yi) = Low(Yi)� (Upp(Yi)∩Upp(Yj))� [Upp(Yi)\ ((Upp(Yi)∩Upp(Yj))∪Low(Yi))],

Upp(Yj) = Low(Yj)� (Upp(Yi)∩Upp(Yj))� [Upp(Yj)\ ((Upp(Yi)∩Upp(Yj))∪Low(Yj))].

The parametrization of αi
α j

is therefore

f (a,b,c,d,e) = ln

(
a

a+b+c
d

d+b+e

)
where

â =
|Low(Yi)|

n
b̂ =

|Upp(Yi)∩Upp(Yj)|
n

ĉ =
|Upp(Yi)\ ((Upp(Yi)∩Upp(Yj))∪Low(Yi))|

n
d̂ =

|Low(Yj)|
n

ê =
|Upp(Yj)\ ((Upp(Yi)∩Upp(Yj))∪Low(Yj))|

n
.

The partial derivatives are

∂ f
∂a

=
1
a
− 1

a+ b+ c
∂ f
∂b

=− 1
a+ b+ c

+
1

d+ b+ e
∂ f
∂c

=− 1
a+ c+ d

∂ f
∂d

=− 1
d
+

1
d+ b+ e

∂ f
∂e

=
1

d + b+ e
.

Computing Var( f̂ ) is straightforward, if somewhat tedious; we have used Mathematica
[6] for the last line.
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Var( f̂ ) =
a(1− a)

n

(
1
a
− 1

a+ b+ c

)2

+
b(1− b)

n

(
− 1

a+ b+ c
+

1
d + b+ e

)2

+
c(1− c)

n

(
− 1

a+ b+ c

)2

+
d(1− d)

n

(
− 1

d
+

1
d + b+ e

)2

+
e(1− e)

n

(
1

d + b+ e

)2

− 2
a ·b

n

(
1
a
− 1

a+ b+ c

)(
− 1

a+ b+ c
+

1
d+ b+ e

)
− 2

a · c
n

(
1
a
− 1

a+ b+ c

)(
− 1

a+ b+ c

)
− 2

a ·d
n

(
1
a
− 1

a+ b+ c

)(
− 1

d
+

1
d+ b+ e

)
− 2

a · e
n

(
1
a
− 1

a+ b+ c

)(
1

d + b+ e

)
− 2

b · c
n

(
− 1

a+ b+ c
+

1
d+ b+ e

)(
− 1

a+ b+ c

)
− 2

b ·d
n

(
− 1

a+ b+ c
+

1
d+ b+ e

)(
− 1

d
+

1
d + b+ e

)
− 2

b · e
n

(
− 1

a+ b+ c
+

1
d+ b+ e

)(
1

d+ b+ e

)
− 2

c ·d
n

(
− 1

a+ b+ c

)(
− 1

d
+

1
d+ b+ e

)
− 2

c · e
n

(
− 1

a+ b+ c

)(
1

d + b+ e

)
− 2

d · e
n

(
− 1

d
+

1
d+ b+ e

)(
1

d+ b+ e

)
=

a2 · (b+ e)+ (b+ c) ·d · (b+ d+ e)+ a · (b2+ c · e+ b · (c−2 ·d+ e))
n(a · (a+ b+ c) ·d · (b+ d+ e))

Example 9. For our example we compare α1 with α2 and α3, assuming an overlap of
the upper bounds of 5 elements.

Comparison Fraction Var(α1/α j) Standard error 95%CI
α1/α2 0.500 0.049 0.222 [0.324,0.772]
α1/α3 0.556 0.047 0.218 [0.363,0.851]

If we take the upper bounds in account, we find a similar result as before: The ap-
proximation of category Y1 is not as good as the approximation of the other categories.

�
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5.3 Comparing pi-Values

It is straightforward to find a parametrization of

p̂i

p̂ j =
|Yi|/|Upp(Yi)|
|Yj|/|Upp(Yj)|

by using
pi

p j =
(a+ b)/(a+ b+ c+d+ e)
(e+ f )/(a+ d+ e+ f + g)

But as pi and its relatives have not been explored up to now, we skip the developments
of the standard error of this fraction.

6 Discussion

The paper discusses how sample variation influences indices of rough set approxima-
tion. We use the lower approximation pi of a class Yi, which is the one-set-counterpart
of γ , and the upper approximation pi of a class Yi, which is a new construction as far as
we know. The “classical” indices γ and αi are derivations of pi and pi.

Computing the one sample variation of these indices results in a confidence interval
for the indices based on the assumption of simple random sampling. A 95% confidence
interval will cover the population value of the respective index with probability .95,
and will tell us something about the mutual position of the population index. Any value
outside the interval is quite unreasonable, but – and this is at least as interesting – any
value within the CI is plausible. Inspecting the left end of the CI, we see whether a high
value of the point estimate is really “high” in the population. Inspecting the right end of
the CI tells us whether a low point estimate is really “low” in the population.

Once we have generated standard errors of indices in one sample, it is straightforward
to compare the results of two samples. This helps us to check the reliability of a learned
rule system, using e.g. a simple hold-out-sample technique.

Finally, we propose some procedures to compare the approximation of two cate-
gories in one sample, which may be useful the check the relative precision of a rule
system with respect of categories.

Using real life data, we have to consider possible problems with the approach:

1. The applied techniques are based on asymptotically correct approximations of the
sampling error. Hence, if the frequencies in the nominator or denominator of the
measures) are low, say, less than 20, the approximation cannot be used. In that case
a simulation based on the same assumptions of a multinomial model will be a better
choice to measure the sampling variance of the estimates.

2. RSDA is often used to find optimal relationships. As the frequencies do not vary in
terms of a multinomial distribution, we cannot use the approach. This is not a prob-
lem unique to RSDA, but to all methods of machine learning. In this case simple
techniques like using a hold-out sample should be used to measure the sampling
effect.
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3. All the proposed techniques assume a fixed rule system. Therefore, none of these
can be used to compare different rule systems – this is a challenge for future re-
search. The same restriction holds for the derivation of confidence intervals for
probabilistic enhancements of RSDA such as the variable precision model [7] or
the λ -precision model [8].

An R package to compute confidence intervals for indices in rough set data analysis
as presented in this paper is available at www.roughsets.net.
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Abstract. This article introduces the Proximity System, an application
developed to demonstrate descriptive-based approaches to nearness and
proximity within the context of digital image analysis. Specifically, the
system implements the descriptive-based intersection, compliment, and
difference operations defined on sets of pixels representing regions of
interest. These sets of pixels can be considered visual rough sets, since
the results of the descriptive-based operators are always defined with
respect to a set of probe functions, which induce a partition of the objects
(pixels) being considered. The contribution of this article is an overview
of the Proximity System, its use of visual rough sets as description-based
operands, its ability to quantify the nearness or apartness of visual rough
sets, and a practical application to the problem of human visual search.
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1 Introduction

The problem considered in this article is the implementation of descriptive-based
operators [17] for use in digital images. The solution to this problem comes by
way of the Proximity System, a cross-platform system for digital image anal-
ysis using descriptive-based operators. The inspiration for the approach imple-
mented in the Proximity System is an observation in [58] that the concept of
nearness1 is a generalization of set intersection. The idea follows from the notion
of set description [36, §4.3], which is a collection of the unique feature vectors
(n-dimensional real-valued feature vectors representing characteristics of the ob-
jects) associated with all the objects in the set. Describing sets in this manner, at
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1 Introduced within the context of a descriptive extension of Efremovič’s proximity
space theory [56], which carries forward the basic idea of near and far begun by
Riesz’s [34].
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some level, matches the human approach to describing sets of objects. Further-
more, in comparing disjoint sets of objects, we must at some level be performing
a comparison of the descriptions we associate with the objects within the sets.
Thus, a natural approach for quantifying the degree of similarity (i.e. the near-
ness or apartness) between two sets would be to look at the intersection of the
sets containing their unique feature vectors.

The approach reported here builds on the work of many others. The idea of
sets of similar sensations was first introduced by Poincaré in which he reflects on
experiments performed byWeber in 1834, and Fechner’s insight in 1850 [67, 62, 2,
23]. Poincaré’s work was inspired by Fechner, but the key difference is Poincaré’s
work marked a shift from stimuli and sensations to an abstraction in terms of sets
together with an implicit idea of tolerance. Next, the idea of tolerance is formally
introduced by Zeeman [71] with respect to the brain and visual perception.
Zeeman makes the observation that a single eye cannot identify a 2D Euclidean
space because the Euclidean plane has an infinite number of points. Instead, we
see things only within a certain tolerance. This idea of tolerance is important
in mathematical applications where systems deal with approximate input and
results are accepted with a tolerable level of error, an observation made by
Sossinsky [67], who also connected Zeeman’s work with that of Poincaré’s. In
addition to these ideas on tolerance, Riesz first published a paper in 1908 on
the nearness of two sets [34, 37], initiating the mathematical study of proximity
spaces and the eventual discovery of descriptively near sets. Specifically, Near set
theory was inspired by a collaboration in 2002 by Pawlak and Peters on a poem
entitled “How Near” [46], which lead to the introduction of descriptively near
sets [49, 50]. Next, tolerance near sets were also introduced by Peters [52, 53],
which combines near set theory with the ideas of tolerance spaces and relations.
Finally, a tolerance-based nearness measure was introduced in [15, 16].

The sets considered in the Proximity System are obtained from digital images.
In particular, four types of regions of interest are identified as operands for the
descriptive operators reported in [17], namely a simple set of pixels, a spatial
neighbourhood, a descriptive neighbourhood, and a hybrid approach in which
the neighbourhood is formed by spatial and descriptive characteristics of the
objects [36, 17, 55]. In each case, the regions of interest constitute a set of pixels.
In addition, the results of the descriptive-based operators are always defined
with respect to a set of probe functions, which induce a partition of the objects
(pixels) being considered. As a result, these sets of pixels can be considered in
the light of rough set theory, and can be considered visual rough sets.

Rough sets were introduced by Pawlak during the early 1980s [44, 45] and
elaborated in [47, 63, 44, 38, 39]. The rough set-based approach to image analysis
dates back to the early 1990s. The application of rough sets in image analysis was
launched in a seminal paper published by Mrózek and Plonka [32]. The early work
on the use of rough sets in image analysis can be found in [40, 57, 42, 4, 3, 24, 33].
A review of rough sets and near sets in medical imaging can be found in [13].
More recently, Sen and Pal [65] introduced an entropy based, average image
ambiguity measure to quantify greyness and spatial ambiguities in images. This
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measure has been used for standard image processing tasks such as enhancement,
segmentation and edge detection. Forms of rough entropy have also been used
in a clustering approach to image segmentation [27, 30, 41, 10, 28, 29, 31].

The contribution of this article is a discussion on the Proximity System, its
use of visual rough sets as description-based operators, its ability to quantify the
nearness or apartness of visual rough sets (with examples), and the application
of descriptive-based intersection to the problem of Human Visual Search. This
article is organized as follows: Section 2 defines the visual rough sets used in
the Proximity System, Section 3 provides background on the description-based
operators implemented in the Proximity System, Section 4 details the nearness
measure used by the Proximity System to assess the nearness or apartness of
visual rough sets, Section 5 discusses the Proximity System in detail, Section 6
contains examples using the Proximity System to obtain the descriptive intersec-
tion of visual rough sets, and Section 7 discusses the application of the descriptive
intersection to the problem of Human Visual Search.

2 Visual Rough Sets

This section briefly presents visual rough sets using an approach similar to [16].
Consider Fig. 1(a) as a starting point for an example of a visual rough set. Each
pixel in the image has an associated tuple consisting of three values that specify
its colour using the RGB colour model. These values can be used to partition
the image using an equivalence relation. In image processing terms, the partition
is a segmentation of the image into regions, where the members of each region
contain pixels with equal colour values. For example, the unnaturally coloured
pixels in Fig. 1(b) represent the partition of Fig. 1(a), which was obtained using
the blue component of the RGB colour model. Similarly, an example of a single
equivalence class is given by pixels of the colour in Fig. 1(c).

The partition in Fig. 1(b) is obtained by considering a very simple example
of an indiscernibility (equivalence) relation2 ∼φ defined by

∼φ = {(x, y) ∈ " × " : φ(x) = φ(y)} , where,

" = {x : x = digital image pixel},
φ : X → R, defined by

φ(x) = y(blue component intensity), y ∈ [0, 255].

The notation x/∼φ
denotes a equivalence class containing x and "/∼φ

de-

notes the set of all equivalence classes (quotient set) of the partition (see, e.g.,
Fig. 1(c) & 1(b), respectively). The image partition is a rich source of examples

2 The indiscernibility relation introduced by Z. Pawlak [45] was defined in terms of
attributes (partial functions) of objects in an information system. With the advent
of probe functions in a perceptual view of feature extraction [50, §3, pp. 414-415],
a form of perceptual indiscernibility relation was introduced in the context of a
perceptual system [59, §2.2, p. 53], elaborated in [60].
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(a) (b)

(c)

Fig. 1. Sample visual rough set. (a) Natural image [1], (b) partition, and (c) class
displayed with the colour superimposed on the image from (a).

of rough sets. Let B denote a set of probe functions used to extract feature values
from an object such as a digital image pixel. Briefly, a rough set is obtained by
considering the lower approximation (denoted by B∗X) and upper approxima-
tion (denoted by B∗X) of a nonempty set X and the approximation boundary
(denoted by BndBX).

Overview of Rough Sets:

X ⊆ O = nonempty set (where O is the universe of objects),

B = set of probe functions,

φ ∈ B,

∼B = {(x, y) ∈ X ×X : ∀φ ∈ B. φ(x) = φ(y)} (indiscernibility relation),

x/∼φ
= {y ∈ X : ∀φ ∈ B. φ(x) = φ(y)} (class),

B∗X =
⋃

x/∼φ
⊆X

x/∼φ
(lower approximation),

B∗X =
⋃

x/∼φ
∩X �=∅

x/∼φ
(upper approximation),

BndBX = B∗X −B∗X (approximation boundary).
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With this in mind, one can observe many rough sets3 in Fig. 1(b). Let O
represent a database of images. Next, consider, for example, the set X shown
embedded in the digital image " showing a lake shore scene in Fig. 2 and the
same set X shown in Fig. 3.

X�

Fig. 2. Rough set X in lake image

X�

Fig. 3. Rough set X in lake image partition (upper and lower approximations only)

Assume φ(x) = y(blue component intensity), and consider the equivalence
class represted by the purple coloured pixels in Fig. 3. Notice that the members
of the equivalence class are partly in and partly outside the set X . In effect,

/∼φ
∩X �= ∅.

In fact, the situation with the class denoted by /∼φ
is true of every class in the

image " shown in Fig. 3. Hence, X in Fig. 3 is an example of a visual rough
set4.

3 This experiment with partitioning and identifying rough sets in a partition of a
digital image �, is the result of using the Eq option in NEAR system, available at
http://wren.ece.umanitoba.ca

4 For other examples of visual rough sets, see [59, 15, 54, 64, 16].
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3 Description-Based Set Operators

Many interesting properties of rough sets can be considered by introducing the
description of a set. The following gives definitions of operators considered in
the light of object descriptions (as originally reported in [17]). A logical starting
point for introducing descriptive-based operators begins with establishing a basis
for describing elements of sets. All sets in this work consist of perceptual objects,
which is anything that has its origin in the physical world with characteristics
observable to the senses such that they can be measured and are knowable to the
mind. In keeping with the approach to pattern recognition suggested by Pavel
[43], the features of a perceptual object are quantified by probe functions. In
particular, a feature characterizes some aspect of the makeup of a perceptual
object [48], and a probe function is a real-valued function representing a feature
of a perceptual object [49, 51].

Next, a perceptual system is a set of perceptual objects, together with a set
of probe functions.

Definition 1 Perceptual System [60]. A perceptual system 〈O,F〉 consists
of a non-empty finite set O of sample perceptual objects and a non-empty finite
ordered n-tuple F = (φ1, φ2, . . . , φn) of real-valued functions φ ∈ F such that
φ : O→ R.

Combining the concepts of objects and probe functions, the description of a
perceptual object within a perceptual system can be defined as follows.

Definition 2 Object Description. Let 〈O,F〉 be a perceptual system, and let
B ⊆ F be a set of probe functions. Then, the F-description of a perceptual object
x ∈ O is a feature vector given by

ΦF(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the vector ΦF, and each φi(x) in ΦB(x) is a probe function
value that is part of the description of the object x ∈ O. The B-description of x
is a subsequence of ΦF(x) having as probe functions all and only elements from
B.

Note, the idea of a feature space is implicitly introduced along with the definition
of object description. An object description is the same as a feature vector as
described in traditional pattern classification [7]. The description of an object can
be considered a point in an l-dimensional Euclidean space Rl called a feature
space. Further, a collection of these points, i.e., a set of objects A ⊆ O, is
characterized by the unique description of each object in the set.

Definition 3 Set Description [36, §4.3] [17]. Let A be a set. Then the set
description of A is defined as

D(A) = {Φ(a) : a ∈ A}.
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Example 1. Let 〈O,F〉 be a perceptual system, where O contains the pixels in
Fig. 4, A ⊆ O, and B ⊆ F contains probe functions based on the RGB colour
model. Then, the set description of A is D(A) = { , , , , }, where each
coloured box represents the 3-dimensional real-valued RGB vector associated
the box’s colour.

A

Fig. 4. Example demonstrating Definition 3

Next, J. Peters and S. Naimpally observed that, from a spatial point of view,
the idea of nearness is a generalization of set intersection [58]. In other words,
when considering the metric proximity, two sets are near each other when their
intersection is not the empty set. Furthermore, they applied this idea to the
concept of descriptive nearness in [36, §4.3] by focusing on the descriptions of
objects within the sets. In this case, two sets are considered near each other if
the intersection of their descriptions is not the empty set.

Definition 4 Descriptive Set Intersection [58, 36, 17]. Let A and B be any
two sets. The descriptive (set) intersection of A and B is defined as

A ∩
Φ
B = {x ∈ A ∪B : Φ(x) ∈ D(A) and Φ(x) ∈ D(B)}.

Observe, the descriptive intersection differs from the standard set intersection
A∩B = {x : x ∈ A and x ∈ B} in that A and B can be disjoint, i.e. A∩B = ∅.
In fact, the intended applications of the descriptive intersection use disjoint sets.
However, in the case where the sets are not disjoint A ∩B ⊆ A ∩

Φ
B.

Example 2. Let 〈O1,F〉 and 〈O2,F〉 be perceptual systems corresponding to
Fig. 5(a) & 5(c), respectively, where the perceptual objects and probe func-
tions are defined in the same manner as Example 1. Moreover, let the blue
rectangles in Fig. 5(b) (resp. Fig. 5(d)) represent two sets, A,B, for which
the descriptive intersection is considered. Then, the inverted pixels (i.e. pi =
{ci, ri, 255−Ri, 255−Gi, 255−Bi)

T}) within these sets represent their descrip-
tive intersection, i.e. the inverted pixels represent the objects with matching
descriptions in both sets.
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(a) (b)

(c) (d)

Fig. 5. Example demonstrating Definition 4

Definition 5 Descriptive Set Difference [17]. The descriptive (set) differ-
ence (or descriptive difference set) between two sets A and B is defined as

A \
Φ

B = {x ∈ A : Φ(x) /∈ D(B)}.

Observe, the descriptive difference differs from the standard set difference
A\B = {x ∈ A | x /∈ B} in that A and B are also intended to be disjoint.
Similarly, in the case where the sets are not disjoint A \

Φ

B ⊆ A\B.

Example 3. The descriptive difference between the sets introduced in Example 2
are given Fig. 6. In this case, the inverted pixels represent all the objects that
do not have matching descriptions in the other set.

Definition 6 Descriptive Set Complement [17]. The descriptive (set) com-
plement of a set A in the universe U is defined as

�
Φ
(A) = U \

Φ

A

The biggest difference between the descriptive complement and the standard
set complement �(A) = U\A is that the descriptive complement of the descrip-
tive complement of a set is not the original set (see, e.g., [17]).

Example 4. Considering the perceptual systems introduced in Example 2, the
descriptive complement of each set represented by a blue rectangles in Fig. 7
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(a) (b)

Fig. 6. Example demonstrating Definition 5

(a) (b)

Fig. 7. Example demonstrating Definition 6

is given by the inverted pixels. In other words, the inverted pixels represent
objects that do not have matching descriptions to those contained inside the
blue rectangle.

4 Metric-Free Nearness Measure

Next, a metric-free description-based nearness measure using the descriptive
operators introduced in Section 3 is presented, which is related to work on
a tolerance-based nearness measure reported in [15, 16]. Furthermore, the ap-
proach presented here has direct application to image analysis and is related to
the rough set image analysis approaches reported in [40, 57, 42, 4, 3, 24, 33, 13].
Similarly, this measure has been applied to the problem of Content-Based Im-
age Retrieval (CBIR) [66] by Henry et al. [18]. The approach to applying this
measure to CBIR is analogous to the tolerance nearness measure approached
taken in [21, 19, 20]. As in the case of the tolerance nearness measure, both ap-
proaches aim to quantify the similarity between sets of objects based on object
description. However, the tolerance nearness measure is obtained using tolerance
classes (see, e.g., [61]) obtained from the union of the sets under consideration,
while the description-based nearness measure is based on the descriptive oper-
ators reported in [17]. The idea that motivated this measure comes from the
observation in [58] that nearness is considered a generalization of intersection.
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Intuitively speaking, we perceive sets of objects to be similar or near in some
manner when they share common characteristics. Thus, if considering set de-
scriptions (as given in Definition 3), the descriptive intersection should not be
empty if we consider the sets to be similar with respect to one or more features.
Keeping these ideas in mind, a metric-free description-based nearness measure,
dNM , is defined as follows.

Definition 7 Metric-Free Description-Based Nearness Measure [17]. Let
X,Y ⊆ O be sets of perceptual objects within a perceptual system. Then, a
metric-free description-based nearness measure is defined as

dNM(X,Y ) = 1−
|X ∩

Φ
Y |

|X ∪ Y | ,

where the operator | · | represents the cardinality of a set. The nearness measure
produces values in the interval [0, 1], where, for a pair of sets X,Y , a value of 0
represents complete resemblance, and a value of 1 indicates no resemblance.

5 Proximity System

The Proximity System is an application developed to demonstrate descriptive-
based topological approaches to nearness and proximity within the context of
digital image analysis. The Proximity System grew out of the work of S. Naim-
pally and J. Peters [37, 46, 49, 50, 34, 35, 53, 52, 58, 36], was also influenced
by work reported in [14–16, 21], and has resulted in one publication [17]. The
Proximity System was written in Java and is intended to run in two different
operating environments, namely on Android smartphones and tablets, as well
as desktop platforms running the Java Virtual Machine. Fig. 8 gives screenshots
of the interfaces for the two different environments. With respect to the desk-
top environment, the Proximity System is a cross-platform Java application for
Windows, OSX, and Linux systems, which has been tested on Windows 7 and
Debian Linux using the Sun Java 6 Runtime. In terms of the implementation
of the theoretical approaches presented in the article, both the Android and the
desktop based applications use the same back-end libraries (written in Java) to
perform the description-based calculations, where the only differences is the user
interface.

The Proximity System contains six main tabs, Regions, Neighbourhoods, In-
tersection, Complement, Difference and Upper Approximation, allowing users to
perform description-based operations on regions of interest within a digital im-
age. The user is also able to choose probe functions (from the left pane) that
form the basis of the description-based operations and induce a partition of the
pixels using the indiscernibility relation. These regions of interest correspond
to user-defined sets of pixels that may be rough, i.e. the sets may be inexactly
defined by equivalence classes in the partition formed by the selected probe
functions (see, e.g., Fig. 3). The first tab, Regions, allows users to add square,
round, or mouse-click defined sets of pixels. The second tab allows the user to
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(a)

(b)

Fig. 8. Screen shots of the Proximity System. (a) Android OS version, and (b) PC
version.

view description-based neighbourhood within the selected sets of pixels (see,
e.g., [17, 22]). The remaining three tabs allow users to perform the operations
corresponding to Defn. 4 – 6, respectively. A detailed manual for the Proximity
System is given in [22].

Additional probe functions may be added or removed using the Proximity
System GUI to facilitate research in different areas of application. By default,
the Proximity System contains six probe functions, namely the output of the four
components of the RGBA colour model (i.e., RGB and an opacity channel), an
edge detection probe function (implemented using the Weber Law Differential
Excitation [18, 5]), and a texture probe function (implemented using homogene-
ity defined with respect to a grey level co-occurrence matrix [11, 12, 16]). Probe
functions are appended to the Proximity System using the ProbeFunc Java class,
which is used to map a perceptual object to a probe function (feature) value.
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The ProbeFunc class is a generic abstract class with a map method that maps
perceptual objects to their corresponding probe function output. This class
also has a minimum and maximum value used to normalize the result of the
map method, which is necessary to ensure that the output of probe functions
with large magnitude do not dominate the Euclidean distance calculation. The
toString method is used to provide the name of the feature within both applica-
tions. An example ProbeFunc is given in [22].

Finally, memory resources are tightly regulated by the Android OS to en-
sure the system remains responsive. As a result, the code used to calculate
the description-based operations presented here needed to be optimized in or-
der to run to completion without running out of memory. In particular, the
Proximity System allows users to find the result of description-based operations
using a tolerance relation rather than the indiscernibility relation defined in Sec-
tion 2. A tolerance relation presents a view of the world without transitivity
(see, e.g., [61]). In this case, the Euclidean distance between object descriptions
must simply be within some ε in order to be included in the result. Conse-
quently, the approach to performing these descriptive-based operations can be
more computationally complex than when using the indiscernibility relation.

Algorithm 1. Descriptive Intersection Algorithm

Input : A,B,D(A),D(B), ε
Output: A ∩

Φ
B

1 Find D(A) (The unique colours in A);
2 Find D(B) (The unique colours in B);
3 D(C) ← D(B);
4 D(A ∩

Φ
B) ← ∅;

5 for Φ(a) ∈ D(A) do
6 for Φ(b) ∈ D(B) do
7 if ‖ Φ(a)− Φ(b) ‖2≤ ε then
8 D(A ∩

Φ
B) ← D(A ∩

Φ
B) ∪ Φ(a);

9 D(A ∩
Φ
B) ← D(A ∩

Φ
B) ∪ Φ(b);

10 D(C) ← D(C)\Φ(b);
11 if |D(C)| > 0 then
12 for Φ(c) ∈ D(C) do
13 if ‖ Φ(a)− Φ(c) ‖2≤ ε then
14 D(A ∩

Φ
B) ← D(A ∩

Φ
B) ∪ Φ(c);

15 D(C) ← D(C)\Φ(c);

16 break;

17 //For each description in the result, add the pixels that have this colour
A ∩

Φ
B = {x ∈ A ∪B : Φ(x) ∈ D(A ∩

Φ
B)};
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The PerceptualSystem class5 implements the methods used to calculate the
output of probe functions. Perceptual objects and probe functions must be added
to a PerceptualSystem object before probe function values can be calculated.
Each perceptual object is given an index number when it is added to the Per-
ceptualSystem object. Probe function calculations are then made using object
indices. This allows arrays to be used rather than list objects, which removes
some overhead (especially where look ups are concerned).

Maps of unique object description are created between object indices and their
corresponding object descriptions, which greatly reduced the overhead with com-
parisons. Specifically, as a result of this modification, comparisons between sets
are made solely on set descriptions (i.e. lists of unique object descriptions as-
sociated with a set), and then the lists of objects associated with the matched
descriptions can be combined into the final result. This optimization was partic-
ularly important since these comparisons were found to be one of the most time
consuming part of the calculation.

An example of the optimized algorithm for finding the descriptive intersection
is given in Alg. 1. Here, the descriptive intersection is calculated on two sets A
and B by comparing D(A) to D(B) using an additional set D(C), which is
a copy of D(B). Object descriptions will subsequently be removed from D(C)
during calculation of the descriptive intersection, causing it to become a subset
of D(B). During the calculation process, an object description Φ(a) ∈ D(A) is
compared to each object description Φ(b) ∈ D(B). If a matching description6

is found, both descriptions are marked as matched and the description from
D(B) is removed from D(C), i.e. D(C) ← D(C)\Φ(b). Once a match occurs,
Φ(a) is then compared to the remaining object descriptions in D(C), starting at
the index of b. Any additional matches are also removed from D(C). Each new
iteration starts by comparing an object in D(A) with D(B), and only switches to
the reduced set D(C) if a match is found. In this way, the problem of comparing
two descriptions that have both already been found to be within the descriptive
intersection is avoided and the number of comparisons is reduced.

6 Proximity System: Visual Rough Set Examples

This section presents examples of using the Proximity System to obtain the
descriptive intersection to visual rough sets, using the framework for defin-
ing visual rough sets given in Section 2. First, a simple example is given in
Fig. 9, where φ(x) = y(green component intensity), y ∈ [0, 255]. The sets in
Fig. 9(b) are clearly visual rough sets since the image is partitioned based on
colours, and neither set can be completely defined by classes from the partition.

5 Note, in the following discussion, we distinguish between perceptual objects (i.e.,
pixels in the case of the Proximity System), and objects defined in traditional Java
programming.

6 Recall, this includes the case where the difference in object descriptions is within
some ε.
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(a) (b) (c)

Fig. 9. Sample visual rough set example. (a) Simple image, (b) user-defined sets, and
(c) description-based intersection.

(a) (b)

(c) (d)

Fig. 10. Natural image visual rough set example. (a) User-defined sets of a tree and
its reflection, (b) description-based intersection of sets in (a), (c) user-defined sets of
two trees, and (d) description-based intersection of sets in (c).

Next, Fig. 9(c) contains the descriptive intersection of Fig. 9(b), which is repre-
sented by the pixels with inverted colours. Notice, only pixels from the two sets
that share the same green component from the RGB colour model appear in
the result. Also, the black boundary lines are a different shade of black than
the square in the lower right corner. Hence, they appear in the result, while the
black square does not. Similarly, Fig. 10(b) & 10(d) also contain the result of
descriptive intersection. In this case, there are two comparisons, namely a tree
on the shore is compared with its reflection in the lake, as well as another tree
on the shore. Observe, the trees on the shore have more descriptions in common
(i.e., there are more pixels that share the same shade of green) than the tree
and its reflection, which, in the context of the selected probe functions, makes
sense since the water would alter the colour of the reflected light incident on the
camera sensors. Next, Table 1 gives the metric-free nearness measure values for
the sets depicted in Fig. 9(c), 10(b), & 10(d). Notice, the measure also indicates
the trees on the shore are more near each other (in terms of green component of
the RGB colour model) than the tree and its reflection.
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Table 1. Nearness measure values for the images in Fig. 9–15

Image dNM Image dNM Image dNM
Fig. 9(c) 0.47 Fig. 11(d) 0.40 Fig. 12(d) 0.06
Fig. 10(b) 0.40 Fig. 11(h) 0.84 Fig. 12(h) 1.00
Fig. 10(d) 0.02 Fig. 11(l) 0.78 Fig. 12(l) 0.90

Fig. 11(p) 1.00 Fig. 12(p) 0.88
Fig. 11(t) 1.00 Fig. 12(t) 0.51

Fig. 13(d) 0.85 Fig. 14(d) 1.00 Fig. 15(d) 1.00
Fig. 13(h) 0.20 Fig. 14(h) 0.78 Fig. 15(h) 1.00
Fig. 13(l) 0.69 Fig. 14(l) 1.00 Fig. 15(l) 0.64
Fig. 13(p) 0.99 Fig. 14(p) 1.00
Fig. 13(t) 0.22 Fig. 14(t) 1.00

Fig. 14(x) 1.00

Lastly, Fig. 11–15 contain further examples of performing the descriptive
intersection on visual rough sets, and Table 1 contains the metric-free near-
ness measures values for these examples. The probe functions used to create
these examples are based on the following image features: image colour using
the RGB colour model (φRed, φGreen, φBlue); image grey levels using percep-
tual greyscale (φGrey); image edge detection using the Weber Law Descrip-

tor [18, 5] (φDiffE); and image texture using homogeneity defined with respect
to a grey level co-occurrence matrix [11, 12, 16] (φHomog). Note, the colour of

the equivalence classes in the inner columns are random. Thus, as depicted in
Fig. 13(f) & 13(g), two different colours can refer to the same class.

7 Application: Human Visual Search

This section presents a perceptual application of the descriptive operators, where
the perceptual basis of these operators is one of four psychological theories of vi-
sual attention [70]. Namely, feature integration theory [68], Guided Search Model
(GSM) [69], biased competition [6], and integrated competition [8, 9]. This arti-
cle focuses on the GSM [69, §1]. The aim of the GSM is to explain the processes
involved in the visual search problem, which is the task of searching and identi-
fying targets in a visual field full of distractor items. This task, which we perform
repeatedly and effortlessly, is not easily achieved by artificial systems (see, e.g.,
[70]). In order to understand this processes it is important to realize that the
human visual system does not contain enough neural hardware to process all the
visual information presented to our senses [69]. Instead, the visual scene is pre-
processed in parallel, and certain stimuli are identified as important depending
on one of two attentive processes, namely bottom-up and top-down activation.
Activation is based on the concept of feature maps, which are representations
of basic visual features that respond to local differences in the visual field. For
example, the features colour and orientation are two distinct maps. Each feature
map is further divided into broadly tuned channels. For instance, colour consists
of red, yellow, green, and blue channels, and orientation consists of left, steep,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 11. Visual rough set example. Columns (left to right): User-defined sets, up-
per approximation of 1st set, upper approximation of 2nd set, and descriptive-based
intersection. Rows: (a) B = {φRed}, (e)–(m) B = {φRed,φGreen, φBlue}, and (q)
B = {φRed, φGreen, φBlue, φDiffE}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 12. Visual rough set example. Columns (left to right): User-defined sets, up-
per approximation of 1st set, upper approximation of 2nd set, and descriptive-
based intersection. Rows: (a) B = {φGrey}, (e) B = {φGrey,φRed}, and (i)–(q)

B = {φGrey, φDiffE}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 13. Visual rough set example. Columns (left to right): User-defined sets, up-
per approximation of 1st set, upper approximation of 2nd set, and descriptive-based
intersection. Rows: (a)–(q) B = {φDiffE}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 14. Visual rough set example. Columns (left to right): User-defined sets, upper
approximation of 1st set, upper approximation of 2nd set, and descriptive-based inter-
section. Rows: (a)–(u) B = {φHomog}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 15. Visual rough set example. Columns (left to right): User-defined sets, up-
per approximation of 1st set, upper approximation of 2nd set, and descriptive-based
intersection. Rows: (a) B = {φblue, φHomog}, (e)B = {φGrey, φHomog}, and (i)

B = {φDiffE, φHomog}.

right, and shallow channels (with respect to vertical) [69]. Finally, the output of
feature maps are combined by way of a weighed average into an activation map
(see, e.g., Fig. 167). Then, attention is directed to the loci of these maps using
either top-down or bottom up activation.

The top-down and bottom-up activation processes are differentiated by the
presence or absence of intent. Bottom-up activation is stimulus-driven and is
used to identify differences in the current field. Attention is then directed to
these differences. For example, bottom-up activation is of use when identifying
a target line of orientation x among distractors of orientation y [69]. In contrast,
top-down activation is user-driven and used to guide attention to targets in
the visual field that have specific feature values. Top-down activation requires
specifying the output of one or more broadly tuned channels per feature [69].
An example where top-down activation is of use is in searching for a red vertical
target among red horizontal and green vertical items. In this case, bottom-down
activation is of no use because half the items are red, half are green, half are
vertical, and half horizontal, which means there are no local differences [69].
The top-down approach is used to demonstrate the perceptual qualities of the
descriptive-based operators presented here.

7 The original figure contains more input channels and features maps, which were not
given to save space.



68 C.J. Henry and G. Smith

“Top-down” commands

Activation Map

Fig. 16. The GSM model [Wolfe 1994, §1]

(a) (b) (c) (d)

Fig. 17. Examples demonstrating descriptive intersection in visual search

The first relationship of descriptive-based operators to the human visual
search problem can be found in the observation that guided search is the search
for a target object, not the search for features within the visual field [69, §2].
For example, the search for the red vertical object, not a search for redness
and verticality. Thus, use of perceptual objects within a perceptual system is in
keeping with the GSM, and supports the claim that using collections of unique
feature vectors associated with objects in a set, at some level, matches the human
approach to describing sets of objects.

Next, the goal of the top-down approach is to pick the channel that best differ-
entiates the target from the distractors [69]. This is not necessarily the channel
that gives the largest response (i.e. it is possible to suppress the contribution
of specific stimuli). Moreover, channels can be combined to specify the target in
the visual search problem (as in the red vertical object example). The top-down
process is akin to envisioning a set description D(A) containing descriptions of
target objects we wish to find in the visual field, where A contains either concrete
objects from memory, or some abstract thought such as a blue object. Then, the
descriptive intersection between D(A) and the set of objects identified by the
feature maps is used to find the target. Finally, attention is directed to areas
of the activation map where the intersection is not empty (starting with the
largest locus). Notice, a comparison between descriptions we associate with the
targets and the output of feature maps is vital to performing a visual search.
Thus, in comparing disjoint sets of objects, the claim we must, at some level,
be performing a comparison of the descriptions we associate with the objects
within the sets is also in keeping with the GSM.
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Fig. 18. Examples of performing visual search using the Proximity System

Two examples of using the descriptive-based set intersection to perform visual
search are given in Fig. 17. Let the pixels in Fig. 17(a) represent a field of view,
and chose red as the colour channel that best differentiates the target from the
distractors. In terms of the descriptive framework given in this article, let 〈O,F〉
be a perceptual system corresponding to Fig 17(a), where the perceptual objects
and probe functions are defined in the same manner as the example in Section 3.
Let the top-down channel selection be given by Fig. 18, i.e. D(A) consists of 3-
dimensional object descriptions containing values for each shade of red given in
Fig. 18. Then, the result of a visual search using descriptive intersection is given
in Fig. 17(b) (by the inverted pixels). A similar example is given in Fig. 17(c)
& 17(d) where D(A) consists of 4-dimensional object descriptions with values
for the RGB colour green and line orientation of 45◦. In this case the selected
pixels are coloured black (for increased contrast). Note, the edge orientation was
obtained using using Mallat’s multiscale edge detection method [26, 25], which
is the reason for only partial selection of the 45◦ line, as well as that the very
tips of the vertical green lines.

8 Conclusion

This article presented details on the Proximity System, background on
description-based set operations and a metric-free nearness measure, and the use
of the Proximity System with respect to visual rough sets. Also, a discussion on
the perceptual similarities between the descriptive-based set intersection and the
visual processes that occur during human visual search was presented by way of
a practical example. The contribution of the article was a discussion of the Prox-
imity System and its use as a description-based system for quantifying the near-
ness or apartness of visual rough sets. A particularly nice feature of this tool is
the ability for users to define there own probe functions. This tool has already
proved vital in the study of descriptive-based topological approaches to nearness
and proximity within the context of digital image analysis, as can be seen by re-
sults reported in [17]. Future workwill include the use of the Proximity System and
the nearness measure for performing content-based image retrieval on databases
containing thousands of images, and further investigation into the observations
that in comparing disjoint sets of objects, at some level humans are performing a
comparison of the descriptions we associate with the objects within the sets.
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32. Mrózek, A., Mrózek, L.: Rough sets in image analysis. Foundations of Computing
and Decision Sciences F18(3-4), 268–273 (1993)

33. Mushrif, M., Ray, A.K.: Color image segmentation: Rough-set theoretic approach.
Pattern Recognition Letters 29(4), 483–493 (2008)

34. Naimpally, S.A.: Near and far. A centennial tribute to Frigyes Riesz. Siberian
Electronic Mathematical Reports 6, A.1–A.10 (2009)

35. Naimpally, S.A.: Proximity Approach to Problems in Topology and Analysis. Old-
enburg Verlag, München (2009) ISBN 978-3-486-58917-7

36. Naimpally, S.A., Peters, J.F.: Topology with Applications.Topological Spaces via
Near and Far. World Scientific, Singapore (2013)

37. Naimpally, S.A., Warrack, B.D.: Proximity spaces. Cambridge Tract in Mathemat-
ics, vol. 59. Cambridge University Press, Cambridge (1970)

38. Or�lowska, E.: Semantics of vague concepts. Applications of rough sets. Tech. Rep.
469, Institute for Computer Science, Polish Academy of Sciences (1982)

39. Or�lowska, E.: Semantics of vague concepts. In: Dorn, G., Weingartner, P. (eds.)
Foundations of Logic and Linguistics. Problems and Solutions, pp. 465–482.
Plenum Pres, London/NY (1985)

40. Pal, S.K., Mitra, P.: Multispectral image segmentation using rough set initial-
ized em algorithm. IEEE Transactions on Geoscience and Remote Sensing 11,
2495–2501 (2002)

41. Pal, S.K., Peters, J.F.: Rough Fuzzy Image Analysis: Foundations and Methodolo-
gies. CRC Press, Boca Raton (2010)



72 C.J. Henry and G. Smith

42. Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object
extraction. Pattern Recognition Letters 26(16), 401–416 (2005)

43. Pavel, M.: Fundamentals of Pattern Recognition. Marcel Dekker, Inc., NY (1993)
44. Pawlak, Z.: Classification of objects by means of attributes. Tech. Rep. PAS 429,

Institute for Computer Science, Polish Academy of Sciences (1981)
45. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-

ences 11, 341–356 (1982)
46. Pawlak, Z., Peters, J.F.: Jak blisko (how near). Systemy Wspomagania Decyzji I,

57–109 (2002)
47. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27

(2007)
48. Peters, J.F.: Classification of objects by means of features. In: Proceedings of

the IEEE Symposium Series on Foundations of Computational Intelligence (IEEE
SCCI 2007), pp. 1–8 (2007)

49. Peters, J.F.: Near sets. General theory about nearness of objects. Applied Mathe-
matical Sciences 1(53), 2609–2629 (2007)

50. Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta In-
formaticae 75(1-4), 407–433 (2007)

51. Peters, J.F.: Classification of perceptual objects by means of features. International
Journal of Information Technology & Intelligent Computing 3(2), 1–35 (2008)

52. Peters, J.F.: Tolerance near sets and image correspondence. International Journal
of Bio-Inspired Computation 1(4), 239–245 (2009)

53. Peters, J.F.: Corrigenda and addenda: Tolerance near sets and image correspon-
dence. International Journal of Bio-Inspired Computation 2(5), 310–318 (2010)

54. Peters, J.F.: How near are Zdzis�law Pawlak’s? In: Skowron, A., Suraj, Z. (eds.)
Rough Sets and Intelligent Systems - Professor Zdzis�law Pawlak in Memoriam,
pp. 545–568. Springer, Berlin (2013)

55. Peters, J.F.: Local near sets. pattern discovery in proximity spaces. Mathematics
in Computer Science 7(1), 87–106 (2013)

56. Peters, J.F.: Near sets: An introduction. Mathematics in Computer Science 7(1),
3–9 (2013)

57. Peters, J.F., Borkowski, M.: K-means indiscernibility relation over pixels. In:
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Abstract. We prove the recent result of Liu and Zhu [1] and discuss
some consequences of that and related facts for the development of rough
set theory.
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1 Introduction

The goal of this note is to provide a proof of the recent statement by Liu and Zhu
[1] and look at some properties of rough sets related to Liu and Zhu realization
[2] that rough sets [3–7] relate to one of classical structures of combinatorics
and computer science, namely matroid. The importance of that result is that it
allows to tie various rough set methods to greedy algorithms that succeed when
underlying combinatorial structure is defined by matroid [8, 9]. This allows for
developments of algorithms for finding properties of maximal and minimal sets
in various classes of sets (see also Propositions 2 and 3 below.)

2 Preliminaries

Below we introduce basic notions used in this paper. Generally, we assume that
the reader is familiar with the notion of rough sets of [3–5].

2.1 Rough Sets

Any pair (U,∼), where U i a finite set and ∼ is an equivalence relation in U
is called an approximation space. We denote by [x] the set {y ∈ U : x ∼ y}.
We call sets of the form [x], monads (or elementary granules [5]). Monads of an
equivalence relation ∼ form a partition of the set U . Given a set X ⊆ U , the sets
X and X are defined as

⋃
{[x] : [x] ⊆ X}, and

⋃
{[x] : [x]∩X �= ∅}, respectively.

The setsX andX are called the lower approximation ofX (relative to ∼) and the
upper approximation of X (relative to ∼), respectively. The set BN(X) = X \X
is called the boundary region of X (relative to ∼). If BN(X) = ∅ then X is crisp
(relative to ∼), otherwise X is rough (relative to ∼). Pawlak, in [3], established
the basic properties of these operations. We assume that the reader is familiar
with these properties.

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets XVII, LNCS 8375, pp. 74–81, 2014.
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2.2 Matroids

Matroids are one of basic structures studied by combinatorists [9, 8]. Matroids
occur in many areas of Mathematics and Computer Science as a common gen-
eralization of concepts such a collection of independent sets in a linear space
and of the cycle-free sets in a graph. Matroids are closely related to issues in
combinatorial optimization because of relationship between greedy algorithms
and matroids.

Formally, a matroid over a set U is a nonempty family M of subsets of U
satisfying the following conditions:
1. ∅ ∈ M.
2. Whenever X ∈ M, and Y ⊆ X , then Y ∈M.
3. (Steinitz Exchange Principle) Whenever X,Y ∈ M and |X | < |Y | then for

some y ∈ Y \X , X ∪ {y} ∈ M.
By a parameterized matroid over an index set I we mean a family of matroids

〈Mi〉i∈I . In our case the set I will be the powerset of U , P(U).

3 Matroids Generated by Approximation Spaces

In this section we give a proof of the result of Liu and Zhu [1] on the paramet-
ric matroid associated with an approximation space defined by an equivalence
relation ∼ over a finite set U .

Definition 1. Given an approximation space (U,∼) we define for a set Y ⊆ U
the family of sets MY as

{A ⊆ U : A ⊆ Y }. (1)

Then, we prove

Theorem 1 (Liu and Zhu). Let (U,∼) be an approximation space. Then for
every subset Y ⊆ U , MY is a matroid.

Proof: The family MY is closed under subsets because whenever B ⊆ A and
A ∈ MY , then, by the definition, A ⊆ Y . Since B ⊆ A, we have B ⊆ A, thus
B ⊆ Y , i.e. B ∈ MY . Therefore the first two conditions on matroid hold for
MY .

We will now show the exchange property forMY . To this end, let A,B be two
sets, A,B ∈MY , |A| < |B|. We need to find x ∈ B \A so that A ∪ {x} ∈ MY .

Our argument consists of two cases.
Case 1. Some x ∈ B \ A has the property that [x] = {x}. That is, for y �= x,
y �∼ x. We claim that for that x, A ∪ {x} ∈ MY .

Since [x] = {x} and x /∈ A, we have

A ∪ {x} = A ∪ {x}

Now, A ⊆ Y (because A ∈ MY ), and also x ∈ Y because B ⊆ Y and {x} =
[x] ⊆ B ⊆ Y . Thus A ∪ {x} ⊆ Y , and so A ∪ {x} ∈ MY .
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Case 2. No x ∈ B \A has the property that [x] = {x}. We will now assume that
for no x ∈ B \A, A ∪ {x} ∈ MY and show that this leads to the contradiction.

Let us look at an arbitrary x ∈ B\A. Under our assumption (A∪{x} /∈MY ),
it must be the case that A ∪ {x} is strictly bigger than A (because if A ∪ {x} =
A then as A ⊆ Y , then, since A ⊆ Y , A ∪ {x} ⊆ Y , so A ∪ {x} ∈ MY , a
contradiction.)

But what is A ∪ {x}?
There are two possibilities:

1. A ∪ {x} = A, or
2. A ∪ {x} = A ∪ [x].
Since the first possibility has already been eliminated, it must be the case that
A ∪ {x} = A ∪ [x]. But this means that for all y such that y �= x, y ∼ x, the
element y must belong to A.

Moreover, since x was an arbitrary element of B \A, it must be the case that
whenever x ∈ B \A, y �= x, y ∼ x then y ∈ A.

Next, we ask if it is possible that for some x, y ∈ B\A, x �= y, x ∼ y. We claim
that this is impossible. Indeed let us assume that for some x, y ∈ B \ A, x �= y,
x ∼ y, then [x] = [y] and [x] \ {x} ⊆ A and [y] \ {y} ⊆ A. Then y ∈ [x] \ {x}, i.e.
{y} ⊆ [x] \ {x}. Therefore

[y] = ([y] \ {y}) ∪ {y} ⊆ ([y] \ {y}) ∪ ([x] \ {x}) ⊆ A

contradicting the fact that y /∈ A.
Now, for every x ∈ B \A let us select an element yx so that:

1. yx ∼ x
2. yx ∈ A.

BA \ AB \

xxy

Fig. 1. Mapping B \ A into A \ B

Figure 1 illustrates the fact that B \A can be injected into A \B.
We observe that there is such mapping x �→ yx because we are in Case 2.

Also, the mapping x �→ yx is an injection, i.e., x1 �= x2 implies yx1 �= yx2 . But,
of course yx belongs to A \ B (because yx ∼ x and yx /∈ B). Therefore we now
have an injection of B\A into A\B. But then, |B\A| ≤ |A\B|. This contradicts
the fact that |A| < |B| and completes the proof. �

The matroidMY is called the matroid defined by Y and the approximation space
(U,∼).
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4 Properties of Parameterized Matroids of
Approximation Spaces, and Their Characterization

For a given approximation space (U,∼) we consider a parameterized matroid
associated with the approximation space (U,∼) assuming that M∼ = {MY :
Y ∈ P(U)}, whereMY is a matroid defined by Y and the approximation space
(U,∼), and P(U) is the powerset of U . InsteadM∼ we also writeM, for short.

We now show the following fact.

Proposition 1. Let M be a parameterized matroid associated with the approx-
imation space (U,∼). Then

Z = X iff MZ =MX for any X,Z ∈ P(U). (2)

Proof: First assume that Z = X . Then if A ∈ MZ , then A ⊆ Z and thus A ⊆ Z.
Therefore A ⊆ X, thus A ⊆ X , so A ∈ MX . Therefore MZ ⊆ MX . But if
A ∈ MX , then A ⊆ X . Then A ⊆ X = Z ⊆ Z. This completes implication ⇒.

Conversely, let us assume that MZ = MX . We want to show that Z = X. If
Z �= X then there is Y such that Y = Y , Y �= ∅ and Y ⊆ Z, Y ∩ X = ∅, or
Y ⊆ X , Y ∩ Z = ∅.

We consider the first case, the other is similar. For that set Y , Y ∈ MZ since
Y ⊆ Z ⊆ Z and Y = Y . But Y ∩X = ∅ so Y ∩X = ∅, a contradiction. �

Definition 2. Let (U,∼) be an approximation space. Let X ⊆ U be a crisp
set, i.e., X = X. We define DX as the collection of all monads M such that
M ∩X = ∅.

We observe that the elements of DX are pairwise disjoint and nonempty. More-
over, the union of all monades from DX is equal to the lower approximation
of U \ X , i.e., U \X =

⋃
DX . Let us assume that X �= U . Then the family

DX possesses selectors, i.e., sets S such that S ⊆
⋃
DX and for all D ∈ DX ,

|S ∩D| = 1. We can now present the description of bases of matroids in M.

Proposition 2 (Truszczynski). Let (U,∼) be an approximation space, and let
M be its parameterized matroid. Then for every set X �= U such that X = X,
the bases for MX are precisely the sets of the form U \ S, where S is a selector
for DX .

Proof: A base B of MX is an inclusion-maximal set in MX . This means that
for any x /∈ B, B∪{x} does not belong toMX , that is B ∪ {x} is strictly larger
than B. But B = X. Thus B ∪ {x} contains at least one more monad M . This
means that all the remaining elements of the monad M are already in B. But as
this monad M was arbitrary among those not included in X , we have that B is
of the form U \ S where S is a selector for the family {M ∈ U/ ∼: M ∩X = ∅}.
The converse implication is obvious. �
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One consequence of Proposition 2 is that one can use a greedy algorithm to
compute a maximal weight set roughly equivalent to a given set X .

To make this claim precise, let us say that subsets X and Y of U are roughly
equivalent if and only if X = Y and X = Y [4]. The following property charac-
terizes roughly equivalent sets X,Y ⊆ U : [x] ⊆ X if and only if [x] ⊆ Y , for all
x ∈ U .

A weight function on the set U is any function wt : U → R+, where R+ is
the set of all positive reals. The weight of a set Z ⊆ U is equal to

∑
z∈Z wt(z).

Our task now is, given X ⊆ U to find a roughly equivalent to X set Y of
maximum weight. Each basis ofMX is roughly equivalent to X and by Proposi-
tion 2 all we need to do is to find a selector for DX of minimal weight. But such
selector can be found by choosing in each element [z] of DX a single element of
least possible weight (we observe that such element does not need to be unique).

Another class of sets associated with rough sets is that of representative sets1.
A set X ⊆ U is representative if X = U , that is for every x ∈ U , there

is y ∈ X so that x ∼ y. The parameterized matroid M∼ associated with the
approximation space (U,∼) determines a class of special representative sets.
Specifically, let X ⊆ U be a crisp set in an approximation space (U,∼), i.e.,
X = X. Then we characterize the minimal representative sets including X that
belong to the matroidMX as follows.

Proposition 3. Let X ⊂ U be a crisp set in an approximation space (U,∼),
i.e., X = X. Then the minimal representative sets including X belonging to the
matroid MX are precisely the sets of the form X ∪ S where S is a selector for
DX .

Given Proposition 3, a greedy algorithm can be used to find the minimal
representative set of minimal weight.

We now list a number of properties of the parameterized matroidM∼.

Proposition 4. 1. For every X ∈ P(U), X ∈MX .
2. For every X ∈ P(U), MX =MX .
3. For all X,Y ∈ P(U), X ⊆ Y implies MX ⊆MY .
4. For every X ∈ P(U), X is the ⊆-least set in MX \

⋃
{MY :MY ⊂MX}.

5. The family {X : X ∈ P(U)} forms a Boolean algebra.
6. For all X,Y ∈ P(U) if Y ∈ MX than Y \X = ∅.
7. For all X,Y, Z ∈ P(U) if Y = X ∪ Z and Z = ∅ then Y ∈MX .
8. If X ⊆ Z ⊆ Y and MX =MY then MX =MZ .

Points (1)–(8) are almost obvious, except possibly (4).
But the same points provide a key to the answer to the following question:

Given a parameterized matroid

N = {NX : X ∈ P(X)},
1 Note that in [4, 5] such sets are called externally or totally undefinable relative to a
given approximation space. Such sets were also used by Pawlak in investigating the
notion of rough truth [10].
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when there exists an approximation space (U,≈) so that

N =M≈.

Specifically, we will formulate seven abstract conditions, corresponding to
points (1)–(7) above and show that under these conditions, indeed the param-
eterized matroid is determined by an approximation space (U,≈) that is deter-
mined by a parameterized matroid N .

So letN = 〈NX〉X∈P(U) be a parameterized matroid. We formulate conditions
(A)-(F) that N needs to satisfy.
(A) For all X ∈ P(U), X ∈ NX .
(B) For all X,Y ∈ P(U), X ⊆ Y implies NX ⊆ NY .
(C) For all X ∈ P(U), the family

NX \
⋃
{NY : NY ⊂ NX},

possesses a ⊆-least element, further referred as [X ].
(D) The family {[X ] : X ∈ P(U)} forms a Boolean Algebra, further referred as

BN , or simply B.
(E) For all X ∈ P(U), NX = N[X].
(F) For all X,Y ∈ P(U), if Y ∈ NX then [Y \ [X ]] = ∅.
(G) For all X,Y, Z ∈ P(U), if Y = [X ] ∪ Z and [Z] = ∅ than Y ∈ NX .

Once N is a parameterized matroid satisfying conditions (A)-(F), we define
a relation ≈ in U by setting:

x ≈ y if and only if there is an atom A of B such that x ∈ A and y ∈ A.

It is easy to see that (under conditions (A)-(G), in particular condition (D),
we have

Proposition 5. x ≈ y if and only if

for every X ⊆ U, x ∈ [X ] if and only if y ∈ [X ].

One can also observe the following fact:

Proposition 6. Let N = 〈NX〉X∈P(U) be a parameterized matroid satisfying
conditions (A)-(G). Then for any Y ⊆ U we have [Y ] = Y , where Y is the lower
approximation of Y in the approximation space (U,≈) and [Y ] ∈ B.
Proof: Let us assume x ∈ [Y ]. Then from Proposition 5 we have y ∈ Y for y ≈ x.
Since [Y ] ⊆ Y , we obtain [x]≈ ⊆ Y, i.e., x ∈ Y .

Now let us assume x ∈ Y , i.e., [x]≈ ⊆ Y . Suppose that x /∈ [Y ]. Then by
Proposition 5 we have [x]≈ ⊆ U \ [Y ]. Hence, [x]≈ ⊆ Y \ [Y ], a contradiction
with (F) (where we take X = Y ). �

We now show the main result of this section.

Proposition 7. Let N = 〈NX〉X∈P(U) be a parameterized matroid. Then N is
a parameterized matroid defined by some approximation space, i.e., N =M∼ for
some approximation space (U,∼) if and only if N satisfies conditions (A)–(G)
above.
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Proof: By Proposition 4, if N is a parameterized matroid for an approximation
space, then N satisfies conditions (A)–(G).

Conversely, if N satisfies conditions (A)-(G), then we show that M≈ = N .
That is we show that for every X ⊆ U , NX =M≈

X .
First, assume Y ∈ M≈

X . The set Y \ [Y ] is sparse w.r.t. ≈, i.e., Y \ [Y ] = ∅,
where the lower approximation is relative to the approximation space (U,≈). By
proposition 6 we obtain [y \ [Y ]] = ∅. By condition (G), [X ] ∪ (Y \ [Y ]) ∈ NX .
But Y ⊆ X . Hence, by Proposition 6 [Y ] ⊆ X . Therefore [Y ] ⊆ [X ]. But then,
Y = [Y ] ∪ (Y \ [Y ]) ⊆ [X ] ∪ (Y \ [Y ]) ∈ NX , as desired.

Conversely, let Y ∈ NX . By Proposition 6 we need only to show that [Y ] ⊆ X .
But Y ∈ NX means (see (F)) that [Y ] ⊂ [X ] or [Y ] = [X ]. In either case, as
[X ] ⊆ X , we have [Y ] ⊆ X , that is Y ⊆ X , by Proposition 6. Hence Y ∈ M≈

X .
This completes the argument. �

5 Conclusions

In the paper we have presented some relationships between rough set theory
and matroid theory. We plan to explore possibilities of application of heuristics
based on combinatorial optimization developed in matroid theory to algorithmic
problems in rough set theory.
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Abstract. Fuzzy rough sets is an extension of classical rough sets for
feature selection in hybrid decision systems. However, reduct computa-
tion using the fuzzy rough set model is computationally expensive. A
modified quick reduct algorithm (MQRA) was proposed in literature for
computing fuzzy decision reduct using Radzikowska-Kerry fuzzy rough
set model. In this paper, we develop a simplified computational model
for discovering positive region in Radzikowska-Kerry’s fuzzy rough set
model. Theory is developed for validation of omission of absolute posi-
tive region objects without affecting the subsequent inferences. The de-
veloped theory is incorporated in MQRA resulting in algorithm Improved
MQRA (IMQRA). The computations involved in IMQRA are modeled as
vector operations for obtaining further optimizations at implementation
level. The effectiveness of algorithm(s) is empirically demonstrated by
comparative analysis with several existing reduct approaches for hybrid
decision systems using fuzzy rough sets.

Keywords: Fuzzy rough sets, Hybrid decision systems, Reduct, Quick
Reduct, Fuzzy decision reduct.

1 Introduction

Rough sets [38], developed by Prof. Z. Pawlak [39], has emerged as an important
soft computing paradigm being applied for several data mining and machine
learning applications [20,40]. Feature selection using reduct based on rough set
principles is extensively employed in several application domains [5,20,35]. Rough
sets provide a non invasive data mining approach for knowledge discovery in
databases (KDD) [11,50]. The process of knowledge discovery in a given decision
system primarily consists of reduct computation as the preprocessing step for
dimensionality reduction. But classical rough sets are applicable to decision (or
information) systems with qualitative attributes.

Hybrid decision systems contain a mixture of qualitative and quantitative
attributes and occur frequently in real world decision systems. The classical
definitions of rough sets are based on an indisernibility relation, which is an
equivalence relation. Hence under indiscernibility relation using a quantitative
attribute, two objects will be unrelated even though they have near values on
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a real-values scale. A reduct computed thus would contain primary key like
attributes and leads to classifiers with less generalization capacity.

Hence classical rough sets cannot be applied directly to hybrid decision sys-
tems for reduct computation. Traditionally indiscernibility relation using quan-
titative attribute was defined after discretization. The process of discretization
converts a quantitative attribute into a qualitative attribute. A discretization
algorithm places cuts in the domain of quantitative attribute and divides the
continuous domain into non overlapping intervals (bins). Two objects having
values in the same interval are assigned the same symbolic label. Optimal way
of finding cuts was proved to be NP-Hard [31]. Hence heuristic based sub optimal
discretization algorithms were used [57,58] and a widely used approach which is
based on rough set principles and boolean reasoning was given in [33].

Discretization approach provided a computationally effective way for dealing
with hybrid decision systems using classical rough sets. But information loss is
inevitable in any discretization approach. Slowinski et al., in [54], reported that
the primary issue in data preprocessing for rough set analysis is with the uncer-
tainty arising out of discretization of quantitative attributes. Based on repeated
experiments using several discretization approaches, it was observed that no sin-
gle discretization approach is appropriate for all decision systems [4]. In [18] it
is empirically established that decision systems having attributes conforming to
statistically highly skewed distributions or having high peaks are resulting in
higher classification errors irrespective of discretization method used. It is also
observed in [46] that discretization proves to be ineffective and leads to more
information loss and results in significant classification error in inconsistent deci-
sion systems (having overlapping feature space of objects belonging to different
decision classes). Approaches like soft cuts [32] and fuzzy discretization [46] were
introduced to represent the ambiguity present in the neighborhood region of crisp
cuts. These approaches were proved to be effective in reducing the classification
error for inconsistent decision systems [35,37].

The above mentioned improvements for discretization were intended at build-
ing efficient classifiers and not oriented at developing reduct computation ap-
proaches for hybrid decision systems. Two fundamental issues of rough sets, as
stated in [67] are, representations of indiscernibility/discernibility and attribute
reduction based on indisernibility/discernibility. Hence attribute reduction ap-
proaches for hybrid decision systems were formulated by defining new represen-
tations of indiscernibility relation.

Alternative approaches for reduct computation in hybrid decision systems
(without relying on discretization) were evolved by generalizing the classical
rough set theory. Generalization was primarily meant to relax the equivalence
properties of indisernibility relation and using similarity relation which are more
general binary relations [14,65]. These approaches lead to significant advance-
ments in rough set theory both from theoretical and application view points.
Similarity relations [25,34,56] allow a limited degree of variability in the quan-
titative attribute values and the degree is determined by a threshold value. The
similarity class of an object is defined as the collections of related objects under
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similarity relation [55]. The rough approximations are defined based on similar-
ity classes of objects. In particular, tolerance rough sets [41,28,51,53] are based
on reflexive and symmetric tolerance relations and reduct of hybrid decision
system under tolerance rough sets is named as tolerance reduct. Determining
appropriate threshold value is essential in tolerance rough sets for obtaining ef-
fective feature selection and classifier performance. Some of the approaches for
threshold determination are using genetic algorithm [24] and EM algorithm [12].

Under tolerance relation, an object is related to all objects at varying dis-
tance as long as the threshold requirement is satisfied. A more semantically apt
representation was obtained by bringing in fuzzy context. The fuzzy similarity
relation [13] defines the degree of relatedness between any two objects based on
the quantitative attribute values. Fuzzy similarity relation results in represen-
tation of approximate equality or graded indisernibility [7] of objects based on
quantitative attribute values. Among the generalizations of rough sets for reduct
computation [9,10,15,27,30,42,64] fuzzy rough sets [9,10] evolved to be an im-
portant generalization of rough sets. Fuzzy rough sets are extensively used for
reduct computation in hybrid decision systems.

Fuzzy rough sets and rough fuzzy sets were introduced by Dubois and Prade
[9,10] which have become standard approaches. The approximation of a crisp set
in a fuzzy approximation space is called as a fuzzy rough set, and the approxima-
tion of a fuzzy set in a crisp approximation space is called as rough fuzzy set [21].
The modifications of this standard approach has been addressed in [17,45,61].
Radzikowska and Kerre [45] has given a generalized approach for Dubois-Prade
fuzzy rough set model in the form of fuzzy rough set, defined by an implication
and a triangular norm (t-norm) . Hu et al. [17] developed a new fuzzy rough
set model using fuzzy generalized definitions of subset and intersection of sets in
classical notions of lower and upper approximations. Wang et al. [61] developed a
fuzzy rough set model based on thresholds on similarity degree for inclusion into
lower and upper approximations. Qian et al. [62] has given a comparative study
of these fuzzy rough set models. Qian et al. [62] established that Hu’s,Wang’s
models are derivable from Dubois-Prade’s model whereas Dubois-Prade’s model
is derivable from Radzikowska-Kerry’s model. Thus Radzikowska-Kerry’s model
is a generalized model in the class of fuzzy rough set models.

Research has been advanced in fuzzy rough set models and also in reduct
computation (feature selection) using these models in hybrid decision systems.
Fuzzy rough feature selection (FRFS) was introduced by Jensen et al. [19] based
on Dubois-Prade’s fuzzy rough set model. In FRFS approach every quantitative
attribute is represented by a set of linguistic variables (fuzzy sets) resulting in
fuzzy partition of the quantitative attribute [54]. The reduction algorithm was
of positive region based heuristic approach similar to quick reduct algorithm [5]
called as fuzzy rough quick reduct algorithm. The computational efficiency of
fuzzy rough quick reduct algorithm is improved using the concept of compact
computational domain by Bhatt et al. [3]. Later Jensen et al. [22] proposed
reduct algorithms like B-FRFS, L-FRFS, FDM which are computationally more
efficient than FRFS approach. Hu et al. [16] provided a reduct algorithm based
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on fuzzy conditional entropy. Hu et al. [17] developed FAR-VPFRS algorithm
(Forward attribute reduction based on variable precision fuzzy rough model)
using Hu’s Fuzzy Rough Set model [17] which is a positive region heuristic based
algorithm. Qian et al. [44] has given an improved feature selection algorithm
based on forward approximation (FA-FSCE). FA-FSCE algorithm incorporates
positive region removal (positive approximation) in an iteration of reduct finding
process using Hu’s fuzzy rough set model and fuzzy conditional entropy. Cornelis
et al., [7] introduced the concept of fuzzy decision reduct and provided a modified
quick reduct algorithm (MQRA) for finding fuzzy decision super reduct based
on Radzikowska-Kerry’s fuzzy rough set model. MQRA is an extended version of
classical quick reduct algorithm [5] for hybrid decision systems and is a positive
region heuristic based algorithm.

Finer and apt knowledge representation in hybrid decision system is achieved
monotonically from classical rough sets to tolerance rough sets to fuzzy rough
sets. The effective enhancement of representation incurs more computational
and space complexities. Reduct computation using fuzzy rough sets incurs higher
time and space complexities compared to classical rough sets. Slezak et al. in [52]
established that fuzzy similarity relation can be approximated by an averaging of
several random discretizations of quantitative attribute. Hence a complex prob-
lem of reduct computation using fuzzy rough sets, especially for large decision
systems, can be approximated well by reduct computations on several randomly
discretized decision systems which can be performed on distributed systems in
parallel. In [49] authors have provided an alternative approach which evolves a
reduct computed on discretized decision system as a seed for MQRA algorithm
for finding fuzzy decision super reduct, making computation of fuzzy decision
super reduct viable for large hybrid decision systems. The present study aims
at effective fuzzy decision reduct computation by reducing practical space and
time complexities of MQRA algorithm. It is expected that the proposed method
provides solution with less time and space complexities than MQRA for moder-
ate hybrid decision systems whereas a hybrid of this with seed based approach
[49] as a preprocessor will further improve the performance even for large hybrid
decision systems.

In classical rough set reduct finding approaches based on sequential forward
selection using heuristics such as gamma measure, information entropy measure
[2,26,43,47,48,68] an optimization principle known as positive region removal
or positive approximation was found to be very effective in reduction of space
and time complexities. Using this principle, obtained positive region objects in
an iteration are omitted for further iterations without affecting the subsequent
inferences. The approach is evident in classical rough sets as positive region
equivalence classes are disjoint from non positive region equivalence classes in
the partition induced by indiscernbility relation. But in fuzzy rough set approach
computing positive region membership of an object requires computations with
respect to every object of the universe. This necessitates theoretical validation of
removal of objects which belong absolutely in positive region in fuzzy rough set
model based reduct computation approaches. There exists generalized rough set



86 P.S.V.S. Sai Prasad and C. Raghavendra Rao

models like variable precision rough set model [69] in which monotonic criteria of
positive region membership of an object is not satisfied [66]. Hence it is required
to establish that in the generalized model of fuzzy rough sets monotonic criteria
of positive region membership holds which is the precondition for positive region
removal aspect. The positive region removal (positive approximation) was used
in [44] for Hu’s fuzzy rough set model. Present study establishes theoretically
positive region removal aspect in Radzikowska-Kerry’s fuzzy rough set model.

This paper addresses mainly three aspects. The first is developing a simpli-
fied computational model for Radzikowska-Kerry’s fuzzy rough set model and
addressing the positive region removal issues. Second is to incorporate the sim-
plified computational model and positive region removal in MQRA resulting
in Improved MQRA (IMQRA). The third part involves modeling the compu-
tations in IMQRA with vector based operations so that further computational
efficiency is obtained. The Matlab implemented versions of MQRA, IMQRA are
referred as MQRA_MW, IMQRA_MW respectively. The computational effi-
ciency of MQRA_MW, IMQRA_MW is established empirically by performing
comparative analysis with existing FSCE and FA-FSCE algorithms [44] and the
algorithms FRFS, B-FRFS, L-FRFS, FDM [22].

The paper is organized as follows. Section 2 gives the overview of fuzzy de-
cision reduct for hybrid decision system and gives MQRA algorithm. Section 3
provides the theoretical basis for the improvements to MQRA algorithm and
gives IMQRA algorithm. Section 3 also discusses the implementation aspects
for benefitting the Matlab environment and analyzes the complexity of the al-
gorithm. Section 4 demonstrates the proposed concepts using a simple example.
Experimental Results are provided in section 5. Analysis of results is dealt in
section 6.

2 Overview of Fuzzy Decision Reduct

Let HDT =
(
U,Ch = Cc ∪ Cn, {d} , {Vac , fac}ac∈Cc∪{d} , {Van , fan}an∈Cn

)
be

a hybrid decision system. Here U is the set of objects, Cc is set of qualitative
(categorical) attributes and Cn is set of quantitative (numerical) attributes and
Ch is the set of hybrid conditional attributes comprising of Cc and Cn. For
every qualitative attribute ac ∈ Cc ∪ {d}, Vac denotes set of finite domain of
values of attribute ac and fac : U → Vac is a mapping of assigning a symbol
in Vacto every object in U . For every quantitative attribute an ∈ Cn, Van has
a range, a finite interval on real line with normalized range between 0 and 1
and fan : U → Van is a mapping assigning a value in Van to every object in U .
Notation an (x) in place of fan (x) for quantitative attributes, ac (x) in place of
fac (x) for qualitative attributes being used in the rest of the paper for simplicity.
This paper deals with decision systems and hence decision attribute d is taken as
qualitative attribute. There are approaches for computation of reduct for hybrid
regression systems where in d is a quantitative attribute [7] and will be explored
in our future work.



An Efficient Approach for Fuzzy Decision Reduct Computation 87

This section provides associated definitions, terminology, concepts for fuzzy
rough sets and fuzzy decision reduct, for completeness, based on [6,7,45]. In
classical rough sets, the approximation space is defined as (U,R), where U is
the set of objects and R is the indiscernbility relation defined on U satisfying
the properties of an equivalence relation. A concept A ⊆ U is approximated
with the knowledge of R as lower and upper approximations. An object y ∈ U
belongs to lower approximation of A (R ↓ A) iff the equivalence class of y with
respect to R is contained in A and belongs to upper approximation of A (R ↑ A)
iff the equivalence class of y with respect to R has nontrivial intersection with
A. Hence,

y ∈ R ↓ A ⇐⇒ [y]R ⊆ A. (1)

y ∈ R ↑ A ⇐⇒ [y]R ∩ A �= φ. (2)

The equivalent forms of Eq. (1), Eq. (2) are [6] given in Eq. (3), Eq. (4).

y ∈ R ↓ A ⇐⇒ (∀x ∈ U) ((x, y) ∈ R⇒ x ∈ A) . (3)

y ∈ R ↑ A ⇐⇒ (∃x ∈ U) ((x, y) ∈ R ∧ x ∈ A) . (4)

2.1 Fuzzy Rough Set Theory

Similarity relation has been introduced [9,10,15,27,30,64] for addressing the is-
sues associated with discretization instead of indiscernbility relation through
fuzzification. The theory developed in this direction is known as fuzzy rough
set theory. In fuzzy rough set theory the similarity relation is a fuzzy tolerance
relation or a fuzzy equivalence relation. A fuzzy relation R on U × U is said to
be a fuzzy tolerance relation if,

R (x, x) = 1 ∀x ∈ U. (5)

R (x, y) = R (y, x) ∀x, y ∈ U. (6)

R becomes a fuzzy equivalence relation with an additional requirement of
Γ -transitivity using a given t-norm Γ . The Γ -transitivity property is

Γ (R (x, y) , R (y, z)) ≤ R (x, z) ∀x, y, z ∈ U. (7)

In modeling fuzzy rough set based system for HDT , the fuzzy tolerance or
equivalence relation is defined as Ran (∀an ∈ Cn). Hence Ran (x, y) for objects
x, y denote the degree of similarity between x and y using the attribute values of
an. If ac is a qualitative attribute then the resulting similarity relation is taken
as the classical indiscernbility relation and hence is defined as,

Rac (x, y) =

{
1 if ac (x) = ac (y) ,

0 if ac (x) �= ac (y) .
(8)



88 P.S.V.S. Sai Prasad and C. Raghavendra Rao

The similarity relation is extended for a set of attributes using a specified t-norm
Γ , i.e. given B ⊆ Ch ∪ {d}, fuzzy tolerance or equivalence relation is extended
as,

RB (x, y) = Γ

⎛⎜⎝Ra (x, y)︸ ︷︷ ︸
a∈B

⎞⎟⎠ ∀x, y ∈ U. (9)

In classical rough sets, concept to be approximated is a subset of U corre-
sponding to an equivalence class associated with a decision value. In fuzzy rough
set theory the concept to be approximated is generalized into a fuzzy set A. Each
object x has a degree of membership into concept A with value A (x). In HDT ,
Rd,y of each object y defines a fuzzy concept where,

Rd,y (x) = Rd (x, y) ∀x ∈ U. (10)

Definition of Rd,y(Rd-foreset) is general and not restricted only to decision
variable. It is to be noted that as d is a qualitative attribute, Rd,y represents the
characteristic function of set of y’s decision class objects.

Radzikowska-Kerry’s Fuzzy Rough Set Model. In a fuzzy rough set model,
the concepts of lower and upper approximation of a fuzzy set A defined on U are
defined using a fuzzy Γ -equivalence relation (or fuzzy tolerance relation) R in
U . In Dubois-Prade’s fuzzy rough set model [9,10], given a fuzzy Γ -equivalence
relation (or a fuzzy tolerance relation ) in U , the lower and upper approximations
of a fuzzy concept A are defined ∀y ∈ U as,

μR(A) (y) = inf
x∈U

max (1−R (x, y) , A (x)) . (11)

μR(A) (y) = sup
x∈U

min (R (x, y) , A (x)) . (12)

Eq. (11) and Eq. (12) are fuzzy generalized versions of lower and upper ap-
proximations in classical rough set model given in Eq. (3) and Eq. (4) using
Kleene-Dienes Implication [1] and minimum t-norm [63]. Radzikowska-Kerry’s
model [45] generalizes Dubois-Prade’s model by a pair of implication " and
t-norm Γ as,

R ↓ A (y) = inf
x∈U

" (R (x, y) , A (x)) . (13)

R ↑ A (y) = sup
x∈U

Γ (R (x, y) , A (x)) . (14)

The above definitions treat lower and upper approximations as fuzzy sets and
for each object its degree of membership into lower and upper approximation is
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defined. Similarly positive region is defined. Given B ⊆ Ch the fuzzy B-positive
region of an object y ∈ U is defined as,

POSB (y) =

(
∪

x∈U
RB ↓ Rd,x

)
(y) . (15)

Hence the positive region of object y is the maximum membership degree of
lower approximation of RB into Rd-foreset of each object in U . As the decision
attribute is qualitative, using proposition-1 given in [7], the fuzzy B-positive
region computation requires computing lower approximation of Rd,y only. Hence
Eq. (15) simplifies to,

POSB (y) = RB ↓ Rd,y (y) . (16)

Fuzzy Decision Reduct. Reduct for HDT using the definitions of lower ap-
proximation and positive region given in section 2.1.1 is called as fuzzy decision
reduct. Fuzzy decision reduct [7] is defined as given below.

Definition 1. Let M be monotonic function from ℘ (U)→ [0, 1] (℘ (U) denotes
power set of U) such that M

(
Ch
)
= 1. A set of attributes B subset of Ch is

said to be a fuzzy M -decision super reduct to degree α if M (B) ≥ α. It is called
a fuzzy M -decision reduct to degree α if ∀B∗ ⊂ B, M (B∗) < α.

The measure M which satisfies the required properties and in extension to the
classical rough set based gamma measure is,

γB =
|POSB |
|POSCh | . (17)

where |POSA| =
∑

x∈U POSA (x) for A ⊆ Ch.

2.2 Modified Quick Reduct Algorithm

Quick reduct algorithm (QRA) for classical rough sets, given by Chouchoulas
et al. [5], is a sequential forward selection (SFS) based algorithm using positive
region heuristic for arriving at a super reduct for a given decision system. In
QRA the recommended reduct B is initialized to empty set. In each iteration an
attribute is included into B which gives maximum increase in gamma measure.
The algorithm terminates when γB ({d}) = γCh ({d}). Modified quick reduct
algorithm (MQRA) [7] is formulated for finding fuzzy M -decision super reduct.
For completeness, the algorithm is reproduced from [7] in Algorithm 1 using the
notations of this paper.

The time complexity of computing M (B) in HDT is O
(
|U |2

)
based on Eq.

(17). Hence the time complexity of MQRA is O
(∣∣Ch

∣∣2 |U |2).
Quick Reduct algorithm has been modified for giving better computational

performance in IQuickReduct algorithm (IQRA) [47]. Inspired to improve MQRA
in that direction the following section provides schematic development of an al-
gorithm Improved Modified Quick Reduct (IMQRA).
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Algorithm 1. Modified Quick Reduct
Input :
HDT =

(
U,Ch = Cc ∪ Cn, {d} , {Vac , fac}ac∈Cc∪{d} , {Van , fan}an∈Cn

)
,

Measure M ,
Degree α
Output: Fuzzy M−decision super reduct B
B = φ
repeat

T = B
best = −1
foreach a ∈ Ch −B do

if M (B ∪ {a}) ≥ best then
T = B ∪ {a}
best = M (B ∪ {a})

end
end
B = T

until M (B) ≥ α
Return B.

3 Improvements to Modified Quick Reduct Algorithm

IQRA described in [47] works similar to QRA but differs in situations where
there is no increase in gamma measure with any of the available attributes.
This ambiguous situation is handled by using other heuristics to determine the
attribute to be included into recommended reduct B. The heuristic followed
in IQRA is based on variable precision rough set (VPRS) [69] calculations. If
a positive gamma gain is found the attribute leading to the maximum gain is
included into B and objects which are in positive region are removed which
decreases the computational time for future iterations.

Occurrence of ambiguous situations in MQRA is a rarity due to M (B) being
a continuous value which increases till the required M

(
Ch
)

is obtained. Hence
improvements to MQRA are aimed at obtaining positive region removal aspect
in MQRA. Validation of positive region removal aspect is essential in fuzzy rough
set models for proving the monotonic criteria of positive region membership and
also that omission of objects does not affect the subsequent inferences. The later
is essential as computation of positive region membership of an object involves
fuzzy similarity values of the object with all members of U .

In Section 3.1 necessary theory is developed for simplified computation model
for lower approximation and positive region in Radzikowska-Kerry’s fuzzy rough
set model for decision systems and validation of positive region removal in
MQRA algorithm using Radzikowska-Kerry’s fuzzy rough set model. Section 3.2
contains the proposed algorithm IMQRA and Section 3.3 describes the modeling
of IMQRA computations using vector based operations suitable for environments
such as Matlab [29]. Section 3.4 contains the time and space complexity analysis
of IMQRA.
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3.1 Theoritical Foundations

The Radzikowska-Kerry’s fuzzy rough set model described in Section 2 is char-
acterized by a fuzzy tolerance or an Γ -equivalence relation R, an implication ",
a t-norm Γ and the definition of M . The discussion in our approach assumes
that R is a fuzzy tolerance relation, M is the gamma measure defined in Eq.
(17).

For any object y ∈ U let U1 (y) denote the set of objects belonging to the
decision class of y and let U2 (y) denote the remaining objects belonging to other
decision classes. The natural negation generated by an implication " according
to [1] is as given below.

Definition 2. Let " be any fuzzy implication. The natural negation of ", de-
noted by N� , is given by N� (x) = " (x, 0) ∀x ∈ [0, 1].

Given an implication ", Lemma 1 derives the simplified formula for positive
region POSB .

Lemma 1. For any y ∈ U and B ⊆ Ch, using fuzzy tolerance relation RB and
implication ", if U2 (y) �= φ then

POSB (y) = min
x∈U2(y)

N� (RB (x, y))

else POSB (y) = 1 where N� is the natural negation generated by ".

Proof. Using Eq. (16),
POSB (y) = RB ↓ Rd,y (y)

= inf
x∈U

" (RB (x, y) , Rd (x, y))

= min
x∈U

" (RB (x, y) , Rd (x, y))(since U being finite, inf is equal to

min)

= min

(
min

x∈U1(y)
" (RB (x, y) , Rd (x, y)) , min

x∈U2(y)
" (RB (x, y) , Rd (x, y))

)
= min

(
min

x∈U1(y)
" (RB (x, y) , 1) , min

x∈U2(y)
" (RB (x, y) , 0)

)
(since d being quali-

tative using Eq. (8))

= min

(
min

x∈U1(y)
1, min

x∈U2(y)
N� (RB (x, y))

)
(Using neutrality of truth property

[59] ∀x ∈ [0, 1] " (x, 1) = 1 and Definition 2)

= min

(
1, min

x∈U2(y)
N� (RB (x, y))

)
.

Hence if U2 (y) �= φ
then
POSB (y) = min

x∈U2(y)
N� (RB (x, y))

else
POSB (y) = 1. �

From Lemma 1 it can be observed that only N� instead of " is needed in com-
puting lower approximation and positive region while using Radzikowska-Kerry’s
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(", Γ )-fuzzy rough set model for decision systems. As [1,59] N� is a fuzzy nega-
tion, an useful conclusion is that for decision systems Radzikowska-Kerry’s fuzzy
rough set model is completely defined by a pair of fuzzy negation N and t-norm
Γ and can be specified as (N,Γ )-fuzzy rough set model. This observation facili-
tates experimenter in varying only the fuzzy negation for different experiments
of reduct computation using Radzikowska-Kerry’s model as experimenting with
different implications generating the same natural negation has no impact in the
outcome.

Confining to similarity between objects defined over quantitative attributes,
in practice, strong (and hence continuous) involutive [59] fuzzy negations are
preferred and used. Considering standard negation N (x) = 1− x which is often
used, the simplified equation for positive region based on Lemma 1 is given in
Eq. (18).

POSB (y) = RB ↓ Rd,y (y) =

⎧⎨⎩ min
x∈U2(y)

(1−RB (x, y)) if U2 (y) �= φ

1 Otherwise
(18)

It is observed that Eq. (18) coincides with lower approximation obtained in
Dubois-Prade’s model [8] for approximating a crisp set. In [62], while comparing
fuzzy rough set models, it is established that Radzikowska-Kerry’s model is equal
to Dubois-Prades model by using a pair of Kleene-Dienes’s implication "KD and
minimum t-norm ΓM . In view of the above discussion, for decision systems us-
ing (N,Γ )-fuzzy rough set model it is further stated that, Radzikowska-Kerry’s
model becomes equal to Dubois-Prade’s model by using a pair of standard nega-
tion and minimum t-norm ΓM .

In rest of the paper, Eq. (18) is used for computation of POSB (y). To derive
a formula similar to positive region removal monotonic criteria for POSB (y) is
required. Lemma 2 proves the monotonic property of POSB (y).

Lemma 2. If B1 ⊆ B2 ⊆ Ch, then for any y ∈ U , POSB1 (y) ≤ POSB2 (y).

Proof. If U2 (y) = φ then trivially POSB1 (y) = POSB2 (y) = 1 using Lemma 1.
Because of usage of t-norm in construction of RB in Eq. 9 ,
RB2 (x, y) ≤ RB1 (x, y) for all x ∈ U
⇒ 1−RB1 (x, y) ≤ 1−RB2 (x.y) ∀x ∈ U
⇒ 1−RB1 (x, y) ≤ 1−RB2 (x.y) ∀x ∈ U2 (y)
⇒ min

y∈U2(x)
(1−RB1 (x, y)) ≤ min

y∈U2(x)
(1−RB2 (x, y))

⇒ POSB1 (y) ≤ POSB2 (y) using Eq. 18. �

If the degree of dissimilarity of y with all objects in U2 (y) is ‘1’ then
POSB (y). In which case object y belongs absolutely into positive region. Let
ABSOLUTE_POSB denote collection of all such absolute members of positive
region, i.e.,

ABSOLUTE_POSB = {y∈U/POSB(y)=1} (19)
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Here the possibility of removal of ABSOLUTE_POSB objects without af-
fecting calculations of positive region for remaining objects is investigated. Let
HDT ′ =

(
U ′, Ch = Cn ∪ Cc, {d} , {Va, fa}a∈Ch∪{d}

)
denote the decision sys-

tem after removal of ABSOLUTE_POSB objects in HDT, i.e., U ′ = U −
ABSOLUTE_POSB. Lemma 3 follows from the definition of HDT ′.

Lemma 3. For an object y ∈ U ′,
U ′
1 (y) = U1 (y)−ABSOLUTE_POSB

U ′
2 (y) = U1 (y)−ABSOLUTE_POSB .

Lemma 4 establishes an useful property of objects of HDT ′.

Lemma 4. For an object y ∈ U ′, U ′
2 (y) �= φ.

Proof. Assume in contrary, U ′
2 (y) = φ.

U ′
2 (y) = φ⇒ U2 (y) ⊆ ABSOLUTE_POSB(Using Lemma 3)

=⇒ RB (x, y) = 0 ∀x ∈ U2 (y)
=⇒ POSB (y) = 1
=⇒ y ∈ ABSOLUTE_POSB

which is a contradiction as y ∈ U ′ ⇐⇒ y ∈ U −ABSOLUTE_POSB . �

Let B∗ ⊃ B. Let POSB∗ , POS′
B∗ denote positive region with respect to HDT ,

HDT ′ respectively.

Theorem 1. POSB∗ (y) = 1 ∀y ∈ ABSOLUTE_POSB and
POS′

B∗ (y) = POSB∗ (y) ∀y ∈ U −ABSOLUTE_POSB.

Proof. Let y ∈ ABSOLUTE_POSB . Using Lemma 2, since B ⊂ B∗ we have,
POSB∗ (y) ≥ POSB (y) = 1. Hence, POSB∗ (y) = 1.
Let y ∈ U −ABSOLUTE_POSB , (i.e., y ∈ U ′)
Using Lemma 4, U ′

2 (y) �= φ⇒ U2 (y) �= φ.
Using Eq. (18),
POSB∗ (y) = min

x∈U2(y)
(1−RB∗ (x, y))

= min

(
min

x∈U ′
2(y)

(1−RB∗ (x, y)) , min
x∈U2(y)∩ABSOLUTE_POSB

(1−RB∗ (x, y))

)
= min

(
min

x∈U ′
2(y)

(1−RB∗ (x, y)) , min
x∈U2(y)∩ABSOLUTE_POSB

(1)

)
⎛⎝ ∵ x ∈ U2 (y) ∩ABSOLUTE_POSB

⇒ y ∈ U2 (x) ∧ x ∈ ABSOLUTE_POSB

⇒ RB (x, y) = 0 ⇒ RB∗ (x, y) = 0

⎞⎠
Hence, POSB∗ (y) = min

x∈U ′
2(y)

(1−RB∗ (x, y)) = POS′
B∗ (y). �

Theorem 1 establishes the redundancy of ABSOLUTE_POSB objects in the
computation of POSB∗ for U −ABSOLUTE_POSB objects and also that for
any B∗ ⊃ B it is the case that ABSOLUTE_POSB ⊆ ABSOLUTE_POSB∗ .
The presence or removal of objects belonging to ABSOLUTE_POS does not
alter subsequent ambiguity resolution process. Hence in MQRA, objects which



94 P.S.V.S. Sai Prasad and C. Raghavendra Rao

belong to absolute positive region in an iteration continues to remain in absolute
positive region and does not affect the positive region computations for remaining
objects in the further iterations.

Assume that absolute positive region objects are removed after each itera-
tion of MQRA. Let {Bi} be the sequence of recommended reduct sets in for-
ward selection based incremental reduct algorithm, in particular MQRA, such
that Bi+1 − Bi is a singleton set representing the attribute selected in i + 1th

iteration where B0 = φ. Similarly let {HDTi} denote the sequences of hy-
brid decision systems, and let {Ui} denote the set of objects of HDTi used
in ith iteration of MQRA satisfying, HDT1 = HDT , U1 = U and for i > 1,
Ui = U − ABSOLUTE_POSBi−1 . Theorem 1 validates the computations in-
volved in each iteration of MQRA working only on non absolute positive region
objects Ui. Hence the following corollary,

Corollary 1. The results of MQRA are unaffected by incorporating absolute
positive region removal such that the computation of positive region of objects
are performed in ith iteration using Theorem 1 such that B∗ = Bi, B = Bi−1

with B0 = φ and HDT ′ = HDTi, HDT = HDTi−1.

The removal of absolute positive region objects in each iteration reduces the
computational complexity and space complexity of MQRA. The equation for
gamma measure becomes,

γB∗ =
|ABSOLUTE_POSB|+ |POS′

B∗ |
|POSCh | (20)

In Eq. (20) taking the individual terms will give rise to Eq. (21) useful for
implementation perspective. Denoting |ABSOLUTE_POSB |

|POS
Ch | as the gamma com-

ponent arising out of absolute positive region objects as γABSOLUTE , Eq. (20)
becomes,

γB∗ = γABSOLUTE + γ′
B∗ (21)

Section 3.2 gives the algorithm Improved Modified Quick Reduct (IMQRA)
based on the results obtained in this section.

3.2 Improved Modified Quick Reduct Algorithm (IMQRA)

IMQRA algorithm (given in Algorithm 2) is MQRA algorithm with incorpora-
tion of absolute positive region removal at each iteration of MQRA. Eq. (21) is
used for updating of gamma measure.

3.3 Modeling of IMQRA Computations Using Vector Operations

The implementation of IMQRA is done in Matlab [29] environment. Using
Eq. (16) for computationofpositive region implies that the computationsneed tobe
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Algorithm 2. Improved Modified Quick Reduct
Input :
HDT =

(
U,Ch = Cc ∪ Cn, {d} , {Vac , fac}ac∈Cc∪{d} , {Van , fan}an∈Cn

)
,

R: Fuzzy similarity relation
N : Fuzzy Negation
Γ : t-norm
α: Degree
Output: B: Fuzzy M - Super reduct with degree α
Compute Ra,xfor all a ∈ Ch ∪ {d} and x ∈ U .
Compute POSCh , |POSCh |.
B = φ
γB = 0
ABSOLUTE_POSB = φ,
γABSOLUTE = 0
γ′
B = 0

while γB < α do
T = B,
best = −1
foreach a ∈ Ch −B do

if γ′
B∪{a} > best then
T = B ∪ {a}
best = γ′

B∪{a}
end

end
B = T
γB = γABSOLUTE + γ′

B

Update ABSOLUTE_POSB , γABSOLUTE.
Construct HDT ′ by removal of ABSOLUTE_POSB objects

end
Return B.

done with each object in isolation. In this section theory is developed so that the
required computations for positive region are modeled as matrix and sub matrix
operations to obtain computational gains using Matlab like environments.

The implementation level aspects of IMQRA has been demonstrated by using
following fuzzy similarity relation Ran for any quantitative attribute an ∈ Cn

given in Eq. (22) as defined in [7] (examples of more fuzzy similarity relations
can be found in [24]) and its equivalent form is provided in Eq. (23). Generalized
Lukasiewicz t-norm [63] given in Eq. (24) is used for applying Eq. (9).

Ran (x, y) = max

(
min

(
an (x)− an (y) + σan

σan

,
an (y)− an (x) + σan

σan

)
, 0

)
∀x, y ∈ U

(22)
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where σan is the standard deviation of an (.) of quantitative attribute an.

Ran (x, y) =

⎧⎪⎨⎪⎩
1 if an (x) = an (y) ,

1− |an(x)−an(y)|
σa

if |an (x)− an (y)| < σan ,

0 if |an (x)− an (y)| ≥ σan .

(23)

Γ (x1, x2, · · · , xn) = max

(
0,

(
n∑

i=1

xi

)
− n+ 1

)
xi ∈ [0, 1] . (24)

As specified earlier, standard fuzzy negation is used for positive region com-
putation as per the result of Lemma 1. The fuzzy similarity matrix for Ra for
a ∈ Ch ∪ {d} is represented as a matrix of dimensions |U | × |U |representing
Ra (x, y) ∀x, y ∈ U . It is to be noted that row of Ra corresponding to an object
x ∈ U represents the fuzzy set Ra,x(Ra,x − foreset). Computation of Ra either
by using Eq. (22) for quantitative attributes or by using Eq. (8) for qualitative
attributes and computation of RB using Eq. (24) with collection of Ra (a ∈ B)
matrices are implemented as matrix operations.

The task of evaluating POSB (x) ∀x ∈ U is based on another matrix named
as Implicator value matrix "B. "B contains for any pair of objects x, y ∈ U
the value of " (RB (x, y) , Rd (x, y)) using Eq. (18). Let

(
D1, · · · , D|Vd|

)
represent

the decision equivalence classes of d using indiscernbility relation IND. For any
i ∈ 1 · · · |Vd|, and for any x, y ∈ Di we have U1 (x) = U1 (y) = Di and U2 (x) =
U2 (y) = U − Di. Hence the nature of computations involved for implicator
values using Eq. (18) is same for all objects belonging to a decision class. Hence
computing "B can be done in stages with each decision class objects Di for
i from 1 to |Vd| and by performing simultaneous operations for objects of Di

at once using sub matrix operations. For each Di, a portion of matrix "B is
constructed using two operations given below.

"B (Di, Di) = 1 (25)

"B (Di, U −Di) = 1−RB (Di, U −Di) (26)

After constructing "B in |Vd| stazes using two operations in Eq. (25), Eq. (26)
, the required POSB (y) for all y ∈ U is constructed by applying minimum oper-
ation on each column of "B resulting in a row vector of POSB (y) for all y ∈ U .
In any iteration of IMQRA, matrix RB contains the extended similarity matrix
of selected B attributes. The memory occupied by individual similarity matrices
of a ∈ B are recovered as and when attribute a is included into B. The removal
of ABSOLUTE_POSB objects from decision system resulting in reduced deci-
sion system is achived by removing the rows and columns corresponding to new
ABSOLUTE_POSB objects obtained in an iteration from current similarity
matrices RB and Ra for all a ∈ Ch −B.

Hence the process of computing similarity matrices, positive region are mod-
eled as either matrix or sub matrix based vector operations. Algorithms MQRA,
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IMQRA implemented in Matlab environment using these vector operations are
named as MQRA_MW, IMQRA_MW respectively.

3.4 Analysis of IMQRA Algorithm

The space complexity of IMQRA algorithm is O
(∣∣Ch

∣∣ |U |2) upto first itera-

tion of IMQRA used for storing fuzzy similarity matrices Ra for a ∈ Ch ∪
{d}, RB , and the implicator value matrix "B. In each of the remaining iter-
ations of IMQRA, space complexity reduces as the memory occupied by simi-
larity matrix of attribute selected into recommended reduct B is released. The
space complexity further reduces in each iteration as the objects belonging to
ABSOLUTE_POSB are removed resulting in smaller size similarity matrices.
Hence using the notations developed for Corollary 1 the space complexity of ith

iteration of IMQRA is O
((∣∣Ch

∣∣ − i+ 1
)
|Ui|2

)
.

The time complexity for computing POS{a}is O
(
|U |2

)
in the first iteration

for each attribute a ∈ Ch and hence time complexity of first iteration of IMQRA
becomes O

(∣∣Ch
∣∣ |U |2). Owing to removal of absolute positive region objects, the

time complexity of ith iteration of IMQRA is O
((∣∣Ch

∣∣− i+ 1
)
|Ui|2

)
using the

notations developed for Corollary 1. Hence the theoritical time complexity of
IMQRA is O

(∣∣Ch
∣∣2 |U |2) but in practice it will be much smaller.

4 Illustration

This section contains an illustration of the concepts proposed using a simple
decision system consisting of quantitative conditional attributes. Consider the
decision system given in Table 1.

Table 1. Example Decision System

Object A B C D E d
x1 3.59 3.52 2.86 0.76 1.30 1
x2 1.97 8.31 7.57 0.54 5.69 2
x3 2.51 5.85 7.54 5.31 4.69 2
x4 6.16 5.50 3.80 7.79 0.12 1
x5 4.73 9.17 5.68 9.34 3.37 1

The standard deviation values (σ) of conditional attributes are needed for
fuzzy tolerance relation given in Eq. (22). The σ values for A, B, C, D, E at-
tributes are 1.6981, 2.2750, 2.1411, 4.0084, 2.3134 respectively. The similarity
matrix for attribute A is given below summarizing the fuzzy tolerance relation
values using A attribute.
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R{A} =

⎡⎢⎢⎢⎢⎣
1 0.099 0.417 0 0.2757

0.099 1 0.682 0 0
0.417 0.682 1 0 0
0 0 0 1 0.1579

0.2757 0 0 0.1579 1

⎤⎥⎥⎥⎥⎦
4.1 Positive Region Computation Using Conventional Approaches

In this section computation of POS{A} is demonstrated using the theory given
in section 2. Considering y as x1, required fuzzy sets R{A},x1, Rd,x1for applying
Eq.(16) to compute POS{A} (x1)are depicted in Table 2.

Table 2. Fuzzy sets R{A},x1, Rd,x1

x1 x2 x3 x4 x5
R{A},x1 1 0.099 0.417 0 0.2757
Rd,x1 1 0 0 1 1

Using Kleene-Dienes’s implication [1], the computation of POS{A} (x1) is
given below.

POS{A} (x1) = R{A} ↓ Rd,x1 (x1)

= inf
x∈U

"
(
R{A} (x, x1) , Rd,x1 (x)

)
= inf

x∈U
max

(
1−R{A} (x, x1) , Rd,x1 (x)

)
= min

(
1, 1−R{A} (x2, x1) , 1−R{A} (x3, x1) , 1, 1

)
= min (0.901, 0.583, 1, 1)
= 0.583.

Similarly positive region membership values for other objects are computed
as,

POS{A} (x2) = 0.901, POS{A} (x3) = 0.583,
POS{A} (x4) = 1.0, POS{A} (x5) = 1.0.

4.2 Positive Region Computation Using Vector Operations

The computation of POS{A}using vector operation modeling developed in Sec-
tion 3 is demonstrated in this section. The natural negation generated by Kleene-
Diene’s implication is standard negation. Hence based on the theory developed
in Section 3, computing POS{A} using Eq. (25), Eq. (26) will result in the same
results obtained in Section 4.1. The equivalence classes of decision attribute d
are D1 = {x1, x4, x5} and D2 = {x3, x4}. Implication values matrix "{A} is
initially taken as a zero matrix. Steps involved in applying Eq. (25), Eq. (26) for
D1, D2 objects as submatrix operations are given in Table 3.
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Table 3. Implication Value Matrix �{A}Computation

Step State of �{A}

�{A} (D1, D1) = 1
and �{A} (U −D1, D1) = 1−R{A} (U −D1, D1)

⎡
⎢⎢⎢⎢⎣

1 0 0 1 1
0.901 0 0 1 1
0.583 0 0 1 1
1 0 0 1 1
1 0 0 1 1

⎤
⎥⎥⎥⎥⎦

�{A} (D2, D2) = 1
and�{A} (U −D2, D2) = 1−R{A} (U −D2, D2)

⎡
⎢⎢⎢⎢⎣

1 0.901 0.583 1 1
0.901 1 1 1 1
0.583 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

Column wise minimum values in resulting "{A} are the required POS{A}
membership values. Hence POS{A}obtained using vector operation approach is,

POS{A} (x1) = 0.583, POS{A} (x2) = 0.901,
POS{A} (x3) = 0.583, POS{A} (x4) = 1.0, POS{A} (x5) = 1.0.
It can be seen that the result is same as obtained in Section 4.1.

4.3 Illustration of IMQRA_MW Algorithm

The input parameters for IMQRA_MW algorithm are specified in Section 3.3.
The first step in IMQRA_MW algorithm is to compute similarity matrices for all
conditional attributes. The similarity matrix for Ch is computed using attribute
similarity matrices by applying Eq. (9) using generalized Lukasiewicz t-norm.
The resulting RCh is given below.

RCh =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦
Computing POSCh as demonstrated in Section 4.2 results in,
POSCh (x1) = 1, POSCh (x2) = 1, POSCh (x3) = 1,
POSCh (x4) = 1, POSCh (x5) = 1. Hence, |POSCh | = 5.

In the first iteration of IMQRA_MW the gamma measure for each condi-
tional attribute is evaluated. As an example consider the evaluation of γ{A}.

Using POS{A} evaluated in Section 4.2, γ′
{A} =

|POS{A}|
|POS

Ch | = 4.067
5 = 0.8134.

Initially, γABSOLUTE = 0 and hence it follows that γ{A} = 0.8134 using Eq.
(21). Similar computation result in gamma measure for other attributes as
γ{B} = 0.4127,γ{C} = 0.924,γ{D} = 0.8687,γ{E} = 0.8282 . Hence attribute
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C is added into recommended reduct B. Since POSC (x1) = 1, POSC (x2) =
0.8827, POSC (x3) = 0.8687, POSC (x4) = 1, POSC (x5) = 0.8687 , objects
{x1, x4}are added to ABSOLUTE_POSB and γABSOLUTE = 0.4.

The memory allotted for similarity matrix of C attribute is released and rows
and columns corresponding to ABSOLUTE_POSB objects are removed from
similarity matrix of recommended reduct B and similarity matrices of the avail-
able attributes {A,B,D,E}.In the next iteration all computations are performed
on the reduced hybrid decision system and attribute A is added into recom-
mended reduct B as it gives the maximum gamma gain. The positive region
memberships in the reduced HDT i.e., HDT ′ by {C,A} is POS{C,A} (x2) =

1, POS{C,A} (x3) = 1, POS{C,A} (x5) = 1. Hence, γ′
{C,A} = 3

5 = 0.6 and using
Eq. (21), γ{C,A} = 1. As the terminating criteria of IMQRA_MW is satisfied
algorithm returns {C,A}as the fuzzy decision super reduct for HDT .

5 Experiments and Results

The experiments are conducted in Intel Core 2 Duo CPU @2 GHz with 2 GB
RAM under Fedora 10 (Linux) operating system in Matlab environment [29]. The
hybrid decision systems used for experimental analysis are described in Table 4.
All the data sets are from UCI Machine Learning repository [60] excepting web
dataset (from [23]) and Olitos (from [36]).

Table 4. Details of Hybrid Datasets

Dataset Objects Conditional Features Decision ClassesTotal Quantitative Qualitative
Image Segmentation 2310 19 16 3 7

Sonar, mines vs. rocks 208 60 60 0 2
Wisconsin diagnostic
breast cancer (WDBC) 569 30 30 0 2

Cleveland 297 13 5 8 5
Glass 214 9 9 0 6

Ionosphere 230a 351b 34 33 1 2
Web 149 2556 2556 0 5
Wine 178 13 13 0 3
Heart 270 13 5 8 2
Olitos 120 25 25 0 4

a Size of the dataset reported in [22]
b Size of the dataset used in the present

study from online repository [60]

It is to be particularly noted that the same reducts (for example with spam-
base dataset) and reduct lengths are obtained with the results for MQRA re-
ported in [7]. The difference in results for MQRA_MW, IMQRA_MW with
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MQRA in [7] is in terms of computational time. But in [7] results there is no
reporting of computational time used in obtaining reduct. Hence comparative
analysis of proposed algorithms with the results given in [7] for MQRA algorithm
could not be performed.

5.1 Experiments with IMQRA_MW Algorithm

The FA-FSCE algorithm given in [44] uses absolute positive region object re-
moval (forward acceleration) in Hu’s fuzzy rough set model [17] and FA-FSCE
algorithm without positive region removal is given as FSCE. Hence FSCE is com-
parable to MQRA_MW algorithm and FA-FSCE is comparable to IMQRA_MW
algorithm. A comparative analysis is done for IMQRA_MW and MQRA_MW
algorithms with the results reported for FSCE algorithm and FA-FSCE algo-
rithm in [44]. Table 5 contains the results (reduct size, computational time in
seconds) for FSCE and FA-FSCE algorithms reported in [44] along with the re-
sults obtained for MQRA_MW and IMQRA_MW algorithms. Table 6 gives the
percentage of computational gain obtained by MQRA_MW and IMQRA_MW
algorithms.

Table 5. Comparison Results of IMQRA_MW and MQRA_MW with FA-FSCE and
FSCE algorithms

Dataset FSCE FA-FSCE MQRA_MW IMQRA_MW
Reduct size Time Reduct size Time Reduct size Time Reduct size Time

Image
Segmentation 17 1258.0468 17 900.5781 16 41.75 16 17.4

Sonar,
Mines vs
Rocks

41 300.5625 41 50 5 0.57 5 0.69

WDBC 27 228.9218 27 171.875 6 1.7257 6 1.3469

Table 6. Computational gain percentages of MQRA_MW and IMQRA_MW algo-
rithms over FSCE and FA-FSCE algorithms

Dataset MQRA_MW
over FSCE

MQRA_MW
over FA-FSCE

IMQRA_MW
over FSCE

IMQRA_MW
over FA-FSCE

IMQRA_MW
over

MQRA_MW
Image

Segmentation 96.68 95.36 98.62 98.07 58.32

Sonar,
Mines vs
Rocks

99.81 98.86 99.77 98.62 -21.05

WDBC 99.25 99.00 99.41 99.22 21.95

In [22] Jensen et al. have described new approaches for fuzzy rough feature
selection in improvement to the earlier Fuzzy-Rough Feature selection (FRFS)
algorithm [19]. The algorithms described in [22] are fuzzy boundary-region-
based FS (B-FRFS), fuzzy lower-approximation-based FS (L-FRFS), and fuzzy
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discernibility-matrix based algorithm (FDM). All these algorithms are forward
selection based quick reduct like algorithms. Hence a comparative analysis is
done with MQRA_MW, IMQRA_MW algorithms with these algorithms. The
results reported in [22] along with the results obtained for MQRA and IMQRA
algorithms are given in Tables 7 and 8. Table 7 gives the results of reduct lengths
whereas Table 8 contains the computational time in seconds.

Table 7. Reduct Size Comparison with FRFS and associated algorithms

Dataset FRFS B-FRFS L-FRFS FDM MQRA_MW
and

IMQRA_MW
Cleveland 11 9 9 9 8

Glass 9 9 10 9 9
Heart 11 8 8 8 7

Ionosphere 11 9 9 8 7
Olitos 10 6 6 6 5
Web 24 20 21 18 20
Wine 10 6 6 6 5

Table 8. Computational Time (in seconds) Comparison with FRFS and associated
algorithms

Dataset FRFS B-FRFS L-FRFS FDM MQRA_MW IMQRA_MW
Cleveland 24.11 8.78 3.32 10.68 0.37 0.5

Glass 1.61 3.3 1.53 4.88 0.14 0.28
Heart 11.84 3.61 2.17 8.77 0.24 0.31

Ionosphere 61.8 8.53 3.77 17.54 1.08 0.84
Olitos 11.2 1.29 0.72 4.07 0.17 0.25
Web 5642.65 949.69 541.65 1782.69 89.62 62.17
Wine 1.42 1.69 0.97 4.6 0.11 0.23

6 Analysis of Results

The computational gain percentages obtained in IMQRA_MW over FA-FSCE,
FSCE and MQRA_MW algorithms is given in Fig. 1 and over FRFS and asso-
ciated algorithms is given in Fig. 2. The size of data sets used in each iteration of
IMQRA_MW for the data sets used for FA-FSCE, FSCE comparative analysis
is given in Fig. 3 and the same with respect to FRFS associated algorithms is
given in Fig. 4. From Fig. 1 it is observed that IMQRA_MW has achieved over
98% computational gain over FSCE, FA-FSCE algorithms. Similarly from Fig.
2 it is observed that IMQRA_MW has achieved over 60-99% computational
gains over FRFS, B-FRFS, L-FRFS, FDM algorithms. The highly significant
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Fig. 1. Computational Gain Percentage of IMQRA_MW over FSCE, FA-FSCE,
MQRA_MW algorithms

Fig. 2. Computational Gain Percentage of IMQRA_MW over FSCE, FA-FSCE,
MQRA_MW algorithms

computational gains illustrate the importance of vector based implementation
and absolute positive region removal incorporated in IMQRA_MW.

It is observed that the vector implementation alone has turned out to be signif-
icantly effective in the computational gain even in MQRA_MW. In comparison
of computational gains between MQRA_MW, IMQRA_MW mixed results can
be noticed. The gain due to removal of absolute positive region is sensitive to
the nature of the data sets, i.e., the quantum of absolute positive region in the
initial iterations as can be seen from Fig. 3 and 4. Identifying the absolute pos-
itive region objects and filtering is an overhead in IMQRA_MW and lead to
little bit of inferior performance of IMQRA_MW for smaller data sets. But for
large decision systems such as Image Segmentation and Web data sets the over-
head is significantly compensated by gains obtained in absolute positive region
removal and in these two data sets IMQRA_MW has achieved significant gains
over MQRA_MW.
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Fig. 3. Reduction in Data set Size in IMQRA_MW iterations in FA-FSCE comparative
Experiment

Fig. 4. Reduction in Data set Size in IMQRA_MW iterations in FRFS comparative
Experiment

7 Conclusion

The study aims at efficient implementation of fuzzy decision reduct for hybrid
decision systems using fuzzy rough set theory. Simplified computational model
for positive region computation in Radzikowska’s fuzzy rough set model is devel-
oped. It is identified that Radzikowska-Kerry’s fuzzy rough set model for decision
systems can be specified using a pair of fuzzy negation and t-norm instead of
an implication and t-norm. Theoretical validation for redundancy of presence of
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absolute positive region objects for computation of positive region for remain-
ing objects is provided. These improvements are incorporated into MQRA as
algorithm Improved MQRA (IMQRA). The computations in MQRA, IMQRA
are modeled as vector based operations. It is observed that MQRA_MW and
IMQRA_MW have achieved significant computational gains over several exist-
ing approaches for reduct computation using fuzzy rough set theory.

Present study is limited to decision systems where decision attribute is quali-
tative. It is proposed to extend the study to the systems where decision attribute
is quantitative. It is also proposed to extend to build ensemble systems by con-
sidering few fuzzy similarity relations instead of confining to one.

Acknowledgments. Authors would like to express their gratitude to the re-
viewers for their constructive comments for quality enhancement of the paper.
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1 Misys plc
2 Institute of Computer Science,
Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
mariusz.podsiadlo@misys.com,

hrb@ii.pw.edu.pl

Abstract. The Rough Set Theory makes it possible to represent and
infer knowledge from incomplete or noisy data, and has attracted much
focus of the research community and applications have been found in
a wide range of disciplines where knowledge discovery and data mining
are indispensable. This paper provides a detailed review of the currently
available literature covering applications of rough sets in the economy
and finance. The classical rough set model and its important extensions
applied to the economic and financial problems in crucial areas of risk
management (business failure, credit scoring), financial market predic-
tion, valuation and portfolio management are described, showing that
the rough set theory is an interesting and increasingly popular method
employed alongside traditional statistical methods, neural networks and
genetic algorithms to support resolution of the most difficult problems
in economy and finance.
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1 Introduction

Financial ecosystems are characterized by large amounts of noisy and incomplete
information and inherent uncertainty of any forward looking predictions. On the
other side, any wrong decision can have potentially catastrophic consequences
for the economic well-being of individuals, institutions, nations or even the whole
world, as recently shown by the demise of Lehmann Brothers and the Eurozone
crisis.

It is therefore not surprising that academia, financial industry and its regula-
tory bodies have ever since been looking for methods able to analyze historical
and real time data and infer reliable observations, applicable to a wide vari-
ety of problems, ranging from macroeconomic crisis prevention to stock market
movement prediction and optimal composition of investment portfolios.

Statistics and probability theory traditionally form the basis for formal meth-
ods used in economy and finance for data analysis and prediction. The appli-
cations range from a self-contained technical analysis of historical stock data
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series1, which tries to discover buy/sell signals by looking for repeatable trend
patterns of price, trading volume and related statistical measures, to sophisti-
cated pricing models, which use complex stochastic processes to model the future
uncertainty of price movements. The strong mathematical foundation allows us
to deliver predictive models being sophisticated enough to capture many aspects
of the modeled reality with statistically measurable precision of the results.

However, the generated knowledge has to be considered within the limits of
the underlying model of reality and associated assumptions, be it the type of
statistical distribution, a pricing model or stochastic process. The multivariate
models, typical for the financial environment driven by multiple causal factors,
grow complex together with the number of independent variables, and their non-
linear correlations, which makes the analysis difficult to follow by anyone but
field experts. The unknown causal relationships, potentially present in the ana-
lyzed data set, are replaced by, usually simplifying, assumptions of the applied
model, making any conclusions vulnerable to the reality check.

One prominent example was the Value at Risk (VaR) framework, popularized
in 90’s by the J.P. Morgans RiskMetrics service and accepted as the standard
financial risk management methodology to measure the impending risk of portfo-
lio loss. The framework is based on statistical principles so its predictive quality
depends from its calibration (i.e. statistical distribution, simulation horizon, sim-
ulation method, etc.). This model risk was evident during the crisis started in
2007, where many financial institutions, having an operational VaR framework
in place, failed or were at a brink of bankruptcy. It seemed that the models did
not consider the major causal effects, which resurfaced and have been shaping
the market since 20072.

Consequently, despite the dominance of statistical methods, attempts to em-
ploy data discovery and soft computing models in order to unearth and account
for complex data characteristics and relationships have a long track record in
economy and finance. Multiple soft computing methodologies, like neural net-
works and genetic algorithms, have gained the required sophistication and ma-
turity and been successfully applied to various problems ranging from credit
scoring and banking crisis prediction to portfolio management, prediction of
market movements and financial derivatives pricing3. A comprehensive discus-
sion of the most popular soft computing models and methods used in finance
can be found in Bahrammirzaee [6], Kovalerchuk and Vitayev [76], Dymova [42],
Chen at al. [19], and Kumar and Ravi [103].

1 Technical Analysis can be applied to any financial data time series, not only stock
movements. For a comprehensive treatment of this topic see Murphy [92].

2 The overreliance on the normal distribution assumption ignoring extreme events (’fat
tails’) was seen as one reason for the failure (see [130]).

3 Derivative is a financial instrument, which value is dependent on pricing of one or
more underlying financial instruments, including other derivatives. The dependency
can be complex, non-linear and have no closed-form solution.
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The Rough Set theory, describing a way to represent and infer knowledge from
incomplete or noisy data, is also increasingly used in the financial domain due
to the following advantages (Dimitras et al. [39]; Greco et al. [49]):

• The classical rough set model considers only the original data as its universe
of discourse and does not need any additional information or calibration,
unlike probability in statistics or grade of membership in the fuzzy set theory
(Dubois and Prade [41]).

• The rough sets model is able to consider both quantitative and qualitative
attributes.

• It is possible to generate decision rules using natural language (if then rules).
• The model is able to remove redundant information from the input data set,
generating consistent and general decision rules, which are free from noise.

• The generated decision rules are supported by factual information, as every
rule is based on a subset of the underlying data set.

This paper contains an up-to-date representative review of rough set applications
in the economy and finance domain.

Google Scholar returns currently more than 70000 references to the phrase
“rough set”, with over 15000 (> 20%) references quoted in the last 4 years. The
number of publications focused on the application of the rough set theory in the
financial domain is also increasing very quickly, with a great interest in hybrid
models: Google Scholar returned 12000 hits, when looking for the phrase “rough
set” finance, including more than 4500 references (> 37%) from the last 4 years.
Earlier attempts to describe the research activity in this area can be found in
Mrózek and Skarbek [91] as well as Tay and Shen [132]. A brief discussion of the
rough set usage in the economic context, together with an introduction to the
fuzzy variable precision rough set model is also provided in Zhang et al. [155].

This paper is organized as follows: Section 2 provides a brief overview of the
classical rough set model and its most relevant extensions, with references to
the literature covering the respective topics in more detail. Section 3 describes
the various application areas of rough sets in economics and finance based on an
extensive discussion of the currently available empirical studies using the classical
rough set theory, its multiple extensions as well as their combinations with other
methods (hybridization). The concluding remarks, describing the current state
and promising areas for further research, are given in Section 4.

2 Rough Sets Overview

The concept of rough sets was introduced by Pawlak [97,98] as an extension of
the set theory, which allows to define an approximate classification of the given
set of data objects (data universe) in presence of data vagueness.

The basic assumption is that every object present in the considered data
universe can be described using only the available associated information. For
example, information associated with a portfolio of financial assets forms a data
universe, where each individual transaction represents an object described by
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properties of the used financial instrument and associated characteristics, trans-
action size, value, trade date, etc.

Depending on the granularity of the information, some objects in the universe
cannot be differentiated from each other and appear to be the same. Using the
above example and ignoring the trade date, transaction size and value causes the
transactions using the same financial instrument to be indiscernible. Such groups
of indiscernible objects form elementary sets (called equivalence classes) within
the considered universe, also referred as crisp or precise sets. This indiscernibility
relation forms the mathematical basis of rough sets.

Any union of elementary sets is also a crisp set. Any other set is a rough
(imprecise) approximation of a class, i.e. it contains objects which cannot be
surely classified as belonging to the set or not. Such a boundary region cannot
be precisely classified using the available information.

Crisp sets do not have any boundary region. Therefore, the rough set theory
describes vague concepts using two crisp concepts:

• the lower approximation, which consists of all objects belonging to the given
class (elementary set) with certainty, and

• the upper approximation, which contains objects possibly belonging to the
considered class.

Following Pawlak and Skowron [100], one can observe the following about the
rough set approach:

• availability of formal methods for hidden data pattern discovery,
• ability to propose optimal set of data and descriptive attributes (data re-
duction),

• quantifiable assessment of data/attribute significance,
• ability to derive decision rules from the observed data set,
• easy-to-understand formulation of rules,
• straightforward interpretation of obtained results,
• suitability of many of its algorithms for parallel processing.

Basic concepts of the rough set theory and their extensions are described in
the following sections. For a more detailed discussion of rough sets refer to Ko-
morowski et al. [74], Pawlak and Skowron [99], and Shen and Jensen [115].

2.1 Information and Decision Systems

The data universe is represented as a data table constructed from the individual
objects (rows) and their attributes (columns).

The data table is called an information system (Pawlak [96]), defined as the
tuple I = (U, A), where U is a non-empty finite set of objects (the data universe)
and A is a non-empty finite set of attributes such that a : U → V a for every
a ∈ A. The set Va contains all values the attribute a can take.

If the data classification is known, then the information system turns to be a
decision system defined as the tuple S = (U, C∪D), where C∪D = A, C,D ⊆ A
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and C ∩ D = ∅. In this context C is a set of conditional attributes (features)
of all objects belonging to U, and D is a set of decision attributes, describing
the elementary set (decision class), the given object belongs to4. The decision
attribute may take several values though binary outcomes are rather frequent.

2.2 Indiscernibility Relation

The data table representing an information system may contain redundant infor-
mation due to the presence of multiple indiscernible objects. Rough Set Theory
identifies redundant objects using the notion of an equivalence (indiscernibility)
relation IND(B):

IND(B) = {(x, y) ∈ U2, B ⊆ A : ∀a ∈ Ba(x) = a(y)} (1)

If (x, y) ∈ IND(B) then objects x and y belong to the same partition of U
(U/IND(B) or U/B), i.e. x and y are indiscernible from each other using at-
tributes from B and belong to the same B-equivalence class or B-elementary set,
denoted as [x]B , x ∈ U.

2.3 Set Approximation and Boundaries

The basic concept of rough sets is that of a set approximation.

Let I = (U, A) be an information system. Considering X ⊆ U and B ⊆ A,
one can approximate set X using only attributes contained in B by defining the
following operations on X :

• B(X) = {x ∈ U : [x]B ⊆ X}, called B-lower approximation of X , which is a
crisp set of all objects in U, which can be surely classified as belonging to X
using the attributes set B.

• B(X) = {x ∈ U : [x]B ∩X �= ∅}, called B-upper approximation of X , which
is a crisp set of all objects in U, which can be possibly classified as belonging
to X using the attributes set B.

Based on the above operations, the following sets can be defined:

• BND(X) = B(X) − B(X), called a B-boundary region of X, which is a set
of all objects in U, which cannot be surely classified as belonging or not
belonging to X using the attributes set B.

• NEG(X) = U − B(X), called B-negative region is a set of all objects of
U, which with certainty cannot be classified as belonging to X using the
attributes set B.

4 From this perspective rough sets can be seen as a classification framework using the
supervised learning approach.
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A set with BND(X) �= ∅ is called a rough set with its approximation accuracy
measured by the following coefficient:

αB(X) =
|B(X)|
|B(X)|

(2)

Other approximation measures are also available (Greco et al. [52], Ziarko [159]).

2.4 Attribute Dependency in Decision Systems

Given a decision system S = (U, C ∪D), it is important to induce dependencies
between conditional and decision attributes. The dependency level is described
by the coefficient k(0 ≤ k ≤ 1), defined as follows:

k = γ(C,D) =
|POSC(D)|

|U| , (3)

where POSC(D) is called a positive region and defined as:

POSC(D) =
⋃

(X∈U/D)

C(X) (4)

If k = 1 then D depends totally on C, otherwise D depends only partially on C,
with k = 0 denoting a lack of dependency of D from C.

2.5 Reducts and Discernibility Matrix

The attribute dependency measure k, described in the previous section, provides
a way to identify the set of conditional attributes R, which are relevant for the
induction of the given set of decision attributes D, i.e. γ(R,D) > 0. Conse-
quently, the decision system can be optimized to carry only these conditional
attributes from set C, which are necessary to identify decision attributes with-
out any loss of the dependency information. The remaining attributes can be
removed as their absence will not weaken the classification dependencies.

A set of conditional attributes R, meeting the condition:

γ(R,D) = γ(C,D), |R| < |C|; γ(R− {a}, D) �= γ(R,D), ∀a ∈ R (5)

is called a reduct in the context of D.
There can be many reducts available in the decision system for the given

decision set D. The set of attributes present in all such reducts is called a core in
the context of set D. Being an intersection of all reducts, the core attribute set
is present in all reducts of the decision system S = (U, C ∪D). Thus, removing
any of the core attributes introduces more classification uncertainty into the
analyzed dataset. However, it is possible to have a core being an empty set.

To find all reducts, the classical rough set theory proposes a methodology
based on the discernibility relation and Boolean reasoning applied to the decision
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system S = (U, C ∪D). A symmetric |U| × |U| discernibility matrix is created,
which contains entries cij , defined as follows:

cij = {a ∈ C : a(xi) �= a(xj), i, j = 1, . . . , |U| (6)

Therefore, each entry cij , contains attributes with different values for objects xi

and xj . Based on the discernibility matrix, a boolean discernibility function of
m boolean variables a∗1, . . . , a

∗
m (corresponding to the m attributes stored in the

given entry cij of the discernibility matrix) is defined:

fS(a
∗
1, . . . , a

∗
m) = ∧{∨c∗ij : 1 ≤ j ≤ i ≤ |U|, cij �= ∅}, (7)

where c∗ij = {a∗|a ∈ cij}

Having the set of all prime implicants of the discernibility function fS allows
finding all reducts of S (Komorowski et al. [74], Kryszkiewicz [79], Pawlak and
Skowron [100]).

The problem of finding a minimal reduct (i.e. having the smallest number of
attributes) is NP-hard (Skowron and Rauszer [121]). However, there is a fair
amount of research devoted to the design of heuristic algorithms delivering mul-
tiple good quality reducts in acceptable time for classical rough sets (Kumar
[80], Wróblewski [138], Jensen and Shen [64]) and their extensions (Yao and
Zhao [145], Cornelis et al. [28]).

2.6 Extensions of Rough Set Theory

The rough set approach was criticized for its requirement to discretize data
(Koczkodaj et al. [72] but see also Grzymala-Busse and Ziarko [57]), strict defi-
nition of lower and upper approximations (no fuzziness) and sole reliance on the
available data to induce knowledge about the real world.

Consequently, the rough set theory has been studied intensively since their
introduction and numerous extensions have been proposed, which alleviate many
of the above-mentioned limitations and allow the use of rough sets beyond the
pure supervised learning-based data classification domain (Pawlak and Skowron
[99], Shen and Jensen [115]).

One of the first extensions was theVariable Precision Rough Setmodel (VPRS)
proposed by Ziarko (Ziarko [159]), which allows relaxation of the upper and lower
approximations by introducing classification thresholds. The main motivation for
this extension was to provide the notion of classification uncertainty, which al-
lows to define a degree of inclusion between two non-empty subsets X , Y of
U. This is an important extension, as it allows the rough set model to provide
information similar to the confidence level known from statistical models widely
used in finance.

In a similar fashion Tolerance Rough Sets replace the equivalence relation
used by the classical rough set theory by another eligible tolerance (Skowron
and Stepaniuk [122,123]) or similarity relation (Yao and Wong [141]). The ap-
proach allows one to use any suitable similarity measure in the similarity relation
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definition for each attribute, and relax transitive, reflexive and symmetric prop-
erties of the classical rough set equivalence classes (Kawasaki et al. [69]).

Another interesting extension of the classical rough set theory introduced the
notion of a preferential attribute order, pairwise comparison table (Greco et al.
[48]) and resulting Dominance-based Rough Sets (Greco et al. [49,50,52]), which
defines a dominance (outranking) relation to be used in place of the equivalence
relation. This allows considering the relative importance of ordered domain val-
ues when analyzing choice and ranking problems using the rough set approach.

The rough set theory is also seen as a model complimentary to that of fuzzy
sets, proposed by Zadeh [153] as the way to express inexact concepts using the
notion of a membership function. Due to its ability to deal with vague informa-
tion the rough set theory was compared to that of fuzzy sets and hybridization
of both approaches, known as Fuzzy Rough Sets, is the focus of research looking
at fuzzy and rough set theories being complementary, rather than competitive,
ways to tackle vague information (Dubois and Prade [41], Radzikowska and Kerre
[102], Cornelis et al. [27]).

Other hybridizations include the usage of rough sets with neural networks
and genetic algorithms, being the most popular soft computing methods used in
finance. A more detailed description of individual extensions is given in section
3, where their usage in the context of economy and finance is discussed.

3 Application of Rough Sets in Economy and Finance

The application of rough sets in economy and finance has its roots in classifi-
cation problems using classical rough set theory for the purpose of identifying
failed businesses or predicting a threat of bankruptcy or merger/acquisition. A
related field of research investigates the use of rough sets in selection of strong
indicators for financial crises and resulting better insight in mechanisms of their
appearance.

The second important application domain is that of predictive models for
stock market movements and associated trading strategies. A related active re-
search area is the use of rough sets in the active portfolio management.

All the above-mentioned areas of research observe a growing sophistication of
approaches ranging from straight applications of the classical rough set theory to
hybrid combinations of rough sets with a multitude of other knowledge discovery
models. This section provides a detailed discussion of these approaches based on
references to the existing empirical research and applications of rough sets in the
economy and finance domains.

3.1 Risk Management

The financial risk management, understood as the way to discover and predict
the possibility of financial losses, business failures and financial crises, has an
obvious and prominent importance for economic ecosystems, as mentioned in
Section 1.
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Among many types of risk, the valuation of a solvency risk or the assessment
of the business bankruptcy likelihood is of great interest to the financial sec-
tor in particular, and the public in general. The ability to correctly classify a
transaction counterparty or security issuer (be it a commercial company or a
sovereign) according to its bankruptcy likelihood (credit scoring) allows one to
correctly price it into the transaction or reject it altogether if the risk is deemed
to be too large. The plausible assessment of financial health is also crucial in the
heavily regulated financial services sector, where mere rumors about solvency
problems may cause a deep financial stress to the affected financial institution,
market panic and liquidity squeeze, resulting in country- or worldwide financial
crises. It is therefore not surprising that financial regulatory bodies (e.g. Basel
Committee), independent industry watchdogs (e.g. rating agencies), and the fi-
nancial institutions themselves are constantly looking after improved methods
for forward-looking solvency assessment and risk management. Especially credit
ratings, being a crisp assessment of creditworthiness5, are an important factor
considered when looking at the financial health of the given party, be it an indi-
vidual, business, sovereign country or international organization. Public credit
ratings provided by specialized internationally recognized rating agencies, the
most prominent ones being Moodys, Standard & Poors, and Fitch Ratings, have
a large material impact on the market perception of creditworthiness of assessed
parties. This influence manifests itself in the direct relationship between the
lower rating and increased borrowing cost, the given party has to pay the mar-
ket, when issuing debt (so-called credit spread). The implications of the credit
rating reach much deeper, and in case of financial institutions, have a material
impact on the way the business is conducted.

However, in the wake of the 2008 mortgage crisis and the following Eurozone
sovereign debt crisis, the overreliance on the ratings issued by the private rating
agencies has been harshly criticized, as one of the factors contributing to the
crisis. The objectivity of the rating agencies has been doubted upon and the fact
that the rating methodology was a proprietary knowledge of the respective agen-
cies called for more transparency and limitation of the credit agencies monopoly.
Therefore, it is even more important to develop alternative methods for credit
assessment as well as propose ways to verify the given credit rating and explain
the rationale behind it, without knowing the actual methodology employed by
the rating agencies.

Consequently, these problem areas attracted a lot of research attention – an
early survey of Dimitras et al. [38] showed the usage of methods ranging from
the discriminant analysis and logit/probit models to recursive partitioning (tree)
algorithms and expert systems. A more recent discussion of empirical research
on financial crises and business failures in the banking sector and the artificial
intelligence methods proposed for their prediction was given by Demyanyk and
Hasa [36].

Not surprisingly, business failure analysis and prediction, looking predomi-
nantly after accurate classification methods and the way to replicate the rules

5 See Chen [22] for a description of credit ratings and further references.



118 M. Podsiad�lo and H. Rybiński

used to assign a credit rating by rating agencies, is also actively approached
using the rough set theory and its extensions.

An early work of Slowinski and Zapounidis ( [124,125]) applied the rough set
theory classification approach to the problem of credit scoring for a sample of
39 companies described by a set of 12 conditional attributes, being a mixture of
selected financial ratios (quantitative attributes) and descriptive variables (qual-
itative attributes). Each company in the learning set was assigned a credit score
(decision attribute) by a domain expert. The numerical (quantitative) attributes
were discretized into qualitative ranges using the experts opinion (i.e. using the
best practice with regards to the interpretation of financial ratios). Based on the
decision system, the significant set of conditional attributes (reducts) and re-
sulting if-then rules were generated. The authors pointed out the importance of
qualitative input variables in the induced decision rules (e.g. management expe-
rience), which were not considered by traditional quantitative risk models. The
model was applied to a real case data of a Greek bank and verified by a financial
expert resulting in a positive opinion as with regards to its usability, even though
the size of the data sample was relatively small and no out-of-sample test was
conducted.

Slowinski et al. [126] continued to research the application of classical rough
sets in the business domain by applying it to the problem of predicting a com-
pany acquisition, based on a sample of Greek companies. The rough set based
prediction delivered a classification accuracy of 100%, 75% and 66.7% for 1, 2
and 3 years before the acquisition, respectively. Objects not matching any of the
generated rules have been assigned the ’closest’ rules – a distance measure based
on the valued closeness relation (Mienko et al. [90]) has been introduced for this
purpose. The other advantages of the rough set approach were also presented,
like the ability to deliver the minimal subset of significant attributes (reducts)
or the possibility to generate human readable if-then rules. Furthermore, an em-
pirical evidence of advantages of rough sets vs. discriminant analysis, especially
their explanatory power, was shown.

The relatively small sample size (60 companies) and somewhat arbitrary se-
lection of conditional attributes (a set of financial ratios) and discretization al-
gorithm provided only a glimpse of a practicable solution but at the same time
showed the advantages and potential of the rough set based approach.

Dimitras et al. [39] compared the effectiveness of the rough set model with
that of discriminant analysis and logit models, applied to the case of Greek com-
panies. In comparison to Slowinski et al. [126] and Slowinski and Zapounidis
[124] a relatively larger learning and test samples of firms (80 and 36, respec-
tively) across several industrial sectors were created and similarly, an expert
judgment used to identify conditional attributes (12 out of 28 financial ratios)
and discretize the entry dataset. Similarly to Ruggiero [106], authors reported a
better predictability using rules generated with the rough set approach against
the results of a discriminant analysis, whereas the effectiveness of rough sets and
a logit model were comparable. The effectiveness of the valued closeness relation
(VCR) approach to classifying objects not exactly matching the generated rules
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was also confirmed (VCR helped to correctly classify 60% of previously not clas-
sified objects). The availability of the minimal set of most significant attributes
(the selected reduct had 5 variables) and resulting compact decision rules were
quoted as additional advantages of the rough set approach. The authors admit-
ted however, that the induced rules were mostly relevant to the bank and the
expert user, who delivered the data sample and selected decision rules. Using
the described approach for another bank was however possible by working with
the dataset delivered by the bank (especially, the training sample containing the
decision attributes).

Another empirical confirmation of rough set theory suitability for the busi-
ness failure prediction was delivered by McKee [87]. The author used the rough
set methodology to construct a company failure prediction model generated and
tested using financial report data for years 1986 – 1988 of a sample of 200 US
companies, whereas 100 companies constructed the learning sample and another
100 the testing sample. The information table had 8 conditional variables, being
financial ratios selected arbitrarily based on prior research and authors experi-
ence. The author used decision class rule strength and valued closeness relation
based classification for objects having no exact match to the generated rules.
The model accuracy was given as 93% for the learning sample and 88% for the
testing sample. The model accuracy was much better than that of the recursive
partitioning method developed previously using the ID3 method (McKee [86]),
which when applied to the same data sample had an accuracy of 65%.

The, apparently successful, application of the classical rough set model the-
ory to the business failure prediction was verified by McKee in his later em-
pirical research study (McKee [89]), where the data sample from 1990-1997 for
291 companies (146 bankrupt and 145 remaining going concern) was selected.
Care was given to the representativeness of the sample and comparativeness
of the bankrupt and non-failed companies (matching size and revenues). The
conditional variables were again selected based on their theoretical support and
appearance in literature. Their discretization used the percentile ranking to cre-
ate 10 subintervals for each of the selected variables. The input data was used
to generate the learning sample of 150 companies and a testing sample of 141
companies. The author used a similar resolution of not exact matches as done
in previous experiments (i.e. decision class rule strength and valued closeness
relation-based classification).

The model achieved the accuracy on the test sample between 61% and 68%,
using the VCR based approach similar to McKee [87] and sets of rules generated
by two reducts. In comparison, the auditor signaling rate of 66% was computed
on the same data. The author concluded that “the rough set models developed
in the current research offer no significant comparative predictive advantage over
auditors’ current methodologies”.

The author subsequently discussed the possible reasons for the achieved low
accuracy against previous empirical studies, quoting a more realistic and larger
data set, wider industry sector coverage, and calibration of non-deterministic
matching strategies. The author concluded that the rough set theory was a
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worthwhile research candidate when looking for efficient business failure pre-
diction method, especially when looking at data in the boundary region and
searching for an optimal set of explanatory variables (reducts).

Bose [15] applied the rough set method to the search for predictive rules
about the financial health of internet companies. The used data sample, taken
at 30th of June 2001, encompassed 240 internet companies and 24 financial ratios
selected based on the relevant literature and their applicability to the internet
company specifics, and calculated for the year 2000, the year of the Internet
Bubble crisis. The division into healthy and unhealthy companies in the data
sample was somewhat arbitrary, i.e. companies with the stock price below 10
cents have been deemed unhealthy. The author did not provide details about
the sample selection criteria other than that the selected companies had .com in
their name or their business was conducted mostly over the Internet.

The dataset was initially divided into the learning (80%) and test samples
(20%). A cross-validation with 10 random sample compositions was used in
order to avoid overfitting and assure a general applicability of the generated
rules outside of the used data sample.

Thanks to the used software (ROSETTA, Øhrn [94]) the author was able to
apply multiple discretization algorithms (Boolean reasoning, Entropy algorithm,
equal frequency range, naive algorithm, semi-naive algorithm) and two different
ways of computing reducts (a genetic algorithm and Johnsons algorithm) and
generating classification rules (standard voting and voting with object tracking).
This allowed testing the efficiency of the methods combination on the classifica-
tion accuracy. The best overall accuracy ratio of 72.1% was achieved using the
equal frequency discretization with a genetic algorithm based reduct generation
and standard voting classification (i.e. class with the highest certainty factor has
been assigned).

The author performed a statistical analysis of the accuracy sensitivity to the
number of rules, their length in terms of conditional attributes, as well as to
the balance between and size of learning and testing samples. The marginal
contribution of individual conditional variables was also verified.

The resulting observation was that the rough set model implemented using
the ROSETTA software generated lots of redundant rules, as the reduction of
the number of rules by 90% resulted in only 4.3% decrease of the classifica-
tion accuracy. Out of the over 8000 generated rules, 500 rules were sufficient to
generate prediction results having a reasonable accuracy. Neither rules length
nor the balance between and size of learning and testing sample did have any
statistically significant impact on the model accuracy.

The rough set model efficiency was compared with the one of logistic re-
gression and discriminant analysis. The rough set model performed better than
the statistical models, delivering accuracy of 72.1% on the test sample, against
65.2% and 65.8% delivered by the logit model and discriminant analysis, respec-
tively. Another conclusion was that the rough set model was better in identifying
the unhealthy companies than the healthy ones, even though their occurrence
frequency in the data sample was similar.
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A related work and findings were published by Liu and Zhu [84], who applied
the rough set theory to the analysis of construction industry in China, using a
sample of 16 financial ratios for 296 Chinese construction contracting compa-
nies. Similarly to Bose [15], the authors used the ROSETTA software and noted
the better performance of the rough set model in classifying negative samples
(unhealthy companies) than the positive ones. They have also noted the large
number of reducts and redundant rules. The constructed rough set model had
5% to 10% worse classification rate than the other methods tested (decision
tree, logistic regression and neural network). However, it had the best predic-
tion accuracy for bad credit and the lowest misclassification error of all tested
methods.

Sanchis et al. [110] provided a discussion of financial crisis and insurance
company insolvency phenomena and proposed explanatory models for both the
macro- and microeconomic problem based on the rough set theory. The authors
mentioned the dominance relation rough sets, introduced by Greco et al. [49], but
decided to use the classical rough set theory based on the observation that the
considered financial ratios exhibit complex correlations (as observed by McKee
and Lensberg [88]), which prevent the applicability of the dominance relation.

The rough set model created to analyze financial crises (model A) employed a
mixture of 12 quantitative and qualitative variables representing macroeconomic
policies (e.g. central bank independence) and variables (GDP, inflation, etc.)
as well as financial ratios data for a set of 79 countries and period of 1981 –
1999. The learning and test samples used data from the period 1981 – 1997 and
1997 – 1999, respectively. Numerical input data was uniformly discretized into
quartiles. The generated rough set core matched well the expected set of the
most influential economic variables. The model achieved an 80% accuracy ratio
on the test sample. The generated classification rules enabled the authors to
confirm the importance of the monetary policy in times of crisis, as suggested
in literature, but also claim that the policy clarity is more important than its
function in terms of the resilience to a financial crisis.

The rough set model created to analyze the insolvency risk of non-life in-
surance companies (model B) used an input dataset of 17 financial ratios of
72 Spanish insurers (36 solvent, and 36 insolvent) for the period 1983 – 1994.
Similarly to model A, the conditional variables were uniformly discretized into
quartiles. The model generated 452 reducts, no core and identified 9 redundant
conditional attributes.

The generated classification rules exposed the most significant variables, which
were in line with literature, with one significant variable being an original ob-
servation derived from the model.

The accuracy of the rough set model B was compared with linear and quadratic
discriminant functions, showing performance similar to that of linear discrimi-
nant analysis and better than that of the quadratic discriminant function.

Another empirical study on rough set application in the financial sector comes
from Ruzgar et al. [109]. The authors looked at the performance of the Turkish
banking sector in years 1995 – 2007 and tested the efficiency of the rough set
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theory in predicting insolvencies in this sector and time period (i.e. looking for
early warning attributes). The time around the year 2000 was a difficult time
for the Turkish banking sector (e.g. 6 banks failed alone in 1999). Therefore,
the used data reflects well the conditions occurring during a banking crisis in a
developing economy.

Altogether, 41 banks and 36 financial ratios (conditional attributes) were in-
cluded in the sample. The continuous variables were discretized using quartile
buckets, similarly to Sanchis et al. [110]. Reducts generated using the Johnson’s
algorithm were considered to be of better quality than the ones generated using
the genetic algorithm (others than Bose [15], who used the same ROSETTA
software package). A sample of generated rules and their strength was shown
but no accuracy statistics or comparison with other predictive methods was pro-
vided (although the authors planned to continue their research and publish the
comparative analysis).

Based on the results delivered by the rough set model, the low capitalization,
asset quality and profitability were pointed out as the strongest discriminant
variables in the analyzed data sample. The authors concluded by recommending
the rough set method as a promising basis for an early warning system in the
banking sector.

Greco et al. [53] showed the usability of the rough set model to the generation
of decision rules, which describe the rating process, based on the data set con-
taining the rating information. The authors applied the rough set model to the
data sample describing the investment risk ranking of 52 countries as complied
by the Wall Street Journal using 27 indicator variables. An extension of the
rough set model able to cope with incomplete information was also described
and used to generate the decision table, as 9.5% of data were missing. Finally,
the LERS algorithm (Grzymala-Busse [55]), which was modified to account for
missing values, was used to generate decision rules. The average accuracy of the
model was relatively low at 61.54% – the small sample size was quoted as the
main reason for this. Furthermore, the focus of the study was on the explana-
tory quality of the decision rules and not their predictive accuracy. Nevertheless,
rough sets compared favorably to the multiple criteria decision analysis (MCDA
– see Doumpos and Zapounidis [40]), decision tress and neural network based
analysis of the same dataset in terms of accuracy but more importantly in terms
of the explanatory power of the generated if-then rules.

In general, the basic weakness of the so far discussed research seems to be a
relative small and biased data sample, relatively arbitrary selection of conditional
variables and discretization methods used, as well as overfitting of the learning
sample.

It was suggested that a further improvement of the model expressiveness could
be achieved by using the dominance relation extension of the rough set theory,
proposed by Greco et al. [49] (although McKee [87] and Sanchis et al. [110]
decided not to use it, referring to the complexity of economic variables’ correla-
tions, for which a dominance relation was not expressive enough). The authors
introduced the concept of Dominance-based Rough Sets (DRS) and applied it to
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the same empirical data set used in Slowinski and Zapounidis [124] in order to
show the added value of the new approach against the classical rough set method
based on the indiscernibility relation.

The use of dominance relation instead of the classical indiscernibility relation,
i.e. the ability to define the preferential order of attribute values, resulted in a
smaller number of reducts (4 vs. 29) and larger core, what is seen as indicators
of a good approximation of the decision system (Pawlak [98]). Furthermore, the
system generated a smaller set of compact decision rules with a more predictive
power than the classical rough set approach.

Boudreau-Trudel and Zaras [16] applied the dominance rough set model to
the problem of sorting investment projects based on a sample of 10 candidate
investment projects from the Canadian province of Quebec. The DRS model
was compared to the widely used Analytic Hierarchy Process (AHP) method.
The initial input was defined using 24 variables describing the companies asking
for the credit. The AHP method requires analysis and pairwise comparison of
all the attributes to arrive at their weighting and thus resulting score of the
analyzed data. In contrary, the DRS approach does not require the analysis but
needs a learning sample to generate classification rules. The set of 4 candidate
projects was used as the basis for DRS processing and generation of decision
rules. The learning sample was created using a pairwise combination of the se-
lected 4 projects, resulting in 6 objects described by the initial 24 conditional
variables. The variables were replaced by the outcome an outranking relation
applied to the values of the pairwise combined projects. The DRS model gener-
ated a reduct consisting only of 2 variables (vs. the full set of 24 initial variables
required by AHP) with a 100% quality of approximation. The resulting classifi-
cation rules allowed ranking all the 10 projects in the order very similar to that
of AHP but with much less effort (time spent) thanks to no need for attribute
analysis, what was quoted by authors as one of the main advantages of the rough
set based approach.

Bioch and Popova [14] introduced a related method of rough set based anal-
ysis based on the concept of the monotone discernibility matrix and monotone
reduct. The authors showed the applicability of the proposed model to the case
of the bankruptcy risk analysis referenced by Greco et al. [49] and compared the
effectiveness of the proposed approach with this of the dominance based rough
sets. Thanks to the limiting assumptions of the monotone reduct the described
model was able to generate only 5 decision rules covering the whole input dataset
vs. 11 rules generated by the model proposed by Greco et al. [49].

Dominance-Based Rough Sets

The proposed extension defines an outranking relation sa on U relative to at-
tribute a, ∀a ∈ C, where sa(x, y) is interpreted as “x outranks y”, or “x is at
least as good as y” with respect to the attribute a ∈ C. The set Va contains all
values the attribute a can take. Furthermore, it is assumed that sa is a strongly
complete and transitive binary relation and the universe U can be partitioned
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into a classification set K = {Kt, t ∈ T },T = {1, . . . , n}, such that each x ∈ U
belongs to one and only one Kt ∈ K (Greco et al. [36])6.

The following ordering relationship can then be observed ∀x, y ∈ U, ∀r, s ∈ T
and B ⊆ C:

[x ∈ Kr, y ∈ Ks, r > s]⇒ [sB(x, y) and not sB(y, x)] (8)

That is to say, x dominates y with respect to the attribute set B ⊆ C, denoted
as sB(x, y), if ∀a ∈ B : sa(x, y).

The relation sB can then be used to derive dominance sets with respect to
x ∈ U:

D+
B(x) = {y ∈ U : sB(y, x)} (9)

D−
B(x) = {y ∈ U : sB(x, y)} (10)

Having the classification set K divided as follows:

K+
t =

⋃
s≥t

Ks (11)

K−
t =

⋃
s≤t

Ks (12)

lower and upper rough set approximations can be defined:

B(K+
t ) = {x ∈ U : D+

B(x) ⊆ K+
t }, (13)

B(K+
t ) =

⋃
x∈K+

t

D+
B(x) (14)

B(K−
t ) = {x ∈ U : D−

B(x) ⊆ K−
t }, (15)

B(K−
t ) =

⋃
x∈K−

t

D−
B(x) (16)

The model defines the quality of approximation as follows:

k = γ(B,K) =
|U−

⋃
t∈T BNDB(K

−
t ) ∪

⋃
(t∈T ) BNDB(K

+
t )|

|U| (17)

Definition of respective boundary regions and approximation accuracy coeffi-
cients follows the classical rough set theory.

6 This corresponds to the partition of U determined by IND(D), i.e. U/D, where
D is the decision attributes set D in a decision system S = (U,C ∪ D), such that
d : U → Vd for every d ∈ D.
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Greco et al. [51] introduced a further extension of the Dominance-based Rough
Sets (DRS) approach, called Variable Consistency Dominance-based Rough Sets
(VC-DRS), which reportedly improved the quality of rules induced from the
lower approximation set vs. DRS by relaxing the assignment conditions of
the lower approximation set via the consistency level parameter allowing a
gradual violation of the dominance principle. An alternative extension of the
dominance-based rough set, based on maximum likelihood estimation, was pro-
posed by Dembczynski et al. [35], and further extended into so called Stochastic
Dominance-based Rough Sets in Kotlowski et al. [75]. Interested readers are re-
ferred to these papers for further details.

An alternative interpretation of the dominance relation in the framework of
the fuzzy probabilistic rough set model based on the coherent partial conditional
probability paradigm was proposed by Capotorti and Babanera [17]. The authors
applied the model to the credit scoring (probability of default) classification
problem, and tested it on a sample of 80 companies from the Italian Umbria
region, characterized by a set of 10 conditional variables, denoting their financial
health over 2 years, and a binary decision variable D denoting the status of a
company (i.e. default =1, or not default = 0).

As one of the first steps of the proposed method, the entry decision system
S = (U, C ∪D) was analyzed by a domain expert providing an ordered criteria
(positive, neutral, negative), which corresponded to value ranges of each condi-
tional variable. The criteria express the expert’s view of a priori probability of
default P (X) of a company in the context of conditional attributes’ values. For
example, an attribute a values 0-3 were judged to be positive criteria, whereas
value 5 was judged to be negative one, with the value of 4 being neutral. Thus,
the conditional variable’s value set is replaced by the ordered set (positive, neu-
tral, negative).

The same process is repeated for all n conditional variables resulting in a set
of n criteria described by the same value set mapped to value sets of the original
conditional variables. By introducing a strong assumption of the conditional
exchangeability of the resulting criteria, i.e. two objects were equivalent if they
had a matching count of criteria (positive i, neutral k, negative j), the authors
derived a new set of equivalence classes [x] ≡ Fijk with larger granularity than
the original ones. However, the new data set was still vulnerable to violations of
dominance relations due to the basic definition of the rough membership function
μX(x) referenced by the authors as:

μX(x) =
|X ∩ [x]|
|[x]| ≡ P (X |[x]) = P (X |Fijk) (18)

where X = {x ∈ U : fx,D = 1}
The proposed resolution introduced an alternative membership function based

on the notion of a T-norm and holding the assumption of conditional exchange-
ability:

μ(X |Fijk) = Θi
posΘ

j
negΘ

(I((i+j=0)

0 (19)
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where Θpos, Θneg and Θ0 are T-conorms measuring the respective influence of
the present positive, negative and neutral criteria on the company default. The
authors described a maximum likelihood like procedure used to compute the
T-conorms.

Having defined an equivalent T-norm and T-conorms for the membership
function in the set of non-defaulted companies, it was possible to define the
positive and negative regions of the resulting rough sets, which respectively clas-
sified the included companies as defaulting or healthy based on the available
annual balance sheets separately for each year7. At that stage the classification
accuracy was comparable with that of linear discriminant analysis and logistic
regression but worse than that of VC-DRS. Therefore, the two classifications
resulting from the annual data available in the 2 years sample were joined to
create new positive, negative and boundary regions based on the alignment of
equivalence classes and default/not default membership function comparison.
The resulting classification accuracy was improved form 64.1% to 77.4%.

Beynon and Peel [10] applied the Variable Precision Rough Setmodel (VPRS),
proposed by Ziarko [159], to the problem of business failure prediction based on
a sample of 12 financial variables describing the condition of 90 UK companies
(45 failed and 45 remaining a going concern) between 1997 and 1998. Similarly
to the previous publications, the selection of the conditional variables was based
on their occurrence in the expert literature in the context of corporate failures.
Instead of an expert based discretization of continuous variables, the FUSINTER
discretization method, using the quadratic entropy measure (Zighed et al. [160]),
was applied. The model was able to correctly classify 91.7% of objects in the
learning sample and 70% in the testing sample, even though the selected β-reduct
was chosen to illustrate the method rather than be the optimal reduct. The model
delivered accuracy comparable with multivariate discriminant analysis, logit and
decision tree methods.

Yet another example of the VPRS application in finance was presented in
Beynon et al. [11]. Here it was used to predict the company profitability based
on a textual analysis of chairman statements. The authors analyzed chairman
statements of 98 UK non-financial companies, 49 with the highest and the other
49 with the lowest annual profit. The statements were preprocessed to generate
10 conditional variables representing their textual characteristics often used for
contextual and readability analysis, e.g. Flesch index8, average number of words
per statement, percentage of good/bad news words and positive/negative key
words, etc. The input data was discretized using the minimum entropy method,
introduced by Fayyad and Irani [43]. The authors decided to use only two
value intervals for all discretized conditional variables, resulting in a binary

7 The boundary region was also defined.
8 The Flesch index, introduced by Flesch [44], is one of the most popular readability
indexes, known as the Flesch Reading Ease test. Based on the average sentence
length in words L and average sentence length in syllables S (expressed as syllables
per 100 words), the index is defined as follows: 206.835 − (1.015L + 0.846S). The
lower the index of a passage the more difficult is the passage to understand.
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representation of the input information. The pre-processed data and resulting
decision rules were tested using the n cross-validation method (80 statements in-
sample and 18 out-of-sample) on 1000 generated information systems (decision
tables). In 977 cases, a single β-reduct was generated. The predictive accuracy
of the VPRS method was high at 90%, with the average number of 3-4 rules and
the maximum number of 10 rules being generated (3 and 5 rules cases were the
most frequent ones, occurring 702 and 225 times, respectively). Similarly, the
most common β-reducts contained 2 to 4 conditional variables.

Based on the analysis of the generated β-reducts the authors concluded that
the percentage of bad/good news and percentage of positive key words were the
conditional variables having the most impact on the classification quality, with
the percentage of bad news being the most selective one.

Even though the described experiment was provided rather for an illustra-
tive purpose (small sample size, simple discretization and no information about
the used β apart from the applied selection rule set), the successful applica-
tion of rough sets to the analysis of textual information shows the importance
of seemingly qualitative information for the prediction process and the respec-
tive advantages of rough sets due to their ability to process such data alone or
in combination with quantitative information. Therefore, the next logical step
would be to extend the amount of textual information available to the rough set
based classification system – Yu, Wang and Lai [151] described such a combina-
tion of text mining and rough sets used to forecast tendency of the oil market
movements.

Griffiths and Beynon [54] subsequently proposed a VPRS-based expert system
offering a domain expert the ability to fine tune all steps of the rough set based
classification process, from selection of β-reducts to partitioning of the data set
into training and testing samples and generating resulting decision rules. The
system was presented using the case of rules mining based on Moody’s ratings
(decision variable) and a set of arbitrarily selected 9 financial ratios (conditional
variables) for a sample of 435 US, Canada and West European banks. Therefore,
the study is a presentation of a VPRS based software using the example from
the financial domain rather than an empirical verification of the VPRS ability
to predict or classify data from the financial domain.

Variable Precision Rough Sets

The model defines an inclusion degree for two non-empty sets X,Y ∈ U:

c(X,Y ) = 1− |X ∩ Y |
|X | (20)

Ziarko [136] defines then a desired classification error β, which allows to control
the level of uncertainty allowed in the inclusion relation:

X ⊆β Y iff c(X,Y ) ≤ β, 0 ≤ β < 0.5 (21)

The existence of the upper limit of β < 0.5 is defined as a majority requirement.



128 M. Podsiad�lo and H. Rybiński

The above-defined notion of inclusion is then used to derive the basic rough
set operations:

Bβ(X) =
⋃
{[x]B ∈ U/B : c([x]B , X) ≤ β}, (22)

Bβ(X) =
⋃
{[x]B ∈ U/B : c([x]B , X) < 1− β}, (23)

This allows one to apply the rough set theory to analysis of statistical trends,
where data uncertainty (aside of incompleteness) is imminent. Nevertheless, the
β parameter has to be specified a priori and has an impact on the effectiveness
of the β-reduct generation (Kryszkiewicz [78], Beynon [9]).

Hybridization

Another common way of using rough sets is to combine them with other knowl-
edge discovery or predictive methods in order to benefit from a combined strength
of both approaches.

A common construct is the use of the rough set model as the pre-processing
stage for other methods, where the input dataset is optimized (reduced) both
in terms of the data attributes and data objects by the rough set generating
reducts and removing indiscernible object copies.

Hashemi et al. [58] proposed a hybrid rough set and neural network process for
prediction of merger and acquisition events in the banking sector. The learning
sample of 28 financial ratios from 1992 for more than 200 banks from the US
state of Arkansas was used as the input data.

The rough sets process was applied as a preprocessing stage, which delivered
an optimized (reduced) dataset for a neural network model. The rough set model
reduced the size of the data sample (redundant indiscernible objects) and number
of attributes to 18 (2-dimensional reduction of the information system). The
hybrid model delivered a classification accuracy of 96% against the standalone
neural network’s accuracy of 84%. The authors concluded, that the optimization
(reduction) of the input data performed using the rough set model significantly
improved the predictive power of the combined decision support system.

Ahn et al. [1] also combined the rough set method with neural networks to
analyze the predictive power of the combined approach for the case of a busi-
ness failure. They used a historical dataset of 8 financial ratios for 2400 Korean
firms and the period between 1994 and 1997. The selection of ratios and their
discretization was based on similar studies and an expert judgment. Similarly to
[58] the rough set method was applied to the entry data first, generating decision
rules and reduced information system, where redundant attributes and objects
have been removed (so-called 2D reduction). However, the authors went further
than that and used classification rules generated by the rough set model as the
primary classification tool. The reduced information system was then used as
the entry dataset for a neural network for samples having no exact classification
given by the rough set model (referred as a hybrid model).
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The hybrid model was tested using a k-fold cross-validation approach with
k = 12, so that each object in the entry data sample participated in the training
and testing sample.

Objects which failed prediction using the rough set approach were fed into the
neural network. The resulting prediction accuracy (94%) was better than that of
a stand-alone neural network (84%) or discriminant analysis (78.6%), confirming
the strength of the combined approach and results of previous comparisons with
the discriminant analysis.

Another example of the rough set and neural network combination, utilizing
the ability of rough sets to filter out insignificant information was described by
Jie et al. [65]. The rough set model was applied to a learning sample consisting
of 18 financial variables describing 64 companies listed on Shangai and Shenzen
Stock Exchange in year 2008. Another sample of 64 company data for 2009 was
used as a test sample. The authors selected a reduct consisting of 6 variables
to construct the learning data set for the neural network based classifier. The
reported out-of-sample accuracy of the model was 97%.

Shuai and Li [116] used a combination of rough sets and worst practice data
envelopment analysis (DEA - see Seiford and Zhu [111]) to construct a business
failure predicting model for Taiwanese companies. The model used 9 quantitative
and 4 qualitative input variables derived from annual reports for years 2003-2004
of 396 firms (352 going concern and 44 failed). The DEA model was used to
classify the input sample based on quantitative variables. Rough sets were used
to generate classification rules based on qualitative variables only. The authors
reported a 100% accuracy of the hybrid system against 82% achieved using only
the worst case DEA model.

Zhou and Bai [157] described a hybrid credit scoring assessment system us-
ing a combination of rough sets, support vector machines (SVM) and genetic
algorithms (GA). Similarly to Ahn et al. [1], data was first fed into a rough
set model, resulting in a horizontal reduction of the data set and generation of
classification rules. The output of the rough set processing was then analyzed
using discriminant analysis (DA), a BPN neural network with one hidden layer
(5-9-1), SVM and a GA-SVM hybrid.

The model was tested using a sample of 330 companies being debtors of a
Chinese Construction Bank between 2002 and 2004. The sample was divided
into learning and testing sets, containing 80% and 20% of data, respectively.
The sample contained healthy, doubtful and failed debtors, with each group
constituting 33.3% of the sample size (i.e. 110 companies). The data set was
described using a set of 12 variables consisting of financial ratios (e.g. sales
income/total assets) and qualitative information (e.g. level of management).

The rough set analysis delivered an optimal reduct consisting of 5 variables,
thus resulting in a data reduction vs. the input data set described by 12 variables.
The test sample was divided into the subset having the matching classification
rule (Group I) and the one without the matching classification rule (Group II).
The classification rules generated by the rough set model had the best classifi-
cation ratio on the holdout sample of Group I (95.51% vs. 91.63% of the second
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best GA-SVM hybrid model). The proposed GA-SVM hybrid delivered the best
classification accuracy of 89.95% on the Group II testing sample.

The overall classification accuracy of the combined rough set and GA-SVM
model was compared with the performance of a rough set and neural network
and rough set and SVN models. The rough set-GA-SVN model provided the best
overall performance of 92.4% vs. 91.6% and 89.3% delivered by rough set-SVN
and rough set-BPN models, respectively.

The authors pointed out the effectiveness of the rough set method in its ca-
pacity of data reduction and generation of classification rules, even though the
used data sample ignored the company’s industry and size and the strict appli-
cation of the rough set model did ignore data not matching any of the generated
classification rules. Addressing these issues was left for the future research.

Yao [147] applied a combination of the neighborhood variable precision rough
set - NVPRS (Hu et al. [60]) and support vector machine models to a credit
scoring assessment problem, on the example of the Australian and German credit
data samples available from the UCI Repository of Machine Learning Databases.
The German data set consisted of 1000 entries described by 24 numeric variables
whereas the Australian data contained 640 entries described by 6 qualitative and
8 numeric variables.

The input data set was first processed using the neighborhood variable preci-
sion rough set, resulting in the horizontal data (feature) reduction. Instead of the
standard discretization procedure, the neighborhood rough set model employs
the concept of information granules expressed in the form of a δ neighborhood
relation, acting as an equivalence relation. The reduced data set was classified
using the SVM model and the accuracy of the hybrid model verified using the k-
fold cross validation (k = 10) method. The hybrid NVPRS-SVM model delivered
the classification accuracy of 76.60% for the German data set and 87.52% for the
Australian sample, compared to the second best neural network based classifier,
with the respective accuracy of 75.20% and 86.83%. Statistical models, being
logistic regression and linear discriminant analysis delivered even lower accuracy
of 72.40% and 66.00% for German data and 85.70% and 85.20% for Australian
data, respectively. The author quoted the ability to work on mixed (quantitative
and qualitative) data and lossless feature reduction as important advantages of
the used rough set model, having a decisive impact on the performance of the
proposed hybrid model.

Yeh et al. [148] combined a hybrid rough set-SVM model with the data envel-
opment analysis (DEA) to create a business failure prediction method. The use of
rough sets allowed the authors to consider qualitative information, namely man-
agement efficiency, as a model input variable prepared using the DEA method.
The data sample of 114 companies (38 failed and 76 going concern) was con-
structed using information from the Taiwan Stock Exchange and Taiwan Eco-
nomic Journal for years 2005-2007.

The rough set model was utilized as a pre-processor stage for the SVM
model, where generated reducts were used to remove redundant information from
the entry data. Consequently, out of the initial 17 quantitative input variables
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(financial ratios selected by an expert) a reduct consisting of 7 input variables
was used to construct the entry data set for SVM analysis. The qualitative man-
agement efficiency information, prepared by DEA as the 8th variable was then
added to the model, and its impact on the accuracy was tested. The authors also
compared the hybrid rough set-SVM (RST-SVM) model with the combination
of rough sets and back-propagation neural network (RST-BPN) and claimed
better classification results achieved using the rough set-SVM model considering
the qualitative management efficiency information prepared using DEA, namely
RST-SVM accuracy of 83.33% vs. 86.84% when the DEA variable is used, and
RTS-BPN accuracy 78.95% vs. 82.46% with the DEA input variable included.
The authors concluded that the inclusion of the management efficiency informa-
tion, as prepared using the DEA method, improved the classification accuracy
of both considered hybrid models, i.e. RST-SVM and RST-BPN, whereas the
RST-SVM model delivered the best overall accuracy. Selection of input vari-
ables was mentioned as having a significant impact on the performance of the
SVM classifier – thus the usefulness of the rough set method, which allows one
to identify the input variables influencing the decision variable the most. The
authors also confirmed a better efficiency of the above mentioned model against
the statistical tools of MDA and logit, although the actual test results were not
described.

McKee and Lensberg [88] used previously analyzed data and derived a rough
set information model (McKee [89]9) used as a pre-processor (data reduction)
stage for a genetic algorithm based predictor of business failures. The learning
and test samples were created in a similar fashion like in McKee [89], with the
test sample being slightly larger (144) than previously (141). They reported an
increased prediction accuracy of the hybrid approach at 80.3% against the 67%
accuracy of the standalone rough set model. The conclusion underscored the
improved accuracy of the hybrid model and increased insight and understanding
of the correlations between conditional variables thanks to the combined usage
of rough sets and genetic algorithms.

Chen [22] proposed a hybrid soft computing model to induct rules, which can
be used to derive a credit rating of the given party. The model was based on a
combination of feature selection methods, probability based data partitioning,
fuzzy sets and rough set theory. Expert knowledge was employed at the entry
point to remove outliers, noisy and low quality data. Subsequently, core descrip-
tive attributes were selected by averaging results produced by several popular
feature selection algorithms, i.e. Chi-square, ReliefF, Gain Ratio and Info Gain.
The resulting core data set was discretized using the linguistic value mapping
(fuzzification) based on the cumulative probability distribution approach (CPDA
– similarly to Teoh et al. [134], a normal distribution function is used) and trian-
gular fuzzy numbers. The constructed decision table was then used by the rough
sets based LEM2 algorithm (Grzymala-Busse [56]) to generate a candidate set

9 The original text referenced the article McKee [89] as McKee, T.E., 1999b. Rough
sets bankruptcy prediction models versus auditor signaling rates (revised manuscript
under review in international journal).
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of if-then rules describing the credit rating assessment process. The final rule
set was produced by discarding rules having a support value below the given
threshold.

The model was tested using the ratings dataset of Asian banks derived from
the BankScope database maintained by the Bureau Van Dijk company. The
entry dataset covered the period between 1993 and 2007 and contained 1327
entries consisting of 38 conditional attributes and one decision attribute, being
the credit ratio assigned by the Fitch Ratings agency. The author applied his ex-
pert knowledge in order to preprocess the entry data set, by removing attributes
deemed to be superfluous or suffering from insufficient data quality. The resulting
experimental data set consisted of 18 numeric continuous conditional variables
and one decision variable (credit rating). The subsequent feature selection step
reduced the number of conditional variables to 16 (a rough set reduct based fea-
ture selection did not reduce the number of variables in the experimental data
set). The data set was then discretized using the fuzzy sets method and CPDA
model based on the normal distribution function. The generated decision table
was used by the rough set LEM2 algorithm to produce decision rules, whereas
rules with support < 2 were discarded. The procedure was repeated 10 times
using the experimental data set randomly split into the learning and testing sam-
ples, containing 66.7% and 33.3% of data, respectively. In order to compare the
efficiency of the proposed method, the same data samples were used to train ref-
erence models, being C4.5, Bayesian Networks, neural networks (MLP), Holte’s
OneR, logistic regression, and single vector machines with sequential minimal
optimization.

The proposed model displayed the best accuracy of 83.84%, utilizing 16 con-
ditional variables. The author mentioned however that the method, as other
learning models, is susceptible to the quality of the data sample, oversampling
and specifics of the application context (here: credit ratings of Asian banks). Fur-
ther research was suggested in order to test the approach on data coming from
different emerging markets as well as including additional financial information,
e.g. auditor opinion.

Yeh et al. [149] proposed a combination of the Moody’s KMV debt pricing
model, random forest and rough set to predict credit rating of analyzed com-
panies based on the current market information in addition to the commonly
used company accounting reports, which were necessarily backwards looking.
The KMV model was often used in the credit risk area to assess the probability
of default of analyzed companies and compute the market value of their debt.
The so-called distance-to-default is a measure indicating the health of the an-
alyzed company, i.e. the larger the distance measure the lower the probability
of default. The KMV distance-to-default was used together with other financial
variables to construct the initial data set. The data set was divided into learning
and testing samples using the proportion of 80:20. Subsequently, the Random
Forest analysis is used to sort and select the candidate input variables in terms of
their significance. The resulting data set forms an information system processed
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using the rough set model in order to generate classification rules via the LEM2
algorithm.

The empirical test of the proposed hybrid model was performed using a data
sample taken from the Taiwan Economic Journal gathered for the period of
2003-2008 for 2470 Taiwanese high-tech companies and consisting of 21 financial
variables (debt-equity ratio, return on equity, earnings per share, etc.), as well
as the KMV distance-to-default computed by authors. Data was then analyzed
using the Random Forest ensemble to sort the candidate conditional variables ac-
cording to their importance for classification. Following this analysis, the sample
data for 18 variables, including the KMV distance-to-default measure (assigned
the highest importance by the random forest ensemble) was discretized using an
expert opinion and used to construct the decision system for the rough set based
predictive classification and decision rule generation. The empirical test reached
the best accuracy of 93.4% vs. 90.3% achieved by a rough set only model and 84%
of the third best combination of random forest and decision tree (C4.5). Other
tested models included pure C4.5, classification and regression tree (CART),
support vector machines (SVM) and their combinations with a random forest
ensemble (RF), similarly to the proposed combination of RF and rough sets
(RS). The performed tests also showed the significance of the KMV distance-
to-default measure, which removal caused a drop of accuracy to 73.7% for the
proposed RF+RS model. This confirms the advantage of models being able to
accept heterogeneous information and inherently select the relevant variables.
The authors hinted at this potential by naming the ability to integrate potential
non-financial factors as a part of the credit scoring analysis. This may include
textual information, like news, auditors or CEOs statements, which analysis us-
ing rough set based models was already proposed by some researchers mentioned
in this paper.

Xiao et al. [139] described an ensemble based bankruptcy risk classification
model using the Dempster-Schaefer (D-S) evidence theory as the method used to
combine classification results of individual classifiers (the evidence). As advan-
tage of this selection, the ability of the D-S model to assign different significance
to the individual classifiers was quoted. However, D-S has problems when fusing
conflicting information. One of the methods proposed to minimize the impact
of the conflicting information is to assign weights to individual classifiers before
applying the D-S based combination (so-called weighted D-S evidence combi-
nation). The authors proposed the use of the rough set model to assess the
significance (weight) of each individual classifier, quoting the self-sufficiency of
the method in terms of the required information, i.e. only the analyzed single
prediction output is needed to compute its significance. Consequently, the pro-
posed hybrid model consists of a classifier ensemble, a rough set based result
analyzer, assigning significance to the results delivered by individual classifiers,
and providing the weighted information to the D-S model for the final synthe-
sis. Normalized outputs of each single classifier (i.e. level of financial distress)
applied to the learning sample formed the conditional variables of the input
information system for the rough set based weight computation. The actual
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normalized distress level of each company was used as the input decision at-
tribute. The variables were then discretized to form a decision system for the
rough set analysis. The rough set attribute significance was then used to com-
pute the weight of the attribute thus providing the weight of the respective
classification method. The weights delivered by the rough set model were then
combined with outputs of individual classifiers to compute basic probability as-
signment matrix within the framework of the D-S theory in order to arrive at
the forecasted decision attribute (the level of financial distress).

The model was tested using a sample of 253 Chinese companies listed on
Shenzen and Shanghai Stock Exchanges in years 2007-2009. 161 companies were
classified as going concern, whereas the remaining 92 companies had a Special
Treatment (ST) status assigned by the Chinese supervisor. The authors selected
the logistic regression, neural network and support vector machine models as
individual classifiers. The input data set consisted of 39 financial variables, in-
cluding current ratio, earnings per share, etc. The forecasting horizon was set
on 2 and 3 years, i.e. financial data describing the company’s condition 2 and 3
years ago was used to forecast the current financial distress condition. The initial
variable set was further reduced using the t-test of significance and stepwise lo-
gistic regression before delivering the data to the individual classifiers. Based on
the applied 10-fold cross validation procedure the number of selected conditional
variables varied between 2 and 6. The resulting financial distress classification of
the 3 individual classifiers (resulting in 3 conditional variables for the rough set
analysis) was discretized using the equal distance binning method. The authors
decided to use two bins (binary mapping in {0, 1}) for the input values with
the threshold set at 0.5 (a < 0.5 ⇒ 0, otherwise 1). The average out-of-sample
prediction accuracy of the proposed hybrid model for the 2 years and 3 years
prediction horizon was higher than that of individual classifiers and alterna-
tive ensemble systems (majority voting, Bayesian, behavior-knowledge space –
BKS) at 87.80% and 69.02%, respectively. Results for the training sample were
mixed, with alternative ensemble methods obtaining better accuracy in several
individual validation runs10. The authors hinted at the coarse mapping between
the generated output values and financial distress classification as the possible
reason for this inefficiency and pointed it out as the possible future research area.

A summary of the described rough set research focused on the risk manage-
ment is given in Table 1.

The majority of work was concentrated on predicting the bankruptcy risk
using various types of the rough set model itself as well as in combination with
other techniques, including neural networks, genetic algorithms, support vector
machines and fuzzy sets. Especially, the fuzzy rough set combination seems to
provide an inherent way to discretize input continuous variables based on the
fuzzy membership function and utilize the rough set’s ability to reduce the num-
ber of variables and generate decision rules. Another interesting advantage of
rough sets was the ability to analyze qualitative information and the potential

10 The BKS based ensemble outperformed the proposed hybrid model also in few
validation runs on the testing sample, but its average accuracy was lower.
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to perform the analysis of a combined qualitative and quantitative information
universe. This is especially important in the financial domain, when many eco-
nomically relevant risk factors are hidden in the narrative comments provided in
financial reports or daily news. The ability to extend the set of analyzed informa-
tion to include the narratives aside of the standard quantitative set of financial
ratios seems to be a very promising way to improve the quality and explanatory
power of the forecast. The growing research in this area (Beynon et al. [11], Yu,
Wang and Lai [151]) confirms its potential.

The presented empirical research used widely different data samples ranging
from small focused data sets, where the delivered observations can be perceived
as an indication of the described model’s basic potential rather than its di-
rect usability, to relatively large samples covering multiple industries, where the
practical usefulness of the proposed solution was contested. The common feature
was the expert based selection of input conditional variables and geographical
locality of data, e.g. Taiwan, Greece, or USA. This allowed authors to use stan-
dardized descriptors for individual companies (mostly financial ratios based on
accounting statements) or countries coming from one or two well-known sources,
but on the other hand did not explore the relationships existing between global
players domiciled in different regions – a sample including only peers from a
local geography may not reflect the increasingly global market dependencies.

Also, the macroeconomic environment (e.g. state of the economy at the snap-
shot time or performance of a global benchmark index), which may have an
impact on company’s results in the particular time period, was not sufficiently
considered. In addition, the temporal aspect of data should be explored more
thoroughly, e.g. a continuous deterioration of free cash flow over a number of
years is a more serious issue than a large loss in one year, which may be due
to operational (e.g. a litigation) or macroeconomic issues surrounding the given
company.

All authors have used an expert knowledge when selecting the candidate input
variables. This necessarily introduced a bias into the resulting analysis, aggra-
vated by the relatively small set of input variables, varying between 2 and 38.
While the involvement of an expert seems inevitable due to the almost infinite
set of candidate variables, it would be beneficial to work with data sets contain-
ing as much information as possible and let the formal methods select the ones,
which are important in the given context. However, practical issues, like data
availability, quality and comparability make this process difficult. Nevertheless,
this seems to be the next necessary step required to deliver predictive systems
not only confirming the existing expert knowledge but discovering new useful
insights mined from data sets too large and too complex for a single human
expert to analyze.

The above-mentioned importance of the selection of proper input variables
was acknowledged by many authors and underscored by varying accuracy and
sensitivity of results to the data being tested.
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Table 1. Summary of Rough Set based methods used in the Risk Management Area

Area Model Dis- Sample Cond. Accuracy Accuracy vs. Refer-

creti Size varia others11,12 ences

sation bles

Method

Bankruptcy Rough 13 Expert 39 12 100%14 - [14],

Risk Sets [124],

[125]

116 12 50.0 - 76.3% >DA [39]

>logit

Objective 41-291 2 to 36 61.5 - 88.0% >DA [15],

>DT [53],

>logit [87],

>NN [89],

=human [109],

[110]

296 16 75.0% <DT [84]

<logit

<NN

Variable Objective 90-435 10 - 12 70.0 - 90.0% >DA [10],

Precision >DT [11],

Rough >logit [54]

Sets

Domi- Expert 6 - 39 12 - 24 94.9% =AHP [16],

nance

Relation >RS [49]

Rough

Sets

Hybrid Expert 80 - 8 - 22 77.4 - 97.0% >DA [1],

Models 2470 >DT [17],

[65],

>logit [149],

> NN [157]

>SVM

>RS

Objective 253 - 2 - 24 76.6 - 87.8% >Bayes [22],

1327 >DT [88],

>logit [139],

>NN [147]

>RS

>SVM

– 396 4 100%11 >DEA [116]

114 17 86.8% >RS+SVM [148]

>RS+NN

>RS+NN+DEA

Macroeco- Rough Objec- 79 12 80.0% >DA [110]

nomic Sets tive

Stability

Merger and Rough Objec- 60 10 66.7% >DA [126]

Acquisition Sets tive

Hybrid - 200 28 96.0% >DA [58]

Models >NN

11 AHP = Analytic Hierarchy Process; Bayes = naive Bayes classifier; DA = Discrim-
inant Analysis; DEA = Data Envelopment Analysis; DT = Decision Tree; NN =
Neural Network; RS = Rough Sets; SVM = Support Vector Machines.

12 > is better; < is worse; = is comparable.
13 Bioch and Popova [14] applied the concept of a monotone discernibility matrix.
14 Learning sample only; Bioch and Popova [14] did not provide this information.
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3.2 Financial Time Series Forecasting and Trading Rules
Generation

The ability to predict market data movements (especially stock market prices)
is a focus of much research for obvious reasons. The financial market partici-
pants use predictive tools based either on technical analysis of time series (so
called chartists) or rely on a thorough evaluation of the company financial data,
its economic environment and leading macroeconomic indicators (fundamental
analysis).

The basic assumption is that the historical data contains patterns of behavior,
which can be applied to the future price movements, be it a particular repeatable
sequence of its historical prices or related market data (the chartist case) or
a strong pattern of cause-effect relationships between the company’s financial
ratios, macroeconomic indicators and the phase of the economic cycle.

The predictive model of market movements is usually coupled with optimized
trading rules, which together attempt to deliver optimal trading strategies. This
sort of analysis has traditionally employed statistical regression but is also at
heart of the knowledge discovery methodologies, and numerous attempts were
published, although mostly utilizing neural networks and genetic algorithms (At-
salakis and Valavanis [5]).

The market data time series is represented by numerical variables (price,
volume, volatility), which generate huge data volume at the level of single stock
transactions (so-called tick data). Yet, data has to be discretized and analyzed
over a certain period of time to induce generalized rules incorporating historical
patterns. Furthermore, multiple data streams have to be considered in order to
derive strong predictive rules. Therefore, the problem of attribute transformation
is a relatively important topic in the case of time series – the decision to use
moving average aggregation, correlation ratios, etc. has a decisive impact on the
quality of the predictive model.

Lin and Tremba [34] examined the theoretical aspects of numerical attribute
transformation and applied them to the case of stock market and economic data
prediction using the rough set model. They recommended using delay windows,
averaging and cumulative aggregation as methods to create input attributes for
time series analysis. The linear attribute transformation was demonstrated using
a rough set model applied to a sample of daily stock prices in the period 1990-
1996, where correlations between the mixture of 10 stock prices and index values,
serving as conditional attributes, and the target stock of Applied Materials,
serving as the decision variable, were discovered in the form of the generated
classification rules.

The daily input data was processed using the column transposition operation
to generate 3 intermediary decision tables containing the transformation effect
of delay window, averaging and summing, having each 77 attributes (a weekly
time window) and 1511, 1487, and 1511 rows, respectively.
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Conditional variable data was discretized by rounding the daily percentage
change to the nearest integer. Initially, the same discretization algorithm was
applied to the decision variable, resulting in 67 decision classes. This approach
caused generation of weak rules with low support. The decision variable data was
then discretized using an arbitrarily defined value buckets with the cut points
being -0.5 and 0.5, dividing the continuous value space into 3 decision classes
(falling, no change, rising). The accuracy of the rules generated from the daily
data was tested using an out-of-sample data for the period from August 1, 1996
to April 9, 1997. The generated rules achieved an average accuracy of 71%15 on
the test sample.

The authors pointed out the importance and difficulty of deriving the right
discretization algorithms, as required by many knowledge discovery tools, in-
cluding rough sets, when applied to the stock market time series. The trial and
error approach has to be used. They recommended an expert user input for the
selection of required attribute transformations but also suggested a brute force
search otherwise.

In Tremba and Lin [135] the authors applied the previous findings in fur-
ther practical experiments using the rough set software package DataLogic/R+
(Golan and Edwards [45]) and algorithms performing a linear transformation
of the input raw market data already referenced in Lin and Tremba [34]. The
authors extended the test data set with monthly data consisting of 3 conditional
variables being 3-month moving averages of indexes characterizing the order
book condition in the semiconductor industry. The decision attribute was still
the (monthly average) price of the Applied Materials stock. The input monthly
data set consisted of 72 entries16.

The input data was processed using the column transposition operation to
generate 3 intermediary decision tables containing the transformation effect of
delay window, averaging and summing. The transformation of the monthly data
resulted in three tables having each 28 attributes (a 7 month time window) and
60 rows.

Conditional variable data was discretized by rounding the daily percentage
change to the nearest integer. The decision variable data was discretized using an
arbitrarily defined value buckets with the cut points being -0.5 and 0.5, dividing
the continuous value space into 3 decision classes (falling, no change, rising).
The accuracy of the rules generated from the monthly data was tested using an
out-of-sample data for the between August 1, 1996 and December 31, 1996. The
generated rules achieved an average accuracy of 88.9%17 on the test sample.

The authors concluded by confirming the importance of the applied discretiza-
tion (clustering) method for the effectiveness of the rough set based analysis.

15 Only rules with large support, as defined by the authors, were considered when
computing the average accuracy.

16 The daily data, its processing and results were the same like in Lin and Tremba [34].
17 Only rules with large support, as defined by the authors, were considered when

computing the average accuracy.
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They discovered some useful time-dependent predictive rules using this approach
but noted the necessity of a trial and error process.

Early works introducing the rough set approach to the stock market predic-
tion included Ziarko et al. [158], Golan and Edwards [45] and Golan and Ziarko
[46], who attempted to employ the variable precision rough set model to gener-
ate stock market movement prediction rules based on the discovery of repeatable
dependencies in the past market data. The model was tested using monthly his-
torical market data from the period 1980 – 1990 including 5 major Canadian
stocks from the Toronto Stock Exchange, major Canadian and US stock indexes
(TSE, DOW, S&P, etc.) and a large set of economic indicators, like GDP, interest
rates, unemployment and inflation. Altogether the data set was described by 32
to 40 variables. The raw numeric data has been pre-processed to the delta form
(increase/decrease vs. the previous value) and discretized based on intervals de-
fined by a domain expert. Movements of the selected 5 stocks served as decision
variables. The authors used the value of β=0.55. Generalized rules, derived from
β-reducts, were verified by domain experts and confirmed as sufficiently descrip-
tive for the characteristics of the selected stocks. The authors pointed out the
importance of the input information and rough set parameterization (i.e. rough-
ness and precision beta) for the quality of the generated rules. An expanded set
of input variables, including dividend information and technical indicators as
well as the out-of-sample testing were left for future research.

Bazan et al.[8] studied the rough set based discovery of possible predictive
correlations between end-of-month values of 15 financial indicators and stock
prices at the end of the next month. The study concluded with a relatively
weak performance of the method (prediction accuracy of 44%) and highlighted
challenges stemming from data selection and gap filling (missing data).

A similar prediction attempt was provided by Baltzersen [7] using the index
of the Oslo Stock Exchange as his experimental basis. The work described the
methods, which can be used to convert time series into rough set objects, as well
as the analysis of computed reducts and rules. Although the reported accuracy
was below 50%, the system was able to identify core predictive variables having
a strong influence on the movements of the index (interest rate level, gasoline
consumption, or currency rates).

Skalko [119] was able to generate trading rules using a variable precision rough
set model (implemented by the software package DataLogic/R+ (Golan and
Edwards [45]) applied to time series of S&P 100, associated options (put/call)
and US Treasury bond yields for the period between October 1987 and December
1994. The rules were applied to the testing data set from the year 1995. Based
on the rules, the system generated 9 trades, 7 of them were profitable. Analysis
of the rules hinted at the relative importance of interest rate levels and market
sentiments for tactical trading.

Herbert and Yao [59] used the classical rough set approach to analyze time
series data from the New Zealand Stock Exchange for the period 1991 – 2000.
The input data, consisting of open, close, high and low daily prices, was trans-
formed into a series of technical trend indicators, including Moving Average



140 M. Podsiad�lo and H. Rybiński

Convergence/Divergence, Wilder Relative Strength Index, Moving Average over
5- and 12-day periods. The associated closing price of the next day was used to
compute the decision attribute for the learning sample, being -1 (relative price
drop), 0 (unchanged), 1 (relative price increase). The transformed data set was
discretized using the equal frequency algorithm and divided into the learning
and validation samples. The authors selected 10 high quality rules out of the
96 rules generated by the rough set model based on 18 reducts obtained. The
average prediction accuracy on the holdout sample was 64.7%.

In Yao and Herbert [146] the authors provided further details about the ex-
periments and extended research by testing the so-called neutral zone buffer, i.e.
the range of relative daily price changes, which are deemed to be insignificant
and thus assign the 0 (unchanged) value to the decision variable. The authors
showed the impact of the buffer’s size on the distribution and bias of the deci-
sion variable, what had a strong impact on the number and quality of generated
reducts and rules. The remaining properties of the model were re-confirmed.

Al-Qaheri et al. [2] applied the rough set theory to create a stock prediction
model using daily movements of a single banking stock from the Kuwait Stock
Exchange for the period 2000-2006 as the analyzed data. The conditional at-
tribute set contained a mixture of price values and trend indicators computed
from the raw entry data (moving average, momentum, rate of change, price os-
cillator, etc.). The attribute selection was based on the domain literature. The
boolean reasoning discretization algorithm proposed by Qizhong [101] was used.
The data set was divided into the training (75%) and testing sample (25% based
on random selection). The authors reported model accuracy of 98% measured on
a holdout sample. The rough set model was also compared to the performance
of a neural network model applied to the same data sample. The proposed rough
set model generated almost 50% less rules than the neural network, with higher
accuracy, although details of the neural network model were not provided.

Lee et al. [82,83] applied the rough set theory to the case of trading rules
for futures market based on real time data. The authors defined 6 so-called
trend groups (e.g. short term raising, long term falling, flat falling, etc.) and
assigned 5 best performing technical trend indicators (in terms of their annual
average return) within each group as conditional variables for the subsequent
rough set processing. In the next step, the input data was discretized, using the
equal frequency binning method, and the set of reducts generated. The authors
decided to manually select 3 best reducts per trend group consisting of 3 (out
of 5) randomly technical indicators and generated resulting decision rules. The
trading rules base stored the rules generated using values for the 20 day time
window. Each subsequent day provided a feedback to the rule base and the rules
were recomputed based on the performance comparison between the rule based
on old and new time window. The trend groups were then ranked based on the
nearest neighborhood method.
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The model was tested using the KOSPI 200 index of the Korean Stock Ex-
change for the time period between July 1996 and December 2006. The data
frequency was empirically selected to be 30 minutes, based on the return rates
of the different data samples. The data set was divided into learning and test-
ing samples. Trend periods (long term raising, short term falling, etc.) in the
learning and validation samples were identified by futures market experts. The
authors reported the maximum average return rate of 12.7% and Sharpe ratio
of 1.47 for a trading portfolio based on the set of three trend groups.

Khoza and Marwala [70] applied the classical rough set model to the case
of stock market time series prediction. The input data was a mixed set of raw
price data (open, high, low, and close) and technical indicators, including rate of
change, momentum, disparity and 5-day moving average – altogether 9 variables.
The decision variable was a trend indicator based on n consecutive daily close
prices.

The model was tested using a 5 year sample of daily movements of the Johan-
nesburg Stock Exchange All Share Index between 1 April, 2006 and 1 April 2011.
The data set was divided into the learning and testing sample containing 75%
and 25% of data, respectively. The authors applied the time series conversion al-
gorithms described in Baltzersen [7] to preprocess the time series data and used
the ROSETTA package to discretize and reduce the input data, and generate
forecasting (classification) rules. The authors paid special attention to the dis-
cretization method, which is critical for the forecast accuracy of the generated
rule set. Consequently, four discretization algorithms, namely equal frequency
binning, Boolean reasoning, entropy and naive algorithm, were used and their
impact on the forecast quality investigated. The best accuracy was achieved us-
ing the equal frequency binning algorithm with 4 bins and this data was used as
the basis for further processing. The model generated a reduct, using a genetic
algorithm provided ROSETTA, consisting of 6 variables and derived 246 rules
based on the reduct. The standard voting rule matching algorithm provided
80.41% forecasting accuracy confirming the applicability of the rough set model
to the time series forecasting problem.

Another attempt to use the rough set model to explain stock market move-
ments was presented in Ruizhong [108]. The data sample was constructed from
financial data of 50 Chinese companies, which were constituents of the Shanghai
Stock Exchange index SSE 50 in 2011 and 2012. Altogether 8 financial variables
(P/E ratio, main operating margins, etc.) were selected to form the sample,
with current ratio and rate of capital accumulation serving as the decision vari-
able. All 7 conditional variables were discretized using manually selected bins.
The decision variable was discretized to 1 if greater than average and 0 other-
wise. The learning sample was built using data from 2011, whereas the quarterly
data from the first quarter of 2012 was used as the test sample. Subsequently
conditional variables with the greatest explanatory power were identified. The
most important variable was rate of net return and its correlation with the stock
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movement trend in the learning and testing sample periods was verified. The
author found a statistically significant positive correlation between the two vari-
ables, what is confirmed by a common sense. The reported out-of-sample accu-
racy was 97.8%, which may hint at a sample bias, given the short length and
low sample frequency of the observed period.

Kim and Han[71] used the Variable Precision Rough Set model to generate
profitable trading rules based on the market timing strategy. The conditional
attributes consisted of 9 technical indicators, e.g. relative strength index, mo-
mentum, rate of change, Stochastic K%, etc., selected based on a domain expert
advice and literature review. Similarly, the required discretization used thresh-
old recommended in the expert literature for the respective technical indicators.
The underlying data sample was taken from the daily market data of the Korean
Stock Exchange KOSPI 200 index for the period from May 1996 until October
1998. The sample was divided in to a training part (65%) and holdout part
(35%) in order to allow a simple rule validation. The used ROSETTA software
was configured to generate β-reducts and induced rules for β < 0.5. The result-
ing set of 280 reducts had an empty core and authors selected 9 reducts as the
basis for the rule induction. The selection of optimal reducts was based on their
strength (support) and ability to generate bull market (buy) signals. The authors
reported a positive performance of up to the absolute cumulated rate of return
of 31.5% and excess rate of return of 48.3% against the buy-and-hold strategy,
as measured in the validation period between January 1998 and October 1998.

Recently, AdgaMGroup [63,120] applied rough set theory to create the AdgaM
Trading Robots based on rough sets. Basically the robots are built up using the
following types of classifiers:

• classifiers for the automated adaptive best features selection (out of tens of
thousands of features) and

• classifiers for automated synthesis of adaptive Boolean expressions for trad-
ing rules generation (especially for Forex market).

For the real money on-line adaptive algorithmic trading on Forex market (EUR/
USD) since September 2009 until March 2011 (1,5 year live trading) on OANDA
platform (http://www.oanda.com/) gave the results as follows:

• 18% ROI;
• risk volatility 9,5%;
• out of 25 thousands EUR/USD positions 80% were the winning positions.

The back testing was performed on simulated trading using historical data and
artificially generated thousands years by Monte Carlo with Forex data. The sim-
ulation of emotional Forex dynamics was based on dynamics of live trading data
streams.
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Hybridization

The stock market and financial time series prediction have been traditionally
dominated by neural networks models over the last 20 years (e.g. [143,144,142]
and [154]). It is therefore not surprising that much of the initial research activities
considering the usage of rough sets in stock market prediction were evolving
around the hybrid integration with neural networks.

An early attempt to use a hybrid combination of the rough set model and
neural networks as a trading rule generator was reported by Ruggiero [106].
The author had already successfully experimented with the variable precision
rough set model when building a trading system applied to the S&P 500 index
(Ruggiero [104,105]). The VPRS-based system had a success hit ratio of over
70% when predicting positive index movements within the time window of 5
weeks and was able to predict strong index rallies of more than 2%.

In the hybrid system the rules delivered by the rough set model were used to
supervise the learning process of the neural network and correct output errors.
The system was able to reduce losses by 25-50% and improved the winner/loser
ratio to over 50%.

This work was followed in Ruggiero [107] discussing a hybrid trading system
based on the rough set theory, decision trees (C4.5) and neural networks.

Wang and Wang [136] also proposed a hybrid rough set-neural network model
for the stock market prediction. Rough sets were used in their classical capacity
of extracting decision rules out of the trained neural network model, but did
not participated in the core data processing and forecast process, which was
built based on a regularized neural network and selection of input variables
derived from the underlying time series data, which described the time series
trend (length and slope) and the signal to noise ratio. Nevertheless, the ability
of rough set to generate human readable classification rules out of the neural
network black box model was quoted as the advantage of the proposed hybrid.

There are however many interesting attempts to combine rough sets with other
knowledge discovery methods aside of neural network-rough set hybridization –
a very promising example are Fuzzy Rough Sets. Below we present them briefly.

Fuzzy Rough Sets

Fuzzy Sets were proposed by Zadeh [153] as the way to express inexact concepts
by the way of a membership function. Unlike in the case of crisp sets, where an
element can belong only to the set or its complement, the fuzzy sets allow an
element to belong to more than one set with an associated membership grade.
Since its introduction fuzzy sets and fuzzy logic are intensively researched and
used (Zimmerman [161]).

The fuzzy rough set model is based on the notion of a fuzzy similarity relation
s(x, y)18 and fuzzy equivalence class F = μ[x]S :

μ[x]S (y) = μs(x, y), B ⊆ A (24)

18 Properties of reflexivity, symmetry, and transitivity must hold.
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Consequently, the fuzzy lower and upper approximation sets are defined as
follows:

μS(X)(y) = inf ω �∈X(1− μS(y, ω)) (25)

μS(X)(y) = supω∈XμS(y, ω) (26)

The theoretical aspects of the fuzzy rough sets are described in detail in Yeung
et al. [150].

Wang [137] proposed a stock movement predicting system based on the fuzzy
rough set model. The ability to cope with the noise inherent in the financial
time series was quoted as one of the main advantages of the model – it is able
to induce general rules even though the stock price movements in two different
periods are of different scale but both should be considered as significant. The
author used stock market data, including prices and volume information, from
the Taiwanese stock market for the year 2001 (training sample) and the first
five months of 2002 with 5 minutes sampling frequency. The input data was pre-
processed into hourly intervals and a matching degree measure, defined as a fuzzy
equality relation, was used to express the predictive power of the generated rules.
The system was calibrated using 180 runs and delivered the prediction accuracy
of 93%. The system did not account for correlations between stocks, qualitative
information (e.g. political events) and missing data (i.e. no gap filling algorithm
has been used) what could further improve the predictive effectiveness. This was
left for a future research.

Teoh et al. [134] proposed a stock market predictive model based on a com-
bination of a fuzzy set model, cumulative probability distribution approach
(CPDA) and rough set based induction of decision rules. The model was based
on the assumption that the input dataset distribution can be described using
the cumulative probability distribution function. For the analyzed data sample
an assumption of the normal distribution was made, where mean and standard
deviation sufficiently describe the distribution. This allowed the model to define
the data universe boundaries (for the used test dataset these were the minimum
and maximum values of the given dataset plus/minus its standard deviation σ)
and discretization intervals (seven intervals have been defined). The model then
defined fuzzy sets, based on the computed discretization intervals and a fuzzy
membership function, and mapped entry values of a stock index into the fuzzy
sets (no expert input is used). The resulting fuzzy logical relations were used
to construct a rough set decision table and generate decision rules using the
LEM2 algorithm. The model was then able to compute the forecasted numerical
outcomes of the prediction based on the assigned fuzzy categories.

The model was tested using data sets from Taiwan Stock Exchange (TAIEX)
and New York Stock Exchange (NYSE) for years 1990-1999, containing daily
closing prices. The authors verified the efficiency of the hybrid method by
comparing it with its individual components (CPDA and rough set models).
Following the evaluation method presented in the paper, the hybrid method
consistently outperformed both individual models when applied to both, TAIEX
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and NYSE datasets (as measured by the root mean square error RMSE = 90.29
vs. 91.03 and 90.51 for TAIEX, and 45.62 vs. 45.67 and 46.39 for NYSE, re-
spectively), although it did not consider the additional information available
in correlated markets (e.g. futures market) and the effect of possible corporate
actions (e.g. dividend announcements) and earnings surprises19. The proposed
model outperformed also two other fuzzy time series models (not using rough
sets) proposed by Chen [18] and Yu [152].

Cheng et al. [24] proposed a hybrid model combining fuzzy set based dis-
cretization methods, rough sets and genetic algorithms for stock market predic-
tion. The input set of conditional variables is constructed of a series of technical
indicators (moving average, momentum relative strength index, etc.) derived
from the underlying time series data, with the 5 days horizon. Daily price fluc-
tuation (i.e. the difference between todays and previous closing price or todays
close and opening price) was selected as the decision variable. The candidate
set of conditional variables was pruned using the correlation matrix indicating
their significant correlation with the decision variable. The authors subsequently
discretized the input data using fuzzy set methods, namely:

• the Minimize Entropy Principle Approach (MEPA) in order to partition
range values of conditional variables. The partitioned set of values was used
to generate fuzzy membership functions and assigned the attribute data
to one or more linguistic values (fuzzification). The maximum membership
degree was then used to select the associated linguistic value, being the
output of the discretization process,

• the CPDA method (as referenced above for Teoh et al. [134]) in order to par-
tition the decision variable being the daily stock price fluctuation, following
the assumption of its normal distribution. The daily stock movement was
discretized into three linguistic values denoting the directional trend of the
movement (up, fair, down).

The discretized decision table was then processed using the rough set model to
generate classification rules. Finally, the generated rule set was optimized for
improved predictive accuracy using the genetic algorithm model, which was to
introduce resilience against unexpected events not present in the learning sample.

The system provided trading rules and computed the forecast accuracy as
well as expected return, which were used to compare the performance of the
proposed model against its constituents (rough set and genetic algorithm only)
as well as with the rate of return of the buy and hold strategy.

The model was tested using a sample of market data for a stock and index
instruments. The input data set was selected to contain 8 technical indicators
having a significant correlation with the price movements. The model perfor-
mance when applied to a single stock forecast was tested using the daily market
data of the TSMC stock traded on the Taiwan Stock Exchange between June

19 The surprise effect describes the situation where the earnings unexpectedly missed
or sur-passed market expectations (usually quantified by analysts’ estimates). What
follows is a sudden jump or drop of the stock price.
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1999 and May 2000. The data was divided into learning and testing samples,
having 10 and 2 months, respectively. The model achieved the accuracy of 55%
and financial return of 16 stock units, outperforming the rough set (54.5%, 15
stock units), genetic algorithm (42%, 10 stock units), and buy-and-hold strategy
(-15 stock units).

The model performance when applied to a stock index forecast was tested
using the daily market data of the Taiwan Stock Exchange index (TAIEX) traded
on the Taiwan Stock Exchange between January 2000 and December 2005. The
data was divided into 6 annual datasets tested separately. Each annual data
sample was divided into learning and testing samples, having 10 and 2 months,
respectively. The model achieved the average accuracy of 60.1% and financial
return of 950.62 index units, outperforming the rough set (55.3%, 531.93 stock
units), genetic algorithm (54.7%, 722.56 stock units), and buy-and-hold strategy
(275.04 stock units).

Based on the test results for the index data the authors underscored the pos-
itive performance of the model in a trending market regardless of the market
trend (bull and bear markets). However, they noted the relative underperfor-
mance of the rough set, genetic algorithm and proposed hybrid model in periods
of high volatility.

Ang and Quek [3,4] proposed a combined stock prediction and trading system
based on the rough set theory and fuzzy neural network hybridization, called it
Rough Set-based Pseudo Outer-Product (RSPOP) model. The predictive per-
formance of the hybrid model was compared to several other neural network
models (e.g. Kasabov [67]) using an artificially generated time series. The pre-
dictive accuracy of the RSPOP model, as measured by the mean square error
measure, was found to be better than that of the other models.

Furthermore a trading system was proposed, using a simple rule set based on
the moving average trend indicators (moving average convergence/divergence
and exponential moving average). The model considers transaction costs when
computing the total profit and loss, being used as the actual performance mea-
sure for the system.

The system was tested empirically using market data for two stocks from
the Singapore Stock Exchange for the period 1980 – 2005, taken from the real
economy and banking sector.

The data sample was divided into learning and validation samples. The per-
formance of the proposed model was compared against the strategy using only
the moving average indicators and another strategy using data forecasted with
the dynamic evolving neural-fuzzy inference system (DENFIS – Kasabov and
Song [68]), which had a performance comparable with RSPOP when applied to
the artificial data set. The authors concluded by pointing out a lower number
and complexity of generated rules, thanks to the application of rough sets, and
higher efficiency of prediction of the proposed approach against the DENFIS
model but underscored also the heavy dependency of the strategy’s success on
calibration of the trading module (i.e. moving average parameters).
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Tan, Quek and Yow [131] subsequently proposed a trading system based on
simple trend indicators (MACD, RSI) and using the rough set based pseudo
outer-product model as its input predictor with the goal of extending the pre-
diction horizon to up to five days. Thanks to its ability to reduce redundant
information and filter out noise signals, the system was able to deliver bet-
ter prediction accuracy than the benchmark neural network systems (95.8% vs.
92.87% of ANFIS20 and 90.53% of RBF21) and outperformed the buy-and-hold
based trading strategies (the average rate of return 693% vs. 139%) when applied
to the data sample of daily prices of 5 stocks, representing different industries,
traded on the Stock Exchange of Singapore between January 1991 and December
2004.

Cheng et al. [25] described a combination of probabilistic neural networks,
variable precision rough sets and decision trees (C4.5) applied to the stock mar-
ket timing problem. The three classifiers formed an ensemble employing the bag-
ging algorithm to deliver the final classification. Aside of serving as a classifier,
rough sets were also used to reduct the set of conditional variables used by the
other classifiers. The proposed model was tested on a data sample described by
a combination of 13 lagging macroeconomic variables (e.g. gross national prod-
uct) and monthly market data (e.g. opening and closing price, trade volume)
of a weighted Taiwan stock index published by the Taiwan Economic Journal.
The sample consisted of 208 monthly data entries for the period between Jan-
uary 1988 and April 2005. The first 144 months was used to create the learning
sample with the remaining 64 being the test sample. The decision variable was
constructed as a trend indicator with values in {−1, 0,+1} denoting the ex-
pected loss, zero or gain of the stock index over the Taiwan short term risk free
interest rate. The variable was forecasted for 1, 3, 6, and 12 months. The VPRS
model generated β-reducts reducing the data sample used by all three classifiers.
The hybrid model achieved the classification accuracy between 57.81% for the 1
month forecast horizon and 76.56% for the 12 months forecast horizon.

For performance comparison, standalone rough set and probabilistic neural
network models were constructed and tested using the same data sample. The
probabilistic neural network and variable precision rough sets models achieved
classification accuracy between 46.88% and 60.94% for the 1 month forecast
horizon and 71.88% and 75% for the 12 months forecast horizon, respectively.
Considering the actual earned income, the hybrid model had the best perfor-
mance over the 1 month horizon, with the neural network performing the best
over longer time horizons, over 3 months. All the tested models were better than
the buy & hold strategy. The authors concluded that the combination of rough
set based variable selection, decision tree noise reduction and ensemble based
generation of trading rules allowed to construct a well performing trading rule
generation model.

Kumar et al. [81] proposed an interesting combination of the rough set model
and wavelet transform analysis. The application of the wavelet transforms allowed

20 Adaptive-Network-Based Fuzzy Inference System.
21 Radial Basis Function Networks.
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generating views of the entry variables time series data at several resolution levels
in the time-frequency space. This was to expose deterministic features of time se-
ries, possibly hidden at various time-frequency resolution levels and filter out the
random noise. The attribute reduction capability of rough sets was their main fea-
ture used in the proposed model. The rough set reduct was generated both from
the entry data set and all data sets derived using the wavelet transform at different
resolution levels, i.e. the entry data set was reduced before the wavelet transform
was applied; similarly, the data sets generated via the wavelet transform were first
processed using the rough set and the resulting reducts generated the entry data
set for a neural network based forecasting engine. The forecasts obtained at dif-
ferent scales were then combined recursively to obtain the final forecast.

The predictive model was tested by generating a 10 step (weeks) forecast of the
S&P 500 index closing value. The entry data set consisted of weekly time series
of 21 input variables describing the S&P 500 index and related macroeconomic
variables, e.g. S&P High/Close, S&P Earnings, NYSE Total Volume, Gold Price,
Short/Long-term interest rates, for the period January 1980 to December 1992.
The learning sample consisted of 654 data entries, with the remaining 15 entries
serving as the testing sample.

The rough set reduct analysis limited the initial conditional variable set to 13
variables. The reduced time series data was subsequently decomposed into 7 de-
tail levels and an approximation (smoothing) level using the Daubechies wavelet
(Daubechies [33]), resulting in 8 data sets for each input variable. The decision
table for each level was build using each data set and generated a rough set
reduct. This rough set processing resulted in further removal of 0 to 2 variables
at the given level. The rough set reduct (decision table) of the learning sample
was subsequently provided to the neural network forecasting engine, starting
its training at the coarsest level, and continuing the training by providing the
higher resolution levels until the required trade-off between generalization and
overfitting was found based on the associated testing sample (the authors did
not describe the used criteria). Based on this recursive cross-validation the 2
lowest resolution levels were dropped.

The resulting forecasting model delivered the best out-of-sample accuracy of
69.23%, as compared to the accuracy of alternative models being a combination
of wavelets and neural networks, wavelets and Principal Component Analysis,
and neural network only, which delivered the out-of-sample accuracy of 61.54%,
33% and 53.85%, respectively.

Although the authors acknowledged the capability of rough sets to generate
forecasting rules, they decided that this ability was still not mature enough (ref-
erencing to the 44% accuracy reported by Bazan et al. [8]) and used a neural
network based forecasting engine. However, the proposed model is generic enough
to replace the used neural network model with a rough set classifier, bearing in
mind the research progress and superior forecasting capabilities of various rough
set and hybrid models delivered after the work of Bazan et al. [8] and listed
in this paper. The advantages of a rough set based forecasting engine, including
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human readable classification rules, relatively low calibration needs and the abil-
ity to consider qualitative information make such an experiment worthwhile.

Huang and Jane [62] proposed a hybrid model based on classical rough sets,
moving average autoregressive exogenous analysis (ARX – Bhardwaj and Swan-
son [13]) and Grey Systems theory (Deng [37]). Several financial ratios describing
the financial condition of the analyzed companies are used as entry attributes to
the trend prediction task employing a predictive ARX model applied to histor-
ical time series of quarterly stock market data extracted from the New Taiwan
Economy database for the period of 2003-2007. Entries with missing values were
rejected and detected outliers assigned a default value. The forecast is limited to
the next quarter or half a year period. Forecasted time series data carrying val-
ues for the 10 most significant conditional attributes was subsequently selected
for further processing using the GM(1,N) Grey method. The data was grouped
into three clusters using the K-means clustering algorithm. The rough set model
was then applied to the grouped forecast data and the generated lower approxi-
mation set used to generate decision rules. The stocks selected using the derived
decision rules were used to form a portfolio, where the weight of individual stocks
was computed using a Grey Relation Sequence. The rate of return of the selected
portfolio was subsequently verified and, if acceptable, the portfolio was run for
the next quarter. Otherwise, the portfolio structure was revisited by applying all
the above-mentioned processing steps. The model achieved a cumulative rate of
return of 82.45% versus the rate of return of 56.67% achieved by a Grey model
GM(1,1) based system over the three years period (from the 2nd quarter 2004
to the end of 2006).

Huang [61] proposed an extension of the hybrid stock market prediction model
introduced by Huang and Jane [62] by utilizing the Variable Precision Rough Sets
(VPRS), which introduce classification uncertainty into the model, controlled
using the precision parameter β. A method for determining a suitable β threshold
using the Fuzzy C-Means clustering method (Bezdek [12], Cox [29]) and fuzzy
algorithms was proposed.

Performance of both models, i.e. the one using the classical rough set and
VPRS, was compared and a better performance of the VPRS based model
against the RS based model (the cumulative rate of return over 3 years was
87.98% against 81.80%, respectively) was concluded.

Nair et al. [93] proposed a hybrid decision tree-rough sets model to predict
stock market movements within 1 day horizon for the SENSEX index of the
Bombay Stock Exchange. The data sample used contained index data (open,
high, low, close price and volume) for the period between 3rd of September
2003 and 7th of March 2010. The raw data was used to compute 21 technical
indicators describing the trend of volume and price, which served as conditional
attributes. The price trend was used as the decision attribute. The attribute set
was filtered using the C4.5 decision tree pruning and the resulting data used to
generate rough set reducts and decision rules.

The model efficiency was verified using 10-fold cross validation. The
classification accuracy of the hybrid system was 90.2% against 88.18% of the
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standalone rough set model, 77.66% of a simple feed-forward neural network
and 73.26% of a naive Bayes classifier.

Shen and Loh [114] proposed an application of rough sets combined with
clustering, using self-organizing maps (SOM – Kohonen [73]), to the predictive
analysis of financial time series in the context of a market timing strategy. The
input historical time series were represented by 7 technical indicators capturing
the trend on the underlying stock (e.g. moving average convergence/divergence,
stochastic oscillator, price rate of change) and selected based on the expert liter-
ature and related research (Shen and Tay [112]). The data was converted into a
rough set decision table using the columnizing method described by Baltzersen
[7]. The technical indicators served as conditional attributes. The decision at-
tribute was defined as a computed variable denoting the predicted direction of
the market up to 20 days in the future. The model initially applied the self-
organizing map clustering to the input data using the number of target groups
equal the number of values of the decision variable. The assigned cluster groups
were compared to the decision variable computed for the given object (the deci-
sion attribute has been discretized using the equal-frequency-interval method).
Based on the comparison a new decision attribute was assigned (mismatch) or
the existing attribute was retained (match). The so-called reconstructed decision
table was subsequently discretized using the Chi-square method (Tay and Shen
[133]) and used to generate reducts and rules based on the classical rough set
approach. Self-organizing maps were also used here to modify objects’ strength
values.

The model performance, in terms of the generated net profit, was compared
to the buy-and-hold strategy based on the data sample of historical time series of
S&P 500 between 4th of January 1988 and 26th of July 1999. Data from the year
1999 was used as the holdout sample. The system outperformed the buy-and-
hold strategy in the learning period but did not bring a better performance in the
validation period, as measured by the profit and Sharpe ratios. Depending from
the tuning parameters, the proposed system performed worse to comparable with
the buy-and-hold strategy, with the buy-and-hold performance benchmark for
the holdout period (1999) equal to 163 and the performance of the RoughSOM
system varying between -115.40 and 168.70, depending from the selected strength
threshold (0.5 to 3.0). The classification accuracy remained stable around 58%
regardless of the selected strength threshold and did not have much impact
on the profitability of the generated trading signals. The conclusion was that
by applying an expert knowledge to the selection of optimal trading rules the
performance of the proposed system could be further improved.

The system was also tested using three other future indices, namely MATIF-
CAC (French stock index futures), EUREX-BUND (German 10-year government
bond) and CBOT-US (United States 30-years government bond) – see Shen [113].
The author reported better performance of the proposed system vs. the buy-and-
hold strategy for these indices (643-1021 vs. 539.5, -7.54 to -2.02 vs. -7.47, -6.0 to
3.38 vs. -12.125, respectively). The classification accuracy varied between 51%
for the CBOT and 74% for MATIF and remained stable regardless of the selected
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strength threshold. Similarly to the case of S&P 500, the threshold had a large
influence on the profitability of the generated trading signals.

Pai et al. [95] applied rough set classification model supported by the di-
rected acyclic graph support vector machines (DAGSVM) model to the problem
of forecasting foreign exchange rates. The DAGSVMmodel allows using the SVM
method for multiclass classification problems. The input data set consisted of
13 conditional variables being technical indicators (moving average, momentum,
stochastic oscillators, etc.) and the decision variable being the rate of change
of the daily closing price. The proposed hybrid model discretized entry data
into 10 categories using the self-organizing maps (SOM) algorithm. The decision
variable was mapped into 4 classes. The discretized training data set was sub-
sequently analyzed using rough sets to generate reducts (8 conditional variables
were retained) and resulting classification rules, which were subsequently pruned
to improve classification accuracy. The reduced testing data set was also used to
calibrate (select parameters) for the DAGSVM model using the immune algo-
rithm and tabu search (IA/TS) method. The testing sample was first analyzed
using a rule set generated by the rough set model. Only in case no rule was
matching the entry data set, was it classified using the DAGSVN model. The
model was empirically tested using a sample of 600 daily market data for the
USD/JPY currency pair gathered in the period 2004-2007. The learning sample
used 500 points with the remaining 100 points serving as the testing sample.
The classification accuracy using rules pruning threshold of 3 was 68%, which
was reported as better than the accuracy of individual classifiers of the proposed
hybrid model.

Yu, Wang and Lai [151] proposed an interesting combination of text mining
and rough set analysis applied to the problem of the crude oil price movement
prediction. The model used a text mining algorithm, extracting factors correlated
with the oil price movements from unstructured textual sources and creating a
metadata repository. This factual dataset was subsequently analyzed using the
rough set model in order to remove noisy/redundant information and generate
efficient decision rules. The model effectiveness was compared to that of tradi-
tional structured data based prediction methods including multivariate (linear
regression. back–propagated neural network) and time series models (random
walk, autoregressive integrated moving average). The structured data set was
based on the monthly WTI (West Texas Intermediate) crude oil spot price for
the period 1970 – October 2004. The authors transformed the raw price quotes
into trend indicators to improve performance of the prediction models. The used
set of indicators was not described. The learning sample was constructed us-
ing the time period 1970 1999. The remaining data was used as the validation
sample.

The rough set and text mining (RSTM) model outperformed the other ap-
proaches reflecting its access to a wider set of information than the other struc-
tured data approaches (86.21% vs. 75.86% delivered by the second best neural
network). Furthermore, the model contained a feedback loop, which allowed for
continuous self-adjustment and improvement of decision rules.
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The majority of referenced work focused on delivering methods to predict
trends of financial time series and trading systems employing the forecast to
generate profitable trading signals. The proposed models were based on clas-
sical and variable precision rough sets as well as their combination with other
techniques, including neural networks, fuzzy rough sets, self-organizing maps,
decision trees, text mining, and autoregressive time series models. Given the
inherent noise and volatility of the raw financial time series, they were usually
pre-processed to a more stable (smoothed) representation defined by technical
trend indicators (moving average, price rate of change, oscillators, etc.), incre-
mental price changes or wavelet transform scaling. Technical indicators used to
transform the raw input time series were selected based on an expert knowledge.
The indicators provided inherent statistical properties, which account for the
crucial data timeliness. This property was often used by the discussed research
applying rough sets directly to the input data in order to generate reducts and
forecast rules. Another way to use rough sets was to utilize their strength in gen-
erating descriptive rules, based on decision tables created using other techniques,
like autoregressive exogenous analysis (ARX) or fuzzy time series models.

A generally interesting extension is the combination of rough sets with textual
(unstructured) data mining ([151]), in order to increase the amount of relevant
information available to the knowledge discovery system. This intuitively sensible
approach deserves further research as knowingly the market is riding on the news.

The presented empirical research used widely different data samples ranging
from small sample time series with monthly or quarterly frequency, where the
delivered observations can be perceived as an indication of the described model’s
basic potential rather than its direct usability, to relatively large samples with
high frequency data going down to minutes, where the practical usefulness of
the proposed solution was contested in the form of a trading system generating
intraday trading signals.

The seemingly successful application of rough sets in creation of trading sys-
tems based on analysis and forecast of time series with granularity ranging from
quarterly to intraday shows the flexibility of the model and its ability to work
alongside other soft computing methods in hybrid time series forecasting mod-
els towards a near real time trading system. Furthermore, the inherent ability
to identify the core set of input variables, allows the user to experiment with
a large number of correlated input variables, both quantitative (e.g. technical
indicators, wavelets) and qualitative (news).

A summary of the described rough set research focused on the financial time
series forecasting and trading systems is given in Table 2. Apart from the fore-
cast accuracy researchers used other performance measures, more suitable for
financial success measurement, like Sharpe ratio, rate of return and outright
profit/loss, as well as statistical error measures like root mean square error
(RMSE). The work referenced in Table 2 is therefore grouped according to the
application area, methodology and used performance metrics.
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Table 2. Summary of Rough Set based methods used for Financial Time Series Fore-
casting and Trading Systems

Area Model Discreti- Sample Cond. Performance Performance Refer-

sation Size varia Matrics22 vs. Others23,24 ences

Method bles

financial Rough Sets Expert 15100 7 α = 97.8% – [108]

time Objective 1250- 3-12 α = 64.7- >NN [2],

series 2220 98.0% >RS [34],

fore- [59],

casting [70],

[135],

[146]

10686 5 RoR=12.7% – [82],

Sharpe=1.47 [83]

– – – α < 50% – [7],[8]

Variable Expert 600 32-40 Rules posi – [45],

Precision tively verified [46],

Rough Sets by an expert [158],

Hybrid Expert 208- 3-13 α = 76.6- >NN [25],

Models 820 85.0% >RS [136],

Objective 600- 11-13 α = 68 − 93% – [95],

21300 [137]

2428- 1 RMSE=45.62- >CPDA [134]

2824 90.29 >FS

>RS

– 669- 21 α = 69.2- >Bayes [81],

1625 90.2% >NN [93]

>RS

406 32 α = 86.2% >ARIMA [151]25

>LRM

>NN

>RW

trading Variable Expert 132000 9 RoR=31.5% >RW [71]

system Precision – – – α = 70 − 77% – [104],

Rough Sets [105],

[119]

Hybrid Objective 5917- 10 profit= 385.8 >MA [4]

Models 6222 -1659.8% >NN

– 10 RoR= >Grey [61],

27.5-28.3% >RS [62]

1539- 7-10 α = 58.54− >GA [24],

2929 95.8% >NN [113],

>RS [114],

>RW [131]

– – – drawdown – [106]

reduction=

25%-50%

avg win-

ner/loser ratio

increase=50%-

100%

avg trade

length reduc-

tion=50%-80%

22 α = accuracy; RoR = annual rate of return; RMSE=root mean square error.
23 ARIMA = auto-regressive integrated moving average; Bayes=naive Bayes classifier;

CPDA = cumulative probability distribution approach; FS = fuzzy sets; LRM =
linear regression model; MA = simple moving average strategy; NN = neural net-
work; PCA = principal component analysis; RS = rough sets; RW = random walk
(buy & hold).

24 > is better; < is worse; = is comparable.
25 Rough Sets + Text Mining.
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3.3 Active Portfolio Management and Asset Valuation

The active portfolio management attempts to generate returns higher than
the reference benchmark by modifying the benchmark portfolio structure (con-
stituents and their weights). For example, an active portfolio manager may over-
weight some stocks listed in the S&P 500 index, which he believes will perform
better than the benchmark. Instrumental for this decision is information about
growth and value prospects of candidate assets (rate of return, growth rate,
etc.), so undervalued assets can be identified. This is often difficult given either
complex behavior of the valued assets or scarcity of available data. Many ac-
cepted statistical valuation models for financial assets are based on normalizing
assumptions, thus introducing model risk in the valuation. The models have also
an inherent difficulty of incorporating qualitative information, which is very of-
ten related to the behavioral aspect of the markets (the common assumption of
a so-called rational investor). The ability to get a data-inferred valuation or its
trend using soft computing techniques is useful in that case, as they are able
to work with small samples. The inherent ability of rough sets to analyze qual-
itative information and identify the relevant information in the input data set
allows the analysis to focus only on input variables having a factual impact on
the observed outcome.

An early discussion of this topic was provided in Greco et al. [47], where the
advantages of the rough set based analysis of portfolio data and related market
factors vs. the widely used single- and multifactor statistical risk models were
described. The authors compared the data requirements and predictive capa-
bilities of standard statistical models (using the multivariate regression as the
example model) with that of a rough set extended with the concepts of Pair-
wise Comparison Table, being the basis for the Dominance Relation Rough Sets
extension. The sample data set consisted of daily prices of an equally weighted
portfolio of 22 blue chip Italian companies and 7 market factors (e.g. Italian/US
Government bond rate, Italian overnight rate)26 for the period 1987 – 1992. The
time series were converted into their monthly logarithmic delta equivalent as
follows:

xt = ln(at)− ln(at−1), (27)

where at is the level at time t.
The multivariate regression was done using data from the period 1991-1992.

The rough set analysis used data from 1991 only. The required data discretiza-
tion was performed using arbitrarily selected thresholds, resulting in 5 values for
all conditional variables. The resulting decision table was processed to produce the
Pairwise Comparison Table used to generate classification rules. The multivariate
analysis identified only 2 risk factors as significant, whereas the rough set analysis
has identified only one redundant factor. The rough set model generated classifi-
cation rules, which provided a correct prediction of the portfolio value. However,
no further information about the accuracy of the experiment was provided as the

26 OECD CPI and Business Confidence Index were provided on a monthly basis.
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authors focused more on identifying the possible benefits of the method at that
initial (as the authors said ’pioneristic’) stage, i.e.:

1. Statistical multifactor models (MFM) are suitable for analysis of stable re-
lationships, but may fail when applied to small data samples or during tur-
bulent periods - an example of this phenomena is given by the subprime
mortgage crisis, where wrong valuation and rating of US mortgages as well
as disdain for liquidity risk caused multiple financial institutions to fail and
the crisis spilled over to the Eurozone. In this respect, rough set analysis
was said to perform well with small samples and react to all input signals
without the need for any assumptions regarding their statistical properties,
like in the MFM case.

2. From the portfolio and risk management perspective, risk model sensitivities
and rough set decision rules are alternative representations of risk exposures,
with rough sets being able to capture the inherent market behavior.

3. Ability to consider strictly qualitative information while managing portfolio
is an increasingly attractive feature postulated by the behavioral finance,
with the rough set model being well suited for this purpose.

Susmaga et al. [129] subsequently proposed the use of the rough set theory
when selecting candidate stocks for an active portfolio management strategy.
The ability of the rough set model to find the optimal (and minimal) set of
attributes really driving the decision parameters out of the large input group of
candidate attributes was given as the main advantage. The investors can reduce
the amount of data needed to take the investment decision and are guided by
decision rules described by a set of accuracy measures (coverage, accuracy) to
classify candidate instruments.

The authors showed the applicability of the rough set theory, as implemented
in the ProFIT system, to the stock classification problem on the example of a
subset of stocks listed on the Toronto Stock Exchange between 1989 and 1993
(several volatile stock classes, like mining and financial stocks were excluded).
For each year in the entry data sample, a decision table was constructed using
the annual rate of return as the decision attribute and other quarterly financial
data (earnings, earnings surprise, capitalization, price tendency ratios, etc.) as
conditional attributes. Discretization of conditional attributes was performed
using value thresholds recommended by financial experts. The decision attribute
was discretized into four schemas consisting of 2 to 4 classes. The impact of the
classification group schema (number of classes assigned to the decision attribute)
on the strength and accuracy of the subsequently generated decision rules was
shown as being significant, with the accuracy ratio of a 10-fold cross validation
varying between 49.7% and 72.3%.

Reducts and resulting decision rules were generated separately for each year in
the data sample, based on the decision attribute being an annual rate of return.
This would potentially require the use of a different subset of entry conditional
attributes for each year.
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The authors proposed the notion of a Common Reduct applicable across all
years in the data sample. This allowed a reduction of the number of initially used
conditional attributes by 40%. The average accuracy of the model was 71.8%,
as tested using 10-fold cross-validation, which indicated a large potential of the
method when applied to the stock classification problem.

Shyng et al. [118] proposed a method to improve the quality and knowledge
discovery ability of generated rules, as applied to the case of a personal invest-
ment portfolio analysis. The required behavioral analysis is well suited for rough
set based models, as most of the information acquired from individuals (esp.
their preferences and targets) is of a qualitative nature. The proposed Forward
Search and Backward Trace (FSBT) algorithm seeks to extract more descriptive
information from the analyzed data set than the one generated by classical rough
set method. The considered information system contains sets of conditional and
decision attributes. The method starts with the identification of decision sets
and selection of one such set representing each value of the target classification
concept, i.e. the case study was considered with the perceived risk exposure of
the portfolio being conservative, moderate or aggressive. Therefore, three de-
cision sets had to be selected, which would be representable for each type of
risk appetite. The authors did not provide an automated algorithm for the se-
lection of representative decision sets – these were selected using the rule of
maximum support and expert judgment for final selection (if more than one set
had the maximum support). The data objects supporting the selected decision
sets (called selected objects) are subsequently identified and all objects matching
their set of conditional attributes and the portfolio risk appetite (called tar-
get objects) are found. The proposed algorithm is therefore in fact looking for
all objects belonging to the upper approximation of the decision class (defined
by selection objects forming its lower approximation), which are matching the
predefined target criteria (i.e. the actual decision attribute). The found target
objects are then used for data analysis comparing their structure – the authors
did not deliver more details on the last step but acknowledged that the proposed
method serves the best as a supportive algorithm to prune and improve the set
of generated rules in an expert based knowledge discovery process. The method
was empirically tested on the sample of 200 questionnaires describing the indi-
vidual profile, selected portfolio and risk appetite of the questioned persons. The
conditional variables were qualitative or already divided into arbitrarily defined
bins, e.g. monthly salary was divided into 5 bins. The method generated 14 rules
and had 100% accuracy vs. rough sets generating more than 85 rules with lower
than 100% accuracy (not provided)27 .

The authors continued looking at the rough set based analysis of personal
portfolio investment preferences in Shyng et al. [117], where a combination
of rough sets and Formal Concept Analysis (FCA) was proposed. The rough
set model was used in its classical capacity of generating decision rules, which
were subsequently pruned using a simple support threshold parameter (all rules
with support below or equal the threshold were discarded). The remaining rules

27 It should however be noted, that no out-of-sample testing was described/used.
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were analyzed using the FCA concept in order to enhance the amount of meta-
information about the rules and used attributes (structural dependencies). The
concept was tested using the same data set as the one utilized in Shyn et al.
[118] with one difference, namely the ’intermediary’ set of decision attributes
was not used and replaced with the target decision attribute being the portfolio
risk appetite. The pruning support threshold of one object was used. The au-
thors selected 40 rules out of the 67 rules generated by rough sets to be analyzed
using the FCA method. The insight in the attribute relationship gained using
the FCA method allowed to simplify some rules beyond the form proposed by
rough sets. It also provided an insight in the relative importance of the attributes
using the FCA notion of sub- and super-concept.

D’Amato [30] showed the application of rough sets to the problem of real
estate pricing classification in southern Italy. The applicability and advantages
of the model was shown using a data sample of 30 properties, where the property
price was used as the decision variable, and only 2 conditional variables, namely
commercial area and parking availability were used. The ability to work with
incomplete and scarce data but also the ability to apply the classification abilities
of rough sets to the mass appraisal task were cited as the decisive advantage of
the rough set approach.

The author subsequently presented in d’Amato [31] and d’Amato [32] the
application of an extended rough set model, using the concept of Tolerance
Rough Sets’ Value Tolerance Relation (Stefanowski and Tsoukias [128]), to the
mass appraisal problem and compared it with the traditional multiple regression
analysis. Data was not discretized – instead, the flexibility in the definition of
the equivalence relation proposed by the Tolerance Rough Sets was employed to
introduce equivalence thresholds. The employed similarity measure was defined
as follows:

Rj(x, y) =
(max

(
0,min

(
(aj(x), aj(y)

)
+ τ −max

(
aj(x), aj(y)

))
τ

, (28)

where τ is the threshold parameter.
The matching between the given classified object and a candidate classification

rules was also using the above similarity formula. The most ’similar’ rule would
be used to classify the given object. This replaces the standard rough set rule
voting based on the coverage ratio.

In d’Amato [31] the data sample of 69 real estate properties described by
4 conditional variables was used to test the Tolerance Rough Sets model. A
learning sample of 19 properties was used to generate classification rules tested
on the remaining test sample of 50 properties. The equivalence thresholds were
chosen arbitrarily and the predictive accuracy of the model compared with the
predictive quality of the linear multiple regression. The forecast accuracy of the
multiple regression analysis was deemed better than that of rough sets but the
difficulties with the calibration of the τ threshold parameter were quoted as the
possible main reason.
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In d’Amato [32] the Tolerance Rough Sets model was improved by providing
an objective definition of the equivalence threshold defined as a standard devi-
ation of the respective attribute. The concept was tested using a sample of 600
real estate prices from Helsinki, Finland for January 2005. Data was divided into
learning and testing samples with 390 and 210 entries, respectively. The predic-
tion accuracy was comparable, with the rough set model being slightly better
than the linear regression model when applied to the testing sample.

It is worth noting that all the rules generated and tested by the model had
the in-sample support and accuracy of 1, i.e. were supported by only one data
entry. This is surprising since, even though the data was not discretized, the
usage of the tolerance relation should allow generating classification rules with
higher support. Usage of many rules with weak support hints at overfitting and
may diminish the predictive accuracy of the model. One of the possible reasons
could be inappropriate discriminant thresholds, which need to be calibrated to
the data. Direct discretization of input data seems to provide a better control
over the data partitioning and is directly reflected in the generated rules un-
like in the above cases, where the generated rules contained raw numeric values
from the underlying data samples (it seems however to be a limitation of the
used software rather than the model, as the tolerance relation can be considered
when generating the rules).

Tolerance Rough Sets

Tolerance Rough Sets replace the equivalence relation used by the classical rough
set theory by another eligible tolerance (Skowron and Stepaniuk [122,123]) or
similarity relation (Yao and Wong [141]). The approach allows one to use any
suitable similarity measure in the similarity relation definition for each attribute.
A popular measure used in this approach is defined as follows (Kretowski and
Stepaniuk [77], Stefanowski [127]):

sa(x, y) = 1− |(a(x)− a(y)|
|amax − amin|

(29)

where:

◦ a(x) and a(y) are values of the attribute a used for the similarity verification
between objects x and y, respectively.

◦ amax and amin are respective maximum and minimum values of the attribute
a in the given set U .

The Tolerance Rough Sets model introduces a threshold parameter τ , which
decides about the similarity of the compared objects, e.g. objects x and y are
similar if sa(x, y) ≥ τ .

Objects meeting the similarity condition construct so-called tolerance set
TSa,τ :

TSa,τ(x) = {y ∈ U : sa(x, y) ≥ τ} (30)
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If multiple attributes are used to assess the similarity of compared objects then
an aggregated similarity measure sB(x, y) and a global similarity threshold τ
have to be provided, which considers the attribute set B ⊆ C to create the
tolerance set TSB,τ .

The most popular approaches use additive or multiplicative aggregation of
the similarity measures computed for individual attributes, for example:

(x, y) ∈ TSB,x iff
∏
a∈B

sa(x, y)≥ τ (31)

(x, y) ∈ TSB,τ iff

∑
a∈B sa(x, y)

|B| ≥ τ (32)

The definitions of lower and upper set approximations follow then the classical
RS definition:

Bτ (X) = {x ∈ U : TSB,τ(x) ⊆ X}, (33)

Bτ (X) = {x ∈ U : TSB,τ(x) ∩X �= ∅} (34)

Hybridization

The combination of rough sets with other soft computing techniques was also
applied to the problem of asset value forecasting.

Chen and Cheng [23] applied a fuzzy set model to discretize input data and
the rough set based LEM2 algorithm to generate predictive decision rules used
to the classify Initial Public Offering (IPO) returns. The authors proposed three
variants using different methods of data selection and discretization. Unlike Teoh
et al. [134], where the focus was on the analysis of time series identified by one
conditional attribute being the closing price, the authors were looking at a clas-
sification problem described by multiple candidate condition variables. Further-
more, the initial data set and candidate attributes were manually selected and
preprocessed by the authors, based on their expert knowledge of the market. The
candidate set of attributes was then further reduced using several Feature Selec-
tion Methods (e.g. Chi-square, GainRatio, InfoGain, etc.). The authors limited
the core set to three attributes, one of them being continuous (closing price).
The continuous attribute value set was partitioned using the Minimize Entropy
Principle Approach (MEPA). The partitioned set of values was then used to gen-
erate fuzzy membership functions, based on MEPA, and assigned the attribute
data to one or more linguistic values (fuzzification). The maximum membership
degree was then used to select the associated linguistic value, being the output
of the discretization process.

An alternative decision table was generated using expert knowledge (selection
of conditional attributes) and C4.5 decision tree algorithm.

The resulting decision table, where enumerated IPO returns served as the
decision variable, was processed by the rough set based LEM2 algorithm in order
to generate a set of decision rules. The generated decision rules were filtered by
ignoring rules supported by less than 2 entries.
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The hybrid models were tested using the IPO data set gathered by authors
for Initial Public Offerings launched in the period 1985-2003 on the Taiwanese
financial market. The selected data set contained 220 entries described by 11
attributes. The data set was randomly split into training and testing samples
with the ratio of 67%/33%. The split procedure was repeated 10 times.

The model variant based on the discretization performed with the C4.5 de-
cision tree had the best accuracy of 82%. This is not surprising as this model
was able to consider more conditional attributes than the alternatives while gen-
erating the decision rules (10 vs. 3). The MEPA based model delivered a very
good accuracy of 80% given the much smaller number of conditional attributes
used (3).

The accuracy of the proposed hybrids was also compared to that of stand-alone
classification algorithms, namely C4.5, Bayesian networks, neural network and
traditional rough sets. The proposed combination of C4.5 and LEM2 algorithms
proved again to deliver the best accuracy (82%).

While the empirical results show the usefulness and potential of hybrid meth-
ods, the authors acknowledged the potential of considering more conditional
variables in the primary MEPA based solution, including macroeconomic (back-
ground or environmental) variables like an economic depression indicator. They
also noted the necessity of applying rule filtering in order to prevent data over-
fitting and high dependency of the proposed models from the expert input in
the data selection and preprocessing step.

Liu et al. [85] proposed a combination of rough sets, feature selection algo-
rithms and ordered weighted average (OWA) operator applied in the context
of an electronic industry revenue growth rate forecast, based on the related
company data. The authors used the ability of rough sets to generate human
readable classification rules and forecast the trend of the observed decision vari-
able (growth rate) but did not employ the core ability of rough sets to generate
reducts. Instead, the model employed multiple feature selection methods (Chi
Squared, Gain Ratio, Information Gain, ReliefF, Symmetrical Uncertainty) to
remove irrelevant information from the input data set. The resulting conditional
variable data was then processed using the OWA operator (Yager [140]), which
allowed aggregation of input variables into one representative value per data
entry. Another quoted advantage of OWA was the ability to apply configurable
weights to the variables being aggregated, as controlled by so called orness α
parameter (another descriptive parameter used is the dispersion parameter).
The decision variable, being the operating revenue growth trend, had 3 values,
denoting the growth rate value buckets of less than 0%, 0%-100%, and more
than 100%.The resulting decision table was then fed into the rough set model
to generate classification rules used to forecast the revenue growth trend.

The proposed model was tested using quarterly data of publicly traded elec-
tronic companies listed in the Taiwan Economic Journal database for years 2004
and 2005. The data set consisted of 12 variables and contained 2413 records
for 2004 and 2490 record for 2005. Data from 2004 and 2005 were processed
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separately. The rough set model was implemented using the LEM2 algorithm.
The model performance was tested using 10-fold cross validation for multiple
values of α = [0.0, 1.0], where the learning and testing samples contained 67%
and 33% of data, respectively. The best achieved accuracy was 96.82% and out-
performed classical rough set (74.89%), decision tree C4.5 (74.47%), Bayesian
networks (71.01%), and multilayer perceptron neural network (73.28%). How-
ever, the best performance was achieved for α = 1.0, which means that the
explanatory power was concentrated in one input variable (operational profit)
only. This rather trivial correlation hints at bias in the input data set, which
could be caused by focusing on only one industry. The authors acknowledged
the need for further experiments on larger data sets to further improve and
verify the accuracy of the proposed model.

Chen et al. [21] and Cheng and Chen [26] proposed a combination of mul-
tiple techniques supporting a rough set based classifier applied to the problem
of a profit growth prediction in financial industry. The ability of rough sets to
rely only on the actual data and their ability to generate comprehensive rules
based on the set of quantitative and qualitative variables was one of the rea-
sons for their selection as the core classifier. The input data set consisted of
financial variables describing the financial well-being of the analyzed companies
and associated growth rate as the decision variable. The proposed processing
steps generally consisted of an expert based initial data selection, preprocessing
(outlier detection and data cleanup), data discretization, feature selection, and
finally classification rule generation and pruning. The authors proposed three
hybrid rough set based models differing in the selected data discretization and
attribute selection methods, which produced the entry data set for the rough set
based rule generation:

• Model A used the fuzzy set based Minimize Entropy Principle Approach
(MEPA), applied in multiple other publications referenced in this paper, to
partition the entry continuous variables. Subsequently, the similarity thresh-
old is computed and the fuzzified values are mapped into the best matching
linguistic values using the triangular fuzzy number method.

• Model B extends Model A by adding the feature selection step before ap-
plying the MEPA based partitioning. The authors applied the correlation
based feature selection, Chi-square, Consistency, Gain Ratio, and InfoGain
methods to filter out insignificant entry attributes.

• Model C employs the C4.5 decision tree to discretize data, unlike models A
and B employing the fuzzy sets theory. The input variables were discretized
using the expert knowledge to calibrate the C4.5 decision tree partitioning
generating the cutoff points for the discretization.

The so-prepared decision system was analyzed using the rough set LEM2 algo-
rithm in order to generate decision rules.

The proposed hybrid models were tested using a data sample randomly split
into the learning and testing sample containing 67% and 33% of data, respectively.
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The data sample consisted of 636 entries containing 8 conditional variables and 1
decision variable (profit growth rate) describing quarterly data of 70 financial hold-
ing companies in the period 2004-2006.The conditional attributes were discretized
using one of the discretization methods described above (following the model def-
inition), whereas the PGR decision attribute was mapped into three classes using
the expert knowledge of the authors (PGR< 0%⇒poor; PGR= 0−50%⇒good;
PGR > 50%⇒fair). The procedure was repeated 10 times and also used to train
and test alternative classification models in order to generate performance bench-
marks for the proposed hybrid models. The alternative models include decision
tree, MLP neural network, Bayesian network, and rough sets. The proposed hy-
bridmodel C delivered the best average classification accuracy of 97.41%, with the
modelAbeing the secondwith 96.99%accuracy.ModelB achieved 94.86%andwas
worse than the decision tree based model (95.05%). The remaining single model
classifiers were worse than the hybrids with rough set model achieving 82.87% ac-
curacy. The proposed hybrid model C also reduced the number of generated rules
by almost 68.5% against the standalone rough set model. Models A and B were
even better, reducing the number of rules vs. the standalone rough set model by
88% and 98.5%, respectively. The authors pointed out some weaknesses and room
for future improvements including larger and more diversified data samples, in-
cluding data from different industry sectors and geographic regions, a larger set of
input variables, further combinations ofmultiple classifiermodels, and comparison
with other techniques like genetic algorithms or fuzzy time series.

Chen and Cheng [20] continued the experiment described in Chen et al. [21]
and Cheng and Chen [26], focusing on the combination of a decision tree (C4.5)
and rough set classifier (i.e. the best performing model C) and using the same
data set consisting of 636 entries containing 8 conditional variables and 1 decision
variable (profit growth rate) describing quarterly data of 70 financial holding
companies in the period 2004-2006. The decision variable (profit growth rate)
was again partitioned into three classes but using different threshold, i.e. PGR<
0%⇒poor; PGR= 0−100%⇒ good; PGR> 100%⇒fair). In addition, the data
set was split into the testing and learning sample using a slightly different ratio
of 66%/34% vs. the previously used 67%/33%. Interestingly, the tested hybrid
model delivered the same accuracy (97.41%) but generated twice as many rules
as reported before (50% vs. 68.5%). This may hint at high sensitivity of the
model to the discretization of the decision variable.

The authors suggested a further improvement of the proposed method by
considering the cost of false classification and incorporating macroeconomic and
qualitative information, like governance quality into the forecasting process.

The problem of the profit rate forecast was also studied by Zhao et al. [156]
who proposed a forecasting model being a combination of a neighborhood rough
set and least square support vector machine (LS-SVM) models. The neighbor-
hood rough setmodel was used as the pre-processing stage, responsible for data re-
duction and discretization, thanks to the concept of the neighborhood distance δ.
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The prepared data was then analyzed using the LS-SVMmodel in order to gener-
ate the classification function for the company profit forecast. The proposedmodel
was accompanied by the alternative analysis using the factor analysis and a com-
bination of classical rough sets and SVM.

The classical rough set based model used the equal frequency binning for
data discretization and Johnson’s algorithm for generation of reducts. The mod-
els were tested using an initial data set described by 31 conditional variables
describing the financial characteristics of the analyzed company, e.g. return on
equity, total assets turnover, etc. The rough pre-processing stage reduced the
number of variables to 5, whereas the alternative classical rough analysis gener-
ated a reduct with 12 variables. The proposed model of neighborhood rough sets
and LS-SVM provided the best classification accuracy of 94% with the LS-SVM
classification based on the rough preprocessing being second (90.6%). The stan-
dard SVM model performed worse regardless of the data preprocessing algorithm
(neighborhood or classical rough sets).

Research on the application of rough sets to the portfolio modeling is rela-
tively scarce, with the seminal work of Susmaga et al. [129] dated back to 1996.
Portfolio modeling is inevitably dependent on the valuation of the underlying
assets, and this is where most of the focus can be found, either directly within
the context of portfolio stock selection, where interaction between selected assets
and their weighing has to be considered (Greco et al. [47]) or on the individual
asset level (Chen and Cheng [23], Liu et al. [85], Chen and Cheng [20]). The
latter is also the actual underlying drive of the trading systems and time se-
ries forecasting research presented in the previous section. Generally, rough sets
and their extensions, like dominance and tolerance relation based variants, were
found to be a viable tool for stock selection, implicitly considering the relation-
ships present in the analyzed portfolio data. Hybrid models were also proposed
for valuation of assets with little or hard interpretable information achieving
very promising results. The presented rough set based models regularly outper-
formed the alternative solutions employing neural networks, decision trees, and
naive Bayesian classifiers. Consequently, it seems that rough set based models
deliver interesting tools to analyze combined quantitative and qualitative input
data, and generate interpretable and useful results. On the other side, the rough
set based models are not as simple to use as traditional statistical tools, since
especially the extended rough sets (variable precision, dominance or tolerance
relation) require careful tuning of their parameters and recurring interpretation
of output in order to achieve the best forecasting performance (d’Amato [32,31]).
Hence the need for further research in optimal calibration and rule selection al-
gorithms but this is true for all soft computing methods. A summary of the
described rough set research focused on the portfolio management and asset
valuation is given in Table 3.
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Table 3. Summary of Rough Set based methods used for Portfolio Management and
Asset Valuation

Area Model Discreti- Sample Condi- Accuracy Accuracy vs. Refer-

sation Size tional Others28,29 ences

Method varia-

bles

active Rough Sets Expert 30-405 2-10 71.8-100%30 >RS [30],

portfolio [117],

man- [118],

age- [129],

ment Dominance Expert 66 8 – – [47]

Rough Sets

asset Tolerance Expert 69-600 4 76.2-82.9% <LRM [31],

valua- Rough Sets [32]

Hybrid Objec- 220- 4-31 83.0-97.4% >Bayes [20],

models tive31 4903 >DT [21],

>FA [23],

>Grey Model [26],

>RS [85],

>NN [156]

4 Conclusion and Future Research Areas

This paper provided a review of problems in the area of economy and finance
prediction models, and the related empirical research and solutions using the
classical rough set theory, its extensions and hybrid solutions including other
knowledge discovery methods, delivered in the time period 1992-2012.

The research is very active and growing in sophistication with the recent trend
going towards hybrid solutions combining rough sets with other knowledge dis-
covery techniques, especially neural networks (being traditionally the most pop-
ular predictive model in finance), fuzzy sets, genetic algorithms and support
vector machines (Zhou and Bai [157]). Another trend is an innovative combina-
tion of traditional time series modeling (e.g. ARIMA) with the rough set’s ability
to deliver reducts (Huang and Jane [62]). A very promising hybridization pro-
posal attempts to combine rough sets with text mining techniques, which have
been recently making significant inroads in finance, especially for stock mar-
ket prediction (Yu et al. [151]), but also risk management (Beynon et al. [11]).
The ability to incorporate qualitative signals from the text mining will make it
possible to account for events not currently being captured by the traditional
technical or fundamental analysis.

The research is however still suffering from a relatively low number of real-
life studies on large data samples, accounting for noisy and imperfect data. The
reported accuracy ratios are very sensitive to the selected conditional variables,

28 Bayes=naive Bayes classifier; DT=decision tree; FA=factor analysis; LRM=linear
regres-sion model; NN=neural network; RS=rough sets

29 > is better; < is worse; = is comparable
30 100% on learning sample only reported by Shyng et al. [118]
31 Chen et al. [21,26,20] used expert knowledge to discretize the decision variable and

calibrate the discretization methods applied to conditional variables.
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learning data sample, its discretization methods and definition of the decision
variables. The performance of the proposed solutions is still one of open research
challenges. There are however some attempts towards increasing the volumes of
data being analyzed, going in the direction of real time analysis (Lee et al.
[82,83]), which is an interesting area of research in the financial domain context,
as real time streaming data is ubiquitous.

It is evident from the presented empirical research that the rough set model
has multiple interesting applications in economy and finance, delivering suc-
cessful solutions comparable to and often exceeding the performance of more
established techniques, including statistical tools, neural networks or decision
trees.

Consequently, more research is needed in high impact areas like risk manage-
ment, (also outside of the credit risk domain), time series-aware stock market
prediction and incorporation of qualitative events coming from text data min-
ing in the prediction process used to time the market and value and manage
portfolio assets.
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51. Greco, S., Matarazzo, B., S�lowiński, R., Stefanowski, J.: Variable consistency
model of dominance-based rough sets approach. In: Ziarko, W.P., Yao, Y. (eds.)
RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)

52. Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation by dominance re-
lations. International Journal of Intelligent Systems 17(2), 153–171 (2002)

53. Greco, S., Matarazzo, B., Slowinski, R., Zanakis, S.: Global investing risk: a
case study of knowledge assessment via rough sets. Annals of Operations Re-
search 185(1), 105–138 (2011)

54. Griffiths, B., Beynon, M.: Expositing stages of VPRS analysis in an expert system:
Application with bank credit ratings. Expert Systems with Applications 29(4),
879–888 (2005)

55. Grzymala-Busse, J.: LERS-a system for learning from examples based on rough
sets. In: Intelligent Decision Support, pp. 3–18. Springer (1992)

56. Grzymala-Busse, J.: A new version of the rule induction system LERS. Funda-
menta Informaticae 31(1), 27–39 (1997)

57. Grzymala-Busse, J., Ziarko, W.: Data mining and rough set theory. Communica-
tions of the ACM 43(4), 108–109 (2000)

58. Hashemi, R., Le Blanc, L., Rucks, C., Rajaratnam, A.: A hybrid intelligent sys-
tem for predicting bank holding structures. European Journal of Operational
Research 109(2), 390–402 (1998)

59. Herbert, J., Yao, J.: Time-series data analysis with rough sets. CIEF 4, 908–911
(2005)

60. Hu, Q., Yu, D., Liu, J., Wu, C.: Neighborhood rough set based heterogeneous
feature subset selection. Information Sciences 178(18), 3577–3594 (2008)

61. Huang, K.: Application of VPRS model with enhanced threshold parameter se-
lection mechanism to automatic stock market forecasting and portfolio selection.
Expert Systems with Applications 36(9), 11652–11661 (2009)

62. Huang, K., Jane, C.-J.: A hybrid model for stock market forecasting and portfo-
lio selection based on ARX, grey system and RS theories. Expert Systems with
Applications 36(3), 5387–5392 (2009)

63. Jankowski, A., Skowron, A.: Practical Issues of Complex Systems Engineering:
Wisdom Technology Approach. Springer, Heidelberg (in preparation, 2014)

64. Jensen, R., Shen, Q.: Finding rough set reducts with ant colony optimization.
In: Proceedings of the 2003 UK Workshop on Computational Intelligence, vol. 1
(2003)

65. Jie, Z., Yan, L., Xin, L.: Research on financial crisis prediction model based on
Rough Sets and Neural Network. In: 2011 International Conference on E-Business
and E-Government (ICEE), pp. 1–4 (2011)

66. Jorion, P.: Value at risk: the new benchmark for managing financial risk 2.
McGraw-Hill, New York (2007)

67. Kasabov, N.: Evolving fuzzy neural networks for supervised/unsupervised online
knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 31(6), 902–918 (2001)

68. Kasabov, N., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference sys-
tem and its application for time-series prediction. IEEE Transactions on Fuzzy
Systems 10(2), 144–154 (2002)

69. Kawasaki, S., Binh, N., Bao, T.: Hierarchical document clustering based on tol-
erance rough set model. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.)
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Abstract. The notion of similarity plays an important role in machine
learning and artificial intelligence. It is widely used in tasks related to
a supervised classification, clustering, an outlier detection and planning.
Moreover, in domains such as information retrieval or case-based rea-
soning, the concept of similarity is essential as it is used at every phase
of the reasoning cycle. The similarity itself, however, is a very complex
concept that slips out from formal definitions. A similarity of two objects
can be different depending on a considered context. In many practical
situations it is difficult even to evaluate the quality of similarity assess-
ments without considering the task for which they were performed. Due
to this fact the similarity should be learnt from data, specifically for the
task at hand. This paper presents a research on the problem of similar-
ity learning, which is a part of author’s PHD dissertation. It describes a
similarity model, called Rule-Based Similarity, and shows algorithms for
constructing this model from available data. The model utilizes notions
from the rough set theory to derive a similarity function that allows
to approximate the similarity relation in a given context. It is largely
inspired by the idea of Tversky’s feature contrast model and it has sev-
eral analogical properties. In the paper, those theoretical properties are
described and discussed. Moreover, the paper presents results of experi-
ments on real-life data sets, in which a quality of the proposed model is
thoroughly evaluated and compared with the state-of-the-art algorithms.
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1 Introduction

For many centuries the idea of similarity has inspired researchers from differ-
ent fields, in particular philosophers, psychologists and mathematicians. Since
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Plato and his student, Aristotle, people have been trying to systematize the
world around them by creating ontologies and grouping similar objects, living
organisms or natural phenomena based on their characteristics. Over the years,
many of the great discoveries have been made by scientists and inventors who
noticed some resemblance between processes or objects, and on that basis formed
a theory describing them.

Although human mind is capable of effortlessly assessing similarities between
objects, there is no single methodology of selecting or building similarity models
appropriate for a wide range of complex object classes and domains. This dis-
sertation deals with a problem of learning a similarity relation or constructing
a similarity function from data with a particular focus on high dimensional ob-
ject domains. Apart from an overview of several well-known similarity learning
methods, a rule-based model of similarity is proposed, whose flexibility allows
to overcome many practical issues related with the commonly used approaches.
This model and its two extensions, which are designed specifically to facilitate
dealing with extremely high dimensional objects, are tested in extensive experi-
ments in order to show their practical usefulness.

1.1 Motivation and Aims

The ability to identify similar objects is believed to play a fundamental role in
the process of human decision making and learning [1–3]. Stefan Banach was
known to say that:

“Good mathematicians see analogies. Great mathematicians see analogies
between analogies.”

The notion of similarity itself, however, slips out from the formal scientific defini-
tions [4,5]. Despite this fact, similarity or reasoning by analogy is being utilized
by numerous machine learning algorithms in applications ranging from a su-
pervised classification to unsupervised clustering and an outlier detection [6–8].
Knowing how to discriminate similar cases (or objects) from those which are
dissimilar in a desired context would enable a more accurate classification and
detection of unusual or dangerous situations or behaviours. Unfortunately, due
to difficulties related to an a priori selection of a similarity model, which are
particularly apparent when a metric space representation of objects is high di-
mensional, the performance of similarity-based machine learning algorithms may
be limited [9].

A scope of this dissertation is a problem of learning how to recognize whether
two objects are similar in a pre-specified context. A variety of methods have been
used in order to construct similarity models and define a relation which would
combine intuitive properties postulated by psychologists with a good perfor-
mance in real-life applications. Among those a huge share was based on distance
measures. In that approach, objects are treated as points in a metric space of
their attributes and the similarity is a non-increasing function of the distance
between them. Objects are regarded as similar if they are close enough in this
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space [9–11]. Such models may often be improved by assigning weights to at-
tributes which express their importance to the model. Tuning those weights
results in better fitting the relation to a data set and can be regarded as an
example of similarity learning. Algorithms for a computationally efficient op-
timization of parameters for common similarity measures were investigated by
numerous researchers, e.g. [12–19].

One may argue that the relation of this kind is very intuitive because objects
which have many similar values of attributes are likely to be similar. However, re-
searchers like Amos Tversky [5,10,20] empirically showed that in some contexts,
similarity does not necessarily have properties like symmetry or subadditivity
which are implied by distance measures. This situation occurs particularly fre-
quent when we compare objects of great complexity, often described by a large
number of attributes. The explanation for this may lie in the fact that complex
objects can be similar in some aspects and dissimilar in others. Hence, some ad-
ditional knowledge about the context is needed to decide which of the similarity
aspects are more important [5, 21].

Moreover, the dependencies between local and global similarities may be
highly non-linear and in order to capture them it is necessary to extract some
higher-level features of objects. Since there usually are numerous possible fea-
tures to consider, this task can rarely be performed by human experts. Instead,
the higher-level characteristics of objects and methods for their aggregation need
to be derived from available data. Of course, as in all types of machine learn-
ing tasks, a similarity learning algorithm needs to balance complexity and effi-
ciency [7, 8]. The construction of an overly complex similarity model will take
too much time and resources to be applicable to real-life problems. Such a model
may also be over-fitted to available data and yield poor performance in assessing
the similarity of new objects.

The aim of this dissertation is to address those issues by proposing a similar-
ity learning model called Rule-Based Similarity. The main motivation for that
model comes from Tversky’s works on the feature contrast model of similarity [5].
Instead of embedding objects into a metric space of their attributes, in the pro-
posed approach the objects are represented by sets of higher-level features which
can be more semantically meaningful than the low-level attribute values. In the
model, such new features are defined by rules extracted from data, analogically
to a rule-based object representation discussed in [22]. Unlike in that approach,
however, in Rule-Based Similarity the new features are not treated as regular at-
tributes but rather, they are regarded as arguments for or against the similarity
of the compared objects. By combining the set representation with techniques
developed within the theory of rough sets, the model tries to aggregate those ar-
guments and to express the similarity in a context dictated by a given task (e.g.
supervised classification or semantic clustering), and by other objects present
in the data. In this way, the resulting similarity function is more likely to re-
flect natural properties of similarity without loosing its practical usefulness and
reliability.



Algorithms for Similarity Relation Learning from High Dimensional Data 177

Due to the subjectivity and complexity of the similarity notion, those ap-
pealing qualities can not be justified based only on theoretical properties and
intuitions. The second goal of this dissertation is to provide results of thorough
experiments in which the performance of Rule-Based Similarity was evaluated
on many different data sets. Usefulness of this model in practical tasks, such as
a supervised classification and an unsupervised cluster analysis, was compared
with other similarity models as well as to the state-of-the-art in a given domain.
The results of those tests may be used as arguments confirming the validity of
the proposed model design.

1.2 Main Contributions

In the dissertation the problem of learning a similarity relation for a predefined
data analysis task is discussed. Expectations regarding the construction and gen-
eral properties of similarity models are formulated. Major challenges related to
this problem are characterised and some practical solutions are proposed. Finally,
the validity of the proposed methods is shown through extensive experiments on
real-life data. Hence the main contributions of this dissertation are threefold:

1. A discussion on properties of the similarity relation from the point of view
of data analysis and artificial intelligence.

2. A proposition of a similarity model and some construction algorithms that
combine intuitive expectations with efficiency in practical applications.

3. An implementation and an experimental evaluation of the proposed similar-
ity model on a wide range of data sets and in different use scenarios.

In particular, after reviewing observations of psychologists regarding the na-
ture of the similarity, definition of a proper similarity function is proposed in
Subsection 3.3. It aims at providing a more formal description of an abstract
similarity function concept. Intuitively, pairs of objects for which a proper sim-
ilarity function takes high values are more likely to be in the real similarity
relation, relative to a predefined context. An example of such a context can be a
classification of objects from the investigated domain. In that case, a similarity
learning process can be guided by the fundamental properties of the similarity
for classification, which are stated in Subsection 3.2.

The context of a similarity assessment is imposed by a purpose for which the
evaluation is performed. It is also influenced by a presence of other objects. Those
general observations together with the computational effectiveness constitute a
basis for the desirable properties of similarity learning models which are given in
Subsection 4.1. They are treated as requirements and a motivation for designing
the similarity model which is the main scope of this dissertation.

The proposed Rule-Based Similarity (RBS) model and its two extensions are
described in Section 5. Subsection 5.2 shows the construction of the basic version
of RBS, designed for learning the similarity in a classification context from reg-
ular data tables. Additionally, this subsection offers an intuitive interpretation
of the model and explains its relations with the rough set theory. An important
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aspect of the construction of RBS is the computation of a decision reduct for
each of the decision classes occurring in the data. This often needs to be done for
data sets containing numerical attributes. Algorithm 2 shows how to compute
a reduct in such a case. Some of the basic mathematical properties of the RBS
similarity function are discussed in Subsection 5.3. In this subsection it is also
shown that under certain conditions the proposed function is a proper similarity
function for a similarity relation in the context of a classification.

The first extension of RBS, which is designed to efficiently handle extremely
high dimensional data sets, is presented in Subsection 5.4. Its core is an algorithm
for the computation of a diverse set of dynamic decision reducts (Algorithm 3).
By combining randomization with the greedy heuristic for the computation of
reducts this algorithm enables an efficient construction of robust sets of higher-
level features. Due to the diversity of the sets, those features correspond to
different similarity aspects. The similarity function which is proposed for this
model, aggregates the local similarities analogically to aggregations of classifier
ensembles.

The second of the proposed extensions is described in Subsection 5.5. The
purpose of this model is to facilitate the similarity learning from textual corpora.
Unlike the previous models, unsupervised RBS does not require information
regarding decision classes and can be used for cluster analysis. To extract higher-
level features it uses a combination of Explicit Semantic Analysis with a novel
algorithm for the computation of information bireducts (Algorithm 4).

All the models proposed in this dissertation were thoroughly evaluated in
experiments described in Section 6. RBS was compared to several other similarity
learning techniques in the classification context on a variety of data tables. The
tests were performed on benchmark tables (Subsection 6.1) as well as on real-life
microarray data sets containing tens of thousands attributes (Subsection 6.2).
Finally, tests with the unsupervised RBS were conducted and their results were
described in Subsection 6.3.

Most of the partial results of this dissertation were presented at international
conferences and workshops. They were published in conference proceedings and
respectable journals. For example, the publications related to the construction
and the applications of Rule-Based Similarity include [23–29]. There are also sev-
eral other research directions of the author that had a significant influence on the
design of the proposed similarity learning models. Among them, the most impor-
tant considered the problem of feature selection and learning with ensembles of
single and multi-label classifiers [30–37]. Moreover, the research on unsupervised
version of Rule-Based Similarity was largely influenced by the author’s previ-
ous work on the semantic information retrieval and Explicit Semantic Analysis,
which was conducted within the SYNAT project [38–40].

1.3 Plan of the Dissertation

The dissertation is divided into seven main sections. This introductory section
aims to provide a brief description of the considered problem and to help a reader
with navigation through the remaining part of the text.
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Section 2 is devoted to the theory of rough sets. Its main role is to introduce
the basic concepts and notations used in the subsequent sections. It is divided
into three subsections. Subsection 2.1 introduces the notions of information and
decision systems. It also discusses fundamental building blocks of the rough set
theory such as the indiscernibility relation and the notions of a concept, decision
logic language and rules. Subsection 2.2 explains the rough set view on the ap-
proximation of vague or imprecise concepts. It gives the definition of a rough set
and shows elementary properties of lower and upper approximations. Further in
this subsection there is a discussion on finding appropriate approximation spaces
for constructing approximations of concepts and relations. The last subsection
of the second section (Subsection 2.3) focuses on rough set methods for selecting
informative sets of attributes. It gives definitions of the classical information and
decision reducts, and then it reviews several extensions of this important notion,
such as approximate reducts, dynamic reducts and a novel concept of decision
bireducts.

Section 3 introduces similarity as a relation between objects and discusses
its main properties. It also provides an overview of the most well-known simi-
larity models and gives examples of their practical applications. The section is
divided into five subsections. The first one (Subsection 3.1) starts with a dis-
cussion on psychological properties of similarity as a semantic relation. After
this introduction, the importance of setting a similarity evaluation in a context
which is appropriate for a task is highlighted in Subsection 3.2. This discussion
is followed by definitions of a proper similarity function and similarity-based
classification rules in Subsection 3.3 and then, an overview of similarity model
evaluation methods is given. The next subsection (Subsection 3.4) summarises
the most commonly used similarity models. The distance metric-based similarity
modelling is characterized and then, the subsection explains Tversky’s feature
contrast model as an alternative to the distance-based approach. The subsec-
tion ends with a brief description of hierarchical similarity modelling methods.
The section concludes with Subsection 3.5, which is a survey on applications of
similarity models in machine learning. It shows how the similarity can be em-
ployed for a predictive data analysis and visualization and briefly discusses the
Case-Based Reasoning framework. It ends with a usage example of similarity
functions for unsupervised learning in cluster analysis.

Section 4 focuses on similarity learning methods. Its first subsection (Sub-
section 4.1) defines the problem of similarity learning and lists some desirable
properties of a good similarity learning model. Subsection 4.2 presents examples
of four popular approaches to the similarity learning task. It summarises meth-
ods that use feature extraction techniques in order to improve a similarity model
by selecting attributes which are relevant in a given context or by constructing
new ones. Next, there is an overview of a very popular approach that utilizes a
genetic algorithm to tune parameters of a predefined similarity function. Then,
it shows how a similarity relation can be induced and optimized in a tolerance
approximation space. The last example, concerns a specific task of using Explicit
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Semantic Analysis for learning a semantic representation of texts which can be
used to better evaluate their similarity.

Section 5 describes the idea of Rule-Based Similarity which is the main contri-
bution of this dissertation. Subsection 5.1 discusses intuitions and motivations
for this model. The following subsection (Subsection 5.2) reveals construction
details of the model and Subsection 5.3 discusses some of its mathematical prop-
erties. The next two subsections show how Rule-Based Similarity can be adjusted
to efficiently learn the similarity in contexts defined by two different tasks re-
lated to analysis of high dimensional data. Namely, Subsection 5.4 focuses on
similarity learning from high dimensional data for a classification purpose and
Subsection 5.5 deals with the problem of unsupervised similarity learning for
clustering of textual documents. The last subsection of the section (Subsection
5.6) summarises the properties of Rule-Based Similarity.

Section 6 provides results of experiments in which the proposed model was
tested on benchmark and real-life data sets. Each of its subsections is devoted
to a series of experiments on different types of data. Subsection 6.1 investigates
the performance of Rule-Based Similarity in the context of classification on stan-
dard and high dimensional data tables. First, it describes the data sets used in
this series of tests. Then, it briefly characterises the competing similarity mod-
els and discusses the results of the comparisons between them. Subsection 6.2
presents the evaluation of the dynamic extension to Rule-Based Similarity on
microarray data. This subsection starts with a discussion of general properties
of microarrays as an example of extremely high dimensional data. It shows how
efficient Dynamic Rule-Based Similarity can be for coping with the few-objects-
many-attributes problem, in comparison to the state-of-the-art in the microarray
data classification. The last subsection (Subsection 6.3) presents an example of
an application of the unsupervised extension to Rule-Based Similarity. At the
beginning it explains the methodology of the experiment and clarifies how the
compared similarity models were evaluated. Next, it characterizes the models
which were used in the comparison and summarises the results.

Finally, the last Section 7 concludes the dissertation. Subsection 7.1 draws a
summary of the discussed problems and Subsection 7.2 proposes some directions
for future development of the rule-based models of similarity.

2 Theory of Rough Sets

The theory of rough sets, proposed by Zdzisław Pawlak in 1981 [41], provides
a mathematical formalism for reasoning about imperfect data and knowledge
[42–44]. Since their introduction, rough sets have been widely used in numer-
ous real-life applications related to intelligent knowledge discovery, such as clas-
sification, clustering, approximation of concepts, discovering of patterns and
dependencies in data [34, 42, 43, 45–49]. They were also used for hierarchical
modelling of complex objects [45, 50], as well as approximation of relations and
functions [47, 51, 52].

The notion of similarity has always been important for researchers in the
field of rough sets. Several extensions of the classical discernibility-based rough
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sets were proposed, in which a similarity relation was used to generalized rough
approximations [43, 53–58]. Similarity was also utilized in order to explain re-
lations between rough sets and fuzzy sets and interpret fuzziness in the rough
set setting [59]. On the other hand, some similarity measures were motivated by
the rough set theory [60].

In this dissertation similarity is viewed as a relation whose properties may
vary depending on a specific context. Since without any additional knowledge
the similarity can be regarded as an arbitrary relation, it needs to be learnt
from available data. The similarity relation is vague in nature [5,21,61]. For this
reason the rough set theory seems suitable for this purpose. It does not only
offer intuitive foundations for modelling complex relations, but also provides
practical tools for extracting meaningful features and defining important aspects
of similarity between considered objects [48,62]. Those aspects often correspond
to higher-level characteristics or concepts which can also be vague. To better cope
with such a multi-level vagueness there were proposed models that combine the
rough set and fuzzy set theories into rough-fuzzy or fuzzy-rough models [63–65].

The similarity learning model described in this dissertation (Section 5) derives
from the theory of rough sets. To better explain their construction, the following
subsections briefly overview selected aspects of the rough sets and introduce some
basic notation used in the remaining parts of this thesis. Subsection 2.1 gives
definitions of fundamental concepts, such as an information system or a decision
rule. Subsection 2.2 provides an insight on approximation spaces and explains the
basic principles of a rough set approximation. Subsection 2.3 describes a rough
set approach to the problem of data dimensionality reduction. In its last part,
the notion of reducts is extended to bireducts and some interesting properties of
decision bireducts are discussed.

2.1 Introduction to Rough Sets

The theory of rough sets deals with problems related to reasoning about vague-
ness in data [41]. Its main assumption is that with every object of the considered
universe Ω there is some associated information which can be represented in a
tabular form as attribute-value entries. Available objects which are characterized
by the same information are indiscernible - it is not possible to make any dis-
tinction between them. Those elementary sets of indiscernible objects are used
to model uncertainty of vague concepts.

In this dissertation, every concept is associated with a set of objects X ⊂ Ω.
It is usually assumed that information regarding belongingness of objects to
X is available for at least a finite subset of objects U ⊂ Ω. This subset is
called a training set. When solving practical problems we are often interested in
finding an accurate but comprehensible description of a concept X in terms of
features of objects from the training set U . Ideally, this description should fit
to all objects from Ω. In the rough set terminology, the process of finding an
appropriate description of a concept is referred to as an approximation of X . In a
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more general context of machine learning, this task is often called a classification
problem. The main part of this dissertation is focusing on similarity models which
can be used to facilitate the classification.

Within the rough set approach, vagueness or vague concepts correspond to
sets of objects which can not be precisely described using available information.
To enable reasoning about such concepts, they are associated with two crisp sets
which can be unambiguously defined [42–44]. The first set is the largest possible
subset of available data that contains only objects which surely belong to the
concept. The second set is the smallest possible set which surely contains all
objects belonging to the concept in the available data. Together, those two set
allow to handle vagueness without a need for introducing artificial functions, as
it is done in the fuzzy set theory [66]. This subsection overviews the basic notions
of the rough set theory which are used in further parts of this dissertation.

Information and Decision Systems. In the rough set theory, available knowl-
edge about object u ∈ U is represented as a vector of information about values
of its attributes. An attribute can be treated as a function a : U → Va that
assigns values from a set Va to objects from U . In a vast majority of cases, those
functions are not explicitly given. However, we can still assume their existence
if for any object from U we are able to measure, compute or obtain in other way
the corresponding values of its attributes.

All available information about objects from U can be stored in a structure
called an information system. Formally, an information system S can be defined
as a tuple:

S =
(
U,A

)
(1)

where U is a finite non-empty set of objects and A is a finite non-empty set
of attributes. The most common representation of the information system is a
table whose rows correspond to objects from U and columns are associated with
attributes from A. There are however some other information system represen-
tation forms [67]. A simple example of an information system represented in the
tabular form is given in Table 1.a (on the left).

It is usually assumed that information about values of all the attributes from
A can be obtained for any object, including those which are not present in U .
In such a case, those attributes are often called conditional attributes. However,
there might also exist some special characteristic of objects from U , which can
be used to define a partitioning of U into disjoint sets. Such a characteristic
may correspond to, e.g. belongingness of the objects to some concept. In this
case, it is possible to define an attribute, called a decision or class attribute, that
reflects this characteristic. In order to deliberately emphasize its presence, an
information system with a defined decision attribute is called a decision system
and is denoted by Sd =

(
U,A∪{d}

)
, where A∩{d} = ∅. A tabular representation

of a decision system is sometimes called a decision table and the disjoint sets
of objects with different values of the decision attribute are called categories or
decision classes. Table 1.b shows an exemplary decision system Sd with a binary
decision attribute d (on the right).
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Table 1. An exemplary information system S (Table (a)) and a decision system Sd

with a binary decision attribute (Table (b))

a1 a2 a3 a4 a5 a6 a7 a8

u1 1 2 2 0 0 1 0 1
u2 0 1 1 1 1 0 1 0
u3 1 2 0 1 0 2 1 0
u4 0 1 0 0 1 0 0 1
u5 2 0 1 0 2 1 0 0
u6 1 0 2 0 2 0 0 2
u7 0 1 1 2 0 2 1 0
u8 0 0 0 2 1 1 1 1
u9 2 1 0 0 1 1 0 0

(a)

a1 a2 a3 a4 a5 a6 a7 a8 d

u1 1 2 2 0 0 1 0 1 1
u2 0 1 1 1 1 0 1 0 1
u3 1 2 0 1 0 2 1 0 1
u4 0 1 0 0 1 0 0 1 0
u5 2 0 1 0 2 1 0 0 1
u6 1 0 2 0 2 0 0 2 0
u7 0 1 1 2 0 2 1 0 1
u8 0 0 0 2 1 1 1 1 0
u9 2 1 0 0 1 1 0 0 0

(b)

Unlike in the case of conditional attributes, a value of a decision attribute may
be unknown for objects from Ω \ U . Therefore, the approximation of concepts
(a classification problem) can sometimes be restated as a prediction of decision
attribute values for objects which are not included in the training set. In many
practical applications, such as the topical classification of textual documents
[32, 35], it might be convenient to define more than one decision attribute. In
such a case, a decision system will be denoted by SD = (U,A ∪D), where D is
a set of decision attributes and A ∩ D = ∅, and the prediction of the decision
values will be called a multi-label classification problem.

In many practical applications the assumption regarding availability of in-
formation concerning values of conditional attributes in decision systems is not
true. Real-life decision systems often have missing attribute values and some
dedicated techniques for analysing this kind of data have been developed within
the theory of rough sets [68–70]. The reasons for lack of partial information about
particular objects might be diverse. The semantics of different kinds of missing
values have also been studied [69,71,72]. Although this problem remains a vital
research direction, handling data with missing or vague information lies outside
the scope of this dissertation.

Indiscernibility Relation. In the rough set theory objects from U are seen
through the information that can be used to describe them. This fact implies that
in a case when information available for two different objects does not differ (i.e.
values on all attributes are the same), those objects are regarded indiscernible.

Definition 1 (Indiscernibility relation)
Let S =

(
U,A) be an information system and let B ⊆ A. We will say that

u1, u2 ∈ U are satisfying the indiscernibility relation INDB with regard to the
attribute set B iff they have equal attribute values for every a ∈ B:

(u1, u2) ∈ INDB ⇔ ∀a∈Ba(u1) = a(u2).

Otherwise u1 and u2 will be regarded discernible.
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It is easy to observe that the indiscernibility is in fact an equivalence relation in
U (i.e. it is reflexive, symmetric and transitive). An indiscernibility class of an
object u with regard to an attribute set B will be denoted by [u]B:

[u]B = {u′ ∈ U : ∀a∈B a(u′) = a(u)} . (2)

Therefore, using the indiscernibility relation it is possible to define a granu-
lation of objects described by an information system S into disjoint subsets.
For any B ⊆ A it will be denoted by U/B = {[u]B : u ∈ U}. For exam-
ple, the indiscernibility class of an object u1 with regard to {a1, a3} in the
information system from Table 1.a (on the left) is [u1]{a1,a3} = {u1, u6} and
U/{a1, a3} =

{
{u1, u6}, {u2, u7}, {u3}, {u4, u8}, {u5}, {u9}

}
.

Many different equivalence relations in U can be defined using different at-
tribute subsets. The indiscernibility relations with regard to single attributes
can serve as a basis for the construction of equivalence relations defined by any
subset of attributes. For any two subsets of attributes B,B′ ⊆ A and any u ∈ U ,
the following equations hold:

[u]B =
⋂
a∈B

[u]{a} , (3)

[u]B∪B′ = [u]B ∩ [u]B′ , (4)

B ⊆ B′ ⇒ [u]B′ ⊆ [u]B . (5)

When constructing an approximation of a concept it is important to inves-
tigate a relation between indiscernibility classes with regard to conditional at-
tributes and with regard to decision attributes.

Definition 2 (Consistent decision system)
A decision system Sd = (U,A ∪D) will be called consistent iff

∀u∈U [u]A ⊆ [u]D. (6)

Otherwise Sd will be called inconsistent.

Several extensions of the indiscernibility notion can be found in the rough set
literature. For example, generalizations based on a tolerance relation [56, 73]
or a predefined similarity relation [54, 57, 58] have been proposed in order to
define better approximations of concepts. In other approaches the definition of
indiscernibility has been modified to facilitate generation of decision rules from
incomplete data [69, 72].

Descriptions and Rules. The rough set theory is often utilized to provide
description of concepts from the considered universe. Any concept can generally
be associated with a subset of objects from U which belong or match to it. In
general, decision attributes in a decision system can usually be interpreted as ex-
pressing the property of belongingness to some concept. Given some information
(e.g. in the form of a decision system) about characteristics (values of attributes)



Algorithms for Similarity Relation Learning from High Dimensional Data 185

of objects corresponding to the considered concept one may try to describe it
using a decision logic language [74].

Decision logic language LA is defined over an alphabet consisting of a set of
attribute constants (i.e. names of attributes from A) and a set of attribute value
constants (i.e. symbols representing possible attribute values). The attribute and
attribute value constants can be connected using the equity symbol = to form
attribute-value pairs (a = v, where a ∈ A and v ∈ Va), which are regarded as
atomic formulas of the language LA. The atomic formulas can be combined into
compound formulas of LA using connectives from a set {¬,∧,∨,→,≡} called
negation, conjunction, alternative, implication and equivalence, respectively. If
φ and ψ are in LA, then ¬(φ), (φ ∧ ψ), (φ ∨ ψ), (φ → ψ) and (φ ≡ ψ) are in
LA. The atomic formulas of a compound formula (the attribute-value pairs) are
often called descriptors and the formula itself is sometimes called a description
of some concept.

The satisfiability of a formula φ from LA by an object from an information
system S = (U,A), which is denoted by u 	S φ or by u 	 φ if S is understood,
can be defined recursively:

1. u 	 (a = v)⇔ a(u) = v.
2. u 	 ¬φ⇔ not u 	 φ.
3. u 	 (φ ∧ ψ)⇔ u 	 φ and u 	 ψ.
4. u 	 (φ ∨ ψ)⇔ u 	 φ or u 	 ψ.
5. u 	 (φ→ ψ)⇔ u 	 (¬φ ∨ ψ).
6. u 	 (φ ≡ ψ)⇔ u 	 (φ→ ψ) and u 	 (ψ → φ).

Each description (a formula) φ in a decision logic language LA can be associated
with a set of objects from U that satisfy it. This set is called a meaning of the
formula in an information system S = (U,A) and is denoted by φ(U) = {u ∈
U : u 	 φ}. Moreover, we will say that a formula φ is true or consistent in S if
and only if its meaning is equal to the whole set U (i.e. φ(U) = U). Otherwise
a formula is inconsistent in S.

It is worth noticing that an indiscernibility class of any object u described
in S = (U,A) can be expressed as a meaning of a formula in the language
LA as [u]A = φ(U), where φ =

(
a1 = a1(u) ∧ . . . ∧ ai = ai(u) ∧ . . . ∧ am =

am(u)
)
, and m = |A|. Based on equations 3, 4 and 5 this can be generalized to

indiscernibility classes with regard to any subset of attributes. For example, in
the information system S from Table 1.a the meaning of φ = (a1 = 1 ∧ a3 = 2)
is φ(U) = {u1, u6} = [u1]{a1,a3}. One example of a formula that is consistent in
S is (a7 = 0 ∨ a7 = 1).

In the rough set data analysis, knowledge about dependencies between con-
ditional attributes and decision attributes of a decision system are often repre-
sented using special formulas called decision rules.

Definition 3 (Decision rules)
Let A and D be conditional and decision attribute sets of some decision system.
Moreover, let LA∪D be a decision logic language and π be a formula of LA∪D.
We will say that π is a decision rule iff the following conditions are met:
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1. π = (φ→ ψ),
2. φ and ψ are conjunctions of descriptors,
3. φ is a formula of LA and ψ is a formula of LD.

The right hand side of a decision rule π = (φ → ψ) (i.e. ψ) will be called
a consequent or a successor of a rule and the left hand side will be called an
antecedent or a predecessor (i.e. φ). The antecedent of π will be denoted by lh(π)
and the consequent of π will be marked by rh(π). It is important to note that
the above definition of a decision rule is more specific than the original definition
from [74]. In fact the definition used in this dissertation corresponds to P-basic
decision rules from Pawlak’s original paper.

Decision rules aim at providing partial descriptions of concepts indicated by
the decision attributes. They can be learnt from a decision system and then used
to predict decision classes of new objects, provided that values of conditional
attributes of those objects are known. For example, from the decision system Sd
shown in Table 1.b we can induce decision rules:

π1 =
(
(a4 = 0 ∧ a6 = 1)→ (d = 1)

)
and

π2 =
(
(a2 = 1 ∧ a3 = 1)→ (d = 1)

)
.

The meaning of π1 in Sd is the set π1(U) = {u1, u2, u3, u4, u5, u6, u7, u8} =
U \ {u9}, whereas the meaning of π2 in Sd is π2(U) = U . The first rule is
inconsistent in Sd, whereas the second rule is true in Sd. However, the second
rule is more general than the first one, since meanings of the antecedents of
those rules have different cardinalities: |lh(π1)(U)| = |{u1, u5, u9}| = 3, and
|lh(π2)(U)| = |{u2, u7}| = 2. We may say that those rules are true with different
degrees in Sd, thus their predictive power is different.

There is also a different type of rules within the rough set theory, which can
be particularly useful for analysing dependencies in data with multiple decision
values, namely, inhibitory rules [75].

Definition 4 (Inhibitory rules)
Let A and D be conditional and decision attribute sets of a decision system.
Moreover, let LA∪D be a decision logic language and π be a formula of LA∪D.
We will say that π is an inhibitory rule iff the following conditions are met:

1. π = (φ→ ¬ψ),
2. φ and ψ are conjunctions of descriptors,
3. φ is a formula of LA and ψ is a formula of LD.

An inhibitory rule tells us that an object which satisfies the predecessor of this
rule1 cannot belong to a pointed decision class. The inhibitory rules can be seen
as a complement to decision rules as they often provide means to classify objects
1 In the remaining parts of this dissertation such objects will also be regarded to as
matching the rule.
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which are difficult to cover by the traditional rules [75]. They are particularly
useful for constructing classifiers in a presence of a highly imbalanced distribution
of decision values. It needs to be noted, however, that a cardinality of a set of
all possible inhibitory rules for a given data is usually much greater than that
of all decision rules.

Usefulness of a rule for prediction of decision classes of new objects (or just
classification, in short) can be quantitatively assessed using rule quality mea-
sures. There exist many measures that aim at evaluating the strength of depen-
dency between the antecedent and the consequent of rules [76–78]. However, the
bigger part of them is based on the notions of rule’s support and confidence. The
support of a rule π is defined as:

supp(π) =
|lh(π)(U)|
|U |

and the confidence of π is:

conf(π) =
|lh(π)(U) ∩ rh(π)(U)|

|lh(π)(U)| = 1− |U \ π(U)|
|lh(π)(U)| .

From the second equation it follows that the confidence factor of a rule π equals
1 iff the rule is consistent in Sd. To prove it, it is sufficient to show that U \
π(U) = lh(π)(U) \ rh(π)(U). This equity, however, is a straight consequence of
a definition of the meaning of an implication:

u ∈ π(U)⇔ u 	
(
lh(π)→ rh(π)

)
⇔ u 	

(
¬lh(π) ∨ rh(π)

)
⇔
(
u ∈ U \ lh(π)(U)

)
∨
(
u ∈ rh(π)(U)

)
.

If so, then:

u ∈
(
U \ π(U)

)
⇔ u ∈

(
U \
(
U \ lh(π)(U)

))
∩
(
U \ rh(π)(U)

)
⇔ u ∈

(
lh(π)(U) \ rh(π)(U)

)
.

The confidence of a rule is often interpreted as an indicator whether the
rule is true. We may say that a rule is true in a degree corresponding to its
confidence. An example of a rule quality measure that, in a sense, combines
the desirable properties of the support and confidence coefficients is Laplace
m-estimate defined as laplacem(π) = |lh(π)(U)∩rh(π)(U)|+m·p

(|lh(π)(U)|+m , where m and p

are positive parameters. Values of m and p usually correspond to a number of
decision classes, and prior probability of the rh(π), respectively [79]. Unlike the
confidence, this measure favours rules with a higher support.

Intuitively, the support of a rule expresses how large data fragment the rule
describes, i.e. measures its generality, whereas the confidence says how often
the rule truly indicates consequent for objects belonging to the meaning of its
antecedent. For instance, the support of the rule π1 from the previous example
is 3/9 = 1/3 and its confidence is 2/3. At the same time the support and the
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confidence of π2 are 2/9 and 1, respectively. In order to compare those rules we
may also use the Laplace m-estimate for m = 2 and p = 0.5: laplace2(π1) =
3/5 whereas laplace2(π2) = 3/4. Rough set methods usually derive rules using
descriptions of indiscernibility classes in Sd.

Each formula in the language LA corresponds to a unique set of objects but
there is no guarantee that for a given subset of objects X ⊂ U there exists a
formula φ whose meaning equals X . Moreover, several different formulas may
have exactly the same meaning in S. A set of objects represented in an informa-
tion system S that can be exactly described by some formula in a language LA

is called a definable set in S. More formally, the set X will be called definable in
S = (U,A) iff there exists a formula φ of the language LA, such that φ(U) = X .
Subsets of U that are not definable will be called undefinable. The family of all
definable sets in S will be denoted by DEF (S).

Concepts corresponding to undefinable sets can be approximated using de-
finable sets. A typical task in the rough set data analysis is to find an optimal
approximation of a predefined concept using knowledge represented by a deci-
sion system and describe it using formulas, such as decision and inhibitory rules.
Such an approximation is usually expected to be accurate not only for known
objects from U , but also for the new ones which were not available when the ap-
proximation was learnt. For this purpose many rough set techniques employ the
Minimal Description Length (MDL) principle and constrain the language used
to describe and reason about the data. This approach to the problem of approx-
imating the undefinable sets is the most characteristic feature of the rough set
theory [44, 80].

2.2 Rough Set Approximations

In the rough set theory any arbitrary set of objects X can be approximated
within an information system S = (U,A) by a pair of definable sets App(X) =
(X,X), called a rough set of X in S. The set X is the largest definable set which
is contained in X . Analogically, the set X is the smallest definable set which
contains X . The sets X and X are called a lower and upper approximation of
X in S, respectively.

Lower and Upper Approximations. The lower and upper approximations
can also be constructively defined using the notion of indiscernibility classes. Let
X ⊆ Ω represent an arbitrary concept. The rough set of X in S = (U,A) with
regard to a set of attributes B ⊆ A is a pair AppB(X) = (X,X), where

X = {u ∈ U : [u]B ⊆ X},
X = {u ∈ U : [u]B ∩X �= ∅}.

The sets X and X constructed for an attribute set B ⊆ A are called B-lower and
B-upper approximations and the pair AppB(X) = (X,X) is sometimes called a
B-rough set of X in S. However, when the set B is fixed (or irrelevant) we will
call the sets X and X simply the lower and upper approximations of X .
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Of course, since an indiscernibility class of any object in U is a definable
set in S, the definitions of a rough set by definable sets and indiscernibility
classes are equivalent. The lower and upper approximations can also be defined
in several other equivalent ways, which might be convenient when dealing with
specific problems [48, 56]. The above definition makes it obvious that the lower
approximation of a concept can be described using predecessors of consistent
rules, whereas the description of the upper approximation may require some
rules with the confidence factor lower than 1. This fact will be used during the
construction of a similarity model proposed in Subsection 5.2.

For the classical definition of rough set and for any B ⊆ A, the lower and
upper approximations of X ⊆ U have several interesting properties:

(L1) X ∈ DEF (S) (U1) X ∈ DEF (S)

(L2) X ∈ DEF (S)⇒ X = X (U2) X ∈ DEF (S)⇒ X = X

(L3) X ⊆ X (U3) X ⊆ X

(L4) X = U \
(
U \X

)
(U4) X = U \

(
U \X

)
(L5)

(
X ∩ Y

)
= X ∩ Y (U5)

(
X ∪ Y

)
= X ∪ Y

(L6)
(
X ∪ Y

)
⊇ X ∪ Y (U6)

(
X ∩ Y

)
⊆ X ∩ Y

(L7) X ⊆ Y ⇒ X ⊆ Y (U7) X ⊆ Y ⇒ X ⊆ Y

(L8) X =
(
X
)

(U8) X =
(
X
)

(L9) X =
(
X
)

(U9) X =
(
X
)

where AppB(X) = (X,X). Proofs of those properties are omitted since they are
quite obvious and have already been presented in rough set literature (e.g. [80]).
The properties (L4) and (U4) show that the lower and upper approximations
are, in a sense, dual operations. In general, the other properties with the same
number may be regarded as dual. The properties (L1-2) and (U1-2) say that the
two approximations are definable set (also called crisp sets). The properties (L3)
and (U3) imply that for any set X , X ⊆ X ⊆ X. By the properties (L5-7) and
(U5-7) it is shown that the operations of the lower and upper approximation are
monotonic with regard to set inclusion, and the properties (L8-9), (U8-9) state
that chains of rough set approximations are stable.

A B-rough set of a given set X defines a partitioning of objects from an in-
formation system into three disjoint sets called a B-positive region, B-boundary
region and B-negative region. The positive region corresponds to the lower ap-
proximation of X - it contains objects that surely belong to the considered
concept. It is usually denoted by POSB(X). The boundary region BNDB(X)
consists of objects whose belongingness is unclear (relative to a given set of
attributes). It can be expressed as a difference between the upper and lower
approximations: BNDB(X) = X −X . Finally, the negative region NEGB(X)
contains objects that definitely do not belong to X , since they are outside its
upper approximation: NEGB(X) = U \X. Figure 1 shows rough set regions of
an exemplary concept.



190 A. Janusz

Fig. 1. An exemplary rough set approximation of a concept

Zdzisław Pawlak in his early works on rough sets suggested an intuitive mea-
sure of rough approximation accuracy:

α(AppB(X)) =
|X|
|X|

. (7)

The accuracy measure α expresses how well a given concept is modelled by its
rough set. This measure is closely related to roughness of a set:

ρB(X) =
|BNDB(X)|

|X |
= 1− α

(
AppB(X)

)
. (8)

It is important to realize that the accuracy and roughness evaluate the rough
approximations only on the available objects from an information system. Un-
fortunately, a close approximation on known data does not necessarily lead to a
reliable assessment of new cases due to the over-fitting problem [7, 8]. However,
those measures are still useful for tasks such as the feature selection, where they
can help evaluating the impact of including or excluding an attribute from a
given attribute set [81–83].

Approximation Spaces. Although the rough set approximation of a concept
is defined only for known objects from S it can be easily extended to all objects
from Ω by considering descriptions of the lower and upper approximations. If
the aim of the rough set analysis is to create a predictive model, then the quality
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of approximation on previously unseen cases is much more important than for
the objects described in the decision table. To ensure this property, it is often
necessary to modify representation of objects in the decision system by reduc-
ing unimportant or misleading attributes or by constructing new ones which are
more informative. Such an operation influences the shape of the family of defin-
able sets in S, i.e. it changes the approximation space [56, 73] constructed for S.

More formally, an approximation space is a tuple A = (U, IND), where U is a
subset of known objects from Ω and IND ⊂ U×U is an indiscernibility relation
[56]. This notion can be generalized by introducing two important concepts,
namely an uncertainty function and a f -membership function.

Definition 5 (Uncertainty function)
Let U ⊆ Ω. A function I : U → P(U) will be called an uncertainty function iff
the following conditions are met:

1. ∀u∈Uu ∈ I(u).
2. u1 ∈ I(u2)⇔ u2 ∈ I(u1).

The uncertainty function assigns neighbourhoods to objects from the set U .
The conditions from Definition 5 imply that the uncertainty function defines a
tolerance relation, i.e. a relation that is reflexive and symmetric [56]. However,
in rough set literature this condition is sometimes weakened to consider any
reflexive relation [15].

The sets defined by the uncertainty function may be utilized to measure a
degree in which an object belongs to a given concept. It is usually done using
an f -membership function.

Definition 6 (f-membership function)
Let U ⊆ Ω, I : U → P(U) be an uncertainty function, f : [0, 1] → [0, 1] be a
non-decreasing function and η : U × P(U)→ R be a function defined as:

ηI(u,X) =
|I(u) ∩X |
|I(u)| . (9)

A function μ = f(η) will be called an f -membership function.

If f is an identity function, then the f -membership function will be called simply
a membership function. This type of an f -membership function coupled with a
data driven uncertainty function will be explicitly used in the construction of
the similarity model described in Section 5.

Having defined the uncertainty and the membership functions, a generalized
approximation space can be defined as a tuple A = (U, I, μ), where U is a subset
of known objects from Ω, I : U → P(U) is an uncertainty function and μ is an
f -membership function.

In the classical rough set theory, the uncertainty function I often associates
objects with their indiscernibility classes (i.e. I(u) = IB(u) = [u]B for B ⊆ A)
and the f -membership function has a form of μ(u,X) = μB(u,X) = |[u]B∩X|

|[u]B | .
For example, if we consider the information system from Table 1.a and the
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uncertainty function I(u) = [u]{a1,a2}, the neighbourhood of u2 would be I(u2) =
{u2, u4, u7}. Furthermore, a degree to which u2 belongs to the decision class with
a label 1 with regard to I is equal to μ

(
u2, {d = 1}(U)

)
= 2/3.

In this way, the function I can be used to generalize the indiscernibility re-
lation and define a new family of sets that can serve as building-blocks for
constructing approximations. Coupled with the rough membership function, it
leads to a more flexible definition of the lower and upper approximations:

X = {u ∈ U : μI(u,X) = 1} , (10)
X = {u ∈ U : μI(u,X) > 0} . (11)

Of course, if I is a description identity function, those definitions are equivalent
to the classical ones. There also exist further generalizations of rough approxi-
mations, such as the variable precision rough set model [84,85] which introduces
an additional parameter allowing to weaken the zero-one bounds in the above
definitions.

The uncertainty function can be defined, for example, by combining transfor-
mations of object representation space (the set of attributes) with the classical
indiscernibility. Such a transformation may include reduction of the informa-
tion describing objects to attributes which are truly related to the considered
problem, as well as an extension of the attribute set by new, often higher-level
features.

Approximation of Relations. The rough approximations allow not only to
express the uncertainty about concepts but also to model arbitrary relations
between objects from Ω [51]. In fact, the notion of approximation spaces was
generalized in [51] to allow defining approximations of sets in U = U1× . . .×Uk,
where Ui ⊂ Ω are arbitrary sets of objects. Since the scope of this dissertation is
on a similarity which can be seen as a binary relation (see Section 3), only this
type of relations will be considered in this subsection.

A binary relation r between objects from a given set U is a subset of a Carte-
sian product of this set (r ⊆ U × U). Having a subset of objects from Ω we
may try to approximate an arbitrary binary relation r ⊆ Ω × Ω within the
set U × U by considering a generalized approximation space, defined as a tuple
A2 = (U × U, I2, μ2), where U ⊂ Ω, I2 : U × U → P(U × U) is a generalized
uncertainty function and μ2 :

(
U ×U

)
×
(
P(U ×U)

)
→ R is a generalized rough

membership function.
The functions I2 and μ2 can be easily defined by an analogy with the case

of a regular approximation space. Their simplified graphical interpretation is
shown in Figure 2. However, the meaning of an indiscernibility class of a pair of
objects needs to be adjusted. In general, a pair (u1, u2) can be characterised by
three possibly different sets of features – features specific to u1, features specific
to u2 and those which describe u1 and u2 as a pair. This fact is utilized in a
construction of the Rule-Based Similarity (RBS) model proposed in Section 5.
In this model, objects are represented in a new feature space that allows for a
robust approximation of a similarity relation. Such approximation is likely to be
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Fig. 2. A graphical interpretation of as uncertainty function for approximation of a bi-
nary relation. In this case a membership function value μ2

(
(u1, u2), r

)
could be defined

as a ratio between a size of the intersection of I2(u1, u2) and r, and the size of whole
I2(u1, u2).

precise not only on training data but also in a situation when the model is used
for assessment of resemblance of the training cases to completely new objects.

Approximations of a binary relation may have two desirable properties that
indicate their quality, namely the consistence and covering properties defined
below:

Definition 7 (Consistence property)
Let U ⊆ Ω and r be a binary relation in Ω. We will say that a binary relation
r′ is consistent with r in U iff the implication

(u1, u2) ∈ r′ ⇒ (u1, u2) ∈ r

holds for every u1, u2 ∈ U .

Definition 8 (Covering property)
Let U ⊆ Ω and r be a binary relation in Ω. We will say that a binary relation
r′ covers r in U iff the implication

(u1, u2) ∈ r ⇒ (u1, u2) ∈ r′

holds for every u1, u2 ∈ U .

A fact that a relation r′ is consistent with r in U will be denoted by r′ ⊆U r.
Analogically, a fact that r′ covers r in U will be denoted by r′ ⊇U r.

An approximation of a relation that has the consistence property can be seen
as a kind of a rough set lower approximation, whereas an approximation that
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covers a binary relation can be treated as its upper approximation. Those two
notions will be used in Section 3 to characterize a class of similarity functions
that is the main scope of this dissertation.

2.3 Attribute Reduction

The problem of finding a representation of objects, which is appropriate in a
given task, can be seen as a process of adaptation of an approximation space,
therefore it is closely related to the rough sets in general. Zdzisław Pawlak wrote
in [86] that discovering redundancy and dependencies between attributes is one of
the fundamental and the most challenging problems of the rough set philosophy.
The rough set theory provides intuitive tools for selecting informative features
and constructing new ones. The most important of such tools are the notions of
information and decision reducts.

Rough Set Information Reduction. In many applications information about
objects from a considered universe has to be reduced. This reduction is necessary
in order to limit resources that are needed by algorithms analysing the data or
to prevent crippling their performance by noisy or irrelevant attributes [7,87,88].
This vital problem has been in the scope of the rough set theory since its begin-
nings [42,44,80] and has been investigated by numerous researchers [33,34,81,82,
89, 90].

Typically, in the rough set theory selecting compact yet informative sets of
attributes is conducted using the notion of indiscernibility, by computing so
called reducts [80, 91].

Definition 9 (Information reduct)
Let S = (U,A) be an information system. A subset of attributes IR ⊆ A will be
called an information reduct iff the following two conditions are met:

1. For any u ∈ U the indiscernibility classes of u with regard to IR and A are
equal, i.e. [u]A = [u]IR.

2. There is no proper subset IR′ � IR for which the first condition holds.

An information reduct IR can be interpreted as a set of attributes that are suffi-
cient to discern among as many objects described in S as the whole attribute set
A. At the same time the reduct is minimal, in a sense that no further attributes
can be removed from IR without losing the full discernibility property. Analog-
ically, it is possible to define a decision reduct DR for a decision system Sd:

Definition 10 (Decision reduct)
Let Sd =

(
U,A∪ {d}

)
be a decision system with a decision attribute d that indi-

cates belongingness of objects to an investigated concept. A subset of attributes
DR ⊆ A will be called a decision reduct iff the following two conditions are met:

1. For any u ∈ U if the indiscernibility class of u relative to A is a subset of
some decision class, its indiscernibility class relative to DR should also be a
subset of that decision class, i.e. [u]A ⊆ [u]d ⇒ [u]DR ⊆ [u]d.

2. There is no proper subset DR′ � DR for which the first condition holds.
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Unlike in the definition of information reducts, a decision reduct needs only to
sustain the ability to discriminate objects from different decision classes. For
example, {a1, a3, a6} and {a3, a5, a6, a7} are information reducts of the informa-
tion system from Table 1.a while {a3, a5} and {a3, a6} are decision reducts of
the corresponding decision system.

The minimality of reducts stays in accordance with the Minimum Description
Length (MDL) rule. Depending on an application, however, the minimality re-
quirement for the reducts may sometimes be relaxed in order to ensure inclusion
of the key attributes to the constructed model. In some cases keeping relevant
but highly interdependent attributes may have a positive impact on model’s
performance [87,88]. For this reason within the theory of rough sets a notion of
decision superreduct is considered which is a set of attributes that discerns all
objects from different decision classes but does not need to be minimal.

Usually for any information system there are numerous reducts. In the rough
set literature there are described many algorithms for attribute reduction. The
most commonly used are the methods utilizing discernibility matrices and the
boolean reasoning [42, 82, 91, 92], and those which use a greedy or randomized
search in the attribute space [26, 34, 93, 94].

In [80] it is shown that a decision reduct can consist only of strongly and
weakly relevant attributes (it cannot contain any irrelevant attribute)2 if the
available data is sufficiently representative for the universe at scope. However,
in real-life situations this requirement is rarely met. Very often, especially when
analysing high dimensional data, some dependencies between attribute values
and decisions are not general – they are specific only to a given data set. In
such a case attributes which are in fact irrelevant might still be present in some
decision reducts.

Generalizations of Reducts. Many researchers have made attempts to tackle
the problem of attribute relevance in decision reducts. Apart from devising
heuristic algorithms for performing the attribute reduction that are more likely
to select relevant features, a significant effort has been made in order to come
up with some more general definitions of the reducts.

It has been noticed that subsets of attributes which preserve discernibility
of a slightly lower number of objects from different decision classes than the
whole attribute set tend to be much smaller than the regular reducts. Usually
objects that are described with fewer attributes have larger discernibility classes
which correspond to more general decision rules. This observation motivated
introduction of the notion of an approximate decision reduct [94, 96–99].

Definition 11 (Approximate decision reduct)
Let Sd =

(
U,A ∪ {d}

)
be a decision system with a decision attribute d and let ε

be a real non-negative number, ε ∈ [0, 1). Additionally, let |POSB(d)| denote the
number of objects whose indiscernibility classes with regard to an attribute set
B ⊆ A are subsets of a single decision class, i.e. |POSB(d)| = |{u ∈ U : [u]B ⊆
2 The strong and weak relevance of attributes is understood as in [95].
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[u]d}|. A subset of attributes ADR ⊆ A will be called an ε-approximate decision
reduct iff the following two conditions are met:

1. ADR preserves discernibility in Sd with a degree of 1− ε, i.e.
|POSADR(d)| ≥ (1 − ε) · |POSA(d)|.

2. There is no proper subset ADR′ � ADR for which the first condition holds.

Of course, for ε = 0 this definition is equivalent to the definition of regular
decision reducts. For the decision system from Table 1.b the attribute subsets
{a1, a3} and {a5, a6} are examples of the 0.3-approximate decision reducts.

The ε-approximate reducts can also be defined using differently formulated
conditions. For example, instead of relying on the sizes of positive regions of
decision classes, the approximate decision reducts can be defined based on the
conditional entropy [99] of an attribute set or the number of discerned object
pairs [96]. In fact, any measure of dependence between a conditional attribute
subset and the decision, which is monotonic with regard to inclusion of new
attributes, can be used [94].

A different generalization of the decision reducts, called dynamic decision
reducts, has been proposed in [100]. In this approach a stability of a selected
attribute set is additionally verified by checking if all the attributes are still
necessary when only some smaller random subsets of objects are considered.

Definition 12 (Dynamic decision reduct)
Let Sd =

(
U,A ∪ {d}

)
be a decision system with a decision attribute d and let

RED(Sd) be a family of all decision reducts of Sd. Moreover, let ε and δ be real
numbers such that ε, δ ∈ [0, 1). A subset of attributes DDR ⊆ A will be called an
(ε, δ)-dynamic decision reduct iff for a finite set of all subsystems of Sd, denoted
by SUB(Sd, ε), such that for each S′d = (U ′, A, d) ∈ SUB(Sd, ε), U ′ ⊂ U and
|U ′| ≤ (1− ε) · |U |, the following two conditions are met:

1. DDR is a decision reduct of Sd (DDR ∈ RED(Sd)).
2. DDR is a decision reduct of sufficiently many S′d ∈ SUB(Sd, ε), i.e. |{S′d ∈

SUB(Sd, ε) : DDR ∈ RED(S′d)}| ≥ (1− δ) · |SUB(Sd, ε)|.

Intuitively, if none of the attributes selected as belonging to a decision reduct
is redundant when considering only subsets of objects, then the reduct can be
seen as insensitive to data disturbances. Due to this characteristic the dynamic
decision reducts are more likely to define robust decision rules [100, 101]. Ad-
ditionally, the dynamic decision reducts tend to be more compact than the
regular reducts. For example, from two decision reducts DR1 = {a3, a5} and
DR2 = {a1, a2, a8} of the decision system

(
U,A∪ {d}

)
from Table 1.b, only the

first one is a (0.1, 0)-dynamic decision reduct, since DR2 is not a reduct of a
decision system S′d = (U \ {u4}, A, d).

Both of those generalizations of the decision reducts have been successfully
used in applications, such as constructing ensembles of predictive models [102],
discovering of approximate dependencies between attributes [94, 97] and at-
tribute ranking [34]. In this dissertation it is also showed how the dynamic
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reducts can be utilized for learning of a similarity function [27, 28] (see also
Section 4). The definitions of approximate and dynamic reducts for information
systems can be given analogously to those for the decision systems, thus they
are omitted.

Notion of Bireducts. The original definition of a decision reduct is quite re-
strictive, requiring that it should provide the same level of information about
decisions as the complete set of available attributes. On the other hand, the ap-
proximate reducts, which are usually smaller and provide a more reliable basis
for constructing classifiers [94,103], can be defined in so many ways that select-
ing the optimal one for a given task is very difficult. The choice of the method
may depend on a nature of particular data sets and on a purpose for the at-
tribute reduction. Moreover, computation of the approximate decision reducts
may require tuning of some unintuitive parameters, such as the threshold for a
stopping criterion (ε).

Another issue with the approximate reducts is related to the problem of build-
ing classifier ensembles [102–106]. Combining multiple classifiers is efficient only
if particular models tend to make errors on different areas of the universe at
scope. Although, in general, there is no computationally feasible solution that
can guarantee such a diversity, several heuristic approaches exist. For instance,
one may focus on the classifier ensembles learnt from reducts that include as
different attributes as possible. In this way one may increase stability of the clas-
sification and improve the ability to represent data dependencies to the users.
Unfortunately, the common approximate reduct computation methods do not
provide any means for controlling which parts of data are problematic for par-
ticular reducts. As a result, when building an ensemble where individual reducts
are supposed to correctly classify at least 90% of the training objects, we may
fail to anticipate that each of the resulting classifiers will have problems with
the same 10% of instances.

To tackle the above challenges, a new extension of the original notion of a
reduct was proposed [29, 36], called a decision bireduct. In this approach the
emphasis is on both, a subset of attributes that describes the decision classes
and a subset of objects for which such a description is possible.

Definition 13 (Decision bireduct)
Let Sd =

(
U,A ∪ {d}

)
be a decision system. A pair (B,X), where B ⊆ A and

X ⊆ U , is called a decision bireduct, iff B is a decision reduct of a subsystem
(X,A, d) and the following properties hold:

1. B discerns all pairs of objects from different decision classes in X and there
is no proper subset C � B for which such a condition is met.

2. There is no Y � X such that B discerns all pairs of objects from different
decision classes in (Y,B, d).

It is important to realize that a decision subsystem (X,B, d) is always consis-
tent (all indiscernibility classes in (X,B, d) are subsets of the decision classes),
regardless of the consistency of the original system. However, a decision bireduct
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(B,X) can be regarded as an inexact functional dependence in Sd linking the sub-
set of attributes B with the decision d, just as in a case of approximate reducts.
The objects in X can be used to construct a classifier based on B and the ob-
jects from U \X can be treated as outliers. The computation of bireducts can be
seen as searching for an approximation space that allows to generate meaningful
decision rules. Such rules are local, since they are defined only for objects from
X . However, by neglecting the potentially noisy outliers, the rules induced from
the decision bireducts (e.g. by considering the indiscernibility classes of objects
from X) are more likely to be robust [36]. It has been noted that bireduct-based
ensembles tend to cover much broader areas of data than the regular reducts,
which leads to better performance in classification problems [36].

3 Notion of Similarity

The notion of similarity has been in a scope of interest for many decades [20,21,
107]. Knowing how to discriminate similar cases (or objects) from those which
are dissimilar in a context of a decision class would enable us to conduct an
accurate classification and to detect unusual situations or behaviours. Although
human mind is capable of effortless assessing the resemblance of even very com-
plex objects [108, 109], mathematicians, computer scientists, philosophers and
psychologist have not come up with a single methodology of building similarity
models appropriate for a wide range of complex object classes or domains.

A variety of methods were used in order to construct such models and define
a relation which would combine an intuitive structure with a good predictive
power. Among those a huge share was based on some distance measures. In that
approach objects are treated as points in a metric space of their attributes and
the similarity is a decreasing function of the distance between them. Objects
are regarded as similar if they are close enough in this space. Such models may
be generalized by introducing a list of parameters to the similarity function,
e.g. weights of attributes. Tuning them results in the relation better fitting to a
dataset. Algorithms for computationally efficient optimization of parameters for
common similarity measures in the context of information systems were studied
in, for instance, [15, 16, 19].

One may argue that the relation of this kind is very intuitive because objects
which have many similar values of attributes are likely to be similar. However,
Amos Tversky [5,20] showed in empirical studies that in some contexts similarity
does not necessarily have features like symmetry or subadditivity which are
implied by distance measures. This situation occurs particularly often when we
compare objects of great complexity. The explanation for this may lie in the fact
that complex objects can be similar in some aspects and dissimilar in others.
A dependency between local and global similarities may be highly non-linear
and in order to model it we need to learn this dependency from the data, often
relying on the domain knowledge provided by an expert.
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This section discusses general properties of the similarity understood as a
binary relation between objects from a considered universe. The following Sub-
section 3.1 introduces the notion of a similarity relation and explains some dif-
ficulties related to the formal definition of this idea. In its last part it describes
how a performance of a similarity model can be quantitatively evaluated. Next,
Subsection 3.4 briefly overviews the most commonly used approaches to the
problem of modelling the similarity relation. Its main focus is on showing the
differences between the distance-based model and the approach proposed by
Amos Tversky [5, 11]. Finally, the last subsection (Subsection 3.5) shows exem-
plary applications of the similarity in fields such as Case-Based Reasoning and
Cluster Analysis.

3.1 Similarity as a Relation

The similarity can be treated as a binary relation τ between objects from a
universe Ω. Importance of this relation is unquestionable. In fact, many philoso-
phers and cognitivists believe that the similarity plays a fundamental role in a
process of learning from examples as well as acquiring new knowledge in gen-
eral [3, 4, 108, 109]. Unfortunately, even though a human mind is capable of
assessing similarity of even complex objects with a little effort, the existing com-
putational models of this relation have troubles with accurate measuring of the
resemblance between objects.

Vagueness of a Similarity Relation. Numerous empirical studies of psychol-
ogists and cognitivists showed that human perception of similar objects depends
heavily on external factors, such as available information, personal experience
and a context [5, 20, 21]. As a consequence, properties of a similarity relation
may vary depending on both the universe and the context in which it is con-
sidered (see, e.g. [5, 21]). The similarity relation can be characterized only for a
specific task or a problem. For instance, when comparing a general appearance
of people in the same age, the similarity relation is likely to have a property of
the symmetry. However, in a case when we compare people of a different age
this property would not necessarily hold (e.g. a son is more similar to his father
than the opposite). In a general case even the most basic properties, such as the
reflexivity, can be questioned [5]. Figure 3 shows a drawing from two different
perspectives. It can either be similar to itself or dissimilar, depending on whether
we decide to consider its perspective.

The subjective nature of a similarity assessment makes it impossible to per-
fectly reflect the similarity using a single model. Capturing personal preferences
would require tailoring the model to individual users. This could be hypotheti-
cally possible only if some personalized data was available and it would require
some form of an automatic learning method. Even though in many applications
it is sufficient to model similarity assessments of an “average user”, a model which
is designed for a given task and which takes into account the considered con-
text, have much better chances to accurately measure the resemblance than an
a priori selected general-purpose model.
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Fig. 3. A single drawing from two different perspectives

Additionally, due to the fact that it is impossible to determine any specific
features of the similarity without fixing its context, if no domain knowledge is
available, it may be treated as a vague concept. In order to model it, all properties
of this relation have to be derived from information at hand. Such information
can usually be represented in an information system. That is another argument
motivating the need for development of algorithms for learning domain-specific
similarity relations from data. One possible approach to this task is to utilize the
theory of rough sets (see Section 2) to construct an approximation of τ , which
will be denoted by τ∗.

Within the rough set theory, relations can be approximated just as any other
concept (see Subsection 2.2). The problem of approximation of binary relations
was investigated by researchers since the beginnings of the rough sets [47,51,57].
If no additional knowledge is available this task is much more difficult than, for
instance, a classification. It may be regarded as a problem of assigning binary
decision labels to pairs of instances from the universe Ω in an unsupervised man-
ner, using information about a limited number of objects described in available
information system. It is important to realize that the resulting approximation
τ∗ has to be reliable not only for objects at hand but also for new ones. For this
reason, in practical situations, in order to properly approximate the similarity it
is necessary to utilize some domain knowledge and to specify a context for the
relation.

3.2 Similarity in a Context

Several independent studies showed how important is to consider an appropriate
context while judging a similarity between objects [4,5,21,107]. Two stimuli pre-
sented to a representative group of people can be assessed as similar or dissimilar,
depending on whether some additional information is given about their classifi-
cation or whether they are shown along with some other characteristic objects.
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For instance, if we consider cars in a context of their class3, then Chevrolet Camaro
will be more similar to Ford Mustang than Ford Tempo. However, if we change the
context to a make of a car the assessment would be completely different.

A selection of the context for the similarity has a great impact on features
or in other words factors, that influence the judgements [5, 21]. In the previous
example, a feature such as a colour of a car would be irrelevant in the context
of car’s class. Nevertheless, it might be important in the context of a make of a
car, since some car paints could be exclusively used by specific car producers.

When constructing a similarity model for a given data, the context for the
relation can usually be inferred from a purpose which motivates performing the
analysis. If a task is to cluster the given data into subsets of closely related
objects in an unsupervised way and without any additional knowledge, then
the context will probably be a general appearance of objects. However, if we
know that, for example, the data describe textual documents, it is possible to
consider them in a context of their semantics (their meaning – see Section 6.3).
Furthermore, if the similarity model is created for a task such as a diagnosis of a
specific condition based on a genetic profile of tissue samples, then a classification
into severity stages of the condition will probably be the best context to choose
(see experiments in Subsections 6.1 and 6.2). In the last case the information
specifying the context will usually correspond to a decision attribute in the data
table.

It is also reasonable to consider similarity of two objects in a context of other
objects in the data. For instance, a banana will be more similar to a cherry
when considered in a data set describing dairy and meat products, vegetables
and fruits, than in a case when the data is related only to different kinds of
fruits. In those two cases, different aspects of the similarity would have to be
taken into account, and as a consequence, the same attributes of the fruits would
have different importance.

In general, similar objects are expected to have similar properties with regard
to the considered context. Since in this dissertation the main focus is on the sim-
ilarity in the context of a classification, the above principle can be reformulated
in terms of the consistency of the similarity with the decision classes of objects4.
More formally:

Definition 14 (Consistency with a classification)
Let Ω be a universe of considered objects and let d be a decision attribute which
can be used to divide objects from Ω into indiscernibility classes Ω/{d}. More-
over, let τ denote a binary relation in Ω. We will say that τ is consistent
with the classification indicated by d iff the following implication holds for every
u1, u2 ∈ Ω:

(u1, u2) ∈ τ ⇒ d(u1) = d(u2) . (12)

The above property will be referred to as the main feature of the similarity for
the classification. It is also often assumed that a similarity relation in the context
3 The official classification of cars is discussed, e.g., in a Wikipedia article
Car classification (http://en.wikipedia.org/wiki/Car_classification).

4 The consistency of two relations within a given set is defined in Subsection 2.2

http://en.wikipedia.org/wiki/Car_classification
http://en.wikipedia.org/wiki/Car_classification
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of a classification needs to be reflexive, namely ∀u∈Ω(u, u) ∈ τ . Additionally, for
objects which are described by a set of conditional attributes A, the reflexivity
is understood in terms of indescernibility. In particular, we will say that τ is
reflexive if and only if ∀(u,u′)∈INDA

(u, u′) ∈ τ . This assumption, however, can
be true only if there are no two objects in Ω which are identical in all aspects but
belong to different decision classes. Binary relations in Ω that have the above
two properties will be regarded as possible similarity relations in the context of
the classification. The set of all such relations will be denoted by:

R = {τ : τ ⊆Ω IND{d} ∧ τ ⊇Ω INDA} .

In the remaining parts of the dissertation it is assumed that one of such relations
τ ∈ R is fixed and considered as the reference similarity relation in the specified
classification context. It should be noted, however, that different scenarios for
inducing this relation from data may or may not assume the availability of
knowledge regarding τ for the training data. In the second case, which applies to
the similarity model proposed in Section 5, only information about the properties
of τ is utilized in the learning process.

The property from Definition 14 can be used to guide the process of construct-
ing approximations of the relation τ . It infers that a desirable approximation τ∗

should also be consistent with the decision classes indicated by d. In practice,
however, this condition can be verified only for the known objects described in a
decision system. Moreover, in real life applications it may sometimes be slightly
relaxed in order to increase the recall of the approximation. Nevertheless, the
knowledge that any set of objects that are similar to a given one must have
the same decision can be used to limit a search space for features that can con-
veniently represent pairs of objects in an approximation space, as discussed in
Subsection 2.2. It is also the fundamental assumption used in the construction
of the Rule-Based Similarity in Section 4.

Although an approximation of a similarity in a context of classification can
be made only using known objects from a given decision system, it has to allow
an assessment of whether an arbitrary object from Ω \U is similar to an object
from U . To make this possible, an assumption is made that for objects from
Ω \ U we can retrieve values of their conditional attributes (without the need
for referring to their decision class, which may remain unknown).

There can be many approximations of a similarity relation for a given de-
cision table Sd =

(
U,A ∪ {d}

)
. For example, one can always define a trivial

approximation for which no pair of objects is similar or a naive one, for which
only objects from U that are known to belong to the same decision class can
be similar. Therefore, in practical applications it is crucial to have means to
evaluate quality of an approximation and estimate how close it is to the real
similarity for the objects that are not described in Sd, i.e. {u′ ∈ Ω : u′ /∈ U}.
Since there is no available information regarding those objects, the Minimum
Description Length rule (MDL) is often used to select the approximation which
can be simply characterized but is sufficiently precise.
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3.3 Similarity Function and Classification Rules

In a variety of practical situations it is convenient to express a degree in which one
object is similar to another. For instance, in machine learning many classification
methods construct rankings of training objects based on their similarity to a
considered test case (e.g. the k nearest neighbours algorithm [7,9, 15, 17]).

To assess the level of similarity between a pair of objects, a special kind of
function is used, called a similarity function. Usually, such a function for a con-
sidered data set is given a priori by an expert for a whole Ω×Ω set, independently
of the available data and the context. Intuitively, however, a similarity function
for an information system S = (U,A) should be a function Sim : U × Ω → R,
whose values are “high” for objects in a true similarity relation and becomes
“low” for objects not in this relation. Such a function could be used to define
a family of approximations of the similarity relation τ by considering the sets
τSim
(λ) = {(u1, u2) ∈ U × U : Sim(u1, u2) ≥ λ} for any λ ∈ R. If a function Sim

is appropriate for a given relation, then at least some of the approximations
τSim
(λ) should be consistent with τ (see Definition 7) for available data. To further

formalize this notion for the purpose of this dissertation a concept of a proper
similarity function is proposed:

Definition 15 (Proper similarity function)
Let τ be a similarity relation between objects from Ω, U ⊆ Ω be a subset of
known reference objects and Sim : U × Ω → R be a function. We will say that
Sim is a proper similarity function for the relation τ within the set U iff there
exist ε1, ε2 ∈ R, ε1 > ε2, such that the following conditions hold:

1.
∣∣τSim

(ε1)

∣∣ > 0 and τSim
(ε1)

⊆U τ (see Def. 7),
2.
∣∣(U × U) \ τSim

(ε2)

∣∣ > 0 and τSim
(ε2)

⊇U τ (see Def. 8).

A value of a similarity function for a pair (u1, u2) will be called a similarity
degree of u1 relative to u2. Each of the sets τSim

(λ) can be regarded as an ap-
proximation of the similarity relation τ . The first condition from Definition 15
requires that, starting from some ε1, all the approximations τSim

(λ) defined by a
proper similarity function were subsets of the true similarity relation. It means

that the precision of the approximation defined as precτ (τSim
(λ) ) =

|τSim
(λ) ∩τ |
|τSim

(λ)
| equals

1 for all λ ≥ ε1 such that |τSim
(λ) | > 0. One practical implication of this fact is

that in the context of classification, for sufficiently large λ, objects in each pair
from τSim

(λ) must belong to the same decision class (see Definition 14).
The second condition in the definition of a proper similarity function requires

that there exists a border value ε2 such that all τSim
(λ) for λ ≤ ε2 were supersets

of the true similarity relation τ . By an analogy to the rough sets, τSim
(ε1)

and τSim
(ε2)

can be treated as a lower and upper approximation of the similarity, respectively
(see Subsection 2.2).

Of course, one function can be a proper similarity function in one context
but not in the other. If a function Sim is a proper similarity function for a
given similarity relation, we will say that this relation is approximable by Sim.
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Table 2. A similarity relation in a context of classification for the objects from the
decision system depicted in Table 1.b (on the left) and a table with the corresponding
values of a similarity function (on the right).

τ =
{
(u1, u1), (u1, u7),
(u2, u2), (u2, u5),
(u2, u7), (u3, u3),
(u3, u7), (u4, u4),
(u4, u8), (u5, u2),
(u5, u5), (u5, u7),
(u6, u6), (u6, u8),
(u7, u1), (u7, u2),
(u7, u5), (u7, u7),
(u8, u4), (u8, u8),
(u9, u4), (u9, u9)

}

A similarity matrix:
u1 u2 u3 u4 u5 u6 u7 u8 u9

u1 1.00 0.50 0.42 0.09 0.51 0.23 0.66 0.09 0.09
u2 0.50 1.00 0.42 0.09 1.00 0.20 0.67 0.08 0.43
u3 0.42 0.42 1.00 0.00 0.42 0.00 0.62 0.00 0.32
u4 0.07 0.09 0.00 1.00 0.08 0.50 0.00 1.00 0.48
u5 0.50 1.00 0.42 0.09 1.00 0.20 0.66 0.08 0.12
u6 0.20 0.25 0.00 0.50 0.20 1.00 0.09 0.50 0.20
u7 0.68 0.66 0.60 0.00 0.66 0.07 1.00 0.00 0.00
u8 0.09 0.09 0.00 1.00 0.12 0.50 0.00 1.00 0.33
u9 0.09 0.50 0.32 0.50 0.11 0.20 0.00 0.33 1.00

For example, Table 2 shows a similarity relation between objects described in
the decision system from Table 1.b and a similarity matrix displaying values of
some similarity function for all the pairs of the objects. As one can easily notice,
the relation τ is consistent with the decision classes. Moreover, the similarity
function used to generate the matrix is a proper similarity function for τ within
the considered set of objects because for λ = 0.66 the corresponding approx-
imation τSim

(0.66) =
{
(u1, u1), (u1, u7), (u2, u2), (u2, u5), (u2, u7), (u3, u3), (u4, u4),

(u4, u8), (u5, u2), (u5, u5), (u5, u7), (u6, u6), (u7, u1), (u7, u2), (u7, u5), (u7, u7),
(u8, u4), (u8, u8), (u9, u9)

}
is consistent with τ and for λ = 0.50 the approx-

imation τSim
(0.50) =

{
(u1, u1), (u1, u2), (u1, u5), (u1, u7), (u2, u1), (u2, u2), (u2, u5),

(u2, u7), (u3, u3), (u3, u7), (u4, u4), (u4, u6), (u4, u8), (u5, u1), (u5, u2), (u5, u5),
(u5, u7), (u6, u4), (u6, u6), (u6, u8), (u7, u1), (u7, u2), (u7, u3), (u7, u5), (u7, u7),
(u8, u4), (u8, u6), (u8, u8), (u9, u2), (u9, u4), (u9, u9)

}
covers the relation τ .

Is is worth to notice that a proper similarity function does not need to be
symmetric. For instance, in the previous example Sim(u1, u4) �= Sim(u4, u1). It
is also important to realize that a similarity function does not need to be non-
negative. The negative values of a similarity function are usually interpreted
as an indication that the compared objects are more dissimilar than they are
similar. However, the majority of commonly used similarity functions are non-
negative.

A similarity function allows to order objects from U according to their degree
of similarity to any given object from the considered universe. It is important to
notice, that the similarity function allows to compute the similarity coefficient
of u from the set of known objects U to any object from the universe Ω, given
that it is possible to determine its attribute values. In particular, information
about a decision class of the second object does not need to be available. That
property may be used to define several simple, case-based classification methods.
For instance, if the available training objects are described in a decision system
Sd =

(
U,A ∪ {d}

)
, an object y ∈ Ω can be assigned to a decision class of the

most similar object from U :
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1-NNSim(y) = d
(
argmax

u∈U
Sim(u, y)

)
. (13)

This formula can be easily generalized to a k-nearest neighbours rule by introduc-
ing a voting scheme for deciding a class of the investigated case [7,8,17,110,111].
A voting scheme can also be applied in a case when in U there are several objects
which are equally similar to y and belong to different decision classes. There are
numerous voting schemes that aim at optimizing the classification performance.
A basic heuristic is a majority voting by the k most similar objects from the sys-
tem Sd. Some more complex voting schemes may additionally take into account
the actual similarity function values to weight the votes of the neighbours. The
relative “importance” of a vote may also be adjusted by considering empirical
probabilities of the decision classes.

A similarity function may also be used to define a slightly different kind of a
classification rule. In the λ-majority classification, an object y ∈ Ω is assigned
to a decision class which is the most frequent within the set of objects regarded
as similar to y. Particularly, if we denote Cλ(y) =

{
u ∈ U : Sim(u, y) ≥ λ

}
,

then y can be classified as belonging to one of the l decision classes d1, ..., dl of
d using the formula:

λ-majoritySim(y) = argmax
dj∈{d1,...,dl}

∣∣{u ∈ U : u ∈ Cλ(y) ∧ d(u) = dj}
∣∣ . (14)

The λ-majority classification assigns objects to a class with the highest number
of similar examples, according to an approximation of the similarity relation
by the set τSim

(λ) . It also can make use of different voting schemes, such as ob-
ject weighting by a similarity degree or considering sizes of the decision classes.
Some exemplary similarity functions and their applications in the context of the
classification task are discussed in Subsection 3.5.

The ability to assess a similarity degree is also useful in an unsupervised data
analysis (see Subsection 3.5). For instance, various similarity functions are com-
monly used by clustering algorithms to form homogeneous groups of objects.
Moreover, similarity functions may be more convenient to use for an evaluation
of a similarity model, since the implicit verification of a similarity relation ap-
proximation may require checking all pairs of objects. More application examples
of similarity functions for supervised and unsupervised learning are discussed in
Subsection 3.5.

Evaluation of Similarity Models. A similarity relation in a given context
can be approximated using many different methods. However, a quality of two
different approximations will rarely be the same. In order to be able to select the
one which is appropriate for a considered problem there have to be defined some
means of measuring a compliance of the approximation with the real similarity
relation.

An objective evaluation of similarity assessment is a problem that has always
accompanied research on similarity models. Although there have been developed
many methods for measuring the quality of a similarity model, the most of them
can be grouped into three categories. The main criteria for this division is a
required involvement of human experts.
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In the first category there are methods which measure compliance of the as-
sessment returned by a model with human-made similarity ratings. Such an
approach includes researches in which human subjects are asked to assess the
similarity between pairs of objects (called stimuli). Next, those assessments are
compared with an output of the tested model and some statistics measuring their
correspondence are computed. For instance, Tversky in [5] describes a study in
which people were asked about a similarity between particular pairs of countries.
As a part of this study, two independent groups of participants had to assess
the similarity degrees between the same pairs of countries, but with an inverse
ordering (i.e. one group assessed how similar is country A to B, whereas the
second judged the similarity of B to A). Based on those ratings, Tversky showed
that there is a statistically significant asymmetry in the average similarity judge-
ments within those two groups and used this finding as an argument for viability
of his feature contrast model (see Subsection 3.4). In a different study on the
similarity of vehicles [5], Tversky measured the correlation between the average
assessments made by human subjects and the results of his model. In this way he
was able to show that taking into account both common and distinctive features
of objects, his model can better fit the data than in a case when those sets of
characteristics are considered separately.

The main advantage of this approach is that it allows to directly assess the
viability of the tested model to a given problem. Average assessments made
by human subjects define the ground truth similarity relation which the model
tries to approximate. By using well-defined statistical measures of compliance
between two sets of judgements it is possible not only to objectively evaluate
the model but also to quantitatively compare it to different models and decide
which one is better.

However, such a direct approach has some serious disadvantages. It usually
requires a lot of time and resources to gather a meaningful amount of data from
human participants. This does not only increase the overall cost of the model but
also limits the possible test applications to relatively small data sets. Addition-
ally, it is sometimes difficult to design an environment for manual assessment
of the similarity in a desired context. Since there are many factors that can
influence human judgement, the similarity ratings obtained in this way can be
biased. Due to those practical reasons, usage of this evaluation method is very
rare for data sets with more than a few hundreds of stimuli.

The second category of similarity model evaluation methods consists of mea-
sures that verify compliance of the tested model with constraints imposed by
domain experts. Usually, even when a data set is too large to evaluate similarity
degrees between every pair of objects, experts are able to define some rules that
must be satisfied by a good similarity model. Such rules may be either very gen-
eral (e.g. less complex objects should be more similar to the more complex ones
than the opposite) or very specific (e.g. object u1 and u2 must not be indicated as
similar). The quality of a model is then expressed as a function of a cardinality
of a set of violated rules.
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Table 3. Summary of typical similarity model evaluation methods

Correlation with average similarity ratings
Advantages: Disadvantages:
– direct assessment of a model – requires human-made ratings
– simple and intuitive evaluation – deficiencies in data availability

– possibility of a context bias
Measures of compliance with constraints

Advantages: Disadvantages:
– semi-direct model assessment – requires experts to impose constraints

by labelling or grouping
– simpler for experts – possible inconsistencies

Measures of classification accuracy
Advantages: Disadvantages:
– no human involvement required – indirect model assessment
– no limitations on data availability or
quality

– can be used only in the context of
classification

– applicable for large data sets

Experts may also provide some feedback regarding truly relevant characteris-
tics of some objects in the considered context. This information can be utilized
to heuristically assess the similarity degree of the preselected objects and those
values may be used as a reference during the evaluation of similarity models.
In a more general setting, this type of quality assessment can be used to mea-
sure quality in a semantic clustering task [29] and motivates the semi-supervised
clustering algorithms [112]. This approach is used in experiments described in
Subsection 6.3 to evaluate the similarity models for scientific articles, constructed
in the context of their semantic similarity.

The main advantage of this approach is that it is usually much more con-
venient for experts to specify constraints rather than indicate exact similarity
values. Since such rules may be local and do not need to cover all pairs of objects,
they might be applied to evaluate a similarity model on a much larger data. One
major drawback is the possible inconsistency within the constraints defined by
different experts. Also the evaluation cost which is related to the employment of
human experts cannot be neglected.

Finally, the last category consists of methods that can only be applied in the
context of classification. Similarity models are often built in order to support
decision making or to facilitate a prediction of classes of new objects. If a model is
designed specifically for this purpose, it is reasonable to evaluate its performance
by measuring the quality of predictions made with a use of similarity-based
decision rules (see Definitions 13 and 14). Since the main feature of similarity
in a context of classification (Definition 14) imposes a kind of a constraint on
desired assessments of similarity, this approach can be seen as a special case of
the methods from the second category. However it differs in that, it does not
need the involvement of human experts.
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The biggest advantage of this approach is the lack of restrictions on evaluation
data availability. It makes it possible to automatically test a similarity model
even on huge data sets, which makes the evaluation more reliable. Due to those
practical reasons this particular method was used in many studies, including
[14–16,23, 26–28]. It was also used in experiments conducted for the purpose of
this dissertation which are described in Subsections 6.1 and 6.2. Table 3 summa-
rizes the above discussion on the methods for evaluation of similarity models.

3.4 Commonly Used Similarity Models

This subsection overviews the most commonly used similarity models. The pre-
sented approaches differ in the constrains on the way they approximate the
similarity relation. For instance, the distance-based models restrict the approxi-
mations to relations which are reflexive and symmetric. However, all the models
discussed in this subsection have one property in common. They can be used
to approximate the similarity in a way that is independent of a particular data
domain or a context. For this reason the resulting approximations are often not
optimal and expert knowledge is needed to decide whether it is worth to apply
a selected model to a given problem.

Distance-Based Similarity Modelling. The most commonly used in practi-
cal applications are the distance-based similarity models. A basic intuition be-
hind this approach is that each object from a universe Ω can be mapped to some
point in an attribute value vector space. It is assumed that in this space there is
a metric defined which allows to assess a distance between any two points. Such
a metric will be called a distance function or a distance measure.

Definition 16 (Distance measure)
Let Ω be a universe of objects and let Dist : Ω × Ω → R+ ∪ {0} be a non-
negative real function. We will say that Dist is a distance measure if the following
conditions are met for all u1, u2, u3 ∈ Ω:

1. Dist(u1, u2) = 0⇔ u1 = u2 (identity of indiscernibles),
2. Dist(u1, u2) = Dist(u2, u1) (symmetry),
3. Dist(u1, u2) +Dist(u2, u3) ≥ Dist(u1, u3) (triangle inequality).

If the objects from Ω are described by attributes from a set A, then the first
condition can be generalized by considering the indiscernibility classes of u1

and u2: Dist(u1, u2) = 0 ⇔ (u1, u2) ∈ INDA. This particular variation of the
distance measure definition will be used in the later sections. Moreover, if a given
function does not fulfill the third condition (the triangle inequality) but meets
the other two it is called a semidistance or a semimetric.

A typical example of a distance measure is the Euclidean distance, which is a
standard metric in Euclidean spaces:

DistE(u1, u2) =

√∑
a∈A

(
a(u1)− a(u2)

)2
. (15)
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Another example of a useful distance measure is the Manhattan distance:

DistM (u1, u2) =
∑
a∈A

∣∣a(u1)− a(u2)
∣∣. (16)

Both of the above metrics are generalized by the Minkowski distances, which
can be regarded as a parametrized family of distance measures:

Distp(u1, u2) =
(∑

a∈A

∣∣a(u1)− a(u2)
∣∣p)1/p. (17)

Figure 4 presents shapes of circles in spaces with Minkowski metric for different
values of the parameter p.

Fig. 4. Shapes of circles in spaces with different Minkowski distances

A different example of an interesting distance function in a R|A| space is the
Canberra distance:

DistC(u1, u2) =
∑
a∈A

|a(u1)− a(u2)|
|a(u1)|+ |a(u2)|

. (18)

It is mostly used for data with non-negative attribute values scattered around the
centre since it has a property that its value becomes unity when the attributes
are of opposite sign.

All the above metrics work only for objects described by numeric attributes.
There are however numerous metrics which can be applied to cases with symbolic
attributes. The most basic of those is the Hamming distance:

DistH(u1, u2) = |{a ∈ A : a(u1) �= a(u2)}|. (19)

Typically, the Hamming distance is used for the assessment of a proximity be-
tween binary strings. It can also be utilized for comparison of any equally sized
strings, but in such a case the edit distance5 is more commonly employed, since
it allows to compare strings of different length.

Another example of a distance defined for objects with binary attributes is
the binary distance:

Distb(u1, u2) =
|{a ∈ A : a(u1) �= a(u2)}|

|{a ∈ A : a(u1) �= 0 ∨ a(u2) �= 0}| . (20)

5 A value of the edit distance is equal to the minimal number of edit operations needed
to transform one string into another. It is often called the Levenshtein distance.
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The binary distance can be applied to any type of symbolic data after transfor-
mation of each symbolic attribute to its binary representation.

A common choice of a measure in high dimensional numeric spaces is the
cosine distance. It measures the angle between two vectors:

Distarcc(u1, u2) = arccos(cos(u1, u2)) (21)

= arccos

( ∑
a∈A|

a(u1) · a(u2)√∑
a∈A

(
a(u1)

)2 ·√∑
a∈A

(
a(u2)

)2
)
. (22)

The cosine between two vectors is equivalent to their scalar product divided
by a product of their norms. A distance defined in this way is a proper metric
only for points from (R+)|A| and lying on a sphere. To avoid computation of the
arc-cosine, in applications this distance function is simplified to a form:

Distc(u1, u2) = 1−

∑
a∈A|

a(u1) · a(u2)√∑
a∈A

(
a(u1)

)2 ·√∑
a∈A

(
a(u2)

)2 . (23)

It needs to be noted, however, that Distc is only a semimetric.
The main advantage of the cosine distance is that it can be efficiently com-

puted even for extremely high dimensional but sparse data6. In such a case,
representations of all objects can be normalized by dividing all attribute values
by a norm of the corresponding vectors in Euclidean metric space. After this
transformation, the distance can be computed by multiplying only attributes
with non-zero values for both points and summing the results. For this rea-
son the cosine distance is commonly used in information retrieval [113,114] and
textual data mining [46, 115,116].

It can be easily noted that the most of the above distance measures can be
seen as a composition of two functions. The first one is applied independently for
each of the attributes to measure how different their values are in the compared
objects. The second one aggregates those measurements and expresses the final
distance. For example, in a case of the Minkowski distance the first function is
f(x, y) = |x − y| and the second is Fp(x1, . . . , x|A|) =

( ∑
i=1,...,|A|

xp
i

)1/p. Such

functions are called a local distance and a global distance, respectively. It can be
shown that a large share of distance measures can be constructed by composing
a distance in a one-dimensional space and a norm in a |A|-dimensional vector
space (a proof of this fact can be found e.g. in [117]). This fact is often called a
local-global principle.

By applying different local distance types to attributes, it is possible to mea-
sure distances between objects described by a mixture of numerical and nominal

6 Sparse data is data with little non-zero attribute values.
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features. One example of such a measure is the Gower distance. It uses the
absolute value of difference and the equivalence test for numerical and nomi-
nal attributes, respectively, and then it aggregates the local distances using the
standard Euclidean norm.

In the distance-based approach, a similarity is a non-increasing function of
a distance between representations of two objects. The transformation from a
distance to a similarity values is usually done using some simple monotonic
function such as the linear transform (Equation 24) or the inverse transform
(Equation 25). Many other functions, such as common kernels, can also be used.

Simlin(u1, u2) = C −Dist(u1, u2) (24)

Siminv(u1, u2) =
1

Dist(u1, u2) + C
(25)

In the above equations C is a constant, which is used to place the similarity
values into appropriate interval. Some other scaling methods can sometimes be
additionally applied to secure that the similarity values stay in a desired range
for pairs of objects from a given information system.

The usage of distance measures for computation of a similarity makes the
resulting model inherit some of the properties of metrics. For instance, any
distance-based approximation of the similarity will always have the property
of reflexivity and symmetry, which might be undesirable. Moreover, if a simi-
larity function is based on a globally predefined distance measure, it does not
take into account the influence of particular characteristics of objects in a given
context and treats all the attributes alike. The distinction between the local and
global distances makes it possible to partially overcome this issue by introduc-
ing additional parameters which express the importance of the local factors to
the global similarity. One example of such similarity measure is based on the
generalized Minkowski distance:

Distw,p(u1, u2) =
(∑

a∈A

wa ·
∣∣a(u1)− a(u2)

∣∣p)1/p. (26)

In this model, the vector of parameters w = (wa1 , . . . , wa|A|) can be set by
domain experts or can be tuned using one of the similarity function learning
techniques discussed in Subsection 4.2.

From the fact that any distance-based similarity approximation has to be
reflexive, it follows that a distance-based similarity function can be a proper
similarity function only in a case when the true similarity is also reflexive. In
practical situations the similarity may not have this property. For instance, when
it is considered in the context of classification and there are some inconsistencies
in the data.

Feature Contrast Model. Although the distance-based similarity models
were successfully applied in many domains to support a decision making or to
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discover groups of related objects (examples of such applications are given in
Subsection 3.5), it has been noted that such models are rarely optimal, even
if they were chosen by experts. For instance, in [9] the usefulness of classical
distance-based measures for a classification task is being questioned for data
sets with a high number of attributes. Additionally, a priori given distance-based
similarity functions neglect a context for comparison of the objects.

Those observations were confirmed by psychologists studying properties of
human perception of similar objects [4,5,20,21]. One of the first researchers who
investigated this problem was Amos Tversky. In 1977, influenced by results of
his experiments on properties of similarity, he came up with a contrast model [5].
He argued that the distance-based approaches are not appropriate for modelling
similarity relations due to constraints imposed by the mathematical features of
the distance metrics such as the symmetry or subadditivity [5, 11]. Even the
assumption about the representation in a multidimensional metric space was
contradicted [10, 11, 118].

For instance, the lack of symmetry of a similarity relation is apparent when
we consider examples of statements about similarity judgements such as “a son
resembles his father” or “an ellipse is similar to a circle”. Indeed, the experimental
studies conducted by Tversky revealed that people tend to assign a significantly
lower similarity scores when the comparison is made the other way around [5].
Moreover, even the reflexivity of the similarity is problematic, since in many
situations a probability that an object will be judged by people as similar to
itself is different for different objects [5].

In his model of a similarity Tversky proposed that the evaluation of a simi-
larity degree was conducted as a result of a binary features matching process. In
this approach, the objects are represented not as points in some metric space but
as sets of their meaningful characteristics. Those characteristics should be quali-
tative rather than quantitative and their selection should take into consideration
the context in which the similarity is judged. For example, when comparing cars
in a context of their class (see discussion in Subsection 3.2) a relevant feature of
a car could be that its size is moderate but a feature its colour is red probably
does not need to be considered.

Tversky also noticed that the similarity between objects depends not only
on their common features but also on the features that are considered distinct.
Such features may be interpreted as arguments for or against the similarity. He
proposed the following formula to evaluate the similarity degree of compared
stimuli:

SimT (x, y) = θf(X ∩ Y )−
(
αf(Y \X) + βf(X \ Y )

)
, (27)

where X and Y are sets of binary characteristics of the instances x, y, f is an
interval scale function and the non-negative constants θ, α, β are the parameters.
In Tversky’s experiments f usually corresponded to the cardinality of a set.
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Tversky argued that if the ideal similarity function for a given domain sim
meets certain assumptions7, there exist values of the parameters θ, α, β and an
interval scale f that for any objects a, b, c, d, SimT (a, b) > SimT (c, d) ⇔
sim(a, b) > sim(c, d).

Tversky’s contrast model is sometimes expressed using a slightly different
formula, known as the Tversky index:

SimT (x, y) =
θf(X ∩ Y )

θf(X ∩ Y ) + αf(Y \X) + βf(X \ Y )
. (28)

In this form values of the similarity function are bounded to the interval [0, 1].
For appropriate values of the θ, α, β parameters and a selection of the interval
scale function, this formula generalizes many common similarity functions. For
example, if θ = α = β = 1 and f corresponds to the cardinality, Tversky index
is equivalent to Jaccard similarity coefficient or Jaccard index8. When θ = 1 and
α = β = 0.5 the Tversky’s formula becomes equivalent to the Dice similarity
coefficient.

Depending on the values of θ, α, β the contrast model may have different
characteristics, e.g., for α �= β the model is not symmetric. In Formula (27)
θf(X ∩ Y ) can be interpreted as corresponding to the strength of arguments for
the similarity of x to y, whereas αf(Y \ X) + βf(X \ Y ) may be regarded as
a strength of arguments against the similarity. Using that model Tversky was
able to create similarity rankings of simple objects, such as geometrical figures,
which were more consistent with evaluations made by humans than the rankings
constructed using standard distance-based similarity functions. Still, it needs to
be noted that in those experiments, features to characterise the objects as well as
the parameter settings were either chosen manually or they were extracted from
results of a survey among volunteers who participated in the study. Although
such an approach is suitable to explore small data, it would not be practical to
use it for defining relevant features of objects described in large real-life data
sets.

It is important to realize that in practical application, the features which can
be used to characterize objects in the contrast model are usually on a much
higher abstraction level than attributes from typical data sets. This fact makes
it difficult to apply Tversky’s model for predictive analysis of data represented
in information systems. The problem is particularly evident when the analysed
data are high dimensional. In such a case, manual construction of the important
features is infeasible, even for domain experts.

For instance, microarray data sets contain numerical information about ex-
pression levels of tens of thousands genes. Within an information system, each
7 Tversky made assumptions regarding viability of the feature matching approach,

about the monotonicity of sim with regard to the common and distinct feature
sets, the independence of the evaluation with regard to the common and distinct
feature sets, the solvability of similarity equations and the invariance of the impact
of particular feature sets on the similarity evaluation [5].

8 It is easy to notice, that a function 1−Jaccard index corresponds to the binary
distance discussed in Subsection 3.4.
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gene corresponds to a different attribute. For such data, the appropriate features
to use for Tversky’s model may be interpreted as questions about activity of a
particular gene or a group of genes, e.g.: Are the Cytochrome C related genes
overexpressed? Since there is a huge number of genes and a function of many
of them still remains unknown, experts are unable to manually select all the
potentially important features of a given data sample. Additionally, there can
be exponentially many binary characteristics for a data set and checking which
of them can be used to characterize an object would be inefficient computation-
ally. Those are the main motivations for a development of automated feature
extraction methods and the similarity learning model which is proposed in
Section 5.

Hierarchical and Ontology-Based Similarity Models. Similarity models
are often built for very complex objects or processes with a predefined struc-
ture [45,119,120]. In such a case, a direct assessment of a similarity can be prob-
lematic, because two complex objects are likely to be similar in some aspects
but dissimilar in other. Tversky’s contrast model tries to overcome this issue by
considering higher-level characteristics of objects and separately handling their
common and distinctive features.

However, as it was pointed out in Subsection 3.4, typical data stored in in-
formation systems contain information only about relatively low-level, mostly
numeric attributes. In order to define the higher-level features either domain
knowledge or some learning techniques need to be employed. If the first even-
tuality is possible (i.e., an analyst has access to expert knowledge about the
domain of interest), experts can provide description how to transform the at-
tribute values into some more abstract but at the same time more informative
characteristics.

For very complex objects a one aggregation step in construction of new fea-
tures might be insufficient. Different features constructed from basic attributes
might be correlated or might still require some generalization before they are
able to express some relevant aspect of the similarity in a considered context. In
this way, a whole hierarchy of features can be built. Such a structure is sometimes
called a similarity ontology for a given domain.

Figure 5 shows a similarity ontology constructed for the car example dis-
cussed in previous sections. It was constructed for one of the data sets used as a
benchmark in experiments described in Section 6 (i.e., the Cars93 data). In this
particular context (a class of a car) the similarity between two cars can be con-
sidered in aspects such as capacity, driving parameters, economy, size and value.
Those local similarities can be aggregated to neatly express the global similarity,
however the aggregation needs to be different for objects from different decision
classes. For instance, the size aspect may be more important when assessing the
similarity to a car from the Full-size class than in a case when the comparison
is made to a Sporty car.

For this reason, in the hierarchical approach to approximating the similar-
ity relation experts are required to provide local similarity functions and class-
dependent aggregation rules. In this way the experts can give the model desirable
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Fig. 5. An exemplary similarity ontology for comparison of cars in the context of their
type

properties. For example, even if only very simple distance-base local similarities
are used for computation of the similarity in each of the aspects, the resulting
model can still be not symmetric.

Some experiments with a hierarchical similarity models are described in [23,
117]. This approach was also successfully used for case-based prediction of a
treatment plan for infants with respiratory failure [45,120]. In that study, expert
knowledge was combined with supervised learning techniques to assess the simi-
larity of new cases in different aspects or abstraction levels. The incorporation of
medical doctors into the model building process helped to handle the temporal
aspect of data and made the results more intuitive for potential users.

One major drawback of the hierarchical similarity modelling is that it is ex-
tensively dependent on availability of domain knowledge. In the most of complex
problems such knowledge is not easily obtainable. Additionally, the construction
of a similarity ontology requires a significant effort from domain experts, which
makes the model expensive. On the other hand, due to a vague and often ab-
stract nature of the higher-level features which can influence human judgements
of similarity, some expert guidance seems inevitable. Due to this fact, in prac-
tical applications the expert involvement needs to be balanced with automatic
methods for learning the similarity from data.



216 A. Janusz

3.5 Similarity in Machine Learning

Similarity models play an important role among the machine learning techniques.
Their application ranges from supervised classification and regression problems
to automatic planning and an unsupervised cluster analysis. In this subsection,
three major application areas of similarity models are discussed. They corre-
spond to similarity-based classification models, case-base reasoning framework
and clustering algorithms, respectively. Although the presented list of examples
is by no means complete, it shows how useful in practice is the ability to reliably
assess the similarity between objects.

Similarity in Predictive Data Analysis and Visualization. One of the
most common application areas of the similarity modelling is the classification
task. Models of similarity in this context can actually be constructed for two
reasons. The first and obvious one is to facilitate classification of new, previously
unseen objects, based on available data stored in an information system.

The most recognized similarity-based classification algorithm is the k-nearest
neighbours [7, 14, 17, 110, 111]. It is an example of a lazy classification method
which does not have a learning phase. Instead, for a given test case, it uses
a predefined similarity measure to construct a ranking of the k most similar
objects from a training data base (the neighbours). In the classical approach
the measure is based on the Euclidean distance. The decision class of the tested
object is chosen based on classes of the neighbours using some voting scheme
[13,110,111]. This approach can be seen as an extension of the simplest similarity-
based classification rule (Definition 13). It can be generalized even further by, for
example, considering the exact similarity function values during the voting or
assigning weights to training objects that express their representativeness for the
decision class. The k-nearest neighbours algorithm can also be used to predict
values of a numeric decision attribute (regression) or to perform a multi-label
classification [32]. However, in all those applications the correct selection of a
similarity model is the factor that has the biggest influence on the quality of
predictions.

The models of a similarity in the classification context may also be constructed
for a different purpose. The information about relations between objects from
an investigated universe is sometimes as important as the ability to classify new
cases. It can be used, for instance, to construct meaningful visualizations of
various types of data [121,122]. Such visualizations can be obtained by changing
the representation of objects from original attributes to similarities. It allows to
display the objects in a graph structure or a low-dimensional metric space. Such
a technique is called multidimensional scaling (MDS) [118,123].

Changing the representation of objects may also be regarded as a preprocess-
ing step in a more complex data analysis process. For example, similarity degrees
to some preselected cases can serve as new features. Such a feature extraction
method (see [88]) can significantly improve classification results of common ma-
chine learning algorithms [124]. To make it possible, a proper selection of the
reference objects is essential. One way of doing this requires a selection of a
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single object from each decision class, such that its average similarity to other
objects from its class is the highest. Another possibility is the random embed-
ding technique [125] in which the reference objects are chosen randomly and the
quality of the selection is often verified on separate validation data.

Case-Based Reasoning Framework. The similarity-based classification can
be discussed in a more general framework of algorithmic problem solving. Case-
based reasoning is an example of a computational model which can be used to
support complex decision making. It evolved from a model of dynamic memory
proposed by Roger Schank [2] and is related to the prototype theory in cognitive
science [1, 3].

A case-based reasoning model relies on an assumption that similar problems,
also called cases, should have similar solutions. It is an analogy to the everyday
human problem solving process. For example, students who prepare for a math
exam usually solve exercises and learn proofs of important theorems, which helps
them in solving new exercises during the test. The reasoning based on previous
experience is also noticeable in work of skilled professionals. For instance, medical
doctors diagnose a condition of a patient based on their experience with other
patients with similar symptoms. When they propose a treatment, they need to
be aware of any past cases in which such a therapy had an undesired effect.

In a typical case-based reasoning approach, each decision making or a problem
solving process can be seen as a cycle consisting of four phases [6] (see Figure
6). In the first phase, called retrieve, a description of a new problem (case)
is compared with descriptions stored in an available knowledge base and the
matching cases are retrieved. In the second phase, called reuse, solutions (or
decisions) associated with the retrieved cases are combined to create a solution
for the new problem. Then, in the revise phase, the solution is confronted with
the real-life and some feedback on its quality is gathered. Lastly, in the retain
phase, a decision is made whether the new case together with the revised solution
are worth to be remembered in the knowledge base. If so, the update is made
and the new example extends the system.

The notion of similarity is crucial in every phase of the CBR cycle. The cases
which are to be retrieved are selected based on their similarity degree to the
new case. Often, it is required that those cases were not only highly similar
to the reference object but that they were also maximally dissimilar to each
other [6,107]. In the reuse phase, the similarity degrees may be incorporated into
the construction of the new solution, for example, as weights during a voting.
Additionally, information about similarities between solutions associated with
the selected cases may be taken into account during the construction of new
ones. Next, during the revision of the proposed solution, its similarity to the
truly optimal one needs to be measured, in order to assess an overall quality of
the given CBR system and to find out what needs to be improved in the future.
Finally, when the corrected solution to the tested case is ready, its similarity
degrees to the cases from the knowledge base can be utilized again to decide
whether to save the new case or not.
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Fig. 6. A full Case-Based Reasoning cycle (based on a schema from [6])

It is worth mentioning that the classical k-NN algorithm can be seen as a very
basic CBR model [16], hence the similarity in a context of classification plays a
special role in the case-based modelling. However, case-based reasoning may be
used for solving much more complex problems than a simple classification, such
as treatment planning or recognition of behavioural patterns [45, 119,120]. The
rough set theory has proven to be very useful for construction of CBR systems
dedicated to complex problem solving [57, 60, 126].

Similarity in Cluster Analysis. The concept of similarity is also used for
solving problems related with unsupervised learning. One example of such a
task is clustering of objects into homogeneous groups [7, 8, 127].

In the clustering task the similarity can be used for two reasons. Since homo-
geneity of a cluster corresponds to the similarity between its members, similarity
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Fig. 7. An example of two clustering trees computed for the agriculture data set using
the agnes algorithm [127] with the single (on the left) and complete (on the right)
linkage functions

measures are used by clustering algorithms to partition objects into groups. The
most representative example of such an algorithm is k-means [112, 127].

In the classical version of k-means objects are treated as points in the Eu-
clidean space and the similarity between points is identified with their proximity.
However, the algorithm can be easily modified to use any distance-based similar-
ity function. A pseudo code of such a modification of k-means, called k-centroids,
is given below (Algorithm 1).

In typical implementations of k-means, when the similarity function is a lin-
ear function of Euclidean distance between points, the selection of new cluster
centres is trivial. Coordinates of the new centres are equal to mean coordinates
of the corresponding cluster members. However, if some non-standard similarity
functions are used, the computation of the new centres requires solving an op-
timization problem and may become much more complex. Therefore, in many
cases it is more convenient to use the k-medoids [127] algorithm which restricts
the set of possible cluster centres to actual members of the group. This algorithm
is also known to be more robust than k-means since it is not biased by outliers
in the data [127,128].

In the context of the clustering, it is also possible to consider a similarity
between groups of objects (clusters). This notion is especially important for
algorithms that construct a hierarchy of clusters. So-called hierarchical clustering
methods, instead of dividing the objects into a fixed number of groups, compute
a series of nested partitions with a number of groups ranging from 1 (all objects
are in the same group) to the total number of objects in a data set (every object
is a separate group). Figure 7 shows an example of two clustering trees computed
for the agriculture9 data set.

9 This data set describes a relation between a percentage of the population working
in agriculture to Gross National Product (GNP) per capita in the old EU countries
(in 1993).
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Algorithm 1. The k-centroids algorithm.
Input: an information system S = (U,A);

a desired number of clusters k;
a similarity function Sim : U × U → R;

Output: a grouping vector g = (g1, . . . , g|U|), where gi ∈ {1, . . . , k};
1 begin
2 endF lag = F ;
3 Randomly select k initial cluster centres cj , j = 1, . . . k;
4 while endF lag == F do
5 Assign each u ∈ U to the nearest (most similar)

cluster centre:
6 for i ∈ {1, . . . , |U |} do
7 gi = argmax

j

(
Sim(ui, cj)

)
;

8 end
9 Compute new cluster centres c̄j , j = 1, . . . k, such that∑

i:gi=j

(
Sim(ui, c̄j)

)
is minimal;

10 if ∀j∈{1,...,k}(c̄j == cj) then
11 endF lag = T ;
12 end
13 else
14 for j ∈ {1, . . . , k} do
15 cj = c̄j ;
16 end
17 end
18 end
19 return g = (g1, . . . , g|U|);
20 end

In the agglomerative approach to hierarchical clustering, at each iteration of
the algorithm two most similar groups are merged into a larger one (the bottom-
up approach). There can be many ways to estimate the similarity between two
clusters. Typically, it is done using some linkage function. The most commonly
used linkage functions are single linkage, average linkage and complete linkage
[8, 127]. They estimate the similarity between two groups by, respectively, the
maximum, average and minimum from similarities between pairs of objects, such
that one object is in the first group and the other is in the second.

The second reason for using the similarity in the clustering task is related
to the problem of evaluation of a clustering quality. This issue can be seen as
a complement to the evaluation of similarity measures, which was discussed in
Subsection 3.3. Given reference values of similarity degrees between pairs of
considered objects (for instance by domain experts) it is possible to assess the
semantic homogeneity of a grouping. It can be done, for example, by using a
function that is normally employed as an internal clustering quality measure10

10 A clustering quality measure is called internal if its value is based solely on the data
that were used by the clustering algorithm.
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but with the reference similarities as an input. Such an approach is utilized in
experiments described in [29], as well as those presented in Subsection 6.3 of this
dissertation.

4 Similarity Relation Learning Methods

The notion of similarity, discussed in the previous section, is a complex concept
whose properties are subjective in nature and strongly depend on a context in
which they are considered [5,10,11,20,118]. Due to this complexity, it is extremely
difficult to model the similarity based only on an intuition and general knowledge
about a domain of interest (see the discussion in Subsection 3.1). For decades
this fact has motivated research on methods which would allow to approximate a
similarity relation or to estimate values of a similarity function, using additional
samples of data.

Many of the similarity learning methods concentrate on tuning parameters of
some a priori given (e.g. by an expert) similarity functions. This approach is most
noticeably present in the distance-based similarity modelling where the similarity
function is monotonically dependent on a distance between representations of
objects in an information system (for more details see Subsection 3.4). Distance
measures can usually be constructed using the local-global principle [15, 16, 117]
which divides the calculation of the distances into two phases – local, in which
objects are compared separately on each of their attributes, and global, in which
the results of comparisons are aggregated. This separation of the local and the
global distance computation allows to conveniently parametrize the function
with weights assigned to the local distances. Using available data and reference
similarity values, those weights can be tuned in order to better fit the resulting
similarity model to the given task.

Although the distance-based models for learning the similarity relation are
predominant, they are not free from shortcomings. These defects are in a large
part due to the usage of distance-based similarity function which can be in-
appropriate for modelling the similarity in a given context (see discussion in
Subsections 3.1, 3.2 and 3.4). Additionally, such an approach usually fails to
capture higher-level characteristics of objects and their impact on the similarity
relation. These limitations often lead to approximations of the similarity which
are not consistent with human perception [5, 21].

To construct an approximation of the similarity which would truly mimic
judgements of human beings it is necessary to go a step further than just relying
on lower-level sensory data. The similarity learning process needs to support
extraction of new higher-level characteristics of objects that might be important
in the considered context. Since such abstract features are likely to correspond
to vague concepts, some approximate reasoning methods need to be used in
order to identify their occurrence in the objects. Additionally, the aggregation
of local similarities also needs to be dependent on data and should not enforce
any specific algebraical properties on the approximated relation.

In this section, a flexible model for learning the similarity relation from data is
proposed (in Section 5). This model, called Rule-Based Similarity (RBS), aims at
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overcoming the issues related with the distance-based approaches. As a founda-
tion, it uses Tversky’s feature contrast model (Subsection 3.4). However, unlike
the feature contrast model, it utilizes the rough set theory to automatically ex-
tract higher-level features of objects which are relevant for the assessment of
the similarity and to estimate their importance. In the RBS model the aggrega-
tion of the similarities in local aspects is based on available data and takes into
consideration dependencies between individual features. The flexibility of this
model allows to apply it in a wide range of domains, including those in which
objects are characterised by a huge number of attributes.

In the subsequent subsections some basic examples of similarity learning mod-
els are discussed. Subsection 4.1 explains the problem of similarity learning and
points out desirable properties of a good similarity learning method. Subsection
4.2 is an overview of several approaches to similarity learning which mostly focus
on tuning distance-based similarity functions. They utilize different techniques,
such as attribute rankings, genetic algorithms or optimization heuristics, to se-
lect important attributes or to assign weights that express their relevance. On
the other hand, Section 5 introduces the notion of Rule-Based Similarity whose
focus is on constructing higher-level features of objects which are more suit-
able for expressing the similarity. Apart from explaining the motivation for the
RBS model and its general construction scheme, some specialized modifications
are presented. They adapt the model to tasks such as working with high dimen-
sional data or learning a similarity function from textual data in an unsupervised
manner.

4.1 Problem Statement

Similarity learning can be defined as a process of tuning a predefined similarity
model or constructing a new one using available data. This task is often consid-
ered as a middle step in other data analysis assignments. If the main purpose
for approximating a similarity relation is to better predict decision classes of
new objects, facilitate planning of artificial agent actions or to divide a set of
documents into semantically homogeneous groups, the resulting similarity model
should help in obtaining better results than a typical baseline. Ideally, a process
of learning the similarity should be characterised by a set features which indicate
its practical usefulness.

The set of desirable similarity learning method properties include:

1. Consistence with available data.
An ability to fit a similarity model to available data is the most fundamen-

tal feature of a similarity learning technique. It directly corresponds to an
intuitive expectation that a trained model should be more likely to produce
acceptable similarity evaluations than an a priori given one. An outcome of
a perfect method should always be a proper similarity function (see Defini-
tion 15), regardless of a data set. Moreover, this property should hold even
for new objects that were not available for learning. Unfortunately, such a
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perfect method does not exist. A good similarity learning model, however,
should aim to fulfil this intuition and be consistent with available data.

2. Consistence with a context of the similarity that is appropriate for a given
task.

A trained similarity model should also be consistent with a given con-
text. Hence, if the context is imposed by, for example, a classification task,
the resulting similarity model should be more useful for assigning decision
classes of new objects using one of the similarity-based decision rules (see
Definitions 13 and 14 in Subsection 3.3) than the baseline. The verification of
the precision of such a classifier can be treated as a good similarity learning
evaluation method [16]. This particular approach is used in the experiments
described in the next section.

3. Ability to take into consideration an influence of objects from the data on
evaluation of the similarity.

As it was mentioned in Subsection 3.2, similarity between two given
objects often depends on the presence of other objects which are considered
as a kind of a reference for comparison. Similarity learning methods that are
able to construct a similarity model capable of capturing such a dependence
are justifiable from the psychological point of view and are more likely to
produce intuitive results [4, 21].

4. Compliance with psychological intuitions (e.g. regarding object representa-
tions).

Another desirable property of similarity learning models is also related to
intuitiveness of the resulting similarity evaluations. Assessments of similar-
ity obtained using constructed similarity function should be comprehensible
for domain experts. One way of ensuring this is to express the similarity in
terms of meaningful higher-level features of objects. Such features can be
extracted from data using standard feature extraction methods [88] as well
as with specialized methods such as decision rules [22,25,27] or semantic text
indexing tools [40,129]. Not only can higher-level features help in capturing
aspects of similarity that are difficult to grasp from lower-level sensory data
but may also be used as a basis for a set representation of objects [4,5]. Such
representation can be more natural for objects that are difficult to represent
in a metric space [5,20,21]. Moreover, by working with higher-level features
the similarity evaluation can be associated with resolving conflicts between
arguments for and against the similarity of given objects. Such an approach
is usually more intuitive for human experts.

5. Robustness for complex object domains (e.g. high dimensional data).
A good similarity learning method should be general enough to be possi-

ble to apply in many object domains. Usually, a similarity model is efficient
for some data types while for others it yields unreliable results. The usage of
a similarity learning technique for tuning parameters of a model can greatly
extend the range of suitable data types. However, applications of a similar-
ity learning method may also be confined. For instance, models with multiple
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parameters are more vulnerable to overfitting when there is a limited number
of available instances in data (e.g. the few-objects-many-attributes problem
[9, 130]).

6. Computational feasibility.
The last of the considered properties regards computational complexity of

the similarity learning model. The complexity of a model can be considered
in several aspects. A similarity learning method needs to be computationally
feasible with regard to the size of a training data set, understood in terms of
both, the number of available objects and the number of attributes. Either
of those two sides can be more important in specific situations. Many mod-
els, however, are efficient in one of the aspects and inefficient in the other.
The scalability of a similarity learning model often determines its practical
usefulness.

Any similarity learning model can be evaluated with regard to the above
characteristics. In particular, Rule-Based Similarity described in Section 5 was
designed to possess all those properties.

4.2 Examples of Similarity Learning Models

The problem of similarity learning was investigated by many researchers from
the field of data analysis [12, 15, 16, 18, 24, 61, 126, 131, 132]. In the applications
discussed in Subsection 3.5, similarity functions which can be employed for a
particular task can be adjusted to better fit the considered problem. The main
aim of such an adjustment is to improve effectiveness of the algorithms which
make use of the notion of similarity.

The commonly used similarity models (e.g. the distance-based models – see
Subsection 3.4) neglect the context for similarity. However, the vast majority of
similarity learning methods incorporate this context into the resulting model by,
e.g., considering feedback from experts or by guiding the learning process using
evaluations of the quality of the model computed on training data. Thus, in a
typical case, the similarity learning can be regarded as a way of adaptation of a
predefined similarity model to the context which is determined by a given task.

The process of learning the similarity relation may sometimes be seen as a
supervised learning task. This is especially true when it can be described as a
procedure in which an omniscient oracle is queried about similarities between
selected pairs of objects to construct a decision system for an arbitrary classi-
fication algorithm [61, 126]. However, in many cases, direct assessments of the
degrees of similarity which can be used as a reference are not available. In that
situation, domain knowledge or some more general properties of the similarity in
the considered context have to be used to guide the construction of the model.
One example of such a property is stated in Definition 14. Since the later ap-
proach can be regarded as more practical, the following examples show similarity
learning methods mainly designed to work in such a setting.
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Feature Extraction and Attribute Ranking Methods. One of the most
general methods for learning a similarity relation is to adjust the corresponding
similarity function to a given data set by assigning weights, selecting relevant
attributes or constructing new, more informative ones. Such weights can be
used in combination with standard generalizations of similarity functions (e.g. a
measure based on the generalized Minkowsky distance) to express the importance
of particular local similarities.

Research on attribute selection techniques has always been in a scope of in-
terest of the machine learning and data mining communities [81,82,89,90]. The
dimensionality reduction allows to decrease the amount of computational re-
sources needed for execution of complex analysis and very often leads to better
quality of the final results [87,88,132]. The selection of a small number of mean-
ingful features also enables better visualizations and can be crucial for human
experts who want to gain insight into the data.

Feature selection methods can be categorised in several ways. One of those
is the distinction between supervised and unsupervised algorithms. The unsu-
pervised methods focus on measuring variability and internal dependencies of
attributes in data. As an example of such a method one can give Principle
Component Analysis [133] in which the representation of data is changed from
original attributes to their representation in a space of eigenvectors, computed
by eigenvalue decomposition of an attribute correlation matrix. The supervised
methods information about decision classes to assess the relevance of particular
attributes. They can be further divided into three categories, i.e. filter, wrapper
and embedded methods [88, 95, 134].

The filter methods create rankings of individual features or feature subsets
based on some predefined scoring function. Ranking algorithms can be divided
into univariate and multivariate. The univariate rankers evaluate importance
of individual attributes without taking into consideration dependencies between
them. A rationale behind this approach is that a quality of an attribute should be
related to its ability to discern objects from different decision classes. As an ex-
ample of frequently used univariate algorithms one can give a simple correlation-
based ranker [135], statistical tests [136] or rankers based on mutual information
measure [137]. The multivariate attribute rankers try to assess the relevance in a
context of other features. They explore dependencies among features by testing
their usefulness in groups (e.g. the relief algorithm [138]) or by explicitly mea-
suring relateness of pairs of attributes and applying the minimum-redundancy-
maximum-relevance framework [137, 139]. Another worth-noticing example of
a multivariate feature ranker is the Breiman’s relevance measure. It expresses
the average increase of a classification error resulting from randomization of
attributes that were used during construction of trees by the Random Forest
algorithm [140,141].

In the second approach, subsets of features are ranked based on the perfor-
mance of a predictive model constructed using those features. Attributes from
the subset which achieved the highest score are selected. Usually, the same model
is used for choosing the best feature set and making predictions for test data,
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because different classifiers may produce their best results using different fea-
tures. Due to the fact that a number of all possible subsets of attributes is
exponentially large, different heuristics are being used to search the attribute
space. The most common heuristics include top-down search [142], bottom-up
search [143] and Monte Carlo heuristics such as simulated annealing or genetic
algorithms [144]. Although usually the wrapper approach yields better results
than the filter approach, its computational complexity makes it difficult to apply
for extremely high dimensional data.

Table 4. Summary of attribute selection methods

Filter methods: Wrapper methods: Embedded methods:

– attributes or attribute
subsets receive scores
based on some prede-
fined statistic,

– scores of individual at-
tributes can be used as
weights,

– top ranked features
can be selected as rel-
evant.

– learning algorithms
are evaluated on
subsets of attributes,

– many different subset
generation techniques
can be used,

– the best subset is se-
lected.

– feature selection can
be an integral part of
a learning algorithm,

– irrelevant attributes
may be neglected,

– some new features
may be constructed
(internal feature
extraction).

The embedded methods are integral parts of some learning algorithm. For
instance, classifiers such as Support Vector Machine (SVM) [145,146] can work
in a space of higher dimensionality than the original data applying the kernel
trick [147]. Moreover, efficient implementations of classifiers such as Artificial
Neural Networks (ANN) [148,149] automatically drop dimensions from the data
representation if their impact on the solution falls below a predefined threshold.

The application of an attribute selection or ranking algorithm for learning a
similarity may be dependent on its context. Practically all typical supervised
feature selection algorithms can be employed for tuning a similarity function if
the similarity is considered in the classification context. It is a consequence of
the main feature of similarity in that context (see Definition 14). If the similarity
needs to be consistent with decision classes, the more discriminative attributes
are likely to be relevant in a similarity judgement. However, in the case of sim-
ilarity in the context of “general appearance” unsupervised feature extraction
methods need to be used.

Genetic Approaches. Genetic algorithms (GA) [150] are another popular tool
for learning the parameters of similarity functions which are constructed using
the local-global principle. The idea of GA was inspired by evolution process of
living beings. In this approach parameters of the local similarities (e.g. their
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weights) and the aggregation function are treated as genes and are arranged
into genotypes of the genome (also called chromosomes). In this nomenclature,
the similarity learning process corresponds to searching for the most adapted
genotype. The adaptation of a genotype to a given problem is measured using
a fitness function. Since in applications to similarity learning a proper fitness
function needs to be based on a similarity model evaluation method, such as those
discussed in Subsection 3.3, the GA-based similarity learning may be regarded
as a special case of the wrapper attribute ranking approach (see Subsection 4.2).
However, the flexibility of GA makes it particularly popular among researchers
from the case-base reasoning field [16, 131,132].

In GA searching for the most adapted genotype is iterative. In each iteration,
which is also called a life-cycle or a generation, chromosomes undergo four ge-
netic operations, namely the replication (inheritance), mutation, crossover and
elimination (selection).

1. Replication – a selected portion of genotypes survives the cycle and is carried
out to the next one.

2. Mutation – a part of genotypes is carried out to the next generation with a
randomly modified subset of genes.

3. Cross-over – some portion of genotypes exchange a part of their genetic code
and generate new genotypes.

4. Elimination – a part of genotypes that were taken to the new population is
removed based on their values of a fitness function.

Figure 8 presents a schema of an exemplary genetic optimization process (a
genetic life-cycle). Initially, a random population of genotypes is generated, with
each genotype coding a set of parameters of a similarity function that is being
tuned. The genetic operations are repeatedly applied to consecutive populations
until stop criteria of the algorithm are met.

Exact algorithms for performing the genetic operations may vary in different
implementations of GA. However typically, the selection of genotypes to undergo
the replication, mutation and crossover is non-deterministic. It usually depends
on scores assigned by the fitness function. A common technique for selecting
genotypes is called the roulette wheel selection – every member of a population
receives a certain probability of being selected and the genotypes are chosen
randomly from the resulting probability distribution. The selection of genotypes
for different genetic operations is done independently, which means that a single
genotype may undergo a few different genetic operations. It can also be chosen
several times for the same operation type.

During the replication, selected genotypes are copied unchanged to the next
generation. The mutation usually involves random selection of a relatively small
subset of genes, which are then slightly modified and the resulting genotype is
taken to the next cycle. The crossover operation is usually the most complex.
Its simplest exemplary implementation may consist of swapping randomly se-
lected genes between two genotypes. If all parameters of a similarity function
are numeric, it may also be realized by computing two weighted averages of the
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Fig. 8. A schema of a single genetic life-cycle

parent genotypes. One which gives more weight to genes from one parent and the
second giving a higher weight to the other one. A more complicated variants of
the crossover may include the construction of completely new features that are
used for measuring the similarity or to define new local similarity measures [16].
The elimination of genotypes is performed to maintain a desired size of a pop-
ulation. Most commonly, genotypes with the lowest values of a fitness function
are removed before starting a new life-cycle. In some implementations however,
this last phase of the cycle is also done in a non-deterministic manner, using
techniques such as the roulette wheel selection.

The most computationally intensive part of GA is the quality evaluation of
genotypes belonging to the population. In the context of the similarity learning,
the fitness function needs to assess a quality of a similarity function with pa-
rameters corresponding to each genotype in the population. Those assessments
are usually performed using one of the methods discussed in Subsection 3.3 and
they require a comparison of similarity values returned by the tested models on
a training data set with some reference.

Relational Patterns Learning. A different model for learning the similar-
ity relation from data was proposed among the relational patterns learning
methods [15]. This approach also employs the local-global principle for defin-
ing approximations of the similarity. However, it differs from the previously
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discussed methods in that it tries to directly approximate the similarity in a
local distance vector space. The learning in the context of classification is done
through optimizing a set of parameters for an a priori given family of simi-
larity approximations. Since the usage of distance-based local similarities en-
forces reflexivity and symmetry on the resulting approximation, this approach
is highly related to searching for optimal approximations in tolerance approxi-
mation spaces [55, 56, 151].

Table 5. An exemplary data set describing a content of two vitamins in apples and
pears (the data were taken from [15])

Vitamin A Vitamin C Fruit Vitamin A Vitamin C Fruit
1.0 0.6 Apple 2.0 0.7 Pear
1.75 0.4 Apple 2.0 1.1 Pear
1.3 0.1 Apple 1.9 0.95 Pear
0.8 0.2 Apple 2.0 0.95 Pear
1.1 0.7 Apple 2.3 1.2 Pear
1.3 0.6 Apple 2.5 1.15 Pear
0.9 0.5 Apple 2.7 1.0 Pear
1.6 0.6 Apple 2.9 1.1 Pear
1.4 0.15 Apple 2.8 0.9 Pear
1.0 0.1 Apple 3.0 1.05 Pear

The first step in relational patterns learning algorithms is a transformation
of data from an attribute value vector space into a local distance (or similarity)
vector space. This process for an exemplary fruit data set (Table 5) taken from
[15] is depicted on Figure 9.

For each pair of objects from a decision system Sd =
(
U,A∪{d}

)
, all their local

distances (or sometimes local similarities) are computed. Those values are used
to represent the pairs in a new metric space, whose dimensionality is the same as
the total number of original attributes. A new binary decision attribute is also
constructed. It indicates whether the both of objects from the corresponding
pair belong to the same decision class of original data. This new data represen-
tation can serve as an approximation space (see Subsection 2.2) for learning the
similarity in the context of classification (see Definition 14).

The selection of the most suitable approximation from a given family is per-
formed by searching for parameters that maximize the number of pairs with
the same decision (white squares in the right plot of Figure 9) included in the
approximation while maintaining the constraints resulting from Definition 14.
One example of a family of approximations is the parametrized conjunction in a
form:

(x, y) ∈ τ∗1 (ε1, . . . , ε|A|)⇔
∧

ai∈A

[
fai(x, y) < εi

]
, (29)
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Fig. 9. An example of a transformation of the fruit data set (Table 5) from the attribute
value vector space to the local distance vector space. In the plot on the left, the white
squares correspond to apples and the black diamonds represent pears. In the plot on the
right, the squares correspond to pairs of instances representing the same fruit, whereas
the black circles are pairs of different fruits (an apple and a pear).

where A is a set of all conditional attributes, fai are local distance functions
and εi are parameters of the family. A different example of a useful family of
approximations the parametrized linear combination form:

(x, y) ∈ τ∗2 (w0, . . . , w|A|)⇔
|A|∑
i=1

[
wi · fai(x, y)

]
+ w0 < 0, (30)

where wi, i = 0, . . . , |A| are parameters. Those two families of approximations
differ in geometrical interpretations of neighbourhoods they assign to the inves-
tigated objects. In the first one, the captured similar objects need to be in a
rectangular-shaped area, whereas in the case of the second family, the neigh-
bourhoods are diamond-like. Several heuristics for learning semi-optimal sets of
parameters for different families of similarity relation approximations are shown
in [15].

One disadvantage of the relational pattern learning approach is its compu-
tational complexity. The transformation of the original decision system into a
local distance vector space requires O(n2) storage and computation time (n is
the number of objects in the decision system). In order to avoid such a big
computational cost, the transformation may be virtualized, i.e. it may not be
physically performed but instead the computation of local distances and new
decision value may be done “on demand” by the learning heuristic. Although
such a solution decreases the space complexity, it usually leads to a significant
increase in the time complexity of the method.

Another solution is to approximate similarity only to a selected small subset
of objects from the decision system. This technique, called local approximation
of the similarity, might be efficient, especially when it is possible to distinguish
a small group of objects which are representative for the whole data.
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Explicit Semantic Analysis. Many similarity learning models were proposed
specifically to approximate a semantic similarity in corpora of textual data
[115, 116, 129, 152]. One of the most successful approaches aims at improving
a representation of documents, so that it better reflected a true meaning of the
texts [129, 152]. With the new representation, the similarity of two documents
is estimated using standard similarity measures, such as those described in Sub-
section 3.4.

One particularly interesting example of such a method is Explicit Seman-
tic Analysis (ESA), proposed in [129]. It is based on an assumption that any
document can be represented by predefined concepts which are related to the
information that it carries (its semantics). Those concepts can be then treated as
semantic features of documents. The process of choosing concepts that describe
documents in the most meaningful way can be regarded as a feature extraction
task [88].

In the ESA approach, natural language definitions of concepts from an exter-
nal knowledge base, such as an encyclopaedia or an ontology, are matched against
documents to find the best associations. A scope of the knowledge base may be
general (like in the case of Wikipedia) or it may be focused on a domain related to
the investigated text corpus, e.g. Medical Subject Headings (MeSH)11 [153]. The
knowledge base may contain some additional information on relations between
concepts, which can be utilized during computation of the “concept-document”
association indicators. Otherwise, it is regarded as a regular collection of texts
with each concept definition treated as a separate document.

The associations between concepts from a knowledge base and documents
from a corpus are treated as indicators of their relatedness. They are computed
two-fold. First, after the initial preprocessing (stemming, stop words removal,
identification of relevant terms), the corpus and the concept definitions are con-
verted into the bag-of-words representation. Each of the unique terms in the
texts is given a set of weights which express its association strength to different
concepts.

Assume that after the initial processing of a corpus consisting of M doc-
uments, D = {T1, . . . , TM}, there have been identified N unique terms (e.g.
words, stems, N-grams) w1, . . . , wN . Any text Ti in the corpus D can be repre-
sented by a vector 〈v1, . . . , vN 〉 ∈ RN

+ , where each coordinate vj(Ti) expresses a
value of some relatedness measure for j-th term in the vocabulary (wj) relative
to this document. The most common measure for calculating vj(Ti) is the tf-idf
(term frequency-inverse document frequency) index (see [115]) defined as:

vj(Ti) = tfi,j · idfj =
ni,j∑N
k=1 ni,k

· log
(

M

|{i : ni,j �= 0}|

)
, (31)

where ni,j is the number of occurrences of the term wj in the document Ti.

11 MeSH is a controlled vocabulary and thesaurus created and maintained by the United
States National Library of Medicine. It is used to facilitate searching in life sciences
related article databases.



232 A. Janusz

In the second step, the bag-of-words representation of concept definitions is
transformed to an inverted index which maps words into lists of K concepts,
c1, . . . , cK , described in a knowledge base. The inverted index is then used to per-
form a semantic interpretation of documents from the corpus. For each text, the
semantic interpreter iterates over words that it contains, retrieves corresponding
entries from the inverted index and merges them into a vector of concept weights
(association strengths) that represent a given text.

Let Wi = 〈vj〉Nj=1 be a bag-of-words representation of an input text T , where
vj is a numerical weight of a word wj expressing its association to the text Ti (e.g.
its tf-idf). Let invj,k be an inverted index entry for wj , where invj,k quantifies
the strength of association of the term wj with a knowledge base concept ck,
k ∈ {1, . . . ,K}. The new vector representation of Ti, called a bag-of-concepts,
will be denoted by Ci =

(
c1(Ti), . . . , cK(Ti)

)
, where

ck(Ti) =
∑

j:wj∈Ti

vj · invj,k (32)

is a numerical association strength of k-th concept to the document Ti. In Sub-
section 6.3, texts will also be represented as a set of concepts with sufficiently
high association level denoted by Fi = {fk : ck(Ti) ≥ minAssock}. Those con-
cepts will be treated as binary semantic features of texts, such as those which
are utilized by Tversky’s contrast model [5] (see Subsection 3.4).

The representation of texts by sets of features can be easily transformed into
an information system S = (D,F ), where F =

⋃|D|
i=1 Fi. Each possible feature of

documents is treated as a binary attribute in S. The semantic similarity between
objects from S can be assessed using standard measures described in Subsection
3.4. However, due to sparsity and high dimensionality of this representation, usu-
ally spherical similarity functions, such as the cosine similarity, or set-oriented
measures as Jaccard index and Dice coefficient, are employed. In several papers
it is experimentally shown that this representation can yield better evaluations
of the similarity than the standard bag-of-words [29, 40, 129].

If the utilized knowledge base contains additional information on semantic de-
pendencies between the concepts, this knowledge can be used to further adjust
the vector (32). Moreover, if experts could provide feedback in the form of man-
ually labelled exemplary documents, some supervised learning techniques can
also be employed in that task [38]. However, particular methods for automatic
tagging of textual data are not in the scope of this research.

5 Rule-Based Similarity Learning Model

This section presents a similarity learning model which is the main contribution of
this dissertation. The model, called Rule-Based Similarity (RBS), originally pro-
posed in [25] and reared in [24,26–29], was inspired by works of Amos Tversky. It
can even be seen as a rough set extension of the psychologically plausible feature
contrast model proposed in [5] (see also the discussion in Subsection 3.4).
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Tversky’s model is extended in a few directions. In RBS, some basic concepts
from the rough set theory are used to automatically extract from available data,
features that influence the judgement of similarity. Additionally, the proposed
method for aggregation of local similarities and dissimilarities takes into con-
sideration dependencies between the induced features that occur in data. This
allows for a more reliable assessment of the importance of arguments for and
against the similarity of investigated objects. Finally, the simplicity and flexi-
bility of RBS makes it useful in a wide array of applications, including learning
the similarity in a classification context from both regular and extremely high
dimensional data. It can also be modified to allow learning the semantic simi-
larity of textual documents.

The following subsections overview the construction of RBS in different appli-
cation scenarios. Subsection 5.1 explains the main motivation behind the model
and points out its relations to Tversky’s feature contrast model. Next, Subsec-
tion 5.2 shows how the basic RBS model is constructed and then, Subsection
5.4 discusses an adaptation of RBS to the case when data describing considered
objects are high dimensional. The last subsection (Subsection 5.5) shows how
RBS can be adjusted to work in an unsupervised fashion, especially for learning
a similarity measure appropriate for assessment of the similarity in a meaning
of texts.

5.1 General Motivation for Rule-Based Similarity

The similarity learning models discussed in Subsection 4.2 allow to fit a para-
metrized similarity function or a family of approximation formulas to available
data. This process can be understood as an adjustment of a similarity relation
to a desired context. However, in case of the discussed methods this problem
is reduced to tuning parameters of a preselected similarity model. An approach
like that has to result in passing to the final model some properties which are
not inferred from data and are potentially unwanted.

The approach to learning the similarity represented by the commonly used
similarity models is usually based on an assumption that an expert is able to
preselect at least a proper family of similarity models. This family is expected to
contain a member which can sufficiently approximate the reality. Unfortunately,
due to the complexity of the concept of similarity, this assumption may be false.
Additionally, in some cases the family of possible approximations may be so large,
that the extensive parameter tuning is likely to terminate at some relatively weak
local optimum or even to overfit to training data while showing poor performance
when used for new, previously unknown objects.

This problem is particularly conspicuous when the analysed data set is high
dimensional. Typically, the number of parameters of a similarity learning model
is at least linearly dependent on the number of attributes in data. Hence, dimen-
sionality has a significantly adverse impact on a complexity of a model. Not only
can very complex models suffer from overfitting but they are also unintuitive
and difficult to interpret by experts.
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Another important issue related with the similarity learning methods which
utilize the local-global principle is a difficulty with modelling dependencies be-
tween local similarities/distances corresponding to different attributes. For in-
stance, what weights should be assigned to a group of highly correlated attributes
which are important for the similarity judgement individually? On one hand,
each local similarity is important so it should have a high weight. On the other
hand, if all of those local similarities are given a high weight, the final model can
be biased towards a single aspect of a similarity while neglecting other, possibly
as relevant factors.
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Fig. 10. A schema showing generalized tabular representations of an information sys-
tem for the purpose of learning a similarity relation. An information system on the left
is transformed into a relational pattern learning space represented on the right.

Moreover, in comparison to approximation of concepts, approximation of re-
lations often requires extraction of some additional higher-level characteristics
related to pairs of objects (see the discussion in Subsections 2.2 and 3.1). Fig-
ure 10 shows a general transformation schema of an information system that
allows flexible learning of any similarity relation. Apart from attributes that de-
scribe each object, the transformed system may contain additional features that
characterise two objects as a pair. Such features may correspond to a variety of
statistics or different aggregation types of values of the original attributes. The
models discussed in Subsection 4.2 simplifies this transformation by narrowing
the set of new characteristics to predefined local similarities. Even though such
a limitation is beneficial from the computational complexity point of view, it
may severely deteriorate the model’s ability to infer a semantically meaningful
similarity relation. It was confirmed in a number of empirical studies that the
introduction of higher-level features often significantly increases performance of
similarity models [12, 23, 117,120,129].
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The need for extraction of meaningful qualitative features of objects for the
purpose of measuring their similarity was recognized by Tversky and motivated
his contrast model [5] (see Subsection 3.4). Tversky argued that people rarely
think in terms of exact numbers but instead they tend to operate on binary
characteristics of objects, such as an object is large or an object is round. In
his model, objects were represented by such higher-level features. For each pair,
the features were divided into those which are arguments for the similarity (the
common features) and those which constitute arguments against the similarity
or, in other words, arguments for dissimilarity of the objects from the pair. The
RBS model is in a large part inspired by this approach.

In Tversky’s experiments relevant characteristics of the compared stimuli were
usually defined by participants of the conducted study. However, for analysis of
larger real-life data sets, meaningful features need to be extracted automatically.
Their selection and influence on the final model needs to be dependent on a
context of the similarity relation and, in particular, on other objects from the
given data set. One of the main aims of the RBS model is to facilitate this
task using a rough-set-motivated approach for approximation of relations (see
Subsection 2.2).

Semantically meaningful higher-level features of objects can be extracted from
data using a rule mining algorithm [22,25]. Unlike in [22], however, in RBS such
features are not only used for changing the representation of objects but are also
utilized to construct approximations of similarities to each object in a training
data set. A RBS similarity function value is derived from those approximations
to allow convenient modelling of the dependencies imposed by the presence of
different objects in the data (see the discussion in Subsection 3.2).

Another goal of RBS is to overcome the problem with selection of appropriate
weights for the contrast model. Instead of assigning globally defined importance
values to common and distinctive features of any pair, RBS aims at assessing
strength of all arguments for and all arguments against the similarity, relative
to an investigated pair. This approach allows RBS to better reflect the context
in which the similarity of given objects is considered.

Finally, a good similarity learning model need to be scalable. The scalability of
a model can be considered relative to a number of objects in the data as well as
to a number of attributes. Construction of RBS does not require investigating all
pairs of object during the learning, hence it is possible to approximate a similarity
relation from larger data. By utilizing basic notions from the theory of rough sets,
RBS can also be adapted to work with extremely high dimensional data.

In general, construction of a desired similarity learning model should include
the following steps:

1. The selection of an appropriate context for the similarity.
2. The extraction of features which are relevant in the given context (definition

of an approximation space).
3. The definition of a data-dependent similarity function that aggregates the

features, while considering the preselected context and types of compared
objects.
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The next section shows how the RBS model implements these steps in order to
incorporate the properties discussed in Subsection 4.1.

5.2 Construction of the Rule-Based Similarity Model

The Rules-based Similarity (RBS) model was developed as an alternative to the
distance-based approaches [25]. It may be seen as a rough set extension to the
psychologically plausible feature contrast model proposed by Tversky [5]. As in
the case of the contrast model, in RBS the similarity is assessed by examining
whether two objects share some binary higher-level features. Unlike in Tversky’s
approach, however, in RBS features that are relevant for a considered similarity
context are automatically extracted from data. Their importance is also assessed
based on available data, which allows to model the influence of information about
other objects on the similarity judgement (see the discussion in Subsection 3.1).
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Fig. 11. A construction schema of the RBS model

The construction of RBS is performed in three steps. The schema from Figure
11 shows those steps in a case when the similarity is learnt in a classification
context (the context is defined by a decision attribute in a data set). Since
originally the notion of the RBS model was proposed for a classification purpose,
that specific context will be assumed for the remaining part of this section.

The first step involves transformation of raw attribute values, which often
are numerical, into a more abstract symbolic representation that resembles ba-
sic qualitative characteristics of objects. As discussed in Subsections 3.1 and
3.4, such characteristics are more likely to be used by humans and are more
suitable for an assessment of a local similarity from a psychological point of
view [1, 3–5, 11, 21]. For example, values of an attribute expressing a length of
a car can be transformed into intervals labelled as short, medium and long.
Those new values are easer to comprehend and utilize by humans in their judge-
ments. Of course, semantics of each of those values can be different for different
people. It will also be dependent on particular cars represented in the data.
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For the purpose of a practical data analysis, however, it is often sufficient to
apply a heuristic discretization technique to divide numerical attribute values
into intervals representing meaningful qualitative symbols.

Algorithm 2. The calculation of a decision reduct from numerical data
Input: a decision system Sd =

(
U,A ∪ {d});

Output: a decision reduct DR ⊂ A coupled with sets of cuts for each attribute
from DR;

1 begin
2 DR = empty list; // an empty list of attributes
3 SC = empty list; // an empty list of selected cuts
4 CC = ∅; // a set of cut candidates
5 foreach a ∈ A do
6 Compute cut candidates CCa for the attribute a using

the guidelines from [154];
7 CC = CC ∪ CCa;
8 SC[a] = ∅;
9 end

10 i = 1; while there are conflicts in S′
d = (U,DR′, d) do

11 Qmax = −∞;
12 foreach cut ∈ CC do
13 Q(cut) = quality of cut;
14 if Q(cut) > Qmax then
15 Qmax = Q(cut);
16 bestcut = cut;
17 besta = attribute a which corresponds to bestcut;
18 end
19 end
20 DR[i] = besta;
21 SC[a] = SC[a] ∪ bestcut;

22 end
23 foreach a ∈ DR do
24 if there are no conflicts in S′

d = (U, (DR \ {a})′, d) then
25 DR = DR \ {a};
26 SC[a] = ∅;
27 end
28 end
29 return DR and SC;
30 end

The discretization can be combined with dimensionality reduction, e.g. by
using a discernibility-based discretization method described in [154] to compute
a set of symbolic attributes that discern all objects in the data (or nearly all
in the approximate case). In this approach a subset of attributes with a corre-
sponding set of cuts is selected from a larger attribute set in a greedy fashion.
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It is done using a simple deterministic heuristic which starts with an empty set
and iteratively adds the most promising attributes with corresponding cuts until
the decision determination criterion is satisfied [34, 154]. Since the resulting set
of discretized attributes discern all or sufficiently many12 instances from differ-
ent decision classes of the original decision system, it can be easily adjusted to
become a desired type of a reduct (definitions of several types of reducts can be
found in Subsection 2.3). For this purpose cuts that are abundant need to be
eliminated. Therefore such a method can be viewed as a simultaneous supervised
discretization and computation of decision reducts [34, 155]. This approach to
the dimensionality reduction does not only boost the construction of RBS, but
is also helpful in identification of truly relevant local features. For those reasons
it was used in all experiments with RBS on numerical data presented in this
dissertation (see Subsections 6.1 and 6.2). Algorithm 2 shows the procedure for
classical reducts which in this case are understood as irreducible sets of dis-
cretized attributes that discern all objects from different decision classes13 [34].
The algorithm assumes that due to the presence of numerical attributes there is
no inconsistency in the original data table (i.e. there are no indiscernible objects).

In Algorithm 2, DR′ denotes a set of attributes from DR discretized using the
corresponding cuts from the list SC. To facilitate computations for high dimen-
sional data some randomness can be introduced to the generation of candidate
cut. In this way the algorithm can be employed for finding a diverse set of good
quality decision reducts [33,34]. This approach was used in the extension to RBS
which is discussed in Subsection 5.4. The resulting set of attributes can also be
a super-reduct by skipping the attribute elimination phase in order to capture
more, potentially important similarity aspects.

Because a class or a type of an object may have a significant impact on
its similarity assessments to other objects in data [5, 11, 21], different sets of
important features need to be extracted for different decision classes. For this
reason, in a case when a decision attribute in data has more than two values, the
discretization and attribute reduction in RBS need to be performed separately
for each decision class, using the one-vs-all approach.

In the second step, higher-level features that are relevant for the judgement
of similarity are derived from data using a rule mining algorithm. Each of those
features is defined by the characteristic function of the left-hand side (the an-
tecedent) of a rule. In RBS, two types of rules are generated – decision rules
(see Definition 3) that form a set of candidates for relevant positive features,
and inhibitory rules (see Definition 4) which are regarded as relevant distinctive
features. Depending on a type of a rule, the corresponding feature can be useful
either as an argument for or against the similarity to a matching object.

The induction of rules in RBS may be treated as a process of learning ag-
gregations of local similarities from data. Features defined by antecedents of

12 A desired number of discerned instances can be treated as a parameter that governs
the approximation quality.

13 A discretized attribute corresponds to a pair consisting of the original attribute and
a set of cuts that define nominal values (intervals).
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the rules express higher-level properties of objects. For instance, a characteristic
indicating that a car is big may be expressed using a formula:

car_length = high ∧ car_width = high ∧ car_height = high . (33)

The feature defined in this way approximates the concept of a big car. Such a
concept is more likely to be used by a person who assesses the similarity between
two cars in a context of their appearance, than the exact numerical values of
lengths, widths and heights. It can be noticed, for example, when people are
explaining why they think that two objects are similar. It is more natural to say
that two cars are similar because they are both big, rather than saying that one
of them has 5, 034mm length, 1, 880mm width and 1, 438mm height; the other
is 5, 164mm long, 1, 829mm wide and 1, 415mm high, and the differences in the
corresponding parameters are small.

The choice of the higher-level features in RBS is not unique. Different heuris-
tics for computation of reducts and different parameter settings of rule induction
algorithms lead to the construction of different feature sets. As a consequence,
the corresponding similarity approximation space changes along with the rep-
resentation of the objects. The new representation may define a family of in-
discernibility classes which is better fitted to the approximation of similarities
to particular objects. In this context, it seems trivial to say that some approxi-
mation spaces are more suitable for approximating the similarities than others.
Therefore the problem of learning the similarity relation in RBS is closely related
to searching for a relevant approximation space [56,151] (see also the discussion
in Subsection 2.2).

More formally, let F+
(i) and F−

(i) be the sets of binary features derived from the
decision and the inhibitory rules (see Definitions 3 and 4), respectively, generated
for i-th decision class:

F+
(i) =

{
φ :
(
φ→ (d = i)

)
∈ RuleSeti

}
,

F−
(i) =

{
φ :
(
φ→ ¬(d = i)

)
∈ RuleSeti

}
.

RuleSeti is a set of rules derived from a reduct DRi associated with the i-th
decision class. The rule set may be generated using any rule mining algorithm
but it is assumed, that if not stated otherwise, RuleSeti consists of rules that are
true in S (their confidence factor is equal to 1 – see Subsection 2.1) and cover all
available training data, i.e. for every u ∈ U there exists π ∈ RuleSeti such that
u 	 lhs(π). Moreover, for efficiency in practical applications of the model it may
be necessary to require that the generated sets of rules RuleSeti be minimal.
It means that there is no rule π ∈ RuleSeti that could be removed without
reducing the set of covered objects or, in other words, for every π ∈ RuleSeti
there exists u ∈ lhs(π)(U) which is not covered by any other rule from RuleSeti.

A feature φ is also a decision logic formula, i.e. a conjunction of descriptors
defined over discretized attributes, that corresponds to an antecedent of some
rule (see the notation introduced in Subsection 2.1). We will say that an object
u, described in a decision system S = (U,A), has a feature φ iff u 	 φ. A set
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of all objects from U that have the feature φ (the meaning of φ in S) will be
denoted by φ(U).

In RBS a similarity relation is approximated by means of approximating mul-
tiple concepts of being similar to a specific object. In the rough set setting, a
similarity to a specific object is a well-defined concept. In the proposed model,
it consists of those object from U which share with u at least one feature from
the set F+

(i), where i is assumed to be the decision class of u (d(u) = i):

SIM(i)(u) =
⋃

φ∈F+
(i)

∧u�φ
φ(U) (34)

Analogically, the approximation of the dissimilarity to u is a set of objects from
U which have at least one feature from F−

(i) that is not in common with u:

DIS0
(i)(u) =

⋃
φ∈F−

(i)
∧u�φ

φ(U) (35)

For convenience, the set of objects that have at least one feature from F−
(i) that

is in common with u will be denoted by:

DIS1
(i)(u) =

⋃
φ∈F−

(i)
∧u�φ
φ(U) (36)

To abbreviate the notation only SIM(u) and DIS(u) will be written when the
decision for an object u is known:

SIM(u) = SIM(d(u))(u); DIS(u) = DIS0
(d(u))(u) (37)

It is worth noticing that within the theory of rough sets the set SIM(u)
can be seen as an outcome of an uncertainty function SIM : U → P(U) (see
Definition 5). A proof of this fact is quite trivial. From the definition of the set
SIM(u) it follows that u ∈ SIM(u). Moreover, if u1 ∈ SIM(u2), then there
exists φ ∈ F+

(d(u2))
such that u1 ∈ φ(U) ∧ u2 	 φ. If so, then u1 	 φ, thus

d(u1) = d(u2) and u2 ∈ SIM(u1).
Analogically, the set DIS(u) is an outcome of a function DIS : U → P(U)

which can be seen as an opposite of SIM . The function SIM induces a tolerance
relation in U , whereas DIS induces a relation that can be called an intolerance
relation. From the definition, ∀u∈Uu /∈ DIS(u), i.e. the relation induced by DIS
is anti-reflexive. Moreover, this relation is asymmetric since for every u1, u2 ∈ U ,
if u1 ∈ DIS(u2) then u2 /∈ DIS0

(d(u2))
(u1).

The functions SIM and DIS are used for the approximation of the similarity
and the dissimilarity to objects from U . In the RBS model, the assessment of a
degree in which an object u1 is similar and dissimilar to u2 is done using two
functions:

Similarity(u1, u2) = μsim

(
u1, SIMd(u1)(u2)

)
=

∣∣SIM(u1) ∩ SIMd(u1)(u2)
∣∣

|SIM(u1)|+ Csim
,

(38)
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Dissimilarity(u1, u2) = μ̂dis

(
u1, DIS1

d(u1)
(u2)

)
=

∣∣∣DIS(u1) ∩DIS1
d(u1)

(u2)
∣∣∣

|DIS(u1)|+ Cdis
.

(39)
In the above formulas Csim and Cdis are positive constants which can be treated
as parameters of the model. The function μsim : U × P(U) → [0, 1) can be
seen as a membership function from the rough set theory (see Definition 6). It
measures a degree in which an object u1 fits to the concept of the similarity to u2.
The function μ̂dis : U × P(U) → [0, 1) may be regarded as an anti-membership
function since it measures a degree in which u1 is not similar to u2 (i.e. is
dissimilar to u2). It is also worth noticing that if the assumptions regarding
the consistency and the coverage of the utilized rules are true, then for every
u ∈ U , |SIM(u)| > 0 and |DIS(u)| > 0, and the functions Similarity and
Dissimilarity are well-defined for every pair (u1, u2) ∈ U × Ω, even in a case
when Csim = Cdis = 0.

The similarity function of the RBS model combines values of Similarity and
Dissimilarity for a given pair of objects. It can be expressed as:

SimRBS(u1, u2) = F
(
Similarity(u1, u2), Dissimilarity(u1, u2)

)
(40)

where F : R × R → R can be any function that is monotonically increasing
with regard to its first argument (i.e. a value of Similarity) and monotonically
decreasing with regard to its second argument (a value of Dissimilarity). One
example of such a function can be:

SimRBS(u1, u2) =
Similarity(u1, u2) + C

Dissimilarity(u1, u2) + C
(41)

where C > 0 is a small constant, which is introduced to avoid division by zero
and to ensure that SimRBS(u1, u2) = 1 for u1, u2 which are neither similar
nor dissimilar (i.e. Similarity(u1, u2) = Dissimilarity(u1, u2) = 0). In this
particular form the RBS similarity function was used in experiments described
in Subsections 6.1 and 6.2.

Alternatively, a similarity degree in RBS could also be expressed as a simple
difference between the similarity and dissimilarity of two objects, as in the case
of Tversky’s model:

Sim′
RBS(u1, u2) = Similarity(u1, u2)−Dissimilarity(u1, u2) (42)

In this form, the RBS function takes values between −1 and 1, with its neu-
tral value equal 0. An advantage of this function is that it does not need the
additional constant C. It can be easily shown that all the mathematical prop-
erties of SimRBS , which are discussed in Subsection 5.3, are independent of the
exact form of the function F as long as the requirement regarding its monotonic-
ity is met.

Depending on the type and parameters of a rule mining algorithm utilized
for the creation of the feature sets F+

(i) and F−
(i), the sets SIM(u) and DIS(u)

can have different rough set interpretations (Figure 12). If all the rules are true
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Fig. 12. A graphical interpretation of an approximation of similarity to a single object
in RBS

in S, then SIM(u) and DIS(u) would be equivalent to lower approximations of
the concepts of similarity and dissimilarity to u in U , respectively. Otherwise, if
the rules with a lower confidence coefficient were allowed, SIM(u) and DIS(u)
would correspond to upper approximations of the similarity and the dissimi-
larity to u. Their properties and granulation may be treated as parameters of
the model. In applications they can be tuned to boost the quality of the in-
duced relation. This tuning process can be regarded as searching for the optimal
approximation space (see Subsection 2.2).

Figure 12 shows a simplified graphical interpretation of the RBS model. The
grey area in the picture represents a concept of similarity to object u1 from the
decision class d(u1). The rectangles inside this region correspond to an approxi-
mation of the concept of being similar to u1. They are defined by indiscernibility
classes of training objects that share at least one feature from F+

(d(u1))
with u1.

Analogically, the rectangles outside the decision class approximate the concept
of the dissimilarity to u1 and they contain instances from the set DIS0

d(u1)
(u1).

The local similarity value of u2 to u1 in this example would be calculated as a
ratio between a fraction of the similarity approximation shared by u1 and u2,
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Table 6. An exemplary decision table displaying one’s preferences regarding general
appearance of selected cars. F+

Nice = {φ+
1 , φ

+
2 , φ

+
3 , φ

+
4 } and F−

Nice = {φ−
1 , φ

−
2 , φ

−
3 , φ

−
4 }.

Object: φ+
1 φ+

2 φ+
3 φ+

4 φ−
1 φ−

2 φ−
3 φ−

4 Decision
Ford Mustang 1 0 1 0 0 0 0 0 Nice
Toyota Avensis 0 0 0 0 1 1 0 1 notNice
Audi A4 0 0 0 0 1 0 1 0 notNice
Porsche Carrera 0 1 0 1 0 0 0 0 Nice
Mercedes S-Class 0 0 0 0 0 1 0 1 notNice
Chevrolet Camaro 0 1 1 0 0 0 0 0 Nice
Volkswagen Passat 0 0 0 0 0 1 1 0 notNice
Mitsubishi Eclipse 1 0 1 1 0 0 0 0 Nice

and a fraction of the dissimilarity approximation which is characteristic only to
u2. In Figure 12, areas corresponding to those fractions are highlighted in blue
and red, respectively.

The function SimRBS can be employed for the classification of objects from
unknown decision classes as it only uses information about the class of the first
object from the pair. New objects can be classified in a cased-based fashion,
analogically to the k-nearest neighbors algorithm. Exemplary similarity-based
classification functions are presented in Subsection 3.3.

5.3 Properties of the Rule-Based Similarity Function

To illustrate the evaluation of the similarity in RBS, let us consider the decision
system from Table 6. Assume that we want to evaluate the similarity of Ford
Mustang to New_Car in a context of their appearance, which is judged by a
given person. We know preferences of this person regarding cars (the classes
of objects) from our decision table but we have no information regarding the
classification of New_Car. During the construction of the RBS model, the data
set describing the selected cars was discretized and some consistent decision
rules14 were induced for each of the two possible classes. Since the decision for
Ford Mustang is Nice, we choose the positive features from the rules pointing at
this class (i.e. rules in a form of φ → Nice). The negative features are chosen
among the rules indicating the notNice decision.

Suppose that from the set of antecedents of the rules induced for the decision
Nice, two were matching New_Car : φ+

1 and φ+
4 . Additionally, there was one

feature derived from a rule classifying objects as notNice, that matched the
tested car: φ−

1 . From the decision table we know that Ford Mustang has in
common with New_Car only the feature φ+

1 , so this feature is an argument
for their similarity. In addition, the feature φ−

1 does not match Ford Mustang
therefore this feature provide an argument for dissimilarity of the compared cars.
Although the rule φ+

4 does not match Ford Mustang, it is not considered as an

14 Since there are only two decisions, inhibitory rules for one class correspond to decision
rules for the other.
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argument for the dissimilarity of the two cars because the features from the set
F+
Nice may only become arguments for the similarity. Since two out of three cars

which match to the features of Ford Mustang have the feature φ+
1 and three out

of four cars with decision notNice have the feature φ−
1 , if we set Csim = Cdis = 1,

the RBS value equals:

SimRBS(FordMustang,New_Car) =
( 2

3 + Csim
+ C

)/( 3

4 + Cdis
+ C

)
=
(2 + 4C

4

)/(3 + 5C

5

)
=

5 + 10C

6 + 10C
.

For a very small value of C we get the value ≈ 5
6 . Since this value is lower than

1, Ford Mustang should be considered dissimilar to New_Car.
The RBS model shares many properties with Tversky’s contrast model of the

similarity. In both models the evaluation of the similarity is seen as a feature
matching process. Objects from the data are represented by sets of qualitative
features rather than by vectors in an attribute space [5]. Furthermore, both
models consider features as possible arguments for or against the similarity and
aggregate those arguments during the similarity assessment.

The construction of RBS makes the resulting model flexible and strongly data-
dependent. As in the contrast model, in RBS the similarity function is likely to
be not symmetric, especially when the compared objects are from different de-
cision classes. Moreover, in a case of inconsistency of a data set (see Definition
2), a relation induced using the RBS similarity function may be even not re-
flexive. This fact is in accordance with the main feature of the similarity for
the classification (Definition 14). It also reflects a phenomena, that availability
of information about decision classes (types or predefined labels) of examined
stimuli impacts human judgements of the similarity [20, 21].

The similarity functions of RBS and the contrast model also have in common
a number of mathematical properties, such as the maximality of marginal values
and the monotonicity with regard to the inclusion of the feature sets:

Proposition 1. Let Sd =
(
U,A ∪ {d}

)
be a consistent decision system, U ⊆ Ω

and let SimRBS : U × Ω → R be a similarity function of the RBS model,
constructed for Sd using rules that are true in Sd and cover all objects from U .
The following inequity holds for every u ∈ U and u′ ∈ Ω:

SimRBS(u, u) ≥ SimRBS(u, u
′) . (43)

Proof. To prove this inequity it is sufficient to show that Similarity(u, u) is
maximal and Dissimilarity(u, u) = 0 for every u ∈ U . Since the RBS model is
constructed from rules that cover all objects from U , |SIM(u)| > 0 and for any
X ⊆ U we have:

Similarity(u, u) =
|SIM(u) ∩ SIM(u)|
|SIM(u)|+ Csim

≥ |SIM(u) ∩X |
|SIM(u)|+ Csim

. (44)
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Analogically, |DIS(u)| > 0 and since the rules are true in Sd, DIS1
d(u)(u) = ∅.

If so, then

Dissimilarity(u, u) =

∣∣∣DIS(u) ∩DIS1
d(u)(u)

∣∣∣
|DIS(u)|+ Cdis

= 0 . (45)

�

Proposition 2. Let Sd =
(
U,A ∪ {d}

)
be a consistent decision system, U ⊆ Ω

and let SimRBS : U × Ω → R be a similarity function of the RBS model,
constructed for Sd using rules that cover all objects from U . In addition, let us
consider objects u ∈ U and u′, u′′ ∈ Ω, such that u′ and u′′ are represented by
feature sets {Φ+

(d(u)), Φ
−
(d(u))} and {Ψ+

(d(u)), Ψ
−
(d(u))}, respectively. The following

implication holds for every u ∈ U :(
Φ+
(d(u)) ⊇ Ψ+

(d(u)) ∧ Φ−
(d(u)) ⊆ Ψ−

(d(u))

)
⇒ SimRBS(u, u

′) ≥ SimRBS(u, u
′′) .

(46)

Proof. To prove the above implication it is sufficient to show that for objects
considered in the proposition we have Similarity(u, u′) ≥ Similarity(u, u′′) and
Dissimilarity(u, u′) ≤ Dissimilarity(u, u′′).

Let us consider the sets Φ+
(d(u)) and Ψ+

(d(u)):

Φ+
(d(u)) ⊇ Ψ+

(d(u)) ⇒ SIM(d(u))(u
′) ⊇ SIM(d(u))(u

′′)

⇒
∣∣SIM(u) ∩ SIM(d(u))(u

′)
∣∣ ≥ ∣∣SIM(u) ∩ SIM(d(u))(u

′′)
∣∣

This and the fact that ∀u∈U |SIM(u)| > 0 implies that Similarity(u, u′) ≥
Similarity(u, u′′).

Analogically, if Φ−
(d(u)) ⊆ Ψ−

(d(u)) then DIS1
d(u)(u

′) ⊆ DIS1
d(u)(u

′′) and as a
consequence Dissimilarity(u, u′) ≤ Dissimilarity(u, u′′). �

Proposition 3. Let Sd =
(
U,A ∪ {d}

)
be a consistent decision system, U ⊆ Ω

and let SimRBS : U × Ω → R be a similarity function of the RBS model,
constructed for Sd using rules that are true in Sd and cover all objects from U .
In addition, let us consider objects u, u′, such that d(u) = d(u′) = i and u,
u′ are represented by feature sets {Φ+

(i), Φ
−
(i)} and {Ψ+

(i), Ψ
−
(i)}, respectively. The

following implication holds for any such u, u′ ∈ U :(
Φ+
(i) ⊇ Ψ+

(i) ∧ Φ−
(i) ⊆ Ψ−

(i)

)
⇒ SimRBS(u, u

′) ≤ SimRBS(u
′, u) . (47)

Proof. It is sufficient to show that for all objects u, u′ ∈ U considered in the
proposition, Similarity(u, u′) ≤ Similarity(u′, u) and Dissimilarity(u, u′) ≥
Dissimilarity(u′, u).
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The second inequity is trivial due to the fact that d(u) = d(u′) and the rules are
true in Sd. In such a case DIS1(u) = DIS1(u′) = ∅ and Dissimilarity(u, u′) =
Dissimilarity(u′, u) = 0. To show the validity of the first inequity let us consider
u, u′ ∈ U described by feature sets Φ+

(i) and Ψ+
(i), respectively. We have:

Φ+
(i) ⊇ Ψ+

(i) ⇒ SIM(u) ⊇ SIM(u′)

⇒ SIM(u) ∩ SIM(u′) = SIM(u′) and
|SIM(u)| ≥ |SIM(u′)| .

If so, then:

Similarity(u, u′) =
|SIM(u) ∩ SIM(u′)|
|SIM(u)|+ Csim

=
|SIM(u′)|

|SIM(u)|+ Csim

≤ |SIM(u′)|
|SIM(u′)|+ Csim

= Similarity(u′, u) .

That concludes the proof. �
The next proposition shows that the RBS similarity function is suitable for con-
structing approximations of similarity relations in the context of classification.
Fundamental properties of such relations were discussed in Subsection 3.2. How-
ever, before we can formulate this proposition we first need to prove a simple
lemma:

Lemma 1. Let Π be a set of decision rules generated for a consistent decision
system Sd =

(
U,A∪{d}

)
and let Π1, Π2 denote two subsets of Π. Additionally,

let supp(Π1) =
⋃

π∈Π1
lhs(π)(U) and supp(Π2) =

⋃
π∈Π2

lhs(π)(U). If Π covers
all objects from U and is minimal in U , then

supp(Π1) ⊆ supp(Π2)⇔ Π1 ⊆ Π2 . (48)

Proof. The implication Π1 ⊆ Π2 ⇒ supp(Π1) ⊆ supp(Π2) is trivial. To prove
the second implication, for a moment let us assume that the conditions from
Lemma 1 are met and supp(Π1) ⊆ supp(Π2) but there exists a rule π ∈ Π1

such that π /∈ Π2. In such a case, supp({π1}) ⊆ supp(Π1) ⊆ supp(Π2), so
∀u∈lhs(π)(U)∃π′∈Π2u 	 lhs(π′). This, however, contradicts with the assumption
that Π is minimal. �
A direct consequence of Lemma 1 is that supp(Π1) = supp(Π2) ⇔ Π1 = Π2.

In the following proposition there will be an additional assumption regarding
the sets of rules RuleSeti used in the construction of the RBS model. Namely,
apart from the consistency, coverage and minimality of the rule sets, it will be
assumed that each RuleSeti is sufficiently rich to ensure the uniqueness of a
representation by the sets of new features of all objects which are discernible
in the original decision system Sd =

(
U,A ∪ {d}

)
. More formally, we will as-

sume that for every u, u′ ∈ U represented by new feature sets {Φ+
(i), Φ

−
(i)} and

{Ψ+
(i), Ψ

−
(i)}, respectively, u′ /∈ [u]A ⇔ (Φ+

(i) �= Ψ+
(i) ∨ Φ−

(i) �= Ψ−
(i)). This property

corresponds to the solvability assumption in Tversky’s contrast model [5]. It is
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worth noticing that for any consistent decision system Sd (see Definition 2) it
is always possible to construct sets RuleSeti that meet all of the above require-
ments. In the simplest case, it is sufficient to take the rules whose predecessors
correspond to descriptions of indiscernibility classes in Sd and successors point
out the corresponding decisions.

Proposition 4. Let τ be a similarity relation in a context of classification in a
universe Ω. Additionally, let Sd =

(
U,A ∪ {d}

)
be a consistent decision system,

U ⊆ Ω and let SimRBS : U ×Ω → R be a similarity function of the RBS model,
constructed for Sd using rule sets, which have the properties of consistency, cov-
erage, minimality and uniqueness of a representation. The function SimRBS is
a proper similarity function for the relation τ within the set U .

Proof. Let us denote by τSimRBS

(ε) a set of all pairs (u, u′) ∈ U × U for which
SimRBS(u, u

′) ≥ ε. To show that the function SimRBS has the property of
being a proper similarity function (Definition 15) for the relation τ within the
set U we will give values of ε1 and ε2 such that for any u, u′ ∈ U we have:

SimRBS(u, u
′) ≥ ε1 ⇒ (u, u′) ∈ τ (49)

(u, u′) ∈ τ ⇒ SimRBS(u, u
′) ≥ ε2 (50)

and the sets τSimRBS

(ε1)
and U \ τSimRBS

(ε2)
are not empty.

We will start the proof by showing that if

SimRBS(u, u
′) = F

(
Similarity(u, u′), Dissimilarity(u, u′)

)
for F that is increasing with regard to its first argument and decreasing with
regard to the second, then the implication 49 is true for ε1 = F (simmax, 0),
where simmax = max

u∈U

(
Similarity(u, u)

)
. In particular, we will show that

SimRBS(u, u
′) ≥ F (simmax, 0)⇔ (u′ ∈ [u]A ∧ u ∈ Umax),

where Umax = {u ∈ U : u = argmax
u∈U

|SIM(u)|}.
Since all utilized rules are consistent and they cover all objects from U , for

any u, u′ ∈ U we have Dissimilarity(u, u′) = 0 ⇔ d(u) = d(u′). Moreover, due
to the fact that Sd is consistent and the utilized rules uniquely represent the
objects from U , for any u ∈ U and u′ ∈ [u]A we have SIM(u′) = SIM(u). If so,
then u ∈ Umax ⇒ [u]A ⊆ Umax and

Similarity(u, u′) = Similarity(u′, u) =
|SIM(u)|

|SIM(u)|+ Csim
. (51)

Thus, the inequity SimRBS(u, u
′) ≥ F (simmax, 0) holds for every pair (u, u′)

such that u ∈ Umax and u′ ∈ [u]A.
On the other hand, let us imagine that there exist objects u, u′ ∈ U such that

u /∈ Umax ∨ u′ /∈ [u]A and

SimRBS(u, u
′) ≥ F (simmax, 0) ∨ SimRBS(u

′, u) ≥ F (simmax, 0)
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or, equivalently,

Similarity(u, u′) ≥ simmax ∨ Similarity(u′, u) ≥ simmax.

If u /∈ Umax but u′ ∈ [u]A we get an inconsistency, because all u ∈ U for which
u′ ∈ [u]A and Similarity(u, u′) is maximal, by definition must belong to Umax.
Now, if it is true that u ∈ Umax ∧ u′ /∈ [u]A and Similarity(u, u′) ≥ simmax,
then we have:

Similarity(u, u′) ≥ Similarity(u, u)⇔
∣∣SIM(u) ∩ SIMd(u)(u

′)
∣∣ ≥ |SIM(u)|

⇔ d(u) = d(u′) ∧ SIM(u) = SIM(u′) .

That also results in an inconsistency because, based on the assumption re-
garding the minimality of the rule sets and Lemma 1, the objects u and u′

must have the same representation by new features, and thus (u, u′) ∈ INDA

(by the uniqueness of a representation). Hence, the only possibility left is that
u ∈ Umax∧u′ /∈ [u]A and Similarity(u′, u) ≥ simmax. In such a case we would
have:∣∣SIM(u′) ∩ SIMd(u′)(u)

∣∣
|SIM(u′)|+ Csim

≥ simmax ⇔ d(u) = d(u′) ∧ SIM(u′) ⊆ SIM(u) ∧

|SIM(u′)| ≥ |SIM(u)|
⇔ SIM(u) = SIM(u′) ,

which again contradicts with the assumption about the uniqueness of a represen-
tation and proves that SimRBS(u, u

′) ≥ F (simmax, 0)⇔ (u′ ∈ [u]A∧u ∈ Umax).
Since a similarity relation in the context of a classification is assumed to be re-
flexive, it shows that the implication 49 is true for ε1 = F (simmax, 0). Moreover,
due to the fact that U is finite, the maximum value of the function Similarity
has to be taken by at least one pair (u, u′) ∈ U × U , and thus τSimRBS

(ε1)
�= ∅.

To show that there exists ε2 for which the implication 50 is true we will use
the fact that τ is assumed to have the main feature of the similarity for the
classification (see Definition 14). As we already noticed, due to the consistency
and coverage of the utilized rules we have Dissimilarity(u, u′) = 0 ⇔ d(u) =
d(u′), and d(u) �= d(u′)⇒ Similarity(u, u′) = 0. If so, then for ε2 = F (0, 0) we
get τSimRBS

(ε2)
⊇U IND{d} ⊇U τ . Moreover, since Dissimilarity(u, u′) > 0 for

any pair (u, u′) ∈ U ×U such that d(u) �= d(u′), we have U \ τSimRBS

(ε2)
�= ∅. Thus

it is sufficient to take ε2 = F (0, 0). �

5.4 Rule-Based Similarity for High Dimensional Data

In the Rule-Based Similarity model the notion of decision reduct is used for find-
ing a concise set of attributes which can serve as building blocks for constructing
higher-level features. Nevertheless, it has been noted that a single reduct may fail
to capture all critical aspects of the similarity in a case when there are many im-
portant “raw” attributes. To overcome this problem, an extension to RBS called



Algorithms for Similarity Relation Learning from High Dimensional Data 249

Algorithm 3. The computation of (ε, δ)-dynamic reducts in DRBS
Input: a decision system Sd =

(
U,A ∪ {d});

a parameter NoOfAttr << |A|;
parameters ε, δ ∈ [0, 1);
integers MaxDDR,MaxTry,NSets;

Output: a set of (ε, δ)-dynamic reducts DDRset;
1 begin
2 DDRset = ∅;
3 i = 0;
4 while |DDRset| < MaxDDR ∧ i < MaxTry do
5 Randomly draw NoOfAttr attributes from A and construct A′ ⊂ A,

|A′| = NoOfAttr;
6 Compute a decision reduct DR of S′

d = (U,A′, d);
7 k = 0;
8 for j = 1 to NSets do
9 Randomly draw �(1− ε) · |U |� objects from U (without repetition)

and create S′′
d = (U ′, DR, d);

10 if DR ∈ RED(S′′
d) then

11 k = k + 1;
12 end
13 end
14 if k/NSets > 1− δ then
15 DDRset = DDRset ∪ {DR};
16 end
17 i = i+ 1;
18 end
19 return DDRset;
20 end

Dynamic Rule-Based Similarity (DRBS) was proposed [27,28]. The main aim of
the DRBS model is to extend the original model by taking into consideration a
wider spectrum of possibly important aspects of the similarity.

During construction of the DRBS model, many independent sets of rules are
generated from heterogeneous subsets of attributes. In this way, the resulting
higher-level features are more likely to cover the factors that can influence sim-
ilarity or dissimilarity of objects (the positive and negative feature sets) from
a domain under scope. Within the model, the attributes that are used to in-
duce the rules are selected by computation of multiple decision reducts from
random subsets of data. This method can be seen as an analogy to the Ran-
dom Forest algorithm [140], in which multiple decision trees are constructed. In
DRBS however, the rules derived in this manner are not directly employed for
classification but they are utilized to define multiple RBS similarity functions.
Those local models are then combined in order to construct a single function
which can yield a better approximation of a similarity relation in the context of
a classification.
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Although in all experiments described in this dissertation DRBS was imple-
mented using the (ε, δ)-dynamic decision reducts [100, 101] (see Definition 12),
any kind of an efficient dimensionality reduction technique, such as approximate
reducts [98,99] or decision bireducts [36] could be used (see the definitions in Sub-
section 2.3). The dynamic decision reducts, however, tend to be reliable even in a
case when only a few hundreds of objects are available for the learning and thus
are suitable for coping with the few-objects-many-attributes problem [26,130].

Algorithm 3 shows an efficient procedure for computing (ε, δ)-dynamic deci-
sion reducts. Although the algorithm does not give any guarantee as to the num-
ber of returned dynamic reducts, in practical experiments with real-life data sets
(see Subsection 6.2) it has always successfully generated a sufficient number of
reducts for constructing a reliable DRBS model. Its advantage for the similarity
learning is that it naturally adjusts the number of generated local RBS models
to the available data. In particular, for reasonable values of ε and δ, the num-
ber of produced reducts for data sets describing objects with many important
similarity aspects is likely to be higher than for those which describe simpler
problems, characterised with fewer potentially important features.

The DRBS similarity function combines values of the local similarity func-
tions. Due to a partially randomized reduct construction process, the individual
RBS models represent more independent aspects of the similarity. That in turn
results in a better performance of their ensemble [36, 102, 147]. This particular
characteristic makes the DRBS model akin to the Random Forest algorithm
where the final classification is done by combining decisions of multiple decision
trees, constructed from random subsets of attributes and objects [140]. Unlike
in the Random Forest, however, the classification results which are based on
DRBS do not lose their interpretability. For each tested object we can explain
our decision by indicating the examples from our data set which were used in
the decision-making process (i.e. the k most similar cases). Equation 52 shows a
basic form of a DRBS similarity function which averages outputs of the N local
RBS models:

SimDRBS(u1, u2) =
1

N
·

N∑
j=1

(
Sim

(j)
RBS(u1, u2)

)
, (52)

where Sim(j)
RBS(u1, u2) is the value of the RBS similarity function for the j-th de-

cision reduct. This function can be easily modified to reflect relative importances
of individual RBS models:

SimwDRBS(u1, u2) =
ω(j) ·

∑N
j=1

(
Sim

(j)
RBS(u1, u2)

)
∑N

j=1 ω
(j)

. (53)

In the above equation, weights ω(j) correspond to quality of RBS models, which
can be estimated using some of the methods described in Subsection 3.3. For
this purpose, usually a part of objects from a learning set needs to be held back
as a validation set.
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DRBS introduces a few new parameters to the similarity model, of which the
most important are NoOfAttr and MaxDDR. They both govern the process of
randomized computation of reducts. The first one tells how many attributes are
randomly drawn from data for computation of a single reduct. The second one
sets maximal number of the reducts to be generated. Together, those parame-
ters influence the thickness of a coverage of truly important similarity aspects.
Knowing their values, it is possible to estimate a chance of an attribute to be
considered for inclusion into at least one reduct and the expected number of its
occurrences within the final set of reducts.

If by pattr we denote the ratio between NoOfAttr and the total number of
attributes in data (pattr = NoOfAttr

|A| ), the occurrence probability of an attribute
attr in at least one reduct and the expected number of its occurrences are equal:

p(attr) = 1−MaxDDR · (1− pattr)
MaxDDRandE(attr) = MaxDDR · pattr,

respectively. In practice, these two quantities can be used to set reasonable values
of NoOfAttr and MaxDDR for a given data set.

Another two important parameters are ε and δ which have a significant im-
pact on properties of generated dynamic reducts. The higher ε and lower δ, the
more robust are the resulting dynamic decision reducts. However, too restrictive
values of those parameters may cause a serious deterioration in a computational
efficiency of the algorithm or even prevent its completion.

Alternatively, if instead of dynamic reducts, the new feature sets were defined
using decision bireducts, many parameters of the DRBS model could be replaced
by a single ratio that governs the generation of random permutations (for more
details refer to [36]). In practical experiments with DRBS, however, only the
approximations derived from dynamic decision reducts have been used so far.

5.5 Unsupervised Rule-Based Similarity for Textual Data

The idea behind the RBS model can also be applied to carry out unsupervised
similarity learning [29]. In particular, the RBS model was extended to facilitate
an approximation of a semantic similarity of scientific articles.

The construction of the model starts with assigning concepts from a chosen
knowledge base to a training corpus of documents. This can be done in an au-
tomatic fashion with the use of methods such as ESA [129] (see Subsection 4.2).
The associations to the key concepts assigned to the documents can be trans-
formed to binary features and therefore, are suitable to use with the contrast
model of similarity. However, a direct application of this model would not take
into consideration data-based relations between concepts from the knowledge
base and a potentially different meaning of those relations for different docu-
ments. The problem of finding appropriate values of parameters of the Tversky’s
model would also remain unsolved. The proposed extension of RBS aims to over-
come those issues [29]. It is called the unsupervised RBS model, since it can be
seen as a continuation of the research on the similarity learning model for high
dimensional data [28].
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Let F be a set of all possible semantic features of texts from a corpus D
and let Fi be a set of the most important concepts related to the document
Ti, F =

⋃|D|
i=1 Fi. The documents from D can be represented in an information

system S = (D,F ), as explained in Subsection 4.2. An example of such a system
is shown in Table 7. We can say that two documents described by this table
have a common feature if they both have value 1 in the corresponding column
(e.g. the documents T1 and T2 have three common features: f2, f3 and f10). The
binary attributes in this system may correspond to tags assigned by experts or
by discretizing numeric weights of ontological entities generated using methods
such as ESA.

In many practical applications, the numerical values of an association strength
between a concept and a document may be discretized into more than two in-
tervals in order to precisely model their bond. In this case, it is reasonable to
define a few binary features that represent consecutive intervals and remain de-
pendent, in a sense that if a feature is “highly related ” to a document then it
is also “weakly related ”, but not the opposite. Such an approach is popular in
Formal Concept Analysis [156] and allows to model a psychological phenomena
that usually simpler objects are more similar to the more complex ones than the
other way around.

In order to find out which combinations of independent concepts comprise
the informative aspects of similarity, we could compute information reducts of
S [80, 91] or, to obtain more compact and robust subsets of F , some form of
approximate information reducts [34, 99]. However, during the research on the
unsupervised RBS model the information bireducts were proposed [29] in order
to limit its bias toward common concepts and objects of negligible importance.

Information bireducts can be defined similarly to the decision bireducts (see
Subsection 2.3), however their interpretation is slightly different.

Definition 17 (Information bireduct)
Let S = (D,F ) be an information system. A pair (B,X), where B ⊆ F and
X ⊆ D, is called an information bireduct, iff B discerns all pairs of objects in
X and the following properties hold:

1. There is no proper subset C � B such that C discerns all pairs of ob-
jects in X.

2. There is no proper superset Y � X such that B discerns all pairs of ob-
jects in Y .

Just as in the case of decision bireducts, information bireducts do not allow
any inconsistencies in X . In a context of information bireducs, however, consis-
tence is understood as an ability to distinguish between any pair of objects in
the selected set.

It is interesting to compare information bireducts with templates studied in
the association rule mining [96, 97] or concepts known from the formal concept
analysis [156, 157]. Templates aim at describing a maximum number of objects
with the same (or similar enough) values on a maximum number of attributes.
Similarly, concepts are defined as non-extendable subsets of objects that are
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indiscernible with respect to non-extendable subsets of attributes. On the other
hand, information bireducts describe non-extendable subsets of objects that are
discernible using irreducible subsets of attributes. The templates and concepts
might be seen as corresponding to the most regular areas of data, while the
information bireducts correspond to the most irregular, chaotic or one might
even claim – the most informative data. Hence, information bireducts can be
also called anti-templates or anti-concepts.

In a context of similarity learning, information bireducts can also be intu-
itively interpreted as artificial agents that try to assess the similarity between
given objects. Each of such agents can be characterised by its experience and
preferences. In a bireduct, the experience of an agent is explicitly expressed by
the set X – the set of cases that the agent knows. The preferences of an agent
are modelled in an information bireduct by the set of attributes which are the
factors taken into account when the agent makes a judgement. Such an interpre-
tation makes information bireducts become an interesting tool for constructing
similarity models from data.

Table 7. An information system S representing a corpus of nine documents, with three
exemplary bireducts

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
T1 1 1 1 0 0 0 0 0 1 1
T2 0 1 1 1 1 0 1 0 0 1
T3 1 1 0 0 0 0 1 0 0 0
T4 0 0 0 0 1 0 0 1 0 0
T5 1 0 1 0 1 1 0 0 0 0
T6 1 0 1 0 0 0 0 0 0 0
T7 0 1 1 0 0 1 1 1 0 0
T8 0 0 0 0 1 1 1 1 1 0
T9 1 1 0 0 1 0 0 0 1 0

Exemplary information bireducts:

BR1=({f2, f3, f8, f9},
{T1, T2, T3, T4, T6, T7, T8, T9})

BR2=({f3, f5, f7, f9},
{T1, T2, T3, T4, T5, T6, T7, T8, T9})

BR3=({f1, f2, f5},
{T2, T3, T5, T6, T7, T8, T9})

For each bireduct BR = (B,X), B ⊆ F , X ⊆ D, we can define a commonality
relation in D with regard to BR. One example of such a relation can be ς |BR

which is defined as follows:

(Ti, Tj) ∈ ς |BR ⇐⇒ Tj ∈ X ∧
∣∣Fi|BR

∩ Fj|BR

∣∣ ≥ p, (54)

where p > 0, Ti, Tj ∈ D and Fi|BR
is a representation of Ti restricted to features

from B. Intuitively, two documents are in the commonality relation ς |BR if and
only if one of them is covered by the bireduct BR and they have at least p
common concepts. The commonality class of a document T with regard to BR
will be denoted by IBR(T ) since it can be regarded as a specific type of an
uncertainty function in the theory of rough sets (see Definition 5). For instance,
if we consider the information system from Table 7 and the commonality relation
defined by the formula (54) with p = 2, then IBR1(T1) = {T1, T2, T7, T9} and
IBR1(T5) = ∅.
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It is important to realize that a commonality of two objects is something
conceptually different than indiscernibility. For example, the documents T5 and
T6 are indiscernible with regard to the features from the bireduct BR1 but
they are not in the commonality relation since they have only one feature f3 in
common.

A similarity model needs to have a functionality which allows it to be applied
for analysis of new documents. Typically, we would like to assess their similarity
to the known documents (those available during the learning phase) in order to
index, classify or assign them to some clusters. For this reason, in the definition
of the commonality relation only Tj needs to belong to X . This also makes it
more convenient to utilize information bireducts that explicitly define the set of
reference cases for which the comparison with the new ones is well defined.

The commonality relation (54) can be used to locally estimate the real signif-
icance of arguments for and against the similarity of documents which are being
compared. Those arguments, i.e. sets of higher-level features of documents, can
be aggregated analogously to the case of the regular RBS similarity function
(40). In particular, the similarity of Ti to Tj with regard to a bireduct BR can
be computed using the following formula:

SimBR(Ti, Tj) =
|IBR(Ti) ∩ IBR(Tj)|
|IBR(Ti)|+ C

−
∣∣(X \ IBR(Ti)

)
∩ IBR(Tj)

∣∣
|X \ IBR(Ti)|+ C

. (55)

As in the case of the functions Similarity and Dissimilarity of the RBS model
(see Subsection 5.2), the constant C > 0 is added to avoid division by zero.

Since each information bireduct is a non-extendable subset of documents, cou-
pled with an irreducible subset of features that discern them, it carries maximum
information on a diverse set of reference documents. Due to this property, the
utilization of bireducts nullifies the undesired effect which common objects (or
usual features) would impose on sizes of the commonality classes and thus, on
the similarity function value. Moreover, such a use of the information bireducts
in combination with the commonality relation (54) substitutes the need for man-
ual tuning of additional parameters. Instead, the relative intersection size of the
commonality classes locally expresses the relevance of arguments for similarity
without a need for considering additional parameters. By analogy, the impor-
tance of arguments against the similarity is reflected by the relative size of a set
that comprises those documents which are not in the commonality class of the
first document and are sufficiently compliant with the second text.

Following the example from Table 7, the formula (55) can be used to com-
pute the similarity between any two documents from S with regard to a chosen
bireduct BRi. For instance, for a very small c, SimBR1(T1, T2) ≈ 3/4−0 = 0.75,
SimBR1(T1, T5) = 0− 0 = 0 and SimBR1(T1, T8) ≈ 0− 1/4 = −0.25. It is worth
noting that the proposed approach keeps the flexibility of the original RBS model
and does not impose any properties on the resulting similarity function. Depend-
ing on the data and on the selection of τ |BR, the function SimBR may be not
symmetric (SimBR1(T2, T1) ≈ 0.8 �= SimBR1(T1, T2)), and even not reflexive
(SimBR1(T3, T3) = 0). In this case the lack of the reflexivity is a consequence



Algorithms for Similarity Relation Learning from High Dimensional Data 255

of the fact that T3 /∈ X , thus a meaningful assessment of the similarity to this
document is not possible. This flexibility of the model makes it consistent with
observations made by psychologists [5].

The utilization of information bireducts allows to conveniently model differ-
ent aspects of similarity. By analogy to the initial experiments with decision
bireducts [36], a set of information bireducts will cover much broader aspects of
data than an equally sized set of the regular information reducts. This allows to
capture approximate dependencies between features which could not be discov-
ered using classical methods and may contribute to the overall performance of
the model. The algorithm proposed in [36] for computation decision bireducts
can be easily adjusted to the case of information bireducts (Algorithm 4). The
randomization of the algorithm guarantees that its multiple executions will pro-
duce a diverse set of bireducts.

Algorithm 4. The calculation of an information bireduct of S = (D,F )

Input: an information system S = (D,F );
a random permutation σ : {1, ..., |D|+ |F |} → {1, ..., |D| + |F |};

Output: an information bireduct (B,X), B ⊆ F , X ⊆ D;
1 begin
2 B = F ;
3 X = ∅;
4 for i = 1 to |D|+ |F | do
5 if σ(i) ≤ |F | then
6 if B \ {Fσ(i)} discerns all pairs in X then
7 B ← B \ {Fσ(i)}
8 end
9 end

10 else
11 if B discerns all pairs in X ∪ {Tσ(i)−K} then
12 X ← X ∪ {Tσ(i)−K}
13 end
14 end
15 end
16 return (B,X);
17 end

To robustly evaluate similarity of two documents the agents need to interact
by combining their assessments. The simplest method of such an interaction is
to average votes of all agents. In such a case, the final similarity of Ti to Tj can
be computed using the following formula:

Sim(Ti, Tj) =

∑
k SimBRk

(Ti, Tj)

#extracted bireducts
. (56)
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For example, if for the information system S from Table 7 we consider infor-
mation bireducts BR1, BR2 and BR3, the final similarity of T1 to T2 would be
equal to Sim(T1, T2) = (0.75 + 0.05 + 0.3)/3 � 0.37.

The design of such a similarity function is computationally feasible and does
not require tuning of unintuitive parameters. It also guarantees that the resulting
similarity function keeps the flexibility and psychologically plausible properties.
Moreover, this kind of an ensemble significantly reduces the variance of similarity
judgements in a case when the available data set changes over time (e.g. new
documents are added to the repository) and increases model robustness.

However, some more sophisticated methods can also be employed for carrying
out the interaction between the agents (bireducts), in order to improve perfor-
mance in a given task or to reduce similarity computation costs. For instance,
properties of extracted bireducts can be used to select only those which will most
likely contribute to the performance of the model. The considered properties may
include, e.g. a number of selected features, a size of the reference document sub-
set or an average intersection with other bireducts [36]. Using such statistics in
combination with general knowledge about the data it is possible to decrease the
number of bireducts required for making consistent similarity assessments.

5.6 Summary of the Rule-Based Similarity Models

The construction of the RBS model makes it flexible and allows to apply it
in many object domains. By its design, the model tries to incorporate all the
plausible properties of a similarity learning method listed in Subsection 4.1.
For instance, if the rules which are used for constructing the RBS and DRBS
models are consistent, the resulting similarity function is guaranteed to respect
the fundamental feature of a similarity relation in a classification context (see
Definition 14). Hence, the models are consistent with the training data. For
unsupervised RBS this property is difficult to verify in a general case. However,
if the semantic concepts which represent the documents are properly assigned
(e.g. by experts or a well-trained supervised algorithm), the consistence with
data is a natural consequence. Moreover, the similarity function of the RBS
model is a proper similarity function if only the data set is consistent and the
utilized sets of rules meet a few general requirements (i.e. they are consistent
with the data, cover all objects, are minimal and allow to uniquely identify all
objects that originally were discernible – see Subsection 5.3).

By its design RBS takes into consideration the context for evaluation of the
similarity. A value of the resulting similarity function depends on a decision
class of a referent object. The similarity values are also influenced by a presence
of other objects in the data. Due to the utilization of the rough sets (i.e. the
use of notions such as a reduct, an uncertainty and membership function, as
well as the overall approach which resembles searching for appropriate similarity
approximation space), the model is capable of automatically adapting itself to
the data at hand. This characteristic contributes to good performance of the
RBS models in tasks such as a supervised classification. This fact is confirmed
by experiments on real-life data which are described in the next Section 6.
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The proposed model can be more intuitive for domain experts than typical
distance-based approaches. Unlike distance-based metrics, RBS does not enforce
any undesirable properties on the induced similarity relation. The set representa-
tion, originally borrowed from Tversky’s feature contrast model, is more natural
for complex objects than the vector representation in a metric space. It is partic-
ularly important in situations when the vectors representing objects would have
to be high dimensional and possibly sparse (e.g. typical bag-of-words represen-
tation of textual documents). The set representation also allows to conveniently
model the phenomenon that the lack of some important characteristics in both of
compared objects is not an argument for their similarity. Moreover, RBS treats
the evaluation of similarity as a problem of resolving conflicts between arguments
for and against the similarity, which has an intuitive interpretation.

An important aspect of RBS models is their computational complexity. The
construction time of the models depends on particular algorithms used for ex-
tracting higher level features. Thanks to the proposed extensions the model can
be efficiently built even for very high dimensional data sets. A bigger issue is
related to a time cost of a similarity assessment between a single pair of ob-
jects. Since the model considers influence of other objects on the context, the
computation cost of the RBS similarity function can be in the worst case lin-
ear with regard to the number of objects in the data. Since the corresponding
cost for typical distance-based similarity functions is constant, such models are
easer to apply for analysis on data sets with many objects. On the other hand,
the bounded computation cost and robustness with regard to the number of at-
tributes (the sizes of higher-level feature sets can be limited by applying simple
filters on rule induction algorithms) makes RBS a useful tool for solving the
few-objects-many-attributes problem.

6 Experimental Evaluation of the Rule-Based Similarity
Model

This section presents the results of experiments in which Rule-Based Similar-
ity was used for constructing similarity models from various types of data. The
aim of those experiments was to demonstrate feasibility of the rule-based ap-
proach to the similarity learning problem. Quality of the proposed model was
evaluated using methods briefly described in Subsection 3.3. Depending on the
context in which a given similarity model was meant to be applied (i.e. an object
classification or a semantic similarity of texts), its quality was judged based on
a performance of the 1-nearest neighbour classifier or on a conformity of the
similarity function to feedback provided by domain experts.

The performance of the RBS model was additionally compared to several
other similarity models as well as to the state-of-the-art classifiers in the inves-
tigated domain. For the sake of an in-depth analysis of the results, not only
are the raw evaluation values presented but also their statistical significance is
given. Although most of those results were already published and presented at
respectful conferences [24–29], some new views at those tests are shown as well.
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All the experiments described in this section were implemented and executed
in R System [158]. RBS and its extensions were coded in a native R language
with an exception of the discretization algorithm (see Algorithm 2 in Subsection
5.2), which was supported by a C++ code. This code was executed through the
.C interface provided by R. The whole experimental environment, including the
code, data sets and documentation, that allows to conveniently repeat a major
part of the conducted experiments is available on request15.

The section is divided into three subsections. The first one discusses the per-
formance of the original RBS model. In that subsection (Subsection 6.1), RBS
was constructed for several benchmark data sets from the UCI repository16 [159]
and compared with several common distance-based models. Next, Subsection 6.2
shows the evaluation of the proposed model on microarray data sets which are
an example of high dimensional data. Finally, in Subsection 6.3 a case-study of
semantic similarity learning from biomedical texts is presented.

6.1 Performance of Rule-Based Similarity in a Classification
Context

The original RBS model was tested on a range of benchmark data sets and
compared to several commonly used similarity models. Its performance was also
verified on a few high dimensional data sets to check its usefulness for learning
a similarity relation characterised by multiple possible aspects. This subsection
describes the methodology and presents the results of those test.

Description of the Benchmark Data Sets. The first series of experiments
with RBS was conducted on a set of six benchmark data tables, from which five
were downloaded from the UC Irvine Machine Learning Repository [159] and
one was taken from an R System library MASS [158] (the Cars93 data). They
concern domains such as classification of cars, handwritten digits recognition,
breast tumour diagnosis and recurrence risk assessment, automatic assessment
of nursery applications and Internet advertisements recognition.

A few basic characteristics of the utilized data sets are shown in Table 8. They
significantly differ in both, the number of objects and attributes. Three of the
selected data sets contain nominal attributes, whereas numeric attributes are
present in five tables. The Nursery data set was the only one containing purely
nominal features. The number of decision classes for each set ranged from two
(the WDBC, WPBC and InternetAds data sets) to ten (the Pendigits data).

Additional experiments were performed to assess usefulness of the RBS model
for the similarity learning from high dimensional data. For this series of tests,
four microarray data sets17 were selected along with the InternetAds data table
which was already used in the initial experiments. Two of the chosen microar-
ray data sets (PTC and Barrett) are smaller benchmark tables, whereas the

15 janusza@mimuw.edu.pl
16 UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/
17 For more information on microarray data see Subsection 6.2.

http://archive.ics.uci.edu/ml/
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Table 8. A brief summary of the benchmark datasets used in the experiments with
the original RBS model

Data set: no.
instances

no.
attributes

numeric
attributes

nominal
attributes

no. decision
classes

Cars93 93 27 Yes Yes 6
Pendigits 10992 17 Yes No 10
WDBC 569 31 Yes No 2
WPBC 198 33 Yes No 2
Nursery 12958 9 No Yes 4
InternetAds 3279 1559 Yes Yes 2

Table 9. A brief summary of microarray data sets used in the experiments

Data set: no. samples
(instances)

no. genes
(attributes)

no. decision
classes

PTC 51 16502 2

Barrett 90 22277 3

HepatitisC 124 22277 4

SkinPsoriatic 180 54675 3

two other (HepatitisC and SkinPsoriatic) were obtained from the ArrayExpress
repository18 [160] and were created as a result of larger research projects (ex-
periment accession numbers E-GEOD-14323 and E-GEOD-13355, respectively).

A microarray analysis is an important source of high dimensional data. A
case-based approach to knowledge discovery from collections of microarrays is
popular due to scarcity of available data samples [14,19,161]. The construction of
a reliable similarity model for such a data type is usually a challenging task. Since
each data sample is described by numerous attributes (from a few thousands to
a few hundred thousands), it is difficult to select those relevant in the considered
context. The evaluation of RBS on microarray data was performed to check
whether the reduct-based construction of relevant features is effective for high
dimensional data.

Compared Similarity Models. In the experiments, the RBS model was con-
structed for the classification context (see Subsection 3.2 and Subsection 5.2),
which was defined by the decision attributes in the data sets. Several other simi-
larity models were also constructed for each of the decision tables. Some of them,
such as the Euclidean distance-based model19 (the Gower distance-based sim-
ilarity, see Subsection 3.4), were unsupervised, whereas the others utilized the
information about classification of objects to adapt to the data.

Among the supervised similarity models used in this comparison, the most im-
portant one was the distance-based model combined with a genetic algorithm for
learning parameters of local distances. This model will be called Genetic-Based
18 www.ebi.ac.uk/arrayexpress
19 For the data sets containing nominal attributes the Gower distance was used.

www.ebi.ac.uk/arrayexpress


260 A. Janusz

Similarity (GBS). This approach was described in more details in Subsection 4.2.
The genetic algorithm was coded in the native R language [158]. As the local
distances it used an absolute difference for numeric attributes and the equiva-
lence test for the nominal ones. The local distance values were aggregated using
the Euclidean norm (the Gower metric – see Subsection 3.4).

The value of the parameter that governs the population size (i.e. the number
of chromosomes) was set to 1000 for the smaller data sets and to 250 for the
larger. The probabilities of the replication, mutation and crossover operations for
a particular chromosome were computed using the roulette wheel selection tech-
nique, based on a distribution of scores (fitness values) in the population. The
exact copies of the chromosomes chosen for replication were taken to the next
generation. The chromosomes which were chosen for mutation were randomly
modified on a small number of genes (the genes were also chosen at random) and
added to the new generation. Next, the chromosomes chosen to crossover were
randomly matched in pairs to produce two offspring. The new chromosomes were
computed as a weighted averages of the parent chromosomes. Finally, scores of
the new generation members were computed and the chromosomes with lower
scores were eliminated so that the size of the population did not exceed the start-
ing value. In this way the selection of a chromosome was not directly dependent
on its fitness but instead, it was conditioned on its ranking in the population.

Additionally, two different similarity learning models were implemented for the
experiments on the high dimensional data sets. Both of those models represented
the feature selection approach to similarity learning (see Subsection 4.2). The
first one, denoted by Gover+FS, was a combination of the Gower distance-based
similarity function with a filter attribute selection method. Relevant features
were selected using a t-statistic filter. The attributes were ranked according to
average p-values of a t-test (the lower the average, the higher the rank) that check
equity of attributes’ values within pairs of decision classes. The final number of
top-ranked attributes for the model was decided using the leave-one-out cross-
validation [162, 163] on the available training data. This number was chosen
within the range of 2 to 1000. The second model, called Minkowski+FS, extended
the first one by allowing to tune the local distance aggregation function (the
p parameter in the Minkowski’s aggregation function, see Subsection 3.4). To
increase the performance of all the distance-based models, numeric attributes in
the data sets were scaled before the experiments.

The RBS model was designed for each of the data sets as it was described
in Section 5. The relevant higher-level features were constructed from the at-
tributes constituting decision superreducts20. The attributes were selected and
discretized using a supervised greedy heuristic [34, 154] which was modified so
that instead of selecting only one cut at a time, the algorithm was able to si-
multaneously choose cuts on several attributes that discern most of the samples
from different decision classes. The rules which define the higher-level features
were discovered using the decision apriori algorithm implemented in the arules

20 A decision superreduct is a set of attributes that discern all objects from different
decision classes but does not need to be minimal. See Subsection 2.3.
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Table 10. A summary of the models used in the experiments from Section 6.1

Name: A short description of a model:
Gower A standard Gower distance-based similarity function.
Gower + FS A Gower distance-based similarity function with a t-statistic filter

for selecting relevant attributes.
Minkowski
+ FS

A Minkowski distance-based similarity function combined with a
t-statistic attribute filter and a metric parameter learning wrapper.

GBS A genetic algorithm-based similarity function learning.
RBS The original Rule-Based Similarity model.

R System library. Only consistent rules21 were considered with a minimal sup-
port factor set to minimum from 5 and 1% of a total number of objects in a
training set. Table 10 summarizes the similarity models used in the experiments
described in this subsection.

Evaluation Method and Discussion of the Results. The quality of the
compared similarity models was evaluated indirectly by measuring classification
performance of 1-NN classification rule (Definition 13) applied to the correspond-
ing similarity functions. This similarity model evaluation method was discussed
in Subsection 3.3. The classification accuracy (ACC), defined as:

ACC =
|{u ∈ TestSet : d̂(u) = d(u)}|

|TestSet| , (57)

where TestSet is a set of test objects and d̂(u) is a prediction of a decision class
for an object u, was estimated using the 10-fold cross-validation technique [164].
The cross-validation was repeated 12 times with different partitioning of data
sets into folds. Although in each cross-validation run the division of data was
random, the same partitioning was used for every tested similarity model in order
to facilitate the comparison of the evaluation results. The mean and standard
deviations of model accuracies were computed and the significance of differences
in results was assessed using the paired t-test with a 0.99 confidence level.

Table 12 shows the mean and standard deviation of accuracy obtained by
similarity models described in this section for the regular data sets. Figure 13
also conveniently visualizes those results.

The classification accuracies of the similarity models on the benchmark data
are comparable. The RBS model achieved significantly better results on the data
sets containing nominal attributes, with an exception of the InternetAds data.
Although the accuracy of the RBS model for the most of datasets was slightly
higher than the accuracy of the GBS model, the difference was significant (p-
value of a t-test was lower than 0.01) only for Cars93, Nursery in favour of the
RBS and Pendigits in favour of the GBS. However, it is worth noticing that the
time needed to perform the tests was much shorter for the rule-based approach.
21 A rule is called consistent or true if its confidence equals 1. See Subsection 2.1.
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Table 11. A comparison of the classification accuracy (ACC) of the tested models

Dataset: Gower acc. (%) GBS acc. (%) RBS acc. (%)

Cars93 63.44 ± 2.41 87.96 ± 1.11 89.25 ± 1.10

Pendigits 97.46 ± 0.21 98.57 ± 0.26 97.30 ± 0.55

WDBC 95.20 ± 0.31 95.66 ± 0.64 95.53 ± 0.48

WPBC 73.13 ± 1.25 76.25 ± 0.82 76.79 ± 0.85

Nursery 76.28 ± 0.39 78.35 ± 0.31 97.02 ± 0.05

InternetAds 96.52 ± 0.09 96.06 ± 0.44 96.07 ± 0.14

Comparing to the simple Gover distance-based approach, RBS turned out
to be more reliable for all data tables, except Pendigits and InternetAds. The
average classification accuracy of RBS was statistically higher (p-value of a t-test
≤ 0.01) for the Cars93, WPBC and Nursery data. Interestingly, the performance
of RBS was significantly lower than the performance of the Gower model for the
InternetAds data set. This fact can be treated as an argument for a hypothesis
that the RBS model may fail to capture all relevant aspects of similarity when
the dimensionality of a data set is high.

To further investigate this problem the second series of experiments was con-
ducted, in which the performance of RBS was compared to several distance-based
models on high dimensional data sets. Table 11 shows the results of those tests.
They are also displayed in Figure 14.

Table 12. A comparison of the classification accuracy (ACC) of several similarity
models for high dimensional data sets

Dataset: Gower Gower+FS Minkowski+FS GBS RBS
InternetAds 96.52±0.09 96.79±0.14 96.75±0.12 96.06±0.44 96.07±0.14
PTC 84.31±1.41 96.08±1.67 98.04±0.77 95.74±1.95 98.04±1.31
Barrett 51.67±2.23 55.11±1.86 59.78±1.43 55.55±1.97 62.56±2.12
HepatitisC 86.36±1.66 84.54±1.58 85.08±1.06 84.83±1.38 86.58±0.83
SkinPsoriatic 71.17±1.50 70.83±2.13 69.50±2.39 72.17±1.56 79.00±1.12

The results seem to confirm a hypothesis that similarity learning may have a
significant impact on a quality of a similarity model for high dimensional data.
For the PTC and Barrett data the basic Gower distance-based model, which does
not adapt to particular data sets, achieved much lower accuracies than all other
similarity models. Moreover, the accuracy of the Gover model was lower than
the accuracy of RBS on every data table except InternetAds and the difference
was statistically significant for the PTC, Barrett and SkinPsoriatic data. On the
other hand, its results on the InternetAds and HepatitisC data sets show that
even such a simple model may be sufficient to obtain comparable, if not better,
results to much more sophisticated approaches, like the genetic algorithm-based
similarity learning (GBS) or RBS.
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Fig. 13. A visualization of classification accuracy obtained by the compared similarity
models on the benchmark data sets

Accuracy scores achieved by RBS were significantly higher (p-value < 0.01)
than those of other similarity learning models for the Barrett, HepatitisC and
SkinPsoriatic data. In particular, on average RBS turned out to be more reliable
than GBS for all data sets except InternetAds. The genetic approach does not
work very well for high dimensional data. Its probably due to the over-fitting
problem which is likely to happen when extensive supervised tuning is performed
for models with many parameters [7]. It has been observed, however, that for data
sets with many potentially important attributes (i.e. InternetAds, HepatitisC )
the results of RBS are comparable to those of the much simpler models (Gower,
Gower+FS). This, perhaps, can be explained by the fact that RBS was using
a much lower number attributes than the other models (the total number of
attributes used by RBS for a single data set never exceeded 70, whereas for other
models it often was more than ten times greater). On one hand, this characteristic
can be advantageous since it facilitates interpretability of the model. On the other
hand, however, it may deteriorate the performance of the model for complex
classification problems, when the number of important features is usually high.

6.2 Evaluation of the Dynamic Rule-Based Similarity Model on
Microarray Data

The construction of a similarity model for a high dimensional data may require
incorporation of numerous characteristics or factors that have an impact on
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Fig. 14. A visualization of classification accuracy obtained for the high dimensional
data sets

similarity judgements in a given context. The DRBS model was proposed in
order to enable working on multiple features during the construction of the
model, while keeping the reliability and flexibility of RBS which are provided
by utilization of notions from the theory of rough sets. This subsection shows
some applications of DRBS to analysis of several microarray data sets. It also
presents the comparison of classification results of the 1-NN algorithm which
uses a DRBS-induced similarity function, and a few state-of-the-art classifiers
that are commonly employed for microarray data.

Microarrays as an Example of Real-Life High Dimensional Data. The
microarray technology allows researchers to simultaneously monitor thousands
of genes in a single experiment. In a microarray data set, specific microarray
experiments are treated as objects (e.g. tissue samples). The attributes of those
objects correspond to different genes and their values correspond to expression
levels – the intensity of a process in which information coded in a gene is trans-
formed into a specific gene product. Figure 15 visualizes a single microarray chip
after an experiment and its representation in a decision table.

In recent years, a lot of attention of researchers has been put into investiga-
tion of this kind of data. That growing interest is largely motivated by numerous
practical applications of knowledge acquired from microarray analysis in med-
ical diagnostics, treatment planning, drugs development and many more [165].
When dealing with microarrays, researchers have to overcome the problem of
insufficient availability of data. Due to very high costs of microarray processing,
usually the number of examples in data sets is limited to several dozens. This
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Fig. 15. A visualization of a microarray chip after an experiment (the top left corner)
and its representation in a decision system. The intensity of a colour of spots at the
chip reflects expression levels of the genes.

fact, combined with a large number of examined genes, makes many of the clas-
sic statistical or machine learning models unreliable and encourages researchers
to develop specialized methods for solving the few-objects-many-attributes prob-
lem [130].

Thorough experiments have been conducted to test the performance of the
DRBS model on 11 microarray data sets. All the data samples were downloaded
from the ArrayExpress22 repository. All the data available in the repository are in
the MIAME23 standard [166]. To find out more about this open repository refer
to [160]. Each of the used data sets was available in a partially processed form
as two separate files. The first one was a data table which contained information
about expression levels of genes in particular samples and the second was a
SDRF 24 file storing meta-data associated with samples (e.g. decision classes).
Entries in those files had to be matched during the preprocessing phase. Figure
16 shows a standard microarray data preprocessing schema.

The data sets used in experiments were related to different medical domains
and diverse research problems (the ArrayExpress experiment accession numbers
are given in parentheses):

1. AcuteLymphoblasticLeukemia (ALL) – a recognition of acute lymphoblastic
leukemia genetic subtypes (E-GEOD-13425).

22 www.ebi.ac.uk/arrayexpress
23 Minimal Information About Microarray Experiment
24 Sample and Data Relationship File
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Fig. 16. A standard preprocessing schema for microarray data sets

2. AnthracyclineTaxaneChemotherapy (ATC) – a prediction of response to an-
thracycline/ taxane chemotherapy (E-GEOD-6861).

3. BrainTumour (BTu) – diagnosis of human gliomas (E-GEOD-4290).
4. BurkittLymphoma (BLy) – a diagnostics of human Burkitts lymphomas (E-

GEOD-4475).
5. GingivalPeriodontits (GPe) – transcription profiling of human healthy and

diseased gingival tissues (E-GEOD-10334).
6. HeartFailurFactors (HFF) – transcription profiling of human heart samples

with different failure reasons (E-GEOD-5406).
7. HepatitisC (HeC) – an investigation of a role of the chronic hepatitis C virus

in the pathogenesis of HCV-associated hepatocellular carcinoma (E-GEOD-
14323).

8. HumanGlioma (HGl) – a recognition of genomic alterations that underlie
brain cancers (E-GEOD-9635).

9. OvarianTumour (OTu) – a recognition of the ovarian tumour genetic sub-
types (E-GEOD-9891).

10. SepticShock (SSh) – profiling of critically ill children with the systemic in-
flammatory response syndrome (SIRS), sepsis, and septic shock spectrum
(E-GEOD-13904).

11. SkinPsoriatic (SPs) – an investigation of genetic changes related to the skin
psoriasis (E-GEOD-13355).

Apart from matching the decisions to samples some additional preprocessing
was needed to remove those decision classes which were represented by less than
3 instances. The first 10 data sets were previously used in RSCTC’2010 Dis-
covery Challenge [37]. The eleventh set was previously used for the comparison
of the original RBS with distance-based similarity learning models in [26] (see
Subsection 6.1). A part of those data sets was also used in the preliminary ex-
periments, in which a developing version DRBS was compared to the original
RBS model ( [27]). Table 13 presents some basic characteristics of the data sets.
They differ in the number of samples (from 124 to 284), the number of examined
genes (it varies between 22276 and 61358) and decision classes (2 to 5). Only
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Table 13. A brief summary of microarray data sets used in the experiments

Data set: no. samples no. genes no. classes (& class distribution)
ALL 190 22276 5 (0.28, 0.23, 0.19, 0.23, 0.07)

ATC 160 61358 2 (0.59, 0.41)

BTu 180 54612 4 (0.28, 0.13, 0.14, 0.45)

BLy 221 22282 3 (0.20, 0.58, 0.22)

GPe 247 54674 2 (0.74, 0.26)

HFF 210 22282 3 (0.51, 0.41, 0.08)

HeC 124 22276 4 (0.14, 0.38, 0.15, 0.33)

HGl 186 59003 5 (0.57, 0.18, 0.08, 0.07, 0.10)

OTu 284 54620 3 (0.87, 0.06, 0.07)

SSh 227 54674 5 (0.47, 0.23, 0.12, 0.08, 0.10)

SPs 180 54675 3 (0.32, 0.36, 0.32)

data sets which contained more than 100 samples were used in the experiments
with DRBS.

Some of the data sets have significantly uneven class distribution, with one
dominant class represented by majority of samples and a few minority classes
represented by a small number of objects. Typically, in microarray data, the mi-
nority classes are more interesting than the dominant one and this fact should
be reflected by the quality measure used to assess the performance of classifi-
cation algorithms. For this reason, the quality of the models employed in the
experiments was evaluated using the balanced accuracy (BAC) measure. This is
a modification of the standard classification accuracy (Eq. 57) which is insensi-
tive to imbalanced frequencies of decision classes. It is calculated by computing
standard classification accuracies (Accuracyi) for each decision class and then
averaging the result over all classes (d = 1, . . . , l). In this way, every class has
the same contribution to the final result, no matter how frequent it is:

ACCi =
|{u ∈ TestSet : d̂(u) = d(u) = i}|

|{u ∈ TestSet : d(u) = i}| ,

BAC =
( l∑

i=1

ACCi

)
/l , (58)

where l is a total number of decision classes, TestSet is a set of test samples
and d̂(u) is a prediction for a sample u. In a case of a 2-class problem with no
adjustable decision threshold, balanced accuracy is equivalent to Area Under the
ROC Curve (AUC). Thus, it may be viewed as a generalization of AUC for multi-
class classification problems. Balanced accuracy is insensitive to imbalanced class
distribution. This particular measure was used during RSCTC’2010 Discovery
Challenge [37] to evaluate solutions of participants and it is also used in the
experiments described further in this subsection.
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Comparison with the State-of-the-Art in the Microarray Data Classifi-
cation. The performance of DRBS for microarray data sets was evaluated in two
series of experiments. In the first one, DRBS was compared to the original RBS
model and three distance-based approaches. The distance-based models used dif-
ferent feature selection techniques combined with a Minkowski distance-based
similarity measure (see Subsection 4.2) whose parameter p was automatically
tuned on available training data. The utilized feature selection methods were
based on correlation test [135], t-test [88, 136] and the relief algorithm [138],
respectively. Table 14 shows the results of this comparison for six data tables
from the basic track of RSCTC’2010 Discovery Challenge [37]. The results are
also visualized in Figure 17.

Table 14. Results of different similarity models for microarray data sets. For each
table, the best score is marked in red and the second best is in blue. Mean and standard
deviation values are given.

Data set: 1-NN+corTest 1-NN+tT est 1-NN+relief RBS DRBS
ALL 0.894±.024 0.936±.023 0.927±.017 0.862 ± .017 0.929 ± .008

BTu 0.548±.010 0.548±.028 0.633±.021 0.613 ± .027 0.687 ± .010

GPe 0.744±.019 0.779±.016 0.785±.025 0.795 ± .018 0.885 ± .016

HFF 0.509±.023 0.532±.029 0.550±.019 0.541 ± .011 0.706 ± .022

HGl 0.509±.023 0.512±.033 0.516±.018 0.464 ± .019 0.648 ± .013

SSh 0.434±.032 0.457±.022 0.458±.024 0.424 ± .023 0.478 ± .017

ALL BTu GPe HFF HGl SSh

1−NN + corTest

1−NN + t−test

1−NN + relief
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Fig. 17. Balanced classification accuracies of the compared similarity models
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From the results of those experiments it is clearly visible that DRBS is a vi-
able improvement over RBS for high dimensional microarray data. Not only did
DRBS achieve better balanced accuracy than RBS for each of the data sets but
also the differences in their results were always statistically significant. Compar-
ing to the distance-based models, DRBS performed better for five out of six data
sets. Only for the AcuteLymphoblasticLeukemia data (ALL) the average BAC
score of 1-NN model combined with the t-test filter turned out to be higher, yet
even in that case, the difference could not be marked as statistically significant.
Unexpectedly, the most reliable gene selection method for the distance-based
models was the relief algorithm, which was ranked second for four tables.

In the second series of experiments, the classification performance achieved
with a combination of DRBS and the simple classification rule from Definition 13
was compared to the results of the Random Forest [140,167] and SVM [136,145]
algorithms which are considered as the state-of-the-art in the biomedical data
domain. All the models were implemented in R System ( [158]). The DRBS
model consisted of (0.9, 0.95)–dynamic reducts (see Definition 12) constructed
from 250 randomly selected subsets of 5 ∗ )

√
|A|* genes, were |A| is a total num-

ber of genes (attributes) in a data set. These values guaranteed that a probability
of an inclusion of any particular gene to at least one random subset was greater
than 0.95 (see Subsection 5.4). Those particular parameter values were chosen
as a trade off between computational requirements and robustness of the model.
No tuning of the parameters was performed during the experiments due to com-
putation complexity reasons, but it was observed that, for several different data
sets, an increase in the number of random subsets of genes usually leads to a
slightly better classification quality.
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Fig. 18. A visualization of the classification accuracies obtained by the compared al-
gorithms
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Table 15. Results of the tests evaluated using the classification accuracy (ACC) mea-
sure. For each data set, the best score is marked in red and the second best is in blue.
Mean and standard deviation values are given.

Data set: RF RFbalanced SVM DRBS
ALL 87.98 ± 0.97 88.77 ± 1.19 90.39 ± 0.96 91.71 ± 0.60

ATC 53.28 ± 2.90 49.64 ± 3.72 55.73 ± 2.78 51.35 ± 3.45

BTu 71.30 ± 1.26 66.44 ± 1.68 71.44 ± 1.45 72.08 ± 1.16

BLy 86.01 ± 1.65 86.05 ± 1.17 90.54 ± 1.79 89.89 ± 1.74

GPe 90.69 ± 1.02 86.50 ± 0.55 92.95 ± 0.90 89.57 ± 1.35

HFF 59.29 ± 1.75 56.03 ± 2.35 70.28 ± 1.81 62.54 ± 2.45

HeC 89.92 ± 1.52 87.16 ± 1.40 91.60 ± 1.80 91.26 ± 1.57

HGl 72.45 ± 1.91 61.74 ± 2.11 77.96 ± 1.23 72.76 ± 1.13

OTu 89.61 ± 0.41 64.91 ± 1.72 92.66 ± 0.52 86.27 ± 1.07

SSh 52.57 ± 1.53 44.49 ± 3.24 53.71 ± 2.48 52.31 ± 1.41

SPs 81.16 ± 1.47 82.64 ± 0.82 84.77 ± 1.45 82.69 ± 1.29

avg. ACC 75.84 ± 14.98 70.40 ± 16.44 79.27 ± 14.67 76.58 ± 15.42

Apriori algorithm from the arules package was used for the generation of the
rule sets for DRBS. The implementation of Random Forest from the package
randomForest was used with parameter settings recommended in [167]. Addi-
tionally, a balanced version of RF model was checked in which empirical prob-
abilities of decision classes (computed on a training set) were used during the
voting as a cut-off values. Support Vector Machine was trained with a linear
kernel. The implementation from the package e1071 was used. Other parame-
ters of SVM were set to values used by the winners of the advanced track of
RSCTC’2010 Discovery Challenge [37]. No gene selection method was used for
any of the compared models.

The quality of the compared models was assessed using two different quality
measures – mean accuracy (ACC, Eq. 57) and balanced accuracy (BAC, Eq. 58).
Those measures highlight different properties of a classification model. By its
definition, the balanced accuracy gives more weight to instances from minority
classes, whereas the standard mean accuracy treats all objects alike and, as
a consequence, usually favours the majority class. Depending on applications,
each of those properties can be useful, thus, a robust classification model should
be able to achieve a high score regardless of the quality measure used for the
assessment. The tests were performed using 5-fold cross validation technique.
The experiments were repeated 12 times for each of the data sets and models.
This testing methodology has been proved to yield reliable error estimates in
terms of bias and standard deviation (see [162–164]). The results in terms of the
accuracy and the balanced accuracy are given in Tables 15 and 16, respectively.

As expected, there were significant differences between performances of the
models depending on the quality measure used for the assessment. In terms of
the accuracy, SVM turned out to be the most reliable. It achieved the best score
on 9 data sets, whereas DRBS scored the best on 2 data tables. Different results
were noted in terms of the balanced accuracy – DRBS and Random Forest (the
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Fig. 19. A visualization of the balanced classification accuracies obtained by the com-
pared algorithms.

Table 16. Results of the tests evaluated using the balanced accuracy (BAC) measure.
For each data set, the best score is marked in red and the second best is in blue. Mean
and standard deviation values are given.

Data set: RF RFbalanced SVM DRBS
ALL 79.34 ± 2.08 91.40 ± 1.25 84.68 ± 2.68 92.93 ± 0.77

ATC 47.28 ± 2.92 50.46 ± 4.08 52.92 ± 2.97 50.33 ± 3.39

BTu 63.93 ± 1.80 68.49 ± 1.83 65.88 ± 1.82 68.71 ± 1.04

BLy 79.15 ± 2.30 89.08 ± 1.32 86.65 ± 2.52 87.30 ± 2.17

GPe 85.88 ± 1.50 87.04 ± 0.70 88.76 ± 1.30 88.52 ± 1.59

HFF 51.98 ± 3.13 67.17 ± 1.72 70.62 ± 2.10 70.64 ± 2.18

HeC 86.42 ± 1.78 87.55 ± 1.36 89.28 ± 1.57 89.52 ± 1.55

HGl 46.35 ± 2.83 66.46 ± 1.43 59.49 ± 2.10 64.76 ± 1.32

OTu 51.79 ± 1.67 80.75 ± 2.23 71.8 ± 1.80 79.91 ± 2.25

SSh 38.08 ± 1.98 48.98 ± 2.94 44.51 ± 2.13 47.77 ± 1.68

SPs 81.32 ± 1.43 82.80 ± 0.80 84.87 ± 1.42 82.95 ± 1.29

avg. BAC 64.68 ± 18.16 74.56 ± 15.22 72.68 ± 15.59 74.85 ± 15.71

balanced version) had the highest mean score on 4 sets, whereas SVM ranked
first on 3 data sets. Pairwise comparisons of the tested models are summarized
in Tables 17 and 18. For each pair, a number of data sets for which the model
named in a column achieved a higher average score is given.

The statistical significance of differences in the results between each of mod-
els was verified using the paired Wilcoxon test. This particular statistical test
was used instead of the standard t-test because balanced accuracies of different
classifiers are not likely to have a normal distribution with equal variances. A
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Table 17. A pairwise comparison of accuracies (ACC) of the tested models. Tables
show the number of data sets for which the model named in a column achieved a higher
score. The number of statistically significant wins is given in parentheses.

Method name:
lower\higher

RF
(higher)

RFbalanced
(higher)

SVM
(higher)

DRBS
(higher)

RF (lower) – 3 (1) 11 (9) 7 (4)
RFbalanced (lower) 8 (8) – 11 (11) 11 (9)
SVM (lower) 0 (0) 0 (0) – 2 (1)
DRBS (lower) 4 (1) 0 (0) 9 (6) –

null hypothesis was tested that the true performance measurements obtained for
the particular data set have equal means. Due to a large number of the required
comparisons a Bonferroni correction was applied and each test was conducted on
0.9999 confidence level. Differences in means were marked as significant (i.e. the
null hypothesis was rejected and a statistical proof was found that performance
of one of the model is higher) if the p-value25 of the test was lower than 0.01. The
results of this comparison are also shown in Tables 17 and 18 (in parentheses).

It is worth noticing that DRBS turned out to be the most stable classifica-
tion model – differences in its score in terms of the accuracy and the balanced
accuracy were the smallest of the tested models. For example, although SVM
achieved the highest average accuracy on all data sets (79.27), the average dif-
ference between its accuracy and the balanced accuracy was 6.59. The value of
the same statistic for DRBS was 1.73, with average accuracy of 76.58 (it ranked
second in terms of the accuracy measure). DRBS achieved the highest average
balanced accuracy of 74.85. This score was only slightly higher than the result of
the second algorithm – balanced Random Forest (74.56). The results of the Ran-
dom Forest algorithms, however, significantly differed with regard to the quality
measures. The absolute differences between average values of the two utilized in-
dicators for the Random Forest and balanced Random Forest models were 11.16
and 4.16, respectively. Those results clearly show that DRBS can successfully
compete with the state-of-the-art in the microarray data classification.

6.3 Unsupervised Similarity Learning from Textual Data

This subsection demonstrates an application of the unsupervised RBS model
for computation of semantic similarity of texts. Reliable semantic similarity
assessment is crucial for numerous practical problems, such as information re-
trieval [113,114], clustering of documents or search results [46,116], or multi-label
classification of textual data [32]. The usefulness of unsupervised RBS in one of
those tasks, namely document grouping, is verified on a corpus of scientific arti-
cles related to biomedicine. The notion of information bireducts (see Subsection
2.3) is combined with Explicit Semantic Analysis (ESA) (see Subsection 4.2) in
order to extract important features of the texts, and the performance of unsu-
pervised RBS is compared to the cosine similarity model.
25 The p-value of a statistical test is the probability of obtaining a test statistic value

as extreme as the observed one, assuming that the null hypothesis of the test is true.
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Table 18. A pairwise comparison of balanced accuracies (BAC) of the models. Tables
show the number of data sets for which the model in a column achieved a higher score.
The number of statistically significant wins is given in parentheses.

Method name:
lower\higher

RF
(higher)

RFbalanced
(higher)

SVM
(higher)

DRBS
(higher)

RF (lower) – 11 (8) 11 (10) 11 (10)
RFbalanced (lower) 0 (0) – 5 (3) 6 (3)
SVM (lower) 0 (0) 6 (6) – 8 (5)
DRBS (lower) 0 (0) 5 (2) 3 (1) –

Testing Methodology. The experiments were performed on a document cor-
pus consisting of 1000 research papers related to biomedicine which were down-
loaded from PubMed Central repository [168]. The ESA algorithm, which was
used for extracting semantic features of the texts, was adapted to work with
the MeSH ontology [153] and implemented in R System [158]. Prior to the ex-
periments, documents from the corpus were processed with natural language
processing tools from the tm and RStem libraries, and the associations between
the documents and the MeSH headings were precomputed26. The documents
were represented by bags-of-concepts (see Subsection 4.2) to construct the un-
supervised RBS model described in Subsection 5.5, as well as the other models
used for comparison.

Additionally, all of the documents were manually labelled by experts from the
U.S. National Library of Medicine (NLM) with the MeSH subheadings [153].
Those labels represent a topical content of the documents and as such, they
can serve as means for evaluation of truly semantic relatedness of the texts (see
Subsection 3.3). In the presented experiments, they were used for computation
of a semantic proximity between the analysed documents, which is treated as a
reference for the compared similarity functions.

The semantic proximity was measured using F1-distance, defined as:

F1-distance(Ti, Tj) = 1− 2 · precision(Si, Sj) · recall(Si, Sj)

precision(Si, Sj) + recall(Si, Sj)
, (59)

where Si and Sj are sets of labels (MeSH subheadings) assigned by experts, that
represent documents Ti, Tj ∈ D, respectively, and

precision(Si, Sj) =
|Si ∩ Sj |
|Si|

, recall(Si, Sj) =
|Si ∩ Sj |
|Sj|

. (60)

This particular measure was chosen since it is often used for evaluation of re-
sults in the information retrieval setting [115, 127]. Although the evaluation of
a similarity measure by a distance metric may fail to capture some of the psy-
chologically important properties and underestimate its real quality, in this way
26 The corpus used in the experiments is a subset of a data set prepared for JRS’2012

Data Mining Competition [32,38]. For more details on the contest and data prepro-
cessing refer to http://tunedit.org/challenge/JRS12Contest)

http://tunedit.org/challenge/JRS12Contest
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it was possible to quantitatively assess many similarity models and use those
assessments to objectively compare them (see Subsection 3.3).

The semantic proximity between two sets of documents is defined as an aver-
age of F1-distance between each pair of texts from different sets:

semDist(D1, D2) =

∑
Ti∈D1,Tj∈D2

F1-distance(Ti, Tj)

|D1| · |D2|
. (61)

In experiments, three types of comparisons between the similarity models were
made. In the first one, for each of the models, its correlation with the semantic
proximity values (Eg. 59) was computed. This kind of evaluation is often used in
psychological studies where researchers try to measure the dependence between
values returned by their models and assessments made by human subjects [5,21,
169]. It is also commonly utilized in studies on semantic similarity of texts [129].

One disadvantage of this evaluation method is that the linear correlation does
not necessarily indicate the usefulness of the measure in practical applications
such as the information retrieval or clustering. For this reason, the second series
of tests was performed, which aimed at measuring semantic homogeneity of clus-
terings resulting from the use of different similarity models. To each document
in the corpus there was assigned its average semantic proximity (Eg. 61) to other
documents from the same cluster and to the remaining texts. If for a division
of data into k groups we denote documents from a corpus D belonging to the
same cluster as Ti by clusterTi , then we can define a semantic homogeneity of
Ti with regard to the semantic proximity function semDist as:

homogeneity(Ti) =
B(Ti)−A(Ti)

max
(
A(Ti), B(Ti)

) , where

A(Ti) = semDist(Ti, clusterTi \ Ti) and
B(Ti) = semDist(Ti, D \ clusterTi).

If clusterTi \ Ti = ∅, then it is assumed that homogeneity(Ti) = 1. The average
semantic homogeneity of all documents can be used as a measure of clustering
quality. Since useful similarity models should lead to meaningful clustering re-
sults, the average semantic homogeneity can be employed to intuitively evaluate
the usefulness of the compared similarity models for the clustering task.

Finally, in the last series of tests, it was measured how clustering separability is
influenced by different similarity models. Two hierarchical clustering algorithms,
agnes (AGglomerative NESting) and diana (DIvisive ANAlysis), were used in
the experiments. They are described in [127]. Those algorithms differ in the way
they form a hierarchy of data groups. Agnes starts by assigning each observation
to a different (singleton) group. In the consecutive steps, the two nearest clusters
are combined to form one larger cluster. This operation is repeated until there
remains only a single cluster. The distance between two clusters is evaluated
using a linkage function (see the brief discussion in Subsection 3.5). To maximize
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the semantic homogeneity of the clusters, in the experiments the complete linkage
method was used.

The diana algorithm starts with a single cluster containing all observations.
Next, the clusters are successively divided until each cluster contains a single
observation. At each step, only a single group, with the highest internal dissim-
ilarity is split. Two different algorithms were used in the experiments to verify
the stability of the compared similarity models and avoid the bias towards a
single clustering method.

Apart from a clustering hierarchy, those algorithms return agglomerative (AC)
and divisive coefficients (DC), respectively. These coefficients express conspic-
uousness of a clustering structure in a clustering tree [127]. Although they are
internal measures and their value does not necessarily correspond to the se-
mantic relatedness of objects within the clusters, they can give an intuition on
interpretability of a clustering solution.

Compared Similarity Models. Four similarity models were implemented in
R System [158] for the purpose of the experiments. The unsupervised RBS was
constructed as described in Subsection 5.5. The documents from the corpus
were given associations to MeSH headings using ESA. An information system
S = (D,F ) was constructed consisting of 1000 documents described by a total
of 25, 640 semantic features. During preprocessing, the features which were not
present in at least one document from the corpus D were filtered out from further
analysis. Numerical association values of each term were transformed into four
distinct symbolic values. The discretization was based on general knowledge of
the data (e.g. for each feature possible association values ranged from 0 to 1000)
and the cut thresholds were constant for every feature (i.e. they were set to = 0,
≥ 300, ≥ 700 and ≥ 1000).

From the discretized information system, 500 information bireducts (see Sub-
section 2.3) were computed using random permutations (see Algorithm 4). As ex-
pected, they significantly differ in selection of features and reference documents.
On average, a bireduct consisted of 210 attributes (min = 173, max = 246), with
each attribute belonging on average to 9 bireducts (min = 1, max = 42). The
average number of documents in a single bireduct was 995 (min = 988, max =
1, 000), and each document appeared on average in 498 bireducts (min = 489,
max = 500). All of the computed information bireducts were used for assessment
of similarity by the unsupervised RBS model.

Apart from the unsupervised RBS, for the sake of comparison three other
similarity models were implemented. The first one was the standard cosine sim-
ilarity. In this model, for documents Ti and Tj, represented by vectors Ci, Cj

of numerical association strengths to headings from the MeSH ontology (i.e. the
vector representation of bag-of-concepts described in Subsection 4.2), the cosine
similarity is:

Simcos(Ti, Tj) = 1−Distc(Ci, Cj) , (62)
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where Distc is the cosine distance function (see Subsection 3.4). This particular
measure is very often used for the comparison of texts due to its robust behaviour
in high dimensional and sparse data domains.

The second reference model used in the comparison was also based on the
cosine similarity measure. However, unlike in the first one, its similarity judge-
ments were not based on the entire data but were ensembled from 500 local
evaluations. Each of those local assessments was made by the cosine similarity
restrained to the features selected by a corresponding information bireduct (the
same as those used in the construction of the unsupervised RBS model). The
similarity function of this model was:

Simens(Ti, Tj) =
500∑
l=1

Simcos(Ti|BRl
, Tj |BRl

), (63)

were T |BR is a document T represented only by features from BR. This model
will be called cosine ensemble. It was included in the experiments to investigate
the impact of the similarity aggregation technique utilized in unsupervised RBS,
on the overall quality of metric-based similarity.

The last reference model, which is called single RBS, was constructed using
the notion of a commonality relation (Formula 54) and the same aggregation
method as in the unsupervised RBS (Formula (55)). The only difference was
that it did not use bireducts to create multiple local sub-models but instead,
it made similarity assessments using the whole data set. Such a model can be
interpreted as a super-agent whose experience covers all available documents and
who takes into consideration all possible factors at once. It was used to verify
whether the bireduct-based ensemble approach is beneficial for the unsupervised
RBS model.

Results of Experiments. In the experiments, the similarity models described
in the previous subsection were used to assess similarities between every pair of
documents from the corpus. This allowed to construct four similarity matrices, in
which a value at an intersection of i-th row and j-th column expressed similarity
of the document Ti to Tj . The reference semantic proximity matrix was also
constructed using Formula (59), just as it is described in previous section.

Correlations measurements between the values from the similarity matrices
obtained for each similarity model and the semantic proximity values are dis-
played in Table 19. Since similarity assessments made using different measures
are likely to come from different distributions, the Spearman’s rank correla-
tion [169] was utilized in this test to increase its reliability.

The result of the unsupervised RBS in this test is much higher than results
of other models. It is interesting that the correlation of the third of the refer-
ence models (the single RBS) with the semantic proximity was the lowest. This
highlights the benefit from considering multiple similarity aspects in the RBS
approach. On the other hand, the difference between the two cosine-base sim-
ilarity models is negligible which suggests that the ensemble approach may be
ineffective for spherical similarity measures.



Algorithms for Similarity Relation Learning from High Dimensional Data 277

Table 19. The correlations between the tested similarity models and the semantic
proximity

cosine cosine ensemble single RBS unsupervised RBS
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Fig. 20. The comparison of the average semantic homogeneity of clusterings into a con-
secutive number of groups using different similarity models and clustering algorithms.
The plot on the left is a close up of the most interesting area from the plot on the
right. The clustering based on a randomly generated dissimilarity matrix is given as
the black dot-dashed line.

The second test involved the computation of two clustering trees for each of
the models using the agnes and diana algorithms [127]. Since their implementa-
tions from the cluster library [158]) can work only with symmetric dissimilarity
matrices, the similarity matrix of each examined model had to be transformed
using Formula (64):

dissMatrix = 1− (simMatrix+ simMatrixT )/2 , (64)

where simMatrix is a square matrix with similarity values, 1 is a square matrix
containing 1 at every position and ∗T is the transposition operation.

Figure 20 presents average semantic homogeneities (62) of clusterings into a
consecutive number of groups made using the compared similarity models. The
plot on the left is a close up to the area in the plot on the right which is marked
by a rectangle with dotted edges. This area corresponds to the most interesting
part of the plot because a clustering of documents into a large number of groups
produces small individual clusters and is very often difficult to interpret.

The results of this test show evident superiority of the unsupervised RBS
similarity over other models for grouping into 2 to 50 groups. Interestingly, in
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this interval, the semantic homogeneity of the single RBS is also much higher
than in the case of the cosine-based measures. The maximum difference between
the unsupervised RBS and the cosine similarity for the agnes algorithm is vis-
ible when the clustering is made into 4 groups and is equal to 0.083. For the
diana algorithm the difference is even higher – when clustering is made into 10
groups it reaches 0.097. For clustering into 51 to approximately 150 groups the
results, especially for the agnes algorithm, change slightly in favour of the cosine
similarity. The highest loss of the unsupervised RBS was to the cosine ensemble
model and reached 0.015 for division of data into 101 groups. Going further, the
unsupervised RBS takes the lead again but the difference is not that apparent. In
Figure 20 there are also results of a clustering made using a random dissimilarity
matrix (as the black dot-dashed line). They can serve as a reference since they
clearly show that all of the investigated similarity models led to much better
results than the random clusterings.

The compared models differ also in the results of the internal clustering mea-
sures. Table 20 shows the agglomerative (AC) and divisive (DC) coefficients of
the clustering trees obtained for each similarity model.

Table 20. Values of the internal clustering separability measures

measure: cosine cosine ensemble single RBS unsupervised RBS
AC 0.33 0.37 0.55 0.58

DC 0.28 0.31 0.51 0.54

In this test, the clustering for the both RBS-based models significantly outper-
formed the cosine similarity approaches. Higher values of the coefficients indicate
that the clusterings resulting from the use of the proposed model are clearer (the
groups of documents are better separated), thus, they are more likely to be easier
to interpret for experts and end-users. It is also worth noticing that the both
ensemble-based measures achieved higher internal scores than their single-model
counterparts.

Finally, some additional tests were performed to check how some additional
information about generated bireducts can be used for selecting relevant local
similarity models during the construction of unsupervised RBS. This can be seen
as a way of learning an optimal interaction scheme between artificial agents that
try to assess the similarity of given documents. In those experiments, the local
RBS models were sorted by the decreasing size of the corresponding bireducts27.
Next, the correlations between the semantic proximity matrix and the similarity
assessments (made using an unsupervised RBS model constructed from the first
k bireducts) were computed with k ranging from 1 to 500. The highest score was
obtained for a model consisting only of 10 bireducts – it reached 0.203 comparing
to 0.186 when all the bireducts were used (see Table 19). It seems that by using an

27 A size of a bireduct is understood as a sum of cardinalities of its attribute set and
its document set.
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additional validation document set it would be possible to estimate the optimal
number of bireducts to be included into the model, and to increase its overall
performance. Moreover, considering a lower number of local models would have
a positive impact on the scalability of the proposed similarity learning process.

7 Concluding Remarks

This section concludes the dissertation and summarises the presented research
on similarity learning from high dimensional data. It also indicates some possible
research directions for future development of the described models and points
out some interesting application areas.

7.1 Summary

The dissertation discusses the problem of learning a similarity relation that re-
flects human perception and is based on information about exemplary objects
represented in an information system. A special focus is on a situation when
the considered objects are described by many attributes and thus their typical
representation in a metric space would be extremely high dimensional. For such
a case, the typically used distance-based similarity models often fail to capture
true resemblance between compared objects [5, 9].

Following the research of Amos Tversky on general properties of a similarity
relation, a similarity model is proposed in which the metric representation of
objects is shifted to a representation by sets of features. In this model, which is
called Rule-Based Similarity (RBS), assessments of a similarity degree of a pair
of objects depend not only on a context in which the similarity is considered,
but also on other objects in the available data. This property remains consistent
with observations made by numerous psychologists [4, 5, 10, 20, 21].

The proposed similarity model utilizes notions from the theory of rough sets,
which is briefly discussed in Section 2. In fact, similarity learning in RBS can
be seen as a process of adjusting a similarity approximation space [51,55,56] to
better fit the desired context. Apart from the fundamental concepts of rough sets,
Section 2 outlines the rough set approach to selecting relevant attributes (i.e.
attribute reduction) and forming rules that represent knowledge about a given
data set. Those techniques are later applied in the RBS model for discovering
sets of higher-level features that influence similarity judgements.

The third section of this dissertation is devoted to the concept of similarity
and its general properties. A special emphasis is put on the necessity of fixing
a context in which the similarity of two objects is to be considered as it may
greatly influence the evaluation outcome (Subsection 3.2). An attempt is also
made to form a definition of a similarity function that would meet intuitive ex-
pectations for a natural resemblance measure. As a result, the definition of a
proper similarity function is proposed in Subsection 3.3, which is followed by a
discussion of methods for the evaluation of a similarity function quality. Addi-
tionally, Section 3 includes an overview of similarity models that are typically
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employed for solving real-life problems and highlights the essential differences
between common distance-based similarity metrics and Tversky’s feature con-
trast model [5]. It also shows application examples of similarity models in a
variety of machine learning tasks.

Section 4 focuses on techniques that allow learning a similarity relation or
a similarity function from data. It starts with an overview of desirable prop-
erties of a similarity learning model and a presentation of several approaches
to the problem of adjusting a given distance-based similarity function to better
fit a data set at hand, by exploiting the local-global principle (Subsection 4.2).
Then, Section 5 presents the RBS model, which is the main contribution of this
dissertation.

The motivation for RBS comes from observations of psychologists who no-
ticed that properties of similarity do not necessarily correspond to those of
distance-based models. In fact, in a specific circumstances every basic property
of a distance-based similarity relation can be questioned [5, 20]. On the other
hand, some practitioners noticed that non-metric representations of objects re-
quire defining their higher-level characteristics [4, 50, 120] which often are not
present in the original data. For this reason, the construction procedure of RBS,
described in Subsection 5.2, includes an automatic feature extraction step that
uses decision and inhibitory rules to form sets of arguments for and against the
similarity of given objects. During assessment of the similarity, those arguments
are aggregated analogically to the contrast model. Unlike in that model, how-
ever, weights of the feature sets need not to be set manually, but are derived
from available data. Subsection 5.3 discusses several plausible properties of the
proposed model and shows that under certain conditions its similarity function
meets the definition of the proper similarity function for a similarity in the con-
text of a classification problem.

The original RBS model was extended in order to facilitate its application to
two different types of problems that typically involve dealing with high dimen-
sional data. The first extension, which is described in Subsection 5.4, is designed
for learning a similarity function in a context of a classification problem from
data containing tens thousands of attributes and possibly only a few hundreds of
objects. Dynamic Rule-Based Similarity (DRBS) utilizes the notion of dynamic
decision reducts for constructing multiple sets of features that may robustly
represent different views or aspects of the similarity. Those aspects are then ag-
gregated using DRBS similarity function by an analogy with the Random Forest
algorithm [140].

The main purpose of the second extension, called unsupervised RBS (Subsec-
tion 5.5), is unsupervised rule-based learning of a semantic resemblance between
texts. In order to make it possible, the higher-level features of textual docu-
ments that represent relevant aspects of their semantics are extracted using a
combination of Explicit Semantic Analysis (ESA) [38, 129] and a novel notion
of information bireduct [29, 36, 170]. Due to the utilization of the information
bireducts, the evaluation of similarity in the unsupervised RBS model can be
interpreted as an interaction between artificial agents who are characterised by
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different experience and preferences, and thus have different views on semantics
of the compared documents.

Finally, Section 6 presents the results of experimental evaluation of different
RBS models for a wide array of data types. The performance of the original RBS
was compared to several distance-based similarity learning models on well-known
benchmark data tables acquired from UCI machine learning repository [159]. The
empirical quality evaluation of 1-nearest-neighbour classification revealed that
RBS can successfully compete with popular similarity models on standard data
sets. For high dimensional microarray data from ArrayExpress [160], not only
did DRBS significantly outperform other similarity models but it also achieved
better classification results in terms of the balanced accuracy measure than the
Random Forest and SVM algorithms, which are considered the state-of-the-art.
Unsupervised RBS was also tested and its usefulness for practical applications,
such as document clustering, was verified. Groupings constructed using this
model turned out to be more semantically homogeneous than those obtained
from clustering using standard methods.

7.2 Future Works

There are several possible directions for the future research on the rule-based
models of similarity. One idea is to focus on the incorporation of domain knowl-
edge into the model. For example, by using a dedicated similarity ontology it
would be possible to model similarity of complex objects or even behavioural
patterns changing over time [23, 45, 120, 171]. This kind of a domain knowledge
may be effectively used to learn the local similarity relations as well as to create
even better higher-level features, e.g. by merging those rules which are semanti-
cally similar. Moreover, the method for aggregating arguments for and against
the similarity of given objects that is used in RBS is just one of many pos-
sibilities. In the future some other aggregation functions could be tried. Such
functions could even be learnt from data based on some auxiliary knowledge or
interactions with experts.

RBS may also serve as a means for extending notions of rough sets and rough
approximations. Currently, there exist several generalizations of rough sets that
are based on the notion of similarity [57,58]. It might be interesting to combine
similarity-based rough sets with rough set-based similarity due to the conform-
ing philosophy of those two models. Such a combination can help in obtaining
approximations which are more intuitive for human experts and thus can be
more useful for real-life data analysis.

Another possible direction in research on RBS is to focus on scalability of
the model. In order to facilitate its practical applications in a wide array of
domains, scalability of RBS needs to be further enhanced. The scalability can
be considered in several aspects, e.g. in terms of a number of training and test
objects or in terms of a total number of attributes. Currently, the computational
cost of RBS models strongly depends on particular algorithms used for the dis-
cretization, attribute reduction and extraction of rules. Having constructed an
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RBS model, the evaluation of similarity between a single pair of objects can be
done in a linear time with regard to the number of extracted rules and objects.
Moreover, since a value of RBS similarity function can be computed by a single
SQL query, even a sub-linear time complexity would be possible to achieve by
utilization of modern analytical database technologies [172, 173]. Therefore, an
implementation of RBS that would be able to make use of contemporary Rela-
tional Database Management Systems (RDBMS) would definitely be helpful in
real-life applications of the model.

An important factor in the scalability context is also the method for compu-
tation of reducts that represent different aspects of the approximated similarity
relation. This problem is closely related to an efficient construction of reduct
ensembles [36, 103]. The results of the recent research in this topic suggest that
an incorporation of auxiliary knowledge about clusterings of original attributes
in data can greatly speed up the computation of diverse sets of reducts [33].

Finally, it would be very useful to come up with a unified framework for
developing and testing similarity learning methods. Although there exist systems
for data analysis that make use of rough set methods for a feature subset selection
and extraction of rules, e.g. RSES and RSESlib [174] or Rosetta [175], there is no
environment allowing to conveniently combine those tools for the construction
of higher-level similarity models. Such an extension, for example in a form of a
library for increasingly popular R System [158], would definitely bring benefit to
the rough set community, as well as to other data mining researchers. Algorithms
used in the construction of RBS models combined with discretization and rule
induction methods implemented for the described experiments may serve as a
starting point for this task.

Any further progress in the field of learning similarity relation from data
would be beneficial to researchers from many domains. This problem is especially
important in domains such as biomedicine, where efficient and more accurate
models could lead to discovering more effective and safer drugs or better planing
of treatments [37, 120, 145, 165]. The classical distance-based approach is often
unable to deal with the few-objects-many-attributes problem and the rule-based
approach appears to be a promising alternative.
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