The Scaling Properties of the Turbulent Wind
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Abstract. In this work, we present an analysis of one-year period measured wind
speed in the atmospheric boundary layer from a wind energy production site. We
employ a Hilbert-based methodology, namely arbitrary-order Hilbert spectral anal-
ysis to characterize the intermittent property of the wind speed in a joint amplitude-
frequency space. The measured scaling exponents implies intermittent nature of the
wind on mesoscales.

1 Introduction

Turbulent atmospheric wind speed is a complex process with a very large Reynolds
number Re [1]. This Reynolds number leads to huge intermittency of wind speed
fluctuations involving a wide range of temporal and spatial scales (the planet scale
to the dissipative scale) [2]. Knowledge of the dynamics of this process is crucial
for wind energy applications. Several works have highlighted the universality of the
scaling and intermittent properties of turbulent wind speed in the inertial range in
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the atmospheric boundary layer [3, 4, 5, 6]. However the knowledge of variations
ranging from minutes to few days corresponding to 1 to 1000 km, i.e. the mesoscale
range, is necessary to provide efficient information for management and control of
the wind power generation. The studies concerning this scale range are less numer-
ous than that for the small-scale range, due to the possible non-universality of the
power law slope in the mesoscale range [7, 8]. Recent works [7, 8] have been ded-
icated to scaling and multiscaling properties of the atmospheric wind speed in the
mesoscale range. They highlighted the multiscaling and intermittency properties
of atmospheric surface layer-winds in the mesoscale range. However, as pointed
by Huang et al. [18, 20] that the traditional methodologies might be strongly in-
fluenced by large-scale energetic structures, e.g, very-large-scale-motion in atmo-
spheric boundary layer [21]. In this paper, the scaling properties of the atmosphere
are investigated using a new Hilbert-based approach, namely arbitrary-order Hilbert
spectral analysis, in which the large-scale influence can be constrained [9, 18, 20].

2 Arbitrary-Order Hilbert Spectral Analysis

The arbitrary-order Hilbert spectral analysis [9, 10] is an extended version of
Hilbert-Huang Transform (HHT) [11, 12], which is designed to characterize the
scale invariance of a given time series in a joint amplitude-frequency space. The
same as the HHT, it proceeds in two steps: i) empirical mode decomposition, ii)
Hilbert spectral analysis. Empirical mode decomposition is an efficient tool to sepa-
rate a nonlinear and nonstationary time series into a sum of Intrinsic Mode Functions
without a priori basis as required by traditional Fourier-based method [11, 12, 13].
An IMF must respect two conditions: 1) the difference between the number of local
extrema and the number of zero crossings must be zero or at most one, ii) the run-
ning mean value of two envelopes estimated by the local maxima and local minima
is zero [11, 12]. Thus the original signal u(¢) is decomposed in a sum of n — 1 IMF
modes with the residual r,(7)

n—1
u(t) =" Cu(t)+ ralt) (1)
m=1

To obtain a physical meaningful IMF, this sifting process must be stopped by a
certain criterion [11, 12]. More details of the EMD decomposition are given in Refs.
[11,12, 14,13, 17].

In order to determine the time-frequency energy distribution from the original
signal P(t), HSA is performed to each obtained IMF component C,,(7) to extract
the instantaneous amplitude 47, (¢) and frequency w,(7) [11, 15, 16]. The Hilbert

transform is written as . s
Cult)= U / n() 4 )
T o I — S

with U the Cauchy principle value [15, 16]. One can define an analytical signal z,,,(¢)
for each IMF mode C,(¢), i.e.,
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Zm (t) = Cm(t) + ]ém(t) = %m(t)ej(p’”(’) (3)

where @7, (1) = |z (t)] = \/Cu(t)? 4 C,u(t)? represents an amplitude and @, (1) =

arg(z) = arctan {C’” E zi] represents the phase function of IMF modes. Hence, the in-

stantaneous frequency @,,(¢) is defined from the phase @, ()

1 don(t)
m = 4
On(t) 2n dt “4)
The original signal P(¢) can be expressed as
N _ N y
P(t)=Ze Y, dp(t)eiD) = Fe S (1) I On( 5)
m=1 m=1

in which Ze is part real [11, 12, 9].

In order to characterize the scale invariant property of a considered signal in
the Hilbert frame, Huang et al. [10] proposed an extension of HHT, arbitrary-order
Hilbert spectral analysis. This approach has been applied successfully on turbulence
data [10, 18], river discharge data [19]. For that, a joint pdf p(%7, ®) of the instan-
taneous frequency @ and amplitude 7 from all these IMF components is extracted
[10, 9]. In this frame, the Hilbert marginal spectrum is rewritten as

h(o) = /O " (0, ) At ©)

This expression concerns only the second-order statistical moment. A generalization
of this definition is considered to arbitrary-order statistical moment g > 0 [10, 9, 20]

~+oo
¥)= [ po)adss )

Hence, in the Hilbert space, the scale invariance is written as lI’q(a)) ~ co_'5<‘1>, where
&(q) is the corresponding scaling exponent in the Hilbert space. This scaling expo-
nent function can be linked to scaling exponent function {(g) of structure func-
tions by {(q) = &E(g) — 1 [10, 9, 20]. Here the Hurst exponent could be defined as
H=£&(1)—1[20].

3 Results

We present the analysis of the measured atmospheric wind speed wtih a sampling
rate of 1 Hz, obtained from a wind energy production site of Petit Canal in Guade-
loupe, an island in the West Indies, located at 16°15N latitude 60°30 W longitude.
Figure 1 illustrates the power spectral density provided by the Fourier transform
and the Hilbert transform. The corresponding scaling exponents are § = 1.27 and
&(2) = 1.28 respectively in Fourier and Hilbert spaces, over a frequency range
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Fig. 1 Power spectral densities for wind speed u(¢) provided by the Fourier transform, E(f)
(O) and the Hilbert approach, h(®) (o). Power law behavior is observed on a large range of
scales with a scaling exponent 1.28.

107> < f < 0.5 Hz. If one applies the Taylor’s frozen hypothesis [22], this cor-

responds to a spatial scale from 16 m to 800km. Figure 2 shows the measured mean

frequency f;, of each IMF mode. Here we estimate the mean frequency by the fol-

lowing definition [11, 19]:

_ me fEm (f)df
me Ep, (f)df

where E,,(f) is the Fourier spectrum of mth IMF mode C,,,. It is an energy weighted
mean frequency in the Fourier space [11, 19]. We obtain a relation of the form

Jm ®)

Fig. 2 Representation of the mean frequency f;, versus the mode index m, in log-linear plot.
The fitting slope is 0.58, corresponding to & = 1.8-times filter bank.
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Fig. 3 Scaling exponents measured by the structure function analysis (SFA) and arbitrary-
order Hilbert spectral analysis (EMD-HSA)

S = foa™™, with fy = 1.34 and o0 = 1.8, meaning that f,, of one IMF is approx-
imately 1.8-times f;, of the next one. This characteristic corresponds to an almost
dyadic filter bank in the frequency domain. This filter bank property is deduced
by the data set itself, showing the fully adaptiveness of the method [13]. Figure
3 displays the corresponding scaling exponents &(g) — 1 (red line) obtained from
arbitrary-order Hilbert spectral analysis and {(g) (o) obtained from classical struc-
ture function analysis. We can see that the scaling exponents £(g) — 1 are close to
{(gq): the obtained curves are concave and nonlinear, validating the intermittent and
multiscaling properties of wind speed u(¢) in mesoscales.

4 Conclusion and Discussion

In this paper, we apply arbitrary-order Hilbert spectral analysis, to the measured
wind speed of atmospheric boundary layer. We observe a power law behavior on
a large range of time scales from 107 < f < 0.5Hz. This can be associated to the
spatial scales from 16 m to 800 km if one applies the Taylor’s frozen hypothesis. It is
found that the EMD decomposition acts as a filter bank, which is close to the dyadic
one reported by several authors, showing the adaptiveness of the method. Further-
more, the intermittent nature of the wind speed is characterized by the scaling expo-
nents §(q) and & (q) respectively provided the classical structure function analysis
and the Hilbert-based method. Despite the use of different methodologies (resp.
different analysis frameworks), the coincidence of two scaling curves confirms the
intermittent nature of the flow in the atmospheric boundary layer. Therefore, this
intermittency must be taken into account when a model is proposed.
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