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1 Introduction

The stability properties of helical vortices are of interest for applications such as
wind turbine and helicopter wakes. In the former, they contribute to the transition
from an organised vortex system to a turbulent wake behind the rotor, and in the
latter they may be related to the inception of the so-called Vortex Ring State of the
wake of a helicopter in steep descent [2, 7]. In this work, we consider the particular
instability that leads to vortex pairing, for which previous experimental [1, 4] and
numerical [5] studies have shown that it plays an important role in rotor wakes. In
the following, we recall a few theoretical results concerning this phenomenon, and
then present experimental observations of pairing in a single helical vortex under
carefully controlled conditions.

2 Pairing Instability of Vortex Arrays

Vortex pairing is a process occurring in (infinite) arrays of identical concentrated
vortices, whereby small perturbations of their initially equidistant positions are am-
plified in a way that neighbouring vortices approach each other and group in pairs.
It occurs, e.g., in shear layers, as a secondary instability of the Kelvin-Helmholtz
instability. Pairing is distinct from merging of two vortex cores of like-signed vor-
ticity into a single one, which occurs when the two initial vortices come sufficiently
close to each other (see, e.g., [9]). Merging may take place during the late stages of
the pairing instability in arrays of real (distributed) vortices.

Systems of helical vortices, such as those found in the wake of a rotor, present
locally arrays of identical curved vortices, which are expected to exhibit the pairing
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Fig. 1 Geometry and parameters of (a) a helical vortex filament and (b) an array of vortex
rings
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Fig. 2 Growth rate of the pairing instability for an array of vortex rings, as function of the
separation h normalised by (a) the core size and (b) the helix radius (after [8])

instability. The simplest system consists in a single helical vortex filament, charac-
terised by its circulation Γ and core radius a, as well as the helix radius R and pitch
h (Fig. 1a). In the frame of reference where the fluid at infinity has no velocity in the
direction of the helix axis, the fluid inside the helix moves at a speed of the order
of Γ /h, and the helix itself moves with a velocity of roughly half this value (Γ /2h).
The latter velocity and h are used here for non-dimensionalisation.

For small pitch (h � R), the helix geometry is locally very similar to that of an
array of axisymmetric vortex rings (Fig. 1b). Levy & Forsdyke [8] have treated ana-
lytically the stability of such a system with respect to pairing of neighbouring vortex
rings. Figure 2 shows the non-dimensional growth rate σ∗ = σ ·(2h2/Γ ) of the pair-
ing instability as function of the geometric parameters. These were calculated using
the same procedure as in [8], including also the effects of a smooth (Gaussian) vor-
ticity distribution and of an axial core flow (see Sect. 3, Fig. 4b), as well as the
variation of core size through stretching. For small separation/pitch (h � R) and
small core size (a � R), which includes most configurations relevant for applica-
tions, the growth rate approaches the value π/2, i.e., the growth rate of the pairing
instability for a single [3] or double [6] row of point vortices in two dimensions.



Pairing Instability in Helical Vortices 25

(a)

shaftrotor

step motor belt

U

(b)

Fig. 3 (a) Side view of the water channel test section, showing the set-up used to generate a
single helical vortex. (b) Plan view of the blade geometry.
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Fig. 4 Dye visualisation of the unperturbed helical vortex with h/R = 0.53 at ReΓ = 11500.
(a) Dye washed off the blade tip; (b) dye injected at a fixed position near the edge of the rotor
disk.

3 Experiments

Experiments on the controlled pairing of a single helical vortex were carried out in
a recirculating free-surface water channel with a test section of dimensions 38 cm
(width) × 50 cm (height) × 150 cm (length). The vortex was generated near the test
section entry by a single-bladed rotor mounted on a shaft and driven by a computer-
controlled stepper motor outside the test section using a belt (Fig. 3a). The rotor
blade geometry (Fig. 3b) is based on the low-Reynolds number airfoil A18 by Selig
et al. [11], with chord and twist distributions designed to operate in the wind turbine
regime and produce a constant radial circulation distribution (Joukowsky rotor, see
e.g. [10]) over the outer 75% of the span, in order to generate a highly concentrated
tip vortex. The rotor has a radius Ro = 80 mm and a tip chord c = 10 mm. For
the present set of experiments, it is rotated at a frequency f = 6 Hz and placed in
a uniform flow with a free stream velocity U = 36 cm/s, resulting in a tip speed
ratio λ = 8.4. The tip chord Reynolds number is Rec = 2πRo f c/ν = 30000, and
the one based on the vortex circulation Γ (determined from Particle Image Velocity
measurements) is ReΓ = Γ /ν = 11500. ν is the kinematic viscosity.
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Fig. 5 Visualisations of
helical vortices subjected
to a subharmonic (T = 2)
displacement perturbation
at different amplitudes: A =
1% (right), A = 3% (below
left), A = 10% (below right)

The helical vortex structure is visualised using fluorescent dye (fluorescein)
washed off the blade tip and illuminated by the light of an argon ion laser. Fig-
ure 4 shows the vortex produced for the present set of conditions, it is regular and
unperturbed for about 10 helix turns. Dye injection at a fixed location near the blade
tip trajectory (Fig. 4b) reveals the presence of a strong flow inside the core along
the vortex axis. The dye pattern visualises the corresponding axial velocity profile
and allows an estimate of the peak velocity Va and the vortex core diameter 2a
(width of the profile at 1/e of its maximum). The helix parameters are here found
as: h/R = 0.53, h/a = 20, R/a = 38, Va = 0.4(Γ /2πa).

Pairing of successive helix loops was then induced by a controlled perturbation
of the blade rotation, resulting in a varying streamwise displacement of the vortex.
The modified helix geometry can be expressed as:

z/h = θ/2π+Acos(θ/T ), (1)

where z and θ are the downstream and azimuthal positions, and A the relative dis-
placement amplitude. For T = 2, successive helix loops are displaced in opposite
directions, with an amplitude varying in the azimuthal direction, triggering local
pairing. Figure 5 shows the vortex structure for three different amplitudes of forcing,
with the maximum displacement occurring at the top (the perturbation vanishes at
the bottom). A displacement of as little as 1% of h is seen to trigger the pairing insta-
bility, leading to a grouping and ‘swapping’ of successive loops as the helix moves
downstream. The azimuthal variation of the pairing results in a complicated three-
dimensional vortex structure, but no merging or breakdown to small-scale structures
is seen. As the amplitude is increased, the deformations appear closer to the rotor,
as expected.
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Fig. 6 Measurements of
the amplitude d (in arbi-
trary units) of the pairing
perturbation as function of
downstream distance from
visualisation sequences of
the cases shown in Fig. 5
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Fig. 7 Examples of more general displacement perturbations leading to instability. (b)
Tripling (T = 3 and A = 3%); (b) Short-wave perturbation (T = 1/4, A = 10%).

The growth rate of the pairing instability can be estimated from the evolution of
the displacement d of the vortex, with respect to the unperturbed position, which can
be measured from video sequences of visualisations such as in Fig. 5. The result for
these three cases is plotted in Fig. 6; the spatial growth rate σs is found to be close to
0.5/h. Using the (measured) convection velocity Vc of the helix, one can obtain an
estimate of the temporal growth rate σ = σsVc, leading finally to a non-dimensional
growth rate σ∗ = 1.2 for these experiments. This is about 25% lower than the the-
oretical prediction (σ∗ ≈ π/2) for a row of vortex rings with the same geometrical
parameters (Fig. 2). The difference may be due to the non-uniform nature of the
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pairing for a single helix. The effect of the central hub vortex, always present in the
wake of a rotor, also needs to be clarified. Further experiments involving two helical
vortices (two-bladed rotor), where pairing can occur globally, are underway.

Vortex perturbations of the form given in Eq. (1) can be used to trigger various
other types of ‘pairing’. Two examples are shown in Fig. 7: a perturbation of period
T = 3, leading to a grouping of three successive helix loops, and a perturbation on
a shorter length scale (T = 1/4, four wavelengths in one turn). The latter case is
seen to exhibit a breakdown of the vortex structure, triggered by local pairing and
merging. It bears striking similarities with the numerical simulation results obtained
by Ivanell et al. [5].

4 Conclusion

The experimental observation of the dynamics of a single helical vortex under care-
fully controlled conditions has shown that this flow is highly receptive to a variety
of displacement perturbations leading to pairing of successive helix loops or more
complicated three-dimensional deformations involving local merging and break-
down. These findings are coherent with the results from previous experimental stud-
ies of rotor wakes (e.g., [1, 4]), where helix loop grouping is consistently observed
in a way which reflects the symmetry of the set-up (pairing for two blades, tripling
for three blades, etc.), suggesting that this phenomenon might be triggered by small
asymmetries in the rotor geometry. The great sensitivity of the rotor wake to dis-
placement perturbations, and the fact that their amplitude influences the distance
over which the helical wake evolves, may add further insight into the effect of rotor
vibrations or external turbulence on the development of wind turbine wakes, and
potentially lead to ideas for their control.
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