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9.1      Introduction 

 The forebrain comprises those structures that are derived 
from the most rostral part of the neural plate, i.e. the  pri-
mary prosencephalon . The primary prosencephalon divides 
into two major components, the (epichordal) caudal dien-
cephalon and the rostral secondary prosencephalon. The  sec-
ondary prosencephalon  is the entire prechordal part of the 
neural tube, and includes the rostral diencephalon or hypo-
thalamus, the optic vesicles, the preoptic region and the tel-
encephalon. The derivatives of the forebrain are shown in 
MR images of human embryos (Fig.  9.1 ). The two major 
telencephalic subdivisions are the pallium (the roof) and the 
subpallium (the base). The pallium gives rise to the cerebral 
cortex, whereas the basal ganglia and most cortical interneu-
rons derive from the subpallium. The amygdala has pallial as 
well as subpallial origins. Like the rest of the neural tube, the 
embryonic forebrain appears to be organized into transverse 

(prosomeres) and longitudinal subdivisions (alar and basal 
plates; Fig.  9.2 ). The caudal diencephalon arises from the 
prosomeres 1–3, whereas the rostral diencephalon was sug-
gested to arise from the prosomeres 4–6 (Bergquist and 
Källén  1954 ; Puelles  1995 ; Rubinstein et al.  1998 ; Puelles 
et al.  2000 ). The relationship of these postulated segments to 
telencephalic subdivisions, however, remained controversial. 
More recently Puelles and Rubinstein ( 2003 ), revised their 
prosomeric subdivision of the forebrain by advocating a sin-
gle, complex protosegment for the secondary prosencepha-
lon, not further subdividable into prosomeres 4–6, but later 
again they distinguished two hypothalamic prosomeres and 
the acroterminal region as the most rostral part of the fore-
brain (Sect.  9.2 ). The theoretical framework of the proso-
meric model has been extensively discussed by Puelles et al. 
( 2012a ).

    Patterning of the forebrain involves the two general sets 
of mechanisms common to the neural plate, one along the 

a b c d
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  Fig. 9.1    Derivatives of the forebrain in human embryos of Carnegie 
stages (CS) 13–22. MR images are shown as 3D volumes ( a – d ) and 2D 
transverse sections ( e – h ) to illustrate development of the forebrain. At CS 
13 ( a ), the optic cup ( Op ) is seen as a prominent evagination from the 
prosencephalon ( P ). A transverse section ( e ) shows the optic cup and the 
otic vesicle ( Ot ), the craniopharyngeal pouch ( arrowhead  in  e ) is in con-
tact with the fl oor of the forebrain. At CS16 ( b ,  f ), the optic stalk ( arrow ) 
is shown. At CS 19 ( c ,  g ), the cerebral hemispheres enlarge and the pon-
tine fl exure ( arrow ) is prominent. In the 2D view ( g ), the lateral ventricle 
( LtV ) and the third ventricle ( 3rdV ) can be seen. The cochlea ( Co ) is devel-

oping posterior to the trigeminal ganglion ( TG ). By CS 22 ( d ,  h ), the cere-
bral hemispheres have greatly enlarged and elongated posteriorly ( d ). In 
the 2D section ( h ), the cerebral cortex around the lateral ventricles ( LtV ) 
has thickened and below the lateral ventricles, the medial and lateral gan-
glionic eminences can be distinguished. The adenohypophysis can be 
observed with the dorsum sellae ( DS ) just below the hypothalamus ( Hp ). 
Other abbreviation:  IJV  internal jugular vein,  OG  otic ganglion,  SC  spinal 
cord,  Ut  utriculus, 4thV fourth ventricle (From Yamada et al.  2010 ; 
with permission and courtesy Shigehito Yamada, Kyoto)       
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anteroposterior axis and the other along the mediolateral axis 
(Chap.   2    ). An additional dorsal-ventral patterning mecha-
nism is important for subdividing the telencephalon into dor-
sal, pallial and ventral, subpallial structures (Marín and 
Rubinstein  2002 ; Campbell  2003 ; Zaki et al.  2003 ; Sousa 
and Fishell  2010 ; Medina and Abellán  2012 ). Genetic engi-
neering has produced a great variety of knockout mice and 
zebrafi sh, the study of which has greatly improved our 
knowledge of these patterning mechanisms (Schier  2001 ; 
Marín and Rubinstein  2002 ; Rallu et al.  2002b ; Zaki et al. 
 2003 ; Tvrdik and Capecchi  2012 ). Defects in mediolateral 
patterning lead to the  prosencephalies , a group of complex 
malformations of the forebrain, involving the hypothalamus, 
the eyes and the basal telencephalon.  Holoprosencephaly  
( HPE ) is the most common developmental malformation of 
the forebrain, ranging from 1 in 16,000 in live births to 1 in 
250 in therapeutic abortions (Matsunaga and Shiota  1977 ; 
Shiota  1993 ; Muenke and Beachy  2001 ; Cohen and Shiota 
 2002 ; Shiota and Yamada  2010 ). Several developmental 
pathways such as those operating the Sonic hedgehog (SHH) 

and Nodal signalling factors are involved in the pathogenesis 
of HPE and laterality defects (Roessler and Muenke  2001 , 
 2010 ; Cohen  2010 ; Sect.  9.7.2 ). In this chapter the develop-
ment of the various derivatives of the embryonic forebrain 
and disorders that may appear during this development, HPE 
in particular, will be discussed. The further development of 
the cerebral cortex and its disorders will be discussed in 
Chap.   10    .  

9.2      Prosomeres and Pattern Formation 
of the Forebrain 

 Already during neurulation, the prosencephalon becomes 
subdivided into two transverse  proneuromeric regions , 
known as the caudal, epichordal, proneuromere, giving 
rise to the caudal diencephalon, and the rostral, prechordal, 
proneuromere forming the secondary prosencephalon 
(Fig.  9.2 ). The secondary prosencephalon gives rise to the 
telencephalon, the eye vesicles and the hypothalamus or 

a
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  Fig. 9.2    ( a – c ) Prosomeric segmentation of the murine brain at E8.5 
( a ), E9.5 ( b ) and E10.5 ( c ) and  d  segmental organization of the murine 
diencephalon.  ac  anterior commissure,  ap  alar plate,  bp  basal plate,  cc  
corpus callosum,  CP  caudal prosencephalon,  fr  fasciculus retrofl exus, 

 M   mesencephalon,  mtg  mammillotegmental tract,  mth  mammillothalamic 
tract,  P  prosencephalon,  pc  posterior commissure,  p1 - p3  prosomeres, 
 R  rhombencephalon,  sm  stria medullaris,  SP  secondary prosencephalon, 
 thc  thalamocortical projection (After Martínez and Puelles  2000 )       
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rostral  diencephalon (Puelles  1995 ; Shimamura et al.  1995 ; 
Rubinstein et al.  1998 ; Puelles and Rubinstein  2003 ; Puelles 
et al.  2008 ,  2012a ). The prosencephalic proneuromeres were 
subsequently subdivided into smaller transverse domains 
known as  prosomeres  (Puelles et al.  1987 ; Bulfone et al. 
 1993 ; Puelles  1995 ; Rubinstein et al.  1998 ; Puelles et al. 
 2000 ,  2008 ,  2013 ), which are composed of alar and basal 
components. Prosomeres P1–P3 form the diencephalon 
proper or  caudal diencephalon : P1 is known as the syn-
encephalon, P2 as the caudal parencephalon and P3 as the 
rostral parencephalon. The alar component of the synen-
cephalon forms the pretectum, that of the caudal parenceph-
alon the epithalamus and dorsal thalamus, and that of the 
rostral parencephalon the ventral thalamus or prethalamus. 
The basal components form the rostral part of the dopami-
nergic  substantia nigra-ventral tegmental area of Tsai (VTA) 
complex and the interstitial nucleus of Cajal, some related 
nuclei and the fi elds of Forel, collectively the diencephalic 
or prerubral tegmentum. Molecular marker expression data 
in chicken and mouse embryos suggest the  zona limitans 
intrathalamica  ( ZLI ) or mid-diencephalic organizer as 
a bona fi de compartment with local signalling function 
(Scholpp and Lumsden  2010 ; Kiecker and Lumsden  2012 . 
The  protosegment , previously described as the prosomeres 
P4–P6 gives rise to the secondary prosencephalon. From this 
prechordal part of the prosencephalon the hypothalamus or 
 rostral diencephalon , the optic vesicles and the telencepha-
lon arise (Puelles and Rubinstein  2003 ; Puelles et al.  2012a , 
 2013 ). Two hypothalamic prosomeres can be distinguished, 
a rostral (terminal) and a caudal (peduncular) one. The basal 
plate of the secondary prosencephalon gives rise to various 
subdivisions of the hypothalamus, as originally defi ned for 
human embryos by His ( 1893 ; Keyser  1972 ,  1979 ), and the 
subthalamic nucleus, whereas from the alar part the anterior 
hypothalamus, the supraoptic nucleus (SON) and paraven-
tricular nucleus (PVN) and the entire telencephalon arise. 
From the most rostral part of the secondary prosencephalon, 
known as the  acroterminal region , the commissural plate, 
the eye vesicles, the most rostral parts of the hypothalamus 
and the neurohypophysis arise (Fig.  9.3 ).

   Fate mapping experiments suggest that the telencephalon 
derives from the anterolateral neural plate and the anterior 
neural ridge (Chap.   2    ). Ventral parts of the forebrain such as 
the hypothalamus and the eye vesicles arise from the medial 
part of the prosencephalic part of the neural plate. Pallial and 
subpallial parts of the telencephalon arise from the lateral 
parts of the prosencephalic neural plate. The lateral border of 
this part of the neural plate forms the dorsal, septal part of the 
telencephalon, whereas its rostral, median part gives rise to 
the commissural plate from which the anterior commissure, 
the corpus callosum and the hippocampal commissure arise. 
During the formation of the neural plate,  anteroposterior 
patterning  within the forebrain appears to be controlled by 

the  anterior neural ridge  at the rostral end of the neural 
plate (Shimamura and Rubinstein  1997 ; Houart et al.  1998 , 
 2002 ; Marín and Rubinstein  2002 ; Rallu et al.  2002b ). Its 
patterning properties may be mediated by FGF8. FGF8 sig-
nalling regulates the expression of  Foxg1  (earlier known as 
 brain factor 1  or  BF1 ), a transcription factor that is required 
for normal telencephalic and cortical morphogenesis 
(Shimamura et al.  1995 ; Shimamura and Rubinstein  1997 ; 
Monuki and Walsh  2001 ). In all vertebrates studied, the fork-
head transcription factor Foxg1, previously named BF-1, is 
one of the fi rst transcription factors expressed in the neural 
plate telencephalic territory (Danesin and Houart  2012 ). It 
has been shown to be essential to many aspects of telence-
phalic development. Loss and gain of function mutations in 
the  FOXG1  gene have been found to cause severe intellectual 
disability such as Rett syndrome, epilepsy and microcephaly 
(Chap.   10    ). In zebrafi sh and mice,  Foxg1  orchestrates dorso-
ventral patterning of the telencephalon by integrating several 
signalling centres (Danesin et al.  2009 ): Foxg1-depleted tel-
encephalic cells fail to adopt a ventral identity and transform 
into more dorsal fates. Early Wnt signalling appears to be 
required in formation of the pallium. Activation of the path-
way is done by Wnt8b, secreted by the telencephalic dorsal 
signalling centre. Partition of the  telencephalon in  subpallial  

  Fig. 9.3    Prosomeric model of the human brain. The basal part of the 
mesencephalon and the prosencephalon are indicated in  medium red , 
the fornix ( Fx ) in  light red  and the acroterminal region, the most rostral 
part of the prosencephalon, in  light grey. AB  anterobasal hypothalamic 
nucleus,  AC  anterior commissure,  AR  arcuate nucleus,  CC  corpus cal-
losum,  CS  corpus superior,  DM  dorsomedial hypothalamic nucleus,  Em  
eminentia prethalamica,  ep  epiphysis,  Eth  epithalamus,  HC  hippocam-
pal commissure,  M  mammillary nucleus,  nh  neurohypophysis,  OCH  
optic chiasm,  Pa  paraventricular nucleus,  PC  posterior commissure,  Pd  
pallidum,  Poa  preoptic area,  Pret  pretectum,  Pth  prethalamus,  Sch  
suprachiasmatic nucleus,  SI  substantia innominata,  So  supraoptic 
nucleus,  Sp  septum pellucidum,  Sth  subthalamic nucleus,  Str  striatum, 
 Th  thalamus,  VM  ventromedial hypothalamic nucleus,  zli  zona limitans 
intrathalamica,  1 – 3  tegmental part of prosomeres 1–3 (After Puelles 
et al.  2008 )       
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and  pallial  halves therefore depends upon Hh (secreted by 
the telencephalic fl oor) and Wnt (secreted by the roof plate) 
signalling. Foxg1 acts as an integrator of these two signalling 
activities in telencephalic progenitors. 

 Coordinate regulation and synergistic actions of BMP4, 
SHH and FGF8 in the rostral prosencephalon regulate mor-
phogenesis of the telencephalic and optic vesicles (Hébert 
et al.  2002 ; Ohkubo et al.  2002 ). In mice, reduction in FGF8 
expression in the anterior neural ridge leads to rostral midline 
defects in the forebrain (Shanmugalingam et al.  2000 ), similar 
to that described in mice lacking the  Foxg1  gene (Xuan et al. 
 1995 ; Dou et al.  1999 ). Fibroblast growth factor (FGF) signal-
ling is also required for olfactory bulb morphogenesis (Hébert 
et al.  2003 ). The olfactory bulb may be particularly susceptible 
to FGF signalling as observed in mouse embryos carrying a 
hypomorphic allele of  Fgf8  (Meyers et al.  1998 ): they lack 
olfactory bulbs. Hébert et al. ( 2003 ) showed that the FGF 
receptor gene  Fgfr1  is essential for the formation of the olfac-
tory bulb. In  Fgfr1  mutant mice, only small bulb-like protru-
sions are formed. Anteroposterior patterning of the rest of the 
telencephalon appears to be largely normal in  Fgfr1  mutants. 

 Whereas anteroposterior patterning of the forebrain gen-
erates transverse subdivisions, i.e. the prosomeres, mediolat-
eral patterning generates longitudinal subdivision of the 
neural plate into alar and basal plates (Fig.  9.4 ).  Mediolateral 
patterning  of the forebrain involves signals from the axial 

mesendoderm (the prechordal plate) and non-neural ecto-
derm (Rubinstein and Beachy  1998 ; Lee and Jessell  1999 ). 
 Medial  or  ventral patterning  of the prosencephalic part of 
the neural plate is primarily regulated by the prechordal plate 
through SHH signalling, whereas its  lateral  or  dorsal pat-
terning  is mediated by members of the transforming growth 
factor β (TGFβ) superfamily such as bone morphogenetic 
proteins (BMPs) and growth differentiating factors, largely 
derived from the neural ridge and non-neural ectoderm fl ank-
ing the anterior neural plate. Mouse embryos that lack SHH 
fail to form normal ventral brain structures and show mark-
edly reduced expression of ventral markers (Chiang et al. 
 1996 ; Litingtung and Chiang  2000 ; Rallu et al.  2002a ,  b ). In 
 Drosophila , all hedgehog signalling is mediated through the 
 cubitus interruptus  ( ci ) gene (Aza-Blanc and Kornberg 
 1999 ). The mammalian homologues of  ci , the  Gli  genes, 
have a similar function.  Gli1  and  Gli2  act as activators and 
 Gli3  mainly as a repressor (Matise and Joyner  1999 ). In  Gli3  
mutant mice, ventral telencephalic markers expand dorsally 
into the cortex (Grove et al.  1998 ; Theil et al.  1999 ; Rallu 
et al.  2002a ,  b ). The balance between  Shh  and  Gli3  gene 
function appears to be crucial for the establishment of dorso-
ventral patterning within the telencephalon (Rallu et al. 
 2002b ; Sousa and Fishell  2010 ). The SHH-GLI pathway 
may be deregulated in brain tumours (Dahmane et al.  2001 ; 
Biesecker  2008 ; Chap.   8    ).

a

b

c

  Fig. 9.4    The longitudinal organization and signalling centres of the 
developing murine prosencephalon: ( a ) model of the longitudinal 
domains of the neural plate; ( b ) medial view of the neural tube; ( c ) 
signalling centres in the prosencephalon. The expression of FGF8 is 
indicated by  dots , that of BMP4 and WNT3a in  light red  and that of 
SHH in  red. ap  alar plate,  bp  basal plate,  CP  commissural plate,  Ctx  

cortex,  fp  fl oor plate,  I  isthmus,  LGE  lateral ganglionic eminence,  lt  
lamina terminalis,  M  mesencephalon,  MGE  medial ganglionic emi-
nence,  os  optic stalk,  pchpl  prechordal plate,  R  rhombencephalon,  RP  
Rathke’s pouch,  rp  roof plate,  T  telencephalon (After Shimamura et al. 
 1995 ; Marín and Rubinstein  2002 )       
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9.3        Development of the Diencephalon 

 The diencephalon in its classic, columnar view (Herrick 
 1910 ; Droogleever Fortuyn  1912 ) was divided into four dor-
soventrally arranged columns separated by ventricular sulci, 
i.e. the epithalamus, the dorsal thalamus, the ventral thala-
mus or subthalamus, and the hypothalamus (Fig.  9.5 ). 
Extensive embryological studies by the Swedish school of 
neuroembryologists (Bergquist and Källén  1954 ; Chap.   2    ) 
and a more recent Spanish school initiated by Luis Puelles 
made it clear that the thalamic ‘columns’ are derived from 
transversely oriented zones, the prosomeres. Currently, the 
diencephalon is subdivided into three segmental units 
(Puelles et al.  2008 ,  2012a ,  b ,  2013 ; Figs.  9.3  and  9.6 ) which, 
from caudal to rostral, contain in their alar domains the pre-
tectum (prosomere 1 or P1), the epithalamus and the thala-
mus (P2), and the prethalamus and the eminentia thalami 
(P3). The diencephalic basal plate contains the substantia 
nigra-VTA complex, the interstitial nucleus of Cajal and 

related nuclei and the fi elds of Forel, collectively the preru-
bral tegmentum (Fig.  9.6 ). The entire hypothalamus arises 
from the alar and basal components of the secondary prosen-
cephalic protomere. The neurohypophysis appears to arise 
very rostrally from the acroterminal region (included in P6). 
Several genes show a diencephalic prosomere-related pat-
tern, including  Gbx2  (Bulfone et al.  1993 ; Miyashita-Lin 
et al.  1999 ),  Otx1 / Otx2  (Simeone et al.  1992 ,  1993 ; Larsen 
et al.  2001 ; Zeltser et al.  2001 ),  Pax6  (Stoykova et al.  1996 ; 
Grindley et al.  1997 ),  Dlx2  (Larsen et al.  2001 ; Zeltser et al. 
 2001 ), and  Dlx5  and  Math4a  (González et al.  2002 ; 
Fig.  9.29 ). For more recent data, see the Allen Developing 
Mouse Brain Atlas (  http://developingmouse.brain-map.org    ). 
 Emx2  cooperates with  Otx2  at the onset of its expression to 
generate the territory of the future diencephalon (Suda et al. 
 2001 ). The ZLI is established by the interaction between  Fez  
and  Otx  genes (Scholpp and Lumsden  2010 ). The fi rst step in 
generating neuronal diversity in the thalamus is the forma-
tion of spatial diversity of thalamic progenitor cells, which is 

a

b

c

d

  Fig. 9.5    Classic subdivision of the human diencephalon and early 
phases in the development of fi bre connections of the forebrain, ( a ) 
6-mm crown-rump length ( CRL ); ( b ) 9.5-mm CRL; ( c ) 11-mm CRL; 
( d ) 18-mm CRL. Note that this fi gures precludes the prosomeric sub-
division of the prosencephalon. Dorsal thalamic, ventral thalamic and 
hypothalamic domains are found in a caudorostral position to each 

other, not dorsoventral.  cho  chiasma opticum,  CM  corpus mammil-
lare,  DT  dorsal thalamus,  ET  epithalamus,  fr  fasciculus retrofl exus, 
 HY  hypothalamus,  M  mesencephalon,  mtg  mammillotegmental tract, 
 Pre  preoptic area,  sm  stria medullaris,  STR  striatum,  T  telencephalon, 
 VT  ventral thalamus,  zli  zona limitans intrathalamica (After Gilbert 
 1935 )       
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controlled by locally expressed signalling molecules such as 
Shh, Wnt proteins and Fgf8 (Nakagawa and Shimogori 
 2012 ).

9.3.1        Development of the Thalamus 

 The development of the human thalamus has been rather 
extensively studied with classic staining techniques 
(Schwalbe  1880 ; Gilbert  1935 ; Cooper  1950 ; Dekaban  1954 ; 
Kuhlenbeck  1954 ; Yamadori  1965 ; Yakovlev  1969 ; Kostović 
 1990 ; Mojsilović and Zečević  1991 ). The thalamus is 
involved in central processing of sensory, motor and limbic 
functions. Early in development, the human diencephalon is 
thin-walled, but later the anlage of the thalamus expands 
enormously. Due to this expansion, the telencephalic- 
diencephalic boundary plane enlarges and changes its orien-
tation from more or less transverse to almost rostrocaudal. 

Moreover, the lateral geniculate body becomes laterocau-
dally displaced. 

 The  dorsal thalamus  or, more appropriately, the  thala-
mus  is largely composed of nuclei, relaying sensory, motor 
and limbic information to the cerebral cortex and subpallial 
structures. The following groups are usually distinguished 
(Jones  1985 ; Hirai and Jones  1989 ; Armstrong  1990 ; Onye 
 1990 ; Morel et al.  1997 ; Voogd et al.  1998 ; Percheron  2004 ), 
partly separated by the internal medullary lamina (Fig.  9.7a ):
     1.    A  lateral group , involved in somatosensory relay 

( nucleus ventralis posterior complex ) and motor control 
( nuclei ventralis lateralis  and  ventralis anterior ).   

   2.    A  medial group , formed by the  mediodorsal nucleus  
with extensive projections to the prefrontal cortex, and 
 midline  and  intralaminar nuclei  with projections to the 
striatum and to that part of the cerebral cortex that inner-
vates the same part of the striatum.   

   3.    An  anterior group , relaying information from the mam-
millary nuclei to the limbic cortex, the cingulate cortex in 
particular. The more posteriorly situated  laterodorsal 
nucleus  is often associated with the anterior group for its 
connections with the cingulate gyrus.   

   4.    A large  posterior group  is composed of the  posterior 
complex , involved in pain transmission, the  nucleus late-
ralis posterior  and the  pulvinar , involved in visual orien-
tation, eye movements and accommodation, and the 
 medial  and  lateral geniculate nuclei  which relay auditory 
and visual information, respectively.    
  The thalamocortical and corticothalamic projections pass 

via the internal capsule (Chap.   10    ). The maturation of tha-
lamic radiations between 34 and 41 weeks of gestation has 
been studied with DTI (Aeby et al.  2009 ). The cortical pro-
jection areas of the main thalamic nuclei in the adult human 
brain are shown in Fig.  9.7b , c. 

 The  ventral thalamus  is usually said to be composed of 
the ventral lateral geniculate or pregeniculate nucleus, the 
thalamic reticular nucleus and the zona incerta. Puelles and 
Rubinstein ( 2003 ) advocated the term  prethalamus  as an 
alternative. The  thalamic reticular nucleus  is a shell-like 
structure along the lateral border of the thalamus, and is situ-
ated between the external medullary lamina and the internal 
capsule (Fig.  9.7a ). The human fetal reticular nucleus con-
sists of four subdivisions, clearly visible in the sixth/seventh 
gestational month (Ulfi g et al.  1998 ; Ulfi g  2002b ). The main 
portion and the perireticular nucleus are prominent struc-
tures. Both parts are dramatically reduced in size during fur-
ther development. The  perireticular nucleus  is not even 
visible in the adult brain (Ulfi g et al.  1998 ). In rats, the peri-
reticular nucleus also disappears almost completely 
(Mitrofanis and Baker  1993 ; Earle and Mitrofanis  1996 ). 
These transient features can be correlated with the role of the 
reticular nucleus in guiding outgrowing thalamocortical 
axons and as an intermediate target for corticofugal fi bres 

  Fig. 9.6    Subdivision of the human diencephalon based on the proso-
meric approach. The thalamic nuclear groups are indicated in  light grey , 
some fi bre bundles in  light red , the tegmental parts of the diencephalon 
and mesencephalon in  medium red  and the substantia nigra ( SN ) in  red. 
a  precommissural tectal region,  AC  anterior commissure,  ap  alar plate, 
 Ath  anterior thalamic nuclei,  b  juxtacommissural pretectal nuclei,  bp  
basal plate,  c  commissural pretectal nucleus,  CHO  chiasma opticum,  CI  
colliculus inferior,  CS  colliculus superior,  d  tectal grey,  e  lateral haben-
ular nucleus,  ep  epiphysis,  f  medial habenular nucleus,  Fr  fasciculus 
retrofl exus,  Fx  fornix,  h  habenular commissure,  Hyp  peduncular hypo-
thalamus,  Hyt  terminal hypothalamus,  I  isthmus,  i  intergeniculate leaf-
let,  Ip  interpeduncular nucleus,  j  perireticular nucleus,  k  interstitial 
nucleus of stria medullaris,  Lth  lateral thalamic nuclei,  nh  neurohy-
pophysis,  P  posterior thalamic nuclei,  Ra  raphe nucleus,  Rt  reticular 
thalamic nucleus,  Sm  stria medullaris,  SP  septum pellucidum,  St  stria 
terminalis,  Sth  subthalamic nucleus,  tch  tela choroidea,  tgm  tegmentum 
mesencephali,  VTA  ventral tegmental area,  Vth  ventral thalamic nuclei, 
 Zlc ,  Zlr  caudal and rostral parts of zona incerta,  1 – 3  tegmental parts of 
prosomeres 1–3 (After Puelles et al.  2008 )       
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(Mitrofanis  1992 ; Mitrofanis and Baker  1993 ; Earle and 
Mitrofanis  1996 ). 

 The  subthalamic nucleus  is usually included in the basal 
ganglia, but is a dorsally migrated  hypothalamic  cell mass, 
which originated from the retromammillary area (Keyser 
 1972 ; Marchand et al.  1986 ; Skidmore et al.  2008 ). This 
migration can be easily verifi ed in the Allen Atlas using the 
gene markers  Pitx2  and  Foxp1  (Puelles et al.  2012a ). 
Therefore, the subthalamic nucleus must be classifi ed as a 
hypothalamic nucleus. 

 In rodents, the  birthdays  of the thalamic nuclei have been 
extensively analysed in [ 3 H]thymidine studies (Angevine 
 1970 ,  1978 ; Keyser  1972 ; McAllister and Das  1977 ; Altman 
and Bayer  1979a ,  b ,  c ; Bayer and Altman  1995a ,  b ). Most 
thalamic nuclei are born between E13 and E19 (Table  9.1 ). 

Spatiotemporal gradients were found in the time of origin 
of thalamic nuclei (Fig.  9.8 ), in general, caudorostrally, 
 ventrodorsally and outside-in oriented. Cells of posterior tha-
lamic nuclei are born before those of anterior nuclei. Ventral 
thalamic nuclei such as the reticular nucleus are generated 
slightly earlier than dorsal thalamic nuclei. Lateral nuclei are 
born before medial nuclei such as the mediodorsal nucleus. 
Bayer et al. ( 1995 ) estimated that in human embryos the 
reticular nucleus and the medial and lateral geniculate nuclei 
are generated from late in week 5 to week 6 of development, 
ventrobasal complex neurons from late in week 5 up to the 
middle of week 7 of development, and the anterior complex 
from weeks 7–11 (Table  9.1 ). Two thalamic nuclei in partic-
ular received much attention, the  lateral geniculate nucleus  
( LGN ) and the pulvinar.

a

b

c

  Fig. 9.7    ( a ) Principal cell masses in the human thalamus shown in a 
horizontal section; ( b ,  c ) thalamocortical projection areas shown in lat-
eral ( b ) and medial views ( c ) of the human cerebrum.  Arrows  indicate 
the central and parieto-occipital sulci.  A  anterior nucleus,  CGL  corpus 
geniculatum laterale,  CGM  corpus geniculatum mediale,  IL  intralami-
nar nuclei,  LD  laterodorsal nucleus,  lme  external medullary lamina,  lmi  

internal medullary lamina,  LP  nucleus lateralis posterior,  MD  medio-
dorsal nucleus,  ML  midline nuclei,  Pul  pulvinar,  Pull  lateral part of pul-
vinar,  Pulm  medial part of pulvinar,  Ret  nucleus reticularis thalami,  VA  
nucleus ventralis anterior,  VL  nucleus ventralis lateralis,  VPL  nucleus 
ventralis posterolateralis,  VPM  nucleus ventralis posteromedialis       
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    The development of the LGN or  corpus geniculatum 
laterale  ( CGL ) has been extensively studied in rat (Brückner 
et al.  1976 ; Lund and Mustari  1977 ), cat (Shatz et al.  1990 ), 
ferret (Sur and Leamey  2001 ), rhesus monkey (Rakic 
 1977a ,  b ) and human (Gilbert  1935 ; Cooper  1945 , Dekaban 
 1954 ; Hitchcock and Hickey  1980 ; Hevner  2000 ) embryonic 
and fetal material. In the rhesus monkey, LGN neurons are 
generated during 8–9 days at the end of the fi rst quarter of the 
165-day gestational period. The fi rst neurons are generated 
at E36, approximately 6 days after the fi rst retinal  ganglion 
cells are being born (Rakic  1977a ,  b ). Several generations of 
neurons produced in a restricted area of the ventricular zone 
appear to migrate along a single cellular fascicle and accu-
mulate in a column-shaped aggregate. Neurons are gener-
ated along an outside-in gradient (Fig.  9.9 ). Initially, the axis 
of this gradient is oriented lateromedially but later becomes 
oriented ventrodorsally, so that in the mature monkey, early 
generated neurons lie in the ventral magnocellular layers, 
whereas neurons generated later become part of the dorsal 
parvocellular layers. In the human brain, the CGL develops 
its characteristic six-layered structure from the 22nd until 
the 25th gestational week (Cooper  1945 ; Dekaban  1954 ; 
Hitchcock and Hickey  1980 ). Its cell layers are initially ori-
ented parallel to the dorsoventral axis but, owing to rotation 

      Table 9.1    Time of neuron origin data of diencephalic nuclei in Chinese hamsters, rats and estimated data for the human brain   

 Diencephalic nuclei 

 Time of neuron origin data 
in Chinese hamsters in 
embryonic days (gestation 
time: 20–21 days) 

 Time of neuron origin 
data in rats in 
embryonic days 
(gestation time: 
21–22 days) 

 Estimated data human brain 
(developmental weeks) 

 Estimated data human brain 
(developmental weeks) 

 Time of neuron origin  Migration and settling 

  Dorsal thalamus  
 Anterior nuclei  ?  E15–16(17)  6–8  7–11 
 Ventrobasal complex  ?  E(14)15–E16  Late 5–middle 7  7–9 
 Lateral geniculate 
nucleus 

 E14  E14–E15  Late 5–6  7–9 

 Medial geniculate 
nucleus 

 E13  E14(15)  Late 5 to late in 6  End of 6–8 

  Ventral thalamus  
 Reticular nucleus  E14  E(13)14–E15  Late 5–7  Late 7–11 
  Hypothalamus  
 Supraoptic and 
paraventricular nuclei 

 E13  E13–E15  Early 5 to beginning of 7  Middle 7 

 Suprachiasmatic nucleus  E14–E16  E14-E17  5–6  Late 5–7 
 Lateral hypothalamus  ?  E(12)13–E14(15)  Early 5 to beginning of 7  Late 5–7 
 Mammillary body 
  Lateral  E13  E13–E14(15)  4–6  5–7 
  Medial  E14  E(14)15–E16  5–8  7–14 
  Preoptic regions  
 Median  E15?  E13–E15(17)  4–10  5–7 
 Medial  E13  E(14)15–E17(19)  4–8  5–7 
 Lateral  E12  E12–E14(15)  4–7  5–7 
 Sexually dimorphic 
nucleus 

 ?  E(15)16–E19(20)  End of 6–11  ? 

  Sources: After Keyser ( 1972 ), Altman and Bayer ( 1978a ,  b ,  1979a ,  b ,  c ) and Bayer et al. ( 1995 )  

  Fig. 9.8    Summary    of rodent [ 3 H]thymidine data diencephalon. The 
various caudorostral, ventrodorsal, dorsoventral and lateromedial gradi-
ents are indicated with  arrows. DT  dorsal thalamus,  ET  epithalamus,  Hl  
lateral habenular nucleus,  Hm  medial habenular nucleus,  HY  hypothala-
mus,  VT  ventral thalamus (After Angevine  1970 )       
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and differential growth of the thalamus, become oriented 
almost parallel to the mediolateral axis by the time of birth 
(Hevner  2000 ).

   The  pulvinar , the most prominent thalamic nucleus in the 
human brain, is not only generated in the diencephalic ven-
tricular zone but, moreover, receives neurons from the gan-
glionic eminence of the telencephalon (Fig.  9.10 ). Rakić and 
Sidman ( 1969 ) showed that between the 16th and 34th week 
of gestation, cells pass from the medial ganglionic eminence 
into the lateral and posterior parts of the thalamus. Most of 
these neurons appear to migrate along a transient fetal 
 structure, the  gangliothalamic body . In a subsequent study 
of the fetal monkey brain, Ogren and Rakic ( 1981 ) were 
unable to demonstrate the presence of a gangliothalamic 
body, and suggested that this migration pathway is a unique 
feature of the developing human brain. Letinić and Kostović 
( 1997 ) found the gangliothalamic body between 15 and 34 
gestational weeks along the entire rostrocaudal thalamus, 
particularly at the level of the anterior nuclear complex, the 
mediodorsal nucleus, the pulvinar and the CGL, and sug-
gested that, apart from the pulvinar, also the mediodorsal and 
anterior nuclei and the CGL are recipients of telencephalic 
neurons. Letinić and Rakic ( 2001 ) showed that these neurons 
are GABAergic and express  Dlx1 / Dlx2 . A similar migratory 
pathway has not been found in non-human primates and 
rodents (Anderson et al.  1997a ,  1999 ; Lavdas et al.  1999 ; 
Wichterle et al.  1999 ,  2001 ), supporting the idea that it may 
be a special feature of human thalamic development. 
GABAergic neurons are absent in many thalamic nuclei, 

except for the CGL (Harris and Hendrickson  1978 ; Ottersen 
and Storm-Mathisen  1984 ), but in the primate brain 
GABAergic cells form approximately 30 % of the neurons in 
every thalamic nucleus (Montero and Zempel  1986 ).

    Thalamocortical projections  arise rather early in devel-
opment. Yamadori ( 1965 ) studied the development of thala-
mocortical projections in 5–130-mm-long human embryos. 
The fi rst fi bres were already recognized in the thalamus of a 
5-mm embryo (approximately 3 weeks of development). 
Developing thalamocortical axons leave the thalamus ven-
trally and turn dorsolaterally at the telencephalic- 
diencephalic boundary. They advance below the ganglionic 
eminences and pause at the corticostriatal junction before 
entering the developing cerebral cortex. The earliest corti-
cofugal projections, most of which originate from preplate 
neurons as shown in rodents, pause within the corticostriatal 
junction. In rodents, the  corticostriatal junction  has been 
characterized by lack of both  Emx1  and  Dlx1  gene expres-
sion and the presence of  Pax6  expression (Smith-Fernández 
et al.  1998 ; Puelles et al.  2000 ; Zaki et al.  2003 ; Fig.  9.29 , 
Table  9.2 ). Experiments in rodents indicate that the gangli-
onic eminence may be an intermediate target for corticofu-
gal and thalamocortical axons (Métin and Godement  1996 ; 
Garel et al.  2002 ), and that the corticostriatal junction plays 
an active role in the further development of these connec-
tions (Molnár et al.  1998 ,  2012 ; Auladell et al.  2000 ; Molnár 
and Hannan  2000 ; Molnár and Butler  2002 ). It has become 
increasingly clear that several mechanisms are involved at 
different stages of thalamocortical development, and each 

a b c d
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  Fig. 9.9    Development of the 
monkey lateral geniculate nucleus 
in coronal sections of the 
diencephalon at E48 ( a ), E58 ( b ), 
E77 ( c ), E84 ( d ), E91 ( e ), E97 ( f ), 
E112 ( g ) and P60 ( h ). The  E - L  
axis indicates the early-to-late 
gradient of generated neurons.  m  
magnocellular part,  p  
parvocellular part,  1 – 6  layers 
emerging between E90 and E105 
(After Rakic  1977b )       
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contributes  substantially to the eventual outcome (Molnár 
et al.  2012 ; Chap.   2    ). Subsequent to their interaction with 
cells at the corticostriatal junction, thalamocortical and cor-
ticofugal fi bres proceed, intimately associated with each 
other, to their targets. They become ‘captured’ for a  waiting 
period  in the subplate before entering the cortical plate 
(Shatz et al.  1990 ).

   Thalamocortical projections display  two levels  of  topo-
graphic organization  (Molnár  1998 ; López-Bendito and 
Molnár  2003 ; Marín  2003 ). First, specifi c thalamic nuclei, 
relaying distinct modalities of sensory (visual, somatosen-

sory, auditory) or motor information, project to specifi c 
neocortical areas ( interareal topography ). In rodents, 
these thalamic nuclei are arranged following a more or less 
caudolateral to rostromedial gradient, whereas their corre-
sponding cortical targets are found in caudorostral progres-
sion in the cortex. This interareal topography arises early 
in development and appears to be largely independent of 
functional activity within the thalamocortical radiation. 
The second level of topographic organization concerns the 
 topic representation  of different parts of the body, retina or 
inner ear in projections of thalamic nuclei to their cortical 

a b
  Fig. 9.10    The role of the 
ganglionic eminence in the 
development of the human 
thalamus. Dorsal thalamic 
neurons are not only generated in 
the neuroepithelium lining the 
third ventricle ( v3 ,  light red ), but 
also in the ganglionic eminence 
( GE ,  red ). These GABAergic 
neurons migrate along the corpus 
gangliothalamicum ( CGT ) and 
parallel routes to the dorsal 
thalamus.  Cd  caudate nucleus, 
 CM  centrum medianum,  GP  
globus pallidus,  Hb  habenula,  Hip  
hippocampus,  IC  internal capsule, 
 lv  lateral ventricle (After Rakić 
and Sidman  1969 )       

    Table 9.2    Summary of mutant mice with altered early thalamocortical development   

  Emx2   Targeted KO  Primary defect in cortical development; 
disturbed thalamocortical growth at 
diencephalotelencephalic boundary 

 Not known  Mallamacci et al. 
( 2000 ) 

  Tbr1   Targeted KO  Thalamocortical and corticothalamic axon 
elongation defect 

 Not known  Hevner et al. ( 2001 ) 

  Gbx2   Targeted KO  Thalamocortical and corticothalamic axon 
elongation disrupted at internal capsule (IC) 

 Not known  Hevner et al. ( 2002 ) 

  Mash1   Targeted KO  No thalamic fi bre outgrowth beyond IC  Not known; IC cells with 
thalamic projections missing 

 Tuttle et al. ( 1999 ) 

  Pax6   Sey / Sey    Spontaneous mutation 
( Small eye ) 

 Thalamocortical and corticofugal axon 
elongation disrupted at IC 

 Not known  Kawano et al. ( 1999 ), 
Hevner et al. ( 2002 ) 

  Pax6LacZ   Targeted KO  Disturbed thalamocortical and corticothalamic 
axon elongation at the corticostriatal junction 

 Not known  Stoykova et al. 
( 2000 ), Jones et al. 
( 2002 ) 

 L1  Targeted KO  Thalamocortical axon fasciculation defects in 
IC and at the corticostriatal junction 

 Selective fasciculation 
defect mediated by L1 

 Cohen et al. ( 1997 ), 
Dahme et al. ( 1997 ) 

  Source: After Molnár and Hannan ( 2000 ); López-Bendito and Molnár ( 2003 )  
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targets, resulting in somatotopic, retinotopic and tonotopic 
maps, respectively. This second level of topographic map-
ping appears later in development than interareal topogra-
phy. It is redefi ned during the fi rst postnatal weeks, partly 
through activity- dependent mechanisms (López-Bendito 
and Molnár  2003 ). Interareal topography may be explained 
by the expression of localized cues within the cortex, con-
trolling the targeting of thalamic axons, or by the ‘ hand-
shake hypothesis ’ (Blakemore and Molnár  1990 ; Molnár 
and Blakemore  1995 ; Molnár  1998 ; Fig.  9.11 ; Chap.   2    ). 
In this hypothesis it has been proposed that axons from 
the thalamus and from the early-born cortical preplate cells 
meet and intermingle in the basal telencephalon, so that 
thalamic axons grow over the scaffold of preplate axons. 
In mouse mutants (Table  9.2 ), often the disruption of thala-

mocortical and corticothalamic fi bres is correlated (Cohen 
et al.  1997 ; Dahme et al.  1997 ; Kawano et al.  1999 ; Tuttle 
et al.  1999 ; Braisted et al.  2000 ; Mallamacci et al.  2000 ; 
Stoykova et al.  2000 ; Hevner et al.  2001 ,  2002 ; Jones et al. 
 2002 ; Molnár and Butler  2002 ; Molnár et al.  2012 ). Garel 
et al. ( 2002 ) showed that the establishment of topographic 
thalamocortical projections is not strictly determined by 
cortical cues, but instead is infl uenced by the relative posi-
tion of thalamic axons inside the ventral telencephalon 
(Vanderhaeghen and Polleux  2004 ). It seems likely that 
the topographic organization that thalamic axons adopt 
in the cortex is already set upon their entry into the tel-
encephalon, and that any alteration of their topography in 
this intermediate target results in a parallel perturbation 
of their topography in the cortex. Therefore, the develop-

a b c
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  Fig. 9.11    Thalamocortical projections: data in the developing rat 
brain/mouse mutants : ( a ,  d ) Normal rat E13.5 and E18.5 embryos, 
illustrating the ‘handshake’ hypothesis (Fig.   2.30    ). ( b ,  e ) Comparable 
data in an  Emx2 −/− mutant. ( c ,  f ) Comparable data in a  Pax6 / LacZ −/− 
mutant (see text for explanation). ‘Guidepost’ cells in the ventral 

 thalamus ( VT ), the basal forebrain and the internal capsule ( IC ) are 
indicated in  red , thalamocortical projection neurons in  grey  and corti-
cofugal neurons in  light red. CP  cortical plate,  DT  dorsal thalamus,  GE  
ganglionic eminence,  PP  preplate (After López-Bendito and Molnár 
 2003 )       
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ment of interareal topography within the thalamocortical 
system occurs through the sorting out of thalamocortical 
axons in the ventral telencephalon. This sorting out is con-
trolled by ephrins (Dufour et al.  2003 ; Seibt et al.  2003 ; 
Vanderhaeghen and Polleux  2004 ).

9.3.2        Development of the Hypothalamus 

 The hypothalamus is involved in a wide variety of func-
tions in the brain. Alterations in hypothalamic nuclei are 
found in various endocrine diseases such as diabetes insipi-
dus, Wolfram and Prader-Willi syndromes, and in various 
neurodegenerative diseases such as Alzheimer, Parkinson 
and Huntington diseases (reviewed in Swaab  1997 ,  2004 ). 
The hypothalamus is usually subdivided into four regions 
(Fig.  9.12 ), from caudal to rostral: (1) the mammillary 
region; (2) the tuberal region; (3) the anterior complex; 
and (4) the preoptic region (Braak and Braak  1987 ,  1992 ; 

Swaab et al.  1993 ; Swaab  1997 ,  2003 ; Voogd et al.  1998 ; 
Saper  2004 ), although the preoptic region is of subpallial 
origin. From a developmental point of view, however, three 
longitudinal subdivisions of the hypothalamus can be dis-
tinguished (Angevine  1970 ; Altman and Bayer  1986 ; Mai 
and Ashwell  2004 ) as originally proposed by Crosby and 
Woodburne ( 1940 ; Nauta and Haymaker 1969): a periven-
tricular zone, an intermediate zone, and a lateral zone. The 
hypothalamus is now thought to arise from that part of the 
secondary prosencephalon that is known as the rostral dien-
cephalon (Puelles and Rubinstein  2003 ).

   The prosomeric approach to the development of the hypo-
thalamus (Puelles et al.  2008 ,  2012a ) revealed  rostral  (ter-
minal) and  caudal  (peduncular) parts of the hypothalamus, 
earlier known as hypothalamic domains 2 and 1 and roughly 
comparable to Herrick’s ventral and dorsal hypothalamus, 
respectively (Figs.  9.3  and  9.6 ). The most rostral part, the 
 acroterminal territory , is characterized by  Six6  and  Foxb1  
gene expression (Conte et al.  2005 ; Zhao et al.  2008 ). 
Shimogori et al. ( 2010 ) identifi ed over 1,000 genes expressed 
dynamically over the course of hypothalamic development. 
Only a handful of them have been analysed functionally in 
any detail. The scaffold of molecularly delimited major  pro-
genitor domains  detected in the hypothalamus is formed by 
two alar and three basal domains in each of the two hypotha-
lamic parts. The addition of the corresponding acroterminal 
areas makes a total of at least 15 distinct major histogenetic 
territories, some of which may be further subdivided (Puelles 
et al.  2012a ). This emphasizes that the hypothalamus must 
be considered more complex than previously assumed. 

 Early steps in the development of the hypothalamus 
include the induction of hypothalamic identity and the migra-
tion of hypothalamic precursors. The prechordal plate pro-
vides the SHH protein necessary for the formation of the 
hypothalamus. In mice lacking the  Shh  gene, hypothalamic 
tissue is absent, whereas overexpression of SHH leads to 
ectopic expression of hypothalamic markers (Mathieu et al. 
 2002 ). Disturbance of the development of hypothalamic 
nuclei may be due to disruption of genes involved in neuro-
genesis ( Otp ), cell migration ( Otp ,  SF - 1 ), cell death ( Brn2 , 
 Sim1 ,  Arnt2 ) and differentiation ( Nkx2.1 ).  Brn4  knockout 
mice show a loss of the SON and PVN, and in mice with 
mutations in the gene encoding for the nuclear receptor SF-1 
the ventromedial hypothalamic nucleus is absent (Martin 
and Camper  2001 ). These data suggest that similar defects 
may exist in human disease (Swaab  2003 ). 

 In rodents, in autoradiographic studies the hypothalamic 
nuclei were found to be generated mainly from E13 until E16, 
and preoptic nuclei over an even more protracted period, 
extending from E12 until E19 (Angevine  1970 ,  1978 ; Keyser 
 1972 ; Altman and Bayer  1978a ,  b ;  1986 ; Bayer and Altman 
 1987a ; Fig.  9.8 , Table  9.1 ). The sexually dimorphic 
nucleus (SDN; Gorski et al.  1978 ) originates exceptionally 

  Fig. 9.12    Organization of the human hypothalamus and hypothalamo-
hypophysial relations.  ac  anterior commissure,  ahi  inferior hypophysial 
artery,  ahs  superior hypophysial artery,  cho  chiasma opticum,  cs  sinus 
cavernosus,  dist  distal part of anterior pituitary lobe,  fx  fornix,  ml  mid-
dle pituitary lobe,  mtg  mammillotegmental tract,  mth  mammillotha-
lamic tract,  pl  posterior pituitary lobe,  tub  tuberal part of anterior 
pituitary lobe,  1  preoptic nucleus,  2  paraventricular nucleus,  3  anterior 
nucleus,  4  suprachiasmatic nucleus,  5  supraoptic nucleus,  6  dorsome-
dial nucleus,  7  ventromedial nucleus,  8  posterior nucleus,  9  arcuate 
nucleus,  10  corpus mammillare (After Nauta and Haymaker  1969 )       
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late (E15-E19). Extrapolated to the human brain,  hypothalamic 
nuclei would be generated between the fi fth and the eighth 
week of development, and those from the preoptic region 
from weeks 4 to 11 of development (Bayer et al.  1995 ; 
Table  9.1 ). In the fetal human hypothalamus, Koutcherov 
et al. ( 2002 ); see also Mai and Ashwell  2004  found three 
waves of neurogenesis and migration as in the rodent brain 
(Altman and Bayer  1986 ). The fi rst neurons generated migrate 
into the future lateral longitudinal zone of the hypothalamus 
where they form the lateral hypothalamic area, the posterior 
hypothalamus, the lateral tuberal nucleus and the perifornical 
nucleus. The second wave of postmitotic neurons form the 
nuclei of an intermediate longitudinal zone, including the 
medial preoptic nucleus, the anterior hypothalamic nucleus, 
the ventromedial and the dorsomedial nuclei, and the mam-
millary body. The last neurons to be generated differentiate in 
close proximity to the periventricular zone, and form the 
suprachiasmatic nucleus, the arcuate nucleus, the PVN and 
the SON. All nuclei are apparent early fetally. 

 In humans, the  sexually dimorphic nucleus  ( SDN ) is 
located between the SON and the PVN. In young adult males, 
this nucleus is twice as large as in adult women (Swaab and 
Fliers  1985 ; Swaab et al.  1993 ; Swaab  1997 ,  2003 ). At birth, 
only about 20 % of the SDN neurons are present and sexual 
dimorphism is not found in the human brain. From birth up to 
the age of 4 years, cell numbers increase equally rapid in both 
sexes. About the fourth year postnatally, the number of cells 
starts to decrease in girls (Swaab and Hofman  1988 ). The 
large neurosecretory cells of the  supraoptic nucleus  ( SON ) 
and  paraventricular  ( PVN )  nucleus  produce the neuropep-
tides vasopressin and  oxytocin, and innervate the neurohy-
pophysis (Dierickx and Vandesande  1977 ). Vasopressin acts 
as antidiuretic hormone in the kidney and, in women, oxyto-
cin is involved in labour and lactation. The  infundibular 
nucleus  contains, among many other neuropeptides and 
transmitters, gonadotropin- releasing hormone (GnRH) neu-
rons, earlier known as luteinizing hormone-releasing hor-
mone (LHRH) neurons (Muske  1993 ; Swaab  1997 ,  2003 ). 
GnRH neurons are found in the human fetal hypothalamus 
from the 9th week of development. The GnRH neurons are 
generated in the epithelium of the medial olfactory pit and 
migrate from the nose into the forebrain along branches of the 
terminal and vomeronasal nerves rich in the neural cell adhe-
sion molecule NCAM (Schwanzel-Fukuda and Pfaff  1989 ; 
Schwanzel-Fukuda et al.  1989 ). No GnRH neurons were seen 
in the brain until a bridge of the terminal and vomeronasal 
nerves was formed between the nose and the forebrain. 
Observations in Kallmann syndrome (Sect.  9.7.4 ) suggested 
that GnRH neurons fail to migrate from the olfactory placode 
into the developing brain (Schwanzel-Fukuda et al.  1989 ). In 
human embryos, GnRH-immunoreactivity was fi rst detected 
in the olfactory epithelium and in cells associated with the 
terminal and vomeronasal nerves at 42 days of gestation 

(Schwanzel- Fukuda et al.  1996 ). GnRH neurons appear to 
have multiple embryonic origins (Muske  1993 ; Northcutt and 
Muske  1994 ), however: the olfactory placode giving rise to 
the septo-preoptic system, and a second, non-placodal struc-
ture giving rise to the posterior GnRH neurons.  

9.3.3      Development of the Pituitary Gland 

 The development of the human  hypophysis cerebri  or  pitu-
itary gland  has been extensively studied (Atwell  1926 ; 
Conklin  1968 ; Andersen et al.  1971 ; Ikeda et al.  1988 ; 
O’Rahilly and Müller  2001 ). It consists of two main parts, 
the adenohypophysis and the neurohypophysis that form the 
sellar pituitary. The two components are in close contact 
from the beginning (Figs.  9.13 ,  9.14 , and  9.15 ). The area of 
contact between Rathke’s pouch (Rathke  1838 ) and the fore-
brain gradually moves from rostral to caudal and, after 13 
weeks of development, has a position similar to that found in 
the newborn (Ikeda et al.  1988 ).

     The  adenohypophysial primordium  is induced by the 
adjacent fl oor of the rostral forebrain, from which the neuro-
hypophysis develops (Sheng and Westphal  1999 ). In amphib-
ian and avian embryos, the adenohypophysis originates from 
the anterior neural ridge (Eagleson et al.  1986 ; Couly and Le 
Douarin  1987 ; Chap.   2    ). In rats, it arises from a small area 
just anterior to the rostral end of the neural plate (Kouki et al. 
 2001 ). The neurohypophysis arises from the most rostral part 
of the secondary prosencephalon, the acroterminal region 
(Puelles and Rubinstein  2003 ; Puelles et al.  2012a ). At the 
time Rathke’s pouch forms, the oral ectoderm is in direct con-
tact with the neuroectoderm of the ventral forebrain 
(Fig.  9.13 ), without intervening mesoderm (Schwind  1928 ). 
In in vitro tissue recombination assays a dramatic effect of 
neuroectoderm on the growth and differentiation of Rathke’s 
pouch has been demonstrated (Daikoku et al.  1982 ; Watanabe 
 1982 ). The homeobox gene  Nkx2.1 , expressed in the ventral 
forebrain but not in the oral ectoderm or Rathke’s pouch 
(Lazzaro et al.  1991 ), may provide the inductive signal. In 
 Nkx2.1  mutants, apart from severe defects in the development 
of the forebrain, the pituitary gland is ablated (Kimura et al. 
 1996 ). A  two - step induction  of Rathke’s pouch is required 
(Watkins-Chow and Camper  1998 ; Sheng and Westphal 
 1999 ; Dattani and Robinson  2000 ; Zhu and Rosenfeld  2004 ). 
Both a BMP4 signal and FGF8 activity from the ventral fore-
brain are required for the development of a defi nitive pouch. 
Initially, at E8.5, BMP4 induces the oral ectoderm to form a 
pouch placode. Formation of the defi nitive pouch requires the 
activation of two LIM  homeobox factors ( Lhx3  and  Lhx4 ) in 
the rudiment. FGF8, expressed in the ventral forebrain at 
E9.25, provides the signal that initiates and maintains  Lhx  
gene expression in the pouch (Sheng et al.  1997 ; Sheng and 
Westphal  1999 ; Zhu and Rosenfeld  2004 ). Hedgehog 
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 signalling is also required for pituitary gland development 
(Treier et al.  2001 ). In rats, by E12.5 pituitary-specifi c cell 
types are formed (Camper et al.  2002 ).  Pitx1  and  Pitx2  regu-
late precursor and cell-type specifi c proliferation (Szeto et al. 
 1999 ; Suh et al.  2002 ). Targeted disruption of the  Pitx1  gene 
results in minor defects in later phases of pituitary develop-
ment and defects in hindlimb and craniofacial morphogenesis 
(Kioussi et al.  2002 ), whereas  Pitx2 −/− mice display multiple 
developmental defects, including failure of body-wall clo-
sure, cardiac outfl ow tract abnormalities and defects in pitu-
itary, eye and tooth development (Gage et al.  1999 ; Kitamura 
et al.  1999 ; Lin et al.  1999 ). Invagination of Rathke’s pouch 
and direct contact with the neuroepithelium occur normally, 
but the pituitary is developmentally arrested by E10.5.  Hesx1  
regulates pituitary proliferation indirectly through the interac-
tion with  Tle  genes (Dasen et al.  2001 ). Deletion of  Hesx1  
results in either a complete lack of the pituitary gland (5 %) or 
multiple oral ectoderm invagination and/or cellular overpro-
liferation of all pituitary cell types (Dattani et al.  1998 ; 

Martinez-Barbera et al.  2000 ; Dasen et al.  2001 ). Members of 
the  Six  homeodomain gene family ( Six1 ,  Six3 ,  Six6 ) are 
required for tissue-specifi c precursor proliferation (Zhu and 
Rosenfeld  2004 ).  Six1  and  Eya  modulate precursor cell pro-
liferation in many organs, including the eyes, the pituitary, the 
auditory system, the kidneys and somites (Li et al.  2003 ). 

 In human embryos, the primordium of the adenohypoph-
ysis is situated immediately rostral to the oropharyngeal 
membrane at stage 11, and forms the  adenohypophysial 
pouch . Between stages 14 and 17, the fl oor of the forebrain 
forms the  neurohypophysial evagination , and by stages 20 
and 21, the pouch loses its contact with the roof of the mouth 
(Figs.  9.14  and  9.15 ). The portion of the pouch that is in con-
tact with the neurohypophysial evagination forms the  pars 
intermedia  of the hypophysis. Other parts of the adenohy-
pophysis that surround the stalk of the neurohypophysis form 
the  pars tuberalis , and the remaining part the  pars distalis . 
The oropharyngeal part remains as the  pharyngeal hypoph-
ysis  throughout life (Boyd  1956 ). Rathke’s pouch migrates 

a
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  Fig. 9.13    Rodent pituitary development: ( a ) growth of the preinfun-
dibular part of the neural plate and establishment of the presumptive 
Rathke’s pouch area (rat: E8.5; mouse: E8.0-E8.5) ( b ) formation of a 
rudimentary pouch (rat: E11; mouse: E9.5); ( c ) formation of the defi ni-
tive pouch (rat: E14.5; mouse: E12); ( d ) developing pituitary gland (rat: 
E19.5; mouse: E17). The neural plate ( np ) and the neurohypophysis are 

indicated in  light red  and the developing adenohypophysis in  red. al  
anterior lobe,  anp  anterior neuropore,  il  intermediate lobe,  inf  infun-
dibulum,  M  mesencephalon,  nch  notochord,  om  oral membrane,  P  pros-
encephalon,  pchpl  prechordal plate,  pl  posterior lobe,  R  
rhombencephalon,  RP  Rathke’s pouch. (After Schwindt 1928; Sheng 
and Westphal  1999 , with permission)       
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together with the pituitary cells, and remnants may be found 
in the sellar pituitary (Kjaer and Fischer-Hansen  1995 ; Hori 
et al.  1999b ). Pituitary hormones are produced at the end 
of the embryonic period. In immunohistochemical studies of 
human embryonic and fetal pituitaries, adrenocorticotropic 
hormone and somatotropic hormone were demonstrated at 
gestational week 8, whereas thyrotropic hormone, follicle-
stimulating hormone, luteinizing hormone and prolactin- 
releasing hormone were found at week 12 (Asa et al.  1986 , 
 1988 ; Ikeda et al.  1988 ).  

9.3.4        Developmental Disorders of the 
Hypothalamus and the Pituitary Gland 

  Developmental disorders  of the  hypothalamus  are common 
in anencephaly and in HPE and related disorders. In  anen-
cephaly  and in fetuses with HPE, adenohypophysial tissue 
was found not only in the sella turcica but also in the open 
craniopharyngeal canal (Nakano  1973 ; Kjaer and Fischer- 
Hansen  1995 ; Hori et al.  1999a ,  b ). The intermediate part of 
the pituitary and the neurohypohysis are absent in most of 
the anencephalic cases studied (Nakano  1973 ; Visser and 
Swaab  1979 ). The adrenocorticotropic defi ciency of the 

 distal part of the pituitary is evident from the fact that the 
adrenal glands in anencephalics are invariably hypoplastic 
(Nakano  1973 ; Visser and Swaab  1979 ; Mazzitelli et al. 
 2002 ). At 17–18 weeks of gestation, the number and size of 
adrenocorticotropic hormone cells in the anencephalic pitu-
itary gland are normal, but after 32 weeks their number and 
size are reduced (Pilavdzic et al.  1997 ). The involvement of 
the hypothalamus in HPE is discussed in Sect.  9.7.2 . 

 Panhypopituitarism may also occur in  transsphenoidal 
encephaloceles  (Chong and Newton  1993 ; Brodsky et al. 
 1995 ; Morioka et al.  1995 ). These sporadic and rare anomalies 
are often associated with other midline anomalies such as cleft 
palate, hypertelorism, colobomata and agenesis of the corpus 
callosum. A 50 % reduction in the number of oxytocinergic 
PVN neurons was found in patients with  Prader - Willi   syn-
drome  (Gabreëls et al.  1994 ,  1998 ; Gabreëls  1998 ), which is 
characterized by gross obesity and insatiable hunger. This syn-
drome is further characterized by diminished fetal motility, 
severe infantile hypotonia, intellectual disability, hypogonad-
ism and hypogenitalism (Prader et al.  1956 ).  Diabetes  insipidus  
may have different hypothalamic causes. Apart from trauma, 
haemorrhage, infl ammation and surgical  manipulations, famil-
ial hypothalamic diabetes insipidus is found, owing to point 
mutations in the vasopressin-neurophysin- glycopeptide gene 

a b
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  Fig. 9.14    Development of the 
human pituitary gland: ( a ) median 
section at 4.5 weeks of 
development (Carnegie stage 11); 
( b ) embryo of 4.5 weeks of 
development (stage 14), showing 
Rathke’s pouch; ( c ) at 6 weeks 
(stage 17); ( d ) at stage 19; ( e ) at 
the end of the embryonic period 
(stage 23); ( f ) fetal pituitary. The 
developing neural hypophysis ( nh ) 
is indicated in light red and the 
adenohypophysis in red.  D  
diencephalon,  dist  distal part,  inf  
infundibulum,  int  intermediate 
part,  M  mesencephalon,  nch  
notochord,  om  oral membrane,  ot  
otocyst,  php  pharyngeal pituitary, 
 pl  posterior lobe,  R  
rhombencephalon,  RP  Rathke’s 
pouch,  tub  tuberal part (After 
O’Rahilly and Müller  2001 )       
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(Ito et al.  1991 ; Bahnsen et al.  1992 ; Nagasaki et al.  1995 ; 
Rittig et al.  1996 ). Available postmortem data suggest severe 
neuronal death in the SON and PVN in cases of familial hypo-
thalamic diabetes insipidus associated with a loss of innerva-
tion of the posterior pituitary (Braverman et al.  1965 ; Nagai 
et al.  1984 ; Bergeron et al.  1991 ). Diabetes insipidus is also 
observed as part of midline developmental anomalies such as 
HPE and septo- optic dysplasia. The SON and PVN are also 
affected in  Wolfram syndrome , an autosomal recessive disor-
der involving diabetes insipidus, diabetes mellitus, slowly pro-
gressive atrophy of the optic nerve and deafness (Wolfram 
 1938 ; Carson et al.  1977 ; Cremers et al.  1977 ). The PVN con-
tains vasopressin neurons that cannot produce vasopressin by a 
precursor-processing defi ciency. 

  Pituitary malformations  include agenesis of the anterior 
pituitary gland (Brewer  1957 ; Larroche  1981 ), partial agen-
esis of anterior pituitary components (Miyai et al.  1971 ; 

Sato et al.  1975 ), a hidden pituitary gland (Paroder et al. 
 2013 ), duplication of the entire pituitary (Hori  1983 ; Hori 
et al.  1999b ; Clinical Case  9.1 ) and ectopias (Decker  1985 ; 
Colohan et al.  1987 ; Ikeda et al.  1987 ).  Developmental 
anomalies  of the  anterior pituitary  include non-separation 
of the primary pituitary gland into sellar and pharyngeal 
components, a  pharyngosellar pituitary  (Hori et al.  1995 ; 
Clinical Case  9.2 ), and ectopic migration into the subarach-
noid space. Invasion of basophil cells into the posterior lobe, 
the frequency and intensity of which increase in accordance 
with aging, is rather a physiological phenomenon (Hori et al. 
 1999a ,  b ; Swaab  2004 ). Novel mutations in the homeobox 
gene  Hesx1 / HESX1  may play a role in  undescended  or  ecto-
pic posterior pituitary  (Brickman et al.  2001 ).  Pallister - Hall 
syndrome , a highly variable autosomal dominant disorder is 
due to mutations in the  GLI3  gene (Kang et al.  1997 ; 
Biesecker  2008 ; Clinical Case  9.3 ).  

a b
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  Fig. 9.15    Series of photomicrographs showing the development of the human pituitary gland at Carnegie stages 14 ( a ), 16 ( b ) and 18 ( c ); 
haematoxylin- eosin staining.  RP  Rathke’s pouch,  v3  third ventricle (From the Kyoto Collection of Human Embryos)       
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 Clinical Case 9.1 Duplication of the Pituitary 
Gland 

 Duplication of parts of the CNS has been observed occa-
sionally. In a 26-day-old female baby, Hori ( 1983 ) 
described a brain with two complete pituitary glands, 
associated with malformations of ventral midline struc-
tures of the CNS and cranium (see Case Report). This 
rare condition of double hypophysis should be classifi ed 
among the median cleft face syndrome (DeMyer 1967; 
Gorlin et al. 1977) in contrast to reported cases of double 
hypophysis in partial twinning (Ahlfeld 1880; Morton 
1957; Warkany  1971 ). In the present case, the pituitary 
anlage, both of neurohypophysis and adenohypophysis, 
may have been divided during early development due to a 
median cleft. Subsequent histogenesis of each separate 
anlage may have caused duplication of the hypophysis. 

  Case Report . The child was born at term after an 
uncomplicated pregnancy and delivery, apart from an 
umbilical hernia operation on the 23-year-old mother 
early in her pregnancy. Apgar scores were 6/7/9 and 
asphyxia was evident, so the baby received assisted respi-
ration for several days until her discharge. She was read-
mitted at the age of 26 days because of feeding diffi culties. 
General examination revealed a V-shaped frontal hair 
line, hypertelorism, cleft palate, low-set ears, retrogna-
thia, a wide prominent nasal root and a split on the top of 
the nose. Neurological and laboratory (chromosomal, 
amino acid and blood analyses) fi ndings were normal. On 
X-ray examination no clear contour of the sella turcica 
was seen. The baby was in no distress at the time of 
admission. Shortly after feeding, she was found dead in 
bed the same evening. Hereditary diseases or malforma-
tions were not apparent in the family. 

 At autopsy, body weight was 2,750 g and length 
54 cm. The head was not enlarged and the fontanelles 
were of normal size. After removal of the brain, the 
‘sella’ appeared shallow and empty. Instead, two sellae 
were found situated on either side of the regular one, 
posterior to both optic canals (Fig.  9.16a ). Both sellae 
contained a pituitary gland beneath the sellar diaphragm. 
Histologically, both hypophyses were completely nor-
mal. The distance between the optic canals was 2.3 cm 
(normal about 1.1 cm), and that between the cribriform 
plates 2 cm (normal about 0.8 cm). The very short cli-
vus had a round midline defect, through which a stalk 
of connective tissue, extending from the leptomeninx 
of the pontine base, protruded into the nasal cavity. 
Histologically, the connective tissue consisted of col-
lagen fi bres and striated tissue with a small penetrating 

artery. The posterior fossa was of normal size. At the 
base of the brain (Fig.  9.16b ), the olfactory bulbs and 
tracts were set widely apart, and the optic chiasm had a 
wide angle. A mass of hyperplastic tissue displaced the 
mammillary bodies laterally. The circle of Willis was 
abnormal with a very short basilar artery and elongated 
posterior communicating arteries. Between these com-
municating arteries and the vertebral arteries, two ecto-
pic masses were found, measuring 2.5 mm × 4 mm and 
3 mm × 5 mm, respectively. These contained neurons 
and myelinated fi bres. In the forebrain, the corpus callo-
sum, the anterior commissure and the posterior cingulate 
gyri were absent. The pineal gland had its normal posi-
tion. Between the laterally displaced mammillary bod-
ies, a mass of hypothalamic tissue formed the base of 
the third ventricle. This tissue contained magnocellular 
and medium-sized neurons without glial proliferation of 
any importance. Posterior to the chiasm, two hypophy-
seal stalks were present. Heterotopia were found in the 
tegmental raphe ventral to the aqueduct, in a slit-like 
deep fl oor of the rhomboid fossa of the medulla oblon-
gata and in the dentate nuclei. The spinal cord showed a 
duplicated anterior median fi ssure at the cervico-thoracic 
level. In between, hyperplastic grey matter with myelin-
ated fi bers protruded from the central spinal grey matter. 
Posterior roots entered the cord not only medial but also 
lateral to the posterior horn. Immunohistochemical stain-
ing for anterior pituitary hormones, performed recently, 
revealed no abnormalities in the distribution of the hor-
mone-producing cells in both of the pituitary glands. 
Since hedgehog signalling is required for both pituitary 
development (Sect.  9.3.3 ) and for the development of the 
ventral part of the spinal cord (Chap.   6    ), the presence of 
duplication of the pituitary gland and of part of the ven-
tral spinal cord may be related to SHH signalling.
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  Clinical Case 9.2 Pharyngosellar Pituitary 

 In  pharyngosellar pituitary , the anterior part of the gland 
is continuous from the pharyngeal roof to the sella tur-
cica. Hori et al. ( 1995 ) described this rare malformation 
in a 17-gestational-week-old male fetus with an encepha-
locele and amnion rupture sequence (see Case Report). 
The fi rst description of this anomaly was made by Müller 
(1958). Later, this anomaly was found in several cases of 
trisomy 18 (Kjaer et al. 1998). 

  Case Report . The pregnancy of a 27-year-old mother 
was unremarkable until at gestational week 17 the amnion 
was ruptured and the fetus was aborted spontaneously. The 
male fetus had a crown-heel length of 19 cm, a head cir-
cumference of 10 cm and weighed 190 g. Morphological 
examination of the fetus revealed a slight double cleft lip, 
left cleft palate, adhesive strangs at the nose, forehead and 
right hand, and short eye fi ssures with slight hypertelorism. 
A large encephalocele covered with skin was observed in 
the vertex of the microcephalic head, and an additional 
smaller encephalocele was found on the left forehead. 
After removing the covering of the head, a large round 
skull defect was found through which the larger encephalo-
cele herniated. The skull base was hypoplastic: the anterior 
cranial fossa was narrow in transverse diameter, the middle 

fossa was shallow and the posterior fossa was normal in 
size. Anterior and posterior protuberances of the sella were 
absent. The pituitary gland was found in the ordinary posi-
tion when observed from the cranial base. The encephalo-
cele consisted of telencephalic tissue with molecular and 
neuronal cortical cell layers, white matter as well as basal 
ganglia-like structures. Part of the skull base, including the 
sella turcica, clivus and pharyngeal roof, was removed and 
divided through the midline (Fig.  9.17a ); both blocks were 
embedded in paraffi n without decalcifi cation and sliced 
serially. Sections were stained by haematoxylin and eosin, 
periodic acid-Schiff (PAS) stain, and Gomori’s reticulin 
staining. Immunostaining for pituitary hormones was also 
performed.

   The pituitary gland was found in the persistent cra-
niopharyngeal canal as an elongated structure expanding 
from the pharyngeal roof to the sella turcica (Fig.  9.17b ), 
forming a pharyngosellar pituitary. Reconstruction of 
the pharyngosellar pituitary from the histological sec-
tions revealed that the pituitary was composed of sellar 
and pharyngeal parts. The pituitary tissue was covered 
with a poorly ciliated epithelial layer at its pharyngeal 
end. The majority of the cell constituents of the pituitary 
gland were histologically chromophobic. The pituitary 
stalk and the posterior lobe were histologically normal. 

a b
  Fig. 9.16    Duplication 
of the pituitary gland: 
( a ) skull base with two 
hypophyses, in between is 
an empty sella; note the 
wide distance between the 
cribriform laminae and 
optic canals; ( b ) basal 
view of the brain showing 
duplicated pituitary glands 
( arrows ) behind the optic 
nerves (From Hori  1983 , 
with permission)       
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  Clinical Case 9.3 Pallister-Hall Syndrome 

  Pallister - Hall syndrome  is a developmental disorder 
consisting of hypothalamic hamartoma, pituitary dys-
function, polydactyly and visceral malformations. This 
syndrome was fi rst reported in infants (Clarren et al. 
1980; Hall et al. 1980). It consists of hamartoblasto-
mas of the hypothalamus with primitive, undifferenti-
ated neurons. The disorder is inherited as an autosomal 
dominant trait with incomplete penetration, variable 
expressivity or gonadal or somatic mosaicism (Penman 

Splitt et al. 1994) and has been mapped to  chromosome 
7p13. Most cases are sporadic (Kuo et al. 1999). 
Hamartoblastomas probably arise in the fi fth week of 
pregnancy and seem to be part of a complex pleitrophic 
congenital syndrome that includes absence of the pitu-
itary, craniofacial abnormalities, cleft palate, malfor-
mations of the epiglottis or the larynx, congenital heart 
defects, hypopituitarism, short-limb dwarfi sm with 
postaxial polydactyly, anorectal atresia, renal anoma-
lies and abnormal lung lobulation and hypogenitalism 
(see Case Report). 

Immunohistochemical examination for anterior pitu-
itary hormones showed that the distribution of hormone- 
producing cells in the malformed pituitary tissue was 
irregular: thyrotropic hormone (TSH) producing, follicle 
stimulating hormone (FSH) producing and luteinizing 
hormone (LH) producing cells were nearly absent in 
the sellar and middle sections of the pituitary but were 
found in small numbers mainly in the pharyngeal part of 
the pituitary. Somatotropic hormone (STH) producing, 
prolactin releasing hormone (PRL) producing, and adre-
nocorticotropic hormone (ACTH) producing cells were 
distributed diffusely. ACTH-producing cells were abun-
dant in the pharyngeal part. Only few TSH-, FSH- and 
LH-producing cells were found in the sellar and middle 

sections. They were mostly found in the pharyngeal 
section. 
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  Fig. 9.17    Pharyngosellar pituitary: ( a ) gross appearance of the pituitary gland in the craniopharyngeal canal; ( b ) Gomori-stained section, 
showing the pharyngeal pituitary attached to the posterior lobe (From Hori et al.  1995 ; with permission)       
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  Case report : Twins, born at the 35th week of  gestation, 
both died shortly after birth. The fi rst died on the second 
postnatal day with multiple malformations as the second 
child, but no autopsy was performed. The second child 
presented with multiple malformations such as facial 
 dysmorphism, heptasyndactyly of the hands, hexadactyly 
of the feet and imperforate anus and died six days later 
due to anuria. At autopsy, other urogenital malformations 
were found including renal hypoplasia, ureter atresia 
and genital hypoplasia. Neuropathological examination 
revealed a large hamartoma of the hypothalamus and com-
plete agenesis of the pituitary gland (Fig.  9.18 ). A diag-
nosis of  Pallister - Hall syndrome  was made. Histological 
examination showed ‘matrix cell’ aggregation and a few 
 ganglion-like cells.
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  Fig. 9.18    Basal view ( a ) and median section ( b ) of a fetal brain with Pallister-Hall syndrome. The hamartoma of the hypothalamus ( d ) 
showed ‘matrix cell’ aggregation ( c ; Courtesy Akira Hori, Toyohashi; from ten Donkelaar and Hori  2011 )       
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9.4     Development of the Visual System 

9.4.1     Development of the Eye 

 The optic primordia are present very early in development 
(Mann  1928 ; O’Rahilly  1966 ; Hinrichsen  1990 ; Barishak 
 2001 ; O’Rahilly and Müller  2001 ; Sundin  2012 ). Presumably, 
a single eye fi eld exists at the rostral end of the neural plate, 
the median part of which is suppressed under the infl uence of 
the prechordal plate, resulting in bilateral optic primordia 
(Li et al.  1997 ). In pioneering studies in  Ambystoma , 
Adelmann ( 1929a ,  b ,  1930 ,  1936a ,  b ) showed that the 

 vertebrate eye fi rst develops as a single developmental fi eld. 
Factors supplied by the prechordal plate are then required for 
its separation into two distinct eye structures. Any perturba-
tion of this process may lead to  cyclopia  (Sect.  9.7.2 ). The 
lens arises from the surface ectoderm. In human embryos, 
the  optic primordium  becomes fi rst visible as the  optic 
 sulcus  appears in each neural fold at stage 10, i.e. at about 4 
weeks of  development. The right and left primordia are con-
nected by a ridge that will become the optic chiasm. The 
optic sulcus deepens and forms an evagination at stage 11, 
leading to the formation of the  optic vesicle  at stage 12 
(Figs.  9.19  and  9.20 ). By 4.5 weeks, the optic vesicle and the 

a b
c

d e

f g
  Fig. 9.19    Development of the 
human eye in the fourth ( a ), fi fth 
( b ), sixth ( c ), seventh ( d ), eighth 
( e ) and ninth week ( f ) and in the 
seventh month ( g ) of 
development.  ace  a. centralis 
retinae,  AVH  hyaloid artery and 
vein,  C  choroid,  EL  eyelid,  EV  eye 
vesicle,  FC  fi ssura choroidea,  IL  
inner layer of eye cup,  LP  lens 
placode,  nII  optic nerve,  OL  outer 
layer of eye cup,  OS  optic stalk,  P  
pigment layer of retina,  S  sclera, 
 SC  stratum cerebrale of retina 
(After Hamilton and Mossman 
 1972 , based on reconstructions by 
Mann  1928 )       
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  Fig. 9.20    Series of photomicrographs showing the development of the human eye at Carnegie stages 14 ( a ), 16 ( b ), 18 ( c ) and 20 ( d ); 
 haematoxylin- eosin staining.  LP  lens placode,  LV  lens vesicle (From the Kyoto Collection of Human embryos)       

adjacent surface ectoderm thicken and form at stage 13 the 
 retinal disc  and the  lens disc , respectively. The retinal disc 
becomes invaginated, resulting in a double-layered  optic 
cup . This invagination extends partly onto the stalk of the 
optic cup to form the transient  retinal fi ssure . A disturbance 
in the closure of the retinal fi ssure may lead to a  coloboma  
(Fig.  9.21 ). The inverted layer of the optic cup is readily 
comparable to the wall of the developing forebrain. The 
walls of the optic cup form the optic part of the retina and the 
epithelium of the ciliary body and the iris. The lens disc 
becomes indented to form the  lens pit  at stage 14 which 
closes at stage 15 to form the  lens vesicle . At the same time, 
retinal pigment appears in the external layer of the optic cup. 
The cells of the deep wall of the lens vesicle become elon-
gated and form the primary lens fi bres. Anterior cells of the 
lens form a simple epithelium from which the secondary lens 
fi bres arise that form the bulk of the mature lens. Moreover, 
the  primary vitreous body  and the  hyaloid artery  develop. 
The hyaloid artery enters the vitreous cavity through the reti-
nal fi ssure and supplies the thickened inner layer, the lens 
vesicle and the intervening mesenchyme. Later, the hyaloid 
artery disappears within the eye. Its stem forms the central 
retinal artery. The optic cup is anchored to the forebrain by 
the  optic stalk  that will form the optic nerve. Axons of reti-
nal ganglion cells grow via the optic stalk to the brain. The 
lumen of the optic stalk is gradually obliterated as axons of 

ganglion cells accumulate in the inner layer of the optic 
stalk, resulting in the formation of the optic nerve between 
the sixth and eighth weeks of development. The optic vesicle 
becomes enveloped by a sheath of neural-crest-derived mes-
enchyme. This sheath forms the two coverings of the eye: the 
thin inner  choroid  and the fi brous outer  sclera .

     The development of the  retina  is shown in Fig.  9.22 . The 
thinner outer layer of the optic cup becomes the  pigmented 
layer  of the retina. The inner layer can soon be divided 
into a thicker nine-layered posterior part, the  pars optica 
retinae , which develops into the visual receptive part of the 
retina, and a thinner, one-layered part, the  pars caeca reti-
nae . The pars caeca does not develop photoreceptive cells 
and becomes subdivided into a posterior part, the  pars cili-
aris retinae , and an anterior part fi rmly fused with the outer 
pigmented layer to form the  pars iridis retinae . The cav-
ity of the optic vesicle is soon occluded by the apposition 
of its inner layer to the pigmented layer. The  intraretinal 
space , separating the two layers, is obliterated as the retina 
develops, but the two layers never fuse fi rmly. The differ-
entiation of the neural retina takes place between the sixth 
week and the eighth month (Mann  1928 ; Hinrichsen  1990 ; 
O’Rahilly and Müller  2001 ). By the fi fth week the fi rst of a 
series of shifts in nuclear arrangement occurs, resulting in 
the formation of an inner layer devoid of cells, and an outer 
nuclear layer. About the middle of the sixth week cells of 
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  Fig. 9.21    Colobomas present in one patient: ( a ,  b ) iris colobomas of right and left eye, respectively; ( c ,  d ) retinal colobomas of both eyes and 
optic disk coloboma of the left eye ( d ; Courtesy Johannes Cruysberg, Nijmegen)       

the outer nuclear layer migrate centrally and form an inner 
cellular zone. Between the two layers the transient layer of 
Chievitz appears. In the third month the ganglion cells arise 
from the inner neuroblastic layer. As additional cells migrate 
from the outer neuroblastic layer to the inner zone, the layer 
of Chievitz disappears. Now, three nuclear zones can be 
 distinguished separated by fi brous layers. From within out-
wards, these nuclear zones are the ganglion cell layer, the 

inner nuclear layer and the outer nuclear layer. The majority 
of the cells of the inner nuclear layer give rise to the bipolar 
neurons which relay impulses from the rods and cones to 
the ganglion cells. The cells in the outer layer form the rods 
and cones.  Vascularization  of the retina begins at about 15 
weeks of development (Ashton  1970 ).  Retinal cell diver-
sity  is achieved by the sequential production of cell types 
in a defi ned histogenetic order (Provis et al.  1985a ; Young 
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 1985 ; Dowling  1987 ; Fuhrmann et al.  2000 ; Marquardt and 
Gruss  2002 ). Retinal ganglion cells and horizontal cells 
differentiate fi rst, followed in overlapping phases by cone 
 photoreceptors, amacrine cells, rod photoreceptors, bipolar 
cells and, fi nally, Müller glia cells.

9.4.2            Congenital Malformations of the Eye 

  Genetic control  of  eye development  has been extensively 
studied in the embryonic mouse brain (Macdonald and 
Wilson  1996 ; Graw  2000 ,  2003 ; Hirsch and Grainger  2000 ; 
Wawersik et al.  2000 ; Horsford et al.  2001 ; Pichaud and 
Desplan  2002 ; Sundin  2012 ). Mutations in at least ten human 
transcription factor genes have been shown to disrupt eye 
development. A large number of additional mouse transcrip-
tion factor genes are also associated with developmental 
abnormalities of the eye (Hirsch and Grainger  2000 ; Graw 
 2000 ,  2003 ; Kerryson and Newman  2007 ; Sundin  2012 ). 
Human eye phenotypes can involve one or more ocular struc-

tures. Developmental anomalies that affect many parts of the 
eye are known as panocular defects, whereas other 
 abnormalities may be restricted to the anterior segment, the 
posterior segment or the differentiation or maintenance of 
photoreceptors. Examples of such anomalies are shown in 
Clinical Cases  9.4  and  9.5 . For a summary of prenatal imag-
ing of the eye see Broaddus et al. ( 2012 ). 

  Panocular defects  are broad phenotypes (Table  9.3 ) that 
arise by at least two different general mechanisms (Horsford 
et al.  2001 ; Graw  2003 ; Sachdeva and Traboulsi  2012 ). The 
fi rst mechanism, shown for heterozygous mutations in the 
paired box gene  PAX6 , refl ects the fact that the gene is 
expressed in and required for the normal development of all 
regions of the developing eye. The second mechanism by 
which panocular defects arise is due to mutations in genes 
such as  CHX10  that are expressed in one region of the devel-
oping eye but, via secondary physiological processes, are 
essential for the normal development of other ocular struc-
tures.  Pax6  is one of the nine members of the  Pax  gene fam-
ily unifi ed by the presence of a paired domain. The paired 

a b c d

  Fig. 9.22    Development of the human retina in an embryo of 7 weeks 
( a ), and fetuses of about 11 ( b ), 19 ( c ) and 27 ( d ) weeks of develop-
ment.  CH  transient fi bre layer of Chievitz,  ELM  external limiting mem-
brane,  GL  ganglion cell layer,  IL  inner nuclear layer (bipolar cells),  INL  

inner neuroblast layer,  IPL  inner plexiform layer,  NFL  nerve fi bre layer, 
 OL  outer nuclear layer (nuclei of rods and cones),  ONL  outer neuroblast 
layer,  OPL  outer plexiform layer,  RC  layer of rods and cones (After 
Mann  1928 )       
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domain is a 128 aminoacid DNA-binding domain named 
after the prototypical  Drosophila  segment polarity gene 
 paired . Haploinsuffi ciency for  PAX6  function in humans 
leads to  aniridia  (Clinical Case  9.4 ), a heritable panocular 
disorder characterized by iris and foveal hypoplasia which 
can be accompanied by cataracts, corneal opacifi cation, and 
progressive glaucoma (Glaser et al.  1995 ; Horsford et al. 
 2001 ; Sachdeva and Traboulsi  2012 ). Mutations in  PAX6  
have also been found in patients with Peters anomaly, con-
genital cataract, autosomal dominant keratopathy and iso-
lated foveal hypoplasia (Prosser and van Heyningen  1998 ; 
van Heyningen and Williamson  2002 ,  2008 ; Sachdeva and 
Traboulsi  2012 ).

   In mice, a naturally occurring mutation,  Small eye  ( Sey ), 
results from mutations in the  Pax6  gene (Hill et al.  1991 ). 
Like human aniridia,  Sey  is inherited in a semidominant 
fashion, with  Sey /+ heterozygotes showing corneal and len-
ticular abnormalities and  Sey / Sey  homozygotes lacking eyes 
entirely (Hogan et al.  1986 ). In  Sey / Sey  embryos, the lens 
and nasal placodes fail to develop, the optic vesicle fails to 
constrict and subsequently degenerates, and mesenchymal 
cells become interposed between the surface ectoderm and 
the optic vesicle (Hogan et al.  1988 ). Moreover, in  Sey  homo-
zygotes, the anterior commissure, the corpus callosum and 
the olfactory bulbs are absent (Schmahl et al.  1993 ; Stoykova 
et al.  1996 ). In mice, the optic vesicle forms at E8.5 and 
comes into contact with the head and ectoderm at E9.0. 
Signals from the optic vesicle induce the lens placode to 
form by E9.5. At E10.0, the lens placode invaginates to form 
a lens pit, while the optic vesicle infolds and becomes the 
optic cup. The invagination of the lens pit is complete at 

E10.5, at which time the vesicle begins to separate from the 
overlying ectoderm. Normally,  Pax6  is expressed in both the 
head ectoderm and the optic vesicle at E8.5, prior to lens 
induction (Walther and Gruss  1991 ; Grindley et al.  1995 ). At 
E9.5, prior to thickening of the head ectoderm to form the 
lens placode, the expression of  Pax6  becomes restricted to 
the presumptive placodal region. In later stages,  Pax6  is 
expressed in the optic cup as well as in the invaginated lens 
placode. The close similarities in phenotype and mode of 
inheritance between aniridia and  Sey  suggest that  Pax6  func-
tions in a similar way in human and mouse eye development 
(van Heyningen and Williamson  2002 ,  2008 ). Mild extraoc-
ular phenotypes are found in  Sey , including olfactory bulb 
hypoplasia, axon guidance defects, cortical plate hypocellu-
larity and decreased basal ganglia volume (Schmahl et al. 
 1993 ; Stoykova et al.  1996 ; Mastick et al.  1997 ). Using MRI 
and smell testing, Sisodiya et al. ( 2001 ) showed absence or 
hypoplasia of the anterior commissure and reduced olfaction 
in a large proportion of aniridia cases. Moreover, Ellison- 
Wright et al. ( 2004 ) found that individuals with aniridia have 
structural abnormalities of grey matter in the anterior cingu-
late cortex, the cerebellum and the medial temporal lobe as 
well as white matter defi cits in the corpus callosum. 
Functional MRI demonstrated reduced activation of fronto-
striato- thalamic systems during performance of, for instance, 
overt verbal fl uency (Ellison-Wright et al.  2004 ). Therefore, 
 PAX6  haploinsuffi ciency appears to cause more widespread 
malformations than previously thought. 

 CHX10, a paired-like homeodomain protein, regulates 
neuronal development, particularly the proliferation of inter-
neurons. Homozygous putative null mutations of the  CHX10  

    Table 9.3    Inherited eye diseases in man and mice due to mutations in transcription factor genes: panocular defects   

 Gene  Function or required for  Disease 
 Inheritance and genetic 
mechanisms  Phenotypes 

  PAX6   Lens induction and all 
subsequent development of 
retina, iris and cornea; 
development of forebrain, 
cerebellum, nasal structures 
and pancreas 

 Aniridia  AD; haploinsuffi ency in most 
cases 

 Human: aniridia, accompanied by foveal or 
optic nerve hypoplasia, cataract, glaucoma 
and corneal dystrophy 
 Mouse (heterozygotes): small eye, cataract 
and iris hypoplasia 
 Mouse (homozygotes): neonatally lethal 
with anophthalmia, rudimentary nasal 
structures and forebrain and cerebellar 
anomalies; pancreas anomalies 

  CHX10   Involved in the retina and in 
optic nerve development 

 Microphthalmia  AR; loss of function alleles  Human: microphthalmia, cataracts, iris 
colobom, and blindness 
 Mouse (homozygotes): microphthalmia, 
optic nerve aplasia and cataracts 

  After Macdonald and Wilson ( 1996 ), Graw ( 2000 ,  2003 ), Horsford et al. ( 2001 ), Sachdeva and Traboulsi ( 2012 ) 
  AD  autosomal dominant,  AR  autosomal recessive  
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homeobox gene affect only the eye, resulting in blindness 
with microphthalmia and cataracts (Horsford et al.  2001 ). Its 
mouse equivalent, known as  ocular retardation  ( or ), is a 
recessive mutant with abnormal eye development. 
Homozygous  or  mice are blind with obvious microphthal-
mia, cataract, a poorly differentiated, thin retina, and no 
optic nerve (Truslove  1962 ; Theiler et al.  1976 ; Silver and 
Robb  1979 ). Burmeister et al. ( 1996 ) showed that the allele 
 or   1   has a premature stop codon in the homeobox of the 
 Chx10  gene. 

  Anterior segment defects  primarily affect the anterior cham-
ber, iris, lens, cornea and trabecular network, and are phenotypi-
cally varied (Table  9.4 ). They result from mutations in a number 
of different transcription factor genes: the forkhead cluster 
 FOXC1 / FOXF2 / FOXQ1 , the paired-like/bicoid-like homeodo-
main genes  PITX2  and  PITX3 , and the leucine zipper transcrip-
tion factor  MITF  (Table  9.3 ). Similar phenotypes result from 
mutations at different loci, and there is a phenotypic overlap 

with some  PAX6  missense mutations (Horsford et al.  2001 ; 
Smith and Traboulsi  2012 ). Genetic manipulations in murine 
embryos suggest that  Pax6  regulates responsiveness of the head 
ectoderm to the inductive effect of the optic vesicle and  Prox1  
probably regulates signal reception from the retina in promoting 
lens fi bre development.  Sox2 / Sox3  and  Maf  encoded proteins 
are probably the key factors of lens cell differentiation.  Pax6  
inhibits expression of genes for fi bre characteristics in the epi-
thelial cells, whereas  Sox1  and  c - Maf / L - Maf  support fi bre dif-
ferentiation (Kondoh  1999 ; Hirsch and Grainger  2000 ; Smith 
and Traboulsi  2012 ). Autosomal dominant Waardenburg syn-
drome type 2A is associated with mutations in  MITF  (Tassabehji 
et al.  1994 ).  MITF  is expressed predominantly in developing 
pigment cells and neural crest cells. The mouse  microphthalmia  
( mi ) mutation, fi rst described by Hertwig ( 1942 ), includes at 
least 17 mutant alleles at chromosome 6 (Steingrimsson et al. 
 1994 ). The affected gene encodes  Mitf  (microphthalmia-associ-
ated transcription factors).

   Table 9.4    Inherited eye diseases in man and mice due to mutations in transcription factor genes: anterior segment defects   

 Gene  Function or required for  Disease 
 Inheritance and 
genetic mechanisms  Phenotypes 

  MITF   Regulates genes in melanin 
synthesis pathway; in mice, 
required for normal eye growth 
and prevention of overproliferation 
of the retinal pigment epithelium 

 Waardenburg 
syndrome type 2 

 AD; 
haploinsuffi ciency 

 Human: iris pigment defects, 
hearing loss, white forelock 
 Mouse (heterozygotes): minor eye 
and skin pigment defects 
 Mouse (homozygotes): small eye, 
with hyperproliferation of RPE, 
defects in various other pigment 
cell types 

  FOXC1 / FOXF2 / FOXQ1  
forkhead cluster 

 Development cornea and iris; 
murine homozygotes die 
perinatally with haemorrhagic 
hydrocephalus and skeletal defects 

 Axenfeld-Rieger 
anomaly 

 AD; 
haploinsuffi ciency 

 Human: minor: glaucoma, iris 
hypoplasia 
 Major: iridogoniodysgenesis, 
posterior embryotoxon 
 Mouse (heterozygotes): anterior 
segment defects 
 Mouse (homozygotes): iris 
hypoplasia, corneal defects, 
unfused eyelids 

  PITX2   Development of ocular 
mesenchyme, maxillary and 
mandibular epithelia, umbilicus, 
pituitary and laterality 

 Rieger syndrome, 
iridogonial 
dysgenesis 
syndrome 

 AD; 
haploinsuffi ciency 

 Human: Rieger anomaly and 
dental hypoplasia, facial 
dysmorphism and umbilical 
abnormalities 
 Mouse (heterozygotes): corectopia 
and iris abnormalities 
 Mouse (homozygotes): optic nerve 
coloboma and absence of ocular 
muscles 

  PITX3   Developing lens placode and 
maturing lens 

 Anterior segment 
mesenchymal 
dysgenesis; 
congenital cataract 

 AD; 
haploinsuffi ciency 

 Human: defects in all tissues of 
anterior eye chamber 
 Mouse: aphakia in homozygotes 

  After Macdonald and Wilson ( 1996 ), Graw  2000 ,  2003 , Horsford et al.  2001 , Smith and Traboulsi  2012 )  
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    Congenital aphakia  (absence of the lens) in man occurs 
in primary and secondary forms (Vermeij-Keers  1975 ). 
Primary absence of the lens is characterized by the total 
absence of the lens or lens primordium, the iris and the ante-
rior chamber, whereas secondary forms result from distur-
bances during lens development at a later stage by rubella 
infection and other factors affecting normal lens develop-
ment. Several mouse mutants are known (Graw  2000 ). 

  Posterior segment defects , affecting only the retina and 
optic nerve, include optic nerve defects due to mutations in 
 PAX2  and  HESX1 , and abnormalities in photoreceptor dif-
ferentiation or maintenance due to mutations in  CRX  and 
 NRL  (Santos and Traboulsi  2012 ; Table  9.5 ). In 2012, more 
than 170 genes were known to cause retinal diseases (Retnet: 
  http://www.sph.uth.tmc.edu/Retnet    ). In mouse embryos, 
 Pax2  is expressed during the morphogenesis of the optic cup 
and stalk, and in the period of axogenesis (Nornes et al. 
 1990 ). In  Pax2  null mutants (Torres et al.  1996 ) and in the 
 Pax2   N  eu   mutation (Favor et al.  1996 ), the pigmented retina 
extends into the optic stalk, the optic fi ssure fails to close, 

leading to coloboma, no optic chiasm is formed, and some 
malformations of the inner ear are found. The mouse  Pax2   Neu   
mutation is identical to a human  PAX2  mutation in a family 
with renal-coloboma syndrome and results in developing 
defects of the brain, eye, ear and kidney (Favor et al.  1996 ). 
‘Renal coloboma syndrome’ is more appropriately called 
 papillorenal syndrome , because the dysplastic disks in pap-
illorenal syndrome show no absence of ocular tissue owing 
to incomplete closure of the embryonic optic fi ssure, and 
consequently no characteristics of coloboma (Parsa et al. 
 2002 ). The paired-like homeobox gene  HESX1  is mutated in 
cases of septo-optic dysplasia (Dattani et al.  1998 ,  1999 ; 
Brickman et al.  2001 ).

   Mutations in two genes,  CRX  and  NRL , result in 
  abnormalities  of  photoreceptor differentiation  or  maintenance  
(Table  9.6 ).  Leber congenital amaurosis  is characterized by 
generalized rod and cone dystrophy and presents at birth or 
early in infancy (Aicardi  1998 ; Graw  2003 ; Koenekoop et al. 
 2012 ). It is responsible for 10–18 % of cases of congenital 
blindness. The disease may present only with ophthalmological 

   Table 9.5    Inherited eye diseases in man and mice due to mutations in transcription factor genes: posterior segment defects   

 Gene  Function or required for  Disease  Inheritance and genetic mechanisms  Phenotypes 
  PAX2   Developing optic cup 

narrowed to just optic stalk, 
particularly retinal fi ssure; 
also expressed in kidney and 
otic vesicle 

 Papillorenal 
syndrome 

 AD; haploinsuffi ciency  Human: optic disk dysplasia, renal 
hypoplasia, vesicoureteral refl ux and 
occasional deafness 
 Mouse (heterozygotes): optic nerve 
coloboma 
 Mouse (homozygotes): globe 
colobomata, optic nerve defects, 
absence of optic chiasm 

  HESX1   Forebrain, optic vesicle, nasal 
placode and pituitary 
development 

 Septo-optic 
dysplasia 

 AR; one allele known, with a severe 
loss of function 

 Human: optic disc hypoplasia, 
midline brain abnormalities, pituitary 
hormone defects and septum 
pellucidum absence 
 Mouse: see Dattani et al. ( 1998 ) 

  After Macdonald and Wilson ( 1996 ), Graw   (2000 ,  2003) , Horsford et al. ( 2001 )  

   Table 9.6    Inherited eye diseases in man and mice due to mutations in transcription factor genes: abnormal photoreceptor differentiation/
maintenance   

 Gene  Function or required for  Disease  Inheritance and genetic mechanisms  Phenotypes 

  CRX   Morphogenesis and 
maintenance of photoreceptor 
outer segment; transactivation 
of expression of rhodopsin and 
other outer-segment proteins 

 Cone-rod dystrophy  AD; haploinsuffi ciency  Human: degeneration of cone, 
then rod, photoreceptors 
 Mouse (homozygotes): lack of 
photoreceptor outer segments and 
circadian rhythm abnormalities 

  CRX   As above  Leber congenital 
amaurosis 

 AD; haploinsuffi ciency or dominant 
negative alleles; 

 Human: congenital absence of 
functional photoreceptors, or 
early photoreceptor degeneration; 

 AR; loss-of-function alleles  Mutations in at least six other 
genes known 

  NRL   Cotransactivator, with  CRX , of 
rhodopsin expression 

 Retinitis pigmentosa  AD; one mutant allele known: 
gain-of-function allele, increasing 
transactivation of rhodopsin 

 Human: rod photoreceptor 
degeneration 

  After Macdonald and Wilson ( 1996 ), Graw ( 2000 ,  2003 ); Horsford et al. ( 2001 ), Santos and Traboulsi ( 2012 )  
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features, but in some cases it is associated with intellectual dis-
ability, encephaloceles (Vaizey et al.  1977 ) and, especially, 
anomalies of the cerebellar vermis. Apart from  CRX , various 
other genes contribute to this disorder (Fazzi et al.  2003 ; Graw 
 2003 ; Koenekoop et al.  2012 ). In the genetic subtype caused by 
mutations in  RPE65 , genetic replacement therapy has been 
found to be successful (Bainbridge et al.  2008 ; Maguire et al. 
 2008 ).

    Retinitis pigmentosa  is characterized by progressive 
visual fi eld loss, night blindness and pigmentary deposition 
in the retina (Clinical Case  9.5 ). It is aetiologically very het-
erogeneous (Wang et al.  2001 ; Ferreyra and Heckenlively 
 2012 ). Mutations in at least 49 different identifi ed genes 
can lead to non-syndromic forms. Retinitis pigmentosa is 
inherited through any of the known monogenic inheritance 
patterns (autosomal dominant, autosomal recessive and 

X-linked). Most forms of retinitis pigmentosa and related 
retinal degenerations affect only the eye, but in a minority 
of cases the retinal degeneration belongs to a syndrome that 
includes other systemic abnormalities such as deafness in 
Usher syndrome (Chap.   7    ). 

 In summary, mutations that lead to clinically relevant 
phenotypes highlight important steps in eye development 
(Graw  2003 ). Some affect genes that function at the top of 
the regulatory hierarchy and therefore at the initial stages of 
eye development. Mutations in such genes ( PAX6 ,  SOX2 ) 
lead to anophthalmia, microphthalmia and aniridia. Other 
genes ( FKHL7 ,  PITX3  and  MAF ) function downstream or 
later during development. Some mutants defi ne genes that 
are important for only one particular tissue such as the 
crystalline- encoding genes in the development of the lens 
and  PAX2  in the optic nerve. 

  Clinical Case 9.4 Aniridia 

  Aniridia  is a bilateral congenital ocular disorder with 
absent or rudimentary iris. The disorder can be autosomal 
dominant or sporadic, and is caused by a defect in the 
 PAX6  gene. Sporadic aniridia is associated with Wilms 
tumour (nephroblastoma) in one third of the cases. 

  Case Report . A newborn female was referred to the 
Ophthalmology Clinic because of congenital absence of 
the iris in both eyes. Ocular examination showed bilat-
eral aniridia, microcornea (7–8 mm; normal 9–10 mm), 
mild posterior polar cataract, and small grey optic discs 
(Fig.  9.23 ). Systemic examination disclosed microceph-
aly (less than P3) and multiple ventricular septal defects 
(VSDs) with pulmonary hypertension. The patient was 
suspected to suffer from 11p-syndrome WAGR (Wilms 
tumour, aniridia, genitourinary malformations). The 
child died from pulmonary oedema and respiratory insuf-
fi ciency at the age of 3 months. Postmortem examina-
tion confi rmed the congenital heart defect, but no renal 
tumour or genitourinary abnormalities were found. Rao 
et al. (1992) described a 2-year-old female child with 
bilateral Wilms tumour along with multiple congenital 
anomalies like bilateral aniridia with congenital cataracts 
and nystagmus, microcephaly, mental retardation and 
ventricular septal defect. Karyotype analysis revealed 
46 XX, del 11p13-14.1. Association of a VSD with the 

 classic  features of ‘Aniridia-Wilms tumour association’ is 
an unusual feature.

    Reference  

 Rao SR, Athale UH, Kadam PR, Gladstone B, Nair CN, Pai SK, 
Kurkure PA, Advani SH (1992) Aniridia-Wilms’ tumour asso-
ciation: a case with 11p 13–14.1 deletion and ventricular septal 
defect. Indian J Cancer 29:117–121  

  Fig. 9.23    Aniridia in a female newborn (Courtesy Johannes 
Cruysberg, Nijmegen)       
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  Clinical Case 9.5 Retinitis Pigmentosa 
with CNS Malformations 

 Congenital disorders of glycosylation (CDGs) form a 
new group of autosomal recessive multisystem disorders 
characterized by defective glycoprotein biosynthesis. 
Disorders of nearly all organs and systems have been 
described (Jaeken and Carchon 2004; Chap.   3    ). Cerebral 
and ocular manifestations are common in the various bio-
chemical CDG subtypes. 

  Case Report . A 12-year-old girl was referred to the 
Ophthalmology Clinic with a history of early childhood 
strabismus and encephalopathy of unknown aetiology. 
Signs of general hypotonia and psychomotor retardation 
were established in the fi rst year of life. Microcephaly, 
short stature and inverted nipples were apparent in infancy, 
followed by ataxia, dyspraxia, dysmetria and progressive 
polyneuropathy in the fi rst decade. Neuroimaging showed 
severe cerebellar vermis hypoplasia. The eyes showed 
convergent strabismus with slight limitation of abduction. 
The ocular media were clear. Ophthalmoscopy showed 
retinitis pigmentosa of both eyes, with typical bony spic-
ules in the retinal periphery and an indication of bull’s 
eye pattern maculopathy (Fig.  9.24 ). The electroretino-
gram was extinguished. At that time (1984) no systemic 
diagnosis could be made. At 18 years of age, the patient 
showed general signs of glycoprotein dysfunction, such 
as gonadal dysfunction and hypothyroidism. The diag-
nosis CDG syndrome type 1a was established by fi nding 

abnormal transferrin fractions with isoelectric focussing 
of serum. This type is the most common form in the group 
of CDGs. In the third decade, the retinitis pigmentosa was 
progressive and posterior subcapsular cataracts developed 
in both eyes.

    Reference  

 Jaeken J, Carchon H (2004) Congenital disorders of glycosylation: 
a booming chapter of pediatrics. Curr Opin Pediatr 16:434–439   

  Fig. 9.24    Retinitis pigmentosa case in a 12-year-old girl (Courtesy 
Johannes Cruysberg, Nijmegen)       

9.4.3      Development of the Visual Projections 

 The optic nerves of the two eyes converge to form the optic 
chiasm. Here the fi bres from the nasal half of each retina 
cross to the opposite side and pass via the optic tract to the 
LGN (Fig.  9.25 ). Fibres from the temporal half of each retina 
pass to the LGN without crossing. LGN neurons relay the 
visual input via the optic radiation to the primary visual cor-
tex. Each optic tract as well as the LGN and geniculocalca-
rine tract contain information from the contralateral visual 
hemifi eld. Axons from the two eyes terminate in different 
layers of the six-layered LGN (Hubel and Wiesel  1977 ; 
Hubel et al.  1977 ). Originally, two types visual pathways 
were distinguished: axons of M-type ganglion cells termi-
nate in the two ventrally located magnocellular layers of the 
LGN, whereas axons of the smaller P cells terminate in the 
four dorsal parvocellular layers. This segregation continues 
in the optic radiation into the striate cortex and even beyond 
in the extrastriate visual areas (Livingstone and Hubel  1988 ; 

Merigan  1989 ; Gulyas et al.  1993 ; Zeki  1993 ). More recently, 
three retinal ganglion cell types have been linked with paral-
lel pathways that remain segregated through the LGN and 
into the input layers and compartments of V1 (Dacey  2000 ; 
Hendry and Reid  2000 ; Kaplan  2004 ; Field and Chichilnisky 
 2007 ; Nassi and Callaway  2009 ).

   Midget, parasol and bistratifi ed ganglion cells form 
approximately 90 % of all ganglion cells found in the pri-
mate retina (Fig.  9.26 ). The  midget ganglion cells  (or 
 P cells ) give rise to the  parvocellular pathway  to the parvo-
cellular layers of the LGN and form some 70 % of the total 
population of cells that project to the LGN (Dacey  2000 ). 
 Parasol ganglion cells  (or  M cells ) are the origin of the 
 magnocellular pathway  and project to the magnocellular 
layers of the LGN. They form some 10 % of the cells that 
innervate the LGN (Dacey  2000 ). Small and large   bistratifi ed 
ganglion cells  make up at least part of the  koniocellular 
pathway  and together form some 8 % of the total population 
of cells that project to the LGN, which in turn projects to the 
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cytochrome oxidase (CO) blobs of layers 2/3 in V1 (Hendry 
and Reid  2000 ). Lesion studies in primates have shown that 
 magnocellular lesions  result in a large decrease in  luminance 
contrast sensitivity or motion discrimination (Merigan et al. 
 1991a ,  b ).  Parvocellular lesions  cause an almost complete 

loss of colour vision (Dacey  2000 ; Kaplan  2004 ). 
 Developmental dyslexia  may be due to abnormalities of the 
magnocellular component of the visual system (Stein and 
Walsh  1997 ; Demb et al.  1998 ; Chap.   10    ).

   The development of visual projections has been exten-
sively studied in rat (Brückner et al.  1976 ; Lund and Mustari 
 1977 ; Blakemore and Molnár  1990 ), ferret (Sur and Leamey 
 2001 ), cat (Shatz  1983 ; Shatz and Luskin  1986 ; Shatz et al. 
 1990 ) and rhesus monkey (Rakic  1974 ,  1975 ,  1977a ,  b ) 
embryonic and fetal brains, and more recently also in human 
fetuses (Hevner  2000 ). In the developing rat brain, neurons 
of the LGN are born between E12 and E14 (Brückner et al. 
 1976 ; Lund and Mustari  1977 ). Outgrowth of geniculocorti-
cal axons begins around E14-E15. By E16-E17, geniculo-
cortical axons have reached the internal capsule and some 
already accumulate in the subplate below the primary visual 
cortex (Lund and Mustari  1977 ; Blakemore and Molnár 
 1990 ). In cats, Shatz and co-workers studied the develop-
ment of retinogeniculate (Shatz  1983 ) and geniculocortical 
(Shatz and Luskin  1986 ; Shatz et al.  1990 ; Ghosh and Shatz 
 1992 ) projections. Axons from the LGN have entered the 
internal capsule by E30 (duration of gestation in cats 65 
days). Axons reach the developing visual cortex by E36, and 
accumulate in the subplate over the following 3 weeks. 
Between E46 and E55, geniculocortical axons invade the 
marginal zone (layer 1), but an appreciable number of termi-
nals in the cortical plate does not appear before E55. By 
birth, most axons have left the subplate and have established 
branches within layer 4 (Shatz and Luskin  1986 ; Shatz et al. 
 1990 ). 

 In rhesus monkeys for which the gestation period lasts 
about 165 days, Rakic ( 1977a ) showed with the [ 3 H]thymi-
dine birthday labelling technique that the fi rst retinal gan-
glion cells are generated about the 30th day of gestation 
(E30), whereas those for the LGN start to be born around 
E36 (Rakic  1977b ). Neurogenesis of neurons of the primary 
visual cortex takes place between about E43 and E102 (Rakic 
 1974 ,  1975 ). Geniculocortical axons fan up towards the 

  Fig. 9.25    Major visual pathways in the rhesus monkey.  CHO  chiasma 
opticum,  CGL  corpus geniculatum laterale,  L  left eye,  R  right eye,  I - VI  
cortical layers (area 17),  17 – 19  visual cortical areas (After Rakic 
 1977a )       
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  Fig. 9.26    Parallel streams from  a  
the retina to  b  the lateral 
geniculate nucleus and  c  the 
primary visual cortex (After Nassi 
and Callaway  2009 , from ten 
Donkelaar and Cruysberg  2011 )       
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 cortex in the optic radiation as early as midgestation (Rakic 
 1976 ,  1977a ). They gather in the subplate below the occipital 
cortical plate and only penetrate the plate itself after a long 
waiting period (Smart et al.  2002 ). LGN axons are visible 
throughout the lower layers of the primary visual cortex 3 
weeks before birth, and terminals are beginning to concen-
trate in the lower part of layer 4. Efferent connections from 
the visual cortex to the LGN, the pulvinar and the superior 
colliculus are established in a 1-month period, E63-E97 
(Shatz and Rakic  1981 ), roughly in synchrony with the gen-
esis of geniculocortical projections. Geniculocalcarine fi bres 
segregate into columns postnatally according to ocular domi-
nance (Hubel and Wiesel  1977 ; Hubel et al.  1977 ). 

 In the developing human brain, optic tract fi bres reach the 
CGL by about seven gestational weeks (Gilbert  1935 ; Cooper 
 1945 ), and synapses between optic fi bres and CGL neurons 
are formed by about 13–14 gestational weeks (Khan et al. 
 1993 ,  1994 ). The homogeneous CGL anlage becomes sepa-
rated into its characteristic six layers at about 22 weeks of 
gestation (Cooper  1945 ; Dekaban  1954 ; Hitchcock and 
Hickey  1980 ). Each cellular layer receives retinal fi bres from 
only one eye. Geniculocortical axons have reached the sub-
plate below the visual cortex as early as 8.5 weeks of gesta-
tion (Kostović and Rakic  1990 ). After a long waiting period, 
geniculocortical synapses in the cortical plate are formed 
around 23–25 weeks of gestation (Kostović and Rakic  1990 ). 
In a 1,1′-dioctadecyl- 3,3,3′,3′-tetramethylindocarbocyanine 
perchlorate (DiI) tracing study in fi xed brains of human 
fetuses of 20–22 gestational weeks, Hevner ( 2000 ) showed 
that retinogeniculate projections were already segregated into 
eye-specifi c layers by 20 gestational weeks, preceding the 
cellular lamination of the CGL. Thalamocortical axons 
densely innervated the subplate, but hardly the cortical plate, 
consistent with observations on a waiting period in the human 
brain (Kostović and Rakic  1990 ). The human visual cortex 
attains its six-layered organization early during the third tri-
mester (for data on the human visual cortices see Clarke and 
Miklossy  1990 ). The fetal human optic nerve shows  overpro-
duction  and subsequent elimination of retinal ganglion cell 
axons. Provis et al. ( 1985b ) found 1.9 million axons by about 
10 weeks of development, 3.7 million at about 16 weeks, but 
only 1.1 million axons at about 27 weeks. The period of cell 

loss from the retinal ganglionic cell layer occurs after 30 
weeks (Provis et al.  1985a ), suggesting that many cells of the 
fetal ganglionic cell layer do not contribute axons to the optic 
nerve during the process between 20 and 30 weeks of devel-
opment.  Myelination  of the optic nerve does not begin until 
about 32 weeks, and is largely complete by 7 months after 
birth (Magoon and Robb  1981 ). Myelination of the optic radi-
ation begins at the CGL. For a DTI study of the optic radia-
tion in premature neonates ranging from 29 to 41 weeks of 
gestational age, see Berman et al. ( 2009 ). 

 In  albinism , retinofugal axons are misrouted in the 
optic chiasm so that some of the axons from the temporal 
retina, which normally stay ipsilaterally, cross to the other 
side. Abnormalities in the CGL of a human albino have 
been noted (Guillery et al.  1975 ). The opposite is found in 
 isolated absence  of the  optic chiasm  or  non - decussating 
retinofugal fi bre syndrome  as fi rst described by Apkarian 
et al. ( 1993 ,  1995 ) in two unrelated children, present-
ing with oculomotor instabilities. Comparable cases were 
described by Jansonius et al. ( 2001 ; Clinical Case  9.6 ) and 
Korff et al. ( 2003 ). In such cases, nasal retinal fi bres project 
ipsilaterally, resulting in retinothalamic and thalamocortical 
 misprojections and aberrant retinotopic cortical mapping. 
 Optic nerve  hypoplasia , a developmental defect in the 
number of optic nerve fi bres, may be unilateral or bilateral 
(Aicardi  1998 ; Brooks and Traboulsi  2012 ). It may occur as 
an isolated defect or be associated with other CNS defects 
such as absence of the septum pellucidum in  septo - optic 
dysplasia  (Sect.  9.7.3 ). Zeki et al. ( 1992 ) found that optic 
nerve hypoplasia can be associated with partial or complete 
absence of the septum pellucidum (in 52 % of their cases), 
hydrocephalus (in 38 %), porencephaly (in 24 %), dilatation 
of the suprasellar and chiasmatic cisterns (in 19 %), partial 
or complete absence of the corpus callosum (in 14 %), or an 
intracranial cyst.  Colobomas  of the  optic nerve  may extend 
to involve the retina, the iris, the ciliary body and the cho-
roid. Colobomas of the optic disc may be isolated, appearing 
as deep excavations with abnormal emergence of retinal ves-
sels. They may be unilateral or bilateral and are often associ-
ated with agenesis of the corpus callosum, in isolation or as 
a component of the Aicardi syndrome (Chevrie and Aicardi 
 1986 ; Aicardi et al.  1987 ; Brooks and Traboulsi  2012 ). 
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  Clinical Case 9.6 Isolated Absence of the 
Optic Chiasm 

  Isolated absence of the optic chiasm  or non-decussating 
retinofugal syndrome is very rare (Apkarian et al.  1993 , 
 1995 ; Jansonius et al.  2001 ; Korff et al.  2003 ). The four 

patients described so far presented with oculomotor insta-
bilities (see Case Report). In this condition, nasal retinal 
fi bres erroneously project ipsilaterally, resulting in aber-
rant retinothalamocortical mapping. 

  Case Report . An otherwise healthy 15-year-old girl 
with a congenital nystagmus was evaluated at a University 
Department of Ophthalmology using visual evoked 
potential recording and subsequent MRI examination. 
She appeared to have the unique inborn absence of the 
optic chiasm (Fig.  9.27 ). Unlike the cases described by 
Apkarian et al. ( 1993 ,  1995 ) she did not seem to display a 
seesaw nystagmus (Jansonius et al.  2001 ).

   This case was kindly provided by Nomdo M. 
Jansonius (Department of Ophthalmology, Groningen 
University Medical Centre) and Ton van der Vliet 
(Groningen). 
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  Fig. 9.27    Axial MRI, showing that both optic nerves curve to the 
lateral side of the suprasellar cistern without crossing over as would 
have been the case in the presence of a chiasm (Courtesy Ton van 
der Vliet, Nijmegen)       

9.5      Overview of the Development 
of the Telencephalon 

 Each developing cerebral hemisphere consists of a thick 
basal part, the subpallium, giving rise to the basal ganglia, 
the diagonal band and the preoptic area, and a thin part, the 
pallium that becomes the future cerebral cortex. The  telen-
cephalon medium  or  impar  forms the non-evaginated part 
of the telencephalon. It surrounds the rostral part of the third 
ventricle and consists of the lamina terminalis and the preop-
tic region. The dorsal part of the lamina terminalis trans-
forms into the commissural plate, from which the anterior 
commissure, the corpus callosum and the hippocampal com-
missure arise (Chap.   10    ). Dorsal and ventral domains of the 

developing telencephalon are distinguished by different pat-
terns of gene expression, refl ecting the initial acquisition of 
regional identity by progenitor populations (Puelles et al. 
 2000 ; Schuurmans and Guillemot  2002 ; Campbell  2003 ; 
Zaki et al.  2003 ; Sousa and Fishell 2012; Medina and Abellán 
 2012 ). The  subpallium  appears as medial and lateral eleva-
tions, known as the  ganglionic  ( Ganglionhügel  of His  1889 ) 
or  ventricular eminences  (Figs.  9.28  and  9.29 ). The deriva-
tives of the ganglionic eminences are summarized in 
Table  9.7 . The caudal part of the ventricular eminences or 
 caudal ganglionic eminence  ( CGE ) primarily gives rise to 
the subpallial parts of the amygdala. The  medial ganglionic 
eminence  ( MGE ) is involved in the formation of the globus 
pallidus and the basal nucleus of Meynert, the source of 
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  Fig. 9.28    Series of photomicrographs of the developing human fore-
brain: ( a – c ) a 25-mm embryo (late embryonic period); ( d – f ) early fetal 
period (46.5-mm CRL).  F  fornix,  GH  ganglionic eminence,  GHl  lateral 

ganglionic eminence,  GHm  medial ganglionic eminence,  Hi  
Hippocampus,  Plch  choroid plexus,  SM  medial sulcus,  Th  thalamus 
(From Hochstetter  1919 )       
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  Fig. 9.29    Series of photomicrographs of the developing human forebrain in a 87-mm-CRL fetus.  Cgl  corpus geniculatum laterale,  F  fornix,  GH  
ganglionic eminence,  Gh  ganglion habenulae (epithalamus),  Plch  choroid plexus,  Th  Thalamus,  VIII  third ventricle (From Hochstetter  1919 )       
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 cholinergic input to the cerebral cortex. The  lateral gangli-
onic eminence  ( LGE ) gives rise to the caudate nucleus and 
the putamen. Both the LGE and the MGE are also involved 
in the formation of the cerebral cortex. The pyramidal cells 
of the cerebral cortex arise from the pallial ventricular zone, 
but its GABAergic interneurons arise from both ganglionic 
eminences, the medial eminence in particular (Anderson 
et al.  1997a ,  2001 ; Parnavelas  2000 ; Marín and Rubinstein 
 2001 ,  2002 ; Chédotal and Rijli  2009 ). The caudal part of the 
human ganglionic eminence also gives rise to a contingent of 
GABAergic neurons for thalamic association nuclei such as 
the pulvinar through a transient fetal structure, the ganglio-
thalamic body (Rakić and Sidman  1969 ; Letinić and Kostović 
 1997 ; Letinić and Rakic  2001 ). The ganglionic eminence of 
the human fetal brain plays an important role in prematurely 
born infants (Ulfi g  2002a ) and it is the most common site of 
intracranial haemorrhage, a frequent CNS complication in 
prematurely born infants (Chap.   3    ).

     The  pallium  is usually divided into a medial pallium or 
archipallium, a dorsal pallium or neopallium, and a lateral 
pallium or paleopallium (Fig.  9.30 ). In mice, gene- expression 
studies led to redefi ning of the pallial-subpallial boundary 
and to a fourth component of the pallium, the ventral pallium 
(Puelles et al.  2000 ; Marín and Rubinstein  2002 ; Molnár and 
Butler  2002 ; Schuurmans and Guillemot  2002 ; Campbell 
 2003 ; Stenman et al.  2003 ). The  medial pallium  or  archi-
pallium  forms the hippocampal cortex, the three-layered 
allocortex. Parts of the surrounding transitional cingulate and 
entorhinal cortex, the four-to-fi ve-layered mesocortex, may 
have the same origin. The  dorsal pallium  or  neopallium  
forms the six-layered isocortex or neocortex. The  lateral 
pallium  forms the olfactory cortex and the  ventral pallium  
the claustro-amygdaloid complex. The development of the 
medial and the dorsal pallium and their malformations will 
be discussed in Chap.   10    . The midline and paramedian areas 
of the telencephalon (the ‘ cortical hem ’) form  specialized 

structures, and give rise to the commissural plate and the 
choroid plexus, respectively (Chap.   10    ).

   The  subpallium  consists of three primary regions, 
the LGE, the MGE and the preoptic area. Among other 
 structures such as cortical contributions the LGE gives rise to 
the striatum and the MGE to pallidal structures. The  preoptic 
area is located close to the pallidal domain, and contains 
the preoptic area and the major fi bre bundles to and from 
the telencephalon. 

    Table 9.7    Derivatives of the ganglionic eminences   

 Ganglionic eminence  ‘Specifi c’ gene expression  Derivatives 

 Lateral ganglionic 
eminence 

  Dlx1 ,  Dlx2 , Dlx 5 ,  Dlx6   Projection neurons for caudate, putamen, accumbens and olfactory tubercle 
 Late component neocortical interneurons 
 Granule and periglomerular cells olfactory bulb (SVZ) 
 Glial cells (SVZ) 

 Medial ganglionic 
eminence 

  Dlx1 ,  Dlx2 ,  Dlx5 ,  Dlx6 ;  Lhx6   Projection neurons for globus pallidus and ventral pallidum 
 Basal nucleus of Meynert 
 Most striatal interneurons 
 Most neocortical and hippocampal interneurons 
 GABAergic neurons for some thalamic nuclei 
 Glial cells (SVZ) 

 Caudal ganglionic 
eminence 

  Dlx2 ; cellular retinol binding 
protein 1 

 Amygdaloid nuclei 
 Contribution to interneuron population cortex and hippocampus 

  After Marín and Rubinstein ( 2002 ), Nery et al. ( 2002 ), Brazel et al. ( 2003 ) 
  SVZ  subventricular zone  

  Fig. 9.30    Subdivision of the mouse forebrain and the expression of 
genes regulating its regionalization (see text for explanation).  DP  dorsal 
pallium,  LP  lateral pallium,  MP  medial pallium,  LGE  lateral ganglionic 
eminence,  MGE  medial ganglionic eminence,  PRE  anterior preoptic 
region (After Zaki et al.  2003 )       
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 After induction of anterior neural character and specifi -
cation of telencephalic character (Chap.   2    ),  dorsoventral 
regionalization  of the telencephalon occurs.  Genetic anal-
yses  in mice have revealed that regionally restricted genes 
participate in the specifi cation of the identity of the telen-
cephalic territory in which they are expressed (Rubinstein 
et al.  1998 ; Smith-Fernández et al.  1998 ; Puelles et al.  2000 ; 
Marín and Rubinstein  2002 ; Zaki et al.  2003 ; Table  9.8 ). 
 Emx1  and  Emx2 , and  Dlx1  and  Dlx2  are among the earliest 
expressed pallial and subpallial markers, respectively. Their 
expression delineates three main telencephalic subdivisions 
in vertebrates (Figs.  9.30  and  9.31 ): the pallial, intermediate 
or ventral pallial, and subpallial neuroepithelial domains. 
The  ventral pallium  uniquely expresses the homeobox 
gene  Dbx1  (Yun et al.  2001 ) and is  Emx1 -negative (Puelles 
et al.  2000 ). The specifi c  boundaries  of the other  pallial 
domains  are less easily marked by discrete gene expres-
sion. Here, graded gene expression is more common.  Emx1 , 
 Emx2  and  Lhx2  all show high expression in the medial pal-
lium with a progressive reduction in expression in more lat-
eral regions (Gulisano et al.  1996 ; Pellegrini et al.  1996 ; 
Yoshida et al.  1997 ; Tole et al.  2000a ; Mallamacci et al. 
 2000 ; Yun et al.  2001 ), whereas  Pax6  and  Tbr1  show an 
opposite profi le with highest expression in the lateral and 
ventral pallium (Puelles et al.  2000 ; Toresson et al.  2000 ; 
Yun et al.  2001 ).  Emx2  and  Pax6  are involved in many 
aspects of cortical morphogenesis (Chap.   10    ). Nevertheless, 
in the absence of either  Emx2  or  Pax6 , cerebral cortex does 
form. In  Emx2 −/−;  Pax6   Sey / Sey   double mutant mice, however, 
conversion of the cerebral cortex into basal ganglia occurs 
(Muzio et al.  2002 ). It seems likely that at least one fully 
functional allele of either  Emx2  or  Pax6  is necessary and 
suffi cient for activating corticogenesis and to suppress com-
peting subpallial morphogenetic programs.

    In the  subpallium , many genes are expressed, more in 
particular the  Dlx1 ,  Dlx2 ,  Dlx5  and  Dlx6  genes (Eisenstat 
et al.  1999 ; Long et al.  2009a ,  b ) as well as  Gsh1  and  Gsh2  
(Toresson et al.  2000 ; Toresson and Campbell  2001 ; Yun 
et al.  2001 ) and  Mash1  (Long et al.  2009a ,  b ; Medina and 
Abellán  2012 ). The ventromedial telencephalon, including 
the MGE and the preoptic area, expresses  Nkx2.1  (Shimamura 
et al.  1995 ; Sussel et al.  1999 ; Sousa and Fishell  2010 ). The 
preoptic area also expresses  Isl1  (Marín and Rubinstein 
 2001 ). The CGE shares some molecular markers with both 
the LGE and the MGE (Xu et al.  2004 ; Flames et al.  2007 ; 
García-López et al.  2008 ). The CGE expresses  Dlx2  and 
 Ascl1  (formerly known as  Mash1 ) at levels equivalent to 
those in the other ganglionic eminences. In contrast,  Lhx6  is 
highly expressed in the MGE (Lavdas et al.  1999 ), hardly in 
the LGE and in only low levels in the CGE. The CGE is fur-
ther characterized by a high level of cellular retinol binding 
protein 1 (Nery et al.  2002 ). The LGE can be subdivided into 
two major portions each with two domains (Flames et al. 

 2007 ). The dorsal LGE, characterized by  Pax6  expression, 
appears to produce the GABAergic and dopaminergic inter-
neurons of the olfactory bulb rostrally and caudally the lat-
eral part of the central amygdala. The dorsal LGE also 
contributes cells to the caudate-putamen, the olfactory tuber-
cle, the accumbens and the central extended amygdala. The 
ventral LGE, characterized by  Isl1  expression, is the major 
source of projection neurons of the caudate-putamen and the 
accumbens and at caudal levels of the medial part of the cen-
tral amygdala. The globus pallidus, the ventral pallidum and 
the extended amygdala are derived from the MGE (Xu et al. 
 2008 ; Long et al.  2009a ,  b ). Most of the cortical GABAergic 
interneurons appear to arise in the MGE domain (Xu et al. 
 2008 ; Long et al.  2009a ,  b ), which may contain fi ve distinct 
progenitor domains (Flames et al.  2007 ). The embryonic pre-
optic area also contributes to the production of cortical inter-
neurons (Gelman et al.  2009 ). 

 The  pallial - subpallial  or  corticostriatal boundary  does 
not lie at the boundary between the ventral pallial and LGE 
progenitor zones but is slightly more ventral in the dorsal-
most part of the LGE. The early expression of the  Pax6  and 
 Gsh2  homeobox transcription factors overlaps in the dorsal 
part of the LGE. In  Gsh2  mutants, the dorsal part of the LGE 
is respecifi ed into a ventral pallium-like structure, whereas in 
 Pax6  mutants the ventral pallium is respecifi ed into a dorsal 
LGE-like structure (Stoykova et al.  1996 ,  2000 ; Toresson 
et al.  2000 ; Yun et al.  2001 ). Patterning defects caused by 
loss of Pax6 function result in multiple morphological abnor-
malities in the brain of  Sey  mutants such as dysgenesis of the 
piriform, insular and lateral cortices, and of the claustrum, 
failure in the differentiation of a subpopulation of cortical 
precursors, and absence of the olfactory bulbs.  Tlx  and  Pax6  
cooperate in the establishment of the pallial-subpallial 
boundary in the embryonic mouse telencephalon (Stenman 
et al.  2003 ).  Tlx  homozygous mutants show alterations in the 
development of this boundary similar, but less severe than 
those seen in  Sey / Pax6  mutants. Malformations occur in the 
lateral and basolateral amygdala, both of which are derived 
from the ventral pallium. In human embryos,  PAX6  is 
expressed early in the neural tube, just after its closure 
(Gérard et al.  1995 ).  PAX6  haploinsuffi ciency causes cere-
bral malformation and olfactory dysfunction in humans 
(Sisodiya et al.  2001 ). 

 Like in the spinal cord, the roof plate (Fig.  9.4 ) may play 
an essential role in  dorsal telencephalic  or  pallial pattern-
ing  through BMP signalling. Explant studies support a role 
for BMPs in dorsal telencephalic development (Furuta et al. 
 1997 ) and in the expression of  Lhx2  (Monuki et al.  2001 ). 
Receptor blocking studies, however, suggest that loss of 
BMP signalling in the dorsal telencephalon leads to a normal 
dorsal-ventral pattern but maldevelopment of the choroid 
plexus, suggesting only a local role for BMPs in the dorsal 
telencephalic midline (Hébert et al.  2002 ). Genetic ablation 
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   Table 9.8    Some gene expression patterns during the development of the murine forebrain   

 Transcription factor 
gene or extracellular 
signalling molecule 

 Beginning of 
expression  Site of expression  Mouse mutant  Phenotype of mouse mutant 

 Human homologue and 
phenotype 

  Induction of anterior neural character  
  Otx2   E6.5  Prosencephalon, 

mesencephalon 
  Otx2−/−   Absence of forebrain and large part 

of brain stem; lethal in embryonic 
period 

  Otx1   E8  Dorsal part 
telencephalon, 
mesencephalon 

  Otx1−/−   Cell reduction in cerebral cortex, 
epilepsy 

  Specifi cation of telencephalic character  
  Foxg1 (BF1)   E8  Dorsal 

telencephalon 
  Foxg1−/−   Early postnatal lethality; severe 

hypoplasia telencephalon with 
absence of subpallium 

  Dorsoventral patterning telencephalon  
  Gli3   Gli3−/−  Early postnatal lethality; ventral 

markers expand into the cortex 
  GLI3  mutations lead to 
Greig syndrome   Extra toes  

  Shh   E8  Medial part neural 
plate 

  Shh−/−   Malformations basal telencephalon, 
cyclopia 

  SHH  mutations lead to 
HPE 

  Proneural genes  
  Ngn1    Ngn1−/−   Neonatal lethal; decrease in number 

of neurons in preplate 
  Ngn2    Ngn2−/−   Perinatal lethal; ventral markers 

upregulated; cortical ectopia 
  Regionalization  
  Pallium  
  Emx2   E8  Pallium   Emx2−/−   Loss of dentate gyrus   EMX2  mutations may 

lead to schizencephaly 
 Pax6  E8  Pallium and eye 

primordia 
  Pax6   Sey / Sey    Heterozygotes: small eye, iris 

hypoplasia 
  PAX6  mutations result in 
aniridia 

 Homozygotes: absence of eyes 
  Emx1   E9.5  Pallium   Emx1−/−   Absence of corpus callosum 
  Tbr1   E10  Pallium   Tbr1−/−   Loss of certain neuron types in 

cortex 
  Lhx2   Medial pallium   Lhx2−/−   Agenesis of hippocampal anlage; 

hypoplasia cortical plate and basal 
ganglia 

  Subpallium  
  Nkx2.1   E8  Medial ganglionic 

eminence, preoptic 
area 

  Nkx2.1−/−   Absence pallidum and severe loss of 
cortical interneurons 

  Ascl1  ( Mash1 )  Subpallium, 
olfactory bulb and 
epithelium 

  Mash1−/−   Widespread defects in primary 
olfactory pathway 

  Dlx1/2   E9.5  Subpallium  Single mutants only mild phenotype 
  Dlx5   Subpallium, 

olfactory bulb and 
epithelium 

  Dlx5−/−   Lack of innervation of olfactory bulb 
with other secondary defects 

  Lhx6   Medial ganglionic 
eminence 

  Gsh1/2   Lateral ganglionic 
eminence 

  Gsh2−/−   Lateral ganglinoic eminence reduced 
in size; medial ganglionic eminence 
relatively normal 

  Gsh1/2−/−   Lateral ganglionic eminence more 
affected than in  Gsh2 −/−; medial 
ganglionic eminence relatively 
normal 

  Isl1   Preoptic area 

  After Rubinstein et al. ( 1998 ), Marín and Rubinstein ( 2002 ), Zaki et al.  2003 )  
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of the telencephalic roof plate leads to a severely reduced 
expression of  Lhx2  and a severe reduction in cortical size 
(Monuki et al.  2001 ). Another transcription factor that is cru-
cial in dorsal patterning is the zinc-fi nger gene  Gli3  (Rallu 
et al.  2002b ; Campbell  2003 ).  Gli3  is required to antagonize 
the ventralizing signal SHH in the dorsal telencephalon 
(Rallu et al.  2002a ). Loss of  Gli3  function in  Extra - toes  
mutants results in a loss of  Emx  gene expression as well as in 
the ectopic expression of certain genes characteristic of ven-
tral telencephalic progenitors such as  Gsh2  (Theil et al. 
 1999 ; Tole et al.  2000b ; Rallu et al.  2002a ).  Extra - toes  
mutant mice also lack the telencephalic choroid plexus and 
olfactory bulbs (Franz  1994 ).  Gli3  mutations are also respon-
sible for the abnormalities in the arhinencephalic  Pdn / Pdn  
(homozygote of  Polydactyly Nagoya  mouse,  Pdn ) mice 
(Naruse and Keino  1995 ). In man,  GLI3  mutations lead to 
Greig’s (Greig  1926 ) cephalopolysyndactyly syndrome 
(Vortkamp et al.  1992 ), characterized by the presence of 

hypertelorism and polysyndactyly, and Pallister-Hall syn-
drome (Kang et al.  1997 ). 

 The secreted glycoprotein SHH is required for  ventral 
telencephalic  or  subpallial patterning  as shown in  Shh -null 
mice (Chiang et al.  1996 ; Litingtung and Chiang  2000 ). 
Although these mutants lack any sign of MGE development 
such as expression of the  Nkx2.1  homeodomain protein, 
many of them express genes normally found in both the 
MGE and the LGE such as  Gsh2  and  Dlx2  (Rallu et al. 
 2002a ,  b ); therefore, SHH is required for ventromedial telen-
cephalic development. A mutation in  Nkx2.1  results in the 
acquisition of striatal-like properties by the presumptive pal-
lidum, suggesting that  Nkx2.1  both specifi es an MGE fate 
and inhibits LGE phenotypes (Sussel et al.  1999 ; Butt et al. 
 2008 ; Flandin et al.  2010 ). Nodal signalling is also required 
for induction of  Nkx2.1  expression as shown in zebrafi sh 
(Rohr et al.  2001 ). In  Pax6  ( Sey ) mutants, MGE markers 
expand into the LGE, leading to an overall reduction in size 
of the striatum and expression of MGE-derived structures 
(Stoykova et al.  2000 ); therefore,  Pax6  and  Nkx2.1  both 
operate at the LGE-MGE border, maintaining LGE and 
MGE identity, respectively.  Gsh1  and  Gsh2  also encode 
homeodomain proteins and are important for ventral telence-
phalic specifi cation. In  Gsh2  single and  Gsh1 / Gsh2  double 
mutants, dorsal markers cross the LGE-pallial boundary into 
the LGE and ventral markers are suppressed (Corbin et al. 
 2000 ; Toresson et al.  2000 ; Toresson and Campbell  2001 ). 
Probably,  Gsh2  maintains dorsal LGE identity without 
directly regulating ventral marker expression (Toresson et al. 
 2000 ), whereas expression of ventral genes in the ventral 
part of the LGE involves a more direct role of  Gsh1  and/or 
 Gsh2  (Toresson and Campbell  2001 ; Yun et al.  2001 ; Waclaw 
et al.  2009 ). Sousa and Fishell ( 2010 ) suggested that ventral 
telencephalic patterning is largely mediated by two sequen-
tial periods of competence, designated as C1 and C2. The 
SHH-mediated induction of  Nkx2.1  expression provides the 
hallmark of the initiation of MGE development and corre-
spondingly the C1 period. This is followed by the C2 compe-
tence period, during which SHH signalling induces the  LGE/
CGE. Both structures induced during C1 (MGE) and C2 
(LGE/CGE) are characterized by early production of projec-
tion neurons from their ventral aspects and late production of 
interneurons from their dorsal domains. In the human brain, 
cortical interneurons are also produced in the dorsal subven-
tricular zone (Chap.   10    ). 

  Dlx1 ,  Dlx2 ,  Dlx5  and  Dlx6  are expressed in overlapping 
sets of cells in the developing forebrain and single mutants 
have mild phenotypes, suggesting redundancy of function 
(Bulfone et al.  1993 ; Anderson et al.  1997b ; Liu et al.  1997 ; 
Eisenstat et al.  1999 ; Panganiban and Rubinstein  2002 ). 
 Dlx2  is expressed before  Dlx1 , which is expressed before 
 Dlx5  and  Dlx6 . In the basal forebrain, the  Dlx -positive cells 
differentiate into striatal and pallidal projection neurons as 
well as into interneurons for the cerebral cortex and olfactory 

a

b

  Fig. 9.31    Photomicrographs of  Dlx5  ( a ) and  Math4a  ( b ) labelling in 
the E14.5 mouse forebrain.  BG  basal ganglia,  Ctx  cortex,  DT  dorsal 
thalamus,  VT  ventral thalamus (Courtesy Luis Puelles, Murcia, and 
Loreta Medina, Lleda)       
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bulb.  Dlx2  mutants have reduced numbers of dopaminergic 
neurons in the olfactory bulb (Acampora et al.  1999 ; Eisenstat 
et al.  1999 ). In  Dlx1 / Dlx2  double mutants, neurogenesis in 
the subpallium is disturbed, in particular the subventricular 
zone fails to mature (Anderson et al.  1997b ; Marín et al. 
 2000 ). Cortical interneuron development appears to be 
dependent on  Dlx  dosage: one wild type  Dlx2  allele in a  Dlx1  
null background is suffi cient to rescue tangential migration 
to the cortex, though not subsequent radial migration into the 
cortical plate (Cobos et al.  2007 ).  Dlx  function is tightly 
labelled to the development of neurons derived from the 
basal telencephalon that produce GABA, acetylcholine and 
dopamine (Marín and Rubinstein  2002 ; Panganiban and 
Rubinstein  2002 ). Ectopic expression of  Dlx2  and  Dlx5  
genes induces the expression of glutamic decarboxylase 
(GAD), the enzyme that synthesizes GABA (Stühmer et al. 
 2002 ). Moreover,  Dlx5  regulates the development of periph-
eral and central components of the olfactory system (Long 
et al.  2003 ).  Ascl1 , formerly known as  Mash1 , a basic helix-
loop- helix transcription factor, regulates neurogenesis in the 
ventral telencephalon (Casarosa et al.  1999 ).  Mash1  mutant 
mice show severe loss of progenitors, particularly of neuro-
nal precursors in the subventricular zone of the MGE. 
Discrete neuronal populations of the basal ganglia and cere-
bral cortex are subsequently missing. Loss of  Mash1  func-
tion also causes widespread defects in the primary olfactory 
pathway (Murray et al.  2003 ). Cells that migrate tangentially 
from the subpallium to the pallium express  Dlx1 / Dlx2 ,  Arx  
and/or  Lhx6 . Lack of both  Dlx1  and  Dlx2 , or  Arx , or  Lhx6  in 
mice is correlated with a dramatic decline in the number of 
GABAergic interneurons in the cerebral cortex (Anderson 
et al.  1997b ,  2001 ; Cobos et al.  2005a ,  b ,  2007 ). The decline 
of specifi c subtypes of GABAergic interneurons in the cere-
bral cortex due to mutations in  Dlx1  or  Arx  has been corre-
lated with epileptic activity in mice and with epilepsy, 
lissencephaly and intellectual disability in humans (Kitamura 
et al.  2002 ; Colombo et al.  2004 ,  2007 ; Cobos et al.  2005b ; 
Kato and Dobyns  2005 ; Marsh et al.  2009 ; Price et al.  2009 ; 
Chap.   10    ). 

 In the forebrain two main modes of  migration  can be rec-
ognized: radial and tangential (Fig.  9.32 ). The coexistence of 
these two different methods of cell migration has been well 
established for the developing cerebral cortex (Chap.   10    ). 
Lineage analysis studies showed that radially and tangen-
tially migrating cells in the developing cortex arise from dif-
ferent progenitors (Mione et al.  1997 ; Tan et al.  1998 ). 
Moreover, the presence of  Dlx2 -positive neurons in the 
developing cortex suggested that cells of subpallial origin 
might have migrated tangentially into the pallium (Porteus 
et al.  1994 ). It is now clear that most cortical GABAergic 
neurons are born in the subpallium as already suggested by 
van Eden et al. ( 1989 ), and reach the developing cortex in 
several tangentially migrating streams (de Carlos et al.  1996 ; 
Anderson et al.  1997a ; Tamamaki et al.  1997 ).

   After these fi rst studies on the origin of GABAergic neu-
rons from the subpallium, a variety of experimental studies 
showed that GABAergic neurons for the entire cerebral cor-
tex, including the neocortex, the piriform cortex and the hip-
pocampus arise subpallially (Lavdas et al.  1999 ; Wichterle 
et al.  1999 ,  2001 ; Corbin et al.  2001 ; Marín and Rubinstein 
 2001 ; Nery et al.  2002 ; Brazel et al.  2003 ; Kriegstein and 
Noctor  2004 ). The three ganglionic eminences contribute 
different types of cells to different brain structures, and a 
similar pattern is likely to be present in man. The MGE 
appeared to be the main source of cortical interneurons 
(Lavdas et al.  1999 ; Wichterle et al.  1999 ,  2001 ). These 
cells express the LIM homeobox gene  Lhx6  and reach to 
the cerebral cortex via  dorsal  and  lateral cortical streams  
(Fig.  9.33 ). The MGE also contributes cells to the globus 
pallidus and the cholinergic basal nucleus of Meynert. 
LGE cells migrate ventrally and anteriorly, and give rise 
to the GABAergic medium spiny neurons in the striatum, 
nucleus accumbens and olfactory tubercle, and to granule 
and  periglomerular cells of the olfactory bulb. The striatal 
and olfactory bulb cells arise from two distinct progenitor 
populations in the LGE (Stenman et al.  2003 ). Progenitor 

  Fig. 9.32    Genes involved in specifi cation and/or migration of tangen-
tially migrating interneuron populations in the ventral forebrain (see 
text for explanation). Neurons indicated  A - D  express the following 
genes: A,  Mash1 ; B,  Dlx1 / 2 ; C,  Lhx6  and D,  Nkx2.1. CSB  corticostriatal 
boundary (After Zaki et al.  2003 )       
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cells in the subventricular zone of the LGE generate gran-
ule and periglomerular cells for the olfactory bulb (Hinds 
 1968a ,  b ; Altman  1969 ; Bayer  1983 ; Kishi  1987 ). In neo-
natal and adult rodents and primates, these cells reach their 
fi nal position via a  rostral migratory stream  (Luskin  1993 ; 
Lois and Alvarez- Buylla  1994 ; Kornack and Rakic  2001 ). 
The CGE contributes to the posterior neocortex, the hippo-
campus, the amygdala and posterior parts of the striatum 
and globus  pallidus (Nery et al.  2002 ).

9.6         Development of the Rhinencephalon 

 The mammalian  rhinencephalon , i.e. the part of the telen-
cephalon involved in the processing of chemosensory 
information, is composed of the main olfactory system, the 
accessory olfactory or vomeronasal system and the termi-

nal nerve (Stephan  1975 ; Voogd et al.  1998 ). Olfactory 
fi bres originate in the olfactory epithelium and pass as  fi la 
olfactoria  through the cribriform plate of the ethmoid to 
contact the olfactory bulb. The central part of the  main 
olfactory system  comprises the olfactory bulb and the tar-
gets of its projections within the telencephalon, i.e. the ret-
robulbar region or anterior olfactory nucleus, the olfactory 
tubercle, the prepiriform, periamygdaloid and entorhinal 
cortices, and the cortical and medial nuclei of the amygda-
loid complex (Lohman and Lammers  1967 ; Price  1990 ; 
Shipley et al.  1995 ; Fig.  9.34 ). The  accessory olfactory 
system , also known as the  vomeronasal system , comprises 
the  vomeronasal organ of Jacobson, the accessory olfactory 
bulb and some nuclei of the amygdaloid complex (Halpern 
 1987 ; Shipley et al.  1995 ). The accessory olfactory system 
is primarily involved in the regulation of reproductive 
behaviour, elicited by pheromones, chemical messengers 

a b  Fig. 9.33    Major    routes of tangential migration in 
the murine forebrain:  1  dorsal migratory stream,  2  
caudal migratory stream,  3  lateral cortical stream, 
 4  rostral migratory stream.  CGE  caudal ganglionic 
eminence,  LGE  lateral ganglionic eminence,  MGE  
medial ganglionic eminence,  OB  olfactory bulb 
(After Corbin et al.  2001 ; Wichterle et al.  2001 )       

  Fig. 9.34    Overview of the human rhinencephalon. 
 A  anterior nucleus,  AC  anterior commissure,  BL  
basolateral amygdala,  C  cortical amygdala,  CA  
cornu Ammonis,  CC  corpus callosum,  CM  corpus 
mammillare,  EN  entorhinal cortex,  F  fornix,  GC  
gyrus cinguli,  GD  gyrus dentatus,  GPH  gyrus 
parahippocampalis,  IN  indudium griseum,  L  lateral 
olfactory stria,  M  medial olfactory stria,  MD  
mediodorsal nucleus,  OB  olfactory bulb,  OT  
olfactory tract,  ST  stria terminalis,  SUB  subiculum       
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from other members of the same species (Dulac and Torello 
 2003 ). In humans, the vomeronasal system is established 
during embryonic development and regresses in the fetal 
period (Ortmann  1989 ; Kjaer and Fischer-Hansen  1996 ), 
although as many as 850 cells may be present by 4 months 
after birth (Oelschläger et al.  1987 ). The human  vomero-
nasal organ  of  Jacobson , a pocket lying in the nasal sep-
tum, opens into the vomeronasal pit, about 1 cm dorsal to 
the columella and 1–2 mm above the fl oor of the nose. In 
some 40 % of adults, this opening can be seen macroscopi-
cally (Moran et al.  1991 ), and even in 73 % of the popula-
tion using endoscopy (Trottier et al.  2000 ).

   The  olfactory bulb  arises as an evagination of the rostral 
telencephalon (Fig.  9.35 ) and receives primary olfactory 
afferent fi bres from neurons in the olfactory epithelium. The 
primary olfactory fi bres synapse on the dendrites of gluta-
minergic projection neurons (the  mitral  and  tufted cells ) 
found in specialized structures called  glomeruli , forming the 
glomerular layer. Many thousands of olfactory receptor cells 
synapse with the dendritic branches of one or only a few 
mitral cells within a glomerulus, resulting in a high degree of 
convergence of olfactory receptors onto mitral cells 
(Shepherd and Greer  1990 ). A large number of inhibitory, 
GABAergic interneurons are present in the olfactory bulb, 
the most common of which are the  granule  and  periglomeru-
lar cells . Most of the periglomerular cells are GABAergic as 
well as dopaminergic. The following layers can be recog-
nized in the olfactory bulb: (1) the  outer fi bre layer , consist-
ing of the incoming olfactory fi bres; (2) the  glomerular 
layer , consisting of several rows of glomeruli surrounded by 
periglomerular cells; (3) the  external plexiform layer , con-
taining the dendritic branches of mitral cells and granule 
cells; (4) the  mitral cell layer , not well-defi ned in man; (5) an 
ill-defi ned  internal plexiform layer , largely composed of 
axons of mitral and tufted cells; (6) the  granular layer , with 
the granule cells; and (7) a  periventricular layer , composed 
of the  subventricular zone , a reservoir of progenitor cells that 
produces new granule and periglomerular cells in the adult 
brain, and  ependymal cells , remnants of the epithelial layer 
of the olfactory ventricle.

    Development  of the  olfactory bulb  begins with its induc-
tion and evagination from the rostral telencephalon. FGF sig-
nalling through FGFR1 is required for olfactory bulb 
morphogenesis (Hébert et al.  2003 ). Signalling from the 
olfactory placode may contribute to patterning the anlage of 
the olfactory bulb (Graziadei and Monti-Graziadei  1992 ; de 
Carlos et al.  1995 ; LaMantia et al.  2000 ). The mitral and 
tufted neurons have a pallial origin and are regulated by 

 cortical transcription factors such as  Tbr1  (Bulfone et al. 
 1998 ), whereas the granule and periglomerular cells have a 
subpallial origin and are regulated by subpallial transcription 
factors such as  Dlx1  and  Dlx2  (Qiu et al.  1995 ; Bulfone et al. 
 1998 ). The  Dlx  family of homeobox genes is expressed in 
the olfactory bulb as well as in the olfactory epithelium 
(Acampora et al.  1999 ; Depew et al.  1999 ; Long et al.  2003 ). 
In particular,  Dlx5  is expressed in the olfactory placode, the 

a

b

c

  Fig. 9.35    Development of the human olfactory bulb: ( a ) a stage 18 
embryo (about 42 days of development); ( b ) a 3.2-mm fetus; ( c ) a 4.9- 
mm fetus (After Pearson  1941b ; Hinrichsen  1990 )       
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olfactory epithelium and local circuit neurons of the olfac-
tory bulb. In  Dlx5 −/− mutants, the size of the olfactory 
epithelium is reduced and the few olfactory neurons formed 
fail to generate axons that innervate the olfactory bulb (Long 
et al.  2003 ). Despite this lack of innervation, the olfactory 
bulb forms, and neurogenesis of projection and local circuit 
neurons proceeds. Widespread defects in the primary olfac-
tory pathway are caused by loss of  Ascl1  (formerly  Mash1 ) 
function (Murray et al.  2003 ). This homologue of the 
 Drosophila  proneural genes  achaete  and  scute  is normally 
expressed by neuronal progenitors in the developing periph-
eral nervous system and CNS, including the olfactory epithe-
lium and the olfactory bulb and ganglionic eminences 
(Guillemot et al.  1993 ; Cau et al.  2002 ).  Neurogenin 1 , 
related to the  Drosophila  proneural gene  atonal , is necessary 
for the differentiation of olfactory sensory neuron progeni-
tors (Cau et al.  2002 ). In human cases of arhinencephaly as 
found in HPE and in Kallmann syndrome, both olfactory 
receptor cells and olfactory nerves are present (Braddock 
et al.  1995 ), also suggesting that the initial development of 
the olfactory nerves is independent of the formation of the 
olfactory bulb. Bilaterally enlarged olfactory bulbs with 
abnormal laminar structures were described as  olfactory 
bulb dysplasia  in a case of Pena-Shokeir phenotype 
(Yamanouchi et al.  1999 ). Loss of smell ( anosmia ) is rather 
common and the frequency increases with age. A much 
smaller group have no memory of ever being able to smell 
and are classifi ed as having  isolated congenital anosmia  
(Karstensen and Tommerup  2012 ). Families are rare and 
tend to present in a dominant inheritance pattern. Anosmia is 
part of the clinical spectrum in various diseases such as 
Kallmann syndrome, various ciliopathies and congenital 
insensitivity to pain. 

 Pearson ( 1941b ,  1942 ) described the  development  of the 
 human olfactory bulb  (Fig.  9.35 ). At the end of the fi rst 
gestational month (stage 13), the olfactory placodes can be 
distinguished as epithelial thickenings on either side of the 
head. Subsequently, the olfactory placodes are overgrown by 
the nasal folds, resulting in the formation of the olfactory pits 
(Chap.   5    ). The fi rst bipolar cells appear in the olfactory plac-
ode at stage 14. At stage 16, olfactory fi bres enter the wall of 
the telencephalon when still no olfactory bulb can be identi-
fi ed (Lemire et al.  1975 ; Bossy  1980 ; Pyatkina  1982 ; Müller 
and O’Rahilly  1989a ,  2004 ). Soon afterwards, the olfactory 
bulb begins as a slight bulge (stage 17), and by stage 20 it 
consists of a slight protrusion. By stage 22 all layers of the 
olfactory bulb are represented (Humphrey  1967 ; Lemire 
et al.  1975 ; Bossy  1980 ; Müller and O’Rahilly  1989b ,  2004 ). 

Occasionally, a remnant olfactory ventricle may be observed 
(Clinical Case  9.7 ). 

 The  vomeronasal organ  of  Jacobson  fi rst appears as a 
groove in the nasal septum at stage 18 (Humphrey  1940 ). 
Nerve fi bres from this region may be traced into the vom-
eronasal and terminal nerves. The  vomeronasal nerve  
arises from cells found in the medial border of the olfactory 
placode and is diffi cult to separate from the terminal nerve 
which arises in the same area at the same time (Pearson 
 1941a ,  1942 ; Fig.  9.36 ). Vomeronasal fi bres pass dorsome-
dially along the developing olfactory bulb to enter the 
accessory olfactory bulb around stage 18 (Humphrey  1940 ). 
The  accessory olfactory bulb  moves from its original dor-
somedial position to a dorsolateral position. It begins to 
regress at the beginning of the third gestational month and 
is vestigial by the end of the third gestational month 
(Humphrey  1940 ; Lemire et al.  1975 ; Meisami and 
Bhatnagar  1998 ; Meredith  2001 ; Savic et al.  2001 ). The 
development of the vomeronasal nerve and accessory olfac-
tory bulb parallels the development and regression of the 
vomeronasal organ in the human embryo. The  terminal 
nerve  is characterized by ganglion cells along its course 
and has been described in adults (Crosby and Humphrey 
 1941 ). At stages 16 and 17, the terminal nerve arises from 
cells in the medial part of the olfactory placode and is 
closely associated with the vomeronasal nerve (Pearson 
 1941a ). GnRH neurons migrate along the vomeronasal and 
terminal nerves to the forebrain (Schwanzel- Fukuda and 
Pfaff  1989 ; Schwanzel-Fukuda et al.  1989 ; Boehm et al. 
 1994 ; Berliner et al.  1996 ). GnRH neurons can be detected 
in the olfactory epithelium as early as 5.5 weeks of devel-
opment (Fig.  9.55a , b). These cells migrate along the devel-
oping vomeronasal and terminal nerves shortly afterwards 
(Verney et al.  1996 ).

   The development of human primary and secondary olfac-
tory areas is shown in basal views of the brain (Fig.  9.37 ). At 
fi rst olfactory regions of the brain occupy a large part of the 
basal aspect of the brain. Later in development, the olfactory 
regions become restricted to a small part of the basal frontal 
lobe and the rostromedial part of the temporal lobe (Macchi 
 1951 ; Gastaut and Lammers  1961 ; Kahle  1969 ; Stephan 
 1975 ).

   Extensive  birthdating studies  on the  olfactory system  
have been carried out in rodents. Data are available for the 
olfactory bulb (Hinds  1968a ,  b ; Bayer  1983 ,  1986a ,  b ), the 
olfactory tubercle (ten Donkelaar and Dederen  1979 ; Bayer 
 1985a ; Bayer and Altman  1987b ) and the primary olfactory 
cortex (Bayer  1985b ; Bayer and Altman  1987b ). In rats, 
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mitral cells in the olfactory bulb are born on E14-E16, and 
granule cells from E20 onwards, continuing in the adult 
brain. Several neurogenetic gradients in all structures receiv-
ing olfactory input were found. Bayer ( 1986b ) suggested a 
relationship between these gradients in the olfactory target 
structures and their connections with the olfactory bulb. 
Bayer et al. ( 1995 ) estimated the time of neuron origin of 
human mitral cells between 5 and 8 weeks of development. 
Human granule cells are formed from the 19th week of 
development onwards. 

 The  development  of  olfactory bulb projections  has been 
studied in rats (Schwob and Price  1984 ; López- Mascaraque 
et al.  1996 ; Hongo et al.  2000 ). Using the fl uorescent carbo-
cyanine tracer DiI, the fi rst olfactory projections can already 
be detected at E13 (López-Mascaraque et al.  1996 ). Pioneering 
fi bres begin to grow through the ventral part of the telenceph-
alon. At E14 and E15, these fi bres have reached distant parts 
in the basal and lateral parts of the telencephalic vesicle, and 
establish the fi rst contacts with the future amygdaloid area 
and the primary olfactory cortex. At E16, fi bres from the 

olfactory bulb run caudally in a fan-like fashion, the lateral 
olfactory tract increases considerably and some fi bres course 
along the anterior commissure. At E17, the major fi bre sys-
tems appear already established, providing the substrate of 
the adult pattern. The further development of axonal connec-
tions in the central olfactory system has been studied by 
Schwob and Price ( 1984 ). In genetic arhinencephaly mouse 
embryos ( Pdn / Pdn ), the olfactory bulb is not formed, and 
olfactory fi bers do not enter the CNS. They form a tangled 
mass under the cerebral hemisphere at E16 (Hongo et al. 
 2000 ).  Pdn / Pdn  mice exhibit preaxial polydactyly in both the 
forelimbs and hindlimbs (Naruse and Keino  1995 ). Newborns 
do not suckle milk and die within 1 day after birth. They also 
exhibit various brain malformations, including absence of the 
olfactory bulbs and corpus callosum. Apoptosis of precursor 
mitral cells in the anlage of the olfactory bulb may be induced 
by non-innervation of olfactory neurons, and sequential apop-
tosis of precursor neurons in the pyriform cortex may be 
induced by non- innervation due to death of mitral cells 
(Naruse and Keino  1995 ). 

  Fig. 9.36    Development of the human 
vomeronasal and terminal nerves at stage 18. 
 LP  lateral olfactory plexus,  MP  medial olfactory 
plexus,  NC  nasal cavity,  OE  olfactory epithelium, 
 OF  olfactory fi eld,  TG  terminal ganglion,  T / VN , 
terminal and vomeronasal nerves,  VNG  
vomeronasal groove (After Ashwell and 
Waite  2004 )       
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  Fig. 9.37    Basal views of the human brain in the second ( a ), third ( b ), 
fourth ( c ) and sixth ( d ) months of development.  DB  diagonal band of 
Broca,  EN  entorhinal cortex,  OB  olfactory bulb,  OT  olfactory tubercle, 

 PC  paleocortex,  PPF  prepiriform cortex,  PRA  perirhinal cortex,  S  sep-
tum (After Macchi  1951 ; Gastaut and Lammers  1961 ; Kahle  1969 ; 
Stephan and Andy  1977 )       

a b

c d
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  Clinical Case 9.7 A Remnant Olfactory 
Ventricle 

 An olfactory ventricle is an embryonic structure which 
appears in connection with the development of the olfac-
tory nerve. It regresses after the formation of the olfactory 
bulb, but in certain pathological conditions, a  remnant 
olfactory ventricle  persists (see Case Report). 

  Case Report . A newborn male baby without any 
familial history died of a connatal infection shortly after 

birth. No gross malformations were observed. At autopsy, 
only agenesis of the olfactory nerves was observed 
(Fig.  9.38a ). On the right side of the brain, there was a 
small protrusion, suggesting a rudimentary olfactory 
structure in which histologically a remnant olfactory ven-
tricle was found (Fig.  9.38b ). An olfactory ventricle is 
seen in embryonic stages (Fig.  9.38c ). The persistence of 
such an embryonic structure may indicate a developmen-
tal disturbance.

  Fig. 9.38    A remnant olfactory ventricle: ( a ) the base of the cerebrum, 
showing agenesis of the olfactory nerves; on the right side a rudimen-
tary olfactory protrusion is present; ( b ) horizontal section of the embry-
onic cerebral hemispheres at Carnegie stage 21, showing the olfactory 

ventricles (Courtesy Kohei Shiota, Kyoto); ( c ) frontal section of the 
present case, showing the olfactory ventricle at the bottom (Courtesy 
Akira Hori, Toyohashi)       

a

c

b 
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9.7         The Prosencephalies 

 Prosencephalic malformations may be the result of defects in 
mediolateral patterning of the rostral part of the embryonic 
neural plate. Since this anlage gives rise to the forebrain with 
the eye vesicles and the hypothalamus/neurohypophysis, 
prosencephalic defects are usually accompanied by anoma-
lies of the eyes and the pituitary gland. These disorders are 
sometimes described as  midline fi eld defects  (Opitz  1993 ; 
Opitz et al.  1997 ; Roessler and Muenke  2001 ) but from an 
embryological point of view they are quite heterogeneous and 
a real midline fi eld does not exist (O’Rahilly and Müller 
 2001 ). The general term  prosencephalies  (Probst  1979 ) 
includes a scala of malformations, ranging from aprosen-
cephaly to partial or lobar HPE (Sergi and Schmitt  2000 ; 
Kakita et al.  2001 ; Table  9.9 ). The most severe forms of 
developmental malformations of the forebrain are complete 
absence of the forebrain (aprosencephaly) or of the telen-
cephalon (atelencephaly). The most frequent prosencephalies 
are the various forms of HPE. Related disorders are septo-
optic dysplasia (de Morsier syndrome) and isolated arhinen-
cephaly as found in disorders such as Kallmann syndrome.

9.7.1        Aprosencephaly 

  Aprosencephaly  and  atelencephaly  are extremely rare CNS 
defects. Several cases were studied neuropathologically 
(   Garcia and Duncan  1977 ; Siebert et al.  1986 ,  1987 ; Lurie 
et al.  1979 ,  1980 ; Towfi ghi et al.  1987 ; Kim et al.  1990 ; 
Harris et al.  1994 ; Ippel et al.  1998 ; Sergi and Schmitt  2000 ; 
Kakita et al.  2001 ; Clinical Case  9.8 ). In  aprosencephaly , 
the forebrain structures derived from the telencephalon (the 
cerebral cortex, the basal ganglia and the hypothalamus) and 
the diencephalon (the eyes and the thalamus) are absent or 
rudimentary. In  atelencephaly , the thalami are developed 
and some residual hemispheres may be found. The aetiology 
of aprosencephaly and atelencephaly remains controversial. 
Some cases may be due to a destructive, encephaloclastic 
process (Norman et al.  1995 ), but could also be primary 

 malformations (Leech and Shuman  1986 ; Sergi and Schmitt 
 2000 ). Sergi and Schmitt ( 2000 ) described two cases of a 
vesicular forebrain ( pseudo - aprosencephaly ), a possible 
missing link in the teratogenic spectrum of defective fore-
brain anlage (Table  9.9 ). Which genes are involved is 
unknown, but  OTX2  is apparently not involved (Florell et al. 
 1996 ). The case of aprosencephaly described by Kakita et al. 
( 2001 ) did not show evidence of destruction. In their case, a 
male fetus of 20 weeks of gestation, the prosencephalon was 
extremely small and was replaced by a solid, cylindrical 
mass without hemispheric cleavage or a ventricle. The most 
rostral part of the CNS penetrated through a midsagittal ecto-
pic canal in the sphenoid bone, comparable to a case of 
cyclopia (Kakita et al.  1997 ). 

     Table 9.9    Subdivision of the prosencephalies   

 Subdivision  Further subdivision  Remarks 

 Aprosencephaly 
 Atelencephaly 
 Prosencephaly 

 Complete sac category 
(pseudo-aprosencephaly) 
 Dorsal sac category 
(holosphere with dorsal 
sac) 

 Phenotypes: 
 Cyclopia; 
 Ethmocephaly; 
 Cebocephaly; 
 Median (or bilateral 
cleft) lip/palate; 
 Minor dysplasias or 
without facial 
defects 

 Intermediate category 
 Pseudohemispheric 
category (holosphere 
without sac) 
 Partial prosencephaly 
(anterior part of 
holosphere divided, 
posterior part continuous) 
 Middle interhemispheric 
variant 

  After Probst ( 1979 ), Sergi and Schmitt ( 2000 )  

  Clinical Case 9.8 Aprosencephaly 

  Aprosencephaly  is an extremely rare fetal CNS defect in 
which the forebrain structures derived from both the tel-
encephalon and the diencephalon are absent or rudimen-
tary (Kakita et al.  2001 ; see Case Reports). Sergi and 
Schmitt ( 2000 ) reported a case in which the forebrain was 
missing but remnants of a forebrain bleb were observed 
( pseudo - aprosencephaly ). 

  Case Reports . In the fi rst case, on ultrasound exami-
nation of the fourth pregnancy of a 32-year-old mother 
with severe diabetes mellitus type 1, the fetus was sus-
pected for anencephaly; therefore, delivery was induced 
at 20 gestational weeks. The immature female fetus 
showed multiple congenital malformations (Fig.  9.39a– c ), 
including: (1)  aprosencephaly , characterized by the 
absence of the diencephalon and the telencephalon with 
absence of the olfactory bulbs and a malformed optic 
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 chiasm; (2) low brain weight (6.8 g instead of the 40 g 
normal for 20 gestational weeks); (3) skull malformations 
with a strongly fl attened skull cap, a malformed skull 
base with absence of the crista galli and one frontal bone, 
and absence of fonticuli; (4) lateral cheilognathopalatas-

chisis on the right; (5) low-positioned, malformed ears; 
(6) short neck with slight webbing; (7) skeletal malforma-
tions (immature skeleton, fusion of some ribs, open spine 
at the Th11 level. Chromosomal analysis showed a nor-
mal 46XX karyotype. The rostral end of the mesencepha-

  Fig. 9.39    Aprosencephaly found in a 20-week-old fetus: ( a ) over-
view of fetus; ( b ) craniofacial malformations; ( c ) malformed skull 
base with absent crista galli and only one frontal bone; ( d ) dorsal 

view of the CNS. The rostral end of the mesencephalon is nodular 
and rounded (Courtesy Gerard van Noort, Enschede)       

a b

c d
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lon was nodular and rounded (Fig.  9.39d ). Microscopically, 
disorganized neuronal tissue was present without recog-
nizable structures.

   In the second case, amniotic band constriction of the 
fetus was diagnosed in a primigravida during routine 
examination at the 16th week of gestation. Abortion was 
induced and at autopsy no amniotic strang was found but 
a dysmorphic face with asymmetrical eyes and a hare lip 
extending through the nose to the forehead (Fig.  9.40a ). 
The small head was partially covered by membranous tis-
sue in the frontal area with a defective calvarium. The 
prosencephalon was absent when the cranial vault was 
opened but the cerebellum was grossly identifi ed and the 
pituitary gland existed. The anterior cranial fossa was 
narrow and the roof of the orbita  elevated (Fig.  9.40b ). 
A small tissue fragment from the cranial base appeared as 
leptomeninx and was histologically shown hypervascu-
larized, suggesting an area cerebrovasculosa (Fig.  9.40c ). 
The desmocranium showed ossifi cation and a heterotopic 

subcutaneous cartilaginous fragment (Fig.  9.40d ). The 
structure of the cerebellum and pons was histoloically 
normal (Fig.  9.40e ). This case of aprosencephaly may be 
caused by a destructive process given the area cerebrovas-
culosa-like tissue fragments and the clinical diagnosis of 
amniotic band constriction.

   The fi rst case was kindly provided by Gerard van 
Noort (Laboratory for Pathology East-Netherlands, 
Enschede, The Netherlands) and the second case by Akira 
Hori (Toyohashi). 
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  Fig. 9.40    Aprosencephaly found in a 16-week-old fetus: ( a ) facial 
dysmorphism; ( b ) details of the aprosencephaly and frontal cranial 
base; ( c ) tissue fragments from the frontotemporal cranial area,  showing 

an area cerebrovasculosa; ( d ) desmocranium with ossifi cation and het-
erotopic cartilage fragment below; ( e ) cerebellum with vermis and pons 
seems well-developed (Courtesy Akira Hori, Toyohashi)       
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9.7.2            Holoprosencephaly 

  Holoprosencephaly  ( HPE ) is usually described as a devel-
opmental fi eld defect of impaired midline cleavage of the 
embryonic forebrain (DeMyer and Zeman  1963 ; Probst 
 1979 ; DeMyer  1987 ; Cohen  1989a ,  b ; Siebert et al.  1990 ; 
Cohen and Sulik  1992 ; Norman et al.  1995 ; Golden  1998 ; 
Muenke and Beachy  2000 ,  2001 ; Roessler and Muenke 
 2001 ; Sarnat and Flores-Sarnat  2001 ; Cohen and Shiota 
 2002 ). HPE is frequently associated with specifi c craniofa-
cial anomalies, including midline facial defects, cyclopia and 
nasal malformations (Chap.   5    ), and a broad range of ophthal-
mological anomalies (Pineda-Alvarez et al.  2011 . Its inci-
dence in live-born children with normal chromosomes has 
been estimated to be 0.48–0.88 per 10,000. In contrast, the 
rate among therapeutic abortuses was estimated at 40 per 
10,000, indicating a very high rate of embryonic and fetal 
loss (Matsunaga and Shiota  1977 ; Shiota  1993 ; Shiota and 
Yamada  2010 ). In a large epidemiologic study in a Californian 
population, Croen et al. ( 1996 ) observed an overall preva-
lence of 1.2 per 10,000 live births and fetal deaths, whereas 
the prevalence for live births was 0.88 per 10,000. 

 HPE is aetiologically very heterogeneous. It can be asso-
ciated with chromosomal abnormalities, single gene muta-
tions, polygenic mechanisms, and environmental factors 
such as diabetes mellitus and alcohol (Warkany  1971 ; Cohen 
 1989a ; Cohen and Sulik  1992 ; Norman et al.  1995 ; Kelley 
et al.  1996 ; Muenke and Beachy  2001 ; Cohen and Shiota 
 2002 ; Edison and Muenke  2003 ). Cytogenetic studies of 
HPE patients suggest at least 13 different autosomal domi-
nant loci (Roessler and Muenke  1998 ,  2010 ; Nanni et al. 
 2000 ; Bendavid et al.  2010 ; Cohen  2010 ; Table  9.10 ), giving 
rise to about 15–20 % of all cases of HPE (Cohen and Shiota 
 2002 ). Several HPE genes have been identifi ed:  SHH  (also 
known as HPE3: Belloni et al.  1996 ; Roessler et al.  1996 ; 
Nanni et al.  1999 ),  SIX3  (HPE2: Wallis et al.  1999 ; Domené 
et al.  2008 ),  ZIC2  (HPE5: Brown et al.  1998 ; Roessler et al. 
 2009 ),  TGIF  (HPE4: Gripp et al.  1998 ; El-Jaick et al.  2007 ), 
 Patched / PTCH  (Ming and Muenke  1998 ; Ming et al.  2002 ), 
 GLI2  (HPE9: Roessler et al.  2003 ) and  NODAL  (Roessler 
et al.  2008 ). Their possible interactions with normal signal-
ling pathways and cholesterol biosynthesis is shown in 
Fig.  9.41 .  SHH  mutations account for about 17 % of familial 
cases, and 3.7 % of all HPE cases (Cohen and Shiota  2002 ). 
Clinical manifestations of HPE are quite variable among 
patients and even among family members who carry a 
defi ned type of gene mutation (Ming and Muenke  2002 ; 
Edison and Muenke  2003 ).

    HPE is a developmental malformation sequence in which 
impaired midline cleavage of the forebrain up to no cleavage 
(a  holosphere ) is the basic feature. The more severe forms 
can be diagnosed prenatally by ultrasound (Blaas et al.  2002 ; 
Pooh  2009 ; Volpe et al.  2009 ; Clinical Case  9.9 ). 

 In a majority of cases, this non-cleavage involves the 
basal ganglia, thalamus and hypothalamus.  Diabetes insipi-
dus  occurs in about 67 % of children with HPE (Sarnat and 

Flores-Sarnat  2001 ), but other endocrine disorders involving 
the anterior pituitary occur less common and usually in addi-
tion to diabetes insipidus. The hypothalamus shows the high-
est incidence of non-cleavage of subcortical structures in 
HPE (Simon et al.  2000 ). The involvement of the basal gan-
glia may lead to generalized chorea (Louis et al.  1995 ). The 
most severe, complete or alobar type, and the incomplete 
forms, including the semilobar type and the least severe 
lobar type, represent degrees of severity rather than clearly 
distinguishable forms of this disorder. Together with the 
associated craniofacial malformations they constitute the 
HPE sequence (Cohen and Sulik  1992 ). The craniofacial 
malformations also vary in extent from the most severe being 
cyclopia with a single proboscis located above the midline 
eye to mild facial abnormalities. In general, the “face pre-
dicts the brain” (DeMyer et al.  1964 ; Fig.  9.42 ). It should be 
emphasized, however, that in 10–20 % of the 
 holoprosencephalies no or only minor craniofacial abnor-
malities are present (Chap.   5    ), and that severe HPE may be 
present in the absence of obvious facial anomalies. The 
severity of the malformations has an anterior-to-posterior 
gradient, with the anterior portions being the least well 
formed (Cohen  1989b ; Norman et al.  1995 ; Golden  1998 ; 
Simon et al.  2000 ). The  gyral pattern  of the posterior cere-
brum more closely resembles the normal gyral pattern than 
that of the anterior cerebrum (Barkovich et al.  2002 ). Most 
HPE patients have normal cortical thickness (Barkovich 
et al.  2002 ). Sylvian fi ssures were displaced further rostrally 

   Table 9.10    Causative genes of human holoprosencephaly   

 Human locus  Chromosome  Gene  Function 

  HPE1   21q22.3  ? 
  HPE2   2p21   SIX3   Homeoprotein important 

for development of eye 
and forebrain 

  HPE3   7q36   SHH   Ventral CNS patterning 
  HPE4   18p11.3   TGIF   Homeoprotein 

interacting with Smad2 
  HPE5   13q32   ZIC2   Zinc fi nger transcription 

factor important for axis 
formation and dorsal 
brain development 

  HPE6   2q17.1-q37.3  ? 
  HPE7   9q22.3   PTCH1   Receptor for hedgehog 

ligands 
  HPE8   14q13  ? 
  HPE9   2q14   GLI2   Transcription factor 

mediating hedgehog 
signalling 

  HPE10   ? 
 –  1q42   DISP1   Release of hedgehog 

ligands 
 –  10q   NODAL   TGFβ-like ligand 

involved in midline and 
laterality establishment 

 –  8q   FOXH1   Transcription factor for 
NODAL signalling 

  After Roessler and Muenke ( 2010 )  
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  Fig. 9.41    Association of holoprosencephaly with abnormal function of signalling pathways, cholesterol biosynthesis, and various transcription 
factors in ( a ) extracellular space, ( b ) cytoplasm and ( c ) nucleus (After Edison and Muenke  2003 )       

  Fig. 9.42    Craniofacial malformations in cases of holoprosencephaly: 
( a ) a female fetus of 26 weeks of gestation; ( b ) a female born at 34 
weeks of gestation, showing a single nasal opening and choanal atresia; 
( c ) a male fetus of 24 weeks of gestation with cyclopia and a proboscis; 
( d ) a fetus with cyclopia and a proboscis; ( e ) a female fetus, 39 weeks 

of gestation, showing a single nasal opening; ( f ) a fetus of approxi-
mately 30 weeks of gestation. Examples of their brain malformations 
are shown in Fig.  9.43  (From the Department of Neuropathology, 
Medizinische Hochschule Hannover; courtesy Akira Hori)       

a b c
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and medially as HPE became more severe, until in the most 
severe cases, no Sylvian fi ssures could be identifi ed at all. 
These data corroborate Yakovlev’s ( 1959 ) cytoarchitectonic 
analysis of the cerebral cortex of alobar and semilobar cases 
of HPE. The typical motor cortex was found in the cortex of 
the anterior midline. The  arterial pattern  in HPE brains var-
ies (van Overbeeke  1991 ; van Overbeeke et al.  1994 ). The 
rostral part of the circle of Willis is usually absent. In two 
cases with incomplete HPE, both internal carotid arteries 
contributed to the vascularization of the cerebral cortex. In 
six other specimens with incomplete and complete forms of 
HPE, one of the internal carotids supplied the largest part of 
the brain.

    Cyclopia  has been known since ancient times through the 
fi gure of the cyclopean shepherd Polyphemos in Homer’s 
 Odyssey  (around 800 BC). Modern knowledge of cyclopia 
and prosencephalies originates from the three-volume trea-
tise on teratology by Geoffroy Saint-Hilaire ( 1832–1837 ) 
who introduced the terms ethmocephaly and cebocephaly. 
Kundrat ( 1882 ) extended these observations and distin-
guished six types of forebrain malformations as arhinen-
cephaly. Much of our present knowledge on HPE dates back 
to the work of DeMyer and Zeman (DeMyer and Zeman 
 1963 ; DeMyer et al.  1964 ; DeMyer  1987 ), whose practical 
subdivision into alobar, semilobar and lobar types is com-
monly used. In the  alobar form , only one single ventricle (a 
holosphere) of variable size is present without interhemi-
spheric diversion. Posteriorly, a membrane usually closes 
the holosphere. This membrane is actually the posterior roof 
of the single ventricle (Golden  1998 ) and may bulge dor-
sally to form a fl uid-fi lled ‘dorsal sac’ or cyst (Fig.  9.43a ). 

The dorsal cyst may originate as a dilatated suprapineal 
recess of the third ventricle (Sarnat and Flores- Sarnat  2001 ; 
Simon et al.  2001 ; Marcorelles and Laquerrière  2010 ). 
Probst ( 1979 ) based his subdivision of prosencephalies on 
the presence and extent of the dorsal sac (Table  9.9 ). Siebert 
et al. ( 1990 ) proposed a simpler subdivision of the holopros-
encephalies into  complete  and  incomplete forms . The thal-
ami and corpora striata are undivided. The olfactory bulbs 
and tracts and the corpus callosum are always absent. In the 
 semilobar type , rudimentary cerebral lobes with an inter-
hemispheric posterior fi ssure and a rudimentary corpus cal-
losum may be present. The olfactory bulbs and tracts are 
absent or hypoplastic. In the least severe,  lobar type , a dis-
tinct interhemispheric fi ssure is present with some midline 
continuity. The olfactory bulbs and tracts may vary from 
normal to absent. Midline separation of the thalami and cor-
pora striata may be incomplete. Fertuzinhos et al. ( 2009 ) 
showed selective depletion of molecularly defi ned cortical 
interneurons in human holoprosencephaly with severe stria-
tal hypoplasia (Chap.   10    ). More recently, fi ve types of HPE 
are distinguished (Hahn and Barnes  2010 ; Solomon et al. 
 2010 ; Table  9.11 ). Some examples of MR imaging of HPE 
are shown in Figs.  9.44  and  9.45 . Two rare HPE cases, one 
with hypertrophic olfactory nerves, the other with a unique 
traversed coronal sulcus, are shown in Clinical Cases  9.10  
and  9.11 , respectively.

      An additional form is known as the  middle interhemi-
spheric variant  or  syntelencephaly  (Barkovich and Quint 
 1993 ; Lewis et al.  2002 ; Simon et al.  2002 ; Pulitzer et al. 
 2004 ; Marcorelles and Laquerrière  2010 ; Clinical Case 
 9.12 ). In this variant, the posterior and anterior portions of 

Fig. 9.42 (continued)
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  Fig. 9.43    Selection of neuropathological data in fetuses with holo-
prosencephaly: ( a ) large dorsal sac in situ, which is collapsed artifi -
cially at autopsy; ( b ,  c ) dorsal and basal views of the brain in the case 
shown in Fig.  9.42b ; ( d ,  e ) dorsal ( d ) and lateral ( e ;  top ) views, and a 

median section ( e ;  bottom ) of the case shown in Fig.  9.42c  (From the 
Department of Neuropathology, Medizinische Hochschule Hannover; 
courtesy Akira Hori)       

   Table 9.11    Types of holoprosencephaly   

 Alobar  Semilobar  Lobar  MIHV  Microform 

 Complete or near-
complete lack of 
interhemispheric 
separation 

 No anterior 
interhemispheric 
separation; some posterior 
separation 

 Non-separation of only the 
most rostal/ventral frontal 
neocortex 

 Failure of separation of 
posterior frontal and 
parietal lobes 

 Absence of interhemispheric 
fusion 

 Single midline forebrain 
ventricle 

 Absent frontal horns of 
lateral ventricle, septum 
pellucidum and anterior 
corpus callosum 

 Absent corpus callosum in 
affected region 

 Absent body of corpus 
callosum 

 May have other subtle midline 
defects such as agenesis of 
corpus callosum 

 Absent interhemispheric 
fi ssure, falx cerebri, 
olfactory bulbs and 
corpus callosum 

 Absent or hypoplastic 
olfactory bulbs 

 Hypoplastic falx cerebri, 
olfactory bulbs and 
interhemispheric fi ssure, 
usually containing azygous 
anterior cerebral artery 

 Grey matter 
heterotopia or cortical 
dysplasia 
 Azygous anterior 
cerebral artery 

 Non-separation of deep 
grey nuclei 

 Incomplete separation of 
deep grey nuclei 

 Frequent incomplete 
separation of thalami 
and caudate nuclei 

 May have dorsal cysts  Presence of milder craniofacial 
anomalies such as 
microcephaly, single central 
incisor or hypotelorism 

  After Solomon et al. ( 2010 )  
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  Fig. 9.44    Axial T2-weighted images of microcephalic newborns with 
holoprosencephaly. ( a – c ) Lobar holoprosencephaly; note incomplete 
formation of interhemispheric fi ssure and cerebral falx and lack of sulci 
in the frontal lobes; the thalami are separated by a normal third ventri-
cle; in  a , at the  top  an unpaired anterior cerebral artery can be seen; 

( d – f ) Fluid attenuated inversion recovery images of a semilobar holo-
prosencephaly case, in which the incomplete separation of the cerebral 
hemispheres is more severe. Rostrally, midline structures are absent, 
and basal ganglia and thalami are not separated. Posteriorly, the callosal 
splenium is present ( f ) (Courtesy Berit Verbist, Leiden)       

  Fig. 9.45    A case of semilobar holoprosencephaly in a neonate: ( a ) sagittal section; ( b – f ) series of axial sections showing the incomplete separa-
tion of the brain from above ( b ) to below ( f ) (Courtesy Karin Kamphuis-van Ulzen, Nijmegen)       

a b c
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the falx cerebri are present, but its midportion is absent near 
the frontoparietal convexity. Here, the cerebral hemispheres 
‘fuse’ in the midline, mainly in the posterior frontal lobes. 
The middle part of the corpus callosum may be misformed, 
the septum pellucidum is absent and the olfactory bulbs and 
tracts may show variable defi ciency. This anomaly may best 
be explained by a focal paucity of the primitive dorsal 
meninx leading to failure of induction within this small area 
(Barkovich  2000 ). Recently, a mild subtype of HPE, 
  septopreoptic HPE  has been distinguished (Hahn et al. 

 2010 ), in which midline fusion is restricted to the septal 
region or preoptic region of the telencephalon. 

 Part of the phenotypic variability in human HPE as 
found in the Kyoto Embryological Collection is illustrated 
in Fig.  9.46  (Yamada et al.  2004 ). Other embryological 
cases were described by Mall ( 1917 ), Vermeij-Keers ( 1987 ; 
Chap.   5    ) and Müller and O’Rahilly ( 1989c ). Embryos after 
Carnegie stage 18 were classifi ed into complete (true) cyclo-
pia (Fig.  9.47 ), synophthalmia (partially fused eyes in a sin-
gle eye fi ssure), closely apposed eyes (possible forerunners 

a b c

  Fig. 9.46    Holoprosencephaly in human embryos: ( a ,  b ) complete, true cyclopia in 7-week-old ( a ) and 6-week-old ( b ) embryos; ( c ) synophthalmia 
(partially fused eyes in a single eye fi ssure) in a 7-week-old embryo (From Yamada et al.  2004 , with permission; courtesy Shigehito Yamada, Kyoto)       

Fig. 9.45 (continued)
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of ethmocephaly and cebocephaly) and milder forms of HPE 
with median cleft lip (premaxillary agenesis). At Carnegie 
stages 13–17, when facial morphogenesis is not completed, 
HPE embryos showed some facial characteristics which are 
specifi c to these stages and different from those in older 
HPE embryos. The midline structures of the brain, including 
the pituitary gland, were lacking or seriously hypoplastic. 
Complete cyclopia was found in two cases after CS18 but 
none at earlier stages.

    The  eye fi eld  begins as a single structure that spans 
the midline (Adelmann  1936a ,  b ; Li et al.  1997 ; Chap.   5    ). 
Under the infl uence of signals from the prechordal plate, 
the vertebrate eye fi eld splits into discrete left and right eyes 

(Marlow et al.  1998 ; Varga et al.  1999 ). In zebrafi sh, this 
process has been directly studied under time-lapse photog-
raphy (England et al.  2006 ). The division of the eye fi elds is 
an active process involving directed cellular movements and 
the critical orientation of the midline prechordal plate signal-
ling centre beneath the telencephalon. If these developmen-
tal stages are not completed correctly the default result is 
 cyclopia  (Roessler and Muenke  2010 ). For example, when 
the prechordal plate is surgically removed, such animals con-
sistently develop cyclopia (Shih and Fraser  1996 ; Feldman 
et al.  1998 ). Hedgehog signalling is also required: reduced 
hedgehog signalling results in hypotelorism, whereas no 
hedgehog leads to cyclopia (Cordero et al.  2004 ). 

a b

  Fig. 9.47    Cyclopia ( a ) and non-separated thalami ( b ) in the embryo with holoprosencephaly shown in Fig.  9.46a  (From Yamada et al.  2004 , with 
permission; courtesy Shigehito Yamada, Kyoto)       

  Clinical Case 9.9 Prenatal Diagnosis 
of Holoprosencephaly 

 The  holoprosencephalies  are usually classifi ed into three 
variations: (1) the  alobar type , a single-sphered cerebral 
structure with a single common ventricle, a posterior large 
cyst of the third ventricle (a dorsal sac), absence of the 
olfactory bulbs and tracts and a single optic nerve; (2) 
the  semilobar type  with formation of a posterior portion of 
the interhemispheric fi ssure; and (3) the  lobar type  with 
formation of the interhemispheric fi ssure anteriorly and 
posteriorly but not in the midhemispheric region; fusion of 
the fornices is seen. Associated anomalies include: (1) 
facial abnormalities such as cyclopia,  ethmocephaly, 

 cebocephaly, a fl at nose, a cleft lip and palate are invariably 
associated with HPE; (2) extracerebral abnormalities are 
also invariably associated and include: renal cysts/dyspla-
sia, omphalocele, cardiac disease or myelomeningocele. 
HPE can be diagnosed prenatally (Pooh  2009 ). Two cases 
are shown in Figs.  9.48  and  9.49 .

    Data for this case were kindly provided by Ritsuko 
Pooh (Osaka, Japan). 

  Reference  

 Pooh R (2009) Neuroscan of congenital brain abnormality. In: Pooh 
R, Kurjak A (eds) Fetal neurology. Jaypee, St Louis, pp 59–139  
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a

c

b d

  Fig. 9.48    Prenatal diagnosis of a case of alobar holoprosencephaly 
at 13 weeks of gestation: ( a – c ) three orthogonal views demonstrat-
ing the holoprosencephaly; crown-rump-length was compatible 
with 10 weeks of gestation; ( d ) face of aborted fetus with cyclopia, 

arhinia and small mouth. Chromosome examination showed 69, 
XXX, triploidy (From Pooh  2009 ; images and photograph kindly 
provided by Ritsuko Pooh, Osaka)       

a b

c d e f

  Fig. 9.49    Prenatal diagnosis of a case of semilobar holoprosen-
cephaly: ( a ) series of tomographic coronal ultrasound images, 
showing semilobar holoprosencephaly; ( b ) 2D ultrasound image of 
echogenic eye lenses indicating congenital cataract; ( c – e ) 3D 

 surface imaging of fetal face and limbs, showing cleft lip ( c ), mild 
clubfoot ( d ) and polydactyly and syndactyly of the left hand ( f );  g  
3D ultrasound image of the fetal face (From Pooh  2009 ; images 
kindly provided by Ritsuko Pooh, Osaka)       
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  Clinical Case 9.10 Holoprosencephaly 
with Hypertrophic Olfactory Nerves 

  Holoprosencephaly  ( HPE ) has a wide spectrum of mor-
phological features, ranging from alobar through semilobar 
to lobar types. The term  arhinencephaly  was once used as 
a synonym for HPE, although in fact it is a misnomer since 
not all rhinencephalic structures are lacking in HPE. 
Agenesis of the olfactory nerves does not defi ne arhinen-
cephaly. In his series of HPE cases, Akira Hori found olfac-
tory nerves in 24 % of the cases and two fetal HPE cases 
with hypertrophic olfactory nerves (see Case Report). 

  Case Report . Following spontaneous abortion at the 
22nd gestational week, a male fetus came to autopsy 
with a body length of 30.3 cm and body weight of 
525 g. General pathology revealed open ductus venosus 
Arantii, foramen ovale and dusctus arteriosus Botalli. 

Neuropathological examination revealed a plain cranial 
base without laminae cribrosae. No longitudinal inter-
hemispheric fi ssure was formed and the cerebral surface 
was lissencephalic. The olfactory nerves protruded from 
a hypertrophic grey substance in the middle part of the 
frontal lobe base (Fig.  9.50a ). In the infratentorial struc-
tures no malformations were observed. Macroscopically, 
the atypical cut surface of the hypertrophic substance 
with protrusion showed grey substance correspond-
ing to the olfactory nerve (Fig.  9.50b ). Histologically, a 
mass of matrix cells were recognized in the hypertrophic 
grey matter including primitive neuroblasts (Fig.  9.50c ). 
Apoptotic rates were extremely low (TUNEL method; 
Fig.  9.50d ) and apoptosis inhibition was demonstrated by 
Bcl-2 immunohistochemistry (Fig.  9.50e ). In conclusion, 
in this case HPE with hypertrophic olfactory nerves was 
found, a rare morphological variation of HPE.

a b

c d e

  Fig. 9.50    A case of HPE with hypertrophic olfactory nerves in a 
22-week-old fetus: ( a ) basal aspect of the holoprosencephalic brain 
with olfactory nerves which protrude from the hypertrophic mid-
line; ( b ) section through the left olfactory nerve and hypertrophic 
grey substance at the right and the brain stem and cerebellum to the 

left; ( c ) corresponding histological section; ( d ) only two TUNEL-
positive cells (at the top and below) are present indicating extremely 
low rate of apoptosis; ( e ) Bcl-2 immunopositive, brown neuroblasts 
are present, suggesting blocked apoptosis (Courtesy Akira Hori, 
Toyohashi)       
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     Clinical Case 9.11 Semilobar 
Holoprosencephaly with a Unique 
Traversed Coronal Sulcus 

  Holoprosencephaly  ( HPE ) is a developmental disorder 
in which the forebrain fails to divide into two separate 
hemispheres. Although at least 13 different chromosomal 
loci contributing to HPE have been reported, mutations of 
the four most common genes ( SHH ,  ZIC2 ,  SIX3  and 
 TGIF ) have been identifi ed in HPE patients (Roessler and 
Muenke  2010 ; Solomon et al.  2010 a, b). With regard to 
genotype-phenotype correlation, structural brain anoma-
lies were most commonly observed in individuals with 
the  ZIC2  mutation. Itoh et al. (2011) presented an HPE 
case with a  ZIC2  deletion, showing a unique coronal sul-
cus which divided the brain into rostral and caudal parts 
(see Case Report). 

  Case Report . Fetal ultrasonography at the 18th 
week of gestation showed HPE with a normal facial 
appearance in a male fetus (Fig.  9.51a–c ). A normal 
karyotype 46XY was demonstrated by G-band chromo-
some analysis and no increased number of the chromo-
some 13 was discerned by conventional FISH analysis 
of amniotic fl uid. The fetus was stillborn at the 20th 
week of gestation. His face appeared normal and no 
external anomalies were found (Fig.  9.51d , e). At 
autopsy, the external appearance of the cerebral hemi-
spheres was unique in that a deep coronal sulcus tra-
versed from one side to the other across the midline 
when viewed dorsally, and it was partially separated by 
the interhemispheric fi ssure at the fronto-orbital and 
occipital areas (Fig.  9.51f ). Knotted olfactory bulbs, 
extending medially and then rostrally, appearing imma-
ture for the gestational age, but other structures, such as 
the optic chiasm, infundibulum and pituitary gland, 
were formed normally. The brain stem appeared normal 
but the posterior part of the cerebellum was not well 
developed. The cut surface of the brain showed a single 
ventricle with a partial separation in the orbital and 

occipital areas by the interhemispheric wall (Fig.  9.51g ). 
The separated fronto-orbital ventricles were fused in 
the dorsal part and communicated with a large single 
ventricle by a narrow canal. The caudal ventricle was 
separated again by the interhemispheric wall. The for-
nix and the corpus callosum were not identifi able. The 
basal ganglia, the thalamus and the hypothalamus were 
separated into right and left parts with a normally 
formed third ventricle in between.

   Comparative genomic hybridization microarray 
revealed a copy number loss at the regio spanning chro-
mosome 13q32.3 to 13q33.3, including the  ZIC2  gene, 
which indicated a deletion of  ZIC2 . Solomon et al. 
( 2010 b) reviewed 16 cases with a  ZIC2  deletion, includ-
ing 5 with alobar HPE, 3 with semilobar HPE and 1 with 
lobar HPE. It is tempting to speculate that the semilobar 
type of HPE with a traversed coronal sulcus, may be one 
of the distinct phenotypes of HPE, accompanied by the 
loss of function due to a  ZIC2  deletion (Roessler et al. 
 2009 ). 
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  Clinical Case 9.12 Middle Interhemispheric 
Variant of Holoprosencephaly 

 The middle interhemispheric variant of holoprosenceph-
aly (MIH) is a rare malformation in which the cerebral 
hemispheres fail to divide in the posterior frontal and 
parietal regions (Barkovich and Quint  1993 ; Simon et al. 
 2002 ). Autopsy was done in only a few cases (Pulitzer 
et al.  2004 ; see Case Report). 

  Case Report . The patient was born at 42 weeks of 
gestation as the fourth child of a 36-year-old healthy 
mother, who had already three healthy children. There 
were no previous obstetrical problems. Some intrauterine 
growth retardation was apparent. Birth was normal with 
Apgar scores of 9/10. Birth weight was 3,345 g and 
crown-heel length 49 cm. There were microcephaly, a 
midface hypoplasia, bilateral cheilognathopalatoschisis 
(Fig.  9.52a ) and panhypopituitarism. Colobomas were 
found in both eyes. Ultrasound examination of the head 
suggested holoprosencephaly. A falx was only apparent 
in the frontal part of the head. MRI could not be per-
formed anymore due to the rapid deterioration of the 

child. The child died at day 8 owing to necrotizing entero-
colitis with sepsis.

   At autopsy, the necrotizing enterocolitis and a compli-
cating acute respiratory distress syndrome were found. 
Brain weight was 300 g (normal range: 420 ± 33 g). The 
brain showed a gyral pattern that was somewhat less-
developed than normal with underdeveloped frontal 
lobes. From above, the presence of two hemispheres sep-
arated over their whole length was suggested (Fig.  9.52b ). 
The olfactory bulbs and the pituitary gland were absent. 
The optic nerves were smaller than normal. In frontal sec-
tions (Fig.  9.52c–e ), there was no subdivision of the cere-
brum into two hemispheres in the rostral half of the brain. 
A gyrus in the depth of a midsagittal sulcus crossing from 
left to right gave the false impression of two hemispheres 
rostrally. Two hemispheres were evident from the level of 
the globus pallidus caudalwards. At that level a corpus 
callosum could be seen as well as a small third ventricle. 
In the posterior half of the brain the two hemispheres 
looked quite normal. There were no structural abnormali-
ties in the brain stem and cerebellum, except for some 
hypoplasia of the pyramids. 

a

f g

b c d e

  Fig. 9.51    A    case of semilobar holoprosencephaly with a unique 
traversed coronal sulcus: ( a – c ) MRIs of the fetal brain at 19 weeks of 
gestation; ( d ) 3D ultrasonography of the fetal face at 19 weeks of 

 gestation; ( e ) face of the fetus at 20 weeks of gestation; ( f ) dorsal and 
ventral views of the brain; ( g ) coronal sections of the brain (numbers 
refer to the levels indicated in ( f )) (Courtesy Kyoko Itoh, Kyoto)       
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  Fig. 9.52    Midline, interhemispheric variant of holoprosencephaly: 
( a ) craniofacial malformations; ( b ) dorsal view of the brain; ( c – e ) 
three frontal slices through the brain, showing non-separation of 

forebrain structures rostrally, and fully separated hemispheres cau-
dally (Courtesy Martin Lammens, Nijmegen)       
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9.7.3       Septo-optic Dysplasia 

  Primary absence  of the  septum pellucidum  is rarely an iso-
lated fi nding (Fig.  9.53 ) and frequently associated with other 
malformations such as HPE, agenesis of the corpus callosum 
and septo-optic dysplasia (Bruyn  1977 ; Friede  1989 ). It may be 
secondary to head trauma (Corsellis et al.  1973 ). De Morsier 
( 1956 ) emphasized the combination of optic atrophy and 
defects of the septum pellucidum. The cases described as 
 septo - optic dysplasia  ( de Morsier syndrome ) form a rather het-
erogeneous group of disorders (Roessmann et al.  1987 ; 
Barkovich and Norman  1989 ; Barkovich et al.  1989 ; Friede 
 1989 ; Norman et al.  1995 ; Clinical Case  9.13 ). The clinical 
manifestations include a characteristic triad (Morishima and 
Aranoff  1986 ; Willnow et al.  1996 ; Hellström et al.  2000 ; 
Miller et al.  2000 ): (1) hypopituitarism, ranging from panhypo-
pituitarism to insuffi ciency of isolated hormones; (2) aplasia of 
the optic disks that present with amblyopia or hemianopia; and 
(3) absence of the septum pellucidum. Aetiological factors may 
be viral infections, gestational diabetes, vascular disruption, 
drug toxicity and fetal alcohol syndrome (Hellström et al. 
 2000 ; Miller et al.  2000 ). The homeobox gene  HESX1  is impli-
cated in a familial form of septo-optic dysplasia (Dattani et al. 
 1998 ,  1999 ; Brickman et al.  2001 ; Thomas et al.  2001 ).

a

b

  Fig. 9.53    ( a ) Isolated absence of the septum pellucidum in a 42-year- 
old man with brain contusion and internal hydrocephalus; note the for-
nices on the ventricular fl oor; ( b ) comparable MRI in a neonate (( a ) 
Courtesy Akira Hori, Hannover/Toyohashi; ( b ) courtesy Karin 
Kamphuis-van Ulzen, Nijmegen)       
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    Clinical Case 9.13 Septo-optic Dysplasia 

  Septo - optic dysplasia  is a developmental disorder of mid-
line structures characterized by uni- or bilateral hypopla-
sia of the optic nerves, tracts and chiasm, and by the 
absence of the septum pellucidum, fi rst described by de 
Morsier ( 1956 ). The syndrome is not rare and highly vari-
able (Morishima and Aranoff  1986 ; Roessmann et al. 
 1987 ; Miller et al.  2000 ; see Case Report). 

  Case Report . The infant was born after an uncompli-
cated pregnancy of her 33-year-old mother. Multiple mal-
formations were noted at birth, including bilateral cleft 
lips and palate, ulnar deviation of the hands, polydactyly 
and frontal synostosis. The infant was septic from the sec-
ond day of life. She died at the age of 1 week. The cause 
of death appeared to be peritonitis due to perforated 
colonic ulcers and bilateral bronchopneumonia. The fi xed 
brain weighed 287 g. The olfactory nerves were absent. 
The right eye and optic nerve were smaller than the left 
eye and optic nerve and both optic tracts were hypoplas-
tic. The cerebellum was small. Coronal sections revealed 
an abnormal mass in the region of the genu of the corpus 
callosum that extended down to the third ventricle 
(Fig.  9.54 ). The walls of the third ventricle were fused at 
the base. Microscopic examination revealed marked reti-
nal dysplasia. The lateral geniculate nuclei were reduced 
in size and showed no lamination. The tumour-like mass 
in the place of the corpus callosum consisted of a mixture 
of immature grey and white matter. Bundles of fi bres, 
likely fornix fi bers, was seen dorsal and ventral to the cor-
pus callosum. Pronounced glial heterotopia were present 
at the base of the brain. The medullary pyramids were 
small, the pyramidal crossing was incomplete, and 

 corticospinal fi bres in the spinal cord were found predom-
inantly in the anterior column.

    References  

 de Morsier G (1956) Etudes sur les dysraphies crânio- encéphaliques. 
III. Agénésie du septum pellucidum avec malformation du trac-
tus optique. La dysplasie septo-optique. Schweiz Arch Neurol 
Psychiatr 77:267–292 

 Miller SP, Shevell MI, Patenaude Y, Poulin C, O’Gorman AM 
(2000) Septo-optic dysplasia plus: a spectrum of malformations 
of cortical development. Neurology 54:1701–1703 

 Morishima A, Aranoff GS (1986) Syndrome of septo- optic dyspla-
sia: the clinical spectrum. Brain Dev 8:233–239 

 Roesmann U, Velasco ME, Small EJ, Hori A (1987) Neuropathology 
of “septo-optic dysplasia” (de Morsier syndrome) with immuno-
histochemical studies of the hypothalamus and pituitary gland. 
J Neuropathol Exp Neurol 46:597–608   

  Fig. 9.54    Septo-optic dysplasia (From Roessmann et al.  1987 , with 
permission; courtesy Akira Hori, Toyohashi)       

9.7.4      Isolated Arhinencephaly 

  Olfactory hypoplasia  and  isolated absence  of the  olfactory 
bulbs  may occur without other cerebral malformations as 
an accidental fi nding at autopsy (Norman et al.  1995 ). In 
 1856 , Maestre de San Juan fi rst observed the association of 
hypogonadism with olfactory system abnormalities. 
Isolated absence of the olfactory bulb and tract can be 
transmitted as a single gene defect, especially in Kallmann 
syndrome.  Kallmann syndrome  (hypogonadotropic hypo-
gonadism; Kallmann et al.  1944 ) is inherited in various 
ways, as an autosomal dominant trait (KAL2) with variable 
penetrance, and less commonly as an autosomal recessive 
(KAL3) or X-linked (KAL1) disorder (Cohen  1989a ; 
Ballabio and Rugarli  2001 ; Oliveira et al.  2001 ). So far, six 
causative genes ( KAL1 ,  FGFR1 ,  FGF8 ,  CHD7 ,  PROK2  
and  PROKR2 ) have been documented in Kallmann syn-
drome, explaining about 305 of all cases (Dodé et al.  2006 ; 
Hardelin and Dodé  2008 ; Karstensen and Tommerup  2012 ). 

It is the most  common form of isolated gonadotropin defi -
ciency due to a migration disorder. Olfactory cells 
(Fig.  9.55 ) and GnRH- producing cells in the hypothalamus 
fail to migrate along their normal pathway from the devel-
oping olfactory placode (Schwanzel-Fukuda and Pfaff 
 1989 ; Schwanzel-Fukuda et al.  1989 ,  1996 ; Wray et al. 
 1989a ,  b ). The gene responsible for the X-linked form 
( KAL1 ) encodes an extracellular matrix protein (anos-
min-1) that is expressed in the olfactory bulb (Franco et al. 
 1991 ; Legouis et al.  1991 ; Rugarli et al.  1993 ; Izumi et al. 
 1999 ,  2001 ). It has been suggested that anosmin-1 is 
involved in terminal stages of olfactory axon guidance to 
the bulb and that olfactory bulb hypoplasia or aplasia in 
Kallmann syndrome is secondary to lack of innervation 
(Hardelin et al.  1999 ; Rugarli  1999 ; Ballabio and Rugarli 
 2001 ; Hardelin  2001 ; Hardelin and Dodé  2008 ). The most 
pertinent fi ndings in Kallmann syndrome are abnormalities 
of the olfactory system such as hypoplasia or aplasia of the 
olfactory bulbs, and hypoplasia of the anterior aspect of the 
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olfactory sulci (Truwit et al.  1993 ; Quinton et al.  1996 ). 
More recently, the  KAL2  gene was identifi ed (Dodé et al. 
 2003 ). Mutations in the  FGFR1  gene appear to be respon-
sible for the autosomal dominant trait of Kallmann 

 syndrome. The  CHD7  gene is frequently found mutated in 
patients with  CHARGE syndrome  (Kim et al.  2008 ). 
CHARGE patients have aplasia or hypoplasia of the olfac-
tory bulb and hypogonadotroph hypogonadism (Pinto et al. 

a b

c

  Fig. 9.55    Migration of human gonadotropin-releasing hormone ( GnRH ) 
expressing neurons: ( a ) a GnRH-immunoreactive cell in the epithelium 
of the medial olfactory pit ( MOP ); ( b ) a few GnRH-immunoreactive cells 
( arrows ) along the broad path of NCAM-immunoreactive cell bodies and 
neurites, extending from the epithelium of the olfactory pit ( OP ) and 
forming an aggregate in the nasal mesenchyme ( NM ) below the forebrain 
and the developing olfactory bulb ( OB ); ( c ) 19-week-old fetus with 

Kallmann syndrome. A large GnRH-immunoreactive branch of the ter-
minal nerve is seen coursing upwards through a perforation of the cribri-
form plate. Clusters of GnRH-expressing neurons can be seen on the 
dorsal surface of the cribriform plate, where they remain (( a ,  b ) 
Reproduced with permission from Schwanzel-Fukuda et al.  1996 ; copy-
right 1996, Wiley- Liss Inc., a subsidiary of John Wiley & Sons, Inc.; ( c ) 
courtesy Marlene Schwanzel-Fukuda, New York)       
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 2005 ; Asakura et al.  2008 ).  CBD7  is expressed during 
development of the olfactory bulb and the olfactory epithe-
lium, consistent with the associated anosmia (Sanlaville 
et al.  2006 ).

9.8         Development and Developmental 
Disorders of the Basal Ganglia 
and the Amygdala 

9.8.1     Development of the Basal Ganglia 

 The  basal ganglia  are a group of closely connected cell 
masses, forming a continuum, extending from the telenceph-
alon to the midbrain tegmentum. This complex comprises 
the striatum (the nucleus caudatus and the putamen, largely 
separated by the internal capsule), the globus pallidus, the 
subthalamic nucleus and the substantia nigra. The output of 
the basal ganglia is aimed at the ventral anterior and ventral 
lateral thalamic nuclei (parts of the motor thalamus), the cen-
tromedian thalamic nucleus, the habenula, the pedunculo-
pontine tegmental nucleus and the superior colliculus (ten 
Donkelaar et al.  2011 ). In most non-primate mammals, the 
nucleus caudatus and the putamen are not clearly separated 
by an internal capsule and are known as the caudate-putamen 
complex. In primates, the globus pallidus consists of external 
or lateral and internal or medial parts. In other mammals, the 
homologue of the internal segment is formed by the entope-
duncular nucleus. The caudate nucleus, the putamen and the 
globus pallidus form the  dorsal part  of the  striatal com-
plex . Heimer and co-workers (Heimer  1976 ; Heimer et al. 
 1982 ,  1991 ,  1997 ; Alheid et al.  1990 ) introduced the terms 
 ventral striatum  and  ventral pallidum  to include the lim-
bic system into the basal ganglia. The nucleus accumbens, 
both cytoarchitectonically and histochemically closely 
resembling the caudate nucleus and the putamen, and the 
greater part of the olfactory tubercle form the ventral stria-
tum (Fig.  9.56 ). The rostral part of the substantia innominata 
forms a ventral extension of the globus pallidus. The sub-
stantia innominata also contains the widely spread choliner-
gic basal nucleus of Meynert, the main source of cholinergic 
input to the cerebral cortex. The globus pallidus, the ventral 
pallidum and the substantia nigra are iron-rich areas of the 
brain as shown with Perl’s diaminobenzidine method 
(Switzer et al.  1982 ; Hill and Switzer  1984 ) and high- 
resolution MRI (Drayer et al.  1986 ).

   The cerebral cortex, including its sensory and motor 
fi elds, has extensive connections with the striatum that, via 
the globus pallidus and ventral thalamic nuclei, projects to 
the motor, premotor and prefrontal areas of the cortex. This 
 cortico - striato - pallido - thalamocortical circuit  is known 
as the principal striatal circuit or loop and is involved in ini-
tiating motor activities stemming from cognitive activities 
(Figs.  9.57 ,  9.65a ). The ventral striatum and pallidum are 

included in a limbic striatal loop, involving the allocortex, 
the nucleus accumbens, the ventral pallidum, the mediodor-
sal thalamic nucleus, and prefrontal and limbic cortices. The 
ventral striatopallidum is involved in initiating movements in 
response to emotionally or motivationally powerful stimuli 
(Heimer et al.  1991 ,  1997 ; Nieuwenhuys  1996 ). Nearly all 
cortical areas in primates participate in a strip-like patterned 
corticostriatal projection (Kemp and Powell  1970 ). Input 
from the somatosensory and motor cortices is extensive, 
whereas that from the visual cortex is minimal. In the rhesus 
monkey, Künzle ( 1975 ) showed that the motor cortex proj-
ects almost exclusively, organized in patches and in a 
somatotopical pattern, to the putamen. A comparable pattern 
of termination was found for the primate somatosensory cor-
tex (Künzle  1977 ). In contrast, associative areas of the pre-
frontal, temporal, parietal and anterior cingulate cortices 
appear to project almost exclusively to the monkey caudate 
nucleus (Kemp and Powell  1970 ; Goldman and Nauta  1977 ; 
Künzle  1978 ; Van Hoesen et al.  1981 ). The various areas of 
the association cortex in monkeys project to longitudinal ter-
ritories that occupy restricted mediolateral domains of the 
striatum (Selemon and Goldman-Rakic  1985 ). Limbic 
regions, particularly the basolateral part of the amygdala, 
and allocortical (entorhinal, piriform and hippocampal) 
structures, project to the striosomes of the ventromedial part 
of the caudate nucleus and to the ventral striatum (Graybiel 
 1986 ; McGeorge and Faull  1989 ). These fi ndings suggest 
that the caudate nucleus in primates is more closely related 
to complex and associative types of behaviour, whereas the 
putamen appears more directly involved in sensorimotor 
control. The segregation of infl uences from the association 
and sensorimotor cortices that exist in the caudate nucleus 
and the putamen, respectively, is not only preserved at palli-
dal levels, but is also maintained at nigral and thalamic levels 
(DeLong and Georgopoulos  1981 ; Alexander et al.  1986 ; 
Gerfen and Wilson  1996 ). The current model of basal gan-
glia circuitry, introduced by Albin et al. ( 1989 ) and elabo-
rated by DeLong and collaborators (Alexander and Crutcher 
 1990 ; DeLong  1990 ), involves two major striatal efferent 
pathways, known as the  direct  and  indirect pathways , the 
fi rst to facilitate or induce movements and the second to 
‘brake’ movements. Although challenged by the increasing 
complexity brought about by anatomical, physiological and 
clinical observations (see ten Donkelaar et al.  2011  for 
review), this model still serves as a basis to explain patho-
physiological mechanisms underlying motor disorders 
(Sect.  9.8.2 ). Psychic disorders such as  obsessive - compulsive   
behaviour  are observed in patients with lesions affecting 
various parts of the basal ganglia circuitry (Graybiel and 
Rauch  2000 ; Heimer  2000 ). This may also be true for mood 
disorders (Price and Drevets  2011 ). The ventral parts of the 
basal ganglia are intimately related to the basal nucleus of 
Meynert and the extended amygdala. These interdigitating 
and partly overlapping anatomical systems are involved in 
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a b

c d

  Fig. 9.56    Human    basal forebrain showing the current subdivision of 
the basal ganglia and amygdala. Comparable structures are indicated in 
 various colours. Transition areas  are indicated as parts of the striatum, 
but do show some amygdaloid features. The  large dots  indicate the 
large, cholinergic cells of the basal nucleus of Meynert ( BM ).  ac  ante-
rior commissure,  BL  basolateral amygdala,  BST  bed nucleus of the stria 

terminalis,  Cd  caudate nucleus,  Ce  central amygdala,  cho  chiasma opti-
cum,  Cl  claustrum,  Db  diagonal band of Broca,  f  fornix,  GP  globus 
pallidus,  GPe  external part of globus pallidus,  Gpi  internal part of glo-
bus pallidus,  Hip  hippocampus,  In  insula,  M  medial amygdala,  ot  optic 
tract,  Put  putamen,  S  septum,  Th  thalamus,  VP  ventral pallidum,  VS  
ventral striatum (After Heimer et al.  1991 )       
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some of the most devastating neuropsychiatric disorders 
such as schizophrenia and Alzheimer disease (Alheid and 
Heimer  1988 ; Heimer et al.  1991 ,  1997 ; Heimer  2000 ).

    Compartmental organization  of the mammalian stria-
tum has been demonstrated with histochemistry (acetylcho-
linesterase staining) and immunohistochemistry (staining for 
tyrosine hydroxylase, an enzyme necessary for dopamine 
biosynthesis, dopamine, enkephalins and other neuropep-
tides). Clustering of striatal neurons is obvious particularly in 
the developing mammalian striatum (Goldman-Rakic  1981 , 
 1982 ; Graybiel  1984 ). The dopaminergic innervation of the 
striatum of young animals is organized in patches (‘dopamine 
islands’) as fi rst shown with formaldehyde- induced catechol-
amine fl uorescence (Olson et al.  1972 ; Tennyson et al.  1972 ), 
spatially corresponding with acetylcholinesterase- rich 
patches (Graybiel et al.  1981 ). In adult animals, the distribu-
tion of tyrosine hydroxylase or dopamine immunoreactivity 
does not show such prominent local inhomogeneities except 
in the ventral striatum – accumbens region (Graybiel et al. 
 1981 ; Graybiel  1984 ). With acetylcholinesterase staining, 
Graybiel and Ragsdale ( 1978 ) showed that within the other-
wise acetylcholinesterase-rich striatal tissue (the  striatal 
matrix ) a mosaic of small zones of low acetylcholinesterase 
activity was present and called them ‘ striosomes ’ (Fig.  9.58 ). 
In cats, during development the dopamine islands fi rst corre-

spond with acetylcholinesterase- rich patches of the immature 
striatum, but later in development with the acetylcholinester-
ase-poor striosomes (Graybiel  1984 ). A similar patchy 
arrangement of the striatum was shown in the developing 
human brain (Kostović  1986 ; Holt et al.  1997 ). Letinić and 
Kostović ( 1996 ) showed that patches rich in calbindin- 
immunoreactive neuropil correspond to acetylcholinesterase-
rich patches of prenatal brains. Ulfi g et al. ( 2001 ) showed that 
the expression of AKAP79, a kinase-anchoring protein 
enriched in postsynaptic densities, in the striatal compart-
ments of the fetal human brain correlates with the dopaminer-
gic innervation of the striatum (Fig.  9.59 ). These data 
provided the basis for heterogeneity in the arrangement of 
striatal fi bre connections (Graybiel  1990 ; Parent and Hazrati 
 1995 ; Parent et al.  1995 ; Gerfen and Wilson  1996 ; Haber and 
Gdowski  2004 ).

    The basal ganglia and the amygdala arise from the  gangli-
onic eminences  (Fig.  9.60 ) as already suggested in early 
studies on the developing human forebrain (His  1889 ; 
Hochstetter  1919 ; Macchi  1951 ; Hewitt  1958 ,  1961 ; 
Humphrey  1968 ,  1972 ; for data in rhesus monkey see Gribnau 
and Geysberts  1985 ). The olfactory tubercle and the nucleus 
accumbens arise from the rostral part of the LGE, the nucleus 
caudatus and putamen from its intermediate part, and the sub-
pallial part of the amygdala from the caudal eminence 

Cd
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  Fig. 9.57    Overview of the fi bre connections of 
the basal ganglia. The primary motor cortex ( M1 ) 
and the primary somatosensory cortex ( S1 ) 
innervate the putamen ( Put ), whereas the 
prefrontal cortex innervates the caudate nucleus 
( Cd ), and the basolateral amygdala ( BL ) and the 
subiculum ( Sub ) innervate the ventral striatum 
( VS ). These input stations of the basal ganglia 
innervate the external ( GPe ) and internal ( GPi ) 
parts of the globus pallidus (the dorsal pallidum), 
the ventral pallidum ( VP ) and the substantia nigra 
pars reticulata ( SNr ) as well as the pars compacta 
of the substantia nigra ( SNc ).  ac  anterior 
commissure,  CM  corpus mammillare,  pt  pyramidal 
tract,  Sth  subthalamic nucleus (After Alheid et al. 
 1990 ; from ten Donkelaar et al.  2011 )       
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(Table  9.7 ). The MGE gives rise to the globus pallidus, the 
basal nucleus of Meynert and the bed nucleus of the stria ter-
minalis. The  nucleus basalis complex  develops the earliest 
acetylcholinesterase activity in the human telencephalon 
(Kostović  1986 ) and sends widely distributed fi bres to the 
anlage of the neocortex and limbic cortex by the end of the 
second trimester of gestation (Fig.  9.61 ). The development of 
the cortical layer innervation coincides with the appearance 
of an ‘adult’ pattern of topographic relationships. The LIM 
homeobox gene  L3 / Lhx8  is necessary for proper development 
of basal forebrain cholinergic neurons (Mori et al.  2004 ).

    In rodents, the  time  of  neuron origin  has been deter-
mined in the  basal ganglia  and related basal forebrain (ten 
Donkelaar and Dederen  1979 ; Fentress et al.  1981 ; Bayer 

 1984 ; Marchand and Lajoie  1986 ; Marchand et al.  1986 ; 
Bayer and Altman  1987b ; Van der Kooy et al.  1987 ). 
 Large- celled structures such as the globus pallidus, the 
nucleus of the horizontal limb of the diagonal band of Broca 
as well as large cells in the rostral part of the substantia 
innominata, the caudate-putamen-complex and the olfactory 
tubercle arise early, whereas medium-sized and small cells in 
the basal forebrain have a persistent origin over a much lon-
ger period. Neuron formation in the basal forebrain persists 
decrementally until P4. A clear caudorostral spatiotemporal 
gradient as well as a distinct ‘outside-in’ gradient have been 
found in the caudate-putamen complex. The time span for 
neurogenesis in the nucleus accumbens is essentially the 
same as for the medial part of the caudate-putamen complex. 
Medium- sized neurons in the neostriatum and the nucleus 
accumbens, generated simultaneously, are usually arranged 
in scattered clusters. The neurons of the two striatal compart-
ments are generated during largely non-overlapping devel-
opmental periods (Marchand et al.  1986 ; Van der Kooy et al. 
 1987 ). Most of the earliest-born neurons form the patch 
compartment, and later-born cells make up the matrix com-
partment. Cell counts indicate that in rats there may be as 
many as 2,000,000 neurons in the striatum on each side at 
P4, but that that number is reduced by apoptosis to the adult 
fi gure of approximately 690,000 at P8 (Fentress et al.  1981 ), 
suggesting extensive programmed cell death in the striatum. 
About 97 % are medium-sized neurons and about 3 % are 
large cells. Itoh et al. ( 2001 ) studied the presence of pro-
grammed cell death in the human striatum and globus palli-
dus of fetuses and newborns (gestational age ranging from 
12 to 40 weeks) with the transferase-mediated dUTP-biotin 
nick end- labelling (TUNEL) technique. In the caudate and 
putamen, TUNEL-labelled cells were observed from the 
12th week of gestation onwards. The numerical density of 
the total number of neurons was signifi cantly decreased, 
whereas the labelling index of apoptotic cells was signifi -
cantly increased with advancing gestational age. In the glo-
bus pallidus, comparable data were obtained. 

 The GABAergic  striatal projection neurons  are derived 
from the LGE (Deacon et al.  1994 ; Olsson et al.  1995 ,  1998 ; 
Anderson et al.  1997b ; Flames et al.  2007 ; Sect.  9.5 ) and 
 Dlx1 , 2 , 5 , 6 ,  Gsh2  and  Mash1  are involved in their specifi ca-
tion and differentiation (Porteus et al.  1994 ; Anderson et al. 
 1997b ; Casarosa et al.  1999 ; Eisenstat et al.  1999 ; Toresson 
and Campbell  2001 ). Most  striatal interneurons  appear to 
migrate tangentially from the MGE or the adjacent preoptic/
anterior entopeduncular area, and express the NKX2.1 
homeodomain protein (Marín et al.  2000 ).  Nkx2.1  mutants 
are defective in striatal interneurons (Sussel et al.  1999 ), 
whereas the number of striatal interneurons is reduced in 
 Mash1  and  Dlx1 / Dlx2  mutants (Casarosa et al.  1999 ; 
Eisenstat et al.  1999 ).  Mash1  mutants primarily have a reduc-
tion of early-born striatal interneurons, whereas  Dlx1 / Dlx2  

a

c
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  Fig. 9.58    Striosomes. Three adjacent sections from the brain of an 
E50-E52 kitten showing the precise match between tyrosine hydroxy-
lase positive patches ( a ), clusters of [ 3 H]thymidine-labelled neurons ( b ) 
and acetylcholinesterase-positive patches ( c ) in the caudate nucleus and 
putamen.  Asterisks  mark one such match for a dorsal patch in the cau-
date nucleus.  Cla  claustrum,  CN  caudate nucleus,  GE  ganglionic emi-
nence,  NA  nucleus accumbens,  Olf T  olfactory tubercle,  P  putamen,  S  
septum (Reproduced with permission from Graybiel  1984 ; copyright 
1984, Elsevier)       
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a b c

  Fig. 9.59    Striosome labelling in the human basal ganglia in 16-week-
old ( a ) and 22-week-old ( b ) fetuses, and in the fi rst postnatal week ( c ); 
AKAP79-staining.  C  caudate nucleus,  GE  ganglionic eminence,  GP  

globus pallidus,  IC  internal capsule,  P  putamen (Reproduced with 
 permission from Ulfi g et al.  2001 ; copyright 2001, S. Karger, AG)       

a d

b c e

  Fig. 9.60    Overview of the development 
of the human basal ganglia and 
amygdala: ( a – c ) sagittal and frontal 
sections of a 9-week-old fetus; ( d – e ) 
adult situation. The rostral part ( light red ) 
of the ganglionic eminence ( GE ) gives 
rise to the nucleus accumbens and the 
olfactory tubercle, the large intermediate 
part ( red ) to the caudate nucleus ( Cd ) and 
the putamen ( Put ), and the caudal part 
( grey ) to the amygdala ( Am ).  Acb  nucleus 
accumbens,  GPe  external part of globus 
pallidus,  GPi  internal part of globus 
pallidus,  OB  olfactory bulb,  OT  olfactory 
tract (Based on Nieuwenhuys  1977 )       
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mutants primarily have reduced numbers of late-born striatal 
interneurons. 

 SHH and FGF8 are essential for the formation of the 
 dopaminergic neurons  of the  substantia nigra  and the  ven-
tral tegmental area  (VTA; Ye et al.  1998 ; Wurst and Bally-
Cuif  2001 ; Holzschuh et al.  2003 ; Chap.   7    ). Several early 
ventral midbrain markers contribute to their specifi cation, 
including  En1 / En2 ,  Lmx1b ,  Pax2 / Pax5  and  Wnt1  (Hynes and 
Rosenthal  1999 ; Smidt et al.  2000 ), before expression of 
dopamine-specifi c markers. In mice, TH is present at E11.5, 
shortly after expression of the orphan nuclear receptor Nurr1 
(Zetterstrom et al.  1996 ,  1997 ) and the homeobox gene  Pitx3  
(Smidt et al.  1997 ; van den Munckhof et al.  2003 ).  Nurr1  
mutants fail to induce TH in the mesencephalic dopaminergic 
progenitor neurons and die soon after birth (Zetterstrom et al. 
 1997 ).  Pitx3  expression is maintained throughout life in both 
mice and men (Smidt et al.  1997 ).  Pitx3  is also expressed in 
the developing lens (Semina et al.  1997 ).  PITX3  mutations 
were found in two families with inherited forms of cataract 
and anterior segment dysgenesis (Semina et al.  1998 ). 
Abnormal lens development is also found in a naturally 

occurring mouse mutant, the  aphakia  mouse, which has two 
deletions in the  Pitx3  gene (Rieger et al.  2001 ). Van den 
Munckhof et al. ( 2003 ) showed that  Pitx3  is expressed only in 
the ventral tier of the substantia nigra pars compacta and in 
about half of the VTA neurons. In  aphakia  mice,  Pitx3  was 
not detectable, and selective degeneration of dopaminergic 
neurons was found, leading to a more than 90 % decrease in 
striatal dopamine levels and marked reduction in spontaneous 
locomotor activity. 

 Most of the neurons of the substantia nigra are generated 
between E13 and E15, according to a gradient from rostral/
dorsolateral to caudal/ventromedial (Hanaway et al.  1971 ; 
Altman and Bayer  1981 ; Marchand and Poirier  1983 ). This 
gradient extends to the VTA: neurons of the VTA are born 
later (E14-E16) than those of the substantia nigra (Altman 
and Bayer  1981 ; Marchand and Poirier  1983 ). It should be 
emphasized that the classic unitary SN/VTA is in fact a plu-
risegmental series of very similar units from the fl oor plate 
and the contiguous basal plate found across prosomeres 1–3, 
mesomeres 1 and 2 and the isthmic rhombomere (Puelles 
and Verney  1998 ; Verney et al.  2001a ; Fig.  9.62 ).

a b c

  Fig. 9.61    Photomicrographs of acetylcholinesterase-stained sections 
of the developing forebrain in human fetuses of 9.5 ( a ), 10.5 ( b ) and 24 
( c ) weeks of age. The  arrows  in ( b ) indicate cholinergic fi bres to the 

cerebral cortex.  GP  globus pallidus,  SP  subplate (Reproduced with per-
mission from  Kostović 1986 ; copyright 1986, Elsevier)       
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   The neurogenetic gradients in both the substantia nigra 
(Altman and Bayer  1981 ) and the caudate-putamen complex 
(ten Donkelaar and Dederen  1979 ; Fentress et al.  1981 ; 
Bayer  1984 ) in rodents can be correlated with the 
topographic principles in the nigrostriatal projections. The 
axonal projections are arranged so that the oldest nigral neu-
rons are located in the dorsolateral part (generated before 
E15), whereas the younger neurons (born after E15) are 
located in the ventromedial part. In the rhesus monkey, sub-
stantia nigra neurons are generated between E36 and E43 
with a peak around E38-E40 and without an appreciable spa-
tiotemporal gradient (Levitt and Rakic  1982 ). All neurons in 
the caudate nucleus and putamen are generated within the 
fi rst half of gestation (Brand and Rakic  1979 ). Dopaminergic 
axons are present in the putamen around E60 (Brand and 
Rakic  1984 ). The fi rst morphologically defi ned synapses 
appear in the putamen at E60 and in the head of the caudate 
at E65 (Brand and Rakic  1984 ). During this period the neo-
striatum receives its fi rst corticostriatal input (Goldman-
Rakic  1981 ), preceding its cytoarchitectonic differentiation 
into separate island and matrix cellular components 
(Goldman-Rakic  1982 ). A similar putamen-to-caudate gra-
dient of synaptogenesis has been observed in the developing 
human neostriatum (Zečević and Kostović  1980 ). 

 Data on the  development  of the  human substantia nigra  
are limited. Cooper ( 1946 ) fi rst delineated the substantia 
nigra at the end of the embryonic period (stages 20–21), but 
(by extrapolating rhesus monkey data) its cells are presum-

ably generated between stages 18 and 21. Ontogeny of 
human mesencephalic dopaminergic cells was studied with 
histofl uorescence (Nobin and Björklund  1973 ; Olson et al. 
 1973 ) and TH immunohistochemistry (Pearson et al.  1980 ; 
Pickel et al.  1980 ; Freeman et al.  1991 ; Verney et al.  1991 , 
 2001a ,  b ; Zecevic and Verney  1995 ; Almqvist et al.  1996 ; 
Puelles and Verney  1998 ). Evidence of TH-immunoreactive 
substantia nigra neurons as found as early as stages 15–16, 
i.e. at 4.5 weeks of development (Puelles and Verney  1998 ; 
Verney et al.  2001a ). DiI labelling suggests that dopaminer-
gic neurons innervate the striatum as early as week 10 of 
fetal life (Sailaja and Gopinath  1994 ). Binding studies for 
dopaminergic markers suggest that dopaminoceptive neu-
rons in the striatum expressing the dopamine receptors D1R 
or D2R are present in the human fetal striatum at least from 
week 16 of life (Brana et al.  1995 ,  1996 ) and from week 12 
in the substantia nigra and VTA (Aubert et al.  1997 ). 

 The  development  of the  striatal dopaminergic innerva-
tion  in rats has been studied with histofl uorescence tech-
niques (Olson and Seiger  1972 ; Seiger and Olson  1973 ) and 
immunohistochemical techniques using antibodies against 
TH (Specht et al.  1981a ,  b ) and dopamine (Voorn et al. 
 1988 ). At E14, the fi rst dopaminergic, nigrostriatal fi bres 
reach the striatal anlage. This projection rapidly increases in 
size. The developmental pattern of the dopaminergic inner-
vation of the striatum and the nucleus accumbens and the 
pattern of their neurogenesis are closely related. The fi rst 
dopaminergic fi bres arrive in the two striatal subdivisions 
well before their peaks in neurogenesis. In the immature 
caudate-putamen complex the dopaminergic innervation is 
organized as a system of patches called ‘dopamine islands’ 
(Olson et al.  1972 ). These islands express high TH-like 
immunoreactivity and are also rich in acetylcholinesterase 
activity. In rats, at E19 the fi rst signs of this inhomogeneous 
distribution of dopaminergic fi bres can be observed in the 
dorsolateral part of the striatum. In the following prenatal 
and postnatal days these dopaminergic patches, i.e. the fi rst 
sign of structural compartments in the developing striatum, 
also appear more medially. By the third postnatal week, 
however, most of the patches are no longer detectable and 
only the most dorsolaterally located (the fi rst arising) remain 
visible through the adult stage (Voorn et al.  1988 ). Data on 
the development of the human nigrostriatal projection indi-
cate that already in the early fetal period the neostriatum 
receives dopaminergic terminals. The putamen becomes 
innervated somewhat earlier than the caudate nucleus (Olson 
et al.  1973 ). Nobin and Björklund ( 1973 ) studied 3–4-month- 
old fetuses (10–15-cm crown-rump length). At this stage of 
development, catecholaminergic cell groups and nigrostria-
tal pathways are already richly developed and innervate 
abundantly the basal ganglia and olfactory region (Fig.  9.63 ). 
TH studies in 9–10-week-old fetuses (about 50-mm crown- 

  Fig. 9.62    Subdivision of the human diencephalon and mesencephalon 
based on the prosomeric approach. The substantia nigra is indicated in 
 red. CI  colliculus inferior,  CS  colliculus superior,  I  isthmus,  tgm  teg-
mentum of mesencephalon,  VTA  ventral tegmental area (for other 
abbreviations see Fig.  9.6 ) (After Puelles et al.  2008 )       
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  Fig. 9.63    Development of the striatal 
dopaminergic innervation in 3-4-month-
old human fetuses:  a - c  catecholaminergic 
cell groups;  d - f  nigrostriatal innervation 
of the basal ganglia.  Acc  nucleus 
accumbens,  acp  ascending 
catecholaminergic pathway,  A8  
medullary catecholaminergic cell group, 
 C  caudate nucleus,  ca  commissura 
anterior,  cho  chiasma opticum,  CM  
corpus mammillare,  fl m  fasciculus 
longitudinalis medialis,  GP  globus 
pallidus,  ic  internal capsule,  mfb  medial 
forebrain bundle,  nIII  oculomotor nerve, 
 OB  olfactory bulb,  OT  olfactory tubercle, 
 PN  nucleus paranigralis,  Put  putamen, 
 Rub  nucleus ruber,  SNc  substantia nigra 
pars compacta (After Nobin and 
Björklund  1973 )       

rump length) show that loose clusters of TH-immunoreactive 
neurons are present in the pars compacta of the substantia 
nigra and the VTA. In these early fetal stages, the 
TH-immunoreactive neurons in the substantia nigra already 
have well-established processes which are richly distributed 
in the pars reticulata and in the basal ganglia. These data 
strongly suggest that also in primates including man the gen-
eration of neurons in the substantia nigra and the VTA as 
well as the ingrowth of nigrostriatal fi bres takes place in the 
last part of the embryonic period, i.e. between stages 17 and 
23, comparable to E14-E17 in rat (Table  9.12 ). In rat and 
human embryos, the penetration of dopaminergic fi bres in 
the cerebral cortex occurs at similar developmental stages in 
each species (Verney et al.  1982 ,  1993 ,  2001b ; Kalsbeek 
et al.  1988 ; Zecevic and Verney  1995 ).

9.8.2                 Congenital and Acquired Disorders 
of the Basal Ganglia 

  Developmental malformations  of the  basal ganglia  are 
rare, and are usually associated with malformations of 
other areas of the CNS (Lemire et al.  1975 ; Friede  1989 ). 
Sarnat ( 2000 ) reported a case of congenital absence of the 
basal ganglia (Fig.  9.64 ).  Acquired disorders  of the  basal 
ganglia  are much more common, especially in the perinatal 
period. From a clinical point of view disorders of move-
ment due to abnormal functioning of the basal ganglia can 
be divided into two broad groups (Fig.  9.65 ): (1) the hypo-
kinetic-rigid syndromes, the fundamental disturbances of 
which consist of hypokinesia and/or bradykinesia, i.e. 
diffi culty and/or slowness in initiating and completing 
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movements, generally associated with rigidity; and (2) the 
dyskinesias, including tremor, chorea and ballismus, dysto-
nia and athetosis, tics, and myoclonus (Fernández-Alvarez 
and Aicardi  2001 ; Hoon et al.  2003 ; Sanger  2003 ). 
Disorders with a  hypokinetic - rigid   syndrome  in child-
hood include early-onset Parkinson disease, juvenile 
Huntington disease, Wilson disease, juvenile GM2 ganglio-
sidosis, multiple-system atrophies, Hallervorden-Spatz dis-
ease and many other rare disorders (Fernández-Alvarez and 
Aicardi  2001 ; Clinical Case  9.14 ; Table  9.13 ). Many 
patients with Hallervorden-Spatz disease have mutations in 
the gene encoding pantothenate kinase 2 (PANK2), result-
ing in pantothenate kinase associated neurodegeneration 
(Hayfl ick et al.  2003 ). The ‘eye-of-the-tiger sign’ is typical 
on MRI examination. The medial part of the globus palli-
dus appears to be especially sensitive to defi ciency of 
PANK2.

     A  selective vulnerability  of the basal ganglia is found in 
many acquired lesions such as subependymal haemorrhages 
affecting the ganglionic eminence, status marmoratus, sub-
acute necrotizing encephalopathy (Leigh syndrome; Clinical 
Case  9.16  and kernicterus. The basal ganglia are susceptible 
to injury because they are metabolically very active in the 
immature brain (Chugani and Phelps  1986 ) and possess a 

high concentration of excitatory receptors (Mitchell et al. 
 1999 ).  Subependymal  or  germinal matrix haemorrhages  
are very common in premature infants (see Norman et al. 
 1995 ; Squier  2002 ).  Status marmoratus  (marbled state or 
 état marbré ) is characterized by the presence of myelinated 
fi bres in aggregations of a density abnormal for a given site 
(Norman  1947 ). Typically, such aggregations are associated 
with abnormal collections of glial fi bres. Status marmo-
ratus is usually restricted to the striatum, but may involve 
the globus pallidus, red nucleus and cerebral cortex. It is 
usually associated with the athetoid form of cerebral palsy 
(Malamud  1950 ). Severe intellectual disability, spasticity 
and epileptic seizures are common.  Kernicterus  may result 
as a complication of infantile hyperbilirubinaemia from any 
cause, and may lead to necrosis of selective brain stem, basal 
ganglia and cerebellar neurons (Kinney and Armstrong 
 1997 ). In the term infant, the common sites of the gross 
lesions with a bright yellow colour are the globus pallidus, 
subthalamus and Ammon’s horn. Kernicterus is now rare 
in regions where hyperbilirubinaemia can be anticipated, 
treated or prevented. 

  Chorea  is a relatively infrequent movement disorder in chil-
dren but at least 150 causes of chorea have been described 
(Padberg and Bruyn  1986 ). Primary (idiopathic) and secondary 

   Table 9.12    Development of dopaminergic cell groups in the mesencephalon and their innervation of the basal ganglia and prefrontal cortex in 
rats, rhesus monkeys, and man   

 Species 
 Time of neuron 
origin SN/VTA 

 First appearance 
DA-immunoreactivity 

 First ingrowth DAergic 
fi bres 

 Neurogenesis neostriatum 
and prefrontal cortex 

 Start of 
fetal period 

 Gestation 
time (in days) 

 Rat  SN: E13–15 1, 8, 11   SN: E13 13, 19, 20, 23   Neostriatum: E14 13, 19, 20, 23   Neostriatum: E13-P2 2   E17 21   21–22 21  
 VTA: E14-E16 1, 11   Prefrontal cortex:  Prefrontal cortex: 

E13-E18 9   E17 9  
 Rhesus 
monkey 

 SN: E36-E43 10  
(stages 18–21) 

 ?  Neostriatum: before E60 5   Neostriatum: E36–E80 4  
(peak: E43-E50, i.e. 
stages 21–23) 

 E46–50 7   160–170 7  

 VTA: E38-E43 10  
 (stages 19–21) 

 ?  ?  Prefrontal cortex: 
E40-E90 10  

 Man  SN: stages 19 and 
20 3, 6, 15, 22  (early 5th 
to middle 7th week) 

 SN: between 5.5 and 
9 week 12, 16, 17, 18, 22  

 Neostriatum: before 9th 
week 14, 16, 17, 18, 22, 24  

 Early week 7 to 18 3   E56–60 15   260–280 15  

 VTA: Late 5th to 7th 
week  3, 22  

 ?  Prefrontal cortex: by 
about 

 Prefrontal cortex? 

 12weeks  12, 14, 22, 25  

  After van Domburg and ten Donkelaar ( 1990 ), Zecevic and Verney ( 1995 ), Puelles and Verney ( 1998 ), Verney et al. ( 2001a ,  b ) 
  SN  substantia nigra,  VTA  ventral tegmental area of Tsai 
  References :  1 Altman and Bayer ( 1981 ),  2 Bayer ( 1984 ),  3 Bayer et al. ( 1995 ),  4 Brand and Rakic ( 1979 ),  5 Brand and Rakic ( 1984 ),  6 Cooper ( 1946 ), 
 7 Gribnau and Geysberts ( 1981 ),  8 Hanaway et al. ( 1971 ),  9 Kalsbeek et al. ( 1988 ),  10 Levitt and Rakic ( 1982 ),  11 Marchand and Poirier ( 1983 ),  12 Nobin 
and Björklund ( 1973 ),  13 Olson and Seiger ( 1972 ),  14 Olson et al. ( 1973 ),  15 O’Rahilly et al. ( 1988 ),  16 Pearson et al. ( 1980 ),  17 Pickel et al. ( 1980 ), 
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forms of dystonia are found.  Secondary dystonias  can be clas-
sifi ed into structural, metabolic, degenerative and miscella-
neous disorders. Dystonia is a frequent symptom in the course 
of many inborn errors of metabolism such as  glutaric aciduria 
type 1 , an autosomal recessive metabolic disorder, which is 
characterized by severe reduction or total absence of glutaryl-
coenzyme A dehydrogenase (GCDH) activity (Goodman et al. 
 1977 ; Goodman and Frerman  2001 ). Its prevalence has been 
estimated to be 1 in 30,000 (Kyllerman and Steen  1980 ). At 
least 100 disease-causing mutations have been described 
(Goodman et al.  1998 ; Zschocke et al.  2000 ). GCDH defi -
ciency leads to an accumulation of the marker metabolites 
3-hydroxyglutaric acid, glutaric acid and glutaryl carnitine. 
If untreated, the disease is complicated by acute encephalo-

pathic crises, resulting in neurodegeneration of vulnerable 
brain regions, especially the putamen. 3-Hydroxyglutaric acid 
is the major neurotoxin in this disease (Kölker et al.  2003 ). 
Clinical manifestations generally appear between 5 and 14 
months of age, but mild symptoms such as slight motor delay 
and hypotonia can be observed earlier (Hoffmann et al.  1996 ; 
Fernández-Alvarez and Aicardi  2001 ). Macrocephaly at birth 
or somewhat later in infancy is present in about 70 % of cases 
(Hoffmann et al.  1996 ). In about two thirds of cases, the disease 
starts abruptly, on average at 12 months of age, with focal sei-
zures or generalized convulsions and vomiting, usually follow-
ing an  infectious disease. Psychomotor regression and dystonic 
or choreoathetotic movements then appear (Fernández-Alvarez 
and Aicardi  2001 ). Autopsy studies have shown rather minimal 
changes in severely affected patients who died at 1 year of age 
but changes much more marked in patients who died at more 
than 2 years of age (Goodman et al.  1977 ; Leibel et al.  1980 ; 
Chow et al.  1988 ; Soffer et al.  1992 ; Kimura et al.  1994 ; 
Clinical Case  9.15 ). These fi ndings are remarkably similar to 
those in ‘familial holotopistic striatal necrosis’ (Miyoshi et al. 
 1969 ) or ‘familial striatal degeneration’ (Roessmann and 
Schwarz  1973 ). These cases may have been unrecognized 
forms of glutaric aciduria. 

 In s ubacute necrotizing encephalopathy  or  Leigh syn-
drome  (Leigh  1951 ), movement disorders of any type, 
including hypokinetic-rigid syndrome, chorea, myoclonus or 
dystonia, may be the most obvious clinical features. Leigh 
syndrome is characterized by multifocal, bilateral areas of 
subtotal necrosis in the basal ganglia, the brain stem tegmen-
tum, the cerebellum and to some extent the spinal cord. The 
lesions may involve the white matter, especially the posterior 
columns, the corticospinal tracts, the optic nerves and the 
superior cerebellar peduncles (Lemire et al.  1975 ). This syn-
drome usually presents in infancy with feeding diffi culties, 
psychomotor retardation, ophthalmoplegia, ataxia and weak-
ness. Leigh syndrome is a heterogeneous mitochondrial dis-
order among children that may be associated with defi ciency 
of pyruvate dehydrogenase and of enzymes of the respiratory 
chain, especially complex I and complex IV (Zeviani et al. 
 1996 ; Darin et al.  2001 ; Tulinius et al.  2003 ; Clinical Case 
 9.16 ). 

 MRI studies have shown  bilateral lesions  of the  thalamus  
and the  basal ganglia  in children with severe birth asphyxia, 
leading to dyskinetic and spastic types of cerebral palsy 
(Yokochi et al.  1991 ; Rutherford et al.  1992 ; Krägeloh-Mann 
et al.  1995 ; Rademakers et al.  1995 ; Rutherford  2002 ). In 
addition to hyperintensity (T2-weighed images) in the ven-
trolateral thalamus and the posterior part of the nucleus len-
tiformis, lesions of the perirolandic region and of the 
hippocampus were found in some patients. Bilateral lesions 

a

b

  Fig. 9.64    Two frontal sections of the forebrain at the level of the 
amygdala ( a ) and of the hippocampus ( b ) in a case of bilateral congeni-
tal absence of the deep cerebral nuclei in a 14-month-old male infant 
(kindly provided by Ellsworth Alvord, Seattle)       
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of the thalamus and the basal ganglia have also been found in 
term neonates as a consequence of severe birth asphyxia 
(Voit et al.  1987 ; Pasternak et al.  1991 ; Baenziger et al.  1993 ; 
Rutherford et al.  1995 ; Sie et al.  2000 ; Rutherford  2002 ). 
Krägeloh-Mann et al. ( 2002 ) defi ned three different patterns 
of MRI lesions in children with bilateral lesions of the thala-
mus and basal ganglia due to birth asphyxia, neonatal shock 
or late prenatal compromise: (1) a mild pattern with involve-
ment of the lentiform nucleus and ventrolateral thalamus 
only; (2) an intermediate pattern with involvement of the len-
tiform nucleus, the ventrolateral thalamus and pericentral 
regions; and (3) a severe pattern with additional involvement 

of the entire thalamus and of the hippocampus. This grading 
of MRI fi ndings corresponded rather well with the severity 
of cognitive and motor impairment and the type of cerebral 
palsy. Normal cognitive development and mild motor delay 
was only seen with the mild pattern. All children developed 
cerebral palsy: purely dyskinetic cerebral palsy was only 
found with the mild pattern, the dyskinetic-spastic or spastic 
forms were found in all three groups, with dyskinetic-spastic 
cerebral palsy more related to the moderate pattern, and 
purely spastic cerebral palsy more related to the severe 
pattern. 

Cortex
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  Fig. 9.65    The motor basal ganglia-thalamocortical circuit in the nor-
mal situation ( a ), in parkinsonian conditions ( b ) and in hyperkinetic 
disorders ( c ). Normal cell activity is indicated in  light red , upregulation 
in  red  and downregulation in  grey . Inhibitory pathways are shown as 
 black arrows  and excitatory pathways as  open arrows . The size of the 
arrows indicates the changes occurring. Parkinsonism leads to differen-
tial changes in the two striatopallidal projections, and the inhibitory 
basal ganglia output to the thalamus in increased. In Huntington disease 

( c ), degeneration of the striato-GPe pathway results in increased inhibi-
tion of the subthalamic nucleus and of GPi, leading to reduced basal 
ganglia output to the thalamus.  D  direct pathway,  D1 ,  D2  dopamine 
receptors,  GPe  external part of globus pallidus,  GPi  internal part of 
globus pallidus,  I  indirect pathway,  PPN  pedunculopontine tegmental 
nucleus,  SNc  compact part of substantia nigra,  SNr  reticular part of sub-
stantia nigra,  Sth  subthalamic nucleus,  VL  ventrolateral thalamic 
nucleus (After Wichmann et al.  2000 ; from ten Donkelaar et al.  2011 )       
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   Table 9.13    Involvement of the basal ganglia in some childhood motor impairment syndromes   

 Disorder  Inheritance/gene defect  Involvement of basal ganglia  Selected references 

 Bilateral striatal necrosis  Autosomal recessive; maps to 
chromosome 19q 

 Caudate, putamen, globus pallidus  Friede ( 1989 ) 
 Basel-Vanagaite et al. ( 2004 ) 

 Dentatorubro-pallidoluysian 
atrophy 

 Autosomal dominant  External globus pallidus, subthalamic 
nucleus; (dentate and red nuclei) 

 Takahashi et al. ( 1988 ) 
 Warner et al. ( 1994 ,  1995 ) 

 Glutaric aciduria type I  Autosomal recessive; defi ciency in 
glutaryl-CoA-dehydrogenase 

 Caudate, putamen; see Clinical Case 
 9.15  

 Chow et al. ( 1988 ) 
 Kimura et al. ( 1994 ) 
 Goodman and Frerman ( 2001 ) 

 Hypoxic-ischaemic 
encephalopathy: 

 Putamen, thalamus, perirolandic areas  Krägeloh-Mann et al. ( 1995 , 
 2002 ) 

 Bilateral lesions thalamus/basal 
ganglia 

 Rutherford ( 2002 ) 

 Juvenile Huntington disease  Caudate, putamen  Ho et al. ( 1995 ) 
  Kernicterus   Globus pallidus  Johnston and Hoon ( 2000 ) 

 Yilmaz et al. ( 2001 ) 
  Leigh syndrome   Mitochondrial disorder; defi ciency 

complexes I or IV 
 Caudate, putamen, brain stem, white 
matter; see Clinical Case  9.16  

 Leigh ( 1951 ) 

 Pantothenate kinase-associated 
neurodegeneration 
(Hallervorden-Spatz disease) 

 Autosomal recessive disorder; many 
patients with  PANK2  mutations 

 Globus pallidus, subthalamic nucleus  Hayfl ick et al. ( 2003 ) 

 Pyruvate dehydrogenase 
defi ciency 

 Globus pallidus, caudate, putamen  Brown et al. ( 1989 ) 
 Robinson ( 2001 ) 

  Wilson disease   Autosomal recessive disorder with 
abnormal deposition of copper in 
liver, brain, cornea, and other tissues 

 Putamen, globus pallidus, caudate  Brewer et al. ( 1999 ) 

  After Fernández-Alvarez and Aicardi ( 2001 ), Hoon et al. ( 2003 )  

  Clinical Case 9.14 Selective Vulnerability 
of the Basal Ganglia 

 A  selective vulnerability  of the basal ganglia is found 
in many acquired lesions such as subependymal haem-
orrhages affecting the ganglionic eminence, status 
marmoratus, subacute necrotizing encephalopathy 
(Leigh syndrome; see  Clinical case   9.16 ) and kernic-
terus. The basal ganglia are susceptible to injury 
because they are metabolically very active in the 
immature brain and possess a high concentration of 
excitatory receptors (Mitchell et al.  1999 ). Moreover, 
many disorders of movement due to abnormal func-
tioning of the basal ganglia occur (Fernández-Alvarez 
and Aicardi  2001 ). Some examples are shown as Case 
Reports. 

  Case Report 1 : In  methyl - malonic acidemia  ( MMA ), 
a severe, classic organic aciduria, the globus pallidus is 

selectively involved. In a seven-year-old girl with MMA, 
an MRI showed bilateral destruction of the globus palli-
dus (Fig.  9.66a , b). She presented in the fi rst week of life 
with an acute encephalopathy with coma and seizures. 
Laboratory investigation revealed a severe metabolic aci-
dosis and hypoglycaemia. Despite appropriate treatment 
in the acute phase and interventions during follow-up, 
such as a special diet and prevention of a catabolic state 
during intercurrent illnesses, she became severely dis-
abled with profound mental retardation, spasticity and 
dystonia.

    Case Report 2 : In  infantile bilateral striatal necrosis , 
patients present with progressive motor disturbances. 
A previously healthy boy with a so far normal develop-
ment presented with such symptoms at the age of fi ve 
years. Neurological examination showed generalized, 
symmetrical dystonia and chorea. An MRI resembled the 
images as reported in infantile bilateral striatal necrosis 
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(Fig.  9.66c ). Laboratory investigations did not show any 
arguments in favour of an underlying mitochondrial or 
other metabolic disorder, poststreptococcal chorea or 
other causative disease processes. Molecular analysis of 
the only gene known to be responsible for infantile bilat-
eral striatal necrosis ( nup62 ) was negative. 

  Case Report 3 : In  kernicterus , hyperbilirubinaemia 
leads to bilateral damage of the globus pallidus 
(Fig.  9.66d–g ). In a female neonate, postnatal develop-
ment was complicated by hyperbilirubinaemia, despite 
phototherapy and transfusions. At the age of one week, 
MR images showed bilateral signal abnormalities in the 
globus pallidus, prominent on T1-weighted images but 
hardly visible on T2. At the age of three months, the 
T1-weighted images have become almost fully normal, 
including the globus pallidus. On these T1-weighted 
images, the stripes with increased signal intensity refl ect 

the normal pattern of myelination of the posterior limb of 
the internal capsule at this age; these areas show normal 
low signals on T2-weighted images. Three months later, 
however, on T2-weighted images, strong signal intensi-
ties of the globus pallidus are now clearly visible. These 
images illustrate the transition of signal changes depend-
ing on the stage (acute versus chronic) of the disorder and 
the selective vulnerability of the globus pallidus in biliru-
bin encephalopathy. 

  References  

 Fernández-Alvarez E, Aicardi J (2001) Movement disorders in chil-
dren. MacKeith, London 

 Mitchell IJ, Cooper AJ, Griffi ths MR (1999) The selective vulnera-
bility of striatopallidal neurons. Prog Neurobiol 59:691–719  
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  Fig. 9.66    MRIs of cases of methylmalonic acidemia ( a ,  b ), infantile bilateral necrosis ( c ) and kernicterus ( d – g ; see text for further explana-
tion; From ten Donkelaar et al.  2011 ; courtesy Michèl Willemsen, Nijmegen)       
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  Clinical Case 9.15 Familial Striatal 
Degeneration (Glutaric Aciduria Type 1) 

  Glutaric aciduria type 1  ( GA - 1 ) is an autosomal reces-
sive metabolic disorder which is characterized by severe 
reduction or total absence of glutarylcoenzyme A dehy-
drogenase (GCDH) activity (Goodman et al.  1977 ; 
Kimura et al.  1994 ; Hoffmann et al.  1996 ). The neuro-
pathological fi ndings in a 15-year-old Turkish male ado-
lescent will be discussed as the Case Report. 

  Case Report . Rapidly progressive neurological symp-
toms were evident from birth in this 15-year-old male 
adolescent whose parents were consanguineous to the 
third degree. Hypertonia began at the left side, became 
generalized later and ended with episodes of generalized 
epilepsy. His monozygous twin brother and two sisters 
were neurologically and developmentally normal, but a 
younger brother also had GA-1. They both displayed the 
so-far unreported mutation M801 (240 G → C) in exon 3 
of the GCDH gene. 

 His fi rst episode occurred at 7 months of age when, 2 
weeks after gastroenteric dehydration, he had paroxysmal 
hypertonia of the left arm which progressed to status epi-
lepticus with subcoma. The idiopathic relapsing fever 
was labelled as acute encephalopathy without any obvi-
ous metabolic cause. The second episode occurred 11 
months later, again in the form of gastroenteric dehydra-
tion and encephalopathy. A peak of urinary glutaric acid 

(GA) and the presence of 3-OH-GA suggested the diag-
nosis of glutaric aciduria type 1. Blood tests were normal, 
but the patient’s CSF revealed a raised acetic acid level. 
The fi nding of normal GCDH activity in hepatocytes and 
fi broblasts, however, led to the erroneous dismissal of the 
GA-1 diagnosis. Constant episodes of laryngeal dyspnoea 
when he was 4 years old led to retesting of organic acid 
levels. They were found to be normal and so GA-1 was 
completely dismissed. The patient had now severe psy-
chomotor retardation. He suffered from dyskinetic dysto-
nia with compulsive nuchal torsion dystonia to the right 
side. Additional manifestations included hip adduction 
hypertonia, hyperextension and torsion of the spine. 
Although no fi xed contractures were found, there was 
total loss of voluntary movements, except for visual 
expression and eye motility. The patient had hypotonia 
alternating with periods of opisthotonus and an overall 
dystrophic expression of the body until he died at the age 
of 15 years from bronchopneumonia. The diagnosis of 
GA-1 could only be confi rmed after postmortem gene 
analysis. 

 At autopsy, the spleen and liver were found to be nor-
mal, making the diagnosis of a storage disease unlikely. 
The brain weighed 1,275 g. Macroscopically, there were 
widened  lateral ventricles and loss of gyral convolutions. 
Frontal atrophy and a small caudate nucleus and putamen 
were also evident (Fig.  9.67a ). The white matter appeared 
grossly normal. Microscopically, the striatum showed 

a b

  Fig. 9.67    Familial striatal degeneration: ( a ) frontal section through 
the brain demonstrating very atrophic caudate nuclei; ( b ) histological 
section through the caudate nucleus with severe gliosis ( lower  and  right  

parts of the picture); centrally, two round structures (striosomes) are 
somewhat spared from the gliosis (Courtesy Martin Lammens, 
Nijmegen)       
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obvious neuron loss, with small neurons being more 
affected than large cells (Fig.  9.67b ). This was marked in 
the putamen, moderate in the caudate nucleus and only 
mild in the globus pallidus. This neuronal loss was asso-
ciated with marked astrocytic gliosis. Interestingly, on 
close examination of the striatum we noted that the neu-
ronal loss and astrogliosis were non- continuous in nature. 
In fact, such changes were confi ned to areas within the 
sections which bore great resemblance to the patch-
matrix compartments of the striatum.

    References  

 Goodman SI, Norenberg MD, Shikes RH, Brelick DJ, Moe PG 
(1977) Glutaric aciduria: biochemical and morphological con-
siderations. J Pediatr 90:746–750 

 Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M, de Klerck 
JBC, Lehnert W et al (1996) Clinical course, early diagnosis, 
treatment and prevention of disease in glutaryl- CoA dehydroge-
nase defi ciency. Neuropediatrics 27:115–123 

 Kimura S, Hara M, Nezu A, Osaka H. Yamazaki S (1994) Two cases 
of glutaric aciduria type 1: clinical and neuropathological fi nd-
ings. J Neurol Sci 123:38–43  

  Clinical Case 9.16 Leigh Syndrome 

  Leigh syndrome  (Leigh  1951 ) or  subacute necrotizing 
encephalomyopathy  is a progressive subcortical disorder, 
characterized by multifocal, bilateral areas of subtotal 
necrosis in the basal ganglia, the brain stem tegmentum, 
the cerebellum, and to some extent the spinal cord (see 
Case Report). It is the prototype of a large group of mito-
chondrial encephalomyopathies, currently known as 
defects of oxidative phosphorylation (OXPHOS defects; 
Chap.   3    ). 

  Case Report . A boy was born after an uncomplicated 
pregnancy as the second child of non-consanguineous 

parents. His mother and grandmother were known with 
retinitis pigmentosa. As a baby, head balance was poor 
and the boy was very quiet. Marked developmental delay 
and subsequently progressive loss of motor and social 
skills became evident at the age of 8 months. Cerebral 
MRI showed marked cerebral atrophy and abnormal signs 
in the basal ganglia (Fig.  9.68 ), suggesting Leigh syn-
drome. Blood lactate levels were between 1.8 and 
9.4 mmol/l (normally below 2.0 mmol/l), and CSF lactate 
was also elevated to 4.8 mmol/l (normally 1.2–
2.0 mmol/l). At the age of 11 months, respiratory failure 
due to pneumonia necessitated artifi cial ventilation. At 
that time a muscle biopsy was taken. Histological 

a b

  Fig. 9.68    Coronal ( a ) and axial ( b ) MRI of Leigh syndrome. Note the zones of hyperintensity in the caudate nucleus and the putamen 
bilaterally (Courtesy Michèl Willemsen, Nijmegen)       
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 examination of the tissue showed no structural abnormali-
ties of the muscle fi bres. Biochemical analysis demon-
strated defective respiratory chain functions. Mutation 
analysis fi nally confi rmed the diagnosis Leigh syndrome 
by demonstration of the 8993 T > G mutation in mito-
chondrial DNA. Although he initially recovered, the boy 
died at the age of 14 months due to aspiration and subse-
quent respiratory failure.

   At autopsy, brain weight was 830 g. Macroscopical 
inspection revealed bilateral slightly asymmetric, dark 

grey to light brown lesions in the thalamus, hypothala-
mus, mesencephalic tegmentum, periaqueductal grey 
matter and hindbrain nuclei (Fig.  9.69a–c ). The putamen 
and the pulvinar were bilaterally pseudocystically degen-
erated. All these lesions were characterized by spongiosis 
of the neuropil, reactive astrocytes and important  capillary 
proliferation and endothelial swelling (Fig.  9.69d ). In the 
less severe lesions such as in the periaqueductal grey mat-
ter, neurons were still well recognizable. In the more 
severely affected regions such as the putamen, almost all 

a b
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  Fig. 9.69    Leigh syndrome: ( a ) frontal section at the level of the 
mammillary bodies showing atrophy of the basal ganglia and thal-
amus, dilatated lateral ventricles, brown discolorated regions in 
the right thalamus, and atrophic cerebral cortex; ( b ) frontal sec-
tion at the level of the substantia nigra; especially the regions 
around the left substantia nigra and both subthalamic nuclei are 

damaged with brown discoloration; ( c ) frontal section showing a 
cystin the left pulvinar; ( d ) haematoxylin-eosin-stained section of 
a lesion in the left subthalamic nucleus: spongiosis, slight gliosis 
and capillary proliferation are present, and centrally the cell body 
of an intact large neuron is visible (Courtesy Martin Lammens, 
Nijmegen)       
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neurons had disappeared, leading to pseudocystic lesions. 
These are the classic signs found in Leigh syndrome. 
Large parts of the cerebral cortex, including frontal, insu-
lar and temporobasal cortex, were atrophic, and showed 
gliosis in the molecular layer and spongiosis and neuronal 
loss in layer II. Such lesions are reminiscent of Alpers 
disease. Moreover, in the occipital cortex an ischaemic 
lesion at the borderzone between the territories of the 
anterior and middle cerebral arteries was found with 

pseudolaminar necrosis of the complete cortex. There 
was also important cell loss and spongiosis in areas CA1 
and CA3 of the hippocampus. Probably, these lesions 
resulted from generalized circulatory failure.

    Reference  

 Leigh D (1951) Subacute necrotizing encephalomyopathy in an 
infant. J Neuro Neurosurg Psychiatr 14:216–221   

9.8.3      Development of the Amygdala 

 The  amygdala  is composed of pallial and subpallial parts 
(Lammers  1972 ; Stephan and Andy  1977 ; Amaral  1987 ; de 
Olmos  1990 ,  2004 ; Heimer et al.  1991 ). The basolateral 
parts and the associated cortical amygdala form the pallial 
part, whereas the central and medial amygdaloid nuclei form 
the subpallial part (Fig.  9.70 ). The centromedial amygdala 
forms a continuum with the bed nucleus of the stria termina-
lis, known as the extended amygdala (Alheid and Heimer 
 1988 ; Alheid et al.  1995 ; Heimer et al.  1997 ; de Olmos 
 2004 ).  Time  of  neuron origin  data in rodents indicate a ros-
trocaudal gradient within the amygdaloid complex (ten 
Donkelaar et al.  1979 ; Bayer  1980 ; McConnell and Angevine 
 1983 ) and strongly support a subdivision of the amygdala 
into two groups: a group of early-arising (E13-E15/E17) 
structures (central, medial and anterior cortical nuclei) and a 
group of later-born (E14/E15-E16/E17) nuclei (lateral, baso-
lateral, basomedial and posterior cortical nuclei). This dis-
tinction between two groups of nuclei in the amygdaloid 
complex is comparable with the subdivision of Stephan and 
Andy ( 1977 ). Molecular genetic data have been reviewed by 
Medina and Abellán ( 2012 ). In rhesus monkeys, neurogene-
sis in the amygdaloid nuclear complex starts at E33, peaks 
between E38 and E48 and ceases between E50 and E56 
(Kordower et al.  1992 ).

    Developmental studies  on the  human amygdala  are few 
(Macchi  1951 ; Humphrey  1968 ,  1972 ; Kahle  1969 ; Ulfi g 
 2002b ; Ulfi g et al.  2003a ,  b ; Müller and O’Rahilly  2006 ). 
The primordial amygdala is recognized as a thickening in the 
ventrocaudal wall of the interventricular foramen as soon as 
the cerebral hemisphere has evaginated (stages 14–16). 
Apparently, slightly later, the medial nucleus develops fi rst, 
followed by the basolateral complex later at stage 20. Most 
of the amygdaloid nuclei arise from the medial ganglionic 
eminence (Müller and O’Rahilly  2006 ). All amygdaloid 
nuclei are present by stages 21–22. Kahle ( 1969 ) and Ulfi g 

and co-workers (Ulfi g  2002b ; Ulfi g et al.  2003a ,  b ) studied 
the fetal development of the human amygdala (Fig.  9.71 ). 
In the fi fth and six gestational month, the inferior part of the 
amygdala reveals cell-dense columns merging with the cau-
dal part of the ganglionic eminence. These columns contain 

  Fig. 9.70    Overview of the amygdala and extended amygdala. The cen-
tromedial nuclei and the extended amygdala are indicated in  red , the 
basolateral amygdala ( BL ) and cortical amygdala ( Co ) in  light red. A  
anterior nucleus,  ac  anterior commissure,  BST  bed nucleus of stria ter-
minalis,  cc  corpus callosum,  Cl  claustrum,  CM  centromedial amygdala, 
 f  fornix,  GPH  gyrus parahippocampalis,  GPi  internal globus pallidus, 
 HY  hypothalamus,  Put  putamen,  ST  stria terminalis,  20 – 22  temporal 
cortical areas       
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vimentin-positive glial fi bres which provide a scaffold for 
migrating neurons. In the seventh and eighth month, distinct 
reorganization of the cytoarchitecture of the amygdala 
occurs, accompanied by a rearrangement and disappearance 
of vimentin-positive fi bres, leading to a high degree of matu-
rity in the eighth month.

   The amygdala may be involved in Ammon’s horn sclero-
sis and in schizophrenia and other neurobehavioural disor-
ders such as the  autism spectrum disorder  (Chap.   10    ). 
Postmortem and MRI studies have highlighted the frontal 
lobes, the amygdala and the cerebellum as pathological in 
autism (Amaral et al.  2008 ; Chap.   10    ). The amygdala in 
boys with autism appears to undergo an abnormal develop-
mental time course that includes a period of precocious 
enlargement that persists through late childhood (Sparks 
et al.  2002 ; Schumann et al.  2004 ). Sparks et al. ( 2002 ) 
found a 13–16 % abnormal enlargement of the amygdala in 
young children with autism (36–56 months of age). 
Amygdala enlargement may be associated with severe 

 anxiety (Juranek et al.  2006 ) and worse social and commu-
nication skills (Munson et al. 2006). Schumann et al. ( 2004 ) 
found that the amygdala was enlarged by 15 % in 8- to 
12-year-old boys with autism relative to typically develop-
ing controls, but did not differ in 13- to 18-year-old boys. 
Kemper and Baumann ( 1993 ) were the fi rst to report abnor-
malities in the microscopic organization of the amygdala. 
Quantitative observations in six postmortem cases of autism 
between 9 and 29 years of age (fi ve with intellectual disabil-
ity, four with seizures) indicated that neurons in certain 
nuclei of the amygdala in autism cases appeared unusually 
small and more densely-packed than in age-matched con-
trols. Schumann and Amaral ( 2006 ) compared nine autism 
cases 10–44 years of age without seizures with ten typically 
developing age-matched male controls. The autism group 
had signifi cantly fewer neurons in the total amygdala and in 
the lateral nucleus than the controls. The amygdala is selec-
tively involved in  Urbach - Wiethe disease , a rare autosomal 
recessive neurocutaneous disorder (Clinical Case  9.17 ). 

a

b

c  Fig. 9.71    Development of the human 
amygdala: ( a ) frontal section through 
the forebrain of a 35-mm-CRL embryo; 
( b ,  c ) the amygdala complex in a 
4-month-old fetus and an 8-month-old 
fetus, respectively. The centromedial 
cell group ( CM ) and its derivatives are 
indicated in  red  and the 
corticobasolateral cell group ( CoBL ) 
and its derivatives in  light red. ac  
anterior commissure,  Bl  large-celled 
part of basal nucleus,  Bs  small-celled 
part of basal nucleus,  C  central nucleus, 
 Cl  claustrum,  Co  cortical nucleus,  EN  
entorhinal cortex (with cell nests),  GP  
globus pallidus,  Hip  hippocampus, L 
lateral nucleus,  M  medial nucleus,  Str  
striatum (( a ) After Stephan  1975 ; ( b ) 
after Kahle  1969 )       
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  Clinical Case 9.17 Urbach-Wiethe Disease 

  Urbach - Wiethe disease , also known as  lipoid proteino-
sis , is a rare autosomal recessive neurocutaneous disorder 
caused by mutations in the extracellular matrix protein 1 
gene ( ECM1 ; Hamada et al. 2003). ECM1 is thought to 
contribute to protein binding of collagens and glycosami-
noglycans. Hoarseness, due to laryngeal deposition of 
hyaline material, is generally the fi rst manifestation of the 
disease. The CNS gradually becomes affected with char-
acteristic calcifi cations of the amygdala leading to tempo-
ral lobe epilepsy and neuropsychiatric manifestations. 
Histologically, the skin disorder is characterized by peri-
odic acid-Schiff (PAS)-positive basement membrane 
thickening and accumulation of hyaline material. Based 
on the clinical observations of three patients, Adolphs 
et al. (1995, 1999) suggested that the amygdala is involved 
in a broad spectrum of social attributions. 

  Case report . A 15-year-old girl was referred to the 
Department of Pediatric Neurology after she was diag-
nosed with Urbach-Wiethe disease due to a homozygous 
nonsense mutation in the  ECM1  gene by a dermatologist. 
From infancy onwards, the girl was known with remark-
able hoarseness and typical skin abnormalities. Her motor 
and language development were fully normal and her 
school performance was excellent. From the age of 11 

years onwards, she had suffered from unexplained parox-
ysms with strange abdominal sensations, followed by a 
short period with confusion but without motor signs. 
Neurological examination and routine electroencepha-
lography were completely normal. Cerebral CT showed 
bilateral calcifi cations of the globus pallidus and amyg-
dala (Fig.  9.72 ). The paroxyms were considered partial 
epileptic seizures, caused by cerebral involvement in 
 Urbach- Wiethe disease. During follow-up, her epilepsy 
appeared drug-resistant and she developed memory prob-
lems as well as a panic disorder.

   This case was kindly provided by Michèl Willemsen 
(Department of Pediatric Neurology, Radboud University 
Nijmegen Medical Centre, Nijmegen). 
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  Fig. 9.72    CTs of a 15-year-old girl 
with Urbach-Wiethe disease 
demonstrating bilateral calcifi cations 
of the globus pallidus ( a ) and of the 
amygdalar ( b ) in the medial temporal 
lobe (Courtesy Michèl Willemsen, 
Nijmegen)       
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